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DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :
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Mme Catherine Achard Université Pierre et Marie Curie Examinatrice
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1
I N T R O D U C T I O N

1.1 general context

Eyes are the windows to the soul. For the artificial intelligence agent, the eye
and soul are based on the computer vision technology. Computer vision has
achieved quite a lot of advancements in many industrial areas, including
but not limited to self-piloting automobile, medical image analysis, security
monitoring, etc. Generally, computer vision is about perceiving the visual
environment and understanding the visual content. Researchers generalize
the complex practical problems of computer vision into several basic tasks,
including category recognition, object localization, object detection, object
segmentation, etc. As the fundamental understanding of the visual content,
image classification has been deeply researched and a great number of
applications have been built on it. The goal of image classification is to
predict what is the semantic category of an image according to its visual
content. In this thesis, we focus on the problem of image classification.

The huge amount of stock and increment visual information on the Inter-
net, typically known as big data, makes this problem extremely challenging.
In the white paper of Visual Networking Index (Cisco 2016), Cisco shows a
statistic that video content holds around 70 percent of the Internet traffic
by the year of 2015. Based on the status quo, they estimate that every
second, nearly a million minutes of video content will cross the network by
2020. These big data derive from the soaring increase of portable devices
such as mobile phones, digital cameras and Internet services such as social
networks, video games, etc. For instance, 350 million photos are uploaded
per day to Facebook1 and 80 million to Instagram2 . Mining the value
from such tremendous data could become possible, only if we can design

1 http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9?IR=T
2 https://maximizesocialbusiness.com/definitive-instagram-statistics-23286/
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proper algorithms for handling such a high order of magnitude of data.
Recently, due to the rapid development of deep learning, statistical ma-
chine learning methods have achieved amazing results on this issue, even
surpassed human-level performance (He et al. 2015a). This excellent result
makes the machine learning methods began to get large-scale deployment
and application in the real industrial products. It also attracts the world’s
best technology companies, e.g. Google, Facebook, Microsoft, Amazon,
Baidu, etc., as well as a large number of startups, research projects, public
infrastructure services, to promote or benefit from the development of
statistical machine learning.

1.2 visual recognition : shallow, deep and weakly supervised

learning

Image classification is a challenging task for machines. For humans, this
problem is a natural ability, but the current science has not yet fully under-
stood the human eye - brain coordination mechanism, and therefore can
not be copied to the machine. This problem is also complicated for ordinary
logic-based computer programs because the representation of an image or
object may vary greatly (such as image rotation, brightness variation, back-
ground noise, object deformation, etc.), but the corresponding semantics
may be the same. The main challenge is that low-level image represen-
tations (i.e. the pixels) are not discriminative enough to directly predict
semantic-level concepts, generally known as semantic gap (Smeulders et al.
2000). At present, the state-of-the-art solution is based on the machine
learning model. The machine learning model describes the original picture
as a mapping from a string of numbers (pixel representation of the image)
to the image semantic label. Then the most important step is to learn the
mapping function f : x → y from these data. Note that this step does not
require explicit programming. After the learning is completed, when the
machine sees a new image, it uses the mapping function to interpret x as
the semantics of y, for example in the Fig. 1.1 the whole image content is x,
and y is composed of Eiffel tower, person, tree etc. This is the basic process
of machine learning in image recognition.
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Figure 1.1: The image annotation problem. The challenge of image annotation is
to find a mapping that bridges the semantic gap between raw image
pixels and semantic concepts, such as objects and scene categories.
(Credit Hanlin Goh)

One of the key part in this model is defining the image description,
namely the input feature x to the machine learning model. A good rep-
resentation makes the classification become easy. Before the year of 2012,
most of the image classification features were hand-crafted. The intuition
of these features often originated from the human observation and tri-
als, calculating some fixed quantitative indicators according to the image
pixel value, e.g. the most popular one: Scale-invariant feature transform
(SIFT) (Lowe 2004). Then, considering the computation efficiency, people
often constituted a compressed vector to describe the image. The most
popular approach was the Bag of Words (BoW). It was first applied in the
text retrieval task (Salton and McGill 1986). The basic idea is to express the
text as a histogram vector of the frequency of the words. To extend this
idea to image classification, a key issue is the definition of visual vocabu-
lary. A famous solution is to cluster the features in the image to obtain a
man-made visual vocabulary dictionary, then representing an image as a
histogram vector (Ma and Manjunath 1999; Sivic and Zisserman 2003).
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Deep learning has achieved great success in the era of big data. The
dominance of deep models is witnessed in the fields of face recogni-
tion (Learned-Miller et al. 2016), machine translation (Zhou et al. 2016),
speech recognition (Saon et al. 2016), and even the Go game (Silver David,
Huang Aja, and et.al 2016). One typical example is the success of deep
convolutional neural network (DCNN) in computer vision. Since the year
of 2012, DCNN-based image descriptions largely outperforms hand-crafted
features. The first breakthrough came from a research team in the Toronto
university (Krizhevsky, Sutskever, and Hinton 2012), who achieved 15% ac-
curacy on ImageNet Large Scale Visual Recognition Competition (ILSVRC
2012), outperforming the second-place BoW-based method by ten percent-
age points. From the AlexNet (Krizhevsky, Sutskever, and Hinton 2012) to
the state-of-the-art deep Residual Networks (He et al. 2016), the DCNN has
much outperformed the traditional hand-crafted feature-based machine
learning methods on the largest classification competition ImageNet Large
Scale Visual Recognition Competition (ILSVRC) (Deng et al. 2009). It is
worth noting that ImageNet is a super large scale dataset contains more
than 10 millions of labeled images. To today (2016 ILSVRC), deep con-
volution neural network has reached a 3% error rate, even significantly
exceeding the human-level error rate of 5.1%. Moreover, deep models
trained on ImageNet can also be applied effectively to different target
domain or different tasks by transfer learning (Yosinski et al. 2014). As
a result, state-of-the-art results on standard benchmarks are nowadays
obtained with deep features as input. Recent studies show that fine-tuning
and data-augmentation can further boost the performance of the transferred
models (Chatfield et al. 2014).

In fact, DCNN is not a new technology that suddenly appears. As
early as 1957, Rosenblatt presented the Perceptron to simulate brain neu-
rons (Rosenblatt 1957). Later in 1980, Fukushima presented the paper of
Neocognitron (Fukushima 1980), using the concept of receptive field on
the basis of Perceptron to construct the prototype of DCNN (Hubel and
Wiesel 1962). In 1989, Lecun used DCNN to develop a handwritten digi-
tal identification system for bank automatic identification checks(LeCun

4



et al. 1989). The outbreak of DCNN in the 2010s can be attributed to two
important factors:

1. A large number of labeled data can be trained with large deep neural
networks without over-fitting.

2. The rise of new computing devices, such as GPUs, significantly re-
duces the time required to train large neural networks.

A DCNN is composed of several non-linear transformation layers to
convert an input image to the target value, e.g. image label. The neural
network contains a large number of parameters, but these parameters
are all learned from the data, so that the feature extraction and the final
task is a more reasonable joint training process, which is often referred
as the end-to-end training, rather than the traditional method of separate
training. The hierarchical representations progressively abstract image
features, making the original highly linear inseparable low-level features
become approximate linear separable. This is why we observe that applying
a linear classification model on the representations of the neural network
at the deeper layer can also achieve a good classification result.

Despite the great success of DCNN, one of its bottlenecks is the lack
of spatial invariance. Spatial invariance refers to the ability for dealing
with non-central, scale-variant, clutter objects in the image dataset. In the
Fig. 1.2, we see that the objects in the ImageNet are centered and large with
respect to the whole image, but not for the images in the natural image
datasets such as PASCAL VOC (Everingham et al. 2015) and MS COCO (Lin
et al. 2014). In order to improve the accuracy of classification, an intuitive
idea is to select the image area associated with the target semantics to
classify. Because clutter information decreases the discriminative power of
the model. In this case, expensive annotations such as bounding boxes are
often used to localize the target object. Clutter information is subsequently
filtered out by omitting the information outside the bounding boxes. This
idea is first presented in this paper of Russakovsky et al. (Russakovsky
et al. 2012a): extracting the feature in the bounding box area of the target
object and finding a significant improvement over the classification accu-
racy of the extracted feature from the whole image. This illustrates the
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Figure 1.2: Examples of car images from ImageNet, PASCAL VOC 2012 and MS
COCO.

consistency between the region and the target object ensures the quality of
the extracted features, and the local invariance of the object is the factor
that the image classification system needs to consider. For the DCNN,
since most models are pre-trained on the ImageNet, a direct transferring
application is not compatible with the non-centered dataset. (Oquab et al.
2014) exploits the bounding box supervision to train object-centric deep
classifiers, which perform better on the PASCAL VOC. Recently, attempts
have been made to overcome this limitation by encoding local information
by following the design of Bag-of-words (BoW): (He et al. 2015b; Gong et al.
2014) proposed BoW models with deep features as local region activations
and (Arandjelovic et al. 2016) developed BoW layers.

A potential limitation for promoting the local invariance using full anno-
tation is that it is extremely time-consuming and scarce. In the Fig. 1.3, we
compare the annotation time and quantity of the common data annotation.
We observe that the annotation with rich information, e.g. bounding box
or pixel-wise segmentation, is time-consuming and scarce, while the an-
notations with coarse information, e.g. noisy label or image-level label, is
time-saving and abundant. The ideal solution is to use coarse annotations
to get comparable results as using rich annotation. The method for achiev-
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ing this goal is named as Weakly Supervised Learning (WSL). In this thesis,
we are interested in a specific problem of image classification improved by
weakly supervised localization, which is still in the form of bounding box
to locate the object but no longer needs human manual labeling.

Figure 1.3: Time cost and data size of different kinds of image annotations. (Figure
data is compiled from (Russakovsky et al. 2016; Papadopoulos et al.
2014; Matthew Blaschko, Pawan Kumar, Ben Taskar 2013))

1.3 gaze annotation and weakly supervised localization

Selecting relevant regions from images with only image label is a chal-
lenging task for training a WSL model. Noise label is fine at both labeling
time and quantity, but the information it carries may not be suitable for
training a robust model. Image label is commonly used in WSL models,
but it carries no localization information except for categorical information.
Comparing to image label, the gaze carries object localization informa-
tion (Yun et al. 2013) and can be easily extended to carry image label as
well (Papadopoulos et al. 2014). Also, as shown in Fig. 1.3, comparing to
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commonly seen annotations, labeling gaze annotation costs little time as
image label. Although the quantity of gaze annotation is not as much as
image label, we anticipate that gaze annotation quantity will increase in
the future by considering its advantages. Researchers have already begun
to think of leveraging human visual pattern for improving computer vision
performance. One possible choice is to analyze the eye movement and
track where exactly human watch using an eye-tracker. An eye-tracker is
a device that incorporates illumination, sensors and processing to track
eye movements and gaze point. Recently, the use of near-infrared light
allows for accurate, continuous tracking regardless of surrounding light
conditions. In this thesis, we use a small cuboid-like eye-tracker, which can
be placed just under the screen of a laptop without any intrusion towards
the human eyes. In a nutshell, human eyes are illuminated by a light
source then reflect the light, a camera then captures an image of the eye
showing these reflections. By identifying the reflection on the cornea and
in the pupil, and combining with other geometrical features of reflections,
eye-tracker is able to calculate the gaze direction. In this thesis, we consider
gaze features recorded by an eye-tracker device, which present two useful
properties: one is that gaze features, when collected from people asked
to identify a semantic category in an image, contain useful information
about the position of the target objects or relevant regions for classification.
We then focus on image classification improved by weakly supervised
gaze-biased region selection.

1.4 context of this thesis

This thesis is registered under the ANR project VIsual Seek for Interactive
Image Retrieval (VISIIR). This project aims at exploring new methods for
semantic image annotation, especially gaze. This project includes several
research topics: unsupervised bio-inspired image representations, visual
salience, eye-driven machine learning system, multimodal food recipe
retrieve. Our thesis covers all topics, but mainly study the latter two issues.

In this dissertation, our classification algorithms are all validated on a
multimodal recipe dataset. Here the multimodal means that the recipe is
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represented by both the visual image and the textual recipe. Food cate-
gorization is an emerging topic in the multimedia research community.
The mainstream methods for food classification are based on image visual
classification (Fig. 1.4). A classical application scenario of automatic food
image categorization is to answer the question in the restaurant: “What is
this dish?” Although the food image categorization is in spirit the same
as image classification, food categorization remains a difficult problem
because of the diversity of textures, large variation of shape, complicated
mixture of elements, etc. Intuitively, as a complement information of
images, multi-modal data such as ingredients, recipe text, restaurant geolo-
calization are exploited to build more robust classification systems (Jingjing
Chen 2016; Min et al. 2016). Our team builds this large scale multimodal
dataset and fuse multimodal information to get a deep understanding of
this distinctive recipe dataset. On the other hand, we used an eye-tracker to
annotate part of the images in this dataset for validating the effectiveness
of our gaze-based weakly supervised classification system.

(a) tiramisu (b) tiramisu (c) pancakes

Figure 1.4: Sample of food images. The objective of image categorization is to
answer the right food category name.
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1.5 contribution and outline

This thesis contains contributions in three areas: multimodal food dataset
recognition based on deep learning, weakly supervised learning and gaze-
based weakly supervised localization.

Deep learning has much outperformed the traditional hand-crafted
feature-based machine learning methods in various computer vision prob-
lems. For training a deep model from scratch, it requires a large number
of data to achieve a reasonable result. Fortunately, transfer learning and
fine-tuning can help us to train with reasonable scale image datasets. Deep
learning has also achieved the state-of-the-art performance on various
natural language processing tasks. The great performance of deep learning
makes it attractive to process multimodal data. For this reason, we first
collect a large scale multimodal food dataset, called UPMC Food-101, in-
cluding pairs of visual image and textual recipe. Based on this dataset, we
perform both shallow and deep learning with visual and/or text informa-
tion. We learn from the result that the deep-based methods outperform the
shallow methods in classification and retrieve tasks with a large margin.

The weakly supervised learning is a framework where the model learns
to capture aspects of the data that are not labeled in the training data.
Learning from weakly labeled data covers several practical aspects towards
the development of powerful learning machines. It helps to reduce the
amount of annotated information used for learning and is promising for
making full use of the data. Handling weakly labeled data generally
requires learning a model with latent variables to model hidden factors
for compensating the weak supervision. For image classification with
weak localization scheme, the hidden factor is the possible localization of
the target object. Fig. 1.5a illustrates the intuition: the sub-region which
contains the object is treated as a latent variable. Based upon the regional
image feature, a model learns to find the region Z, which is the most
consistent with the image semantic. This procedure only requires the global
image label, but outputs simultaneously the classification result and the
inferred region. Inspired by the human recognition process, integrating the
gaze into the weakly supervised localization scheme for image classification
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(a) Weakly supervised localization (b) Weakly supervised localization with gaze

Figure 1.5: Given an image with image-level label (Fig. 1.5a) or gaze annotation
(Fig. 1.5b) for training an image classifier with weakly supervised
localization scheme. In Fig. 1.5a, the model searches for the semantic
region Z based on regional image feature, while in Fig. 1.5b, the model
tends to localize a region Z where the image feature and the density of
gaze are balanced. (Notation: a rectangle represents a candidate region
of an object, and the darker the color is, the higher the possibility is.
The region Z is the most possible region. The green circle represents
the gaze, whose radius reflects the duration.)

is promising. Compared with the global image label, the gaze annotation
costs approximately the same amount of time to acquire, but has a weak
localization information that an image label does not have. In this thesis,
we propose using gaze-based weakly supervised localization for image
classification. The idea is shown in Fig. 1.5b: when training a classifier, the
model tends to localize a region where the image feature and the density of
gaze are balanced. Comparing to weakly supervised localization with only
image label, we find that our proposed method can learn to localize more
semantic meaningful object regions. Along with the weakly supervised
localization strategy, the image classification performance also increases

11



significantly. These results are verified on several benchmark datasets,
including a subset of UPMC-Food101 annotated with an eye-tracker, which
is called UPMC-G20.

The outline of this thesis is as follows:

• In Chapter 3, we present our multi-modal web-based food classifier
and the large scale food dataset UPMC Food-101. We first propose
a large scale food-related multimodal dataset: each instance in this
dataset contains an image and a corresponding recipe text. In the
multimodal context, we consider using the weakly aligned visual
and textual representation to retrieve the recipes. The content of this
chapter is based on (Wang et al. 2015a).

