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Introduction 

 

Nowadays, there is still a real need in coherent sources which emission is able to cover 

the band II (3-5 µm) and band III (8-12 µm) of transmission of the atmosphere.  

 

Compared with other coherent sources, solid state lasers have some advantages: they are 

compact, and they can cover a wide spectral range in band II with high output energies. 

Nevertheless, the discrete transitions of the rare earth elements used as dopants in the 

active medium limits the accessible wavelength ranges.  

 

Optical parametric generators (OPG), which are based on frequency conversion in a 

nonlinear crystal from a second-order nonlinear process, can convert a monochromatic 

input beam into two output beams of higher wavelengths. Then they can generate a light 

over a very wide wavelength range from ultraviolet to far infrared, which overcomes the 

problem of solid state lasers. Furthermore, the OPG output energy can be optimized by 

using phase-matching conditions.  

 

In this context, our interest is in high energy OPG emission with the broadest spectral 

bandwidth of the signal and idler generated beams covering bands II and band III. This 

so-called super-continuum condition of OPG emission is of prime importance for many 

applications in medical, commercial, and military technologies for example.  

 

Although there are already many nonlinear crystals used in commercial OPG devices, 

they are not satisfactory. Then there is still a need for new crystals with more 

appropriate optical properties, such as: a very good optical quality and a wide 

transparency range, a high optical damage threshold and efficient nonlinear optical 

properties covering their transparency range.  

 

We identified the three following crystals as a real alternative for a phase-matched OPG 

super-continuum emission covering band II: GdCa4O(BO3)3 (GdCOB) belonging to the 

positive biaxial optical class, La3Ga5.5Nb0.5O14 (LGN) and NaI3O8 crystals from the 

positive and negative uniaxial optical class respectively. We also studied the BaGa4Se7 

(BGSe) positive biaxial crystal for an emission covering band III. This PhD work is 

devoted to the study of their linear and nonlinear optical properties and this manuscript 

is based on 4 chapters following this introduction. 

 

In the first chapter, main theoretical elements about linear and nonlinear optics are 

described. At first, linear optics defines the first-order polarization induced by the 

interaction between an electromagnetic wave and a crystal. The corresponding 
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propagation phenomena in polarized light are described taking into account the index 

surface and the spatial walk-off effect. In a second step, theoretical basics of nonlinear 

optics are reminded, in particular concerning the quadratic parametric processes. Finally, 

birefringence phase-matching conditions, the associated effective coefficients, 

acceptances and spatial walk-off angles are discussed. 

 

The second chapter describes the experimental methods and the corresponding setups 

that we used to study linear and nonlinear optics in crystals. Techniques using oriented 

slabs are first reported. They are devoted to the linear optical properties and also phase-

matched Second Harmonic Generation. The magnitude of the non-zero nonlinear 

coefficients and the associated spectral and angular acceptances are determined from the 

recorded data. Then comes the interest in crystals shaped as a sphere or a cylinder to 

study the angular distribution of their optical properties. The corresponding SPHERE 

method enables several direct measurements as a function of wavelength: spatial walk-

off angles, dielectric frame orientation and phase-matching conditions. Finally, this 

chapter describes the analysis of data leading to the determination of the Sellmeier 

equations and to the relative signs of the non-zero coefficients of the second-order 

electric susceptibility tensor. 

 

In the third chapter, we report the studies we performed in GdCOB, LGN and NaI3O8, 

the goal being to evaluate their potentiality for a phase-matched OPG super-continuum 

emission covering band II. The measurements deal with the transmission spectra, 

damage threshold, refractive indices and magnitude of the nonlinear coefficients. Then 

the phase-matching tuning curves, the associated conversion efficiencies, as well as the 

spectral and angular acceptances are recorded using the SPHERE method. All these 

experimental data are analysed using the theoretical elements of the first chapter to 

provide refined Sellmeier equations. Then come calculations for a phase-matched OPG 

super-continuum emission with the broadest spectral bandwidth.  

 

The last chapter concerns the determination of the magnitude and relative sign of the 

nonlinear coefficients of BGSe from studying SHG conversion efficiencies. Since BGSe 

belongs to the point group m of the monoclinic system, six nonlinear non-zero and 

independent nonlinear coefficients were concerned under Kleinman assumption. All 

these results we obtained will provide reliable data for further experimental evaluations 

of OPG broadest spectral bandwidth covering band III. 

 

The conclusion is followed by appendices including copies of three articles published in 

the framework of this PhD work. 
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Chapter 1 Theoretical elements 

 

1.1 Introduction  

In this chapter, we consider main theoretical elements about the interactions between 

light and crystals. We describe linear optics and nonlinear optics from quadratic 

parametric processes. These theoretical elements will be used to implement setups and 

analyze studies presented in the following chapters.  

 

On the one hand, linear optics defines the first-order polarization induced by the 

interaction between an electromagnetic wave and crystals. The corresponding 

propagation phenomena in polarized light are described taking into account the index 

surface and walk-off effects. 

 

On the other hand, theoretical basics of nonlinear optics are reminded, in particular the 

quadratic parametric processes. Finally, we discuss birefringence phase-matching 

conditions, the associated effective coefficients, the acceptances and walk-off effects. 

 

1.2 Linear optics 

1.2.1 Linear induced polarization  

Electromagnetic waves consist of an electric field E⃗⃗  and a magnetic field H⃗⃗  which 

Fourier expansion leads at the position r    and angular frequency ω to the Fourier 

components E⃗⃗ (ω) and H⃗⃗ (ω). Both fields are perpendicular to each other and propagate 

along the wave propagation direction k⃗ (ω).  

 

The electric field of an electromagnetic wave interacts with the medium by inducing a 

dipole due to the displacement of the electrons density away from the equilibrium 

position. At the macroscopic scale, it gives rise to a polarization P⃗⃗ (ω) of the medium 

that is related to the applied electric field E⃗⃗ (ω) via the electric susceptibility tensor χ(ω). 

When the power density of the electric field does not exceed about 1 𝑀𝑊/𝑐𝑚2, P⃗⃗ (ω) 

can be considered as varying linearly with the incident electric field of light E⃗⃗ (ω). This  

is written at the position r  and the angular frequency 𝜔 [1]:  
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                                                 𝑃⃗ (𝜔) = 𝜀𝑜𝜒
(1)(𝜔) ∙ 𝐸⃗ (𝜔)                                                                               (1.1) 

𝜔 = 2𝜋𝑐/𝜆 , 𝜆 is the wavelength and c is the velocity of light in vacuum; εo is the free 

space permittivity.   χ(1)(ω)  is the first-order electric susceptibility tensor.  The symbol 

∙ stands for a contracted product.  

 

Equation (1.1) defines the linear constitutive relation of the light-matter interaction 

regarding the electric field. It shows that the linear polarization P⃗⃗ (ω) of matter and the 

exciting electric field E⃗⃗ (ω) from light oscillate at the same angular frequency ω but may 

have different orientations. In the following, this interaction is described in crystals. 

 

The present work is limited to the transparency range of crystals, so that the imaginary 

part of all the elements of χ(1)(ω)  can be neglected i.e. they are real numbers. 

Furthermore, there exists a frame in which the tensor χ(1)(ω) is diagonal. It is called the 

dielectric frame or the optical frame and labeled  (𝑥, 𝑦, 𝑧)  in the following. The 

corresponding axes are called the principal axes, and define by pairs principal planes.  

 

Then in the dielectric frame, the first-order electric susceptibility tensor χ(1)(ω) can be 

written at the position r  and the angular frequency 𝜔 as [1]: 

                                 𝜒(1)(𝜔) = (

𝜒𝑥𝑥
(1)(𝜔) 0 0

0 𝜒𝑦𝑦
(1)
(𝜔) 0

0 0 𝜒𝑧𝑧
(1)(𝜔)

)                                                          (1.2) 

Note that each Cartesian component of  P⃗⃗ (ω) is linearly related to the corresponding 

component of  E⃗⃗ (ω) according to Eq. (1.1) and (1.2). 

 

1.2.2 Principal refractive indices  

The electrical displacement vector D⃗⃗ (ω) is related to the electric field vector E⃗⃗ (ω) and 

to the induced polarization vector P⃗⃗ (ω). It is defined at the position r  and the angular 

frequency 𝜔 by [2]: 𝐷⃗⃗ (𝜔) = 𝜀𝑂𝐸⃗ (𝜔) + 𝑃⃗ (𝜔) and using Eq. (1.1), it becomes: 

                              𝐷⃗⃗ (𝜔) = 𝜀𝑜[1 + 𝜒
(1)(𝜔)] ∙ 𝐸⃗ (𝜔) = 𝜀𝑜𝜀𝑟(𝜔) ∙ 𝐸⃗⃗⃗⃗ (𝜔)                                          (1.3) 

εr(𝜔) is the relative dielectric permittivity tensor of crystals written using Eq. (1.2): 
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        𝜀𝑟(𝜔) = (

𝜀𝑟𝑥𝑥(𝜔) 0 0
0 𝜀𝑟𝑦𝑦(𝜔) 0

0 0 𝜀𝑟𝑧𝑧(𝜔)

) = (

1 + 𝜒𝑥𝑥
(1)(𝜔) 0 0

0 1 + 𝜒𝑦𝑦
(1)(𝜔) 0

0 0 1 + 𝜒𝑧𝑧
(1)(𝜔)

)              (1.4) 

εrxx(𝜔), εryy(𝜔) and  εrzz(𝜔) enable to define the three principal refractive 

indices nx(𝜔), ny(𝜔) and nz(ω) from the relations: 

                         𝜀𝑟𝑥𝑥(𝜔) = 𝑛𝑥
2(𝜔); 𝜀𝑟𝑦𝑦(𝜔) = 𝑛𝑦 

2 (𝜔); 𝜀𝑟𝑧𝑧(𝜔) = 𝑛𝑧
2(𝜔)                                    (1.5) 

There are three optical classes according to the relative values of these principal indices:  

1. The isotropic optical class defined by nx(ω) = ny(ω) = nz(ω).  

2. The anisotropic uniaxial optical class with nx(ω) = ny(ω) ≠ nz(ω).  

3. The anisotropic biaxial optical class where nx(ω) ≠ ny(ω) ≠ nz(ω).  

 

For the isotropic optical class, the three principal refractive indices are equal to n(ω) so 

that the physical properties are identical along any direction of propagation. Crystals 

from the cubic system, as well as gas liquids and glasses, belong to the isotropic optical 

class.  

 

Crystals of the tetragonal, hexagonal and trigonal systems belong to the uniaxial optical 

class. In that case, one defines the ordinary and extraordinary principal refractive 

indices, no and ne respectively, as [1]:  nx(ω) = ny(ω) = no(ω) and 𝑛𝑧(ω) = 𝑛𝑒(ω). 

The uniaxial optical class is positive if  no(ω) < 𝑛𝑒(ω) and negative if no(ω) > 𝑛𝑒(ω). 

 

The triclinic, monoclinic and orthorhombic crystals belong to the biaxial optical class, 

which is either positive when  nx(ω) < ny(ω) < nz(ω),  or negative when  nx(ω) >

ny(ω) > nz(ω). 

 

The variation of a principal refractive index with the angular frequency is well 

described by a Sellmeier equation in the transparency domain of crystals [3].  

 

In the case of the so called “normal dispersion”, all the refractive indices increase with 

the angular frequency i.e. 𝑛𝑖(𝜔1) < 𝑛𝑖(𝜔2) for 𝜔1 < 𝜔2, with 𝑖 =  𝑥, 𝑦 or 𝑧.  If 𝜔1 or 

𝜔2  is near an absorption peak, even weak, we can have 𝑛𝑖(𝜔1) > 𝑛𝑖(𝜔2), with 𝑖 =

 𝑥, 𝑦 or 𝑧, which corresponds to an “abnormal dispersion”.  

1.2.3 Propagation equation 

The wave propagation equation in a crystal is obtained from the constitutive relations of 

the medium and Maxwell’s equations. In the case of a non-conducting and non-
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magnetic crystal, the wave propagation equation at the angular frequency 𝜔 is given at 

the position 𝑟  by the following equation [2]:  

                                     𝛻⃗ ⨯ 𝛻⃗ ⨯ 𝐸⃗ (𝜔) =
𝜔2

𝑐2
𝐸⃗ (𝜔) + 𝜔2µ𝑜𝑃⃗ (𝜔)                                                             (1.6) 

µ𝑜  is the free-space permeability and the symbol ⨯ stands for a vector product. By 

inserting Eq. (1.1) in Eq. (1.6) and using Eq. (1.3), we get: 

                                         𝛻⃗ ⨯ 𝛻⃗ ⨯ 𝐸⃗ (𝜔) =
𝜔2

𝑐2
𝜀𝑟(𝜔) ∙ 𝐸⃗ (𝜔)                                                                         (1.7) 

The plane wave is a solution of Eq. (1.7). At the angular frequency 𝜔 and position 𝑟 , the 

spatial component of the electric field propagating forward is then written: 

                                       𝐸⃗ (𝜔, 𝑟 ) = 𝑒 (𝜔, 𝑟 )𝐸(𝜔, 𝑟 )𝑒−𝑖𝑘⃗ (𝜔,𝑟 )∙𝑟                                                                      (1.8) 

𝑒 (𝜔, 𝑟 ) is the unit electric field vector, and 𝐸(𝜔, 𝑟 ) the scalar complex amplitude of the 

electric field verifying 𝐸∗(𝜔, 𝑟 ) = 𝐸(−𝜔, 𝑟 ). 𝑘⃗ (𝜔, 𝑟 ) stands for the wave vector along 

the unit vector 𝑢⃗  describing the direction of propagation. 

 

We will use the angles of spherical coordinates  (𝜃,  𝜑 ) instead of the Cartesian 

coordinates (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) to describe the unit vector 𝑢⃗  with |𝑢⃗ | =1 in the dielectric frame.  

As shown in Figure 1.1, θ is the angle between 𝑢⃗  and the z-axis, while φ is the angle 

between the orthogonal projection of  𝑢⃗   in the x-y plane and the x-axis.  

 

Figure 1.1: Cartesian (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) and spherical coordinates(𝜃, 𝜑) of the unit vector 𝑢⃗  in the dielectric 

frame (x, y, z). 

 

The Cartesian and spherical coordinates are linked by: 

                                  𝑢𝑥 = 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃, 𝑢𝑦 = 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃, 𝑢𝑧 = 𝑐𝑜𝑠𝜃,                                                      (1.9) 
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1.2.4 Index surface 

In the transparency range of crystals, the projection of Eq. (1.7) on the three principal 

axes of the dielectric frame x, y and z, and the use of Eq. (1.9) allow to define Fresnel’s 

equation [3]: 

                 
(𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃)2

𝑛−2(𝜔,𝜃,𝜑)−𝑛𝑥
−2(𝜔)

+
(𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃)2

𝑛−2(𝜔,𝜃,𝜑)−𝑛𝑦
−2(𝜔)

+
(𝑐𝑜𝑠𝜃)2

𝑛−2(𝜔,𝜃,𝜑)−𝑛𝑧
−2(𝜔)

= 0                                   (1.10) 

𝑛𝑥(𝜔), 𝑛𝑦(𝜔) 𝑎𝑛𝑑 𝑛𝑧(𝜔) are the three principal refractive indices at the angular 

frequency 𝜔 defined by Eq. (1.5).  

 

𝑛(𝜔, 𝜃, 𝜑) is the refractive index along the direction of propagation 𝑢⃗  that can be found 

by solving Fresnel’s equation. Since Eq. (1.10) is a quadratic equation, it has two 

solutions, 𝑛+(𝜔, 𝜃, 𝜑)  and  𝑛−(𝜔, 𝜃, 𝜑). Taking into account the relation of 

order 𝑛+(𝜔, 𝜃, 𝜑) ≥ 𝑛−(𝜔, 𝜃, 𝜑) they are expressed as [3]:  

 

                                

{
 
 

 
 𝑛±(𝜔, 𝜃, 𝜑) = (

2

−𝐵∓(𝐵2−4𝐶)1/2
)
1/2

𝐵 = −𝑢𝑥
2(𝑏 + 𝑐) − 𝑢𝑦

2(𝑎 + 𝑐) − 𝑢𝑧
2(𝑎 + 𝑏)

𝐶 = 𝑢𝑥
2𝑏𝑐 + 𝑢𝑦

2𝑎𝑐 + 𝑢𝑧
2𝑎𝑏

𝑎 = 𝑛𝑥
−2(𝜔), 𝑏 = 𝑛𝑦

−2(𝜔), 𝑐 = 𝑛𝑧
−2(𝜔) 

                                                     (1.11) 

 

Equation (1.11) describes the double-sheeted three-dimensional index surface. It is 

shown in 1/8 of the dielectric frame in Figure 1.2 and Figure 1.3 for uniaxial and biaxial 

optical classes respectively. Along the direction of propagation 𝑢⃗ (𝜃, 𝜑), the distances 

between the origin of the dielectric frame and the external sheet (+) and the internal 

sheet (-) correspond to the index values n+(ω, θ,φ) and n−(ω, θ, φ) respectively. The 

quantity n+(ω, θ, φ) − n−(ω, θ, φ) is called the birefringence of the crystal.  

 

1.2.4.1 Uniaxial index surface 

Figures 1.2(a) and 1.2(b) depict in 1/8 of the dielectric frame the index surface of the 

positive and negative uniaxial optical class respectively [3]. They show that the two 

sheets of the index surface do not depend on the spherical angle φ. They also highlight 

two umbilici corresponding to the z-axis regardless with the angular frequency ω, where 

𝑛+(𝜔, 𝜃) = 𝑛−(𝜔, 𝜃). The z-axis is called the optical axis (OA), which explains why 

this optical class is called uniaxial.  

 

The index values are linked to the principal ordinary and extraordinary refractive 

indices no(ω) and ne(ω) as follows: in the x-z and y-z principal planes, the ordinary 
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sheet is spherical with the index value 𝑛𝑜(𝜔) and the extraordinary sheet is ellipsoidal 

with the index value ne(ω, θ) = [
cos2θ

no
2(ω)

+
sin2θ

ne
2(ω)

]
−1/2

.  

 

For the positive uniaxial optical class, 

 n+(ω, θ, φ) = 𝑛+(𝜔, 𝜃) = 𝑛𝑒(𝜔, 𝜃) and n−(ω, θ, φ) = no(𝜔).  

 

For the negative uniaxial optical class, 

 n+(ω, θ, φ) = no(𝜔) and n−(ω, θ, φ) = 𝑛𝑒(𝜔, 𝜃).  

 

In the x-y principal plane, the two sheets are circular, the index value being no(ω) for 

one and ne(ω) for the other one. 

 

Figure 1.2: Index surface of the positive (a) and negative (b) uniaxial optical class at the angular 

frequency ω depicted in 1/8 of the dielectric frame. The solid line corresponds to an ordinary sheet and 

the dashed line to an extraordinary sheet. 𝑛+and 𝑛−  represent the indices values of the external and 

internal sheets respectively. OA stands for the optical axis.  

1.2.4.2 Biaxial index surface 

The index surfaces of the positive and negative biaxial optical class are depicted in 1/8 

of the dielectric frame in Figure 1.3(a) and 1.3(b) respectively [3]. The refractive indices 

𝑛+(𝜔, 𝜃, 𝜑) and 𝑛−(𝜔, 𝜃, 𝜑) are given by Eq. (1.11). They also correspond in the three 

principal planes to indices values of a circular sheet and an elliptic sheet. In the y-z 

principal plane where 𝜑 = 90° for example, we get for a positive biaxial crystal: 

                                      {
𝑛+(𝜔, 𝜃, 𝜑) = [

𝑐𝑜𝑠2(𝜃)

𝑛𝑦
2(𝜔)

+
𝑠𝑖𝑛2(𝜃)

𝑛𝑧
2(𝜔)

]
−1/2

𝑛−(𝜔, 𝜃, 𝜑) = 𝑛𝑥(𝜔)

                                                               (1.12) 

) ) 
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Figure 1.3: Index surface of the positive (a) and negative (b) biaxial optical class at the angular frequency 

𝜔 depicted in 1/8 of the dielectric frame. The solid line corresponds to an ordinary sheet and the dashed 

line corresponds to an extraordinary sheet. 𝑛+and 𝑛− stand for the indices values of the external and 

internal sheets respectively. Vz is the angle between the shown optical axis OA and z-axis. 

The index surface of the biaxial optical class has four umbilici located in the x-z 

principal plane, which define by pair two optical axes (OA). It explains why this optical 

class is called biaxial. Along an optical axis, 𝑛+(𝜔, 𝜃, 𝜑) = 𝑛−(𝜔, 𝜃, 𝜑) as shown in 

Figure 1.3. Using the Eq. (1.11), we can find that the angle between an optical axis and 

the z-axis named Vz varies with the angular frequency ω as follows: 

                                               𝑠𝑖𝑛2𝑉𝑧(𝜔) =
𝑛𝑦
−2(𝜔)−𝑛𝑥

−2(𝜔)

𝑛𝑧
−2(𝜔)−𝑛𝑥

−2(𝜔)
                                                                              (1.13) 

1.2.5 Spatial walk-off  

When an electromagnetic wave at the angular frequency 𝜔 propagates in the direction 

of propagation  𝑢⃗  of the dielectric frame, there are two possible electric field vectors 

𝐸⃗ +(𝜔, 𝜃, 𝜑)  and  𝐸⃗ −(𝜔, 𝜃, 𝜑) . They correspond to the two unit electric field 

vectors 𝑒 +(𝜔, 𝜃, 𝜑) and 𝑒 −(𝜔, 𝜃, 𝜑) that define two polarization states of light.  

There are also two possible magnetic field vectors 𝐻⃗⃗ +(𝜔, 𝜃, 𝜑)  and  𝐻⃗⃗ −(𝜔, 𝜃, 𝜑) 

corresponding to the two unit vectors  ℎ⃗ +(𝜔, 𝜃, 𝜑) and  ℎ⃗ −(𝜔, 𝜃, 𝜑), and two possible 

electrical displacement vectors 𝐷⃗⃗ +(𝜔, 𝜃, 𝜑) and  𝐷⃗⃗ −(𝜔, 𝜃, 𝜑) corresponding to the unit 

vectors 𝑑 +(𝜔, 𝜃, 𝜑) and 𝑑 −(𝜔, 𝜃, 𝜑). 

According to Eq. (1.3), the unit vectors  𝑑 ±(𝜔, 𝜃, 𝜑) and 𝑒 ±(𝜔, 𝜃, 𝜑) are in the same 

plane but non collinear to each other. Their directions make angles called the walk-off 

angles defined by [3]: 

) ) 
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                           𝜌±(𝜔, 𝜃, 𝜑) = 𝑎𝑟𝑐𝑐𝑜𝑠[𝑒 ±(𝜔, 𝜃, 𝜑) • 𝑑 ±(𝜔, 𝜃, 𝜑)]                                                (1.14) 

where • is a scalar product. Similarly, the energy flux is described by the two following 

Poynting vectors 𝑆 ±(𝜔, 𝜃, 𝜑): 

                                   𝑆 ±(𝜔, 𝜃, 𝜑) = 𝐸⃗ ±(𝜔, 𝜃, 𝜑) ⨯ 𝐻⃗⃗ ±(𝜔, 𝜃, 𝜑)                                                         (1.15) 

According to Eq. (1.15), the unit Poynting vectors 𝑠 ±(𝜔, 𝜃, 𝜑) are perpendicular to both 

the unit vectors 𝑒 ±(𝜔, 𝜃, 𝜑) and ℎ⃗ ±(𝜔, 𝜃, 𝜑).  

 

Furthermore the unit vectors, 𝑠 ±(𝜔, 𝜃, 𝜑),  𝑒 ±(𝜔, 𝜃, 𝜑) and ℎ⃗ ±(𝜔, 𝜃, 𝜑)  all propagate 

along the two possible wave vectors expressed as: 

                                       𝑘⃗ ±(𝜔, 𝜃, 𝜑) = (
𝜔

𝑐
)𝑛±(𝜔, 𝜃, 𝜑)𝑢⃗ (𝜃, 𝜑)                                                             (1.16) 

where 𝑛+(𝜔, 𝜃, 𝜑) and 𝑛−(𝜔, 𝜃, 𝜑) are the refractive indices given by Eq. (1.11). But 

according to Maxwell’s equations, only ℎ⃗ ±(𝜔, 𝜃, 𝜑) and 𝑑⃗⃗⃗  ±(𝜔, 𝜃, 𝜑) are perpendicular 

to 𝑘⃗ ±(𝜔, 𝜃, 𝜑).  

 

Figure 1.4(a) shows their orientation for a direction of propagation 𝑢⃗  of the dielectric 

frame. As an example it is detailed in Figure 1.4(b) in the x-z (= y-z) principal plane of a 

positive uniaxial crystal, when taking into account the two sheets of the index surface.  

 

As highlighted in Figure 1.4(b), the walk-off angles are also defined as follows [4]: 

                              𝜌±(𝜔, 𝜃, 𝜑) = 𝑎𝑟𝑐𝑐𝑜𝑠 [
𝑆 ±(𝜔,𝜃,𝜑)

‖𝑆 ±(𝜔,𝜃,𝜑)‖
•

𝑘⃗ ±(𝜔,𝜃,𝜑)

‖𝑘⃗ ±(𝜔,𝜃,𝜑)‖
]                                                  (1.17) 

 

Figure 1.4: Orientation between the fields unit vectors and walk-off angles for a direction of propagation 

u⃗  (a) of the dielectric frame and (b) of the y-z (= x-z) plane of a positive uniaxial crystal.   
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The Poynting vector is always normal to the ordinary index sheet as is it the case for the 

wave vector (see for example Figure 1.4(b)) [3]. Then Eq. (1.17) shows that all spatial 

walk-off angles are equal to zero in the x-y principal plane of uniaxial crystals where 

both sheets of the index surface are circular i.e. 𝜌±(𝜔, 𝜑) = 0. Only one spatial walk-

off angle is equal to zero in the other principal planes of uniaxial crystals and in all 

principal planes of biaxial crystals where one sheet is circular.    

 

Otherwise, the spatial walk-off angle is generally different from zero for the elliptical 

sheets (see for example Figure 1.4(b)). It reaches a maximal value when the direction of 

propagation is oriented at 45° from any principal axis but vanishes to zero along the 

three principal axes of the dielectric frame x, y or z. 

 

For the elliptical sheet it can be written at the angular frequency 𝜔 as follows [3]: 

                                 𝜌𝑙𝑚(𝜔, 𝛼) = 𝑎𝑟𝑐𝑐𝑜𝑠 [
[𝑛𝑚
2 (𝜔)/𝑛𝑙

2(𝜔)]𝑐𝑜𝑠2𝛼+𝑠𝑖𝑛2𝛼

[𝑛𝑚
4 (𝜔)/𝑛𝑙

4(𝜔)]𝑐𝑜𝑠2𝛼+𝑠𝑖𝑛2𝛼
]                                              (1.18)                  

with l, m = x, y or z and α = θ or φ. 

 

Then in the (x-z) = (y-z) principal plane of a positive uniaxial crystal where α = θ, 

𝜌+(𝜔, 𝜃) = 𝜌𝑜𝑒(𝜔, 𝜃)  and 𝜌−(𝜔, 𝜃) = 0;  But 𝜌−(𝜔, 𝜃) = 𝜌𝑜𝑒(𝜔, 𝜃)  and 𝜌+(𝜔, 𝜃) =

0 for a negative uniaxial crystal.   

 

Eq (1.18) can be used to describe 𝜌±(𝜔, 𝜃, φ)  in the three l-m principal planes of 

positive biaxial crystals and all possibilities are summarized in Table 1.1.  

 

Note that Table 1.1 can also be applied to a negative biaxial crystal after exchanging all 

the signs (+) and (-). 

 

According to the previous properties of the walk-off angle taking into account the index 

surface, 𝜌±(𝜔, 𝜃, 𝜑)  also correspond to the angles between the unit Poynting vectors 

𝑠 −(𝜔, 𝜃, 𝜑) and 𝑠 +(𝜔, 𝜃, 𝜑) in the principal planes of uniaxial or biaxial crystals where 

it is also defined by [3]: 

                           𝜌±(𝜔, 𝜃, 𝜑) = 𝑎𝑟𝑐𝑐𝑜𝑠[𝑠 −(𝜔, 𝜃, 𝜑) • 𝑠 +(𝜔, 𝜃, 𝜑)]                                           (1.19) 

For example, it is 𝜌+(𝜔, 𝜃) = 𝜌𝑜𝑒(𝜔, 𝜃) in Figure 1.4(b) describing a positive uniaxial 

crystal.  
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Principal 

plane l-m 

𝑒 − 𝑒 + ± 𝜌∓ 

x-y 

 

   𝑒𝑥
𝑜 = −𝑠𝑖𝑛[𝜑 + 𝜌−(𝜔,𝜑)] 

𝑒𝑦
𝑜 = 𝑐𝑜𝑠[𝜑 + 𝜌−(𝜔, 𝜑)] 

     𝑒𝑧
𝑜 = 0 

𝑒𝑥
𝑒 = 0 

𝑒𝑦
𝑒 = 0 

𝑒𝑧
𝑒 = 1 

+𝜌−(𝜔, 𝜑) = 𝜌𝑙=𝑦,𝑚=𝑥(𝜔, 𝜑) 

and 𝜌+(𝜔, 𝜑) = 0 

y-z 

 

𝑒𝑥
𝑜 = −1 

𝑒𝑦
𝑜 = 0 

𝑒𝑧
𝑜 = 0 

𝑒𝑥
𝑒 = 0 

𝑒𝑦
𝑒 = −𝑐𝑜𝑠[𝜃 − 𝜌+(𝜔, 𝜃)] 

𝑒𝑧
𝑒 = 𝑠𝑖𝑛[𝜃 − 𝜌+(𝜔, 𝜃)] 

−𝜌+(𝜔, 𝜃) =

𝜌𝑙=𝑦,𝑚=𝑧(𝜔, 𝜃) and 

𝜌−(𝜔, 𝜃) = 0 

 x-z  

(0°<θ<𝑉𝑧) 

𝑒𝑥
𝑒 = −𝑐𝑜𝑠[𝜃 − 𝜌−(𝜔, 𝜃)] 

𝑒𝑦
𝑒 = 0 

𝑒𝑧
𝑒 = 𝑠𝑖𝑛[𝜃 − 𝜌−(𝜔, 𝜃)] 

𝑒𝑥
𝑜 = 0; 

𝑒𝑦
𝑜 = 1; 

𝑒𝑧
𝑜 = 0 

−𝜌−(𝜔, 𝜃) = 𝜌𝑙=𝑥,𝑚=𝑧(𝜔, 𝜃) 

and 𝜌+(𝜔, 𝜃) = 0 

x-z 

(𝑉𝑧<θ<90°) 

𝑒𝑥
𝑜 = 0; 

𝑒𝑦
𝑜 = −1; 

𝑒𝑧
𝑜 = 0 

𝑒𝑥
𝑒 = −𝑐𝑜𝑠[𝜃 − 𝜌+(𝜔, 𝜃)] 

𝑒𝑦
𝑒 = 0 

𝑒𝑧
𝑒 = 𝑠𝑖𝑛[𝜃 − 𝜌+(𝜔, 𝜃)] 

−𝜌+(𝜔, 𝜃) = 𝜌𝑙=𝑥,𝑚=𝑧(𝜔, 𝜃) 

and 𝜌−(𝜔, 𝜃) = 0 

 

Table 1.1: Analytical expressions of the walk-off angles 𝜌±(𝜔, 𝜃, 𝜑) and the electric field unit vectors 

𝑒 ±(𝜔, 𝜃, 𝜑) in the three principal planes of a positive biaxial crystal. It can be used to describe a negative 

biaxial crystal after exchanging all the signs (+) and (-).     

1.2.6 Polarization states  

The components of the electric field unit vectors e⃗⃗ +(ω, θ, φ) and e⃗ −(ω, θ, φ) can be 

determined along the direction of propagation u⃗ (θ,φ) by projecting the propagation 

equation (1.7) along the three principal axes of the optical frame, with the relation 

 (𝑒𝑥
±)2 + (𝑒𝑦

±)2 + (𝑒𝑧
±)2 = 1. Three equations related to (𝑒𝑥 , 𝑒𝑦, 𝑒𝑧) and (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) are 

then obtained as a function of the angles of spherical coordinates. They write [3]: 

 

        (𝑛±(𝜔, 𝜃, 𝜑))2(𝑒𝑝
± − 𝑢𝑝(𝜃, 𝜑)[𝑢𝑥(𝜃, 𝜑)𝑒𝑥

± + 𝑢𝑦(𝜃, 𝜑)𝑒𝑦
± + 𝑢𝑧(𝜃, 𝜑)𝑒𝑧

±] = (𝑛𝑝(𝜔))
2𝑒𝑝

±            (1.20) 

 

where 𝑝 = 𝑥, 𝑦 or 𝑧 and  𝑢𝑥, 𝑢𝑦, 𝑢𝑧  are given by Eq. (1.9). The refractive indices 

𝑛±(𝜔, 𝜃, 𝜑)  can be calculated in the direction of propagation 𝑢⃗ (𝜃, 𝜑) by using Eq. 

(1.11) and knowing the principal refractive indices 𝑛𝑝(𝜔). 

In the case of a uniaxial crystal, the two electric field unit vectors  𝑒⃗⃗ −(𝜔, 𝜃, 𝜑) 

and 𝑒 +(𝜔, 𝜃, 𝜑) correspond to the ordinary or extraordinary electric field unit vectors 

 𝑒⃗⃗ 𝑜(𝜔, 𝜃, 𝜑) and 𝑒 𝑒(𝜔, 𝜃, 𝜑) defined by the following analytical expressions [3]: 

                                                    𝑒 𝑜 = (
−𝑠𝑖𝑛𝜑
+𝑐𝑜𝑠𝜑
0

)                                                                                                     (1.21)                  

                                 𝑒 𝑒 = (

−𝑐𝑜𝑠[𝜃 ± ρ∓(ω, θ) ] • 𝑐𝑜𝑠𝜑

−𝑐𝑜𝑠[𝜃 ± ρ∓(ω, θ)] • 𝑠𝑖𝑛𝜑

𝑠𝑖𝑛[𝜃 ± ρ∓(ω, θ)]

)                                                                        (1.22)               

According to Eq. (1.21) and (1.22), the two polarization states of light are linear in a crystal 
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from the uniaxial optical class. For the positive uniaxial optical class, 𝑒 − = 𝑒 𝑜 , 𝑒 + = 𝑒 𝑒 

and ± 𝜌∓(ω, θ) = − 𝜌+(ω, θ) ; But for the negative uniaxial optical class, 𝑒 − =

𝑒 𝑒 , 𝑒 + = 𝑒 𝑜 and ± 𝜌∓(ω, θ) = +𝜌−(ω, θ) , 𝜌±(ω, θ) standing for the optical walk-off 

angles detailed in part 1.2.5.  

 

In the principal planes of a biaxial crystal, the two electric field unit 

vectors  𝑒⃗⃗ −(𝜔, 𝜃, 𝜑) and 𝑒 +(𝜔, 𝜃, 𝜑) are as a function of the ordinary or extraordinary 

unit electric field vectors, according to the analytical expressions summarized in Table 

1.1.  

 

Finally, in any direction of a uniaxial crystal, and in the principal planes of a biaxial 

crystal, Eq (1.21), Eq.(1.22) and Table 1.1 show that the electric field unit vectors 

𝑒 +(𝜔, 𝜃, 𝜑) and  𝑒 −(𝜔, 𝜃, 𝜑)  remain always tangent to the index sheet (+) and (-) 

respectively.  Furthermore, 𝑒 +(𝜔, 𝜃, 𝜑) is always orthogonal to 𝑒 −(𝜔, 𝜃, 𝜑).  

 

Out of the principal planes of a biaxial crystal, 𝑒 +(𝜔, 𝜃, 𝜑) • 𝑒 −(𝜔, 𝜃, 𝜑) = 0 is not 

fulfilled and the expressions of the two electric field unit vectors that are solutions of Eq. 

(1.20) become numerical. 

 

1.3 Nonlinear optics 

1.3.1 Nonlinear induced polarization  

With the advent of lasers, the available power density is much higher than what could 

be produced by any conventional source. When the power density of the exciting 

electric field is greater than about 1 𝑀𝑊/𝑐𝑚2 , it is possible to detect with current 

detectors the nonlinear optical phenomena, leading to a great variety of applications. 

Provided the power density remains lower than the 𝑇𝑊/𝑐𝑚2, each Fourier component 

of the induced polarization P⃗⃗  of the medium can be developed in a Taylor power series 

of the applied electric field E⃗⃗  at the position 𝑟  as follows [3]: 

                                                                    (1.23) 

χ(2) and χ(3) are the second- and third-order electric susceptibilities that are third- and 

fourth-rank tensors, respectively. The dots ( ,:, )   stand for contracted products, while ⊗ 

are tensor products. The first term in Eq. (1.23) corresponds to the polarization 

governing linear optics, and the two other terms govern the nonlinear second- and third-

order optical properties respectively.  
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In this work, only the second-order nonlinear optics is considered. It corresponds to the 

interaction between three electromagnetic waves at the angular 

frequencies  ω1, ω2, and ω3 , with the energy conservation relation and the following 

relation of order: 

                                                                                              1 2 3

1 2 3( )

  

  



 




                                                                                               (1.24) 

The second-order induced polarization at each angular frequency is then expressed at 

the position 𝑟  as: 

                                                                                                  (1.25) 

where  𝐸⃗ ∗(𝜔𝑖) =𝐸⃗ (−𝜔𝑖)  and 𝑖 = 1,2,3 . Eq. (1.25) shows 3 possible frequency 

conversion processes allowed in a nonlinear crystal, i.e. from top to down:   

Difference-frequency generation between ω3 and ω2, written DFG (ω1 = ω3 −ω2); 

Difference-frequency generation between ω3  and ω1  written DFG  (ω2 = ω3 −ω1) ; 

Sum-frequency generation between ω1 and ω2 written SFG (ω3 = ω1 +ω2).  

 

For example, Figure 1.5(a) and Figure 1.5(b) give the schemes of DFG (ω1 = ω3 −

ω2) and SFG (ω3 = ω1 +ω2) respectively, in a crystal cut at the phase-matching (PM) 

angle (θPM, φPM ). The degenerate case of sum-frequency generation, for which ω2 =

ω1 = ω  and  ω3 = 2ω,  is called second-harmonic generation, SFG, is written SHG 

(2ω = ω +ω).  

 

Figure 1.5: DFG  (ω1 = ω3 − ω2)  (a) and SFG (ω3 = ω1 + ω2) (b). 𝜃𝑃𝑀 and  𝜑𝑃𝑀 represent the 

corresponding phase-matching angles.  

,PM PM  ,PM PM 

) ) 
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The second-order electric susceptibility tensor χ(2)(ωi) has 27 independent elements in 

the general case [3]. Neumann principle allows some elements to equal to zero and the 

others which magnitudes to be equal or of opposite sign. Furthermore, in the case of low 

absorption and low dispersion at the considered angular frequencies, Kleinman’s 

conditions reduce more the number of independent non-zero elements [4]. The tensor 

χ(2)(ωi) of the crystals studied in present work will be detailed in chapters 3 and 4. 

 

The electric second-order susceptibility tensor also depends on the angular frequency, 

which is well described by Miller’s rule arising from the Lorentz model, i.e. [5]: 

                                               
(2) (1) (1) (1)

1 2 1 2 1 2( ) ( ) ( ) ( )ijk ijk ii jj kk                                                          (1.26) 

δijk is called the Miller index, which does not depend on the angular frequency. From 

Eq. (1.26), it is possible to calculate the value of any 𝜒𝑖𝑗𝑘
(2)

 coefficient at any angular 

frequency ωA = ωA1 ±ωA2 knowing the value of this coefficient at a given angular 

frequency ωB = ωB1 ±ωB2 as well as the values of the principal refractive indices at 

all the angular frequencies that are concerned. 𝜒𝑖𝑗𝑘
(2)

  and  𝜒𝑖𝑗𝑘
(2)

 are related by the relation 

[5]: 

                      

(1) (1) (1)

1 2(2) (2)

1 2 1 2 (1) (1) (1)

1 2

( ) ( ) ( )
( ) ( ).

