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GLOSSARY 

Some of the terms used in the manuscript can have different interpretations in our domain of 

work. As a result, we define some terms as they are employed in this thesis in the table below. 

 

Term Definition 

Action 

A series of simple gestures resulting in the movement of the body and joints in the 

same direction within the ROM and DOF in correspondence to a reference 

recording. The definition of an action is explained in details in the introduction 

(I.C.b.8) 

Asynchronous Late 

Fusion 

The algorithm that classifies recordings containing multiple sequences where the 

events occur on the different sequences at different instants of time. 

Class/labels The ground truth value of a group of recordings. 

Frame 
A set of coordinates belonging to a single human skeleton captured at a single 

instant of time. 

Gesture 

A part of an action that represents a simple movement (the number of frames in a 

gesture is small in general) e.g., when waving, the first gesture is raising the hand 

and the second in putting it back down. 

Late Classifier 

The late fusion consists of training a set of classifiers separately, then fusing their 

decision with a late classifier. The classifier that performs the fusion will be called 

a late classifier. 

Early Classifier 

The late fusion consists of training a set of classifiers separately, then fusing their 

decision with a late classifier. The first set of classifiers will be called early 

classifiers 

Real dataset 

Original dataset 

The real/original dataset contains the recordings that have been captured by the 

RGB-D device. During simulation, synthetic recordings are generated from a 

real/original dataset. 

Real recordings 

Original recordings 

During simulation, synthetic recordings are generated from an original dataset. The 

recordings contained in the original dataset are called real recordings or original 

recordings. 

Recording 

A single performance of a class, or an action. In other words, it is a continuous set 

of captured frames that  have been segmented at the start and end of the 

performance of this action. A recording can either be captured or artificially 

generated through a simulation process. 

Note: a recording can describe an example of something else than an action, for 

instance, in Chapter VI it is a single day of power consumption parameters. 

Sequence 

A sequence is either referred to a temporal set of multiple coordinates or a temporal 

set of a single coordinate (according to the context) recorded or generated for a 

given joint. For example, the coordinates of Left Hand in an action, or the 

coordinates for the Left Knee. 

In the simulation chapter, we consider a sequence as a single coordinate and in the 

remaining of the thesis for multiple coordinates, single joint. 

Skeleton 

A skeleton is known by the simplest representation of the human body, formed by 

joints and articulations. In this thesis, it will only be representation by the 20 joints 

captured by the Microsoft Kinect version 1.0 (Figure 4) 



x 

Skeleton estimation The localization of the skeleton’s joints at a single frame. 

Series 
A long recording composed of a succession of actions. The recordings might not 

belong to the same action. 

Synthetic/Simulated 

recordings 

Recordings that have been generated algorithmically, and that were not captured 

from the real world. 
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 INTRODUCTION 

A. Short introduction on machine learning 

In the past decade, we saw many advances in machine learning with many implementations 

in our daily lives. People use it every day without being aware of it. Its application reached 

cellphone technologies nowadays (e.g., speech recognition with Google speech to text [1]), self-

driven cars [2], email SPAM filtering [3]… Moreover, it helped understand patterns and trends, 

for example, in stock exchange, weather prediction and even in commonly used websites such 

as Facebook. We take interest in document classification or document indexing. It is a large field 

covering the classification of music, texts, images… into different categories or labeling them 

according to their subject, their content… The term classification can be considered as the center 

of machine learning. It covers the process of teaching the machine learning algorithms to analyze 

and comprehend the world. 

Some machine learning fields include audio, sound, and speech recognition. The extracted 

information from audio wave signals are analyzed to characterize and categorize these signals 

(e.g., Shazam mobile application [4], transcription of airplane flight recorders…). Machine 

learning extends to other fields such as text classification (e.g., guiding the users’ online research 

(Google) [5] and filtering of SPAM emails), handwriting recognition [6] (e.g., Optical Character 

Recognition (OCR) [7]…), face [8] and emotion recognition [9] and even action recognition. 

The latter is an old concept that witnessed considerable advances in the last few years.  

Kinesiology [10] is the study of action recognition or human movement, also known as 

human kinetics. “Kinesiology brings together the fields of anatomy, physiology, physics, and 

geometry.” It involves working with static (nonmoving) and dynamic (moving) systems, which 

leads us to cite an important difference in dynamic systems between Kinetics and Kinematics. 

“Kinetics are those forces causing movement, whereas kinematics is the time, space, and mass 

aspects of a moving system.” Our thesis is applied on the kinematics of a dynamic system that 

moves in space and time. It involves building a statistical approach for the classification of 

temporal streams. More precisely, it will be implemented on the statistical study of the different 

decisions taken in action streams at various instants of time. This concept is often described as 

spatiotemporal reasoning. 
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B. Classification process 

a. Usual classification approaches for dataset classification 

A typical approach to machine learning in data classification is to capture a first dataset that 

is related to the classification problem, and that can be assigned with a label. This dataset can 

even be prepared and filtered to train the classifier properly without any errors.  

Afterward, discriminant information, called features or descriptors, are computed from the 

captured data. It is common to try to find the most appropriate features for the problem in 

question.  

An appropriate classification solution is established with the appropriate architecture. Some 

of the well-known architectures are the early fusion, late fusion, and deep architectures (II.D.h, 

II.D.i).  

Finally, a machine learning algorithm is chosen. It is the core of the whole architecture. It is 

trained with previously selected features and tested on the initial dataset to perform the 

classification. The whole approach stated previously is usually repeated multiple times with the 

training and testing phases to find the most appropriate classification approach. 

The performances should be obviously evaluated on a separate dataset.  

The different classification solutions will be described in details in the literature review (0). 

Throughout the various chapters, we adopt the method stated above to obtain the first 

benchmarks. The datasets, to classify in this thesis, contain temporal information, and every 

sample contains multiple data streams. Consequently, we adopt a Late Fusion architecture. Our 

purpose is to enhance the classification architecture to take into account some of the data 

properties and to improve the performances.  

An important statement to consider throughout this thesis is that the features are trained and 

tested on multiple classifiers regardless of their capability to take proper decisions. Hence, we 

consider the classification algorithms (machine learning algorithms) as unknown “black boxes.” 

We neither modify their algorithm nor implement any of their extensions.  

The following problems are encountered when working with the adopted classification 

approach:  

- Considering a class of temporal events C1 and a second class of temporal events C2, of 

the same nature than C1 but shifted in time. An event belonging to C2 may be classified 

as belonging to C1 because the classification schema might not take into account the 

temporal variations. 

- The ability to determine the class of a temporal event is not stable along the time: some 

temporal sub-intervals can be more discriminant than others for such a classification 

process. Not all the classification tools do integrate that kind of property. 

 

b. Asynchronous Late Fusion (ALF) (in resume) 

The classification of asynchronous sequences is based on the idea that a certain label may be 

detected correctly in a temporal sequence (output true positive results) at different instants of 



3 

time. Nonetheless, the decision process must happen according to a predefined order to reveal a 

certain class in the dataset. A normal classification process considers that the provided 

information is enough and that each decision taken along the time is always correct. 

Nevertheless, this is not always the case. 

Hence, a model is built according to the confidence of the decisions that were taken by the 

early classifier at any time. No matter the type of the output from the early classification of the 

streams, the model modifies it according to weights to input to the late classifier. Moreover, the 

decision is only taken once a certain amount of temporal information is available (a certain 

number of temporal decisions). As a result, the model by itself “chooses” the correct decisions 

and the discriminant instant in time. Moreover, in a late fusion approach, the model is able to 

discard early classifiers. 

Action recognition, as well as some other classification problems, are governed by space and 

time. The decisions can be inferred by body joints’ locations in space and time. An instantaneous 

decision is taken by fusing all the decisions made along the time. Consequently, a weight can be 

attributed to each decision. The idea that has been proposed in this paragraph will be developed 

further in Chapter V. 
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C. Application to Action Recognition 

a. Introduction 

Action recognition became very popular and is prone to be used in different fields such as in 

airports, hospitals and retirement houses for fall detection [11], for security and abnormal 

behavior detection. Another major field where action recognition can be applied is robotics. The 

idea of having a robot as a house help is far-fetched and might not be available for consumers 

before decades. Nevertheless, the technology has been implemented in some robots for research 

and demonstration purposes [12, 13]. 

Action recognition has also hit the gaming community, especially with the appearance of 

cheap RGB-D sensors, available for the average consumers such as the Microsoft Kinect for 

Xbox [14] and the PrimeSense depth camera [15]. The Kinect accessory, attached to the gaming 

console, was said to overtake other gaming consoles in 2015 [16]. Other game consoles also 

introduced their proper accessories that handle motion control, such as the PlayStation Move 

[17]. 

Thanks to these RGB-D sensors, action recognition reached the commercial and the fashion 

world as well as education, in addition to other fields... [18, 19, 20]. 

As far as we know, this is only the start of the spread. The RGB-D sensors, which are partly 

responsible for this technological boom, are still at an early stage of development and are still 

governed by lots of constraints.  

 

b. Defining an action 

In the following part, an overview of the study of the action from an anatomical, mechanical 

and physical point of view of Kinesiology is presented, along with the relation to its application 

in computer vision in this thesis. This study is vast, nevertheless, we will only state in resume 

some important definitions that are related to the application in computer vision. In fact, 

specifying the full details requires a study that is larger than the scope of this thesis. It is 

important to note that, so far, there is no universal definition of an action. Even the definition 

that we will give cannot be generalized. We visited most of the action’s definitions, analyzed, 

summarized and combined them in our hypothesis. 

 

 Pose/Gesture/Action terminology 

Before starting, it is important to define the main terms. First of all, we differentiate between 

pose, action and gesture recognition. Human pose is an estimation of the body configuration 

(position, direction,...) from a single image at a stable position in a gesture or an action, otherwise 

known as the recognition in a static frame. The two terms action and gesture are often confused, 

and a definite description is ambiguous. Hence, we give our own: a gesture is usually composed 

of different poses. It is segmented from an action and is usually smaller than an action. It consists 

of moving different body parts in a small period of time (e.g., raising a hand, lifting…). Finally, 

an action is the highest level. It is composed of repetitions of same gesture, and/or sequences of 

different gestures (e.g., Tennis Backhand Drive, running…). 
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We also state multiple tasks: gesture recognition, action segmentation, action interaction 

recognition [21] and SL (Sign Language). Datasets related with those specific kinds of gesture 

will be described in the literature review (II.A.a). 

 The skeleton 

When performing action recognition, we find a body in every frame. When tracking a person, 

the Microsoft Kinect represents it by a skeleton. Biologically, the skeleton is formed of axial 

bones and appendicular bones. They are around 80 axial bones. They constitute the center of the 

body (head, thorax, and trunk), as for the appendicular bones (126 bones), these are extremities, 

which are connected to the center. Some persons may have additional bones implanted within 

a tendon or muscle, called sesamoid bones, such as in the wrist, foot, and neck. In computer 

vision, works dealing with human posture analysis are always simplifying this complicated 

structure. As a matter of fact, the body is symbolized, generally, by 20 to 30 joints connected by 

bones (it is important to note that this simplified representation has been used for a long time 

now, as for example in [22]). The tracking of these joints will be described properly in section 

II.F when explaining the functionality of the Microsoft Kinect. Figure 1 to Figure 3 illustrate the 

translation that was done between complex representations of the human body to the simple one 

proposed by the Kinect development Kit [23]. 

 

  

Figure 1. 

Appendicular Bones 

[24] 

Figure 2. Axial bones 

[25] 

Figure 3. Microsoft Kinect 

Skeleton [14] 

 Movement of the body 

The body as a whole entity moves in the world. The actions are defined by the nature of the 

movement. The translatory motion, in physics, is known as a linear motion, which occurs in a 

rather straight line going from one point to another. The whole object moves as a single entity, 

at the same time, in the same direction and the same distance. If the movement follows a straight 

line, it is also called rectilinear motion. For example, the motion of a bicycle rode along a straight 

road. However, if movement has a curved path, it is called curvilinear motion. For example, 

throwing paper airplanes, shooting a basketball. If the movement of an object occurs around a 

fixed point, it is called angular motion, otherwise known as rotary motion, for example, an ice-

skater spinning or a spinning top.  

http://en.wikipedia.org/wiki/Tendon
http://en.wikipedia.org/wiki/Muscle
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The different types of body movements are related to the body’s axes and planes. In fact, the 

body is divided along three planes. The sagittal plane divides the body into right and left. It 

passes through the body from front to back vertically. On the other hand, the frontal plane, also 

called the coronal plane, divides the body into front and back. It passes through the body from 

side to side. Finally, the transverse plane divides the body into top and bottom. It passes through 

the body horizontally.  

 Center Of Gravity (COG) 

When a cardinal body plane (crossing in the sagittal, frontal, or transverse plane) crosses a 

part in its midline, it divides it into two equal parts. The COG is the point of intersection of the 

three cardinal planes. When the COG is in a position allowing the body to remain stable 

according to its Base of Support (BOS. e.g., contact with the floor), which is perpendicular to a 

vertical line of gravity (LOG), the body is called in a stable position, also known as a state of 

equilibrium (if no external force has been applied to the body). Any perturbation in the 

parameters stated before will result in a change of the physical, hence anatomical position and 

will lead to a movement. Consequently, any movement happening in the body is closely 

connected to the COG. 

There are two ways to consider when representing a movement with features. Some studies 

analyze the changes in the COG to find its movement in space and time. Other studies perform 

a change of the coordinates system to match the COG, hence, becoming independent of the 

movement of the entire body in space. Consequently, the computation of the descriptors is only 

based on the movement of the joints. Moreover, it becomes easier to compare the same gesture 

that is performed by two persons.   

 Joint Movement & Degrees OF Freedom (DOF) 

Osteokinematics motion involves the movement of the bones around a joint axis. Joint 

movements occur in different directions, around joint axes and through joint planes (sagittal, 

frontal, and transversal). Osteokinematics fundamental motions are the following: flexion, 

extension, hyperextension, abduction, adduction… The joints move through what is known as 

Range Of Motion (ROM), which are the maximum reach a person can move his joint. 

Axes pass through the joints. The sagittal axis passes from front to back of the joint, the 

frontal passes from left to right and the vertical axis from top to bottom. Every joint in the body 

moves around an axis. The simplest example is the head joint or hip joint moving around the 

main body axis when the body is in a stable position.  

Since the joints move around their axes and on a plane, the movement of each can be 

quantified by angles, called the Degrees Of Freedom. The terminology is based on the fact that 

the rotation always has a maximum value (Related to ROM). According to the number of DOF 

the joints are described as uniaxial (1 DOF), biaxial (2 DOF) and triaxial (3 DOF), which are the 

maximum DOF, or angles, that a joint can have. 

Muscles play an important role when performing a gesture or action. They contract and 

extend depending on each performed action, its type, its direction, in addition to the resistance 

when performing it. Every muscle can either contribute to a motion or has no role whatsoever. 

The muscles’ movement is clearly related to moving the joints through the DOF. When the 
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muscle does not change, the DOF does not change, and when the DOF changes, the muscles can 

either shorten or lengthen. Nevertheless, the muscles can contract even without motion; this 

change only happens at the muscles' level. For example, when holding a heavy weight in the arm 

without moving, the muscle is contracting, yet, there is not action. This type of movement can 

be detected by a slight change of the joint's position or a change in the RGB-D map. 

The muscles reach a certain point where they cannot be stretched or contracted further without 

causing tissue damage. In some cases, they define the maximum and minimum value of the 

Degrees Of Freedom and the Range Of Motion of the different joints. In addition to the angles, 

the ROM and DOF can have three translatory values (also bounded between a minimum and 

maximum) caused by the stretching and the contraction of the muscles that can be found when 

moving a bone along a cardinal body plane. [26] [27] 

The axes of the body are translated into x,y and z axes in computer vision. As seen above, 

moving a joint in one direction is a process that requires multiple body parts to become active, 

starting from the muscles to the bone itself. As a result, it is obvious that the DOF alone are not 

a discriminant source of information concerning a single gesture. 

As an example, in [28] [29] both the DOF and the x,y,z axes are used to build a representation 

of the body parts’ shapes, with the z-axis (considered as the vertical axis) passing through the 

center of the body and the x,y plane (transverse plane) perpendicular to it. 

 Other points of view 

From a physician’s perspective, the body is bound by the law of inertia (1st Newton’s law), 

which occurs whenever the person is not performing an action but his body is moving. For 

example, when a plane takes off, the body is pushed backward, the neck muscles tend to extend 

backward (hyperextension in this case, from a biological point of view, since the neck muscles 

are in a stress position). The concept of the moving plane has been described previously as the 

translatory motion.  

The 2nd law of Newton is that the amount of acceleration depends on the force applied to the 

object and its mass, hence the law of acceleration and the need to study the acceleration and 

velocity of the joints. The acceleration sometimes comes with a change of direction where a 

force is required to move an object in motion in another direction.  

Finally, the law of reaction, “for every action, comes a reaction”, explains the reason behind 

the “pull and push” forces in dancing moves and the contraction and stretching of the muscles. 

Most of the old studies were conceived on dance choreographies. In fact, dancing or any other 

sport are amplified forms of everyday gestures. Every movement of the human body, bound by 

gravity, contracts and extends the muscles constantly. The dancer relies on this and amplifies 

the movements to achieve a cause-consequence relationship (“push and pull”) to move from a 

position to another, especially while interacting with a dance partner (to understand this concept, 

the muscles can be considered as elastics). This is mostly observed and applied in what is called 

international or sports dance where the dancer, for example, extends his arms to a maximum 

position, therefore, extending his muscles, which causes an elastic movement and consequently 

the contraction of the muscles. Researchers noticed this amplification in the movement and 

found it easier to study what can be observed clearly. One of the precursors of the study of the 
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movement and the action is Laban who represented dance moves with an encoding system called 

Labanotation [30].  

Laban represents the dancing choreographies by forms. His study is said to be one of the most 

complete on dance representation. This representation is composed of geometrical forms along 

a temporal axis and organized into different successive steps, reminding us of the works with 

Hidden Markov Models [31]. 

 Analysis of an example 

Each one of us has a unique way of performing an action. Actions might vary with mood 

changes: if cheerful, a person’s walk or dance will be lighter than when being sad. A gait is the 

process of walking, while a gait cycle is moving a leg after the other (as well as moving the 

arms) and then returning to the original position. At times, a person can be recognized from a 

distance because of the manner he walks. Unrelatedly to the many styles that can be observed, 

the mechanisms of a normal gait are the same. An ankle injury or leg fracture might cause a 

variation in the dynamicity of the cycle and therefore, the appearance of an abnormal gait. In IV, 

we will be simulating actions by adding variations to the action; hence, we tend to simulate the 

uniqueness that has been described in the gait example. 

To analyze gait in kinesiology terms, it is custom to determine first which joint motions 

occurs. Then, decide which muscles or muscle groups are acting (the gait is often used as an 

introduction to physiotherapy and kinesiology. For example, it has been described in details in 

[32]). Compared to a normal classification procedure in machine learning, the most discriminant 

joint can be first selected, then the joints’ movement is described by the joint angles, then by the 

features at every joint.  

The features are picked according to the movement. These can include the values that define 

an action from a physician’s point of view (I.C.b.6), for example, the acceleration of the 

movement, the change of direction…, as well the DOF and the movement along the axes 

(I.C.b.5). 

 Our definition of an action 

As a final resume, a gesture is a combination of different types of movement. It is common 

to have two types of body movement and joint movement happening at the same time. To 

illustrate this statement, we take the example of a person moving entirely in a linear motion 

while its individual parts moving in an angular motion. The action consists of moving the body 

in space, around its axes and on its planes, while moving the joints around their axes and on their 

planes. The joint can perform a certain movement during a period of time, then change the type 

of this movement, its speed, its direction… The previous statement also applies to the whole 

body. Of course, all the above is done within the ROM and the DOF of the joints. The whole 

process is a single action. 

We define an action as a predefined sequence of concatenated simple gestures that cannot be 

clearly determined, segmented and universally defined. The same actions are composed of the 

same simple gestures. Every performance of an action (every recording) is unique (refer to the 

Gait example at I.C.b.7). Hence, the body and the joints will perform the same movements as 

the reference recording, with changes of dynamicity of the sequence and amplitude in the DOF. 
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We note that the variations in the amplitude and dynamicity must not exceed certain boundaries 

which could lead to entirely different actions (e.g., walking and running are composed of almost 

the same gestures. Nevertheless, increasing the amplitude and dynamicity of the walking action 

will result in running.) 

Most of the actions that we study contain at least two types of motion happening 

simultaneously, and most of the time the angular motion is included.  

 

c. Application of the Asynchronous Late Fusion 

When working on human body analysis, a classifier can be set to learn each part of the human 

body singularly. For instance, it is possible to analyze the sequence of data from the head and 

the other joints separately. Afterward, the action can be inferred from each joint to finally fuse 

the decisions into a final one (for example, by choosing the most discriminant joints). 

Nevertheless, a problem arises: the decision that is taken at a joint and the decision taken at a 

certain instant in time for a specific joint might not be discriminant (more information in V.B.a). 

Therefore, we aim to resolve the mentioned problem in the remaining of this thesis.  

We build early classifiers to process only sub-recordings from the full recording and 

implement a mid-level asynchronous architecture at the output of the early classifiers. The ALF 

solution is applied to all types of actions as well as other temporal multi-dimensional datasets.  
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D. Thesis outline 

A general overview of data classification starting from the audio-visual context led to the 

Asynchronous Late Fusion idea. In fact, most of the approaches in the domain classify sound 

and video flux separately with different tools. Every temporal sequence from a recording is 

analyzed separately, as in audiovisual stream analysis, where the classification outputs decisions 

at various time instants. Therefore, to infer the final decision, it is important to fuse the decisions 

that were taken separately, hence the idea of the asynchronous fusion. As a result, we found it 

interesting to implement what we call “the Asynchronous Late Fusion” in temporal sequences. 

An important question arises when performing the fusion: can the decisions in the temporal 

sequences be merged into a final one while taking into consideration the following: 

- A sequence might not be discriminant in whole. 

- The decision resulting from the analysis of a sequence might not be discriminant. 

- A decision taken at a time instant might not be discriminant. 

To illustrate our research in the area, we are interested in a well-known field containing 

datasets composed of temporal sequences: action recognition. Therefore, we develop our study 

on the Asynchronous Late Fusion of actions. 

As we implement different classification processes while aiming to improve them with the 

Asynchronous Late Fusion, we present a general overview of the usual classification process in 

the related work.  

Typically, the process starts by capturing the data, then extracting discriminant features from 

it and encoding it. Afterward, the encoded features are sent to classifiers, while implementing 

different architectures. As mentioned above and throughout this thesis, we adopt a Late Fusion 

classification. We will go through these points in resume while mentioning the literature on the 

subject. Having established the basis of a classification process, we can now implement it.  

Since action recognition takes an important part of this thesis, it is important to state the joint 

tracking systems that are beneficial to us and briefly mention different representations of an 

action, as well as other related work on the subject.  

At the end of the related work, we differentiate the usage of the term asynchronous from its 

usage in other studies and compare it to other temporal classification models such as the Hidden 

Markov Models. 

Throughout this chapter, we will focus on the parts that we find interesting or that inspire us, 

i.e., the concepts and ideas that lead to skeleton normalization, the techniques for generating 

synthetic data, some features, classification algorithms and some segmentation methods. These 

will be either implemented or modified to implement in this thesis.  

It is imperative to gather enough discriminant data to classify actions. Since gathering enough 

discriminant data is not an easy task and has some drawbacks, we propose a simulation process 

in the first chapter to generate synthetic actions from datasets of small size. The differences 

(distances) between similar actions (actions belonging to the same class) help generate actions 
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that are not present in the initial dataset. These will help train multiple classification algorithms 

while modifying the simulation parameters and test several datasets.   

The second chapter is the core of this thesis. After the preparation of the datasets, the ALF is 

explored and studied in depth. First of all, datasets with asynchronous properties are defined, 

(those are the ones on which the ALF solution performs the best). Second, a proof of concept is 

established by analyzing the resulting confidence coefficients from the classifications of samples 

from a recording. Third, the ALF solution is presented in details, and its parameters are set and 

explained. Finally, experiments are conducted with a large set of parameters to argue the choices 

that were made, as well as the choice of implementing the ALF. 

 

In resume, classifying a recording with the ALF consists of performing the following steps:  

- The sequences of the recording are segmented into sub-windows where every window 

is classified separately; hence the asynchronous study of a sequence.  

- The decisions taken at the windows are combined with a set of values (weights 

calculated during the training phase). The last step results in a singular value for every 

sequence. 

- These values are then sent to a final classifier, hence the late fusion. 

In the final chapter, we define an index value called Asynchronous Index; it generates a value 

that quantifies the compatibility of the dataset with the ALF solution. The application of the ALF 

was limited to segmented recordings in the previous chapter; consequently, we extend the 

experimentations by implementing a segmentation algorithm, testing a power consumption 

dataset and additional classifiers. (Additional experiments are displayed in the Appendices) 

The last part of this thesis consists of a contribution to the action recognition domain; there 

are multiple definitions and representations of an action. Nevertheless, only a few of them that 

are defined clearly. The ALF model provides a mean to extract the discriminant units of an action 

and generates a clear visual representation from the recordings. 
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 RELATED WORK 

The following chapter presents an overview of the necessary background literature to 

understand the procedure presented in this thesis, i.e. the steps to train and test a machine learning 

algorithm. The application of this thesis is primarily based on action recognition. Hence, action 

recognition is considered as the main example in this chapter to go through the background of 

machine learning. 

Note: the parts of the related work in which we show the most interest is either labeled with 

a bordered tag e.g., Key Features skeleton normalization (II.J.a), or described in a resume and 

explained at the end of this chapter. 

 

A. Data collection 

The first step of machine learning is data collection which involves the gathering of 

discriminant data containing patterns or significant information. It is one of the core 

requirements for machine learning. As explained in the introduction, a machine learning 

algorithm, also called a classifier, generates a data-driven model to categorize the data, to 

recognize the actions in our case. The collection of data is, therefore, one of the most important 

parts of machine learning, as the nature of the gathered data affects the results of the study and 

can lead to invalid results.  

Action recognition can be studied in sequences of simple RGB images, RGB video streams 

or RGB-D streams. Researchers have focused on all these fields, and mostly on RGB since the 

studies on RGB-D are more recent and that RGB-D consumer affordable cameras are still quite 

novel. Nevertheless, the latter seemed to have gotten a lot more popularity than its predecessor. 

Concerning RGB data, the process is simple and would only require a camera (Nowadays, 

most of the consumers’ cameras have high-definition capability). The only requirement, to build 

a dataset properly, is to give the adequate instructions to the subject or extract realistic datasets 

from movies, web videos, TV shows… [33] [34]. As for capturing depth images, the process 

was complicated ten years ago, as the cameras were expensive or sensors had to be placed on 

the subject's body and tracked throughout the action. Even though this technique can get high 

precision and is still used to animate 3D characters in movies [35], the advances in RGB-D 

cameras (Like the Microsoft Kinect [23] or PrimeSense [15] depth camera) and their distribution 

at a low-cost, gave them the advantage. In other studies, researchers used multiple RGB cameras 

to infer the RGB-D data and even perform skeleton estimation, which corresponds to the 

localization of the skeleton’s joints in a single frame. In fact, multi-camera view for action 

recognition is a popular topic. The fusion of multiple cameras allowed in [36] to track the human 

body skeleton. Authors of additional papers were interested in the same subject. In [37] multi-

decision levels are considered: a decision is taken at the camera level and at the level of a multi-

camera network. [38] performed action recognition with a score-based combination of multi-

view camera streams. The interesting part of the latter is that the action recognition system is 

performed in high frame rate. Nevertheless, the performance can be criticized in the papers stated 

above because of the variations in the datasets and the environment, or due to the low resolution 

of the cameras that have been used. 
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During this thesis, the Microsoft Kinect has been used for retrieving the motion capture 

(MoCap) data. Like any other RGB-D sensor, it outputs a sequence of frames, or images, where 

every pixel is associated with a 2-D RGB information and a depth vector. The depth vector 

represents the distance from the camera. Hence, the RGB-D sensor outputs an RGB stream and 

a depth stream. Nevertheless, it implements an SDK that calculates 20 body joints position (the 

new Kinect One (Kinect v2) calculates the position of 25 body joints, including the hand tips 

and thumbs [39]). The tracked joint positions are displayed in Figure 4. 

 

Figure 4. 20 joints, tracked by the Microsoft Kinect v1 [40] 

 

a. Different datasets 

Generally speaking, action recognition can be classified into multiple categories. The data 

collection, as stated above, contains video data, skeleton tracking information and/or RGB-D 

videos or image. The field is large; each dataset type can be related to a different category. Some 

of the popular categories are single-human-based actions, including human activity, gesture, and 

sign language. Some others reveal an interaction between multiple persons or even crowd-

behavior.  

We divide them into the following categories since we find that each one can be studied in a 

different manner than the others: 

 Sign language dataset  

There are many resources for sign language gestures available online; the American Sign 

Language (ASL) is one of them. We do not take too much interest in these types of gestures 

because they are related to a different field and require an entirely different study. For example, 

[41] consists only of finding the fingers first in the images. This is related to image segmentation. 

