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Chapter 1

Introduction

Linear particle transport through heterogeneous and disordered media emerges in several applications

in nuclear science and engineering, especially in relation to neutron and photon propagation. Examples

are widespread and concern for instance:

• the double-heterogeneity of the fuel elements in pebble-bed reactors, which contain randomly

dispersed micro-spheres of TRISO fuel particles consisting of a fissile material surrounded by

a coated ceramic layer of silicon carbide for structural integrity and fission product contain-

ment, themselves contained within fuel pebbles made of pyrolytic graphite (which acts as the

moderator) and stochastically packed within the vessel [17, 53,64,71,94,121];

• randomly mixed immiscible materials such as fluid-vapour mixtures in boiling water reactors:

the behaviour of the water acting as both coolant and moderator in a two-fluid random state

must be taken into account in order to properly describe neutron transport [164];

• radiation shielding calculation through concrete structures, where the shield effectiveness with

respect to the transported particles depends on the random distribution of the components of

concrete, such as gravel [66];

• the impact of poison grains for neutron absorbers [33,125] or Pu grains in MOX fuels [165];

• safety margins evaluation [114,159,160,163], especially for waste storage [161];

• the development of hydrodynamical instabilities at the material interfaces in inertial confinement

fusion pellets driven by lasers [48,66,67,166,167];

• and the assessment of re-criticality probability due to the random arrangement of fuel, water

and other structural materials resulting from fuel degradation after severe accidents [160, 162],

such as those occurred at the Three Mile Island unit 2 [18,47,50] and at the Fukushima Daiichi

power plant [45,143].

Besides, the spectrum of applications of linear transport within random media is fairly broad and far

reaching [24, 75, 147], and concerns also light propagation through turbid media such as sooty air or

murky water [27, 57, 74] and engineered optical materials [3, 138, 139], tracer diffusion and charged

particle beams in biological tissues with small-scale heterogeneities [111, 116, 149], diffusion through

distributed systems of obstacles and absorbing traps [7], radiation trapping in hot atomic vapours [81],

and radiative transfer in astrophysics [38,66], only to name a few.

1.1 Linear particle transport in random media

A stochastic medium is such that the material properties at a given point in space are only known

statistically [108, 112, 147]. It seems that linear particle transport in stochastic mixtures has been

first formulated at the ninth International Conference on Transport Theory (ICTT, Montecatini,

Italy, 1985) [66, 105]. This pioneering work by Pomraning and co-workers has been considerably

9



10 CHAPTER 1. INTRODUCTION

extended and refined in subsequent years by many authors. The discussion presented in the following

sections is closely based on the arguments presented in [66, 108, 112, 126]. For the sake of simplicity,

we will focus here our attention to the case of mono-energetic transport in non-multiplying media,

in stationary (i.e., time-independent) conditions. However, these hypotheses are not restrictive, as

argued in [108,112,126].

The stochastic nature of particle transport stems from the materials composing the traversed

medium being randomly distributed according to some statistical law. Hence, the total cross section

Σt(r), the differential scattering cross section Σs(Ω
′ → Ω, r) and the source term Q(r,Ω) are in

principle random variables [108, 126]. Here r and Ω denote the position and direction variables,

respectively. Let us assume that there exists a collection of states X = {q}: a physical realization

of the system under analysis will be denoted by a state q, associated to some stationary probability

P(q), of observing the state q, with the normalization∫
X
P(q)dq = 1. (1.1)

To each state q thus correspond the functions Σ
(q)
t (r), Σ

(q)
s (Ω′ → Ω, r) and Q(q)(r,Ω) for the material

properties [108,171], and q can be seen as a mapping that associates a material q(r) to each point r.

The ensemble-averaged angular flux is then formally defined as

〈ϕ(r,Ω)〉 =

∫
P(q)ϕ(q)(r,Ω)dq, (1.2)

where ϕ(q)(r,Ω) is the solution of the Boltzmann equation

Ω · ∇ϕ(q)(r,Ω) + Σ
(q)
t (r)ϕ(q)(r,Ω) =

∫
Σ(q)
s (Ω′ → Ω, r)ϕ(q)(r,Ω′)dΩ′ +Q(q)(r,Ω), (1.3)

corresponding to a single realization q, with the appropriate boundary conditions. The physical

observable of interest may be more generally some ensemble-averaged functional 〈F [ϕ]〉 of the particle

flux. The key goal of particle transport theory in stochastic media consists in deriving a formalism

for the description of the ensemble-averaged angular particle flux 〈ϕ(r,Ω)〉.
For a finite set of materials {α}, each associated with non-stochastic source Qα(r,Ω), total cross

section Σt,α(r) and scattering transfer law Σs,α(Ω′ → Ω, r), the ensemble-averaged angular flux can

be decomposed as

〈ϕ(r,Ω)〉 =
∑
α

pα(r)〈ϕα(r,Ω)〉, (1.4)

where

pα(r) =

∫
Xα(r)

P(q)dq (1.5)

is the probability of finding the material α at position r, the subset of states comprising all the states

that have material α at position r being denoted as Xα(r) = {q ∈ X|q(r) = α}. Observe that the case

where the statistical properties of the random materials vary spatially in a continuous fashion and are

thus described by stochastic fields has also received intensive research efforts [27, 28, 36, 101, 117, 150,

150]. In the following, however, we will not consider this case and focus exclusively on random media

composed of a finite set of random states.

The quantity 〈ϕα(r,Ω)〉, which is often called the material average flux, represents the ensemble-

averaged angular flux restricted to those realizations that have material α at position r [126]:

〈ϕα(r,Ω)〉 =

∫
Xα(r) P(q)ϕ(q)(r,Ω)dq

pα(r)
. (1.6)

Thus, the search for 〈ϕ(r,Ω)〉 can be decomposed into the search for 〈ϕα(r,Ω)〉 for each material.

Exact solutions for 〈F [ϕ]〉 can be in principle obtained in the following way: first, a realization of

the medium is sampled from the underlying mixing statistics; then, the linear transport equation (1.7)

corresponding to this realization is solved by either deterministic or Monte Carlo methods, and the
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physical observables of interest F [ϕ] are determined; a sufficiently large collection of realizations is

produced; and ensemble averages are finally taken for the physical observables. Reference solutions are

very demanding in terms of computational resources, especially if transport is to be solved by Monte

Carlo methods in order to preserve the highest possible accuracy in solving the Boltzmann equation.

In principle, it would be thus desirable to directly derive a single equation for the ensemble-averaged

flux 〈ϕ〉.
For the sake of clarity, and without loss of generality, in the following we will consider the case

of binary stochastic mixing, where only two immiscible materials (say α and β) are assumed to be

present [108]. Most of the considerations presented here can be in principle extended to the more

general case of n-nary mixing. Then, by averaging Eq. (1.3) over the set Xα of realizations having

material α at r, we obtain the following equation for 〈ϕα(r,Ω)〉

[Ω · ∇+ Σt,α] (pα〈ϕα〉) = pα

∫
Σs,α(Ω′ → Ω, r)〈ϕα(r,Ω′)〉dΩ′ + pαQα + Uα,β. (1.7)

The cross sections Σt,α and Σs,α are those of material α. The quantity

Uα,β = pβ,α〈ϕβ,α〉 − pα,β〈ϕα,β〉 (1.8)

represents a coupling term, where

pi,j = pi,j(r,Ω) (1.9)

denotes the probability per unit length of crossing the interface from material i to material j at position

r and direction Ω. The quantity 〈ϕi,j〉, often called the interface average flux, denotes the angular

flux averaged over the subset of realizations that have a transition from material i to material j at

position r and in direction Ω. The equation for the ensemble-averaged flux 〈ϕβ(r,Ω)〉 within material

β is immediately obtained from Eq. (1.7) by permuting the indexes α and β.

Attempts at establishing similar equations for higher-order moments (for instance, the variance)

of the flux have been also proposed, with limited success [113].

Another approach to the derivation of an equation for the ensemble-averaged material flux 〈ϕα(r,Ω)〉
consists in resorting to the integral formulation of the Boltzmann equation. The right hand side of

Eq. (1.3) represents the emission density of the particles, which is usually denoted by χ(r,Ω):

χ(r,Ω) = Q(r,Ω) +

∫
Σs(Ω

′ → Ω, r)ϕ(r,Ω′)dΩ′. (1.10)

From Eqs. (1.10) and (1.3), it can be shown that the emission density χ and the angular flux ϕ are

related by the integral (Peierls) equation

ϕ(r,Ω) =

∫
e−

∫ s
0 Σt(r−s′Ω)ds′χ(r− sΩ,Ω)ds. (1.11)

By averaging Eq. (1.11) of the subset of states Xα, we are led to the renewal-like equation [106,126,171]

〈ϕα〉 = ϕ0(r0,Ω)e−τα(r0,r)Rα(r0, r) +

∫ s0

0
e−τα(r′,r)hα(r′, r)〈ϕ̄β,α(r′,Ω, r)〉ds

+

∫ s0

0
e−τα(r′,r)Rα(r′, r)

∫
Σs,α(Ω′ → Ω, r′)〈ϕ̄α,α(r′,Ω′ → r)〉dΩ′ds

+

∫ s0

0
e−τα(r′,r)Rα(r′, r)Qα(r′,Ω). (1.12)

This equation expresses the material average flux 〈ϕα〉 at location r in terms of new average angular

fluxes along the past trajectory in direction −Ω, i.e., along points at positions r′ = r−Ωs′ [106,108,

171]. The quantity r0 denotes the boundary or initial point at the origin of the past trajectory, ϕ0 is

the corresponding initial or boundary value, and s0 = |r − r0|. The optical distance along the past

trajectory is

τα(r′, r) =

∫ s′

0
Σt,α(r′′)ds′′. (1.13)



12 CHAPTER 1. INTRODUCTION

The quantity 〈ϕ̄β,α(r′,Ω, r)〉 denotes the ensemble-averaged flux over the subset of states that have

the entire trajectory from r′ to r within material α and change to material β at r′, and the quantity

〈ϕ̄α,α(r′,Ω′ → r)〉 denotes the ensemble-averaged flux over the subset of states that have the entire

trajectory from r′ to r within material α [171]. The former is analogous to the interface flux previously

introduced, and the latter to the the material flux.

Finally, the quantity Rα(r′, r) represents the conditional probability that the entire trajectory from

r′ to r is within material α, given that r is in material α, and the quantity

hα(r′, r) = − ∂

∂s′
Rα(r′, r) (1.14)

is the conditional probability density that the interval from r′ to r is in α and having changed from

material β at r′, given that r is in material α [126].

1.2 Relation to the material chord length distribution

For both the integro-differential formulation and the integral formulation, Eqs. (1.7) and (1.12), respec-

tively, the ensemble averaged flux 〈ϕα〉 depends on the statistical properties of the traversed medium.

This is formally expressed via the probability pα,β(r,Ω) per unit length of crossing the interface from

material α to material β at position r and direction Ω in the case of the integro-differential formu-

lation, and via the conditional probability Rα(r′, r) that the entire trajectory from r′ to r is within

material α, given that r is in material α, in the case of the integral formulation.

A commonly adopted hypothesis concerning the nature of the random media is that the probabilities

pα,β(r,Ω) and Rα(r′, r) do not depend on the position within the medium, which leads to homogeneous

mixing statistics [108, 126]. This means that all the spatial points within the medium have the same

statistical properties, which are then invariant under arbitrary translations. In this case, we have

pα,β(r,Ω) = pα,β(Ω) (1.15)

and

Rα(r′, r) = Rα(s′,Ω). (1.16)

Consider now a material chunk Mα of the stochastic medium associated to label α, and denote

by fα(s|Ω) the probability density that the chord C determined by intersecting an arbitrary line L of

orientation Ω with the boundaries of the material chunk has a length between s and s+ds. The chord

C is formally defined by the intersection L∩Mα [127]. The probability density fα(s|Ω) is normalized,

with ∫ ∞
0

fα(s|Ω)ds = 1. (1.17)

By virtue of the homogeneity hypothesis, fα(s|Ω) does not depend on the spatial position r. The

average linear material size along direction Ω follows from the average material chord length

Λα(Ω) =

∫ ∞
0

sfα(s|Ω)ds. (1.18)

Assigning the probability density fα(s|Ω) is tantamount to saying that the randomness of the medium

is entirely described in terms of homogeneous renewal statistics, where the probability density of a

material change

hα(s|Ω) = − ∂

∂s
Rα(s,Ω) =

1

Λα(Ω)

∫ ∞
s

fα(s′|Ω)ds′ (1.19)

only depends on the distance s to the interface of material α along the direction Ω [106,108,126]. The

quantity hα(s|Ω)ds defines the probability that the distance to the interface from an arbitrary point

within material α lies between s and s+ ds. The probability density hα(s|Ω) is also normalized, with∫ ∞
0

hα(s|Ω)ds = 1. (1.20)
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The quantity Rα(s,Ω) follows from

Rα(s,Ω) =

∫ ∞
s

hα(s′|Ω)ds′ (1.21)

and physically represents the probability that the interface along the direction Ω from a given point

within material α is larger than s.

Finally, for pα,β(Ω) we find

pα,β(Ω) =
pα

Λα(Ω)
(1.22)

and for pα we obtain

pα =
Λα(Ω)

Λα(Ω) + Λβ(Ω)
, (1.23)

where the dependence on Ω in the average chord lengths cancels out to yield a direction-independent

material probability pα.

The chord length distribution fα(`|Ω) has been thoroughly investigated for the case of random

inclusions of hard spheres in a background matrix [30, 44, 72, 77, 100, 144], especially in view of its

relevance for neutron transport in pebble-bed reactors [17, 31, 32, 53, 64, 71, 94]. For a comprehensive

review, see, e.g., [147]. In particular, it has been shown that for homogeneous and isotropic inclusions

of poly-dispersed hard spheres in dimension d the average chord length within the background matrix

is related to the random medium properties by

Λα =
1− ξ
ξ

κd
κd−1

〈rd〉
〈rd−1〉

, (1.24)

where ξ denotes the packing fraction (i.e., the volume fraction of the space filled by the spheres),

κd = πd/2/Γ
(
1 + d

2

)
is the volume of the unit sphere in dimension d, and 〈rn〉 =

∫
rng(r)dr is the

n-th moment of the sphere radius, g(r) being the radius distribution [72, 144]. Moreover, accurate

Monte Carlo simulations have shown that the associated chord length distribution fα(s) is nearly

exponential, with average provided by Eq. (1.24), and that the accuracy of this approximation improves

for increasingly diluted spheres, i.e., small ξ [77, 100], as expected on theoretical grounds [147].

A particularly relevant class of renewal statistics is provided by the homogeneous Markov mix-

ing [66, 108], for which the chord length distribution is assumed to be exactly exponential, namely,

fα(s|Ω) = ρα(Ω)e−ρα(Ω)s, (1.25)

where ρα(Ω) = 1/Λα(Ω). For this class of random media, the probability per unit length to cross the

interface of material α in direction Ω has a Poisson distribution with parameter ρα(Ω) [108]. As such,

Markov mixing represents an idealized mathematical description for disordered media, demanding

minimal information content [108, 147]. Models satisfying homogeneous Markov mixing were intro-

duced by Pomraning and co-workers for one-dimensional geometries of the rod or slab type, based on

a Poisson point process on the line [66,108]. Extensions to two-dimensional flat or extruded isotropic

configurations have been later proposed [48,65]. The practical realizability of such Markov model hav-

ing an exponential distribution fα(s|Ω) simultaneously in all directions for arbitrary d-dimensional

geometry has been an open question for many years [66].

Another fundamental question concerns the robustness of the Markov model, and in particular

the impact of the choice of the chord length distribution on the key features of particle transport in

random media [66]. The exponential distribution depends only on the parameter Λα(Ω), so that the

average chord length and the variance are not independent: actually, the variance is simply the square

of the average. Hence, one might ask how the transport properties depend on the higher moments of

the distribution, and in particular on the variance. Some investigations have been carried out in the

framework of renewal theory for generic chord length distributions in one dimension [154,171].

If the disorder is further assumed to be isotropic, the probability of crossing an interface will not

depend on Ω. Observe that the hypothesis of homogeneity is reasonably the only one amenable to

meaningful statistical models for the disorder (i.e., models possibly leading to some general results of

broad applicability). The hypothesis of isotropy, while often adopted, is not strictly mandatory, and

some interesting anisotropy-preserving models can be actually derived as we will show in the following.
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1.3 The atomic mix limit

We have thus shown that the characterization of the linear transport within random media is intimately

connected to the distribution of the chord lengths within the material chunks. The impact of the

randomness of the medium on particle transport clearly depends on the ratio of their two respective

characteristic spatial scales. The typical size of a particle displacement within the medium is given

by the mean free path 1/Σt,i for each material i, whereas the typical scale of the randomness of

the medium is intuitively given by Λi, which yields the average linear size of the chunks containing

material i. If the typical particle displacement is much larger than the typical size of the disorder,

i.e., if Σt,iΛi � 1, then a single particle flight will ‘see’ a large number of material chunks, and we fall

thus within the atomic mix regime: for the transport process, we can safely assume that the medium

is composed of a homogeneous material, whose properties (including cross sections and sources) are

obtained by averaging the properties of each random material, weighted by their respective probability

pi of occurrence [108].

More precisely, it has been shown that under the atomic mix approximation Σt,iΛi � 1, the

transport equations (1.7) collapse to a single equation for the average flux 〈ϕ〉, namely,

[Ω · ∇+ 〈Σt〉] 〈ϕ〉 =

∫
〈Σs(Ω

′ → Ω, r)〉〈ϕ(r,Ω′)〉dΩ′ + 〈Q〉+O(ε), (1.26)

where ε is a measure of the smallness of the material chord length Λi with respect to the particle mean

free path 1/Σt,i in material i [108], and the physical properties and the source are averaged over the

possible material realizations:

〈Σt(r)〉 = pα〈Σt,α(r)〉+ pβ〈Σt,β(r)〉, (1.27)

〈Σs(Ω
′ → Ω, r)〉 = pα〈Σs,α(Ω′ → Ω, r)〉+ pβ〈Σs,β(Ω′ → Ω, r)〉, (1.28)

and

〈Q(r,Ω)〉 = pα〈Qα(r,Ω)〉+ pβ〈Qβ(r,Ω)〉. (1.29)

The atomic mix regime formally corresponds to neglecting disorder-induced spatial correlations, all

the terms involving ensemble averages of the kind 〈Σϕ〉 being replaced by the product of the averages,

namely, 〈Σ〉〈ϕ〉 [108].

In the opposite regime, i.e., for Σt,iΛi � 1, the typical particle displacement is much smaller than

the typical size of the disorder, so that a single particle flight will typically experience a single material

chunk. The intermediate regime, where the two spatial scales are comparable, i.e., Σt,iΛi ' 1, will give

rise to a non-trivial behavior, whose description will be most easily provided within a probabilistic

framework.

1.4 Closure formulas for the transport equations

In the general case of non-vanishing average material chord lengths Λi, the set of equations for the

ensemble-averaged formulation of the integro-differential version of the transport equation (1.7), whose

derivation contains no approximations so far, can be shown to form an infinite hierarchy, since the

terms 〈ϕα〉 in Eq. (1.8) would involve equations for the conditional averages 〈ϕβ,α〉 and 〈ϕα,β〉, which

in turn would further involve additional conditional averages [108, 171]. The same argument applies

to the ensemble-averaged formulation of the integral version of the transport equation (1.12), which

contains the conditional averages 〈ϕ̄β,α〉 and 〈ϕ̄α,α〉 and also leads to an infinite hierarchy of equations

involving increasingly more singular statistical averages [171].

For the special case of collisionless transport (i.e., in the absence of scattering), it has been shown

that for renewal statistics the hierarchy of the integral transport equations (1.12) closes at the second

order [126], with the identity

〈ϕ̄β,α(r′,Ω, r)〉 = 〈ϕβ,α(r′,Ω)〉 (1.30)
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between the interface flux along the past trajectory and the local interface flux [107, 126]. For colli-

sionless transport with Markov statistics, it has been further shown that the hierarchy of the integro-

differential transport equations (1.7) closes at the first order, with the identity

〈ϕβ,α(r,Ω)〉 = 〈ϕβ(r,Ω)〉 (1.31)

between the interface flux and the material flux [126].

Unfortunately, such exact closure relations do not exist for the case of non-zero scattering me-

dia [108, 118]. Generally speaking, it will be then necessary to truncate the infinite set of equations

with some appropriate model leading to a closure formula, depending on the underlying mixing statis-

tics. Furthermore, the integro-differential formulation and the integral formulation, while both exact,

are not equivalent for transport in stochastic media, so that after introducing a truncation they will

possibly yield different results [107,126].

1.5 The Levermore-Pomraning model

Based on the closure formula valid for collisionless transport with Markov statistics, the celebrated

Levermore-Pomraning model assumes that the identity

〈ϕα,β〉 = 〈ϕα〉 (1.32)

holds also in the presence of scattering for homogeneous Markov mixing [66, 108]. This leads to the

truncated integro-differential transport equations

[Ω · ∇+ Σt,α] (pα〈ϕα〉) = pα

∫
Σs,α(Ω′ → Ω, r)〈ϕα(r,Ω′)〉dΩ′ + pαQα +

pβ
Λβ
〈ϕβ〉 −

pα
Λα
〈ϕα〉. (1.33)

The dependence of Λi on the direction Ω has been omitted, in order to keep notation simple. Equa-

tions (1.33), although derived for the case of binary mixing, can be extended more generally to the

case of n-nary mixtures. Several generalisations of this model have been later proposed, including

higher-order closure schemes [108,118,136].

Equations (1.33) form a system of coupled Boltzmann equations, and can thus be solved by stan-

dard deterministic methods [1,11,171]. In parallel, Monte Carlo algorithms such as the Chord Length

Sampling (CLS) have been proposed: the basic idea behind CLS is that the interfaces between the

constituents of the stochastic medium are sampled on-the-fly during the particle displacements by

drawing the distances s to the following material boundaries from a distribution fα(s) depending

on the mixing statistics. It has been shown that the CLS algorithm formally solves the Levermore-

Pomraning model for Markovian binary mixing [122, 123, 167]. Generalization of these Monte Carlo

algorithms including partial memory effects due to correlations for particles crossing back and forth

between the same materials have been also proposed [167]. Their common feature is that they allow a

simpler, albeit approximate, treatment of transport in stochastic mixtures, which might be convenient

in practical applications where a trade-off between computational time and precision can be worth con-

sidering. Originally formulated for Markov statistics, i.e., exponentially distributed material chords,

these models have been largely applied also to random inclusions of disks or spheres into background

matrices, with application to pebble-bed and very high temperature gas-cooled reactors [8,12,31,32],

where the chord length distribution is known to be approximately exponential only for diluted inclu-

sions [100, 144]. Some methods to mitigate the errors between CLS and the reference solutions have

been presented in the context of eigenvalue calculations, e.g., in [68].

1.6 Quenched and annealed disorder

Thus, it appears that two distinct strategies can be adopted in order to describe particle transport in

random media [108]. The former, which is based on quenched disorder models, leads to exact solutions

for the statistical moments of the observables of interest, at the expense of high computational cost.
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The latter, which is based on annealed disorder models, leads to approximate solutions that might be

convenient in practical applications where a trade-off between computational time and precision can

be worth considering.

In the quenched disorder approach, the random spatial configurations with associated material

compositions are first defined based on a probabilistic model. The Boltzmann equation is then solved

for each configuration, and the statistical moments (and in principle the full distribution) of the

quantities of interest are obtained by taking the ensemble averages with respect to the realizations [108,

109,114]. The quenched disorder approach leads to reference solutions, because the effects of disorder-

induced spatial correlations on particle trajectories are correctly preserved. Analytical results for the

ensemble averages demand huge theoretical efforts; considerable progress can be nonetheless achieved

by using Monte Carlo methods in order to generate realizations taken from the sought distribution

and then using a deterministic or Monte Carlo transport code to solve the transport problem for each

sampled configuration.

The goal of the annealed disorder approach is to develop effective equations for the ensemble-

averaged observables, such as the Levermore-Pomraning model [108]. When particle transport is

solved by Monte Carlo simulation, the annealed disorder approach is implemented by introducing

disorder-averaged neutron displacement laws that are supposed to ‘mimic’ the effects of the spatial

heterogeneities on particle trajectories, such as in the CLS algorithm [31,32,166,167]. By construction,

spatial correlations are neglected by these methods. Since the spatial configuration seen by each

particle is regenerated at each particle flight, the CLS corresponds to an annealed disorder model, as

opposed to the quenched disorder of the reference solutions, where the spatial configuration is ‘frozen’

for all the traversing particles.

In order to quantify the accuracy of the various approximate models, comparisons with respect

to reference solutions are mandatory. For this purpose, a series of benchmark problems have been

proposed in the literature. For Markov mixing and renewal statistics, a number of benchmark problems

comparing CLS and reference solutions have been proposed [1, 9–11, 171], with focus exclusively on

1d geometries, either of the rod or slab type. Flat two-dimensional configurations have received

less attention [48, 65, 134]. For the case of randomly dispersed spherical inclusions into background

matrices, several benchmark problems have been also examined in two and three dimensions [8, 12,

31, 32]. In the context of eigenvalue problems, intensive research efforts have been devoted so far

to the class of stochastic inclusions [20, 43, 54, 68, 69, 94], whereas the case of Markov and renewal

mixing has comparatively received less attention, and has been mostly confined to one-dimensional

systems [114,160,162].

1.7 Plan of this work

In this Thesis, we will investigate linear particle transport in random media, having in mind the

applications to reactor physics and in particular the analysis of the re-criticality probability following

core degradation. The Thesis is structured in two major parts.

In the first part, we will focus on some mathematical models that can be used for the description of

random media. Special emphasis will be given to stochastic tessellations, where a domain is partitioned

into convex polyhedra by sampling random hyperplanes according to a given probability. Stochastic

inclusions of spheres into a matrix will be also briefly introduced.

• In Chapter 2 we will provide the state of the art concerning the key statistical properties of three

classes of random tessellations, namely, Poisson, Poisson-Voronoi and Poisson-Box tessellations,

and of mono and poly-dispersed spherical inclusions. In particular, we will show that the Poisson

tessellations satisfy the Markov property for any dimension d, which allows giving a positive

answer to the possibility of explicitly realizing Markov media with exponentially distributed

chord lengths in any direction. It has been suggested that such tessellations might be the only

stochastic geometries to satisfy the Markov properties [87, 90]. The effects of anisotropy on

Poisson geometries are also thoroughly discussed. For each class of random media, the shape of

the chord length distribution is recalled and related whenever possible to the statistical features
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of the geometry. The distinct features of the chord length distribution for different random

geometries are provided.

• A computer code has been developed in order to explicitly construct such geometries by Monte

Carlo methods, and the implementation details will be provided in Chapter 3. The chosen

algorithms and the global performances of the generator will be analyzed. This generator can

be used in order to produce an ensemble of realizations obeying the specific set of probabilities

for d-dimensional Poisson, Poisson-Voronoi and Poisson-Box tessellations or spherical inclusions.

• In Chapter 4 we will conclude the first part of the Thesis by performing an exhaustive numerical

analysis of the random media introduced in Chapter 2: we will generate large collections of

geometry realizations and compute the moments, the correlations and the full distributions

of a few relevant observable of interest, such as the chord lengths, the typical volume and

surface of a tessellation cell, the number of faces of cell, an so on. The results corresponding to

different classes of random geometries will be further compared. This analysis will be carried

out with a two-fold aim: on one hand, for the case of very large geometries the comparison

between the moments computed by Monte Carlo methods and the exact formulas available for

geometries having an infinite extension will allow verifying the correct implementation of the

generator. On the other hand, the generator will allow exploring how the observables related to

the random geometries behave for finite-size systems, for which exact result do not exist. The

full distributions of observables for which only the lower order moments are exactly known will

be also computed.

In the second part of this Thesis, we will then assess the general features of particle transport within

the random media that have been analyzed in the first part of the work. For this purpose, we will

consider some benchmark problems that are simple enough so as to allow for a thorough understanding

of the effects of the random geometries on particle trajectories and yet retain the key properties of

linear transport. Transport calculations will be realized by using the Monte Carlo particle transport

code Tripoli-4 R©, developed at SERMA.

• In Chapter 5 we will begin by considering the case of quenched transport where the mixing statis-

tics is provided by d-dimensional Poisson tessellations. We will in particular revisit the classical

Adams, Lervermore and Pomraning benchmark, originally proposed for single-speed fixed-source

transport in one dimension for slab and rod configurations with Markov mixing. Reference so-

lutions will be computed for dimension d = 1 (slab), d = 2 (extruded) and d = 3, based on

isotropic Poisson tessellations. At SERMA, the case of two-dimensional Markov geometries has

been previously addressed within the framework of the internships of Alice Somaini (transport

properties), Thibaut Lepage and Lucie Delaby (geometrical features), under the guidance of

Drs. A. Mazzolo and F. Malvagi. To the best of our knowledge, three-dimensional solutions

have never been proposed before in the literature. The effect of dimensionality on the computed

observables, such as the reflection and transmission coefficients at the boundaries of the domain

and the spatial flux within the domain, will be carefully examined.

Furthermore, we will assess the impact of the chord length distribution on the transport prop-

erties: we will introduce a new set of benchmark configurations consisting in void-diffusive and

absorption-diffusive three-dimensional random media, and consider several mixing statistics,

including isotropic Poisson, Voronoi and Box tessellations. For these classes of renewal distri-

butions, each associated to a different chord length distribution, we will set the average chord

length as a control parameter and examine the impact of the higher moments of the chord length

on the observables of interest. A crucial point will be the discovery that Box and Poisson tessel-

lations induce very close chord length distributions, which in turn imply very close simulation

results for particle transport. This analysis represents an extension to dimension d = 3 of the

pioneering work carried out in dimension d = 1 in order to probe the sensitivity of the transport

results to the use of non-exponential distribution of chord lengths [154,171].
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• Eigenvalue problems in quenched disorder will be examined in Chapter 6: we will examine

the effects of fuel degradation on the key observables of criticality calculations, namely, the

multiplication factor and the kinetics parameters, by assuming that a portion of a fuel assembly is

replaced by a random tessellation representing the stochastic material rearrangement following a

severe accident. Poisson, Voronoi and Box tessellations will be used, and the impact of the chord

length distribution on the obtained results will be evaluated for two benchmark configurations

consisting in UOX and MOX assemblies with 17×17 fuel pins. The effects of anisotropy, which

can be conveniently introduced in order to model the effects of material stratification, will be also

examined by resorting to anisotropic Poisson tessellations: this part of the work has been partly

carried out by Alessandro Marinosci, a Master of Science student in Nuclear Engineering at

Politecnico di Torino (Italy), who spent a six-month internship at SERMA under the guidance of

Dr. A. Zoia and myself. These results provide a generalization to realistic three-dimensional and

continuous-energy configurations of the pioneering work performed by Pomraning on eigenvalue

problems for Markov mixing in slab and rod configurations [114].

• We will conclude the second part of the Thesis by considering the case of annealed disorder.

For this purpose, we will first address the case of the Chord Length Sampling (CLS) algo-

rithm: within the framework of a collaboration with Dr. P. Brantley of the Lawrence Livermore

National Laboratory (USA) and Prof. T. Palmer of the Oregon University (USA), we have re-

visited the Adams, Levermore and Pomraning benchmark by comparing the d-dimensional CLS

solutions to the reference solutions previously obtained based on Poisson geometries. The simu-

lation results will be illustrated in Chapter 7. In particular, we will show how the discrepancies

between reference and approximated solutions evolve as a function of the system dimension-

ality. To the best of our knowledge, a similar comparison for Markov mixing has never been

attempted before. Finally, in Chapter 7 we propose a new class of improved d-dimensional

CLS-like algorithms adapted for Monte Carlo simulations that can include partial memory and

better preserve the effects of spatial correlations. The key ingredient will be shown to be the

similarity between the chord length distribution in Poisson and Box tessellations. The simu-

lation results for this new class of annealed disorder methods, which we will call Poisson-Box

Sampling, will be contrasted to those of CLS and to reference solutions for the configurations

of the Adams, Levermore and Pomraning benchmark. For all configurations, the Poisson-Box

Sampling will be shown to perform better than the standard CLS and to yield solutions in fairly

good agreement with the reference values. Independently and simultaneously, Drs. P. Brant-

ley and G. Zimmerman have developed another improved three-dimensional CLS-like method,

named Local Realization Preserving (LRP) algorithm: in the framework of the aforementioned

collaboration with Dr. Brantley, a detailed comparison between the Poisson-Box Sampling and

the LRP methods is being carried out, and the preliminary results of such investigation will be

also presented.

Conclusions will be finally drawn in Chapter 8.
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Chapter 2

Modeling disordered media by random
geometries

2.1 Introduction

In order to pave the way to the description of particle transport through random media, in this Chapter

we begin by addressing the key statistical properties of a few classes of stochastic geometries. Random

media of interest in reactor physics typically belong to two families: stochastic inclusions of fissile

chunks within a background matrix [20,68,94] and stochastic tessellations composed of a collection of

fissile and non-fissile volumes obeying a given mixing statistics [108]. In the following we will provide

an overview of stochastic inclusions and stochastic tessellations, where the material properties have

only a discrete number of random states. Our main focus will be on stochastic tessellations, which will

be later used in order to produce reference solutions for particle transport within disordered media.

For all the random media models considered in this work, we will assume a fundamental and

natural property of stochastic homogeneity (also called spatial stationarity) [87]. A stochastic system

is said to be homogeneous if it is stochastically invariant under arbitrary translation. In other words,

the construction of the system with respect to an arbitrary point in Rd is independent of the point

chosen. It turns out that little theoretical progress is possible without requiring this assumption.

Strictly speaking, stationarity applies to systems having an infinite extension: in practice, we will

always consider random media restricted to some finite portion of Rd.

2.1.1 Stochastic inclusions

Stochastic inclusions are a class of probabilistic models where a collection of objects of fixed or random

shape are placed at random within a given domain, which is called the background matrix. The objects

can or cannot overlap, according to the specific rules of the model. The distribution of the centers of

the inclusions as well as the one describing their shape (where needed) are chosen based on physical

considerations. Among this class of model, possibly the best-known case is provided by spherical

inclusions, where the objects to be positioned within the matrix are spheres of fixed or variable radius.

Stochastic inclusions can be applied to the description of neutron diffusion in pebble-bed reactors,

where fissile micro-spheres of constant diameter are randomly dispersed through a graphite matrix,

itself arranged within bigger spheres (the pebbles) randomly stacked into the reactor vessel [53,64,94].

An illustration is given in Fig. 2.1. Neutron transport in boiling water reactors involves diffusion in

a random medium composed of liquid water and vapour, where the vapour bubbles can be described

by spheres of varying sizes (because of coalescence and break-up) randomly dispersed through the

water [164]. For criticality safety, and in particular for waste storage problems, spherical inclusion

models are often used as a convenient approximation when lacking detailed information concerning

the shape and position of the dispersed fissile chunks [159,162].

For our work we will consider in particular spherical inclusions: we will first describe the strategy

for the construction of d-dimensional random configurations with fixed and varying radius and detail

the statistical properties of the resulting geometries.

23
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Figure 2.1: Left. Computer-generated random stacks of pebbles for various shapes of the
vessel. (a) full-size geometry, (b) 3:1 geometry, (c) 6:1 geometry and (d) tall 6:1 geome-
try. The snapshots correspond to different levels of drainage. For the first three, approx-
imately 20% of the pebbles having been drained through the container. For the tall 6:1
geometry, roughly the same amount of flow as the 6:1 geometry. Before drainage is ini-
tiated, the pebbles are colored in vertical bands, and the deformation of the bands high-
lights the pattern of flow; the two colors of pebbles are mixed together at the top of each
simulation during reinsertion. Image taken from Ref. [121]. Right. Cross section and
zoom of a pebble, with fuel kernels dispersed within a graphite matrix. Image taken from
http://fortune.com/2016/02/04/nuclear-startup-x-energy/.

2.1.2 Stochastic tessellations

There is a vast class of random heterogeneous materials whose microstructure cannot be modelled as

a distribution of inclusions or cavities of well-defined shape in a matrix and can be better described

by a space-filling random geometry [75,129,147].

Consider a disjoint aggregate {Xi}, i = 1, 2, · · · of bounded domains in the euclidean space Rd,
with Xi ∩ Xj = ∅ for i 6= j. The aggregate is space-filling in Rd if the union of the domains Xi

yields the entire space Rd. When the bounded domains are convex and space-filling, the interfaces

between domain pairs must be hyperplanes, and the domains Xi must be convex polyhedra. In this

case, the aggregate {Xi} is a tessellation of Rd, and the domains Xi are the cells of the tessellation.

Stochastic tessellations are a class of probabilistic models where a given d-dimensional domain is

decomposed into random convex polyhedral cells by generating a collection of random hyperplanes in

Rd [24,75,85,127,129,147]. Distinct tessellation models use either a direct specification of the random

interfaces (i.e., the hyperplanes) between the cells, or a specification of some preliminary random

‘framework’ that leads via certain rules to a random division of space [87].

Stochastic tessellations might provide a convenient model for the random space-filling arrangement

of fuel, water and other structural materials such as those resulting from fuel degradation in Three

Mile Island unit 2 [18, 47, 50] and at the Fukushima Daiichi power plant [45, 143]. An illustration is

given in Fig. 2.2. Besides, stochastic tessellations are a convenient model to describe, e.g., the turbu-

lent mixtures involving materials of different sizes and shapes that arise due to the hydrodynamical

instabilities in inertial confinement fusion targets [48,67,166,167] and crystal aggregates with random

nucleation in metallurgy and material science [40, 80]: a comprehensive review can be found, e.g.,

in [127,129,147].

For our work, we will introduce a few significant probabilistic models based on generating random

hyper-planes and leading to random tessellations with distinct features: in particular, we will consider

the Poisson hyperplane tessellations, the Poisson-Box tessellations (both pertaining to tessellations

induced by assigning random rules for the interfaces defining the cells), and the Poisson-Voronoi

tessellations (belonging to the class of tessellations induced by assigning a preliminary random frame-

work). Where needed, the subscript or superscript m will denote the class of the stochastic model:

m = P for Poisson tessellations, m = V for Voronoi tessellations, and m = B for Box tessellations. For
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Figure 2.2: Cross sections of corium samples from the Three Mile Island (Reactor number 2)
nuclear accident in 1979. Left. The surface of the sample has been oxidized in order to empha-
size colors. Green color corresponds to uranium dioxide, whereas brownish part corresponds
to metals like zirconium, iron, nickel, melted together. Right. Cross section of a small 1-mm
corium grain. Whitish color corresponds to the regions where cladding and uranium melted and
mixed. Images taken from http://www.asahi.com/special/10005/TKY201203050580.html.

each stochastic model, we will describe the strategy for the construction of d-dimensional tessellations

and detail the statistical properties of each stochastic tessellation.

2.2 Stochastic spherical inclusions

A comprehensive review of the fundamental statistical properties of spherical inclusions can be found,

e.g., in [147]. The inclusion of randomly dispersed spheres within background matrices has attracted

intensive research efforts mainly for applications to pebble-bed and Very High Temperature gas-

cooled Reactors (VHTR) [8,12,31,32,68], especially in the context of eigenvalue problems for neutron

transport [20, 43, 54, 68, 69, 94]. Other models of stochastic inclusions with non-spherical shapes have

been proposed in order to describe geometrically complex microstructures, concerning, for instance,

battery electrodes, fuel cells and solar cells. Some examples of 3D stochastic modeling can be found

in [39,98,99]. However, we do not consider non-spherical inclusion models in the following.

In this section, we analyze binary random mixtures of two materials (say ’0’ and ’1’), composed

of d-dimensional spheres of material 1 randomly placed into a matrix of material 0. The spheres

are said to be hard when no overlapping is possible. Otherwise, the spheres are said to be fully

penetrable. For instance, void-filled overlapping spheres surrounded by a scattering material can be

used to describe porous media. In the following, we mainly focus on non-overlapping d-dimensional

spheres, for dimension d = 2 (disks) or d = 3 (spheres). Two such models have been mainly proposed:

spherical inclusions with mono-dispersed radius, meaning that the radius r of the d-dimensional spheres

is constant, or poly-dispersed radius, meaning that the radius r is randomly sampled from a probability

density function g(r) [72,144,147]. In the following, both cases will be considered.

For each case, the packing fraction ξ is defined as the volume fraction of the space filled by

spheres. The volume fraction of the background matrix is the complementary volume fraction 1− ξ.
For illustration, some examples of stochastic spherical inclusions are provided in Fig. 2.3, for mono-

dispersed or poly-dispersed radius.

2.2.1 Construction of stochastic spherical inclusions

A few algorithms have been proposed in the literature in order to explicit construct spherical inclusions

by Monte Carlo methods. In the following, we briefly recall some of the most commonly adopted

strategies.
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Basic Random Sequential Addition (RSA)

The Random Sequential Addition (RSA) method consists in sequentially introducing random spheres

into a box in order to reach the sought packing fraction ξ specified by the model, with the condition

that the trial sphere do not overlap those already introduced within the background matrix [156].

An optional constraint is that any sphere overlapping the boundaries is rejected. The position of the

sphere is uniformly sampled in the container and the radius randomly sampled from the distribution

g(r), for the case of poly-dispersed spheres. The case of mono-dispersed spheres formally corresponds

to taking g(r) = δ(r − R) for some given value R for the radius. In this method, the position of a

sphere which has been introduced is fixed, contrary to other algorithms such as those later mentioned in

Sec. 2.2.1, where the positions spheres are subsequently adjusted. This algorithm leads to an isotropic

random loose packing: indeed, the maximum attainable packing fraction with this method is ξ ≈ 0.38

for the three-dimensional case [26], and ξ ≈ 0.547 for the two-dimensional case [35]. For comparison,

the packing fraction for a close-packed face-centered cubic lattice is ξ ≈ 0.74. Further details about

three-dimensional RSA sphere packing can be found in [141]. In the following, we assume, without

loss of generality, that the container is a box of side L centered in (0, 0, 0).

Algorithm for mono-dispersed spheres. For mono-dispersed three-dimensional spheres of

radius R, we want to introduce N spheres in the container, where N is related to ξ by

N = b 3ξL3

4πR3
c, (2.1)

where b·c denotes the integer part. Thus, for a constant radius R, the sought parameter ξ is generally

not exactly reached, because of round-off effects.

The RSA algorithm for packing N three-dimensional spheres of radius R into the container is

the following: initially, there are k = 0 spheres in the box. Then, we randomly draw a position

(x, y, z) corresponding to the center of the trial sphere. This position is uniformly sampled within

the container, such that the sphere does not overlap the boundaries: in other words, x, y and z are

sampled from independent uniform distributions U [−L/2 +R,L/2−R]. Then, we check whether the

sphere centered at (x, y, z) with radius R does overlap any of the previous k−1 spheres. In the case of

overlapping, the sampled sphere is rejected. Otherwise, the trial sphere is added to the list of spheres

in the container and the index k is incremented by one. These steps are iterated until the number of

spheres in the container reaches k = N .

Algorithm for poly-dispersed spheres. For poly-dispersed spheres of random radius r obeying

g(r), we start by sequentially sampling the radii ri of the spheres, until the effective packing fraction

resulting from the collection of spheres having radii r1, r2, · · · , rN is larger than the input parameter

ξ. We denote by N the corresponding number of spheres. For the last sphere, the radius rN can

be adjusted such that the effective packing fraction is strictly equal to ξ. Then, we sort the radii in

descending order. The purpose of this step is to quickly find a position for the largest spheres.

At this step, there are still k = 0 spheres in the box. Then, we randomly sample a position

(x, y, z) corresponding to the center of the trial sphere. This position is uniformly sampled within

the container, such that the sphere does not overlap the boundaries. We check whether the sphere

centered at (x, y, z) with radius rk does not overlap any of the previous k − 1 spheres. In the case of

overlapping, this position (x, y, z) is rejected. Otherwise, the trial sphere is accepted, is added to the

list of spheres in the container. The counter k is incremented. This step is iterated until the number

of spheres in the container reaches k = N .

Complexity of the algorithms. For mono or poly-dispersed spheres, the RSA method scales as

O(N2) with the number N of spheres, since we have to check that all previous spheres do not overlap

the trial sphere. This quadratic scaling can lead to very large computational times for configurations

where a high packing fraction ξ is sought.
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(a)

(b)

Figure 2.3: Realizations of stochastic spherical inclusions included in a cube of side L = 10,
with packing fraction ξ. (a) Mono-dispersed radius r: (left) r = 0.05 and ξ = 0.1; (middle)
r = 0.25 and ξ = 0.1; (right) r = 0.25 and ξ = 0.3. (b) Poly-dispersed radius r sampled from
a random distribution: (left) r ∼ U [0.05, 0.25] and ξ = 0.1; (left) r ∼ U [0.05, 0.25] and ξ = 0.3;
(right) r ∼ U [0.2, 0.6] and ξ = 0.3.

Speed-up of the RSA method Fast RSA methods enable to speed-up the basic RSA method

by resorting to a fictive meshing of the domain, in order to shorten the computational time spent for

the step where we check that the trial sphere does not overlap any other sphere already positioned

in the contained. In such methods, instead of checking all previous spheres for overlap, we restrict

the research only to nearest-neighbour spheres, by defining a Cartesian mesh with spacing h = L/n,

where n is the number of cells along each axis. The implementation of such algorithms will be detailed

in Chapter 3.

Algorithms for dense packing of spheres

As mentioned above, the basic RSA as well as the fast RSA do not allow reaching packing fractions

ξ such as those that might occur for specific applications. For pebble-bed reactors, e.g., the packing

fraction is as high as about 0.63 at the center of the vessel [104]. In order to properly model such closely

packed systems, a more efficient way of randomly filling space with spheres has to be implemented,

ensuring the desired packing fraction. For instance, the ballistic deposition model proposed by Visscher

and Bolterlii [155] leads to a sphere packing with a maximum attainable packing fraction ξ ≈ 0.58.

The dynamic algorithm proposed by Jodrey and Tory [46] produces an isotropic random dense packing

of spheres up to a packing fraction ξ ≈ 0.649. In this work, we will not consider these algorithms.

2.2.2 Statistical properties: chord length distribution

In view of particle transport through a random arrangement of spherical inclusions, a particularly

relevant observable is the distribution of the chord lengths ` determined by the intersection between

lines thrown through the geometry and the spheres [127]. In particular, it has been shown that

the chord length distribution P(`) plays a prominent role in determining the behaviour of particle

trajectories traversing the stochastic tessellation [100, 144]. This can be intuitively understood by

considering that the trajectories of particles streaming and colliding through a medium are composed
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of a series of straight lines of random length, separated by random reorientations following each collision

event: understanding how the geometrical nature of the traversed medium affects the distribution of

a straight line with given orientation allows therefore better grasping the effects of the disorder on the

particle displacements. In particular, the average chord length through the random geometry can be

physically identified with the typical correlation length, i.e., the linear size of the disorder [100,108,144].

For fully penetrable spheres, the chord length distribution P(`0) in the background matrix (ma-

terial 0) for a line with fixed orientation passing through the random medium has been shown to be

exponential [144].

For hard spheres, the exact functional form of the chord length distribution across the background

matrix for an isotropic random sphere packing is not known, but it has been numerically shown by

extensive Monte Carlo simulations that its shape is quasi-exponential. In particular, when the spherical

inclusions are sufficiently diluted (i.e., at low packing fractions 1), the chord length distribution can be

described by an exponential function over several decades [100,144]. The probability density function

can be expressed by the approximate formula [144]

P(`0) ≈ κd−1

κd

ξ

1− ξ
〈rd−1〉
〈rd〉

exp

(
−κd−1

κd

ξ

1− ξ
〈rd−1〉
〈rd〉

`0

)
(2.2)

For the special case d = 3, the result has been first established by [30] and reads

P(`0) ≈ 3ξ

4(1− ξ)
〈r2〉
〈r3〉

exp

(
− 3ξ

4(1− ξ)
〈r2〉
〈r3〉

`0

)
. (2.3)

A remarkable result has been in particular established: for any probability density function g(r) of

the sphere radius, the (approximate form of the) chord length distribution across the matrix depends

only on the d-th and (d − 1)-th moments of the radius. From these explicit expressions the average

chord length, 〈`0〉 immediately follows as

〈`0〉 ≈
κd
κd−1

1− ξ
ξ

〈rd〉
〈rd−1〉

(2.4)

In the case of hard spheres, the chord length `1 inside the d-dimensional spheres (material 1) is not

exponential. Its distribution can be explicitly computed for a sphere packing with poly-sized radius of

probability density function g(r). The probability density function P(`1) of the chord lengths inside

d-dimensional spheres is given by [77]

P(`1) =


`1

4〈r〉
∫ +∞
`1/2

g(r)√
r2−(`1/2)2

dr if d = 2

`1
2〈r2〉

∫ +∞
`1/2

g(r)dr if d = 3.
(2.5)

In particular, for mono-sized radius (r = R = 〈r〉), we apply g(r) = δ(r −R). This yields

P(`1) =


`1

4R
√
R2 − (`1/2)2

11[0,2R](`1) if d = 2

`1
2R2

11[0,2R](`1) if d = 3.

(2.6)

2.3 Poisson tessellations

Poisson geometries are a prominent example of stochastic tessellations: a domain included in a d-

dimensional space is partitioned by randomly generated (d− 1)-dimensional hyperplanes drawn from

an underlying Poisson process [75,85,127,129]. A method for the explicit construction of d-dimensional

homogeneous and isotropic Poisson tessellations restricted to finite domains has been proposed in

the literature [2, 132]. In the following we will detail the algorithm for the construction of Poisson

tessellations based on Monte Carlo methods and show that anisotropy can be rather straightforwardly

1In this regime, the fully penetrable and hard spheres configurations become indistinguishable.
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taken into account. In the following, we will show that Poisson tessellations exactly satisfy the Markov

mixing property that is often postulated in the description of random media: a particle traversing the

tessellation in a given direction Ω will encounter the next material interface after an exponentially

distributed length of average Λ(Ω), where Λ(Ω) will be related to a fundamental feature of the Poisson

tessellations.

2.3.1 Construction of Poisson tessellations

We illustrate a method for the construction of anisotropic Poisson geometries restricted to a d-

dimensional box. Without loss of generality, we assume that the box is centered at the origin. We

start by sampling a random number NH of hyperplanes from a Poisson distribution of intensity αdρR,

where R is the radius of the d-sphere circumscribed to the box and ρ is the so-called density of the

tessellation, carrying the units of an inverse length. The dimension-dependent constant αd reads

αd =
Ωd

κd−1
=

dκd
κd−1

, (2.7)

where

Ωd =
2πd/2

Γ
(
d
2

) (2.8)

is the surface area of the unit d-sphere and

κd =
πd/2

Γ
(
1 + d

2

) (2.9)

is the volume of the unit d-sphere. This normalization of the tessellation density is arbitrary and

has been chosen so that the correlation length induced by the tessellation (in a sense to be specified

later) is simply equal to 1/ρ [127]. In particular, for isotropic Poisson tessellations this convention

ensures that the mean number of (d − 1)-hyperplanes intersected by an arbitrary segment of unit

length drawn through the tessellation is ρ [127]. Then, we generate the hyperplanes K that will cut

the box and thus induce the tessellation. We choose a parameter r uniformly in the interval [−R,R]

and additionally sample a unit vector n from a density H(n) with support in Ω+
d , i.e., the half-surface

of the unit d-sphere. Denoting by M the point such that OM = rn, the random plane K will pass

trough M and have normal vector n (for an illustration, see the scheme in Fig. 2.4). By construction,

the hyperplane does intersect the circumscribed d-sphere of radius R but not necessarily the box. The

procedure is iterated until NH random hyperplanes have been generated, which yields homogeneous

but (generally) non-isotropic Poisson tessellations [129]. The polyhedra defined by the intersections

of such random planes are convex, as mentioned above.

In the following, we first focus on the construction of d-dimensional isotropic Poisson tessellations.

1-dimensional Poisson tessellations

In this case, the construction is straightforward. We start by sampling the numberNH of 0-hyperplanes

(points) from a Poisson distribution of intensity 2ρR = ρL, which stems from α1 = 2. Then, we

uniformly sample NH random points xi, 1 ≤ i ≤ NH in the interval [−L/2, L/2]. Finally, we sort the

points xi in ascending order, in order to obtain an ordered list: x0 = −L/2, x1, ..., xNH , xNH+1 = L/2.

The 1-polyhedra of the corresponding tessellation are the segments [xi, xi+1], 0 ≤ i ≤ NH .

2-dimensional isotropic Poisson tessellations

We use an iterative approach. At the beginning of the construction, the tessellation is composed by

one 2-polyhedron, i.e., the entire square. We start by sampling the number NH of 1-hyperplanes

(lines) from a Poisson distribution of intensity πρR = πρL/
√

2, following from α2 = π. Then, we

sample NH random lines. The sampling of each random line is done as follows: we choose a parameter
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Figure 2.4: Left. Cutting a square in R2 with a random line. A square of side L is centered
in O. The circumscribed circle centered in O has a radius R = L/

√
2. The point M is defined

by M = rn, where r is uniformly sampled in the interval [−R,R] and n is a random unit
vector sampled from H(n) = H(θ), with the components of n expressed in polar coordinates
as: n1 = cos(θ) and n2 = sin(θ). The random line K of equation n1x + n2y = r is orthogonal
to the vector n and intersects the point M. Right. Cutting a cube in R3 with a random
plane. A cube of side L is centered in O. The circumscribed sphere centered in O has a radius
R =

√
3L/2. The point M is defined by M = rn, where r is uniformly sampled in the interval

[−R,R] and n is a random unit vector sampled from H(n). The random plane K of equation
n1x+n2y+n3z = r is orthogonal to the vector n and intersects the point M. The components
of n can be expressed in spherical coordinates as: n1 = sin(θ) cos(φ), n2 = sin(θ) sin(φ), and
n3 = cos(θ), where θ is the polar angle (projection onto the z axis), and φ is the azimuthal
angle (projection onto the x− y plane).

r uniformly in the interval [−R,R] and additionally sample an additional parameter ξ from a uniform

distribution in the interval [0, 1]. A unit vector n = (n1, n2)T with components

n1 = cos(πξ)

n2 = sin(πξ)

is generated. The corresponding random line is defined by the equation n1x + n2y = r. For each

new random line, we compute the intersections of the line with the polyhedra composing the current

tessellation and we update the list of polyhedra of the tessellation. We iterate this step for NH lines.

Some examples of 2-dimensional isotropic Poisson tessellations are provided in Fig. 2.5.

3-dimensional isotropic Poisson tessellations

The approach closely follows the one used for d = 2. In order to construct three-dimensional homo-

geneous and isotropic Poisson tessellations restricted to a box, we use an algorithm recently proposed

for finite d-dimensional geometries [2, 132]. At the beginning of the construction, the tessellation is

composed by one 3-polyhedron, i.e., the entire cube. We start by sampling the number NH of 3-

hyperplanes (planes) from a Poisson distribution of intensity 4ρR = 4
√

3ρL/2, following from α3 = 4.

Then, we sample NH random planes. The sampling of each random plane is done as follows: we choose

a parameter r uniformly in the interval [−R,R] and additionally sample two additional parameters,

namely, ξ1 and ξ2, from two independent uniform distributions in the interval [0, 1]. A unit vector

n = (n1, n2, n3)T with components

n1 = 1− 2ξ1

n2 =
√

1− n2
1 cos (πξ2)

n3 =
√

1− n2
1 sin (πξ2)
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(a)

(b)

(c)

Figure 2.5: Realizations of two-dimensional isotropic Poisson tessellations restricted to a square
of side L. For all realizations, we have chosen ρ = 1. Top (a): L = 50; center (b): L = 200;
bottom (c): L = 1000. For fixed ρ, the average number of random polyhedra increases with
increasing L.

is generated. The corresponding random plane is defined by the equation n1x + n2y + n3z = r. For

each new random plane, we compute the intersections of the plane with the polyhedra composing the

current tessellation and we update the list of polyhedra of the tessellation. We iterate this step for

NH planes. Some examples of 3-dimensional isotropic Poisson tessellations are provided in Fig. 2.6.

Anisotropic Poisson tessellations

Anisotropy affects the construction of the tessellations only through the distribution H(n): isotropic

Poisson tessellations are obtained as a special case when setting

H(n) = U(n), (2.10)

i.e., the uniform angular distribution over Ω+
d . Due to geometrical reasons, it is only possible to include

anisotropy effects for d ≥ 2. The density H(n) might admit a finite mass concentrated on a given

direction n0 (a so-called atom), or more generally on a collection of discrete directions ni, with Dirac

delta distributions: the special case where the discrete directions ni, i = 1, · · · , d, are chosen parallel

to the Cartesian axes in dimension d gives rise to the so-called Poisson-Box tessellations [82, 87]. A

few examples of realizations corresponding to various angular laws H(n) are illustrated in Fig. 2.7.

2.3.2 Statistical properties of the polyhedral cells

Knowledge of the statistical properties of the polyhedral cells of the stochastic tessellations can be

helpful in understanding the behaviour of particle streaming through the geometry. In this framework,

the quantities of interest are the volume Vd of a typical cell in dimension d, which characterizes the

spatial scale of the random medium, and the surface Sd and the number of faces Cd of a cell, which are
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(a)

(b)

(c)

Figure 2.6: Realizations of three-dimensional isotropic Poisson tessellations restricted to a cube
of side L. For all realizations, we have chosen ρ = 1. Top (a): L = 10; center (b): L = 50;
bottom (c): L = 200. For fixed ρ, the average number of random polyhedra increases with
increasing L.

related to the connectivity of the medium. The inradius rin,d, i.e., the radius of the largest sphere that

can be contained in a (convex) polyhedron, and the outradius rout,d, i.e., the radius of the smallest

sphere enclosing a (convex) polyhedron, can be also useful so as to characterize the shape of the cells

(for d = 1, the outradius coincides with the inradius).

Such quantities are random variables, whose exact distributions are in most cases unfortunately not

known [129]. Nevertheless, analytical expressions have been established for a few low-order moments

of the observables, in the limit case of domains having an infinite extension [85,127,129]. The case of

isotropic Poisson tessellations was first addressed by the pioneering work of Goudsmit for d = 2 [41]

and later thoroughly explored by Miles first for d = 2 and then for higher dimensions in a series of

ground-breaking works [82, 85, 87]. Not surprisingly, the derivation of exact results for anisotropic

tessellations is even more demanding: the case d = 2 was investigated by Miles [82], whereas formulas

for higher dimensions were found more recently and are still a subject of active research [129–131].

Isotropic tessellations

For the special case of isotropic Poisson tessellations, the following results have been established for

infinite domains [127,129]. For the volume Vd, we have the moments

〈Vd〉 =
1

κd

(
2

ρ

)d
(2.11)

and

〈V 2
d 〉 =

d!κ2
d

2d
〈Vd〉2. (2.12)
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 2.7: Left. Realizations of two-dimensional anisotropic Poisson tessellations restricted to
a square of side L, with various angular laws H(n) = H(θ), θ ∈ [0, π]. For d = 2, Ω+

2 = π. Case
a) isotropic distribution, with H(θ) = 1/π; b) quadratic distribution, with H(θ) = 3θ2/π3;
c) symmetric histogram distribution, centered at θ = π/2 and having maxima at θ = 0 and
θ = π ; d) box distribution, with H(θ) = (1/2)δ(θ) + (1/2)δ(θ − π/2). Right. Realizations of
three-dimensional anisotropic Poisson tessellations restricted to a cube of side L, with various
angular laws H(n) = H(θ, φ). For all realizations, we have chosen L = 100 and ρ = 1. Case a)
isotropic angular distribution ; b) quadratic angular distribution ; c) histogram distribution ;
d) box distribution.

The second moment allows computing the coefficient of variation, namely,

cv =

√
〈V 2
d 〉 − 〈Vd〉2
〈Vd〉2

, (2.13)

which conveys information on the spatial shape of a typical cell [87]. For isotropic Poisson tessellations,

from Eq. (2.12) we obtain

cv =

√
d!κ2

d

2d
− 1. (2.14)

Furthermore, an elegant recursive formula is known relating the correlations between the surface

Sd and the volume to the higher moments of the volume, namely,

m〈V m−1
d Sd〉 = αdρ〈V m

d 〉, (2.15)

for m ≥ 1 [87]. In particular, for m = 1 this yields the first moment of Sd, i.e,

〈Sd〉 = αdρ〈Vd〉, (2.16)

and for m = 2 the correlations

〈VdSd〉 =
αdρ

2
〈V 2
d 〉. (2.17)

For the number of faces Cd we have the average

〈Cd〉 = 2d, (2.18)

which does not depend on ρ and is a purely combinatorial result.

Finally, the inradius rin,d has an exponential distribution of parameter αdρ, and we have in par-

ticular

〈rin,d〉 =
1

αdρ
. (2.19)
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d 1 2 3
〈rin,d〉 1/2ρ 1/πρ 1/4ρ
〈Vd〉 1/ρ 4/πρ2 6/πρ3

〈V 2
d 〉 2/ρ2 8/ρ4 48/ρ6

〈Sd〉 4/ρ 24/πρ2

〈VdSd〉 4π/ρ3 96/ρ5

〈Cd〉 2 4 6
〈Nd〉 8
〈Ad〉 12
〈Ld〉 12/ρ
〈S2

d〉 (2π2 + 8)/ρ2 240/ρ4

〈C2
d〉 4 (π2 + 24)/2 (13π2 + 336)/12

〈N2
d 〉 (13π2 + 96)/3

〈L2
d〉 24(π2 + 1)/ρ2

〈CdVd〉 2π/ρ2 4(π2 + 3)/πρ3

〈CdSd〉 (π2 + 8)/ρ (14π2 + 48)/πρ2

〈CdLd〉 (5π2 + 36)/ρ
〈NdVd〉 8π/ρ3

〈NdSd〉 28π/ρ2

〈NdLd〉 (10π2 + 24)/ρ
〈VdLd〉 24π/ρ4

〈SdLd〉 72π/ρ3

〈V 2
d Sd〉 256π2/21ρ5

〈V 2
d Cd〉 16(8π2 − 21)/21ρ4

〈V 3
d 〉 6/ρ3 256π/7ρ6 1344π/ρ9

Table 2.1: Exact formulas, as a function of the density parameter ρ and of the dimension d,
of the known low-order moments or correlations of polyhedral properties in isotropic Poisson
tessellations with an infinite extension: inradius rin,d, d-dimensional volume Vd, d-dimensional
surface Sd, number of faces Cd, number of vertices Nd, number of edges Ad and total length of
edges Ld.

