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Abstract

The focus of this thesis is the modelling and analysis of biological systems us-
ing formal methods. The dynamics of biological systems exhibit continuous be-
haviours but also abrupt changes. Ordinary differential equations and hybrid dy-
namical systems are two mathematical formalisms that naturally model such dy-
namics.

A crucial aspect of modelling is the determination of valid parameter values
that enable to simulate the behaviour and reproduce experimental data sets. If no
valid parameter values are found it becomes necessary to revise the model. An
option is to replace one or several lumped parameters (parameters which represent
a set of processes) by functions of time. In this thesis we first study the model
revision problem on hybrid dynamical systems. To this aim we propose a greedy
scheme of optimal control methods based on occupation measures and convex re-
laxations.

Then, we study how to characterize dynamical properties of a model using
set-based simulations and reachability analysis. For this purpose, we propose two
methods: the first one, which relies on Bernstein expansion, is an extension for
hybrid dynamical systems of the reachability tool Sapo [1], while the other one
uses Krivine-Stengle representations [2] to perform the reachability analysis of
polynomial ODEs. Finally, We also propose a methodology to generate hybrid
dynamical systems modelling a class of experimental protocols.

The proposed methods are applied to different case studies. We first propose
a model of haemoglobin production during the differentiation of an erythrocyte
in the bone marrow [3]. To develop this model, we first apply the Monte-Carlo
based parameters synthesis, followed by the model revision to correctly fit to the
experimental data [4]. We also propose a preliminary study of the effect of low
dose Cadmium on glucose response at different steps of a rat growth. Finally, we
apply the reachability analysis techniques for the validation on large parameters
set of the existing iron homoeostasis model [5], [6]. We note the haemoglobin
production process, as well as the glucose response system can be formalised, with
their experimental context, as hybrid dynamical systems. Thus, they serve as proof
of concept for the methodology of biological experimental protocols modelling.
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Résumé

L’objectif de cette thèse est la modélisation et l’étude de systèmes biologiques par
l’intermédiaire de méthodes formelles. Les systèmes biologiques démontrent des
comportements continues mais sont aussi susceptibles de montrer des changements
abruptes dans leur dynamiques. Les équations différentielles ordinaires, ainsi que
les systèmes dynamiques hybrides, sont deux formalismes mathématiques utilisés
pour modéliser clairement de tels comportements.

Un point critique de la modélisation de systèmes biologiques est la recherche
des valeurs des paramètres du modèle afin de reproduire de manière précise un
ensemble de données expérimentales. Si aucun jeux de paramètres valides n’est
trouvé, il est nécessaire de réviser le modèle. Une possibilité est alors de remplacer
un paramètre, ou un ensemble de paramètres, définissant un processus biologique
par une fonction dépendante du temps.

Dans le cadre de cette thèse, nous exposons tout d’abord une méthode pour la
révision de modèles hybrides. Pour cela, nous proposons une approche gloutonne
appliquée à une méthode de contrôle optimal utilisant les mesures d’occupations et
la relaxation convexe. Ensuite, nous étudions comment analyser les propriétés dy-
namiques d’un modèle à temps discret en utilisant la simulation ensembliste. Dans
cet objectif, nous proposons deux méthodes basées sur deux outils mathématiques.
La première méthode, qui se repose sur les polynômes de Bernstein, est une ex-
tension aux systèmes dynamiques hybrides, de l’outil de calcul ensembliste Sapo
[1]. La seconde méthode utilise les représentations de Krivine-Stengle [2] pour
permettre l’analyse d’atteignaiblité de systèmes dynamiques polynomiaux. Enfin,
nous proposons aussi une méthodologie pour générer des systèmes dynamiques
hybrides modélisant des protocoles biologiques expérimentaux.

Les méthodes précédemment proposées sont appliquées sur divers études bi-
ologiques. Nous étudions tout d’abord un modèle de la production d’hémoglobine
durant la différentiation des érythrocytes dans la moelle [3]. Pour permettre la con-
struction de ce modèle, nous avons dans un premier temps généré un ensemble de
jeux de paramètres valides à l’aide d’une méthode de type Monte-Carlo. Dans un
second temps, nous avons appliqué la méthode de révision de modèle afin de re-
produire plus précisément les données expérimentales [4]. Nous proposons aussi
un modèle préliminaire des effets à faibles doses du Cadmium sur la réponse du
métabolisme à différentes étapes de la vie d’un rat. Enfin, nous appliquons les
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techniques d’analyse ensembliste pour la validation d’hypothèses sur un modèle
d’homéostasie du fer [6] dans le cas où des paramètres varient dans de larges in-
tervalles. Dans cette thèse, nous montrons aussi que le protocole associé à l’étude
de la production d’hémoglobine, ainsi que le protocole étudiant l’intégration du
Cadmium durant la vie d’un rat, peuvent être formalisés comme des systèmes dy-
namiques hybrides, et servent ainsi de preuves de concepts pour notre méthode de
modélisation de protocoles expérimentaux.
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Introduction

Essentially, all models are wrong, but some are useful.

George E.P. Box

1.1 Context

Computational models in systems biology. Any science in interaction with the
real world needs models. In Figure 1.1, we give a possible point of view on the
modelling approach. The real world forms a whole: the environment in which
we measure observations exhibiting a particular phenomenon. The phenomenon
results from interactions of entities that are part of the environment. This environ-
ment may be set or constrained by an experimentation, or it can be free and uncon-
trolled. The observations are the measures performed that allow to observe, at least
partially, the phenomenon. Then, a model is an abstraction of the observable world
using a mathematical or computational formalism. Given inputs representing a
possible state of a considered environment, a model provides outputs associated to
some observations of a real phenomenon (see Figure 1.1).

The purposes of models are numerous. They can be used to replicate in-silico
real-life experiments, reducing the time and cost of multiple real-life tests. Simi-
larly, they can provide prediction, monitoring and diagnosis capabilities for a given
phenomenon and for a known environment. This is primarily achieved by black-
box models (also called operational models) which are built directly from observa-
tions, using inference-based techniques, machine learning, or model identification.
In the biological context, this is especially useful when the environment is repet-
itive, well-sampled and with numerous observations. For example, any statistical
model performing disease diagnostics is of this kind: given a set of well determined
biological markers a model provides the probability of a good or bad evolution of
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2 CHAPTER 1. INTRODUCTION

Real world
phenomenonEnvironment Observations

ModelInputs Outputs

Abstraction
Samples Reproduce

Figure 1.1: Models as an abstraction of the real world.

the disease. More advanced techniques, under the name of model identification,
try to infer the complete structure of a model in an attempt to obtain a representa-
tion of the actual mechanism leading to the observed phenomenon. An example of
such methods using hybrid systems as models is [7]. While black-box models are
a very efficient way to represent a phenomenon for the previous applications, they
are clearly limited on, at least, three points:

1. They are only useful when the inputs are taken inside a well defined envi-
ronment.

2. It is hard to integrate new results, any real-life observations, which are not
reproduced by the model, without reconsidering the whole model.

3. No actual knowledge or understanding of the underlying mechanism can be
easily obtained from such models.

Therefore, in addition to black-box model there are models whose purpose is to
represent and abstract the knowledge about the mechanism leading to the observed
phenomenon. In the following, we will call these models mechanistic models.
However, in the literature they are also named white-box models or denotational
models. In black-box models the structure of the mathematical functions describ-
ing a phenomenon is directly inferred from observations. This is in contrast with
mechanistic models where the structure of the laws defining the inputs-outputs re-
lationship results from hypotheses and/or previous knowledge on the mechanism
associated to the studied phenomenon.

Mechanistic models are employed to understand and represent the existing
knowledge about a particular mechanism. Therefore, another purpose is to test
hypotheses on unknown components of the mechanism Otherwise, up to our cur-
rent observations, our understanding of the mechanism is more likely to be true:
there is yet no guarantee. Consequently, a model can only disprove a hypothesis.
Finally, mechanistic models can be used, to a certain extent, to design more faith-
ful black-box models or to provide prediction and monitoring abilities in some
applications [8, 9]. Unlike black-box models, which are useful only when they
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1.1. CONTEXT 3

are coherent with the observations, the mechanistic models have a greater panel
of applications. However, they require in general more time to be designed and
result from numerous loops between experimentation and validation with respect
to the observations. Moreover, they are often more computationally expensive than
black-box models.

We remark that mechanistic models can be studied with qualitative and/or
quantitative methods. Qualitative methods seek to represent and describe the gen-
eral behaviours of an observed phenomenon, for example the number of attractors
or cycles, the stability or bifurcation conditions, etc. They often rely on strongly
theoretical approaches and do not necessarily need numerical methods and compu-
tations for other purposes than displaying results. On the other hand, quantitative
methods do not necessarily provide strong theoretical results on the behaviours.
However, they seek to reproduce the observations as faithfully as possible, by
studying the behaviours and the numerical values associated to both the obser-
vations and the variables describing the environment.

In this thesis, we will mainly address the problem of modelling biological phe-
nomena and observations using mechanistic models with quantitative methods.

Mathematical formalisms. There exists a large choice of mathematical formalisms
such as process algebra, Boolean networks, Petri nets, Thomas networks, stochastic
models, difference equations, ordinary differential equation (ODEs), partial differ-
ential equations (PDEs), or hybrid dynamical systems. The choice of the formalism
strongly depends on the types of available data and the questions asked.

Along this thesis, we use three from these mathematical formalisms. The first
one is the ODE formalism. ODEs describe the variations of the entities under study
over an infinitely small time instant dt. Hence, instead of directly modelling the
evolution of each entity as function of time, we represent how the entities interact
with each other. The actual evolution is then obtained by integrating the ODEs
over the time.

In the ODE formalism, both time and state variables are continuous. Moreover,
the ODE is a deterministic formalism and describes in general average and macro-
scopic quantities. Therefore stochastic effects are neglected: the ODE’s solution
must be similar to the average observations of numerous experimental runs with
the same environment settings. In system biology, the relevance of the ODEs can
be discussed, in particular for the study of molecular reactions with small or in-
homogeneous entities concentrations. In this thesis we do not consider stochastic
models.

The second formalism is discrete time systems and in particular difference
equations. Difference equations are similar to the ODE formalism in the sense
that we assume determinism and continuous state variables. However, they operate
on discrete time instead of continuous time. Consequently, discrete time system
computation is more direct than ODE numerical integration. It is also interesting
to note that solutions of ODEs can be approximated by discrete time systems.

Monday 6th August, 2018 (08:34)



4 CHAPTER 1. INTRODUCTION

The third formalism is hybrid dynamical systems. Using this formalism, one
can combine discrete and continuous dynamics. It is important to note that the term
“hybrid system” in system biology refers to a wide range of formalisms as shown
in [10]. Thus, we emphasize that in this thesis we use this term to denote hybrid
dynamical systems. Additionally, as we do not consider stochastic hybrid systems,
we refer the interested reader to a recent review [11] for information about them.

Problems arising in biological systems modelling. We recall that we are con-
sidering the problem of modelling of biological systems defined by: a phenomenon
under study (for example, metabolic response to glucose intake), an environment
( for example, a study on rats, or a particular diet), and a set of observations (for
example the plasma glucose and insulin measurements).

The first step of the modelling process is the definition of the involved enti-
ties and the model structure describing the interactions between the entities. The
entities (represented by state variables) to consider can be determined from the
observations, the perturbations performed during the experiment, or they can be
defined an abstract representation of a more complex mechanism. Similarly, the
model structure (network topology) can be established using a priori knowledge,
or from hypotheses and insights on the experimentations. Then, kinetics laws,
such as the mass action laws, provide the equations governing the dynamics. We
remark that at these equations are defined using parameters whose values may be
uncertain. We explain the need of parameter estimation a bit further.

The first challenge is to determine the appropriate approximation level of the
model. One attempt would be to integrate all previous modelling efforts and knowl-
edge into the new model. This results in an overly complex model spanning over
multiple scales which is hard to understand, validate and/or simulate. Another
attempt is to design a model as simple as possible by representing solely the ob-
servable entities and by approximating or inferring other mechanisms. This leads
to models which either cannot reproduce the existing observations, or cannot re-
produce future observations of the same phenomenon but in slightly different en-
vironment settings. To know about methods for formally handle this first step,
we refer to some work on model integrations [12], or model reduction techniques
[13, 14, 15]. These results provide mathematical frameworks to approximate and
integrate previous knowledge, or to reduce multi-scale models arising from knowl-
edge integration, while ensuring the correctness of the resulting approximations.

The values of the parameters are especially important in quantitative modelling
as we seek not only to reproduce the general behaviours of the observations, but
also to replicate the same numerical results.

In classical physics these parameters are often well-defined physical constants
which can be directly measured through experiments. In engineering, the amount
and the accuracy of observations are often very high, leading to accurate parameter
identification. Moreover, a priori ranges for the parameter values are easily esti-
mated from physical laws, or parameters are often related to real world components

Monday 6th August, 2018 (08:34)



1.1. CONTEXT 5

and have fixed values by construction.
In biology, parameters may represent physical or chemical constants, but they

are often an abstraction of an underlying mechanism which is approximated by a
constant for a given environment setting. Consequently, parameters may not be
directly observable as in classical physics or engineering, and their actual ranges
may be completely unknown at first. Moreover, actual experimental observations
are scarce, and/or with high variance leading to poor parameter estimation quality.
The parameter estimation and validation are critical issues in biological systems
modelling. In the next section, Section 1.2, we will discuss briefly some work
on parameter estimation for the considered formalisms. Once a set of parameter
values (also called parametrization of the model, or parameter set) enable us to
reproduce experimental observations, we need to determine the level of confidence
in the quality of this parameter set, and to validate the model.

Parameter uncertainty analysis (sensitivity analysis, identifiability, and robust-
ness) is a way to assess the quality of a parameter estimation with respect to ex-
perimental observations. In this work, we do not develop new methods to address
these issues and we refer the interested reader to a recent review on the subject [16]
for ODEs.

In addition to these methods, it is also possible to apply set-based methods
from the field of formal verification to ensure the validity of the model with re-
spect to the observations. Formal methods are the set of computational methods
which provide guarantees and proofs, which can be achieved by convergence prop-
erties, conservative or certifiable results. Formal methods originally come from
the field of automated theorem proving and algorithmic verification. In these top-
ics, a model is considered as an accurate representation of the reality, such as a
mathematical theorem, or a system/program execution and a major problem is to
provide a binary answer to the question whether the model satisfies some property.
In biology, a model is a hypothesis or an abstraction of the reality, and it is impor-
tant to find a counter-example disproving the model, but proving that there is no
counter-example is not critical, since experiments themselves may be inaccurate
or incomplete. We remark that when dealing with the particular field of synthetic
biology, therapy on patients and experimental protocol design, the issue of proving
the correctness of the model may become critical in the future. Indeed, an error
in the model would lead to patient death or failure of an expensive experimenta-
tion. However, formal methods are efficient in proving qualitative properties of
the models, which eases considerably the theoretical work. Moreover, set-based
methods and methods from formal verification give an exhaustive abstraction of
all the possible solutions for a given set of inputs. They are also efficient to find
counter-examples, or to deal with dense sets of possible inputs. When dealing with
parameter uncertainties over multiple orders of magnitude, methods based on nu-
merical simulations and large number of samplings may be cost inefficient due to
the exponential volume of the parameter space to explore. Using set-based analysis
from formal methods one can provide conservative results in the form of solution
sets which can be more efficient than simulations. We refer the reader to three in-
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6 CHAPTER 1. INTRODUCTION

teresting articles on the use of formal methods for systems biology [17, 18, 19]. In
addition, for more details on the general process of biological systems mathemati-
cal modelling we recommend the following work [20, 21, 22].

Finally, we note that if there is no parameter valuation that allows reproducing
the experimental observations, either the parameter estimation method is lacking,
or the proposed model of the mechanism is incorrect. In the latter case, we need to
update the model: we call this step model revision. This step can be performed in
two manners. First, a model can be revised by adding additional knowledge, which
were not previously considered, into the model. Second, in absence of insight and
additional information, model revision can be done by assuming that a parameter
modelling an underlying mechanism needs to be studied more in depth: in this case,
one can resort to functional optimization techniques similar to model identification,
to infer a better approximation for the underlying mechanism.

In this thesis, we address three of the above issues (designing biological model,
model validation, and model revision) using techniques from the field of formal
methods.

In the next section we provide an overview on dynamical hybrid system mod-
elling for systems biology, a short review on parameter synthesis and parameter
estimation, and finally on formal methods for validation of biological systems. An
additional discussion on related work is provided in each chapter.

1.2 State of the Art

Hybrid dynamical systems modelling. In this thesis we use hybrid dynamical
systems as a mathematical formalism to represent biological systems. Models of
biological systems can be directly designed using hybrid dynamics. Indeed, this
formalism allows us to clearly define and combine the continuous and homoge-
neous behaviours with discrete or discontinuous ones. One can model the different
phases of a biological process, or cyclic behaviours, as a hybrid system. For ex-
ample, in [23] the hybrid formalism was applied to the cell cycle modelling, while
[24] and [25] are concerned with modelling cell behavioural changes under a stim-
ulus. In [26], this model is used to specify multi-step protocols1, while in [27]
hybrid systems describe the spiking models and multi-phases behaviour of neuron
activity.

In addition to the modelling purposes, hybrid systems can be used to reduce
the complexity of non-linear dynamical systems.

Such approach was first considered for engineering goals as in [28] on plane
control systems. More recent work addresses the problem of hybridization, that
is approximation of complex non-linear dynamics by a hybrid system which is
easier to compute and/or analyze. The resulting hybrid system can have dynam-
ics described by linear ODEs in which case we speak of piecewise linearisation

1In a similar approach to the work described further in this thesis
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1.2. STATE OF THE ART 7

techniques2. These linearisations can either be decided initially from the system
equations [29, 30, 31] or on the fly [32, 33]. It is also possible to approximate a
non-linear continuous model by a hybrid system with simpler non-linear dynamics
[34].

For biological models, another way to reduce the model complexity is to pro-
pose hybridization methods approximating multi time scales dynamics and explic-
itly separate fast and slow modes inherent to biological processes [35, 36, 37]. We
note that the latter work recovers, using formal methods, the previous hybrid mod-
elling proposed in [23]. Activation processes in gene regulatory networks can also
be formally represented by hybrid systems (piecewise linear) as demonstrated in
[38].

Finally, we invite the reader to consult [18, 39] which review the aims and
methods for hybrid systems modelling as an application to systems biology [18,
39]. More details on the hybrid system formalism itself can be found in Chapter
2-Section 2.2, or in introductory books [40, 41].

Parameter estimation techniques. In this thesis we do not directly address the
problem of parameter estimation (also called parameter synthesis), and only pro-
vide simple exploratory schemes that we use in our case studies. However, we still
provide here a short view of different tools and methods which handle this issue.

First, we remark that there are a number of methods and tools based on nu-
merous simulation and optimization methods as explained in the previously cited
review on ODE parameter uncertainty analysis [16]. The search of valid param-
eters is equivalent to minimizing a cost function modelling either the distance
to some experimental time series [42, 43] or some temporal logic formulas de-
scribing expected realistic behaviours [44] or [45, 46] (based on Breach toolbox
[47, 48]). While some of this work uses a purely optimization based approach
[45, 46, 42, 43, 49] (see [50] for a review on optimization methods in systems biol-
ogy), others consider statistical or probabilistic methods [51, 52] and [53] (based on
[54] Bayesian modelling). Among this work, only [43, 47] are designed to handle
hybrid systems or black-box simulations3, while all the other methods are specific
to ODEs or stochastic models. The work in [26] proposes, for a case study, an
adaptation of the particle swarm technique for parameter estimation of non-linear
hybrid systems. Only [43] handles multi-objective optimization problems, which is
a useful when simultaneously considering observations from various experiments.

In addition to these simulation-based techniques, some other works consider
the problem of searching for a set of valid parameters using techniques from for-
mal verification. In [5] the author proposes a method to search for clusters of valid
parameter sets using the robustness-based algorithm from [47]. Gene regulatory
networks are an important topic in systems biology, which has led to intensive

2The hybrid dynamical system formalism may not be explicitly used but the resulting behaviours
can be considered considered as hybrid.

3The tool only knows the trajectory solution and not the actual structure of the model.
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8 CHAPTER 1. INTRODUCTION

modelling effort [55, 56, 57, 58, 59]. Gene regulatory networks can be modelled
as multi-affine hybrid systems with box domains. Using previous theoretical work
[60, 61, 62] on sigmoid approximations, it is possible to exploit the convexity of the
flow at the corner of the domains. The previously cited works [55, 56, 57, 58, 59]
use this to perform reachability analysis and parameter estimations. In [55, 56] the
authors over-approximate multi-affine hybrid systems by linear hybrid automata
[63] for which the reachable sets are easier to compute: parameter estimation is
performed in parallel. Similarly, [57] approximates the flow on the faces of the
domains and use model-checking techniques to compute the reachable set and per-
form parameter synthesis. The work [58, 59] uses the approximation from [61]
to approximate the regulation networks by a discrete interaction graph on which
constraint and satisfiability solvers can be efficiently applied to obtain a valid pa-
rameter set.

Finally, we mention some work which aims at handling directly dense param-
eter sets. On discrete time polynomial population models, the authors of [64, 65]
propose a method to compute an under-approximation of a valid parameter space
satisfying a set of temporal constraints (in Signal Temporal Logic). A similar ap-
proach by invalidation is investigated in [66] and the toolbox ADMIT [67]. Finally,
the semi-definite programming methods usually applied for control problems can
be used for parameter estimation of biological systems: we refer to [68] for dis-
crete time biochemical systems, and [69, 70] for more general work on ODEs and
non-linear hybrid dynamical systems, respectively.

Methods for model validation and verification. Once a parameter valuation is
estimated, we want to gain confidence or validate in the determined model. This
confidence can be obtained by computing with statistical methods the robustness
of the current model with respect to some perturbations [16]. It is also possible to
validate the model using either model-checking methods or set reachability anal-
ysis. Model checking can be roughly described as checking the satisfaction of a
logic formula (describing a desired property) on a mathematical model. With the
development of SAT solvers and SMT (SAT-modulo theory) the model-checking
approach is an efficient way to validate a model. However, this method is in gen-
eral more adapted to the validation of qualitative properties. The are numerous
work applying the model-checking approach to systems biology. The work of [71]
proposes to apply abstract interpretation to perform model checking on models
defined in different formalisms: continuous Markov chains, Petri nets, boolean
networks and in differential equations. Through the definition of type structures
for multiple interactions arising in biochemical reactions, they can generate a satis-
fiability problem to validate qualitative properties. This approach is integrated into
the toolbox Biocham [44]. We note this toolbox also includes a monitoring engine
to perform robustness analysis over simulation traces of ODE systems. In addi-
tion to this tool, there are numerous other tools for verification of gene regulation
networks using convex approximation of the flow as defined in [61]. The genetic
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network analyser (GNA) [72, 73] provides a qualitative validation of a discrete ab-
straction for piecewise affine models of gene regulation networks. An extension
for quantitative analysis of piecewise multi-affine models provided in RoVerGeNe
[74, 75, 76]. A similar approach is also considered in more recent work [57]. Apart
from gene regulation networks, we mention [77] which provides an algorithm for
model checking of hybrid automata with explicit flow and algebraic constraints.
We remark that outside of the biological context, the theorem prover toolbox Key-
maera [78, 79, 80] also handles verification of temporal logic formula on hybrid
dynamical systems whose trajectories can be explicitly described. Finally, we rec-
ommend the reader to consult an overview of the model-checking approach on
discrete models of gene regulation [81] and broader reviews of the application of
model-checking and their tools for biochemicals systems [19, 82].

In addition to model-checking based approaches there are a number of tools
which can compute reachable sets of differential equation models by set-based
simulation methods. However, there are only few which are dedicated to sys-
tem biology [83, 84]. We note the toolbox Marco [85] which uses the previously
cited works on flow convexity for piece-wise multi-affine systems [60, 61] to pro-
vide reachability analysis of biological systems. Indeed, most of these results are
either applicable only to linear ODE system, or do not handle efficiently mod-
els with uncertain parameters. The works which handle both non-linear dynam-
ical systems and uncertain parameters are [29, 34, 86, 83]. The first two tools
[29, 34] rely on linearisation and non-linear hybridization, respectively. The last
two tools [86, 83] use parametric Bernstein expansion of polynomials to compute
over-approximations of reachable sets. Note that the last two tools are the start-
ing steps that lead to the work we propose in Chapter 4. We also mention in
the following some results which seem to be promising in their applications for
systems biology, even if they do not consider uncertain parameters, but only un-
certainty on the initial conditions. The toolbox [87] provides an efficient method
to validate hybrid automata with linear dynamics. This method scales with the
state-space dimension and accepts uncertain inputs. However, in its current state
it does not accept non-linear dynamics. The toolbox [88] accepts non-linear hy-
brid systems, but do not efficiently handles uncertain parameters. Additionally,
we mention some results for reachability of non-linear systems without uncertain
parameters [89, 33, 90, 91, 92]. Finally, we recommend a recent review [93] on
modelling and validation of biological systems using formal methods.

1.3 Contributions

In this thesis, we present our contributions in addressing three issues in biological
systems modelling: the design of a model, its validation, and the model revision
problem. In addition to the contributions described in Chapters 3-6, we first give
a short mathematical introduction to differential equations, optimal control and
hybrid dynamical systems in the Chapter 2.
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Model revision. In Chapter 3, we propose an original method to revise a hybrid
dynamical system with respect to some observations in the form of intermediate
time measures. More concretely, we search for a time varying law better approxi-
mating an underlying mechanism (previously described by a constant parameter).
We want to achieve this goal without predefined functional form for the sought
law. Indeed, we consider the case where we do not possess any additional insight
or knowledge. Moreover, we want to avoid classical optimization methods relying
on an extensive sampling of a parameter space and numerous simulations. For this
purpose, we propose an algorithm based on the optimal control method for hybrid
systems proposed in [94]. Experimental results are later exposed in Section 6.1.2
in the chapter describing case studies. This work was accepted in the conference
ADHS 2018 [4] (Analysis and Design of Hybrid Systems).

Set-based simulation. In Chapter 4, we extend the previous work of [83]. This
work allows to perform reachability analysis of discrete time polynomial system
with uncertain parameters. To do so, it relies on the Bernstein expansion, a math-
ematical tool which can be used for multivariate polynomial optimization over
box domain. We contribute in this problem by extending [83] to discrete time
piecewise-rational functions, allowing handling a larger panel of biological appli-
cations. Moreover, we also propose a few improvements to speed up the actual
reachability analysis in some particular cases. In addition, we propose another set-
based simulation method using Krivine-Stengle representations, which are another
mathematical tool for polynomial optimization. We show that it can be adapted for
an efficient application to reachability analysis of discrete-time polynomial systems
with uncertain parameters in box domains. Finally, we discuss the complexity of
both methods for polynomial optimization, and devise a policy for a more effi-
cient reachability algorithm. The Bernstein reachability method is applied on a
case study in Section 6.2. The Bernstein reachability approach and its associated
case study were published in the conference HSB 2016 [6] (Hybrid System Bi-
ology). The Krivine -Stengle approach has been published in conference ARITH
24 [2] (IEEE Symposium on Computer Arithmetic) as an application to compute
upper-bounds of the floating point round-off error. An extended version of this
publication has been submitted to the journal IEEE Transaction on Computer [95].

MOEPLA: modelling oriented experimental protocol language. In Chapter
5, we propose a preliminary work on a language to formally specify an experi-
mental protocol while taking into account a model of a mechanism. This language
aims to facilitate the interactions between the experimentalists and the modelling
team. It also allows automatic generation of a formal framework using the hybrid
automaton formalism. Taking advantage of the non-determinism inherent to the
hybrid automaton definition, we can either validate a model while taking into ac-
count an existing protocol (with its uncertainties), or verify that a future protocol
(or therapy) will always be correctly executed. This can be achieved by using the
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existing tools for hybrid automaton verification [87, 88, 89], or at least semi-formal
validation with simulations [47]. As this work in still under development, it is not
yet published.

Case studies. In Chapter 6, we describe three modelling studies which were done
along the thesis in parallel to the methodological work. We first give a model of
haemoglobin production during the differentiation stages of the an erythroblast
into an erythrocyte (also called red blood cells). In the first part of this study,
we use a simple exploratory scheme to perform parameter estimation with respect
to multiple experimental data sets. The associated results constitute a part of the
following reference [3]. In the second part, we propose to use this model as a
proof of concept of the model revision method. This model revision with a time
varying parameter enables us to better reproduce a considered dataset. We also
note that from the inferred solution we derive multiple hypothesis which lead to a
meaningful biological interpretation of the time varying parameter as an activation
function. This model revision study is accepted in the conference paper [4].

The second case study use the iron homoeostasis model designed in [45]. In
this second work, we applied the Bernstein reachability analysis from Chapter 4
to confirm a hypothesis formulated in [45] using exhaustive methods for uncertain
parameters and initial sets. These results are published in [6].

The last case study is a preliminary modelling of a recent study of generational
effect of low dose and chronic Cadmium intake on the metabolism [96]. In this case
study, we propose a first simple model of the oral glucose tolerance test (OGTT)
adapted from a previous glucose response model [97]. We also provide multiple
parameter estimation associated to different data sets. This work is still on-going,
and has yet to be published.
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In this first chapter we give necessary basic definitions and insights on the two
dynamical system mathematical formalisms we use throughout the thesis: ordinary
differential equations (ODEs) and hybrid dynamical systems. The first Section
defines multivariate calculus notations, introduces ODEs notations, and describes
their main properties. Then, we extend these definitions and properties to para-
metric ODEs with inputs. Finally, we will use these definitions to formalize the
optimal control problem for ODEs. The second Section defines hybrid dynami-
cal systems, that is dynamical system mixing discrete and continuous trajectories.
We also provide the definition of an instance of this formalism, namely the hybrid
automaton.

2.1 Ordinary differential equations

Multivariate calculus notations. We first recall useful notation on multivariate
calculus. For x = (x1, . . . , xn) ∈ Rn and the multi-index α = (α1, . . . , αn) ∈
Nn, we denote by xα the product

∏n
i=1 x

αi
i . We also define |α| = |α1|+. . .+|αn|,

0 = (0, . . . , 0) and 1 = (1, . . . , 1).
The notation

∑
α is the nested sum

∑
α1
. . .
∑

αn
. Equivalently

∏
α is equal to the

nested product
∏
α1
. . .
∏
αn

.
Given another multi-index d = (d1, . . . , dn) ∈ Nn, the inequalityα < d (resp.α ≤
d) means that the inequality holds for each sub-index: α1 < d1; . . . ;αn < dn
(resp. α1 ≤ d1, . . . , αn ≤ dn). Moreover, the binomial coefficient

(
d
α

)
is the prod-

13



14 CHAPTER 2. PRELIMINARIES

uct
∏n
i=1

(
di
αi

)
.

Let f : Rn → Rn be a vector field on Rn, then max(f(x)) denotes the vector of
optima (max f1(x), . . . ,max fn(x)).
Let R[x] be the vector space of multivariate polynomials. Given f ∈ R[x], we as-
sociate a multi-degree d = (d1, . . . , dn) to f , with each di standing for the degree
of f with respect to the variable xi. Then, we can write f(x) =

∑
γ≤d aγx

γ , with
aγ (also denoted by (f)γ) being the coefficients of f in the monomial basis and
each γ ∈ Nn is a multi-index. The degree d of f is given by d := max{γ:aγ 6=0} |γ|.

Example 2.1 (Multivariate polynomial degrees). As an example, if f(x1, x2) =
x4

1x2 + x1x
3
2 then d = (4, 3) and d = 5. For the polynomial f(x, k1, k2, k3) =

(2x2−x)k1 +x2k2 + (x2−x)k3 used later in Section 4.2, one has d = (2, 1, 1, 1)
and d = 3.

Ordinary differential equations. Apart from some particular cases, the dynam-
ical systems studied we consider evolve in continuous time. Let t be the variable
representing the time. Without loss of generality we can denote T = [0, T ] ⊆ R+

the time interval, or time domain of the dynamical system under study, such that
t ∈ T .

Let x ∈ X ⊆ Rn be a vector where n is the number of components and the
i-th element xi denotes the i-th variable. The set X is the set which constraints the
possible values of the variables x. Then, n-dimensional ODEs are defined by:

ẋ = f(t,x) , (2.1)

where f : T ×X → Rn. We call x the state variables, and X the state space of the
system. We recall in the following some main results on ODEs. However, we omit
the proofs which can be found in a more in-depth textbook on the subject [98].

We first introduce the notion of continuous trajectory: A trajectory ξx0(t) : T ×
X → X is a function which describes, for a given initial point x0, the evolution of
the state variables as function of time. The Cauchy-Lipschitz theorem ensures the
existence of a unique trajectory solution ξx0(t) of the ODEs (2.1) when x(0) = x0.
We note that Theorem 2.3 is a sufficient condition for the existence and uniqueness
of a (maximal) solution. Let us recall the notion of locally Lipschitz for a function
f .

Definition 2.2 (Locally Lipschitz). A function f : T ×X → Rn is locally Lipschitz
w.r.t. x iff for all (t,x) ∈ T ×X there exists a neighbourhood N(t,x), and L > 0
such that for all (t′,x1) and (t′,x2) ∈ N(t, x):∥∥f(t′,x1)− f(t′,x2)

∥∥ ≤ L ‖x1 − x2‖
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2.1. ORDINARY DIFFERENTIAL EQUATIONS 15

A sufficient condition for f to be locally Lipschitz is to be differentiable on X .
We note that if L is a constant valid for all x ∈ X , then f is globally Lipschitz. A
sufficient condition for f to be globally Lipschitz is that its derivative is uniformly
bounded by L.

Theorem 2.3 (Cauchy-Lipschitz). If f : T × X → Rn is a continuous function
locally Lipschitz w.r.t. x. Then, for all (t0,x0) ∈ T × X there exists a unique
maximal1 solution of (2.1) denoted by ξx0 : [t0, T [→ Rn with t0 < T ≤ +∞ such
that ξx0(t0) = x0 and

∀t ∈ [t0, T [,
dξx0(t)

dt
= f(t, ξx0(t))

We note that Theorem 2.3 is a sufficient condition for the existence and unique-
ness of a (maximal) solution.

Example 2.4 (Simple ODE). As a simple example let us take the following ODE:

ẋ = −4x. (2.2)

Then, there exists a unique solution ξx0(t) = x0e
−4t for t ∈ [0,+∞[ such that

ξx0(0) = x0. Let us now substitute the constant value 4 with the letter k. The
example (2.2) becomes

ẋ = −kx , (2.3)

where k is a constant parameter. Consequently, given k ∈ R there is still a unique
solution to (2.3), ξx0,k(t) = x0e

−kt for t ∈ [0,+∞[, such that ξx0,k(0) = x0.

