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Dans cette thèse, nous étudions les constructions cryptographiques prouvées pour la protection de la vie privée. Pour cela nous nous sommes intéressés aux preuves et arguments à divulgation nulle de connaissance et leurs applications. Un exemple de ces constructions est la signature de groupe. Ce protocole a pour but de permettre à un utilisateur de s'authenti er comme appartenant à un groupe, sans révéler son identité. A n que les utilisateurs restent responsables de leurs agissements, une autorité indépendante est capable de lever l'anonymat d'un utilisateur en cas de litige. Une telle construction peut ainsi être utilisée, par exemple, dans les systèmes de transport en commun. Un utilisateur qui rentre dans un bus prouve ainsi son appartenance aux utilisateurs possédant un abonnement valide, sans révéler qui il est, et évitant ainsi que la société de transport ne le trace. En revanche, en cas d'incident sur le réseau, la société peut faire appel à la police pour lever l'anonymat des usagers présents au moment de l'incident. Nous avons proposé deux constructions de ces signatures de groupe, prouvées sûres sous des hypothèses simples dans le monde des couplages et des réseaux euclidiens. Dans la continuité de ces travaux, nous avons aussi proposé la première construction de chi rement de groupe (l'équivalent de la signature de groupe pour le chi rement) à base de réseaux euclidiens. Finalement, ces travaux nous ont amenés à la construction d'un schéma de transfert inconscient adaptatif avec contrôle d'accès à base de réseaux euclidiens. Ces constructions à base de réseaux ont été rendues possibles par des améliorations successives de l'expressivité du protocole de Stern, qui reposait initialement sur la di culté du problème du décodage de syndrome.
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Résumé substantiel en Français

Les cinquante dernière années, l'utilisation de la cryptographie s'est éloignée de ses origines militaires et de son usage pour le secret commercial a n de se démocratiser à un public plus large. Par exemple, la machine Enigma initialement conçue pour un usage militaire a été déclinée pour un usage commercial (la machine Enigma A26). Aujourd'hui, environ 60% du premier million des sites les plus visités dans le monde propose une connexion chi rée et authenti ée (à l'aide du protocole https), tout comme les canaux de communication des appareils électroniques portatifs (comme la norme WPA, en anglais Wi Protected Access).

Dans le même temps, la croissance des données échangée en ligne et la sensibilité de ces informations rendent de plus en plus urgent la protection de ces communications. Pendant que la loi de Moore 2 atteint ses limites, d'autres menaces existent sur nos cryptosystèmes actuels. Par exemple, l'existence d'un ordinateur quantique possédant su samment de mémoire [START_REF] Shor | Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[END_REF] rendrait risqué l'utilisation de la majorité des constructions cryptographiques actuellement déployées, puisqu'elles reposent sur des hypothèses issues de l'arithmétique modulaire classique dont la structure algébrique peut-être exploitée par un adversaire quantique. Dans cette situation, il devient alors crucial de construire des schémas cryptographiques qui résisteraient à une menace quantique.

Pour répondre à ce problème, la cryptographie post-quantique est née au début des années 2000. Les di érents candidats reposent sur di érents objets mathématiques, comme les réseaux euclidiens, les codes, les systèmes polynomiaux multivariés, les isognénies, etc. Récemment, le NIST (National Institude of Standards and Technology) a organisé une compétition pour évaluer les di érentes solutions post-quantiques pour le chi rement et la signature [NIS17]. Dans cette compétition, 82 protocoles ont été proposés, parmi lesquels 28 reposent sur les réseaux euclidiens, 24 sur les codes correcteurs, 13 sur des systèmes multi-variés, 4 sur des fonctions de hachages et 13 sur d'autres objets.

Si la cryptographie pratique vise principalement à fournir des schémas de signature et de chi rement, comme l'atteste la compétition du NIST, la recherche théorique propose des solutions à des problèmes plus précis, comme la construction de systèmes de monnaie électronique 3 [START_REF] Chaum | Untraceable electronic cash[END_REF], qui sont l'équivalent numérique de notre monnaie échangée. Les pièces sont délivrées par une autorité centrale (la banque), et les dépenses restent intraçables. En cas de comportement malhonnête (comme une double-dépense), l'identité de l'utilisateur 2 La loi qui prédit la puissance de calcul des processeurs modernes. 3 À ne pas confondre avec les cryptomonnaies. . . Les constructions cryptographiques doivent en plus véri er des propriétés de sécurités. Par exemple, un schéma de chi rement doit être en mesure cacher un message en présence d'un attaquant passif voire actif (c'est-à-dire un attaquant qui est capable de modi er certains messages). Pour garantir ces exigences, les cryptographes fournissent des preuves de sécurité dans le cadre de modèles de sécurité précis. Une preuve de sécurité nous dit principalement qu'une construction cryptographique est au moins aussi di cile qu'un problème supposé di cile par la littérature.

Finalement, l'importance de la préservation de la vie privé et la protection des données ont été des sujets qui ont fait couler beaucoup d'encres, comme en atteste le développement du règlement général sur la protection des données (RGPD) en 2016, mis en application ce 25 mai. Il est donc intéressant pour les cryptographes de fournir des solutions qui resisteraient, dans le meilleurs des mondes, à un adversaire quantique. Néanmoins, la construction de ces protocoles repose de manière décisive sur les « preuves à divulgation nulles de connaissances ». Ce sont des protocoles interactifs entre un prouveur et un véri eur où le prouveur cherche à convaincre le véri eur d'une a rmation sans rien divulguer de plus sur celle-ci que sa valeur de vérité. Dans le contexte de la cryptographie post-quantique, de tels systèmes de preuves sont limités en terme d'expressivité ou en terme de coût de calcul (en temps ou en mémoire).

Cryptographie préservant la vie privée

Dans ce contexte, la « préservation de la vie privée » décrit la capacité d'une primitive cryptographique à fournir certaines fonctionnalités tout en gardant certaines informations privées. Par exemple, l'accréditation anonyme [START_REF] Chaum | Security without Identi cation: Transactions System to Make Big Brother Obsolete[END_REF][START_REF] Camenisch | An e cient system for non-transferable anonymous credentials with optional anonymity revocation[END_REF] est un exemple d'une telles primitives. De manière informelle, cette primitive permet à un utilisateur de garantir ses droits d'accès à un véri eur, sans lui divulguer son identité, ni le motif de ses accès. Pour réaliser cette primitive, le système est composé d'un (ou plusieurs) fournisseur(s) d'accréditations ainsi que d'un ensemble d'utilisateurs qui possèdent leurs propres clefs secrètes ainsi qu'un ensemble d'attributs. Les utilisateurs peuvent obtenir ces accréditations dynamiquement depuis un fournisseur qui ne connaît d'eux qu'un pseudonyme et qui signe de manière inconsciente les clefs secrètes des utilisateurs ainsi que leur attributs. Après avoir obtenu leurs accréditations, les utilisateurs peuvent s'authenti er sous des pseudonymes di érents, et prouver la possession d'une certi cation de la part du/d'un fournisseur, sans divulguer ni la signature, ni la clef secrète. Cette primitive permet ainsi à un utilisateur de s'identi er vis-à-vis du système (par exemple dans le cadre d'un contrôle d'accès anonyme) tout en préservant l'anonymat des utilisateurs. De plus, ce système garantit que les utilisateurs possèdent un droit d'accès su sant. L'intérêt pour la cryptographie préservant la vie privée est contemporain de la naissance de la cryptographie à clef publique [START_REF] Rabin | How to exchange secrets by oblivious transfer[END_REF][START_REF] Chaum | Blind signatures for untraceable payments[END_REF][START_REF] Goldwasser | Probabilistic encryption & how to play mental poker keeping secret all partial information[END_REF][START_REF] Chaum | Security without Identi cation: Transactions System to Make Big Brother Obsolete[END_REF]. Une raison pouvant expliquer cela serait la similitude entre les motivations de la cryptographie et les exigences de la protection de la vie privée. De plus, le travail des cryptographes dans ce domaine ont des conséquences directes en terme de services qui pourraient être développés dans le monde réel. En e et, un système d'accréditation anonyme pourrait débloquer le contrôle d'accès anonyme et limiter ainsi le risque de brèches de sécurité. Alors que, actuellement, les systèmes mis en places reposent sur des briques de bases plus élémentaires, comme des xvii signatures, dont la manipulation peut amener di érents problèmes de sécurité [START_REF] Vanhoef | Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2[END_REF].

De manière similaire, les primitives avancées sont construites à partir de briques de bases simples. La principale di érence réside en le fait que leur sécurité a été prouvée, ce qui o re une con ance plus forte dans la sécurité de ces constructions. Comme expliqué précédemment, ces preuves permettent de lier la sécurité des systèmes à des hypothèses de sécurité. Ainsi, la sécurité repose sur la validité de ces hypothèses, qui peuvent être étudiées indépendamment des systèmes cryptographiques par les cryptanalystes. Dans ce cas contraire, cela peut mener à di érents problèmes, comme dans le cas de applications multilinéaires, dont plusieurs candidats ont été rendus caduques par [CHL + 15]. Cet exemple montre ainsi l'importance pour la cryptographie de reposer sur des hypothèses simples et robustes comme nous l'expliqueront dans le chapitre 2.

Les schémas développés dans cette thèse reposent sur des hypothèses de réseaux euclidiens et des applications bilinéaires sur les groupes cycliques (ou couplages). La cryptographie à base de réseaux euclidiens est utilisées pour aller d'avant vers la cryptographie postquantique, tandis que les applications bilinéaires sont utiles pour la réalisation de schémas pratiques. Les détails de ces deux structures sont présentés dans le chapitre 3.

Preuves sans divulgation de connaissance

Comme nous l'avons expliqué précédemment, les preuves sans divulgation de connaissance sont une brique de base pour la cryptographie préservant la vie privée. Elles exigent les propriétés de complétude, de robustesse et de non divulgation de connaissance. La complétude exprime la correction du protocole dans le cas où tout le monde agit honnêtement. Dans le cas d'un prouveur malhonnête, la robustesse demande à ce que le véri eur ne peut être convaincu qu'avec une probabilité négligeable. Au contraire, si le véri eur essaye de tricher, la non divulgation de connaissance assure au prouveur que son secret reste protégé.

Dans le cadre de l'identi cation, la nature du secret reste simple, et des solutions qui reposent sur di érentes hypothèses de sécurité existent déjà [START_REF] Schnorr | Security of 2 t -Root Identi cation and Signatures[END_REF][START_REF] Stern | A new paradigm for public key identi cation[END_REF][START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF][START_REF] Lyubashevsky | Lattice-based identi cation schemes secure under active attacks[END_REF]. Pour des a rmations plus complexes, comme prouver l'exécution correcte d'un calcul, il existe un écart entre ce qu'on peut prouver dans le cadre de la cryptographie post-quantique et celle qui repose sur le l'arithmétique modulaire classique. Dans le cadre des couplages, il existe des preuves sans divulgation de connaissance non interactives qui permettent de prouver une large classe d'a rmation [START_REF] Groth | Perfect Non-interactive Zero Knowledge for NP[END_REF][START_REF] Groth | E cient non-interactive proof systems for bilinear groups[END_REF] sans idéaliser le modèle de sécurité. De telles preuves sont, à ce jour, manquantes dans le cadre de la cryptographie post-quantique.

Pour les réseaux euclidiens, il y a principalement deux familles de preuves : les preuves à la Schnorr [START_REF] Schnorr | Security of 2 t -Root Identi cation and Signatures[END_REF][START_REF] Lyubashevsky | Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures[END_REF] et les preuves à la Stern [START_REF] Stern | A new paradigm for public key identi cation[END_REF], nommés d'après leurs découvreurs respectifs. Les preuves à la Schnorr reposent sur des réseaux structurés en exploitant cette structure pour fournir des preuves compactes au détriment de l'expressivité de ces preuves. Au contraire, les preuves à la Stern reposent sur la combinatoire de la représentation des réseaux généraux en tant que matrices et vecteurs. Par nature, ces preuves sont coûteuses en terme de complexité de communication. En revanche, elles sont su samment versatiles pour prouver une large variété d'a rmations, comme nous l'expliqueront plus en détail dans cette thèse, et plus particulièrement dans le chapitre 4.3. Les preuves à divulgation nulle de connaissance sont détaillées dans le chapitre 4.

Signatures avec protocoles e caces

Pour rendre possible la cryptographie à base de réseaux euclidiens, une approche possible est de coupler les preuves sans divulgation de connaissance avec un schéma de signature. De telles signatures sont dites « avec protocoles e caces ». Cette primitive étend la fonctionnalité des signatures traditionnelles de deux manière : (i) Elle permet au signataire de signer oublieusement un message caché et (ii) Les utilisateurs peuvent prouver sans divulgation la connaissance d'un couple message-signature cachée.

Ces deux propriétés s'avèrent être extrêmement utiles dans la construction de protocoles préservant l'anonymat tels que l'accréditation anonyme ou la monnaie électronique. La construction e ective de ces signatures avec protocoles e caces est donc un point clef dans la cryptographie protégeant la vie privée.

Dans cette thèse, nous proposons deux constructions de telles signatures. Une première, décrite dans le chapitre 6, repose sur les couplages. Il s'agit d'une traduction du schéma de [START_REF] Libert | Short group signatures via structure-preserving signatures: Standard model security from simple assumptions[END_REF] dans un modèle idéalisé pour obtenir une e cacité et une sécurité raisonnables en pratique. La seconde, décrite dans le chapitre 7, adapte une variante de la signature de Boyen [Boy10, BHJ + 15] à la mise en gage de Kawachi-Tanaka-Xagawa [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF] pour proposer un schéma de signature à base de réseaux euclidiens compatible avec les preuves à la Stern. Ce schéma a aussi été relaxé dans le cadre du transfert inconscient, où, par endroits, seule la sécurité pour des messages aléatoires est requise. Cela est décrit dans le chapitre 9.

Couplages et réseaux euclidiens

Les constructions proposées dans cette thèse reposent sur la di culté supposée d'hypothèses sur les groupes compatibles avec des couplages et les réseaux euclidiens. Ces deux objets mathématiques ont été étudiés en long et en large depuis leurs introductions respectives au début des années 2000 [START_REF] Sakai | Cryptosystems Based on Pairings[END_REF][START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. Depuis lors, ils ont béné cié d'une attention considérable de la part des cryptographes, ce qui a mené à la conception de nombreux protocoles avancés (tels que [Jou00, BBS04, BN06, GS08, LYJP14, LPQ17] pour les couplages et [GPV08, ABB10, BV11, GSW13, dPLNS17] pour les réseaux).

Cryptographie à base de couplages

Un couplage est une application bilinéaire qui part de deux groupes cycliques sources vers un groupe cible. La bilinéarité est rendue possible grâce à la structure algébrique forte des groupes abéliens compatibles avec de telles applications. Il n'est donc pas surprenant de voir qu'une large gamme de schémas ont été rendus possibles dans le contexte de la cryptographie à base de couplages. Dans le cadre de la cryptographie pour la protection de la vie privée, la pierre angulaire a été l'introduction des preuves de Groth-Sahai [START_REF] Groth | Perfect Non-interactive Zero Knowledge for NP[END_REF][START_REF] Groth | E cient non-interactive proof systems for bilinear groups[END_REF] qui permettent de prouver de manière non interactive et sans divulgation de connaissance une large classe d'a rmations dans le modèle standard (c'est-à-dire sans présupposés). Par exemple, les preuves de Groth-Sahai ont été utilisées pour la construction de signatures de groupe, d'accréditations anonymes [Gro07, BCKL08, BCC + 09], ou encore d'e-cash [START_REF] Belenkiy | Compact E-Cash and Simulatable VRFs Revisited[END_REF].

Cependant, dans cette thèse, nos constructions à base de couplages visent à la praticité. Ainsi, elles sont instanciées dans le modèle de l'oracle aléatoire, où les preuves à la Schnorr xix sont rendues non interactives par la transformée de Fiat-Shamir lorsque l'a rmation à prouver est su samment simple.

Des travaux récents en cryptanalyse des couplages [KB16, MSS17, BD18] ont mené à des changements radicaux dans le panorama de la cryptographie à base de couplage. Ces changements nous a ectent en ce sens que nos évaluations de paramètres de sécurité sont désormais à revoir pour atteindre le même niveau de sécurité que celui annoncé.

Néanmoins, la cryptographie à base de couplages o re un excellent compromis entre ce qu'on est capable d'y construire et l'e cacité. Comme exemple, nous pouvons citer les travaux de Döttling et Garg [START_REF] Döttling | From Selective IBE to Full IBE and Selective HIBE[END_REF] qui ont clos le problème de fournir un chi rement fondé sur l'identité qui repose uniquement sur des hypothèses sur les groupes cycliques. Si leur construction repose sur des objets mathématiques plus simples, elle n'atteint néanmoins pas l'e cacité de celles que proposent la cryptographie à base de couplages [START_REF] Boneh | E cient selective-ID secure identity-based encryption without random oracles[END_REF].

Cryptographie reposant sur les réseaux euclidiens D'un point de vue algébrique, un réseau est un sous-groupe discret d'un certain R n , ce qui mène à une structure de simple groupe additif. La principale di érence avec la cryptographie traditionnelle reposant sur de l'arithmétique modulaire, telle que celle fondée sur le logarithme discret, est l'existence d'une structure géométrique : celle de réseau. C'est de cette géométrie que proviennent les problèmes di ciles sur les réseaux que nous considérons comme di ciles, et ce, même avec la puissance d'un calculateur quantique. Malgré sa structure apparente simple, les réseaux euclidiens ont permis de débloquer des constructions qui ne sont par réalisables autrement, comme par exemple le chi rement totalement homomorphe [START_REF] Gentry | Fully homomorphic encryption using ideal lattices[END_REF][START_REF] Brakerski | E cient fully homomorphic encryption from (standard) LWE[END_REF][START_REF] Gentry | Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based[END_REF].

La exibilité de la cryptographie à base de réseaux euclidiens a été rendue possible par la découverte des portes dérobées [GPV08, CHKP10, MP12] telles que nous l'avons expliqué en section 3.2.2. De manière informelle, la connaissance d'une base courte (ou porte dérobée) pour un réseau permet d'échantillonner des vecteurs courts dans ce même réseau. Il s'avère, par ailleurs, que trouver ces vecteurs courts est considéré comme un problème di cile en l'absence de la connaissance d'une base courte. De plus, avoir une base courte pour un réseau {v ∈ Z m | Az = 0 mod q} décrit par une matrice A ∈ Z n×m permet de générer une base pour un réseau dépendant de celui-ci, décrit par la matrice [A | B] ∈ Z n×m q . Cette propriété est utilisée par exemple dans la signature de Boyen [START_REF] Boyen | Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more[END_REF], largement employée dans la cryptographie à base de réseaux. Dans ce schéma, une signature pour un message m consiste en un vecteur court dans le réseau orthogonal à la matrice A m = [A | B m ] où la matrice B m est calculable publiquement. Ainsi, la connaissance d'une porte dérobée pour la matrice A rend possible le calcul d'un tel vecteur, et le message est lié à la description de la matrice A m .

Néanmoins, l'utilisation de portes dérobées pour les réseaux est extrêmement coûteuse en terme d'e cacité [START_REF] Lyubashevsky | Lattice signatures without trapdoors[END_REF][START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-size Ring Signatures and Group Signatures Without Trapdoors[END_REF]. Comme notre but est de fournir les premières constructions pour les primitives que nous présentons, nous nous sommes concentrés sur la réalisations de telles constructions sous des hypothèses bien étudiées, au prix de cette e cacité.

Nos résultats

Dans cette thèse sont présentées di érentes constructions cryptographiques pour la préservation de la vie privée. Ces constructions sont le résultat d'améliorations successives des preuves à divulgation nulle de connaissance et des preuves de sécurités liées aux constructions sous des hypothèses calculatoires standards. Nous pensons que ces avancées ont un intérêt indépendant, et que les schémas proposés sont un pas de plus vers la démocratisation d'une cryptographie qui résisterait à un adversaire quantique. Dans la suite, nous détaillons quatre constructions qui ont été développées dans cette thèse. Ces résultats sont issues de ces quatre articles publiés durant ma thèse : [LMPY16, LLM + 16a, LLM + 16b, LLM + 17].

Signatures de groupe dynamique et accréditation anonyme

Dans la partie II nous présentons deux primitives : les signatures de groupes dynamiques et l'accréditation anonyme. Nous avons déjà décrit le comportement de l'accréditation anonyme plus haut. Pour les signatures de groupes, il s'agit d'une primitive qui permet à un utilisateur d'authenti er un message au nom d'un groupe, tout en restant anonyme au sein de ce groupe. Les utilisateurs restent responsables de leurs actions : une autorité tierce (par exemple un juge) disposant d'une information secrète est capable de lever l'anonymat des utilisateurs qui se comporteraient mal.

En tant que telle, cette primitive peut être utilisée pour fournir une authenti cation anonyme qui garantit la responsabilité de ses utilisateurs (ce qui n'est pas le cas avec l'accréditation anonyme). Par exemple, dans l'internet des objets, comme les voitures intelligentes, il est important de fournir un canal de communication authenti é, alors que l'anonymat de chaque objet est important (puisqu'il possède beaucoup d'information sur son utilisateur).

Dans cette thèse, nous présentons dans le chapitre [?] un schéma de signature de groupe à base de couplages qui vise l'e cacité sous des hypothèses raisonnables. Cette construction est accompagnée d'une implantation en C pour soutenir sa practicité. Le schéma est décrit dans [START_REF] Libert | Practical "signatures with ecient protocols" from simple assumptions[END_REF] conjointement avec Benoît Libert, Thomas Peters et Moti Yung, et a été présenté à la conférence AsiaCCS '16. Le chapitre 7 présente le premier schéma de signature de groupe dynamique qui repose sur la sécurité des réseaux euclidiens. Ces travaux sont décrits dans [LLM + 16a] avec Benoît Libert, San Ling, Khoa Nguyen et Huaxiong Wang, et ont été présentés à Asiacrypt'16.

Chi rement de groupe

Le chi rement de groupe est l'analogue de la signature de groupe pour le chi rement. Dans ce contexte, un utilisateur désire envoyer un message à un membre d'un groupe, tout en cachant l'identité du destinataire au sein de ce groupe. De manière similaire, une autorité peut lever l'anonymat des message à l'aide d'une information secrète [START_REF] Kiayias | Group encryption[END_REF][START_REF] Libert | Traceable group encryption[END_REF].

Une application possible du chi rement de groupe est la construction d'un pare-feu d'entreprise, qui permet de garantir qu'un message possède bien un destinataire dans l'entreprise tout en garantissant des propriétés additionnelles comme l'absence de programme malicieux dans le message. En cas de doute, une autorité est capable de lever l'anonymat d'un message suspicieux.

Plus formellement, le chi rement de groupe est une primitive qui permet à un expéditeur xxi de générer une preuve publiquement véri able que : (1) Le c ĥi ré est bien formé et est destiné à un utilisateur enregistré dans un groupe qui sera capable de déchi rer le message ;

(2) L'autorité d'ouverture sera capable d'identi er le destinataire du message si besoin ;

(3) Le message clair véri e certaines propriétés, comme celle d'être un témoin pour une relation publique. Dans le modèle de Kiayias, Tsiounis et Yung [START_REF] Kiayias | Group encryption[END_REF], le secret du message et l'anonymat sont dé nis pour un adversaire actif dans toutes les dé nitions de sécurité. C'est-à-dire un adversaire capable de demander des requêtes d'ouverture sur n'importe quel message et l'identité du destinataire de messages.

Cette construction nécessite de pouvoir prouver la connaissance d'une clef publique certi ée utilisée pour chi rer un message. Or, cette clef publique doit rester cachée parmi les di érentes clef publiques certi ées. Dans les réseaux euclidiens, cela revient à produire une preuve sans divulgation nulle de connaissance pour une relation dite « quadratique ». Avant ces travaux, les preuves sans divulgation de connaissances que nous connaissons sur les réseaux euclidiens ne permettent que de prouver des relations où le témoin véri e une relation linéaire en les paramètres publiques. Rappelons qu'une relation d'apprentissage avec erreurs est de la forme A•s+e+m q 2 mod q où A est la clef publique du destinataire du message. Comme le chi rement de groupe demande à ce que le destinataire reste anonyme, cette clef publique A doit rester privée. Un moyen d'y arriver est d'avoir des preuves sans divulgation nulle de connaissance qui supportent les relations où le témoin est multiplié par une matrice privée.

Cela a été rendu possible en introduisant des techniques nouvelles pour les preuves à la Stern. Ces techniques, qui reposent sur une approche « diviser-pour-régner », sont décrites dans le chapitre 8, ainsi que la construction du schéma de chi rement de groupe prouvé sûr dans le modèle standard. Ces travaux ont été présentés à Asiacrypt'16 [LLM + 16b] et ont été e ectués avec Benoît Libert, San Ling, Khoa Nguyen et Huaxiong Wang.

Transfert inconscient adaptatif

Le transfert inconscient est une primitive proposée par Rabin [START_REF] Rabin | How to exchange secrets by oblivious transfer[END_REF] qui a ensuite été étendue par Even, Goldreich et Lempel [START_REF] Even | A randomized protocol for signing contracts[END_REF]. Elle met en relation un serveur et un client qui veulent s'échanger des messages indexés de 1 à N . Le protocole permet ainsi à un client d'obtenir le ρ-ième message de la part du serveur sans lui permettre de savoir quoi que ce soit sur le choix du client. De plus, le client n'obtient que le ρ-ième message et n'apprend rien sur les autres messages de la base de donnée.

Dans sa version adaptative [START_REF] Naor | Oblivious transfer with adaptive queries[END_REF], le client souhaite obtenir dynamiquement k messages. Toujours en gardant secret l'indice des messages qu'il a récupéré, ainsi que le motif d'accès des requêtes. D'un point de vue théorique, le transfert inconscient est une brique de base complète pour la cryptographie. Autrement dit, si elle est possible, n'importe quel calcul multipartite sécurisé est rendu possible. Dans sa variante adaptative, le transfert inconscient a des applications pour l'accès préservant la vie privée à des bases de données sensibles (comme les bases de données médicales ou nancières) stockées de manière chi rées sur un serveur distant.

Dans sa forme simple, le transfert inconscient (adaptatif) ne restreint pas l'accès aux données. Dans plusieurs cas de gures (comme des bases de génomes), on souhaite mutualiser la base de données, et il n'est pas souhaitable que n'importe quel utilisateur puisse avoir accès à toutes les données. Il est alors important de protéger l'accès à ces données sensibles conditionnés par les droits d'accès du client. Dans le même temps, la protection de la vie privée nécessite que seuls les utilisateurs autorisés puissent accéder à la base de donnée, tout en gardant leurs informations anonymes (en particulier, le certi cat utilisé pour accéder aux données doit rester secret pour tout le monde, y compris le serveur).

Cette propriété a été formalisée par [START_REF] Camenisch | Oblivious transfer with access control[END_REF] par la notion de contrôle d'accès. Dans cette variante, chaque données est protégée par une police d'accès di érente. À partir de leurs attributs, les utilisateurs peuvent obtenir une accréditation de la part d'une autorité tierce, qui les autorise à récupérer anonymement les données pour lesquelles leurs attributs leurs en permettent l'accès. Durant la phase de transfert, le client prouve sans divulgation de connaissance la possession d'un tel certi cat pour un attribut qui véri e la police d'accès de la donnée qu'il souhaite obtenir. La seule information que la base de donnée peut apprendre est donc qu'un utilisateur a obtenu un élément de la base de données pour lequel il avait accès.

Le système doit être capable de traiter des polices d'accès complexes, tout en gardant la complexité en temps et en mémoire raisonnable. Dans cette thèse, nous proposons dans le chapitre 9 un protocole de preuve sans divulgation de connaissance qui permet de traiter n'importes quelles polices d'accès pouvant être décrites à l'aide d'un circuit booléen de profondeur logarithmique (c'est-à-dire la classe de complexité NC 1 ) qui repose sur les réseaux euclidiens. Dans le cadre du transfert inconscient adaptatif, la plupart des constructions (à base de couplages) ne permettent que de traiter, sous des hypothèses raisonnables, que des polices d'accès composées de conjonctions [START_REF] Camenisch | Oblivious transfer with access control[END_REF][START_REF] Camenisch | Oblivious transfer with hidden access control policies[END_REF][START_REF] Abe | Universally composable adaptive oblivious transfer (with access control) from standard assumptions[END_REF]. Sous des hypothèses plus fortes, les polices d'accès dans NC 1 sont néanmoins possibles [ZAW + 10].

Introduction

In the last fty years, the use of cryptography has shifted from military and commercial secrets to a broader public. For instance, the Enigma machine had a design for military purposes, and another one for companies (Enigma A26). As of today, about 60% of the rst million most visited websites propose encrypted and authenticated communications (via https), and so are most of the communications channels used by electronic devices (like Wi Protected Access).

At the same time, the growth of exchanged data and the sensitivity of transferred information make the urge of protecting these data e ciently even more critical. While we are reaching the Moore's law barrier, other threats exist against nowadays' cryptosystems. For instance, the existence of a quantum computer with su cient memory [START_REF] Shor | Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[END_REF] would break most of real-world cryptographic designs, which mostly rely on modular arithmetic assumptions. In this context, it is crucial to design cryptographic schemes that are believed to be quantum-resistant.

To address this problem, post-quantum cryptography arose in the early 2000s. The di erent candidates rely on several mathematical objects, such as lattices, error-correcting codes, systems of multivariate polynomials, etc. Recently, the National Institute of Standards and Technology (or NIST ) organized a competition to evaluate di erent post-quantum schemes for encryption and signatures [NIS17]. In this competition, 82 protocols have been proposed out of which: 28 were lattice-based, 24 were code-based, 13 were multi-variate based, 4 were hash-based and the 13 left were categorized as "other".

Though, real-world cryptography mainly aims at designing digital signatures and encryption schemes, as illustrated by the NIST competition. Meanwhile, ongoing research in cryptology proposes di erent solutions to address more speci c problems, such as the design of electronic-cash systems1 [START_REF] Chaum | Untraceable electronic cash[END_REF], which are the digital analogue of real money. Coins are delivered by a central authority (the bank) and spendings remain untraceable. In case of misbehavior (such as double-spending), the identity of the cheater is revealed.

Cryptographic constructions should additionally verify some security requirements. For instance, an encryption scheme has to hide a message in the presence of an eavesdropper, or even an active adversary who can alter some messages. To guarantee these requirements, cryptographers provide security proofs in the sense of precise security models. A security 1. I proof mainly states that a given cryptographic scheme is secure if some problems are hard.

At last but not least, the importance of privacy and data protection has been a hot topic in the last years, as re ected by the development of the general data protection regulation law in 2016, which is implemented since may 25 th . Hence, it is appealing to have privacypreserving cryptographic constructions which would ideally resist the advent of a quantum computer. Nevertheless, the design of such protocols crucially relies on "zero-knowledge proofs". These are 2-party protocols between a prover and a veri er where the prover should convince the veri er of a statement without leaking any piece of information about this statement. In the context of post-quantum cryptography, such proofs systems are still limited in power or costly in terms of time, memory and communication consumptions.

Privacy-Preserving Cryptography

In this context, 'privacy-preserving' refers to the ability of a primitive to provide some functionalities while holding sensitive information private. An example of such primitives are anonymous credentials [START_REF] Chaum | Security without Identi cation: Transactions System to Make Big Brother Obsolete[END_REF][START_REF] Camenisch | An e cient system for non-transferable anonymous credentials with optional anonymity revocation[END_REF]. Informally, this primitive allows users to prove themselves to some veri ers without telling their identity, nor the pattern of their authentications. To realize this, this system involves one (or more) credential issuer(s) and a set of users who have their own secret keys and pseudonyms that are bound to their secret. Users can dynamically obtain credentials from an issuer that only knows users' pseudonyms and obliviously sign users' secret key as well as a set of attributes. Later on, users can make themselves know to veri ers under a di erent pseudonym and demonstrate possession of a certi cation from the issuer, without revealing neither the signature nor the secret key. This primitive thus allows a user to authenticate to a system (e.g., in anonymous access control) while retaining its anonymity. In addition, the system is guaranteed that users indeed possess a valid credential.

Interests in privacy-based cryptography date back to the beginning of public-key cryptography [START_REF] Rabin | How to exchange secrets by oblivious transfer[END_REF][START_REF] Chaum | Blind signatures for untraceable payments[END_REF][START_REF] Goldwasser | Probabilistic encryption & how to play mental poker keeping secret all partial information[END_REF][START_REF] Chaum | Security without Identi cation: Transactions System to Make Big Brother Obsolete[END_REF]. A reason for that could be the similarities between the motivations of cryptography and the requirements of privacy protection. Additionally, cryptographers' work in this eld may have direct consequences in term of services that could be developed in the real-world. Indeed, having a practical anonymous credential scheme will enable its use for access control in a way that limits security aws. Whereas, nowadays' implementations are based on more elementary building blocks, like signatures, whose manipulations may lead to di erent security holes [START_REF] Vanhoef | Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2[END_REF].

Similarly, advanced primitives often involve simpler building blocks in their design. The di erence lies in that provable security conveys security guarantees for the construction. As explained before, these proofs make the security of a set of schemes rely on hardness assumptions. Thus, the security relies on the validity of those assumptions, which are independently studied by cryptanalysts. Hence, security is guaranteed by the study of those assumptions. For example, the security analysis of multilinear maps in [CHL + 15] made obsolete a large amount of candidates at this time. This example re ects the importance of relying on well-studied and simple assumptions as we will explain in Chapter 2.

In the context of this thesis, the developed cryptographic schemes rely on lattices and bilinear maps over cyclic groups. Lattice-based cryptography is used to step towards postquantum cryptography, while the latter proves useful in the design of practical schemes.

Privacy-Preserving Cryptography

The details of these two structures are given in Chapter 3.

Zero-Knowledge Proofs

As explained before, zero-knowledge proofs are a basic building block for privacy-preserving cryptography. They require completeness, soundness and zero-knowledge properties. Completeness captures the correctness of the protocol if everyone is honest. In the case of a dishonest prover, soundness asks the probability that the veri er is convinced to be negligible. On the contrary, if the veri er is cheating, the zero-knowledge property guarantees that the prover's secret remains hidden.

In the case of identi cation schemes, the nature of the secret remains simple and solutions exist under multiple assumptions [START_REF] Schnorr | Security of 2 t -Root Identi cation and Signatures[END_REF][START_REF] Stern | A new paradigm for public key identi cation[END_REF][START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF][START_REF] Lyubashevsky | Lattice-based identi cation schemes secure under active attacks[END_REF]. For more complex statements, such as proving correct computation, a gap appears between post-quantum schemes and modular arithmetic-based schemes. In the case of pairing-based cryptography, there exist non-interactive zero-knowledge proofs which can prove a large variety of statements [START_REF] Groth | Perfect Non-interactive Zero Knowledge for NP[END_REF][START_REF] Groth | E cient non-interactive proof systems for bilinear groups[END_REF] without idealized assumptions. Such proofs are still missing in the context of post-quantum cryptography so far.

In the lattice world, there are two main families of proof systems: Schnorr-like proofs [START_REF] Schnorr | Security of 2 t -Root Identi cation and Signatures[END_REF][START_REF] Lyubashevsky | Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures[END_REF] and Stern-like proofs [START_REF] Stern | A new paradigm for public key identi cation[END_REF], named after their respective authors. The rst family works on some structured lattices. Exploiting this structure allows for more compact proofs, while the expressiveness of statements is quite restricted. The second kind of proofs is combinatorial and works on the representation of lattice elements (as matrix and vectors). By nature, these proofs are quite expensive in term of communication complexity. However, they can be used to prove a wide variety of statements as we will explain in more details along this thesis and especially in Section 4.3. More generally, zero-knowledge proofs are detailed in Chapter 4.

Signatures with E cient Protocols

To enable privacy-preserving functionalities, a possible avenue is to couple zero-knowledge proofs with signature schemes. One of such signatures are signatures with e cient protocols. This primitive extends the functionalities of ordinary digital signature schemes in two ways: (i) It provides a protocol to allow a signer to obliviously sign a hidden message and (ii) Users are able to prove knowledge of a hidden message-signature pair in a zero-knowledge fashion.

These two properties turn out to be extremely useful when it comes designing e cient anonymity-related protocols such as anonymous credentials or e-cash. The design of e ective signatures with e cient protocols is thus important for privacy-preserving cryptography.

In this thesis, we provide two of these signature schemes. One of them, described in Chapter 6, based on pairings, shifts the [START_REF] Libert | Short group signatures via structure-preserving signatures: Standard model security from simple assumptions[END_REF] signature scheme to an idealized but practically acceptable model, aiming at e ciency. The other, described in Chapter 7, adapts a variant of Boyen's signature [Boy10, BHJ + 15] along with the Kawachi-Tanaka-Xagawa commitment scheme [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF] to provide a lattice-based signature schemes that is compatible with Stern-like proofs. This scheme has also been relaxed in the context of adaptive oblivious edge of a short basis for a lattice allows sampling short vectors, which is believed to be hard without such a short basis. Furthermore, knowing a short basis for the lattice {v ∈ Z m | Az = 0 mod q} described by matrix A ∈ Z n×m q makes it possible to generate a short basis for a related lattice described by [A | B] ∈ Z n×m q . An application for this property is Boyen's signature scheme [START_REF] Boyen | Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more[END_REF]. In this scheme, a signature for message m is a short vector in the orthogonal lattice of the matrix A m = [A | B m ], where B m is publicly computable. Hence, knowing a trapdoor for A makes the computation of this short vector possible, and the message is bound to the description of the lattice A m .

Still, the use of lattice trapdoors comes at a price, as it signi cantly decreases the e ciency of cryptographic designs that use them [START_REF] Lyubashevsky | Lattice signatures without trapdoors[END_REF][START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-size Ring Signatures and Group Signatures Without Trapdoors[END_REF]. Given that we provide the rst lattice-based construction for the scheme we present, we focused on designing provablysecure scheme under well-studied assumptions.

Our Results

In this thesis, we present several cryptographic constructions that preserve privacy. These constructions are the result of both improvements we made in the use of zero-knowledge proofs and the ability to prove the security of our constructions under standard assumptions. We believe that these advances on zero-knowledge proofs are of independent interest and that the given schemes are a step towards quantum-secure privacy-preserving cryptography. In the following, we detail four contributions that are developed in this thesis. These results are taken from four published articles: [LMPY16, LLM + 16a, LLM + 16b, LLM + 17].

Dynamic Group Signatures and Anonymous Credentials

In Part II, we present two primitives: dynamic group signatures and anonymous credentials. We already described the behavior of anonymous credential in Section 1.1. As for dynamic group signatures, they are a primitive that allows a group of users to authenticate messages on behalf of the group while remaining anonymous inside this group. The users still remain accountable for their actions, as another authority knows a secret information that gives it the ability to lift anonymity of misbehaving users.

By itself, this primitive can be used to provide anonymous authentications while providing accountability (which is not the case with anonymous credentials). For instance, in the Internet of things, such as smart cars, it is important to provide authenticated communication channels as well as anonymity. For car communications, if exchanged data may not be sensitive by themselves, the identity of the driver could be. We can imagine a scenario where some burglars eavesdrop a speci c car to know whenever a house is empty.

In this thesis, we present in Chapter 6 pairing-based group signatures that aims at e ciency while relying on simple assumptions. The resulting scheme shows competitive signature size with other schemes that rely on more ad-hoc assumptions, and its practicality is supported by an implementation. This scheme is presented in [START_REF] Libert | Practical "signatures with ecient protocols" from simple assumptions[END_REF], which is joint work with Benoît Libert, Thomas Peters an Moti Yung presented at AsiaCCS'16.

Chapter 7 presents the rst dynamic group signature scheme relying on lattice assumptions. This has been made possible by adapting Stern-like proofs to properly interact with a signature scheme: a variant of Boyen's signature [START_REF] Boyen | Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more[END_REF] 

Group Encryption

Group encryption schemes [START_REF] Kiayias | Group encryption[END_REF] are the encryption analogue of group signatures. In this setting, a user is willing to send a message to a group member, while keeping the recipient of the message hidden inside the group. In order to keep user accountable for their actions, an opening authority is further empowered with some secret information allowing it to un-anonymize ciphertexts.

More formally, a group signature scheme is a primitive allowing the sender to generate publicly veri able proofs that: (1) The ciphertext is well-formed and intended to some registered group member who will be able to decrypt; [START_REF]2 Some security games examples[END_REF] The opening authority will be able to identify the receiver if necessary; (3) The plaintext satis es certain properties, such as being a witness for some public relation. In the model of Kiayias, Tsiounis and Yung [START_REF] Kiayias | Group encryption[END_REF], the message secrecy and anonymity properties are required to withstand active adversaries, which are granted access to decryption oracles in all security de nitions.

A natural application is to allow a rewall to lter all incoming encrypted emails except those intended for some certi ed organization members and the content of which is additionally guaranteed to satisfy certain requirements, like the absence of malware. Furthermore, group encryption schemes are motivated by privacy applications such as anonymous trusted third parties, key recovery mechanisms or oblivious retriever storage system. In cloud storage services, group encryption enables privacy-preserving asynchronous transfers of encrypted datasets. Namely, it allows users to archive encrypted datasets on remote servers while convincing those servers that the data is indeed intended to some anonymous certi ed client who has a valid account to the storage provider. In case of suspicions on the archive's content, a judge should be able do identify the recipient of the archive.

To tackle the problem of designing lattice-based group encryption, we needed to handle "quadratic relations". Indeed, lattice-based zero-knowledge proof systems were able to handle only relations where witnesses are multiplied by a public value. Let us recall that, in Learning-With-Errors schemes, an encryption have the form A • s + e + m q 2 mod q, where A is the recipient public-key. As group encryption requires this public-key A to be private, a way to achieve this is to have a zero-knowledge proof system which handles relations where the witness is multiplied with a private matrix.

We address this issue introducing new technique to handle this kind of relations. These techniques, based on a divide-and-conquer strategy, are described in Chapter 8, as well as the construction of the group encryption scheme proven fully-secure in the standard model. This work have been presented at Asiacrypt'16 [LLM + 16b] and have been done with Benoît Libert, San Ling, Khoa Nguyen and Huaxiong Wang.

Adaptive Oblivious Transfer

Oblivious transfer is a primitive coined by Rabin [START_REF] Rabin | How to exchange secrets by oblivious transfer[END_REF] and later extended by Even, Goldreich and Lempel [START_REF] Even | A randomized protocol for signing contracts[END_REF]. It involves a server with a database of messages indexed from 1 to N and a receiver with a secret index ρ ∈ {1, . . . , N }. The protocol allows the receiver to retrieve the ρ-th message from the database without letting it infer anything on his choice. Furthermore, the receiver only obtains the ρ-th message and learns nothing about the other messages.

In its adaptive avor [START_REF] Naor | Oblivious transfer with adaptive queries[END_REF], oblivious transfer allows the receiver to interact k times with the server to obtain k messages in such a way that, each request may depend on the previously retrieved messages.

From a theoretical point of view, oblivious transfer is known to be a complete building block for cryptography in the sense that, if it can be realized, then any secure multiparty computation can be. In its adaptive variant, oblivious transfer has applications in privacypreserving access to sensitive databases (such as medical records or nancial data) stored in an encrypted form on a remote server.

In its basic form, (adaptive) oblivious transfer does not restrict in any way the population of users who can obtain speci c records. In many sensitive databases (e.g., DNA samples or patients' medical history), however, not all users should be able to access the whole database. It is thus crucial to protect the access to certain entries conditioned on the receiver holding suitable credentials delivered by authorities. At the same time, privacy protection requires that authorized users should be able to query database records while leaking as little as possible about their interests or activities. This requirements is handled by endowing oblivious transfer with access control, as stated by Camenish, Dubovitskaya and Neven [START_REF] Camenisch | Oblivious transfer with access control[END_REF]. In this variant, each database record is protected by a di erent access control policy. Based on their attributes, users can obtain credentials from pre-determined authorities, which entitle them to anonymously retrieve database records of which the access policy accepts their certi ed attributes. During the transfer phase, the user demonstrates, in a zero-knowledge manner, possession of an attribute string compatible with the policy of a record in the database, as well as a credential for this attribute. The only information that the database holder eventually learns is that some user retrieved some record which he was authorized to obtain.

To achieve this, an important property is the expressiveness of such access policies. In other words, the system should be able to handle complex attribute policies while keeping time and memory consumption reasonable 2 . In this thesis, we propose in Chapter 9 a zero-knowledge protocol to e ciently handle any access policy that can be described with a logarithmic-depth boolean circuit, also known as NC1, based on lattices. In the context of adaptive oblivious transfer with access control, most of the schemes (based on pairing assumptions) manage to handle the case of conjunctions under reasonable assumptions [CDN09, CDNZ11 Provable security is a sub eld of cryptography where constructions are proven secure with respect to a security model. To illustrate this notion, let us take the example of public-key encryption schemes. This primitive consists in three algorithms: key generation, encryption and decryption. These algorithms acts according to their names. Naturally, the question of "how to de ne the security of this set of algorithms" arises. To answer this question, we have to de ne the power of the adversary, and its goal. In cryptography, many approaches have been used to de ne this (random oracle model, universal composability (UC) [START_REF] Canetti | Universally composable security: A new paradigm for cryptographic protocols[END_REF]. . . ) which give rise to stronger security guarantees. If one aims at the strongest security for its construction, there are known impossibility results in strong models. For instance, in the UC model, it is impossible to realize two-party computation [START_REF] Yao | How to generate and exchange secrets[END_REF] without trusted setup [START_REF] Canetti | On the limitations of universally composable two-party computation without set-up assumptions[END_REF], while it is possible in the plain model [START_REF] Lindell | An e cient protocol for secure two-party computation in the presence of malicious adversaries[END_REF].

In this chapter, we will focus on the computational complexity elements we need to de ne properly the security models we will use in this thesis. Then we will de ne these security models.

Security Reductions

Provable security provides constructions for which security is guaranteed by a security proof, or security reduction. The name "reduction" comes from computational complexity. In this eld of computer science, research focuses on de ning equivalence classes for problems or hierarchical relations between them, based on the necessary amount of resources to solve them. In order to de ne lower bounds for the complexity of some problems, a classical approach is to provide a construction that goes from an instance of a problem A to an instance of problem B such that, if a solution of B is found, then so is a solution of A. This amounts to saying that problem B is at least as hard as problem A up to the complexity of the transformation. For instance, Cook has shown that satis ability of Boolean formulas is at least as hard as every problem in NP [START_REF] Cook | The complexity of theorem-proving procedures[END_REF] up to a polynomial-time transformation.

Let us now de ne more formally the notions of reduction and computability using the computational model of Turing machines.

De nition 2.1 (Turing Machine). A k-tape

Turing Machine (TM) is described by a triple M = (Γ, Q, δ) containing:

S P C

• A nite set Γ, called the tape alphabet, which contains symbols that the TM uses in its tapes. In particular, Γ contains a blank symbol " ", and " " that denotes the beginning of a tape.

• A nite set Q called the states of the TM. It contains special states q start , q halt , called respectively the initial state and the halt state. A TM M is said to compute a function f : Σ → Γ if, for any nite input x ∈ Σ on tape T 1 , blank tapes T 2 , . . . , T k with a beginning symbol and initial state q start , M halts in a nite number of steps with f (x) written on its output tape T k .

• A function δ : (Q\{q halt }) × Γ k-1 → Q × Γ k-1 × {←, ↓, →}
A TM M is said to recognize a language L ⊆ Σ if, on a nite input x ∈ Σ written on its input tape T 1 , blank tapes T 2 , . . . , T k with a beginning symbol and initial state q start , the machine M eventually ends on the state q halt with 1 written on its output tape if and only if x ∈ L.

A TM M is said to run in T (n)-time if, on any input x, it eventually stops within T (|x|) steps.

A TM M is said to run in S(n)-space if, on any input x, it eventually stops after having written at most S(|x|) memory cells in its working tapes.

Turing machines are a computational model that proved useful in complexity theory as it is convenient to evaluate the running time of a Turing machine, which amounts to bounding the number of steps the machine can take. Similarly, the working tapes works analogously to the memory of a program, and then counting the number of cells the machine uses is equivalent to evaluating the amount of memory the program requires.

From these considerations, it is possible to describe the time and space complexity of a program from the de nition of Turing machines. In our context, we will work with Turing machines that run in polynomial-time and space, as polynomials bene t from good stability properties (sum, product, composition, . . . ).

De nition 2.2 (P [Rab60]

). The class P describes the set of languages that can be recognized by a Turing machine running in time

T (n) = O(poly(n)).
In theoretical computer science, the class P is often considered as the set of "easy" problems. These problems are considered easy in the sense that the growth of the cost to solve them is asymptotically negligible in front of other functions such as exponential. In this context, it is reasonable to consider the computational power of an adversary as polynomial (or quasi-polynomial) in time and space. As cryptographic algorithms are not deterministic, we also have to consider the probabilistic version of the computation model. 

De nition 2.3 (Probabilistic Turing machine).

A probabilistic Turing machine is a Turing machine with two di erent transition functions δ 0 and δ 1 where, at each step, a random coin is tossed to pick δ 0 or δ 1 with probability 1/2 independently of all the previous choices.

The machine only outputs accept and reject depending on the content of the output tape at the end of the execution. We denote by M (x) the random variable corresponding to the value M writes on its output tape at the end of its execution.

De nition 2.4 (PP [Gil77]

). The class PP describes the set of languages L ⊆ Σ that a Turing machine M recognizes such that the TM M stops in time poly(|x|) on every input x and

Pr [M (x) = 1 | x ∈ L] > 1 2 Pr [M (x) = 0 | x / ∈ L] ≤ 1 2 .
In the following PPT stands for "probabilistic polynomial time".

We de ned complexity classes that corresponds to natural sets of programs that are of interest to us. In order to work with them, we will de ne the principle of polynomial time reduction.

De nition 2.5 (Polynomial time reduction).

A language A ⊆ {0, 1} is polynomial-time reducible to a language B ⊆ {0, 1} , denoted by

A P B, if there is a polynomial-time computable function f : {0, 1} → {0, 1} such that for every x ∈ {0, 1} , x ∈ A if and only if f (x) ∈ B.
In other words, a polynomial reduction from A to B is the description of a polynomial time algorithm (also called "the reduction"), that uses an algorithm for B in a black-box manner to solve A. This is illustrated in Figure 2.1. 
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We can notice that P and PP are both closed under polynomial-time reduction. Namely, if a problem is easier than another problem in P (resp. PP), then the former problem is also in P (resp. PP).

Until know, we mainly focus on the running time of the algorithms. In cryptology, it is also important to consider the success probability of algorithms: an attack is successful if the probability that it succeeds is noticeable.

De nition 2.7 (Landau notations). Let f, g be two functions from N to R. Let us de ne the so-called Landau notations to asymptotically compare functions.

f is bounded by g: f (x) = O(g(x)) if there exists a constant k > 0 such that |f (n)| ≤ k • |g(n)| eventually. f is not dominated by g: f (x) = Ω(g(x)) if there exists a constant k > 0 such that |f (n)| ≥ k • |g(n)| eventually.
f is bounded by g from above and below:

f (x) = Θ(g(x)) if f (x) = O(g(x)) and f (x) = Ω(g(x)). g dominates f : f (x) = o(g(x)) if for any k > 0, f (n) ≥ k • |g(n)| eventually. f dominates g: f (x) = ω(g(x)) if for any k > 0, |f (n)| > k • |g(n)| eventually.
De nition 2.8 (Negligible, noticeable, overwhelming probability). Let f : N → [0, 1] be a function. The function f is said to be negligible if f (n) = n -ω(1) , and this is written

f (n) = negl(n).
Non-negligible functions are also called noticeable functions. Finally, if f = 1 -negl(n), f is said to be overwhelming. Now, we have to de ne two more notions to be able to work on security proofs. Namely, the security notions and the hardness assumptions. The former are the statements we need to prove, and the latter are the hypotheses on which we rely.

The details of the hardness assumptions we use are given in Chapter 3. Nevertheless, some notions are common to these and are evoked here.

The con dence one can put in a hardness assumption depends on many criteria. First of all, a weaker assumption is preferred to a stronger one. To illustrate this, let us consider the two following assumptions:

De nition 2.9 (Discrete logarithm). The discrete algorithm problem is de ned as follows.

Let (G, •) be a cyclic group of order p. Given g, h ∈ G, the goal is to nd the integer a ∈ Z p such that: g a = h.

The discrete logarithm assumption is the intractability of this problem for any PPT algorithm with noticeable probability.

De nition 2.10 (Indistinguishability). Let D 0 and D 1 be two probabilistic distributions and par be public parameters. Let us de ne the following experiments Exp Dist D,0 and Exp Dist D,1

for any algorithm D:

Exp Dist D,b (λ) x ← D b b ← D(1 λ , par, x) return b
The advantage of an adversary D for this game is de ned as

Adv Dist D (λ) Pr Exp Dist D,1 (λ) = 1 -Pr Exp Dist D,0 (λ) = 1 .
A PPT algorithm which has a noticeable advantage for the above experiments is called a distinguisher between D 0 and D 1 .

Two distributions D 0 and D 1 are computationally indistinguishable if there does not exist any PPT distinguisher between those two distributions.

De nition 2.11 (Decisional Di e-Hellman). Let G be a cyclic group of order p. The decisional Di e-Hellman (DDH) distribution is

D DDH {(g, g a , g b , g ab ) | g ← U(G), a, b ← U(Z p )}.
The DDH assumption states that the distributions D DDH and U(G 4 ) are computationally indistinguishable given the public parameter G (the description of the group).

The discrete logarithm assumption is implied by the decisional Di e-Hellman assumption for instance. This is why it is preferable to work with the discrete logarithm assumption when it is possible. For instance, there is no security proofs for the El Gamal encryption scheme from DLP.

Another criterion to evaluate the security of an assumption is to look if the assumption is "simple to state" or not. This observation is buttressed by the statement of [KL07, p.25]: ". . . there is a general preference for assumptions that are simpler to state, since such assumptions are easier to study and to refute.".

Indeed, it is complicated to evaluate the security of an assumption as q-Strong Di e-Hellman assumptions de ned as follows.

De nition 2.12 (q-Strong Di e-Hellman assumption [START_REF] Boneh | E cient selective-ID secure identity-based encryption without random oracles[END_REF][START_REF] Boneh | Short group signatures[END_REF]). In a cyclic group G, the q-Strong Di e-Hellman (q-SDH) problem is, given g, g a , g a 2 , . . . , g a q , compute the element g a q+1 .

The security of this assumption inherently depends on the parameter q of the assumption. Cheon additionally showed that, for large values of q, this assumption is no more trustworthy [START_REF] Cheon | Security analysis of the strong di e-hellman problem[END_REF]. These parameterized assumptions are called q-type assumptions. There also exist other kinds of non-static assumptions, such as interactive assumptions. An example can be the "1-more-DL" assumption. Given oracle access to n discrete logarithm queries (n is not known in advance), the 1-more-DL problem is to solve a n + 1-th discrete logarithm. These non-interactive assumptions are furthermore non-falsi able according to the de nition of Naor [START_REF] Naor | On cryptographic assumptions and challenges[END_REF]. Non-interactive and constant-size assumptions are sometimes called "standard".
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The next important aspect of a security proof is the model in which it takes place. This is the purpose of the next section.

Random-Oracle Model and Standard Model

Security proofs should preferably stand in the standard model of computation, where no idealization is assumed on behalf of the building blocks. In this model, no implicit assumptions are assumed.

For instance, cryptographic hash functions enjoy several di erent associated security notions [START_REF] Katz | Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptography and Network Security Series)[END_REF]. On of the weakest is the collision resistance, that states that it is intractable to nd two strings that map to the same digest. A stronger notion is the second pre-image resistance, that states that given x ∈ {0, 1} , it is not possible for a PPT algorithm to nd an x ∈ {0, 1} such that h(x) = h(x). Similarly to what we saw in the previous section about DDH and DLP, we can see that collision resistance implies second pre-image resistance. Indeed, if there is an attacker against second pre-image, then one can choose a string x ∈ {0, 1} and obtains from this attacker another string x = x ∈ {0, 1} such that h(x) = h(x). Hence, a hash function that is collision resistant is also second pre-image resistant.

The random oracle model [START_REF] Fiat | How to prove yourself: Practical solutions to identi cation and signature problems[END_REF][START_REF] Bellare | Random Oracles Are Practical: A Paradigm for Designing E cient Protocols[END_REF], or ROM, is an idealized security model where hash functions are assumed to behave as a truly random function. This implies collision resistance (if the codomain of the hash function is large enough) and other security notions related to hash functions. In this model, hash functions are modeled as oracles in the view of the adversary. These oracles are controlled by the reduction, meaning that the reduction can program the hash function as it likes as long as the responses look random and independent. Moreover, the reduction has access to the conversation between the adversary and the random oracle. It thus eventually knows all inputs for which the adversary chose to evaluate the function.

We can notice that this computation model is unrealistic [CGH98]. Let us construct a counter-example. Let Σ be a secure signature scheme, and let Σ y be the scheme that returns Σ(m) as a signature if and only if h(0) = y and 0 as a signature otherwise. In the ROM h behaves as a random function. Hence, the probability that h(0) = y is negligible with respect to the security parameter for any xed y. On the other hand, it appears that when h is instantiated with a real-world hash function, then Σ h(0) is the null function, and therefore completely insecure as a signature scheme.

In this context, one may wonder why is the ROM still used in cryptographic proofs [LMPY16, LLM + 16a]. One reason is that some constructions are not known to exist yet from the standard model. For instance, non-interactive zero-knowledge (NIZK) proofs for all NP languages is not known to follow solely from lattice assumptions [START_REF] Stern | A new paradigm for public key identi cation[END_REF][START_REF] Lyubashevsky | Lattice-based identi cation schemes secure under active attacks[END_REF]. NIZK proofs form an elementary building block for privacy-based cryptography. In the lattice setting, we do not have much better options that using random oracles [LLM + 16a]. Another reason to use the ROM in cryptography, is because it enables much more e cient constructions and we have no example of a failure in the random oracle methodology for a natural cryptographic construction [START_REF] Bellare | Random Oracles Are Practical: A Paradigm for Designing E cient Protocols[END_REF]. The example we built earlier is arti cial, and in practice there is no known attacks against the ROM for a natural scheme used in real-life applications. Thus, for practical purposes, constructions in the ROM are usually We now have de ned the context we are working on and the base tools that allows security proofs. The following section explains how to de ne the security of a cryptographic primitive.

Exp IND-CPA A,b (λ) (pk, sk) ← E.keygen(1 λ ) (m 0 , m 1 ) ← A(pk, 1 λ ) ct ← E.enc(m b ) b ← A(pk, 1 λ , ct) return b (a) IND-CPA game for PKE Exp EU-CMA A (λ) (vk, sk) ← Σ.keygen(1 λ ) st ← ∅; S sign = ∅ while A(query, vk, st, O sign( sk,• ) ) do; (m , σ ) ← A(forge, vk, st) return (vk, S sign , m , σ ) (b) EU-CMA game for signatures

Security Games and Simulation-Based Security

In order to de ne security properties, a common manner is to de ne security games (or experiments) [START_REF] Goldwasser | Probabilistic encryption & how to play mental poker keeping secret all partial information[END_REF][START_REF] Shoup | Sequences of Games: A Tool for Taming Complexity in Security Proofs[END_REF].

Two examples of security game are given in Figure 2.2: to formalize the notions of indistinguishability under chosen-plaintext attacks (IND-CPA) for public-key encryption (PKE) schemes and existential unforgeability under chosen message attacks (EU-CMA) for signature schemes.

IND-CPA security is modeled by an indistinguishability game, meaning that the goal for the adversary A against this game is to distinguish between two messages from di erent distributions. To model this, for any adversary A, we de ne a notion of advantage for the IND-CPA game as

Adv IND-CPA A (λ) Pr Exp IND-CPA A,1 (λ) = 1 -Pr Exp IND-CPA A,0 (λ) = 1 .
We say that a PKE scheme is IND-CPA if, for any PPT A, the advantage of A in the IND-CPA game is negligible with respect to λ.

This de nition of advantages models that the adversary is unable to distinguish whether the ciphertext ct comes from the experiment Exp IND-CPA A,0

or the experiment Exp IND-CPA A,1
. As a consequence, the adversary cannot get a single bit of information about the ciphertext. This kind of de nition is also useful to model anonymity. For instance in Section 5.3.4, the de nition of anonymity for group signatures is de ned in a similar fashion (De nition 5.5).

To handle indistinguishability between distributions, it is useful to quantify the distance between two distributions. In this context, we de ne the statistical distance as follows.
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De nition 2.13 (Statistical Distance). Let P and Q be two distributions. The statistical distance ∆(P, Q) between P and Q is de ned as

∆(P, Q) 1 2 x∈Supp(P )∪Supp(Q) |P (x) -Q(x)|.
Two distributions are statistically close if their statistical distance is negligible with respect to the security parameter. It is worth noticing that if two distributions are statistically close, then the advantage of an adversary in distinguishing between them is negligible.

N . P ≈ s Q means that P is statistically close to Q. Another interesting metric, that will be used in the security proof of is the Rényi Divergence: De nition 2.14 (Rényi divergence). For any two discrete distributions P and Q such that Supp(P ) ⊆ Supp(Q), and a ∈]1, +∞[, we de ne the Rényi divergence of order a by:

R a (P ||Q) =   x∈Supp(P ) P (x) a Q(x) a-1   1 a-1 .
We de ne the Rényi divergences of orders 1 and +∞ as:

R 1 (P ||Q) = exp   x∈Supp(P ) P (x) log P (x) Q(x)   and R ∞ (P ||Q) = max x∈Supp(P ) P (x) Q(x) .
The divergence R 1 is the (exponential) of the Kullback-Leibler divergence.

Bai, Langlois, Lepoint, Stehlé and Steinfeld [BLL + 15] observed that the Rényi Divergence has a property similar to the triangular inequality with respect to multiplication, and can be useful in the context of unforgeability game as we will explain it in the following paragraph. Prest further presented multiple uses of the Rényi Divergence in [START_REF] Prest | Sharper Bounds in Lattice-Based Cryptography Using the Rényi Divergence[END_REF].

We notice that security de nitions for signature scheme are not indistinguishability-based experiments, but search experiments (i.e., the adversary has to output a string rather than distinguishing between two experiments by outputting a single bit). The goal of the adversary is not to distinguish between two distributions, but to forge a new signature from what it learns via signature queries.

Those signature queries are handled by an oracle O sign( sk,• ) , which on input m returns the signature σ = Σ.sign(sk, m) and adds σ to S sign . The initialization of these sets and the oracle's behavior may be omitted in the rest of this thesis for the sake of readability.

For EU-CMA, the advantage of an adversary A is de ned as

Adv EU-CMA A (λ) Pr Σ.verif(vk, m , σ ) = ∧ σ / ∈ S sign .
A signature scheme is considered unforgeable under chosen message attacks if, for any PPT adversary A, the advantage of A is negligible with respect to λ.

Real world

A C E real ≈ Ideal world A C E ideal F Figure 2.3 -Simulation-based cryptography.
This means that, within reasonable expected time1 , no adversary can create a new valid signature without the signing key (sk). This kind of de nitions are often used in the case of authentication primitives. In our example of group signatures in Part II, the security against misidenti cation attacks (or traceability) experiment follows the same structure. This security notion illustrates that no collusion between malicious users and the group authority can create valid signatures that open on an honest user, or do not open to a valid registered user.

The security de nition of IND-CPA is de ned via an indistinguishability experiment. The rst security de nition for PKE was nevertheless a simulation-based de nition [START_REF] Goldwasser | Probabilistic encryption & how to play mental poker keeping secret all partial information[END_REF]. In this context, instead of distinguishing between two messages, the goal is to distinguish between two di erent environments. In the following, we will use the Real world/Ideal world paradigm [START_REF] Canetti | Universally composable security: A new paradigm for cryptographic protocols[END_REF] to describe those di erent environments. Namely, for PKE, it means that, for any PPT adversary A -in the Real world -that, interacts with a challenger C, there exists a PPT simulator A -in the Ideal world -that interacts with the same challenger C with the di erence that the functionality F is replaced by a trusted third party in the Ideal word.

In other words, it means that the information that A obtains from its interaction with the challenger C does not allow A to lean any more information than it does via black-box access to the functionality.

In the context of PKE, the functionality is the access to the public key pk as described in Line 2 of Exp IND-CPA A,b (λ). Therefore, the existence of a simulator A that does not use pk shows that A does not learn anything from pk.

For PKE, the simulation-based de nition for chosen-plaintext security is equivalent to the indistinguishability security [Gol04, Se. 5.2.3], even if the two security de nitions are conceptually di erent. As indistinguishability-based model are often easier to work with, they are more commonly used to prove security of PKE schemes. For other primitives, such as Oblivious Transfer (OT) described in Chapter 9, the simulation-based de nitions are strictly stronger than indistinguishability de nitions [START_REF] Naor | Oblivious transfer with adaptive queries[END_REF]. Therefore, it is preferable to have security proofs of the strongest possible de nitions in theoretical cryptography.

Even though, the question of which security model is the strongest remains a complex one, as it depends on many parameters: the answer mainly depends on the manner the scheme
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will be used as well as the adversarial model. For example, we know from the work of Canetti and Fischlin [START_REF] Canetti | Universally composable commitments[END_REF] that it is impossible to construct a UC-secure bit commitment scheme2 in the plain model, while the design of such a primitive is possible assuming a trusted setup. In the trusted setup model or common reference string (CRS) model, all the participants are assumed to have access to a common string crs ∈ {0, 1} that is drawn from some speci c distribution D crs .

C

Underlying Structures

In the previous chapter, we saw that cryptography has to rely on computational hardness assumptions. Besides information-theoretic cryptography, most hardness assumptions are built on top of suitable algebraic structures. For instance the discrete logarithm assumption (De nition 2.9) is based on a cyclic group structure.