For the outradius rout,d, the distribution is not known, and to the best of our knowledge the mo-

ments are now known, either, which prevents from using the theoretical ratio 〈rin,d〉/〈rout,d〉 to extract

information of the shape of the cells.

The exact formulas for the moments and the correlations are summarized in Tab. 2.1 as a function

of the tessellation density ρ, for d = 1, d = 2 and d = 3.

For isotropic Poisson tessellations, many other results are known for the low-order moments and

the correlations of Vd, Sd and Cd [82, 87, 131]. For an exhaustive review, we may refer to, e.g., [129].

Moreover, for d ≥ 3, the low-order moments and correlations of other polyhedral properties such as

the number of vertices for Nd, the number of edges Ad or the total length of edges Ld, have been also

derived. The main results are summarized in Tab. 2.1.

Zero-cells of the isotropic tessellations

So far, the statistical properties of the constituents of the isotropic Poisson geometries have been

derived by assuming that all of the d-polyhedra have the same statistical weight (for a precise definition,

see, e.g., [76,82,85,86]). In other words, each cell of the tessellation contributes equally to the statistical

moments.

It is also possible to attribute to each d-polyhedron a statistical weight equal to its d-volume. It

can be shown that the statistics of any observable related to the d-polyhedron containing the origin

O obeys this latter volume-weighted distribution [85]. This surprising property can be understood

by following the heuristic argument proposed by Miles [82]: the origin (or actually any chosen point,
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d 1 2 3
〈Vd〉0 2/ρ 2π/ρ2 8π/ρ3

〈V 2
d 〉0 6/ρ2 64π2/7ρ4 224π2/ρ6

〈Sd〉0 π2/ρ 16π/ρ2

〈Cd〉0 π2/2 2(π2 + 3)/3
〈Nd〉0 4π2/3
〈Ld〉0 4π2/ρ

Table 2.2: Moments of the d-polyhedron containing the origin.

since we are considering tessellations having an infinite extension, which are by construction invariant

under translation) has greater chances of falling within a larger rather than a smaller volume. In

particular, for the moments 〈X〉0 of the d-polyhedron containing the origin, the so-called zeros-cell,

we formally have

〈X〉0 =
〈VdX〉
〈Vd〉

, (2.20)

where X denotes an arbitrary observable [85]. The exact formulas for the main observables of the

polyhedron containing the origin for isotropic Poisson tessellations are recalled in Tab. 2.2.

Anisotropic tessellations

As expected, the general case of anisotropic Poisson tessellations is much more involved and the ob-

tained formulas generally depend on the angular distribution H(n). For the main polyhedral quantities

discussed earlier, the following results have been established for infinite domains [129]. For the volume

Vd the first moment obeys

〈Vd〉 =
d!

ζd

(
2

αdρ

)d
, (2.21)

where the constant ζd depends on the angular distribution H(n) and is defined as

ζd =

∫
Ω+
d

· · ·
∫

Ω+
d

[n1, · · · ,nd] dH(n1) · · · dH(nd), (2.22)

the integrals being extended over the half-surface of the unit d-sphere. Here the quantity [n1, · · · ,nd]
denotes the d-space determinant 2 of the unit vectors n1, · · · ,nd: for d = 2, e.g., it represents the area

of the parallelogram spanned by n1 and n2; for d = 3, it represents the volume of the parallelepiped

spanned by n1, n2 and n3 [129]. As a particular case, for isotropic tessellations Eq. (2.22) yields

ζ iso
d =

d!κd

αdd
, (2.23)

and from Eq. (2.21) we recover Eq. (2.11) for the average volume. The second moment of the volume

Vd reads

〈V 2
d 〉 = ζdηdκd〈Vd〉2, (2.24)

where the constant ηd also depends on the angular distribution H(n) and is defined as [129]

ηd =

∫
Ω+
d

dU(Ω)

(∫
Ω+
d

|n ·Ω|dH(n)

)−d
. (2.25)

From Eq. (2.12) we obtain the coefficient of variation

cv =
√
ζdηdκd − 1, (2.26)

2If the determinant is negative, we take the absolute value.
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which generalizes Eq. (2.14) to the case of arbitrary H(n) distributions. For isotropic tessellations,

Eq. (2.25) yields

ηiso
d =

(αd
2

)d
. (2.27)

Hence, from Eq. (2.24) we recover Eq. (2.12) for the second moment of the volume.

For the surface Sd, the recursive formula given in Eq. (2.15) has been shown to hold for any

H(n) [129], so that the first moment of Sd is again related to the average volume by Eq. (2.16) and

the correlations between the surface and the volume are again related to the second moment of the

volume by Eq. (2.17). Thus, the effect of H(n) is only indirectly conveyed on 〈Sd〉 and 〈VdSd〉 through

the behaviour of 〈Vd〉 and 〈V 2
d 〉, respectively.

It is interesting to observe that, although the average volume and surface depend on the angular

law H(n) through the function ζd, the aspect ratio 〈Vd〉/〈Sd〉 of the cells does not, and we get

〈Vd〉
〈Sd〉

=
1

αdρ
, (2.28)

depending only on the tessellation density ρ and on the constant αd.

Finally, for the average number of faces we have again Eq. (2.18), which does not depend on the

angular distribution.

The distribution of the inradius rin,d is not affected by the anisotropy of the tessellation, and has

again an exponential distribution of parameter αdρ. For the outradius rout,d, no theoretical result

is known, to the best of our knowledge. Numerical investigations show however that the average

outradius 〈rout,d〉 depends on H(n), contrary to the average inradius 〈rin,d〉.
A special case of anisotropic Poisson tessellations corresponds to taking fixed orientations parallel

to the orthogonal Cartesian axes in Rd. In the simplest form, each direction is taken with equal

probability, which yields a quasi-isotropic stochastic geometry [87]. For these so-called Poisson-Box

tessellations, the functions ζd and ηd can be computed exactly from Eqs. (2.22) and (2.25), respectively,

and yield

ζbox
d =

d!

dd
(2.29)

and

ηbox
d =

(2d)d

d!κd
, (2.30)

respectively.

Inequalities for anisotropic tessellations

The volume Vd and the surface Sd depend on the anisotropy law H(n). It can be shown that for any

sufficiently well-behaved H(n) the quantity ζd satisfies

ζd ≤ ζ iso
d , (2.31)

which from Eq. (2.21) implies that the average volume attains a minimum for the case of isotropic

Poisson tessellations [79,129], namely,

〈Vd〉 ≥ 〈Vd〉iso. (2.32)

More generally, it can be proven that 〈V m
d 〉 ≥ 〈V m

d 〉iso for the moments of any order m ≥ 1 [79],

whence in particular

〈V 2
d 〉 ≥ 〈V 2

d 〉iso. (2.33)

Moreover, it has been shown that cvbox ≤ cv ≤ cviso [129].

For Sd, Eq. (2.16) implies that the average surface attains also a minimum for the case of isotropic

Poisson tessellations, namely,

〈Sd〉 ≥ 〈Sd〉iso. (2.34)

From Eqs. (2.33) and (2.17), we have an analogous inequality for the correlations, namely,

〈VdSd〉 ≥ 〈VdSd〉iso. (2.35)
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2.3.3 Chord length distribution

For general anisotropic Poisson tessellations having density ρ and infinite size, an arbitrary line with

orientation Ω will encounter a number of random hyperplanes per unit length distributed according

to a Poisson distribution of density

ρ(Ω) =
αdρ

2

∫
Ω+
d

|n ·Ω|dH(n), (2.36)

depending on the anisotropy law H(n) and on the direction Ω [90]. Conversely, the line will be cut

by the hyperplanes into segments whose lengths ` obey the exponential distribution

P(`|Ω) = ρ(Ω)e−`ρ(Ω), (2.37)

depending on the fixed orientation Ω. It has been suggested that such tessellations might be the only

stochastic geometries to satisfy the Markov properties [87, 90]. We have then a direction-dependent

average chord length

Λ(Ω) =

∫
`P(`|Ω)d` =

1

ρ(Ω)
. (2.38)

For the special case of isotropic tessellations, Eq. (2.36) yields∫
Ω+
d

|n ·Ω|dU(n) =
2

αd
, (2.39)

so that

P(`|Ω) = ρe−`ρ, (2.40)

for any orientation Ω. The average chord length reads then Λ(Ω) =
∫
`P(`|Ω)d` = 1/ρ.

2.3.4 Random line sections and the Cauchy formula

We will now examine the case where the lines crossing the tessellations are random. To be more

precise, we will consider the ensemble T of independent and identically distributed homogeneous and

isotropic random lines 3.

3In dimension d = 2, a line section of a bounded domain X ⊂ R2 satisfying the homogeneity and isotropy
property can be obtained as follows. Consider the disk S containing X and with the smallest possible radius.
Take then an isotropic direction Ω emanating from the center of S. Take a random point whose position z
is uniformly distributed on the diameter of S in direction Ω. Construct now the line passing through z and
orthogonal to Ω. If the line intersects the domain X, this is an acceptable line section satisfying the properties
above; if not, repeat the whole procedure until a new line hits X.

In dimension d = 3, a line section of a bounded domain X ⊂ R3 satisfying the homogeneity and isotropy
property can be obtained by first constructing a plane section. Consider the sphere S containing X and with
the smallest possible radius. Take then an isotropic direction Ω emanating from the center of S. Take a
random point whose position z is uniformly distributed on the diameter of S in direction Ω. Construct now
the plane passing through z and orthogonal to Ω. If the plane intersects the domain X, this is a plane section
of X satisfying homogeneity and isotropy; if not, repeat the whole procedure until a new plane hits X. Once
the plane section is obtained, the procedure for line sections in d = 2 can be applied: it can be shown that
an homogeneous and isotropic line section of an homogeneous and isotropic plane section of X is actually an
homogeneous and isotropic line section of X in d = 3.

Other procedures exist for homogeneous and isotropic line sections in dimension d that do not require rejection
methods [25]. This can be achieved, e.g., by first choosing a point P uniformly on the surface of X ⊂ Rd and
then sampling lines passing through P and with direction Ω satisfying an isotropic incident flux with respect
to the normal n entering the surface of X at point P. This condition imposes the measure [25,127]

αd
dΩ

Ωd

dSd(X)

Sd(X)
(Ω · n). (2.41)

The term cos θ = Ω · n implies that in polar coordinates trajectories starting on the surface must enter the
domain X with θ = arcsin(2s − 1) in two dimensions and θ = 1/2 arccos(1 − 2s) in three dimensions, s being
uniformly distributed in (0, 1] [78,78].
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The probability that a line drawn from the ensemble T hits a sub-domain Y ⊂ X of a bounded

domain X in Rd is given by

P (T ∩ Y 6= 0) =
Sd(Y )

Sd(X)
, (2.42)

where Sd(A) denotes the surface of a domain A in Rd [88]. Furthermore, conditionally to hitting Y ,

such lines are homogeneous and isotropic through Y . This result is independent of the position and

orientation of the sub-domain Y within X. Let us denote by ` the random line sections induced on Y .

The Cauchy theorem (also called Crofton second theorem) states that the ensemble average E[`]

of the random line sections through Y satisfies

E[`] = αd
Vd(Y )

Sd(Y )
, (2.43)

where Vd(A) denotes the volume of a domain A in Rd, provided that lines are homogeneous and

isotropic [88, 90]. In other words, the average line section E[`] through Y depends only on the ratio

between the volume and the surface of Y , regardless of the specific details of the shape of the domain,

up to the dimension-dependent constant αd. This is a special case of a broader set of stereological

formulas derived by Miles for the projection of a body (or a collection of bodies) onto random s-

dimensional flats in Rd [88–90].

Consider then a disjoint aggregate of convex domains {Xi} ⊂ X, i = 1, 2, · · · , Q, in Rd. From

Eqs. (2.42) and (2.43), the average line section through the aggregate reads

E[

q∑
j=1

`j ] = αd

Q∑
i=1

Vd(Xi)

Sd(X)
(2.44)

where `j , j = 1, · · · , q are the line sections of the non void intersections T ∩Xj between the lines and

the domains composing the aggregate [88]. The number q of such intersections is itself random, with

expected value

E[q] =

Q∑
i=1

Sd(Xi)

Sd(X)
. (2.45)

By formally taking the ratio between Eqs. (2.44) and (2.45), the average line section for the domains

composing the aggregate {Xi} can be estimated by

λc ≡
E[
∑q

j=1 `j ]

E[q]
= αd

∑Q
i=1 Vd(Xi)∑Q
i=1 Sd(Xi)

. (2.46)

Suppose now that the aggregate described above is a Poisson stochastic tessellation in Rd, whose

cells are disjoint, space-filling polyhedra. By taking ergodic averages over the constituents of the

geometries [88,90], in the limit of infinite size for the average volume of a cell we have

lim
Q→∞

1

Q

Q∑
i=1

Vd(Xi)→ 〈Vd〉 =
d!

ζd

(
2

αdρ

)d
, (2.47)

and for the average surface of a cell we have

lim
Q→∞

1

Q

Q∑
i=1

Sd(Xi)→ 〈Sd〉 = αdρ〈Vd〉. (2.48)

Finally, combining Eqs. (2.46), (2.47) and (2.48), the average chord length Λc through the cells of the

tessellation induced by the random lines T can be estimated from

Λc ≡ lim
Q→∞

λc → αd
〈Vd〉
〈Sd〉

=
1

ρ
. (2.49)

provided that the lines are uniformly and isotropically distributed [88].
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This remarkable result show that under these hypotheses the average chord length Λc for anisotropic

Poisson tessellations of infinite size is simply equal to the inverse of the tessellation density ρ, and

does not depend on the anisotropy law H(n), although Vd(Xi) and Sd(Xi) separately depend on H(n).

Observe that the definition in Eq. (2.49) formally corresponds to taking

1

Λc
=

∫
Ω+
d

ρ(Ω)dU(Ω) = ρ, (2.50)

i.e., averaging the Poisson density ρ(Ω) as in Eq. (2.36) over the uniform angular distribution U(Ω).

Observe that in general

Λc 6=
∫

Ω+
d

Λ(Ω)dU(Ω), (2.51)

unless the tessellation is isotropic, in which case Λc = Λ = 1/ρ.

2.4 Poisson-Box tessellations

Poisson-Box tessellations form a class of anisotropic stochastic geometries composed of rectangular

boxes with random sides. For the case of three-dimensional Poisson Box tessellations (as proposed

by [87]), a domain X ∈ R3 is randomly partitioned by i) randomly generated planes orthogonal to the

x-axis, through a Poisson process of intensity ρx; ii) randomly generated planes orthogonal to the y-

axis, through a Poisson process of intensity ρy; iii) randomly generated planes orthogonal to the z-axis,

through a Poisson process of intensity ρz. In the following, we will assume that the three parameters

are equal, namely, ρx = ρy = ρz = ρB. Such Poisson-Box tessellations are statistically equivalent to a

special case of anisotropic Poisson tessellations, constructed with the following anisotropy law

H(n) =
1

3

[
δ(n = (1,0,0)T) + δ(n = (0,1,0)T) + δ(n = (0,0,1)T)

]
(2.52)

and with a tessellation density

ρ =
3

2
ρB. (2.53)

2.4.1 Construction of Box tessellations

In order to tessellate a domain X ∈ R3, where X is a cube of side L centered in O, the construction

algorithm is the following: we start by sampling a random number Nx from a Poisson distribution of

parameter ρBL. Then, we sample Nx points uniformly on the segment [−L/2, L/2]. For each point of

this set, we cut the geometry with the plane orthogonal to the x-axis and passing through this point.

We repeat this process for the y-axis and the z-axis. For the sake of conciseness, we will denote by

Box tessellations these Poisson-Box tessellations. Some examples of Box tessellations are provided in

Fig. 2.8.

2.4.2 Statistical properties of polyhedral cells

The first-order moments of the typical polyhedral cells of d-dimensional Box tessellations of infinite

extension are

〈Vd〉 =
1

ρBd
(2.54)

for the d-dimensional volume and

〈Sd〉 =
2d

ρBd−1
(2.55)

for the d-dimensional surface.

In particular, for d = 3, the average volume is given by

〈V3〉 =
1

ρ3
B

(2.56)
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(a)

(b)

(c)

Figure 2.8: Realizations of three-dimensional Box tessellations restricted to a cube of side L.
For all realizations, we have chosen ρB = 2/3. Top (a): L = 10; center (b): L = 50; bottom
(c): L = 200. For fixed ρB, the average number of random polyhedra increases with increasing
L.

and the average total surface 〈S3〉 by

〈S3〉 =
6

ρ2
B
. (2.57)

In addition, the average total length of edges 〈L3〉 is given by

〈L3〉 =
12

ρB
. (2.58)

Moreover, the k-th order moment of the volume 〈V k
3 〉 in three-dimensional Box tessellations of

infinite extension is known [87]. Since the random seeds for the tessellations are points obeying a

Poisson distribution with parameter ρB, the inter-particle distances are exponentially distributed with

parameter 1/ρB. Hence, the k-th order moment of the inter-particle distances (i.e., the edges of the

random boxes) will be k!/ρkB. For the volume we have then

〈V k
3 〉 =

(k!)3

ρ3k
B
. (2.59)

Equations (2.56) and (2.57) can be equivalently obtained by computing the average volume given

by Eq. (2.21) and the average surface given by Eq (2.28) for anisotropic Poisson tessellations with ρ

defined as in Eq. (2.53), with ζd and ηd from Eqs. (2.29) and (2.30), respectively.

2.4.3 Chord length distribution

In Sec. 2.3.3, we have seen that for general anisotropic Poisson tessellations having density ρ, anisotropy

law H(n) and infinite size, an arbitrary line with orientation Ω = (ωx, ωy, ωz)
T will encounter a number

of random hyperplanes per unit length distributed according to a Poisson distribution whose intensity
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ρ(Ω) is given by Eq. 2.36. In order to infer the chord length statistics for Box tessellations we can use

the fact that such tessellations are a special case of anisotropic Poisson tessellations.

We consider the case of three-dimensional Box tessellations of density ρB, constructed as anisotropic

Poisson tessellations with ρ defined as in Eq. 2.53 and H(n) defined as in Eq. 2.52. For three-

dimensional Box tessellations, Eqs. 2.7, 2.36, 2.53 and 2.52 yield

ρB(Ω) = ρB(|ωx|+ |ωy|+ |ωz|). (2.60)

From Eq. 2.37, the line of orientation Ω will be cut by the hyperplanes into segments whose lengths

` obey the exponential distribution

PB(`|Ω) = ρB(|ωx|+ |ωy|+ |ωz|)e−`ρB(|ωx|+|ωy |+|ωz |). (2.61)

We will now examine the case where the lines are randomly distributed. Consider a Box tessellation

and an ensemble T of homogeneous and isotropic random lines as previously defined. The considera-

tions stemming from the Cauchy formula presented for anisotropic Poisson tessellations clearly apply

also for the Box tessellations. Then, according to Eqs. 2.49 and 2.53, the average chord length Λc
through the cells of the Box tessellation induced by the random lines T reads [88]

Λc = αd
〈Vd〉
〈Sd〉

=
2

dρB
. (2.62)

Observe that from Eq. (2.60) we can perform the explicit integration∫
Ω+
d

ρB(Ω)dU(Ω) =
2d

αd
ρB =

1

Λc
, (2.63)

which yields a result coherent with the considerations presented above for the relation between ρB(Ω)

and Λc.

2.5 Poisson-Voronoi tessellations

Consider a collection of points X = {xi} in Rd. The Voronoi tessellation of Rd with nuclei {xi} is

then defined by the cells

Ci = {y ∈ Rd : ||xi − y|| ≤ ||xj − y||; i 6= j}, (2.64)

where || · || is the usual Euclidean distance. This means that the Voronoi cell Ci associated to the

nucleus xi corresponds to the region of points y ∈ Rd such that y is closer to the nucleus xi than to any

other nucleus. The Voronoi cells have disjoint interiors and are convex and closed sets. Furthermore,

for subsets A ⊂ Rd, we have a Voronoi tessellation of A which is simply given by the restriction of the

Voronoi cells to A.

In the following, we will exclusively focus on Poisson-Voronoi tessellations, which form a subclass

of Voronoi geometries where X = xi is assumed to be a homogeneous Poisson point process [40,80,87].

A Poisson process X defined on Rd and with intensity measure µ and intensity function ξ satisfies for

any bounded region B ⊆ Rd with µ(B) > 0,

• N(B) is Poisson distributed with mean µ(B),

• conditional on N(B), the points in XB are independent and identically distributed with density

proportional to ξ(u), u ∈ B.

For a stationary point process X such as the homogeneous Poisson point process where ξ(u) = ξ is

constant over the domain, the Voronoi cells are bounded and the tessellation is isotropic. Poisson-

Voronoi tessellations provide thus a prototype process for isotropic random division of space [127].

In order to avoid confusion with the Poisson tessellations described above, we will mostly refer to

Poisson-Voronoi geometries simply as Voronoi tessellations in the following.
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(a)

(b)

(c)

Figure 2.9: Realizations of three-dimensional Voronoi tessellations restricted to a cube of side
L. For all realizations, we have chosen ρV ≈ 0.6872. Top (a): L = 10; center (b): L = 50;
bottom (c): L = 200. For fixed ρV , the average number of random polyhedra increases with
increasing L.

2.5.1 Construction of Voronoi tessellations

In order to construct d-dimensional Poisson-Voronoi tessellations restricted to A ⊂ Rd, where A is

a d-dimensional box of side L, we use the algorithm proposed in [87]. First, we choose the random

number N of nuclei from a Poisson distribution of parameter (ρVL)d, where ρV characterizes the

density of the tessellation and carries the units of an inverse length. Then, N nuclei xi1≤xi≤N are

uniformly sampled in the box [−L/2, L/2]d. Initially, the tessellation is composed of the box itself. We

add successively each nucleus to the tessellation, as follows: we compute the corresponding Voronoi

cell Ci as the intersection of half-spaces bounded by the mid-planes between the selected nucleus and

any other seed of the current tessellation; then, we add this cell to the tessellation and we update the

cells truncated by the new cell. This decomposition corresponds to the Green and Sibson algorithm.

For illustration, some examples of three-dimensional Voronoi tessellations are provided in Fig. 2.9.

2.5.2 Statistical properties of polyhedral cells

Some first-order moments of the typical polyhedral cells of d-dimensional Voronoi tessellations of

infinite extension are known [85]. For instance,

〈Vd〉 =
1

ρVd
(2.65)

for the d-dimensional volume 〈Vd〉,

〈Sd〉 =
2αdΓ(2− 1

d)Γ(d2 + 1)2−1/dΓ(d)

dΓ(d+1
2 )2Γ(d− 1

2)ρVd−1
(2.66)
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for the d-dimensional surface 〈Sd〉 and

〈Nd〉 =
2d+1π(d−1)/2Γ(d

2+1
2 )Γ(d2 + 1)dΓ(d)

d!dΓ(d
2

2 )Γ(d+1
2 )

(2.67)

for the number of vertices 〈Nd〉. In particular, for dimension d = 3, this yields

〈V3〉 =
1

ρV3
, (2.68)

〈S3〉 =
(256π/3)

1
3 Γ
(

5
3

)
ρV2

, (2.69)

and

〈N3〉 =
96π2

35
' 27.07. (2.70)

For three-dimensional Voronoi tessellations, additional moments of the typical polyhedral cells

have been derived [80]. For the number of faces 〈C3〉 we have

〈C3〉 =
48π2 + 70

35
' 15.54, (2.71)

for the number of edges 〈A3〉 we have

〈A3〉 =
144π2

35
' 40.61, (2.72)

and finally, for the total length of edges 〈L3〉 we have

〈L3〉 =
(4π)5/3Γ(1

3)

5× 32/3ρV
. (2.73)

Moreover, the second-order of the volume 〈V 2
3 〉 has been obtained by numerical integration [40] and

reads

〈V 2
3 〉 =

1.180

ρV6
. (2.74)

2.5.3 Chord length distribution

The chord length distribution for 1-dimensional Voronoi tessellations of infinite extension is exponen-

tial, with parameter 1/ρV . For dimension d > 1, the chord length distribution is highly non-trivial

and has been only recently derived [91, 92]. For a given line of arbitrary direction Ω drawn through

the tessellation, the probability density function PV,d(`|Ω) of the chord length ` is given by

PV,d(`|Ω) = ς(d)

∫ π

0

∫ π−α

0
`2d−2 sin2d−3 α sind−1 β

sin2d−1(α+ β)
e−ρ

d
Vνd(`,α,β)

×

ρdVdκd( r sinα

sin(α+ β)

)db(d−1)/2c∑
i=0

bd,i(β)

2

−
b(d−3)/2c∑

i=0

cd,i(β)

 dβdα, (2.75)

where ς(d) is a dimension-dependent constant

ς(d) =
d2(d− 1)πd−1/2Γ(d− 1

2)Γ(d+1
2 )ρ2d−1

V
2Γ(d)Γ(2− 1

d)Γ(d+2
2 )3−1/d

. (2.76)

The quantity νd(`, α, β) is defined as

νd(`, α, β)) = κd`
d

 sind β

sind(α+ β)

bd/2c∑
i=0

ad,i(α) +
sind α

sind(α+ β)

bd/2c∑
i=0

ad,i(β)

 . (2.77)
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The coefficients ad,i(ψ) are defined as

ad,0(ψ) =


1− ψ

π
if d even

cos2

(
ψ

2

)
if d odd,

ad,i(ψ) =
cosψ

2
√
π


Γ(i)

Γ(i+ 1/2)
sin2i−1 ψ, d even

Γ(i+ 1/2)

Γ(i+ 1)
sin2i, d odd,

for 0 ≤ i ≤ bd/2c; the coefficients bd,i(ψ) are defined as

bd,0(ψ) =


(π − ψ) cosψ + sinψ

π
, d even

cos2

(
ψ

2

)
, d odd

bd,i(ψ) = − 1

4
√
π


Γ(i)

Γ(i+ 3/2)
sin2i+1 ψ, d even

Γ(i− 1/2)

Γ(i+ 1)
sin2i ψ, d odd

for 0 ≤ i ≤ b(d− 1)/2c; and the coefficients cd,i(ψ) are defined as

cd,0(ψ) =


d− 1

π

[(
1− d− 2

d− 1
sin2 ψ

)
(π − ψ) + sinψ cosψ

]
, d even

1 + cosψ

2
[1 + (d− 2) cosψ] , d odd

cd,i(ψ) = − 1

4
√
π


Γ(i)

Γ(i+ 3/2)
(d− 2i− 2) sin2i+1 ψ cosψ, d even

Γ(i− 1/2)

Γ(i+ 1)
(d− 2i− 1) sin2i ψ cosψ, d odd

for 0 ≤ i ≤ b(d − 3)/2c. Since the Voronoi tessellations defined above are isotropic, the chord length

distribution does not depend on the orientation Ω of the test line. For illustration, the probability

density function of the chord length distribution is provided in Fig. 2.10 for d = 3.

The value of the chord length distribution for ` = 0 is given by [92]

PV,d(0) =
d(d− 1)

√
πΓ(d− 1

2)Γ(d+1
2 )Γ(2− 2

d)ρV

2Γ(d)Γ(2− 1
d)Γ(d+2

2 )1+1/d

×

2(d− 1)

∫ π

0
sind−2 α

b(d−1)/2c∑
i=0

bd,i(α)

2

dα−
√
π

Γ((d+ 1)/2)

Γ((d+ 2)/2)

 (2.78)

In particular, for d = 3 the value of the probability density of the chord length distribution for ` = 0

is [91]

PV,3(0) =
Γ(1

6)ρV

5× 31/3 × π1/6
. (2.79)

The average chord length Λ(Ω) in d-dimensional Voronoi tessellations is given by [91,92]

Λ(Ω) =

∫
`PV,d(`|Ω)d` = Λ =

dΓ(d+1
2 )2Γ(d− 1

2)

2Γ(2− 1
d)Γ(d2 + 1)2−1/dΓ(d)ρV

, (2.80)

independent of the direction Ω. In particular, for d = 3, this yields [91]

Λ =
1

(4π
3 )

1
3 Γ
(

5
3

)
ρV

. (2.81)
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Figure 2.10: Left. The probability density function PV,3(`) of the chord length distribution
of three-dimensional Voronoi tessellations, obtained by using Eq. (2.75), as a function of the
density parameter ρV = 1: the solid black line corresponds to ρV = 1, the dashed green line to

ρV = 0.8 and the dotted violet line to ρV = (4π/3)−1/3Γ
(

5
3

)−1 ' 0.687182. Right. The same,
in log-linear scale.

We conclude by examining the case where the lines are randomly distributed. Consider a Voronoi

tessellation and an ensemble T of homogeneous and isotropic random lines as previously defined. The

Cauchy formula applies also for the Voronoi tessellations. Then, the average chord length Λc through

the cells of the Voronoi tessellation induced by the random lines T reads [88]

Λc = αd
〈Vd〉
〈Sd〉

=
dΓ(d+1

2 )2Γ(d− 1
2)

2Γ(2− 1
d)Γ(d2 + 1)2−1/dΓ(d)ρV

. (2.82)

It is interesting to remark that in this case the average correlation length Λc as computed by the Cauchy

formula coincides with the average chord length Λ obtained from the chord length distribution as in

Eq. (2.80), which is a consequence of the isotropy and homogeneity of the Voronoi tessellations.

2.6 Comparison of the tessellation models

We have shown that the tessellations models described above display rather different features con-

cerning the polyhedral features and the chord length distributions. In particular, the average chord

length Λ(Ω) is clearly non-trivially model-dependent. However, a remarkable and universal property

stems from the application of the Cauchy formula, which relates the average correlation length Λc
to purely geometrical quantities, namely, the average volume 〈V 〉 of a random polyhedron and its

average surface 〈S〉, provided that the lines are drawn uniformly and isotropically [127]. Moreover,

we have shown that the aspect ratio 〈V 〉/〈S〉 is simply related to the tessellation density, up to a

dimension-dependent constant that depends on the chosen model. This means that setting the tessel-

lation density is tantamount to setting the average correlation length Λc, which in turns is equivalent

to setting the aspect ratio 〈V 〉/〈S〉 of the tessellation cells.

In view of comparing the effects of the underlying mixing statistics m = P, V or B on particle

transport in random media, a mandatory requirement is to determine a criterion on whose basis the

tessellations can be considered statistically ‘equivalent’ with respect to some physical property. A

natural choice consists in taking the same average correlation length Λc for all the tessellations, which

intuitively allows having the same typical scale of disorder in the random medium, to be compared

with the typical cross section of the particles traversing the medium [108]. Correspondingly, we have

a constraint on the densities ρ, ρV and ρB of the tessellations, which must now satisfy

1

ρ
=

2

3ρB
=

1

(4π
3 )

1
3 Γ
(

5
3

)
ρV
. (2.83)
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m P B V

〈V3〉 6/πρ3 1/ρB
3 1/ρV

3

〈S3〉 24/πρ2 6/ρB
2 (256π/3)

1
3 Γ
(

5
3

)
/ρV

2

〈C3〉 6 6 (48π2 + 70)/35
〈A3〉 12 6 144π2/35
〈N3〉 8 8 96π2/35
〈L3〉 12/ρ 12/ρB (4π)5/3Γ(1

3
)/(5× 32/3ρV)

Λc 1/ρ 2/3ρB 1/
(

(4π
3

)
1
3 Γ
(

5
3

)
ρV

)
Table 2.3: Exact formulas for the average volume 〈V3〉, the average surface 〈S3〉, the average
number of faces 〈C3〉 and the average correlation length Λc in infinite tessellations, for different
mixing statistics m. Expressions are taken from [87,127].

In practice, one is often led to simulate tessellations restricted to some bounded regions of linear size L:

finite-size effects typically emerge, and the relation (2.83) would not be strictly valid. Indeed, in finite

geometries the average correlation length Λc(L) differs from the corresponding ideal Λc for infinite

tessellations. However, although a large L is typically required in order for Λc(L) to converge to the

asymptotic value Λc, the variability of Λc(L) between tessellations vanishes even before convergence

to the asymptotic limit is achieved, as we will illustrate in Chapter 4. For the sake of simplicity, we

will thus neglect such finite-size effects and use Eq. (2.83) to calibrate the model parameters.

It is important to realize that the use of Λc as a tool to make the tessellation models ’equivalent’

with respect to particle transport implies that other polyhedral features (which also depend on the

tessellation densities) will be different: exact formulas are recalled in Tab. 2.3. In principle, it would

be possible to calibrate the tessellation models based on different criteria, such as equal average cell

volumes, for instance. However, due to the relevance of the average correlation length for particle

transport properties, in the following we will assume that all the tested tessellations share the same

Λc.

2.7 Assigning material properties: colored tessellations

So far, we have addressed the statistical properties of d-dimensional Poisson, Box and Voronoi tessella-

tions based on the assumption that all polyhedra share the same physical properties, i.e., the medium

is homogeneous. In many applications, the polyhedra emerging from a random tessellation are actually

characterized by different physical properties, which for the sake of simplicity can be assumed to be

piece-wise constant over each cell. Such stochastic mixtures can be then formally described by assign-

ing a distinct ‘label’ i (also called ‘color’) to each polyhedron of the geometry, with a given probability

pi. A widely studied model is that of stochastic binary mixtures, where only two labels are allowed,

say ‘red’ and ‘blue’, with associated complementary probabilities p and 1− p, respectively [108].

Stochastic mixtures are realized by resorting to the following procedure: first, a random geometry

is constructed by resorting to the algorithms detailed in Secs. 2.3.1, 2.4.1 and 2.5.1. Then, the

corresponding coloured geometry is immediately obtained by assigning to each polyhedron a label

with a given probability. Adjacent polyhedra sharing the same label are finally merged. For the

specific case of binary stochastic mixtures, the merging procedure gives rise to (generally) non-convex

red and blue clusters, each composed of a random number of convex polyhedra. For illustration,

some examples of binary stochastic mixtures based on coloured Poisson tessellations are provided in

Figs. 2.11 and 2.12 by Monte Carlo simulation, for different values of ρ and p, in dimension d = 2 and

d = 3, respectively.
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(a)

(b)

Figure 2.11: Realizations of coloured two-dimensional isotropic Poisson geometries restricted
to a square of side L, for different values of density ρ and probability p of assigning the label
α. Red corresponds to the label α and blue to the label β. For all realizations, we have chosen
L = 1. Top (a): ρ = 50; bottom (b): ρ = 200. Left: p = 0.25, middle: p = 0.5; right: p = 0.75.

2.7.1 Chord length across colored clusters

After assigning colors to stochastic geometries, we can analyze the chord length `i(Ω) across clusters

with label i, for lines with orientation Ω. If the probability density P(`|Ω) of having a chord length `

through a cell of the tessellation is known, the probability density P(`i|Ω) of having a chord length `i
though a cluster with label i can be obtained as follows. If pi is the probability of a cell to be assigned

the label i, the probability that exactly k adjacent cells share the same label 4 is

P(k) = pk−1
i (1− pi). (2.84)

We can write then

P(`i|Ω) =
∑
k

P(`i|Ω; k)P(k), (2.85)

where P(`i|Ω; k) is the probability density of having a length `i if the cluster contains exactly k cells

in the direction Ω. Now, the length `i conditioned to k cells will satisfy

`i(Ω) =
k∑
j=0

xj(Ω) (2.86)

where each xj(Ω) obeys P(x|Ω). Thus, it follows that P(`i|Ω; k) is the k-fold convolution of P(`|Ω).

For the case of Poisson tessellations, P(`|Ω) is an exponential distribution of parameter ρ(Ω), so

that P(`i|Ω; k) can be computed explicitly and reads

P(`i|Ω; k) =
ρ(Ω)k

Γ(k)
`k−1
i e−ρ(Ω)`i , (2.87)

i.e., a Gamma distribution of parameters ρ(Ω) and k. We have then

P(`i|Ω) =
∑
k

P(`i|Ω; k)P(k) =
∑
k

pk−1
i (1− pi)

ρ(Ω)k

Γ(k)
`k−1
i e−ρ(Ω)`i = ρ(Ω)(1− pi)e−ρ(Ω)(1−pi)`i .

(2.88)

4Here we are actually considering the probability of having k adjacent cells sharing the same label, conditioned
to the fact that the starting cell has also the same label.
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(a)

(b)

Figure 2.12: Realizations of coloured three-dimensional isotropic Poisson geometries restricted
to a cube of side L, for different values of density ρ and probability p of assigning the label α.
Red corresponds to the label α and blue to the label β. For all realizations, we have chosen
L = 1. Top (a): ρ = 10; bottom (b): ρ = 50. Left: p = 0.25; middle: p = 0.5; right: p = 0.75.

This means that for Poisson tessellations the chord length distribution for a cluster with label i is

an exponential distribution with rescaled parameter ρi(Ω) = ρ(Ω)(1 − p). We can finally define the

average chord length for colored clusters, namely,

Λi(Ω) =
1

ρi(Ω)
=

Λ(Ω)

1− pi
. (2.89)

For Voronoi tessellations, Eq. (2.85) still holds true. However, in view of the very involved func-

tional form of the probability density for the chord length within a single cell (see Eq. (2.75)) exact

expressions for the distribution of the chord length within a cluster seem hardly achievable. Nonethe-

less, observe that independently of the shape of the distribution the expression for the average chord

length is still given by

Λi(Ω) =
+∞∑
k=0

pki Λ(Ω) =
Λ(Ω)

1− pi
(2.90)

for any underlying tessellation model. This property of the average chord length across clusters

with composition i stems from the binary random sampling of colored labels during the coloring

procedure [48]. Similarly, we can formally define the average correlation length for colored tessellations

as

Λc,i =
Λc

1− pi
. (2.91)

2.7.2 Percolation properties in colored tessellations

Let us now consider binary mixtures, without loss of generality. By increasing the coloring probability

p, the size of the red clusters also increases. For infinite geometries, the percolation threshold pc is

defined as the probability of assigning a red label to each d-polyhedron above which there exists a giant

connected cluster, i.e., an ensemble of connected red d-polyhedra spanning the entire geometry [135].

The percolation probability PC(p), i.e., the probability that there exists such a connected percolating

cluster, has thus a step behaviour as a function of the colouring probability p, i.e., PC(p) = 0 for

p < pc, and PC(p) = 1 for p > pc. The same argument applies also to the blue clusters: in particular,

depending on the kind of underlying stochastic geometry and on the dimension d, there might exist

a range of probabilities p for which both coloured clusters can simultaneously percolate. Actually,
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for any finite L, there exists a finite probability that a percolating cluster (i.e. a cluster hitting two

opposites borders) exists below p = pc, due to finite-size effects. For illustration, some examples of

percolating and non-percolating two-dimensional Poisson geometries are given in Fig.2.13.

Percolation theory has been intensively investigated for the case of regular lattices [135]. Although

less is comparatively known for percolation in stochastic geometries, remarkable results have been

nonetheless obtained in recent years for, e.g., Voronoi and Delaunay tessellations in two dimensions [4,

6, 97], whose analysis demands great ingenuity (see, e.g., [22, 23, 49]). The percolation threshold of

three-dimensional Voronoi tessellations has also been numerically estimated to be pc = 0.1453±2.10−3

[52]. Furthermore, the percolation threshold of a three-dimensional Box tessellation can be mapped

to that of a cubic network, which has been widely studied and numerically estimated to be pc =

0.3116077± 4.10−7 [29]. In the following, we will focus on the case of d-dimensional isotropic Poisson

geometries, with special emphasis on the transition occurring at p = pc.

For Poisson geometries, the case d = 1 is straightforward and can be solved analytically: PC(p)

simply coincides with the probability that all the segments composing the Poisson geometry on the

line are coloured in red. For any finite L, this happens with probability

PC(p|L) = pe−(1−p)ρL. (2.92)

It is easy to understand that for d = 1 we have pc = 1. For very large L→∞, PC(p|L) converges to

a step function, with PC(p) = 1 for p = pc and PC(p) = 0 otherwise. This behaviour is analogous to

that of percolation on one-dimensional lattices [135].

To the best of our knowledge, exact results for the percolation probability for Poisson geometries

in d > 1 are not known. The percolation threshold can be numerically estimated by determining pc at

finite L and extrapolating the results to the limit behaviour for L→∞. The percolation properties of

two-dimensional isotropic Poisson geometries have been first addressed in [65], where the percolation

threshold pc was numerically estimated to be pc ' 0.586±10−3 by Monte Carlo simulation. This means

that pc for Poisson geometries in d = 2 is quite close to the percolation threshold of two-dimensional

regular square lattices, which reads psquare
c ' 0.5927 [96]. The comparison with respect to regular

square lattices might nonetheless appear somewhat artificial, since the features of the constituents

of Poisson geometries have broad statistical distributions around their average values. In particular,

the typical 2-polyhedron of infinite Poisson geometries, while having the same average number of

sides as a square (see Tab. 2.1), does not share the same aspect ratio, which is a measure of the

connectivity of the geometry components: for the 2-polyhedron we have 〈V2〉/〈S2〉 = 1/π for ρ = 1,

whereas for a square of side u we have 〈V2〉/〈S2〉 = u/4, which for u equal to the average side of the

2-polyhedron, namely u = 〈S2〉/〈C2〉 = 1, yields 〈V2〉/〈S2〉 = 1/4. In Sec. 4, we will focus on the case

of three-dimensional isotropic Poisson geometries.

Two other quantities of interest for percolating clusters are the average cluster size and the so-

called strength of the percolating cluster. For percolation on lattices, the average cluster size S(p) is

defined by

S(p) =
∑
s

sws, (2.93)

where ws is the probability that the cluster to which a red site belongs contains s sites, and the sum

is restricted to sites belonging to non-percolating clusters [135]. Now, ws ∝ sns(p), where ns(p) is

the number of clusters of size s per lattice site, which means that S(p) ∝
∑

s s
2ns(p) [135]. Close to

the percolation threshold, S(p) is known to behave as S(p) ∝ |p − pc|−γ for infinite lattices, where

γ is a dimension-dependent critical exponent that does not depend on the specific lattice type [135].

For finite lattices of linear size L, the behaviour of S(p|L) close to p→ p−c is dominated by finite-size

effects, with a scaling S(p|L) ∝ Lγ/ν , where ν is another dimension-dependent critical exponent that

does not depend on the specific lattice type [135]. In order to adapt the definition in Eq. (2.93) to the

calculation of average cluster size of the stochastic tessellations, we can either compute the sum by

weighting each d-polyhedron composing a non-percolating cluster by its volume, or by attributing to

each constituent an equal unit weight. The former choice seems more appropriate on physical grounds.

For percolation on lattices, the strength P (p) is defined as the probability that an arbitrary site

belongs to the percolating cluster [135]. Close to the percolation threshold, for infinite lattices P (p) is
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(a) (b)

Figure 2.13: Percolating and non-percolating realizations of two-dimensional coloured isotropic
Poisson tessellations restricted to a square of side L = 100 and density ρ = 1 with probability
p of assigning a red label. Case (a), p = 0.5. The system does not percolate: no red cluster
spans the geometry. Case (b), p = 0.6. The system percolates since a red cluster spans the
geometry.

known to behave as P (p) ∝ (p−pc)β when p→ p+
c , where β is a dimension-dependent critical exponent

that does not depend on the specific lattice type [135]. For finite lattices of linear size L, the behaviour

of P (p|L) close to p = pc is dominated by finite-size effects, with a scaling P (p|L) ∝ L−β/ν [135]. The

strength of percolating stochastic tessellations can be again computed by either weighting each d-

polyhedron composing the percolating cluster by its volume, or by attributing to each constituent an

equal unit weight.



Chapter 3

Development of a Monte Carlo random
media generator

Stochastic geometries such as those introduced above are very complex objects, and there is little

hope of obtaining close-form results for their key features. In most cases, as discussed earlier, even the

simplest distributions associated to their polyhedral cells are unknown, and knowledge of the moments

is most often limited to low orders. For instance, the most important distribution for the stochastic

tessellations is that of the volume of the cells: this function is unknown for all the models previously

introduced.

Numerical investigation based on Monte Carlo methods for the explicit construction of the stochas-

tic geometries and the subsequent analysis of their statistical properties is therefore mandatory. This

is even more so in view of the possibility of using these stochastic geometries for the analysis of par-

ticle transport in random media: we will need to instantiate a large ensemble of geometries, apply

the coloring procedure in order to assign material properties, solve the transport equation in each

configuration and finally take ensemble averages with respect to the realizations and/or compute the

full distribution of the transport-related physical observables of interest.

In the following, we will describe the software that has been developed in this work in order to

numerically produce random media and perform the analysis of their statistical features. For this

purpose, we have developed an object-oriented C++ code, based on Monte Carlo sampling methods,

devoted to the construction of

• three-dimensional spherical inclusions,

• d-dimensional isotropic Poisson tessellations,

• three-dimensional Box tessellations,

• three-dimensional Voronoi tessellations.

The code has a two-fold aim: analyzing the statistical properties of random geometries in order to inves-

tigate the behaviour of the physical observables of interest, and generating geometrical configurations

and material compositions compatible with the Monte Carlo particle transport code Tripoli-4 R© [21]

developed at SERMA, in view of investigating the effects of random media on linear transport. In the

following, we will refer to this tool as the random media generator. For the sake of simplicity, we will

focus on geometries restricted to a d-dimensional box.

To initialize the generator, the following inputs have to be provided: the dimension d (for Poisson

geometries), the size L of the system (side length of the box) and additional parameters:

• for spherical inclusions, the packing fraction ξ and the description of the radius distribution

g(r);

• for tessellations, the arbitrary density of the tessellation, denoted by ρ, ρB or ρV as defined in

Sec. 2.3.1, 2.4.1 and 2.5.1, respectively.

51
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Figure 3.1: From left to right. Example of a parallelepiped with isotropic Poisson tessel-
lation; realization of a 1-dimensional Poisson geometry extended into slab; realization of a
2-dimensional Poisson geometry; realization of a 2-dimensional extruded Poisson geometry..

It is also possible to tessellate a parallelepiped, as shown in Fig. 3.1: in this case, the parameters

Lx, Ly and Lz have to be provided instead of L. Each time the class constructor is called, a new

object corresponding to a random geometry is created, based on the algorithms described above.

For instance, for Poisson tessellations a method tessellates the box with a random number of planes

depending on the density of the tessellation, according to the algorithm described in Sec. 2.3.1. An

instance of the class contains the geometry, which means information about the hyper-planes of the

tessellation, information about cells and information about the neighborhood (the connectivity of the

tessellation: two cells are considered as neighbors if they share a face).

3.1 Storage of the geometry

The geometry is stored with the following format:

• for three-dimensional mono-dispersed spherical inclusions: the radius 〈r〉 = R and a vector of

3d-points (Pi) for the centers of the spheres;

• for three-dimensional poly-dispersed spherical inclusions: a vector of radii (ri) and a vector of

3d-points (Pi) for the centers of the spheres;

• for one-dimensional Poisson tessellations: a vector of sorted 1d-vertices (xi)0≤i≤N+1 introduced

in the geometry (including the two boundaries x0 = −L/2 and xN = L/2). The 1-polyhedra

and the corresponding neighborhood are implicit, since in this representation the 1-polyhedron

i is the segment [xi, xi + 1] and has for neighbors the 1-polyhedra i− 1 and i+ 1;

• for two-dimensional Poisson tessellations: a vector of the lines defining the geometry (includ-

ing the boundaries of the domain), a vector of 2d-vertices, a vector of edges and a vector of

2-polyhedra. The object corresponding to an edge contains two vertices (accessed by reference)

and is also linked to a line (accessed by reference). The object corresponding to a 2-polyhedron

contains a vector of edges (accessed by reference) and a vector of neighbors (accessed by refer-

ence);

• for three-dimensional Poisson tessellations: a vector of the planes defining the geometry (in-

cluding the boundaries of the domain), a vector of 3d-vertices, a vector of faces and a vector

of 3-polyhedra. The object corresponding to a face is a vector of ordered vertices (accessed by

reference) and is also linked to a plane (accessed by reference). The object corresponding to a

polyhedron is a list of faces (accessed by reference) and a vector of neighbors;

• for three-dimensional Box tessellations: a vector of sorted points (xi)0≤i≤Nx+1 from the Poisson

point process on the x-axis (with additional points x0 = −Lx/2 and xNx+1 = Lx/2), a vector

of sorted points (yi)0≤i≤Ny+1 from the Poisson point process on the y-axis (with additional

points y0 = −Ly/2 and yNy+1 = Ly/2) and a vector of sorted points (zi)0≤i≤Nz+1 from the
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Poisson point process on the z-axis (with additional points z0 = −Lz/2 and zNz+1 = Lz/2).

The 3-polyhedra composing the tessellation and the neighborhood map are implicit;

• for three-dimensional Voronoi tessellations: a vector of nuclei (Pi)1≤i≤N introduced in the ge-

ometry and a vector of 3-polyhedra. The object corresponding to a 3-polyhedron is a vector of

neighbors. The planes supporting the faces of the polyhedron i are not stored but can easily

be computed as the mid-planes between the nucleus Pi and the nuclei of the neighbors of the

polyhedron i.

For the cases d = 1 and d = 2, an option is available in the code in order to generate extruded

geometries based on rod (d = 1) or plane (d = 2) configurations. Indeed, for real-world applications,

three-dimensional geometries are needed. Furthermore, having in mind the possibility of performing

particle transport in stochastic tessellations, the Monte Carlo code Tripoli-4 R© also requires three-

dimensional geometries. That is why we have also implemented:

• slab geometries based on d = 1 tessellations: the 1d rod geometry is extended along the y- and

z-axis. For an illustration, see Fig. 3.1;

• extruded geometries based on d = 2 tessellations: the 2d plane geometry is extended along the

z-axis. For an illustration, see Fig. 3.1.

This option is used for methods producing the output files related to visualization or export tessella-

tions into a format compatible with the transport code Tripoli-4 R©.

3.2 Coloration of the tessellations

Once the tessellation has been built, a method enables to assign color labels to the geometry, i.e.,

to assign each polyhedron a colored label with a probability p and a blue label with complementary

probability 1−p, where p is a parameter provided to this method. A given geometry can be un-colored

and re-colored as many times as needed, for statistical analysis.

Optionally, an additional method enables to aggregate the adjacent polyhedra sharing the same

color into clusters. For this purpose, we use the neighborhood map of the polyhedra of the tessellation

produced during the construction of the geometry and we resort to the Breadth-First Search algorithm

in order to traverse all polyhedra of the tessellation. We create the first red cluster as follows. Initially,

the cluster is empty. We start by taking a list containing all red polyhedra of the tessellation and we

select the first element of this list. Then, we add this element to the ongoing cluster, we attribute a

flag to this element as ’done’ and we use the connectivity map to get the corresponding neighbors.

Each neighbouring polyhedron which is red and not ’done’ is added to the queue. Then, for each

element of the queue, we add it to the ongoing cluster, we ’flag’ it as ’done’ and we add to the queue

all neighbors of this element which are red and not ’done’. We iterate this step until the queue is

empty, which means that the cluster has been constituted. In order to create the second red cluster,

we repeat the whole process by using a list containing all red polyhedra of the tessellation which are

not ’done’. We keep on aggregating red clusters until all red polyhedra of the tessellation are marked

as ’done’.

3.3 Visualization

The generator can produce output files for the visualization of the created geometries: for a given

geometry, a method of the code based on

• a tetrahedral decomposition of the polyhedra, for the tessellations;

• a discretization of the spheres, for the spherical inclusion,
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Figure 3.2: Realization of a very dense three-dimensional Poisson geometry, with parameters
L = 370, ρ = 1, leading to about 3× 107 polyhedra.

writes a datafile describing the geometry within the framework of the VTk specifications. Such output

files are directly readable by the ParaView R© software. Thus, it is possible for the user to visualize the

geometries generated by our computer code, in dimension d = 1 (slab), d = 2 (plane or extruded) or

d = 3. The random generator and the visualization tool have been tested for tessellations containing

up to thirty millions polyhedra: for illustration, see Fig. 3.2. Two additional options are available

for visualization: the user can specify whether un-colored geometries are needed (in which case all

cells are colored differently, to increase readability) or colored geometries (in which case the cells are

colored depending on their label).

3.4 Statistical properties

For each realized geometry, several properties are computed by the code for statistical analysis, among

which:

• the volumic ratio of the spheres in the geometry (for spherical inclusions),

• the number of polyhedra (for tessellations),

• the volume Vi, surface Si, inradius Ri, etc., of the polyhedron i (for tessellations),

• the volume, surface, inradius, etc., averaged over the whole geometry (for tessellations),

• the number of planes intersected by a random unit length (for tessellations),

• the distribution and the moments of the chord length, as obtained by throwing lines through

the geometry: each line is decomposed into a set of chords by the spherical inclusions or the

random hyper-planes of the tessellation.

For the case of colored tessellations, additional observables are computed if requested, among which:

• the number of colored clusters,

• the volume of the colored clusters,

• the presence of a percolating cluster.

Further details will be provided in Sec. 4.
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3.5 Output files for Tripoli-4 R©

It is possible to export the obtained geometry into a format compatible with the geometry input of

the Monte Carlo code Tripoli-4 R©. For any geometry, a method of the generator allows producing

the following input files:

• a file describing the geometry in a surface-based format, associated to the Tripoli-4 R© keyword

GEOMETRY,

• a file describing the material composition of each volume, associated to the Tripoli-4 R© keyword

GEOCOMP,

• a file describing the boundary conditions, if needed, associated to the Tripoli-4 R© keyword

BOUNDARY,

• a file describing the neighborhood (connectivity) map.

These files are directly readable by Tripoli-4 R©. The first three files are actually printed as command

blocks for a Tripoli-4 R© input file. The last one is to be used inside the command block GEOMETRY,

when the optional keyword CONNECTIVITY MAP is requested by the user.

The connectivity map is produced by the random geometry generator by exploiting the relation

between the indexes of the cells (polyhedra for tessellations, spheres and boxes for spherical inclusions).

Then, this information can be fed to Tripoli-4 R© so that the transported particles during geometrical

tracking will know which volume they will enter, and by which face, for any current volume, which is

expected to considerably accelerate the particle tracking routines, especially for geometries containing

a huge number of volumes: a discussion about speed-up due to the connectivity map on the particle

transport is provided in Sec. 3.7.

In the following we provide an example of a set of output files created by the generator. We

consider a single random Poisson geometry, with parameters d = 3, L = 3, ρ = 1 and p = 0.2. The

file providing the geometry is written as:

GEOMETRIE

TITRE Example of a 3-dimensional Poisson geometry

HASH_TABLE

SURF 1 PLAN 0 0 1 -1.5

SURF 2 PLAN 0 0 1 1.5

SURF 3 PLAN 0 1 0 1.5

SURF 4 PLAN 0 1 0 -1.5

SURF 5 PLAN 1 0 0 1.5

SURF 6 PLAN 1 0 0 -1.5

SURF 7 PLAN 0.332526 -0.0296187 0.942629 -1.11687

SURF 8 PLAN 0.221761 -0.796614 -0.562342 0.784656

SURF 9 PLAN 0.595543 -0.467957 -0.652951 -1.79604

SURF 10 PLAN 0.578349 -0.748902 0.323509 2.15322

SURF 11 PLAN 0.314375 -0.830398 0.460009 0.622084

SURF 12 PLAN 0.59591 0.656393 0.462644 2.05206

SURF 13 PLAN 0.609976 -0.349675 0.711096 0.431487

SURF 14 PLAN 0.755992 0.350264 0.552984 1.7478

VOLU 1 EQUA PLUS 3 3 7 8 MOINS 2 1 6 FINV

VOLU 2 EQUA PLUS 3 2 3 9 MOINS 1 6 FINV

VOLU 3 EQUA PLUS 2 7 11 MOINS 4 1 4 6 8 FINV

VOLU 4 EQUA PLUS 3 5 11 13 MOINS 5 1 4 6 7 8 FINV

VOLU 5 EQUA PLUS 6 2 3 5 8 11 13 MOINS 4 1 6 7 9 FINV

VOLU 6 EQUA PLUS 1 5 MOINS 3 4 8 10 FINV

VOLU 7 EQUA PLUS 3 2 5 8 MOINS 2 4 10 FINV
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VOLU 8 EQUA PLUS 1 7 MOINS 3 1 4 11 FINV

VOLU 9 EQUA PLUS 2 5 13 MOINS 6 1 4 6 7 8 11 FINV

VOLU 10 EQUA PLUS 3 2 8 13 MOINS 3 4 6 11 FINV

VOLU 11 EQUA PLUS 3 2 3 5 MOINS 1 12 FINV

VOLU 12 EQUA PLUS 2 5 11 MOINS 2 8 13 FINV

VOLU 13 EQUA PLUS 6 2 3 5 8 11 14 MOINS 1 13 FINV

VOLU 14 EQUA PLUS 2 5 10 MOINS 4 4 8 11 13 FINV

VOLU 15 EQUA PLUS 5 2 5 8 10 14 MOINS 4 4 6 11 13 FINV

VOLU 16 EQUA PLUS 5 2 3 5 11 12 MOINS 1 14 FINV

VOLU 17 EQUA PLUS 2 2 5 MOINS 2 11 14 FINV

CONNECTIVITY_MAP /address/map_file

FING

Note that the produced tessellation description for Tripoli-4 R© is naturally well-suited for the surface-

based format. The optional keyword HASH TABLE is strongly suggested for large geometries (more than

103 polyhedra), in order to optimize the data structure during the construction phase at the code

initialization.

The neighbourhood map is introduced by the keyword CONNECTIVITY MAP, which has to be fol-

lowed by the address of the file containing the map (which is also produced by the random geometry

generator). For this example, the map file reads as:

1 2 5 3

2 1 5

3 3 4 1 8

4 4 3 5 9 12

5 5 1 4 2 10 13

6 2 7 14

7 2 6 15

8 2 9 3

9 4 8 10 4 14

10 3 9 5 15

11 1 16

12 3 13 14 4

13 4 12 15 5 16

14 4 15 6 12 9

15 5 14 7 13 10 17

16 3 17 11 13

17 2 16 15

In the connectivity map, each line provides the indexes to the neighbors of the polyhedron whose

index is given in the first column. At any given line, the second column gives the number of neighbors.

The additional columns give the list of neighbors of the considered polyhedron. For instance, we

can deduce from this map that the polyhedron of index 9 has 4 neighbors, whose identifiers are: 8,

10, 4 and 14. Similarly as for the keyword HASH TABLE, the use of the connectivity map (although

in principle optional) is strongly recommended for large geometries, and might lead to a significant

reduction of the simulation time.

The file describing the composition of each volume of the geometry is generated by the generator,

provided that the coloring process has been requested by the user. The corresponding file will be for

instance:

GEOMCOMP

BLUE 14 5 6 8 9 10 12 13 15 16 17 18 19 20 21

RED 3 7 11 14

FIN_GEOMCOMP
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A file describing the boundary conditions can also be generated, when needed. In this example, we

want to apply reflection (Neumann) boundary conditions on the planes y = L/2, y = −L/2, z = L/2

and z = −L/2. correspondingly, we obtain the following output file:

LIMIT

30

1 REFLEXION 1

1 REFLEXION 3

2 REFLEXION 2

2 REFLEXION 3

3 REFLEXION 1

3 REFLEXION 4

4 REFLEXION 1

4 REFLEXION 4

5 REFLEXION 1

5 REFLEXION 2

5 REFLEXION 3

6 REFLEXION 4

7 REFLEXION 2

7 REFLEXION 4

8 REFLEXION 1

8 REFLEXION 4

9 REFLEXION 1

9 REFLEXION 4

10 REFLEXION 2

10 REFLEXION 4

11 REFLEXION 2

11 REFLEXION 3

13 REFLEXION 2

13 REFLEXION 3

14 REFLEXION 4

15 REFLEXION 2

15 REFLEXION 4

16 REFLEXION 2

16 REFLEXION 3

17 REFLEXION 2

FIN_LIMIT

With these output files, we can then create a Tripoli-4 R© dataset. The Tripoli-4 R© visualization

tool T4G [51] enables to visualize two-dimensional sections of the input geometry to be used for particle

transport. In order to check the consistency of the geometry as produced based on the output files

coming from the random geometry generator, we can compare the T4G representation and the one

directly provided by Paraview R©, for a given section. For instance, for the example illustrate here, we

might choose a plane section taken at x = 0.5. Although the data come from different frameworks

(surface-based geometry for T4G, and tetrahedral decomposition for Paraview R©), we can easily verify

that the two geometric representations are consistent with each other, as illustrated in Fig. 3.3.

3.6 Computer time for the construction

We have performed extensive tests in order to estimate the time required for the construction of the

random geometries. In the following we provide some details concerning the algorithms and their

respective computational burden, and we propose possible optimizations. We begin by analyzing the

case of spherical inclusions.
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Figure 3.3: Comparison of the cut at x = 0.5, for a realization of a three-dimensional Pois-
son geometry between two visualization tools: T4G for the Tripoli-4 R© input file (left) and
Paraview R© for the object created by the random geometry generator (right). At the top
(respectively, bottom), we visualize the un-colored (respectively, colored) geometry.