• In Chapter 4, we introduce a gaze-based model for performing weakly
supervised localization image classification. Regions in the images are
modulated by gaze information for indicating the possibility of having
a target object in this region. This model needs only gaze annotation
for learning, while the test phase is gaze free. This property is useful
since we can apply the trained model onto any unseen image without
gaze annotation. This chapter is based on (Wang, Thome, and Cord
2016).

• In Chapter 5, we propose to improve the model in Chapter 4 by two
factors: 1) localizing the information in the negative training images
using gaze, which makes full use of the gaze annotation for all train-
ing images, 2) selecting multiple regions instead of a single region for
localizing the object, which makes a set of regions benefit the gaze
modulation. This model strengthens the weakly supervised region
selection capacity and leads to a better generalization performance.
For consolidating the robustness of our model, we annotate part of
the UPMC Food-101 images with an eye-tracker. We make this dataset
because food is also a complicate object made up of various ingre-
dients and often with several common backgrounds. The extended
model and the gaze-based dataset UPMC-G20 are published in (Wang,
Thome, and Cord 2017).
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Before presenting our contributions, we provide relevant background in
Chapter 2 for image classification with machine learning techniques, weakly
supervised learning (WSL), eye-tracking analysis and the interdisciplinary
fields of these disciplines. Finally, the conclusion and perspectives are
presented in Chapter 6.
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2
R E L AT E D W O R K S

Visual understanding is a key component of artificial intelligence and has
been researched for a long time. In this chapter, we relate our work with
the previous works on the image recognition machine learning techniques,
multimodal food data understanding, eye-tracking research and weakly
supervised learning framework.

2.1 image recognition

2.1.1 Bag of visual words (BoVW) models

In the history of solving image recognition problem using statistical
paradigm, the first milestone of image recognition derives from the Bag-
of-Visual-Words (BoVW) model. The original BoVW is used for content
based image indexing and retrieval (CBIR) in videos (Sivic and Zisserman
2003), but the design framework has a profound influence in the research
of computer vision in the following decade. In the BoVW (shown as Fig.2.1,
the images are first represented by pixel-level hand-crafted feature descrip-
tions, e.g. Scale-Invariant Feature Transform (SIFT) (Lowe 2004), Histogram
of oriented gradients (HoG) (Dalal and Triggs 2005), Speeded up robust
features (SURF) (Bay et al. 2008), etc. Then an unsupervised cluster method
applies on the features for generating a dictionary and a corresponding
visual-words counting-histogram. This histogram can be regarded as a
naive version of BoVW. This histogram is further fed into models as input
for learning to solve specific tasks. Along with the BoVW features, the
learning methods can be adapted to various computer vision applications,
including object matching (Lowe 2004), image classification (Csurka et al.
2004), human action recognition (Wang and Mori 2009), facial expression
recognition (Fasel, Monay, and Gatica-Perez 2004), medical images (Wang
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Figure 2.1: Bag of Visual Words (BoVW) scheme. (Credit: cs143 course of Brown
University)

et al. 2011), sport image analysis (Kesorn and Poslad 2012), 3D image re-
trieval and classification (Li and Godil 2010; Toldo, Castellani, and Fusiello
2009), image quality assessment (Ye and Doermann 2012), etc.

Despite the great success of BoVW model, this technique suffers from
two intrinsic drawbacks: one originates from the BoVW representation. As
the SIFT-like features mainly describes the local low-level characteristics
of images, high-level semantic information is not described. The other
drawback originates from the learning methods. Building the mapping
from low-level statistic to the target semantic is a black-box. The desired
hierarchy architecture should learn step-by-step from the low-level pixel
to high-level semantic. In fact, the hierarchy architecture achieved great
success in almost all research ares of artificial intelligence since 2006, which
are collectively referred as the deep learning methods.

2.1.2 Deep learning in computer vision

During recent years, deep learning models have emerged as another milestone
of image recognition. The prototype of deep learning dates back to 1950s,
which is known as Perceptron (Rosenblatt 1957). For computer vision,
deep convolutional neural networks (DCNN) (LeCun et al. 1989) achieve

16

http://cs.brown.edu/courses/cs143/
http://cs.brown.edu/courses/cs143/


great success. As shown in Fig. 2.2, a DCNN is generally composed of
several non-linear transformation layers to convert an input image to the
target value, e.g. image label. Among these layers, the most important
one is the convolution layer. The convolution layer considers the spatial
structure of image data, encoding the content of the image from the local
to the whole. Comparing with the Perceptron, CNN is notable for its
convolutional layer. Essentially, convolutional layer is able to learn local
filters. When we stacked the convolutional layers, the local filter in the
deeper layer becomes global filter with respect to the original image. That’s
also why the power of CNN shows up when the network goes deeper.
However, as deep CNN is calculation-intensive, only until the year 2012,
when the calculation based on the novel computational devices (i.e. GPUs)
and the parallel computation techniques is implemented, the deep CNN
largely exceeds BoVW-based model for the first time in the world’s largest
image recognition competition ILSVRC (Krizhevsky, Sutskever, and Hinton
2012). This huge success is one of the most meaningful time nodes for the
prosperous deep learning research we are currently witnessing.

Deep learning is popular for following reasons:

1. Powerful generalization ability. Since DCNN won the ImageNet Large
Scale Visual Recognition Competition (ILSVRC 2012), the state-of-the-
art of most of the computer vision problems are based on DCNN. For
example, recently, experimental results show that for image recogni-
tion tasks, machine can perform even better than human beings (He
et al. 2016). The dominance of deep models is also witnessed in
the fields of face recognition (Learned-Miller et al. 2016), machine
translation (Zhou et al. 2016), speech recognition (Saon et al. 2016),
and even the Go game (Silver David, Huang Aja, and et.al 2016).

2. End-to-end learning. This is an useful property for learning from data
without human intervention. This means that the learning starts from
the raw data and ends at the target concept, in which all parameters
are learnable.

3. High quality transferable representation. Deep models trained on
large scale dataset can often be applied effectively to different tar-
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Figure 2.2: A list of classic deep convolutional neural networks. From top to
bottom: LeNet-5(LeCun et al. 1989), AlexNet (Krizhevsky, Sutskever,
and Hinton 2012), VGG (Simonyan and Zisserman 2015), Google-
LeNet (Szegedy et al. 2015), Residual Neural Network (ResNet) (He
et al. 2016).
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get domain or different tasks by transfer learning, e.g. computer
vision (Yosinski et al. 2014). As a result, state-of-the-art results on
standard benchmarks are nowadays obtained with deep features as
input. Recent studies show that fine-tuning and data-augmentation
can further boost the performance of the transferred models (Chatfield
et al. 2014).

However, deep learning is “data hungry” because a typical deep neuron
network has more than millions of parameters. If the model for a given
application is trained with a small-scale dataset, it will probably cause over-
fitting. Except for conventional L1-regularization, L2-regularization and
data augmentation, several regularization methods designed for the struc-
ture of the neural network are proposed to overcome the over-fitting (Sri-
vastava et al. 2014; L.Wan et al. 2013). For making deep learning running
on the small-scale dataset, transfer learning (Yosinski et al. 2014) strategy is
one of the practical strategy. Transfer learning means improving the target
predictive function in the target domain using knowledge learned from
the source domain. This strategy largely reduces the effort for re-training
a network. For example in our work, transferring a model learned on
ImageNet, the world’s largest labeled image dataset, to UPMC Food-101

outperforms traditional hand-crafted image representations by a large mar-
gin. The improvement is reasonable since the deep hierarchical architecture
ensures that the models learn from the basic representations to high level
representations, leading to a better generalization on other data distribu-
tion or other tasks. Furthermore, domain adaptation techniques, such as
taking a model already trained on the source domain, then fine-tuning part
of the parameters by the data of the target domain, can better generalize
the model on the target domain than simply taking the model trained on
the source domain or directly training on the target domain. In the com-
puter vision community, a lot of experiments claim that taking the models
learned on ImageNet leads to substantial progress for other datasets or
even other vision tasks (such as segmentation, motion analysis, etc.) with
transfer learning or domain adaptation.
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2.2 multimodal food data understanding

Our work is in the scope of multimodal food dataset collection, food image
categorization methods and food-related applications. In this section, we
review some relevant researches on this purpose.

2.2.1 Multimodal food datasets

There is an increasing demand of food-related dataset for applications
like dietary assessment, computational cooking, recipe retrieval, etc. We
summarize current multimodal food datasets in Table 2.1. Most of the
datasets are purely image dataset. One of them is the Pittsburgh Food Im-
age Dataset (PFID) (Chen and al. 2009) dataset, containing 4556 images out
of 101 fast food categories. Another one is UNICT-FD889 dataset (Farinella
and all 2014) that has 3583 images out of 889 distinct dishes. UEC-
Food100 (Kawano and Yanai 2014c) contains 100 categories of food images,
each category contains about 100 images, mainly Japanese food categories.
Expanding UEC-Food100 by a food-image retrieve method results in a
new dataset UEC-Food256 (Kawano and Yanai 2014d), which contains
more than 100 images out of 256 categories is proposed. ETHZ Food-
101 (Bossard and al. 2014) contains 101,000 images out of 101 categories.
(He et al. 2014) propose 1453 images with 42 categories. (Myers et al. 2016)
proposes a classification dataset Food201-MultiLabel, and a segmentation
dataset. Food201-MultiLabel dataset contains nearly 50,000 images out of
201 categories. Food201-Segmented contains nearly 13,000 images out of
201 categories. (Pouladzadeh, Yassine, and Shirmohammadi 2015) contains
3000 images with 23 food categories. (He, Kong, and Tan 2016) proposes
15,262 images of 55 categories.

Recently, multimodal food datasets with richer information are proposed.
VIREO Food-172 (Jingjing Chen 2016) contains 110241 images out of 172

categories and 353 ingredient labels. Yummly-28K (Min et al. 2016) contains
nearly 28k items (image + recipe name) out of 3000 ingredients (2208 visible
+ 792 non-visible), 16 kinds of cuisines, 13 kinds of recipe courses. (Luis
Herranz 2015; Xu et al. 2015c) proposes a dataset containing a total of 187
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nb. images nb. categories ingredient recipe geolocalization
(He et al. 2014) 1,453 42 × × ×

(Pouladzadeh, Yassine, and Shirmohammadi 2015) 3,000 23 × × ×
UNICT-FD889 (Farinella and all 2014) 3,583 889 dishes × × ×

PFID (Chen and al. 2009) 4,556 101 × × ×
(He, Kong, and Tan 2016) 15,262 55 × × ×

Food201-Multilabel (Myers et al. 2016) 50,000 201 × × ×
UEC-Food100 (Kawano and Yanai 2014c) 100,000 100 × × ×

ETHZ Food-101 (Bossard and al. 2014) 101,000 101 × × ×
UEC-Food256 (Kawano and Yanai 2014d) 256,000 256 × × ×

VIREO Food-172 (Jingjing Chen 2016) 110,241 172

√
× ×

Yummly-28K (Min et al. 2016) 28,000 16 cuisines/13 courses
√

× ×
(Luis Herranz 2015; Xu et al. 2015c) ∼ 20,000 701 dishes × ×

√

UPMC -Food101(Wang et al. 2015a) 90,840 101 ×
√

×

Table 2.1: Summarization of food multimodal (or image-only) datasets.

restaurant geographic locations and 701 unique dish categories related.
More general, cooking activity itself should also have a direct link to the
categorization of dishes. (W. Susanto and Schiele 2012) records multi-
view images of cooking activities in the kitchen. (Stein, S. and McKenna
2013) created 50 Salads using vision and accelerometers. They proposed
three user adaptive models to robustly identify the difference between
food/salad preparation activities. (Rohrbach and Amin 2012) propose
a database of 65 cooking activities, continuously recorded in a realistic
setting.

In this thesis, we propose a new dataset, UPMC Food-101, which contains
about 101,000 images and textual descriptions for 101 food categories. Our
dataset is different from the related works in following aspects: 1) our
dataset is multimodal, which contains visual images and textual recipes.
Note that as extra information, recipe is more informative than ingredients.
For example, recipe describes the workflow, while ingredients not. 2)
Different from the ETHZ Food-101, which is crawled from the professional
food cooking websites, our dataset is crawled from the uncontrolled web
search engine with a huge diversity among the instances.
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2.2.2 Food categorization

Automatic food categorization is a key technology for various food-related
research fields, such as cooking recipe retrieve (Salvador et al. 2017; Jingjing
Chen 2016; Chen, Pang, and Ngo 2017; Matsunaga et al. 2015; Xie, Yu, and
Li 2010), food recording (Aizawa and Ogawa 2015; Beijbom et al. 2015), food
balance analysis (Aizawa et al. 2013; Kitamura et al. 2010; Christodoulidis,
Anthimopoulos, and Mougiakakou 2015), food calorie estimation (Myers
et al. 2016; Pouladzadeh, Yassine, and Shirmohammadi 2015; Pouladzadeh,
Shirmohammadi, and Al-Maghrabi 2014; Miyazaki, Silva, and Aizawa 2011;
Wu and Yang 2009), etc. Various methods are proposed by considering the
specialty of food images or directly model this problem as generic image
classification. Given an image of a dish, image-based food categorization
maps a food image to a category of the dish. Various machine learning
based image classification techniques are proposed to learn this mapping
relation (Yang et al. 2010; He, Kong, and Tan 2016; Farinella, Moltisanti,
and Battiato 2014; Hoashi, Joutou, and Yanai 2010; Matsuda and Yanai
2012). Especially, deep learning strategies shed light on this problem by
learning more discriminative features (Jingjing Chen 2016; Keiji Yanai 2015;
Kagaya, Aizawa, and Ogawa 2014; Kawano and Yanai 2014b). However,
food categorization from an image remains a difficult problem because of
the diversity of textures and a complicated mixture of elements (Oliveira
et al. 2014). As a complement information of images, multimodal data such
as ingredients (Jingjing Chen 2016; Min et al. 2016; Zhou and Lin 2016;
Su et al. 2014; Yang et al. 2010), recipe text (Min et al. 2016; Jack Hessel
2015), restaurant geolocalization (Herranz, Jiang, and Xu 2017; Xu et al.
2015b; Bettadapura et al. 2015; Luis Herranz 2015) are exploited to build
more robust classification systems. We shown in Table 2.2 the classification
scores of parts of methods introduced above.

2.2.3 Food-related multimedia applications

Food-related multimedia applications are useful in many aspects. As an
example, through a food image recognition system people can identify
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ETHZ Food-101 UEC FOOD 100 UEC FOOD 256 VIREO Food-172

(Kawano and Yanai 2014b) - (-) 72.26 (92.00) - (-) - (-)
RF (Bossard and al. 2014) 50.76 (-) - (-) - (-) - (-)

(Keiji Yanai 2015) 70.41 (-) 78.77 (95.15) 67.57 (88.97) - (-)
(Myers et al. 2016) 79 (-) - (-) - (-) - (-)

(Liu et al. 2016) 77.4 (93.7) 77.2 (94.8) 63.8 (87.2) - (-)
(Hassannejad et al. 2016) 88.28 (96.88) 81.45 (97.27) 76.17 (92.58) - (-)

(Jingjing Chen 2016) - (-) 82.12 (97.29) - (-) 82.06 (95.88)

Table 2.2: top-1 (top-5) classification accuracy (%) of competitive methods on
large-scale food datasets.

the calorie, nutrient content, allergic ingredients, cooking methods, etc.
For training such a system, sufficient number of labels of food images are
required. An expert-based solution is performed by nutrition researchers
or mechanical turk (Noronha et al. 2011). However, as data volume and
user number increases, the human-based method faces bottlenecks of
processing speed. (Bolaños, Garolera, and Radeva 2013) proposes an
alternative method using active learning strategy for reducing the number
of images for labelling by experts. It is also better to use the applications
in a real-time environment. For pursuing this objective, (Kawano and
Yanai 2015; Kawano and Yanai 2014c) proposes Foodcam. Foodcam is
a automatic food image recognizer running on a smartphone. The local
computation is achieved by reducing the amount of weight vector of the
classifier. Also, (Oliveira et al. 2014) proposed a lightweight system to
recognize prepared meals by segmentation and classification. More generic
food-related multimedia applications are proposed when not considering
these constrains. (Aizawa and Ogawa 2015) proposes daily food intake
FoodLog. User creates a food log by uploading a photo taken by the phone.
FoodLog can categorize the image into five categories and estimate its
calorie by image content. Based on FoodLog, (Amano et al. 2014) shows
that very small numbers of words are satisfactory to describe the majority
of the record in the FoodLog system. Open Food System 1 aims at inventing
new smart cooking appliances, with the ability to monitor cooking settings
automatically for optimal results and preserve the nutritional value and

1 http://www.openfoodsystem.fr/
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organometallic qualities of cooked foods. The Technology Assisted Dietary
Assessment (TADA) project of Purdue University (Khanna and al. 2010)
aims at developing a mobile food recorder, which can translate dietary
information to an accurate account of daily food and nutrient intake.
Food category classification is an indispensable ingredient in all these
applications.