The existence of such structures proves useful when it comes to designing protocols. For this purpose, constructions take advantage of the mathematical properties of the structure to enable the functionality. An example is the multiplicative homomorphism of the ElGamal cryptosystem which is made possible by underlying cyclic group structure.

In this chapter, we describe the di erent structures on which the cryptographic primitives we design in this thesis are based on, namely bilinear groups and lattices, as well as related hardness assumptions.

Pairing-Based Cryptography

Pairing-based cryptography was introduced by Sakai, Ohgishi and Kasahara [START_REF] Sakai | Cryptosystems Based on Pairings[END_REF] to generalize Di e-Hellman key exchange to three users in one round. Since then, many constructions have been proposed for cryptographic constructions, such as identity-based encryption [START_REF] Boneh | Identity-based encryption from the weil pairing[END_REF][START_REF] Waters | E cient identity-based encryption without random oracles[END_REF] or group signatures [START_REF] Boneh | Short group signatures[END_REF]. Multiple constructions and parameter sets coexist for pairings. Real-world implementation are based on elliptic curves [START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF][START_REF] Kachisa | Constructing brezing-weng pairing-friendly elliptic curves using elements in the cyclotomic eld[END_REF], but recent advances in cryptanalysis requires to reassess the security level of pairing-based cryptography [KB16, MSS17, BD18].

In the following, we adopt black-box de nitions of cryptographic pairings as bilinear maps, and on the assumed hardness of classical constant-size assumptions over pairing-friendly groups, namely SXDH and SDL. The notations 1 G , 1 G and 1 G T denote the identity elements in G, G and G T respectively.

De nition 3.1 (Pairings [BSS05]

). A pairing is a map e : G × G → G T over cyclic groups of order p that veri es the following properties for any g ∈ G, ĝ ∈ G:

(i) bilinearity: for any a, b ∈ Z p , we have e(g a , ĝb ) = e(g b , ĝa ) = e(g, ĝ) ab .

(ii) non-degeneracy: e(g, ĝ) = 1

G T ⇐⇒ g = 1 G or ĝ = 1 G .
3. U S (iii) the map is computable in polynomial time in the size of the input.

For cryptographic purposes, pairings are usually de ned over elliptic curves, hence G T is a multiplicative subgroup of the multiplicative group of a nite eld.

The most standard assumptions over pairings are derived from the equivalent of the Di e-Hellman assumptions from cyclic groups, described in De nition 2.11. This hypothesis is used to de ned the SXDH assumption [Sco02] as follows.

De nition 3. In Chapter 6, the security of our group signature scheme relies on the SXDH assumption, which is a well-studied assumption. Moreover, this assumption is static, meaning that the size of the assumption is independent of the number of queries made py the adversary or any feature (e.g., the maximal number of users) of the system, and is non-interactive, in the sense that it does not involve any oracle. This gives us stronger con dence in the security of schemes proven under this kind of assumptions. For instance, Cheon gave an attack against the q-Strong Di e-Hellmann problem for large values of q [START_REF] Cheon | Security analysis of the strong di e-hellman problem[END_REF] (which usually represents the number of adversarial queries).

In Chapter 6, we also rely on the following assumption, which generalizes the Discrete Logarithm problem to asymmetric groups.

De nition 3.3 (SDL).

In bilinear groups G, G, G T of prime order p, the Symmetric Discrete Logarithm (SDL) problem consists in, given g, ĝ,

g a , ĝa ∈ G × G 2 where a ← Z p , computing a ∈ Z p .
Like SXDH, this assumption is also static (i.e., constant-size) and non-interactive.

Lattice-Based Cryptography

During the last decade, lattice-based cryptography has emerged as a promising candidate for post-quantum cryptography. For example, on the rst round of the NIST post-quantum competition, there are 28 out of 82 submissions stem from lattice-based cryptography [NIS17].

Lattice-based cryptography takes advantage of a simple mathematical structure in order to realize advanced functionalities, beyond encryption and signature schemes. For instance, fully homomorphic encryption [START_REF] Gentry | Fully homomorphic encryption using ideal lattices[END_REF][START_REF] Gentry | Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based[END_REF] is only known to be possible in the lattice-based world for now.

In the context of provable security, lattice assumptions bene t from a worst-case-to-averagecase reduction [Reg05, GPV08, MP12, AFG14]. Concurrently, worst-case lattice problems have been extensively analyzed in the last decade [ADSD15, ADRSD15, HK17], both classically and quantumly. This gives us a good con dence in lattice assumptions (given the caveats of Chapter 2) such as Learning-with-Errors (LWE) and Short Integer Solutions (SIS) which are de ned in Section 3.2.1. The rest of this section will describe some useful tools that rely on lattice trapdoors.

Lattices and Hard Lattice Problems

A (full-rank) lattice Λ is de ned as the set of all integer linear combinations of some linearly independent basis vectors (b i ) 1≤i≤n of R n . The integer n denotes the dimension of the lattice. A lattice basis is not unique, as illustrated in Figure 3.1 with a dimension 2 lattice.

In the following, we work with q-ary lattices, for some prime number q, de ned as follows.

De nition 3.4 (q-ary lattices). Let two integers m ≥ n ≥ 1, a prime q ≥ 2, a matrix A ∈ Z n×m q and a vector u ∈ Z n q , de ne

Λ q (A) {e ∈ Z m | ∃ s ∈ Z n q s.t. A T • s = e mod q} as well as Λ ⊥ q (A) {e ∈ Z m | A • e = 0 n mod q}, and Λ u q (A) {e ∈ Z m | A • e = u mod q}.
For any lattice point t ∈ Λ u q (A), it holds that

Λ u q (A) = Λ ⊥ q (A) + t, meaning that Λ u q (A) is a shift of Λ ⊥ q (A).
De nition 3.5 (Gaussian distribution over a lattice). For a lattice Λ, a vector c ∈ R n and a real σ > 0, de ne the distribution function ρ σ,c (x) exp(-π xc 2 /σ 2 ). The discrete Gaussian distribution of support Λ, parameter σ and center c is de ned as D Λ,σ,c (y) = ρ σ,c (y)/ρ σ,c (Λ) for any y ∈ Λ, where ρ σ,c (Λ) x∈Λ ρ σ,c (x). We denote by D Λ,σ (y) the distribution centered in c = 0. Lemma 3.1 ([Ban93, Le. 1.5]). For any lattice Λ ⊆ R n and positive real number σ > 0, we have

Pr b← D Λ,σ [ b ≤ σ √ n] ≥ 1 -2 -Ω(n) .
In order to work with lattices in cryptography, hard lattice problems have to be dened [START_REF] Ajtai | Generating Hard Instances of Lattice Problems[END_REF]. In the following we state the Shortest Independent Vectors Problem (SIVP γ ).
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This problem reduces to the Learning-with-Errors (LWE) problems and the Short Integer Solution (SIS) problem as explained later in Lemma 3.2 and 3.3. These links are important as those are "worst-case-to-average-case" reductions.

By itself, the SIVP γ assumption is not very handy in order to construct new cryptographic designs. On the other hand, the LWE and SIS assumptions -which are "average-case" assumptions -are more suitable to design cryptographic schemes.

In order to de ne the SIVP γ problem and assumption, let us rst de ne the successive minima of a lattice, a generalization of the minimum of a lattice (i.e., the length of a shortest non-zero vector in a lattice).

De nition 3.6 (Successive minima). For a lattice Λ of dimension n, let us de ne for each i ∈ {1, . . . , n} the i-th successive minimum as

λ i (Λ) = inf r | dim (span (Λ ∩ B (0, r))) ≥ i ,
where B(c, r) denotes the ball of radius r centered in c.

This leads us to the SIVP γ problem, which is to nd a set of su ciently short linearly independent vectors given a lattice basis.

De nition 3.7 (SIVP γ ). For a dimension-n lattice described by a basis B ∈ R n×m , and a parameter γ > 0, the shortest independent vectors problem is to nd n linearly independent vectors v 1 , . . . , v n such that

v 1 ≤ v 2 ≤ . . . ≤ v n and v n ≤ γ • λ n (B).
As explained before, the hardness of this assumption for worst-case lattices implies the hardness of the following two assumptions in their average-case setting, which are illustrated in Figure 3.2. In particular, it means that no polynomial-time algorithm can solve those problems with non-negligible probability and non-negligible advantage given that SIVP γ is hard.

De nition 3.8 (The SIS and ISIS problem). Let m, q, β be functions of n ∈ N and • be a norm (e.g., Euclidean norm

• 2 or in nite norm • ∞ ). The Short Integer Solution problem SIS n,m,q,β is, given A ← U(Z n×m q ), nd x ∈ Λ ⊥ q (A) with 0 < x ≤ β. The Inhomogeneous Short Integer Solution ISIS n,m,q,β problem is, given A ← U(Z n×m q ) and u ∈ Z n q , nd x ∈ Λ u q (A) with 0 < x ≤ β.
Evidence of the hardness of the SIS and ISIS assumptions is given by the following Lemma, which reduced these problems from SIVP γ .

Lemma 3.2 ([GPV08, Se. 9]). If q ≥ √ nβ and m, β ≤ poly(n), then SIS n,m,q,β and ISIS n,m,q,β problems are both at least as hard as standard worst-case lattice problem SIVP γ with γ = Õ(β √ n).

De nition 3.9 (The LWE problem). Let n, m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z. For a xed s ∈ Z n q , let A s,χ be the distribution obtained by sampling a ← U(Z n q ) and e ← χ, and outputting (a, a T •s+e) ∈ Z n q ×Z q . The Learning-with-Errors problem LWE n,q,χ asks to distinguish m samples chosen according to A s,χ (for s ← U(Z n q )) and m samples chosen according to U(Z n q × Z q ).

LWE n,q,χ problem:

Given m ≥ 1, A ← U(Z n×m q ), e ← χ m        A , A T s + e        ∈ Z n×m q × Z m q , nd s ∈ Z n q .
SIS n,m,q,β problem: The worst-case-to-average-case reduction for LWE is stated by the following Lemma.

Given A ∈ Z n×m q , nd x ∈ Z m such that A x = 0 n , and 0 < x ≤ β.
Lemma 3.3 ([Reg05, Pei09, BLP + 13]). If q is a prime power, B ≥ √ nω(log n), γ = O(nq/B), then there exists an e cient sampleable B-bounded distribution χ (i.e., χ outputs samples with norm at most B with overwhelming probability) such that LWE n,q,χ is as least as hard as SIVP γ .

Lattice Trapdoors

In this section, we recall the speci cations of di erent algorithms that use "lattice trapdoors". A trapdoor for a lattice Λ is a short basis of this lattice. The knowledge of such a basis allows sampling elements in D Λ,σ within some restrictions given in Lemma 3.5. The existence of this sampler allows sampling short vectors which is believed to be infeasible without knowing such a short basis. Indeed, Lemma 3.5 shows that it is possible to sample a (statistically close to) uniform matrix A ∈ Z n×m q along with a short basis for Λ ⊥ q (A). Thus, a vector sampled from D Λ ⊥ q (A),σ , which is short with overwhelming probabilities according to Lemma 3.1, is a solution to SIS n,m,q,σ √ n . Gentry et al. [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF] showed that Gaussian distributions with lattice support can be sampled e ciently given a su ciently short basis of the lattice.

R

. Given a matrix A, A denotes the Gram-Schmidt orthogonalization of A.

Lemma 3.4 ([BLP + 13, Le.

2.3]

). There exists a PPT (probabilistic polynomial-time) algorithm GPVSample that inputs a basis B of a lattice Λ ⊆ Z n and a rational σ ≥ B • Ω( √ log n), and outputs vectors b ∈ Λ with distribution D Λ,σ .

The following Lemma states that it is possible to e ciently compute a statistically uniform A along with a short basis of its orthogonal lattice Λ ⊥ q (A).

Lemma 3.5 ([AP09, Th. 3.2]

). There exists a PPT algorithm TrapGen that takes as inputs 1 n , 1 m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a matrix A ∈ Z n×m q and a basis T A of Λ ⊥ q (A) such that A is within statistical distance 2 -Ω(n) to U(Z n×m q ), and T A ≤ O( √ n log q). Lemma 3.5 is often combined with the sampler from Lemma 3.5. Micciancio and Peikert [START_REF] Micciancio | Trapdoors for lattices: Simpler, tighter, faster, smaller[END_REF] proposed a more e cient approach for this combined task, which is to be be 3. U S preferred in practice but, for the sake of simplicity, schemes are presented using TrapGen and GPVSample in this thesis.

We also make use of an algorithm that extends a trapdoor for A ∈ Z n×m q to a trapdoor of any B ∈ Z n×m q for which a m-subset of its columns is A. For the sake of simplicity we will consider the case where A is the left n × m submatrix of B.

Lemma 3.6 ([CHKP10, Le. 3.2]

). There exists a PPT algorithm ExtBasis that takes as inputs a matrix B ∈ Z n×m q whose rst m columns span Z n q , and a basis T A of Λ ⊥ q (A) where A is the left n × m submatrix of B, and outputs a basis

T B of Λ ⊥ q (B) with T B ≤ T A .
In some of our security proofs, analogously to [Boy10, BHJ + 15], we also use a technique due to Agrawal, Boneh and Boyen [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF] that implements an all-but-one trapdoor mechanism (akin to the one of Boneh and Boyen [START_REF] Boneh | E cient selective-ID secure identity-based encryption without random oracles[END_REF]) in the lattice setting.

Lemma 3.7 ([ABB10, Th. 19]

). There exists a PPT algorithm SampleRight that takes as inputs matrices A, C ∈ Z n×m q , a low-norm matrix R ∈ Z m×m , a short basis T C ∈ Z m×m of Λ ⊥ q (C), a vector u ∈ Z n q and a rational σ such that σ ≥ T C • Ω( √ log n), and outputs a short vector b ∈ Z 2m such that A A • R + C • b = u mod q and with distribution statistically close to D L,σ where L denotes the shifted lattice

Λ u q A A • R + C . C 4

Zero-Knowledge Arguments

A Zero-Knowledge proof [START_REF] Goldwasser | The knowledge complexity of interactive proof-systems[END_REF] (or ZK proofs) is an interactive proof between a prover and a veri er at the end of which the veri er should be convinced of the truth of a statement (within some probability, called soundness error), while the prover is guaranteed that the veri er learns nothing more that the authenticity of the statement.

One of the early applications of ZK proofs in cryptography was the design of identi cation systems [START_REF] Fiat | How to prove yourself: Practical solutions to identi cation and signature problems[END_REF]. The goal is for a user A to prove the knowledge of a secret (such as a password) to user B without revealing any piece of information about the secret, otherwise user B would be able to impersonate A. Since then, the use of zero-knowledge proofs is now widespread in privacy-preserving protocols like anonymous credentials [START_REF] Chaum | Security without Identi cation: Transactions System to Make Big Brother Obsolete[END_REF][START_REF] Camenisch | An e cient system for non-transferable anonymous credentials with optional anonymity revocation[END_REF], revocable group signatures [NFHF09], e-cash [START_REF] Camenisch | Compact e-cash[END_REF], oblivious transfer [START_REF] Camenisch | Oblivious transfer with access control[END_REF] . . . If these primitives ourish in the context of number-theory-based cryptography (such as RSA groups or pairing groups), they are still elusive in the lattice world.

In this section, we rst present the general principles and basic tools to handle ZK proofs. Then we will describe two families of ZK proofs that may prove useful in the context of pairing-based and lattice-based cryptography. Namely, Schnorr-like proofs and Stern-like proofs.

De nitions 4.1.1 Zero-Knowledge proofs and arguments

De nition 4.1 (Zero-knowledge proofs and arguments). Let R = {(x, w) ∈ L × R} be a binary relation. A zero-knowledge proof for a relation R is an interactive protocol between a prover P (x, w) and a veri er V (x) where V outputs a bit b at the end of the interaction. This is written as P (x, w), V (x) = b. The aforementioned protocol should also verify the following properties.

Completeness. For any

(x, w) ∈ R, Pr[ P (x, w), V (x) = 1] ≥ 1 -negl(|λ|).
Soundness. For all x ∈ L, for any w ∈ R such that (x, w) / ∈ R, and for any cheating prover P (x, w), Pr[ P (x, w), V (x) = 1] ≤ s < 1 -negl(|x|) , where s is called the soundness error. We want s to be as small as possible, ideally negligible.
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Zero-Knowledge. Let trans(•, •) be the transcript of the interaction during the proof. There exists a PPT simulator S such that for all (possibly cheating) PPT veri er V , the distributions {trans(P (x, w), V (x))} (x,w)∈R and {S V (x)} (x,w)∈R are computationally indistinguishable.

If, in the soundness de nition, the adversary P is restricted to be a PPT algorithm, then the proof system is called an argument system.

We can notice that the soundness error can be reduced to be negligible by repeating the proof.

If the two ensembles in the de nition of zero-knowledge are the same, then the proof is perfect zero-knowledge.

De nition 4.2 (Proof of knowledge [START_REF] Goldwasser | The knowledge complexity of interactive proof-systems[END_REF][START_REF] Bellare | On De ning Proofs of Knowledge[END_REF]). Let κ be a function from {0, 1} to [0, 1]. A complete interactive proof system (P, V ) is said to be a proof of knowledge for the relation R with knowledge error κ if it veri es the knowledge soundness property.

Knowledge soundness. There exists a PPT algorithm E, called the knowledge extractor. This algorithm takes as input x and rewindable black-box access to the prover, and targets to compute a w such that (x, w) ∈ R. For any prover P , let ε(x) be the probability that V accepts on input x. There exists a constant c such that, whenever ε(x) > κ(x), M will output a correct w with expected time at most |x| c ε(x)-κ(x) , where access to P counts as one step.

This extractor represents the fact that an e ective prover actually knows the secret (while a zero-knowledge proof only attests the existence of a witness w). In the following, ZKAoK denotes Zero-Knowledge Argument of Knowledge.

Another useful property that a proof system can have in the context of privacy-preserving cryptography is witness indistinguishability (WI). This property states that if a proof system has multiple witnesses, it is impossible to tell apart which one has been used during the proof.

De nition 4.3 (Witness indistinguishable proofs [FS90]

). Let (P, V ) be a complete interactive proof system for relation R. It is said to be witness indistinguishable if, for every PPT algorithm V and every two sequences {w x } (x,wx)∈R , {w x } (x,w x )∈R , the following ensembles are computationally indistinguishable: {trans(P (x, w x ), V (x)} x and {trans(P (x, w x ), V (x)} x .

The WI property is implied by the zero-knowledge property. Whereas the latter, witness indistinguishability is preserved through parallel repetitions of the protocol [START_REF] Feige | Witness Indistinguishable and Witness Hiding Protocols[END_REF].

Σ-protocols

A way to construct zero-knowledge proofs -that will be described with more details in Section 4.2 -is a blackbox transformation from a Σ-protocol and a commitment scheme [START_REF] Damgård | E cient concurrent zero-knowledge in the auxiliary string model[END_REF][START_REF] Garay | Strengthening Zero-Knowledge Protocols Using Signatures[END_REF]. The resulting proof remains secure against malicious veri ers. De nition 4.4 (Σ-protocol [START_REF] Cramer | Modular Design of Secure, yet Practical Cryptographic Protocols[END_REF]). Let R = {(x, w)} be a binary relation. A Σ-protocol is a 3-move interactive protocol between P and V that follows Figure 4.1 and veri es the following properties.

P (x, w) V (x) (cmt, stP ) ← P1(x, w) cmt -----------→ (chall, stV ) ← V1(x, cmt) chall ← ----------- response ← P2(x, w, chall, stP ) response -----------→ return b = V2(x, chall, response, stV )
Completeness. For any (x, w) ∈ R, P (x, w) and V (x) that follows the protocol, the veri er always accepts.

2-Special soundness. For any x and any pair of accepting transcripts on input x of the form (cmt, chall, response) and (cmt, chall , response ), there exists a PPT algorithm extract that inputs the two aforementioned transcripts and outputs an element w such that (x, w) ∈ R.

Honest-Veri er Zero-Knowledge. There exists a PPT simulator S, such that the two probability distributions {trans(P (x, w), V (x))} and {S(x)} with honest P and V are statistically indistinguishable.

An example of Σ-protocol will be given in Section 4.2, and its transformation into a Zero-Knowledge proof using a commitment scheme as well.

Commitment schemes

Commitment schemes [START_REF] Blum | Coin Flipping by Telephone[END_REF] are the digital analogue of a safe. The goal is to commit a message M into a commitment string com that veri es the hiding and binding properties. The former is, that once a message is committed, it is impossible to know what is inside, while the latter states that, it is impossible to alter a commitment string to modify the underlying message.

De nition 4.5 (Commitment schemes). A commitment scheme is given by a triple of algorithms (Setup, Commit, Verify) that act as follows:

Setup(1 λ ): This algorithm outputs the commitment scheme's common public parameters par.

Commit(par, M ): From a message M and parameters par, this algorithms outputs a commitment com and an opening open. The randomness ρ used in the commitment is sometimes made explicit.

Verify(par, com, open, M ): Using parameters par a message M , its commitment com and its opening open, this algorithms returns bit b.
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Exp hiding A,b (λ) Hiding. For any PPT adversary A against the hiding experiment, we have that

par ← Setup(1 λ ) (m 0 , m 1 , st) ← A(par, 1 λ ) (com, open) ← Commit(m b ) b ← A(pk, 1 λ , com;
Adv hiding A (λ) = Pr Exp hiding A,1 (λ) = 1 -Pr Exp hiding A,0 (λ) = 1 ≤ negl(λ) ,
over the randomness of Commit.

Binding. For any PPT adversary A against the binding experiment,

Pr Exp binding A (λ) = 1 ≤ negl(λ) .
Commitment schemes are thus used to force the veri er of the Σ-protocol to behave honestly: it commits its challenge at the outset of the interaction, and opens it at the challenge phase, so that it cannot change its challenge with respect to the commitment of the prover.

An example of commitment scheme that will prove useful in Section 4.3 is the Kawachi, Tanaka, Xagawa SIS-based commitment scheme [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF].

This construction relies on the following hash function:

De nition 4.6 (SIS-based hash function). Let n, , q ∈ Z be parameters such that the SIS n, ,q, √ assumption holds. Let A ∈ Z n× q , and let f A : {0, 1} → Z n q be the function that maps its input string x into a binary vector x ∈ Z n q and outputs Ax mod q ∈ Z n q . One can notice that f A is indeed a collision-resistant one-way function under the SIS assumption, as nding two inputs x = x such that A • x = A • x mod q leads to a non-zero vector x = xx ∈ Z such that x 2 ≤ √ .

It is thus possible to apply the Merkle-Damgård construction [Mer79, Mer89, Dam89] on f A to obtain a collision resistant hash function h A : {0, 1} → Z n q that is secure under the SIS n, ,q, √ assumption.

It is then possible to use this hash function h A to construct the following string commitment scheme.

De nition 4.7 (SIS-based commitment scheme). Given parameters n, m, q ∈ Z, let us de ne the following commitment scheme due to [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF].

Setup(1 λ ): Pick two random matrices A M , A ρ ∈ U(Z n×m q
) and de ne the public parameters as the matrix

A = [A M | A ρ ]. Commit(A, M ; ρ): To commit to a string M ∈ {0, 1} under randomness ρ ∈ {0, 1} m , rst parse A ∈ Z n×2m q as [A M | A ρ ] as in the Setup algorithm, then compute com = h A M (M ) + f Aρ (ρ) ∈ Z n q ,
where h A M and f Aρ are the hash function and the one-way collision resistant function described in De nition 4.6. The opening corresponds to the randomness ρ used in the computation. ). If m > 2n log q, the above commitment scheme is statistically hiding and binding under the SIS n,m,q, √ m assumption in the trusted setup model.

Non-Interactive Proofs

Another useful primitives are the non-interactive version of zero-knowledge proofs.

De nition 4.8 (Non Interactive Zero Knowledge). A non-interactive zero-knowledge proof (or NIZK proof) for a relation R = {(x, w) ∈ L × W} is a pair of PPT algorithms (P, V ) such that P takes as inputs x ∈ L and w ∈ W and outputs a proof π, and V takes as inputs x and π and outputs a bit b. These algorithms should verify the following properties.

Completeness. For any (x, w) ∈ R, Pr[V (x, P (x, w)) = 1] ≥ 1 -negl(|x|).

Soundness. For all x ∈ L, for any w ∈ W such that (x, w) / ∈ R, and for any cheating prover P (x, w), Pr[V (x, P (x)) = 1] < negl(|x|) .

Zero-Knowledge. There exists a PPT simulator S such that the probability ensembles {(x, P (x, w))} (x,w)∈R and {S(x)} (x,w)∈R are computationally indistinguishable.

In the random oracle model [START_REF] Bellare | Random Oracles Are Practical: A Paradigm for Designing E cient Protocols[END_REF]PS96], it is possible to transform a ZK proof into an NIZK proof [START_REF] Fiat | How to prove yourself: Practical solutions to identi cation and signature problems[END_REF]. This techniques is called the Fiat-Shamir transform.

De nition 4.9 (Fiat-Shamir Transform [START_REF] Fiat | How to prove yourself: Practical solutions to identi cation and signature problems[END_REF]). Let (P, V ) be a three-move ZK proof system for relation R = {(x, w)} as in Figure 4.1 and H be a cryptographic hash function.

Let P be the following non-interactive prover that takes as inputs x and w:

1. First run P 1 (x, w) to get a random commitment cmt and a state information st P ;

2. Generate the challenge as chall ← H(x, cmt);

3. Run response ← P 2 (x, w, chall, st P ); And let V be the following non-interactive veri er that takes as inputs x and π:

1. Parse π as (cmt, response);

2. Generate the challenge chall = H(x, cmt);

3. Return V 2 (x, chall, response, ∅).
Then ( P , V ) forms a non-interactive zero-knowledge proof in the ROM.

For the sake of completeness, we also mention NIZK in the standard model, such as Groth-Sahai proofs [GOS06, GS08] for bilinear groups, but these will not be used in the context of this thesis.

In the trusted setup model (also known as common reference string model) described in Section 2.3, there is also another type of NIZK proofs that is useful for us, for instance in Chapter 6. Quasi-adaptive NIZK (QA-NIZK) [START_REF] Jutla | Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces[END_REF] are NIZK where the common reference string crs may depend on the language for which proofs have to be generated (that is, the distribution D crs is a function of the language we want to prove). A formal de nition can be found in [JR13, [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF]LPJY15], where completeness, soundness and zero-knowledge properties are adapted to take into account the crs.

De nition 4.10 (Quasi-Adaptive Non-Interactive Zero-Knowledge Argument). A Quasi-Adaptive Non-Interactive Zero-Knowledge Argument argument (or QA-NIZK) over a collection of relations R = {R ρ } parametrized by a string ρ consists in four PPT algorithms (Gen 0 , Gen 1 , P, V ).

The algorithms Gen 0 and Gen 1 both generate the crs. Gen 0 inputs 1 λ and outputs Γ the xed part of the crs from which ρ is sampled according to a distribution D Γ , while Gen 1 inputs Γ and ρ to output a language-dependent part ψ (or directly the crs = (Γ, ψ, ρ)). The prover P and the veri er V act as in De nition 4.8 with the di erence that, they also take as input the common reference string crs.

We consider proof systems where the prover and the veri er both take a label τ as additional input. Formally, a tuple (Gen 0 , Gen 1 , P, V ) of PPT algorithms is a QA-NIZK proof system for R if, there exists a PPT simulator (S 1 , S 2 ) such that for any PPT adversaries A 1 , A 2 and A 3 , the following properties hold:

Quasi-Adaptive Completeness.

Pr    V (crs, x, π, τ ) = 1 if R ρ (x, w) = 1 Γ ← Gen 0 (1 λ ); ρ ← D Γ ; crs ← Gen 1 (Γ, ρ); (x, w, τ ) ← A 1 (crs, ρ) π ← P (crs, x, w);    = 1.
Quasi-Adaptive Soundness.

Pr (∀w : (x, w) / ∈ R ρ ) ∧V (crs, x, π, τ ) = 1 Γ ← Gen 0 (1 λ ); ρ ← D Γ ; crs ← Gen 1 (Γ, ρ); (x, π, τ ) ← A 2 (crs)
≤ negl(λ) .

Schnorr Proofs

Common input: A prime-order group G of order p with a generator g.

Schnorr's Protocol for DLOG Quasi-Adaptive Zero-Knowledge.

P (h, a) V (h) r ← Z p ρ = g r ∈ G ρ c ← Z p c d ← c • a + r mod p d if g d = h c • ρ then return 1 else return 0
Pr[A P (ψ,•) 3 (Γ, ψ, ρ) = 1 | Γ ← Gen 0 (1 λ ); ρ ← D Γ ; crs ← Gen 1 (Γ, ρ)] ≈ s Pr A S(ψ,τ sim ,•) 3 (Γ, ψ, ρ) = 1 Γ ← Gen 0 (1 λ ); ρ ← D Γ ; (ψ, τ sim ) ← S 1 (Γ, ρ)
Where • P (ψ, •) emulates the actual prover. It inputs (x, w, τ ) and outputs a proof π if (x, w) ∈ R ρ . Otherwise, it outputs ⊥.

• S(ψ, τ sim , •) is an oracle that takes as input (x, w, τ ) and outputs a simulated proof S 2 (ψ, τ sim , x, τ ) if (x, w) ∈ R ρ and ⊥ otherwise.

Schnorr Proofs

Schnorr's methodology [START_REF] Schnorr | Security of 2 t -Root Identi cation and Signatures[END_REF] to construct proofs is based on the Σ-protocol technique to design zero-knowledge proofs. It has been introduced in order to prove the knowledge of a discrete logarithm (which can bee seen at the relation

R dlog = {(h, a) ∈ G × Z p | h = g a }
with G = g be a cyclic group of prime order p > 2) and is described in Figure 4.3.

An interpretation of this methodology is the following: given a commitment scheme (Setup, Commit, Verify), where the randomness r used in Commit is made explicit, the rst move of the prover P consists in binding the randomness used in the commitment scheme r using the transmitted value ρ = g r , then the veri er asks the prover to commit to a challenge
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Common input: A public element a ∈ R where R = Z p [x]/ x n + 1 .

Schnorr's Protocol for Ring-SIS In the protocol described in Figure 4.3, the underlying commitment is the Pedersen commitment scheme [START_REF] Pedersen | Non-Interactive and Information-Theoretic Secure Veri able Secret Sharing[END_REF]: a commitment of a message m ∈ Z p is g m • h r ∈ G and the opening is the randomness r used to commit.

P (t = a • s 1 + s 2 , (s 1 , s 2 )) V (t) y 1 , y 2 ← D y ∈ R w = a • y 1 + y 2 ∈ R w c ← D c ∈ R (small) c z 1 ← s 1 c + y 1 ∈ R z 2 ← s 2 c + y 2 ∈ R [if z 1 , z 2 / ∈ G 2 then z 1 , z 2 ← ⊥, ⊥] z 1 , z 2 if z 1 ∈ G ∧ z 2 ∈ G∧ a • z 1 + z 2 =
For e ciency reasons, Schnorr's protocol is used along with Fiat-Shamir heuristic in the pairing-based group signature described in Chapter 6. This methodology has also been adapted to the ideal lattice-setting by Lyubashevsky [START_REF] Lyubashevsky | Lattice-based identi cation schemes secure under active attacks[END_REF][START_REF] Lyubashevsky | Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures[END_REF] along with a technique called rejection sampling in order to construct ZK proofs from ideal lattice assumptions and is described in Figure 4.4. In this description D y and D c are the distributions from which y 1 , y 2 and c have to be sampled respectively, and G describes the set of good responses z 1 , z 2 in order not to leak informations about s 1 , s 2 . The part between brackets is called the rejection phase, and ensure that the transmitted z 1 , z 2 will not leak any information about s 1 , s 2 to V. This part induced a noticeable error-rate where the prover aborts the proof. As the protocol is proven witness indistinguishable [START_REF] Lyubashevsky | Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures[END_REF], one can run the protocol multiple times in parallel and hope that one of them will not abort [START_REF] Feige | Witness Indistinguishable and Witness Hiding Protocols[END_REF].

One can notice that this is not a Σ-protocol in the strict sense as the knowledge extractor outputs witnesses that can be up to Õ(n) larger than the actual witness in in nity norm. This behavior is sometimes called "imperfect soundness" or "soundness slack".

However, this method su ers from limited expressiveness: the relations that can be proved with this proof system are essentially restricted to be knowledge of a Ring-SIS secret, which is not su cient to prove, for instance, the knowledge of a signature on a committed message. Moreover, the gap in the extraction makes it hard, although, to prove that an underlying message under an encryption is binary [START_REF] Del Pino | Practical Quantum-Safe Voting from Lattices[END_REF].

Stern-like Proofs

Stern's protocol has originally been introduced in the context of code-base cryptography [START_REF] Stern | A new paradigm for public key identi cation[END_REF]. Initially, it was designed for Syndrome Decoding Problem (SDP): given a matrix M ∈ F n×m This problem bears similarities with the ISIS problem de ned in De nition 3.8 where the constraint on the norm of x is replaced by a constraint on Hamming weight, and operations are in F 2 instead of Z q .

After the rst work of Kawachi, Tanaka and Xagawa [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF] that extended Stern's proofs to statements modq, the results of Ling, Nguyen, Stehlé and Wang [START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF] enable the use of Stern's protocol to prove general SIS or LWE statements (meaning proving knowledge of a solution to these problems). These advances in the expressiveness of Stern-like protocols has been used to further improve them and therefore enable privacy-based primitives for which no constructions previously existed in the post-quantum world, such as dynamic group signatures [LLM + 16a], group encryption [LLM + 16b], electronic cash [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based PRFs and Applications to E-Cash[END_REF], etc.

Unlike Schnorr-like proofs that we described in the previous section, Stern-like proofs are mainly combinatorial and rely on the fact that every permutation on a binary vector w ∈ {0, 1} m leaves its Hamming weight w invariant. As a consequence, for π ∈ S m , w satis es these conditions if and only if π(x) also does. Therefore, the randomness of π is used to verify these two constraints (being binary and having xed Hamming weight) in a zero-knowledge fashion. We can notice that this can be extended to vectors w ∈ {-1, 0, 1} m having xed numbers of -1 and 1. This property allowed [START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF] to propose the generalization of this protocol to any ISIS n,m,q,β statements. In Section 4.3.2, we describes these permutations while abstracting the set of ZK-provable statements as the set VALID that satis es conditions (4.3).

It is worth noticing that this argument on knowledge does not strictly follow the de nition of a Σ-protocol in De nition 4.4. The challenge space is ternary as described in Section 4.3.2, hence the protocol veri es 3-special soundness. Thus, standard theorems on Σ-protocols have to be adapted in this setting.

In this Section, we describe in a high-level manner the behavior of Stern-like protocols before detailing it.
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• B 2 m : the set of vectors in {0, 1} 2m with Hamming weight m.

• B 3 m : the set of vectors in {-1, 0, 1} 3m which has exactly m coordinates equal to j for each j ∈ {-1, 0, 1}. 

The Decomposition-Extension Framework

The original Stern protocol was designed to prove knowledge of a SDP preimage. That is, to prove the knowledge of a vector w ∈ {0, 1} m that veri es

M • w = v mod 2.
(4.1)

A rst improvement by [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF] was to extend this protocol using a statistically hiding SIS-based commitment scheme as described in 4.6 to prove in (statistical) zero-knowledge that

M • w = v mod q. ( 4.2) 
The details of this proof is given in Section 4.3.2, but it can be summarized in the following Lemma.

Lemma 4.2 ([KTX08, Se. 4]

). There exists a statistical ZKAoK with perfect completeness and soundness error 2/3 to prove the knowledge of a secret vector w ∈ {0, 1} m that veri es relation (4.2) for public input (M, v) ∈ Z n×m q × Z n q .

Ling, Nguyen, Stehlé and Wang [START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF] noticed that the ZKAoK of Lemma 4.2 works in a straightforward manner to prove knowledge of a vector in {-1, 0, 1} m .

To prove the knowledge of an ISIS preimage, i.e. the knowledge of a bounded vector w ∈ [-B, B] m that satis es relation (4.2), the goal is to rewrite w as w = K • w mod q with a public transformation matrix K such that w ∈ {-1, 0, 1} m and of known numbers of elements equal to j for each j ∈ {-1, 0, 1}. This reduces to use Lemma 4.2 to prove the knowledge of w ∈ {-1, 0, 1} m for public input (M • K, v).

To construct such a transfer matrix K, [START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF] showed that decomposing a vector x ∈ [-B, B] m as a vector x ∈ {-1, 0, 1} m•δ B and extending the resulting vector into x ∈ B 3 mδ B leads to a new statement that can be proven using the variant of Stern's protocol described in [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF]. The resulting matrix

K = K m,B | 0 m×2mδ B ∈ Z m×3mδ B , where K m,B is the {-1, 0, 1}-decomposition matrix K m,B = I m ⊗ [B 1 | • • • | B δ B ] with B j = B+2 j-1 2 j
, for all j ∈ {1, . . . , j}, can be computed from public parameters.

In Chapter 8, we extend Stern-like protocols to handle statements where the matrix M of (4.2) is kept hidden. For this purpose, we de ne the decomposition-extension method in more detail in Section 8.3.

Abstraction of Stern's Protocol

Let K, D, q be positive integers with D ≥ K and q ≥ 2, and let VALID be a subset of Z D . Suppose that S is a nite set such that every element φ ∈ S can be associated with a 1. Commitment: Prover samples r w ← U(Z D q ), φ ← U(S) and randomnesses ρ 1 , ρ 2 , ρ 3 for COM. Then, he sends CMT = C 1 , C 2 , C 3 to the veri er, where

C 1 = COM(φ, M • r w mod q; ρ 1 ), C 2 = COM(Γ φ (r w ); ρ 2 ), C 3 = COM(Γ φ (w + r w mod q); ρ 3 ).

Challenge:

The veri er sends a challenge Ch ← U({1, 2, 3}) to the prover.

3.

Response: Depending on Ch, the prover sends RSP computed as follows:

• Ch = 1: Let t w = Γ φ (w), t r = Γ φ (r w ), and RSP = (t w , t r , ρ 2 , ρ 3 ).

• Ch = 2: Let φ 2 = φ, w 2 = w + r w mod q, and RSP = (φ 2 , w 2 , ρ 1 , ρ 3 ).

• Ch = 3: Let φ 3 = φ, w 3 = r w , and RSP = (φ 3 , w 3 , ρ 1 , ρ 2 ).

Veri cation: Receiving RSP, the veri er proceeds as follows:

• Ch = 1: Check that t w ∈ VALID, C 2 = COM(t r ; ρ 2 ), C 3 = COM(t w + t r mod q; ρ 3 ).
• Ch = 2: Check that

C 1 = COM(φ 2 , M • w 2 -v mod q; ρ 1 ), C 3 = COM(Γ φ2 (w 2 ); ρ 3 ).
• Ch = 3: Check that

C 1 = COM(φ 3 , M • w 3 ; ρ 1 ), C 2 = COM(Γ φ3 (w 3 ); ρ 2 ).
In each case, the veri er outputs 1 if and only if all the conditions hold. permutation Γ φ ∈ S D satisfying the following conditions:

w ∈ VALID ⇐⇒ Γ φ (w) ∈ VALID, If w ∈ VALID and φ is uniform in S, then Γ φ (w) is uniform in VALID. (4.3) 
We aim to construct a statistical Zero-Knowledge Argument of Knowledge (ZKAoK) for the following abstract relation:

R abstract = (M, v), w ∈ Z K×D q × Z K q × VALID : M • w = v mod q.
Note that, Stern's original protocol corresponds to the special case when the set VALID = {w ∈ {0, 1} D : wt(w) = k}, where wt(•) denotes the Hamming weight and k < D is a given integer, S = S D is the set of all permutations of D elements and Γ φ (w) = φ(w).

The conditions in (4.3) play a crucial role to prove in zero-knowledge that w ∈ VALID. To this end, the prover samples a random φ ← U(S) and lets the veri er check that Γ φ (w) ∈ VALID without learning any additional information about w due to the randomness of φ. Furthermore, to prove in a zero-knowledge manner that the linear equation is satis ed, the 4. Z K A prover samples a masking vector r w ← U(Z D q ), and convinces the veri er instead that M • (w + r w ) = M • r w + v mod q.

The interaction between prover P and veri er V is described in Figure 4.6. The protocol uses a statistically hiding and computationally binding string commitment scheme COM (e.g., the SIS-based scheme from [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF] described in De nition 4.7).

Theorem 4.3. The protocol in Figure 4.6 is a statistical ZKAoK with perfect completeness, soundness error 2/3, and communication cost O(D • log q). Namely:

• There exists a polynomial-time simulator that, on input (M, v), outputs an accepted transcript statistically close to that produced by the real prover.

• There exists a polynomial-time knowledge extractor that, on input a commitment CMT and 3 valid responses (RSP 1 , RSP 2 , RSP 3 ) to all 3 possible values of the challenge Ch, outputs w ∈ VALID such that M • w = v mod q.

The proof of the theorem relies on standard simulation and extraction techniques for Stern-like protocols [KTX08, LNSW13, LLM + 16a].

Proof. Note that, by construction, the protocol is perfectly complete: if an honest prover follows the protocol, then he always gets accepted by the veri er. It is also easy to see that the communication cost is bounded by O(D • log q).

We will now prove that the protocol is a statistical zero-knowledge argument of knowledge for the relation R abstract and is given below.

Z K P .
We construct a PPT simulator SIM interacting with a (possibly dishonest) veri er V such that, given only the public input, SIM outputs with probability negligibly close to 2/3 a simulated transcript that is statistically close to the one produced by the honest prover in the real interaction.

The simulator rst chooses a random Ch ∈ {1, 2, 3}. This is a prediction of the challenge value that V will not choose.

Case Ch = 1 : Using basic linear algebra over Z q , SIM computes a vector w ∈ Z D q such that M•w = v mod q. Next, it samples r ← U(Z D q ), π ← U(S), and randomnesses ρ 1 , ρ 2 , ρ 3 for COM.

Then, it sends the commitment CMT = C 1 , C 2 , C 3 to V, where

C 1 = COM(π, M • r; ρ 1 ), C 2 = COM(Γ π (r); ρ 2 ), C 3 = COM(Γ π (w + r); ρ 3 ).
Receiving a challenge Ch from V, the simulator responds as follows:

• If Ch = 1: Output ⊥ and abort.

• If Ch = 2: Send RSP = π, w + r, ρ 1 , ρ 3 .

• If Ch = 3:

Send RSP = π, r, ρ 1 , ρ 2 .
Case Ch = 2: SIM samples w ← U(VALID), r ← U(Z D q ), π ← U(S), and randomnesses ρ 1 , ρ 2 , ρ 3 for COM.

Then, it sends the commitment CMT = C 1 , C 2 , C 3 to V, where

C 1 = COM(π, M • r; ρ 1 ), C 2 = COM(Γ π (r); ρ 2 ), C 3 = COM(Γ π (w + r); ρ 3 )
as previously.

Receiving a challenge Ch from V, the simulator responds as follows:

• If Ch = 1: Send RSP = Γ π (w ), Γ π (r), ρ 2 , ρ 3 .
• If Ch = 2: Output ⊥ and abort.

• If Ch = 3:

Send RSP = π, r, ρ 1 , ρ 2 .
Case Ch = 3: SIM samples w ← U(VALID), r ← U(Z D q ), π ← U(S), and randomnesses ρ 1 , ρ 2 , ρ 3 for COM.

Then, it sends the commitment CMT = C 1 , C 2 , C 3 to V, where

C 2 = COM(Γ π (r); ρ 2 ), C 3 = COM(Γ π (w + r); ρ 3 )
as in the previous two cases, while

C 1 = COM(π, M • (w + r) -v; ρ 1 ),
Receiving a challenge Ch from V, it responds as follows:

• If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).

• If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).

• If Ch = 3: Output ⊥ and abort.

We observe that, in all the above cases, since COM is statistically hiding, the distribution of the commitment CMT and the distribution of the challenge Ch from V are statistically close to those in the real interaction. Hence, the probability that the simulator outputs ⊥ is negligibly close to 1/3. Moreover, one can check that whenever the simulator does not halt, it provides an accepted transcript, the distribution of which is statistically close to that of the prover in the real interaction. In other words, we have designed a simulator that can successfully emulate the honest prover with probability negligibly far from 2/3.

A K .
Let us assume that

RSP 1 = (t x , t r , ρ (1) 2 , ρ (1) 3 ), RSP 2 = (φ 2 , y, ρ (2) 1 , ρ (2) 
3 ), and RSP 3 = (φ 3 , w 3 , ρ

(3) 1 , ρ (3)
2 ) are 3 valid responses to the same commitment CMT = (C 1 , C 2 , C 3 ), with respect to all 3 possible values of the challenge. The validity of these responses implies that:

               t x ∈ VALID; C 1 = COM(φ 2 , M • w 2 -v; ρ (2) 1 ) = COM(φ 3 , M • w 3 ; ρ (3) 1 ); C 2 = COM(t r ; ρ (1) 2 ) = COM(Γ φ 3 (w 3 ); ρ (3) 2 ); C 3 = COM(t x + t r ; ρ (1) 3 ) = COM(Γ φ 2 (w 2 ); ρ (2)
3 ).

Z K A

Since COM is computationally binding, we can deduce that:

                 t x ∈ VALID; φ 2 = φ 3 ; t r = Γ φ 3 (w 3 ); t x + t r = Γ φ 2 (w 2 ); M • w 2 -v = M • w 3 mod q.
Let w = w 2 -w 3 , then we have Γ φ 2 (w ) = t x ∈ VALID which implies that w ∈ VALID. Furthermore, we have

M • w = M • (w 2 -w 3 ) = v mod q.
This concludes the proof.

Part II

Group Signatures and Anonymous Credentials In this part, we will present two constructions of dynamic group signatures. The construction that will be explained in Chapter 6 is an adaptation of the Libert, Peters and Yung short group signature in the standard model from classical pairing assumptions [START_REF] Libert | Short group signatures via structure-preserving signatures: Standard model security from simple assumptions[END_REF] to the random oracle model, which allows us to gain in e ciency while keeping the assumptions simple. This gives us a constant-size group signature scheme that is shown to be competitive with other constructions based on less standard assumptions such as the q-SDH assumption. An implementation is available and detailed in Chapter 6.

The second construction, described in Chapter 7, is a lattice-based dynamic group signature based on the scheme of Ling, Nguyen and Wang [START_REF] Ling | Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based[END_REF] for static groups. This construction was improved to match the requirements for dynamic groups, which closes an open-problem [START_REF] Gordon | A group signature scheme from lattice assumptions[END_REF]. This construction has been the rst fully secure group signature scheme from lattices.

Before describing those schemes, this chapter recalls the de nition of dynamic group signatures and their related security de nitions.

Background

Dynamic group signatures are a primitive that allows a user to authenticate a message on behalf of a set of users it belongs to (the group). This can be publicly veri ed while the user remains anonymous inside his group. On the other hand, the user remains accountable for the signatures he generates as there exists an authority, the opening authority, that can lift the anonymity of a given signature using his own secret key. In the dynamic setting, a group signature scheme has a second authority: the group manager, that allows a user to join the group after an interaction with him. These interactions are summarized in Figure 5.1. The [START_REF] Bellare | Foundations of group signatures: Formal de nitions, simpli ed requirements, and a construction based on general assumptions[END_REF] model summarizes the security of a group signatures in two notions: anonymity and traceability. The former notions models the fact that, without the opening authority's secret, even if everyone colludes, no one can identify the author of a signature; the latter sums up the fact that, even if everyone is corrupted (even the opening authority), it is infeasible to forge a valid signature that does not open to a valid user.

In the dynamic setting, the group signing-keys issuing phase is replaced by an interactive join protocol where a user who wants to join the group interacts with the group manager.

In this context, the two notions of the BMW model are retained, and a third one is added: the "non-frameability" property. This notion expresses the infeasibility to frame a group of honest users (which can be reduced to a singleton) in order to provide a signature that opens to one of them, even if the group manager and the opening authority are colluding.

One possible application of this primitive is anonymous access control for public transportation systems. In order to commute, a person should prove possession of a valid subscription to the transportation service. Thus, at registration to the service, the commuter joins the group of "users with a valid subscription". When he uses the transportation service, he is asked to sign the timestamp of his entry in the name of the group. In case of misbehavior, another entity -let say the police -is able to lift the anonymity of the signatures logged by the reading machine. Then, the public transportation company is unable to learn anything from the signatures, except the validity of the subscription of a user. On the other hand, the police does not have access to the logs except if the public transportation company hands them to them.

Other applications of group signatures can be found as authentication of low-range communications for intelligent cars or anonymous access control of a building. As we can see, most applications necessitate the use of dynamically growing groups in order to be meaningful.

Bootle, Cerulli, Chaidos, Ghada and Groth [BCC + 16] raised the problem of revocation and proposed a model that handles the issues that arose from the introduction of revocation called "fully-dynamic" group signatures. As the main di culty is to allow users to dynamically enroll in the group -revocation has been known to be implemented in a modular manner [LLNW14] -this approach is not considered here, even if it is of interest [START_REF] Ling | Lattice-Based Group Signatures: Achieving Full Dynamicity (and Deniability) with Ease[END_REF].

Formal De nition and Correctness

This section recalls the syntax and the security de nitions of dynamic group signatures based on the model of Kiayias and Yung [START_REF] Kiayias | Secure scalable group signature with dynamic joins and separable authorities[END_REF].

In the setting of dynamic groups, the syntax of group signatures includes an interactive protocol which allows users to register as new members of the group at any time. The syntax and the security model are those de ned by Kiayias and Yung [START_REF] Kiayias | Secure scalable group signature with dynamic joins and separable authorities[END_REF]. Like the very similar BSZ model [START_REF] Bellare | Foundations of group signatures: The case of dynamic groups[END_REF], the Kiayias-Yung (KY) model assumes an interactive join protocol whereby a prospective user becomes a group member by interacting with the group manager. This protocol provides the user with a membership certi cate, cert i , and a membership secret, sec i .

We denote by N gs ∈ poly(λ) the maximal number of group members that the system will be able to handle.

De nition 5.1 (Dynamic Group Signature). A dynamic group signature scheme consists of the algorithms or protocols (Setup, Join, Sign, Verify, Open) described as follows.

Setup(1 λ , 1 Ngs ): given a security parameter λ and a maximal number of group members N gs ∈ N, this algorithm is run by a trusted party to generate a group public key Y, the group manager's private key S GM and the opening authority's private key S OA .

Each key is given to the appropriate authority while Y is made public. The algorithm also initializes a public state st comprising a set data structure st users = ∅ and a string data structure st trans = .

In the following, all algorithms have access to the public parameters Y.

Join Juser,J GM : is an interactive protocol between the group manager GM and a user U i where the latter becomes a group member. The protocol involves two interactive Turing machines J user and J GM that both take the group public key Y as input. The execution J user (λ, Y), J GM (λ, st, Y, S GM ) , ends with user U i obtaining a membership secret sec i , that no one else knows, and a membership certi cate cert i . If the protocol is successful, the group manager updates the public state st by updating the following state informations st users := st users ∪ {i} as well as st trans := st trans ||(i, transcript i ).

Sign(cert i , sec i , M ): given a membership certi cate cert i , a membership secret sec i and a message M , this probabilistic algorithm outputs a signature σ.

Verify(σ, M ): given a signature σ, a message M and a group public key Y, this deterministic algorithm returns either 0 or 1.
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Open(S OA , M, σ): takes as input a message M , a valid signature σ w.r.t. Y , the opening authority's private key S OA and the public state st. It outputs i ∈ st users ∪ {⊥}, which is the identity of a group member or a symbol indicating an opening failure.

Each membership certi cate contains a unique tag that identi es the user.

The correctness requirement basically captures that, if all parties honestly run the protocols, all algorithms are correct with respect to their speci cation described as above.

The Kiayias-Yung model [START_REF] Kiayias | Secure scalable group signature with dynamic joins and separable authorities[END_REF] considers three security notions: the security against misidenti cation attacks requires that, even if the adversary can introduce users under its control in the group, it cannot produce a signature that traces outside the set of dishonest users. The notion of security against framing attacks implies that honest users can never be accused of having signed messages that they did not sign, even if the whole system conspired against them. And nally the anonymity property is also formalized by granting the adversary access to a signature opening oracle as in the models of [START_REF] Bellare | Foundations of group signatures: The case of dynamic groups[END_REF].

Correctness for Dynamic Group Signatures. Following the Kiayias-Yung terminology [START_REF] Kiayias | Secure scalable group signature with dynamic joins and separable authorities[END_REF], we say that a public state st is valid if it can be reached from st = (∅, ) by a Turing machine having oracle access to J GM . Also, a state st is said to extend another state st if it is within reach from st.

Moreover, as in [KY06], when we write cert i Y sec i , it means that there exists coin tosses for J GM and J user such that, for some valid public state st , the execution of the interactive protocol J user (λ, Y), J GM (λ, st , Y, S GM ) provides J user with (i, sec i , cert i ).

De nition 5.2 (Correctness)

. A dynamic group signature scheme is correct if the following conditions are all satis ed:

(1) In a valid state st, |st users | = |st trans | always holds and two distinct entries of st trans always contain certi cates with distinct tag.

(2) If J user (λ, Y), J GM (λ, st, Y, S GM ) is run by two honest parties following the protocol and i, cert i , sec i is obtained by J user , then we have cert i Y sec i .

(

) For each (i, cert i , sec i ) such that cert i Y sec i , satisfying condition 2, we have Verify Sign(Y, cert i , sec i , M ), M, Y = 1. 3 
(4) For any outcome (i, cert i , sec i ) of J user (., .), J GM (., st, ., .) for some valid state information st,

if σ = Sign(Y, cert i , sec i , M ), then Open(M, σ, S OA , Y, st ) = i.

Associated Security Notions

Oracles for Security Experiments

We formalize security properties via experiments where the adversary interacts with a stateful interface I that maintains the following variables:

• state I : is a data structure representing the state of the interface as the adversary invokes the various oracles available in the attack games. It is initialized as state I = (st, Y, S GM , S OA ) ← Setup(1 λ , 1 Ngs ). It includes the (initially empty) set st users of group members and a dynamically growing database st trans storing the transcripts of previously executed join protocols.

• n = |st users | < N gs denotes the current cardinality of the group.

• Sigs: is a database of signatures created by the signing oracle. Each entry consists of a triple (i, M, σ) indicating that message M was signed by user i.

• U a : is the set of users that were introduced by the adversary in the system in an execution of the join protocol.

• U b : is the set of honest users that the adversary, acting as a dishonest group manager, introduced in the system. For these users, the adversary obtains the transcript of the join protocol but not the user's membership secret.

In attack games, adversaries are granted access to the following oracles:

• Q pub , Q keyGM and Q keyOA : when these oracles are invoked, the interface looks up state I and returns the group public key Y, the GM's private key S GM and the opening authority's private key S OA respectively.

• Q a-join : allows the adversary to introduce users under its control in the group. On behalf of the GM, the interface runs J GM in interaction with the J user -executing adversary who plays the role of the prospective user in the join protocol. If this protocol successfully ends, the interface increments n, updates st by inserting the new user n in both sets st users and U a . It also sets st trans := st trans ||(n, transcript n ).

• Q b-join : allows the adversary, acting as a corrupted group manager, to introduce new honest group members of its choice. The interface triggers an execution of J user , J GM and runs J user in interaction with the adversary who runs J GM . If the protocol successfully completes, the interface increments n, adds user n to st users and U b and sets st trans := st trans ||(n, transcript n ). It stores the membership certi cate cert n and the membership secret sec n in a private part of state I .

• Q sig : given a message M , an index i, the interface checks whether the private area of state I contains a certi cate cert i and a membership secret sec i . If no such elements

(cert i , sec i ) exist or if i ∈ U b , the interface returns ⊥.
Otherwise, it outputs a signature σ on behalf of user i and also sets Sigs ← Sigs||(i, M, σ).

• Q open : when this oracle is invoked on input of a valid pair (M, σ), the interface runs algorithm Open using the current state st. When S is a set of pairs of the form (M, σ), Q ¬S open denotes a restricted oracle that only applies the opening algorithm to pairs (M, σ) which are not in S.

• Q read and Q write : are used by the adversary to read and write the content of state I .

At each invocation, Q read outputs the whole state I but the public/private keys and the private part of state I where membership secrets are stored after Q b-join -queries. By using Q write , the adversary can modify state I at will as long as it does not remove or alter elements of st users , st trans or invalidate the public state st: for example, the
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adversary is allowed to create dummy users as long as it does not re-use already existing certi cate tags.

Based on the above syntax, the security properties are formalized as follows.

Security Against Misidenti cation Attacks

Experiment Exp mis-id In a misidenti cation attack, the adversary can corrupt the opening authority using the Q keyOA oracle and introduce malicious users in the group via Q a-join -queries. It aims at producing a valid signature σ that does not open to any adversarially-controlled user.

A (λ) state I = (st, Y, S GM , S OA ) ← Setup(1 λ , 1 Ngs ) (M , σ ) ← A(Q pub , Q a-join , Q read , Q keyOA ) if Verify(σ , M , Y) = 0 then return 0 i = Open(M , σ , S OA , Y, st ) if i ∈ U a
De nition 5.3. A dynamic group signature scheme is secure against misidenti cation attacks if, for any PPT adversary A involved in Experiment Exp mis-id A (λ) described in Figure 5.2, we have:

Adv A mis-id (λ) Pr Exp mis-id A (λ) = 1 ≤ negl(λ) .

Non-Frameability

Experiment Exp fra A (λ) Framing attacks consider the situation where the entire system is colluding against some honest user. The adversary can corrupt the group manager as well as the opening authority (via oracles Q keyGM and Q keyOA , respectively). It can also introduce honest group members (via Q b-join -queries), observe the system while these users sign messages and create dummy users using Q write . The adversary eventually aims at framing an honest group member.

state I = (st, Y, S GM , S OA ) ← Setup(1 λ , 1 Ngs ) (M , σ ) ← A(Q pub , Q keyGM , Q keyOA , Q b-join , Q sig , Q read , Q write ) if Verify(σ , M , Y) = 0 then return 0 if i = Open(M , σ , S OA , Y, st ) ∈ U b then return 0 if j∈U b s.t. j=i
De nition 5.4. A dynamic group signature scheme is secure against framing attacks if, for any PPT adversary A involved in the experiment Exp fra A (λ) described Figure 5.

3), it holds that

Adv A fra (λ) = Pr Exp fra A (λ) = 1 ≤ negl(λ) .

Full Anonymity

Experiment Exp anon A,d (λ) chooses a message M as well as two pairs (sec 0 , cert 0 ) and (sec 1 , cert 1 ), consisting of a valid membership certi cate and a corresponding membership secret. Then, the challenger ips a coin d ← {0, 1} and computes a challenge signature σ using (sec d , cert d ). The adversary is given σ with the task of eventually guessing the bit d ∈ {0, 1}. Before doing so, it is allowed further oracle queries throughout the second stage, called guess stage, but is restricted not to query Q open for (M , σ ).

state I = (st, Y, S GM , S OA ) ← Setup(1 λ , 1 Ngs ) aux, M , (sec 0 , cert 0 ), (sec 1 , cert 1 ) ← A(play; Q pub , Q keyGM , Q open , Q read , Q write ) if ¬((cert 0 Y sec 0 ) ∧ (cert 1 Y sec 1 ) ∧ (cert 0 = cert 1 )) then return ⊥ σ ← Sign(Y, cert d , sec d , M ) d ← A(guess; σ , aux, Q pub , Q keyGM , Q ¬{(M ,σ )} open , Q read , Q write ) return d ;
De nition 5.5. A dynamic group signature scheme is fully anonymous if, for any PPT adversary A in the experiment Exp anon A,d (λ) described in Figure 5.4, the following distance is negligible:

Adv A anon (λ) Pr Exp anon A,1 (λ) = 1 -Pr Exp anon A,0 (λ) = 1 C 6
Pairing-Based Dynamic Group Signatures

In this chapter, we aim at lifting the signature with e cient protocols from [START_REF] Libert | Short group signatures via structure-preserving signatures: Standard model security from simple assumptions[END_REF] to the random oracle model [START_REF] Bellare | Random Oracles Are Practical: A Paradigm for Designing E cient Protocols[END_REF] in order to get an e cient construction. In the Camenish and Lysyanskaya terminology, signatures with e cient protocols [START_REF] Camenisch | A Signature Scheme with E cient Protocols[END_REF] are digital signatures which come with two companion protocols: a protocol whereby a signer can obliviously sign a committed message known only to the user and a zero-knowledge proof to e ciently attest possession of a hidden message-signature pair.

This building block proved useful in the design of many e cient anonymity-related protocols such as anonymous credentials [START_REF] Chaum | Security without Identi cation: Transactions System to Make Big Brother Obsolete[END_REF][START_REF] Camenisch | An e cient system for non-transferable anonymous credentials with optional anonymity revocation[END_REF], which are similar to group signatures except that anonymity is irrevocable (meaning that there is no opening authority). In other words, an anonymous credential scheme involves one (or more) credential issuer(s) and a set of users who have a long term secret key which can be seen as their digital identity, and pseudonyms that can be seen as commitments to their secret key. Users can dynamically obtain credentials from an issuer that only knows users' pseudonyms and obliviously sign users' secret keys as well as a set of attributes. Later on, users can make themselves known to veri ers under a di erent pseudonym and demonstrate possession of the issuer's certi cate on their secret key without revealing neither the signature nor the key. In this context, signature with e cient protocols can typically be used as follows: the user obtains the issuer's signature on a committed message via an interactive protocol, and uses a protocol for proving that two commitments open to the same value (which allows proving that the same secret underlies two distinct pseudonyms) and nally a protocol for proving possession of a secret message-signature pair.

As explained in Chapter 2, the quality of a scheme depends on both its e ciency and the reliability of the assumptions it relies on. Before the works described in this chapter, most signature schemes rely on groups of hidden order [START_REF] Camenisch | A Signature Scheme with E cient Protocols[END_REF] or non-standard assumptions in groups with bilinear maps [START_REF] Camenisch | Signature Schemes and Anonymous Credentials from Bilinear Maps[END_REF][START_REF] Boneh | Short group signatures[END_REF][START_REF] Okamoto | E cient Blind and Partially Blind Signatures Without Random Oracles[END_REF]. To illustrate this multi-criteria quality evaluation, we can see that Camenisch and Lysyanskaya proposed a signature scheme that is secure in pairing-friendly groups but relies on the interactive LRSW assumption [START_REF] Lysyanskaya | Pseudonym Systems[END_REF]; but this signature scheme requires O(n) group elements to encode an -block message. Pointcheval and Sanders [START_REF] Sanders | Reassessing Security of Randomizable Signatures[END_REF] improved this signature to go down to O(1) group elements for an -block message, but which is only proven secure in the generic group model (a
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model where group accesses are handled by an oracle that performs the group operations).

We note that besides the scheme presented in this section, we are only aware of two schemes based on xed-size assumptions: (1) A variant of the Camenisch and Lysyanskaya scheme [START_REF] Camenisch | Signature Schemes and Anonymous Credentials from Bilinear Maps[END_REF] due to Gerbush, Lewko, O'Neill and Waters [START_REF] Gerbush | Dual Form Signatures: An Approach for Proving Security from Static Assumptions[END_REF] in composite order groups. Due to this assumption, the groups that are used are inherently bigger and lead to less e cient representations than in prime-order groups: for equivalent security levels, Freeman [Fre10] estimates that computing a pairing over a group N = pq is at least 50 times slower than the same pairing in the prime order group setting. (2) A construction by Yuen, Chow, Zhang and Yu [START_REF] Yuen | Exponent-inversion signatures and ibe under static assumptions[END_REF] under the decision linear assumption [BBS04] that unfortunately does not support "randomizable signature", which is an important property in privacy-enhancing cryptography. An application of this property is, in the context of group signatures, the re-randomization of credentials accross distinct privacy-preserving authentication.

In this chapter, we describe a new signature scheme with e cient protocols and rerandomizable signatures under a simple and well-studied assumption. Namely, the security of our scheme relies on the SXDH assumption in groups of prime order with a bilinear map.

From an e ciency point of view, the signature for an -block message consists of only 4 groups elements.

This signature length is made possible by using e cient QA-NIZK arguments -as presented in Section 4.1.4 and formally de ned in [START_REF] Jutla | Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces[END_REF] -to prove the belonging to some linear subspace spanned by the rows of a matrix. For this purpose, it was shown that for this speci c task, the size of the argument may be independent of the dimension of the considered subspace [JR14, LPJY14, KW15]. The signature scheme described in this chapter (Section 6.2) crucially takes advantage of this observation as -block messages are certi ed using a QA-NIZK argument for a subspace of dimension O( ). This construction natively supports e cient protocols to enhance privacy as described in Section 6.3. Hence, our signature scheme enables the design of an e cient anonymous credentials system based on the sole SXDH assumption.

As another showcase for this signature, we also design another primitive. Namely, a dynamic group signature scheme, as described in Chapter 5, which is practical and relies on simple assumptions (namely, SXDH and SDL). This construction is competitive both in term of signature size and computation time with the best solutions based on non-interactive assumptions [START_REF] Boneh | Short group signatures[END_REF][START_REF] Delerablée | Dynamic fully anonymous short group signatures[END_REF] (in these cases, the Strong Di e-Hellman assumption [START_REF] Boneh | E cient selective-ID secure identity-based encryption without random oracles[END_REF]). Concretely, at the 128-bits security, each signature ts within 320 bytes while providing the strongest sense of anonymity (meaning the de nition in Section 5.3.4).