3.6.1 Spherical inclusions

Fast RSA methods

Fast RSA methods enable to speed-up the basic RSA method by resorting to mesh superposed to

the domain, in order to shorten the computational time spent for the step where we check that the

trial sphere does not overlap any other sphere already positioned in the contained. For such methods,

instead of checking all previous spheres for overlap, we restrict the search only to nearest-neighbour

spheres, by defining a Cartesian mesh with spacing h = L/n, where n is the number of cells along

each axis.

Mono-dispersed radius. A fast RSA method has been proposed in literature for mono-dispersed

radius [19]. In this method, it is assumed that h ≤ 2R/
√

3, i.e., n ≥ b
√

3L/2rc+ 1. Thus, each mesh

cell contains at most one sphere center and only m = b2R/hc+1 neighbouring cells need to be checked

in the ±x, ±y, ±z directions. During the construction, we need to update a list of empty mesh cells

and a list of sphere centers contained within each mesh cell. According to [19], this improved method

is expected to scale as O(N) rather than O(N2) with respect to the number of spheres, at least on the

investigated range of values for N , up to 1.6× 104 spheres. Nevertheless, the list of empty boxes has

a length proportional to N and the removal of one element in this list occurring for each introduction

of a sphere has a complexity (N), whence an expected complexity (N2) for the whole algorithm for

large N . The fast RSA algorithm has been implemented in our computer code.

We have investigated and tested a new algorithm, also based on a meshing of the space. In this

approach, we assume that h ≥ 2r, i.e., n ≤ bL/2rc, which ensures that at most one neighbouring cell

in the ±x, ±y, ±z directions from the box cell containing the center of the sphere has to be checked.

During the construction, we need to update a list of sphere centers contained within each mesh cell.

As in the standard RSA method for mono-dispersed spheres, we compute the number of spheres N to

be introduced. At this step, there are k = 0 spheres in the box. Then, we randomly select a position

(x, y, z) uniformly sampled within the container, such that the sphere centered in (x, y, z) does not

overlap the boundaries. We identify a list of neighbouring mesh cells which could contain spheres

overlapping the sphere of center (x, y, z). Then, we check whether the sphere centered at (x, y, z) does

overlap any of the other spheres contained in the mesh cells identified at the previous step. In case

of overlapping, this sphere is rejected. Otherwise, the trial sphere is added to the list of spheres in

the container and the counter k is incremented. Furthermore, we assign the trial sphere to the mesh
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Figure 3.4: Left. Average computer time 〈τ〉 for the construction of three-dimensional mono-
dispersed spherical inclusions (without overlap of the spheres) as a function of the number of
spheres N introduced in the geometry and of the used algorithm. For each configuration, we
have generated spherical inclusions in a box of side L = 100 with a fixed packing fraction
ξ = 0.3; the radius r = r(N) is chosen such that 4πNr3/L3 = ξ. Blue triangles correspond
to results obtained with the basic RSA, green circles to results obtained with the Fast-RSA
and red diamonds to the best results (as a function of the number of meshes n along each
axis: see also Fig. 3.4 (right)) obtained with our algorithm. The scaling law N2 is displayed
for reference as a dashed line. Right. Average computer time 〈τ〉 for the construction of
three-dimensional mono-dispersed spherical inclusions (without overlap of the spheres) with
the algorithm described in 3.6.1 as a function of the number of meshes n along each axis, for
several values of the number of spheres N introduced in the geometry. For each configuration,
we have generated spherical inclusions in a box of side L = 100 with a fixed packing fraction
ξ = 0.3; the radius r = r(N) is chosen such that 4πNr3/L3 = ξ. Blue diamonds correspond to
N = 103, red circles to N = 104, green triangles to N = 105 and orange squares to N = 106.

cell containing its center. This step is iterated until the number of spheres in the container reaches

k = N . This algorithm has been also implemented in our computer code. The average number of

spheres in each cell is N/n3, and the number of cells is n3. If n is too small, we have too many spheres

in each mesh cell and the loop over the spheres on the neighouring cells becomes expensive. If n is

too large, the number of spheres per mesh cell is less than one, but the number of cells to manage

is huge compared to the gain stemming from the reduction of the number of spheres per cell. An

optimum has to be found, in order to have a few spheres per cell and a number of cells small enough.

When the number of spheres N is large, the expected complexity is also O(N2) but, similarly as for

the Fast-RSA, this computationally expensive regime is expected to be reached later than in the case

of the standard RSA.

The performance of the basic RSA, the Fast-RSA and our fast algorithm will be discussed in 3.6.1

together the corresponding simulation results for the computer time.

Poly-dispersed radius. For poly-dispersed radii, we need to slightly adapt the methods described

above for mono-dispersed radii. Concerning the Fast-RSA, since the radius of spheres can be a priori

arbitrarily small, taking h such that h ≤ 2r/
√

3 for each sphere of radius r is not convenient. For

our algorithm, since the radius of spheres can be a priori arbitrarily large, taking h such that h ≥ 2r

for each sphere of radius r is not convenient, either. However, it is possible to take a mesh with an

arbitrary spacing h = L/n and to update the list of spheres contained in each mesh box (whether the

center is contained in this box or not) during the construction.

The fast algorithm for poly-dispersed radii is the following: as in the basic RSA method for poly-

dispersed spheres, we start by sampling sequentially the radii ri of spheres until the effective packing

fraction is larger than the sought parameter ξ. We denote by N the corresponding number of spheres.

For the last sphere, the radius rN is imposed such that the effective packing fraction is strictly equal
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Figure 3.5: Left. Average computer time 〈τ〉 for the basic construction (without speed-up) of
d-dimensional isotropic Poisson tessellations with our random generator, as a function of the
system size L and of the dimension d. Symbols correspond to Monte Carlo results, for ρ = 1.
Blue crosses correspond to d = 1, red circles to d = 2 and green triangles to d = 3. Dashed
lines correspond to scaling laws (ρL)d+1. Right. Average computer time 〈τ〉 for the basic
construction of three-dimensional isotropic Poisson tessellations, Voronoi tessellations and Box
tessellations, as a function of the dimensionless system size L∗ = L/Λc. Symbols correspond to
Monte Carlo results, for Λc = 1, i.e. ρ = 1, ρB = 2/3 and ρV ≈ 0.6872. Blue squares correspond
to Poisson tessellations (without speed-up), red triangles to Box tessellations and green circles
to Voronoi tessellations.

to ξ. Then, we sort the radii in descending order. At this step, there are k = 0 spheres in the box.

Then, we randomly select a position (x, y, z) uniformly sampled within the container, such that the

sphere does not overlap the boundaries. We identify a list of mesh cells spanned by the sphere of

center (x, y, z) with radius rk. Then, we check whether the sphere centered at (x, y, z) with radius R

does overlap any of the other spheres contained in the mesh cells identified at the previous step. In

case of overlapping, this sphere is rejected. Otherwise, the trial sphere is added to the list of spheres

in the container and the counter k is incremented. Furthermore, we assign the trial sphere to each

spanned mesh cell. This step is iterated until the number of spheres in the container reaches k = N .

Performances of RSA methods

In this section, we focus on spherical inclusions with constant radius. The average computer time

〈τ〉 needed for the construction of three-dimensional spherical inclusions (with fixed packing fraction

ξ = 0.3) as a function of the number of spheres N introduced is provided in Fig. 3.4 (left) for the

following algorithms: basic RSA, Fast-RSA (as given in [19]) and our fast algorithm described in

Sec. 3.6.1. For our method, the displayed result corresponds to the best computer time obtained by

varying the parameter n defined above. We can see that the basic RSA method scales as O(N2),

as expected. Fast-RSA performs better than basic RSA with a speed-up (with respect to the basic

RSA) close to 10 for a number of spheres between 104 and 106. Moreover, our fast algorithm performs

systematically better than the Fast-RSA method: the speed-up (with respect to the basic RSA) of

this fast algorithm can indeed attain 103 for N = 106 spheres.

Figure 3.4 (right) displays the computer time 〈τ〉 needed for the construction of three-dimensional

spherical inclusions with our fast algorithm, as a function of the parameter n, for different values of

the number of spheres N . For each value of N , n is chosen in the range of values between 1 (the case

corresponding to basic RSA) and nmax(N) = bL/2r(N)c. As expected, the computer time decreases

first with increasing n, then attains a minimum n∗(N) depending on N , and finally increases with

increasing n.
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3.6.2 Tessellations

We consider then the case of stochastic tessellations.

Computer time without speed-up

The average computer time 〈τ〉 needed for the construction of d-dimensional isotropic Poisson tessel-

lations as a function of the dimensionless system size ρL and of the dimension d is provided in Fig. 3.5

(left). The computer time scales as (ρL)d+1, whereas the number of cells of the tessellation scales

as (ρL)d (further considerations will be provided in Sec. 4). In the construction algorithm given in

Secs. 2.3.1, 2.4.1 and 2.5.1, we loop over NH hyperplanes, with NH linearly proportional to L, and for

each hyperplane we loop over all polyhedra of the previous step to check whether they are cut by the

new sampled hyperplane: this explains the scaling of the complexity as O((ρL)d+1).

The average computer time 〈τ〉 needed for the construction of three-dimensional Poisson, Voronoi

and Box tessellations as a function of the dimensionless system size L∗ = L/Λc is provided in Fig. 3.5

(right). Without any specific speed-up, the computer time scales as (L∗)4 for Poisson tessellations,

(L∗)6 for Voronoi tessellations and L2 for Box tessellations. Voronoi tessellations are constructed

with the Green and Sibson algorithm, whose complexity is O(N2
p ), where Np denotes the number

of polyhedra and scales as (L∗)3. Therefore, the scaling (L∗)6 is coherent for Voronoi tessellations.

For Box tessellations, the scaling (L∗)2 corresponds to the quadratic complexity of the sort operation

performed on the points (whose number scales as L∗) on each axis.

Such computer times are rather long, especially for three-dimensional Voronoi and Poisson tessel-

lations with a large dimensionless system size. It is therefore convenient to develop some strategies in

order to speed-up the algorithms for the construction of these random tessellations.

Computer time with speed-up

In order to reduce the computer time needed for the construction of tessellations, a possible method

is to superpose to the domain a Cartesian mesh with spacing h = L/n, where L is the size of the box

and n is the number of cells along each axis.

For Poisson tessellations without speed-up, for each new plane added to the tessellation we must

check whether all previous elements (e.g., vertices, edges, faces and polyedra for d = 3) of the tes-

sellations are i) above or below the plane (for the vertices) and ii) cut by this plane (for the other

elements). A mesh enables to shorten this very expensive step, by restricting the search only on

elements contained in mesh cells which are cut by the considered plane. Fig. 3.6 (left) shows the com-

puter time obtained for three-dimensional Poisson tessellations with this implementation as a function

of the parameter n, for different values of the size L of the domain. For each size L, the computer

time decreases with increasing n, then it attains a minimum for n∗(L) depending on L, and finally

increases with increasing n. Moreover, for each L, the computer time scales as n3 for large n: in

this regime, the handling of the mesh cells dominates, because the number of mesh cells becomes as

large as (or larger than) the tessellation complexity. The speed-up factor obtained by taking the best

score with respect to the computer time without optimization increases with increasing domain size,

so the meshing feature is particularly relevant for geometries with a high complexity. For large enough

domains, this method enables to reach a speed-up of about 6 for the computer time.

For the construction of Voronoi tessellations with the Green and Sibson algorithm, the introduc-

tion of any seed requires a loop over all previous seeds in order to update the neighborood map. This

expensive step leads to a quadratic complexity with respect to the expected number of polyhedra. A

mesh enables to restrict the research to the mesh cell containing the new seed and to the neighboring

mesh cells. Fig. 3.6 (right) shows the computer time obtained for three-dimensional Voronoi tessella-

tions as a function of the parameter n, for different values of the size L of the domain. This method

enables a gain of several orders of magnitude for the computer time.

For d-dimensional Poisson tessellations, we have tested another method allowing a considerable

reduction in the computer time needed for the construction. In the basic implementation of the

construction, for each new plane all points of the current tessellation are checked (either ’above’ or
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Figure 3.6: (Left) Average computer time 〈τ〉 for the construction of three-dimensional isotropic
Poisson tessellations with a fictive mesh, as a function of the parameter n such the spacing is
h = L/n along each axis, for different values of the system size L. Symbols correspond to Monte
Carlo results, for ρ = 1. Blue diamonds correspond to L = 50, red circles to L = 100, green
triangles to L = 150 and orange squares to L = 200. (Right) Average computer time 〈τ〉 for
the construction of three-dimensional Voronoi tessellations with a fictive mesh, as a function
of the parameter n such the spacing is h = L/n along each axis, for different values of the
system size L. Symbols correspond to Monte Carlo results, for ρV = 0.6872. Blue diamonds
correspond to L = 50, red circles to L = 100, green triangles to L = 150.

’below’ the plane), then all edges (either ’cut’ or ’not cut’), then all faces (either ’cut’ or ’not cut’) and

finally all polyhedra (either ’cut’ or ’not cut’). As explained in Sec. 3.1, the storage of the geometry

corresponds to a descending hierarchy, which means that each constituent knows which sub-elements

it contains but does not know in which upper elements it is contained. Thus, for d = 3, the edge

contains the indexes of the points forming this edge, the face contains the indexes of the edges forming

this face and the polyhedron contains the indexes of the faces forming this polyhedron. We have

improved this framework with lists describing the ascending hierarchy: one list provides for each edge

the list of faces containing it, and one list provides for each face the list of polyhedra containing it.

Therefore, since a face which is cut necessarily contains cut edges, we know which faces will be cut

from the list of the cut edges. Similarly, since a polyhedron which is cut necessarily contains cut faces,

we know which polyhedra will be cut from the list of the cut faces. We reduce therefore the loop

on the faces and the polyhedra. The average computer time obtained with this method is shown in

Fig. 3.7 (left) for dimension d = 2 and d = 3. The obtained results are very satisfying and show that

this improvement performs better than the mesh.

Finally, it is also possible to combine the meshing of the domain (in order to reduce the loop

over points and edges) and the ascending hierarchy (in order to keep the targeting on cut faces and

cut polyhedra) for Poisson tessellations: we have implemented this option for d = 3. However, the

corresponding results are not totally satisfying in terms of speed-up with respect to the algorithm with

ascending hierarchy and without meshing. This implementation provides nonetheless an additional

speed-up in some cases: for small geometries (L < 200), the effect on the reduction of the loop over

the points and the edges is not relevant; for large geometries, a speed-up has been observed for some

values of the number of meshes n along each axis, but a slowing-down is also possible if n is not in the

optimal range. The observed slowing-down (with respect to the optimized algorithm without meshing)

could be due to some memory effects occurring due to the storage of additional lists, leading to some

instabilities in terms of computer time. This optimization should be therefore used with caution for

the choice of n. Fig. 3.7 (right) displays the obtained results with this optimization as a function of n

for L = 200. For L = 300, the average computer time with the optimized algorithm without meshing

is 〈τ〉 = 396 seconds, while the combination of the ascending hierarchy and a meshing with n = 10

performs better, with an average computer time 〈τ〉 = 332 seconds, which corresponds to a gain of

16%.
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Figure 3.7: Left. Average computer time 〈τ〉 for the construction of d-dimensional isotropic
Poisson tessellations with our random generator, as a function of the system size L, of the
dimension d and of the used algorithm: basic construction or construction with ascending
hierarchy. Symbols correspond to Monte Carlo results, for ρ = 1. Red circles to d = 2
without speed-up, green triangles to d = 3 without speed-up, grey diamonds to d = 2 with
speed-up, black crosses to d = 3 with speed-up. Dashed lines correspond to scaling laws
(ρL)d+1. Right. Average computer time 〈τ〉 for the construction of three-dimensional isotropic
Poisson tessellations with ascending hierarchy combined with a fictive mesh, as a function of
the parameter n such the spacing is h = L/n along each axis, for the system size L = 200. Red
symbols correspond to Monte Carlo results obtained with this implementation, for ρ = 1. To
provide a comparison, the horizontal dashed line corresponds to the average time obtained for
L = 200 and ρ = 1 with the ascending hierarchy and without meshing. For 5 ≤ n ≤ 50, the
combined method shows a speed-up with respect to the optimized method without meshing.
For n < 5 or n > 50, the combined method is slower than the optimized method without
meshing: the managing of mesh cells induces a over-head.

3.7 Optimization of particle tracking in random geome-

tries

Once the geometries have been produced, they can be exported as output files for the Monte Carlo

transport code Tripoli-4 R©. In Sec. 3.6 we have detailed the strategies that can be applied in order

to reduce the computer time devoted to the construction of these geometries. For particle transport

through these geometries, it is also useful to develop specific methods enabling to speed-up the tracking

of the particles in the presence of a large number of volumes per geometry. We will come back to

the issue of particle transport in random media in later Chapters: here we will provide some general

considerations concerning the optimization method that we have used in order to accelerate the particle

tracking routines in the presence of ‘large’ random geometries.

3.7.1 Spherical inclusions

For random spherical inclusions, the particle transport in geometries with a large number N of spheres

(typically, N ≥ 104) without specific treatments induces a very high computational burden due to

the tracking of the particles between the background material and the spheres. Indeed, whenever

a particle is in the matrix background, the transport code needs to perform a loop over N spheres

to find the next interface. These steps are particularly expensive. That is why it is convenient to

speed-up the tracking with a spatial Cartesian mesh (with spacing h = L/n) of the box combined

with a neighborhood map, in order to restrict the research to spheres of the mesh cell containing the

considered particle. We have implemented a method in our generator to mesh the geometry after

the construction: we may note that the meshing is not necessarily the same as the one used for the

construction. Then, the output files describing the geometry for Tripoli-4 R©(see also Sec. 3.5) are
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Figure 3.8: Cut at x = 0.5, for a realization of a three-dimensional random geometry with
mono-dispersed spherical inclusions with the visualization tool T4G, from the Tripoli-4 R©

input file: (left) colored geometry (colors correspond to the composition associated to each
volume); (middle) uncolored geometry without spatial meshing; (right) uncolored geometry
with n = 10 spatial meshes along each axis.

produced by taking into account the mesh, and the neighborhood map is modified accordingly. A

realization of a random geometry with mono-dispersed inclusions, with or without mesh, is provided

in Fig. 3.8.

In order to estimate the impact of the meshing on the computer time for the particle transport,

we have performed simulations on the Monte Carlo transport code Tripoli-4 R©with the output files

taking into account the Cartesian mesh of the domain, for several values of n. For this purpose, we

have used a very simple transport problem corresponding to a criticality calculation (which will be

entirely revisited in Chapter 6). In this case, we consider mono-kinetic transport in random spherical

inclusions within a box of side L = 10 with reflective boundary conditions. For the sake of simplicity,

the composition of the spheres and of the background matrix are chosen to be identical: both materials

are characterized by a total cross section Σt,0 = Σt,1 = 2, a scattering cross section Σs,0 = Σs,1 = 1, a

fissile cross section Σf,0 = Σf,1 = 0.5 and an average number of secondary particles at fission events

equal to ν0 = ν1 = 2.5. For each geometry, we have computed the multiplication factor keff . For

each case, we have performed the transport simulation with 103 particles and 103 generations. The

simulation results for the computer time obtained with this method are displayed in Fig. 3.9 as a

function of the number of meshes, for several number of spheres N introduced in the geometry. As

expected, the mesh speeds-up the transport simulation by several orders of magnitude with respect to

the transport simulation without mesh (corresponding to n = 1): the gain amounts to 103 for N = 105

spheres and more for N = 106 spheres. The behaviour as a function of n is similar to that observed

in Fig. 3.4 (right) for the construction with a superposed mesh.

3.7.2 Tessellations

The knowledge of the connectivity map (that we have produced during the construction) is expected to

considerably speed-up the tracking in random tessellations with a large number of polyhedra. Without

connectivity map, the Monte Carlo code will perform a loop over all polyhedra for each calculation of

the next crossed interface. This search will be on the contrary restricted to the neighboring polyhedra

only in the presence of the connectivity map. The average number of neighbors is equal to 6 for

Poisson and Box tessellations and to 15.54 for Voronoi tessellations. Thus, the speed-up is expected

to be very interesting for particle transport in geometries with a large number of volumes (Np > 104)

and for a physical configuration such that the particle transport is dominated by the calculation of the

next interface, i.e., with a weak average number of collisions with respect to the number of interface

crossings. This happens when Λc < 1/Σt. In order to estimate the impact of the connectivity map

on the computer time for particle transport, we have performed Tripoli-4 R©simulations with and

without the map. For this investigation, we have focused on three-dimensional Poisson tessellations

only. We consider binary mixtures, with p = 0.3 for material α and 1− p for material β. For the sake

of simplicity, α and β are chosen to be equal.

We consider again the criticality problem tested in Sec. 3.7.1. The simulation results are displayed
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Figure 3.9: Average computer time 〈τ〉 for the particle transport in three-dimensional mono-
dispersed spherical inclusions with a spatial meshing as a function of the number of meshes
n along each axis, for several values of the number of spheres N introduced in the geometry.
For each configuration, we have considered spherical inclusions in a box of side L = 10 with a
fixed packing fraction ξ = 0.1; the radius r = r(N) is chosen such that 4πNr3/L3 = ξ. Blue
diamonds correspond to N = 105, red circles to N = 106.

in Fig. 3.10, as a function of the number of polyhedra Np. The speed-up is about 30 for large Np, which

shows the improvement induced by the connectivity map for complex tessellations. As expected, the

gain for ’small’ geometries (less than 104 polyhedra) is negligible. The same behaviour is observed for

other tessellations (Box, Voronoi) and for other dimensions d.
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Figure 3.10: (Left) Average computer time 〈τ〉 for the particle transport in three-dimensional
isotropic Poisson tessellations as a function of the number of polyhedra Np, without connectivity
map (purple triangles) and with connectivity map (green circles), for ρ = 1. (Right) Relative
gain factor for the computer time thanks to the connectivity map, as a function of the number
of polyhedra Np.



Chapter 4

Analysis of the statistical properties of
random tessellations

In the previous Chapter we have recalled the key statistical properties of stochastic tessellations

belonging to three relevant classes. As observed, the exact distributions for the physical observables are

mostly unknown [127]. Although a number of exact results have been established for the (typically low-

order) moments of the observables and for their correlations, at least in the limit case of domains having

an infinite extension [24,127,133], numerical analysis is thus mandatory. Monte Carlo simulation offers

a unique tool for the investigation of the statistical features of stochastic geometries.

In particular, by resorting to our computer code, based on the explicit construction algorithms

provided described in the previous Chapter, in this Chapter we will i) investigate the convergence of

the moments and distributions of arbitrary physical observables associated to finite-size tessellations

towards their known limit behaviour (if any) for infinite tessellations, and ii) numerically explore the

scaling of the moments and the distributions for which exact asymptotic results are not yet available.

We will start by considering the case of isotropic d-dimensional Poisson tessellations, in view

of their relevance for transport problems. We will the perform a comparative analysis of the three

classes of random geometries introduced in the previous Chapter, namely, Poisson, Voronoi and Box

tessellations. Finally, we will examine the case of anisotropic Poisson tessellations. For the sake of

completeness, the key properties of spherical inclusions have been also evaluated and are reported at

the end of the Chapter, to be contrasted to those of random tessellations.

4.1 d-dimensional isotropic Poisson tessellations

4.1.1 Number of polyhedra

To begin with, we will first analyse the growth of the numberNp of polyhedra in d-dimensional isotropic

Poisson geometries as a function of the linear size L of the domain, for a given value of the tessellation

density ρ. In the following, we will always assume that ρ = 1, unless otherwise specified (with both

ρ and L expressed in arbitrary units). The quantity Np provides a measure of the complexity of the

resulting geometries, i.e., the number of cells composing the tessellations. The simulation findings

for the average number 〈Np|L〉 of d-polyhedra (at finite L) and the dispersion factor, i.e., the ratio

σ[Np|L]/〈Np|L〉, σ denoting the standard deviation, are illustrated in Fig. 4.1. For large L, we find an

asymptotic scaling law 〈Np|L〉 ∼ Ld: the complexity of the random geometries increases with system

size and dimension (Fig. 4.1, left), as expected. This means that the computational cost to generate a

realization of a Poisson geometry is also an increasing function of the system size and of the dimension.

As for the dispersion factor, an asymptotic scaling law σ[Np|L]/〈Np|L〉 ∼ 1/
√
L is found for large L,

independent of the dimension (Fig. 4.1, right): for large systems, the distribution of Np will be then

peaked around the average value 〈Np|L〉. For d = 1, the exact solution can be easily computed: for

each realization, the random number Np of polyhedra is given by Np = NH + 1, where NH follows

a Poisson distribution with intensity ρL, according to the construction algorithm given in Sec. 2.3.1.

67
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Figure 4.1: The average number 〈Np|L〉 of d-polyhedra in d-dimensional isotropic Poisson
geometries (left) and the dispersion factor σ∗[Np|L] = σ[Np|L]/〈Np|L〉 (right) as a function of
the linear size L of the domain and of the dimension d. For all sizes L we have generated
M = 106 realizations for d = 1, M = 5×104 realizations for d = 2 and M = 5×103 realizations
for d = 3. Simulation were performed with ρ = 1. Symbols correspond to the Monte Carlo
simulation results: blue crosses denote d = 1, red triangles d = 2 and green circles d = 3. The
scaling laws Ld (left) and 1/

√
L (right) are displayed for reference with dashed lines. For d = 1,

the exact solutions, given by Eqs. 4.1 and 4.2, are plotted with a blue solid line.

This yields, for d = 1

〈Np|L〉 = ρL+ 1, (4.1)

and

σ[Np|L] =
√
ρL. (4.2)

4.1.2 Stereological properties

We have numerically computed by Monte Carlo simulation the probability of the number of intersec-

tions for an arbitrary segment of unit length and the probability density of the chords as a function

of the linear size L of the domain and for different dimensions d.

Number of intersections for a segment of unit length

For each realization, a test segment of unit length is sampled by uniformly choosing a point and a

direction, and the number of intersections Ni with the polyhedra composing the tessellation are deter-

mined. As shown in Fig. 4.2 (left), the distribution of the number of intersections quickly converges

to the limit Poisson distribution P(Ni) of intensity ρ as a function of L, which most probably stems

from the unit test segment being only weakly affected by finite-size effects (i.e., by the polyhedra that

are cut by the boundaries of the box). Finite-size effects are appreciable only for large values of the

number of intersections Ni, which in turn occur with small probability. The asymptotic average num-

ber of intersections per unit length for L→∞ yields 〈Ni〉 = ρ for any d: the Monte Carlo simulation

results obtained for a large L = 200 are compared to the theoretical formulas in Tab. 4.1, with the

same simulation parameters as above.

Chord lengths

In order to investigate the statistical properties of chord lengths traversing the d-dimensional Poisson

tessellations, a line with arbitrary orientation is drawn. The intersections of the line with the polyhedra

of the geometry (restricted to a box) are then computed, and the resulting segment lengths are

recorded. For d > 1, this procedure is repeated for a large number NL of lines having the same

orientation. The whole procedure is iterated for a large number of geometries, in order to get the
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Figure 4.2: Left. The probability density P(Ni|L) of the number of intersections for a unit
segment for d-dimensional isotropic Poisson tessellations with L = 200. For all sizes L we have
generated M = 106 realizations for d = 1, M = 5× 104 realizations for d = 2 and M = 5× 103

realizations for d = 3. Simulations were performed with ρ = 1. Symbols correspond to the
Monte Carlo simulation results: blue crosses denote d = 1, red triangles d = 2 and green
circles d = 3. The dotted line corresponds to the limit Poisson distribution with intensity ρ.
Right. The correlation length Λc(L) as a function of the dimension d and of the linear size L
of the domain for d-dimensional isotropic Poisson tessellations. We have generated M = 103

realizations with ρ = 1 and irradiated the box with NL = 100 lines per realization. Symbols
correspond to the Monte Carlo simulation results, blue crosses denote d = 1, red triangles d = 2
and green circles d = 3. The asymptotic average correlation length Λc = 1/ρ is displayed as a
black dashed line for reference.

d 〈Ni〉 Theoretical value Monte Carlo
1 ρ 1 0.998± 0.001
2 ρ 1 1.003± 0.005
3 ρ 1 1.02± 0.02

Table 4.1: The average number of intersections 〈Ni〉 in d-dimensional isotropic Poisson tessella-
tions. Monte Carlo simulation results are obtained with L = 200 and ρ = 1 for any dimension
d.

appropriate statistics. Due to the isotropy of the tessellations, the asymptotic distributions for infinite

L do not depend on the line direction Ω, so that the explicit dependence on Ω will be dropped, in

order to keep notation simple.

The convergence of the correlation length Λc(L) as a function of the box side L is provided in

Fig. 4.2 (right); the rate of convergence appears to be weakly dependent on the dimension d. The

numerical results for the chord length distribution P(`|L) at finite L are illustrated in Figs. 4.3 and 4.4.

For small L, finite-size effects are apparent in the chord length density: this is due to the fact that

the longest line that can be drawn across a box of linear size L is
√
dL, which thus induces a cut-off

on the distribution (see in particular Fig. 4.3). For ρL � 1, the finite-size effects due to the cut-off

fade away and the probability densities eventually converge to the expected exponential distribution

of mean Λ = 1/ρ.

The case d = 1 can be treated analytically and might thus provide a rough idea of the approach

to the limit case. For any finite L, the distribution of the chord lengths for d = 1 is

P(`|L) = ρe−ρ`11`<L + e−ρLδ(`− L), (4.3)

11J being the indicator function of the domain J . The moments of order m of the chord length ` for

finite L thus yield

〈`m|L〉 =
Γ(m+ 1)

ρm
− Γm+1(ρL)

ρm
+ e−ρLLm, (4.4)



70CHAPTER 4. ANALYSIS OF THE STATISTICAL PROPERTIES OF RANDOM TESSELLATIONS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5

P
(`
|L

)

`

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5

P
(`
|L

)

`

Figure 4.3: The probability densities P(`|L) of the chord length as a function of the linear size
L of the domain for d = 2 (left) and for d = 3 (right). We have generated M = 103 realizations
with ρ = 1 and computed the chord length distribution by irradiating the box with NL = 100
lines per realization. Symbols correspond to the Monte Carlo simulation results, with lines
added to guide the eye: blue triangles denote L = 1, red triangles L = 2, green circles L = 5,
and orange triangles L = 200. The asymptotic exponential distribution given in Eq. 2.40 is
displayed as a black dashed line for reference.

d Λc Theoretical value Monte Carlo
1 1/ρ 1 1.00011± 7× 10−5

2 1/ρ 1 0.9952± 3× 10−4

3 1/ρ 1 0.9940± 8× 10−4

Table 4.2: The average correlation lengths Λc in d-dimensional isotropic Poisson tessellations.
Monte Carlo simulation results are obtained with L = 150 and ρ = 1 for any dimension d.

where Γa(x) is the incomplete Gamma function [103]. In the limit case L → ∞, we have 〈`m〉 =

Γ(m+ 1)/ρm, so that for the convergence rate we obtain

〈`m|L〉
〈`m〉

= 1− Γm+1(ρL)− e−ρL(ρL)m

Γ(m+ 1)
, (4.5)

which for large ρL� 1 gives
〈`m|L〉
〈`m〉

' 1− (ρL)m−1e−ρL

Γ(m+ 1)
. (4.6)

Thus, the average chord length (m = 1) converges exponentially fast to the limit behaviour, whereas

the higher moments (m ≥ 2) converge sub-exponentially with power-law corrections. For d > 1,

the cut-off is less abrupt, but the distributions P(`|L) still show a peak at ` = L, and vanish for

` > L
√
d. The asymptotic average chord lengths for L → ∞ yield 〈`〉 = 1/ρ for any d: the Monte

Carlo simulation results obtained for a large L = 200 are compared to the theoretical formulas in

Tab. 4.2.
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Figure 4.4: The probability densities P(`|L) of the chord length as a function of the dimension d
and of the linear size L of the domain for d-dimensional isotropic Poisson tessellations. We have
generated M = 106 realizations for d = 1, M = 5× 104 realizations for d = 2 and M = 5× 103

realizations for d = 3. We have computed the chord length distribution by irradiating the box
with NL = 100 lines per realization for d > 1. Simulation results have been obtained with
ρ = 1. Symbols correspond to the Monte Carlo simulation results: blue crosses denote d = 1,
red triangles d = 2 and green circles d = 3. The cases illustrated here are as follows: (a) L = 2;
(b) L = 5; (c) L = 20; (d) L = 200. The asymptotic exponential distribution given in Eq. 2.40
is displayed as a black dashed line for reference.
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Figure 4.5: The probability densities P(Vd|L) of the d-volume in d-dimensional isotropic Poisson
geometries as a function of the dimension d and of the linear size L of the domain. We have
generated M = 106 realizations for d = 1, M = 5× 104 realizations for d = 2 and M = 5× 103

realizations for d = 3. Simulation results have been obtained with ρ = 1. Symbols correspond
to the Monte Carlo simulation results: blue crosses denote d = 1, red triangles d = 2 and green
circles d = 3. The cases illustrated here are as follows: (a) L = 2; (b) L = 5; (c) L = 20; (d)
L = 200.

4.1.3 Polyhedral features

Volume

One of the most important physical observables related to the stochastic geometries is the distribution

P(Vd) of the d-volumes Vd of the polyhedra. For d = 1, this distribution coincides with that of the

chord lengths P(`), which means that the approach to the limit case of infinite domains follows from

the same arguments as above. Unfortunately, the functional form of the distribution P(Vd) is not

known for d > 1 [86, 87, 127]. We have thus resorted to Monte Carlo simulation so as to assess the

impact of the domain size L and of the dimension d on P(Vd|L) for finite L. The numerical findings

are shown in Fig. 4.5. It is apparent that for L� 1 the distributions P(Vd|L) approach an asymptotic

shape. The rate of convergence as a function of L decreases with increasing d, which is expected on

physical grounds because the complexity of the geometries grows as ∼ Ld. The tails of P(Vd) for large

values of the argument Vd also depend on d: for d = 1, P(Vd) ∼ exp(−ρVd), whereas for d > 1 the

tail appears to be increasingly slower as a function of d. Due to poor statistics for very large values

of Vd, we are not able to precisely characterize the asymptotic decay of P(Vd). It seems however that

for d > 1 the tail is not purely exponential, and that power law corrections might thus appear. The

convergence of the average volume 〈Vd|L〉 as a function of of the linear size L of the domain and of

the dimension d is illustrated in Fig. 4.6 (left).
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m d 〈V m
d 〉 Theoretical value Monte Carlo

1 1/ρ 1 1.00011± 7× 10−5

1 2 4/πρ2 1.27324 1.2728± 6× 10−4

3 6/πρ3 1.90986 1.907± 0.004
1 2/ρ2 2 2.0007± 3× 10−4

2 2 8/ρ4 8 7.993± 8× 10−3

3 48/ρ6 48 47.8± 0.2
1 6/ρ3 6 6.004± 2× 10−3

3 2 256π/7ρ6 114.893 114.7± 0.2
3 1344π/ρ9 4222.3 4193± 28

Table 4.3: The moments 〈V m
d 〉 of the d-volume in d-dimensional isotropic Poisson tessellations.

Monte Carlo simulation results are obtained with L = 200 and ρ = 1 for any dimension d.
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Figure 4.6: First-order moments of the volume and surface of the typical polyhedron as a
function of the linear size L of the domain and of the dimension d, for d-dimensional isotropic
Poisson geometries. Left: the average d-dimensional volume 〈Vd|L〉; right: the average d-
dimensional surface 〈Sd|L〉 for d > 1. For each case, simulation results have been obtained with
ρ = 1. We have generated M = 106 realizations for d = 1, M = 5× 104 realizations for d = 2
and M = 5 × 103 realizations for d = 3. Symbols correspond to the Monte Carlo simulation
results: blue crosses denote d = 1, red triangles d = 2 and green circles d = 3. Dotted lines
correspond to the asymptotic moment given in Tab. 2.1.

Surface

The analysis of the d-surfaces Sd of the d-polyhedra is also of utmost importance, in that it provides

information on the interfaces between the constituents of the geometry (see for instance the consid-

erations in [87]). We have then computed the first few moments 〈Smd 〉 of the d-surfaces by Monte

Carlo simulation. Results are recalled in Tab. 4.4, where we compare the numerical findings for large

L = 200 to the exact formulas for infinite domains. The analysis of the impact of the domain size L

and of the dimension d on the probability densities P(Sd|L) is provided in Fig. 4.7. The convergence

of the average surface 〈Sd|L〉 as a function of of the linear size L of the domain and of the dimension

d is illustrated in Fig. 4.6 (right).

Number of faces

We denote by Cd the number of faces of the tessellation cells, which is related to the connectivity

of the random geometry. The exact first-order and second-order moments of Cd have been assessed

by Monte Carlo methods as a function of the linear size L of the domain and of the dimension d:

simulation results are given in Tab. 4.5, and the analysis of convergence is illustrated in Fig. 4.8. The

functional form of the distributions of the number of faces P(Cd) is not known. We have thus resorted
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〈Smd 〉 Theoretical value Monte Carlo
〈S2〉 4/ρ 4 3.999± 10−3

〈S2
2〉 (2π2 + 8)/ρ2 27.7392 27.73± 2× 10−2

〈S3〉 24/πρ2 7.63944 7.63± 10−2

〈S2
3〉 240/ρ4 240 239.4± 0.7

Table 4.4: The moments 〈Smd 〉 of the d-surface of the d-polyhedra. Monte Carlo simulation
results are obtained with L = 200 and ρ = 1 for any dimension d.

Formula Theoretical value Monte Carlo
〈C2〉 4 4 4± 0
〈C2

2〉 (π2 + 24)/2 16.9348 16.9347± 5× 10−5

〈C3〉 6 6 6± 7× 10−8

〈C2
3〉 (13π2 + 336)/12 38.6921 38.6921± 9× 10−5

Table 4.5: Moments of the number of faces Cd for d-dimensional Poisson geometries. Monte
Carlo simulation results are obtained with L = 200 and ρ = 1.

to Monte Carlo simulation so as to estimate the impact of the domain size L and of the dimension

d on P(Cd|L) for finite L. The numerical findings are shown in Fig. 4.8: they may support future

theoretical investigations. It is reasonable to think that the convergence is attained rather fast, since

P(Cd|L) can not be distinguished between L = 10 and L = 200.

Correlations

For the sake of completeness, we report also the Monte Carlo calculations corresponding to correlations

between surfaces and volumes, which might be of interest in the characterization of the shape of the

cells. Simulation findings are compared to analytical results from [76,86,87,127] in Tabs. 4.6.

Other polyhedral features

For isotropic Poisson tessellations, lower-order moments and correlations are known for many other

observables. Moreover, for the case of the inradius the full distribution is known. We have carefully

checked the convergence of all these quantities as a function of dimension and system size: simulation

results are reported in Appendix A.
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Figure 4.7: The probability densities P(Sd|L) of the d-surface in d-dimensional isotropic Poisson
geometries as a function of the dimension d and of the linear size L of the domain. We have
generated M = 5 × 104 realizations for d = 2 and M = 5 × 103 realizations for d = 3.
Simulation results have been obtained with ρ = 1. Symbols correspond to the Monte Carlo
simulation results: red triangles d = 2 and green circles d = 3. The cases illustrated here are
as follows: (a) L = 2; (b) L = 5; (c) L = 20; (d) L = 200.

Formula Theoretical value Monte Carlo
〈S2V2〉 4π/ρ3 12.57 12.559± 9× 10−3

〈S3V3〉 96/ρ5 96 95.7± 0.3

Table 4.6: Correlations of surfaces and volumes in d-dimensional Poisson geometries. Monte
Carlo simulation results are obtained with L = 200 and ρ = 1.
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Figure 4.8: (a-b). The first-order moments of the number of faces in d-dimensional Poisson
tessellations as a function of the linear size L of the domain. The cases are as follows: (a) the
average number of faces 〈C2|L〉 for d = 2, (b) the average number of faces 〈C3|L〉 for d = 3.
For each case, symbols correspond to the Monte Carlo simulation results: red triangles denote
d = 2 and green circles d = 3. Simulation results have been obtained with ρ = 1. We have
generated M = 5 × 104 realizations for d = 2 and M = 5 × 103 realizations for d = 3. (c-d).
The probability densities of the number of faces, for different values of the linear size L of the
domain. The cases are as follows: (c) the probability density of the number of faces P(C2|L)
for d = 2, (d) the probability density of the number of faces P(C3|L) for d = 3. For each case,
symbols correspond to the Monte Carlo simulation results: for d = 2, black crosses denote
L = 10 and red triangles L = 200, for d = 3 black crosses denote L = 10 and green circles
L = 200. Simulation results have been obtained with ρ = 1. We have generated M = 5× 104

realizations for d = 2 and M = 5× 103 realizations for d = 3.
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4.1.4 Properties of colored Poisson tessellations

Volumic ratio in coloured geometries

We will now address d-dimensional colored isotropic Poisson tessellations. Without loss of generality,

we consider binary mixtures: each polyhedron is assigned a label ’α’ with probability pα and the

complementary label with probability 1−pα. For tessellations of finite size L, an observable of utmost

importance is the volumic ratio pα(L) for clusters of label α. It is important to note that, for a single

geometrical realization, the volumic ratio of color α in the tessellation is not rigorously equal to pα,

because of finite-size effects. In this respect, the lack of a strict constraint on the preservation of the

mass associated to each material is a limitation of the modelling approach based on colored stochastic

tessellations. However, we expect the finite-size effects to progressively fade away with increasing the

size of the tessellation and to become negligible for tessellations large enough: in order to assess this

statement, we need to estimate the dispersion of the volumic ratio.

For this purpose, we have computed the average volumic fraction 〈pα|L〉 for clusters of label α

as a function of the linear size L of the domain and of the dimension d, for different values of pα.

The comparison with the theoretical behaviour pα is shown in Fig. 4.9 (left). In order to emphasize

the role of finite-size effects, in Fig. 4.9 (right) we show the corresponding standard deviation σ[pα|L]

induced by the dispersion of the geometry realizations: the deviation with respect to the ideal case

decreases with increasing L, as expected. Moreover, the standard deviation decreases with increasing

dimension d.

Chord length distributions across coloured clusters

In coloured geometries, the distribution of the chord lengths cut by the (d − 1)-hyperplanes can be

quite naturally conditioned to the colour of the d-polyhedra. In the following we assume that the label

α is assigned with probability pα = p. In Sec. 2.7.1 we have seen that for domains of infinite size the

chord lengths `α across clusters of label α obey

P(`α) = ρ(1− p)e−ρ(1−p)`α , (4.7)

which can be interpreted as a generalization of the Markov property holding for un-coloured Poisson

geometries [65]. Since the underlying tessellations are isotropic, the chord length distribution does not

depend on the orientation Ω of the test line.

We have numerically computed the full distribution of the colored chord lengths by resorting to

Monte Carlo methods. Similarly as for the chord length in un-coloured geometries, we have obtained

these results by drawing an arbitrary line with fixed orientation through the geometry. Monte Carlo

simulation results corresponding to the probability density function P(`α|L) of the chord length across

material are illustrated in Fig.4.10 for different values of the probability p, for different values of the

linear size L of the domain and for any dimension d: for large ρL � 1, the obtained probability

densities of the chord lengths conditioned to red polyhedra asymptotically converge to the expected

exponential density given in Eq. (4.7). A cut-off of the distribution around
√
dL because of finite-size

effects is observed. The finite-size effects are particularly apparent when the coloring probability p (and

thus the asymptotic average chord length) is large, as expected. For the same number of geometrical

realizations M and the same number of lines NL thrown across the geometries, the statistics worsens

when p is small: this is due to the fact that the lines thrown through the tessellation have smaller

chance to traverse clusters of composition α when p is small.

The average correlation length Λc,α in material α has been also computed as a function of L, for

different values of p: numerical findings are reported in Fig. 4.11 and compared to the exact result

Λα = 1/((1− p)ρ) for ρ = 1.

Percolation threshold

We will now consider the percolation properties of the red clusters in the geometry. In Sec. 2.7.2 we

have defined the percolation threshold pc: for infinite tessellations, the probability that there exists
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a connected percolating cluster has a step behaviour as a function of the colouring probability p,

i.e., PC(p) = 0 for p < pc, and PC(p) = 1 for p > pc. However, for any finite L, there exists a

finite probability that a percolating cluster (i.e., a cluster hitting two opposites borders) may appear

below p = pc, due to finite-size effects. We have numerically computed the probability PC(p|L) in

three-dimensional Poisson geometries by Monte Carlo methods. For each p, we have generated a large

number of geometrical realizations and correspondingly determined whether there existed at least one

percolating cluster. For this purpose, we have resorted to the Breadth-First Search algorithm in order

to explore all polyhedra of the tessellation until a percolating cluster is found.

Simulation results for the probability PC(p|L) in three-dimensional isotropic Poisson geometries

are shown in Fig. 4.12 as a function of p, for various system sizes L. As L increases, the shape of

PC(p|L) converges to a step function. Based on the Monte Carlo results, we were able to estimate

a confidence interval for the percolation threshold, which lies close to pc = 0.290 ± 7 × 10−3. As

expected, pc decreases as dimension increases, since the probability that a red cluster can make its

way through the blue clusters (acting as obstacles) and eventually reach the opposite side of the box

also increases with dimension. For comparison, our estimate of pc for Poisson geometries lies close to

the percolation threshold for three-dimensional regular cubic lattices, which reads pcubec ' 0.3116 [42].

This difference might again be explained by noting that the typical 3-polyhedron of infinite Poisson

geometries has the same number of vertices (N3 = 8), edges (A3 = 12) and faces (C3 = 6) as a cube

(see Tab. 2.1), but it does not share the same aspect ratio. The 3-polyhedron has 〈V3〉/〈S3〉 = 1/4 for

ρ = 1, whereas for a cube we have u/6 = 1/6 by assuming an average side u = l3/A3 = 1. For d = 3,

the estimated pc for Poisson geometries is also very close to that of continuum percolation models

based on spheres, whose threshold reads psphere
c ' 0.2895 [145]; this is not true for d = 2, where the

threshold for continuum percolation models based on disks yields pdisk
c ' 0.676339 [146].

Average cluster size

For percolation on lattices, the average cluster size S(p) of the non-percolating clusters has been

defined in Eq. (2.93). Close to the percolation threshold, S(p) is known to behave as S(p) ∝ |p−pc|−γ
for infinite lattices, where γ is a dimension-dependent critical exponent that does not depend on the

specific lattice type [135]. For finite lattices of linear size L, the behaviour of S(p|L) close to p→ p−c is

dominated by finite-size effects, with a scaling S(p|L) ∝ Lγ/ν , where ν is another dimension-dependent

critical exponent that does not depend on the specific lattice type [135].

In order to adapt the definition in Eq. (2.93) to the calculation of average cluster size of the

Poisson geometries, we have chosen to compute the sum by weighting each d-polyhedron composing a

non-percolating cluster by its volume. Based on this definition, we have thus computed the quantity

S(p|L) by Monte Carlo simulation: numerical results are shown in Fig. 4.13 as a function of the

colouring probability p and of the system size L. The shape of S(p|L) is similar to that obtained for

percolation on regular lattices (see, for instance, [135]), and displays in particular a divergence for p

close to the percolation threshold. Far from the value of pc estimated above, the curves S(p|L) do not

depend on the system size, provided that L is large. For p � pc, S(p|L) → 0. For p → 0, numerical

evidence shows that S(p|L) → 〈V3〉0, which is coherent with the volume-weighted average that we

have introduced in order to compute the mean cluster size.

Close to pc, S(p|L) suffers from strong finite-size effects, which are coherent with the behaviour of

S(p|L) for regular lattices. For large L, the scaling of S(p|L) as a function of p− p∗c , where p∗c is our

best estimate for the percolation threshold, namely, p∗c = 0.290, shows a power law behaviour with an

exponent that is compatible with the universal critical exponent γ = 1.793 for dimension d = 3 [135].

Strength of the percolating cluster

We conclude our investigation of the percolation properties by addressing the behaviour of the so-

called strength P (p), which for percolation on lattices is defined as the probability that an arbitrary site

belongs to the percolating cluster [135]. The strength of Poisson geometries can be again computed by

either weighting each d-polyhedron composing the percolating cluster by its volume, or by attributing

to each constituent an equal unit weight. Monte Carlo simulation results of P (p|L) corresponding to
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weighting each polyhedron by its volume are shown in Fig. 4.13 (left), as a function of the colouring

probability p and of the system size L. Analogously as in the case of S(p|L), the shape of the strength

P (p|L) is also similar to that obtained for percolation on regular lattices [135]. Far from the value of

pc estimated above, the curves P (p|L) do not depend on the system size, provided that L is large. In

particular, for p � pc the entire geometry will be coloured in red, so that we obtain a linear scaling

P (p|L) ∝ p for the probability of belonging to the percolating cluster. For p � pc, P (p|L) falls off

rapidly to zero. Close to pc, P (p|L) displays strong finite-size effects, which are again coherent with

the behaviour of P (p|L) for regular lattices. Fig. 4.13 (right) shows the scaling of P (p|L) as a function

of p−p∗c for different values of the system size. As L increases, P (p|L) displays a power law behaviour

with an exponent that is compatible with the universal critical exponent β = 0.4181 for dimension

d = 3 [135].
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Figure 4.9: Volumic ratio through clusters of composition α in d-dimensional isotropic Poisson
tessellations. Left. The average volumic fraction 〈pα|L〉 through clusters of composition α as
a function of the linear size L for any dimension d. Dotted lines correspond to the asymptotic
moment pα. Right. The standard deviation σ[pα|L] on volumic fraction through clusters of
composition α as a function of the linear size L for any dimension d. we have generated
M = 106 realizations for d = 1, M = 5×104 realizations for d = 2 and M = 5×103 realizations
for d = 3. Simulation results have been obtained with ρ = 1 and p = 0.1 (top), p = 0.5 (middle)
and p = 0.9 (bottom). Symbols correspond to the Monte Carlo simulation results: blue crosses
denote d = 1, red triangles d = 2 and green circles d = 3.
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Figure 4.10: The probability densities of the correlation length P(`c,α|L) through clusters of
composition α in d-dimensional isotropic Poisson tessellations, as a function of d, for different
values of L and of p. Symbols correspond to the Monte Carlo simulation results: blue squares
denote d = 1, red triangles d = 1 and green circles d = 3. Simulation results have been
obtained with ρ = 1, L = 20 (left), L = 150 (right), p = 0.1 (top), p = 0.5 (middle) and p = 0.9
(bottom). The asymptotic exponential density given by Eq. (4.7) is displayed as a black dashed
line. We have generated M = 5× 103 realizations.
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Figure 4.11: The average correlation length Λc,α(L) in d-dimensional isotropic Poisson tessel-
lations as a function of the linear size L for any dimension d, for different values of p. We have
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4.2 Comparison of 3d tessellation models

In order to compare the statistical features of the three tessellation models introduced in the previous

Chapter, a mandatory requirement is to determine a criterion on whose basis the tessellations can

be considered statistically ‘equivalent’ with respect to some physical property. An important point is

that Poisson, Voronoi and Box tessellations depend on a single free parameter, namely the tessellation

density (which is simply related to the average correlation length Λc of the tessellation), plus the

coloring probability p.

It is quite natural to set Λc to be the same for all the tessellation models to be compared. The

coloring probability p is therefore also taken to be identical for all tessellations, so that the average

correlation length through clusters pertaining to a given color is again the same for the different

models. It is important to stress that this assumption is not unique: for instance, we could have taken

the average cell volumes to be the same. However, it has been shown that Λc is the single tessellation

parameter that has the strongest influence on particle transport [108]. Moreover, as shown in Sec. 2.3.4,

the correlation length as following from the Cauchy formula is also related to the ratio between the

average volume and of the average surface of the typical tessellation cell: in this respect, setting Λc
is a means of setting also the typical aspect ratio (volume over surface) of the underlying geometrical

structure of the random medium.

Since Λc depends on the tessellation density, we have thus a constraint on ρ = ρP , ρV and ρB,

which must now satisfy

1

Λc
= ρP =

3

2
ρB =

(
4π

3

) 1
3

Γ

(
5

3

)
ρV . (4.8)

In practice, one is often lead to simulate tessellations restricted to some bounded regions of linear size

L: finite-size effects typically emerge, and the relation (4.8) would not be strictly valid. Indeed, in

finite geometries the average correlation length differs from the asymptotic value. However, although

a large L is typically required in order for the average correlation length to converge to the asymptotic

value Λc, the variability between tessellations vanishes even before convergence to the asymptotic limit

is achieved, as illustrated later (see Fig. 4.17). For the sake of simplicity, we will thus neglect such

finite-size effects and use Eq. (4.8) to calibrate the model parameters. Most of the results presented

in the following will concern the case of dimension d = 3.

4.2.1 Number of polyhedra

The number Np of polyhedra composing a tessellation provides a measure of the complexity of the

resulting geometries. We will analyse the growth of this quantity in Poisson, Voronoi and Box tessel-

lations as a function of the size L of the domain. In the case of Voronoi tessellations, we know from

Sec. 2.5.1 that Np coincides with the number of seeds NS , following a Poisson distribution of intensity

(ρVL)3. For the special case NS = 0, we have chosen to take Np = 1. Therefore, Np = min(NS , 1).

This yields

〈Np|L〉V = (ρVL)3 + e−(ρVL)3 (4.9)

and the corresponding standard deviation

σ[Np|L]V = (ρVL)3(1− 2e−(ρVL)3) + e−(ρVL)3(1− e−(ρVL)3) (4.10)

Furthermore, the number Np in the case of Box tessellations is also known: according to the

construction detailed in Sec. 2.4, Np = (X1+1)(X2+1)(X3+1) where X1, X2 and X3 are independent

and identically distributed and follow a Poisson distribution of intensity ρBL. We can easily compute

the mean

〈Np|L〉B = (ρBL+ 1)3 (4.11)

and the standard deviation

σ[Np|L]B =
√

(1 + 3ρBL+ (ρBL)2)3 − (1 + ρBL)6. (4.12)
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Figure 4.14: Left. The average number 〈Np|L〉 of polyhedra composing the tessellation, as a
function of the size L of the domain and of the mixing statistics m. The scaling law L3 is
displayed for reference with dashed for Poisson tessellations; the green solid line corresponds to
the exact formula for Voronoi tessellations given by Eq.(4.9); the red solid line to corresponds
the exact formula for Box tessellations given by Eq. (4.11). Symbols correspond to the Monte
Carlo simulation results, with dashed lines added to guide the eye: blue squares denote m = P ,
green circles m = V , and red triangles m = B. Simulation results have been obtained with
Λ = 1. For all sizes L we have generated M = 5× 103 realizations for d = 3.

m 〈V3〉 Theoretical value Monte Carlo
P 6/πρ3 1.90986 1.907± 4× 10−3

B 1/ρ3
B 3.375 3.366± 7× 10−3

V 1/ρ3
V 3.08142 3.08142± 3× 10−5

Table 4.7: The moment 〈V3〉 of the volume as a function of the mixing statistics m. Monte
Carlo simulation results are obtained with L = 200, ρ = 1, ρB = 2/3 and ρV ' 0.6872. We
have generated M = 5× 103 realizations.

The simulation findings for the average number 〈Np|L〉 of polyhedra are illustrated in Fig. 4.14. Re-

sults concerning the normalized standard deviation σ∗[Np|L] = σ[Np|L]/〈Np|L〉 are given in Fig. 4.15.

To begin with, we observe that 〈Np|L〉 is smaller for Voronoi and Box tessellations than for Poisson

tessellations. However, for large L, we find a common asymptotic scaling law 〈Np|L〉 ∼ (L)3. The

growth of the dispersion σ[Np|L] differs considerably between Voronoi tessellations and the two other

models. In the case of Voronoi mixing statistics, we asymptotically find σ[Np|L] ∼ L
3
2 , as expected

from Eqs. (4.9) and (4.10). For Poisson and Box tessellations, the dispersion is significantly larger, and

the asymptotic scaling law becomes σ[Np|L] ∼ L
5
2 , which is compatible with Eqs. (4.11) and (4.12).

For illustration, the distribution of the number of polyhedra P(Np) is displayed in Fig. 4.16. The

distribution of Np is peaked around its average value in Voronoi tessellations, whereas it is more

dispersed in Poisson and Box geometries.

4.2.2 Polyhedral features

Volume and surface

We have numerically computed by Monte Carlo simulation the average volume 〈V3|L〉 and the average

surface 〈S3|L〉. The numerical results are illustrated in Fig. 4.17. The average volume as well as the

average surface converge towards the expected value for each tessellation (see also Tabs. 4.7-4.8). We

have also computed the probability densities of the volume P(V3|L) and of the surface P(S3|L) in

Poisson, Box and Voronoi tessellations as a function of the size L of the domain: the corresponding

results are respectively illustrated in Fig. 4.18 and Fig. 4.19. The probability density of the volume in

Voronoi tessellations has a distinct behaviour with respect to those of Poisson and Box tessellations



86CHAPTER 4. ANALYSIS OF THE STATISTICAL PROPERTIES OF RANDOM TESSELLATIONS

10−4

10−3

10−2

10−1

100

101

1 10 100
σ
∗ (
N
p
|L

)
L

Figure 4.15: The normalized standard deviation σ∗[Np|L] = σ[Np|L]/〈Np|L〉 of the number of
polyhedra composing the tessellation, as a function of the size L of the domain and of the
mixing statistics m. The scaling law L3 is displayed for reference with dashed for Poisson
tessellations; the green solid line corresponds to the exact formula for Voronoi tessellations
given by Eq.(4.10); the red solid line to corresponds the exact formula for Box tessellations
given by Eq.(4.12). Symbols correspond to the Monte Carlo simulation results: blue squares
denote m = P , green circles m = V , and red triangles m = B. Simulation results have been
obtained with Λ = 1. For all sizes L we have generated M = 5× 103 realizations for d = 3.

m 〈S3〉 Theoretical value Monte Carlo
P 24/πρ2 7.63944 7.63± 10−2

B 6/ρ2
B 13.5 13.48± 2× 10−2

V (256π/3)
1
3 Γ
(

5
3

)
/ρV

2 12.326 12.3483± 7× 10−5

Table 4.8: The moment 〈S3〉 of the surface as a function of the mixing statistics m. Monte
Carlo simulation results are obtained with L = 200, ρ = 1, ρB = 2/3 and ρV ' 0.6872. We
have generated M = 5× 103 realizations.

that are very similar and show a heavy-tailed distribution. In Voronoi tessellations, the dispersion of

the volume is significantly weaker than in Poisson and Box geometries. In particular, the probability to

find a volume five times larger than the average is negligible, contrary to Poisson and Box tessellations,

where the size of the polyhedra have a significant chance to attain more than one hundred times the

average value. The same observations apply also for the probability density of the surface.

Connectivity

The number of faces C3 of each cell intuitively represents the degree of connectivity of the tessellation.

For this observable, Voronoi geometries are expected to have a peculiar behaviour, since the average

number of faces amounts to 〈C3〉 ' 15.54 (for infinite domains), which is much larger than the value

〈C3〉 = 6 for Poisson and Box geometries. In order to verify this behaviour in finite geometries, we have

numerically computed by Monte Carlo simulation the average number of faces in Poisson and Voronoi

tessellations, as a function of the size L of the domain. For Box tessellations, the number of faces is

exactly equal to 6 by construction, without any dispersion. The numerical results are illustrated in

Fig. 4.17. The average number of faces converges towards the expected value for each tessellation;

nevertheless, Voronoi tessellations require larger L to attain the asymptotic behaviour. In addition,

we have numerically computed the distribution of the number of faces P(C3|L) for a large L = 200:

the simulation results are given in Fig. 4.20.
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Figure 4.16: The probability density P(Np|L) of polyhedra composing the tessellation, as a
function of the mixing statistics m, for L = 10 (left) and L = 100 (right). Symbols correspond
to the Monte Carlo simulation results, with dashed lines added to guide the eye: blue squares
denote m = P , green circles m = V , and red triangles m = B. Symbols correspond to the
Monte Carlo simulation results: blue crosses denote d = 1, red triangles d = 2 and green circles
d = 3. Simulation results have been obtained with Λ = 1. For all sizes L we have generated
M = 5× 103 realizations for d = 3.

m 〈l3〉 Theoretical value Monte Carlo
P 12/ρ 12 11.994± 8× 10−3

B 12/ρB 18 17.98± 0.01
V (4π)5/3Γ(1

3
)/(5× 32/3ρV) 25.4592 25.3854± 8× 10−5

Table 4.9: The moment 〈l3〉 of the total length of edges as a function of the mixing statistics m.
Monte Carlo simulation results are obtained with L = 200, ρ = 1, ρB = 2/3 and ρV ' 0.6872.
We have generated M = 5× 103 realizations.

4.2.3 Correlation length

We have numerically computed by Monte Carlo simulation the average and the distribution of the

correlation length for each tessellation model m. For Voronoi and isotropic Poisson tessellations, the

average correlation length coincides with the averaged chord length. For Box tessellations, however,

the average chord length depends on the chosen direction of the test line, whereas the average correla-

tion length does not. In order to compare the three tessellation models, it is then convenient to resort

to the correlation length. For this purpose, an ensemble of independent and identically distributed ho-

mogeneous and isotropic random lines [25] has been used. A random tessellation is first generated, and

a line satisfying the homogeneity and isotropy property is then drawn according to the prescriptions

given in Sec. 2.3.4. The intersections of the line with the cells of the tessellation are computed, and

the resulting chord lengths `c corresponding to homogeneous and isotropic random lines are recorded.

This step is repeated for a large number of random lines. Then, a new geometry is generated and the

whole procedure is iterated for several geometries, in order to get satisfactory statistics. This yields

consistent estimates of the average correlation length Λc.