2.3 eye-tracking research

2.3.1 Eye-tracking history

Eye-tracking research has a long history and can date back to early 19th

century. It is a subject originated from the psychology research. At that
time, researchers attempts to observe eye movements by direct observation.
In 1879, Louis Émile Javal observed that reading does not involve a smooth
sweeping of the eyes along the text, which is contrary to what people
assumed for a long time. In 1908, Edmund Burke Huey (Huey 1908)
defines the eye movement as a series of short pause fixations interrupted
by rapid displacements saccades. From the two basic categories of gaze,
people try to understand the meaning behind the gaze pattern. In the mid
20th century, A. L. Yarbus (Yarbus 1967) showed that the task given to a
subject has a very large influence on the subject’s eye movement. Taking
Fig. 2.3 for instance, empirical observations on these patterns demonstrate
that the task largely influences the gaze pattern. A. L. Yarbus makes an
assumptions that eye movement reflects the human thought processes. In
1980, Just and Carpenter (Just Marcel A. and Carpenter Patricia A. 1980)
made further research for supporting the eye-mind relationship: there is
no appreciable lag between what is fixated and what is processed. This
hypothesis implies that when a human fixates on an area of an image, the
information being processed derives from this area, rather than the areas
been seen or to be seen. This hypothesis is challenged by (Michael Posner
1980), which claims that the cognitive precessing does not always relate to
where the eye has been looking.
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Figure 2.3: The classical task-influenced gaze pattern experiment conducted by A.
L. Yarbus (Yarbus 1967). In this experiment, subjects are given specific
tasks before observing the famous painting Unexpected Visitors (1888,
by Ilya Repin). Empirical observations on these patterns demonstrate
that the task largely influences the gaze pattern.
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With the advent of small, highly accurate and low-cost systems, eye
tracking is now being rapidly adopted in devices and applications, both
to enhance computer interaction and to understand human behavior. This
technique has been used in areas like augmentative alternative commu-
nication, gaming, health care, market research, performance assessment
(athletics, online course), neuroscience, driver assistance systems, assess-
ment of user experience, etc.. The psychological issues, like predicting the
gazes, salience or scan-paths (Mathe and Sminchisescu 2013; Vig, Dorr,
and Cox 2012; Sattar et al. 2015), eye-mind relation (Klami et al. 2008; Yun
et al. 2013), are also inspiring the evolution of computer vision systems.

2.3.2 Eye-tracker devices

Eye-tracking research requires a precise eye-tracker for recording the eye
movements. In the early 1900s, an eye-tracker was built using a contact-lens-
like device. The lens was connected to an aluminum pointer that moved in
response to the movement of the eye. Since the lens contact directly the
human eyes, this kind of device is call intrusive eye-tracker. It is obvious that
the intrusive eye-tracker will affect the recorded data. The first non-intrusive
eye trackers was invented in the 1950s. They reflected beams of light onto
the eye and then recorded them on film. Another method was to use simple
8-mm film to track eye movement by filming the subject through a glass
plate, on which the visual problem was displayed. Since then, eye-tracker
product is becoming more and more portable and precise. Nowadays,
there are a number of eye-tracking hardware companies, including Tobii,
SensoMotoric Instruments (SMI), EyeLink, etc. During the research of this
thesis, we use the model X2-30 of Tobii, which can be hidden under the
screen of a laptop. As shown in Fig. 2.4, this eye-tracker can be placed just
under the 11.6-inch screen of a laptop, which does not disturbs the subject
during the experiments.

There are two steps before using the X2-30 to collect eye movement
informations: calibration and tracking. Calibration is a step for measuring
characteristics of the user’s eyes and uses them together with an internal,
physiological 3D eye model to calculate the gaze data. This model includes
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Figure 2.4: Tobii X2-30 eye-tracker appearance.

information about shapes, light refraction and reflection properties of the
different parts of the eyes (e.g. cornea, placement of the fovea, etc.). During
the calibration the user is asked to look at specific points on the screen, also
known as calibration dots. During this period several images of the eyes
are collected and analyzed. The resulting information is then integrated
in the eye model and the gaze point for each image sample is calculated.
Tracking step is shown in Fig. 2.5: Human eyes are illuminated by a light
source then reflect the light, a camera then captures an image of the eye
showing these reflections. By identifying the reflection on the cornea and
in the pupil, and combining with other geometrical features of reflections,
eye-tracker is able to calculate the gaze direction. The intersection point
of gaze direction and object plane is the gaze point. As our objective is to
exploit eye-tracking features for image recognition, we limit our concerns
on the output data of eye tracker. They are:

1. Time stamp: This is a value that indicates the time when the informa-
tion used to produce the gaze data packet was sampled by the eye
tracker.

2. 3D eye position: The eye position is provided for the left and right
eye individually and describes the position of the eyeball in 3D space.

3. 3D relative eye position: The relative eye position is provided for the
left and right eye individually and gives the relative position of the
eyeball in the track box volume as three normalized coordinates.
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Figure 2.5: The working principle of eye-tracker.

4. 3D coordinates of gaze point: The 3D gaze point (or gaze position)
is provided for the left and right eye individually and describes the
position of the intersection between the calibration plane and the line
originating from the eye position point with the same direction as the
gaze vector.

5. 2D coordinates of gaze points: The 2D gaze point is provided for
the left and right eye individually. It is conceptually the same as
the 3D gaze point, but expressed as a two-dimensional point on the
calibration plane instead of as a point in 3D space.

6. Pupil diameter: The pupil diameter data is provided for the left and
the right eye individually and is an estimate of the pupil size in
millimeters.

7. Validity of records: An estimate of how certain the eye tracker is that
the data given for an eye really originates from that eye.

The calibration plane in our work is the plane of computer screen. 3D
position informations of eyes are important for locating eyes and describing
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the spatial positional relationship between eyes and calibration plane. It’s
the data for tracking eyes rather than eye-tracking data. Gaze information
describes what we really looked. According to the definition, 3D gaze
position can be converted to 2D gaze position. Based on this analysis, we
think 2D gaze position is sufficient for describing where we are currently
looking. Moreover, as gaze positions are represented in a series of time, the
path of gaze points can be painted without no saccade points, which means
quick, simultaneous movement of both eyes between two phases of fixations.
Fixation and saccade are two kinds of eye movement mostly researched in
the history of eye-tracking research. In Fig. 2.6, we demonstrate the two
types of gaze, with circle represents the fixation and the line represents the
saccade.

Figure 2.6: Fixations (annotated as round points) and saccades (annotated as the
lines). The radius of fixation represents the duration of the fixation.
The number indicates the order of fixations.
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2.3.3 Eye-tracking in computer vision

In this thesis, we focus on building automatic visual understanding system.
In computer science field, from 1980s to now, eye-tracking technology was
mainly applied in the field of human-computer interaction. The applica-
tions include eye-controlled role-play video game, wink-controlled photo
taking program, eye-movement controlled computer designed for particu-
lar user (Jacob 1995), web interface attention analysis for designing layout
(advertisements, title, etc.) (Jacob and Karn 2003). We refer our reader to a
recent review of human-machine interaction using eye-tracking (Majaranta
and Bulling 2014) of this topic.

In fact, human-computer interaction and our objective overlap each
other within attention. In the human-computer interaction, human pays
the attention to interact with the machines, while in visual understand-
ing system machine can borrow the human attention or generate its own
attention to assist the learning process. The borrow scenario relies on the
top-down attention while the generate scenario is often referred as bottom-
up attention (Le Meur et al. 2006; Le Meur and Le Callet 2009). In this
thesis, we mainly study the top-down attention, which is acquired directly
from human. This kind of attention is highly related to main objects in
image (Wang, Chandler, and Le Callet 2010; Ramanathan, Yanulevskaya,
and Sebe 2011; Yun et al. 2013). For capturing the human attention, we
intend to use the eye-tracker (subsection 2.3.2). However, as we know,
human gaze does not equal the attention as there exists overt attention
and covert attention (Le Callet and Niebur 2013), where the latter indicates
the attention is not always coherent with the center of gaze (Le Callet and
Niebur 2013), e.g. a car driver who fixates the road while simultaneously
and covertly monitoring road signs and lights that appear in the retinal
periphery. In this thesis, we roughly treat attention as gaze because our
proposed models are able to learn from such kind of weak supervision.

In computer vision research field, people usually use gaze for solving
many problems, including image/video quality assessment (Ninassi et al.
2007; Zhang et al. 2016; Ninassi et al. 2009) inferring subject’s searching
task (Sattar et al. 2015; Borji and Itti 2014; Haji-Abolhassani and Clark 2014;
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Zelinsky, Peng, and Samaras 2013), action recognition (Bulling et al. 2011;
Steil and Bulling 2015; Ge et al. 2015; Mathe and Sminchisescu 2015), gaze
path prediction (Hacisalihzade, Stark, and Allen 1992; Kashlak et al. 2017),
saliency prediction (Pan et al. 2016; Kruthiventi et al. 2016; Mathe and
Sminchisescu 2013; Wang et al. 2013a), segmentation (Shcherbatyi, Bulling,
and Fritz 2015; Walber, Scherp, and Staab 2013; Karthikeyan et al. 2013;
Papadopoulos et al. 2014; Ramanathan et al. 2010; Mishra, Aloimonos,
and Cheong 2009), object detection (Fathi, Li, and Rehg 2012; Yun et al.
2013). In video analysis, since subjects tend to watch at the moving ob-
jects, gaze are also widely used to localize important objects (Karthikeyan
et al. 2015; Shapovalova et al. 2013; Damen, Leelasawassuk, and Mayol-
Cuevas 2016; Xu et al. 2015a). A group of researches are related to visual
preference-based image retrieve. (Papadopoulos, Apostolakis, and Daras
2014) formalizes the visual preference in a binary classification problem
based on gaze features. Pinview (Hussain et al. 2014) is a image retrieve
system based on the user’s visual preference represented by either mouse
click or gaze. Recently (Sattar, Bulling, and Fritz 2016) proposes a gaze
pooling layer, which integrates gaze information into CNN-based archi-
tectures as an attention mechanism. Interestingly, people has trained a
eye-tracker from the webcam using deep learning strategy (Krafka et al.
2016).

Also, gaze features are appealing since they can be generated by humans
at almost zero-cost when performing a recognition task. Collecting gazes
is more user-friendly and less time-consuming than collecting traditional
annotations. According to the published works, it takes about 1 second
to collect gazes for one image (Papadopoulos et al. 2014), comparing to
26s for drawing a bounding-box (Su, Deng, and Fei-Fei 2012) and 15-60

min for labeling the segmentation mask for an image (Pushmeet Kohli
and L’ubor Ladický and Philip H.S. Torr 2009). Gaze is often converted to
fixation density maps for smoothing the gaze distribution (Engelke et al.
2013). For different purposes, people design different collection protocols
to acquire gazes (Lopez et al. 2015; Papadopoulos et al. 2014; Mathe and
Sminchisescu 2013; Karthikeyan et al. 2013). The collection protocols can be
grouped into two main groups: task-driven and free-viewing. Task-driven
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means the annotators are given a specific semantic to look at, e.g. dog or a
group of actions. Free-viewing means the annotators view the image freely.
In this chapter, we use two task-driven datasets (Papadopoulos et al. 2014;
Mathe and Sminchisescu 2013).

To acquire gaze annotations for different applications, people design
various collection protocols (Lopez et al. 2015; Papadopoulos et al. 2014;
Mathe and Sminchisescu 2013; Karthikeyan et al. 2013). The collection
protocols can be grouped into two categories: task-driven and free-viewing.
Task-driven means the annotators are given a specific semantic to look
at, e.g. a dog. Free-viewing means the annotators view the image freely
without specific purpose. As an example of free-viewing, Lopez et al. (Lopez
et al. 2015) expose simultaneously two images on the screen for evaluating
the annotator’s visual preference. The aim of this protocol is to collect the
gaze features of left and right image for classifying the visual preference.
Papadopoulos et al. (Papadopoulos et al. 2014) use an instantiation task-
driven protocol. Specifically, this protocol first group image categories
into visual-similar pairs. Then the annotation interface exposes to the
annotator one image from a selected pair. The annotator should make
a decision on the category of the image. The advantage of this protocol
is that it does not need the target-absent image to avoid guess, which
further reduces unnecessary labeling time. Similarly, Mathe et al. (Mathe
and Sminchisescu 2013) annotate two concepts: actions and context. One
image is exposed to the annotator. Then the annotator is told to find
all the actions in the image. Since then, gaze in one image are related
to all categories. Gilani et al. (Gilani et al. 2015) use a similar protocol
as (Mathe and Sminchisescu 2013). But additionally, they have an extra
free-viewing protocol for comparing the internal connection with the task-
driven protocol. In this thesis, we propose a new dataset, UPMC-G20, with
gaze annotation using a similar task-driven protocol as in (Papadopoulos
et al. 2014). This dataset is based on the large-scale food-related dataset
UPMC Food-101 (Wang et al. 2015a). We make this dataset because food
is also a complicate object made up of various ingredients and often with
several common backgrounds. The detail of UPMC-G20 is described in
section 5.3.
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2.4 weakly supervised learning

Classifying clutter image can be difficult because the useful object infor-
mation is hidden under a lot of noise. In order to improve the accuracy of
recognition, an intuitive idea is to select the image area associated with
the target semantics to classify. However, collecting full annotations for
all the images in a large dataset is an expensive task: whereas several
millions of images annotated with a global label are nowadays available,
only limited accurate bounding box annotations exist (Matthew Blaschko,
Pawan Kumar, Ben Taskar 2013). This observation makes the development
of Weakly Supervised Learning (WSL) models appealing. WSL is an attrac-
tive learning strategy because it can mine more local information with less
intensive annotations with respect to the supervised learning.

2.4.1 Multiple Instance Learning (MIL)

Multiple Instance Learning (MIL) is one of the main paradigms for training
WSL models. The term of Multiple Instance Learning was first proposed
by (Dietterich, Lathrop, and Lozano-Pérez 1997) for predicting drug activity.
In this problem, biochemists can produce a set of molecules and identify
whether the set is qualified to make a drug or not. But they do not know
which conformations of the molecules are responsible for the drug activity.
This setting is different from the supervised learning where all the examples
are labeled (as shown in Fig. 2.7a). MIL is formalized as shown in Fig. 2.7b:
An example is first represented as a labeled bag, which contains a number
of instances without labels. MIL supposes that there is at least one positive
instance in the positive bag, while all instances in the negative bag are
negative. This hypothesis links the latent instance label and the ground-
truth bag label. Based upon this formulation, a lot of MIL algorithms are
proposed, for example, Diverse Density (Maron and Lozano-Perez 1998a;
Maron and Lozano-Perez 1998b), Citation-kNN and Bayesian-kNN (Wang
and Zucker 2000), EM-DD (Zhang and Goldman 2001), MI kernels (Gärtner
et al. 2002), multi-instance ensembles (Zhou and Zhang 2003) and neural
network-based methods (Wang et al. 2016; Zhang and Zhou 2004) Recently,

33



(a) Supervised learning (b) Multiple-instance learning

Figure 2.7: Supervised learning vs MIL : in supervised learning all the examples
are labeled whereas in MIL only the bags are labeled, i.e. the instance
labels are unknown. The blue dotted line shows the separator learned
by the classifier.

