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Abstract

The focus of this thesis is the modelling and analysis of biological systems using formal methods. The dynamics of biological systems exhibit continuous behaviours but also abrupt changes. Ordinary differential equations and hybrid dynamical systems are two mathematical formalisms that naturally model such dynamics.

A crucial aspect of modelling is the determination of valid parameter values that enable to simulate the behaviour and reproduce experimental data sets. If no valid parameter values are found it becomes necessary to revise the model. An option is to replace one or several lumped parameters (parameters which represent a set of processes) by functions of time. In this thesis we first study the model revision problem on hybrid dynamical systems. To this aim we propose a greedy scheme of optimal control methods based on occupation measures and convex relaxations.

Then, we study how to characterize dynamical properties of a model using set-based simulations and reachability analysis. For this purpose, we propose two methods: the first one, which relies on Bernstein expansion, is an extension for hybrid dynamical systems of the reachability tool Sapo [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF], while the other one uses Krivine-Stengle representations [START_REF] Rocca | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF] to perform the reachability analysis of polynomial ODEs. Finally, We also propose a methodology to generate hybrid dynamical systems modelling a class of experimental protocols.

The proposed methods are applied to different case studies. We first propose a model of haemoglobin production during the differentiation of an erythrocyte in the bone marrow [START_REF] Bouchnita | Multi-scale modelling of erythropoiesis and hemoglobin production[END_REF]. To develop this model, we first apply the Monte-Carlo based parameters synthesis, followed by the model revision to correctly fit to the experimental data [START_REF] Dang | Occupation measure methods for modelling and analysis of biological hybrid automata[END_REF]. We also propose a preliminary study of the effect of low dose Cadmium on glucose response at different steps of a rat growth. Finally, we apply the reachability analysis techniques for the validation on large parameters set of the existing iron homoeostasis model [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF], [START_REF] Rocca | Application of the reachability analysis for the iron homeostasis study[END_REF]. We note the haemoglobin production process, as well as the glucose response system can be formalised, with their experimental context, as hybrid dynamical systems. Thus, they serve as proof of concept for the methodology of biological experimental protocols modelling. v vi Résumé L'objectif de cette thèse est la modélisation et l'étude de systèmes biologiques par l'intermédiaire de méthodes formelles. Les systèmes biologiques démontrent des comportements continues mais sont aussi susceptibles de montrer des changements abruptes dans leur dynamiques. Les équations différentielles ordinaires, ainsi que les systèmes dynamiques hybrides, sont deux formalismes mathématiques utilisés pour modéliser clairement de tels comportements.

Un point critique de la modélisation de systèmes biologiques est la recherche des valeurs des paramètres du modèle afin de reproduire de manière précise un ensemble de données expérimentales. Si aucun jeux de paramètres valides n'est trouvé, il est nécessaire de réviser le modèle. Une possibilité est alors de remplacer un paramètre, ou un ensemble de paramètres, définissant un processus biologique par une fonction dépendante du temps.

Dans le cadre de cette thèse, nous exposons tout d'abord une méthode pour la révision de modèles hybrides. Pour cela, nous proposons une approche gloutonne appliquée à une méthode de contrôle optimal utilisant les mesures d'occupations et la relaxation convexe. Ensuite, nous étudions comment analyser les propriétés dynamiques d'un modèle à temps discret en utilisant la simulation ensembliste. Dans cet objectif, nous proposons deux méthodes basées sur deux outils mathématiques. La première méthode, qui se repose sur les polynômes de Bernstein, est une extension aux systèmes dynamiques hybrides, de l'outil de calcul ensembliste Sapo [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF]. La seconde méthode utilise les représentations de Krivine-Stengle [START_REF] Rocca | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF] pour permettre l'analyse d'atteignaiblité de systèmes dynamiques polynomiaux. Enfin, nous proposons aussi une méthodologie pour générer des systèmes dynamiques hybrides modélisant des protocoles biologiques expérimentaux.

Les méthodes précédemment proposées sont appliquées sur divers études biologiques. Nous étudions tout d'abord un modèle de la production d'hémoglobine durant la différentiation des érythrocytes dans la moelle [START_REF] Bouchnita | Multi-scale modelling of erythropoiesis and hemoglobin production[END_REF]. Pour permettre la construction de ce modèle, nous avons dans un premier temps généré un ensemble de jeux de paramètres valides à l'aide d'une méthode de type Monte-Carlo. Dans un second temps, nous avons appliqué la méthode de révision de modèle afin de reproduire plus précisément les données expérimentales [START_REF] Dang | Occupation measure methods for modelling and analysis of biological hybrid automata[END_REF]. Nous proposons aussi un modèle préliminaire des effets à faibles doses du Cadmium sur la réponse du métabolisme à différentes étapes de la vie d'un rat. Enfin, nous appliquons les vii techniques d'analyse ensembliste pour la validation d'hypothèses sur un modèle d'homéostasie du fer [START_REF] Rocca | Application of the reachability analysis for the iron homeostasis study[END_REF] dans le cas où des paramètres varient dans de larges intervalles. Dans cette thèse, nous montrons aussi que le protocole associé à l'étude de la production d'hémoglobine, ainsi que le protocole étudiant l'intégration du Cadmium durant la vie d'un rat, peuvent être formalisés comme des systèmes dynamiques hybrides, et servent ainsi de preuves de concepts pour notre méthode de modélisation de protocoles expérimentaux. viii

Introduction

Essentially, all models are wrong, but some are useful.

George E.P. Box

Context

Computational models in systems biology. Any science in interaction with the real world needs models. In Figure 1.1, we give a possible point of view on the modelling approach. The real world forms a whole: the environment in which we measure observations exhibiting a particular phenomenon. The phenomenon results from interactions of entities that are part of the environment. This environment may be set or constrained by an experimentation, or it can be free and uncontrolled. The observations are the measures performed that allow to observe, at least partially, the phenomenon. Then, a model is an abstraction of the observable world using a mathematical or computational formalism. Given inputs representing a possible state of a considered environment, a model provides outputs associated to some observations of a real phenomenon (see Figure 1.1).

The purposes of models are numerous. They can be used to replicate in-silico real-life experiments, reducing the time and cost of multiple real-life tests. Similarly, they can provide prediction, monitoring and diagnosis capabilities for a given phenomenon and for a known environment. This is primarily achieved by blackbox models (also called operational models) which are built directly from observations, using inference-based techniques, machine learning, or model identification. In the biological context, this is especially useful when the environment is repetitive, well-sampled and with numerous observations. For example, any statistical model performing disease diagnostics is of this kind: given a set of well determined biological markers a model provides the probability of a good or bad evolution of the disease. More advanced techniques, under the name of model identification, try to infer the complete structure of a model in an attempt to obtain a representation of the actual mechanism leading to the observed phenomenon. An example of such methods using hybrid systems as models is [START_REF] Paoletti | Identification of hybrid systems a tutorial[END_REF]. While black-box models are a very efficient way to represent a phenomenon for the previous applications, they are clearly limited on, at least, three points:

1. They are only useful when the inputs are taken inside a well defined environment.

2. It is hard to integrate new results, any real-life observations, which are not reproduced by the model, without reconsidering the whole model.

3.

No actual knowledge or understanding of the underlying mechanism can be easily obtained from such models.

Therefore, in addition to black-box model there are models whose purpose is to represent and abstract the knowledge about the mechanism leading to the observed phenomenon. In the following, we will call these models mechanistic models. However, in the literature they are also named white-box models or denotational models. In black-box models the structure of the mathematical functions describing a phenomenon is directly inferred from observations. This is in contrast with mechanistic models where the structure of the laws defining the inputs-outputs relationship results from hypotheses and/or previous knowledge on the mechanism associated to the studied phenomenon. Mechanistic models are employed to understand and represent the existing knowledge about a particular mechanism. Therefore, another purpose is to test hypotheses on unknown components of the mechanism Otherwise, up to our current observations, our understanding of the mechanism is more likely to be true: there is yet no guarantee. Consequently, a model can only disprove a hypothesis. Finally, mechanistic models can be used, to a certain extent, to design more faithful black-box models or to provide prediction and monitoring abilities in some applications [START_REF] Caraguel | Towards the design of a patient-specific virtual tumour[END_REF][START_REF] Garry M Steil | Repeatability of insulin sensitivity and glucose effectiveness from the minimal model: implications for study design[END_REF]. Unlike black-box models, which are useful only when they Monday 6 th August, 2018 (08:34) 1.1. CONTEXT 3 are coherent with the observations, the mechanistic models have a greater panel of applications. However, they require in general more time to be designed and result from numerous loops between experimentation and validation with respect to the observations. Moreover, they are often more computationally expensive than black-box models.

We remark that mechanistic models can be studied with qualitative and/or quantitative methods. Qualitative methods seek to represent and describe the general behaviours of an observed phenomenon, for example the number of attractors or cycles, the stability or bifurcation conditions, etc. They often rely on strongly theoretical approaches and do not necessarily need numerical methods and computations for other purposes than displaying results. On the other hand, quantitative methods do not necessarily provide strong theoretical results on the behaviours. However, they seek to reproduce the observations as faithfully as possible, by studying the behaviours and the numerical values associated to both the observations and the variables describing the environment.

In this thesis, we will mainly address the problem of modelling biological phenomena and observations using mechanistic models with quantitative methods.

Mathematical formalisms. There exists a large choice of mathematical formalisms such as process algebra, Boolean networks, Petri nets, Thomas networks, stochastic models, difference equations, ordinary differential equation (ODEs), partial differential equations (PDEs), or hybrid dynamical systems. The choice of the formalism strongly depends on the types of available data and the questions asked.

Along this thesis, we use three from these mathematical formalisms. The first one is the ODE formalism. ODEs describe the variations of the entities under study over an infinitely small time instant dt. Hence, instead of directly modelling the evolution of each entity as function of time, we represent how the entities interact with each other. The actual evolution is then obtained by integrating the ODEs over the time.

In the ODE formalism, both time and state variables are continuous. Moreover, the ODE is a deterministic formalism and describes in general average and macroscopic quantities. Therefore stochastic effects are neglected: the ODE's solution must be similar to the average observations of numerous experimental runs with the same environment settings. In system biology, the relevance of the ODEs can be discussed, in particular for the study of molecular reactions with small or inhomogeneous entities concentrations. In this thesis we do not consider stochastic models.

The second formalism is discrete time systems and in particular difference equations. Difference equations are similar to the ODE formalism in the sense that we assume determinism and continuous state variables. However, they operate on discrete time instead of continuous time. Consequently, discrete time system computation is more direct than ODE numerical integration. It is also interesting to note that solutions of ODEs can be approximated by discrete time systems.
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The third formalism is hybrid dynamical systems. Using this formalism, one can combine discrete and continuous dynamics. It is important to note that the term "hybrid system" in system biology refers to a wide range of formalisms as shown in [START_REF] Stéphanou | Hybrid modelling in biology: a classification review[END_REF]. Thus, we emphasize that in this thesis we use this term to denote hybrid dynamical systems. Additionally, as we do not consider stochastic hybrid systems, we refer the interested reader to a recent review [START_REF] Li | Review of stochastic hybrid systems with applications in biological systems modeling and analysis[END_REF] for information about them.

Problems arising in biological systems modelling. We recall that we are considering the problem of modelling of biological systems defined by: a phenomenon under study (for example, metabolic response to glucose intake), an environment ( for example, a study on rats, or a particular diet), and a set of observations (for example the plasma glucose and insulin measurements).

The first step of the modelling process is the definition of the involved entities and the model structure describing the interactions between the entities. The entities (represented by state variables) to consider can be determined from the observations, the perturbations performed during the experiment, or they can be defined an abstract representation of a more complex mechanism. Similarly, the model structure (network topology) can be established using a priori knowledge, or from hypotheses and insights on the experimentations. Then, kinetics laws, such as the mass action laws, provide the equations governing the dynamics. We remark that at these equations are defined using parameters whose values may be uncertain. We explain the need of parameter estimation a bit further.

The first challenge is to determine the appropriate approximation level of the model. One attempt would be to integrate all previous modelling efforts and knowledge into the new model. This results in an overly complex model spanning over multiple scales which is hard to understand, validate and/or simulate. Another attempt is to design a model as simple as possible by representing solely the observable entities and by approximating or inferring other mechanisms. This leads to models which either cannot reproduce the existing observations, or cannot reproduce future observations of the same phenomenon but in slightly different environment settings. To know about methods for formally handle this first step, we refer to some work on model integrations [START_REF] Kolczyk | Challenges in horizontal model integration[END_REF], or model reduction techniques [START_REF] Kenneth | The original michaelis constant: translation of the 1913 michaelis-menten paper[END_REF][START_REF] Radulescu | Robust simplifications of multiscale biochemical networks[END_REF][START_REF] Aleksej K Lopatin | Oscillations and Dynamical Systems: Normalization Procedures and Averaging[END_REF]. These results provide mathematical frameworks to approximate and integrate previous knowledge, or to reduce multi-scale models arising from knowledge integration, while ensuring the correctness of the resulting approximations.

The values of the parameters are especially important in quantitative modelling as we seek not only to reproduce the general behaviours of the observations, but also to replicate the same numerical results.

In classical physics these parameters are often well-defined physical constants which can be directly measured through experiments. In engineering, the amount and the accuracy of observations are often very high, leading to accurate parameter identification. Moreover, a priori ranges for the parameter values are easily estimated from physical laws, or parameters are often related to real world components Monday 6 th August, 2018 (08:34) 1.1. CONTEXT and have fixed values by construction.

In biology, parameters may represent physical or chemical constants, but they are often an abstraction of an underlying mechanism which is approximated by a constant for a given environment setting. Consequently, parameters may not be directly observable as in classical physics or engineering, and their actual ranges may be completely unknown at first. Moreover, actual experimental observations are scarce, and/or with high variance leading to poor parameter estimation quality. The parameter estimation and validation are critical issues in biological systems modelling. In the next section, Section 1.2, we will discuss briefly some work on parameter estimation for the considered formalisms. Once a set of parameter values (also called parametrization of the model, or parameter set) enable us to reproduce experimental observations, we need to determine the level of confidence in the quality of this parameter set, and to validate the model.

Parameter uncertainty analysis (sensitivity analysis, identifiability, and robustness) is a way to assess the quality of a parameter estimation with respect to experimental observations. In this work, we do not develop new methods to address these issues and we refer the interested reader to a recent review on the subject [START_REF] Vanlier | Parameter uncertainty in biochemical models described by ordinary differential equations[END_REF] for ODEs.

In addition to these methods, it is also possible to apply set-based methods from the field of formal verification to ensure the validity of the model with respect to the observations. Formal methods are the set of computational methods which provide guarantees and proofs, which can be achieved by convergence properties, conservative or certifiable results. Formal methods originally come from the field of automated theorem proving and algorithmic verification. In these topics, a model is considered as an accurate representation of the reality, such as a mathematical theorem, or a system/program execution and a major problem is to provide a binary answer to the question whether the model satisfies some property. In biology, a model is a hypothesis or an abstraction of the reality, and it is important to find a counter-example disproving the model, but proving that there is no counter-example is not critical, since experiments themselves may be inaccurate or incomplete. We remark that when dealing with the particular field of synthetic biology, therapy on patients and experimental protocol design, the issue of proving the correctness of the model may become critical in the future. Indeed, an error in the model would lead to patient death or failure of an expensive experimentation. However, formal methods are efficient in proving qualitative properties of the models, which eases considerably the theoretical work. Moreover, set-based methods and methods from formal verification give an exhaustive abstraction of all the possible solutions for a given set of inputs. They are also efficient to find counter-examples, or to deal with dense sets of possible inputs. When dealing with parameter uncertainties over multiple orders of magnitude, methods based on numerical simulations and large number of samplings may be cost inefficient due to the exponential volume of the parameter space to explore. Using set-based analysis from formal methods one can provide conservative results in the form of solution sets which can be more efficient than simulations. We refer the reader to three in-Monday 6 th August, 2018 (08: [START_REF] Ramdani | Reachability of uncertain nonlinear systems using a nonlinear hybridization[END_REF] teresting articles on the use of formal methods for systems biology [START_REF] Bonzanni | What can formal methods bring to systems biology? In International Symposium on Formal Methods[END_REF][START_REF] Lincoln | Symbolic systems biology: Hybrid modeling and analysis of biological networks[END_REF][START_REF] Brim | Model checking of biological systems[END_REF]. In addition, for more details on the general process of biological systems mathematical modelling we recommend the following work [START_REF] Wayne | How computational models can help unlock biological systems[END_REF][START_REF] Dubitzky | Understanding the dynamics of biological systems: lessons learned from integrative systems biology[END_REF][START_REF] Kaneko | Life: an introduction to complex systems biology[END_REF].

Finally, we note that if there is no parameter valuation that allows reproducing the experimental observations, either the parameter estimation method is lacking, or the proposed model of the mechanism is incorrect. In the latter case, we need to update the model: we call this step model revision. This step can be performed in two manners. First, a model can be revised by adding additional knowledge, which were not previously considered, into the model. Second, in absence of insight and additional information, model revision can be done by assuming that a parameter modelling an underlying mechanism needs to be studied more in depth: in this case, one can resort to functional optimization techniques similar to model identification, to infer a better approximation for the underlying mechanism.

In this thesis, we address three of the above issues (designing biological model, model validation, and model revision) using techniques from the field of formal methods.

In the next section we provide an overview on dynamical hybrid system modelling for systems biology, a short review on parameter synthesis and parameter estimation, and finally on formal methods for validation of biological systems. An additional discussion on related work is provided in each chapter.

State of the Art

Hybrid dynamical systems modelling. In this thesis we use hybrid dynamical systems as a mathematical formalism to represent biological systems. Models of biological systems can be directly designed using hybrid dynamics. Indeed, this formalism allows us to clearly define and combine the continuous and homogeneous behaviours with discrete or discontinuous ones. One can model the different phases of a biological process, or cyclic behaviours, as a hybrid system. For example, in [START_REF] Singhania | A hybrid model of mammalian cell cycle regulation[END_REF] the hybrid formalism was applied to the cell cycle modelling, while [START_REF] Thomas R Kiehl | Hybrid simulation of cellular behavior[END_REF] and [START_REF] Ye | Modelling excitable cells using cycle-linear hybrid automata[END_REF] are concerned with modelling cell behavioural changes under a stimulus. In [START_REF] Ye | Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and ph logic control[END_REF], this model is used to specify multi-step protocols 1 , while in [START_REF] Izhikevich | Hybrid spiking models[END_REF] hybrid systems describe the spiking models and multi-phases behaviour of neuron activity.

In addition to the modelling purposes, hybrid systems can be used to reduce the complexity of non-linear dynamical systems.

Such approach was first considered for engineering goals as in [START_REF] Pieter | Hybrid automata for modeling discrete transitions in complex dynamic systems[END_REF] on plane control systems. More recent work addresses the problem of hybridization, that is approximation of complex non-linear dynamics by a hybrid system which is easier to compute and/or analyze. The resulting hybrid system can have dynamics described by linear ODEs in which case we speak of piecewise linearisation 1 In a similar approach to the work described further in this thesis Monday 6 th August, 2018 (08:34) 1.2. STATE OF THE ART techniques 2 . These linearisations can either be decided initially from the system equations [START_REF] Althoff | Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization[END_REF][START_REF] Asarin | Hybridization methods for the analysis of nonlinear systems[END_REF][START_REF] Petrzela | On the piecewise-linear approximation of the polynomial chaotic dynamics[END_REF] or on the fly [START_REF] Dang | Accurate hybridization of nonlinear systems[END_REF][START_REF] Testylier | Nltoolbox: A library for reachability computation of nonlinear dynamical systems[END_REF]. It is also possible to approximate a non-linear continuous model by a hybrid system with simpler non-linear dynamics [START_REF] Ramdani | Reachability of uncertain nonlinear systems using a nonlinear hybridization[END_REF].

For biological models, another way to reduce the model complexity is to propose hybridization methods approximating multi time scales dynamics and explicitly separate fast and slow modes inherent to biological processes [START_REF] Noël | A hybrid mammalian cell cycle model[END_REF][START_REF] Noël | Hybrid models of the cell cycle molecular machinery[END_REF][START_REF] Sommer-Simpson | Hybrid reductions of computational models of ion channels coupled to cellular biochemistry[END_REF]. We note that the latter work recovers, using formal methods, the previous hybrid modelling proposed in [START_REF] Singhania | A hybrid model of mammalian cell cycle regulation[END_REF]. Activation processes in gene regulatory networks can also be formally represented by hybrid systems (piecewise linear) as demonstrated in [START_REF] Porreca | Structural identification of piecewise-linear models of genetic regulatory networks[END_REF].

Finally, we invite the reader to consult [START_REF] Lincoln | Symbolic systems biology: Hybrid modeling and analysis of biological networks[END_REF][START_REF] Aihara | Theory of hybrid dynamical systems and its applications to biological and medical systems[END_REF] which review the aims and methods for hybrid systems modelling as an application to systems biology [START_REF] Lincoln | Symbolic systems biology: Hybrid modeling and analysis of biological networks[END_REF][START_REF] Aihara | Theory of hybrid dynamical systems and its applications to biological and medical systems[END_REF]. More details on the hybrid system formalism itself can be found in Chapter 2-Section 2.2, or in introductory books [START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Arjan | An introduction to hybrid dynamical systems[END_REF].

Parameter estimation techniques. In this thesis we do not directly address the problem of parameter estimation (also called parameter synthesis), and only provide simple exploratory schemes that we use in our case studies. However, we still provide here a short view of different tools and methods which handle this issue.

First, we remark that there are a number of methods and tools based on numerous simulation and optimization methods as explained in the previously cited review on ODE parameter uncertainty analysis [START_REF] Vanlier | Parameter uncertainty in biochemical models described by ordinary differential equations[END_REF]. The search of valid parameters is equivalent to minimizing a cost function modelling either the distance to some experimental time series [START_REF] Csete | The mathematician's control toolbox for management of type 1 diabetes[END_REF][START_REF] Balsa-Canto | Amigo2, a toolbox for dynamic modeling, optimization and control in systems biology[END_REF] or some temporal logic formulas describing expected realistic behaviours [START_REF] Calzone | Biocham: an environment for modeling biological systems and formalizing experimental knowledge[END_REF] or [START_REF] Mobilia | A model of the cellular iron homeostasis network using semi-formal methods for parameter space exploration[END_REF][START_REF] Stoma | Stl-based analysis of trail-induced apoptosis challenges the notion of type i/type ii cell line classification[END_REF] (based on Breach toolbox [START_REF] Donzé | Breach, a toolbox for verification and parameter synthesis of hybrid systems[END_REF][START_REF] Donzé | Trajectoires pour la vérification et la commande de systémes continus et hybrides[END_REF]). While some of this work uses a purely optimization based approach [START_REF] Mobilia | A model of the cellular iron homeostasis network using semi-formal methods for parameter space exploration[END_REF][START_REF] Stoma | Stl-based analysis of trail-induced apoptosis challenges the notion of type i/type ii cell line classification[END_REF][START_REF] Csete | The mathematician's control toolbox for management of type 1 diabetes[END_REF][START_REF] Balsa-Canto | Amigo2, a toolbox for dynamic modeling, optimization and control in systems biology[END_REF][START_REF] Koutroumpas | Parameter identification for stochastic hybrid systems using randomized optimization: A case study on subtilin production by bacillus subtilis[END_REF] (see [START_REF] Banga | Optimization in computational systems biology[END_REF] for a review on optimization methods in systems biology), others consider statistical or probabilistic methods [START_REF] Hussain | Parameter discovery in stochastic biological models using simulated annealing and statistical model checking[END_REF][START_REF] Schilling | Adaptive moment closure for parameter inference of biochemical reaction networks[END_REF] and [START_REF] Toni | Approximate bayesian computation scheme for parameter inference and model selection in dynamical systems[END_REF] (based on [START_REF] Csilléry | Approximate bayesian computation (abc) in practice[END_REF] Bayesian modelling). Among this work, only [START_REF] Balsa-Canto | Amigo2, a toolbox for dynamic modeling, optimization and control in systems biology[END_REF][START_REF] Donzé | Breach, a toolbox for verification and parameter synthesis of hybrid systems[END_REF] are designed to handle hybrid systems or black-box simulations 3 , while all the other methods are specific to ODEs or stochastic models. The work in [START_REF] Ye | Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and ph logic control[END_REF] proposes, for a case study, an adaptation of the particle swarm technique for parameter estimation of non-linear hybrid systems. Only [START_REF] Balsa-Canto | Amigo2, a toolbox for dynamic modeling, optimization and control in systems biology[END_REF] handles multi-objective optimization problems, which is a useful when simultaneously considering observations from various experiments.

In addition to these simulation-based techniques, some other works consider the problem of searching for a set of valid parameters using techniques from formal verification. In [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF] the author proposes a method to search for clusters of valid parameter sets using the robustness-based algorithm from [START_REF] Donzé | Breach, a toolbox for verification and parameter synthesis of hybrid systems[END_REF]. Gene regulatory networks are an important topic in systems biology, which has led to intensive CHAPTER 1. INTRODUCTION modelling effort [START_REF] Bogomolov | Abstraction-based parameter synthesis for multiaffine systems[END_REF][START_REF] Bogomolov | Spacerover: Parameter synthesis for multiaffine systems beyond rovergene[END_REF][START_REF] Brim | Reachability in biochemical dynamical systems by quantitative discrete approximation[END_REF][START_REF] Dumas | Genetic network analyzer: A tool for the qualitative modeling and simulation of bacterial regulatory networks[END_REF][START_REF] Batt | Efficient parameter search for qualitative models of regulatory networks using symbolic model checking[END_REF]]. Gene regulatory networks can be modelled as multi-affine hybrid systems with box domains. Using previous theoretical work [START_REF] Fedorovich | Differential equations with discontinuous right-hand side[END_REF][START_REF] Samuel Drulhe | The switching threshold reconstruction problem for piecewise-affine models of genetic regulatory networks[END_REF][START_REF] Ironi | Dynamics of actively regulated gene networks[END_REF] on sigmoid approximations, it is possible to exploit the convexity of the flow at the corner of the domains. The previously cited works [START_REF] Bogomolov | Abstraction-based parameter synthesis for multiaffine systems[END_REF][START_REF] Bogomolov | Spacerover: Parameter synthesis for multiaffine systems beyond rovergene[END_REF][START_REF] Brim | Reachability in biochemical dynamical systems by quantitative discrete approximation[END_REF][START_REF] Dumas | Genetic network analyzer: A tool for the qualitative modeling and simulation of bacterial regulatory networks[END_REF][START_REF] Batt | Efficient parameter search for qualitative models of regulatory networks using symbolic model checking[END_REF]] use this to perform reachability analysis and parameter estimations. In [START_REF] Bogomolov | Abstraction-based parameter synthesis for multiaffine systems[END_REF][START_REF] Bogomolov | Spacerover: Parameter synthesis for multiaffine systems beyond rovergene[END_REF] the authors over-approximate multi-affine hybrid systems by linear hybrid automata [START_REF] Thomas A Henzinger | What's decidable about hybrid automata[END_REF] for which the reachable sets are easier to compute: parameter estimation is performed in parallel. Similarly, [START_REF] Brim | Reachability in biochemical dynamical systems by quantitative discrete approximation[END_REF] approximates the flow on the faces of the domains and use model-checking techniques to compute the reachable set and perform parameter synthesis. The work [START_REF] Dumas | Genetic network analyzer: A tool for the qualitative modeling and simulation of bacterial regulatory networks[END_REF][START_REF] Batt | Efficient parameter search for qualitative models of regulatory networks using symbolic model checking[END_REF] uses the approximation from [START_REF] Samuel Drulhe | The switching threshold reconstruction problem for piecewise-affine models of genetic regulatory networks[END_REF] to approximate the regulation networks by a discrete interaction graph on which constraint and satisfiability solvers can be efficiently applied to obtain a valid parameter set.

Finally, we mention some work which aims at handling directly dense parameter sets. On discrete time polynomial population models, the authors of [START_REF] Dang | Parameter synthesis using parallelotopic enclosure and applications to epidemic models[END_REF][START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF] propose a method to compute an under-approximation of a valid parameter space satisfying a set of temporal constraints (in Signal Temporal Logic). A similar approach by invalidation is investigated in [START_REF] Rumschinski | Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks[END_REF] and the toolbox ADMIT [START_REF] Streif | Admit: a toolbox for guaranteed model invalidation, estimation and qualitative-quantitative modeling[END_REF]. Finally, the semi-definite programming methods usually applied for control problems can be used for parameter estimation of biological systems: we refer to [START_REF] Hasenauer | Parameter identification, experimental design and model falsification for biological network models using semidefinite programming[END_REF] for discrete time biochemical systems, and [START_REF] Streif | Estimation of consistent parameter sets for continuous-time nonlinear systems using occupation measures and LMI relaxations[END_REF][START_REF] Shia | Convex computation of the reachable set for controlled polynomial hybrid systems[END_REF] for more general work on ODEs and non-linear hybrid dynamical systems, respectively.

Methods for model validation and verification. Once a parameter valuation is estimated, we want to gain confidence or validate in the determined model. This confidence can be obtained by computing with statistical methods the robustness of the current model with respect to some perturbations [START_REF] Vanlier | Parameter uncertainty in biochemical models described by ordinary differential equations[END_REF]. It is also possible to validate the model using either model-checking methods or set reachability analysis. Model checking can be roughly described as checking the satisfaction of a logic formula (describing a desired property) on a mathematical model. With the development of SAT solvers and SMT (SAT-modulo theory) the model-checking approach is an efficient way to validate a model. However, this method is in general more adapted to the validation of qualitative properties. The are numerous work applying the model-checking approach to systems biology. The work of [START_REF] Franc | Abstract interpretation and types for systems biology[END_REF] proposes to apply abstract interpretation to perform model checking on models defined in different formalisms: continuous Markov chains, Petri nets, boolean networks and in differential equations. Through the definition of type structures for multiple interactions arising in biochemical reactions, they can generate a satisfiability problem to validate qualitative properties. This approach is integrated into the toolbox Biocham [START_REF] Calzone | Biocham: an environment for modeling biological systems and formalizing experimental knowledge[END_REF]. We note this toolbox also includes a monitoring engine to perform robustness analysis over simulation traces of ODE systems. In addition to this tool, there are numerous other tools for verification of gene regulation networks using convex approximation of the flow as defined in [START_REF] Samuel Drulhe | The switching threshold reconstruction problem for piecewise-affine models of genetic regulatory networks[END_REF]. The genetic Monday 6 th August, 2018 (08:34) 1.3. CONTRIBUTIONS network analyser (GNA) [START_REF] Batt | Analysis and verification of qualitative models of genetic regulatory networks: A modelchecking approach[END_REF][START_REF] Batt | Symbolic reachability analysis of genetic regulatory networks using discrete abstractions[END_REF] provides a qualitative validation of a discrete abstraction for piecewise affine models of gene regulation networks. An extension for quantitative analysis of piecewise multi-affine models provided in RoVerGeNe [START_REF] Batt | Model checking genetic regulatory networks with parameter uncertainty[END_REF][START_REF] Batt | Model checking liveness properties of genetic regulatory networks[END_REF][START_REF] Batt | Temporal logic analysis of gene networks under parameter uncertainty[END_REF]. A similar approach is also considered in more recent work [START_REF] Brim | Reachability in biochemical dynamical systems by quantitative discrete approximation[END_REF]. Apart from gene regulation networks, we mention [START_REF] Piazza | Algorithmic algebraic model checking i: Challenges from systems biology[END_REF] which provides an algorithm for model checking of hybrid automata with explicit flow and algebraic constraints. We remark that outside of the biological context, the theorem prover toolbox Keymaera [START_REF] Platzer | Differential dynamic logic for verifying parametric hybrid systems[END_REF][START_REF] Platzer | Differential dynamic logic for hybrid systems[END_REF][START_REF] Platzer | Keymaera: A hybrid theorem prover for hybrid systems (system description)[END_REF] also handles verification of temporal logic formula on hybrid dynamical systems whose trajectories can be explicitly described. Finally, we recommend the reader to consult an overview of the model-checking approach on discrete models of gene regulation [START_REF] Bernot | Formal methods applied to gene network modelling[END_REF] and broader reviews of the application of model-checking and their tools for biochemicals systems [START_REF] Brim | Model checking of biological systems[END_REF][START_REF] Carrillo | An overview of existing modeling tools making use of model checking in the analysis of biochemical networks[END_REF].

In addition to model-checking based approaches there are a number of tools which can compute reachable sets of differential equation models by set-based simulation methods. However, there are only few which are dedicated to system biology [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF][START_REF] Dang | Computing reachable states for nonlinear biological models[END_REF]. We note the toolbox Marco [START_REF] Berman | Marco: a reachability algorithm for multi-affine systems with applications to biological systems[END_REF] which uses the previously cited works on flow convexity for piece-wise multi-affine systems [START_REF] Fedorovich | Differential equations with discontinuous right-hand side[END_REF][START_REF] Samuel Drulhe | The switching threshold reconstruction problem for piecewise-affine models of genetic regulatory networks[END_REF] to provide reachability analysis of biological systems. Indeed, most of these results are either applicable only to linear ODE system, or do not handle efficiently models with uncertain parameters. The works which handle both non-linear dynamical systems and uncertain parameters are [START_REF] Althoff | Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization[END_REF][START_REF] Ramdani | Reachability of uncertain nonlinear systems using a nonlinear hybridization[END_REF][START_REF] Testylier | Analysis of parametric biological models with non-linear dynamics[END_REF][START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF]. The first two tools [START_REF] Althoff | Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization[END_REF][START_REF] Ramdani | Reachability of uncertain nonlinear systems using a nonlinear hybridization[END_REF] rely on linearisation and non-linear hybridization, respectively. The last two tools [START_REF] Testylier | Analysis of parametric biological models with non-linear dynamics[END_REF][START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] use parametric Bernstein expansion of polynomials to compute over-approximations of reachable sets. Note that the last two tools are the starting steps that lead to the work we propose in Chapter 4. We also mention in the following some results which seem to be promising in their applications for systems biology, even if they do not consider uncertain parameters, but only uncertainty on the initial conditions. The toolbox [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF] provides an efficient method to validate hybrid automata with linear dynamics. This method scales with the state-space dimension and accepts uncertain inputs. However, in its current state it does not accept non-linear dynamics. The toolbox [START_REF] Althoff | An introduction to cora 2015[END_REF] accepts non-linear hybrid systems, but do not efficiently handles uncertain parameters. Additionally, we mention some results for reachability of non-linear systems without uncertain parameters [START_REF] Chen | Flow*: An analyzer for non-linear hybrid systems[END_REF][START_REF] Testylier | Nltoolbox: A library for reachability computation of nonlinear dynamical systems[END_REF][START_REF] Althoff | Reachability analysis of nonlinear differential-algebraic systems[END_REF][START_REF] Bouissou | Set-based simulation for design and verification of simulink models[END_REF][START_REF] Maidens | Reachability analysis of nonlinear systems using matrix measures[END_REF]. Finally, we recommend a recent review [START_REF] Bartocci | Computational modeling, formal analysis, and tools for systems biology[END_REF] on modelling and validation of biological systems using formal methods.

Contributions

In this thesis, we present our contributions in addressing three issues in biological systems modelling: the design of a model, its validation, and the model revision problem. In addition to the contributions described in Chapters 3-6, we first give a short mathematical introduction to differential equations, optimal control and hybrid dynamical systems in the Chapter 2.

CHAPTER 1. INTRODUCTION

Model revision. In Chapter 3, we propose an original method to revise a hybrid dynamical system with respect to some observations in the form of intermediate time measures. More concretely, we search for a time varying law better approximating an underlying mechanism (previously described by a constant parameter). We want to achieve this goal without predefined functional form for the sought law. Indeed, we consider the case where we do not possess any additional insight or knowledge. Moreover, we want to avoid classical optimization methods relying on an extensive sampling of a parameter space and numerous simulations. For this purpose, we propose an algorithm based on the optimal control method for hybrid systems proposed in [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF]. Experimental results are later exposed in Section 6.1.2 in the chapter describing case studies. This work was accepted in the conference ADHS 2018 [START_REF] Dang | Occupation measure methods for modelling and analysis of biological hybrid automata[END_REF] (Analysis and Design of Hybrid Systems).

Set-based simulation. In Chapter 4, we extend the previous work of [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF]. This work allows to perform reachability analysis of discrete time polynomial system with uncertain parameters. To do so, it relies on the Bernstein expansion, a mathematical tool which can be used for multivariate polynomial optimization over box domain. We contribute in this problem by extending [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] to discrete time piecewise-rational functions, allowing handling a larger panel of biological applications. Moreover, we also propose a few improvements to speed up the actual reachability analysis in some particular cases. In addition, we propose another setbased simulation method using Krivine-Stengle representations, which are another mathematical tool for polynomial optimization. We show that it can be adapted for an efficient application to reachability analysis of discrete-time polynomial systems with uncertain parameters in box domains. Finally, we discuss the complexity of both methods for polynomial optimization, and devise a policy for a more efficient reachability algorithm. The Bernstein reachability method is applied on a case study in Section 6.2. The Bernstein reachability approach and its associated case study were published in the conference HSB 2016 [START_REF] Rocca | Application of the reachability analysis for the iron homeostasis study[END_REF] (Hybrid System Biology). The Krivine -Stengle approach has been published in conference ARITH 24 [START_REF] Rocca | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF] (IEEE Symposium on Computer Arithmetic) as an application to compute upper-bounds of the floating point round-off error. An extended version of this publication has been submitted to the journal IEEE Transaction on Computer [START_REF] Victor Magron | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF].