The results for the average correlation length Λc(L) as a function of the size L of the domain are

illustrated in Fig. 4.17 for different tessellation models m. Tab. 4.13 displays the obtained values for

the average correlation length Λc(L) for large L. Monte Carlo simulation results for the correlation

length distribution are shown in Fig. 4.21, for Λc = 1 and for several values of L. For small L, finite-

size effects are visible in the distributions: indeed, the longest chord that can be drawn across a box of

linear size L is
√

3L. For large L, the finite-size effects fade away. In particular, the probability density

for Poisson tessellations eventually converges to the expected exponential behaviour. Simulations show

that the chord length distributions in Box tessellations and in Poisson tessellations are very close to
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m 〈C3〉 Theoretical value Monte Carlo
P 6 6 6± 7× 10−8

B 6 6 6± 0
V (48π2 + 70)/35 15.54 15.4091± 2× 10−5

Table 4.10: The moment 〈C3〉 of the number of faces as a function of the mixing statistics m.
Monte Carlo simulation results are obtained with L = 200, ρ = 1, ρB = 2/3 and ρV ' 0.6872.
We have generated M = 5× 103 realizations.

m 〈A3〉 Theoretical value Monte Carlo
P 12 12 12± 2× 10−7

B 12 12 12± 0
V 144π2/35 40.61 40.2274± 5× 10−5

Table 4.11: The moment 〈A3〉 of the number of edges as a function of the mixing statistics m.
Monte Carlo simulation results are obtained with L = 200, ρ = 1, ρB = 2/3 and ρV ' 0.6872.
We have generated M = 5× 103 realizations.

each other, a rather surprising fact that is consistent with the observations previously reported in [2].

On the contrary, for Voronoi tessellations the chord length distribution has a distinct non-exponential

functional form and for L→∞ converges to the asymptotic density function given by Eq. (2.75).

A similar investigation can be conducted for Λc,α(L), the correlation length through clusters with

material composition α. Numerical findings are displayed in Figs. 4.22-4.23 as a function of p, L and

the mixing statistics m, for different values d and L. Theoretical results in the limit of infinite domains

are also provided. Finite-size effects are apparent, and their impact increases with increasing Λc and

p. However, the discrepancy due to mixing statistics is rather weak. The distribution of the chord

lengths through material of composition α is illustrated in Fig. 4.24. Here again, the finite-size effects

induced by the size of the box vanish for small p and large L.

4.2.4 Volumic ratio in coloured geometries

We have computed the average volumic fraction 〈pα|L〉 through clusters of composition α as a function

of the linear size L of the domain and of the mixing statistics m, for different values of pα. The

comparison with the theoretical behaviour pα is shown in Fig. 4.25 (left). In addition, Fig. 4.25 (right)

illustrates the corresponding dispersion σ[pα|L] induced by the variability of the geometry realizations:

the deviation with respect to the ideal case decreases with increasing L for each mixing statistics m (as

was the case of Poisson tessellations). Moreover, the standard deviation is clearly weaker for Voronoi

tessellations. This is possibly due to the distribution of the volumes: the distribution of the volume is

highly peaked for Voronoi tessellations, whereas the probability densities are heavy-tailed for Poisson

and Box tessellations (see Sec. 4.2.2).
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m 〈N3〉 Theoretical value Monte Carlo
P 8 8 8± 10−7

B 8 8 8± 0
V 96π2/35 27.07 26.8183± 3× 10−5

Table 4.12: The moment 〈N3〉 of the number of vertices as a function of the mixing statistics m.
Monte Carlo simulation results are obtained with L = 200, ρ = 1, ρB = 2/3 and ρV ' 0.6872.
We have generated M = 5× 103 realizations.

m Λc Theoretical value Monte Carlo
P 1/ρ 1 0.9940± 8× 10−4

B 2/3ρB 1 0.9927± 8× 10−4

V 1/
(

(4π
3

)
1
3 Γ
(

5
3

)
ρV

)
1 0.99760± 2× 10−5

Table 4.13: The average correlation length Λc as a function of the mixing statistics m. Monte
Carlo simulation results are obtained with L = 150, ρ = 1, ρB = 2/3 and ρV ' 0.6872. We
have generated M = 5× 103 realizations.
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Figure 4.17: The average correlation length Λc(L) (a), the average volume 〈V3|L〉 (b), the
average surface 〈S3|L〉 (c) and the average number of faces 〈C3|L〉 (d) as a function of the
linear size L of the domain and of the mixing statistics m. Symbols correspond to the Monte
Carlo simulation results: blue squares denote m = P , red triangles m = B and green circles
m = V . Simulation results have been obtained with Λc = 1. For all sizes L we have generated
M = 5× 103 realizations. Dashed lines correspond to the exact asymptotic values.
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Figure 4.21: Left. The probability densities of the correlation length P(`c|L) as a function of
the mixing statistics m, for L = 20 (top) and for L = 150 (bottom). Right. Log-linear scale.
Symbols correspond to the Monte Carlo simulation results: blue squares denote m = P , red
triangles m = B and green circles m = V . Simulation results have been obtained with Λ = 1.
For all sizes L we have generated M = 5 × 103 realizations. For Poisson distribution, the
asymptotic exponential density given by Eq. (2.40) is displayed as a black dashed line. The
asymptotic probability density for Voronoi tessellations, given by Eq. (2.75), is displayed as a
grey solid line.
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Figure 4.22: The average correlation length Λc,α(L) through clusters of composition α as a
function of the linear size L and of the mixing statistics m, for different values of p. Simulation
results have been obtained with Λ = 1 and p = 0.1 (top), p = 0.5 (middle) and p = 0.9
(bottom). Symbols correspond to the Monte Carlo simulation results: blue squares denote
m = P , red triangles m = B and green circles m = V . We have generated M = 5 × 103

realizations.
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Figure 4.23: The average correlation length Λc,α(L) through clusters of composition α as a
function of p and of the mixing statistics m, for different values of L. Simulation results have
been obtained with Λ = 1 and L = 10 (top), L = 50 (middle) and L = 150 (bottom). Symbols
correspond to the Monte Carlo simulation results: blue crosses denote d = 1, blue squares
denote m = P , red triangles m = B and green circles m = V . We have generated M = 5× 103

realizations.
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Figure 4.24: The probability densities of the correlation length P(`c,α|L) through clusters of
composition α as a function of the mixing statistics m and for different values of L and of p.
Symbols correspond to the Monte Carlo simulation results: blue squares denote m = P , red
triangles m = B and green circles m = V . Simulation results have been obtained with Λ = 1,
L = 20 (left), L = 150 (right), p = 0.1 (top), p = 0.5 (middle) and p = 0.9 (bottom). For
Poisson distribution, the asymptotic exponential density given by Eq.(4.7) is displayed as a
black dashed line. We have generated M = 5× 103 realizations.
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Figure 4.25: Left. The average volumic ratio 〈pα|L〉 through clusters of composition α as a
function of the mixing statistics m and for different values of L and of p. Dotted lines correspond
to the asymptotic moment pα. Right. The standard deviation σ[pα|L] on volumic fraction
through clusters of composition α as a function of the mixing statistics m and for different
values of L and of p. Simulation results have been obtained with Λ = 1 and p = 0.1 (top),
p = 0.5 (middle) and p = 0.9 (bottom). Symbols correspond to the Monte Carlo simulation
results: blue squares denote m = P , red triangles m = B and green circles m = V . We have
generated M = 5× 103 realizations.
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4.3 Impact of anisotropy in Poisson tessellations

We finally consider the case of anisotropic Poisson tessellations. For this purpose, the observables of

interest, including the volume and surface of the cells, the number of faces per cell, and the chord

length, will be analyzed. In the following, we illustrate some significant examples as a function of the

angular law H(n) in dimension d = 3, which is relevant for physical applications.

4.3.1 Choice of the angular distributions

In dimension d = 3, the direction (unit) vector n can be characterized by assigning two angles,

namely the co-latitude θ and the azimuth φ (see Fig. 2.4). We have then dH(n) = dH(θ, φ), or

dH(n) = dH(µ, φ) when using the cosine µ = cos(θ). The isotropic distribution in Ω+
3 yields

Hiso(θ, φ) =
1

2π
sin(θ), (4.13)

with 0 ≤ θ < π and 0 ≤ φ < π. In order to probe the effects of the angular distribution, we introduce

a few examples of anisotropy laws that might mimic the effects of stratification along the z axis. In

other words, we will preferentially sample planes whose normal vector is parallel to the z axis. For

the sake of simplicity, we will assume that the distribution H(n) can be factorized with respect to the

two variables, and that the distribution of φ is uniform (in other words, we preserve the invariance by

rotation around the z axis). A quadratic anisotropy can be introduced in the form

Hquadratic(µ, φ) =
3

2π
µ2 for − 1 ≤ µ < 1, (4.14)

which has its minimum in µ = 0 and the maxima in µ = ±1. A general case that might be of interest

for applications is a piece-wise constant distribution, e.g.,

Hhistogram(µ, φ) =
1

A
×


80 for− 1 ≤ µ < −0.95

4 for− 0.95 ≤ µ < −0.5

2 for− 0.5 ≤ µ < −0.25

1 for− 0.25 ≤ µ < 0,

(4.15)

and symmetric in the range 0 < µ < 1, which has maxima around µ = ±1. The normalization

constant for this example reads A = 13.1. More complex functional forms for H(n) can be easily

conceived. For the special case of Poisson-Box tessellations with three fixed orientations parallel to

the orthogonal Cartesian axes we have

Hbox(θ, φ) =
1

3
δ (φ) δ

(
θ − π

2

)
+

1

3
δ
(
φ− π

2

)
δ
(
θ − π

2

)
+

1

3
δ (θ)

1

π
. (4.16)

For the functional forms of the angular distribution H(n) introduced here, the integrals needed

for the constants ζ3 (see Eq. (2.22)) and η3 (see Eq. (2.25)) can be easily computed by Monte Carlo

sampling, since they are both expressed as expected values over the angular distributions. The func-

tionals to be evaluated are the volume of the parallelepiped spanned by three unit vectors in the case

of ζ3, and the scalar product of two unit vectors in the case of η3, respectively. In special cases, such

as for the isotropic and box distributions, the integrals can be computed analytically. The resulting

constants ζ3 and η3 are provided in Tab. 4.14. Finally, observe that from Eq. (2.7) we have α3 = 4.

4.3.2 Polyhedral features

In order to explore the statistical features of the cells of the tessellations, we have generated anisotropic

Poisson tessellations of a cube of side L. For each angular law H(n) described above, based on our

computer code we have generated 5× 103 realizations for increasing sides L and the same tessellation

density ρ = 1. The side of the box is varied between L = 1 and L = 200: we expect that when Lρ� 1

finite-size effects fade away and the moments of the observables converge to their asymptotic limits



4.3. IMPACT OF ANISOTROPY IN POISSON TESSELLATIONS 97

Law H(n) ζ3 η3

Isotropic π/8 ' 0.3927 8
Quadratic 0.3029 ± 2× 10−5 10.2368 ± 5× 10−5

Box 2/9 ' 0.2222 27/π ' 8.59436
Histogram 0.1880 ± 3× 10−5 16.597 ± 2× 10−5

Table 4.14: Numerical values for the constants ζ3 (see Eq. (2.22)) and η3 (see Eq. (2.25)), for
d = 3 and various laws H(n). Integrals have been computed by Monte Carlo sampling for
quadratic and histogram laws (whence the error bars) and analytically for isotropic and box
laws.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

〈V
3
|L
〉

L

0

50

100

150

200

250

0 50 100 150 200

〈V
2 3
|L
〉

L

Figure 4.26: Average volume 〈V3|L〉 (left) and second moment of the volume 〈V 2
3 |L〉 (right) of

the Poisson tessellation cells as a function of the box side L, with various anisotropy laws H(n),
for d = 3. The tessellation density is ρ = 1 for all the angular laws H(n). Symbols denote
Monte Carlo simulation results: blue circles correspond to isotropic distribution, red diamonds
to quadratic distribution, green squares to box distribution and purple triangles to histogram
distribution. Solid lines correspond to the respective limits for infinite Poisson tessellations, as
given in Eqs. (2.21) and (2.24), respectively.

corresponding to infinite tessellations. The Monte Carlo simulation results for the average number of

faces 〈C3〉 of each cell are given in Tab. 4.15 for the largest tested box, i.e., L = 200: it is immediately

apparent that 〈C3〉 does not depend on the angular law H(n), as expected.

The simulation results for the average volume 〈V3〉, the second moment 〈V 2
3 〉, the average surface

〈S3〉 and the correlations 〈V3S3〉 between the volume and the surface are given in Tabs. 4.16-4.19,

respectively, for L = 200. Numerical findings are in good agreement with the theoretical formulas,

and the minimum of all these quantities is attained for the case of isotropic tessellations, as predicted

by theory. The evolution of these moments as a function of the side L of the box is shown in Figs. 4.26

and 4.27: for small L, finite-size effects are clearly visible; for larger L, the estimated moments converge

to their asymptotic limits for infinite tessellations. The rate of convergence to the asymptotic values

depends on the anisotropy law H(n): the stronger the anisotropy, the slower the convergence. Isotropic

and box tessellations, although converging to different limits, appear to have the nearly same rate of

convergence, which stems from box tessellations being quasi-isotropic. Inspection of Fig. 4.26 shows

that 〈V3〉 and 〈V 2
3 〉 appear to have similar rates of convergence, for a given H(n).

The distribution of the inradius rin,3 has been also estimated by Monte Carlo simulation and

is provided in Fig. 4.28 (left) for large L = 200 and ρ = 1. It is immediately apparent that the

curves corresponding to different laws H(n) collapse onto the same functional form, which for infinite

tessellations is the exponential distribution

P(rin,3) = 4ρe−4ρrin,3 , (4.17)

where we have used α3 = 4. In particular, the average inradius yields 〈rin,3〉 = 1/(4ρ) for infinite
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Figure 4.27: Average surface 〈S3|L〉 (left) and volume-surface correlations 〈V3S3|L〉 (right) of
the Poisson tessellation cells as a function of the box side L, with various anisotropy laws H(n),
for d = 3. The tessellation density is ρ = 1 for all the angular laws H(n). Symbols denote
Monte Carlo simulation results: blue circles correspond to isotropic distribution, red diamonds
to quadratic distribution, green squares to box distribution and purple triangles to histogram
distribution. Solid lines correspond to the respective limits for infinite Poisson tessellations, as
given in Eqs. (2.16) and (2.17), respectively.

Law H(n) 〈C3〉 Monte Carlo
Isotropic 6 6± 7× 10−8

Quadratic 6 6± 9× 10−8

Box 6 6 ± 0
Histogram 6 6 ± 10−7

Table 4.15: Average number of faces 〈C3〉 of the Poisson tessellation cells for a box of side
L = 200, with various anisotropy laws H(n), for d = 3. The tessellation density is ρ = 1 for
all the angular laws H(n). The limit value for infinite Poisson tessellations is 〈C3〉 = 6 for any
H(n).

tessellations. Finite-size effects are negligible, since ρL � 1. As mentioned above, to the best of our

knowledge the theoretical behaviour of the outradius for infinite tessellations is not known (not even

for the simplest case of isotropic tessellations). Monte Carlo simulations show that 〈rout,3〉 non-trivially

depends on the law H(n), contrary to the inradius.

The distribution of the number of faces C3 has been estimated by Monte Carlo simulation and

is displayed in Fig. 4.28 (right) for large L = 200 and ρ = 1. The curves corresponding to different

laws H(n) collapse onto the same functional form, apart from Box tessellations which have a peculiar

behaviour: by construction, the number of faces in Box tessellations is equal to 6 for each cell.

4.3.3 Chord lengths

We have estimated the chord length distribution P(`|Ω, L) corresponding to lines having a fixed

orientation Ω, for several anisotropy laws H(n). Monte Carlo simulation results are shown in Fig. 4.29

for L = 150 and ρ = 1. An ensemble of 5 × 103 realizations and 103 sample lines for each geometry

have been taken for each angular law H(n). Furthermore, Monte Carlo simulation results for the

chord length distribution P(`α|Ω, L) through material α are displayed in Fig.4.30. Numerical findings

are in good agreement with the exponential density given in Eq. (2.37), which is exact for infinite

tessellations. Finite-size effects are negligible, since Lρ� 1 for these simulations.

The special case of lines that are homogeneously and isotropically distributed has been sepa-

rately considered. Simulation results for the resulting average correlation length Λc are illustrated

in Tab. 4.20, where Monte Carlo estimates are compared to the expected theoretical value Λc. The



4.4. SPHERICAL INCLUSIONS 99

Law H(n) 〈V3〉 Monte Carlo
Isotropic 6/π ' 1.90986 1.907± 4× 10−3

Quadratic ' 2.4744 2.459± 5× 10−3

Box 27/8 = 3.375 3.366± 7× 10−3

Histogram ' 3.987 3.957± 9× 10−3

Table 4.16: Average volume 〈V3〉 of the Poisson tessellation cells for a box of side L = 200, with
various anisotropy laws H(n), for d = 3. The tessellation density is ρ = 1 for all the angular
laws H(n). The limit value for infinite Poisson tessellations is given in Eq. (2.21).

Law H(n) 〈V 2
3 〉 Monte Carlo

Isotropic 48 47.8± 0.2
Quadratic ' 79.6227 79.2± 0.3

Box 729/8 = 91.125 90.5± 0.4
Histogram ' 207.9931 206± 1

Table 4.17: Second moment of the volume 〈V 2
3 〉 of the Poisson tessellation cells for a box of side

L = 200, with various anisotropy laws H(n), for d = 3. The tessellation density is ρ = 1 for all
the angular laws H(n). The limit value for infinite Poisson tessellations is given in Eq. (2.24).

average correlation length Λc(L) as a function of the system size L is shown in Fig.4.31(left). Nu-

merical findings confirm that Λc does not depend on the anisotropy law H(n) and is simply inversely

proportional to the tessellation density ρ, namely, Λc = 1/ρ.

For the purpose of comparison, we have also investigated the estimator

Λ∗c ≡ E

[∑q
j=1 `j

q

]
, (4.18)

which is to be compared to the estimator introduced in Sec. 2.3.4, namely, Λc ≡ E[
∑q

j=1 `j ]/E[q].

The corresponding simulation results for Λ∗c as a function of L are provided in Fig. 4.31 (right).

Generally speaking, we observe that, contrary to Λc, this estimator is biased with respect to 1/ρ:

this is particularly visible for the quadratic distribution and for the histogram distribution. These

numerical findings are consistent with the analysis provided by Miles [90].

4.4 Spherical inclusions

For the sake of completeness, we conclude this Chapter by investigating the geometrical properties

of random spherical inclusions. In particular, we are interested by the chord length distributions

through the background matrix and through the spheres. As shown in Chapter 3, we have developed

a generator for random spherical inclusions. In the following, we resort to Monte Carlo methods in

order to compute the statistical properties of the geometries created by our tool, for the purpose of

assessing the behaviour of the chord length distributions and estimating the discrepancy between the

simulation results and the theoretical formulas for infinite geometries. Although spherical inclusions

are not investigated for the particle transport in this thesis, this preliminary work could be useful for

future work, e.g., for a comparison between particle transport in random tessellations and in spherical

inclusions.

We have chosen to investigate different radius distributions, with a common average radius 〈r〉 =

0.1: a constant distribution, a uniform distribution between 0 and R = 2〈r〉, a linear distribution

between 0 and R = 3〈r〉 and an exponential distribution of parameter 1/〈r〉.
Table 4.21 shows the simulation results for the average correlation length Λ0

c through the back-

ground material and for the average correlation length Λ1
c through the spheres. The agreement with

the theoretical formulas deduced from Eq. (2.3) and Eq. (2.5) is very satisfying. Figures 4.32 and 4.33,

respectively, display the chord length distribution through the background matrix and the chord length
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Law H(n) 〈S3〉 Monte Carlo
Isotropic 24/π ' 7.63944 7.63± 0.01

Quadratic ' 9.986 9.85± 0.01
Box 27/2 = 13.5 13.48± 0.02

Histogram ' 15.947 15.84± 0.03

Table 4.18: Average surface 〈S3〉 of the Poisson tessellation cells for a box of side L = 200, with
various anisotropy laws H(n), for d = 3. The tessellation density is ρ = 1 for all the angular
laws H(n). The limit value for infinite Poisson tessellations is given in Eq. (2.16).

Law H(n) 〈V3S3〉 Monte Carlo
Isotropic 96 95.7± 0.3

Quadratic ' 159.2455 158.6± 0.6
Box 729/4 = 182.25 181.2± 0.7

Histogram ' 415.9862 411± 2

Table 4.19: Volume-surface correlations 〈V3S3〉 of the Poisson tessellation cells for a box of side
L = 200, with various anisotropy laws H(n), for d = 3. The tessellation density is ρ = 1 for all
the angular laws H(n). The limit value for infinite Poisson tessellations is given in Eq. (2.17).

distribution through spheres. For the former, the agreement is rather good but not perfect, as ex-

pected: i) the exponential distribution in infinite geometries is itself an approximation, and ii) finite

size-effects occur in finite geometries, especially when imposing the condition of non-overlapping the

boundaries. The chord length through the background matrix is by construction more affected by this

boundary condition. Moreover, these results are consistent with those obtained in [77,100] for similar

investigations: the discrepancy with respect to the exponential distribution close to `0 = 0 has clearly

the same profile as in [77] and seems also compatible with the data reported in [100]. For the chord

length distribution in the spheres, the agreement with theoretical formulas is excellent.
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Figure 4.28: Left. Distribution of the in-radius rin,3 of the Poisson tessellation cells for a box
with side L = 200, with various anisotropy laws H(n), for d = 3. The tessellation density is
ρ = 1 for all the angular lawsH(n). Symbols denote Monte Carlo simulation results: blue circles
correspond to isotropic distribution, red diamonds to quadratic distribution, green squares to
box distribution and purple triangles to histogram distribution. The solid line corresponds to
the limit distribution for infinite Poisson tessellations, i.e., the exponential density given in
Eq. (4.17), independent of H(n). Right. Distribution of the number of faces C3 of the Poisson
tessellation cells for a box with side L = 200, with various anisotropy laws H(n), for d = 3.
The tessellation density is ρ = 1 for all the angular laws H(n). Symbols denote Monte Carlo
simulation results: blue circles correspond to isotropic distribution, red diamonds to quadratic
distribution and purple triangles to histogram distribution. For Box tessellations, C3 is trivially
equal to 6 for each cell.

H(n) Λc Monte Carlo
Isotropic 1 0.9940± 8× 10−4

Quadratic 1 0.9937± 8× 10−4

Box 1 0.9927± 8× 10−4

Histogram 1 0.9937± 8× 10−4

Table 4.20: Average correlation lengths Λc of the Poisson tessellation cells for a box of side
L = 150, with various anisotropy laws H(n), for d = 3. The tessellation density is ρ = 1 for
all the angular laws H(n). The line orientation is uniform and isotropic. The limit value for
infinite Poisson tessellations is Λc = 1/ρ, as in Eq. (2.49).

Λc,0 Monte Carlo Λc,1 Monte Carlo
Constant 1.2 1.1708± 3× 10−4 0.133333 0.13335± 10−5

Uniform 1.8 1.7484± 4× 10−4 0.2 0.19999± 2× 10−5

Linear 2.16 2.0852± 5× 10−4 0.24 0.24002± 3× 10−5

Exponential 3.6 3.396± 10−3 0.4 0.4000±×10−4

Table 4.21: Average correlation length Λ0
c through background material and average correlation

length Λ1
c through spheres, for three-dimensional spherical inclusions within a box with side L,

for several distributions of the radius. The packing fraction is ξ = 0.1 and the average radius
〈r〉 = 0.1. We have chosen L = 80 for mono-dispersed spheres and L = 100 for poly-dispersed
spheres. The chord lengths have been computed with 5 × 103 realizations and 102 lines per
realization.
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and for the histogram distribution Λ(Ω) ' 0.62383. Right. Log-linear scale.
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Figure 4.30: Chord length distribution P(`α|Ω, L) through clusters of material α in Poisson
tessellations for a box with side L = 150, with various anisotropy laws H(n), for d = 3, with
pα = 0.1 (left) and pα = 0.9 (right). The tessellation density is ρ = 1 for all the angular laws
H(n). The line orientation is chosen as θ = 0. Symbols denote Monte Carlo simulation results:
blue circles correspond to isotropic distribution, red diamonds to quadratic distribution, green
squares to box distribution and purple triangles to histogram distribution. The solid lines
corresponds to the limit distribution for infinite Poisson tessellations, i.e., the exponential
density given in Eq. (2.88), with average Λα(Ω) = Λ(Ω)/(1− pα).
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cells for a box of side L, as a function of L, with various anisotropy laws H(n), for d = 3. The
tessellation density is ρ = 1 for all the angular laws H(n). The line orientation is uniform and
isotropic. Symbols denote Monte Carlo simulation results: blue circles correspond to isotropic
distribution, red diamonds to quadratic distribution, green squares to box distribution and
purple triangles to histogram distribution. The limit value for infinite Poisson tessellations is
Λc = 1/ρ, as in Eq. (2.49).
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Figure 4.32: Chord length distribution P(`0|L) through background matrix, for three-
dimensional spherical inclusions within a box with side L, for several distributions of the radius.
The packing fraction is ξ = 0.1 and the average radius 〈r〉 = 0.1. Green crosses denote Monte
Carlo simulation results. Solid lines correspond to the (approximate) limit distribution for
infinite geometries, i.e., the exponential density given in Eq. (2.3). We have chosen L = 80
for mono-dispersed spheres and L = 100 for poly-dispersed spheres. The distributions for the
radius are the following: (a) constant; (b) uniform; (c) linear; (d) exponential. The chord
lengths have been computed with 5× 103 realizations and 102 lines per realization.
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Figure 4.33: Chord length distribution P(`1|L) through spheres, for three-dimensional spherical
inclusions within a box with side L, for several distributions of the radius. The packing fraction
is ξ = 0.1 and the average radius 〈r〉 = 0.1. Green crosses denote Monte Carlo simulation
results. Solid lines correspond to the limit distribution for infinite geometries, i.e., the density
given in Eq. (2.5). We have chosen L = 80 for mono-dispersed spheres and L = 100 for poly-
dispersed spheres. The distributions for the radius are the following: (a) constant; (b) uniform;
(c) linear; (d) exponential. The chord lengths have been computed with 5 × 103 realizations
and 102 lines per realization.
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Chapter 5

Fixed-source transport in quenched
disorder

5.1 Introduction

As mentioned in Sec. 1.1, the purpose of linear transport theory in stochastic media consists in

obtaining the ensemble-averaged angular particle flux 〈ϕ(r,Ω)〉, where the average is taken with

respect to the physical realizations of the random medium system under analysis. In this Chapter,

we will focus on fixed-source stationary, mono-energetic transport in non-multiplying systems with

isotropic scattering, which allows more easily grasping the properties of particle propagation in random

media without bothering with the complexity of energy dependence, and yet retains the key ingredients

of the physical problem of interest. The case of eigenvalue problems will be considered in the next

Chapter. In the following, we will focus on the case of binary stochastic media with two immiscible

materials, say α and β [108].

The stochastic nature of the medium stems from the materials composing the traversed medium

being randomly distributed according to some statistical law. Hence, the total cross section Σ(r),

the scattering law Σs(Ω
′ → Ω, r) and the source Q(r,Ω) are in principle random variables. Each

realization will be denoted by a state q, associated to some stationary probability P(q): the state

q is thus associated to the functions Σ(q)(r), Σ
(q)
s (Ω′ → Ω, r) and Q(q)(r,Ω) for the material prop-

erties [108, 171]. For a given realization q, the angular flux ϕ(q)(r,Ω) solves the linear Boltzmann

equation

Ω · ∇ϕ(q) + Σ(q)(r)ϕ(q) =

∫
Σ(q)
s (Ω′ → Ω, r)ϕ(q)(r,Ω′)dΩ′ +Q(q). (5.1)

For isotropic scattering, the differential scattering cross section simplifies to

Σs(Ω
′ → Ω, r) =

Σs(r)

Ωd
, (5.2)

where Ωd is the surface of the unit sphere in dimension d.

The ensemble-averaged angular flux is then formally defined as

〈ϕ(r,Ω)〉 =

∫
P(q)ϕ(q)(r,Ω)dq, (5.3)

and can be further decomposed as

〈ϕ(r,Ω)〉 =
∑
i

pi(r)〈ϕi(r,Ω)〉, (5.4)

where pi(r) =
∫
Xi
P(q)dq is the probability of finding the material of index i at position r, with the

material flux defined as

〈ϕi(r,Ω)〉 =

∫
Xi

P(q)ϕ(q)(r,Ω)dq. (5.5)

Starting from this framework, two distinct strategies can be adopted in order to derive a description

of 〈ϕ(r,Ω)〉, as recalled in Chapter 1. The first, which can be denoted as a quenched disorder approach,
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consists in deriving exact solutions for 〈ϕ(r,Ω)〉 by first generating a collection of material realizations

q, obeying some specified distributions P(q) encoding the statistical properties of the random media,

then solving the Boltzmann equation (5.1) for ϕ(q)(r,Ω) corresponding to each realization q, and

finally taking the ensemble average over realizations according to Eq. (5.3). The name ‘quenched’ is

reminiscent of the fact that the configuration (geometry, material compositions and sources) seen by

the linear transport process for each realization is ‘frozen’. The prominent advantage of this approach

is that the obtained solutions 〈ϕ(r,Ω)〉 are exact, since all the information concerning disorder-induced

spatial correlations is entirely preserved.

Analytical results for the ensemble averages demand huge theoretical efforts, and so far have been

obtained only under restrictive hypotheses such as in perturbative approximations [108]. Considerable

progress has been achieved by using Monte Carlo methods in order to explicitly generate material

realizations q from P(q) and then using a deterministic or Monte Carlo transport code to solve the

transport problem for each sampled configuration. Since a large number of realizations is needed in

order to obtain the sought ensemble averages (typically of the order of hundreds or thousands), such

reference solutions are very demanding in terms of computational resources, especially if transport is

to be solved by Monte Carlo methods so as achieve the highest accuracy in solving the Boltzmann

equation.

The second strategy, which can be denoted as a annealed disorder approach, consists in deriving a

single ‘effective’ equation for the ensemble-averaged flux 〈ϕ〉, which would convey all the information

concerning the effects of disorder on particle transport via modified displacement or collision kernels.

Such an equation could be then solved by deterministic methods, or even by Monte Carlo in case a

probabilistic interpretation of the resulting transport operators can be given. However, as shown in

Chapter 1, this strategy leads to a hierarchy of coupled equations involving higher-order conditional

averages of the flux: unfortunately, the hierarchy cannot be closed, except for very special case such as

in the absence of scattering [108]. Closure formulas are thus introduced, in the form of suitable models

that allow truncating the infinite hierarchy and finally obtaining a single Boltzmann-like modified

transport equation for the average flux. The name ‘annealed’ is reminiscent that the configuration

seen by this modified linear transport process has been pre-averaged in order to come up with a single

representative equation: the effects of disorder-induced spatial correlations are thus faded. Higher-

order closure schemes can partially overcome this issue by better preserving correlations, at the expense

of increased computational cost [108,136].

In order to assess the accuracy of the various approximate models related to closure formulas, it

is therefore mandatory to compute reference solutions for the exact Eqs. (5.3). For this purpose, a

series of benchmark problems for linear particle transport have been proposed in the literature. The

case where the stochastic media consists of randomly dispersed spherical inclusions into background

matrices has been extensively studied, and several benchmark problems have been examined in two and

three dimensions [8,12,31,32]. For these configurations, it is known that the chord length distribution

in the matrix is nearly exponential (provided that the sphere are sufficiently diluted) and the chord

length distribution within the spheres can be exactly derived (and is highly non-exponential).

For Markov and renewal statistics, a pioneering work was performed by Adams, Larsen and Pom-

raning, who first proposed a now-classical benchmark problem for transport in stochastic media with

Markov mixing in 1989 [1]. As originally formulated, the fiducial quantities for the benchmark where

the ensemble-averaged transmission coefficient 〈T 〉 and reflection coefficient 〈R〉 for a non-stochastic

isotropic source located at one end of the geometry. Since then, this benchmark configuration has been

updated and extended by including new fiducial quantities such as the ensemble-averaged particle flux

〈ϕ〉 within the geometry and other kinds of sources [1, 9–11, 171]. In all the examined configurations,

the focus was exclusively on 1d geometries, either of the rod or slab type. In the case of Markov

mixing, a realization simply consists in generating a sequence of exponentially spaced points on a

line: the resulting segments or slabs, respectively, define the material chunks of the medium that can

be then colored at random by assigning the material properties. Flat two-dimensional configurations

with Markov mixing have received less attention [48,65,134].

Based on our previous investigation of stochastic tessellations, we are able to explicitly construct

realizations of a broad class of random media associated to various chord length distributions, including
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Markov (Poisson tessellations) and renewal statistics (Poisson-Voronoi and Poisson-Box tessellations).

In this Chapter we will therefore revisit and generalize the benchmark problem by Adams, Larsen

and Pomraning (denoted by ALP in the following, for the sake of conciseness), in order to shed new

light on the behaviour of reference solutions for linear particle transport in random media. For this

purpose, in the following we will:

1. present d-dimensional reference solutions of the ALP benchmark obtained by Monte Carlo parti-

cle transport simulations through 1d slab, 2d extruded and 3d Poisson tessellations, and discuss

the impact of dimension on the obtained results. To the best of our knowledge, benchmark

solutions for transport in 3d tessellations have never been addressed before. The dispersion of

the physical observables around their average values will be assessed by evaluating their full

distributions.

2. further generalize these findings by probing the impact of the underlying mixing statistics on

particle transport. The nature of the microscopic disorder is known to subtly affect the path

of the travelling particles, so that the observables will eventually depend on the statistical

laws describing the shape and the material compositions of the random media [7, 27, 147, 171].

This is especially true in the presence of distributed absorbing traps [7]. For d = 3. we will

thus consider three different stochastic tessellations, namely, Poisson, Voronoi and Box, and

compute the ensemble-averaged reflection and transmission probabilities, as well as the particle

flux. Two distinct benchmark configurations will be considered, the former including purely

scattering materials and voids, and the latter containing scattering and absorbing materials.

5.2 Methodology

Reference solutions for particle transport in random media can be obtained in the following way:

first, a realization of the medium is sampled from the underlying mixing statistics; then, the transport

equations corresponding to this realization are solved by either deterministic or Monte Carlo methods,

and the physical observables of interest are determined; this procedure is repeated several times so as

to create a sufficiently large collection of realizations, and ensemble averages are finally taken for the

physical observables (e.g., reflection or transmission coefficients, spatial flux, etc.). The methodology

provided in the following applies also to eigenvalue problems, as discussed in Chap. 6.

For a given physical observable O, the benchmark solution is obtained as the ensemble average

〈O〉 =
1

M

M∑
k=1

Ok, (5.6)

where Ok is the Monte Carlo estimate for the observable O obtained for the k-th realization.

The error affecting the average observable 〈O〉 results from two separate contributions, the disper-

sion

σ2
G =

1

M

M∑
k=1

Ok2 − 〈O〉2 (5.7)

of the observables exclusively due to the stochastic nature of the geometries and of the material

compositions, and

σ2
O =

1

M

M∑
k=1

σ2
Ok , (5.8)

which is an estimate of the variance due to the stochastic nature of the Monte Carlo method for the

particle transport, σ2
Ok being the dispersion of a single calculation [31, 32]. The statistical error on

〈O〉 is then estimated as

σ[〈O〉] =

√
σ2
G

M
+ σ2

O. (5.9)
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Case Σt,α Λα Σt,β Λβ

1 10/99 99/100 100/11 11/100
2 10/99 99/10 100/11 11/10
3 2/101 101/20 200/101 101/20

Table 5.1: Material parameters for the three cases of the benchmark configurations.

5.3 The ALP benchmark revisited

We will consider a series of benchmark configurations for particle transport through Markov binary

mixtures in dimension d, based on the pioneering work by Adams, Larsen and Pomraning [1], recently

revisited by Brantley [11]. For this purpose, the stochastic media will be generated by resorting to

d-dimensional Poisson random tessellations including 1d slab, 2d extruded, and full 3d configurations.

For each realization, particle transport will be performed by resorting to the Monte Carlo simulation.

We will compute the particle flux 〈ϕ〉, the transmission coefficient 〈T 〉 and the reflection coefficient 〈R〉.
The dispersion of the physical observables around their average values will be assessed by evaluating

their full distributions. This section is organized as follows. First, we will introduce the benchmark

specifications and set up the required notation. In Sec. 5.3.2 we will describe how to generate the

material configurations corresponding to homogeneous Markov mixing, by resorting to the colored

Poisson tessellations. These configurations will be described in Sec. 5.3.3. Then, in Sec. 5.3.4 we

will present our simulation results for the physical observables of interest, and discuss the obtained

findings and the impact of the dimension d.

5.3.1 Benchmark specifications

The benchmark specifications for our work are essentially taken from those originally proposed in [1]

and [171], and later extended in [9–11,153]. We consider single-speed linear particle transport through

a stochastic binary medium with homogeneous Markov mixing. The medium is non-multiplying, with

isotropic scattering. The geometry consists of a box of side L = 10, with reflective boundary conditions

on all sides of the box except two opposite faces (say those perpendicular to the x axis), where leakage

boundary conditions are imposed: particles that leave the domain through these faces can not re-enter.

Lengths are expressed in arbitrary units. In [1] and [171], system sizes L = 0.1 and L = 1 were also

considered, but in this work we will focus on the case L = 10, which leads to more physically relevant

configurations. Two kinds of non-stochastic sources will be considered: either an imposed normalized

incident angular flux on the leakage surface at x = 0 (with zero interior sources), or a distributed

homogeneous and isotropic normalized interior source (with zero incident angular flux on the leakage

surfaces). Following the notation in [11], the benchmark configurations pertaining to the former kind

of source will be called Suite I, whereas those pertaining to the latter will be called Suite II.

The material properties for the Markov mixing are entirely defined by assigning the average chord

length for each material i = α, β, namely Λi, which in turn allows deriving the homogeneous probability

pi of finding material i at an arbitrary location within the box, namely

pi =
Λi

Λi + Λj
. (5.10)

Note that the material probability pi defines the volume fraction for material i. The cross sections for

each material will be denoted as customary Σt,i for the total cross section and Σs,i for the scattering

cross section. The average number of particles surviving a collision in material i will be denoted by

ci = Σs,i/Σt,i ≤ 1. The physical parameters for the benchmark configurations are recalled in Tabs. 5.1

and 5.2: three cases (numbered 1, 2 and 3) are considered, each containing three sub-cases (noted a,

b and c). The case numbers correspond to permutation of materials, whereas the sub-cases represents

varying ratios of ci for each material.
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Sub-case a b c

cα 0 1 0.9
cβ 1 0 0.9

Table 5.2: Material parameters for the three sub-cases of the benchmark configurations.

Configuration 〈Σs〉

1a, 2a 10/11
1b, 2b 1/11
3a 100/101
3b 1/101
1c, 2c, 3c 9/10

Table 5.3: Ensemble-averaged scattering cross section 〈Σs〉 for the benchmark configurations.

The physical observables of interest for the proposed benchmark will be the ensemble-averaged

outgoing particle currents 〈J〉 on the two surfaces with leakage boundary conditions, and the ensemble-

averaged scalar particle flux 〈ϕ(x)〉 = 〈
∫ ∫ ∫

ϕ(r,Ω)dΩdydz〉 along 0 ≤ x ≤ L. For the Suite I configu-

rations, the outgoing particle current on the side opposite to the imposed current source will represent

the ensemble-averaged transmission coefficient, namely, 〈T 〉 = 〈Jx=L〉, whereas the outgoing particle

current on the side of the current source will represent the ensemble-averaged reflection coefficient,

namely, 〈R〉 = 〈Jx=0〉. For the Suite II configurations, the outgoing currents on opposite faces are

expected to be equal (within statistical fluctuations), for symmetry reasons. In this case, we also

introduce the average leakage current 〈Jave〉 = 〈(T +R)/2〉. Observe that the flux 〈ϕ〉 integrated over

the box has a physical interpretation: actually, the integral flux is equal to the average length 〈`V 〉
travelled by the particles within the geometry: see, e.g., the considerations in [78, 93]. Since we are

considering single-speed transport, 〈ϕ〉 is thus also proportional to the residence time spent by the

particles in the box. In the absence of absorption, the residence time would be identified with the first

passage time from the source to the leakage boundaries.

For the sake of completeness, we have also considered the so-called atomic mix model [108], where

one assumes that the statistical disorder can be approximated by simply taking a full homogenization of

the physical properties based on the ensemble-averaged cross sections. This would formally correspond

to assuming that the average chord length within the medium is vanishing small. The atomic mix

approximation is known to be valid when the chunks of each material are optically thin, i.e., Σt,iΛi � 1

for i = α, β [108]. For each case, we compute the corresponding ensemble-averaged scattering cross

section 〈Σs〉 and ensemble-averaged absorbing cross section 〈Σa〉 as follows

〈Σs〉 = pαΣs,α + (1− pα)Σs,β (5.11)

and

〈Σa〉 = pαΣa,α + (1− pα)Σa,β. (5.12)

The ensemble-averaged scattering cross sections 〈Σs〉 corresponding to the atomic mix model are

provided in Tab. 5.3. The ensemble-averaged total cross section 〈Σ〉 = pαΣt,α + pβΣt,β for all cases

and sub-cases of the benchmark is 〈Σt〉 = 1.

5.3.2 Construction of the corresponding stochastic geometries

Binary Markov mixtures required for the benchmark specifications are obtained as follows: first, a

d-dimensional Poisson tessellation is constructed as described in Sec 2.3.1, restricted to a box of side

L = 10 and with a density parameter ρ. Then, each polyhedron of the geometry is assigned a material
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Case ρ pα

1 1000/99 0.9
2 100/99 0.9
3 40/101 0.5

Table 5.4: Parameters for the colored Poisson geometries corresponding to the three cases of
the benchmark configurations.

composition by formally attributing a distinct ‘label’ (also called ‘color’), say ‘α’ or ‘β’, with associated

complementary probabilities pα and pβ = 1− pα.

The average chord length Λα through clusters with composition α is related to the average chord

length Λ of the tessellation cells via

Λ = (1− pα)Λα, (5.13)

and for Λβ we similarly have

Λ = pαΛβ. (5.14)

This yields 1/Λα + 1/Λβ = 1/Λ, and we recover

pα =
Λ

Λβ
=

Λα
Λα + Λβ

. (5.15)

Thus, based on the formulas above, and using ρ = 1/Λ, the parameters of the colored Poisson ge-

ometries corresponding to the benchmark specifications provided in Tab. 5.1 are easily derived. Their

values are recalled in Tab. 5.4.

For the purpose of illustration, examples of realizations of Poisson geometries for the benchmark

configurations are displayed in Fig. 5.1 for the 1d slab tessellations, in Fig. 5.2 for the 2d extruded

tessellations, and in Fig. 5.3 for the 3d tessellations. The impact of varying the average chord length

Λ and the volumetric fractions pα is apparent.

5.3.3 Analysis of the benchmark configurations

Among the benchmark configurations, case 1 displays the largest fragmentation, since the material

chord lengths Λα and Λβ are both much smaller than the linear size L of the box (see Tab. 5.1).

This is mirrored in a small correlation length Λ ' 0.1, and a very large number of d-polyhedra 〈Np|L〉
composing the tessellation (see Tab. 5.5). The volume fractions are pα = 0.9 and pβ = 0.1, respectively,

so that it is much more probable to cross material α than material β: chunks of material β are small

and well mixed within material α. For case 1a, material α is purely absorbing, but with a small cross

section, whereas material β is purely scattering, and is opaque due to its large cross section: in this

case, a typical realization will consist in small chunks of opaque material dispersed in larger chunks of

an almost transparent material. In the atomic mixing approximation, case 1a is mainly scattering.

Case 1b is the opposite of case 1a, with material α being now purely scattering, and material β

being purely absorbing. A typical realization will then consist in small absorbing chunks, with a large

cross section, dispersed in larger chunks of an almost transparent material. In the atomic mixing

approximation, case 1b is mainly absorbing.

For case 1c, the materials have ci 6= 1, so that the chunks have intermediate properties between

absorption and scattering.

The features of case 2 are such that the total cross sections and the volume fractions are the same

as in case 1, but with larger mean chord lengths Λα and Λβ (see Tab. 5.1). Correspondingly, the

correlation length Λ ' 1 is ten times larger than that of case 1, which leads to a considerably lower

number of d-polyhedra 〈Np|L〉 with respect to case 1 (see Tab. 5.5). The chunks of material α are

rather large, whereas those of material β are smaller. The volume fractions are the same as those

of case 1, and so are the total cross sections. The scattering and absorbing cross sections for all the

sub-cases are then equal to those of case 1.
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Case 1

Case 2

Case 3

Figure 5.1: Examples of realizations of Poisson geometries corresponding to the benchmark
specifications for the 1d slab tessellations, before (left) and after (right) attributing the material
label. Red denotes label α and blue denotes label β. The corresponding parameters ρ and pα
are provided in Tab.5.4.

For case 3, materials α and β share the same mean chord length, and their respective volume

fractions are also equal, i.e., pα = pβ = 0.5 (see Tab. 5.1). Chunks are larger than for case 2, with a

correlation length Λ ' 2.5, and the number of d-polyhedra 〈Np|L〉 is thus lower than for case 2 (see

Tab. 5.5). A typical realization in d = 1 will be therefore dominated by a single material, which means

that the entire box will be typically either colored in red or in blue, but this effect fades away with

increasing dimension, as apparent from Fig. 5.2 for the 2d extruded tessellations and from Fig. 5.3 for

the 3d tessellations. The total cross sections of α and β are smaller than those of case 1 and 2, with

different scattering and absorbing cross sections for each sub-case.

In case 3a, material α is purely absorbing, with a small cross section, whereas material β is purely

scattering, with a large cross section. In case 3b, the role of the absorbing and scattering material are

inverted, as before. For case 3c, both materials are partly absorbing and reflecting, and the global

cross sections are the same of cases 1c and 2c.

5.3.4 Monte Carlo simulation results

Simulation parameters

The reference solutions for the ensemble-averaged scalar particle flux 〈ϕ(x)〉 and the currents 〈R〉
and 〈T 〉 have been computed as follows. For each benchmark case and sub-case, a large number M
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Case 1

Case 2

Case 3

Figure 5.2: Examples of realizations of Poisson geometries corresponding to the benchmark
specifications for the 2d extruded tessellations, before (left) and after (right) attributing the
material label. Red denotes label α and blue denotes label β. The corresponding parameters ρ
and pα are provided in Tab.5.4.

of geometries has been generated, and the material properties have been attributed to each volume

as described above. Then, for each realization k of the ensemble, linear particle transport has been

simulated by resorting to the production Monte Carlo code Tripoli-4 R©, developed at CEA [21].

Tripoli-4 R© is a general-purpose stochastic transport code capable of simulating the propagation

of neutral and charged particles with continuous-energy cross sections in arbitrary geometries. In

order to comply with the benchmark specifications, constant cross sections adapted to mono-energetic

transport and isotropic angular distributions have been prepared. Specifically, currents Rk and Tk at

a given surface are estimated by summing the statistical weights of the particles crossing that surface.

Scalar fluxes ϕk(x) have been recorded by resorting to the standard track length estimator over a

pre-defined spatial grid containing 102 uniformly spaced meshes along the x-axis. The number of

simulated particle histories per configuration is 106. Finally, we compute the average value of each

observable as explained in Sec. 5.2.

Depending on the chord lengths and on the volumetric fractions, the physical observables might

display a larger or smaller dispersion around their average values. In order to assess the impact of such

dispersion, we have also computed the full distributions of T and R based on the available realizations.

The number M of realizations that have been used for the Monte Carlo simulations has been

chosen as follows. For 1d slab tessellations, we have taken M = 4× 104 for sub-cases 1b; M = 5× 104

for sub-cases 2b; and M = 105 for sub-cases 3b. Otherwise, we have used M = 5× 104 for sub-case 2a

of the suite II, and M = 104 for the remaining cases and sub-cases. For the 2d extruded tessellations,
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Case 1

Case 2

Case 3

Figure 5.3: Examples of realizations of Poisson geometries corresponding to the benchmark
specifications for the 3d tessellations, before (left) and after (right) attributing the material
label. Red denotes label α and blue denotes label β. The corresponding parameters ρ and pα
are provided in Tab.5.4.

we have taken M = 2 × 104 for the sub-cases 2b and M = 5 × 104 for the sub-cases 3b. Otherwise,

we have used the same number of realizations as in [59], namely, M = 4 × 103. Finally, for the 3d

tessellations we have taken M = 2 × 104 for the sub-case 2b of the suite II; M = 5 × 103 for all the

other sub-cases of case 2; M = 5 × 104 for the sub-case 3b of the suite II; and M = 104 for all the

other sub-cases of case 3. For all remaining cases and sub-cases, we have used the same number of

realizations as in [59], namely, M = 103.

As a general remark, increasing the dimension d implies an increasing computational burden (each

realization takes longer both for generation and for Monte Carlo transport), but also a better statistical

mixing (a single realization is more representative of the ‘typical’ random behaviour). Moreover, since

Poisson tessellations have ergodic properties [85,87], tessellations with smaller average chord length Λ

require a lower number of realizations to achieve statistically stable ensemble averages, again at the

expenses of an increased computational cost.

Concerning particle transport, it is important to stress that for the simulations discussed here

we have largely benefited from a feature that has been recently implemented in the code Tripoli-

4 R©, namely the possibility of reading pre-computed connectivity maps for the volumes composing the

geometry. During the generation of the Poisson tessellations, care has been taken so as to store the

indexes of the neighbouring volumes for each realization, which means that during the geometrical

tracking a particle will have to find the following crossed volume in a list that might be considerably

smaller than the total number of random volumes composing the box (depending on the features of
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the random geometry). To provide an example, a typical realization of a 3d geometry for case 1 will

be composed of ∼ 105 volumes, whereas the typical number of neighbours for each volume will of the

order of ∼ 10. When fed to the transport code, such connectivity maps allow thus for considerable

speed-ups for the most fragmented geometries, up to one hundred.

Computer time

Transport calculations have been run on a cluster based at CEA, with Intel Xeon E5-2680 V2 2.8 GHz

processors. An overview of the average computer time 〈t〉 for each benchmark configuration is provided

in Tabs. 5.6 and 5.7. Dispersions σ[t] are also given. While an increasing trend for 〈t〉 as a function

of dimension is clearly apparent, subtle effects due to correlation lengths and volume fractions for the

material compositions come also into play, and strongly influence the average computer time. For some

configurations, the dispersion σ[t] may become very large, and even be comparable to the average 〈t〉.
Atomic mixing simulations are based on a single homogenized realization, and the dispersion is thus

trivially zero.

Transmission, reflection and integral flux

The simulation results for the ensemble-averaged transmission coefficient 〈T 〉, the reflection coefficient

〈R〉 and the integral flux 〈ϕ〉 = 〈
∫ ∫

ϕ(r,Ω)dΩdr〉 are provided in Tabs. 5.8 to 5.13 for all the

benchmark configurations, for both Suite I and Suite II conditions. For the sake of conciseness, for

Suite II we denote by 〈T 〉 the leakage current at x = L and by 〈R〉 the leakage current at x = 0. For

the case of Suite II, R and T are equivalent within statistical fluctuations, as expected. Atomic mixing

results have been also given for reference. For each Monte Carlo transport simulation, the error on

the estimated observable was significantly lower than 1%.

The computed values for the 1d slab configurations and the atomic mixing approximation are in

excellent agreement (typically to two or three digits) with those previously reported in [1, 9–11, 171],

and allow concluding that our choice for the benchmark specifications is coherent. For all examined

cases, the atomic mixing approximation generally yields poor results as compared with the benchmark

solutions, and in some cases the discrepancy can add up to several orders of magnitude. In addition, the

atomic mixing solutions for several cases are strictly identical, since the ensemble-averaged total and

scattering cross sections are identical by design. Concerning the benchmark solutions in dimension

d = 1, 2 and 3, the impact of dimension on the transmission and reflection coefficient is stronger

between d = 1 and d = 2 than between d = 2 and d = 3, as expected on physical grounds, and has

a large variability between cases (from less than 1% for case 1b in Suite I, to almost 100% for case

2b in Suite II). For Suite I configurations, the reflection coefficient 〈R〉 in d = 1 is always larger than

those in d = 2, 3. The transmission coefficient 〈T 〉 is also generally larger, apart from cases 1a, 1c, and

3a, where it is smaller. For Suite II configurations, the leakage coefficient in d = 1 is generally larger

than in d = 2, 3, apart from case 1a, where it is smaller, and case 3a, where it is almost constant with

respect to dimension.

Distributions of transmission and reflection coefficients

In order to better apprehend the variability of the transmission and reflection coefficients (or the

average leakage current Jave = (T + R)/2 in Suite II) around their average values, we have also

computed their full distributions based on the available realizations in the generated ensembles. The

resulting normalized histograms are illustrated in Figs. 5.4 to 5.9. As a general consideration, the

dispersion of the observables decreases with increasing dimension: the mixing is increasingly efficient

and the distribution is more peaked around the average, which is expected on physical grounds.

However, even for d = 3 it is apparent that several configurations display highly non-symmetrical

shapes, and possible cut-offs due to finite-size effects. Especially in d = 1, bi-modality may also arise

for cases 2 and 3, which is due to the aforementioned effect of random geometries being entirely filled

with either material α or β: the peaks observed in the distributions correspond to the values of the

transmission or reflection coefficient associated to a fully red or fully blue realization. For the 1d
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Case d 〈Np|L〉 Λ(L) Λ Λα(L) Λα Λβ(L) Λβ

1 102.1± 0.1 0.0990± 0.0001 0.099 0.985± 0.004 0.99 0.1098± 0.0004 0.11
1 2 8206± 20 0.0988± 0.0003 0.099 0.944± 0.007 0.99 0.1058± 0.0009 0.11

3 565646± 3586 0.0963± 0.0006 0.099 0.90± 0.02 0.99 0.098± 0.002 0.11

1 11.14± 0.03 0.987± 0.004 0.99 6.22± 0.03 9.9 0.695± 0.009 1.1
2 2 101.4± 0.7 0.942± 0.007 0.99 5.00± 0.05 9.9 0.57± 0.01 1.1

3 817± 15 0.93± 0.02 0.99 4.4± 0.1 9.9 0.50± 0.02 1.1

1 4.98± 0.02 2.48± 0.02 2.525 3.63± 0.03 5.05 3.70± 0.03 5.05
3 2 21.2± 0.2 2.22± 0.02 2.525 2.96± 0.04 5.05 3.03± 0.04 5.05

3 86± 2 2.07± 0.05 2.525 2.68± 0.09 5.05 2.53± 0.08 5.05

Table 5.5: Statistical properties of the Poisson tessellations used for the benchmark configu-
rations, as a function of the dimension d. The quantity 〈Np|L〉 denotes the average number
of d-polyhedra composing the tessellation, Λ(L) is the average correlation length measured by
Monte Carlo ray tracing, and Λα(L) and Λβ(L) are the average chord lengths for material α and
β, respectively, measured by Monte Carlo ray tracing. The corresponding expected theoretical
values for infinite-size tessellations are denoted by Λ, Λα and Λβ.

Case: 1a 1b 1c 2a 2b 2c 3a 3b 3c

Atomic mixing 〈t〉 122 41 65 67 40 66 117 39 66

d = 1 〈t〉 112 66 107 91 59 71 135 42 66
σ[t] 11 22 21 63 14 7 54 6 6

d = 2 〈t〉 166 72 165 88 58 102 135 56 68
σ[t] 9 4 28 26 7 30 39 17 5

d = 3 〈t〉 3853 1752 4395 89 68 95 135 50 70
σ[t] 790 347 1411 14 18 25 30 15 4

Table 5.6: Simulation times t for the benchmark configurations, expressed in seconds. The
cases of suite I.

slab tessellations, the variances of the transmission and reflection coefficient have been numerically

computed in [1]: the values obtained in our simulations are in excellent agreement with those previously

reported.

Spatial flux

The spatial profiles of the ensemble-averaged scalar flux 〈ϕ(x)〉 = 〈
∫ ∫ ∫

ϕ(r,Ω)dΩdydz〉 are reported

in Figs. 5.10 to 5.12. In Tripoli-4 R©, we estimate 〈ϕ(x)〉 by recording the flux within the spatial

grid and by dividing the obtained result by the volume of each mesh. The corresponding data sets

are available from the authors upon request. Consistently with the findings concerning the integral

observables, the atomic mixing approximation usually leads to poor results as compared with the

benchmark solutions for the spatial profiles. The spatial profiles for the atomic mixing approximation

and for the 1d slab tessellations are in good agreement with those reported in [11]. As a general

remark, the scalar flux in d = 1 is systematically larger than that in d = 2, which in turn is larger

than that in d = 3. Some exceptions are nonetheless apparent, such as for instance in cases 1a for the

Suite I configuration and 1c for the Suite II configuration. The impact of dimension on the benchmark

solutions depends on the geometry and material configurations, and might vary between a few percent

as in case 1a for both Suite I and Suite II, up to 100% or more in case 3b for Suite II.
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Case: 1a 1b 1c 2a 2b 2c 3a 3b 3c

Atomic mixing 〈t〉 49 11 47 46 9 43 139 8 43

d = 1 〈t〉 100 38 103 105 30 41 190 14 41
σ[t] 25 12 21 263 11 8 166 5 8

d = 2 〈t〉 513 449 512 80 30 52 170 13 44
σ[t] 90 82 77 69 5 12 116 3 6

d = 3 〈t〉 79359 75578 77662 117 85 97 166 17 50
σ[t] 23219 21140 22162 40 33 30 83 5 7

Table 5.7: Simulation times t for the benchmark configurations, expressed in seconds. The
cases of suite II.

Case Atomic mixing 1d 2d 3d

〈R〉 0.4954± 5× 10−4 0.437± 0.002 0.4060± 6× 10−4 0.4091± 5× 10−4

1a 〈T 〉 0.00474± 7× 10−5 0.0148± 2× 10−4 0.0173± 10−4 0.0163± 10−4

〈ϕ〉 5.501± 0.007 6.10± 0.01 6.365± 0.008 6.328± 0.007

〈R〉 0.0193± 10−4 0.0845± 4× 10−4 0.0454± 2× 10−4 0.0377± 2× 10−4

1b 〈T 〉 1.2× 10−5 ± 3× 10−6 0.00164± 7× 10−5 0.00108± 3× 10−5 0.00085± 3× 10−5

〈ϕ〉 1.079± 0.001 2.90± 0.01 2.163± 0.005 1.918± 0.003

〈R〉 0.4780± 5× 10−4 0.4767± 5× 10−4 0.4078± 5× 10−4 0.4059± 5× 10−4

1c 〈T 〉 0.00390± 7× 10−5 0.0159± 3× 10−4 0.0179± 10−4 0.0164± 10−4

〈ϕ〉 5.184± 0.006 6.97± 0.03 6.52± 0.01 6.303± 0.008

Table 5.8: Ensemble-averaged observables for the benchmark configurations: suite I - case 1.

Case Atomic mixing 1d 2d 3d

〈R〉 0.4954± 5× 10−4 0.239± 0.003 0.226± 0.002 0.225± 0.001
2a 〈T 〉 0.00474± 7× 10−5 0.0973± 9× 10−4 0.0969± 7× 10−4 0.0937± 4× 10−4

〈ϕ〉 5.501± 0.007 7.64± 0.02 7.59± 0.02 7.57± 0.01

〈R〉 0.0193± 10−4 0.2866± 8× 10−4 0.1980± 8× 10−4 0.1616± 8× 10−4

2b 〈T 〉 1.2× 10−5 ± 3× 10−6 0.194± 0.001 0.1465± 9× 10−4 0.1194± 9× 10−4

〈ϕ〉 1.079± 0.001 11.69± 0.04 9.11± 0.03 7.77± 0.03

〈R〉 0.4780± 5× 10−4 0.4334± 8× 10−4 0.3677± 6× 10−4 0.3457± 5× 10−4

2c 〈T 〉 0.00390± 7× 10−5 0.184± 0.002 0.179± 0.002 0.1651± 9× 10−4

〈ϕ〉 5.184± 0.006 12.51± 0.06 11.46± 0.05 10.76± 0.03

Table 5.9: Ensemble-averaged observables for the benchmark configurations: suite I - case 2.
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Case Atomic mixing 1d 2d 3d

〈R〉 0.7856± 4× 10−4 0.692± 0.003 0.680± 0.003 0.675± 0.001
3a 〈T 〉 0.0670± 2× 10−4 0.163± 0.002 0.168± 0.002 0.1692± 9× 10−4

〈ϕ〉 14.89± 0.02 16.44± 0.05 16.46± 0.05 16.38± 0.03

〈R〉 0.00206± 5× 10−5 0.0361± 2× 10−4 0.0217± 2× 10−4 0.0165± 2× 10−4

3b 〈T 〉 6× 10−6 ± 2× 10−6 0.0760± 7× 10−4 0.0568± 6× 10−4 0.0457± 9× 10−4

〈ϕ〉 1.008± 0.001 5.16± 0.02 4.00± 0.02 3.47± 0.03

〈R〉 0.4780± 5× 10−4 0.445± 0.001 0.411± 0.001 0.3979± 7× 10−4

3c 〈T 〉 0.00390± 7× 10−5 0.104± 0.002 0.094± 0.002 0.086± 0.001
〈ϕ〉 5.184± 0.006 9.00± 0.07 8.30± 0.07 7.89± 0.03

Table 5.10: Ensemble-averaged observables for the benchmark configurations: suite I - Case 3.

Case Atomic mixing 1d 2d 3d

1a 〈Jave〉 0.1373± 3× 10−4 0.1525± 3× 10−4 0.1592± 3× 10−4 0.1583± 3× 10−4

〈ϕ〉 7.978± 0.008 7.70± 0.01 7.512± 0.008 7.530± 0.008

1b 〈Jave〉 0.0270± 10−4 0.0724± 3× 10−4 0.0542± 2× 10−4 0.0481± 2× 10−4

〈ϕ〉 1.040± 0.001 3.735± 0.009 2.182± 0.003 1.808± 0.003

1c 〈Jave〉 0.1295± 2× 10−4 0.1742± 7× 10−4 0.1630± 3× 10−4 0.1577± 3× 10−4

〈ϕ〉 7.408± 0.008 9.62± 0.03 7.77± 0.01 7.455± 0.008

Table 5.11: Ensemble-averaged observables for the benchmark configurations: suite II - case 1.