( ) ( ) ( )

ii A jj A kk A

ijk A A A ijk B B B

ii B jj B kk B

     
       

     


    


                          (1.27) 

Where χaa
(1)(𝜔) = na

2(𝜔) − 1 (a = i, j and k). 

 

1.3.2 Propagation equation 

According to Eqs. (1.6), (1.23) and (1.25), the propagation equation of each interacting 

wave is written at the position r ⃗⃗  and the angular frequency ωi as [4]: 

                                                                
2

(2)
2

2
( ) ( ) ( ) ( )i

i r i i i o iE E P
c


                                                        (1.28) 

with i = 1, 2 or 3 and the symbols ∙ and × standing for contracted and vector products 

respectively. Then three propagation equations are coupled by the Fourier components 

of the nonlinear polarization P⃗⃗ (2)(ω1), P⃗⃗ 
(2)(ω2)  and P⃗⃗ (2)(ω3) given by Eq. (1.25).  

When studying a collinear interaction between the three interacting waves, it leads to 

the variation of three complex amplitudes E⃗⃗ (ωi) along the same spatial coordinate Z-
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axis that is collinear to the direction of propagation unit vector u⃗ (θ, φ). Note that Z-axis 

is from the laboratory frame (X, Y, Z) that is different from the dielectric frame (x, y, z).  

In the slowly varying envelope approximation, which corresponds to a small variation 

of the wave amplitudes over one wavelength, it is possible to get the three following 

coupled equations: 

                             

{
 
 

 
 
𝜕𝐸(𝜔1,𝑍)

𝜕𝑍
= 𝑗κ1𝜒𝑒𝑓𝑓𝐸(𝜔3, 𝑍)𝐸

∗(𝜔2, 𝑍)exp (𝑗∆𝑘𝑍)

𝜕𝐸(𝜔2,𝑍)

𝜕𝑍
= 𝑗κ2𝜒𝑒𝑓𝑓𝐸(𝜔3, 𝑍)𝐸

∗(𝜔1, 𝑍)exp (𝑗∆𝑘𝑍)

𝜕𝐸(𝜔3,𝑍)

𝜕𝑍
= 𝑗κ3𝜒𝑒𝑓𝑓𝐸(𝜔1, 𝑍)𝐸(𝜔2, 𝑍)exp (−𝑗∆𝑘𝑍)

                                        (1.29)                  

With κi =
ωi

2cε0n(ωi,θ,φ)cos
2ρ(ωi,θ,φ)

, χeff is the effective coefficient. 

 

The product ∆kZ is the phase-mismatch between the nonlinear polarization, P⃗⃗ (2)(ωi), 

and the electric field , E⃗⃗ (ωi),  radiated by the nonlinear polarization it-self. Since 

studying a collinear interaction, ∆k =𝑘±(ω3, 𝜃, 𝜑) − 𝑘
±(ω1, 𝜃, 𝜑) − 𝑘

±(ω2, 𝜃, 𝜑) with 

𝑘±(ωi, 𝜃, 𝜑) defined by Eq. (1.16).   

 

1.3.3 Energy of the generated wave 

We consider here the example of the energy generated by SFG (ω3 = ω1 +ω2) under 

the undepleted pump approximation. It means that the variation of the amplitude of the 

electric fields at the angular frequencies ω1 and ω2 is negligible along the propagation 

direction Z. Then E(ω1, Z) ≃ E(ω1, 0) and E(ω2, Z) ≃ E(ω2, 0), and the energy of the 

generated wave at the angular frequency ω3 is given by: 

               𝜀(𝜔3, 𝑍) = 𝛽
𝐴

𝜆1𝜆2
𝐺(𝑍,𝑤𝑜 , 𝜌)𝜒𝑒𝑓𝑓

2 𝜀(𝜔1, 0)𝜀(𝜔2, 0)𝑍
2𝑠𝑖𝑛𝑐2(

∆𝑘𝑍

2
)                           (1.30)                  

with                                                   𝐴 =
𝑇±(𝜔3,𝜃,𝜑)𝑇

±(𝜔1,𝜃,𝜑)𝑇
±(𝜔2,𝜃,𝜑)

𝑛±(𝜔3,𝜃,𝜑)𝑛±(𝜔1,𝜃,𝜑)𝑛±(𝜔2,𝜃,𝜑)
                                                                    (1. 31)                  

β is the coefficient related with the geometry and cross-section of all the beams, and 

λi = 2πc/ωi (i = 1, 2 or 3)  is the wavelength of the input beams. T±(ωi, θ, 𝜑) =

4n±(ωi, θ, 𝜑)/(n
±(ωi, θ, 𝜑) + 1)

2 stands for the transmission coefficient. n±(ωi, θ, 𝜑) 

are the refractive indices expressed by Eq. (1.11). G is the spatial walk-off attenuation 

that will be defined in detail in part 1.3.7. 
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1.3.4 Effective coefficient 𝛘𝒆𝒇𝒇 

Eq. (1.30) shows that the effective coefficient χeff is a very important parameter in the 

expression of the energy of the generated wave. The effective coefficient depends both 

on the polarization modes of the three interacting waves and on the second-order 

electric susceptibility of the crystal. For example, it comes for SFG [6]: 

        𝜒𝑒𝑓𝑓(𝜔3, 𝜔1, 𝜔2, 𝜃, 𝜑) = 𝑒 ±(𝜔3, 𝜃, 𝜑) ∙ [𝜒
(2)(𝜔3 = 𝜔1 +𝜔2): 𝑒 

±(𝜔1, 𝜃, 𝜑) ⊗ 𝑒 ±(𝜔2, 𝜃, 𝜑)]      (1.32)                  

The dots ∙ and : stand for contracted products, and ⊗ is the tensor product. The vectors  

e⃗ ±(ωi, θ, φ)  with i = 1,2 or 3  correspond to the unit electric field vectors of the 

interacting waves given in part 1.2.6. Then, Eq. (1.32) can be also written: 

𝜒𝑒𝑓𝑓(𝜔3, 𝜔1, 𝜔2, 𝜃, 𝜑) = ∑ 𝑒 𝑖
±(𝜔3, 𝜃, 𝜑)𝜒𝑖𝑗𝑘

(2)(𝜔3 = 𝜔1 +𝜔2)𝑒 𝑗
±(𝜔1, 𝜃, 𝜑)𝑒 𝑘

±(𝜔2, 𝜃, 𝜑)𝑖𝑗𝑘    (1.33) 

The indices i, j and k correspond to the Cartesian indices x, y or z. ei
±, ej

± and ek
± are the 

Cartesian coordinates of the unit electric field vectors of the three interacting waves. 

Then for SFG, the effective coefficient is related to the polarization configuration and 

also to the non-zero elements of the tensor χ(2) at the generated angular frequency ω3. 

The notation deff = χeff/2 will be also used in the following chapters.  

 

Note that the polarization state of the three interacting waves, can be described by a 

field tensor defined as [6]: 

                 𝐹(2)(𝜔3, 𝜔1, 𝜔2, 𝜃, 𝜑) = 𝑒 ±(𝜔3, 𝜃, 𝜑)⊗ 𝑒 ±(𝜔1, 𝜃, 𝜑) ⊗ 𝑒 ±(𝜔2, 𝜃, 𝜑)        (1.34) 

 F(2) is also a second-order tensor with 27 elements and can be also written: 

                        𝐹𝑖𝑗𝑘
(2)(𝜔3, 𝜔1, 𝜔2, 𝜃, 𝜑) = 𝑒 𝑖

±(𝜔3, 𝜃, 𝜑)𝑒 𝑗
±(𝜔1, 𝜃, 𝜑)𝑒 𝑘

±(𝜔2, 𝜃, 𝜑)                 (1.35) 

Then, according to Eq. (1.33), (1.34) and (1.35), the effective coefficient becomes: 

           𝜒𝑒𝑓𝑓(𝜔3 = 𝜔1 + 𝜔2, 𝜃, 𝜑) = 𝜒
(2)(𝜔3) ∙ 𝐹

(2)(𝜔3, 𝜔1 , 𝜔2, 𝜃, 𝜑) = ∑ 𝜒𝑖𝑗𝑘
(2)

𝑖𝑗𝑘 (𝜔3)𝐹𝑖𝑗𝑘
(2)
(𝜔3, 𝜔1, 𝜔2, 𝜃, 𝜑)        (1.36) 

1.3.5 Birefringence phase-matching  

According Eq. (1.30), the generated energy at the angular frequency ω3 is shown in 

Figure 1.6 as a function of the interactive length Z, in the cases of ∆k = 0 and ∆k ≠ 0. 

When ∆k ≠ 0, there is a reversal of the energy flow among the interactive waves with a 

spatial period Lc = π/∆k defined as the coherent length. This is out of phase-matching 

condition and it is not interesting for applications.  
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Figure 1.6: The generated energy at the angualr frequency ω3 as a function of the interactive length Z out 

of phase-matching (∆k ≠ 0) and under phase-matching (∆k = 0) conditions. 𝐿𝑐  is the coherent length.  

 

When ∆k = 0, the energy flow between the interactive waves does not alternate in sign, 

so that the generated energy grows continuously as the square of the interacting length Z. 

It is of special interest for applications and ∆k = 0 is called phase-matching condition.  

 

Phase-matching condition, from the classical point of view, corresponds to the 

interference between the nonlinear polarization and the field that it radiates is 

constructive. From the quantum point of view, it corresponds to the momentum 

conservation.  

 

In anisotropic crystals with a collinear three waves interaction, the phase-matching 

condition can be written as follows: 

            ∆𝑘 = 𝑘±(𝜔3, 𝜃𝑃𝑀 , 𝜑𝑃𝑀) − 𝑘
±(𝜔1, 𝜃𝑃𝑀 , 𝜑𝑃𝑀) − 𝑘

±(𝜔2, 𝜃𝑃𝑀, 𝜑𝑃𝑀) = 0             (1.37) 

Where PM stands for phase-matching and (𝜃𝑃𝑀, φ𝑃𝑀) are the phase-matching angles. 

By using Eq. (1.16), the phase-matching condition can be also expressed as a function 

of the refractive indices along the phase-matching direction 𝑢⃗ 𝑃𝑀(𝜃𝑃𝑀, φ𝑃𝑀) as: 

         𝜔3𝑛
±(𝜔3, 𝜃𝑃𝑀 , 𝜑𝑃𝑀) − 𝜔1𝑛

±(𝜔1, 𝜃𝑃𝑀 , 𝜑𝑃𝑀) − 𝜔2𝑛
±(𝜔2, 𝜃𝑃𝑀, 𝜑𝑃𝑀) = 0            (1.38) 

In uniaxial or biaxial crystals, each refractive index can exhibit two possible values as 

described in part 1.2.4, so that the birefringence can be used to compensate the 

dispersion, which is called “birefringence phase-matching”. As a result, there are 23 

different possible relations from Eq. (1.38) to satisfy the birefringence phase-matching 

condition. According to part 1.2.6, they correspond to 8 possible configurations of 

polarization of the three interacting waves.  

Among them, just 3 relations are compatible with the combination of the momentum 
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conservation, the energy conservation, and the normal dispersion [6]. They are called 

interaction type and labeled type I, type II and type III. They are defined in Table 1.2: 

 

Birefringence  
phase-matching relation 

Interaction type 

SFG (ω3) DFG(ω1) DFG(ω2) 

ω3𝑛3
− ω1𝑛1

+ ω2𝑛2
+ = 0 I II III 

ω3𝑛3
− ω1𝑛1

− ω2𝑛2
+ = 0 II III I 

ω3𝑛3
− ω1𝑛1

+ ω2𝑛2
− = 0 III I II 

Table 1.2: Definition of the interaction type versus the birefringence phase-matching relation according to 

sum-frequency generation (SFG) and difference-frequency generation (DFG). 𝑛𝑖
± = 𝑛±(ωi, θ𝑃𝑀 , 𝜑𝑃𝑀) 

with i= 1, 2, 3. 

 

The interaction type is valid for SFG (ω3), DFG(ω1) and DFG(ω2). For type I the two 

input waves have the same polarization, but they are different for types II and III. 

Obviously, for SHG corresponding to SFG (ω1 = ω2 = ω,ω3 = 2ω), types II and III 

are equivalent. 

 

1.3.6 Acceptances 

We consider here a collinear birefringence phase-matching condition at room 

temperature in a crystal of length L. It is achieved along a phase-matching direction 

(θPM, φPM) and at a given set of angular frequencies (ω1, ω2, ω3) corresponding to 

wavelengths (λ1, λ2, λ3). PM stands for phase-matching.  

 

We are interested in the effect of a variation of the generated energy from a phase-

matching condition i.e. from ∆k = 0 for which this energy is maximal. It is due to 

variations of ξ from ξPM i.e ξPM ±dξ  which stands for the variation of any wavelength 

λi
PM ± dλi with i = (1,2,3) or angle θPM ± dθ or φPM ± d. The normalized generated 

energy as a function of ξ = θ, φ, λ, can be calculated by using Eq. (1.30) and Eq. (1.37). 

 It is plot in Figure 1.7 showing a bandwidth δξ that corresponds to the full width of the 

normalized generated energy curve plotted as a function of ξ = θ, φ, λ,  at 0.405 of the 

maximum. δξ is also the bandwidth between the origin and the first zero value of the 

normalized generated energy.  
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Figure 1.7: Normalized generated energy evolution as a function of ξ for a given crystal length L. ξPM 

represents the parameter allowing phase-matching condition; ξ is the angle (θ or φ) or the wavelength 

(λ). δξ is the full-width of the curve at 0.405 of the maximum, corresponding to a phase-mismatch 

∆k = ±2π/L [3].  

  

The acceptance is 𝐿δξ (ξ = θ, φ, λ). It is also defined as the deviation from the phase-

matching value ξPM leading to a phase-mismatch variation ∆k from 0 to ±2π/L, where 

L is the crystal length [3]. When ξ = (θ,φ) the acceptances Lδθ and Lδφ correspond to 

the angular acceptances; when ξ = λ, Lδλ is the spectral acceptance. 

 

The acceptance Lδξ can be calculated by expanding ∆k in a Taylor series about ξPM: 

                            ∆k( ξPM) =
2π

L
= δξ

∂∆k

∂ξ
|
ξ= ξPM

+
1

2
(δξ)2

∂2∆k

∂ξ2
|
ξ= ξPM

+⋯                              (1.39) 

When the second- and higher-order differential terms in Eq. (1.39) are negligible, it is 

called critical phase-matching (CPM), and the corresponding acceptance is written as: 

                                                             Lδξ =
2π

∂∆k

∂ξ
|
ξ= ξPM

                                                                                             (1.40) 

When  ∂(∆k)/ ∂ξ|ξPM = 0 , which is called non-critical phase-matching (NCPM), we 

need to consider the second-order differential term. The corresponding acceptance is 

then written as: 

                                                        Lδξ =
√

4πL

∂2∆k

∂ξ2
|
ξ= ξPM

                                                                                              (1.41) 

1.3.7 Spatial walk-off and attenuation 

In uniaxial and biaxial crystals, the angular non-critical phase-matching (ANCPM) can 
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be accessible only along the principal axes of the dielectric frame. It is also the case in 

the x-y principal plane of a uniaxial crystal. As discussed in part 1.2.5, along all these 

directions of propagation, the spatial walk-off angles are equal to zero. Then no spatial 

walk-off attenuation is expected and the overlap between the beams of the three 

interacting is complete inside the crystal length L.  

 

According to Eq. (1.30), it means no attenuation effect of the spatial walk-off angles on 

the conversion efficiency defined at the output of the crystal by η =
𝜀(𝜔3,𝐿)

𝜀(𝜔1,0)+𝜀(𝜔2,0)
  for 

ANCPM directions. This effect takes place through G(L,ωo, ρ) that is equal to 1. 

  

For all other directions where the phase-matching is critical angularly (ACPM), the 

three interacting waves propagate with different spatial walk-off angles. Then their 

beams are separated after an interactive length that can be smaller than the crystal length 

L. In that case, it is necessary to consider the effect of the spatial walk-off angles 

leading to an attenuation of the conversion efficiency η defined above that is evaluated 

by the factor G(L,ωo, ρ) of Eq. (1.30).  

 

To evaluate this factor G, we propose to consider as an example ACPM type I and type 

II SHG occurring out of the x-y principal plane of a positive uniaxial nonlinear crystal, 

or in y-z plane of a positive biaxial crystal. The beams of the three interacting waves are 

depicted in Figure 1.8(a) and 1.8(b) for type I and type II SHG respectively, according 

to Table 1.2. The parameters r and u are the Cartesian coordinates in the plane, where u 

is collinear with the three wave vectors.  

Figure 1.8 show two fundamental beams and the harmonic beams propagating 

respectively with the collinear wave vectors k⃗ −,𝑜(𝜔, θPM, φPM) , k⃗ 
+,𝑒(𝜔, θPM, φPM) and  

k⃗ −,𝑜(2𝜔, θPM, φPM); However there is a spatial walk-off angle limiting the interacting 

length inside the crystal length L. It is given by Eq. (1.19).  

 

(a)                                                                            (b) 

Figure 1.8: Beam separation in the case of type I(a) and II(b) ACPM SHG.  k⃗ −,o(ω, θPM, φPM) , 

k⃗ +,e(ω, θPM, φPM) and  k⃗ −,o(2ω, θPM, φPM) are the three associated wave-vectors;  S⃗ −,𝑜(𝜔, θPM, φPM), 

S⃗ +,𝑒(𝜔, θPM, φPM) and S⃗ −,𝑜(2𝜔, θPM, φPM)  are the two fundamental and the harmonic Poynting 

vectors.W𝑜 is the fundamental beam radius and ρ is the spatial walk-off angle.    
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For type I, the Poynting vector is  S⃗ +,𝑒(𝜔, θPM, φPM) for the two fundamental beams 

and it is oriented at the spatial walk-off angle from the Poynting vector of the harmonic 

beam S⃗ −,𝑜(2𝜔, θPM, φPM). Then the corresponding 𝐺𝐼(L, ωo, ρ) factor in Eq. (1.30) is 

expressed as [7]: 

                           
GI(t) = (

√π

t
) erf(t) − (

1

t2
)[1 − exp (−t2)]

with   t = (
ρL

Wo
)  and erf(x) = (

2

√π
) ∫ exp (−t2)dt

x

0

                                      (1.42) 

For type II, the Poynting vectors of one fundamental beam and of the harmonic beam, 

S⃗ +,𝑜(𝜔, θPM, φPM)  and S⃗ +,𝑜(2𝜔, θPM, φPM),  are collinear. But they are oriented at a 

spatial walk-off angle from the Poynting vector of the other fundamental beam 

S⃗ −,𝑒(𝜔, θPM, φPM). The 𝐺𝐼𝐼(L,ωo, ρ) is [7]: 

                           

GII(t) = (
2

√π
) ∫ F2(a, t)da

+∞

−∞

with  F(a, t) = (
1

t
) exp (−a2) ∫ exp[−(a + τ)2]dτ

t

0

a =
r

Wo
, τ =

ρu

Wo
, t =

ρL

Wo
 

                                    (1.43) 

 

1.3.8 Condition of supercontinuum generation 

There is a great interest for generating beams with a very broad bandwidth by Optical 

Parametric Generation (OPG) under phase-matching condition. In such a quadratic 

process, an incident pump beam at the angular frequency  ω3 generates in a nonlinear 

crystal a signal beam with angular frequency ω2 and an idler beam with angular 

frequencyω1 . The set of angular frequencies (ω1, ω2, ω3)  fulfill Eq. (1.24) and 

correspond to the set of wavelengths  (λ1, λ2, λ3). The nonlinear crystal is cut at the 

corresponding birefringence phase-matching (BPM) direction (θPM, φPM) given by Eq. 

(1.37).  

 

Under BPM conditions, the spectral acceptance for type II OPG is greater than for type I 

and type III [8]. Then for type II OPG, there is a “magical” pump angular frequency ω3
∗  

(or wavelength λ3
∗ ) leading to the broadest spectral bandwidth of the signal and Idler 

generated beams over the transparency range of the nonlinear crystal. Such broadest 

spectral bandwidth generation is called condition of supercontinuum generation.    

 

According to Table 1.2, Type II OPG corresponds to the following birefringence phase-

matching relation: 
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             ω3𝑛
−(ω3

∗ , θ𝑃𝑀 , 𝜑𝑃𝑀) − ω1𝑛
+(ω1, θ𝑃𝑀 , 𝜑𝑃𝑀) ω2𝑛

+(ω2, θ𝑃𝑀 , 𝜑𝑃𝑀) = 0                  (1.44) 

At the angular frequency ω3
∗/2 (the wavelength 2λ3

∗ ), the dispersion of the external 

index n+ of the nonlinear crystal has an inflection point [8]. Then it can be calculated by 

using Eq (1.11) with the Sellmeier equations describing the three principal refractive 

indices of the nonlinear crystal, and by solving the following equation [8]: 

                                                           
 d2𝑛+(𝜆,𝜃,𝜑)

𝑑𝜆2
|
2λ3

∗
= 0                                                                      (1.45) 

1.4 Summary  

The theoretical elements given in this chapter are of prime importance for understanding 

the experimental setup implemented for the study of new crystals that are presented in 

the next chapters and for the analysis of recorded data. 

 

This chapter reminded the main parameters to describe linear optics and the energy 

generated from quadratic processes, for angular frequencies located in the transparency 

range of nonlinear crystals. It mainly deals with the heart of this thesis: the index 

surface, the polarization states and spatial walk-off angles that govern crystal optics; 

The second-order susceptibility tensor and phase-matching condition that are two 

important parameters to consider for maximal conversion efficiencies.  

 

We are interested in birefringence phase-matching condition in uniaxial and biaxial 

nonlinear crystals from the compensation of the wavelength dispersion of their principal 

refractive indices by their birefringence. We discussed the associated spatial walk-off 

attenuation on the generated energies from frequency conversion and the condition of 

supercontinuum generation.  
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Chapter 2 Experimental methods 

 

2.1 Introduction  

This chapter describes the experimental methods and the corresponding setups used at 

Néel Institute to study linear and nonlinear optics in crystals. We also implemented two 

new methods for the present work that will be described in chapters 3 and 4. All allow 

to perform studies with a very high accuracy in samples shaped either as slabs or as 

spheres or cylinders. The used faces are oriented in the dielectric frame, polished to 

optical quality but uncoated. Shaping is a crucial step that relies on original homemade 

techniques available at Néel Institute. 

 

Methods for Linear optics studies in oriented slabs are first reported. They concern the 

transmission spectra recorded under polarized light and the optical damage threshold 

determined using a homemade setup. We also implemented a new method described in 

chapter 3, in order to measure the magnitude of principal refractive indices of crystals at 

one wavelength. Second Harmonic Generation (SHG) under angular critical phase-

matching (ACPM) conditions is also studied in slabs. From the recorded data we 

determine, the magnitude of non-zero elements of the second-order electric 

susceptibility, also called nonlinear coefficients as well as the associated spectral and 

angular acceptances. We also implemented another method for the determination of the 

magnitude of nonlinear coefficients out of phase-matching condition (see chapter 4). 

 

Then this chapter presents spheres and cylinders that are unique shapes for a direct 

study of the angular distribution of all optical properties. In the following the SPHERE 

method dealing with these samples is described [9]. It was proposed in 1989 by B. 

Boulanger. It is implemented in this work with specific incoming beams, optical 

elements and detectors according to the requested spectral ranges. It allows direct 

measurements as a function of wavelength of the spatial walk-off angles, the dielectric 

frame orientation and phase-matching condition: directions, associated conversion 

efficiencies, spectral and angular acceptances. 

 

Finally, this chapter focuses on the determination of the main parameters for frequency 

conversion detailed in chapter 1, from the recorded previous data. There will be a 

special interest for the Sellmeier equations describing the dispersion of the principal 

refractive indices as a function of wavelength, and the magnitude and relative sign of 

the non-zero elements of the second-order electric susceptibility. 
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2.2 Linear and nonlinear optics studies in slabs 

2.2.1 Slabs shaping  

The most current shape of crystals used to study their optical properties, is the slab with 

at least two parallel faces polished to optical quality. Note that no face is coated in the 

present work. Dealing with crystals from anisotropic optical classes (uniaxial and 

biaxial) the used faces must be cut oriented perpendicular to a direction of propagation 

from the dielectric frame (𝑥, 𝑦, 𝑧) with the best precision. The reason is that all optical 

properties are studied in this frame (see chapter 1). For linear optics, the unit vector of 

this direction of propagation 𝑢⃗  is given by any the spherical angle (θ,φ) and it usually 

corresponds to a phase-matching (PM) angle (θ𝑃𝑀, φ𝑃𝑀) for nonlinear optics. 

 

At first, a volume of an undefected crystal is selected by using a strioscopy and an 

ombroscopy method available at Néel Institute [10]. It is a crucial step for further 

successful optics studies. For example, there can be an effect of defects or crack, 

impurities or bubbles, on the optical damage threshold and the energy generated by 

frequency conversion. 

 

The best precision for cutting a crystal oriented in the dielectric frame (𝑥, 𝑦, 𝑧) is first to 

mark the coordinates of the selected direction in the crystallographic frame (𝑎, 𝑏, 𝑐) and 

to cut the slab oriented in this last frame. Such a change of frame is easy in uniaxial 

crystals and biaxial crystals belonging to the orthorhombic system [1]. For biaxial 

crystals belonging to the monoclinic system, it is much more complicated since the 

dielectric frame can rotate as a function of wavelength and unique methods 

implemented at Néel Institute as the one described in part 2.3.3 must be used [11].  

The selected volume of crystal is cut oriented in the crystallographic frame thanks to a 

diamond wire saw and the polychromatic X-rays diffraction in backscattered Laue 

geometry with an accuracy of less than ± 0.5°. Thus the first face of the slab oriented in 

the aimed direction is obtained. It will be used as a reference in further operations. It is 

glued to a polishing head but the polishing of a second face parallel to the reference one 

is carried out first, using an automatic polishing machine PM5 (Logitech) [12]. 

Different trays are used and also abrasives with particles size reduced successively from 

a few tens to a few tenths of a millimeter. In this way, a so-called "optical" polish with a 

roughness less than /10 is achieved. Then the reference first face is polished in turn. 

After that the oriented and polished slab is ready to be used. An example is shown in 

Figure 2.1(a) giving the orientation of all the faces in the crystallographic frame and in 

the dielectric frame.  
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                                          (a)                                                 (b) 

Figure 2.1: (a) Picture of a crystal slab cut perpendicular to the z-axis of the dielectric frame as an 

example; The two parallel faces polished to optical quality are oriented in the crystallographic and 

dielectric frames. (b) Conoscopy transmission picture through the polished faces of the slab shown in (a).  

 

A conoscopy transmission picture can control a slab cut with two polished faces 

perpendicular to a principal x-, y- or z- axis of the dielectric frame. The device available 

at Néel Institute, is a microscope equipped with a Bertrand lens [13]. It is coupled to a 

monochromatic light (Sodium lamp or He-Ne laser) source emitting a wavelength λ0 

and polarized linearly. An example of a conoscopy transmission picture through a slab 

with two polished faces cut perpendicularly to the z-axis is shown in Figure 2.1(b).  

The conoscopy transmission picture gives access to interference patterns whose axes of 

symmetry correspond to the three axes of the dielectric frame. Thus the dielectric frame 

orientation is determined with the accuracy of the order of 1° [14]. For example in 

Figure 2.1(b) (𝑥, 𝑦) axes correspond to the neutral lines since they are associated with 

two linear polarization states perpendicular one to each other; The third principal axis 

(z-axis) is the symmetry axis perpendicular to the intersection of two previous neutral 

lines. The assignment between the three symmetry axes and (x, y, z) axes is easy in 

uniaxial crystals but much more complicated in biaxial crystals [14]. It will be specified 

in the following chapters for each studied crystal.  

 

The slab ready for a use is stuck on a HUBER goniometer head with two perpendicular 

translations adjusting the center of the slab rotation axis, and two perpendicular rotating 

cradles providing small orientation adjustments of the slab. 

 

2.2.2 Transmission spectra in polarized light 

Transmission spectra in polarized light are the first data to record in nonlinear crystals 

since they give the transparency range over which the three angular frequencies 

 (ω1, ω2,  ω3)  can be selected for nonlinear optics. The transmission spectra are 
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recorded as a function of the wavelength through oriented slabs using first a commercial 

Perkin-Elmer Lambda (PEL) 900 spectrometer between 0.175 and 3.300 µm and then a 

commercial Brucker FT-IR between 3.300 µm and 40 µm. 

 

We use a slab with two parallel polished faces cut perpendicular to a principal axis of 

the dielectric frame, for example z-axis. In the PEL spectrometer, it is inserted between 

two Glan-Taylor Polarizers with an extinction ratio of 10
-3

. Firstly, by orienting the two 

polarizers perpendicular, the two other principal dielectric axes are located in the plane 

of the two parallel faces, i.e. x- and y-axis in this example. Then with the two polarizers 

parallel to x- and y- axis successively, two transmission spectra are recorded in 

polarized light. Note that one slab is enough for uniaxial crystals but two are necessary 

for biaxial crystals in order to record the third transmission spectra with polarized light 

parallel to z-axis. Wire-grid polarizers are necessary in the Bruker spectrometer. 

 

An important point is that all transmission spectra in polarized light depicted in the 

present work are not corrected from the Fresnel losses. 

2.2.3 Optical damage threshold  

The optical damage threshold determines the maximum energy of the incident laser 

beam that can be sent on a crystal without damaging its surface or volume. It is 

independent of the direction of propagation in the crystal but remains quite a variable 

data according to the wavelength, pulse duration and repetition rate of the laser [15, 16].  

 

In the present work the optical damage threshold is determined at the surface of the 

input face of a slab polished to optical quality and cut perpendicular to a principal axis 

of the dielectric frame. A scheme of our experimental setup is shown in Figure 2.2.   

 

Figure 2.2: Scheme of the optical damage threshold experimental setup with the knife-edge (a), slab (b).  

 

A pulsed laser beam, with a very high spatial quality and a very small beam waist size, 

is provided by a Nd:YAG laser from Continuum company. The emitted wavelength is 

1.064 µm, the pulse width at Full-Width-of-Half-Maximum (FWHM) is 5-ns; It is 10-

Hz repetition rate and linearly polarized. The maximum emission energy is 14 mJ but it 
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can be decreased continuously down to 0 mJ by rotating a 1.064 µm-half-wave plate 

inserted in front of a Glan-Taylor polarizer as shown in Figure 2.2. 

 

By using a f=140-mm-focal BK7 lens, the laser beam is directly focused at the surface 

of the input face of the slab which distance from the lens remains fixed. Before inserting 

the crystal, the beam radius W was determined with an accuracy of ± 5 µm. For that 

purpose, the energy per pulse was measured with an Ophir P50 energy-meter while using 

the knife-edge method, i.e. while hiding the laser beam continuously by a razor blade 

mounted on a vertical translation holder as shown in Figure 2.2(a) [17]. The holder was 

placed at several distances Z from the lens, in the range located from each side of the 

beam-waist radius Wo. The corresponding values of W(Z) and Wo are shown in Figure 

2.3.  

 

Figure 2.3: The beam radius value recorded as a function of the distance between the lens and the razor 

blade vertical translation axis, Z.  Wo is the beam-waist radius. 

 

The beam-waist radius Wo is determined by fitting W(Z) shown in Figure 2.3 by the 

following equation [18]: 

                                                  W(Z) = W𝑜 [1 + (
Z

ZR
)2]

1/2

                                                                            (2.1) 

where ZR =
πWo

2

λM2
 is the Rayleigh length over which W(Z) remains equal to Wo; M2 is 

the M-square parameter defined in [18].   

 

We found that  Wo= 30 µm and M2 =1 leading to a Rayleigh parameter ZR= 2.66 mm. 

These data are in agreement with the specifications of the delivered Nd:YAG laser. 

 

The optical damage threshold is determined from the observation of the early stage 

damage at the same location of the input surface of the slab that remains fixed. The laser 

)
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energy per pulse is incremented from 0 mJ by 0.25 mJ between two successive one-

minute shootings and measured using an Ophir P50 energy-meter. Actually, the optical 

damage threshold is reported at 1.064 µm from the value of the energy per pulse and the 

corresponding peak power density for which the damage is observed. It is described in 

chapter 3 in each studied nonlinear crystal and in KTiOPO4 (KTP) crystal for 

comparison. For that purpose, a x-cut KTP slab polished to optical quality is studied in 

the same condition.  

 

2.2.4 Determination of nonlinear coefficients from phase-matched SHG  

Second Harmonic Generation (SHG) is studied under angular critical phase-matching 

(ACPM) conditions located in the principal planes of nonlinear crystals, to determine 

their nonlinear coefficients. For all of them, it will be shown in chapter 3 that the 

corresponding fundamental phase-matching wavelength is ranging below 2.4 µm. Then 

a pulsed optical parametric oscillator (OPO) delivering high-energy pulses is used. Note 

that OPO combines phase-matched difference frequency generation (DFG) and 

spontaneous down-conversion (SPDC) from quadratic processes, in a commercial 

nonlinear crystal inserted in an optical cavity. 

 

2.2.4.1 OPO in the nanosecond regime  

A scheme of the different stages of the OPO from Continuum Company is shown in 

Figure 2.4. The pump beam is a Nd:YAG laser with a pulse width of 5-ns FWHM, and 

10-Hz repetition rate. The emission wavelength is 1.064 µm with an energy per pulse of 

450 mJ. After a phase-matched SHG in a KD2PO4 (KDP) nonlinear crystal, 200 mJ is 

generated at 0.532 µm. The two previous beams are then collinearly sent in another 

KDP crystal in order to generate a new beam at 0.355 µm from phase-matched Sum 

Frequency Generation (SFG). The generated energy per pulse of the 0.355 µm beam is 

100 mJ and it is pumping the OPO based on a rotating -BaB2O4 (-BBO) nonlinear 

crystal. It leads to a phase-matching emission continuously tunable over the full 

transparency range of the -BBO crystal. It is based on a signal beam emission between 

0.4 µm and 0.71 µm, and an idler emission between 0.71 µm and 2.4 µm [12].  

 

Figure 2.4: Scheme of the optical parametric oscillator (OPO) in the nanosecond regime.  



2.2 Linear and nonlinear optics studies in slabs 

33 

The OPO generated beams that we used, are all linearly polarized as shown in Figure 

2.4. The maximal value of their energy per pulse is around 15 mJ in the visible and 

decreases when the wavelength increases.  

 

2.2.4.2 Experimental setup 

For SHG, one OPO beam (Signal or Idler) is sent as one incoming beam on the 

experimental setup shown in Figure 2.5. It is collinear with a He-Ne laser emitting the 

wavelength of 0.633 µm that is used for a safe alignment of the experimental setup with 

the incoming beam (it is not shown in Figure 2.5). The energy of the OPO beam is 

controlled independently by rotating a half-wave plate inserted in front of a Glan-Taylor 

polarizer. Then a second half-wave plate inserted on the beam, controls the orientation 

of the incoming linear polarization state for type I- and type II- SHG phase-matching 

condition (see part 1.3.5 of chapter 1). The half-wave plates are achromatic over 1 µm 

according to the selected spectral range of the OPO beam.  

 

Figure 2.5: Scheme of the experimental setup used to determine a nonlinear coefficient under phase-

matched SHG condition.  

 

The OPO wavelengths 𝜆𝜔 are directly measured between 0.2 and 1.1 µm with accuracy 

of 0.2 nm using the HR4000 spectrometer, and between 0.9 and 1.7 µm with accuracy 

of 3  nm using the NIRQuest spectrometer. For OPO wavelengths 𝜆𝜔 ranging above 

1.7 µm, the wavelength  𝜆2𝜔 = 𝜆𝜔 /2  that is generated in the slab by phase-matched 

SHG, is measured using the previous spectrometers.  

 

The incoming beam energy in front of the slab is measured using the J4-09 Molectron 

pyroelectric joulemeter with a constant spectral response between 0.2 µm and 100 µm. 

This detector is located after a beam splitter (BS) and a CaF2 lens with a focal length of 

f’=50 mm as shown in Figure 2.5. It has the advantage of an access to 𝐻𝜀𝜔(0) where 

𝜀𝜔(0) is the fundamental energy per pulse incoming on the slab and H is the setup 

transfert function. H depends on the transmission and/or reflexion coefficients of all the 

optical elements inserted in front of the Joulemeter and the slab, as well as the OPO 
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wavelength and polarization. 

 

For all our studies, 𝜀𝜔(0) is set around 20 µJ at the entrance of the slab, in order to avoid any 

optical damage of the sample and to remain in the undepleted pump approximation described in 

part 1.3.3 of chapter 1.   

 

The slab polished to optical quality is cut at the ACPM SHG phase-matching 

direction (𝜃𝑃𝑀 , 𝜑𝑃𝑀) located in a principal plane.  This direction is determined from the 

associated tuning curve previously recorded using the SPHERE method as described in 

the following part 2.3.3. The incoming tunable wavelength  is first set at the 

corresponding fundamental phase-matching wavelength 𝜆𝜔
𝑃𝑀. The slab is stuck on the 

commercial HUBER goniometer head in auto-collimation with the incoming beam for 

its propagation along the phase-matching direction (𝜃𝑃𝑀, 𝜑𝑃𝑀).  

 

As shown in Figure 2.5, the incoming OPO beam is focused in the slab with a f =100-

mm-focal BK7  lens. The focal value is selected in order to provide a beam waist 

diameter W0 =120 µm at the input surface of the slab. Thus the slab thickness L is much 

smaller than twice the Rayleigh length ZR = 30 mm in our setup. Such a condition leads 

to a spatial walk-off attenuation G (L,W0, ρ) negligible in Eq. (1. 30), where 𝜌 is the 

spatial walk-off angle. It also ensures the parallel beam approximation used of chapter 1. The 

HUBER goniometric head is placed at the center on a rotation stage controlling the slab 

angular orientation.  

2.2.4.3 Measurements and analysis 

The energy generated by ACPM SHG, 𝜀2𝜔(𝜃𝑃𝑀, 𝜑𝑃𝑀, 𝐿)  at the output of the L-

thickness slab is detected after another f =100 mm-focal BK7 lens followed by a Glan 

Taylor polarizer and/or a filter removing the input beam after the slab (see Fig. 2.5). A 

J3-05 Molectron joulemeter with a spectral response constant between 0.2 µm  and 

100 µm combined with a PEM531 amplifier is used.   

 

An ACPM SHG direction is detected when the conversion efficiency reaches a maximal 

value. According to Eq. 1.30, it is defined at the output of the slab by: 

                                     ηSHG(2ω, θPM, φPM, L) =
ε2ω(θPM,φPM,L)

εω(0)+εω(0)
                                                            (2.2) 

The phase-matching condition is confirmed if η𝑆𝐻𝐺  shows the theoretical behavior of 

Fig. 1.7. Two studies are possible: η𝑆𝐻𝐺  is recorded a function of 𝜆 by tuning the OPO 

wavelength around 𝜆𝜔
𝑃𝑀  in the sample fixed in the direction (𝜃𝑃𝑀, 𝜑𝑃𝑀) ; η𝑆𝐻𝐺  is 

recorded as a function of 𝜃 or 𝜑 by rotating the slab around (𝜃𝑃𝑀 , 𝜑𝑃𝑀) while the OPO 

wavelength is fixed at 𝜆𝜔
𝑃𝑀. They respectively give access to the spectral and angular 



2.2 Linear and nonlinear optics studies in slabs 

35 

acceptances defined in part 1.3.6 of chapter 1. These two kinds of measurements will be 

shown in Chapter 3 for the studied nonlinear crystals. 