MOEPLA: modelling oriented experimental protocol language. In Chapter 5, we propose a preliminary work on a language to formally specify an experimental protocol while taking into account a model of a mechanism. This language aims to facilitate the interactions between the experimentalists and the modelling team. It also allows automatic generation of a formal framework using the hybrid automaton formalism. Taking advantage of the non-determinism inherent to the hybrid automaton definition, we can either validate a model while taking into account an existing protocol (with its uncertainties), or verify that a future protocol (or therapy) will always be correctly executed. This can be achieved by using the Monday 6 th August, 2018 (08:34) 1.3. CONTRIBUTIONS existing tools for hybrid automaton verification [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF][START_REF] Althoff | An introduction to cora 2015[END_REF][START_REF] Chen | Flow*: An analyzer for non-linear hybrid systems[END_REF], or at least semi-formal validation with simulations [START_REF] Donzé | Breach, a toolbox for verification and parameter synthesis of hybrid systems[END_REF]. As this work in still under development, it is not yet published.

Case studies. In Chapter 6, we describe three modelling studies which were done along the thesis in parallel to the methodological work. We first give a model of haemoglobin production during the differentiation stages of the an erythroblast into an erythrocyte (also called red blood cells). In the first part of this study, we use a simple exploratory scheme to perform parameter estimation with respect to multiple experimental data sets. The associated results constitute a part of the following reference [START_REF] Bouchnita | Multi-scale modelling of erythropoiesis and hemoglobin production[END_REF]. In the second part, we propose to use this model as a proof of concept of the model revision method. This model revision with a time varying parameter enables us to better reproduce a considered dataset. We also note that from the inferred solution we derive multiple hypothesis which lead to a meaningful biological interpretation of the time varying parameter as an activation function. This model revision study is accepted in the conference paper [START_REF] Dang | Occupation measure methods for modelling and analysis of biological hybrid automata[END_REF].

The second case study use the iron homoeostasis model designed in [START_REF] Mobilia | A model of the cellular iron homeostasis network using semi-formal methods for parameter space exploration[END_REF]. In this second work, we applied the Bernstein reachability analysis from Chapter 4 to confirm a hypothesis formulated in [START_REF] Mobilia | A model of the cellular iron homeostasis network using semi-formal methods for parameter space exploration[END_REF] using exhaustive methods for uncertain parameters and initial sets. These results are published in [START_REF] Rocca | Application of the reachability analysis for the iron homeostasis study[END_REF].

The last case study is a preliminary modelling of a recent study of generational effect of low dose and chronic Cadmium intake on the metabolism [START_REF] Jacquet | Conséquences d'une exposition chronique à des doses modérées de cadmium sur le métabolisme du glucose de rats à différents stades de la vie[END_REF]. In this case study, we propose a first simple model of the oral glucose tolerance test (OGTT) adapted from a previous glucose response model [START_REF] Nittala | Dimensional analysis of minmod leads to definition of the disposition index of glucose regulation and improved simulation algorithm[END_REF]. We also provide multiple parameter estimation associated to different data sets. This work is still on-going, and has yet to be published. In this first chapter we give necessary basic definitions and insights on the two dynamical system mathematical formalisms we use throughout the thesis: ordinary differential equations (ODEs) and hybrid dynamical systems. The first Section defines multivariate calculus notations, introduces ODEs notations, and describes their main properties. Then, we extend these definitions and properties to parametric ODEs with inputs. Finally, we will use these definitions to formalize the optimal control problem for ODEs. The second Section defines hybrid dynamical systems, that is dynamical system mixing discrete and continuous trajectories. We also provide the definition of an instance of this formalism, namely the hybrid automaton.

Ordinary differential equations

Multivariate calculus notations. We first recall useful notation on multivariate calculus. For x = (x 1 , . . . , x n ) ∈ R n and the multi-index α = (α 1 , . . . , α n ) ∈ N n , we denote by x α the product n i=1 x α i i . We also define |α| = |α 1 |+. . .+|α n |, 0 = (0, . . . , 0) and 1 = (1, . . . , 1). The notation α is the nested sum α 1 . . . αn . Equivalently α is equal to the nested product α 1 . . . αn . Given another multi-index d = (d 1 , . . . , d n ) ∈ N n , the inequality α < d (resp. α ≤ d) means that the inequality holds for each sub-index:

α 1 < d 1 ; . . . ; α n < d n (resp. α 1 ≤ d 1 , . . . , α n ≤ d n ). Moreover, the binomial coefficient d α is the prod- 13 uct n i=1 d i α i .
Let f : R n → R n be a vector field on R n , then max(f (x)) denotes the vector of optima (max f 1 (x), . . . , max f n (x)). Let R[x] be the vector space of multivariate polynomials. Given f ∈ R[x], we associate a multi-degree d = (d 1 , . . . , d n ) to f , with each d i standing for the degree of f with respect to the variable x i . Then, we can write f (x) = γ≤d a γ x γ , with a γ (also denoted by (f ) γ ) being the coefficients of f in the monomial basis and each γ ∈ N n is a multi-index. The degree d of f is given by d := max {γ:aγ =0} |γ|.

Example 2.1 (Multivariate polynomial degrees). As an example

, if f (x 1 , x 2 ) = x 4 1 x 2 + x 1 x 3 2 then d = (4, 3) and d = 5. For the polynomial f (x, k 1 , k 2 , k 3 ) = (2x 2 -x)k 1 + x 2 k 2 + (x 2 -x)k 3 used later in Section 4.2, one has d = (2, 1, 1, 1) and d = 3.
Ordinary differential equations. Apart from some particular cases, the dynamical systems studied we consider evolve in continuous time. Let t be the variable representing the time. Without loss of generality we can denote T = [0, T ] ⊆ R + the time interval, or time domain of the dynamical system under study, such that t ∈ T .

Let x ∈ X ⊆ R n be a vector where n is the number of components and the i-th element x i denotes the i-th variable. The set X is the set which constraints the possible values of the variables x. Then, n-dimensional ODEs are defined by:

ẋ = f (t, x) , (2.1) 
where f : T × X → R n . We call x the state variables, and X the state space of the system. We recall in the following some main results on ODEs. However, we omit the proofs which can be found in a more in-depth textbook on the subject [START_REF] Morris | Differential equations, dynamical systems and linear algebra[END_REF].

We first introduce the notion of continuous trajectory: A trajectory ξ x 0 (t) : T × X → X is a function which describes, for a given initial point x 0 , the evolution of the state variables as function of time. The Cauchy-Lipschitz theorem ensures the existence of a unique trajectory solution ξ x 0 (t) of the ODEs (2.1) when x(0) = x 0 . We note that Theorem 2.3 is a sufficient condition for the existence and uniqueness of a (maximal) solution. Let us recall the notion of locally Lipschitz for a function f .

Definition 2.2 (Locally Lipschitz). A function

f : T ×X → R n is locally Lipschitz w.r.t.
x iff for all (t, x) ∈ T × X there exists a neighbourhood N (t, x), and L > 0 such that for all (t , x 1 ) and (t , x 2 ) ∈ N (t, x):

f (t , x 1 ) -f (t , x 2 ) ≤ L x 1 -x 2
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A sufficient condition for f to be locally Lipschitz is to be differentiable on X. We note that if L is a constant valid for all x ∈ X, then f is globally Lipschitz. A sufficient condition for f to be globally Lipschitz is that its derivative is uniformly bounded by L.

Theorem 2.3 (Cauchy-Lipschitz). If f : T × X → R n is a continuous function locally Lipschitz w.r.t. x.
Then, for all (t 0 , x 0 ) ∈ T × X there exists a unique maximal1 solution of (2.1) denoted by

ξ x 0 : [t 0 , T [→ R n with t 0 < T ≤ +∞ such that ξ x 0 (t 0 ) = x 0 and ∀t ∈ [t 0 , T [, dξ x 0 (t) dt = f (t, ξ x 0 (t))
We note that Theorem 2.3 is a sufficient condition for the existence and uniqueness of a (maximal) solution.

Example 2.4 (Simple ODE). As a simple example let us take the following ODE:

ẋ = -4x. (2.2) 
Then, there exists a unique solution ξ x 0 (t) = x 0 e -4t for t ∈ [0, +∞[ such that ξ x 0 (0) = x 0 . Let us now substitute the constant value 4 with the letter k. The example (2.2) becomes ẋ = -kx ,

where k is a constant parameter. Consequently, given k ∈ R there is still a unique solution to (2.3), ξ x 0 ,k (t) = x 0 e -kt for t ∈ [0, +∞[, such that ξ x 0 ,k (0) = x 0 .

Parameters and inputs functions. We can generalize Example 2.3 and define parametric ODEs as

ẋ = f (t, x, k), (2.4) 
where k is a vector of m parameters, K ∈ R m is the parameter space, and f is a function

f : T × X × K → R n .
Then, for every constant value of k ∈ K and a given initial condition x 0 , in a similar manner to Theorem 2.3, if f is a continuous function locally Lipschitz w.r.t. x and continuous Lipschitz w.r.t. k, then there exists a unique solution. One way to understand it is to represent the parameters as constant state variables y, adding m new equations ẏ = 0, and choosing an initial condition y 0 = k. We recall that in systems biology, parameters may have multiple interpretations. They can represent a physical constant, for example the Avogadro constant, or is used to approximate an underlying mechanism by a constant for a specific CHAPTER 2. PRELIMINARIES experimental environment, As an example, kinetic rates are often modelled by constants for a given temperature.

In addition to constant parameters, one can model external influences, approximations of internal mechanisms or uncertainties, through an input function u(•). Inputs can be put into two categories given their interpretations in the model.

-The uncontrolled inputs or perturbations: they can represent the environment, an influence external to the modelled system and not driven by human strategies, or an approximation of some underlying mechanism. Inputs can also be employed to obtain more accurate approximations of subsystems than a constant parameters.

Some examples of uncontrolled inputs are a fluctuating temperature during an experiment, a noise function representing some uncertainty on the exact behaviour of a system (in which case we may lose determinism).

-The controlled inputs or controls: they model an external action applied to reach a target state given by a human being. The control inputs reflect strategies to achieve some objective. In some cases, the strategy is not only to reach a target, but also to minimise some function, such as a cost function along the trajectories, we then speak of optimal control.

An example of controlled inputs are the concentration of a drug given to a patient during therapy. Another example would be the necessary number of ill people to treat at a given time to avoid a disease propagation.

Structurally, the input functions can be put into two families: the open loop inputs, and the feedback inputs. An open loop input u(•) is a function u : T → U , where U ⊆ R p is the input space, and p the dimension of u. The set of all the functions u such that u(t) ∈ U for t ∈ T is also called the accepted input set and we denote by it U T . Then, parametric ODEs (2.4) can be extended to parametric ODEs with inputs

ẋ = f (t, x, k, u(t)) , (2.5) 
and for a fixed function u, (2.5) can be re-written as parametric ODEs ẋ = F(t, x, k) with F(t, x, k) = f (t, x, k, u(t)) for all t ∈ T . Consequently, Theorem 2.3 can be extended to the case with an open loop input function when F respects the condition from Theorem 2.3.

Theorem 2.5. Let f be a function defined by f : T × X × K × U → R n . Let f be locally Lipschitz w.r.t. x, continuous w.r.t u, and let u : T → U be continuous. Then, given an initial condition (t 0 , x 0 ) ∈ T × X and a parametrization k ∈ K, there exists a unique maximal trajectory solution

ξ x 0 ,k,u (t) for t ∈ [t 0 , T [, with t 0 < T ≤ +∞, such that ξ x 0 ,k,u (t 0 ) = x 0 and ∀t ∈ [t 0 , T [ , dξ x 0 ,k,u (t) dt = f (t, ξ x 0 ,k,u (t), k, u(t))
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A feedback input is a function u : X → U , where the output depends of the state variables of the system. The set of all the function u such that u(x) ∈ U for x ∈ X is denoted by U X . An extension of (2.4) for feedback input is:

ẋ = f (t, x, k, u(x)) , (2.6) 
and in a similar way we did for open loop inputs, given an input function u : X → U , (2.6) can be re-written

ẋ = F(t, x, k) ,
where F(t, x, k) = f (t, x, k, u(x)) for all x ∈ X and t ∈ T . Then an extension of Theorem 2.3 to feedback input is as follows.

Theorem 2.6. Let f be a function defined by f : T × X × K × U → R n . Let f be locally Lipschitz w.r.t. x and u. We recall this means that for all (t, x, u) ∈ T × X × K, (x 1 , u 2 ) and (x 1 , u 2 ) in the neighbourhood of (x, u), there exists some L > 0 such that:

f (t, x 1 , u 1 ) -f (t, x 2 , u 2 ) ≤ L( x 1 -x 2 + u 1 -u 2 )
Moreover, let u : X → U be continuous locally Lipschitz w.r.t. x. Then, given an initial condition (t 0 , x 0 ) ∈ T × X and a parametrization k ∈ K, there exists a unique maximal trajectory solution

ξ x 0 ,k,u (t) for t ∈ [t 0 , T [, with t 0 < T ≤ +∞, such that ξ x 0 ,k,u (t 0 ) = x 0 and ∀t ∈ [t 0 , T [ dξ x 0 ,k,u (t) dt = f (t, ξ x 0 ,k,u (t), k, u(ξ x 0 ,k,u (t))).
Optimal control problem. As seen previously, input functions can also represent an external control applied on the systems such that it reaches a final target set. Let X T be that target set at the final time T . In the open loop case, given a continuous control input u ∈ U T , x 0 ∈ X, k ∈ K, and f : T × X × K × U → R n a function locally Lipschitz w.r.t. x, continuous in u, then ξ x 0 ,k,u (•) is an admissible trajectory, and u(•) is its associated admissible control, if ξ x 0 ,k,u (T ) ∈ X T . The set of possible admissible controls can be very large, and two different admissible trajectories can reach the target set. To restrain the set of possible trajectories one can add a cost to minimize along the trajectory or at the final time. For example, we may want to minimize the amplitude of the control. Let us define the cost associated to a given admissible trajectory ξ x 0 ,k,u and control u as

J(t, ξ x 0 ,k,u , u) = T 0 h(t, ξ x 0 ,k,u (t), u(t))dt + H(T, ξ x 0 ,k,u (T ), u(T )) , (2.7)
where h(t, ξ x 0 ,k,u (t), u(t)) is the running cost on the [0, T ] interval, and H(T , ξ x 0 ,k,u (T ), u(T )) the cost at final time T . From this cost function we can define the optimal control problem (OCP) in the open loop case. Monday 6 th August, 2018 (08:34) CHAPTER 2. PRELIMINARIES Definition 2.7 (Open loop OCP). Let f : T × X × K × U → R n be a function locally Lipschitz w.r.t. x and continuous in u. Given x 0 ∈ X, k ∈ K, and X T a compact subset of X the optimal control problem is:

J * := inf u T 0 h(t, ξ x 0 ,k,u (t), u(t))dt + H(T, ξ x 0 ,k,u (T ), u(T )) s.t. dξ x 0 ,k,u (t) dt = f (t, ξ x 0 ,k,u (t), k, u(t)) , ξ x 0 ,k,u (t) ∈ X, ∀t ∈ T , ξ x 0 ,k,u (0) = x 0 , ξ x 0 ,k,u (T ) ∈ X T , u : T → U a continuous function.
(2.8)

We denote respectively by u * the optimal control and by ξ x 0 ,k,u * its associated optimal trajectory.

Similar to the open loop case, we can define the optimal control problem for feedback input u : X → U . Definition 2.8 (Feedback OCP). Let f : T × X × K × U → R n be a function locally Lipschitz w.r.t. x and u. Given x 0 ∈ X, k ∈ K, and X T a compact subset of X the optimal control problem is:

J * := inf u T 0 h(t, ξ x 0 ,k,u (t), u(ξ x 0 ,k,u (t)))dt + H(T, ξ x 0 ,k,u (T ), u(ξ x 0 ,k,u (T ))) , s.t. dξ x 0 ,k,u (t) dt = f (t, ξ x 0 ,k,u (t), k, u(ξ x 0 ,k,u (t))) , ξ x 0 ,k,u (t) ∈ X, ∀t ∈ T , ξ x 0 ,k,u (0) = x 0 , ξ x 0 ,k,u (T ) ∈ X T , u : X → U a function continuous locally Lipschitz w.r.t. x.
Again, we denote respectively by u * the optimal control and by ξ x 0 ,k,u * its associated optimal trajectory.

The existence of an optimal control is not an easy problem. For a detailed introduction to optimal control (from a variation theory point of view) the reader is referred to the textbook [START_REF] Liberzon | Calculus of variations and optimal control theory: a concise introduction[END_REF] and in particular [99, Section 4.5] for a discussion and review on the existence problem.

Numerical integration. From now on for simplicity of notation, a trajectory is denoted by x(t) instead of ξ x 0 ,k,u (t), when the initial condition x 0 , the parameters k, and the input function u are not ambiguous. Monday 6 th August, 2018 (08:34) While for linear ODEs it is possible to determine their exact solution, in most non-linear cases the analytic solution is not available. In these cases, one can compute approximate solutions using numerical simulation methods. Let us now say a few words on numerical simulation. Most methods compute a discrete time approximation x q of the continuous solution x(t) of the ODEs ẋ = f (t, x). Among the simplest methods are the explicit numerical integration schemes, such as the forward Euler or Runge-Kutta schemes. They are in general designed from the Taylor expansion of the trajectory x(t) around a given time t. For example, the numerical integration scheme using the forward Euler scheme and a fixed time step ∆t and x q+1 denotes the approximate solution at time t q+1 = (q + 1)∆t:

x q+1 = x q + ∆t • f (t q , x q ) (2.9)
The accuracy of these methods is measured by the distance between the exact solution x(t + ∆t) at time t + ∆t and its discrete approximation x q+1 = x(t) + ∆t • f (t, x(t)). In the forward Euler case, x(t + ∆t) -x q+1 = O(∆t) and the method is said to be of order 1. Given a sufficiently small time step ∆t, the approximate solution converges toward the exact solution. However, finding a correct time step to ensure the stability of these simple algorithms results in inefficient simulations even with very small time step. For these reasons, it is necessary to use more recent algorithms which rely on an adaptive time step which produce an approximation valid for a given accuracy. In practice, when possible one can use the advanced algorithms detailed in [START_REF] Hindmarsh | Sundials: Suite of nonlinear and differential/algebraic equation solvers[END_REF] to perform the numerical simulation of ODEs.

Hybrid dynamical systems

Context. Hybrid dynamical systems describe the behaviours of both discrete and continuous components. They are useful to model systems with jumps, fast changes in dynamics, or multiple step processes where dynamics can vary depending on external conditions. While there exists a general notion of hybrid dynamical systems constituted of discrete states with associated continuous dynamics, and a transition function between these states, there is no unique formalism under the name of dynamical hybrid systems. Indeed, depending on the application context the models can be different. The computer science community tends to use complex discrete mechanisms and simpler continuous processes, which reflect the particularities of their applications such as programs or communication protocols. The control theory community deals with more complex continuous part to stay as close as possible to the classical laws modelling the physical world. A PhD thesis of MIT from 1995 [START_REF] Michael | Studies in hybrid systems: Modeling, analysis, and control[END_REF] give a classification of hybrid dynamical systems and a general definition of hybrid dynamical systems. Another coarser classification of dynamical hybrid systems can be found in a more recent study on the existence of solutions of hybrid dynamical systems [START_REF] Wpmh Heemels | On the existence and uniqueness of solution trajectories to hybrid dynamical systems[END_REF]. Finally, the 2009 review article from IEEE on hybrid dynamical systems contains an in-depth introduction to the recent Monday 6 th August, 2018 (08:34) 20 CHAPTER 2. PRELIMINARIES problems and solutions in the field of hybrid dynamical systems from a control theory point of view [START_REF] Goebel | Hybrid dynamical systems[END_REF].

Hybrid automaton definitions. In this thesis, we use the hybrid automaton formalism to model hybrid dynamical systems. This formalism has the advantage of being commonly used in many verification tools such as SpaceEx [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF][START_REF] Chen | A benchmark suite for hybrid systems reachability analysis[END_REF], and general enough to be applied in a large set of applications. We will also consider some modifications to the original definition [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF], and its generalisation given in the textbook [START_REF] Arjan | An introduction to hybrid dynamical systems[END_REF]Chapter 1]. Indeed, in the original definition, the continuous trajectories in each discrete states are explicitly given by a function x(t). However, with the exception of the linear ODEs and few non-linear ODEs, such analytic expressions are hard to obtain. Thus, the continuous trajectories are represented implicitly by the ODEs in each discrete state as in [START_REF] Arjan | An introduction to hybrid dynamical systems[END_REF]. In our particular case, we use hybrid automata where continuous dynamics are specified by parametric ODEs with input, as defined in previous Section 2.1. The definition of such parametric hybrid automata is as follows.

Definition 2.9 (Parametric hybrid automaton). Let x ∈ R n be a set of continuous state variables, k ∈ R m a set of parameters and u a set of input functions with value in R p . Given T a final execution time, possibly +∞. We define a parametric n-dimensional hybrid automaton by the tuple H := (I, E, L, X, U, K, S, R, F) where:

-I ⊂ N is a finite set of indices, used to index discrete states, also called locations or modes.

-E ⊆ I × I is the set of transitions e = (i, j) between two modes: i is the source mode, and j the destination mode.

-L : e → L e is a labelling function which associates to transition e = (i, j) ∈ E its synchronisation label L e . Labels are necessary for the synchronous parallel composition in definition 2.11.

-X ⊆ R n is the state space of the continuous variables x. Here, X = i∈I X i where X i , a compact subset of R n , is called the invariant set, or domain, associated to the mode i.

-U ⊆ R p is the set of input values of H. Similarly, U = i∈I U i where U i , a compact subset of R p , is the set of input values associated to the mode i.

-K ⊆ R m is the set of parameter values of H. Again, K = i∈I K i where K i ⊆ R m is the set of parameter values associated to the mode i.

-S : e → S e is a labelling function which associates to transition e = (i, j) ∈ E its guard S e ⊆ X i . The guard S (i,j) defines the transition condition from mode i to mode j: for x ∈ X i , if x ∈ S (i,j) then the system at x can take transition e = (i, j) from mode i to mode j.
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-R : e → R e is a labelling function which associates to a transition e = (i, j) ∈ E its reset function R e : S e → X j . It defines how the continuous variables change after the discrete transition from mode i to mode j.

-F : i → F i is a labelling function which associates to a mode i ∈ I its activity F i defining the continuous behaviour in this mode. In this work, we define F i as a continuous dynamical system described by parametric ODEs with inputs as in (2.5) or (2.6). Consequently we define F i as:

F i := ([0, T ], X, K i , U i , f i ) , (2.10) 
with One can see the discrete structure of a hybrid automaton as a labelled directed graph, in which case we can define a set of labelled edges E = {(i, S (i,j) , L (i,j) , R (i,j) , j) ∈ I × S(E) × L(E) × R(E) × I | e = (i, j) ∈ E} in a similar manner to the original paper [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF].

f i : [0, T ] × X × K i × U i → R n a
We now assume that the input functions u i are feedback inputs u i : X i → U i . The definitions for the open loop case are similar. We now define the trajectories accepted by a hybrid automaton. Definition 2.10 (Hybrid automaton trajectory). An accepted trajectory or execution of a hybrid automaton is defined by the pair of temporal functions λ and x for the time domain [0, T ], denoted by (λ(•), x(•)), with i = λ(t) ∈ I being the mode2 at time t, and x(t) ∈ X i being the values of the continuous variables at t. The pair (λ(t), x(t)) is also called the hybrid state at time t. From an initial condition (i 0 , x 0 ), a hybrid automaton trajectory (λ(•), x(•)) satisfies the following condition for every time point t ∈ [0, T ]:

-Continuous behaviour. If λ(t) = i ∈ I, then x(t) ∈ X i . Let u i : X i → U i
be a given input function and k i ∈ K i a parametrization. Let t 0 be the time point such that either t 0 = 0, or t 0 ≤ t is the latest time point at which the function λ jumps from some value j to i (corresponding to a transition e = (j, i) ∈ E). Then, the continuous part x(t) is determined by the trajectory ξ x(t 0 ),u i ,k i (t), which is the solution to

dξ x(t 0 ),k i ,u i (t) dt = f i (t, ξ x(t 0 ),k i ,u i (t), k i , u i (ξ x(t 0 ),k i ,u i (t))) , for all t ∈ [t 0 , T [ such that ξ x(t 0 ),u i ,k i (t) ∈ X i .
-Discrete behaviour. If λ(t) = i ∈ I and x(t) ∈ S (i,j) , then the system can take the discrete transition e = (j, i) ∈ E, in which case, the trajectory at the right limit time t + of t becomes (λ(t + ), x(t + )) = (j, R (i,j) (x(t))). If x(t) ∈ S (i,j) ∩ ∂X i and x(t + ) = ξ x(t 0 ),u i ,k i (t + ) / ∈ X i at the limit right CHAPTER 2. PRELIMINARIES instant t + of t, then the system must take the discrete transition e = (j, i), since it goes outside the invariant set of mode i and thus is no longer allowed to stay in this mode. We say that the guard enables the transition, while the invariant enforces it.

It is possible for a trajectory such that (λ(t) = i, x(t)) to leave invariant X i at time t + without having the possibility to take a transition i → j: x(t) ∈ ∂X i and there is no j ∈ I s.t. x(t) ∈ S (i,j) . In this condition the trajectory cannot continue neither by the continuous dynamics, nor by the discrete dynamics: we say that the system reaches a deadlock, and that the trajectory is called a blocking trajectory. Some results on condition for a hybrid automaton to be non-blocking can be found in [START_REF] Lygeros | On the existence of executions of hybrid automata[END_REF].

Let us define Reach(H) ⊂ I × X the set of all the possible points reachable in time at most T from any initial condition (i 0 , x 0 ) ∈ I × X i 0 .

Reach(H) = {(i, x) ∈ I × X i s.t. ∃(i 0 , x 0 ) ∈ I × X i 0 and t ≤ T , (λ(t), x(t)) = (i, x)
and (λ(•), x(•)) is a hybrid trajectory starting at (i 0 , x 0 ) over [0, T ]}.

(2.11) Special Behaviours. As discrete transitions happen instantaneously, a hybrid automaton execution can exhibit some non trivial behaviours. Among them we will mention two types: the Zeno behaviours, and the multiple event behaviours.

A Zeno behaviour happens when the trajectory performs an infinite number of discrete transitions in a finite time interval [t 1 , t 2 [. This behaviour can happen even on simple models such as the bouncing ball [START_REF] Lygeros | On the existence of executions of hybrid automata[END_REF] or, in the biological context, for gene regulation networks [START_REF] Machina | Singular dynamics in gene network models[END_REF]. Singular perturbation theory [START_REF] Machina | Singular dynamics in gene network models[END_REF] or Filippov theory [START_REF] Fedorovich | Differential equations with discontinuous right-hand side[END_REF][START_REF] Acary | Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems[END_REF][START_REF] Machina | Filippov solutions in the analysis of piecewise linear models describing gene regulatory networks[END_REF] are possible ways to solve this problem.

A multiple event behaviour happens when a trajectory can take multiple discrete transitions (possibly an infinity) without letting time elapse. Indeed, a system may take discrete transitions all the time without evolving according to the continuous dynamics.

As one can observe in Definition 2.10, for a given initial condition (i 0 , x 0 ) ∈ I × X i 0 a hybrid automaton H may accept more than one trajectory. Indeed, let the continuous dynamics be deterministic by enforcing the Cauchy-Lipschitz conditions from Theorem 2.6 for the activities defined in Definition 2.9. Then, nondeterminism can still be caused by the discrete dynamics, since at a given hybrid state the system can satisfy multiple transition guard conditions.

In the remainder of the thesis, our optimal control applications will only be considered for hybrid automata with deterministic discrete dynamics, and nondeterminism in continuous inputs will be resolved by picking a solution to the involved optimization problems.

It is easy to see the following sufficient conditions for a hybrid automaton to be deterministic.

-If (i, j) ∈ E and (i, j ) ∈ E with j = j , then S (i,j) ∩ S (i,j ) = ∅. Monday 6 th August, 2018 (08:34) -Given e = (i, j) ∈ E and x ∈ S e , then ∃!x ∈ X j s.t. R e (x) = x For more "semantic" necessary and sufficient condition, the reader is referred to [START_REF] Lygeros | On the existence of executions of hybrid automata[END_REF].

Synchronous parallel composition. We now define the composition of two hybrid automata. We consider here the simple case without common state variables, input functions, or parameters. Definition 2.11 (Synchronous parallel composition). We consider two hybrid automata H (a) = (I (a) , E (a) , L (a) , X (a) , U (a) , K (a) , S (a) , R (a) , F (a) ), and

H (b) = (I (b) , E (b) , L (b) , X (b) , U (b) , K (b) , S (b) , R (b) , F (b) ), with x (a) ∩ x (b) = ∅, where x (a) (resp. x (b)
) the continuous variables associated to H (a) (resp. H (b) ). Let t be the common time variable. Then, the synchronous parallel composition of two hybrid automata H (a) and H (b) is the hybrid automaton H (a b) := H (a) ⊗ H (b) , where ⊗ denotes the parallel composition operator, and defined by: -The continuous variables of H (a b) are x (a b) = x (a) • x (b) , where • is the concatenation operation.

-The dimension of

H (a b) is n (a b) = n (a) + n (b) , with n (a) (resp. n (b) ) the dimension of H (a) (resp. H (b) ).
-The modes of H (a b) are defined by:

I (a b) := I (a) × I (b) .
-The set of transitions E (a b) ⊂ E (a) × E (b) of H (a b) as well as their associated synchronisation labels L (a b) (E (a b) ) are defined by the following rules. Let (j (a) , j (b) ) ∈ I (a b) , then given a discrete state (i (a) , i (b) ) ∈ I (a b) , its possible transitions and their associated synchronisation labels are:

e (a b) = (i (a) , i (b) ), (j (a) , j (b) ) ∈ E (a b) if: e (a) = (i (a) , j (a) ) ∈ E (a) , and

e (b) = (i (b) , j (b) ) ∈ E (b) . Then, L (a b) (e (a b) ) = L (a) (e (a) ) ∪ L (b) (e (b) ). -e (a b) = (i (a) , i (b) ), (j (a) , i (b) ) ∈ E (a b) if: e (a) = (i (a) , j (a)
) ∈ E (a) , and

∀j (b) ∈ I (b) s.t. e (b) = (i (b) , j (b) ) ∈ E (b) , L (a) (e (a) ) ∩ L (b) (e (b) ) = ∅. Then, L (a b) (e (a b) ) = L (a) (e (a)
). -Similarly for e (a b) = (i (a) , i (b) ), (i (a) , j (b) ) ∈ E (a b) .

We observe that common synchronisation labels enforce simultaneous transitions, meaning synchronisation, between two hybrid automata 3 . CHAPTER 2. PRELIMINARIES -The state space of H (a b) is defined by X (a b) := X (a) ×X (b) . Moreover, we associate to each mode i

(a b) = (i (a) , i (b) ) ∈ I (a b) the invariant X (a b) i (a b) = X (a) i (a) × X (b) i (b)
-The set of possible input values of H (a b) for each mode is defined by:

U (a b) i (a b) := U (a) i (a) × U (b) i (b) , i (a b) = (i (a) , i (b) ).
-The set of possible parameter values of H (a b) for each mode is defined by:

K (a b) i (a b) := K (a) i (a) × K (b) i (b) , i (a b) = (i (a) , i (b) ). -The guard S (a b) e ⊆ X (a) i (a) × X (b) i (b) of H (a b) associated to the transition: -e = (i (a) , i (b) ), (j (a) , j (b) ) ∈ E (a b) is defined by : S (a b) e = S (a) (i (a) ,j (a) ) × S (b) (i (b) ,j (b) ) . -e = (i (a) , i (b) ), (j (a) , i (b) ) ∈ E (a b) is defined by : S (a b) e = S (a) (i (a) ,j (a) ) × X (b) i (b) .
-Similarly for e = (i (a) , i (b) ), (i (a) , j (b) ) ∈ E (a b) .

-The reset map R e = (i (a) , i (b) ), (j (a) , j (b) ) ∈ E (a b) is defined by : R

(a b) e = R (a) (i (a) ,j (a) ) , R (b) (i (b) ,j (b) ) . -e = (i (a) , i (b) ), (j (a) , i (b) ) ∈ E (a b) is defined by : R (a b) e = R (a) (i (a) ,j (a) ) , Id (b) i (b) , where Id (b) i (b) : X (b) i (b) → X (b) i (b) is the identity function. -Similarly for e = (i (a) , i (b) ), (i (a) , j (b) ) ∈ E (a b) .
-The continuous dynamical systems of

H (a b) in mode (i (a) , i (b) ) are F (a b) (i (a) ,i (b) )
defined by:

F (a b) (i (a) ,i (b) ) := [0, T ], X (a b) , U (a b) (i (a) ,i (b) ) , K (a b) (i (a) ,i (b) ) , (f (a) i (a) , f (b) i (b) ) .
Monday 6 th August, 2018 (08:34) Example 2.12 (Synchronous parallel composition). In this example we perform the synchronous composition (A⊗B)⊗C of the (hybrid) automata A, B, C given on the left side of the Figure 2.1. The automaton A can take its transition in parallel of the automata B and C as it shares no common label. The automata B and C share the label L 2 and thus must take their transition synchronously. The terms c 1 , c 2 , c 3 represent the conditions (guards in Definition 2.9) associated to the transitions A 0 →A 1 , B 0 →B 1 , C 0 →C 1 , respectively. We recall that we assume the composed hybrid automata do not share any common variables. Consequently, the condition c 1 , c 2 , c 3 are incomparable. As A and B share no common label we must consider all the possible combination of transitions. This leads to a 4 states automaton A⊗B. The transitions involving a change on B involve the label L 2 . Consequently, the size of (A⊗B)⊗C does not change as all the transitions on B are equivalent (synchronous) to a transition on C. The final automaton of (A⊗B)⊗C is given in the right side of Figure 2.1. Optimal control problem on hybrid automata. We now define the control problem for general hybrid automata. Let first define a target set X T such that:

A 0 A 1 B 0 B 1 C 0 C 1 c 1 ,L 1 c 2 ,L 2 c 3 ,L 2 (A 0 , B 0 , C 0 ) (A 1 , B 1 , C 1 ) (A 0 , B 1 , C 1 ) (A 1 , B 0 , C 0 ) c 1 ∧ c 2 ∧ c 3 , {L 1 , L 2 } c 2 ∧ c 3 ,L 2 c 1 ,L 1 c 1 , L 1 c 2 ∧ c 3 ,L 2
X T = i∈I X T,i , (2.12) 
where X T,i is a compact subset of X i and is the disjoint union operator. The disjoint union can simply be considered as a labelling operation on the set I of modes.

Let us first consider the open loop control case. Let (i 0 , x 0 ) ∈ I × X i 0 be an initial condition and k i ∈ K i in mode i ∈ I a set of parameter values. Then, for a given input function u i : [0, T ] → U i for each mode i ∈ I and (λ(t), x(t)) ∈ I × X λ(t) for t ∈ [0, T ] be a trajectory accepted by Definition 2.10, we define a control input function4 u(•) as u(t) = u λ(t) (t) for all t ∈ [0, T ]. If (λ(T ), x(T )) ∈ X T then u is an admissible control, and (λ(t), x(t)) , t ∈ [0, T ] is its associated admissible trajectory. The optimal control problem is then to find a control input u(•) and a valid trajectory (λ(•), x(•)) minimizing a given cost function J ((λ, x), u), similar to 2.7:

J ((λ, x), u) = T 0 h λ(t) (t, x(t), u(t)) + H λ(T ) (T, x(T ), u(T ))
The hybrid optimal control problem is then:

J * := inf (λ,x),u J ((λ, x), u) s.t.
(λ(t), x(t)) , ∀t ∈ [0, T ], is accepted by Definition 2.10 ,

(λ(t), x(t)) ∈ I × X λ(t) , ∀t ∈ [0, T ] ,
(λ(0), x(0)) = (i 0 , x 0 ) ∈ I × X i 0 , (λ(T ), x(T )) ∈ X T ,

u i : T → U i continuous functions , i ∈ I u(t) = u λ(t) (t), ∀t ∈ [0, T ].
(2.13)

For the feedback control case: we assume that we are given a set of input functions where u i : X i → U i for each mode i ∈ I and (λ(t), x(t)) ∈ I × X λ(t) is its associated trajectory over t ∈ [0, T ], then we define the control u as u(x(t)) = u λ(t) (x(t)) for all t ∈ [0, T ], and x(t) ∈ X λ(t) . Again, if (λ(T ), x(T )) ∈ X T then u is one admissible control, and (λ(t), x(t)) , t ∈ [0, T ] is its associated admissible trajectory.