We can mention a lot more studies such as [42] and [43] 

 Human activity video datasets 

This group of datasets is also large; the datasets can even be divided into smaller groups. We 

state some of these: the dataset used in the popular competition Chalearn 2015 [44] where the 

goal was to classify cultural events in RGB videos. Others can be found on public repositories 

[45]. The KTH contains 600 videos. The Weizmann dataset [47] also includes examples of RGB 
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videos. Performances were measured on this dataset in numerous papers [48] [49] and [50] in 

where a study was conducted on space-time shape with the extraction of 3D point clouds. As 

there is a large choice today of available video datasets, we only cite here some of the popular 

ones: Hollywood movie dataset [51], Hollywood 2 [33], MSR [52] and larger datasets containing 

complex actions such as MEXAction [53] which contain 77 hours of video. Other studies have 

considered the complicated segmentation of RGB videos from daily living activities captured 

from wearable cameras [54]. Compared to most of the datasets used in research, the latter is one 

of the few that is considered to have imperfect data containing noise and lots of changes in 

lighting. 

Some studies did not only rely on capturing data from one camera only. For instance, in [55], 

a large body of human action video called MuHAVi is available. It contains 17 action classes 

captured from 8 cameras. 

 RGB-D and skeleton 

This thesis is focused on inferred skeletal data from the RGB-D information, captured from 

the Microsoft Kinect. There are several technologies to generate the depth coordinate. Some of 

these rely on the process of structured-light. The process consists of projecting an infrared 

random dot pattern of speckles onto a scene that is captured by an infrared camera and matches 

the random dot pattern with the projected pattern. Other depth cameras rely on the ToF (Time 

of Flight) of the infrared light from the source to the sensors to calculate the depth value [56]. 

Obviously, these processes generate errors. As a matter of fact, the error in the Microsoft Kinect 

v1, which implements the structured-light, method “increases quadratically from a few 

millimeters at 0.5 m distance to about 4 cm at the maximum range of the sensor” [57]. An 

extensive study will be conducted in ( IV.B), on the accuracy of the Microsoft Kinect’s 

development library when performing joint tracking. The error generated by the Kinect depends 

on the method implemented to infer the depth data and the hardware used in the Kinect. 

Hence, we take interest in datasets that have been recorded with this RGB-D sensor 

specifically. Moreover, the skeletal data that is extracted from the Kinect will be studied in 

Chapter IV and will provide us with enough information to generate synthetic actions. 

Many databases made available for public use, contain actions that have been captured by the 

Microsoft Kinect, like the MSRC-12 database [58]. The MSRC-12 database is composed of 12 

gestures performed by 30 people. The actions are simple: start (flap both hands in the air), 

crouch, push an object to the right, put goggles on, gym exercises (lift both hands), shoot from 

a gun, bow, throw an object, surrender, change weapon, beat both hands randomly, and kick. 

The MSRC-12 database has been analyzed in [59] using a Hidden Markov Model and it has been 

stated as being the largest one that can be found online. Another available Microsoft database is 

the MSR Daily Activity 3D [52], which contains a large set of actions in which some are 

performed numerous times. In chapter IV, we test one of our algorithms on the MSR Action3D 

dataset [60]. The latter is larger than the other datasets and more diverse. All the databases with 

names starting with MSR have been recorded by the Microsoft Research team and are also 

available online [61]. 
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There are other databases available like the MoCap BVH [62], which contains captured 

actions from 40 infrared sensors that follow white spots located on a person wearing black, hence 

recording flawless joint angle data. The recorded data is converted into BVH files. We also state 

the UMD-Telluride Kinect Dataset [63] , the G3D gaming action dataset [64] and the Cornell 

Activity Dataset 60 [65]; however, the actions are captured by at most four subjects. 

All the citations above provide actions with simple gestures or ones that have been performed 

by a single person. In addition, [66] provides a source for skeletal information from human 

interactions. 

The Kinect is not only a source for capturing actions. With its RGB-D data and the Active 

Appearance Model [67] that is implemented in its SDK, it also permits automatic face tracking. 

It becomes easier to capture and annotate faces. Hence, face tracking datasets have been 

distributed publicly [68] 

 Competition datasets 

In this field, the datasets used in competitions become popular quickly since the results are 

set providing a base for researchers to compare their studies for a long time after the competition. 

Consequently, our algorithms are applied on the Chalearn 2014 dataset [21], “Track 3: Gesture 

Recognition». We will show that our proposed frameworks will improve any classification 

problem. We will develop this point in details in chapters IV and V. Note that in this same 

competition, during the same year (2014), an “Action/Interaction recognition” was also 

launched. 

Other studies have considered the depth data from RGB-D streams and results have been 

compared in the framework of the HARL international campaign [69]. 

The datasets mentioned above are some of the many datasets that have been made available 

for public use and research purposes. They provide powerful means for researchers to study 

gesture classifications, localization, segmentations issues (such as simple gesture segmentation 

with subjects writing numbers from 0 to 9 in the air [70])… since most of them contain data 

stream and not just simple segmented gestures.  

In the end, it is essential to state there cannot be a single complete dataset with enough 

information for every gesture or with enough examples from the same class. In fact, all the 

actions stated before are not very different since they have been performed by a maximum of 12 

persons for the largest database. 

During the remaining of this thesis, the gestures are segmented manually to train the 

classifiers. As a matter of fact, when working on classification problems in chapters IV and V, 

the tests are performed on pre-segmented actions. 

 

b. Synthetic Datasets  

This part (Synthetic Datasets (II.J.b)) is a source of inspiration for working on the simulated 

actions in Chapter IV, where the use of synthetic actions to train the Microsoft Kinect, prove 

that artificial samples can, in fact, improve the results. 
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 Synthetic samples 

Training with synthetic data is not an uncommon procedure especially when datasets are 

small. For example, to train the Microsoft Kinect, synthetic actions were generated [71], yet, 

there was no extensive study or analysis on the matter. The main concern when building the 

synthetic data was it to be the closest possible to the reality (real camera images) while adding 

as much variation as possible: “Other randomized parameters have been added like the MoCap 

frame, camera pose, camera noise” (originated from the depth), rotation and translation of the 

character around its vertical axis, and clothing and hairstyle (Supplementary material of [71]). 

Many applications of the random forest classifier, including an old paper on regression trees 

[72], were evaluated with simulated waveforms. The data is available in the UCI repository and 

described in-depth in [73] [74]. The UCI repository contains additional synthetic datasets. For 

example, the pseudo-periodic dataset [75] that has been generated from a function that includes 

noise. 

 Synthetic features (with SMOTE) 

SMOTE (Synthetic Minority Oversampling Technique) works on the feature level. It 

generates new features with an algorithm that analyses the nearest neighbors and calculates them 

by considering the distance between a sample and one of its nearest neighbors while multiplying 

this distance by a random number. The random number helps populate the new values. This 

algorithm has been clearly explained in [76]. 
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B. Feature Extraction 

After capturing the data, the information is converted into discriminant features, which are 

characteristics that present, as accurately as possible, the original samples by transforming the 

raw data into single values or vectors. We remind that as mentioned in II.A, the data might be 

collected as RGB, RGB-D or even skeletal data.  

[77] compares pose-based and appearance-based features when classifying actions. The study 

evaluates early works on action recognition involving the tracking and classification of 

articulated poses, as well as, low-level appearance based features such as Histogram Of 

Gradients, optical flow… As a result, the paper stated that pose features outperformed the 

appearance features. In fact, pose based features and RGB-D solved much of the problems, found 

in earlier work, particularly when it comes to tracking the human skeleton and proper joint 

extraction. Nevertheless, pose based features lack of contextual information that is found in the 

low-level features. [77] suggests that a combination of both types of features is an ideal solution. 

 

a. RGB & RGB-D features 

Points of interest detection methods in RGB images and videos are very popular; they group 

edge detection, corner detection, as well as discriminant values… 

When it comes to the temporal domain with RGB images, some of the most used features to 

capture shape, texture, and motion information are Histogram of Gradients. It is based on the 

orientation of image gradients, and has been generalized to videos with the HoG3D, as in [78] 

where the HoG3D are calculated on 3D gradient vectors of integral videos. In addition, we cite 

the Histogram of optical Flow (HoF) and the Motion Boundary Histograms (MBH) [79], which 

represent the gradient of the optical flow. The cuboids [80], same as the HoG/HoF and HoG3D 

[81], are calculated from motion history volumes of points of interest. They have been computed 

by stacking 2D images. The points of interest, being the corners, are detected by running a 2D 

Gaussian smoothing kernel and a 1D Gabor filter. A cuboid contains all the points of interest 

locations along the time. Pieces of information about the normalized pixel values, local gradient, 

and motion, are then extracted from the cuboid data to generate a discriminant vector.   

Additional improvements have been introduced: dense spatial and spatiotemporal descriptors 

have been extracted while removing camera motion. It is estimated through matching frames 

using SURF descriptors and dense optical flow [34]. 

Improvements in previous studies [82] have been proposed and addressed the computational 

efficiency of the HoG and HoF (Histogram of optical Flow) by analyzing frames extracted by a 

subsampling process at different time scales. 

Silhouette-based features have been proposed in [83]. They are binary extracted Regions of 

Interest from images with the application of background subtraction techniques. The features are 

extracted from the Region of Interest using PCA or with another method called IC features (IC 

features are calculated with ICA, which is described as similar to PCA, but based on local image 

information contrary to PCA).  
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Other features have also been generalized from 2D images to 3D videos by adding the 

temporal factor, like the 3-dimensional SIFT, the extended SURF [84] and local ternary patterns 

instead of the LBP (Local Binary Patterns) [85]. 

STV are Spatio-Temporal Volumes defined by the coordinates system denoted by X, Y 

(spatial) and T (temporal axes), containing image planes and time information. Consequently, 

the STV is a 3D shape formed by stacked 2D arrays. A first introduction of the STV was done 

in the earlier studies of human motion (1985), in [86], where simple motion was studied through 

time. Afterward, it has been developed in other studies such as [87] where the 2D contours (or 

silhouettes) of a subject have been stacked to form a 3D temporal volume. Descriptors, like 

speed, direction, and shape, have been computed from the volume afterward. The STV are very 

similar to the cuboids, with the difference that the cuboids are usually generated from the points 

of interest in 2D space and the STV from all the pixels in a 2D image. 

As seen previously, 2D features have been ported to the 3D domain by adding the temporal 

information. In the following part, the depth factor has been added, and the “old” features have 

also been applied to it. The IC features were implemented on depth silhouettes in [83] with their 

extension to depth time-segments. 

Before the appearance of low-cost RGB-D sensors, multiple studies focused on the fusion of 

multiple sensors, some of these papers are listed below:  

[88] introduces the human motion descriptors: Motion History Volumes (MVH) (“A 

transplantation of motion history images onto 3D STV models”). In contrast to RGB features, it 

gives a free-viewpoint representation for action recognition and works in “four-dimensional 

patterns in space and time”. Consequently, it surpasses other features, because it can bypass the 

occlusion of the actions’ parts. We found this study interesting and were inspired by it to 

implement our own MVH applied on skeletal joints. 

The motion history volume (Calculation of the features II.J.c) is represented by the following 

equation (where v is a 3D volume, called a voxel): 

𝑣𝜏(𝑥, 𝑦, 𝑧, 𝑡) = { 𝜏 𝑖𝑓𝐷(𝑥,𝑦,𝑧,𝑡)=1
max(0,𝑣𝜏(𝑥,𝑦,𝑧,𝑡−1)−1)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where D(x,y,z,t)=1 if (x,y,z) is occupied at time t and D(x,y,z,t)=0 otherwise, and 𝜏 is the 

maximum duration along which an occupatio1n of a 3D pixel is observed. 

We do not focus on the algorithm behind D(x,y,z,t) because it constitutes another study and 

can be calculated in many ways, as per user requirements. In [89], the calculations were 

estimated using silhouettes and in this work, MVH is defined as being the visual hull. 

The voxel must be normalized to convert the Motion History Volume into features. It is, 

therefore, normalized in [88],  by the maximum duration of an action, hence, all the motions will 

have the same length. The Motion history information will become independent from the 

location by centering the Voxel and from the scale by normalizing it. 

The independence from the rotation is solved by the Fourier magnitudes (absolute values of 

the Fourier transform). The template volume is expressed in a cylindrical coordinates system. It 
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is then scale-normalized by shifting it in the - and z- directions. Finally, the 3D FFT is applied 

to the normalized volume to extract the features.  

In [31], features were calculated from joint angles. The joint angles were inferred from multi-

camera RGB data; the depth data was processed from stereo RGB images. As for kinematic data, 

two DOF (Degrees Of Freedom) were attributed to every joint and 14 joints were tracked in 

total. 6 parameters were calculated to move from the global coordinate system to the local 

coordinates system of the body’s hips. The 3D data is fitted onto an ellipsoid human model using 

a co-registration algorithm [90]. (The features are the joint angles and the 6 parameters calculated 

previously) The procedure is complicated. Nevertheless, it is a key principle to resolve problems 

related to joint coordinates normalization (Calculating the angles II.J.1 and the features II.J.c). 

The angles in this paragraph are an inspiration for skeleton normalization, as well as for 

calculating the features.  

With the release of depth sensors, depth descriptors [91] [92] became very common, in 

addition to inferring skeleton poses from depth data to calculate the features (e.g., Skeletal Quads 

[93]) 

When training the Microsoft Kinect [71] to infer the body joints, the authors relied on depth 

maps. The equation for calculating the features is explained below: 

At a pixel x, a depth feature is computed as: 

𝑓𝜃(𝐼, 𝑥) = 𝑑𝐼 (𝑥 +
𝑢

𝑑𝐼(𝑥)
) − 𝑑𝐼 (𝑥 +

𝑣

𝑑𝐼(𝑥)
) 

“Where 𝑑𝐼(𝑥) is the depth at pixel x in image I, and the parameters 𝜃 = (𝑢, 𝑣) are the offsets 

u and v.” 

In [60], the actions have a probabilistic representation: an ActionGraph. The ActionGraph 

was first introduced in [94] where an action was defined by salient postures, the transitional 

probabilities between the salient postures, and their combination. Every salient posture is a 

cluster built from frames. This method has been successfully applied to 2D silhouettes as stated 

in [60] where the salient postures have been described by the bag-of-points. To this end, a point 

or a pixel, belonging to a STIP (Spatio-Temporal Interest Points) or a silhouette, is extracted 

from the depth map by projecting it onto the Cartesian planes and sampling a specific number 

of equidistant points from the contours of the projections. The 3D points are then retrieved from 

the 3D depth map and considered to have Gaussian distributions. Consequently, it would be 

possible to represent the probability of finding a posture as the joint distribution of the points. 

This method outperformed those that considered only 2D silhouettes and proved to be robust to 

occlusions. 

 

b. Pose-based features 

In [92] an interesting feature has been extracted using Local occupancy patterns (LOP). These 

represent cuboids that surround the joints. Whenever the LOP covers an object, its occupancy 

inside the cuboid, around the joint, is computed. The pairwise distance between the joints’ 
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positions has also been extracted and combined into a vector with the LOP. The low frequencies 

of the FFT have been calculated from the normalized feature vector at different scales in time. 

EigenJoints are said to be more accurate in modeling body joints than modeling the depth 

according to [95]. Without noisy background points, it is “more compact than the bag of 3D 

points”. The EigenJoints are encoded normalized vectors containing posture, motion and offset 

features calculated from 20 already existing 3D joint position differences. The posture features 

are pair-wise differences of joint locations in the current frame. The motion is the differences 

between the current and previous frames, and the offset features are the differences between the 

joints’ location in the current frame and the first frame of the video. The second part of the 

calculation of the EigenJoints is the computation of the discriminant Eigen Vectors II.C. 

The studies that were referenced previously have shown the advantages of the simple pose 

features (geometric relation between joints) over silhouette based, low-level appearance features 

(color, dense optical flow, and spatiotemporal gradients). However, in [77] the combination of 

both methods has been recommended as being the best solution when pose-based features fail, 

even if this statement was not verified by the experiments! 

Finally, as previously mentioned in the introduction, every action consists of different joint 

translations, movement of the joints around their axis and dynamicity…, making it necessary to 

describe the actions with a large set of discriminant features (Angular motion => joint angles, 

dynamicity => the velocity and acceleration…) 
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C. Feature encoding 

Methods of feature encoding or feature representation are numerous, and since we do not 

focus on the machine learning process in this thesis, we will present, in this part of the related 

work, a quick overview of the most known. We state PCA (Principal Component Analysis), 

Fisher LDA (Linear Discriminant Analysis), bag-of-words… Those are some of the many 

representations (Dimensionality reduction as well as extraction of discriminant values) of the 

transformations often applied to vectors of features before being sent to the classifiers. 

PCA projects data points into a space of lower dimensionality while being able to reconstruct 

the data with a minimum square error. The dimensions of this space are the Eigen Vectors of the 

covariance matrix and have the largest possible variance. Moreover, they can be normalized. In 

[88], further dimensionality reduction was performed by combining the PCA with Fisher LDA. 

PCA was also employed in [95] to “reduce redundancy and noise” in feature vectors formed by 

the combination of the pair-wise difference of joint locations Error! Reference source not f

ound.. The discriminant parts of the resulting Eigen Vectors from the PCA are called 

EigenJoints. PCA is not only restrained to action recognition with joint features but was also 

applied to HOG descriptors in 2D images as in: [96]. This makes the tracking algorithm robust 

to noise, “illumination, pose and view-point changes” in [34] [97]). From the many studies on 

Fisher Kernels, these have been explained clearly and improved in [98] and exploited in [99], 

with a GMM (Gaussian Mixture Model) to be applied to gesture recognition and segmentation. 

One of the most popular feature representations would be the bag-of-features, or bag-of-

visual-features as described in the paper [100]. This approach has been inspired by the traditional 

bag-of-words representation. Usually, applied in text information retrieval, where “feature 

vectors that represent each text documents are histograms of words occurrences in these 

documents”. In the first place, a large set of visual features, or interest points, have been extracted 

from 2D frames in videos, usually with SURFs or SIFTs. Second, PCA helps with the 

dimensionality reduction and the extraction of discriminant values. Then, the vectors are 

quantified with k-means algorithm and the vocabulary is defined according to the clusters. Once 

the vocabulary is set (Every feature is associated with a word), “the occurrences of every word 

are counted” and combined into normalized histograms that form the BoVF (Bag of Visual 

Features). Finally, the action recognition is performed on the BoVF. 

Common implementations of the bag-of-words or bag-of-features are [82], where the feature 

representation has been generated by 4 different algorithms after performing a dimensionality 

reduction with PCA: K-Means, hierarchical k-means, random forests and Fisher vectors. The 

simplified version of the first 3 algorithms will be detailed further in the next section (0). 

There is a large number of alternatives to feature extraction, dimensionality reduction and 

classification techniques that we have stated or will state. Nevertheless, we summarize the most 

common ones and focus on the techniques that will be used in the remaining chapters. 
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D. Classifiers 

Classifiers are decision makers. They attribute a label or a class to the tested set of data. We 

distinguish between three groups of classifiers: supervised, unsupervised and reinforcement. A 

supervised classifier is specified a “target” to recognize. Its task is composed of two parts: the 

training and the classification. The training consists of learning a model from a set of data that 

has been gathered during data collection (II.A) and encoding the samples according to one of 

the methods stated above (we remind that there are numerous solutions for data gathering as well 

as data encoding that we do not state in this document). After learning the model, researchers 

usually evaluate the performances of their algorithms by testing the classifier on another set of 

data. 

An unsupervised classifier skips the training phase and directly classifies the data by using 

differences, similarities or even probabilities. Usually, the classification from unsupervised 

classifiers is performed by data clustering. 

The third type, reinforcement learning, also known as semi-supervised learning, is much 

closer to the supervised one than to the unsupervised learning. It follows approximately the same 

process, consisting of learning and testing. Nevertheless, the approach implements user 

interaction whereas one can reward correct classification or “punish” an incorrect decision. 

Consequently, the classifier will adjust its model according to the newly provided data. 

 The above types of learning techniques include other categories:  

- Bagging, also known as bootstrap aggregating, involves training multiple models on a 

random subset of the training samples and averaging the results from the output of the 

models, like Random Forest.  

- Boosting chooses the most discriminant features from the set of training samples 

(Adaboost) and combines the features, as weak learners, to average the result of the output 

like bagging.  

- Bayesian learning is a probabilistic approach where features are considered as governed 

by probability laws. The distributions and the decisions are computed according to 

statistical inference on the training data.  

- Clustering is the process of grouping a set of data, according to their similarities, into an 

ensemble, called a cluster.  

In the next paragraphs, we will give examples and an overview of these different categories. 

(Key in Training and Classification II.J.d) 

 

a. K-Means 

It is a simple unsupervised algorithm that is based on clustering the data and finding the 

centroid of every cluster. In action recognition, as in [100], it helped to build the BoVF (Bag of 

Visual Features) by clustering, hence, quantifying the feature space. Afterward, a word from the 

vocabulary is assigned to every cluster; every feature is assigned to a word and finally, a 

histogram is built from the occurrences of every word. The number of K words usually depends 
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on some properties of clusters (minimal purity, size, number) or according to previous 

knowledge on the dataset. 

 

b. K-Nearest Neighbors (KNN) 

It is the first thought of classifier when researching any machine learning technique or method 

since it is the easiest to implement. It classifies the samples by calculating a given distance 

between features of a sample and all the samples from the training dataset. The decision goes to 

the most representative class among the K nearest neighbors. K is usually chosen as in K-Means, 

upon prior assumptions on the dataset or empirically. In [101], spatiotemporal features were 

calculated from five main body joints (head, hands, and feet) trajectories as chaotic invariants 

“to model the non-linear dynamics of the actions”, and classified with KNN algorithm and a 

cross-fold validation technique. In [102], the KNN has been used to classify actions from RGB 

videos and was compared to the classification method in [103] to show that the performances 

were not the best with this simple classifier. 

 

c. Support Vector Machines (SVM) [104] 

They were developed by V. Vapnik et al. who based their study on the structural minimization 

principle from statistical learning theory. This algorithm gained a lot of popularity in the last few 

years and had proven to be one of the best classification algorithms in the action recognition 

field. It works as follows: 

Considering the common classification problem of separating 2 datasets, the samples (xi,yi) 

with i=1,…,N and 𝑦𝑖 ∈ {−1, +1}  are considered to be separable by a maximum-margin 

hyperplane. The hyperplane H can be a simple linear equation: 𝑤. 𝑥 + 𝑏 = 0. The goal is to 

minimize the classification error of the application of the previous equation on the training, by 

finding the optimal values of w and b. This is a quadratic programming optimization problem 

that can be found by solving a constrained minimization problem, using Lagrange multipliers 

𝛼𝑖. As for nonlinear problems, the SVM uses the Kernel trick to map the data into the space H. 

Finally, in the test phase, a given test point x is classified, by computing the distance between 

x and the support vectors (those are the values, or the training examples, from the dataset that lie 

closest to the hyperplane H, which separate the two classes, in other words, those are the values 

that should be taken into account to make a decision), more specifically, by calculating the sign 

of: 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑠𝑖 , 𝑥) + 𝑏𝑁
𝑖=1  

Where 𝑠𝑖 are the support vectors, K the distance kernel.  

There are numerous kernels to be studied depending on the dataset and the effectiveness of 

the functions after running multiple tests. [46] is a well-known paper in action recognition for 

its implementation of the SVM algorithm. Local features, containing space and temporal 

information, were extracted from RGB images histograms and are built by K-means clustering. 

Afterward, local features and feature histograms were used as an input of the SVM. This paper 
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compared the nearest neighbor classification to SVM and found that SVM with local features 

performs better. 

The usage of the SVM is widespread. Human pose estimation method from RGB-D 

sequences was done in [105], where the pixels belonging to a body are normalized. Afterward, 

“superpixels” are extracted using a clustering method, and finally, these pixels are classified with 

an SVM into body parts. 

An SVM is also used to determine, in [92], the most discriminative “actionlets,” as called in 

the paper. They represent the concatenation of the most discriminative joints (the features of a 

joint are calculated from 3D joints and RGB-D data). The discriminant factor, which is 

calculated by an SVM, is the probability that a joint belongs to a certain class. (The “actionlets” 

described in this same paper, can be considered as another form of feature encoding.)  

The SVM classifier bears numerous applications. Therefore, we have only mentioned the 

ones that are the most interesting to our study. 

 

d. Random Forest 

First introduced by Leo Brienman in 1996 [106] and then restudied in 2001 [107], it is a 

bagging algorithm, considered both supervised [71] and unsupervised [108]. It is based on the 

separation of the samples. Considering a training set (xi,yi) with i=1,…,N and 𝑦𝑖 ∈ {−1, +1}, at 

each tree, the algorithm picks a random subset of the training set (the set might be composed of 

features or only sample values) and splits the data at a threshold value with the minimum error. 

The process is repeated at every node of the decision or regression tree until the lowest error is 

reached or the process is stopped manually. The main point of the random forest is to choose a 

different feature randomly at each node. The forest is comprised of trees. Hence, the decision on 

the test samples would be the sign of the summed results at every tree. 

[109] uses a Hough transform based framework for multi-class action recognition in RGB 

videos. Low-level features are extracted from patches to train a Hough Forest, which relies on 

the Random Forest structure. The stated algorithm allowed the use of dense features and benefits 

from feature sharing between classes since the trees vote for multiple classes. It was extended to 

3D joints and experimented on pose estimation in [110]. 

 

e. Adaboost [111] 

During this thesis, the Adaboost classifier has been one of the main algorithms used to 

evaluate the performances of our propositions. In the last few years, it emerged to become a 

popular machine learning algorithm. Moreover, the algorithm came into practice with the Viola 

& Jones’ study [112] and its application to face recognition, and it started to show its potential 

in action recognition [113]. 

The algorithm can be resumed as follows: 

xi / i=1,…,n are the samples labeled yi={-1;1}. A weight wi is attributed to each sample such 

as wi=1/n 
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Considering h as the weak classifier, which labels the samples, the purpose of the Adaboost 

algorithm is to combine the most discriminant weak classifiers linearly into a final strong one. 

Hence at each iterations t / t=1,…,T, the aim is to find the classifier that outputs the smallest 

error: 

ℎ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ [−
(ℎ𝑡(𝑥𝑖)×𝑦𝑖)−1

2
×𝑤𝑖]𝑛

𝑖=1  

At each iteration, 𝑤𝑖 is modified according to the classified examples. 

After finding the weak classifier, the misclassified samples’ weights are increased, and then 

all the weights are normalized 

Finally, the strong classifier is built as follows: 

𝐻(𝑥) = 𝑆𝑖𝑔𝑛 ∑ [
1

2
ln (

1−𝜀𝑡

𝜀𝑡
) ×ℎ𝑡(𝑥)]𝑇

𝑡=1  

Where epsilon is the error calculated at every iteration as being the sum of the weights of the 

misclassified samples at iteration t. 

 

Note: there can be multiple types of classifiers h or a single one (usually one with a stumps 

decision) with a multitude of features. Consequently, the selected weak classifiers are associated 

with the most discriminant features. The usage of the large set of features is an interesting result 

that can be extracted from the strong classifier produced after running the training step. It 

inspired us to implement the same idea. 

In the Chalearn 2014 [21], a method based on an Adaboost classification was ranked second 

out of 17 others [113]. It extracts a large set of features containing skeletal joint, angles, 

velocities and hand descriptors at all frames with multi-scale temporal windows. The skeletal 

features are calculated from normalized joint positions (according to the length of the torso), 

Euclidean distances between joints, as well as direct distances from joint angles in a quaternion 

representation and velocities. HoG descriptors are extracted from RGB-D frames, from the hand 

patch, and are normalized and scaled. This is done by positioning a square image around the 

hand and refining the segmentation of the hand by eliminating pixels exceeding a threshold (the 

pixels deviating “more than a threshold from the median depth of the image” are eliminated). 

Adaboost was also used in [114] for building discriminant mid-level features and 

consequently, allowing the classification with a late fusion architecture, which will be described 

in details later on in II.E.b. 

An extension of the Discrete Adaboost is the soft cascade classifier [115]. It consists of 

considering the cascade as a sequence of weak classifiers where a rejection threshold is attributed 

to every level of the sequence. We can state many other extensions to the Adaboost; yet, the 

Viola & Jones study [116] is the most known cascaded classification method for face 

recognition. It improves the computational efficiency of the algorithm by increasing the number 
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of features to train a classifier at every level of the cascade, hence, increasing the complexity 

only to check the rare positive cases.  

 

f.  Hidden Markov Models (HMM) 

They are probabilistic methods for modeling sequences and temporal data. They are known 

for classifying temporal patterns such as speech, handwriting, gesture recognition… The 

sequences are modeled by observed states and other hidden states, which are unknown to the 

user, including dependent state probabilities. Considering the training sequences and an output 

sequence, the HMM aims to compute the set of transitions and probabilities that have generated 

the training sequence, which corresponds to the learning phase. Afterward, the probability of 

finding the output sequence and the sequence of the states that is most likely to have generated 

the output are calculated. This corresponds to the classification phase. 

[31] represents HMM states by centroids of discriminant features’ clusters, hence generating 

a CodeBook. The hard task of assigning all the performances of an action to an HMM is 

overcome. With the usage of the HMM, all the codewords depend on each other, but as seen in 

Figure 5, which was taken from this paper, the first codeword is discriminant by itself, this 

dependency is not useful for action classification. As there is a high dependency between the 

codewords and the actions, the Markov Model is not useful in this case. 