Our Contribution. In this chapter, we propose a new signature scheme with e cient protocols and re-randomizable signatures under simple, well-studied assumptions. The security of our scheme is proved in the standard model under the Symmetric eXternal Di e-Hellman (SXDH) assumption, which is a well-established, constant-size assumption (i.e., described using a constant number of elements, regardless of the number of adversarial queries) in groups with a bilinear map. Remarkably, we can sign -block messages using only 4 group elements under the SXDH assumption.

Our signature length is made possible by the use of e cient Quasi-Adaptive Non-Interactive Zero-Knowledge (QA-NIZK) arguments for linear subspaces (described in De nition 4.10).

It was shown [LPJY14, JR14, KW15] that, for the task of arguing that a vector of group elements belongs to some linear subspace, the size of arguments may be independent of the dimensions of the considered subspace. Our signature scheme crucially exploits this observation as -block messages are signed by generating a QA-NIZK argument for a subspace of dimension O( ).

Our signature natively supports e cient privacy-enhancing protocols. We describe a twoparty protocol allowing a user to obtain a signature on a committed multi-block message as well as a honest-veri er zero-knowledge protocol for e ciently demonstrating knowledge of a signature on a committed message revealing neither the message nor the signature. Hence, our scheme readily enables the design of an e cient anonymous credentials system based on the sole SXDH assumption.

As another application of our signature scheme, we describe a truly practical group signature (for dynamic groups) based on simple assumptions in the random oracle model. Our scheme is competitive with the best solutions [BBS04, DP06] based on non-interactive assumptions (which are those relying on the Strong Di e-Hellman assumption [START_REF] Boneh | E cient selective-ID secure identity-based encryption without random oracles[END_REF]) in terms of computational cost and signature length. Concretely, at the 128-bit security level, each signature ts within 320 bytes while providing anonymity in the strongest sense (i.e., against adversaries equipped with a signature opening oracle). To the best of our knowledge, the new scheme thus features the shortest group signatures based on standard assumptions.

It seems that our signature scheme has many other potential applications. For example, combining it with the ideas of [START_REF] Camenisch | Balancing Accountability and Privacy Using E-Cash[END_REF] and a pseudo-random function based on standard assumptions (e.g., [START_REF] Naor | Number-theoretic constructions of e cient pseudo-random functions[END_REF]) readily gives a compact e-cash system based on simple hardness assumptions.

The rest of the chapter is organized as follows. We will rst recall the useful building blocks that are used to design and prove our signature scheme that supports e cient protocols in the [START_REF] Camenisch | A signature scheme with e cient protocols[END_REF] fashion. Then we describe this scheme and we next give the construction and the proof for the group signature scheme for dynamically growing groups. Finally, we show the experimental results we obtain for this group signature scheme.

Building blocks

We use bilinear maps e : G × G → G T over groups of prime order p and we rely on the assumed security of the SDL and SXDH problems de ned in Section 3.1. All these de nitions are recalled below.

De nition 3.1 (Pairings [BSS05]

). A pairing is a map e : G × G → G T over cyclic groups of order p that veri es the following properties for any g ∈ G, ĝ ∈ G:

(i) bilinearity: for any a, b ∈ Z p , we have e(g a , ĝb ) = e(g b , ĝa ) = e(g, ĝ) ab .

(ii) non-degeneracy: e(g, This section recalls the QA-NIZK argument of [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF] for proving membership in the row space of a matrix. In the description below, we assume that all algorithms take as input the description of common public parameters cp consisting of asymmetric bilinear groups (G, G, G T , p) of prime order p > 2 λ , where λ is the security parameter. In this setting the problem is to convince that v is a linear combination of the rows of a given M ∈ G t×n .

ĝ) = 1 G T ⇐⇒ g = 1 G or ĝ = 1 G . (iii)
Kiltz and Wee [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF] suggested the following construction which simpli es [START_REF] Libert | Non-malleability from Malleability: Simulation-Sound Quasi-Adaptive NIZK Proofs and CCA2-Secure Encryption from Homomorphic Signatures[END_REF] and remains secure under SXDH. We stress that cp is independent of the matrix

M = ( M 1 • • • M t ) T . Keygen(cp, M): Given public parameters cp = (G, G, G T , p) and the matrix M = (M i,j ) ∈ G t×n . First, choose ĝz ← U( G). Pick tk = (χ 1 , . . . , χ n ) ← U(Z n p )
and compute ĝj = ĝz χ j , for all j = 1 to n.

Then, for i = 1 to t, compute z i = n j=1 M -χ j i,j and output crs = {z i } t i=1 , ĝz , {ĝ j } n j=1 ∈ G t × G n+1 . Prove(crs, v, {ω i } t i=1 ): To prove that v = M ω 1 1 • • • M ωt t ,
for some witness ω 1 , . . . , ω t ∈ Z p , where M i denotes the i-th row of M, parse crs as above and return π = t i=1 z ω i i .

Sim(tk, v):

In order to simulate a proof for a vector v ∈ G n using tk

= {χ i } n i=1 , output π = n j=1 v -χ j j . Verify(crs, v, π): Given π ∈ G, v = (v 1 , . . . , v n ) and crs parsed as above, return 1 if and only if (v 1 , . . . , v n ) = (1 G , . . . , 1 G ) and π satis es 1 G T = e(π, ĝz ) • n j=1 e(v j , ĝj ).
The proof of the soundness of this QA-NIZK argument system requires the matrix M to be witness-samplable. This means that the reduction has to know the discrete logarithms of the group elements of M. This requirement is compatible with our security proofs.

A Randomizable Signature on Multi-Block Messages

In [LPY15], Libert et al. described an F-unforgeable signature 1 based on the SXDH assumption. We show that their scheme implies an e cient ordinary digital signature which makes it possible to e ciently sign multi-block messages in Z p while keeping the scheme compatible with e cient protocols. In order to keep the signature length independent of the number of blocks, we exploit the property that the underlying QA-NIZK argument [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF] has constant size, regardless of the dimensions of the considered linear subspace. Moreover, we show that their scheme remains unforgeable under the SXDH assumption.

Keygen(λ, ) : Choose bilinear groups cp = (G, G, G T , p) of prime order p > 2 λ with g ← U(G), ĝ ← U( G). 1. Choose ω, a ← U(Z p ), and set h = g a , Ω = h ω . 2. Choose v = (v 1 , . . . , v , w) ← U(G +1 ).

De ne a matrix

M = (M j,i ) j,i ∈ G ( +2)×(2 +4) M =   g 1 +1 1 +1 h v T g I +1 h I +1 1 T +1   , (6.1)
where

1 +1 = (1 G , . . . , 1 G ) ∈ G +1 .
4. Run Keygen(cp, M ) of the QA-NIZK argument of Section 6.1.1 to get the common reference string crs

= {z i } +2 i=1 , ĝz , {ĝ j } 2 +4 j=1 .
The private key is sk := ω and the public key is

pk = cp, g, h, ĝ, v, Ω = h ω , crs .
Sign(sk, m = (m 1 , . . . , m )) : given the private key sk = ω and a message m ∈ Z p , choose s ← U(Z p ) to compute

σ 1 = g ω • (v m 1 1 • • • v m • w) s , σ 2 = g s , σ 3 = h s .
Then, run Prove of the QA-NIZK argument to prove that the following vector of

G 2 +4 (σ 1 , σ m 1 2 , . . . , σ m 2 , σ 2 , σ m 1 3 , . . . , σ m 3 , σ 3 , Ω) (6.2) is in the row space of M. This QA-NIZK proof π ∈ G consists of π = z ω 1 • (z m 1 2 • • • z m +1 • z +2 ) s . Return the signature σ = σ 1 , σ 2 , σ 3 , π ∈ G 4 .
Verify(pk, σ, m) : parse σ as above and m as a tuple (m 1 , . . . , m ) in Z p and return 1 if and only if

e(Ω, ĝ2 +4 ) -1 = e(π, ĝz ) • e(σ 1 , ĝ1 ) (6.3) • e(σ 2 , ĝm 1 2 • • • ĝm +1 • ĝ +2 ) • e(σ 3 , ĝm 1 +3 • • • ĝm 2 +2 • ĝ2 +3 ).
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The signature on scalars thus only consists of 4 elements in G while the veri cation equation only involves a computation of 5 pairings2 .

Theorem 6.1. The above signature scheme is existentially unforgeable under chosen-message attacks (eu-cma) if the SXDH assumption holds in (G, G, G T ).

Proof. We will proceed as in [START_REF] Libert | Short group signatures via structure-preserving signatures: Standard model security from simple assumptions[END_REF] to prove that the scheme of section 6.2 is secure under chosen-message attacks. Namely we will consider a sequence of hybrid games involving two kinds of signatures.

Type A signatures: These are real signatures:

σ 1 = g ω • (v m 1 1 • • • v m • w) s , σ 2 = g s , π = z ω 1 • (z m 1 2 • • • z m +1 • z +2 ) s , σ 3 = h s . (6.4) Since (σ 1 , σ m 1 2 , . . . , σ m 2 , σ 2 , σ m 1 3 , . . . , σ m 3 , σ 3 , Ω
) is in the row space of M, the QA-NIZK proof π has the same distribution as if it were computed as

π = σ -χ 1 1 • +1 i=2 σ -χ i m i-1 2 • σ -χ +2 2 •   2 +2 i= +3 σ -χ i m i--2 3   • σ -χ 2 +3 3 • Ω -χ 2 +4 . (6.5)
We also de ne Type A signatures as a generalization of Type A signatures where only condition (6.4) are imposed and no restriction is given on π beyond the fact that it should be a valid homomorphic signature on vector (6.2).

Type B signatures: These use a random value ω ∈ R Z p instead of the secret key ω. We pick random ω , s, s 1 ← U(Z p ) and compute:

(σ 1 , σ 2 , σ 3 ) = (g ω • (v m 1 1 • • • v m • w) s , g s , h s+s 1 ),
The QA-NIZK proof π is computed as in (6.5) by using tk = {χ i } 2 +4 i=1 . Note that Type B signatures can be generated without using ω ∈ Z p .

We consider a sequence of games. In Game i, S i denotes the event that A produces a valid signature σ on M such that (M , σ ) was not queried before, and by E i the event that A produces a Type A signature.

Game 0: This is the real game. The challenger B produces a key pair (sk, pk) and sends pk to A. Then A makes Q signature queries: A sends messages M i to B, and B answers by sending

σ i = Sign(sk, M i ) to A. Finally A sends a pair (M , σ ) / ∈ {(M i , σ i )} Q i=1
and wins if Verify(pk, σ , M ) = 1.

Game 1: We change the way B answers signing queries. The QA-NIZK proofs π are then computed as simulated QA-NIZK proofs using tk as in (6.5). These QA-NIZK proofs are thus simulated proofs for true statements, and then their distribution remains unchanged. We have

Pr[S 1 ] = Pr[S 1 ∧ E 1 ] + Pr[S 1 ∧ ¬E 1 ]
. Lemma 6.2 states that the event S 1 ∧ ¬E 1 happens with all but negligible probability:

Pr[S 1 ∧ ¬E 1 ] ≤ Adv DDH G (λ) -1/p. Thus our task is now to upper-bound the probability Pr[S 1 ∧ E 1 ]. Game 2.k (0 ≤ k ≤ Q): In Game 2.
k, the challenger returns a Type B signature for the rst k queries. At the last Q -k signature queries, the challenger answers a type A signature. Lemma 6.3 ensures that

Pr S 2.k ∧ E 2.k -Pr S 2.(k-1) ∧ E 2.(k-1) is smaller than Adv DDH G (λ) + 1/p.
In Game 2.Q, we know that if SXDH holds, A can only output a type A forgery even if it only obtains type B signatures during the game. Nevertheless, lemma 6.4 shows that a type A forgery in Game 2.Q contradicts the DDH assumptions in G. Therefore we have

Pr[S 2.Q ∧ E 2.Q ] ≤ Adv DDH G (λ).
Putting the above altogether, the probability Pr[S 0 ] is upper-bounded by

Adv DDH G (λ) + 1 p + Q Adv DDH G (λ) + 1 p + Adv DDH G (λ) < (Q + 2) • Adv SXDH G, G (λ) + 1 p .
Lemma 6.2. In Game 1, if the DDH assumption holds in G, A can only output a type A forgery.

Proof. Let A be an attacker that does not output a type A forgery. We will build an attacker B against the soundness of the Quasi-Adaptive NIZK (QA-NIZK) scheme, which security is implied from the double-pairing problem that reduces from DDH as explained in [START_REF] Libert | Linearly Homomorphic Structure-Preserving Signatures and Their Applications[END_REF].

Let us de ne the vector σ ∈ G 2 +4 as

σ (σ 1 , σ m 1 2 , . . . , σ m 2 , σ 2 , σ m 1 3 , . . . , σ m 3 , σ 3 , Ω) ∈ G 2 +4 .
If (M , σ ) is not a type A forgery, σ is then not in the row space of M.

Our reduction B receives as input cp = (G, G, G T , p), a matrix M as in (6.1) and a common reference string crs (depending on the matrix) for an instance of the QA-NIZK scheme allowing to prove that vectors of dimension 2 +4 are in the row space of M. The generation of the matrix M xes g, h and v = (v 1 , . . . , v , w) ∈ G +1 . After that, B picks ω ← U(Z p ) and ĝ ← U( G), and set Ω = h ω . Then, the reduction B sends to A cp and the veri cation key:

pk = g, h, ĝ, v, ω, crs . 6. P B D G S
Since B knows the secret key ω ∈ Z p , it can answer all signing queries by honestly running the Sign algorithm, in particular, it does not need to know tk to do this.

When A halts, it outputs (M , σ ) where σ is not a Type A forgery, so that σ is not in the row space of M. Therefore, outputting π constitutes a valid proof against the soundness property of the scheme, and thus implies an algorithm against DDH as in [KW15] since the matrix can be witness-samplable. Proof. Let us assume there exists an index k ∈ {1, . . . , Q} and an adversary A that outputs a Type A forgery with smaller probability in Game 2.k than in Game 2.(k -1). We build a DDH distinguisher B.

Algorithm B takes in (g a , g b , η) ∈ G 3 , where η = g a(b+c) , and

decides if c = 0 or c ∈ R Z p . To do this, B sets h = g a . It picks ω, a v 1 , b v 1 , . . . , a v , b v , a w , b w ← U(Z p ) and sets Ω = h ω as well as: ∀i ∈ {1, . . . , } : v i = g av i • h bv i , w = g aw • h bw .
The reduction B also chooses tk

= {χ i } 2 +4 i=1 and computes crs = ({z j } 2 +4 j=1 , ĝz , {ĝ i } 2 +4 i=1 ) as in steps 3-4 of Keygen. It then outputs pk = (g, h, ĝ, v, ω, crs).
Then, queries are answered depending on their index j:

Case j < k: B computes a Type B signature, σ = (σ 1 , σ 2 , σ 3 , π), using tk = {χ i } 2 +4
i=1 with the QA-NIZK simulator to computes π.

Case j > k:

The last Q -k -1 signing queries are computed as Type A signatures, which B is able to generate using the secret key ω ∈ Z p he knows and crs or tk

= {χ i } 2 +4
i=1 to produces valid proofs.

Case j = k: In the k-th signing query (m 1 , . . . , m ), B embeds the DDH instance in the signature and simulates either Game 2.k or Game 2.(k -1) depending on whether η = g ab or η = g a(b+c) for some c ∈ R Z p . Namely, B computes σ 2 = g b , σ 3 = η, and

σ 1 = g ω σ aw+ i=1 av i m i 2 σ bw+ i=1 bv i m i 3
. Then B simulates QA-NIZK proofs π as recalled in (6.5), and sends σ = (σ 1 , σ 2 , σ 3 , π) to A. b+c) for some c ∈ R Z p , we have:

If η = g ab , the k-th signature σ is a Type A signature with s = b. If η = g a(
σ 1 = g ω g ac•(bw+ i=1 bv i m i ) (v m 1 1 • • • v m w) b = g ω (v m 1 1 • • • v m w) b σ 2 = g b , σ 3 = h b+c Where ω = ω + ac • (b w + i=1 b v i m i ). Since the term b w + i=1 b v i m i is uniform and independent of A's view, σ is distributed as a Type B signature if η = g a(b+c) .
When A terminates, it outputs a couple (m 1 • • • m , σ ) that has not been queried during the signing queries. Now the reduction B has to determine whether σ is a Type A forgery or not. To this end, it tests if the equality:

σ 1 = g ω σ aw+ i=1 av i m i 2 σ bw+ i=1 bv i m i 3 (6.6) is satis ed. If it is, B outputs 1 to indicate that η = g ab .
Otherwise it outputs 0 and rather bets that η ∈ R G.

To see why this test allows recognizing Type A forgeries, we remark that σ is of the form:

σ 2 = g s , σ 3 = h s+s 1 , σ 1 = g ω+s 0 (v m 1 1 • • • v m w) s ,
and the goal of B is to decide whether (s 0 , s 1 ) = (0, 0) or not. We notice that

s 0 = a • s 1 • (b w + i=1 b v i • m i )
if the forgery ful lls relation (6.6) and we show this to only happen with probability 1/p for any s 1 = 0 meaning that Type B forgery passes the test with the same probability.

From the entire game, and assuming a forgery which passes the test, we have the following linear system:

      I +1 a • I +1 0 T +1 ac • (m 1 | • • • |m |1) 0 T +1 as 1 • (m 1 | • • • |m |1)       •                 a v 1 . . . a v a w b v 1 . . . b v b w                 =           log g (v 1 ) . . . log g (v ) log g (w) ω -ω s 0          
where, 0 +1 denotes the zero vector of length + 1 and m 1 , . . . , m is the message involved in the k-th signing query. Note that the (l + 2)-th equation is meaningless when c = 0 since then ω = ω. However, even if c = 0 the information that A can infer about

(a v 1 , . . . , a v , a w , b v 1 , . . . , b v , b w ) ∈ Z 2 +2
p during the game amounts to the rst + 2 equations of the system which is of full rank. It means that this vector is unpredictable since all the solutions of this linear system live in a sub-space of dimension at least one (actually = (2 + 2) -( + 2)). Finally, as long as s 1 = 0, the right value s 0 can only be guessed with probability 1/p since the last row of the matrix is independent of the others as soon as (m 1 , . . . , m ) = (m 1 , . . . , m ) = 0.

To conclude the proof, since B is able the tell apart the type of the forgery, if A's probability to output a forgery of some Type in Game k -1 (i.e., c = 0) was signi cantly di erent than in Game k (i.e., c = 0) then B would be able to solve the DDH problem with non-negligible advantage.

Lemma 6.4. In Game 2.Q, a PPT adversary outputting a type A forgery would contradict the DDH assumption in G:

Pr[S 2.Q ∧ E 2.Q ] ≤ Adv DDH G (λ).
Proof. We will build an algorithm B for solving the Computational Di e Hellman problem (CDH) which is at least as hard as the DDH problem. The reduction B takes as
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input a tuple (g, h, Ω = h ω ) and computes g ω . To generate pk, B picks ĝ ← U( G), a v 1 , . . . , a v , a w ← U(Z p ) and computes v 1 = g av 1 , . . . , v = g av , and w = g aw . Then B generates tk

= {χ i } 2 +4 i=1 , crs = ({z j } +2 j=1 , ĝz , {ĝ i } 2 +4
i=1 ) as in step 3-4 of the key generation algorithm, then sends the public key pk = g, h, ĝ, v, Ω = h ω , crs to A.

B also retains tk = {χ i } 2 +4
i=1 to handle signing queries. We recall that during the game, signing queries are answered by returning a Type B signature so that, using tk, B can answer all queries without knowing the ω = log h (Ω) which is part of the CDH challenge.

The results of Lemma 6.3 implies that even if A only obtains Type B signatures, it will necessarily output a Type A forgery σ = (σ 1 , σ 2 , σ 3 , π ) unless the DDH assumption does not hold in G. This event thus allows B to compute

g ω = σ 1 • σ 2 -aw-i=1 av i m i ,
which contradicts the DDH assumption in G.

Companion Protocols

In this section, we give Σ-protocols (Section 4.1.2) for issuing a signature on a committed multi-block message and for proving knowledge of a valid message-signature pair.

Proof of Knowledge of a Signature on a Committed Message

We give Σ-protocols for proving the knowledge of a signature-message pair (σ, m) satisfying the veri cation equation (6.3) of the scheme of Section 6.2

e(Ω, ĝ2 +4 ) -1 = e(σ 1 , ĝ1 ) • e(σ 2 , ĝm 1 2 • • • ĝm +1 • ĝ +2 ) (6.7) • e(σ 3 , ĝm 1 +3 • • • ĝm 2 +2 • ĝ2 +3 ) • e(π, ĝz ),
where σ = (σ 1 , σ 2 , σ 3 , π) and m = (m 1 , . . . , m ). We note that, as shown in the proof of Theorem 6.1, a candidate signature (σ 1 , σ 2 , σ 3 , π) may satisfy the veri cation equation although log g (σ 2 ) = log h (σ 3 ). In applications to anonymous credentials, a malicious credential issuer could take advantage of this fact in attempts to break the anonymity of the scheme (e.g., by linking two authentications involving the same credential). For this reason, we consider a protocol for proving possession of a possibly maliciously generated signature.

We thus consider the case of arbitrary valid signatures that may have been maliciously computed by a signer who, e.g., aims at tracing provers across di erent authentications. In this setting, we can still obtain a perfect SHVZK Σ-protocol to hedge against such attacks.

A rst attempt to e ciently build such a protocol is to "linearize" the veri cation equation (6.7) by making sure that two witnesses are never paired together. However, we will still have to deal with (parallelizable) intermediate Σ-protocols for quadratic scalar relations.

Even though a quadratic pairing-product equation e(x 1 , â)•e(x 2 , ŷ) -for variables x 1 , x 2 , ŷ and constant â -can be linearized by partially randomizing the variables so as to get the equation e(x 1 • x r 2 , â) • e(x 2 , ŷ • â-r ) (which allows ŷ = ŷ • â-r to appear in the clear), proving knowledge of a valid signature still requires proving a statement about some representation of ŷ which now appears in committed form. Somehow, going through the randomizing factor â-r involves a quadratic relation between some known exponents to get special-soundness. To ease the entire proof we rather directly commit to the variables in G and Ĝ using their available generator g and ĝ which are not among the constants of the veri cation equation of the signature. We additionally need an extra generator f of G whose discrete logarithm is unknown.

Commit Given (σ, m), conduct the following steps.

Commit to d

1 := ĝm 1 2 • • • ĝm +1 • ĝ +2 ∈ Ĝ and d 2 := ĝm 1 +3 • • • ĝm 2 +2 • ĝ2 +3 ∈ Ĝ. To this end, choose r 1 , r 2 ← U(Z p ) and compute D1 = d 1 • ĝr 1 and D2 = d 2 • ĝr 2 .
2. In order to prove knowledge of an opening of commitments

D1 , D2 ∈ G to the same message m = (m 1 , . . . , m ) ∈ Z p , choose s 1 , s 2 , u 1 , . . . , u ← U(Z p ) and compute Ê1 = ĝu 1 2 • • • ĝu +1 • ĝs 1 and Ê2 = ĝu 1 +3 • • • ĝu 2 +2 • ĝs 2 .
3. Using the randomness r 1 , r 2 ∈ Z p from step 1, de ne

σ 0 = σ r 1 2 • σ r 2 3 and commit to (π, σ 0 , σ 1 , σ 2 , σ 3 ) ∈ G 5 . For this purpose, choose t z , t 0 , t 1 , t 2 , t 3 ← U(Z p ) at random and set C z = π•g tz , C i = σ i •g t i , for i ∈ {0, . . . , 3}, and D0 = ĝtz z •ĝ t 1 1 • Dt 2 1 • Dt 3 2 •ĝ -t 0 .
4. In order to prove (partial) knowledge of an opening to

(C z , C 0 , C 1 , C 2 , C 3 , D0 ), compute Ê0 = ĝvz z • ĝv 1 1 • Dv 2 1 • Dv 3 2 • ĝ-v 0 for random v z , v 0 , v 1 , v 2 , v 3 ← U(Z p ).

5.

Prove that C 0 is well-formed relatively to the committed values in C 1 , C 2 and the coins r 1 , r 2 ∈ Z p used in D1 , D2 . To this end, prove knowledge of the representation

C 0 = C r 1 2 • C r 2 3 • g t 4 , where t 4 = t 0 -r 1 • t 2 -r 2 • t 3 . To do this, compute F 0 = C s 1 2 • C s 2 3 • g v 4 , for v 4 ← U(Z p )
and where s 1 , s 2 ∈ Z p are the random coins used in Ê1 , Ê2 .

To prove that t

4 = t 0 -r 1 • t 2 -r 2 • t 3 , (re-)commit to t 0 , t 2 , t 3 , t 4 ∈ Z p by picking x 2 , x 3 , x 4 ← U(Z p ) and computing T i = g t i • f x i ∀i ∈ {0, 2, 3, 4},
where

x 0 = x 2 • r 1 + x 3 • r 2 + x 4 .
Ensure that committed variables coincide with those of previous steps by computing

{V i = g v i • f y i } i∈{0,2,3,4} ,
where y 0 , y 2 , y 3 , y 4 ← U(Z p ). To prove the equality

T 0 = T r 1 2 • T r 2 3 • T 4 , re-use s 1 , s 2 ∈ Z p from steps 2 and 5 to compute S 0 = T s 1 2 • T s 2 3 .
Finally, keep C z ∈ G and all the random coins in aux, and output

com = {C i } 3 i=0 , F 0 , {(T i , V i )} i=0,2,3,4 , S 0 , {( Di , Êi )} 2 i=0 ∈ G 14 × Ĝ6 (6.8) 6. P B D G S
Challenge Given com as per (6.8), pick ρ ← U(Z p ) uniformly at random and return chall = ρ.

Response On inputs com, aux and chall = ρ, compute:

1. mi = ρ • m i + u i , for i = 1 to , r1 = ρ • r 1 + s 1 , and r2 = ρ • r 2 + s 2 ; 2. w z = ρ • t z + v z and w i = ρ • t i + v i , for i = 0 to 3; 3. w 4 = ρ • t 4 + v 4 , where t 4 := t 0 -t 1 • r 1 -t 2 • r 2 ; 4. z i = ρ • x i + y i for each i ∈ {0, 2, 3, 4}. Output resp ∈ G × Z +12 p as C z , { mi } i=1 , r1 , r2 , w z , {w i } 4 i=0 , {z i } i=0,2,3,4 .
Verify Given (com; chall; resp) return 0 if it does not parse correctly or if the following relations do not hold:

1. ( D1 /ĝ +2 ) ρ • Ê1 = ĝ m1 2 • • • ĝ m +1 • g r1 and ( D2 /ĝ 2 +3 ) ρ • Ê2 = ĝ m1 +3 • • • ĝ m 2 +2 • g r2 ; 2. D ρ 0 • Ê0 = ĝwz z • ĝw 1 1 • Dw 2 1 • Dw 3 2 • ĝ-w 0 and C ρ 0 • F 0 = C r1 2 • C r2 3 • g w 4 .
3.

T ρ i • V i = g w i f z i for each i ∈ {0, 2, 3, 4} and 
(T 0 /T 4 ) ρ • S 0 = T r1 2 • T r2 3 .
(6.9)

Then, return 1 if and only if

e(C 0 , ĝ) • e(g, D0 ) • e(Ω, ĝ2 +4 ) -1 (6.10) = e(C 1 , ĝ1 ) • e(C 2 , D1 ) • e(C 3 , D2 ) • e(C z , ĝz ).
It is worth noticing that no pairing evaluation is required until the nal step of Verify, which is almost as e cient as the veri cation of underlying signatures. Moreover, the prover's rst message com is of constant-size and the communication complexity of the protocol exceeds the length of the witness by a constant additive overhead.

Theorem 6.5. The above interactive scheme is a secure Σ-protocol for the language L sig induced by the relation R sig (pk, ( σ, m)) = 1 if and only if Verify (pk, σ, m) = 1, where (KeyGen, Sign, Verify ) is the signature of Section 6.2.

Proof. Correctness. Expanding an honestly generated D0 = ĝtz

z • ĝt 1 1 • Dt 2 1 • Dt 3 2
• ĝ-t 0 in equation (6.10) and regrouping the pairing factors gives

e(C 0 • g -t 0 , ĝ) • e(Ω, ĝ2 +4 ) -1 = e(C 1 • g -t 1 , ĝ1 ) • e(C 2 • g -t 2 , D1 ) • e(C 3 • g -t 3 , D2 ) • e(C z • g -tz , ĝz ).
Now, expanding the commitments to group elements in G reduces this equation to 

e(σ r 1 2 • σ r 2 3 , ĝ) • e(Ω, ĝ2 +4 ) -1 = e(σ 1 , ĝ1 ) • e(σ 2 , D1 ) • e(σ 3 , D2 ) • e(π,
d 1 = ĝm 1 2 • • • ĝm +1 • ĝ +2 , and D2 = d 2 • ĝr 2 , where d 2 = ĝm 1 +3 • • • ĝm 2 +2 •ĝ 2 +3
. From step 2 of Verify, a similar argument on D0 (with Ê0 ) implies the extractability of (t z , t 0 , t 1 , t 2 , t 3 , t 4 ) such that D0 = ĝtz

z •ĝ t 1 1 • Dt 2 1 • Dt 3 2 •ĝ -t 0 .
Moreover, together with previously extracted (r 1 , r 2 ), step 2 of Verify also guarantees that t 4 satis es

C 0 = C r 1 2 • C r 2 3 • g t 4 . We now state that quantities {σ i = C i • g -t i } i∈{1,2,3} and π = C z • g -tz satisfy (6.3), so that, together with m = (m 1 , . . . , m ), they form a valid witness for R sig . Namely, (σ, m) = ((σ 1 , σ 2 , σ 3 , π), (m 1 , . . . , m )) is a valid message-signature pair.
To see this, de ne σ 0 = C 0 • g -t 0 . Since equation (6.10) holds by hypothesis, if we expand all commitments using extracted values, we nd

e(σ 0 , ĝ) • e(Ω, ĝ2 +4 ) -1 = e(σ 1 , ĝ1 ) • e(σ 2 , d 1 • ĝr 1 ) • e(σ 3 , d 2 • ĝr 2 ) • e(π, ĝz ).
We are thus left with showing that σ 0 = σ r 1 2 • σ r 2 3 or, equivalently, e(σ 0 , ĝ) = e(σ 2 , ĝr 1 ) • e(σ 3 , ĝr 2 ). Remember that, from step 2 of Verify, we know that extracted (r

1 , r 2 , t 4 ) ∈ Z 3 p form a representation of C 0 w.r.t. the base (C 0 , C 2 , g): i.e., C 0 = C r 1 2 • C r 2 3 • g t 4 , which, from the de nition of σ 0 , σ 2 , σ 3 , yields σ 0 • g t 0 = σ r 1 2 • σ r 2 3 • g t 2 •r 1 +t 3 •r 2 +t 4 .
Hence, we are done if we can show that t 0 = t 2 r 1 + t 3 r 2 + t 4 . But this exactly what step 3 of Verify and the special soundness of the sub-protocol involving (T 0 , T 2 , T 3 , T 4 ) tells us. First, we have a representation of these T i 's w.r.t. the basis (g, f ) ∈ G 2 which guarantees that we are working on the already extracted (t 0 , t 2 , t 3 , t 4 ) involved in the expressions of D0 and C 0 . Second, the veri cation equation (6.9) ensures that

T 0 = T r 1 2 • T r 2 3
• T 4 and the nal result follows by replacing them by their representation.

P SHVZK.

To show this property we must build a simulator that, on input of a challenge chall = ρ ∈ R Z p , emulates a valid transcript without any witness. First, we need to compute a random tuple C z , {C i } 3 i=0 , { D} 2 i=0 constrained to satisfy the veri cation equation (6.10).

From the identity e(Ω, ĝ2

+4 ) -1 = e(Ω -1 , ĝ2 +4 ) we rst pick a 0 , a 1 , a 2 , a z ← Z p , D1 ← G and we have e(Ω, ĝ2 +4 ) -1 = e(Ω -1 , ĝ2 +4 • ĝa 0 ĝa 1 1 Da 2 1 ĝaz z ) • e(Ω a 0 , ĝ) • e(Ω a 1 , ĝ1 ) • e(Ω a 2 , D1 ) • e(Ω az , ĝz ), so that we can set C 0 = Ω -a 0 , C 1 = Ω a 1 , C 2 = Ω a 2 and C z = Ω az . Let B := ĝ2 +4 • ĝa 0 ĝa 1 1 Da 2 1 ĝaz
z . Now, we can introduce the constant g ∈ G in the equation by picking a g ← Z p since e(Ω -1 , B) = e(Ω -1 • g ag , B) • e(g, B-ag ). Then, we nally set D0 = Bag , D2 = Ba 3 and C 3 = (Ω -1 • g ag ) 1/a 3 for a random a 3 ← Z p .
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To complete the simulated transcript, we run a parallel execution of the simulators of all Σ-protocols used as subroutines.

More explicitly, rst pick ρ ← U(Z p ) and m1 , . . . , m , r1 , r2 , w z , w 0 , . . . , w 4 , z 0 , z 2 , z 3 , z 4 ← U(Z p ).

Also, choose T 0 , T 2 , T 3 , T 4 ← U(G) and do the following:

1. Compute Ê1 = ( D1 /ĝ +2 ) -ρ • ĝ m1 2 • • • ĝ m +1 • g r1 and, similarly, Ê2 = ( D2 /ĝ 2 +3 ) -ρ • ĝ m1 +3 • • • ĝ m 2 +2 • g r2 ; 2. Compute F 0 = C -ρ 0 • C r1 2 • C r2 3 • g w 4 as well as Ê0 = D ρ 0 • ĝwz z • ĝw 1 1 • Dw 2 1 • Dw 3 2 • ĝ-w 0 ; 3. Compute V i = T -ρ i • g v i f z i ,
for each i ∈ {0, 2, 3, 4}, and

S 0 = (T 0 /T 4 ) -ρ • T r1 2 • T r2 3 .
This concludes the proof.

Signing a Committed Message

At a high level, the protocol involves a committer who wants to get a signature on m = (m 1 , . . . , m ) and rst computes a commitment of the form

c v = v m 1 1 • • • v m • u r
, where u is the extra public parameter (with unknown discrete log). The signer gives back elements of the form τ 1 = g ω c s v , τ 2 = g s , τ 3 = h s which is almost the desired signature. To get the component σ 1 of the right form relatively to τ 2 , τ 3 the committer has to remove the factor u rs from τ 1 . Then, the signer also sends τ 0 = u s to enable removing τ r 0 . In the protocol some randomizing steps are included as well as other additional components allowing the committer to extract π, the QA-NIZK part of the signature. In the security proof of the protocol we thus have to show that the additional value τ 0 = u s does not a ect the unforgeability of the signature.

The protocol. At the beginning of a new run of the protocol, the committer has a vector m = (m 1 , . . . , m ), the public-key of the signature scheme and the extra generator u ∈ G (which can be a hashed point), the signer also has the secret key of the signature scheme but not m. To get a signature on m, the committer picks r ← U(Z p ) and computes a perfectly hiding commitment

c v = v m 1 1 • • • v m • u r ∈ G. Besides, it also computes the elements c z = z m 1 2 • • • z m +1 • u tz .
The signer receives these commitments and they both engage in an interactive proof of knowledge of an equal representation of c v relatively to the basis (v 1 , . . . , v ; u) and c z relatively to the basis (z 2 , . . . , z +1 ; u), where the signer plays the role of the veri er. Depending on the success of the proof the signer computes what we can call a "pre-signature" consisting of the following group elements

τ 1 = g ω • (c v • w) s , τ 3 = h s , π 0 = z ω 1 • c s z • z s +2 , τ 2 = g s , τ 0 = u s ,
for a random s ← U(Z p ). In the nal step, the user received the pre-signature, then picks s ← U(Z p ) and computes (σ 1 , σ 2 , σ 3 , π) ∈ G 4 as follows

σ 1 = τ 1 • τ -r 0 • (v m 1 1 • • • v m • w) s , σ 2 = τ 2 • g s , π = π 0 • τ -tz 0 • (z m 1 2 • • • z m +1 • z +2 ) s , σ 3 = τ 3 • h s .
Finally the user checks the validity of the signature. Depending on the validity, the user outputs the signature or a failure symbol ⊥.

We notice that the number of transmitted group elements is constant and no pairing is needed before the signature veri cation phase. In comparison, the construction of [START_REF] Camenisch | A signature scheme with e cient protocols[END_REF] requires groups of larger hidden order and their protocol for signing committed message blocks requires a linear number of range proofs.

Security. We brie y sketch the proof of the above protocol in front of malicious entities since classical arguments can be applied. Assuming that the committer uses secure ZKPK and does not output ⊥, a malicious signer which receives perfectly hiding commitments c v , c z cannot tell apart an honest proof from a simulated proof. Consequently the signer learns nothing from m during the execution of the protocol. In the other case, we have to show that a corrupted committer remains unable to produce valid signature on a new vector m . First, since the generation of u is not under the controlled of the committer but of the random oracle, u can be made independent of rest of pk. Then, we only need to show that the signature remains unforgeable when τ 0 is given in the signature. Since m and s can be extracted from the proof of knowledge the reduction can output a signature on m. Moreover it is easy to see from the security proof (in Section 6.1.1) of the signature how this additional element can be simulated. Actually the only place in the reduction where τ 0 could not be computed directly as u s for a known s is when the challenger B has to embed an SXDH challenge in a simulated signature. Given (g, h, g b , h b+c ), B can compute u = g au h bu from random a u , b u ← Z p and program the random oracle to output this element u as the speci cation of the public-key would do. Then to simulate τ 0 B simply has to compute

τ 0 = (g b ) au (h b+c ) bv = u b h c•bv which is u b or random.
The rest of the reduction remains unchanged since the value a u , b u are completely independent of those already described in the sketch of proof in Section 6.1.1.

Remark. Since a malicious signer may know the simulation trapdoor tk = {χ i } 2 +4 i=1 of the underlying QA-NIZK argument, he could produce valid signature so that log g σ 2 = log h σ 3 . Then, if the committer later needs to proof knowledge of the received signature it then has to use the sigma protocol of Section 6.2 where both σ 2 and σ 3 only appear in committed form.

The Dynamic Group Signatures Scheme

We adapt the protocol of section 6.2 to build a dynamic group signature [START_REF] Bellare | Foundations of group signatures: The case of dynamic groups[END_REF][START_REF] Kiayias | Secure scalable group signature with dynamic joins and separable authorities[END_REF]. At a high level, each group member obtains a membership certi cate consisting of a signature 6. P B D G S (σ 1 , σ 2 , σ 3 , π) on a message ID ∈ Z p which is only known to the group member. During the joining protocol, each group member thus obtains a signature on a committed message ID ∈ Z p . Here, we use a deterministic commitment to ID, which su ces to ensure security against framing attacks and allows for a better e ciency. When signing a message, each group member veri ably encrypts the components (σ 1 , π) of his membership certi cate that depend on ID (and not σ 2 , σ 3 which can be assumed to be honestly computed here, unlike in the previous section). For the sake of e ciency, we use a randomness re-using [BBKS07] variant of the Cramer-Shoup encryption scheme [CS98] whereby σ 1 and π are both encrypted using the same encryption exponent θ ∈ Z p . For public veri ability purposes, the validity of Cramer-Shoup ciphertexts is demonstrated using Σ-protocols and the Fiat-Shamir heuristic [START_REF] Fiat | How to prove yourself: Practical solutions to identi cation and signature problems[END_REF] (somewhat in the fashion of [SG98]) rather than designated veri er NIZK proofs [CS98].

In the join protocol, the user proves knowledge of his membership secret ID ∈ Z p in a zero-knowledge manner, which restricts the group manager to sequentially interact with prospective users. However, this limitation can be removed using an extractable commitment as in [START_REF] Delerablée | Dynamic fully anonymous short group signatures[END_REF].

Keygen(λ, N ): given λ ∈ N, and the maximum number of users

N ∈ poly(n) (λ), choose asymmetric bilinear groups cp = (G, G, G T , p) of order p > 2 λ .
1. Generate a key pair (pk s , sk s ) for the scheme of section 6.2 for a one-block message (i.e., = 1). The secret key is sk s = ω, while the public key is

pk s = cp, g, h, ĝ, v = (v, w), Ω = h ω , crs ,
where crs = {z j } 3 j=1 , ĝz , {ĝ i } 6 i=1 . 2. Pick x z , y z , x σ , y σ , x ID , y ID ← U(Z p ) and set

X z = g xz h yz , X σ = g xσ h yσ , X ID = g x ID h y ID .
3. Choose a hash function H : {0, 1} * × G 10 × G T → Z p that will be modeled as a random oracle.

4. De ne Y = pk s , X z , X σ , X ID to be the group public key. The group manager's private key is S GM = ω = sk s whereas the opening authority's private key consists of S OA = x z , y z , x σ , y σ , x ID , y ID .

Join (GM,U i ) :
The group manager GM, and the prospective user U i run the following interactive protocol:

1. U i chooses ID ← U(Z p ) and sends the following to GM: If all tests pass, samples a fresh index i ∈ Z p and sends it to U i , otherwise abort.

(V ID , Z ID , Ĝ2,ID , Ĝ4,ID ) = (v ID , z ID 2 , ĝID 2 , ĝID 4 ) 2. GM checks that V ID does not
3. U i runs an interactive zero-knowledge proof of knowledge of ID = log v (V ID ) in interaction with GM. For instance, the 4-round protocol of Cramer et al.

[CDM00] can be used for this purpose. Let π K (ID) denote the interaction transcript.

4. GM uses V ID = v ID to sign ID using the scheme of section 6.2: i.e., GM picks s ← U(Z p ), and uses

S GM = ω to compute σ 1 = g ω • (V ID • w) s = g ω • (v ID • w) s and σ 2 = g s , σ 3 = h s .
Then GM uses Z ID to generate the QA-NIZK proof π ∈ G as

π = z ω 1 • (Z ID • z 3 ) s = z ω 1 • (z ID 2 • z 3 ) s and nally sends cert i = (i, V ID , σ 1 , σ 2 , σ 3 , π)
5. Finally GM and U i respectively store

transcript i = Z ID , Ĝ2,ID , Ĝ4,ID , π K (ID), cert i (6.11)
and

(cert i , sec i ) = (i, V ID , σ 1 , σ 2 , σ 3 , π), ID . Sign(Y, sec i , cert i , M ):
Given a message M ∈ {0, 1} * and a secret sec i = ID, the user U i does the following:

1. Re-randomize the certi cate cert i . Namely, choose r ← U(Z p ) and compute σ2 =

σ 2 • g r , σ3 = σ 3 • h r , σ1 = σ 1 • (v ID • w) r , π = π • (z ID 2 • z 3 ) r .
2. Encrypt elements π, σ1 and v ID from the membership certi cate. Speci cally, choose θ ← U(Z p ) and compute the Cramer-Shoup ciphertext

C CS = (C 1 , C 2 , C z , C σ , C ID ), where C 1 = g θ , C 2 = h θ , C z = π • X θ z , C σ = σ1 • X θ σ , C ID = v ID • X θ ID .
3. Then, prove knowledge of (ID, θ) ∈ Z 2 p such that

C 1 = g θ , C 2 = h θ , C ID = v ID • X θ ID , e(C z , ĝz ) • e(C σ , ĝ1 ) • e(σ 2 , ĝ3 ) • e(σ 3 , ĝ5 ) • e(Ω, ĝ6 ) = e(X z , ĝz ) • e(X σ , ĝ1 ) θ • e(σ 2 , ĝ2 ) • e(σ 3 , ĝ4 ) -ID .
Namely, sample random r ID , r θ ← U(Z p ), compute

R 1 = g r θ , R 2 = h r θ , R 3 = v r ID • X r θ ID , R 4 = e(X z , ĝz ) • e(X σ , ĝ1 ) r θ • e(σ 2 , ĝ2 ) • e(σ 3 , ĝ4 ) -r ID
and then de ne

c as c = H(M, C CS , σ2 , σ3 , R 1 , R 2 , R 3 , R 4 ). Finally compute the two responses s θ = r θ + c • θ, s ID = r ID + c • ID both in Z p . 6. P B D G S 4. Return the signature Σ which consists of Σ = (C CS , σ2 , σ3 , c, s ID , s θ ) ∈ G 7 × Z 3 p (6.12)
Verify(Y, M, Σ): Parse the signature Σ as in (6.12) and

C CS as (C 1 , C 2 , C z , C σ , C ID ).
Then, output 1 if the the zero-knowledge proof veri es. Namely,

1. Compute the group elements R 1 , R 2 , R 3 ∈ G as: R 1 = g s θ • C -c 1 , R 2 = h s θ • C -c 2 , R 3 = v s ID • X s θ ID • C -c ID ;
(6.13)

and the element R 4 ∈ G T as e(X z , ĝz ) • e(X σ , ĝ1 ) s θ • e(σ 2 , ĝ2 ) • e(σ 3 , ĝ4 ) -s ID • e(C z , ĝz ) • e(C σ , ĝ1 ) • e(σ 2 , ĝ3 ) • e(σ 3 , ĝ5 ) • e(Ω, ĝ6 ) -c . (6.14) 2. Return 1 if c = H(M, C CS , σ2 , σ3 , R 1 , R 2 , R 3 , R 4 ) and 0 otherwise.
Open(Y, S OA , M, Σ): Given a message-signature pair (M, Σ) and the OA's private key S OA = x z , y z , x σ , y σ , x ID , y ID :

1. Decrypt C CS = (C 1 , C 2 , C z , C σ , C ID ) by computing σ 1 = C σ • C -xσ 1 • C -yσ 2 , π = C z • C -xz 1 • C -yz 2 , V ID = C ID • C -x ID 1 C -y ID 2 .
2. Search V ID in the database of joining transcripts (6.11) and check that it corresponds to a valid signature σ1 , σ2 , σ3 , π for the committed value V ID . If so, return the corresponding i, otherwise return ⊥.

It is possible to spare one group element in the signature by eliminating the encryption C ID of v ID which is only used to open signatures in constant time. Then, the opening algorithm has to check for each transcript if (σ 1 , σ2 , σ3 , π) corresponds to the identi er ID embedded in (σ 1 , Ĝ2,ID , Ĝ4,ID ) by testing the relation

1 ? = e(π, ĝz ) • e(σ 1 , ĝ1 ) • e(σ 2 , Ĝ2,ID • ĝ3 ) • e(σ 3 , Ĝ4,ID • ĝ5 ) • e(Ω, ĝ6 ).
This results in a modi ed opening algorithm which takes O(N ) in the worst-case. In applications where signature openings are infrequent, this is acceptable.

Security

The security of the above dynamic group signature scheme, namely full anonymity, security against misidenti cations and security against framing attacks that are de ned in Section 5.3 are expressed in Theorem 6.6, Theorem 6.9 and Theorem 6.10 respectively. The security relies on the SXDH assumption for anonymity and misidenti cation, and on the SDL assumption for non-frameability.

Theorem 6.6. If SXDH holds in (G, G, G T ), the scheme is CCA-anonymous in the random oracle model.

Proof. We use a sequence of games where, for each i, W i is the event that the adversary A wins in Game i.

At the rst transition, we need to rely on the security of the computational soundness of the QA-NIZK argument of Section 6.1.1 which relies on the SXDH assumption, since σ2 and σ3 appear un-encrypted in each group signature.

Game 0: This is the real CCA-anonymity game.

In the challenge phase, the adversary outputs two valid membership certi cates and membership secrets (cert 0 , sec 0 ), (cert 1 , sec 1 ) and obtains a challenge signature which the challenger computes using (cert d , sec d ), where d ← U({0, 1}). We de ne W 0 to be the event that the adversary outputs d = d.

Game 1: This game is as Game 0, except that the challenger B aborts in the event, which we call F 1 , that A chooses membership certi cates cert 0 , cert 1 for which one of the underlying signatures σ 1 , σ 2 , σ 3 , π correctly veri es but log g (σ 2 ) = log h (σ 3 ). This implies that the vector (σ 1 , σ ID 2 , σ 2 , σ ID 3 , σ 3 , Ω) is outside the row space of the matrix M (6.1), so that F 1 would contradict the soundness of the QA-NIZK proof of [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF] (via the same arguments as in Theorem 9 of [START_REF] Libert | Short group signatures via structure-preserving signatures: Standard model security from simple assumptions[END_REF] since the matrix can be witness-samplable here) and thus the DDH assumption in G. We have

[Pr[W 1 ] -P [W 0 ]| ≤ Adv DDH G (λ).
Game 2: We change the way to generate the challenge signature Σ . Instead of faithfully running the Schnorr-like protocol, we use the HVZK-simulator to produce the proofs s θ , s ID without knowing the witnesses θ, ID. Namely, we pick c, s θ , s ID ← U(Z p ) at random and set

R 1 = g s θ • C -c 1 , R 2 = h s θ • C -c 2 , R 3 = v s ID • X s θ ID • C -c
ID as well as R 4 ∈ G T as in (6.14). Then, we program the random oracle and assign the output c to the hash value

H(M, C CS , σ2 , σ3 , R 1 , R 2 , R 3 , R 4 ).
In the unlikely event that this value was previously de ned (which only happens with probability at most 1/p 3 ), the challenger aborts. 

Thus | Pr[W 2 ] -Pr[W 1 ]| ≤ 1/p 3
C z = π • C xz 1 • C yz 2 , C σ = σ • C xσ 1 • C yσ 2 , C ID = v ID • C x ID 1 • C y ID 2 .
The distribution of (C z , C σ , C ID ) remains the same and we have

Pr[W 3 ] = Pr[W 2 ].
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Game 4: Here, we modify the distribution of the challenge signature and replace C 2 = h θ by C 2 = h θ+θ , for a randomly chosen θ ← U(Z p ). We prove in Lemma 6.7 that

|Pr[W 4 ] -Pr[W 3 ]| ≤ Adv DDH G (λ).
Game 5: We introduce one more change. Instead of sampling h ∈ R Z p , the challenger chooses a random α ← U(Z p ) at the beginning of the game, sets h = g α and retains the information α = log g (h) (note that we are done with the DDH assumption and we can henceforth use α = log g (h)). At each signature opening query, the challenger returns ⊥ on any signature

Σ = (C 1 , C 2 , C z , C σ , C ID , σ2 , σ3 , c, s ID , s θ ) such that C 2 = C α 1 .
Game 5 remains the same as Game 4. until the event E 5 that A queries the opening of a signature that properly veri es although C 2 = C α 1 . Lemma 6.8 states that Pr[E 5 ] ≤ q O • q H /p, where q O is the number of opening queries and q H is the number of random oracle queries.

In Game 5, Σ perfectly hides (π, σ1 , v ID ). Indeed,

C 1 = g θ , C 2 = h θ+θ , C z = (z • h θ •yz ) • X θ z , C σ = (σ 1 • h θ •yσ ) • X θ σ , C ID = (v ID • h θ •y ID ) • X θ ID
and (y σ , y z , y ID ) ∈ Z 3 p are completely independent of A's view. The only way for A to infer information about (y σ , y z , y ID ) is to make opening queries on signatures such that

C 2 = C α 1 .
However, all such signatures are declared invalid in Game 5. It comes that

Pr[W 5 ] = 1/2. Finally, A's advantage Pr[W 0 ] -1/2 is bounded by Adv DDH G (λ) + Adv DDH G (λ) + q O • q H p + 1 p 3 ,
which concludes the proof.

Lemma 6.7. In Game 4, the adversary A wins the anonymity game with negligibly di erent probabilities than in Game 3 if the DDH assumption holds in G.

Proof. Let us assume that an adversary A wins with noticeably di erent probabilities in Game 4 and Game 3. We then construct a DDH distinguisher B from A.

Our reduction B takes as input a DDH instance (g a , g b , η), where η = g a(b+c) and has to decide with non-negligible probability ε whether c = 0 or c ∈ R Z p . To achieve this, B sets h = g a and computes the challenge signature as C 1 = g b and C 2 = η. The rest of the game continues like in Game 3 (which is also the same as in Game 2). If A wins and correctly

guesses d = d ∈ {0, 1}, B outputs 1, meaning that C 2 = h b = g ab . Otherwise, B returns 0 meaning that (g a , g b , η) ∈ R G 3 . It is easy to see that B's advantage as a DDH distinguisher is ε if | Pr[W 4 ]-Pr[W 3 ]| = ε.
Lemma 6.8. In Game 5, we have

Pr[E 5 ] ≤ q O • q H /p.
Proof. This proof uses idea similar to the security proof of the Katz-Wang [KW03] signature scheme. In Game 5, event E 5 happens if log g (C 1 ) = log h (C 2 ) and the veri cation equations (6.13) and (6.14) holds. In particular, we have

R 1 = g s θ • C -c 1 and R 2 = h s θ • C -c
2 , which can be interpreted as a linear system with unknowns (c,

s θ ) ∈ Z 2 p log g (R 1 ) = s θ -log g (C 1 ) • c modp, log h (R 2 ) = s θ -log h (C 2 ) • c modp. (6.15)
We can assume w.l.o.g. that each opening query is preceded by the corresponding random oracle query (otherwise, the reduction can simply make the hash query for itself). The input of each hash query contains a pair (R 1 , R 2 ) determining the non-homogeneous terms of the linear system (6.15). Since log g (C 1 ) = log h (C 2 ), the system is full-rank, so that for each (R 1 , R 2 ), there is exactly one pair (c, s θ ) ∈ Z 2 p that satis es (6.15). The probability that, in response to a random oracle query, the reduction returns the value of c which is uniquely determined by (6.15) is at most 1/p. For all hash queries, the probability that one of them be answered with the uniquely determined c ∈ Z q is at most q H /p. A union bound over all opening queries implies that the probability that the event E 4 happens is smaller than

Pr[E 4 ] ≤ q O • q H /p.
The proof of security against misidenti cation attacks requires the reduction to rewind a the proof of knowledge of ID at each execution of the join protocol with the adversary attempting to escape traceability. For this reason, we need to assume that users join the system sequentially, rather than concurrently. However, this problem can be solved as in [START_REF] Delerablée | Dynamic fully anonymous short group signatures[END_REF] by having the user send an extractable commitment to ID and non-interactively prove (via the Fiat-Shamir heuristic) that he did so correctly. This allows the reduction to extract ID without rewinding the user at each execution of Join. Then, the proof of security against framing attacks must be modi ed by having the reduction simulate the proof of knowledge of ID (by programming a random oracle) and rely on the hiding property of the extractable commitment. Theorem 6.9. In the ROM, the scheme is secure against misidenti cation attacks under the SXDH assumption in (G, G).

Proof. The proof uses the forking technique [START_REF] Stern | Security Arguments for Digital Signatures and Blind Signatures[END_REF] which consists in implicitly rewinding the zero-knowledge proof by running the adversary twice and changing the outputs of the random oracle after the hash query that involves the forgery message. The Forking Lemma [PS00] -more precisely, its generalization given by Bellare and Neven [BN06]ensures that, after two runs of the adversary, the reduction can extract witnesses of which knowledge is demonstrated by the signature of knowledge.

Let us assume an attacker A against the misidenti cation game that wins with nonnegligible probability ε. We build an adversary B against the chosen-message security of the signature scheme of section 6.2.

Keygen. At the key generation, B invokes its own challenger for the chosen-message security game to obtain the public key pk s for the signature scheme. pk s is embedded in the group public key Y. Except for S GM , all keys are generated as in the normal Keygen algorithm.

Join. To answer joining queries without knowing sk s , B uses the knowledge extractor of the proof of knowledge of ID = log v (V ID ) to extract the identity to be signed. Namely,
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on a Join query, the reduction B rewinds the adversary A in order to extract the witness ID = log v (V ID ) of which A demonstrates knowledge at step 3 of the join protocol. Having extracted ID ∈ Z p , B invokes its own signing oracle on the message ID to obtain (σ 1 , σ 2 , σ 3 , z, r). Then, B returns cert i = (i, V ID , σ 1 , σ 2 , σ 3 , z, r) as in a normal execution of the join protocol.

At some point, the attacker A produces a valid forgery

(M , Σ = (C 1 , C 2 , C z , C σ , C ID , σ 2 , σ 3 , c , s ID , s θ ))
for which the opening algorithm does not reveal a properly registered identity. With all but negligible probability, A must have queried the random oracle value

H(M , C CS , σ 2 , σ 3 , R 1 , R 2 , R 3 , R 4 )
which would have been unpredictable otherwise.

Thus, B replays the adversary A with the same input and random tape as in the rst run.

In the second run, the random oracle is also the same until the hash query

H(M , C CS , σ 2 , σ 3 , R 1 , R 2 , R 3 , R 4 ).
At this point, the forking occurs and B outputs fresh random oracle values. By the Forking Lemma of [START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF], B obtains two suitably related forgeries with non-negligible probability ε • (ε/q H -1/p). Namely, B will obtain two matching transcripts

(C CS , σ 2 , σ 3 , c , s ID , s θ ), (C CS , σ 2 , σ 3 , c † , s † ID , s † θ ) of the Σ-protocol for the commitment message com = (C CS , σ 2 , σ 3 , R 1 , R 2 , R 3 , R 4 ).
From the responses s ID and s † ID (that necessarily involve the same identi er ID which is uniquely determined by

C CS = (C 1 , C 2 , C z , C σ , C ID )), B runs the knowledge extractor of to obtain ID ∈ Z p . Namely, given (c , c , s θ , s θ , s ID , s ID ) ∈ Z 6 p with c = c † , s θ = s † θ s ID = s † ID
which veri es the relation (6.13) , (6.14) for the same commitment

(R 1 , R 2 , R 3 , R 4 ) ∈ G 4 , one can compute the secrets ID = s † ID -s ID c -c † mod p and θ = s † θ -s θ c -c † mod p.
Finally B uses S OA to extract σ 1 , r , z and outputs ID , σ = (σ 1 , σ 2 , σ 3 , r , z ) as a forgery for the signature scheme of Section 6.2. Theorem 6.10. In the ROM, the scheme is secure against framing attacks under the SDL assumption.

Proof. Let us assume that a PPT adversary A can create, with advantage ε, a forgery (M , σ ) that opens to some honest user i ∈ U b who did not sign M . We give a reduction B that uses A to break SDL. Algorithm B takes as input an SDL instance (g, ĝ, g a , ĝa ) and uses its interaction with the adversary A to compute a ∈ Z p . To generate the group public key Y, B runs all the steps of the real setup algorithm Keygen except step 1. At step 1, B de nes the generators g, ĝ in pk s to be those of its input and computes h = g α h , v = g αv , w = g αw , ĝz = ĝαz for randomly chosen scalars α h , α v , α w , α z ← U(Z p ). In order to compute {z j } 3 j=1 of crs contained in pk s , B chooses tk = {χ j } 6 j=1 of step 4 of the key generation algorithm of the signature scheme of Section 6.2 with = 1. (Note that when = 1, n = 6 and that {z j } 3 j=1 are QA-NIZK argument for the vectors (g, 1, 1, 1, 1, h), (v, g, 1, h, 1, 1) and (w, 1, g, 1, h, 1). Moreover {ĝ i = ĝχ i z } 6 i=1 are the verifying key.) As a result of this setup phase, B knows S GM = sk s = ω, S OA = x z , y z , x σ , y σ , x ID , y ID and even tk. The adversary A is run on input of the group public key Y := (pk s , (X z , X σ , X ID ), H), which has the same distribution as in the real attack game.

Should A decide to corrupt the group manager or the opening authority during the game, B is able to reveal S GM = sk s and S OA when requested. In addition, B must be able to answer the following queries.

-Q b-join -queries: At any time A can act as a corrupted group manager and introduce a new honest user i in the group by invoking the Q b-join oracle. Then, B runs J user on behalf of the honest user in an execution of Join. At step 1 of Join, B picks a random δ i ← U(Z p ) and uses tk to compute the tuple (V i , Z i , Ĝ2,i , Ĝ4,i ), for an unknown

sec i = ID i = a • δ i ∈ Z p , that J GM expects at step 1 of the join protocol. Namely, B computes the vector v i = (V i , G i , 1, H i , 1, 1) = (v, g, 1, h, 1, 1) ID i as V i = (g a ) αv•δ i , G i = (g a ) δ i , H i = (g a ) α h •δ i ,
and then computes Z i as a simulated QA-NIZK proof for v i ∈ G 6 using tk. A straightforward calculation shows that

Z i = z ID i 2
since the QA-NIZK argument of Section 6.1.1 has a deterministic proving algorithm, so that (V i , Z i , Ĝ2,i , Ĝ4,i ) successfully passes the test of step 2. As for the last two components, for each j ∈ {2, 4}, B computes Ĝj,i := (ĝ a ) δ i (αzχ j +αrγ j ) = (ĝ

χ j z ĝγ j r ) ID i = ĝID i j ,
At step 3 of Join, B simulates the interactive proof of knowledge of ID i = log v (V i ) using the simulator. In the rest of the protocol, B proceeds like the actual run and obtains 

cert i = (i, V i , σ 1 , σ 2 , σ 3 , π). Finally, B stores (cert i , Z i , δ i , Ĝ2,i , Ĝ4,i ). -Q sig -queries: When A requests user i ∈ U b to sign a message M , B is able to use the membership certi cate cert i = (i, V i , σ 1 , σ 2 , σ 3 , π) to compute the ciphertext C CS at
σ1 = σ 1 • (V i • w) r σ2 = σ 2 • g r , π = π • (Z i • z 3 ) r , σ3 = σ 3 • h r .
Then B encrypts π, σ1 and V i as in the real signing algorithm to get the encryption 

C CS = (C 1 , C 2 , C z , C σ , C ID ). Then, B chooses c, s ID , s θ ∈ Z p and computes R 1 , R 2 , R
, σ2 , σ3 , R 1 , R 2 , R 3 , R 4 ).
In the event that H is already de ned at
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that point, B aborts. The probability to fail at one signing query is ≤ q s /p 3 , where q s is the number of signing queries.

When A halts, it presumably frames some honest user i ∈ U b by outputting a signature

Σ = (C 1 , C 2 , C z , C σ , C ID , σ 2 , σ 3 , c , s ID , s θ ),
for some message M , that opens to i ∈ U b although user i did not sign M . With high probability, A must have queried the hash value

H(M , C CS , σ 2 , σ 3 , R 1 , R 2 , R 3 , R 4 ),
which would be unpredictable otherwise. Hence, B can run A a second time with the same input and random tape.

At the moment when

A queries H(M , C CS , σ 2 , σ 3 , R 1 , R 2 , R 3 , R 4
) in the second run, B starts responding with di erent random oracle values which depart from those of the initial run. The Forking Lemma of [START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF] ensures that, with non-negligible probability the second run will result in a forgery

Σ † = (C 1 , C 2 , C z , C σ , C ID , σ † 2 , σ † 3 , c † , s † ID , s † θ )
on the same message M , with distinct challenges c † = c . From the two responses

(s ID , s θ ), (s † ID , s † θ ), B can extract witnesses (θ , ID ) satisfying C ID = v ID X θ
ID and which identi es V i = v ID . At this stage, B can compute and output the sought-after SDL solution a := ID /δ i in Z p . This observation tells us that, if A has advantage ε as a framing adversary making q H random oracle queries, then B implies an algorithm solving the SDL problem with probability ε(ε/q H -1/p).

We stress that the proofs can be easily adapted to the case where the opening algorithm has linear complexity in the number of users. this scheme is designed for static groups only and relies on the Strong Di e-Hellmann assumption, which is a non-standard q-type assumption, and its anonymity is only proved in the CPA sense.

Comparison with Existing Schemes

Delerablée and Pointcheval [DP06] presented a scheme designed for a dynamically growing group and which is also fully (i.e., CCA) anonymous. The security of their scheme is based on the eXternal Di e-Hellman assumption (XDH), which we also use here, and the q-SDH assumption. In [START_REF] Delerablée | Dynamic fully anonymous short group signatures[END_REF], each signature consists of 4 group elements and 5 scalars in Z p , which leads to the same signature size as previously. They also proposed a variant to get rid of the XDH assumption at the cost of 2 more group elements and one more scalar, but they still rely on the q-SDH assumption.

Bichsel et al. [BCN + 10] proposed a very short group signature for dynamic groups, where each signature consists of 3 group elements and 2 elements in Z p . The downsides are their use the LRSW assumption [START_REF] Lysyanskaya | Pseudonym Systems[END_REF], which is a very ad-hoc interactive assumption, and their security notion is not fully-anonymous, but is an hybrid security with sel essanonymity, which is marked "CCA-" in Table 6.1. Another caveat is that, unlike the two previous systems, the opening complexity of their scheme is linear in the number of group members.

In 2015, Pointcheval and Sanders [START_REF] Sanders | Short Randomizable Signatures[END_REF] gave another instantiation of [BCN + 10] based on a variant of the LRSW assumption in the asymmetric setting (meaning using only Type III pairings), which provides even shorter signatures than [BCN + 10] with the same downsides.

Their scheme provides signatures composed of only 2 group elements in G and 2 scalars in Z p .

Our main contribution compared to these schemes is to provide size-comparable signatures -we recall that our scheme is composed of 7 group elements and 3 scalars in Z p -while relying on standard, constant-size assumptions. Moreover, we can notice that we can save one element in G at the expense of a linear-time opening algorithm in the number N gs of group users (like [BCN + 10]).

Experimental Results

An implementation of the aforementioned group signature scheme has been made in C using the Relic toolkit for pairing-based cryptography [AG] and is available at the following URL: https://gforge.inria.fr/projects/sigmasig-c/.

The relic toolkit provides an implementation for pairing computations, hash functions (SHA-256 in this case) and benchmarking macros. The benchmarking was made on a singlecore of an Intel® Core™ i5-7500 CPU @ 3.40GHz (Kaby Lake architecture) with 6MB of cache.