Parameters and inputs functions. We can generalize Example 2.3 and define
parametric ODEs as

ẋ = f(t,x,k), (2.4)

where k is a vector of m parameters, K ∈ Rm is the parameter space, and f is a
function f : T × X ×K → Rn. Then, for every constant value of k ∈ K and a
given initial condition x0, in a similar manner to Theorem 2.3, if f is a continuous
function locally Lipschitz w.r.t. x and continuous Lipschitz w.r.t. k, then there
exists a unique solution. One way to understand it is to represent the parameters as
constant state variables y, adding m new equations ẏ = 0, and choosing an initial
condition y0 = k.

We recall that in systems biology, parameters may have multiple interpreta-
tions. They can represent a physical constant, for example the Avogadro constant,
or is used to approximate an underlying mechanism by a constant for a specific

1The solution is said to be maximal if it cannot be continued any further than T
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experimental environment, As an example, kinetic rates are often modelled by con-
stants for a given temperature.

In addition to constant parameters, one can model external influences, approx-
imations of internal mechanisms or uncertainties, through an input function u(·).
Inputs can be put into two categories given their interpretations in the model.

– The uncontrolled inputs or perturbations: they can represent the environ-
ment, an influence external to the modelled system and not driven by hu-
man strategies, or an approximation of some underlying mechanism. Inputs
can also be employed to obtain more accurate approximations of subsystems
than a constant parameters.

Some examples of uncontrolled inputs are a fluctuating temperature during
an experiment, a noise function representing some uncertainty on the exact
behaviour of a system (in which case we may lose determinism).

– The controlled inputs or controls: they model an external action applied to
reach a target state given by a human being. The control inputs reflect strate-
gies to achieve some objective. In some cases, the strategy is not only to
reach a target, but also to minimise some function, such as a cost function
along the trajectories, we then speak of optimal control.

An example of controlled inputs are the concentration of a drug given to a
patient during therapy. Another example would be the necessary number of
ill people to treat at a given time to avoid a disease propagation.

Structurally, the input functions can be put into two families: the open loop
inputs, and the feedback inputs. An open loop input u(·) is a function u : T → U ,
where U ⊆ Rp is the input space, and p the dimension of u. The set of all the
functions u such that u(t) ∈ U for t ∈ T is also called the accepted input set and
we denote by it UT . Then, parametric ODEs (2.4) can be extended to parametric
ODEs with inputs

ẋ = f(t,x,k,u(t)) , (2.5)

and for a fixed function u, (2.5) can be re-written as parametric ODEs ẋ = F(t,x,k)
with F(t,x,k) = f(t,x,k,u(t)) for all t ∈ T . Consequently, Theorem 2.3 can be
extended to the case with an open loop input function when F respects the condi-
tion from Theorem 2.3.

Theorem 2.5. Let f be a function defined by f : T × X ×K × U → Rn. Let f
be locally Lipschitz w.r.t. x, continuous w.r.t u, and let u : T → U be continuous.
Then, given an initial condition (t0,x0) ∈ T ×X and a parametrization k ∈ K,
there exists a unique maximal trajectory solution ξx0,k,u(t) for t ∈ [t0, T [, with
t0 < T ≤ +∞, such that ξx0,k,u(t0) = x0 and

∀t ∈ [t0, T [ ,
dξx0,k,u(t)

dt
= f(t, ξx0,k,u(t),k,u(t))
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2.1. ORDINARY DIFFERENTIAL EQUATIONS 17

A feedback input is a function u : X → U , where the output depends of the
state variables of the system. The set of all the function u such that u(x) ∈ U for
x ∈ X is denoted by UX . An extension of (2.4) for feedback input is:

ẋ = f(t,x,k,u(x)) , (2.6)

and in a similar way we did for open loop inputs, given an input function u : X →
U , (2.6) can be re-written

ẋ = F(t,x,k) ,

where F(t,x,k) = f(t,x,k,u(x)) for all x ∈ X and t ∈ T . Then an extension
of Theorem 2.3 to feedback input is as follows.

Theorem 2.6. Let f be a function defined by f : T × X × K × U → Rn. Let
f be locally Lipschitz w.r.t. x and u. We recall this means that for all (t,x,u) ∈
T × X × K, (x1,u2) and (x1,u2) in the neighbourhood of (x,u), there exists
some L > 0 such that:

‖f(t,x1,u1)− f(t,x2,u2)‖ ≤ L(‖x1 − x2‖+ ‖u1 − u2‖)

Moreover, let u : X → U be continuous locally Lipschitz w.r.t. x. Then, given an
initial condition (t0,x0) ∈ T × X and a parametrization k ∈ K, there exists a
unique maximal trajectory solution ξx0,k,u(t) for t ∈ [t0, T [, with t0 < T ≤ +∞,
such that ξx0,k,u(t0) = x0 and

∀t ∈ [t0, T [
dξx0,k,u(t)

dt
= f(t, ξx0,k,u(t),k,u(ξx0,k,u(t))).

Optimal control problem. As seen previously, input functions can also represent
an external control applied on the systems such that it reaches a final target set. Let
XT be that target set at the final time T .

In the open loop case, given a continuous control input u ∈ UT , x0 ∈ X ,
k ∈ K, and f : T × X × K × U → Rn a function locally Lipschitz w.r.t. x,
continuous in u, then ξx0,k,u(·) is an admissible trajectory, and u(·) is its associated
admissible control, if ξx0,k,u(T ) ∈ XT . The set of possible admissible controls
can be very large, and two different admissible trajectories can reach the target set.
To restrain the set of possible trajectories one can add a cost to minimize along
the trajectory or at the final time. For example, we may want to minimize the
amplitude of the control. Let us define the cost associated to a given admissible
trajectory ξx0,k,u and control u as

J(t, ξx0,k,u,u) =

∫ T

0
h(t, ξx0,k,u(t),u(t))dt+H(T, ξx0,k,u(T ),u(T )) , (2.7)

where h(t, ξx0,k,u(t),u(t)) is the running cost on the [0, T ] interval, and H(T ,
ξx0,k,u(T ), u(T )) the cost at final time T . From this cost function we can define
the optimal control problem (OCP) in the open loop case.
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Definition 2.7 (Open loop OCP). Let f : T × X × K × U → Rn be a function
locally Lipschitz w.r.t. x and continuous in u. Given x0 ∈ X , k ∈ K, and XT a
compact subset of X the optimal control problem is:

J∗ := inf
u

∫ T

0
h(t, ξx0,k,u(t),u(t))dt+H(T, ξx0,k,u(T ),u(T ))

s.t.
dξx0,k,u(t)

dt
= f(t, ξx0,k,u(t),k,u(t)) ,

ξx0,k,u(t) ∈ X, ∀t ∈ T ,
ξx0,k,u(0) = x0 ,

ξx0,k,u(T ) ∈ XT ,

u : T → U a continuous function.

(2.8)

We denote respectively by u∗ the optimal control and by ξx0,k,u∗ its associated
optimal trajectory.

Similar to the open loop case, we can define the optimal control problem for
feedback input u : X → U .

Definition 2.8 (Feedback OCP). Let f : T × X × K × U → Rn be a function
locally Lipschitz w.r.t. x and u. Given x0 ∈ X , k ∈ K, and XT a compact subset
of X the optimal control problem is:

J∗ := inf
u

∫ T

0
h(t, ξx0,k,u(t),u(ξx0,k,u(t)))dt

+H(T, ξx0,k,u(T ),u(ξx0,k,u(T ))) ,

s.t.
dξx0,k,u(t)

dt
= f(t, ξx0,k,u(t),k,u(ξx0,k,u(t))) ,

ξx0,k,u(t) ∈ X, ∀t ∈ T ,
ξx0,k,u(0) = x0 ,

ξx0,k,u(T ) ∈ XT ,

u : X → U a function continuous locally Lipschitz w.r.t. x.

Again, we denote respectively by u∗ the optimal control and by ξx0,k,u∗ its associ-
ated optimal trajectory.

The existence of an optimal control is not an easy problem. For a detailed in-
troduction to optimal control (from a variation theory point of view) the reader is
referred to the textbook [99] and in particular [99, Section 4.5] for a discussion and
review on the existence problem.

Numerical integration. From now on for simplicity of notation, a trajectory is
denoted by x(t) instead of ξx0,k,u(t), when the initial condition x0, the parameters
k, and the input function u are not ambiguous.
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While for linear ODEs it is possible to determine their exact solution, in most
non-linear cases the analytic solution is not available. In these cases, one can com-
pute approximate solutions using numerical simulation methods. Let us now say
a few words on numerical simulation. Most methods compute a discrete time ap-
proximation xq of the continuous solution x(t) of the ODEs ẋ = f(t, x). Among
the simplest methods are the explicit numerical integration schemes, such as the
forward Euler or Runge-Kutta schemes. They are in general designed from the
Taylor expansion of the trajectory x(t) around a given time t. For example, the nu-
merical integration scheme using the forward Euler scheme and a fixed time step
∆t and xq+1 denotes the approximate solution at time tq+1 = (q + 1)∆t:

xq+1 = xq + ∆t · f(tq,xq) (2.9)

The accuracy of these methods is measured by the distance between the ex-
act solution x(t + ∆t) at time t + ∆t and its discrete approximation xq+1 =
x(t) + ∆t · f(t,x(t)). In the forward Euler case, ‖x(t+ ∆t)− xq+1‖ = O(∆t)
and the method is said to be of order 1. Given a sufficiently small time step ∆t,
the approximate solution converges toward the exact solution. However, finding a
correct time step to ensure the stability of these simple algorithms results in ineffi-
cient simulations even with very small time step. For these reasons, it is necessary
to use more recent algorithms which rely on an adaptive time step which produce
an approximation valid for a given accuracy. In practice, when possible one can
use the advanced algorithms detailed in [100] to perform the numerical simulation
of ODEs.

2.2 Hybrid dynamical systems

Context. Hybrid dynamical systems describe the behaviours of both discrete
and continuous components. They are useful to model systems with jumps, fast
changes in dynamics, or multiple step processes where dynamics can vary depend-
ing on external conditions. While there exists a general notion of hybrid dynamical
systems constituted of discrete states with associated continuous dynamics, and a
transition function between these states, there is no unique formalism under the
name of dynamical hybrid systems. Indeed, depending on the application con-
text the models can be different. The computer science community tends to use
complex discrete mechanisms and simpler continuous processes, which reflect the
particularities of their applications such as programs or communication protocols.
The control theory community deals with more complex continuous part to stay as
close as possible to the classical laws modelling the physical world. A PhD thesis
of MIT from 1995 [101] give a classification of hybrid dynamical systems and a
general definition of hybrid dynamical systems. Another coarser classification of
dynamical hybrid systems can be found in a more recent study on the existence of
solutions of hybrid dynamical systems [102]. Finally, the 2009 review article from
IEEE on hybrid dynamical systems contains an in-depth introduction to the recent
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problems and solutions in the field of hybrid dynamical systems from a control
theory point of view [40].

Hybrid automaton definitions. In this thesis, we use the hybrid automaton for-
malism to model hybrid dynamical systems. This formalism has the advantage of
being commonly used in many verification tools such as SpaceEx [87, 103], and
general enough to be applied in a large set of applications. We will also consider
some modifications to the original definition [104], and its generalisation given in
the textbook [41, Chapter 1]. Indeed, in the original definition, the continuous tra-
jectories in each discrete states are explicitly given by a function x(t). However,
with the exception of the linear ODEs and few non-linear ODEs, such analytic
expressions are hard to obtain. Thus, the continuous trajectories are represented
implicitly by the ODEs in each discrete state as in [41]. In our particular case, we
use hybrid automata where continuous dynamics are specified by parametric ODEs
with input, as defined in previous Section 2.1. The definition of such parametric
hybrid automata is as follows.

Definition 2.9 (Parametric hybrid automaton). Let x ∈ Rn be a set of continuous
state variables, k ∈ Rm a set of parameters and u a set of input functions with
value in Rp. Given T a final execution time, possibly +∞. We define a parametric
n-dimensional hybrid automaton by the tuple H := (I, E , L,X,U,K, S,R,F)
where:

– I ⊂ N is a finite set of indices, used to index discrete states, also called
locations or modes.

– E ⊆ I × I is the set of transitions e = (i, j) between two modes: i is the
source mode, and j the destination mode.

– L : e 7→ Le is a labelling function which associates to transition e = (i, j) ∈
E its synchronisation label Le. Labels are necessary for the synchronous
parallel composition in definition 2.11.

– X ⊆ Rn is the state space of the continuous variables x. Here,X =
⋃
i∈I Xi

where Xi, a compact subset of Rn, is called the invariant set, or domain,
associated to the mode i.

– U ⊆ Rp is the set of input values ofH. Similarly, U =
⋃
i∈I Ui where Ui, a

compact subset of Rp, is the set of input values associated to the mode i.

– K ⊆ Rm is the set of parameter values of H. Again, K =
⋃
i∈I Ki where

Ki ⊆ Rm is the set of parameter values associated to the mode i.

– S : e 7→ Se is a labelling function which associates to transition e = (i, j) ∈
E its guard Se ⊆ Xi. The guard S(i,j) defines the transition condition from
mode i to mode j: for x ∈ Xi, if x ∈ S(i,j) then the system at x can take
transition e = (i, j) from mode i to mode j.
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– R : e 7→ Re is a labelling function which associates to a transition e =
(i, j) ∈ E its reset function Re : Se → Xj . It defines how the continuous
variables change after the discrete transition from mode i to mode j.

– F : i 7→ Fi is a labelling function which associates to a mode i ∈ I its
activity Fi defining the continuous behaviour in this mode. In this work, we
define Fi as a continuous dynamical system described by parametric ODEs
with inputs as in (2.5) or (2.6). Consequently we define Fi as:

Fi := ([0, T ], X,Ki, Ui, fi) , (2.10)

with fi : [0, T ]×X ×Ki×Ui → Rn a function satisfying the conditions of
Theorem 2.3, 2.5, or 2.6 depending of the form of u (open or close loop).

One can see the discrete structure of a hybrid automaton as a labelled directed
graph, in which case we can define a set of labelled edgesE = {(i, S(i,j), L(i,j), R(i,j), j) ∈
I × S(E)× L(E)×R(E)× I | e = (i, j) ∈ E} in a similar manner to the original
paper [104].

We now assume that the input functions ui are feedback inputs ui : Xi → Ui.
The definitions for the open loop case are similar. We now define the trajectories
accepted by a hybrid automaton.

Definition 2.10 (Hybrid automaton trajectory). An accepted trajectory or execu-
tion of a hybrid automaton is defined by the pair of temporal functions λ and x
for the time domain [0, T ], denoted by (λ(·),x(·)), with i = λ(t) ∈ I being the
mode2 at time t, and x(t) ∈ Xi being the values of the continuous variables at t.
The pair (λ(t),x(t)) is also called the hybrid state at time t. From an initial con-
dition (i0,x0), a hybrid automaton trajectory (λ(·),x(·)) satisfies the following
condition for every time point t ∈ [0, T ]:

– Continuous behaviour. If λ(t) = i ∈ I , then x(t) ∈ Xi. Let ui : Xi → Ui
be a given input function and ki ∈ Ki a parametrization. Let t0 be the time
point such that either t0 = 0, or t0 ≤ t is the latest time point at which the
function λ jumps from some value j to i (corresponding to a transition e =
(j, i) ∈ E). Then, the continuous part x(t) is determined by the trajectory
ξx(t0),ui,ki(t), which is the solution to

dξx(t0),ki,ui(t)

dt
= fi(t, ξx(t0),ki,ui(t),ki,ui(ξx(t0),ki,ui(t))) ,

for all t ∈ [t0, T [ such that ξx(t0),ui,ki(t) ∈ Xi.

– Discrete behaviour. If λ(t) = i ∈ I and x(t) ∈ S(i,j), then the system can
take the discrete transition e = (j, i) ∈ E , in which case, the trajectory at
the right limit time t+ of t becomes (λ(t+),x(t+)) = (j, R(i,j)(x(t))). If
x(t) ∈ S(i,j) ∩ ∂Xi and x(t+) = ξx(t0),ui,ki(t

+) /∈ Xi at the limit right

2Note that λ here is a piecewise constant function over time.
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instant t+ of t, then the system must take the discrete transition e = (j, i),
since it goes outside the invariant set of mode i and thus is no longer allowed
to stay in this mode. We say that the guard enables the transition, while the
invariant enforces it.

It is possible for a trajectory such that (λ(t) = i,x(t)) to leave invariant Xi at
time t+ without having the possibility to take a transition i → j: x(t) ∈ ∂Xi and
there is no j ∈ I s.t. x(t) ∈ S(i,j). In this condition the trajectory cannot continue
neither by the continuous dynamics, nor by the discrete dynamics: we say that the
system reaches a deadlock, and that the trajectory is called a blocking trajectory.
Some results on condition for a hybrid automaton to be non-blocking can be found
in [105].

Let us define Reach(H) ⊂ I × X the set of all the possible points reachable
in time at most T from any initial condition (i0,x0) ∈ I ×Xi0 .

Reach(H) = {(i,x) ∈ I ×Xi s.t.

∃(i0,x0) ∈ I ×Xi0 and t ≤ T , (λ(t),x(t)) = (i,x)

and (λ(·),x(·)) is a hybrid trajectory starting at (i0,x0) over [0, T ]}.
(2.11)

Special Behaviours. As discrete transitions happen instantaneously, a hybrid au-
tomaton execution can exhibit some non trivial behaviours. Among them we will
mention two types: the Zeno behaviours, and the multiple event behaviours.

A Zeno behaviour happens when the trajectory performs an infinite number of
discrete transitions in a finite time interval [t1, t2[. This behaviour can happen even
on simple models such as the bouncing ball [105] or, in the biological context,
for gene regulation networks [106]. Singular perturbation theory [106] or Filippov
theory [60, 107, 108] are possible ways to solve this problem.

A multiple event behaviour happens when a trajectory can take multiple dis-
crete transitions (possibly an infinity) without letting time elapse. Indeed, a system
may take discrete transitions all the time without evolving according to the contin-
uous dynamics.

As one can observe in Definition 2.10, for a given initial condition (i0,x0) ∈
I × Xi0 a hybrid automaton H may accept more than one trajectory. Indeed, let
the continuous dynamics be deterministic by enforcing the Cauchy-Lipschitz con-
ditions from Theorem 2.6 for the activities defined in Definition 2.9. Then, non-
determinism can still be caused by the discrete dynamics, since at a given hybrid
state the system can satisfy multiple transition guard conditions.

In the remainder of the thesis, our optimal control applications will only be
considered for hybrid automata with deterministic discrete dynamics, and non-
determinism in continuous inputs will be resolved by picking a solution to the
involved optimization problems.

It is easy to see the following sufficient conditions for a hybrid automaton to
be deterministic.

– If (i, j) ∈ E and (i, j′) ∈ E with j 6= j′, then S(i,j) ∩ S(i,j′) = ∅.
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– Given e = (i, j) ∈ E and x ∈ Se, then ∃!x′ ∈ Xj s.t. Re(x) = x′

For more “semantic” necessary and sufficient condition, the reader is referred to
[105].

Synchronous parallel composition. We now define the composition of two hy-
brid automata. We consider here the simple case without common state variables,
input functions, or parameters.

Definition 2.11 (Synchronous parallel composition). We consider two hybrid au-
tomata H(a) = (I(a), E(a), L(a), X(a), U (a),K(a), S(a), R(a),F (a)), and H(b) =
(I(b), E(b), L(b), X(b), U (b),K(b), S(b), R(b),F (b)), with x(a) ∩ x(b) = ∅, where
x(a) (resp. x(b)) the continuous variables associated to H(a) (resp. H(b)). Let t
be the common time variable. Then, the synchronous parallel composition of two
hybrid automata H(a) and H(b) is the hybrid automaton H(a‖b) := H(a) ⊗ H(b),
where ⊗ denotes the parallel composition operator, and defined by:

– The continuous variables of H(a‖b) are x(a‖b) = x(a) · x(b), where · is the
concatenation operation.

– The dimension of H(a‖b) is n(a‖b) = n(a) + n(b), with n(a) (resp. n(b)) the
dimension ofH(a) (resp. H(b)).

– The modes ofH(a‖b) are defined by:

I(a‖b) := I(a) × I(b).

– The set of transitions E(a‖b) ⊂ E(a) × E(b) of H(a‖b) as well as their associ-
ated synchronisation labels L(a‖b)(E(a‖b)) are defined by the following rules.
Let (j(a), j(b)) ∈ I(a‖b), then given a discrete state (i(a), i(b)) ∈ I(a‖b), its
possible transitions and their associated synchronisation labels are:

– e(a‖b) =
(
(i(a), i(b)), (j(a), j(b))

)
∈ E(a‖b) if:

e(a) = (i(a), j(a)) ∈ E(a), and e(b) = (i(b), j(b)) ∈ E(b) .
Then, L(a‖b)(e(a‖b)) = L(a)(e(a)) ∪ L(b)(e(b)).

– e(a‖b) =
(
(i(a), i(b)), (j(a), i(b))

)
∈ E(a‖b) if:

e(a) = (i(a), j(a)) ∈ E(a), and
∀j(b) ∈ I(b) s.t. e(b) = (i(b), j(b)) ∈ E(b), L(a)(e(a)) ∩ L(b)(e(b)) = ∅.
Then, L(a‖b)(e(a‖b)) = L(a)(e(a)).

– Similarly for e(a‖b) =
(
(i(a), i(b)), (i(a), j(b))

)
∈ E(a‖b).

We observe that common synchronisation labels enforce simultaneous tran-
sitions, meaning synchronisation, between two hybrid automata3.

3We also note that for synchronised transitions, the guard conditions on the continuous variables
will have be to be satisfied simultaneously to enable the transition.
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– The state space ofH(a‖b) is defined byX(a‖b) := X(a)×X(b). Moreover, we
associate to each mode i(a‖b) = (i(a), i(b)) ∈ I(a‖b) the invariant X(a‖b)

i(a‖b)
=

X
(a)

i(a)
×X(b)

i(b)

– The set of possible input values ofH(a‖b) for each mode is defined by:

U
(a‖b)
i(a‖b)

:= U
(a)

i(a)
× U (b)

i(b)
, i(a‖b) = (i(a), i(b)).

– The set of possible parameter values ofH(a‖b) for each mode is defined by:

K
(a‖b)
i(a‖b)

:= K
(a)

i(a)
×K(b)

i(b)
, i(a‖b) = (i(a), i(b)).

– The guard S(a‖b)
e ⊆ X(a)

i(a)
×X(b)

i(b)
ofH(a‖b) associated to the transition:

– e =
(
(i(a), i(b)), (j(a), j(b))

)
∈ E(a‖b) is defined by :

S
(a‖b)
e = S

(a)

(i(a),j(a))
× S(b)

(i(b),j(b))
.

– e =
(
(i(a), i(b)), (j(a), i(b))

)
∈ E(a‖b) is defined by :

S
(a‖b)
e = S

(a)

(i(a),j(a))
×X(b)

i(b)
.

– Similarly for e =
(
(i(a), i(b)), (i(a), j(b))

)
∈ E(a‖b).

– The reset map R(a‖b)
e ofH(a‖b) associated to the transition:

– e =
(
(i(a), i(b)), (j(a), j(b))

)
∈ E(a‖b) is defined by :

R
(a‖b)
e =

(
R

(a)

(i(a),j(a))
, R

(b)

(i(b),j(b))

)
.

– e =
(
(i(a), i(b)), (j(a), i(b))

)
∈ E(a‖b) is defined by :

R
(a‖b)
e =

(
R

(a)

(i(a),j(a))
, Id

(b)

i(b)

)
,

where Id(b)

i(b)
: X

(b)

i(b)
→ X

(b)

i(b)
is the identity function.

– Similarly for e =
(
(i(a), i(b)), (i(a), j(b))

)
∈ E(a‖b).

– The continuous dynamical systems ofH(a‖b) in mode (i(a), i(b)) areF (a‖b)
(i(a),i(b))

defined by:

F (a‖b)
(i(a),i(b))

:=
(

[0, T ], X(a‖b), U
(a‖b)
(i(a),i(b))

,K
(a‖b)
(i(a),i(b))

, (f
(a)

i(a)
, f

(b)

i(b)
)
)
.
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Example 2.12 (Synchronous parallel composition). In this example we perform
the synchronous composition (A⊗B)⊗C of the (hybrid) automata A, B, C given
on the left side of the Figure 2.1. The automaton A can take its transition in par-
allel of the automata B and C as it shares no common label. The automata B and
C share the label L2 and thus must take their transition synchronously. The terms
c1, c2, c3 represent the conditions (guards in Definition 2.9) associated to the tran-
sitions A0 →A1, B0 →B1, C0 →C1, respectively. We recall that we assume the
composed hybrid automata do not share any common variables. Consequently, the
condition c1, c2, c3 are incomparable.
As A and B share no common label we must consider all the possible combination
of transitions. This leads to a 4 states automaton A⊗B. The transitions involving
a change on B involve the label L2. Consequently, the size of (A⊗B)⊗C does not
change as all the transitions on B are equivalent (synchronous) to a transition on C.
The final automaton of (A⊗B)⊗C is given in the right side of Figure 2.1.

A0 A1

B0 B1

C0 C1

c1,L1

c2,L2

c3,L2

(A0,B0,C0) (A1,B1,C1)

(A0,B1,C1)

(A1,B0,C0)

c1 ∧ c2 ∧ c3, {L1, L2}

c2 ∧ c3,L2

c1,L1

c1, L1

c2 ∧ c3,L2

Figure 2.1: Composition of three (hybrid) automata A, B, and C given on the left. This
pictures corresponds to Example 2.12.

Optimal control problem on hybrid automata. We now define the control
problem for general hybrid automata. Let first define a target set XT such that:

XT =
∐
i∈I

XT,i , (2.12)

where XT,i is a compact subset of Xi and
∐

is the disjoint union operator. The
disjoint union can simply be considered as a labelling operation on the set I of
modes.
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Let us first consider the open loop control case. Let (i0, x0) ∈ I × Xi0

be an initial condition and ki ∈ Ki in mode i ∈ I a set of parameter values.
Then, for a given input function ui : [0, T ] → Ui for each mode i ∈ I and
(λ(t),x(t)) ∈ I ×Xλ(t) for t ∈ [0, T ] be a trajectory accepted by Definition 2.10,
we define a control input function4 u(·) as u(t) = uλ(t)(t) for all t ∈ [0, T ]. If
(λ(T ),x(T )) ∈ XT then u is an admissible control, and (λ(t),x(t)) , t ∈ [0, T ] is
its associated admissible trajectory. The optimal control problem is then to find a
control input u(·) and a valid trajectory (λ(·),x(·)) minimizing a given cost func-
tion J ((λ,x),u), similar to 2.7:

J ((λ,x),u) =

∫ T

0
hλ(t)(t,x(t),u(t)) +Hλ(T )(T,x(T ),u(T ))

The hybrid optimal control problem is then:

J∗ := inf
(λ,x),u

J ((λ,x),u)

s.t. (λ(t),x(t)) ,∀t ∈ [0, T ], is accepted by Definition 2.10 ,

(λ(t),x(t)) ∈ I ×Xλ(t) , ∀t ∈ [0, T ] ,

(λ(0),x(0)) = (i0,x0) ∈ I ×Xi0 ,

(λ(T ),x(T )) ∈ XT ,
ui : T → Ui continuous functions , i ∈ I
u(t) = uλ(t)(t),∀t ∈ [0, T ].

(2.13)

For the feedback control case: we assume that we are given a set of input
functions where ui : Xi → Ui for each mode i ∈ I and (λ(t),x(t)) ∈ I ×Xλ(t) is
its associated trajectory over t ∈ [0, T ], then we define the control u as u(x(t)) =
uλ(t)(x(t)) for all t ∈ [0, T ], and x(t) ∈ Xλ(t). Again, if (λ(T ),x(T )) ∈ XT then
u is one admissible control, and (λ(t),x(t)) , t ∈ [0, T ] is its associated admissible
trajectory.

Similarly, the cost function and the hybrid optimal control problem in the feed-
back case are respectively defined by:

J ((λ,x),u) =

∫ T

0
hλ(t)(t,x(t),u(x(t))) +Hλ(T )(T,x(T ),u(x(T ))),

4Consequently, the function u is a piecewise function constituted from the input functions ui in
each mode.

Monday 6th August, 2018 (08:34)



2.2. HYBRID DYNAMICAL SYSTEMS 27

and

J∗ := inf
(λ,x),u

J ((λ,x),u)

s.t. (λ(t),x(t)) ,∀t ∈ [0, T ], is accepted by Definition 2.10 ,

(λ(t),x(t)) ∈ I ×Xλ(t) ,∀t ∈ [0, T ] ,

(λ(0),x(0)) = (i0,x0) ∈ I ×Xi0 ,

(λ(T ),x(T )) ∈ XT ,
ui : Xi → Ui Lipschitz continuous in x , i ∈ I
u(x(t)) = uλ(t)(x(t)),∀t ∈ [0, T ].

(2.14)

Monday 6th August, 2018 (08:34)



28 CHAPTER 2. PRELIMINARIES

Monday 6th August, 2018 (08:34)



C
H

A
P

T
E

R

3
Occupation measures and

optimal control for model revision

3.1 Hybrid Optimal Control using Occupation measures . . . . 32
3.1.1 Introduction to occupations measures . . . . . . . . . 32
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Context. Mechanistic models in biology generally involve many parameters. The
value of a given parameter can be either measured directly in a dedicated exper-
iment (e.g. measurement of a kinetic parameter of a biochemical reaction in en-
zymology), or inferred from data which provide relationships between parameters
and other known biological entities.

As seen in Chapter 1, a basic issue in biological systems modelling is the de-
termination of numerical values for the parameters, or more generally a subset of
the parameter space, under which the model agrees to some extent with the avail-
able data. We focus on multiple-step experiments, in which a biological system is
perturbed or measured during its evolution.

In the biological modelling literature, it is common to synthesise parameters
using a Monte-Carlo sampling of the parameter space, which is validated then by
numerous simulations. An important effort to formalize and validate the parameter
synthesis of biological models has been made in [47, 5, 83, 66]. Other articles
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such as [109] or [110] design ODE models satisfying sets of temporal constraints.
When model simulation does not reproduce satisfactorily available experimental
data, to a degree which depends on data quality, for any admissible parameter
value, the model has to be revised. One way of revising the model is to change
some parameters into different types of functions of time, reflecting underlying
biological mechanisms. We introduce a systematic way, based on formal methods,
to study mechanistic biological models in their experimental context and revise
parameters to produce conservative results with respect to experimental data. In
this work, we consider a problem of model revision, defined as finding time varying
laws of parameter evolution that minimizes the error in matching experimental
measurements. Informally, it is the following optimization problem:

min
(x,u)

nexp∑
j=1

dist(m(x(Tj)), zj) (3.1)

where x is a vector of biological variables, such as concentrations, whose evolution
is modelled by trajectories of a biological dynamical system: in our particular
context a hybrid automaton as defined Chapter 2. Time varying parameters are
represented by the input variables u (modelling biological parameters) such that
∀t ∈ [0, T ] ,u(t) ∈ U . X0 is the set of initial values of the variables, and the
set of pairs {(Tj , zj)}j is the set of data points, for 1 ≤ j ≤ nexp, in the time
frame [0, T ]. An experimental measurement is a function of the variables x and is
modelled via the function m(x).

Contributions. The framework of our approach is a mathematical formalization
of experimental protocols as hybrid automata, describing biological systems of in-
terest and experiments which are performed on them. An example of such protocol
will be studied in Chapter 6, and a general way to generate hybrid automata from
such protocol is given Chapter 5. However, the algorithm we provide can be ap-
plied to any biological hybrid systems with similar model revision problems.

In this chapter, we address the model revision problem (3.1) by formulating a
particular instance of the optimal control problem with intermediate points, which
means that the objective function depends on the system trajectory and control
inputs at a given set of time points. This problem is then approximated by multi-
ple optimal control problems on hybrid automata. Then, each problem is solved
through a reformulation as a hybrid optimal control problem (HOCP) with one fi-
nal cost. To this end, we apply a recently developed method [94] from the field
of certified convex optimization to globally solve these HOCP. The method de-
scribed in [94] produces piecewise optimal control functions which either may not
correspond to biological knowledge of parameter variations or may be difficult to
yield coherent and meaningful biological interpretations. Consequently, in order
to satisfy realistic constraints on parameters, we use smooth approximations of the
generated control input, in order to revise the given model while maintaining good
data fitting accuracy. The method is demonstrated later in Chapter 6 on a hybrid
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system modelling haemoglobin production whose parameter estimation is studied
Section 6.1.1 of Chapter 6.

Related works. We recall that the hybrid formalism has previously been used as
an abstraction method to simplify complex mechanisms which are hard to analyse
[111, 6], or to represent “jump” evolution such as activation processes in genes
regulatory networks for example using the stochastic formalism as in [11].

Optimal control theory and variation theory have been applied to biological
systems in several works. Most of them address the classical problem, given in
Chapter 2, of finding a correct input such that the system reaches a desired state.
For example, one can control drug input such that a patient reaches a healthy state
[112], or [8]. Another example is the control of some input in population studies
[113]. A detailed review on the use of optimal control in systems biology can be
found in [114]. The problem of parameter estimation (as a constant) in presence of
multiple data, also called data assimilation, is stated in [114, Chapter 26]. However,
none of these techniques for parameter estimation have been applied to the hybrid
automata formalism.

The optimal control problem for specific classes of hybrid systems has been
investigated in several domains, such as mechanical systems [115] and switched-
mode systems [116]. More generally, [117] relies on Dynamic Programming and
an extension of Pontryagin’s Maximum Principle. However, these approaches need
a priori knowledge either on the sequence of discrete transitions, or on the number
of visited subsystems. To perform optimal control on hybrid systems, we build
our work on the techniques from [94], which proposes a method to obtain a global
solution for hybrid systems with state-dependent transitions, without any a pri-
ori knowledge on the execution and the sequence of transitions. We refer to [94,
Section 1.1] and references therein for more details on optimal control of hybrid
systems.

Semidefinite programming (SDP) eases the resolution of hard optimization
problems and yields conservative results ensured by positivity certificates. In [118],
hierarchies of semidefinite relaxations were introduced for static polynomial opti-
mization. The definition of an infinite-dimensional linear program (LP) over occu-
pation measures, for optimal control problems, was first introduced in [119]. From
this infinite-dimensional LP, [120] defines hierarchies of Linear Matrix Inequali-
ties (LMI) relaxations, to synthesise a sequence of polynomial controls converging
to the solutions of the optimal control problem. In [121] the authors propose an
extension to piecewise affine systems. Our underlying idea of constructing a sub-
optimal control with an iterative algorithm is similar to [121, Section 4]. However,
we use this scheme to find input functions allowing to reproduce data not only at a
final time point but also at intermediate time points.