 

 

Figure 5. Pattern of codeword indices borrowed from [31] 

 

g. Neural Networks 

We state other classifiers that are also popular in the action recognition, yet we do not 

implement them is this thesis, like the Neural Networks (NN). Their idea has been inspired by 

the biological neural networks, in other words, the nervous system. This algorithm emulates the 

interconnection behind brains cells. A representation of a simple NN is an input layer receiving 

the features, an output layer, which takes the decision, and some hidden layers. Each layer 

consists of nodes that are interconnected by a weighing parameter. The neurons (the nodes) work 

in a feedforward system, where each neuron receives an input, processes it with an activation 

function and if the input exceeds a threshold, forwards the value to the ones it is connected to. 
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To train the NN, a backpropagation procedure compares the output of the perceptron to the one 

that was meant to be produced, to adjust the weights of the connections while going backward 

across the system.  

 

h. Deep Neural Networks 

The NN can be extended into Deep Learning: the Deep Neural Networks (DNN) [117]. It is 

a complex architecture with multiple levels of representation of abstraction.  

In some way, the late fusion architecture is already included in the deep architecture. In this 

work, we could only consider the DNN as a synchronous solution but, due to the complexity of 

the architecture modeling and the amount of process required by the training step, we did not 

consider this kind of classifier in our benchmarks. 

 

i. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) are a category of artificial neural networks with the 

addition of the dense connectivity between adjacent layers that enforces the connectivity 

between layers, hence adding the complexity but at the same time, improving the features’ 

discriminance [118] . The algorithms showed their efficiency in action recognition.  

A recent paper proposes an extension for the CNN that is applied on action recognition, based 

on pose estimation in images and video sequences [119]. The method builds a large vector 

containing multiple features, extracted from image patches, and from the optical flow with CNN. 

Again, we argue in this case the dependency on the type of the dataset. 

 

j. Extensions 

All the above algorithms have many extensions, such as K-Means forest [120], where the 

features are divided into clusters and by propagating the tree backward, the nearest clusters are 

joined into a node. We also state Fuzzy KNN and Real Adaboost that outputs a real result instead 

of a binary result… Nevertheless, as this thesis does not focus on the classifier itself, we will not 

go into the details of the alternative algorithms. 

 

k. Sequence Alignment 

Dynamic Time Warping (DTW) is a known algorithm for aligning sequences. It has been 

applied to gesture classification. It is based on matching two sequences by finding the lowest 

alignment cost. This approach relies on a kind of Levenshtein distance used to fill a 2D matrix. 

A C# code was posted online as Open Source for a DTW algorithm that aligns 3D coordinates 

from the Kinect’s Joints and labels simple gestures [121]. This method is very simple, and its 

learning phase does not require a lot of training data, as opposed to the algorithms stated above, 

which require much larger action datasets. 

The Multidimensional Dynamic Time Warping (MD-DTW) has been inspired from the 

DTW. The DTW does not suffice for aligning sequences with multi-dimensions. Hence, with 
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MD-DTW this is performed by calculating the features, normalizing them, applying a smoothing 

filter, building a 2D matrix from the sequences, then performing an alignment with the original 

DTW [122].  

Of course, there are many ways of aligning sequences. In [70] , it has been reported that 

“matching an input to all gesture models […] is too slow for gesture recognition systems with 

gesture vocabularies”. Thus, deducing that the DTW and the MD-DTW are too slow for gesture 

recognition. Consequently, the gestures have been broken into smaller units, and a pruning 

algorithm implement with a Dynamic Programming strategy has been suggested for the 

alignment. 
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E. Architectures 

Before starting the following section, it is important to note that throughout the thesis, the 

classifiers are considered as “black boxes.” Hence, there has not been an in-depth study on the 

classifiers. In fact, Chapter IV focuses only on improving the classifiers’ performance by 

refining the samples’ set and enriching them. Chapter V adds a decision level by considering the 

output of the early level classifiers as an input of the late level classifiers. Even though we stated 

some extensions of classifiers in the previous paragraphs, we experiment with classifiers in their 

simpler format, without any extensions. 

The classifiers above can be combined into early or late fusion architectures. Both will be 

described in details below. 

 

a. Early Fusion 

The basic idea behind early fusion classification is to output a decision from a single model 

or classifier directly after training or testing the feature set.  

Figure 6 is an example of an early fusion action classification architecture, where the mono-

dimensional features are directly combined into a vector that trains the classifier. 

 

 

Figure 6. Early fusion architecture 

 

The only difference between this architecture and a late fusion architecture is that in late 

fusion classification, a final decision is taken from the combination of multiple early classifiers. 

The late fusion classification will be described next. 

 

b. Late fusion 

When working with multiple data streams, at some point, the output of the classification needs 

to be fused. The fusion methods can be either early or late. The early fuses modalities in feature 

space, the late fuses modalities in semantic space. As mentioned before, no matter the type of 

architecture, it is required as a first step to extract unimodal features from the stream of data.  
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Some studies have considered hybrid fusion where the outputs of the early and late levels are 

fused at a final decision level [123]. 

A simple example of a late fusion, in one of the early studies, is its application on action 

recognition in RGB images [124]. The authors built mid-level motion features based on low-

level optical flow features with an Adaboost classifier. Hence, the weak classifiers are the low-

level features inside small cuboids in the image. Consequently, every cuboid will be described 

by a strong classifier. Adaboost is applied a second time on the mid-level features to find the 

best subset of mid-level motion features. This time, the combination of the low-level features is 

considered as the output of the early classifier (described as a confidence coefficient, which is a 

real value calculated from the weighted sum of the low-level features). 

The Late Fusion architecture helped solve many problems, especially, with gesture 

recognition from skeleton poses, where features extracted from single joints form an input vector 

for a classifier. Afterward, the combination of outputs from every joint’s classifier (early 

classifier) trains a late classifier, as in Figure 7. 

 

 

Figure 7. Late Fusion Architecture 

 

[125] describes the feature encoding technique as a richer representation of the low-level 

descriptors. We state this paper to emphasize on the difference between mid-level feature 

representation in late fusion algorithms, in pooling, and in encoding the features’ vector. In this 

paper, the low-level features are submitted to a set of pooling and encoding techniques with bag-

of-features and other supervised algorithms and form a final dictionary that will be later used to 

train the classifier. 

Late fusion has also been implemented in other domains not quite related to action 

recognition. For example, in multimedia indexing [126] where binary classifiers (any 

classification algorithm) are applied to the documents, the results, which are confidence 

coefficients, are then matched with model vectors. A rank minimization framework is proposed 

for image classification [127] to compute confidence scores from every model, to convert it into 

a comparative matrix and to infer a final relationship matrix. This method outperforms early 

fusion and even other late fusion methods when it comes to image classification. 
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F. Joint Tracking 

There are some studies prior to (and after) the release of the Kinect device that tracked the 

human skeleton directly from the RGB-D map, implemented with different and interesting 

techniques. 

[128] extracts extrema points (called Geodesic EXtrema) from a 3D surface mesh to form a 

set of points of interest. Overlapped patches of points of interest are classified with a boosting 

algorithm to solve the problem of detection and identification of body parts (Only 5 joints: Head, 

Hands, and feet) in depth images, according to the local maxima of the classifier's response. 

Many problems are raised in the paper such as the identification of the surface mesh, which is 

done by simple distance measurement, and the low number of detected joints. 

The results obtained in the paper stated previously were applied and extended in [129] to 

perform full body recognition and reconstruction. Afterward, a lookup on a motion database 

with a nearest-neighbor is combined with a pose hypothesis to reconstruct the final skeleton. The 

limits of this approach are stated in the paper with the most important one being that a fast 

movement can disturb the tracking algorithm. 

This thesis is based on the extraction of features from the 3D joints’ positions from a depth 

sensor: The Microsoft Kinect. The 3D joints extraction algorithm implemented in the Microsoft 

Kinect is one of the few that have been made available for commercial usage and performed 

well in early studies, for example, when classifying dance gestures [130]. Consequently, we find 

it interesting to summarize the procedure of the tracking and extraction of the 3D joints’ 

locations.  

To refine the MoCap database, the process of capturing data, sampling, training the classifiers 

and testing joint tracking accuracy is repeated. Afterward, to populate the dataset for 

classification, 3D body poses are synthesized from the real training set by adding variations of 

camera pose, body pose, body size and shape, camera noise, clothing, and hairstyle. Depth/Scale 

and translation variations are handled by the chosen features (II.B.a). The body is divided into 

31 parts in a texture map. More information and figures illustrating the meshes and descriptions 

of the variations are available in the supplementary material of [71]. Figure 8, illustrating the 

meshes and the addition of the variations, has been borrowed and displayed below: 

 

 

Figure 8. Illustration of the meshes. In the bottom row, the variations have been added. 

(Supplementary material of [71]) 
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Individual pixel features computed from depth information are calculated as in I.B.2) and 

labeled using a Random Decision tree classifier on 2000 random pixels for each image. 

The trees are trained as follows: at each node, a random feature is used to split the candidates, 

resulting in a binary decision with a left and right set. The process is repeated, and a gain is 

calculated by applying a Shannon entropy, representing a kind of error. The recursive step across 

the nodes is stopped when a depth is reached, or a sufficient gain is reached (The word sufficient 

is not defined clearly nor the origin of the gain in the paper). The classification is impressive as 

it required a large set of trained images: 1 million, on a cluster of 1000 cores for a duration of 

one day. 

The pixel information outputted from the classification should then be “pooled across other 

pixels to generate reliable proposals for the positions of 3D skeletal joints”. The procedure 

consists of finding the mode of density, based on a mean shift approach with a Gaussian kernel. 

Finally, the points above a probability threshold are pushed back onto the real scene. 

Other studies [131] criticized the occlusion problem in joint tracking of the Microsoft Kinect 

[71] and aimed to improve Shotton’s algorithm by combining 3D tracking and 3D pose 

estimation. Hence, 3D pose tracker is used to “sequentially register 3D skeletal poses”. The 

system is built on a robustification process between the tracker and the pose detector. Moreover, 

the algorithm applies inverse kinematic techniques to reconstruct the pose. However, the paper 

in question also states that their approach needs “manual initialization and recovery from 

failures.” 

Inspired by the training of the Microsoft Kinect, [132] contributions were based on improving 

the regression forest to recognize 3D human poses from depth images, by inferring 

correspondences between depth image pixels and points in a canonical articulated 3D human 

mesh.  

The previous algorithm improved the Kinect SDK training process by fitting a skeleton to the 

3-D mesh of inferred dense correspondences. Consequently, it conserved kinematics constraints 

(we note that kinematic constraints are defined between two rigid bodies which result in the 

decrease of the degrees of freedom), for example, the maximum DOF of the Elbow. The fitting 

was done even without the standard iterated closest point (ICP) [133], which requires good 

initialization and a large number of iterations to converge. 

A quick resume of other steps that were taken for training the Kinect SDK can be found in 

[134]. Other papers such as [135] claim to have improved the performances of the Kinect even 

to track dogs. 

In [28], by fusing the output of multiple sensors (Microsoft Kinect cameras) the authors solve 

the occlusion problem, increase the tracking quality and enforce kinematic constraints. 

Consequently, a 3D skeleton model is defined by a set of DOF for every joint and the x,y,z axes 

as mentioned in the introduction of action recognition. The shape is defined by cylinders and 

other functions to match, as much as possible, the upper legs and the torso, which are found to 

be more flexible than a mesh or pure cylindrical coordinates. 
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The pose estimation is done with particle filtering where the set of particles are updated 

according to previous steps. 
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G. Temporal Segmentation  

Three tasks are required to perform proper temporal segmentation in action recognition. The 

first of those tasks is spatial segmentation, which consists of tracking the joints or body parts. 

Then comes the temporal segmentation including the localization of gestures inside the whole 

action. The last task is the recognition of the gesture and its labeling. In the following paragraphs, 

we overview a part of the background on temporal segmentation. 

 

a. Internal action segmentation 

Many publications that are related to the automatic analysis of actions are based on the 

implementation of a Markovian model. They postulate implicitly that an action is a succession 

of lingual structure, i.e. the action follows grammatical rules that assume a possible causal 

relation between units of language. 

However, this type of approach is never applied to a large corpus, nor actions that can be 

considered as sophisticated. Consequently, the assumption stated above could be revised. 

Moreover, dividing an action into small, simple, units is a widely debated topic that has not been 

concluded until this day. 

Inspired by the idea that the human actions are comparable to the human language, the human 

body will have its phonemes, morphemes, and sentences. Different approaches have been 

considered: dynemes, actemes, movemes, kinetemes. All resemble phonemes in human 

language and have been concatenated into “words” then “sentences”. 

The most basic approach, the kinetemes [136] is based on the changes of velocity and 

acceleration to build equivalents of the “phonemes”. By clustering these small units, they are 

grouped into “actiongrams”. The following interesting theory has been proposed: Subject-Verb-

Object where the “the subject is the body parts (noun), the action is the motion of those parts” 

and the object is any third component in the whole sequence (e.g., table, person…). Hence, the 

smaller part of the action, the kinetemes, are the verbs. 

The same idea can be found in other studies such as the dynemes [137], defined as “units of 

full-body movement skills.” These dynemes are constituted from 3D DOF, positions, and 

velocities of the human body. A probabilistic HMM model is built based on a limited set of these 

basic units of human motion.  

The movemes [138] are also analogous to the phonemes. An interesting definition has also 

been declared compared to the other studies: “There should be no natural way to decompose a 

moveme further into sub-movemes.” Nevertheless, the general definition differs; the motion 

primitives correspond to a word in a language. 

The approach for finding the actemes [139] has been inspired by speech recognition on the 

extraction of subword units [140] [141]. The main idea consists in identifying segments where 

the signal follows some stationary properties. Then segments are aggregated using one or several 

hierarchical HMMs. In the following works, those signals are derived from the Fourier 

coefficients of cylindrical coordinates of the body [88]. 
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All the above definitions are vague and are based on pre-existing technologies such as the 

HMM, or arbitrary. Consequently, they do not provide a concrete and logic definition of an 

action or a gesture. 

As seen above, partitioning an action into smaller gestures can be effective, and indeed, in 

the following paragraphs and more recent papers, gestures have been partitioned into 

subgestures. We find interesting the simple features that have been used in building the dynemes, 

kinetemes, and movemes and those inspired us in the construction of our feature set (Inspiration 

in calculation of the Features II.J.c). 

 

b. Gesture Spotting 

The term gesture spotting has been cited in multiple papers [142]. It is defined as the study 

of localizing the start and end frames of a gesture of interest, in a video stream.  

In [142], a study was conducted on gesture recognition in video clips; where a person is 

writing, in the air, digits between 0 and 9 with his hand. A solution has been proposed for solving 

the problem of falsely matching small gestures with other longer ones. This was done by setting 

the relationship between the subgestures manually. The training is performed with a dynamic 

programming algorithm while comparing two features vectors with a threshold. Multiple 

candidates are present in the same frame. The decision is taken according to a relationship 

between supergestures and subgestures (Supergestures always have the advantage) and a score 

attributed to the decisions, according to their distance from the models. 

In an updated paper [70], the above method has been improved by solving the following 

problems: the threshold may overfit the training data, the tracking of the hand and setting the 

subgestures relations were done manually. The spatial segmentation is performed by locating 

different hand positions, with simple skin detection and motion cues at each frame, and 

classifying these candidates. The models defining the gestures have been learned with a dynamic 

programming algorithm. 

One of the many gesture spotting mechanisms has been published recently in [143]. The 

gesture is divided into subgestures; features are extracted from every subgesture, and are 

smoothed afterward. After that, a median value is calculated from a large matrix containing all 

the subgestures features to build a final vector. The training is done with a multi-class Random 

Forest. 

The robustification process is interesting. The initial classifier runs on the sliding windows at 

different temporal scales, adds the misclassifications to the original dataset and thus, is retrained. 

The same procedure will be approximately used in Chapter VI, where we build an additional 

label instead and increase the initial dataset size (Key in Segmentation II.J.e). 

Finally, the testing (segmentation) is done by a sliding window, with the same procedure that 

has been used during robustification. The final decision is taken by picking the highest 

confidence coefficient. In this paper, the confidence coefficient is defined as the percentage of 

trees that vote for that particular class. 

 



38 

H. Action Modeling  

Since we address the subject of modeling classes to be recognized in this thesis, it is essential 

to cite elements of the literature that are relevant to our topic. There are many studies related to 

representing actions and temporal samples as numerical or statistical sequences, but none of 

them is similar to the method that will be explored in depth in Chapter V. Hence, we only 

mention some papers that propose a digital model of actions. 

As noted above, we find the modeling of samples or actions in different fields, especially 

when working with an HMM. For example, in [70] a model is computed with a variant of the 

Baum-Welch algorithm. As stated in the thesis, there are numerous parameters to assign 

manually, such as the number of states. The transition probabilities are also fixed to “simplify 

the learning task” and because there are not “sufficient training data”. 

A different way of modeling an action is cited in [70] with the study on subgestures. In 

addition, modeling techniques that have been used are old. For example, the dynemes, movemes, 

and actemes are, in fact, ways to describe the different states in an action.  

The partitioning has been researched in the feature level too. In [92], random partitioning of 

the time sequences is applied at different time scales and the Fourier transform is computed from 

the partitions’ features. Consequently, an FFT pyramid is built. The size of the partitions was 

not precise. Hence it could be considered random or dichotomous, according to the figures in 

the paper. 
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I. Asynchronous Fusion 

The Asynchronous Late Fusion is the subject of our thesis. This term is not new in the 

machine learning field and has been used previously in multiple studies. In most of the work on 

the subject, the Asynchronous is defined as streams of information generated from different 

sensors. 

In [144] [145], the study has been conducted on Asynchronous events with the Asynchronous 

HMM (AHMM), where the streams belonging to a single sample are produced by a microphone 

and a camera filming a speaker. To obtain an alignment between the two sequences an EM and 

a Viterbi algorithm were implemented by changing the dynamicity of the sequences.  Applying 

HMM to the problems of gesture recognition raises the problem if identifying the states in an 

action. 

Additional studies suggested the same definition of the term Asynchronous such as [146] 

[147], where the work has been conducted on multiple sensors, and multiple users sending data 

streams [148]. According to the previously cited papers, the term Asynchronous in the phrase 

“Asynchronous Sensor streams” is referred to when the outputted stream from the sensor has a 

time-of-arrival that differs from the other sensors. Hence, the sensors are not synchronized. The 

researches tend to synchronize these streams or solve other problems, such as source localization 

by taking advantage of the asynchronous property. 

The Asynchronous term used in this thesis have here a different definition, and can be 

described in a few lines as follows: two low-level classifiers generating two different sets of 

decisions in time, where both sets have the same length and are synchronized, can produce a 

reliable label at different instants. This statement will be extended further in Chapter V. 
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J. Resume & inspirations 

The literature above was a source of inspiration to build our hypothesis and our algorithms. 

As a result, the following part describes and labels the parts of the related work that we took 

interest in: 

 

a. Skeleton Normalization 

A movement depends on the position of the COG in space and the length of the skeleton’s 

bones. To operate with a normalized skeleton independently from the world coordinates and the 

position of the COG, the DOF are calculated from the skeleton, allowing us to normalize the 

coordinates and remove the dependency from the position of the human body in space (III.B.a). 

 

b. Synthetic Datasets 

It is evident that there cannot be a complete action dataset. Hence, inspired by the Microsoft 

Kinect and the kinesiological approach to the movement (IV), we implement an algorithm that 

takes into consideration the variations between different actions to generate synthetic ones for 

training the classifiers. 

 

c. Features 

Table 1. Description of interesting features 

Feature name Description 

DOF and joint 

angles 

To represent a skeleton and normalize it, hence become independent of the 

COG and the movement in space 

Voxel The voxel holds a large amount of spatiotemporal information. 

Simple features 

(Acceleration, 

velocity…) 

Adaboost permits us to use simple features since the algorithm will “pick” the 

most discriminant ones during training. 

Moreover, the kinetemes, dynemes, movemes and actemes, were a source of 

inspiration since the acceleration and velocity proved to be a discriminant 

source of information for action representation. 

Even more simple features were calculated as in (III.B.b). 
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d. Training and classification 

Table 2. Description of interesting classifiers 

Classifier Description 

Adaboost 
Shows its purpose with a large set of features with Viola Jones. Is easy to 

implement. Its classifiers are easy to observe and analyze. 

KNN Easy to implement and to observe 

Random Forest Is used in Kinect training 

SVM Is a common algorithm 

HMM 
Processes temporal sequences and can be compared to our work on 

asynchronous temporal classification 

 

e. Segmentation 

As seen in different trials of representation of gestures and actions such as in the kinectemes, 

movemes, phonemes and dynemes, the action has been segmented into small parts to study every 

subgestures or every sub movement. Hence, to analyze the recording, which reveals an action, 

it is primordial to "cut" it into sub-recordings. Consequently, during the remaining of this thesis, 

and especially when working on the asynchronous module, the recordings are cut into smaller 

parts. 

In addition, a robustification process was implemented with the purpose of including an 

additional label to the dataset to reduce the False Positive rate. 
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 CONTEXT AND FRAMEWORK 

A. Datasets 

The recordings were captured directly from an RGB-D sensor (in our case, the Microsoft 

Kinect device) and with the aid of the device’s SDK, the position of the joints are inferred (As 

mentioned previously in the related work (II.F)). The performances of the algorithms that were 

studied during this thesis are measured by training and testing multiple datasets. Most of them 

are captured with the previously mentioned process. The choice of the datasets is made according 

to different properties that will be detailed in the next chapters.  

We note that classification algorithms are trained with recordings that have been segmented 

manually, without the application of any properties or criteria. Hence, it was a subjective 

decision of the user who was performing the procedure.  

For our experiments, we gather five datasets. Initially, a dataset, composed of actions 

containing basic variations, is captured. Some of those recordings are merged with other actions 

to form a second dataset as in Table 4, consequently inducing more confusion than the previous 

one during the classification.  

Table 3. Custom dataset called captured dataset (CAP) 

Action Description 

2 hands up Simple action 

Crouch 
Simple action that produces a large difference when performed by 

different subjects 

Raise right hand up Action that might be confused with 2 hands up 

Right Hand Wave 

Right-hand wave movement with guidelines (Move hand up, then to 

left once and then go back to stable position, while keeping the hand 

below the head) 

Surrender Confused with 2 hands up 

Tennis Forehand Drive Complex tennis gestures that are hard to recognize and might be 

confused with one another. Tennis Backhand Drive 

 

Table 4. Custom dataset with right-hand wave confusion (CR) 

Action Description 

Right-hand wave A Right-hand wave movement without following specific guidelines  

Raise Right hand up Same action as in CAP 

Right-hand wave B 

Right-hand wave movement with guidelines (Move hand up, then to 

left once and then go back to stable position, while keeping the hand 

below the head) 

Surrender Adds even more confusion 

Tennis Forehand Drive Complex tennis actions that are hard to recognize and might be 

confused with one another. Tennis Backhand Drive 
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The recordings in Table 5 are recorded to study the temporal confusion between the 

recordings. This matter will be discussed further in Chapter V. 

 

Table 5. Custom dataset with Swimming and Soccer (SS) 

Action Description 

Swimming Crawl 
Right-hand moves up then down, then left-hand moves up then down 

(creates confusion with Swimming Crawl) 

Swimming Butterfly Both hands move together (up and down) 

Soccer Subject throw the ball and then shoots 

Not Soccer 
Subject shoots and then throws the ball (creates confusion with 

soccer) 

 

The recordings in the dataset mentioned in Table 6 is composed of 4 classes, where a subject 

is sitting in a chair and is performing sequences of actions: alternating between raising right 

hand, then lowering and raising the left hand, then lowering it. In the table, we display the hand 

sequences that are performed. 

This dataset has interesting properties that will be explored in Chapter V.  

 

Table 6. Custom dataset with right hand up & left hand up (RL) 

Action 

Right, Left, Left, Left 

Left, Right, Left, Left 

Left, Left, Right, Left 

Left, Left, Left, Right 

 

We have mentioned the gait previously in I.C.b.7 to focus on the uniqueness of an action. We 

now capture another dataset that will interest us in chapter V. The dataset is focused on different 

applications and performances of the gait. "It is a series of rhythmic, alternating movements, of 

the trunk and limbs which result in the forward progression of the center of gravity and the 

body." [149] 

The subject performs the gait in multiple situations, to build the dataset: army march, normal 

gait, and abnormal gait. 

 Many diseases and conditions might result in an abnormal gait cycle, of which we site: 

Parkinson disease, for example, is characterized by a loss of brain cells producing dopamine 

and lead to a weakening of motor functions. Symptoms include stiffness, tremor, impaired 

balance and shuffling gait [150]. Arthritis of the leg or foot joints, foot problems, fracture, 

infection, legs that are of different lengths… even shoe problems might induce abnormal gait 

movement. 
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Gait testing is also an important part of any neurological examination. [151] 

Gait is assessed by asking the patient to walk across the room while the physician observes 

and note any abnormalities. Next, the patient is asked to walk heel to toe across the room, then 

on his toes only and finally on his heels only. 

During our experiments, we chose to differentiate between a normal gait, a gait during a 

neurological examination, an abnormal gate (Parkinsonian shuffling), another abnormal one, 

characterized by stiffness of one knee similar to a fractured leg or knee, and the army march. 

The actions are described in Table 7. The dataset is composed of the 270 actions distributed 

equally among the actions. 

(Additional details on the Gait can be found in Chapter 22 of [10]) 

 

Table 7. Custom gait dataset 

Action Description 

Army march 
The subject walks by moving his left leg and raising his right arm at 

the same time, then moving his right leg and left arm 

Incorrect army march 
The subject walks by moving his right leg and raising his right arm at 

the same time, then moving his left leg and left arm 

Parkinsonian-like shuffling 

The subject walks with the following characteristics: 

- Stooped with the head and neck forward 

- Knees flexed 

- Slow and small steps 

Neurological Experiment The subject walks heel to toe across the room 

Normal gait The subject walks normally 

Left leg fracture The subject walks with a stiff left knee 

Right leg fracture The subject walks with a stiff right knee 

 

In addition to the captured dataset, a late fusion classification is performed on the actions of 

MSRC-12 [58], MSR Action3D [60] and MoCap BVH [62] datasets.  

The MSR Action3D contains 20 action types. 10 subjects perform the same action two or 

three times. 

The captured dataset, called CAP [152], contains 149 recordings, divided equally into 7 

classes, the CR 130, the SS 140 and RL 130. During the rest of this thesis, additional datasets 

will be introduced depending on various properties.  

During a Late Fusion classification, which we will adopt in chapter IV, all datasets are divided 

equally into three groups for classification: Early, Late Fusion, and Evaluation sets. In fact, 

training and testing a classifier with the same set of data will give perfect results and since the 

decision from the early classifiers are the training input of the late classifier, it is important to 

use different sets of recordings to train each level. 
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In Chapters V & VI, a third level will be required for the training. Hence, the datasets will be 

divided into another group of recordings. 

We display some frames for every action in the custom datasets in Appendix IV – Datasets. 
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B. Feature extraction 

a. Calculating the angles 

As explained in I.C.b.5, the 3D joint angles (also known as the Degrees Of Freedom, DOF) 

are related to the muscles and joints of a person performing a movement. Moreover, they are 

computed to become invariant from the body shape and the position of the coordinates of a 

subject in space. We compute the DOF to improve the feature’s stability and represent the bone 

orientations for the connected joints. Inspired from the BVH angles, which belong to the MoCap 

database, the difference between the bone’s rotation and the initial stable position of the body is 

calculated to obtain the 3D joint angles. The initial stable position is a predefined set of bones 

and joints standing straight in an upright position as in Figure 9, also called: skeleton in a T 

position. 

 

Figure 9. Stable Skeleton with the joints of the Microsoft Kinect 1.0 

 

Preliminary work was based on the most intuitive solution that consists of calculating the 

Degrees Of Freedom (DOFs), from the analysis of the human kinematics. Hence, the angles that 

were computed for 16 joints are listed in Table 8:  

 

Table 8. Degrees of freedom from 16 body joints 

Joint name as displayed in the Microsoft Kinect 

SDK 
DOFs 

HipCenter X and Y 

ShoulderLeft and ShoulderRight 3 

ElbowLeft and ElbowRight 3 

WristLeft and WristRight X and Y 

HipLeft and HipRight 3 

KneeLeft and KneeRight 1 

AnkleLeft and AnkleRight 1 

Spine, Head, and ShoulderCenter 3 
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Nevertheless, calculating only this number of angles was not enough. In fact, the purpose was 

to normalize the joint coordinates according to a stable skeleton using the reverse of the 

algorithm that was used to infer the angles. It was impossible to find the initial 3D coordinates 

again, having calculated only 1 DOF for some joints. We were not able to obtain a set of 

consistent coordinates to apply on the stable skeleton. Moreover, applying the DOF on the 

coordinates will result in a skeleton that is independent of the movement in space. In other words, 

the body will not perform a linear or curvilinear motion anymore (refer to I.C.b.3, I.C.b.4 & 

I.C.b.5). As a result, the solution that was proposed above was not consistent. 

We also explored the conversion of the coordinates to BVH file format. Most of what we 

found online, did not return the expected results; when some were exporting the angles to a BVH 

successfully, their algorithm required the subject that was tracked to stand in an H position or 

required high performances or some calibration [153] [154] (Figure 10). This did not help us 

since we had to add a lot of preprocessing algorithms before being in a situation to use the output 

of this method. Therefore, we developed our software to extract those angles (Appendix IV – 

Datasets 

 

Due to graphical constraints, we only display the frames that we judge as the most relevant 

for an action. 