To implement pairings, the relic library implements the Barreto-Naehrig [START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF] In this chapter, we present the rst dynamic group signature scheme based on lattice assumptions. This construction relies on a signature scheme with e cient protocols as in Chapter 6, which is used in a similar manner. As a consequence, it is possible to design lattice-based anonymous credentials from this building block. The group signature scheme relies on the Gentry, Peikert and Vaikuntanathan identity-based encryption [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF] with the Canetti, Halevi and Katz [START_REF] Canetti | Chosen-Ciphertext Security from Identity-Based Encryption[END_REF] transform to obtain a CCA2-secure public key encryption scheme which will be used to provide full-anonymity.

The group signature is proven secure in the ROM under the SIS and LWE assumptions, which are xed-size and well-studied assumptions. As of the security parameter λ and groups of up to N gs members, the scheme features public key size Õ(λ 2 ) • log N gs , user's secret key size Õ(λ) and signature size Õ(λ) • log N gs . Our scheme thus achieves a level of e ciency comparable to recent proposals based on standard (i.e. non-ideal) lattices [LLLS13, NZZ15, LNW15, LLNW16] in the static setting as depicted in Table 7.1. In particular, the cost of moving to dynamic group is reasonable: while using the scheme from [START_REF] Ling | Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based[END_REF] as a building block, our construction lengthens the signature size only by a (small) constant factor.

The signature scheme with e cient protocols is built upon the SIS-based signature of Böhl et al. [BHJ + 15], which is itself a variant of Boyen's signature [START_REF] Boyen | Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more[END_REF]. The latter scheme involves a public key containing matrices A, A 0 , . . . , A ∈ Z n×m q and signs an -bit message m ∈ {0, 1} by computing a short vector v ∈ Z 2m such that

[A | A 0 + j=1 m[j]A j ]•v = 0 n mod q. The variant proposed by Böhl et al. only uses a constant number of matrices A, A 0 , A 1 ∈ Z n×m q
where each signature is assigned with a single-use tag τ and the public key involves an extra matrix D ∈ Z n×m q and a vector u ∈ Z n q . A message m is then signed by rst applying a chameleon hash function h = H(m, s) ∈ {0, 1} m and signing h by computing a short v ∈ Z 2m such that

[A | A 0 + τ A 1 ] • v = u + D • h mod q.
Our scheme extends [BHJ + 15] so that an N -block message (m 1 , . . . , m N ) ∈ ({0, 1} L ) N , for some L ∈ N, is signed by outputting a tag τ ∈ {0, 1} and a short v ∈ Z 2m such that

[A | A 0 + j=1 τ [j]A j ] • v = u + D • H(m 1 , . . . , m N , s) mod q, where the chameleon hash function computes c M = D 0 • s + N k=1 D k • m k mod q,
for some short vector s, before re-encoding c M so as to enable multiplication by D. In order to obtain a signature scheme that possesses e cient protocols akin to Camenish and Lysyanskaya [START_REF] Camenisch | A signature scheme with e cient protocols[END_REF], our idea is to have the tag τ ∈ {0, 1} play the same role as the prime exponent in Strong-RSA-based schemes [START_REF] Camenisch | A signature scheme with e cient protocols[END_REF]. To adapt this idea in the context of signatures with e cient protocols, we have to overcome several di culties. The rst one is to map c M back in the domain of the chameleon hash function while preserving the compatibility with ZK proofs. To solve this issue, we extend a technique used in [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-size Ring Signatures and Group Signatures Without Trapdoors[END_REF] in order to build a "zero-knowledge-friendly" chameleon hash function. This function hashes the message by outputting the coordinate-wise binary decomposition
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w of D 0 • s + N k=1 D k • m k . Using the "power-of-two" matrix H = I ⊗ [1 | 2 | • • • | 2 log q ], we can prove that w = H(m 1 , . . . , m N , s) by demonstrating the knowledge of short vectors (m 1 , . . . , m N , s, w) that veri es H • w = D 0 • s + N k=1 D k • m k
mod q which can be proven using the ZKAoK of Section 4.3.

The second problem is to prove knowledge of (τ, v, s) and (m 1 , . . . , m N ) satisfying

[A | A 0 + j=1 τ [j] • A j ] • v = u + D • CMHash(m 1 , .
. . , m N , s), without revealing any of the witnesses. To this end, we provide a framework for proving all the involved statement (and many other relations that naturally arise in lattice-based cryptography) as special cases. We reduce the statements to asserting that a short integer vector x satis es an equation of the form P • x = v mod q, for some public matrix P and vector v, and belongs to a set VALID of short vectors with a particular structure. While the small-norm property of x is provable using standard techniques (e.g., [START_REF] Lyubashevsky | Lattice-based identi cation schemes secure under active attacks[END_REF]), we argue its membership of VALID by leveraging the properties of Stern-like protocols [START_REF] Stern | A new paradigm for public key identi cation[END_REF][START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF][START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF]. In particular, we rely on the fact that their underlying permutations interact well with combinatorial statements pertaining to x, especially x being a bitstring with a speci c pattern. We believe our framework to be of independent interest as it provides a blueprint for proving many other intricate relations in a modular manner.

When we extend the scheme with a protocol for signing committed messages, we need the signer to re-randomize the user's commitment before signing the hidden messages. This is indeed necessary to provide the reduction with a backdoor allowing to correctly answer the i † -th query by "programming" the randomness of the commitment. Since we work with integers vectors, a straightforward simulation incurs a non-negligible statistical distance between the simulated distributions of re-randomization coins and the real one (which both have a discrete Gaussian distribution). Camenisch and Lysyanskaya [START_REF] Camenisch | A signature scheme with e cient protocols[END_REF] address a similar problem by choosing the signer's randomness to be exponentially larger than that of the user's commitment so as to statistically "drown" the aforementioned discrepancy. Here, the same idea would require to work with an exponentially large modulus q. Instead, we adopt a more e cient solution, inspired by Bai et al. [BLL + 15], which is to apply an analysis based on the Rényi divergence rather than the statistical distance. In short, the Rényi divergence's properties tell us that, if some event E occurs with noticeable probability in some probability space P , so does it in a di erent probability space Q for which the second order divergence R 2 (P ||Q) is su ciently small. In our setting, R 2 (P ||Q) is precisely polynomially bounded since the two probability spaces only diverge in one signing query.

Our dynamic group signature scheme avoids these di culties because the group manager only signs known messages: instead of signing the user's secret key as in anonymous credentials, it creates a membership certi cate by signing the user's public key. Our zeroknowledge arguments accommodate the requirements of the scheme in the following way. In the joining protocol that dynamically introduces new group members, the user i chooses a membership secret consisting of a short discrete Gaussian vector z i . This user generates a public syndrome v i = F • z i mod q, for some public matrix F, which constitutes his public key. In order to certify v i , the group manager computes the coordinate-wise binary expansion bin(v i ) of v i . The vector bin(v i ) is then signed using our signature scheme. Using the resulting signature (τ, v, s) as a membership certi cate, the group member is able to sign a message by proving that: (i) He holds a valid signature (τ, v, s) on some secret binary message bin(v i ); (ii) The latter vector bin(v i ) is the binary expansion of some syndrome v i of which he knows a GPV pre-image z i . We remark that condition (ii) can be proved by providing evidence that we have v i = H • bin(v i ) = F • z i mod q, for some short integer vector z i and some binary bin(v i ), where H is the "powers-of-2" matrix. Our abstraction of Stern-like protocols [Ste96, KTX08, LNSW13] allows us to e ciently argue such statements. The fact that the underlying chameleon hash function smoothly interacts with Stern-like zero-knowledge arguments is the property that maintains the user's capability of e ciently proving knowledge of the underlying secret key.

Given the state of NIZK proofs in the lattice setting, it seems hard to provide group signature schemes in the standard model.

In the forthcoming sections, we rst provide the description of our signature with e cient protocols; then a description of our dynamic group signature will be given and nally, we will explain how to use the Stern abstraction of Section 4.3 to provide the required zero-knowledge arguments.

A Lattice-Based Signature with E cient Protocols

Our scheme can be seen as a variant of the Böhl et al. signature [BHJ + 15], where each signature is a triple (τ, v, s), made of a tag τ ∈ {0, 1} and integer vectors (v, s) satisfying

[A | A 0 + j=1 τ [j]•A j ]•v = u+D•h mod q,
where matrices A, A 0 , . . . , A , D ∈ Z n×m q are public random matrices and h ∈ {0, 1} m is a chameleon hash of the message which is computed using randomness s. A di erence is that, while [BHJ + 15] uses a short single-use tag τ ∈ Z q , we need the tag to be an -bit string τ ∈ {0, 1} which will assume the same role as the prime exponent of Camenisch-Lysyanskaya signatures [START_REF] Camenisch | A signature scheme with e cient protocols[END_REF] in the security proof.

We show that a suitable chameleon hash function makes the scheme compatible with Stern-like zero-knowledge arguments [START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF][START_REF] Ling | Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based[END_REF] for arguing possession of a valid message-signature pair. Section 4.3 shows how to translate such a statement into asserting 7. L B D G S that a short witness vector x with a particular structure satis es a relation of the form P • x = v mod q, for some public matrix P and vector v. The underlying chameleon hash can be seen as a composition of the chameleon hash of [CHKP10, Se. 4.1] with a technique used in [START_REF] Papamanthou | Streaming authenticated data structures[END_REF][START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-size Ring Signatures and Group Signatures Without Trapdoors[END_REF]: on input of a message (m 1 , . . . , m N ), it outputs the binary decomposition of D 0 • s + N k=1 D k • m k , for some discrete Gaussian vector s.

Description

We assume that messages are vectors of N blocks Msg = (m 1 , . . . , m N ), where each block is a 2m-bit string

m k = m k [1] . . . m k [2m] ∈ {0, 1} 2m for k ∈ {1, . . . , N }.
For each vector v ∈ Z L q , we denote by bin(v) ∈ {0, 1} L log q the vector obtained by replacing each coordinate of v by its binary representation.

Keygen(1 λ , 1 N ): Given a security parameter λ > 0 and the number of blocks N = poly(λ), choose the following parameters: n = O(λ); a prime modulus q = O(N • n 4 ); dimension m = 2n log q ; an integer = Θ(λ); and Gaussian parameters

σ = Ω( √ n log q log n), σ 0 = 2 √ 2(N + 1)σm 3/2
, and σ 1 = σ 2 0 + σ 2 . De ne the message space as ({0, 1} 2m ) N .

1. Run TrapGen(1 n , 1 m , q) to get A ∈ Z n×m q and a short basis T A of Λ ⊥ q (A). This basis allows computing short vectors in Λ ⊥ q (A) with a Gaussian parameter σ. Next, choose + 1 random A 0 , A 1 , . . . , A ← U(Z n×m q ).

Choose random matrices D ← U(Z n×m q

), D 0 , D 1 , . . . , D N ← U(Z 2n×2m q ) as well as a random vector u ← U(Z n q ).

The private key consists of SK := T A ∈ Z m×m and the public key is

P K := A, {A j } j=0 , {D k } N k=0 , D, u . Sign SK, Msg : To sign an N -block message Msg = (m 1 , . . . , m N ) ∈ {0, 1} 2m N ,
1. Choose a random string τ ← U({0, 1} ). Then, using SK := T A , compute with ExtBasis a short delegated basis T τ ∈ Z 2m×2m for the matrix

A τ = [A | A 0 + j=1 τ [j]A j ] ∈ Z n×2m q . (7.1) 2. Sample a vector s ← D Z 2m ,σ 1 . Compute c M ∈ Z 2n q as a chameleon hash of (m 1 , . . . , m N ): i.e., compute c M = D 0 • s + N k=1 D k • m k ∈ Z 2n q , which is used to de ne u M = u + D • bin(c M ) ∈ Z n q .
Then, using the delegated basis

T τ ∈ Z 2m×2m , sample a short vector v ∈ Z 2m in D Λ u M q (Aτ ),σ .
Output the signature sig = (τ, v, s) ∈ {0, 1} × Z 2m × Z 2m .

Verify P K, Msg, sig : Given P K, a message Msg = (m 1 , . . . , m N ) ∈ ({0, 1} 2m ) N and a purported signature sig = (τ, v, s) ∈ {0, 1} × Z 2m × Z 2m , return 1 if

A τ • v = u + D • bin(D 0 • s + N k=1 D k • m k ) mod q. (7.2) and v < σ √ 2m, s < σ 1 √ 2m.
When the scheme is used for obliviously signing committed messages, the security proof follows Bai et al.

[BLL + 15] in that it applies an argument based on the Rényi divergence in one signing query. This argument requires to sample s from a Gaussian distribution whose standard deviation σ 1 is polynomially larger than σ.

We note that, instead of being included in the public key, the matrices {D k } N k=0 can be part of common public parameters shared by many signers. Indeed, only the matrices (A, {A i } i=0 ) should be speci c to the user who holds the secret key SK = T A . In Section 7.1.3, we use a variant where {D k } N k=0 belong to public parameters.

Security Analysis

The security analysis in Theorem 7.1 requires that q > .

Theorem 7.1. The signature scheme is secure under chosen-message attacks under the SIS assumption.

Proof. To prove the result, we will distinguish three kinds of attacks:

Type I attacks are attacks where, in the adversary's forgery sig = (τ , v , s ), τ did not appear in any output of the signing oracle.

Type II attacks are such that, in the adversary's forgery sig = (τ , v , s ), τ is recycled from an output sig (i ) = (τ (i ) , v (i ) , s (i ) ) of the signing oracle, for some index i ∈ {1, . . . , Q}. However, if Msg = (m 1 , . . . , m N ) and Msg (i ) = (m

(i ) 1 , . . . , m (i ) 
N ) denote the forgery message and the i -th signing query, respectively, we have

D 0 • s + N k=1 D k • m k = D 0 • s (i ) + N k=1 D k • m (i ) k .
Type III attacks are those where the adversary's forgery sig = (τ , v , s ) recycles τ from an output sig (i ) = (τ (i ) , v (i ) , s (i ) ) of the signing oracle (i.e., τ (i ) = τ for some index i ∈ {1, . . . , Q}) and we have the collision

D 0 • s + N k=1 D k • m k = D 0 • s (i ) + N k=1 D k • m (i ) k . (7.3)
Type III attacks imply a collision for the chameleon hash function of Kawachi et al. [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF]: if (7.3) holds, a short vector of

Λ ⊥ q ([D 0 | D 1 | . . . | D N ]) is obtained as s T -s (i ) T | m 1 T -m (i ) 1 T | . . . | m N T -m (i ) N T T ,
so that a collision breaks the SIS assumption.
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The security against Type I attacks is proved by Lemma 7.2 which applies the same technique as in [START_REF] Boyen | Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more[END_REF][START_REF] Micciancio | Trapdoors for lattices: Simpler, tighter, faster, smaller[END_REF]. In particular, the pre x guessing technique of [START_REF] Hohenberger | Short and stateless signatures from the RSA assumption[END_REF] allows keeping the modulus smaller than the number Q of adversarial queries as in [START_REF] Micciancio | Trapdoors for lattices: Simpler, tighter, faster, smaller[END_REF]. In order to deal with Type II attacks, we can leverage the technique of [BHJ + 15]. In Lemma 7.3, we prove that Type II attack would also contradict SIS.

Lemma 7.2. The scheme is secure against Type I attacks if the SIS n,m,q,β assumption holds for β = m 3/2 σ 2 ( + 3) + m 1/2 σ 1

Proof. Let A be a PPT adversary that can mount a Type I attack with non-negligible success probability ε. We construct a PPT algorithm B that uses A to break the SIS n,m,q,β assumption. It takes as input Ā ∈ Z n×m q and computes v ∈ Λ ⊥ q ( Ā) with 0 < v ≤ β . Algorithm B rst chooses the -bit strings τ (1) , . . . , τ (Q) ← U({0, 1} ) to be used in signing queries. As in [START_REF] Hohenberger | Short and stateless signatures from the RSA assumption[END_REF], it guesses the shortest pre x such that the string τ contained in A's forgery di ers from all pre xes of τ (1) , . . . , τ (Q) . To this end, B chooses i † ← U({1, . . . , Q}) and t † ← U({1, . . . , }) so that, with probability 1/(Q• ), the longest common pre x between τ and one of the

τ (i) Q i=1 is the string τ [1] . . . τ [t † -1] = τ (i † ) [1] . . . τ (i † ) [t † -1] ∈ {0, 1} t † -1 comprised of the rst (t † -1)-th bits of τ ∈ {0, 1} . We de ne τ † ∈ {0, 1} t † as the t † -bit string τ † = τ [1] . . . τ [t † ]. By construction, with probability 1/(Q • ), we have τ † ∈ τ (1) |t † , . . . , τ (Q) |t †
, where τ

(i)
|t † denotes the t † -th pre x of τ (i) for each i ∈ {1, . . . , Q}.

Then, B runs TrapGen(1 n , 1 m , q) to obtain C ∈ Z n×m q and a basis T C of Λ ⊥ q (C) with T C ≤ O( √ n log q). Then, it picks + 1 matrices Q 0 , . . . , Q ∈ Z m×m , where each matrix Q i has its columns sampled independently from D Z m ,σ . The reduction B de nes the matrices {A j } j=0 as

     A 0 = Ā • Q 0 + ( t † j=1 τ [j]) • C A j = Ā • Q j + (-1) τ [j] • C, for j ∈ [1, t † ] A j = Ā • Q j , for j ∈ [t † + 1, ]
It also sets A = Ā. We note that we have

A τ (i) = Ā A 0 + j=1 τ (i) [j]A j = Ā Ā • (Q 0 + j=1 τ (i) [j]Q j ) + ( t † j=1 τ [j] + (-1) τ [j] τ (i) [j]) • C = Ā Ā • (Q 0 + j=1 τ (i) [j]Q j ) + h τ (i) • C where h τ (i) ∈ [1, t † ] ⊂ [1, ] stands for the Hamming distance between τ (i)
|t † and τ |t † . Note that, with probability 1/(Q • ) and since q > , we have h τ (i) = 0 mod q whenever τ (i)

|t † = τ |t † . Next, B chooses the matrices D k ← U(Z 2n×2m q ) uniformly at random for each k ∈ [0, N ].
Then, it picks a random short matrix R ∈ Z m×m which has its columns independently sampled from D Z m ,σ and computes

D = Ā • R.
Finally, B samples a short vector e u ← D Z m ,σ 1 and computes the vector u ∈ Z n q as u = Ā • e u ∈ Z n q . The public key

P K := A, {A j } j=0 , {D k } N k=0 , D, u is given to A.
At the i-th signing query Msg (i) = (m

(i) 1 , . . . , m (i) 
N ) ∈ ({0, 1} 2m ) N , B can use the trapdoor T C ∈ Z m×m to generate a signature. To do this, B rst samples s (i) ← D Z 2m ,σ 1 and computes a vector u M ∈ Z m q as

u M = u + D • {0, 1} N k=1 D k • m (i) k + D 0 • s (i) mod q.
Using T C ∈ Z m×m , B can then sample a short vector

v (i) ∈ Z 2m in D u M Λ ⊥ (A τ (i)
),σ such that τ (i) , v (i) , s (i) satis es the veri cation equation (7.2).

When A halts, it outputs a valid signature sig = τ

(i † ) , v , s on a message Msg = (m 1 , . . . , m N ) with v ≤ σ √ 2m and s ≤ σ 1 √ 2m.
At this point, B aborts and declares failure if it was unfortunate in its choice of i † ∈ {1, . . . , Q} and t † ∈ {1, . . . , }. Otherwise, with probability 1/(Q • ), B correctly guessed i † ∈ {1, . . . , Q} and t † ∈ {1, . . . , }, in which case it can solve the given SIS instance as follows.

If we parse v ∈ Z 2m as (v 1 T | v 2 T ) T with v 1 , v 2 ∈ Z m , we have the equality Ā Ā • (Q 0 + j=1 τ [j]Q j ) • v 1 v 2 = u + D • {0, 1} D 0 • s + N k=1 D k • m k mod q = Ā • e u + R • {0, 1} D 0 • s + N k=1 D k • m k mod q,
which implies that the vector

w = v 1 + (Q 0 + j=1 τ [j]Q j ) • v 2 -e u -R • {0, 1} D 0 • s + N k=1 D k • m k ∈ Z m is in Λ ⊥ q ( Ā).
Moreover, with overwhelming probability, this vector is non-zero since, in A's view, the distribution of e u ∈ Z m is D Λ u q ( Ā),σ 1 , which ensures that e u is statistically hidden by the syndrome u = Ā • e u . Finally, the norm of w is smaller than β = m 3/2 σ 2 ( + 3) + m 1/2 σ 1 which yields a valid solution of the given SIS n,m,q,β instance with overwhelming probability.

Lemma 7.3. The scheme is secure against Type II attacks if the SIS n,m,q,β assumption holds

for β = √ 2( + 2)σ 2 m 3/2 + m 1/2 .
Proof. We prove the result using a sequence of games. For each i, we denote by W i the event that the adversary wins by outputting a Type II forgery in Game i.
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Game 0: This is the real game where, at the i-th signing query Msg (i) = (m

(i) 1 , . . . , m (i) 
N ), the adversary obtains a signature sig (i) = (τ (i) , v (i) , s (i) ) for each i ∈ {1, . . . , Q} from the signing oracle. At the end of the game, the adversary outputs a forgery sig = (τ , v , s ) on a message Msg = (m 1 , . . . , m N ). By hypothesis, the adversary's advantage is ε = Pr[W 0 ]. We assume without loss of generality that the random -bit strings τ (1) , . . . , τ (Q) are chosen at the very beginning of the game. Since (Msg , sig ) is a Type II forgery, there exists an index i ∈ {1, . . . , Q} such that τ = τ (i ) .

Game 1: This game is identical to Game 0 with the di erence that the reduction aborts the experiment in the unlikely event that, in the adversary's forgery sig = (τ , v , s ), τ coincides with more than one of the random -bit strings τ (1) , . . . , τ (Q) used by the challenger. If we call F 1 the latter event, we have Pr[F 1 ] < Q 2 /2 since we are guaranteed to have ¬F 1 as long as no two τ (i) , τ (i ) collide. Given that Game 1 is identical to Game 0 until F 1 occurs, we have

| Pr[W 1 ] -Pr[W 0 ]| ≤ Pr[F 1 ] < Q 2 /2 .
Game 2: This game is like Game 1 with the following di erence. At the outset of the game, the challenger B chooses a random index i † ← ({1, . . . , Q}) as a guess that A's forgery will recycle the -bit string τ (i † ) ∈ {0, 1} of the i † -th signing query. When A outputs its Type II forgery sig = (τ , v , s ), the challenger aborts in the event that τ

(i † ) = τ (i.e., i † = i ). Since the choice of i † in {1, . . . , Q} is independent of A's view, we have Pr[W 2 ] = Pr[W 1 ]/Q.
Game 3: In this game, we modify the key generation phase and the way to answer signing queries. First, the challenger B randomly picks h 0 , h 1 , . . . , h ∈ Z q subject to the constraints

h 0 + j=1 τ (i † ) [j] • h j = 0 mod q h 0 + j=1 τ (i) [j] • h j = 0 mod q i ∈ {1, . . . , Q} \ {i † } It runs (C, T C ) ← TrapGen(1 n , 1 m , q), (D 0 , T D 0 ) ← TrapGen(1 2n , 1 2m , q) so as to obtain statistically random matrices C ∈ Z n×m q , D 0 ∈ Z 2n×2m q with trapdoors T C ∈ Z m×m , T D 0 ∈ Z 2m×2m consisting of short bases of Λ ⊥
q (C) and Λ ⊥ q (D 0 ), respectively. Then, B chooses a uniformly random D ← (Z n×m q ) and re-randomizes it using short matrices S, S 0 , S 1 , . . . , S ← Z m×m , which are obtained by sampling their columns from the distribution D Z m ,σ . Namely, from D ∈ Z n×m q , B de nes

A = D • S A 0 = D • S 0 + h 0 • C (7.4) A j = D • S j + h j • C ∀j ∈ {1, . . . , }
In addition, B picks random matrices D 1 , . . . , D N ← (Z 2n×2m q ) and a random vector

c M ← (Z 2n q ). It samples short vectors v 1 , v 2 ← D Z m ,σ and computes u ∈ Z n q as u = A τ (i † ) • v 1 v 2 -D • bin(c M ) mod q, where A τ (i † ) = A A 0 + j=1 τ (i † ) [j] • A j = D • S D • (S 0 + j=1 τ (i † ) [j] • S j ) .
The adversary's signing queries are then answered as follows.

• At the i-th signing query (m

(i) 1 , . . . , m (i) 
N ), whenever i = i † , we have

A τ (i) = A A 0 + j=1 τ (i) [j] • A j = A D • (S 0 + j=1 τ (i) [j] • S j ) + h τ (i) • C ∈ Z n×2m q , with h τ (i) = h 0 + j=1 τ (i) [j]•h j = 0.
This implies that B can use the trapdoor T C ∈ Z m×m to generate a signature. To this end, B rst samples a discrete Gaussian vector

s (i) ← D Z 2m ,σ 1 and computes u M ∈ Z n q as u M = u + D • bin( N k=1 D k • m (i) k + D 0 • s (i) ) mod q.
Then, using T C ∈ Z m×m , it samples a short vector

v (i) ∈ Z 2m in D u M Λ ⊥ (A τ (i) ),σ
such that (τ (i) , v (i) , s (i) ) satis es (7.2).

• At the i † -th signing query (m

(i † ) 1 , . . . , m (i † )
N ), we have

A τ (i † ) = A A 0 + j=1 τ (i † ) [j] • A j = D • S D • (S 0 + j=1 τ (i † ) [j] • S j ) ∈ Z n×2m q (7.5)
due to the constraint h 0 + j=1 τ (i † ) [j] • h j = 0 mod q. To answer the query, B uses the trapdoor

T D 0 ∈ Z 2m×2m of Λ ⊥ q (D 0 ) to sample a short vector s (i † ) ∈ D Λ c M q (D 0 ),σ 1 , where c M = c M -N k=1 D k • m (i † ) k ∈ Z 2n q . The obtained vector s (i † ) ∈ Z 2m thus veri es D 0 • s (i † ) = c M - N k=1 D k • m (i † ) k mod q, (7.6) and A receives sig (i † ) = (τ (i † ) , v (i † ) , s (i † ) ), where v (i † ) = (v T 1 | v T 2 )
T . By construction, the returned signature sig (i † ) satis es

A τ (i † ) • v 1 v 2 = u + D • {0, 1} D 0 • s (i † ) + N k=1 D k • m (i † ) k mod q,
and the distribution of (τ

(i † ) , v (i † ) , s (i † )
) is statistically the same as in Game 2.
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We conclude that Pr[W 2 ] is negligibly far apart from Pr[W 3 ] since, by the Leftover Hash Lemma (see [ABB10, Le. 13]), the public key P K in Game 3 is statistically close to its distribution in Game 2.

In Game 3, we claim that the challenger B can use A to solve the SIS problem by nding a short vector of Λ ⊥ q (D) with probability Pr[W 3 ]. Indeed, with probability Pr[W 3 ], the adversary outputs a valid signature sig = (τ

(i † ) , v , s ) on a message Msg = (m 1 , . . . , m N ) with v ≤ σ √ 2m and s ≤ σ 1 √ 2m. If we parse v ∈ Z 2m as (v 1 T | v 2 T ) T with v 1 , v 2 ∈ Z m , we have the equality A τ (i † ) • v 1 v 2 = u + D • bin(D 0 • s + N k=1 D k • m k ) mod q. (7.7)
Due to the way u ∈ Z n q was de ned at the outset of the game, B also knows short vectors

v (i † ) = (v T 1 | v T 2 ) T ∈ Z 2m such that A τ (i † ) • v 1 v 2 = u + D • bin(c M ) mod q. (7.8) Relation (7.6) implies that c M = D 0 • s + N k=1 D k • m k mod q by hypothesis. It follows that bin(c M )-bin(D 0 •s + N k=1 D k •m k
) is a non-zero vector in {-1, 0, 1} m . Subtracting (7.8) from (7.7), we get

A τ (i † ) • v 1 -v 1 v 2 -v 1 = D • bin(c M ) -bin(D 0 • s + N k=1 D k • m k ) mod q,
which implies

D • S D • (S 0 + j=1 τ (i † ) [j] • S j ) • v 1 -v 1 v 2 -v 2 = D • bin(c M ) -bin(D 0 • s + N k=1 D k • m k ) mod q. (7.9)
The above implies that the vector

w = S • (v 1 -v 1 ) + (S 0 + j=1 τ (i † ) [j] • S j ) • (v 2 -v 2 ) +{0, 1} D 0 • s + N k=1 D k • m k -bin(c M )
is a short integer vector of Λ ⊥ q (D). Indeed, its norm can be bounded as w ≤ β = √ 2( + 2)σ 2 m 3/2 + m 1/2 . We argue that it is non-zero with overwhelming probability. We already observed that bin(D 0 • s

+ N k=1 D k • m k ) -bin(c M ) is a non-zero vector of {-1, 0, 1} m , which rules out the event that (v 1 , v 2 ) = (v 1 , v 2 )
. Hence, we can only have w = 0 m when the equality

S • (v 1 -v 1 ) + (S 0 + j=1 τ (i † ) [j] • S j ) • (v 2 -v 2 ) = bin(c M ) -{0, 1} D 0 • s + N k=1 D k • m k (7.10)
holds over Z. However, as long as either v 1 = v 1 or v 2 = v 2 , the left-hand-side member of (7.10) is information theoretically unpredictable since the columns of matrices S and {S j } j=0 are statistically hidden in the view of A. Indeed, conditionally on the public key, each column of S and {S j } j=0 has at least n bits of min-entropy, as shown by, e.g., [MP12, Le. 2.7].

Protocols for Signing a Committed Value and Proving Possession of a Signature

We rst show a two-party protocol whereby a user can interact with the signer in order to obtain a signature on a committed message.

In order to prove that the scheme still guarantees unforgeability for obliviously signed messages, we will assume that each message block m k ∈ {0, 1} 2m is obtained by encoding the actual message

M k = M k [1] . . . M k [m] ∈ {0, 1} m as m k = Encode(M k ) = ( Mk [1], M k [1], . . . , Mk [m], M k [m]
). Namely, each 0 (respectively each 1) is encoded as a pair (1, 0) (resp. (0, 1)). The reason for this encoding is that the proof of Theorem 7.4 requires that at least one block m k of the forgery message is 1 while the same bit is 0 at some speci c signing query. We will show (see Section 7.3) that the correctness of this encoding can be e ciently proved using Stern-like [START_REF] Stern | A new paradigm for public key identi cation[END_REF] protocols.

To sign committed messages, a rst idea is exploit the fact that our signature of Section 7.1.1 blends well with the SIS-based commitment scheme suggested by Kawachi et al. [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF]. In the latter scheme, the commitment key consists of matrices (D 0 , D 1 ) ∈ Z 2n×2m q × Z 2n×2m q , so that message m ∈ {0, 1} 2m can be committed to by sampling a Gaussian vector s ← D Z 2m ,σ and computing

C = D 0 • s + D 1 • m ∈ Z 2n
q . This scheme extends to commit to multiple messages (m 1 , . . . , m N ) at once by computing

C = D 0 • s + N k=1 D k • m k ∈ Z 2n q using a longer commitment key (D 0 , D 1 , . . . , D N ) ∈ (Z 2n×2m q ) N +1 .
It is easy to see that the resulting commitment remains statistically hiding and computationally binding under the SIS assumption.

In order to make our construction usable in the de nitional framework of Camenisch et al.

[CKL + 15], we assume common public parameters (i.e., a common reference string) and encrypt all witnesses of which knowledge is being proved under a public key included in the common reference string. The resulting ciphertexts thus serve as statistically binding commitments to the witnesses. To enable this, the common public parameters comprise public keys G 0 ∈ Z n× q , G 1 ∈ Z n×2m q for multi-bit variants of the dual Regev cryptosystem [GPV08] and all parties are denied access to the underlying private keys. The exibility of Stern-like protocols allows us to prove that the content of a perfectly hiding commitment c m is consistent with encrypted values. ) and random matrices

G 0 = B • E 0 ∈ Z n× q , G 1 = B • E 1 ∈ Z n×2m q
, where E 0 ∈ Z m× and E 1 ∈ Z m×2m are short Gaussian matrices with columns sampled from D Z m ,σ . These matrices will be used to encrypt integer vectors of dimension and 2m, respectively. Finally, generate public parameters CK := {D k } N k=0 consisting of uniformly random matrices D k ← (Z 2n×2m q ) for a statistically hiding commitment to vectors in ({0, 1} 2m ) N . Return public parameters consisting of

par := {B ∈ Z n×m q , G 0 ∈ Z n× q , G 1 ∈ Z n×2m q , CK}.
Issue ↔ Obtain : The signer S, who holds a key pair P K := {A, {A j } j=0 , D, u}, SK := T A , interacts with the user U who has a message (m 1 , . . . , m N ), in the following interactive protocol.

1. U samples s ← D Z 2m ,σ and computes c m = D 0 • s + N k=1 D k • m k ∈ Z 2n q
which is sent to S as a commitment to (m 1 , . . . , m N ). In addition, U encrypts {m k } N k=1 and s under the dual-Regev public key (B, G 1 ) by computing for all k ∈ {1, . . . , N }:

c k = (c k,1 , c k,2 ) = B T • s k + e k,1 , G T 1 • s k + e k,2 + m k • q/2 ∈ Z m q × Z 2m q (7.11)
for randomly chosen s k ← χ n , e k,1 ← χ m , e k,2 ← χ 2m , and

c s = (c s ,1 , c s ,2 ) = B T • s 0 + e 0,1 , G T 1 • s 0 + e 0,2 + s • q/p ∈ Z m q × Z 2m q (7.12)
where s 0 ← χ n , e 0,1 ← χ m , e 0,2 ← χ 2m . The ciphertexts {c k } N k=1 and c s are sent to S along with c m .

Then, U generates an interactive zero-knowledge argument to convince S that c m is a commitment to (m 1 , . . . , m N ) with the randomness s such that {m k } N k=1 and s were honestly encrypted to {c k } N i=1 and c s , as in (7.11) and (7.12). For convenience, this argument system will be described in Section 7.3.1, where we demonstrate that, together with other zero-knowledge protocols used in this work, it can be derived from a Stern-like [START_REF] Stern | A new paradigm for public key identi cation[END_REF] protocol constructed in Section 7.3.

2. If the argument of step 1 properly veri es, S samples s ← D Z 2m ,σ 0 and computes a vector

u m = u + D • {0, 1} c m + D 0 • s ∈ Z n q .
Next, S randomly picks τ ← {0, 1} and uses T A to compute a delegated basis T τ ∈ Z 2m×2m for the matrix A τ ∈ Z n×2m q of (7.1). Using T τ ∈ Z 2m×2m , S samples a short vector

v ∈ Z 2m in D u M Λ ⊥ (Aτ ),σ . It returns the vector (τ, v, s ) ∈ {0, 1} × Z 2m × Z 2m to U .
3. U computes s = s + s over Z and veri es that

A τ • v = u + D • {0, 1} D 0 • s + N k=1 D k • m k mod q.
If so, it outputs (τ, v, s). Otherwise, it outputs ⊥.

Note that, if both parties faithfully run the protocol, the user obtains a valid signature (τ, v, s) for which the distribution of s is D Z 2m ,σ 1 , where σ 1 = σ 2 + σ 2 0 . The following protocol allows proving possession of a message-signature pair.

Prove: On input of a signature (τ, v = (v T 1 | v T 2 ) T , s) ∈ {0, 1} × Z 2m × Z 2m
on the message (m 1 , . . . , m N ), the user does the following.

1. Using (B, G 0 ) and (B, G 1 ) generate perfectly binding commitments to τ ∈ {0, 1} ,

{m k } N k=1 , v 1 , v 2 ∈ Z m and s ∈ Z 2m . Namely, compute c τ = (c τ,1 , c τ,2 ) = B T • s τ + e τ,1 , G T 0 • s τ + e τ,2 + τ • q/2 ∈ Z m q × Z q , c k = (c k,1 , c k,2 ) = B T • s k + e k,1 , G T 1 • s k + e k,2 + m k • q/2 ∈ Z m q × Z 2m q ∀k ∈ {1, . . . , N }
where s τ , s k ← χ n , e τ,1 , e k,1 ← χ m , e τ,2 ← χ , e k,2 ← χ 2m , as well as

c v = (c v,1 , c v,2 ) = B T • s v + e v,1 , G T 1 • s v + e v,2 + v • q/p ∈ Z m q × Z 2m q c s = (c s,1 , c s,2 ) = B T • s 0 + e 0,1 , G T 1 • s 0 + e 0,2 + s • q/p ∈ Z m q × Z 2m q ,
where s v , s 0 ← χ n , e v,1 , e 0,1 ← χ m , e v,2 , e 0,2 ← χ 2m .

2. Prove in zero-knowledge that c τ , c s , c v , {c k } N k=1 encrypt a valid messagesignature pair. In Section 7.3.2, we show that this involved zero-knowledge protocol can be derived from the statistical zero-knowledge argument of knowledge for a simpler, but more general relation that we explicitly present in Section 7.3. The proof system can be made statistically ZK for a malicious veri er using standard techniques (assuming a common reference string, we can use [START_REF] Damgård | E cient concurrent zero-knowledge in the auxiliary string model[END_REF]). In the random oracle model, it can be made non-interactive using the Fiat-Shamir heuristic [START_REF] Fiat | How to prove yourself: Practical solutions to identi cation and signature problems[END_REF].

We require that the adversary be unable to prove possession of a signature of a message (m 1 , . . . , m N ) for which it did not legally obtain a credential by interacting with the issuer. Note that the messages that are blindly signed by the issuer are uniquely de ned since, at each signing query, the adversary is required to supply perfectly binding commitments {c k } N k=1 to (m 1 , . . . , m N ).
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In instantiations using non-interactive proofs, we assume that these can be bound to a veri er-chosen nonce to prevent replay attacks, as suggested in [CKL + 15].

The security proof (in Theorem 7.4) makes crucial use of the Rényi divergence using arguments in the spirit of Bai et al. [BLL + 15]. The reduction has to guess upfront the index i ∈ {1, . . . , Q} of the speci c signing query for which the adversary will re-use τ (i ) . For this query, the reduction will have to make sure that the simulation trapdoor of Agrawal et al. [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF] (used by the SampleRight algorithm of Lemma 3.7) vanishes: otherwise, the adversary's forgery would not be usable for solving SIS. This means that, as in the proof of [BHJ + 15], the reduction must answer exactly one signing query in a di erent way, without using the trapdoor. While Böhl et al. solve this problem by exploiting the fact that they only need to prove security against non-adaptive forgers, we directly use a built-in chameleon hash function mechanism which is implicitly realized by the matrix D 0 and the vector s. Namely, in the signing query for which the Agrawal et al. trapdoor [ABB10] cancels, we assign a special value to the vector s ∈ Z 2m , which depends on the adaptively-chosen signed message (Msg

(i ) 1 , . . . , Msg (i ) 
N ) and some Gaussian matrices

{R k } N k=1 hidden behind {D k } N k=1 .
One issue is that this results in a di erent distribution for the vector s ∈ Z m . However, we can still view s as a vector sampled from a Gaussian distribution centered away from 0 2m . Since this speci c situation occurs only once during the simulation, we can apply a result proved in [START_REF] Langlois | GGHLite: More e cient multilinear maps from ideal lattices[END_REF] which upper-bounds the Rényi divergence between two Gaussian distributions with identical standard deviations but di erent centers. By choosing the standard deviation σ 1 of s ∈ Z 2m to be polynomially larger than that of the columns of matrices {R k } N k=1 , we can keep the Rényi divergence between the two distributions of s (i.e., the one of the simulation and the one of the real game) su ciently small to apply the probability preservation property (which still gives a polynomial reduction since the argument must only be applied on one signing query). Namely, the latter implies that, if the Rényi divergence R 2 (s real ||s sim ) is polynomial, the probability that the simulated vector s sim ∈ Z 2m passes the veri cation test will only be polynomially smaller than in the real game and so will be the adversary's probability of success.

Another option would have been to keep the statistical distance between s real and s sim negligible using the smudging technique of [AJLA + 12]. However, this would have implied to use an exponentially large modulus q since σ 1 should have been exponentially larger than the standard deviations of the columns of {R k } N k=1 .

Theorem 7.4. Under the SIS n,2m,q, β assumption, where β = N σ(2m) 3/2 + 4σ 1 m 3/2 , the above protocols are secure protocols for obtaining a signature on a committed message and proving possession of a valid message-signature pair.

In the following proof, we make use of the Rényi divergence in a similar way to [BLL + 15]: instead of the classical statistical distance we sometimes use the Rényi divergence, which is a measurement of the distance between two distributions. Its use in security proofs for lattice-based systems was rst considered by Bai et al. [BLL + 15] and further improved by Prest [START_REF] Prest | Sharper Bounds in Lattice-Based Cryptography Using the Rényi Divergence[END_REF]. We rst recall its de nition.

De nition 2.14 (Rényi divergence). For any two discrete distributions P and Q such that Supp(P ) ⊆ Supp(Q), and a ∈]1, +∞[, we de ne the Rényi divergence of order a by:

R a (P ||Q) =   x∈Supp(P ) P (x) a Q(x) a-1   1 a-1 .
We de ne the Rényi divergences of orders 1 and +∞ as:

R 1 (P ||Q) = exp   x∈Supp(P ) P (x) log P (x) Q(x)   and R ∞ (P ||Q) = max x∈Supp(P ) P (x) Q(x) .
The divergence R 1 is the (exponential) of the Kullback-Leibler divergence.

We will focus on the following properties of the Rényi divergence, the proofs can be found in [START_REF] Langlois | GGHLite: More e cient multilinear maps from ideal lattices[END_REF].

Lemma 7. given that Y 1 = y 1 . Then we have:

• R a (P ||Q) = P a (P 1 ||Q 1 ) • R a (P 2 ||Q 2 ) if Y B and Y 2 are independent; • R a (P ||Q) ≤ R ∞ (P 1 ||Q 1 ) • max y 1 ∈X R a P 2|1 (•|y 1 )||Q 2|1 (•|y 1 ) . Probability Preservation: Let A ⊆ Supp(Q) be an arbitrary event. If a ∈]1, +∞[, then Q(A) ≥ P (A) a a-1 /R a (P ||Q).
Further we have:

Q(A) ≥ P (A)/R ∞ (P ||Q)
Weak Triangle Inequality: Let P 1 , P 2 , P 3 be three distributions with Supp(P 1 ) ⊆ Supp(P 2 ) ⊆ Supp(P 3 ).

Then we have:

R a (P 1 ||P 3 ) ≤    R a (P 1 ||P 2 ) • R ∞ (P 2 ||P 3 ), R ∞ (P 1 ||P 2 ) a a-1 • R a (P 2 ||P 3 ) if a ∈]1, +∞[.
In our proofs, we mainly use the probability preservation to bound the probabilities during hybrid games where the two distributions are not close in terms of statistical distance.
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Proof. The proof is very similar to the proof of Theorem 7.1 and we will only explain the changes.

Let us assume that an adversary A can prove possession of a signature on a message (m 1 , . . . , m N ) which has not been blindly signed by the issuer, we outline an algorithm B that solves a SIS n,2m,q,β instance Ā, where

Ā = [ Ā1 | Ā2 ] ∈ Z n×2m q with matrices Ā1 , Ā2 ← U(Z n×m q ).
At the outset of the game, B generates the common parameters par by choosing B ∈ R Z n×m q and de ning

G 0 = B • E 0 ∈ Z n× q , G 1 = B • E 1 ∈ Z n×2m q
. The short Gaussian matrices E 0 ∈ Z m× and E 1 ∈ Z m×2m are retained for later use. Also, B ips a coin coin ∈ {0, 1, 2} as a guess for the kind of attack that A will mount. If coin = 0, B expects a Type I forgery, where A's forgery involves a new τ ∈ {0, 1} that was never used by the signing oracle. If coin = 1, B expects A to recycle a tag τ involved in some signing query in its forgery. Namely, if coin = 1, B expects an attack which is either a Type II forgery or a Type III forgery. If coin = 2, B rather bets that A will break the soundness of the interactive argument systems used in the signature issuing protocol or the Prove protocol. Depending on the value of coin ∈ {0, 1, 2}, B generates the issuer's public key P K and simulates A's view in di erent ways.

• If coin = 0, B undertakes to nd a short non-zero vector of Λ ⊥ q ( Ā1 ), which in turn yields a short non-zero vector of Λ ⊥ q ( Ā). To this end, it de nes A = Ā1 and generates P K by computing {A j } j=0 as re-randomizations of A ∈ Z n×m q as in the proof of Lemma 7.2. This implies that B can always answer signing queries using the trapdoor T C ∈ Z m×m of the matrix C without even knowing the messages hidden in the commitments c m and {c k } N k=1 , c s . When the adversary generates a proof of possession of its own at the end of the game, B uses the matrices E 0 ∈ Z m× and E 1 ∈ Z m×2m as an extraction trapdoor to extract a plain message-signature pair (m 1 , . . . , m N ), (τ , v , s ) from the ciphertexts {c k } N k=1 (c v 1 , c v 2 ), c τ , c s produced by A as part of its forgery. If the extracted τ is not a new tag, then B aborts. Otherwise, it can solve the given SIS instance exactly as in the proof of Lemma 7.2.

• If coin = 1, the proof proceeds as in the proof of Lemma 7.3 with one di erence in Game 3. This di erence is that Game 3 is no longer statistically indistinguishable from Game 2: instead, we rely on an argument based on the Rényi divergence. In Game 3, B generates P K exactly as in the proof of Lemma 7.3. This implies that B takes a guess i † ← U ({1, . . . , Q}) with the hope that A will choose to recycle the tag τ (i † ) of the i † -th signing query (i.e., τ = τ (i † ) ). As in the proof of Lemma 7.3, B de nes D = Ā1 ∈ Z n×m q and A = Ā1 • S for a small-norm matrix S ∈ Z m×m with Gaussian entries. It also "programs" the matrices {A j } j=0 in such a way that the trapdoor precisely vanishes at the i † -th signing query: in other words, the sum

A 0 + j=1 τ (i) [j]A j = Ā1 • (S 0 + j=1 τ (i) [j] • S j ) + (h 0 + j=1 τ (i) [j] • h j ) • C
does not depend on the matrix C ∈ Z n×m q (of which a trapdoor T C ∈ Z m×m is known to B) when τ (i) = τ (i † ) , but it does for all other tags τ (i) = τ (i † ) . In the setup phase, B also sets up a random matrix D 0 ∈ U (Z 2n×2m q ) which it obtains by choosing A ← (Z n×2m q ) to de ne

D 0 = Ā A ∈ Z 2n×2m q . (7.13)
Then, it computes c M = D 0 • s 0 ∈ Z 2n q for a short Gaussian vector s 0 ← D Z 2m ,σ 0 , which will be used in the i † -th query. Next, it samples short vectors v 1 , v 2 ← D Z m ,σ to de ne

u = A τ (i † ) • v 1 v 2 -D • bin(c M ) ∈ Z n q .
In addition, B picks extra small-norm matrices R 1 , . . . , R N ∈ Z 2m×2m whose columns are sampled from D Z m ,σ , which are used to de ne randomizations of D 0 by computing

D k = D 0 • R k for each k ∈ {1, . . . , N }.
The adversary is given public parameters par := {B, G 0 , G 1 , CK}, where CK = {D k } N k=0 , and the public key P K := A, {A j } j=0 , D, u .

Using T C , B can perfectly emulate the signing oracle at all queries, except the i † -th query where the vector s (i † ) chosen by B is sampled from a distribution that departs from D Z 2m ,σ 0 . At the i † -th query, B uses the extraction trapdoor E 1 ∈ Z m×2m to obtain s (i † ) ∈ Z 2m and {m k } N k=1 -which form a valid opening of c m unless the soundness of the proof system is broken (note that the latter case is addressed by the situation coin = 3)from the ciphertexts c (i † ) s and {c k } N k=1 sent by A at step 1 of the signing protocol. Then, B computes the vector s (i † ) as

s (i † ) = s 0 - N k=1 R k • m (i † ) k -s (i † ) ∈ Z 2m , (7.14) which satis es c M = N k=1 D k • m (i † ) k + D 0 • (s (i † ) + s (i † )
) and allows returning

(τ (i † ) , v (i † ) , s (i † ) ) such that (τ (i † ) , v (i † ) , s (i † ) + s (i † )
) satis es the veri cation equation of the signature scheme. Moreover, we argue that, with noticeable probability, the integer vector s (i † ) = s (i † ) + s (i † ) will be accepted by the veri cation algorithm since the Rényi divergence between the simulated distribution of s (i † ) and its distribution in the real game will be su ciently small. Indeed, its distribution is now that of a Gaussian vector

D Z 2m ,σ 0 ,z † centered in z † = - N k=1 R k • m (i † ) k -s (i † ) ∈ Z 2m , whose norm is at most z † 2 ≤ N σ(2m) 3/2 + σ(2m) 1/2
. By choosing the standard deviation σ 0 to be at least σ 0 > N σ(2m) 3/2 + σ(2m) 1/2 , the Rényi divergence between the simulated distribution of s (i † ) (in Game 3) and its real distribution (which is the one of Game 2) can be kept constant: we have

R 2 (s (i † ),2 ||s (i † ),3 ) ≤ exp 2π • z † 2 2 σ 2 0 ≤ exp(2π). (7.15) 7. L B D G S
This ensures that, with noticeable probability, (τ (i † ) , v (i † ) , s (i † ) ) will pass the veri cation test and lead A to eventually output a valid forgery. So, the success probability of A in Game 3 remains noticeable as (7.15) implies

Pr[W 3 ] ≥ Pr[W 2 ] 2 / exp(2π).
When W 3 occurs in Game 3, B uses the matrices (E 0 , E 1 ) to extract a plain messagesignature pair (m 1 , . . . , m N ), (τ , v , s ) from the extractable commitments

{c k } N k=1 (c v 1 , c v 2 ), c τ , c s generated by A. At this point, two cases can be distinguished. First, if c M = N k=1 D k •m k +D 0 •s mod q, then algorithm B can nd a short vector of Λ ⊥ q ( Ā1 ) = Λ ⊥
q (D) exactly as in the proof of Lemma 7.3. In the event that

c M = N k=1 D k •m k +D 0 •s , B can use the fact that the collision c M = N k=1 D k • m (i † ) k + D 0 • s (i † ) allows computing w = s -s (i † ) + N k=1 R k • m k -m (i † ) k ∈ Z 2m ,
which belongs to Λ ⊥ q (D 0 ) and has norm w 2 ≤ N σ(2m) 3/2 + 4σ 1 m 3/2 . Moreover, it is non-zero with overwhelming probability. Indeed, there exists at least one k ∈

[1, N ] such that m (i † ) k = m k .
Let us assume w.l.o.g. that they di er in their rst two bits where m (i † ) k contains a 0 and m k contains a 1 (recall that each bit b is encoded as ( b, b) in both messages). This implies that s (i † ) (as computed in (7.14)) does not depend on the rst column of R k but w does. Hence, given that the columns of R k have at least n bits of min-entropy conditionally on D k = D 0 • R k , the vector w ∈ Z 2m is unpredictable to the adversary.

Due to the de nition of D 0 ∈ Z 2n×2m q in (7.13), we nally note that w ∈ Z 2m is also a short non-zero vector of Λ ⊥ q ( Ā).

• If coin = 2, B faithfully generates par and P K, but it retains the extraction trapdoor (E 0 , E 1 ) associated with the dual Regev public keys (G 0 , G 1 ). Note that A can break the soundness of the proof system by either: (i) Generating ciphertexts {c k } N k=1 and c s that do not encrypt an opening of c m in the signature issuing protocol; (ii) Generating ciphertexts {c k } N k=1 , c τ , c v 1 , c v 2 and c s that do not encrypt a valid signature in the Prove protocol. In either case, the reduction B is able to detect the event by decrypting dual Regev ciphertext using (E 0 , E 1 ) and create a breach in the soundness of the argument system.

It it easy to see that, since coin ∈ {0, 1, 2} is chosen independently of A's view, it turns out to be correct with probability 1/3. As a consequence, if A's advantage is non-negligible, so is B's.

Theorem 7.6. The scheme provides anonymity under the LWE n,q,χ assumption.

Proof. The proof is rather straightforward and consists of a sequence of three games.

Game 0: This is the real game. Namely, the adversary is given common public parameters par and comes up with a public key P K of its own. The adversary can run oblivious signing protocols with honest users. At each query, the adversary chooses a user index i and triggers an execution of the signing protocol with the challenger emulating the honest users. At some point, the adversary chooses some user index i for which the execution of the signing protocol ended successfully. At this point, the challenger B runs the real Prove protocol on behalf of user i. At the end of the game, the adversary outputs a bit b ∈ {0, 1}. We de ne W 0 to be the event that b = 1.

Game 1: This game is like Game 0 with the di erence that, at each execution of the Prove protocol, the challenger runs the zero-knowledge simulator of the interactive proof system. The latter simulator uses either a trapdoor hidden in the common reference string (if Damgård's technique [START_REF] Damgård | E cient concurrent zero-knowledge in the auxiliary string model[END_REF] is used) or proceeds by programming the random oracle which allows implementing the Fiat-Shamir heuristic. In either case, the statistical zero-knowledge property ensures that the adversary cannot distinguish Game 1 from Game 0 and

| Pr[W 1 ] -Pr[W 0 ]| ∈ negl(λ).
Game 3: This game is like Game 1 except that, at each execution of the Prove protocol, the ciphertexts {c k } N k=1 , c s , c τ , and c v 1 , c v 2 encrypt random messages instead of the actual witnesses. The semantic security of the dual Regev cryptosystem ensures that, under the LWE n,q,χ assumption, the adversary is unable to see the di erence. Hence, we have

| Pr[W 2 ] -Pr[W 1 ]| ≤ Adv LWE B (λ).
In Game 2, we can notice that the adversary is interacting with a simulator that emulates the user in the Prove protocol without using any message-signature pair. We thus conclude that, under the LWE n,q,χ assumption, A's view cannot distinguish a real proof of signature possession from a simulated proof produced without any witness.

A Dynamic Lattice-Based Group Signature

In this section, the signature scheme of Section 7.1 is used to design a group signature for dynamic groups using the syntax and the security model of Kiayias and Yung [START_REF] Kiayias | Secure scalable group signature with dynamic joins and separable authorities[END_REF], which is recalled in Section 5.2.

In the notations hereunder, for any positive integers n, and q ≥ 2, we de ne the "powersof-2" matrix H n×n log q ∈ Z n×n log q q to be:

H n×n log q = I n ⊗ [1 | 2 | 4 | . . . | 2 log q -1 ].
Also, for each vector v ∈ Z n q , we de ne bin(v) ∈ {0, 1} n log q to be the vector obtained by replacing each entry of v by its binary expansion. Hence, we have v = H n×n log q • bin(v) for any v ∈ Z n q . In our scheme, each group membership certi cate is a signature generated by the group manager on the user's public key. Since the group manager only needs to sign known (rather than committed) messages, we can use a simpli ed version of the signature, where the chameleon hash function does not need to choose the discrete Gaussian vector s with a larger standard deviation than other vectors.

A key component of the scheme is the two-message joining protocol whereby the group manager admits new group members by signing their public key. The rst message is sent by the new user U i who samples a membership secret consisting of a short vector z i ← D Z 4m ,σ (where m = 2n log q ), which is used to compute a syndrome

v i = F • z i ∈ Z 4n q for some 7. L B D G S public matrix F ∈ Z 4n×4m q
. This syndrome v i ∈ Z 4n q must be signed by U i using his long term secret key usk[i] (as in [START_REF] Kiayias | Secure scalable group signature with dynamic joins and separable authorities[END_REF][START_REF] Bellare | Foundations of group signatures: The case of dynamic groups[END_REF], we assume that each user has a long-term key upk[i] for a digital signature, which is registered in some PKI) and will uniquely identify U i . In order to generate a membership certi cate for v i ∈ Z 4n q , the group manager GM signs its binary expansion bin(v i ) ∈ {0, 1} 4n log q using the scheme of Section 7.1.

Equipped with his membership certi cate (τ, d, s) ∈ {0, 1} × Z 2m × Z 2m , the new group member U i can sign a message using a Stern-like protocol for demonstrating his knowledge of a valid certi cate for which he also knows the secret key associated with the certi ed public key v i ∈ Z 4n q . This boils down to providing evidence that the membership certi cate is a valid signature on some binary message bin(v i ) ∈ {0, 1} 4n log q for which he also knows a short

z i ∈ Z 4m such that v i = H 4n×2m • bin(v i ) = F • z i ∈ Z 4n
q . Interestingly, the process does not require any proof of knowledge of the membership secret z i during the joining phase, which is round-optimal. Analogously to the Kiayias-Yung technique [START_REF] Kiayias | Group signatures with e cient concurrent join[END_REF] and constructions based on structure-preserving signatures [AFG + 10], the joining protocol thus remains secure in environments where many users want to register at the same time in concurrent sessions.

We remark that a similar Stern-like protocol could also be directly used to prove knowledge of a Boyen signature [START_REF] Boyen | Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more[END_REF] on a binary expansion of the user's syndrome v i ∈ Z 4n q while preserving the user's ability to prove knowledge of a short z i ∈ Z 4m such that F•z i = v i mod q. However, this would require considerably longer private keys containing 4n • log q matrices {A j } j=0 of dimension n × m each (i.e., we would need = Θ(n • log q)). In contrast, by using the signature scheme of Section 7.1, we only need the group public key Y to contain = log N gs matrices in Z n×m q . Since the number of users N gs is polynomial, we have log N gs n, which results in a much more e cient scheme.

Description of the Scheme

Setup(1 λ , 1 Ngs ): Given a security parameter λ > 0 and the maximal expected number of group members N gs = 2 ∈ poly(λ), choose lattice parameter n = O(λ); prime modulus q = O( n 3 ); dimension m = 2n log q ; Gaussian parameter σ = Ω( √ n log q log n); in nity norm bounds β = σω(log m) and B = √ nω(log n). Let χ be a B-bounded distribution. Choose a hash function H : {0, 1} * → {1, 2, 3} t for some t = ω(log n), which will be modeled as a random oracle in the security analysis. Then, do the following.

1. Generate a key pair for the signature of Section 7.1.1 for signing single-block messages. Namely, run TrapGen(1 n , 1 m , q) to get A ∈ Z n×m q and a short basis T A of Λ ⊥ q (A), which allows computing short vectors in Λ ⊥ q (A) with Gaussian parameter σ. Next, choose matrices A 0 , A 1 , . . . , A , D ← (Z n×m q ), D 0 , D 1 ← (Z 2n×2m q ) and a vector u ← (Z n q ). 2. Choose an additional random matrix F ← (Z 4n×4m q ) uniformly. Looking ahead, this matrix will be used to ensure security against framing attacks.

3. Generate a master key pair for the Gentry-Peikert-Vaikuntanathan IBE scheme in its multi-bit variant. This key pair consists of a statistically uniform matrix B ∈ Z n×m q and a short basis T B ∈ Z m×m of Λ ⊥ q (B). This basis will allow us to compute GPV private keys with a Gaussian parameter σ GPV ≥ T B • √ log m.

4. Choose a one-time signature scheme Π OTS = (G, S, V) and a hash function

H 0 : {0, 1} * → Z n×2m q
, that will be modeled as random oracles.

The group public key is de ned as

Y := A, {A j } j=0 , B, D, D 0 , D 1 , F, u, Π OTS , H, H 0 .
The opening authority's private key is S OA := T B and the private key of the group manager consists of S GM := T A . The algorithm outputs Y, S GM , S OA .

Join (GM,U i ) : the group manager GM and the prospective user U i run the following interactive protocol: J user (λ, Y), J GM (λ, St, Y, S GM )

1. U i samples a discrete Gaussian vector z i ← D Z 4m ,σ and computes

v i = F • z i ∈ Z 4n
q . He sends the vector v i ∈ Z 4n q , whose binary representation bin(v i ) consists of 4n log q = 2m bits, together with an ordinary digital signature

sig i = Sign usk[i] (v i ) to GM.
2. J GM veri es that v i was not previously used by a registered user and that sig i is a valid signature on v i w.r.t. upk[i]. It aborts if this is not the case. Otherwise, GM chooses a fresh -bit identi er

id i = id i [1] . . . id i [ ] ∈ {0, 1}
and uses S GM = T A to certify U i as a new group member. To this end, GM de nes the matrix

A id i = A A 0 + j=1 id i [j]A j ∈ Z n×2m q . (7.16)
Then, GM runs T id i ← ExtBasis(A id i , T A ) to obtain a short delegated basis

T id i of Λ ⊥ q (A id i ) ∈ Z 2m×2m .
Finally, GM samples a short vector s i ← D Z 2m ,σ and uses the obtained delegated basis T id i to compute a short vector

d i = d i,1 d i,2
∈ Z 2m such that

A id i • d i = A A 0 + j=1 id i [j]A j • d i = u + D • {0, 1} D 0 • bin(v i ) + D 1 • s i mod q.
(7.17)

The triple (id i , d i , s i ) is sent to U i . Then, J user veri es that the received (id i , d i , s i ) satis es (7.17) and that d i ∞ ≤ β, s i ∞ ≤ β. If these conditions are not satis ed, J user aborts. Otherwise, J user de nes the membership certi cate as cert i = (id i , d i , s i ). The membership secret sec i is de ned to be

sec i = z i ∈ Z 4m . J GM stores transcript i = (v i , cert i , i, upk[i], sig i ) in the database St trans of joining transcripts. Sign(Y, cert i , sec i , M ): To sign M ∈ {0, 1} * using cert i = (id i , d i , s i ), where d i = [d T i,1 | d T i,2
] T ∈ Z 2m and s i ∈ Z 2m , as well as the membership secret sec i = z i ∈ Z 4m , the group member U i generates a one-time signature key pair (VK, SK) ← G(n) and conducts the following steps. and use it as an IBE public key to encrypt bin(v i ) ∈ {0, 1} 2m , where

v i = F • z i ∈ Z 4n
q is the syndrome of sec i = z i ∈ Z 4m for the matrix F. Namely, compute c v i ∈ Z m q × Z 2m q as

c v i = (c 1 , c 2 ) = B T • e 0 + x 1 , G T 0 • e 0 + x 2 + bin(v i ) • q/2 (7.18)
for randomly chosen e 0 ← χ n , x 1 ← χ m , x 2 ← χ 2m . Notice that, as in the construction of [START_REF] Ling | Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based[END_REF], the columns of G 0 can be interpreted as public keys for the multi-bit version of the dual Regev encryption scheme.

2. Run the protocol in Section 7.3.3 to prove the knowledge of id i ∈ {0, 1} , vectors

s i ∈ Z 2m , d i,1 , d i,2 ∈ Z m , z i ∈ Z 4m with in nity norm bound β; e 0 ∈ Z n , x 1 ∈ Z m , x 2 ∈ Z 2m
with in nity norm bound B and bin(v i ) ∈ {0, 1} 2m , w i ∈ {0, 1} m , that satisfy (7.18) as well as

A • d i,1 + A 0 • d i,2 + j=1 (id i [j] • d i,2 ) • A j -D • w i = u ∈ Z n q (7.19)
and

H 2n×m • w i = D 0 • bin(v i ) + D 1 • s i ∈ Z 2n q F • z i = H 4n×2m • bin(v i ) ∈ Z 4n q .
(7.20)

The protocol is repeated t = ω(log n) times in parallel to achieve negligible soundness error, and then made non-interactive using the Fiat-Shamir heuristic [START_REF] Fiat | How to prove yourself: Practical solutions to identi cation and signature problems[END_REF] as a triple π K = ({Comm K,j } t j=1 , Chall K , {Resp K,j } t j=1 ), where

Chall K = H(M, vk, c v i , {Comm K,j } t j=1 ) ∈ {1, 2, 3} t 3. Compute a one-time signature sig = S(SK, (c v i , π K )).
Output the signature that consists of

Σ = VK, c v i , π K , sig . (7.21)
Verify(Y, M, Σ): Parse the signature Σ as in (7.21). Then, return 1 if and only if:

(i) V(VK, (c v i , c s i , c id , π K ), sig) = 1; (ii) The proof π K properly veri es.
Open(Y, S OA , M, Σ): Parse S OA as T B ∈ Z m×m and Σ as in (7.21).

1. Compute G 0 = H 0 (VK) ∈ Z n×2m q . Then, using T B to compute a small-norm matrix E 0,VK ∈ Z m×2m such that B • E 0,VK = G 0 mod q.

2. Using E 0,VK , decrypt c v i to obtain a string bin(v) ∈ {0, 1} 2m (i.e., by computing (c 2 -E T 0,VK • c 1 )/(q/2) ). 3. Determine whether the bin(v) ∈ {0, 1} 2m obtained at step 2 corresponds to a vector v = H 4n×2m • bin(v) mod q that appears in a record transcript i = (v, cert i , i, upk[i], sig i ) of the database St trans for some i. If so, output the corresponding i (and, optionally, upk[i]). Otherwise, output ⊥.

We remark that the scheme readily extends to provide a mechanism whereby the opening authority can e ciently prove that signatures were correctly opened at each opening operation. The di erence between the dynamic group signature models suggested by Kiayias and Yung [START_REF] Kiayias | Secure scalable group signature with dynamic joins and separable authorities[END_REF] and Bellare et al. [START_REF] Bellare | Foundations of group signatures: The case of dynamic groups[END_REF] is that, in the latter, the opening authority (OA) must be able to convince a judge that the Open algorithm was run correctly.

Here, such a mechanism can be realized using the techniques of public-key encryption with non-interactive opening [START_REF] Damgård | Public-key encryption with non-interactive opening[END_REF]. Namely, since bin(v i ) is encrypted using an IBE scheme for the identity vk, the OA can simply reveal the decryption matrix E 0,VK , that satis es B • E 0,vk = G 0 mod q (which corresponds to the veri cation of a GPV signature) and allows the veri er to perform step 2 of the opening algorithm himself. The resulting construction is easily seen to satisfy the notion of opening soundness of Sakai et al.