WSL is widely applied into many computer vision fields, including object
detection(Ren et al. 2016; Felzenszwalb et al. 2010; Wang et al. 2015b; Shen
et al. 2016), scene recognition (Juneja et al. 2013; Sun and Ponce 2013;
Pandey and Lazebnik 2011) and dictionary learning (Wang et al. 2013b;
Shrivastava et al. 2015). The Deformable Part Model (DPM) (Felzenszwalb
et al. 2010) has been extremely popular due to its excellent performances for
weakly supervised object detection. The DPM learns object part filter and
applies on sub-region of an image to get a response and consider the spatial
prior. In the DPM, the Latent Support Vector Machine (LSVM), which is
also known as MI-SVM (Andrews, Tsochantaridis, and Hofmann 2002),
describes the MIL assumption in the form of classical SVMs. One challenge
with LSVM is due to the introduction of latent variables, which makes the
resulting optimization problem non-convex. When using sliding window

34



approaches for generating the candidate regions, the size of the latent
space becomes enormous. To overcome this issue, incremental exploration
strategies have been proposed in (Durand et al. 2014; Russakovsky et al.
2012b; Bilen, Namboodiri, and Gool 2014; Kumar, Packer, and Koller
2010). Advanced instance selection methods model the relations among the
instances by graph model (Zhou, Sun, and Li 2009; Deselaers and Ferrari
2010) and recursive neural network (Garcez and Zaverucha 2012). Finally,
recent works focus on enriching the prediction function, by using several
(top) instance scores instead of using a single max (Li and Vasconcelos
2015), or by incorporating negative evidence (Azizpour et al. 2015; Durand,
Thome, and Cord 2015; Durand, Thome, and Cord 2016; Durand et al. 2017).
Under the weakly supervised circumstance, MIL is widely used in object
localization (Ren et al. 2016) (MI-SVM like with positive bag split) There
are several comprehensive reviews about MIL (Zhou 2004; Babenko 2009;
Foulds and Frank 2010; Amores 2013; Carbonneau et al. 2016). Recently, a
book talking about MIL is published (Herrera et al. 2016).

2.4.2 WSL eye-tracking research

Recently, attempts have been devoted to incorporating gazes as weak
supervision signals (Fathi, Li, and Rehg 2012; Papadopoulos et al. 2014; Ge
et al. 2015) for improving the performance of classification or segmentation
systems. Relevant to our proposed models, Mathe et al. (Mathe and
Sminchisescu 2014; Mathe, Pirinen, and Sminchisescu 2016) proposes using
reinforcement learning to find a latent space sampling policy from gaze.
This method is efficient at the cost of prediction accuracy. Karthikeyan et
al. (Karthikeyan et al. 2013) proposes to train a face and text detector from
only gaze information. Although this work does not use image features,
it still requires bounding boxes to segment out face and text regions.
Shcherbatyi et al. (Shcherbatyi, Bulling, and Fritz 2015) integrates gaze into
Deformable Part Model for selecting one relevant object location. Their
model require gaze annotations for test. Shapovalova et al. (Shapovalova
et al. 2013) focuses on WSL recognition by penalizing region selection with
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gaze. However, the gaze information is not sufficiently exploited because
only positive examples are penalized with gaze.

2.5 conclusion

In this chapter, we have reviewed three research directions related to this
thesis, namely image recognition technology, eye-tracking technique and
weakly supervised learning. In section 2.1, we first introduced two of the
most commonly used image representations: hand-crafted and ConvNet-
based. A key success of the ConvNet is that the learned representations on
ImageNet are both discriminative and generic, so they can be efficiently
transfered to other datasets 2.1.2. As we concern more about the food
dataset recognition in this thesis, in the section 2.2, we study current food
datasets, food image recognition methods and applications. In this specific
data scenario, we also observe that ConvNet-based representation is the
state-of-the-art. In Chapter 3, we present a large scale food-related multi-
modal dataset. This dataset was the first that contains a food image/recipe
pair at the time of publication. In this work we combine the state-of-the-art
computer vision and natural language techniques together for building a
more robust recognition system.

The objective of our research is to reduce the labeling cost when training
an image classifier. For achieving this goal, we carry out our research from
two aspects: low-cost gaze annotation and weakly supervised learning.
On one hand, the hypothesis of the eye-mind relationship connects the
human eye perception signals and the understanding of the image content,
which is still an important theoretical basis for modern eye-tracking based
machine vision method 2.3.1. From the observation-based invasive ancient
devices to the modern precise non-invasive eye-tracker, the human eye
tracking results become increasingly trustworthy 2.3.2. In our research,
we use the eye-tracking data in a pragmatic manner. On the other hand,
weak supervised learning (WSL) has gained widespread attention due to
the efficient use of data labels. The most popular approach for WSL in
computer vision is Multiple-Instance Learning (MIL) (Subsection 2.4.1).
MIL is a binary classification problem where a class label is assigned only
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to a bag of instances, indicating the presence/absence of positive instances.
The standard MIL assumption is: a bag is positive if it contains at least
one positive instance, and negative if it contains only negative instances.
This assumption infers the latent instance label from the ground-truth bag
label, so it does not requires rich instance-based label. For benefiting the
goodness from both gaze annotation and MIL, in Chapter 4 and 5, we
introduce two gaze-based MIL models for simultaneously classifying and
localizing discriminative parts of objects. For consolidating the robustness
of our model, we annotate part of the our food dataset with an eye-tracker
and observe a consistent performance gain across various benchmark
datasets.

37





3
M U LT I M O D A L F O O D R E C O G N I T I O N A N D
A P P L I C AT I O N

abstract

In this chapter, we introduce a large scale multimodal food-related dataset:
UPMC Food-101. The objective of building this dataset is to experiment the
state-of-the-art image representations and models into a real application
exploring web resources: finding good pictures for recipes. For building
the UPMC Food-101, we take into account of the crawling, cleaning and
ranking data procedures. Based on this dataset, we perform deep analysis
of category classification and recipe retrieve using the visual and/or textual
information. We also present experiments with text-based embedding
technology to represent the relations among food words in a semantical
continuous space. We compare our dataset with another food dataset:
ETHZ Food-101 (Bossard and al. 2014). We revisit the data collection
protocols of ETHZ Food-101 and carry out domain adaptation experiments
to highlight the similarities and differences between both datasets. We then
build a web-based application based on the UPMC Food-101 using deep
learning models, which allows querying an image and retrieving the most
relevant recipes from our dataset.

The work in this chapter is published as:

• Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and
Frédéric Precioso (2015a). “Recipe recognition with large multimodal
food dataset.” In: IEEE International Conference on Multimedia & Expo
Workshops, pp. 1–6.
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3.1 introduction

In this chapter, we focus on building an automatic system for recipe recog-
nition. For validating our systems, we first propose a new large-scale
multimodal dataset: UPMC Food-101. UPMC Food-101 contains about
100,000 recipes out of 101 food categories. This dataset is collected from the
web by satisfying some constraints, which we describe in section 3.2. Each
item in this dataset is represented by one image and its original HTML page
content. Based on this dataset, we conduct extensive experiments to explore
the properties in terms of classification performance and recipe semantic
relation. Specifically, we first compare both shallow and deep features of
images on this dataset. Related to our work, (Yang et al. 2010) extracts pixel
pairs features for describing the ingredient spatial distribution on a food
image. (Bossard and al. 2014) uses a random-forest for mining discrimina-
tive parts clusters in the food images for training an SVM. (Aizawa et al.
2013; Kitamura et al. 2010; He, Kong, and Tan 2016) uses SVMs for generic
food categorization. Considering deep models, (Kawano and Yanai 2014b)
performs a late fusion of deep convolutional features and conventional
hand-crafted image features, which outperforms both features. (Keiji Yanai
2015) fine-tunes Alexnet, (Myers et al. 2016; Liu et al. 2016) fine-tunes
the GoogleLeNet (Szegedy et al. 2015) while (Hassannejad et al. 2016)
fine-tunes the Google Inception-v3 (Szegedy et al. 2016). (Jingjing Chen
2016) adapts a multi-task VGG-16 (Simonyan and Zisserman 2015) for
classifying both food categories and ingredient categories, which benefits
both tasks. Furthermore, count-based textual features, i.e. TF-IDF, and
embedded-based textual features, e.g. word vector (Mikolov and all 2013),
are coupled with image features for highlighting the complementarity of
multimodal data.

This chapter is organized as follows. In Sec. 3.2, we detail the moti-
vation, method, and originality of our dataset. In Sec. 3.3, we perform
classification experiments at a large scale to evaluate visual and textual
features along with their fusion. In Sec. 3.4, we propose further statistics
to highlight dataset characteristics and comparison with another popular
large scale food dataset ETHZ Food-101 (Bossard and al. 2014). In Sec. 3.5,
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we demonstrate the interest of these recognition technologies coupled with
UPMC Food-101 in a mobile search application. We conclude this chapter
in Sec. 3.6.

3.2 upmc food-101 dataset

3.2.1 Data Collection Protocol

To create a real world and challenging dataset with multimodal data, we
use the Google Image search. Unlike controlled sources, using the Web
search engine allows to explore recipes that are potentially deeply buried in
the world wide web. Similarly, (Kawano and Yanai 2014a) explores the Web
resources to extend their initial UEC Food-100 dataset. It is also interesting
to note that the past approaches (Schroff, Criminisi, and Zisserman 2011)
using Google search engine to obtain images for classification tasks have
reported around 30 percent of precision level on some of collected images
(in 2006). We observe that the results returned by Google Image search in
2014 for textual queries related to food images are more relevant with low
level of noise. This is explained by the large improvement in the field of
searching and page ranking algorithms since 2006. Based on these prelimi-
nary findings, we decide to create our database by querying Google image
search with 101 labels taken from the ETHZ Food-101 dataset (Bossard
and al. 2014) along with an added word ”recipes”. We added the word
”recipes” to each label before passing the query to Google for two reasons:

• As we are interested in recipe recognition, adding ”recipes” word after
the labels, for example, ”hamburger recipe”, returns more focused
information about ”how to make hamburgers” rather than other topics
like ”where to eat hamburgers” or ”Hamburger is junk food” in the
textual form.

• We observed that adding ”recipes” to our queries helps decreasing
the noise level a little further in the returned images. For example, a
simple ”hamburger” in search engine could return some thing like
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”hamburger menu icon” or ”hamburger-like evening dress”, which
are far from our expectations.

3.2.2 Crawling Google: engineering details

Retrieving images from the Google search engine by keyword is straight-
forward: crawling Google results using a script. It should be pointed out
here that as Google results use AJAX, directly crawling and extracting the
links for images and seed pages from the HTML page source will return
only few results. Also, as Google only returns 20 results per AJAX call,
we have to iteratively submit our query by changing the starting index.
Through this script links for up-to 1000 images/html pages per query
can be collected as the absolute maximum number of results returned by
Google for each query is 1000.

Once we collected the links of images and their respective HTML seed
pages, we just directly downloaded the images and HTML data from the
specific URLs. One point to take notice of here is that sometimes there is
a failure in data collection from some of these URLs due to the following
reasons: 1) The Data has been moved. or 2) Script/text based response is
banned by that particular website.

3.2.3 Content of UPMC Food-101

We then collect the first 1, 000 images returned for each query and remove
any image with a size smaller than 120 pixels. In total, UPMC Food-101

contains 101 food categories and 90, 840 images, with a size range between
790 and 956 images for different classes. Fig. 3.1 shows representative
instances of all 100 categories. Due to no human intervention in grasping
these data, we estimate that each category may contain about 5% irrelevant
images for each category. 3 examples of ”hamburger” class are shown in
Fig. 3.2. We notice that adding the keyword ”recipes” results in taking
into account ingredient or intermediate food images. Determining whether
these images should be considered as noise or not, directly depends on the
specific application. Additionally, we save 93, 533 raw HTML source pages
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along with the embed images. The reason that we don’t have 101, 000
HTML pages is that some pages are not available. The number of the
images that have text is 86, 574.

Figure 3.1: 100 samples out of 101 categories of UPMC Food-101 dataset.

3.2.4 Comparison with ETHZ Food-101

The food dataset ETHZ Food-101 (Bossard and al. 2014) has been recently
introduced. 101,000 images for 101 food categories have been collected
from a specific website (e.g. www.foodspotting.com). The labels of food
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(a) Correct (b) Ingredient (c) Noise

Figure 3.2: Example images within class ”hamburger” of UPMC Food-101. Note
that we have images completely irrelevant with hamburger like Fig-
ure 3.2c, as well as hamburger ingredient like Figure 3.2b, which reflects
the real distribution of the resutls returned by the search engine.

Dataset class num
image num

per class
source Data type

UPMC 101 790 - 956 various text&image
ETHZ 101 1000 specific image

Table 3.1: UPMC Food-101 and ETHZ Food-101 dataset content.

categories were chosen from the top 101 most popular dishes on the
mentioned website.

We have used the same class labels as ETHZ Food-101 for our dataset. In
Table 3.1, general statistics on both sets are reported. The main difference
comes from the data collection protocols. Since our data is collected directly
from a search engine with automatic annotations, whereas ETHZ Food-
101 dataset images were collected from a specific website, which contains
manual annotated images uploaded by humans, leading to less number
of false positive/noise in ETHZ Food-101 than in UPMC Food-101. As
the three examples of ”hamburger” class show in Fig. 3.3, ETHZ Food-101

ensures images irrelevant with food categories are mostly excluded from
this dataset. Moreover, there was no textual data provided with images in
ETHZ Food-101. However, to classify between two variants of the same
food categories, text can help a lot. We explore visual and text classification
in the next section.
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Figure 3.3: Example images within class ”hamburger” of ETHZ Food-101. All
these images have strong selfie style as they are uploaded by consumers.
Although some background noise (human faces, hands) are introduced
in images, it ensures images out of food categories are excluded from
this dataset.

3.3 classification results of upmc food-101

In the following subsections we run several classification algorithms by
using visual information, textual information and the fusion, to make
quantitative descriptions of our dataset. The results are shown in Table 3.2.
A unified training and test protocol is applied for both visual and textual
tests, in order to evaluate and compare the performances with minimal
extra factors. The protocol is as follows: we split out the examples, which
have both image and text, then randomly select 600 training examples for
each category to train a one-vs-rest linear SVM (Fan and al. 2008) with
C = 100, the remaining examples are for test. We evaluate our results by
averaging accuracy over 10 tests, where accuracy is defined as #(true positives)

#(test examples) .

Visual Textual Fusion
BoW Bossanova OverFeat VGG-16 TF-IDF TF-IDF + VGG-19

23.96 28.59 33.91 40.24 82.06 85.10

Table 3.2: Top-1 Classification results (Ave. accuracy %) on UPMC Food-101 for
Visual, Textual and fusion features.

45



3.3.1 Visual Feature Classification

3.3.1.1 Bag-of-Words Histogram (BoW) + SIFT

We represent images as Bag-of-Words histogram with a spatial pyramid as
our first baseline. In detail, we first proportionally resize images, which has
a size larger than 300 pixels, then extract mono-scale SIFT with window
size 4 and step size 8, 1024 word visual dictionary, soft coding and max
pooling with 3 level spatial information. This baseline obtains an average
accuracy 23.96%.

3.3.1.2 Bossanova Image Pooling Representation

Bossanova (Avila et al. 2012) reinforces the pooling stage of BoW by consid-
ering distance between a word and a given center of a cluster. As Bossanova
only modifies the pooling stage, we can reuse the same coding setting as
BoW. In our experiment, 2 bins are used in the quantization step to en-
code the distances from sifts to clusters, BoW is concatenated with vector
histogram with no scaling factor, we set range of distances per cluster to
[0.4, 2.0], for each word we consider 10 neighbors. This method results
in an average accuracy of 28.59%, which constitutes an improvement of
19.37% over the BoW model.

3.3.1.3 Deep Feature Models

CNN deep feature is the state of the art in many image recognition chal-
lenges. Deep feature is more expressive than hand-crafted image features
In our experiment, we first adopt the ”fast network” pre-trained model of
OverFeat3 as the feature extractor. of a given image. We get an average
accuracy of 33.91%.

This result is interesting because the OverFeat CNN was trained on
1,000 class dataset ILSVRC2012, which contains very few images of food
categories (French fries, few images of waffles etc). Even after having been
trained on few food images, the OverFeat CNN produces very good deep

3 http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
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features, which outperform the standard Bossanova baseline in the context
of classification.

(Simonyan and Zisserman 2015) pushes CNN network to 16− 19 weight
layers, which is about twice deeper than the previous work. In our exper-
iment, we use the pre-trained model ”vgg-16”4 to extract features. This
model is also trained on ILSVRC2012, so it is comparable with the OverFeat.
The 4096d output after the ReLU activation of the FC7 layer is used as the
feature description. We finally achieve an accuracy of 40.21% over our
dataset with these features.