 

Table 104. Custom dataset called CAPtured dataset (CAP) 

Action Frames 

2 hands up 

 

Crouch 

 

Raise right hand 

up 
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Right Hand Wave 

 

Surrender 

 

Tennis Forehand 

Drive 

 

Tennis Backhand 

Drive 

 

 

Table 105. Custom dataset with right-hand wave confusion (CR) 

Action Frames 
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Right-hand wave A 

 

Raise Right hand up Same as in Table 104 

Right-hand wave B Same as in Table 104 

Surrender Same as in Table 104 

Tennis Forehand Drive Same as in Table 104 

Tennis Backhand Drive Same as in Table 104 
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Table 106. Custom dataset with Swimming and Soccer (SS) 

Action Frames 

Swimming 

Crawl 

 

Swimming 

Butterfly 

 

Soccer 
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Not Soccer 

 

 

Table 107. Custom dataset with right hand up & left hand up (RL) 

Action Frames 

Right, Left, 
Left, Left 
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Left, Right, 

Left, Left 

 

Left, Left, 

Right, Left 

 

Left, Left, 

Left, Right 
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Table 108. Custom gait dataset 

Action Frames 

Army march 

 

Incorrect 

army march 
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Parkinsonian-

like shuffling 

 

Neurological 

Experiment 
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Normal gait 

 
 

Right leg 
fracture 
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Left leg 
fracture 
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Appendix V - Open Source Contributions). 

 

 

Figure 10. iClone 6 MoCap Plugin calibration in H pose. 

 

As explained above, the solution was not consistent. Therefore, a simple solution was to 

calculate 2 angles (2 DOF for every joint) in 3D space using rotation matrices. It is displayed 

below: 

  



60 

 According to each orientation of the bone in T position,  

 Calculate next vector  

 For each joint i in (x, y, z): 

  𝑉𝑛𝑖 = |(𝑛𝑒𝑥𝑡 𝑗𝑜𝑖𝑛𝑡)𝑖 − (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑗𝑜𝑖𝑛𝑡)𝑖| 

  Calculate previous vector, at T position (Unit Vector) 

   𝑉𝑝 = (0, |𝑉𝑛|, 0) 

  𝜃𝑧 = 𝑆𝑖𝑔𝑛𝑒𝑑𝐴𝑛𝑔𝑙𝑒(𝑉𝑝(𝑥,𝑦), 𝑉𝑛(𝑥,𝑦)) 

  Calculate rotation Matrix Rz 

  𝑉′𝑛 = 𝑉𝑛 ∗ 𝑅𝑧  

  𝜃𝑥 = 𝑆𝑖𝑔𝑛𝑒𝑑𝐴𝑛𝑔𝑙𝑒(𝑉𝑝(𝑦,𝑧), 𝑉𝑛(𝑦,𝑧)) 

  The final result is: 

�⃗� = (𝜃𝑥, 1, 𝜃𝑧)

Algorithm 1. Calculating the DOF 

 

Both solutions stated above (the DOF from the human Kinematics and 2 angles only) are 

published online as an Open Source software. (Refer to Appendix IV – Datasets 

 

Due to graphical constraints, we only display the frames that we judge as the most relevant 

for an action. 

 

Table 104. Custom dataset called CAPtured dataset (CAP) 

Action Frames 

2 hands up 

 

Crouch 
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Raise right hand 

up 

 

Right Hand Wave 

 

Surrender 

 

Tennis Forehand 

Drive 

 

Tennis Backhand 

Drive 

 

 

Table 105. Custom dataset with right-hand wave confusion (CR) 

Action Frames 
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Right-hand wave A 

 

Raise Right hand up Same as in Table 104 

Right-hand wave B Same as in Table 104 

Surrender Same as in Table 104 

Tennis Forehand Drive Same as in Table 104 

Tennis Backhand Drive Same as in Table 104 
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Table 106. Custom dataset with Swimming and Soccer (SS) 

Action Frames 

Swimming 

Crawl 

 

Swimming 

Butterfly 

 

Soccer 
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Not Soccer 

 

 

Table 107. Custom dataset with right hand up & left hand up (RL) 

Action Frames 

Right, Left, 
Left, Left 
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Left, Right, 

Left, Left 

 

Left, Left, 

Right, Left 

 

Left, Left, 

Left, Right 
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Table 108. Custom gait dataset 

Action Frames 

Army march 

 

Incorrect 

army march 
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Parkinsonian-

like shuffling 

 

Neurological 

Experiment 
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Normal gait 

 
 

Right leg 
fracture 
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Left leg 
fracture 
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Appendix V - Open Source Contributions for more information) 

b. Calculating the features 

Our main classification algorithm that we will rely on to measure the performances in this 

thesis is a boosting algorithm (Adaboost). Hence, it is possible to generate a large number of 

features and leave the choice of the best features to the algorithm. 

Consequently, Table 9 displays the features that are extracted from both angles and 

coordinates. 

Table 9. Features used as input to the early classifier 

Features Variations and comments 

Velocity Mean max min 

Acceleration Mean max min 

Signed Velocity Mean max min 

Signed Acceleration Mean max min 

Position of the Joints Mean max min 

Local maxima of the joints’ position Min mean 

Local minima of the joints’ position Max mean 

Extrema of the joint’s position Deviation, Standard Deviation 

Voxel or Motion Volume History [88] 

Time sequence of the X,Y,Z coordinates 

combined into a 3D Voxel model of our 

action 

The Voxel or Motion Volume History (MVH) feature [88] is commonly used in the action 

recognition field and proved to give good performances. An MVH was extracted from the 

recording, then was projected into the 3 planes to compute the size of the covered area on the 

(X,Y), (Y,Z) and (X,Z) planes, as well as the total size of the MVH. 

The features cited above are simple, “directly” calculated features. Derivative features, such 

as the Haar features in Face detection with Adaboost, improved the performances considerably. 

Hence, to compare simple and “derivative” features, another feature set is extracted that includes 

the features in Table 9, in addition to pairwise joint features. These are computed by considering 

a simple Euclidian distance between each joint and the others, and extracting the mean, 

maximum and minimum from the coordinates in time. 
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C. Discussion – confidence coefficient 

In the following chapter, we discuss the different methods that were tried in this thesis for 

computing a confidence coefficient as an output of a classifier. We present our motivation behind 

the removal of the confidence coefficient and the adaptation of a binary result, for some uses of 

the classification algorithms, during the remainder of this thesis. 

We aim to implement the following properties when computing the confidence coefficient. 

These will guide us throughout this thesis when calculating it: 

- A confidence coefficient is usually a trusted real value that accompanies the binary or 

natural output of a classifier.  

- It should be normalizable to a [0;1] interval, where 0 denotes that the result is not 

trusted and 1 that it is. If the output of the classifier is binary and is accompanied by 

a cc, the resulting product of the binary output and the cc is a value between -1 & 1. -

1 shows that the result is trusted and is negative, 1 that it is positive and is trusted and 

0 that it is not trusted. 

By taking into consideration an example where the Adaboost is the main classifier, similar to 

[155], the confidence coefficient (cc) is calculated as follows: the distance is calculated between 

the feature values and the threshold that separates the positive and negative feature values during 

the classification of an action with an Adaboost algorithm. 

 

 We obtain the cc as follows: 

 For each week classifier (w) to W 

  Let 𝑑𝑤 = |𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑| (threshold is the variable of a weak 

Adaboost classifier and featureValue is the feature value of a recording) 

   𝑑𝑤
̅̅ ̅̅  is the average distance calculated between the threshold and the features 

in the dataset 

  The 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝑑𝑤) is the maximum value of 𝑑𝑤 calculated on all training 

recordings. 

  The 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝑑𝑤) is the minimum value of 𝑑𝑤 calculated on all training 

recordings.   

  Let 𝑑𝑤
′  be the distance of the feature value of the recording that is currently 

being tested 

  If 𝑑𝑤
̅̅ ̅̅ < 𝑑𝑤

′ ≤ 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝑑𝑤) 

  Then  𝑐𝑐𝑤 = (𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝑑𝑤) − 𝑑𝑤
′ )/(𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝑑𝑤) − 𝑑𝑤

̅̅ ̅̅ ) 

  Else If 𝑑𝑤
̅̅ ̅̅ > 𝑑𝑤

′ ≥ 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝑑𝑤) 

  Then  𝑐𝑐𝑤 = (𝑑𝑤
′ − 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝑑𝑤))/(𝑑𝑤

̅̅ ̅̅ − 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝑑𝑤)) 

  Else  𝑐𝑐𝑤= 1 

 End for each loop 

 𝐹𝑖𝑛𝑎𝑙 𝐶𝐶 =
∑ 𝑐𝑐𝑤

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑎𝑘 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠
  

Algorithm 2. Calculating the custom confidence coefficient for the Adaboost 
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In a Late Fusion architecture (II.E.b), the confidence coefficient multiplied by the binary 

result from the early classifier test can be considered as a Mid-level feature and is used as an 

input of the late classifier.  

The customized cc that was calculated above was rejected in the rest of the study since we 

argue whether the calculated value cannot be truly trusted. In fact, the computation of the cc is 

missing information: calculating the confidence in the weak classifiers that includes the 

confidence in the choice of the features and the confidence in the cc itself. The confidence in the 

weak classifiers should contain information about the error that is generated by the weak 

classifier, and the confidence in the cc can reveal details about the performance of the cc when 

adapted during an evaluation phase. 

We state below some studies that considered different types of confidence coefficients: 

In [92], the ambiguity was added as a value that accompanied the cc. Nevertheless, the reason 

behind the addition of the ambiguity and the equations have not been described in details.  

In [124] & [156], the output of the strong Adaboost classifier is considered as a confidence 

coefficient of the classifier. These studies adopted the most intuitive definition of a confidence 

coefficient; they stated that the result is better the closer the cc is to 1 and worse if the cc is close 

or equal to 0, “thus, if h(x) is close to or far from zero, it is interpreted as a low or high confidence 

prediction. Although the range of h may include all real numbers, we will sometimes restrict this 

range”. This is similar to the idea of the cc that was described at the beginning of this section.  

Even though this is the most obvious approach, we do not consider it, since the cc cannot be 

trusted because it does not include in its calculation the confidence in the decision of the weak 

classifiers. 

For the sake of diversity, we mention other fields where the confidence coefficient was 

studied, such as multimedia indexing [126]. The value of the cc was bounded between 0 & 1, 

and it was defined as a measure of “the degree of certainty of detection” of a concept. In this 

same research, 3 methods are proposed for computing the confidence score. One considered the 

distance to the decision boundary for each detector, which is closely similar to our own 

proposition of the confidence coefficient. Another indicated the relevance of a concept, or label, 

according to the multimedia document. Finally, one measured the reliability of the detector, 

which is calculated according to the number of samples used for training or according to a 

validation dataset. The method comes in parallel with a part of our vision of the confidence 

coefficient since the reliability can measure the "confidence in the confidence coefficient", the 

relevance and the proximity (or distance) from the classifier’s threshold.  

Nevertheless, we criticize the way the cc was normalized. In fact, it was divided by the 

maximum value inside the range of the ccs, and it was assumed that the ccs have a Gaussian 

distribution. Hence some information from the classifier might be lost. 

In one of the many gesture spotting mechanism published recently [143], the testing was done 

by sliding windows. The final decision was taken by picking the highest confidence coefficient 
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from the output of the random forest classifier. In this paper, the confidence coefficient is defined 

as the percentage of trees that vote for that particular class. 

Sometimes, the confidence coefficient of a classifier is obvious. For example, the cc of a 

KNN is the number of nearest neighbors labeled with the binary output label. 

A large part of the classification algorithm does not have a confidence coefficient, and there 

is a large controversy about this issue. In fact, some researchers consider that, for example, 

AdaBoost does not output a confidence coefficient, hence, a custom cc is calculated, while others 

consider the output of the Adaboost as in a trusted cc. As stated previously, the output of the 

Adaboost is a real value, from which the binary decision is extracted. This algorithm does not 

take into consideration the confidence of the weak classifiers when taking a decision. Moreover, 

the real output cannot be normalized. Thus, the following question is asked: when can the 

confidence coefficient be trusted? 

During the rest of the thesis, we consider the classifiers as “black boxes.” Consequently, we 

do not have any information about the adopted classification algorithm. The only information 

used is the binary output and the real output where the cc is obvious, as in KNN. 
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 SIMULATION 

A. Introduction 

The implementation of the learning process with all of the classification algorithms stated in 

0 requires a large and discriminative action dataset containing a variety of data for the training 

phase. Therefore, the same action should be performed by multiple persons in different ways. 

Yet, the databases available online do not contain enough recordings for each action. In addition, 

it is hard to give people instructions and ask them to perform a gesture they are not familiar with. 

For example, it is necessary to train the classifier with a perfect dataset when trying to find a 

certain action or abnormal ones, nevertheless, not every person performs a tennis forehand drive 

correctly (tennis forehand drive is part of the CAP dataset). Therefore, it seems appropriate to 

remedy this problem by proposing a method to simulate recordings. 

In the rest of this chapter, we present an algorithm for generating simulated recordings from 

a limited number of initially captured ones. These simulated recordings are expected to be 

relevant to train late fusion algorithms with Mid-Level features, extracted from the 20 joints of 

the human body, such as Adaboost, SVM, KNN and Random Forest. 

We capture the data from an RGB-D sensor (as in III.A), calculate the joint angles, simulate 

actions, train the classifiers with the simulated actions and finally test the performances on real 

recordings with the late fusion algorithm previously described in II.E.b. 

The purpose of this chapter is to analyze the added value of the simulation method on the 

overall results with the most basic implementation of the classification methods (without any 

update or extension to the algorithms). Consequently, the classification algorithms are trained 

with actions that have been pre-segmented, manually. 

In resume, an action simulation algorithm is presented to reduce the dependency on public 

databases and to allow training with small sets of actions. The motivation in the work is to show 

the utility of the simulation algorithm by proving that enlarging the datasets with synthetic 

recordings, can improve the classification results independently of the used algorithm. The 

simulated recordings are learned and tested with a Late Fusion Discrete Adaboost, a KNN, a 

Random Forest and an SVM, using the simple feature set stated in (III.B.b). 
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B. Capture and analysis 

The infrared-based camera uses RGB-D data to recognize the positions of the following 20 

joints (refer to II.A for more information): Hip Center, Spine, Shoulder Center, Head, Shoulder 

Left, Elbow Left, Hand Left, Wrist Left, Shoulder Right, Elbow Right, Hand Right, Wrist Right, 

Hip Left, Knee Left, Ankle Left, Foot Left, Hip Right, Knee Right, Ankle Right and Foot Right. 

All this data is collected using the Microsoft Kinect SDK, which is an API available online for 

public usage [23]. 

By capturing recordings of an action from the RGB-D sensor, we simulate and add different 

variables to the initially captured actions. During the simulation process, it is impossible to 

generate data that are exactly similar to real recordings. Nevertheless, we aim to minimize the 

differences as much as possible by studying the errors. To achieve this, we first test the Kinect 

to find if the captured data generates a quantifiable error when tracking the joints, to determine 

how it should be taken into account in the simulation model. 

N.B.: the experiments have been conducted with the Kinect for Windows and Kinect for 

Xbox, but not with newer versions of the device: Kinect for Xbox One. [23] 

We find two types of error: 

a. Tracking algorithm error 

The first error is generated by the tracking algorithm implemented in the Kinect. We study 

and analyze it carefully with the technique described below: 

We capture 3D joint coordinates from a mannequin in a stable position, for approximately 10 

minutes from which, 100 frames are displayed in Figure 11 and Figure 12. The mannequin is 

standing still, 2 meters away from the RGB-D sensor in an environment with steady lighting for 

the whole duration of the recording. 

Figure 11. 100 frames taken from the recording of the abscissa coordinate, Hip Center joint. 

This graph plots variations in the detected hip position along the time. The scale of the 

horizontal axis is the frame number, and the vertical axis is the position of the joint as returned 

by the Kinect, in meters. 

 



78 

 

Figure 12. 100 frames taken from the recording of the ordinate coordinate, Hip Center. This 

graph plots variations in the detected hip position along the time. The scale of the horizontal 

axis is the frame number, and the vertical axis is the position of the joint as returned by the 

Kinect in meters. 

 

Although a flat line was excepted, the variations of the obtained curve can be explained by 

the fact that a Random Forest algorithm was implemented in the Kinect device and the algorithm 

attempts to converge the value of the coordinates towards a realistic position in respect to the 

training database. The coordinates’ values vary around a position with a local minima and 

maxima. 

On the base of this experiment, we conclude that the error can be quantified in millimeters 

and sometimes less. We take into consideration this error and add a random number between 0 

and 2 cm to the joint coordinates of the synthetic recordings. 

 

b. Out of Field Of View Error 

The second error is generated from joints that have not been tracked correctly. This occurs 

when a joint is concealed from the camera’s field of view. 

 This error is not implemented as part of the algorithm; it is added implicitly when generating 

the recordings since the erroneous values contained in the original recordings will be included 

in the generation of the synthetic recordings. 
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C. Simulation algorithm 

We present below a resume of the simulation algorithm, which will be detailed later on in 

this chapter: 

• Capture a small set of actions using the RGB-D device, and obtain 20 3D joint 

coordinates from a human body.  

• Convert the 3D coordinates to 2 angles using rotation matrices.  

• Extract the extrema (local minima and local maxima) from the angles’ sequences to solve 

some of the issues related to the dynamicity of the action. 

• Align every sequence of joint angles’ extrema using a Dynamic Time Warping (DTW) 

algorithm. Extract from this alignment a set of intervals. 

• From these intervals, generate new points using one of the three methods: random (called 

Random), proportional to the first randomly chosen point (called Proportionality), or by 

averaging the previous two methods (called Average).  

• Generate the full sequences of points that form the recording, convert their coordinates 

and angles to features (III.B.b) and train the Late Fusion algorithm using the simulated 

and real recordings. 

 

a. Aligning the local minima and local maxima of the recording 

k is a joint. Let i be the index of the recordings. For every recorded coordinate sequence Aik 

(i.e. the ith sequence of joint k), {θx, θy, θz} are the joint angles calculated as in III.B.a of a point 

at a temporal coordinate t in the sequence Aik 

We first remind the definition of an action as in (I.C.b), where it was stated that a set of 

recordings belonging to an action should be composed of the same gestures and that those 

recordings are performed with the same joint movement, yet, with changes in dynamicity and 

DOF amplitude. Hence, extracting the local minima and local maxima will clearly reduce the 

dependency from the temporal dynamicity, leaving the change in the DOF as the only parameter. 

As a result, we extract the set of local minima and maxima to generate a new sequence Sik.  

We choose a reference recording ARk randomly among all the recordings of an action in the 

training database and extract the sequence of extrema SRk from the recording.  

We align the extrema from the sequences Sik, one by one, with SRk by applying the DTW 

algorithm. At every alignment, a different reference recording is picked. The extrema that are 

aligned, as a result of finding the path with the lowest cost while performing the DTW, form a 

dimension of values. In Figure 13, we display in red some examples of points where two 

sequences Sik and SRk, belonging to the action Right Hand Wave, HandRight joint, have been 

aligned. 
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Figure 13. Alignment of the extrema sequences across time. The normal vertical and 

diagonal dashed red lines mark the alignments’ location. The scale of the horizontal axis is the 

frame number, and the vertical axis is the value of the joint angle. 

 

The dimensions of the values generated in the previous step are then joined according to the 

temporal coordinates of the reference recording. The resulting joined dimension will be called 

an interval. Figure 14 displays an enlarged sample (for a better view) from Figure 13, where two 

sequences have been aligned with a reference sequence. The green and red dashed line represent 

the resulting intervals. 

 

Figure 14. Enlarged samples from Figure 13. The scale of the horizontal axis is the frame 

number, and the vertical axis is the value of the joint angle. 

 

At each temporal coordinate of the reference sequence SRk, we perform the union of the 

intervals. Hence, we obtain a final sequence of intervals where Itk is an interval at a temporal 

coordinate t of a joint k. 
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b. Choosing the points 

We increase the size of every Itk to increase the diversity of the recordings’ angles as follows: 

𝐼′𝑡𝑘 = [𝐿𝐵(𝐼𝑡𝑘) − 𝐾×|𝑈𝐵(𝐼𝑡𝑘) − 𝐿𝐵(𝐼𝑡𝑘)|, 𝑈𝐵(𝐼𝑡𝑘) + 𝐾×|𝑈𝐵(𝐼𝑡𝑘) − 𝐿𝐵(𝐼𝑡𝑘)|]   

Where LB(I) and UB(I) are respectively the lower and upper bounds of the interval I. K is a 

parameter that is picked arbitrarily to add the diversity. The bigger the I’tk, the more the simulated 

recording changes from the initially captured ones. We chose K=1 throughout the remainder of 

the study. Since it is hard to determine the value of K, it has been selected according to different 

experiments. Nevertheless, it is evident that K cannot be equal to a large value (10000), because 

the synthetic recordings will not output the same action as the initial actions, and K=0 would not 

add diversity to the dataset. 

Figure 15 is a visual representation of the increase in the interval’s size, as in equation (6). 

 

Figure 15. This figure represents the increase in the interval’s size. The Bold Dashed Red 

line is the increased interval alignment. The scale of the horizontal axis is the frame number, 

and the vertical axis is the value of the joint angle. 

 

Then, the points are generated arbitrarily by one of the three methods proposed below. The 

purpose of the algorithms is to pick the points inside the enlarged intervals and add randomness 

to the original sequence by picking at least one point as random. 

At every joint, we choose a reference angle, arbitrarily, from the joint angles’ collection {θx, 

θy, θz},. This angle is called θr, r being the reference angle. (This first step is standard for the 

three methods that will be implemented) 

 

i. Random:  

 At the first interval, a point P0 is picked randomly inside an I’0. 
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 The remaining of the angles at the chosen point, are calculated proportionally to the P0. 

 For each interval, the points are picked the same way as the procedure above. 

  

 

Figure 16. Example of a generated sequence with the method random. The scale of the 

horizontal axis is the frame number, and the vertical axis is the value of the joint angle. 

 

ii. Proportionality: 

We choose the first point P0 randomly (as in (IV.C.e.2.1)) in I’0, then, to improve the 

recording’s smoothness, we calculate the rest of the points proportionally to the previous interval 

I’t-1. 

 

  

Figure 17. Example of a generated sequence with the method proportionality. The scale of 

the horizontal axis is the frame number, and the vertical axis is the value of the joint angle. 
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iii. Average: 

For each interval, we calculate P as in (i), P’ as in (IV.C.e.2.2) and average the result from 

(i) and (IV.C.e.2.2) to smooth the recording. We calculate all the intervals in the same way.   

 

  

Figure 18. Example of a generated sequence with the method average. The scale of the 

horizontal axis is the frame number, and the vertical axis is the value of the joint angle. 

 

c. Adding the variables 

The first variable consists of changing the length of the simulated recording. Hence, we 

multiply the length of the sequences that we have obtained from the previous step by a random 

value (called TimeWarping) between the length of the shortest captured recording and the length 

of the longest one. We then divide the result by the length of the current recording, as in the 

formula below: 

𝑇𝑖𝑚𝑒𝑊𝑎𝑟𝑝𝑖𝑛𝑔 =
𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑎𝑐𝑡𝑖𝑜𝑛,𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑎𝑐𝑡𝑖𝑜𝑛)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔_𝑙𝑒𝑛𝑔𝑡ℎ
 

We also add a small random error caused by the tracking algorithm as mentioned in IV.B.a. 

 

d. Generating the recordings 

After obtaining the sequence of points, the recording is generated by simple proportionality 

between the frames and the points.  

Finally, the 3D coordinates are calculated by using rotation matrices (Reverse algorithm of 

III.B.a). 
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e. Analysis of the simulation algorithm 

 Superfeatures 

Before explaining the concept of superfeatures, we recapitulate the definition of an action 

(I.C.b.8): recordings belonging to the same action are similar to a recording that is considered a 

reference if they have been performed with the same movements as the reference recording. This 

means that the body joints must move in the same direction and according to an order predefined 

by the reference recording. Yet, the recordings’ time is dynamic, and the amplitude of the 

movements might differ. This difference between the performances of a recording generates a 

margin of difference from the reference recording that denotes the “uniqueness” of a recording. 

This definition is correlated to the idea of the superfeatures, which is clarified afterward. 

The explanation in the remaining of this paragraph is based on a simple decision stump (e.g., 

Discrete Adaboost decision). During the classification, the decision for labeling the extracted 

features with different classes using a decision threshold algorithm gives a weighted error (ε). 

When ε=0, the decision might lead to an over-classification. This means that the feature is over-

discriminant and is prone to miss new performances of the actions when testing features that are 

located outside the margin of a small actionset belonging to one class. In this case, these types 

of features are called superfeatures. 

In fact, if the training dataset is small, the classes’ margins would most probably be small, 

and a superfeature will appear. Hence, increasing the number of training recordings will increase 

the margin and eliminate the superfeatures. Consequently, in the rest of the Method (IV.C.e.2, 

we demonstrate that the simulator will generate larger margins for different classes and adds an 

error to the features’ decision. 

 Analysis 

The analysis of the simulator’s behavior is conducted using the threshold concept of a 

Discrete Adaboost algorithm since its weak classifiers are easy to observe, and it compares the 

features’ values with thresholds and errors. 

Let xi be the recording i, and yi the class (In this case, -1 or 1, since the Adaboost is a binary 

classifier) of recording i. The couple (xi, yi) forms the input for training the Adaboost. 

Since the Adaboost bases its decision on the error, it is reasonable to add one, as stated in 

IV.C.e.1. However, this is done with certain limits and without diverting too much from the 

initial recording (This will become clearer later on, with the explanation of the different 

simulation methods).  

Let J be the number of features and j={0,…,J-1} the feature index, as a result, a feature of a 

recording i is called fij. The collection of features for a single recording is fi. 

hj is the early classifier for the feature fj, with ε the error calculated after every separation of 

a set of values for fj, by the Adaboost. One of our purposes is to eliminate superfeatures (where 

ε=0). Thus, the error must not be null. During training, fj   is a superfeature if, for every recording 

xi, we have:  

(In the following equations, P(x) is the probability of x) 
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 ∀𝑖, 𝑖𝑓 𝜀𝑗 = 0, then ℎ𝑗(𝑥𝑖)×𝑦𝑖 = 1 ⟺ 𝑃(ℎ𝑗(𝑥𝑖)×𝑦𝑖 = 1) = 1  

We can be sure that we have removed all the superfeatures  

when ∀ℎ𝑗 , 𝜀𝑗  ≠  0    ⟺ 

 ∀𝑓𝑗 , ∃𝑥𝑖 ∈ recordings / ℎ𝑗(𝑥𝑖)×𝑦𝑖 = −1  

Consequently, 

 𝑃(ℎ𝑗(𝑥𝑖)×𝑦𝑖 = −1) ≠ 0  

Next, it is shown, by simulating new angles, that the probability of not obtaining 

superfeatures increases. 

For a given feature fj: 

Let Sp be the interval of the angle values for the original recordings labeled 1, and S’p the 

interval of angle for the simulated recordings labeled 1. Let Sn be the interval of the angle value 

values for the original recordings from the class labeled -1 and S’n the interval of angle values 

for the simulated recordings labeled -1. Then: 

 𝑆𝑝 ⊂ 𝑆𝑝 
′ and 𝑆𝑛 ⊂ 𝑆𝑛 

′   

If a superfeature fj exists, then:  

 𝜀𝑗 = 0 ⟹ ∀𝑖, ℎ𝑗(𝑥𝑖)×𝑦𝑖 = 1 ⟹ 𝑆𝑛 ∩ 𝑆𝑝 = ∅   

When simulating the new angles from the intervals that we have found, using the DTW 

algorithm, we obtain:  

 P(𝑆′
𝑛 ∩ 𝑆′

𝑝 = ∅) > 0  

Consequently, variations are added to the angles as follows: 

F is the total number of frames and k∈[1;F] and (Xk,Yk) are the angles at frame k 

In order to eliminate the dependency on the dynamicity of the recordings, the extrema X’k and 

Y’k of the angle sequences are calculated as follows: 

Xk is a local minima (noted Xk’) if:  

 𝑋𝑘 < 𝑋𝑘−1 and 𝑋𝑘 < 𝑋𝑘+1  

Similarly, Xk is a local maxima (noted X”k) if:  

 𝑋𝑘 > 𝑋𝑘−1 and 𝑋𝑘 > 𝑋𝑘+1  
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Generating the intervals using DTW:  

Let A and B be extrema sequences for the same action, different recordings but same human 

joint, and (A’xn, A’yn), for n∈[1;N] (Where N is the length of the sequence A) the angles of A 

and (B’xn’, B’yn’), for n’∈ [1, N’] (Where N’ is the length of the sequence B) the angles of B. 

From the alignment of A and B, intervals are generated as follows:  

K points are obtained for each angle x and y:  

𝐾𝑥(𝑛, 𝑛′) = min (𝑐(𝐴′𝑥𝑛−1, 𝐵′𝑥𝑛′−1), 𝑐(𝐴′𝑥𝑛, 𝐵′𝑥𝑛′−1), 𝑐(𝐴′𝑥𝑛−1, 𝐵′𝑥𝑛′))  

Where c(Ax, Bx) is the cost of the shortest path, calculated with DTW, between Ax and Bx. 

Same for y’. 

At each point K(n, n’), the intervals In=[Axn, Bxn’] are the acceptable intervals at frame n and 

n’, according to a reference recording A. 

In order to increase the diversity of the recordings’ angles, intervals I’n are defined by tripling 

the size of intervals In so that In is in the middle of I’n. By increasing the size of the interval, 

additional diversity is added to the simulated actions. As a result, a large interval will generate 

actions that are too far from the real actions. We set the size of the interval as a user parameter. 