Similarly, the cost function and the hybrid optimal control problem in the feedback case are respectively defined by:

J ((λ, x), u) = T 0 h λ(t) (t, x(t), u(x(t))) + H λ(T ) (T, x(T ), u(x(T ))),
and

J * := inf (λ,x),u J ((λ, x), u) s.t.
(λ(t), x(t)) , ∀t ∈ [0, T ], is accepted by Definition 2.10 ,

(λ(t), x(t)) ∈ I × X λ(t) , ∀t ∈ [0, T ] , (λ(0), x(0)) = (i 0 , x 0 ) ∈ I × X i 0 , (λ(T ), x(T )) ∈ X T , u i : X i → U i Lipschitz continuous in x , i ∈ I u(x(t)) = u λ(t) (x(t)), ∀t ∈ [0, T ].
( Context. Mechanistic models in biology generally involve many parameters. The value of a given parameter can be either measured directly in a dedicated experiment (e.g. measurement of a kinetic parameter of a biochemical reaction in enzymology), or inferred from data which provide relationships between parameters and other known biological entities.

As seen in Chapter 1, a basic issue in biological systems modelling is the determination of numerical values for the parameters, or more generally a subset of the parameter space, under which the model agrees to some extent with the available data. We focus on multiple-step experiments, in which a biological system is perturbed or measured during its evolution.

In the biological modelling literature, it is common to synthesise parameters using a Monte-Carlo sampling of the parameter space, which is validated then by numerous simulations. An important effort to formalize and validate the parameter synthesis of biological models has been made in [START_REF] Donzé | Breach, a toolbox for verification and parameter synthesis of hybrid systems[END_REF][START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF][START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF][START_REF] Rumschinski | Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks[END_REF]. Other articles CHAPTER 3. OCCUPATION MEASURES AND OPTIMAL CONTROL FOR MODEL REVISION such as [START_REF] Cardelli | Syntax-guided optimal synthesis for chemical reaction networks[END_REF] or [START_REF] Bartocci | A temporal logic approach to modular design of synthetic biological circuits[END_REF] design ODE models satisfying sets of temporal constraints. When model simulation does not reproduce satisfactorily available experimental data, to a degree which depends on data quality, for any admissible parameter value, the model has to be revised. One way of revising the model is to change some parameters into different types of functions of time, reflecting underlying biological mechanisms. We introduce a systematic way, based on formal methods, to study mechanistic biological models in their experimental context and revise parameters to produce conservative results with respect to experimental data. In this work, we consider a problem of model revision, defined as finding time varying laws of parameter evolution that minimizes the error in matching experimental measurements. Informally, it is the following optimization problem:

min (x, u) nexp j=1 dist(m(x(T j )), z j ) (3.1)
where x is a vector of biological variables, such as concentrations, whose evolution is modelled by trajectories of a biological dynamical system: in our particular context a hybrid automaton as defined Chapter 2. Time varying parameters are represented by the input variables u (modelling biological parameters) such that ∀t ∈ [0, T ] , u(t) ∈ U . X 0 is the set of initial values of the variables, and the set of pairs {(T j , z j )} j is the set of data points, for 1 ≤ j ≤ n exp , in the time frame [0, T ]. An experimental measurement is a function of the variables x and is modelled via the function m(x).

Contributions. The framework of our approach is a mathematical formalization of experimental protocols as hybrid automata, describing biological systems of interest and experiments which are performed on them. An example of such protocol will be studied in Chapter 6, and a general way to generate hybrid automata from such protocol is given Chapter 5. However, the algorithm we provide can be applied to any biological hybrid systems with similar model revision problems.

In this chapter, we address the model revision problem (3.1) by formulating a particular instance of the optimal control problem with intermediate points, which means that the objective function depends on the system trajectory and control inputs at a given set of time points. This problem is then approximated by multiple optimal control problems on hybrid automata. Then, each problem is solved through a reformulation as a hybrid optimal control problem (HOCP) with one final cost. To this end, we apply a recently developed method [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF] from the field of certified convex optimization to globally solve these HOCP. The method described in [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF] produces piecewise optimal control functions which either may not correspond to biological knowledge of parameter variations or may be difficult to yield coherent and meaningful biological interpretations. Consequently, in order to satisfy realistic constraints on parameters, we use smooth approximations of the generated control input, in order to revise the given model while maintaining good data fitting accuracy. The method is demonstrated later in Chapter 6 on a hybrid system modelling haemoglobin production whose parameter estimation is studied Section 6.1.1 of Chapter 6.

Related works. We recall that the hybrid formalism has previously been used as an abstraction method to simplify complex mechanisms which are hard to analyse [START_REF] Noel | Algorithm for identification of piecewise smooth hybrid systems: application to eukaryotic cell cycle regulation[END_REF][START_REF] Rocca | Application of the reachability analysis for the iron homeostasis study[END_REF], or to represent "jump" evolution such as activation processes in genes regulatory networks for example using the stochastic formalism as in [START_REF] Li | Review of stochastic hybrid systems with applications in biological systems modeling and analysis[END_REF].

Optimal control theory and variation theory have been applied to biological systems in several works. Most of them address the classical problem, given in Chapter 2, of finding a correct input such that the system reaches a desired state. For example, one can control drug input such that a patient reaches a healthy state [START_REF] Ledzewicz | Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy[END_REF], or [START_REF] Caraguel | Towards the design of a patient-specific virtual tumour[END_REF]. Another example is the control of some input in population studies [START_REF] Bodine | Optimal control applied to a model for species augmentation[END_REF]. A detailed review on the use of optimal control in systems biology can be found in [START_REF] Lenhart | Optimal control applied to biological models[END_REF]. The problem of parameter estimation (as a constant) in presence of multiple data, also called data assimilation, is stated in [START_REF] Lenhart | Optimal control applied to biological models[END_REF]Chapter 26]. However, none of these techniques for parameter estimation have been applied to the hybrid automata formalism.

The optimal control problem for specific classes of hybrid systems has been investigated in several domains, such as mechanical systems [START_REF] Andrew | Piecewise-differentiable trajectory outcomes in mechanical systems subject to unilateral constraints[END_REF] and switchedmode systems [START_REF] Wardi | Switched-mode systems: gradient-descent algorithms with armijo step sizes[END_REF]. More generally, [START_REF] Pakniyat | On the relation between the minimum principle and dynamic programming for hybrid systems[END_REF] relies on Dynamic Programming and an extension of Pontryagin's Maximum Principle. However, these approaches need a priori knowledge either on the sequence of discrete transitions, or on the number of visited subsystems. To perform optimal control on hybrid systems, we build our work on the techniques from [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF], which proposes a method to obtain a global solution for hybrid systems with state-dependent transitions, without any a priori knowledge on the execution and the sequence of transitions. We refer to [94, Section 1.1] and references therein for more details on optimal control of hybrid systems.

Semidefinite programming (SDP) eases the resolution of hard optimization problems and yields conservative results ensured by positivity certificates. In [START_REF] Jean B Lasserre | Global optimization with polynomials and the problem of moments[END_REF], hierarchies of semidefinite relaxations were introduced for static polynomial optimization. The definition of an infinite-dimensional linear program (LP) over occupation measures, for optimal control problems, was first introduced in [START_REF] Vinter | Convex duality and nonlinear optimal control[END_REF]. From this infinite-dimensional LP, [START_REF] Jean B Lasserre | Nonlinear optimal control via occupation measures and lmi-relaxations[END_REF] defines hierarchies of Linear Matrix Inequalities (LMI) relaxations, to synthesise a sequence of polynomial controls converging to the solutions of the optimal control problem. In [START_REF] Rasheed Abdalmoaty | Measures and lmis for optimal control of piecewise-affine systems[END_REF] the authors propose an extension to piecewise affine systems. Our underlying idea of constructing a suboptimal control with an iterative algorithm is similar to [START_REF] Rasheed Abdalmoaty | Measures and lmis for optimal control of piecewise-affine systems[END_REF]Section 4]. However, we use this scheme to find input functions allowing to reproduce data not only at a final time point but also at intermediate time points.

We make use of the recent method proposed in [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF], which relies on occupation measures and a sequence semidefinite relaxations to produce a sequence of polynomial controls converging to the optimal solution of a hybrid optimal con-Monday 6 th August, 2018 (08:34)
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There exists other methods which use occupation measures and LMI relaxations to produce both admissible controls and converging outerapproximations of the backward reachable set1 (BRS) [START_REF] Majumdar | Convex optimization of nonlinear feedback controllers via occupation measures[END_REF][START_REF] Shia | Convex computation of the reachable set for controlled polynomial hybrid systems[END_REF], or the region of attraction2 (ROA) [START_REF] Korda | Controller design and region of attraction estimation for nonlinear dynamical systems[END_REF]. Finally, we note that finding a sequence of converging outer-approximations for all valid parameters sets, such as in [START_REF] Hasenauer | Parameter identification, experimental design and model falsification for biological network models using semidefinite programming[END_REF][START_REF] Streif | Estimation of consistent parameter sets for continuous-time nonlinear systems using occupation measures and LMI relaxations[END_REF][START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF], is another crucial issue in the context of systems biology. When dealing with hybrid systems, an extension of the BRS computation method [START_REF] Mohan | Convex computation of the reachable set for hybrid systems with parametric uncertainty[END_REF] can be applied to solve this problem.

Hybrid Optimal Control using Occupation measures

Before presenting our approach for model revision of biological hybrid systems, we give in Section 3.1.1 a short mathematical background on occupation measures inspired from the introductions to occupation measures in both [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] and [START_REF] Majumdar | Convex optimization of nonlinear feedback controllers via occupation measures[END_REF]. In Section 3.1.2 we present recent results from [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF] on optimal control for hybrid systems. These results will be used in our own method for model revision.

Introduction to occupations measures

Let first consider the following ODE system:

ẋ = f (t, x) , (3.2) 
where x ∈ X compact subset of R n , t ∈ [0, T ], and f a Lipschitz continuous non-linear function on [0, T ] × X with values in R n .

Definition 3.1 (Measures). Let X ⊆ R n and A its the Borel σ-algebra built over the subsets P j of X. We call µ a measure on A the function which assigns to each subset P j ∈ X a real scalar such that:

-

µ(∅) = 0 -∀P i s.t. P i ∩ P j = ∅, (i = j): µ( i P i ) = i µ(P i )
Additionally, we say that µ is a Radon measure if µ is locally finite and inner regular, meaning for all Borel σ-algebra A of X, µ(A) = sup(µ(K)), with K a compact subset of A .

For a compact set X ⊂ R n , let M(X) (resp. M + (X)) denote the space of unsigned (resp. signed) Radon measures supported on X. Elements of M(X) can also be seen as bounded linear functionals µ belonging to the dual space C(X) and
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acting on continuous function v ∈ C(X), also called test functions. The image of a test function v ∈ C(X) by a measure µ ∈ M(X) is given by the following relation:

µ, v := X v dµ . (3.3) 
Given an initial condition x 0 ∈ X, we note x(t|x 0 ) the solution of (3.2) for t ∈ [0, T ] such that x(0) = x 0 . We define the occupation measure µ as:

µ(A × B|x 0 ) := T 0 I A×B (t, x(t|x 0 )dt ,
where A×B is in the Borel σ-algebra of [0, T ]×X and I A×B (•) being the indicator function, equal to 1 on A × B and 0 outside. We note that the occupation measure µ(A × B|x 0 ) provides the total time the trajectory x(•|x 0 ) stays in the subset B for t ∈ A, while the support of µ(A × B|x 0 ) is the trajectory. We also note that

1 T µ(A × B|x 0 )
is the probability measure of the time the trajectory stays in B.

One can makes the relation with the concept of occupation time distribution in stochastic reachability analysis such as defined in [START_REF] Luminita | Stochastic reachability analysis of hybrid systems[END_REF]Chapter 5].

If the initial condition is unknown we can define the initial measure µ 0 ∈ M(X) associated to the initial distribution of x 0 in X. Then, we can define the average occupation measure as the Lebesgue integral:

µ(A × B) := X µ(A × B|x 0 )dµ 0 (x 0 ) . (3.4)
Again, we note that the support of µ(A × B) is the reachable set on the interval [0, T ] for all x 0 in the support of µ 0 . Given final set at time T defined as a compact set X T ⊂ X, we can also define the final measure µ T ∈ M(X T ) as:

µ T (B) := X I B (x(T |x 0 ))dµ 0 (x 0 ) . (3.5) From (3.3), the image of a test function v ∈ C([0, T ] × X) by a measure µ ∈ M([0, T ] × X)
is given by the following relation:

µ, v := [0,T ]×X v(t, x)dµ(t, x) .
Moreover, given a test function smooth enough v ∈ C 1 ([0, T ] × X) and an initial condition x(0) = x 0 ∈ X, we can also write3 from (3.2):

v(T, x(T |x 0 )) = v(0, x(0)) + T 0 v(t, x(t|x 0 ))dt (3.6) OPTIMAL CONTROL FOR MODEL REVISION Let now define a linear operator L f : C 1 ([0, T ] × X) → C([0, T ] × X
) also called Liouville operator associated to a dynamic f , applied on a test function v:

L f v := ∂v ∂t + n k=1 ∂v ∂x k f k (t, x)
,

where x k is the k-th element of x. We note that v = L f v leading from (3.6) to: v(T, x(T |x 0 )) = v(0, x(0)) + T 0 L f v(t, x(t|x 0 ))dt (3.7) Let L f : C([0, T ] × X) → C 1 ([0, T ] × X)
be the adjoint operator of L f defined by the relation:

L f µ, v = µ, L f v = [0,T ]×X L f v(t, x)dµ(t, x) .
Integrating (3.7) with respect to µ 0 accordingly to (3.4) and (3.5), we obtain for all

test functions v ∈ C 1 ([0, T ] × X): X v(T, x(T ))dµ T (x) = X v(0, x(0))dµ 0 (x) + X T 0 L f v(t, x(t|x 0 ))dµ 0 (x)dt X v(T, x(T ))dµ T (x) = X v(0, x(0))dµ 0 (x) + X T 0 L f v(t, x(t))dµ(t, x) .
(3.8) Using the Dirac measures δ 0 and δ T , respectively at t = 0 and t = T , we can transform (3.8) into:

δ T ⊗ µ T , v = δ 0 ⊗ µ 0 , v + µ, L f v δ T ⊗ µ T , v = δ 0 ⊗ µ 0 , v + L f µ, v , (3.9) 
where ⊗ is the product of measures. Finally, as we worked for all test functions v ∈ C 1 ([0, T ], X) we can write from (3.9) the following Liouville equation in the space of the measures:

δ 0 ⊗ µ 0 + L f µ = δ T ⊗ µ T . (3.10) 
Liouville equation (3.10) is also called continuity equation in statical physics and describes the evolution of a density of particles within a fluid [START_REF] Igorevich Arnol'd | Mathematical methods of classical mechanics[END_REF]. We note that we transformed a non-linear ordinary differential equation over state variables x ∈ R n into a linear partial differential equation in the space of measures. Moreover, using this equation one can express evolution of a family of trajectories with initial conditions described by µ 0 . We refer to prior works from Henrion & al. establishing this equation and demonstrating its use in the context of reachability analysis, parameters and controller synthesis [START_REF] Victor Magron | Semidefinite approximations of reachable sets for discrete-time polynomial systems[END_REF][START_REF] Streif | Estimation of consistent parameter sets for continuous-time nonlinear systems using occupation measures and LMI relaxations[END_REF][START_REF] Rasheed Abdalmoaty | Measures and lmis for optimal control of piecewise-affine systems[END_REF]. For more details on the recent effort on the application of measures theory and the generalized problem of moments we refer the readers to the books from G. B. Folland [START_REF] Gerald B Folland | Real analysis: modern techniques and their applications[END_REF] and J.B.Lassere [START_REF] Bernard | Moments, positive polynomials and their applications[END_REF].
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3.1.2 Solving the hybrid optimal control problem (HOCP)

In the previous section we provided a short introduction to the use of measures to transform non-linear ODEs into the linear Liouville equation. In this section, we present a recent work from Zhao & al [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF] which provides through the writing of the hybrid Liouville equations an approach to address the optimal control problem of hybrid system. This approach described is valid of a given class of hybrid system called Controlled Hybrid System (CHS) in [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF]. This class differs from the hybrid automata by some change in the formalism and assumptions. These differences ensure that any CHS is deterministic. It is possible to construct a hybrid automaton from a CHS by simply adding to each modes the missing continuous variables. Noting φ(x(t)) the function which associates to an instantaneous state x(t) its corresponding mode, Definition 3.2 also ensures that the mode corresponding to x(t) is unique. Moreover, we obtain the relation λ(t) = φ(x(t)).

Definition 3.2. (Controlled Hybrid System) A controlled hybrid system can be considered as a variation of the hybrid automaton formalism (see Definition 2.9) with the following differences:

-Each mode i has it own dimension n i such that X i ⊆ R n i . Consequently, we denote x i ∈ R n i the continuous variables associated to the mode i ∈ I.

-All the guards S (i,•) are disjoint, and S (i,j) ⊆ ∂X i , for each pair of modes i and j, with ∂X i being the border of the invariant X i -The input set U i = U for each mode i, and the parameters are fixed (all the sets K i are reduced to singletons).

Moreover, we assume that:

-The initial set is restricted to a single point x 0 , with an associated mode i 0 .

-The vector fields f i are polynomials in x i ∈ R n i , affine in u, and have a nonzero normal component on the boundary of X i .

Given measurable functions {h

i : [0, T ] × R n i × R m → R} i∈I and {H i : R n i → R} i∈I ,
respectively representing the running costs and final costs associated to each mode i ∈ I, a hybrid optimal control problem (HOCP) is defined by:

J * chs := inf (x,u) T 0 h λ(t) t, x λ(t) (t), u(t) dt + H λ(T ) x λ(T ) (T ) . s.t. (λ(0), x(0)) = (i 0 , x 0 ) , (λ(T ), x(T )) ∈ X T , u(t) ∈ U ∀t ∈ [0, T ], (λ(t), x(t)) , t ∈ [0, T ] , a trajectory of a CHS. (3.11)
Here X T denotes the target set as defined by (2.12). This problem is solved using a hierarchy of semidefinite relaxations as described in [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF], and for which Monday 6 th August, 2018 (08:34) OPTIMAL CONTROL FOR MODEL REVISION we recall the main ideas. Let first redefine occupation measures and Liouville operator accordingly to our hybrid context.

Given an hybrid trajectory ξ = (λ, x) : [0, T ] → I × X and a control input u : [0, T ] → U , let define the occupation measure in mode i ∈ I as:

µ i (A × B × C|x, u) := T 0 I A×B×C (t, x i (t), u(t))dt (3.12) for all subsets A × B × C in the Borel σ-algebra of subsets of [0, T ] × X i × U .
Similarly to Section 3.1.1, we denote by µ i 0 , µ i T the initial and the final occupation measures and respectively, and for all e ∈ E, the guard occupation measures µ Se ∈ M + ([0, T ] × S e ) describing the measures associated to distribution of continuous variables in a given guard on [0, T ]. We recall that if x i (t) ∈ S (i,j) ⊂ ∂X i , the trajectory have to take the transition i → j: then µ S (i,j) is also a measure of what leaves4 a given mode i on the interval [0, T ].

Let Γ = (µ I , µ I T , µ S ) ∈ M + ([0, T ] × X × U ) × M + (X T ) × M + ([0, T ] × S).
For each mode i ∈ I, let µ i 0 be defined using the Dirac δ x 0 if x 0 ∈ X i and 0 otherwise.

The occupation measures technique allows to transform the optimal control problem (3.11) into a linear (but infinite-dimensional) problem (3.15) in the vector space of measures in a similar manner we did for the ODEs in Section 3.1.1. In terms of occupation measures, the cost function in the HOCP (3.11) can be expressed as [94, Lemma 5]

J(x, u) = i∈I µ i (•|x, u), h i + i∈I µ i T (•|x), H i . (3.13)
For each mode i, we define a Liouville operator

L i : C 1 ([0, T ]×X i ) → C([0, T ]× X i × U
) which acts on test functions v as:

L i v = ∂v ∂t + k ∂v ∂x k [f (t, x, u)] k . (3.14) Again, we note L i : C 1 ([0, T ] × X i × U ) → C([0, T ] × X i ) the adjoint operator of L i . Let R * ,(i ,i) be the pushforward measure associated to the reset map R (i,i )
as in [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF]Lemma 6], we can write the hybrid Liouville equation:

δ 0 ⊗ µ i 0 + L i µ i + (i ,i)∈E R * ,(i ,i) µ S (i ,i) = δ T ⊗ µ i T + (i,i )∈E µ S (i,i ) .
Consequently, (3.11) can be reformulated as the infinite-dimensional LP [94, Sec-tion 4]:

p * := inf Γ i∈I µ i , h i + i∈I µ i T , H i s.t. δ 0 ⊗ µ i 0 + L i µ i + (i ,i)∈E R * ,(i ,i) µ S (i ,i) = δ T ⊗ µ i T + (i,i )∈E µ S (i,i ) , ∀i ∈ I µ i , µ i T , µ Se ≥ 0, ∀i ∈ I, e ∈ E , (3.15) 
where the infimum is taken over the tuple of measures Γ defined above. Let Γ * denote the optimal value of the measures associated to the solution p * . The optimal solution p * can be approximated from below through a converging sequence of relaxed problems [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF]Theorem 17]. In this particular case, we will focus on the SDP relaxation of the infinite-dimensional primal formulation (3.15).

Before continuing, we first introduce a few definitions and notations on moments, moment matrix, and localizing matrix of a measure. Given a multi-index α ∈ N n , let y µ be the moments of a measure µ,

[y µ ] α := x α dµ(x) . Given r ∈ N, and p ∈ R r [x], let L yµ (p) := µ, p = ( |α|≤r p α x α )dµ.
Given multi-indices α and β ∈ N n , the moment matrix, M r (y µ ), is defined as:

[M r (y µ )] (α,β) := [y µ ] (α+β) , where |α + β| ≤ 2r. Then, let g ∈ R l [x]
be any polynomial with l < r, the localizing matrix, M r (g, y µ ), is defined 5 as:

[M r (g, y µ )] (α,β) := |γ|≤l g γ [y µ ] (α+β) .
Now, we assume that the sets X i are semialgebraic, i.e.

X i := {x ∈ R n i : g X i (x) ≥ 0} for each mode i ∈ I, where g X i (x) is a vector of polynomials (g X i ) k ∈ R[x] for all k ∈ {1, . . . , κ(X i )}, with κ(X i ) the number of polynomials defining X i . Similarly for X T,i := {x ∈ R n i : g T,i (x) ≥ 0}, where g T,i (x) is a vector with components (g T,i ) k ∈ R[x] for all k ∈ {1, . . . , κ(X T,i )}. For each transition e = (i, i ) ∈ E, let S (i,i ) := {x ∈ ∂X i : g (i,i ) (x) ≥ 0}.
Let the input set be

U := {u ∈ R m : g U (x) ≥ 0}, where g U (x) is a vector with components (g U ) k ∈ R[u] for each k ∈ {1, . . . , κ(U )}. Finally we define g τ = t(T -t).
By re-writing, in (3.15), the positivity constraints as semidefinite constraints on moments, and localizing matrices, and then truncating the degree of the moments to 2r, we obtain a finite dimensional semidefinite program [94, Section 5.1].
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Now, using to define the disjoint union of measures, let us denote

Ξ I := i∈I µ i , Ξ E := e∈E µ Se , Ξ T := i∈I µ i
T , and Ξ := Ξ I Ξ E Ξ T the set of all the measures associated to the problem. Let ψ i refers to a measure in Ξ, associated to the mode i ∈ I, so either µ i , µ S (i ,i) ∀i ∈ I, µ S (i,i ) ∀i ∈ I, or µ i T . Let {y r,ψ i } ψ i be the sequence of moments of degree 2r for each ψ i ∈ Ξ, and y r := {y r,ψ i } ψ i . Then, the equality constraints in (3.15) can be approximated as a finite dimensional linear system (3.16), by taking the truncated moments, and localizing matrices:

A r (y r ) = b r (3.16)
Then, the relaxed primal problem (3.17) is defined by:

p * r := inf Ξ i∈I L y r,µ i (h i ) + i∈I L y r,µ i T (H i ) s.t. A r (y r ) = b r , M r (y r,ψ i ) 0 , ∀ψ i ∈ Ξ , M r X ik ((g X i ) k , y r,µ i ) 0 , ∀(k, i) ∈ {1, . . . , κ(X i )} × I , M r U ik ((g U ) k , y r,µ i ) 0 , ∀(k, i) ∈ {1, . . . , κ(U )} × I , M r Se k ((g Se ) k , y r,µ Se ) 0 , ∀(k, µ Se ) ∈ {1, . . . , κ(S e )} × Ξ E , M r (T,i) k ((g T,i ) k , y r,µ i T ) 0 , ∀(k, µ i T ) ∈ {1, . . . , κ(X T,i )} × Ξ T , M r-1 (g τ , y r,ψ i ) 0 , ∀ψ i ∈ Ξ I ∪ Ξ E , (3.17) 
where r

X ik := r -deg((g X i ) k )/2, r U ik := r -deg((g U ) k )/2, r Se k := r - deg((g Se ) k )/2, and r (T,i) k := r -deg((g T,i ) k )/2. Above, M 0 defines a matrix M as positive semidefinite.
Now, from the occupation measures solutions of the relaxed primal (3.17) and their associated moments y µ , it is possible to synthesise the control. Given a polynomial u ∈ R[(t, x)], and a measure µ we define the vector b l (y µ ) as:

[b l (y µ )] α := L yµ (φ(t, x) α • u) , (3.18) 
with φ(t, x) α a monomial of R l [(t, x)] of degree α, and |α| ≤ l. Given moment sequences truncated to degree 2d u , the optimal control law u du,i for each mode i ∈ I is approximated by a d u -th order polynomial by solving the following linear system of equations:

[u * du,i ] k = M du (y * r,µ i ) -1 b du,k (y * r,µ i ), 1 ≤ k ≤ m (3.19)
Monday 6 th August, 2018 (08:34) for all modes i ∈ I, and where k denotes the control's component. Here M du (y * r,µ i ) is the truncated moment matrix of order d u associated to the measure µ i solution of the primal problem (3.17). This matrix is in general not invertible. However, it is positive semidefinite, and in consequence there exists a pseudoinverse, known as the Moore-Penrose generalized inverse [START_REF] Roger | Matrix analysis[END_REF]Chapter 7].

Fitting time varying parameters 3.2.1 The model revision problem

In this section, we solve the model revision problem of a hybrid automaton modelling a biological system together with a set of experiments. Therefore, we provide a method to find time varying parameters of biological hybrid automata, modelled as input functions u(t), in order to fit the hybrid automaton model to a set of experimental data. Thus, we write our problem as an optimal control problem where desired input functions are the optimal controls which minimize the distance of the results produced by the model and these experimental data (3.1).

We first formulate (3.1) as a particular instance of the optimal control problem on hybrid automata with intermediate points. Then, we propose a first approximation as a set of instances of the optimal control problem on hybrid automata 2.13 defined Chapter 2. However, instead of solving the possibly non-deterministic problem on hybrid automata, we restrict ourselves to a subset of deterministic hybrid automata using the controlled hybrid system formalism from [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF] and defined previously. Consequently, we need to solve the hybrid optimal control problem presented Section 3.1.2. The solution is obtained using the previous results from [ [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF]Section 4], of which we summarized the key points in Section 3.1.2. Finally, in Section 3.2.2 we explain the complete algorithm addressing our initial problem.

Let first give a few definitions and notations: experimental measurements, represented by a function m(x), are performed at given specific times T j , 1 ≤ j ≤ n exp . Let z j be the observed value of the experimental measurement at time T j , then n exp is the number of experimental data points. Let X T j,i be compact subsets of X i , and X T j := i∈I X T j ,i . As in (2.13), let (i 0 , x(0)) ∈ I × X 0 , and suppose that we are given a set of time values {T j }, with 1 ≤ j ≤ n exp , and T nexp = T .

We say that ((λ(•), x(•)), u(•)) is an admissible pair for a problem with intermediate points, if (λ(t), x(t)) ∈ I × X is a trajectory of H accepted by the Definition 2.10, and (λ(T j ), x(T j )) ∈ X T j for all j.

Let H(x(T j )) be an intermediate cost at time T j , and h(t, x(t), u(t)) a running cost for the whole [0, T ] interval. The optimal control problem with intermediate 

J * := inf (λ,x),u T 0 h(t, x(t), u(t))dt + 0≤j≤nexp H (x(T j )) s.t. (λ(t), x(t)) , ∀t ∈ [0, T ] a trajectory of H , (λ(t), x(t)) ∈ I × X λ(t) , ∀t ∈ [0, T ] , (λ(0), x(0)) = (i 0 , x 0 ) ∈ I × X i 0 , (λ(T j ), x(T j )) ∈ X T j , ∀1 ≤ j ≤ n exp , u : T → U continuous functions , (3.20) 
In our biological context we search in general to minimize the least square residual:

H (x(T j )) = ||m(x(T j )) -z j || 2 2 .
Solving the above problem can entail an excessive computational cost on a large hybrid model (see implementation results on the haemoglobin production model studied in Chapter 6). To reduce this cost, we propose an optimization scheme where we iteratively compute the control for each intermediate time in a greedy way.

Given 1 ≤ j ≤ n exp , let:

J j (t, x(t), u(t)) := T j T j-1 h(t, x(t), u(t))dt + H (x(T j )) ,
with T 0 = 0, and T nexp = T , such that

J(t, x(t), u(t)) = 1≤j≤nexp J j (t, x(t), u(t)).
Noting (λ (j) (t), x (j) (t)) a trajectory of a hybrid automaton H on the interval T j := [T j-1 , T j ], and similarly ũ(j) (t) the control on T j , we consider the following problem as particular instance of (2.13):

J * j := inf (x (j) ,ũ (j) ) J j (t, x (j) (t), ũ(j) (t)) s.t. (λ (j) , x (j) ) a trajectory of H on T j , ũ(j) (t) ∈ U , ∀t ∈ T j , (λ (j) (t), x (j) (t)) ∈ X , ∀t ∈ T j , if j = 1 , (λ (1) (0), x (1) (0)) = (i 0 , x 0 ) ∈ I × X i 0 , if j ≥ 2.
(λ (j) (T j-1 ), x (j) (T j-1 )) = (λ (j-1) (T j-1 ), x (j-1) (T j-1 )) , We note that if a transition i → i occurs at the time T j of the interval [T j-1 , T j ], we retain only the left part in the mode i for the next optimization on the interval [T j , T j+1 ].

(λ (j) (T j ), x (j) (T j )) ∈ X T j .
Let ũ(t) and (λ(t), x(t)) be respectively the control and the trajectory, for t ∈ [0, T ]. They are respectively defined by the concatenation of all the controls ũ(j) (t) and the trajectories (λ

(j) (t), x (j) (t)) on the sub-intervals [T j-1 , T j ]. By construc- tion, ((λ(t), x(t)), ũ(t)) is an admissible pair for (3.20), as (λ(T j ), x(T j )) = (λ (j) (T j ), x (j) (T j )) ∈ X T j .
Remark 3.3. We emphasize that (x(t), ũ(t)) is not necessary an optimal solution for (3.20). Moreover, as the optimization problem (3.21) is obtained through a greedy scheme, we have no guarantee that its optimal cost J * j is inferior to a given ε. However, our goal is only to find parameter functions satisfying desired error bounds, thus this approximate solution provides a good trade-off between optimality and computation cost. We note that we consider in this work the case of experimental measurements with partial information: if the measurements provide information on the state of all the variables at a time point, then the greedy scheme converge to the optimal solution.

Algorithm and implementation details

Let (T j , z j ), 0 ≤ j ≤ n exp be pairs of experimental data points and their measurement time, and we also note i 0 , and x 0 the initial mode and initial conditions of the studied hybrid automata H respectively. Let r be a given starting relaxation degree.

Algorithm 1 finds an admissible solution to (3.20), by solving the reformulation of the optimization problem (3.21) into a HOCP (3.11) for each experimental data point (T j , z j ). For each j, the degree of the polynomial control ũ(j) (x(t), t) is determined as the smallest degree such that ||m(x(T j )) -z j || 2 2 ≤ ε. Indeed, in the context of biological system modelling we desire to obtain a control of degree as small as possible to avoid overfitting. Then, for each iteration over j, Algorithm 1 is decomposed in three steps.

The first step is the procedure HOCP, associated to an instance of the HOCP (3.11) for j-th pairs (T j , z j ). Given a relaxation order d r ≥ r, we solve the relaxed primal (3.17). It returns M dr (y µ i ), the sequence moment matrices of degree d r associated to the occupation measure µ i of each mode i ∈ I. We also obtain J (dr) j an under approximation of the optimum of (3.21).

The second step is the procedure Synth, which returns the admissible control ũ(j) (t, x) of degree d u ≤ d r using a truncated moment matrix M du (y µ i ) as in (3.19).

The third and last step is the procedure Simu. It performs the validation that the synthesised control ũ(j) yields ||m(x(T j )) -z j || 2 2 ≤ ε. This step is done by approximating the trajectory of the controlled hybrid system using a solver of ODE with discrete events to produce numerical simulations. OPTIMAL CONTROL FOR MODEL REVISION If in iteration j, ||m(x(T j )) -z j || 2 2 ≤ ε, then x (j) (T j ) and the corresponding mode i f reached at t = T j by the numerical simulations are the initial conditions for the next iteration j + 1.

Otherwise, the Synth and Simu procedures are repeated while increasing the degree of the synthesised polynomial control until d u = d r . In case the condition ||m(x(T j )) -z j || 2 2 ≤ ε is still not satisfied, the relaxation order d r is increased, and the three steps are repeated.

If ε ≤ J (dr) j then we are sure that for the given initial condition at step j, there is no control such that ||m(x(T j )) -z j || 2 2 ≤ ε. Consequently, we keep our previous result ũ(j) and the corresponding mode i f reached at t = T j by the numerical simulations are the initial conditions for the next iteration j + 1.

Algorithm 1 hybrid systems model revision algorithm

1: procedure REVISION(H, {(T j , z j )} j , i 0 , x 0 , ε, r) 2: T init = 0 3:
for all experimental data (T j , z j ) do 4: (i f , x (j) (t)) = Simu(H, ũ(j) (x(t), t),... ... i 0 , x 0 , T init , T j )

d u = 0, d r = r, err = +∞ 5: while err ≥ ε ∧ J (dr) j ≤ ε do 6: J (dr) j , M dr (y µ ) = HOCP(H, i 0 ,..
12:
err = H(x (j) (T j ), z j ) 

i 0 = i f 18: x 0 = x (j) (T j ) 19: T init = T j 20:
end for 21: end procedure

Perspectives

In this chapter we proposed a method for fast model revision of hybrid dynamical system. Even if the result is not optimal, and convergence is not guaranteed using the scheme of Algorithm 1, we observe a good accuracy on the particular example of Section 6.1.2 in Chapter 6. We now propose two ideas to extend this work. The first idea is to search for a infinite LP on occupation measure which directly address Monday 6 th August, 2018 (08:34)

PERSPECTIVES

the problem with intermediate costs, which is not possible with the current method from [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF]. Such rewriting would provide a method to obtain a solution converging to the optimal control. To do so we propose to extend the formulation of [START_REF] Streif | Estimation of consistent parameter sets for continuous-time nonlinear systems using occupation measures and LMI relaxations[END_REF] on ODEs using multiple the hybrid Liouville equations restricted to each sub time in [T j-1 , T j ], 1 ≤ j ≤ n exp . This leads to the following infinite LP:

p * := inf {Γ j } j≤nexp i∈I µ i,j , h i,j + j≤nexp i∈I µ i,j T j , H i,j s.t. δ T (j-1) ⊗ µ i,j (j-1) + L i,j µ i,j + (i ,i)∈E R * ,(i ,i),j µ S (i ,i),j = δ T j ⊗ µ i,j T j + (i,i )∈E µ S (i,i ),j , ∀i ∈ I, 1 ≤ j ≤ n exp µ i,j , µ i,j T j , µ S e,j ≥ 0, ∀i ∈ I, e ∈ E, 1 ≤ j ≤ n exp , (3.22) 
where 1 ≤ j ≤ n exp is the index associated the time interval [T j-1 , T j ]. We note the number of constraints and occupation measures of the LP (3.22) is multiplied by n exp which entails a great computational cost. In the example studied in Section 6.1.2, such formulation would be computationally expensive, which justifies our approach in Section 3.2.1.

The second idea is to use the scheme of Algorithm 1 to perform parameter synthesis. Indeed in the work [START_REF] Mohan | Convex computation of the reachable set for hybrid systems with parametric uncertainty[END_REF] the authors propose a method for parameters synthesis using Backward Reachable Set (BRS) computation of hybrid systems. In a similar fashion to [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF] they use the hybrid Liouville equation when the system needs to reach a single target at a final time. Using the method of [START_REF] Mohan | Convex computation of the reachable set for hybrid systems with parametric uncertainty[END_REF] computing BRS for each intermediate points, and then intersecting the results we would obtain a converging over-approximation of the valid parameter set when there are constraints at intermediate time. However, currently the method from [START_REF] Mohan | Convex computation of the reachable set for hybrid systems with parametric uncertainty[END_REF] is more expensive than [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF], and cannot be applied on the example studied in Section 6.1.2. Context. In cellular biology, models are often based on the elementary law of chemical reactions or empirical laws for lumped reactions, and expressed in terms of Ordinary Differential Equations (ODEs). However, as we have seen in the previous chapters, unlike models in classical chemistry, most of the parameters in biological models are uncertain, or can greatly vary from one sample (or one individual) to another. For these reasons, modelling in biology involves many roundtrips between experimentation and validation of a hypothesis about a biological mechanism formulated by a model. Because these models are uncertain, hypothesis validation is often done with numerous numerical simulations. However, this FOR BIOLOGICAL MODELS VALIDATION simulation-based method is both costly for large parameter spaces and, in addition, not exhaustive. Note that a particularity of biological models is that the sets of parameter values (as well as the set of initial conditions in some cases) can be large. Our objective is to validate a hypothesis on some properties of a given biological model which contains uncertain parameters. Furthermore, the initial conditions, such as the initial concentrations of most species, are not accurately known but lie within identifiable intervals. Therefore, the hypothesis should be validated for all the behaviours generated by such uncertainty, for which reachability analysis is an appropriate tool. Formal verification techniques allow proving properties, with set-based reachability computation techniques, by replacing simulation runs with conservative sets of trajectories. The result of this analysis is the validation of a proposed parameters space for which the model satisfies a set of constraints, proposed by the biologist or coming from experimental results. Thus, in this chapter we propose an approach which can be seen as a complement to the approach based on simulations. It uses discrete time reachability analysis (that is set-based simulation) to formally validate a hypothesis on the model. For polynomials systems, we propose two different methods for reachability analysis: using the Bernstein expansion and the Krivine-Stengle (K.S.) representation.