[SSE + 12].

E ciency and Correctness

E . The given dynamic group signature scheme can be implemented in polynomial time. The group public key has total bit-size O( nm log q) = O(λ 2 ) • log N gs . The secret signing key of each user consists of a small constant number of low-norm vectors, and has bit-size O(λ).

The size of each group signature is largely dominated by that of the non-interactive argument π K , which is obtained from the Stern-like protocol of Section 7.3.3. Each round of the protocol has communication cost O(m • log q) • log N gs . Thus, the bit-size of π K is t • O(m • log q) • log N gs = O(λ) • log N gs . This is also the asymptotic bound on the size of the group signature.

C

. The correctness of algorithm Verify(Y, M, Σ) follows from the facts that every certi ed group member is able to compute valid witness vectors satisfying equations (7.18), (7.19) and (7.20), and that the underlying argument system is perfectly complete. Moreover, the scheme parameters are chosen so that the GPV IBE [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF] is correct, which implies that algorithm Open(Y, S OA , M, Σ) is also correct.

Security Analysis

Due to the fact that the number of public matrices {A j } j=0 is only logarithmic in N gs = 2 instead of being linear in the security parameter λ, the proof of security against misidenti cation attacks (as de ned in Section 5.3) cannot rely on the security of our signature scheme in a modular manner. The reason is that, at each run of the Join protocol, the group manager maintains a state and, instead of choosing the -bit identi er id uniformly in {0, 1} , it chooses an identi er that has not been used yet. Since λ (given that N gs = 2 is polynomial in λ), we thus have to prove security from scratch. However, the strategy of the reduction is exactly the same as in the security proof of the signature scheme.

Theorem 7.7. The scheme is secure against misidenti cation attacks under the SIS n,2m,q,β assumption, for β = O( σ 2 m 3/2 ).

Proof. We prove that any adversary A with non-negligible success probability ε implies an algorithm B solving the SIS problem in the random oracle model.

L B D G S

Let A be such a PPT adversary. We then build a PPT reduction B that uses the adversary A to solve SIS n,2m,q,β : speci cally, B takes as input

Ā = Ā1 | Ā2 ∈ Z n×2m q
, where Ā1 , Ā2 ∈ Z n×m q , and nds w ∈ Λ ⊥ q ( Ā) with 0 < w ≤ β .

Initialization. Algorithm B rst chooses a random coin ← U ({0, 1, 2}) as a guess for the kind of misidenti cation attack that A will mount. Also, B chooses a random -bit string id † ← ({0, 1} ). In addition,

B samples i ← ([1, Q a ]).
Looking ahead, coin = 0 corresponds to the case where, after repeated executions of A, the knowledge extractor of the proof system reveals witnesses containing a new identi er id ∈ {0, 1} that does not belong to any user in U a . In this case, B will be able to exploit A's forgery when id = id † . The case coin = 1 corresponds to B's expectation that the knowledge extractor will obtain the identi er id = id † of a group member in U a (i.e., a group member that was legitimately introduced at the i -th Q a-join -query, for some i ∈ {1, . . . , Q a }, where the identi er id † is used by Q a-join ), but bin(v ) ∈ {0, 1} 2m (which is encrypted in in c v i as part of the forgery Σ ) and the extracted s ∈ Z 2m are such that {0,

1} D 0 • bin(v ) + D 1 • s ∈ {0, 1} m does not match the string {0, 1} D 0 • bin(v i ) + D 1 • s i ∈ {0, 1} 2m
for which user i obtained a membership certi cate at the i -th Q a-join -query. When coin = 1, the choice of i corresponds to a guess that the knowledge extractor will reveal an -bit identi er that coincides with the identi er id † assigned to the user introduced at the i -th Q a-join -query. The last case coin = 2 corresponds to B's expectation that decrypting c v i (which is part of Σ ) and running the knowledge extractor on A will uncover vectors bin(v ) ∈ {0, 1} 2m , w ∈ {0, 1} m and s ∈ Z 2m such that w = bin(D 0 • bin(v ) + D 1 • s ) and

{0, 1} D 0 • bin(v ) + D 1 • s = {0, 1} D 0 • bin(v i ) + D 1 • s i (7.22)
but (bin(v ), s ) = (bin(v i ), s i ), where v i ∈ Z 4n q and s i ∈ Z 2m are the vectors involved in the i -th Q a-join -query. Depending on coin ∈ {0, 1, 2}, the group public key Y is generated using di erent methods.

• If coin = 0, algorithm B rst randomly chooses id † ← ({0, 1} ) as a guess for the -bit string that will be revealed by the knowledge extractor of the proof system after repeated executions of the adversary A. Then, it runs TrapGen(1 n , 1 m , q) to obtain C ∈

Z n×m q and a basis T C of Λ ⊥ q (C) with T C ≤ O( √ n log q). Then, it chooses + 2 matrices Q 0 , . . . , Q , Q D ∈ Z m×m ,
each matrix having its columns sampled independently from D Z m ,σ . Then, B de nes the matrices {A i } i=0 as

     A 0 = Ā1 • Q 0 + ( i=1 id † [i]) • C A j = Ā1 • Q i + (-1) id † [j] • C, for j ∈ [1, ]. D = Ā1 • Q D
It also de nes A = Ā1 . Next, it samples a vector e u ← D m Z,σ and computes a syndrome

u = Ā1 • e u ∈ Z n q . It picks D 0 , D 1 ← (Z 2n×2m q
) at random and also faithfully generates the GPV master key pair (B, T B ) as in Step 3 of the real setup algorithm. The group public key Y = A, {A j } j=0 , B, D, D 0 , D 1 , F, u, OT S, H, H 0 is nally given to A.

Note that, for each id = id † , we have

A id = Ā1 A 0 + i=1 id[i]A i = Ā1 Ā1 • (Q 0 + i=1 id[i]Q i ) + ( i=1 id † [i] + (-1) id † [i] id[i]) • C = Ā1 Ā1 + h id • C (7.23)
where h id ∈ [1, ] denotes the Hamming distance between the identi ers id and id † . Since q > , we have h id j = 0 mod q whenever id j = id † , so that algorithm B is able to compute (see [ABB10, Se. 4.2], using the basis T C of Λ ⊥ q (C) and the re ned GPVSample of Lemma 3.5) a basis T id of Λ ⊥ q (A id ) with T id ≤ Ω( √ n log q log n). In contrast, algorithm B lacks a trapdoor for A id † as the latter only depends on A and {Q k } k=0 . Observe that, since the columns of the matrices {Q k } k=0 are sampled from D Z m ,σ , the matrices A 0 , . . . , A are within statistical distance 2 -Ω(m) of U (Z n×m q ).

• If coin = 1, algorithm B sets up Y by de ning D = Ā. Initially, B chooses Q a -1 distinct strings id 1 , . . . , id i -1 , id i +1 , . . . , id Qa ∈ {0, 1} such that, for each i ∈ [1, Q a ]\{i }, id i will be embedded in the membership certi cate returned in the i-th Q a-join -query. Let also id † = id i be the -bit identi er that will be used in the i -th query. The reduction B picks random h 0 , h 1 , . . . , h ∈ Z q under the constraints

h id † = h 0 + j=1 id † [j] • h j = 0 mod q h id i = h 0 + j=1 id i [j] • h j = 0 mod q i ∈ {1, . . . , Q a } \ {i † } Next, B runs (C, T C ) ← TrapGen(1 n , 1 m , q), (D 1 , T D 1 ) ← TrapGen(1 2n , 1 2m
, q) so as to obtain statistically random matrices C ∈ Z n×m q , D 1 ∈ Z 2n×2m q together with trapdoors T C ∈ Z m×m , T D 1 ∈ Z 2m×2m consisting of short bases of Λ ⊥ q (C) and Λ ⊥ q (D 1 ), respectively. Then, B picks a random D 0 ← (Z 2n×2m q ) and re-randomizes D = Ā1 ∈ Z n×m q using Gaussian matrices S, S 0 , S 1 , . . . , S ← Z m×m whose columns are sampled from the distribution D Z m ,σ . Namely, from D = Ā1 , B de nes

A = Ā1 • S A 0 = Ā1 • S 0 + h 0 • C (7.24) A j = Ā1 • S j + h j • C ∀j ∈ {1, . . . , }.
As part of the generation of Y, the vector u ∈ Z n q is obtained by picking short discrete Gaussian vectors

d i ,1 , d i ,2 ← D Z m ,σ and computing u = [A | A 0 + j=1 id † [j]A j ] • d i ,1 d i ,2 -D • bin(c M ), (7.25) 
where c M ← (Z 2n q ) is a randomly chosen vector. Observe that, since A is statistically uniform over Z n×m q and d i ,1 ← D Z m ,σ , the distribution of u is statistically close to U (Z n q ).

7. L B D G S • If coin = 2, B picks Ā ← (Z n×2m q
) and a random matrix Q ← Z 2m×2m whose columns are sampled from D Z 2m ,σ . These are used to de ne

D 0 = Ā Ā ∈ Z 2n×2m q ,
and D 1 = D 0 • Q mod q, which is statistically close to U (Z 2n×2m q ). All other components of Y are obtained by faithfully running the setup algorithm.

For each value of coin ∈ {0, 1, 2}, the group public key

Y = A, {A j } j=0 , B, D, D 0 , D 1 , F, u, OT S, H, H 0
has a distribution which is statistically close to that of the real scheme and Y is given to A.

Queries. The reduction B starts interacting with the adversary A and the way it handles A's queries to the Q a-join oracle depends on the value of coin ∈ {0, 1, 2}.

• If coin = 0, answers Q a-join -queries as follows. When A triggers an execution of the joining protocol, it chooses a syndrome v i ∈ Z n q . To answer the query, B chooses a fresh -bit identi er id i ∈ {0, 1} such that id i = id † . If A also provides a correct signature sig i such that Verify upk[i] (v i , sig i ) = 1, B samples s i ← D Z 2m ,σ and uses the trapdoor T C to compute a short vector

d i = [d T i,1 | d T i,2 ] T ∈ Z 2m such that A id i • d i,1 d i,2 = u + D • {0, 1} D 0 • bin(v i ) + D 1 • s i , (7.26)
where A id i ∈ Z n×2m q is the matrix in (7.23). Note that B is able to compute such a vector using the SampleRight algorithm of [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF] (since the Hamming distance h id i between id i and id is non-zero). The membership certi cate cert i = (id i , d i , s i ) is then returned to A.

• If coin = 1, algorithm B responds each Q a-join -query depending on the index i ∈ {1, . . . , Q a } of the query. Speci cally, we distinguish two cases.

-If i = i , B proceeds as in the previous case. Namely, it recalls the -bit identi er id i ∈ {0, 1} (for which id i = id † ) that was chosen in the setup phase and samples a short vector s i ← D Z 2m ,σ . If A also provides a correct signature sig i such that Verify upk[i] (v i , sig i ) = 1, generates a membership certi cate cert i for A as in the case coin = 0. Note that

A id i = Ā • S Ā • (S 0 + j=1 id i [j]S j ) + h id i C = Ā • S Ā + h id i • C (7.27) Since h id i = 0, B can use the trapdoor T C ∈ Z m×m of Λ ⊥ q (C) to compute a short vector d i = [d T i,1 | d T i,2 ] T ∈ Z 2m such that A id i • d i,1 d i,2 = u + D • {0, 1} D 0 • (bin(v i ) + D 1 • s i ,
where v i ∈ Z 4n q is the syndrome chosen by A at step 1 of the joining protocol.

-If i = i , B undertakes to generate a membership certi cate cert i for the -bit identi er id † ∈ {0, 1} that was chosen at the outset of the game. To this end, B has to compute cert i without using the trapdoor T C since the matrix A id † does no longer depend on C in (7.27 ). This can be done by recalling the vector d i ,1 , d i ,2 ∈ Z m and c M ∈ Z 2n q that were used to de ne u ∈ Z n q in (7.25) and using

T D 1 . If A provides a correct signature sig i such that Verify upk[i ] (v i , sig i ) = 1, B uses the trapdoor T D 1 of Λ ⊥ q (D 1 ) to sample a short vector s i ∈ Z 2m of D Λ c i q (D 1 ),σ
, where

c i = c M -D 0 • bin(v i ) mod q, satisfying D 1 • s i = c M -D 0 • bin(v i ) mod q, before returning cert i = (id † , d i = [d T i ,1 | d T i ,2 ] T , s i ) to A.
From the de nition of u ∈ Z n q (7.25), it is easy to see that cert i = (id † , d i , s i ) forms a valid membership certi cate for any membership secret z i ∈ Z 4m corresponding to the syndrome

v i = F • z i mod q.
Regardless of the value of coin, queries to the random oracle H are handled by returning a uniformly chosen value in {1, 2, 3} t . For each κ ≤ Q H , we let r κ denote the answer to the κ-th H-query. Of course, if the adversary makes a given query more than once, then B consistently returns the previously de ned value. Queries to the random oracle H 0 are answered in the usual way, by returning a uniformly random value in the appropriate range.

Forgery. When A halts, it outputs a signature Σ = VK , c v i , π K , sig on some message M . At this point, B uses the trapdoor T B to decrypt c v i and obtain an m-bit string bin(v ) ∈ {0, 1} m .

If we parse the proof π K as ({Comm K,j } t j=1 , Chall K , {Resp K,j } t j=1 ), the adversary A must have invoked the random oracle H on the input (M , VK , c v i , {Comm K,j } t j=1 ) with high probability. Otherwise, the probability that

Chall K = H(M , VK , c v i , {Comm K,j } t j=1 ) is negligible (at most 3 -t ).
It comes that, with probability at least ε := ε -3 -t , (M , VK , c v i , {Comm K,j } t j=1 ) coincides with the κ -th random oracle query for some κ ≤ Q H . At this stage, the reduction B runs the adversary A up to 32 • Q H /(ε -3 -t ) times with the same random tape and input as in the initial run. All queries are answered as previously with one di erence in the treatment of random oracle queries. Namely, the rst κ -1 random oracle queries -which are identical to those of the rst execution since A is run with the same random tape as before -receive the same answers Chall 1 , . . . , Chall κ -1 as in the rst run. This implies that the κ -th query will involve exactly the same tuple (M , VK , c v i , {Comm K,j } t j=1 ) as in the rst run. However, from the κ -th query onwards, A obtains fresh random oracle values Chall κ , . . . , Chall Q H at each new execution. The Improved Forking Lemma of Brickell et al. [START_REF] Brickell | Design validations for discrete logarithm based signature schemes[END_REF] guarantees that, with probability at least 1/2, B can obtain a 3-fork involving the same tuple (M , VK , c v i , {Comm K,j } t j=1 ) with pairwise distinct answers Chall 

κ ∈ {1, 2, 3} t . With probability 1 -(7/9) t it can be shown that there exists an index j ∈ {1, . . . , t} for which the j-th bits of Chall K,j (1) , Resp K,j (2) , Resp K,j (3) ), B is able to extract witnesses

7. L B D G S (d 1 , d 2 ) ∈ Z m × Z m , id ∈ {0, 1} and w ∈ {0, 1} m from the proof of knowledge π K such that A id • d 1 d 2 = u + D • w w = {0, 1} D 0 • (bin(v ) + D 1 • s ,
At this point, B aborts and declares failure in the following situations:

coin = 0 but id ∈ {0, 1} is recycled from some output of the Q a-join oracle.

coin = 0 and id = id † .

coin = 1 but id ∈ {0, 1} never appeared in a membership certi cate returned by the Q a-join oracle.

coin = 1 and id ∈ {0, 1} belongs to some user in U a , but this user is not the one introduced at the i -th Q a-join -query (i.e., i = i † and id = id † ).

coin = 1 and the knowledge extractor revealed vectors bin(v ) ∈ {0, 1} 2m and s ∈ Z 2m satisfying the collision (7.22), where bin(v i ) and s i are the vectors involved in the i -th Q a-join query.

coin = 2 and the knowledge extraction yields vectors bin(v ) ∈ {0, 1} 2m and s ∈ Z 2m such that the collision (7.22) does not occur.

We call fail the event that one of the above situations occurs. Given that the choices of coin ← ({0, 1, 2}) and i ← ([1, Q a ]) are completely independent of A's view, the choice of coin is correct with probability 1/3. If coin = 0, B's choice of id † ← ({0, 1} ) is correct with probability 1/(N gs -Q a ) ≥ 1/N gs and, when coin = 1, B's correctly guesses i ∈ [1, Q a ] with probability 1/Q a . We nd

Pr[¬fail] ≥ 1 3 • max(N gs , Q a ) = 1 3 • N gs .
Assuming that fail does not occur, B can solve the problem instance as follows.

• If coin = 0, we have id = id † and B knows a short vector e u ∈ Z m such that u = Ā1 • e u mod q. Hence, it can obtain a short integer vector

h = d 1 + Q 0 + i=1 id † [i]Q i • d 2 -Q D • bin(v ) -e u ∈ Z m
such that Ā1 •h = 0 m mod q. Moreover, we have h = 0 m w.h.p. since the syndrome u ∈ Z n q statistically hides e u ∈ Z m in Λ u q ( Ā1 ). Finally, the norm of h is at most h 2 ≤ ( + 1)σ 2 m 3/2 + σm 1/2 (m + 2). This implies that (h T | 0 m ) T is a short non-zero vector of Λ ⊥ q ( Ā) and solves the initial SIS instance.

• If coin = 1, the extracted witnesses (d 1 , d 2 , s , id ) and the decrypted bin(v )

satisfy id = id † , w = bin(D 0 • bin(v ) + D 1 • s ) = bin(D 0 • bin(v i ) + D 1 • s i ) = w i
(since ¬fail implies that the collision (7.22) did not occur if coin = 1) and

A A 0 A 1 . . . A -D •            d 1 d 2 id † [1]d 2 . . . id † [ ]d 2 w           
= u mod q.

(7.28)

Since B already knew short vectors

(d i ,1 , d i ,2 , w i ) ∈ Z m × Z m × Z m such that A A 0 A 1 . . . A -D •            d i ,1 d i ,2 id † [1]d i ,2 . . . id † [ ]d i ,2 w i           
= u mod q, (7.29) by subtracting (7.29) from (7.28), we nd that

h = S • (d 1 -d i ,1 ) + (S 0 + j=1 id † [j]S j ) • (d 2 -d i ,2 ) + (w -w i ) (7.30)
is a small-norm vector h ∈ Z m satisfying Ā1 • h = 0 mod q. We claim that h = 0 with high probability. Indeed, we know that w = w i if ¬fail occurs. This implies that the last term of (7.30) is non-zero, which rules out that

(d 1 , d 2 ) = (d i ,1 , d i ,2 ).
Since the columns of S and {S j } j=0 have a lot of entropy conditionally on Y, this implies that we can only have h = 0 m with negligible probability. Furthermore, the norm of h can be bounded by h 2 ≤ 4σ 2 m 3/2 ( + 2) + 2m 1/2 , so that (h T | 0 m ) T solves the original SIS instance.

• If coin = 2, B is done as well since the collision (7.22) directly provides a vector

h = bin(v ) -bin(v i ) + Q • (s -s i ) ∈ Z 2m
of Λ ⊥ q (D 0 ) (which is also in the lattice Λ ⊥ q ( Ā) by construction) and has norm h 2 ≤ 2(σ 2 (2m) 3/2 + (2m) 1/2 ). Moreover, h ∈ Z 2m is non-zero with overwhelming probability given that bin(v ) = bin(v i ) and the large amount of entropy retained by the columns Q ∈ Z 2m×2m given D 1 = D 0 • Q.

Theorem 7.8. The scheme is secure against framing attacks under the SIS 4n,4m,q,β assumption, where β = 4σ √ m.
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Proof. Let us assume that a PPT adversary A can create a forgery (M , Σ ) that opens to some honest user i ∈ U b who did not sign M . In the random oracle model, we give a reduction B that uses A to solve an instance of the SIS 4n,4m,q,β problem: B takes as input Ā ∈ Z 4n×4m q and nds a non-zero short vector w ∈ Λ ⊥ q ( Ā). Algorithm B generates the group public key Y by faithfully running the real setup algorithm with the sole di erence that, at step 2 of Setup, B de nes F = Ā ∈ Z 4n×4m q . However, the distribution of Y is as in the real scheme. As a result of having generated Y itself, B knows S GM = T A and S OA = T B . The adversary B is run on input of the group public key

Y := A, {A j } j=0 , B, D, D 0 , D 1 , F = Ā, u, Π OTS , H, H 0 ) .
If A chooses to corrupt the group manager or the opening authority during the game, B is able to reveal S GM = T A and S OA = T B . Then, B starts interacting with A as follows.

-Q keyGM -queries: If A decides to corrupt the group manager, B hands the secret key

S GM = T A to A.
-Q b-join -queries: At any time A can act as a corrupted group manager and introduce a new honest user i in the group by invoking the Q b-join oracle. At each Q b-join -query, B faithfully runs J user on behalf of the honest user in an execution of Join protocol.

-Q pub -queries: These can be answered as in the real game, by having the simulator return Y.

-Q sig -queries: When the adversary A requests user i ∈ U b to sign a message M , B rst generates a one-time key pair

(VK, SK) ← G(n) to compute G 0 = H 0 (VK) ∈ Z n×2m q
. Next, B recalls the vector z i ∈ Z 4m that was chosen to de ne the syndrome v i = F • z i at step 1 of the Join protocol as well as the identi er id i ∈ {0, 1} and the short vectors (d i,1 , d i,2 , s i ) that were supplied by A in an earlier Q b-joinquery. It faithfully computes a signature by IBE-encrypting bin(v i ) ∈ {0, 1} 2m and using

(d i,1 , d i,2 , s i , z i , s i , id i ) to compute a witness indistinguishable proof π K = ({Comm K,j } t j=1 , Chall K , {Resp K,j } t j=1
). Finally, B computes a one-time signature sig = S(SK, (c v i , π K )) and returns the signature Σ = VK, c v i , π K , sig to A.

When A halts, it outputs a signature Σ = VK , c v , π K , sig for some message M , which opens to i ∈ U b although user i did not sign the message M at any time. Since (M , Σ ) supposedly frames user i , the opening of Σ must reveal the m-bit string bin(v i ) ∈ {0, 1} m . We note that the reduction B has recollection of a short vector

z i ∈ Z 4m (of norm z i < 2σ √ m) such that v i = F • z i mod q which it
chose when running J user on behalf of user i when this user was introduced in the group. Hence, B would be able to solve its given SIS instance if it had another short vector z ∈ Z 4m satisfying v i = F • z mod q. To compute such a vector, B proceeds by replaying the adversary A su ciently many times and applying the Improved Forking Lemma of Brickell et al. [START_REF] Brickell | Design validations for discrete logarithm based signature schemes[END_REF]. If we parse π K as ({Comm K,j } t j=1 , Chall K , {Resp K,j } t j=1 ), with high probability, A must have queried H on the input (M , VK , c v , {Comm K,j } t j=1 ). Otherwise, we would only have Chall K = H(M , VK , c v , {Comm K,j } t j=1 ) with negligible probability 3 -t . It comes that, with probability at least ε :

= ε -3 -t , the tuple (M , VK , c v , {Comm K,j } t j=1 ) was 7. L B D G S
which must be valid and distinct (otherwise, the challenger aborts the experiment). This challenge query is answered by having the challenger return a signature of the target message under the identity id d : namely, this challenge signature is computed as

Σ = (vk , c v d , π K , sig ) ← Sign(Y, cert d , sec d , M
) for the given parameter d of the Game. Finally, A outputs a bit d ∈ {0, 1} which is also the experiment's output.

Game (d) 1: In this experiment, we slightly change Game (d) 0 as follows. At the outset of the game, the challenger generates the one-time signature key pair (vk , sk ) that will be used in the challenge phase. During the game, if the adversary A requests the opening of a valid signature Σ = (vk, c v i , π K , sig) where vk = vk , the challenger returns a random bit and aborts. However, this event F 1 would contradict the strong unforgeability of the one-time signature Π OTS . Indeed, before the challenge phase vk is independent of A's view and the probability that vk shows up in A's queries is negligible. After seeing the challenge signature Σ , if A comes up with a valid signature Σ = (vk, c v i , π K , sig) such that vk = vk , then sig is a forged one-time signature, which defeats the strong unforgeability of Π OTS . Therefore the probability Pr[F 1 ] that the challenger aborts in this experiment is negligible. From here on, we thus assume that A's opening queries for valid signatures do not include vk .

Game (d) 2: In this game, we program the random oracle H 0 in the following way: at the beginning of the game, we choose a uniformly random matrix G 0 ← (Z n×2m q

) and set H 0 (vk ) = G 0 . From the adversary's view, the distribution of G 0 is statistically close to the one in the real attack game, as in [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF]. As for other queries, for each fresh H 0 -queries on vk, the challenger samples small-norm matrices E 0,vk ← D 2m Z m ,σ and programs the oracle such that H 0 (vk) = B • E 0,vk mod q. The chosen matrices E 0,vk are retained for later use. Note that the values of H 0 (vk) are statistically close to the uniform. For any query involving a previously queried vk, the challenger consistently returns the previously stored images. The adversary's view remains the same as in Game (d) 1, analogously to the security proof of the GPV IBE [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF].

Game (d) 3: Here, we will change the behavior of the opening algorithm. Namely, at each fresh oracle query, we still store the matrices E 0,vk ∈ Z m×2m q and, at the beginning of the game, the challenger samples an uniformly random B ∈ Z n×m q that is later used in place of B to answer H 0 -queries. To answer the adversary's queries of the opening of a signature Σ = (vk, c v i , π K , sig), the challenger recalls the small-norm matrices E 0,vk which were de ned when A rst queried H 0 (vk). These matrices are used as "decryption matrices" to open Σ for the corresponding

G 0 = H 0 (vk) ∈ Z n×2m q .
For similar reasons as in the security proof of [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF], the distribution of G 0 is statistically close to the uniform, which implies that Game (d) 2 and Game (d) 3 are statistically indistinguishable.

Game (d) 4: Instead of faithfully generating the NIZKPoK π K of Section 7.3.3, the challenger simulates the proof without using the witness (note that this is possible since the HVZK property of the underlying proof system is preserved under parallel repetitions). This is done by running the simulator for the underlying interactive protocol for each j ∈ {1, . . . , t}, and then programming the random oracle H accordingly. The challenge signature Σ = (vk , c v d , π K , sig ) is statistically close to the challenge signature of the previous game, because the proof system is statistically zero-knowledge as stated in Lemma 4.2. Consequently, Game (d) 3 and Game (d) 4 are indistinguishable.

Game (d) 5: In this game, we modify the generation of the challenge ciphertext c v d . Instead of using the real encryption algorithm of the GPV IBE to compute c v d as the encryption of v d = F • z d ∈ Z 4n q , we return truly random ciphertexts. In other words, we let

c v d = r 1 r 2 + bin(v d ) q/2 ,
where r 1 ← (Z m q ), r 2 ← (Z 2m q ) are uniformly random. The hardness of the decisional LWE n,q,χ problem implies that c v d in extsfGame 4 and extsfGame 5 are computationally indistinguishable. If A can distinguish between these two games, it can furthermore distinguish

B T G 0 T e 0 + x 1 x 2 from r 1 r 2 ,
which would break the decisional LWE n,q,χ assumption.

Therefore, Game (d) 4 and Game (d) 5 are computationally indistinguishable.

Game 6: We nally make a conceptual modi cation on the previous game. Namely we sample uniformly random r 1 ← (Z m q ), r 2 ← (Z 2m q ) and assign

c v d = r 1 r 2 .
Clearly, the distribution of c v i has not changed since Game (d) 5. Since Game 6 does no longer depend on the challenger's bit d ∈ {0, 1}, the result follows.

Subprotocols for Stern-like Argument

Proving the Consistency of Commitments

The argument system used in our protocol for signing a committed value in Section 7.1.3 can be summarized as follows.

Common Input:

Matrices {D k ∈ Z 2n×2m q } N k=0 ; B ∈ Z n×m q ; G 1 ∈ Z n×2m q ; vectors c m ∈ Z 2n q ; {c k,1 ∈ Z m q } N k=1 ; {c k,2 ∈ Z 2m q } N k=1 ; c s ,1 ∈ Z m q ; c s ,2 ∈ Z 2m q .
Prover's Input:

m = (m T 1 . . . m T N ) T ∈ CorEnc(mN ); {s k ∈ [-B, B] n , e k,1 ∈ [-B, B] m ; e k,2 ∈ [-B, B] 2m } N k=1 ; s 0 ∈ [-B, B] n ; e 0,1 ∈ [-B, B] m ; e 0,2 ∈ [-B, B] 2m ; s ∈ [-(p -1), (p -1)] 2m
Prover's Goal: Convince the veri er in ZK that:

7. L B D G S          c m = D 0 • s + N k=1 D k • m k mod q; c s ,1 = B T • s 0 + e 0,1 mod q; c s ,2 = G T 1 • s 0 + e 0,2 + q/p • s mod q; ∀k ∈ [N ] : c k,1 = B T • s k + e k,1 ; c k,2 = G T 1 • s k + e k,2 + q/2 • m k .
(7.31)

We will show that the above argument system can be obtained from the one in Section 4.3.2. We proceed in two steps.

Step 1: Transforming the equations in (7.31) into a uni ed one of the form P • x = v mod q, where x ∞ = 1 and x ∈ VALID -a "specially-designed" set.

To do so, we rst form the following vectors and matrices:

                               x 1 = s T 0 e T 0,1 e T 0,2 s T 1 e T 1,1 e T 1,2 . . . s T N e T N,1 e T N,2 T ∈ [-B, B] (n+3m)(N +1) ; v = c T m c T s ,1 c T s ,2 c T 1,1 c T 1,2 . . . c T N,1 c T N,2 T ∈ Z 2n+3m(N +1) q ; P 1 = B T G T 1 I 3m ; Q 2 = 0 q 2 I 2m ; Qp = 0 q p I 2m M 1 =      0 P 1 P 1 . . . P 1      ; M 2 =       D 1 | . . . |D N 0 Q 2 . . . Q 2       ; M 3 =       D 0 Qp 0       .
We then observe that (7.31) can be rewritten as:

M 1 • x 1 + M 2 • m + M 3 • s = v ∈ Z D q , (7.32)
where D = 2n + 3m(N + 1). Now we employ the techniques from Section 4.3.2 to convert (7.32) into the form P • x = v mod q. Speci cally, if we let:

         DecExt (n+3m)(N +1),B (x 1 ) → x1 ∈ B 3 (n+3m)(N +1)δ B ; M 1 = M 1 • K (n+3m)(N +1),B ∈ Z D×3(n+3m)(N +1)δ B q ; DecExt 2m,p-1 (s ) → ŝ ∈ B 3 2mδ p-1 ; M 3 = M 3 • K 2m,p-1 ∈ Z D×6mδ p-1 q , L = 3(n + 3m)(N + 1)δ B + 2mN + 6mδ p-1 , and P = M 1 |M 2 |M 3 ∈ Z D×L q
, and x = xT 1 m T ŝT T , then we will obtain the desired equation:

P • x = v mod q.
Having performed the above uni cation, we now de ne VALID as the set of all vectors t ∈ {-1, 0, 1} L of the form

t = t T 1 t T 2 t T 3 T , where t 1 ∈ B 3 (n+3m)(N +1)δ B , t 2 ∈ CorEnc(mN ), and t 3 ∈ B 3 2mδ p-1 . Note that x ∈ VALID.
Step 2: Specifying the set S and permutations of L elements {T π : π ∈ S} for which the conditions in (4.3) hold.

• De ne

S := S 3(n+3m)(N +1)δ B × {0, 1} mN × S 6mδ p-1 . 7. L B D G S Note that, if we let y = bin(D 0 •s + N k=1 D i •m k ) ∈ {0, 1} m , then we have H 2n×m • y = D 0 •s + N k=1 D i •m k
mod q, and (7.33) can be equivalently written as:

A 0 •v 1 + A 0 0 •v 2 + i=1 A i 0 •τ [i]v 2 + 0 D 0 • s + -D -H 2n×m • y + 0 D 1 | . . . |D N • m = u 0 2n mod q.
Next, we use linear algebra to combine this equation and (7.34) into (modulo q):

F•v 1 +F 0 •v 2 + i=1 F i •τ [i]v 2 + M 1 •τ +M 2 •y + M 3 •m+M 4 •s+M 5 •e=c, (7.35)
where, for dimensions D = + 3n + 7m + 3mN and

L 0 = D + nN , • Matrices F, F 0 , F 1 , . . . , F ∈ Z D×m q , M 1 ∈ Z D× q , M 2 ∈ Z D×m q , M 3 ∈ Z D×2mN q , M 4 ∈ Z D×2m q , M 5 ∈ Z D×L 0 q
and vector c ∈ Z D q are built from the public input.

• Vector e = s T 1 . . .

s T N s T v s T 0 s T τ e T 1,1 . . . e T N,1 e T v,1 e T 0,1 e T τ,1 e T 1,2 . . . e T N,2 e T 0,2 e T v,2 e T τ,2 T ∈ [-B, B] L 0 .
Now we further transform (7.35) using the techniques from Section 4.3.2. Speci cally, we form the following:

                           DecExt m,β (v 1 ) → v1 ∈ B 3 mδ β ; DecExt m,β (v 2 ) → v2 ∈ B 3 mδ β ; F = F • K m,β |F 0 • K m,β |F 1 • K m,β | . . . |F • K m,β |0 D×3mδ β ∈ Z D×3mδ β (2 +2) q ; Ext 2 (τ ) → τ = (τ [1], . . . , τ [ ], . . . , τ [2 ]) T ∈ B 2 ; M 1 = [M 1 |0 D× ] ∈ Z D×2 q ; Ext 2m (y) → ŷ ∈ B 2 m ; M 2 = [M 2 |0 D×m ] ∈ Z D×2m q ; DecExt 2m,p-1 (s) → ŝ ∈ B 3 2mδ p-1 ; M 4 = M 4 • K 2m,p-1 ∈ Z D×6mδ p-1 q ; DecExt L 0 ,B (e) → ê ∈ B 3 L 0 δ B ; M 5 = M 5 • K L 0 ,B ∈ Z D×3L 0 δ B q . Now, let L = 3mδ β (2 + 2) + 2 + 2m + 2mN + 6mδ p-1 + 3L 0 δ B ,

and construct matrix

P = F |M 1 |M 2 |M 3 |M 4 |M 5 ∈ Z D×L q and vector x = vT 1 vT 2 τ [1]v T 2 . . . τ [ ]v T 2 . . . τ [2 ]v T 2 τ T ŷT m T ŝT êT T ,
then we will obtain the equation P • x = c mod q.

Before going on, we de ne VALID as the set of w ∈ {-1, 0, 1} L of the form:

w = w T 1 w T 2 g 1 w T 2 . . . g 2 w T 2 g T w T 3 w T 4 w T 5 w T 6 T for some w 1 , w 2 ∈ B 3 mδ β , g = (g 1 , . . . , g 2 ) ∈ B 2 , w 3 ∈ B 2 m , w 4 ∈ CorEnc(mN ), w 5 ∈ B 3 2mδ p-1 , and w 6 ∈ B 3 L 0 δ B .
It can be checked that the constructed vector x belongs to this tailored set VALID.

Step 2: Specifying the set S and permutations of L elements {T π : π ∈ S} for which the conditions in (4.3) hold.

• De ne S = S 3mδ β × S 3mδ β × S 2 × S 2m × {0, 1} mN × S 6mδ p-1 × S 3L 0 δ B . • For π = (φ, ψ, γ, ρ, b, η, ξ) ∈ S and z = z 1 0 z 2 0 z 1 . . . z 2 g t 1 t 2 t 3 t 4 ∈ Z L q , where z 1 0 , z 2 0 , z 1 , . . . , z 2 ∈ Z 3mδ β q , g ∈ Z 2 q , t 1 ∈ Z 2m q , t 2 ∈ Z 2mN q , t 3 ∈ Z 6mδ p-1 q
, and t 4 ∈ Z 3L 0 δ B q , we de ne:

T π (z) = φ(z 1 0 ) T ψ(z 2 0 ) T ψ(z γ(1) ) T . . . ψ(z γ(2 ) ) T γ(g) T ρ(t 1 ) T E b (t 2 ) T η(t 3 ) T ξ(t 4 ) T T
as the permutation that transforms z as follows:

1. It rearranges the order of the 2 blocks z 1 , . . . , z 2 according to γ.

2. It then permutes block z 1 0 according to φ, blocks z 2 0 , {z i } 2 i=1 according to ψ, block g according to γ, block t 1 according to ρ, block t 2 according to E b , block t 3 according to η, and block t 4 according to ξ.

It can be check that (4.3) holds. Therefore, we can obtain a statistical ZKAoK for the given relation by running the protocol in Section 4.3.2.

The Underlying ZKAoK for the Group Signature Scheme

The argument system upon which our group signature scheme is built can be summarized as follows.

Common Input: Matrices

A, {A j } j=0 , B ∈ Z n×m q , D 0 , D 1 ∈ Z 2n×2m q , F ∈ Z 4n×4m q , H 2n×m ∈ Z 2n×m q , H 4n×2m ∈ Z 4n×2m q , G 0 ∈ Z n×2m q ; vectors u ∈ Z n q , c 1 ∈ Z m q , c 2 ∈ Z 2m q . Prover's Input: z ∈ [-β, β] 4m , y ∈ {0, 1} 2m , w ∈ {0, 1} m , d 1 , d 2 ∈ [-β, β] m , s ∈ [-β, β] 2m , id = (id[1], . . . , id[ ]) T ∈ {0, 1} , e 0 ∈ [-B, B] n , e 1 ∈ [-B, B] m , e 2 ∈ [-B, B] 2m .
Prover's Goal: Convince the veri er in ZK that

       F • z = H 4n×2m • y mod q; H 2n×m • w = D 0 • y + D 1 • s mod q; A • d 1 + A 0 • d 2 + j=1 A j • (id[j] • d 2 ) -D • w = u mod q; c 1 = B T • e 0 + e 1 mod q; c 2 = G T 0 • e 0 + e 2 + q/2 • y mod q.
Using the same strategy as in Sections 7.3.1 and 7.3.2, we can derive a statistical ZKAoK for the above relation from the protocol in Section 4.3.2. As the transformations are similar to those in Section 7.3.2, we only sketch main points.

In the rst step, we combine the given equations to an equation of the form:

M •    d 1 s z    + M 0 • d 2 + j=1 M j (id[j]d 2 ) + M • w y + M •    e 0 e 1 e 2    = v mod q, 7. L B D G S
where matrices M, M 0 , . . . , M , M , M and vector v are built from the input.

We then apply the techniques of Section 4.3.2 for

x 0 = (d T 1 s T z T ) T ∈ [-β, β] 7m , d 2 ∈ [-β, β] m ; x 1 = (w T y T ) T ∈ {0, 1} 3m ; and x 2 = (e T 0 e T 1 e T 2 ) T ∈ [-B, B] n+3m
. This allows us to obtain a uni ed equation P • x = v mod q, and to de ne the sets VALID, S, and permutations {T π : π ∈ S} so that the conditions in (4.3) hold, in a similar manner as in Section 7.3.2.

Part III

Group Encryption and Adaptive

Oblivious Transfer Kiayias, Tsiounis and Yung [START_REF] Kiayias | Group encryption[END_REF] presented group encryption (GE) as the encryption analogue of group signatures [START_REF] Chaum | Group signatures[END_REF], which allow users to anonymously sign messages on behalf of an entire group they belong to. While group signatures aim at hiding the source of some message within a crowd administered by some group manager, group encryption rather seeks to hide its destination within a group of legitimate receivers. In both cases, a veri er should be convinced that the anonymous signer/receiver indeed belongs to a purported population. In order to keep users accountable for their actions, an opening authority (OA) is further empowered with some information allowing it to un-anonymize signatures/ciphertexts.

Kiayias, Tsiounis and Yung [START_REF] Kiayias | Group encryption[END_REF] formalized GE schemes as a primitive allowing the sender to generate publicly veri able guarantees that: (1) The ciphertext is well-formed and intended for some registered group member who will be able to decrypt; (2) the opening authority will be able identify the receiver if necessary; (3) The plaintext satis es certain properties such as being a witness for some public relation or the private key that underlies a given public key. In the model of Kiayias et al. [START_REF] Kiayias | Group encryption[END_REF], the message secrecy and anonymity properties are required to withstand active adversaries, which are granted access to decryption oracles in all security experiments.

As a natural application, group encryption allows a rewall to lter all incoming encrypted emails except those intended for some certi ed organization member and the content of which is additionally guaranteed to satisfy certain requirements, like the absence of malware.

GE schemes are also motivated by natural privacy applications such as anonymous trusted third parties, key recovery mechanisms or oblivious retriever storage systems. In optimistic protocols, GE allows veri ably encrypting messages to anonymous trusted third parties which mostly remain o -line and only come into play to sort out con icts. In order to protect privacy-sensitive information such as users' citizenship, group encryption makes it possible to hide the identity of users' preferred trusted third parties within a set of properly certi ed trustees.

In cloud storage services, GE enables privacy-preserving asynchronous transfers of encrypted datasets. Namely, it allows users to archive encrypted datasets on remote servers while convincing those servers that the data is indeed intended for some anonymous certi ed client who paid a subscription to the storage provider. Moreover, a judge should 8. L B G E be able to identify the archive's recipient in case a misbehaving server is found guilty of hosting suspicious transaction records or any other illegal content.

As pointed out by Kiayias et al. [START_REF] Kiayias | Group encryption[END_REF], group encryption also implies a form of hierarchical group signatures [START_REF] Trolin | Hierarchical Group Signatures[END_REF], where signatures can only be opened by a set of eligible trustees operating in a very speci c manner determiner by the signer.

The design of numerous privacy-preserving cryptographic protocols crucially relies on zero-knowledge proofs [START_REF] Goldwasser | The knowledge complexity of interactive proof-systems[END_REF] to prove properties about encrypted or committed values so as to enforce honest behavior on behalf of participants or protect the privacy of users.

In the lattice settings, e cient zero-knowledge proofs are non-trivial to construct due to the limited amount of algebraic structure. A common feature of all these works is that the zero-knowledge layer of the proposed protocols only deals with linear equations, where witnesses are only multiplied by public values.

In this chapter, motivated by the design of advanced privacy-preserving protocols in the lattice setting, we construct zero-knowledge arguments for non-linear statements among witnesses consisting of vectors and matrices. For suitable parameters q, n, m ∈ Z, we consider zero-knowledge argument systems whereby a prover can demonstrate knowledge of secret matrices X ∈ Z m×n q and vectors s ∈ Z n q , e ∈ Z m such that: (i) e ∈ Z m has small norm; (ii) A public vector b ∈ Z n q equals b = X • s + e mod q; (iii) The underlying pair (X, s) satis es additional algebraic relations: for instance, it should be possible to prove possession of a signature on some representation of the matrix X. In particular, our zero-knowledge argument makes it possible to prove that a given ciphertext is a wellformed LWE-based encryption with respect to some hidden, but certi ed public key. This protocol comes in handy in the design of group encryption schemes [START_REF] Kiayias | Group encryption[END_REF], where such languages naturally arise. Using these advances, we thus construct, in this chapter, the rst construction of group encryption under lattice assumptions.

Related work. Kiayias, Tsiounis and Yung (KTY) [START_REF] Kiayias | Group encryption[END_REF] formalized the notion of group encryption and provided a modular design using zero-knowledge proofs, digital signatures, anonymous CCA-secure public-key encryption and commitment schemes. They also gave an e cient instantiation using Paillier's cryptosystem [START_REF] Paillier | Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[END_REF] and Camenisch-Lysyanskaya signatures [START_REF] Camenisch | A signature scheme with e cient protocols[END_REF].

Cathalo, Libert and Yung [START_REF] Cathalo | Group Encryption: Non-Interactive Realization in the Standard Model[END_REF] designed a non-interactive system in the standard model under non-interactive pairing-related assumptions. El Aimani and Joye [START_REF] Aimani | Toward Practical Group Encryption[END_REF] suggested various e ciency improvements with both interactive and non-interactive proofs.

Libert et al. [START_REF] Libert | Traceable group encryption[END_REF] empowered the GE primitive with a re ned traceability mechanism akin to that of traceable signatures [START_REF] Kiayias | Traceable signatures[END_REF]. Namely, by releasing a user-speci c trapdoor, the opening authority can allow anyone to publicly trace ciphertexts encrypted for this speci c group member without a ecting the privacy of other users. Back in 2010, Izabachène, Pointcheval and Vergnaud [START_REF] Izabachène | Mediated traceable anonymous encryption[END_REF] considered the problem of eliminating subliminal channels in a di erent form of traceable group encryption.

As a matter of fact, all existing realizations of group encryption or similar primitives rely on traditional number theoretic assumptions like the hardness of factoring or computing discrete logarithms. In particular, all of them are vulnerable to quantum attacks. For the sake of not putting all one's eggs in the same basket, it is highly desirable to have instantiations based on alternative, quantum-resistant foundations.

In the next sections, we rst present the de nitions of a group encryption schemes and the required building block. Then, we describe the zero-knowledge protocol we use to handle these quadratic relations before nally describing our scheme.

Syntax and De nitions of Group Encryption

We use the syntax and the security model of Kiayias, Tsiounis and Yung [START_REF] Kiayias | Group encryption[END_REF]. The group encryption (GE) primitive involves a sender, a veri er, a group manager (GM) that manages the group of receivers and an opening authority (OA) which is capable of identifying ciphertexts' recipients.

In the syntax of [START_REF] Kiayias | Group encryption[END_REF], a GE scheme is speci ed by the description of a relation R as well as a tuple GE = SETUP, JOIN, G r , R, sample R , ENC, DEC, OPEN, P, V of algorithms or protocols. In details, SETUP is a set of initialization procedures that all take (implicitly or explicitly) a security parameter 1 λ as input. We call them SETUP init (1 λ ), SETUP GM (par) and SETUP OA (par). The rst one of these procedures generates a set of public parameters par (like the KTY construction [START_REF] Kiayias | Group encryption[END_REF], we rely on a common reference string even when using interaction between provers and veri ers). The latter two procedures are used to produce key pairs (pk GM , sk GM ), (pk OA , sk OA ) for the GM and the OA. In the following, par is incorporated in the inputs of all algorithms although we sometimes omit to explicitly write it. JOIN = (J user , J GM ) is an interactive protocol between the GM and the prospective user. After the execution of JOIN, the GM stores the public key pk and its certi cate cert pk in a public directory database. As in [START_REF] Kiayias | Group signatures with e cient concurrent join[END_REF], we will restrict this protocol to have minimal interaction and consist of only two messages: the rst one is the user's public key pk sent by J user to J GM and the latter's response is a certi cate cert pk for pk that makes the user's group membership e ective. We do not require the user to prove knowledge of his private key sk or anything else about it. In our construction, valid keys will be publicly recognizable and users will not have to prove their validity. By avoiding proofs of knowledge of private keys, the security proof never has to rewind the adversary to extract those private keys, which allows supporting concurrent joins as advocated by Kiayias and Yung [START_REF] Kiayias | Group signatures with e cient concurrent join[END_REF]. If

L B

G E applications demand it, it is possible to add proofs of knowledge of private keys in a modular way but our security proofs do not require rewinding the adversary in executions of JOIN.

Algorithm sample R allows sampling pairs (x, w) ∈ R (made of a public value x and a witness w) using keys (pk R , sk R ) produced by G r (1 λ ) which samples public/secret parameters for the relation R. Depending on the relation, sk R may be the empty string (as in the scheme [START_REF] Kiayias | Group encryption[END_REF] and ours which both involve publicly samplable relations). The testing procedure R(x, w) uses pk R to return 1 whenever (x, w) ∈ R. To encrypt a witness w such that (x, w) ∈ R for some public x, the sender fetches the pair (pk, cert pk ) from database and runs the randomized encryption algorithm. The latter takes as input w, a label L, the receiver's pair (pk, cert pk ) as well as public keys pk GM and pk OA . Its output is a ciphertext Ψ ← ENC(pk GM , pk OA , pk, cert pk , w, L). On input of the same elements, the certi cate cert pk , the ciphertext Ψ and the random coins coins Ψ that were used to produce Ψ, the non-interactive algorithm PP generates a proof π Ψ that there exists a certi ed receiver whose public key was registered in database and who is able to decrypt Ψ and obtain a witness w such that (x, w) ∈ R. The veri cation algorithm V takes as input Ψ, pk GM , pk OA , π Ψ and the description of R and outputs 0 or 1. Given Ψ, L and the receiver's private key sk, the output of DEC is either a witness w such that (x, w) ∈ R or a rejection symbol ⊥. Finally, OPEN takes as input a ciphertext/label pair (Ψ, L) and the OA's secret key sk OA and returns a receiver's public key pk.

The model of [START_REF] Kiayias | Group encryption[END_REF] considers four properties termed correctness, message security, anonymity and soundness. In the security de nitions, stateful oracles capture the adversary's interaction with the system. In the soundness game, the KTY model requires that pk belongs to the language of valid public keys. Here, we are implicitly assuming that the space of valid public keys is dense (all matrices are valid keys, as is the case in our scheme).

In the upcoming de nitions, we sometimes use the notation

output A |output B ← A(input A ), B(input B ) (common-input)
to denote the execution of a protocol between A and B obtaining their own outputs from their respective inputs.

Correctness. The correctness property requires that the following experiment returns 1 with overwhelming probability.

Experiment Exp correctness (λ)

param ← SETUP init (1 λ ); (pk R , sk R ) ← G r (λ); (x, w) ← sample R (pk R , sk R ); (pk GM , sk GM ) ← SETUP GM (param); (pk OA , sk OA ) ← SETUP OA (param); pk, sk, cert pk |pk, cert pk ← J user , J GM (sk GM ) (pk GM ); Ψ ← ENC(pk GM , pk OA , pk, cert pk , w, L); π Ψ ← P(pk GM , pk OA , pk, cert, w, L, Ψ, coins Ψ ); if (w = DEC(sk, Ψ, L)) ∨ (pk = OPEN(sk OA , Ψ, L)) ∨ (V(Ψ, L, π Ψ , pk GM , pk OA ) = 0) then return 0 else return 1;
Message Secrecy. The message secrecy property is de ned by an experiment where the adversary has access to oracles that may be stateful (and maintain a state across queries) or stateless:

-DEC(sk): is a stateless oracle for the user decryption function DEC. When this oracle is restricted not to decrypt a ciphertext-label pair (Ψ, L), we denote it by DEC ¬ Ψ,L .

-CH b ror (λ, pk, w, L): is a real-or-random challenge oracle which is called once. It returns (Ψ, coins Ψ ) such that Ψ ← ENC(pk GM , pk OA , pk, cert pk , w, L) if b = 1 whereas, if b = 0, Ψ ← ENC(pk GM , pk OA , pk, cert pk , w , L) encrypts a random plaintext of length O(λ) uniformly sampled in the plaintext space. In both cases, coins Ψ denote the random coins used to generate Ψ.

-PROVE b PP,PP (pk GM , pk OA , pk, cert pk , pk R , x, w, Ψ, L, coins Ψ ): is a stateful oracle that can be invoked a polynomial number times. If b = 1, it replies by running the real prover PP on the inputs to create an actual proof π Ψ . If b = 0, the oracle runs a simulator PP that uses the same inputs as PP except witness w, coins Ψ and generates a simulated proof.

These oracles are used in an experiment where the adversary controls the GM, the OA and all members except the honest receiver. The adversary A embodies the dishonest GM that certi es the honest receiver in an execution of JOIN. It is granted access to an oracle DEC which decrypts on behalf of that receiver. In the challenge phase, it transmits a state information aux to itself and invokes the challenge oracle for a label and a pair (x, w) ∈ R of its choice. After the challenge phase, it can also query the PROVE oracle many times and nally attempts to guess the challenger's bit b.

As pointed out in [START_REF] Kiayias | Group encryption[END_REF][START_REF] Cathalo | Group Encryption: Non-Interactive Realization in the Standard Model[END_REF], designing an e cient simulator PP (for executing PROVE b PP,PP (.) when b = 0) is part of the security proof.

De nition 8.1. A GE scheme satis es message security if, for any PPT adversary A, the experiment below returns 1 with probability at most 1/2 + negl(λ).

Experiment Exp sec A (λ)

par ← SETUP init (1 λ ); (aux, pk GM , pk OA ) ← A(par); pk, sk, cert pk |aux ← J user , A(aux) (pk GM ); (aux, x, w, L, pk R ) ← A DEC(sk,.) (aux); if (x, w) ∈ R then return 0; b ← {0, 1}; (Ψ, coins Ψ ) ← CH b ror (λ, pk, w, L); b ← A PROVE b PP,PP (pk GM ,pk OA ,pk,cert pk ,pk R ,x,w,Ψ,L,coins Ψ ),DEC ¬ Ψ,L (sk,.) (aux, Ψ); if b = b then return 1 else return 0; 8. L B G E
Anonymity. In the experiment modeling the anonymity property, the adversary controls the entire system except the opening authority and two well-behaved users. The challenger thus introduces two honest users' public keys pk 0 , pk 1 in database and thus obtains certicate for both pk 0 , pk 1 from the adversarially-controlled GM. For a pair (x, w) ∈ R of its choice, the adversary obtains an encryption of w under pk b for some b ∈ {0, 1} chosen by the challenger. The adversary is provided with decryption oracles w.r.t. both keys pk 0 , pk 1 . In addition, it has the following oracles at disposal:

-CH b anon (pk GM , pk OA , pk 0 , pk 1 , w, L): is a challenge oracle that is only queried once by the adversary. It returns a pair (Ψ, coins Ψ ) consisting of a ciphertext Ψ ← ENC(pk GM , pk OA , pk b , cert pk b , w, L) and the coin tosses coins Ψ that were used to generate Ψ.

-USER(pk GM ): is a stateful oracle that obtains certi cates from the adversary by simulating two executions of J user to introduce two honest users in the group. It uses a string keys where the outputs (pk 0 , sk 0 , cert pk 0 ), (pk 1 , sk 1 , cert pk 1 ) of honest users are written as long as the adversarially-supplied certi cates {cert pk d } 1 d=0 are valid w.r.t. pk GM (i.e., invalid certi cates are ignored by the oracle and no entry is introduced in keys for them).

-OPEN(sk OA , .): is a stateless oracle that simulates the opening algorithm and, on input of a GE ciphertext, returns the receiver's public key.

The reason why the USER oracle is needed is that both honest users' public keys pk 0 , pk 1 must have been properly certi ed by the adversarially-controlled GM before the challenge phase because the adversary subsequently obtains proofs generated using (pk b , cert pk b ).

De nition 8.2. A GE scheme satis es anonymity if, for any PPT adversary A, the experiment below returns 1 with a probability not exceeding 1/2 + negl(λ).

Experiment Exp anon A (λ)

par ← SETUP init (1 λ ); (pk OA , sk OA ) ← SETUP OA (par);
(aux, pk GM ) ← A(par, pk OA ); aux ← A USER(pk GM ),OPEN(sk OA ,.) (aux);

if keys = (pk 0 , sk 0 , cert pk 0 , pk 1 , sk 1 , cert pk 1 )(aux) then return 0;

(aux, x, w, L, pk R ) ← A OPEN(sk OA ,.),DEC(sk0,.),DEC(sk1,.) (aux);

if (x, w) ∈ R then return 0; b ← {0, 1}; (Ψ, coins Ψ ) ← CH b
anon (pk GM , pk OA , pk 0 , pk 1 , w, L); b ← A P(pk GM ,pk OA ,pk b ,cert pk b ,x,w,Ψ,L,coins Ψ , OPEN ¬ Ψ,L (sk OA ,.),DEC ¬ Ψ,L (sk0,.),DEC ¬ Ψ,L (sk1,.)) (aux, Ψ);

if b = b then return 1 else return 0;
Soundness. Here, the adversary creates the group of receivers by interacting with the honest GM. Its goal is to produce a ciphertext Ψ and a convincing proof that Ψ is valid w.r.t. a relation R of its choice but either: (1) The opening of Ψ reveals a receiver's public key pk that does not belong to any group member; [START_REF]2 Some security games examples[END_REF] The output pk of OPEN is not a valid public key (i.e., pk ∈ PK, where PK is the language of valid public keys); (3) The ciphertext C is not in the space C x,L,pk R ,pk GM ,pk OA ,pk of valid ciphertexts. This notion is formalized by a game where the adversary is given access to a user registration oracle REG(sk GM , .) that simulates J GM . This oracle maintains a list database where registered public keys and their certi cates are stored.

De nition 8.3. A GE scheme is sound if, for any PPT adversary A, the experiment below returns 1 with negligible probability.

Experiment Exp soundness A (λ) par ← SETUP init (1 λ ); (pk OA , sk OA ) ← SETUP OA (par); (pk GM , sk GM ) ← SETUP GM (par); (pk R , x, Ψ, π Ψ , L, aux) ← A REG(sk GM ,.) (par, pk GM , pk OA , sk OA ); if V(Ψ, L, π Ψ , pk GM , pk OA ) = 0 then return 0; pk ← OPEN(sk OA , Ψ, L); if (pk ∈ database) ∨ (pk ∈ PK) ∨ (Ψ ∈ C x,L,pk R ,pk GM ,pk OA ,pk ) then return 1 else return 0;
The model of Kiayias et al. [START_REF] Kiayias | Group encryption[END_REF] requires that pk belongs to the language of valid public keys, so that the adversary is considered to defeat the soundness property when (Ψ, L) opens to a key outside the language (i.e., pk ∈ PK). In our scheme, we will assume that the space of valid public keys is dense in that all matrices of a given dimension are valid public keys, which have an underlying private key. We nevertheless use the same de nition as [START_REF] Kiayias | Group encryption[END_REF] in order to emphasize that we are not relaxing the model in any way. Agrawal, Boneh and Boyen described [ABB10] a compact IBE scheme in the standard model which allows encrypting multi-bit messages.

Building Blocks

Setup(1 λ ): Given a security parameter λ, choose parameters q, n, σ, α and de ne k = log q , m = nk, m = 2 m and choose a noise distribution χ for LWE.

1. Compute ( Ā, T Ā) ← TrapGen(1 n , 1 m , q).

De ne

G = I n ⊗ [1|2| . . . |2 k-1 ] ∈ Z n× m q . Sample matrices B ← U(Z n× m q ), U ← U(Z n×m q ).
3. Let FRD : Z n q → Z n×n q be the full-rank di erence mapping from [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF].

Output PP = Ā, B, U and msk = T Ā.

Extract PP (msk, ID): Given msk = T Ā and an identity ID ∈ Z n q , do as follows:

1. De ne the matrix

B ID = B + FRD(ID) • G ∈ Z n× m q . 2. Let B A,ID = [A | B ID ] ∈ Z n×(m+ m) q
, use T A to compute a delegated basis T ID for the lattice Λ ⊥ (B A,ID ).

3. Use T ID to sample a small-norm matrix E ID ∈ Z (m+ m)×m satisfying the equality

B A,ID • E ID = U mod q. 4. Output sk ID = E ID ∈ Z (m+ m)×m .
Encrypt PP (ID, m): Given an identity ID and a message m ∈ {0, 1} m , 1. Compute the matrix

B ID = B + FRD(ID) • G ∈ Z n× m q . Sample vectors s ← U(Z n q ), x, y ← χ m , R ← D m× m Z,σ and compute z = R T • y ∈ Z m . 2. Compute          c (1) = ĀT • s + y mod q, c (2) = B T ID • s + z mod q, c (3) = U T • s + x + m • q 2 . (8.1) 3. Output c = c (1) , c (2) , c (3) ∈ Z m q × Z m q × Z m q .
Decrypt PP (sk ID , c): Given sk ID = E ID and c = c (1) , c (2) , c (3) 

∈ Z m q × Z m q × Z m q ,
compute and output m = c (3) -

E ID • c (1) c (2) • q 2 -1 ∈ {0, 1} m .
Theorem 8.1 ([ABB10, Th. 23]). The ABB IBE scheme has pseudo-random ciphertexts if the LWE n,q,χ assumption holds.

Warm-up: Decompositions, Extensions, Permutations

This section introduces the notations and techniques that will be used throughout the chapter. It details Stern-like protocols that have been introduced in Section 4.3. The techniques that will be employed for handling quadratic relations (double-bit extension ext(•, •), expansion expand ⊗ (•, •) of matrix-vector product and the associated permuting mechanisms) are novel contributions.

Decompositions

For any B ∈ Z + , de ne the number δ B := log 2 B + 1 = log 2 (B + 1) and the sequence B 1 , . . . , B δ B , where

B j = B+2 j-1 2 j , ∀j ∈ [1, δ B ].
As observed in [START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF], the sequence satis es δ B j=1 B j = B and any integer v ∈ [0, B] can be decomposed into a binary vector

idec B (v) = (v (1) , . . . , v (δ B ) ) T ∈ {0, 1} δ B such that δ B j=1 B j • v (j) = v.
We describe this decomposition procedure in a deterministic manner:

1. v := v 125 8. L B G E 2. For j = 1 to δ B do: (i) If v ≥ B j then v (j) := 1, else v (j) := 0; (ii) v := v -B j • v (j) . 3. Output idec B (v) = (v (1) , . . . , v (δ B ) ) T .
Next, for any positive integers m, B, we de ne the decomposition matrix:

H m,B :=       B 1 . . . B δ B B 1 . . . B δ B . . . B 1 . . . B δ B       ∈ Z m×mδ B , ( 8.2) 
and the following injective functions:

(i) vdec m,B : [0, B] m → {0, 1} mδ B that maps vector v = (v 1 , . . . , v m ) T to vector idec B (v 1 ) T . . . idec B (v m ) T T . Note that H m,B • vdec m,B (v) = v. (ii) vdec m,B : [-B, B] m → {-1, 0, 1} mδ B that maps vector w = (w 1 , . . . , w m ) T to vector σ(w 1 )•idec B (w 1 ) T . . . σ(w m )•idec B (w m ) T T , where for each i = 1, . . . , m: σ(w i ) = 0 if w i = 0; σ(w i ) = -1 if w i < 0; σ(w i ) = 1 if w i > 0. Note that H m,B • vdec m,B (w) = w.
We also de ne the following matrix decomposition procedure. For positive integers n, m, q, de ne the injective function mdec n,m,q : Z m×n q → {0, 1} mnδ q-1 that maps matrix

X = [x 1 | . . . |x n ] ∈ Z m×n q
, where x 1 , . . . , x n ∈ Z m q , to vector

mdec n,m,q (X) = vdec m,q-1 (x 1 ) T . . . vdec m,q-1 (x n ) T T = (x 1,1 , . . . , x 1,mk , x 2,1 , . . . , x 2,mk , . . . , x n,1 , . . . , x n,mk ) T ∈ {0, 1} nmδ q-1 , where, for each (i, j) ∈ [n]×[mδ q-1 ],
x i,j ∈ {0, 1} denotes the j-th bit of the decomposition of the i-th column of X.

Looking ahead, when proving knowledge of witnesses (X, s) ∈ Z m×n q × Z n q satisfying b = X • s + e mod q, we will have to consider terms of the form x i,j • s i,t , where s = (s 1 , . . . , s n ) T ∈ Z n q and (s i,1 , . . . , s i,δ q-1 )

T = idec q-1 (s i ) for each i ∈ [n].

Extensions and Permutations

We now introduce the extensions and permutations which will be essential for proving quadratic relations.

• For each c ∈ {0, 1}, denote by c the bit 1 -c ∈ {0, 1}.

• For c 1 , c 2 ∈ {0, 1}, de ne the vector

ext(c 1 , c 2 ) = (c 1 • c 2 , c 1 • c 2 , c 1 • c 2 , c 1 • c 2 ) T ∈ {0, 1} 4 . • For b 1 , b 2 ∈ {0, 1}, de ne the permutation T b 1 ,b 2 that transforms vector v = (v 0,0 , v 0,1 , v 1,0 , v 1,1 ) T ∈ Z 4 q to vector (v b 1 ,b 2 , v b 1 ,b 2 , v b 1 ,b 2 , v b 1 ,b 2 ) T . Note that, for all c 1 , c 2 , b 1 , b 2 ∈ {0, 1}
, we have the following:

z = ext(c 1 , c 2 ) ⇐⇒ T b 1 ,b 2 (z) = ext(c 1 ⊕ b 1 , c 2 ⊕ b 2 ), (8.3) 
where ⊕ denotes the bit-wise addition modulo 2.