Case Atomic mixing 1d 2d 3d

2a 〈Jave〉 0.1373± 3× 10−4 0.1904± 3× 10−4 0.1898± 3× 10−4 0.1892± 3× 10−4

〈ϕ〉 7.978± 0.008 8.29± 0.03 7.46± 0.03 7.27± 0.01

2b 〈Jave〉 0.0270± 10−4 0.2918± 8× 10−4 0.2274± 6× 10−4 0.1931± 4× 10−4

〈ϕ〉 1.040± 0.001 10.75± 0.02 7.97± 0.02 6.54± 0.01

2c 〈Jave〉 0.1295± 2× 10−4 0.312± 0.001 0.286± 0.001 0.2688± 6× 10−4

〈ϕ〉 7.408± 0.008 11.92± 0.03 10.39± 0.03 9.55± 0.02

Table 5.12: Ensemble-averaged observables for the benchmark configurations: suite II - case 2.

Case Atomic mixing 1d 2d 3d

3a 〈Jave〉 0.3716± 3× 10−4 0.4112± 6× 10−4 0.4115± 6× 10−4 0.4098± 4× 10−4

〈ϕ〉 25.88± 0.03 27.3± 0.2 24.3± 0.2 22.82± 0.07

3b 〈Jave〉 0.0252± 10−4 0.1294± 5× 10−4 0.1003± 4× 10−4 0.0868± 3× 10−4

〈ϕ〉 0.958± 0.001 5.93± 0.02 3.75± 0.02 2.98± 0.01

3c 〈Jave〉 0.1295± 2× 10−4 0.225± 0.001 0.207± 0.001 0.1974± 7× 10−4

〈ϕ〉 7.408± 0.008 10.56± 0.05 8.78± 0.05 8.15± 0.02

Table 5.13: Ensemble-averaged observables for the benchmark configurations: suite II - case 3.
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Figure 5.4: Left column: normalized distributions P(R) of the reflection coefficients R; right
column: normalized distributions P(T ) of the transmission coefficients T . Suite I configura-
tions, case 1. Blue crosses represent the 1d slab tessellations, red triangles the 2d extruded
tessellations, and green circles the 3d tessellations.
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Figure 5.5: Normalized distributions P(Jave) of the average leakage current Jave = (T + R)/2
for suite II configurations, case 1. Blue crosses represent the 1d slab tessellations, red triangles
the 2d extruded tessellations, and green circles the 3d tessellations.
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Figure 5.6: Left column: normalized distributions P(R) of the reflection coefficients R; right
column: normalized distributions P(T ) of the transmission coefficients T . Suite I configura-
tions, case 2. Blue crosses represent the 1d slab tessellations, red triangles the 2d extruded
tessellations, and green circles the 3d tessellations.
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Figure 5.7: Normalized distributions P(Jave) of the average leakage current Jave = (T + R)/2
for suite II configurations, case 2. Blue crosses represent the 1d slab tessellations, red triangles
the 2d extruded tessellations, and green circles the 3d tessellations.
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Figure 5.8: Left column: normalized distributions P(R) of the reflection coefficients R; right
column: normalized distributions P(T ) of the transmission coefficients T . Suite I configura-
tions, case 3. Blue crosses represent the 1d slab tessellations, red triangles the 2d extruded
tessellations, and green circles the 3d tessellations.
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Figure 5.9: Normalized distributions P(Jave) of the average leakage current Jave = (T + R)/2
for suite II configurations, case 3. Blue crosses represent the 1d slab tessellations, red triangles
the 2d extruded tessellations, and green circles the 3d tessellations.
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Figure 5.10: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 1.
Left column: Suite I configurations; right column: Suite II configurations. Black diamonds
represent the atomic mixing approximation, blue crosses the 1d slab tessellations, red triangles
the 2d extruded tessellations, and green circles the 3d tessellations.
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Figure 5.11: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 2.
Left column: Suite I configurations; right column: Suite II configurations. Black diamonds
represent the atomic mixing approximation, blue crosses the 1d slab tessellations, red triangles
the 2d extruded tessellations, and green circles the 3d tessellations.
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Figure 5.12: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 3.
Left column: Suite I configurations; right column: Suite II configurations. Black diamonds
represent the atomic mixing approximation, blue crosses the 1d slab tessellations, red triangles
the 2d extruded tessellations, and green circles the 3d tessellations.
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Case Σs,α Σa,α Σs,β Σa,β

1a 0 0 1 0
1b 0 0 10 0

2a 0 10 1 0
2b 0 10 10 0

Table 5.14: Material parameters for the two cases 1, 2 of benchmark configurations and the two
sub-cases a, b.

5.4 The effects of mixing statistics

In Chapter 2, we have introduced several models of random media based on stochastic tessellations,

namely homogeneous and isotropic Poisson tessellations (denoted by m = P), Voronoi tessellations

(denoted by m = V), and Box tessellations (denoted by m = B). In order to investigate the effects

of such mixing statistics on particle transport, we will now introduce new benchmark specifications,

partially inspired from the ALP benchmark [1]. This section is organized as follows. In Sec. 5.4.1

we will describe two benchmark configurations. In Sec. 5.4.2 we will provide reference solutions by

using the Tripoli-4 R© Monte Carlo code, and discuss how mixing statistics affects ensemble-averaged

observables.

5.4.1 Benchmark specifications

We propose two benchmark configurations for single-speed linear particle transport through binary

mixtures in dimension d = 3. For both configurations we set the same geometry and source specifi-

cations. The geometry consists of a box of side L = 10, with the same boundary conditions as in the

d-dimensional generalization of the ALP benchmark introduced above. We will apply a normalized

incident angular flux on the leakage surface at x = 0 (with zero interior sources).

In benchmark case 1, material α is void, and material β is purely scattering; in benchmark case 2,

material α is purely absorbing, and material β is purely scattering. The former case could represent for

instance neutron transport in water-vapour mixtures or photon propagation through turbid media, the

probability p determining the fraction of voids. The latter case could represent for instance neutron

diffusion in the presence of randomly distributed traps, such as Boron or Gadolinium grains, the

probability p determining the fraction of absorbers.

The material compositions for the two benchmarks are provided in Tab. 5.14. For each case, we

consider two sub-cases a and b by varying the scattering macroscopic cross sections: we set a scattering

cross section Σs,β = 1 for cases 1a and 2a, and Σs,β = 10 for cases 1b and 2b. The absorbing cross

section for material β is zero for all cases and sub-cases. For material α, we set Σa,α = 10 for case 2a

and 2b (absorber), and Σa,α = 0 elsewhere. Scattering is assumed to be isotropic.

Similarly as in the case of the previous benchmark, the fiducial quantities are the ensemble-

averaged reflection probability 〈R〉 on the face where the incident flux is imposed, the ensemble-

averaged transmission probability 〈T 〉 on the opposite face, and the ensemble-averaged scalar particle

flux 〈ϕ〉 within the box.

The construction of the Poisson, Voronoi and Box tessellations has been detailed in Sec. 2.3.1, 2.5.1

and 2.4.1, respectively. For each tessellation we examine three average correlation lengths: Λc = 1,

Λc = 0.5 and Λc = 0.1; and seven probabilities of assigning a label α: p = 0.05, p = 0.15, p = 0.30,

p = 0.50, p = 0.70, p = 0.85 and p = 0.95. The tessellation densities ρP , ρV and ρB can be easily

derived based on Eq. (2.83) and are recalled in Tab. 5.15. For illustration, examples of realizations of

Poisson, Voronoi and Box tessellations for the benchmark configurations are displayed in Figs. 5.13

and Fig. 5.14. For the sake of completeness, we have also considered the so-called atomic mix model.
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Λc ρP ρV ρB

1 1 0.6872 0.66667
0.5 2 1.3744 1.33333
0.1 10 6.872 6.66667

Table 5.15: Parameters ρP , ρV and ρB chosen for the benchmark configurations, as a function
of the average correlation length Λc.

5.4.2 Monte Carlo simulation results

Simulation parameters

The reference solutions for the probabilities 〈R〉 and 〈T 〉 and the ensemble-averaged scalar particle

flux 〈ϕ(x)〉 have been computed as described for the previous benchmark. The number of simulated

particle histories per configuration is 106. The number M of realizations used for the Monte Carlo

simulations has been chosen as follows. For configurations with Λc = 1 we have performed 103

realizations; for Λc = 0.5 we have taken 8× 102 realizations; and for Λc = 0.1 we have taken 2× 102

realizations. Similarly as for Poisson tessellations, Voronoi and Box tessellations also share ergodic

properties [85, 87]: smaller average correlation lengths Λc require a lower number of realizations to

achieve statistically stable ensemble averages.

Computer time

The average computer time of a transport simulation increases significantly for decreasing average

correlation length Λc of the tessellation, as shown Tab. 5.16. For the calculations discussed here

we have again used the pre-computed connectivity maps, with considerable speed-ups for the most

fragmented geometries. Transport calculations have been run on the same computer cluster as above.

The average computer time t for case 1a with p = 0.05 is displayed in Tab. 5.16 as a function of

the mixing statistics m and of the average correlation length Λc of the tessellation. It is apparent

that t increases with the complexity of the system, i.e., the number of polyhedra composing the

tessellation. Nevertheless, this is not true for geometries with higher Λc: simulations in Voronoi

tessellations are longer than those in Poisson and Box tessellations, in spite of a lower number of

polyhedra. This is likely due to the larger average number of faces in Voronoi geometries, which slows

down particle tracking. For geometries composed of a large number of polyhedra, the complexity of

the system outweighs this effect. Moreover, the dispersion on the simulation time seems correlated to

the dispersion on the number of polyhedra: thus, this dispersion may become very large, and even

be comparable to the average t, for Poisson tessellations. Atomic mix simulations have no associated

dispersion.

Reflection, transmission and integral flux

The statistical properties of the random media adopted for the benchmark configurations, including

the average chord length through colored clusters, have been determined by Monte Carlo simulation

and are displayed in Fig. 5.15, which allows probing finite-size effects.

Concerning transport-related observables, the simulation results for the ensemble-averaged reflec-

tion probability 〈R〉, the transmission probability 〈T 〉 and the integral flux 〈ϕ〉 = 〈
∫ ∫

ϕ(r,Ω)dΩdr〉
are provided in Figs. 5.16 and 5.17 for all the benchmark configurations, as a function of p, m and Λc.

Atomic mix results are also provided for reference.

To begin with, we analyse the behaviour of these observables as a function of p. For case 1,

the transmission probability increases with the void fraction p. For large values of p, the medium is

mainly composed of voids, which enhances transmission because particle trajectories are not hindered

by collisions. When p decreases, the proportion of scattering material increases and so does the

probability for a particle to scatter, change direction and leak from the face where the source is
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Λc = 1

Λ=0.5

Λc = 0.1

Figure 5.13: Examples of realizations of tessellations corresponding to the benchmark specifi-
cations before attributing the material label, for Λc = 1 (top), Λc = 0.5 (center) and Λc = 0.1
(bottom). The size of the cube is L = 10. Left: Poisson tessellations; middle: Voronoi tessel-
lations; right: Voronoi tessellations.

imposed. Symmetrically, the reflection probability decreases with p: this is expected on physical

grounds, since for case 1 we have 〈T 〉 + 〈R〉 = 1 from particle conservation. Percolation of the void

fraction appear to play no significant role for the configurations considered here: the variation of 〈T 〉
and 〈R〉 with respect to p is smooth and no threshold effects at p = pc are apparent. The void fraction

p has no impact on the integral flux for case 1. Actually, as stated above, 〈ϕ〉 = 〈`V 〉, and from Cauchy

formula for one-speed random walks in purely scattering domains we have

〈`V 〉 = 4
V

Sleak
(5.16)

where Sleak is the surface area of the boundaries where leakage conditions are applied [78, 93]. This

formula, which can be understood as a non-trivial generalization of Cauchy formula applying to

the average chord lengths [78], holds true provided that particles enter the domain uniformly and

isotropically, which is ensured here by the source that we have chosen and by symmetry considerations.

Hence, the flux 〈ϕ〉 depends exclusively on the ratio of purely geometrical quantities, namely, 〈ϕ〉 =

4V/Sleak, which for our benchmark yields 〈ϕ〉 = 20.

For case 2, reflection, transmission and integral flux all decrease with increasing absorber fraction

p. This is also expected on physical grounds: the larger is p, the smaller is the survival probability of

particles and the shorter is the average residence time within the box (and hence the integral flux).

Although Eq. (5.16) can be generalized to include also absorbing media (and even multiplication), the

resulting formula will depend on the specific features of the travelling particles and will not have a

universal character [78,93].
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Λc = 1

Λc = 0.5

Λc = 0.1

Figure 5.14: Examples of realizations of tessellations corresponding to the benchmark specifi-
cations after attributing the material label, with probability p = 0.3 of assigning the label α,
for Λc = 1 (top), Λc = 0.5 (center) and Λc = 0.1 (bottom). The size of the cube is L = 10.
Left: Poisson tessellations; middle: Voronoi tessellations; right: Voronoi tessellations.

The impact of the average chord length on 〈T 〉, 〈R〉 and 〈ϕ〉 is clearly visible in Figs. 5.16 and 5.17.

As a general consideration, for any mixing statistics, the respective observables become closer to those

of the atomic mix as Λc decreases. These results suggest a convergence towards atomic mix when

Λc tends to zero, i.e., for high fragmentation. However, in most cases, this convergence is not fully

achieved for the range of parameters explored here. The atomic mix approximation is indeed supposed

to be valid only when the chunks of different materials are optically thin, and this condition is typically

not verified for our configurations (see Tabs. 5.15 and 5.14). Nonetheless, we notice one exception

in case 2b, for large absorber fractions in the range 0.7 < p < 1, where the relative positions of the

reflection curves corresponding to tessellations are inverted with respect to those corresponding to

atomic mix. In such configurations, stochastic geometries with small Λc will induce low reflection

probabilities and will further enhance the discrepancy with respect to the atomic mix case. This non-

trivial behaviour, which stems from finite-size and interface effects dominating the transport process,

has been previously observed for the benchmark considered above, under similar conditions, i.e., small

chunks of scattering material surrounded by an absorbing medium. The threshold behaviour of 〈R〉
at p > 0.7 might be subtly related to the percolation of the scattering material.

For cases 1a and 1b, the transmission probability increases with Λc: larger void chunks enhance

transmission. The reflection probability is complementary to transmission and shows the opposite

trend. For case 2a and 2b, the transmission probability increases again with Λc, and so do the

reflection probability and the integral flux. Therefore, the absorption probability 〈A〉 = 1− 〈R〉 − 〈T 〉
for case 2 decreases with increasing Λc (see Fig. 5.17).
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m Λc 〈Np|L〉 σ[Np|L] 〈t〉 σ[t]

AM 145 0

1 784 448 176 8
P 0.5 5278 2316 217 14

0.1 561163 117382 7705 2062

1 325 17 185 2
V 0.5 2596 51 258 4

0.1 324557 563 2511 208

1 473 285 169 7
B 0.5 2975 1344 200 11

0.1 309264 66029 2212 552

Table 5.16: Complexity of the tessellations used for the benchmark configurations, as a function
of the mixing statistics m (AM stands for atomic mix) and of the average correlation length Λc

of the tessellation, for a domain of linear size L = 10. 〈Np|L〉 denotes the average number of
polyhedra composing the tessellation, whereas 〈t〉 denotes the average computer time (expressed
in seconds) for a transport simulation of the benchmark configuration 1a, with p = 0.05.

Let us now consider the relevance of scattering cross sections Σs,β. For both case 1 and 2, the

reflection probability increases when increasing Σs,β, whereas the transmission probability decreases.

For case 2, the resulting absorption probability 〈A〉 = 1 − 〈R〉 − 〈T 〉 decreases with Σs,β. Moreover,

larger values of Σs,β enhance the discrepancies between results corresponding to different tessellations,

as a function of Λc: this is apparent when comparing case 1a to case 1b, or case 2a to case 2b. For

given parameters m and Λc, the discrepancy with respect to atomic mix depends on both p and Σs,β:

this is maximal for large values of p in case 1 and, conversely, for small values of p in case 2.

For case 2, where scattering is in competition with absorption, particles are all the more likely to

avoid absorbing regions as the chunks of scattering materials (of linear scale Λ/p) are large compared to

the scattering mean free path 1/Σs,β. If the size of scattering chunks is small compared to the scattering

mean free path, particles have little or no chance of survival, because they will most often cross an

absorbing region. Moreover, 〈R〉 and 〈T 〉 increase with decreasing p and increasing Λc. When the

chunks of scattering material are large, the stochastic tessellations typically contain clusters composed

of scattering material spanning the geometry, forming ‘safe corridors’ for the particles. Simulation

findings suggest that a small scattering mean free path does reduce the effect of absorption, but only

with respect to reflection probability: particles have a greater chance of coming back to the starting

boundary when the chunks of scattering material are large compared to the scattering mean free path.

On the contrary, the transmission probability is only weakly affected, which shows that for the chosen

benchmark configurations of case 2 transport is dominated by the behaviour close to the starting

boundary.

Generally speaking, the impact of the mixing statistics m is weaker than that of the other parame-

ters of the benchmarks. This is not entirely surprising, since we have chosen the respective tessellation

densities so to have the same Λc, and transport properties will mostly depend on the average chord

length of the traversed polyhedra. Such behaviour might be of utmost importance when the choice of

the mixing statistics is part of the unknowns in modelling random media. For Poisson and Box tes-

sellations, the simulation results for all physical observables are always in excellent agreement, which

suggests that these mixing statistics are almost equivalent for the chosen configurations. On the con-

trary, results for Voronoi tessellations have a distinct behaviour, and for most cases these tessellations

show systematic discrepancies with respect to those of Poisson or Box geometries, particularly in cases

2a and 2b for 〈T 〉 and 〈ϕ〉. These findings are coherent with the peculiar nature of the Voronoi mixing

statistics, as illustrated in the previous Chapters: differences in the chord length distribution and in
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Figure 5.15: The average correlation length Λc,α(L) through clusters of composition α, as a
function of the probability p of assigning the label ’α’, of the mixing statistics m, and of the
average correlation length Λc, for a domain of linear size L = 10. Symbols correspond to the
Monte Carlo simulation results: blue symbols are chosen for m = P , green for m = V , and red
for m = B. Circles denote Λc = 1, crosses Λc = 0.5, and triangles Λc = 0.1. In order to provide
a reference, the asymptotic function Λc,α = Λc/(1 − p) is displayed for Λc = 1 (dashed line),
Λc = 0.5 (continuous line) and Λc = 0.1 (dotted line).

the aspect ratio of the underlying stochastic geometries will induce small but appreciable differences

in the transport-related observables.

Integral flux distribution

In order to better assess the variability of the integral flux ϕ (i.e., of the time spent by the particles

in the box) around its average value, we have also computed its full distribution, based on the avail-

able realizations in the generated ensembles. The resulting normalized histograms are illustrated in

Figs. 5.18 for different values of Λc and 5.19 for different values of p and different mixing statistics m.

As a general remark, the dispersion of the integral flux decreases with decreasing Λc, when the

other parameters are fixed (see Fig. 5.18, where we illustrate an example corresponding to case 1a

and 1b): the ensemble averages become increasingly efficient and the average values become more

representative of the full distribution, which is expected on physical grounds. The same behaviour

has been observed for the reflection and transmission probabilities, in any configuration, and for all

mixing statistics. Moreover, numerical results show that Poisson and Box tessellations have a very

close distribution for the integral flux, and that the dispersion around the average is smaller for Voronoi

tessellations than for the other tessellations (see Fig. 5.19).

For case 1, all configurations share the same average integral flux. However, the dispersion of ϕ

around the average value depends on the probability p and on the scattering cross section Σs,β (see

Fig. 5.19), and this not universal. For this case, the impact of p is clearly apparent: for small values of

p (chunks of void surrounded by scattering material), the distribution is rather peaked on the average

value, whereas, for large values of p (chunks of scattering material surrounded by void), the dispersion

is more spread out. The influence of the scattering cross section Σs,βs is also visible when comparing

cases 1a and 1b: the dispersion increases with increasing Σs,β.

Spatial flux

The spatial profiles of the ensemble-averaged scalar flux 〈ϕ(x)〉 = 〈
∫ ∫ ∫

ϕ(r,Ω)dΩdydz〉 along the

coordinate x are reported in Figs. 5.20 and 5.21 for case 1 and in Figs. 5.22 and 5.23 for case 2. In

Tripoli-4 R©, we estimate 〈ϕ(x)〉 by recording the path lengths within the spatial grid defined above

and by dividing the obtained result by the volume of each mesh.

Consistently with the findings concerning the scalar observables, the impact of Λc on the spatial

profile of the scalar flux is clearly visible (see Figs. 5.20 and 5.22). The lower Λc, the closer is the
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associated spatial flux profile to the results of the atomic mix. As for the transmission and reflection

probabilities, the impact of Λc depends on the probability p and on the scattering cross section Σs,β.

The discrepancy between the atomic mix and stochastic tessellations increases with p for case 1 and

decreases with p for case 2; furthermore, the discrepancy systematically increases with increasing Σs,β.

Mixing statistics m plays also a role, but again its effect is weaker with respect to the other

benchmark parameters, as illustrated in Figs. 5.21 and 5.23. For each benchmark configuration, we

observe an excellent agreement between Poisson tessellations and Box tessellations. On the contrary,

spatial profiles associated with Voronoi tessellations agree with those of the other tessellations for case

1, but show a distinct behaviour for case 2.



136 CHAPTER 5. FIXED-SOURCE TRANSPORT IN QUENCHED DISORDER

1a 1b

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

〈R
〉

p

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

〈R
〉

p

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

〈T
〉

p

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

〈T
〉

p

19

19.5

20

20.5

21

0 0.2 0.4 0.6 0.8 1

〈ϕ
〉

p

19

19.5

20

20.5

21

0 0.2 0.4 0.6 0.8 1

〈ϕ
〉

p

Figure 5.16: Monte Carlo results for the benchmark configurations: cases 1a (left) and 1b
(right). Reflection probability 〈R〉 (top), transmission probability 〈T 〉 (center) and scalar flux
〈ϕ〉 (bottom), as a function of p, for different mixing statistics m and different values of Λc.
Black squares represent the atomic mix approximation. Blue symbols denote m = P , green
symbols m = V and red symbols m = B. Circles denote Λc = 1, crosses Λc = 0.5 and triangles
Λc = 0.1. Dashed lines have been added to guide the eye.
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Figure 5.17: Monte Carlo results for the benchmark configurations: cases 2a (left) and 2b
(right). Reflection probability 〈R〉 (top), transmission probability 〈T 〉 (center) and scalar flux
〈ϕ〉 (bottom), as a function of p, for different mixing statistics m and different values of Λc.
Black squares represent the atomic mix approximation. Blue symbols denote m = P , green
symbols m = V and red symbols m = B. Circles denote Λc = 1, crosses Λc = 0.5 and triangles
Λc = 0.1. Dashed lines have been added to guide the eye.
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Figure 5.18: Normalized distributions P(ϕ) of the scalar flux ϕ, for the benchmark configura-
tions 1a (left) and 1b (right), for m = V and for p = 0.5. Dark green squares denote Λc = 1,
violet circles Λc = 0.5 and orange triangles Λc = 0.1.
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Figure 5.19: Normalized distributions P(ϕ) of the scalar flux ϕ, for the benchmark configura-
tions 1a (left) and 1b (right), for Λc = 0.5. Top: p = 0.05; bottom p = 0.95. Blue squares
denote m = P , green circles m = V and red diamonds m = B.
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Figure 5.20: Ensemble-averaged spatial scalar flux for Poisson tessellations (m = P), for the
benchmark configurations: cases 1a (left) and 1b (right). Top: p = 0.95; centerp = 0.7; bottom:
p = 0.3. Black crosses denote the atomic mix approximation, dark green squares Λc = 1, violet
circles Λc = 0.5 and orange triangles Λc = 0.1.
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Figure 5.21: Ensemble-averaged spatial scalar flux, for the benchmark configurations: cases 1a
(left) and 1b (right), with p = 0.95. Top: Λc = 1; center: Λc = 0.5; bottom: Λc = 0.1. Black
crosses denote the atomic mix approximation, blue squares m = P , green circles m = V and
red diamonds m = B.
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Figure 5.22: Ensemble-averaged spatial scalar flux for Poisson tessellations (m = P), for the
benchmark configurations: cases 2a (left) and 2b (right). Top: p = 0.05; center: p = 0.3;
bottom: p = 0.7. Black crosses denote the atomic mix approximation, dark green squares
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Figure 5.23: Ensemble-averaged spatial scalar flux, for the benchmark configurations: cases 2a
(left) and 2b (right), with p = 0.05. Top: Λc = 1; center: Λc = 0.5; bottom: Λc = 0.1. Black
crosses denote the atomic mix approximation, blue squares m = P , green circles m = V and
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5.4.3 Back to the ALP benchmark

In order to verify the conclusions obtained for this new benchmark, we have extended to other mixing

statistics (Voronoi, Box) the ALP benchmark concerning binary mixtures in d-dimensional Markov

geometries and previously described in Sec. 5.3. In this section, we focus on the three-dimensional

case only. A natural choice is therefore to set Λc,α and Λc,β to be equal for Poisson, Voronoi and Box

tessellations, which ensures that the three colored geometries are ‘statistically equivalent’. Thus, for

each benchmark case we consider Voronoi and Box tessellations comparable to Poisson tessellations

used in this benchmark, whose geometrical parameters are given in Tab.5.4. To this aim, we generate

Voronoi and Box tessellations within a box of side L = 10 with respective density parameters ρV and

ρB chosen by using Eq. 2.83.

For both additional types of tessellations, we have computed the reference solutions for the proba-

bilities 〈R〉 and 〈T 〉 (or the average leakage current 〈Jave〉 = 〈(T+R)/2〉 for the Suite II configurations)

and the ensemble-averaged scalar particle flux 〈ϕ(x)〉. To this aim, we have used the approach and

the Monte Carlo parameters described in Sec.5.3.4.

Reference solutions for each type of mixing statistics are provided in Tabs. 5.17 to 5.19 for the

benchmark cases corresponding to suite I, and in Tabs. 5.20 to 5.22 for the benchmark cases corre-

sponding to suite II, respectively: the ensemble-averaged total scalar flux 〈ϕ〉, transmission coefficient

〈T 〉, and reflection coefficient 〈R〉 are displayed for Poisson, Voronoi and Box tessellations. The re-

spective computer times are also provided in the same tables. The ensemble-averaged spatial flux

〈ϕ(x)〉 is illustrated in Figs. 5.24 to 5.26.

Simulation results for these benchmark configurations basically confirm our previous findings: the

physical observables related to particle transport through Box tessellations are very close to those of

isotropic Poisson tessellations, which was expected based on their respective chord length distributions

being very similar. The agreement between the two sets of results increases by decreasing the average

chord length (i.e., for more fragmented tessellations). An exception must be remarked for sub-case

1b of suite I, in particular for the transmission coefficient 〈T 〉, despite this configuration being highly

fragmented. Since this sub-case is composed of absorbing chunks dispersed in a scattering background,

the observed discrepancy might be attributed to the effects induced by the shape of the chunks on

particle transport (which are different for the two tessellations, as shown in Chap. 4). For the spatial

flux profiles, slight differences emerge for the less fragmented configurations, e.g., sub-cases 2b, 3a and

3b of suite I.

Furthermore, the results obtained with Voronoi tessellations for most cases show systematic dis-

crepancies with respect to those of Poisson or Box geometries. These findings are coherent with those

found in Sec. 5.4.2. In particular, we find large discrepancies between Voronoi tessellations and Pois-

son tessellations in sub-case 1b, corresponding to small absorbing chunks surrounded by a scattering

background: this is consistent with the results obtained in similar configurations: case 2 of the pre-

vious benchmark for small values of p. The distribution of the chord lengths plays an important role

in characterizing the transport properties, which explains why the Voronoi tessellation, whose chord

length is significantly different from that of the other mixing statistics, shows a distinct behaviour.

We conclude by remarking that Box tessellations yield almost identical results with respect to Poisson

tessellations: this is a remarkable feature, in that the realizations of Box geometries are much simpler

and could be perhaps adapted for deterministic transport codes.
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Case Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

Poisson 0.4091± 5× 10−4 0.0163± 10−4 6.328± 0.007 3.9× 106

1a Box 0.4092± 6× 10−4 0.0166± 10−4 6.321± 0.008 8.5× 105

Voronoi 0.4242± 5× 10−4 0.0132± 10−4 6.192± 0.007 2.1× 106

Poisson 0.0377± 2× 10−4 0.00085± 3× 10−5 1.918± 0.003 1.8× 106

1b Box 0.0379± 2× 10−4 0.00102± 3× 10−5 1.925± 0.004 3.4× 105

Voronoi 0.0335± 2× 10−4 0.00040± 2× 10−5 1.716± 0.003 1.2× 106

Poisson 0.4059± 5× 10−4 0.0164± 10−4 6.303± 0.008 4.4× 106

1c Box 0.4062± 5× 10−4 0.0168± 10−4 6.306± 0.009 8.5× 105

Voronoi 0.4156± 5× 10−4 0.0125± 10−4 6.051± 0.008 2.1× 106

Table 5.17: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite I - case 1.

Case Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

Poisson 0.225± 0.001 0.0937± 4× 10−4 7.57± 0.01 4.4× 105

2a Box 0.228± 0.001 0.0950± 4× 10−4 7.54± 0.01 4.3× 105

Voronoi 0.2222± 0.0008 0.9256± 4× 10−4 7.602± 0.009 4.6× 105

Poisson 0.1616± 8× 10−4 0.1194± 9× 10−4 7.77± 0.03 3.4× 105

2b Box 0.1626± 9× 10−4 0.1202± 9× 10−4 7.77± 0.03 2.9× 105

Voronoi 0.1616± 6× 10−4 0.1172± 6× 10−4 7.69± 0.02 3.2× 105

Poisson 0.3457± 5× 10−4 0.1651± 9× 10−4 10.76± 0.03 4.8× 105

2c Box 0.3474± 5× 10−4 0.1656± 9× 10−4 10.74± 0.03 4.0× 105

Voronoi 0.3351± 5× 10−4 0.1590± 6× 10−4 10.54± 0.02 4.4× 105

Table 5.18: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite I - case 2.

Case Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

Poisson 0.675± 0.001 0.1692± 9× 10−4 16.38± 0.03 1.4× 106

3a Box 0.677± 0.001 0.168± 0.001 16.39± 0.03 1.3× 106

Voronoi 0.671± 0.001 0.1722± 7× 10−4 16.45± 0.03 1.4× 106

Poisson 0.0165± 2× 10−4 0.0457± 9× 10−4 3.47± 0.03 5.0× 105

3b Box 0.0166± 2× 10−4 0.0462± 9× 10−4 3.44± 0.03 4.1× 105

Voronoi 0.0182± 2× 10−4 0.0482± 6× 10−4 3.68± 0.02 4.3× 105

Poisson 0.3979± 7× 10−4 0.086± 0.001 7.89± 0.03 7.0× 105

3c Box 0.4008± 7× 10−4 0.086± 0.001 7.86± 0.04 6.9× 105

Voronoi 0.3912± 6× 10−4 0.0849± 8× 10−4 7.98± 0.03 7.0× 105

Table 5.19: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite I - case 3.
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Case Algorithm 〈Jave〉 〈ϕ〉 ttot [s]

Poisson 0.1583± 3× 10−4 7.530± 0.008 7.9× 107

1a Box 0.1580± 3× 10−4 7.533± 0.008 3.6× 107

Voronoi 0.1548± 4× 10−4 7.60± 0.01 5.4× 107

Poisson 0.0481± 2× 10−4 1.808± 0.003 7.4× 107

1b Box 0.0481± 2× 10−4 1.820± 0.003 3.3× 107

Voronoi 0.0430± 2× 10−4 1.619± 0.002 9.5× 107

Poisson 0.1577± 3× 10−4 7.455± 0.008 7.7× 107

1c Box 0.1576± 3× 10−4 7.470± 0.008 3.9× 107

Voronoi 0.1513± 4× 10−4 7.38± 0.01 4.8× 107

Table 5.20: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite II - case 1.

Case Algorithm 〈Jave〉 〈ϕ〉 ttot [s]

Poisson 0.1892± 3× 10−4 7.27± 0.01 5.8× 105

2a Box 0.1882± 3× 10−4 7.31± 0.01 4.4× 105

Voronoi 0.1900± 3× 10−4 7.050± 0.008 4.6× 105

Poisson 0.1931± 4× 10−4 6.53± 0.01 1.7× 106

2b Box 0.1939± 4× 10−4 6.63± 0.01 9.1× 105

Voronoi 0.1927± 3× 10−4 6.357± 0.009 1.1× 106

Poisson 0.2688± 6× 10−4 9.55± 0.02 4.9× 105

2c Box 0.2680± 6× 10−4 9.62± 0.02 3.3× 105

Voronoi 0.2633± 4× 10−4 9.24± 0.01 4.1× 105

Table 5.21: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite II - case 2.

Case Algorithm 〈Jave〉 〈ϕ〉 ttot [s]

Poisson 0.4098± 4× 10−4 22.82± 0.07 1.7× 106

3a Box 0.4088± 4× 10−4 23.33± 0.08 1.6× 106

Voronoi 0.4115± 4× 10−4 21.74± 0.06 1.5× 106

Poisson 0.0868± 3× 10−4 2.98± 0.01 8.7× 105

3b Box 0.0864± 3× 10−4 3.02± 0.01 7.2× 105

Voronoi 0.0931± 3× 10−4 2.997± 0.007 6.9× 105

Poisson 0.1974± 7× 10−4 8.15± 0.02 5.0× 105

3c Box 0.1956± 7× 10−4 8.24± 0.02 4.6× 105

Voronoi 0.1997± 6× 10−4 7.97± 0.02 4.7× 105

Table 5.22: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite II - case 3.
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Figure 5.24: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 1.
Left column: Suite I configurations; right column: Suite II configurations. Solid lines represent
the benchmark solutions obtained with the quenched disorder approach: green lines correspond
to Poisson tessellations, red lines to Voronoi tessellations and purple lines to Box tessellations.
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Figure 5.25: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 2.
Left column: Suite I configurations; right column: Suite II configurations. Solid lines represent
the benchmark solutions obtained with the quenched disorder approach: green lines correspond
to Poisson tessellations, red lines to Voronoi tessellations and purple lines to Box tessellations.
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Figure 5.26: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 3.
Left column: Suite I configurations; right column: Suite II configurations. Solid lines represent
the benchmark solutions obtained with the quenched disorder approach: green lines correspond
to Poisson tessellations, red lines to Voronoi tessellations and purple lines to Box tessellations.



Chapter 6

Eigenvalue problems in quenched
disorder

6.1 Introduction

Consider the stationary neutron transport equation in integro-differential form, namely,

Ω · ∇rϕ+ Σt(r, E)ϕ =

∫ ∫
Σt(r, E

′)C(r; Ω′, E′ → Ω, E)ϕ(r,Ω′, E′)dΩ′dE′ +Q(r,Ω, E), (6.1)

where we have explicitly introduced the dependence with respect to the energy E [5]. For a multiplying

system with fission, scattering and capture, the collision term can be generally written as

Σt(r, E
′)C(r; Ω′, E′ → Ω, E) =

Σs(r, E
′)fs(Ω

′, E′ → Ω, E) + ν̄f (r, E′)Σf (r, E′)χf (Ω′, E′ → Ω, E), (6.2)

where fs(Ω
′, E′ → Ω, E) is the scattering probability distribution function, ν̄f (r, E) is the average

number of fission neutron emitted at fission, and χf (Ω, E → Ω′, E′) is the associated (normalized)

fission spectrum. Neutrons emitted at fission can be either prompt (p) or delayed (d), each having

a distinct average number of emitted secondary particles and associated spectrum. Moreover, often

fission neutrons are emitted isotropically, and the spectrum is only weakly dependent on the incident

neutron energy, in which case we have

ν̄f (r, E′)Σf (r, E′)χf (Ω′, E′ → Ω, E) =

ν̄p(E
′)Σf (r, E′)

χp(E)

4π
+
∑
j

ν̄jd(E
′)Σf (r, E′)

χjd(E)

4π
, (6.3)

where 4π is the normalization factor of the isotropic distribution and the sum over j runs over the pre-

cursor families that decay into delayed neutrons. It is convenient to introduce an operator notation [5]

by defining the net disappearance operator L

Lϕ = Ω · ∇ϕ+ Σtϕ−
∫

Σs(r, E
′)fs(Ω

′, E′ → Ω, E)ϕ(r,Ω′, E′)dE′dΩ′, (6.4)

and the prompt and delayed fission operators

Fpϕ =
χp(E)

4π

∫
ν̄p(r, E

′)Σf (r, E′)ϕ(r,Ω′, E′)dE′dΩ′ (6.5)

and

F jdϕ =
χjd(E)

4π

∫
ν̄jd(r, E

′)Σf (r, E′)ϕ(r,Ω′, E′)dE′dΩ′, (6.6)

respectively. The total fission operator is finally defined as F = Fp +
∑

j F
j
d .

149
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We can thus rewrite Eq. (6.1) in compact form as

Lϕ(r,Ω, E) = Fϕ(r,Ω, E) +Q(r,Ω, E). (6.7)

In reactor physics and criticality-safety, a fundamental question is to assess whether Eq. (6.7) admits

stationary bounded solutions, which is strictly related to the spectral properties of the Boltzmann

operator B = F −L. In other words, we would like to determine which is the asymptotic behaviour of

the angular neutron flux ϕ(r,Ω, E) corresponding to an arbitrary source function Q. This calls for an

investigation of the eigenvalues and eigenfunctions associated to B. Several forms of such eigenvalue

problems exist, although for historical reasons the so-called k-eigenvalue formulation is the most widely

used for criticality problems. In this case, one introduces a parameter k and asks whether by dividing

the average number of fission neutrons by k a stationary solution is obtained for the homogeneous

form of Eq. (6.7) without external sources. This leads to the (generalized) eigenvalue problem

Lϕk(r,Ω, E) =
1

k
Fϕk(r,Ω, E), (6.8)

where k are the sought eigenvalues and ϕk(r,Ω, E) the corresponding neutron flux eigenfunctions.

Neutron multiplication in stochastic media has attracted intense research efforts, in view of many

relevant applications emerging in reactor physics and criticality safety. Random media of interest in

this context typically belong to two families: stochastic inclusions of fissile chunks within a background

matrix, which occur in the design of prismatic and pebble-bed reactors with double heterogeneity

fuel [20, 68, 94], and stochastic tessellations composed of a collection of fissile and non-fissile volumes

obeying a given mixing statistics [108], such as those resulting from fuel degradation in Three Mile

Island unit 2 [18, 47, 50] and at the Fukushima Daiichi power plant [45, 143]. Other applications of

random media for criticality safety concern for instance the analysis of the impact of poison grains for

neutron absorbers [33] or Pu-rich agglomerates in MOX fuels [165], and safety margins evaluation [114,

159,160,163], especially for optimal waste storage [161].

Similarly as for the case of fixed source transport, two distinct strategies can be adopted in order

to describe neutron multiplication in random media [108], namely, quenched disorder and annealed

disorder. In the quenched disorder approach, the random spatial configurations (with associated

material compositions) are first defined based on a probabilistic model. The Boltzmann eigenvalue

equation (6.8) is then solved for each configuration, and the statistical moments of the multiplication

factor k and of the fundamental eigenfunction ϕk are obtained by taking the ensemble averages with

respect to the realizations [108, 109, 114]. The quenched disorder approach leads to reference solu-

tions, because the effects of disorder-induced spatial correlations on neutron trajectories are correctly

preserved.

Analytical results for the ensemble averages have been obtained for some special cases, for instance

by resorting to perturbation theory, but several simplifications are needed, including mono-energetic

(or few-group) transport, isotropic scattering, or diffusion approximation [114,159–162]. Reference so-

lutions, although computationally expensive, are nonetheless of utmost importance for the validation

of approximate, albeit much faster methods, and for the verification of exact formulas. In this respect,

Monte Carlo simulation offers a convenient tool for the numerical analysis of eigenvalue problems in

stochastic media, in that it allows explicitly generating realizations taken from the sought distribu-

tion. A transport code can be then used in order to solve the eigenvalue problem for each sampled

configuration.

In the context of eigenvalue problems, intensive research efforts have been devoted so far to the

class of stochastic inclusions [20, 43, 54, 68, 69, 94]. In particular, highly sophisticated algorithms have

been devised in order to properly take into account boundary effects due to spheres not entirely

contained in the medium [43,54]. Eigenvalue calculations in stochastic tessellations, where the medium

is supposed to be partitioned into a collection of random (fissile and non-fissile) volumes obeying a

given mixing statistics [108], have been limited so far to one-dimensional configurations of the rod or

slab type [114, 160, 162]. Such models might represent, e.g., the accidental positioning of fuel lumps
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into moderating material, in the context of criticality safety, or the displacement of control plates in

damaged reactor cores.

In order to overcome some of these limitations, in this Chapter we will introduce three-dimensional

stochastic tessellations as a idealized model to assess the impact of the three-dimensional random frag-

mentation of fuel elements on the key safety parameters for criticality calculations. In-pile fuel degra-

dation might result from partial core melt-down during severe accidents, with melting, re-solidification

and relocation [47, 50], as occurred in the case of the Three Mile Island unit 2 [18]. The effects of

such scenario on neutron kinetics are of utmost importance for the evaluation of the re-criticality

probability. We will thus analyze the multiplication factor keff, and the kinetics parameters, namely

the effective delayed neutron fraction

βeff =
〈ϕ†

∑
j F

j
dϕ〉

〈ϕ†Fϕ〉
, (6.9)

and the effective neutron generation time 1

Λeff =
〈ϕ† 1

vϕ〉
〈ϕ†Fϕ〉

, (6.10)

where 〈·〉 denotes integration over the phase space variables and ϕ† is the adjoint flux (solution to

the equation adjoint to Eq. (6.8)), which can be physically interpreted as the neutron importance

function [5]. To our best knowledge, the influence of random geometries on kinetics parameters has

never been addressed before.

Starting from a reference UOX or MOX assembly with 17 × 17 fuel pins, we will consider three

perturbed configurations having the central pin, 7 × 7 central pins and the whole 17× 17 pins being

randomly fragmented. We will assume that the random re-arrangement after melt-down can be

described by a Poisson, Voronoi or Box tessellation with ternary mixing statistics [108], accounting

for the dispersion of the fuel, the cladding and the moderator, the average linear size of the chunks

for each material being a free parameter of the model. For each realization, we will perform criticality

calculations by using the Monte Carlo transport code Tripoli-4 R© developed at CEA [21], so as to

investigate the distribution of keff, βeff and Λeff as a function of the model parameters, including the

material compositions, the kind of stochastic tessellation, the linear size of the random chunks, and

the number of fragmented fuel pins.

In order to better grasp the physical behaviour of these systems without being hindered by the

complexity of all the ingredients involved in nuclear accidents, the analysis of assembly configurations

that will be carried out in the following is admittedly highly simplified with respect to the realistic

description of fuel degradation: for instance, we will focus exclusively on neutron transport, and we will

not include the effects due to thermal-hydraulics, thermo-mechanics or the complex physical-chemical

reactions occurring in accidental transients [47, 50]. Nonetheless, the proposed methodology is fairly

broad and can be applied without any particular restrictions to more sophisticated models.

This Chapter is organized as follows: in Sec 6.2 we will first introduce the benchmark configurations

for fuel assemblies with random degradation described by Poisson, Voronoi and Box tessellations.

Then, in Sec. 6.3 we will extend our results by taking into account the effects of anisotropy, which is

possible induced by material stratification. For this purpose, we will resort to the class of anisotropic

Poisson tessellations introduced in Chapter 2.

6.2 A model of assembly with fragmented fuel pins

The stochastic tessellations described in Chapter 2 can be conveniently adopted in order to represent a

partially melted fuel assembly, the size of the fuel fragments being determined by the geometry density

(which is a free parameter of the model). We propose in the following some benchmark configurations

1The symbol 〈Λeff〉 for the average neutron generation time is not to be confused with Λc, which denotes
the average correlation length.
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Material Isotopes Concentration
(atoms × 1024 × cm−3)

UOX fuel
U235 8.4148× 10−4

U238 2.1625× 10−2

O16 4.4932× 10−2

MOX fuel
U234 3.9390× 10−7

U235 4.9524× 10−5

U238 2.1683× 10−2

PU238 2.2243× 10−5

PU239 7.0164× 10−4

PU240 2.7138× 10−4

PU241 1.3285× 10−4

PU242 6.6984× 10−5

AM241 1.2978× 10−5

AM242M 2.2569× 10−10

O16 4.5882× 10−2

Moderator
H1 4.7716× 10−2

O16 2.3858× 10−2

B10 3.9724× 10−6

B11 1.5890× 10−5

Cladding
ZR90 2.2060× 10−2

ZR91 4.8107× 10−3

ZR92 7.3532× 10−3

ZR94 7.4518× 10−3

ZR96 1.2005× 10−3

Table 6.1: Material compositions for the UOX and MOX assemblies used for the benchmark
configurations.

that are simple enough to enable a physical interpretation of the effects induced by the presence of

random material fragmentation, and yet retain the key ingredients. For the sake of simplicity, we will

assume that only three compositions are present, namely the fuel, the cladding and the moderator.

As a reference configuration we will consider an assembly composed of 17×17 square fuel pin-cells

of side length δ = 1.262082 cm in the plane Oxy and of height Lz = 10 cm. Reflective boundary

conditions will be imposed on all sides of the assembly. The fuel elements will be entirely either of the

UOX or MOX type: the respective material compositions for the fuel, the cladding and the moderator

are provided in Tab. 6.1. The proposed compositions correspond to fresh (Beginning Of Life) fuel. The

assembly will be assumed to be at a uniform temperature of T = 300 K, for conservatism (Doppler

effect on reactivity will be reduced).

The partial melting of a collection of fuel pins is then introduced by applying a stochastic ternary

mixing model of Poisson, Voronoi or Box type to a central region composed of nx × ny cells. For

the sake of simplicity, this region will be assumed to be located at the center of the assembly, with

nx = ny = n, n being odd. The assembly portion corresponding to this region is removed and replaced

by a stochastic tessellation. The tessellation is then randomly ‘colored’ with ternary labels, namely,

’F ’ for fuel, ’C’ for cladding and ’M’ for moderator, with corresponding coloring probabilities pF , pC
and pM chosen so that for each material i the ensemble-averaged volumic ratio 〈pi〉 coincides with

that of a pin-cell before fragmentation:

pF = πR2
1/δ

2 ≈ 0.335861

pC = π(R2
2 −R2

1)/δ2 ≈ 0.107943

pM = (δ2 − πR2
2)/δ2 ≈ 0.556196. (6.11)
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Moreover, in order for the three stochastic tessellation models to yield comparable results with respect

to neutron transport, we have set the free parameters of each model (i.e., the geometry densities ρ,

ρV and ρB)) so as to have exactly the same average correlation length Λc. In-pile and out-of-pile

experiments of core degradation show that the fuel fragments after melting are partially mixed with

the cladding [47,50]: nonetheless, for the present benchmark we assume that the fuel and the cladding

are present in distinct phases. The pin-cells surrounding the perturbed region are left unchanged.

It is important to note that, for a single geometrical realization, the volumic ratio of material i in

the tessellation is not rigorously equal to pi, because of finite-size effects. In this respect, the lack of

a strict constraint on the preservation of the mass associated to each material is a limitation of the

modelling approach based on colored stochastic tessellations. Indeed, effects attributed to random

material rearrangement may be due predominantly to statistical fluctuations in the material mass

in each realization, possibly leading to configurations with more material than in the ordered case

and less in others. Imposing a rigorous mass-preserving constraint seems to be non-trivial in the

context of n-nary statistical mixing models. However, the finite-size effects progressively fade away

with increasing fragmentation of the tessellation, and become negligible for tessellations dense enough.

This behaviour will be further discussed in Sec. 6.2.3.

For our benchmark model, we have selected three fragmented configurations, each corresponding

to a different size for the melted portion of the assembly: in configuration 1, only the central pin-cell

is replaced by a ternary mixing (n = 1). In configuration 2, we have chosen a portion n = 7, i.e.,

about half of the assembly is fragmented. Finally, in configuration 3, the entire assembly is fragmented

(n = 17). For illustration, some of the resulting partially melted assemblies are shown in Figs. 6.1

and 6.2.

The physical observables that we would like to determine are the ensemble-averaged multiplication

factor 〈keff〉, the ensemble-averaged kinetics parameters (namely, the effective neutron generation time

〈Λeff〉 and the effective delayed neutron fraction 〈βeff〉), as well as and the ensemble-averaged scalar

particle flux 〈ϕ(r, E)〉 within the assembly.

Our goal is to investigate how these physical observables are affected by the presence of the

fragmented fuel pins. For this purpose, we will vary the mixing statistics by separately testing Poisson,

Voronoi and Box tessellations, and the average correlation length Λc for each tessellation (which

basically rules the average size of the material chunks composing the randomized portion of the

assembly). In-core experiments have shown that the fragment size may vary between less than a

millimetre and several millimetres, depending on the re-solidification speed [18, 47, 50]. Decreasing

Λc means increasing the density of the tessellations, which implies an increasing computational cost

for both the generation of the random geometry, and for the particle transport within the geometry.

We have thus a practical limitation to the smallest achievable value of Λc. When on the contrary Λc
becomes comparable to the linear size of the fragmented region, the realization of the ternary mixing

are entirely dominated by finite-size effects, the dispersion of the volumic ratio for each material

composition becomes relevant. This roughly defines the upper limit for the range of Λc that will be

considered in the numerical simulations presented in the following.

On the basis of these considerations, we have adapted the range of Λc to each configuration: for

n = 1, we have taken Λc from 0.03 cm to 0.5 cm; for n = 7, we have taken Λc from 0.1 cm to 1.5 cm;

and for n = 17 we have taken Λc from 0.15 cm to 3 cm. Some examples of realizations of Poisson,

Voronoi and Box tessellations corresponding to different values of Λc are displayed in Fig. 6.2 for the

benchmark configuration with n = 7.

For any mixing statistics, we will consider also the limit case of Λc → 0. This corresponds to the

so-called ‘atomic mix’ approximation, where material chunks are assumed to be so fine with respect

to the average neutron free path that the stochastic tessellations can be replaced by a homogenized

composition where the macroscopic cross sections are obtained by averaging the cross sections of each

material weighed by the respective volumic ratios: PF for the fuel, PM for the moderator, and PC for

the cladding.
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Configuration 1

Configuration 2

Configuration 3

Figure 6.1: Assemblies with Poisson tessellation for the central fuel pins. Top: configuration
1 (n = 1), with Λc = 0.05 cm. Center: configuration 2 (n = 7), with Λc = 0.2 cm. Bottom:
configuration 3 (n = 17), with Λc = 0.15 cm. Left column: radial view. Right column: axial
view.

6.2.1 Monte Carlo parameters and simulation options

The reference solutions for the ensemble-averaged multiplication factor 〈keff〉, kinetics parameters

〈Λeff〉 and 〈βeff〉, and scalar neutron flux 〈ϕ(r, E)〉 have been computed as follows. For each assembly

configuration, a large number M of geometries has been generated, and the material properties have

been attributed to each volume as described above. Then, for each realization j of the ensemble,

eigenvalue calculations have been carried out by using Tripoli-4 R© [21]. The number of simulated

particle histories per configuration has been chosen so that the statistical error on the computed

eigenvalue keff is smaller than 50 pcm. For a given physical observable O, the benchmark solution is

obtained as the ensemble average

〈O〉 =
1

M

M∑
j=1

Oj , (6.12)

where Oj is the Monte Carlo estimate for the observable O obtained for the j-th realization. Moreover,

the error affecting the average observable 〈O〉 is computed as detailed in Sec. 5.2. The scalar flux

ϕj(r, E) has been recorded by using the standard track length estimator over a pre-defined spatial

grid.
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Poisson

Voronoi

Box

Figure 6.2: Assemblies with stochastic tessellation for the central fuel pins. Radial view of the
configuration 2 (n = 7), for different mixing statistics and average correlation lengths Λc. Top:
Poisson tessellation. Center: Voronoi tessellation. Bottom: Box tessellation. Left column:
Λc = 0.5 cm. Right column: Λc = 0.1 cm.

Depending on the correlation lengths and on the volumetric fractions, the physical observables

might display a larger or smaller dispersion around their average values. In order to assess the impact

of such dispersion, we have also computed the full distribution of keff based on the available realiza-

tions. The number of realizations M has been adapted to the configuration (i.e., to the number n of

fragmented fuel pins) and to the chosen average correlation length Λc. As a general remark, decreasing

the average correlation length Λc for a given tessellation implies an increasing computational burden

(each realization takes longer both for generation and for Monte Carlo transport), but also a better

statistical averaging (a single realization is more representative of the ‘typical’ random behaviour).

The parameter M varies between M = 100 for, e.g., n = 1 and Λc = 0.03 cm, and M = 3000 for, e.g.,

n = 17 and Λc = 3 cm.

In Tripoli-4 R©, neutrons are simulated in the energy range from 20 MeV to 10−5 eV. Particle

transport is performed in continuous-energy, and the necessary nuclear data (i.e., point-wise cross-

sections, scattering kernels, secondary energy-angle distributions, secondary particle yields, fission

spectra, and so on) are read by the code from any evaluation written in ENDF-6 format. For the

criticality calculations presented in the following, we have selected the JEFF-3.1.1 nuclear data li-

brary [128]. Concerning probability tables for the unresolved resonance range, Tripoli-4 R© adopts

the CALENDF code [137]. Thermal data S(α, β) for bound hydrogen in water were available in

JEFF-3.1.1 at 296 K. Doppler broadening of elastic scattering differential cross sections has been en-

forced by using the standard SVT model. The DBRC model for resonant nuclides, although available
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in Tripoli-4 R© [168], has not been used, since it is not expected to have a major impact on reactivity

and kinetics parameters at low temperature.

Concerning kinetics parameters calculations, starting from version 4.10 the Iterated Fission Prob-

ability (IFP) method has been implemented in Tripoli-4 R© [148] and extensively validated [148,169,

170]. The IFP method allows computing the adjoint flux ϕ† without approximations within regular

eigenvalue calculations: as such, the IFP method establishes Monte Carlo simulation as a reference

tool for the analysis of effective kinetics parameters, which are key to nuclear reactor safety during

transient operation and accidental excursions [56, 95]. In Tripoli-4 R©, a superposed-cycles imple-

mentation has been chosen for IFP, with an arbitrary number of latent generations M [148]. For all

the simulations discussed here, we have chosen M = 20.

Similarly as for the case of fixed-source transport, for our simulations we have benefited from

the possibility of exploiting pre-computed connectivity maps. It has been recently suggested that

replacing the standard track estimator by the Woodcock method would be particularly convenient for

particle pursuit through stochastic geometries, since knowledge of the material type at a given point

and not of boundary locations would be required [102]: unfortunately, this estimator is not available

in Tripoli-4 R© at present time.

6.2.2 Simulation results

Complexity and computer time

Before addressing the simulation results for the ensemble-averaged physical observables, we briefly

analyse the computational cost of the performed calculations as a function of the complexity of the

underlying stochastic tessellations. Eigenvalue calculations have been run on a the same computer

cluster as the one adopted for the previous benchmarks. The average number of polyhedra 〈Np〉
pertaining to each random geometry increases with decreasing Λc, i.e., with increasing fragmentation.

The scaling law is fairly independent of the mixing statistics m, and roughly goes as 〈Np〉 ∼ 1/Λ3
c for

any m. The exponent of the scaling law stems from the dimension d = 3. The number n of fragmented

fuel pins does not affect these results, as expected. The corresponding (ensemble-averaged) computer

times for each assembly configuration are reported in Tab. 6.2. Dispersions σ[t] are also given. The

simulation time increases when increasing the portion of the assembly that is subject to fragmentation.

While a decreasing trend for 〈t〉 as a function of Λc is clearly apparent, subtle effects due to correlation

lengths and volume fractions for the material compositions come also into play, and strongly influence

the average computer time. For some configurations, the dispersion σ[t] may become very large, and

even be comparable to the average 〈t〉. The chosen tessellation model visibly affects the computer

time. Atomic mix simulations are based on a single homogenized realization.

The multiplication factor

We begin our analysis by considering the behaviour of the multiplication factor 〈keff〉, whose evolution

is illustrated in Fig. 6.3 for UOX and MOX assemblies with n = 1, n = 7 and n = 17 melted fuel

pins, respectively. The computed value 〈keff〉 is displayed as a function of increasing correlation length

Λc, for Poisson, Voronoi and Box tessellations. As detailed above, the error bar on 〈keff〉 results from

the contribution of the Monte Carlo statistical error (which is of the order of about 50 pcm for all

simulations) and the dispersion due to the random realizations. The limit case of atomic mix (Λc → 0)

is also shown. In each figure, the keff,0 eigenvalue corresponding to an assembly with intact fuel pins

is plotted for reference.

It is interesting to remark that the behaviour of 〈keff〉 as a function of Λc has been examined

in [109, 114] for mono-energetic transport in a rod geometry with Poisson mixing statistics, based

on previous work [157, 158]. By resorting to an ingenuous perturbative approach, in [114] it was

concluded that 〈keff〉 ≥ keff,am for Λc → 0, where keff,am is the eigenvalue corresponding to a (non-

stochastic) atomic mix fragmentation. This result surprisingly seems to hold also in the configurations

examined here, although we are considering neutron transport in continuous-energy, three-dimensional,

highly heterogeneous configurations. This finding is rather intriguing and surely deserves further
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Λc = 0.15 cm Λc = 3 cm

n tmix m 〈t〉 ± σ[t] 〈t〉 ± σ[t]

P 6170± 570 2970± 40
1 3260 V 4580± 110 2940± 25

B 4060± 225 2960± 30

P 18000± 3000 2840± 60
7 2990 V 9200± 150 2820± 30

B 7500± 1000 2840± 40

P 48000± 16000 2200± 200
17 1350 V 14000± 300 2300± 200

B 16000± 3000 2200± 200

Table 6.2: Average computer time 〈t〉 (expressed in seconds) and the corresponding standard
deviation σ[t] for transport simulations in benchmark configurations n = 1, n = 7 and n = 17
with UOX fuel, as a function of the mixing statistics m, for the minimal and maximal values of
the correlation length. The computer time tmix (expressed in seconds) for transport simulations
corresponding to atomic mix fuel fragmentation is also displayed. For reference, the computer
time for a transport simulation in the UOX assembly with intact fuel pins is equal to 3240
seconds.

investigation. Care should be taken, since the application of expectation operators to the eigenvalue

equation might subtly affect the value of 〈keff〉 with respect to the deterministic keff,am [109,114,157,

158].

In the limit of very large Λc, the portion of the assembly affected by the stochastic tessellations

would be trivially filled with a single material (fuel, cladding, or moderator), each appearing with its

respective coloring probability. In this case, 〈keff〉 would be the weighted sum of the multiplication

factors of three configurations with the central portion of the assembly replaced by a fuel, cladding

or moderator zone, and this value would be typically lower than the reference keff,0 pertaining to the

unperturbed regular lattice.

Between these two extreme values, for all the stochastic tessellations models 〈keff〉 first increases

for increasing correlation length Λc up to a maximum value, and then decreases for even larger cor-

relation lengths. As shown in Fig. 6.3, this maximum can be in excess or in defect with respect

to keff,0, depending on the mixing statistics and on the material compositions. Fuel fragmentation

would be in principle expected to lower the reactivity of the assemblies, where fuel is arranged in a

regular lattice with carefully chosen pitch. However, the lattices are under-moderated, so that local

portions of fuel and water that are more reactive than the lattice might appear after fragmentation. In

practice, spectral effects related to neutron thermalization in the presence of Uranium vs. Plutonium

chunks come also into play, and it turns out that MOX assemblies generally present larger reactivity

excursions, with a peak well beyond keff,0 for all tessellation models (at least for n = 7 and n = 17).

The redistribution of fissile mass (which is not exactly preserved for a single realization, as observed

above) might also contribute to the differences between UOX and MOX assemblies for intermediate

correlation lengths. The discrimination of these effects will be left for future work.

As expected on physical grounds, the impact of the stochastic tessellations on the multiplication

factor depends on the size of the assembly that has been randomly fragmented. When n = 1, the

difference between 〈keff〉 and the reference keff,0 is of the order of 100 pcm, and falls almost within

1σ uncertainty. The major contribution to the dispersion of the multiplication factor stems from the

statistical error. In this case, the impact of the specific tessellations models is not appreciable. For

UOX assemblies, the average values 〈keff〉 lie all slightly above keff,0 for any Λc, and seem to attain

keff,0 in the atomic mix limit. For MOX assemblies, the average values 〈keff〉 lie all slightly below keff,0

for any Λc, even in the atomic mix limit.

When n = 7, a relevant portion of the fuel pins is fragmented, and the impact of the stochastic
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tessellations on the eigenvalue becomes apparent. For both UOX and MOX assemblies, in the atomic

mix limit 〈keff〉 is well below the reference keff,0 (about 1000 pcm for UOX and 2000 pcm for MOX).