 

According to Eq. (1.30), the maximal value of the conversion efficiency is proportional 

to the magnitude of the involved nonlinear coefficients. This magnitude will be 

determined under ACPM SHG studies in a principal plane using the same experimental 

setup for all the studied nonlinear crystals and also for a KTP crystal. Thus the well-

known associated nonlinear coefficient of KTP is used as a reference [19]. The same 

fundamental phase-matching wavelength 𝜆𝜔
𝑃𝑀 of the incoming beam will be selected. 

One difficulty is that it implies that the ACPM SHG tuning curves of all the new studied 

nonlinear crystals have phase-matching angles (𝜃𝑃𝑀, 𝜑𝑃𝑀) at the same 𝜆𝜔
𝑃𝑀 as KTP 

crystal. But it has the advantage that the data analysis gets rid of the spectral response of 

the experimental setup.  

 

The analysis of all recorded data will be detailed in Chapter 3. Phase-matched SHG has 

the advantage of a much higher generated energy compared with out-of phase-matching 

SHG, according to Eq. (1.30). However, in the biaxial crystal from the monoclinic 

system studied in chapter 4, some non-zero and independent elements of the second-

order susceptibility cannot be determined from phase-matched SHG in the principal 

planes. In this case, out of SHG phase-matching conditions will be studied.  

2.3 Linear and nonlinear optics studies in spheres or cylinders 

2.3.1 Cylinders and spheres shaping  

The homemade methods shaping spheres and cylinders at Neel Institute are very mature. 

  

Details were recently published in [20]. The first requirement for shaping a cylinder is 

to realize two faces cut oriented perpendicular to an axis that will be the revolution axis 

of the cylinder. This axis is always a principal axis of the dielectric frame corresponding 

to a principal crystallographic axis. Then X-ray diffraction enables the orientation of the 

faces with an accuracy of ± 0.01°. Such an orientation is confirmed by conoscopy.  

 

The cylindrical shape is achieved using our homemade shaping apparatus, after the 

previous sample is sandwiched between two 1-mm-thick glass slabs stuck on its parallel 

faces. This mounting stiffens very thin samples (<1mm), strengthens those with poor 

mechanical properties, lessens the effects of hardness anisotropy, which may lead to 

elliptical shapes, and limits edge bevelling on the final cylinder. The shaping technique 

produces cylinders with a revolution axis normal to the reference face within 0.1°, an 

acylindricity relative to the diameter below 0.1%, and a rim polished to a roughness of 
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about 10 nm r.m.s. (root mean square). Several crystals shaped as cylinders using this 

technique, are shown in Fig. 2.6. 

 

The polished cylinder stuck on a HUBER goniometer head can rotate perpendicular to 

the revolution axis corresponding to a principal axis of the dielectric frame. Thus it 

gives access to the full principal plane perpendicular to this axis.  

 

Figure 2.6: Examples of polished cylinders 

 

The sphere is shaped from the progressive abrading of a rotating starting sample 

following the five main steps that are illustrated in Fig. 2.7. The first step consists in 

shaping the starting sample as a cube as shown in Fig. 2.7(a), with 6 faces perpendicular 

to each other and of same size. It makes the centring of the object on the successive 

rotation axes easier and controls the isotropic removal of material toward the spherical 

shape. There is not need to cut the cube oriented.  

 

Figure 2.7: Successive five steps for shaping and polishing a sphere from a cube. 

 

The cube is stuck on a pin on one face, after bevelling all the edges with a template as 

shown in Fig. 2.7(b). Then it is mounted on a motorized rotation axis with two crossed 

translations in order to be centred and slowly rotated with a speed between 10 and 20 

rotations per minute (rpm). From this step the linear edges are removed, as shown Fig. 

2.7(c) and 2.7(d). Concave hemispherical templates covered with abrasive suspension 

are manually put in contact with the rotating sample. The size of the hemisphere 

template is gradually reduced, so that the shape of the sample is changed from the cube 

to the final sphere diameter, the corresponding abrasive particle size being reduced 

progressively.  

 

5%:MgO:ppLN 

D = 30 mm, e = 500 µm 

RTP 

D = 5.45 mm 

e = 1.5 mm 

KTP 

D = 21.2 mm, e = 5mm 
CdSe 

D = 4.9 mm,e = 2 mm 
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To converge toward a spherical shape, the sample has to be rotated around many 

different directions, the pin being unstuck and stuck again many times. Once all facets 

have vanished, the spherical shape with a diameter D is achieved with a typical 

asphericity D/D below 1% as shown in Fig. 2.7(e). The sphere is then polished with 

stretched cloths and abrasive of small particle sizes to reach a few nanometer surface 

roughness (rms). This process allows to shape optically polished spheres of diameter D 

= 3 mm to 10 mm as shown in Fig. 2.8. 

 

The polished sphere once ready is stuck oriented on a goniometer head along a principal 

axis of the dielectric frame. As for the slab, the orientation between this frame and the 

crystallographic frame is determined. Then the sphere is oriented thanks to the 

crystallographic axes with an accuracy better than 0.1° using the polychromatic X-ray 

Laue technique. Several of them mounted on a HUBER goniometric head are shown in 

Fig. 2.8. 

 

 

 

Figure 2.8: Examples of polished spheres mounted on goniometric heads. 

 

2.3.2 SPHERE method 

The SPHERE method gives a direct access to the angular distribution of any optical 

property as a function of wavelength in the dielectric frame. It is accessible in the full 

dielectric frame with a sphere and limited to a principal dielectric plane with a cylinder. 

The only limitation is the transparency range of the crystal. 

 

The crystals studied in chapter 3 are transparent up to 7.4 µm, and BGSe studied in 

chapter 4 is transparent up to 18 µm,  then we combined the SPHERE method with an 

optical parametric generator-difference frequency generation OPG-DFG in the 

picosecond regime which emission is continuously tunable between 0.4 to 11 µm. 

2.3.2.1 OPG-DFG in the picosecond regime  

The scheme of the multi-stages OPG-DFG commercialized by Excel Technology and 

Light Conversion companies is shown in Figure 2.9.  
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Figure 2.9: Scheme of the optical parametric generator - difference frequency generation (OPG-DFG) in 

the picosecond regime.  

 

The pump beam is also Nd: YAG pulsed laser emitting at the wavelength of 

1.064 µm with 10-Hz repetition rate but with a pulsewidth of 15 ps FWHM. The energy 

per pulse of about 40 mJ is divided into two parts: 

 

- The first part is 75% of the Nd:YAG energy that is sent through two -BBO nonlinear 

crystals properly oriented for phase-matched frequency conversion. A beam at 

0.532 µm is generated from SHG in the first -BBO crystal. Then a beam is generated 

at 0.355 µm in the second -BBO crystal from collinear SFG between the incoming 

1.064 µm and 0.532 µm beams. The beam generated at 0.355 µm is pumping the OPG 

based on a rotating LiB3O5 (LBO) nonlinear crystal. A phase-matched emission of a 0.4 

-0.71 µm signal beam and a 0.71-2.4 µm idler beam is generating in the OPG, with an 

energy per pulse ranging between 80 µJ and 500 µJ.  

 

- The second part is 25% of the energy of the pulsed Nd:YAG laser. It is sent through an 

optical delay for a direct use. Otherwise it is combined after the delay with the OPG 

idler beam in a rotating AgGaS2 (AGS) nonlinear crystal. Thus a non-collinear phase-

matched DFG continuously tunable between 2.5 µm and 11 µm is generated. 

 

All the OPG-DFG output beams that we used are linearly polarized as shown in Fig. 2.9.  

 

Up to 4 µm, their energy is controlled independently by using a rotating half-wave plate 

associating with a Glan-Taylor polarizer; Achromatic plates were used for the tunable 

beams. For all our studies, the input energies were set below 200 µJ at the entrance of the 

sphere or the cylinder, to avoid any damage on the samples surface and for a propagation inside 

the samples in the undepleted pump approximation described in part 1.3.3 of chapter 1.  

 

The OPG-DFG wavelengths are controlled using the protocol detailed in part 2.2.4.2. 
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2.3.2.2 Experimental setup  

The scheme of the experimental setup implemented for the SPHERE method is shown 

in Fig. 2.10. Tunable incoming beams are sent at normal incidence on a sphere (or a 

cylinder) rotated on itself. It provides direct measurements as a function of wavelength 

of spatial walk-off angles, the dielectric frame orientation, phase-matching directions, 

the associated conversion efficiencies, the spectral and angular acceptances.  

 

Figure 2.10: Scheme of the experimental setup implemented as the SPHERE method.  

 

In the present work, second harmonic generation (SHG), sum-frequency generation 

(SFG) and difference-frequency generation (DFG) from quadratic processes are studied 

in the transparency range of nonlinear crystals cut as a sphere (or cylinder) [9]. One 

tunable incoming beam is necessary for SHG. It is combined collinearly with part of the 

1.064 µm Nd:YAG beam in the sphere (or cylinder) for SFG and DFG. A delay line 

ensures the temporal overlap between the combined beams. It is built with mirrors as 

shown in Fig. 2.10. Up to 4 µm, achromatic half-wave-plates provide the configurations 

of polarization for type I, II and III of phase-matching condition.   Above 4 µm, it is 

ensured by the sphere rotation in the plane perpendicular to the beams. 

 

The incoming beams energies are measured using the J4-09 Molectron pyroelectric 

joulemeter with a flat spectral response between 0.2 µm and 100 µm. It is located after a 

beam splitter and a CaF2 lens with a focal length of f’=50 mm as shown in Fig. 2.10. 

Filters remove the input beams after the sphere (or cylinder), so that the generated beam 

is detected by means of different photodetectors according to the associated phase-

matching wavelength. The visible and near-IR until 1μm ranges are covered by a 

Thorlabs Silicon photodiode, the range of 1-5.5 µm by a Hamamatsu Nitrogen-cooled 

InSb, and the far infrared until 12  µm by a PEM detector from VIGO based on a 

HgCdTe semi-conductor band gap. A J3-05 Molectron joulemeter with a flat constant 

spectral response between 0.2 µm and 100 µm is combined with a PEM531 amplifier to 
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measure the energy of the generated beam. It is of particular interest when this energy is 

too low to be detected using the other detectors. 

 

2.3.2.3 Euler circle  

As shown in Figure 2.11, the sphere stuck oriented on a goniometric head is screwed at 

the centre of an Euler circle. The Euler circle uses three rotation axes marked by the 

angles α, β, and γ, giving a direct access to any direction of propagation inside the 

sphere. It allows a manual rotation of the sphere on itself with a precision of 0.1°. 

                

                                   (a)                                                       (b) 

Figure 2.11: Euler circle picture (a) and scheme (b) showing the three rotation angles α, β, γ. 

 

The relation between the Euler angles (α, β, γ) and the spherical angles (θ, φ) of the 

dielectric frame depends on the axis along which the sphere is stuck on the HUBER 

goniometric head. We describe below a possible situation enabling the sphere rotation 

in a dielectric principal plane.  

 

As shown in Fig. 2.11(b), with the β-angle fixed, the sphere rotation axis remains 

vertical. Then if it is stuck along the y-axis of the dielectric frame, the rotation of the 

angles α or γ give access to all the directions of propagation of the (𝑥, 𝑧) principal 

dielectric plane. If the angle α is also fixed, the angle θ is directly read by the variation 

of the angle γ with an accuracy of 0.001°. 

 

Furthermore when the direction of propagation unit vector 𝑢⃗  is along the x-axis of the 

dielectric frame, the relation between the spherical coordinates (θ,φ) in the dielectric 

frame and the angles (α, β, γ) of the Euler circle becomes [21]: 
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                                                        {
𝜃 =

𝜋

2
− (𝛼 + 𝛾)

𝜑 = 0°
                                                                                         (2.3) 

2.3.2.4 Focusing inside the sphere or cylinder 

The incoming beam must be focused properly inside the sphere (or the cylinder) in 

order to ensure a normal incidence and propagation along the diameter D of the sample. 

In the cylinder, a focusing is necessary only in the incident plane that is horizontal and 

perpendicular to the cylinder axis. It must be in the horizontal and vertical planes of the 

sphere that are parallel and perpendicular to the incident plane respectively [18, 21]. 

 

As an example, the focussing leading to beam propagation along the sphere diameter D 

is described. It is achieved by inserting a f = 100-mm-focal CaF2 lens in front of the 

sphere as shown in Fig. 2.12. A first crucial key point is the distance between the lens 

and the center of sphere: it must be adjusted very precisely in order to ensure a normal 

incidence on the sphere and propagation inside the sphere that is along the diameter D.   

 

This distance can be calculated by using the Gaussian formalism in the paraxial 

approximation where each optical system is described by a ABCD matrix [21].  

 

In fact, the crystal sphere behaves like two adjacent spherical lenses with the same two 

possible focal distances described by [18, 21]:  

                                               𝑓±(𝜆, 𝜃, 𝜑) =
𝑛±(𝜆,𝜃,𝜑)𝑅

2[𝑛±(𝜆,𝜃,𝜑)−1]
                                                                                (2.4) 

where  R = D/2  is the radius of the sphere, 𝜆 is the incoming beam wavelength, (𝜃, 𝜑) 

the spherical coordinates in the dielectric frame, and n±(λ, θ, φ)  the two possible 

refractive indices of the sphere along the propagation direction 𝑢⃗  (θ,φ) that are given 

by Equations (1.11).  

 

According to Eq. 2.4, if n±(λ, θ, φ) < 2 then the focal distances  f±(λ, θ, φ) > R and the 

focusing points  F± and  F′± of the sphere are outside the sample. It means that by 

setting the distance between the lens and the center of sphere so that the lens focal point 

corresponds to the sphere focal point  F±, as shown in Fig. 2.12(a), the incoming beam 

propagation inside the sphere is along its diameter D. 

 

On the other hand, if n±(λ, θ, φ) > 2 then f±(λ, θ, φ) < R, so that the focusing points 

 F± and  F′± of the sphere are inside the sample. Consequently, the previous propagation 

scheme can damage the crystal. In that case we use the 2f − 2f propagation scheme 

shown in Fig. 2.12(b) in order to ensure a propagation of the incoming beam at normal 

incidence on the sphere and propagation inside the sphere that is along its diameter D.  
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(a) 

 

(b) 

 

 

Figure 2.12: Propagation scheme around the sphere, showing the selected focusing scheme inside the 

sphere shaped in crystals with refractive indices n±(λ, θ, φ) < 2 (a) or n±(λ, θ, φ) > 2 (b). 

 

A second crucial key point is that both propagation schemes of Fig. 2.12 are fulfilled 

only if the sphere diameter D is smaller than twice the Rayleigh ZR
± =

πn±(λ,θ,φ)Wo
2

λ𝑀2  

length; Wo is the beam waist radius at the beam wavelength that is locatedat the 

middle of the sphere. M
2
 is the beam M-square factor [22]. Such a condition has been 

fulfilled before any studies reported in chapter 3 and 4. 

 

Wo(𝜆) is not accessible but can be calculated after measuring the beam-waist radius, 

W(𝜆)  at the focus point of a f = 100-mm-focal CaF2 lens located in front of the sphere.  

As an example, with the OPO-DFG beam wavelength set around λ ≈ 2 µm, and using 

the knife method described in part 2.2.3, we found that W = 45 µm [12]. Then a 

Gaussian formalism in the paraxial approximation described by ABCD matrices 

provides the calculation of the corresponding values of W0 and ZR
± [21].  

 

The determination of W and W0 values performed over to the full emission range of the 

tunable beam used in the SPHERE method provides the maximal value of the sphere or 

cylinder diameter D fulfilling 𝐷 ≤  2 ZR
±.  

 

Using the SPHERE method, we performed direct measurements of the dielectric frame 

orientation, the phase-matching tuning curves in the principal planes and the relative 

signs between nonlinear coefficients by following the associated conversion efficiencies.  
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2.3.3 Direct measurements and analysis  

2.3.3.1 Orientation of the dielectric frame  

As already said, the determination of the orientation of the dielectric frame is easy in 

uniaxial crystals (hexagonal, tetragonal and trigonal) and in biaxial crystals belonging to 

the orthorhombic systems. In these crystals, the dielectric and the crystallographic 

frames are completely linked, their relative orientation being fixed and well-known [1].  

But in the biaxial crystals belonging to the monoclinic system as crystals studied in 

chapter 3 and 4, it is much more complicated: the dielectric frame is linked to the 

crystallographic frame by the special crystallographic axis only. This axis is a 2-fold 

axis (point group 2) and/or the axis perpendicular to a mirror plane (point groups m and 

2/m). By convention, it is b-axis. Then the dielectric principal plane and the 

corresponding axes located in the plane perpendicular to b-axis can rotate as a function 

of wavelength [11].  

The orientation of the dielectric frame can be found by studying the spatial walk-off 

angle in a principal plane  (u, v) of birefringent crystals. As described in part 1.2.5, 

along any direction of propagation u⃗ (ω, θ, φ), two Poynting vectors s ±(ω, θ, φ) with 

the associated electric vectors e⃗ ±(ω, θ, φ), propagate oriented at spatial walk-off angles 

ρ±(ω, θ, φ) from the wave propagation directions vectors k⃗ ±(ω, θ, φ).   

 

ρ+(ω, θ, φ) and ρ−(ω, θ, φ) are both equal to zero along principal axes and in the (x, y) 

dielectric plane of uniaxial crystals. Otherwise along all other directions of propagation 

in uniaxial and biaxial crystals, one spatial walk-off angle is not nil as ρ+(ω, θ, φ) 

shown in Fig. 2.13. Then the corresponding beam is refracted at the output surface of 

the sphere. 

 

 

Figure 2.13: Propagation inside a sphere cut is a positive biaxial crystal as an example. The scheme of the 

sphere rotated in a principal plane (u, v) = (y,z) of the dielectric frame, shows the spatial walk-off angle 

effect enhanced by the sphere.  
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The scheme of Fig. 2.13 can be observed by using for example an unpolarized He-Ne 

laser at the wavelength of  = 0.633 µm as the incoming laser beam at normal incidence 

at the entrance of the sphere. Let’s consider for example the sphere rotated in the (y, z) 

principal plane of a positive biaxial crystal. By using the focusing scheme described in 

part 2.3.2.4 and Fig. 2.13, ρ+(ω, θ, φ) is not equal to zero contrary ρ−(ω, θ, φ) if the 

sphere is stopped out of principal axes. It leads to two output beams, which spots 

observed on a screen, are shown in Fig. 2.14(a). Note that they have perpendicular 

linear polarizations.  

 

  

                                   (a)                                                            (b) 
 

 

Figure 2.14: Observation of the propagating He-Ne laser beam at the output of a sphere shaped in a 

biaxial crystal when oriented out of the principal axes x, y or z (a), along one optical axis (OA) of the 

(x, z) plane (b). 

 

On the contrary, along principal axes, both spatial angles ρ±(ω, θ, φ)  are equal to zero, 

and the two Poynting unit vectors s ±(ω, θ, φ) coincide. Then when propagating a He-

Ne laser beam along these axes, a single spot is observed at the output of the sphere.  

Let’s consider now the two optical axes (OA) located in the (x, z) principal plane of a 

biaxial crystal as explained in part 1.2.4.2. They are located symmetrically from each 

side of the z-axis and oriented at VZ angle from z-axis.  By propagation a He-Ne laser 

beam along an optical axis (OA) using a sphere shaped in the (x, z) principal plane, 

shows a hollow cone caused by the different Poynting vectors, which is called the 

internal conical refraction phenomenon [23, 24].  It is enhanced by the output surface of 

the sphere that is equivalent to a lens with a very short focal length. It leads to double 

rings due to the divergence of the incoming beam as shown in Fig. 2.14(b), which are 

no longer observed out of the OA direction when the angle value from VZ  is over 

10 mrad.  

 

Figure 2.15 gives an example of such data recorded over 360° in the (x, z) principal 

plane of the YCa4O(BO3)3 (YCOB) positive biaxial crystal belonging to the point group 

m of the monoclinic system. It shows the mirror plane perpendicular to the special b- 
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axis and the goniometric position of a- and c-axis determined by using the Laue method 

from the X-ray diffraction.   

 

By propagating the He-Ne laser at normal incidence at the entrance of the sphere rotated 

over 360°, four hollow cones are also observed as shown in Figure 2.14(b). They 

correspond by pairs to the two optical axes (OA).  It means that in this crystal, the b-

axis coincides with y-axis and the position of the symmetry axes correspond to the x- 

axis and z-axis. They are shown in Fig.2.15, as (a, z), (c, x) and V𝑍 angles values at = 

0.633 µm measured on the Euler circle with an accuracy of 0.1°.  

 

Figure 2.15: Orientation between the crystallographic frame (a, b, c) and the dielectric frame (x, y, z), in a 

YCOB crystal where the special b-axis coincide with the y-axis. VZ is the angle between the z-axis and the 

optical axes (OA). The 3 pictures show the output beam observed on the screen with an unpolarized He–

Ne laser propagating along the OA-, z-axis and a-axis.  

 

By coupling the rotating sphere with the tunable OPG-DFG as the incoming beam and 

by following the protocol described in the previous parts and shown in Figure 2.15, it is 

possible to measure directly the orientation of the dielectric frame as a function of the 

wavelength, since the crystallographic attached to the atoms remains fixed.  

 

One possibility is to follow the observation of the position of the output single spots as 

shown in Figure 2.15 as a function of the wavelength with the beam first propagating 

along a principal axis inside the sphere at = 0.633 µm. Instead of a screen, a CCD 

camera with a spectral sensitivity up to 1.1  µm  and then a mid-IR sensor card up 

1.75 µm can be used. Despite the sphere is rotated using the Euler circle as described in 

part 2.3.2.3, the observation leads to the orientation of the dielectric frame as a function 

of  wavelength with an accuracy of around 0.5° [25]. 
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2.3.3.2 Phase-matching tuning curves in principal planes 

The studied nonlinear crystal shaped as a sphere (or cylinder) is stuck along a principal 

dielectric axis and mounted at the center of the Euler circle. αand β Euler angles are 

fixed and set in order to rotate the sphere around its vertical axis as shown in Fig. 

2.11(b).  By this way, any fixed laser beam sent at normal incidence on the sphere, 

propagates in a principal plane of the dielectric frame.   

 

For SHG tuning curves are directly measured, by using one incoming tunable beam 

delivered by the OPG-DFG source. Then phase-matched SHG can be studied for a 

fundamental wavelength ranging between 0.4 and 11  µm . Two collinear incoming 

beams are directly combined in the sphere for recording SFG and DFG tuning curves, 

one of them being tunable provided by the OPG-Signal- or OPG-Idler beam, and the 

other one provided by part of the 1.064 µm beam.   

 

All possible configurations of polarization for types I, II and III of birefringent phase-

matching condition associated with a non-zero conversion efficiency can be studied. 

Thus by studying SHG, SFG and DFG, between 0 and 8 different tuning curves can be 

recorded in the same principal plane, the only limitation being the transparency range of 

the studied crystal. However, among all possibilities, the tuning curves involving the 

principal refractive indices over the full transparency range of the studied crystal are 

selected i.e. no and ne for a uniaxial crystal, nx, ny and nz for a biaxial crystal.  

 

A phase-matching direction θPM or φPM is directly read on the Euler Circle with the 

accuracy of ± 0.5°after using the Euler angles as shown in part 2.3.2.3. Such a direction 

corresponds to a maximum value of the conversion efficiency according to Eq. (1.30) 

and Eq. (2.2).   

 

Many examples of tuning curves recorded in principal planes of uniaxial and biaxial 

crystals cut as a sphere or a cylinder will be shown in Chapter 3. For example, for SHG, 

a tuning curve consists in the fundamental wavelength λω plotted as a function of the 

phase-matching angle θPM  or  φPM . Let’s explain the two possible strategies for 

recording SHG tuning curves:   

 

- In the first one, the incoming fundamental wavelength λω is fixed while changing the 

angles θ or φ using the Euler circle. The phase-matching angle θPM or φPM is read using 

the Eucler angles, when the conversion efficiency ηSHG(λ2ω, θPM, φPM, D) defined by 

Eq. (2.2), reaches a maximal value. As in part 2.2.4.3, the phase-matching condition is 

confirmed for each point of the tuning curve if η𝑆𝐻𝐺(θ or φ) shows the theoretical 

behavior of Fig. 1.7. For such a confirmation, the value of 𝜃 or 𝜑 is changed by rotating 
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the sphere around (𝜃𝑃𝑀, 𝜑𝑃𝑀)using the Euler circle, while the OPO-DFG wavelength is 

fixed at 𝜆𝜔
𝑃𝑀. This protocol is applied successively for all values of the angle θ or φ 

ranging between 0° and 90° in order to obtain the SHG tuning curve. 

   

- In the second strategy, the angle θ or φ is fixed, and the incoming fundamental 

wavelength λω is varied. Then λω is read on the spectrometer and it can also be the 

phase-matching wavelength generated by SHG λ2𝜔
𝑃𝑀 = λ𝜔

𝑃𝑀/2 . In that case, this 

protocole is applied for all values of the spherical angles successively to obtain the SHG 

tuning curve. For that purpose, the OPO-DFG wavelength is tuned around 𝜆𝜔
𝑃𝑀 in the 

sphere fixed in the direction (𝜃𝑃𝑀, 𝜑𝑃𝑀). This protocol is applied successively for all 

values of  λω covering the transparency range of the studied nonlinear crystal in order to 

obtain the SHG tuning curve. 

 

According to chapter 1, the tuning curves are related with 𝑛𝑜(𝜆) and 𝑛𝑒(𝜆) in uniaxial 

crystals, and 𝑛𝑥(𝜆), 𝑛𝑦(𝜆) and 𝑛𝑧(𝜆) in biaxial crystals that are modelled by Sellmeier 

equations. Then the fit of recorded tuning curves leads to the Sellmeier coefficients of 

these equations.  

 

We can obtain the Sellemeier coefficients with the precision of the order of 10
-4

 by the 

simultaneous fit of all the experimental recorded tuning curves in all the principal 

planes for all studied types of SHG, SFG and DFG. We use the Levenberg-Macquardt 

algorithm encoded with Matlab, and many crystals have been studied already using this 

method in our group [26, 27]. Our Sellmeier equations are valid over the spectral range 

they have been involved in the different recorded tuning curves. 

2.3.3.3 Conversion efficiencies associated to phase-matching conditions out of the 

principal planes 

By using the SPHERE method and a crystal shaped as a sphere, it is possible to record 

the evolution of the conversion efficiency along phase-matching directions.  Using Eq. 

(1.30) and (1.32), it is then possible to determine the effective coefficient 𝑑𝑒𝑓𝑓  and 

magnitude and relative sign of the involved nonlinear coefficients.  

 

Let’s consider as an example KTP that crystallizes in the mm2 orthorhombic point 

group. KTP has five non-zero and independent elements in its second-order electric 

susceptibility tensor that write under the Kleinman assumption and using the contracted 

notation, i.e. 𝑑𝑥𝑧𝑥 = 𝑑𝑥𝑥𝑧 = 𝑑𝑧𝑥𝑥(= 𝑑15 = 𝑑31); 𝑑𝑦𝑦𝑧 = 𝑑𝑦𝑧𝑦 = 𝑑𝑧𝑦𝑦(= 𝑑24 = 𝑑32); 

𝑑𝑧𝑧𝑧(= 𝑑33) [3].  

 

The conversion efficiency along Type II SHG phase-matching directions has been 

measured out of the principal plane of the dielectric frame of KTP. The SPHERE 
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method was used with a laser beam providing the fundamental wavelength  λω =

1.064 µm, and a rotating KTP sphere of diameter D =5.12 mm [28]. The recorded data 

are shown in Figure 2.16(a). 

 

 

 

 

 

 

 

 

 

 

 

 

                                   (a)                                                            (b) 

Figure 2.16: Type II SHG conversion efficiency as a function of the phase-matching angle φ out of the 

principal plane (a), calculations of the elements Fij along type II SHG phase-matching curve (b). Dots 

stand for data recorded with the SPHERE method [28].  

 

Since KTP is a positive biaxial crystal and using Eq. (1.32), the effective coefficient 

associated to the type II SHG out of the principal plane of KTP writes:   

                    𝑑𝑒𝑓𝑓 = 𝐹15 ∙ 𝑑15 + 𝐹24 ∙ 𝑑24 + 𝐹31 ∙ 𝑑31 + 𝐹32 ∙ 𝑑32 + 𝐹33 ∙ 𝑑33                           (2.5) 

where the nonlinear coefficients 𝑑𝑖𝑗  depend on  𝜆2𝜔  and the Field-factors 𝐹𝑖𝑗  on 

(𝜆𝜔, 𝜆2𝜔, 𝜑𝑃𝑀). 

 

Using Eq. (1.34) the five field factors 𝐹𝑖𝑗(𝜆𝜔 , 𝜆2𝜔 , 𝜑𝑃𝑀) of Eq. (2.5) can be calculated 

and according to their plot shown in Figure 2.16(b) we can consider that 𝑑𝑒𝑓𝑓 writes: 

                                                  𝑑𝑒𝑓𝑓 ≈ 𝐹15 ∙ 𝑑15 + 𝐹24 ∙ 𝑑24                                                                         (2.6) 

Then Figure 2.16(a) shows that calculations using Eq. (2.6) are in agreement with 

experimental data when assuming 𝑑15 and 𝑑24  with the same relative sign (see solid 

line). On the contrary there is a big discrepancy between experimental data and 

calculations when assuming 𝑑15 and 𝑑24 of opposite relative sign (see dashed line).  It 

means that 𝑑15 and 𝑑24 have the same sign [28]. 
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2.4 Summary 

We described in this chapter the experimental methods that we used at Néel Institute. 

They are devoted to the study of linear and nonlinear optical properties in crystals. We 

also detailed homemade shaping techniques used to shape crystals as slabs, spheres or 

cylinders that are cut oriented in the dielectric frame. The setups of all these methods 

were described as well as the measurements and analysis of data. 

 

We reported methods using slabs for the recording of transmission spectra under 

polarized light, the determination of the optical damage threshold, and SHG studies 

under angular critical phase-matching (ACPM) condition.  

 

Then we detailed the SPHERE method and explained how it allows the direct 

measurements as a function of wavelength of walk-off angles, the dielectric frame 

orientation and phase-matching condition: directions, associated conversion efficiencies, 

spectral and angular acceptances. We also explain the determination of the Sellmeier 

equations describing the dispersion of the principal refractive indices as a function of 

wavelength, and the magnitudes and relative signs of the non-zero elements of the 

second-order electric susceptibility from analysis of data.  
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Chapter 3 Phase-matching directions and 

Sellmeier equations of GdCOB, LGN and 

NaI3O8  

 

3.1 Introduction 

The studies reported in this chapter are in the framework of solid state and pulsed 

optical parametric generators (OPG) emission under phase-matching condition. Our 

interest is in high energy OPG emission with the broadest spectral bandwidth of the 

signal and idler generated beams covering band II (3-5 µm) of transmission of the 

atmosphere.  

 

This so-called super-continuum condition of OPG emission is of prime importance for 

numerous civil and industrial high energy applications as the detection of gas, the 

dermatology or the study of the atmosphere. For the defence, the interest is for the 

optical countermeasure, the active multi-spectral imaging, or the detection and 

identification of dangerous molecules using infrared spectroscopy. 

 

As discussed in Chapter 1, the super-continuum condition takes advantage of the type II 

difference frequency generation (DFG) when fulfilling the conservation energy 

1 𝜆1
+⁄ = 1 𝜆3

∗−⁄ 1 𝜆2
+⁄  with the “magic” pump wavelength λ3

∗ . When pumped at λ3
∗ , the 

OPG tunability is provided with the broadest spectral bandwidth in a nonlinear crystal. 

However, it relies in the possibility of cutting the crystal at birefringence phase-

matching angles that are solutions of Eq. (1.44), for a “magical” pump wavelength that 

is solution of Eq. (1.45).  

 

An active research work is devoted to identify nonlinear crystals enabling such a 

condition but those that are currently used are not satisfactory. It is crucial that they 

have a large damage threshold and conversion efficiency. It is better that their 

transparency range not only covers band II but also includes half the “magic” pump 

wavelength, to avoid any risk of two-photon absorption. A magic pump wavelength 

corresponding to the emission of commercial Ti:Sa or Nd:YAG Lasers is an advantage. 

We identified three new crystals GdCa4O(BO3)3 (GdCOB), La3Ga5.5Nb0.5O14 (LGN) 

and NaI3O8, as real a alternative for a phase-matched OPG super-continuum emission 

covering band II. 

 


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After a state of the art about useful linear and nonlinear optical properties already 

published, this chapter reports the studies that we performed in these three crystals 

successively. For each study, we specify the samples shapes and the methods from 

chapter 2 that we used. Then come measurements and analysis of data.  

 

The data recorded in slabs concern in the dielectric frame orientation, the transmission 

spectra, damage threshold and recording SHG conversion efficiencies to determine the 

magnitude of nonlinear coefficients.  

 

Then this chapter deals with phase-matching tuning curves, associated conversion 

efficiencies and the spectral and angular acceptances. These data are directly recorded 

in principal dielectric planes using spheres or cylinders and over the transparency range 

of crystals. All recorded data are analysed in this chapter using the theoretical elements 

of chapter 1. Then come the Sellmeier equations that are refined or determined from the 

fit of the tuning curves. All the reliable data are then used to calculate phase-matched 

OPG super-continuum emission with the broadest spectral bandwidth in order to 

evaluate the ability of the studied crystals to cover band II.  

 

3.2 𝐆𝐝𝐂𝐎𝐁 

3.2.1 State of the art 

In the past years, a new biaxial crystal belonging to the calcium-rare-earth Oxoborate 

family, GdCa4O(BO3)3 (GdCOB), has been reported with good nonlinear coefficients 

and a high damage threshold [29, 30]. We studied one large size and good optical-

quality sample. Note that GdCOB crystals have also the possibility to be doped with 

Nd
3+

 for laser emission and self-doubling [29, 30, 31]. 

 

Crystal growth and crystallographic frame 

GdCOB crystals have been grown from a melt using the Czochralski pulling method 

[29]. The compound was prepared by classical solid-state reaction and X-ray diffraction 

patterns confirmed single phase compounds. Differential thermal analysis performed on 

the GdCOB compound has shown that the material melts congruently. Therefore 

crystals can be grown from a stoichiometric melt [29].  

 

GdCOB crystals are colourless, with a good optical quality and not hygroscopic. 

Typically grown samples are 25 mm in diameter and 120 mm long. Bigger 50 mm in 

diameter and more than 100 mm long crystals were obtained with a larger iridium 

crucible as shown in Fig. 3.1 [29]. 
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                            (a)                                                      (b) 

Figure 3.1: GdCOB  single crystals grown by the Czochralski pulling method: (a)  boule, (b)  cut and 

polished samples [29].  

 

GdCOB crystallizes in the monoclinic system and belongs to the point group m. Then 

the unit cell contains a mirror that is perpendicular to a special axis. By convention the 

special axis corresponds to b-axis of the crystallographic frame (a, b, c), a- and c- axes 

being in the mirror plane. But the crystallographic frame is not orthogonal since the 

angles between its axes are
 
[29]: = 90°, = 90° and = 101.26° as shown in 

Fig.3.2.  

 

Figure 3.2: Orientation between the crystallographic frame (a, b, c) and the dielectric frame (x, y, z) at one 

wavelength from visible, in GdCOB from [29]. The international convention y-axis parallel to b-axis is 

used. 

 

Orientation of the dielectric frame 

The dielectric frame (x, y, z) that is orthonormal, cannot correspond to the axes of the 

crystallographic frame (a, b, c). It this case, as discussed in part 2.2.1, the two frames 

are linked by one axis only. In GdCOB, it was reported that y- principal dielectric axis 

corresponds to the special b-axis both remaining fixed. Then the two other dielectric 

axes, x- and z-, are in the mirror plane as the crystallographic a- and c- axes [29]. 

 

By combining X-ray diffraction and conoscopy, the tilt between the x- and z- axes from 

the a-c ones was found at one wavelength in the visible range[29].  It corresponds to the 

orientation between the crystallographic frame (a, b, c) and the dielectric frame (x, y, z) 
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shown in Fig. 3.2 where  to = 26° and = 15°, when using the international 

convention.  

 

As shown in Fig. 3.2, none of the dielectric x- and z-axes corresponds to the 

crystallographic a- and c- axes in the visible range. Then the dielectric axes can rotate as 

a function of wavelength over the full transparency range of GdCOB crystal.  

 

Transparency range 

The unpolarized transmission spectra of GdCOB have been measured through the two 

parallel faces polished to optical quality of a 7 mm thick slab in the UV-range.  A 2 mm 

thick slab was used over 2 m [29].  They are shown in Figures 3.3(a) and 3.3(b) 

respectively. 

  

                            (a)                                                      (b) 

Figure 3.3: Unpolarized transmission spectra through (a) 7 mm- and (b) 2 mm-thick of GdCOB slab [29]. 

 

In Figure 3.3(a), a transmission range without absorptions bands is observed in GdCOB 

from 0.320 m. It means no risk of two-photon absorption when pumping the GdCOB 

crystal by the wavelengths emission of Ti:Sa or  Nd:YAG lasers.  

 

Furthermore, the GdCOB crystal was found transparent between 0.32 and 4.17 m. 

Then as shown in Fig. 3.3(b), the transparency window drops by a factor 2 and includes 

absorption bands between 4 and 6.6 m. Taking into account these results, we can 

consider that GdCOB crystal well covers at least the lower wavelength range of the 

band II (3-5 µm) of transmission of the atmosphere. 

 

Optical damage threshold 

An optical damage threshold of the order of 1 GW/cm2 has been reported from damage 

observation at the surface of the polished but uncoated input face of a GdCOB slab. It 
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was studied using the emission at 0.532-m of the second-harmonic beam of a Q-

switched Nd: YAG laser emitting pulses of 7 ns (FHWM) at 1.064 m [29]. 

 

Optical class and Sellmeier equations of the principal refractive indices 

The variation of three principal refractive indices as a function of wavelength,  nx(𝜆), 

ny(𝜆) and nz(𝜆), have been reported over the wavelength range 0.35-1.12 µm. Different 

polarized tunable light sources and the minimum deviation technique in two prisms 

were used [32].  It is depicted in Fig. 3.4 showing that GdCOB is a positive biaxial 

crystal (𝑛𝑥 < 𝑛𝑦 < 𝑛𝑧). 

 

 

Figure 3.4: Values of the three principal refractive indices nx , ny and nz  of GdCOB as a function of 

wavelength. Dots stand for experimental data recorded with a prism method and lines for fit of data [32]. 

 

The following Sellmeier equation was proposed to fit the data shown in Fig. 3.4. 

Then nx(𝜆),  ny(𝜆) and  nz(𝜆) are expressed as [32]:  

                                              𝑛𝑖
2(𝜆) = 𝐴𝑖 +

𝐵𝑖

𝜆2−𝐶𝑖
− 𝐷𝑖𝜆

2                                                                                  (3.1) 

where the wavelength 𝜆 is in µm, and 𝑖 stands for x, y or z.  