We further retrain from scratch and fine-tune deep models on the UPMC
Food-101 (Cadène, Thome, and Cord 2016). We adopt the same architecture,
namely the OverFeat and the vgg-16 as orginal models. For fine-tuning
the models, we replace the output number 1000 by 101 and retrain the last
fully connected layers. The results are reported in Table 3.3.

OverFeat-r OverFeat-f VGG-16-r VGG-16-f InceptionV3-f
47.46 (69.37) 57.98 (78.86) 53.62 (74.67) 65.71 (82.54) 66.83 (84.53)

Table 3.3: Fine-tuning and learning from scratch classification results (top-1 (top-
5) Ave. accuracy %) on UPMC Food-101. *-r: retraining model from
scratch, *-f: fine-tuning model.

Comparing these results, we find that fine-tuning the pretrained models
adapts best to the UPMC Food-101. We also observe that training a deep
network from scratch largely outperforms directly extracting features from
pretrained model, this is opposite to what we observe on the small dataset
such as PASCAL VOC, which suffers from severe overfitting when training
on a large network.

3.3.2 Visual Domain Adaptation

As another set of visual experiments, we perform knowledge transferring
experiments over both datasets (ETHZ Food-101 and UPMC Food-101),
namely learning the classifier model on one dataset and testing it on the

4 http://www.vlfeat.org/matconvnet/pretrained/
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other one. This experiment aims at showing the different performances of
UPMC Food-101 and ETHZ Food-101 when performing visual classification.
In this experiment, we use very deep features. The results of the transfer
learning experiments are shown in Table 3.4. The first two rows show the
results of classification when training with the same number of examples
(e.g. 600 examples for each class) of one dataset and testing on the rest of
this dataset or on the whole of the other dataset, while the last two rows
show the results of classification when training with all examples on one
dataset and testing on the other dataset.

There are some interesting points that can be inferred from the results.
The first one is that even though both datasets contain images for same
food categories, they are very different from each other. This can be derived
from the fact that there is a considerable difference of around 50% average
accuracy when training on one dataset and testing on both datasets (first 2

rows in Table 3.4).
Second point that can be observed from the Table 3.4 is that training

on part of UPMC Food-101 outperforms training on the whole UPMC
Food-101 when testing on ETHZ Food-101 by a margin of 1.57%, while
on the contrary, only a negligible difference (0.36%) for training on ETHZ
Food-101 and testing on UPMC Food-101 is observed. This perhaps can be
an indication of comparative noise levels in both datasets, UPMC Food-101

being more noisy.

train / test UPMC ETHZ
UPMC (600 examples) 40.56 25.63

ETHZ (600 examples) 25.28 42.54

UPMC (all examples) - 24.06

ETHZ (all examples) 24.92 -

Table 3.4: Average accuracy of transfer models between UPMC Food-101 and
ETHZ Food-101.

Note that our ETHZ deep results are not comparable with the CNN
results in (Bossard and al. 2014) because they train deep features as we use
a pre-trained CNN on ImageNet.
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3.3.3 Textual Feature Classification

Since our raw textual data is in html format, we need some preprocessing
in order to remove numerous noisy elements such as html tags, code,
punctuations. Our foremost preprocessing is parsing content out from
HTML pages by Python package html2text5.

3.3.3.1 TF-IDF

TF-IDF (Term Frequency–Inverse Document Frequency) value measures
the importance of a word w in a document D with respect to the whole
corpus, where TF evaluates the importance of word in a document, and
IDF evaluates the importance of a word in the corpus.

To represent a document with TF-IDF, we generate the dictionary by
preprocessing words as follows: 1/ Stemming all words. For example,
words like ”dogs” and ”sleeping” are respectively stemmed to ”dog” and
”work”, 2/ Removing words with high frequency of occurrence (stop
words) such as ”the”,”is”,”in”, 3/ Removing words occurred less than
in 11 docs, 4/ Keeping stems with length between 6 and 18. After the
pre-processing, 46972 words are left. We then form a dictionary Dictt using
these words.

We calculate TF-IDF value for every word in document by formula
t f id fw,D = t fw,D × id fw, with t fw,D =

nw,D
∑k nk,D

, where ni,j is the frequency of

word i appearing in document j, and id fw = log |N|
|{j:w∈Dj}|

, where N is the

total number of documents in the corpus, and |{j : w ∈ Dj}| is the number
of documents where the term w appears. TF-IDF value favors the words
less occurred in corpus and more occurred in a given document D, and
suppress the word in reverse case. A document can be represented by the
TF-IDF value of all its words belonging to the dictionary Dictt. We obtain
82.06% classification average accuracy on our dataset. Such a high score is
partly due to the bias introduced by our data crawling protocol.

5 https://pypi.python.org/pypi/html2text
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3.3.4 Late Fusion of Image+Text

We merge very deep features and TF-IDF classification scores by late fusion.
The fusion score s f is a linear combination of the scores provided by both
image and text classification systems, as s f = αsi + (1− α)st, where α is
the fusion parameter in the range [0, 1], si is the score from the image
classifier and st is the score from the text. We select α by cross-validation
over different splits of data and the final classification score is 85.1%, which
improves 3.6% with respect to textual information alone and 109.8% with
respect to visual information alone. Note that the classification scores were
not calibrated prior to late fusion so that α does not depend on the relative
accuracy of each source of scores.

3.4 qualitative analysis of upmc food-101

In this section, we report further analysis of UPMC Food-101. We investi-
gate the word vector representations (Mikolov and all 2013) for its strong
semantic expressiveness. Transfer learning between UPMC Food-101 and
ETHZ Food-101 is also analyzed.

3.4.1 Word Vector Representation

We first introduce how to extract word vectors, then explore some interest-
ing features of this representation.

After parsing out the content of web pages, we concatenate all of
them together to build a corpus for training a dictionary Dictv with
word2vec (Mikolov and all 2013), which is a tool to efficiently compute
vector representations of words. Words with an occurrence frequency
less than 5 in the corpus are removed from Dictv. This condition results
in 137092 words, in which each word is described by a 200 dimensional
feature vector. Dictv contains stop words and other noisy words, so we
intersect Dictt and Dictv, which creates a new dictionary Dict containing
46773 words.
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On the other hand, each document is first preprocessed by the tool
html2text, then represented by the element-wise average of its valid word
vectors, where ”valid” means that the word is in Dict. A linear SVM
is trained and we obtain an average accuracy of 67.21% on our dataset.
Although this classification result is worse than TF-IDF (82.06%), it can
be enhanced by more advanced pooling strategies, rather than a simple
average vector over all words, as reported in (Le and Mikolov 2014). Addi-
tionally, recall that our data source is the Google search results according
to a category name: this step can also reinforce the superiority for word
frequency based methods like TF-IDF. On the other hand, since the word
vector tries to learn a semantic representation of words with much less
dimension, the simple word frequency statistical information will surely
lose a lot. However, by late fusion with TF-IDF, we get the score of 84.19%,
improving by 2% the single TF-IDF performance, as shown in Table 3.5.
TF-IDF and word2vect encode complementary information in textual data.

TF-IDF word2vec TF-IDF+word2vec
82.06% 67.21% 84.19%

Table 3.5: Average accuracy of late fusion of TF-IDF and averaged word2vec repre-
sentations.

The embedded word vector space allows to explore semantic relation-
ships. To investigate this aspect, we report in Table 3.6 the closest words
by using the cosine distance metric for ravioli, sushi, pho in the embedded
vector space (using the Dictv dataset). The five most closest words are
strongly semantically related to the given query. Additionally, calculating
a simple average of the words in a phrase also results in a reasonable
semantic. In Table 3.7, we show the closest words of rice, japan and rice
japan. As we can see, koshihikari, which is a popular variety of rice culti-
vated in Japan, is closest to rice japan, meanwhile koshihikari is out of their
first five candidates for either rice or japan. This result signifies that word
vector has expressed the semantic of the short phrase rice japan. Moreover,
koshihikari is not among the 101 food category, its meaning and relation
with other words are all learned from the corpus in a purely unsupervised
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manner. Such a powerful semantic understanding property could help
search engine understand user-level needs with natural language as input.
It is a promising tool for filling the semantic gap.

ravioli sushi pho
gnocchi 0.67 nigiri 0.69 souppho 0.68

tortelli 0.58 maki 0.65 vietnames 0.59

cappellacci 0.55 uramaki 0.65 phos 0.57

delallocom 0.52 sashimi 0.64 beefnoodl 0.58

itemtitlea 0.52 norimaki 0.64 bo 0.56

Table 3.6: 5 most similar words of ravioli, sushi and pho retrieved in the word
embedded space. We observe that the identities retrieved are highly
semantic relevant.

rice japan rice japan
calros 0.59 osaka 0.70 koshihikari 0.64

basmati 0.59 tokyo 0.62 awabi 0.61

vermicelli 0.58 kyoto 0.62 japanes 0.61

stirfri 0.58 chugoku 0.61 nishiki 0.59

veget 0.58 gunma 0.60 chahan 0.57

Table 3.7: Short phrase rice japan represented by the sum of the word vectors of
rice and japan, is closest to koshihikari, which is a kind of japanese rice.

3.5 web-based recipe retrieval application

Providing an efficient way to automatically recognize the food/dish or its
recipes on our plates will not only satisfy our curiosity but can have a wider
impact on daily life in both the real and virtual worlds. ”What is the name
of this dish?”, ”How to cook this?”. As a proof of concept for tackling this
problem, we create a web search engine 5 that allows any mobile device to
send a query image and to get answers to our questions. For any query

5 Available at http://visiir.lip6.fr/
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image, the result is a ranking of the 5 best categories automatically found
with a matching score. Fig. 3.4 presents the answer to a query image a cake
with strawberry on it. The category predicted with the highest probability is
exactly Strawberry Shortcake. The images returned by the application are
associated with the hyper-link to the recipe web page.

Figure 3.4: The recipe retrieved by our application for a Strawberry Shortcake im-
age. (The interface is different from the actual application for better
illustration.)

3.6 conclusion

In this chapter, we introduce a large multimedia dataset with 101 food
categories. We set the classification baselines for our new dataset by
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testing both shallow and deep models. For shallow models, we test the
Bag-of-Words Histogram (BoW) + SIFT and Bossanova Image Pooling
Representation (Avila et al. 2012). For deep models, we extract directly
the features from the models OverFeat and VGG-16 and train an SVM. We
also train from scratch and fine-tune the two models on our datasets. As a
result, fine-tuning model outperforms others with a significant margin. Our
experiments suggest that for visual recognition, fine-tuning deep model
is the best step forward. Furthermore, count-based textual features, i.e.
TF-IDF, and embedded-based textual features, i.e. Word vector, are coupled
with image features for highlighting the complementarity of multimodal
data. We find that word vector shows powerful ability in representing any
word in a semantical food continuous space. We also run complementary
experiments to highlight differences and complementarity of our UPMC
Food-101 dataset with the recently published ETHZ Food-101 dataset.
Based on our dataset, we propose a retrieval system that we plan to
improve using machine learning techniques (Gorisse, Cord, and Precioso
2011; Gosselin and Cord 2008; Picard, Cord, and Revel 2008; Fournier, Cord,
and Philipp-Foliguet 2001; Gosselin and Cord 2004; Cord and Gosselin 2006)
for user interaction. Part of this chapter has been published in the 2015

IEEE International Conference on Multimedia and Expo as a conference
paper, which has been cited by top-level conferences and journals including
CVPR, ACM MM, WWW, TMM etc., showing its interest for the scientific
community.
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4
G A Z E B A S E D W E A K LY S U P E RV I S E D I M A G E
C L A S S I F I C AT I O N

abstract

As introduced in previous chapters, human gaze is highly related to the hu-
man attention when performing an image classification task. In this chapter,
we benefit from this psychological research result and develop a new weak
localization model, which leverages human gaze for image classification.
For tackling this problem, the commonly used weak supervision is global
image label. In our model G+LSVM, intuitively, the region with high gaze
density is preferred, while the region with low gaze density is heavily
penalized. A gaze density related gaze loss is proposed to compensate the
lack of localization information in global image label. The gaze loss and
classification loss are jointly optimized as a concave-convex upper bound
of the non-convex problem and solved by the Concave-Convex Procedure
(CCCP). An appealing feature of G+LSVM is that the model only uses the
gazes for training, whereas only visual information is used for prediction.
Experimental results show that G+LSVM significantly outperforms LSVM
on classification and localization tasks, and that the model achieves similar
performance as a model trained with expensive bounding box annotations.
Qualitative results also show that the region selected by our model is more
semantic meaningful than the baseline.

This work in this chapter is partly published as:

• Xin Wang, Nicolas Thome, and Matthieu Cord (2016). “Gaze latent
support vector machine for image classification.” In: IEEE International
Conference on Image Processing (ICIP), pp. 236–240
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4.1 introduction

As introduced in previous chapters, weakly supervised learning (WSL)
and human gaze are both promising for reducing the image labeling cost.
For benefiting both the goodness of WSL and human gaze information,
recently, attempts have been devoted to incorporating gazes as weak su-
pervision signals (Fathi, Li, and Rehg 2012; Papadopoulos et al. 2014; Ge
et al. 2015) for improving the performance of classification or segmenta-
tion systems. In (Papadopoulos et al. 2014), objects detectors are trained
from gaze features instead of accurate bounding boxes, showing promising
results.. In the section 2.3.3 and section 2.4 we introduce eye-tracking
and weakly supervised learning in computer vision. In this chapter, we
propose a new model, G(aze)+LSVM, which attempts at integrating gaze
feature for image classification improved by weakly supervised region se-
lection. Our model generalizes the baseline latent Support Vector Machine
(LSVM) (Felzenszwalb et al. 2010) by preferring high gaze density region
for localizing objects.

In Fig. 4.1a, when LSVM converges to a bad local minimal, it will predict
an inappropriate region as Z for this image French Toast. To improve the
quality of the region selection, G+LSVM also supports regions with high
density of gazes with respect to the region with the highest density of
gazes (region Zi in Fig. 4.1b), by assuming that gaze features are related to
regions relevant for the recognition task. For example, if our model still
predicts the region Z in Fig. 4.1b for French Toast, it will be penalized by
a large gaze loss to update the model parameters. Unlike (Shcherbatyi,
Bulling, and Fritz 2015; Fathi, Li, and Rehg 2012), G+LSVM only exploits
gazes during training phase, and uses only the visual information at test
time without gazes. Mathe et al. (Mathe and Sminchisescu 2014; Mathe,
Pirinen, and Sminchisescu 2016) proposes using reinforcement learning
to find a latent space sampling policy from gaze. This method is efficient
at the cost of prediction accuracy. Karthikeyan et al. (Karthikeyan et al.
2013) proposes to train a face and text detector from only gaze information.
Although this work does not use image features, it still requires bounding
boxes to segment out face and text regions. Shcherbatyi et al. (Shcherbatyi,
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(a) LSVM (b) G(aze)+LSVM

Figure 4.1: Gazes bias the selection of latent regions for LSVM. The interpretation
is in the section 4.1.

Bulling, and Fritz 2015) integrates gaze into Deformable Part Model for
selecting one relevant object location. Their model require gaze annotations
for test.

This chapter is organized as follows: The model and optimization pro-
cedures of G-LSVM are described in the section 4.2. Experimental results
and analysis are shown in the section 4.3. The chapter conclusion is in the
section 4.4.

4.2 gaze-based wsl model: g+lsvm

4.2.1 Latent SVM for image recognition

We consider the problem of learning from weak supervision in a binary
classification context based on the Latent SVM model (Felzenszwalb et al.
2010). The prediction function f : X → Y takes as input an image x, and
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outputs a binary y ∈ {+1,−1}. Each image x is associated with latent
variables z ∈ Z(x), which corresponds to a set of sub-regions. For each
region z in image x, we extract a visual feature vector Φ(x, z) ∈ Rd, e.g.
deep features. Our model is linear with respect to Φ, i.e. each region
z is assigned the score 〈w, Φ(x, z)〉, where w is learned from data. The
problem is weakly supervised since the region-specific labels are unknown
during training. Our prediction takes the maximum score over the latent
variables:

fw(x) = max
z∈Z(x)

〈w, Φ(x, z)〉. (4.1)

A standard classification metric is the 0/1 loss, which means the loss
equals 0/1 if the classification is correct/false. However, 0/1 loss is difficult
to optimize. As in LSVM, we use the hinge loss as a conventional upper-
bound of 0/1 loss. As a result, a classical-SVM like loss is proposed for
LSVM:

LLSVM(w) =
1
2
‖w‖2 +

n

∑
i=1

∆hinge(ŷi, y∗i ), (4.2)

where y∗i is the true label of image xi, ŷi = sgn ( fw(xi)) is the label pre-
dicted by our model, hinge loss is defined as ∆hinge(ŷi, y∗i ) = max(0, 1−
y∗i fw(xi)) and 1

2‖w‖2 is the standard max margin regularization term.