Now, for positive integers n, m, k, and for vectors

x = (x 1,1 , . . . , x 1,mk , x 2,1 , . . . , x 2,mk , . . . , x n,1 , x n,mk ) T ∈ {0, 1} nmk
and s 0 = (s 1,1 , . . . , s 1,k , s 2,1 , . . . , s 2,k , . . . , s n,1 , . . . , s n,k ) T ∈ {0, 1} nk , we de ne the vector expand ⊗ (x, s 0 ) ∈ {0, 1} 4nmk 2 as

expand ⊗ (x, s 0 ) = ext T (x 1,1 , s 1,1 ) ext T (x 1,1 , s 1,2 ) . . . ext T (x 1,1 , s 1,k ) ext T (x 1,2 , s 1,1 ) ext T (x 1,2 , s 1,2 ) . . . ext T (x 1,2 , s 1,k ) . . . ext T (x 1,mk , s 1,1 ) ext T (x 1,mk , s 1,2 ) . . . ext T (x 1,mk , s 1,k ) ext T (x 2,1 , s 2,1 ) ext T (x 2,1 , s 2,2 ) . . . ext T (x 2,1 , s 2,k ) . . . ext T (x 2,mk , s 2,1 ) ext T (x 2,mk , s 2,2 ) . . . ext T (x 2,mk , s 2,k ) . . . ext T (x n,1 , s n,1 ) ext T (x n,1 , s n,2 ) . . . ext T (x n,1 , s n,k ) . . . ext T (x n,mk , s n,1 ) ext T (x n,mk , s n,2 ) . . . ext T (x n,mk , s n,k ) T .
That is, expand ⊗ (x, s 0 ) is obtained by applying ext to all pairs of the form (x i,j , s i,t ) for 

(i, j, t) ∈ [n] × [mk] × [k].
v = (v T 1,1,1 . . . v T 1,1,k ) (v T 1,2,1 . . . v T 1,2,k ) . . . (v T 1,mk,1 . . . v T 1,mk,k ) (v T 2,1,1 . . . v T 2,1,k ) (v T 2,2,1 . . . v T 2,2,k ) . . . (v T 2,mk,1 . . . v T 2,mk,k ) (v T n,1,1 . . . v T n,1,k ) (v T n,2,1 . . . v T n,2,k ) . . . (v T n,mk,1 . . . v T n,mk,k ) T ∈ Z 4nmk 2 ,
consisting of nmk 2 blocks of length 4, to the vector P b,d (v) of the form

(w T 1,1,1 . . . w T 1,1,k ) (w T 1,2,1 . . . w T 1,2,k ) . . . (w T 1,mk,1 . . . w T 1,mk,k ) (w T 2,1,1 . . . w T 2,1,k ) (w T 2,2,1 . . . w T 2,2,k ) . . . (w T 2,mk,1 . . . w T 2,mk,k ) (w T n,1,1 . . . w T n,1,k ) (w T n,2,1 . . . w T n,2,k ) . . . (w T n,mk,1 . . . w T n,mk,k ) T ,
where for each (i, j, t)

∈ [n] × [mk] × [k]: w i,j,t = T b i,j ,d i,t (v i,j,t ).
Observe that, for all b ∈ {0, 1} nmk , d ∈ {0, 1} nk , we have:

z = expand ⊗ (x, s 0 ) ⇐⇒ P b,d (z) = expand ⊗ (x ⊕ b, s 0 ⊕ d). (8.4) 8. L 

B G E

Next, we recall the notations, extensions and permutations used in previous Stern-like protocols [LNSW13, LNW15, ELL + 15, LLM + 16a] for proving linear relations.

For any positive integer t, denote by S t the symmetric group of all permutations of t elements, by B 2t the set of all vectors in {0, 1} 2t having Hamming weight t, and by B 3t the set of all vectors in {-1, 0, 1} 3t having exactly t coordinates equal to j, for each j ∈ {-1, 0, 1}. Note that for any φ ∈ S 2t and ψ ∈ S 3t , we have the following equivalences:

x ∈ B 2t ⇐⇒ φ(x) ∈ B 2t and y ∈ B 3t ⇐⇒ ψ(y) ∈ B 3t . ( 8.5) 
The following extending procedures are de ned for any positive integers t.

• ExtendTwo t : {0, 1} t → B 2t . On input vector x with Hamming weight w, it outputs

x = (x T 1 t-w 0 w ) T .
• ExtendThree t : {-1, 0, 1} t → B 3t . On input vector y containing n j coordinates equal to j for j ∈ {-1, 0, 1}, this procedure outputs the vector

y = (y T 1 t-n 1 0 t-n 0 (-1) t-n -1 ).
We also use the following encoding and permutation to achieve ne-grained control over coordinates of binary witness-vectors.

• For any positive integer t, de ne the function encode t that encodes vector x = (x 1 , . . . , x t ) T ∈ {0, 1} t to vector encode t (x) = (x 1 , x 1 , . . . , xt , x t ) T ∈ {0, 1} 2t .

• For any positive integer t and any vector c = (c 1 , . . . , c t ) T ∈ {0, 1} t , de ne the permutation

F (t) c that transforms vector v = (v (0) 1 , v (1) 1 , . . . , v (0) t , v (1) t ) T ∈ Z 2t into vector F (t) c (v) = (v (c 1 ) 1 , v (c 1 ) 1 , . . . , v (ct) t , v (ct) t ) T .
Note that the following equivalence holds for all t, c:

y = encode t (x) ⇐⇒ F (t) c (y) = encode t (x ⊕ c). (8.6) 
To close this warm-up section, we remark that the equivalences observed in (8.4), (8.5) and (8.6) will play crucial roles in our zero-knowledge layer.

The Supporting Zero-Knowledge Layer

In this section, we rst demonstrate how to prove in zero-knowledge that a given vector b is a correct LWE evaluation, i.e., b = X • s + e mod q, where the hidden matrix X and vector s may satisfy additional conditions. This sub-protocol, which we believe will have other applications, is one of the major challenges in our road towards the design of lattice-based group encryption. We then plug this building block into the big picture as described in Section 4.3, and construct the supporting zero-knowledge argument of knowledge (ZKAoK) for our group encryption scheme (Section 8.5).

Proving the LWE Relation With Hidden Matrices

Let n, m, q, β be positive integers where β q, and let k = δ q-1 = log 2 q . We identify Z q as the set {0, 1, . . . , q -1}. We consider a zero-knowledge argument system allowing prover P to convince veri er V on input b ∈ Z m q that P knows secret matrix X ∈ Z m×n q , and vectors s ∈ Z n q , e ∈ [-β, β] m such that:

b = X • s + e mod q. (8.7)
Moreover, the argument system should be readily extended to proving that X and s satisfy additional conditions, such as:

• The bits representing X are certi ed by an authority, and the prover also knows that secret signature-certi cate.

• The (secret) hash of X is correctly encrypted to a given ciphertext.

• The LWE secret s is involved in other linear equations.

Let q 1 , . . . , q k ∈ Z q be the sequence of integers obtained by decomposing q -1 using the technique recalled in Section 8.3.1, and de ne the row vector g = (q 1 , . . . , q k ).

Let X = [x 1 | . . . |x n ] ∈ Z m×n q and s = (s 1 , . . . , s n ) T . For each index i ∈ [n], let us consider vdec m,q-1 (x i ) = (x i,1 , . . . , x i,mk ) T ∈ {0, 1} mk . Let vdec n,q-1 (s) = (s 1,1 , . . . , s 1,k , s 2,1 , . . . , s 2,k , . . . , s n,1 , . . . s n,k ) T ∈ {0, 1} nk and observe that s i = g • idec q-1 (s i ) = g • (s i,1 , . . . , s i,k ) T for each i ∈ [n].
We have:

X • s = n i=1 x i • s i = n i=1 H m,q-1 • vdec m,q-1 (x i ) • s i = H m,q-1 • n i=1 (x i,1 • s i , . . . , x i,mk • s i ) T mod q.
Observe that, for each i ∈ [n] and each j ∈ [mk], we have

x i,j • s i = x i,j • g • (s i,1 , . . . , s i,k ) T = (q 1 , . . . , q k ) • (x i,j • s i,1 , . . . , x i,j • s i,k ) T .
We now extend vector (q 1 , q 2 , . . . , q k ) to g = (0, 0, 0, q 1 , 0, 0, 0, q 2 , . . . , 0, 0, 0, q k ) ∈ Z 4k q . For all (i, j) ∈ [n] × [mk], we have:

x i,j • s i = g • (ext T (x i,j , s i,1 ) . . . ext T (x i,j , s i,k )) T .
Let us de ne the matrices

Q 0 := I mk ⊗ g =       g g . . . g       ∈ Z mk×4mk 2 q , ( 8.8) 8. 
L B G E and Q = [ n times Q 0 | . . . |Q 0 ] ∈ Z mk×4nmk 2 q
. For each i ∈ [n], de ne

y i = ext T (x i,1 , s i,1 ) . . . ext T (x i,1 , s i,k )) T ext T (x i,2 , s i,1 ) . . . ext T (x i,2 , s i,k ) . . . ext T (x i,mk , s i,1 . . . ext T (x i,mk , s i,k ) T ∈ {0, 1} 4mk 2 .
Then, for all i ∈ [n], we have:

(x i,1 • s i , . . . , x i,mk • s i ) T = Q 0 • y i . Now, we note that (y T 1 . . . y T n ) T = expand ⊗ mdec n,m,q (X), vdec n,q-1 (s) , and n i=1 (x i,1 • s i , . . . , x i,mk • s i ) T = n i=1 Q 0 • y i = Q • expand ⊗ mdec n,m,q (X), vdec n,q-1 (s) .
(8.9)

Letting Q = H m,q-1 • Q ∈ Z m×4nmk 2 q
and left-multiplying (8.9) by H m,q-1 , we obtain the equation:

X • s = Q • expand ⊗ mdec n,m,q (X), vdec n,q-1 (s) mod q.
This means that the task of proving knowledge of (X, s, e) ∈ Z m×n q

× Z n q × [-β, β] m such that b = X • s + e mod q boils down to proving knowledge of z ∈ {0, 1} 4nmk 2 , x ∈ {0, 1} nmk , s 0 ∈ {0, 1} nk and a short e ∈ Z m such that b = Q • z + I m • e mod q and z = expand ⊗ (x, s 0 ).
As the knowledge of small-norm vector e can easily be proven with Stern-like protocol (e.g., [START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF]), the challenging part is to prove in zero-knowledge the constraint "z = expand ⊗ (x, s 0 )". To this end, we will use the following permuting technique inspired by the equivalence of equation (8.4). We sample uniformly random d x ∈ {0, 1} nmk and d s ∈ {0, 1} nk , send x = x ⊕ d x and s = s 0 ⊕ d s to the veri er, and let the latter check that P dx,ds (z) = expand ⊗ (x , s ). This will be su cient to convince the veri er that the original vector z satis es the required constraint. The crucial point is that no additional information about x and s 0 is leaked, since these binary vectors are perfectly hidden under the "one-time pad" d x and d s , respectively.

In the framework of Stern's protocol, the idea of using "one-time-pad" permutations further allows us to prove that x and s 0 satisfy additional conditions, i.e., they appear in other equations. This is done by rst setting up an equivalence similar to (8.4) in the places where these objects appear, and then, using the same "one-time pad" for each of them in all appearances. We will explain in detail how this technique can be realized in the next subsection.

Our Lattice-Based Group Encryption Scheme

To build a GE scheme using our zero-knowledge argument system, we need to choose a speci c key-private CCA2-secure encryption scheme. The rst idea is to use the CCA2secure public-key cryptosystem which is implied by the Agrawal-Boneh-Boyen identitybased encryption (IBE) scheme [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF] (which is recalled in Section 8.2.1) via the Canetti-Halevi-Katz (CHK) transformation [START_REF] Canetti | Chosen-Ciphertext Security from Identity-Based Encryption[END_REF]. The ABB scheme is a natural choice since it has pseudo-random ciphertexts (which implies the key-privacy [START_REF] Bellare | Key-Privacy in Public-Key Encryption[END_REF] when the CHK paradigm is applied) and provides one of the most e cient CCA2 cryptosystem based on the hardness of LWE in the standard model. One di culty is that the Kiayias-Tsiounis-Yung model [START_REF] Kiayias | Group encryption[END_REF] requires that certi ed public keys be valid public keys (i.e., which have a matching secret key). When new group members join the system and request a certi cate for their public key

B U ∈ Z n× m q
, a direct use of the ABB/CHK technique would incur of proof of existence of a GPV trapdoor [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF] corresponding to B U (i.e., a small-norm matrix T B U ∈ Z m× m s.t. B • T B U = 0 n mod q). While the techniques of Peikert and Vaikuntanathan [START_REF] Peikert | Non-interactive statistical zero-knowledge proofs for lattice problems[END_REF] would provide a solution to this problem (as they allow proving that T B U ∈ Z m× m has full-rank), we found it simpler to rely on the trapdoor mechanism of Micciancio and Peikert [START_REF] Micciancio | Trapdoors for lattices: Simpler, tighter, faster, smaller[END_REF].

If we assume public parameters containing a random matrix Ā ∈ Z n×m q , each user's public key can consist of a matrix

B U = Ā • T U ∈ Z n× m q
, where T U ∈ Z m× m is a small-norm matrix whose calms are sampled from a discrete Gaussian distribution. Note that, if Ā ∈ Z n×m q is uniformly distributed, then [GPV08, Lemma 5.1] ensures that, with overwhelming probability, any matrix B U ∈ Z n× m q has an underlying small-norm matrix satisfying B U = Ā • T U mod q. This simpli es the joining procedure by eliminating the need for proofs of public key validity.

In the encryption algorithm, the sender computes a dual Regev encryption [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF] of the witness w ∈ {0, 1} m using a matrix

[ Ā | B U + FRD(vk) • G] ∈ Z n×(m+ m) q such that: (i) vk ∈ Z n q is the veri cation key of a one-time signature; (ii) FRD : Z n q → Z n×n q is the full-rank di erence 1 function of [ABB10]; (iii) G = I n ⊗ [1|2| . . . |2 k-1 ] ∈ Z n× m q
is the gadget matrix of [START_REF] Micciancio | Trapdoors for lattices: Simpler, tighter, faster, smaller[END_REF]. Given that G has a publicly known trapdoor allowing to sample short vectors in Λ ⊥ q (G), the user can use his private key T U ∈ Z m× m to decrypt by running the SampleRight algorithm of Lemma 3.7.

Having encrypted the witness w ∈ {0, 1} m by running the ABB encryption algorithm, the sender proceeds by encrypting a hash value of B U ∈ Z n× m q under the public key

B OA = Ā • T OA ∈ Z n× m q
of the opening authority. The latter hash value is obtained as a bit-wise decomposition of F • mdec n,m,q (B T U ) ∈ Z 2n q , where F ∈ Z 2n×n m log q q is a random public matrix and mdec n,m,q (B T U ) ∈ {0, 1} n m log q denotes an entry-wise binary decomposition of the matrix B U ∈ Z n× m q . By combining our new argument for quadratic relations and the extensions of Stern's protocol suggested in [LNW15, LLM + 16a], we are able to prove that some component of the ciphertext is of the form c = B T U • s + e ∈ Z m q , for some s ∈ Z n q and a smallnorm e ∈ Z m while also arguing possession of a signature on the binary decomposition mdec n,m,q (B T U ) ∈ {0, 1} n m log q of B T U . For this purpose, we use a variant of a signature scheme due to Böhl et al.'s signature [BHJ + 15] which was described in Chapter 7 (and of which a description is given in Section 7.1). At the same time, the prover P can also argue that a hash value of mdec n,m,q (B T U ) is properly encrypted under the OA's public key using the ABB encryption scheme.
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Description of the Scheme

Our GE scheme allows encrypting witnesses for the ISIS relation (as in De nition 3.8) R ISIS (n, m, q, 1), which consists of pairs

((A R , u R ), w) ∈ (Z n×m q × Z n q ) × {0, 1} m satisfy- ing u R = A R • w mod q.
This relation is in the same spirit as the one of Kiayias, Tsiounis and Yung [START_REF] Kiayias | Group encryption[END_REF], who consider the veri able encryption of discrete logarithms. While the construction of [START_REF] Kiayias | Group encryption[END_REF] allow veri ably encrypting discrete-logarithm-type secret keys under the public key of some anonymous trusted third party, our construction makes it possible to encrypt GPV-type secret keys [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF].

SETUP init (1 λ ): This algorithm performs the following:

1. Choose integers n = O(λ), prime q = O(n 4 ), and let k = log 2 q , m = nk and m = 2 m = 2nk. Choose a B-bounded distribution χ over Z for some B = √ nω(log n). 2. Choose a Gaussian parameter σ = Ω( √ n log q log n). Let β = σω(log n) be the upper bound of samples from D Z,σ .

3. Select integers = (λ) which determines the maximum expected group size 2 , and κ = ω(log λ) (the number of protocol repetitions). 4. Select a strongly unforgeable one-time signature OT S = (Gen, Sig, Ver). We assume that the veri cation keys live in Z n q . 5. Select public parameters COM par for a statistically-hiding commitment scheme like [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF]. This commitment will serve as a building block for the zeroknowledge argument system used in P, V .

6. Let FRD : Z n q → Z n×n q be the full-rank di erence mapping from [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF].

7. Pick a random matrix F ← Z 2n×n mk q , which will be used to hash users' public keys from

Z n× m q to Z n q . 8. Let G ∈ Z n× m q be the gadget matrix G = I n ⊗ 1 2 . . . 2 k-1 of [MP12]. Pick matrices Ā, U ← U(Z n×m q
) and V ← U(Z n×m q ). Looking ahead, U will be used to encrypt for the receiver while V will be used to encrypt the user's public key under the OA's public key. As for Ā, it will be used in two instances of the ABB encryption scheme [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF]. n,q,k,m,B,χ,σ,β,,κ,OT S,COM par ,FRD,Ā,G,F,U,V .

Output par = λ,
G r , sample R : Algorithm G r (1 λ , 1 n , 1 m ) proceeds by sampling a random matrix A R ← U(Z n×m q ) and outputting (pk R , sk R ) = (A R , ε). On input of a public key pk R = A R ∈ Z n×m q for the relation R ISIS , algorithm sample R picks w ← U({0, 1} m ) and outputs a pair ((A R , u R ), w), where u R = A R • w ∈ Z n q .
SETUP GM (par): The GM generates (sk GM , pk GM ) ← Keygen(1 λ , q, n, m, , σ) as a key pair for the SIS-based signature scheme of [LLM + 16a] (as recalled in Section 7.1). This key pair consists of sk GM := T A and

pk GM := A, A 0 , . . . , A ∈ Z n×m q , D 0 , D 1 ∈ Z n×m q , D ∈ Z n× m q , u ∈ Z n q . (8.10)
SETUP OA (par): The OA samples a small-norm matrix

T OA ← D m Z m ,σ in Z m× m to obtain a statistically uniform B OA = Ā • T OA ∈ Z n× m q
. The OA's key pair consists of (sk OA , pk OA ) = (T OA , B OA ).

JOIN:

The prospective user U and the GM interact in the following protocol.

1. U rst samples T U ← D m Z m ,σ in Z m× m to compute a statistically uniform matrix B U = Ā • T U ∈ Z n× m q
. The prospective user de nes his key pair as (pk U , sk U ) = (B U , T U ) and sends pk U = B U to the GM.

Upon receiving a public key pk

U = B U ∈ Z n× m q
from the user, the GM certi es pk U via the following steps:

a. Compute h U = F • mdec n, m,q (B T U ) ∈ Z 2n q as a hash value of the public key pk U = B U ∈ Z n× m q . b. Use the trapdoor sk GM = T A to generate a signature cert U = τ, d, r ∈ {0, 1} × [-β, β] 2m × [-β, β] m , (8.11) satisfying A | j=1 τ [j]A j • d = u + D • vdec n,q-1 (D 0 • r + D 1 • vdec n,q-1 (h U )) mod q, ( 8.12) 
where τ = τ [1] . . . τ [ ] ∈ {0, 1} , as in the scheme of Section 7.1.

U veri es that cert U is tuple of the form (8.11) satisfying (8.12) and returns ⊥ if it is not the case. The GM stores (pk U , cert U ) in the user database database and returns the certi cate cert U to the new user U.

ENC(pk GM , pk OA , pk U , cert U , w, L): To encrypt a witness w ∈ {0, 1} m for ((A R , u R ), w) in relation R ISIS (n, m, q, 1) (i.e., A R • w = u R mod q), parse pk GM as in (8.10), pk OA as B OA ∈ Z n× m q , pk U as B U ∈ Z n× m q
and cert U as in (8.11).

1. Generate a one-time key-pair (sk, vk) ← Gen(1 λ ), where vk ∈ Z n q . 2. Compute a full-rank-di erence hash H vk = FRD(vk) ∈ Z n×n q of the one-time veri cation key vk ∈ Z n q . 3. Encrypt the witness w ∈ {0, 1} m under U's public key B U ∈ Z n× m q using the tag vk by taking the following steps:

a. Sample s rec ← U(Z n q ), R rec ← D m× m Z,σ and x rec , y rec ← χ m . Compute z rec = R T rec • y rec ∈ Z m. b. Compute          c (1) rec = ĀT • s rec + y rec mod q c (2) rec = (B U + H vk • G) T • s rec + z rec mod q; c (3) rec = U T • s rec + x rec + w • q 2 , ( 8.13) 8. L 
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(1)

rec , c (2) 
rec , c

rec ∈ Z m q × Z m q × Z m q , which forms an ABB ciphertext [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF] for the tag vk ∈ Z n q .

4. Encrypt the decomposition vdec n,q-1 (h U ) ∈ {0, 1} m of the hashed pk U under the OA's public key B OA ∈ Z n× m q w.r.t. the tag vk ∈ Z n q . Namely, conduct the following steps:

a. Sample s oa ← U(Z n q ), R oa ← D m× m Z,σ , x oa ← χ m , y oa ← χ m . Set z oa = R T oa • y oa ∈ Z m. b. Compute          c (1) oa = ĀT • s oa + y oa mod q; c (2) oa = (B OA + H vk • G) T • s oa + z oa mod q; c (3) oa = V T • s oa + x oa + vdec n,q-1 (h U ) • q 2 , ( 8.14) 
and let c oa = c

(1)

oa , c (2) 
oa , c

oa ∈ Z m q × Z m q × Z m q . (3) 
5. Compute a one-time signature Σ = Sig(sk, (c rec , c oa , L)).

Output the ciphertext

Ψ = (vk, c rec , c oa , Σ). (8.15) 
and the state information coins Ψ = s rec , R rec , x rec , y rec , s oa , R oa , x oa , y oa .

DEC(sk U , Ψ, L) : The decryption algorithm proceeds as follows:

1. If Ver vk, Σ, (c rec , c oa , L) = 0, return ⊥. Otherwise, parse the secret key sk U as T U ∈ Z m× m and the ciphertext Ψ as in (8.15). De ne the matrix

B vk = B U + FRD(vk) • G ∈ Z n× m q .
2. Decrypt c rec using a decryption key for the tag vk ∈ Z n . Namely,

a. De ne B U,vk = [ Ā|B vk ] = [ Ā| Ā•T U +FRD(vk)•G] ∈ Z n×(m+ m) q
. Using T U and the publicly known trapdoor T G of G, compute a small-norm matrix E vk ∈ Z (m+ m)×m such that B U,vk • E vk = U mod q by running the SampleRight algorithm of Lemma 3.7. b. Compute w = c (3) rec -

E T vk • c (1) rec c (2) rec / q 2 ∈ Z m
and return the obtained w ∈ {0, 1} m .

OPEN(sk OA , Ψ, L) : The opening algorithm proceeds as follows:

1. If Ver vk, Σ, (c rec , c oa ), L = 0, then return ⊥. Otherwise, parse sk OA as T OA ∈ Z m× m and the ciphertext Ψ as in (8.15).

2. Decrypt c oa using a decryption key for the tag vk ∈ Z n q in the same way as in the decryption algorithm. That is, do the following: a. De ne the matrix

B OA,vk = [ Ā|B OA + FRD(vk) • G] ∈ Z n×(m+ m) q . Use T OA to compute a small-norm E OA,vk ∈ Z (m+ m)×m satisfying B OA,vk • E OA,vk = V mod q. b. Compute h = c (3) oa -E T OA,vk • c (1) oa c (2) oa / q 2 ∈ {0, 1} m and h U = H 2n,q-1 • h ∈ Z 2n q . 3. Look up database to nd a public key pk U = B U ∈ Z n× m q that hashes to h U ∈ Z 2n q (i.e., such that h U = F • mdec n, m,q (B T U ))
. If more than one such key exists, return ⊥. If only one key pk U = B U ∈ Z n× m q satis es h U = F•mdec n, m,q (B T U ), return that key pk U . In any other situation, return ⊥. P, V : The common input consists of par and pk GM as speci ed above, and

(A R , u R ) in Z n×m q × Z n q , pk OA = B OA ∈ Z n× m q
, and a ciphertext Ψ as in (8.15). Both parties compute B OA,vk = [ Ā|B OA + FRD(vk) • G] as speci ed above. The prover's secret input consists of a witness w ∈ {0, 1} m , pk U = B U , cert U = (τ, d, r) ∈ {0, 1} × Z 2m ×Z m , and the random coins coins Ψ = s rec , R rec , x rec , y rec , s oa , R oa , x oa , y oa used to generate Ψ. The prover's goal is to convince the veri er in zero-knowledge that his secret input satis es the following:

1. A R • w = u R mod q. 2. h M = F • mdec n,m,q (M) mod q.
3. Conditions (8.11) and (8.12) hold.

4. Vectors x rec , y rec , x oa , y oa have in nity norms bounded by B, and vectors z rec , z oa have in nity norms bounded by βmB.

5. Equations in (8.13) and (8.14) hold.

To this end P conducts the following steps.

1. Decompose the matrix B U ∈ Z n× m q into b U = mdec n, m,q (B T U ) ∈ {0, 1} n mk and the vectors s rec , s oa ∈ Z n q into s 0,rec = vdec n,q-1 (s rec ) ∈ {0, 1} nk and s 0,oa = vdec n,q-1 (s oa ) ∈ {0, 1} nk . Combine the rst two binary vectors into

z Ψ = expand ⊗ (b U , s 0,rec ) ∈ {0, 1} 4n mk 2 . De ne Q = H m,q-1 • [ n times Q 0 | . . . |Q 0 ] ∈ Z m×4n mk 2 q , where Q 0 = I mk ⊗ g ∈ Z mk×4 mk 2 q
is the matrix de ned as in (8.8).
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2. Generate a zero-knowledge argument of knowledge of

             τ ∈ {0, 1} , d = [d T 1 |d T 2 ] T ∈ [-β, β] 2m , r ∈ [-β, β] m t U ∈ {0, 1} m , w U ∈ {0, 1} m b U ∈ {0, 1} n mk , s 0,rec ∈ {0, 1} nk , z Ψ = expand ⊗ (b U , s 0,rec ) x rec , y rec ∈ [-B, B] m , z rec ∈ [-βmB, βmB] m, w ∈ {0, 1} m , s 0,oa ∈ {0, 1} nk , x oa , y oa ∈ [-B, B] m , z oa ∈ [-βmB, βmB]
m such that the following system of 10 equations holds:

                                                                                 u = [A|A 0 |A 1 | . . . |A ] •           d 1 d 2 τ [1] • d 2 . . . τ [ ] • d 2           + (-D) • w U mod q, 0 = H n,q-1 • w U + (-D 0 ) • r + (-D 1 ) • t U mod q, 0 = H 2n,q-1 • t U + (-F) • b U mod q, c (1) 
rec = ( ĀT • H n,q-1 ) • s 0,rec + I m • y rec mod q, c (2) 
rec = Q • z Ψ + (G T • H T vk • H n,q-1 ) • s 0,rec + I m • z rec mod q, c (3) 
rec = (U T • H n,q-1 ) • s 0,rec + I m • x rec + ( q 2 • I m ) • w mod q, u R = A R • w mod q, c (1) oa = ( ĀT • H n,q-1 ) • s 0,oa + I m • y oa mod q, c (2) oa = [(B OA + H vk • G) T • H n,q-1 ] • s 0,oa + I m • z oa mod q, c (3) 
oa = (V T • H n,q-1 ) • s 0,oa + I m • x oa + ( q 2 • I m ) • t U mod q. ( 8.16) 
Let w 1 = b U , w 2 = s 0,rec , w 3 = z Ψ = expand ⊗ (b U , s 0,rec ), w 4 = w U , w 5 = t U , w 6 = s 0,oa , w 7 = w, w 8 = x rec , w 9 = y rec , w 10 = z rec , w 11 = r, w 12 = x oa , w 13 = y oa , w 14 = z oa and

w 15 = d T 1 d T 2 τ [1]• d T 2 . . . τ [ ]• d T 2 T .
Then system (8.16) can be rewritten as:

               v 1 = M 1,1 • w 1 + M 1,2 • w 2 + . . . + M 1,15 • w 15 mod q, v 2 = M 2,1 • w 1 + M 2,2 • w 2 + . . . + M 2,15
• w 15 mod q, . . .

v 10 = M 10,1 • w 1 + M 10,2 • w 2 + . . . + M 10,15 • w 15 mod q, ( 8.17) 
where {M i,j } (i,j)∈[10]× [15] , {v i } i∈ [10] are public matrices and vectors (which are possibly zero).

The argument system is obtained by invoking the protocol from Section 4.3. The protocol is repeated κ times to make the soundness error negligibly small.

E ciency and Correctness

E ciency. It can be seen that the given group encryption scheme can be implemented in polynomial time. We now will evaluate the bit-sizes of keys and ciphertext, as well as the communication cost of the protocol P, V .

• The public key of GM, as in (8.10), has bit-size O( n 2 log 2 q) = O( λ 2 ).

• The public keys of OA and each user both have bit-size n m log 2 q = O(λ 2 ).

• The secret key of each party in the scheme is a trapdoor of bit-size O(λ 2 ). The user's certi cate cert U has bit-size O(λ).

• The ciphertext Ψ consists of vk ∈ Z n q , two ABB ciphertexts of total size 2(2m + m) log 2 q and a one-time signature Σ. Thus, its bit-size is O(λ) + Σ .

• The communication cost of the protocol P, V is largely dominated by the bitsize of the witness

z Ψ = expand ⊗ (b U , s 0,rec ) ∈ {0, 1} 4n mk 2 . The total cost is κ • O(n 2 log 4 q) = O(λ 2 ) bits.
Correctness. The given group encryption scheme is correct with overwhelming probability. We rst remark that the scheme parameters are set up so that the two instances of the ABB identity-based encryption [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF] are correct. Indeed, during the decryption procedure of DEC(sk U , Ψ, L), we have:

c (3) rec -E T vk • c (1) rec c (2) rec = x rec -E T vk • y rec z rec + w • q 2 .
Note that x rec ∞ and y rec ∞ are bounded by B, and

z rec ∞ = R T rec • y rec ∞ ≤ βmB = O(n 2
). Furthermore, the entries of the discrete Gaussian matrix E T vk are bounded by O( √ n). Hence, the error term x rec -E T vk • y rec z rec is bounded by O(n 3.5 ) which is much smaller than q/4 = O(n 4 ). As a result, the decryption algorithm returns w with overwhelming probability. The correctness of algorithm OPEN(sk OA , Ψ, L) also follows from a similar argument.

Finally, we note that if a certi ed group user honestly follows all the prescribed algorithms, then he should be able to compute valid witness-vectors to be used in the protocol P, V , and he should be accepted by the veri er, thanks to the perfect completeness of the argument system in Section 4.3.

Security

Our scheme is proven secure under the SIS and LWE assumptions using classical reduction techniques. The security results are explicited in the following theorems.

Anonymity

Theorem 8.2. The scheme provides anonymity if the LWE assumption holds and if OT S is a strongly unforgeable one-time signature.
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Proof. We consider a sequence of games where the rst game is the real experiment of de nition 8.2 while, in the nal game, the adversary A is essentially an adversary against the anonymity of the Agrawal-Boneh-Boyen IBE scheme [START_REF] Agrawal | E cient lattice (H)IBE in the standard model[END_REF]. In Game i, we call W i the event that the challenger outputs 1.

Game 1: The challenger B generates public parameters par, which include matrices Ā, U, V ∈ Z n×m q and F ∈ Z 2n×n mk q . The opening authority's public key pk OA = B OA ∈ Z n× m q is given to A who generates a group manager's public key pk GM of its own. By invoking the USER oracle, A registers two distinct receivers' public keys pk

U,0 = B U,0 ∈ Z n× m q , pk U,1 = B U,1 ∈ Z n× m q
chosen by the challenger. It also makes a number of opening queries and decryption queries, which the challenger handles using sk OA = T OA and sk U,0 = T U,0 , sk U,1 = T U,1 , respectively. After a while, the adversary outputs

((A R , u R ), w, L) such that u R = A R • w mod q, with A R ∈ Z n×m p , u R ∈ Z n
q and w ∈ {0, 1} m . In return, A obtains, as a challenge, a group encryption Ψ = (vk , c rec , c oa , Σ ). of the witness w under pk U,b = B U,b , for some random bit b ← U({0, 1}) of the challenger's choice. Then, the adversary obtains proofs π Ψ for Ψ and makes further opening and decryption queries under the natural restrictions of De nition 8.2. When the adversary A halts, it outputs a bit b ∈ {0, 1} and the challenger outputs 1 if and only if b = b.

Game 2: This game is like Game 1 except the challenger aborts in the event that the adversary A queries the opening of a ciphertext Ψ = (vk, c rec , c oa , Σ) such that vk = vk and σ is valid (we assume w.l.o.g. that vk is generated ahead of time). If this event occurs, the adversary A is necessarily able to break the strong unforgeability of OT S (note that, if the query occurs before the challenge phase, it means that A has forged a signature without seeing a signature at all). There thus exist a one-time signature forger B such that

| Pr[W 2 ] -Pr[W 1 ]| ≤ Adv ots B (λ)
, which means that Game 2 is identical to Game 1 so long as OT S is a strongly unforgeable one-time signature.

Game 3: In this game, we modify the generation of proofs π Ψ : instead of generating proofs using the real witnesses, we appeal to the zero-knowledge simulator of the argument system of Section 4.3.2 at each invocation of P after the challenge phase. Note that, since we assume public parameters generated by a trusted party, the statistical ZK simulator is allowed to use a trapdoor embedded in par to generate simulated proofs (using, e.g., Damgård's technique [START_REF] Damgård | E cient concurrent zero-knowledge in the auxiliary string model[END_REF]). The statistical zero-knowledge property of the argument system ensures that A's view remains statistically close to that of Game 2:

we have | Pr[W 3 ] -Pr[W 2 ]| ≤ negl(λ).
Game 4: We now modify the generation of the challenge ciphertext Ψ . In this game, the challenger computes the ciphertext c oa as an ABB encryption under the identity vk of a random m-bit string instead of a decomposition

vdec n,q-1 (h U,b ) ∈ {0, 1} m of h U,b = F • mdec n, m,q (B T U,b ) ∈ Z 2n q .
Since the random encryption coins s oa , R oa , x oa , y oa are no longer used to generate proofs π Ψ , we can show that any noticeable change in A's output distribution implies a selective adversary against the ABB IBE, as established by Lemma In Game 4, we can show that, if the adversary A has noticeable advantage in the anonymity game, we can break the anonymity of the ABB IBE system, as shown in the proof of Lemma 8.4. From the result of [ABB10, Theorem 23], we deduce that | Pr[W 4 ]-1/2| ≤ Adv LWE (λ), which implies the announced result. At the outset of the game, the reduction B generates a one-time signature key pair (vk , sk ) and declares vk as the target identity to its challenger for the selective security game, and obtains in return the IBE public parameters

PP = Ā, B, V ∈ Z n×m q × Z n× m q × Z n×m q .
Next, the reduction runs the appropriate steps of the actual SETUP init algorithm to obtain COM par , F ∈ Z 2n×n mk q and U ∈ Z n×m q . Namely, B samples F ← U(Z 2m×n mk q ) and U ← U(Z n×m q ) like in the SETUP init algorithm and sends n,q,k,m,B,χ,σ,β,,κ,OT S,COM par ,FRD,Ā,G,F,U,V along with pk OA = B ∈ Z n× m q to the adversary A.

par = λ,
In return, the adversary A chooses pk GM , which allows it to enroll two users for whom B faithfully generates (pk U,i , sk U,i ) i∈{0,1} . Knowing both private keys {sk U,i = T U,i } i∈{0,1} , B is able to perfectly simulate the DEC(•) oracle.

Open Queries. To answer opening queries for ciphertexts Ψ = (vk, c rec , c OA , Σ) and labels L, B rst checks that Ver(vk, Σ, (c rec , c OA , L)) = 1. If this test fails, B returns ⊥. Otherwise, B queries its IBE challenger to obtain a IBE private key T OA,vk ∈ Z (m+ m)×m for identity vk = vk . The IBE challenger's response allows B to decrypt c OA and gure out the identity of the receiver by looking up database. The result of the opening operation is then returned to A.

After a number of queries, A decides to move to the challenge phase and sends a challenge query (A R , u R ), w , L such that u R = A R • w mod q. The reduction handles this query by requesting a challenge ciphertext for the IBE security game with the messages m 0 = vdec n,q-1 (h U,b ), for some random bit b ← U({0, 1}) and m 1 ← U({0, 1} m ). In return, B obtains a challenge ciphertext c OA under identity vk , which is embedded in A's challenge ciphertext. Namely, Ψ = (vk , c rec , c OA , Σ ) is obtained by computing c rec as an ABB encryption of the witness w using the matrix B U,b ∈ Z n× m q as in (8.13) and Σ = Sign(sk , (c rec , c OA , L )). All queries to the proving oracle P are replied by returning a simulated ZK argument as in Game 3.

When A halts, it outputs a bit b ∈ {0, 1}. If b = b , B returns the bit 0 as a guess that the selective security challenger encrypted m 0 = vdec n,q-1 (h U,b ). Otherwise, B outputs 1 meaning that the IBE challenger chose to encrypt m 1 , which was chosen independently of the value of b ∈ {0, 1}. If we call Random (resp. Real) the event that the IBE challenger chooses to encrypt m 1 (resp. m 0 ), we can assess the advantage of the reduction B as

Adv sID-CPA B (λ) = Pr[b = b | Random] -Pr[b = b | Real] = |Pr[W 4 ] -Pr[W 3 ]| = ε,
which proves the result.

L B G E

Lemma 8.4. In Game 4, the adversary's advantage is negligible assuming that the ABB IBE has pseudo-random ciphertexts.

Proof. Let us assume the existence of a PPT adversary A with non negligible advantage ε in Game 4. From A, we construct a selective adversary B that can distinguish ABB ciphertexts from random elements of the ciphertext space with non-negligible advantage in the game described in De nition 8.4.

First, B generates (sk , vk ) via the key generation algorithm of the one-time-signature OTS and hands vk to its pseudo-randomness challenger. In return, B receives

PP = Ā, B, U ∈ Z n×m q × Z n× m q × Z n×m q
from its real-or-random (ROR) challenger.

Our reduction uses PP to compute public parameters for our GE scheme. To this end, it samples F ← U(Z 2n×n mk q ), V ← U(Z n×m q ) as in the real SETUP init algorithm. The reduction B also computes B OA = Ā • T OA mod q, where the small-norm matrix T OA is sampled from D m× m Z,σ , and sends A the parameters

param = λ, n, q, k, m, σ, β, , κ, OT S, COM par , FRD, Ā, G, F, U, V ,
where Ā is taken from PP, along with pk OA = B OA . The rest of the keys are generated as in Game 4.

The reduction B then tosses a coin b ← U({0, 1}). When the adversary A triggers an execution of the join protocol, B generates the public keys (pk i ) i∈{0,1} by de ning pk U,b = B using the matrix B ∈ Z n× m q supplied by the ROR challenger as part of PP and generates

(pk U,1-b , sk 1-b ) = (B U,1-b = Ā • T 1-b , T 1-b ) for a secret key T 1-b ← D m Z m ,σ
of its own. The two public keys (pk U,i ) i∈{0,1} are then certi ed by the adversariallycontrolled GM. Notice that in the adversary's view, both public keys pk U,b and pk U,1-b are identically distributed.

To answer decryption queries (Ψ = (vk, c rec , c OA , Σ), L), for any query pertaining to pk U,b , the reduction invokes its ROR challenger to obtain an IBE private key for the identity vk = vk and uses the result to decrypt c rec . For any decryption query involving pk U,1-b , the reduction can faithfully run the actual decryption algorithm using its trapdoor T 1-b . Open queries are answered using T OA as in the real Open algorithm.

When the adversary A decides to do so, it queries a challenge for a triple ((A R , u R ), w, L) of its choice subject to the constraint u R = A R • w. At this point, B queries a challenge to its own challenger for the message w and obtains a ciphertext c, which is embedded in Ψ = (vk , c, c OA , Σ ) while c OA and Σ are generated as in Game 3 (in particular, c OA encrypts a random string instead of a hash value of pk U,b ). After the challenge phase, all queries to the proving oracle P are replied by returning a simulated ZK argument as in Game 3. 

When

Message Secrecy

Theorem 8.5. The scheme provides message secrecy assuming that the LWE assumption holds and that OT S is a strongly unforgeable one-time signature.

Proof. We proceed via a sequence of games. The rst one corresponds to the experiment of De nition 8.1 when the challenger's bit b is 1 and the adversary obtains an actual encryption of the witness w ∈ {0, 1} m and real proofs at each invocation of the PROVE(.) oracle. In the last game, the adversary A is given an encryption of some random plaintext whereas PROVE(.) returns simulated zero-knowledge arguments which are generated a simulator P that does not use any witness. In Game i, W i stands for the event that the adversary A outputs the bit b = 1.

Game 1: This is the real game, where the challenger feeds A with public parameters par containing Ā, U, V ∈ Z n×m q and F ∈ Z 2n×n mk q . The adversary produces public keys pk OA = B OA ∈ Z n× m q and pk GM = (A, {A i } i=0 , D 0 , D 1 , D, u) on behalf of the opening authority and the group manager which are both under its control. The challenger and A run an execution of the JOIN protocol which allows A to register and certify the public key

pk U = B U ∈ Z n× m q
of some honest receiver chosen by the challenger. Then, the adversary A makes a polynomial number of decryption queries which the challenger faithfully handles using the private key sk U = T U ∈ Z m× m for which B U • T U = 0 n× m. At some point, the adversary A outputs a triple

((A R , u R ), w, L) such that u R = A R • w mod q, with A R ∈ Z n×m p , u R ∈ Z n
q and w ∈ {0, 1} m . At this point, the challenger generates a challenge ciphertext Ψ = (vk , c rec , c oa , Σ ) consisting of a group encryption of the real witness w under pk U = B U . Then, the adversary obtains a polynomial number of proofs π Ψ related to the challenge ciphertext Ψ and is granted further access to the decryption oracle under the obvious restrictions. When A halts, it outputs a bit b ∈ {0, 1}.

Game 2: In this game, we modify the DEC(.) oracle and have the challenger reject any ciphertext of the form Ψ = (vk, c rec , c oa , Σ) such that vk = vk (note that vk can be generated at the outset of the game w.l.o.g.). Clearly Game 2 is identical to Game 1 until the event that the challenger rejects a ciphertext that would not have been rejected in Game 1. This can only occur if A is able to break the strong unforgeability of the one-time signature OT S. As in the proof of Theorem 8.2, we have

| Pr[W 2 ] -Pr[W 1 ]| ≤ Adv ots (λ), which is negligible if OT S is strongly unforgeable.
Game 3: We now modify the generation of proofs π Ψ . Instead of generating them using the witnesses used in the generation of Ψ , we rely on the zero-knowledge simulator of the argument system of Section 4.3.2 at each invocation of PROVE b P,P after the challenge phase (note that, since we assume trusted public parameters, the simulator can use techniques [START_REF] Damgård | E cient concurrent zero-knowledge in the auxiliary string model[END_REF] to achieve statistically perfect simulation without increasing the number of rounds). The statistical ZK property of the argument system ensures that this change will remain unnoticed, even in the view of an all powerful adversary: we have | Pr[W 3 ] -Pr[W 2 ]| ∈ negl(λ). From now onwards, the random coins coins Ψ = s rec , R rec , x rec , y rec , s oa , R oa , x oa , y oa are no longer used by the PROVE oracle.

Game 4: In the generation of Ψ , we set c rec as an encryption of a random element of Z m p . Since the random encryption coins s rec , R rec , x rec , y rec are not used in Game At the very beginning of the IND-sID-CPA game, the reduction B generates a one-time signature key pair (sk , vk ) and hands vk to its selective security challenger as the target identity under which the challenge ciphertext will later be computed. In response, B receives the public parameters

PP = ( Ā, B, U) ∈ Z n×m q × Z n× m q × Z n×m q from its IBE challenger.
The reduction then runs the missing steps of the actual Setup init algorithm: namely, B samples F ← U(Z 2m×n mk q ), V ← U(Z n×m q ) and generates COM par before sending the common public parameters par = λ, n, q, k, m, B, χ, σ, β, , κ, OT S, COM par , FRD, Ā, G, F, U, V to the adversary A.

At this point, the adversary A chooses the public keys pk OA = B OA ∈ Z n× m q and pk GM = (A, {A i } i=0 , D 0 , D 1 , D, u) on behalf of the opening authority and the group manager. It also starts an execution of the joining protocol in which the reduction B de nes pk U = B ∈ Z n× m q as the honest receiver's public key, where B ∈ Z n× m q is taken from the public parameters PP supplied by its IBE challenger. Note that pk = B ∈ Z n× m q is distributed as a real key in A's view. This public key is certi ed by A which controls the GM.

In the next stage, A makes a number of decryption queries for ciphertexts of the form Ψ = (vk, c rec , c OA , Σ). To answer these, the reduction invokes its IBE challenger so as to obtain an IBE private key E vk ∈ Z (m+ m)×m for the identity vk = vk . The resulting E vk is used it to IBE-decrypt c rec and return the corresponding witness w to A . At some point, the adversary A queries a challenge ciphertext by outputting a triple ((A R , u R ), w, L) such that w ∈ {0, 1} m satis es u R = A R •w mod q. Then, the reduction 8. L
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Since mdec n, m,q (.) : Z m×n q → {0, 1} n mk is an injective function, the above equality necessarily implies a collision for the SIS-based hash function built upon F ∈ Z 2n×n mk q : namely, mdec n, m,q (B T U,0 ) -mdec n, m,q (B T U,1 ) ∈ {-1, 0, 1} n mk is a short non-zero vector of Λ ⊥ q (F).

Having shown that cases b and d cannot occur if the SIS assumption holds, we only need to consider cases a and c. The computational soundness of the argument system ensures that, by replaying the soundness adversary a su cient number of times, the knowledge extractor will be able to extract either: (i) A breach in the computational soundness of the argument system and thus the binding property of the commitment scheme COM (which relies on the SIS assumption with the commitment scheme of [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF]). Note that this situation covers case (c.) above. (ii) A set of witnesses (8.16). Given that witnesses τ ∈ {0, 1} , d ∈ [-β, β] 2m , r ∈ [-β, β] m and t U ∈ {0, 1} m satisfy (8.16), it comes that (τ, d, r) form a valid signature for the message t U ∈ {0, 1} m . At this point, case a implies that no matrix B U ∈ Z n× m q of database decomposes to a string h U ∈ {0, 1} n mk such that t U = vdec n,q-1 (F • h U mod q) was signed by the reduction during an execution of JOIN. This implies that the pair t U , (τ, d, r) forms a forgery for the SIS-based signature scheme of Section 7.1. In its adaptive avor [START_REF] Naor | Oblivious transfer with adaptive queries[END_REF], OT allows the receiver to interact k times with S to retrieve M ρ 1 , . . . , M ρ k in such a way that, for each index i ∈ {2, . . . , k}, the i-th index ρ i may depend on the messages M ρ 1 , . . . , M ρ i-1 previously obtained by R.

             τ ∈ {0, 1} , d = [d T 1 |d T 2 ] T ∈ [-β, β] 2m , r ∈ [-β, β] m t U ∈ {0, 1} m , w U ∈ {0, 1} m b U ∈ {0, 1} n mk , s 0,rec ∈ {0, 1} nk , z Ψ ∈ {0, 1} 4n mk 2 x rec , y rec ∈ [-B, B] m , z rec ∈ [-βmB, βmB] m, w ∈ {0, 1} m , s oa ∈ {0, 1} nk , x oa , y oa ∈ [-B, B] m , z oa ∈ [-βmB, βmB] m satisfying relations
OT is known to be a complete building block for cryptography (as for example, [START_REF] Goldreich | How to play any mental game or a completeness theorem for protocols with honest majority[END_REF]) in that, if it can be realized, then any secure multiparty computation can be. In its adaptive variant, OT is motivated by applications in privacy-preserving access to sensitive databases (e.g., medical records or nancial data) stored in encrypted form on remote servers, oblivious searches or location-based services.

As far as e ciency goes, adaptive OT protocols should be designed in such a way that, after an inevitable initialization phase with linear communication complexity in N and the security parameter λ, the complexity of each transfer is at most poly-logarithmic in N . At the same time, this asymptotic e ciency should not come at the expense of sacri cing ideal security properties. The most e cient adaptive OT protocols that satisfy the latter criterion stem from the work of Camenisch, Neven and shelat [START_REF] Camenisch | Simulatable adaptive oblivious transfer[END_REF] and its follow-ups [GH07, GH08, GH11].

In its basic form, (adaptive) OT does not restrict in any way the population of users who can obtain speci c records. In many sensitive databases (e.g., DNA databases or patients' medical history), however, not all users should be able to download all records: it is vital access to certain entries be conditioned on the receiver holding suitable credentials delivered by authorities. At the same time, privacy protection mandates that authorized users be able to query database records while leaking as little as possible about their interests or activities. In medical datasets, for example, the speci c entries retrieved by a given doctor could reveal which disease his patients are su ering from. In nancial or patent datasets, the access pattern of a company could betray its investment strategy or the invention it is developing. In order to combine user-privacy and ne-grained database security, it is thus
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desirable to enrich adaptive OT protocols with re ned access control mechanisms in many of their natural use cases.

This motivated Camenisch, Dubovitskaya and Neven [START_REF] Camenisch | Oblivious transfer with access control[END_REF] to introduce a variant named oblivious transfer with access control (OT-AC), where each database record is protected by a di erent access control policy P : {0, 1} * → {0, 1}. Based on their attributes, users can obtain credentials generated by pre-determined authorities, which entitle them to anonymously retrieve database records of which the access policy accepts their certi ed attributes: in other words, the user can only download the records for which he has a valid credential Cred x for an attribute string x ∈ {0, 1} * such that P (x) = 1. During the transfer phase, the user demonstrates possession of a pair (Cred x , x) and simultaneously convinces the sender that he is querying some record M ρ associated with a policy P such that P (x) = 1. The only information that the database holder eventually learns is that some user retrieved some record which he was authorized to obtain.

Camenisch et al. formalized the OT-AC primitive and provided a construction in groups with a bilinear map [START_REF] Camenisch | Oblivious transfer with access control[END_REF]. While e cient, their solution "only" supports access policies consisting of conjunctions: each policy P is speci ed by a list of attributes that a given user should obtain a credential for in order to complete the transfer. Several subsequent works [ZAW + 10, CDNZ11, CDEN12] considered more expressive access policies while even hiding the access policies in some cases [START_REF] Camenisch | Oblivious transfer with hidden access control policies[END_REF][START_REF] Camenisch | Oblivious transfer with hidden access control from attribute-based encryption[END_REF]. Unfortunately, all of them rely on non-standard assumptions (known as "q-type assumptions" as described in Chapter 2) in groups with a bilinear maps. For the sake of not putting all one's eggs in the same basket, a primitive as powerful as OT-AC ought to have alternative realizations based on rmer foundations.

In this chapter, we propose a solution based on lattice assumptions where access policies consist of any branching program of width 5, which is known [START_REF] Barrington | Bounded-width polynomial-size branching programs recognize exactly those languages in nc1[END_REF] to su ce for the realization of any access policy in NC1. As a result of independent interest, we provide protocols for proving the correct evaluation of a committed branching program. More precisely, we give zero-knowledge arguments for demonstrating possession of a secret input x ∈ {0, 1} κ and a secret (and possibly certi ed) branching program BP such that BP(x) = 1. While several e cient fully simulatable protocols appeared the last 15 years (e.g., [DN03, Lin08, PVW08] and references therein), full simulatability remained elusive in the adaptive k-out-of-N setting [START_REF] Naor | Oblivious transfer with adaptive queries[END_REF] until the work [START_REF] Camenisch | Simulatable adaptive oblivious transfer[END_REF] of Camenisch, Neven and shelat, who introduced the "assisted decryption" paradigm. The latter consists in having the sender obliviously decrypt a re-randomized version of one of the original ciphertexts contained in the database. This technique served as a blueprint for many subsequent protocols [GH07, GH08, GH11, JL09], including those with access control [CDN09, CDNZ11, CDEN12, ACDN13] and those presented in this chapter. In the adaptive k-out-of-N setting (which we denote as OT N k×1 ), the di culty is to achieve full simulatability without having to transmit a O(N ) bits at each transfer. To our knowledge, except the oblivious-PRF-based approach of Jarecki and Liu [START_REF] Jarecki | E cient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection[END_REF], all known fully simulatable OT N k×1 protocols rely on bilinear maps1 . A recent work of Döttling et al. [DFKS16] uses non-black-box techniques to realize LWE-based 2-round oblivious PRF (OPRF) protocols [START_REF] Freedman | Keyword search and oblivious pseudorandom functions[END_REF]. However, while fully simulatable OPRFs imply [START_REF] Jarecki | E cient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection[END_REF] fully simulatable adaptive OT, the OPRF construction of [DFKS16] does not satisfy the standard notion of full simulation-based security against malicious adversaries (which is impossible to achieve in two rounds). It also relies on the full power of homomorphic encryption, which we do not require.

Related

A number of works introduced various forms of access control in OT. Priced OT [START_REF] Aiello | Priced oblivious transfer: How to sell digital goods[END_REF] assigns variable prices to all database records. In conditional OT [START_REF] Di Crescenzo | Conditional oblivious transfer and timed-release encryption[END_REF], access to a record is made contingent on the user's secret satisfying some predicate. Restricted OT [START_REF] Herranz | Restricted adaptive oblivious transfer[END_REF] explicitly protects each record with an independent access policy. Still, none of these OT avors aims at protecting the anonymity of users. The model of Coull, Green and Hohenberger [START_REF] Coull | Controlling access to an oblivious database using stateful anonymous credentials[END_REF] does consider user anonymity via stateful credentials. For the applications of OT-AC, it would nevertheless require re-issuing user credentials at each transfer.

While e cient, the initial OT-AC protocol of Camenisch et al. [START_REF] Camenisch | Oblivious transfer with access control[END_REF] relies on nonstandard assumptions in groups with a bilinear map and only realizes access policies made of conjunctions. Abe et al. [START_REF] Abe | Universally composable adaptive oblivious transfer (with access control) from standard assumptions[END_REF] gave a di erent protocol which they proved secure under more standard assumptions in the universal composability framework [START_REF] Canetti | Universally composable security: A new paradigm for cryptographic protocols[END_REF]. Their policies, however, remain limited to conjunctions. It was mentioned in [START_REF] Camenisch | Oblivious transfer with access control[END_REF][START_REF] Abe | Universally composable adaptive oblivious transfer (with access control) from standard assumptions[END_REF] that disjunctions and DNF formulas can be handled by duplicating database entries. Unfortunately, this approach rapidly becomes prohibitively expensive in the case of (t, n)-threshold policies with t ≈ n/2. Moreover, securing the protocol against malicious senders requires them to prove that all duplicates encrypt the same message. More expressive policies were considered by Zhang et al. [ZAW + 10] who gave a construction based on attribute-based encryption [START_REF] Sahai | Fuzzy identity-based encryption[END_REF] that extends to access policies expressed by any Boolean formulas (and thus NC1 circuits). Camenisch, Dubovitskaya, Neven and Zaverucha [START_REF] Camenisch | Oblivious transfer with hidden access control policies[END_REF] generalized the OT-AC functionality so as to hide the access policies. In [START_REF] Camenisch | Oblivious transfer with hidden access control from attribute-based encryption[END_REF], Camenisch et al. gave a more e cient construction with hidden policies based on the attribute-based encryption scheme of [START_REF] Nishide | Attribute-based encryption with partially hidden encryptor-speci ed access structures[END_REF]. At the expense of a proof in the generic group model, [START_REF] Camenisch | Oblivious transfer with hidden access control from attribute-based encryption[END_REF] improves upon the expressiveness of [START_REF] Camenisch | Oblivious transfer with hidden access control policies[END_REF] in that its policies extend into CNF formulas. While the solutions of [START_REF] Camenisch | Oblivious transfer with hidden access control policies[END_REF][START_REF] Camenisch | Oblivious transfer with hidden access control from attribute-based encryption[END_REF] both hide the access policies to users (and the successful termination of transfers to the database), their policies can only live in a proper subset of NC1. As of now, threshold policies can only be e ciently handled by the ABE-based construction of Zhang et al. [ZAW + 10], which requires ad hoc assumptions in groups with a bilinear map.

In the forthcoming sections, we rst present the adaptive oblivious transfer scheme and its access control avour, then we present the needed building blocks, in particular a simpler
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version of the signature scheme presented in Section 7.1. We next present our constructions and the zero-knowledge protocol to guarantee the correct execution of a branching program. Finally, we close this chapter with the description of a shift of our scheme from the standard model to the random oracle model to reduce the communication complexity cost, and a comparison table between the di erent existing solutions.

Adaptive Oblivious Transfer

In the syntax of [START_REF] Camenisch | Simulatable adaptive oblivious transfer[END_REF], an adaptive k-out-of-N OT scheme OT N k is a tuple of stateful PPT algorithms (S I , R I , S T , R T ). The sender S = (S I , S T ) consists of two interactive algorithms S I and S T and the receiver has a similar representation as algorithms R I and R T . In the initialization phase, the sender and the receiver run interactive algorithms S I and R I , respectively, where S I takes as input messages M 1 , . . . , M N while R I has no input. This phase ends with the two algorithms S I and R I outputting their state information S 0 and R 0 respectively. During the i-th transfer, 1 ≤ i ≤ k, both parties run an interactive protocol via the R T and S T algorithms. The sender starts runs S T (S i-1 ) to obtain its updated state information S i while the receiver runs R T (R i-1 , ρ i ) on input of its previous state R i-1 and the index ρ i ∈ {1, . . . , N } of the message it wishes to retrieve. At the end, R T outputs an updated state R i and a message M ρ i .

Correctness mandates that, for all M 1 , . . . , M N , for all ρ 1 , . . . , ρ k ∈ [N ] and all coin tosses of the (honestly run) algorithms, we have M ρ i = M ρ i for all i.

We consider protocols that are secure (against static corruptions) in the sense of simulationbased de nitions. The security properties against a cheating sender and a cheating receiver are formalized via the "real-world/ideal-world" paradigm. The security de nitions of [START_REF] Camenisch | Simulatable adaptive oblivious transfer[END_REF] are recalled in the following Section.

Security De nitions for Adaptive k-out-of-N Oblivious Transfer

Security is de ned via the "real-world/ideal-world" paradigm which was rst introduced in the Universal Composability (UC) framework [START_REF] Canetti | Universally composable security: A new paradigm for cryptographic protocols[END_REF]. Like [START_REF] Camenisch | Simulatable adaptive oblivious transfer[END_REF][START_REF] Camenisch | Oblivious transfer with access control[END_REF], however, we do not incorporate all the formalities of the UC framework. We de ne two experiments: the Real experiment, where the two parties run the actual protocol, and the Ideal experiment wherein a trusted third party assumes the role of the functionality.

The model of [START_REF] Camenisch | Simulatable adaptive oblivious transfer[END_REF] formalizes two security notions called sender security and receiver security. The former considers the security of honest senders against cheating senders whereas the latter considers the security of honest receivers interacting with malicious senders.

For an adaptive OT protocol OT N k comprised of algorithms (S I , S T , R I , R T ), we denote de ne the honest sender S as the algorithm that runs S I (M 1 , . . . , M N ) during the initialization phase, runs S T at each transfer and eventually returns S k = as its nal output. Similarly, the honest receiver R is the algorithm that runs R I in the initialization phase, runs R T (R i-1 , ρ i ) during the i-th transfer and eventually returns R k = (M ρ 1 , . . . , M ρ k ) as its nal output.

Real Experiment. Here, a sender S and a receiver R which proceed as follows for experiment Real S, R (N, k, M 1 , . . . , M N , ρ 1 , . . . , ρ k ).

The sender S is given messages M 1 , . . . , M N and interacts with R which does not have any input in the initialization phase. At end of the latter, S and R output their initial states S 0 and R 0 respectively. Then, S and R start k sequential interactions: for i ∈ [k], in the i-th transfer, the sender S and the receiver R run S i ← S(S i-1 ) and (R i , M ρ i ) ← R(R i-1 , ρ i ), where ρ i ∈ [N ] is a message index and (S i , R i ) denote updated states for S and R, respectively. Note that M ρ i may be di erent from M ρ i if one of the participant deviates from the protocol. At the end of the k-th interaction, S and R output strings S k and R k respectively. The output of Real S, R is the pair (S k , R k ).

The honest sender S is the algorithm that runs S(M 1 , . . . , M N ) as in the initialization phase, runs S T in all subsequent interactions and always outputs S k = ε. The honest receiver R is the algorithm that runs R I in the initialization phase, runs R T (R i-1 , ρ i ) at the i-th transfer and returns the list of received messages R k = (M ρ 1 , . . . , M ρ k ) as its nal output.

Ideal Experiment. We de ne the experiment Ideal S , R (N, k, M 1 , . . . , M N , ρ 1 , . . . , ρ k ) as follows. The (possibly malicious) algorithm S (M 1 , . . . , M N ) generates messages M 1 , . . . , M N which are given to the trusted party T. In each of the k transfers, T obtains a bit b i from the sender S and an index ρ i from the (possibly malicious) receiver R (ρ i ). If b i = 1, and ρ i ∈ [N ], then T reveals M ρ i to the receiver R . Otherwise, R receives ⊥ from T. At the end of the k-th transfer, S and R output a string S k and R k and the output of the experiment is the pair (S k , R k ).

The ideal sender S (M 1 , . . . , M N ) is de ned the be the sender that sends (M 1 , . . . , M N ) which sends the messages (M 1 , . . . , M N ) to T in the initialization phase, sends b i = 1 in each transfer and outputs the nal state S k = ε. The honest ideal receiver R is de ned to be the algorithm that sends T the real selection index ρ i at each transfer and eventually outputs the list of all received messages R k = (M ρ 1 , . . . , M ρ k ) as its nal state.

The bit b i sent by S at each transfer models its capability of making the transfer fail. By forcing S to choose b i without seeing ρ i , the de nition prevents the cheating sender S from deciding to cause a failure of the transfer for speci c values of ρ i . ISetup: takes as inputs public parameters p specifying a set P of access policies and generates a key pair (P K I , SK I ) for the issuer.

De nition

Issue: is an interactive protocol between the issuer I and a stateful user U under common input (p, x), where x is an attribute string. The issuer I takes as inputs its key pair (P K I , SK I ) and a user pseudonym P U . The user takes as inputs its state information st U . The user U outputs either an error symbol ⊥ or a credential Cred U , and an updated state st U .

DBSetup: is an algorithm that takes as input the issuer's public key P K I , a database DB = (M i , AP i ) N i=1 containing records M i whose access is restricted by an access policy AP i and outputs a database public key P K DB , an encryption of the records (ER i ) N i=1 and a database secret key SK DB .

Transfer: is a protocol between the database DB and a user U with common inputs (P K I , P K DB ). DB inputs SK DB and U inputs (ρ, st U , ER ρ , AP ρ ), where ρ ∈ [N ] is a record index to which U is requesting access. The interaction ends with U outputting ⊥ or a string M ρ and an updated state st U .

We assume private communication links, so that communications between a user and the issuer are authenticated, and those between a user and the database are anonymized: otherwise, anonymizing the Transfer protocol is impossible.

The security de nitions formalize two properties called user anonymity and database security. The former captures that the database should be unable to tell which honest user is making a query and neither can tell which records are being accessed. This should remain true even if the database colludes with corrupted users and the issuer. As for database security, the intuition is that a cheating user cannot access a record for which it does not have the required credentials, even when colluding with other dishonest users. In case the issuer is colluding with these cheating users, they cannot obtain more records from the database than they retrieve.

Similarly to the OT N k×1 case, security is de ned by requiring that any PPT real-world adversary A and any environment E, there exists a PPT adversary A which controls the same parties and such that no environment E can tell if it is running in the real world interacting with the real A or in the ideal-world interacting with A . The distribution of outputs of the environment in the di erent settings is denoted by Real E,A (λ) and Ideal E,A (λ) for real-world adversary A and ideal-world adversary A , respectively. De nition 9.3. An AC-OT protocol is said to securely implement the functionality if for any real-world adversary A and any real world environment E, there exists an ideal-world simulator A controlling the same parties in the ideal-world as A does in the real-world, such that

|Real E,A (λ) -Ideal E,A (λ)| ≤ negl(n) (λ).
Real World. We describe the way that real-world algorithms interact when all participants (i.e., the real-world users U 1 , . . . , U U , the database DB and the issuer I) are honest. The issuer starts by generating a key pair (P K I , SK I ) ← ISetup(p), and sends P K I to all users {U i } U i=1 and the database DB. When E sends a message initdb, DB = (M i , AP i ) N i=1 to the database DB, the latter encrypts the database DB by running DBSetup and sends the encrypted records to all users.

When E sends a message (issue, x) to user U i , this user starts an Issue protocol with the issuer on common input x, at the end of which it returns 1 to the environment if the protocol succeeded or 0 otherwise. When E sends a message (transfer, ρ) to user U i , this user rst checks if its credentials Cred U are su cient to access the record M ρ . If it is the case, it engages in a Transfer protocol with the database DB, at the end of which it receives either the message M ρ , or an error symbol ⊥. If it failed at any steps, the user returns 0 to E, or 1 if it succeeded.

Notice that in this setting, neither the database nor the issuer return any outputs to the environment.

Ideal World. In the ideal world, participants only communicate via the trusted party T which implements the functionality of the protocol. We describe how T proceeds when receiving inputs from the ideal-world users {U i } U i=1 , issuer I and database DB . T maintains an initially empty set C i for each user U i and sets DB ← ⊥. It handles the queries of the di erent parties as follows:

• When receiving a message (initdb, DB = (M i , AP i ) N i=1 ) from DB , T sets DB = (M i , AP i ) N i=1 .
• When receiving (issue, x) from U i , T sends (issue, U i , x) to I which replies with a bit b. If b = 1, then T adds x to C i . In any cases, T sends b to U i .