Contributions. In the first part, we propose an extension of the Bernstein-based method previously developed in [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] which allow tackling uncertain parameters at a small cost. Furthermore, we propose an extension of this Bernstein reachability analysis method to handle polynomial fractions. Another extension, useful to tackle the complex case studies such as the iron homeostasis model developed latter in Chapter 6, is a method for piecewise polynomial approximations of the dynamics and a reachability method for the resulting hybrid dynamics. These approximations and adaptations will be demonstrated in Chapter 6 on the concrete iron homeostasis model, allowing us to validate a hypothesis stated in [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF], with an exhaustive analysis over uncertain parameters and initial conditions. In the second part, we propose an alternative method to the Bernstein expansion, namely the K.S. representation, to perform template reachability analysis of polynomial systems. The K.S. representation can be used as a relaxation method to approximate a non-linear optimization problem by a linear optimization problem (LP). We show that in the particular case of parameter space restricted to a box (or a linear transformation of a box), K.S. is another efficient method to perform template reachability analysis. Finally, we discuss its pros and cons compared with the Bernstein-based method.

This chapter is organized as follows. We first formulate, in Section 4.1, the discrete time parametric reachability analysis problem. We introduce, in Section 4.1.3, our method to handle piece-wise polynomial dynamics modelling the approximation of a more complex system over a fixed partition. In Section 4.2, we describe the reachability analysis method using the Bernstein expansion. Then, in Section 4.3, we give details on the second approach based on the K.S. represen-Monday 6 th August, 2018 (08:34) tation. Finally, in Section 4.4 we discuss the differences between the Bernstein expansion and the K.S. representation approaches and their perspectives.

Related work. To study biochemical systems, such as the Mammalian Cellular Iron Homeostasis (MCIH) model presented in Chapter 6, we base our framework on the C++ tool Sapo [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] for polynomial systems. The work [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] shows that the Bernstein technique is efficient for computing reachable sets of polynomial parametric ODE models. As polynomials arising in biological models are often sparse, using the implicit formulation of the Bernstein expansion in [START_REF] Paul | Fast construction of constant bound functions for sparse polynomials[END_REF] allows us to avoid the explosion of Bernstein coefficients with the dimension and thus improving reachability computation for biological models. Adding our improved computation of the Bernstein coefficients and approximation by piece-wise non-linear models, the current framework can perform reachability analysis on a large class of biological models with switching behaviours. This work can be compared to other work focusing on reachability analysis of non-linear biological models.

There is similar previous work using the Bernstein expansion, such as [START_REF] Dang | Reachability analysis for polynomial dynamical systems using the bernstein expansion[END_REF] and [START_REF] Amine | Analyse et contrôle des systèmes dynamiques polynomiaux[END_REF]. The work [START_REF] Dang | Reachability analysis for polynomial dynamical systems using the bernstein expansion[END_REF] allows performing reachability analysis over polytopic sets, instead of bundles of parallelotopes. However, this approach does not directly handle parametric models and is much slower than the current approach due to the conversion from polytopes to boxes. The work [START_REF] Amine | Analyse et contrôle des systèmes dynamiques polynomiaux[END_REF] uses the Bernstein expansion to compute an LP-relaxation of a polynomial optimization problem (POP), which is then solved over a polytopic set. The technique proposed in [START_REF] Amine | Analyse et contrôle des systèmes dynamiques polynomiaux[END_REF] can compute reachable sets with high precision using polyhedral templates, but is more expensive than [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] which only needs to compute the parametric Bernstein coefficients once. The work of [START_REF] Amine | Analyse et contrôle des systèmes dynamiques polynomiaux[END_REF] is also related to the K.S. approach, since it uses a relaxation of a polynomial optimization problem as a LP. Our approach differs from [START_REF] Amine | Analyse et contrôle des systèmes dynamiques polynomiaux[END_REF] by the ability of our approach to efficiently handle parameters in the optimization. We also mention a recent method using SDP relaxation [START_REF] Victor Magron | Semidefinite approximations of reachable sets for discrete-time polynomial systems[END_REF] for discrete time reachability analysis of polynomials.

We also point out the tools, such as [START_REF] Berman | Marco: a reachability algorithm for multi-affine systems with applications to biological systems[END_REF], [START_REF] Brim | Reachability in biochemical dynamical systems by quantitative discrete approximation[END_REF], [START_REF] Batt | Robustness analysis and tuning of synthetic gene networks[END_REF], which have been developed mainly for reachability analysis of biological models. The work in [START_REF] Berman | Marco: a reachability algorithm for multi-affine systems with applications to biological systems[END_REF] and [START_REF] Brim | Reachability in biochemical dynamical systems by quantitative discrete approximation[END_REF] is dedicated to piecewise multi-affine models with either conical representations of reachable sets or rectangular abstractions, while [START_REF] Batt | Robustness analysis and tuning of synthetic gene networks[END_REF] focuses on parameters synthesis of piecewise multi-affine models such as gene networks. We also note that the piecewise approximation in our work is similar to the hybridization in [START_REF] Dang | Accurate hybridization of nonlinear systems[END_REF].

Finally, we can mention well-known tools such as Flow * [START_REF] Chen | Flow*: An analyzer for non-linear hybrid systems[END_REF] and Keymaera [START_REF] Platzer | Keymaera: A hybrid theorem prover for hybrid systems (system description)[END_REF], for the reachability analysis of non-linear systems. Flow * is an efficient tool based on Taylor models for approximating flowpipes in form of unions of boxes, while the Bernstein and K.S. methods computes flowpipes as unions of polytopes. Flow * can be used for more general non-linear hybrid models but it does not seem to extend easily to parametric analysis. The tool Keymaera [START_REF] Platzer | Keymaera: A hybrid theorem prover for hybrid systems (system description)[END_REF] uses a different approach: it is a theorem prover based on differential logic. It requires FOR BIOLOGICAL MODELS VALIDATION knowing solutions to differential equations or solving them numerically. It can compute invariants; however in the context of systems biology, it is very useful when interacting with the biologist to provide explicit reachable sets as temporal flowpipes.

Before continuing, it is important to note that the technical contents of this chapter use a lot of multivariate calculus notations defined in Section 2.1.

Set-based simulation 4.1.1 Discrete time models

In this chapter we consider biological systems modelled by discrete time parametric dynamical systems. The discrete time parametric dynamical systems we study are defined by a set of difference equations:

x τ +1 = f (x τ , k) (4.1)
where τ ∈ N, x τ ∈ R n is the value of the variables x at the iteration τ , and k ∈ K ⊆ R m is a set of parameters. A trajectory solution is a sequence ξ x 0 ,k : N → X defined for an initial condition x 0 ∈ R n and a parametrization k ∈ K. We note that the iteration index τ ∈ N replaces the time variable t. However, as seen in Chapter 2 for the particular case of numerical integration, one can retrieve the value of the continuous time variable t for a given time step ∆t.

Discrete time is often used in models from computer science, such as programs where the notions of clock and iteration are natural. However, it can also be used as an approximation of continuous time systems, such as gene regulatory networks (see for example the work of [START_REF] Sakthivel | Robust state estimation for discrete-time genetic regulatory networks with randomly occurring uncertainties[END_REF] or [START_REF] Batt | Analysis and verification of qualitative models of genetic regulatory networks: A modelchecking approach[END_REF]). Discrete time models can also be obtained though explicit numerical integration of ODEs system as seen in Chapter 2. In the following, we assume that we are given a model as a discrete time parametric dynamical system. Example 4.1 (2D discrete time system of Lotka-Volterra). A discretization of the Lotka-Volterra continuous time model (LV-ODE) taken from [START_REF] Alfred | Contribution to the theory of periodic reactions[END_REF][START_REF] Volterra | Fluctuations in the abundance of a species considered mathematically[END_REF] describing the oscillations of a prey-predator interaction system is given in (LV-discrete). We assume the following values for the parameters: (α, β, δ, γ) = (2/3, 4/3, 1, 1).

To obtain this discretization we apply the forward Euler numerical integration scheme with a time step ∆t = 0.01. Figure 4.1 shows 1600 iterations of the resulting discrete time dynamical system (LV-discrete). In Section 4.4 we demonstrate a method for reachability analysis on the model (LV-ODE). 

ẋ = x(α -βy) ẏ = -y(γ -δx) (LV-ODE) x τ +1 = x τ (1 + (α -βy τ )∆t) y τ +1 = y τ (1 -(γ -δx τ )∆t) (LV-discrete)

Template reachability analysis

Reachability analysis. In this chapter, we extend the previous work of [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] on the computation of flowpipe and reachable sets for parametric discrete time dynamical systems. We first recall the general definition of the reachable set R(x 0 , T, k) of the dynamical system (4.1), up to iteration T > 0 (possibly +∞), for given an initial condition x 0 ∈ R n and a parametrization k ∈ K:

R(x 0 , T, k) := {x | x = ξ x 0 ,k (τ ) , ∀τ s.t. 0 ≤ τ ≤ T } . (4.2)
For a given initial set X 0 ⊂ R n and for all parameter values in K, we obtain the reachable set: R(X 0 , T, K) :=

k∈K x 0 ∈X 0 R(x 0 , T, k). (4.3)
We can put the reachable set computation methods into two categories:

-Depth-first methods: they compute the reachable set up to iteration T for each sample point (x 0 , k) ∈ X 0 × K independently, and then iterate over the set of all the possible points. These methods are also called trajectorybased reachability analysis. As they rely on numerical integration tools they are very fast. In practice these techniques are often used when searching for a counter-example [START_REF] Dreossi | Efficient guiding strategies for testing of temporal properties of hybrid systems[END_REF], as one counter-example is sufficient, or in combination with sensibility analysis [START_REF] Donzé | Breach, a toolbox for verification and parameter synthesis of hybrid systems[END_REF] or flow abstraction to produce a flow-pipe approximation [START_REF] Girard | Verification using simulation[END_REF]. A non-exhaustive list of trajectory based methods is [START_REF] Annpureddy | S-taliro: A tool for temporal logic falsification for hybrid systems[END_REF][START_REF] Donzé | Breach, a toolbox for verification and parameter synthesis of hybrid systems[END_REF][START_REF] Dreossi | Efficient guiding strategies for testing of temporal properties of hybrid systems[END_REF].
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-Breadth-first methods: Instead of computing the reachable set for each initial condition and parameter set, the breadth-first (also called set-based) approach uses set operations to compute the set X τ +1 (that is the image of X τ for each iteration τ ), given an initial set X 0 and a parameter space K. The set operations are more expensive than operations on points and for non-linear vector fields f a precise approximation of X τ +1 has in general a computational cost exponential in dimension. However, the set-based methods produce conservative results which correspond to an exhaustive simulation. A non-exhaustive list of set-based reachability tools is [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF][START_REF] Chen | Flow*: An analyzer for non-linear hybrid systems[END_REF][START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF][START_REF] Althoff | An introduction to cora 2015[END_REF].

In the general case, the problem of computing the reachable set is undecidable [START_REF] Thomas A Henzinger | What's decidable about hybrid automata[END_REF]. However, we note that in the particular case of polynomial discrete-time dynamical system, with X 0 and K two semi-algebraic compact sets, the computation of the reachable set at a finite time T is a decidable problem. Indeed, it can be formulated as a logic formula which is decidable [START_REF] Tarski | A decision method for elementary algebra and geometry[END_REF] and exactly solved by quantifier elimination methods as in [START_REF]Quantifier elimination for real closed fields by cylindrical algebraic decompostion[END_REF]. However, this solution using quantifier elimination remains too expensive and for this reason we use template reachability, a method to compute an over-approximation of the reachable set.

Template reachability analysis. We now assume that X 0 is a compact subset of R n . Exactly computing X τ +1 = f (X τ , K), that is the image of X τ by f , can be challenging, since an exact representation of the image is not known. We thus apply the following compact over-approximation:

{x ∈ R n | g(x) ≤ c , ∀x ∈ X τ +1 } , (4.4) 
where g(x) is a vector of polynomials g i (x) ∈ R[x] for all 1 ≤ i ≤ p. Hence these p polynomial constraints define a compact semi-algebraic subset of R n . We call c ∈ R p the offset vector associated to the constraint system. The vector of polynomials g defines a fixed template if the coefficients of each polynomial g i are fixed. Thus, by fixing the template g(x) and defining c τ +1 ∈ R p as the optimum of the polynomial optimization problem:

c τ +1 = max x∈X τ +1 (g(x)) = max (y,k)∈Xτ ×K (g(f (y, k)) , (4.5) 
we can obtain the following Xτ+1 as a tight template over-approximation of X τ +1 :

Xτ+1 = {x ∈ R n | g(x) ≤ c τ +1 } . (4.6)
Given a semi-algebraic template g as defined in (4.5), let O g (X) be the operator computing a tight over-approximation X of a set X. An over-approximation R(X 0 , T, K) of the reachable set is obtained by the following recurrence: X0 = O g (X 0 ) and Xτ+1 = O g (f ( Xτ , K)). The approximated reachable set at a fixed time T is then : R(X 0 , T, K) := Polyhedral template. We now define a particular type of semi-algebraic templates we use in the remainder of this chapter: polyhedral templates. A template g is called polyhedral template1 if it is constituted of a system of p linear constraints.

Let Γ ∈ M p,n (R) denote the template matrix such that g(x) = Γx. In a similar way to (4.4), given c ∈ R p we say that (Γ, c) is a template over-approximation of a set X if for all x ∈ X, Γx ≤ c. It follows from (4.5) that given a template matrix Γ, a tight template over-approximation of a set X can be the polyhedral set:

X := { x ∈ R n | Γx ≤ max x∈X (Γx) }. (4.7)
Finally, using the above-described template reachability scheme we obtain a particular case of (4.6) for a polyhedral template (Γ, c τ +1 ):

Xτ+1 = { x ∈ R n | Γx ≤ c τ +1 = max (y,k)∈Xτ ×K Γf (y, k) }. (4.8)
It is clear that the complexity of the reachability algorithm will depend on the resolution of the optimization problem max (y,k)∈Xτ ×K Γf (y, k). If X τ is a polyhedron and f is a linear vector field, such problems can efficiently be solved using linear programming. Otherwise, if f is non-linear the complexity of the optimization increases drastically. Indeed, one cannot rely on local optimization method, since the result may be inferior to the maximum, leading to a non-conservative approximation of the set. 

Γ box =     Γ 1 Γ 2 Γ 3 Γ 4     =     1 0 0 1 -1 0 0 -1     (Γ box )

Approximated dynamics over partitions

State-space partition. In this section we consider how to handle discrete time dynamical systems defined using piecewise continuous functions. Such models can be obtained through local approximation of the dynamics over a fixed partition of the state space. For example, in the particular case of the Mammalian Cellular Iron Homeostasis (MCIH) model studied in Chapter 6, we approximate sigmoid functions in three affine pieces. Piecewise models can also be obtained using model reduction techniques such as [START_REF] Noel | Algorithm for identification of piecewise smooth hybrid systems: application to eukaryotic cell cycle regulation[END_REF] where models of multi-scale biochemical reaction networks are decomposed in piecewise polynomial systems.

Let h be a linear constraint of the form a • x ≤ c where a ∈ R n and c ∈ R. We denote by ¬h the constraint a • x > c, the negation of the constraint2 h. For simplicity of notation and presentation we use h to denote both the constraint and the half-space defined by this constraint. We also assume that our state-space is a compact subset of R n : for example a box of R n large enough such that all the trajectories stay inside for the considered time interval.

Let H = {h j (x) | j ∈ {1, . . . , n H }} be a set of n H linear constraints. The constraints of H partition the state space into q non-empty compact subsets of R n , {N i } 1≤i≤q , called domains of the partition.

Remark 4.3. We recall that we are considering models with discrete time dynamics. Under such dynamics, it is possible, in one discrete step, to jump across multiple domains of the partition (see Figure 4.3). In this work, we accept such behaviours as we are considering the general case of discrete time dynamics. However, while the discrete time model is produced through an approximation of a continuous time model, such "jump" are considered as a bad behaviours and must be detected. At the end of this section we present how to detect such behaviours using our tree representation.

We note that under the assumption of the existence of the behaviours described in Remark 4.3, we can provide the following translation of a partition into a hybrid system with discrete time dynamics as in Definition 4.4. We define q modes, one for each domain N i , i ∈ [1, q]: the invariant associated to a mode i is the whole state space. Through Remark 4.3, we note that a mode i has an urgent3 transition to any other mode i = i, with an associated guard being the domain N i . The reset associated to each transition is the identity. Definition 4.4 (Approximation map). Given a continuous function f : R n → R, we define as its approximation map associated to the list of constraint H the piecewise continuous function A f : R n → R such that:

A (f ) (x) := A (f ) i (x), ∀x ∈ N i , with each A (f ) i : R n → R a polynomial (or rational function) approximating f for x ∈ N i .
We first mention that in this work we do not focus on how the approximation is obtained (be it by Taylor approximation, or by global interpolation methods for example): we assume that it is given. We also do not take into consideration the approximation error, as it can be handled latter as a parameter of the system.

Binary space partition trees (BSPT).

To deal with these hybrid dynamics, we need an efficient way to encode this partition of the state space, such that it is easy to locate a set on the partition during its evolution under the dynamics. To this end, we use the Binary space partition tree (BSPT) techniques [START_REF] Fuchs | On visible surface generation by a priori tree structures[END_REF]. Each node of a BSPT is associated with a non-empty set (also called domain of the node) that is defined by a conjunction of linear constraints. For simplicity of notation and presentation, instead of saying that the domain of a node intersects with some set, we simply that say a node intersects with some set and we use the notation N to denote both the nodes and its associated domain.

We recall that H = {h i | i ∈ {1, . . . , n H }} is the set of constraints involved in the piecewise approximations of the dynamics. The domain associated with the root node of the tree is the whole state space. For each leaf node, if adding one constraint from H splits the corresponding domain into two non-empty subdomains, we create two child nodes from it, each corresponds to a sub-domain. This constraint is called the splitting constraint of the node. We repeat the same procedure until all the constraints in H are added.

We associate with the root node the highest rank n H , and a child node has a rank smaller than its parent by 1. Once the BSPT is constructed, each leaf of this tree corresponds to a mode i associated to each subset N i of the partition of the state space by H. FOR BIOLOGICAL MODELS VALIDATION If a model involves multiple approximation maps, it is possible to statically build a single BSPT representing all the possible discrete modes. Two BSPT can be fused by replacing each leaves of the first tree by the top node of the second tree. Then, starting from the node of smallest rank of the first tree (previously the leaves) we go downward and eliminate the branches corresponding to redundant constraints and the nodes with empty domains. Such a method corresponds to the simple parallel composition of the two associated hybrid systems. In this work, the composition is performed statically at the beginning. In the recent work [START_REF] Kekatos | Constructing verification models of nonlinear simulink systems via syntactic hybridization[END_REF], a similar approach has been applied to approximate non-linear dynamics using piecewise linear ODEs. Unlike our work, they perform the composition of each approximation map on the fly in the hybrid automata tool SpaceEx [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF].

Example 4.5 (Partition of R 2 ). In this example we consider a partition of the R 2 by three constraints h 1 , h 2 , h 3 defined by x 1 ≤ c 1 , x 1 ≤ c 2 and x 2 ≤ c 3 respectively. We also assume that c 1 < c 2 . Then the state-space is partitioned in 6 domains N 1 to N 6 . We associate to a domain N i a vector filed A Set localization. We now explain how to locate a given polyhedral compact set X on the partition, and identify the nodes that intersect with X. Note that such sets X can be sets generated by the dynamics of the system. Indeed, even considering the worst case of Remark 4.3 we expect some continuity in the flow to speed up this localization operation in the general case. Thus, we can expect that the successor set X τ +1 is in the same locations or in the locations that are adjacent to the positions of the current set X τ . Consequently, during the reachability process, instead of starting the search from the root of the tree, we can start from the current or adjacent locations. We call these starting nodes the guess nodes. However, at the initial step τ = 0, since there is no previous information, we start our search from the root of the tree. The search algorithm, named locating, consists of the following two steps.

In the first step, we search for the node N of the lowest rank which strictly contains X, that is X ⊆ N . To do so, we test if there is no node in the guess list satisfying this condition. If this is the case, we go upward in the tree and test their parent nodes, until the condition is satisfied. If the node N found this way is a leaf, N is the only node containing X, the algorithm returns (N , X) and stops. Otherwise, it proceeds to the second step starting from N . One can easily see that the efficiency of this algorithm depends on the ordering of the constraints when building the BSPT. In any case using guess lists is not worse than starting from the root. A good heuristic when building the tree, is to have the constraints the most susceptible to be crossed at the lowest ranks. This way, the previous scheme avoid going too much upward in the tree before finding the first strictly containing node. Monday 6 th August, 2018 (08:34) The second step of the algorithm is a breadth-first search starting from the node N , in order to obtain (L, X ) where L is the set of nodes with non-empty intersections, and X is the set of corresponding intersections (stored as a set of convex polyhedra). This step is a recursive procedure applied to a set L of nodes intersecting with X, until we reach the leaves. Initially, L = {N }, and the set X contains only {X}. Then, until L contains only leaves when the algorithm returns (L, X ) and then stops, the following procedure is iterated. By construction, at any iteration, all the nodes in L have the same rank and therefore have the same splitting constraint, denoted by h:

-If X ⊆ h, then X intersects the left child of every nodes in L, then L = left children(L).

-If X ⊆ ¬h, then X intersects the right child of every nodes in L, then L = right children(L).

-If X satisfies none of the two above conditions, then X intersects both all the right and left children of the nodes in L. Then, L = left children(L)∪ right children(L), and the algorithm updates X = {X ∩ h} ∪ {X ∩ ¬h}, where {X ∩h} and {X ∩¬h} are polyhedra resulting from intersecting each set in X with the half-spaces corresponding to the constraints h and ¬h respectively. Detecting jumps. We now want to define a procedure to test if a set X τ +1 is in a domain adjacent to the position of the previous set X τ , or if it has "jumped" across multiple domains as shown in Figure 4.3. In case a jump is detected, a roll-back to iteration τ may be performed and, for example in the case of discrete time systems coming from numerical integration, the time step may be reduced.

First we define a constraint h in the form ax ≤ c, as tangent to a compact set N if max x∈N (a • x) = c. We recall that we defined a node N by a conjunction of constraints, possibly redundant. For each leaf N i we identify all its constituting constraints that are not tangent. Monday 6 th August, 2018 (08:34)
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Let us assume that X τ is located in the node N i at step τ . Let us also assume that X τ +1 intersects a node N i at step τ + 1 such that there is a constraint h that is crossed: meaning h appears in the definition of N i and ¬h in the one of N i . If h is not tangent to N i then X τ +1 has performed a "jump" (see Figure 4.3).

The Bernstein expansion based method

As seen in the previous section, one can compute an over-approximation of a reachable set using template reachability analysis. One of the main difficulties is the optimization problem max (y,k)∈X×K Γf (y, k) (in the particular case of polyhedral templates) to compute a tight template over-approximation.

In this section, we present the first method for reachability analysis based on the Bernstein expansion of polynomials. This approach has been previously studied in [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] and we propose to extend it to a larger class of dynamical systems.

We first present the necessary background on the Bernstein expansion and its application to non-linear optimization. Then we introduce our contribution for the reachability analysis of discrete time piece-wise polynomial dynamical systems.

Polynomial optimization using the Bernstein expansion

Bernstein expansion. Bernstein expansion is the reformulation of a polynomial from its expression in the canonical basis to its expression in the Bernstein basis. It was first proposed by S.N. Bernstein, at the beginning of the XX th century, in a proof of the Weirstrass theorem [START_REF] Natanovich | Démonstration du théorème de weierstrass fondée sur le calcul des probabilités[END_REF]. Its use for the enclosure of univariate polynomials was later proposed in [START_REF] Shisha | The bernstein form of a polynomial[END_REF] and extended in [START_REF] Garloff | Convergent bounds for the range of multivariate polynomials[END_REF] to multivariate polynomials. We recommend two recent surveys [START_REF] Rida | The bernstein polynomial basis: A centennial retrospective[END_REF][START_REF] Titi | Fast determination of the tensorial and simplicial bernstein forms of multivariate polynomials and rational functions[END_REF] on the Bernstein expansion, its computation, and applications. We recall from [START_REF] Garloff | Convergent bounds for the range of multivariate polynomials[END_REF]Theorem 2] the definition of the multivariate Bernstein expansion: Definition 4.7 (Multivariate Bernstein expansion). Given a multivariate polynomial f and a degree l ≥ d with d being the multi-degree of f , then for x ∈ [0, 1] n , the Bernstein expansion of multi-degree l of f is given by:

f (x) = γ a γ x γ = α≤l b (f ) α B l,α (x). (4.9)
where b

(f ) α (also denoted by b α when there is no confusion) are the Bernstein coefficients (of multi-degree l) of f , and B l,α (x) are the Bernstein basis polynomials defined by B l,α (x) :

= n i=1 B l i ,α i (x i ) and B l i ,α i (x i ) := l i α i x α i i (1 -x i ) l i -α i .
The Bernstein coefficients are given by the following formulas: The associated Bernstein control points are represented in the Figure 4.5. We note that the maximum of the coefficients is 4. As it is achieved in x = 1, we know the solution is optimal, which can be observed in Figure 4.5. However, the minimum of the Bernstein coefficients b, which is -1 3 , is not the minimum of f (x) over [-1, 1]. The Bernstein expansion having numerous properties, we give only the ones necessary for our reachability purpose in Section 4.2.2. For a more exhaustive introduction to the Bernstein expansion, as well as some proof of the basic properties, we refer the interested reader to [START_REF] Paul | Enclosure methods for systems of polynomial equations and inequalities[END_REF]. 

b α = β≤α α β l β a β , 0 ≤ α ≤ l. ( 4 
(x) = x 5 + 3x 2 for x ∈ [-1, 1] are: b = {2, 9 
(cf 1 +f 2 ) α = cb (f 1 ) α + b (f 2 ) α , ∀c ∈ R,
where the Bernstein expansions with same multi-degrees are considered. 

min α≤l b α ≤ f (x) ≤ max α≤l b α , ∀x ∈ [0, 1] n .
Property 4.12 (Sharpness [151, (3.2.5)]). If the minimum (resp. maximum) of the b α is reached for α in a corner of the box [0,

l 1 ] × • • • × [0, l n ], then b α is the minimum (resp. maximum) of f over [0, 1] n .
Property 4.9 gives the maximal computational cost needed to find a lower or a upper bound of f (x), ∀x ∈ [0, 1] n and for a Bernstein expansion of fixed multi-degree l. Property 4.11 is used to provide a lower (resp. upper) bound of min x∈[0,1] n f (x) (resp. max), while Property 4.12 allows us to determine if the given bound is optimal. The convergence toward the optimum can be obtained either through subdivision of the domain [0, 1] n , or through an increase of the multidegree l. The work of [START_REF] Garloff | Investigation of a subdivision based algorithm for solving systems of polynomial equations[END_REF][START_REF] Paluri | A new subdivision algorithm for the bernstein polynomial approach to global optimization[END_REF][START_REF] Mourrain | Subdivision methods for solving polynomial equations[END_REF] proposes multiple subdivision schemes and gives their associated convergence rates. The convergence rate in degree elevation can be found in the original work on the multivariate Bernstein expansion [START_REF] Garloff | Convergent bounds for the range of multivariate polynomials[END_REF] or more recently in [START_REF] De Klerk | Error Bounds for Some Semidefinite Programming Approaches to Polynomial Minimization on the Hypercube[END_REF]. Finally, we recall from [START_REF] Dang | Reachability analysis for polynomial dynamical systems using the bernstein expansion[END_REF] an upper bound on the distance between a polynomial f and its Bernstein enclosure: Lemma 4.13. Let π (f ) l : R n → R be the piecewise linear function defined by the Bernstein control point of a polynomial f at a given degree l. Then, the following inequation holds for all x ∈ [0, 1] n :

f (x) -π (f ) l (x) ∞ ≤ max x∈[0,1] n ;i,j∈{1...n} |∂ i ∂ j f (x)| (4.11)
In the recent years multiple methods have been developed to compute efficiently the Bernstein coefficients. In this work we use two of them depending of the situation: the matrix computation [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF] and the implicit form [START_REF] Paul | Fast construction of constant bound functions for sparse polynomials[END_REF]. The first method is the method originally implemented in the software sapo [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF] and efficiently computes all the Bernstein coefficients using matrix operations. The second method uses an implicit representation of the Bernstein coefficients. Indeed, it can be observed, in [START_REF] Paul | Fast construction of constant bound functions for sparse polynomials[END_REF], that the Bernstein coefficients of a multivariate monomial x γ up to a degree l can be expressed as the product of the coefficient of each univariate monomial 

x γ i i constituting x γ : b (x γ) α = i≤n b (x γ i i ) α i (4.
nomial f (x 1 , x 2 ) = x 3 1 x 2 -3x 1 x 2 2 for (x 1 , x 2 ) ∈ [-2, 0.5] 2 .
Then, the implicit representation for l = (3, 3) is given by: Finally, the Bernstein coefficients are obtained by combing both matrices with the coefficients 1 and -3: This representation is especially useful to determine the enclosure as one does not always need to compute explicitly all the Bernstein coefficients to find their maximum or minimum. Indeed, the work of A.P. Smith [START_REF] Paul | Fast construction of constant bound functions for sparse polynomials[END_REF] provides a set of rules based on the sparsity of the polynomial to determine a subset of coefficients containing the enclosure min α (b α ) and max α (b α ). We also note that the complete set of the Bernstein coefficients of x γ can be obtain as the successive Kronecker product [START_REF] Steeb | Matrix calculus and Kronecker product: a practical approach to linear and multilinear algebra[END_REF] of the coefficients of each constituting univariate monomial x

1 ( -8 2 -1/2 1/8 ) -3 ( -2 -7/6 -1/3 1/2 )     -2 -7/6 -1/3 1/2         16 - 4 
    40 
γ i i .
As the set of coefficient as defined in Definition 4.7 can also be represented as a tensor, this Bernstein form is also called tensorial Bernstein expansion over boxes (in contrast with the simplicial Bernstein expansion over simplices [START_REF] Titi | Matrix methods for the simplicial bernstein representation and for the evaluation of multivariate polynomials[END_REF]).

In practice biochemical reaction networks are often described by sparse polynomials: the dynamic of each species may not depend of all the species of the systems. This sparsity characteristic makes the implicit form very efficient for template reachability analysis of biochemical systems. However, when one cannot take advantage of any sparsity pattern or when all the coefficients have to be computed, it is preferable to use the matrix computation method from [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF].

Parametric Bernstein expansion. The previous work of [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF] introduces a parametric Bernstein expansion for functions f (x, k) : R n × R m → R, which are multivariate polynomial in x and linear in k. In a similar manner to Definition 4.7 we can write a parametric Bernstein expansion of f up to multi-degree l as:

f (x, k) = γ a γ (k)x γ = α≤l b (f ) α (k)B l,α (x) , (4.13) 
where each a γ (k) : R m → R is a linear functions in k. Similarly, each Bernstein coefficient is formulated as a linear function in the parameters k:

b α (k) = β≤α α β l β a β (k), 0 ≤ α ≤ l. (4.14)
The previous work of [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF] demonstrates that the enclosure and sharpness properties hold for the parametric Bernstein expansion:

min α≤l min k∈K b α (k) ≤ min (x,k)∈[0,1] n ×K f (x, k) max (x,k)∈[0,1] n ×K f (x, k) ≤ max α≤l max k∈K b α (k) . (4.15) 
Moreover, we note that the methods and implementation to compute the Bernstein coefficients in the non-parametric case can still be applied in the parametric case. Indeed, one can write by linearity (Property 4.10):

b (f ) α (k) = γ a γ (k)b (x γ ) α . (4.16)
We also note that the number of parametric Bernstein coefficients is still n i=1 (l i + 1). Finally, if the set K is a polyhedral set then each optimization min k∈K b α (k) can be solved using linear programming.

Example 4.15 (Parametric Bernstein expansion). Let define

f (x, k) = (2x 2 - x)k 1 + x 2 k 2 + (x 2 -x)k 3 , with k ∈ [-1, 1] 3 .
Applying the above described methods for the parametric Bernstein expansion with l = d = 2, we consider the following parametric Bernstein coefficients:

b (f k ) 0 = 0, b (f k ) 1 = - k 1 2 - k 3 2 , b (f k ) 2 = k 1 + kk 2 .
We note that the number of Bernstein coefficients w.r.t. x is 3, which is much lower than the one w.r.t. (x, k), which is equal to 24. One can obtain an upper bound (resp. lower bound) by taking the maximum (resp. minimum) of the Bernstein coefficients. In this case, 

max k∈[-1,1] 3 b (f k ) 1 = 0, max k∈[-1,1] 3 b (f k ) 2 = 1 and max k∈[-1,1] 3 b (f k ) 3 = 2.
m is now max (x,e)∈[0,1] n ×[-1,1] m f (x, e) = f (x, φ -1 (e)).
Then, by linearity of f (x, e) in e we can write:

f (x, e) = m j=1 e j s j (x) , (4.17) 
where s j (x) = ∂f (x,e) ∂e j is a polynomial in x.

Finally, for each l ≥ d5 , let us note

f l := max α≤k m j=1 |b (s j )
α | and f l := -f l . Our procedure is based on the following lemma: Lemma 4.16. For each l ≥ d, the polynomial f (x, e) can be bounded as follows: where each Bernstein coefficient satisfies b

f l ≤ f (x, e) ≤ f l , ∀(x, e) ∈ [0, 1] n × [-1, 1] m . ( 4 
(f e ) α = m j=1 e j b (s j )
α by Property 4.10 (each e j being a scalar in [-1, 1]). The proof of the left inequality comes from:

min e∈[-1,1] m min α≤k ( m j=1 e j b (s j ) α ) = min α≤k min e∈[-1,1] m ( m j=1 e j b (s j ) α ) = min α≤k m j=1 -|b (s j ) α | = -max α≤k m j=1 |b (s j ) α | .
The proof of the right inequality is similar.

Remark 4.17. The computational cost of f l is now m(l + 1) 1 since we need to compute the Bernstein coefficients for each s j (x). This cost is polynomial in the degree and exponential in n but is linear in m the number of parameters. In the implementation, we first compute each b (f e ) α as a function of e and then optimize afterwards using either optimization as in [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF] or Lemma 4.16 depending of the situation. As described further in Section 4.2.2, we show how [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] gets around the limitation to boxes in Property 4.11 and handle x in polyhedral domains through the definition of bundles of parallelotopes. A similar approach can be taken if one wants to extend Lemma 4.16 to polyhedral sets.

Parametric Bernstein expansion of rational functions. To handle a larger class of biological models we introduce an additional method, based on the original results of [START_REF] Narkawicz | Bounding the Range of a Rational Function over a Box[END_REF], to optimize rational function using the Bernstein expansion. Let us now assume that f (x, k) : R n × R m → R is a rational function in x and linear in k:

f (x, k) = f 1 (x, k) f 2 (x) ,
where

f 1 ∈ R[x] linear in k and f 2 ∈ R[x] with f 2 (x) = 0 , ∀x ∈ [0, 1] n .
Then, from the previous results on the parametric Bernstein expansion (4.13),(4.16) and by linearity in k we can extend the theorem from [START_REF] Narkawicz | Bounding the Range of a Rational Function over a Box[END_REF] to the parametric case.

Theorem 4.18. Let f 1 (x, k) be a polynomial in x of multi-degree d (f 1 ) and linear in k and f 2 (x) be a polynomial in x of multi-degree

d (f 2 ) such that f 2 (x) = 0 , ∀x ∈ [0, 1] n . Given l ≥ max(d (f 1 ) , d (f 2 ) ), we note {b f 1 α (k)} and {b f 2 α } the Bernstein coefficients up to degree l of f 1 and f 2 respectively. Then f (x, k) = f 1 (x, k)/f 2 (x) is bounded for (x, k) ∈ [0, 1] n × K by: min α≤l min k∈K b f 1 α (k) b f 2 α ≤ f (x, k) ≤ max α≤l max k∈K b f 1 α (k) b f 2 α (4.20)
Proof. For a given fixed k ∈ K we have thank to [START_REF] Narkawicz | Bounding the Range of a Rational Function over a Box[END_REF]:

f (x, •|k) ≤ max α≤l b f 1 α (k) b f 2 α = max α≤l γ≤d (f 1 ) a γ (k) b x γ α b f 2 α
Thus, it yields for all k ∈ K by linearity in a γ (k)

f (x, k) ≤ max k∈K max α≤l γ≤d (f 1 ) a γ (k) b x γ α b f 2 α ≤ max α≤l max k∈K γ≤d (f 1 ) a γ (k) b x γ α b f 2 α = max α≤l max k∈K b f 1 α (k) b f 2 α
The proof is similar for the other inequality.