Then, the three following methods are used to choose the simulated points (The more the 

points vary from the initial ones, the more it would be probable to add the error) 

Let x’m (m ∈ [1;M], where M is the length of the number of intervals) be a collection of points 

chosen inside I’n. The step of choosing the points is done using the three following methods: 

 

2.1. Random:  

 P(𝑥′
𝑚 ∈ 𝐼𝑚) =

1

3
 𝑎𝑛𝑑 P(𝑥′

𝑚 ∉ 𝐼𝑚) =
2

3
  

 ⟹ P𝑡≥0(𝑥′
𝑚 ∈ 𝐼𝑚) =

1

3
  

2.2. Proportionality: 

At the first frame, x1 is chosen randomly  

 P𝑡=0(𝑥′
𝑚 ∈ 𝐼𝑚) =

1

3
  

The following equation is used to generate the next values:  

 𝑥′𝑛 = 𝑥′𝑛−1×
𝐼′

𝑛

𝐼′
𝑛−1

(∀𝑛 > 1)  

Since the probability that the rest of the x’p belong to Ip depends only on the first frame, we 

have:  
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 Pt>0(𝑥′
𝑝 ∈ 𝐼𝑝|𝑥′𝑝𝑡=0

∈ 𝐼𝑝) = 1  

 P𝑡>0(𝑥′
𝑝 ∈ 𝐼𝑝|𝑥′𝑝𝑡=0

∉ 𝐼𝑝) = 0  

We deduce that: 

 𝑃(𝑥′
𝑝 ∈ 𝐼𝑝) =

1

3
  

2.3. Average: 

6       

5       

4       

3       

2       

1       

0 1 2 3 4 5 6 

Figure 19. Matrix representing the acceptable values for the average method inside the 

interval [3,4] 

At p, x’p is defined as follows:  

 𝑥′𝑝 =
𝑟𝑎𝑛𝑑𝑜𝑚(𝑥𝑝)+𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦(𝑥𝑝)

2
  

Consider the interval I=[3,4] in the matrix in Figure 19. The interval obtained by tripling the 

size of I is the interval I’=[1,6]. Thus, the points that are obtained by applying the average 

method must be inside this interval. Consequently, the black cells represent the points that 

correspond to the initial interval I with a probability of 1 −
𝑤ℎ𝑖𝑡𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑇𝑜𝑡𝑎𝑙_𝑠𝑢𝑟𝑓𝑎𝑐𝑒
  

 P𝑡=0(𝑥′
𝑝 ∉ 𝐼𝑝) = 1 − (

2

3
)

2
=

5

9
  

 P𝑡=0(𝑥′
𝑝 ∈ 𝐼𝑝) =

4

9
  

By a simple calculation, we obtain: 

 P𝑡>0(𝑥′
𝑝 ∉ 𝐼𝑝) =

5

9
  

 

Some observations about the three methods are given below: 
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- Random: this method generates the recordings that are the most divergent from the 

real recordings since the chosen points are the results of added noise. Therefore, it 

produces the highest decision error during classification and requires the simulation 

of a larger dataset than the other methods, for the results to converge.  

- Proportionality: this method generates more points outside the initial interval than 

average. However, the synthetic recordings are smoother than the ones generated 

using the other methods, since the choice of the points depends on the first frame. 

Consequently, this method produces the recordings that are the most similar to the 

real ones. Therefore, the results are optimized compared to the other methods, when 

training with a large number of synthetic recordings. In this case, these recordings are 

the least divergent from the initial ones.  

- Average: compared to the other methods, average generates the largest number of 

points inside the interval. Therefore, the new recordings would be the most similar to 

the real recordings compared to the other methods. However, since this one depends 

on random, it contains random noise. Thus, results are optimized when training with 

a larger number of synthetic recordings compared to the other 2 methods.  

In resume, when classifying with a boosting algorithm trained with a small number of 

recordings, the method proportionality is expected to give the best results, but if the number of 

synthetic recordings is increased, average and proportionality will output approximately the 

same result. Nevertheless, proportionality will still be the best method, since it generates the 

recordings that are the closest to the real dataset.  

 

f. Experiments 

As previously seen, there is randomness in the recordings that we simulate; hence, the 

synthetic recordings will not be the same to the real ones. It is interesting to display an example 

to show how the simulated recordings will look like and compare them with the real ones. Table 

10 compares, from the CAP dataset, the real and simulated recordings visually. 

The frames in the figures have been combined into a single image (similar to a Voxel) for 

easier representation. 
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Table 10. Visual comparison between real and simulated recordings - CAP dataset 

Action Real Recording Simulated Recording 

2 hands up 

  

crouch 

  

Raise right hand up 

  

Right hand wave 

  

Surrender 

  

Tennis Forehand 

Drive 
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Tennis Backhand 

Drive 

 
 

The simulated actions have been generated with the proportionality method 

 

It is obvious that the actions are “clearer” in the real recordings than in the simulated 

recordings, especially in right-hand wave, surrender, tennis forehand drive and tennis backhand 

drive.  

During the experiments, all classifiers are trained with a one-vs.-all strategy, and are 

evaluated with the well-known F-Measure. This equation was chosen since it is a standard 

evaluation performance measure that shows clearly when a classifier performs well or fails to 

classify a label. 

In this section, to show that our hypothesis is based on trusted results, the following steps and 

parameters are considered: 

- Find the appropriate parameters for each classifier (Adaboost: number of iterations, 

KNN: K, Random Forest: number of trees and levels, SVM: choice of the kernel) 

- Train Adaboost (AB), KNN, Random Forest (RF) and SVM with 5, 10, 20, 50, 100 

and 200 synthetic recording sets.  

In addition, the steps below are implemented: 

- All the vectors that are inputted to the classifiers have been normalized with zero mean 

and unit variance. 

- During training, the synthetic recordings have been merged with the real ones. 

 Training Data 

The following datasets will be experimented on: 

- A captured dataset called captured 

- Microsoft MSRC-12 [58] 

- MSR Action3D Dataset [60] 

We include a variation in the datasets during training: 

- Small dataset: only 2 or 3 recordings are picked from every class in the dataset 

- Large dataset: all the recordings are picked from every class in the dataset 

The datasets have already been introduced in details in III. Additionally, we mention an 

important difference between the captured and MSRC-12 databases that affects the results 

noticeably: the MSRC-12 recordings do not contain tracking errors from the RGB-D sensor, as 



91 

opposed to the captured dataset. This means that the recordings belonging to the Microsoft 

dataset are not hidden from the device’s viewpoint during capture. Moreover, recordings 

belonging to the same class are very similar. This difference affects the DTW’s alignment and 

consequently creates large intervals that increase the randomness in the methods and affect the 

results of the classification algorithms negatively. 

 Finding the parameters  

For more accuracy, the Discrete Adaboost is trained for a number of early classifiers varying 

from 2 to 500. The results show that the classifier performs best between 10 and 20 early 

classifiers, independently from the late classifier’s iterations. Thus, for performance purposes, 

and because the difference between the results for 10 and 20 early classifiers is small, we chose 

to run with 20 early classifiers. Some classification examples when running on multiple 

iterations are given in 

Table 11. 

 

Table 11. Adaboost results from training with real recordings, CAP dataset 

 Dataset Early Classifiers F-Measure 

10 0.8201 

20 0.8321 

50 0.8116 

100 0.8235 

200 0.8060 

500 0.8182 

 

To find the proper parameters for Random Forest, variating the number of trees between 50 

and 200 and levels between 5 to 15, shows that the number of trees is the best at 100 and levels 

at 10, as in Table 12. The values have been picked arbitrarily, by taking into consideration the 

performances, since the number of experiments is vast.  

Regarding the features, since the set is large (III.B.b) a statistical analysis of the early 

Adaboost classifiers allows to pick the 25 first features with the highest appearance rate, in 

addition to 5 random ones. We chose to train the classifier with the most discriminant features 

since the feature set is large and training Random Forest and SVM with it would result in poor 

performances. Hence, we needed to build a proper benchmark to compare the performances. As 

for the feature number and the number of levels in the Random Forest, those are also parameters 

that we set to improve the performances and provide ourselves with the required benchmark. 

To perform a good recognition with Random Forest, the dataset is balanced when adding 

simulated recordings; before training every tree, all the real recordings are picked in addition to 

a number of simulated recordings to balance the one-vs-all classification. Nevertheless, the 

dataset is neither altered nor balanced when training with a small number of recordings because 

the training set does not suffice for balancing. 
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Table 12. Random forest results from training with real recordings, CAP dataset 

Trees 50 50 50 100 100 100 200 200 

Levels 5 10 15 5 10 15 5 10 

F-Measure 0.4909 0.6115 0.4094 0.5938 0.6902 0.5714 0.6516 0.6471 

As for KNN parameter, K is chosen arbitrarily, without carrying out any cross-fold validation 

or another method. However, with a small dataset, we calculate the average of the results with 

multiple values of K, and when training with simulated recordings, K is increased arbitrarily 

(e.g., K=15 for 20 recordings, K=30 for 50 recordings, K=50 for 100 recordings and K=100 for 

200 recordings). 

The SVM algorithm is not studied in details; the feature set is the same as for the Random 

Forest and, according to experimentations, the best kernel appeared to be a Gaussian function 

(according to .Net framework [157]). 

 Results 

The result of the classification would certainly differ when changing the number of simulated 

recordings. Table 13 compares the outcome of the classification of two different datasets while 

using the method proportionality and increasing the number of simulated recordings from 5 to 

200 recordings. As for Figure 20 and Figure 21, they illustrate the behavior of the classification 

results along the number of simulated recordings. According to Table 13, the best results appear 

when simulating between 50 and 200 recordings, when classifying the large dataset only. 

Nevertheless, according to Figure 20 and Figure 21, it is obvious that the results start to stabilize 

with 50 simulated recordings. A convergence and optimization are noted when training 

simulated recordings with the method proportionality. The results are optimized with a large 

number of simulated recordings for Adaboost and KNN, as for Random Forest, they keep 

degrading. With KNN, the best results appear with 50 synthetic recordings.  

Consequently, according to the results and for performance purposes, 50 recordings will be 

simulated for training during the rest of this chapter. 

Table 13. Adaboost results (F-MEASURE) from training with synthetic recordings with 

proportionality 

 CAP dataset Msrc-12 dataset 

 Number of simulated recordings Small set Large set Small set 

5 0.7612 0.7681 0.8919 

10 0.7832 0.8133 0.9407 

20 0.6357 0.8163 0.9295 

50 0.7121 0.8533 0.9256 

100 0.7143 0.9178 0.9300 

200 0.6935 0.8919 0.9361 

Real recordings 0.6379 0.8333 0.7386 
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Figure 20. Plot of the variations of the F-MEASURE (vertical axis) along the number of 

recordings (horizontal axis) – CAP dataset – Adaboost classification 

 

 

Figure 21. Plot of the variations of the F-MEASURE (vertical axis) along the number of 

recordings (horizontal axis) - MSRC-12 dataset - KNN classification 

 

g. Training and classification 

We note that the large dataset, even though considered as large, is still small compared to the 

simulated dataset. Hence, a balancing cannot be done when training with real recordings, small 

or large dataset. 

In Table 14 to  Table 16, we display the results of classifications, when training with 50 

synthetic recordings per class. 

Table 14. Results with CAP dataset (50 simulated recordings per class) 

Simulation 

Method 

Small Large 

AB KNN RF AB KNN RF SVM 

 Average 0.6815 0.4191 0.6971 0.7826 0.6552 0.6500 0.5342 

Proportionality 0.7121 0.4334 0.7362 0.8533 0.6833 0.7626 0.5693 

Random 0.5778 0.3900 0.5280 0.8169 0.6491 0.6929 0.4812 

Real recordings 0.6379 0.2714 0.5794(b) 0.8321 0.3819(a) 0.6902(b)  0.3841 

 Average of results with K={3,5,9} 

 Not balanced 
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Table 15. Results with MSRC-12 dataset (50 simulated recordings per class) 

Simulation Method AB KNN RF SVM 

 Average 0.8678 0.4938 0.7842 0.4352 

Proportionality 0.9561 0.6776 0.8593 0.5179 

Random 0.8443 0.6486 0.8288 0.4054 

Real recordings 0.7386 0.6257(a) 0.2556(b) 0.2182 

 Average of results with K={3,5}  

 Not balanced 

 

Table 16. Results with MSR Action3D dataset (50 simulated recordings per class) 

Simulation Method AB RF SVM 

 Average 0.5044 0.2634 0.1379 

Proportionality 0.5937 0.2665 0.2000 

Random 0.5356 0.2512 0.0976 

Real recordings 0.4949 0.2222(a) 0.1661 

 Not balanced  

 

As previously mentioned in IV.C.f.1, a significant difference exists between MSRC-12 and 

the two other databases. This affects the results noticeably: the MSRC-12 actions do not contain 

tracking errors generated from the RGB-D sensor, as opposed to the CAP and MSR Action3D 

datasets. It means that the joints in MSRC-12 are not hidden from the device’s viewpoint during 

capture. Therefore, recordings belonging to the same class are very similar. The tracking errors 

affect the DTW’s alignment, thus, creating large intervals that increase the randomness in the 

methods and degrade the classification results. Therefore, with the CAP dataset, the difference 

between training with simulated recordings compared to training the original ones is small, since 

the source of the synthetic recordings is large and noisy. As for classifying the MSRC-12 actions 

with synthetic recordings, the results are significantly better compared to the CAP database since 

the MSRC-12 dataset is “cleaner” than the captured one. 

 

h. Limits of the Simulator 

When simulating recordings from very long ones (full MSRC-12 recordings, before 

segmentation), we note that the resulting recordings are not very “Human-like.” We present the 

target recordings by miming them and stating their names to three persons. We then ask them to 

identify three recordings chosen randomly from each simulated set. We note, for each individual, 

the number of recordings that are identified correctly over the total number of presented 

recording. The results are shown in Table 17. 

Problems occur when simulating from the full MSRC-12 dataset because the actions are 

repeated multiple times in the same segment and at unknown frame positions. Hence, the DTW 
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will not be able to perform a proper alignment of the local maxima and minima, failing to align 

very different sequences in size and content. 

The most flagrant confusions exist between the Push Object with Right Hand to the Right and 

the Tennis Backhand Drive, and between Raise both Arms to the Sides with Wear Goggles. In 

fact, the actions are a lot similar and were very hard to recognize visually. 

 

Table 17. Visual results for the simulated recordings  

Action Original dataset Person 1 Person 2 Person 3 Avg. (%) 

Raise both arms to the sides MSRC-12 1/3 1/3 1/3 33 

Crouch MSRC-12 3/3 3/3 3/3 100 

Push object with right hand to 

the right 
MSRC-12 2/3 1/3 0/3 33 

Wear Goggles MSRC-12 1/3 1/3 1/3 33 

Wave hands in air MSRC-12 2/3 3/3 3/3 89 

Walk MoCap BVH 3/3 3/3 3/3 100 

Kick MoCap BVH 3/3 1/3 2/3 67 

Shoulders up Captured 3/3 3/3 3/3 100 

Tennis backhand drive Captured 2/3 2/3 2/3 67 

Tennis forehand drive Captured 3/3 2/3 2/3 78 

Surrender Captured 3/3 3/3 2/3 89 

Hand Wave Captured 3/3 3/3 3/3 100 

1/3: 1 recording identified correctly from 3 recordings. 

Avg: the average of the positive result from Person 1, 2 and 3 

 

i. Synthesis 

As observed in the results, training with simulated recordings improves the performances for 

proportionality and average for all the classifiers. Note that with proportionality (the method 

that generates recordings that diverge the least from the original ones), with a sufficient number 

of simulated recordings, the results start to stabilize, and we are able to achieve good results.  

 

j. Comparison with SMOTE 

The method is compared with the SMOTE algorithm [76] as shown in Table 18 and Table 

19. The SMOTE parameter for choosing the closest neighbor is the same as the optimized 

parameter K that was deduced from multiple KNN classifications, consequently, K=5 is picked.  
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Table 18. Comparison between the current method and SMOTE, with CAP, large dataset 

  

 Algorithm Real 

recordings 

SMOTE, number of simulated recordings 
Current 

Method 

5 20 50 100 200 50 simulated 

 AB 0.8321 0.8085 0.7891 0.8027 0.8571 0.8841 0.8533 

RF 0.6902 0.7286 0.7752 0.7445 0.7075 0.7172 0.7626 

KNN  0.3819 0.5926 0.5085 0.5574 0.6154 0.5902 0.6833 

SVM 0.3841 0.3609 0.3750 0.5344 0.5588 0.4733 0.5693 

 

Table 19. Comparison between the current method and SMOTE, with MSRC-12  

  

 Algorithm 
Real 

recordings 

SMOTE, number of simulated recordings Current 

Method  

5 20 50 100 200 400 50 simulated 

 AB 0.7386 0.8638 0.8263 0.8286 0.8259 0.8774 0.8599 0.9561 

RF 0.2556 0.5355 0.8071 0.8175 0.7883 0.8175 0.7754 0.8593 

KNN 0.7300 0.5732 0.6082 0.6071 0.6889 0.6554 0.6322 0.6257 

SVM 0.2182 0.1974 0.3451 0.3139 0.3439 0.3963 0.3318 0.5179 

 

As observed in Table 18 and Table 19 the current approach performs better than all the results 

with SMOTE with 50 simulated recordings. Hence, the proposed method performances exceed 

the SMOTE by far. 

 

k. Application 

In the scope of this study, we developed and posted online, as Open Source, the application 

for the simulation algorithm, an ActionViewer and a tool for converting coordinates recorded 

from the RGB-D camera to joint angles coordinates. These are available at [152] (Refer to 

Appendix IV – Datasets 

 

Due to graphical constraints, we only display the frames that we judge as the most relevant 

for an action. 

 

Table 104. Custom dataset called CAPtured dataset (CAP) 

Action Frames 
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2 hands up 

 

Crouch 

 

Raise right hand 

up 

 

Right Hand Wave 

 

Surrender 

 

Tennis Forehand 

Drive 
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Tennis Backhand 

Drive 

 

 

Table 105. Custom dataset with right-hand wave confusion (CR) 

Action Frames 

Right-hand wave A 

 

Raise Right hand up Same as in Table 104 

Right-hand wave B Same as in Table 104 

Surrender Same as in Table 104 

Tennis Forehand Drive Same as in Table 104 

Tennis Backhand Drive Same as in Table 104 
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Table 106. Custom dataset with Swimming and Soccer (SS) 

Action Frames 

Swimming 

Crawl 

 

Swimming 

Butterfly 

 

Soccer 
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Not Soccer 

 

 

Table 107. Custom dataset with right hand up & left hand up (RL) 

Action Frames 

Right, Left, 
Left, Left 
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Left, Right, 

Left, Left 

 

Left, Left, 

Right, Left 

 

Left, Left, 

Left, Right 
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Table 108. Custom gait dataset 

Action Frames 

Army march 

 

Incorrect 

army march 
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Parkinsonian-

like shuffling 

 

Neurological 

Experiment 
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Normal gait 

 
 

Right leg 
fracture 
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Left leg 
fracture 
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Appendix V - Open Source Contributions for more information). In addition, we have 

published the captured action dataset, referenced in this chapter. 

 

l. Conclusion 

The problem of non-discriminatory actions datasets for action recognition was overcome by 

enlarging a set of recordings performed by different persons, in different ways, and captured by 

an RGB-D camera. This chapter presents a novel method for generating synthetic recordings, 

for training action recognition algorithms. The parameters of the method are analyzed and the 

most appropriate one, for the different classifiers, is found. For instance, stable results were 

obtained with KNN, Adaboost, Random Forest and SVM when simulating with the 

proportionality method. 

In addition, it was shown that removing superfeatures, and thereby adding noise, within an 

acceptable margin, contributes to improving the results significantly. 

The method performed well when classifying with different algorithms while enlarging a 

dataset composed of a small number of recordings as well as large datasets. Consequently, the 

dependency from the size of the original database is reduced. 
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D. Extending the simulation algorithm 

a. Features: Pairwise joint positions 

 The feature set displayed in III.B.b is not limited and can be extended further, by including 

the derivative features. Its extension with discriminant features can improve the results 

noticeably. Table 20 and  

Table 21 are the average of 3 different runs of the simulation that show a distinct improvement 

in the performances for KNN, Adaboost, Random Forest and SVM. As noted in C.f.2, SVM and 

Random Forest are trained with only the 25 most discriminant features picked by the Adaboost 

classifier and five other random features. 

 

Table 20. Results with relative joint positions – CAP dataset 

  Adaboost KNN  Random Forest SVM 

Simulated without relative joint positions 0.8533 0.6833(b) 0.7626 0.5693 

 Simulated recordings with relative joint 

positions (Average of 3 runs) 
0.9192 0.6523(b) 0.8557 0.7522 

Real recordings with relative joint positions 0.8308 0.5410 (a) 0.7241 0.6846 

 K=9 because the set of recordings is small 

 K=30 

 

Table 21. Results with relative joint positions – MSRC-12 dataset 

 Adaboost KNN Random Forest SVM 

Simulated without relative joint positions 0.9561 0.6257(b) 0.8593 0.5179 

 Simulated recordings with relative joint 

positions (Average of 3 runs) 
0.9614 0.6478 (b) 0.8216 0.9506 

Real recordings with relative joint positions 0.8382 0.4935 (a) 0.5943 0.8868 

 K=5 because the set of recordings is small 

 K=30 

 

Adding the derivative features improves the performances in most cases. The only drops in 

the performances are noted with CAP KNN and Random Forest MSRC-12. Nevertheless, the 

loss is small compared to the improvement in the other results, for example, in all SVM tests. 

 Since the results have improved in most cases, we will implement the derivative features 

throughout the remaining of this thesis. 

b. 1vs1 Classification  

In this chapter, the classification has been done with a 1-vs-all strategy. The simulation 

algorithm proved to improve the performances when using a large number of classifiers and 

multiple datasets. Nonetheless, the algorithm in question is also compatible with other strategies 

such as 1-vs-1. Consequently, Adaboost is trained with a 1-vs-1 strategy and the results of the 
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different classifications are combined with a simple voting process. These are displayed in Table 

22. 

Table 22. Classification with a 1-vs-1 strategy 

  
Captured dataset MSRC-12 dataset 

MSR ACTION3D  

dataset 

 Real recordings 61/74 110/116 35/47 

Simulated 

recordings 
66/74 110/116 39/47 

 

c. Other datasets 

The simulation algorithm works well not only with the datasets that have been stated above, 

but has also improved the performances during the classification of the segmented Chalearn [21] 

dataset. 

We must note that the Late Fusion algorithm has not been parameterized especially for the 

Chalearn dataset, and as observed in Table 23, the performances are not impressive. This is due 

to the nature of the Chalearn dataset where the same gesture is sometimes performed with 

different hands. This idea contradicts our definition of an action as in I.C.b.8, where we note that 

two actions are considered alike if they are performed with the same joints. In fact, Chalearn 

datasets is very close to the study of Sign Language (II.A.a.1) and we do not take much interest 

in this thesis in Sign Language, due to the fact that it requires a different definition of an action 

from the one we gave in I.C.b.8. Nevertheless, the combination of simulated recordings with the 

real ones, while balancing the training (1-vs-all performs poorly while classifying 20 labels) 

improves the results, as noted in Table 23 (noticeable improvement compared to training with 

real actions). However, since the Chalearn dataset is large and contains a lot of variations, a large 

increase in the size of the simulated dataset can deteriorate the performances (more than 200 

recordings). Since the number of training recordings is a parameter that should be defined by the 

user, we refer to the study that has been done above and we simulate 50 and 100 recordings. We 

note that the Chalearn real dataset is already large, hence, only 5 recordings are picked arbitrarily 

from the original dataset (training dataset includes real and simulated recordings), and the rest is 

used for testing. 

  



111 

Table 23. Results of classification on Chalearn dataset with Adaboost 

 Total Training with 

real recordings (b) 

50 (a) 100 (a) 

Positive Result  1313 290 422 516 

Negative Result 24947 24391 24085 23571 

F-MEASURE  0.2686 0.3250 0.3220 

 Balanced 

 Not balanced 

 

Even though we consider that the previously chosen parameters should be enough to improve 

the performances, other tests performed according to the datasets’ properties can be in favor of 

the results. Hence, since the actions are very different in the Chalearn dataset, not increasing the 

size of the interval is helpful. Experimentations with these parameters are displayed in Table 24. 

 

Table 24. Implementing additional Parameters 

  Total Training with 

real 

recordings (a) 

Interval 

without 

increase 

Median=7 and no 

increase in the size 

of interval 

Not 

balanced 

Positive Result  1313 290 415 462 

Negative Result 24947 24391 24247 23884 

F-MEASURE  0.2686 0.3418 0.3256 

 Not balanced 

 

Additional changes in the simulation algorithm such as the smoothing of the synthetic 

coordinates with Kalman and Median filters, and replacing the DTW with the MD-DTW for the 

alignment have been programmed and tested. Since these implementations did not improve the 

performances, the results were included in this chapter, the reader can refer to Appendix I: 

Additional Simulation experimentations, for more information. 
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 ASYNCHRONOUS LATE FUSION 

A. Summary 

This chapter addresses the largest part of our thesis. We propose and explore a novel method: 

Asynchronous Late Fusion that combines a mid-level model with a late fusion classification 

problem, across temporal sequences. With this approach, classification algorithms’ 

performances are improved by studying binary results accompanied by confidence coefficients 

from early classifications, and fusing them with a previously trained model, to use it as an input 

of the late classification. The method is evaluated on multiple datasets and multiple classifiers 

and is compared with a Late Fusion synchronous application on the state of the art classification 

algorithms. It is clearly shown that the proposed method can improve the results independently 

from the classification algorithm and without performing an in-depth study of the features. The 

solution is applied to the problem of gesture classification. 

 

B. Introduction and definitions 

Throughout this chapter, a one-vs.-all strategy is employed with a Late Fusion classification 

algorithm as in the previous chapters (Chapter IV).  

As stated in the summary, the recordings in question in this chapter should have the following 

properties: 

- Temporal Sequences: the recordings should contain sequences of values defined along 

the time.  

- Late Fusion properties: a recording that can be classified with a Late Fusion method 

usually contains multiple classifiers at the lower level. Hence, the different classification 

decisions from the sequences are combined, and the final decision is inferred at the late 

level. (We remind that the classifiers of the lower level sequences are called early 

classifiers or lower-level classifiers). 

The classification of temporal sequences is still an unsolved problem, especially, when it 

comes to recognizing datasets with what will be described as “asynchronous late fusion 

properties” in the next paragraph. The decisions are generated from multiple sources and are 

taken at different instances of time. The concept of the Asynchronous Late Fusion (ALF) will 

be detailed further in the next paragraph. 

 

a. Definition of the Asynchronous Late Fusion (ALF) 

We consider multiple classes containing temporal recordings to classify. A recording contains 

sub-recordings that are considered more or less relevant to finding the ground truth. Examples 

of the sub-recordings have been mentioned in previous studies as small units of an action (II.G.a) 

and can indicate simple gestures. 

A global feature calculated on the whole vector will be less discriminant than a feature that 

is extracted at the exact location where the event occurs. For example, a simple feature like the 

average, calculated on all time frames will be less relevant than when computed at the sub-
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recording where the real change in the coordinates’ values occurs.  As a result, a feature vector 

calculated from the entire recording (e.g., average, standard deviation, minimum, maximum… 

are considered as features), is less discriminant than one that is calculated on windows that are 

extracted from the recording (which contains discriminant sub-recordings). Consequently, we 

choose to work with small temporal windows to reflect the local variations. 

The aim is to determine the class of the recording by analyzing information extracted from 

the windows. We note the following during our study: 

- If a window contains a sub-recording that is relevant to the class of the recording, the 

ground truth can be easily detected.  

- The databases are annotated by class/recording, but not segmented into sub-

recordings, since as explained in the related work (II.G.a), it was difficult to define 

the sub-units of an action properly. Hence, we choose to work with windows of fixed 

length. These windows will be called parts. 

- We perform a 1-vs.-all classification on every part of the recording, in other words, 

we aim to classify a part against the “world”. 

- When implementing a classic classification architecture (will be called synchronous 

architecture or synchronous method), defining the class of the recordings is only 

reliable when the discriminants sub-recordings are studied. 

Figure 22 compares the feature extraction methods between the synchronous and the ALF 

methods on a sequence. It is clear that by classifying the parts separately, the ALF method will 

be able to locate the discriminant sub-recordings. 

 

Figure 22. Extraction of the feature vector with the synchronous and asynchronous 

methods. 
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Considering a multi-dimensional signal, the discriminant sub-recordings are not found at the 

same instants in all dimensions (not necessarily synchronous). Hence, classifying a single part 

at each dimension does not output an optimal decision, because the discriminant sub-recordings 

are not necessarily available in every part. Moreover, all the dimensions might not be relevant 

in taking the final decision. 

Using a classifier at every part allows the classification of the dimensions and outputs positive 

decisions at different time instants. Consequently, it is imperative to fuse the decisions from the 

parts and the dimensions to infer a final decision. The process is implemented as follows: the 

decisions from the parts are fused by performing the scalar product between the decision at every 

part and a model composed of sequential weights, called the ALF model. Afterward, the results 

of the scalar product, from every dimension, is inputted into a final late classifier to take the final 

decision. 

This whole procedure will be referred to as the Asynchronous Late Fusion (ALF), as opposed 

to the synchronous fusion where the decision will be taken on the entire recording, at all 

dimensions simultaneously. 