• When receiving (transfer, ρ) from U i , the trusted party T acts as follows. If U i previously sent a message of the form (transfer, .), T de nes f U ,DB = 1. Otherwise, it sets f U ,DB = 0. If DB = ⊥, it sends (transfer, f U ,DB ) to DB , who sends a bit b.

If b = 1 and if st i contains a vector x such that AP i (x) = 1, then it sends the record to U i . In any other cases, it sends ⊥ to U i .
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In other words, the ideal-world users, database and issuer relay inputs and outputs between the environment E and the trusted party T.

Note that, like [START_REF] Camenisch | Oblivious transfer with access control[END_REF], the ideal functionality allows the database to learn whether a given user interacts with the database for the rst time or not. The reason is that, like the protocol of [START_REF] Camenisch | Oblivious transfer with access control[END_REF], our basic OT-AC scheme requires the database to provide a particular interactive zero-knowledge proof at the very rst time each user queries the database. In protocols where the database generates such an interactive proof, it is inevitable for U to reveal his state bit f DB to DB. In constructions where the zero-knowledge proof is made non-interactive and made publicly available at the same time as the database itself, this can be avoided and we can prevent DB from learning the state bit f DB . In this case, T does not send f U ,DB to DB in the ideal-world experiment.

The ideal world thus implies the following security properties.

User Anonymity. The database cannot tell which user a given query comes from and neither can it tell which record is being accessed. It only learns whether the user previously queried the database or not. Otherwise, two transfers involving the same users are unlinkable.

Database Security. A single cheating user cannot access a record for which he does not have a certi ed authorized attribute string. Colluding users cannot pool their credentials to gain access to a record which none of them can individually access. Moreover, if the issuer colludes with some users, the protocol still provides the equivalent of sender security in the OT N k×1 functionality.

Building Blocks

We will use two distinct signature schemes because one of them only needs to be secure in the sense of a weaker security notion and can be more e cient. This weaker notion is su cient to sign the database entries and allows a better e ciency in the scheme of Section 9.3. In particular, by making it stateful (which also su ces since all database entries are signed at once), we can reduce the public key size to log N matrices if N is the number of database entries. The second scheme must be stateful and secure in the standard EUF-CMA sense since the issuer uses it to certify users' attributes. The signature scheme of Section 7.1 is only used in the OT-AC protocol of Section 9.3 while the scheme of Section 9.2.1 is used in the adaptive OT protocol of Section 9.4 as well.

We rst use the signature scheme described in Section 7.1 which extends the the Böhl et al. signature [BHJ + 15] in order to sign messages comprised of multiple blocks while keeping the scheme compatible with zero-knowledge proofs.

A Simpler Variant with Bounded-Message Security and Security Against Non-Adaptive Chosen-Message Attacks

We consider a stateful variant of the scheme in Section 7.1 where a bound Q ∈ poly(n) on the number of signed messages is xed at key generation time. In the context of OT N k×1 , this is su cient and leads to e ciency improvements. In the modi ed scheme hereunder, the string τ ∈ {0, 1} is an -bit counter maintained by the signer to keep track of the number of previously signed messages.

This simpli ed variant resembles the SIS-based signature scheme of Böhl et al. [BHJ + 15].

In this version, the message space is {0, 1} n log q so that vectors of Z n q can be signed by rst decomposing them using vdec n,q-1 (.).

Keygen(1 λ , 1 Q ): Given λ > 0 and the maximal number Q ∈ poly(λ) of signatures, choose n = O(λ), a prime q = O(Q • n 4 ), m = 2n log q , an integer = log Q and Gaussian parameters σ = Ω( √ n log q log n). The message space is {0, 1} m d , for some m d ∈ poly(λ) with m d ≥ m.

1. Run TrapGen(1 n , 1 m , q) to get A ∈ Z n×m q and a short basis T A of Λ ⊥ q (A), which allows sampling short vectors in Λ ⊥ q (A) with a Gaussian parameter σ.

Next, choose + 1 random A 0 , A 1 , . . . , A ← U (Z n×m q ). 2. Choose D ← U (Z n×m d q
) as well as a random vector u ← U (Z n q ).

The counter τ is initialized to τ = 0. The private key consists of SK := T A and the public key is P K := A, {A j } j=0 , D, u .

Sign SK, τ, m : To sign a message m ∈ {0, 1} m d , 1. Increment the counter by setting τ := τ + 1 and interpret it as a string τ ∈ {0, 1} . Then, using SK := T A , compute a short delegated basis T τ ∈ Z 2m×2m for the matrix

A τ = [A | A 0 + j=1 τ [j]A j ] ∈ Z n×2m q .
2. Compute the vector u M = u + D • m ∈ Z n q . Then, using the delegated basis

T τ ∈ Z 2m×2m , sample a short vector v ∈ Z 2m in D Λ u M q (Aτ ),σ .
Output the signature sig = (τ, v) ∈ {0, 1} × Z 2m .

Verify P K, m, sig : Given P K, m ∈ {0, 1} m d and a signature sig

= (τ, v) ∈ {0, 1} × Z 2m , return 1 if v < σ √ 2m and A τ • v = u + D • m mod q.
For our purposes, the scheme only needs to satisfy a notion of bounded-message security under non-adaptive chosen-message attack. In this relaxed model, the adversary only obtains a bounded number of signatures for messages that are chosen non-adaptively (i.e., all at once and before seeing the public key) by the adversary. This security notion is su cient for signing the N database entries. Note that the queries are non-adaptive but the adversary can adaptively choose its forgery message.

Theorem 9.1. The scheme is bounded message secure under non-adaptive chosen-message attacks if the SIS assumption holds.

Proof. We show that the scheme presented in Section 9.2.1 is secure against non-adaptive chosen-message attacks (na-CMA) under the SIS assumption. The shape of the proof is similar to the security proof of the signature scheme of Section 7.1. Namely, to prove the security, we distinguish two kinds of attacks:
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Type I attacks, where in the adversary's forgery sig = (τ , v ), τ did not appear in any outputs of the signing oracle.

Type II attacks, where in the adversary's forgery sig = (τ , v ), τ has been recycled from an output sig (i ) = τ (i ) , v (i ) of the signing oracle for some query i ∈ {1, . . . , Q}.

Lemma 9.2 states that the signature scheme is secure against Type I forgery using the same technique as is [ABB10, Boy10, MP12]. Lemma 9.3 claims that the signature scheme resists Type II attacks, with a proof that is very similar to the one of Lemma 9.2. Both security proofs assume the computational hardness of the SIS problem.

Lemma 9.2. The signature scheme of Section 9.2.1 is secure against Type I attacks if the SIS n,m,q,β assumption holds, with β = σ 2 m 3/2 ( + 2) + σm 1/2 .

Proof. Let A be a PPT adversary against the na-CMA security of our scheme that mounts Type I attacks with non negligible success probability ε. We construct a PPT algorithm B using A to break the SIS n,m,q,β assumption. Our reduction B takes as input a target matrix Ā ∈ Z n×m q and computes v ∈ Λ ⊥ q ( Ā) satisfying 0 < v ≤ β .

At rst, B calls A to obtain the messages to be queried: m (1) , . . . , m (Q) . For the sake of readability, let us de ne τ (i) = i, viewed as a bit-string, to be the tag corresponding to the i-th signature in our scheme.

Setup. As in [START_REF] Hohenberger | Short and stateless signatures from the RSA assumption[END_REF], the reduction guesses the shortest pre x such that the string τ embedded in A's forgery di ers from all pre xes to {τ (1) , . . . , τ (Q) }. To achieve this, B chooses at random i † ← U ({1, . . . , Q}) and t † ← U ({1, . . . , }). Then, with probability 1/(Q • ), the longest common pre x between τ and one of the tags

{τ (i) } Q i=1 is the string τ [1] • • • τ [t † -1] ∈ {0, 1} t † -1 : the rst (t † -1)-th bits of τ . Let us de ne τ † = τ |t † ,
where s |i denotes the i-th pre x for a string s. By construction τ † / ∈ {τ

(1)

|t † , . . . , τ (Q) |t † } with probability 1/(Q • ).
Next, the reduction B runs TrapGen(1 n , 1 m , q) to obtain matrices C ∈ Z n×m q and a short basis T C ∈ Z m×m of Λ ⊥ q (C), which will be useful to answer the following opening oracle queries. The reduction B continues by picking + 1 matrices Q 0 , . . . , Q ∈ Z m×m where each matrix Q i has its column independently sampled from D Z m ,σ , and Bde nes the matrices A = Ā and {A j } j=0 as follows

       A 0 = Ā • Q 0 + t † j=1 τ [j] • C A j = Ā • Q j + (-1) τ [j] • C for j ∈ [1, t † ] A j = Ā • Q j for j ∈ [t † + 1, ] . 9. L B O T A C
Lemma 9.3. The signature scheme of Section 9.2.1 is secure against Type II attacks if SIS n,m,q,β holds, with β = √ 2( + 2)σm 3/2 + m 1/2 .

Proof. We will prove this result using techniques analogous to the previous proof. We show that given an adversary A that comes out with a Type II signature in the na-CMA game with non negligible probability ε, we can construct a PPT B that breaks the SIS assumption with advantage ε/Q using A.

Firstly, the reduction B is given a matrix A ∈ Z n×m d q as input and has to output an integer vector v ∈ Z m d in Λ ⊥ q (A) such that 0 < v ≤ β . Next, B receives from A the messages m (1) , . . . , m (Q) for which A will further ask signature queries.

To compute the public key, at the outset of the game, the reduction B starts by sampling i † ← U ({1, . . . , Q}) corresponding to the guess that A's forgery will recycle τ (i †) . This is independent of A's view, and the guess will be correct with probability 1/Q. Using this guess to compute P K, the reduction B picks h 0 , . . . , h ∈ Z q subject to the constraints

h 0 + j=1 τ (i † ) [j] • h j = 0 mod q h 0 + j=1 τ (i) [j] • h j = 0 mod q ∀i ∈ {1, . . . , Q}\{i † } (9.1)
Bthen runs (C, T C ) ← TrapGen(1 n , 1 m , q). The resulting matrix C ∈ Z n×m q is statistically random, and the trapdoor T C ∈ Z m×m is a short basis of Λ ⊥ q (C). Next Bre-randomize A using short matrices S, S 0 , S 1 , . . . , S ∈ Z m d ×m which are obtained by sampling their columns from the distribution D Z m d ,σ . The challenger B then uses these matrices to de ne:

A = A • S A 0 = A • S 0 + h 0 • C A j = A • S j + h j • C j ∈ {1, . . . , } and sets D = A ∈ Z n×m d q .
Observe that matrices A, {A j } j=0 are all statistically uniform over Z n×m q . Then, B samples short vectors

v † 1 , v † 2 ← D Z m ,σ and computes u ∈ Z n q as u = A τ (i † ) • v † 1 v † 2 -A • m (i † ) mod q. (9.2)
Finally, B sends to A the public key

P K := A, {A j } j=0 , D, u
which is distributed as the P K of the real scheme.

To answer signing queries, the challenger B do as follows.

• If the query is not the i † -th, we have:

A τ (i) = A A 0 + j=0 τ (i) [j] • A j = A • S A • (S 0 + j=0 τ (i) [j] • S j ) + h τ (i) • C , 9. L B O T A C we have that either v 1 = v † 1 or v 2 = v † 2 .
As a consequence, (a) is information theoretically unpredictable for A since the columns of S, S 0 , . . . S are statistically hidden from A, as shown in [START_REF] Micciancio | Trapdoors for lattices: Simpler, tighter, faster, smaller[END_REF] for instance: conditionally on the public key, each column of S and {S j } j=0 has at least n bits of min-entropy.

A Fully Simulatable Adaptive OT Protocol

Our basic OT N k×1 protocol builds on the "assisted decryption" technique [START_REF] Camenisch | Simulatable adaptive oblivious transfer[END_REF]. The databases holder encrypts all entries using a multi-bit variant [PVW08] of Regev's cryptosystem [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF] and proves the well-formedness of its public key and all ciphertexts. In addition, all ciphertexts are signed using a signature scheme. At each transfer, the receiver statistically re-randomizes a blinded version of the desired ciphertext, where the blinding is done via the additive homomorphism of Regev. Then, the receiver provides a witness indistinguishable (WI) argument that the modi ed ciphertext (which is submitted for oblivious decryption) is a transformation of one of the original ciphertexts by arguing knowledge of a signature on this hidden ciphertext. In response, the sender obliviously decrypts the modi ed ciphertext and argues in zero-knowledge that the response is correct.

Adapting the technique of [START_REF] Camenisch | Simulatable adaptive oblivious transfer[END_REF] to the lattice setting requires the following building blocks: (i) A signature scheme allowing to sign ciphertexts while remaining compatible with ZK proofs; (ii) A ZK protocol allowing to prove knowledge of a signature on some hidden ciphertext which belongs to a public set and was transformed into a given ciphertext; (iii) A protocol for proving the correct decryption of a ciphertext; (iv) A method of statistically re-randomizing an LWE-encrypted ciphertext in a way that enables oblivious decryption. The rst three ingredients can be obtained from Chapter 7. Since component (i) only needs to be secure against random-message attacks as long as the adversary obtains at most N signatures, we use the simpli ed SIS-based signature scheme of Section 9.2.1. The statistical re-randomization of Regev ciphertexts is handled via the noise ooding technique [AJLA + 12], which consists in drowning the initial noise with a sub-exponentially larger noise. While recent results [START_REF] Ducas | Sanitization of FHE ciphertexts[END_REF][START_REF] Bourse | FHE Circuit Privacy Almost for Free[END_REF] provide potentially more e cient alternatives, we chose the ooding technique for simplicity because it does not require the use of FHE (and also because the known multi-bit version [START_REF] Hiromasa | Packing messages and optimizing bootstrapping in GSW-FHE[END_REF] of the GSW FHE [START_REF] Gentry | Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based[END_REF] incurs an ad hoc circular security assumption).

Description

Our scheme works with security parameter λ, modulus q, lattice dimensions n = O(λ) and m = 2n log q . Let B χ = O( √ n), and let χ be a B χ -bounded distribution. We also de ne an integer B as a randomization parameter such that B = n ω(1) • (m + 1)B χ and B + (m + 1)B χ ≤ q/5 (to ensure decryption correctness). Our basic OT N k×1 protocol goes as follows.

Initialization S I (1 λ , DB), R I (1 λ ) : In this protocol, the sender S I has a database DB = (M 1 , . . . , M N ) of N messages, where M i ∈ {0, 1} t for each i ∈ [N ], for some t ∈ poly(λ). It interacts with the receiver R I as follows.

1. Generate a key pair for the signature scheme of Section 9.2.1 in order to sign Q = N messages of length m d = (n+t)• log q each. This key pair consists of SK sig = T A ∈ Z m×m and P K sig := A, {A j } j=0 , D, u , where = log N and A, A 0 , . . . ,

A ∈ U (Z n×m q ), D ∈ U (Z n×m d q
). The counter is initialized to τ = 0.

2. Choose S ← χ n×t that will serve as a secret key for an LWE-based encryption scheme. Then, sample F ← U (Z n×m q

), E ← χ m×t and compute

P = [p 1 | . . . |p t ] = F T • S + E ∈ Z m×t q , (9.6) so that (F, P) ∈ Z n×m q × Z m×t q
forms a public key for a t-bit variant of Regev's encryption scheme [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF].

3. Sample vectors a 1 , . . . , a N ← U (Z n q ) and x 1 , . . . , x N ← χ t to compute

(a i , b i ) = a i , S T • a i + x i + M i • q/2 ∈ Z n q × Z t q ∀i ∈ [N ]. (9.7) 4. For each i ∈ [N ], generate a signature (τ i , v i ) ← Sign(SK sig , τ, m i ) on the decomposition m i = vdec n+t,q-1 (a T i |b T i ) T ∈ {0, 1} m d . 5. S I sends R 0 = P K sig , (F, P), {(a i , b i ), (τ i , v i )} N i=1 to R I and interactively proves knowledge of small-norm S ∈ Z n×t , E ∈ Z m×t , short vectors {x i } N i=1
and t-bit messages {M i } N i=1 , for which (9.6) and (9.7) hold. To this end, S I plays the role of the prover in the ZK argument system described in Section 9.5.2. If the argument of knowledge does not verify or if there exists i ∈ [N ] such that (τ i , v i ) is an invalid signature on the message m i = vdec n+t,q-1 (a T i |b T i ) T w.r.t. P K sig , then R I aborts. 6. Finally S I de nes S 0 = (S, E), (F, P), P K sig , which it keeps to itself. Transfer S T (S i-1 ), R T (R i-1 , ρ i ) : At the i-th transfer, the receiver R T has state R i-1 and an index ρ i ∈ [1, N ]. It interacts as follows with the sender S T that has state S i-1 in order to obtain M ρ i from DB.

1. R T samples vectors e ← U ({-1, 0, 1} m ), µ ← U ({0, 1} t ) and a random ν ← U ([-B, B] t ) to compute (c 0 , c 1 ) = a ρ i + F • e, b ρ i + P T • e + µ • q/2 + ν ∈ Z n q × Z t q , (9.8) which is a re-randomization of (a ρ i , b ρ i + µ • q/2 ). The ciphertext (c 0 , c 1 ) is sent to S T . In addition, R T provides an interactive WI argument that (c 0 , c 1 ) is indeed a transformation of (a ρ i , b ρ i ) for some ρ i ∈ [N ], and R T knows a signature on m = vdec n+1,q-1 (a T ρ i |b T ρ i ) T ∈ {0, 1} m d .
To this end, R T runs the prover in the ZK argument system in Section 9.5.4.

2. If the argument of step 1 veri es, S T uses S to decrypt (c 0 , c 1 ) ∈ Z n q × Z t q and obtain M = (c 1 -S T • c 0 )/(q/2) ∈ {0, 1} t , which is sent back to R T . In addition, S T provides a zero-knowledge argument of knowledge of vector y = c 1 -S T • c 0 -M • q/2 ∈ Z t of norm y ∞ ≤ q/5 and small-norm matrices E ∈ Z m×t , S ∈ Z n×t satisfying (modulo q)

P = F T • S + E c T 0 • S + y T = c T 1 -M T • q/2 . (9.9)
To this end, S T runs the prover in the ZK argument system in Section 9.5.3.
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3. If the ZK argument produced by S T does not properly verify at step 2, R T halts and outputs ⊥. Otherwise, R T recalls the random string µ ∈ {0, 1} t that was chosen at step 1 and computes M ρ i = M ⊕ µ. The transfer ends with S T and R T outputting S i = S i-1 and R i = R i-1 , respectively.

In the initialization phase, the sender has to repeat step 5 with each receiver to prove that {(a i , b i )} N i=1 are well-formed. Using the Fiat-Shamir heuristic [START_REF] Fiat | How to prove yourself: Practical solutions to identi cation and signature problems[END_REF], we can decrease this initialization cost from O(N • U ) to O(N ) (regardless of the number of users U ) by making the proof non-interactive. This modi cation also reduces each transfer to 5 communication rounds since, even in the transfer phase, the sender's ZK arguments can be non-interactive and the receiver's arguments only need to be WI, which is preserved when the basic ZK protocol (which has a ternary challenge space) is repeated ω(log n) times in parallel. To keep the security proof simple, we derive the matrix F ∈ Z n×m q from a second random oracle. Knowing a short basis of Λ ⊥ q (F), the simulator can extract the columns of S from the public key P ∈ Z n×m q . Details are given in Appendix 9.6.

Security

The security of the above OT N k×1 protocol against static corruptions is stated by the following theorems.

Theorem 9.4. The OT N k×1 protocol provides receiver security under the SIS assumption.

Proof. We prove that any real-world cheating sender Ŝ implies an ideal-world cheating sender Ŝ such that, under the SIS assumption, the two distributions Real Ŝ,R and Ideal Ŝ ,R with common inputs (N, k, M 1 , . . . , M N , ρ 1 , . . . , ρ k ) are indistinguishable to any PPT distinguisher D.

To this end, we consider a sequence of hybrid experiments with binary outputs. In each experiment Exp i , a distinguisher D takes as input the states (S k , R k ) produced by Ŝ and R at the end of the experiment and outputs a bit. We de ne W i as the event that the output of experiment Exp i is 1. The rst experiment outputs whatever the distinguisher D outputs and corresponds to the real interaction between the cheating sender Ŝ and the receiver R.

Exp 0 : This experiment involves a real execution of Ŝ in interaction with a honest receiver R which queries the index

ρ i ∈ [N ] at the i-th transfer for each i ∈ [k]. The output of Exp 0 is exactly the output of the distinguisher D on input of X = (S k , R k ) ← Real S, R, so that we have Pr[W 0 ] = Pr[D(X) = 1 | X ← Real Ŝ,R ].
Exp 1 : This experiment is like Exp 0 except that, at step 5 of the initialization phase, the knowledge extractor of the argument system is used to extract the witnesses s j ∈ χ n , e j ∈ χ m , xj ∈ χ N , Mj ∈ {0, 1} N , for each j ∈ [t], from the sender's argument. In the event that the knowledge extractor fails to extract valid witnesses, the experiment aborts and outputs ⊥. We know that the zero-knowledge argument system is computationally sound as long as the underlying commitment is computationally binding. If the perfectly hiding commitment of [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF] is used, the binding property

9. L B O T A C
If Ŝ detects that Ŝ creates a verifying argument for a false statement (which Ŝ can detect using the extracted matrix S ∈ Z n×t , by applying the test (9.10)), it aborts the interaction as in Exp 3 . If the ZK argument involves a true statement, Ŝ sends 1 to the trusted party T so as to authorize the transfer in the ideal world. Otherwise, Ŝ sends 0 to T. At the end of the k-th transfer phase, Ŝ outputs whatever Ŝ outputs as its nal state S k .

In Exp 3 , it is easy to see that

Pr[W 3 ] = Pr[D(X) = 1 | X ← Ideal Ŝ ,R ].
When putting the above altogether, we nd that there exists a PPT SIS solver B such that

| Pr[D(X) = 1 | X ← Real Ŝ,R ] -Pr[D(X) = 1 | X ← Ideal Ŝ ,R ]| ≤ 2 • Adv SIS B (λ) + negl(λ),
which proves the result.

Theorem 9.5. The OT N k×1 protocol provides sender security under the SIS and LWE assumptions.

Proof. Given a real malicious receiver R, we construct a cheating receiver R in the ideal world such that, under the SIS and LWE assumption, no PPT distinguisher D can tell apart the distributions Real S, R and Ideal S , R under common inputs: N , k, M 1 , . . . , M N , ρ 1 , . . . , ρ k .

To do this, we proceed again via a sequence of hybrid experiments with binary outputs. For each i, we consider the probability that a distinguisher D outputs 1 on input of the states (S k , R k ) that constitute the outcome of experiment Exp i . We also de ne W i to be the event that experiment Exp i outputs 1.

Exp 0 : This experiment corresponds to a real execution of R in interaction with a honest sender S(M 1 , . . . , M N ). The output of the experiment is identical to that of the distinguisher D on input of X = (S k , R k ) ← Real S, R. We have

Pr[W 0 ] = Pr[D(X) = 1 | X ← Real S, R].
Exp 1 : This experiment departs from Exp 0 in that, when the dishonest receiver RT sends the ciphertext (c 0 , c 1 ) ∈ Z n q × Z t q at step 1 of each transfer, the knowledge extractor of the argument system is used to extract the witnesses m

∈ {0, 1} m d , e ∈ {-1, 0, 1} t , µ ∈ {0, 1} t , ν ∈ [-B, B] t , τ ∈ {0, 1} and v = (v T 1 |v T 2 )
T ∈ Z 2m which satisfy (9.22). If the knowledge extractor fails to produce valid witnesses at some transfer, the experiment aborts and outputs ⊥. Recall that the zero-knowledge argument system is computationally sound if the underlying commitment is binding, which is equivalent to the SIS assumption if the perfectly hiding commitment of [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF] is used. Under the SIS assumption, experiment Exp 1 returns 1 with about the same probability as Exp 0 . There thus exists a SIS solver B such that

| Pr[W 1 ] -Pr[W 0 ]| ≤ k • Adv SIS B (λ),
where k is the number of transfers.

Exp 2 : This experiment is identical to Exp 1 except that, at step 1 of each transfer, the experiment aborts if the extracted witnesses m ∈ {0,

1} m d , e ∈ {-1, 0, 1} t , µ ∈ {0, 1} t , ν ∈ [-B, B] t , τ ∈ {0, 1} and v = (v T 1 |v T 2 ) T ∈ Z 2m are such that the product a m b m = H n,q-1 H t,q-1 • m ∈ Z n+t q does not match any ciphertext {(a i , b i )} N i=1 appearing in R 0 (namely, we have (a m , b m ) = (a i , b i ) for each i ∈ [N ]
). We claim that such an event implies a breach in the bounded message security of the signature scheme: Lemma 9.6. Under the SIS assumption, experiments Exp 2 and Exp 1 are computationally indistinguishable: there exists a PPT algorithm

B such that | Pr[W 2 ] -Pr[W 1 ]| ≤ N • Adv SIS B (λ).
Exp 3 : This experiment is like Exp 2 except that, at step 5 of the initialization phase, the zeroknowledge argument of knowledge of

s j ∈ χ n , e j ∈ χ m , xj ∈ χ N , Mj ∈ {0, 1} N such that F T I m A T DB I N q/2 • I N •      s j e j xj Mj      = p j bj ∀j ∈ [t]
is replaced by a simulated interactive argument and so is the ZK argument of knowledge of {(s j , e j , y[j])} t j=1 satisfying (9.20) at step 2 of each transfer protocol. From this experiment on, we notice that the small-norm matrices S = [s 1 | . . . |s t ] ∈ Z n×t , E = [e 1 | . . . |e t ] ∈ χ m×t satisfying (9.6) are no longer used by the sender S. Yet, the statistical ZK property of the zero-knowledge argument system ensures that

| Pr[W 3 ] -Pr[W 2 ]| ≤ negl(λ).
Exp 4 : This experiment is like Exp 3 with the di erence that, at step 2 of the initialization phase, each column p i of the Regev's encryption public key matrix P =

[p 1 | . . . | p t ] = F T • S + E ∈ Z m×t q
is traded for a uniformly random vector

p i ← U (Z m q ). At the same time, each b i = S T • a i + x i + M i q 2 ∈ Z t
q is replaced by a truly uniform random vector in Z t q . Therefore, P is a uniformly distributed matrix in Z m×t q , and the (b i ) N i=1 are distributed as uniform vectors in (Z t q ) N . Now, at step 5 of the initialization phase and step 2 of each transfer, the sender's zero-knowledge arguments are simulated arguments for false statements. However, a straightforward reduction shows that, under the LWE assumption over t • (m + N ) samples, these changes should remain unnoticed to the malicious receiver R and have no impact on the distinguisher's output: we have

| Pr[W 4 ] -Pr[W 3 ]| ≤ Adv LWE B (λ).
The ideal-world receiver R is de ned as follows. It assumes the role of the sender S in interaction with the real-world receiver R in Exp 4 . This implies that, in the initialization phase, the matrices (F, P) are chosen as uniformly random matrices (F,

P) ← U (Z n×m q × 9. L B O T A C Z m×t q
) and while, at step 3, (a i , b i ) ← U (Z n q × Z t q ) is chosen at random for each i ∈ [N ]. The randomly generated pairs {(a i , b i )} N i=1 are faithfully signed using SK sig = T A at step 4. In step 5 of the initialization phase, R appeals to the simulator of the ZK argument. At the i-th transfer, when R sends (c 0 , c 1 ) and argues knowledge of (m, e, µ, ν, τ, v 1 , v 2 ) at step 1, R uses the knowledge extractor of the argument system to extract the witnesses (m, e, µ, ν, τ,

v 1 , v 2 ) ∈ {0, 1} m d ×{-1, 0, 1} t ×{0, 1} t ×[-B, B] t ×{0, 1} and determine the index ρ i ∈ [N ] such that a ρ i b ρ i = H n,q-1 H t,q-1 • m ∈ Z n+t q .
Note that, by Lemma 9.6, such an index must exist unless R can forge a signature. Having determined the index ρ i ∈ [N ] of the queried database entry, R sends ρ i to the trusted party T which returns the message M ρ i ∈ {0, 1} t . The latter is used together with the extracted witness µ ∈ {0, 1} t to de ne the response M = M ρ i ⊕ µ ∈ {0, 1} t that R generates on behalf of the sender Ŝ at step 2 of the transfer. In addition, the ideal-world dishonest receiver R appeals to the simulator of the zero-knowledge argument system to simulate an argument of knowledge of {(s j , e j , y[j])} t j=1 for the statement (9.20). It is easy to see that, when R interacts with the simulator R that emulates the real-world sender S , its view is identical to that of Exp 4 : we have

Pr[W 4 ] = Pr[D(X) = 1 | X ← Ideal S , R ].
When combining the above, we conclude that there exist PPT algorithms B and B such that

| Pr[D(X) = 1 | X ← Real S, R] -Pr[D(X) = 1 | X ← Ideal S , R ]| ≤ 2 • Adv SIS B (λ) + Adv LWE B (λ) + negl(λ).
This proves the sender security under the SIS and LWE assumptions.

OT with Access Control for Branching Programs

In this section, we extend our protocol of Section 9.3 into a protocol where database entries can be protected by access control policies consisting of branching programs. In a nutshell, the construction goes as follows.

When the database is set up, the sender signs (a binary representation of) each database entry (a i , b i ) together with a hash value h BP,i ∈ Z n q of the corresponding branching program. For each possessed attribute x ∈ {0, 1} κ , the user U obtains a credential Cred U,x from the issuer. If U has a credential Cred U,x for an attribute x satisfying the ρ-th branching program, U can re-randomize (a ρ , b ρ ) into (c 0 , c 1 ), which is given to the sender, while proving that: (i) He knows a signature (τ, v) on some message (a ρ , b ρ , h BP,ρ ) such that (c 0 , c 1 ) is a re-randomization of (a ρ , b ρ ); (ii) The corresponding h BP,ρ is the hash value of (the binary representation of) a branching program BP ρ that accepts an attribute x ∈ {0, 1} κ for which he has a valid credential Cred U,x (i.e., BP ρ (x) = 1).

While statement (i) can be proved as in Section 9.3, handling (ii) requires a method of proving the possession of a (committed) branching program BP and a (committed) input x ∈ {0, 1} κ such that BP(x) = 1 while demonstrating possession of a credential for x.

Recall that a branching program BP of length L, input space {0, 1} κ and width 5 is speci ed by L tuples of the form (var(θ), π θ,0 , π θ,1 ) where var : [L] → [0, κ -1] is a function that associates the θ-th tuple with the coordinate

x var(θ) ∈ {0, 1} of the input x = (x 0 , . . . , x κ-1 ) T .

π θ,0 , π θ,1 : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} are permutations that determine the θ-th step of the evaluation.

On input x = (x 0 , . . . , x κ-1 ) T , BP computes its output as follows. For each bit b ∈ {0, 1}, let b denote the bit 1 -b. Let η θ denote the state of computation at step θ. The initial state is η 0 = 0 and, for θ ∈ [1, L], the state η θ is computed as

η θ = π θ,x var(θ) (η θ-1 ) = π θ,0 (η θ-1 ) • xvar(θ) + π θ,1 (η θ-1 ) • x var(θ) .
Finally, the output of evaluation is BP(x) = 1 if η L = 0, otherwise BP(x) = 0.

We now let δ κ = log 2 κ and note that each integer in [0, κ -1] can be determined by δ κ bits. In particular, for each θ ∈ [L], let d θ,1 , . . . , d θ,δκ be the bits representing var(θ). Then, we consider the following representation of BP: 

z BP = d 1,1 , . . . ,

The OT-AC Protocol

We assume public parameters p consisting of a modulus q, integers n, m such that m = 2n log q , a public matrix Ā ∈ Z n×m q , the maximal length L ∈ poly(n) of branching programs and their desired input length κ ∈ poly(n). 1. If st U = ∅, U creates a pseudonym P U = Ā • e U ∈ Z n q , for a randomly chosen e U ← U ({0, 1} m ), which is sent to I. It sets st U = (e U , P U , 0, ∅, ∅). Otherwise, U parses its state st U as (e U , P U , f DB , C U , Cred U ).

L B

O T A C
2. The issuer I de nes the message m U,x = (vdec n,q-1 (P U ) T |x T ) T ∈ {0, 1} m I . Then, it runs the signing algorithm of Section 7.1 to obtain and return cert U,x = τ U , v U , r U ← Sign(SK I , m U,x ) ∈ {0, 1} I × Z 2m × Z m , which binds U's pseudonym P U to the attribute string x ∈ {0, 1} κ .

3. U checks that cert U,x satis es (7.2) and that v

U ≤ σ √ 2m, r U ≤ σ √ m. If so, U sets C U := C U ∪ {x}, Cred U := Cred U ∪ {cert U,x }
and updates its state st U = (e U , P U , f DB , C U , Cred U ). If cert U,x does not properly verify, U aborts the interaction and leaves st U unchanged.

DBSetup P K I , DB = {(M i , BP i )} N i=1 : The sender has DB = {(M i , BP i )} N i=1
which is a database of N pairs made of a message M i ∈ {0, 1} t and a policy realized by a length-L branching program BP i = {var i (θ), π i,θ,0 , π i,θ,1 } L θ=1 .

1. Choose a random matrix A HBP ← U Z n×ζ q which will be used to hash the description of branching programs.

2. Generate a key pair for the signature scheme of Section 9.2.1 in order to sign Q = N messages of length m d = (2n + t) • log q each. This key pair consists of SK sig = T A ∈ Z m×m and P K sig := A, {A j } j=0 , D, u , where = log N and A, A 0 , . . . ,

A ∈ U (Z n×m q ), D ∈ U (Z n×m d q
) with m = 2n log q , m d = (2n + t) log q . The counter is initialized to τ = 0.

3. Sample S ← χ n×t which will serve as a secret key for an LWE-based encryption scheme. Then, sample F ← U (Z n×m q

), E ← χ m×t to compute

P = [p 1 | . . . |p t ] = F T • S + E ∈ Z m×t q
(9.12) so that (F, P) forms a public key for a t-bit variant of Regev's system.

4. Sample vectors a 1 , . . . , a N ← U (Z n q ) and x 1 , . . . , x N ← χ t to compute

(a i , b i ) = a i , a T i • S + x i + M i • q/2 ∈ Z n q × Z t q ∀i ∈ [N ] (9.13) 5. For each i = 1 to N , (a i , b i ) is bound to BP i as follows. a. Let z BP,i ∈ [0, 4] ζ be the binary representation of the branching program. Compute its digest h BP,i = A HBP • z BP,i ∈ Z n q . b. Using SK sig , generate a signature (τ i , v i ) ← Sign(SK sig , τ, m i ) on the message m i = vdec 2n+t,q-1 (a i |b i |h BP,i ) ∈ {0, 1} m d obtained by decom- posing (a T i |b T i |h T BP,i ) T ∈ Z 2n+t q .
6. The database's public key is de ned as P K DB = P K sig , (F, P), A HBP while the encrypted database is 1. If f DB = 0, U interacts with DB for the rst time and requires DB to prove knowledge of small-norm S ∈ Z n×t , E ∈ Z m×t , {x i } N i=1 and t-bit messages {M i } N i=1 satisfying (9.12)-(9.13). To do this, DB uses the ZK argument in Section 9.5.2. If there exists i ∈ [N ] such that (τ i , v i ) is an invalid signature on vdec 2n+t,q-1 (a T i |b T i |h T BP,i ) T or if the ZK argument does not verify, U aborts. Otherwise, U updates st U and sets f DB = 1.

{ER i = a i , b i , (τ i , v i ) , BP i } N i=1 .

U re-randomizes the pair

(a ρ , b ρ ) contained in ER ρ . It samples vectors e ← U ({-1, 0, 1} m ), µ ← U ({0, 1} t ) and ν ← U ([-B, B] t ) to compute (c 0 , c 1 ) = a ρ + F • e, b ρ + P T • e + µ • q/2 + ν ∈ Z n q × Z t q , (9.14)
which is sent to DB as a re-randomization of (a ρ , b ρ + µ • q/2 ). Then, U provides an interactive WI argument that (c 0 , c 1 ) is a re-randomization of some (a ρ , b ρ ) associated with a policy BP ρ for which U has a credential cert U,x for some x ∈ {0, 1} κ such that BP ρ (x) = 1. In addition, U demonstrates possession of: (i) a preimage z BP,ρ ∈ [0, 4] ζ of h BP,ρ = A HBP • z BP,ρ ∈ Z n q ; (ii) a credential Cred U,x for the corresponding x ∈ {0, 1} κ and the private key e U ∈ {0, 1} m for the pseudonym P U to which x is bound; (iii) the coins leading to the randomization of some (a ρ , b ρ ). Then entire step is conducted by arguing knowledge of

                           e U ∈ {0, 1} m , m U,x ∈ {0, 1} m I , x ∈ {0, 1} κ , m U,x ∈ {0, 1} m/2 τ U ∈ {0, 1} I , v U = (v T U,1 |v T U,2 ) T ∈ [-β, β] 2m , r U ∈ [-β, β] m // signature on m U,x = (vdec n,q-1 (P U ) T |x T ) T z BP,ρ ∈ [0, 4] ζ // representation of BPρ m ∈ {0, 1} m d , τ ∈ {0, 1} , v = (v T 1 |v T 2 ) T ∈ Z 2m // signature on m = vdec 2n+t,q-1 (a T i |b T i |h T BP,ρ ) T e ∈ {-1, 0, 1} t , µ ∈ {0, 1} t , ν ∈ [-B, B] t ,
// coins allowing the re-randomization of (aρ, bρ)

satisfying the relations (modulo q)

                                         H2n+t,q-1 • m +    F P T It • q/2 It -A HBP    •      e µ ν z BP,ρ      =    c0 c1 0 n    // (recall that (a T ρ |b T ρ |h T BP,ρ ) T = H 2n+t,q-1 • m) A • v1 + A0 • v2 + j=1 Aj • (τ [j] • v2) -D • m = u AI • v U,1 + AI,0 • v U,2 + I j=1 AI,j • (τ U [j] • v U,2 ) -DI • m U,x = uI DI,0 • r U + DI,1 • m U,x -Hn,q-1 • m U,x = 0 Hn,q-1 0 0 Iκ • m U,x + - Ā 0 • e U + 0 -Iκ • x = 0 (9.15)
and such that z BP,ρ ∈ [0, 4] ζ encodes BP ρ such that BP ρ (x) = 1. This is done by running the argument system described in Section 9.5.5.

If the ZK argument of step 2 veri es, DB decrypts

(c 0 , c 1 ) ∈ Z n q × Z t q to obtain M = (c 1 -S T • c 0 )/(q/2) ∈ {0, 1} t , which is returned to U. Then, DB 9. L B O T A C argues knowledge of y = c 1 -S T • c 0 -M • q/2 ∈ Z t of norm y ∞ ≤ q/5
and small-norm E ∈ Z m×t , S ∈ Z n×t satisfying (modulo q)

P = F T • S + E , c T 0 • S + y T = c T 1 -M T • q/2 .
To this end, DB uses the ZK argument system of Section 9.5.3.

4. If the ZK argument produced by DB does not verify, U outputs ⊥. Otherwise, U recalls the string µ ∈ {0, 1} t and outputs

M ρ i = M ⊕ µ.
Like our construction of Section 9.3, the above protocol requires the DB to repeat a ZK proof of communication complexity Ω(N ) with each user U during the initialization phase. By applying the Fiat-Shamir heuristic as in Appendix 9.6, the cost of the initialization phase can be made independent of the number of users: the sender can publicize P K DB , {ER i , BP i } N i=1 along with a with a universally veri able non-interactive proof of well-formedness.

The security of the above protocol against static corruptions is proved in [LLM + 17], under the SIS and LWE assumptions and is similar to the previous proofs.

Zero-Knowledge Subprotocols for Stern Protocol

Our Strategy and Basic Techniques, In a Nutshell

Before going into the details of our protocols, we rst summarize our governing strategy and the techniques that will be used in the next subsections.

In each protocol, we prove knowledge of (possibly one-dimensional) integer vectors {w i } i that have various constraints (e.g., smallness, special arrangements of coordinates, or correlation with one another) and satisfy a system

i M i,j • w i = v j j , ( 9.16) 
where {M i,j } i,j , {v j } j are public matrices (which are possibly zero or identity matrices) and vectors. Our strategy consists in transforming this entire system into one equivalent equation M • w = v, where matrix M and vector v are public, while the constraints of the secret vector w capture those of witnesses {w i } i and they are provable in zero-knowledge via random permutations. For this purpose, the Stern-like protocol from Section 4.3 comes in handy.

A typical transformation step is of the form w i → wi , where there exists public matrix P i,j such that P i,j • wi = w i . This subsumes the decomposition and extension mechanisms which rst appeared in [START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF].

• Decomposition: Used when w i has in nity norm bound larger than 1 and we want to work more conveniently with wi whose norm bound is exactly 1. In this case, P i,j is a decomposition matrix.

• Extension: Used when we insert "dummy" coordinates to w i to obtain wi whose coordinates are somewhat balanced. In this case, P i,j is a {0, 1}-matrix with zerocolumns corresponding to positions of insertions.

Such a step transforms the term M i,j • w i into M i,j • wi , where M i,j = M i,j • P i,j is a public matrix. Also, using the commutativity property of addition, we often group together secret vectors having the same constraints.

After a number of transformations, we will reach a system equivalent to (9.16):

       M 1,1 • w 1 + M 1,2 • w 2 + • • • + M 1,k • w k = v 1 , . . . M t,1 • w 1 + M t,2 • w 2 + • • • + M t,k • w k = v t , (9.17)
where integers t, k and matrices M i,j are public. De ning

M =      M 1,1 M 1,2 • • • M 1,k . . . . . . . . . . . . M t,1 M t,2 • • • M t,k      ; w =     w 1 . . . w k     ; v =     v 1 . . . v t     ,
we obtain the uni ed equation M • w = v mod q. At this stage, we will use a properly de ned composition of random permutations to prove the constraints of w. We remark that the crucial aspect of the above process is in fact the manipulation of witness vectors, while the transformations of public matrices/vectors just follow accordingly. To ease the presentation of the next subsections, we will thus only focus on the secret vectors.

In the process, we will employ various extending and permuting techniques which require introducing some notations. The most frequently used ones are given in Table 9.1. Some of these techniques appeared (in slightly di erent forms) in previous works [LNSW13, LNW15, LLNW16, LLM + 16a, LLM + 16b]. The last three parts of the table summarizes newly-introduced techniques that will enable the treatment of secret-and-correlated objects involved in the evaluation of hidden branching programs.

In particular, the intriguing technique of the last row will be used for proving knowledge of secret integer z of the form z = x • y for some (x, y) ∈ [0, 4] × {0, 1} satisfying other relations. The following example illustrates how it works.

Example. Let (x, y) = (2, 1) and (c, b) = (4, 1). Then we have:

ext 5×2 (2, 1) = 0, 1, 0, 0, 0, 4, 0, 3, 0, 2 T T 5×2 [4, 1] ext 5×2 (2, 1) = 0, 0, 4, 0, 3, 0, 2, 0, 1, 0 T Note that: T 5×2 [4, 1] ext 5×2 (2, 1) = ext 5×2 (1, 0) = ext 5×2 (2 + 4 mod 5, 1 ⊕ 1).

Protocol 1

Let n, m, q, N, t, B χ be the parameters de ned in Section 9.3. The protocol allows the prover to prove knowledge of LWE secrets and the well-formedness of ciphertexts. It is summarized as follows.

Common input:

F ∈ Z n×m q , P ∈ Z m×t q ; {a i ∈ Z n q , b i ∈ Z t q } N i=1 . 9. L B O T A C Notation Meaning/Property/Usage/Technique B 2 m
• The set of vectors in {0, 1} 2m with Hamming weight m.

• ∀φ ∈ S2m, x ∈ Z 2m : x ∈ B 2 m ⇔ φ(x ) ∈ B 2 m . • To prove x ∈ {0, 1} m : Extend x to x ∈ B 2 m , then permute x . B 3 m
• The set of vectors in {-1, 0, 1} 3m that have exactly m coordinates equal to j, for every j ∈ {-1, 0, 1}.

• ∀φ ∈ S3m, x ∈ Z 3m : x ∈ B 3 m ⇔ φ(x ) ∈ B 3 m . • To prove x ∈ {-1, 0, 1} m : Extend x to x ∈ B 3 m , then permute x . ext2(•) and 
T2[•](•) • For c ∈ {0, 1} : ext2(c) = (c, c) T ∈ {0, 1} 2 . • For b ∈ {0, 1} and x = (x0, x1) T ∈ Z 2 : T2[b](x) = (x b , xb) T . • Property: x = ext2(c) ⇔ T2[b](x) = ext2(c ⊕ b).
• To prove c ∈ {0, 1} simultaneously satis es many relations: Extend it to x = ext2(c), then permute and use the same b at all appearances. • For c ∈ [0, 4] and v = (v0, v1, v2, v3, v4) T ∈ Z 5 :

expand(•,•) and Texp[•,•](•) • For c ∈ {0, 1} and x ∈ Z m : expand(c, x) = (c • x T | c • x T ) T ∈ Z 2m . • For b ∈ {0, 1}, φ ∈ Sm, v = v0 v1 ∈ Z 2m : Texp[b, φ](v) = φ(v b ) φ(vb) . • Property: v = expand(c, x) ⇔ Texp[b, φ](v) = expand(c ⊕ b, φ(x)). [•]5 For k ∈ Z: [k]5 denotes the integer t ∈ {0, 1, 2, 3, 4}, s.t. t = k mod 5.
T5[c](v) = v [-c] 5 , v [-c+1] 5 , v [-c+2] 5 , v [-c+3] 5 , v [-c+4] 5 T . • Property: v = ext5(x) ⇔ T5[c](v) = ext5(x + c mod 5).
• To prove x ∈ [0, 4] simultaneously satis es many relations: Extend it to v = ext5(x), then permute and use the same c at all appearances.

unitx

• ∀x ∈ [0, 4]: unitx is the 5-dim unit vector (v0, . . . , v4) T with vx = 1.

• For c ∈ [0, 4], v ∈ Z 5 : v = unitx ⇔ T5[c](v) = unit x+c mod 5 .
→ Allow proving v = unitx for some x ∈ [0, 4] satisfying other relations.

ext5×2(•,•) and T5×2[•,•](•)

• For x ∈ [0, 4] and y ∈ {0, 1}:

ext5×2(x, y) = ([x + 4]5 • ȳ, [x + 4]5 • y, [x + 3]5 • ȳ, [x + 3]5 • y, [x + 2]5 • ȳ, [x + 2]5 • y, [x + 1]5 • ȳ, [x + 1]5 • y, x • ȳ, x • y) T ∈ [0, 4] 10 • For (c, b) ∈ [0, 4] × {0, 1} and v = (v0,0, v0,1, . . . , v4,0, v4,1) T ∈ Z 10 : T5×2[c, b](v) = v [-c] 5 ,b , v [-c] 5 ,b , v [-c+1] 5 ,b , v [-c+1] 5 ,b , v [-c+2] 5 ,b , v [-c+2] 5 ,b , v [-c+3] 5 ,b , v [-c+3] 5 ,b , v [-c+4] 5 ,b , v [-c+4] 5 ,b T . • Property: v = ext5×2(x, y) ⇔ T5×2[c, b](v) = ext5×2(x + c mod 5, y ⊕ b).
→ Allow proving z = x • y for some (x, y) ∈ [0, 4] × {0, 1} satisfying other relations: Extend z to v = ext5×2(x, y), then permute and use the same c, b at all appearances of x, y, respectively. 

Protocol 2

Let n, m, q, N, t, B be system parameters. The protocol allows the prover to prove knowledge of LWE secrets and the correctness of decryption.

Common input:

F ∈ Z n×m q , P ∈ Z m×t q ; c 0 ∈ Z n q , c 1 ∈ Z t q , M ∈ {0, 1} t . Prover's goal is to prove knowledge of S ∈ [-B χ , B χ ] n×t , E ∈ [-B χ , B χ ]
m×t and y ∈ [-q/5, q/5] t such that the following equations hold:

F T • S + E = P mod q; c T 0 • S + y T = c T 1 -M T • q/2 mod q. (9.20)
For each j ∈ [t], let p j , s j , e j be the j-th column of matrices P, S, E, respectively; and let y[j], c 1 [j], M [j] be the j-th entry of vectors y, c 1 , M , respectively. Then, observe that (9.20) can be re-written as:

∀j ∈ [t] : F T • s j + I m • e j = p j mod q c T 0 • s j + 1 • y[j] = c 1 [j] -M [j] • q/2 mod q.
(9.21) Next, we form vector

w 1 = (s T 1 | . . . | s T t | e T 1 | . . . | e T t ) T ∈ [-B χ , B χ ] (n+m)t
, then decompose it to w1 ∈ {-1, 0, 1} (n+m)tδ Bχ , and extend w1 to w * 1 ∈ B 3 (n+m)tδ Bχ . At the same time, we decompose vector y = (y[1], . . . , y[t]) T ∈ [-q/5, q/5] t to ȳ ∈ {-1, 0, 1} tδ q/5 , and then extend ȳ to y * ∈ B 3 tδ q/5 . De ning the ternary vector w = ((w * 1 ) T | (y * ) T ) T ∈ {-1, 0, 1} D of dimension D = 3(n + m)tδ Bχ + 3tδ q/5 , we nally obtain the equation M • w = v mod q, for public matrix M and public vector v. Using similar arguments as in Section 9.5.2, we can obtain the desired zero-knowledge argument system. The protocol has communication cost O(D log q) = O(λ) • O(t) bits.

Protocol 3

Let n, m, m d , q, t, , B be the parameters de ned in Section 9.3. The protocol allows the prover to argue that a given ciphertext is a correct randomization of some hidden ciphertext and that he knows a valid signature on that ciphertext. Let β be the in nity norm bound of these valid signatures.

Common input: It consists of matrices

F ∈ Z n×m q , P ∈ Z m×t q , A, A 0 , A 1 , . . . , A ∈ Z n×m q , D ∈ Z n×m d q and vectors c 0 ∈ Z n q , c 1 ∈ Z t q , u ∈ Z n q . Prover's goal is to prove knowledge of m ∈ {0, 1} m d , µ ∈ {0, 1} t , e ∈ {-1, 0, 1} t , ν ∈ [-B, B] t , τ = (τ [1], . . . , τ [ ]) T ∈ {0, 1} , v 1 , v 2 ∈ [-β, β] m such that the following equations hold:      A • v 1 + A 0 • v 2 + j=1 A j • (τ [j] • v 2 ) -D • m = u mod q; H n+t,q-1 •m + F P T •e + 0 n×t q 2 •I t •µ + 0 n×t I t •ν = c 0 c 1 mod q. (9.22) 9. L B O T A C
a signature guaranteeing this link); (iii) A given ciphertext is a re-randomization of that hidden ciphertext.

Recall that, at each step θ ∈ [L] of the evaluation of BP(x), we have to look up the value x var(θ) in x = (x 0 , . . . , x κ-1 ) T to compute the θ-th state η θ as per

η θ = π θ,x var(θ) (η θ-1 ) = π θ,0 (η θ-1 ) • xvar(θ) + π θ,1 (η θ-1 ) • x var(θ) . (9.23)
To prove that each step is done correctly, it is necessary to provide evidence that the corresponding search is honestly carried out without revealing x var(θ) , var(θ) nor {π θ,b } 1 b=0 . To this end, a rst idea is to perform a simple left-to-right search on (x 0 , . . . , x κ-1 ): namely, (9.23) is expressed in terms of a matrix-vector relation where η θ is encoded as a unit vector of dimension 5; {π θ,b } 1 b=0 are represented as permutation matrices; and x var(θ) = M var(θ) • x is computed using a matrix M var(θ) ∈ {0, 1} κ×κ containing exactly one 1 per row. While this approach can be handled using proofs for matrix-vector relations using the techniques of [LLM + 16b], the expected complexity is O(κ) for each step, so that the total complexity becomes O(Lκ). Fortunately, a better complexity can be achieved.

If we instead perform a dichotomic search on x = (x 0 , . . . , x κ-1 ) T , we can reduce the complexity of each step to O(log κ). To this end, we need to prove a statement "I performed a correct dichotomic search on my secret array x".

In order to solve this problem, we will employ two existing lattice-based tools.

(i) A variant of the SIS-based computationally binding and statistically hiding commitment scheme from [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF], which allows to commit to one-bit messages;

(ii) The SIS-based Merkle hash tree proposed in [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-size Ring Signatures and Group Signatures Without Trapdoors[END_REF].

Let Ā ← U (Z n×m q ) and a com ← U (Z n q ). For each i ∈ [0, κ-1], we let the receiver commit to x i ∈ {0, 1} as com i = a com • x i + Ā • r com,i , with r com,i ← U ({0, 1} m ), and reveal com 1 , . . . , com κ-1 to the sender. We build a Merkle tree of depth δ κ = log κ on top of the leaves com 0 , . . . , com κ-1 using the SIS-based hash function h Ā : {0, 1} n log q × {0, 1} n log q → {0, 1} n log q of [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-size Ring Signatures and Group Signatures Without Trapdoors[END_REF]. Our use of Merkle trees is reminiscent of [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-size Ring Signatures and Group Signatures Without Trapdoors[END_REF] in that the content of the leaves is public. The Merkle tree will actually serve as a "bridge" ensuring that: (i) The same string x is used in all steps while enabling dichotomic searches; (ii) At each step, the prover indeed uses some coordinate of x (without revealing which one), the choice of which is dictated by a path in the tree determined by var(θ).

Since {com i } κ-1 i=0 are public, both parties can deterministically compute the root u tree of the Merkle tree. For each θ ∈ [L], we consider the binary representation d θ,1 , . . . , d θ,δκ of var(θ), which is part of the encoding of BP de ned in (9.11). We then prove knowledge of a bit y θ satisfying the statement "From the root u tree ∈ {0, 1} n log q of the tree, the path determined by the bits d θ,1 , . . . , d θ,δκ leads to the leaf associated with the commitment opened to y θ ." If the Merkle tree and the commitment scheme are both secure, it should hold that y θ = x var(θ) . Said otherwise, we can provably perform a "dichotomic search" for x var(θ) = y θ . Moreover, the techniques from [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-size Ring Signatures and Group Signatures Without Trapdoors[END_REF] can be adapted to do this in zero-knowledge manner, i.e., without revealing the path nor the reached leaf. Now, our task can be divided into 3 steps: (i) Proving that the searches on Merkle tree yield y 1 , . . . , y L ; (ii) Proving that the branching program evaluates to BP(x) = 1 if y 1 , . . . , y L The last three parts of Table 9.1 describe the vector transformations that will be used to handle the secret vectors appearing in the evaluation of BP. The following equations emulate the evaluation process. In particular, for each θ ∈ [2, L], we introduce an extra vector e θ = (c θ,0 , . . . , c θ,4 ) ∈ {0, 1} 5 to enable the extraction of the values π θ,0 (η θ-1 ), and π θ,1 (η θ-1 ).

                                                
π 1,0 (0) • ȳ1 + π 1,1 (0) • y 1 -η 1 = 0, // computing η 1 with η 0 = 0 e 2 -4 i=0 unit i • c 2,i = (0, 0, 0, 0, 0) T , // we will also prove e 2 = unitη 1 f 2,0 -4 i=0 π 2,0 (i) • c 2,i = 0, // meaning: f 2,0 = π 2,0 (η 1 ) f 2,1 -4 i=0 π 2,1 (i) • c 2,i = 0, // meaning: f 2,1 = π 2,1 (η 1 )

f 2,0 • ȳ2 + f 2,1 • y 2 -η 2 = 0, // computing η 2
. . . e L -4 i=0 unit i • c L,i = (0, 0, 0, 0, 0) T , // we will also prove e L = unitη L-1 f L,0 -4 i=0 π L,0 (i) • c L,i = 0, // meaning: f L,0 = π L,0 (η L-1 )

f L,1 -4 i=0 π L,1 (i) • c L,i = 0, // meaning: f L,1 = π L,1 (η L-1 ) f L,0 • ȳL + f L,1 • y L = 0.
// nal state η L = 0 (9.27)

Extending.

• For each θ ∈ [L -1], extend η θ ∈ [0, 4] to 5-dimensional vector s θ = ext 5 (η θ ).

• For each (θ, j) ∈ [2, L] × {0, 1}, extend f θ,j ∈ [0, 4] to f θ,j = ext 5 (f θ,j ).

• For each (θ, i) ∈ [2, L] × [0, 4], extend c θ,i ∈ {0, 1} to c θ,i = ext 2 (c θ,i ).

• Extend the products π 1,0 (0) • ȳ1 and π 1,1 (0) • y 1 into 10-dimensional vectors h 1,0 = ext 5×2 (π 1,0 (0), ȳ1 ) and h 1,1 = ext 5×2 (π 1,1 (0), y 1 ), respectively.

• For each θ ∈ [2, L], extend the products f θ,0 • ȳθ and f θ,1 • y θ into 10-dimensional vectors h θ,0 = ext 5×2 (f θ,0 , ȳθ ) and h θ,1 = ext 5×2 (f θ,1 , y θ ).

• For (θ, i) ∈ [2, L] × [0, 4], extend the products π θ,0 (i) • c θ,i and π θ,1 (i) • c θ,i into z θ,0,i = ext 5×2 (π θ,0 (i), c θ,i ) and z θ,1,i = ext 5×2 (π θ,1 (i), c θ,i ), respectively. Then, observe that the vector w BP of (9.28) satis es one equation of the form:

M BP • w BP = v BP , ( 9.29) 
where matrix M BP and vector v BP are obtained from the common input. Note that we work with integers in [0, 4], which are much smaller than q. As a result, M BP • w BP = v BP mod q. (9.30)

Conversely, if we can prove that (9.30) holds for a well-formed vector w BP , then that vector should also satisfy (9.29). 9.5.5.3 The Third Step.

In the third layer, we have to prove knowledge of: • For each (θ, j, i) ∈ [L] × {0, 1} × [0, 4], extend π θ,j (i) to Π θ,j,i = ext 5 (π θ,j (i)). Observe that the given ve equations can be combined into one of the form: M 3 • w 3 = v 3 mod q, (9.33)

              
where matrix M 3 and vector v 3 can be built from the public input. 9.5.5.4 Putting Pieces Altogether.

At the nal stage of the process, we connect the three aforementioned steps. Indeed, all the equations involved in our process are captured by (9.26), (9.30), and (9.33) -which in turn can be combined into: The components of w all have constraints listed in Table 9.1. By construction, these blocks either belong to the special sets B 2 m , B 3 m or they have the special forms expand(•, •), ext 2 (•), ext 5 (•), ext 5×2 (•, •), which are invariant under the permutations de ned in Table 9.1. As a result, we can specify suitable sets VALID, S and permutations of D elements {Γ φ : φ ∈ S}, for which the conditions of (4.3) are satis ed.The description of the elements VALID, S and Γ φ is detailed as follows.

M • w = v mod q, ( 9 
Let VALID be the set of all vectors in [-1, 4] D having the form (w T tree w T BP w T 3 ) T , where w tree , w BP , w 3 have the form (9.25), (9.28), and (9.32), respectively, and the following conditions hold:

• For each (θ, i) ∈ [L] × [δ κ ]: There exists d θ,i ∈ {0, 1} and g θ,i , t θ,i ∈ B 2 m/2 such that d θ,i = ext 2 (d θ,i ) and g θ,i = expand(d θ,i , g θ,i ); t θ,i = expand( dθ,i , t θ,i ).

• There exist y 1 ∈ {0, 1} and π 1,0 (0), π 1,1 (0) ∈ [0, 4] such that y 1 = ext 2 (y 1 ); h 1,0 = ext 5×2 (π 1,0 (0), ȳ1 ); h 1,1 = ext 5×2 (π 1,1 (0), y 1 ); Π 1,0,0 = ext 5 (π 1,0 (0)); Π 1,1,0 = ext 5 (π 1,1 (0)).

• For all (j, i) ∈ {0, 1} × [1, 4]: Π 1,j,i = ext 5 (π 1,j (i)), for some π 1,j (i) ∈ [0, 4]. (Note that these π 1,j (i) do not participate in the evaluation of the BP.)

• For θ ∈ [2, L]: There exist y θ ∈ {0, 1}, f θ,0 , f θ,1 ∈ [0, 4] such that y θ = ext 2 (y θ ) and f θ,0 = ext 5 (f θ,0 ); f θ,1 = ext 5 (f θ,1 ); h θ,0 = ext 5×2 (f θ,0 , ȳθ ); h θ,1 = ext 5×2 (f θ,1 , y θ ).

• For (θ, j, i) ∈ [2, L] × {0, 1} × [0, 4]: there exist π θ,j (i) ∈ [0, 4], c θ,i ∈ {0, 1} such that Π θ,j,i = ext 5 (π θ,j (i)); c θ,i = ext 2 (c θ,i ); z θ,j,i = ext 5×2 (π θ,j (i), c θ,i ).

• There exist η 1 , . . . , η L-1 ∈ [0, 4] such that the following hold.

1. For all θ = 1, . . . , L -1: s θ = ext 5 (η θ ).

2. For all θ = 2, . . . , L: e θ = unit η θ-1 .

• r ∈ B 2 mL ; w 3,1 ∈ B 2 D 3,1 ; w 3,2 ∈ B 3 D 3,2 ;

• s 0 ∈ B 3 mδ β , and there exists τ = (τ [1], . . . , τ [ ]) T ∈ {0, 1} such that for all j ∈ [ ]: s j = expand τ [j], s 0 .

• s U,0 ∈ B 3 mδ β , and there exists τ U = (τ U [1], . . . , τ U [ I ]) T ∈ {0, 1} I such that for all j ∈ [ I ]: s U,j = expand τ U [j], s U,0 .

By construction, we have w ∈ VALID. Let us now specify the set S and permutations of D elements {Γ φ : φ ∈ S}, for which the conditions in (4.3) hold. Again, we refer to the notations and techniques from Table 9.1, which we will apply here. Let S = {0, 1} Lδκ × {0, 1} L × [0, 4] 10L × [0, 4] L-1 × {0, 1} 5(L-1) × [0, 4] 2(L-1) × (S m ) 2Lδκ × S 2mL ×(S 2D 3,1 × S 3D 3,2 ×(S 3mδ β × {0, 1} )×(S 3mδ β × {0, 1} I )). let Γ φ be the permutation that, when applying to vector s of the form (w T tree w T BP w T 3 ) T ∈ Z D , where w tree , w BP , w 3 have the form (9.25), (9.28), and (9.32), respectively, transforms the block-vectors as follows:

• For each (θ, i) ∈ [L] × [δ κ ]: g θ,i → σ g,θ,i ( g θ,i ) and g θ,i → T exp [b d,θ,i , σ g,θ,i ]( g θ,i ); t θ,i → T exp [b d,θ,i , σ t,θ,i ]( t θ,i ).

• For each θ ∈ [L]: y θ → T 2 [b y,θ ](y θ ); r → σ r ( r).

• For each θ = 1, . . . , L -1: s θ → T 5 [b η,θ ](s θ ).

• For each θ = 2, . . . , L: e θ → T 5 [b η,θ-1 ](e θ ).

• For each (θ, i) ∈ [2, L] × [0, 4]: c θ,i → T 2 [b c,θ,i ](c θ,i ).

• For each (θ, j, i) ∈ [2, L] × {0, 1} × [0, 4]: z θ,j,i → T 5×2 [b π,θ,j,i , b c,θ,i ](z θ,j,i ).

• For each (θ, j) ∈ [2, L] × {0, 1}: f θ,j → T 5 [b f,θ,j ](f θ,j ).

• h 1,0 → T 5×2 [b π,1,0,0 , b y,1 ](h 1,0 ); h 1,1 → T 5×2 [b π,1,1,0 , b y,1 ](h 1,1 ). • For each (θ, j, i) ∈ [L] × {0, 1} × [0, 4]: Π θ,j,i → T 5 [b π,θ,j,i ](Π θ,j,i ).

• For each i ∈ [1, 2]: w 3,i → σ 3,i (w 3,i ).

• s 0 → σ 3,3,1 (s 0 ). For each j ∈ [ ]: s j → T exp [b τ [j], σ 3,3,1 ](s j ).

• s U,0 → σ 3,3,2 (s U,0 ). For each j ∈ [ I ]: s U,j → T exp [b τ,U [j], σ 3,3,2 ](s U,j ).

Based on the equivalences observed in Table 9.1, it can be checked that the conditions of (4.3) hold, namely:

w ∈ VALID ⇐⇒ Γ φ (w) ∈ VALID, If w ∈ VALID and φ is uniform in S, then Γ φ (w) is uniform in VALID.

Our desired argument system then works as follows. At the beginning of the interaction, the prover computes commitments com 0 , . . . , com κ-1 ∈ Z n q and send them once to the veri er. Both parties construct matrix M and vector v based on the public input as well as com 0 , . . . , com κ-1 , while the prover prepares vector w, as described. Finally, they run the protocol of Section 4.3.2, which has communication cost O(D log q) = O(L • log κ + κ).

Reducing the Communication Complexity in the Random Oracle Model

One limitation of our basic adaptive OT protocol is that it requires the sender to repeat the zero-knowledge proofs of the initialization phase for each user. In total, the communication cost of the initialization phase thus amounts to Ω(λN U ), which is even more expensive than the O(λ(N + U )) complexities of [CNs07, GH07, CDN09, JL09]. As pointed out by Green and Hohenberger [START_REF] Green | Practical adaptive oblivious transfer from simple assumptions[END_REF], decreasing the cost of the initialization phase to be independent of the number of users is highly desirable: ideally, one would certainly prefer a non-interactive initialization phase where the Sender can publicize a O(λN )-size commitment to the database, which can subsequently be used by arbitrarily many receivers.