 

The best fit of data shown in Fig. 3.4 was obtained for the values of the coefficients 

𝐴𝑖 , 𝐵𝑖, 𝐶𝑖 and 𝐷𝑖 given in Table 3.1. Their accuracy is 10
-4

 but they are valid over the 

wavelength range 0.35-1.12 µm only. 

coefficients 𝑖 = 𝑥 𝑖 = 𝑦 𝑖 = 𝑧 
𝐴𝑖  2.1685 2.2572 2.2587 
𝐵𝑖 0.6163 0.6169 0.6482 
𝐶𝑖 0.0341 0.0383 0.0409 
𝐷𝑖 107.0991 115.7501 148.8075 

Table 3.1: Coefficients of the Sellmeier Eq. (3.1) for the best fit of GdCOB data shown in Fig. 3.4 [32].  
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The previous dispersion equations of the three principal refractive indices of GdCOB 

have been improved in the 0.4129−1.3382 µm wavelength range by recording SHG 

tuning curves in rotated slabs [33]. The corresponding data were still fitted by the 

single-pole Eq. (3.1). However, the best fit was found for new coefficients 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖 and 

𝐷𝑖 given in Table 3.2 which accuracy is of about 10
-5

. 

 

coefficients 𝑖 = 𝑥 𝑖 = 𝑦 𝑖 = 𝑧 
𝐴𝑖  2.8063 2.8959 2.9248 
𝐵𝑖 0.02315 0.02398 0.02410 
𝐶𝑖 0.01378 0.01389 0.01406 
𝐷𝑖 0.00537 0.01132 0.01139 

Table 3.2: Coefficients of the Sellmeier Eq. (3.1) for the best fit of GdCOB SHG data from [33]. 

 

Using both previous Sellmeier equations, phase-matching conditions types I, II or III 

SHG, SFG and DFG processes can be calculated in the full dielectric frame of GdCOB. 

In the following we are interested in recording directly the tuning curves in the three 

principal planes of the dielectric frame, using the SPHERE method. Our data will be 

compared to calculations using Eq. (3.1) and the coefficients from Table 3.1 or Table 

3.2.  

 

Second-order electric susceptibility tensor 

GdCOB crystallizes in the point group m of the monoclinic system, and its 

crystallographic special b-axis is parallel to the dielectric y-axis. Then the second-order 

electric susceptibility tensor χ(2) of the crystal has the following 14 non-zero and 

independent coefficients according to the Neumann principle. It writes [3]:  

                                                                          (3.2) 

Under the Kleinman assumption, it comes: 

                                     {
𝜒𝑧𝑥𝑥
(2)

= 𝜒𝑥𝑥𝑧
(2)

= 𝜒𝑥𝑧𝑥
(2)
;  𝜒𝑧𝑦𝑦

(2)
= 𝜒𝑦𝑦𝑧

(2)
= 𝜒𝑦𝑧𝑦

(2)
 

𝜒𝑥𝑦𝑦
(2)

= 𝜒𝑦𝑥𝑦
(2)

= 𝜒𝑦𝑦𝑥
(2)
;  𝜒𝑥𝑧𝑧

(2)
= 𝜒𝑧𝑥𝑧

(2)
= 𝜒𝑧𝑧𝑥

(2)
                                                   (3.3) 

Then the tensor χ(2) becomes: 

                                                                         (3.4) 
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Using the contracted notation, it also writes [3]: 

                                                                                                                           (3.5) 

where:  

      𝜒𝑥𝑥𝑥
(2)

= 𝜒11
(2)
; 𝜒𝑥𝑦𝑦

(2) = 𝜒12
(2); 𝜒𝑥𝑧𝑧

(2) = 𝜒13
(2); 𝜒𝑧𝑥𝑥

(2) = 𝜒31
(2); 𝜒𝑧𝑦𝑦

(2) = 𝜒32
(2); 𝜒𝑧𝑧𝑧

(2) = 𝜒33
(2)         (3.6)  

The sign and magnitude of the six non-zero and independent elements of the second-

order electric susceptibility tensor d(2) = χ(2)/2  of GdCOB have been determined at 

the wavelength of 0.532 µm with an accuracy of 10
-2

 to 10
-4. They are given in Table 

3.3. Three slabs cut along the three principal dielectric axes x, y and z and the 

separated-beam method from [34] were used.  

 

Coefficients(pm/V) Ref. [34] 

𝑑11 0.28 
𝑑12 0.22 
𝑑13 -0.595 
𝑑31 -0.34 
𝑑32 1.665 
𝑑33 -1.20 

Table 3.3: Sign and magnitude at 0.532 µm of the six non-zero and independent elements of the electric 

susceptibility d(2) =   χ(2)/2 of GdCOB from [34]. 

 

Note that the magnitude of the six elements of Table 3.3 can be calculated at any other 

wavelength of the transparency range of GdCOB by using the Miller rules from Eq. 

(1.27) and Sellmeier equations.  

 

In this part, Sellmeier equations are given by Eq. (3.1) and the coefficients from Table 

3.1 or Table 3.2.  

3.2.2 GdCOB sphere 

There is no reason to study again the reliable data reported in GdCOB for the 

transmission spectra, the damage threshold and the magnitude and signs of the nonlinear 

coefficients. Then we decided to study the dielectric frame orientation as a function of 

wavelength and record tuning curves over the transparency range of GdCOB. For that 

purpose one crystal was shaped as a sphere using the modus operandi described in part 

2.3.1. 
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GdCOB was cut as a sphere with a diameter of D =5.55 mm and an asphericity ∆D/D 

better than 1%.  The sphere surface is polished to optical quality and not coated. It is 

shown in Figure 3.5 when stuck and mounted on the HUBER goniometric head with the 

vertical rotation axis oriented along a principal axis of the dielectric frame (x, y, z). 

 

Figure 3.5: GdCOB sphere of 5.55 mm diameter used for our experiments. 

3.2.3 Orientation of the dielectric frame as a function of wavelength 

We used the SPHERE method which setup is shown in Figure 2.10. Thus we were able 

to follow the orientation of the dielectric frame as a function of wavelength, by 

performing the measurements and analysis described in part 2.3.3.1 of chapter 2.   

 

The sphere was stuck and mounted on the HUBER goniometric head with the vertical 

rotation axis oriented along the y-axis of the dielectric frame. It was oriented on the 

Euler circle as described in part 2.3.2.3 and shown in Fig. 2.11 to access the (x, z) 

principal dielectric plane.  

 

The incoming tunable beam wavelength was first set at 0.65 m and the sphere was 

oriented for the incoming beam propagation along the x-axis where there is no double 

refraction effect. In this condition, a single spot was observed at the output of the sphere 

as shown in the insert of Fig. 3.6. The observation of the single spot was followed for 

several wavelengths ranging between 0.4 µm to 1.75 µm using a CCD camera and a 

mid IR sensor card successively.  

 

We found that the single spot stayed at the same position. According to part 2.3.3.1, it 

means that we did not observe a rotation of the dielectric frame over this wavelength 

range. Since the GdCOB sphere has been stuck oriented in the crystallographic frame, 

we determined that the angle between the a- and x-axes remains (a, x) = 26° ± 0.5°, as 

shown in Fig. 3.6. Note that our data are in agreement with Fig. 3.2 recorded from [29]. 
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According to the behaviour shown in Fig. 3.6, we expect that the dielectric frame of 

GdCOB does not rotate over its full transparency range. 

 

 
Figure 3.6: Angle (a, x) as a function of wavelength giving the orientation between the crystallographic  

(a, b, c) frame and the dielectric frame (x, y ,z). 

 

3.2.4 Recorded tuning curves  

In this part, our objective was to record tuning curves in principal planes of the 

dielectric frame by using the SPHERE method. They are depicted as the birefringence 

phase-matching wavelength as a function of spherical phase-matching angles.   

 

We can study all types (I, II or III) of SHG, SFG and DFG processes. However, we are 

especially interested in wavelengths over the transparency range of GdCOB that covers 

band II of transmission of the atmosphere. OPG-DFG source limited our studies to SHG 

and DFG(1). However, according to Eq. 1.30, tuning curves can be recorded only in 

principal planes for which the associated effective coefficients 𝑑𝑒𝑓𝑓 do not remain equal 

to zero, and if birefringence phase-matching conditions is possible.   

3.2.4.1 phase-matching conditions and associated effective coefficients  

Using Eq. (3.4) and Eq. (1.33), we calculated the effective coefficients associated to all 

types of SHG and DFG(𝜆1) tuning curves, in the three principal dielectric planes of the 

positive biaxial crystal GdCOB. They correspond to  𝜒𝑒𝑓𝑓( 𝜆2𝜔, 𝜃𝑃𝑀 , 𝜑𝑃𝑀)  and 

𝜒𝑒𝑓𝑓( 𝜆1, 𝜃𝑃𝑀 , 𝜑𝑃𝑀) respectively. They have the advantage to write as the analytical 

expressions shown in Table 3.4 and Table 3.5 respectively. Note that 𝑑𝑒𝑓𝑓 = 𝜒𝑒𝑓𝑓/2. 
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Type I SHG 

(2ω ω ω)  

Effective coefficient χeff 

Plane y-z −χxyy(λ2ω)cos[PM−ρy,z(λ𝜔, θPM)]
2

− χxzz(λ2ω)sin[PM−ρy,z(λ𝜔, θPM)]
2
 

Plane x-y −χxzz(λ2ω)sin[φPM+ρx,y(λ2𝜔, φPM)]  

Plane x-z (θ<Vz) −χxyy (λ2ω)cos[PM−ρx,z(λ2𝜔, θPM)]

+ χzyy(λ2ω)sin[PM−ρx,z(λ2𝜔, θPM)] 

Plane x-z (θ>Vz) 0  

 

Type II SHG 

(2ω ω ω)  

Effective coefficient χeff 

Plane y-z χzxx(λ2ω)sin[PM−ρy,z(λ𝜔, θPM)]  

Plane x-y χzxx(λ2ω)sin[φPM+ρx,y(λ𝜔, φPM)]sin[φPM+ρx,y(λ2𝜔, φPM)]

+ χzyy(λ2ω)cos[φPM+ρx,y(λ𝜔, φPM)]cos[φPM+ρx,y(λ2𝜔, φPM)] 

 Plane x-z (θ<Vz) 0 

Plane x-z (θ>Vz) −χxyy (λ2ω)cos[PM−ρx,z(λ𝜔, θPM)] +

χzyy (λ2ω) sin[PM−ρx,z(λ𝜔, θPM)]  

Table 3.4: The effective coefficient χeff( 𝜆2𝜔 , 𝜃𝑃𝑀, 𝜑𝑃𝑀) of types I and II SHG in the three principal 

planes of the dielectric frame. ρl,m(λ𝑖 , α)(l, m = x, y or z; i=  or 2 and α = θ or φ ) are the spatial 

walk-off angles given in Table (1.1). (PM,PM) are phase-matching angles using spherical coordinates.   

 

Type I DFG (𝜆1) Effective coefficient χeff 

Plane y-z χzxx(λ1)sin[PM−ρy,z(λ1, θPM)]  

Plane x-y χzxx(λ1)sin[φPM+ρx,y(λ2, φPM)]sin[φPM+ρx,y(λ3, φPM)]

+ χzyy(λ1)cos[φPM+ρx,y(λ2, φPM)]cos[φPM+ρx,y(λ3, φPM)] 

Plane x-z (θ<Vz) 0 

Plane x-z (θ>Vz) −χxyy (λ1)cos[PM−ρx,z(λ1, θPM)] +

χzyy (λ1) sin[PM−ρx,z(λ1, θPM)]  

 

Type II DFG (𝜆1) Effective coefficient χeff 

Plane y-z −χxyy(λ1)cos[PM−ρy,z(λ1, θPM)]cos[PM−ρy,z(λ2, θPM)] −

χxzz(λ1)sin[PM−ρy,z(λ1, θPM)]sin[PM−ρy,z(λ2, θPM)]   

Plane x-y −χxzz(λ1)sin[φPM+ρx,y(λ3, φPM)]  

Plane x-z (θ<Vz) −χxyy (λ1)cos[PM−ρx,z(λ3, θPM)]

+ χzyy(λ1)sin[PM−ρx,z(λ3, θPM)] 

Plane x-z (θ>Vz) 0   
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Type III DFG (𝜆1) Effective coefficient χeff 

Plane y-z χzxx(λ1)sin[PM−ρy,z(λ2, θPM)]  

Plane x-y χzxx(λ1)sin[φPM+ρx,y(λ1, φPM)]sin[φPM+ρx,y(λ3, φPM)]

+ χzyy(λ1)cos[φPM+ρx,y(λ1, φPM)]cos[φPM+ρx,y(λ3, φPM)] 

Plane x-z (θ<Vz) 0 

Plane x-z (θ>Vz) −χxyy (λ1)cos[PM−ρx,z(λ2, θPM)] +

χzyy (λ1) sin[PM−ρx,z(λ2, θPM)]   

Table 3.5: The effective coefficient χeff( 𝜆1, 𝜃𝑃𝑀, 𝜑𝑃𝑀)  of types I, II and III DFG(λ1),  in the three 

principal planes of the dielectric frame. ρl,m(λ𝑖 , α)(l, m = x, y or z; i=  or 3 and α = θ or φ ) are the 

spatial walk-off angles given in Table (1.1). (PM,PM)  are phase-matching angles using spherical 

coordinates. 

 

Using Eq (1.11) and Eq. (1.38), we give in Table 3.6 the equations verifying the 

corresponding phase-matching condition. 

 

 Phase-matching condition 

Type I SHG n+(λ𝜔, θPM, φPM) = n
−(λ2𝜔, θPM, φPM) 

Type II SHG  n+(λ𝜔, θPM, φPM) + n
−(λ𝜔, θPM, φPM) = 2n

−(λ2𝜔, θPM, φPM) 

Type I DFG (λ1) n+(λ1, θPM, φPM)/𝜆1 + n
−(λ2, θPM, φPM)/𝜆2 = n

−(λ3, θPM, φPM)/𝜆3 

Type II DFG (𝜆1) n+(λ1, θPM, φPM)/𝜆1 + n
+(λ2, θPM, φPM)/𝜆2 = n

−(λ3, θPM, φPM)/𝜆3 

Type III DFG (𝜆1) n−(λ1, θPM, φPM)/𝜆1 + n
+(λ2, θPM, φPM)/𝜆2 = n

−(λ3, θPM, φPM)/𝜆3 

Table 3.6: Phase-matching conditions for types I and II SHG and types I, II and III DFG(1).  λ2ω =

λω/2 and λω are the fundamental and SHG generated wavelengths respectively. i with i=  or 3 verify 

the relation of order 3 < 2  < 1. (PM,PM) are phase-matching angles using spherical coordinates. n
+
 

and n
-
 are the refractive indices given by Eq. (1.11).  

3.2.4.2 Type I and type II SHG   

According to Table 3.4, it is no possible to record tuning curves for type I and II SHG in 

the (𝑥, 𝑧) plane when Vz<θ<90° since the effective coefficient is equal to zero. It is the 

same for type II SHG in the (𝑥, 𝑧) plane when 0°<θ<Vz.  

 

On the other hand, Table 3.6 shows that by studying type I SHG in the (𝑥, 𝑧) plane and 

types I and II SHG in the (𝑥, 𝑦)  plane only, the Sellmeier equations of the three 

principal refractive indices of the positive biaxial GdCOB crystal can be involved over 

its full spectral range when using the tunability of our OPG-DFG.  

 

The tuning curves were recorded by using the SPHERE method described in chapter 2 

which experimental setup is shown in Figure 2.10. During our experiments, the sphere 

was stuck along the 𝑦-axis and the 𝑧-axis, successively. It was mounted at the center of 
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the Euler circle so that we were able to scan the whole (𝑥, 𝑧)  and (𝑥, 𝑦)  principal 

dielectric planes by rotating the sphere successively around the 𝑦- and 𝑧- axes. The 

incoming tunable beam was provided by the OPG-DFG (see chapter 2). 

 

The recorded SHG tuning curves in the GdCOB sphere are shown by blue dots in 

Figures 3.7, 3.8 and 3.9, respectively (note that o and e stand for + and - in the (𝑥, 𝑧) 

principal plane, while o and e stand for - and + in the (𝑥, 𝑦) principal plane according to 

Table 1.1). These figures also give the two theoretical curves calculated by using the 

Sellmeier equation from Eq. (3.1) and the coefficients of Table 3.1 from F. Mougel et 

al. [32], and the coefficients of Table 3.2 from N. Numemura et al. [33]. They are 

depicted as a back dashed line and a green dashed line respectively. 

 

Figures 3.7, 3.8 and 3.9 clearly highlight some disagreements between our experimental 

data and the calculations using the Sellmeir equations from F. Mougel et al. [32] or 

from N. Numemura et al. [33], especially above to 1.4 µm. It is probably due to the fact 

that the Sellmeier equations previously published by Mougel et al. [32] and N. 

Numemura et al. [33] are just reasonable in the visible and near-infrared domain, up to 

1.12 µm. 

 

 

Figure 3.7: Type I SHG tuning curve in the (x, z) principal plane, the fundamental wavelength λω is given 

as a function of phase-matching angle θPM. The blue dots correspond to our experimental data. The black 

and green dashed lines are calculations using the Sellmeier equations of [32] and [33], respectively. 
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Figure 3.8: Type I SHG tuning curve in the (x, y) principal plane, the fundamental wavelength λω  is 

given as a function of phase-matching angle 
PM

. The blue dots correspond to our experimental data. The 

black and green dashed lines are calculations using the Sellmeier equations of [32] and [33], respectively. 

 

Figure 3.9: Type II SHG tuning curve in the (x, y) principal plane, the fundamental wavelength λω is 

given as a function of phase-matching angle 
PM

. The blue dots correspond to the experimental data. The 

black and green dashed lines are calculations using the Sellmeier equations of [32] and [33], respectively. 

 

Figures 3.8 and 3.9 show that SHG phase-matching condition is possible in GdCOB for 

fundamental wavelengths ranging between 0.8 and 3.2 µm. It is very important to note 

that all our recorded tuning curves can be used per se for the future use of GdCOB as a 

doubling crystal in devices in the same wavelength range that we studied. 

3.2.4.3 Type II DFG  

Dealing with the same strategy as that discussed in the previous part, Table 3.5 shows 

0,5

1

1,5

2

2,5

3

3,5

0 10 20 30 40 50 60 70 80 90

Experimental data

Calculations: F.Mougel et al

Calculations: N.Umemura et al

GdCOB       (x,y) plane

SHG:      

(µ
m

)

(°)

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

40 50 60 70 80 90

Experimental data

Calculations: F.Mougel et al

Calculations: N.Umemura et al

GdCOB       (x,y) plane

SHG:      

(°)

(µ
m

)



3.2 GdCOB 

63 

that the effective coefficient of Type I and III DFG(λ1) is always nil in the (x, z) plane. 

Furthermore, according to Table 3.6, we found sufficient to study type II DFG(λ1) in 

the (𝑥, 𝑧)  plane since compared to SHG studies, we expect to extend the involved 

wavelength range of the Sellmeier equations,  nx(), ny() and nz(), of GdCOB crystal. 

 

We used the SPHERE method described in chapter 2 which experimental setup is 

shown in Figure 2.10. The sphere was stuck along the 𝑦-axis and mounted at the center 

of the Euler circle and rotated in order to scan the whole (𝑥, 𝑧) principal plane. For the 

two incoming beams: one has a tunable wavelength λ3, and the wavelength of the other 

one λ2, was fixed at 1.064 µm. They are provided by our source described in part 2.3.2.1. 

 

Dealing with DFG recorded data can be directly used for OPG devices then we propose: 

- the pump wavelength λP which stands for the wavelength λ3; 

- the signal wavelength λs which stands for the wavelength  λs = λ2=1.064 µm; 

- the Idler wavelength λi which stands for the wavelength λ1; 

Furthermore, according Eq. (1.24), λp < λs ≤ λi  and  λP
−1 =  λs

−1 + λi
−1. 

Type II DFG(λi)  tuning curve recorded in the (x, z) plane of GdCOB is shown in 

Figure 3.10 from the variation of the pump and idler phase-matching wavelengths as a 

function of the phase-matching (PM) angle θPM. Figure 3.10 also shows the theoretical 

curves calculated by using the Sellmeier equation from Eq. (3.1) and the Coefficients 

given in Table 3.1 (from F. Mougel et al [32]) and in Table 3.2. (from N. Umemura et 

al [33]). They are depicted as a back dashed line and a green dashed line respectively. 

 

Figure 3.10: Type II DFG(λi)  tuning curve in the (x, z) principal plane. The generated wavelength λi and 

the tunable incoming wavelength λP are given as a function of phase-matching angle θPM . The other 

incoming wavelength λs = 1.064 𝜇𝑚. The blue dots correspond to our experimental data.  The black and 

green dashed lines are calculations using the Sellmeier equations of [32] and [33], respectively.  
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Figure 3.10 shows that type II DFG (λi) allows phase-matching conditions for 

wavelengths ranging from 0.48 to 0.81 µm. The corresponding range for λi is between 

0.87 and 3.42 µm, the maximum wavelength of 3.42 µm is limited by the infrared cut-

off of GdCOB. We also find a discrepancy especially the infrared range between our 

experimental data and the calculated tuning curves using the Sellmeier equations from F. 

Mougel et al [32] and N. Umemura et al [33]. All our recorded tuning curves can be 

used per se for the future use of GdCOB in OPG devices in the same wavelength range 

that we studied. 

 

3.2.5 Refined Sellmeier equations of the three principal refractive 

indices  

Because of discrepancies between our experimental data and calculations using [32] and 

[33], the Sellmeier equations of GdCOB need to be refined. As explained in chapter 2, it 

can be done with the precision of the order of 10
-4

 by the simultaneous fit of all the 

experimental recorded tuning curves. We use the Levenberg-Macquardt algorithm 

encoded with Matlab.  

 

For GdCOB we fitted simultaneously the recorded tuning curves in the (𝑥, 𝑧) and (𝑥, 𝑦) 

planes for all studied types of SHG and DFG. We tried different forms of analytical 

Sellmeier equations to describe the dispersion equations of the three principal refractive 

indices. The best result was obtained with a dual oscillator form as follows:   

                                               𝑛𝑖
2(𝜆) = 𝐴𝑖 +

𝐵𝑖𝜆
2

𝜆2−𝐶𝑖
+

𝐷𝑖𝜆
2

𝜆2−𝐸𝑖
                                                                          (3.7) 

𝜆 is in µm, and 𝑖 stands for x, y and z. The corresponding coefficients 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖, 𝐷𝑖and 

𝐸𝑖 are given in Table 3.7.    

 

coefficients 𝑖 = 𝑥 𝑖 = 𝑦 𝑖 = 𝑧 
𝐴𝑖  2.1685 2.2572 2.2587 
𝐵𝑖 0.6163 0.6169 0.6482 
𝐶𝑖 0.0341 0.0383 0.0409 

𝐷𝑖  0.5773 1.3245 1.8922 

𝐸𝑖 107.0991 115.7501 148.8075 

Table 3.7: Coefficients of Eq. (3.7) refining the dispersion equations nx(𝜆), ny(𝜆) and nz(𝜆) of GdCOB. 

 

The results of our simultaneous fit are depicted as red lines in Figures 3.11 to 3.14. 
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Figure 3.11: Type I SHG tuning curve, the fundamental wavelength λω is given as a function of phase-

matching angle θPM. The blue dots are the experimental data, the dashed lines are calculations using the 

Sellmeier equations of [32, 33] and the red solid line is our fit of the experimental data.  

 

 

 

Figure 3.12: Type I SHG tuning curve in the (x, y) principal plane, the fundamental wavelength λω is 

given as a function of phase-matching angle 
PM

. The blue dots correspond to the experimental data, the 

dashed lines are calculations using the Sellmeier equations of [32, 33] and the red solid line is our fit of 

the experimental data. 
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Figure 3.13: Type II SHG tuning curve in the (x, y) principal plane, λω is given as a function of phase-

matching angle 
PM

.  The blue dots correspond to the experimental data, the dashed lines are calculated 

by the Sellmeier equations of [32, 33] and the red solid line is our fit of the experimental data. 

 

 

Figure 3.14: Type II DFG(λi) tuning curve in the (x, z) principal plane. The generated wavelength λi and 

the tunable incoming wavelength λP are given as a function of phase-matching angle θPM . The other 

incoming wavelength λs = 1.064 𝜇𝑚. The blue dots correspond to the experimental data. The dashed 

lines are calculations using the Sellmeier equations of [32, 33].  The red solid line is our fit of the 

experimental data.   

 

Obviously, the results of our simultaneous fit shown in Figures 3.11 to 3.14, are in a 

much better agreement with our experimental data than calculations using Sellmeier 

equations from [32,33], especially at high wavelengths values.  

 

Firstly, it is because the precision of our angular measurements is around ± 0.5°, leading 
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to a relative precision of the principal refractive indices 𝛥𝑛𝑖 𝑛𝑖⁄  better than 10−4, (where 

𝑖 represents 𝑥, 𝑦 and 𝑧). Secondly, the wavelength range of our measurements is much 

wider in our case than in [32,33].  

 

Figure 3.15 shows that our measurements of the studied SHG and DFG(λi) cover the 

wavelength range of 0.41-2.1 µm for 𝑛𝑥 , 0.41-3.4 µm for 𝑛𝑦  and 0.48-3.1 µm for 𝑛𝑧 , 

which nearly enables the calculation of the phase-matching directions over the entire 

transparent window of the crystal (red lines). In comparison, the previously published 

Sellmeier equations from [32] (black dashed lines) and [33] (green dashed lines) just 

cover the wavelength range of around 0.35−1.34 µm from the visible and near-infrared 

region.  

 

Figure 3.15: Wavelength ranges of solicitation of the three principal refractive indices of GdCOB by our 

experimental data (red continuous lines), the prism method from F. Mougel et al. [32] (black dashed 

lines), and the phase-matched method from N. Umemura et al. [33] (green dashed lines). 



3.2 GdCOB 

68 

 

3.2.6 Determination of SHG spectral and angular acceptances 

We determined spectral and angular acceptances of GdCOB from the recorded type I 

SHG tuning curve in the (x, z) plane using the sphere. The spectral acceptance was 

determined from recording the associated SHG conversion efficiency η𝑆𝐻𝐺  as a function 

of the fundamental wavelength λ; similarly, the angular acceptance was determined 

from recording η𝑆𝐻𝐺  as a function of the spherical angle θ. The wavelength λ and the 

spherical angle θ were located on each side of the phase-matching wavelength λ𝑃𝑀 and 

angle θ𝑃𝑀, respectively.   

 

Figure 3.16 gives as an example the result we obtained from tuning the wavelength 

around the phase-matching wavelength 𝜆𝜔
𝑃𝑀 = 1.6 µm with the orientation of the sphere 

set at the phase-matching angle θ𝑃𝑀 = 33.5° (φ𝑃𝑀 = 0°). Another example is shown in 

Figure 3.17 when rotating the sphere around the phase-matching angle θ𝑃𝑀 =

0° ( φ𝑃𝑀 = 0° ) with the incoming wavelength set at the phase-matching 

wavelength 𝜆𝜔
𝑃𝑀 = 0.956 µm.  

 

Figure 3.16: Measured (dots) and calculated (continuous line) variation of the normalized conversion 

efficiency SHG of type I SHG as a function of the wavelength around the phase-matching wavelength 

𝜆𝜔
𝑃𝑀 = 1.6 µm.  Data were recorded in the 5.55  mm  diameter GdCOB  sphere oriented at the phase-

matching angle (𝑃𝑀 = 33.5°,
𝑃𝑀

= 0°)  of the (𝑥, 𝑧)  principal plane. Calculations were performed 

using our refined Sellmeier Eq. (3.7) with coefficients of Table (3.7). 
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Figure 3.17: Measured (dots) and calculated (continuous line) variation of the normalized conversion 

efficiency  as a function of the angle for type I SHG at the phase-matching wavelength 𝜆𝜔
𝑃𝑀 =

0.956 𝜇𝑚. Data were recorded in the 5.55 mm diameter GdCOB sphere rotated in the (𝑥, 𝑧) principal 

plane. Calculations were performed using our refined Sellmeier Eq. (3.7) with coefficients of Table (3.7). 

 

Note that data of Fig. 3.17 are recorded along to z-axis and correspond to Angular Non-

Critical Phase-matching (ANCPM).  

 

Calculations using our refined Sellmeier equations from Eq. (3.7) and our refined 

coefficients from Table 3.7, are also depicted in Figures 3.16 and 3.17. They are in good 

agreement with our recorded data. However, the measured spectral acceptance is 

δλω = 290 nm, which is much larger by around a factor 2 compared with the calculated 

δλω = 150 nm. Such a difference is due to the fact that the sphere was a little damaged 

during prior measurements along this direction of propagation, which decreases the 

interaction diameter along this direction. It means that, nearly half of the diameter of the 

sphere contributes to the SHG conversion efficiency along this direction. 

 

3.2.7 Condition of supercontinuum generation  

Using our refined Sellmeier equations, we studied the potentiality of GdCOB for the 

supercontinuum generation by OPG with the broadest spectral bandwidth under phase-

matching condition. As already said, it takes advantage of the type II DFG (1 𝜆𝑖
+⁄ =

1 𝜆𝑝
∗−⁄ 1 𝜆𝑠

+⁄ ) where λ𝑃
∗ = λ3

∗  is the “magic” pump wavelength.  

 

According to Table 3.6, type II DFG tuning curves can be recorded in the three 

principal planes of the dielectric frame when using a positive biaxial crystal: in the 

(x, z) principal plane with 0< θ<Vz and in the (x,y) and (y,z) planes. However, only in the 


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(x, z)  principal plane with 0< θ<Vz  and in the (x,y) planes, the external index n
+
 

corresponds to a principal refractive index and then an inflection point can be found as 

discussed in  part 1.3.8 of chapter 1. 

 

We calculated the corresponding “magic” pump wavelengths by the solution of Eq. 

(1.45). It is possible taking into account the index surface of the positive biaxial class 

shown in Fig. 1.3(a), In the (x, z) plane with 0< θ<Vz  and  n+ = ny, we found that the 

“magic” pump wavelength λ𝑃
∗ =  0.772 µm. In the (x, y) principal plane where n+ = nz 

then the “magic” pump wavelength  λ𝑃
∗ = 0.779 µm.  

 

Then using Table 3.7, we were able to calculate in the two previous planes, the type II 

DFG tuning curves with the broadest spectral bandwidth when using the calculated 

“magic” pump wavelength λ𝑃
∗ . They are depicted in Figure 3.18. We also chose the 

following pump wavelengths λ𝑃 = 0.750 µm, 0.808 µm and 0.964 µm. Their values are 

close to λ𝑃
∗  but they have the advantage to be emitted by a femtosecond Ti: Sapphire 

laser. They are depicted in Figure 3.19 and Figure 3.20 showing that they enable to 

generate up to 3.4 µm both in the (x, z) and(x, y) principal planes of the dielectric frame 

of GdCOB. The corresponding spectral bandwidths remain very broad extending to the 

maximal wavelength range between 1 µm 3.4 µm  when GdCOB  is pumped at λP =

0.750 µm and oriented at the phase-matching direction  θ𝑃𝑀 =  32.5°, φ𝑃𝑀 =  0° of the 

(x, z) plane.  

 

Figure 3.18: Calculated type II DFG  (1/ λP
∗− = 1/λi

+ + 1/λs
+)  tuning curves in the (x, z) and 

(x, y) principal planes of GdCOB when using the magic pump wavelength λ𝑃
∗ . The generated wavelengths 

λi and λs are the idler and signal wavelengths, respectively.  
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Figure 3.19: Calculated type II DFG (1/ λP
− = 1/λi

+ + 1/λs
+)  tuning curves in the (x, z) principal plane 

of GdCOB with a pump wavelength λP of 0.750, 0.808 and 0.964 µm. The generated wavelengths λi and 

λs are the idler and signal, respectively. 

 

 

Figure 3.20: Calculated type II DFG (1/ λP
− = 1/λi

+ + 1/λs
+)  tuning curves in the (x, y) principal plane 

of GdCOB with a pump wavelength λP of 0.750, 0.808 and 0.964 µm. The generated wavelengths λi and 

λs are the idler and signal, respectively. 
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3.3 𝐋𝐆𝐍 

3.3.1 State of the art 

In our group, we directly measured SHG, SFG and DFG tuning curves in the Langatate 

La3Ga5.5Ta0.5O14(LGT)  that is a positive uniaxial crystal. Thus we refined the 

Sellmeier equations of the ordinary and extraordinary principal refractive indices over 

the entire transparency range of the crystal. We also found from calculations the 

possibility to generate a supercontinuum from phase-matched OPG using LGT [35]. 

Then we confirmed the validity of our refined Sellmeier equations, by recording the 

phase-matching DFG tuning curves tunable between 1.2 and 4.7 µm in the femtosecond 

regime [36].   

 

Recently our research group identified the Langanate La3Ga5.5Nb0.5O14(LGN)  

belonging to the same family as a serious alternative of  LGT that we wanted to study 

[37].  

  

Crystal growth and crystallographic frame 

A LGN single crystal weighting 410 g, with 45 mm in diameter and 100 mm in length is 

shown in Figure 3.21. It was grown using the Czochralski method [37].  

 

Figure 3.21: LGN single crystal grown by using the Czochralski method. 

 

 

LGN  belongs to the 32  trigonal point group, then the 𝑐 -axis of the crystallographic 

frame is perpendicular to the two other axis, i.e. 𝑎 and 𝑏, with an angle of (𝑎, 𝑏)=120°. 

It means that the crystallographic frame(𝑎, 𝑏, 𝑐) does not correspond to the orthonormal 

dielectric frame (𝑥, 𝑦, 𝑧). We chose 𝑎 parallel to x then (𝑏, 𝑦)=30° as shown in Fig. 

3.22(a). However x- and y-axes of the dielectric frame can be located every 30° of the 

(a, c) crystallographic plane as shown in Fig. 3.22(b). 
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                            (a)                                                             (b) 
 

Figure 3.22: Orientation between the dielectric (x, y, z) and the crystallographic (a, b, c) frames of LGN. 

 

Note that in uniaxial crystals the orientation between the dielectric frame (x, y, z) and 

the crystallographic frame (a, b, c) remains fixed as a function of wavelength. 

 

Transmission spectra and optical damage threshold 

Polarized and un-polarized transmission spectra as a function of wavelength were 

measured through a 2-mm-thick and y-cut LGN slab. As shown in Figure 3.23, LGN is 

transparent between 0.28 and 7.4 µm, despite a strong and narrow polarized absorption 

peak located at 1.85  µm  due to oxygen defects during crystal growth. A smaller 

absorption peak exists at 3 µm because of Ga-O bonds [37]. The transparency range is 

suitable for the optical parametric generation (OPG) covering band II of transmission of 

the atmosphere when pumped with Ti: Sapphire or Nd: YAG lasers, and that without any 

risk of two photon absorption of the pump [37].  

 

 
 

Figure 3.23: Polarized (a) and unpolarized (b) transmission spectra as a function of wavelength through a 

2-mm-thick and y-cut LGN slab from [37]. The insert of (a) corresponds to a zoom of the ultraviolet edge. 

 

The damage threshold of 1.41 GW/cm² was determined at 1.064 µm, using an input 

energy per pulse of 40 mJ, in the nanosecond regime [37]. 
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Principal refractive indices 

LGN  is a positive uniaxial crystal since it was found that the ordinary principal 

refractive index  (𝑛𝑜) is smaller than the extraordinary one (𝑛𝑒) ( 𝑛𝑜 < 𝑛𝑒) [38].  Both 

indices were previously measured as a function of the wavelength using an oriented 

prism with an accuracy of 10
-4

. It enabled to determine Sellmeier equations describing 

the variation of the principal refractive indices as a function of wavelength that are valid 

between 0.36 and 2.32 µm. They are expressed as follows [38]:  

                                                  𝑛𝑖
2(𝜆) = 𝐴𝑖 +

𝐵𝑖

𝜆2−𝐶𝑖
− 𝐷𝑖𝜆

2                                                                           (3.8) 

𝜆 is in µm, and 𝑖 stands for 𝑜 and 𝑒. The corresponding coefficients 𝐴𝑖, 𝐵𝑖, 𝐶𝑖  and 𝐷𝑖 are 

given in Table 3.8.   

coefficients 𝑖 = 𝑜 𝑖 = 𝑒 

𝐴𝑖  3.6842 3.7947 
𝐵𝑖 0.0466 0.0508 
𝐶𝑖 0.0297 0.0325 
𝐷𝑖 0.0096 0.0104 

Table 3.8: Coefficients of Eq. (3.8) describing the dispersion equations of the ordinary and extraordinary 

principal refractive indices no and ne of LGN over the wavelength range 0.36−2.32 µm from [38]. 

 

Recently, an alternative set of equations valid between 0.43 and 2.3  µm  with an 

accuracy of 10
-5

 was reported. They were determined by placing a LGN prism in a high 

precision automatic spectrometer goniometer (HR Spectro Master from Trioptics) [37].   

The dispersion equations of the two principal refractive indices of LGN, were described 

by the same Sellmeier equation given by Eq. (3.8) but new coefficients 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖 and 𝐷𝑖 

were found from the fit of recorded data [37]. They are given in Table 3.9.   

coefficients 𝑖 = 𝑜 𝑖 = 𝑒 

𝐴𝑖  3.79511 3.68270 
𝐵𝑖 0.05000 0.04640 
𝐶𝑖 0.03405 0.02980 
𝐷𝑖 0.00964 0.00870 

Table 3.9: Coefficients of Eq. (3.8) describing the dispersion equations of the ordinary and extraordinary 

principal refractive indices no and ne of LGN over the wavelength range 0.43−2.3 µm from [37].  

 

Second-order electric susceptibility tensor 

LGN crystallizes in the point group 32 of the trigonal system with a crystallographic 

special c-axis parallel to the z-dielectric axis. Then according to the Neumann principle, 

the second order susceptibility tensor χ(2) writes at a given circular frequency [3]:  
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                                                                                                              (3.9) 

Under the Kleimman symmetry approximation, the following relations are fulfilled:  

                                             𝜒𝑥𝑥𝑥
(2)

= −𝜒𝑥𝑦𝑦
(2)

= −𝜒𝑦𝑥𝑦
(2)

= −𝜒𝑦𝑦𝑥
(2)                                                        (3.10) 

Then the second-order susceptibility tensor writes with one independent coefficient, as: 

                                                                                                (3.11) 

Under the contracted notation, it becomes [3]: 

                                                                                                                                      (3.12) 

where:                                                       𝜒𝑥𝑥𝑥
(2)

= 𝜒11
(2)
                                                                               (3.13) 

Under Kleimann assumption, it was reported that the coefficient  𝑑11 = 𝜒11
(2)
/2  =3.0 ± 

0.1 pm/V at 0.532 µm using the Maker Fringe technique [37]. 

3.3.2 Determination of the optical damage threshold 

Using the experimental setup described in part 2.2.3, we determined the surface damage 

threshold of LGN and KTP slabs with the same thickness L= 0.52 mm. Both crystals 

were illuminated at 1.064 µm  and located at the beam-waist W0 = 30 m of the 

Nd: YAG laser (5 ns –FWHM and 10 Hz repetition rate). 

 

Using the modus operandi described in part 2.2.3, LGN was damaged at an incoming 

energy of 500±10 µJ, i.e. a peak power density of 2.8± 0.7 GW/cm2. It is a little bit 

lower than that of KTP where it was observed at 760±10 µJ, i.e. 4.3±1.1 GW/cm2. Note 

that using the same setup and the same KTP crystal as a reference, the crystal from the 

same family that is LGT had been damaged for an input energy of 480±10 µJ, which 

corresponds to a peak power density of 2.7±0.7 GW/cm2.  
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3.3.3 Recorded tuning curves  

In this part, our objective is to record SHG and DFG(𝜆𝑖) tuning curves in principal 

dielectric planes of LGN by using the SPHERE method. As in the previous part, our 

interest is for birefringence phase-matching condition from types I and II SHG, and for 

types I, II and III DFG(𝜆𝑖), over the full transparency range of LGN. According to Eq. 

1.30, SHG and DFG(𝜆𝑖) tuning curves can be recorded only if the associated effective 

coefficients 𝑑𝑒𝑓𝑓  do not remain nil and if phase-matching condition is possible.   