4.2.2 G+LSVM Training

The novelty of our model is that G+LSVM generalizes latent SVM by
biasing the selection of latent regions based on the gaze information during
the training scheme. The training objective of G+LSVM is as follows:

LG+(w) =
1
2
‖w‖2 +

n

∑
i=1

∆hinge(ŷi, y∗i ) + γ · δg(ẑi, xi, y∗i ), (4.3)

where ẑi = argmax
z∈Z(xi)

〈w, Φ(xi, z)〉 interpreted as the relevant region selected

by our model. For each training example, Eq. (4.3) includes a classification
hinge loss and a gaze loss δg, with a scalar trade-off parameter γ ≥ 0.
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In our training scheme, the gaze loss δg defined as:

δg(ẑi, xi, y∗i ) =

{
1− g(xi,ẑi)

g(xi,z∗i )
if y∗i = 1

0 if y∗i = −1,
(4.4)

where g(xi, z) is the total duration of fixations in the region z for image
xi (it can also be seen as the density of gaze for this region), z∗i is the
region which contains the maximum total duration of fixations among all
the regions. We only consider the positive image because the gazes in the
positive image indicate where the object is. We propose to make use of gaze
in the negative image in the next chapter. Fig. 4.2 illustrates the proposed
gaze loss. In this example, when the color of heatmap is closer to red, the
total duration of gaze is higher. The region containing the maximum total
duration of gaze is shown as z∗i (shown as the green rectangle). The gaze
loss of z∗i is thus defined as 0. The red region z1 contains a smaller total
duration of gaze with respect to the blue region z2, leading to a larger gaze
loss.

The intuition of training G+LSVM is straightforward. Our training ob-
jective in Eq. (4.3) is biased by the gaze loss δg, so that G+LSVM learns a
different model parameter w, which tends to minimize gaze loss compared
to LSVM. The final decision of our model is to learn a unique w by compro-
mising between classification loss and gaze loss. In other words, G+LSVM
tries to solve the task of classification and localization simultaneously, thus
the relevant region is presumed to contain the object of interest, which leads
to a better classification result.

4.2.3 G+LSVM Optimization

To minimize our training objective function Eq. 4.3, we first show that it
can be rewritten as a difference of convex functions, i.e.

1) Classification loss part: For negative example, y∗i = −1. The second
term 1− y∗i fw(xi) in its classification loss is convex because it is a sum of
a constant and a maximum over a set of convex functions. As a result,
the sum of the classification loss of all negative examples are convex. For
positive example, since y∗i = 1, it is not convex. We propose to optimize by
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Figure 4.2: The rationale of the definition of gaze loss. When the color of heatmap
is closer to red, the total duration of gaze is higher. The region contains
the maximum total duration of gaze is shown as z∗i (shown as the
green rectangle). The gaze loss of z∗i is thus defined as 0. The red
region z1 contains a smaller total duration of gaze with respect to the
blue region z2, leading to a larger gaze loss.

decomposing the hinge loss of positive example into a difference of two
convex functions by applying the following theorem:

max(0, u− v) = max(u, v)− v, (4.5)

where u, v are two convex functions. The non-convex classification loss of
every positive example is thus decomposed as:

max(0, 1− fw(x)) = max(1, fw(x))− fw(x). (4.6)

The maximum of a set of linear functions is convex, so Eq. 4.6 is a
difference of two convex functions.

2) Gaze loss part: δg(ẑi, xi, y∗i ) is difficult to optimize, because the depen-
dency on w is complex and non-smooth. To overcome this issue, we derive
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a convex upper-bound ∆g, inspired from margin-rescaling (Joachims, Finley,
and Yu 2009):

δg(ẑ, xi, y∗i ) ≤ δg(ẑ, xi, y∗i ) + w ·Φ(xi, ẑ)−w ·Φ(xi, z∗i )
≤ max

z∈Z(xi)
[δg(z, xi, y∗i ) + w ·Φ(xi, z)]−w ·Φ(xi, z∗i )

:= ∆g(ẑ, xi, y∗i )

(4.7)

where maxz∈Z(xi)
[δg(z, xi, y∗i ) + w · Φ(xi, z)] is a max over linear func-

tions, so it is convex. The second term w ·Φ(xi, z∗i ) is linear. As a result,
the difference of the two terms is convex.

Aggregating Eq. 4.6 and Eq. 4.7 together, the concave-convex upper
bound of the objective function of top G+LSVM is Eq. 4.8:

LG+(w) ≤ LG+(w) =
1
2
‖w‖2 + C

[
1

nn

nn

∑
in=1

max(0, 1 + fw(xin))︸ ︷︷ ︸
cn(w)

+

1
np

np

∑
ip=1

max(1, fw(xip))︸ ︷︷ ︸
cp1(w)

− 1
np

np

∑
ip=1

fw(xip)+︸ ︷︷ ︸
cp2(w)

n

∑
i=1

(
[[yi = 1]]

γ+

np
+ [[yi = −1]]

γ−
nn

)
· ∆g(ẑ, xi, y∗i )︸ ︷︷ ︸

g(w)

]

(4.8)
where np, nn are respectively number of positive examples and negative
examples. The coefficient of the gaze loss of negative example γ− is set to
be 0.

For brevity, we rewrite Eq. 4.8 as u(w)− v(w), where:

u(w) =
1
2
‖w‖2 + C(cp1(w) + cn(w) + g(w)). (4.9)

v(w) = Ccp2(w). (4.10)
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We then optimize u(w)− v(w) by CCCP (algo.1). The CCCP algorithm
is guaranteed to decrease the objective function at every iteration and
to converge to a local minimum or saddle point (Yuille and Rangarajan
2001). In Algo 1, the line 3 involves linearizing the concave part −v(w).
We calculate the supergradient vt of −v(w) at the point wt, where vt =

−∑
np
ip=1 Φ(xi, ẑi). At line 4, the problem becomes convex, we can use any

convex optimization tool for solving this problem.

Algorithm 1: Concave-Convex Procedure
Output: w∗

1 Set t = 0, stopping criterion ε and initialize w by w0, u(w) and v(w) are
defined as Eq. 4.9 and Eq. 4.10.

2 repeat
3 Find hyperplane vt to linearize −v(w):

−v(w) ≤ −v(wt) + (w−wt) · vt,
4 Solve wt+1 = argminwu(w) + w · vt,
5 Set t = t+1,
6 until [u(wt)− v(wt)]− [u(wt−1)− v(wt−1))] < ε;

The step 4 of Algo. 1 requires optimizing w. In this work we use SGD.

∆LG(w, i) = w + hc(w, xi, y∗i ) + γ · hg(w, xi, y∗i )

where hc(w, xi, yi) =
0 if yi = −1, yi fw(xi) ≥ 1
Φ(xi, ẑ) if yi = −1, yi fw(xi) < 1
Φ(xi, ẑ)−Φ(xi, ẑt−1) if yi = 1, yi fw(xi) ≥ 1
−Φ(xi, ẑt−1) if yi = 1, yi fw(xi) < 1

(4.11)

hg(w, xi, yi) = Φ(xi, z̃)−Φ(xi, z∗i ) (4.12)

ẑ = argmaxzw ·Φ(xi, z),
ẑt−1 = argmaxzwt−1 ·Φ(xi, z),
z̃ = argmaxz[gl(z, z∗i , yi) + w ·Φ(xi, z)]
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w is updeted by w := w− αt∆LG(w, i), where αt is learning rate.
Note that given a model parameter w, the relevant region ẑ only depends

on image feature as LSVM, without any gaze information (Eq. 4.1). The
benefit of this modeling strategy is that G+LSVM only uses gaze loss for
training, not for the test. This idea is inspired from learning using Privileged
Information (LUPI) (Vapnik and Izmailov 2015). The problem addressed by
LUPI is that the privileged information is available only at the training stage
and is not available at the test stage. By including privileged information
into training we obtain a better model, which commits lower generalization
error thanks to the localization information for human gaze. This modeling
strategy is also practical because models trained with gaze can be applied
without gaze annotations.

4.3 experimental results

Based on PASCAL VOC 2012 object dataset, Papadopoulos et al. (Pa-
padopoulos et al. 2014) annotate 10 object categories with gazes: aero-
plane, cat, dog, bicycle, motorbike, boat, horse, cow, diningtable, sofa. Different
as (Mathe and Sminchisescu 2013), during annotation stage, each of 5

observers is assigned a specific object to find.

4.3.1 Image Datasets

We validate our ideas on three datasets, PASCAL VOC Action dataset
annotated with gaze (short for Action) (Mathe and Sminchisescu 2013),
PASCAL VOC Object dataset annotated with gaze (short for POET) (Pa-
padopoulos et al. 2014). Both datasets are collected gaze annotations in
task-driven manners. Action contains 4588 images, covering 10 categories.
POET contains 6131 images, covering 10 categories out of 20 categories of
PASCAL VOC Object dataset. The origin of these images is the train+val

split of PASCAL VOC dataset. Two sample images of POET and Action
are shown with gaze annotations in Fig. 4.3.

In order to compare with the state-of-the-art methods, we follow the
standard split of train, val, test set as indicated in PASCAL VOC 2012
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Figure 4.3: Gaze annotations. left: sample image of POET dataset, right: sample
image of Action dataset. Different colors indicate different observers.

development kit (Everingham et al. 2015). Since POET contains only 10

out of 20 categories of Pascal VOC 2012 Object, we add back the images
of the absent categories in the train+val set for training, without gaze
information. Finally, our model can be evaluated following the standard
protocol. For Action, since by default standard test set requires to identify
every person in an image with a bounding box, we conventionally train
our model on the training set and test on the validation set. Except for
the comparison with the state-of-the-art methods, our experiments are
performed by 5 random folds test on the train+val set of POET, Action.

4.3.1.1 Gaze annotations

The gaze annotations over these datasets are all collected in task-control
manners with slight variations.

1. POET uses the category specific protocol, which means that each subject
has a specific category of object, e.g. cat, to look at. Images in POET
may have multiple categories. These multiple classes images are
annotated with more than one set of annotations. In out tests, for a
positive image, we use the corresponding set of annotations, for a
negative image, we calculate the fixation duration for each region of
each category, then take the maximum fixation duration across the
categories as the fixation duration of this region.
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2. Action uses the category group protocol, which means the subject is
required to find a specific group of categories, i.e. actions or context.
In other words, if a subject is required to find actions, the subject
should find all possible actions in the image. The setting of Action
is weaker than POET because annotations are only related with a
person, not a specific action.

Each gaze is classified into fixation, saccade, or unclassified gaze. For
Action and POET, the classification results are already given in the dataset.
Gaze is then represented by fixation in the form of a triplet (x, y, duration).
(x, y) is the coordinate of fixation, duration is the duration time of this fixa-
tion. Fixation duration is important since higher exposure time of a fixation
reflects a deeper understanding of the local content of the image (Fei-Fei
et al. 2007). The total valid fixation time duration of each subject on each
image is normalized to a fixed value. By considering the gaze consistency
across subjects, for each region, the fixation duration is summed for all
subjects. Gaze loss is calculated for each region using the re-weighted
summed fixation.

4.3.2 Statistical consistency of gaze information

Before evaluating G-LSVM, we first provide a detailed analysis of the
gaze data consistency. We compute statistics for the proportion of gazes
falling into or outside the bounding boxes of object and compare it to the
proportion of image pixels (Fig. 4.4). Statistically, for action dataset, 68.8%
of the gazes fall into the ground-truth bounding-box, while the score of
pixels is only 30.6%. Similarly, the scores of object dataset is 77.3% vs 36.9%.
This preliminary study provides a quantitative validation that human gazes
are highly related to object localization, and convey relevant features for
classification.

4.3.3 Weakly supervised classification setting

In our models, the first step is generating the latent regions. Latent region
set corresponds to square image regions extracted with a multi-scale sliding
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(a) gaze proportion of action (b) pixel proportion of action

(c) gaze proportion of object (d) pixel proportion of object

Figure 4.4: Proportions of gazes and pixel numbers in (outside) the ground-truth
bounding boxes.

window strategy. Region size vary from 90% to 30% of the whole image
area. For a given scale, a window slides from the upper-left to the bottom-
right of the image with a step size 10% in both directions. As a result, for
each image, the size of sub-region space varies among {4, 9, 16, 25,

36, 49, 64}. Each region is described by the deep features extracted from
the FC7 layer of the pre-trained imagenet-vgg-m-2048 deep model1, which
are subsequently L2-normalized and add a bias term. In this setting, the
size of feature and model parameter are fixed as 2049.

For training the multi-scale model, we adapt the object bank represen-
tation (Li et al. 2010) for our setting. For a given category, we first train
the models independently for all 8 scales (including the full image scale).
We then form an 8-dimensional vector for each image by the classification
scores and train a linear SVM with C = 10 as the multi-scale model. Finally,
the multi-scale classification score of all categories are averaged to give an
mAP to show the overall performance of our models.

1 http://www.vlfeat.org/matconvnet/pretrained/
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4.3.4 Experimental results

Performance comparison:
The results are gathered in Table 4.1, using 5 random folds on the

train+val sets (Everingham et al. 2015), and evaluating performances with
the standard mAP metric. We show that G-LSVM outperforms LSVM by
a margin of 2.1% for action (resp. 0.4% for object). Paired T-tests reveal
that the improvement is statistically significant for a risk of less than 0.5%
for action (resp. 2% for object). Both methods largely outperform wSVM,
which clearly validate that training WSL models is able to capture local
information.

G-LSVM LSVM wSVM
action 70.5± 0.8 68.4± 1.0 60.8± 1.2
object 92.4± 1.0 92.0± 1.1 88.2± 1.2

Table 4.1: mAP(%) of combination multi-scale model.

Fig. 5.5 shows the performance evolution for LSVM and G-LSVM when
varying the region scale s. We observe that the improvement of G-LSVM
is more pronounced at small scales. This is expected: for large scales, all
regions are informative, whereas at smaller scales, the model has to focus
on relevant localized features. Note that s =100% corresponds to wSVM,
for which the mAP for action and object is 60.8% and 88.2% . G-LSVM
thus outperforms SVM at all scales of action dataset, as well for scales in
[50, 90] on object dataset.

Table 4.2 gives per-class performances at the smallest scale 30%. G-LSVM
outperforms LSVM by a margin of 3.1% and 0.8% for respectively action
dataset and object dataset. Paired T-tests show that G-LSVM is significant
than LSVM for a risk less than 0.5% and 1% for action and object datasets.
For action dataset, the performance gain of G-LSVM is especially large
for the categories phoning, reading, walking. We note that these actions
are usually associated with tiny objects, i.e. cellphone, book and small
person (e.g Fig. 5.8b). For object dataset, G-LSVM performs well at cow and
motorbike and improves over LSVM for most categories.
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(a) action dataset (b) object dataset

Figure 4.5: mAP(%) at different scales.

Action Dataset mAP jump phone instru’ read bike horse run photo comp’ walk
G-LSVM 61.29 69.20 50.51 79.49 50.57 78.86 83.88 53.62 38.64 72.08 36.03

LSVM-Standard 58.17 68.93 41.95 79.21 39.11 79.26 84.20 55.11 36.74 73.69 23.52

Object Dataset mAP aeroplane cow dog cat motor boat horse sofa din’table bike
G-LSVM 85.39 96.76 76.78 91.71 90.77 88.15 88.08 82.82 71.14 82.08 85.59

LSVM 84.59 96.72 71.97 91.27 90.03 86.30 87.84 84.05 71.19 81.83 84.75

Table 4.2: AP(%) at scale 30%

Further analysis: The impact of the parameter γ in Eq. (4.3) is shown
in Fig. 4.6 for scale 50%. We can see that performances of LSVM, corre-
sponding to γ = 0, can be improved for most values in γ ∈ ]0, 1.0]. It is
worth noticing that the performances in Fig. 4.6 are shown on average
for all classes. We can further substantially boost the performances by
cross-validating γ. For example, on the action dataset, a class-wise cross
validation (γ ∈ [0, 1; 0.1]) at scale 50% leads to nearly 1% improvement
compared to γ = 0.2.