 

b. Dataset with ALF properties 

We will refer to a dataset with asynchronous properties when the recordings contain 

discriminant sub-recordings that are found at different time instants. Generally, all the datasets 

contain asynchronous properties. Nonetheless, the asynchronous properties are graduated: a 

dataset is described as more or less asynchronous than another. 

An example of a perfect situation where a dataset is described is highly asynchronous is when 

recordings belonging to two different classes have exactly the same length and the same values 

but shifted in time compared to the recordings in the other classes. 

 

c. Asynchronous Late Fusion (ALF) approach 

The approach aims to improve the classification of datasets that are highly asynchronous and 

at the same time maintain, or even improve, the results of datasets with lesser asynchronous 

properties. 

Whatever the features are, or the classifier, the aim is to improve the classification. Hence, 

the classifier is considered as a “black box” and our work focuses only on its output. 

After cutting the recording into sub-recordings along the temporal dimension, every part is 

used to train an early classifier separately. A classifier’s decision might not be trusted at a certain 

part, and its decision might not be as important as one taken at another part. Performance 

equations will be applied to the binary output of the early classifiers to build the ALF model. As 

a result, the ALF model is composed of values that represent the weight of the parts. Afterward, 

each lower level decision is combined with a weight from the ALF model. Hence, it modifies 
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the decision of the early classifier according to the weight that was previously calculated at every 

part. 

The architecture of the asynchronous late fusion model is resumed in Figure 23. To describe 

it properly, we consider as an example two temporal sequences belonging to the same recording 

(e.g., two joints in action; HandLeft and HandRight). The two sequences are cut into parts (in 

this case, each sequence is cut into 2 parts only), converted into features, then every part is 

classified with an early classifier: the “black box”. The result of the early classifier is processed 

with the asynchronous model (the model is composed of 2 values, equal to the number of parts). 

Afterward, the decision from every sequence is inputted into the Late Fusion classifier, which 

takes the final decision. 

 

Figure 23. Asynchronous architecture 
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C. Chapter Outline 

To show the benefits of our contribution and the purpose of the asynchronous model, we 

consider the following steps: 

- Analyze the behavior of the early classifiers. 

- State the ALF algorithm and the equations that build the ALF model.  

- Study the different parameters of an asynchronous model. 

- Experiment and analyze the results of classifications with multiple algorithms while 

variating the values of the parameters. 

- Study the conditions and limits of the ALF. 

- Compare the ALF with another temporal algorithm: Hidden Markov Models (HMM). 

- Extend the ALF. 

We test the ALF with the Adaboost, SVM, and KNN classifiers. 
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D. Method 

a. ALF model 

In this part, the following abbreviations will be used: the number of True Positive results as 

TP, True Negatives as TN, False Positives as FP, False Negatives as FN, the total number of 

positive recordings as P, and the total number of negative recordings as N.  

The objective is to build the ALF model during the training phase by combining the values 

that are outputted at every part by an early classifier while performing tests on a training dataset. 

The ALF model is a vector of values expressing the reliability of the decision taken by the 

classifier at a time. In this vector, a high value means that the decision can be trusted at the 

corresponding instant of time. To generate those vectors, there are multiple ways of handling 

this; it is possible to propose a metric. Nevertheless, it might not work well with all cases and 

exceptions. Hence, we choose to work with well-known metrics, in addition to others that are 

extended from them, to build the proper ALF model. To this end, the following hypotheses have 

helped to find the most appropriate metrics to apply onto the result of early classifications: 

a. The metrics should be equal to 0 when TP=0 or TN=0, to attribute the same importance 

to every class. 

b. The result of the metrics should be normalized to a resulting value ranging between 0 & 

1. 

c. The metrics should be independent of the early classifier; they should not integrate any 

parameters concerning the early classifier. For example, they should not depend on the 

number of iterations of the Adaboost, or the complexity of the algorithm, because, as 

stated previously, in V.B.c, we consider the classifier as a “black box.” Therefore, the 

only known information about the “black box,” should be its output. Once again, we 

emphasize on the fact that the metrics should be generic. 

d. The metrics should be symmetric i.e. they should give the same result when exchanging 

the P and N sets. 

e. The metrics must be compatible with imbalanced datasets (T/P>1 or P/T>1). This study 

faces this issue since it implements a 1-vs.-all strategy.  

Consequently, the binary values (accompanied by confidence coefficients or not), resulting 

from the decision taken on every part in the sequences, can be used to build the ALF model with 

the metrics described in Table 25. 

Table 25 includes the most common metrics such as the recall and the precision, in addition 

to their variations such as the specificity, which is also known as the negative recall, and the 

negative precision value. We state some other metrics: the combination of the recall and the 

precision and their variations, such as the multiplication of both. The well-known Accuracy and 

F-Measure metrics are also included in our study. We researched some other less popular ones 

such as Matthews Correlation Coefficient and Youden’s Index. 

The Matthews Correlation Coefficient (MCC), like the other performance measures, is used 

for measuring classifiers’ performances while summarizing the confusion matrix into a single 

value. According to [158], MCC is a reference for measuring performances on imbalanced 
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datasets. When the MCC value is equal to 0, the decision is random; when the value is negative, 

the measure indicates a perfect misclassification, and finally MCC=1 indicates a perfect 

classification [159]. To fit the property b (the metric should give a value ranging between 0 and 

1) and as a negative result from the MCC reveals the absence of correlation, in this case, we set 

its value to 0.  

Youden’s Index [160] combines the specificity (recall) and the sensitivity; it is also known 

for its application on imbalanced datasets. 

 

Table 25. Metrics for building the models 

Symbol Metric 

R 𝒓𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

R- 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒕𝒚 =
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

P 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

P- 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 =
𝑻𝑵

𝑻𝑵 + 𝑭𝑵
 

RR 𝒓𝒆𝒄𝒂𝒍𝒍×𝒔𝒑𝒄𝒆𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
×

𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

PP 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒗𝒆 𝒗𝒂𝒍𝒖𝒆 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
×

𝑻𝑵

𝑻𝑵 + 𝑭𝑵
 

A 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝑻𝑷 + 𝑻𝑵)

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

Y 𝒀𝒐𝒖𝒅𝒆𝒏′𝒔 𝑰𝒏𝒅𝒆𝒙 = 𝒓𝒆𝒄𝒂𝒍𝒍 + 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 − 𝟏 

HALF 𝒉𝒂𝒍𝒇 𝒕𝒐𝒕𝒂𝒍 𝒆𝒓𝒓𝒐𝒓 𝒓𝒂𝒕𝒆 = 𝟎. 𝟓×(
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
+

𝑻𝑵

𝑻𝑵 + 𝑭𝑷
) 

MCC 

𝑴𝑪𝑪 =
𝑻𝑷×𝑻𝑵 − 𝑭𝑷×𝑭𝑵

√(𝑻𝑷 + 𝑭𝑷)(𝑻𝑷 + 𝑭𝑵)(𝑻𝑵 + 𝑭𝑷)(𝑻𝑵 + 𝑭𝑵)
 

When negative => result = 0, the system does not give a  

F-Measure 𝑭 − 𝑴𝒆𝒂𝒔𝒖𝒓𝒆 = 𝟐×
𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍
 

 

The counter-examples below (in Table 26 & Table 27) help to verify the properties mentioned 

above.  

An example of a classification of 10 recordings is considered (5 positive recordings and 5 

negative recordings), and the properties a, d and e are applied to it. This number of recordings 

has been chosen arbitrarily. It is sufficient to illustrate major drawbacks of those metrics to reach 

a final decision. Example e is an exception that should be taken into consideration since few 

metrics are compatible with such scenarios.  
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The metrics are applied to the confusion matrix, and the results are displayed on the right of 

Table 26 and Table 27 to analyze their behavior. 

We explain the reason of failure or give additional information in the 3rd column entitled: 

“Explanation.”  

 

Table 26. Examples of the proposed properties to find the best metric (The cells in gray 

represent the metrics that verify the property) 

Property 
Example 

Explanation R R- P P- RR PP 
TP TN FP FN 

A 

0 5 0 5  0 1 0 0.5 0 0 

0 4 1 5  0 0.8 0 0.44 0 0 

5 0 5 0  1 0 0.5 0 0 0 

D 

1 6 1 2 P gives more importance to 

the negative than the positive  
0.33 0.86 0.5 0.75 0.29 0.38 

6 1 2 1 Nevertheless, we gray out the 

examples that do not verify 

the symmetrical property. 

0.86 0.33 0.75 0.5 0.29 0.38 

E 
1 10000000 0 4  0.2 1 1 1 0.2 1 

1 5 0 4  0.2 1 1 0.56 0.2 0.56 

 

Table 27. Examples of the proposed properties to find the best metric (The cells in gray 

represent the metrics that verify the property) 

Property 
Example 

A Y HALF MCC F-Measure 
TP TN FP FN 

a 

0 5 0 5 0.5 0 0.5 0 0 

0 4 1 5 0.4 0 0.4 0 0 

5 0 5 0 0.5 0 0.5 0 0.67 

d 
1 6 1 2 0.7 0.19 0.6 0.22 0.4 

6 1 2 1 0.7 0.19 0.6 0.22 0.8 

e 
1 10000000 0 4 1 0.2 0.6 0.45 0.33 

1 5 0 4 0.6 0.2 0.6 0.33 0.33 

 

Since we do not have much information on how high or low the value should be in the 

examples proposed in property e, we propose the following to analyze the metrics:  

- Example e: we disregard all results that are approximately equal to 1 (which is 

considered as the maximum value according to property b since it does not take into 

consideration the class with the smallest number of recordings.  
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When we compare all the selected metrics for modeling the ALF model’s weights of an 

asynchronous dataset considering a 1-vs-all classification in respect with this set of properties, 

we can determine that the best solution is the MCC.  

 

b. Building the ALF model 

To build the ALF method we train the lower level classifiers, then build the ALF model by 

applying metrics on the decisions from the early classifiers, afterward, combine the ALF model 

with the early decisions and then finally train the final late classifier. This whole procedure will 

be detailed below.  

The process of building the ALF model requires three different sets recordings. One for 

training the early classifiers, another for building the models and a third for training the late 

fusion classifier.  

 Generating the features 

Before training the early classifiers, as in every classification process, every sequence of a 

recording is cut into a certain number of parts. In the following example, we cut the sequences 

into two parts. Afterward, each part is converted into a feature vector. We remind that the parts 

are windows of fixed length, extracted from a recording. They represent the sub-units of the 

recordings. The number of parts is a parameter that will be discussed later on in this chapter, in 

V.D.d.1.3.1. 

 Training of the early classifiers 

Every early classifier is trained with a different sequence of a recording as a normal late 

fusion. The classifiers are trained with the first set of recordings. Figure 24 displays an example 

of a single sequence that is cut into two parts and every part is trained with a classifier at the 

lower level called early classifier. 

 

Figure 24. Lower level of the ALF solution 

 

 Initialization of the ALF model 

Initializing the ALF model consists of classifying the second set of recordings with the 

method described in the previous steps, then applying the metrics, that have been mentioned 

above V.D.a, to the decision of the output to generate weights. 
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The ALF model is a vector of weights that is built with the following method: set the array 

of the ALF model to 0 with a length equal to the number of parts P, then run Algorithm 3. 

 

 For each part p=1,…,P 

 𝑀𝑜𝑑𝑒𝑙[𝑝] = 𝑅𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑜𝑛 𝑝  

 End for 

Algorithm 3. Initializing the asynchronous model. 

 

Figure 25 illustrates the initialization process. 

 

Figure 25. Initialization of the ALF model 

 

 Buffering 

The buffering part fuses the model with the results from the early classifiers by performing 

the scalar product between the decision values outputted from the early classification and the 

resulting model from V.D.b.1. 

Let n=1,…,N be the ALF models’ index, where each model is generated from a sequence. 

𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑙𝑎𝑡𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑛 = ∑ 𝑀𝑜𝑑𝑒𝑙𝑛[𝑝]×𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛[𝑝]𝑃
𝑝=1    

 Training of the late fusion classifier 

To train the final classifier, the decisions when classifying the third set of recordings are 

buffered with the ALF model and the result of the buffering is used as an input to a single 

classifier. Figure 26 illustrates the global process of training the late classifier. 
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Figure 26. Training of the late fusion classifier (ALF solution) 

 

 Testing 

To classify recordings, a process similar to the training of the late fusion classifier is 

conducted. Nevertheless, the recordings are tested with the late fusion classifier. 

 

c. Proof of concept  

In this part of the chapter, we aim to show the benefit of implementing the ALF solution by 

analyzing early classifiers’ decisions of real life examples. 

 Analysis of the output of the early classifiers 

It is possible to imagine a lot of action datasets with ALF properties. However, since action 

recognition is a recent subject, finding ready to use datasets and studies on these special cases is 

difficult (IV). Therefore, we take interest in that subject and apply the ALF to it. 

In this chapter, as well as in the previous one, we input feature vectors into the classification 

algorithm, and output a binary decision, weighted by a confidence coefficient, if available. The 

ALF model, composed of a sequence of weights, adjusts the output of the early classifiers to 

improve the decision of the late classifiers. We note that we do not work on the action 

segmentation problem; the recordings that we use for classification are already segmented 

manually. 

To analyze the behavior of the early classifiers, recordings of a first dataset are internally 

segmented using interlaced parts to train the early classifiers. A second dataset is tested with the 

early classifiers and the resulting values are called the mid-level decisions. The analysis of the 

early classifiers’ decisions shows the purpose of introducing an asynchronous model. In the 

following experiments, tests are conducted with a Late Fusion Adaboost classification.  
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We study below the classification of the swimming and soccer datasets (Table 5). 

In Figure 27, we display the real output of the Adaboost, along the time, of the classification 

of swimming butterfly Shoulder Left joint with its classifier (1-vs.-all swimming butterfly 

classifier) and swimming crawl Shoulder Left joint with its classifier too. The same classification 

is performed with the soccer and not soccer right knee classifiers, and the real output is displayed 

in Figure 28. Another example where the Shoulder Left and the Shoulder Right are classified 

with the swimming crawl classifiers is shown in Figure 29. The size of the window for cutting 

the recordings internally was fixed arbitrarily and is equal to 5 frames. The chosen size allows 

us to observe the behavior of the decisions even though this is not an appropriate size for running 

a proper classification. Even though the recordings do not have the same length, we combine 

them in the same figure for presentation purposes. The objective of these figures is to show that 

the decisions are taken at different time instants when comparing the joints of the same action 

as well as different actions. 

 

 

Figure 27. Real output of Shoulder Left of swimming butterfly and swimming crawl. The 

scale of the horizontal axis is the frame number, and the vertical axis is the value of the real 

output of the Adaboost. 

 

 

Figure 28. Real output of Knee Right of soccer and not soccer. The scale of the horizontal 

axis is the frame number, and the vertical axis is the value of the real output of the Adaboost. 
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Figure 29. Real output of Shoulder Left and Shoulder Right joints, swimming crawl. The 

scale of the horizontal axis is the frame number, and the vertical axis is the value of the real 

output of the Adaboost. 

 

In Figure 27, the classifier outputs a high value at the end of the recording during the 

classification of swimming crawl (at frame 33), as opposed to swimming butterfly that outputs 

only once a high value at frame 7. The same behavior can be observed in Figure 28 where the 

decision of the soccer action is taken before the “not soccer” action. Consequently, the decision 

is taken at different instants when comparing different actions. 

We observe in Figure 29 that the swimming crawl is detected at various time instants when 

comparing the real output of the classification of the Shoulder Left and Shoulder Right joints. 

The Shoulder Left is detected with a high value of the early classifier’s output at frame 16 and 

the Shoulder Right at frame 33. As for the remaining of the decisions, the decisions cannot be 

trusted where the values are approximately equal to 0 (for example, between frame 1 and frame 

5). 

Consequently, we deduce that the study of the output of the early classifiers at different time 

instants as well the combination of the decision that is taken at the different early classifiers (the 

late fusion) is a discriminant element for the classification. 

 Synthetic mid-level decisions 

In this part, our objective is to analyze the decisions of the early classifiers in details and the 

behavior of the ALF as well as the metrics. Hence, to perform a more precise analysis while 

adding special variations to the recordings, we simulate synthetic recordings instead of using 

real life information. 

When comparing the sequences in Figure 27 to Figure 29, we observe that the decisions are 

taken at different time instants between two actions. Consequently, we generate the synthetic 

decisions using multiple distributions functions that have a maximum at different time instants.  

The simulation algorithm is established as follows: 
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 Pseudo Code: 

 L: length of the recording. 

 𝐺𝑙 = 𝒫(𝑇𝑃) / l=1,…,L is the frame number (the Gaussian functions, as well as 

others, are considered as the probability of obtaining a True Positive result as 

output of the early classifier) 

 For each decision of the early classifier D at l=1,..,L 

  R = random value between 0 and 1 

  If R > Gl Then 

   𝐷𝑙 = −𝑅 

  Else 

   𝐷𝑙 = 𝑅 

  End if 

 End For 

Algorithm 4. Generating the synthetic confidence coefficients 

 

In other words, if a randomly chosen point is located over the model, the simulated decision 

is negative, otherwise, if it is under the model, then it is positive, and it is equal to the random 

value. This algorithm results in generating more positive values in case G is above 0.5, or less 

positive values, if it is below 0.5. 

Experimentations 

To analyze the decisions of the early classifiers in details and the behavior of the ALF as well 

as the metrics, a dataset composed of multiple recordings belonging to 3 classes is used to train 

early classifiers. When testing a sequence, each early classifier outputs different positive results 

at different instants of time. To perform a 1-vs.-all classification, different sequences of values 

are simulated to train and test every 1-vs.all classifier. The recordings belonging to class A 

should be classified with classifiers trained to detect classes A, B & C. Consequently, 

distribution functions, which will be called D, are used to simulate the output of the early 

classifiers. 

The color of the functions D denotes the early classifiers. The functions D are used to generate 

an output of the early classifiers, for every class. 

e.g., decisions from class A: 

black: EarlyClassifier1 

grey: EarlyClassifier2 

dashed: EarlyClassifier3 

Some of the models L are displayed in Figure 30. 
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 Tested class A Tested class B Tested class C 

Output 

Model for 

class A 

   

Output 

Model for 

class B 

   

Output 

Model for 

class C 

   

Figure 30. Gaussian function to generate the synthetic decisions. The scale of the horizontal 

axis is the frame number, and the vertical axis is the value of the models. 

 

For example, the first cell on the left part represents the models used to simulate the decisions 

of the 3 early classifiers trained to recognize class A and tested on a recording belonging to class 

A. The first classifier will have a Gaussian-like behavior, the second multi-Gaussian and the 

third randomly generated values using a uniform distribution law. 

Using the synthetic early level decisions, we train and test the ALF with an Adaboost and a 

KNN algorithm (considered as the unknown classifiers or “black boxes”). The model is built 

from the generated decisions; then the ALF model is applied, and the decisions are taken with 

the classifier. The results shown in Table 28 and Table 29 are obtained with models built with 

the metrics that have been stated in Table 26 & Table 27, and a model that is always equal to 1 

(setting the model to 1 eliminates the metric, this is equivalent to the removal of the effect of the 

ALF). The additional metrics, which have been stated above, are derived from them and will 

have a similar behavior. 

To analyze the metrics properly, we generate multiple datasets, which are described below 

and experimented on in Table 28 and Table 29.  In general, the purpose of all the datasets is to 

produce confusion with a change of the parameters of D to deduce the most appropriate metric. 

a. The sequences are generated with negative values. The functions D, which generate the 

sequences, are displayed in Figure 30. The purpose of this dataset is to show that the 

ALF model works perfectly when the decisions are taken at separate positions in time. 
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As noted previously, this dataset is a perfect Asynchronous situation where the decisions 

are taken at different time instants. The remaining of the datasets is extracted from (a) 

by adding certain parameters. 

b. The sequences are approximately the same as in (a), with the only difference where the 

decisions are taken at closer time instants. This generates additional confusion and 

causes more misclassifications. Moreover, the sequences are cut at random positions to 

generate final sequences that vary between 10 and 100 frames. With this dataset, we 

analyze the behavior of the metrics when increasing the diversity of the decisions. 

c. Same as (a), but the width of the Gaussian inspired functions is increased to also increase 

the confusion between the decisions.  

d. Same as (a), with a change of time warping (Sequence’s length are multiplied by a 

random number between 0.7 and 1.3). Nonetheless, the results should not differ since a 

small confusion is only added and the result of the scalar product while running the ALF 

is approximately the same as with (a). 

e. The width of the functions that generate (b) is modified randomly. This results in 

additional confusion. The results are expected to degrade. 

f. The dynamicity of the sequences in (b) is changed in this case to increase the confusion 

and try to degrade the results. 

In Table 28 and Table 29, the best results from the classifications are highlighted in gray. The 

values are computed with the F-Measure. 

 

Table 28. Results of the classification with simulated early classifier output (Classifier: 

Adaboost) 

 Model=1 R R- P P- PP RR MCC A Y HALF F-Measure 

a 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 1.000 1.000 1.000 

b 0.2766 0.802 0.680 0.827 0.749 0.864 0.864 0.955 0.417 0.908 0.353 0.756 

c 0.9867 1.000 0.997 0.993 1.000 1.000 1.000 1.000 0.976 0.979 0.990 1.000 

d 0.9867 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.924 1.000 1.000 

e 0.2654 0.844 0.777 0.877 0.804 0.877 0.877 0.953 0.521 0.897 0.389 0.792 

f 0.3075 0.992 0.893 0.992 0.935 0.991 0.991 0.995 0.992 0.995 0.586 0.931 
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Table 29. Results of the classification with simulated early classifier output (Classifier: 

KNN) 

 Model=1 R R- P P- PP RR MCC A Y HALF F-Measure 

a 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 1.000 1.000 1.000 

b 0.276 0.802 0.643 0.731 0.718 0.827 0.864 0.955 0.954 0.878 0.378 0.692 

c 0.986 1.000 0.983 1.000 0.929 0.993 1.000 1.000 0.976 0.929 0.995 0.990 

d 0.986 1.000 0.976 1.000 0.925 1.000 1.000 1.000 1.000 0.924 1.000 1.000 

e 0.265 0.844 0.745 0.790 0.747 0.877 0.877 0.953 0.521 0.753 0.288 0.752 

f 0.307 0.992 0.888 0.992 0.919 0.992 0.991 0.995 0.992 0.995 0.603 0.899 

 

In Table 28 and Table 29, we note that most of the metrics perform well with the datasets: a 

and d. In fact, it contains the least diversity between the recordings: small or no changes between 

the simulated sequences. As for the rest of dataset, when increasing the complexity or the 

diversity of the simulated decisions, few metrics still perform as excepted. 

With both Adaboost and KNN, only the MCC column is entirely in gray. As a result, we 

clearly see that the MCC metric overcomes all the other ones on simulated data. Those 

observations have to be consolidated by some experiments on actual datasets. 

 

d. Experimentations 

To show the advantages of using the asynchronous algorithm, we conduct the following tests 

on multiple classification problems. 

 Action classification 

1.1. Datasets 

During our experimentations in this section, we adopt datasets that are more or less 

compatible with the ALF solution than others, described previously (V.B.b). In fact, the 

movement in the actions from the SS dataset (Table 5) does not happen at the same time; when 

performing Swimming Butterfly, the subject moves both hands at the same time during the full 

length of the action, as opposed to Swimming Crawl where the subject moves his right hand and 

the left one afterwards. A similar situation is observed when performing the soccer and not 

soccer (throw the ball and then shoot it and shoot and throw afterward). Consequently, a highly 

asynchronous property is observed compared to the CAP dataset (Table 3) where most of the 

actions happen at the same time and the CR dataset (Table 4) that contains lots of confusion 

between the actions. In this case, the SS dataset is said to be more asynchronous than the others. 

Finally, we experiment with the RL dataset (Table 6) where the asynchronous properties are 

obvious. As a matter of fact, all subjects are performed in a sitting position, only the right and 

left hand are moved up and down once in every recording. Hence, the positions of the joints in 

the recordings are noise-free, and the early classifiers take the decisions at different time instants 

without additional confusion between the decisions. 
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In this chapter, since the main focus is on the ALF method and comparing it with the classic 

Synchronous method, independently from the size of the dataset or the classification algorithm, 

it is necessary to get rid of all extensions and additions to algorithms or datasets to study the 

behavior of our method properly. Hence, the training datasets are considered large enough for 

training. As a result, the training datasets are split into four groups of equal sizes. The first group 

is used to train the early level (Figure 24), the second for building the ALF model (Figure 25) 

and the third to train the final classifier (Figure 26). Finally, the benchmarks are computed with 

the four groups. 

1.2. Synchronous classification (Figure 7) 

To show the gain of implementing the ALF, we compare the results with the synchronous 

solution. The main datasets that are experimented on in this thesis (CAP, CR, SS) are classified 

with an Adaboost and a KNN, and the results are displayed in Table 30. The values that should 

be remembered for comparison are the F-Measure, which is displayed in the last column of the 

table. 

The scores in Table 30 are computed using a one-vs-all classification with Adaboost and 

KNN. The parameters of Adaboost are the same as the ones that were set in the first chapter: 50 

iterations on both the early and late classifiers. Regarding the KNN parameters, K has been 

arbitrary fixed (K=9 for training with real recordings and K=30 when simulating with 50 

recordings, same as in IV.C.f).  

Table 30. Scores with a synchronous solution 

 
Type TP P TN N F-Measure 

Adaboost CAP(a) 
Real 37 49 291 294 0.8315 

Simulated 40 49 290 294 0.8602 

Adaboost SS(c) 
Real 25 39 104 117 0.6494 

Simulated 27 39 110 117 0.7397 

Adaboost CR(b) 
Real 41 51 247 255 0.8200 

Simulated 40 51 254 255 0.8696 

KNN CAP(a) 

Real 25 49 291 294 0.6494 

Simulated 

(K=30) 
29 49 288 294 0.6905 

KNN SS(c) 

Real 26 39 107 117 0.6933 

Simulated 

(K=30) 
28 39 109 117 0.7467 

KNN CR(b) 

Real 26 51 244 255 0.5909 

Simulated 

(K=30) 
28 51 241 255 0.6022 

 CAP refers the Captured simple dataset (Table 3) 

 CR references the datasets containing right-hand wave confusion (Table 4) 

 SS refers the Swimming & Soccer dataset (Table 5) 
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1.3. Asynchronous classification 

To build the frameworks of our experiments, we identify two types of parameters for the 

asynchronous model:  

- The number of parts: to generate the model, the recordings should be cut into an equal 

number of parts. 

- The overlap: since the recordings are cut into parts, an overlap between the parts might 

be efficient to add redundant information between the parts. 

In a first step, we want to evaluate in which way these parameters have an impact on the 

results. 

 

1.3.1. Impact of the number of parts on the Asynchronous and the Synchronous 

classification 

As explained previously, the temporal model is built using decisions calculated through time. 

Those decisions are computed by cutting the recording into parts of equal size. Nevertheless, 

choosing the right number of parts is a problem. 

As stated before, since we do not consider the real output value from the Adaboost as a trusted 

confidence coefficient, the scalar product is the combination of the binary output of the classifier 

on each part and the weight attributed to this part, by the ALF model. We test a different 

approach with KNN, by multiplying the binary output of the early classifiers with the number of 

votes. 

Below is a description of Table 31 to Table 34, Table 36, Table 41 & Table 42. 

- The grayed out cells across the number of parts point out the cases where the 

synchronous performances have been improved. For example, according to the results 

of a synchronous classification, in Table 30, the F-Measure when testing with 

Adaboost, CAP dataset, is equal to 0.8315, which is lower than any of the values in 

the grayed out cells in Table 31. 

- The grayed out cells with row title average, maximum, minimum and standard 

deviation point out at the results that fall within a range smaller than 0.02 from the 

maximum value of the row. (The 0.02 is chosen arbitrarily to exclude the metric that 

can fall the farthest from the highest value and to show that the results are very close 

with the different metric) 

- We give the results only for a small number of a restricted number of parts, to 

summarize the results. 

An additional experiment is conducted to check whether the number of parts is consistent 

when classifying recordings from datasets that have been captured in a different situation than 

the one where the recordings have been captured initially; change of location of the camera, 

change of person who is performing the action and change of the camera. Hence, an additional 

set of recordings belonging to the CAP dataset is captured and classified with the same classifier 
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that is trained to provide the benchmarks for comparing the metrics. The results are displayed in 

the last column of Table 31, where it is noted that the MCC metric is used to build the ALF 

model, and the results are compared to the synchronous benchmark in the last row of the table. 