 

3.3.3.1 Phase-matching condition and associated effective coefficients 

Using Eq. 1.21, Eq. 1.22 and Eq. 1.32, we calculated the effective coefficients 

associated to all types of SHG and DFG(𝜆𝑖) tuning curves.  Since LGN is a positive 

uniaxial crystal, they correspond to  𝜒𝑒𝑓𝑓( 𝜆2𝜔, 𝜃𝑃𝑀 , 𝜑𝑃𝑀)  and 𝜒𝑒𝑓𝑓( 𝜆𝑖, 𝜃𝑃𝑀 , 𝜑𝑃𝑀) 

respectively and their analytical expressions can be written in the full dielectric frame as 

shown in Table 3.10. Note that 𝑑𝑒𝑓𝑓 = 𝜒𝑒𝑓𝑓/2.     

Types Effective coefficient χeff 

Type I SHG −χxxx(λ2ω) cos
2[PM − ρ(λω, θPM)] sin3φ𝑃𝑀 

Type II SHG χxxx(λ2ω) cos[PM − ρ(λω, θPM)]cos3φ𝑃𝑀  

Type I DFG(λi) χxxx(𝜆𝑖) cos[PM − ρ(𝜆𝑖 , θPM)]cos3φ𝑃𝑀 

Type II DFG(λi) −χxxx(𝜆𝑖) cos[PM − ρ(𝜆𝑖 , θPM)] cos[PM −

ρ(λ2, θPM)]sin3φ𝑃𝑀 

Type III DFG(λi) χxxx(𝜆𝑖) cos[PM − ρ(𝜆𝑠, θPM)]cos3φ𝑃𝑀 

Table 3.10: Effective coefficients 𝜒𝑒𝑓𝑓( 𝜆2𝜔 , 𝜃𝑃𝑀, 𝜑𝑃𝑀) and χeff( λi, θPM, φPM) associated to SHG and 

DFG( 𝜆𝑖)  tuning curves respectively, in the dielectric frame of the positive uniaxial crystal LGN. 

ρ(λ𝑖 , θ𝑃𝑀)(i=  or 𝑖) are spatial walk-off angles from part 1.2.5. (PM,PM) are phase-matching angles. 

Since LGN  belongs to the uniaxial optical class, birefringence phase-matching 

conditions are solutions of Eq. 1.38 in the (𝑧, 𝑥) = (𝑧, 𝑦) principal plane and the tuning 

curves given in Table 3.11 depend on the spherical phase-matching angle θPM only.    

 Phase-matching condition 

Type I SHG n𝑒(λ𝜔, θPM) = n𝑜(λ2𝜔) 

Type II SHG n𝑜(λ𝜔) + n
𝑒(λ𝜔, θPM) = 2n𝑜(λ2𝜔) 

Type I DFG (λi) n𝑒(𝜆𝑖, θPM)/𝜆𝑖 + n𝑜(𝜆𝑠)/𝜆𝑠 = n𝑜(𝜆𝑃)/𝜆𝑃 

Type II DFG (λi) n𝑒(𝜆𝑖, θPM)/𝜆𝑖 + n
𝑒(𝜆𝑠, θPM)/𝜆𝑠 = n𝑜(𝜆𝑃)/𝜆𝑃 

Type III DFG (λi) n𝑜(𝜆𝑖)/𝜆𝑖 + n
𝑒(𝜆𝑠, θPM)/𝜆𝑠 = n𝑜(𝜆𝑃)/𝜆𝑃 

Table 3.11: Phase-matching conditions in LGN for type I and II SHG and for type I, II and III DFG(1).  

λ2ω = λω/2 and λω are the fundamental and SHG generated wavelengths respectively. PM is the phase-

matching angle in spherical coordinate, and the relation of order λP < λs ≤ λi. no = n
-
 is the ordinary 

principal refractive index and n
e 
= n

+
 is given in part 1.2.4.1.  
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From Tables 3.10, we obtain that the effective coefficients are always nil in the (x, z) 

principal plane of the dielectric frame for type I SHG and type II DFG(𝜆𝑖)  since 


PM

= 0 but they are maximal in the (y,z) principal plane where 
PM

= 90° .  

It is the contrary for type II SHG and type I and III DFG(𝜆𝑖): the effective coefficients 

are always nil in the (y, z) plane but maximal in the (x,z) plane. 

Our experiment must take into account the restrictions imposed by the values of the 

effectives coefficients.  Among all tuning curves still possible to study, our strategy is to 

limit their number by using Table 3.11.  With our OPG-DFG source used with the 

SPHERE method, the dispersion equations of the two principal refractive indices of the 

positive uniaxial LGN crystal should be well involved over its whole transparency range 

by studying only: 

- type I SHG in the principal (y, z) plane of the dielectric frame  

- type III DFG(𝜆𝑖)  in the principal (x, z) plane of the dielectric frame 

- type II DFG(𝜆𝑖)  in the principal (y, z) plane of the dielectric frame.  

 

3.3.3.2 LGN sphere  

We cut and polished a LGN crystal as a sphere with a diameter of 10.8 mm and an 

asphericity below 1%. The sphere was stuck first along the x-axis on the HUBER 

goniometric head in order to access the (y, z) plane when rotated. Then it was stuck 

along the y-axis in order to access the (x, z) plane. It is shown in Figure 3.24.  

 

Figure 3.24: Picture of the sphere of the LGN crystal stuck along x-axis on the HUBER goniometric head. 

3.3.3.3 Type I SHG 

As already said, we just considered type I SHG in the (𝑦, 𝑧) principal plane of LGN. We 

used the experimental setup of the SPHERE method shown in Figure 2.10 and with the 

rotated sphere stuck along the x- axis. The recorded type I SHG tuning curve is shown 
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in Figure 3.25 i.e. the fundamental wavelengths 𝜆𝜔 as a function of the phase-matching 

angle 𝜃𝑃𝑀. The second harmonic wavelength is  𝜆2𝜔 = 𝜆𝜔 /2. 

 

Figure 3.25: Type I SHG tuning curve in the (y, z) principal plane, the fundamental wavelength λω is 

given as a function of phase-matching angle θPM. The blue dots correspond to our experimental data. The 

black and green dashed lines are calculations using the Sellmeier equations of [37, 38], respectively. 

 

The calculated tuning curves using the Sellmeier equations from J. Stade et al. [37] and 

from Dazhi Lu et al. [38] are also shown in Figure 3.25 for comparison. They 

correspond respectively to a green dashed line and to the black dashed line. They both 

highlight discrepancies with our data.  

3.3.3.4 Type II and type III DFG(𝛌𝐢) 

In order to study DFG(λi) in two principal planes of LGN, the sphere was stuck along 

the principal y- and x-axis, successively to rotate in the (x, z) and (y, z) principal planes 

of the dielectric frame successively. The two incoming beams were the signal beam at 

the fixed wavelength λs=1.064  µm, and the tunable pump wavelength λp . They are 

provided by the OPG-DFG source described in part 2.3.2.1. Figures 3.26 and 3.27 show 

the recorded the tuning curves of type III DFG (1/λi
o = 1/λp

o − 1/λs
e) in the (x, z) 

principal plane and type II DFG (1/λi
e = 1/λp

o − 1/λs
e) in the (y, z) principal plane, 

respectively.   
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Figure 3.26: Type III DFG(λi) tuning curve in the (x, z) plane. The blue dots stand for our experimental 

data. The black and green dashed lines are calculations using the Sellmeier equations of [37, 38], 

respectively. 

 

Figure 3.27: Type II DFG(𝜆𝑖)  tuning curve in the (y, z) plane. The blue dots stand for our experimental 

data. The black and green dashed lines are calculations using the Sellmeier equations of [37, 38], 

respectively.  

 

Since LGN is a positive uniaxial crystal, superscripts (o) and (e) stand for (-) and (+) 

and for the ordinary and extraordinary waves, respectively.  λp , λs  and λi  are 

respectively the pump, signal and idler wavelengths verifying λp < λs  ≤ λi.  

 

Figures 3.26 and 3.27 also show the calculated tuning curves using the Sellmeier 

equations from refs. [37, 38]. It highlights discrepancies between our recorded data 

especially above 2 µm even if calculations using [38] are closer to our data.  

 

2

3

4

5

6

7

55 60 65 70 75 80 85 90

Experimental data

Calculations: J. Stade et al.

Calculations: Dazhi Lu et al.

LGN (x,z) plane

DFG:     

= 1.064 µm

Phase-matching angle (°)

G
en

er
at

ed
 w

av
el

en
gt

h
 

(µ
m

)

0.79

0.69

0.84

0.88

0.90

0.92

In
co

m
in

g 
w

av
el

en
gt

h
 

(µ
m

)

1

2

3

4

5

6

7

50 55 60 65 70 75 80 85 90

Experimental data

Calculations: J. Stade et al.

Calculations: Dazhi Lu et al.

G
en

er
at

ed
 w

av
el

en
gt

h
 

(µ
m

)

LGN (y,z) plane

DFG:     

= 1.064 µm

Phase-matching angle (°)

0.52

0.79

0.69

0.84

0.88

0.90

0.92

In
co

m
in

g 
w

av
el

en
gt

h
 

(µ
m

)



3.3 LGN 

80 

 

3.3.4 Refined Sellmeier equations of the two principal refractive 

indices  

The discrepancies between our experimental data and the calculations using the 

Sellmeier equations from [37, 38] that are shown in Figures 3.25, 3.26 and 3.27, imply 

to refine the Sellmeier equations of LGN crystal. 

 

For that purpose, we fitted simultaneously all our SHG and DFG(λi)  tuning curves 

recorded in the principal planes of LGN. We used the Levenberg-Marquardt algorithm 

encoded with Matlab. Among the several possible forms of Sellmeier equations used to 

fit our recorded tuning curves, the best one was that used in refs. [37, 38], i.e:  

                                                 𝑛𝑖
2(𝜆) = 𝐴𝑖 +

𝐵𝑖

𝜆2−𝐶𝑖
− 𝐷𝑖𝜆

2                                                                     (3.14) 

𝜆  is in µm , and  i  stands for o and e. The corresponding dispersive coefficients 

𝐴𝑖 , 𝐵𝑖, 𝐶𝑖 and 𝐷𝑖 are given in Table 3.12.   

coefficients 𝑖 = 𝑜 𝑖 = 𝑒 

𝐴𝑖  3.6836 3.7952 
𝐵𝑖 0.0460 0.0483 
𝐶𝑖 0.0296 0.0314 

𝐷𝑖  0.0094 0.0102 

Table 3.12: Coefficients of Eq. (3.14) refining the dispersion equations of the ordinary and extraordinary 

principal refractive indices no and ne of LGN 

 

The results of our simultaneous fit are depicted as red lines in Figures 3.28 to 3.30.  

 

Figure 3.28: Type I SHG tuning curve, the fundamental wavelength λω is given as a function of phase-
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matching angle θPM. The dots correspond to the experimental data, the dashed lines are calculations using 

the Sellmeier equations of [37, 38] and the red solid line is our fit of the experimental data.  

 

Figure 3.29: Type III DFG(λi)  tuning curve in the (x, z) principal plane, the incoming wavelength λp and 

the generated wavelength λi are given as a function of phase-matching angle θPM. The signal incoming 

wavelength λs=1.064 µm. The dots correspond to the experimental data, the dashed lines are calculated 

by the Sellmeier equations of [37, 38] and the red solid line is our fit of the experimental data.  

 

Figure 3.30: Type II DFG(𝜆𝑖) tuning curve in the (y, z) principal plane, the incoming wavelength λp and 

the generated wavelength λi are given as a function of phase-matching angle θPM. The signal incoming 

wavelength λs=1.064 µm. The dots correspond to the experimental data, the dashed lines are calculated 

by the Sellmeier equations of [37, 38] and the red solid line is our fit of the experimental data.   

 

We refined the Sellmeir equations of LGN thanks to two advantages of our method: 

- The precision of our angular measurements is around ±0.5°, leading to a relative 

precision of the principal refractive indices  𝛥𝑛𝑖 𝑛𝑖⁄  better than  10−4 , (where 𝑖 

represents 𝑜 and 𝑒). The accuracy of the prism method is between  10−3 − 10−4.  
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- Secondly, the wavelength range over which the principal refractive indices are 

involved is much wider in our case.  Data from [37, 38] are valid up to 2.32 µm. 

 

As shown in Figure 3.31, by performing our measurements up to 6.5 µm, we widely 

extended the wavelength range where the two principal refractive indices of LGN are 

valid, compared to studies from references [37, 38]. 

 

Figure 3.31: Spectral ranges where the principal refractive indices of LGN, no and ne, are valid using the 

sphere method (red lines), and the prism methods from [37, 38] (black dashed lines). 

3.3.5 Determination of the nonlinear coefficient from phase-matched 

SHG 

The absolute value of  𝑑11 = 𝑑𝑥𝑥𝑥 =
𝜒𝑥𝑥𝑥
(2)

2
 was determined through a LGN slab cut with 

two faces parallel, polished to optical quality and cut perpendicular to an angularly 

critical phase-matching (ACPM) SHG. We chose a data from the type I SHG tuning 

curve recorded in the (y, z) principal plane that is shown for example in Figure 3.28 

[39]. We chose the experimental setup described in detail in 2.2.4.  

 

The corresponding effective coefficient is: 

                                  deff
LGN = d11

LGN (λ2ω1
PM )cos2[θPM1

− ρe(θPM1
, λω1
PM) ]                                 (3.15) 

where ρe(θPM1
, λω1
PM) stands for the spatial walk-off angle.    

 

We chose the nonlinear coefficient of KTP: d24
KTP(λ2ω2

PM = 0.66 µm) = 2.37 ±0.17 pm/V 

as a reference [19] for the determination of d11 of LGN.  

 

The coefficient d24
KTP  governs type II SHG (1/ λω2

e + 1/ λω2
o = 1/λ2ω2

o )  in the (x, z) 

principal plane of  KTP , the corresponding effective coefficient being  deff
KTP =
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d24
KTP(λ2ω2

PM )sin[θPM2
− ρe(θPM2

, λω2
PM) ] with θPM2 =  58.5° and ρe(θPM2

, λω2
PM) = 2.57° 

at the fundamental wavelength λω2
PM = 1.32 µm.   

 

A LGN  slab was then cut at (θPM1 = 70.4°, φPM1 = 90°) according to our refined 

Sellmeier equations. As discussed in part 2.2.4, the goal is to study SHG in LGN at a 

fundamental wavelength the closest as possible to that of KTP in order to get rid of the 

spectral response of the experimental setup.  

 

LGN  and  KTP  slabs were cut with the same small thickness L = 0.52  mm . The 

fundamental beam emitted by the OPG was focused with a 100-mm-focal length CaF2 

lens. Then the beam waist diameter was wo=120 µm on the two slabs surface, with a 

Rayleigh length of 30 mm that is much longer than L. Thus parallel beam propagation 

was ensured, and the spatial walk-off attenuation is minimized.   

 

With the fundamental beam energy determined in front of the slab and the SHG energy 

measured at the exit the slab, we determined the corresponding SHG conversion 

efficiency of type I SHG in LGN (ηI
LGN), and that of type II SHG in KTP ( ηII

KTP).   

 
 

Figure 3.32: Calculated (red line) and measured (dots linked with black line) SHG conversion efficiency 

measured in LGN  relatively to KTP, as a function of the fundamental wavelength  λω . Wavelengths 

accuracy is within dots size. 

 

Figure 3.32 shows the ratio ηI
LGN/  ηII

KTP  recorded as a function of the fundamental 

wavelength λω. The peak wavelength is λω1
PM= 1.317 µm for LGN, which is very close to 

the targeted value λω2
PM. The spectral acceptance L. δλω1 is equal to 19.8 mm. nm. It is in 

very good agreement with the calculation using our refined Sellmeier equations.    

 

0

0.005

0.01

0.015

0.02

0.025

1.24 1.29 1.34 1.39 1.44

Experimental data

Calculations

(µm)

=70.3°, =90°

type I SHG
1.317 µm → 0.659 µm
L=0.52 mm



3.3 LGN 

84 

In these conditions, we can calculate deff
LGN relative to deff

KTP as follows:  

                                      (deff
LGN)2 =

η𝐼
𝐿𝐺𝑁

η𝐼𝐼
𝐾𝑇𝑃

L𝐾𝑇𝑃
2

L𝐿𝐺𝑁
2

G𝐼𝐼
𝐾𝑇𝑃

G𝐼
𝐿𝐺𝑁

A𝐼𝐼
𝐾𝑇𝑃

A𝐼
𝐿𝐺𝑁 (deff

KTP)2                                                         (3.16)  

with                                          

{
 

 A𝐼
𝐿𝐺𝑁 =

T𝑜
𝐿𝐺𝑁(𝜆2𝜔1 ,𝜃𝑃𝑀1)

n𝑜
𝐿𝐺𝑁(𝜆2𝜔1 ,𝜃𝑃𝑀1)

[
T𝑒
𝐿𝐺𝑁(𝜆𝜔1)

n𝑒
𝐿𝐺𝑁(𝜆𝜔1)

]
2

A𝐼𝐼
𝐾𝑇𝑃 =

T𝑜
𝐾𝑇𝑃(𝜆2𝜔2)

n𝑜
𝐾𝑇𝑃(𝜆2𝜔2)

T𝑒
𝐾𝑇𝑃(𝜆𝜔2 ,𝜃𝑃𝑀2)

n𝑒
𝐾𝑇𝑃(𝜆𝜔2 ,𝜃𝑃𝑀2)

T𝑜
𝐾𝑇𝑃(𝜆𝜔2)

n𝑜
𝐾𝑇𝑃(𝜆𝜔2)

                                    (3.17) 

𝑛𝑜 and 𝑛𝑒 are the ordinary and extraordinary refractive indices. They were calculated at 

λω1
PM= 1.317 µm for LGN, and at λω2

PM = 1.32 µm for KTP using respectively the phase-

matching angles θPM1
 and θPM2

 defined above and [19]. T𝑜  and T𝑒  are the 

corresponding Fresnel transmission coefficients. For LGN, the spatial walk-off angle 

ρe(θPM1
, λω1
PM) = 0.55° and the spatial walk-off attenuation GI

LGN = 0.999.   GII
KTP =

0.987 for KTP [3, 19]. Note that the fact that Figure 3.32 shows a conversion efficiency 

of KTP that is two orders of magnitude higher than that of  LGN, is due to the relative 

value of their trigonometric function that weights differently the nonlinear coefficients 

at the considered phase-matching angles.   

 

Using Eq. (3.15), we found for LGN |d11(0.659 µm)|= 2.9 ±0.5 pm/V and a Miller 

index δ11 = 0.284 ±0.049 pm/V [5]. It corroborates the data using the Maker fringes 

technique of [37]. Then it is very close to |d24(0.660 µm)| = 2.37 ±0.17 pm/V of KTP 

[19] but a little bit larger than |d11(0.659 µm)| = 2.4 ±0.4 pm/V of LGT [35].  

 

3.3.6 Condition of supercontinuum generation 

We studied the potentiality of LGN for a supercontinuum generation by OPG with the 

broadest spectral bandwidth under phase-matching conditions. According to Eq. (1.45), 

we calculated the “magic” pump wavelength  λ𝑃
∗ = λ3

∗  of type II DFG i.e.  1/ λP
∗o →

1/λs
e + 1/λi

e in the (y, z) principal plane of LGN, while in the (x, z) principal plane, the 

corresponding effective coefficient is always zero as shown in Table 3.10.  We used our 

refined Sellmeier equations from Eq (3.14) and the refined coefficients from Table 3.12. 

 

Our calculations show that using a LGN crystal cut at the phase-matching 

direction (θPM = 52°, φPM = 90°) and pumped with the “magic” wavelength λ𝑃
∗ = λ3

∗  

= 0.982 µm, the OPG achieves the broadest spectral bandwidth ranging between 1.4 and 

3.45  µm. It is shown in Fig. 3.33. According to the value of 𝑑11  we found, the 

associated figure of merit 
 (deff

yz
)
2

no(P)ne(i)n
e(s)

= 0.15
pm2

V2
.  
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Figure 3.33 also shows calculated tuning curves still very broad when LGN is pumped at 

λP= 1.064 µm and λP= 0.8  µm. These wavelengths, close to λ𝑃
∗  are very interesting 

since they correspond to the emission of Nd:YAG and Ti:Sa lasers respectively.    

 

Figure 3.33: Calculated type II OPG tuning curves in the (y, z) principal plane of LGN at different pump 

wavelength𝑠 values  λP. λi and λs are the generated idler and signal wavelength respectively. 

3.4 𝐍𝐚𝐈𝟑𝐎𝟖 

3.4.1 State of the art 

In 2007, we synthesized and studied the crystal structure of the new acentric crystal 

NaI3O8 in our research group [40]. Three years later, another group showed that this 

material is a negative uniaxial crystal with potential nonlinear optical properties from 

powder SHG measurements and calculations based on the density functional theory 

(DFT) [41].  

 

Crystal growth and crystallographic frame 

In 2007, our group synthesized and studied the crystal structure of the new acentric 

crystal NaI3O8 [40]. Recent advances in crystal growth allowed our research group to 

get single crystals of very high quality suited for the first exhaustive study of the linear 

and nonlinear optical properties reported in this part.  

 

NaI3O8 single crystals were grown by slow evaporation of Nitric Acid aqueous solutions 

(7M) at fixed temperature ranging between 60 and 70 °C. Samples of several millimeter 

dimensions were obtained as the one shown in Fig.3.34. While NaI3O8 displays a 

significant solubility in acidic solutions of lower molarity, such solutions were proved 
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to be unstable toward the reduction of the iodate species into iodine. The later gets 

incorporated in the growing crystals giving them a yellow tint.  

 

Figure 3.34: NaI3O8 single crystal (2⨯2⨯5 mm2) grown in our research group. 

 

NaI3O8 belongs to the S4(4̅) tetragonal point group, and its crystallographic frame 

(a, b, c) is orthonormal and fully coincide with the dielectric frame (𝑥, 𝑦, 𝑧) [41].     

 

Second-order electric susceptibility tensor 

Since NaI3O8 belongs to the S4(4̅) tetragonal point group, then according to the 

Neumann principle, the second order susceptibility tensor χ(2) writes at a given circular 

frequency [3]: 

                                                                               (3.18) 

Under the Kleimman symmetry assumption, the following relations are fulfilled: 

                             {
𝜒𝑥𝑦𝑧
(2)

= 𝜒𝑥𝑧𝑦
(2)

= 𝜒𝑦𝑧𝑥
(2)

= 𝜒𝑦𝑥𝑧
(2)

= 𝜒𝑧𝑥𝑦
(2)

= 𝜒𝑧𝑦𝑥
(2)

𝜒𝑥𝑧𝑥
(2)

= 𝜒𝑥𝑥𝑧
(2)

= 𝜒𝑧𝑥𝑥
(2)

= −𝜒𝑦𝑧𝑦
(2)

= −𝜒𝑦𝑦𝑧
(2)

= −𝜒𝑧𝑦𝑦
(2)
                                       (3.19) 

Then the second-order susceptibility tensor writes with two independent coefficients, as: 

                                                                   (3.20) 

Using the contracted notation, it becomes [3]: 
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                                                                                                                        (3.21) 

where:                                        χ𝑥𝑦𝑧
(2)

= χ14
(2)
;  χ𝑥𝑧𝑥

(2)
= χ15

(2)
                                             (3.22) 

Under the Kleimman assumption, there are only two independent nonzero coefficients 

of the second-order electric susceptibility tensor: d14 =
χ14
(2)

2
;  d15 =

χ15
(2)

2
.  

3.4.2 Determination of transmission spectra and optical damage 

threshold 

The transmission spectra were recorded in polarized light through a polished and 

uncoated 3-mm-thick slab with the two faces cut perpendicularly to the x-axis. It is 

shown in the insert of Figure 3.35.  

 

The linear polarization of light oriented successively perpendicularly and collinear with 

the z-axis, led to the ordinary and extraordinary transmission coefficients respectively. 

As described in part 2.2.2, we used a Perkin-Elmer Lambda 900 spectrometer to record 

spectra as a function of the wavelength between 0.175–3.300 µm, and a Bruker FT-IR 

above 3.3 µm. The transmission spectra depicted in Figure 3.35 show that NaI3O8 is 

transparent between 0.32 µm and to 6 µm despite strong absorption bands above 4 µm.   

 

Figure 3.35: Transmission spectra of the 3-mm-thick NaI3O8 slab shown in insert. 

 

Using the same experimental setup described in part 2.2.3, we measured the surface 

damage threshold of a NaI3O8 slab illuminated at 1.064 µm and located at the beam-

waist W0 = 30 m of the Nd: YAG laser (5 ns –FWHM and 10 Hz repetition rate).  

 

Using the modus operandi described in part 2.2.3, NaI3O8was damaged at an incoming 
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energy of 420±10 µJ, i.e. a peak power density of 2.4±0.6 GW/cm2. It is much lower 

than that of KTP where it was observed at 760±10 µJ, i.e. 4.3±1.1 GW/cm2. 

3.4.3 Determination of the magnitude of a principal refractive index  

Since we perform in the next part, the first exhaustive study of the nonlinear optical 

properties of NaI3O8 crystal, the magnitude of one principal refractive index at one 

wavelength is requested.  

It will be simultaneously fitted with the tuning curves recorded in principal planes with 

the SPHERE method, in order to determine the Sellmeier equations describing no() and 

ne() of NaI3O8. The reason is that phase-matching angles of tuning curves that are 

solutions of Eq. 1.38, depend only on ratios no(i)/ne(i) where i= 1, 2, 3 or  or 2.  

One possibility to determine the value of a principal refractive index at one wavelength 

is provided by Brewster angle measured in a rotated slab.  

3.4.3.1 Brewster angle 

Brewster angle is accessible by measuring the reflection coefficient of the reflected 

power over the incident power of a beam in polarized light at the input surface of a slab 

polished. The transmission coefficients T and the reflexion coefficients R at the surface 

of a slab vary as a function of the tilt between the incoming beam and the axis normal 

to the input surface of the slab. is also called the angle of incidence. Both T and R 

coefficients fulfil the Fresnel equations when recorded in polarized light [2].  

 

 

 

Figure 3.36: Variation of the transmission coefficients Ti and reflexion Ri coefficients at the surface of a 

rotated slab. They are depicted as a function of the tilt between the incoming beam and the axis normal 

to the surface of the slab, also called the angle of incidence.  The subscript i= p when the polarization of 

the incoming beam is parallel to the incident plane otherwise i= s. 

 

According to the polarization state of the incoming beam is parallel or perpendicular to 
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the incident plane, the reflexion coefficients are Rp( and Rs( respectively. Using 

Fresnel equations, it can be shown that they follow the different behaviours shown in 

Figures 3.36 at the reflexion of an isotropic medium (glass). Note that the behaviour is 

complementary for Tp( and Ts( as shown in Fig. 3.36, since the following 

equalities must be fulfilled in a transparent medium: Tp( + Rp( =1 and Ts( 

Rs( [2].  

Figure 3.36 shows a special value of the angle of incidence called the Brewster angle 

for which the incoming beam with its polarization state parallel to the incident plane 

is perfectly transmitted (Tp =1) through the input surface of the slab, i.e the reflexion 

coefficient is nil (Rp =0). Using Fresnels equations, it can be shown that Brewster angle 

writes: 

                                                θ𝐵 = Arctan[𝑛(𝜆)]                                                                                                 (3.23) 

where n is the refractive index of the medium and the wavelength of the incident 

beam.  

3.4.3.2 Our experimental setup 

A scheme of the experimental setup we implemented is shown in Figure 3.37. We used 

a CW laser emitting at the wavelength of 0.671 µm. The power of the incident beam 

was controlled using a half-wave plate (HWP) combined with a Glan polarizer. The 

orientation of the polarization state of the incident beam was controlled using another 

achromatic half-wave plate inserted before the rotated slab. A f-focal lens focused the 

input beam at the input surface of the slab providing a propagation in the plane wave 

approximation. 
 

 
 

Figure 3.37: Our experimental setup measuring the Brewster angle at the input surface of a slab using the 

reflection of an incident beam at the wavelength of 0.671 µm. 

 

The power of the incident and reflected beams were measured simultaneously using two 

OPHIR powermeters simultaneously. The slab rotation was provided with an accuracy 

of 0.5° by motors controlled by a homemade software that also allowed an automatic 
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recording of data on a screen as shown in Fig. 3.38.   

 

Figure 3.38: Homemade Software Screen. 

3.4.3.3 Measurements and analysis 

In order to validate our setup, we used this method to measure the value of a principal 

refractive index of the positive biaxial KTP crystal as a reference. We shaped a slab 

with two parallel faces cut perpendicular to x-axis of the dielectric frame in order to 

access the (𝑥, 𝑦) principal plane when rotated.  

 

Figures 3.39 show our recorded data obtained in KTP crystal for the polarization state 

of the incident beam oriented parallel to the incidence plane. Note that because of the 

mechanical reason, the data included in the red frame cannot be measured as shown in 

Figure 3.39(a). Data shown in Figure 3.39(b) is a zoom of data shown in Figure 3.39(a) 

when the incident angle is around 60.5°. 

 

By fitting data shown in Figure 3.39(b), we found that the Brewster angle θ𝐵 =

 60.5°±0.5°.  Then according to Eq. (3.23) it corresponds to a refractive index value of 

 1.77 ± 0.03 at 0.671 µm.  

 

According to Figure 1.3, the principal refractive that is sollicitated is index 𝑛−(𝜆, 𝜃𝐵) =

[
𝑐𝑜𝑠2(𝜃𝐵)

𝑛𝑦
2(𝜆)

+
𝑠𝑖𝑛2(𝜃𝐵)

𝑛𝑥
2(𝜆)

]
−1/2

 of KTP. Then using θ𝐵 value and the Sellmeier equations of 

KTP from [19], we found that 𝑛−(𝜆, 𝜃𝐵) = 1.761 corroborating our analysis of data. 
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Figure 3.39: (a) Reflexion coefficient at the input surface of a KTP rotated slab, as a function of the angle 

of incidence. The polarization state is parallel to the incidence plane that corresponds to the (x, y) 

principal plane and the wavelength is 0.671 µm. (b) Fit of zoom of data between 58.5° and 62.5° in order 

to determine the Brewster angle value.  

 

Similarly, one principal refractive index of NaI3O8 was studied in order to determine 

the Brewster angle with a slab rotated in the incidence plane. For that purpose, the slab 

was shaped with two parallel faces cut perpendicular to x-axis of the dielectric frame. 

Then the incidence plane corresponds to the (𝑥, 𝑦) principal plane. The polarization of 

the input beam was parallel to that plane. Note that in this case, according to Figure 1.2, 

at the Brewster angle the principal refractive index 𝑛+(𝜆, 𝜃𝐵) = 𝑛𝑜(𝜆) is sollicitated. 

 

Figure 3.40: (a) Reflexion coefficient at the input surface of a KTP rotated slab, as a function of the angle 

of incidence. The polarization state is parallel to the incidence plane that corresponds to the (x, y) 

principal plane and the wavelength is 0.671 µm. (b) Fit of zoom of data between 56° and 60° in order to 

determine the Brewster angle value.  

 

As shown in Figure 3.40(b), our measurements led to a value of the Brewster angle 

θ𝐵 = 58°±0.5° and according to Eq. 3.23, we found that the corresponding principal 

refractive index of NaI3O8 is  no (0.671 µm) = 1.6 ± 0.03.  
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3.4.4 Recorded tuning curves  

In this part, our objective was to record the SHG and DFG(𝜆𝑖) tuning curves in the 

principal planes of the dielectric frame of NaI3O8 by using the SPHERE method. As in 

GdCOB and LGN, we consider the birefringence phase-matching condition from all 

types I and II SHG, and types I, II and III DFG(𝜆𝑖) over the full transparency range of 

NaI3O8.  

 

According to Eq. 1.30, SHG and DFG(𝜆𝑖) tuning curves can be recorded in principal 

dielectric planes only if the associated effective coefficients 𝑑𝑒𝑓𝑓 do not remain nil and 

if phase-matching conditions are possible. 

 

3.4.4.1 Phase-matching conditions and associated effective coefficients 

Using Eq. 1.21, Eq. 1.22 and Eq. 1.32, we calculated the effective coefficients 

associated to all types of SHG and DFG(𝜆𝑖) tuning curves.  Since NaI3O8 is a negative 

uniaxial crystal, they correspond to  𝜒𝑒𝑓𝑓( 𝜆2𝜔, 𝜃𝑃𝑀 , 𝜑𝑃𝑀)  and 𝜒𝑒𝑓𝑓( 𝜆𝑖, 𝜃𝑃𝑀 , 𝜑𝑃𝑀) 

respectively and their analytical expressions can be written in the full dielectric frame as 

shown in Table 3.13. Note that 𝑑𝑒𝑓𝑓 = 𝜒𝑒𝑓𝑓/2.    

 

Types Effective coefficient χeff 

Type I SHG −χxzx(λ2ω) sin[PM + ρ(λ2ω, θPM)] cos2φPM−χxyz(λ2ω) sin[PM + ρ(λ2ω, θPM)] sin2φPM 

Type II SHG 
[χxzx(λ2ω)sin2φPM − χxyz(λ2ω)cos2φPM] {

sin[PM + ρ(λω, θPM)]cos[PM + ρ(λ2ω, θPM)]

+cos[PM + ρ(λω, θPM)]sin[PM + ρ(λ2ω, θPM)]
} 

Type I DFG(λi) [χxzx(λi)sin2φPM − χxyz(λi)cos2φPM] {
sin[PM + ρ(λs, θPM)]cos[PM + ρ(λP, θPM)]

+cos[PM + ρ(λs, θPM)]sin[PM + ρ(λP, θPM)]
} 

Type II DFG(λi) −χxzx(λi) sin[PM + ρ(λP, θPM)] cos2φPM−χxyz(λi) sin[PM + ρ(λP, θPM)] sin2φPM 

Type III DFG(λi) [χxzx(λi)sin2φPM − χxyz(λi)cos2φPM] {
sin[PM + ρ(λi, θPM)]cos[PM + ρ(λP, θPM)]

+cos[PM + ρ(λi, θPM)]sin[PM + ρ(λP, θPM)]
} 

Table 3.13: The effective coefficients 𝜒𝑒𝑓𝑓( 𝜆2𝜔, 𝜃𝑃𝑀, 𝜑𝑃𝑀)  and 𝜒𝑒𝑓𝑓( 𝜆𝑖 , 𝜃𝑃𝑀, 𝜑𝑃𝑀)  associated 

respectively to SHG and DFG(𝜆𝑖) tuning curves in the full dielectric frame of the negative uniaxial 

crystal NaI3O8. 𝜆2𝜔and 𝜆𝑖  are the corresponding generated wavelengths. The spatial walk-off angles are 

given in part 1.2.5. (PM,PM) are the phase-matching angles in spherical coordinates.   

 

Since NaI3O8  belongs to the uniaxial optical class, birefringence phase-matching 

condition is given by solving Eq. 1.38 in the (𝑥, 𝑧) = (𝑦, 𝑧) principal plane only. Then 

the tuning curves given in Table 3.14 only depend on the spherical phase-matching 

angle θPM.    
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 Phase-matching condition 

Type I SHG n𝑜(λ𝜔) = n
𝑒(λ2𝜔, θPM) 

Type II DFG (λ𝑖) n𝑜(λ𝑖)/𝜆𝑖 + n𝑜(λ𝑠)/𝜆𝑠 = n
𝑒(λ𝑃 , θPM)/𝜆𝑃 

Type II SHG n𝑜(λ𝜔) + n
𝑒(λ𝜔, θPM) = 2n

𝑒(λ2𝜔 , θPM) 

Type III DFG (λ𝑖) n𝑒(λ𝑖 , θPM)/𝜆𝑖 + n𝑜(λ𝑠)/𝜆𝑠 = n𝑒(λ𝑃 , θPM)/𝜆𝑃 

Type I DFG (λ𝑖) n𝑜(λ𝑖)/𝜆𝑖 + n
𝑒(λ𝑠 , θPM)/𝜆𝑠 = n𝑒(λ𝑃 , θPM)/𝜆𝑃 

Table 3.14: Phase-matching conditions for type I and II SHG and type I, II and III DFG(λi) in NaI3O8.  

λ2ω = λω/2 and λω are the fundamental and SHG generated wavelengths respectively. PM is the phase-

matching angle using the spherical coordinate. i with i=  or 3 verify the relation of order λP < λs ≤

λi. no = n
+
 is the ordinary principal refractive index and n

e 
= n

-
 is given in part 1.2.4.1.  

 

From Tables 3.13, we obtain that the same effective coefficient is involved in the (x, z) 

and (y, z) principal planes of the dielectric frame where 
PM

= 0° and 
PM

= 90° 

respectively. It is true for all types of SHG and DFG(𝜆𝑖). Since the tuning curves are 

also same in these two principal planes, our strategy is to measure the tuning curves in 

the (x, z)= (y, z) principal plane by shaping NaI3O8 crystal as a cylinder.  

 

3.4.4.2 𝐍𝐚𝐈𝟑𝐎𝟖 cylinder 

Using the Laue Method, NaI3O8 crystal was shaped as a cylinder with its rotation axis 

oriented perpendicular to (𝑐 = 𝑧)-axis (along the 𝑦 = 𝑥-axis) with a precision better 

than 0.5°. Its diameter is D = 4.13 mm with an acylindricity ∆D/D below 1%, and it is 

polished to optical quality as shown in Figure 3.41. Thus the cylinder gives access to all 

directions of the (𝑥, 𝑧) = (𝑦, 𝑧) principal plane when stuck on a Hubber goniometric 

head and placed at the center of an Euler circle. 

 

 

Figure 3.41: The NaI3O8 cylinder with its rotation axis oriented perpendicular to (𝑐 = 𝑧)-axis. 
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3.4.4.3 Type I and type II SHG 

According to Table 3.13, the effective coefficients for type I and type II SHG in the 

(𝑥, 𝑧) = (𝑦, 𝑧) principal plane are not always equal to zero. Then we recorded both 

tuning curves using the SPHERE method which experimental setup is shown in Figure 

2.10. They are shown in Figures 3.42 and 3.43, respectively.  

 

Figure 3.42: Type I SHG tuning curve in the (x, z) principal plane, the fundamental wavelength λω is 

given as a function of phase-matching angle θPM. The dots correspond to our experimental data.  

 

It was not possible to record data for fundamental wavelengths λω lower than 0.7 µm 

because the SHG wavelengths λ2ω were below the ultraviolet cut-off of NaI3O8.  

 

Figure 3.43: Type II SHG tuning curve in the (x, z)  plane i.e. the fundamental wavelength λω  as a 

function of phase-matching angle θPM. The dots stand for our experimental data.  
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3.4.4.4 Type II and type III DFG 

In the case of NaI3O8, DFG(λi) can be studied in the (𝑥, 𝑧) = (𝑦, 𝑧) principal plane. In 

this case, the signal incoming beam at the fixed wavelength is λs=1.064 µm, while the 

pump wavelength λp is tunable and provided by the OPG-DFG source.  Figures 3.44 

and 3.45 show the recorded the tuning curves of type II (1/λi
o = 1/λp

e − 1/λs
o) and type 

III DFG (1/λi
e = 1/λp

e − 1/λs
o) in the (𝑥, 𝑧) = (𝑦, 𝑧) principal plane.  

 

Figure 3.44: Type II DFG (λi)  tuning curve in the (x, z)  plane i.e. the incoming and generated 

wavelengths λp and λi as a function of the phase-matching angle θPM. The dots stand for our experimental 

data.  

 

Figure 3.45: Type III DFG (λi)  tuning curve in the (x, z)  plane i.e. the incoming and generated 

wavelengths λp and λi as a function of phase-matching angle θPM. The dots stand for our experimental 

data.  
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Since NaI3O8 is a negative uniaxial crystal, superscripts (o) and (e) stand for (+) and (-) 

and for the ordinary and extraordinary waves, respectively.  λp , λs  and λi  are 

respectively the pump, signal and idler wavelengths verifying λp < λs  ≤ λi.  