We show in Fig. 4.7 the predicted regions for G-LSVM and LSVM. Results
for training images are shown on the first row: we show that G-LSVM
selects areas with more gaze features than LSVM. On the second row, we
present results for test images, for which gaze features are not available.
Interestingly, we can see that G-LSVM extracts regions which are more
semantic than LSVM for the classification task.
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(a) action dataset (b) object dataset

Figure 4.6: For scale = 50%, the effect of parameter γ.

We validate this idea by measuring the detection performances of G-
LSVM vs LSVM by computing the Intersection over Union (IoU) metric
between the predicted region and the ground-truth bounding boxes. The
results in Table 4.3 at every scale show that G-LSVM always outperforms
LSVM.

action 30 40 50 60 70 80 90

G-LSVM 21.4 25.8 27.6 28.3 29.0 29.3 28.1
LSVM 14.5 20.4 24.3 26.7 27.9 28.9 28.0

object 30 40 50 60 70 80 90

G-LSVM 22.4 29.4 34.0 37.1 40.1 41.8 42.2
LSVM 20.1 27.1 32.6 36.4 39.2 41.5 42.0

Table 4.3: IoU (%) between predicted region and ground-truth bounding boxes.

Finally, we perform the last experiment using bounding box annotations
during training, leading to a model denoted as G-LSVM*. We replace
the gaze loss by a ground-truth loss computed as 1− IoU(z, zgt), where
zgt is the ground-truth region in the dataset. The experiment reveals that
G-LSVM is even slightly better than G-LSVM* (↑ 0.4 % (0.2%) mAP for the
action (object) dataset). This shows that gaze features contain as relevant
information as bounding box annotations, while being much cheaper to
collect.
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(a) dog (object) (b) walking (action)

(c) dog (object) (d) walking (action)

Figure 4.7: Localization results. (a)(b): training results, (c)(d): test results. red:
LSVM, blue: G-LSVM, yellow: ground-truth bounding-box. cyan: gazes.

4.4 conclusion

In this chapter, we develop a new latent variable model, which leverages
human gaze features for image classification using weakly supervised
region selection. In our model G+LSVM, a gaze density related gaze
loss is proposed to compensate the lack of localization information of
global image label. Our model prefers the region with high gaze density,
and penalizes the region with low gaze density. The gaze loss and clas-
sification loss are jointly optimized as a concave-convex upper bound of
the non-convex problem and solved by the Concave-Convex Procedure
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(CCCP). An appealing feature of G+LSVM is that the model only uses the
gazes for training, whereas only visual information is used for prediction.
Experiments show that G+LSVM significantly outperforms the baseline
on both PASCAL VOC 2012 object & action classification datasets. We
also show that our G+LSVM achieves similar performance when using
bounding box annotations, while gaze annotations are much cheaper to
collect. Qualitative results show that the region selected by our model is
more semantic meaningful than the LSVM baseline.

Although the model outperforms the baseline LSVM in several aspects,
it still suffers from two critical deficiencies: 1) it does not exploits the gaze
information in the negative images. This is inadequate for data utilization
because in the training dataset, the quantity of negative image is usually
much larger than the quantity of positive images. 2) on the small scale,
selecting a single region is often hard to describe the complete object. In
the next chapter, we propose to enhance the G+LSVM by considering the
two aspects.
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5
M U LT I - R E G I O N P O S I T I V E - N E G AT I V E G - L S V M

abstract

In this chapter, we discuss more deeply the problem of image classification
using human gaze in a weakly supervised localization scheme. Based
on the the prototype G+LSVM in the previous chapter, we make further
improvements in following aspects:

1. We take into account gaze features for negative images whereas only
positive images are used in G+LSVM. This is more adequate for data
utilization because in the training dataset, the quantity of negative
image is usually much larger than the quantity of positive images.

2. We extend the region selection policy from a single region to several
regions for performing the prediction, leading to a generalization of
top k latent SVM model (Li and Vasconcelos 2015). Selecting more
regions not only provides a richer spatial description, but also exploits
more extensively the gaze annotation on the image.

We then derive a generalized concave-convex upper bound objective func-
tion with respect to the G+LSVM. Also, our model only requires gaze for
training, while the test phase is gaze free.

With these improvements, our model k-G±LSVM generalize better on
several image classification benchmark datasets. A thorough experimental
analysis validates the proposed model on the standard datasets and our
newly proposed gaze food-related dataset UPMC-G20. The UPMC-G20

is annotated with gaze using a task-driven protocol, in where the images
are all food images in the UPMC Food-101 dataset. We make this dataset
because food is also a complicate object made up of various ingredient
and often with several common regional backgrounds. We find our model
is capable of capturing more complete semantic regions in both positive
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and negative images with respect to the G+LSVM. For example, a tiramisu
image is often composed of main ingredients. and also backgrounds like
forks, plates, strawberry decoration, etc.

This work in this chapter is partly published as:

• Xin Wang, Nicolas Thome, and Matthieu Cord (2017). “Gaze Latent
Support Vector Machine for Image Classification Improved by Weakly
Supervised Region Selection.” In: Pattern Recognition, pp. –. doi:
https://doi.org/10.1016/j.patcog.2017.07.001. url: http://

www.sciencedirect.com/science/article/pii/S0031320317302625
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5.1 introduction

To incorporate gaze information into latent SVM model, we proposed
in Chapter 4 a new WSL model (G+LSVM) to learn gaze-biased region
from image with global label and gaze annotation. As introduced in the
section 2.4.1, extending weakly supervised learning model to select more
relevant regions (Li and Vasconcelos 2015) and to leverage the information
of negative examples (Azizpour et al. 2015; Durand, Thome, and Cord 2015;
Durand, Thome, and Cord 2016; Durand et al. 2017) are promising. Related
to our work, Shapovalova et al. (Shapovalova et al. 2013) focuses on WSL
recognition by penalizing region selection with gaze. However, the gaze
information is not sufficiently exploited because only positive examples
are penalized with gaze. In this chapter, comparing to the previous works,
our model is generalized to leverage the gaze information in both positive
and negative examples in multiple regions.

The reason for making these improvements is straightforward: on one
hand, using the gaze in the negative images is not the same as for positive
image because there is a contradiction between the region selected and the
region penalized. The reason is that for an negative image, the selected
region is often the background, because positive image and negative image
share the background like forks, plates, strawberry decoration in the food
images. We discuss in detail the reason of this contradiction and our
proposed solution in the subsection 5.2.1. On the other hand, taking only
the maximum scored region as the representative is rigid because small-
scale region may be to small to fit an object. To soften the constraint, (Li and
Vasconcelos 2015) proposes the definition of soft bags of top k instances.
In soft bags, example is represented by the average feature of the top
k instances. In our model, selecting more regions not only provides a
richer spatial description, but also exploits more extensively the gaze
annotation on the image. Our final model k-G±LSVM is presented in the
subsection 5.2.2

With these improvements, our model k-G±LSVM generalizes better on
several image classification benchmark datasets. A thorough experimental
analysis validates the proposed model on the standard datasets and our
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newly proposed gaze food-related dataset UPMC-G20. The UPMC-G20

is annotated with gaze using a task-driven protocol, in where the images
are all food images in the UPMC Food-101 dataset. We make this dataset
because except for the object or the person action in the PASCAL VOC 2012

can be regarded as a composition of regional parts, food is also a complicate
object made up of various ingredient and often with several common
regional backgrounds. For example, a tiramisu image is often composed
of main ingredients. and also backgrounds like forks, plates, strawberry
decoration, etc. The detail of UPMC-G20 is described in subsection 5.3.
The result shows that our model is capable of capturing more complete
semantic regions in both positive and negative images with respect to the
G+LSVM across the three datasets.

This chapter is organized as follows. In section 5.2 we formally introduce
our k-G±LSVM model and the optimization scheme. In section 5.4, we
present our experimental results to validate our models. The conclusion is
provided in section 5.5.

5.2 k-g±lsvm: weakly supervised gaze latent svm

5.2.1 G±LSVM: Positive Negative Latent SVM

In the previous chapter 4, we introduce our baseline models LSVM and
G+LSVM. One drawback of G+LSVM is the absence of gaze information
in negative image. However, a straightforward application of positive
gaze loss on the negative image may not work. The reason is that for the
positive image, the model should tend to localize where the foreground
object is. For the negative image, however, the model should tend to
localize where the background is (Azizpour et al. 2015). That’s because the
overlapping instances between positive and negative example are likely to
be the background e.g. mint leaves, plates, forks, etc. According to the task-
driven protocol, image semantic is related with gaze distribution. Indicated
by the gaze, the region with lower density of gaze is more likely to be
background. Since then, we should penalize the object region of negative
image. This intuition is shown in Fig. 5.1b and leads to a generalization of
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G+LSVM, called G±LSVM. In G±LSVM we defined a negative gaze loss,
which prefers the region where there is less possibility to contain an object.
Contrary to positive image, if a region of negative image contains more
gaze, it is force not to be the relevant region of the negative image.

(a) LSVM (b) G±LSVM

Figure 5.1: G±LSVM generalizes LSVM by penalizing background of positive
image and foreground of negative image.

Based on this assumption, we propose a negative gaze loss defined as
follows:

δg(ẑi, xi, y∗i ) =

 1− g(xi,ẑi)
g(xi,z∗i )

if y∗i = 1
g(x,ẑi)−g(xi,z−∗i )

g(xi,z∗i )−g(xi,z−∗i )+ε
if y∗i = −1

(5.1)

where g(xi, z−∗i ) is the minimum number of gaze among all regions of
image xi, ε is set to be 10−6. We subtract the term g(xi, z−∗i ) from the
numerator and denominator only to normalize the minimum negative gaze
loss to be 0.
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We introduce independent parameters γ+ and γ− for trading positive
gaze loss and negative gaze loss. Assembling all together we get the
objective function of G±LSVM:

LG+
−
(w) =

1
2
‖w‖2 +

n

∑
i=1

∆c(ŷi, y∗i ) + ([[y∗i = 1]]γ+ + [[y∗i = −1]]γ−) · δg(ẑi, xi, y∗i )

(5.2)
The prediction function follows the LUPI explanation described in sec-

tion 4.2, so it is also gaze free during the test (same for the following
model).

5.2.2 k-G±LSVM: Top k Positive Negative Latent SVM

Taking only the maximum scored region as the representative is rigid
because one region may be to small to fit an object. To soften the con-
straint, (Li and Vasconcelos 2015) proposes the definition of soft bags of
top k instances. In soft bags, example is represented by the average feature
of the top k instances. This method is proved to be robust to the noise in
the examples and generalized better than LSVM.

An useful property of top k related to gaze information is its smooth
functionality for sparse gaze limitation. This limitation is due to the truth
that gaze on an image often focus on a small part of the image. For a given
example, the gaze loss term has no difference on regions with the same
gaze loss. Selection among these regions is random in previous single
instance models. This randomness can be eliminated by taking them all
via top k strategy.

Fig. 5.2 illustrates the rationale of our final model. Remind that the goal
is to select semantically meaningful regions, e.g. those containing the target
object class (eggs benedict region or its sub-regions in Fig. 5.2a). By assuming
that gaze features are related to regions relevant for the recognition task,
gaze and object are matched for positive example. For negative example,
top k G±LSVM further supports regions with low density of gaze, by
assuming that no gaze features are related to classify negative images.
Extending the model to top k instances latent SVM can further improve the
quality of region selection and reduce the effect of the sparseness of gaze.
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(a) french toast, positive example (b) eggs benedict, negative example

Figure 5.2: Illustration of top k-G±LSVM model. Human gaze density is repre-
sented by the heat map. In our models, positive example emphasize
the latent regions with high gaze density (inside the solid boxes), while
negative example emphasizes the regions with low gaze density (out-
side the dashed boxes). Different colors of regions indicate different
scales. For one scale, our model takes multiple highest scored regions
as the relevant regions. (Best viewed in color)

The objective function of top k G±LSVM is as follows:

LkG+
−
(w) =

1
2
‖w‖2 +

n

∑
i=1

∆c(ŷi, y∗i ) + ([[y∗i = 1]]γ+ + [[y∗i = −1]]γ−) · δg(ẑi, xi, y∗i )

(5.3)
where

∆c(ŷi, y∗i ) = max(0, 1− y∗i fw(xi))

δg(ẑi, xi, y∗i ) =
1
k

k

∑
j=1

δg(ẑij, xi, yi)

ẑi = argmax
z∈Z(xi)

〈w, Φ(xi, z)〉,
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where z is a vector of latent variables, Z(xi) the hypothesis space {0, 1}k \
{0}. Φ(xi, z) = 1

k ∑k
j=1 Φ(xi, zij).

In the section 5.2 we propose three variations, G±LSVM, top k G+LSVM,
top k G±LSVM. Each of the models has a different objective function to
optimize. However, notice that when k = 1, top k models reduce to the
single instance model. Furthermore, when γ− = 0, the objective function
of G±LSVM (Eq. 5.2) reduces to G+LSVM (eq. 4.3), and when γ+ = 0,
G+LSVM reduces to LSVM (eq. 4.2). For the reason above, we can refer
the optimization of all models to the section 4.2.3. For the model which
leverages negative image, the γ− should be selected, while for the model
selecting k top regions, the feature vector and gaze loss are represented as
the average of these k instances.

5.3 upmc-g20 food gaze dataset

5.3.1 UPMC-G20 content

UPMC-G20 is a food-related gaze annotated dataset based on a multi-
modal large scale food dataset UPMC-food 101 (Wang et al. 2015a). We
select 20 food categories from UPMC-food 101, resulting in 2,000 images.
The images selected do not contain text, because it’s verified that texts
attract attention most (Wang and Pomplun 2012). For UPMC-G20, I-VT
filter (Olsen 2012) is used to classified the gaze into saccade or fixations
. For each image, about 15 fixations across 3 subjects (in average) with
a total duration of 2.5 seconds are collected. In total, we have collected
31104 fixations. The categories selected are apple-pie, bread-pudding, beef-
carpaccio, beet-salad, chocolate-cake, chocolate-mousse, donuts, beignets,
eggs-benedict, croque-madame, gnocchi, shrimp-and-grits, grilled-salmon,
pork-chop, lasagna, ravioli, pancakes, french-toast, spaghetti-bolognese,
pad-thai.

Samples of images and gaze annotations are shown in Table 5.1 and
Table 5.2. For full visualization of UPMC-G20, we refer our reader to this
page of our dataset: http://webia.lip6.fr/~wangxin/upmcg20/.
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Category samples

apple pie

bread pudding

beef carpaccio

beet salad

chocolate mousse

chocolate cake

beignets

donuts

croque madame

eggs benedict

Table 5.1: Sample image and annotation of UPMC-G20 (1)
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Category samples

gnocchi

shrimp and grits

grilled salmon

pork chop

lasagna

ravioli

pancakes

french toast

spaghetti bolognese

pad thai

Table 5.2: Sample image and annotation of UPMC-G20 (2)
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5.3.2 Apparatus

Our eye-tracker is a non-invasive Tobii X2-30 with a double eyes gaze
sampling rate 30Hz. Eye-tracker is fixed under a 12.6” laptop screen with
resolution 1366× 768. The subject sits at a distance of about 60cm to the
screen. The test environment is quiet and of suitable temperature for not
introducing physiological error. The experiment was conducted with the
software Tobii Studio (V3.4.5) (AB 2016). Before annotating, for each sub-
ject, dominant eye, gender, age are recorded. Before every experiment, Tobii
X2-30 is calibrated and validated with a standard nine-point procedure to
ensure the coordinate of the gaze recorded matches where the subject is
looking at. They are taught the procedure of annotation with a clear expla-
nation and validate a simulation test before the formal experiment. Subject
record his classification answer by clicking the corresponding option on
the screen after viewing an image using a mouse. Comparing to pressing a
button to indicate the category as in (Papadopoulos et al. 2014), using the
mouse is useful because mousing moving leads to eye moving after every
image. The subject then break the possible steady fixating strategy.