The values 〈keff〉 computed for Poisson and Box tessellations are almost indistinguishable, which

supports our previous analysis. On the contrary, the 〈keff〉 obtained for the Voronoi tessellations reach

their maximum for a Λc larger than in the case of the other two tessellations. The 〈keff〉 for Voronoi

tessellations lie first below those of the Poisson and Box tessellations; after that 〈keff〉 has attained

its maximum for the Poisson and Box tessellations, the values corresponding to Voronoi tessellations

lie above the others. For the UOX assemblies, the maximum 〈keff〉 for Poisson and Box tessellations

(for Λc ∼ 0.5 cm) is about 300 pcm lower than keff,0, whereas for Voronoi tessellations (for Λc ∼ 0.7

cm) is slightly higher. For MOX assemblies, the maxima are attained for larger average correlation

lengths (Λc ∼ 1 cm for Poisson and Box tessellations and Λc ∼ 1.6 cm for Voronoi tessellations) and

are largely higher than the reference keff,0 by about 500 pcm.

The behaviour of the case n = 17, where the entire collection of fuel pins in the assembly is

fragmented, is similar to that of the case n = 7. The position of the maxima of 〈keff〉 as a function

of the average correlation length Λc is almost unchanged. The range of excursion of 〈keff〉 in the

explored domain is nonetheless much larger. The eigenvalue corresponding to the atomic mix limit

is lower by about 5000 pcm for the UOX case, and by about 12000 pcm for the MOX case. For

UOX, the maxima of 〈keff〉 fall below (for Poisson and Box tessellations) or slightly above (for Voronoi

tessellations) the reference keff,0. For MOX, the maxima exceed keff,0 by about 2000 pcm for Poisson

and Box tessellations, and by about 4000 pcm for Voronoi tessellations.

The delayed neutron fraction

The evolution of the effective delayed neutron fraction 〈βeff〉 is illustrated in Fig. 6.4 for UOX and

MOX assemblies with n = 1, n = 7 and n = 17 melted fuel pins, respectively. The computed value

〈βeff〉 is displayed as a function of increasing correlation length Λc, for Poisson, Voronoi and Box

tessellations. The error bar on 〈βeff〉 is of the order of about 1% of the average, which is comparable

with the uncertainty stemming from the IFP calculation for the reference assembly. The limit case of

atomic mix (Λc → 0) is also shown. In each figure, the βeff,0 value corresponding to an assembly with

intact fuel pins is plotted for reference.

For all the assembly configurations, the impact of stochastic tessellations on 〈βeff〉 is only marginal,

and in most cases well within error bars. For UOX assemblies we remark nonetheless that the random

fragmentation introduces a slight bias on the average value, i.e., 〈βeff〉 ≤ βeff,0, where βeff,0 is the ref-

erence value corresponding to an assembly with intact fuel pins. On the contrary, for MOX assemblies

〈βeff〉 ' βeff,0.

The behaviour of 〈βeff〉 is almost unaffected by the choice of the mixing statistics. Similarly, the

average correlation length Λc plays no role, and the resulting 〈βeff〉 show a slight increasing trend only

for the case n = 17. Actually, the effective delayed neutron fraction 〈βeff〉 depends mostly on the

volumic fraction of fuel within the assembly, and this quantity is basically flat as a function of Λc, as

discussed in Sec. 6.2.3.

The neutron generation time

The evolution of the effective neutron generation time 〈Λeff〉 is illustrated in Figs. 6.5 for UOX and

MOX assemblies with n = 1, n = 7 and n = 17 melted fuel pins, respectively. The computed value

〈Λeff〉 is displayed as a function of increasing average correlation length Λc, for Poisson, Voronoi and

Box tessellations. The error bar on 〈Λeff〉 is of the order of about 0.1% of the average, which is

comparable with the uncertainty stemming from the IFP calculation for the reference assembly. The

limit case of atomic mix (Λc → 0) is also shown. In each figure, the Λeff,0 value corresponding to an

assembly with intact fuel pins is plotted for reference.

As expected, in the case n = 1 the impact of the stochastic tessellations is small, and the discrep-

ancy between 〈Λeff〉 and Λeff,0 lies within the error bar. For UOX assemblies, the random fragmentation

induces 〈Λeff〉 ≤ Λeff,0 for any Λc, where Λeff,0 is the reference value corresponding to an assembly

with intact fuel pins. On the contrary, for MOX assemblies 〈Λeff〉 ≥ Λeff,0 for any Λc.
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For the assembly configurations with n = 7, the effects of the fuel fragmentation are clearly

apparent for 〈Λeff〉. In the atomic mix limit for small Λc, 〈Λeff〉 lies below Λeff,0, and it gradually

increases as a function of Λc. The ensemble-averaged 〈Λeff〉 becomes larger than Λeff,0 at Λc '
0.3 cm for all mixing statistics. Poisson and Box tessellations yield almost identical results, and

the corresponding 〈Λeff〉 are systematically higher than those from Voronoi tessellations. For UOX

assemblies, 〈Λeff〉 increases by about 10% in the range of Λc explored here, whereas for MOX assemblies

the increase is of the order of 20% for the same range of Λc.

For the case n = 17 the behaviour of 〈Λeff〉 is qualitatively similar to that of n = 7, but the

excursion range as a function of Λc is wider. In particular, for UOX assemblies 〈Λeff〉 increases by

about 300% in the range of Λc explored here, whereas for MOX assemblies the increase is of the order

of 600% for the same range of Λc. As in the previous case, Poisson and Box tessellations yield results

for 〈Λeff〉 that lie systematically higher than those of Voronoi tessellations.

Distribution of the multiplication factor

So far, we have focused on the ensemble-averaged physical observables 〈keff〉, 〈βeff〉, and 〈Λeff〉, and

their evolution as a function of the average correlation length for different mixing statistics. In order

to fully apprehend the dispersion of the multiplication factors around their average values due to the

variability of the random geometry realizations, which is key for criticality safety applications, we

have also computed the histograms Π(keff). Some representative distributions are displayed in Fig. 6.6

(left) as a function of Λc for a Poisson tessellation and in Fig. 6.6 (right) as a function of the mixing

statistics for fixed Λc.

Fig. 6.6 (left) shows that the shape of the (keff) distribution is sensitive to the average correlation

length: when Λc is small, (keff) is almost Gaussian, with a small dispersion around the average 〈keff〉;
as Λc increases, the dispersion increases, and Π(keff) becomes less symmetric (in particular, a long left

tail appears for large values of Λc).

Fig. 6.6 (right) shows the impact of the mixing statistics on the shape of Π(keff), for a given average

correlation length Λc. It is apparent that the stochastic tessellations affect not only the average values

〈keff〉, but also their dispersion. In particular, for the example considered here, The Voronoi tessellation

leads to a Gaussian distribution rather peaked around the average value, whereas the Poisson and Box

tessellations (whose Π(keff) are almost identical) lead to more dispersed and asymmetric distributions,

with a long left tail.

Scalar neutron flux

We conclude our analysis by considering the effects of fuel fragmentation on the ensemble-averaged

and normalized scalar neutron flux 〈ϕ(r, E)〉. For our Monte Carlo simulations, we have defined a

17 × 17 x − y spatial mesh superposed to the fuel pin-cells, with a single mesh along the z axis.

For symmetry reasons, the flux in the reference assemblies should be spatially flat, due to reflective

boundary conditions. As for the energy dependence, we have considered a 281 group mesh, covering

the entire energy range of the simulation, namely 10−5 eV to 20 MeV.

The spatial behaviour of the neutron flux 〈ϕ(r)〉 is shown in Fig. 6.7 for n = 1 in some representative

UOX and MOX assemblies, respectively, and in Fig. 6.8 for n = 7 in some representative UOX and

MOX assemblies. These curves have been obtained by integrating 〈ϕ(r, E)〉 over the entire energy

range. The case n = 17 leads to a spatially flat neutron flux (the fragmentation is homogeneous and

extended to the whole assembly) and will not be shown here. For all the examples discussed here we

have considered Poisson stochastic tessellations.

For n = 1, the effects of the stochastic tessellations on the spatial shape of the neutron flux are

small, and mostly extended to a neighbourhood of the fragmented fuel pin-cell (see Fig. 6.7). The

impact is slightly larger for MOX than for UOX assemblies. The sign of the perturbation with respect

to the remaining portion of the assembly evolves as a function of Λ: for small Λc the ensemble-averaged

flux close to the fragmented fuel cell lies below the value for the rest of the assembly, whereas for larger

Λc the flux close to the fragmented fuel cell lies above. The value of Λc for which the ensemble-averaged

spatial flux is entirely flat (i.e., the stochastic tessellation has no visible effect on the flux) corresponds
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approximately to the average correlation length through a fuel pin. In other words, if the fragmentation

of the random geometry is such that neutron trajectories see a homogeneous region whose average

behaviour is statistically compatible with the heterogeneous regions of the intact fuel cell, then the

neutron flux becomes insensitive to the fragmentation.

When n = 7 (Fig. 6.8), the behaviour of the spatial flux is qualitatively similar to the previous

case. The amplitude of the perturbations introduced by the stochastic tessellations is larger, and the

effect is extended on a larger portion of the assembly. Similarly as for n = 1, the MOX assemblies are

more sensitive to the perturbation. Again, the sign of the perturbation with respect to the remaining

portion of the assembly depends evolves as a function of Λ: for small Λc the ensemble-averaged flux

close to the fragmented portion of the assembly lies below the value for the rest of the assembly,

whereas for larger Λc the perturbed flux lies above. As before, there exists a value of Λc for which the

ensemble-averaged spatial flux is entirely flat.

Concerning the behaviour of the neutron flux with respect to energy, in Fig. 6.9 we show the

spatially-integrated and normalized 〈ϕ(E)〉 for UOX and MOX assemblies. We have chosen the case

n = 17 with a Poisson stochastic tessellation. The impact of stochastic tessellations on 〈ϕ(E)〉 is

particularly apparent when examining the discrepancies with respect to the reference flux that is

obtained for the assemblies with intact fuel pins (see Fig. 6.10), for both UOX and MOX assemblies.

The effects on 〈ϕ(E)〉 vary as a function of Λ. For small Λ, 〈ϕ(E)〉 lies below the reference flux in

the thermal region and above for the epi-thermal and fast regions. For larger Λ, 〈ϕ(E)〉 lies above the

reference flux in the thermal region and below for the epi-thermal and fast regions.

6.2.3 Finite-size effects for the assembly calculations

An investigation of finite-size effects for the stochastic tessellations used above has been carried out

for Λc,i, the average correlation length through clusters with material composition i. For illustration,

in Fig. 6.11 (left) we show the case of the assembly configurations with n = 17, where Λc,i is plotted

as a function of Λc for Poisson tessellations. As Λc increases, the value of Λc,i(L) obtained by Monte

Carlo simulation progressively deviates from the theoretical behaviour Λc,i = Λc/(1− pi).
We have also computed the average volumic fraction 〈pi|L〉 through clusters of composition i, as

a function of the average correlation length Λc. The comparison with the theoretical behaviour pi
(which is strictly valid only for infinite tessellations) is shown in Fig. 6.11 (right) for an assembly

configuration with n = 17: the deviation with respect to the ideal case increases with increasing Λc,

as expected. In order to emphasize the role of finite-size effects, in Fig. 6.11 (right) we have chosen

to show the geometry-induced standard deviation σG on pi(L), as given in Eq. (5.7), instead of the

uncertainty given by Eq. (5.9).
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Figure 6.3: Evolution of the ensemble-averaged multiplication factor 〈keff〉 as a function of the
average correlation length Λc, for n = 1 (top), n = 7 (middle) and n = 17 (bottom). Left: UOX
assembly. Right: MOX assembly. Blue squares denote the results for Poisson tessellations, red
triangles for Box tessellations, and green circles for Voronoi tessellations. The limit case at
Λc → 0 corresponds to the atomic mix model. The black solid line denotes keff,0, the result for
the assembly with intact fuel pins, which has been added for reference (dashed lines represent
the 1σ statistical uncertainty).
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Figure 6.4: Evolution of the ensemble-averaged effective delayed neutron fraction 〈βeff〉 as a
function of the average correlation length Λc, for n = 1 (top), n = 7 (middle) and n = 17
(bottom). Left: UOX assembly. Right: MOX assembly. Blue squares denote the results for
Poisson tessellations, red triangles for Box tessellations, and green circles for Voronoi tessella-
tions. The limit case at Λc → 0 corresponds to the atomic mix model. The black solid line
denotes βeff,0, the result for the UOX assembly with intact fuel pins, which has been added for
reference (dashed lines represent the 1σ statistical uncertainty).
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Figure 6.5: Evolution of the ensemble-averaged effective neutron generation time 〈Λeff〉 as a
function of the average correlation length Λc, for n = 1 (top), n = 7 (middle) and n = 17
(bottom). Left: UOX assembly. Right: MOX assembly. Blue squares denote the results for
Poisson tessellations, red triangles for Box tessellations, and green circles for Voronoi tessella-
tions. The limit case at Λc = 0 corresponds to the atomic mix model. The black solid line
denotes Λeff,0, the result for the UOX assembly with intact fuel pins, which has been added for
reference (dashed lines represent the 1σ statistical uncertainty).
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Figure 6.6: Left. Distributions of the multiplication factor keff as a function of the average
correlation length Λc for a MOX assembly with n = 17. The mixing statistics is a Poisson
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atomic mix. Right. Distributions of the multiplication factor keff for a UOX assembly with
n = 17 and different mixing statistics. The average correlation length is Λc = 0.6. Blue
symbols correspond to a Poisson stochastic tessellation, green symbols to Voronoi stochastic
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Figure 6.7: Ensemble-averaged spatial flux 〈ϕ(x, y)〉 (arbitrary units) as a function of the
average correlation length Λc, with Poisson mixing statistics. Left: UOX assembly with n = 1.
Purple symbols correspond to Λc = 0.03, orange symbols to Λc = 0.05, green symbols to
Λc = 0.1 and red symbols to Λc = 0.5. Right: MOX assembly with n = 1. Purple symbols
correspond to Λc = 0.03, orange symbols to Λc = 0.05, green symbols to Λc = 0.1 and red
symbols to Λc = 0.5.
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Figure 6.9: Ensemble-averaged spectral flux 〈ϕ(E)〉 (arbitrary units) as a function of the average
correlation length Λc, with Poisson mixing statistics. Left: UOX assembly with n = 17. Red
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for assemblies with intact fuel pins; the dashed purple line corresponds to 〈ϕ(E)〉 for assemblies
with atomic mix.
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Figure 6.10: Discrepancy ∆[〈ϕ(E)〉] between the ensemble-averaged spectral flux 〈ϕ(E)〉 (ar-
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Poisson mixing statistics. Left: UOX assembly with n = 17. Red solid line corresponds to
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to Λc = 0.5, orange solid line to Λc = 1 and blue solid line to Λc = 3. For both MOX and UOX
configurations, the dotted black line corresponds to 〈ϕ(E)〉 for assemblies with intact fuel pins;
the dashed purple line corresponds to 〈ϕ(E)〉 for assemblies with atomic mix.
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Figure 6.11: Left. Average correlation length Λc,i(L) through clusters of composition i, as a
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of Λ, for an assembly with n = 17. Red symbols denote the fuel fraction, green symbols the
cladding fraction and blue symbols the moderator fraction. Symbols correspond to Monte Carlo
simulations. Error bars on Monte Carlo results represent the standard deviation σG on pi(L)
as given in Eq. (5.7). Theoretical values for infinite tessellations are displayed as dashed lines.
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6.3 Including the effects of anisotropy

For real life applications, fuel degradation will generally give rise to anisotropic re-arrangements,

possibly due to gravity and other material stratification phenomena [47, 50]. To the best of our

knowledge, neutron transport in anisotropic random media has been only considered in relation to the

Levermore-Pomraning model [110]. For the sake of simplicity, the stochastic tessellations investigated

in the previous section were isotropic (Poisson and Voronoi) or quasi-isotropic (Box). In this Section,

we will extend our previous results concerning reference solutions for eigenvalue problems in random

media by relaxing the isotropy hypothesis, in order to show how the geometrical properties of the

underlying tessellations affect the key safety parameters for eigenvalue problems in stochastic media.

For this purpose, we will resort to the anisotropic Poisson tessellations described in Sec. 2.3, and

revisit our benchmark model accordingly.

6.3.1 Benchmark specifications

As a reference configuration we will consider the same assembly composed of 17× 17 square fuel pin-

cells as in the previous Section. In order to describe random material fragmentation, we will assume

that the entire fuel lattice is replaced by a Poisson tessellation: the effects of material stratification

will be modelled by introducing an anisotropy law H(θ, φ) giving rise to planes that are preferentially

orthogonal to the z axis. The typical size of the fuel fragments will be imposed by setting the average

correlation length Λc. The coloring probabilities pF , pC and pM = 1− pF − pC are the same as given

in Eq. (6.11).

Similarly as done in Sec.6.2, for our benchmark configuration we will investigate the behaviour of

the ensemble-averaged multiplication factor 〈keff〉 and the ensemble-averaged effective neutron gener-

ation time 〈Λeff〉 and effective delayed neutron fraction 〈βeff〉. The ensemble-averaged scalar particle

flux 〈ϕ(E)〉 within the assembly will be also examined.

In particular, we will quantify the effects of the fuel fragmentation on these observables in terms

of both the anisotropy law H(n) and the average correlation length Λc. For each Λc, we will test

the impact of material stratification by varying the law H(n), from isotropic to strongly anisotropic.

In particular, we have considered the quadratic, histogram and box anisotropy laws introduced in

Sec. 4.3.1. The limit case of slab tessellations, where the random planes (with exponentially distributed

distances) are exactly orthogonal to the z axis, will be also explored for comparison. Some example

of realizations corresponding to different anisotropy laws are shown in Fig. 6.12. As for the typical

fragment size, in-core experiments suggest that Λc might lie in the range from less than a millimetre

to several millimetres, depending on the re-solidification speed [18,47,50]. For each law H(n) we will

then analyse the effects of Λc on the observables. For Λc comparable to the linear size of the assembly,

the tessellations are dominated by finite-size effects, and the dispersion of the volumic ratio for each

material composition becomes large.

6.4 Simulation results

The reference solutions for the ensemble-averaged multiplication factor 〈keff〉, kinetics parameters 〈`eff〉
and 〈βeff〉, and scalar neutron flux 〈ϕ(E)〉 are computed by following the same strategy as in Sec 6.2.1.

For each assembly configuration, a large number M of geometries is generated, and the material

properties are assigned to each volume as described above. The number of simulated particle histories

per configuration is given in Sec. 6.2.1. The procedure used in order to obtain the ensemble averages

and the associated dispersions has been detailed in Sec. 6.2.1. The physical observables might display

a larger or smaller dispersion around their average values depending on the anisotropy laws, on the

correlation lengths and on the volumic fractions. The number of realizations M has been chosen based

on the average correlation length Λc. The parameter M varies between M = 102 for Λc = 0.15 cm,

and M = 3× 103 for Λc = 3 cm.
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Figure 6.12: Examples of realizations of three-dimensional anisotropic Poisson tessellations as
a model of damaged fuel assembly. (a) Isotropic angular distribution. (b) Quadratic angular
distribution. (c) Histogram angular distribution. (d) Slab angular distribution. The average
correlation length for the three realizations is Λc = 0.5 cm (left) and Λc = 0.15 cm (right). Red
corresponds to fuel, green to cladding and blue to moderator.

6.4.1 The average multiplication factor

The behaviour of the ensemble-averaged multiplication factor 〈keff〉 is illustrated in Fig. 6.13 for

UOX (left) and MOX (right) assemblies. We have determined the evolution of 〈keff〉 as a function of

the anisotropy laws (quadratic, box, histogram and slab) and of the average correlation length Λc.

Simulation results corresponding to isotropic Poisson tessellations had been previously examined in

Sec. 6.2 and are reported here for comparison. The error bar on 〈keff〉 stems from the contribution

of the Monte Carlo statistical error (which is of the order of about 50 pcm for all simulations, as

mentioned above) and the dispersion due to the random realizations. For reference, the limit case of

atomic mix (Λc → 0) and the keff,0 eigenvalue corresponding to an assembly with intact fuel pins are

also shown in Fig. 6.13.

Fuel fragmentation has an apparent impact on stochastic tessellations. For both UOX and MOX

assemblies, in the atomic mix limit 〈keff〉 lies well below the reference keff,0 (about 8×103 pcm for UOX

and 1.2×104 pcm for MOX). Close to the atomic mix limit, i.e., Λc → 0, we can single out two general

trends: the behaviour of 〈keff〉 as a function of Λc is almost independent of the anisotropy law H(n);

furthermore, 〈keff〉 ≥ keff,am, where we denote by keff,am the eigenvalue corresponding to the atomic

mix limit. The former feature was expected on physical grounds, based on the considerations presented

in Sec. 2.3.4: for Λc smaller than the neutron mean free path, the distinct details of the angular law

H(n) are not detected by the transported particles, and 〈keff〉 is almost exclusively affected by the
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average correlation length Λc, which is independent of H(n). This result stresses the importance of

Λc as a key property of the Poisson tessellations with respect to particle transport.

For increasing Λc, the effects of the anisotropy H(n) on 〈keff〉 become apparent: the curve of

〈keff〉 as a function of Λc gets progressively lower when H(n) is varied from isotropic to strongly

anisotropic (the histogram distribution leading to an almost horizontal material stratification in the

assembly). The curve of 〈keff〉 corresponding to the quadratic anisotropy, which is somehow milder

than the histogram distribution, lies in between. The highest 〈keff〉 value is attained for an isotropic

H(n), which is possibly related to the peculiar inequalities for the polyhedral features of the Poisson

tessellation described in Sec. 2.3.2. The values 〈keff〉 computed for isotropic and box tessellations are

almost indistinguishable, as already noticed in Sec. 6.2: this surprising and important finding stems

from the box tessellation being quasi-isotropic. Numerical investigations have actually shown that the

chord length distribution for Poisson-Box tessellations is almost identical to that of isotropic Poisson

tessellations (see Sec. 4.2.3).

In the limit of very large Λc, the stochastic tessellations are trivially filled with a single material

(fuel, cladding, or moderator). In this case, 〈keff〉 would be the weighted sum of the multiplication

factors of three configurations with the assembly replaced by a fuel, cladding or moderator volume,

and this value would be typically lower than the reference keff,0 corresponding to the regular lattice

(see also Sec. 6.2).

For any anisotropy law H(n), the eigenvalue 〈keff〉 as a function of the average correlation length Λc
attains a maximum, which can be in excess or in defect with respect to keff,0, depending on the mixing

statistics and on the material compositions, but only weakly on the angular law H(n). For the UOX

assemblies, the maximum 〈keff〉 is attained for Λc ∼ 0.5 cm (almost independently of H(n)), and lies

slightly lower than keff,0. For MOX assemblies, the maximum is attained at a larger average correlation

length Λc ∼ 1 cm, again almost independently of H(n), and is fairly in excess of the reference keff,0.

Fuel fragmentation would be expected to lower the reactivity of the assemblies, where fuel is arranged

in a regular lattice with optimized pitch. This seems to be the case for UOX compositions, where

the tessellation model leads to maxima 〈keff〉 < keff,0, independently of the angular law H(n). MOX

compositions generally lead to larger reactivity excursions, with maxima well beyond keff,0 for any

H(n). As observed above, fissile mass is not rigorously preserved along realizations, and this might

further contribute to the discrepancies between UOX and MOX assemblies for intermediate correlation

lengths (see also Sec. 6.2).

For both UOX and MOX configurations, the behaviour of 〈keff〉 for slab tessellations is distinct with

respect to the case of regular anisotropic Poisson tessellations. Slab tessellations formally correspond

to degenerate anisotropic Poisson tessellations where a single direction for sampling the random planes

is allowed: in the limit of infinite tessellations, this yields polyhedral cells of unbounded volume and

surface (contrary to the case of non-degenerate H(n) distributions, for which the polyhedral cells are

always bounded, even for infinite tessellations). Nonetheless, the average correlation length Λc is well

defined and stays finite, which allows comparing slab tessellations to anisotropic Poisson tessellations

for a given Λc. Moreover, for finite tessellations as those applied to the fragmented assembly model,

all polyhedral features of slab tessellations are finite, although cells span the entire geometry. Yet,

the peculiar geometrical features of these configurations is mirrored in the resulting properties of the

eigenvalues for criticality calculations: in particular, the maximum 〈keff〉 eigenvalue is attained for

smaller Λc (about 0.25 cm for UOX compositions, and 0.5 cm for MOX compositions) and the peak

value is lower than in the case of regular anisotropic Poisson tessellations. For MOX assemblies, the

maximum corresponding to slab tessellations lies in slight defect of keff,0. These findings are intimately

related to the fact that moderator and cladding layers in slab configurations allow for longer neutron

excursions in the transversal direction (i.e., without encountering fuel layers) that are forbidden when

the polyhedral cells are bounded.

The distribution of the multiplication factor

For criticality safety applications, the dispersion of the multiplication factors around their average

values due to the variability of the random geometry realizations is of utmost interest. For this purpose,
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Figure 6.13: Evolution of the ensemble-averaged multiplication factor 〈keff〉 as a function of the
average correlation length Λc and of the anisotropy law H(n). Left: UOX assembly. Right:
MOX assembly. Symbols denote Monte Carlo simulation results: blue circles correspond to
isotropic distribution, red diamonds to quadratic distribution, purple triangles to histogram
distribution, green squares to box distribution and gray crosses to slab distribution. The limit
case at Λc = 0 corresponds to the atomic mix model. The black solid line denotes keff,0, the
result for the assembly with intact fuel pins, which has been added for reference (dashed lines
represent the 1σ statistical uncertainty).

we have also computed the distributions P(keff). Some representative histograms corresponding to

MOX fuel are displayed in Fig. 6.14 as a function of the anisotropy law H(n) for fixed Λc (left) or as

a function of Λc for the same law H(n) (right). In particular, Fig. 6.14 (left) shows that the shape of

the P(keff) distribution is only weakly sensitive to the anisotropy law H(n) for the value of Λ = 1 cm

chosen here. Only the slab tessellation shows a largely different behaviour, as already suggested by

the analysis of the average 〈keff〉. All the distributions are highly skewed, with a longer tail for lower

values of keff. Figure 6.14 (right) shows the impact of the average correlation length for the case of the

histogram anisotropy distribution. It is apparent that Λc strongly affects not only the average 〈keff〉,
but also the dispersion and the skewness of the full distribution P(keff).

The average kinetics parameters

The evolution of the ensemble-averaged effective delayed neutron fraction 〈βeff〉 is illustrated in

Fig. 6.15 for UOX (left) and MOX (right) assemblies. The values 〈βeff〉 obtained by Monte Carlo

simulation are displayed as a function of the average correlation length Λc, for different anisotropy

laws H(n). The isotropic case is taken from Sec. 6.2. The findings corresponding to slab tessellations

are shown as well. The limit case corresponding to the atomic mix is also displayed. Moreover, the

βeff,0 value corresponding to an assembly with intact fuel pins is plotted for reference. The impact of

stochastic tessellations on 〈βeff〉 is weak, and typically well within error bars. The behaviour of 〈βeff〉
is almost unaffected by the choice of the anisotropy law H(n). The case of slab tessellations yields

results that are entirely compatible with those of regular anisotropic tessellations. For UOX assem-

blies we remark nonetheless that the random fragmentation introduces a slight bias on the average

value, i.e., 〈βeff〉 ≤ βeff,0, where βeff,0 is the reference value corresponding to an assembly with intact

fuel pins. On the contrary, for MOX assemblies 〈βeff〉 ' βeff,0. The resulting 〈βeff〉 shows a slight

increasing trend with respect to the average correlation length Λc. Actually, the effective delayed

neutron fraction 〈βeff〉 depends mostly on the volumic fraction of fuel within the assembly, and this

quantity only weakly depends on Λc and H(n); however, for large Λc finite-size effects come into play

and affect the distribution of the fissile mass within the assembly (the mass is not exactly preserved

by the ternary mixing model, as observed above).

The behaviour of the ensemble-averaged effective neutron generation time 〈Λeff〉 is illustrated in

Fig. 6.16 for UOX (left) and MOX (right) assemblies. The values 〈Λeff〉 obtained by Monte Carlo
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Figure 6.14: Distributions P(keff) of the multiplication factor keff for MOX configurations. Left.
Impact of the anisotropy law H(n) for fixed Λc. Blue circles correspond to isotropic case, red
diamonds to quadratic case, purple triangles to histogram case, green squares to box case and
gray crosses to slab case, for Λc = 1 cm. Right. Impact of the average correlation length Λc for
fixed H(n). Magenta circles represent Λc = 0.15 cm, light blue diamonds Λc = 0.3 cm, orange
squares Λc = 0.5 cm, dark green crosses Λc = 0.7 cm and purple triangles Λc = 1 cm, for the
histogram anisotropy law. The reference values for the case of the intact assembly and for the
atomic mix regime are shown as a solid black line and as a dashed black line, respectively.

simulation are displayed as a function of the average correlation length Λc, for different anisotropy

laws H(n). The isotropic case is taken from Sec. 6.2. The findings corresponding to slab tessellations

are shown as well. The limit case corresponding to the atomic mix is also displayed. Moreover, the

Λeff,0 value corresponding to an assembly with intact fuel pins is plotted for reference. Contrary to

the delayed neutron fraction, the effective neutron generation time 〈Λeff〉 is strongly affected by the

fuel fragmentation. In the atomic mix limit for small Λc, 〈Λeff〉 lies slightly below Λeff,0, and rapidly

increases as a function of Λc. In particular, for UOX assemblies 〈Λeff〉 increases by a factor of 3 in

the range of Λc explored here, whereas for MOX assemblies 〈Λeff〉 increases by a factor of 6 for the

same range of Λc. Enhancing the degree of anisotropy from the isotropic distribution to the histogram

distribution increases 〈Λeff〉, the quadratic law lying in between. Isotropic and box tessellations yield

almost identical results. The simulation results corresponding to the slab tessellations are larger than

for the regular anisotropic Poisson tessellations: these findings can be explained by the increased

lifetime of neutrons in these configurations, the moderator and cladding layers allowing for longer

excursions without being absorbed in the transversal directions, i.e, within the material layers.

Analysis of neutron flux

We consider now the effects of fuel fragmentation on the ensemble-averaged and normalized funda-

mental eigenmode 〈ϕ(E)〉. We have considered a 281 group mesh, covering the entire energy range of

the simulation, namely 10−5 eV to 20 MeV. The behaviour of the spatially-integrated and normalized

〈ϕ(E)〉 for MOX assemblies is shown in Fig. 6.17. For fixed Λc, the impact of the anisotropy law is

rather weak, as shown in Fig. 6.17 (left), although spectra in tessellations clearly differ from those of

the intact assembly and of the atomic mix. On the other hand, for a given anisotropy law H(n), the

impact of Λc is apparent: for small Λc, 〈ϕ(E)〉 lies slightly below the reference flux (corresponding to

the intact assembly) in the thermal region and above for the epi-thermal and fast regions. For larger

Λ, 〈ϕ(E)〉 lies above the reference flux in the thermal region and below for the epi-thermal and fast

regions.

Simulation time

For all the configurations examined here, we have recorded the computational cost of the performed cal-

culations as a function of the complexity of the underlying stochastic tessellations. The corresponding
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Figure 6.15: Evolution of the ensemble-averaged effective delayed neutron fraction 〈βeff〉 as
a function of the average correlation length Λc and of the anisotropy law H(n). Left: UOX
assembly. Right: MOX assembly. Symbols denote Monte Carlo simulation results: blue circles
correspond to isotropic distribution, red diamonds to quadratic distribution, purple triangles to
histogram distribution, green squares to box distribution and gray crosses to slab distribution.
The limit case at Λc → 0 corresponds to the atomic mix model. The black solid line denotes
βeff,0, the result for the assembly with intact fuel pins, which has been added for reference
(dashed lines represent the 1σ statistical uncertainty).

Λc = 0.15 cm Λc = 3 cm
Fuel Anisotropy 〈t〉 ± σ[t] 〈t〉 ± σ[t]

Isotropic 48260 ± 16384 2209 ± 192
Quadratic 33691 ± 7980 2165 ± 210

UOX Histogram 19407 ± 5560 2185 ± 234
Box 16451 ± 346 2165 ± 198
Slab 5864 ± 1737 2643 ± 821

Isotropic 37628 ± 8146 2052 ± 193
Quadratic 46726 ± 28523 2687 ± 863

MOX Histogram 19407 ± 5560 2185 ± 234
Box 15033 ± 3166 1998 ± 198
Slab 4031 ± 1318 1962 ± 371

Table 6.3: Average simulation times 〈t〉 (expressed in seconds) and their dispersions σ[t] for
UOX and MOX fuels, corresponding to different anisotropy laws H(n), and average correlation
lengths Λc. For comparison, the simulation time for the atomic mix limit is tmix ' 1350 s for
UOX and tmix ' 1200 s for MOX.

(ensemble-averaged) computer times for each assembly configuration are reported in Tab. 6.3, together

with the associated dispersions σ[t]. The average simulation time 〈t〉 globally decreases for increas-

ing Λc, as expected. The chosen anisotropy law H(n) also affects the computer time. For large Λ,

simulation times are almost independent of the anisotropy law; for small Λ, the shortest simulation

times are attained for the slab tessellations. Moreover, subtle effects due to correlation lengths and

volume fractions for the material compositions come also into play, and strongly influence the average

computer time. For some configurations, the dispersion σ[t] may become very large, and even be

comparable to the average 〈t〉. Atomic mix simulations are based on a single homogenized realization.
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Figure 6.16: Evolution of the ensemble-averaged effective neutron generation time 〈Λeff〉 as
a function of the average correlation length Λc and of the anisotropy law H(n). Left: UOX
assembly. Right: MOX assembly. Symbols denote Monte Carlo simulation results: blue circles
correspond to isotropic distribution, red diamonds to quadratic distribution, purple triangles to
histogram distribution, green squares to box distribution and gray crosses to slab distribution.
The limit case at Λc → 0 corresponds to the atomic mix model. The black solid line denotes
Λeff,0, the result for the UOX assembly with intact fuel pins, which has been added for reference
(dashed lines represent the 1σ statistical uncertainty).
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Figure 6.17: Fundamental eigenmode 〈ϕ(E)〉 for MOX fuel. Left. Impact of the anisotropy law
H(n) for fixed Λc. Blue circles correspond to isotropic distribution, red diamonds to quadratic
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gray crosses to slab distribution, for Λc = 1 cm. Right. Impact of the average correlation length
Λc for fixed H(n). Dark green symbols represent results for Λc = 3 cm, purple symbols for
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symbols for Λc = 0.15 cm, for the histogram anisotropy law. The reference spectra for the case
of the intact assembly and for the atomic mix regime are shown as a solid black line and as a
dashed black curve, respectively.





Chapter 7

Annealed disorder approach

7.1 Introduction

As shown in the previous Chapters, reference solutions for particle transport in quenched disorder are

very demanding in terms of computational resources, especially if transport is to be solved by Monte

Carlo methods in order to preserve the highest possible accuracy in solving the Boltzmann equation.

In principle, it would be thus desirable to directly derive a single equation for the ensemble-averaged

flux 〈ϕ〉. For binary stochastic mixing, where only two immiscible materials (say α and β) are present,

the following equation for 〈ϕα(r,Ω)〉 is obtained:

[Ω · ∇+ Σα] pα〈ϕα〉 =
pαΣs,α

Ωd

∫
〈ϕα(r,Ω′)〉dΩ′ + pβ,α〈ϕβ,α〉 − pα,β〈ϕα,β〉+ pαSα (7.1)

where pi(r) is the probability of finding the material of index i at position r and pi,j = pi,j(r,Ω)

represents the probability per unit length of crossing the interface from material i to material j in

direction Ω. The quantity 〈ϕi,j〉 denotes the angular flux averaged over those realizations where there

is a transition from material i to material j at r and in direction Ω. Excluding the special case of

particle transport in the absence of scattering, Eq. (7.1) leads to an infinite hierarchy for 〈ϕα〉 [108].

In order to explicitly derive the ensemble-averaged flux 〈ϕα〉, it is therefore necessary to introduce

a closure formula, which will in general depend on the underlying mixing statistics [108,136,171]. The

Levermore-Pomraning model assumes for instance 〈ϕα,β〉 = 〈ϕα〉, with

pi,j(r,Ω) =
pi

Λi(Ω)
, (7.2)

where Λi(Ω) is the mean chord length in material i and direction Ω [108], which yields

[Ω · ∇+ Σα] pα〈ϕα〉 =
pαΣs,α

Ωd

∫
〈ϕα(r,Ω′)〉dΩ′ + pαSα +

pβ
Λβ
〈ϕβ〉 −

pα
Λα
〈ϕα〉. (7.3)

Several generalisations of this model have been later proposed, including higher-order closure schemes [108,

136]. This approach corresponds to the assumption of annealed disorder: particles are assumed to

travel in an ‘average’ medium with modified transport kernels (here represented by the additional cre-

ation and disappearance terms that mirror the random transitions between material α and material

β) that mimic the effects of disorder on the particle displacements.

In parallel to the derivation of such annealed-disorder equations, a family of Monte Carlo algorithms

have been conceived in order to approximate the ensemble-averaged solutions to various degrees of

accuracy [31, 32, 167]. Their common feature is that they allow a simpler treatment of transport

in stochastic mixtures (typically by neglecting the correlations on particle trajectories induced by

the spatial disorder). In this context, a prominent role is played by the so-called Chord Length

Sampling (CLS) algorithm, which is supposed to formally solve the Levermore-Pomraning model for

Markovian binary mixing [122, 123, 167]. The basic idea behind CLS is that the interfaces between

the constituents of the stochastic medium are sampled on-the-fly during the particle displacements

by drawing the distances to the following material boundaries from a distribution depending on the

175
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mixing statistics. The free parameters of the CLS model are the average chord length Λi through

each material and the volume fraction pi. Since the spatial configuration seen by each particle is

regenerated at each particle flight, the CLS corresponds to an annealed disorder model, as opposed

to the quenched disorder of the reference solutions, where the spatial configuration is frozen for all

the traversing particles. Generalization of these Monte Carlo algorithms including partial memory

effects due to correlations for particles crossing back and forth the same materials have been also

proposed [167].

In this Chapter, we will compare the CLS simulation results to the reference solutions for the

ALP benchmark [1]. The case of 1d slab disorder has been considered previously in the literature [1,

9–11, 171] and will be reported here for the sake of completeness. In addition, we will also consider

2d extruded and full 3d Markov mixing configurations. The physical observables of interest will

be the particle flux 〈ϕ〉, the transmission coefficient 〈T 〉 and the reflection coefficient 〈R〉: we will

examine the discrepancies between reference and CLS simulation results as a function of the benchmark

configurations and of the system dimensionality d.

In order to verify the consistency of the proposed results, a scientific collaboration has been es-

tablished with Dr. P. Brantley of the Lawrence Livermore National Laboratory and with Professor

T. Palmer of the Oregon University. Within the framework of this collaboration, the CLS calcula-

tions have been performed by using two independent Monte Carlo implementations of the CLS algo-

rithm, in Tripoli-4 R© [21] and Mercury, the Monte Carlo particle transport code being developed at

LLNL [14,15].

This Chapter is organized as follows: in Sec. 7.2 we will detail the methods and the algorithms

that we have adopted in order to produce the CLS results. Simulation findings will be illustrated and

discussed in Sec. 7.3.

Then, in Sec. 7.4 we will develop a new class of CLS-like Monte Carlo algorithms for particle

transport with annealed disorder, aimed at improving the standard CLS for d-dimensional Markov

media, yet keeping the increase in algorithmic complexity to a minimum. Inspiration comes from

the observation that the physical observables related to particle transport through quasi-isotropic

Poisson tessellations based on Cartesian boxes are almost identical to those computed for isotropic

Poisson tessellations, for any dimension d, as shown in the previous Chapters, which confirms the

considerations in [2]. This quite remarkable property suggests that the standard CLS algorithm can be

extended by replacing the memoryless sampling of material interfaces by the sampling of d-dimensional

Cartesian boxes sharing the statistical features of quasi-isotropic Poisson tessellations, so as to mimic

the spatial correlations that would be induced by isotropic Poisson tessellations. We will call this class

of algorithms Poisson Box Sampling (PBS). Moreover, within the framework of the collaboration with

Dr. Brantley, we will additionally implement and test a new algorithm (LRP, for Local Realization

Preserving) which is also supposed to better preserve the effects of spatial correlations. These new

algorithms will be contrasted with the standard CLS and with the reference solutions for the ALP

benchmark: their distinct merits and possible drawbacks will be thoroughly examined.

7.2 Chord Length Sampling

The pioneering work by Zimmerman and Adams [166, 167] in the early 1990s has led to a family of

algorithms that go now under the name of Chord Length Sampling methods. In particular, it has

been shown that the standard form of the CLS (Algorithm A in [167]) formally solves the Levermore-

Pomraning equations, i.e., Eq. (7.3), corresponding to Markov mixing with the approximation that

memory of the crossed material interfaces is lost at each particle flight [122,123].

Algorithm A proceeds as follows [167]: each particle history begins by sampling position, angle and

velocity from the specified source, as customary. Moreover, the particle is assigned a supplementary

attribute, the material label, which is sampled from the probability pi. Then we need to compute

three distances, denoted respectively `b, `c, and `i. The quantity `b is the distance to the next

physical boundary, along the current direction of the particle. The quantity `c is the distance to

the next collision, which is determined by using the material cross section that has been chosen at
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the previous step: if the particle has a material α, e.g., then `c will be drawn from an exponential

distribution of parameter 1/Σα. Finally, the quantity `i is the distance to the next material interface,

which is sampled from an exponential distribution with parameter Λα, i.e., the average chord length

of material α, if the particle has a material label α (whence the name of CLS).

Then, the minimum distance among `b, `c and `i must be selected: if the minimum is `b, the

particle is moved along a straight line until it hits the external boundary; if the minimum is `c, the

particle is moved to the collision point, and the outgoing particle features are selected according to

the collision kernel pertaining to the current material label. If the minimum is `i, the particle is

moved to the interface between the two materials, and the material label is switched. If the particle

is not absorbed, a new set of distances `b, `c and `i are determined. During the time spent within

the random medium, the particle will be thus either colliding within a random chunk, or crossing the

interface between two chunks; the particle will ultimately get absorbed in one of the chunks, or escape

out of the boundaries of the random medium. The Monte Carlo estimators for the scalar flux and the

currents are the same as those for the reference solutions described above.

As observed above, Algorithm A assumes that the particle has no memory of its past history,

and in particular the crossed interfaces are immediately forgotten (which is coherent with the closure

formula of the Levermore-Pomraning model). In this respect, CLS is an approximation of the exact

treatment of disorder-induced spatial correlations (actually, it can be shown that CLS is exact only

for pure absorbers). As a result, Algorithm A is expected to be less accurate in the presence of strong

scatterers with optically thick mean material chunk length. A thorough discussion of the shortcomings

of the CLS approach for d = 1 can be found, e.g., in [70].

7.2.1 Slab geometries

For mono-energetic particle transport in slab geometries with isotropic scattering, the Levermore-

Pomraning equations read(
µ
∂

∂x
+ Σt,i

)
(pi〈ϕi〉) = pi

Σs,i

2

∫ 1

−1
dµ′〈ϕi(x, µ′)〉+ piQi + |µ|

(
pj
Λj
〈ϕj〉 −

pi
Λi
〈ϕi〉

)
(7.4)

in 0 ≤ x ≤ L and −1 ≤ µ ≤ 1, for material i = {α, β} and j 6= i, where 〈ϕi〉 = 〈ϕi(x, µ)〉 is the material

i angular particle flux for particles at position x with a direction cosine µ = cos(θ) with respect to

the x axis and Qi = (x, µ) is the angular source associated with material i at spatial location x in

direction µ. The cross sections Σt,α and Σs,α are those of material α. Tabs.5.1-5.2 summarize the

values used for the ALP benchmark. The source is given by

Qi(x, µ) =

{
0 suite I,
1

2L
suite II,

and the boundary conditions read

〈ϕi(0, µ)〉 =

{
2 suite I,
0 suite II,

µ > 0

and

〈ϕi(L, µ)〉 =

{
0 suite I,
0 suite II,

µ < 0.

Correspondingly, the CLS algorithm that formally solves the Levermore-Pomraning model given

by Eq. 7.4 is the following. For suite I, the source particle position is set to x = 0, and the direction

cosine is sampled from

µ =
√
ξ, (7.5)

where ξ is a uniform random number in [0, 1), in order to ensure the isotropic incident flux condition.

For suite II, the starting position x is sampled uniformly in [0, L], and the direction cosine is sampled

uniformly in [−1, 1] in order to ensure the uniform and isotropic source condition. According to the
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Levermore-Pomraning prescription, the distance to material interfaces for a particle in material α is

sampled from an exponential distribution as follows:

di = −Λα
|µ|

ln(1− ξ), (7.6)

where the factor 1/|µ| accounts for the projection of the distance along the x axis. The distance to the

next collision is sampled from the exponential distribution of parameter 1/Σα(x), and the distance to

the boundary is computed as customary. For isotropic scattering, the cosine direction after collision

is sampled uniformly in [−1, 1].

7.2.2 Two-dimensional extruded geometries

Assuming again mono-energetic particle transport with isotropic scattering in two-dimensional geome-

tries extruded in the z axis direction, the Levermore-Pomraning equations read(√
1− µ2 cos(φ)

∂

∂x
+
√

1− µ2 sin(φ)
∂

∂y
+ Σt,i

)
(pi〈ϕi〉) =

pi
Σs,i

4π

∫ 1

−1
dµ′
∫ 2π

0
dφ′〈ϕi(x, y, µ′, φ′)〉+ piQi +

√
1− µ2

(
pj
Λj
〈ϕj〉 −

pi
Λi
〈ϕi〉

)
, (7.7)

for material i = {α, β} and j 6= i, where 〈ϕi〉 = 〈ϕi(x, y, µ, φ)〉 is the material i angular particle flux

for particles at position x, y with a direction cosine µ = cos(θ) with respect to the z axis and a polar

angle φ with respect to the x axis and Qi = (x, y, µ, φ)) is the angular source associated with material

i at spatial location x, y in direction µ, φ.

The cross sections Σt,α and Σs,α are those of material α. Tabs.5.1-5.2 summarize the values used

for the ALP benchmark. The source is given by

Qi(x, y, µ, φ) =

{
0 suite I,

1

4πL2
suite II,

and the boundary conditions read

〈ϕi(0, y, µ, φ)〉 =

{
4π suite I,
0 suite II,

µ > 0

and

〈ϕi(L, y, µ, φ)〉 =

{
0 suite I,
0 suite II,

µ < 0.

The CLS algorithm that formally corresponds to solving the Levermore-Pomraning model given

by Eq. 7.7 is the following. For suite I, the source particle positions are set to x = 0 and y taken

uniformly in [0, L]. Then we sample a direction cosine µ′ (with respect to the x axis) from

µ′ =
√
ξ (7.8)

where ξ is taken in [0, 1), and a polar angle φ′ (with respect to the y axis) uniform in [0, 2π]. The

initial particle direction is

Ω0 =

{
µ′

f
,

√
1− µ′2 cos(φ′)

f

}
, (7.9)

with

f =
√
µ′2 + (1− µ′2) cos2(φ′), (7.10)

in order to ensure the isotropic incident flux condition, and the initial direction cosine µ0 is defined

by

µ0 =
√

1− µ′2 sin(φ′). (7.11)
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For suite II, the starting positions x, y are sampled uniformly in [0, L]× [0, L], the direction cosine µ

is sampled uniformly in [−1, 1] and the polar angle φ is sampled uniformly in [0, 2π] in order to ensure

the uniform and isotropic source condition, which yields the initial particle direction

Ω0 = {cos(φ), sin(φ)} . (7.12)

According to the Levermore-Pomraning prescription, the distance to material interfaces for a particle

in material α is sampled from an exponential distribution as follows:

di = − Λα√
1− µ2

ln(1− ξ), (7.13)

where the factor 1/
√

1− µ2 again accounts for the projection of the distance on the x− y plane. The

distance to the next collision is sampled from the exponential distribution of parameter 1/Σα(x, y),

and the distance to the boundary is computed as customary. For isotropic scattering, the cosine

direction µ after collision is sampled uniformly in [−1, 1], and the polar angle φ is sampled uniformly

in [0, 2π]; the particle direction is then given by

Ω = {cos(φ), sin(φ)} . (7.14)

7.2.3 Three-dimensional geometries

The Levermore-Pomraning equations for mono-energetic transport with isotropic scattering in three-

dimensional geometries read(√
1− µ2 cos(φ)

∂

∂x
+
√

1− µ2 sin(φ)
∂

∂y
+ µ

∂

∂z
+ Σt,i

)
(pi〈ϕi〉) =

pi
Σs,i

4π

∫ 1

−1
dµ′
∫ 2π

0
dφ′〈ϕi(x, y, z, µ′, φ′)〉+ piQi +

pj
Λj
〈ϕj〉 −

pi
Λi
〈ϕi〉, (7.15)

where 〈ϕi〉 = 〈ϕi(x, y, z, µ, φ)〉 is the the material i angular particle flux for particles being at position

x, y, z with a direction cosine µ = cos(θ) with respect to the z axis and a polar angle φ with respect to

the x axis and Qi = (x, y, z, µ, φ)) is the angular source associated with material i at spatial location

x, y, z in direction µ, φ. The source is given by

Qi(x, y, z, µ, φ) =

{
0 suite I,

1

4πL3
suite II,

and the boundary conditions read

〈ϕi(0, y, z, µ, φ)〉 =

{
4π suite I,
0 suite II,

µ > 0

and

〈ϕi(L, y, z, µ, φ)〉 =

{
0 suite I,
0 suite II,

µ < 0.

The CLS algorithm that formally corresponds to solving the Levermore-Pomraning model given

by Eq. 7.15 is the following. For suite I, the source particle positions are set to x = 0 and y, z taken

uniformly in [0, L]× [0, L]. Then we sample a direction cosine µ′ (with respect to the x axis) from

µ′ =
√
ξ (7.16)

where ξ is taken in [0, 1), and a polar angle φ′ (with repect to the y axis) uniform in [0, 2π]. The

initial particle direction is

Ω0 =
{
µ′,
√

1− µ′2 cos(φ′),
√

1− µ′2 sin(φ′)
}

(7.17)
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in order to ensure the isotropic incident flux condition. For suite II, the starting positions x, y, z are

sampled uniformly in [0, L]× [0, L]× [0, L], the direction cosine µ is sampled uniformly in [−1, 1] and

the polar angle is sampled uniformly in [0, 2π] in order to ensure the uniform and isotropic source

condition, which yields the initial particle direction

Ω0 =
{√

1− µ2 cos(φ),
√

1− µ2 sin(φ), µ
}
. (7.18)

According to the Levermore-Pomraning prescription, the distance to material interfaces for a particle

in material α is sampled from an exponential distribution as follows:

di = −Λα ln(1− ξ). (7.19)

The distance to the next collision is sampled from the exponential distribution of parameter 1/Σα(x, y, z),

and the distance to the boundary is computed as customary. For isotropic scattering, the cosine di-

rection µ after collision is sampled uniformly in [−1, 1], and the polar angle φ is sampled uniformly in

[0, 2π]; the particle direction is then given by

Ω =
{√

1− µ2 cos(φ),
√

1− µ2 sin(φ), µ
}
. (7.20)

7.3 Simulation results

The specifications for the ALP benchmark are taken from [1,9–11,171], as recalled in Sec. 5.3.1.

The simulation results for the total scalar flux 〈ϕ〉, the transmission coefficient 〈T 〉 and the reflec-

tion coefficient 〈R〉 are provided in Tabs. 7.1 to 7.3 for the benchmark cases corresponding to suite I,

and in Tabs. 7.4 to 7.6 for the benchmark cases corresponding to suite II, respectively. The reference

solutions have been computed by following the procedure detailed in Sec. 5.3.

The CLS results have been obtained with both Tripoli-4 R© and Mercury Monte Carlo codes

by following the procedure described in Sec. 7.2. We will denote by σCLS[O] the resulting statisti-

cal uncertainty associated to each physical observable O. For the Tripoli-4 R© CLS simulations of

the d-dimensional benchmark configurations we have used 109 particle histories. The Monte Carlo

Levermore-Pomraning CLS algorithm was previously implemented in Mercury [12] in a manner con-

sistent with the algorithmic descriptions in [11,167] and Sec. 7.2. The Mercury Levermore-Pomraning

implementation has been demonstrated [12] to accurately reproduce the independent one-dimensional

slab geometry Monte Carlo Levermore-Pomraning results in [11]. We modelled the three-dimensional

benchmark suites I and II using the Mercury Levermore-Pomraning CLS implementation with 109

particle histories. We obtained results that are generally statistically equivalent to the Tripoli-4 R©

CLS results to typically within three standard deviations for the reflection and transmission coeffi-

cients and the scalar flux distributions (agreement to typically four to five digits). For this work,

we will present only the Tripoli-4 R© simulation results. Computer times for the reference and CLS

solutions are also provided in the same tables: not surprisingly, the CLS approach is much faster than

the reference method, since a single transport simulation is needed.

As a general remark, the accuracy of CLS with respect to reference solutions increases with in-

creasing system dimensionality d. This is expected on physical grounds, since the higher d and the

smaller is the impact of the spatial correlations: a particle undergoing back-scattering is less likely to

cross exactly the same material interface as the one crossed during the previous flight. In other words,

the approximations introduced in the CLS algorithm by neglecting spatial correlations will have a

weaker effect on particle transport. Nonetheless, simulation results show a few exceptions among the

examined configurations. Moreover, the accuracy of CLS also generally improves when increasing

the tessellation density, i.e., decreasing the average chord length: configurations pertaining to case 1

globally show a better agreement than those of case 2, and those of case 2 show a better agreement

than those of case 3.

The effects of system dimensionality on the discrepancies between CLS and exact solutions are

stronger for configurations with smaller average chord lengths. This behaviour is again consistent

with the fact that increasing the chord length induces larger chunks of materials, and for chunks that
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Case d Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

Ref 0.437± 0.002 0.0148± 2× 10−4 6.10± 0.01 1.1× 106

1 CLS 0.37814± 2× 10−5 0.026403± 5× 10−6 6.6288± 2× 10−4 2.6× 103

Err [%] −13.49± 0.33 78.43± 2.35 8.64± 0.26

Ref 0.4060± 6× 10−4 0.0173± 10−4 6.365± 0.008 6.5× 105

1a 2 CLS 0.39001± 2× 10−5 0.020100± 5× 10−6 6.5056± 2× 10−4 4.2× 103

Err [%] −3.93± 0.15 16.03± 0.91 2.21± 0.13

Ref 0.4091± 5× 10−4 0.0163± 10−4 6.328± 0.007 3.9× 106

3 CLS 0.40176± 2× 10−5 0.017491± 4× 10−6 6.3933± 2× 10−4 4.6× 103

Err [%] −1.79± 0.13 7.53± 0.86 1.03± 0.12

Ref 0.0845± 4× 10−4 0.00164± 7× 10−5 2.90± 0.01 2.6× 106

1 CLS 0.058641± 8× 10−6 0.001545± 10−6 2.7738± 2× 10−4 6.2× 102

Err [%] −30.59± 0.36 −5.79± 4.23 −4.26± 0.40

Ref 0.0454± 2× 10−4 0.00108± 3× 10−5 2.163± 0.005 2.9× 105

1b 2 CLS 0.042346± 6× 10−6 0.001067± 10−6 2.1467± 2× 10−4 9.6× 102

Err [%] −6.70± 0.49 −1.04± 3.10 −0.78± 0.23

Ref 0.0377± 2× 10−4 0.00085± 3× 10−5 1.918± 0.003 1.8× 106

3 CLS 0.036714± 6× 10−6 0.0008413± 9× 10−7 1.91440± 6× 10−5 1.0× 103

Err [%] −2.52± 0.52 −1.03± 3.46 −0.20± 0.17

Ref 0.4767± 5× 10−4 0.0159± 3× 10−4 6.97± 0.03 1.1× 106

1 CLS 0.36953± 10−5 0.023765± 3× 10−6 6.9137± 2× 10−4 5.6× 103

Err [%] −22.48± 0.08 49.14± 3.21 −0.82± 0.49

Ref 0.4078± 5× 10−4 0.0179± 10−4 6.52± 0.01 6.6× 105

1c 2 CLS 0.38557± 10−5 0.019478± 3× 10−6 6.4952± 2× 10−4 9.8× 103

Err [%] −5.45± 0.12 8.59± 0.90 −0.35± 0.17

Ref 0.4059± 5× 10−4 0.0164± 10−4 6.303± 0.008 4.4× 106

3 CLS 0.39619± 10−5 0.016992± 2× 10−6 6.2957± 10−4 1.1× 104

Err [%] −2.40± 0.12 3.62± 0.84 −0.12± 0.13

Table 7.1: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite I - case 1.

span a large fraction of the entire geometry the impact of dimensionality must be rather weak: in

this regime, particle transport is mostly influenced by the material volume fractions (i.e., the coloring

probability).

The behaviour of suite II configurations is quite similar to that of suite I configurations, and no

specific trend due to the source and/or initial conditions can be easily detected.