We make use of the recent method proposed in [94], which relies on occupa-
tion measures and a sequence semidefinite relaxations to produce a sequence of
polynomial controls converging to the optimal solution of a hybrid optimal con-
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trol problem (HOCP). There exists other methods which use occupation measures
and LMI relaxations to produce both admissible controls and converging outer-
approximations of the backward reachable set1 (BRS) [122, 70], or the region of
attraction2 (ROA) [123]. Finally, we note that finding a sequence of converging
outer-approximations for all valid parameters sets, such as in [68, 69, 83], is an-
other crucial issue in the context of systems biology. When dealing with hybrid
systems, an extension of the BRS computation method [124] can be applied to
solve this problem.

3.1 Hybrid Optimal Control using Occupation measures

Before presenting our approach for model revision of biological hybrid systems,
we give in Section 3.1.1 a short mathematical background on occupation measures
inspired from the introductions to occupation measures in both [125] and [122].
In Section 3.1.2 we present recent results from [94] on optimal control for hybrid
systems. These results will be used in our own method for model revision.

3.1.1 Introduction to occupations measures

Let first consider the following ODE system:

ẋ = f(t,x) , (3.2)

where x ∈ X compact subset of Rn, t ∈ [0, T ], and f a Lipschitz continuous
non-linear function on [0, T ]×X with values in Rn.

Definition 3.1 (Measures). Let X ⊆ Rn and A its the Borel σ-algebra built over
the subsets Pj of X . We call µ a measure on A the function which assigns to each
subset Pj ∈ X a real scalar such that:

– µ(∅) = 0

– ∀Pi s.t. Pi ∩ Pj = ∅, (i 6= j):

µ(
⋃
i

Pi ) =
∑
i

µ(Pi)

Additionally, we say that µ is a Radon measure if µ is locally finite and inner
regular, meaning for all Borel σ-algebra A of X , µ(A) = sup(µ(K)), with K a
compact subset of A .

For a compact set X ⊂ Rn, let M(X) (resp. M+(X)) denote the space of
unsigned (resp. signed) Radon measures supported on X . Elements ofM(X) can
also be seen as bounded linear functionals µ belonging to the dual spaceC(X)′ and

1The set of points reachable from a target set while going back in time.
2The set of initial conditions leading to an attractor.
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acting on continuous function v ∈ C(X), also called test functions. The image of
a test function v ∈ C(X) by a measure µ ∈ M(X) is given by the following
relation:

〈µ, v〉 :=

∫
X
v dµ . (3.3)

Given an initial condition x0 ∈ X , we note x(t|x0) the solution of (3.2) for t ∈
[0, T ] such that x(0) = x0. We define the occupation measure µ as:

µ(A×B|x0) :=

∫ T

0
IA×B(t,x(t|x0)dt ,

whereA×B is in the Borel σ-algebra of [0, T ]×X and IA×B(·) being the indicator
function, equal to 1 on A×B and 0 outside. We note that the occupation measure
µ(A × B|x0) provides the total time the trajectory x(·|x0) stays in the subset B
for t ∈ A, while the support of µ(A × B|x0) is the trajectory. We also note that
1
T µ(A × B|x0) is the probability measure of the time the trajectory stays in B.
One can makes the relation with the concept of occupation time distribution in
stochastic reachability analysis such as defined in [126, Chapter 5].

If the initial condition is unknown we can define the initial measure µ0 ∈
M(X) associated to the initial distribution of x0 in X . Then, we can define the
average occupation measure as the Lebesgue integral:

µ(A×B) :=

∫
X
µ(A×B|x0)dµ0(x0) . (3.4)

Again, we note that the support of µ(A × B) is the reachable set on the interval
[0, T ] for all x0 in the support of µ0. Given final set at time T defined as a compact
set XT ⊂ X , we can also define the final measure µT ∈M(XT ) as:

µT (B) :=

∫
X
IB(x(T |x0))dµ0(x0) . (3.5)

From (3.3), the image of a test function v ∈ C([0, T ] × X) by a measure µ ∈
M([0, T ]×X) is given by the following relation:

〈µ, v〉 :=

∫
[0,T ]×X

v(t,x)dµ(t,x) .

Moreover, given a test function smooth enough v ∈ C1([0, T ]×X) and an initial
condition x(0) = x0 ∈ X , we can also write3 from (3.2):

v(T,x(T |x0)) = v(0,x(0)) +

∫ T

0
v̇(t,x(t|x0))dt (3.6)

3We note v̇ the total derivative of v: dv/dt.
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Let now define a linear operator Lf : C1([0, T ] ×X) → C([0, T ] ×X) also
called Liouville operator associated to a dynamic f , applied on a test function v:

Lfv :=
∂v

∂t
+

n∑
k=1

∂v

∂xk
fk(t,x) ,

where xk is the k-th element of x. We note that v̇ = Lfv leading from (3.6) to:

v(T,x(T |x0)) = v(0,x(0)) +

∫ T

0
Lfv(t,x(t|x0))dt (3.7)

Let L′f : C([0, T ]×X)′ → C1([0, T ]×X)′ be the adjoint operator of Lf defined
by the relation:

〈L′fµ, v〉 = 〈µ,Lfv〉 =

∫
[0,T ]×X

Lfv(t,x)dµ(t,x) .

Integrating (3.7) with respect to µ0 accordingly to (3.4) and (3.5), we obtain for all
test functions v ∈ C1([0, T ]×X):∫
X
v(T,x(T ))dµT (x) =

∫
X
v(0,x(0))dµ0(x) +

∫
X

∫ T

0
Lfv(t,x(t|x0))dµ0(x)dt∫

X
v(T,x(T ))dµT (x) =

∫
X
v(0,x(0))dµ0(x) +

∫
X

∫ T

0
Lfv(t,x(t))dµ(t,x) .

(3.8)
Using the Dirac measures δ0 and δT , respectively at t = 0 and t = T , we can
transform (3.8) into:

〈δT ⊗ µT , v〉 =〈δ0 ⊗ µ0, v〉+ 〈µ,Lfv〉
〈δT ⊗ µT , v〉 =〈δ0 ⊗ µ0, v〉+ 〈L′fµ, v〉 ,

(3.9)

where ⊗ is the product of measures. Finally, as we worked for all test functions
v ∈ C1([0, T ], X) we can write from (3.9) the following Liouville equation in the
space of the measures:

δ0 ⊗ µ0 + L′fµ = δT ⊗ µT . (3.10)

Liouville equation (3.10) is also called continuity equation in statical physics and
describes the evolution of a density of particles within a fluid [127]. We note
that we transformed a non-linear ordinary differential equation over state variables
x ∈ Rn into a linear partial differential equation in the space of measures. More-
over, using this equation one can express evolution of a family of trajectories with
initial conditions described by µ0. We refer to prior works from Henrion & al.
establishing this equation and demonstrating its use in the context of reachability
analysis, parameters and controller synthesis [128, 69, 121]. For more details on
the recent effort on the application of measures theory and the generalized prob-
lem of moments we refer the readers to the books from G. B. Folland [129] and
J.B.Lassere [130].
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3.1.2 Solving the hybrid optimal control problem (HOCP)

In the previous section we provided a short introduction to the use of measures to
transform non-linear ODEs into the linear Liouville equation. In this section, we
present a recent work from Zhao & al [94] which provides through the writing of
the hybrid Liouville equations an approach to address the optimal control problem
of hybrid system. This approach described is valid of a given class of hybrid system
called Controlled Hybrid System (CHS) in [94]. This class differs from the hybrid
automata by some change in the formalism and assumptions. These differences
ensure that any CHS is deterministic. It is possible to construct a hybrid automaton
from a CHS by simply adding to each modes the missing continuous variables.
Noting φ(x(t)) the function which associates to an instantaneous state x(t) its
corresponding mode, Definition 3.2 also ensures that the mode corresponding to
x(t) is unique. Moreover, we obtain the relation λ(t) = φ(x(t)).

Definition 3.2. (Controlled Hybrid System) A controlled hybrid system can be
considered as a variation of the hybrid automaton formalism (see Definition 2.9)
with the following differences:

– Each mode i has it own dimension ni such that Xi ⊆ Rni . Consequently,
we denote xi ∈ Rni the continuous variables associated to the mode i ∈ I .

– All the guards S(i,·) are disjoint, and S(i,j) ⊆ ∂Xi, for each pair of modes i
and j, with ∂Xi being the border of the invariant Xi

– The input set Ui = U for each mode i, and the parameters are fixed (all the
sets Ki are reduced to singletons).

Moreover, we assume that:

– The initial set is restricted to a single point x0, with an associated mode i0.

– The vector fields fi are polynomials in xi ∈ Rni , affine in u, and have a
nonzero normal component on the boundary of Xi.

Given measurable functions {hi : [0, T ] × Rni × Rm → R}i∈I and {Hi :
Rni → R}i∈I , respectively representing the running costs and final costs associ-
ated to each mode i ∈ I , a hybrid optimal control problem (HOCP) is defined by:

J∗chs := inf
(x,u)

∫ T

0
hλ(t)

(
t,xλ(t)(t),u(t)

)
dt+Hλ(T )

(
xλ(T )(T )

)
.

s.t. (λ(0),x(0)) = (i0,x0) ,

(λ(T ),x(T )) ∈ XT ,
u(t) ∈ U ∀t ∈ [0, T ],

(λ(t),x(t)) , t ∈ [0, T ] , a trajectory of a CHS.

(3.11)

Here XT denotes the target set as defined by (2.12). This problem is solved
using a hierarchy of semidefinite relaxations as described in [94], and for which
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we recall the main ideas. Let first redefine occupation measures and Liouville
operator accordingly to our hybrid context.

Given an hybrid trajectory ξ = (λ,x) : [0, T ] → I × X and a control input
u : [0, T ]→ U , let define the occupation measure in mode i ∈ I as:

µi(A×B × C|x,u) :=

∫ T

0
IA×B×C(t,xi(t),u(t))dt (3.12)

for all subsets A × B × C in the Borel σ-algebra of subsets of [0, T ] × Xi × U .
Similarly to Section 3.1.1, we denote by µi0, µiT the initial and the final occupation
measures and respectively, and for all e ∈ E , the guard occupation measures µSe ∈
M+([0, T ]× Se) describing the measures associated to distribution of continuous
variables in a given guard on [0, T ]. We recall that if xi(t) ∈ S(i,j) ⊂ ∂Xi, the
trajectory have to take the transition i → j: then µS(i,j) is also a measure of what
leaves4 a given mode i on the interval [0, T ].

Let Γ = (µI , µIT , µ
S) ∈M+([0, T ]×X×U)×M+(XT )×M+([0, T ]×S).

For each mode i ∈ I, let µi0 be defined using the Dirac δx0 if x0 ∈ Xi and 0
otherwise.

The occupation measures technique allows to transform the optimal control
problem (3.11) into a linear (but infinite-dimensional) problem (3.15) in the vector
space of measures in a similar manner we did for the ODEs in Section 3.1.1. In
terms of occupation measures, the cost function in the HOCP (3.11) can be ex-
pressed as [94, Lemma 5]

J(x,u) =
∑
i∈I
〈µi(·|x,u), hi〉+

∑
i∈I
〈µiT (·|x), Hi〉. (3.13)

For each mode i, we define a Liouville operator Li : C1([0, T ]×Xi)→ C([0, T ]×
Xi × U) which acts on test functions v as:

Liv =
∂v

∂t
+
∑
k

∂v

∂xk
[f(t,x,u)]k. (3.14)

Again, we note L′i : C1([0, T ]×Xi ×U)′ → C([0, T ]×Xi)
′ the adjoint operator

of Li. Let R∗,(i′,i) be the pushforward measure associated to the reset map R(i,i′)

as in [94, Lemma 6], we can write the hybrid Liouville equation:

δ0 ⊗ µi0 + L′iµi +
∑

(i′,i)∈E

R∗,(i′,i)µ
S(i′,i) = δT ⊗ µiT +

∑
(i,i′)∈E

µS(i,i′) .

Consequently, (3.11) can be reformulated as the infinite-dimensional LP [94, Sec-

4or enter the mode i for a transition (j, i).
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tion 4]:
p∗ := inf

Γ

∑
i∈I
〈µi, hi〉+

∑
i∈I
〈µiT , Hi〉

s.t. δ0 ⊗ µi0 + L′iµi +
∑

(i′,i)∈E

R∗,(i′,i)µ
S(i′,i)

= δT ⊗ µiT +
∑

(i,i′)∈E

µS(i,i′) , ∀i ∈ I

µi, µiT , µ
Se ≥ 0, ∀i ∈ I, e ∈ E ,

(3.15)

where the infimum is taken over the tuple of measures Γ defined above. Let Γ∗

denote the optimal value of the measures associated to the solution p∗.
The optimal solution p∗ can be approximated from below through a converging

sequence of relaxed problems [94, Theorem 17]. In this particular case, we will
focus on the SDP relaxation of the infinite-dimensional primal formulation (3.15).

Before continuing, we first introduce a few definitions and notations on mo-
ments, moment matrix, and localizing matrix of a measure. Given a multi-index
α ∈ Nn, let yµ be the moments of a measure µ,

[yµ]α :=

∫
xαdµ(x) .

Given r ∈ N, and p ∈ Rr[x], let

Lyµ(p) := 〈µ, p〉 =

∫
(
∑
|α|≤r

pαx
α)dµ.

Given multi-indices α and β ∈ Nn, the moment matrix, Mr(yµ), is defined
as: [Mr(yµ)](α,β) := [yµ](α+β) , where |α + β| ≤ 2r. Then, let g ∈ Rl[x]

be any polynomial with l < r, the localizing matrix, Mr(g,yµ), is defined5 as:
[Mr(g,yµ)](α,β) :=

∑
|γ|≤l gγ [yµ](α+β) .

Now, we assume that the sets Xi are semialgebraic, i.e. Xi := {x ∈ Rni :
gXi(x) ≥ 0} for each mode i ∈ I , where gXi(x) is a vector of polynomials
(gXi)k ∈ R[x] for all k ∈ {1, . . . , κ(Xi)}, with κ(Xi) the number of polynomials
defining Xi.

Similarly for XT,i := {x ∈ Rni : gT,i(x) ≥ 0}, where gT,i(x) is a vector
with components (gT,i)k ∈ R[x] for all k ∈ {1, . . . , κ(XT,i)}. For each transition
e = (i, i′) ∈ E , let S(i,i′) := {x ∈ ∂Xi : g(i,i′)(x) ≥ 0}.

Let the input set be U := {u ∈ Rm : gU (x) ≥ 0}, where gU (x) is a vector
with components (gU )k ∈ R[u] for each k ∈ {1, . . . , κ(U)}. Finally we define
gτ = t(T − t).

By re-writing, in (3.15), the positivity constraints as semidefinite constraints on
moments, and localizing matrices, and then truncating the degree of the moments
to 2r, we obtain a finite dimensional semidefinite program [94, Section 5.1].

5We recall that gγ denotes the coefficient of g at the multi-index γ for the monomial basis.
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Now, using q to define the disjoint union of measures, let us denote ΞI :=
qi∈Iµi, ΞE := qe∈EµSe , ΞT := qi∈IµiT , and Ξ := ΞI

⋃
ΞE
⋃

ΞT the set of all
the measures associated to the problem. Let ψi refers to a measure in Ξ, associated
to the mode i ∈ I , so either µi, µS(i′,i) ∀i′ ∈ I , µS(i,i′) ∀i′ ∈ I , or µiT . Let
{yr,ψi}ψi be the sequence of moments of degree 2r for each ψi ∈ Ξ, and yr :=
{yr,ψi}ψi . Then, the equality constraints in (3.15) can be approximated as a finite
dimensional linear system (3.16), by taking the truncated moments, and localizing
matrices:

Ar(yr) = br (3.16)

Then, the relaxed primal problem (3.17) is defined by:

p∗r := inf
Ξ

∑
i∈I

Lyr,µi (hi) +
∑
i∈I

Ly
r,µi

T

(Hi)

s.t. Ar(yr) = br ,

Mr(yr,ψi) � 0 , ∀ψi ∈ Ξ ,

MrXik
((gXi)k,yr,µi) � 0 ,

∀(k, i) ∈ {1, . . . , κ(Xi)} × I ,
MrUik

((gU )k,yr,µi) � 0 ,

∀(k, i) ∈ {1, . . . , κ(U)} × I ,
MrSek

((gSe)k,yr,µSe ) � 0 ,

∀(k, µSe) ∈ {1, . . . , κ(Se)} × ΞE ,

Mr(T,i)k
((gT,i)k,yr,µiT

) � 0 ,

∀(k, µiT ) ∈ {1, . . . , κ(XT,i)} × ΞT ,

Mr−1(gτ ,yr,ψi) � 0 , ∀ψi ∈ ΞI ∪ ΞE ,

(3.17)

where rXik := r − deg((gXi)k)/2, rUik := r − deg((gU )k)/2, rSek := r −
deg((gSe)k)/2, and r(T,i)k

:= r−deg((gT,i)k)/2. Above, M � 0 defines a matrix
M as positive semidefinite.

Now, from the occupation measures solutions of the relaxed primal (3.17) and
their associated moments yµ, it is possible to synthesise the control. Given a poly-
nomial u ∈ R[(t,x)], and a measure µ we define the vector bl(yµ) as:

[bl(yµ)]α := Lyµ(φ(t,x)α · u) , (3.18)

with φ(t,x)α a monomial of Rl[(t,x)] of degree α, and |α| ≤ l. Given moment
sequences truncated to degree 2du, the optimal control law udu,i for each mode
i ∈ I is approximated by a du-th order polynomial by solving the following linear
system of equations:

(
[u∗du,i]k

)
=
(
Mdu(y∗r,µi)

)−1
bdu,k(y

∗
r,µi), 1 ≤ k ≤ m (3.19)
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for all modes i ∈ I , and where k denotes the control’s component. HereMdu(y∗
r,µi

)

is the truncated moment matrix of order du associated to the measure µi solution
of the primal problem (3.17). This matrix is in general not invertible. However, it
is positive semidefinite, and in consequence there exists a pseudoinverse, known as
the Moore-Penrose generalized inverse [131, Chapter 7].

3.2 Fitting time varying parameters

3.2.1 The model revision problem

In this section, we solve the model revision problem of a hybrid automaton mod-
elling a biological system together with a set of experiments. Therefore, we provide
a method to find time varying parameters of biological hybrid automata, modelled
as input functions u(t), in order to fit the hybrid automaton model to a set of ex-
perimental data. Thus, we write our problem as an optimal control problem where
desired input functions are the optimal controls which minimize the distance of the
results produced by the model and these experimental data (3.1).

We first formulate (3.1) as a particular instance of the optimal control problem
on hybrid automata with intermediate points. Then, we propose a first approxima-
tion as a set of instances of the optimal control problem on hybrid automata 2.13
defined Chapter 2. However, instead of solving the possibly non-deterministic
problem on hybrid automata, we restrict ourselves to a subset of deterministic hy-
brid automata using the controlled hybrid system formalism from [94] and defined
previously. Consequently, we need to solve the hybrid optimal control problem
presented Section 3.1.2. The solution is obtained using the previous results from
[94, Section 4], of which we summarized the key points in Section 3.1.2. Finally,
in Section 3.2.2 we explain the complete algorithm addressing our initial problem.

Let first give a few definitions and notations: experimental measurements, rep-
resented by a function m(x), are performed at given specific times Tj , 1 ≤ j ≤
nexp. Let zj be the observed value of the experimental measurement at time Tj ,
then nexp is the number of experimental data points.

Let XTj,i be compact subsets of Xi, and XTj :=
∐
i∈I XTj ,i. As in (2.13), let

(i0,x(0)) ∈ I ×X0, and suppose that we are given a set of time values {Tj}, with
1 ≤ j ≤ nexp, and Tnexp = T .

We say that ((λ(·),x(·)),u(·)) is an admissible pair for a problem with in-
termediate points, if (λ(t),x(t)) ∈ I × X is a trajectory of H accepted by the
Definition 2.10, and (λ(Tj),x(Tj)) ∈ XTj for all j.

LetH(x(Tj)) be an intermediate cost at time Tj , and h(t,x(t),u(t)) a running
cost for the whole [0, T ] interval. The optimal control problem with intermediate
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points for the hybrid automatonH is then:

J∗ := inf
(λ,x),u

∫ T

0
h(t,x(t),u(t))dt+

∑
0≤j≤nexp

H (x(Tj))

s.t. (λ(t),x(t)) ,∀t ∈ [0, T ] a trajectory ofH ,
(λ(t),x(t)) ∈ I ×Xλ(t) ,∀t ∈ [0, T ] ,

(λ(0),x(0)) = (i0,x0) ∈ I ×Xi0 ,

(λ(Tj),x(Tj)) ∈ XTj , ∀1 ≤ j ≤ nexp ,
u : T → U continuous functions ,

(3.20)

In our biological context we search in general to minimize the least square
residual:

H (x(Tj)) = ||m(x(Tj))− zj ||22.
Solving the above problem can entail an excessive computational cost on a large
hybrid model (see implementation results on the haemoglobin production model
studied in Chapter 6). To reduce this cost, we propose an optimization scheme
where we iteratively compute the control for each intermediate time in a greedy
way.

Given 1 ≤ j ≤ nexp, let:

Jj(t,x(t),u(t)) :=

∫ Tj

Tj−1

h(t,x(t),u(t))dt+H (x(Tj)) ,

with T0 = 0, and Tnexp = T , such that

J(t,x(t),u(t)) =
∑

1≤j≤nexp

Jj(t,x(t),u(t)).

Noting (λ(j)(t),x(j)(t)) a trajectory of a hybrid automatonH on the interval Tj :=
[Tj−1, Tj ], and similarly ũ(j)(t) the control on Tj , we consider the following prob-
lem as particular instance of (2.13):

J∗j := inf
(x(j),ũ(j))

Jj(t,x
(j)(t), ũ(j)(t))

s.t.

(λ(j),x(j)) a trajectory ofH on Tj ,
ũ(j)(t) ∈ U , ∀t ∈ Tj ,
(λ(j)(t),x(j)(t)) ∈ X , ∀t ∈ Tj ,
if j = 1 ,

(λ(1)(0),x(1)(0)) = (i0,x0) ∈ I ×Xi0 ,

if j ≥ 2.

(λ(j)(Tj−1),x(j)(Tj−1)) = (λ(j−1)(Tj−1),x(j−1)(Tj−1)) ,

(λ(j)(Tj),x
(j)(Tj)) ∈ XTj .

(3.21)
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We note that if a transition i→ i′ occurs at the time Tj of the interval [Tj−1, Tj ],
we retain only the left part in the mode i for the next optimization on the interval
[Tj , Tj+1].

Let ũ(t) and (λ(t),x(t)) be respectively the control and the trajectory, for t ∈
[0, T ]. They are respectively defined by the concatenation of all the controls ũ(j)(t)
and the trajectories (λ(j)(t),x(j)(t)) on the sub-intervals [Tj−1, Tj ]. By construc-
tion, ((λ(t),x(t)), ũ(t)) is an admissible pair for (3.20), as (λ(Tj),x(Tj)) =
(λ(j)(Tj),x

(j)(Tj)) ∈ XTj .

Remark 3.3. We emphasize that (x(t), ũ(t)) is not necessary an optimal solu-
tion for (3.20). Moreover, as the optimization problem (3.21) is obtained through
a greedy scheme, we have no guarantee that its optimal cost J∗j is inferior to a
given ε. However, our goal is only to find parameter functions satisfying desired
error bounds, thus this approximate solution provides a good trade-off between op-
timality and computation cost. We note that we consider in this work the case of
experimental measurements with partial information: if the measurements provide
information on the state of all the variables at a time point, then the greedy scheme
converge to the optimal solution.

3.2.2 Algorithm and implementation details

Let (Tj , zj), 0 ≤ j ≤ nexp be pairs of experimental data points and their mea-
surement time, and we also note i0, and x0 the initial mode and initial conditions
of the studied hybrid automata H respectively. Let r be a given starting relaxation
degree.

Algorithm 1 finds an admissible solution to (3.20), by solving the reformulation
of the optimization problem (3.21) into a HOCP (3.11) for each experimental data
point (Tj , zj). For each j, the degree of the polynomial control ũ(j)(x(t), t) is
determined as the smallest degree such that ||m(x(Tj))− zj ||22 ≤ ε. Indeed, in the
context of biological system modelling we desire to obtain a control of degree as
small as possible to avoid overfitting. Then, for each iteration over j, Algorithm 1
is decomposed in three steps.

The first step is the procedure HOCP, associated to an instance of the HOCP
(3.11) for j-th pairs (Tj , zj). Given a relaxation order dr ≥ r, we solve the relaxed
primal (3.17). It returns Mdr(yµi), the sequence moment matrices of degree dr
associated to the occupation measure µi of each mode i ∈ I . We also obtain J (dr)

j

an under approximation of the optimum of (3.21).
The second step is the procedure Synth, which returns the admissible control

ũ(j)(t,x) of degree du ≤ dr using a truncated moment matrix Mdu(yµi) as in
(3.19).

The third and last step is the procedure Simu. It performs the validation that
the synthesised control ũ(j) yields ||m(x(Tj)) − zj ||22 ≤ ε. This step is done by
approximating the trajectory of the controlled hybrid system using a solver of ODE
with discrete events to produce numerical simulations.
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If in iteration j, ||m(x(Tj)) − zj ||22 ≤ ε, then x(j)(Tj) and the corresponding
mode if reached at t = Tj by the numerical simulations are the initial conditions
for the next iteration j + 1.

Otherwise, the Synth and Simu procedures are repeated while increasing the
degree of the synthesised polynomial control until du = dr. In case the condition
||m(x(Tj)) − zj ||22 ≤ ε is still not satisfied, the relaxation order dr is increased,
and the three steps are repeated.

If ε ≤ J
(dr)
j then we are sure that for the given initial condition at step j,

there is no control such that ||m(x(Tj)) − zj ||22 ≤ ε. Consequently, we keep
our previous result ũ(j) and the corresponding mode if reached at t = Tj by the
numerical simulations are the initial conditions for the next iteration j + 1.

Algorithm 1 hybrid systems model revision algorithm

1: procedure REVISION(H, {(Tj , zj)}j , i0,x0, ε, r)
2: Tinit = 0
3: for all experimental data (Tj , zj) do
4: du = 0, dr = r,err = +∞
5: while err ≥ ε ∧ J (dr)

j ≤ ε do
6: J

(dr)
j ,Mdr(yµ) = HOCP(H, i0,...

7: ...x0, Tinit, Tj , zj , dr)
8: while err ≥ ε and du ≤ dr do
9: ũ(j)(x(t), t) = Synth(Mdr(yµ), du)

10: (if ,x
(j)(t)) = Simu(H, ũ(j)(x(t), t),...

11: ... i0,x0, Tinit, Tj)
12: err = H(x(j)(Tj), zj)
13: increase du
14: end while
15: increase dr
16: end while
17: i0 = if
18: x0 = x(j)(Tj)
19: Tinit = Tj
20: end for
21: end procedure

3.3 Perspectives

In this chapter we proposed a method for fast model revision of hybrid dynamical
system. Even if the result is not optimal, and convergence is not guaranteed using
the scheme of Algorithm 1, we observe a good accuracy on the particular example
of Section 6.1.2 in Chapter 6. We now propose two ideas to extend this work. The
first idea is to search for a infinite LP on occupation measure which directly address
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the problem with intermediate costs, which is not possible with the current method
from [94]. Such rewriting would provide a method to obtain a solution converging
to the optimal control. To do so we propose to extend the formulation of [69] on
ODEs using multiple the hybrid Liouville equations restricted to each sub time in
[Tj−1, Tj ], 1 ≤ j ≤ nexp. This leads to the following infinite LP:

p∗ := inf
{Γj}

∑
j≤nexp

∑
i∈I
〈µi,j , hi,j〉+

∑
j≤nexp

∑
i∈I
〈µi,jTj , Hi,j〉

s.t. δT(j−1)
⊗ µi,j(j−1) + L′i,jµi,j +

∑
(i′,i)∈E

R∗,(i′,i),jµ
S(i′,i),j

= δTj ⊗ µ
i,j
Tj

+
∑

(i,i′)∈E

µS(i,i′),j , ∀i ∈ I, 1 ≤ j ≤ nexp

µi,j , µi,jTj , µ
Se,j ≥ 0, ∀i ∈ I, e ∈ E , 1 ≤ j ≤ nexp ,

(3.22)

where 1 ≤ j ≤ nexp is the index associated the time interval [Tj−1, Tj ]. We note
the number of constraints and occupation measures of the LP (3.22) is multiplied
by nexp which entails a great computational cost. In the example studied in Section
6.1.2, such formulation would be computationally expensive, which justifies our
approach in Section 3.2.1.

The second idea is to use the scheme of Algorithm 1 to perform parameter
synthesis. Indeed in the work [124] the authors propose a method for parameters
synthesis using Backward Reachable Set (BRS) computation of hybrid systems. In
a similar fashion to [94] they use the hybrid Liouville equation when the system
needs to reach a single target at a final time. Using the method of [124] comput-
ing BRS for each intermediate points, and then intersecting the results we would
obtain a converging over-approximation of the valid parameter set when there are
constraints at intermediate time. However, currently the method from [124] is
more expensive than [94], and cannot be applied on the example studied in Section
6.1.2.
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Context. In cellular biology, models are often based on the elementary law of
chemical reactions or empirical laws for lumped reactions, and expressed in terms
of Ordinary Differential Equations (ODEs). However, as we have seen in the pre-
vious chapters, unlike models in classical chemistry, most of the parameters in
biological models are uncertain, or can greatly vary from one sample (or one indi-
vidual) to another. For these reasons, modelling in biology involves many round-
trips between experimentation and validation of a hypothesis about a biological
mechanism formulated by a model. Because these models are uncertain, hypoth-
esis validation is often done with numerous numerical simulations. However, this
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simulation-based method is both costly for large parameter spaces and, in addition,
not exhaustive. Note that a particularity of biological models is that the sets of pa-
rameter values (as well as the set of initial conditions in some cases) can be large.
Our objective is to validate a hypothesis on some properties of a given biological
model which contains uncertain parameters. Furthermore, the initial conditions,
such as the initial concentrations of most species, are not accurately known but
lie within identifiable intervals. Therefore, the hypothesis should be validated for
all the behaviours generated by such uncertainty, for which reachability analysis is
an appropriate tool. Formal verification techniques allow proving properties, with
set-based reachability computation techniques, by replacing simulation runs with
conservative sets of trajectories. The result of this analysis is the validation of a
proposed parameters space for which the model satisfies a set of constraints, pro-
posed by the biologist or coming from experimental results. Thus, in this chapter
we propose an approach which can be seen as a complement to the approach based
on simulations. It uses discrete time reachability analysis (that is set-based simu-
lation) to formally validate a hypothesis on the model. For polynomials systems,
we propose two different methods for reachability analysis: using the Bernstein
expansion and the Krivine-Stengle (K.S.) representation.

Contributions. In the first part, we propose an extension of the Bernstein-based
method previously developed in [83] which allow tackling uncertain parameters
at a small cost. Furthermore, we propose an extension of this Bernstein reacha-
bility analysis method to handle polynomial fractions. Another extension, useful
to tackle the complex case studies such as the iron homeostasis model developed
latter in Chapter 6, is a method for piecewise polynomial approximations of the
dynamics and a reachability method for the resulting hybrid dynamics. These ap-
proximations and adaptations will be demonstrated in Chapter 6 on the concrete
iron homeostasis model, allowing us to validate a hypothesis stated in [5], with an
exhaustive analysis over uncertain parameters and initial conditions. In the sec-
ond part, we propose an alternative method to the Bernstein expansion, namely the
K.S. representation, to perform template reachability analysis of polynomial sys-
tems. The K.S. representation can be used as a relaxation method to approximate a
non-linear optimization problem by a linear optimization problem (LP). We show
that in the particular case of parameter space restricted to a box (or a linear transfor-
mation of a box), K.S. is another efficient method to perform template reachability
analysis. Finally, we discuss its pros and cons compared with the Bernstein-based
method.

This chapter is organized as follows. We first formulate, in Section 4.1, the
discrete time parametric reachability analysis problem. We introduce, in Section
4.1.3, our method to handle piece-wise polynomial dynamics modelling the ap-
proximation of a more complex system over a fixed partition. In Section 4.2, we
describe the reachability analysis method using the Bernstein expansion. Then, in
Section 4.3, we give details on the second approach based on the K.S. represen-
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tation. Finally, in Section 4.4 we discuss the differences between the Bernstein
expansion and the K.S. representation approaches and their perspectives.

Related work. To study biochemical systems, such as the Mammalian Cellular
Iron Homeostasis (MCIH) model presented in Chapter 6, we base our framework
on the C++ tool Sapo [1] for polynomial systems. The work [1] shows that the
Bernstein technique is efficient for computing reachable sets of polynomial para-
metric ODE models. As polynomials arising in biological models are often sparse,
using the implicit formulation of the Bernstein expansion in [132] allows us to
avoid the explosion of Bernstein coefficients with the dimension and thus improv-
ing reachability computation for biological models. Adding our improved com-
putation of the Bernstein coefficients and approximation by piece-wise non-linear
models, the current framework can perform reachability analysis on a large class of
biological models with switching behaviours. This work can be compared to other
work focusing on reachability analysis of non-linear biological models.

There is similar previous work using the Bernstein expansion, such as [133]
and [134]. The work [133] allows performing reachability analysis over polytopic
sets, instead of bundles of parallelotopes. However, this approach does not directly
handle parametric models and is much slower than the current approach due to the
conversion from polytopes to boxes. The work [134] uses the Bernstein expansion
to compute an LP-relaxation of a polynomial optimization problem (POP), which
is then solved over a polytopic set. The technique proposed in [134] can com-
pute reachable sets with high precision using polyhedral templates, but is more
expensive than [1] which only needs to compute the parametric Bernstein coeffi-
cients once. The work of [134] is also related to the K.S. approach, since it uses
a relaxation of a polynomial optimization problem as a LP. Our approach differs
from [134] by the ability of our approach to efficiently handle parameters in the
optimization. We also mention a recent method using SDP relaxation [128] for
discrete time reachability analysis of polynomials.

We also point out the tools, such as [85], [57], [135], which have been devel-
oped mainly for reachability analysis of biological models. The work in [85] and
[57] is dedicated to piecewise multi-affine models with either conical representa-
tions of reachable sets or rectangular abstractions, while [135] focuses on param-
eters synthesis of piecewise multi-affine models such as gene networks. We also
note that the piecewise approximation in our work is similar to the hybridization in
[32].