5.3.3 UPMC-G20 collection protocol

Figure 5.3: Food gaze collection protocol

Our collection protocol is shown in Fig. 5.4. It is inspired by the two-
alternative forced choice object discrimination (Papadopoulos et al. 2014). This
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protocol is simple to the annotators and can save the time because no
irrelevant images for distracting the attention are shown.

The protocol is composed of steps:

1. Randomly selecting an image from a pair of categories and exposing
for 2.5 seconds, recording the gaze data.

2. Making the subject answering a multiple choice question, of which
the category of the image is asked to be selected using a mouse.

3. After exposing every 20 images, a page indicates the progress of the
task is shown to heal the anxiety of annotators.

4. After exposing a whole set of images, annotator gets an adequate rest
then recalibrate for the next set of images.

5.3.4 Motivation of constructing the UPMC-G20

We make the UPMC-G20 dataset because food is a complicated object made
up of various ingredients and often with several common backgrounds.
In Fig. 5.4, we illustrate our motivation of constructing this dataset by
comparing french toast and eggs benedict images. As we introduce in Chap-
ter 4, it is obvious that the gaze covers the foreground. Our model is
able to distinguish the semantic region of food image. And related to the
proposition in this chapter, the two images share the background of certain
objects like plate, cup, fork. Given french toast as the positive example, the
prediction of negative example should be the background objects because
they have a closer distance to the positive image.. This context is highly re-
lated to the application scope of the k-G±LSVM model. We report detailed
experimental results in the next section for supporting our points of view.
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Figure 5.4: Motivation of constructing the UPMC-G20: Food is a complicated ob-
ject made up of various regional parts and often with several common
backgrounds.

5.4 experiments

5.4.1 Comparison with the state-of-the-art

In our model, we set k-G±LSVM with the parameters C = 104, γ+ = 0.2,
γ− = 0.05 for each scale. In a heuristic manner, for top k models, we set
k = 2, 4, 6, 8 for scale 90% to 60%, and k = 10 for scale 50% to 30%. A
multi-scale model is trained as indicated in section 4.3.3. In all experiments,
we use the standard metric mean Average Precision (mAP) as for PASCAL
VOC classification. The basic setting of our experiments is the same as
section 4.3.
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In Table 5.3 we show the global score of different methods on the three
datasets and the annotations they use. For POET dataset, Deep Fish-
ing (Gordo, Gaidon, and Perronnin 2015) and Z&F network (Zeiler and
Fergus 2014) are two deep network based methods, which only use image
label for training. NUS-SCM (Song et al. 2011) is an SVM-based method
and Oquab (Oquab et al. 2014) is a fine-tuned deep network. They both use
training bounding box as the additional annotation. Our method outper-
forms the four methods with only our weak supervision signals. For Action
dataset, we compare with Action part (Gkioxari, Girshick, and Malik 2015)
and RMP (Hoai 2014). The action part is a deep version of poselets and
capture parts of the human body under a distinct set of poses, while RMP
considers deformation of discriminative parts. They both propose a model
with simple annotations (e.g. image label and training bounding box) and
a model with rich annotations (e.g. test bounding box and part annotation.
Our model is better than them if they do not use rich annotations. In
Table 5.4 we show the per category performance on the test set of POET.
Our model largely outperforms other methods on boat, cat and diningtable
categories.

Action POET label train BB test BB part gaze
Deep Fishing (Gordo, Gaidon, and Perronnin 2015) - 79.9

√

Z&F (Zeiler and Fergus 2014) - 81.2
√

RMP (Hoai 2014) 65.1 -
√

NUS-SCM (Song et al. 2011) - 84.3
√ √

Oquab (Oquab et al. 2014) - 84.5
√ √

Action part (Gkioxari, Girshick, and Malik 2015) 64.6 -
√ √

RMP (Hoai 2014) 71.4 -
√ √ √

Action part (Gkioxari, Girshick, and Malik 2015) 71.0 -
√ √ √ √

k-G±LSVM (ours) 69.6 85.9
√ √

G+LSVM (Wang, Thome, and Cord 2016) 66.8 82.6
√ √

wSVM 59.1 79.8
√

Table 5.3: Comparison with the state-of-the-art methods on the test set of Pascal
VOC 2012 Object, and the validation set of Action. Our model outper-
forms other methods even when they use global label + training

bounding box. We also achieve comparable results with respect to the
models using accurate annotations such as test bounding box and/or
human part annotation.
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POET mAP plane bike boat cat cow table dog horse motor sofa
Deep Fishing (Gordo, Gaidon, and Perronnin 2015) 79.9 95.0 76.6 82.9 88.6 65.4 69.8 86.5 82.1 85.1 57.0

Z&F (Zeiler and Fergus 2014) 81.2 96.0 77.1 85.5 91.2 74.4 67.7 87.8 86.0 85.1 61.1
NUS-SCM (Song et al. 2011) 84.3 97.3 84.2 85.3 89.3 77.8 75.1 83.0 87.5 90.1 73.4
Oquab (Oquab et al. 2014) 84.5 94.6 82.9 84.1 90.7 86.8 69.0 92.1 93.4 88.6 62.3

k-G±LSVM (ours) 85.9 97.2 83.9 90.1 94.7 77.4 77.3 92.3 87.3 89.9 68.9
G-LSVM (Wang, Thome, and Cord 2016) 82.6 96.5 80.2 87.7 92.4 71.1 74.1 89.6 84.3 87.5 62.7

wSVM 79.8 95.4 79.6 86.7 92.2 59.6 69.9 90.0 86.7 79.3 58.4

Table 5.4: mAP(%) per category on the test set of PASCAL VOC 2012 Object.

5.4.2 Ablation studies

In this section, we compare LSVM, G+LSVM, G±LSVM and their top k
variations. We present the scale-wise classification experiments in Fig. 5.5.
In our model, scale measures the size of the sliding window with respect
to the size of the image. In a heuristic manner, for top k models, we set
k = 2, 4, 6, 8 for scale 90%− 60%, and k = 10 for scale 50%− 30%. For most
scales, the model performance is better than wSVM (scale=100 in Fig. 5.5).
This result proves the effectiveness of weakly supervised learning: local
information is critical for image classification.

We can also observe that adding gaze into the model improve the perfor-
mance for all scales. The improvement can be explained by two reasons.
One is that G+LSVM emphasizes small scales. That is what we expect: for
large scales, nearly all regions of positive images are informative, whereas
at smaller scales, the model has to focus on relevant localized features.
The other is that G±LSVM can also emphasize large scales. Paired T-tests
show that G±LSVM is better than LSVM with a larger significance than for
G+LSVM, especially for large scale. This phenomenon may have a dual
explanation with respect to G+LSVM: not all regions of negative images
are non-informative. As a result, for large scale, the ground truth region zi
of negative example has a larger probability to be unique. While for small
scales, zi is selected randomly among all low gaze density regions, which
may lead to a less optimal result. When k increases, for small scale, this
problem no longer dominates the performance because the set of ground
truth regions for negative images is informative with less randomness.
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(a) Action dataset

(b) POET dataset

(c) UPMC-G20 dataset

Figure 5.5: mAP(%) at different scales. In our model, scale measures the size of
the sliding window with respect to the size of the image. Our model
outperforms the whole image for most scales using top k instances.
Also, k-G±LSVM significantly outperforms other G-LSVM variations
at all scales.
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We think that is the reason why we observe a substantial performance
enhancement at small scales for top G±LSVM.

Table 5.5 gives the performance at the smallest scale 30%. At scale 30%,
k-G±LSVM (k-G+LSVM) outperform k-LSVM by a margin of 1.8%(1.1%),
1.2%(0.5%), 2.3%(1.2%) for respectively Action, POET and UPMC-G20.
Paired T-tests show that k-G±LSVM (k-G+LSVM) is more significant
than LSVM for a risk less than 0.2%(1.0%), 1.0%(2.0%), 0.2%(0.5%) for
respectively Action, POET, UPMC-G20. These statistical results show that
k-G±LSVM is better than k-G+LSVM with significance at small scale. Top
k models much outperform single instance models. Interestingly, as we
expected, the gain of k-G±LSVM with respect to k-G+LSVM is much larger
than the gain of G±LSVM with respect to G+LSVM.

Action POET UPMC-G20

k-G±LSVM 66.0± 0.9 88.1± 1.2 78.3± 1.0
k-G+LSVM 65.3± 1.0 87.4± 1.0 77.1± 1.1

k-LSVM 64.2± 0.8 86.9± 1.1 76.0± 1.2

G±LSVM 62.4± 0.9 85.3± 1.1 73.0.± 0.8
G+LSVM 62.1± 0.8 85.2± 1.0 72.9± 0.9

LSVM 58.2± 1.0 84.2± 1.1 71.6± 1.0

Table 5.5: mAP(%) of scale 30% on Action, POET and UPMC-G20 datasets. Here
we set k = 10.

5.4.3 Study of hyper-parameters

We investigate the impact of the three hyper-parameters in our model:
trade-off parameters γ+, γ− and k. The impact of the parameter γ+ of
G+LSVM is shown in Fig. 5.6 for small scale 50%, with k set to be 1. The
performances in Fig. 5.6 are shown on average for all categories. For all
three datasets, mAP reaches the peak when γ+ is in the interval [0.1, 0.3].
Note that when γ+ gets too high, mAP gets even lower than not adding
gaze. Fix γ− to be the best value obtained by cross-validation, for γ− , the
effective value is found to be a relatively small value between [0.05, 0.1].
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This result is reasonable because our objective is classification with gaze
information as auxiliary information, so the gaze loss should tend to have
a smaller weight than the classification loss. The performance of k model
varies in the similar trend.

We show in Fig. 5.6 that our model outperforms k model significantly
for all k value at scale 30%. We set γ+ of G±LSVM and G+LSVM to 0.2,
γ− of G±LSVM to 0.05. From Fig. 5.6, we also find that by increasing k,
gaze latent SVM always outperforms latent SVM. This result signifies that
gaze helps better select the regions even when the number of candidate
regions largely increases. Heuristically, for selecting k, the small scales
prefer a larger k. That’s because, for small scale, more regions are semantic
for positive images and can smooth the selection of ground-truth regions
of negative examples.

5.4.4 Localization results

The relevant regions proposed by our models are interpretable. We show
in Fig. 5.7 and 5.8 the predicted regions for the model k-G±LSVM at scale
30%, where k = 10. We present the first three high scored regions for visual
clarity.

Results for training images are shown in the first row: we show that
k-G±LSVM selects areas with more (fewer) gaze for positive (negative)
images. Results for test images are shown in the second row, of which gaze
features are unavailable. The k-G±LSVM extracts regions which are highly
semantic for positive images and extract background for negative images.
For example, we find that running and french toast model has a good result
on the positive images. Also for the negative image, the running focuses on
the regions, which have similar visual semantic to the road and trees, and
the french toast model focuses on the regions, which have similar visual
semantic to the cups and strawberries. As these regions have a relatively low
density of gaze, our model does not penalize them too much. Interestingly,
these regions often appear as the background in the positive images.
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(a) Action dataset (b) Action dataset

(c) POET dataset (d) POET dataset

(e) UPMC-G20 dataset (f) UPMC-G20 dataset

Figure 5.6: The sensitivity of hyper-parameters γ+ and k. left: At scale 50%, the
performance with respect to γ+ (γ−) is found to reach the peak value
in the interval [0.1, 0.3] ([0.05, 0.1]). right: At scale 30%, generally, the
larger k is, the better the performance is.
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(a) positive training image (b) negative training image

(c) positive test image (d) negative test image

Figure 5.7: Localization results achieved by running model. (a)(b): training results,
(c)(d): test results.
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(a) positive training image (b) negative training image

(c) positive test image (d) negative test image

Figure 5.8: Localization results achieved by french toast model. (a)(b): training
results, (c)(d): test results.
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5.5 conclusion

In this chapter, the model G±LSVM extends and outperforms our previous
model in several aspects. G±LSVM exploits gaze for guiding the selection
of regions, which are relevant with the image semantic. We find that gener-
alizing the model to the selection of k maximum scored regions can also
benefit from the gaze information. G±LSVM also only leverages human
gaze for training, while the test is gaze free. Experimental results show that
G±LSVM achieves competitive results with respect to the state-of-the-arts
methods on Pascal VOC Action and Object. We also publish a food-related
dataset annotated with gaze, UPMC-G20, for further validating the general-
ization ability of our models. The experimental results show that G±LSVM
model also achieve reasonable performance on UPMC-G20. The qualitative
analysis shows that the regions selected by our model are highly semantic
across the three benchmark datasets.
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6
C O N C L U S I O N & P E R S P E C T I V E S

6.1 conclusion

In this dissertation, we discuss how to use the human gaze data to im-
prove the performance of the weak supervised learning model in image
classification. The background of this topic is in the era of rapidly growing
information technology. As a consequence, the data to analyze is also
growing dramatically. Since the amount of data that can be annotated
by human can not keep up with the amount of data itself. the current
well-developed supervised learning approach may confront bottlenecks in
the future. In this context, the use of weak markings for high-performance
learning methods is worthy of study.

Specifically, we try to solve the problem from two aspects: One is to
propose a more time-saving annotation, human eye-tracking gaze, as an
alternative annotation with respect to the traditional time-consuming anno-
tation, e.g. bounding box. The other is to integrate gaze annotation into a
weakly supervised learning scheme for image classification. This scheme
benefits from the gaze annotation for inferring the regions containing the
target object. An useful property of our model is that it only exploits
gaze for training, while the test phase is gaze free. This property further
reduces the demand of annotations. The two isolated aspects are connected
together in our models, which further achieve competitive experimental
results.

In addition to the innovation in terms of methodology, we also publicly
release two datasets for promoting the research within the computer vision
community. We first create a large scale food image dataset, UPMC Food-
101. This large scale dataset is composed of about 100,000 recipes for a
total of 101 food categories. Each item in this dataset is composed of an
image and corresponding recipe text. As this dataset is multimodal, we try
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to categorize the food with visual information, textual information, and
visual+textual information. The fusion of multimodal data outperforms
single information channel by a large margin. We then annotate part of
the UPMC Food-101 with an eye-tracker to get a food-related gaze-based
image dataset, UPMC-G20. We make various tests on this dataset to verify
the generalization ability of our gaze-based weakly supervised models.

6.2 perspectives

We develop the perspectives of this thesis from three aspects:

1. Gaze analysis. In Chapter 4 and 5, we incorporate gaze into the
machine learning models as a weak supervision signal. In fact, there
are many ways to exploit the gaze information in other forms of signal.
A possible manner is to predict fixation from the image (Le Meur, Le
Callet, and Barba 2007; Pan et al. 2016). The predicted fixations can be
re-used for training the model, or for inferring the informative parts in
the test images. Furthermore, attention-based deep learning models
achieve success in various fields, including image captioning (Yang et
al. 2016), visual question answering (Ben-Younes et al. 2017), machine
translation (Vaswani et al. 2017). These researches show the powerful
ability of processing the information in a selective manner. Up to now,
most of the attention is inferred from the visual or textual data, only
few researches is reported on using direct gaze-based attention.

2. Weakly supervised learning. In Chapter 4 and 5, our gaze-based
WSL model achieves competitive result on the classification problem.
We can naturally extend our model to other problems of computer
vision, e.g. semantic segmentation, saliency, semantic boundaries, etc.
This can be done by modifying the model to structural output (Yu and
Joachims 2009; Durand, Thome, and Cord 2015). Also, we can achieve
these goals by extending our model to an end-to-end deep learning
model. By relating the various output to different loss function, a
single deep learning model can do multi-tasks (Mordan et al. 2017;
Durand et al. 2017; Durand, Thome, and Cord 2016) Besides, we can
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inspire from the gaze attention mechanism to improve the modules,
e.g. pooling layer (Sattar, Bulling, and Fritz 2016).

3. Multimodal data processing. In Chapter 3, we introduce a large
scale food dataset UPMC Food-101. We can couple our gaze-based
weakly classifiers with the deep-based textual processing strategies
to build a more powerful multimodal classifier. Furthermore, we can
study more methods for fusing the textual and visual data into the
application of information retrieval, e.g. deep-based recipe retrieve
system (Jingjing Chen 2016). Also, based on the relationship between
the recipe data and the picture, we can study generating the food
recipe from the food image (a.k.a image captioning (Vinyals et al.
2015)), or even generating the food image from the food recipe (Reed
et al. 2016). The significance of this study is to let the machine really
understand the relationship between different modal modes within
multimodal data.
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