The main advantage is that this enclosure is more accurate than the naive enclosure:

min x,k f 1 (x, k) max x f 2 (x) ≤ f (x, k) ≤ max x,k f 1 (x, k) min x f 2 (x) .
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Indeed, in the formulation of Theorem 4.18 we avoid decorrelating the optimization on the numerator and denominator. However, this property requires generating the complete Bernstein expansion of both functions f 1 and f 2 up to the closest common multi-degree l ≥ max(d (f 1 ) , d (f 2 ) ). We refer the reader to [START_REF] Garloff | Convergence and inclusion isotonicity of the tensorial rational bernstein form[END_REF] for the convergence rates in degree elevation and subdivision for the Bernstein expansion of rational functions. We will call in the following a rational vector field, a vector field constituted of polynomial functions and at least one rational function.

Validation of piecewise polynomial ODE systems using the Bernstein expansion

In the previous sections, we defined the necessary background on discrete time reachability analysis using polyhedral templates. We also introduced the parametric Bernstein expansion as a method to solve parametric polynomial optimization problems. We exhibited our contribution for an efficient representation of discrete time system approximation maps. Finally, we showed how the work of [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF] can be extended to the optimization of parametric rational function, and we proposed an alternate method for parametric polynomial optimization when parameters lie in a box.

In this section, we introduce the algorithm for discrete time reachability analysis by extending the previous implementation of [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF]. To this aim, we propose in Algorithm 2 an algorithm to compute the intersection of parallelotope bundles with linear constraints. Then, we extend in Algorithm 3 the work of [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] to discrete time reachability analysis of piecewise rational functions.

We recall that we are considering dynamics defined6 by a polynomial (or rational) vector field f in x and linear in the parameters k. We remind from Section 4.1.2 (4.8) that given a template matrix the template-based reachability algorithm can be summarized to the following optimization problem at each iteration τ :

c τ +1 = max (x,k)∈Xτ ×K Γf (x, k) =     max (x,k)∈Xτ ×K Γ 1 f (x, k) . . . max (x,k)∈Xτ ×K Γ p f (x, k)     (4.21)
In the previous section we showed how the Bernstein expansion can be used to efficiently solve this optimization problem for x ∈ [0, 1] n . We note such optimization method can be extended for x in any linear transformation of the unit box [0, 1] n . The previous implementation [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] focused on the parallelotope: a set representation that can be expressed as a linear transformation of [0, 1] n . Definition 4.19 (Parallelotope generator representation). Let q ∈ R n be a point, and {σ , . . . , σ n } a set of n linearly independent vectors in R n . We associate to q and {σ j } the parallelotope Π such that for all x ∈ Π there exists y ∈ [0, 1] n with:

x = π(y) = q + n j=1 y j * σ j (4.22)

Figure 4.6: We represent a 2 dimensional parallelotope Π defined by its generator form: a linear combination of the base vertex q, and the generators σ 1 , σ 2 . We also represent its associated constraint from Γ Π defined by the facets normal

Γ Π 1 , Γ Π 2 , -Γ Π 1 , -Γ Π 2
A parallelotope Π can also be described by a set of linear constraints that we denote by the linear system Γ Π x ≤ c Π (see Figure 4.6). The representation change from the generators to the constraints representation, or inverse, is defined in the original work on parallelotopes [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF]. Using the linear transformation from (4.22), then in the particular case where X τ is a parallelotope each optimization max Xτ ×K Γ i f (x, k) from (4.21) becomes:

c τ +1,i = max (x,k)∈Xτ ×K Γ i f (x, k) = max (y,k)∈[0,1] n ×K Γ i f (π τ (y), k) = max (y,k)∈[0,1] n ×K η i (y, k) , (4.23) 
where π τ is the linear transformation from the unit box to the parallelotope X τ , and η i (y, k) = Γ i f (π τ (y), k) at iteration τ . This optimization can now be addressed using the Bernstein expansion. However, after this single step we may still obtain a polyhedral set Xτ+1 , which is not necessarily a parallelotope 7 . The work of [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] develops further [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF] and introduces the parallelotope bundle to approximate polyhedral compact sets. In [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] it is proved that a polyhedron P can be exactly described by the intersection of at least n P = round ↑ (p/n) parallelotopes, where round ↑ (•) is the rounding to the superior natural integer, n is the dimension and p the number of non-symmetric constraints (two constraints are symmetric if their normal vectors are opposed) defining in the constraint matrix of P.

P = Π 1 ∩ Π 2 ∩ • • • ∩ Π n P (4.24)

CHAPTER 4. SET-BASED SIMULATION FOR BIOLOGICAL MODELS VALIDATION

We note from [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] that the constraint representation of each parallelotope Π j , ı ∈ [1, n P ] is constituted from n constraints of P and their symmetric. The parallelotope Π 1 is defined by the constraint system Γ Π 1 = {Γ 1 , Γ 3 , -Γ 1 , -Γ 3 }, while the parallelotope Π 2 is defined by the constraint system Γ Π 1 = {Γ 1 , Γ 2 , -Γ 1 , -Γ 2 }. We note that the constraint Γ 1 is redundant in Π 1 and Π 2 : this redundancy will be used later in Example 4.21. It is also proved that the image of P by a non-linear transformation is included in the intersection of the image of all its associated parallelotopes. Let f be a nonlinear vector field:

f (P) ⊆ f (Π 1 ) ∩ f (Π 2 ) ∩ • • • ∩ f (Π n P ) (4.25)
If at iteration τ the set X τ is a polyhedron that is described by the intersection of a set of parallelotopes {Π j } j∈[1,n Xτ ] , then we need to solve an optimization problem similar to (4.23) for each parallelotope and keep the tightest result:

c τ +1,i = min j∈[1,n Xτ ] max (y,k)∈[0,1] n ×K Γ i f (π j,τ (y), k) = min j∈[1,n Xτ ] max (y,k)∈[0,1] n ×K η i,j (y, k) (4.26)
where η i,j (y, k) = Γ i f (π j,τ (y), k) at iteration τ . This procedure is called all for one (AFO) in [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] as the position of each constraint is the tightest among all the ones resulting from the optimization over each parallelotope. Using the formulation of (4.26) we can now use the Bernstein expansion to compute the over-approximation using polyhedral template of the image of a polyhedron by a polynomial (or rational) vector field.

In this work we want to perform reachability analysis of piecewise continuous vector fields. To this aim, we defined in Section 4.1.3 approximation maps and their associated representation as BSPT. To locate the position of a polyhedron in the tree, and its intersection with the different nodes we use the intersection operator between a polyhedron X and a linear constraint h. The work of [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] does not introduce an equivalent operator for parallelotope bundles.

The previous work of [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] presented a procedure, called decompose, to produce a bundle of parallelotopes representing a template polyhedron X. One can compute the intersection of a bundle associated to the polyhedron X with a linear constraint h by applying the procedure decompose on the resulting intersection X ∩ h. In [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF], the authors note that finding the most accurate parallelotope decomposition representing a polyhedron is NP-hard. To this aim, they include into the procedure decompose an heuristic to obtain an accurate decomposition.

In this work we propose a different approach which focuses less on accuracy and more on performances. A method to compute this intersection without having to recompute the bundle representation from scratch using the decompose procedure [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF] is defined in the Algorithm 2. This algorithm is divided in two steps: the first is to add the intersecting constraint to the bundle definition, and the second is to tighten the redundant constraints in consequence. Indeed, as we work with a fixed template, some constraints of the template may become redundant at some point of the analysis. We note that if the intersecting constraint does not appear in the template, and there is no constraint in common between two parallelotopes of the bundle, unlike in Figure 4.8 for example, then we need to add a new parallelotope: this occurs when n P = p/n.
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In view of application to systems biology, we already noted that the polynomials modelling the dynamics are often sparse. This implies that the optimization of the constraint parallel to the axis (defining a box) are in general cheaper to compute. A good heuristic is to always add such axis parallel constraints in the template, and keep a complete box in the bundle (see Figure 4.8). This box can then be duplicated when one needs to add new parallelotope to the bundle. 

Γ Π 1 1 = Γ Π 2 1 = Γ 1 .
Following Algorithm 2, we need to update the parallelotope Π 1 into Π 1 by changing the constraint

Γ Π 1 1 into Γ Π 1 1 = h.
Consequently, the parallelotope Π 1 is defined by the constraint system h, Γ 3 , -h, -Γ 3 . Finally, to obtain a representing bundle we tighten, using linear optimization, the remaining constraints -Γ Π 1 2 and -Γ Π 2 2 such that they are tangent to the set P ∩ h. 

Γ (Πnew) [1] = a, c (Πnew) [1] = c
∃i = i ∈ [1, n P ] s.t. l =common cstr(Π i , Π i ) 19:
/* A constraint appears multiple times: we replace it by h */ 20: Update each parallelotope constraint representation accordingly.

Γ (Πi) [l] = a, c (Πi) [l] = c

27:

Update each parallelotope generator representation. 28: end for 29: return X, B Finally, we describe in Algorithm 3 the complete algorithm for one step of polyhedral template reachability analysis of piecewise dynamics such as defined in Definition 4.4 using Bernstein expansion. The complete reachability analysis is done by iterating over Algorithm 3.

The Krivine-Stengle representation based method

In this section we provide a method for reachability analysis of parametric polynomial system using sparse Krivine-Stengle (K.S.) representations of positive polynomials. This method is an alternative to the Bernstein expansion based method as it is also designed to solve parametric polynomial optimization problems. However, unlike Bernstein expansion, which is limited to variables constrained in a box, K.S. can be used for polynomial optimization with semi-algebraic constraints. In practice we propose an algorithm for polyhedral template reachability analysis of Compute the approximate dynamics f κ associated with the node L κ 12:

for Π j ∈ Bundle(X κ ) do 13:

/* Get parallelotopic bundle associated to polyhedron X κ */ 14:

Construct the polynomial η i,κ,j from polynomial f κ of the dynamics, 15:

template constraint Γ i and paralletopic domain Π j , as defined in (??)

16:

c i,j,κ = max{η i,j,κ (y, k)) | y ∈ [0, 1] n ∧ k ∈ K} 17:
/* using the Bernstein expansion for polynomial η i,κ,j */ 

c i,κ = min j (c i,κ ,j ) 20: 
/* smallest bound over all parallelotopes Π j in the bundle */ 

Polynomial Optimization using K.S representations

Dense Krivine-Stengle representations. Krivine-Stengle certificates for positive polynomials can first be found in [161,[START_REF] Stengle | A nullstellensatz and a positivstellensatz in semialgebraic geometry[END_REF] (see also [163, Theorem 1(b)]). Such certificates give representations of positive polynomials over a compact set X = {x ∈ R n : 0 ≤ g i (x) ≤ 1, i = 1, . . . , p}, with g 1 , . . . , g p ∈ R[x]. We note d g = max i (deg(g i )). The compact set X is a basic semi-algebraic set, that is a set defined by a conjunction of finitely many polynomial inequalities. In the sequel, we assume without loss of generality that X ⊆ [0, 1] n and that X involves the Monday 6 th August, 2018 (08:34)
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x i for all i = 1, . . . , n in its definition. This implies that the family {1, g i } i≤p generates R[x] as an R-algebra, which is a mandatory assumption for Theorem 4.23. Given α = (α 1 , . . . , α p ) and β = (β 1 , . . . , β p ), let us define the polynomial

h α,β (x) = g α (1 -g) β = p i=1 g α i i (1 -g i ) β i .
Example 4.22 (K.S. representations). For instance on the two-dimensional unit box, one has

n = p = 2, X = [0, 1] 2 = {x ∈ R 2 : 0 ≤ x 1 ≤ 1 , 0 ≤ x 2 ≤ 1}. For α = (2, 1) and β = (1, 3), one has h α,β (x) = x 2 1 x 2 (1 -x 1 )(1 -x 2 ) 3 .
Theorem 4.23 (Dense Krivine-Stengle representations). Let ψ ∈ R[x] be a positive polynomial over X . Then there exist l ∈ N and a finite number of nonnegative weights λ α,β ≥ 0 such that:

ψ(x) = |α+β|≤l λ α,β h α,β (x), ∀x ∈ R n . (4.27)
It is possible to compute the weights λ α,β by identifying in the monomial basis the coefficients of the polynomials in the left and right sides of (4.27). Denoting by (ψ) γ the monomial coefficients of ψ, with γ ∈ N n l := {γ ∈ N n : |γ| ≤ l = kd g }, the λ α,β fulfill the following equalities:

ψ γ = |α+β|≤l λ α,β (h α,β ) γ , ∀γ ∈ N n l .
(4.28)

Global optimization using the dense Krivine-Stengle representations. Here we consider the polynomial maximization problem f * := max x∈X f (x), with f a polynomial of degree d. We can rewrite this problem as the following infinite dimensional problem8 :

f * := min t∈R t, s.t. t -f (x) ≥ 0 , ∀x ∈ X . (4.29)
The idea is to look for a hierarchy of finite dimensional linear programming (LP) relaxations by using Krivine-Stengle representations of the positive polynomial ψ = t -f involved in Problem (4.29). Applying Theorem 4.23 to this polynomial, we obtain the following LP problem for each l ≥ d:

p * l := min t,λ α,β t, s.t (t -f ) γ = |α+β|≤l λ α,β (h α,β ) γ , ∀γ ∈ N n l , λ α,β ≥ 0. (4.30)
As in [163, (4)], one has the following convergence theorem: At fixed l, the total number of variables of Problem (4.30) is given by the number of λ α,β and t, that is 2p+l l + 1, where p is the dimension of g. The number of constraints is equal to the cardinality of N n l , which is n+l l . We recall that l = l d g . In the particular case where X is an hypercube, the LP has 2n+l l +1 variables and n+l l constraints.

Sparse Krivine-Stengle representations. We now explain how to derive less computationally expensive LP relaxations, by relying on sparse Krivine-Stengle representations. For I ⊆ {1, . . . , n}, let R[x, I] be the ring of polynomials restricted to the variables {x i : i ∈ I}. We borrow the notion of a sparsity pattern from [164, Assumption 1]: Definition 4.25 (Sparsity Pattern). Given m ∈ N, I j ⊆ {1, . . . , n}, and J j ⊆ {1, . . . , p} for all j = 1, . . . , m, a sparsity pattern is defined by the four following conditions:

f can be written as: f = m j=1 f j with f j ∈ R[x, I j ], -g i ∈ R[x, I j ] for all i ∈ J j , for all j = 1, . . . , m, -m j=1 I j = {1, . . . , n} and m j=1 J j = {1, . . . , p}, -(Running Intersection Property) for all j = 1, . . . , m -1, there exists s ≤ j s.t. I j+1 ∩ j i=1 I i ⊆ I s .

Example 4.26 (Sparsity Pattern). As an example, the four conditions stated in Definition 4.25 are satisfied while considering f (

x) = x 1 x 2 + x 2 1 x 3 on the hypercube X = [0, 1] 3 . Indeed, one has f 1 (x) = x 1 x 2 ∈ R[x, I 1 ], f 2 (x) = x 2 1 x 3 ∈ R[x, I 2 ] with I 1 = {1, 2}, I 2 = {1, 3}. Taking J 1 = I 1 and J 2 = I 2 , one has g i = x i ∈ R[x, I j ] for all i ∈ I j , j = 1, 2.
Let us consider a given sparsity pattern as stated above. By noting

n j = |I j |, p j = |J j |, then the set X = {x ∈ R n : 0 ≤ g i (x) ≤ 1, i = 1, . . . , p} yields subsets X j = {x ∈ R n j : 0 ≤ g i (x) ≤ 1, i ∈ J j }, with j = 1, . . . , m. If X is a compact subset of R n then each X j is a compact subset of R n j .
As in the dense case, let us note h α j ,β j := g α j (1 -g) β j , for given α j , β j ∈ N n j .

The following result, a sparse variant of Theorem 4.23, can be retrieved from [164, Theorem 1] but we also provide here a shorter alternative proof by using [START_REF] Grimm | A note on the representation of positive polynomials with structured sparsity[END_REF]. Monday 6 th August, 2018 (08:34)
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Theorem 4.27 (Sparse Krivine-Stengle representations). Let f, g 1 , . . . , g p ∈ R[x] be given and assume that there exist I j and J j , j = 1, . . . , m, which satisfy the four conditions stated in Definition 4.25. If f is positive over X , then there exist φ j ∈ R[x, I j ], j = 1, . . . , m such that f = m j=1 φ j and φ j > 0 over X j . In addition, there exist l ∈ N and finitely many nonnegative weights λ α j ,β j , j = 1, . . . , m, such that:

φ j = |α j +β j |≤l λ α j ,β j h α j ,β j , j = 1, . . . , m. (4.31) 
Proof. From [160, Lemma 3], there exist φ j ∈ R[x, I j ] such that f = m j=1 φ j and φ j > 0 on X j . Applying Theorem 4.23 on each φ j , there exist l j ∈ N and finitely many nonnegative weights λ α j ,β j such that φ j = |α j +β j |≤l j λ α j ,β j h α j ,β j . With l = max 1≤j≤m {l j }, we complete the representations with as many zero λ as necessary and obtain the desired result.

In Theorem 4.27, one assumes that f can be written as the sum f = m j=1 f j , where each f j is not necessarily positive. The first result of the theorem states that that f can be written as another sum f = m j=1 φ j , where each φ j is now positive. As in the dense case, the λ α j ,β j can be computed by equalizing the coefficients in the monomial basis. We also obtain a hierarchy of LP relaxations to approximate the solution of polynomial optimization problems. We now provide these relaxations as well as their computational costs in the particular context of parametric polynomial optimization for reachability analysis in Section ??.

Set-based simulation using K.S representations

We recall from (4.5) and (4.8) that template reachability analysis with polyhedral templates can be summarized into solving the optimization problem:

c τ +1,i = max (x,k)∈ Xτ ×K Γ i f (x, k)
For the sake of keeping close notations to Section 4.3.1, we note f (x, k) = Γ i f (x, k) which is polynomial in x and linear in k. In this particular section, we assume that Xτ (also noted X in the following) is a compact semi-algebraic set include in [0, 1] n . We also assume that K is the hypercube9 [-1, 1] m .

Here we explain how to compute upper bounds of f := max (x,k)∈X×K f (x, k) by using sparse Krivine-Stengle representations. If necessary, we can obtain lower bounds of f := min (x,k)∈X×K f (x, k) in a similar way.

Let g X be the vector of p polynomial constraints whose conjunction defines the semi-algebraic set X. For the sake of consistency with Section 4.3.1, we introduce the variable y ∈ R n+m defined by y i := x i , j = 1, . . . , n and y i := k i-n , i = n + 1, . . . , n + m. Then, one can write the set X = X × K as follows:

X = {y ∈ R n+m : 0 ≤ g j (y) ≤ 1 , j = 1, . . . , p + m} , (4.32) 
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with g j (y) := g X j (x), for each j = 1, . . . , n and g j (y) := 1 2 + k j 2 , for each j = p + 1, . . . , p + m. Lemma 4.28. For each j = 1, . . . , m, let us define I j := {1, . . . , n, n + j} and J j := {1, . . . , p, p + j}. Then the sets I j and J j satisfy the four conditions stated in Definition 4.25.

Proof. The first condition holds as

f (y) = f (x, k) = m j=1 s j (x, k)k j = m j=1 s j (y)k j , with s j (y) ∈ R[y, I j ].
The second and third condition are obvious. The running intersection property comes from I j+1 ∩ I j = {1, . . . , n} ⊆ I j . Given α j , β j ∈ N p+1 , one can write α j = (α j , ω j ) and β j = (β j , δ j ), for α j , β j ∈ N p , ω j , δ j ∈ N. In our case, this gives the following formulation for the polynomial h α j ,β j (y) = g α j (1 -g) β j : Then

h α j ,β j (y) = h α j ,β j ,ω j ,δ j (x, k) = g X (x) α j (1 -g X (x)) β j ( 1 2 + k j 2 ) ω j ( 1 2 - k j 2 ) δ j .
h α 1 ,β 1 (y) = x(1 -x) 2 ( 1 2 + k 1 2 ) 2 ( 1 2 -k 1 2 ) 3 .
Now, we consider the following hierarchy of LP relaxations, for each l ≥ d:

f l := min t,λ α j ,β j t , s.t t -f = m j=1 φ j , φ j = |α j +β j |≤l λ α j ,β j h α j ,β j , j = 1, . . . , m , λ α j ,β j ≥ 0 , j = 1, . . . , m . (4.33) 
Similarly, we obtain f l while replacing min by max and t-f by f -t in LP (4.33).

Lemma 4.30. The sequence of optimal values (f l ) (resp.

(f l )) satisfies f l ↑ f (resp. f l ↓ f ) as l → +∞.
Proof. By construction (f l ) is monotone nondecreasing. For a given arbitrary ε > 0, the polynomial f -f +ε is positive over X . By Lemma 4.28, the subsets I j and Monday 6 th August, 2018 (08:34)
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J j satisfy the four conditions stated in Definition 4.25, so we can apply Theorem 4.27 to f -f + ε . This yields the existence of φ j , j = 1, . . . , m, such that f -f + ε = m j=1 φ j and φ j = |α j +β j |≤l λ α j ,β j h α j ,β j , j = 1, . . . , m. Hence, (f -ε , φ j , λ α j ,β j ) is feasible for LP (4.33). It follows that there exists l such that f l ≥ f -ε . Since f l ≤ f , and ε has been arbitrary chosen, we obtain the convergence result for the sequence (f l ). The proof is analogous for (f l ).

Remark 4.31. In the special case of parametric reachability analysis of polynomial systems, one can prove that the number of variables of LP (4.33) is m 2(p+1)+l l +1 with a number of constraints equal to

[ ml n+1 + 1] n+l l
. This is in contrast with the dense case where the number of LP variables is 2(p+m)+l l + 1 with a number of constraints equal to n+m+l l .

Proof of Remark 4.30. We replace the representation of a function φ of dimension (n + m) on the set X by a sum of m functions φ j of dimension (n + 1) defined on their associated subsets X j . From Section 4.3.1, the number of coefficients λ α j ,β j for the K.S. representation of a φ j over X j is 2(p+1)+l l . This leads to a total of m 2(p+1)+l l for all the φ j and m 2(p+1)+l l + 1 variables when adding t. The number of equality constraints is the number of monomials involved in 

(x, k) ≤ 2ε ∀(x, k) ∈ [0, 1]×[-1, 1] 3 .
The algorithm for reachability analysis of discrete time polynomial systems using K.S. representations is more straightforward than Algorithm 3. Indeed, using K.S. representations we avoid the decomposition of the polyhedrons into parallelotopes bundles. In previous Algorithm 3, these decompositions were not only costly as they multiplied the number of necessary optimizations at each step by the number parallelotopes, but also less accurate as Bernstein method does not directly handles variables in polyhedron. Compute the approximate dynamics f κ associated with the node L κ 12:

Construct the polynomial η i,κ from polynomial f κ of the dynamics and 13:

template constraint Γ i , as defined in (??).

14:

c i,κ = max{η i,κ (x, k)) | x ∈ X κ ∧ k ∈ K} 15:
/* using Sparse K.S representation for polynomial η i,κ */ 

c i = max κ (c i,κ ) 18: 
/* largest bound by all approximate dynamics of intersecting nodes */

19: end for 20: return (Γ, c) /* the result is the template polyhedron with offsets c */

In Algorithm 4, we present our algorithm for one step of the discrete time reachability analysis. We note that we did not introduce a method to apply K.S. representations to rational functions, but this can be perform through variable changes, in a similar fashion to [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF].

Finally, we do not provide any cases study applying K.S. for reachability analysis as an efficient implementation is still on-going. However, we propose Section. 4.4 a discussion on our preliminary results on the comparison between Bernstein expansion and K.S. representation applied to parametric polynomial optimization problems. This results are from outside the field of system biology, and were published in [START_REF] Rocca | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF] for bounding the floating point roundoff error. They still give a groundwork for a choosing policy between these two methods for polynomial optimization.

Discussion and perspectives

Theoretical complexity. In this section we provide a preliminary comparison between Bernstein expansion and K.S representations as two methods to solve parametric polynomial optimizations problems. We recall that we search f an upper bound of the optimization problem: The Bernstein expansion method to provide an upper bound f when X ⊂ R n is a box, and K ⊂ R m is either a box or a polyhedron. If K is a box then we recall from Section 4.3.1 that the theoretical complexity is at most equal to the number of Bernstein coefficients, which is m(l + 1) 1 . The cost is linear in the number of parameters m, polynomial in the degree l (at fixed dimension n), and exponential in dimension n (at fixed degree l). If K is a (compact) polyhedron then we have to solve at most (l + 1) 1 linear programs of m variables and p constraints, where p is the number of constraints defining K.

f * := max (x,k)∈X×K f (x, k) ≤ f ,
From this theoretical cost we note that the Bernstein based method greatly suffers when dimension increases. Methods such as [START_REF] Paul | Fast construction of constant bound functions for sparse polynomials[END_REF] can reduce this cost when there is some sparsity in f , but in general Bernstein perform badly in high dimension. However when dimension is small, as the Bernstein expansion is polynomial in degree it is possible to obtain efficiently a precise bound of a high degree polynomial.

We note that if X is a polyhedron we have to define an associated bundle of parallelotopes {Π i } i≤n P . However, we have no guarantee of convergence to the optimal solution by optimizing over the bundle as described in Section 4.2.2. Moreover, as we have to perform one optimization for each parallelotope, the computational cost is now linear in the number of parallelotopes constituting the bundle:

n P m(l + 1) 1 .
The K.S. representations based method provides bounds when X is a semialgebraic compact set, and K either a box or a semi-algebraic compact set. In the case where K is a box, we can use the sparse K.S. representation as described in Section 4.3.1. This yields a relaxation of the polynomial optimization problem into an linear programs of m 2(p+1)+l l + 1 variables and [ ml n+1 + 1] n+l l constraints, where n is the dimension of x, p the number of constraints defining X, m the dimension of the parameters k, and the adjusted degree10 l = ld g .

From [START_REF] Ben | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF], [START_REF] Porkolab | On the complexity of semidefinite programs[END_REF] we know that the computation cost of an LP resolution is polynomial in the number of constraints and variables. Consequently, when the the degree k is fixed this yields a polynomial cost in the dimension n or p the number of constraints defining X. We note that the complexity is linear in m allowing to efficiently handle parameters as the Bernstein-based method. Experimentally (see Table 4.1), the K.S. based method seems to have a large cost when the degree increase, and the dimension is fixed.

When K is a semi-algebraic compact set, we have to use the dense K.S. representation over the whole set X × K, leading to the important computational cost: variables and constraints. To reduce the cost, it may be possible to provide a problem specific sparsity pattern: however finding an optimal sparsity pattern is an NP-hard problem [START_REF] Victor Magron | Certified roundoff error bounds using semidefinite programming[END_REF].

In our reachability analysis application, we always compute linear relaxation of order l = d, or Bernstein expansion of multi-degree l = d: thus by fixing the degree we know that for high dimension K.S. is more efficient that Bernstein. If this relaxation order, or this multi-degree is not high enough to provides accurate bounds, we prefer to split the set than increase the degree. From these theoretical consideration we argue that K.S. is a good complement to Bernstein expansion when optimizing high dimensional polynomial with low degree. K.S. can also handle more complex representation for X than Bernstein when accuracy is a key factor of the analysis. Thus, we argue that a policy choosing at each step the optimization method to use depending of the context would be more efficient.

Experimental results. Finally, we provide a table with experimental results comparing K.S. and Bernstein for polynomial optimization of boxes. This is a subset of the benchmarks performed in our paper [START_REF] Rocca | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF]. The studied examples are of the form:

ex-n-sum-d(x) := m j=0 ( d l=1 ( n i=1 x i )) . (4.34)
with parameters taken in [-1, 1] m . Their dimension m is determined separately in [START_REF] Rocca | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF]. The dimension of x is n and x is also taken in [-1, 1] n . Finally, and d is the degree of the polynomial. We also note that the associated multi-degree is d = (d, . . . , d). To perform Bernstein expansion we re-use parts of the C++ implementation from sapo [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] based on the matrix method [START_REF] Dreossi | Parameter synthesis for polynomial biological models[END_REF]. The optimization using sparse K.S. representations is currently implemented in interpreted Matlab 2015a as a modification of the previous toolbox SBSOS implemented for [START_REF] Weisser | Sparsebsos: a bounded degree sos hierarchy for large scale polynomial optimization with sparsity[END_REF].

Experimentations were performed on an Intel Core i7-5600U (2.60Ghz, 16GB) with Ubuntu 14.04LTS, using GINAC 1. the LP generation for K.S. is implemented in interpreted Matlab we provide in parenthesis the solving time of the LP by Cplex. From the results of examples ex-2-2-5 to ex-2-2-20, we observe that accordingly to the theoretical cost both methods are linearly affected by the number of parameters. Comparing examples ex-2-5-2 and ex-2-10-2, we note that K.S. is strongly affected by degree elevation, while in examples ex-5-2-2 and ex-10-2-2, Bernstein is greatly affected by dimension increase. In particular in example ex-10-2-2, we note that the LP solving time related to K.S. method is small, which agree with the polynomial cost of K.S. at fixed degree. Finally we note that the current implementation of K.S. is limited by the LP generation time in Matlab, and a new implementation in a compiled language must provided in order to obtain more results, and a reliable implementation for reachability analysis. In Table 4.2, we compare the accuracy of the two method at the smallest relaxation order l = d, and the smallest multi-degree for the Bernstein expansion, l = d. This provides a similar context to an application to reachability analysis where we focus on first approximation results. In all examples both methods have the same accuracy, further benchmarks are provided in [START_REF] Rocca | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF] which yield a similar conclusion. Consequently, there is apparently no loss in accuracy by using K.S. instead of Bernstein when it is theoretically more cost efficient.

In the following we describe our perspectives and future work for both K.S. and Bernstein based methods. The future works associated to this chapter can be divided in three: the further development of the current implementation, and two different approaches to perform reachability analysis.

Future implementations. First we need to improve the performances of the current implementation of the K.S. based optimization method and to integrate it inside a toolbox for reachability analysis. Indeed, the current implementation in Monday 6 th August, 2018 (08:34) FOR BIOLOGICAL MODELS VALIDATION Matlab (based on [START_REF] Weisser | Sparsebsos: a bounded degree sos hierarchy for large scale polynomial optimization with sparsity[END_REF]) cannot efficiently be applied on large problems (see Table 4.1).

As previously stated, our results on the Bernstein-based method are already an improvement of the reachability toolbox sapo. However, the current implementation relies on an old version of sapo, and it is now important to merge our new features into a more recent version.

Both algorithms 3 and 4 have been detailed for reachability analysis of discrete time systems. If they produce safe and conservative results in this context, they are not guaranteed to be conservative for continuous time systems. To this aim we need to implement a method to efficiently handle numerical integration error, and we need to compute the continuous time corrected initial set, [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF], correct(X 0 ) defined as:

correct(X 0 ) := X 0 ⊕ f (X 0 , K) , (4.35)
where ⊕ is the Minkowski sum operator. Finally, it is important to provide an implementation for hybrid automata similar to [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF], to handle hybrid systems with polynomial continuous dynamics, as well as experimental protocol models we define further in Section 5.

Fixed time reachability analysis. In addition to future improvements of the current implementation we identify some new ideas which seems to be promising. The first idea is the use of simulation and approximation methods to compute reachable set at fixed instant. Given the ODE system:

ẋ(t) = f (t, x), x ∈ R n . (4.36)
Let us consider a closed time interval [0, T ] ⊂ R. For all t ∈ [0, T ], ξ x 0 (t) denotes the trajectory solution of (4.36), with initial condition x(0) = x 0 . By extension, ∀t ∈ [0, T ], ξ X 0 (t) is the set of trajectories for all x 0 ∈ X 0 . We want to address the following problem: for a given time t ∈ [0, T ], we consider φ t (x) : R n → R n , the function which gives the value at time t of the trajectory ξ x (•). Instead of computing the whole flow pipe, we only want to find an over-approximation of the set X t = φ t (x), ∀x ∈ X 0 . Results from biological experiments are often time series, with sometimes samples separated by hours. We argue that interpolating some continuous temporal properties from these time series is already a strong assumption on the model. Thus we seek to ensure that given some ODEs modelling our system, all the trajectories associated to the model reach the desired data points, without assuming anything in between.

To compute X t we ideally need the exact analytical function φ t (X 0 ). In simple cases, for example with linear autonomous ODE systems, we have this function. For the ODE system, ẋ = Ax, x(0) ∈ X 0 , we have φ t (X 0 ) = X 0 e -At .

However, in the general case we may not know this analytical solution and in particular for f ∈ R[x]. For this reason we will search an approximation φt (x) of φ t (x) and the associated approximation error defined by φ t (x) -φt (x) ≤ Monday 6 th August, 2018 (08:34) ε abs , ∀x ∈ X 0 . This way we can build a new over-approximation of X t by:

XT = O( φt (X 0 )) ⊕ ε abs (4.37)
Assuming that φ t (x) is at least C 1 (R n ), we propose to use polynomial interpolation over the trajectories from an initial sample of X 0 obtained by numerical simulation, to determine this approximation. For two or three dimensional systems we can use interpolation over a Padua-Grid and Chebychev polynomials [START_REF] Brett | On multivariate chebyshev polynomials and spectral approximations on triangles[END_REF] to obtain a precise polynomial approximation φt (•) of φ t (•). The template overapproximation O• can be performed using the Bernstein or K.S. based methods described in this chapter. In 4.9: Interpolation method for reachability analysis applied on the Lotka-Volterra ODE system. The '+' dots are the numerical simulations of the 2D Padua grid of the initial set: the box [0.9, 1.1] 2 . The other boxes are the over-approximation the reachable set using polynomial approximations φt (X 0 ) interpolated from simulations on the initial set grid. sion, it is not viable without modification for dimension higher than 3. Indeed, using dense grid of the state-space results in an exponential number of samples, and thus simulations. Moreover, the theoretical accuracy of the polynomial approximation quickly decreases if the degree of the approximation φt (•) remains fixed while the dimension increases. To tackle the problem of the size of the grid exponential in the dimension we plan to use sparse grid such as describes in [START_REF] Klimke | Sparse grid interpolation toolbox[END_REF]. The work of [START_REF] Klimke | Sparse grid interpolation toolbox[END_REF] also provide a scheme to converge to an accurate polynomial approximation up to a given error ε abs using sparse grids. However, it would be FOR BIOLOGICAL MODELS VALIDATION a great improvement to obtain an even more accurate value for ε abs than the one provided by their bounds. For this, one idea would be to obtain an upper bound of max x∈X |(φ t (x) -φt (x))|, using occupation measure relaxation methods similar to the one described in Chapter 3 (we recall that φ t (x) is not analytically known).

Polynomial lift using Bernstein expansion. Carleman linearisation is a method to approximate non-linear vector field by a high dimensional linear transformation. The previous work [START_REF] Forets | Explicit error bounds for carleman linearization[END_REF] provides an error bound on the approximation of a nonlinear ODE by its Carleman linearisation. It is possible to extend [START_REF] Forets | Explicit error bounds for carleman linearization[END_REF] to reachability analysis in three steps: first we lift the initial set into the higher dimensional space. Then, we perform reachability analysis in this high dimensional space using linear reachability analysis tools such as [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF] or [START_REF] Bogomolov | Reach set approximation through decomposition with low-dimensional sets and high-dimensional matrices[END_REF]. Finally, we project the result into the original low dimensional space while taking into account some linearisation error given by [START_REF] Forets | Explicit error bounds for carleman linearization[END_REF]. We propose to approximate the polynomial lift described in [START_REF] Forets | Explicit error bounds for carleman linearization[END_REF] using the Bernstein expansion to compute a convex over-approximation using the convex hull of the coefficients. For performance purposes in the high dimensional cases, we want to use the linear reachability tool [START_REF] Bogomolov | Reach set approximation through decomposition with low-dimensional sets and high-dimensional matrices[END_REF]. To this aim, we propose to compute an over-approximation of the lift in Cartesian product format, which directly usable by [START_REF] Bogomolov | Reach set approximation through decomposition with low-dimensional sets and high-dimensional matrices[END_REF]. In Figure 4.10, we show the polynomial lift L : R → R 3 , L(x) = (x, x 2 , x 3 ) as well as two possible over-approximations using the Bernstein expansion. In this chapter, we focus on biological mechanism modelled using ordinary differential equations (ODEs). They can represent mechanisms on multiple scales including the molecular scale, cell scale or physiological scale. The motivation for such models is not only to give quantitative predictions, when sufficient data is available to validate the model, but also to provide a mathematical representation of a biological system. Such formalization then provides a framework to incorporate new data and knowledge of various types in a consistent way.