 

As shown in Figure 3.44 and 3.45, type II and type III DFG(λi) with λs=1.064 µm, 

allow phase-matching condition when the incoming tunable pump wavelength is 

ranging from around 0.51 to 0.90 µm. The corresponding generated wavelength ranges 

for λi are between around 1 and 5.7 µm, the maximum wavelength is limited by the 

infrared cut-off of NaI3O8.  

 

The above SHG and DFG(λi) tuning curves show that NaI3O8  allows phase-matched 

generation over its entire transparency range. These data can be used directly to cut the 

crystal at a phase-matching angle corresponding to the targeted parametric process and 

phase-matching wavelength. 

 

3.4.5 First Sellmeier equations of the two principal refractive indices 

We determined the Sellmeier equations of  NaI3O8 crystal by fitting simultaneously all 

our SHG and DFG (λ𝑖)  phase-matching data combined with a Brewster angle 

measurement. For that purpose, we used the Levenberg-Marquardt algorithm encoded 

with Matlab. We tried different types of dispersion equations, the best result being 

obtained with the following dual oscillator model:   

        

                                          𝑛𝑖
2(𝜆) = 𝐴𝑖 +

𝐵𝑖𝜆
2

𝜆2−𝐶𝑖
+

𝐷𝑖𝜆
2

𝜆2−𝐸𝑖
                                                                    (3.24) 

𝜆 is in µm, and 𝑖 stands for 𝑜 or 𝑒. The corresponding coefficients 𝐴𝑖, 𝐵𝑖, 𝐶𝑖  , 𝐷𝑖  and 𝐸𝑖 

are given in Table 3.15.    

 

coefficients 𝑖 = 𝑜 𝑖 = 𝑒 

𝐴𝑖  1.7953 1.6942 
𝐵𝑖 0.7344 0.7101 
𝐶𝑖 0.0182 0.0162 

𝐷𝑖  0.5314 2.5841 

𝐸𝑖 412.9779 375.2799 

Table 3.15: Coefficients of the Sellmeier Eq. (3.24) describing the variation of the ordinary (  no) and 

extraordinary ( ne ) principal refractive indices of NaI3O8 as a function of wavelength. 

 

The relative accuracy 𝛥𝑛𝑖 𝑛𝑖⁄  is better than 10−4 (i=o, e) due to phase-matching angles 

recorded with a precision of ±0.5°. Figures 3.46 to 3.49 show our experimental data 



3.4 NaI3O8 

97 

and fit using our Sellmeier equations. 

 

 

Figure 3.46: Type I SHG tuning curve, the fundamental wavelength λω is given as a function of phase-

matching angle θPM. The dots correspond to the experimental data and the red solid line is our fit of the 

experimental data.  

 

 

Figure 3.47: Type II SHG tuning curve, the fundamental wavelength λω is given as a function of phase-

matching angle θPM. The dots correspond to the experimental data and the red solid line is our fit of the 

experimental data.   
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Figure 3.48: Type II DFG(λi) tuning curve in the (x, z) principal plane, the incoming wavelength λp and 

the generated wavelength λi are given as a function of phase-matching angle θPM. The dots correspond to 

the experimental data and the red solid line is our fit of the experimental data.  

 

 

Figure 3.49: Type III DFG(λi) tuning curve in the (x, z) principal plane, the incoming wavelength λp and 

the generated wavelength λi are given as a function of phase-matching angle θPM. The dots correspond to 

the experimental data and the red solid line is our fit of the experimental data. 

 

 

3.4.6 Determination of the nonlinear coefficients from phase-matched 

SHG 

The magnitudes in absolute values of  d14 = dxyz =
χxyz
(2)

2
;  d15 = dxxz =

χxxz
(2)

2
 were 

determined through two NaI3O8  slabs with two parallel faces polished to optical quality 
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cut perpendicular to an angle critical phase-matching (ACPM) angle for SHG. We 

chose two data from the type I and type II SHG tuning curves recorded in the (x, z) =

(y, z) principal plane that are shown in Figure 3.46 and 3.47, respectively. We used the 

experimental setup described in detail in 2.2.4.  

 

The corresponding effective coefficients are:   

                               𝑑𝑒𝑓𝑓,𝐼
𝑁𝑎𝐼3𝑂8 = −𝑑15

𝑁𝑎𝐼3𝑂8(𝜆2𝜔
𝑃𝑀)𝑠𝑖𝑛[𝜃𝑃𝑀 + 𝜌

+(𝜃𝑃𝑀, 𝜆2𝜔
𝑃𝑀)]                               (3.25) 

   𝑑𝑒𝑓𝑓,𝐼𝐼
𝑁𝑎𝐼3𝑂8 = −𝑑14

𝑁𝑎𝐼3𝑂8(𝜆2𝜔
𝑃𝑀){𝑠𝑖𝑛[𝜃𝑃𝑀 + 𝜌

+(𝜃𝑃𝑀, 𝜆𝜔
𝑃𝑀)]𝑐𝑜𝑠[𝜃𝑃𝑀 + 𝜌

+(𝜃𝑃𝑀, 𝜆2𝜔
𝑃𝑀)] +

           𝑐𝑜𝑠[𝜃𝑃𝑀 + 𝜌
+(𝜃𝑃𝑀, 𝜆𝜔

𝑃𝑀)]𝑠𝑖𝑛[𝜃𝑃𝑀 + 𝜌
+(𝜃𝑃𝑀, 𝜆2𝜔

𝑃𝑀)]}                                                                (3.26) 

where ρ+ is the spatial walk-off angle. 

 

We chose type II SHG  (1/ λω
e + 1/ λω

o = 1/λ2ω
o )  in the (x, y)  principal plane of 

KTiOPO4(KTP) as a reference. The absolute value of the associated effective coefficient 

is | deff
KTP(0.532µm)| = 2.43 pm/V , the corresponding phase-matching angle being 

equal to φPM = 23.1° [19]. 

 

In order to get rid of the spectral response of the experimental setup, we considered the 

fundamental wavelengths as near as possible for this set of measurements, and we chose 

the fundamental wavelength at  λω
PM = 1.064 µm for NaI3O8. Using the Sellmeier Eq. 

(3.24), we calculated that the corresponding phase-matching angles are θPM = 32.1° for 

type I SHG, and  θPM = 49.0° in the case of type II SHG.   

 

We cut two NaI3O8  slabs (𝐿𝑁𝑎𝐼3𝑂8,𝐼 = 800 µm, 𝐿𝑁𝑎𝐼3𝑂8,𝐼𝐼 = 680 µm)  and one KTP 

slab (𝐿𝐾𝑇𝑃 = 800 µm) at the corresponding phase-matching angles given above. We 

took such a small interacting length in order to avoid any spatial walk-off attenuation. 

The incoming fundamental beam was focused through a 100-mm focal length CaF2 lens. 

The corresponding beam waist diameter was around  w𝑜 = 120 µm , leading to a 

Rayleigh length 2 ⨯ 𝑍𝑅 = 22 mm, which is much longer than the thickness of the slabs. 

Then the parallel beam propagation is ensured inside the three crystals.  

 

Types I and II SHG conversion efficiencies of NaI3O8 were registered relatively to KTP 

as a function of the fundamental wavelength around 1.064 µm as shown in Figure 3.50 

and Figure 3.51 where  𝜂𝐼
𝑁𝑎𝐼3𝑂8  and 𝜂𝐼𝐼

𝑁𝑎𝐼3𝑂8  correspond to types I and II SHG 

conversion efficiencies respectively, and 𝜂𝐼𝐼
𝐾𝑇𝑃 stands for the type II SHG conversion 

efficiency of KTP.  
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Figure 3.50: Calculated and measured Type I SHG conversion efficiency of NaI3O8. The dashed lines 

indicate the phase-matching wavelengths. 

 

 

Figure 3.51: Calculated and measured Type II SHG conversion efficiency of NaI3O8. The dashed lines 

indicate the phase-matching wavelengths. 

 

The maximum of each curve corresponds to phase-matching from which can be 

determined the absolute value of the effective nonlinear coefficient deff
NaI3O8 relatively to 

that of KTP, i.e. deff
KTP . The theoretical expression of deff

NaI3O8 is given hereafter: 

                              (𝑑𝑒𝑓𝑓,𝐼,𝐼𝐼
𝑁𝑎𝐼3𝑂8)2 =

𝐴𝐼𝐼
𝐾𝑇𝑃

𝐴𝐼,𝐼𝐼
𝑁𝑎𝐼3𝑂8

𝜂𝐼,𝐼𝐼
𝑁𝑎𝐼3𝑂8

𝜂𝐼𝐼
𝐾𝑇𝑃  

𝐿𝐾𝑇𝑃
2

𝐿𝑁𝑎𝐼3𝑂8,𝐼,𝐼𝐼
2 (𝑑𝑒𝑓𝑓

𝐾𝑇𝑃)2                                                (3.27) 

with                                𝐴𝐼
𝑁𝑎𝐼3𝑂8 =

𝑇𝑒
𝑁𝑎𝐼3𝑂8(𝜆2𝜔

𝑃𝑀,𝜃𝑃𝑀)

𝑛𝑒
𝑁𝑎𝐼3𝑂8(𝜆2𝜔

𝑃𝑀,𝜃𝑃𝑀)
[
𝑇𝑜
𝑁𝑎𝐼3𝑂8(𝜆𝜔

𝑃𝑀)

𝑛𝑜
𝑁𝑎𝐼3𝑂8(𝜆𝜔

𝑃𝑀)
]
2

                                            (3.28) 
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                 𝐴𝐼𝐼
𝑁𝑎𝐼3𝑂8 =

𝑇𝑒
𝑁𝑎𝐼3𝑂8(𝜆2𝜔

𝑃𝑀,𝜃𝑃𝑀)

𝑛𝑒
𝑁𝑎𝐼3𝑂8(𝜆2𝜔

𝑃𝑀,𝜃𝑃𝑀)

𝑇𝑒
𝑁𝑎𝐼3𝑂8(𝜆𝜔

𝑃𝑀)

𝑛𝑒
𝑁𝑎𝐼3𝑂8(𝜆𝜔

𝑃𝑀,𝜃𝑃𝑀)

𝑇𝑜
𝑁𝑎𝐼3𝑂8(𝜆𝜔

𝑃𝑀)

𝑛𝑜
𝑁𝑎𝐼3𝑂8(𝜆𝜔

𝑃𝑀)
                                              (3.29) 

                                      𝐴𝐼𝐼
𝐾𝑇𝑃 =

𝑇𝑜
𝐾𝑇𝑃(𝜆2𝜔

𝑃𝑀 ,𝜑𝑃𝑀)

𝑛𝑜
𝐾𝑇𝑃(𝜆2𝜔

𝑃𝑀,𝜑𝑃𝑀)

𝑇𝑒
𝐾𝑇𝑃(𝜆𝜔

𝑃𝑀)

𝑛𝑒
𝐾𝑇𝑃(𝜆𝜔

𝑃𝑀)

𝑇𝑜
𝐾𝑇𝑃(𝜆𝜔

𝑃𝑀,𝜑𝑃𝑀)

𝑛𝑜
𝐾𝑇𝑃(𝜆𝜔

𝑃𝑀,𝜑𝑃𝑀)
                                                (3.30) 

no,e
NaI3O8(λω

PM)  are the ordinary and extraordinary principal refractive indices of NaI3O8. 

no,e
NaI3O8(λaω

PM, θPM) and no,e
KTP (λaω

PM, φPM)  are the ordinary and extraordinary refractive 

indices of NaI3O8 and KTP respectively. They are involved at the fundamental (a =1) or 

second harmonic (a=2) wavelengths, and at the phase-matching angle θPM  or  φPM . 

To and Te are the associated Fresnel coefficients. 

 

We found from Figs 3.50 and 3.51 that λω
PM= 1.080 µm for type I SHG and λω

PM = 1.058 

µm for type II SHG in NaI3O8. It is slightly different from 1.064 µm and calculation 

using our Sellmeier equations, showing the difficulty of cutting very thin oriented slabs 

at the targeted orientation.  

 

From the maximum values of the curves shown in Figure 3.50 and 3.51, we found that 

|deff I
NaI3O8(λ2ω

PM =  0.540 µm)|= 0.22 ± 0.02 pm/V  and |deff II
NaI3O8(λ2ω

PM =  0.529 µm)|= 

0.53 ± 0.05  pm/V . Using Eq. (3.25) and (3.26), it comes: |d14
NaI3O8(0.529 µm)| =

0.54 ± 0.08 pm/V  and |d15
NaI3O8(0.540 µm)| =0.85±0.13  pm/V . The corresponding 

Miller indices determined using Eqs. (1.26) are: δ14
NaI3O8 = 0.32 ± 0.05 pm/V 

and  δ15
NaI3O8 = 0.50 ± 0.07  pm/V .  They are close to  δ15

KTP =  0.25 ± 0.04 pm/V , 

δ24
KTP =  0.47 ± 0.07 pm/V and δ33

KTP =  1.51 ± 0.22  pm/V of KTP [19]. 

 

3.4.7 Condition of supercontinuum generation  

We studied the potentiality of  NaI3O8 for  a supercontinuum generation by OPG with 

the broadest spectral bandwidth under phase-matching conditions. According to Eq. 

(1.45), we calculated the “magic” pump wavelength λ𝑃
∗ = λ3

∗  of type II DFG i.e.  1/

 λP
∗e → 1/λs

o + 1/λi
o  in the (x, z) =  (y, z)  principal plane of  NaI3O8 . We used the 

Sellmeier equations from Eq. (3.24) and the coefficients from Table 3.15. 
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Figure 3.52: Calculated type II OPG(1/ λP
e = 1/λi

o + 1/λs
o) tuning curve in the (x, z) = (y, z)  plane of 

NaI3O8 at different pump wavelength λP of 1.16, 1.064 and 0.8 µm. λi and λs are the generated idler and 

signal wavelength respectively. 

 

Our calculations show that NaI3O8  crystal cut at the phase-matching angle  (θPM =

18°, φPM = 0 or 90°) and pumped with λ𝑃
∗ = λ3

∗  = 1.16 µm, leads to an OPG emission 

with the broadest spectral bandwidth between 1.5 and 5.3 µm. It is shown in Figure 3.52. 

Calculated tuning curves are still very broad when NaI3O8 is pumped at λP= 1.064 µm 

and λP= 0.8 µm as shown in Fig. 3.52, these two wavelengths being interesting since 

corresponding to the emission Nd:YAG and Ti:Sa lasers, respectively.    

3.5 Comparison between studied crystals  

Using our Sellmeier equations, calculations led to different values of the “magic” pump 

wavelength, the corresponding phase-matching angles and the broadest spectral 

bandwidth for the phase-matched OPG supercontinuum generation in the GdCOB, LGN, 

NaI3O8 nonlinear crystals.  

 

They are summarized in Table 3.16 with the corresponding values in LGT crystal for 

comparison.  

Crystal "magic" pump wavelength(µm) Angle (°) Broadest spectral bandwith (µm) 

GdCOB 0.772 θ=32.5°, φ=0° 1-2.95 
LGN 0.982 θ=52°, φ=90° 1.4-3.45  

NaI3O8 1.16 θ=18°, φ=0° or 90° 1.5-5.3 

LGT 0.964 θ=56°, φ=90° 1.5-3.5 

Table 3.16: Comparison of values of the “magic” pump wavelength, the corresponding phase-matching 

angles and the broadest spectral bandwidth for the phase-matched type II OPG(1/ λP
− = 1/λi

+ + 1/λs
+) 

in GdCOB, LGN, NaI3O8 and LGT.  Our Sellmeier equations were used.  
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Note that we did not find a value of the “magic” pump wavelength leading to an OPG 

supercontinuum generation in KTP crystal. 

 
Figure 3.53: Normalized spectrum of the mid-IR Type II supercontinuum that can be generated in 1 mm 

thick crystals cutting along the directions and using the pump wavelength expressed in Table 3.16. 

 

Using Eq. (1.30), we calculated the normalized broadest spectral bandwidth generated 

in 1 mm thick previous crystals. They are shown in Fig. 3.53 for comparison.  

 

Figure 3.53 shows that the supercontinuum range of GdCOB is narrow, LGN and LGT 

are a little wider, while NaI3O8 is the widest.  

 

The associated effective coefficients of  GdCOB , LGN , NaI3O8  and  LGT  of type II 

OPG (1/ λP
− = 1/λi

+ + 1/λs
+)  are given in Table 3.17. Taking into account the 

corresponding phase-matching angles given in Table 3.16, their square value are shown 

for GdCOB, LGN, NaI3O8  and  LGT in Figure 3.54 for comparison. According to Eq. 

(1.30), it highlights that the energy of the generated supercontinuum in LGT- and LGN- 

OPG should be much higher than that of GdCOB- and NaI3O8 − OPG. 

 

Crystals Effective coefficient deff 

GdCOB −d12 (λi)cos[PM−ρx,z(λp, θPM)] 

LGN d11(λi) cos[PM − ρ(λi, θPM)] cos[PM − ρ(λs, θPM)] 

NaI3O8 −d15(λi) sin[PM + ρ(λp, θPM)] 

LGT −d11(λi) cos[PM − ρ(λi, θPM)] cos[PM − ρ(λs, θPM)] 

  

Table 3.17: The effective coefficients of type II OPG(1/ λP
− = 1/λi

+ + 1/λs
+) along the phase-matching 

angles shown in Table 3.16, for GdCOB, LGN, NaI3O8 and LGT.   
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Figure 3.54: The square of the effective coefficients of GdCOB, LGN, NaI3O8 and LGT oriented along the 

directions shown in Table 3.16. 

 

Note the damage thresholds of LGN, LGT and  NaI3O8  determined under the same 

condition almost the same value: LGN (2.8 ±0.7 GW/cm2), LGT (2.7±0.7 GW/cm2) 

[42] and NaI3O8 (2.4±0.6 GW/cm2) [43]. An optical damage threshold higher than 1 

GW/cm2  was reported in GdCOB [29].  

 

 

By combining all these previous crucial properties, we can conclude that: 

- the performances of GdCOB crystals are much less attractive than the other 

nonlinear crystals. It is true as well for the broadest spectral bandwidth emitted 

and the efficiency. 

- NaI3O8 crystal provides an OPG supercontinuum generation with the broadest 

spectral bandwidth compared with the other crystals; it is the only crystal to 

cover completely band II (3-5 m) of transmission of the atmosphere. however 

the associated efficiency is very weak. 

- LGT and LGN crystals are the most efficient crystals for the OPG 

supercontinuum generation, the performances of LGN crystals being better than 

that of LGT. But their maximal value of emitted wavelength does not exceed of 

about 4 m. 

 

Next step is to validate our calculations by recording experimental data on an 

implemented OPG using the scheme shown in Figure 3.55(a). For that purpose slabs of 

GdCOB and of LGN with the thickness of around 1 mm have been already cut at the 

phase-matching directions given in Table 3.16. They are shown in Figure 4.55(b). The 
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cutting of LGT and NaI3O8 slabs is in progress.  

 

 

Figure 3.55: Scheme of the OPG supercontinuum emission (a) and the slabs cut in our lab (b) along the 

requested direction given in Table 3.16. 

 

We will use the optical parametric oscillator (OPO) in the nanosecond regime shown in 

Figure 2.4 to provide the “magic” pump wavelengths, which are given in Table 3.16 

according to the nonlinear crystal that will be investigated. The spectral bandwidth of 

the OPG supercontinuum generation will be characterized using a monochromator 

combined with detectors sensitive up to 5 m. 

 

3.6 Summary 

We demonstrated that the dielectric frame does not rotate as a function of wavelength 

for the positive biaxial  GdCOB  crystal. For the positive uniaxial  LGN  crystal, we 

determined the damage threshold and the magnitude of its nonlinear coefficient from 

angular critical phase-matched SHG in comparison with KTP. We did the same studies 

for the negative uniaxial NaI3O8 crystal but we determined two second-order nonlinear 

coefficients. We also recorded transmission spectra in polarized light.  

 

We directly recorded the tuning curves of SHG and DFG(λi) in principal dielectric 

planes of  GdCOB, LGN and NaI3O8 using our SPHERE method. They can be directly 

used per se for devices. But they also allowed us to report the most reliable Sellmeier 

equations of these nonlinear crystals.  

 

Using the previous data, our calculations show that type II OPG  can generate a 

supercontinuum under phase-matching condition with the broadest spectral bandwidth 

in the three studied nonlinear crystals GdCOB, LGN and NaI3O8. It requests the use of 

different “magic” pump wavelength values but all are located around 1 m. Our 
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calculations provided a comparison of their performances and we expect that they will 

be soon validated by our experiments in progress dealing with phase-matched OPG 

supercontinuum generation using these crystals. 
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Chapter 4 Magnitude and relative sign of 

nonlinear coefficients of BGSe 

 

4.1 Introduction 

We recently performed the first exhaustive study to the best of our knowledge of the 

nonlinear optical properties of the new selenide BaGa4Se7 (BGSe) crystal. Since it was 

found transparent from 0.47 up to 18  µm [44], our objective was to evaluate its 

potentiality for a phase-matched OPG emission with the broadest bandwith covering 

band II (3 – 5 µm) and band III (8–12 µm) of transmission of the atmosphere.  

  

This crystal crystallizes in the point group m of the monoclinic system, however it was 

shown in our group that the dielectric frame does not rotate as a function of wavelength 

[45]. Furthermore, the second-harmonic generation (SHG) and difference-frequency 

generation (DFG) tuning curves were directly recorded in principal planes of this 

positive biaxial crystal using the SPHERE method. They can be used per se. They were 

also used to refine the Sellmeier equations over the tranparency range of BGSe from the 

simultaneous fit of data [45].  

 

Since BGSe belongs to the monoclinic point group m, with the crystallographic b-axis 

parallel to the dielectric x- axis, its second-order nonlinear susceptibility has six nonzero 

and independent nonlinear coefficients under Kleinman assumption. Using the 

contracted notation, and d =
χ(2)

2
, the coefficients write: d23, d32, d31, d21, d22, and d33. In 

our group, the magnitude of the coefficients d23, d32 and d31 were determined from 

recording SHG conversion efficiencies under angular non-critical phase-matching 

(ANCPM) condition. Two slabs cut respectively along the principal x- and y-axes of the 

dielectric frame, were used [46]. 

 

In this chapter, we are interested in the magnitude of the three other 

coefficients d21, d22 and d33 and in the relative sign of the six coefficients d23, d32, d31, 

d21, d22, and d33. We propose to determine these data from recording SHG conversion 

efficiencies.  
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4.2 State of the art 

Crystal growth 

Using the method of Bridgman-Stockbarger [44, 47, 48, 49], the synthesis of BGSe 

crystals was made possible in 2010 and samples of centimetric dimensions with a good 

optical quality were obtained as illustrated by Figure 4.1. The BGSe crystal does not 

contain oxygen in its chemical composition, which directly extends its transparent 

spectrum beyond 5 µm [47].   

 

 

Figure 4.1: Picture of a 11.3-mm thick BGSe crystal obtained by the Bridgman-Stockbarger method with 

two faces polished to optical quality [47]. 

 

Relative orientation between the dielectric frame and the crystallographic frame 

BGSe belongs to the  monoclinic point group m, and the structure contains a mirror 

plane that is normal to a special axis labeled b-axis. Then the dielectric frame (𝑥, 𝑦, 𝑧) 

of the monoclinic crystal does not correspond to the crystallographic frame (𝑎, 𝑏, 𝑐). 

For BGSe, the 𝑥-axis was found parallel to the 𝑏-axis and then remains fixed. The 𝑎-, c- 

crystallographic axes and y-, z- dielectric axes are all located in the mirror plan. The 

angle between the a-and c- axes is (𝑎, 𝑐)=121.24° [47].  

 

Using the modus operandi described in detail in part 2.2.1, our group cut a slab with 

two parallel faces polished to optical quality and perpendicular to the b-(or x-) axis. 

Then they were able to locate all the other axes in the mirror plane of BGSe [46]. The 

crystallographic a- and c-axis were located by using the polychromatic X-rays 

diffraction in backscattered Laue geometry. The conoscopy tranmission picture 

provided the location of the principal dielectric y- and z-axes and the following angles 

(𝑐, 𝑧)=0° and (𝑐, 𝑦)=90° were found at the wavelength of 0.6328 µm as shown in insert 

of Figure 4.2. It was also found that the dielectric frame of BGSe does not rotate as a 

function of wavelength [46].  
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Figure 4.2: Orientation between the crystallographic frame (a, b, c) and the dielectric frame (x, y, z) as a 

function of the wavelength 𝜆.  The orientation at 𝜆 = 0.628 µm is shown in insert through the BGSe slab 

[46]. 

 

 

Transmission spectrum 

The transmission spectrum in un-polarized light had been studied by some groups [44, 

47, 49, 50]. In our group, it was also measured through the 2-mm thick BGSe slab, cut 

along the y direction shown in Figure 4.2 [45]. All results showed that BGSe crystal is 

transparent between 0.47 and 18 µm  as illustrated in Figure 4.3. In addition, the 

transmission is about 65% between 0.776 and 14.72 µm, and a strong absorption is 

observed around 15 µm as in [47, 49, 50]. Thus the BGSe transparency domain covers 

both band II (3-5 µm) and III (8-12 µm) transmission bands of the atmosphere.  

 

The UV cut-off wavelength is around 0.47 µm, which explains the yellow color of the 

crystal shown in Figure 4.1 and in inset of Figure 4.2. It also ensures no risk of two 

photon absorption if the crystal is pumped around  λ𝑃 = 1 µm.  
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Figure 4.3: Transmission spectrum measured through the 11.3-mm thick slab cut in the y direction [45]. 

 

Optical damage threshold 

The optical damage threshold of BGSe was determined in two different regimes [49, 50]. 

In the first regime, a Nd: YAG laser at the wavelength of 1.064  µm, with the pulse 

duration of 30 ps and the repetition frequency of 10 Hz, was used and the corresponding 

optical damage threshold was estimated at 3 GW/cm2 [50]. 

 

The other regime was provided by a Nd: YAG laser emitting at 1.064 µm, with the pulse 

duration of 5 ns, the repetition frequency of 1 Hz and the beam diameter of 0.4 mm [49]. 

The energy values were increased little by little by radiating on the crystal surface with 

forty different positions. According to these measurements, the optical damage 

threshold of  BGSe was around 557 MW/cm2 and it is therefore higher than that of AGS 

which had been estimated at 150 MW / cm2 under the same conditions [49].   

 

Principal refractive indices 

The three principal refractive indices nx, ny and nz have been reported as a function of 

wavelength by [47] and [48]. They applied a minimum deviation technique in two 

prisms and their fit of data enabled to determine Sellmeier equations. It showed that 

BGSe is a positive biaxial crystal. The data were recorded between 0.48 and 10.4 m in 

[47], but the accuracy was limited to typically of the order of  10−3  in the visible, and 

was worse in the infrared range. The accuracy has been improved up to 10
-6

 in [48], but 

data were recorded between 0.5 and 2.6 m only. Then the Sellmeier equations from 

[47] and [48] did not correpond to the SHG and DFG(λi) tuning curves in principal 

planes of BGSe that were recorded in our group with the SPHERE method [45].  

 

The simultaneous fit of SHG and DFG(λi)  tuning curves recorded in principal planes 
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of the dielectric frame of BGSe by using a 7.55 mm diameter sphere, allowed our group 

to refine the Sellmeier equations describing the variation the three principal refractive 

indices  nx , ny  and nz as a function of wavelength  [45]. The refined Sellmeier 

equations of BGSe are expressed as follows: 

                                                𝑛𝑖
2(𝜆) = 𝐴𝑖 +

𝐵𝑖

𝜆2−𝐶𝑖
+

𝐷𝑖

𝜆2−𝐸𝑖
                                                                               (4.1) 

𝜆 is in µm, and 𝑖 stands for x, y and z. They are valid between 0.48 and 11 m. 

The corresponding dispersive coefficients 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖, 𝐷𝑖  and 𝐸𝑖 are given in Table 4.1.   

coefficients 𝑖 = 𝑥 𝑖 = 𝑦 𝑖 = 𝑧 

𝐴𝑖  7.405114 7.388458 7.622884 
𝐵𝑖 0.225316 0.224481 0.238018 
𝐶𝑖 0.051215 0.052725 0.069734 
𝐷𝑖 1782.091 1778.441 1885.307 
𝐸𝑖 1170.528 1238.145 1303.370 

Table 4.1: Coefficients of Eq. 4.1 describing the dispersive equations of the three principal refractive 

indices nx, ny and nz of BGSe over the wavelength range 0.48-11 µm [45]. 

 

The corresponding dispersion curves of the three pincipal refractive indices of BGSe are 

shown in Figure 4.4 over their domain of validity (0.48-11 µm). The relative accuracy 

∆ni/ni (with i= x, y or z) of the refined refractive indices is better than 10−4. 

 

Figure 4.4: The three principal refractive indices nx, ny and nz of BGSe as a function of wavelength [45]. 

 

Second-order electric susceptibility tensor 

According to the Neumann principle, the second-order electrical susceptibility tensor of 

BGSe, 𝜒(2), is reduced to 14 non-zero and independent coefficients, and it writes [ref]:     
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Under the Kleinman assumption, comes: 

                                   {
𝜒𝑧𝑥𝑥
(2)

= 𝜒𝑥𝑥𝑧
(2)

= 𝜒𝑥𝑧𝑥
(2)
;  𝜒𝑦𝑥𝑥

(2)
= 𝜒𝑥𝑥𝑦

(2)
= 𝜒𝑥𝑦𝑥

(2)
 

𝜒𝑧𝑦𝑦
(2)

= 𝜒𝑦𝑧𝑦
(2)

= 𝜒𝑦𝑦𝑧
(2)
;  𝜒𝑦𝑧𝑧

(2)
= 𝜒𝑧𝑦𝑧

(2)
= 𝜒𝑧𝑧𝑦

(2)
                                                       (4.3) 

Then the tensor χ(2) becomes: 
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                             (4.4) 

Using the contracted notation, it also writes [ref]: 

                                    

(2) (2)

31 21

(2) (2) (2) (2) (2)

21 22 23 32

(2) (2) (2) (2)

31 32 33 23

0 0 0 0

0 0

0 0

 
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   

 
 

  
 
 

                                                      (4.5) 

where:  

      𝜒𝑦𝑥𝑥
(2)

= 𝜒21
(2)
; 𝜒𝑦𝑦𝑦

(2) = 𝜒22
(2); 𝜒𝑦𝑧𝑧

(2) = 𝜒23
(2); 𝜒𝑧𝑥𝑥

(2) = 𝜒31
(2); 𝜒𝑧𝑦𝑦

(2) = 𝜒32
(2); 𝜒𝑧𝑧𝑧

(2) = 𝜒33
(2)       (4.6)  

As shown in Table 4.2, on the basis a band structure modeling, the magnitude and the 

relative sign of the 6 nonlinear coefficients of BGSe were calculated at 0.532 µm [44]. 

The magnitude in absolute value of 𝑑22 and  𝑑23 were also determined at 0.532 µm, 

compared to d36 of the KDP crystal by recording SHG conversion efficiencies out-of 

phase-matching condition and the Maker fringes method [51]. They are also given in 

Table 4.2. 

 

Coefficients(pm/V) Ref. [44] Ref. [51] 

𝑑21 5.2  
𝑑22 18.2 |24.3 ± 1.5| 
𝑑23 -20.6 |20.4 ± 1.1| 
𝑑31 14.3  
𝑑32 -15.2 ’’weak’’ 
𝑑33 -2.2 ’’weak’’ 

Table 4.2: Nonlinear coefficients of BGSe at 0.532 µm written in the contracted notation from [44, 51]. 
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Our group proposed to determine the nonlinear coefficients of BGSe by recording type-I 

and type-II SHG conversion efficiencies in principal planes. The calculated associated 

effective coefficients 𝑑𝑒𝑓𝑓(𝜆2𝜔, 𝜃𝑃𝑀 , 𝜑𝑃𝑀 ) are given in Table 4.3 at the phase-matching 

angles (𝜃𝑃𝑀 , 𝜑𝑃𝑀 )  and generated wavelength  𝜆2𝜔 = 𝜆𝜔 2⁄ , for this positive biaxial 

crystal.  

Principal plane Types (2𝜔 𝜔 𝜔) Effective coefficient d𝑒𝑓𝑓 

x-z  

(0<θ< Vz) 

Type I  d32(λ2ω)sin[𝜃 − 𝜌𝑥,𝑧(λ2ω, 𝜃𝑃𝑀)] 

Type II  −d21 (λ2ω)cos[𝜃 − 𝜌𝑥,𝑧(λω, 𝜃𝑃𝑀)]cos[𝜃𝑃𝑀

− 𝜌𝑥,𝑧(λ2ω, 𝜃𝑃𝑀)] −d23 (λ2ω)sin[𝜃𝑃𝑀

− 𝜌𝑥,𝑧(λω, 𝜃𝑃𝑀)] sin[𝜃𝑃𝑀 − 𝜌𝑥,𝑧(λ2ω, 𝜃𝑃𝑀)] 

x-z  

(90° > θ > Vz)  

Type I  d21 (λ2ω)𝑐𝑜𝑠
2[𝜃𝑃𝑀 − 𝜌𝑥,𝑧(λω, 𝜃𝑃𝑀)]+d23 (λ2ω)𝑠𝑖𝑛

2[𝜃𝑃𝑀

− 𝜌𝑥,𝑧(λω, 𝜃𝑃𝑀)] 

Type II d32 (λ2ω)sin[𝜃𝑃𝑀 − 𝜌𝑥,𝑧(λω, 𝜃𝑃𝑀)]  

x-y 

 

Type I  d23(λ2ω)cos[𝜑𝑃𝑀 + 𝜌𝑥,𝑦(λ2ω, 𝜑𝑃𝑀)]  

Type II  d31 (λ2ω)sin[𝜑𝑃𝑀 + 𝜌𝑥,𝑦(λω, 𝜑𝑃𝑀)]sin[𝜑𝑃𝑀 + 𝜌𝑥,𝑦(λ2ω, 𝜑𝑃𝑀)]

+ d32 (λ2ω)cos[𝜑

+ 𝜌𝑥,𝑦(λω, 𝜑𝑃𝑀)] cos[𝜑𝑃𝑀 + 𝜌𝑥,𝑦(λ2ω, 𝜑𝑃𝑀)] 

y-z 

 

Type I  0 

Type II  d31 (λ2ω)sin[𝜃𝑃𝑀 − 𝜌𝑦,𝑧(λω, 𝜃𝑃𝑀)]

− d21 (λ2ω)cos[𝜃𝑃𝑀 − 𝜌𝑦,𝑧(λω, 𝜃𝑃𝑀)] 

Table 4.3: Effective coefficients 𝑑𝑒𝑓𝑓(𝜆2𝜔, 𝜃, 𝜑 ) associated to type I and II SHG in principal planes of a 

positive biaxial crystal as BGSe. ρl,m(λω, α) (l, m = x, y or z and α = θ𝑃𝑀 or φ𝑃𝑀 ) are spatial walk-off 

angles given in Table 1.1. (θ𝑃𝑀 , φ𝑃𝑀) are phase-matching angles in spherical coordinates.        

 

Table 4.3 shows that d23, d32 and d31 are involved alone for type I or II phase-matched 

SHG along principal dielectric axes. It corresponds to angular non-critical phase-

matching (ANCPM) conditions that have the advantage of a vanishing walk-off angle: 

d23 and d32 are accessible along x-axis from type I and II ANCPM SHG respectively, d31 

along y-axis from type II ANCPM SHG. 

 

Two slabs with two parallel and polished faces cut perpendicular to the princinpal x- 

and y-axes of the dielectric frame were used and the modus operandi decribed in detail 

in part 2.2.4 of chapter 2 [46]. The magnitude of the nonlinear coefficients d23,  d32 

and d31 are given in Table 4.4 at the studied phase-matching wavelength generated by 

SHG and also at 0.532 m after using the Miller rules according to Eq. (1.26) and (1.27).

 

Coefficients (pm/V) Ref. [46] @ 0.532 µm[46] 

𝑑23 |11.3 ± 0.8| @ 0.9 µm |14.2 ± 0.8| 
𝑑31 |1.4 ± 0.3| @ 1.61 µm |2.1 ± 0.3|  1.61 

µm 𝑑32 |3.7 ± 0.4| @ 1.265 µm |5.0 ± 0.4| 

 

 

 

 

Table 4.4: Nonlinear coefficients of BGSe determined at the experimental phase-matching wavelength 

generated by SHG and also at 0.532 m after using the Miller rules [3]. 
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In the present work, we are interested in determining the magnitude of the three other 

coefficients d21 d22 and d33, as well as the relative sign of the 6 nonlinear coefficients d23, 

d32, d31, d21, d22, and d33 of BGSe.  

Table 4.3 shows the following information: 

- d22 and d33 are never involved in any effective coefficient associated with SHG 

under phase-matching condition.  

- d21 is always involved with  d23  or  d31 in the effective coefficients associated 

with phase-matched SHG. The magnitudes in absolute value of  d23  and  d31 are 

given in Table 4.4. However, without the relative sign between  d21 and  d23 

or d21 and  d31, it is not possible to determine the magnitude and sign of  d21.  

- Given the magnitude of two nonlinear coefficients in 𝑑𝑒𝑓𝑓(𝜆2𝜔 , 𝜃𝑃𝑀 , 𝜑𝑃𝑀 ) 

gives access to their relative sign. For example, it is the case between  d21 and 

 d23  from phase-matched type II SHG in the (x, y) principal plane of the 

dielectric frame (see Table 4.3).  

 

4.3 Magnitudes of the nonlinear coefficients d21 d22 and d33  

As just said, the magnitudes of  d21 , d22  and d33  cannot be determined from 

birefringence phase-matched SHG condition in the principal planes without knowing 

their relative sign. Then out of phase-matched SHG conditions can be considered. 

From Eq. (1.30), the out of phase-matching SHG conversion efficiency η is proportional 

to:  

                                    η ∝ 4
deff
2 (λ2𝜔, λ𝜔,θ,φ)

[∆k(λ2𝜔, λ𝜔,θ,φ)]2
sin2 [

∆k(λ2𝜔, λ𝜔,θ,φ)L

2
]                                                         (4.7)        

where  ∆k(λ2𝜔,  λ𝜔, θ,φ) ≠ 0 stands for the out-of-phase-matching conditions that can 

be calculated by using Eq. (1.37) and  L is the crystal length.  

4.3.1 Maker fringes  

With the value of the fundamental wavelength λ𝜔 fixed, sent in a L-thick slab cut 

perpendicular to a principal axis of the dielectric frame and rotated in the incidence 

plane, Maker fringes can be recorded. They can give access to the magnitude of any 

nonlinear coefficient, according to the 8 possible configurations of polarization of the 

three interacting waves that is used (see chapter 1). For this purpose, the incident plane 

corresponds to a principal plane of the dielectric plane. 

For example, a BGSe slab cut along x-axis and rotated in the (x, z) (Vz<θ<90°) principal 
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plane, with the linear polarization of the fundamental and harmonic beams oriented 

parallel to the (x, z) principal plane,  d33 can be determined [51].  

 

According to Table 1.1 and Eq.1.37, the corresponding d𝑒𝑓𝑓(𝜆2𝜔) and ∆k write: 

                             {
𝑑𝑒𝑓𝑓(𝜆2𝜔) = d33(𝜆2𝜔) 𝑠𝑖𝑛

2[𝜃 − 𝜌𝑥,𝑧(𝜆𝜔, 𝜃)]

∆k =
4𝜋

𝜆𝜔
[𝑛𝑒(𝜆2𝜔, 𝛽) − 𝑛

𝑒(𝜆𝜔, 𝛽)]
                                                         (4.8) 

With  

                                              𝑛(𝜆𝑖𝜔) = [
𝑐𝑜𝑠2𝛽

𝑛𝑧
2(𝜆𝑖𝜔)

+
𝑠𝑖𝑛2𝛽

𝑛𝑥
2(𝜆𝑖𝜔)

] −1/2                                                                   (4.9) 

where i = 1 for the fundamental beam and i= 2 for the harmonic one and λ2𝜔 = λ𝜔/2. 