Table 31. F-Measure results with different metrics (Adaboost) – CAP datset 

Number 

of parts 

MCC RR PP R P A Y HALF 
F-

Measure 
Model=1 

MCC 

(Additional 

Dataset) 

2 0.7368 0.7447 0.7368 0.7447 0.7368 0.7368 0.7447 0.7368 0.7368 0.7097 0.8242 

4 0.8736 0.8605 0.8506 0.8235 0.8409 0.8095 0.8605 0.8095 0.8736 0.7778 0.8776 

6 0.8046 0.7907 0.8140 0.7907 0.8372 0.8000 0.8046 0.7955 0.8095 0.6863 0.7857 

8 0.8132 0.8315 0.8090 0.8132 0.8222 0.8222 0.8315 0.8444 0.8132 0.8182 0.7381 

10 0.8421 0.8333 0.8454 0.8333 0.8454 0.7835 0.8333 0.7917 0.8333 0.8000 0.8370 

12 0.7551 0.7551 0.7551 0.7475 0.7475 0.7629 0.7551 0.7708 0.7347 0.7579 0.8261 

14 0.8261 0.8352 0.8298 0.8261 0.8211 0.8478 0.8352 0.8387 0.8261 0.8478 0.7978 

16 0.8119 0.8387 0.8155 0.8571 0.8000 0.7677 0.8298 0.8125 0.8081 0.8172 0.8085 

Average 0.8079 0.8112 0.8070 0.8045 0.8064 0.7913 0.8118 0.8000 0.8044 0.7769 0.8119 

Maximum 0.8736 0.8605 0.8506 0.8571 0.8454 0.8478 0.8605 0.8444 0.8736 0.8478 0.8776 

Minimum 0.7368 0.7447 0.7368 0.7447 0.7368 0.7368 0.7447 0.7368 0.7347 0.6863 0.7381 

Standard 

Deviation 
0.0442 0.0425 0.0408 0.0406 0.0422 0.0358 0.0412 0.0352 0.0473 0.0560 0.0408 

 Synchronous with additional dataset 0.8333 

 

Table 32. F-Measure results with different metrics (Adaboost) – CR dataset 

Number 

of parts 
MCC RR PP R P A Y HALF 

F-

Measure 
Model=1 

2 0.7872 0.7723 0.8043 0.7872 0.8043 0.8043 0.7579 0.7629 0.7723 0.8090 

4 0.7692 0.7912 0.8211 0.7816 0.8261 0.8132 0.7957 0.7692 0.7778 0.8298 

6 0.8081 0.7879 0.8119 0.7629 0.8119 0.8163 0.8000 0.7921 0.8000 0.8041 

8 0.8632 0.8660 0.8600 0.8511 0.8515 0.8600 0.8660 0.8889 0.8485 0.8155 

10 0.8387 0.8298 0.7778 0.7872 0.7692 0.7879 0.8511 0.8041 0.7865 0.8421 

12 0.7843 0.8298 0.7525 0.7447 0.7238 0.7742 0.8041 0.7640 0.8081 0.7677 

14 0.7872 0.7723 0.8043 0.7872 0.8043 0.8043 0.7579 0.7629 0.7723 0.8090 

Average 0.8085 0.8128 0.8046 0.7858 0.7978 0.8093 0.8125 0.7969 0.7989 0.8114 

Maximum 0.8632 0.8660 0.8600 0.8511 0.8515 0.8600 0.8660 0.8889 0.8485 0.8421 

Minimum 0.7692 0.7723 0.7525 0.7447 0.7238 0.7742 0.7579 0.7629 0.7723 0.7677 

Standard 

Deviation 
0.0360 0.0350 0.0370 0.0360 0.0452 0.0295 0.0396 0.0480 0.0278 0.0256 
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Table 33. F-Measure results with different metrics (Adaboost) – SS dataset 

Number 

of parts 
MCC RR PP R P A Y HALF 

F-

Measure 
Model=1 

2 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 

4 0.9315 0.9315 0.9315 0.9315 0.9315 0.9315 0.9315 0.9315 0.9315 0.9315 

6 0.9167 0.9167 0.9041 0.9167 0.9041 0.9167 0.9167 0.9167 0.9167 0.9167 

8 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 

10 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 

12 0.8919 0.8919 0.8919 0.9041 0.9067 0.8919 0.8919 0.8919 0.8919 0.8919 

14 0.8378 0.8378 0.8378 0.8493 0.8378 0.8378 0.8378 0.8378 0.8378 0.8378 

16 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 

Average 0.8859 0.8859 0.8843 0.8888 0.8861 0.8859 0.8859 0.8859 0.8859 0.8859 

Maximum 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 

Minimum 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 0.7213 

Standard 

Deviation 
0.0739 0.0739 0.0733 0.0731 0.0737 0.0739 0.0739 0.0739 0.0739 0.0739 

 

The tables above allow us to compare the synchronous vs. asynchronous classification, the 

metrics and the effect of the choice on the number of parts.  

As observed in the different tables, when classifying actions with asynchronous and 

synchronous properties, the results are the best when using an asynchronous model. In fact, the 

results of the Adaboost when training real recordings, with all datasets, in Table 30, are lower 

than the grayed-out cells of any of the columns in Table 31. The differences between the results 

when classifying a synchronous dataset and an asynchronous are obvious; the improvement is a 

lot more significant with the asynchronous dataset. 

As we notice by comparing the classification of the different datasets, there is not a fixed 

number of parts that always gives the best results. Consequently, we decided that this parameter 

should be fixed by the user. Nevertheless, when classifying datasets that are targeted for the ALF 

solution, or have high ALF properties (review V.D.d.1), we observe that the ALF solution 

outputs the best performances independently of the number of parts. For example, this behavior 

can be easily observed by comparing the performances in Table 33 and Table 31, where the 

classification of SS does not depend on the number of parts, as opposed to the classification of 

the CAP dataset where the number of parts should be fixed. 

It is important to mention that the optimal number of parts remains the same and gives the 

same result regardless of the captured recordings that are tested. As mentioned previously, to 

show that this parameter is stable, a second test dataset is recorded with the same actions as the 

CAP database and the results are recorded in Table 31, in the last column. The metric that is 

used is the MCC. The performances have been improved in fact with 4 and 10 parts compared 

to the synchronous dataset, same as with the initially tested dataset. The same results are 



133 

observed when operating the classification with KNN on the additional dataset in “Appendix II 

– ALF additional experimentations,” where they have been considerably improved at 8, 10 and 

12 parts compared to the synchronous results. 

Important note: we only display performances with Adaboost classification, the rest of the 

results with KNN can be checked in Appendix II – ALF additional experimentations. They show 

the same results than the ones obtained with the Adaboost and can be analyzed in the same way. 

1.3.2. Metrics 

To build the ALF model, the metrics have been analyzed in V.D.a and in V.D.c.2 where it 

the performances were optimal when building the ALF model with the MCC metric. In this 

section, we analyze the metric results in Table 31, Table 32 and Table 33 with the captured 

datasets.  

To analyze the results, the maximum value of the F-Measure calculated across the number of 

parts is the value that interests us the most, since choosing an optimal number of parts always 

gives the best results when performing any classification. 

Most of the metrics give approximately the same results, in fact, the difference between the 

maximum of the F-Measure and its lowest value does not exceed 4%. Moreover, the values of 

the standard deviation are a lot similar.  

As a result, we rely on the explanations in Table 26 and Table 27 to decide which metric will 

be adopted. Hence, we choose the MCC and consider it as the most appropriate metric for 

building the ALF model in our future experiments. 

We are aware that the metrics listed in Table 25 may not be the most appropriate choice, as 

there are numerous possibilities for combining the results into a model. Yet, the table allows us 

to present a solution for picking the most appropriate one. 

The columns in the tables in this part, entitled Model=1, are a special case where the model 

is equal to 1 on all parts. In other words, we remove any possible benefit of the ALF model in 

the final results. 

1.3.3. Overlap 

An additional parameter is introduced and tested to increase the probability of finding the 

same information in different parts: the overlap size between the parts w.  

The new window size is calculated as follows: 

𝑛𝑒𝑤 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 = (𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 𝑤𝑖ℎ𝑡𝑜𝑢𝑡 𝑜𝑣𝑒𝑟𝑙𝑎𝑝)×𝑤 ×2 +
(𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 𝑤𝑖ℎ𝑡𝑜𝑢𝑡 𝑜𝑣𝑒𝑟𝑙𝑎𝑝) 

We consider three values for w during our experimentations: 0, 0.5 and 1. The additional 

frames are concatenated to both sides of the original window. 

In Figure 31, we display an example of a recording that is segmented into three windows with 

the three types of overlap. When w=0.5 and w=1 the window without an overlap is slid, and 
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additional frames are equally appended to its start and end. The dot lines are the extensions to 

the original windows to reach an overlap of w% of the neighbor windows. 

 

 

Figure 31. Example of an overlap of w=0.5 & w=1 on a sequence that has been segmented 

into 3 parts 

 

In Table 34, we display the performances of different numbers of parts when classifying the 

CAP, CR, and SS datasets, when changing the overlap size with the ALF solution.  

The values are then compared by observing the results of each dataset separately. 

Table 34. Different overlap sizes (F-Measure) – MCC metric – Adaboost 

 CAP CR SS 

Number of parts w=0 w=0.5 w=1 w=0 w=0.5 w=1 w=0 w=0.5 w=1 

2 0.7368 0.8381 0.8315 0.7872 0.7921 0.6593 0.7213 0.3636 0.3636 

4 0.8736 0.7009 0.8352 0.7692 0.8247 0.5977 0.9315 0.8421 0.7945 

6 0.8046 0.7791 0.7727 0.8081 0.8632 0.7191 0.9167 0.8889 0.9041 

8 0.8132 0.7440 0.8696 0.8632 0.8200 0.7234 0.9211 0.9333 0.9315 

10 0.8421 0.8387 0.8696 0.8387 0.8132 0.7327 0.9333 0.9333 0.9459 

12 0.7551 0.8512 0.8539 0.7843 0.8043 0.7083 0.8919 0.8947 0.9189 

14 0.8261 0.8255 0.8636    0.8378 0.8378 0.8493 

16 0.8119 0.8381 0.8000    0.9333 0.9459 0.9315 

Average 0.8079 0.8019 0.8385 0.8085 0.8196 0.6901 0.8859 0.8300 0.8299 

Maximum 0.8736 0.8512 0.8696 0.8632 0.8632 0.7327 0.9333 0.9459 0.9459 

Minimum 0.7368 0.7009 0.7727 0.7692 0.7921 0.5977 0.7213 0.3636 0.3636 

Standard Deviation 0.0442 0.0548 0.0370 0.0360 0.0243 0.0521 0.0739 0.1928 0.1951 
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In Table 34, the maximum and the standard deviation are the values that interest us, in order 

to analyze the best result and difference across the number of parts. The most flagrant values 

reveal the failure of w=1 with CR and, both w=0.5 and w=1 with SS. w=0 partially fails with 

Adaboost SS (The asynchronous dataset) where the difference between the maximum results for 

the different values of w is 0.01, which can be disregarded.  

Consequently, we do not add an overlap when performing the remaining of the 

experimentations. Table 35 resumes the analysis of the results, where an overlap is labeled as 

“bad” when its standard deviation or maximum value is very different from the ones obtained 

with the other overlaps. 

Table 35. Overlap analysis resume 

  w=0 w=0.5 w=1 

Adaboost 

C Good Bad Bad 

Cr Good Good Bad 

SS Good Bad Bad 

KNN 

Cr good Good Bad 

CR good Bad Bad 

SS good Bad Bad 

 

Same as in (V.D.d.1.3.1) above, not all the results are shown in Table 34; all the different 

metrics have been combined with the variations of the overlap size with KNN and Adaboost, 

and a huge set of results can be found in Appendix II – ALF additional experimentations. 

1.3.4. Experimentations’ resume 

Table 36 and Table 37 present a resume of the tables above allowing us to compare the 

synchronous and asynchronous solutions, and show the purpose of using the asynchronous 

model, especially when classifying datasets with asynchronous properties.  

The gray cells in Table 36 represent the F-Measure results of the classifications with ALF 

that outperform the synchronous solution. We note that KNN gives the best results with the ALF, 

especially that, as in the discussions of the confidence coefficients III.C, the output of the early 

classifiers is multiplied by the number of nearest neighbors labeled with the binary output, hence 

decreasing the confusion in the classifiers. 
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Table 36. Comparison between synchronous and asynchronous – all datasets - MCC 

metric 

 Adaboost KNN 

Number of 

parts 
CAP CR SS CAP CR SS 

2 0.7368 0.7872 0.7213 0.6400 0.6053 0.7941 

4 0.8736 0.7692 0.9315 0.6923 0.7356 0.9189 

6 0.8046 0.8081 0.9167 0.7586 0.7045 0.8780 

8 0.8132 0.8632 0.9211 0.7907 0.7033 0.8810 

10 0.8421 0.8387 0.9333 0.7816 0.7310 0.7711 

12 0.7551 0.7843 0.8919 0.7765 0.7174 0.8675 

14 0.8261  0.8378 0.8046  0.8276 

16 0.8119  0.9333 0.7529  0.9383 

Average 0.8079 0.8085 0.8859 0.7497 0.6995 0.8596 

Synchronous 0.8315 0.8200 0.6494 0.6494 0.6933 0.5909 

 

Finally, in Table 37 we compare the results obtained when classifying the different datasets 

with the Asynchronous and Synchronous late fusion. It is clear that results are better with the 

ALF solution.  

 

Table 37. F-Measure comparison of Asynchronous and Synchronous late fusion  

 
ALF solution 

Synchronous 

solution 

Adaboost C 0.8736 0.8315 

Adaboost SS 0.9333 0.6494 

Adaboost CR 0.8632 0.8200 

KNN C 0.8046 0.6494 

KNN SS 0.8276 0.6933 

KNN CR 0.7273 0.5909 

 

1.4. Additional datasets: ALF compatible datasets 

As seen in the previous experimentations, the ALF solution can perform very well with some 

types of datasets; for example, the SS dataset in Table 33. The ALF solution outperforms the 

synchronous solution independently from the number of parts. In this part, we will experiment 

on two additional datasets: the RL (introduced in Table 6) and the Gait dataset (introduced in 

Table 7) to show that the ALF solution is not only restricted to a few datasets. 
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1.4.1. Gait dataset (III.A, Table 7) 

The gait dataset is hard to recognize since there are few differences between the actions, in 

particular between the normal gait [10], the neurological experiment [151], and the 

Parkinsonian-like shuffling [150]. Nevertheless, we observe asynchronous properties in the 

dataset, in particular between the following actions: army march and incorrect army march left 

leg fracture and right leg fracture. In the stated actions, the legs move in opposite directions.  

The major difference that exists between the normal gait, the neurological experiment, and 

the Parkinsonian-like shuffling is the dynamicity of the steps when performing the action. The 

Parkinsonian-like shuffling is performed slower than the others. This change in the dynamicity 

induces compatibility with the ALF since the sub-recordings (steps) will be shifted. 

We cut the recordings between 2 and 16 parts, and we compare the ALF results to the 

synchronous solution in Table 38. 

 

Table 38. Gait classification across the number of parts 

Number of Parts F-Measure 

2 0.691729 

4 0.778626 

6 0.788732 

8 0.723077 

10 0.791667 

12 0.706667 

14 0.689189 

16 0.723684 

Synchronous 0.6423 

 

It is clear that the ALF solution improves the performances regardless of the number of parts. 

We note a 15% increase in the performances when choosing the optimal number of parts. 

 

1.4.2. RL dataset 

We classify the RL dataset that is a perfectly asynchronous situation; the recordings have 

approximately the same length and the same number of sub-recordings, but the hands are raised 

at different time instants in all actions, with the right one shifted in time (it is composed of 4 

classes, as described in Table 6). Table 39 shows the results of the classification of the RL 

dataset. The recordings are long. Consequently, it is possible to cut them to up to 36 parts. The 

performances when classifying with the ALF solution are compared to the synchronous solution. 
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Table 39. RL classification across the number of parts 

Number of Parts F-Measure 

2 0.524 

4 1 

6 1 

8 1 

10 1 

12 1 

14 1 

16 1 

18 0.955 

20 0.952 

22 0.977 

24 0.955 

26 0.930 

28 0.933 

30 0.952 

32 0.930 

34 0.930 

36 0.913 

Synchronous 0.4 

 

The difference between the ALF and the synchronous classification is noticeable; the ALF 

performances are perfect when cutting the recordings with a number of parts between 4 and 16, 

and higher than 0.9 with a larger number of parts, as opposed to the synchronous classification 

that has much lower classification performances. When classifying a perfect asynchronous 

dataset such as the RL, the gain of using the ALF is obvious, no matter the number of parts. 

 

 Misclassification on the early level (temporal dynamicity) 

A confusion occurs in a special case: large changes in temporal dynamicity; when the 

dynamicity of a temporal sequence changes a lot between two recordings belonging to the same 

class, the same part might contain information that can be found in the same parts of the other 

class. 

When the location of the gestures differs inside recordings that belong to a similar class, the 

parts that are extracted from the recording might not always contain the same information. e.g., 

the action surrender from the CAP dataset, and 2 recordings of 100 frames each. If the surrender 

action starts in a recording at frame 10 and ends at 50, and in another recording, it starts at frame 
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40 and ends at 80, by cutting the recordings into 4 parts the information inside each parts is not 

similar. 

 

e. Comparison with HMM 

The main difference between the model in this thesis and HMM classification is that the states 

in an HMM are dependent. Hence, the probability of an event, in HMM, depends on the previous 

states, as opposed to the asynchronous model where the decision that was taken by the classifier 

at the early level is independent of the one taken at the next or previous part. Another difference 

is that the HMM does not combine the confidence coefficient and the resulting decision.  

The HMM is tested with the datasets that are mentioned in this chapter, by considering every 

part as a state and performing a PCA on the features before training or testing a dataset. The 

HMM classifier is tested with an early fusion classification, then with a late fusion, both multi-

class (using the Accord.Net framework [157]). 

Figure 32 displays the early fusion architecture; the recordings are cut into parts and the 

similar parts from every joint are concatenated into a vector before applying PCA and inputting 

the vector to the HMM. Every vector is considered as a single state. 

 

Figure 32. HMM early fusion architecture 

 

Figure 33 shows the late fusion architecture that was adopted. As in the early fusion 

architecture, every part is considered as a state, but in this case, an HMM (with Viterbi for 

decoding) is built for every joint sequence. The results from the HMM are combined using a 

simple voting strategy to extract the final decision. 
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Figure 33. HMM Late Fusion architecture 

 

Since the HMM classification outputs multi-class results, to compare the performances with 

the one-vs-all classification that we have obtained while classifying with the ALF solution, only 

the recordings that have been attributed with a single label are considered as True Positive. 

The results of the classification with HMM using an early fusion and a late fusion are 

displayed in Table 40 across the number of parts. For comparison purposes, the classifications 

with Adaboost are mentioned in the right column of the table.  
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Table 40.  HMM classification of CAP dataset (parts as HMM states) 

 HMM Early Fusion HMM Late Fusion Adaboost ALF 

Number of 

parts 
TP 

Total 

Recordings 
Result TP 

Total 

Recordings 
Result TP 

Total 

Recordings 
Result 

2 16 49 0.3265306 18 49 0.367347 36 49 0.7347 

4 24 49 0.4897959 18 49 0.367347 37 49 0.7551 

6 24 49 0.4897959 18 49 0.367347 40 49 0.8163 

8 25 49 0.5102041 19 49 0.387755 39 49 0.7959 

10 24 49 0.4897959 14 49 0.285714 38 49 0.7755 

12 20 49 0.4081633 19 49 0.387755 39 49 0.7959 

14 21 49 0.4285714 18 49 0.367347 34 49 0.6939 

16 16 49 0.3265306 14 49 0.285714 40 49 0.8163 

Average   0.433673   0.352040   0.7730 

Adaboost 

Synchronous 

Late Fusion 

      35 49 0.714286 

 

By comparing the column called results and the average of the results, we note that the ALF 

solution with both Adaboost and KNN (Table 81) outperforms the HMM early and Late fusion 

classification. 

 

f. Extension of the evaluation framework 

We improve the results of the asynchronous model by generating simulated recordings using 

the same method as in chapter IV. 

 ALF method with simulated recordings 

We consider that the datasets that we are working on are not very diverse and contain very 

few recordings. Consequently, we apply the simulation algorithm ( IV), to generate new 

recordings and enrich our dataset. As seen previously, the classification of Adaboost CAP with 

synchronous actions is improved with a sufficient number of simulated recordings (we picked 

50 simulated recordings according to the results Table 13), using the proportionality method 

IV.C.i. 

Experiments have been conducted in Table 41 to show the consequence of including 

simulated recordings in the datasets when applying the ALF method. The cells marked in gray 

denote the best values when comparing the classification of the CAP dataset, when training with 

simulated recordings, in the following cases: 

- Removal of the effect of the ALF model (Model=1) and using the model (MCC) 

- Synchronous solution and ALF solution 
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We note that we classify the CAP dataset with 2 algorithms: KNN and Adaboost. The 

classification results with both algorithms are compared separately. 

 

Table 41. Asynchronous model with simulated recordings – CAP dataset 

Number of parts 
Adaboost 

Model=1 

Adaboost 

MCC 

KNN 

Model=1 

KNN 

MCC 

2 0.8714 0.9200 0.6862 0.7955 

4 0.9128 0.9333 0.8381 0.8791 

6 0.8889 0.9028 0.8151 0.8298 

8 0.9178 0.9178 0.8016 0.8261 

10 0.8859 0.9252 0.8151 0.8261 

12 0.8961 0.9020 0.8016 0.8222 

14 0.9178 0.9028 0.7998 0.8222 

16 0.9103 0.8947 0.7998 0.8090 

Average 0.9001 0.9123 0.7946 0.8262 

Maximum 0.9178 0.9333 0.8381 0.8791 

Minimum 0.8714 0.8947 0.6862 0.7955 

Standard deviation 0.0171 0.0136 0.0457 0.0242 

Synchronous with 

simulated 
0.8696 0.6905 

 

By observing the results in the table above, we conclude that: 

- The combination of the ALF method and the simulated recordings, outperforms the 

results of the classification with a synchronous method, regardless of the number of 

parts. 

- The combination of the ALF method and the simulated recording improves the 

performances of the classification with the ALF method when training with real 

recordings. 

- Removing the effect of the ALF model (Model=1) while classifying with simulated 

recordings does not outperform the usage of a model (MCC). 

 Real output of the Adaboost 

Even though, we did not consider the real output from the Adaboost as a trusted confidence 

coefficient (III.C). During the testing phase, we modify the input of the late classifier by 

multiplying the confidence coefficient (real output of the classifiers) by the binary decision of 

the classifiers and the weight attributed by the ALF model. As a result, the standard schema of 

the ALF solution is modified, and the previous statement is expressed in the equation below 

(equation 29 is an update of equation 28) 
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Let n=1,…,N be the ALF models’ index, where each model is generated from a sequence and 

p=1,…,P the number of parts. 

𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑙𝑎𝑡𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑛 = ∑ 𝑀𝑜𝑑𝑒𝑙𝑛[𝑝]×𝑟𝑒𝑎𝑙_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛[𝑝]×𝑃
𝑝=1

𝑏𝑖𝑛𝑎𝑟𝑦_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛[𝑝]  

Multiplying the real output by the scalar product adds a difference between the values used 

as an input of the Late Fusion. Nevertheless, this only improves the classification performances 

of the CAP and CR datasets. Even though the results with SS degrade compared to using a binary 

output, the performances are variable depending on the data intrinsic properties.  The results are 

displayed in Table 42. 

 

Table 42. Asynchronous solution – Adaboost – MCC – multiply the asynchronous model 

fusion with Adaboost real output 

 Adaboost 

Number 

of parts 
CAP CR SS 

 cc=bin cc=real cc=bin cc=real cc=bin cc=real 

2 0.7368 0.7879 0.7872 0.8333 0.7213 0.7838 

4 0.8736 0.9167 0.7692 0.7961 0.9315 0.8919 

6 0.8046 0.8406 0.8081 0.8125 0.9167 0.8493 

8 0.8132 0.9041 0.8632 0.8980 0.9211 0.8947 

10 0.8421 0.8947 0.8387 0.8163 0.9333 0.9067 

12 0.7551 0.8235 0.7843 0.7647 0.8919 0.9067 

14 0.8261 0.8000    0.8378 0.8108 

16 0.8119 0.9189    0.9333 0.9091 

Average 0.8079 0.8608 0.8085 0.8202 0.8859 0.8691 

Maximum 0.8736 0.9189 0.8632 0.8980 0.9333 0.9091 

Minimum 0.7368 0.7879 0.7692 0.7647 0.7213 0.7838 

Standard 

Deviation 
0.0442 0.0539 0.0360 0.0446 0.0739 0.0488 
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E. Resume 

In conclusion, the asynchronous late fusion is the temporal decisions schema applied on 

predefined windows for finding a certain class when using a classification algorithm, and when 

different components of the studied item (action) react at different time instants.  This is what 

we call the asynchronous properties of a dataset. 

We introduced this ALF model for improving temporal events classification applied on late 

fusion classification algorithms. We showed the reason behind the use of an asynchronous model 

when classifying datasets with temporal properties. Then, we introduced the algorithm behind 

the asynchronous model and the parameters that were used to tune it. 

Finally, according to computed performances from different algorithms and datasets, we 

showed that the Asynchronous Late Fusion improves the results of a simple Synchronous 

solution in most of the cases. 
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  A FRAMEWORK FOR THE ASYNCHRONOUS MODEL 

In this chapter, the term series will be used multiple times. Hence, we remind that a series is 

a long recording composed of a succession of actions where the recordings might not belong to 

the same action. 

 

A. Asynchronous Index & Asynchronous Index on the Parts (ASI & ASIP) 

a. Objective 

As observed in the results obtained in V.D.d, some datasets are highly compatible with the 

ALF solution (SS dataset) compared to others (CAP and CR dataset). In this chapter, we provide 

the users a tool to identify some of these datasets. It consists of calculating an indicator that 

compares datasets by extracting statistical information from the recordings. In other words, the 

compatibility with the ALF method is a measure that can only be used to compare datasets 

between each other. 

We only study a couple of properties in the asynchronous datasets. In the definition of the 

ALF (V.B.a), we stated that the discriminant sub-recordings are not found at the same instants 

in all dimensions. An example where this perfect asynchronous situation occurs is considered: 

recordings that belong to different classes from the same dataset are similar (similar values) but 

shifted in time (translation). We extract statistical information concerning the similarity and the 

translation from the dataset with these special properties to analyze the compatibility of the 

datasets with the ALF. 

Figure 34 represents an example of the asynchronous dataset, mentioned in the paragraph 

above, where the two properties can be found. In the figure, the same dimension from two 

different recordings A & B is displayed. A belongs to a different class than B. The recordings 

are extracted from a series and cut into 6 parts (p1 to p6). The recordings are taken as examples 

from the datasets to compare the different classes. We only take two recordings to explain this 

simply. 

On one hand, when observing A and B in full, before cutting them, they are similar. In fact, 

they are only translated. The average, the local minima and the local maxima, calculated on all 

their values are equal. 

On the other hand, A is translated in time to obtain B. When cutting the recordings into 6 

parts, at the same time instants, the local maxima and minima are not located in the same parts. 

For example, we note that the local maximum that is located in the 2nd part of recording A is 

located in the 3rd part of recording B. 

In resume, we focus on two points only in this part to compare the compatibility of the 

datasets with the ALF: the similarity and the translation in time between recordings, belonging 

to different classes in the same dataset.  
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Figure 34. Perfect situation of a dataset compatible with the ALF solution. A & B are 

similar but shifted in time 

 

b.  Similarity (ASI) 

The similarity information is studied by extracting information from the full recordings 

(without cutting them): the average, the local maxima, and the local minima. These three values 

are called the ASynchronous Index or the ASI. 

Since we are working with multiple dimensions when applying the late fusion solution, the 

sum of the averages and the average of the local minima and maxima are calculated to end up 

with 3 values for each dataset. 

To extract the ASI, the algorithm below is applied: 

Let N be the number of recordings in a dataset D with Ri the i-th recording belonging to D 

with label ci, with ci{1,…,C} and i  {1,….,N}, and Rk the k-th recording belonging to D with 

label ck, with ck{1,…,C}\ci 

j is a skeleton joint with j{HandLeft,…, HipCenter,…} 

The difference between the averages and the extrema are calculated between every 2 

recordings, from different classes. Then the differences are summed. 
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Algorithm 5 details the calculation of the values described above. 

 For every class ci 

  For every class ck 

   Calculate the average of the coordinates (X,Y,Z) of every recording: 

𝜇𝑅𝑖
= ∑

𝑠𝑢𝑚𝑋+𝑠𝑢𝑚𝑦+𝑠𝑢𝑚𝑍

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠𝑗  and similarly for Rk 

 Calculate the sum of the differences between the averages 

𝜇(𝑐𝑖,𝑐𝑘) = ∑ |𝜇𝑅𝑖
− 𝜇𝑅𝑘

|

𝑁

𝑖,𝑘

 

  

 

   Calculate the sum of the difference between the average of the local 

minima. (We calculate their average because the number of local minima is unknown.) 

𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎(𝑐𝑖,𝑐𝑘)

= ∑ ∑(|𝜇(𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛𝑖𝑚𝑎𝑅𝑖
(𝑋)) − 𝜇(𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛𝑖𝑚𝑎

𝑅𝑘

(𝑋))|

𝑗

𝑁

𝑖,𝑘

+ |𝜇(l𝑜𝑐𝑎𝑙𝑚𝑖𝑛𝑖𝑚𝑎𝑅𝑖
(𝑌)) − 𝜇(𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛𝑖𝑚𝑎

𝑅𝑘

(𝑌))|

+ |𝜇(𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛𝑖𝑚𝑎𝑅𝑖
(𝑍)) − 𝜇(𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛𝑖𝑚𝑎

𝑅𝑘

(𝑍))|) 

   We do the same for the local maxima  

  End For 

 End For 

 After comparing the classes, we calculate, to obtain a single value for each of the 

average, local minima and local maxima, we calculate the average of the values 

obtained at line 4, 5 & 6 of the algorithm:  

  𝜇𝐴𝑆𝐼 =
∑ 𝜇(𝑐𝑖,𝑐𝑘)𝑖,𝑘

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
=

∑ 𝜇(𝑐𝑖,𝑐𝑘)𝑖,𝑘

𝐶(𝐶−1)/2
 

 𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝐴𝑆𝐼 =
𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎(𝑐𝑖,𝑐𝑘)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
=

𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎(𝑐𝑖,𝑐𝑘)

𝐶(𝐶−1)/2
 

 We do the same for the local maxima 

Algorithm 5 ASI 

 

When two full recordings are similar or approximately similar, the differences between the 

averages and the extrema are equal to 0 or very small.  