Finally, we can mention well-known tools such as Flow* [89] and Keymaera
[80], for the reachability analysis of non-linear systems. Flow* is an efficient tool
based on Taylor models for approximating flowpipes in form of unions of boxes,
while the Bernstein and K.S. methods computes flowpipes as unions of polytopes.
Flow* can be used for more general non-linear hybrid models but it does not
seem to extend easily to parametric analysis. The tool Keymaera [80] uses a
different approach: it is a theorem prover based on differential logic. It requires
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knowing solutions to differential equations or solving them numerically. It can
compute invariants; however in the context of systems biology, it is very useful
when interacting with the biologist to provide explicit reachable sets as temporal
flowpipes.

Before continuing, it is important to note that the technical contents of this
chapter use a lot of multivariate calculus notations defined in Section 2.1.

4.1 Set-based simulation

4.1.1 Discrete time models

In this chapter we consider biological systems modelled by discrete time paramet-
ric dynamical systems. The discrete time parametric dynamical systems we study
are defined by a set of difference equations:

xτ+1 = f(xτ ,k) (4.1)

where τ ∈ N, xτ ∈ Rn is the value of the variables x at the iteration τ , and k ∈
K ⊆ Rm is a set of parameters. A trajectory solution is a sequence ξx0,k : N→ X
defined for an initial condition x0 ∈ Rn and a parametrization k ∈ K. We note that
the iteration index τ ∈ N replaces the time variable t. However, as seen in Chapter
2 for the particular case of numerical integration, one can retrieve the value of the
continuous time variable t for a given time step ∆t.

Discrete time is often used in models from computer science, such as programs
where the notions of clock and iteration are natural. However, it can also be used
as an approximation of continuous time systems, such as gene regulatory networks
(see for example the work of [136] or [72]). Discrete time models can also be ob-
tained though explicit numerical integration of ODEs system as seen in Chapter 2.
In the following, we assume that we are given a model as a discrete time parametric
dynamical system.

Example 4.1 (2D discrete time system of Lotka-Volterra). A discretization of the
Lotka-Volterra continuous time model (LV-ODE) taken from [137, 138] describing
the oscillations of a prey-predator interaction system is given in (LV-discrete). We
assume the following values for the parameters: (α, β, δ, γ) = (2/3, 4/3, 1, 1).
To obtain this discretization we apply the forward Euler numerical integra-
tion scheme with a time step ∆t = 0.01. Figure 4.1 shows 1600 iterations
of the resulting discrete time dynamical system (LV-discrete). In Section 4.4
we demonstrate a method for reachability analysis on the model (LV-ODE).

ẋ = x(α− βy)

ẏ = −y(γ − δx)
(LV-ODE)

xτ+1 = xτ (1 + (α− βyτ )∆t)

yτ+1 = yτ (1− (γ − δxτ )∆t)
(LV-discrete)
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Figure 4.1: Simulations of the ODE model (LV-ODE) in red, and the discrete time model
(LV-discrete) in blue (one out of 20 points are plotted).

4.1.2 Template reachability analysis

Reachability analysis. In this chapter, we extend the previous work of [83] on
the computation of flowpipe and reachable sets for parametric discrete time dynam-
ical systems. We first recall the general definition of the reachable setR(x0, T,k)
of the dynamical system (4.1), up to iteration T > 0 (possibly +∞), for given an
initial condition x0 ∈ Rn and a parametrization k ∈ K:

R(x0, T,k) := {x | x = ξx0,k(τ) ,∀τ s.t. 0 ≤ τ ≤ T} . (4.2)

For a given initial set X0 ⊂ Rn and for all parameter values in K, we obtain the
reachable set:

R(X0, T,K) :=
⋃
k∈K

⋃
x0∈X0

R(x0, T,k). (4.3)

We can put the reachable set computation methods into two categories:

– Depth-first methods: they compute the reachable set up to iteration T for
each sample point (x0,k) ∈ X0 × K independently, and then iterate over
the set of all the possible points. These methods are also called trajectory-
based reachability analysis. As they rely on numerical integration tools they
are very fast. In practice these techniques are often used when searching for a
counter-example [139], as one counter-example is sufficient, or in combina-
tion with sensibility analysis [47] or flow abstraction to produce a flow-pipe
approximation [140]. A non-exhaustive list of trajectory based methods is
[141, 47, 139].
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– Breadth-first methods: Instead of computing the reachable set for each ini-
tial condition and parameter set, the breadth-first (also called set-based) ap-
proach uses set operations to compute the set Xτ+1 (that is the image of Xτ

for each iteration τ ), given an initial setX0 and a parameter spaceK. The set
operations are more expensive than operations on points and for non-linear
vector fields f a precise approximation of Xτ+1 has in general a computa-
tional cost exponential in dimension. However, the set-based methods pro-
duce conservative results which correspond to an exhaustive simulation. A
non-exhaustive list of set-based reachability tools is [87, 89, 83, 88].

In the general case, the problem of computing the reachable set is undecidable [63].
However, we note that in the particular case of polynomial discrete-time dynamical
system, with X0 and K two semi-algebraic compact sets, the computation of the
reachable set at a finite time T is a decidable problem. Indeed, it can be formulated
as a logic formula which is decidable [142] and exactly solved by quantifier elim-
ination methods as in [143]. However, this solution using quantifier elimination
remains too expensive and for this reason we use template reachability, a method
to compute an over-approximation of the reachable set.

Template reachability analysis. We now assume that X0 is a compact subset
of Rn. Exactly computing Xτ+1 = f(Xτ ,K), that is the image of Xτ by f , can
be challenging, since an exact representation of the image is not known. We thus
apply the following compact over-approximation:

{x ∈ Rn | g(x) ≤ c , ∀x ∈ Xτ+1} , (4.4)

where g(x) is a vector of polynomials gi(x) ∈ R[x] for all 1 ≤ i ≤ p. Hence
these p polynomial constraints define a compact semi-algebraic subset of Rn. We
call c ∈ Rp the offset vector associated to the constraint system. The vector of
polynomials g defines a fixed template if the coefficients of each polynomial gi are
fixed. Thus, by fixing the template g(x) and defining cτ+1 ∈ Rp as the optimum
of the polynomial optimization problem:

cτ+1 = max
x∈Xτ+1

(g(x))

= max
(y,k)∈Xτ×K

(g(f(y,k)) ,
(4.5)

we can obtain the following X̂τ+1 as a tight template over-approximation ofXτ+1:

X̂τ+1 = {x ∈ Rn | g(x) ≤ cτ+1} . (4.6)

Given a semi-algebraic template g as defined in (4.5), let Og(X) be the opera-
tor computing a tight over-approximation X̂ of a set X . An over-approximation
R̂(X0, T,K) of the reachable set is obtained by the following recurrence: X̂0 =
Og(X0) and X̂τ+1 = Og(f(X̂τ ,K)). The approximated reachable set at a fixed
time T is then :

R̂(X0, T,K) :=
⋃

0≤τ≤T
X̂τ .
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Polyhedral template. We now define a particular type of semi-algebraic tem-
plates we use in the remainder of this chapter: polyhedral templates. A template g
is called polyhedral template1 if it is constituted of a system of p linear constraints.
Let Γ ∈ Mp,n(R) denote the template matrix such that g(x) = Γx. In a similar
way to (4.4), given c ∈ Rp we say that (Γ, c) is a template over-approximation of
a set X if for all x ∈ X , Γx ≤ c. It follows from (4.5) that given a template matrix
Γ, a tight template over-approximation of a set X can be the polyhedral set:

X̂ := {x ∈ Rn | Γx ≤ max
x∈X

(Γx) }. (4.7)

Finally, using the above-described template reachability scheme we obtain a par-
ticular case of (4.6) for a polyhedral template (Γ, cτ+1):

X̂τ+1 = {x ∈ Rn | Γx ≤ cτ+1 = max
(y,k)∈Xτ×K

Γf(y,k) }. (4.8)

It is clear that the complexity of the reachability algorithm will depend on the
resolution of the optimization problem max(y,k)∈Xτ×K Γf(y,k). If Xτ is a poly-
hedron and f is a linear vector field, such problems can efficiently be solved using
linear programming. Otherwise, if f is non-linear the complexity of the optimiza-
tion increases drastically. Indeed, one cannot rely on local optimization method,
since the result may be inferior to the maximum, leading to a non-conservative ap-
proximation of the set. In the following, we propose two approaches based on two
different global optimization techniques providing upper-bounds of the optimum,
and thus a conservative over-approximation.

Example 4.2 (Box template). Let us consider X a compact subset of R2 as shown
in Figure 4.2. The template matrix Γbox defines axis parallel constraints, and the
template over-approximation (Γbox, c) as shown in Figure 4.2 is the box template
over-approximation of X .

Γbox =


Γ1
Γ2
Γ3
Γ4

 =


1 0
0 1
−1 0
0 −1

 (Γbox)

4.1.3 Approximated dynamics over partitions

State-space partition. In this section we consider how to handle discrete time
dynamical systems defined using piecewise continuous functions. Such models
can be obtained through local approximation of the dynamics over a fixed par-
tition of the state space. For example, in the particular case of the Mammalian

1We assume that Γx ≤ c defines a compact subset of Rn.
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Figure 4.2: Tight over-approximation (Γbox, c) (in blue) of a set X (in red) by a box tem-
plate Γbox given in Example 4.2.

Cellular Iron Homeostasis (MCIH) model studied in Chapter 6, we approximate
sigmoid functions in three affine pieces. Piecewise models can also be obtained
using model reduction techniques such as [111] where models of multi-scale bio-
chemical reaction networks are decomposed in piecewise polynomial systems.

Let h be a linear constraint of the form a · x ≤ c where a ∈ Rn and c ∈ R.
We denote by ¬h the constraint a · x > c, the negation of the constraint2 h. For
simplicity of notation and presentation we use h to denote both the constraint and
the half-space defined by this constraint. We also assume that our state-space is
a compact subset of Rn: for example a box of Rn large enough such that all the
trajectories stay inside for the considered time interval.

Let H = {hj(x) | j ∈ {1, . . . , nH}} be a set of nH linear constraints. The
constraints of H partition the state space into q non-empty compact subsets of Rn,
{Ni}1≤i≤q, called domains of the partition.

Remark 4.3. We recall that we are considering models with discrete time dy-
namics. Under such dynamics, it is possible, in one discrete step, to jump across
multiple domains of the partition (see Figure 4.3). In this work, we accept such be-
haviours as we are considering the general case of discrete time dynamics. How-
ever, while the discrete time model is produced through an approximation of a
continuous time model, such “jump” are considered as a bad behaviours and must
be detected. At the end of this section we present how to detect such behaviours
using our tree representation.

2In practice we perform computations with non-strict inequalities to keep compact sets.
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We note that under the assumption of the existence of the behaviours described
in Remark 4.3, we can provide the following translation of a partition into a hybrid
system with discrete time dynamics as in Definition 4.4. We define q modes, one
for each domain Ni, i ∈ [1, q]: the invariant associated to a mode i is the whole
state space. Through Remark 4.3, we note that a mode i has an urgent3 transition
to any other mode i′ 6= i, with an associated guard being the domainNi′ . The reset
associated to each transition is the identity.

Definition 4.4 (Approximation map). Given a continuous function f : Rn →
R, we define as its approximation map associated to the list of constraint H the
piecewise continuous function Af : Rn → R such that:

A(f)(x) := A(f)
i (x), ∀x ∈ Ni ,

with each A(f)
i : Rn → R a polynomial (or rational function) approximating f for

x ∈ Ni.

We first mention that in this work we do not focus on how the approximation
is obtained (be it by Taylor approximation, or by global interpolation methods for
example): we assume that it is given. We also do not take into consideration the
approximation error, as it can be handled latter as a parameter of the system.

Binary space partition trees (BSPT). To deal with these hybrid dynamics, we
need an efficient way to encode this partition of the state space, such that it is easy
to locate a set on the partition during its evolution under the dynamics. To this
end, we use the Binary space partition tree (BSPT) techniques [144]. Each node
of a BSPT is associated with a non-empty set (also called domain of the node) that
is defined by a conjunction of linear constraints. For simplicity of notation and
presentation, instead of saying that the domain of a node intersects with some set,
we simply that say a node intersects with some set and we use the notation N to
denote both the nodes and its associated domain.

We recall that H = {hi | i ∈ {1, . . . , nH}} is the set of constraints involved
in the piecewise approximations of the dynamics. The domain associated with the
root node > of the tree is the whole state space. For each leaf node, if adding
one constraint from H splits the corresponding domain into two non-empty sub-
domains, we create two child nodes from it, each corresponds to a sub-domain.
This constraint is called the splitting constraint of the node. We repeat the same
procedure until all the constraints in H are added.

We associate with the root node the highest rank nH , and a child node has a
rank smaller than its parent by 1. Once the BSPT is constructed, each leaf of this
tree corresponds to a mode i associated to each subset Ni of the partition of the
state space by H .

3The transition must be taken if the conditions are satisfied.
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If a model involves multiple approximation maps, it is possible to statically
build a single BSPT representing all the possible discrete modes. Two BSPT can
be fused by replacing each leaves of the first tree by the top node of the second
tree. Then, starting from the node of smallest rank of the first tree (previously the
leaves) we go downward and eliminate the branches corresponding to redundant
constraints and the nodes with empty domains. Such a method corresponds to the
simple parallel composition of the two associated hybrid systems. In this work,
the composition is performed statically at the beginning. In the recent work [145],
a similar approach has been applied to approximate non-linear dynamics using
piecewise linear ODEs. Unlike our work, they perform the composition of each
approximation map on the fly in the hybrid automata tool SpaceEx [87].

Example 4.5 (Partition of R2). In this example we consider a partition of the R2 by
three constraints h1, h2, h3 defined by x1 ≤ c1, x1 ≤ c2 and x2 ≤ c3 respectively.
We also assume that c1 < c2. Then the state-space is partitioned in 6 domains N1

to N6. We associate to a domain Ni a vector filed A(f)
i (x). This partition of R2 is

represented in Figure 4.3. Its associated BSPT is given in Figure 4.4.

Set localization. We now explain how to locate a given polyhedral compact set
X on the partition, and identify the nodes that intersect with X . Note that such
sets X can be sets generated by the dynamics of the system. Indeed, even consid-
ering the worst case of Remark 4.3 we expect some continuity in the flow to speed
up this localization operation in the general case. Thus, we can expect that the
successor set Xτ+1 is in the same locations or in the locations that are adjacent to
the positions of the current set Xτ . Consequently, during the reachability process,
instead of starting the search from the root of the tree, we can start from the current
or adjacent locations. We call these starting nodes the guess nodes. However, at
the initial step τ = 0, since there is no previous information, we start our search
from the root of the tree. The search algorithm, named locating, consists of the
following two steps.

In the first step, we search for the node N of the lowest rank which strictly
contains X , that is X ⊆ N . To do so, we test if there is no node in the guess
list satisfying this condition. If this is the case, we go upward in the tree and test
their parent nodes, until the condition is satisfied. If the node N found this way is
a leaf, N is the only node containing X , the algorithm returns (N , X) and stops.
Otherwise, it proceeds to the second step starting from N . One can easily see that
the efficiency of this algorithm depends on the ordering of the constraints when
building the BSPT. In any case using guess lists is not worse than starting from the
root. A good heuristic when building the tree, is to have the constraints the most
susceptible to be crossed at the lowest ranks. This way, the previous scheme avoid
going too much upward in the tree before finding the first strictly containing node.
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Figure 4.3: Partition of the state space by three constraints h1, h2, and h3 as defined in
Example 4.5. The associated BSPT is given in Figure 4.4. The set X0 is located in the
domain N1. Its image by A(f)

1 is X1 located in domain N5 which is not adjacent to N1:
we say that X0 performed a jump.

Figure 4.4: BSPT associated to the partition proposed in Example 4.5 and shown in Figure
4.3. In red we show the step associated to the localization of the set Y1 as described in
Example 4.6
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This ordering can be preprocessed using the traces of a few simulations to have an
estimation of the number of time each constraint is crossed.

The second step of the algorithm is a breadth-first search starting from the
node N , in order to obtain (L,X ) where L is the set of nodes with non-empty
intersections, and X is the set of corresponding intersections (stored as a set of
convex polyhedra). This step is a recursive procedure applied to a set L of nodes
intersecting with X , until we reach the leaves. Initially, L = {N}, and the set X
contains only {X}. Then, until L contains only leaves when the algorithm returns
(L,X ) and then stops, the following procedure is iterated. By construction, at
any iteration, all the nodes in L have the same rank and therefore have the same
splitting constraint, denoted by h:

– If X ⊆ h, then X intersects the left child of every nodes in L, then L =
left children(L).

– If X ⊆ ¬h, then X intersects the right child of every nodes in L, then
L = right children(L).

– IfX satisfies none of the two above conditions, thenX intersects both all the
right and left children of the nodes in L. Then, L = left children(L)∪
right children(L), and the algorithm updates X = {X ∩ h} ∪ {X ∩
¬h}, where {X ∩h} and {X ∩¬h} are polyhedra resulting from intersecting
each set in X with the half-spaces corresponding to the constraints h and ¬h
respectively.

Example 4.6 (Locating a set). In this example, we continue with the partition of
R2 defined in Example 4.5 and represented in Figure 4.3. We want to locate Y1

the image of Y0 by the vector field A(f)
3 (see Figure 4.3). Let consider the BSPT

given in Figure 4.4 as a representation of the partition of Example 4.5. We know
that Y0 ⊂ N3, therefore we first guess that Y1 ⊆ N3. As it is false, we go upward
in the tree and test if Y1 ⊆ {¬h1 ∧ h2} which is true. Consequently, we know that
either Y1 ⊆ N4 or Y1 is intersecting both N3 and N4. As Y1 ⊂ ¬{h3} we know
that Y1 ⊆ N4 which terminates the localisation search.

Detecting jumps. We now want to define a procedure to test if a set Xτ+1 is in a
domain adjacent to the position of the previous set Xτ , or if it has “jumped” across
multiple domains as shown in Figure 4.3. In case a jump is detected, a roll-back to
iteration τ may be performed and, for example in the case of discrete time systems
coming from numerical integration, the time step may be reduced.

First we define a constraint h in the form ax ≤ c, as tangent to a compact set
N if maxx∈N (a · x) = c. We recall that we defined a node N by a conjunction
of constraints, possibly redundant. For each leaf Ni we identify all its constituting
constraints that are not tangent.
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Let us assume that Xτ is located in the node Ni at step τ . Let us also assume
that Xτ+1 intersects a node Ni′ at step τ + 1 such that there is a constraint h that
is crossed: meaning h appears in the definition of Ni and ¬h in the one of Ni′ . If
h is not tangent to Ni then Xτ+1 has performed a “jump” (see Figure 4.3).

4.2 The Bernstein expansion based method

As seen in the previous section, one can compute an over-approximation of a reach-
able set using template reachability analysis. One of the main difficulties is the op-
timization problem max(y,k)∈X×K Γf(y,k) (in the particular case of polyhedral
templates) to compute a tight template over-approximation.

In this section, we present the first method for reachability analysis based on the
Bernstein expansion of polynomials. This approach has been previously studied in
[83] and we propose to extend it to a larger class of dynamical systems.

We first present the necessary background on the Bernstein expansion and its
application to non-linear optimization. Then we introduce our contribution for the
reachability analysis of discrete time piece-wise polynomial dynamical systems.

4.2.1 Polynomial optimization using the Bernstein expansion

Bernstein expansion. Bernstein expansion is the reformulation of a polynomial
from its expression in the canonical basis to its expression in the Bernstein ba-
sis. It was first proposed by S.N. Bernstein, at the beginning of the XXth century,
in a proof of the Weirstrass theorem [146]. Its use for the enclosure of univari-
ate polynomials was later proposed in [147] and extended in [148] to multivariate
polynomials. We recommend two recent surveys [149, 150] on the Bernstein ex-
pansion, its computation, and applications. We recall from [148, Theorem 2] the
definition of the multivariate Bernstein expansion:

Definition 4.7 (Multivariate Bernstein expansion). Given a multivariate polyno-
mial f and a degree l ≥ d with d being the multi-degree of f , then for x ∈ [0, 1]n,
the Bernstein expansion of multi-degree l of f is given by:

f(x) =
∑
γ

aγx
γ =

∑
α≤l

b
(f)
α Bl,α(x). (4.9)

where b(f)
α (also denoted by bα when there is no confusion) are the Bernstein coef-

ficients (of multi-degree l) of f , and Bl,α(x) are the Bernstein basis polynomials
defined by Bl,α(x) :=

∏n
i=1Bli,αi(xi) and Bli,αi(xi) :=

(
li
αi

)
xαii (1 − xi)li−αi .

The Bernstein coefficients are given by the following formulas:

bα =
∑
β≤α

(
α
β

)(
l
β

)aβ, 0 ≤ α ≤ l. (4.10)
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We call the set of points (α/l, bα) ∈ Rn+1 the Bernstein control points associated
to the Bernstein expansion of multi-degree l.

Example 4.8 (Bernstein expansion). The Bernstein coefficients up to degree l =
10 of the univariate polynomial f(x) = x5 + 3x2 for x ∈ [−1, 1] are:

b = {2, 9

5
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34

45
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5
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The associated Bernstein control points are represented in the Figure 4.5. We note
that the maximum of the coefficients is 4. As it is achieved in x = 1, we know the
solution is optimal, which can be observed in Figure 4.5. However, the minimum
of the Bernstein coefficients b, which is −1

3 , is not the minimum of f(x) over
[−1, 1].

x
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f(
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4
Bernstein control points of x^5+3x^2 over [-1,1]

 Polynomial function
Bernstein control points

Figure 4.5: Representation in blue of the polynomial f(x) = x5 + 3x2 given in Example
4.8, for x ∈ [−1, 1]. In red, we show its Bernstein control points for l = 10.

The Bernstein expansion having numerous properties, we give only the ones
necessary for our reachability purpose in Section 4.2.2. For a more exhaustive in-
troduction to the Bernstein expansion, as well as some proof of the basic properties,
we refer the interested reader to [151].

Property 4.9 (Cardinality [151, (3.14)]). The number of Bernstein coefficients in
the Bernstein expansion of multi-degree l is equal to (l + 1)1 =

∏n
i=1(li + 1) .
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Property 4.10 (Linearity [151, (3.2.3)]). Given two polynomials f1 and f2,

b
(cf1+f2)
α = cb

(f1)
α + b

(f2)
α , ∀c ∈ R,

where the Bernstein expansions with same multi-degrees are considered.

Property 4.11 (Enclosure [151, (3.2.4)]). The minimum (resp. maximum) of a
polynomial f over [0, 1]n can be lower bounded (resp. upper bounded) by the min-
imum (resp. maximum) of its Bernstein coefficients:

min
α≤l

bα ≤ f(x) ≤ max
α≤l

bα, ∀x ∈ [0, 1]n .

Property 4.12 (Sharpness [151, (3.2.5)]). If the minimum (resp. maximum) of the
bα is reached for α in a corner of the box [0, l1] × · · · × [0, ln], then bα is the
minimum (resp. maximum) of f over [0, 1]n.

Property 4.9 gives the maximal computational cost needed to find a lower
or a upper bound of f(x), ∀x ∈ [0, 1]n and for a Bernstein expansion of fixed
multi-degree l. Property 4.11 is used to provide a lower (resp. upper) bound of
minx∈[0,1]n f(x) (resp. max), while Property 4.12 allows us to determine if the
given bound is optimal. The convergence toward the optimum can be obtained ei-
ther through subdivision of the domain [0, 1]n, or through an increase of the multi-
degree l. The work of [152, 153, 154] proposes multiple subdivision schemes and
gives their associated convergence rates. The convergence rate in degree elevation
can be found in the original work on the multivariate Bernstein expansion [148]
or more recently in [155]. Finally, we recall from [133] an upper bound on the
distance between a polynomial f and its Bernstein enclosure:

Lemma 4.13. Let π(f)
l : Rn → R be the piecewise linear function defined by the

Bernstein control point of a polynomial f at a given degree l. Then, the following
inequation holds for all x ∈ [0, 1]n:

‖f(x)− π(f)
l (x)‖∞ ≤ max

x∈[0,1]n;i,j∈{1...n}
|∂i∂jf(x)| (4.11)

In the recent years multiple methods have been developed to compute effi-
ciently the Bernstein coefficients. In this work we use two of them depending of
the situation: the matrix computation [65] and the implicit form [132]. The first
method is the method originally implemented in the software sapo [65] and effi-
ciently computes all the Bernstein coefficients using matrix operations. The second
method uses an implicit representation of the Bernstein coefficients. Indeed, it can
be observed, in [132], that the Bernstein coefficients of a multivariate monomial xγ

up to a degree l can be expressed as the product of the coefficient of each univariate
monomial xγii constituting xγ :

b
(xγ)

α =
∏
i≤n

b
(x
γi
i )

αi (4.12)

Monday 6th August, 2018 (08:34)



60
CHAPTER 4. SET-BASED SIMULATION

FOR BIOLOGICAL MODELS VALIDATION

Consequently, instead of storing all the Bernstein coefficients of xγ it suffices to
compute the Bernstein coefficients of the univariate monomials which are less nu-
merous4. If needed, the Bernstein coefficients of xγ (and any polynomial thanks
to Property 4.10) can be computed independently and on the fly at a lesser cost.

Example 4.14 (Implicit representation). Let us consider the 2 dimensional poly-
nomial f(x1, x2) = x3

1x2 − 3x1x
2
2 for (x1, x2) ∈ [−2, 0.5]2. Then, the implicit

representation for l = (3, 3) is given by:

1 ( − 8 2 − 1/2 1/8 ) −3 ( − 2 − 7/6 − 1/3 1/2 )
−2
−7/6
−1/3
1/2




16 −4 1 −1/4
28/3 −7/3 7/12 −7/48
8/3 −2/3 1/6 −1/24
−4 1 −1/4 1/16

 +


4

2/3
−7/12

1/4



−8 −14/3 −4/3 2
−4/3 −7/9 −2/9 1/3
7/6 49/72 7/36 −7/24
−1/2 −7/24 −1/12 1/8


Finally, the Bernstein coefficients are obtained by combing both matrices with the
coefficients 1 and −3:

40 10 5 −25/4
40/3 0 5/4 −55/48
−5/6 −65/24 −5/12 5/6
−5/2 15/8 0 −5/16


This representation is especially useful to determine the enclosure as one does

not always need to compute explicitly all the Bernstein coefficients to find their
maximum or minimum. Indeed, the work of A.P. Smith [132] provides a set of
rules based on the sparsity of the polynomial to determine a subset of coefficients
containing the enclosure minα(bα) and maxα(bα). We also note that the complete
set of the Bernstein coefficients of xγ can be obtain as the successive Kronecker
product [156] of the coefficients of each constituting univariate monomial xγii .
As the set of coefficient as defined in Definition 4.7 can also be represented as a
tensor, this Bernstein form is also called tensorial Bernstein expansion over boxes
(in contrast with the simplicial Bernstein expansion over simplices [157]).

In practice biochemical reaction networks are often described by sparse poly-
nomials: the dynamic of each species may not depend of all the species of the
systems. This sparsity characteristic makes the implicit form very efficient for
template reachability analysis of biochemical systems. However, when one can-
not take advantage of any sparsity pattern or when all the coefficients have to be
computed, it is preferable to use the matrix computation method from [65].

Parametric Bernstein expansion. The previous work of [65] introduces a para-
metric Bernstein expansion for functions f(x,k) : Rn × Rm → R, which are

4We recall that the number of Bernstein coefficients is exponential in dimension.
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multivariate polynomial in x and linear in k. In a similar manner to Definition 4.7
we can write a parametric Bernstein expansion of f up to multi-degree l as:

f(x,k) =
∑
γ

aγ(k)xγ =
∑
α≤l

b
(f)
α (k)Bl,α(x) , (4.13)

where each aγ(k) : Rm → R is a linear functions in k. Similarly, each Bernstein
coefficient is formulated as a linear function in the parameters k:

bα(k) =
∑
β≤α

(
α
β

)(
l
β

)aβ(k), 0 ≤ α ≤ l. (4.14)

The previous work of [65] demonstrates that the enclosure and sharpness properties
hold for the parametric Bernstein expansion:

min
α≤l

min
k∈K

bα(k) ≤ min
(x,k)∈[0,1]n×K

f(x,k)

max
(x,k)∈[0,1]n×K

f(x,k) ≤max
α≤l

max
k∈K

bα(k) .
(4.15)

Moreover, we note that the methods and implementation to compute the Bernstein
coefficients in the non-parametric case can still be applied in the parametric case.
Indeed, one can write by linearity (Property 4.10):

b
(f)
α (k) =

∑
γ

aγ(k)b
(xγ)
α . (4.16)

We also note that the number of parametric Bernstein coefficients is still
∏n
i=1(li+

1). Finally, if the set K is a polyhedral set then each optimization mink∈K bα(k)
can be solved using linear programming.

Example 4.15 (Parametric Bernstein expansion). Let define f ′(x,k) = (2x2 −
x)k1 + x2k2 + (x2 − x)k3, with k ∈ [−1, 1]3. Applying the above described
methods for the parametric Bernstein expansion with l = d = 2, we consider the
following parametric Bernstein coefficients:

b
(f ′k)
0 = 0, b

(f ′k)
1 = −k1

2
− k3

2
, b

(f ′k)
2 = k1 + kk2.

We note that the number of Bernstein coefficients w.r.t. x is 3, which is much lower
than the one w.r.t. (x,k), which is equal to 24. One can obtain an upper bound
(resp. lower bound) by taking the maximum (resp. minimum) of the Bernstein
coefficients. In this case, maxk∈[−1,1]3 b

(f ′k)
1 = 0, maxk∈[−1,1]3 b

(f ′k)
2 = 1 and

maxk∈[−1,1]3 b
(f ′k)
3 = 2. Thus, one obtains f ′l = 2 as an upper bound of f ′.
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In this work we also propose an additional method to compute an upper bound
of the optimum max(x,k)∈[0,1]n×K f(x,k) in the particular case of parameters

varying inside a box K = [k,k]. As each b(f)
α (k) is linear in k, by monotonic-

ity of linear applications, the maximum and minimum of each b(f)
α are obtained at

the corners ofK. Through a linear transformation to the box [−1, 1]m it is possible
to further speed up this computation.

Let φ(k) : Rm → Rm be the linear transformation that associates to each k ∈
K a vector e ∈ [−1, 1]m, noting e = φ(k). The optimization problem transformed
to e ∈ [−1, 1]m is now max(x,e)∈[0,1]n×[−1,1]m f

′(x, e) = f(x, φ−1(e)). Then, by
linearity of f ′(x, e) in e we can write:

f ′(x, e) =
m∑
j=1

ejsj(x) , (4.17)

where sj(x) = ∂f ′(x,e)
∂ej

is a polynomial in x.

Finally, for each l ≥ d5, let us note f ′l := maxα≤k
∑m

j=1 |b
(sj)
α | and f ′l := −f ′l .

Our procedure is based on the following lemma:

Lemma 4.16. For each l ≥ d, the polynomial f ′(x, e) can be bounded as follows:

f ′l ≤ f ′(x, e) ≤ f ′l , ∀(x, e) ∈ [0, 1]n × [−1, 1]m . (4.18)

Proof. We write f ′e ∈ R[x] the polynomial f ′(x, e) for a given e ∈ [−1, 1]m.
Property 4.11 provides the enclosure of f ′e(x) w.r.t. x for a given e ∈ [−1, 1]m:

min
α≤k

b
(f ′e)
α ≤ f ′e(x) ≤ max

α≤k
b
(f ′e)
α , ∀x ∈ [0, 1]n , (4.19)

where each Bernstein coefficient satisfies b(f
′
e)

α =
∑m

j=1 ejb
(sj)
α by Property 4.10

(each ej being a scalar in [−1, 1]). The proof of the left inequality comes from:

min
e∈[−1,1]m

(
min
α≤k

(
m∑
j=1

ejb
(sj)
α )

)
= min

α≤k

(
min

e∈[−1,1]m
(
m∑
j=1

ejb
(sj)
α )

)
= min

α≤k

m∑
j=1

−|b(sj)α | = −max
α≤k

m∑
j=1

|b(sj)α | .

The proof of the right inequality is similar. �

Remark 4.17. The computational cost of f ′l is now m(l + 1)1 since we need to
compute the Bernstein coefficients for each sj(x). This cost is polynomial in the
degree and exponential in n but is linear in m the number of parameters. In the
implementation, we first compute each b(f

′
e)

α as a function of e and then optimize
5We recall that d is the multi-degree of f ′ (and f ) in x.
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afterwards using either optimization as in [65] or Lemma 4.16 depending of the
situation. As described further in Section 4.2.2, we show how [1] gets around the
limitation to boxes in Property 4.11 and handle x in polyhedral domains through
the definition of bundles of parallelotopes. A similar approach can be taken if one
wants to extend Lemma 4.16 to polyhedral sets.

Parametric Bernstein expansion of rational functions. To handle a larger class
of biological models we introduce an additional method, based on the original
results of [158], to optimize rational function using the Bernstein expansion. Let
us now assume that f(x,k) : Rn × Rm → R is a rational function in x and linear
in k:

f(x,k) =
f1(x,k)

f2(x)
,

where f1 ∈ R[x] linear in k and f2 ∈ R[x] with f2(x) 6= 0 , ∀x ∈ [0, 1]n. Then,
from the previous results on the parametric Bernstein expansion (4.13),(4.16) and
by linearity in k we can extend the theorem from [158] to the parametric case.

Theorem 4.18. Let f1(x,k) be a polynomial in x of multi-degree d(f1) and linear
in k and f2(x) be a polynomial in x of multi-degree d(f2) such that f2(x) 6=
0 , ∀x ∈ [0, 1]n. Given l ≥ max(d(f1),d(f2)), we note {bf1α (k)} and {bf2α } the
Bernstein coefficients up to degree l of f1 and f2 respectively.

Then f(x,k) = f1(x,k)/f2(x) is bounded for (x,k) ∈ [0, 1]n ×K by:

min
α≤l

min
k∈K

bf1α (k)

bf2α
≤ f(x,k) ≤ max

α≤l
max
k∈K

bf1α (k)

bf2α
(4.20)

Proof. For a given fixed k ∈ K we have thank to [158]:

f(x, ·|k) ≤ max
α≤l

bf1α (k)

bf2α
= max

α≤l

∑
γ≤d(f1)

aγ(k)
bx

γ

α

bf2α

Thus, it yields for all k ∈ K by linearity in aγ(k)

f(x,k) ≤max
k∈K

max
α≤l

∑
γ≤d(f1)

aγ(k)
bx

γ

α

bf2α

≤max
α≤l

max
k∈K

∑
γ≤d(f1)

aγ(k)
bx

γ

α

bf2α
= max

α≤l
max
k∈K

bf1α (k)

bf2α

The proof is similar for the other inequality. �

The main advantage is that this enclosure is more accurate than the naive en-
closure:

minx,k f1(x,k)

maxx f2(x)
≤ f(x,k) ≤

maxx,k f1(x,k)

minx f2(x)
.
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Indeed, in the formulation of Theorem 4.18 we avoid decorrelating the optimiza-
tion on the numerator and denominator. However, this property requires generat-
ing the complete Bernstein expansion of both functions f1 and f2 up to the closest
common multi-degree l ≥ max(d(f1),d(f2)). We refer the reader to [159] for the
convergence rates in degree elevation and subdivision for the Bernstein expansion
of rational functions. We will call in the following a rational vector field, a vector
field constituted of polynomial functions and at least one rational function.