The spatial scalar flux 〈ϕ〉 within the box is illustrated in Figs. 7.1 to 7.3 for case 1 to case 3,

respectively. The discrepancies between CLS and reference solutions for this observable have the same

behaviour as for the scalar quantities described above. The discrepancy decreases with increasing

system dimensionality and with decreasing average chord length. For dense geometries (case 1) the

effects of dimensionality on the discrepancy are rather strong, and become less appreciable for less

dense geometries. The kind of source and/or initial conditions plays again a minor role. This analysis

is confirmed by plotting the differences ∆[〈ϕ(x)〉] between reference and CLS solutions (see Figs. 7.4

to 7.6 for case 1 to case 3, respectively). Since both reference and CLS solutions are affected by

a statistical uncertainty, the error bars on ∆[〈ϕ(x)〉] have been computed by taking the combined

variance

σ[∆[O]] =
√
σ2[〈O〉] + σ2

CLS[O] (7.21)

for each observable O.
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Case d Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

Ref 0.239± 0.003 0.0973± 9× 10−4 7.64± 0.02 9.1× 105

1 CLS 0.18051± 10−5 0.12841± 10−5 7.8140± 10−4 2.1× 103

Err [%] −24.46± 0.91 32.01± 1.26 2.21± 0.28

Ref 0.226± 0.002 0.0969± 7× 10−4 7.59± 0.02 3.5× 105

2a 2 CLS 0.18972± 10−5 0.11403± 10−5 7.7288± 10−4 3.0× 103

Err [%] −16.03± 0.80 17.70± 0.86 1.83± 0.20

Ref 0.225± 0.001 0.0937± 4× 10−4 7.57± 0.01 4.4× 105

3 CLS 0.20043± 10−5 0.105624± 9× 10−6 7.6615± 2× 10−4 3.1× 103

Err [%] −11.08± 0.45 12.74± 0.54 1.22± 0.13

Ref 0.2866± 8× 10−4 0.194± 0.001 11.69± 0.04 3.0× 106

1 CLS 0.21827± 10−5 0.17938± 10−5 10.7138± 5× 10−4 5.4× 102

Err [%] −23.84± 0.22 −7.45± 0.56 −8.33± 0.28

Ref 0.1980± 8× 10−4 0.1465± 9× 10−4 9.11± 0.03 1.0× 106

2b 2 CLS 0.16674± 10−5 0.13377± 10−5 8.3763± 4× 10−4 8.8× 102

Err [%] −15.79± 0.33 −8.68± 0.54 −8.06± 0.30

Ref 0.1616± 8× 10−4 0.1194± 9× 10−4 7.77± 0.03 3.4× 105

3 CLS 0.14223± 10−5 0.10996± 10−5 7.2609± 2× 10−4 9.3× 102

Err [%] −11.99± 0.44 −7.91± 0.68 −6.50± 0.37

Ref 0.4334± 8× 10−4 0.184± 0.002 12.51± 0.06 7.1× 105

1 CLS 0.28962± 10−5 0.19497± 10−5 11.3443± 4× 10−4 3.3× 103

Err [%] −33.17± 0.12 5.83± 1.24 −9.35± 0.46

Ref 0.3677± 6× 10−4 0.179± 0.002 11.46± 0.05 4.1× 105

2c 2 CLS 0.27853± 10−5 0.16713± 10−5 10.1679± 3× 10−4 5.6× 103

Err [%] −24.25± 0.12 −6.74± 0.82 −11.25± 0.39

Ref 0.3457± 5× 10−4 0.1651± 9× 10−4 10.76± 0.03 4.8× 105

3 CLS 0.27693± 10−5 0.15031± 10−5 9.6048± 2× 10−4 8.9× 103

Err [%] −19.89± 0.12 −8.98± 0.49 −10.73± 0.23

Table 7.2: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite I - case 2.
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Case d Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

Ref 0.692± 0.003 0.163± 0.002 16.44± 0.05 1.3× 106

1 CLS 0.60758± 2× 10−5 0.24037± 10−5 16.3738± 7× 10−4 3.8× 103

Err [%] −12.14± 0.34 47.09± 1.60 −0.43± 0.30

Ref 0.680± 0.003 0.168± 0.002 16.46± 0.05 5.4× 105

3a 2 CLS 0.62678± 2× 10−5 0.21473± 10−5 16.3866± 7× 10−4 6.0× 103

Err [%] −7.77± 0.40 27.99± 1.45 −0.44± 0.33

Ref 0.675± 0.001 0.1692± 9× 10−4 16.38± 0.03 1.4× 106

3 CLS 0.64107± 2× 10−5 0.19957± 10−5 16.3231± 6× 10−4 9.1× 103

Err [%] −5.06± 0.20 17.96± 0.65 −0.36± 0.19

Ref 0.0361± 2× 10−4 0.0760± 7× 10−4 5.16± 0.02 4.2× 106

1 CLS 0.024013± 5× 10−6 0.075671± 8× 10−6 5.0313± 5× 10−4 3.5× 102

Err [%] −33.50± 0.44 −0.37± 0.95 −2.48± 0.40

Ref 0.0217± 2× 10−4 0.0568± 6× 10−4 4.00± 0.02 2.8× 106

3b 2 CLS 0.015501± 4× 10−6 0.052503± 7× 10−6 3.7582± 4× 10−4 5.7× 102

Err [%] −28.55± 0.61 −7.51± 0.97 −6.03± 0.41

Ref 0.0165± 2× 10−4 0.0457± 9× 10−4 3.47± 0.03 5.0× 105

3 CLS 0.012454± 3× 10−6 0.040345± 6× 10−6 3.2382± 10−4 8.0× 102

Err [%] −24.48± 0.97 −11.80± 1.68 −6.55± 0.70

Ref 0.445± 0.001 0.104± 0.002 9.00± 0.07 6.6× 105

1 CLS 0.32613± 10−5 0.119665± 9× 10−6 8.4702± 6× 10−4 3.4× 103

Err [%] −26.71± 0.17 15.11± 2.54 −5.91± 0.75

Ref 0.411± 0.001 0.094± 0.002 8.30± 0.07 2.7× 105

3c 2 CLS 0.33767± 10−5 0.094998± 9× 10−6 7.6579± 5× 10−4 5.6× 103

Err [%] −17.92± 0.22 0.72± 2.54 −7.72± 0.83

Ref 0.3979± 7× 10−4 0.086± 0.001 7.89± 0.03 7.0× 105

3 CLS 0.34652± 10−5 0.080613± 7× 10−6 7.3217± 2× 10−4 8.8× 103

Err [%] −12.92± 0.15 −6.16± 1.19 −7.17± 0.40

Table 7.3: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite I - case 3.
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Case d Algorithm 〈L〉 〈ϕ〉 ttot [s]

Ref 0.1525± 3× 10−4 7.70± 0.01 9.9× 105

1 CLS 0.165716± 8× 10−6 7.3449± 10−4 2.6× 103

Err [%] 8.69± 0.24 −4.65± 0.14

Ref 0.1592± 3× 10−4 7.512± 0.008 2.1× 106

1a 2 CLS 0.162634± 8× 10−6 7.4287± 10−4 4.6× 103

Err [%] 2.17± 0.17 −1.11± 0.10

Ref 0.1583± 3× 10−4 7.530± 0.008 7.9× 107

3 CLS 0.159828± 8× 10−6 7.4924± 2× 10−4 5.3× 103

Err [%] 0.98± 0.17 −0.49± 0.10

Ref 0.0724± 3× 10−4 3.735± 0.009 1.5× 106

1 CLS 0.069346± 6× 10−6 3.4898± 2× 10−4 5.8× 102

Err [%] −4.28± 0.36 −6.55± 0.22

Ref 0.0542± 2× 10−4 2.182± 0.003 1.8× 106

1b 2 CLS 0.053662± 5× 10−6 2.1468± 2× 10−4 8.9× 102

Err [%] −0.92± 0.33 −1.63± 0.16

Ref 0.0481± 2× 10−4 1.808± 0.003 7.4× 107

3 CLS 0.047859± 5× 10−6 1.79609± 6× 10−5 1.0× 103

Err [%] −0.42± 0.33 −0.63± 0.14

Ref 0.1742± 7× 10−4 9.62± 0.03 1.0× 106

1 CLS 0.172845± 7× 10−6 8.2618± 3× 10−4 6.7× 103

Err [%] −0.76± 0.38 −14.11± 0.22

Ref 0.1630± 3× 10−4 7.77± 0.01 2.1× 106

1c 2 CLS 0.162379± 6× 10−6 7.4824± 2× 10−4 1.2× 104

Err [%] −0.38± 0.18 −3.76± 0.12

Ref 0.1577± 3× 10−4 7.455± 0.008 7.7× 107

3 CLS 0.157383± 6× 10−6 7.3335± 10−4 1.4× 104

Err [%] −0.19± 0.17 −1.63± 0.10

Table 7.4: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite II - case 1.
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Case d Algorithm 〈L〉 〈ϕ〉 ttot [s]

Ref 0.1904± 3× 10−4 8.29± 0.03 5.3× 106

1 CLS 0.195346± 9× 10−6 6.8189± 2× 10−4 1.7× 103

Err [%] 2.57± 0.16 −17.70± 0.30

Ref 0.1898± 3× 10−4 7.46± 0.03 3.2× 105

2a 2 CLS 0.193217± 9× 10−6 6.8517± 2× 10−4 2.8× 103

Err [%] 1.82± 0.18 −8.16± 0.33

Ref 0.1892± 3× 10−4 7.27± 0.01 5.8× 105

3 CLS 0.191527± 9× 10−6 6.8774± 2× 10−4 3.0× 103

Err [%] 1.21± 0.16 −5.36± 0.18

Ref 0.2918± 8× 10−4 10.75± 0.02 1.5× 106

1 CLS 0.26783± 10−5 9.8684± 5× 10−4 4.9× 102

Err [%] −8.21± 0.24 −8.20± 0.20

Ref 0.2274± 6× 10−4 7.97± 0.02 6.1× 105

2b 2 CLS 0.209414± 9× 10−6 7.2072± 4× 10−4 7.8× 102

Err [%] −7.91± 0.26 −9.60± 0.24

Ref 0.1931± 4× 10−4 6.54± 0.01 1.7× 106

3 CLS 0.181518± 9× 10−6 6.0577± 2× 10−4 8.6× 102

Err [%] −6.01± 0.21 −7.31± 0.19

Ref 0.312± 0.001 11.92± 0.03 4.1× 105

1 CLS 0.283614± 9× 10−6 10.3022± 4× 10−4 2.8× 103

Err [%] −9.09± 0.33 −13.56± 0.25

Ref 0.286± 0.001 10.39± 0.03 2.1× 105

2c 2 CLS 0.254187± 8× 10−6 8.8967± 3× 10−4 5.2× 103

Err [%] −11.26± 0.31 −14.35± 0.27

Ref 0.2688± 6× 10−4 9.55± 0.02 4.9× 105

3 CLS 0.240117± 8× 10−6 8.3498± 2× 10−4 8.4× 103

Err [%] −10.69± 0.20 −12.58± 0.18

Table 7.5: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite II - case 2.
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Case d Algorithm 〈L〉 〈ϕ〉 ttot [s]

Ref 0.4112± 6× 10−4 27.3± 0.2 1.9× 106

1 CLS 0.40935± 10−5 19.3460± 8× 10−4 4.3× 103

Err [%] −0.45± 0.15 −29.24± 0.39

Ref 0.4115± 6× 10−4 24.3± 0.2 6.8× 105

3a 2 CLS 0.40967± 10−5 19.5145± 7× 10−4 7.4× 103

Err [%] −0.44± 0.15 −19.64± 0.53

Ref 0.4098± 4× 10−4 22.82± 0.07 1.7× 106

3 CLS 0.40807± 10−5 19.7173± 6× 10−4 1.1× 104

Err [%] −0.42± 0.10 −13.61± 0.28

Ref 0.1294± 5× 10−4 5.93± 0.02 1.4× 106

1 CLS 0.125785± 7× 10−6 5.7673± 6× 10−4 3.1× 102

Err [%] −2.80± 0.35 −2.82± 0.34

Ref 0.1003± 4× 10−4 3.75± 0.02 6.7× 105

3b 2 CLS 0.093978± 7× 10−6 3.3419± 4× 10−4 5.2× 102

Err [%] −6.26± 0.38 −10.88± 0.36

Ref 0.0868± 3× 10−4 2.98± 0.01 8.7× 105

3 CLS 0.080949± 6× 10−6 2.6747± 10−4 7.8× 102

Err [%] −6.78± 0.34 −10.12± 0.30

Ref 0.225± 0.001 10.56± 0.05 4.1× 105

1 CLS 0.211761± 8× 10−6 9.5120± 6× 10−4 3.8× 103

Err [%] −6.02± 0.55 −9.92± 0.46

Ref 0.207± 0.001 8.78± 0.05 1.7× 105

3c 2 CLS 0.191469± 7× 10−6 7.8470± 5× 10−4 6.7× 103

Err [%] −7.54± 0.64 −10.68± 0.51

Ref 0.1974± 7× 10−4 8.15± 0.02 5.0× 104

3 CLS 0.183044± 7× 10−6 7.4839± 10−4 1.1× 104

Err [%] −7.26± 0.33 −8.20± 0.25

Table 7.6: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite II - case 3.
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Figure 7.1: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 1.
Left column: suite I configurations; right column: suite II configurations. Blue lines correspond
to d = 1, red lines to d = 2 and green lines to d = 3. Solid lines represent the benchmark
solutions (quenched disorder approach), dotted or dashed lines represent the solutions from the
Chord Length Sampling algorithm (annealed disorder approach).
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Case 2a
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Figure 7.2: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 2.
Left column: suite I configurations; right column: suite II configurations. Blue lines correspond
to d = 1, red lines to d = 2 and green lines to d = 3. Solid lines represent the benchmark
solutions (quenched disorder approach), dotted or dashed lines represent the solutions from the
Chord Length Sampling algorithm (annealed disorder approach).
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Case 3a
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Figure 7.3: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 3.
Left column: suite I configurations; right column: suite II configurations. Blue lines correspond
to d = 1, red lines to d = 2 and green lines to d = 3. Solid lines represent the benchmark
solutions (quenched disorder approach), dotted or dashed lines represent the solutions from the
Chord Length Sampling algorithm (annealed disorder approach).
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Case 1a
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Figure 7.4: Discrepancy ∆[〈ϕ(x)〉] between the ensemble-averaged spatial flux 〈ϕ(x)〉 obtained
with Poisson tessellations (quenched disorder approach) and that obtained with the Chord
Length Sampling algorithm (annealed disorder approach) for the benchmark configurations:
Case 1. Left column: suite I configurations; right column: suite II configurations. Blue lines
correspond to d = 1, red lines to d = 2 and green lines to d = 3. Error bars are computed as
in Eq. (7.21).
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Figure 7.5: Discrepancy ∆[〈ϕ(x)〉] between the ensemble-averaged spatial flux 〈ϕ(x)〉 obtained
with Poisson tessellations (quenched disorder approach) and that obtained with the Chord
Length Sampling algorithm (annealed disorder approach) for the benchmark configurations:
Case 2. Left column: suite I configurations; right column: suite II configurations. Blue lines
correspond to d = 1, red lines to d = 2 and green lines to d = 3. Error bars are computed as
in Eq. (7.21).
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Figure 7.6: Discrepancy ∆[〈ϕ(x)〉] between the ensemble-averaged spatial flux 〈ϕ(x)〉 obtained
with Poisson tessellations (quenched disorder approach) and that obtained with the Chord
Length Sampling algorithm (annealed disorder approach) for the benchmark configurations:
Case 3. Left column: suite I configurations; right column: suite II configurations. Blue lines
correspond to d = 1, red lines to d = 2 and green lines to d = 3. Error bars are computed as
in Eq. (7.21).
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7.4 Improved CLS-like algorithms

The previous considerations have shown that CLS solutions may display discrepancies as compared

to reference solutions, whose relevance varies strongly with the system dimensionality, the average

chord length and the material volume fraction. For the case of 1d slab geometries with Markov

mixing, possible improvements to the standard CLS algorithm accounting for partial memory effects for

particle trajectories have been detailed [167], and numerical tests have revealed that these corrections

contribute to palliating the discrepancies [11], although a generalization to higher dimensions seems

hardly feasible with reasonable computational burden [167].

As observed above, Algorithm A assumes that the particle has no memory of its past history, and

in particular the crossed interfaces are immediately forgotten (which is consistent with the closure

formula of the Levermore-Pomraning model). In this respect, CLS is an approximation of the exact

treatment of disorder-induced spatial correlations. In particular, CLS is expected to be less accurate

in the presence of strong scatterers with optically thick mean material chunk length: see [11] and

Sec.5.3. A thorough discussion of the shortcomings of the CLS approach for d = 1 can be found, e.g.,

in [70].

For the case of 1d slab geometries, two improved versions of CLS Algorithm A have been pro-

posed in the literature, by partially taking into account the memory effects induced by the spatial

correlations [167]: in the former, called Algorithm B, instead of sampling the material interfaces one

at a time a full random slab is generated, and particles do not switch material properties until either

the forward or the backward surfaces of the slab are crossed; in the latter, called Algorithm C, a slab

is generated as in Algorithm B, and the slab traversed before entering the current one is also kept

in memory. The basic idea behind Algorithms B and C is to preserve the shape and the position of

the material chunks (thus partially restoring spatial correlations) by generating an additional typical

random slab whenever particles cross the material surfaces of the current volume.

As expected, Algorithms B and C have been shown to approximate the reference solutions for

Markov mixing in 1d more accurately than Algorithm A, at the expense of an increased computational

cost [11, 167]. Algorithm B in particular has been extensively tested for the ALP benchmark in slab

geometries, and performs better than Algorithm A for all configurations [11]. As observed in [167], it

is not trivial to extend Algorithms B and C to higher dimensions: this can be immediately understood

by remarking that randomly generating a typical material chunk in dimension three with Markov

mixing would correspond to sampling a typical polyhedral cell of the isotropic Poisson tessellations,

whose exact distributions for the volume, surface, number of faces, etc., are unfortunately unknown

to this day [87, 127]. In dimension one the typical chunk is a slab of exponentially distributed width,

which considerably simplifies the computational burden.

7.4.1 Poisson-Box Sampling methods

A possible way to overcome this issue and improve Algorithm A in higher dimensions is however

suggested by the numerical findings concerning Box tessellations. Since the chord length distribution of

Box tessellations is very close to that of Poisson tessellations, it seems reasonable to extend Algorithm B

by generating on-the-fly the typical cells of Box tessellations, i.e., Cartesian boxes with exponentially

distributed side lengths. The generalization of Algorithm C would immediately follow by keeping

memory of the last visited box. We will call this new class of Monte Carlo algorithms Poisson Box

Sampling (PBS), and we will denote by PBS-1 the former (inspired by Algorithm B) and by PBS-2

the latter (inspired by Algorithm C). In view of the aforementioned similarity between quasi-isotropic

and isotropic Poisson tessellations, intuitively we expect that PBS methods will preserve the increased

accuracy of Algorithms B and C over Algorithm A, yet allowing for a relatively straightforward

construction and a fairly minor additional computational burden.

Poisson-Box Sampling 1

By adapting the strategy of CLS, the algorithm for PBS-1 proceeds as follows:
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Step 1: initialize each particle history by sampling position, angle and velocity from the specified

source. In addition, a random Cartesian box is generated. The box is defined by its material label

i and its spatial position, given by the coordinates (xc, yc, zc) of its center and its sides: lx, ly and

lz. Three pairs of random numbers, namely, (∆+
x ,∆

−
x ), (∆+

y ,∆
−
y ) and (∆+

z ,∆
−
z ), are sampled from

independent exponential distributions of average 3Λ/2. Then, we set the center of the box

xc = x+ (∆+
x −∆−x )/2, (7.22)

yc = y + (∆+
y −∆−y )/2, (7.23)

zc = z + (∆+
z −∆−z )/2, (7.24)

and the sides

lx = ∆+
x + ∆−x , (7.25)

ly = ∆+
y + ∆−x , (7.26)

lz = ∆+
z + ∆−z . (7.27)

The material label of the box is sampled according to pi.

Step 2: we compute three distances: the distance `b to the next physical boundary, along the current

direction of the particle; the distance `c to collision, which is determined by using the material cross

section that has been chosen at the previous step: if the particle is in a box with material label α,

e.g., then `c will be drawn from an exponential distribution of parameter 1/Σα; and the distance `i
to the next interface of the current box along the particle direction (the boundaries of the box being

easily determined).

Step 3: the minimum distance among `b, `c and `i has to be selected. Then,

• if the minimum is `b, the particle is moved along a straight line until the external boundary is

hit (the direction is updated in the case of reflection);

• if the minimum is `c, the particle is moved to the collision point, and the outgoing particle

features are selected according to the collision kernel pertaining to the current material label;

• if the minimum is `i, the particle is moved along a straight line until the interface of the current

box is hit: a new box is sampled, and the new box becomes the current box. For the sampling

of a new box, we begin by drawing a random spacing δ from an exponential distribution with

average 3Λ/2. Without loss of generality, if the interface of the current box hit by the particle

is perpendicular to the x-axis, we set the following values for the side lx of the new box and the

position xc of its center: lx = δ, xc = x+ lx Ωx/|Ωx|, where Ωx is the particle direction along the

x-axis. The other features of the current box, namely, ly, lz, yc and zc, are left unchanged for

the new box (as suggested by the construction of Box tessellations). We would proceed in the

same way for the y- and z-axis. Finally, the label of the new box is randomly sampled according

to the coloring probability pi.

Step 4: If the particle has not undergone a capture in the previous step, return to Step 2.

Contrary to Algorithm A, the correlations induced by spatial disorder are partially preserved by

the PBS-1 algorithm: indeed, each particle will see the same material properties until the current box

is left. Moreover, when a new box is created, its features strongly depend on those of the previous box.

This should globally improve the accuracy of PBS-1 with respect to CLS in reproducing the reference

solutions for the benchmark. Long-range correlations spanning more than a box (i.e., a linear size of

the order of Λ) are nonetheless suppressed, so that we still expect some discrepancies between PBS-1

solutions and those obtained by the quenched disorder approach for either Poisson or Box tessellations.
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Poisson-Box Sampling 2

In order to further improve the accuracy of the PBS methods, we propose a second method, inspired

by Algorithm C, that will be denoted PBS-2. The strategy is exactly as in the PBS-1 algorithm,

the only difference being in the fact that, once a new box has been sampled, the old box is not

deleted but is kept in memory (size, position and material label) until a new material interface is

selected. If the particle leaves the new box by another interface, the old box is definitively deleted,

another box is sampled and the new box becomes the old box. If the selected interface is the one

that has been kept in memory, the new box will simply be the old box, and the roles are reversed.

This implementation intuitively extends the range of spatial correlations, and is thus supposed to

correspondingly enhance the accuracy with respect to reference solutions, at the expense of increasing

the computational burden, too.

7.4.2 Local Realization Preserving (LRP) algorithm

Another method to improve Algorithm A in three-dimensional geometries has been recently proposed

by Brantley and Zimmerman [16] under the name of Local Realization Preserving (LRP) algorithm.

In this this approach, each particle is associated with the distance to material interface in the forward

direction of particle travel, denoted `+i , and to the distance to material interface in the backward

direction of particle travel, denoted `−i . After a collision, these quantities are either maintained as-is

or switched to account for backscattering, which is expected to increase the accuracy of this algorithm

with respect to Chord Length Sampling. The algorithm is the following:

Step 1: we initialize each particle history by sampling position, angle and velocity from the specified

source. The material identifier j is sampled according to pj ; in addition, we sample `+i and `−i from

two independent exponential distributions of mean Λj .

Step 2: we compute three distances: the distance `b to the next physical boundary, along the current

direction of the particle; the distance `c to collision, which is determined by using the material cross

section that has been chosen at the previous step: if the particle is in material α, e.g., then `c will be

drawn from an exponential distribution of mean 1/Σj ; and the distance `i to material interface, which

is equal to the current value of `+i .

Step 3: the minimum distance among `b, `c and `i has to be selected. Then,

• if the minimum is `b, the particle is moved along a straight line until the external boundary is

hit (the direction is updated in the case of reflection) and `+i (respectively `−i ) is decremented

(respectively incremented) by `b.

• if the minimum is `c, the particle is moved to the collision point, and the outgoing particle

features are selected according to the collision kernel pertaining to the current material label.

Then, `+i (respectively `−i ) is decremented (respectively incremented) by `b. Finally, we compute

the cosine µ between the incoming and outgoing directions of the particle; we sample a random

number ξ from a uniform distribution U [0, 1]; if µ < 2ξ − 1, we switch the values of `+i and

`−i , otherwise they are maintained: this corresponds to switch `+i and `−i with probability

P (µ) = (1−µ)/2. Thus, for µ close to −1, which corresponds to backscattering, the probability

to switch the distances to material interfaces is strong, whereas this probability becomes weak

for for µ close to 1 (i.e., forward-scattering). This linear probabilistic model preserves the

average deflection cosine of the scattering and is expected to (partially) take into account the

back-scattering, as explained in [16].

• if the minimum is `i, the particle is moved to the interface between the two materials, and

the material label j is switched; moreover, a new value of `+i is sampled from a exponential

distribution of mean Λj , while `−i is set to zero.
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Step 4: If the particle has not undergone a capture in the previous step, return to Step 2.

Not differently from PBS, LRP is also an approximate method: it allows better taking into account

the effects of back-scattering, but a particle can nonetheless experience different material identifiers

at the same location during its history, which is expected to induce discrepancies with respect to

reference solutions.

7.4.3 Simulation results for PBS and LRP methods

We consider again the ALP benchmark, with the specifications given in Sec. 5.3.1.

The simulation results corresponding to CLS, PBS and LRP for the total scalar flux 〈ϕ〉, the

transmission coefficient 〈T 〉 and the reflection coefficient 〈R〉 are provided in Tabs. 7.7 to 7.9 for

the benchmark cases corresponding to suite I, and in Tabs. 7.10 to 7.12 for the benchmark cases

corresponding to suite II, respectively. The spatial flux 〈ϕ(x)〉 is illustrated in Figs. 7.7 to 7.12.

For the CLS, PBS and LRP simulations of the benchmark configurations we have used 109 particles

(103 replicas with 106 particles per replica), with resulting statistical uncertainties associated to each

physical observable O denoted by σCLS[O] and σPBS[O], respectively.

Results for the transmission coefficient 〈T 〉 and the reflection coefficient 〈R〉 obtained with LRP

algorithm have already been published in [16], for suite I only. Nevertheless, we have reproduced the

simulations in order to get the spatial flux and also the results corresponding to suite II; therefore, in

the following, we display the results that we have obtained.

Generally speaking, the solutions computed with PBS-1 show a better agreement with respect

to the reference solutions based on Poisson tessellations than those computed with CLS, and overall

remarkably well approximate the benchmark observables. Moreover, as expected from the previous

considerations, PBS-2 shows a further enhanced accuracy with respect to PBS-1. A single exception

has been detected for sub-case 1b of suite I, as reported in Tab. 7.7 and in Fig. 7.7. For case 1b, material

α is purely scattering, and material β is purely absorbing, with a small average chord length Λ. A

typical realization will then consist in small absorbing chunks, with a large cross section, dispersed

in larger chunks of an almost transparent material. For this configuration, the results of the Box

tessellations are slightly different from those of Poisson tessellations, as observed above, for the spatial

flux and the transmission coefficient. It turns out that both PBS algorithms provide results that are in

excellent agreement with the reference solutions for the Box tessellation, which is consistent with their

implementation. However, because of the observed discrepancy between Box and Poisson tessellations

for sub-case 1b, PBS shows a small bias with respect to Poisson reference solutions. For the same

case, CLS displays a better accuracy as compared to Poisson solutions, and this is most probably due

to the fact that this algorithm exactly preserves isotropy.

For suite I, the accuracy of CLS with respect to reference solutions for 〈T 〉, 〈R〉 and 〈ϕ(x)〉 increases

with decreasing average chord length Λ, which is coherent with the previous findings in the case of

d = 1 [11, 167] and d = 2 shown in Sec. 7.2. In contrast, the PBS algorithms are less sensitive to Λ.

As remarked above, for all the benchmark configurations CLS is least accurate in scattering materials

with optically thick chunks, as for case 2c; for these cases, PBS yields significantly better results.

The CLS and the PBS algorithms generally under-predict the reflection coefficient 〈R〉, analogously

as observed in d = 1 [11]. For the transmission coefficient 〈T 〉, the approximate solutions of CLS

and PBS lead to an overall over-prediction, with some exceptions for sub-cases b and c in cases 2 and

3 (corresponding to larger Λ, with the material cross section of α being much smaller than that of

β). An explanation for CLS has been given in [11]: optically thick materials can be re-sampled as

being optically thin when a particle makes repeated attempts at penetrating them. Adding memory

effects might modify this general trend, as shown in the case of PBS-2. The CLS yields the maximum

discrepancy for 〈R〉 (roughly −25% relative error) for case 3b, where material α is purely scattering,

with a small cross section, whereas material β is purely absorbing, with a large cross section. For this

same case, the PBS-2 yields only −4% relative error. For 〈T 〉, the maximum relative error of CLS

(roughly 18%) is for case 3a, where the roles of materials are inverted with respect to case 3b, namely,

material α is purely absorbing, with a small cross section, whereas material β is purely scattering,
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with a large cross section. For this same case, the PBS-2 yields 8% relative error. The PBS-1 yields

a maximum discrepancy for 〈R〉 (roughly −15% relative error) for case 3b, i.e., the same as for CLS,

and for 〈T 〉 (roughly 15% relative error) for case 3a, which is again the same as for CLS (excluding

the case 1b based on the considerations presented above). The PBS-1 is overall more accurate than

CLS, although somewhat large errors may appear in some of the configurations. The PBS-2 algorithm

is always more accurate than PBS-1. As a general comment, when the CLS is accurate, the PBS

methods yield comparable or slightly better results; when the CLS is not accurate, the PBS methods

yield largely better results: this observation is coherent with the behaviour of CLS Algorithm B with

respect to the CLS Algorithm A in d = 1 [11]. As for the scalar flux, the accuracy of CLS and PBS

improves with decreasing Λ. The maximum error on 〈ϕ〉 is for case 2c (as in d = 1 [11]), whereas

for PBS-1 the maximum error is for 2b. An important remark is that for d = 3 both CLS and PBS

methods produce physically realistic flux distributions 〈ϕ(x)〉: this was known for CLS [62] and it is

first illustrated here for the PBS methods.

For suite II, the errors introduced by the approximate models with respect to the reference solutions

are somewhat smaller than for the suite I. For the average leakage 〈J〉, the maximum error for CLS

is achieved for case 2c (as in d = 1 [11]), whereas the maximum error for PBS-1 is for 2b. Generally

speaking, PBS-1 performs better than CLS for 〈J〉, and PBS-2 better than PBS-1. As for the spatial

flux 〈ϕ(x)〉, CLS is more accurate when the materials are optically thin [11], and this holds true also

for the PBS methods. For the flux, the maximum error for CLS is for case 3a (the error is considerably

reduced for the PBS-2 method), and the accuracy of CLS and PBS improves with decreasing Λ. For

d = 3 both CLS and PBS methods produce again physically realistic flux distributions 〈ϕ(x)〉. As

a general comment, when the CLS is accurate, the PBS methods yield comparable or slightly better

results, similarly as for the suite I; when the CLS is not accurate, the PBS methods yield largely

better results (this observation is again coherent with the behaviour of CLS Algorithm B with respect

to CLS Algorithm A in d = 1 [11]).

The analysis of the approximate solutions suggests that the accuracy of CLS overall improves

when decreasing the average chord length Λ: configurations pertaining to case 1 globally show a

better agreement than those of case 2, and those of case 2 show a better agreement than those of

case 3, as pointed out in Sec.7.2. The improved PBS methods are less sensitive to the average chord

length Λ and show a satisfactory agreement for all benchmark configurations. For intermediate and

large Λ, i.e., case 2 and 3, the impact of boundary conditions (due to the medium being of finite

size) comes also into play, and the polyhedra composing the tessellations will be more often truncated

by the sides of the box. These effects should be properly taken into account when comparing CLS

and PBS solutions to reference results, since the volumic ratio is not preserved in this case [68]: the

investigation of these phenomena is left for future work.

Computer times for the CLS and PBS solutions are also provided in Tabs. 7.7 to 7.9: not surpris-

ingly, the approaches based on annealed disorder are much faster than the reference methods, since a

single transport simulation is needed. PBS methods, while still much faster than reference solutions,

for most configurations take sensibly longer than CLS: this is partly due to the increased complexity

of the algorithms, and partly due to the fact that CLS is based on the sampling of the colored chord

lengths (corresponding to clusters of polyhedra sharing all the same material label), whereas PBS

require the sampling of un-colored boxes one at a time. Nonetheless, keeping in memory a further box

amounts to an almost negligible additional computational burden for PBS-2 as opposed to PBS-1.

As a general consideration, the solutions computed with LRP show a better agreement with respect

to the reference solutions based on Poisson tessellations than those computed with CLS, and overall

remarkably well approximate the benchmark observables. Moreover, the results obtained for the

average reflection and transmission coefficients for the suite I are compatible with those presented

in [16].

Computer times for the LRP solutions are given in Tabs. 7.7 to 7.9. As expected, the computer

time is comparable between CLS and LRP method, since both are based on the sampling of colored

chords. Moreover, LRP algorithm is faster than PBS methods because of the sampling of un-colored

boxes for the latter methods.
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Case Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

1a Poisson 0.4091± 5× 10−4 0.0163± 10−4 6.328± 0.007 3.9× 106

Box 0.4092± 6× 10−4 0.0166± 10−4 6.321± 0.008 8.5× 105

CLS 0.40176± 2× 10−5 0.017491± 4× 10−6 6.3933± 2× 10−4 4.6× 103

Err [%] −1.79± 0.13 7.53± 0.86 1.03± 0.12

PBS-1 0.40683± 2× 10−5 0.017030± 4× 10−6 6.3440± 2× 10−4 1.9× 104

Err [%] −0.55± 0.13 4.70± 0.84 0.25± 0.12

PBS-2 0.40760± 2× 10−5 0.016898± 4× 10−6 6.3368± 2× 10−4 1.9× 104

Err [%] −0.36± 0.13 3.88± 0.83 0.14± 0.12

LRP 0.40607± 2× 10−5 0.016718± 4× 10−6 6.3557± 2× 10−4 4.5× 103

Err [%] −0.74± 0.13 2.78± 0.82 0.44± 0.12

1b Poisson 0.0377± 2× 10−4 0.00085± 3× 10−5 1.918± 0.003 1.8× 106

Box 0.0379± 2× 10−4 0.00102± 3× 10−5 1.925± 0.004 3.4× 105

CLS 0.036714± 6× 10−6 0.0008413± 9× 10−7 1.91440± 6× 10−5 1.0× 103

Err [%] −2.52± 0.52 −1.03± 3.46 −0.20± 0.17

PBS-1 0.036729± 6× 10−6 0.001025± 1× 10−6 1.91635± 6× 10−5 5.8× 103

Err [%] −2.48± 0.52 20.58± 4.21 −0.10± 0.17

PBS-2 0.037188± 6× 10−6 0.001028± 10−6 1.92029± 6× 10−5 6.0× 103

Err [%] −1.26± 0.52 20.88± 4.23 0.11± 0.17

LRP 0.040808± 6× 10−6 0.000895± 10−6 1.9450± 10−4 1.1× 103

Err [%] 8.35± 0.57 5.34± 3.68 1.39± 0.17

1c Poisson 0.4059± 5× 10−4 0.0164± 10−4 6.303± 0.008 4.4× 106

Box 0.4062± 5× 10−4 0.0168± 10−4 6.306± 0.009 8.5× 105

CLS 0.39619± 10−5 0.016992± 2× 10−6 6.2957± 2× 10−4 1.1× 104

Err [%] −2.40± 0.12 3.62± 0.84 −0.12± 0.13

PBS-1 0.40278± 10−5 0.017054± 3× 10−6 6.3049± 2× 10−4 4.7× 104

Err [%] −0.78± 0.12 4.00± 0.85 0.03± 0.13

PBS-2 0.40399± 10−5 0.016998± 3× 10−6 6.3082± 2× 10−4 4.8× 104

Err [%] −0.48± 0.12 3.66± 0.85 0.08± 0.13

LRP 0.40586± 10−5 0.016951± 3× 10−6 6.3560± 2× 10−4 1.1× 104

Err [%] −0.02± 0.12 3.37± 0.84 0.84± 0.13

Table 7.7: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite I - case 1.
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Case Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

2a Poisson 0.225± 0.001 0.0937± 4× 10−4 7.57± 0.01 4.4× 105

Box 0.228± 0.001 0.0950± 4× 10−4 7.54± 0.01 4.3× 105

CLS 0.20043± 10−5 0.105624± 9× 10−6 7.6615± 2× 10−4 3.1× 103

Err [%] −11.08± 0.45 12.74± 0.54 1.22± 0.13

PBS-1 0.22066± 10−5 0.098160± 9× 10−6 7.5601± 2× 10−4 5.3× 103

Err [%] −2.11± 0.50 4.77± 0.50 −0.12± 0.13

PBS-2 0.22365± 10−5 0.097014± 9× 10−6 7.5504± 2× 10−4 5.3× 103

Err [%] −0.79± 0.51 3.55± 0.49 −0.25± 0.13

LRP 0.21049± 10−5 0.100990± 9× 10−6 7.6464± 2× 10−4 2.9× 103

Err [%] −6.62± 0.48 7.79± 0.51 1.02± 0.13

2b Poisson 0.1616± 8× 10−4 0.1194± 9× 10−4 7.77± 0.03 3.4× 105

Box 0.1626± 9× 10−4 0.1202± 9× 10−4 7.77± 0.03 2.9× 105

CLS 0.14223± 10−5 0.10996± 10−5 7.2609± 2× 10−4 9.3× 102

Err [%] −11.99± 0.44 −7.91± 0.68 −6.50± 0.37

PBS-1 0.14394± 10−5 0.11168± 10−5 7.3065± 2× 10−4 3.1× 103

Err [%] −10.94± 0.45 −6.48± 0.70 −5.92± 0.38

PBS-2 0.15193± 10−5 0.11572± 10−5 7.5152± 2× 10−4 3.2× 103

Err [%] −5.99± 0.47 −3.09± 0.72 −3.23± 0.39

LRP 0.17656± 10−5 0.12854± 10−5 8.0303± 4× 10−4 9.6× 102

Err [%] 9.25± 0.55 7.65± 0.80 3.40± 0.41

2c Poisson 0.3457± 5× 10−4 0.1651± 9× 10−4 10.76± 0.03 4.8× 105

Box 0.3474± 5× 10−4 0.1656± 9× 10−4 10.74± 0.03 4.0× 105

CLS 0.27693± 10−5 0.15031± 10−5 9.6048± 2× 10−4 8.9× 103

Err [%] −19.89± 0.12 −8.98± 0.49 −10.73± 0.23

PBS-1 0.32610± 10−5 0.16385± 10−5 10.4372± 2× 10−4 1.0× 104

Err [%] −5.67± 0.14 −0.78± 0.53 −3.00± 0.25

PBS-2 0.33558± 10−5 0.16586± 10−5 10.6010± 2× 10−4 9.9× 103

Err [%] −2.93± 0.14 0.44± 0.54 −1.48± 0.25

LRP 0.34333± 10−5 0.17682± 10−5 10.9273± 4× 10−4 4.7× 103

Err [%] −0.68± 0.14 7.07± 0.57 1.56± 0.26

Table 7.8: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite I - case 2.
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Case Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

3a Poisson 0.675± 0.001 0.1692± 9× 10−4 16.38± 0.03 1.4× 106

Box 0.677± 0.001 0.168± 0.001 16.39± 0.03 1.3× 106

CLS 0.64107± 2× 10−5 0.19957± 10−5 16.3231± 6× 10−4 9.1× 103

Err [%] −5.06± 0.20 17.96± 0.65 −0.36± 0.19

PBS-1 0.64806± 2× 10−5 0.19408± 10−5 16.3182± 6× 10−4 8.1× 103

Err [%] −4.02± 0.21 14.72± 0.64 −0.39± 0.19

PBS-2 0.66148± 2× 10−5 0.18226± 10−5 16.3416± 7× 10−4 8.1× 103

Err [%] −2.04± 0.21 7.73± 0.60 −0.25± 0.19

LRP 0.65240± 2× 10−5 0.19007± 10−5 16.4803± 8× 10−4 6.0× 103

Err [%] −3.38± 0.21 12.35± 0.62 0.60± 0.20

3b Poisson 0.0165± 2× 10−4 0.0457± 9× 10−4 3.47± 0.03 5.0× 105

Box 0.0166± 2× 10−4 0.0462± 9× 10−4 3.44± 0.03 4.1× 105

CLS 0.012454± 3× 10−6 0.040345± 6× 10−6 3.2382± 10−4 8.0× 102

Err [%] −24.48± 0.97 −11.80± 1.68 −6.55± 0.70

PBS-1 0.013974± 4× 10−6 0.044533± 6× 10−6 3.3178± 10−4 1.2× 103

Err [%] −15.26± 1.09 −2.65± 1.86 −4.26± 0.71

PBS-2 0.015823± 4× 10−6 0.047299± 7× 10−6 3.4216± 2× 10−4 1.2× 103

Err [%] −4.05± 1.23 3.40± 1.97 −1.26± 0.74

LRP 0.015743± 4× 10−6 0.041365± 7× 10−6 3.2910± 4× 10−4 6.6× 102

Err [%] −4.53± 1.22 −9.58± 1.73 −5.03± 0.71

3c Poisson 0.3979± 7× 10−4 0.086± 0.001 7.89± 0.03 7.0× 105

Box 0.4008± 7× 10−4 0.086± 0.001 7.86± 0.04 6.9× 105

CLS 0.34652± 10−5 0.080613± 7× 10−6 7.3217± 2× 10−4 8.8× 103

Err [%] −12.92± 0.15 −6.16± 1.19 −7.17± 0.40

PBS-1 0.36242± 10−5 0.086946± 8× 10−6 7.5230± 2× 10−4 7.6× 103

Err [%] −8.92± 0.15 1.21± 1.29 −4.62± 0.41

PBS-2 0.38437± 10−5 0.089701± 8× 10−6 7.7650± 2× 10−4 7.2× 103

Err [%] −3.41± 0.16 4.42± 1.33 −1.55± 0.42

LRP 0.38018± 10−5 0.093849± 8× 10−6 7.8474± 5× 10−4 5.2× 103

Err [%] −4.46± 0.16 9.25± 1.39 −0.51± 0.43

Table 7.9: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite I - case 3.
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Case Algorithm 〈J〉 〈ϕ〉 ttot [s]

1a Poisson 0.1583± 3× 10−4 7.530± 0.008 7.9× 107

Box 0.1580± 3× 10−4 7.533± 0.008 3.6× 107

CLS 0.159828± 8× 10−6 7.4924± 2× 10−4 5.3× 103

Err [%] 0.98± 0.17 −0.49± 0.10

PBS-1 0.158605± 8× 10−6 7.5218± 2× 10−4 2.3× 104

Err [%] 0.21± 0.17 −0.10± 0.10

PBS-2 0.158416± 8× 10−6 7.5259± 2× 10−4 2.3× 104

Err [%] 0.09± 0.17 −0.05± 0.10

LRP 0.158898± 8× 10−6 7.5171± 2× 10−4 5.3× 103

Err [%] 0.39± 0.17 −0.17± 0.10

1b Poisson 0.0481± 2× 10−4 1.808± 0.003 7.4× 107

Box 0.0481± 2× 10−4 1.820± 0.003 3.3× 107

CLS 0.047859± 5× 10−6 1.79609± 6× 10−5 1.0× 103

Err [%] −0.42± 0.33 −0.63± 0.14

PBS-1 0.047910± 5× 10−6 1.80671± 6× 10−5 5.5× 103

Err [%] −0.32± 0.33 −0.05± 0.14

PBS-2 0.048013± 5× 10−6 1.81201± 6× 10−5 5.6× 103

Err [%] −0.10± 0.33 0.25± 0.14

LRP 0.048628± 5× 10−6 1.8300± 10−4 1.1× 103

Err [%] 1.18± 0.34 1.24± 0.14

1c Poisson 0.1577± 3× 10−4 7.455± 0.008 7.7× 107

Box 0.1576± 3× 10−4 7.470± 0.008 3.9× 107

CLS 0.157383± 6× 10−6 7.3335± 10−4 1.4× 104

Err [%] −0.19± 0.17 −1.63± 0.10

PBS-1 0.157630± 6× 10−6 7.4260± 10−4 6.1× 104

Err [%] −0.04± 0.17 −0.39± 0.11

PBS-2 0.157705± 6× 10−6 7.4434± 10−4 6.3× 104

Err [%] 0.01± 0.17 −0.15± 0.11

LRP 0.158901± 7× 10−6 7.4808± 2× 10−4 1.4× 104

Err [%] 0.77± 0.17 0.35± 0.11

Table 7.10: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite II - case 1.
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Case Algorithm 〈J〉 〈ϕ〉 ttot [s]

2a Poisson 0.1892± 3× 10−4 7.27± 0.01 5.8× 105

Box 0.1882± 3× 10−4 7.31± 0.01 4.4× 105

CLS 0.191527± 9× 10−6 6.8774± 2× 10−4 3.0× 103

Err [%] 1.21± 0.16 −5.36± 0.18

PBS-1 0.189005± 9× 10−6 7.1825± 2× 10−4 5.7× 103

Err [%] −0.12± 0.15 −1.16± 0.19

PBS-2 0.188756± 9× 10−6 7.2490± 2× 10−4 5.9× 103

Err [%] −0.26± 0.15 −0.25± 0.19

LRP 0.191150± 9× 10−6 7.3194± 2× 10−4 3.9× 103

Err [%] 1.01± 0.16 0.72± 0.19

2b Poisson 0.1931± 4× 10−4 6.53± 0.01 1.7× 106

Box 0.1939± 4× 10−4 6.63± 0.01 9.1× 105

CLS 0.181518± 9× 10−6 6.0577± 2× 10−4 8.6× 102

Err [%] −6.01± 0.21 −7.31± 0.19

PBS-1 0.182655± 9× 10−6 6.1625± 2× 10−4 2.8× 103

Err [%] −5.42± 0.21 −5.70± 0.19

PBS-2 0.187874± 9× 10−6 6.3690± 2× 10−4 2.9× 103

Err [%] −2.72± 0.21 −2.54± 0.20

LRP 0.200751± 9× 10−6 6.6771± 4× 10−4 9.6× 102

Err [%] 3.95± 0.23 2.17± 0.21

2c Poisson 0.2688± 6× 10−4 9.55± 0.02 4.9× 105

Box 0.2680± 6× 10−4 9.62± 0.02 3.3× 105

CLS 0.240117± 8× 10−6 8.3498± 2× 10−4 8.4× 103

Err [%] −10.69± 0.20 −12.58± 0.18

PBS-1 0.260937± 9× 10−6 9.2561± 2× 10−4 9.8× 103

Err [%] −2.94± 0.22 −3.09± 0.20

PBS-2 0.265038± 9× 10−6 9.4484± 2× 10−4 9.7× 103

Err [%] −1.42± 0.22 −1.08± 0.20

LRP 0.273215± 9× 10−6 9.5234± 4× 10−4 4.9× 103

Err [%] 1.63± 0.23 −0.30± 0.20

Table 7.11: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite II - case 2.
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Case Algorithm 〈J〉 〈ϕ〉 ttot [s]

3a Poisson 0.4098± 4× 10−4 22.82± 0.07 1.7× 106

Box 0.4088± 4× 10−4 23.33± 0.08 1.6× 106

CLS 0.40807± 10−5 19.7173± 6× 10−4 1.1× 104

Err [%] −0.42± 0.10 −13.61± 0.28

PBS-1 0.40795± 10−5 20.7792± 7× 10−4 1.0× 104

Err [%] −0.45± 0.10 −8.96± 0.29

PBS-2 0.40856± 10−5 22.0417± 8× 10−4 1.1× 104

Err [%] −0.30± 0.10 −3.43± 0.31

LRP 0.41201± 10−5 22.3400± 9× 10−4 9.0× 103

Err [%] 0.54± 0.10 −2.12± 0.32

3b Poisson 0.0868± 3× 10−4 2.98± 0.01 8.7× 105

Box 0.0864± 3× 10−4 3.02± 0.01 7.2× 105

CLS 0.080949± 6× 10−6 2.6747± 10−4 7.8× 102

Err [%] −6.78± 0.34 −10.12± 0.30

PBS-1 0.082950± 6× 10−6 2.8168± 2× 10−4 1.1× 103

Err [%] −4.48± 0.35 −5.35± 0.32

PBS-2 0.085533± 6× 10−6 2.9531± 2× 10−4 1.2× 103

Err [%] −1.50± 0.36 −0.77± 0.34

LRP 0.082285± 6× 10−6 2.7149± 4× 10−4 7.0× 102

Err [%] −5.24± 0.34 −8.78± 0.31

3c Poisson 0.1974± 7× 10−4 8.15± 0.02 5.0× 105

Box 0.1956± 7× 10−4 8.24± 0.02 4.6× 105

CLS 0.183044± 7× 10−6 7.4839± 10−4 1.1× 104

Err [%] −7.26± 0.33 −8.20± 0.25

PBS-1 0.188079± 7× 10−6 7.7653± 2× 10−4 8.9× 103

Err [%] −4.71± 0.34 −4.75± 0.26

PBS-2 0.194130± 8× 10−6 8.0753± 2× 10−4 8.8× 103

Err [%] −1.64± 0.36 −0.95± 0.27

LRP 0.196205± 7× 10−6 7.8964± 5× 10−4 6.6× 103

Err [%] −0.59± 0.36 −3.14± 0.27

Table 7.12: Ensemble-averaged observables and computer time ttot for the benchmark configu-
rations: suite II - case 3.
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Case 1a
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Figure 7.7: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 1.
Left column: suite I configurations; right column: suite II configurations. Solid green lines
represent the benchmark solutions obtained with the quenched disorder approach for Markovian
mixtures (Poisson tessellations). Dotted or dashed lines represent the solutions from annealed
disorder approach: blue lines correspond to CLS results, black lines to PBS-1 results, red lines
to PBS-2 results and orange lines to LRP results.
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Figure 7.8: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 2.
Left column: suite I configurations; right column: suite II configurations. Solid green lines
represent the benchmark solutions obtained with the quenched disorder approach for Markovian
mixtures (Poisson tessellations). Dotted or dashed lines represent the solutions from annealed
disorder approach: blue lines correspond to CLS results, black lines to PBS-1 results, red lines
to PBS-2 results and orange lines to LRP results.
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Figure 7.9: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 3.
Left column: suite I configurations; right column: suite II configurations. Solid green lines
represent the benchmark solutions obtained with the quenched disorder approach for Markovian
mixtures (Poisson tessellations). Dotted or dashed lines represent the solutions from annealed
disorder approach: blue lines correspond to CLS results, black lines to PBS-1 results, red lines
to PBS-2 results and orange lines to LRP results.
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Figure 7.10: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case
1. Left column: suite I configurations; right column: suite II configurations. Solid green lines
represent the benchmark solutions obtained with the quenched disorder approach for Markovian
mixtures (Poisson tessellations). Dotted or dashed lines represent the solutions from annealed
disorder approach: blue lines correspond to CLS results, black lines to PBS-1 results, red lines
to PBS-2 results and orange lines to LRP results.



208 CHAPTER 7. ANNEALED DISORDER APPROACH

Case 2a

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0 1 2 3 4 5 6 7 8 9 10

〈ϕ
(x

)〉

x

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0 1 2 3 4 5 6 7 8 9 10

〈ϕ
(x

)〉

x

Case 2b

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0 1 2 3 4 5 6 7 8 9 10

〈ϕ
(x

)〉

x

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0 1 2 3 4 5 6 7 8 9 10

〈ϕ
(x

)〉

x

Case 2c

−0.2

−0.15

−0.1

−0.05

0

0.05

0 1 2 3 4 5 6 7 8 9 10

〈ϕ
(x

)〉

x

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0 1 2 3 4 5 6 7 8 9 10

〈ϕ
(x

)〉

x

Figure 7.11: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case
2. Left column: suite I configurations; right column: suite II configurations. Solid green lines
represent the benchmark solutions obtained with the quenched disorder approach for Markovian
mixtures (Poisson tessellations). Dotted or dashed lines represent the solutions from annealed
disorder approach: blue lines correspond to CLS results, black lines to PBS-1 results, red lines
to PBS-2 results and orange lines to LRP results.
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Figure 7.12: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case
3. Left column: suite I configurations; right column: suite II configurations. Solid green lines
represent the benchmark solutions obtained with the quenched disorder approach for Markovian
mixtures (Poisson tessellations). Dotted or dashed lines represent the solutions from annealed
disorder approach: blue lines correspond to CLS results, black lines to PBS-1 results, red lines
to PBS-2 results and orange lines to LRP results.
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7.5 Annealed disorder approach for eigenvalue problems

We conclude this Chapter by examining the applicability of the annealed disorder approach to k-

eigenvalue problems. For this purpose, we consider particle transport in a domain of infinite size (or

restricted to a box of size L with reflective boundary conditions) filled with three-dimensional Markov

binary mixtures. We will describe this problem by both the quenched and annealed disorder approach,

in order to perform a comparison between the results obtained by these two methods. For the annealed

disorder approach, we will investigate several algorithms, namely, CLS, PBS and LRP. In addition,

we will provide the solutions of the corresponding Levermore-Pomraning equations for this criticality

problem, which are expected to yield results equivalent to the CLS model. For the sake of simplicity,

we focus here on mono-kinetic transport.

7.5.1 The Levermore-Pomraning equations for the eigenvalue prob-
lem

For a domain of infinite size filled with binary mixtures, the Levermore-Pomraning equations for the

criticality problem are given by
Σt,α〈ϕα〉 = Σs,α〈ϕα〉+

1

keff
ναΣf,α〈ϕα〉+

〈ϕβ〉
Λβ
− 〈ϕα〉

Λα

Σt,β〈ϕβ〉 = Σs,β〈ϕβ〉+
1

keff
νβΣf,β〈ϕβ〉+

〈ϕα〉
Λα
−
〈ϕβ〉
Λβ

where 〈ϕα〉 and 〈ϕβ〉 are the total flux in material α and material β, respectively. Without loss of

generality, we assume in the following that α is fissile, which means that ναΣα > 0). Then, two cases

can be distinguished: if material β is also fissile (i.e., νβΣβ > 0), then 1/keff is the smallest root of the

polynomial

P (x) = (νανβΣf,αΣf,β)x2 − (νβΣf,βγα + ναΣf,αγβ)x+

(
γαγβ −

1

ΛαΛβ

)
where γα is given by

γα = Σt,α − Σs,α +
1

Λα
,

and symmetrically

γβ = Σt,β − Σs,β +
1

Λβ
.

If the material β is not fissile, then keff is directly given by

keff =
ναΣf,α

γα − 1
ΛαΛβ

1
γβ

, (7.28)

with γα and γβ defined as before. In addition, we can single out the special case where material β is

purely scattering, i.e., Σt,β = Σs,β. In this case, γβ = 1/Λβ. In this case, any term containing Λα or

Λβ vanishes, and we have

keff =
ναΣf,α

Σt,α − Σs,α
= kαeff , (7.29)

where kαeff corresponds to the effective multiplication factor in an infinite domain with only material α.

Thus, in a domain with an infinite extension, if material α is mixed with a purely scattering material

β, the value of keff corresponding to the solution of the Levermore-Pomraning equations does not

depend on Λc or pα.
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7.5.2 The criticality problem for the annealed algorithms

So far, we have described the CLS, PBS and LRP algorithms for a fixed source transport in non-

multiplying media, i.e., without fission. For annealed disorder algorithms, a particle can undergo the

following events: crossing of an interface, reflection/leakage (depending on the boundary conditions)

or collision. For collision, we will have now to take into account fission. The annealed disorder

method can be adapted to k-eigenvalue problems by plugging the general algorithms described in the

previous Sections to the classical power iteration algorithm for Monte Carlo criticality calculations.

Concerning the particle histories, we use the same routine as in the corresponding annealed algorithm

for a fixed source transport problem (including the initialization procedure for the source particles),

with the additional modifications if the next event is a collision: in this case, we sample a number

nd of descendant particles as nd = bξ + νiΣf,i/Σt,i〉, where ξ is a random number from an uniform

distribution in [0, 1] and where i corresponds to the current material label (i = α, β). Then, nd particles

are added to the fission sources for the next generation. Similarly as in the classical power iteration,

new particles inherit the position where the mother particle has undergone fission, the statistical

weight of the mother particle. A new direction is sampled for each new particle. Furthermore, for

annealed algorithms, new particles inherit

• for the CLS algorithm: the material label i only;

• for the PBS-1 algorithm: the material label i and additionally the coordinates (xc, yx, lc) of

center of the current random box and its dimensions lx, ly, lz;

• for the PBS-2 algorithm: the material label i and additionally the coordinates (xc, yx, lc) of center

of the current random box, its dimensions lx, ly, lz and the necessary data for the previous box

(center, dimensions and the face by which the mother particle has entered the box);

• for the LRP algorithm: the material label i and additionally the forward distance `+i to the

next interface and the backward distance `−i to the next interface; for the new particle, these

distances are switched with probability P (µ) = (1− µ)/2, where µ denotes the cosine between

the incoming direction of the mother particle and the outgoing direction of the daughter particle.

7.5.3 Simulation results

We will assume the following parameters for the mixing statistics: material α allows scattering with

Σs,α = 0.5, capture with Σc,α = 0.25, and fission with Σf,α = 0.25 and να = 2.5. We have then

Σt,α = 1. Material β allows scattering with Σs,β = 0.95 and capture with Σc,β = 0.05. We have

then Σt,β = 1. We have chosen pα = 0.3 for all configurations. This configuration would mimic the

behaviour of fuel chunks dispersed in water. Then, we consider several values of the average chord

length Λc, between 0.05 and 10, in order to investigate several order of magnitudes for the ratio

between the total cross section Σt,α = Σt,β = 1 and the correlation length of the mixture, either

through material α, Λα = Λc/(1− pα), or through material β, Λβ = Λc/pα.

We have computed keff with the following methods: i) by solving the Levermore-Pomraning equa-

tions, ii) by performing Monte Carlo simulations with the quenched disorder approach and iii) by

performing Monte Carlo simulation with the annealed disorder approach. In order to compute the

solution of the Levermore-Pomraning equations for this problem, we have evaluated Eq (7.28) with

the parameters given above. For the quenched disorder approach, we have generated M = 2 × 102

geometrical realizations of Poisson tessellations within a box of linear size L, with a tessellation density

parameter ρ = 1/Λc and a coloring probability pα. In order to limit the finite-size effects, we have

chosen to take L = L(Λc) = 100 ∗Λc for each value of Λc. Then, we have performed a transport simu-

lation with Tripoli-4 R©for each geometrical realization, by applying reflective boundary conditions.

The parameters for the power iteration are the following: we consider 104 particles per cycle and

2 × 103 cycles. For each simulation, the multiplication factor keff is computed by discarding the 200

first cycles. Finally, we compute the ensemble-average 〈keff〉 over all realizations. For the quenched

disorder approach, we have applied the CLS, PBS-1, PBS-2 and LRP algorithms, detailed in Sec. 7.5.2,
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in a box of size L = L(Λc) = 100Λc with reflective boundary conditions, with parameters Λc and pα
for each value of Λc. For every Λc, we have performed a transport simulation: i) for the CLS, by using

the power iteration method with 105 particles and 5× 104 cycles by discarding the 4× 104 first cycles

and ii) for the other algorithms, by using 103 independent replicas with 105 particles and by recording

the local value of keff for the 2× 104-th generation.

Fig. 7.13 displays the results obtained for the multiplication factor: analytical solution from the

Levermore-Pomraning equations, simulation results with the quenched disorder approach and simula-

tion results with the annealed disorder approach (including CLS, PBS-1, PBS-2 and LRP).
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Figure 7.13: Multiplication factor keff as a function of the correlation length Λc. The solid grey
line represent the analytical solutions for the Levermore Pomraning equations. Symbols corre-
spond to Monte Carlo results. Green squares correspond to the benchmark solutions obtained
with the quenched disorder approach for three-dimensional Markovian mixtures (Poisson tes-
sellations). The other symbols represent the solutions from annealed disorder approach: blue
triangles correspond to CLS results, black stars to PBS-1 results, red diamonds to PBS-2 results
and orange circles to LRP results.

The agreement between the solutions of the Levermore-Pomraning equations (denoted LP in the

following) and the results from CLS algorithm is excellent, as expected. Moreover, PBS-1, PBS-2

and LRP results show a similar behaviour. As a general consideration, the results obtained with the

quenched disorder approach are systematically higher than those of LP/CLS results, and systemat-

ically lower than those of PBS/LRP results. Furthermore, three regimes can be distinguished as a

function of the ratio r = ΛcΣt of the correlation length over the particle mean free path:

• when r � 1, all results collapse to the same functional form, with keff converging to the value

of the multiplication factor kAMeff corresponding to the atomic mixing, i.e.,

kAMeff =
pαναΣf,α

pαΣf,α + pαΣc,α + (1− pα)Σc,β
≈ 1.0135135, (7.30)

when Λc goes to zero. When the correlation length is smaller than the mean free path of the

particle, the particle ’sees’ a several material chunks during a flight, which leads to the limit

case of the atomic mixing, for Λc small enough;

• when r ' 1, the multiplication factor rises quickly as a function of Λc for quenched disorder, PBS

and LRP results, while the LP/CLS results increase with a smoother behaviour. In this regime,

the sensitivity with respect to Λc is very high (apart from the case of LP/CLS): a slight offset

possibly leads to large discrepancies between benchmark and annealed results. The discrepancy

between benchmark and LP/CLS results increases with increasing Λc;

• when r � 1, the discrepancies between benchmark, PBS and LRP fade away and the curves

collapse to

kαeff =
ναΣf,α

Σf,α + Σc,α
= 1.25, (7.31)
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where kαeff corresponds to the ’dominant’ multiplication factor, i.e., the multiplication factor in

an infinite medium with material α only. If the correlation length is very large compared to the

migration length, the particles born in the chunks of fissile material α have a weak probability

to leak out of this material. Then, the multiplication factor is very close to kαeff . The LP results

converge to kαeff also when Λc goes to ∞, but with a slower convergence rate.

The accuracy of annealed algorithms is fairly good for r � 1 (and for r � 1 for PBS or LRP

methods). For the other regimes, the poor agreement between quenched disorder and LP/CLS results

is due to the fact that correlations are neglected in the annealed algorithms. Moreover, finite-size

effects occur for benchmark solutions. The introduction of correlations with ’improved’ annealed

algorithms is not totally satisfying, because the discrepancy with respect to the benchmark solutions

is still large in the regime r ' 1, where the sensitivity of the multiplication factor is very high. This

poor accuracy can again be explained by correlations effects in the annealed algorithms. The heritage

of local geometrical data for new particles seems to be rather difficult to handle and to understand

on sound theoretical bases: in view of the importance of annealed algorithms for criticality problems

(similar attempts have already been proposed for random spherical inclusions), these preliminary

results might inspire future work.





Chapter 8

Conclusions

In this Thesis we have examined linear particle transport in random media, in view of several applica-

tions emerging in reactor physics. The first part of the work has concerned the analysis of stochastic

geometry models that can be used in order to describe heterogeneous media.

• In Chapter 2 we have provided the state of the art concerning some reference models of random

media, including three classes of random tessellations, namely, Poisson, Poisson-Voronoi and

Poisson-Box tessellations, and mono and poly-dispersed spherical inclusions. We have shown

that the Poisson tessellations satisfy the Markov property for any dimension d, which allows

giving a positive answer to the possibility of explicitly realizing Markov media with exponentially

distributed chord lengths in any direction, a long-standing conjecture suggested in [66]. The

effects of anisotropy on Poisson geometries have been also analyzed. For each class of random

media, the shape of the chord length distribution has been recalled and the average chord length

Λ has been related whenever possible to the statistical features of the geometry. The distinct

features of the chord length distribution for different random geometries have been provided.

• In Chapter 3 we have then detailed the computer code that has been developed in order to

explicitly construct such geometries by Monte Carlo methods. The chosen algorithms and the

global performances of the generator have been analyzed, and it has been shown that it is

possible to generate large tessellations containing up to 107 polyhedral cells in reasonable time.

The generator can produce an ensemble of realizations obeying the specific set of probabilities

for d-dimensional Poisson, Poisson-Voronoi and Poisson-Box tessellations or spherical inclusions.

• In Chapter 4 we have examined the statistical properties of stochastic tessellations by resorting

to Monte Carlo simulation. First, we have addressed the scaling of the key features of the

random d-polyhedra composing the geometry, encompassing the chord lengths, the volume,

the surface, the inradius, and so on, as a function of the system size and of the dimension.

When possible, we have compared the results of our Monte Carlo simulations for very large

systems to the exact findings that are known for infinite tessellations. When exact asymptotic

results were not available from literature, we have provided accurate numerical estimates that

could support future theoretical advances. Colored random media, where each d-polyhedron

is assigned a random label with two possible values, have been also examined. All adjacent

polyhedra sharing the same label have been regrouped into possibly non-convex clusters, whose

statistical features have been characterized for the case of three-dimensional geometries.

We have in particular examined the percolation properties of this prototype model of disordered

systems: the probability that a cluster spans the entire geometry, the probability that a given

polyhedron belongs to a percolating cluster (the so-called strength), and the average cluster

size. We have been able to determine the corresponding percolation threshold, namely, pc '
0.290± 7× 10−3, which lies close to that of percolation on regular cubic lattices. An analogous

result had been previously established for the two-dimensional Poisson geometries, where the

percolation threshold had been also found to lie close to that of regular square lattices. The

critical exponents associated to the percolation strength and to the average cluster size have

215
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been finally determined, and were found to be compatible with the theoretical values β ' 0.4181

and γ ' 1.793, respectively, that are conjectured to be universal for percolation on lattices.

Future work will be aimed at refining these Monte Carlo estimates. For all the tessellation models

considered in this Chapter, we have assumed that the random media are spatially homogeneous,

which allows relying on exact formulas for the first few moments of the observables of interest, at

least for infinite tessellations. Including non-homogeneity effects would be rather straightforward

for our generator: it would be then interesting to compare Monte Carlo simulation results to

the highly non-trivial formulas that have been recently established for special cases of non-

homogeneous stochastic tessellations [129,130].

The second part of the work has concerned particle transport in random media, with focus on

both fixed-source and eigenvalue problems of interest for radiation shielding and reactor physics and

criticality-safety applications.