We address the models corresponding to a class of biological experiments in which the system, in a given initial state, is perturbed in some way, evolves, and then at a later time some measurements are performed. To represent such behaviours, we provide a mathematical formalization of experimental protocols. A model in this sense describes the system under study and the experiments which have been performed on it. To achieve this, a formalization as hybrid automata is proposed for this class of experimental protocols. With the hybrid automata formalism, we introduce a systematic way to study mechanistic biological models, in their experimental context, using formal methods which produce conservative or certifiable results.

In this chapter, we first propose, in Section 5.1, a high level "action based" specification language of experimental protocols, named Modelling-Oriented Experimental Protocol Language (MOEPLA). This action-based language serves as EXPERIMENTAL PROTOCOL MODELLING an interface between the experimental view and the mathematical modelling of a given mechanism. Using this description, an abstract experimental protocol and its execution are formally represented in MOEPLA using an explicit semantic. Moreover, it is expressive enough to be applied in numerous biological contexts such as therapeutic modelling, pharmacology, or molecular modelling. It can be seen as the first step of a pipeline to study in a systematic manner the experimental protocols. Other protocol specification languages, such as EXACT [START_REF] Soldatova | The exact description of biomedical protocols[END_REF], focus on expressing all the stages and details of an experiment to enable its real life reproducibility in another laboratory. In particular, our specification language expresses experimental protocols while taking into account insight on specific mechanism models. Of course, this may lead to neglecting some particular stages or details of the experiments since they are either without any influence, or too complex, for the chosen mechanistic modelling purposes.

There are multiple results [START_REF] Soldatova | The exact description of biomedical protocols[END_REF][START_REF] Brazma | Minimum information about a microarray experiment (miame)-toward standards for microarray data[END_REF][START_REF] Schilling | Standardizing experimental protocols[END_REF][START_REF] Ananthanarayanan | Biocoder: A programming language for standardizing and automating biology protocols[END_REF] on formal languages for the description of experimental protocols in some particular context (experiments over genes, or proteins). The development of the Systems Biology Markup Language (SBML) format [START_REF] Hucka | The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models[END_REF] allows representing biological data and models using process algebra. These efforts are motivated by the inherent ambiguity in natural language for describing real-life experiments, which can result in the lack of repeatability of a given biological laboratory protocol.

In Section 5.2, we provide a preliminary translation from this specification language into a hybrid automaton, an expressive mathematical formalism on which a panel of analysing tools already exist [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF][START_REF] Donzé | Breach, a toolbox for verification and parameter synthesis of hybrid systems[END_REF][START_REF] Althoff | An introduction to cora 2015[END_REF]. Using hybrid automata, discrete changes describe the different stages of the protocol, while ODEs describe biological mechanisms. This hybrid automaton representation can be analyzed using formal validation, providing conservative or certified results that a proposed biological mechanism is coherent with experimental observations. The general workflow defined by the conjoint use of MOEPLA, the hybrid automaton representation and an analysis tool, is described in Figure 5 The hybrid formalism has previously been used as an abstraction method to simplify mechanistic models which are complex and hard to analyse [START_REF] Noel | Algorithm for identification of piecewise smooth hybrid systems: application to eukaryotic cell cycle regulation[END_REF], or to represent activation and switch processes such as in the genes regulatory networks [START_REF] Li | Review of stochastic hybrid systems with applications in biological systems modeling and analysis[END_REF]. To our best knowledge, except for some general guidelines [177], the closest Monday 6 th August, 2018 (08:34) work on the formalization of biological protocol incorporating mechanistic models is [START_REF] Abate | Experimental biological protocols with formal semantics[END_REF]. This recent work proposes a formalization as piecewise Markov-process of biological protocol. This work differs from ours on the mathematical formalization and seems to be designed to address models from biochemistry protocol. In our case, we want to handle a larger panel of possible experimental protocols: from biochemistry to therapy or animal study. In this chapter, the model of haemoglobin production in erythroblast from [START_REF] Bouchnita | Multi-scale modelling of erythropoiesis and hemoglobin production[END_REF] is used as a running example and will be further analyzed in Chapter 6.

MOEPLA description

In this section, we define the formal specification language MOEPLA. We aim to mix experimental protocol specifications with modelling hypotheses on specific biological mechanisms. We note that this specification language is useful when the experimental protocol exhibits multiple step influences on the behaviour of the entities involved in the biological mechanism. This is especially true for particular evolving systems such as differentiating cells, or different stages of an organism's life. On the downside, if it is possible to express short protocols constituted only of one stage (one initial state and a final measurement), this is not the case for which MOEPLA is the most useful. We now define the main notions used to describe a protocol.

The protocol we construct is organized around two main notions: experimental objects and experimental actions, respectively denoted by O and A. We call experimental object, an object (in a physical sense) on which an experimental protocol action is applied at a given time. Following the context, it can represent objects of multiple scales, such as the animals or cells. A given protocol can have different experimental objects, for different stages of the protocol. As we focus on the modelling of the effect of a protocol on a given biological system, we need information on the associated biological mechanism. This mechanism is represented by a parametric dynamical system F = (T , X, U, K, f ). Thus each experimental object O is connected to a biological mechanism F. Definition 5.1 (Experimental object). Let F O be a parametric dynamical system:

F O := (T O , X O , U O , K O , f O ).
We define by: Remark 5.2 (Notations). For a given experimental object O, let

O := O(F O ) , (5.1 
X O ⊆ R n O , then
x O is the set of state variables associated to O, with x O ∈ X O . Let {O (α) } α be the set of all the experimental objects involved in a protocol. Given n = α n O (α) , then let y ∈ R n be the concatenation of all the variables x O (α) , that is the set of all variables associated to the whole experimental protocol. The notations k ← K new and u ← U new ) define the redefinition operators which associate respectively a new parameters space K new and input space U new , to respectively the subset of parameters k and subset of inputs u.

And x ← R(z) defines the operation which associates to a subset z of variables x a new value R(z), via the reset map R.

Definition 5.3 (Conditional Statement).

A conditional statement c is a function c : T × R n → B such that for a given pair (t, y), c(t, y) decides if a condition on y is satisfied or not. Such conditional statements will be used to define the condition under which a particular step of the protocol must be applied.

We define experimental actions as actions which are performed by the biologist during the experiment and are relevant for the modelling. They include: actions which create an experimental object O at a given step of the experiment; actions performed on an experimental object O, which have an influence on its associated dynamics; and finally, the measurement performed on a given experimental object. We associate to an experimental action, a conditional statement c(t, y). In the general case, we define 7 kinds of actions which can be separated in 3 classes: creation (I 0 , A create , A cr f rom ), perturbation (A x , A k , A u ), measurement (A M ). We say that an action is executed when the effect of this action on the associated object takes place. We say that an object O is created when it is part of the initialisation I 0 (O), or when one of the actions A create (O) or A cr f rom (O, . . . ) are executed. We assume that an experimental protocol always starts at time t = 0. First we define the actions creating a new experimental object. These actions include the initialisation step I 0 (O) which defines the initial state of the experiment for a given object O. In the following definitions, the symbol L represents a synchronisation label associated to a particular action. Secondly, we define the actions which perturb a given experimental object O, by changing its state variables, its parameters space, or its input space. In real life, if an action has multiple effects, then in the specification language, this is translated by multiple actions under the same condition. -A k (O, L, k ← K new , c(t, x O )): the action performed on O affects the parameters k, changing the associated parameters space to K new , under the condition c(t, x O (t)) = true.

-

A x (O, L, x O ← R(x O ), c(t, x O )): the action performed on O affects the state variables x O , changing their values to R(x O ), under the condition c(t, x O (t)) = true. -A u (O, L, u ← U new , c(t, x O ))
: the action performed on O affects the input functions u, changing the associated input space to U new , under the condition c(t, x O (t)) = true.

Example 5.6 (Perturbation action). An example of experimental action is as follows: at exactly 3 hours after the start of the experiment, the biologist increases the temperature to 37 • C. It has the effect on a production rate k prod associated to the experimental object O 1 . Then the experimental action is: temperature increase to 37 • C on O 1 affecting k prod under condition t == 3h, and expressed as

A k (O 1 , L T ↑ , k prod ← {k prod (37 • C)}, t == 3h).
In this example, the synchronization L T ↑ allows to gather all the perturbation associated to this perturbation: T increases to 37 • C. One of the perturbation of this actions is described by A k : the parameter space of k prod is changed to the singleton {k prod (37 • C)}.

Finally, we define the action corresponding to an experimental measurement.

Definition 5.7 (Experimental actions -Measurement).

-A M (O, L, x meas (t) := m(x O (t)), c(t, x O )): the action performed on O is a measurement of the state variables of O, under the condition c(t, x O (t)) = true. The information of the measurement is preserved in a variable x meas (t), for all time instants t which satisfy the condition. EXPERIMENTAL PROTOCOL MODELLING

We use measurement actions to define possible (or actual) observation windows during the experiment. These action are parallel to actual experiment, and do not influence it directly. If an experimental measurement does have in reality an effect of the observed object, then it is represented as a perturbation action with the same condition.

The set of possible experimental actions, with the exception of the initialisation I 0 , is summarized as follows:

A := A create , A cr f rom , A k , A x , A u , A M
It is important to notice that we expect the biologist to have some insight on how an action will affect the model. However, we do not actually expect him to always provide explicit mathematical functions, or numerical values, when specifying the protocol in our language. In the following we may use dots, as in A k (O, L, . . . , c), to ease the redaction of non-relevant information in the context of a given explanation. These dots are not part of the language. Definition 5.8 (Experimental Protocol Syntax). We call experimental protocol a set of actions {A} performed on objects {O}, the objective of which is to highlight a biological mechanism, and to measure directly or indirectly its evolution, in time and/or after some events. The set {I 0 } provides the initial conditions of a protocol. A protocol must end with a final measurement A M . After defining the variables, dynamical systems, protocol maximal duration t end , experimental objects O(F) that will appear in the experiment, as well as their (possible) initial conditions I 0 (O), we express the protocol as a sequence:

P := I * 0 A * A M ,
where I * 0 and A * are a finite sequence of initial conditions and a finite sequence of any actions A, respectively. Definition 5.9 (Experimental Protocol Rules). To ensure a correct description of protocols using the specification language, we add two rules on the definition of an experimental action:

-There can be only one action of creation among {I 0 ,A create ,A cr f rom } for a given object O.

-All the actions must have a synchronisation label denoting the associated step in the protocol progress.

-Two creation or perturbation actions A(O, L, . . . , c) and A (O, L, . . . , c) on the same object O can share the same label L; in this case they share the same condition c as they should represent the same step in the protocol.

-Similarly, if multiple perturbation (or creation) actions on the same object O, expressed as successive in P, are performed under the same condition Monday 6 th August, 2018 (08:34) c(t, y), they indeed represent multiple effects of the same step in the experiment. Consequently they must have the same synchronization label and cannot affect the same variables, parameters, or inputs.

-Perturbation (or creation) actions and measurement actions must not share the same synchronisation labels since measurement actions are just a means to represent a possible observation window on a given object (but they can share the same conditions). -O has been created, all the previous actions A(O) in the sequence P have been executed, and t is a solution of c(t, x O (t)) == true.

An action A(O, {O (i) }, c(t, x(t))) can be executed at t such that:

-All the objects O (i) have been created, and t is a solution of c(t, x(t)) == true, with x as in Definition 5.5. Thus, the execution of this action is independent of the other actions performed on all the objects in {O (i) } except for the creation one.

An action A M (O, c(t, x O (t))) is executed at time t such that:

-O has been created, and t is a solution of c(t, x O (t)) == true.

In absence of synchronization labels the execution of a protocol can be interpreted as a set of concurrent processes for each object O, each set of actions A(O) on O being a process. The only possible interaction between two or more objects is the creation action A(O, {O (i) }, c(t, x(t))). When using synchronisation labels we must add the following rule:

-All the actions with the same label must be executed at the same time: this implies that the conditions of all these actions must be satisfied simultaneously. If it is not possible, this implies an inconsistency in the protocol definition (see Example 5.11).

This additional rule allows multiple experimental objects to move from one step of the experiment to another in a synchronized way.

MOEPLA specification to hybrid automata

We propose to generate a hybrid automaton from a protocol specified using the above-described specification language for experimental protocols. This automa-Monday 6 th August, 2018 (08:34)

CHAPTER 5. MOEPLA: A LANGUAGE FOR EXPERIMENTAL PROTOCOL MODELLING

Example 5.11 (Synchronized actions). A good example of synchronized evolution can be observed in animal studies. When one considers the evolution of a pregnant mother, the perturbations or different evolution stages occur simultaneously for the mother and the foetus. Following the semantic rule for synchronized actions, it is indeed inconsistent to consider transitions for the foetus and the mother as asynchronous. If a delivery is performed on the mother, then, since its environment is modified, the model of the "foetus" must change: the baby is in the foetus state only if the mother is in the pregnant state.

We propose an example of sequence of actions describing the start of a pregnancy process. Let us first consider two experimental objects. We defined O mother the experimental object representing the mother and its associated dynamical system F mother . Similarly, O baby (F baby ) which models the baby. We now show how to write the sequence: First we model the initial condition as a non-pregnant mother by the initialisation I 0 (O mother , . . . ).

Then, we model the start of the pregnancy under the condition c 1 by a creation action for the baby from the mother, for example:

A cr f rom (O baby , O mother , L preg , . . . , c 1 ).
If the start of the pregnancy modifies the model of the mother we can add some perturbations actions A(O mother , L preg , . . . , c 1 ) which must be synchronous (using the label L preg ) to the creation of the baby (in foetus stage). ton should accept the trajectories corresponding to the execution of the protocol following our previously defined semantic.

The automaton representing the experimental protocol can be defined by the Monday 6 th August, 2018 (08:34)

Example 5.12 (Haemogolbin production protocol). In Chapter 6 we study more in detail a model of haemoglobin production in erythroblast: a particular kind of cells which differentiates into blood cells inside the bone marrow. In this example we show how the associated experimental procedure [START_REF] Mark | Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells[END_REF] can be described in MOEPLA.

The experimental paper [START_REF] Mark | Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells[END_REF] proposes a protocol to observe Heme production in erythroblast (among other experimental results). This measure is done through the introduction of a radioactive entity 59 Fe. The incorporation of 59 Fe in Heme on a 3 hours intervals is measured multiple time along the 52 hours of the experiment: this gives an approximation of the Heme production speed at multiple instants of the erythroblast differentiation process (see Figure 5.

2)

We can highlight two different mechanisms. First, the mechanism F rad modelling the cells in presence of 59 Fe in the batches where we measure are performed. Second, the mechanism F ctrl without the radioactive entity associated to the control batch. The ODE systems (f ctrl ) and (f rad ), as well as the associated parameters (see Table 6.6) can be found in Chapter 6 dedicated to the biological case studies. As this protocol implies multiple steps with variation in the dynamics under study, and intermediate measures, its formalisation in MOEPLA is relevant. More details on the analysis of this model can be found in the associated Section 6.1 in Chapter 6.

First we define all the experimental objects, as well as their associated dynamical system, and parameters instantiation:

O(O ctrl , F ctrl ), O(O 4h , F rad ),O(O 8h , F rad ),O(O 16h , F rad ), O(O 24h , F rad ),O(O 32h , F rad ),O(O 42h , F rad ),O(O 52h , F rad ).
Then we explicit the experimental protocol. We note the absence of synchronisation label since this particular example is simple enough. First we define the hybrid automaton created by the set of experimental actions performed on a single object O with dynamical system F O . We recall these actions are constituted by exactly one action of creation among

1. I 0 (O ctrl , x ctrl (0) ← [x] 0 ) 2. A cr f rom (O 4h , O ctrl , x rad ← R(x ctrl ), t == 4h) 3. A M (O 4h , 59 H(t) + 4 59 Hb(t), t == 7h) 4. A cr f rom (O 8h , O ctrl , x rad ← R(x ctrl ), t == 8h) 5. . . . (
I 0 (O), A create (O,L O,0 ,c 0 (t)), A cr f rom (O, L O,0 , . . . , c 0 (t, y)), a set of perturbation 1 actions A(O,L O,i ,c i (t, x O ))
of different condition c i and associated label L O i , i ≥ 0 ordered following the sequence P, and at least one measurement A M (O, L O,j , c j (t, x O )). We recall that successive perturbations actions in P under the same conditions share the same labels and represent the same step in the protocol progress.

We now proceed to define the hybrid automaton representing the different stages of the evolution of O. Let us denote

H O = (I O , E O , L O , X O , K O , U O , S O , R O , F O
) the hybrid automaton associated to the single object O. We remark that in Section 2.2 we introduced the set of labels, guards, reset maps, and activities through the definition of functions associating to these respective sets to each mode or transition. Here we surcharge the notation using L O , S O , R O and F O to denote either the set of possible labels, guards, reset maps, and activities respectively, or the associated labelling functions as in Definition 2.9.

Let us denote O i , i ≥ 0, the modes following the creation of O. We also call O ∅ a mode where the object O does not exist, and O STOP a mode where measurements are stored in constant variables. The creation action on O i determines the initial mode and the initial condition of H O :

-If the creation action is I 0 (O) then the initial mode is O 0 with the parametric dynamical system F O as in Definition 5.1. The initial condition of the variables are defined by I 0 (O).

-If the creation action is A create (O, L O,0 , c 0 (t)) or A cr f rom (O, . . . , L O,0 , . . . , c 0 (t, y)), the initial mode is the mode O ∅ when O does not exist, and we define a transition from O ∅ to O 0 with the associated guard S ∅,0 associated with the condition c 0 and a reset R ∅,0 . We also associate the synchronisation label to the transition O ∅ → O 0 .

Remark 5.13. We note that in the particular case of the action A cr f rom (O, . . . , c 0 (t, y)) we have a condition and assignment (as seen in Definition 5.4) possibly depending on variables associated to another object. As the definition of H O is only an intermediate step to formalize the global hybrid automaton of the whole protocol, we consider at this point that only for the definitions of the guards S O the variables of the hybrid automaton

H O is extended from x O ∈ R n O to the whole set of variables y ∈ R n . The i-th set of perturbation actions 2 A(O, L O,i , c i (t, x O )) defines a transition from the mode O i-1 to O i , with i ≥ 1.
The guard S (i-1),i associated to this transition is defined by c i (t, x O ) and the synchronisation label associated to the transition (i -1, i) is L O,i . The continuous dynamics of the mode O i is the one of the mode O i-1 with the effects of the action (in case of A k or A u ). In case of multiple simultaneous actions as in Remark 5.9, multiple effects are applied if they share the same label and represent the same stage in the protocol progress. In a similar manner, the reset map R (i-1),i is defined by the effect of the action A x (if applied), and by default it is the identity map.

The invariants of the modes O ∅ , O 0 , O i , i ≥ 1, and O STOP are defined by the Cartesian product of the state space X O ⊆ R n O of the dynamical system F O and the time interval [0, t end ], with t end the maximum duration of the protocol as in Definition 5.8.

Finally, we handle each measurement action A M (O, L O,j , c j (t, x O )) by creating a transition from all the modes O i , i ≥ 0 to a mode O STOP with frozen dynamics (with derivatives equal to zero), which has for the only purpose of holding the measurement information. The guards of these transitions are defined by the condition c j (t, x O ).

Remark 5.14. We highlight the particular case of the measurement actions: the O STOP mode defined here is only used as a way to integrate the measurement in the hybrid automaton. In practice, the measurement actions need to be handled case by case for each tool selected for the analysis as we will see in the Section 6.1.2 of Chapter 6. Methodology 5.16 (Hybrid automaton generation). The hybrid automaton H of the experimental protocol using a set of objects {O (i) },with 0 ≤ i ≤ p the number of experimental objects, can be generated, using Definition 2.11, by the synchronous parallel compositions of each hybrid automata H O (i) defined for each object O (i) as described above.

After each composition, we delete all the resulting transitions leaving a composite mode defined by at least one mode O STOP . This last step ensures that experimental measurements are separated from the actual mechanism in the protocol and do not perturb the simulation.

We refer to the Examples 5.15 and 5.17 for two examples of the application of Methodology 5.16.

Discussion and future work

In its current state the specification language MOEPLA allows describing the evolution of a mechanistic model during a multi-stage experiment. We propose an example of experimental protocol, in a simplified form:

1. I 0 (O, x O (0) = x O 0 ): We start with O. 2. A k (O, L 1 , K O ← K new , c 1 (t, x O )):
Object O may be perturbed and its parameter space changed.

3.

A cr f rom (O , O, L 2 , x O ← R(x O ), c 2 (t, x O )): Object O is created from O. 4. A M (O , L 3 , x meas ← R(x O ), c 3 (t, x O )): A measure on O of the vari- ables x O is stored in x meas .
The two hybrid automata corresponding to the evolution of each object O and O are represented in Figure 5.3. The hybrid automaton of above protocol and resulting from the composition of the two automata of the Figure 5.3, can be found in Figure 5.4. In the Figure 5.4 we assume there is no synchronization. If L 1 = L 2 then only the transition with the condition c 1 ∧ c 2 would remain.

fields of molecular biology, or biochemical reactions, or medicine and therapy modelling.

Thanks to the formalization of a MOEPLA protocol as a hybrid automaton, we can provide a formal representation of all the possible executions of a protocol and its associated mechanisms. Indeed, hybrid automata allow non-determinism and through the synchronous parallel composition of automata we can represent the evolution of multiple processes involved a given protocol, and their interactions. This non-determinism represents all the possible executions of a protocol assuming a model for each experimental object mechanism. Then, depending on the sparsity of the knowledge about the mechanisms or the uncertainty (or ambiguities) in the protocol definitions, it is, for example, possible to search for bad behaviours and assert properties for critical procedures (as in therapy).

However, the current work still has multiple flaws that need to be addressed: they are related either to the hybrid system representation or to the specification of the protocol itself. The first list of comments concerns the hybrid automaton representation. Hybrid automata are very useful to represent non-deterministic systems. However, they are lacking on multiple points in the formalism that we use. In the currently used formalism for hybrid dynamical systems, we do not consider urgent transitions as they are not handled by most of the formal verification software such as SpaceEx [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF]. Moreover, as seen in Definition 2.9 in Chapter 2, all the modes of a hybrid automaton have the same dimension, which in our case leads to a huge Monday 6 th August, 2018 (08:34) dimension increases. For example, in the hybrid automaton from Example 5.17 each mode has 46 state variables, while in practice when addressing this model using the Controlled Hybrid System3 in Section 6.1.2, we have to consider at most 9 variables (including a clock variable). Similarly, the protocol of Example 5.17 could be modelled by a 2 modes hybrid system instead of the one we show in Figure 5.5 using in Methodology 5.16 to generate an hybrid automata. While our method avoids producing loops in the hybrid automaton representation and do not allow Zeno behaviours, it results in large hybrid systems. We note that one way to efficiently handle the exponential cost of the parallel composition would be to perform it on the fly during the analysis, as done in the reachability toolbox SpaceEx [START_REF] Frehse | Spaceex: Scalable verification of hybrid systems[END_REF].

O 0 O 1 O ∅ O 0 O STOP c 1 (t, x O ) c 2 (t, x O ) c 3 (t, x O )
O 0 , O ∅ O 1 , O ∅ O 1 , O 0 O 1 , O STOP O 0 , O 0 O 0 , O STOP c 1 ( t , x O ) c 1 (t, x O ) ∧ c 2 (t, x O ) c 2 ( t , x O ) c 2 ( t , x O ) c 3 (t, x O ) c 3 (t, x O )
The second list of comments concern the expressiveness of the specification language itself. A first comment is that we assume that the different objects share EXPERIMENTAL PROTOCOL MODELLING Example 5.17 (Hybrid automaton for Haemoglobin production). In Figure 5.5, we show a shortened version of the hybrid automaton generated by the composition of all object automata as defined in the Methodology 5.16. We note that in each mode, there are 8 dynamical systems running in parallel. This method for hybrid automaton generation leads to a theoretically huge number of variables. In Section 6.1.2, we will work on an adapted and simplified version of Figure 5.5 automaton using the Controlled Hybrid System formalism defined in Chapter 3.

O ctrl ,O 4h,∅ , . . . ,O 52h,∅ O ctrl ,O 4h,0 , . . . ,O 52h,∅ O ctrl , O 4h,STOP , . . . ,O 52h,∅ O ctrl ,O 4h,0 , O 8h,0 ,. . . , O 52h,∅ O ctrl ,O 4h,0 , O 8h,STOP ,. . . , O 52h,∅ • • • t = 4h t = 8h t = 16h t = 7 h t = 1 1 h Figure 5
.5: Hybrid automata (shortened) resulting from the application of Methodology 5.16 to the protocol of Example 5.12. We do not show the transitions resulting from the composition whose conditions can never be satisfied (as we have fixed time condition).

no common variables, parameters, or input, at the exception of the possible creation action A cr f rom . This assumption was done to simplify the semantics in a first version of the language. A way to get around this current limitation is to define a single object modelling all the interaction or coupled variables. However, this limits the expressiveness of the language as we cannot define separate objects which share variable for only a few stages. Therefore, it is necessary to update the language (and the definition of the synchronous parallel composition) to handle the definition of common variables (parameters, or inputs) on a given set of actions, or stages.

Another comment is that time is currently a global variable separated from the other state variables. Such global time only allows us to easily define conditions on the absolute time, for example t ≥ 4 hours. However, conditions on events or relative to a previous event are hard to express. To easily express them we need to introduce clock variables. Such variables can currently be introduced as state variables (see Section 6.1.2) but are not directly apparent in the protocol syntax. In addition, the actions are performed instantaneously and it should be an interesting addition to consider delays in the actions. In the current language this can be done Monday 6 th August, 2018 (08:34) 5.3. DISCUSSION AND FUTURE WORK 97 by defining a time (or clock) interval on the condition of each action: for example the first action is performed for t ∈ [1h, 2h] and the second for t ∈ [1.5h, 2.5h] means there is a delay of at most 1h on both actions. However this leads to spurious sequences of multiple instantaneous transitions in the hybrid automaton representation, without having the global time elapsing. Indeed, in the previous example, both actions can still occur without letting the global time t elapse: for all the instants t ∈ [1.5h, 2h] both transitions can be taken successively.

Finally, the syntax of the language itself may change to facilitate the interactions between the biologist and the modelling team. However, the aim remains that the language must have a succinct definition with few rules while allowing its possible executions, defined by the language semantics, to be represented by a hybrid dynamical system. 

Erythropoiesis haemoglobin production model

In this first section we study a model of haemoglobin production during the differentiation of erythroblasts into erythrocytes. Erythrocytes (also named red blood cells) are produced inside the bone marrow. In this place, they go through multiple differentiation stages from stem cells (also called hemocytoblasts in this context) into erythroblasts and finally erythrocyte. This differentiation process is also called erythropoiesis.

During its differentiation, an erythroblast produces haemoglobin. At the final stages, the erythroblast forces out its nucleus and is released in the circulating blood. The haemoglobin stored in the erythrocyte will play the role of oxygen transport protein. Without entering into details, the haemoglobin is constituted from 8 sub-components: 4 hemes and 4 globins 1 .

In this work, we model the haemoglobin production during the final stages of an erythroblast differentiation into erythrocyte. The proposed model is given by the 100 CHAPTER 6. APPLICATIONS AND CASE STUDIES ODEs system (f ctrl ) which describes the dynamics of intracellular concentrations of: iron Fe, heme H, globin G and haemoglobin Hb.

dFe dt = k 1 Fe ex -k 2 Fe -k 3 Fe dH dt = k 3 Fe -k 4 H -4k 5 H G dG dt = k 6 H -4k 5 H G -k 7 G dHb dt = k 5 H G -k 8 Hb (f ctrl )
In the first equation of (f ctrl ), the term k 1 Fe ex describes iron influx from the extracellular space, while the second term k 2 Fe and third term k 3 Fe respectively describe the iron efflux from the cell and its consumption for the production of heme. In the second equation, the terms k 3 Fe and k 4 H respectively describe the heme production and heme degradation and transport from the cell. The term 4k 5 H G models the heme and globin consumption for the production of haemoglobin in the second and third equations. Note that the factor 4 describes the need of 4 hemes for the production of 1 haemoglobin. In the third equation, globin synthesis is accelerated by heme, hence the production term depends on H (first term k 6 H). The heme is not consumed so this term does not appear in the second equation. The globin degradation term is k 7 G. Finally, in the last equation, the two terms are haemoglobin production k 5 H G and degradation k 8 Hb.

In Section 6.1.1, we describe how the data obtained from mouse erythroid cell cultures are exploited to estimate the value of parameters occurring in (f ctrl ). Then, in Section 6.1.2, we use this model as a proof of concept of the model revision method previously described in Chapter 3.

Parameter study

In modelling complex biological phenomena, the identification of parameter values is always a critical problem due to the scarcity of kinetic data. Here the situation is rather favourable. We have been able to use four datasets [START_REF] Mj Koury | Splenic erythroblasts in anemiainducing friend disease: a source of cells for studies of erythropoietinmediated differentiation[END_REF][START_REF] Stephen | Transferrin receptor number, synthesis, and endocytosis during erythropoietin-induced maturation of friend virus-infected erythroid cells[END_REF][START_REF] Mark | Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells[END_REF][START_REF] Hd Kim | Metabolic adaptation during erythropoietin-mediated terminal differentiation of mouse erythroid cells[END_REF] to determine the values of the 8 kinetic parameters contained in the model of haemoglobin production presented in (f ctrl ).

These experiments were performed on cultures of erythroid cells from the spleens of mice during their differentiation. The general scheme is to add radiolabels ( 59 Fe or3 H-leucine2 ) at different time points, continue the culture for a given time duration and then measure the quantity of 59 Fe incorporated in heme or 3 Hleucine incorporated in β-major globin.

In order to exploit this kind of experiment we use two extended systems of equations: the first contains additional equations for the evolution of 59 Fe-containing 6.1. ERYTHROPOIESIS HAEMOGLOBIN PRODUCTION MODEL 101 species (intracellular 59 Fe itself and radioactive heme and haemoglobin); the second contains additional equations for the evolution of 3 H-leucine-containing globin and haemoglobin. Consequently, each specific type of experiment has to be simulated by the corresponding system of differential equations respectively (f rad ) for datasets #1 and #2 (see Tables 6.1 and 6.2), and (6.1) for dataset #3 (see Table 6.3).

The system of equations representing the haemoglobin production in presence of 59 Fe is given in (f rad ). We note that the dynamics of G and Hb are optional if one only observes the radioactive species. We now provide the system of equation corresponding to the experimental protocol of dataset #3: we note G r the 3 H-leucine-containing globin.

dFe dt = k 1 Fe ex -k 2 Fe -k 3 Fe dH dt = k 3 Fe -k 4 H -4k 5 H G dG dt = k 6 H -4k 5 H G -k 7 G dHb dt = k 5 H G -
dFe dt = k 1 Fe ex -k 2 Fe -k 3 Fe dH tot dt = k 3 Fe -k 4 H -4k 5 H (G + G r ) dG dt = k 6 H -4k 5 H G -k 7 G dHb dt = k 5 H G -k 8 Hb dG r dt = k 6 H -4k 5 H G r -k 7 G r dHb r dt = k 5 H G r -k 8 Hb r (6.1)
The experimental results from Tables 6.1, 6.2, and 6.3 are given in radioactivity units (cpm standing for counts per minute) since the experiments measure the activities of the radio-labels 59 Fe and 3 H. However, these data are incomplete as we lack the actual conversion factor from the radioactivity measures in cpm to the Monday 6 th August, 2018 (08: [START_REF] Ramdani | Reachability of uncertain nonlinear systems using a nonlinear hybridization[END_REF] actual molecule quantity in mol. As we have mixed information, concentrations on one part and radioactivity measures on the other, we choose to work with normalized data points, by choosing a point in each dataset as a reference point, and dividing the other points by this value. The chosen reference data point is the one providing the smallest residual value (6.2) after scaling. However, we add a few constraints to ensure the simulations results stay in viable biological ranges.

The dataset [START_REF] Stephen | Transferrin receptor number, synthesis, and endocytosis during erythropoietin-induced maturation of friend virus-infected erythroid cells[END_REF]Table 2] (not reproduced here) allows us to estimate k 1 the iron intake rate into the cell. We make the approximation that the flux of iron intake is constant. With this k 1 is found equal to 250 atoms/fL/min. In the conditions of this experiment the concentration of 59 Fe:Tf in the culture medium is 200 µg/mL. We take the molecular mass of glycosylated, iron-saturated Tf (diferric) as being equal to 80 kDa, and we obtain k 1 = 1.4e In addition to these datasets we consider a set of constraints to keep the results biologically viable.

-The quantity of 59 Fe incorporated in free heme at t=52h is at most 5% of the 59 Fe incorporated in all forms of heme (free heme and heme in haemoglobin).

-The quantity of 59 Fe incorporated in free heme at t=52h is at least 0.002% of the 59 Fe incorporated in all forms of heme (free heme and heme in haemoglobin).

-The concentration of haemoglobin at t=52h is at least 100 molecules/fL.

-The concentration of intracellular labile iron is less than 10 times the concentration of haemoglobin (all taken at t=52h). For the 7 kinetic parameters other than k 1 and the initial concentration in intracellular iron Fe 0 , we have to resort to a systematic search. It is known from [START_REF] Schranzhofer | Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis[END_REF] that the IRP concentration decreases down as differentiation proceeds. Because IRP activity represses the biosynthesis of protoporphyrin IX, which is inversely related to internal Fe concentration, the rate of heme production increases with time. To take this into account we consider that parameter k 3 is time dependent.

In this first study we consider the following polynomial function: k 3 (t) = a k3 + (b k3 t) 4 . With this function, the increase is slow during the first hours and becomes steeper in the later stages of differentiation. A linear time dependence was tried, but it did not provide a good adjustment to the experimental data. In Section 6.1.2 in the following, we propose to revise this parameter as a proof of concept of our method described in Chapter 3. Therefore, we consider in total 8 parameters related to kinetics. As we start this modelling without any prior knowledge on the parameter ranges (except physiological bounds), our initial parameter space where the search is performed is given in Table 6.4: for each unknown quantity we define a search interval (spanning several orders of magnitudes). In Table 6.4 we also provide the set of intracellular iron initial conditions Fe 0 we consider in our search.

Variables

k 2 a k3 b k3 Search intervals [1e -11 , 1e -02 ] [1e -10 , 1e -01 ] [1e -10 , 1e -04 ] Variables k 4 k 5 k 6 Search intervals [1e -06 , 1e +01 ] [1e -11 , 1e -02 ] [1e -07 , 1e +01 ] Variables k 7 k 8 Fe 0 Search intervals [1e -09 , 1e -01 ] [1e -11 , 1e -01 ] [6e +03 , 6e +06 ]
Table 6.4: This table provides the intervals considered for the search for parameters sets and initial conditions satisfying the experimental results of Tables f ctrl ,f rad and 6.1.

In this work we searched for parameters sets satisfying three experimental datasets. These datasets were obtained through three different experimental protocols and we simulate them accordingly with three different models. At the time of this work, we did not consider the formalization of experimental protocol as a hybrid system: we argue that this formalization would have eased our analysis.

Parameters

Enclosure Units The following column is the one with the lowest average residual ε mean = (ε 1 +ε 2 +ε 3 )/3.

k 2 [1.0e -10 , 5.81e -9 ] s -1 a k3 [3.43e -9 , 1.47e -8 ] s -1 b k3 [6.89e -7 , 7.36e -7 ] s -5 4 k 4 [3.82e -4 , 5.16e -4 ] s -1 k 5 [2.87e -6 , 1.01e -5 ] fL.molecules -1 .s -1 k 6 [3.94e -4 , 5.68e -4 ] s -1 k 7 [2.48e -10 , 5.08e -7 ] s -1 k 8 [1.01e -5 , 1.49e -5 ] s -1 Fe 0 [2.99e +2 , 6.07e +2 ] atoms/fL
However, as these protocols are simple enough, we can still simulate them as sequences3 of classical ODE simulations using either the ODE system modelling the cell without radiolabels (f ctrl ), the ones modelling the cell in presence of 59 Fe (f rad ) or 3 H (6.1).
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The Cartesian product of the parameter intervals (see Table 6.4) defines a multidimensional search box. To perform simulations and search for valid parameter sets, we draw a large number of random points in that box, and for each parameter point we perform simulations and compare accordingly with each experimental dataset. In order to sample equally all the orders of magnitude, the sampling is done on a logarithmic scale. We use the quasi-Monte Carlo method [START_REF] Niederreiter | Random number generation and quasi-Monte Carlo methods[END_REF] with the Sobol sequence. For each dataset we quantify the agreement between simulated y and experimental z measured quantities by computing the following residual:

ε q = i |y i -z i | i z i , (6.2) 
where q ∈ {1, 2, 3} denotes one of the three studied datasets and the index i identifies the measurements belonging to that dataset #i. For the experiment associated to the dataset of Table 6.1, we have y = 59 H + 4 59 Hb . In the context of Table 6.2, y = ( 59 H + 4 59 Hb)/3. Finally, the measurement observed in the dataset of Table 6.3 is given by y = (0.4G r + 1.6Hb r )/12. Each dataset q is associated with a threshold M q , and we keep as potential solutions all parameter points which satisfy ε q ≤ M q , where M q . Since we have 3 datasets, we have 3 constraints of this type. It is, in general, not possible to minimize all 3 residuals simultaneously. In order to retain only physiologically relevant solutions we also add constraints bearing on the concentrations reached at the end of the differentiation process using the constraints we previously defined. This simple parameter search method is summarized in Algorithm 5. We note that we can iterate over Algorithm 5 by constructing new smaller parameter spaces over each previous results of Algorithm 5. Since there is no unique way to combine several experimental datasets and additional constraints, we present the results as a set of solutions (a cloud of points in parameter space). The 3 thresholds M q are chosen equal to 0.25 as we want to equally verify all datasets. The box enclosing the cloud of valid points is given in Table 6.5. These results are given after a search over 35 millions samples (for around 48h of computation). This gives an idea of the spread of the set of solutions. It can be seen that most parameters are rather well defined, except k 2 and k 7 . A scatter plot of the cloud of valid points on the plane k 4 -k 5 is displayed in Figure 6.1 in order to visualize the shape of the cloud on that projection. Table 6.6 shows 4 solutions we have selected in this set: the solutions p 1 , p 2 , p 3 and p mean which minimizes ε 1 , ε 2 , ε 3 or ε mean = (ε 1 + ε 2 + ε 3 )/3, respectively. Figure 6.2 displays the evolution of the system with the p mean values. This last solution is the one which has the lowest average residual ε mean within the solution set. It can be observed that internal iron concentration goes through a maximum and then decreases to low values. Haemoglobin concentration increases steadily to a value of about 10 2 molecules/fL. The agreement between the measurements and the corresponding quantities derived from the simulations is displayed in Figures 6. for q ∈ {1, 2, 3} do 10:

y [q] = simulate(E q , k) 11:
ε q = evaluate(y [q] , z [q] ) 12:

end for 13:

if ∀q ∈ {1, 2, 3}, ε q ≤ M q then 

Model revision

Model adjustment. In the previous section, we addressed the problem of refining the parameters space and fitting multiple datasets on the haemoglobin production model. In this section, we apply the model revision method proposed in Chapter 3 on the haemoglobin production model (f rad ) for the protocol [START_REF] Mark | Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells[END_REF] corresponding to the dataset #2 in Table 6.2. Using the method defined in Chapter 3, we search for another modelling of the time varying parameter k 3 (t), which better fit the dataset #2, while being biologically interpretable. While in the previous section the experimental protocol was not explicitly formalized as a hybrid system, we will consider in this section a formulation close to the one proposed in the Chapter 3.