4.2.2 Validation of piecewise polynomial ODE systems using the Bern-
stein expansion

In the previous sections, we defined the necessary background on discrete time
reachability analysis using polyhedral templates. We also introduced the paramet-
ric Bernstein expansion as a method to solve parametric polynomial optimization
problems. We exhibited our contribution for an efficient representation of discrete
time system approximation maps. Finally, we showed how the work of [65] can be
extended to the optimization of parametric rational function, and we proposed an
alternate method for parametric polynomial optimization when parameters lie in a
box.

In this section, we introduce the algorithm for discrete time reachability anal-
ysis by extending the previous implementation of [83]. To this aim, we propose
in Algorithm 2 an algorithm to compute the intersection of parallelotope bundles
with linear constraints. Then, we extend in Algorithm 3 the work of [83] to discrete
time reachability analysis of piecewise rational functions.

We recall that we are considering dynamics defined6 by a polynomial (or ra-
tional) vector field f in x and linear in the parameters k. We remind from Section
4.1.2 (4.8) that given a template matrix the template-based reachability algorithm
can be summarized to the following optimization problem at each iteration τ :

cτ+1 = max
(x,k)∈Xτ×K

Γf(x,k) =


max

(x,k)∈Xτ×K
Γ1f(x,k)

. . .
max

(x,k)∈Xτ×K
Γpf(x,k)

 (4.21)

In the previous section we showed how the Bernstein expansion can be used to
efficiently solve this optimization problem for x ∈ [0, 1]n. We note such opti-
mization method can be extended for x in any linear transformation of the unit
box [0, 1]n. The previous implementation [83] focused on the parallelotope: a set
representation that can be expressed as a linear transformation of [0, 1]n.

Definition 4.19 (Parallelotope generator representation). Let q ∈ Rn be a point,
and {σ, . . . ,σn} a set of n linearly independent vectors in Rn. We associate to q

6Locally defined by rational or polynomial vector field in each domain, for the particular case of
piecewise approximated dynamics
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and {σj} the parallelotope Π such that for all x ∈ Π there exists y ∈ [0, 1]n with:

x = π(y) = q +
n∑
j=1

yj ∗ σj (4.22)

Figure 4.6: We represent a 2 dimensional parallelotope Π defined by its generator form: a
linear combination of the base vertex q, and the generators σ1, σ2. We also represent its
associated constraint from ΓΠ defined by the facets normal ΓΠ

1 ,Γ
Π
2 ,−ΓΠ

1 ,−ΓΠ
2

A parallelotope Π can also be described by a set of linear constraints that
we denote by the linear system ΓΠx ≤ cΠ (see Figure 4.6). The representation
change from the generators to the constraints representation, or inverse, is defined
in the original work on parallelotopes [65]. Using the linear transformation from
(4.22), then in the particular case where Xτ is a parallelotope each optimization
maxXτ×K Γif(x,k) from (4.21) becomes:

cτ+1,i = max
(x,k)∈Xτ×K

Γif(x,k)

= max
(y,k)∈[0,1]n×K

Γif(πτ (y),k)

= max
(y,k)∈[0,1]n×K

ηi(y,k) ,

(4.23)

where πτ is the linear transformation from the unit box to the parallelotope Xτ ,
and ηi(y,k) = Γif(πτ (y),k) at iteration τ . This optimization can now be ad-
dressed using the Bernstein expansion. However, after this single step we may still
obtain a polyhedral set X̂τ+1, which is not necessarily a parallelotope7. The work
of [1] develops further [65] and introduces the parallelotope bundle to approximate
polyhedral compact sets. In [1] it is proved that a polyhedron P can be exactly de-
scribed by the intersection of at least nP = round ↑ (p/n) parallelotopes, where
round ↑ (·) is the rounding to the superior natural integer, n is the dimension and
p the number of non-symmetric constraints (two constraints are symmetric if their
normal vectors are opposed) defining in the constraint matrix of P .

P = Π1 ∩Π2 ∩ · · · ∩ΠnP (4.24)

7The polyhedral template can be chosen to be a parallelotope however we may lose in accuracy.
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We note from [1] that the constraint representation of each parallelotope Πj , ı ∈
[1, nP ] is constituted from n constraints of P and their symmetric.

Example 4.20 (Bundle of parallelotopes). Let P be a polyhedron defined by a
template matrix Γ of 5 constraints: Γ1,Γ2,Γ3,−Γ1,−Γ2: we note that p = 3 as
only 3 constraints are non-symmetric. We represent this polyhedron in the Figure
4.7. We can defined round ↑ (3/2) = 2 parallelotopes Π1 and Π2 such that
P = Π1 ∩Π2. They are represented in Figure 4.7.
The parallelotope Π1 is defined by the constraint system ΓΠ1 =
{Γ1,Γ3,−Γ1,−Γ3}, while the parallelotope Π2 is defined by the constraint
system ΓΠ1 = {Γ1,Γ2,−Γ1,−Γ2}. We note that the constraint Γ1 is redundant in
Π1 and Π2: this redundancy will be used later in Example 4.21.

Figure 4.7: In this figure we show a possible bundle of parallelotopes {Π1,Π2} which
represents the polyhedron P as defined in Example 4.20
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It is also proved that the image of P by a non-linear transformation is included
in the intersection of the image of all its associated parallelotopes. Let f be a non-
linear vector field:

f(P) ⊆ f(Π1) ∩ f(Π2) ∩ · · · ∩ f(ΠnP ) (4.25)

If at iteration τ the set Xτ is a polyhedron that is described by the intersection of a
set of parallelotopes {Πj}j∈[1,nXτ ], then we need to solve an optimization problem
similar to (4.23) for each parallelotope and keep the tightest result:

cτ+1,i = min
j∈[1,nXτ ]

max
(y,k)∈[0,1]n×K

Γif(πj,τ (y),k)

= min
j∈[1,nXτ ]

max
(y,k)∈[0,1]n×K

ηi,j(y,k)
(4.26)

where ηi,j(y,k) = Γif(πj,τ (y),k) at iteration τ . This procedure is called all for
one (AFO) in [1] as the position of each constraint is the tightest among all the ones
resulting from the optimization over each parallelotope. Using the formulation of
(4.26) we can now use the Bernstein expansion to compute the over-approximation
using polyhedral template of the image of a polyhedron by a polynomial (or ratio-
nal) vector field.

In this work we want to perform reachability analysis of piecewise continuous
vector fields. To this aim, we defined in Section 4.1.3 approximation maps and
their associated representation as BSPT. To locate the position of a polyhedron in
the tree, and its intersection with the different nodes we use the intersection oper-
ator between a polyhedron X and a linear constraint h. The work of [1] does not
introduce an equivalent operator for parallelotope bundles.

The previous work of [1] presented a procedure, called decompose, to pro-
duce a bundle of parallelotopes representing a template polyhedron X . One can
compute the intersection of a bundle associated to the polyhedron X with a linear
constraint h by applying the procedure decompose on the resulting intersection
X ∩ h. In [1], the authors note that finding the most accurate parallelotope decom-
position representing a polyhedron is NP-hard. To this aim, they include into the
procedure decompose an heuristic to obtain an accurate decomposition.

In this work we propose a different approach which focuses less on accuracy
and more on performances. A method to compute this intersection without having
to recompute the bundle representation from scratch using the decompose pro-
cedure [1] is defined in the Algorithm 2. This algorithm is divided in two steps:
the first is to add the intersecting constraint to the bundle definition, and the second
is to tighten the redundant constraints in consequence. Indeed, as we work with a
fixed template, some constraints of the template may become redundant at some
point of the analysis. We note that if the intersecting constraint does not appear in
the template, and there is no constraint in common between two parallelotopes of
the bundle, unlike in Figure 4.8 for example, then we need to add a new parallelo-
tope: this occurs when nP = p/n.
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In view of application to systems biology, we already noted that the polyno-
mials modelling the dynamics are often sparse. This implies that the optimization
of the constraint parallel to the axis (defining a box) are in general cheaper to
compute. A good heuristic is to always add such axis parallel constraints in the
template, and keep a complete box in the bundle (see Figure 4.8). This box can
then be duplicated when one needs to add new parallelotope to the bundle.

Example 4.21 (Bundle intersection). We consider the bundle defined in the previ-
ous Example 4.20. We now compute its intersection with a constraint h as shown
in Figure 4.8. As seen in Example 4.20, p/n = 1.5 ≤ 2 and there is a redundant
constraint: ΓΠ1

1 = ΓΠ2
1 = Γ1. Following Algorithm 2, we need to update the paral-

lelotope Π1 into Π′1 by changing the constraint ΓΠ1
1 into Γ

Π′1
1 = h. Consequently,

the parallelotope Π′1 is defined by the constraint system h,Γ3,−h,−Γ3.
Finally, to obtain a representing bundle we tighten, using linear optimization, the
remaining constraints −ΓΠ1

2 and −ΓΠ2
2 such that they are tangent to the set P ∩ h.

Figure 4.8: On the left we show a parallelotope bundle of P and the intersecting constraint
h. On the right we show a bundle generated by Algorithm 2 representing the intersection
P ∩ h.
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Algorithm 2 Intersection(X ,B,h)
1: INPUT: X = (Γ, c), current set (template polyhedron) .
2: INPUT: B = {Πi}i∈[1,nP ], associated bundle constituted of nP parallelotopes.
3: We note Γ(Πi), c(Πi) their associated constraint representations.
4: INPUT: h, intersecting constraint of the form ax ≤ ch

5: /*If a is already in the template matrix Γ*/
6: if a ∈ Γ then
7: l = position in(a,Γ)
8: c[l] = ch
9: Update accordingly c(Πi) forΠi ∈ B associated to Γ[l]

10: else
11: if p/n == round ↑ (p/n) then
12: /* The new constraint h is represented by a new parallelotope */
13: Πnew = Π1 /* Create a duplicate */
14: Γ(Πnew)[1] = a, c(Πnew)[1] = ch
15: /* Add Πnew to B and add a new line to Γ and c */
16: Γ[last] = a, c[last] = ch
17: else
18: ∃i 6= i′ ∈ [1, nP ] s.t. l =common cstr(Πi,Πi′ )
19: /* A constraint appears multiple times: we replace it by h */
20: Γ(Πi)[l] = a, c(Πi)[l] = ch
21: end if
22: end if
23: for Γ[l] ∈ Γ do
24: /* Tighten the constraints of the polyhedron */
25: c[l] = maxx∈(Γ,c) Γ[l]x
26: Update each parallelotope constraint representation accordingly.
27: Update each parallelotope generator representation.
28: end for
29: return X , B

Finally, we describe in Algorithm 3 the complete algorithm for one step of
polyhedral template reachability analysis of piecewise dynamics such as defined
in Definition 4.4 using Bernstein expansion. The complete reachability analysis is
done by iterating over Algorithm 3.

4.3 The Krivine-Stengle representation based method

In this section we provide a method for reachability analysis of parametric polyno-
mial system using sparse Krivine-Stengle (K.S.) representations of positive poly-
nomials. This method is an alternative to the Bernstein expansion based method
as it is also designed to solve parametric polynomial optimization problems. How-
ever, unlike Bernstein expansion, which is limited to variables constrained in a box,
K.S. can be used for polynomial optimization with semi-algebraic constraints. In
practice we propose an algorithm for polyhedral template reachability analysis of
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Algorithm 3 Bernstein One Step Reach(X ,Ψ,Γ,K)
1: INPUT: X: Current set (template polyhedron)
2: INPUT: Ψ: BSPT and its associated piecewise approximation of the dynamics.
3: INPUT: Γ: template which is used to over-approximate the reachable set.
4: INPUT: K: parameters set
5: OUTPUT: an over-approximation of the reachable set of X after one step.

6: G: set of current nodes, or the tree root >
7: (L,X ) = Ψ.locating(X,G) /* finding intersecting nodes, and associated intersec-

tions */

8: for Γi ∈ Γ do
9: /* computing offset bound ci for each constraint Γi in the template */

10: for (Lκ, Xκ) ∈ L do
11: Compute the approximate dynamics fκ associated with the node Lκ
12: for Πj ∈ Bundle(Xκ) do
13: /* Get parallelotopic bundle associated to polyhedron Xκ */

14: Construct the polynomial ηi,κ,j from polynomial fκ of the dynamics,
15: template constraint Γi and paralletopic domain Πj , as defined in (??)

16: ci,j,κ = max{ηi,j,κ(y,k)) | y ∈ [0, 1]n ∧ k ∈ K}
17: /* using the Bernstein expansion for polynomial ηi,κ,j */

18: end for

19: ci,κ = minj(ci,κ,j)
20: /* smallest bound over all parallelotopes Πj in the bundle */

21: end for

22: ci = maxκ(ci,κ)
23: /* largest bound by all approximate dynamics of intersecting nodes */
24: /* We keep one set to avoid cost explosion due to successive intersections */

25: end for
26: return (Γ, c) /* the result is the template polyhedron with offsets c */

discrete time polynomial dynamics with parameters constrained in a box.
We first give, in Section 4.3.1, the necessary background on Krivine-Stengle

representations, used in the context of polynomial optimization. Then, we present
a sparse version based on [160]. These notions are later applied in Section 4.3.2 to
parametric polynomial optimization and template discrete time reachability analy-
sis.

4.3.1 Polynomial Optimization using K.S representations

Dense Krivine-Stengle representations. Krivine-Stengle certificates for posi-
tive polynomials can first be found in [161, 162] (see also [163, Theorem 1(b)]).
Such certificates give representations of positive polynomials over a compact set
X = {x ∈ Rn : 0 ≤ gi(x) ≤ 1, i = 1, . . . , p}, with g1, . . . , gp ∈ R[x]. We note
dg = maxi(deg(gi)). The compact set X is a basic semi-algebraic set, that is a set
defined by a conjunction of finitely many polynomial inequalities. In the sequel,
we assume without loss of generality that X ⊆ [0, 1]n and that X involves the
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polynomials xi for all i = 1, . . . , n in its definition. This implies that the family
{1, gi}i≤p generates R[x] as an R-algebra, which is a mandatory assumption for
Theorem 4.23. Given α = (α1, . . . , αp) and β = (β1, . . . , βp), let us define the
polynomial hα,β(x) = gα(1− g)β =

∏p
i=1 g

αi
i (1− gi)βi .

Example 4.22 (K.S. representations). For instance on the two-dimensional unit
box, one has n = p = 2, X = [0, 1]2 = {x ∈ R2 : 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1}.
For α = (2, 1) and β = (1, 3), one has hα,β(x) = x2

1x2(1− x1)(1− x2)3.

Theorem 4.23 (Dense Krivine-Stengle representations). Let ψ ∈ R[x] be a posi-
tive polynomial over X . Then there exist l ∈ N and a finite number of nonnegative
weights λα,β ≥ 0 such that:

ψ(x) =
∑

|α+β|≤l

λα,βhα,β(x), ∀x ∈ Rn. (4.27)

It is possible to compute the weights λα,β by identifying in the monomial basis
the coefficients of the polynomials in the left and right sides of (4.27). Denoting by
(ψ)γ the monomial coefficients of ψ, with γ ∈ Nnl′ := {γ ∈ Nn : |γ| ≤ l′ = kdg},
the λα,β fulfill the following equalities:

ψγ =
∑

|α+β|≤l

λα,β(hα,β)γ , ∀γ ∈ Nnl′ . (4.28)

Global optimization using the dense Krivine-Stengle representations. Here
we consider the polynomial maximization problem f

∗
:= maxx∈X f(x), with f

a polynomial of degree d. We can rewrite this problem as the following infinite
dimensional problem8:

f
∗

:= min
t∈R

t,

s.t. t− f(x) ≥ 0 , ∀x ∈ X .
(4.29)

The idea is to look for a hierarchy of finite dimensional linear programming (LP)
relaxations by using Krivine-Stengle representations of the positive polynomial
ψ = t− f involved in Problem (4.29). Applying Theorem 4.23 to this polynomial,
we obtain the following LP problem for each l ≥ d:

p∗l := min
t,λα,β

t,

s.t (t− f)γ =
∑

|α+β|≤l

λα,β(hα,β)γ , ∀γ ∈ Nnl′ ,

λα,β ≥ 0.

(4.30)

As in [163, (4)], one has the following convergence theorem:
8the minimization problem resolution is analogous.

Monday 6th August, 2018 (08:34)



72
CHAPTER 4. SET-BASED SIMULATION

FOR BIOLOGICAL MODELS VALIDATION

Theorem 4.24 (Dense Krivine-Stengle LP relaxations). The sequence of optimal
values (p∗l ) satisfies p∗l → f

∗
as l → +∞. Moreover each p∗l is a upper bound of

f
∗
.

At fixed l, the total number of variables of Problem (4.30) is given by the
number of λα,β and t, that is

(
2p+l
l

)
+ 1, where p is the dimension of g. The

number of constraints is equal to the cardinality of Nnl′ , which is
(
n+l′

l′

)
. We recall

that l′ = l dg. In the particular case whereX is an hypercube, the LP has
(

2n+l
l

)
+1

variables and
(
n+l
l

)
constraints.

Sparse Krivine-Stengle representations. We now explain how to derive less
computationally expensive LP relaxations, by relying on sparse Krivine-Stengle
representations. For I ⊆ {1, . . . , n}, let R[x, I] be the ring of polynomials re-
stricted to the variables {xi : i ∈ I}. We borrow the notion of a sparsity pattern
from [164, Assumption 1]:

Definition 4.25 (Sparsity Pattern). Given m ∈ N, Ij ⊆ {1, . . . , n}, and Jj ⊆
{1, . . . , p} for all j = 1, . . . ,m, a sparsity pattern is defined by the four following
conditions:

– f can be written as: f =
∑m

j=1 fj with fj ∈ R[x, Ij ],

– gi ∈ R[x, Ij ] for all i ∈ Jj , for all j = 1, . . . ,m,

–
⋃m
j=1 Ij = {1, . . . , n} and

⋃m
j=1 Jj = {1, . . . , p},

– (Running Intersection Property) for all j = 1, . . . ,m− 1, there exists s ≤ j
s.t. Ij+1 ∩

⋃j
i=1 Ii ⊆ Is.

Example 4.26 (Sparsity Pattern). As an example, the four conditions stated in Def-
inition 4.25 are satisfied while considering f(x) = x1x2 + x2

1x3 on the hypercube
X = [0, 1]3. Indeed, one has f1(x) = x1x2 ∈ R[x, I1], f2(x) = x2

1x3 ∈ R[x, I2]
with I1 = {1, 2}, I2 = {1, 3}. Taking J1 = I1 and J2 = I2, one has
gi = xi ∈ R[x, Ij ] for all i ∈ Ij , j = 1, 2.

Let us consider a given sparsity pattern as stated above. By noting nj = |Ij |,
pj = |Jj |, then the set X = {x ∈ Rn : 0 ≤ gi(x) ≤ 1, i = 1, . . . , p} yields
subsets Xj = {x ∈ Rnj : 0 ≤ gi(x) ≤ 1, i ∈ Jj}, with j = 1, . . . ,m. If X is
a compact subset of Rn then each Xj is a compact subset of Rnj . As in the dense
case, let us note hαj ,βj := gαj (1− g)βj , for given αj ,βj ∈ Nnj .

The following result, a sparse variant of Theorem 4.23, can be retrieved from [164,
Theorem 1] but we also provide here a shorter alternative proof by using [160].
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Theorem 4.27 (Sparse Krivine-Stengle representations). Let f, g1, . . . , gp ∈ R[x]
be given and assume that there exist Ij and Jj , j = 1, . . . ,m, which satisfy the four
conditions stated in Definition 4.25. If f is positive over X , then there exist φj ∈
R[x, Ij ], j = 1, . . . ,m such that f =

∑m
j=1 φj and φj > 0 over Xj . In addition,

there exist l ∈ N and finitely many nonnegative weights λαj ,βj , j = 1, . . . ,m,
such that:

φj =
∑

|αj+βj |≤l

λαj ,βjhαj ,βj , j = 1, . . . ,m. (4.31)

Proof. From [160, Lemma 3], there exist φj ∈ R[x, Ij ] such that f =
∑m

j=1 φj
and φj > 0 on Xj . Applying Theorem 4.23 on each φj , there exist lj ∈ N and
finitely many nonnegative weights λαj ,βj such that φj =

∑
|αj+βj |≤lj λαj ,βjhαj ,βj .

With l = max1≤j≤m{lj}, we complete the representations with as many zero λ as
necessary and obtain the desired result. �

In Theorem 4.27, one assumes that f can be written as the sum f =
∑m

j=1 fj ,
where each fj is not necessarily positive. The first result of the theorem states
that that f can be written as another sum f =

∑m
j=1 φ

j , where each φj is now
positive. As in the dense case, the λαj ,βj can be computed by equalizing the
coefficients in the monomial basis. We also obtain a hierarchy of LP relaxations to
approximate the solution of polynomial optimization problems. We now provide
these relaxations as well as their computational costs in the particular context of
parametric polynomial optimization for reachability analysis in Section ??.

4.3.2 Set-based simulation using K.S representations

We recall from (4.5) and (4.8) that template reachability analysis with polyhedral
templates can be summarized into solving the optimization problem:

cτ+1,i = max
(x,k)∈X̂τ×K

Γif(x,k)

For the sake of keeping close notations to Section 4.3.1, we note f ′(x,k) =
Γif(x,k) which is polynomial in x and linear in k. In this particular section,
we assume that X̂τ (also noted X in the following) is a compact semi-algebraic set
include in [0, 1]n. We also assume that K is the hypercube9 [−1, 1]m.

Here we explain how to compute upper bounds of f ′ := max(x,k)∈X×K f
′(x,k)

by using sparse Krivine-Stengle representations. If necessary, we can obtain lower
bounds of f ′ := min(x,k)∈X×K f

′(x,k) in a similar way.
Let gX be the vector of p polynomial constraints whose conjunction defines the

semi-algebraic set X . For the sake of consistency with Section 4.3.1, we introduce
the variable y ∈ Rn+m defined by yi := xi, j = 1, . . . , n and yi := ki−n,
i = n+ 1, . . . , n+m. Then, one can write the set X = X ×K as follows:

X = {y ∈ Rn+m : 0 ≤ gj(y) ≤ 1 , j = 1, . . . , p+m} , (4.32)
9Or obtained though a linear transformation of [−1, 1]m.
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with gj(y) := gXj (x), for each j = 1, . . . , n and gj(y) := 1
2 +

kj
2 , for each

j = p+ 1, . . . , p+m.

Lemma 4.28. For each j = 1, . . . ,m, let us define Ij := {1, . . . , n, n + j} and
Jj := {1, . . . , p, p + j}. Then the sets Ij and Jj satisfy the four conditions stated
in Definition 4.25.

Proof. The first condition holds as f ′(y) = f ′(x,k) =
∑m

j=1 sj(x,k)kj =∑m
j=1 sj(y)kj , with sj(y) ∈ R[y, Ij ]. The second and third condition are obvious.

The running intersection property comes from Ij+1 ∩ Ij = {1, . . . , n} ⊆ Ij . �

Given αj ,βj ∈ Np+1, one can write αj = (α′j , ωj) and βj = (β′j , δj), for
α′j ,β

′
j ∈ Np, ωj , δj ∈ N. In our case, this gives the following formulation for the

polynomial hαj ,βj (y) = gαj (1− g)βj :

hαj ,βj (y) = hα′j ,β
′
j ,ωj ,δj

(x,k)

= gX(x)α
′
j (1− gX(x))β

′
j (

1

2
+
kj
2

)ωj (
1

2
− kj

2
)δj .

Example 4.29 (Sparse representation in the parameters). For instance, with the
polynomial f ′ = (2x2 − x)k1 + x2k2 + (x2 − x)k3 depending on x, k1, k2, k3,
where x ∈ [0, 1] = {x ∈ R | 0 ≤ x ≤ 1} and k ∈ [−1, 1]3, one can consider
the multi-indices α1 = (1, 2), β1 = (2, 3) associated to the scaled parameter k1.
Then hα1,β1

(y) = x(1− x)2(1
2 + k1

2 )2(1
2 −

k1
2 )3.

Now, we consider the following hierarchy of LP relaxations, for each l ≥ d:

f ′l := min
t,λαj ,βj

t ,

s.t t− f ′ =
m∑
j=1

φj ,

φj =
∑

|αj+βj |≤l

λαj ,βjhαj ,βj , j = 1, . . . ,m ,

λαj ,βj ≥ 0 , j = 1, . . . ,m .

(4.33)

Similarly, we obtain f ′l while replacing min by max and t−f ′ by f ′−t in LP (4.33).

Lemma 4.30. The sequence of optimal values (f ′l ) (resp. (f ′l )) satisfies f ′l ↑ f ′

(resp. f ′l ↓ f ′) as l→ +∞.

Proof. By construction (f ′l ) is monotone nondecreasing. For a given arbitrary ε′ >
0, the polynomial f ′−f ′+ε′ is positive overX . By Lemma 4.28, the subsets Ij and
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Jj satisfy the four conditions stated in Definition 4.25, so we can apply Theorem
4.27 to f ′ − f ′ + ε′. This yields the existence of φj , j = 1, . . . ,m, such that
f ′ − f ′ + ε′ =

∑m
j=1 φj and φj =

∑
|αj+βj |≤l λαj ,βjhαj ,βj , j = 1, . . . ,m.

Hence, (f ′ − ε′, φj , λαj ,βj ) is feasible for LP (4.33). It follows that there exists l
such that f ′l ≥ f ′ − ε′. Since f ′l ≤ f ′, and ε′ has been arbitrary chosen, we obtain

the convergence result for the sequence (f ′l ). The proof is analogous for (f ′l ). �

Remark 4.31. In the special case of parametric reachability analysis of polynomial
systems, one can prove that the number of variables of LP (4.33) ism

(2(p+1)+l
l

)
+1

with a number of constraints equal to [ ml
′

n+1 + 1]
(
n+l′

l′

)
. This is in contrast with the

dense case where the number of LP variables is
(2(p+m)+l

l

)
+ 1 with a number of

constraints equal to
(
n+m+l′

l′

)
.

Proof of Remark 4.30. We replace the representation of a function φ of dimension
(n+m) on the set X by a sum of m functions φj of dimension (n+ 1) defined on
their associated subsets Xj . From Section 4.3.1, the number of coefficients λαj ,βj
for the K.S. representation of a φj over Xj is

(2(p+1)+l
l

)
. This leads to a total of

m
(2(p+1)+l

l

)
for all the φj and m

(2(p+1)+l
l

)
+ 1 variables when adding t.

The number of equality constraints is the number of monomials involved in∑m
j=1 φj . Each φj has

((n+1)+l′

l′

)
monomials. However there are redundant mono-

mials between all the φj : the ones depending of only x, and not e. These
(
n+l′

l′

)
monomials should appear only once. This leads to a final number ofm

((n+1)+l′

l′

)
−

(m− 1)
(
n+l′

l′

)
monomials which is equal to [ ml

′

n+1 + 1]
(
n+l′

l′

)
. �

Example 4.32 (K.S. parametric optimization). Continuing Example 4.15 and 4.29,
for the polynomial f ′ = (2x2−x)k1 +x2k2 +(x2−x)k3, we consider LP (4.33) at
the relaxation order l = d = 3 over X = [0, 1] × [−1, 1]3. This problem involves
3
(

2×(1+1)+3
3

)
+ 1 = 106 variables and [3×3

2 + 1]
(

4
3

)
= 22 constraints. This is

in contrast with a dense Krivine-Stengle representation, where the corresponding
LP involves 35 linear equalities and 166 variables. Computing the values of f ′l
provides an upper bound of 2, yielding f ′(x,k) ≤ 2ε ∀(x,k) ∈ [0, 1]×[−1, 1]3.

The algorithm for reachability analysis of discrete time polynomial systems us-
ing K.S. representations is more straightforward than Algorithm 3. Indeed, using
K.S. representations we avoid the decomposition of the polyhedrons into paral-
lelotopes bundles. In previous Algorithm 3, these decompositions were not only
costly as they multiplied the number of necessary optimizations at each step by the
number parallelotopes, but also less accurate as Bernstein method does not directly
handles variables in polyhedron.
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Algorithm 4 KS One Step Reach(X ,Ψ,Γ,K)
1: INPUT: X: Current set (template polyhedron)
2: INPUT: Ψ: BSPT and its associated piecewise approximation of the dynamics.
3: INPUT: Γ: template which is used to over-approximate the reachable set.
4: INPUT: K: parameters set
5: OUTPUT: an over-approximation of the reachable set of X after one step.

6: G: set of current nodes, or the tree root >
7: (L,X ) = Ψ.locating(X,G) /* finding intersecting nodes, and associated intersec-

tions (still polyhedron) */

8: for Γi ∈ Γ do
9: /* computing offset bound ci for each constraint Γi in the template */

10: for (Lκ, Xκ) ∈ L do
11: Compute the approximate dynamics fκ associated with the node Lκ
12: Construct the polynomial ηi,κ from polynomial fκ of the dynamics and
13: template constraint Γi, as defined in (??).

14: ci,κ = max{ηi,κ(x,k)) | x ∈ Xκ ∧ k ∈ K}
15: /* using Sparse K.S representation for polynomial ηi,κ */

16: end for

17: ci = maxκ(ci,κ)
18: /* largest bound by all approximate dynamics of intersecting nodes */

19: end for
20: return (Γ, c) /* the result is the template polyhedron with offsets c */

In Algorithm 4, we present our algorithm for one step of the discrete time
reachability analysis. We note that we did not introduce a method to apply K.S. rep-
resentations to rational functions, but this can be perform through variable changes,
in a similar fashion to [1].

Finally, we do not provide any cases study applying K.S. for reachability anal-
ysis as an efficient implementation is still on-going. However, we propose Section.
4.4 a discussion on our preliminary results on the comparison between Bernstein
expansion and K.S. representation applied to parametric polynomial optimization
problems. This results are from outside the field of system biology, and were
published in [2] for bounding the floating point roundoff error. They still give
a groundwork for a choosing policy between these two methods for polynomial
optimization.

4.4 Discussion and perspectives

Theoretical complexity. In this section we provide a preliminary comparison be-
tween Bernstein expansion and K.S representations as two methods to solve para-
metric polynomial optimizations problems. We recall that we search f an upper
bound of the optimization problem:

f∗ := max
(x,k)∈X×K

f(x,k) ≤ f ,
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where f is polynomial in x and linear in k.
The Bernstein expansion method to provide an upper bound f when X ⊂ Rn

is a box, and K ⊂ Rm is either a box or a polyhedron. If K is a box then we recall
from Section 4.3.1 that the theoretical complexity is at most equal to the number
of Bernstein coefficients, which is m(l + 1)1. The cost is linear in the number of
parameters m, polynomial in the degree l (at fixed dimension n), and exponential
in dimension n (at fixed degree l). If K is a (compact) polyhedron then we have to
solve at most (l+ 1)1 linear programs of m variables and p constraints, where p is
the number of constraints defining K.

From this theoretical cost we note that the Bernstein based method greatly suf-
fers when dimension increases. Methods such as [132] can reduce this cost when
there is some sparsity in f , but in general Bernstein perform badly in high dimen-
sion. However when dimension is small, as the Bernstein expansion is polynomial
in degree it is possible to obtain efficiently a precise bound of a high degree poly-
nomial.

We note that if X is a polyhedron we have to define an associated bundle of
parallelotopes {Πi}i≤nP . However, we have no guarantee of convergence to the
optimal solution by optimizing over the bundle as described in Section 4.2.2. More-
over, as we have to perform one optimization for each parallelotope, the compu-
tational cost is now linear in the number of parallelotopes constituting the bundle:
nPm(l + 1)1.

The K.S. representations based method provides bounds when X is a semi-
algebraic compact set, and K either a box or a semi-algebraic compact set. In the
case where K is a box, we can use the sparse K.S. representation as described in
Section 4.3.1. This yields a relaxation of the polynomial optimization problem into
an linear programs of m

(2(p+1)+l
l

)
+ 1 variables and [ ml

′

n+1 + 1]
(
n+l′

l′

)
constraints,

where n is the dimension of x, p the number of constraints defining X , m the
dimension of the parameters k, and the adjusted degree10 l′ = ldg.

From [165],[166] we know that the computation cost of an LP resolution is
polynomial in the number of constraints and variables. Consequently, when the the
degree k is fixed this yields a polynomial cost in the dimension n or p the number
of constraints defining X . We note that the complexity is linear in m allowing
to efficiently handle parameters as the Bernstein-based method. Experimentally
(see Table 4.1), the K.S. based method seems to have a large cost when the degree
increase, and the dimension is fixed.

When K is a semi-algebraic compact set, we have to use the dense K.S. repre-
sentation over the whole set X ×K, leading to the important computational cost:
variables and constraints. To reduce the cost, it may be possible to provide a
problem specific sparsity pattern: however finding an optimal sparsity pattern is an
NP-hard problem [167].

In our reachability analysis application, we always compute linear relaxation
of order l = d, or Bernstein expansion of multi-degree l = d: thus by fixing the

10Note that l′ = l in the particular case of polytopes.
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Benchmark n m d Bern(double) Bern(exact) K.S.
ex-2-2-5 2 9 3 3e–4 3e–4 0.13(0.02)
ex-2-2-10 2 14 3 4e–4 4e–4 0.18(0.02)
ex-2-2-15 2 19 3 5e–4 5e–4 0.24(0.03)
ex-2-2-20 2 24 3 5e–4 8e–4 0.30(0.03)
ex-2-5-2 2 9 6 2e–3 3e–3 1.08(0.14)
ex-2-10-2 2 14 11 2e–2 4e–2 90.1(53.1)
ex-5-2-2 5 12 3 7e–3 4e–2 0.63(0.05)
ex-10-2-2 10 22 3 2.48 1242 5.5(0.3)

Table 4.1: Comparison of execution times (in seconds) for examples generated from (??).
First and second column are the execution times using Bernstein optimization with either
double precision or rational arithmetic (exact precision). The last column details execution
times for Krivine-Stengle method. For Krivine-Stengle the CPLEX solving time is given
between parentheses. For each polynomial, the best results are emphasized using bold
fonts.

degree we know that for high dimension K.S. is more efficient that Bernstein. If
this relaxation order, or this multi-degree is not high enough to provides accurate
bounds, we prefer to split the set than increase the degree. From these theoretical
consideration we argue that K.S. is a good complement to Bernstein expansion
when optimizing high dimensional polynomial with low degree. K.S. can also
handle more complex representation for X than Bernstein when accuracy is a key
factor of the analysis. Thus, we argue that a policy choosing at each step the
optimization method to use depending of the context would be more efficient.