β =
𝜋

2
− 𝜃 is the internal angle between the propagation direction 𝑢⃗  and x-axis.  

  

By inserting Eq. (4.8) and (4.9) in Eq. (4.7), we get the calculated curve standing for the 

out of phase-matching SHG conversion efficiency in the x-cut BGSe in order to 

determine  𝑑33 . It is shown as a function of the internal angle  over ±30°. As an 

example, the fundamental wavelength is set at 𝜆𝜔 = 3.1 µm and the thickness of the 

slab is L=510 µm. 

 
Figure 4.5: Calculated conversion efficiency as a function of the internal angle  in a L = 510 m and x-

cut BGSe slab to access d33(𝜆2𝜔). The slab is rotated in the (x, z) plane, with the polarizations of the 

fundamental and generated beams in this plane.  

 

However Figure 4.5 shows no Maker fringes in a L = 510 m BGSe. In fact Maker 

fringes requires thick BGSe slabs as shown in Figure 4.6 when using a L=7.55 mm 

sample. Another disadvantage of this method is the refraction of the input beam at the 

entrance of the slab that enhances the non-collinear propagation scheme inside the 

crystal. If not carrefully modelized the analysis of data are not accurate.  
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Figure 4.6: Calculated conversion efficiency as a function of internal angle  in a L = 7.55 mm and x-cut 

BGSe rotated slab to access d33(𝜆2𝜔). is in the (x, z) plane from x-axis, all polarizations are oriented in 

this plane. 

  

Note that by rotating a 7.55 mm-diameter BGSe sphere, the incoming beams are not 

refracted at the input face, however spatial walk-off angles can attenuate the out-of-

phase-matching conversion efficiency if all polarization states of the interacting waves 

are not parallel (see part 1.3.7).  

 

Then we prefer to propose another method to overcome the disadvantages of Maker 

fringes. 

4.3.2 Tunable fringes 

We propose to use a slab cut along a principal dielectric axis that remains fixed (not 

rotated), and to record out-of-phase-matching SHG conversion efficiencies with an 

incoming fundamental wavelength   λ𝜔 that can be tune over the transparency range of 

the crystal. 

4.3.2.1 Calculations 

We found that using two BGSe slabs cut oriented along x-axis and z-axis respectively, 

the coefficients d21, d22 and d33 can be determined successively as follows: 

 

- In the x-cut BGSe slab with the incident and generated beams polarized parallel to  y-

axis, the out of phase-matching condition ∆k(λ2𝜔 ,  λ𝜔, θ, φ) and the associated effective 

coefficient   d𝑒𝑓𝑓(λ2𝜔,  λ𝜔, θ, φ) give access to dyyy =  d22, since they write: 

                                          {
d𝑒𝑓𝑓(𝜆2𝜔) = d22(𝜆2𝜔),

∆k =
4𝜋

𝜆𝜔
[𝑛𝑦(𝜆𝜔/2) − 𝑛𝑦(𝜆𝜔)]

                                                                        (4.10) 
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If the polarizations are rotated to be parallel to z-axis, dzzz =  d33 is accessible 

since ∆k(λ2𝜔,  λ𝜔, θ, φ) and d𝑒𝑓𝑓(λ2𝜔,  λ𝜔, θ, φ) write: 

                                          {
d𝑒𝑓𝑓(𝜆2𝜔) = d33(𝜆2𝜔),

∆k =
4𝜋

𝜆𝜔
[𝑛𝑧(𝜆𝜔/2) − 𝑛𝑧(𝜆𝜔)]

                                                                         (4.11) 

- In the z-cut BGSe slab with the incident beam polarized parallel to  x-axis, and the 

generated beams polarized parallel to  y -axis, the out-of-phase-matching conditions 

∆k(λ2𝜔 ,  λ𝜔, θ, φ) and the associated effective coefficient   d𝑒𝑓𝑓(λ2𝜔,  λ𝜔, θ, φ)  give 

access to dyxx =  d21, since they write: 

                                          {
deff(𝜆2𝜔) = d21(𝜆2𝜔),

∆k =
4π

λω
[ny(𝜆𝜔/2) − nx(λω)]

                                                                          (4.12) 

- The nonlinear coefficient d33 = dzzz  of KTP can be used as the reference. It is 

accessible in the x-cut slab with the incident and generated beams polarized parallel to 

 z -axis, the out-of-phase-matching condition ∆k(λ2𝜔,  λ𝜔, θ, φ) and the associated 

effective coefficient   d𝑒𝑓𝑓(λ2𝜔,  λ𝜔, θ, φ) write: 

                                             {
deff(𝜆2𝜔) = d33(𝜆2𝜔),

∆k =
4π

λω
[nz(𝜆𝜔/2) − nz(λω)]

                                                                     (4.13) 

All the KTP and BGSe slabs can be cut with the same small thickness L = 510 µm.   

 

KTP and BGSe labs must also be studied in the same wavelength range in order to get 

rid of the setup spectral response. In order to determine the most suitable spectral range, 

we calculated their out-of-phase-matching SHG conversion efficiency as a function of 

the fundamental wavelength  λ𝜔 . The fundamental wavelength is ranging between 2.5 

and 4.5 m since our OPG-DFG still provides high energy in this range. 

 

Our calculations are shown in Fig. 4.7 and Fig. 4.8 for x-cut BGSe, and in Fig. 4.9 for z-

cut BGSe. They were performed by using the Sellmeier equations of BGSe from Eq. 4.1 

[45] and the nonlinear coefficients from Table 4.1. We also applied the Miller rules 

from Eq. (1.26) and Eq. (1.27) . We plotted Eq. (4.7) with: 

- Eq. (4.10) in the x-cut BGSe with the incident and generated beams polarized 

parallel to  y-axis; With Eq. (4.11) when all polarizations were rotated parallel to 

z-axis. 

- Eq. (4.12) in the z-cut BGSe slab with the incident beam polarized parallel to  x-

axis, and the generated beam polarized parallel to  y-axis.   

 



4.3 Magnitudes of the nonlinear coefficients d21 d22 and d33  

118 

We used  d33 of KTP to validate our method and then as a reference for measurements 

in BGSe slabs. The Sellmeier equations of KTP are from [19] and |d33
KTP(0.532µm) | 

=11.3 pm/V from [19]. We also applied the Miller rules from Eq. (1.26). The out-of-

phase-matching SHG conversion efficiency in KTP as a function of the fundamental 

wavelength  λω was calculated using Eq. (4.7) and Eq. (4.13). It is shown in Fig. 4.10. 

 

Figure 4.7: Calculated conversion efficiency for d22(𝜆2𝜔)  in BGSe, as a function of the fundamental 

wavelength. 

 

 

Figure 4.8: Calculated conversion efficiency for d33(𝜆2𝜔)  in BGSe, as a function of the fundamental 

wavelength. 
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Figure 4.9: Calculated conversion efficiency for d21(𝜆2𝜔)  in BGSe, as a function of the fundamental 

wavelength. 

 

Figure 4.10: Calculated conversion efficiency for d33(𝜆2𝜔)  in KTP, as a function of the fundamental 

wavelength. 

 

Figures 4.7 to 4.10 show that the conversion efficiency increases with the fundamental 

wavelength for BGSe, while it is the contrary for KTP. Then the best compromise is 

that the fundamental wavelength ranges between 3 and 3.3  µm. The corresponding 

expected tunable fringes are shown in the red windows depicted in Figures 4.7 to 4.10. 

 

4.3.2.2 Experimental setup  

The experimental setup is shown in Figure 4.11. The polarization of the fundamental 

beam was controlled by a half-wave plate, while using a Glan-Taylor polarizer to 

choose the polarization of the output beam. The energy of the input beam was measured 

using the J4-09 Molectron pyroelectric joulemeter placed behind a beam splitter and a 
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lens with a focal length of 50 mm. The generated energy was measured at the exit of 

each slab by the J3-05 Molectron pyroelctric joulemeter combined with a PEM531 

amplifier, while a filter removed the input beam. With the fundamental and harmonic 

energies measured together, we calculated the corresponding conversion efficiency η on 

the fundamental wavelength. 

 

The fundamental beam emitted by the OPG was focused with a 100-mm-focal length 

CaF2 lens. Then the beam waist diameter was wo=120 µm on the two slabs surface, 

with a Rayleigh length of 30 mm that is much longer than L. Then the parallel beam 

propagation inside the slabs was ensured. 

 

Figure 4.11: Experimental setup for the determination of the nonlinear coefficients magnitudes. 

 

4.3.2.3 Experiments and analysis  

As shown in Figure 4.12, the blue dots are the measurements of the normalized 

conversion efficiency 𝜂33
𝐾𝑇𝑃of KTP as a function of the wavelength between 3 and 

3.3 µm. Using the Sellmeier equations [19],  |𝑑33
𝐾𝑇𝑃(0.532µm) | =11.3 pm/V [19] and 

Miller’s rule [5], we also calculated the normalized conversion efficiency 𝜂33
𝐾𝑇𝑃of KTP, 

independently.  The calculations were in good agreement with the experimental results. 

 
Figure 4.12: Calculated (blue line) and measured (blue dots) normalized conversion efficiency of KTP, as 

a function of the input beam wavelength.  
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Then, the conversion efficiencies 𝜂21
𝐵𝐺𝑆𝑒  and 𝜂22

𝐵𝐺𝑆𝑒of BGSe relative to KTP as a function 

of the input wavelength between 3 and 3.3 µm are shown in Figure 4.13 and Figure 4.14.  

The red lines are the corresponding fit with the experimental results.  

 

Figure 4.13: Fit (red line) and measured (blue dots) conversion efficiency of BGSe relative to KTP as a 

function of the input beam wavelength.  

 

Figure 4.14: Fit (red line) and measured (blue dots) conversion efficiency of BGSe relative to KTP as a 

function of the input beam wavelength.    

 

By combining Eq. (1.30) and Eq. (4.7), we can deduce the following relation: 

                            (deff
BGSe)2 =

𝜂21,22
BGSe

η33
𝐾𝑇𝑃

𝐴33
𝐾𝑇𝑃

𝐴21,22
BGSe

𝐺33
𝐾𝑇𝑃

𝐺21,22
BGSe (

∆𝑘21,22
BGSe

∆k33
𝐾𝑇𝑃 )

2 sin2(0.5∆k33
𝐾𝑇𝑃L)

sin2(0.5∆𝑘21,22
BGSeL)

(d33
KTP)2           (4.14) 

With                                     𝐴21
BGSe =

𝑇𝑦
BGSe(𝜆2𝜔 )

𝑛𝑦
BGSe(𝜆2𝜔)

𝑇𝑥
BGSe(𝜆𝜔)

𝑛𝑥
BGSe(𝜆𝜔)

𝑇𝑥
BGSe(𝜆𝜔)

𝑛𝑥
BGSe(𝜆𝜔)

                                               (4.15)  
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                                              𝐴22
BGSe =

𝑇𝑦
BGSe(𝜆2𝜔 )

𝑛𝑦
BGSe(𝜆2𝜔)

𝑇𝑦
BGSe(𝜆𝜔)

𝑛𝑦
BGSe(𝜆𝜔)

𝑇𝑦
BGSe(𝜆𝜔)

𝑛𝑦
BGSe(𝜆𝜔)

                                              (4.16) 

                                                       𝐴33
𝐾𝑇𝑃 =

𝑇𝑧
𝐾𝑇𝑃(𝜆2𝜔)

𝑛𝑧
𝐾𝑇𝑃(𝜆2𝜔)

𝑇𝑧
𝐾𝑇𝑃(𝜆𝜔)

𝑛𝑧
𝐾𝑇𝑃(𝜆𝜔)

𝑇𝑧
𝐾𝑇𝑃(𝜆𝜔)

𝑛𝑧
𝐾𝑇𝑃(𝜆𝜔)

                                                  (4.17)  

ny
BGSe  and nx

BGSe  are the principal refractive indices of BGSe . nz
KTP is the principal 

refractive indices of KTP. Tx, Ty and Tz are the associated Fresnel coefficients. 

 

We tried different values of |𝑑21
𝐵𝐺𝑆𝑒(0.532µm) | and |𝑑22

𝐵𝐺𝑆𝑒(0.532µm) | with Miller’s rule 

[5] to fit the experimental data. Then we got |𝑑21
𝐵𝐺𝑆𝑒(1.575 µm) | =4.17 pm/V and | 

𝑑22
𝐵𝐺𝑆𝑒(1.575 µm) | =4.88 pm/V. With the Miller’s rule of Eq. (1.26), we found that 

|𝑑21
𝐵𝐺𝑆𝑒(0.532µm) | =5.3 pm/V and | 𝑑22

𝐵𝐺𝑆𝑒(0.532µm) | =6.2 pm/V. All these data 

are summarized in Table 4.5.  

 

Coefficients (pm/V) @ 1.575 µm @ 0.532 µm 

𝑑21 |4.17|  |5.3| 
𝑑22 |4.88|  |6.2| 

 

 

 

 

Table 4.5: Nonlinear coefficients of BGSe determined at the experimental wavelength and at 0.532 m 

after using the Miller rules. 

 

We were not able to measure the magnitude of the coefficient d33, because the 

corresponding harmonic energy is lower compared with d21 and d22 as shown in 

Figure 4.8. Then we guess that, the magnitude of the coefficient d33 may be lower 

than 2.2 pm/V [44].  

 

4.4 Relative sign between nonlinear coefficients  

As explained in part 2.3.3.3 for KTP, the relative sign between two nonlinear 

coefficients involved in the same effective coefficient 𝑑𝑒𝑓𝑓 can be determined provided 

their magnitude have been already found. For that purpose 𝑑𝑒𝑓𝑓(𝜆2𝜔, 𝜃𝑃𝑀 , 𝜑𝑃𝑀 ) was 

studied along SHG phase-matching conditions.   

The fundamental wavelength 𝜆𝜔 is fixed and the phase-matching angles 𝜃𝑃𝑀 and 𝜑𝑃𝑀 

are the solutions of Eq. (1.38) provided the SHG phase-matching loci in the dielectric 

frame as illustrated in Fig. 2.16. 

Another possibility is that one phase-matching angle 𝜃𝑃𝑀 or 𝜑𝑃𝑀 is varied only, with 

the fundamental wavelength 𝜆𝜔 while fulfilling Eq. (1.38) to provide tuning curves in 

principal planes of the dielectric frame. 
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In that case, type I or II SHG tuning curves can be recorded in the three principal planes 

and the associated effective coefficients 𝑑𝑒𝑓𝑓(𝜆2𝜔 = 𝜆𝜔/2, 𝜃𝑃𝑀 , 𝜑𝑃𝑀 ) summarized in 

Table 4.3 show that they involve by pairs the nonlinear coefficients d23, d32, d31 and d21 

of BGSe. 

In the (x, z) (Vz<θ<90°) principal plane, the type I SHG tuning curve involves d21 and 

 d23 since the associated effective coefficient writes:       

   d𝑒𝑓𝑓 = |d21(𝜆2𝜔)| 𝑐𝑜𝑠
2[𝜃𝑃𝑀 − 𝜌𝑥,𝑧(𝜔, 𝜃𝑃𝑀)]±|d23 (𝜆2𝜔)|𝑠𝑖𝑛

2[𝜃𝑃𝑀 − 𝜌𝑥,𝑧(𝜔, 𝜃𝑃𝑀)]     (4.18) 

In the (y, z) principal plane, the type II SHG tuning curve involves d31 and  d21 since 

the associated effective coefficient writes:       

       d𝑒𝑓𝑓 = |d31(𝜆2𝜔)| sin[𝜃𝑃𝑀 − 𝜌𝑦,𝑧(𝜔, 𝜃𝑃𝑀)]±|d21 (𝜆2𝜔)|𝑐𝑜𝑠[𝜃𝑃𝑀 − 𝜌𝑦,𝑧(𝜔, 𝜃𝑃𝑀)]     (4.19)  

In the (x, y) principal plane, the type II SHG tuning curve involves d31 and  d32 since 

the associated effective coefficient writes:       

  d𝑒𝑓𝑓 = |d31(𝜆2𝜔)| sin[𝜑𝑃𝑀 + 𝜌𝑥,𝑦(𝜔, 𝜑𝑃𝑀)] sin[𝜑𝑃𝑀 + 𝜌𝑥,𝑦(2𝜔, 𝜑𝑃𝑀)] 

                      ±|d32(𝜆2𝜔)| cos[𝜑𝑃𝑀 + 𝜌𝑥,𝑦(𝜔, 𝜑𝑃𝑀)] cos[𝜑𝑃𝑀 + 𝜌𝑥,𝑦(2𝜔, 𝜑𝑃𝑀)]               (4.20) 

4.4.1 Calculations  

We calculated the three previous tuning curves by solving Eq (1.38) using the refined 

Sellmeier equations from [2]. They are shown in Figure 4.15(a), for type I SHG in the 

(x, z) (Vz<θ<90°) principal plane. Fig. 4.16(a) and 4.17(b) correspond to type II SHG in 

the (y, z) and (x, y) principal planes respectively. They are depicted as the fundamental 

wavelength 𝜆𝜔 as a function of the phase-matching angle 𝜃𝑃𝑀 or 𝜑𝑃𝑀.  

Then comes the variation of the effective coefficients associated to the previous tuning 

curves. They were calculated by using the magnitudes of d23, d32, d31 and d21 given in 

Tables 4.4 and 4.5 at 0.532 m, by using the refined Sellmeier equations from [45] and 

applying Miller rules from Eq. (1.26) and (1.27). The square values of three effective 

coefficients are shown in Figures 4.15(b), 4.16(b) and 4.17(b) as a function of the 

phase-matching angles 𝜃𝑃𝑀  or 𝜑𝑃𝑀. Two calculations are depicted according to it is 

assumed that the magnitudes of two involved nonlinear coefficients have the same 

relative sign (see solid line) or have an opposite sign (see dashed line).  

Then a comparison between the two possible calculations and recorded data will give 

their real relative sign without ambiguity. It is the relative sign between  d21  and 

 d23 from type I SHG in the (x, z) (Vz<θ<90°) plane (see Figure 4.15(b)), the relative 

sign between d31 and  d21 from type II SHG in the (y, z) plane (see Figure 4.16(b)), the 
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relative sign between  d31  and  d32  from type II SHG in the (x, y) plane (see Figure 

4.17(b)).  

 

Figure 4.15: Type I SHG in the (x, z) plane (Vz<θ<90°) of BGSe. (a) tuning curve, (b) square of the 

associated effective coefficient.  

 

Figure 4.16: (a) Type II SHG in the (y, z) plane of BGSe. (a) tuning curve, (b) square of the associated 

effective coefficient.  

 

 
 

Figure 4.17: Type II SHG in the (x, y) plane of BGSe. (a) tuning curve, (b) square of the associated 

effective coefficient. 
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4.4.2 Measurement and analysis of data 

In order to perform the experiments in three principal planes, we cut and polish BGSe as 

a sphere with a diameter of 7.55 mm as shown in Figure 4.18.  The asphericity ∆D/D is 

better than 1% (D is the diameter of the sphere). 

 

Figure 4.18: Picture of the sphere of BGSe of the diameter 7.55 mm shaped for our studies of the relative 

sign between nonlinear coefficients. 

 

By stuck the sphere along the y- , x- and z-axes of the dielectric frame, successively, we 

measured the relative data of the conversion efficiency of type I SHG in the (x, z) 

(Vz<θ<90°) principal plane, type II SHG in the (y, z)  principal plane and type II SHG 

in the (x, y) principal plane, respectively.  

 

The phase-matched condition and the corresponding conversion efficiency were studied 

in each configuration by using the experimental setup shown in Figure 2.10. Only one 

tunable incoming beam was necessary for the SHG experiments. 

 

The square of the effective coefficient is ratio to the conversion efficiency. Then by 

measuring the conversion efficiency, we could get the related ratio of the square of the 

effective coefficient. Figures 4.19-4.21 show the corresponding experimental data as 

blue dots. They also show calculations of the square of the effective coefficient of type I 

SHG in the (x, z) (Vz<θ<90°) principal plane, type II SHG in the (y, z)  principal plane 

and type II SHG in the (x, y) principal plane, respectively. These calculations were 

performed assuming the magnitude of the two involved nonlinear coefficients of the 

same sign (see solid lines) and the opposite sign (see dashed lines). 
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Figure 4.19: The square of the effective coefficient of type I SHG in the (x, z) (Vz<θ<90°) principal plane 

of BGSe: measurements (dots) and calculations with the same sign of the two involved coefficients (solid 

line) and the opposite sign (dashed line). 

 

The comparison of the calculations and experimental data shows that the experimental 

data is in good agreement with the dashed line. So we determined that the coefficients 

d21 and d23 have the opposite sign. 

 

Figure 4.20: The square of the effective coefficient of type II SHG in the (y, z) principal plane of BGSe: 

measurements (dots) and calculations with the same sign of the two involved coefficients (solid line) and 

the opposite sign (dashed line).  

 

The comparison of the calculations and experimental data shows that the experimental 

data is in good agreement with the solid line. What’s more, the experimental data 

decrease slowly until zero at the angle of around 70°, then it increase again with the 

phase-matching angle. So we determined that the coefficients d31  and d21  have the 

same sign.   
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Figure 4.21: The square of the effective coefficient of type II SHG in the (x, y) principal plane of BGSe: 

measurements (dots) and calculations with the same sign of the two involved coefficients (solid line) and 

the opposite sign (dashed line).  

 

The same comparison shows that the experimental data is in good agreement with the 

dashed line. And, the experimental data vanishes to zero at the angle of around 58°. 

Thus we determined that the coefficients d31 and d32 have an opposite sign.   

4.4.3 Calculation out of the principal planes 

Since it is not possible to determine the relative sign of d22 and d33 by studying SHG 

tuning curves in the principal planes of BGSe as shown in Table 4.3, we investigated if 

any possibility by studying type II SHG at the fundamental wavelength of 3 µm out of 

the principal planes. For that purpose we calculated the corresponding non-zero and 

independent elements of the field factor according to Eq. (1.36). They are shown in 

Figure 4.22 as a function of the phase matching angle φPM.  

 
Figure 4.22: Field factors Fijk along Type II SHG tuning curve in Kleinman approximation. 

 

It highlights that it is not possible to isolate d22 and d33 from the other coefficents so 

that the determination of their relative sign might be complicated even if the magnitude 
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of d33 had been determined. 

 

4.5 Condition of supercontinuum generation  

Using the refined Sellmeier equations, we studied the potentiality of BGSe  for the 

generation of a supercontinuum by phase-matched type II OPG. Since BGSe  is a 

positive biaxial crystal, we considered type II DFG 

 (1/𝜆𝑖
+ = 1/ 𝜆𝑃

− − 1/𝜆𝑠
+) where   (λ𝑃 < λ𝑠 < λ𝑖) and  𝜆𝑠

−1 + 𝜆𝑖
−1 = 𝜆𝑃

−1  in the principal 

planes where the associated effective coefficient is not equal to zero. 

 

It is the case in the (x, y)principal plane, according to Eq. (1.45) with n+ = nz, then the 

magic pump wavelength is  λP = 
λZDW 

2
= 2.45 µm . But there is no optimum 

corresponding to a supercontinuum spectrum using this magic pump wavelength. 

 

In the (x, z)  principal plane, the magic pump wavelength is 2.37 µm  [45] and the 

corresponding effective coefficient is:  

d𝑒𝑓𝑓(𝜆𝑖) = d21(𝜆𝑖) 𝑐𝑜𝑠[θPM − ρx,z(ω𝑖, θPM)] 𝑐𝑜𝑠[θPM − ρx,z(ω𝑠, θPM)]+ 

                             𝑑23(𝜆𝑖) 𝑠𝑖𝑛[θPM − ρx,z(ω𝑖, θPM)]𝑠𝑖𝑛[θPM − ρx,z(ω𝑠, θPM)]         (4.21) 

d21 was measured in part 4.4.3, while d23 had been measured using the phase-matching 

SHG method [46], and we have already determined the relative sign between d21 and 

d23 using the type II SHG in the (x, z) principal plane. 

 

Figure 4.23 gives the theoretical type II DFG curves calculated by using our refined 

Sellmeier equations in the (x, z) principal plane of BGSe. The magic pump wavelength 

of 2.37 µm can be offered by the laser Cr2+: ZnSe [8]. As shown in Figure 4.23, the 

corresponding supercontinuum can be generated in a slab cut in the direction (θ𝑃𝑀 =

40.6°, φ𝑃𝑀 = 0°)  and the extension is between 3 and 11  µm . We also chose  λ  = 

2.09 µm (Ho:YAG laser), 1.645 µm (diode-pumped Er-laser) and 1.064 µm (Nd:YAG 

laser) as the pump wavelengths.   
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Figure 4.23: Calculated type II OPG tuning curves in the (x, z) principal plane of BGSe at different values 

of the pump wavelength λP. The generated wavelengths λi and λs are the idler and signal, respectively. 

 

With a slab cut along (θ𝑃𝑀 = 40.6°, φ𝑃𝑀 = 0°)  and the pump wavelength set at 

2.37  µm  (“magic” pump wavelength), we calculated the corresponding normalized 

spectral bandwidth of Type II OPG super continuum generated in a 1 cm thick BGSe 

crystal according to Eq. (1.30). It is shown in Figure 4.24. 

 

Figure 4.24: Normalized spectrum of the mid-IR Type II supercontinuum that can be generated in a 1 cm 

long BGSe crystal oriented at θPM = 40.6°, φPM = 0° . When using the magic pump wavelength λP =

2.37 µ𝑚.  
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Figure 4.25: Normalized spectrum of the mid-IR Type II supercontinuum that can be generated in a 1 cm 

long CdSiP2 crystal oriented at θPM = 42.8°, φPM = 45° . When using the magic pump wavelength λP =

2.43 µ𝑚 [8]. 

 

The supercontinuum of a 1 cm thick CdSiP2 is shown in Figure 4.25, by using the 

laser Cr2+: ZnSe at the wavelength of 2.43 µ𝑚 as the pump wavelength [8]. Thus we 

can compare the mid-IR Type II supercontinuum for these two nonlinear crystals. From 

Figure 4.24 and 4.25, we found that under the same condition, the supercontinuum 

range of BGSe is a little wider than CdSiP2.  

However the corresponding effective coefficient of CdSiP2 is:  

                                   deff(λi) = d36(λi) sin[θPM − ρ(λP, θPM)]                                 (4.22) 

d36(λi)  can be offered by [8] and θPM = 42.8°, ρ(λP, θPM) can be calculated using Eq. 

(1.18). 

 

Figure 4.26: The square of the effective coefficients of BGSe and CdSiP2, BGSe crystal oriented 

at θPM = 40.6°, φPM = 0° ; CdSiP2 crystal oriented at θPM = 42.8°, φPM = 45°. 
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Figure 4.26 shows that the effective of BGSe from Eq (4.21) is very weak compared 

with CSP. However, it can be improved by using a much thicker BGSe slab which has 

the advantage to enlarge the spectral bandwidth.  

 

4.6 Summary  

We reported for the first time to our knowledge, an exhaustive study providing the 

magnitude and the relative sign of the six nonlinear coefficients of a monoclinic BGSe 

crystal. The recorded data combined phase-matched and out of phase-matched SHG 

conversion efficiencies.  But in the later case we proposed a new method labelled the 

tunable fringes method that is more efficient and reliable than Maker fringes. It uses a 

tunable fundamental beam at normal incidence at the surface of a slab that is kept fixed. 

It was validated with a KTP slab that is used a reference for measurements performed at 

the same wavelength in BGSe slabs. With the tunable fringes method, we determined 

the magnitude of the d21 and d22 nonlinear coefficients of BGSe. 
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Conclusion 

 

This PhD work has been devoted to the exhaustive study of four crystals for their use in 

optical parametric generators (OPG) with an efficient emission that covers band II (3–5 

m) or band III (8–12 m) of transmission of the atmosphere. We were interested in 

such an emission in their transparency range, from quadratic nonlinear processes under 

birefringence phase-matching conditions (BPM). 

 

We used the methods available at Néel Institute which setup and modus operandi for 

recording data are detailed in chapter 2. We also discussed the analysis of data using the 

theoretical elements of linear optics and nonlinear optics given in chapter 1. 

 

About our main results reported in chapter 3, 

 

We report the first exhaustive study, to the best of our knowledge of the nonlinear 

optical properties of GdCa4O(BO3)3 (GdCOB) positive biaxial crystal, La3Ga5.5Nb0.5O14 

(LGN) positive uniaxial crystal, and NaI3O8 negative uniaxial crystal. Their 

transparency range covers band II.  

 

The main results of this chapter are the studies of second harmonic generation (SHG) 

and difference frequency generation (DFG) that we performed under birefringence 

phase-matching condition in GdCOB and LGN spheres and in a NaI3O8 cylinder.  

 

From DFG tuning curves recorded in several principal planes, we found that the 

emission covers band II (3–5 m) in the three crystals. A simultaneous fit of all the 

recorded tuning curves also allowed us to refine the Sellmeier equations of GdCOB and 

LGN. Thanks to our studies, their domains of validity were extended and well cover the 

full transparency range of the crystals. Such an extended domain of validity was also 

found for the first Sellmeier equations reported in NaI3O8, to the best of our knowledge. 

 

We also determined the magnitude of the nonlinear coefficients of LGN and NaI3O8 

crystals by recording through slabs birefringence angular critical phase-matching 

(ACPM) SHG conversion efficiencies in comparison with KTP. We determined that the 

magnitude of the nonlinear coefficient of  LGN  |d11(0.659 µm)|= 2.9 ±0.5 pm/V. 

NaI3O8  has two nonlinear coefficients and we found that |d14(0.529 µm)| = 0.54 ±

0.08 pm/V and |d15
NaI3O8(0.540 µm)|= 0.85±0.13 pm/V. LGN and NaI3O8 have nearly 

the same damage threshold since they are equal to 2.8 ±0.7 GW/cm2 and 2.4±0.6 GW/

cm2, respectively.  
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Our calculations provided a comparison of these three crystals for their ability to cover 

band II from phase-matched type II OPG supercontinuum generation. It shows that the 

different “magic” pump wavelength values are located around 1 m. For the three 

crystals, GdCOB crystal is the less attractive concerning both the spectral bandwidth 

and the efficiency. NaI3O8 crystal provides the broadest spectral bandwidth compared 

with the two other crystals. However it is much less efficient than LGN, which finally 

seems to offer the best compromise.   

 

About our main results reported in chapter 4, 

 

We studied the BaGa4Se7 positive biaxial crystal that is transparent in band II and band 

III. Our interest was for the determination of the magnitude and the relative sign of the 

six nonlinear coefficients of the monoclinic BGSe crystal. Three nonlinear coefficients 

d23 , d31  and d32  had already been determined from SHG birefringence angular non-

critical phase-matching ANCPM condition. But for the magnitudes of  d21, d22, d33, a 

new method recording SHG conversions efficiencies out-of phase-matching conditions 

is requested. We showed the interest of a new method using a tunable fundamental 

beam sent in a slab that remains fixed (we called it the tunable fringes method), instead 

of the Maker fringes method. KTP was used as the reference. Then we determined 

|d21
BGSe(1.575 µm) | =4.17 pm/V and | d22

BGSe(1.575 µm) | =4.88 pm/V. We were not able 

to detect d33. 

 

Given the magnitude of the nonlinear coefficients of BGSe associated to SHG tuning 

curves in principal planes, we determined the relative sign of the coefficients d21, d23, 

d31 and d32, it was possible by following the variation of conversion efficiencies along 

the associated SHG tuning curves. Using these results, our calculations showed in BGSe 

a broadest spectral bandwidth emitted by phase-matched type II OPG supercontinuum 

which covers band III better than CSP despite a much weaker associated efficiency 

compared to CSP.  

 

To conclude, all these results provide new reliable data for further use of oriented 

crystals as devices generating parametric light in the infrared range.  
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We directly measured the phase-matching properties of
the biaxial GdCa4O�BO3�3 (GdCOB) crystal using the
sphere method. We studied second-harmonic generation
and difference frequency generation in two principal planes
of the crystal. All these data allowed us to refine the
Sellmeier equations of the three principal refractive indices.
These equations are valid over the entire transparency range
of GdCOB and then could be used to calculate the tuning
curves of infrared optical parametric generation. © 2016
Optical Society of America

OCIS codes: (190.2620) Harmonic generation andmixing; (190.4400)

Nonlinear optics, materials; (190.4975) Parametric processes.
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The generation of a broadband supercontinuum extending
between 1.5 and 3.5 μm from frequency downconversion still
requests new potential nonlinear crystals when pumped by the
Ti:sapphire laser around 0.8 μm. We identified the calcium-
rare-earth oxoborate crystal GdCa4O�BO3�3 (GdCOB) as a
real alternative in this context.

Large GdCOB samples with a very good optical quality can
be grown using the Czochralski pulling technique [1]. GdCOB
is transparent from 0.32 to 2.7 μm, and its highest nonlinear
coefficient which can be excited in the �x; z� principal dielectric
plane, was found equal to that of LiB3O5, twice that of
KD2PO4, and half that of KTiOPO4 nonlinear crystals [1].
Furthermore, the damage threshold measured at 0.532 μm us-
ing the second-harmonic beam of a 7 ns (FHWM) and a 10 Hz
repetition rate Nd:YAG laser is higher than 1 GW∕cm2 [1].
Up to now, the main interest for this crystal has been essentially
devoted to the second-harmonic generation (SHG) from a
fundamental beam around 1 μm [2], in particular, by self-
doubling using GdCOB doped with Nd3� or Yb3� [3]. A
thermal direction has been also predicted [4].

GdCOB belongs to the monoclinic point group m. Then
the orthonormal optical frame �x; y; z� does not correspond
to the crystallographic frame �a; b; c� [5]. The b-axis is
perpendicular to the mirror plane m where the a- and c-axes
are located, the angle between these two axes being �a; c� �
101.26° [1]. The y-axis is taken parallel to the b-axis by con-
vention, so that the x- and z-axes lie in the mirror plane m with
the following orientation: �a; z� � 26°, �c; x� � 15° when
measured at 0.6328 μm [1], knowing that for any monoclinic
crystal the orientation of the dielectric frame may rotate as a
function of the wavelength [6]. Since GdCOB is monoclinic,
it belongs to the biaxial optical class. The three principal refrac-
tive indices nx , ny, and nz have been measured between 0.35
and 1.12 μm by using the minimum deviation technique in
two oriented prisms [7], and improved by the SHG and
sum frequency generation experiments performed in the visible
and near infrared ranges [8]. It was shown that it is a positive
biaxial crystal, i.e., nx < ny < nz , and the phase-matching
directions of SHG were calculated in the three principal
planes of GdCOB [7,8]. Under the Kleimann assumption,
the magnitude and sign of the six non-zero and independent
coefficients of the second-order electric susceptibility tensor
had been determined from measurements using a separated
beam method [9].

In this Letter, the crystal of GdCOB was studied using
the sphere method [10]. We showed that the dielectric frame
�x; y; z� does not rotate as a function of wavelength. We also
performed the measurement of the full SHG and difference-
frequency generation (DFG) phase-matching properties in
the �x; z� and �y; z� planes. These angular data allowed us
to refine the Sellmeier equations of GdCOB from which we
calculated the tuning curves, in particular, for the generation
of a super continuum in the infrared.

The crystal of GdCOB was cut and polished as a sphere with
a diameter of 5.55 mm and an asphericity below 1%. It was
stuck on a goniometric head along the (b‖y)-axis, as shown
in Fig. 1. The precision of the crystallographic orientation
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was better than 0.5°, thanks to the use of the x-ray backscat-
tered Laue method. Then the sphere was placed at the center of
a Euler circle in order to be rotated around the y-axis in any
direction of the �x; z� plane.

The input beam was emitted by a 15 ps (FWHM) and a
10 Hz repetition rate optical parametric generator provided
by Excel Technology and Light Conversion companies. The
OPG is pumped at 1.064 μm and tunable between 0.4 and
2.4 μm. The DFG between the pump and idler beams in an
AgGaS2 crystal extends the emission range up to 11 μm. The
wavelength was continuously controlled by an HR 4000 spec-
trometer and a NIRquest 512 Ocean Optics spectrometer,
with an accuracy of around �1 nm.

A 75 mm focusing lens was placed at the entrance side of
the sphere, as shown in Fig. 1, in order to ensure the normal
incidence and quasi-parallel propagation along any diameter
of the sphere [11].

For the determination of the orientation of the dielectric
frame, the propagation was first achieved along the z-axis,
where there is no double refraction effect. Thus, in that con-
dition, a single output spot was observed. The observation of
the spot was done using a CCD camera and a mid-IR sensor
card with sensitivity that provided a spectral range from 0.4 to
1.75 μm. First, we found in GdCOB that the spot remains
at the same angle, which means that there is no rotation of
the dielectric frame over this wavelength range and, second,
we determined that the angle between the a- and z-axes is
�a; z� � 26°� 0.5°, as shown in Fig. 2. We expect such a
constant value at higher wavelengths.

According to the crystal symmetry of GdCOB and, by using
previously published Sellmeier equations [7,8], we found that
all possible quadratic processes that can be phase matched in

the �x; z� plane with non-zero effective coefficients are type
I SHG (1∕λe2ω � 1∕λoω � 1∕λoω) and type II DFG �1∕λoi �
1∕λep − 1∕λos �. In the �x; y� plane, they are type I SHG
(1∕λo2ω � 1∕λeω � 1∕λeω) and type II SHG (1∕λo2ω � 1∕λeω�
1∕λoω). Superscripts o and e stand for the ordinary and extraor-
dinary waves, respectively. λkω and λk2ω (with k being o or e) are
the fundamental and second-harmonic wavelengths, respec-
tively. λkp and λks are the pump and signal input wavelengths,
and λki is the idler wavelength following the relation of order:
λkp < λks ≤ λki .

The corresponding phase-matching conditions were studied
by using the experimental setup shown in Fig. 1. The GdCOB
sphere was stuck successively along the y- and z-axes to access
the �x; z� and �x; y� principal planes, respectively. Only one
tunable incoming beam is necessary for the SHG experiments,
while two beams must be used for DFG. In the latter case, a
delay line built with mirrors M was necessary to achieve a tem-
poral overlap, as shown in Fig. 1. The input beams were linearly
polarized, and different achromatic half-wave plates were used
to change their polarization directions according to the differ-
ent types of phase matching (see Fig. 1). The energies of the
tunable incoming beams were simultaneously measured using a
J4-09 Molectron pyroelectric joulemeter with a beam splitter
and a CaF2 lens with a focal length of 50 mm. A Glan Taylor
polarizer or filter allowed us to remove the input beams after the
crystal, so that only the generated beams were measured. We
used a J3-05 Molectron joulemeter, combined with a PEM531
amplifier. The phase-matching angles were directly read on the
Euler circle with an accuracy of about �0.5° by detecting the
maximum of the peak of conversion efficiency.

Figures 3 and 4 show type I SHG and type II DFG phase-
matching curves recorded in the �x; z� plane of GdCOB. Types
I and II SHG in the �x; y� plane are given in Figs. 5 and 6.
Figures 3–6 also show black and green dashed lines correspond-
ing to phase-matching curves calculated from previously
published Sellmeier equations [7,8].

The wavelength range of solicitation of the three principal
refractive indices is shown in Fig. 7: it corresponds to the range
over which the phase-matching angles were measured. Note
that even if the SHG measurements were performed at funda-
mental wavelengths up to 3.4 μm, which is above the infrared
cutoff of GdCOB, we did not observe any perturbation of the
tuning curves.