We use the values given in the column p mean from the Table 6.6 for any parameters other than k 3 . We recall that the ODEs (f ctrl ) model the evolution of the haemoglobin production in the differentiating erythrocyte cells situated in the bone marrow. In this section, to stay close to the notations of Chapter 3 we note x 1 to x 4 the variables that represent respectively the internal iron in the cell Fe, the heme H , the globin G, and the haemoglobin Hb. The hybrid dynamical system H models an experimental protocol designed to measure the integration of iron inside heme (H) at several steps of the cell differentiation. For example, we recall that the data point at time t = 7 hours in Table 6.9, is obtained through the following procedure: we first start with a control batch of cells, then at time t = 4 hours after the start of the experiment, the culture medium is perturbed with an injection of measurable radioactive iron 59 Fe for a subset of the cells. This perturbation implies the new ODEs (f rad ) modelling the evolution of two interdependent models4 : the model of non-radioactive haemoglobin production and the model of haemoglobin production with radioactive species. Three hours after the perturbation with radioactive iron, the total radioactive heme is measured, meaning the heme free in the cell and the one in the radioactive haemoglobin. This measurement is given by the formulas 59 H + 4 59 Hb. This hybrid dynamical system H is close to the one proposed in Chapter 5, and differs from it on two points: the lack of Stop modes and a number of variables that changes between two modes. Indeed, in this work we do not model the measurement actions as they are represented in the cost function of the optimization problem.

We recall in Table 6.9 the observed radioactivity divided by three hours. Finally, these measurements provide results on the variation during the cell differentiation of the integration of iron in heme, which is associated to the parameter k 3 . The controlled hybrid system H associated to the experiment of dataset #2 studied in Section 6.1.1 is given, in a shortened version, in Tables 6.7 and 6.8. The ODEs (f ctrl ) and (f rad ) are given in the previous section 6.1.1, and we consider the parameter set p mean for the values of the parameters other than k 3 . In the implementation, we also introduce a variable x c modelling time, whose derivative is equal to 1. We recall that we want to search for an optimal control u(t) minimizing the distance of the simulated trajectory to the corresponding point in the dataset. In this particular study, we consider u(t) = k 3 (t) and we will keep this notation until further notice.

n i f i (t, x, u) X i U i i = 1 5 f ctrl (t, x, u) [0, 4] × [0, 1] 4 [0, 1] i = 2 9 f rad (t, x, u) [4, 7] × [0, 1] 8 [0, 1] i = 3 5 f ctrl (t, x, u) [7, 8] × [0, 1] 4 [0, 1] i = . . . . . . . . . . . . . . . i = 13 5 f ctrl (t, x, u) [45, 52] × [0, 1] 4 [0, 1] i = 14 9 f rad (t, x, u) [52, 55] × [0, 1] 8 [0, 1]
For numerical reasons, it is necessary to scale the parameters and state variables, making it easier for the solver to succeed in solving the relaxed problem. Similarly, to facilitate the numerical optimization we rewrite the control variable 

u(t) ∈ U = [0, 1] as u(t) = ζ û(t),
H(x(T j )) := (x 6 (T j ) + 4x 8 (T j ) -3z j ) 2 ,
as we search to minimize the total residual error term:

ε total = 1≤j≤nexp H(x(T j )) 1≤j≤nexp z j (6.3)
We recall that the original experimental data points (T j , z j ) are given in Table 6.9. Here, the input control k 3 (t) = u(t) models some hidden mechanism resulting in an evolution of the iron integration rate k 3 with the differentiation of the cells. It should be the same function of time for both the control and the radioactive cells batch. However, as the control generated by Algorithm 1 is piecewise for each mode, and the fact that our data are on the radioactive species only, the solution of the optimization problem with only a final cost H(x(T i )) is not balanced, having a much stronger control in the modes where the radioactive species are evolving. A workaround for the balancing problem is the following. We add a small penalization cost c 1 i (t) = (0.01u(t)) 2 to equilibrate the control when i corresponds to a mode with radioactive species, otherwise c 1 i (t) = 0. In a similar vein, we add another penalization cost c 2 i (t) = (u(T j ) -u(t)) 2 to avoid when the control strongly varies between two iterations j on the interval [T j-1 , T j ] and j + 1 on [T j , T j+1 ] (with the exception of the first iteration). This leads to

h i (t, x(t), u(t)) = c 1 i (t) + c 2 i (t).
Let us note that, even if these additional costs can eventually degrade the accuracy of the data fitting, we gain in terms of biological interpretation of the resulting traces.

Finally, by partitioning the computation in the time domain, we can greatly reduce the computational cost at each iteration. More technically, since the transitions of the hybrid system H are fully determined by the time t, we can precompute the function λ : R + → I, which associates a mode λ(t) to each time Generated optimal control and associated approximating functions instant t. Thus, each iteration j of Algorithm 1 can be restrained to the hybrid sub-system H j of H, constituted by the modes visited in the interval [T j-1 , T j ].

For numerical implementation, the problem on measures is formulated in SPOT-LESS 5 , and then we extract the primal solution provided by a primal-dual SDP solver. To do so, we use the implementation from [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF] to generate the dual problem of (3.17) defined in Chapter 3. As an SDP solver we used MOSEK [START_REF] Andersen | The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm[END_REF] v.7.1. These tools are used in MATLAB v.9.0 (R2016a). Performance results are obtained with an Intel Core i7-5600U CPU (2.60 GHz) with 16Gb of RAM running on Debian 8.

Applying Algorithm 1 on the H hybrid system, as described above, we have to solve 7 times the optimization problem (3.17), on 2 mode hybrid systems of respectively 5 and 9 continuous variables in each mode. We only solve the problem for a relaxation order r = 4, as any higher order would be too memory expensive. We only synthesize a piecewise constant control, and to avoid oscillation in the resulting control we force d u = 0 in Algorithm 1 from Chapter 3. Using this configuration, the total time taken by Algorithm 1 is 2107s, with 1700s spent in the HOCP procedure, and 390s in the Synth procedure.

In Figure 6.6, the control generated by Algorithm 1 is shown in blue. This control is piecewise, and clearly divided in two phases: before and after t equals 11 hours. However, the control synthesized is still difficult to interpret as a biological phenomenon. Consequently, we propose three additional fits of this control to ease interpretation by using functions closer to biological knowledge. In Table 6.10 one can find the total error associated to all the possible controls, as well as the previous result of Table 6.6. In Figure 6.7, we show a graphical representation of how closely each function can control the model to reach the desired data points.

Control Type ε total

Best ε 2 in Table 6 Discussion. In a simulation-based approach, we have to propose for the desired time varying parameter, a template function to fit the data, e.g. a polynomial of given degree. If we want to fit a polynomial of higher degree, the simulations have to be run again multiple times. On the contrary, the proposed approach returns a control signal, and since the fit to data points is performed a posteriori, there is no additional computation cost in refining the model. From the form of the experimental data points, an usual hypothesis is that k 3 (t) = u(t) should be similar to a jump function, with a low value for the two first points, and a higher one for the following ones. However, even with such information a good fit is not easily achieved with simulations.

The control generated using Algorithm 1 returns the expected "jump" behaviour for u(t), and even with a low relaxation degree, the total residual error for the generated control is 9.59% which is much lower than the 22.8% from the minimal value of ε 2 in Table 6.6.

We first fit a step function to the generated control, with a change at t = 11. The associated error of 12.24% is still lower than Section 6.1.1, yet being higher than the generated control mainly due to the second-to-last point.

The second fit is a piecewise polynomial function in two pieces. The first piece, for t ∈ [0, 11], is a polynomial of degree 2 while the degree of the second, for t ∈ [START_REF] Li | Review of stochastic hybrid systems with applications in biological systems modeling and analysis[END_REF][START_REF] Bogomolov | Abstraction-based parameter synthesis for multiaffine systems[END_REF], is 4. This proposed input control allows to reproduce more accurately, than the step function, the third data point. However, its accuracy is worse on the first and two last points. The total error associated to this control is 13%, being overall the worst of the proposed fits.

Lastly, we fit a Hill function, a function used to model the kinetics of a class of biochemical reactions and which is a very common way to represent biological activation processes. The associated total error is 7.5%, which is the lowest, taking advantages from both the step function and the piecewise polynomial function. In this case, the inaccuracy also mainly comes from the second-to-last point, which is quite separated from trend of the other experimental points, and may be due to some experimental problems (no standard deviation results were available). Without taking this point into consideration for the error computation the error falls to 3% for the Hill function fit.

On this particular example, this method provided a way to generate a control satisfying intermediate points without any a priori on a particular form, avoiding the need for extensive numerical simulations. The generated control is accurate, and computed in a reasonable time (∼35min), even for a large hybrid system of 14 modes with at most 9 continuous variables. Using some fitting functions afterwards, it is even possible to refine the results and obtain a more interpretable function for the desired time varying parameters.

Since in this model, the sequence of transitions is known in advance, the use of [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF] to solve (3.11) at each iteration of Algorithm 1 is arguable, as other methods can handle this problem. If needed Algorithm 1 can easily be adapted with another method to solve the optimal control problem on hybrid automata. However, Algorithm 1 in its current form does not require any knowledge on the sequence of transition and can be applied to a larger set of biological models. We can also note a similar approach to our own in [START_REF] Ye | Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and ph logic control[END_REF]. In this paper, the authors first search for parameter sets satisfying experimental data on an hybrid dynamical system using particle swarm techniques. Then, they revise the model by searching a parame-Monday 6 th August, 2018 (08:34)
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ter as a time varying function using optimal control technique. While they have similar objectives, our work differs from theirs in the methods used for both the parameter fitting and the model revision.

6.2 Mammalian cellular iron homoeostasis (MCIH) model

Context

In this section we apply the set-based analysis method from Chapter 4 on a discretization of the mammalian cellular iron homoeostasis (MCIH) model previously characterized in [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF]. Using this model as a proof of concept we show that the method proposed in Chapter 4 can be applied to ensure properties or hypothesis while taking into account uncertainty on both initial conditions and parameters (possibly spanning multiple orders of magnitude).

The ODE system proposed in [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF] is built to study and represent the mechanism of iron homoeostasis for a large parameter space. This previous work [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF] provides a method to characterize a large valid parameter space (19 parameters, spanning several orders of magnitude), by finding the parameters points which respect a set of temporal constraints and clustering them in multiple ellipsoids. Here we define our experiments based on both a discretization of this model and some previous results from [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF].

This model describes the control of the iron concentration inside a cell, thanks to both an iron storage protein, ferritin, and regulatory proteins IRP (Iron Regulatory Proteins). Moreover, both the transferrin receptor TfR1(which influences the iron input in the cell) and the iron exporting protein FPN1a are influenced by the IRP concentration. Tf sat is the external saturated transferrin concentration, which is the iron transport protein outside the cell. The concentration of free iron in the cell that is not stored inside ferritin must be well controlled since too much or too little of it can have deleterious effects.

In the presence of a stable concentration of iron-loaded transferrin, outside the cell, the cell system converges to a steady state. When there is no more iron outside the cell (Tf sat is almost equal to 0) the non-ferritin bound iron quickly drops for a short time, but then increases again at the expense of ferritin iron and stabilizes for some time (around 10 hours) after the activation of the regulation mechanism. The low iron concentration stimulates the IRP activity which itself activates the release of the iron stored in the ferritin. This supply of iron from the ferritin leads to a pseudo-steady state for a few hours, until the ferritin concentration is too low to release enough iron to maintain the equilibrium. If no iron is added to the medium shortly thereafter, the cell dies.

The model contains 5 state variables (Fe, IRP, Ft, TfR1, FPN1a), and 19 parameters. The dynamics are defined in the ODE system (6.4).

The work [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF] observed that for all the valid parameter points, the value of FPN1a is almost not influenced by the value of the other variables during the experiments, FPN1a being almost constant with this modelling. FPN1a, being the Monday 6 th August, 2018 (08:34) iron exporting protein, should quickly decrease with the iron concentration Fe, as modelled by the IRP dependency. However, the FPN1a concentration stays stable for all the valid parameters points.

In this work, we propose to compute the reachable set of FPN1a for the parameters [k FPN1a deg , k FPN1a prod , k IRP-FPN1a , θ Fe-IRP ] taken in the interval given by the valid parameter points. The computed reachable set must ensure that in presence of external iron, the system evolves to a steady state, and in absence of external iron, there is a plateau of at least 10 hours for the variable Fe, followed by a decrease in iron concentration.

dFt dt = k Ft prod -k IRP-Ft sig(IRP, θ IRP-Ft , d sig ) -k Ft deg Ft dFe dt = k Fe input Tf sat TfR1 -n Ft dFt dt -k Feexport Fe FPN1a -k Fecons Fe dIRP dt = k IRP prod -k Fe-IRP sig(Fe, θ Fe-IRP , d sig )IRP -k IRP deg IRP dFPN1a dt = k FPN1a prod -k IRP-FPN1a sig(IRP, θ IRP-FPN1a , d sig ) -k FPN1a deg FPN1a dTfR1 dt = k TfR1 prod + k IRP-TfR1 IRP -k TfR1 deg TfR1 (6.4) 
where sig(x, θ, d sig ) =

x d sig x d sig + θ d sig .
The original model of iron homoeostasis (6.4) leads to a huge number of Bernstein coefficients because of the high degree of the sigmoids which are rational functions. On the other hand, simply lowering the degree d sig can cause significant errors, compared to the original model. To cope with this difficulty, each sigmoid has been approximated by a piecewise function. For a sigmoid function x d sig /(x d sig + θ d sig ) (where x and θ are scalar variables), the associated piecewise function of x and θ (d sig being a constant 6 ) is:

sig(x, θ, d sig ) =                0, if x ≤ (d sig -2)θ d sig d sig (x -θ) 4θ + 1 2 , if x > (d sig -2)θ d sig and x ≤ (d sig + 2)θ d sig 1, if x > (d sig + 2)θ d sig
The new MCIH model contains 4 parameters k FPN1a deg , k FPN1a prod , k IRP-FPN1a and θ Fe-IRP taken on large intervals. While the parameters k FPN1a deg , k FPN1a prod , and k IRP-FPN1a appear linearly in the dynamics, θ IRP-FPN1a appears non-linearly. For this reason, we treat the parameter θ IRP-FPN1a as a sixth variable, and thus the term IRP 5 /(IRP 5 + θ 5 IRP-FPN1a ) is not approximated by a piecewise linear function but its approximation is non-linear (rational function) in θ IRP-FPN1a in one of the pieces. These piecewise approximations lead to a new model where each
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Fe IRP h 1 2.73e -9 h 2 6.38e -9

5.97e -9 sigmoid is substituted by a 3-piece approximation. In place of one ODE system, the dynamics is now hybrid with 15 modes7 . The 9 domains corresponding to the approximations of sig(IRP, θ IRP-Ft ) and sig(Fe, θ Fe-IRP ) are represented in Figure 6.8.

h 3 1.39e -8 h 4 f 1 f 2 f 3 g 1 g 2 g 3 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9

Set-based analysis

We recall that our goal is to validate the observations which were obtained in [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF] using numerical simulations, about the regulation of FPN1a. These observations were made with parameter values chosen such that the system respects some properties:

-In presence of external iron input (Tf sat = 0), the Fe, Ft, and IRP concentrations reached a steady state.

-In absence of external iron input (Tf sat = 0), the iron concentration first stabilized on a plateau for at least 10h, then decreased to 0.

The set-based analysis produces an over-approximation of the reachable set. Because of accumulated error, this set may grow at each step in every directions. We thus do not impose strong constraints for the plateau definition, and currently restrict to a qualitative observation. For the same reason and because we are interested in the question whether the FPN1a concentration strongly decreases during the Tf sat = 0 phase, we restrict to a qualitative observation on the lower bound of the reachable set of FPN1a. The reachability analysis of the adapted model was done using the following method: starting from initial conditions (taken from [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF]) and a corresponding valid parameter set p, these initial conditions are bloated to a set. The following parameters [k FPN1a deg , k FPN1a prod , k IRP-FPN1a , θ IRP-FPN1a ] are extended to cover a few orders of magnitude based on the results of [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF]. The considered initial conditions and parameter space are given in Table 6.11. From this starting initial set, we first let the system evolve to a steady state 

[1e -7 1e -6 ] s -1 kFPN1a prod [1e -17 1e -13 ] mol(L s) -1 kIRP-FPN1a [1e -17 1e -13 ] mol(L s) -1 θIRP-FPN1a [1e -8 2.01e -6 ] mol L -1 kFe-IRP 5.24e -5 s -1 kFe cons 1.56e -1 s -1 kFe export 2.191e 3 L(mol s) -1 kFe input 3.65ee -2 s -1 kFt deg 2.92e -5 s -1 kFt prod 8.93e -12 mol(L s) -1 kIRP-Ft 8.71e -12 mol(L s) -1 kIRP-TfR1 3.03e -4 s -1 kIRP deg 1.5e -5 s -1 kIRP prod 4.48e -13 mol(L s) -1 kTfR1 deg 2.23e -5 s -1 kTfR1 prod 1.78e -13 mol (L s) -1 θFe-IRP 9.89e -9 mol L -1 θIRP -F t 4.56e -9 mol L -1 nFt 177.4 - dsig 5 -
Table 6.11: On the left: set of initial conditions (after the stabilization phase). On the right: considered parameter space for the reachability analysis.

with Tf sat = 0. This is the mode where the system should be stable. We let the system stabilize for a few hours. Some results of this stabilization are shown in Figures 6.9 and 6.10. It is clear that the system evolves towards an invariant set, and converges. Because this tool does not compute a precise invariant set, we will take, for the next part of the computation, this over-approximation as the initial set. The initial set for this part is given in Table 6.11.

In the second part of the analysis we reduce Tf sat to 0: this is the mode where the external iron is depleted. Then, we simulate 32 hours (230400 iterations using a fixed time step of 0.5 seconds) of the iron depleted mode. In Figures 6.11,6.12, and 6.13, we can observe the different phases of the computations in different colors (blue, red, green, and purple).

-Phase 1 (blue): On the initial state previously computed, we apply the following change: Tf sat drop from 1 to 0. Experimentally this corresponds to washing the external medium of the cell and replacing it by a medium without iron. This sudden change of Tf sat leads to the very low iron concentration at t near 0 (see Figure 6.11). This very low iron concentration triggers the production of IRP, which itself activates the release of iron by the ferritin. The iron and the IRP concentrations quickly grow back until both the IRP and iron are around their respective thresholds θ IRP-Ft and θ Fe-IRP .

The IRP increase slows down while the iron concentration stabilizes. To compute precisely this blue part, reachability analysis was done using 15 Monday 6 th August, 2018 (08:34) -Phase 2 (red): Because the iron is now in the plateau, we need to ensure that the analysis is as precise as possible. Thus, we reduce the error by bisecting the set on the IRP axis, and perform reachability analysis with two smaller sets instead of one big set. Even with such a method, one can observe the fast growing accumulated error in the red phase. In the red part, the system overlaps two partitions of IRP: the one where sig(IRP, θ IRP-Ft ) is represented by an affine function, and the one where sig(IRP, θ IRP-Ft ) = 1. Overlapping two partitions increases the error during a short time, leading to the observed growth of the reachable set in red in Figure 6.11.
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-Phase 3 (green): Once the reachable set has completely crossed the border between the two partitions, and sig(IRP, θ IRP-Ft ) = 1, the reachable set quickly contracts, and the iron concentration begins to decrease notably. Reciprocally, the IRP concentration increases trying to compensate the lack of iron. However at this moment, there is no longer enough ferritin to supply the cell in iron. The red part and the green part took around 3 hours to compute in total.

-Phase 4 (purple): The iron concentration is not stable in a plateau, but now decreases to 0. To compute this part we did not need as good precision as before and used a simple box over-approximation, and the computation time of the purple part is around 15 minutes. The reachability analysis of the system allows us to validate the previous observation made in [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF] only IRP in this model and within these parameters intervals is not effective. This suggests that another actor is needed for the regulation of FPN1a. Indeed, even Monday 6 th August, 2018 (08:34) 122 CHAPTER 6. APPLICATIONS AND CASE STUDIES with an initial set for FPN1a, and having the parameters influencing FPN1a spanning over large intervals (multiple orders of magnitude), the reachability analysis results show that the model satisfies the expected properties:

1. Fe, IRP, and Ft tend to a small invariant set when Tf sat = 0.

2. The iron concentration reaches a "plateau" for at least 10 hours.

3. After reaching a plateau the iron concentration decreases to 0.

4. The IRP concentration first increases quickly then more slowly during the plateau and then increases quickly again.

However given all those conditions, the FPN1a concentration did not undergo any notable decrease. Indeed, in Figure 6.13, while the upper bound slowly increases due to the accumulated error, the lower bound, which is conservative, does not decrease notably unlike what we could expect. This analysis shows that if the model efficiently represents the regulation of the iron concentration with the IRP proteins, it does not fully model the FPN1a regulation, and and IRP is not the main regulating factor in this regime on the FPN1a concentration.

Cadmium impact on glucose response model

Context. In this section we present a preliminary analysis of the glucose response mechanism and its evolution when exposed to cadmium (Cd). This work follows a thorough experimental study [START_REF] Jacquet | Conséquences d'une exposition chronique à des doses modérées de cadmium sur le métabolisme du glucose de rats à différents stades de la vie[END_REF] about the effect of low-dose cadmium exposure on the glucose regulation, and its link to type 2 diabetes. Indeed it was observed that some populations exposed to low-dose 8 of cadmium for a long period developed type 2 diabetes syndromes [START_REF] Lei | Estimation of benchmark dose for pancreatic damage in cadmium-exposed smelters[END_REF][START_REF] Fatima Kolachi | Status of toxic metals in biological samples of diabetic mothers and their neonates[END_REF][START_REF] Zhou | Cadmium exposure is associated with the prevalence of dyslipidemia[END_REF]. The experiments in [START_REF] Jacquet | Conséquences d'une exposition chronique à des doses modérées de cadmium sur le métabolisme du glucose de rats à différents stades de la vie[END_REF] are performed on both cultured cells and animals: in this section we study the experiments on the animals.

Glucose regulation mechanism mainly depends on an hormone called insulin which trigger the integration of plasma glucose into cells: especially muscles or adipocytes (fat holding cells). The insulin is produced by the β-cells of the pancreas in response to a glucose increase [START_REF] Salvucci | Mathematical model of metabolism and electrophysiology of amino acid and glucose stimulated insulin secretion: in vitro validation using a β-cell line[END_REF][START_REF] Bertuzzi | Insulin granule trafficking in β-cells: mathematical model of glucose-induced insulin secretion[END_REF]. As we search to link the cadmium exposure to type 2 diabetes, it was first hypothesized that the cadmium had a negative effect on insulin production mechanism in the β-cells. However, preliminary experiments from [START_REF] Jacquet | Conséquences d'une exposition chronique à des doses modérées de cadmium sur le métabolisme du glucose de rats à différents stades de la vie[END_REF] on cells cultures show not clear results in this sense.

In parallel to the cells cultures, a second set of experiments were performed on rats. These experiments can be separated in two subsets: the experiments on adults animals directly exposed to the cadmium, and the experiments on pups (baby rats) indirectly exposed to the cadmium through the mother placenta before birth, or milk after birth. The last experiments on pups are summarized in Figure 6.14. 8 Compared to usual cadmium toxicity studies. Monday 6 th August, 2018 (08:34)
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During the experiments described in Figure 6.14 multiple oral glucose tolerance tests (OGTT) were performed. This test consists in measuring the evolution of plasma glucose concentration during the 2 hours following an oral glucose intake.

The tests were performed on the pups at 21 days after birth, which is the end of the milk based diet, 26 days, and 60 days. We first propose a preliminary modelling Parameter study. We first propose a model to reproduce the OGTT results obtained by [START_REF] Jacquet | Conséquences d'une exposition chronique à des doses modérées de cadmium sur le métabolisme du glucose de rats à différents stades de la vie[END_REF] with the protocol described in Figure 6.14. To this aim, we use the MINMOD model [START_REF] Nittala | Dimensional analysis of minmod leads to definition of the disposition index of glucose regulation and improved simulation algorithm[END_REF], a small ODE model describing the evolution of glucose concentration after an initial glucose intake. We also refer to [START_REF] Kang | Mathematical model for glucose regulation in the whole-body system[END_REF] for a review of glucose regulation models, and in particular to [START_REF] Breda | Oral glucose tolerance test minimal model indexes of β-cell function and insulin sensitivity[END_REF][START_REF] Breda | Insulin release in impaired glucose tolerance[END_REF][START_REF] Dalla | Two-hour seven-sample oral glucose tolerance test and meal protocol[END_REF][START_REF] Dalla | Measurement of selective effect of insulin on glucose disposal from labeled glucose oral test minimal model[END_REF] for a modelling of the OGTT. Finally, we highlight the work [START_REF] Dalla | Meal simulation model of the glucose-insulin system[END_REF] which contains a very detailed model of glucose response after a meal. We may want to apply formal methods or computationally expensive techniques on our model, for this reason we use the minimal model MINMOD as a starting point. The model MINMOD from [START_REF] Nittala | Dimensional analysis of minmod leads to definition of the disposition index of glucose regulation and improved simulation algorithm[END_REF] is not designed for OGTT, but for intravenous glucose tolerance tests (IvGTT). Therefore, we cannot consider that the plasma glucose is already at its maximum concentration at t = 0, as it is done for IvGTT studies. Complex OGTT models such as [START_REF] Dalla | Meal simulation model of the glucose-insulin system[END_REF] use compartmental modelling to represent the multiple stages of the digestion, and to obtain the glucose rate of appearance in plasma after the meal. In first approximation we propose a simpler modelling using directly experimental results measuring the glucose rate of appearance in the winstar rat. From [START_REF] Peter Y Wielinga | Hydroxycitric acid delays intestinal glucose absorption in rats[END_REF]Figure 4] we determine the maximum of the rate of appearance is obtained ∼ 30min after the meal 9 . Similarly, the initial value of the rate of appearance is ∼ 70% of its maximum (see Figure 6.15). This curve , where µ = 30, and σ = 60. The value of the parameter K is determined by the actual quantity of glucose fed to the rats. Let m Glc be the mass of glucose fed to the rats and V Blood the rat blood volume as given in [START_REF] Bj Constable | Changes in blood volume and blood picture during the life of the rat and guinea-pig from birth to maturity[END_REF]. Then given an administrated concentration of glucose m Glc /V Blood , the value of K is the solution of the following equation:

+∞ 0 K 1 σ √ 2π e -(t-µ) 2 2σ 2 dt = m Glc V Blood .
In presence of glucose, the release of insulin by the β-cells can be separated in two phases. The first phase is the exocytosis of the insulin already present and stored near to the cellular membrane. The second phase corresponds to the release of insulin whose production was triggered by the glucose increase. The MINMOD model correctly simulates the second phase of insulin production, but does not reproduce satisfactory the first phase. To address this problem we add an additional state variable representing the insulin already present and ready to be released in the blood circulation. Finally, the adapted MINMOD model is given by (6.5). The experimental results are separated into 3 groups: the control group which was not exposed10 to cadmium, the group Cd1 which shows a medium cadmium exposure, and the group Cd2 with a high cadmium exposure.

To estimate the goodness of fit of a given simulation compared to the experimental data, we use the root weighted least-square error:

ε(k) = i W i (x exp,i -x simu (t i , k)) 2 , (6.6) 
where k is a parameter set, and x simu (t, k) its associated simulation of the OGTT. The weight W i is determined by the equation:

W i = 1 σ 2 ( i x 2 exp,i )
,

where σ are the variance to the mean associated to the i-th data point. The initial condition, and parameters are searched in the intervals proposed in [START_REF] Nittala | Dimensional analysis of minmod leads to definition of the disposition index of glucose regulation and improved simulation algorithm[END_REF] bloated by one order of magnitude. To ease the parameter search, when fitting the parameter to the datasets corresponding to group Cd1 and Cd2 we only consider a few hypotheses on the evolution of the parameters (compared to the one fitting the control group). At first for the experiments at 21 days we consider the following hypotheses:

-Hypothesis 1: Increase or reduction of the insulin sensibility.

-Hypothesis 1.1: r Cd varies: this shows the effect of cadmium on the glucose absorption in the cells. If r Cd < 1 then the system has developed insulin resistance, otherwise the system is more sensitive to insulin. -Hypothesis 1.2: p 3 varies: this represents the effect of insulin on the rate of absorption dynamics.

-Hypothesis 2: n varies: this models an effect on the insulin degradation.

-Hypothesis 3: p 2 varies: this affects the degradation of the glucose absorption rate.

-Hypothesis 4: γ varies: this modifies the sensitivity to glucose of the phase 2 of insulin production.

A 21 days, the goodness of fit for each hypothesis and associated to group Cd1 dataset are shown in Table 6.13. The associated best parameter sets are given in Table 6.14. The initial conditions are given in Table 6.12. The simulation corresponding to the best parameter fits are shown in Figure 6.16. The goodness of fit not accept common variables or parameters. As stated in Section 5.3, this is one of the points we want to address to improve the MOEPLA language in the future.

If we want to make the pups depend of the mother, we currently need to define a single object including the coupled mechanisms of the mother and the pups. In the following, we give the sketch of the formalisation with two objects. However, the approach with one object is similar.

The time is counted in days, and the protocol last at most 105 days (15 weeks). At t = 0 day, we start with the mother alone: I 0 (O mother ). After 21 days the mothers enter in the mating period which leads to pregnancy: this period lasts at most 1 week. In MOEPLA, this can be expressed as a perturbation under the label L pregnacy that occurs in the time interval t ∈ [START_REF] Dubitzky | Understanding the dynamics of biological systems: lessons learned from integrative systems biology[END_REF][START_REF] Pieter | Hybrid automata for modeling discrete transitions in complex dynamic systems[END_REF] days:

A k (O mother , L pregnacy , K mother ← K pregnant , t ∈ [START_REF] Dubitzky | Understanding the dynamics of biological systems: lessons learned from integrative systems biology[END_REF][START_REF] Pieter | Hybrid automata for modeling discrete transitions in complex dynamic systems[END_REF]) .

Similarly, the pups come into being under this perturbation and we associate a creation action with the label L pregnacy :

A create (O pup , L pregnacy , x pup 0 , t ∈ [START_REF] Dubitzky | Understanding the dynamics of biological systems: lessons learned from integrative systems biology[END_REF][START_REF] Pieter | Hybrid automata for modeling discrete transitions in complex dynamic systems[END_REF]) .

In a similar manner we can define a perturbation on a change of the parameter space of both the mother and the pups at the birth stage, and the switch to the normal food. Measurements are performed independently on either the pups (at time t = 70 days, 76 days and 105 days) or the mother (at t = 39 days and 60 days). All these measurements can be expressed in MOEPLA using the action A meas on either the variables of the object O mother or O pup . 

Summary

In this thesis, we addressed three issues in biological systems modelling: model design, model validation, and model revision. In addition, we investigated three biological case studies and used them as proof of concept for our different methods.

Model revision. In Chapter 3, we proposed a method to revise a hybrid dynamical system with respect to some observations in form of intermediate time measures. The method searches for time varying parameters which produce better approximations of an underlying mechanism, compared to constant parameters. For this purpose, it uses an algorithm based on the optimal control method for hybrid systems proposed in [START_REF] Zhao | Optimal control for nonlinear hybrid systems via convex relaxations[END_REF]. The model revision is achieved without imposing beforehand any structure on the sought law, since we consider the case where we do not possess any additional insight or knowledge.

Set-based simulation. In Chapter 4, we extended the previous work of [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] for reachability analysis of discrete time polynomial systems with uncertain parameters. We contributed in this problem an extension of [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF] to discrete time piecewise-rational functions, allowing handling a larger panel of biological applications. Moreover, we also give a few improvements to speed up the actual reachability analysis in some particular cases. In addition, we proposed another set-based 131 simulation method using the Krivine-Stengle representations. We showed how to adapt the Krivine-Stengle representation based method for an efficient application to reachability analysis of discrete-time polynomial systems with uncertain parameters in box domains.

MOEPLA: Modelling Oriented Experimental Protocol Language. In Chapter 5, we proposed a preliminary work on a language to formally specify an experimental protocol while taking into account a model of a mechanism. In its current form, the proposed language allows modelling multi-stage evolutions of multiple experimental objects in parallel, with possible synchronization steps. It also allows automatic generation of a formal framework using the hybrid automaton formalism. Taking advantage of non-determinism inherent to hybrid automata that can model uncertainty in biological models, we can either validate a model while taking into account an existing protocol (with its uncertainties), or verify that a future protocol (or therapy) will always be correctly executed. We demonstrated the use of MOEPLA on two experimental protocols associated to the haemoglobin production model and the glucose response model, respectively.

Case studies. Finally, in Chapter 6 we described three modelling studies. We first investigated a model of haemoglobin production during the differentiation stages of the an erythroblast into an erythrocyte (also called red blood cells). In the first part of this study, we used a simple exploratory scheme to perform parameter estimation with respect to multiple experimental data sets. In the second part, we used this model to demonstrate the applicability of our model revision method. This model revision with a time varying parameter enabled us to better reproduce a considered dataset. We also note that from the inferred solution we derived multiple hypotheses which led to a meaningful biological interpretation of the time varying parameter as an activation function.

The second case study used the iron homoeostasis model designed in [START_REF] Mobilia | A model of the cellular iron homeostasis network using semi-formal methods for parameter space exploration[END_REF]. In this work, we applied the Bernstein reachability analysis from Chapter 4 to confirm a hypothesis formulated in [START_REF] Mobilia | A model of the cellular iron homeostasis network using semi-formal methods for parameter space exploration[END_REF] using exhaustive methods for uncertain parameters and initial sets.

The last case study was a preliminary modelling of a recent study of generational effect of low dose and chronic Cadmium intake on the metabolism [START_REF] Jacquet | Conséquences d'une exposition chronique à des doses modérées de cadmium sur le métabolisme du glucose de rats à différents stades de la vie[END_REF]. In this case study, we proposed a first simple model of the oral glucose tolerance test (OGTT) adapted from a previous glucose response model [START_REF] Nittala | Dimensional analysis of minmod leads to definition of the disposition index of glucose regulation and improved simulation algorithm[END_REF]. We also provided multiple parameter estimations associated to different data sets.

Future work

The work described in this thesis still needs improvement on several points, but also suggests numerous ideas for future work. Monday 6 th August, 2018 (08:34)
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Improvements and implementation. In addition to the theoretical work given in this thesis, we still need to provide an implementation in a user-friendly toolbox. The improvements provided in Chapter 4 can be integrated in the latest version of reachability toolbox sapo [START_REF] Dreossi | Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems[END_REF]. Similarly, the current implementation of sparse Krivine-Stengle representations must be re-written in a more efficient implementation than the current one in Matlab. The MOEPLA language is still under development, we need to implement an interface and a parser to check the validity of experimental protocols and automatically generate their hybrid automaton models for formal analysis purposes. In addition to the implementation work, we still need to provide a solution to handle common variables, relative time constraints, and a more efficient hybrid automaton generation.

Occupation measure methods. The theoretical results of Chapter 3 for model revision can be improved by providing a converging sequence of relaxations for the optimal control problem with intermediate points instead of using a greedy algorithm. In addition, it has been shown that occupation measure methods [START_REF] Mohan | Convex computation of the reachable set for hybrid systems with parametric uncertainty[END_REF] allow computing converging over-approximations of the valid parameter sets. These results can be extended to our biological problem of fitting parameters with respect to intermediate time measures.