Experimental results. Finally, we provide a table with experimental results com-
paring K.S. and Bernstein for polynomial optimization of boxes. This is a subset
of the benchmarks performed in our paper [2]. The studied examples are of the
form:

ex-n-sum-d(x) :=
m∑
j=0

(
d∏
l=1

(
n∑
i=1

xi)) . (4.34)

with parameters taken in [−1, 1]m. Their dimension m is determined separately
in [2]. The dimension of x is n and x is also taken in [−1, 1]n. Finally, and d
is the degree of the polynomial. We also note that the associated multi-degree is
d = (d, . . . , d). To perform Bernstein expansion we re-use parts of the C++ im-
plementation from sapo [83] based on the matrix method [65]. The optimization
using sparse K.S. representations is currently implemented in interpreted Matlab
2015a as a modification of the previous toolbox SBSOS implemented for [164].
Experimentations were performed on an Intel Core i7-5600U (2.60Ghz, 16GB)
with Ubuntu 14.04LTS, using GINAC 1.7.1 version in association to sapo, and
CPLEX 12.63 to solve linear programs from K.S. representation method. In Table
4.1 we compare the performances of the two methods. Taking into account that

Monday 6th August, 2018 (08:34)



4.4. DISCUSSION AND PERSPECTIVES 79

Benchmark n m d Bernstein Krivine-Stengle
ex-2-2-5 2 9 3 201 201
ex-2-2-10 2 14 3 480 480
ex-2-2-15 2 19 3 860 860
ex-2-2-20 2 24 3 1342 1342
ex-2-5-2 2 9 6 1504 1504
ex-2-10-2 2 14 11 94576 94576
ex-5-2-2 5 12 3 770 770
ex-10-2-2 10 22 3 4648 4648

Table 4.2: Comparison of the accuracy for examples generated from (??). The first column
contains the upper bounds using Bernstein optimization with either double precision or
rational arithmetic (exact precision). The second column details the upper bounds given
by Krivine-Stengle method.

the LP generation for K.S. is implemented in interpreted Matlab we provide in
parenthesis the solving time of the LP by Cplex. From the results of examples
ex-2-2-5 to ex-2-2-20, we observe that accordingly to the theoretical cost
both methods are linearly affected by the number of parameters. Comparing ex-
amples ex-2-5-2 and ex-2-10-2, we note that K.S. is strongly affected by
degree elevation, while in examples ex-5-2-2 and ex-10-2-2, Bernstein is
greatly affected by dimension increase. In particular in example ex-10-2-2, we
note that the LP solving time related to K.S. method is small, which agree with the
polynomial cost of K.S. at fixed degree.

Finally we note that the current implementation of K.S. is limited by the LP
generation time in Matlab, and a new implementation in a compiled language
must provided in order to obtain more results, and a reliable implementation for
reachability analysis. In Table 4.2, we compare the accuracy of the two method at
the smallest relaxation order l = d, and the smallest multi-degree for the Bernstein
expansion, l = d. This provides a similar context to an application to reachability
analysis where we focus on first approximation results. In all examples both meth-
ods have the same accuracy, further benchmarks are provided in [2] which yield a
similar conclusion. Consequently, there is apparently no loss in accuracy by using
K.S. instead of Bernstein when it is theoretically more cost efficient.

In the following we describe our perspectives and future work for both K.S.
and Bernstein based methods. The future works associated to this chapter can be
divided in three: the further development of the current implementation, and two
different approaches to perform reachability analysis.

Future implementations. First we need to improve the performances of the cur-
rent implementation of the K.S. based optimization method and to integrate it in-
side a toolbox for reachability analysis. Indeed, the current implementation in
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Matlab (based on [164]) cannot efficiently be applied on large problems (see Table
4.1).

As previously stated, our results on the Bernstein-based method are already an
improvement of the reachability toolbox sapo. However, the current implemen-
tation relies on an old version of sapo, and it is now important to merge our new
features into a more recent version.

Both algorithms 3 and 4 have been detailed for reachability analysis of discrete
time systems. If they produce safe and conservative results in this context, they
are not guaranteed to be conservative for continuous time systems. To this aim we
need to implement a method to efficiently handle numerical integration error, and
we need to compute the continuous time corrected initial set, [87], correct(X0)
defined as:

correct(X0) := X0 ⊕ f(X0,K) , (4.35)

where ⊕ is the Minkowski sum operator.
Finally, it is important to provide an implementation for hybrid automata simi-

lar to [87], to handle hybrid systems with polynomial continuous dynamics, as well
as experimental protocol models we define further in Section 5.

Fixed time reachability analysis. In addition to future improvements of the cur-
rent implementation we identify some new ideas which seems to be promising. The
first idea is the use of simulation and approximation methods to compute reachable
set at fixed instant. Given the ODE system:

ẋ(t) = f(t,x), x ∈ Rn . (4.36)

Let us consider a closed time interval [0, T ] ⊂ R. For all t ∈ [0, T ], ξx0(t) denotes
the trajectory solution of (4.36), with initial condition x(0) = x0. By extension,
∀t ∈ [0, T ], ξX0(t) is the set of trajectories for all x0 ∈ X0.

We want to address the following problem: for a given time t ∈ [0, T ], we
consider φt(x) : Rn → Rn, the function which gives the value at time t of the
trajectory ξx(·). Instead of computing the whole flow pipe, we only want to find
an over-approximation of the set Xt = φt(x), ∀x ∈ X0. Results from biological
experiments are often time series, with sometimes samples separated by hours.
We argue that interpolating some continuous temporal properties from these time
series is already a strong assumption on the model. Thus we seek to ensure that
given some ODEs modelling our system, all the trajectories associated to the model
reach the desired data points, without assuming anything in between.

To computeXt we ideally need the exact analytical function φt(X0). In simple
cases, for example with linear autonomous ODE systems, we have this function.
For the ODE system, ẋ = Ax,x(0) ∈ X0, we have φt(X0) = X0e

−At.
However, in the general case we may not know this analytical solution and in

particular for f ∈ R[x]. For this reason we will search an approximation φ̂t(x)
of φt(x) and the associated approximation error defined by ‖φt(x) − φ̂t(x)‖ ≤
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εabs, ∀x ∈ X0. This way we can build a new over-approximation of Xt by:

X̂T = O(φ̂t(X0))⊕ εabs (4.37)

Assuming that φt(x) is at least C1(Rn), we propose to use polynomial inter-
polation over the trajectories from an initial sample of X0 obtained by numerical
simulation, to determine this approximation. For two or three dimensional systems
we can use interpolation over a Padua-Grid and Chebychev polynomials [168]
to obtain a precise polynomial approximation φ̂t(·) of φt(·). The template over-
approximation O· can be performed using the Bernstein or K.S. based methods
described in this chapter. In Fig 4.9, one can see the results of box approximations
using the Bernstein expansion at fixed time points of the Lotka-Volterra continuous
model (LV-ODE) from Example 4.1. If this method performs well in two dimen-

Figure 4.9: Interpolation method for reachability analysis applied on the Lotka-Volterra
ODE system. The ’+’ dots are the numerical simulations of the 2D Padua grid of the initial
set: the box [0.9, 1.1]2. The other boxes are the over-approximation the reachable set using
polynomial approximations φ̂t(X0) interpolated from simulations on the initial set grid.

sion, it is not viable without modification for dimension higher than 3. Indeed,
using dense grid of the state-space results in an exponential number of samples,
and thus simulations. Moreover, the theoretical accuracy of the polynomial ap-
proximation quickly decreases if the degree of the approximation φ̂t(·) remains
fixed while the dimension increases. To tackle the problem of the size of the grid
exponential in the dimension we plan to use sparse grid such as describes in [169].
The work of [169] also provide a scheme to converge to an accurate polynomial
approximation up to a given error εabs using sparse grids. However, it would be
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a great improvement to obtain an even more accurate value for εabs than the one
provided by their bounds. For this, one idea would be to obtain an upper bound of
maxx∈X |(φt(x) − φ̂t(x))|, using occupation measure relaxation methods similar
to the one described in Chapter 3 (we recall that φt(x) is not analytically known).

Polynomial lift using Bernstein expansion. Carleman linearisation is a method
to approximate non-linear vector field by a high dimensional linear transformation.
The previous work [170] provides an error bound on the approximation of a non-
linear ODE by its Carleman linearisation. It is possible to extend [170] to reacha-
bility analysis in three steps: first we lift the initial set into the higher dimensional
space. Then, we perform reachability analysis in this high dimensional space using
linear reachability analysis tools such as [87] or [171]. Finally, we project the result
into the original low dimensional space while taking into account some linearisa-
tion error given by [170]. We propose to approximate the polynomial lift described
in [170] using the Bernstein expansion to compute a convex over-approximation
using the convex hull of the coefficients. For performance purposes in the high
dimensional cases, we want to use the linear reachability tool [171]. To this aim,
we propose to compute an over-approximation of the lift in Cartesian product for-
mat, which directly usable by [171]. In Figure 4.10, we show the polynomial lift
L : R → R3, L(x) = (x, x2, x3) as well as two possible over-approximations
using the Bernstein expansion.

Figure 4.10: Polynomial lift (x, x2, x3) of the interval [0, 1] (blue dotted-line) approxi-
mated by either the convex hull of the Bernstein control points (blue enclosure), or its
Cartesian product decomposition (red enclosure). The green box would be a box over-
approximation of the polynomial lift.
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In this chapter, we focus on biological mechanism modelled using ordinary
differential equations (ODEs). They can represent mechanisms on multiple scales
including the molecular scale, cell scale or physiological scale. The motivation
for such models is not only to give quantitative predictions, when sufficient data is
available to validate the model, but also to provide a mathematical representation of
a biological system. Such formalization then provides a framework to incorporate
new data and knowledge of various types in a consistent way.

We address the models corresponding to a class of biological experiments in
which the system, in a given initial state, is perturbed in some way, evolves, and
then at a later time some measurements are performed. To represent such be-
haviours, we provide a mathematical formalization of experimental protocols. A
model in this sense describes the system under study and the experiments which
have been performed on it. To achieve this, a formalization as hybrid automata is
proposed for this class of experimental protocols. With the hybrid automata for-
malism, we introduce a systematic way to study mechanistic biological models, in
their experimental context, using formal methods which produce conservative or
certifiable results.

In this chapter, we first propose, in Section 5.1, a high level “action based”
specification language of experimental protocols, named Modelling-Oriented Ex-
perimental Protocol Language (MOEPLA). This action-based language serves as
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an interface between the experimental view and the mathematical modelling of a
given mechanism. Using this description, an abstract experimental protocol and its
execution are formally represented in MOEPLA using an explicit semantic. More-
over, it is expressive enough to be applied in numerous biological contexts such as
therapeutic modelling, pharmacology, or molecular modelling. It can be seen as
the first step of a pipeline to study in a systematic manner the experimental pro-
tocols. Other protocol specification languages, such as EXACT [172], focus on
expressing all the stages and details of an experiment to enable its real life repro-
ducibility in another laboratory. In particular, our specification language expresses
experimental protocols while taking into account insight on specific mechanism
models. Of course, this may lead to neglecting some particular stages or details of
the experiments since they are either without any influence, or too complex, for the
chosen mechanistic modelling purposes.

There are multiple results [172, 173, 174, 175] on formal languages for the
description of experimental protocols in some particular context (experiments over
genes, or proteins). The development of the Systems Biology Markup Language
(SBML) format [176] allows representing biological data and models using process
algebra. These efforts are motivated by the inherent ambiguity in natural language
for describing real-life experiments, which can result in the lack of repeatability of
a given biological laboratory protocol.

In Section 5.2, we provide a preliminary translation from this specification lan-
guage into a hybrid automaton, an expressive mathematical formalism on which a
panel of analysing tools already exist [87, 47, 88]. Using hybrid automata, discrete
changes describe the different stages of the protocol, while ODEs describe bio-
logical mechanisms. This hybrid automaton representation can be analyzed using
formal validation, providing conservative or certified results that a proposed bio-
logical mechanism is coherent with experimental observations. The general work-
flow defined by the conjoint use of MOEPLA, the hybrid automaton representation
and an analysis tool, is described in Figure 5.1

ODE
Modelling

Experimental
Protocol

MOEPLA
Description

Hybrid
Automata

Analysis

Figure 5.1: Biological experiment modelling workflow.

The hybrid formalism has previously been used as an abstraction method to
simplify mechanistic models which are complex and hard to analyse [111], or to
represent activation and switch processes such as in the genes regulatory networks
[11]. To our best knowledge, except for some general guidelines [177], the closest
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work on the formalization of biological protocol incorporating mechanistic models
is [178]. This recent work proposes a formalization as piecewise Markov-process
of biological protocol. This work differs from ours on the mathematical formaliza-
tion and seems to be designed to address models from biochemistry protocol. In
our case, we want to handle a larger panel of possible experimental protocols: from
biochemistry to therapy or animal study. In this chapter, the model of haemoglobin
production in erythroblast from [3] is used as a running example and will be further
analyzed in Chapter 6.

5.1 MOEPLA description

In this section, we define the formal specification language MOEPLA. We aim to
mix experimental protocol specifications with modelling hypotheses on specific
biological mechanisms. We note that this specification language is useful when
the experimental protocol exhibits multiple step influences on the behaviour of the
entities involved in the biological mechanism. This is especially true for particular
evolving systems such as differentiating cells, or different stages of an organism’s
life. On the downside, if it is possible to express short protocols constituted only of
one stage (one initial state and a final measurement), this is not the case for which
MOEPLA is the most useful. We now define the main notions used to describe a
protocol.

The protocol we construct is organized around two main notions: experimental
objects and experimental actions, respectively denoted byO andA. We call exper-
imental object, an object (in a physical sense) on which an experimental protocol
action is applied at a given time. Following the context, it can represent objects of
multiple scales, such as the animals or cells. A given protocol can have different
experimental objects, for different stages of the protocol. As we focus on the mod-
elling of the effect of a protocol on a given biological system, we need information
on the associated biological mechanism. This mechanism is represented by a para-
metric dynamical system F = (T , X, U,K, f). Thus each experimental object O
is connected to a biological mechanism F .

Definition 5.1 (Experimental object). Let FO be a parametric dynamical system:

FO := (TO, XO, UO,KO, fO).

We define by:
O := O(FO) , (5.1)

an experimental object O associated to the parametric dynamical system FO. In
this context, FO represents various mechanisms related to this particular object
the biologist wants to study. Then, TO, XO, UO,KO) respectively are the default
time interval associated to O, its default state space, input space, and parameters
space; and fO are parametric ODEs with input, which models the dynamics of the
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variables of O. In the following, we assume that TO = T = [0, T ] for all the
objects.

Remark 5.2 (Notations). For a given experimental object O, let XO ⊆ RnO , then
xO is the set of state variables associated toO, with xO ∈ XO. Let {O(α)}α be the
set of all the experimental objects involved in a protocol. Given n =

∑
α nO(α) ,

then let y ∈ Rn be the concatenation of all the variables xO
(α)

, that is the set of all
variables associated to the whole experimental protocol.

The notations k ← Knew and u ← Unew) define the redefinition operators
which associate respectively a new parameters space Knew and input space Unew,
to respectively the subset of parameters k and subset of inputs u.

And x← R(z) defines the operation which associates to a subset z of variables
x a new value R(z), via the reset map R.

Definition 5.3 (Conditional Statement). A conditional statement c is a function
c : T ×Rn → B such that for a given pair (t,y), c(t,y) decides if a condition on y
is satisfied or not. Such conditional statements will be used to define the condition
under which a particular step of the protocol must be applied.

We define experimental actions as actions which are performed by the biologist
during the experiment and are relevant for the modelling. They include: actions
which create an experimental object O at a given step of the experiment; actions
performed on an experimental object O, which have an influence on its associated
dynamics; and finally, the measurement performed on a given experimental ob-
ject. We associate to an experimental action, a conditional statement c(t,y). In the
general case, we define 7 kinds of actions which can be separated in 3 classes: cre-
ation (I0,Acreate,Acr from), perturbation (Ax,Ak,Au), measurement (AM). We
say that an action is executed when the effect of this action on the associated object
takes place. We say that an object O is created when it is part of the initialisation
I0(O), or when one of the actions Acreate(O) or Acr from(O, . . . ) are executed.
We assume that an experimental protocol always starts at time t = 0.
First we define the actions creating a new experimental object. These actions in-
clude the initialisation step I0(O) which defines the initial state of the experiment
for a given object O. In the following definitions, the symbol L represents a syn-
chronisation label associated to a particular action.

Definition 5.4 (Experimental actions - Creation).

– I0(O,xO(0) := xO0 ): this creates an initial object O, and initialises its state
variables to xO0 .

– Acreate(O, L,xO(t) := xOt , c(t)): this action defines the creation of a new
object O under the condition c(t) = true, with some initial value xOt . The
condition c only depends on t in this particular case. This action allows
creating a new object at a given time independently of another experimental
object.

Monday 6th August, 2018 (08:34)



5.1. MOEPLA DESCRIPTION 87

– Acr from(O, {O(β)}, L,xO(t) ← R(x(t)), c(t,x)): this action defines the
creation of O from a given set of experimental objects {O(β)}, under the
condition c(t,x(t)) = true. Here, x is the concatenation of the variables
xO

(β)
. The initial condition xO(t) of O is determined by a reset map on the

state variables x(t) of the set of objects {O(β)}.

Secondly, we define the actions which perturb a given experimental object O,
by changing its state variables, its parameters space, or its input space. In real life,
if an action has multiple effects, then in the specification language, this is translated
by multiple actions under the same condition.

Definition 5.5 (Experimental actions - Perturbation).

– Ak(O, L,k ← Knew, c(t,x
O)): the action performed on O affects the pa-

rameters k, changing the associated parameters space to Knew, under the
condition c(t,xO(t)) = true.

– Ax(O, L,xO ← R(xO), c(t,xO)): the action performed on O affects the
state variables xO, changing their values to R(xO), under the condition
c(t,xO(t)) = true.

– Au(O, L,u← Unew, c(t,x
O)): the action performed on O affects the input

functions u, changing the associated input space to Unew, under the condi-
tion c(t,xO(t)) = true.

Example 5.6 (Perturbation action). An example of experimental action is as fol-
lows: at exactly 3 hours after the start of the experiment, the biologist increases the
temperature to 37◦C. It has the effect on a production rate kprod associated to the
experimental object O1. Then the experimental action is: temperature increase to
37◦C on O1 affecting kprod under condition t == 3h, and expressed as

Ak(O1, LT↑, kprod ← {kprod(37◦C)}, t == 3h).

In this example, the synchronization LT↑ allows to gather all the perturbation as-
sociated to this perturbation: T increases to 37◦C. One of the perturbation of this
actions is described byAk: the parameter space of kprod is changed to the singleton
{kprod(37◦C)}.

Finally, we define the action corresponding to an experimental measurement.

Definition 5.7 (Experimental actions - Measurement).

– AM(O, L,xmeas(t) := m(xO(t)), c(t,xO)): the action performed on O is
a measurement of the state variables ofO, under the condition c(t,xO(t)) =
true. The information of the measurement is preserved in a variable xmeas(t),
for all time instants t which satisfy the condition.
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We use measurement actions to define possible (or actual) observation windows
during the experiment. These action are parallel to actual experiment, and do not
influence it directly. If an experimental measurement does have in reality an effect
of the observed object, then it is represented as a perturbation action with the same
condition.

The set of possible experimental actions, with the exception of the initialisation
I0, is summarized as follows:

A := Acreate,Acr from,Ak,Ax,Au,AM

It is important to notice that we expect the biologist to have some insight on
how an action will affect the model. However, we do not actually expect him to
always provide explicit mathematical functions, or numerical values, when spec-
ifying the protocol in our language. In the following we may use dots, as in
Ak(O, L, . . . , c), to ease the redaction of non-relevant information in the context
of a given explanation. These dots are not part of the language.

Definition 5.8 (Experimental Protocol Syntax). We call experimental protocol a set
of actions {A} performed on objects {O}, the objective of which is to highlight a
biological mechanism, and to measure directly or indirectly its evolution, in time
and/or after some events. The set {I0} provides the initial conditions of a protocol.
A protocol must end with a final measurement AM. After defining the variables,
dynamical systems, protocol maximal duration tend, experimental objects O(F)
that will appear in the experiment, as well as their (possible) initial conditions
I0(O), we express the protocol as a sequence:

P := I∗0A∗AM ,

where I∗0 and A∗ are a finite sequence of initial conditions and a finite sequence of
any actions A, respectively.

Definition 5.9 (Experimental Protocol Rules). To ensure a correct description of
protocols using the specification language, we add two rules on the definition of an
experimental action:

– There can be only one action of creation among {I0,Acreate,Acr from} for a
given object O.

– All the actions must have a synchronisation label denoting the associated
step in the protocol progress.

– Two creation or perturbation actionsA(O, L, . . . , c) andA′(O, L, . . . , c) on
the same object O can share the same label L; in this case they share the
same condition c as they should represent the same step in the protocol.

– Similarly, if multiple perturbation (or creation) actions on the same object
O, expressed as successive in P , are performed under the same condition
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c(t,y), they indeed represent multiple effects of the same step in the ex-
periment. Consequently they must have the same synchronization label and
cannot affect the same variables, parameters, or inputs.

– Perturbation (or creation) actions and measurement actions must not share
the same synchronisation labels since measurement actions are just a means
to represent a possible observation window on a given object (but they can
share the same conditions).

Definition 5.10 (Experimental Protocol Execution Semantics). Let us first con-
sider the case without synchronization. The initialisations are executed first and
without conditions, in which the action Acreate(O, . . . , c(t)) is executed under
the only condition c(t) == true. We abuse the notations here by denoting
A(O, c(t,xO(t))) the actionsAx,Ak,Au, andA(O, {O(i)}, c(t,x(t))) the action
Acr from; and finally AM(O, c(t,xO(t))) the measurement action. The action
A(O, c(t,xO(t))) can be executed at t such that:

– O has been created, all the previous actions A(O) in the sequence P have
been executed, and t is a solution of c(t,xO(t)) == true.

An action A(O, {O(i)}, c(t,x(t))) can be executed at t such that:

– All the objects O(i) have been created, and t is a solution of c(t,x(t)) ==
true, with x as in Definition 5.5. Thus, the execution of this action is in-
dependent of the other actions performed on all the objects in {O(i)} except
for the creation one.

An action AM(O, c(t,xO(t))) is executed at time t such that:

– O has been created, and t is a solution of c(t,xO(t)) == true.

In absence of synchronization labels the execution of a protocol can be interpreted
as a set of concurrent processes for each object O, each set of actions A(O) on O
being a process. The only possible interaction between two or more objects is the
creation action A(O, {O(i)}, c(t,x(t))). When using synchronisation labels we
must add the following rule:

– All the actions with the same label must be executed at the same time: this
implies that the conditions of all these actions must be satisfied simulta-
neously. If it is not possible, this implies an inconsistency in the protocol
definition (see Example 5.11).

This additional rule allows multiple experimental objects to move from one step of
the experiment to another in a synchronized way.

5.2 MOEPLA specification to hybrid automata

We propose to generate a hybrid automaton from a protocol specified using the
above-described specification language for experimental protocols. This automa-
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Example 5.11 (Synchronized actions). A good example of synchronized evolution
can be observed in animal studies. When one considers the evolution of a pregnant
mother, the perturbations or different evolution stages occur simultaneously for
the mother and the foetus. Following the semantic rule for synchronized actions,
it is indeed inconsistent to consider transitions for the foetus and the mother as
asynchronous. If a delivery is performed on the mother, then, since its environment
is modified, the model of the “foetus” must change: the baby is in the foetus state
only if the mother is in the pregnant state.
We propose an example of sequence of actions describing the start of a pregnancy
process. Let us first consider two experimental objects. We defined Omother the
experimental object representing the mother and its associated dynamical system
Fmother. Similarly, Obaby(Fbaby) which models the baby. We now show how to
write the sequence:
First we model the initial condition as a non-pregnant mother by the initialisation
I0(Omother, . . . ).
Then, we model the start of the pregnancy under the condition c1

by a creation action for the baby from the mother, for example:
Acr from(Obaby,Omother, Lpreg, . . . , c1).
If the start of the pregnancy modifies the model of the mother we can add some
perturbations actions A(Omother, Lpreg, . . . , c1) which must be synchronous (using
the label Lpreg) to the creation of the baby (in foetus stage).

Figure 5.2: Representation of the haemoglobin protocol described in Example 5.12 and
later in Section 6.1

ton should accept the trajectories corresponding to the execution of the protocol
following our previously defined semantic.

The automaton representing the experimental protocol can be defined by the
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Example 5.12 (Haemogolbin production protocol). In Chapter 6 we study more
in detail a model of haemoglobin production in erythroblast: a particular kind of
cells which differentiates into blood cells inside the bone marrow. In this example
we show how the associated experimental procedure [179] can be described in
MOEPLA.
The experimental paper [179] proposes a protocol to observe Heme production in
erythroblast (among other experimental results). This measure is done through the
introduction of a radioactive entity 59Fe. The incorporation of 59Fe in Heme on a
3 hours intervals is measured multiple time along the 52 hours of the experiment:
this gives an approximation of the Heme production speed at multiple instants of
the erythroblast differentiation process (see Figure 5.2)
We can highlight two different mechanisms. First, the mechanism Frad modelling
the cells in presence of 59Fe in the batches where we measure are performed. Sec-
ond, the mechanism Fctrl without the radioactive entity associated to the control
batch. The ODE systems (fctrl) and (frad), as well as the associated parameters (see
Table 6.6) can be found in Chapter 6 dedicated to the biological case studies. As
this protocol implies multiple steps with variation in the dynamics under study, and
intermediate measures, its formalisation in MOEPLA is relevant. More details on
the analysis of this model can be found in the associated Section 6.1 in Chapter 6.
First we define all the experimental objects, as well as their associated dynamical
system, and parameters instantiation:

O(Octrl,Fctrl), O(O4h,Frad),O(O8h,Frad),O(O16h,Frad),
O(O24h,Frad),O(O32h,Frad),O(O42h,Frad),O(O52h,Frad).

Then we explicit the experimental protocol. We note the absence of synchronisa-
tion label since this particular example is simple enough.

1. I0(Octrl,xctrl(0)← [x]0)

2. Acr from(O4h,Octrl,xrad ← R(xctrl), t == 4h)

3. AM(O4h,
59H(t) + 459Hb(t), t == 7h)

4. Acr from(O8h,Octrl,xrad ← R(xctrl), t == 8h)

5. . . . (Here it is a compacted version as it is a repeating scheme)

15. AM(O52h,
59H(t) + 459Hb(t), t == 55h)
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composition of the hybrid automata modelling each concurrent process, i.e. the
evolution of each experimental object considered separately.

First we define the hybrid automaton created by the set of experimental actions
performed on a single objectO with dynamical systemFO. We recall these actions
are constituted by exactly one action of creation among I0(O),Acreate(O,LO,0,c0(t)),
Acr from(O, LO,0, . . . , c0(t,y)), a set of perturbation1 actionsA(O,LO,i,ci(t,xO))
of different condition ci and associated label LOi , i ≥ 0 ordered following the se-
quence P , and at least one measurement AM(O, LO,j , cj(t,xO)). We recall that
successive perturbations actions in P under the same conditions share the same
labels and represent the same step in the protocol progress.

We now proceed to define the hybrid automaton representing the different
stages of the evolution ofO. Let us denoteHO = (IO, EO, LO, XO,KO, UO, SO, RO,
FO) the hybrid automaton associated to the single objectO. We remark that in Sec-
tion 2.2 we introduced the set of labels, guards, reset maps, and activities through
the definition of functions associating to these respective sets to each mode or tran-
sition. Here we surcharge the notation using LO, SO, RO and FO to denote either
the set of possible labels, guards, reset maps, and activities respectively, or the
associated labelling functions as in Definition 2.9.

Let us denoteOi, i ≥ 0, the modes following the creation ofO. We also callO∅
a mode where the objectO does not exist, andOSTOP a mode where measurements
are stored in constant variables. The creation action on Oi determines the initial
mode and the initial condition ofHO :

– If the creation action is I0(O) then the initial mode is O0 with the paramet-
ric dynamical system FO as in Definition 5.1. The initial condition of the
variables are defined by I0(O).

– If the creation action is Acreate(O, LO,0, c0(t)) or Acr from(O, . . . , LO,0,
. . . , c0(t,y)), the initial mode is the modeO∅ whenO does not exist, and we
define a transition from O∅ to O0 with the associated guard S∅,0 associated
with the condition c0 and a reset R∅,0. We also associate the synchronisation
label to the transition O∅ → O0.

Remark 5.13. We note that in the particular case of the action Acr from(O, . . . ,
c0(t,y)) we have a condition and assignment (as seen in Definition 5.4) possibly
depending on variables associated to another object. As the definition of HO is
only an intermediate step to formalize the global hybrid automaton of the whole
protocol, we consider at this point that only for the definitions of the guards SO the
variables of the hybrid automaton HO is extended from xO ∈ RnO to the whole
set of variables y ∈ Rn.

The i-th set of perturbation actions2 A(O, LO,i, ci(t,xO)) defines a transition
from the mode Oi−1 to Oi, with i ≥ 1. The guard S(i−1),i associated to this

1We recall that perturbation actions are the actions Ax, Ak, Au.
2We recall that i is the index of the different stages of the object O.
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transition is defined by ci(t,xO) and the synchronisation label associated to the
transition (i − 1, i) is LO,i. The continuous dynamics of the mode Oi is the one
of the mode Oi−1 with the effects of the action (in case of Ak or Au). In case of
multiple simultaneous actions as in Remark 5.9, multiple effects are applied if they
share the same label and represent the same stage in the protocol progress. In a
similar manner, the reset map R(i−1),i is defined by the effect of the action Ax (if
applied), and by default it is the identity map.

The invariants of the modes O∅,O0,Oi, i ≥ 1, and OSTOP are defined by the
Cartesian product of the state space XO ⊆ RnO of the dynamical system FO and
the time interval [0, tend], with tend the maximum duration of the protocol as in
Definition 5.8.

Finally, we handle each measurement action AM(O, LO,j , cj(t,xO)) by cre-
ating a transition from all the modes Oi, i ≥ 0 to a mode OSTOP with frozen
dynamics (with derivatives equal to zero), which has for the only purpose of hold-
ing the measurement information. The guards of these transitions are defined by
the condition cj(t,xO).

Remark 5.14. We highlight the particular case of the measurement actions: the
OSTOP mode defined here is only used as a way to integrate the measurement in the
hybrid automaton. In practice, the measurement actions need to be handled case
by case for each tool selected for the analysis as we will see in the Section 6.1.2 of
Chapter 6.

Methodology 5.16 (Hybrid automaton generation). The hybrid automaton H of
the experimental protocol using a set of objects {O(i)},with 0 ≤ i ≤ p the num-
ber of experimental objects, can be generated, using Definition 2.11, by the syn-
chronous parallel compositions of each hybrid automata HO(i) defined for each
object O(i) as described above.

After each composition, we delete all the resulting transitions leaving a com-
posite mode defined by at least one mode OSTOP. This last step ensures that ex-
perimental measurements are separated from the actual mechanism in the protocol
and do not perturb the simulation.

We refer to the Examples 5.15 and 5.17 for two examples of the application of
Methodology 5.16.

5.3 Discussion and future work

In its current state the specification language MOEPLA allows describing the evo-
lution of a mechanistic model during a multi-stage experiment. It is expressive
enough to represent a large panel of possible experiments either coming from the
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Example 5.15 (Hybrid automaton of protocol). Given the following experimental
objects with their associated dynamical systems: O(FO), O′(FO′)
We propose an example of experimental protocol, in a simplified form:

1. I0(O,xO(0) = xO0 ): We start with O.

2. Ak(O, L1,K
O ← Knew, c1(t,xO)): Object O may be perturbed and its

parameter space changed.

3. Acr from(O′,O, L2,x
O′ ← R(xO), c2(t,xO)): Object O′ is created from

O.

4. AM(O′, L3, xmeas ← R(xO
′
), c3(t,xO

′
)): A measure on O′ of the vari-

ables xO
′

is stored in xmeas.

The two hybrid automata corresponding to the evolution of each object O and
O′ are represented in Figure 5.3. The hybrid automaton of above protocol and
resulting from the composition of the two automata of the Figure 5.3, can be found
in Figure 5.4. In the Figure 5.4 we assume there is no synchronization. If L1 = L2

then only the transition with the condition c1 ∧ c2 would remain.

fields of molecular biology, or biochemical reactions, or medicine and therapy
modelling.

Thanks to the formalization of a MOEPLA protocol as a hybrid automaton, we
can provide a formal representation of all the possible executions of a protocol and
its associated mechanisms. Indeed, hybrid automata allow non-determinism and
through the synchronous parallel composition of automata we can represent the
evolution of multiple processes involved a given protocol, and their interactions.
This non-determinism represents all the possible executions of a protocol assuming
a model for each experimental object mechanism. Then, depending on the sparsity
of the knowledge about the mechanisms or the uncertainty (or ambiguities) in the
protocol definitions, it is, for example, possible to search for bad behaviours and
assert properties for critical procedures (as in therapy).

However, the current work still has multiple flaws that need to be addressed:
they are related either to the hybrid system representation or to the specification of
the protocol itself. The first list of comments concerns the hybrid automaton repre-
sentation. Hybrid automata are very useful to represent non-deterministic systems.
However, they are lacking on multiple points in the formalism that we use. In the
currently used formalism for hybrid dynamical systems, we do not consider urgent
transitions as they are not handled by most of the formal verification software such
as SpaceEx [87]. Moreover, as seen in Definition 2.9 in Chapter 2, all the modes
of a hybrid automaton have the same dimension, which in our case leads to a huge
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O0 O1

O′∅ O′0 O′STOP

c1(t,xO)

c2(t,xO) c3(t,xO
′
)

Figure 5.3: The hybrid automata of the objects defined in the protocol in Example 5.15.

O0,O′∅

O1,O′∅

O1,O′0 O1,O′STOP

O0,O′0 O0,O′STOP

c 1
(t
,x
O )

c1(t,xO) ∧ c2(t,xO)

c
2 (t,x O ′

)

c
2 (t,x O ′

)

c3(t,xO
′
)

c3(t,xO
′
)

Figure 5.4: Parallel composition of the hybrid automata of the protocol in Example 5.15.

dimension increases. For example, in the hybrid automaton from Example 5.17
each mode has 46 state variables, while in practice when addressing this model
using the Controlled Hybrid System3 in Section 6.1.2, we have to consider at most
9 variables (including a clock variable). Similarly, the protocol of Example 5.17
could be modelled by a 2 modes hybrid system instead of the one we show in
Figure 5.5 using in Methodology 5.16 to generate an hybrid automata. While our
method avoids producing loops in the hybrid automaton representation and do not
allow Zeno behaviours, it results in large hybrid systems. We note that one way to
efficiently handle the exponential cost of the parallel composition would be to per-
form it on the fly during the analysis, as done in the reachability toolbox SpaceEx
[87].