In the random oracle model, we show that our protocols can both be modi ed to obtain this optimized communication complexity. This can be achieve by the simple expedient of making the sender's zero-knowledge proofs non-interactive via the Fiat-Shamir heuristic. By removing interaction from all the sender's proof (i.e., even those of the transfer phase), we also minimize the number of communication rounds since we only need the veri er's arguments to be witness indistinguishable and we can thus safely repeat them in parallel.

Relying on the random oracle model thus allows the sender to publicize the entire database and proofs on a public repository so as to avoid repeating these proofs for each receiver.

Description

The description hereunder relies on the same parameters as in sections 9.3 and 9.4. Namely, we use m = 2n log q , a modulus q for which the noise distribution χ is αq-bounded, for some 0 < α < 1, and also de ne an integer B as a randomization parameter such that (m + 1)αq/B is negligible and choosing α such that (m + 1)α ≤ 1/5 ensures decryption correctness.

We assume two random oracles H F : {0, 1} * → Z n×m q and H FS : {0, 1} * → {1, 2, 3} ς , for some ς ∈ ω(log n). The former will be used to derive the sender's public matrix F ∈ Z n×m q while the latter will provide the veri er's challenges when we apply the Fiat-Shamir heuristic.

Initialization S I (1 λ , DB), R I (1 λ ) : In this protocol, the sender S I has a database DB = (M 1 , . . . , M N ) of N messages, where M i ∈ {0, 1} t for each i ∈ [N ], for some t ∈ poly(λ). It interacts with the receiver R I as follows.

1. Generate a key pair for the signature scheme of Section 9. ) with m = 2n log q , m d = (n + t) log q . The counter is initialized to τ = 0.

2. Choose a matrix S ← χ n×t that will serve as a secret key for an LWE-based encryption scheme. Then, de ne the matrix F = H F (ε) ∈ Z n×m q and sample a matrix E ← χ m×t to compute P = [p 1 | . . . | p t ] = F T • S + E ∈ Z m×t q (9.35) so that (F, P) ∈ Z n×m q × Z m×t q forms a public key for a t-bit variant of Regev's encryption scheme [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF] (or, equivalently, a set of m encryptions of the all-zeroes t-bit string).

3. Sample vectors a 1 , . . . , a N ← U (Z n q ) and x 1 , . . . , x N ← χ t to compute

(a i , b i ) = a i , S T • a i + x i + M i • q/2 ∈ Z n q × Z t q ∀i ∈ [N ] (9.36)
4. For each i = 1 to N , generate a signature (τ i , v i ) ← Sign(SK sig , τ, m i ) on the message m i = vdec n+t,q-1 (a i |b i ) ∈ {0, 1} m d obtained by decomposing (a T i |b T i ) T ∈ Z n+t q . 5. S I sends R I the initialization data R 0 = P K sig , (F, P), {(a i , b i ), (τ i , v i )} N i=1 , π K , (9.37) which includes a NIZK argument of knowledge π K of small-norm matrices S ∈ Z n×t and E ∈ χ m×t and t-bit messages {M i } N i=1 that are consistent with (9.35)-(9.36). The argument π K is built by taking the following steps: Let the NIZK proof be π K = ({Comm K,j } ς j=1 , Chall K , {Resp K,j } ς j=1 ), where Chall K = H FS (F, P, A DB , B DB ), {Comm K,j } ς j=1 ∈ {1, 2, 3} ς . c. If the proof of knowledge π K does not verify or if there exists i ∈ [N ] such that (τ i , v i ) is an invalid signature on vdec n+t,q-1 (a T i |b T i ) T T , then R I aborts.

6. Finally S I de nes S 0 = (S, E), (F, P), P K sig , which it keeps to itself. Transfer S T (S i-1 ), R T (R i-1 , ρ i ) : At the i-th transfer, the receiver R T has state R i-1 and an index ρ i ∈ [1, N ]. It interacts as follows with the sender S T that has state S i-1 in order to obtain M ρ i from DB.

1. R T samples vectors e ← U ({-1, 0, 1} m ), µ ← U ({0, 1} t ) and a random ν ← U ([-B, B] t ) to compute (c 0 , c 1 ) = a ρ i + F • e, b ρ i + P T • e + µ • q/2 + ν ∈ Z n q × Z t q , (9.39) which is a re-randomization of (a ρ i , b ρ i + µ • q/2 ). The resulting ciphertext (c 0 , c 1 ) is sent to S T . In addition, R T provides an interactive WI argument that (c 0 , c 1 ) is indeed a re-randomization of (a ρ i , b ρ i ) for some index ρ i ∈ [N ]. To this end, R T argues knowledge of short vectors m = vdec n+1,q-1 (a

i |b i ) ∈ {0, 1} m d , e ∈ {-1, 0, 1} t , µ ∈ {0, 1} t , ν ∈ [-B, B] t , τ ∈ {0, 1} and v = (v T 1 |v T 2 ) T ∈ Z 2m such that H n,q-1 F H t,q-1 P T I t • q/2 I t •      m e µ ν      = c 0 c 1 (9.

40)

and

A A 0 • • • A •          v 1 v 2 τ [1] • v 2 . . . τ [ ] • v 2         
= u + D • m mod q (9.41)

2. If the WI argument of step 1 veri es, S T uses S ∈ χ n×t to decrypt (c 0 , c 1 ) ∈

Z n q × Z t q and obtain M = (c 1 -S T • c 0 )/(q/2) ∈ {0, 1} t , which is sent back to R T . In addition, S T provides a NIZK argument π T of knowledge of y = c 1 -S T • c 0 -M • q/2 ∈ Z t of norm y ∞ ≤ q/5 and E = [e 1 | . . . |e t ] ∈ χ m×t satisfying (modulo q) 

P = F T • S + E , c T 0 • S + y T = c T 1 -M T • q/2 .

Security

For simplicity, our proofs are given in the single-receiver setting but they readily carry over to the multi-receiver setting, as de ned in [GH11, Appendix B].

Theorem 9.7. The above OT N k×1 protocol provides receiver security under the SIS assumption in the random oracle model.

Proof. We show how to map any real-world cheating sender Ŝ to an ideal-world cheating sender Ŝ such that, under the SIS assumption, the distributions Real Ŝ,R and Ideal Ŝ ,R under common input (N, k, M 1 , . . . , M N , ρ 1 , . . . , ρ k ) are computationally indistinguishable.

We consider a sequence of hybrid experiments with binary outputs. In each experiment Exp i , a distinguisher D inputs the states (S k , R k ) produced by Ŝ and R at the end of Exp i and outputs a bit. We de ne W i to be the event that the output of Exp i is 1. The rst experiment outputs whatever the distinguisher D outputs and corresponds to the real interaction between the cheating sender Ŝ and the receiver R. 

L B O T A C

Exp 1 : This experiment is like Exp 0 except that R programs the random oracle H F : {0, 1} * → Z n×m q in the following way. It runs the trapdoor generation algorithm (F, T F ) ← TrapGen(1 n , 1 m , q) of [AP09] so as to obtain a statistically uniform matrix F ∈ Z n×m q and a small-norm T F ∈ Z m×m basis of Λ ⊥ q (F). It then programs the random oracle so as to have H F (ε) = F ∈ Z n×m q . Clearly, this change leaves the adversary's view statistically unchanged: we have | Pr[W 1 ] -Pr[W 0 ]| ∈ negl(λ).

Exp 2 : is as Exp 1 but, at step 5 of the initialization phase, R uses the short basis T F ∈ Z m×m of Λ ⊥ q (F) (which satis es F•T F = 0 n mod q) to extract witnesses s j ∈ χ n , e j ∈ χ m from the columns p j = F T • s j + e j ∈ Z m of the matrix P = [p 1 | . . . | p t ] ∈ Z m×t q for each j ∈ [t]. Note that this can be done by inverting the LWE function (see, e.g., [GKV10, Section 2.3]). At this point, R aborts the interaction in the event that one of the following conditions holds: E.1: The LWE-inversion algorithm fails to compute small-norm vectors s j ∈ χ n , e j ∈ χ m such that p j = F T • s j + e j ∈ Z m q for some j ∈ [t]. E.2: The columns of S = [s 1 | . . . | s t ] ∈ χ n×t are successfully extracted but there exists i ∈ [N ] such that one of the coordinates of b i -S T • a i mod q is neither close to 0 nor q/2 (i.e., the inequalities |b i -S T • a i mod q| > αq and |(b i -S T • a i mod q) -q/2 | > αq are both satis ed).

In either of the above situations, R infers that Ŝ managed to create a convincing argument for a false statement and aborts the interaction. In such a situation, however, R can be turned into an algorithm that breaks the binding property of the commitment scheme used in the ZK argument (which contradicts the SIS assumption if the statistically hiding commitment of [START_REF] Kawachi | Concurrently secure identi cation schemes based on the worst-case hardness of lattice problems[END_REF] is used) by replaying the adversary with the same random tape but a di erent random oracle H FS . According to the General Forking Lemma of [START_REF] Brickell | Design validations for discrete logarithm based signature schemes[END_REF], replaying Ŝ up to 32 • Q H /(ε -3 -t ) times (where Q H is the number of queries to H FS is su cient to extract a breach in the binding property of the commitment). Otherwise (i.e., if R does not fail), the matrix S ∈ χ n×t allows R to decode the messages M 1 , . . . , M N ∈ {0, 1} t from the encrypted database {(a i , b i )} N i=1 . Under the SIS assumption, it follows that Exp 1 returns 1 with about the same probability as Exp 0 . In the random oracle model, the SIS assumption thus implies that | Pr[W 2 ] -Pr[W 1 ]| ∈ negl(λ).

Exp 3 : is identical to Exp 2 except that the receiver R makes use of the matrix S ∈ χ n×t , which was extracted at step 5 of the initialization phase. At step 2 of each transfer, R uses S to determine if the NIZK argument π T really proves a true statement or if Ŝ managed to break its soundness. Namely, upon receiving Ŝ's response M ∈ {0, 1} t at step 2, R uses the previously extracted S ∈ χ n×t to determine if there exists y ∈ Z t of norm y ∞ ≤ q/5 such that c T 0 • S + y T = c T 1 -M T • q/2 . (9.44)

If such vector y turns out not to exist, R deduces R that Ŝ was able to fake a convincing argument for a false statement and aborts the interaction. However, R can then be turned into a PPT adversary against the binding property of the commitment scheme used in the ZK argument (and thus the SIS assumption if the

9. L B O T A C
The proof of security against a dishonest receiver is almost identical to the proof of Theorem 9.5. The only di erence is that, from experience Exp 3 onwards, the sender's ZK arguments are non-interactive and can be simulated by programming the random oracle H FS : {0, 1} * → {1, 2, 3} ς in the standard way. The detailed proof of the following theorem is thus omitted.

Theorem 9.8. The above OT N k×1 protocol provides sender security under the SIS assumption in the random oracle model.

As mentioned in [START_REF] Green | Practical adaptive oblivious transfer from simple assumptions[END_REF], extending the simulation-based de nitions to the multi-receiver setting is rather straightforward (see [GH11, Appendix B] for details). Analogously to the Green-Hohenberger protocol [GH11, Section 4], our proof of sender security goes through in the multi-receiver setting as long as the receivers interact with the sender in a sequential manner. This restriction is important since the simulator has to rewind the receiver's zero-knowledge arguments at step 1 of each transfer, which would not be possible in concurrent sessions. Table 9.2 -Overview of the di erent adaptive OT (without access control) protocols secure in the standard model (except for our scheme in Section 9.6 of this Supplementary Material). In this table, λ denotes the security parameter, N the size of the database and U the number of receivers. The horizontal lines separate the di erent schemes into categories based of their e ciency. We note that, like those of [START_REF] Kurosawa | Generic fully simulatable adaptive oblivious transfer[END_REF], the KPN [START_REF] Kurosawa | E ciency-improved fully simulatable adaptive OT under the DDH assumption[END_REF] scheme is secure in a strictly weaker model than ours. In particular, the sender detects if the same record is obtained twice, as pointed out in [START_REF] Green | Practical adaptive oblivious transfer from simple assumptions[END_REF].

Comparison of Oblivious Transfer Schemes

In this section, we present, in Tables 9.2 and 9.3, comparisons between existing adaptive oblivious transfer protocols and ours. These results are to be taken carefully, as the existing schemes are mostly designed in the pairing-based cryptography setting. The communication complexities thus take into account the number of underlying mathematical objects exchanged during each interactive protocols, which are group elements in the previous constructions, and vectors in our case.

Another remark is that the other schemes which support access control, shown in Table 9.3, manage access policy in the fashion of Camenisch et al. [START_REF] Camenisch | Oblivious transfer with access control[END_REF]. In their work, they model the access policy as access categories bounded to users (like their role, or their permission) which are delivered by the issuer. A given message in the database is made available for a conjunction of access categories: meaning that to access a given le, a user has to be in all the categories the message in linked to. To handle disjunctions, the le is duplicated. The number of messages in the database N in these schemes is then dependent of the access policy, and a cost for duplications is to take into account, as the database has to prove that encryption of the same message with di erent access policy is indeed the encryption of the same message.

By handling access control through branching programs, we avoid the hidden cost of disjunctions, while enabling access control for attribute's language in NC1. Here N denotes the size of the database. The polynomial poly(λ) in transfer costs captures the expense of access policies. In CDEN, GGM stands for generic group model, and CNF -means a restricted version of conjunctive normal form formulas, namely a user has to possess all attributes in its access credentials, and to do so, it is able to provides a disjunction of its accesses. Finally "Conj." means "Conjunctions", meaning that the user has to possess all the credential for a given message, and disjunctions can be achieved at the expense of duplications of database entries.

Conclusion

In this thesis, we presented new cryptographic schemes that rely on lattice or pairing assumptions. These contributions focus on the design and the analysis of new cryptographic schemes that target privacy-preserving applications.

In pairing-based cryptography, we proposed a practical dynamic group signature scheme, whose security relies on well-understood assumptions in the random oracle. It relies on widely used assumptions with simple and constant-size descriptions which have been studied for more than ten years. This work is also supported by an implementation in C.

The results in the lattice setting gave rise to three realizations of fundamental primitives that were missing in the landscape of lattice-based privacy-preserving cryptography. Even if these schemes su er from a lack of e ciency due to their novelty, we do believe that they take one step towards a quantum-secure privacy-friendly world.

On the road, improvements have been made in the state of the art of zero-knowledge proofs in the lattice setting by providing building blocks that, we believe, are of independent interest. For example, our signature with e cient protocols has already been used to design a privacy-preserving lattice-based e-cash system [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based PRFs and Applications to E-Cash[END_REF].

All these works are proven to satisfy strong security models under simple assumptions. This provides a breeding ground for new theoretical constructions.

Open Problems

The path of providing new cryptographic primitives and proving them secure is full of pitfalls. The most obvious question that stems from this work is how to tackle the trade-o s we made in the design of those primitives. In particular, the speci c question naturally arise:

Question 1. Is it possible to build a fully-simulatable adaptive oblivious transfer (even without access control) secure under LWE with polynomially large modulus?

In other words, is it possible to avoid the use of noise ooding to guarantee receiver-security in the adaptive oblivious transfer scheme of Chapter 9. In our current protocol, this issue arises from the use of Regev's encryption scheme, where we need to prevent the noise distribution from leaking the receiver's index. However, while a ner analysis of the noise in GSW ciphertexts [START_REF] Gentry | Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based[END_REF] seems promising to achieve this at reasonable cost [START_REF] Bourse | FHE Circuit Privacy Almost for Free[END_REF], it is not su cient in our setting because it would leak the norm of the noise vector of ciphertexts. Then, another di culty is to have zero-knowledge proofs compatible with the access control and the encryption components.

Question 2. Can we construct provably-secure adaptive oblivious transfer schemes in the universal composability model?

Our adaptive oblivious transfer scheme relies on zero-knowledge proofs to hedge against malicious adversaries. The security proofs take advantage of the fact that the proofs can be rewound to extract a witness (as described in De nition 4.2). The Peikert-Vaikuntanathan-Waters [START_REF] Peikert | A framework for e cient and composable oblivious transfer[END_REF] construction, based on dual-mode encryption, achieves 1-out-of-2 composable oblivious transfer (which can be generalized to 1-out-of-2 t OT), without relying on zero-knowledge proofs, but it does not imply OT with adaptive queries (i.e., where each index ρ i may depend on messages received in previous transfers). Actually, the use of ZK proofs is not ruled out in this setting, as shown by the pairing-based construction of Green and Hohenberger [START_REF] Green | Universally Composable Adaptive Oblivious Transfer[END_REF]. However, this protocol uses the trapdoor extractability of Groth-Sahai proofs [START_REF] Groth | E cient non-interactive proof systems for bilinear groups[END_REF] to achieve straight-line extraction. It is not known to be possible in the lattice setting.

Question 3. Can we obtain a more e cient compact e-cash system from lattice assumptions?

Another privacy-preserving primitive is compact e-cash [START_REF] Chaum | Blind signatures for untraceable payments[END_REF][START_REF] Chaum | Blind signature system[END_REF][START_REF] Camenisch | Compact e-cash[END_REF]. As explained in the introduction, it is the digital equivalent of real-life money. A body of research followed its introduction [CFN88, OO91, CP92, FY93, Oka95, Tsi97], and the rst compact realization was given by Camenisch, Hohenberger and Lysyanskaya [START_REF] Camenisch | Compact e-cash[END_REF] (here, "compact" means that the complexity of coin transfers is at most logarithmic in the value of withdrawn wallets). Before the work of Libert, Ling, Nguyen and Wang [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based PRFs and Applications to E-Cash[END_REF], all compact constructions were based on traditional number-theoretic techniques. This construction still su ers from e ciency issues akin to the problem we met in this thesis. It is thus interesting to improve the e ciency of this scheme and obtain viable constructions of anonymous e-cash from post-quantum assumptions.

Zero-Knowledge Proofs

Question 4. Can we provide NIZK proofs in the standard model for all NP languages while relying on the standard LWE assumption only?

Extending the work of Groth, Ostrovsky and Sahai [START_REF] Groth | Perfect Non-interactive Zero Knowledge for NP[END_REF] to the lattice setting would be a breakthrough result for lattice-based cryptography in general. This question remains open for more than 10 years [START_REF] Peikert | Non-interactive statistical zero-knowledge proofs for lattice problems[END_REF]. A recent line of work makes steps forward in this direction [KW18, RSS18], but they rely on primitives that do not exist yet [START_REF] Rothblum | Towards Non-Interactive Zero-Knowledge for NP from LWE[END_REF] (NIZK proofs for a variant of the bounded decoding distance problem) or assume pre-processing [START_REF] Kim | Multi-Theorem Preprocessing NIZKs from Lattices[END_REF].

The Stern-like proof systems we studied in this thesis, despite being exible enough to prove a large variety of statements, su er from the sti ness of being combinatorial. The choice of permutations used to ensure the zero-knowledge property (and thus witnessindistinguishability) is quite strict, and forces the challenge space to be ternary. This turns out to be a real bottleneck in the e ciency of such proof systems.

Question 5. Can we get negligible soundness error in one shot for expressive statements in the post-quantum setting?

This question can be restated as "can we combine the expressiveness of Stern-like proofs with the e ciency of Schnorr-like proof with rejection sampling?". For Stern-like protocols, decreasing the soundness error from 2/3 to 1/2 would already be an interesting improvements with a direct impact on the e ciency of all lattice-based schemes presented in this thesis. Recall that the soundness error is the probability that a cheating prover convinces an honest veri er of a false statement. As long as it is noticeably di erent from 1, it is possible to make the soundness error negligible by repeating the protocol a su cient number of times. Likewise, isogeny-based proof systems [JDF11, GPS17] su er from similar issues as the challenge space is small (binary). The 2/3 soundness error is also present in [START_REF] Ishai | Zero-knowledge from Secure Multiparty Computation[END_REF], which is a technique to obtain zero-knowledge proofs relying on secure multi-party computation. With this technique, however, the size of the proof is proportional to the size of the circuit describing the relation we want to prove (which is not the case with Stern-like protocols). Thus, the question of having e cient post-quantum zero-knowledge proofs for expressive statements is a di cult question and remains open as of today.

Cryptographic Constructions

Question 6. Can we construct more e cient lattice-based signature schemes compatible with zero-knowledge proofs?

In the general lattice setting, the most e cient signature schemes require at least as many matrices as the length of the random tag used in the signature (like the scheme in Section 7.1). This cost has direct impact on the e ciency and public-key size of schemes or protocols that use them: in our group signatures of Chapter 7, for example, is logarithmic in the maximal number of members the group can accept N gs . In ideal lattices, it is possible to reduce this cost to a vector of size [START_REF] Ducas | Improved Short Lattice Signatures in the Standard Model[END_REF]. In the group signature scheme of [START_REF] Ling | Constant-Size Group Signatures from Lattices[END_REF], which is based on ideal lattice problems, they use this property to allow an exponential number of group members to join the group, and thus propose a "constant-size" group signature scheme. The method used to construct this group signature is essentially the same as in Chapter 7, where matrices are hidden in the ring structure of the ideal lattice [START_REF] Langlois | Worst-case to average-case reductions for module lattices[END_REF].

In the construction of [START_REF] Ling | Constant-Size Group Signatures from Lattices[END_REF], the dependency on log N gs is actually hidden in the dimension of the ring. As these signatures are a fundamental building block for privacypreserving cryptography, any improvement on them has a direct impact on the primitives or protocols that use them as a building block.

Question 7. Can we obtain more e cient lattice-based one-time signatures in general lattices?

In our group signature and group encryption schemes (in Chapter 7 and Chapter 8 respectively), signature and ciphertext contain a public key for a one-time signature scheme. One e ciency issue is that, in lattice-based one-time signatures [START_REF] Lyubashevsky | Asymptotically E cient Lattice-Based Digital Signatures[END_REF][START_REF] Mohassel | One-Time Signatures and Chameleon Hash Functions[END_REF], the public-key contains a full matrix, that is part of the signature/ciphertext. Therefore, this matrix signicantly increase the size of the signature/ciphertext. As security requirements for one-time signature are weaker than those of full-edged signatures (namely, the adversary has access to only one signature per public key), we can hope for more e cient constructions of one-time signatures based on general lattices where, the public-key is smaller that a full-matrix.

As we explained in the introduction, advanced cryptography from lattices often su ers from the use of lattice trapdoors. Thus, a natural question may be:

Question 8. Does an e cient trapdoor-free (H)IBE exist?

In the group encryption scheme of Chapter 8, for instance, trapdoors are used for two distinct purposes. They are used to build a secure public-key encryption scheme under adaptive chosen-ciphertext attacks and a signature scheme. 
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 33 the map is computable in polynomial time in the size of the input. De nition 3.2 (SXDH [BGdMM05, As. 1]). The Symmetric eXternal Di e-Hellman (SXDH) assumption holds if the DDH assumption holds both in G and G. SDL). In bilinear groups G, G, G T of prime order p, the Symmetric Discrete Logarithm (SDL) problem consists in, given g, ĝ, g a , ĝa ∈ G × G 2 where a ← Z p , computing a ∈ Z p . 6.1.1 Quasi-Adaptive NIZK Arguments for Linear Subspaces Quasi-Adaptive NIZK (QA-NIZK) proofs [JR13] are NIZK proofs where the common reference string (CRS) may depend on the language for which proofs have to be generated. Formal de nitions are given in [JR13, LPJY14, KW15].

Lemma 6. 3 .

 3 If DDH holds in G, for each k ∈ {1, . . . , Q}, A produces a type A forgery with negligibly di erent probabilities in Game 2.k and Game 2.(k -1).

  ĝz ) which holds true for valid witnesses when D1 = d 1 • ĝr 1 and D2 = d 2 • ĝr 2 . Remaining veri cations of items 1,2,3 follow from the correctness of the built-in Σ-protocols. S S . We assume two accepting transcripts (com, ρ, resp), (com, ρ , resp ) with ρ = ρ . The special soundness of the sub-protocols involving D1 , D2 (with Ê1 , Ê2 ) -consisting of steps 1 and 2 of Commit and step 1 of Verify -ensures the extraction of m 1 , . . . , m , r 1 , r 2 satisfying D1 = d 1 • ĝr 1 , where

Game 3 :

 3 We modify again the generation of the challenge signature Σ . Namely, the challenger computes C z , C σ , C ID using S OA as follows

  : Let B = √ nω(log n) and let χ be a B-bounded distribution. Let p = σ • ω( √ m) upper-bound entries of vectors sampled from the distribution D Z 2m ,σ . Generate two public keys for the dual Regev encryption scheme in its multi-bit variant. These keys consists of a public random matrix B ← (Z n×m q

  G 0 = H 0 (VK) ∈ Z n×2m q

( 3 )
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 3 κ ,j ) = (1, 2, 3). From the corresponding responses (Resp
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  Now, for b = (b 1,1 , . . . , b 1,mk , b 2,1 , . . . , b 2,mk , . . . , b n,1 , b n,mk ) T ∈ {0, 1} nmk and d = (d 1,1 , . . . , d 1,k , d 2,1 , . . . , d 2,k , . . . , d n,1 , . . . , d n,k ) T ∈ {0, 1} nk , we de ne the permutation P b,d that transforms vector

8 . 3 ,

 83 which would contradict the LWE assumption. The result of Agrawal et al. [ABB10, Theorem 23] (recalled in Theorem 8.1) indeed implies | Pr[W 4 ] -Pr[W 3 ]| ≤ Adv LWE (λ).

Lemma 8 . 3 .

 83 Any PPT adversary such that Pr[W 4 ] is noticeably di erent from Pr[W 3 ] implies a selective adversary against the ABB IBE scheme.Proof. Let A be a PPT adversary for which |Pr[W 4 ] -Pr[W 3 ]| = ε is non-negligible. We use A to build a selective adversary against the ABB IBE system.

  A ends, it outputs a bit b ∈ {0, 1}. If b = b, the reduction outputs Real. Otherwise, it outputs Random. Indeed, if the ROR challenger is playing the real game, we are exactly in Game 4: we have Pr[b = b|Real] = Pr[W 4 ]. Otherwise, the challenge ciphertext Ψ is completely independent of b ∈ {0, 1} so that we can only have b = b with probability Pr[b = b|Random] = 1/2. It follows that Adv ROR B (λ) ≥ | Pr[W 4 ] -1/2|.

  Work. Oblivious transfer with adaptive queries dates back to the work of Naor and Pinkas [NP99], which requires O(log N ) interaction rounds per transfer. Naor and Pinkas [NP05] also gave generic constructions of (adaptive) k-out-of-N OT from private information retrieval (PIR) [CGKS95]. The constructions of [NP99, NP05], however, are only secure in the half-simulation model, where simulation-based security is only considered for one of the two parties (receiver security being formalized in terms of a game-based de nition). Moreover, the constructions of Adaptive OT from PIR [NP05] requires a complexity O(N 1/2 ) at each transfer where Adaptive OT allows for O(log N ) cost. Before 2007, many OT protocols (e.g., [NP01, AIR01, TK05]) were analyzed in terms of half-simulation.

ISetup p :

 p Given public parameters p = {q, n, m, Ā, L, κ}, rst generate a key pair (P K I , SK I ) ← Keygen(p, 1) for the signature scheme in Section 7.1 in order to sign single-block messages (i.e., N b = 1) of length m I = n • log q + κ. Letting I = O(n), this key pair contains SK I = T A I ∈ Z m×m and P K I := A I , {A I,j } I j=0 , D I , {D I,0 , D I,1 }, u I . Issue I(p, SK I , P K I , P U , x) ↔ U(p, x, st U ) : On common input x ∈ {0, 1} κ , the issuer I and the user U interact in the following way:

•

  For x ∈ [0, 4] : ext5(x) = ([x + 4]5, [x + 3]5, [x + 2]5, [x + 1]5, x) T ∈ [0, 4] 5 .

Combining.

  Let D BP = 150L -130, and form w BP ∈ [0, 4] D BP of the form:s T 1 | . . . | s T L-1 | e T 2 | . . . | e T L | c T 2,0 | . . . | c T L,4 | z T 2,0,0 | . . . | z T L,1,4 | f T 2,0 | . . . | f T L,1 | h T 1,0 | h T 1,1 | h T 2,0 | h T 2,1 | . . . | h T L,0 | h T L,1T . (9.28)

d 2 ,

 2 1,1 , . . . , d L,δκ ∈ {0, 1}, π 1,0 (0), . . . , π L,1(4) ∈ [0, 4], m ∈ {0, 1} m d , x = (x 0 , . . . , x κ-1 ) T ∈ {0, 1} κ , m U,x ∈ {0, 1} m 2 +κ , m U,x ∈ {0, 1} m e U ∈ {0, 1} m , r com,0 , . . . , r com,κ-1 ∈ {0, 1} m , µ ∈ {0, 1} t , τ ∈ {0, 1} , τ U ∈ {0, 1} I ,v 1 ,v 2 ,v U,1 ,v U,2 ,r U ∈ [-β, β] m ,e ∈ {-1, 0, 1} t ,ν ∈ [-B, B] t , (9.31)which satisfy the equations of (9.15) for z BP,ρ = (d 1,1 , . . . , d L,δκ , π 1,0 (0), . . . , π L,1 (4)) T and, ∀i ∈ [0, κ -1], the bit x i is committed in com i with randomness r com,i : We use vdec m,β (•)to decompose v 1 , v 2 , v U,1 , v U,2 , r U ∈ [-β, β] m into v1 , v2 , vU,1 , vU,2 , rU ∈ {-1, 0, 1} mδ β ,respectively. Similarly, we decompose vector ν ∈ [-B, B] t into vector ν = vdec t,B (ν) ∈ {-1, 0, 1} tδ B . Extending and Combining. Next, we perform the following steps: • For each (θ, i) ∈ [L] × [δ κ ], extend d θ,i to d θ,i = ext 2 (d θ,i ).

• Let w 3

 3 ,1 = x T |r T com,0 | . . . |r T com,κ-1 |m T U,x | m T U,x |m T | e T U |µ T T ∈ {0, 1} D 3,1 , where D 3,1 = κ(m + 2) + 2m + m d + t. Then extend w 3,1 to w 3,1 ∈ B 2 D 3,1 . • De ne the vector w 3,2 = (v T 1 |v T U,1 |r T U |ν T |e T ) T ∈ {-1, 0, 1} D 3,2 of dimension D 3,2 = 3mδ β + t(δ B + 1) and extend it into w 3,2 ∈ B 3 D 3,2 .• Extend v2 to s 0 ∈ B 3 mδ β . Then for j ∈ [ ], form vector s j = expand τ [j], s 0 .• Extend vU,2 to s U,0 ∈ B 3 mδ β . Then for j ∈ [ I ], form s U,j = expand τ U [j], s U,0 .Given the above transformations, let D 3 = 2L(δ κ + 25) + 2D 3,1 + 3D 3,2 + 3mδ β (2 + 1) + 3mδ β (2 I + 1) and construct vector w 3 ∈ [-1, 4] D 3 of the form:d T 1,1 | . . . | d T L,δκ | Π T 1,0,0 | . . . | Π T L,1,4 | w T 3,1 | w T 3,2 | s T 0 | s T 1 | . . . | s T | s T U,0 | s T U,1 | . . . | s T U, I | T .

  .34)where w = (w T tree | w T BP | w T 3 ) T ∈ [-1, 4] D , for D = D tree + D BP + D 3 = O(λ) • (L • log κ + κ) + O(λ) • (log N + λ) + O(1) • t.

For

  each φ = (b d , b y , b p , b c , b f , Σ tree , Σ 3 ) ∈ S, where: d = (b d,1,1 , . . . , b d,L,δκ ) T , b y = (b y,1 , . . . , b y,L ) T , b η = (b η,1 , . . . , b η,L-1 ) T , b c = (b c,2,0 , . . . , b c,L,4 ) T , b f = (b f,2,0 , . . . , b f,L,1 ) T , b p = (b π,1,0,0 , . . ., b π,L,1,4) T , Σ tree = (σ g,1,1 , . . . , σ g,θ,δκ , σ t,1,1 , . . . , σ t,θ,δκ , σ r ),Σ 3 = (σ 3,1 , σ 3,2 , σ 3,3,1 , b τ [1] . . . b τ [ ], σ 3,3,2 , b τ,U [1] . . . b τ,U [ I ]),

•

  For each (θ, j) ∈ [2, L] × {0, 1}: h θ,j → T 5×2 [b f,θ,j , b y,θ ](h θ,j ). • For each (θ, i) ∈ [L] × [δ κ ]: d θ,i → T 2 [b d,θ,i ](d θ,i ).

  2.1 in order to sign Q = N messages of length m d = (n + t) • log q each. This key pair consists of SK sig = T A ∈ Z m×m and P K sig := A, {A j } j=0 , D, u , where = log N and A, A 0 , . . . , A ∈ U (Z n×m q ), D ∈ U (Z n×m d q

  a. De neA DB = [a 1 | . . . |a N ] ∈ Z n×N q , B DB = [b 1 | . . . |b N ] ∈ Z t×N q , M = [M 1 | . . . |M N ] ∈ {0, 1} t×N , X = [x 1 | . . . |x N ] ∈ χ t×N and parse S and E as S = [s 1 | . . . |s t ] ∈ χ n×t , E = [e 1 | . . . |e t ] ∈ χ m×t . each j ∈ [t], de ne Mj ∈ {0, 1} N to be the j-th column of M T = [ M1 | . . . | Mt ]. Likewise, let bj ∈ Z N q (resp. xj ∈ χ N ) be the j-th column of B T DB = [ b1 | . . . | bt ] ∈ Z N ×t q (resp. X T = [x 1 | . . . |x t ]) and generate a signature of knowledge of s j ∈ χ n , e j ∈ χ m , xj ∈ χ N , Mj ∈ {0, 1} N , for j ∈ [t], such that

F

  (9.42) Given y = (y[1], . . . , y[t]) T ∈ Z t and S = [s 1 | . . . |s t ], this amounts to proving, for eachj ∈ [t], knowledge of s j ∈ χ n , y[j] ∈ Z such that |y[j]| < q/4 and e j ∈ χ m , such that 1 [j] -M [j] • q/2 ∀j ∈ [t], (9.43)wherec 1 = (c 1 [1], . . . , c 1 [t]) T and M = (M [1], . . . , M [t]) T . Let the NIZK argument be π T = ({Comm T,j } ς j=1 , Chall T , {Resp T,j } ς j=1 ), where Chall T = H FS (F, P, c 0 , c 1 ), {Comm T,j } ς j=1 ∈ {1, 2, 3} ς . 3. If th argument π T produced by S T does not properly verify, R T halts and outputs ⊥. Otherwise, R T recalls the random string µ ∈ {0, 1} t that was chosen at step 1 and computes M ρ i = M ⊕ µ. The transfer ends with S T and R T outputting S i = S i-1 and R i = R i-1 , respectively.

Exp 0 :

 0 This experiment involves a real execution of Ŝ in interaction with a honest receiver R which queries the index ρ i ∈ [N ] at the i-th transfer for each i ∈ [k]. The output of Exp 0 is exactly the output of the distinguisher D on input of X = (S k , R k ) ← Real S, R, so that we havePr[W 0 ] = Pr[D(X) = 1 | X ← Real Ŝ,R ].

  ] O(λ(N + U )) O(λ) DLIN + q-type UC JL [JL09] O(λ(N + U )) O(λ) Comp. Dec. Residuosity + q-type Full Sim GH11 [GH11] O(λ(N + U )) (N • U )) O(λ • log N ) LWE + SIS Full Sim Ours, App 9.6 O(λN ) O(λ • log N ) LWE + SIS Full Sim (ROM)

  Pairings and Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Dynamic Group Signatures and Anonymous Credentials . . . . . . 1.3.2 Group Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3 Adaptive Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . Security Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Random-Oracle Model and Standard Model . . . . . . . . . . . . . . . . . .

	I Background
	2 Security Proofs in Cryptography
	2.1

1 Introduction 1.1 Privacy-Preserving Cryptography . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Signatures with E cient Protocols . . . . . . . . . . . . . . . . . . 1.2 1.2.1 Pairing-Based Cryptography . . . . . . . . . . . . . . . . . . . . . 1.2.2 Lattice-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . 1.3 2.3 Security Games and Simulation-Based Security . . . . . . . . . . . . . . . . 3 Underlying Structures 3.1 Pairing-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Lattice-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . .

  , BHJ + 15]. It results in a signature with e cient protocols that is of independent interest. Later, it has been adapted in the 1. I design dynamic group encryption [LLM + 16b] and adaptive oblivious transfer [LLM + 17]. This work is described in [LLM + 16a], made with Benoît Libert, San Ling, Khoa Nguyen and Huaxiong Wang and presented at Asiacrypt'16.

  , ACDN13]. Under strong assumptions, however, the case of NC1 can be taken care of [ZAW + 10]. This joint work with Benoît Libert, San Ling, Khoa Nguyen and Huaxiong Wang was presented at Asiacrypt'17 [LLM + 17].

	C	2
	Security Proofs in Cryptography	
	Part I	
	Background	

  k , called the transition function, that describes the behavior of the internal state of the machine and the TM heads. Namely, δ(q, a 1 , . . . , a k-1 ) = (r, b 2 , . . . , b k , m 1 , . . . , m

k ) means that upon reading symbols (a 1 , . . . , a k-1 ) on tapes 1 to k -1 (where the rst tape is the input tape, and the k-th tape is the output tape) on state q, the TM will move to state r, write b 2 , . . . , b k on tapes 2 to k and move its heads as dictated by m 1 , . . . , m k .

  2 (SXDH [BGdMM05, As. 1]). The Symmetric eXternal Di e-Hellman (SXDH) assumption holds if the DDH assumption holds both in G and G.

The advantages of the best PPT adversary against DDH in group G and G are written Adv DDH G and Adv DDH G respectively. Both of those quantities are assumed negligible under the SXDH assumption.

  As explained previously, since recent advances in pairing-friendly elliptic curve cryptanalysis, there is no more curve that shows the best timing results in every aspect. Figures are available in Table6.2.

	6. P	B	D	G	S
	a 256 bits curve. C	7
	La ice-Based Dynamic Group
					Signatures
					curve over

Table 7 .

 7 1 -E ciency comparison among recent lattice-based group signatures for static groups and our dynamic scheme. The evaluation is done with respect to 2 governing parameters: security parameter λ and the maximum expected group size N gs . We do not include the earlier schemes[START_REF] Gordon | A group signature scheme from lattice assumptions[END_REF][START_REF] Camenisch | Fully anonymous attribute tokens from lattices[END_REF] that have signature size O(λ 2 ) • N gs .

  While natural methods of proving knowledge of secret keys [MV03, Lyu08, KTX08, LNSW13] are available, they are only known to work for speci c languages. When it comes to proving circuit satis ability, the best known methods are designed for the LPN setting[START_REF] Jain | Commitments and e cient zeroknowledge proofs from learning parity with noise[END_REF] or take advantage of the extra structure available in the ring LWE setting [XXW13, BKLP15]. Hence, these methods are not known to readily carry over to standard (i.e., non-ideal) lattices. In the standard model, the problem is even trickier as we do not have a lattice-based counterpart of Groth-Sahai proofs [GS08] and e cient non-interactive proof systems are only available for speci c problems[START_REF] Peikert | Non-interactive statistical zero-knowledge proofs for lattice problems[END_REF].

The di culty of designing e cient zero-knowledge proofs for lattice-related languages makes it highly non-trivial to adapt privacy-preserving cryptographic primitives in the lattice setting. In spite of these technical hurdles, a recent body of work successfully designed anonymity-enabling mechanisms like ring signatures [KTX08, AMBB + 13], blind signatures

[START_REF] Rückert | Lattice-Based Blind Signatures[END_REF]

, group signatures [GKV10, LLLS13, LLNW14, BCK + 14, NZZ15, LNW15, LLNW16] or, more recently, signature schemes with companion zero-knowledge protocols [LLM + 16a].

  Lemma 8.6 gives a simple reduction showing that any signi cant change in A's behavior would imply a selective adversary against the ABB identity-based encryption scheme. The result of [ABB10] tells us that, under the LWE assumption, Game 4 is computationally indistinguishable from Game 3 in the adversary's view: we have | Pr[W 4 ] -Pr[W 3 ]| ≤ Adv LWE (λ). We bring a last modi cation to the DEC(.) oracle and now refrain from applying the rejection rule of Game 2. If OT S is strongly unforgeable, the distance | Pr[W 5 ] -Pr[W 4 ]| ≤ Adv ots (λ) must be negligible. In the last game, the oracle PROVE(.) does not need to know any witness. It thus mirrors the experiment of De nition 8.1 where the challenger's bit is b = 0. Putting everything altogether, we get | Pr[W 5 ] -Pr[W 1 ]| ∈ negl(λ), which yields the claimed result. Lemma 8.6. Any PPT adversary that can distinguish Game 4 from Game 3 implies a selective adversary against the ABB IBE scheme. Proof. Let us assume a PPT adversary A such that ε = Pr[W 4 ] -Pr[W 3 ] is noticeable. We use A to construct a PPT adversary B that breaks the IND-sID-CPA security of the ABB scheme, which would contradict the LWE assumption, as established in [ABB10, Th. 23].

	8. L	B	G	E
	Game 5:			
				3,

  Oblivious transfer (OT) is a central cryptographic primitive coined by Rabin[START_REF] Rabin | How to exchange secrets by oblivious transfer[END_REF] and extended by Even et al.[START_REF] Even | A randomized protocol for signing contracts[END_REF]. It involves a sender S with a database of messages M 1 , . . . , M N and a receiver R with an index ρ ∈ {1, . . . , N }. The protocol allows R to retrieve the ρ-th entry M ρ from S without letting S infer anything on R's choice ρ. Moreover, R only obtains M ρ learns nothing about {M i } i =ρ .

	C	9
	La ice-Based Oblivious Transfer	
	with Access Control	
		The
	reduction is straightforward and omitted.	

  9.1 (Sender Security). An OT N k protocol is sender-secure if, for any PPT realworld cheating receiver R, there exists a PPT ideal-world receiver R such that, for any polynomial N m (λ), any N ∈ [N m (λ)], any k ∈ [N ], any messages M 1 , . . . , M N , and any indices ρ 1 , . . . , ρ k ∈ [N ], no PPT distinguisher can separate the two following distributions with noticeable advantage:Real S, R (N, k, M 1 , . . . , M N , ρ 1 , . . . , ρ k ) and Ideal S , R (N, k, M 1 , . . . , M N , ρ 1 , . . . , ρ k ).De nition 9.2 (Receiver Security). An OT N k protocol is receiver-secure if, for any PPT real-world cheating sender S, there exists a PPT ideal-world sender S such that, for any polynomial N m (λ), any N ∈ [N m (λ)], any k ∈ [N ], any messages M 1 , . . . , M N , and any indices ρ 1 , . . . , ρ k ∈ [N ], no PPT distinguisher can tell apart the two following distributions with non-negligible advantage:Real S,R (N, k, M 1 , . . . , M N ,ρ 1 , . . . , ρ k ) and Ideal S ,R (N, k, M 1 , . . . , M N , ρ 1 , . . . , ρ k ). 9.1.2 Adaptive Oblivious Transfer with Access Control Camenisch et al. [CDN09] de ne oblivious transfer with access control (OT-AC) as a tuple of PPT algorithms/protocols (ISetup, Issue, DBSetup, Transfer) such that:

	9. L	B	O	T	A	C

  The sender DB outputs P K DB , {ER i , BP i } N i=1 and keeps SK DB = SK sig , S .

Transfer DB(SK DB , P K DB , P K I ), U(ρ, st U , P K

I , P K DB , ER ρ , BP ρ ) : From an index ρ ∈ [N ], a record ER ρ = a ρ , b ρ , (τ ρ , v ρ )

and a policy BP ρ , the user U parses st U as (e U , P U , f DB , C U , Cred U ). If C U does not contain any x ∈ {0, 1} κ s.t. BP ρ (x) = 1 and Cred U contains the corresponding cert U,x , U outputs ⊥. Otherwise, he selects such a pair (x, cert U,x ) and interacts with DB:

Table 9

 9 

	9. L	B	O	T	A	C

.1 -Basic notations and extending/permuting techniques used in our protocols.

Table 9 .

 9 3 -Overview of the di erent adaptive OT-AC protocols secure in the standard model.

	Protocol	Initialization Cost	Transfer Cost	Assumptions	Policies	Private Policies	Security
	CDN [CDN09]	O(λ • N )	O(λ) • poly (λ)	q-type	Conj.		Full Sim
	CDNZ [CDNZ11]	O(λ • N )	O(λ) • poly (λ)	q-type + XDDH	Conj.		Full Sim
	ACDN [ACDN13]	O(λ • N )	O(λ) • poly (λ)	DLIN + SXDH	Conj.		UC
	ZAW+ [ZAW + 10]	O(λ • N )	O(λ)	CP-ABE + q-type	NC1		Full-Sim
	CDEN [CDEN12]	O(λ • N )	O(λ log N ) + poly (λ)	CP-ABE + GGM	CNF -		Full-Sim
	Ours, §9.4	O(λ • N )	O(λ log N ) + poly (λ)	LWE + SIS	NC1		Full Sim

  These primitives are both induced by identity-based encryption: the Canetti-Halevi-Katz transform generically turns an IBE into a IND-CCA2 PKE [CHK04], and signatures are directly implied by IND-CPAsecure IBE [BF01, BLS01]. Actually, a recent construction due to Brakerski, Lombardi, Segev and Vaikuntanathan [BLSV18] (inspired by [DG17a]) gives a candidate which relies on garbled circuits, and is fairly ine cient compared to IBE schemes with trapdoors. Even the question of a trapdoor-less IND-CCA2 public key encryption still does not have a satisfactory solution. The construction of Peikert and Waters [PW08] is trapdoor-free, but remains very expensive.

Cette construction, présentée à Asiacrypt'17 [LLM + 17], a été réalisée avec Benoît Libert, San Ling, Khoa Nguyen et Huaxiong Wang.

Which is not to be confuse with cryptocurrency. . .

Here, "reasonable" means (probabilistic) polynomial time.

Reasonable time may have multiple de nitions, in the context of theoretical cryptography, we assume that quasi-polynomial time is the upper bound of reasonable.

The de nition of a commitment scheme is given in De nition 4.5. To put it short, it is the digital equivalent of a safe.

In F-unforgeability, the adversary only has to output a forgery for a message M without outputting the message, but the image F (M ) for an injective function F that is not necessarily e ciently invertible instead[START_REF] Belenkiy | P-signatures and Noninteractive Anonymous Credentials[END_REF]. In[START_REF] Libert | Short group signatures via structure-preserving signatures: Standard model security from simple assumptions[END_REF], the function F is M → ĝM .

Actually only 4 pairing computations are necessary, as e(Ω, ĝ2 +4 ) is independent of the inputs π and m, and can hence be precomputed.

This means that, for any two distinct one-time veri cation keys vk, vk ∈ Z n q , the di erence FRD(vk) -FRD(vk ) ∈ Z n×n q is invertible over Zq.

Several pairing-free candidates were suggested in[START_REF] Kurosawa | E ciency-improved fully simulatable adaptive OT under the DDH assumption[END_REF][START_REF] Kurosawa | Generic fully simulatable adaptive oblivious transfer[END_REF] but, as pointed out in[START_REF] Green | Practical adaptive oblivious transfer from simple assumptions[END_REF], they cannot achieve full simulatability in the sense of[START_REF] Camenisch | Simulatable adaptive oblivious transfer[END_REF]. In particular, the sender can detect if the receiver fetches the same record in two distinct transfers.

the input of the κ -th random oracle query for some index κ ≤ Q H . At this point, the reduction B runs the adversary A up to 32 • Q H /(ε -3 -t ) times with the same random tape and input as in the rst run. All queries are answered as previously with one di erence in the way to handle H-queries. Namely, the rst κ -1 H-queries -which are the same as in the rst execution since A is run with the same random tape -obtain the same answers Chall 1 , . . . , Chall κ -1 as in the original run. This implies that the κ -th query will also involve exactly the same tuple (M , VK , c v , {Comm K,j } t j=1 ) as in the original run. From the κ -th query forward, however, the adversary A obtains fresh random oracle outputs Chall κ , . . . , Chall Q H at each new execution. The Improved Forking Lemma of [START_REF] Brickell | Design validations for discrete logarithm based signature schemes[END_REF] ensures that, with probability > 1/2, B obtains a 3-fork involving the tuple (M , VK , c v , {Comm K,j } t j=1 ) of the initial run and with pairwise distinct answers Chall

(1)

κ ∈ {1, 2, 3} t . Since the forgeries of the 3-fork all correspond to the tuple (M , VK , c v , {Comm K,j } t j=1 ), they open to the same m-bit string bin(v i ) ∈ {0, 1} m and which is uniquely determined by c v . In turn, this implies that the three forgeries all reveal the same bin(v i ) at the second step of Open. With probability 1 -(7/9) t it can be shown that there exists j ∈ {1, . . . , t} such that the j-th bits of Chall κ ,j ) = (1, 2, 3). From the corresponding responses (Resp K,j

(1) , Resp K,j (2) , Resp K,j (3) ), B is able to extract a short vector z ∈ Z 4m such that v i = F • z mod q. Due to the statistical witness indistinguishability of the Stern-like proof of knowledge which is used to generate signature, with overwhelming probability, we have z = z i . Indeed, from the adversary's view, the distribution of z i is D Λ v i q (F),σ , which means that it has at least n bits of min-entropy. Hence, the di erence h = zz i ∈ Z 4m is a suitably short non-zero vector of Λ ⊥ q ( Ā).

Theorem 7.9. In the random oracle model, the scheme provides CCA-anonymity if the LWE n,q,χ assumption holds and if Π OTS is a strongly unforgeable one-time signature.

Proof. We proceed as in [START_REF] Ling | Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based[END_REF] and prove the result via a sequence of games which are computationally indistinguishable. The rst game consists of the real anonymity experiment which is parameterized by a bit d ∈ {0, 1} that determines the challenger's choice in the challenge phase. The last game is the same regardless of whether d = 0 or d = 1. It follows that, under the stated assumptions, no PPT adversary can distinguish Exp anon-0 A from Exp anon-1 A with noticeable advantage.

Game (d) 0: This is the real anonymity experiment Exp anon-d A (λ) as described in Definition 5.5. More precisely, the challenger starts by running the Setup(1 λ , 1 Ngs ) algorithm to obtain (Y, S GM = T A ∈ Z m×m , S OA = T B ∈ Z m×m ) along with state information St. The challenger next hands the public parameters Y and the group manager key S GM to the adversary A. On the following adversary signature opening queries on signatures Σ = (vk, c v d , π K , sig), the challenger uses the opening authority key T A ∈ Z m×m he possesses to decrypt the GPV encryption of the signer identity c v d ∈ Z m q × Z 2m q . At some point, the adversary A requests a challenge by outputting a target message M ∈ {0, 1} * and two user key pairs

• For π = (π 1 , b, π 3 ) ∈ S, and for vector w

, we de ne:

By inspection, it can be seen that the properties in (4.3) are satis ed, as desired. As a result, we can obtain the required argument system by running the protocol in Section 4.3.2 with common input (P, v) and prover's input x.

Proving the Possession of a Signature on a Committed Value

We now describe how to derive the protocol for proving the possession of a signature on a committed value, that is used in Section 7.1.3.

Common Input: Matrices

Prover's Goal: Convince the veri er in ZK that:

and that (modulo q)

We proceed in two steps.

Step 1: Transforming the equations in (7.33) and (7.34) into a uni ed one of the form P • x = c mod q, where x ∞ = 1 and x ∈ VALID -a "specially-designed" set.

B requests a challenge ciphertext c rec to its IBE challenger by sending it the messages m 1 = w ∈ {0, 1} m and m 0 ← U({0, 1} m ). The resulting ciphertext c rec is embedded in Ψ = (vk , c rec , c OA , Σ ) by faithfully computing c OA and Σ as in the actual Enc algorithm.

After the challenge phase, A keeps sending decryption queries for ciphertexts Ψ containing one-time veri cation keys vk = vk and these decryption queries are answered as before.

In addition, A is granted access to the stateful oracle PROVE b P,P . Recall that, from Game 3 onwards, all these queries are answered by returning simulated zero-knowledge arguments. Eventually A outputs a bit b ∈ {0, 1} which is also returned by B to its own challenger.

If the IBE challenger provides a challenge c rec that encrypts a random message (i.e., by encrypting m 0 ), then we are exactly in the setting of Game 4. In the even that c rec rather encrypts m 1 = w ∈ {0, 1} m , A's view is exactly the same as in Game 3. If we denote by Random (resp. Real) the event that the IBE challenger chooses to encrypt m 0 (resp. m 1 ), the advantage of the reduction B as an IND-sID-CPA adversary is

which concludes our proof.

Soundness

Theorem 8.7. The scheme provides soundness under the SIS assumption.

Proof. To prove the result, we observe that, in order to break the soundness property, the adversary must come up with a relation pk R

appearing in database.

c oa opens to a certi ed public key pk

, which belongs to database (and for which a certi cate was issued), but B U is outside the language PK of valid public keys. This case is immediately ruled out by the density of the public key space. Namely, all matrices B U ∈ Z n× m q are potentially valid public keys as there always exist a small-norm matrix T U ∈ Z m× m such that B U = Ā • T U mod q.

c oa opens to a certi ed key pk

4. The opening algorithm fails to uniquely identify the receiver. This occurs if c oa decrypts to a string h ∈ {0,

We can notice that

where h τ (i) denotes the hamming distance between τ

|t † and τ † . With probability 1/(Q • ), and as > q, it holds that h τ (i) = 0 mod q whenever τ (i)

The reduction then picks a random short matrix R ← Z m×m d which has its m d columns independently sampled from D Z m ,σ , and Bcomputes

To nish, B samples a short vector e u ∈ D Z m ,σ and computes the vector u = Ā • e u . The following public key is nally given to A:

Signing queries. To handle signature queries, the reduction B uses the trapdoor T C ∈ Z m×m to generate a signature. To this end, B starts by computing the vector u M = u + D • m (i) . Then B can use T C with the algorithm SampleRight from Lemma 3.7 to compute a short vector v (i) in D u M Λ ⊥ (A τ (i) ),σ , distributed like a valid signature and satisfying the veri cation equation (7.2).

Output. At some point, the attacker A halts and outputs a valid signature sig = (τ , v ) for a message m / ∈ {m (1) , . . . , m (Q) }. Since the signature is valid, it satis es v ≤ σ √ 2m.

Z m and injecting it in (7.2) give:

Thus, the vector

, and v is non-zero with overwhelming probabilities, since in A's view, the distribution of e u is D Λ u q (A),σ , which guarantees that e u is statistically hidden by the syndrome u = Ā • e u . Finally, the norm of v is upper bounded by β = σ 2 m 3/2 ( + 2) + 2σm 1/2 . with h τ (i) = h 0 + τ (i) [j] • h j = 0 due to the rst constraint of (9.1). Thus, using the same technique as in the previous proof from [START_REF] Micciancio | Trapdoors for lattices: Simpler, tighter, faster, smaller[END_REF], the challenger B can use the trapdoor T C along with SampleRight algorithm to sample a short vector in Λ u M q (A τ (i) ) satisfying (7.2).

• At the i † -th query, thanks to the second constraint of (9.1), we have:

To answer this speci c query, the challenger B returns sig

2), which furthermore implies that sig (i † ) veries (7.2).

Thus we claim that B can solve the SIS problem using the Type II forgery provided by A. At the end of the game, the adversary outputs a valid signature sig = (τ (i ) , v ) on a message m with v ≤ σ √ 2m. In the event that τ (i ) = τ i † , the reduction aborts. The latter event happens with probability

According to the way u was de ned at the beginning of the game, we also have a vector

As sig is a valid forgery for the dn-CMA game, it follows that m † = m . And we get by subtracting (9.3) and (9.4)

Leading us to the fact that

is an integer vector of Λ ⊥ q (A), with norm bounded by v ≤ √ 2( +2)σm 3/2 +m 1/2 = β . Furthermore, if v was zero, it implies that (a) = (b) in Equation (9.5). And as sig = sig † , is in turn implied by the SIS assumption. Under the SIS assumption, it follows that Exp 1 returns 1 with about the same probability as Exp 0 . Speci cally, there exists a

Exp 2 : This experiment is identical to Exp 1 except that the receiver R makes use of the matrix S ∈ χ n×t , which underlies P ∈ Z m×t q in (9.6) and was extracted at step 5 of the initialization phase. Namely, at step 2 of each transfer, R uses S to determine if the ZK argument sent by Ŝ is really an argument for a true statement or if Ŝ somehow managed to break the soundness of the argument system. Namely, upon receiving the response M ∈ {0, 1} t of Ŝ at step 2, R uses the previously extracted S ∈ χ n×t to determine whether there exists a vector y ∈ Z t of norm y ∞ ≤ q/5 such that

If no such vector y exists, R infers that Ŝ broke the soundness of the argument system. In this case, Ŝ can be rewound so as to break the binding property of the statistically hiding commitment scheme used by the ZK argument system, which in turn contradicts the SIS assumption. We thus have

for some e cient algorithm B which is given rewinding access to Ŝ.

Exp 3 : This experiment is like Exp 2 with the di erence that, at each transfer, the receiver R chooses the index ρ i = 1 and thus always requests the rst message of the encrypted database. In more details, at each transfer, R samples vectors e ← U ({-1, 0, 1} m ), µ ← U ({0, 1} t ) and ν ← U ([-B, B] t ) to compute and send

which is a re-randomization of (a 1 , b 1 + µ • q/2 ). Moreover, R T uses the witness ρ i = 1 to faithfully generate an interactive WI argument that (c 0 , c 1 ) is a rerandomization of (a ρ i , b ρ i ). It thus generates a WI argument of knowledge of vectors m = vdec n+t,q-1 (a

T ∈ Z 2m satisfying relations (9.22). By the statistically WI of the interactive argument system, this modi cation has no noticeable impact on the output distribution of a cheating sender Ŝ. Indeed, since we chose B as a randomization parameter such that (m + 1)αq/B is negligible, the result of [DS16, Section 4.1] implies that always re-randomizing (a 1 , b 1 + µ • q/2 ) leaves the view of Ŝ statistically unchanged. We have

In Exp 3 , we can de ne the ideal-world cheating sender Ŝ which emulates the honest receiver R interacting with Ŝ. At the initialization phase, Ŝ appeals to the knowledge extractor of the argument system so as to extract the small-norm matrices S = [s 1 | . . . |s t ] ∈ χ n×t and E = [e 1 | . . . |e t ] ∈ χ m×t satisfying (9.6). Armed with the decryption key E ∈ χ m×t of the cryptosystem, Ŝ can decrypt {(a i , b i )} N i=1 and obtain the messages M 1 , . . . , M N ∈ {0, 1} N that were encrypted in (9.7) by Ŝ. It then submits M 1 , . . . , M N ∈ {0, 1} N to the trusted party T. As in Exp 2 , during each transfer phase, Ŝ computes (c 0 , c 1 ) as a re-randomization of (a 1 , b 1 ) ∈ Z n q × Z t q and faithfully generates the receiver's argument of knowledge using the witness ρ i = 1 at step 1. At step 2 of each transfer, Ŝ plays the role of the veri er on behalf of R in the interactive zero-knowledge argument generated by Ŝ.

such that the following equations hold:

For each j ∈ [t], let p j , s j , e j be the j-th column of matrices P, S, E, respectively. For each

Then, observe that (9.18) can be rewritten as:

Then, we form the following vectors:

Next, we run vdec (n+m+N )t,Bχ to decompose w 1 into w1 and then extend w1 to w * 1 ∈ B 3 (n+m+N )tδ Bχ . We also extend w 2 into w * 2 ∈ B 2 N t and we then form w = ((w * 1 ) T | (w * 2 ) T ) T ∈ {-1, 0, 1} D , where D = 3(n + m + N )tδ Bχ + 2N t. Observe that relations (9.19) can be transformed into one equivalent equation of the form M • w = v mod q, where M and v are built from the common input.

Having performed the above uni cation, we now de ne VALID as the set of all vectors t = (t T 1 | t T 2 ) T ∈ {-1, 0, 1} D , where t 1 ∈ B 3 (n+m+N )tδ Bχ and t 2 ∈ B 2 N t . Clearly, our vector w belongs to the set VALID.

Next, we specify the set S and permutations of D elements {Γ φ : φ ∈ S}, for which the conditions in (4.3) hold.

• S := S 3(n+m+N )tδ Bχ × S 2N t .

• For φ = (φ 1 , φ 2 ) ∈ S and for t

By inspection, it can be seen that the desired properties in (4.3) are satis ed. As a result, we can obtain the required ZKAoK by running the protocol from Section 4.3.2 with common input (M, v) and prover's input w. The protocol has communication cost

While this protocol has linear complexity in N , it is only used in the initialization phase, where Ω(N ) bits inevitably have to be transmitted anyway.

For this purpose, we perform the following transformations on the witnesses.

Extensions/Combinations.

• Extend v2 into s 0 ∈ B 3 mδ β . Then, for each j ∈ [ ], de ne s j = expand(τ [j], s 0 ). (We refer to Table 9.1 for details about expand(•, •).)

At this point, we observe that the equations in (9.22) can be equivalently transformed into M • w = v mod q, where the matrix M and the vector v are built from the public input.

Having performed the above transformations, we now de ne VALID as the set of all

It can be seen that w belongs to this tailored set. Now, let us specify the set S and permutations of D elements {Γ φ : φ ∈ S} satisfying the conditions in (4.3).

•

By inspection, it can be seen that the properties in (4.3) are indeed satis ed. As a result, we can obtain the required argument of knowledge by running the protocol from Section 4.3.2 with common input (M, v) and prover's input w. The protocol has communication cost O(D log q) = O(λ) • O(log N + t) bits.

Protocol 4: A Treatment of Hidden Branching Programs

We now present the proof system run by the user in the OT-AC system of Section 9.4. It allows arguing knowledge of an input x = (x 0 , . . . , x κ-1 ) T ∈ {0, 1} κ satisfying a hidden branching program BP = {(var(θ), π θ,0 , π θ,1 )} L θ=1 of length for L ∈ poly(λ). The prover should additionally demonstrate that: (i) He has a valid credential for x; (ii) The hashed encoding of BP is associated with some hidden ciphertext of the database (and he knows are used in the evaluation; (iii) Proving all the other relations mentioned above, as well as the consistency of {com i } κ-1 i=0 and the fact that they open to a certi ed x ∈ {0, 1} κ . Thanks to dichotomic searches, the communication cost drops to O(Lδ κ + κ). These steps can be treated as explained below. 9.5.5.1 The Merkle Tree Step.

At each step θ ∈ [L], the prover demonstrates knowledge of a path consisting of δ κ nodes g θ,1 , . . . , g θ,δκ ∈ {0, 1} n log q determined by d θ,1 , . . . , d θ,δκ , as well as their sibling nodes t θ,1 , . . . , t θ,δκ ∈ {0, 1} n log q . Also, the prover argues knowledge of an opening (y θ , r θ ) ∈ {0, 1} × {0, 1} m for the commitment of which g θ,δκ is a binary decomposition. As shown in Section 4.3, it su ces to prove the following relations (mod q):

where expand(•, •) is de ned in Table 9.1.

Extending.

• For each (θ, i)

, respectively. Then, let g θ,i = expand(d θ,i , g θ,i ) and t θ,i = expand( dθ,i , t θ,i ).

• For each θ ∈ [L], extend the bit y θ into the vector

Combining. Next, we let D tree = 5mLδ κ + 2L + 2mL and de ne

Then, observe that, the above L(δ κ + 1) equations can be combined into one:

M tree • w tree = v tree mod q, (9.26)

where matrix M tree and vector v tree are built from the public input. 

which is a re-randomization of (a 1 , b 1 + µ • q/2 ). Moreover, R T uses the witness ρ i = 1 to faithfully generate an interactive WI argument that (c 0 , c 1 ) is a re-randomization of (a ρ i , b ρ i ). It thus generates a WI argument of knowledge of vectors m = vdec n+t,q-1 (a

T ∈ Z 2m satisfying relations (9.22). By the statistically WI of the interactive argument system, this modi cation has no noticeable impact on the output distribution of a cheating sender Ŝ whatsoever. We have

In Exp 4 , we de ne the ideal-world cheating sender Ŝ in the following way. It programs the random oracle H F : {0, 1} * → Z n×m q in such a way that H F (ε) = F ∈ Z n×m q for some statistically random matrix produced as (F, T F ) ← TrapGen(1 n , 1 m , q). At the initialization phase, Ŝ uses the small-norm basis T F of Λ ⊥ q (F) to extract the small-norm matrices S = [s 1 | . . . |s t ] ∈ χ n×t and E = [e 1 | . . . |e t ] ∈ χ m×t satisfying (9.35) and decrypt {(a i , b i )} N i=1 into messages M 1 , . . . , M N ∈ {0, 1} N . If the extraction fails because one of the events E.1 and E.2 (as de ned in Exp 2 ) comes about, Ŝ aborts. Otherwise, it then submits M 1 , . . . , M N ∈ {0, 1} N to the trusted party TT. As in Exp 2 , during each transfer phase, Ŝ computes (c 0 , c 1 ) as a re-randomization of (a 1 , b 1 ) ∈ Z n q × Z t q and faithfully generates the receiver's argument of knowledge using the witness ρ i = 1 at step 1. At step 2 of each transfer, Ŝ aborts if it realizes that Ŝ created a convincing NIZK argument π T for a false statement. If π T correctly veri es and indeed relates to a true statement (which Ŝ can detect by applying the test (9.44) using the matrix S ∈ χ n×t extracted in the initialization phase), Ŝ sends 1 to the trusted party TT so as to authorize the transfer in the ideal world. Otherwise, Ŝ sends 0 to TT. At the end of the k-th transfer phase, Ŝ outputs whatever Ŝ outputs as its nal state S k . In Exp 4 , it is easy to see that

Putting the above altogether, we nd that the SIS assumption implies such that 
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