• In Chapter 5 we have then computed reference solutions for linear transport in quenched dis-

order. In order to establish a proper and easily reproducible framework, we have built our

specifications upon the benchmark originally proposed by Adams, Larsen and Pomraning, and

recently revisited by Brantley. We have thus considered a box of fixed side, with two free surfaces

on opposite sides, and reflecting boundary conditions everywhere else. As a prototype example

of stochastic media, we have adopted Markov geometries with binary mixing: such geometries

have been numerically implemented by using isotropic (colored) Poisson tessellations. Three

kinds of Poisson tessellations have been tested: 1d slab tessellations, 2d extruded tessellations,

and full 3d tessellations. To the best of our knowledge, benchmark solutions for 3d tessellations

with Markov mixing have never been studied before. Material compositions and correlation

lengths, as well as source and boundary conditions, have been assigned based on the benchmark

specifications, amounting to a total of 18 distinct cases for each dimension. A large number of

random geometries and material compositions have been realized. For each realization, mono-

energetic linear transport with isotropic scattering and absorption has been simulated by Monte

Carlo method. The code Tripoli-4 R© developed at CEA has been used for this purpose. The

physical observables that have been examined in this work are the reflection and transmission

coefficients, and the scalar particle flux, averaged over the ensemble of available realizations.

The full distributions of the reflection and transmission coefficients have been also examined, in

order to evaluate the impact of correlation lengths and volumetric fractions on the dispersion

of these observables around their average values.

The reference solutions presented in this work might be helpful for the validation of the fast

but approximate methods that have been developed over the years so as to describe particle

propagation in stochastic media with effective transport kernels, i.e., without having to average

over medium realizations. In particular, benchmark solutions for the full 3d tessellations are

essential to real-world applications. Furthermore, the numerical tools that we have used in this

work in order to generate the colored Poisson geometries and to perform the stochastic transport

are extremely flexible, and could thus easily accommodate several extensions or improvements

of the current benchmark specifications. In particular, we might include anisotropy in the scat-

tering kernels, energy-dependent cross sections and scattering distributions, particle production

from fission, different geometrical shapes and arbitrary boundary conditions.

Furthermore, we have addressed the impact of the mixing statistics, i.e., basically the chord

length distribution, on particle transport. In this work, we have considered the effects of vary-

ing the stochastic tessellation model on the statistical properties of the resulting random media

and on the transport-related physical observables, such as the reflection and the transmission

probabilities. In order to single out the sensitivity of the simulation results to the various model

parameters, we have proposed two benchmark configurations that are simple enough and yet

retain the key physical ingredients. In the former, we have considered a binary mixture com-

posed of diffusing materials and voids; in the latter, a binary mixture composed on diffusing and
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absorbing materials. The mixing statistics that have been selected for this work are the homoge-

neous and isotropic Poisson tessellations, the Poisson-Voronoi tessellations, and the Poisson-Box

tessellations. For each benchmark configuration we have provided reference solutions by using

Monte Carlo simulation via the code Tripoli-4 R©. The effects of the underlying mixing statis-

tics, the cross sections, the material compositions and the average chord length of the stochastic

geometries have been accurately and extensively assessed by varying each parameter.

The Voronoi tessellation, whose chord length is significantly different from that of the other

mixing statistics, shows a distinct behaviour. We have also found that Box tessellations yield

almost identical results with respect to Poisson tessellations: this is a remarkable feature, in

that the realizations of Box geometries are much simpler and could be perhaps adapted for

deterministic transport codes. This analysis represents an extension to dimension d = 3 of the

pioneering work carried out in dimension d = 1 in order to probe the sensitivity of the transport

results to the use of non-exponential distribution of chord lengths [154,171].

• Eigenvalue problems in quenched disorder have been examined in Chapter 6: we have proposed

a methodology for the analysis of the impact of random geometries in three-dimensional fuel

assembly, with application to criticality safety for severe accidents. Based on a random geometry

generator that we have recently developed for Poisson, Voronoi and Box tessellations, we were

able to create large ensembles of UOX and MOX assembly configurations with varying portions

of fragmented fuel cells. These configurations can be read by the Monte Carlo transport code

Tripoli-4 R©, which has been used to compute the multiplication factor, the adjoint-weighted

kinetics parameters, and the scalar neutron flux. The analysis of the resulting ensemble-averaged

physical quantities has allowed assessing the impact of stochastic tessellations on the key reactor

core parameters.

In particular, we have determined the evolution of the multiplication factor 〈keff〉, the delayed

neutron fraction 〈βeff〉, and the mean generation time 〈Λeff〉 as a function of the mean chord

length of the random geometries, which is related to the correlation length of the fragmented

portion of the assembly. The effect of varying the mixing statistics has been also examined:

while Poisson and Box tessellations yield almost identical results, Voronoi tessellations yield

distinct results. These findings show that the three mixing statistics, while sharing the same

average chord length by construction, might yet induce subtle effects on neutron transport due

to the precise shape of their associated chord length distributions. Generally speaking, MOX

assemblies seem more sensitive than UOX assemblies to the perturbations introduced by the

stochastic tessellations.

The impact of anisotropy in the random media has been also assessed by using anisotropic Pois-

son tessellations with varying anisotropy laws and mean correlation lengths Λc. The anisotropy

law was chosen in order to mimic the effects of stratification on the fuel degradation. When

Λc → 0, the neutron mean free path becomes larger than the typical scale of the fragmentation,

and the distinct effects of anisotropy fade away. The maximum excursion of the average mul-

tiplication factor 〈keff〉 and the minimum excursion of the average effective neutron generation

time 〈Λeff〉 are reached in the case of isotropic tessellations. The special case of Box tessellations,

that are quasi-isotropic, leads to transport properties that are almost identical to the isotropic

case. Finally, the degenerate case of slab tessellations (leading to material layers that are ex-

actly orthogonal to the z axis) was separately considered, for comparison: it was shown that

the transport properties are rather different than in the case of regular anisotropic Poisson tes-

sellations, which can be understood based on the peculiar nature of the slab geometries, where

neutrons can travel long distances along the transversal directions without being absorbed.

Our approach focuses on methodological and conceptual aspects. Stochastic tessellations, de-

spite being convenient model for disordered materials, do not fully qualify for providing an

accurate description of reactor safety applications without further proof: in particular, multi-

physics feedbacks such as temperature or density variations have been admittedly neglected in

our analysis, and one might think of a variety of degraded configurations that cannot be rep-
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resented by tessellations. The complex physical-chemistry of the reactions occurring between

the fuel and the cladding at high temperature have not been addressed, either. Thus, the

conclusions drawn in this paper may not directly apply to real-world problems, such as the as-

sessment of re-criticality probability of out-of-pile deposition of corium debris. Nonetheless, our

approach is fairly broad and might be extended to more complex situations. For instance, the

same procedure could be applied also to the assessment of re-criticality probability of out-of-pile

core degradation leading to the deposition of corium debris. Monte Carlo simulation, which

is capable of dealing with arbitrarily shaped geometries, would be particularly useful in this

context.

Future work will be also aimed at investigating the behaviour of neutron transport through

disordered media in non-stationary conditions. Recent works have actually shown that under

certain circumstances, the disorder-averaged neutron decay constant might be positive when

〈keff〉 < 1 [114, 163], an intriguing result that seems to suggest that information conveyed by

〈keff〉 alone is perhaps incomplete.

• Particle transport in annealed disorder has been finally addressed in Chapter 7. The so-called

Algorithm A of Chord Length Sampling method is perhaps the most widely adopted simulation

tool to provide approximate solutions, based on the Levermore-Pomraning model for Markovian

binary mixing. The interfaces between the constituents of the random medium are sampled

on-the-fly during the particle displacements by drawing the distances to the following material

boundaries from a distribution depending on the mixing statistics: the correlations on particle

trajectories induced by the spatial disorder are thus neglected. Comparisons of CLS solutions

with respect to reference results are mandatory in order to quantify the degree of approximations

introduced in these models. For Markov mixing, a number of benchmark problems have been

proposed in the literature for this purpose, but so far analyses have been conducted in one-

dimensional media of the rod or slab type.

Within the framework of a collaboration with Dr. P. Brantley of the Lawrence Livermore

National Laboratory (USA) and Prof. T. Palmer of the Oregon University (USA), we have con-

trasted CLS simulation results to the reference solutions for the classical benchmark problem

proposed by Adams, Larsen and Pomraning. In particular, we have examined the evolution

of the particle flux, the transmission coefficient and the reflection coefficient as a function of

the benchmark configurations and of the system dimension d. Two main trends have been de-

tected: the accuracy of CLS algorithm with respect to reference solutions generally increases

with increasing system dimensionality. Moreover, the accuracy of the CLS algorithm increases

for decreasing average chord length, i.e., for denser stochastic tessellations. The impact of di-

mensionality is particularly relevant for case 1 configurations (which have smaller chord lengths),

and progressively diminishes for configurations having larger material chunks. The considera-

tions presented here, although derived strictly speaking for the Adams, Larsen and Pomraning

benchmark considered here, seem to be quite general. This work represents a first step to-

wards extensive comparisons between CLS and reference solutions for Markov mixing statistics

in higher dimensions. Furthermore, extension of these comparisons to reference solutions for

other types of d-dimensional mixing statistics based on spatial tessellations (such as the Poisson-

Voronoi model) would be interesting topics for future research.

In order to go beyond the known limitations of the standard CLS method, we have proposed a

new family of Monte Carlo methods aimed at approximating ensemble-averaged observables for

particle transport in Markov binary mixtures. Several numerical investigations have shown that

Algorithm A works reasonably well in most cases, yet discrepancies between CLS and reference

solutions may appear due to the fact that Algorithm A neglects the correlations induced by

spatial disorder. For the case of one-dimensional slab geometries, two variants of the standard

CLS method, namely Algorithm B and Algorithm C, have been proposed in the literature

by partially including spatial correlations and memory effects. These algorithms provide an

increased accuracy with respect to Algorithm A thanks to the on-the-fly generation of typical
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slabs during the particle displacements, but their generalization to higher dimensions appears to

be non-trivial. A rigorous generalization in dimension three would for instance demand sampling

on-the-fly typical polyhedra from homogeneous and isotropic Poisson tessellations, whose exact

statistical distribution are unfortunately unknown.

In order to overcome these issues and derive CLS-like methods capable of taking into account

spatial correlations for d-dimensional configurations, we have resorted to the key observation

that (quasi-isotropic) Box tessellations based on Cartesian boxes yield chord length distribu-

tions and transport-related physical observables that in most cases are barely distinguishable

from those coming from isotropic Poisson tessellations. This remarkable feature has inspired a

generalization of CLS Algorithms B and C based on sampling on-the-fly random boxes obeying

the same statistical properties as for Box tessellations. We have called these family of algorithms

Poisson Box Sampling, or PBS. We have proposed two variants of PBS: in PBS-1 we generate

random d-dimensional boxes, similarly as done in Algorithm B of CLS, and in PBS-2 we addi-

tionally keep memory of the last generated box, in full analogy with Algorithm C of CLS. In

order to test the performances of these new methods, we have compared PBS simulation results

to the reference solutions and CLS solutions for the classical benchmark problem proposed by

Adams, Larsen and Pomraning for particle propagation in stochastic media with binary Markov

mixing. In particular, we have examined the evolution of the transmission coefficient, the re-

flection coefficient and the spatial particle flux for the benchmark configurations in dimension

d = 3.

A preliminary investigation has shown that Poisson and Box tessellations lead to very similar

results for all the benchmark configurations, as expected on the basis of previous works, which

substantiates our motivation for PBS methods. Overall, the PBS-1 algorithm reproduces ref-

erence solutions based on Poisson tessellations more accurately that Algorithm A of CLS, at

the expense of an increased computational cost. PBS-2 further increases the accuracy of PBS-1

by including memory effects and thus enhancing the range of spatial correlations that are cor-

rectly captured by the algorithm; the additional computational burden required by PBS-2 is

almost negligible. PBS always produces physically relevant answers (i.e., observables that are

relatively close to the reference solutions) for the transmission and reflection coefficients, and

furthermore preserves the correct shape for the spatial flux within the domain. An interesting

feature is that PBS methods, and PBS-2 in particular, yield satisfactory results for the entire

range of average correlation lengths Λc explored in the benchmark configurations, whereas CLS

performances typically worsen for increasing Λc. Future research work will be aimed at testing

the performances of PBS methods as applied to other benchmark configurations with Markov

mixtures, such as diffusing matrices with void or absorbing chunks, or multiplying systems, in

order to gain a deeper understanding of the range of validity of this class of algorithms.

A local realization preserving (LRP) algorithm that extends the standard CLS in a way similar

to PBS (i.e., by preserving information about the shape of the traversed polyhedra) has been

independently and simultaneously developed at LLNL and tested against reference solutions and

CLS Algorithm A [16]: we have then implemented the LRP method and compared it to PBS.

Numerical results shown that LRP and PBS have very similar performances in terms of accuracy

and simulation time. We conclude by observing that in principle it would possible to propose a

lowest-order PBS algorithm that did not include memory effects but that was still based on Box

tessellations. In other words, boundaries would be sampled in the three coordinate axes but only

in the forward particle direction for each axis. When a particle is scattered, the three boundaries

could be sampled again based on the new particle direction (or only those for which the particle

was now proceeding in the reverse axial direction). Such zero-order approach does not seem to

be relevant, in view of the simplicity of including memory effects in the PBS algorithm, but a

comparison against CLS might possibly provide additional information. Investigations of this

simplified scheme, and other variations of the PBS, are currently on-going and will be possibly

the object of a future extension of the present work.





Appendix A

Additional properties of isotropic
Poisson tessellations

For the sake of completeness, in this Appendix we illustrate the Monte Carlo analysis that we have

performed on other statistical features of isotropic Poisson geometries that might convey useful infor-

mation on the behavior of the tessellation cells.

A.1 Inradius and outradius

The inradius rin,d is defined as the radius of the largest sphere that can be contained in a (convex)

d-dimensional polyhedron, and as such represents a measure of the linear size of the tessellation

cells [127]. A illustration of this quantity is provided in Fig. A.1 (left). In Sec. 2.3.2 we have seen

that the probability density function of the inradius for isotropic d-dimensional Poisson geometries of

infinite size is exponential, namely,

P(rin,d) = ραde
−ραdrin,d , (A.1)

where the dimension-dependent constant αd reads α1 = 2, α2 = π, and α3 = 4.

The case d = 1 is straightforward, since the inradius simply coincides with the half-length of the

1-polyhedron. Then, Eq. (4.4) yields

〈rmin,d|L〉 =
Γ(m+ 1)

(2ρ)m
− Γm+1(2ρL)

(2ρ)m
+ e−2ρLLm, (A.2)

In principle, for d > 1, it would be possible to analytically determine the coordinates of the center

and the radius of the largest contained sphere, once the equations of the (d− 1)-hyperplanes defining

the d-polyhedron are known [124]. We have however chosen to numerically compute the inradius by

resorting to a linear programming algorithm. For a given realization of a Poisson geometry, we select

in turn a convex d-polyhedron: this will be formally defined by a set x ∈ Rd such that

aTi x ≤ bi (1 ≤ i ≤ q), (A.3)

where q is the number of (d−1)-hyperplanes composing the surface of the d-polyhedron. The inradius

rin,d can be then computed based on the Chebyshev center (x, rin,d) of the d-polyhedron, which can

be found by maximising rin,d with the constraints

∀i ∈ {1, 2, ..., q}, aTi x + rin,d||ai|| ≤ bi (A.4)

rin,d > 0. (A.5)

This maximisation problem can be finally solved by using the simplex method [115].

The results of the Monte Carlo simulation for P(rin,d) are shown in Fig. A.2 as a function of L

and d. For any finite L, the numerical distributions suffer from finite-size effects, analogous to those

affecting the distributions of the segment lengths `: in particular, a cut-off appears at rin,d =
√
dL/2.

221
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Figure A.1: Left. Illustration of the inradius, i.e. radius of the largest sphere included in a
polyhedron. Right. Illustration of the outradius, i.e. radius of the smallest sphere containing a
polyhedron.

m d 〈rmin,d〉 Theoretical value Monte Carlo

1 1 1/2ρ 0.5 0.50006± 4× 10−5

1 2 1/πρ 0.31831 0.31825± 8× 10−5

1 3 1/4ρ 0.25 0.2499± 2× 10−4

2 1 1/ρ2 1 1.0004± 2× 10−4

2 2 2/π2ρ2 0.2026 0.2026± 10−4

2 3 1/8ρ2 0.125 0.1249± 2× 10−4

Table A.1: The moments inradius 〈rmint,d〉 of the inradius in d-dimensional isotropic Poisson
tessellations. Monte Carlo simulation results are obtained with L = 200 and ρ = 1 for any
dimension d.

As ρL � 1, finite-size effects fade away and the numerical distributions converge to the expected

exponential behaviour. The convergence rate as a function of the system size L is weakly dependent

on the dimension d. The asymptotic average inradius for L→∞ yields 〈rin,d〉 = 1/(αdρ): the Monte

Carlo simulation results obtained for a large L = 200 are compared to the theoretical formulas in

Tab. A.1, with the same simulation parameters as above.

The outradius rout,d is defined as the radius of the smallest sphere enclosing a (convex) polyhedron,

and can be thus used together with the inradius so as to characterize the shape of the polyhedra (for

illustration, see Fig. A.1 (right)). For d = 1, the outradius coincides with the inradius. The probability

density and the moments of the outradius of Poisson geometries for d > 1 are not known. We

have then numerically computed the moments of the outradius by resorting to an algorithm recently

proposed in [37]. This algorithm implements a pivoting scheme similar to the simplex method for

linear programming. It starts with a large d-ball that includes all vertices of the convex d-polyhedron

and progressively shrinks it [37]. For reference, the Monte Carlo simulation results for the first few

moments of rout,d obtained for a large L = 200 are given in Tab. A.2, with the same simulation

parameters as above: these numerical findings might inspire future theoretical advances. In addition,

Fig. A.3 shows the evolution the average outradius 〈rout,d|L〉 as a function of the linear size L of the

domain and of the dimension d. The probability density function of the outradius for a large L, for

any dimension d. is also provided in Fig. A.3.

A.2 Other polyhedral quantities

For the case of isotropic Poisson tessellations, some other polyhedral quantities have been exactly

computed for the case L → ∞, so that it is interesting to compare them to numerical simulations.

Notation is as follows. For the case of the 2-polyhedron, the number of vertices N2 and the number

of edges A2 coincide with the number of faces C2. For the 3-polyhedron, we denote l3 the total length

of edges, N3 the number of vertices, A3 the number of edges, respectively. The exact first-order

and second-order moments of these physical observables are given in Tab. 2.1. We have assessed these

moments by Monte Carlo methods as a function of the linear size L of the domain and of the dimension
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Figure A.2: (a-c). The probability densities P(rin,d|L) of the inradius in d-dimensional isotropic
Poisson geometries as a function of the dimension d and of the linear size L of the domain.
We have generated M = 106 realizations for d = 1, M = 5 × 104 realizations for d = 2 and
M = 5×103 realizations for d = 3. Simulation results have been obtained with ρ = 1. Symbols
correspond to the Monte Carlo simulation results: blue crosses denote d = 1, red triangles
d = 2 and green circles d = 3. The cases illustrated here are as follows: (a) L = 5; (b) L = 20;
(c) L = 200. (d). Convergence of the average inradius 〈rin,d|L〉 as a function of the linear size
L of the domain and of the dimension d.

d: the results are provided in Figs. A.4, A.5 and A.6. Moreover, Tab. A.3 summarizes the numerical

values obtained for large L.

For the case d = 2 we have also computed the fraction P3 of random polygons having 3 sides and

the fraction P4 of polygons having 4 sides. These estimates are also given in Tab. A.3 and are to be

compared with the exact results P3 = 2− π2/6 and

P4 = π2 log(2)− 1

3
− 7

36
π2 − 7

2
ζ(3) (A.6)

respectively [142], where ζ is the Riemann Zeta function [103].

The functional form of the distributions of the number of edges P(Ad) (for d > 2) and of the

the number of vertices P(Nd) (for d > 2) are not known. We have thus resorted to Monte Carlo

simulation so as to estimate the impact of the domain size L and of the dimension d on P(Ad|L) and

P(Nd|L) for finite L. The numerical findings are shown in Fig. A.5 and may support future theoretical

investigations. It is reasonable to think that the convergence of each distribution is attained, since

P(Ad|L) and P(Nd|L) can not be distinguished between L = 10 and L = 200.
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d Monte Carlo
2 〈rout,d〉 0.8453± 2× 10−4

2 〈r2
out,d〉 1.2318± 6× 10−4

3 〈rout,d〉 1.1524± 8× 10−4

3 〈r2
out,d〉 2.126± 3× 10−3

Table A.2: The moments 〈rmout,d〉 of the outradius in d-dimensional isotropic Poisson tessella-
tions. Monte Carlo simulation results are obtained with L = 200 and ρ = 1 for any dimension
d.
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Figure A.3: The outradius in d-dimensional Poisson tessellations. Left. The average outradius
〈rout,d|L〉 as a function of the dimension d and of the linear size L of the domain. Right.
The probability density P(rout,d|L) as a function of the dimension d, with L = 200. We have
generated M = 106 realizations for d = 1, M = 5× 104 realizations for d = 2 and M = 5× 103

realizations for d = 3. Simulation results have been obtained with ρ = 1. Symbols correspond
to the Monte Carlo simulation results: red triangles d = 2 and green circles d = 3.

A.3 Correlations

For the sake of completeness, we report the exhaustive Monte Carlo calculations corresponding to the

correlations for the physical observables of Poisson geometries of infinite size, in dimension d = 2 and

d = 3. The case of ‘typical’ d-polyhedra and that of d-polyhedra containing the origin are separately

considered. When analytical results are known (from [76,86,87,127]), our Monte Carlo estimates are

compared to the exact values. Otherwise, numerical findings are provided for reference. All symbols

have been introduced above. The moments and the correlations are reported in Tabs. A.4 - A.7.

A.4 Polyhedra containing the origin

We have carried out an extensive analysis of the features of the d-polyhedra containing the origin:

numerical findings for the most relevant quantities are reported in Tab. A.8 for large L and compared

to the exact formula provided in Tab. 2.2. For some of the computed quantities, such as the average

inradius 〈rin,d〉0 or the average outradius 〈rout,d〉0, exact results are not available, and our numerical

findings may thus support future theoretical investigations.

The average d-volume 〈Vd〉0, the average d-surface 〈Sd〉0, the average total edge of lengths 〈ld〉0 and

the average number of faces 〈Cd〉0 of the polyhedron containing the origin as a function of the linear

size of the domain L and of the dimension d are provided in Fig. A.7. Similarly as for the properties

related to the typical polyhedron, the rate of convergence as a function of L decreases with increasing

d. Moreover, the convergence of the d-volume Vd, d-surface Sd and the total edge of lengths ld is faster

for the polyhedron containing the origin than for the typical polyhedron: this was expected, since the

size of the polyhedron containing zero is less affected by finite-size effects (i.e., by the polyhedra that



A.4. POLYHEDRA CONTAINING THE ORIGIN 225

6

7

8

9

10

11

12

13

0 50 100 150 200
〈l 3
|L
〉

L

Figure A.4: The average total length of edges 〈l3|L〉 as a function of the linear size L of the
domain for d = 3. Symbols correspond to the Monte Carlo simulation results. Dotted lines
correspond to the asymptotic (i.e., L→∞) moment given in Tab. 2.1.

Formula Theoretical value Monte Carlo
P3 2− π2/6 0.35507 0.35505± 1× 10−5

P4 π2 log(2)− 1
3
− 7

36
π2 − 7

2
ζ(3) 0.38147 0.38150± 2× 10−5

〈N3〉 8 8 8± 10−7

〈N2
3 〉 (13π2 + 96)/3 74.7683 74.7684± 4× 10−4

〈A3〉 12 12 12± 2× 10−7

〈l3〉 12/ρ 12 11.994± 8× 10−3

〈l23〉 24(π2 + 1)/ρ2 260.871 260.6± 0.4

Table A.3: Other moments of physical observables related to d-dimensional Poisson geometries:
for d = 2, probabilities Pi of having a given number of vertices; for d = 3, number of edges A3,
number of vertices N3 and total length of edges l3. Monte Carlo simulation results are obtained
with L = 200 and ρ = 1.

are cut by the boundaries of the box). Conversely, the convergence of the number of faces Cd is slower

for the polyhedron containing the origin than for the typical polyhedron.

The full distribution P0(rin,d|L) of the inradius of the d-polyhedron containing the origin has been

estimated, and is compared to P(rin,d|L) for the inradius of a typical polyhedron of the tessellation

in Fig. A.8 for d = 1 and d = 3 and a large system size L = 200: it is immediately apparent that

〈rin,d〉0 > 〈rin,d〉. Moreover, the behaviour of the two distributions for small rin,d is also different: for

L → ∞, P(rin,d|L) attains a finite value for rin,d → 0 due to its exponential shape; on the contrary,

our Monte Carlo simulations seem to suggest a power-law scaling P0(rin,d|L) ∼ rγdin for rin,d → 0, with

γd = 1 + (d− 1)/2.
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Figure A.5: Edges and vertices in d-dimensional Poisson tessellations as a function of the linear
size L of the domain. The cases are as follows: (a) the probability densities of the number of
edges P(A3|L) for d = 3 and (b) the probability density of the number of vertices P(N3|L) for
d = 3. For each case, symbols correspond to the Monte Carlo simulation results: for d = 2, black
crosses denote L = 10 and red triangles L = 200, for d = 3 black crosses denote L = 10 and
green circles L = 200. Simulation results have been obtained with ρ = 1. We have generated
M = 5× 104 realizations for d = 2 and M = 5× 103 realizations for d = 3. Furthermore, (c) is
the average number of edges 〈A3|L〉 for d = 3 and (d) the average number of vertices 〈N3|L〉 for
d = 3. For each case, symbols correspond to the Monte Carlo simulation results: red triangles
denote d = 2 and green circles d = 3. Simulation results have been obtained with ρ = 1. We
have generated M = 5× 104 realizations for d = 2 and M = 5× 103 realizations for d = 3.

Formula Theoretical value Monte Carlo
〈C2S2〉 (π2 + 8)/ρ 17.870 17.866± 4× 10−3

〈C2V2〉 2π/ρ2 6.283 6.281± 3× 10−3

〈C2V
2

2 〉 16(8π2 − 21)/21ρ4 44.16 44.12± 4× 10−2

〈S2V
2

2 〉 256π2/21ρ5 120.3 120.2± 0.2

Table A.4: Moments and correlations of physical observables related to two-dimensional Poisson
geometries. Monte Carlo simulation results are obtained with L = 200 and ρ = 1.
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Figure A.6: The probability densities P(l3|L) of the total length of edges in three-dimensional
isotropic Poisson geometries as a function of the linear size L of the domain. Simulation results
have been obtained with ρ = 1. Symbols correspond to the Monte Carlo simulation results,
obtained with M = 5 × 103 realizations. The cases illustrated here are as follows: (a) L = 2;
(b) L = 5; (c) L = 20; (d) L = 200.

Formula Theoretical value Monte Carlo
〈N3V3〉 8π/ρ3 25.13 25.09± 0.05
〈N3S3〉 28π/ρ2 87.9646 87.9± 0.1
〈N3l3〉 (10π2 + 24)/ρ 122.696 122.63± 8× 10−2

〈C3V3〉 4(π2 + 3)/πρ3 16.3861 16.36± 3× 10−2

〈C3S3〉 (14π2 + 48)/πρ2 59.2612 59.19± 8× 10−2

〈C3l3〉 (5π2 + 36)/ρ 85.348 85.30± 6× 10−2

〈V3l3〉 24π/ρ4 75.3982 75.2± 0.2
〈S3l3〉 72π/ρ3 226.195 225.8± 0.5

Table A.5: Moments and correlations of physical observables related to three-dimensional Pois-
son geometries. Monte Carlo simulation results are obtained with L = 200 and ρ = 1.
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Monte Carlo
〈C2rin,d〉 1.4552± 4× 10−4

〈V2rin,d〉 1.1285± 8× 10−4

〈S2rin,d〉 2.273± 10−3

〈C2rout,d〉 3.7593± 9× 10−4

〈V2rout,d〉 2.580± 2× 10−3

〈S2rout,d〉 5.827± 3× 10−3

〈rin,drout,d〉 0.4678± 2× 10−4

Table A.6: Moments and correlations of physical observables related to two-dimensional Poisson
geometries. Monte Carlo simulation results are obtained with L = 80 and ρ = 1.

Monte Carlo
〈A2

3〉 168.229± 8× 10−4

〈A3N3〉 112.153± 5× 10−4

〈A3C3〉 80.0763± 3× 10−4

〈A3V3〉 37.63± 8× 10−2

〈A3S3〉 131.80± 0.2
〈A3l3〉 183.9± 0.1
〈N3C3〉 53.3842± 2× 10−4

〈N3rin,d〉 2.583± 2× 10−3

〈A3rin,d〉 3.875± 3× 10−3

〈C3rin,d〉 1.791± 10−3

〈V3rin,d〉 1.704± 5× 10−3

〈S3rin,d〉 4.91± 10−2

〈l3rin,d〉 5.527± 8× 10−3

〈N3rout,d〉 11.127± 8× 10−3

〈A3rout,d〉 16.69± 10−2

〈C3rout,d〉 7.868± 5× 10−3

〈V3rout,d〉 5.90± 2× 10−2

〈S3rout,d〉 19.05± 4× 10−2

〈l3rout,d〉 23.07± 3× 10−2

〈rin,drout,d〉 0.4776± 7× 10−4

Table A.7: Moments and correlations of physical observables related to three-dimensional Pois-
son geometries. Monte Carlo simulation results are obtained with L = 200 and ρ = 1.
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Figure A.7: First-order moments of the properties of the polyhedron containing the origin
as a function of the linear size L of the domain and of the dimension d, for d-dimensional
isotropic Poisson geometries. The observables illustrated here are as follows: (a) the average
d-dimensional volume 〈Vd|L〉0, (b) the average d-dimensional surface 〈Sd|L〉0 for d > 1, (c) the
average total length of edges 〈l3|L〉0 for d = 3 and (d) the average number of faces 〈Cd|L〉0.
For each case, we have generated M = 106 realizations for d = 1, M = 5 × 104 realizations
for d = 2 and M = 5× 103 realizations for d = 3. Simulation results have been obtained with
ρ = 1. Symbols correspond to the Monte Carlo simulation results: blue crosses denote d = 1,
red triangles d = 2 and green circles d = 3. Dotted lines correspond to the asymptotic (i.e.,
L→∞) moment given in Tab. 2.2.
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d Formula Theoretical value Monte Carlo
1 〈V1〉0 2/ρ 2 2.001± 10−3

1 〈V 2
1 〉0 6/ρ2 6 6.006± 9× 10−3

2 〈V2〉0 2π/ρ2 6.28319 6.27± 3× 10−2

2 〈V 2
2 〉0 64π2/7ρ4 90.2364 89± 1

2 〈S2〉0 π2/ρ 9.8696 9.86± 2× 10−2

2 〈C2〉0 π2/2 4.9348 4.935± 5× 10−3

2 〈rin,2〉0 0.886± 2× 10−3

2 〈rout,2〉0 2.026± 5× 10−2

3 〈V3〉0 8π/ρ3 25.1327 25.8± 0.6
3 〈V 2

3 〉0 224π2/ρ6 2210.79 2433± 285
3 〈S3〉0 16π/ρ2 50.2655 51.1± 0.7
3 〈N3〉0 4π2/3 13.1595 13.20± 0.06
3 〈C3〉0 2(π2 + 3)/3 8.57974 8.60± 0.03
3 〈l3〉0 4π2/ρ 39.4784 39.8± 0.3
3 〈rin,3〉0 0.902± 7× 10−3

3 〈rout,3〉0 3.11± 2× 10−2

Table A.8: Moments of the d-polyhedron containing the origin for d-dimensional isotropic
Poisson tessellations. Monte Carlo simulation results are obtained with L = 200 and ρ = 1 for
any dimension d.
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Figure A.8: Comparison between P(rin,d|L) for a typical polyhedron (green circles) and
P0(rin,d|L) for the polyhedron containing the origin (orange diamonds) in d-dimensional
isotropic Poisson geometries, for L = 200. Left: d = 1. Right: d = 3. The dashed line
represents the asymptotic distribution in Eq. (A.1). Symbols correspond to the Monte Carlo
simulation results, generated with M = 106 realizations. Simulation results have been obtained
with ρ = 1.



Appendix B

Resumé détaillé en français

B.1 Introduction

Dans le contexte de la physique des réacteurs, le transport des neutrons est régi par l’équation de

Boltzmann

Ω · ∇ϕ(r,Ω) + Σt(r)ϕ(r,Ω) =

∫
Σs(Ω

′ → Ω, r)ϕ(r,Ω′)dΩ′ +Q(r,Ω), (B.1)

où ϕ(r,Ω), inconnue de l’équation, désigne le flux de neutrons. Concernant la notation, r et Ω

correspondent respectivement aux variables de position et de direction. Σt(r) est la section efficace

macroscopique totale, Σs(Ω
′ → Ω, r) la section efficace macroscopique diffusive et Q(r,Ω) le terme

de source. Par souci de simplicité, l’équation linéaire de Boltzmann est donnée ici pour du transport

monocinétique et en l’absence de fission.

La résolution de l’équation de Boltzmann repose sur des méthodes déterministes ou stochastiques.

L’approche stochastique s’appuie sur des codes de transport Monte Carlo, tels que Tripoli-4 R©.

Développé par le CEA, ce code est utilisé pour la criticité, la radio-protection et l’instrumentation

nucléaire, en simulant les trajectoires aléatoires des neutrons dans la matière. Ces marches aléatoires

s’effectuent habituellement dans des milieux parfaitement connus, i.e. Σt(r), Σs(Ω
′ → Ω, r) et Q(r,Ω)

sont des fonctions déterministes.

Cependant, de nombreuses applications liées aux réacteurs nucléaires nécessitent de simuler les

parcours des neutrons dans des milieux aléatoires. Les exemples sont nombreux : étude de l’impact

de la dispersion de micro-sphères de combustible dans les réacteurs pebble-beds, analyse de l’impact de

la taille des grains dans les poisons consommables et dans les pastilles des combustibles MOX, analyse

de l’impact des variations de densité dans l’eau du modérateur ou le béton, ou encore estimation de

la probabilité de re-criticité dans les coeurs de réacteurs en configuration post-accidentelle (corium,

in-core ou out-of-core). Dans le cas de milieux aléatoires, les quantités Σt(r), Σs(Ω
′ → Ω, r) et Q(r,Ω)

deviennent des variables aléatoires.

Une hypothèse usuelle concernant les milieux stochastiques est qu’il existe une collection d’états

(ou réalisations physiques) X = {q}, associés à une fonction de densité P(q). La fonction q(r) attribue

à toute position r une composition physique. L’objectif de la théorie du transport de particules dans

les milieux stochastiques est de dériver un formalisme pour la description des moyennes d’ensemble

du flux de particules 〈ϕ(r,Ω)〉 =
∫
P(q)ϕ(q)(r,Ω)dq, où ϕ(q) est solution de l’équation de Boltzmann

pour une réalisation q donnée. De façon générale, la solution analytique est inaccessible, néanmoins,

il est possible de recourir aux méthodes de Monte Carlo pour les moyennes d’ensemble.

Dans la cadre de ce travail, on s’intéresse aux milieux aléatoires mélangeant un ensemble fini de

compositions physiques {i}, avec des propriétés physiques associées, comme par exemple les sections

efficaces macroscopiques totale Σt,i(r) et diffusive Σs,i(r,Ω
′ → Ω) ou la source Qi(r,Ω). On note pi(r)

la probabilité de trouver le matériel i à la position r. On peut décomposer la moyenne d’ensemble du

flux sur les flux conditionnés aux matériaux 〈ϕi(r,Ω)〉 pondérés par les probabilités de coloriage, i.e.

〈ϕ(r,Ω)〉 =
∑

i pi(r)〈ϕi(r,Ω)〉. Dans cette thèse, on se limite au cas des mixtures dites homogènes,

c’est-à-dire que pi(r) ne dépend pas de r.

231
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Un cas largement étudié est celui des mixtures binaires, avec seulement deux matériaux α et

β. Dans ce cas, sans perte de généralité, on peut écrire une équation de type Boltzmann pour les

flux conditionnés aux matériaux 〈ϕα(r,Ω)〉 and 〈ϕβ(r,Ω)〉, avec un terme de couplage Uα,β(r,Ω)

représentant le désordre :

[Ω · ∇+ Σt,α] (pα〈ϕα〉) = pα

∫
Σs,α(Ω′ → Ω, r)〈ϕα(r,Ω′)〉dΩ′ + pαQα + Uα,β. (B.2)

Malheureusement, le terme de couplage Uα,β ne dépend pas seulement de la moyenne d’ensemble

des flux conditionnés aux matériaux 〈ϕα(r,Ω)〉 et 〈ϕβ(r,Ω)〉 mais aussi des moments supérieurs, ce

qui conduit à une hiérarchie infinie d’équations. Dans le cas général, on ne peut donc pas résoudre

de manière explicite ce système d’équations sans formule de clôture. En revanche, il est possible de

montrer que ce terme de couplage Uα,β dépend de la distribution de la longueur de corde dans chaque

matériau. Ainsi, on s’attend à ce que le désordre soit fortement lié aux propriétés stéréologiques des

mixtures aléatoires.

Pour le transport de neutrons dans des milieux désordonnés, deux approches peuvent être dis-

tinguées :

• l’approche dite ’désordre figé’ : on génère un grand nombre de réalisations de géométries

aléatoires suivant un modèle stochastique, grâce à un générateur de géométries stochastiques;

pour chaque réalisation géométrique, le transport de particules est simulé dans cette géométrie

et les observables de transport associées (réflexion, transmission, flux, facteur de multiplication,

etc.) sont enregistrées; on calcule ensuite les moyennes d’ensemble pour chaque observable ainsi

que les distributions. Cette approche a l’avantage de fournir des solutions de référence mais

comporte un coût computationnel élevé.

• l’approche dite ’désordre homogénéisé’ : les lois de déplacement des neutrons dans la matière

sont modifiées afin d’introduire des opérateurs de transport ’efficaces’ dans l’équation de Boltz-

mann, afin de représenter le plus fidèlement possible le désordre, au détriment des corrélations

induites par la structure géométrique, qui sont perdues dans cette approche : généralement,

cette méthode ne fournit donc que de solutions approchées. En revanche, elle ne nécessite

qu’une seule simulation de transport, ce qui revient à réduire considérablement le temps de

calcul. En outre, cette approche ne nécessite aucun générateur de géométries aléatoires.

B.2 Modélisation du désordre par des géométries stochas-

tiques

Pour les applications liées à la physique des réacteurs, deux principales classes de géométries stochas-

tiques sont généralement considérées : les inclusions sphériques aléatoires, dans lesquelles des objets

sont dispersés aléatoirement dans une matrice, et les tessellations aléatoires, dans lesquelles l’espace

est partitionné suivant des lois de probabilité. Les inclusions sphériques ayant été déjà largement

étudiées, je me suis concentrée dans cette thèse sur la classe des tessellations aléatoires. Nous avons

considéré trois modèles de tessellations homogènes :

• les tessellations de Poisson, qui satisfont aux milieux dits ’Markoviens’, dans lesquelles la

longueur de corde est distribuée exponentiellement ;

• les tessellations Poisson-Voronoi, simplement dites ’Voronoi’ dans la suite, très utilisées dans le

domaine de la mécanique pour décrire les microstructures ;

• les tessellations dites ’Box’, un cas spécial des tessellations de Poisson anisotropes, construites

avec des plans orthogonaux aux axes cartésiens, qui définissent des parallélépipèdes de dimen-

sions aléatoires.
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Ces trois modèles engendrent une décomposition de l’espace en volumes polyédraux convexes.

Cette propriété est cruciale pour le déversement de ces géometries dans des codes de transport.

L’algorithme utilisé pour tesseller une bôıte d-dimensionnelle de taille L avec un paramètre appelé

densité de la tessellation (homogène à l’inverse d’une longueur), est détaillé pour chaque modèle de

tessellation :

• Pour les tessellations de Poisson, on procède de façon itérative. Au début de la construction,

la tessellation ne compte que la bôıte vide. Puis, le nombre d’hyperplans à introduire dans la

tessellation est tiré aléatoirement d’une distribution de Poisson dont l’intensité dépend de la

dimension, de la taille linéaire L de la bôıte et du paramètre de densité ρ. Ensuite, chaque

hyperplan est tiré aléatoirement de façon à garantir l’homogénéité de la tessellation. En par-

ticulier, le vecteur normal n de chaque hyperplan obéit à une loi de probabilitité H(n), qui

correspond à la la loi d’anisotropie de la tessellation. Lorsque l’hyperplan est tiré, on calcule les

intersections de cet hyperplan avec les polyèdres composant la tessellation et on itère jusqu’à

atteindre le nombre d’hyperplans tiré préalablement.

• Les tessellations de Voronoi sont obtenues en tirant aléatoirement des points (germes) d’un

processus de Poisson homogène d’intensité µ = ρ3
V dans la bôıte. Puis, une décomposition

déterministe est appliquée aux germes pour la construction des cellules de Voronoi. Chaque

cellule de Voronoi, associée à un germe, est définie comme la région des points de l’espace tels

que ces points sont plus proches du germe considéré que de tout autre germe.

• Les tessellations Box sont obtenues en tirant des points d’un processus de Poisson homogène

d’intensité ρB sur un axe Cartésien donné. On découpe ensuite l’espace avec les plans orthogaux

à l’axe, passant par les points tirés au préalable. Cette étape est répétée sur les d − 1 axes

Cartésiens restants.

D’après la littérature, les propriétés géométriques de ces tessellations sont connues seulement

pour un nombre limité d’observables et pour des géométries infinies. On distingue les propriétés

polyhédrales (par exemple, relatives au volume, à la surface, au nombre de voisins, etc., typique d’un

polyèdre de la tessellation) des propriétés stéréologiques (par exemple, la distribution des cordes).

En particulier, un résultat très important concernant la distribution de la longueur de corde dans les

géométries de Poisson anisotropes (d’extension infinie) est le suivant : une droite d’orientation Ω est

découpée en cordes dont la longueur est distribuée exponentiellement avec une moyenne Λ(Ω), qui

dépend de Ω, de la dimension d, de la densité de la tessellation ρ et de la loi d’anisotropie H. Dans

le cas spécial des géométries de Poisson isotropes, cette quantité ne dépend plus de Ω et devient :

Λ(Ω) = Λ = 1/ρ. Dans les tessellations de Voronoi, la distribution de la longueur de corde a été

dérivée trés récemment. Comme les tessellations de Voronoi sont isotropes, la distribution des cordes

ne dépend pas de l’orientation Ω des droites. En particulier, il ressort que cette distribution est non

exponentielle. Dans les tessellations de Box, la distribution de la longueur de corde est aussi exponen-

tielle suivant une direction Ω donnée, comme cas particulier des tessellations de Poisson anisotropes.

Si l’on irradie maintenant les tessellations avec des droites distribuées de manière isotrope et uniforme

(notion de µ-randomness), la longueur de corde moyenne, notée Λc, qui représente physiquement la

longueur de corrélation du milieu, peut être calculée en appliquant la formule de Cauchy, en utilisant

les formules de littérature pour les premiers moments du volume 〈Vd〉 des polyèdres et celui de la

surface totale 〈Sd〉 des polyèdres. Ainsi, la quantité Λc peut être exprimée, pour chaque modèle de

tessellation, en fonction du paramètre de densité correspondant (i.e., ρ, pour Poisson, ρV pour Voronoi

et ρB pour Box). Afin de comparer les différents modèles de tessellations, un choix pertinent est de

calibrer les densités des tessellations de manière à obtenir la même longueur de corrélation Λc (dans

la limite des géométries infinies).

Une fois que les tessellations sont produites, une étape importante est celle dite du coloriage, dans

laquelle on assigne à chaque polyèdre de la tessellation un label i (correspondant à une composition

physique) avec une probabilité pi. Une observable clé est la longueur de corde dans le matériel i. On
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sait que, pour des droites distribuées isotropiquement et uniformément, la moyenne de la longueur

de corde dans le matériel i, notée Λc,i, est reliée à la longueur de corrélation Λc et aux probabilités

de coloriage {pi} par la formule suivante : Λc,i = Λc/(1 − pi). En outre, pour le cas spécifique des

tessellations de Poisson, la distribution des cordes colorées est toujours distribuée exponentiellement

suivant une direction Ω donnée, avec la moyenne : Λi(Ω) = Λ(Ω)/(1− pi).

On peut ensuite agréger les polyèdres voisins de même composition en clusters colorés, généralement

non-convexes. Cette étape d’agrégation est facultative pour le transport, puisque le tracking des par-

ticules s’effectue dans des volumes convexes. En revanche, elle est nécessaire pour l’étude de propriétés

géométriques spécifiques comme celles liées à la percolation, qui représente physiquement une connec-

tivité préférentielle. En particulier, le seuil de percolation de la tessellation correspond à la valeur

critique pc de la probabilité de coloriage du matériel i telle qu’au-delà de ce seuil, il existe presque

sûrement un cluster de matériel i traversant toute la géométrie : il est important de noter que ce

seuil ne dépend pas du matériel i. Ce seuil n’est défini rigoureusement que pour des géométries in-

finies, néanmoins il est possible de l’estimer avec des géométries finies de tailles croissantes. Notons

qu’aucune estimation du seuil de percolation n’a été proposée jusqu’ici pour les tessellations de Poisson

en dimension 3.

B.3 Description du générateur de géométries aléatoires

La première étape de cette thèse a été d’implémenter un code générant différents modèles de géométries

aléatoires (tessellations et inclusions sphériques dites ’sans chevauchement’), décrites au chapitre

précédent, pour les dimensions d = 1, d = 2 et d = 3. Ce générateur a été codé en langage C++ et

prend en entrée la taille L de la bôıte englobante ainsi que des paramètres géométriques :

• pour les tessellations : densité de tessellation (ρ, ρV ou ρB suivant le modèle de tessellation) et

probabilités {pi} de coloriage (pour des mélanges n-aires) ;

• pour les inclusions sphériques : ratio volumique ξ occupé par les sphères et distribution du rayon

g(r) des sphères.

Chaque type de géométries aléatoires a nécessité un algorithme de construction et une structure de

données particulière. L’objectif de ce générateur est double : i) l’investigation des propriétés statis-

tiques géométriques des tessellations, notamment pour l’étude des effets de taille finie ; ii) la production

de géométries aléatoires pour réaliser des simulations de transport dans des milieux désordonnés, grâce

à l’implémentation d’une interface avec le code de transport Monte Carlo Tripoli-4 R©: le générateur

peut en effet sortir des fichiers décrivant chaque géométrie, qui sont lisibles par le code de transport.

Nous avons étudié le temps moyen de construction des tessellations en fonction de la taille du

système L∗ = L/Λc. Nous avons montré que cette quantité va comme (L∗)d+1 pour les géométries de

Poisson. De plus, le temps de construction va comme (L∗)2d pour Voronoi et (L∗)2 pour Box. Nous

avons ensuite montré certaines techniques d’accéleration de la construction pour les tessellations de

Poisson et Voronoi, ainsi que pour les inclusions sphériques, avec un maillage fictif destiné à restreindre

les recherches sur tous les éléments au cours de la construction.

Enfin, nous avons implémenté dans le générateur de géométries aléatoires une méthode permettant

de générer une carte de voisinage des polyèdres (dans le cas des tessellations) ou des sphères et de

la matrice maillée (dans le cas des inclusions sphériques). Cette carte peut être fournie au code de

transport Tripoli-4 R©. Nous avons montré que cette carte de voisinage accélère considérablement

le tracking des particules durant la simulation de transport, notamment lorsque les géométries sont

complexes : typiquement, l’effet de la carte de voisinage devient visible à partir de 104 volumes dans

la géométrie. Cette accélération s’explique par la réduction de l’étape où la particule quitte un volume

: à défaut de carte de voisinage, le code boucle sur tous les volumes de la géométrie afin de trouver

le prochain volume du parcours de la particule. Avec la carte de voisinage, cette boucle est restreinte

aux seuls voisins du volume courant.
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B.4 Etude statistique des géométries aléatoires

En utilisant le générateur de géométries, nous avons étudié la complexité (nombre de polyèdres com-

posant la tessellation) ainsi que les propriétés statistiques polyédrales (volume, surface, nombre de

faces, etc. typique d’une cellule) et stéréologiques (distribution de la longueur de corde) pour différentes

tessellations. Pour les observables dont il existe des formules exactes pour les tessellations infinies,

nous avons caractérisé les effets de taille finie en fonction de la taille du système, de la dimension d,

de la loi d’anisotropie (pour les géométries de Poisson) ou du type de tessellation (Poisson, Voronoi

ou Box à même longueur de corrélation). Puis, nous avons vérifié la convergence des moments et

des distributions vers les formules de la littérature pour des systèmes assez grands. Pour les observ-

ables dont le comportement n’est pas connu, même pour des géométries infinies, nous avons estimé

numériquement les distributions et moments correspondants. En outre, nous avons montré que pour

des droites isotropes et uniformes, la distribution de la longueur de corde dans les tessellations Box

est (bien qu’on puisse démontrer qu’elle est non strictement exponentielle grâce au moment d’ordre

quatre) quasi similaire à celle dans les tessellations de Poisson (strictement exponentielle), y compris

dans la queue de distribution, tandis que la distribution de la longueur de corde pour le Voronoi a un

comportement très distinct, comme prévu par la théorie. Enfin, nous avons établi pour la première

fois une estimation du seuil de percolation des géométries de Poisson isotropes en dimension 3. Cette

étude a fait l’objet d’une publication [1].

B.5 Transport de particles dans du désordre figé pour

les problèmes à source fixe

En utilisant l’approche ’désordre homogéisé’ détaillée en introduction, nous avons effectué des simu-

lations de transport de particules dans des géométries Markoviennes, i.e. tessellations de Poisson. En

guise de première appliaction, nous avons repris un benchmark classique de littérature (proposé par

Larsen, Adams et Pomraning en 1989) concernant le transport dans des géométries de Poisson uni-

dimensionnelles et l’avons étendu aux dimensions 2 et 3. Pour cela, nous avons utilisé les géométries

de Poisson produites par notre générateur aléatoire et exploité le logiciel Tripoli-4 R©pour effectuer

des calculs de réflexion, transmission et flux sur chaque réalisation géométrique. En particulier, pour

les moyennes d’ensemble des observables cibles, nous avons mis en évidence le fait que les solutions

sont d’autant plus proches du régime de l’atomic mix (cas du milieu homogène dans lequel toutes les

propriétés physiques sont moyennées) que la dimension d est grande et que la longueur de corrélation

est petite. De plus, nous avons estimé les distributions des observables et constaté que la dispersion

est d’autant plus petite que la dimension d est grande et que la longueur de corrélation est petite.

En outre, nous avons montré que pour des longueurs de corrélation suffisamment grandes, des effets

pathologiques sont susceptibles d’apparâıtre, notamment des distributions bimodales pour la dimen-

sion 1. Ceci montre que les moyennes d’ensemble ne sont pas toujours représentatives et que, dans

certains cas, toute la distribution est nécessaire. Cette étude a fait l’objet d’une publication [2].

Nous avons ensuite estimé l’impact du modèle de tessellation (Poisson, Voronoi ou Box, à longueur

de corrélation fixée) sur le transport de neutrons, pour des problèmes à source fixe (poursuite du

benchmark d’Adams, Larsen et Pomarning et définition d’un nouveau benchmark dans des milieux

non-multipliants). Les résultats suggèrent que les géométries Poisson et Box sont équivalentes pour

le transport (probablement en raison de la distribution de longueur de corde très similaire pour ces

deux modèles), tandis que les solutions issues du modèle Voronoi se distinguent par un comportement

spécifique. Par ailleurs, les tessellations de Voronoi conduisent à des distributions moins dispersées

que les deux autres modèles. Ce travail a également fait l’objet d’une publication [3].
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B.6 Transport de particles dans du désordre figé pour

les problèmes à valeur propre

Nous avons poursuivi l’approche du transport ’désordre figé’ pour des milieux multipliants (en résolvant

l’équation de Boltzmann à valeur propre, pour chaque réalisation), afin de modéliser un assemblage

UOX ou MOX partiellement fondu en faisant l’hypothèse que les éléments de combustible fragmentés

suite à un accident avec fusion partielle du coeur peuvent être remplacés par des tessellations aléatoires

ternaires, avec les compositions suivantes : fuel (UOX ou MOX), modérateur (eau) et gaine (zinc,

principalement). Les probabilitités de coloriage {pi} des tessellations ont été choisies de manière à

respecter les ratios volumiques dans une pin-cell intacte.

Nous avons étudié l’impact des géométries aléatoires sur la réactivité (via le facteur de multipli-

cation) et sur les paramètres cinétiques. Ils montrent que le facteur de multiplication moyen dépend

fortement de la longueur de corrélation de la tessellation : d’abord, cette observable augmente, avant

d’atteindre un maximum puis de diminuer en fonction de la longueur de corrélation. En outre, les

résultats issus des tessellations de Poisson et de Box sont quasi identiques, alors que les résultats

obtenus avec des tessellations de Voronoi donnent typiquement des facteurs de multiplication plus

élevés. Enfin, ce comportement est amplifié en passant du combustible UOX au MOX, le facteur de

multiplication moyen pouvant alors dépasser celui de l’assemblage non endommagé. Les résultats de

cette étude ont été publiés [4].

Les géométries étudiées étant jusqu’ici isotropes (ou quasi isotropes, pour le cas Box), nous avons

étudié l’impact des anisotropies (directions privilégiées) dans le cadre des tessellations de Poisson,

pour une application à la modélisation du corium, afin d’estimer l’impact des effets de stratification

des matériaux (dus à la gravité) sur le facteur de multiplication. Cette étude a été publiée [7].

B.7 Transport de particles dans du désordre homogénéisé

L’algorithme Chord Length Sampling (CLS) s’inscrit dans l’approche ’désordre homogénéisé’, présentée

en introduction. Il a été démontré que cet algorithme est l’implémentation stochastique du modèle

déterministe des équations de Levermore-Pomraning, qui sont obtenues pour des mixtures Markovi-

ennes en appliquant une relation de clôture (strictement valide uniquement pour du transport sans

collision) sur le terme de couplage Uα,β dans le système d’équations pour les flux conditionnés aux

matériaux (voir Eq.B.2). On obtient ainsi une expression très simplifiée pour le terme de couplage,

qui dépend seulement des longueurs de corde moyennes dans chaque matériau et des probabilités

de coloriage : Uα,β =
pβ

Λc,β
〈ϕβ〉 − pα

Λc,α
〈ϕα〉, ce qui conduit à un système d’équations approchées

couplées. L’algorithme CLS est un algorithme de transport Monte Carlo classique dans lequel un

nouvel événement intervient afin de tenir compte du désordre : le franchissement d’interfaces entre les

matériaux. Cet événement est tiré au vol au cours de la simulation : dans le matériau i, la distance à

la prochaine interface est tirée d’une distribution exponentielle de moyenne Λc,i = Λc/(1− pi).

Nous avons implémenté cet algorithme pour le benchmark de Adams, Larsen et Pomraning en di-

mension 1, 2 et 3. Les résultats ont été comparés aux solutions de référence correspondantes (obtenues

avec les tessellations de Poisson). Les résultats clé sont les suivants : la précision de l’algorithme CLS

par rapport aux solutions de référence augmente avec la dimension d (comme conjecturé par Sahni)

et décrôıt avec la longueur de corrélation et avec la section efficace de diffusion des matériaux. Une

publication, en collaboration avec le Lawrence Livermore National Laboratory (LLNL) et Oregon Uni-

versity, détaille les résultats obtenus [5].

L’algorithme CLS est une méthode approchée, d’où la mauvaise précision par rapport aux solutions

de référence pour certaines configurations. En effet, on sait que dans cet algorithme, les corrélations

sont négligées, i.e. que les particules n’ont pas la mémoire des milieux déjà traversés : les effets dits de
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back-scattering ne peuvent donc pas être bien pris en compte. On peut se demander, dès lors, comment

améliorer l’algorithme CLS pour augmenter sa précision. En dimension 1, deux versions améliorées

du CLS (algorithmes dits ’B’ et ’C’) ont étés proposées dans la littérature, afin d’inclure des effets

supplémentaires de corrélation et de mémoire locale. Nous avons voulu développer de tels algorithmes

en dimension d. Nous avons proposé une nouvelle classe de méthodes de type ’désordre homogénéisé’,

les algorithmes Poisson-Box Sampling (PBS). Il s’agit d’ajouter des effets de corrélation et de mémoire

pour mieux reproduire le désordre dans des géométries de Poisson, en passant par les tessellations Box,

qui présentent des résultats de transport très similaires à ceux issus des tessellations de Poisson. Nous

avons implémenté deux algorithmes distincts : dans la première version (PBS-1), on génère au vol

des bôıtes dont les dimensions sont distribuées exponentiellement de manière à préserver la longueur

de corrélation des tessellations de Poisson ; dans la seconde version (PBS-2), on garde en plus en

mémoire les caractéristiques de la dernière bôıte rencontrée. Nous avons testé ces deux algorithmes

sur le benchmark d’Adams, Larsen et Pomraning, pour la dimension 3. De manière générale, la

précision des résultats obtenus est bien meilleure que celle de l’algorithme CLS. De plus, l’algorithme

PBS-2 est plus performant que la version PBS-1, comme attendu. Une publication présente le détail

de ces résultats [6].

B.8 Conclusions

Nous avons implémenté un générateur de géométries aléatoires pour des géométries Markoviennes

(notamment en dimension 3), produit pour la première fois des solutions de référence 3d pour des

problèmes de transport à source fixe et pour des problèmes de criticité dans des géométries aléatoires.

Nous avons également obtenu des solutions approchées avec l’algorithme CLS et comparé ces résultats

avec les solutions de référence correspondantes, pour la dimension 3. Enfin, nous avons proposé une

nouvelle famille d’algorithmes de transport (PBS) avec l’approche ’désordre homogénéisé’ et obtenu

des résultats très satisfaisants pour des problèmes de transport à source fixe.
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Titre : Transport stochastique de particules dans des matériaux désordonnés : au-delà de
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Résumé : Des milieux hétérogènes et désordonnés
émergent dans plusieurs applications de la science et de
l’ingénierie nucléaires, en particulier en ce qui concerne la
propagation des neutrons et des photons. Les exemples
sont très répandus et concernent par exemple la double
hétérogénéité des éléments combustibles dans les réacteurs à
lit de boulets ou l’évaluation de la probabilité de re-criticité
suite aux arrangements aléatoires du combusitble résultant
d’accidents graves. Dans cette thèse, nous étudierons le
transport linéaire de particules dans des milieux aléatoires.
Dans la première partie, nous nous concentrerons sur quelques
modèles mathématiques qui peuvent être utilisés pour la de-
scription de matériaux aléatoires. Une attention particulière
sera accordée aux tessellations stochastiques, où un domaine
est partitionné en polyèdres convexes en échantillonnant des
hyperplans aléatoires selon une probabilité donnée. Les in-
clusions stochastiques de sphères dans une matrice seront
également brièvement introduites. Un code informatique sera
développé afin de construire explicitement de telles géométries

par des méthodes de Monte Carlo. Dans la deuxième par-
tie, nous évaluerons ensuite les caractéristiques générales du
transport de particules dans des milieux aléatoires. Pour ce
faire, nous allons considérer quelques benchmarks assez sim-
ples pour permettre une compréhension approfondie des ef-
fets des géométries aléatoires sur les trajectoires de particules
tout en conservant les propriétés clés du transport linéaire.
Les calculs de transport seront réalisés en utilisant le code de
transport de particules Monte Carlo Tripoli-4 R©, développé
au SERMA. Les cas de modèles de désordre quenched et an-
nealed seront considérés séparément. Dans le premier, un
ensemble de géométries sera généré en utilisant notre code,
et le problème de transport sera résolu pour chaque config-
uration: des moyennes d’ensemble seront alors prises pour
les observables d’intérêt. Dans le second cas, un modèle de
transport efficace capable de reproduire les effets du désordre
dans une seule réalisation sera étudié. Les approximations
des modèles annealed seront élucidées, et des améliorations
significatives seront proposées. (Un résumé détaillé est donné
en Annexe B.)
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Abstract: Heterogeneous and disordered media
emerges in several applications in nuclear science and en-
gineering, especially in relation to neutron and photon prop-
agation. Examples are widespread and concern for instance
the double-heterogeneity of the fuel elements in pebble-bed
reactors, or the assessment of re-criticality probability due
to the random arrangement of fuel resulting from severe ac-
cidents. In this Thesis, we will investigate linear particle
transport in random media. In the first part, we will focus
on some mathematical models that can be used for the de-
scription of random media. Special emphasis will be given
to stochastic tessellations, where a domain is partitioned into
convex polyhedra by sampling random hyperplanes according
to a given probability. Stochastic inclusions of spheres into a
matrix will be also briefly introduced. A computer code will
be developed in order to explicitly construct such geometries
by Monte Carlo methods. In the second part, we will then as-

sess the general features of particle transport within random
media. For this purpose, we will consider some benchmark
problems that are simple enough so as to allow for a thor-
ough understanding of the effects of the random geometries
on particle trajectories and yet retain the key properties of
linear transport. Transport calculations will be realized by
using the Monte Carlo particle transport code Tripoli-4 R©,
developed at SERMA. The cases of quenched and annealed
disorder models will be separately considered. In the former,
an ensemble of geometries will be generated by using our
computer code, and the transport problem will be solved for
each configuration: ensemble averages will then be taken for
the observables of interest. In the latter, effective transport
model capable of reproducing the effects of disorder in a single
realization will be investigated. The approximations of the
annealed disorder models will be elucidated, and significant
ameliorations will be proposed.
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