We refined the Sellmeier equations of GdCOB by the
simultaneous fit of all our experimental data. We tried different

Fig. 1. Experimental setup used to measure directly the dielectric
frame orientation and the phase-matching angles as a function of
wavelength; the sphere of GdCOB is stuck on a goniometric head.

Fig. 2. Variation of the angle between the crystallographic and
dielectric frames as a function of the wavelength. Fig. 3. Type I SHG tuning curve in the �x; z� plane of GdCOB.
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dispersion equations using the Levenberg–Marquardt algo-
rithm encoded with Matlab. The best result was obtained with
a dual oscillator model, i.e.,

n2j �λ� � Aj �
Bjλ

2

λ2 − Cj
� Djλ

2

λ2 − Ej
; (1)

where λ is in μm, j stands for x, y or z; and the corresponding
dispersive coefficients Aj, Bj, Cj, Dj, and Ej are given in
Table 1. Note that the Sellmeier coefficients follow the same
relation of order as the corresponding refractive indices, i.e.,
Mx < My < Mz with M � A, B, C , D, or E, which is rel-
evant from the physical point of view.

The red continuous lines in Figs. 3–6 correspond to the
phase-matching curves calculated with our refined Sellmeier
equations. They clearly highlight a much better agreement
with the experimental measurements, especially at long wave-
lengths, compared with calculations based on the previously
published Sellmeier equations [7,8]. Such a discrepancy can
be explained by two reasons. First, the precision of our angular
measurements is around �0.5°, leading to a relative precision
of the principal refractive indices Δni∕ni better than 10−4

Fig. 5. Type I SHG tuning curve in the �x; y� plane of GdCOB.

Fig. 6. Type II SHG tuning curve in the �x; y� plane of GdCOB.

Fig. 4. Type II DFG tuning curve in the �x; z� plane of GdCOB.

Fig. 7. Wavelength range of solicitation of the three principal refrac-
tive indices of GdCOB when determined using the sphere method
(red continuous lines), the prism method from [7] (black dashed
lines), and the phase-matched method from [8] (green dashed lines).

Table 1. Refined Sellmeier Coefficients of the Three
Principal Refractive Indices nx , ny , and nz of GdCOB
Corresponding to Eq. (1)

Sellmeier
Coefficients j � x j � y j � z

Aj 2.1685 2.2572 2.2587
Bj 0.6163 0.6169 0.6482
Cj 0.0341 0.0383 0.0409
Dj 0.5773 1.3245 1.8922
Ej 107.0991 115.7501 148.8075
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(where i represents x, y, and z), while Δni∕ni was of the order
of 10−3 using the prism method. Second, the wavelength range
of measurement is much wider in our case.

Using our refined Sellmeier equations, we identified
GdCOB as a promising crystal for the optical parametric
generation (OPG) of a supercontinuum pumped by the
Ti:sapphire laser. The phase-matching type corresponds to that
of type II DFG, i.e., 1∕λeP → 1∕λoi � 1∕λos , and the propaga-
tion has to be performed in the �x; z� plane where the figure
of merit �dxz

eff �2∕ne�λP�no�λi�no�λs� is maximal, of about
0.1 pm2∕V2 using data from [9,12]. Figure 8 shows three
tuning curves corresponding to three wavelengths well spread
over the Ti:sapphire emission band: λp � 0.750, 0.808, and
0.964 μm. The broadest spectrum is 1–3.4 μm, corresponding
to λP � 0.750 μm, the GdCOB crystal being cut at
�θPM � 32.5°;φPM � 0°�.

In conclusion, we reported for the first time, to the best of
our knowledge, the full phase-matching tuning curves of SHG
and DFG in the calcium-rare-earth oxoborate crystal GdCOB.
We also demonstrated that the dielectric frame does not rotate
as a function of wavelength. The measured phase-matching

angles can be used per se for designing any parametric devices,
but they also allowed the Sellmeier equations to be refined.
Based on these equations, we showed that a GdCOB-OPG
could generate a super continuum extending from 1 to 3.4 μm
when pumped at 0.750 μm. These good nonlinear optical
properties of GdCOB are completed by a very high damage
threshold, which is two orders of magnitude higher than that
of potassium titanyl phosphate (KTP) [13].
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Abstract: We performed the first study of phase-matched second harmonic generation and 
difference frequency generation in the acentric nonlinear crystal NaI3O8. By fitting all the 
recorded phase-matching tuning curves, we determined the Sellmeier equations describing the 
wavelength dispersion of the ordinary and extraordinary principal refractive indices. We also 
measured the absolute value of the quadratic nonlinear coefficients and we calculated the 
conditions of supercontinuum generation in NaI3O8. 
© 2017 Optical Society of America 
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Parametric processes. 
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1. Introduction 

In 2007, we synthesized and studied the crystal structure of the new acentric crystal NaI3O8 
[1]. Three years later, another group showed that this material is a negative uniaxial crystal 
with potential nonlinear optical properties. They performed powder second harmonic 
generation (SHG) measurements and calculations based on the density functional theory 
(DFT) [2]. Recent advances in crystal growth allowed us to get single crystals of very high 
quality suited for the first exhaustive study of linear and nonlinear optical properties 
described in the present letter. We recorded the transmission spectra in polarized light and 
determined the damage threshold in NaI3O8 slabs polished to optical quality. We directly 
measured phase-matching tuning curves of SHG and difference frequency generation (DFG) 
by using a method where NaI3O8 was cut as a cylinder polished on its curved surface [3]. 
From these experimental data we determined accurate Sellmeier equations describing the 
dispersion of the ordinary and extraordinary principal refractive indices, no and ne (no > ne), as 
a function of the wavelength. We also determined the absolute values of the two independent 
nonlinear coefficients d14 and d15 using a phase-matching technique [4]. 
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2. Crystal growth, transmission spectra and damage threshold 

NaI3O8 single crystals were grown by slow evaporation of Nitric Acid aqueous solutions (7M) 
at fixed temperature ranging between 60 and 70 °C. We obtained samples of several 
millimeter dimensions as the one shown in the insert of Fig. 1(a). While NaI3O8 displays a 
significant solubility in acidic solutions of lower molarity, such solutions were proved to be 
unstable toward the reduction of the iodate species into iodine. The later gets incorporated in 
the growing crystals giving them a yellow tint. Since NaI3O8 belongs to the 4( 4)S  tetragonal 

point group, its crystallographic frame (a, b, c) is orthonormal and fully coincides with the 
dielectric frame (x, y, z) [1, 2]. 

The transmission spectra depicted in Fig. 1(a) were recorded in polarized light through a 
3-mm-thick slab. The two faces were cut perpendicularly to the x-axis, polished but uncoated. 
The linear polarization of light oriented successively perpendicularly and collinear with the z-
axis, led to the ordinary and extraordinary transmission coefficients respectively. We used a 
Perkin-Elmer Lambda 900 spectrometer to record spectra as a function of the wavelength 
between 0.175 and 3.300 µm, and a Bruker FT-IR above 3.3 µm. Figure 1(a) shows that 
NaI3O8 is transparent between 0.32 and 6 µm despite strong absorption bands above 4 µm. 

 

Fig. 1. NaI3O8: (a) Transmission spectra of the 3-mm-thick slab shown in insert; (b) Setup used 
for phase-matching measurements in the 4.13-mm-cylinder shown in insert. 

We determined the surface damage threshold of NaI3O8 compared with that of KTiOPO4 
(KTP). The two slabs were illuminated by a 1.064-µm laser with 5-ns FWHM, 10-Hz 
repetition rate and 30-µm beam waist radius. NaI3O8 was damaged at an input energy of 140 

J, corresponding to a peak power density of 0.79 GW/cm2. It was only 5 times lower than 
the damage threshold in KTP, which has been observed at 760 µJ i.e. 4.29 GW/cm2. 

3. Phase-matching properties, Sellmeier equations and nonlinear coefficients 

Under Kleinman symmetry, the second-order electric susceptibility tensor of the NaI3O8 
crystal has two independent nonzero coefficients, i.e. dxyz = dxzy = dyzx = dyxz = dzxy = dzyx ( = 
d14); dxzx = dxxz = dzxx = - dyzy = - dyyz = - dzyy ( = d15), where d14 and d15 stand for the 
contracted notation [5]. The five following types of SHG and DFG processes can be phase-
matched with a nonzero effective coefficient identically in the xz- and yz-plane: type I 
SHG 2(1/  1/  1/ )o o e

ω ω ωλ λ λ+ = , type II SHG 2(1/  1/  1/ )o e e
ω ω ωλ λ λ+ = , type I DFG 

( )1/ 1/ 1/ ,e e o
P s iλ λ λ− = type II DFG (1/  1/  1/ )e o o

P s iλ λ λ− =  and type III DFG 

 (1/  1/  1/ )e o e
P s iλ λ λ− = . Superscripts o and e stand for the ordinary and extraordinary waves, 

respectively. k
ωλ  and 2

k
ωλ  (with k being o or e) are the fundamental and second harmonic 

wavelengths, respectively. k
Pλ  and k

sλ  are the pump and signal input wavelengths, and k
iλ  is 

the idler wavelength generated by DFG, with the following relation of order: k
pλ  k k

s iλ λ< ≤  . 
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The corresponding tuning curves were directly measured by using a method where the NaI3O8 
crystal was cut as a cylinder with a diameter D = 4.13 mm and an acylindricity ΔD/D below 
1%. The curved surface was polished to optical quality as shown in the insert of Fig. 1(b). We 
previously used this sample shape to study many nonlinear crystals, as RTP for example [3]. 

 

Fig. 2. Measured (dots) and fitted (line) (a) Type I- and (b) type II- SHG tuning curves in 
NaI3O8. 

Using an X-ray backscattered Laue method, the cylinder was cut with its rotation axis 
oriented along the y-axis with a precision better than 0.5°. Then it was stuck on a goniometric 
head along this axis. When placed at the center of an Euler circle, the cylinder can rotate on 
it-self to access any direction of the xz-plane. Note that this plane is equivalent to yz-plane, 

since NaI3O8 belongs to the 4(4)S tetragonal point group. Using a focusing 100-mm-focal 

length lens properly placed, an incoming beam remains in normal incidence and propagates 
parallel to the diameter of the rotating cylinder as shown in Fig. 1(a) [3]. 

 

Fig. 3. Measured (dots) and fitted (line) (a) Type II- and (b) type III- DFG tuning curves in 
NaI3O8. 

One incoming tunable beam was necessary for SHG. It was emitted by a 5-ns (FWHM) 
and 10-Hz repetition rate optical parametric oscillator (OPO) from Continuum Company. The 
OPO was pumped at 1.064 µm and tunable between 0.4 µm and 2.4 µm. The OPO beam and 
part of the 1.064-µm beam were collinearly combined for achieving DFG. They were put in 
spatial and temporal coincidence inside the cylinder using mirrors and the delay line shown in 
Fig. 1(b). All beams being linearly polarized, achromatic half-wave plates (HWP) provided 
their polarization rotation, in order to achieve the different types of phase-matching, i.e. type 
I, II and III. Input energies were measured at the entrance of the cylinder using a J4-09 
Molectron pyroelectric joulemeter coupled to a beam splitter and a 50-mm focal length CaF2 
lens. They were removed at the output of the cylinder by using a polarizer and a filter. Thus 
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only beams generated by SHG and DFG were measured on the J3-05 Molectron joulemeter 
combined with a PEM531 amplifier. Phase-matching angles corresponding to maximum 
values of the conversion efficiency were directly read on the Euler circle with an accuracy of 
± 0.5°. The corresponding phase-matching wavelengths were recorded with a precision of ± 
1nm using a HR 4000 Ocean Optics spectrometer. Figures 2 show the measured types I and II 
SHG tuning curves, types II and III DFG being given in Figs. 3. For SHG, it was not possible 
to record phase-matching angles for fundamental wavelengths lower than 0.7 µm because the 
corresponding generated wavelengths were below the ultra-violet cut-off wavelength. 
Similarly, we did not study type I DFG tuning curve since the incoming tunable pump 
wavelength being below 0.5 µm, it could damage the surface of the cylinder. The tuning 
curves of Figs. 2 and 3 indicate that NaI3O8 allows phase-matching conditions over its entire 
transparency range, which is also the spectral range of reliability of its two principal 
refractive indices. These data can be used directly to cut the crystal at a phase-matching angle 
corresponding to the targeted parametric process and phase-matching wavelength. But the 
combination of the simultaneous fit of all the phase-matching curves with the magnitude of 
the ordinary refractive index no at a given wavelength, can lead to the determination of the 
Sellmeier equations [3]. We used no(λ = 0.671 µm) = 1.6 that we determined from the direct 
measurement of a Brewster angle of 58° in the xy-plane of NaI3O8 cut as a slab, and the 
Levenberg-Marquardt algorithm encoded with Matlab. We tried different dispersion 
equations, the best result being obtained with the following dual oscillator model: 

 ( )
2 2

2
2 2  

j j
j j

j j

B D
n A

C E

λ λ
λ

λ λ
= + +

− −
 (1) 

λ is in µm, and j stands for o or e. The Sellmeier coefficients Aj, Bj, Cj, Dj and Ej are given in 
Table 1. Since the precision of the measured phase-matching angles was of about ± 0.5°, the 

relative accuracy of the determined refractive indices /Δ i in n  is better than 10−4. It is 

corroborated in Figs. 2 and 3 by the very good agreement between our data and calculations. 
On the contrary, the comparison of our refractive indices at 1.064 µm with calculations using 
the model of ref. [2] that is shown in Table 2 highlights a strong discrepancy. This feature is 
not so surprising since the modelling of the first order electric susceptibility is very 
complicated. 

Table 1. Sellmeier Coefficients for the Two Principal Refractive Indices no and ne of 
NaI3O8. 

Sellemeir coefficients Aj Bj Cj Dj Ej 

j = o 1.7953 0.7344 0.0182 0.5314 412.9779 

j = e 1.6942 0.7101 0.0162 2.5841 375.2799 

 
The following step was to determine the magnitude of the two independent nonlinear 

coefficients of NaI3O8, 14d and 15d . For that purpose, we measured conversion efficiencies in 

NaI3O8 slabs cut at critical phase-matching angles for types I-SHG and type II-SHG, and for 
type II-SHG in KTP that was taken as a reference [4]. We chose all fundamental wavelengths 
as near as possible, to get rid of the experimental setup spectral response. With ρe as the 
spatial walk-off angle, the corresponding effective coefficients are in NaI3O8 [4,5]: 

 3 8 3 8
, 15 2 2( )sin ( , )NaI O NaI O PM e PM

eff I PM PMd d ω ωλ θ ρ θ λ = − +   (2) 
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, 1 2

2

sin ( , ) cos ( , )
( )

cos ( , ) sin ( , )

e PM e PM
PM PM PM PMNaI O NaI O PM

eff II e PM e PM
PM PM PM PM

d d
ω ω

ω
ω ω

θ ρ θ λ θ ρ θ λ
λ

θ ρ θ λ θ ρ θ λ

    + +     =  
   + + +  

−
 

(3) 

Using Eq. (1) and Tab. 2, we calculated the corresponding phase-matching and walk-off 
angles in NaI3O8 at the phase-matching wavelength 1.064 PM mωλ μ= . We found for type I 

SHG that PMθ 32.1= ° and ρe( PMθ , )PM
ωλ  = 1.38°; PMθ 49 ,= °  ρe( PMθ , )PM

ωλ  = 1.52° and 

ρe( PM 2θ , )PM
ωλ  = 1.51° in the case of type II SHG. We chose type II 

SHG e o o
ω ω 2ω(1/  λ 1/  λ 1/ λ )+ =  in the xy-plane of KTP as a reference. The absolute value of the 

associated effective coefficient is KTP
effd  = 2.43 pm/V, the corresponding phase-matching and 

walk-off angles being φPM = 23.1°, ρe( PMθ , )PM
ωλ  = 0.17° and ρe( PM 2θ , )PM

ωλ  = 0.29° [6]. We 

cut two NaI3O8 slabs 3 8NaI O
I (L = 800 µm, 3 8NaI O

II L = 680 µm) and one KTP slab (LKTP =  800 

µm) at the phase-matching angles given above. We took such a small interacting length in 
order to avoid any spatial walk-off attenuation. Since the incoming fundamental beam was 
focused through a 100-mm focal length CaF2 lens, the corresponding beam waist radius was 
around wo = 60 µm. It leads to a Rayleigh length 2xZR = 22 mm, which is much longer than 
the thickness of the slabs and ensures a parallel beam propagation. Types I and II SHG 
conversion efficiencies of NaI3O8, recorded relatively to KTP as a function of the 

fundamental wavelength are shown in Fig. 4: 3 8NaI O
Iη  and 3 8NaI O

IIη  correspond to types I and II 

SHG conversion efficiencies of NaI3O8 respectively, and KTP
IIη  stands for type II SHG 

conversion efficiency of KTP. 

 

Fig. 4. Calculated (line) and measured (dots) conversion efficiencies in NaI3O8 of (a) type I 
SHG and (b) type II SHG as a function of the fundamental wavelength.  

The absolute value of the effective nonlinear coefficient 3 8NaI O
effd  relatively to KTP

effd  of KTP 

can be determined from the maximum of each curve shown in Fig. 4 and by using: 
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( )3 8NaI O PM
o ωn λ and ( )KTP PM

o aω PMn  λ ,  φ  stand for the ordinary refractive indices of NaI3O8 and 

KTP respectively. ( )3 8NaI O PM
e aω PM n λ ,  θ and ( )KTP PM

e ωn λ are the extraordinary refractive indices. 

They are involved at the fundamental (a = 1) or second harmonic (a = 2) wavelengths, and 

PM  θat  or PMφ  phase-matching angles. To and Te are the associated Fresnel coefficients. The 

spatial walk-off attenuations are negligible since we found: 3 8NaI OG 0.999I =  for type I SHG in 

NaI3O8, 3 8NaI OG 0.987II =  for type II SHG, and KTPG II  = 0.999 for type II SHG in KTP. The 

phase-matching wavelengths of NaI3O8 are PM
ωλ  = 1.080 µm for type I SHG and PM

ωλ  = 

1.058 µm for type II SHG as shown in Figs. 4. They are slightly different from 1.064 µm, 
showing the difficulty of cutting very thin oriented slabs. Note that they are just slightly 
different from the calculated ones using our Sellmeier Eq. (1) and Tab. 1, which give the very 
good order of magnitude reached with the equations from the present work. From the 
maximum value of the curves shown in Fig. 4 and using Eqs. (4)-(7), we found that 

3 8Na
eff I 2d (  0.540µm)I O PM

ωλ =   = 0.22 ± 0.02 pm/V and 3 8Na
eff II 2d (  0.529µm)I O PM

ωλ =   = 0.53 ± 0.05 

pm/V. Then it comes from Eqs. (2) and (3): 14d (0.529µm)  = 0.54 ± 0.08 pm/V and 

3 8Na
15d (0.540µm)I O   = 0.85 ± 0.13 pm/V. The discrepancy is strong when compared with 

calculations using the model of ref. [2] as shown in Tab. 2 since the modelling of the second-
order electric susceptibility remains an open question. The corresponding Miller indices 

determined using Eq. (1) are [7]: 3 8NaI O
14δ  0.32 0.05pm / V,= ±   3 8NaI O

15δ  0.50 0.07pm / V= ±  , 
KTP
15δ  0.25 0.04pm / V= ±  , KTP

24δ  0.47 0.07pm / V= ±   and KTP
33δ 1 .51 0.22pm / V= ±   [6]. 

Table 2. Refractive Indices and Nonlinear Coefficients of NaI3O8: Comparison between 
our work and [2]. 

Parameters Present work From [2] Parameters Present work From [2] 

no(1.064 µm) 1.594 2.198 d14 (pm/V) 0.54(@ 0.529 µm) 13.1 (λ not given) 

ne (1.064 µm) 1.551 1.973 d15 (pm/V) 0.85(@ 0.540 µm) 1.5 (λ not given) 

no/ne 1.027 1.114 d14/ d15 0.63 8.71 

 
Reliable NaI3O8-OPG tuning curves can be calculated using our Sellmeier equations. 

Thus, we found that a supercontinuum can be generated from type II OPG 
(1/ 1/ 1/ )e o o

p s iλ λ λ− = in the dielectric xz-plane of NaI3O8. The supercontinuum is the broadest 

one, ranging between 2.55 µm and 4.65 µm, when the pump wavelength is equal to 1.16 µm 
and the crystal oriented at θ = 18.5° from the z-axis as shown in Fig. 5. A supercontinuum can 
also be generated when the crystal is pumped by the Ti:Sapphire at 0.8 µm and the Nd:YAG 
at 1.064 µm, also shown in Fig. 5. 
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Fig. 5. Calculated OPG tuning curve in the xz plane of NaI3O8 with λP = 1.16, 1.064 and 0.8 
µm. 

4. Conclusion 

We measured for the first time to the best of our knowledge the transmission spectra in 
polarized light, the damage threshold, and the phase-matching conditions of SHG and DFG in 
the new acentric uniaxial NaI3O8 crystal. It allowed us to determine the Sellmeier equations 
and the absolute value of the two nonzero second-order nonlinear coefficients. Our data show 
that NaI3O8 is very attractive since using our Sellmeier’s equations we showed that a NaI3O8-
based OPG can generate a supercontinuum in the mid-IR when pumped in the near-IR. We 
also bring a new input to refine the modelling of the second-order electric susceptibility in 
iodates compounds. 
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Abstract: We directly measured the phase-matching angles of second-harmonic generation 
and difference-frequency generation up to 6.5 µm in the Langanate crystal La3Ga5.5Nb0.5O14 
(LGN). We also determined the nonlinear coefficient and damage threshold. We refined the 
Sellmeier equations of the ordinary and extraordinary principal refractive indices, and 
calculated the conditions of supercontinuum generation. 
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1. Introduction 

We identified the Langatate La3Ga5.5Ta0.5O14 (LGT) as a serious candidate for the parametric 
generation between 3 and 6.5 µm [1]. We then focused on a new compound of the same 
family, i.e. the Langanate La3Ga5.5Nb0.5O14 (LGN). We reported in a previous paper that when 
the transmittance is half its maximal value, the ultraviolet cut-off is down to 0.35 µm and the 
infrared cut-off is up to 6.5 µm, in very high quality and large-size crystals grown with the 
Czochralski method [2]. Since LGN crystallizes in the 32 trigonal point group, there is only 
one nonzero element of its second-order electric susceptibility tensor under Kleinman 
symmetry, i.e. dxxx = - dxyy = - dyxy = - dyyx ( = d11) where d11 stands for the contracted 
notation. We found that the absolute magnitude of d11 is equal to 3.0 ± 0.1 pm/V at 0.532 µm 
using the Maker fringes method [2]. We also reported a damage threshold of 1.41 GW/cm2 at 
1.064 µm in the nanosecond regime [2]. LGN is a positive uniaxial crystal, so that the 
ordinary principal refractive index (no) is smaller than the extraordinary one (ne). Both indices 
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were previously measured as a function of the wavelength using an oriented prism, which 
enabled to determine Sellmeier equations valid between 0.36 and 2.32 µm [3]. Using the 
same method, we proposed an alternative set of equations valid between 0.43 and 2.3 µm [2]. 

Using sets of equations from [2] and [3], we did not find the same calculated phase-
matching tuning curves in the principal dielectric planes of LGN for all the possible quadratic 
processes associated with a non-zero conversion efficiency [2]. Then we decided to directly 
record these curves, which is described in the present paper. We report for the first time to the 
best of our knowledge the direct measurement in LGN of the phase-matching tuning curves of 
second harmonic generation (SHG) and difference frequency generation (DFG). A 
simultaneous fit of all our data allowed us to refine the Sellmeier equations of the two 
principal refractive indices of LGN. We also determined the nonlinear coefficient d11 at 
another wavelength from [2] and the damage threshold. We could then calculate the 
conditions of supercontinuum generation. 

2. Phase-matching angles and Sellmeier equations 

The LGN crystal was cut and polished as a sphere with a diameter of 10.8 mm and asphericity 
below 1%. It was stuck on a goniometric head as shown in Fig. 1(a). It was successively 
oriented along the x- and y- dielectric axes with an accuracy better than 0.5°, using the X-ray 
backscattered Laue method. Then the LGN sphere was placed at the center of an Euler circle 
to be rotated in any direction. Thus any directions of the two (y, z) and (x, z) principal 
dielectric planes can be addressed successively in the same sample. 

 

Fig. 1. (a) Picture of the LGN crystal sphere stuck on a goniometric head; (b) Setup used for 
the direct measurement of SHG and DFG phase-matching tuning curves. 

Only one incoming beam tunable between 0.4 and 11 µm is used for studying SHG. It was 
emitted by a Light Conversion optical parametric generator (OPG) with 15-ps FWHM and 
10-Hz repetition rate. The OPG is pumped by the third-harmonic of a beam at 1.064 µm 
emitted by a Excel Technology Nd:YAG laser. Thus for the study of DFG, we can combine 
the OPG beam with part of the 1.064 µm beam directly in the sphere as shown in Fig. 1(b). 

A 100-mm-focusing lens (f) placed at the entrance side of the sphere ensured normal 
incidence and quasi-parallel propagation of all the input beams along any diameter of the 
sphere. The polarization was adjusted by using achromatic half-wave-plates (HWP). 

The energy of the incoming beams was measured with a J4-09 Molectron pyroelectric 
joulemeter placed behind a beam splitter (BS) and a lens with a focal length of 50 mm. The 
energy of the generated beam was measured simultaneously at the exit of the sphere by a  
J3-05 Molectron pyroelectric joulemeter associated with a PEM531 amplifier. A filter 
removed all input beams. The phase-matching wavelengths were controlled by monitoring the 
wavelengths of the input beams between 0.4 and 1.7 µm with accuracy of ± 1 nm using HR 
4000 and of ± 3 nm with NIRquest 512 Ocean Optics spectrometer. The phase-matching 
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angles were read on the Euler circle with an accuracy of ± 0.5°. A phase-matching direction is 
detected when the conversion efficiency reaches a maximal value. 
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Fig. 2. SHG tuning curve in the (y, z) plane of LGN. Wavelengths accuracy is within dots size. 

The recorded SHG and DFG phase-matching tuning curves are shown in Figs. 2 and 3, 
respectively. We studied type I SHG ( 21/ 1  1o e e

ω ω ωλ λ λ= ⁄ + ⁄ ) and type II DFG 

( )1/ 1/ 1/  e o e
i p sλ λ λ= −  in the (y, z) plane, and type III DFG ( )1/ 1/ 1/o o e

i p sλ λ λ= −  in the  

(x, z) plane. Superscripts o and e stand for the ordinary and extraordinary waves, respectively. 
 ωλ  and 2 ωλ  are the fundamental and second harmonic wavelengths. pλ , sλ  and iλ  are 

respectively the pump, signal and idler wavelengths verifying p s iλ λ λ< ≤ . 

 

Fig. 3. DFG tuning curve (a) in the (y, z) and (b) in the (x, z) plane of LGN. Wavelengths 
accuracy is within dots size. 

Figures 2 and 3 also show the calculated phase-matching curves using the Sellmeier 
equations from Refs [2]. and [3]. It highlights discrepancies between our experimental data 
and both sets of calculations, even if calculations using [3] are closer to our experimental 
data. It is true especially above 2.3 µm that corresponds to the limit of the spectral range over 
which the ordinary and extraordinary principal refractive indices were determined in Refs [2]. 
and [3]. As shown in Fig. 4, by performing our measurements up to 6.5 µm, we widely 
extended the wavelength range where the two principal refractive indices of LGN are 
involved. Such a difference might explain the discrepancies shown in Fig. 2 and 3. 
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Fig. 4. Spectral ranges where the principal refractive indices of LGN, no and ne, are involved, 
using the sphere method (red lines), and the prism technique from [2] and [3] (black dashed 
lines). 

We refined the Sellmeier equations of LGN by the simultaneous fit of all our SHG and 
DFG experimental data shown in Fig. 2 and 3. We used the Levenberg-Marquardt algorithm 
encoded with Matlab. Among the several possible forms of Sellmeier equations to fit the 
ordinary and extraordinary refractive indices, the best one was that used in Refs [2, 3], i.e: 

 ( )2 2
2  

j
j j j

j

B
n A D

C
λ λ

λ
= + −

−
 (1) 

where λ is in µm and j stands for o or e. The precision of our angular measurements is ± 0.5°, 
leading to a relative accuracy /j jn nΔ  better than 10−4. The numerical values of the best fit 

parameters Aj, Bj, Cj and Dj are summarized in Table 1. Our interpolated tuning curves using 
the Sellmeier equations of the present work correspond to the continuous red lines shown 
Figs. 2 and 3. They clearly show a much better agreement with our experimental data than 
using the calculations from Refs [2]. and [3]. 

Table 1. Refined Sellmeier Coefficients of the Two Principal Refractive Indices no and ne 
of LGN 

Sellemeir coefficients Aj Bj Cj Dj 

j = o 3.6836 0.0460 0.0296 0.0094 

j = e 3.7952 0.0483 0.0314 0.0102 

3. Nonlinear coefficient and damage threshold 

The absolute value of d11 of LGN can be determined from angle critical phase-matched type I 
SHG in the (y, z) plane. The corresponding effective coefficient is expressed as: 

 ( )
1 1 1 1

2
11 2 cos ( , ) LGN LGN e

eff PM PMd d ω ωλ θ ρ θ λ = −   (2) 

where 
1 1

( , ) e
PM ωρ θ λ  stands for the spatial walk-off. 

We chose the nonlinear coefficient of KTP 24
KTPd (

22  ωλ  = 0.66 µm) = 2.37 ± 0.17 pm/V as 

a reference [4] for the determination of d11 of LGN. The coefficient 24
KTPd  governs type II 

SHG 
2 2 22(1/ 1/ 1/ )e o o

ω ω ωλ λ λ+ =  in the (x, z) plane of KTP, the corresponding effective 

coefficient being ( )
2 2 2 224 2 sin ( , ) KTP KTP e

eff PM PMd d ω ωλ θ ρ θ λ = −   with 
2   58.5PMθ = °  and 

( )
2 2
,  e

PM ωρ θ λ  = 2.57° at the fundamental wavelength 
2ωλ  = 1.32 µm. A LGN slab was then 

cut at 
1  ( PMθ  = 70.4°, 

1  PMϕ  = 90°) according to our refined Sellmeier equations, the goal 

being to study the SHG in LGN at a fundamental wavelength the closest as possible to that of 
KTP. It has the advantage that we could get rid of the spectral response of the experimental 
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setup. The LGN and KTP slabs were cut with the same small thickness L  = 0.52 mm. The 
fundamental beam emitted by the OPG was focused with a 100-mm-focal length CaF2 lens. 
Then the beam waist diameter was ow  = 120 µm on the two slabs surface, with a Rayleigh 

length of 30 mm that is much longer than L. Then parallel beam propagation was ensured, and 
the spatial walk-off attenuation is minimized. 

The fundamental beam energy was measured with the J4-09 Molectron pyroelectric 
joulemeter placed behind a beam splitter and a lens with a focal length of 50 mm. The SHG 
energy was measured at the exit of each slab by the J3-05 Molectron pyroelectric joulemeter 
combined with a PEM531 amplifier, while a filter removed the input beam. Then we can 
determine the corresponding SHG conversion efficiency of type I SHG in LGN ( LGN

Iη ), and 

that of type II SHG in KTP ( KTP
IIη ). 
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Fig. 5. Calculated (red line) and measured (dots linked with black line) conversion efficiency 
in LGN relatively to KTP, as a function of the fundamental wavelength. Wavelengths accuracy 
is within dots size. 

Figure 5 shows the ratio LGN KTP
I IIη / η  recorded as a function of the fundamental wavelength 

ωλ . The peak wavelength is 
1ωλ  = 1.317 µm for LGN, which is very close to the targeted 

value ωλ
 2

. The spectral acceptance L.δλω1 is equal to 19.8 mm nm. It is in very good 

agreement with the calculation using our refined Sellmeier equations. In these conditions, we 
can calculate LGN

effd  relatively to KTP
effd  as follows: 

 ( ) ( )
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and 

 2 2 2 2

2 2 2 2
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2

( ) ( , ) ( )

( ) ( , ) ( )

KTP KTP KTP
o e PM oKTP

II KTP KTP KTP
o e PM o

T T T
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n n n
ω ω ω

ω ω ω

λ λ θ λ
λ λ θ λ

=  (5) 

no and ne are the ordinary and extraordinary refractive indices. They were calculated at 

1ωλ
 

 = 1.317 µm for LGN using Eq. (1) and Table 1, and at ωλ
2

 = 1.320 µm for KTP using 
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respectively the phase-matching angles 
1PMθ  and 

2PMθ  defined above and [4]. To and Te are 

the corresponding Fresnel transmission coefficients. For LGN, the spatial walk-off angle 

1 1
( , ) e

PM ωρ θ λ  = 0.55° and the spatial walk-off attenuation 0.999.LGN
IG =  0.987KTP

IIG =  for 

KTP [4,5]. Note that Fig. 5 shows a conversion efficiency of KTP that is two orders of 
magnitude higher than that of LGN: it is due to the relative value of their trigonometric 
functions that weigh differently on the nonlinear coefficients at the considered phase-
matching angles. According to Eq. (2), we found that 11d (0.659 m)  μ  = 2.9 ± 0.5 pm/V and 

11δ =  0.284 ± 0.049 pm/V, the Miller index [6], which corroborates the result obtained using 

the Maker fringes technique [2]. Furthermore it is also very close to 24 (0.660 µm)d   = 2.37 ± 

0.17 pm/V of KTP [4], and a little bit larger than 11(0.659 µm)d   = 2.4 ± 0.4 pm/V of LGT 

[1]. 
We also determined the surface damage threshold of the same LGN and KTP slabs. Both 

crystals were illuminated by the same Nd:YAG laser at 1.064 µm with a very high beam 
quality, a pulse duration of 5 ns (FWHM) and repetition rate of 10 Hz. By using a 100-mm-
focal BK7 lens, we measured a beam waist diameter of 60 ± 3 µm at their input surface using 
the standard knife-method. In these conditions, LGN was damaged at an incoming energy of 
500 ± 10 μ J, corresponding to a peak power density of 2.8 ± 0.7 GW/cm2. It is a little bit 

lower than that of KTP where the damage was observed at 760 ± 10 μ J, i.e. 4.3 ± 1.1 

GW/cm2. Using the same setup and same KTP crystal as a reference, LGT had been damaged 
for an input energy of 480 ± 10 μ J, which corresponds to a peak power density of 2.7 ± 07 

GW/cm2 [3]. In our previous work, we reported a surface damage threshold of 1.41 GW/cm2 
in a 1-mm thick LGN slab using KDP as a reference [2]. They were illuminated by a 
Nd:YAG laser at 1.064 µm with a pulse duration of 10 ns (FWHM) and a repetition rate of 1 
Hz. Moreover, the experimental protocol was different than the one we used here since the 
average power had been set at 20 mW and the beam waist diameter at the entrance surface of 
the slab was equal to 200 µm. Furthermore, the slabs were moved toward the focal point until 
damage was observed at their input surface. All these differences could explain the different 
result. 

4. Calculation of the supercontinuum generation by phase-matched OPG 

Using our refined Sellmeier equations and the method described in ref [7], we showed that a 
supercontinuum can be generated using a type II phase-matched OPG i.e. 
1/ 1/ 1/o e e

P s iλ λ λ→ +  when pumped at λp = 0.982 µm in the (y, z) plane of LGN. Figure 6 

shows that the emission could range between 1.4 and 3.45 µm, the LGN crystal being cut at 
(θPM = 52°, φPM = 90°). According to the value of d11 determined above, the calculated 

corresponding figure of merit ( )2
/ ( ) ( ) ( ) yz o e e

eff P i sd n n nλ λ λ  is equal to 
2

2
0.15

pm

V
 in LGN, 

which is a relatively low value. However, the supercontinuum range and the figure of merit 
are both larger in LGN compared with LGT [1]. Concerning the pump laser to use, Fig. 6 
shows that the tuning curve of LGN exhibits a quasi-supercontinuum behavior when the 
crystal is pumped at λp = 1.064 µm, while it is not anymore the case at λp = 0.8 µm. 
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Fig. 6. Calculated OPG tuning curves in the (y, z) plane of LGN at different values of the 
pump wavelength λP. 

5. Conclusion 

We measured the SHG and DFG phase-matching tuning curves of LGN as well as the 
absolute magnitude of the associated nonlinear coefficient. These data can be used per se for 
designing any parametric device, but we also used them for refining the Sellmeier equations 
of the crystal. Using these equations, we found the possibility of generating a super 
continuum in the mid-IR by pumping LGN at the standard wavelength of emission of the 
Nd:YAG laser. This interesting feature combined with the ability of this crystal to be grown 
in large size and high optical quality put LGN in the category of the best nonlinear crystals 
for practical applications. 
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Studies of new nonlinear crystals for infrared parametric generation  

 

Nowadays, the optical parametric generators (OPG) with the broadest spectral bandwidth is a good 

alternative cover band II (3–5 µm) or band III (8–12 µm) of transmission range of the atmosphere. We 

were interested in such an emission from quadratic nonlinear processes under birefringence phase-

matching conditions (BPM). It is performed in the transparency range of already identified nonlinear 

crystals, but they are not satisfying. Then this PhD work is devoted first to the study of GdCa4O(BO3)3 

(GdCOB) biaxial crystal, and La3Ga5.5Nb0.5O14 (LGN) and NaI3O8 uniaxial crystals. We recorded their 

tuning curves and conversion efficiencies for BPM. We selected second harmonic generation and 

difference frequency generation in slabs, spheres or cylinders. We refined the Sellmeier equations. We 

determined the magnitude of the nonlinear coefficients, spectral and angular acceptances in uniaxial 

crystals. We also determined the magnitude and sign of all the nonlinear coefficients of BaGa4Se7 biaxial 

crystal. All these results provide reliable data for further experimental evaluations of OPG broadest 

spectral bandwidth covering band II or III using these crystals.  

 

Key words: nonlinear optics, parametric generation, phase-matching, nonlinear crystals 

 

 

Etudes de nouveaux cristaux non linéaires pour la génération paramétrique dans 

l'infrarouge  

 

De nos jours, la génération paramétrique optique (OPG) avec la plus grande largeur spectrale possible, est 

une bonne alternative pour couvrir les bandes II (3–5 µm) ou band III (8–12 µm) de transmission de 

l’atmosphère. Une telle émission à partir de processus non linéaires quadratiques en conditions d’accord 

de phase par biréfringence (BPM), nous a intéressés. Elle est réalisée sur le domaine de transparence de 

cristaux non linéaires déjà identifiés, mais ils ne sont pas satisfaisants. C’est pourquoi ce travail de thèse 

est consacré d’abord à l’étude du cristal biaxe GdCa4O(BO3)3 (GdCOB), et des cristaux uniaxes 

La3Ga5.5Nb0.5O14 (LGN) et NaI3O8. Nous avons enregistré leurs courbes d’accord de phase et les 

rendements de conversion associés en conditions de BPM. Nous avons sélectionné la génération de second 

harmonique et la différence de fréquence dans des lames, des sphères ou cylindres. Nous avons affiné les 

équations de Sellmeier. Nous avons déterminé la valeur absolue des coefficients non linéaires des cristaux 

uniaxes. Nous avons aussi déterminé la valeur absolue et le signe de tous les coefficients du cristal biaxe 

BaGa4Se7. Tous ces résultats constituent une base fiable pour les évaluations expérimentales à venir de la 

plus grande largeur spectrale des OPG qui utilisent ces cristaux.  

 

Mots-clés : optique non linéaire, génération paramétrique, accord de phase, cristaux non linéaires 