The second list of comments concern the expressiveness of the specification
language itself. A first comment is that we assume that the different objects share

3See Definition 3.2
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Example 5.17 (Hybrid automaton for Haemoglobin production). In Figure 5.5, we
show a shortened version of the hybrid automaton generated by the composition of
all object automata as defined in the Methodology 5.16. We note that in each
mode, there are 8 dynamical systems running in parallel. This method for hybrid
automaton generation leads to a theoretically huge number of variables. In Section
6.1.2, we will work on an adapted and simplified version of Figure 5.5 automaton
using the Controlled Hybrid System formalism defined in Chapter 3.

Octrl,O4h,∅,
. . . ,O52h,∅

Octrl,O4h,0,
. . . ,O52h,∅

Octrl,
O4h,STOP,
. . . ,O52h,∅

Octrl,O4h,0,
O8h,0,. . . ,
O52h,∅

Octrl,O4h,0,
O8h,STOP,. . . ,
O52h,∅

· · ·t = 4h t = 8h t = 16h
t =

7h

t =
11h

Figure 5.5: Hybrid automata (shortened) resulting from the application of Methodology
5.16 to the protocol of Example 5.12. We do not show the transitions resulting from the
composition whose conditions can never be satisfied (as we have fixed time condition).

no common variables, parameters, or input, at the exception of the possible cre-
ation action Acr from. This assumption was done to simplify the semantics in a
first version of the language. A way to get around this current limitation is to de-
fine a single object modelling all the interaction or coupled variables. However,
this limits the expressiveness of the language as we cannot define separate objects
which share variable for only a few stages. Therefore, it is necessary to update the
language (and the definition of the synchronous parallel composition) to handle the
definition of common variables (parameters, or inputs) on a given set of actions, or
stages.

Another comment is that time is currently a global variable separated from the
other state variables. Such global time only allows us to easily define conditions
on the absolute time, for example t ≥ 4 hours. However, conditions on events or
relative to a previous event are hard to express. To easily express them we need
to introduce clock variables. Such variables can currently be introduced as state
variables (see Section 6.1.2) but are not directly apparent in the protocol syntax. In
addition, the actions are performed instantaneously and it should be an interesting
addition to consider delays in the actions. In the current language this can be done
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by defining a time (or clock) interval on the condition of each action: for exam-
ple the first action is performed for t ∈ [1h, 2h] and the second for t ∈ [1.5h, 2.5h]
means there is a delay of at most 1h on both actions. However this leads to spurious
sequences of multiple instantaneous transitions in the hybrid automaton represen-
tation, without having the global time elapsing. Indeed, in the previous example,
both actions can still occur without letting the global time t elapse: for all the
instants t ∈ [1.5h, 2h] both transitions can be taken successively.

Finally, the syntax of the language itself may change to facilitate the interac-
tions between the biologist and the modelling team. However, the aim remains that
the language must have a succinct definition with few rules while allowing its pos-
sible executions, defined by the language semantics, to be represented by a hybrid
dynamical system.
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6.1 Erythropoiesis haemoglobin production model

In this first section we study a model of haemoglobin production during the dif-
ferentiation of erythroblasts into erythrocytes. Erythrocytes (also named red blood
cells) are produced inside the bone marrow. In this place, they go through multiple
differentiation stages from stem cells (also called hemocytoblasts in this context)
into erythroblasts and finally erythrocyte. This differentiation process is also called
erythropoiesis.

During its differentiation, an erythroblast produces haemoglobin. At the final
stages, the erythroblast forces out its nucleus and is released in the circulating
blood. The haemoglobin stored in the erythrocyte will play the role of oxygen
transport protein. Without entering into details, the haemoglobin is constituted
from 8 sub-components: 4 hemes and 4 globins1.

In this work, we model the haemoglobin production during the final stages of
an erythroblast differentiation into erythrocyte. The proposed model is given by the

1Here we do not consider the multiple variations of haemoglobin, and globin.
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ODEs system (fctrl) which describes the dynamics of intracellular concentrations
of: iron Fe, heme H, globin G and haemoglobin Hb.

dFe

dt
= k1Feex − k2Fe− k3Fe

dH

dt
= k3Fe− k4H− 4k5H G

dG

dt
= k6H− 4k5H G− k7G

dHb

dt
= k5H G− k8Hb

(fctrl)

In the first equation of (fctrl), the term k1Feex describes iron influx from the ex-
tracellular space, while the second term k2Fe and third term k3Fe respectively de-
scribe the iron efflux from the cell and its consumption for the production of heme.
In the second equation, the terms k3Fe and k4H respectively describe the heme
production and heme degradation and transport from the cell. The term 4k5H G
models the heme and globin consumption for the production of haemoglobin in the
second and third equations. Note that the factor 4 describes the need of 4 hemes
for the production of 1 haemoglobin. In the third equation, globin synthesis is ac-
celerated by heme, hence the production term depends on H (first term k6H). The
heme is not consumed so this term does not appear in the second equation. The
globin degradation term is k7G. Finally, in the last equation, the two terms are
haemoglobin production k5H G and degradation k8Hb.

In Section 6.1.1, we describe how the data obtained from mouse erythroid cell
cultures are exploited to estimate the value of parameters occurring in (fctrl). Then,
in Section 6.1.2, we use this model as a proof of concept of the model revision
method previously described in Chapter 3.

6.1.1 Parameter study

In modelling complex biological phenomena, the identification of parameter values
is always a critical problem due to the scarcity of kinetic data. Here the situation is
rather favourable. We have been able to use four datasets [180, 181, 179, 182]
to determine the values of the 8 kinetic parameters contained in the model of
haemoglobin production presented in (fctrl).

These experiments were performed on cultures of erythroid cells from the
spleens of mice during their differentiation. The general scheme is to add radio-
labels (59Fe or 3H-leucine2) at different time points, continue the culture for a given
time duration and then measure the quantity of 59Fe incorporated in heme or 3H-
leucine incorporated in β-major globin.

In order to exploit this kind of experiment we use two extended systems of
equations: the first contains additional equations for the evolution of 59Fe-containing

2Note that the symbol H in 3H-leucine stands for the isotope of hydrogen.
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species (intracellular 59Fe itself and radioactive heme and haemoglobin); the sec-
ond contains additional equations for the evolution of 3H-leucine-containing globin
and haemoglobin. Consequently, each specific type of experiment has to be sim-
ulated by the corresponding system of differential equations respectively (frad) for
datasets #1 and #2 (see Tables 6.1 and 6.2), and (6.1) for dataset #3 (see Table 6.3).
The system of equations representing the haemoglobin production in presence of
59Fe is given in (frad). We note that the dynamics of G and Hb are optional if one
only observes the radioactive species.

dFe

dt
= k1Feex − k2Fe− k3Fe

dH

dt
= k3Fe− k4H− 4k5H G

dG

dt
= k6H− 4k5H G− k7G

dHb

dt
= k5H G− k8Hb

d59Fe

dt
= k59

1 Feex − k59
2 Fe− k59

3 Fe

d59H

dt
= k59

3 Fe− k59
4 H− 4k59

5 H Gtot

dGtot

dt
= k6(H +59 H)− 4k5(H +59 H) Gtot − k7Gtot

d59Hb

dt
= k59

5 H Gtot − k59
8 Hb

(frad)

We now provide the system of equation corresponding to the experimental protocol
of dataset #3: we note Gr the 3H-leucine-containing globin.

dFe

dt
= k1Feex − k2Fe− k3Fe

dHtot

dt
= k3Fe− k4H− 4k5H (G + Gr)

dG

dt
= k6H− 4k5H G− k7G

dHb

dt
= k5H G− k8Hb

dGr

dt
= k6H− 4k5H Gr − k7Gr

dHbr

dt
= k5H Gr − k8Hbr

(6.1)

The experimental results from Tables 6.1, 6.2, and 6.3 are given in radioactiv-
ity units (cpm standing for counts per minute) since the experiments measure the
activities of the radio-labels 59Fe and 3H. However, these data are incomplete as
we lack the actual conversion factor from the radioactivity measures in cpm to the
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actual molecule quantity in mol. As we have mixed information, concentrations
on one part and radioactivity measures on the other, we choose to work with nor-
malized data points, by choosing a point in each dataset as a reference point, and
dividing the other points by this value. The chosen reference data point is the one
providing the smallest residual value (6.2) after scaling. However, we add a few
constraints to ensure the simulations results stay in viable biological ranges.

The dataset [181, Table 2] (not reproduced here) allows us to estimate k1 the
iron intake rate into the cell. We make the approximation that the flux of iron intake
is constant. With this k1 is found equal to 250 atoms/fL/min. In the conditions of
this experiment the concentration of 59Fe:Tf in the culture medium is 200 µg/mL.
We take the molecular mass of glycosylated, iron-saturated Tf (diferric) as being
equal to 80 kDa, and we obtain k1 = 1.4e−3 s−1.

Exposure time (h) 4 8 16 24 32 42 52
59Fe in Heme
(cpm/1e−7L) 47 213 697 1020 1725 2379 2370

Table 6.1: Dataset #1: Accumulated 59Fe in Heme. The radiolabel (transferrin-bound 59Fe)
is added to the medium at t = 0h. The first line indicate the time at which cells are collected.

Exposure time (h) 4-7 8-11 16-19 24-27 32-35 42-45 52-55
59Fe in Heme
(cpm/1e−7L/h) 16 85 348 391 399 481 395

Table 6.2: Dataset #2: The cells are first cultured in presence of iron (normal, non-
radioactive, isotope). Then the radiolabel (transferrin-bound 59Fe) is added directly to
the medium, and the culture continues for the period indicated in the first line (duration =
3h).

In addition to these datasets we consider a set of constraints to keep the results
biologically viable.

– The quantity of 59Fe incorporated in free heme at t=52h is at most 5% of the
59Fe incorporated in all forms of heme (free heme and heme in haemoglobin).

– The quantity of 59Fe incorporated in free heme at t=52h is at least 0.002% of
the 59Fe incorporated in all forms of heme (free heme and heme in haemoglobin).

– The concentration of haemoglobin at t=52h is at least 100 molecules/fL.

– The concentration of intracellular labile iron is less than 10 times the con-
centration of haemoglobin (all taken at t=52h).
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Exposure time (h) 0-12 12-24 24-36 36-48
3H-leu in β-major globin
(cpm/1e−7L/h) 103 255 771 942

Table 6.3: Dataset #3: Incorporation of 3H-leucine in β-major globin. The cells are first
cultured in a medium without radiolabel. Then the radiolabel (3H-leucine) is added directly
to the medium, and the culture continues for the period indicated in the first line (duration
= 12h).

For the 7 kinetic parameters other than k1 and the initial concentration in intra-
cellular iron Fe0, we have to resort to a systematic search. It is known from [183]
that the IRP concentration decreases down as differentiation proceeds. Because
IRP activity represses the biosynthesis of protoporphyrin IX, which is inversely
related to internal Fe concentration, the rate of heme production increases with
time. To take this into account we consider that parameter k3 is time dependent.
In this first study we consider the following polynomial function: k3(t) = ak3 +
(bk3t)

4. With this function, the increase is slow during the first hours and becomes
steeper in the later stages of differentiation. A linear time dependence was tried,
but it did not provide a good adjustment to the experimental data. In Section 6.1.2
in the following, we propose to revise this parameter as a proof of concept of
our method described in Chapter 3. Therefore, we consider in total 8 parameters
related to kinetics. As we start this modelling without any prior knowledge on
the parameter ranges (except physiological bounds), our initial parameter space
where the search is performed is given in Table 6.4: for each unknown quantity we
define a search interval (spanning several orders of magnitudes). In Table 6.4 we
also provide the set of intracellular iron initial conditions Fe0 we consider in our
search.

Variables k2 ak3 bk3

Search intervals [1e−11, 1e−02] [1e−10, 1e−01] [1e−10, 1e−04]

Variables k4 k5 k6

Search intervals [1e−06, 1e+01] [1e−11, 1e−02] [1e−07, 1e+01]

Variables k7 k8 Fe0

Search intervals [1e−09, 1e−01] [1e−11, 1e−01] [6e+03, 6e+06]

Table 6.4: This table provides the intervals considered for the search for parameters sets
and initial conditions satisfying the experimental results of Tables fctrl,frad and 6.1.

In this work we searched for parameters sets satisfying three experimental
datasets. These datasets were obtained through three different experimental pro-
tocols and we simulate them accordingly with three different models. At the time
of this work, we did not consider the formalization of experimental protocol as a
hybrid system: we argue that this formalization would have eased our analysis.
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Parameters Enclosure Units

k2 [1.0e−10, 5.81e−9] s−1

ak3 [3.43e−9, 1.47e−8] s−1

bk3 [6.89e−7, 7.36e−7] s−
5
4

k4 [3.82e−4, 5.16e−4] s−1

k5 [2.87e−6, 1.01e−5] fL.molecules−1.s−1

k6 [3.94e−4, 5.68e−4] s−1

k7 [2.48e−10, 5.08e−7] s−1

k8 [1.01e−5, 1.49e−5] s−1

Fe0 [2.99e+2, 6.07e+2] atoms/fL

Table 6.5: Results of the search procedure. The second column defines the box enclosing
the set of valid points in parameter space. The following columns contains the values for
4 particular solutions. Fe0 is the initial concentration of internal iron (not labelled). The
concentration of external labelled iron (59Feex) is 3000atoms/fL, while the concentration
of external iron Feex (not labelled) is 4atoms/fL.

Parameters p1 p2 p3 pmean
k2 1.61e−10 1.22e−10 6.0e−10 3.78e−10

ak3 1.42e−8 7.70e−9 9.25e−9 7.4e−9

bk3 7.2e−7 7.13e−7 7.15e−7 7.2e−7

k4 3.95e−4 4.63e−4 4.30e−4 4.47e−4

k5 5.59e−6 6.48e−6 5.71e−6 7.27e−6

k6 4.74e−4 5.10e−4 4.31e−4 4.47e−4

k7 4.46e−8 2.88e−10 3.01e−7 4.97e−10

k8 1.3e−5 1.243e−5 1.17e−5 1.14e−5

Fe0 3.10e+2 3.46e+2 3.27e+2 3.21e+2

ε1 0.220 0.235 0.239 0.238
ε2 0.239 0.228 0.238 0.238
ε3 0.225 0.238 0.199 0.200
εmean 0.228 0.234 0.226 0.226

Table 6.6: Results of the search procedure. Columns 2, 3 and 4 provide solutions corre-
sponding to the minimum (within the set of found solutions) of ε1, ε2, and ε3, respectively.
The following column is the one with the lowest average residual εmean = (ε1 +ε2 +ε3)/3.

However, as these protocols are simple enough, we can still simulate them as se-
quences3 of classical ODE simulations using either the ODE system modelling the
cell without radiolabels (fctrl), the ones modelling the cell in presence of 59Fe (frad)
or 3H (6.1).

3The simulations we perform are conform to the experimental protocol of each particular dataset.
In Section 6.1.2, we use the hybrid systems formalization to improve the analysis.
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The Cartesian product of the parameter intervals (see Table 6.4) defines a mul-
tidimensional search box. To perform simulations and search for valid parameter
sets, we draw a large number of random points in that box, and for each parame-
ter point we perform simulations and compare accordingly with each experimental
dataset. In order to sample equally all the orders of magnitude, the sampling is
done on a logarithmic scale. We use the quasi-Monte Carlo method [184] with the
Sobol sequence. For each dataset we quantify the agreement between simulated y
and experimental z measured quantities by computing the following residual:

εq =

∑
i |yi − zi|∑

i zi
, (6.2)

where q ∈ {1, 2, 3} denotes one of the three studied datasets and the index i iden-
tifies the measurements belonging to that dataset #i. For the experiment associated
to the dataset of Table 6.1, we have y = 59H + 4 59Hb . In the context of Table 6.2,
y = (59H + 4 59Hb)/3. Finally, the measurement observed in the dataset of Table
6.3 is given by y = (0.4Gr + 1.6Hbr)/12.

Each dataset q is associated with a threshold Mq, and we keep as potential
solutions all parameter points which satisfy εq ≤ Mq, where Mq. Since we have
3 datasets, we have 3 constraints of this type. It is, in general, not possible to
minimize all 3 residuals simultaneously. In order to retain only physiologically
relevant solutions we also add constraints bearing on the concentrations reached at
the end of the differentiation process using the constraints we previously defined.
This simple parameter search method is summarized in Algorithm 5. We note that
we can iterate over Algorithm 5 by constructing new smaller parameter spaces over
each previous results of Algorithm 5. Since there is no unique way to combine
several experimental datasets and additional constraints, we present the results as
a set of solutions (a cloud of points in parameter space). The 3 thresholds Mq are
chosen equal to 0.25 as we want to equally verify all datasets. The box enclosing
the cloud of valid points is given in Table 6.5. These results are given after a search
over 35 millions samples (for around 48h of computation). This gives an idea of
the spread of the set of solutions. It can be seen that most parameters are rather
well defined, except k2 and k7. A scatter plot of the cloud of valid points on the
plane k4− k5 is displayed in Figure 6.1 in order to visualize the shape of the cloud
on that projection. Table 6.6 shows 4 solutions we have selected in this set: the
solutions p1, p2, p3 and pmean which minimizes ε1, ε2, ε3 or εmean = (ε1 + ε2 +
ε3)/3, respectively. Figure 6.2 displays the evolution of the system with the pmean
values. This last solution is the one which has the lowest average residual εmean
within the solution set. It can be observed that internal iron concentration goes
through a maximum and then decreases to low values. Haemoglobin concentration
increases steadily to a value of about 102 molecules/fL. The agreement between
the measurements and the corresponding quantities derived from the simulations
is displayed in Figures 6.3, 6.4, and 6.5 for datasets #1, #2 and #3, respectively.
In each figure the results obtained with parameter points p1, p2, p3, and pmean are
shown.
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Figure 6.1: Projection of the cloud of valid points on the plane k4 − k5. The solutions p1,
p2, p3, pmean are indicated in red.

Algorithm 5 Simple parameter search(K,M ,E,nsamples)

1: INPUT: K parameter space considered for search box.
2: INPUT: M = (M1,M2,M3), threshold considered for the experiment q.
3: INPUT: E = {E1, E2, E3}, 3 piecewise ODE systems modelling the experiments

associated to datasets #1, #2 and #3, respectively.
4: INPUT: nsamples, the number of samples draw in the parameter space K.
5: OUTPUT: r, set of samples which satisfy all the error thresholds Mq .

6: S = sobol(K,nsamples)
7: r = ∅
8: for k ∈ S do
9: for q ∈ {1, 2, 3} do

10: y[q] = simulate(Eq,k)
11: εq = evaluate(y[q], z[q])
12: end for
13: if ∀q ∈ {1, 2, 3}, εq ≤Mq then
14: r = r ∪ k
15: end if
16: end for
17: return r
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Figure 6.2: Evolution of the 4 concentrations computed with the parameter values identi-
fied as pmean in Table 6.6.

6.1.2 Model revision

Model adjustment. In the previous section, we addressed the problem of re-
fining the parameters space and fitting multiple datasets on the haemoglobin pro-
duction model. In this section, we apply the model revision method proposed in
Chapter 3 on the haemoglobin production model (frad) for the protocol [179] corre-
sponding to the dataset #2 in Table 6.2. Using the method defined in Chapter 3, we
search for another modelling of the time varying parameter k3(t), which better fit
the dataset #2, while being biologically interpretable. While in the previous section
the experimental protocol was not explicitly formalized as a hybrid system, we will
consider in this section a formulation close to the one proposed in the Chapter 3.
We use the values given in the column pmean from the Table 6.6 for any parameters
other than k3 .

We recall that the ODEs (fctrl) model the evolution of the haemoglobin pro-
duction in the differentiating erythrocyte cells situated in the bone marrow. In this
section, to stay close to the notations of Chapter 3 we note x1 to x4 the variables
that represent respectively the internal iron in the cell Fe, the heme H , the globin
G, and the haemoglobin Hb. The hybrid dynamical system H models an exper-
imental protocol designed to measure the integration of iron inside heme (H) at
several steps of the cell differentiation. For example, we recall that the data point
at time t = 7 hours in Table 6.9, is obtained through the following procedure: we
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Figure 6.3: Visualization of the match between the measurements and the corresponding
quantities computed from the simulations, for dataset #1. Measurements are represented
by circles and computed quantities by asterisks. The 3 parameter points p1, p2, p3, and
pmean defined above are shown.

first start with a control batch of cells, then at time t = 4 hours after the start of
the experiment, the culture medium is perturbed with an injection of measurable
radioactive iron 59Fe for a subset of the cells. This perturbation implies the new
ODEs (frad) modelling the evolution of two interdependent models4 : the model of
non-radioactive haemoglobin production and the model of haemoglobin produc-
tion with radioactive species. Three hours after the perturbation with radioactive
iron, the total radioactive heme is measured, meaning the heme free in the cell and
the one in the radioactive haemoglobin. This measurement is given by the formulas
59H + 459Hb.

This hybrid dynamical systemH is close to the one proposed in Chapter 5, and
differs from it on two points: the lack of Stop modes and a number of variables
that changes between two modes. Indeed, in this work we do not model the mea-
surement actions as they are represented in the cost function of the optimization
problem.

We recall in Table 6.9 the observed radioactivity divided by three hours. Fi-
nally, these measurements provide results on the variation during the cell differ-
entiation of the integration of iron in heme, which is associated to the parameter
k3.

4For this reason we kept G and Hb present in the ODE system (frad)
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Figure 6.4: Same as previous for dataset #2.
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Figure 6.5: Same as previous for dataset #3.
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Mode ni fi(t,x,u) Xi Ui

i = 1 5 fctrl(t,x, u) [0, 4]× [0, 1]4 [0, 1]

i = 2 9 frad(t,x, u) [4, 7]× [0, 1]8 [0, 1]

i = 3 5 fctrl(t,x, u) [7, 8]× [0, 1]4 [0, 1]

i =
...

...
...

...
...

i = 13 5 fctrl(t,x, u) [45, 52]× [0, 1]4 [0, 1]

i = 14 9 frad(t,x, u) [52, 55]× [0, 1]8 [0, 1]

Table 6.7: Dimensions (with xc), vector fields, domains, and input sets for the controlled
hybrid systemH of the haemoglobin production model.

Mode e = (i, j) Se Re

i = 1 (1, 2) t == 4

[
I5,5

O4,4

]
i = 2 (2, 3) t == 7

[
I5,5, O4,4

]
i = 3 (3, 4) t == 8

[
I5,5

O4,4

]
i =

...
...

...
...

i = 13 (13, 14) t == 52

[
I5,5

O4,4

]
Table 6.8: Transitions, guards, and reset maps of the controlled hybrid systemH.

The controlled hybrid system H associated to the experiment of dataset #2
studied in Section 6.1.1 is given, in a shortened version, in Tables 6.7 and 6.8.
The ODEs (fctrl) and (frad) are given in the previous section 6.1.1, and we consider
the parameter set pmean for the values of the parameters other than k3. In the im-
plementation, we also introduce a variable xc modelling time, whose derivative is
equal to 1. We recall that we want to search for an optimal control u(t) minimizing
the distance of the simulated trajectory to the corresponding point in the dataset. In
this particular study, we consider u(t) = k3(t) and we will keep this notation until
further notice.

For numerical reasons, it is necessary to scale the parameters and state vari-
ables, making it easier for the solver to succeed in solving the relaxed problem.
Similarly, to facilitate the numerical optimization we rewrite the control variable
u(t) ∈ U = [0, 1] as u(t) = ζû(t), with ζ � 1 and û(t) ∈ [0, 1/ζ]. While the
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scale factor ζ may take different values depending on the numerical optimization
details, the objective control u(t) always evolves in [0, 1].

Implementation. Now that we have a valid controlled hybrid system, H, we
solve the optimal control problem with intermediate time points defined in (3.20),
using the method from Section 3.2.1 and its implementation in Section 3.2.2. The
experimental measurement is modelled by the function m(x) = 59H + 459Hb =
x6 + 4x8. Thus, we set

H(x(Tj)) := (x6(Tj) + 4x8(Tj)− 3zj)
2,

as we search to minimize the total residual error term:

εtotal =
∑

1≤j≤nexp

√
H(x(Tj))∑

1≤j≤nexp zj
(6.3)

We recall that the original experimental data points (Tj , zj) are given in Table 6.9.

Time (h) 7 11 19 27 35 45 55
Measure ( cpm

1e−7L·h−1 ) 16 85 348 391 399 481 395

Table 6.9: Experimental data points (Tj , zj) used as references.

Here, the input control k3(t) = u(t) models some hidden mechanism result-
ing in an evolution of the iron integration rate k3 with the differentiation of the
cells. It should be the same function of time for both the control and the radioac-
tive cells batch. However, as the control generated by Algorithm 1 is piecewise
for each mode, and the fact that our data are on the radioactive species only, the
solution of the optimization problem with only a final cost H(x(Ti)) is not bal-
anced, having a much stronger control in the modes where the radioactive species
are evolving. A workaround for the balancing problem is the following. We add
a small penalization cost c1

i (t) = (0.01u(t))2 to equilibrate the control when i
corresponds to a mode with radioactive species, otherwise c1

i (t) = 0. In a sim-
ilar vein, we add another penalization cost c2

i (t) = (u(Tj) − u(t))2 to avoid
when the control strongly varies between two iterations j on the interval [Tj−1, Tj ]
and j + 1 on [Tj , Tj+1] (with the exception of the first iteration). This leads to
hi(t,x(t), u(t)) = c1

i (t)+c2
i (t). Let us note that, even if these additional costs can

eventually degrade the accuracy of the data fitting, we gain in terms of biological
interpretation of the resulting traces.

Finally, by partitioning the computation in the time domain, we can greatly
reduce the computational cost at each iteration. More technically, since the tran-
sitions of the hybrid system H are fully determined by the time t, we can pre-
compute the function λ : R+ → I, which associates a mode λ(t) to each time
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Figure 6.7: Radio-active variables 59Fe, Gtot in (frad), as well as, the comparison of the
measurement function results to the dataset #2 (see Table 6.9).
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instant t. Thus, each iteration j of Algorithm 1 can be restrained to the hybrid
sub-systemHj ofH, constituted by the modes visited in the interval [Tj−1, Tj ].

For numerical implementation, the problem on measures is formulated in SPOT-
LESS5, and then we extract the primal solution provided by a primal-dual SDP
solver. To do so, we use the implementation from [94] to generate the dual prob-
lem of (3.17) defined in Chapter 3. As an SDP solver we used MOSEK [185]
v.7.1. These tools are used in MATLAB v.9.0 (R2016a). Performance results are
obtained with an Intel Core i7-5600U CPU (2.60 GHz) with 16Gb of RAM running
on Debian 8.

Applying Algorithm 1 on the H hybrid system, as described above, we have
to solve 7 times the optimization problem (3.17), on 2 mode hybrid systems of
respectively 5 and 9 continuous variables in each mode. We only solve the problem
for a relaxation order r = 4, as any higher order would be too memory expensive.
We only synthesize a piecewise constant control, and to avoid oscillation in the
resulting control we force du = 0 in Algorithm 1 from Chapter 3. Using this
configuration, the total time taken by Algorithm 1 is 2107s, with 1700s spent in the
HOCP procedure, and 390s in the Synth procedure.

In Figure 6.6, the control generated by Algorithm 1 is shown in blue. This
control is piecewise, and clearly divided in two phases: before and after t equals 11
hours. However, the control synthesized is still difficult to interpret as a biological
phenomenon. Consequently, we propose three additional fits of this control to ease
interpretation by using functions closer to biological knowledge. In Table 6.10
one can find the total error associated to all the possible controls, as well as the
previous result of Table 6.6. In Figure 6.7, we show a graphical representation of
how closely each function can control the model to reach the desired data points.

Control Type εtotal

Best ε2 in Table 6.6 0.23
Results generated by Algo 1 0.096

Step function fit 0.12
Piecewise Polynomial fit 0.13

Hill function fit 0.075

Table 6.10: Total error εtotal associated to each proposed input.

Discussion. In a simulation-based approach, we have to propose for the desired
time varying parameter, a template function to fit the data, e.g. a polynomial of
given degree. If we want to fit a polynomial of higher degree, the simulations have
to be run again multiple times. On the contrary, the proposed approach returns a

5The SPOTLESS implementation was taken from https://github.com/
spot-toolbox/spotless

Monday 6th August, 2018 (08:34)

https://github.com/spot-toolbox/spotless
https://github.com/spot-toolbox/spotless


114 CHAPTER 6. APPLICATIONS AND CASE STUDIES

control signal, and since the fit to data points is performed a posteriori, there is no
additional computation cost in refining the model.

From the form of the experimental data points, an usual hypothesis is that
k3(t) = u(t) should be similar to a jump function, with a low value for the two
first points, and a higher one for the following ones. However, even with such
information a good fit is not easily achieved with simulations.

The control generated using Algorithm 1 returns the expected “jump” behaviour
for u(t), and even with a low relaxation degree, the total residual error for the gen-
erated control is 9.59% which is much lower than the 22.8% from the minimal
value of ε2 in Table 6.6.

We first fit a step function to the generated control, with a change at t = 11.
The associated error of 12.24% is still lower than Section 6.1.1, yet being higher
than the generated control mainly due to the second-to-last point.

The second fit is a piecewise polynomial function in two pieces. The first piece,
for t ∈ [0, 11], is a polynomial of degree 2 while the degree of the second, for
t ∈ [11, 55], is 4. This proposed input control allows to reproduce more accurately,
than the step function, the third data point. However, its accuracy is worse on the
first and two last points. The total error associated to this control is 13%, being
overall the worst of the proposed fits.

Lastly, we fit a Hill function, a function used to model the kinetics of a class
of biochemical reactions and which is a very common way to represent biological
activation processes. The associated total error is 7.5%, which is the lowest, taking
advantages from both the step function and the piecewise polynomial function. In
this case, the inaccuracy also mainly comes from the second-to-last point, which
is quite separated from trend of the other experimental points, and may be due to
some experimental problems (no standard deviation results were available). With-
out taking this point into consideration for the error computation the error falls to
3% for the Hill function fit.

On this particular example, this method provided a way to generate a control
satisfying intermediate points without any a priori on a particular form, avoiding
the need for extensive numerical simulations. The generated control is accurate,
and computed in a reasonable time (∼35min), even for a large hybrid system of
14 modes with at most 9 continuous variables. Using some fitting functions af-
terwards, it is even possible to refine the results and obtain a more interpretable
function for the desired time varying parameters.

Since in this model, the sequence of transitions is known in advance, the use of
[94] to solve (3.11) at each iteration of Algorithm 1 is arguable, as other methods
can handle this problem. If needed Algorithm 1 can easily be adapted with another
method to solve the optimal control problem on hybrid automata. However, Al-
gorithm 1 in its current form does not require any knowledge on the sequence of
transition and can be applied to a larger set of biological models. We can also note
a similar approach to our own in [26]. In this paper, the authors first search for
parameter sets satisfying experimental data on an hybrid dynamical system using
particle swarm techniques. Then, they revise the model by searching a parame-
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ter as a time varying function using optimal control technique. While they have
similar objectives, our work differs from theirs in the methods used for both the
parameter fitting and the model revision.

6.2 Mammalian cellular iron homoeostasis (MCIH) model

6.2.1 Context

In this section we apply the set-based analysis method from Chapter 4 on a dis-
cretization of the mammalian cellular iron homoeostasis (MCIH) model previously
characterized in [5]. Using this model as a proof of concept we show that the
method proposed in Chapter 4 can be applied to ensure properties or hypothesis
while taking into account uncertainty on both initial conditions and parameters
(possibly spanning multiple orders of magnitude).

The ODE system proposed in [5] is built to study and represent the mechanism
of iron homoeostasis for a large parameter space. This previous work [5] provides
a method to characterize a large valid parameter space (19 parameters, spanning
several orders of magnitude), by finding the parameters points which respect a set
of temporal constraints and clustering them in multiple ellipsoids. Here we define
our experiments based on both a discretization of this model and some previous
results from [5].

This model describes the control of the iron concentration inside a cell, thanks
to both an iron storage protein, ferritin, and regulatory proteins IRP (Iron Regula-
tory Proteins). Moreover, both the transferrin receptor TfR1(which influences the
iron input in the cell) and the iron exporting protein FPN1a are influenced by the
IRP concentration. Tfsat is the external saturated transferrin concentration, which
is the iron transport protein outside the cell. The concentration of free iron in the
cell that is not stored inside ferritin must be well controlled since too much or too
little of it can have deleterious effects.

In the presence of a stable concentration of iron-loaded transferrin, outside the
cell, the cell system converges to a steady state. When there is no more iron outside
the cell (Tfsat is almost equal to 0) the non-ferritin bound iron quickly drops for a
short time, but then increases again at the expense of ferritin iron and stabilizes for
some time (around 10 hours) after the activation of the regulation mechanism. The
low iron concentration stimulates the IRP activity which itself activates the release
of the iron stored in the ferritin. This supply of iron from the ferritin leads to a
pseudo-steady state for a few hours, until the ferritin concentration is too low to
release enough iron to maintain the equilibrium. If no iron is added to the medium
shortly thereafter, the cell dies.

The model contains 5 state variables (Fe, IRP, Ft, TfR1, FPN1a), and 19
parameters. The dynamics are defined in the ODE system (6.4).

The work [5] observed that for all the valid parameter points, the value of
FPN1a is almost not influenced by the value of the other variables during the ex-
periments, FPN1a being almost constant with this modelling. FPN1a, being the

Monday 6th August, 2018 (08:34)



116 CHAPTER 6. APPLICATIONS AND CASE STUDIES

iron exporting protein, should quickly decrease with the iron concentration Fe, as
modelled by the IRP dependency. However, the FPN1a concentration stays stable
for all the valid parameters points.

In this work, we propose to compute the reachable set of FPN1a for the pa-
rameters [kFPN1adeg , kFPN1aprod , kIRP-FPN1a, θFe−IRP] taken in the interval given by the
valid parameter points. The computed reachable set must ensure that in presence of
external iron, the system evolves to a steady state, and in absence of external iron,
there is a plateau of at least 10 hours for the variable Fe, followed by a decrease in
iron concentration.

dFt

dt
= kFtprod − kIRP-Ft sig(IRP, θIRP-Ft, dsig)− kFtdegFt

dFe

dt
= kFeinputTfsat TfR1− nFt

dFt

dt
− kFeexportFe FPN1a− kFeconsFe

dIRP

dt
= kIRPprod − kFe-IRP sig(Fe, θFe-IRP, dsig)IRP− kIRPdegIRP

dFPN1a
dt

= kFPN1aprod − kIRP-FPN1a sig(IRP, θIRP-FPN1a, dsig)− kFPN1adegFPN1a

dTfR1
dt

= kTfR1prod + kIRP-TfR1IRP− kTfR1degTfR1
(6.4)

where sig(x, θ, dsig) =
xdsig

xdsig + θdsig
.