Non-linear reachability analysis. The work on the Bernstein expansion provided some ideas for its application for conservative approximations of polynomial lifts. Then, such a method can be used within an algorithm for non-linear reachability analysis using Carleman linearisation [START_REF] Forets | Explicit error bounds for carleman linearization[END_REF]. Another idea is to use multivariate polynomial interpolation to approximate the image of an initial set by a trajectory at a fixed time.

Glucose response model. The experimental results of Cadmium effect on the glucose response are recent, and in this thesis we presented a preliminary modelling work and parameter estimation of the glucose response model, independently of the Cadmium. We now need to ensure the robustness and validity of the estimated parameters using either statistical methods or set-based methods. Additionally, we still need to consider the whole protocol to design a model of Cadmium integration. The MOEPLA language will help to formally specify this protocol and generate an associated model. Monday 6 th August, 2018 (08:34)

Formal methods for modelling and validation of biological models

Alexandre Rocca

Thesis Directed By Thao Dang and Éric Fanchon

The focus of this thesis is the modelling and analysis of biological systems using formal methods. The dynamics of biological systems exhibit continuous behaviours but also abrupt changes. Ordinary differential equations and hybrid dynamical systems are two mathematical formalisms that naturally model such dynamics. A crucial aspect of modelling is the determination of valid parameter values that enable to simulate the behaviour and reproduce experimental data sets. If no valid parameter values are found it becomes necessary to revise the model. An option is to replace one or several lumped parameters (parameters which represent a set of processes) by functions of time. In this thesis we first study the model revision problem on hybrid dynamical systems. To this aim we propose a greedy scheme of optimal control methods based on occupation measures and convex relaxations.

Then, we study how to characterize dynamical properties of a model using set-based simulations and reachability analysis. For this purpose, we propose two methods: the first one, which relies on Bernstein expansion, is an extension for hybrid dynamical systems of the reachability tool Sapo [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF], while the other one uses Krivine-Stengle representations [START_REF] Rocca | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF] to perform the reachability analysis of polynomial ODEs. Finally, We also propose a methodology to generate hybrid dynamical systems modelling a class of experimental protocols.

The proposed methods are applied to different case studies. We first propose a model of haemoglobin production during the differentiation of an erythrocyte in the bone marrow [START_REF] Bouchnita | Multi-scale modelling of erythropoiesis and hemoglobin production[END_REF]. To develop this model, we first apply the Monte-Carlo based parameters synthesis, followed by the model revision to correctly fit to the experimental data [START_REF] Dang | Occupation measure methods for modelling and analysis of biological hybrid automata[END_REF]. We also propose a preliminary study of the effect of low dose Cadmium on glucose response at different steps of a rat growth. Finally, we apply the reachability analysis techniques for the validation on large parameters set of the existing iron homoeostasis model [START_REF] Mobilia | Méthodologie semi-formelle pour l'étude de systèmes biologiques: Application à l'homéostasie du fer[END_REF], [START_REF] Rocca | Application of the reachability analysis for the iron homeostasis study[END_REF]. We note the haemoglobin production process, as well as the glucose response system can be formalised, with their experimental context, as hybrid dynamical systems. Thus, they serve as proof of concept for the methodology of biological experimental protocols modelling.

L'objectif de cette thèse est la modélisation et l'étude de systèmes biologiques par l'intermédiaire de méthodes formelles. Les systèmes biologiques démontrent des comportements continues mais sont aussi susceptibles de montrer des changements abruptes dans leur dynamiques. Les équations différentielles ordinaires, ainsi que les systèmes dynamiques hybrides, sont deux formalismes mathématiques utilisés pour modéliser clairement de tels comportements.

Un point critique de la modélisation de systèmes biologiques est la recherche des valeurs des paramètres du modèle afin de reproduire de manière précise un ensemble de données expérimentales. Si aucun jeux de paramètres valides n'est trouvé, il est nécessaire de réviser le modèle. Une possibilité est alors de remplacer un paramètre, ou un ensemble de paramètres, définissant un processus biologique par une fonction dépendante du temps. Dans le cadre de cette thèse, nous exposons tout d'abord une méthode pour la révision de modèles hybrides. Pour cela, nous proposons une approche gloutonne appliquée à une méthode de contrôle optimal utilisant les mesures d'occupations et la relaxation convexe. Ensuite, nous étudions comment analyser les propriétés dynamiques d'un modèle à temps discret en utilisant la simulation ensembliste. Dans cet objectif, nous proposons deux méthodes basées sur deux outils mathématiques. La première méthode, qui se repose sur les polynômes de Bernstein, est une extension aux systèmes dynamiques hybrides, de l'outil de calcul ensembliste Sapo [START_REF] Dreossi | Parallelotope bundles for polynomial reachability[END_REF]. La seconde méthode utilise les représentations de Krivine-Stengle [START_REF] Rocca | Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations[END_REF] pour permettre l'analyse d'atteignaiblité de systèmes dynamiques polynomiaux. Enfin, nous proposons aussi une méthodologie pour générer des systèmes dynamiques hybrides modélisant des protocoles biologiques expérimentaux. Les méthodes précédemment proposées sont appliquées sur divers études biologiques. Nous étudions tout d'abord un modèle de la production d'hémoglobine durant la différentiation des érythrocytes dans la moelle [START_REF] Bouchnita | Multi-scale modelling of erythropoiesis and hemoglobin production[END_REF]. Pour permettre la construction de ce modèle, nous avons dans un premier temps généré un ensemble de jeux de paramètres valides à l'aide d'une méthode de type Monte-Carlo. Dans un second temps, nous avons appliqué la méthode de révision de modèle afin de reproduire plus précisément les données expérimentales [START_REF] Dang | Occupation measure methods for modelling and analysis of biological hybrid automata[END_REF]. Nous proposons aussi un modèle préliminaire des effets à faibles doses du Cadmium sur la réponse du métabolisme à différentes étapes de la vie d'un rat. Enfin, nous appliquons les techniques d'analyse ensembliste pour la validation d'hypothèses sur un modèle d'homéostasie du fer [START_REF] Rocca | Application of the reachability analysis for the iron homeostasis study[END_REF] dans le cas où des paramètres varient dans de larges intervalles. Dans cette thèse, nous montrons aussi que le protocole associé à l'étude de la production d'hémoglobine, ainsi que le protocole étudiant l'intégration du Cadmium durant la vie d'un rat, peuvent être formalisés comme des systèmes dynamiques hybrides, et servent ainsi de preuves de concepts pour notre méthode de modélisation de protocoles expérimentaux.
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Figure 4 . 2 :

 42 Figure 4.2: Tight over-approximation (Γ box , c) (in blue) of a set X (in red) by a box template Γ box given in Example 4.2.

i

  (x). This partition of R 2 is represented in Figure 4.3. Its associated BSPT is given in Figure 4.4.

Figure 4 . 3 :

 43 Figure 4.3: Partition of the state space by three constraints h 1 , h 2 , and h 3 as defined in Example 4.5. The associated BSPT is given in Figure 4.4. The set X 0 is located in the domain N 1 . Its image by A (f )1 is X 1 located in domain N 5 which is not adjacent to N 1 : we say that X 0 performed a jump.

Figure 4 . 4 : 56 CHAPTER 4 .

 44564 Figure 4.4: BSPT associated to the partition proposed in Example 4.5 and shown in Figure 4.3. In red we show the step associated to the localization of the set Y 1 as described in Example 4.6

Example 4 . 6 (

 46 Locating a set). In this example, we continue with the partition of R 2 defined in Example 4.5 and represented in Figure4.3. We want to locate Y 1 the image of Y 0 by the vector field A (f ) 3 (see Figure4.3). Let consider the BSPT given in Figure4.4 as a representation of the partition of Example 4.5. We know that Y 0 ⊂ N 3 , therefore we first guess that Y 1 ⊆ N 3 . As it is false, we go upward in the tree and test if Y 1 ⊆ {¬h 1 ∧ h 2 } which is true. Consequently, we know that either Y 1 ⊆ N 4 or Y 1 is intersecting both N 3 and N 4 . As Y 1 ⊂ ¬{h 3 } we know that Y 1 ⊆ N 4 which terminates the localisation search.

. 10 ) 58 CHAPTER 4 .

 10584 Monday 6 th August, 2018 (08:34) SET-BASED SIMULATION FOR BIOLOGICAL MODELS VALIDATION We call the set of points (α/l, b α ) ∈ R n+1 the Bernstein control points associated to the Bernstein expansion of multi-degree l.

Example 4 . 8 (

 48 Bernstein expansion). The Bernstein coefficients up to degree l = 10 of the univariate polynomial f

Figure 4 . 5 :

 45 Figure 4.5: Representation in blue of the polynomial f (x) = x 5 + 3x 2 given in Example 4.8, for x ∈ [-1, 1]. In red, we show its Bernstein control points for l = 10.

Property 4 . 9 (

 49 Cardinality[151, (3.14)]). The number of Bernstein coefficients in the Bernstein expansion of multi-degree l is equal to (l + 1) 1 = n i=1 (l i + 1) . Monday 6 th August, 2018 (08:34) Property 4.10 (Linearity [151, (3.2.3)]). Given two polynomials f 1 and f 2 , b

Property 4 . 11 (

 411 Enclosure[151, (3.2.4)]). The minimum (resp. maximum) of a polynomial f over [0, 1] n can be lower bounded (resp. upper bounded) by the minimum (resp. maximum) of its Bernstein coefficients:

12 ) 60 CHAPTER 4 .

 12604 Monday 6 th August, 2018 (08:34) SET-BASED SIMULATION FOR BIOLOGICAL MODELS VALIDATION Consequently, instead of storing all the Bernstein coefficients of x γ it suffices to compute the Bernstein coefficients of the univariate monomials which are less numerous4 . If needed, the Bernstein coefficients of x γ (and any polynomial thanks to Property 4.10) can be computed independently and on the fly at a lesser cost.

Example 4 . 14 (

 414 Implicit representation). Let us consider the 2 dimensional poly-

62 CHAPTER 4 .

 624 Thus, one obtains f l = 2 as an upper bound of f . Monday 6 th August, 2018 (08:34) SET-BASED SIMULATION FOR BIOLOGICAL MODELS VALIDATION In this work we also propose an additional method to compute an upper bound of the optimum max (x,k)∈[0,1] n ×K f (x, k) in the particular case of parameters varying inside a box K = [k, k]. As each b (f ) α (k) is linear in k, by monotonicity of linear applications, the maximum and minimum of each b (f ) α are obtained at the corners of K. Through a linear transformation to the box [-1, 1] m it is possible to further speed up this computation. Let φ(k) : R m → R m be the linear transformation that associates to each k ∈ K a vector e ∈ [-1, 1] m , noting e = φ(k). The optimization problem transformed to e ∈ [-1, 1]

. 18 )

 18 Proof. We write f e ∈ R[x] the polynomial f (x, e) for a given e ∈ [-1, 1] m . Property 4.11 provides the enclosure of f e (x) w.r.t. x for a given e ∈ [-1, 1] m : min α≤k b (f e ) α ≤ f e (x) ≤ max α≤k b (f e ) α , ∀x ∈ [0, 1] n , (4.19)

Example 4 . 20 (

 420 Bundle of parallelotopes). Let P be a polyhedron defined by a template matrix Γ of 5 constraints: Γ 1 , Γ 2 , Γ 3 , -Γ 1 , -Γ 2 : we note that p = 3 as only 3 constraints are non-symmetric. We represent this polyhedron in the Figure 4.7. We can defined round ↑ (3/2) = 2 parallelotopes Π 1 and Π 2 such that P = Π 1 ∩ Π 2 . They are represented in Figure 4.7.

Figure 4 . 7 :

 47 Figure 4.7: In this figure we show a possible bundle of parallelotopes {Π 1 , Π 2 } which represents the polyhedron P as defined in Example 4.20

Example 4 . 21 (

 421 Bundle intersection). We consider the bundle defined in the previous Example 4.20. We now compute its intersection with a constraint h as shown in Figure4.8. As seen in Example 4.20, p/n = 1.5 ≤ 2 and there is a redundant constraint:

Figure 4 . 8 :

 48 Figure 4.8: On the left we show a parallelotope bundle of P and the intersecting constraint h. On the right we show a bundle generated by Algorithm 2 representing the intersection P ∩ h.

h 15 :

 15 /* Add Π new to B and add a new line to Γ and c */ 16:Γ[last] = a, c[last] = c h

  end if 23: for Γ[l] ∈ Γ do 24: /* Tighten the constraints of the polyhedron */ 25: c[l] = max x∈(Γ,c) Γ[l]x 26:

Monday 6 th 70 CHAPTER 4 .

 6704 August, 2018 (08:34) SET-BASED SIMULATION FOR BIOLOGICAL MODELS VALIDATION Algorithm 3 Bernstein One Step Reach(X,Ψ,Γ,K) 1: INPUT: X: Current set (template polyhedron) 2: INPUT: Ψ: BSPT and its associated piecewise approximation of the dynamics. 3: INPUT: Γ: template which is used to over-approximate the reachable set. 4: INPUT: K: parameters set 5: OUTPUT: an over-approximation of the reachable set of X after one step. 6: G: set of current nodes, or the tree root 7: (L,X ) = Ψ.locating(X, G) /* finding intersecting nodes, and associated intersections */ 8: for Γ i ∈ Γ do 9: /* computing offset bound c i for each constraint Γ i in the template */ 10:for (L κ , X κ ) ∈ L do 11:

72 CHAPTER 4 .

 724 SET-BASED SIMULATION FOR BIOLOGICAL MODELS VALIDATION Theorem 4.24 (Dense Krivine-Stengle LP relaxations). The sequence of optimal values (p * l ) satisfies p * l → f * as l → +∞. Moreover each p * l is a upper bound of f * .

Example 4 . 29 (

 429 Sparse representation in the parameters). For instance, with the polynomialf = (2x 2 -x)k 1 + x 2 k 2 + (x 2 -x)k 3 depending on x, k 1 , k 2 , k 3 , where x ∈ [0, 1] = {x ∈ R | 0 ≤ x ≤ 1} and k ∈ [-1, 1]3 , one can consider the multi-indices α 1 = (1, 2), β 1 = (2, 3) associated to the scaled parameter k 1 .

m. 3 + 1 =

 31 j=1 φ j . Each φ j has (n+1)+l l monomials. However there are redundant monomials between all the φ j : the ones depending of only x, and not e. These n+l l monomials should appear only once. This leads to a final number of m (n+1)+l l -(m -1) n+l l monomials which is equal to [ ml n+1 + 1] n+l l Example 4.32 (K.S. parametric optimization). Continuing Example 4.15 and 4.29, for the polynomial f = (2x 2 -x)k 1 +x 2 k 2 +(x 2 -x)k 3 , we consider LP (4.33) at the relaxation order l = d = 3 over X = [0, 1] × [-1, 1] 3 . This problem involves 3 2×(1+1)+3 106 variables and [ 3×3 2 + 1] 4 3 = 22 constraints. This is in contrast with a dense Krivine-Stengle representation, where the corresponding LP involves 35 linear equalities and 166 variables. Computing the values of f l provides an upper bound of 2, yielding f

Monday 6 th 76 CHAPTER 4 .

 6764 August, 2018 (08:34) SET-BASED SIMULATION FOR BIOLOGICAL MODELS VALIDATION Algorithm 4 KS One Step Reach(X,Ψ,Γ,K) 1: INPUT: X: Current set (template polyhedron) 2: INPUT: Ψ: BSPT and its associated piecewise approximation of the dynamics. 3: INPUT: Γ: template which is used to over-approximate the reachable set. 4: INPUT: K: parameters set 5: OUTPUT: an over-approximation of the reachable set of X after one step. 6: G: set of current nodes, or the tree root 7: (L,X ) = Ψ.locating(X, G) /* finding intersecting nodes, and associated intersections (still polyhedron) */ 8: for Γ i ∈ Γ do 9: /* computing offset bound c i for each constraint Γ i in the template */ 10:for (L κ , X κ ) ∈ L do 11:

Monday 6 th

 6 August, 2018 (08:34) 4.4. DISCUSSION AND PERSPECTIVES 77 where f is polynomial in x and linear in k.

  Fig 4.9, one can see the results of box approximations using the Bernstein expansion at fixed time points of the Lotka-Volterra continuous model (LV-ODE) from Example 4.1. If this method performs well in two dimen-

Figure

  Figure 4.9: Interpolation method for reachability analysis applied on the Lotka-Volterra ODE system. The '+' dots are the numerical simulations of the 2D Padua grid of the initial set: the box [0.9, 1.1] 2 . The other boxes are the over-approximation the reachable set using polynomial approximations φt (X 0 ) interpolated from simulations on the initial set grid.

Figure 4 . 10 :

 410 Figure 4.10: Polynomial lift (x, x 2 , x 3 ) of the interval [0, 1] (blue dotted-line) approximated by either the convex hull of the Bernstein control points (blue enclosure), or its Cartesian product decomposition (red enclosure). The green box would be a box overapproximation of the polynomial lift.

Figure 5 . 1 :

 51 Figure 5.1: Biological experiment modelling workflow.

  ) an experimental object O associated to the parametric dynamical system F O . In this context, F O represents various mechanisms related to this particular object the biologist wants to study. Then, T O , X O , U O , K O ) respectively are the default time interval associated to O, its default state space, input space, and parameters space; and f O are parametric ODEs with input, which models the dynamics of the Monday 6 th August, 2018 (08:34) EXPERIMENTAL PROTOCOL MODELLING variables of O. In the following, we assume that T O = T = [0, T ] for all the objects.

Definition 5 . 4 ( 87 -

 5487 Experimental actions -Creation). -I 0 (O, x O (0) := x O 0 ): this creates an initial object O, and initialises its state variables to x O 0 . -A create (O, L, x O (t) := x O t , c(t)): this action defines the creation of a new object O under the condition c(t) = true, with some initial value x O t . The condition c only depends on t in this particular case. This action allows creating a new object at a given time independently of another experimental object. Monday 6 th August, 2018 (08:34) 5.1. MOEPLA DESCRIPTION A cr f rom (O, {O (β) }, L, x O (t) ← R(x(t)), c(t, x)): this action defines the creation of O from a given set of experimental objects {O (β) }, under the condition c(t, x(t)) = true. Here, x is the concatenation of the variables x O (β) . The initial condition x O (t) of O is determined by a reset map on the state variables x(t) of the set of objects {O (β) }.

Definition 5 . 5 (

 55 Experimental actions -Perturbation).

Figure 5 . 2 :

 52 Figure 5.2: Representation of the haemoglobin protocol described in Example 5.12 and later in Section 6.1

94 CHAPTER 5 .

 945 It is expressive enough to represent a large panel of possible experiments either coming from the Monday 6 th August, 2018 (08:34) MOEPLA: A LANGUAGE FOR EXPERIMENTAL PROTOCOL MODELLING Example 5.15 (Hybrid automaton of protocol). Given the following experimental objects with their associated dynamical systems: O(F O ), O (F O )

Figure 5 . 3 :

 53 Figure 5.3: The hybrid automata of the objects defined in the protocol in Example 5.15.

Figure 5 . 4 :

 54 Figure 5.4: Parallel composition of the hybrid automata of the protocol in Example 5.15.
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106 CHAPTERFigure 6 . 1 :Algorithm 5

 106615 Figure 6.1: Projection of the cloud of valid points on the plane k 4 -k 5 . The solutions p 1 , p 2 , p 3 , p mean are indicated in red.

Monday 6 thSimulations compared to dataset # 1 Figure 6 . 3 :

 6163 Figure 6.3: Visualization of the match between the measurements and the corresponding quantities computed from the simulations, for dataset #1. Measurements are represented by circles and computed quantities by asterisks. The 3 parameter points p 1 , p 2 , p 3 , and p mean defined above are shown.

Simulations compared to dataset # 2 Figure 6 . 4 :

 264 Figure 6.4: Same as previous for dataset #2.

Simulations compared to dataset # 3 Figure 6 . 5 : 110 CHAPTER 6 .

 3651106 Figure 6.5: Same as previous for dataset #3.

Figure 6 . 8 :

 68 Figure 6.8: 9 modes generated by [f 1 ; f 2 ; f 3 ] = [0; 1.25e 8 • IRP -3 4; 1] the approximation of sig(IRP, θ IRP-Ft ) and [g 1 ; g 2 ; g 3 ] = [0; 2.74e 8 • Fe -3 4 ; 1] the one of sig(Fe, θ Fe-IRP ). The constraints h i are of the form a • x ≤ c, for example h 1 : Fe≤ 2.73e -9 .
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 696101206 Figure 6.9: Iron stabilization

Figure 6 . 11 :

 611 Figure 6.11: Iron reachable set for Tf sat = 0

121 Figure 6 . 12 :Figure 6 . 13 :

 121612613 Figure 6.12: IRP reachable set for Tf sat = 0

Figure 6 . 14 :

 614 Figure 6.14: Protocol for indirect exposure of small rats to Cadmium through their mothers.

  Figure 6.15: Approximation of the plasma glucose rate of appearance.

Ġ = -p 1 (( 6 . 5 )

 165 G(t) -G b ) -r Cd X(t)G(t) + G RA (t) Ẋ = -p 2 X(t) + p 3 (I(t) -I b ) İ = -n I(t) + γ (G(t) -h) t + p 4 I s (t) İs = -p 4 I s (t)In the ODE system (6.5), G is the glucose concentration in circulating blood, X the rate of glucose absorption in muscles and adipocytes due to insulin, I the insulin Monday 6 th August, 2018 (08:34)6.3. CADMIUM IMPACT ON GLUCOSE RESPONSE MODEL 125concentration in circulating blood, and I s the insulin concentration stored in the β-cells and ready to be released.
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  Stengle representations, used in the context of polynomial optimization. Then, we present a sparse version based on[START_REF] Grimm | A note on the representation of positive polynomials with structured sparsity[END_REF]. These notions are later applied in Section 4.3.2 to parametric polynomial optimization and template discrete time reachability analysis.

	21:	end for
	22:	

c i = max κ (c i,κ ) 23: /* largest bound by all approximate dynamics of intersecting nodes */ 24: /* We keep one set to avoid cost explosion due to successive intersections */ 25: end for 26: return (Γ, c) /* the result is the template polyhedron with offsets c */ discrete time polynomial dynamics with parameters constrained in a box.

We first give, in Section 4.3.1, the necessary background on Krivine-

Table 4 .

 4 1: Comparison of execution times (in seconds) for examples generated from (??). First and second column are the execution times using Bernstein optimization with either double precision or rational arithmetic (exact precision). The last column details execution times for Krivine-Stengle method. For Krivine-Stengle the CPLEX solving time is given between parentheses. For each polynomial, the best results are emphasized using bold fonts.

Table 4 .

 4 [START_REF] Paoletti | Identification of hybrid systems a tutorial[END_REF].1 version in association to sapo, and CPLEX 12.63 to solve linear programs from K.S. representation method. In Table4.1 we compare the performances of the two methods. Taking into account that 2: Comparison of the accuracy for examples generated from (??). The first column contains the upper bounds using Bernstein optimization with either double precision or rational arithmetic (exact precision). The second column details the upper bounds given by Krivine-Stengle method.

	Monday 6 th August, 2018 (08:34)

  Definition 5.10 (Experimental Protocol Execution Semantics). Let us first consider the case without synchronization. The initialisations are executed first and without conditions, in which the action A create (O, . . . , c(t)) is executed under the only condition c(t) == true. We abuse the notations here by denoting A(O, c(t, x O (t))) the actions A x , A k , A

u , and A(O, {O (i) }, c(t, x(t))) the action A cr f rom ; and finally A M (O, c(t, x O (t))) the measurement action. The action A(O, c(t, x O (t))) can be executed at t such that:

  Here it is a compacted version as it is a repeating scheme) 15. A M (O 52h , 59 H(t) + 4 59 Hb(t), t == 55h)

		CHAPTER 5. MOEPLA: A LANGUAGE FOR
	92	EXPERIMENTAL PROTOCOL MODELLING
	composition of the hybrid automata modelling each concurrent process, i.e. the
	evolution of each experimental object considered separately.
		Monday 6 th August, 2018 (08:34)

  k 8 Hb

	dt d 59 Fe	= k 59 1 Fe ex -k 59 2 Fe -k 59 3 Fe	(f rad )
	d 59 H dt	= k 59 3 Fe -k 59 4 H -4k 59 5 H G tot	
	dG tot dt	= k 6 (H + 59 H) -4k 5 (H + 59 H) G tot -k 7 G tot	
	d 59 Hb dt	= k 59 5 H G tot -k 59 8 Hb	

  -3 s -1 .

	Exposure time (h) 4	8	16	24	32	42	52
	59 Fe in Heme						
	(cpm/1e -7 L)	47 213 697 1020 1725 2379 2370

Table 6 .

 6 1: Dataset #1: Accumulated 59 Fe in Heme. The radiolabel (transferrin-bound 59 Fe) is added to the medium at t = 0h. The first line indicate the time at which cells are collected.

	Exposure time (h) 4-7 8-11 16-19 24-27 32-35 42-45 52-55
	59 Fe in Heme							
	(cpm/1e -7 L/h)	16	85	348	391	399	481	395

Table 6 .

 6 2: Dataset #2: The cells are first cultured in presence of iron (normal, nonradioactive, isotope). Then the radiolabel (transferrin-bound 59 Fe) is added directly to the medium, and the culture continues for the period indicated in the first line (duration = 3h).

Table 6 .

 6 3: Dataset #3: Incorporation of 3 H-leucine in β-major globin. The cells are first cultured in a medium without radiolabel. Then the radiolabel ( 3 H-leucine) is added directly to the medium, and the culture continues for the period indicated in the first line (duration = 12h).

	Monday 6 th August, 2018 (08:34)

Table 6 .

 6 5: Results of the search procedure. The second column defines the box enclosing the set of valid points in parameter space. The following columns contains the values for 4 particular solutions. Fe 0 is the initial concentration of internal iron (not labelled). The concentration of external labelled iron ( 59 Fe ex ) is 3000atoms/fL, while the concentration of external iron Fe ex (not labelled) is 4atoms/fL.

	Parameters	p 1	p 2	p 3	p mean
	k 2	1.61e -10 1.22e -10 6.0e -10 3.78e -10
	a k3	1.42e -8	7.70e -9 9.25e -9	7.4e -9
	b k3	7.2e -7	7.13e -7 7.15e -7	7.2e -7
	k 4	3.95e -4	4.63e -4 4.30e -4 4.47e -4
	k 5	5.59e -6	6.48e -6 5.71e -6 7.27e -6
	k 6	4.74e -4	5.10e -4 4.31e -4 4.47e -4
	k 7	4.46e -8 2.88e -10 3.01e -7 4.97e -10
	k 8	1.3e -5	1.243e -5 1.17e -5 1.14e -5
	Fe 0	3.10e +2	3.46e +2 3.27e +2 3.21e +2
	ε 1	0.220	0.235	0.239	0.238
	ε 2	0.239	0.228	0.238	0.238
	ε 3	0.225	0.238	0.199	0.200
	ε mean	0.228	0.234	0.226	0.226

Table 6 .

 6 6: Results of the search procedure. Columns 2, 3 and 4 provide solutions corresponding to the minimum (within the set of found solutions) of ε 1 , ε 2 , and ε 3 , respectively.

  Figure 6.2: Evolution of the 4 concentrations computed with the parameter values identified as p mean in Table 6.6.

		6.1. ERYTHROPOIESIS HAEMOGLOBIN PRODUCTION	
		MODEL					107
		700 Simulations of Fi(t),H(t),G(t) and Hg(t) corresponding to minimum of (R1+R2+R3)/3 (point pmean)	
							internal Iron(t) *1
							Heme(t) *10
							Globin(t) *10
		600					Hemoglobin(t) *1
		500					
	(molecules/fL)	400					
	Concentration	200 300					
		100					
		0					
		0	10	20	30	40	50	60
					time(h)		
		14:	r = r ∪ k			
		15:	end if				
		16: end for				
		17: return r				
		Monday 6 th August, 2018 (08:34)		

Table 6 .

 6 7: Dimensions (with x c ), vector fields, domains, and input sets for the controlled hybrid system H of the haemoglobin production model.

	Mode e = (i, j) S e	R e
	i = 1	(1, 2)	t == 4	I 5,5 O 4,4
	i = 2	(2, 3)	t == 7	I 5,5 , O 4,4
	i = 3	(3, 4)	t == 8	I 5,5 O 4,4
	i =	. . .	. . .	. . .	. . .
	i = 13 (13, 14)	t == 52	I 5,5 O 4,4

Table 6 . 8

 68 

: Transitions, guards, and reset maps of the controlled hybrid system H.

  Implementation. Now that we have a valid controlled hybrid system, H, we solve the optimal control problem with intermediate time points defined in (3.20), using the method from Section 3.2.1 and its implementation in Section 3.2.2. The experimental measurement is modelled by the function m(x) = 59 H + 4 59 Hb = x 6 + 4x 8 . Thus, we set

	6.1. ERYTHROPOIESIS HAEMOGLOBIN PRODUCTION	
	MODEL	111
	scale factor ζ may take different values depending on the numerical optimization
	details, the objective control u(t) always evolves in [0, 1].	
	Monday 6 th August, 2018 (08:34)	

with ζ 1 and û(t) ∈ [0, 1/ζ]. While the

Table 6 . 9

 69 

: Experimental data points (T j , z j ) used as references.

  Figure 6.7: Radio-active variables59 Fe, G tot in (f rad ), as well as, the comparison of the measurement function results to the dataset #2 (see Table6.9).

	6.1. ERYTHROPOIESIS HAEMOGLOBIN PRODUCTION					
	MODEL											113	
												Generated Optimal control u gen (t)
												Piecewise polynomial u poly (t)
												Hill function u hill (t)	
												Step function u step (t)
	Figure 6.6: Synthesized optimal control and various approximations that yield a realistic
	interpretation.											
		0.08			Fe59(t)				0.12			Gtot(t)		
									0.1					
	Fe59(t) [mol/m 3 ]	0.02 0.04 0.06						Gtot(t) [mol/m 3 ]	0.04 0.06 0.08					
									0.02					
		0							0					
		0	10	20	30	40	50	60	0	10	20	30	40	50	60
				Time [hours]							Time [hours]		
	L)h -1 ]	500				Observed variable: H59(t)+4*Hb59(t)				
	H59(t)+4*Hb59(t) [cpm/(1e -7	0 100 200 300 400												
		0		10		20		30		40		50			60
								Time [hours]					
	Monday 6 th August, 2018 (08:34)							

Table 6 .

 6 10: Total error ε total associated to each proposed input.

	.6	0.23
	Results generated by Algo 1 0.096
	Step function fit	0.12
	Piecewise Polynomial fit	0.13
	Hill function fit	0.075

  8 • IRP -3 4 ; 1] the approximation of sig(IRP, θ IRP-Ft ) and [g 1 ; g 2 ; g 3 ] = [0; 2.74e 8 • Fe -3 4 ; 1] the one of sig(Fe, θ Fe-IRP ). The constraints h i are of the form a • x ≤ c, for example h 1 : Fe≤ 2.73e -9 .

Monday 6 th August, 2018 (08:34) 

The hybrid dynamical system formalism may not be explicitly used but the resulting behaviours can be considered considered as hybrid.

The tool only knows the trajectory solution and not the actual structure of the model.Monday 6 th August, 2018 (08:34) 

The solution is said to be maximal if it cannot be continued any further than T Monday 6 th August,

(08:34) 

Note that λ here is a piecewise constant function over time.Monday 6 th August, 2018 (08:34) 

We also note that for synchronised transitions, the guard conditions on the continuous variables will have be to be satisfied simultaneously to enable the transition.Monday 6 th August, 2018 (08:34) 

Consequently, the function u is a piecewise function constituted from the input functions ui in each mode.

The set of points reachable from a target set while going back in time.

The set of initial conditions leading to an attractor.

We note v the total derivative of v: dv/dt.Monday 6 th August, 2018 (08:34) 

or enter the mode i for a transition (j, i).Monday 6 th August, 2018 (08:34)3.1. HYBRID OPTIMAL CONTROL USING OCCUPATION MEASURES

We recall that gγ denotes the coefficient of g at the multi-index γ for the monomial basis.Monday

th August, 2018 (08:34) 

We assume that Γx ≤ c defines a compact subset of R n . Monday 6 th August,

(08:34) 

In practice we perform computations with non-strict inequalities to keep compact sets. Monday 6 th August, 2018 (08:34)4.1. SET-BASED SIMULATION

The transition must be taken if the conditions are satisfied.Monday 6 th August, 2018 (08:34) 

We recall that the number of Bernstein coefficients is exponential in dimension. Monday 6 th August, 2018 (08:34)4.2. THE BERNSTEIN EXPANSION BASED METHOD

We recall that d is the multi-degree of f (and f ) in x.Monday

th August, 2018 (08:34)4.2. THE BERNSTEIN EXPANSION BASED METHOD

Locally defined by rational or polynomial vector field in each domain, for the particular case of piecewise approximated dynamics

The polyhedral template can be chosen to be a parallelotope however we may lose in accuracy.Monday 6 th August, 2018 (08:34) 

the minimization problem resolution is analogous.Monday 6 th August, 2018 (08:34) 

Or obtained though a linear transformation of [-1, 1] m . Monday 6 th August, 2018 (08:34)

Note that l = l in the particular case of polytopes.Monday 6 th August, 2018 (08:34) 

We recall that perturbation actions are the actions Ax, A k , Au.

We recall that i is the index of the different stages of the object O.

See Definition 3.2 Monday 6 th August, 2018 (08:34)

Here we do not consider the multiple variations of haemoglobin, and globin.

Note that the symbol H in

H-leucine stands for the isotope of hydrogen.Monday 6 th August, 2018 (08:34) 

The simulations we perform are conform to the experimental protocol of each particular dataset. In Section 6.1.2, we use the hybrid systems formalization to improve the analysis.

For this reason we kept G and Hb present in the ODE system (frad) Monday 6 th August, 2018 (08:[START_REF] Ramdani | Reachability of uncertain nonlinear systems using a nonlinear hybridization[END_REF] 

The SPOTLESS implementation was taken from https://github.com/ spot-toolbox/spotless Monday

th August, 2018 (08:34) 

Here we consider dsig = 5.

Two sigmoids are on IRP, and one on Fe Monday 6 th August, 2018 (08:34)

We consider that the time food spends in stomach is close to zero as the glucose meal is liquid.Monday 6 th August, 2018 (08:34) 

Except the default food pollution as it is noted in[START_REF] Jacquet | Conséquences d'une exposition chronique à des doses modérées de cadmium sur le métabolisme du glucose de rats à différents stades de la vie[END_REF].Monday 6 th August, 2018 (08:34) 
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CHAPTER 6. APPLICATIONS AND CASE STUDIES

associated to the control group data set is 0.00512. The best fits for group Cd1 are obtained considering the Hypothesis 4: a reduction of glucose sensibility of β-cells during the phase 2 of insulin production. We consider the same hypothesis when searching for a parameter fit of group Cd2 dataset: the best solution yields a goodness of 0.006. After 26 days, we consider an additional hypothesis. Indeed, from

Variable Value

Unit G(0) 110.0 mg/dL X(0) 0.0 min -1 I(0) 16.0 nU/dL I s (0) 5950.0 nU/dL ted to the datasets at 60 days are given in Table 6.20. The goodness of fit of the control group dataset is 0.006. As shown in Table 6.19, it is hard to distinguish a hypothesis for the fit of the dataset at 60 days of the group Cd2: all of the tested one yielded good results, but this is mainly due to the high variance on this dataset.

We introduce an additional hypothesis to better fit the dataset of the group Cd1.

-Hypothesis 6: h varies: this models an influence on the threshold to trigger the phase two of insulin production. Overall, we propose multiple parameter sets associated to each particular experiment. All of these fits are good and allow us to successfully reproduce the data. Additionally, we propose possible interpretations on the cadmium impact at each step of the pups growth. However, the results are local and only represent one possible valid parameter set for each experiment. To go further, we need to provide a model of the cadmium absorption by the pups and we have to make explicit its influence on the dynamics Monday 6 th August, 2018 (08:34)
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Variable Value Unit G(0) 95.0 mg/dL X(0) 0.0 min -1 I(0) 34.0 nU/dL I s (0) 5950.0 nU/dL to confirm our hypotheses. Moreover, unless we ensure that there is no other valid parameter set, our interpretations are just one possible solution.

Future work. In addition to the modelling of the OGTT, we need to model the cadmium absorption into the mother and pups organs at each step of the protocol.

In the following we propose a simple example of specification for the protocol from Figure 6.14. From the associated hybrid system we still have to find a parametrization of the cadmium absorption rate. For a first example of specification of the protocol from Figure 6.14, we consider two experimental objects: the mother O mother and the pups O pup . We consider two mechanisms of Cadmium absorption (they may differ for the mother and the pups): F mother and F pups . We also note the default parameters space of the mother K mother , and the one of the pups K pups .

We remark that the mother and the pup could be merged into one single experimental object. Indeed, in the current formalization described in Chapter 5, we do Monday 6 th August, 2018 (08: [START_REF] Ramdani | Reachability of uncertain nonlinear systems using a nonlinear hybridization[END_REF]