The original model of iron homoeostasis (6.4) leads to a huge number of Bern-
stein coefficients because of the high degree of the sigmoids which are rational
functions. On the other hand, simply lowering the degree dsig can cause signif-
icant errors, compared to the original model. To cope with this difficulty, each
sigmoid has been approximated by a piecewise function. For a sigmoid function
xdsig/(xdsig +θdsig) (where x and θ are scalar variables), the associated piecewise
function of x and θ (dsig being a constant6) is:

sig(x, θ, dsig) =



0, if x ≤ (dsig − 2)θ

dsig
dsig(x− θ)

4θ
+

1

2
, if x >

(dsig − 2)θ

dsig
and x ≤ (dsig + 2)θ

dsig

1, if x >
(dsig + 2)θ

dsig

The new MCIH model contains 4 parameters kFPN1adeg , kFPN1aprod , kIRP-FPN1a and
θFe−IRP taken on large intervals. While the parameters kFPN1adeg , kFPN1aprod , and
kIRP-FPN1a appear linearly in the dynamics, θIRP−FPN1a appears non-linearly. For
this reason, we treat the parameter θIRP−FPN1a as a sixth variable, and thus the
term IRP5/(IRP5 + θ5

IRP−FPN1a) is not approximated by a piecewise linear func-
tion but its approximation is non-linear (rational function) in θIRP−FPN1a in one
of the pieces. These piecewise approximations lead to a new model where each

6Here we consider dsig = 5.
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Figure 6.8: 9 modes generated by [f1; f2; f3] = [0; 1.25e8 · IRP − 3
4 ; 1] the approx-

imation of sig(IRP, θIRP−Ft) and [g1; g2; g3] = [0; 2.74e8 · Fe − 3
4 ; 1] the one of

sig(Fe, θFe−IRP). The constraints hi are of the form a · x ≤ c, for example h1:
Fe≤ 2.73e−9.

sigmoid is substituted by a 3-piece approximation. In place of one ODE system,
the dynamics is now hybrid with 15 modes 7. The 9 domains corresponding to the
approximations of sig(IRP, θIRP−Ft) and sig(Fe, θFe−IRP) are represented in
Figure 6.8.

6.2.2 Set-based analysis

We recall that our goal is to validate the observations which were obtained in [5]
using numerical simulations, about the regulation of FPN1a. These observations
were made with parameter values chosen such that the system respects some prop-
erties:

– In presence of external iron input (Tfsat 6= 0), the Fe, Ft, and IRP concen-
trations reached a steady state.

– In absence of external iron input (Tfsat = 0), the iron concentration first
stabilized on a plateau for at least 10h, then decreased to 0.

The set-based analysis produces an over-approximation of the reachable set. Be-
cause of accumulated error, this set may grow at each step in every directions.
We thus do not impose strong constraints for the plateau definition, and currently
restrict to a qualitative observation. For the same reason and because we are inter-
ested in the question whether the FPN1a concentration strongly decreases during
the Tfsat = 0 phase, we restrict to a qualitative observation on the lower bound
of the reachable set of FPN1a. The reachability analysis of the adapted model
was done using the following method: starting from initial conditions (taken from
[5]) and a corresponding valid parameter set p, these initial conditions are bloated
to a set. The following parameters [kFPN1adeg , kFPN1aprod , kIRP-FPN1a, θIRP-FPN1a] are
extended to cover a few orders of magnitude based on the results of [5]. The con-
sidered initial conditions and parameter space are given in Table 6.11.

From this starting initial set, we first let the system evolve to a steady state

7Two sigmoids are on IRP, and one on Fe
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Variable Interval Unit

Fe [2.27e−8 2.28e−8] mol/L
IRP [6.646e−9 6.647e−9] mol/L
Ft [2.804e−7 2.805e−7] mol/L
FPN1a [2.35e−7 3.61e−7] mol/L
TfR1 [9.8e−8 10.2e−8] mol/L

parameters Value or Interval Unit

kFPN1adeg [1e−7 1e−6] s−1

kFPN1aprod [1e−17 1e−13] mol(L s)−1

kIRP-FPN1a [1e−17 1e−13] mol(L s)−1

θIRP-FPN1a [1e−8 2.01e−6] mol L−1

kFe−IRP 5.24e−5 s−1

kFecons 1.56e−1 s−1

kFeexport 2.191e3 L(mol s)−1

kFeinput 3.65ee−2 s−1

kFtdeg 2.92e−5 s−1

kFtprod 8.93e−12 mol(L s)−1

kIRP−Ft 8.71e−12 mol(L s)−1

kIRP−TfR1 3.03e−4 s−1

kIRPdeg 1.5e−5 s−1

kIRPprod 4.48e−13 mol(L s)−1

kTfR1deg 2.23e−5 s−1

kTfR1prod 1.78e−13 mol (L s)−1

θFe−IRP 9.89e−9 mol L−1

θIRP−Ft 4.56e−9 mol L−1

nFt 177.4 −
dsig 5 −

Table 6.11: On the left: set of initial conditions (after the stabilization phase). On the right:
considered parameter space for the reachability analysis.

with Tfsat 6= 0. This is the mode where the system should be stable. We let the
system stabilize for a few hours. Some results of this stabilization are shown in
Figures 6.9 and 6.10. It is clear that the system evolves towards an invariant set,
and converges. Because this tool does not compute a precise invariant set, we will
take, for the next part of the computation, this over-approximation as the initial set.
The initial set for this part is given in Table 6.11.

In the second part of the analysis we reduce Tfsat to 0: this is the mode where
the external iron is depleted. Then, we simulate 32 hours (230400 iterations using a
fixed time step of 0.5 seconds) of the iron depleted mode. In Figures 6.11,6.12, and
6.13, we can observe the different phases of the computations in different colors
(blue, red, green, and purple).

– Phase 1 (blue): On the initial state previously computed, we apply the fol-
lowing change: Tfsat drop from 1 to 0. Experimentally this corresponds
to washing the external medium of the cell and replacing it by a medium
without iron. This sudden change of Tfsat leads to the very low iron concen-
tration at t near 0 (see Figure 6.11). This very low iron concentration triggers
the production of IRP, which itself activates the release of iron by the fer-
ritin. The iron and the IRP concentrations quickly grow back until both the
IRP and iron are around their respective thresholds θIRP−Ft and θFe−IRP.
The IRP increase slows down while the iron concentration stabilizes. To
compute precisely this blue part, reachability analysis was done using 15
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Figure 6.9: Iron stabilization

Figure 6.10: IRP stabilization

different directions to represent template polyhedral set. The reachability
computation time for the blue part is around 2 hours.
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– Phase 2 (red): Because the iron is now in the plateau, we need to ensure
that the analysis is as precise as possible. Thus, we reduce the error by
bisecting the set on the IRP axis, and perform reachability analysis with two
smaller sets instead of one big set. Even with such a method, one can observe
the fast growing accumulated error in the red phase. In the red part, the
system overlaps two partitions of IRP: the one where sig(IRP, θIRP−Ft) is
represented by an affine function, and the one where sig(IRP, θIRP−Ft) =
1. Overlapping two partitions increases the error during a short time, leading
to the observed growth of the reachable set in red in Figure 6.11.

– Phase 3 (green): Once the reachable set has completely crossed the border
between the two partitions, and sig(IRP, θIRP−Ft) = 1, the reachable set
quickly contracts, and the iron concentration begins to decrease notably. Re-
ciprocally, the IRP concentration increases trying to compensate the lack
of iron. However at this moment, there is no longer enough ferritin to sup-
ply the cell in iron. The red part and the green part took around 3 hours to
compute in total.

– Phase 4 (purple): The iron concentration is not stable in a plateau, but now
decreases to 0. To compute this part we did not need as good precision as
before and used a simple box over-approximation, and the computation time
of the purple part is around 15 minutes.

Figure 6.11: Iron reachable set for Tfsat = 0

The reachability analysis of the system allows us to validate the previous obser-
vation made in [5] using point-based simulations: the regulation term of FPN1a by
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Figure 6.12: IRP reachable set for Tfsat = 0

Figure 6.13: FPN1a reachable set for Tfsat = 0

only IRP in this model and within these parameters intervals is not effective. This
suggests that another actor is needed for the regulation of FPN1a. Indeed, even
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with an initial set for FPN1a, and having the parameters influencing FPN1a span-
ning over large intervals (multiple orders of magnitude), the reachability analysis
results show that the model satisfies the expected properties:

1. Fe, IRP, and Ft tend to a small invariant set when Tfsat 6= 0.

2. The iron concentration reaches a “plateau” for at least 10 hours.

3. After reaching a plateau the iron concentration decreases to 0.

4. The IRP concentration first increases quickly then more slowly during the
plateau and then increases quickly again.

However given all those conditions, the FPN1a concentration did not undergo any
notable decrease. Indeed, in Figure 6.13, while the upper bound slowly increases
due to the accumulated error, the lower bound, which is conservative, does not
decrease notably unlike what we could expect.

This analysis shows that if the model efficiently represents the regulation of
the iron concentration with the IRP proteins, it does not fully model the FPN1a
regulation, and and IRP is not the main regulating factor in this regime on the
FPN1a concentration.

6.3 Cadmium impact on glucose response model

Context. In this section we present a preliminary analysis of the glucose response
mechanism and its evolution when exposed to cadmium (Cd). This work follows a
thorough experimental study [96] about the effect of low-dose cadmium exposure
on the glucose regulation, and its link to type 2 diabetes. Indeed it was observed
that some populations exposed to low-dose8 of cadmium for a long period devel-
oped type 2 diabetes syndromes [186, 187, 188]. The experiments in [96] are per-
formed on both cultured cells and animals: in this section we study the experiments
on the animals.

Glucose regulation mechanism mainly depends on an hormone called insulin
which trigger the integration of plasma glucose into cells: especially muscles or
adipocytes (fat holding cells). The insulin is produced by the β-cells of the pan-
creas in response to a glucose increase [189, 190]. As we search to link the cad-
mium exposure to type 2 diabetes, it was first hypothesized that the cadmium had a
negative effect on insulin production mechanism in the β-cells. However, prelimi-
nary experiments from [96] on cells cultures show not clear results in this sense.

In parallel to the cells cultures, a second set of experiments were performed on
rats. These experiments can be separated in two subsets: the experiments on adults
animals directly exposed to the cadmium, and the experiments on pups (baby rats)
indirectly exposed to the cadmium through the mother placenta before birth, or
milk after birth. The last experiments on pups are summarized in Figure 6.14.

8Compared to usual cadmium toxicity studies.
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During the experiments described in Figure 6.14 multiple oral glucose tolerance
tests (OGTT) were performed. This test consists in measuring the evolution of
plasma glucose concentration during the 2 hours following an oral glucose intake.
The tests were performed on the pups at 21 days after birth, which is the end of the
milk based diet, 26 days, and 60 days. We first propose a preliminary modelling

Figure 6.14: Protocol for indirect exposure of small rats to Cadmium through their mothers.

and parameter analysis of the OGTT results at 21, 26 and 60 days. Then, we discuss
of the application of MOEPLA for the a further study of the experiments practised
on the pups.

Parameter study. We first propose a model to reproduce the OGTT results ob-
tained by [96] with the protocol described in Figure 6.14. To this aim, we use the
MINMOD model [97], a small ODE model describing the evolution of glucose
concentration after an initial glucose intake. We also refer to [191] for a review of
glucose regulation models, and in particular to [192, 193, 194, 195] for a modelling
of the OGTT. Finally, we highlight the work [196] which contains a very detailed
model of glucose response after a meal. We may want to apply formal methods
or computationally expensive techniques on our model, for this reason we use the
minimal model MINMOD as a starting point.

The model MINMOD from [97] is not designed for OGTT, but for intravenous
glucose tolerance tests (IvGTT). Therefore, we cannot consider that the plasma
glucose is already at its maximum concentration at t = 0, as it is done for IvGTT
studies. Complex OGTT models such as [196] use compartmental modelling to
represent the multiple stages of the digestion, and to obtain the glucose rate of
appearance in plasma after the meal. In first approximation we propose a simpler
modelling using directly experimental results measuring the glucose rate of appear-
ance in the winstar rat. From [197, Figure 4] we determine the maximum of the
rate of appearance is obtained ∼ 30min after the meal9. Similarly, the initial value
of the rate of appearance is ∼ 70% of its maximum (see Figure 6.15). This curve

9We consider that the time food spends in stomach is close to zero as the glucose meal is liquid.
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Figure 6.15: Approximation of the plasma glucose rate of appearance.

is modelled by the continuous function GRA(t):

GRA(t) = K
1

σ
√

2π
e
−(t−µ)2

2σ2 ,

where µ = 30, and σ = 60. The value of the parameter K is determined by
the actual quantity of glucose fed to the rats. Let mGlc be the mass of glucose
fed to the rats and VBlood the rat blood volume as given in [198]. Then given an
administrated concentration of glucose mGlc/VBlood, the value of K is the solution
of the following equation:∫ +∞

0
K

1

σ
√

2π
e
−(t−µ)2

2σ2 dt =
mGlc

VBlood
.

In presence of glucose, the release of insulin by the β-cells can be separated in two
phases. The first phase is the exocytosis of the insulin already present and stored
near to the cellular membrane. The second phase corresponds to the release of
insulin whose production was triggered by the glucose increase. The MINMOD
model correctly simulates the second phase of insulin production, but does not
reproduce satisfactory the first phase. To address this problem we add an additional
state variable representing the insulin already present and ready to be released in
the blood circulation. Finally, the adapted MINMOD model is given by (6.5).

Ġ = −p1(G(t)−Gb)− rCd X(t)G(t) + GRA(t)

Ẋ = −p2X(t) + p3(I(t)− Ib)

İ = −n I(t) + γ (G(t)− h) t+ p4Is(t)

İs = −p4Is(t)

(6.5)

In the ODE system (6.5), G is the glucose concentration in circulating blood, X the
rate of glucose absorption in muscles and adipocytes due to insulin, I the insulin
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concentration in circulating blood, and Is the insulin concentration stored in the
β-cells and ready to be released.

The experimental results are separated into 3 groups: the control group which
was not exposed10 to cadmium, the group Cd1 which shows a medium cadmium
exposure, and the group Cd2 with a high cadmium exposure.

To estimate the goodness of fit of a given simulation compared to the experi-
mental data, we use the root weighted least-square error:

ε(k) =

√∑
i

Wi(xexp,i − xsimu(ti,k))2 , (6.6)

where k is a parameter set, and xsimu(t,k) its associated simulation of the OGTT.
The weight Wi is determined by the equation:

Wi =
1

σ2(
∑

i x
2
exp,i)

,

where σ are the variance to the mean associated to the i-th data point.
The initial condition, and parameters are searched in the intervals proposed

in [97] bloated by one order of magnitude. To ease the parameter search, when
fitting the parameter to the datasets corresponding to group Cd1 and Cd2 we only
consider a few hypotheses on the evolution of the parameters (compared to the one
fitting the control group). At first for the experiments at 21 days we consider the
following hypotheses:

– Hypothesis 1: Increase or reduction of the insulin sensibility.

– Hypothesis 1.1: rCd varies: this shows the effect of cadmium on
the glucose absorption in the cells. If rCd < 1 then the system has
developed insulin resistance, otherwise the system is more sensitive to
insulin.

– Hypothesis 1.2: p3 varies: this represents the effect of insulin on the
rate of absorption dynamics.

– Hypothesis 2: n varies: this models an effect on the insulin degradation.

– Hypothesis 3: p2 varies: this affects the degradation of the glucose absorp-
tion rate.

– Hypothesis 4: γ varies: this modifies the sensitivity to glucose of the phase
2 of insulin production.

A 21 days, the goodness of fit for each hypothesis and associated to group Cd1
dataset are shown in Table 6.13. The associated best parameter sets are given in
Table 6.14. The initial conditions are given in Table 6.12. The simulation corre-
sponding to the best parameter fits are shown in Figure 6.16. The goodness of fit

10Except the default food pollution as it is noted in [96].
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Figure 6.16: Simulations of the OGTT at 21 days for the control group, Cd1 and Cd2
groups.

associated to the control group data set is 0.00512. The best fits for group Cd1 are
obtained considering the Hypothesis 4: a reduction of glucose sensibility of β-cells
during the phase 2 of insulin production. We consider the same hypothesis when
searching for a parameter fit of group Cd2 dataset: the best solution yields a good-
ness of 0.006. After 26 days, we consider an additional hypothesis. Indeed, from

Variable Value Unit

G(0) 110.0 mg/dL
X(0) 0.0 min−1

I(0) 16.0 nU/dL
Is(0) 5950.0 nU/dL

Table 6.12: Initial condition deter-
mined for the control group at 21
days. These initial conditions are
conserved for the groups Cd1 and
Cd2. Note that 1U = 0.0347mg of
insulin.

Hypothesis Cd1

Hyp 1.1 0.0203
Hyp 1.2 0.0185
Hyp 2 0.0178
Hyp 3 0.0202
Hyp 4 0.0117

Table 6.13: Goodness of fit (6.6) of each
hypothesis applied to group Cd1 dataset
at 21 days.

21 days to 26 days the pups went from a milk-based diet to a “normal” food diet.
This change of diet induces important change on the regulation mechanism: this is
observed by an evolution of the parameter set fitting the control group dataset.

– Hypothesis 5: [p2, γ, h, p4] are all allowed to vary: these parameters are the
ones which differ the most between the fits of the control group at 21 days
and 26 days.

The goodness of fit for each hypothesis on group Cd1 and Cd2 are given in Ta-
ble 6.16. The associated best parameters sets are given in Table 6.17. The initial
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Parameters Ctrl Cd1 Cd2 Unit

p1 0.01 − − min−1

Gb 100.0 − − mg/dL
p2 0.56 − − min−1

p3 0.0142 − − (dL/nU)min−2

Ib 10.0 − − nU/dL
n 5.93 − − min−1

γ 0.0625 0.05 0.04 (nU/dL)min−2

h 90.0 − − mg/dL
p4 0.07 − − min−1

rCd 1.0 − − N.U.

Table 6.14: Parameters values fitted for the control group as well as the groups Cd1 and
Cd2 at 21 days (considering hypothesis 4).

conditions are given in Table 6.15. The simulation associated to the best fits are
shown in Figure 6.17. The goodness of fit associated to the control group data
set is 0.011. We note that Hypothesis 5 yields the best results, and the associated
parameter values are in-between the values of the control at 21 days and 26 days.
One interpretation of this hypothesis would be that the cadmium affects the speed
at which the organism adapts itself to a new diet. Finally the parameter set fit-

Variable Value Unit

G(0) 76.0 mg/dL
X(0) 0.0 min−1

I(0) 34.0 nU/dL
Is(0) 5950.0 nU/dL

Table 6.15: Initial condition determined
for the control group at 26 days. These
initial conditions are conserved for the
groups Cd1 and Cd2. Note that 1U =
0.0347mg of insulin.

Hypothesis Cd1 Cd2

Hyp 1.1 0.009 0.012
Hyp 1.2 0.009 0.012
Hyp 2 0.009 0.012
Hyp 3 0.009 0.012
Hyp 4 0.010 0.010
Hyp 5 0.005 0.005

Table 6.16: Goodness of fit (6.6) of
each hypothesis applied to the datasets
of groups Cd1 and Cd2 at 26 days.

ted to the datasets at 60 days are given in Table 6.20. The goodness of fit of the
control group dataset is 0.006. As shown in Table 6.19, it is hard to distinguish a
hypothesis for the fit of the dataset at 60 days of the group Cd2: all of the tested
one yielded good results, but this is mainly due to the high variance on this dataset.
We introduce an additional hypothesis to better fit the dataset of the group Cd1.

– Hypothesis 6: h varies: this models an influence on the threshold to trigger
the phase two of insulin production.
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Figure 6.17: Simulations of the OGTT at 26 days for the control group, Cd1 and Cd2
groups.

Parameters Ctrl Cd1 Cd2 Unit

p1 0.01 − − min−1

Gb 100.0 − − mg/dL
p2 0.50 0.805 0.86 min−1

p3 0.0312 − − (dL/nU)min−2

Ib 10.0 − − nU/dL
n 5.33 − − min−1

γ 0.0165 0.0347 0.0410 (nU/dL)min−2

h 65.0 85.0 85.0 mg/dL
p4 0.035 0.0585 0.065 min−1

rCd 1.0 − − N.U.

Table 6.17: Parameter values fitted for the control group as well as the groups Cd1 and
Cd2 at 26 days (considering Hypothesis 5).

Overall, we propose multiple parameter sets associated to each particular experi-
ment. All of these fits are good and allow us to successfully reproduce the data.
Additionally, we propose possible interpretations on the cadmium impact at each
step of the pups growth.

However, the results are local and only represent one possible valid parameter
set for each experiment. To go further, we need to provide a model of the cadmium
absorption by the pups and we have to make explicit its influence on the dynamics
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Variable Value Unit

G(0) 95.0 mg/dL
X(0) 0.0 min−1

I(0) 34.0 nU/dL
Is(0) 5950.0 nU/dL

Table 6.18: Initial condition determined
for the control group and the groups Cd1
and Cd2 at 60 days.

Hypothesis Cd1 Cd2

Hyp 1.1 0.008 0.005
Hyp 1.2 0.008 0.005
Hyp 2 0.008 0.005
Hyp 3 0.008 0.005
Hyp 4 0.007 0.005
Hyp 6 0.005 0.005

Table 6.19: Goodness of fit (6.6) of
each hypothesis applied to the datasets
of groups Cd1 and Cd2 at 60 days.

Parameters Ctrl Cd1 Cd2 Unit

p1 0.01 − − min−1

Gb 100.0 − − mg/dL
p2 0.55 − − min−1

p3 0.0205 − 0.0210 (dL/nU)min−2

Ib 10.0 − − nU/dL
n 5.33 − − min−1

γ 0.0265 − − (nU/dL)min−2

h 65.0 73.0 − mg/dL
p4 0.05 − − min−1

rCd 1.0 − − N.U.

Table 6.20: Parameter values fitted for the control group as well as the groups Cd1 and
Cd2 at 60 days (considering hypothesis 1.2 for Cd2 and hypothesis 6 for Cd1).

to confirm our hypotheses. Moreover, unless we ensure that there is no other valid
parameter set, our interpretations are just one possible solution.

Future work. In addition to the modelling of the OGTT, we need to model the
cadmium absorption into the mother and pups organs at each step of the protocol.
In the following we propose a simple example of specification for the protocol from
Figure 6.14. From the associated hybrid system we still have to find a parametriza-
tion of the cadmium absorption rate.

For a first example of specification of the protocol from Figure 6.14, we con-
sider two experimental objects: the motherOmother and the pupsOpup. We consider
two mechanisms of Cadmium absorption (they may differ for the mother and the
pups): Fmother and Fpups. We also note the default parameters space of the mother
Kmother, and the one of the pups Kpups.

We remark that the mother and the pup could be merged into one single exper-
imental object. Indeed, in the current formalization described in Chapter 5, we do
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not accept common variables or parameters. As stated in Section 5.3, this is one
of the points we want to address to improve the MOEPLA language in the future.
If we want to make the pups depend of the mother, we currently need to define a
single object including the coupled mechanisms of the mother and the pups. In the
following, we give the sketch of the formalisation with two objects. However, the
approach with one object is similar.

The time is counted in days, and the protocol last at most 105 days (15 weeks).
At t = 0 day, we start with the mother alone: I0(Omother). After 21 days the
mothers enter in the mating period which leads to pregnancy: this period lasts at
most 1 week. In MOEPLA, this can be expressed as a perturbation under the label
Lpregnacy that occurs in the time interval t ∈ [21, 28] days:

Ak(Omother, Lpregnacy,Kmother ← Kpregnant, t ∈ [21, 28]) .

Similarly, the pups come into being under this perturbation and we associate a
creation action with the label Lpregnacy:

Acreate(Opup, Lpregnacy,x
pup
0 , t ∈ [21, 28]) .

In a similar manner we can define a perturbation on a change of the parameter
space of both the mother and the pups at the birth stage, and the switch to the
normal food. Measurements are performed independently on either the pups (at
time t = 70 days, 76 days and 105 days) or the mother (at t = 39 days and 60
days). All these measurements can be expressed in MOEPLA using the action
Ameas on either the variables of the object Omother or Opup.
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7.1 Summary

In this thesis, we addressed three issues in biological systems modelling: model
design, model validation, and model revision. In addition, we investigated three
biological case studies and used them as proof of concept for our different methods.

Model revision. In Chapter 3, we proposed a method to revise a hybrid dynam-
ical system with respect to some observations in form of intermediate time mea-
sures. The method searches for time varying parameters which produce better ap-
proximations of an underlying mechanism, compared to constant parameters. For
this purpose, it uses an algorithm based on the optimal control method for hybrid
systems proposed in [94]. The model revision is achieved without imposing be-
forehand any structure on the sought law, since we consider the case where we do
not possess any additional insight or knowledge.

Set-based simulation. In Chapter 4, we extended the previous work of [83]
for reachability analysis of discrete time polynomial systems with uncertain pa-
rameters. We contributed in this problem an extension of [83] to discrete time
piecewise-rational functions, allowing handling a larger panel of biological appli-
cations. Moreover, we also give a few improvements to speed up the actual reacha-
bility analysis in some particular cases. In addition, we proposed another set-based
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simulation method using the Krivine-Stengle representations. We showed how to
adapt the Krivine-Stengle representation based method for an efficient application
to reachability analysis of discrete-time polynomial systems with uncertain param-
eters in box domains.

MOEPLA: Modelling Oriented Experimental Protocol Language. In Chap-
ter 5, we proposed a preliminary work on a language to formally specify an exper-
imental protocol while taking into account a model of a mechanism. In its current
form, the proposed language allows modelling multi-stage evolutions of multiple
experimental objects in parallel, with possible synchronization steps. It also allows
automatic generation of a formal framework using the hybrid automaton formal-
ism. Taking advantage of non-determinism inherent to hybrid automata that can
model uncertainty in biological models, we can either validate a model while tak-
ing into account an existing protocol (with its uncertainties), or verify that a future
protocol (or therapy) will always be correctly executed. We demonstrated the use
of MOEPLA on two experimental protocols associated to the haemoglobin pro-
duction model and the glucose response model, respectively.

Case studies. Finally, in Chapter 6 we described three modelling studies. We first
investigated a model of haemoglobin production during the differentiation stages
of the an erythroblast into an erythrocyte (also called red blood cells). In the first
part of this study, we used a simple exploratory scheme to perform parameter esti-
mation with respect to multiple experimental data sets. In the second part, we used
this model to demonstrate the applicability of our model revision method. This
model revision with a time varying parameter enabled us to better reproduce a con-
sidered dataset. We also note that from the inferred solution we derived multiple
hypotheses which led to a meaningful biological interpretation of the time varying
parameter as an activation function.

The second case study used the iron homoeostasis model designed in [45]. In
this work, we applied the Bernstein reachability analysis from Chapter 4 to confirm
a hypothesis formulated in [45] using exhaustive methods for uncertain parameters
and initial sets.

The last case study was a preliminary modelling of a recent study of genera-
tional effect of low dose and chronic Cadmium intake on the metabolism [96]. In
this case study, we proposed a first simple model of the oral glucose tolerance test
(OGTT) adapted from a previous glucose response model [97]. We also provided
multiple parameter estimations associated to different data sets.

7.2 Future work

The work described in this thesis still needs improvement on several points, but
also suggests numerous ideas for future work.
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Improvements and implementation. In addition to the theoretical work given
in this thesis, we still need to provide an implementation in a user-friendly toolbox.
The improvements provided in Chapter 4 can be integrated in the latest version of
reachability toolbox sapo [83]. Similarly, the current implementation of sparse
Krivine-Stengle representations must be re-written in a more efficient implemen-
tation than the current one in Matlab. The MOEPLA language is still under
development, we need to implement an interface and a parser to check the validity
of experimental protocols and automatically generate their hybrid automaton mod-
els for formal analysis purposes. In addition to the implementation work, we still
need to provide a solution to handle common variables, relative time constraints,
and a more efficient hybrid automaton generation.

Occupation measure methods. The theoretical results of Chapter 3 for model
revision can be improved by providing a converging sequence of relaxations for the
optimal control problem with intermediate points instead of using a greedy algo-
rithm. In addition, it has been shown that occupation measure methods [124] allow
computing converging over-approximations of the valid parameter sets. These re-
sults can be extended to our biological problem of fitting parameters with respect
to intermediate time measures.

Non-linear reachability analysis. The work on the Bernstein expansion pro-
vided some ideas for its application for conservative approximations of polyno-
mial lifts. Then, such a method can be used within an algorithm for non-linear
reachability analysis using Carleman linearisation [170]. Another idea is to use
multivariate polynomial interpolation to approximate the image of an initial set by
a trajectory at a fixed time.

Glucose response model. The experimental results of Cadmium effect on the
glucose response are recent, and in this thesis we presented a preliminary modelling
work and parameter estimation of the glucose response model, independently of
the Cadmium. We now need to ensure the robustness and validity of the estimated
parameters using either statistical methods or set-based methods. Additionally, we
still need to consider the whole protocol to design a model of Cadmium integration.
The MOEPLA language will help to formally specify this protocol and generate an
associated model.
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[85] Spring Berman, Ádám Halász, and Vijay Kumar. Marco: a reachability
algorithm for multi-affine systems with applications to biological systems.
In International Workshop on Hybrid Systems: Computation and Control,
pages 76–89. Springer, 2007. (Cited on pages 9 and 47.)

[86] Romain Testylier and Thao Dang. Analysis of parametric biological models
with non-linear dynamics. arXiv preprint arXiv:1208.3849, 2012. (Cited on
page 9.)

[87] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi
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Formal methods for modelling and
validation of biological models

Alexandre Rocca
Thesis Directed By Thao Dang and Éric Fanchon

The focus of this thesis is the modelling and analysis of biological systems using formal methods. The
dynamics of biological systems exhibit continuous behaviours but also abrupt changes. Ordinary differ-
ential equations and hybrid dynamical systems are two mathematical formalisms that naturally model
such dynamics.
A crucial aspect of modelling is the determination of valid parameter values that enable to simulate
the behaviour and reproduce experimental data sets. If no valid parameter values are found it becomes
necessary to revise the model. An option is to replace one or several lumped parameters (parameters
which represent a set of processes) by functions of time. In this thesis we first study the model revision
problem on hybrid dynamical systems. To this aim we propose a greedy scheme of optimal control
methods based on occupation measures and convex relaxations.
Then, we study how to characterize dynamical properties of a model using set-based simulations and
reachability analysis. For this purpose, we propose two methods: the first one, which relies on Bernstein
expansion, is an extension for hybrid dynamical systems of the reachability tool Sapo [1], while the
other one uses Krivine-Stengle representations [2] to perform the reachability analysis of polynomial
ODEs. Finally, We also propose a methodology to generate hybrid dynamical systems modelling a class
of experimental protocols.
The proposed methods are applied to different case studies. We first propose a model of haemoglobin
production during the differentiation of an erythrocyte in the bone marrow [3]. To develop this model, we
first apply the Monte-Carlo based parameters synthesis, followed by the model revision to correctly fit
to the experimental data [4]. We also propose a preliminary study of the effect of low dose Cadmium on
glucose response at different steps of a rat growth. Finally, we apply the reachability analysis techniques
for the validation on large parameters set of the existing iron homoeostasis model [5], [6]. We note
the haemoglobin production process, as well as the glucose response system can be formalised, with
their experimental context, as hybrid dynamical systems. Thus, they serve as proof of concept for the
methodology of biological experimental protocols modelling.

L’objectif de cette thèse est la modélisation et l’étude de systèmes biologiques par l’intermédiaire de
méthodes formelles. Les systèmes biologiques démontrent des comportements continues mais sont aussi
susceptibles de montrer des changements abruptes dans leur dynamiques. Les équations différentielles
ordinaires, ainsi que les systèmes dynamiques hybrides, sont deux formalismes mathématiques utilisés
pour modéliser clairement de tels comportements.
Un point critique de la modélisation de systèmes biologiques est la recherche des valeurs des paramètres
du modèle afin de reproduire de manière précise un ensemble de données expérimentales. Si aucun jeux
de paramètres valides n’est trouvé, il est nécessaire de réviser le modèle. Une possibilité est alors de
remplacer un paramètre, ou un ensemble de paramètres, définissant un processus biologique par une
fonction dépendante du temps.
Dans le cadre de cette thèse, nous exposons tout d’abord une méthode pour la révision de modèles hy-
brides. Pour cela, nous proposons une approche gloutonne appliquée à une méthode de contrôle optimal
utilisant les mesures d’occupations et la relaxation convexe. Ensuite, nous étudions comment analyser
les propriétés dynamiques d’un modèle à temps discret en utilisant la simulation ensembliste. Dans cet
objectif, nous proposons deux méthodes basées sur deux outils mathématiques. La première méthode,
qui se repose sur les polynômes de Bernstein, est une extension aux systèmes dynamiques hybrides,
de l’outil de calcul ensembliste Sapo [1]. La seconde méthode utilise les représentations de Krivine-
Stengle [2] pour permettre l’analyse d’atteignaiblité de systèmes dynamiques polynomiaux. Enfin, nous
proposons aussi une méthodologie pour générer des systèmes dynamiques hybrides modélisant des pro-
tocoles biologiques expérimentaux.
Les méthodes précédemment proposées sont appliquées sur divers études biologiques. Nous étudions
tout d’abord un modèle de la production d’hémoglobine durant la différentiation des érythrocytes dans
la moelle [3]. Pour permettre la construction de ce modèle, nous avons dans un premier temps généré un
ensemble de jeux de paramètres valides à l’aide d’une méthode de type Monte-Carlo. Dans un second
temps, nous avons appliqué la méthode de révision de modèle afin de reproduire plus précisément les
données expérimentales [4]. Nous proposons aussi un modèle préliminaire des effets à faibles doses du
Cadmium sur la réponse du métabolisme à différentes étapes de la vie d’un rat. Enfin, nous appliquons
les techniques d’analyse ensembliste pour la validation d’hypothèses sur un modèle d’homéostasie du
fer [6] dans le cas où des paramètres varient dans de larges intervalles. Dans cette thèse, nous mon-
trons aussi que le protocole associé à l’étude de la production d’hémoglobine, ainsi que le protocole
étudiant l’intégration du Cadmium durant la vie d’un rat, peuvent être formalisés comme des systèmes
dynamiques hybrides, et servent ainsi de preuves de concepts pour notre méthode de modélisation de
protocoles expérimentaux.
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