 

c. Translation (ASIP) 

The ASynchronous Index calculated on the Parts (ASIP) detects the translations between the 

recordings of different classes. The ASIP is an ASI that is computed at every part of the 

recordings (the parts that have been extracted with the ALF method.) and compares the parts 

between the classes of a dataset. In other words, the ASIP is a similarity between the parts of a 



149 

dataset. Figure 34, above, is an example of the comparison between two recordings that are 

shifted in time. 

To extract the ASIP, Algorithm 5 is modified to obtain the one below in Algorithm 6 

 For every part p where p={1,…,P}  

  For every class ci 

   For every class ck 

    Calculate the average of the coordinates (X,Y,Z) of every part 

p in the recording: 

𝜇𝑅𝑖𝑝 = ∑
𝑠𝑢𝑚𝑋+𝑠𝑢𝑚𝑌+𝑠𝑢𝑚𝑍

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠𝑗   

   Calculate the sum of the differences between the averages 

𝜇(𝑐𝑖,𝑐𝑖′)p = ∑ |𝜇𝑅𝑖𝑝 − 𝜇𝑅𝑘𝑝|

𝑁

𝑖,𝑘

 

 

    Calculate the sum of the differences between the average of the 

local minima. (We calculate their average because the number of local minima is 

unknown.) 

𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎(𝑐𝑖,𝑐𝑘)p

= ∑ ∑|𝜇(𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝑅𝑖𝑝(𝑋)) − 𝜇(𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝑅𝑘𝑝(𝑋))|

𝑗

𝑁

𝑖,𝑘

+ |𝜇(l𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝑅𝑖𝑝(𝑌)) − 𝜇(𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝑅𝑘𝑝(𝑌))|

+ |𝜇(𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝑅𝑖𝑝(𝑍)) − 𝜇(𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝑅𝑘𝑝(𝑍))| 

    We do the same for the local maxima  

   End For 

  End For 

  After comparing the classes, we calculate, to obtain a single for each of the 

average, local minima and local maxima, we calculate the average of the values 

obtained at line 4, 5 & 6 of the algorithm:  

  𝜇𝐴𝑆𝐼 𝑎𝑡 𝑝 =
∑ 𝜇(𝑐𝑖,𝑐𝑘)p𝑖,𝑘

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
=

∑ 𝜇(𝑐𝑖,𝑐𝑘)p𝑖,𝑘

𝐶(𝐶−1)/2
 

 𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝐴𝑆𝐼 𝑎𝑡 𝑝 =
𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎(𝑐𝑖,𝑐𝑘)𝑝

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
=

𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎(𝑐𝑖,𝑐𝑘)p

𝐶(𝐶−1)/2
 

  We do the same for the local maxima  

 End For 

 Calculate the average of the ASI that have been obtained at every part to get only 3 

values for every dataset: 

𝜇𝐴𝑆𝐼𝑃 =
∑ 𝜇𝐴𝑆𝐼 𝑎𝑡 𝑝

𝑃
𝑝=1

𝑃
 

𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝐴𝑆𝐼𝑃 =
∑ 𝑙𝑜𝑐𝑎𝑙_𝑚𝑖𝑛𝑖𝑚𝑎𝐴𝑆𝐼 𝑎𝑡 𝑝

𝑃
𝑝=1

𝑃
 

We do the same for the local maxima 

Algorithm 6. ASIP 
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In addition to the ASI, when two recordings are similar or approximately similar but shifted 

in time, the differences between the averages and the extrema calculated at every part is high.  

  

d. End result (ASIv) 

To compare two datasets, the ASI and ASIP are computed on both. The results from both 

datasets are compared to one another. A low value of the ASI indicates that the full recordings 

of two datasets are similar and a high value of the ASIP reveals a dissimilarity between the parts 

of a dataset. The dataset where the lowest value of the ASI and the highest value of the ASIP 

appear signify that it is not compatible with a synchronous solution, but should be classified with 

the ALF to enhance the results.  

 

Each of the ASI and the ASIP is composed of 3 values. The comparison of two datasets 

requires comparing 12 values. To take a final decision the user needs to have a general view of 

all values. Consequently, we proceed with a simple voting solution where we compute a final 

index (ASIv) for every dataset. We calculate the following between every 2 datasets: 

- Whenever a value from the ASI of the first dataset is lower than the corresponding 

one in the ASI of the second dataset, the index is increased by 1. 

- Whenever a value from the ASIP of the first dataset is higher than the corresponding 

one in the ASIP of the second dataset, the index is increased by 1. 

- When the opposite of the above points occurs, the index is decreased by 1. 

The ASIv is the sum of the values that are obtained above, per dataset. 

Finally, the dataset with the highest ASIv is a dataset that should be classified with the ALF 

solution. 

We note that when the ASIv is low (ASI high and ASIP low) when comparing the datasets, 

it is impossible to predict the behavior of the dataset when applying the ALF solution. In fact, 

the dataset might verify other properties of the ALF (e.g. sub-recordings that are considered 

more or less relevant to finding the ground truth can be found in some parts of the recordings). 

 

e. Experimentations 

An example of the application of the algorithms above is displayed in Table 43 & Table 44, 

where we compare the CAP, CR, and SS datasets. 

Table 43. ASI to compare the CAP, CR, and SS datasets 

Dataset Average Local maxima Local minima 

CAP 2.97 111.55 78.59 

CR 3.87 93.35 73.63 

SS 1.97 83.93 57.98 

 



151 

 

Table 44. ASIP to compare the CAP, CR, and SS datasets 

Dataset Average Local maxima Local minima 

CAP 2.60 126.18 97.11 

CR 3.67 110.50 89 

SS 3.17 141.62 101.45 

 

Table 45. ASIv to compare the CAP, CR, and SS datasets 

Dataset CAP CR SS ASIv 

CAP - 0 -6 -6 

CR 0 - -4 -4 

SS 6 4 - 10 

 

 

According to Table 43, the SS dataset has the lowest ASI values, and according to Table 44, 

it has the highest ASIP. As a result, according to the ASIv in Table 45, SS is more compatible 

with the ALF solution than the CAP and CR datasets. The values of the indexes when computed 

on the CAP and CR are both lower than SS and show that both do not perform as well as the SS 

dataset. In fact, the ALF method improves the classification of the CAP and CR only when the 

optimal number of parts is picked. 
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B. Action Segmentation 

a. General introduction 

During this thesis, the classification has only been applied to segmented recordings. 

Nonetheless, it is possible to apply on series segmentation.  

In the state of the art, to perform the segmentation of series, we observe that there is a schema 

that is often used to perform segmentation [117] [113]: 

1. Train the classifiers with a pre-segmented dataset  

2. Choose the best size of windows for segmenting the series. 

3. Segment the series with the chosen window size (different overlapping methods can be 

applied). 

4. Classify the windows. 

5. Filter the results and classify the recordings inside the series. 

Otherwise, the classification can be performed on the whole recording and the location 

deduced according to the value of the confidence coefficients. In this chapter, we consider the 

latter. 

 

 

b. Segmentation 

To perform the segmentation, we are inspired from the general procedure mentioned above 

to classify series from the CAP and SS datasets. As in the previous chapters, the training dataset 

is different from the testing dataset, and the training dataset is composed of three groups of 

recordings. 

 Training with additional label 

The training of the classifier is performed as it was done in V, nonetheless, when performing 

the final segmentation and classification with different window sizes, new actions may appear 

while sliding the windows on the series. In order to train the classifier and find these actions, 

new “random” recordings are extracted from the training dataset to enhance the negative class. 

A large series containing multiple actions is cut randomly to generate as many samples as 

needed. The number of recordings is a user parameter. It is recommended to take into 

consideration the type of classification (1-vs.all, 1-vs.1, imbalanced datasets…) 

 

 Concatenate all the original recordings into one large series (S)  

 For every class (C) in the original dataset 

  Calculate the minimum (min) and maximum (max) length of the recordings 

from class C 

  Pick a random number R1 between min and max as the recordings’ width 

  Pick a random number pos between 0 and (length of S-R1) as the start of the 

recording 

  Cut the series at Position=pos and extract R1 skeletons 
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 End for 

 Finally, we populate every set of recordings (one for training the early level and one 

for the late fusion) with the recordings generated above. 

Algorithm 7. Generating garbage recordings for segmentation training 

 

The above algorithm is applied to the CAP and SS dataset, by joining all the samples that 

were previously used for training into a large sequence, in the previous chapters, when 

classifying segmented recordings.  

 

 Choosing the best window for segmenting the series 

To perform a proper segmentation of the series, the main parameter to set is the size of 

windows that will segment a large series containing multiple recordings. Considering that the 

number of parts has been fixed during the training of the ALF, it is possible to compute an 

average window size from the training dataset. We propose to use this value. Nevertheless, to 

confirm the previous statement, we perform multiple experimentations considering the 

minimum, the maximum and the average of the size of the parts. 

 

 Segment the series with the chosen window size 

After choosing the window size, the series is cut into smaller interlaced windows. When 

classifying a recording with the ALF solution, the parts should not be interlaced and overlapped, 

according to the results obtained in the previous experimentations. Consequently, the windows 

that correspond to the parts are picked from the series will be sequential and non-interlaced while 

segmenting. Figure 35 explains clearly how the windows are picked from a series when working 

without an overlap. The example in the figure consists of an ALF model composed of two parts 

and a recording that starts and ends at unknown locations. The interlaced windows that are cut 

from the series are shown on the second line (we only show 3 interlaced windows in the figure) 

and the parts are picked from the interlaced windows on the 3rd line. 
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Figure 35. ALF segmentation: picking the parts from the windows 

 

 Classify the windows 

When segmenting with a synchronous method, every window is tested disjointedly from the 

others. As for the segmentation with the asynchronous method, a number of sequential windows 

(the number of windows that are picked is equal to the number of parts) is tested (as in Figure 

35). The scalar product is calculated afterward between the model and the decision at every part 

(similar to the standard ALF solution), and the final decision is outputted by the late fusion 

classifier of the ALF solution. We run the classification with a 1-vs.-all strategy for as many 

classes as there are in the dataset. The decision of every classification is binary, hence, the target 

label of the 1-vs.-all classification is considered as the decision. These are attributed to the 

starting frame of the ALF model, which is considered as the start of the recording since the size 

of the recording is unknown. The procedure to deduce the end of the recording will be described 

in the next paragraphs. 

An example of the classification procedure when running both the ALF and the synchronous 

solutions are displayed in Figure 36. 

 

Figure 36. Segmentation - Synchronous vs. an example of ALF on 2 parts: classifying the 

windows 

 

 Filter the results and take the final decision 

In the following part, we filter and analyze the decisions that have been taken previously to 

output the final decision, which consists of segmented recordings and label. To this end, the start 

and end of the segmented recordings should be located. This method is implemented when 

applying the synchronous and asynchronous solutions. 
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As mentioned previously, because of the 1-vs.-all strategy, multiple decision labels might be 

taken, therefore, when two decisions or more are found in a single frame, the classifier’s decision 

is not considered as trusted and the decision is eliminated.  

The first label where an action is detected is considered as the start of a recording. We need 

then a procedure to find the end of a recording. The end frame is found by the following simple 

algorithm: 

 For each frame between the minimum and the maximum length of the recordings that 

were used for training 

  Find the label (L) that appears the most 

  The end location of the recording is the average position of the frames where 

L is found  

 End For 

 If there is no label detected between the minimum and maximum, the average value 

of the length of the training recordings is considered as the end of the recording. 

Algorithm 8. Finding the end of a recording 

 

In Figure 37, we display an application of Algorithm 8 where we consider that the start of the 

recording, indicated in the figure by S, has already been found, and its end will be calculated by 

averaging the positions of two labels, which are detected: L1 & L2 at multiple positions. The 

timeline in the figure is fictive and has only been drawn for illustration purposes. L1 is the label 

that appears the most and by averaging its 3 positions, we find the final end position. 

 

 

Figure 37. Extracting the end of the recording 

 

To evaluate the performances of the segmentation, we analyze the results with the Jaccard 

Index, the same performance measure that was proposed in Chalearn 2014 [21]: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ∩𝑅𝑒𝑠𝑢𝑙𝑡

𝐺𝑟𝑜𝑢𝑛𝑑  𝑇𝑟𝑢𝑡ℎ∪𝑅𝑒𝑠𝑢𝑙𝑡
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In other words, the equation calculates the segmentation error by dividing the frames that 

have been detected as true positive by the total frames that have been detected (Ground Result 

+ False Positive detection). A perfect decision would be equal to 1. 

 Experimentations 

We display in Table 46 the results of the application of the ALF segmentation on the CAP 

and SS datasets, while changing the window size, and compare it to the synchronous late fusion 

segmentation. Three series are tested; each one is composed of approximately 4000 frames. The 

first one contains recordings that belong to the CAP dataset (CAP with resting). It contains the 

actions that have been segmented and tested in the previous chapter. Nonetheless, in this part, 

they are joined into a series with the addition of a synthetic resting position between the 

recordings. The resting position is a repetition of the final frame of the recording. The second 

test is performed on a new series that belong to the CAP dataset (real CAP). It is not related to 

the datasets in the previous chapter. The third, and final series, contains SS actions that are joined 

into a single series. 

Usually, when performing a segmentation, the window size to segment the series is 

considered as the average size of the training recordings. We question the choice of this 

parameter and segment the series with different window sizes. We calculate the minimum, 

maximum and average size of the parts of the recordings for each class when training the ALF 

and the same values on the full recordings when training a synchronous solution. Hence, during 

the segmentation and classification of the series, a different window size is considered for every 

class. 

The largest confusion will, of course, appear in the SS dataset since the actions have 

asynchronous properties and are the inverse of each other, e.g., a soccer action starts by throwing 

a ball and then kicking it, as opposed to the not soccer that starts with a kick in the air and then 

throws the ball. When multiple soccer recordings are joined, the classifier will recognize the 

action soccer at the first frame for example, and in its middle, the action not soccer will be 

detected.  

 

Table 46. Segmentation of series from the CAP dataset 

 Asynchronous method Synchronous method 

 Window Size Window Size 

 Average Minimum Maximum Average Minimum Maximum 

CAP with resting 0.46 0.39 0.42 0.30 0.29 0.23 

Real CAP  0.42 0.37 0.40 0.27 0.17 0.26 

SS  0.66 0.68 0.43 0.36 0.36 0.33 

The values in the table correspond to the Jaccard Index that is computed when cutting the series with different window sizes.  

 

According to the results in the table above, it is clear that no matter the size of the window, 

the results of the ALF solution outperforms the Synchronous method. In fact, all the Jaccard 
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Indexes are larger with the Asynchronous method. Moreover, we note that in most of the tests, 

the windows size that outputs the best performances is the average size of the original recordings. 

To display additional information concerning the segmentation, we compute the number of 

detections of the start and end of the recordings that are located around the real start and end of 

the recordings. These values help to visualize the accuracy of the segmentation. Accurate results 

are obtained when a peak appears at the exact position of the start and end of the recording. The 

exact start and end positions are marked by the value 0 and 40 frames are displayed around this 

position. 

We obtain the results of the detection of the start and end of the recordings in the tables below.  
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Table 47. Detected location of the start of the recordings 

 Synchronous Asynchronous 

CAP 

with 

resting 

  

Real 

CAP  

  

SS 

  

The scale of the horizontal axis is the frame number around the exact start and end positions of the action, and the vertical axis is 

the number of detections around the start and end positions. The start and end are the frame 0. 

 

 

Table 48. Detected location of the end of the recordings 

 Synchronous Asynchronous 

CAP 

with 

resting  
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Real 

CAP 

  

SS 

  

The scale of the horizontal axis is the frame number around the exact start and end positions of the action, and the vertical axis is 

the number of detections around the start and end positions. The start and end are the frame 0. 

 

 When applying the asynchronous method, the decisions are gathered around the true start 

and end of the recording, as opposed to the segmentation with the synchronous method where 

the results are scattered and rarely located at the true starting position of the recordings. 

Moreover, in most of the segmentations, a peak appears at the true position. Hence, the 

asynchronous is more accurate while segmenting than the synchronous method. 

 

c. Adaboost and full MSRC-12 dataset 

We extend the experiments that we have conducted in the segmentation section to well-

known datasets such as the MSRC-12.  

 Segmented recordings 

First of all, a simple but long test was performed on the full-segmented MSRC-12 action 

dataset: 

- The full recordings were segmented using the following annotated dataset: [161]. 

- Approximately 6150 recordings were verified manually. 

- 20 recordings per class were used to train 12 classes 

The performances were evaluated on the remaining recordings and are noted in Table 

49: 
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Table 49. Full MSRC-12 dataset performances 

 
Number 

of Parts 
TP TN P N F-Measure 

Synchronous (real 

output as input of 

late classifiers) 

- 3401 56076 5189 57079 0.7091 

ALF 

2 3504 56521 5189 57079 0.7575 

4 3273 56224 5189 57079 0.7026 

6 3402 56222 5189 57079 0.7202 

8 3502 56222 5189 57079 0.7336 

10 3423 56486 5189 57079 0.7437 

12 3368 56472 5189 57079 0.7351 

The cells that are highlighted in gray indicate the values that outperform the synchronous method. 

 

According to the right column, which displays the results with the F-Measure, it is obvious 

that by finding the best number of parts, the ALF is better than the Synchronous method. 

 Full series 

Next, we segment the MSRC-12 series. The performances are evaluated according to the 

annotations mentioned previously VI.B.c.1 and the Jaccard Index is displayed in Table 50. The 

results are the average computed from of 3 trials. 

We choose the number of parts according to the 1-vs-all results for each label. As a result, 

every action is tested with a different number of parts. 

N.B.: the series in this section are evaluated previously in the experimentations of the 

previous chapters as segmented recordings. 

Table 50. Jaccard Index from the segmentation of MSRC-12 recording streams 

Action class Synchronous  ALF 

Start 0.396 0.64 

Crouch 0 0 

Push Right 0.83 0.87 

Put Goggles on 0 0 

Wind it up (Gym) 0.07 0 

Shoot 0.4895 0.515 

Bow 0 0.77 

Throw 0.1 0.34 

Surrender 0.03 0.11 

Change Weapon 0.10 0.03 

Beat Both Hands 0.51 0.88 

Kick 0.54 0.57 
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 As observed in Table 50, the algorithm that is implemented does not output the best 

performances. Nevertheless, it is clear that the ALF outperforms the simple synchronous 

solution, except for the cases where both fail totally.  

Wind it up, Change Weapon, Crouch and Put on Goggles are cases where both the 

synchronous classification and the ALF fail. The performances of the classification of these four 

actions are poor, because the recordings for a single class are very different, justifying the 

misclassification. 
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C. Additional dataset: power consumption 

This part shows that the asynchronous model can be used in other fields than action 

recognition.  

The datasets on which we could apply the ALF is large (e.g. commodity market, traffic 

congestion...). Nowadays, one of the major social issues targeted by research program is the 

Household Energy Saving. Considering this, we are interested in a dataset that was developed 

for this purpose. We took such a one from the UCI repository [160]: Individual household 

electric power consumption Data Set. It was taken from the UCI repository [162]: Individual 

household electric power consumption Data Set. The dataset has the following properties: 

- Every record in the data is labeled with a date and a time.  

- A sample is recorded every minute 

- 7 variables are recorded 

We consider that the dataset in question is not fully annotated and aim to perform this task. It 

is evident that the power consumption differs between the days of the week. For example, during 

the weekends, the household power consumption should be different from the weekdays since 

most people will be working during the weekdays. It is expected that the ALF detects the 

fluctuations, that a synchronous does not find, during the full day since a full day is cut into 

small part and every part is analyzed separately at a first stage. 

The dataset is segmented manually, and the following tasks are identified. They are listed 

below: 

1. Weekend detection: the goal is to separate the weekends from the weekdays. A simple binary 

classification problem is presented that should be an easy task for classification algorithms. 

This task should be the most compatible with the ALF because as we have mentioned above, 

most people will be working during the day. Hence, the power consumption should be the 

lowest during this time and the ALF should be able detect this change easily. We apply a 1 

vs. 1 classification strategy. The training and test datasets consist of days that are picked 

randomly from the year 2007. The training dataset contains 20 days per class, per level (early, 

model and late) and the test dataset contains 60 days per class. 

2. Day detection for years 2007, 2008, 2009 and 2010 (labeled 2007-2010): the goal is to 

recognize the day of the week. This task is harder than the binary classification because the 

weekdays should have approximately the same power consumption values (same for the 

weekends). Nevertheless, our goal is to find out if the ALF can perform well with this 

complexity. We apply a 1 vs. all classification strategy. The training dataset contains only 

the days from the year 2007. The test dataset is composed of daily recordings for the years 

2008 to 2010. The training dataset contains 20 days per class, per level and the test dataset 

contains 140 days per class. 

3. Day detection for year 2007: the goal is to recognize the day of the week. This task should 

be simpler than the "day detection for years 2007-2010" since there should be less fluctuation 

throughout one year than across several years. We apply a 1 vs. all classification strategy. 

The training and test datasets contain only the days from the year 2007. The training dataset 

contains 20 days per class, per level and the test dataset contains 20 days per class. 

The features that are extracted from the recordings are the following: 
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Table 51. Features used as input to the early classifier 

Features Variations and comments 

Absolute value of the Gradient Mean max min 

Absolute second derivative Mean max min 

Signed Gradient Mean max min 

Signed second derivative Mean max min 

Values of the variables Mean max min 

List of the local maxima calculated on the 

variables 
Min mean 

List of the local minima calculated on the 

variables 
Max mean 

List of the local minima and local maxima 

calculated on the variables 
Standard deviation 

Difference between the first value and the last 

value of the sample (called Fdiff) 
Signed, Unsigned 

𝐹𝑑𝑖𝑓𝑓(variable A)

𝐹𝑑𝑖𝑓𝑓(variable B)
 

Signed, Unsigned 

Between all the variables A and B cited 

previously where A and B are different 

 

The results of the classification, with an Adaboost algorithm, are displayed in Table 52. The 

result is calculated on a number of parts that varies between 2 and 20, and the best number of 

parts is only shown in this table (this parameter is displayed in the second column). The 

remaining results can be checked in Appendix II – ALF additional experimentations. 

Since we consider that the confidence coefficient of the Adaboost is not trusted (III.C), we 

input a binary value to the late fusion classifier (Table 52). Even without the usage of a 

confidence coefficient, with this poor information, we still show that the ALF solution 

outperforms the synchronous method. 

The Adaboost algorithm is parameterized as follows: 

- The classification problem is hard; hence the number of iterations is increased to 50. As 

a result, the performances improve. 

- The classes are balanced since the power consumption dataset is large. 

 In the table below, below the performances of the classification of the 2nd and 3rd datasets 

have been computed with the F-Measure, since there are more than 2 classes in the dataset, as 

opposed to the 1st classification where 2 classes are only available (weekend and not weekend) 
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Table 52. Classification results of the power consumption dataset 

 
Best number 

of parts 

Confidence coefficient used 

as input to the late classifier 

(for synchronous method 

only) 

Synchronous ALF solution 

Classification 1 

Weekend 

detection 

15 Binary 0.5286 0.6989 

 Real 0.5464 - 

Classification 2 

Day detection 

2007-2010 

20 Binary  0.2449 0.2811 

 Real 0.2427 - 

Classification 3 

Day detection 

2007 

10 Binary 0.243 0.3045 

 Real 0.2407 - 

 

Even though the classifications did not perform very well (especially classification 3), 

according to the table above, we note that the ALF solution improves the classification. In fact, 

the performances outperform the synchronous method when classifying the 3 datasets. This 

shows that the ALF solution can be applied to other domains than action recognition. 

At the beginning of this chapter, we proposed a tool for the users of the ALF to identify the 

compatibility of the datasets with the ALF solution. It consists of computing indexes: the ASI, 

ASIP, and ASIv. The dataset with the lowest ASI and the highest ASIP will be the one that is 

the most compatible with the ALF solution. The ASI and ASIP are afterward combined into a 

single value: the ASIv. The dataset with the highest ASIv is the dataset that is the most 

compatible with the ALF solution. To show that this tool can be used with additional datasets 

such as the power consumption, we display in Table 53, Table 54 & Table 55 the results from 

the ASI and the ASIP applied on the power consumption.  

Since the 2007-2010 dataset is large, the indexes are calculated on a small amount of the 

training recordings in addition to some other recordings from the years 2008 to 2010.  
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Table 53. ASI to compare the power consumption datasets 

Dataset Average(a) 
Local 

maxima(a) 

Local 

minima(a) 

Weekend detection 137 307960 306813 

Day detection 2007-2010 155 308769 308704 

Day detection 2007 151 307320 307848 

 Values that are extracted from the full recordings and that represent the ASI (sum of the averages, average of the local minima 

and local maxima) (Algorithm 5) 

Table 54. ASIP to compare the power consumption datasets 

Dataset Average(a) 
Local 

maxima(a) 

Local 

minima(a) 

Weekend detection 242 308282 306230 

Day detection 2007-2010 267 307440 304558 

Day detection 2007 241 308311 306175 

 Values that are extracted from the full recordings and that represent the ASIP (sum of the averages, average of the local minima 

and local maxima calculated on the parts) (Algorithm 6) 

Table 55. ASIv to compare the power consumption datasets 

Dataset Weekend Day 2007-2010 Day 2007 ASIv 

Weekend - 4 2 6 

Day 2007-2010 -4 - -4 -8 

Day 2007 -2 4 - 2 

 

Table 53 shows that the weekend dataset is the most compatible with the ALF solution since 

the values of the ASI are the lowest, afterward, the 2007 dataset. Nevertheless, when looking at 

Table 54, it is difficult to conclude. Hence, Table 55 resumes both the decisions of the ASI and 

ASIP, where the weekend dataset has the highest ASIv: 4, then the 2007 and finally the 2007-

2010. 
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D. Defining an action 

We gave a general definition of an action in the introduction I.C.b.8 and in this part, we 

question this definition and we improve it. We propose a “visual definition” of an action where 

we put forth the most discriminants joints and parts of an action in comparison to the other 

actions in the database. With the aid of the ALF model, we focus on these parts and joints and 

display them in a voxel-inspired image (as previously seen in Table 10). Consequently, the 

display is simplified and will help the viewer describing and identifying the actions correctly by 

looking at a single image. 

The ALF model delivers information concerning an action by attributing weights to different 

parts of the recordings (for more information, review the ALF model in chapter V). 

Consequently, in this part, we match the ALF model and the recordings by finding the most 

discriminant parts in the recordings, in other words, the parts that have the highest weights in the 

ALF model. 

The first step is to locate the discriminant joints. To this end, we compute the sum of the ALF 

model’s values at every joint and disregard the values that are below the average of the sums. 

N.B.: the average is only a parameter that we consider. Of course, the higher the value, the 

less the number of discriminant joints is. Hence, the precision is increased. 

The second step is to find the most discriminant parts. We perform the same operation that 

was conducted on the joints, but this time, on the parts; the sum is calculated for every part. 

Afterward, the sums that are lower than the average of the sums are disregarded. 

Table 56 shows a sample of the process that was described above applied on the action crouch, 

taken from the CAP dataset, with a 1-vs-all classification. The values above the average are 

marked in gray. 

 

Table 56. ALF model for cap dataset, crouch action – 4 parts 

Joint Part 1 Part 2 Part 3 Part 4 
Sum calculated 

on the joints 

AnkleLeft 0.44 1.00 1.00 1.00 3.44 

AnkleRight 0.71 1.00 1.00 0.90 3.61 

ElbowLeft 0.64 0.78 1.00 1.00 3.42 

ElbowRight 0.76 0.88 1.00 0.58 3.22 

FootLeft 0.88 1.00 1.00 1.00 3.88 

FootRight 0.71 1.00 1.00 0.76 3.47 

HandLeft 0.78 0.76 1.00 0.83 3.36 

HandRight 0.71 1.00 1.00 0.88 3.60 

Head 0.90 0.88 1.00 0.90 3.69 

HipLeft 0.61 0.88 0.90 0.90 3.30 

HipRight 0.90 1.00 1.00 0.90 3.80 
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KneeLeft 1.00 0.88 1.00 1.00 3.88 

KneeRight 1.00 1.00 0.83 1.00 3.83 

ShoulderCenter 0.64 0.76 1.00 0.76 3.15 

ShoulderLeft 0.90 0.64 0.90 1.00 3.44 

ShoulderRight 0.76 0.78 0.88 0.67 3.08 

Spine 0.88 0.78 1.00 0.76 3.42 

WristLeft 0.64 0.64 0.90 0.55 2.73 

WristRight 0.76 1.00 1.00 0.90 3.67 

Sum calculated 

on the parts 
14.63 16.66 18.42 16.30  

It is clear in Table 56 that the joints related to the lower part of the body are considered as 

discriminant, as well as the 2 middle parts of the action. In fact, when performing the crouch 

action, the significant changes in the joints’ positions are observed on the legs. Moreover, when 

comparing the recordings in the dataset, the difference between the recordings is mostly 

observed in the middle parts, since at the end and at the start, the joints move from and to their 

initial, stable position. 

To show that the discriminant parts and joints from the recordings are the only ones that have 

been retained, we block the movement of the joints that are labeled in gray in Table 56 for 

recordings that belong to the CAP, SS, and MSRC-12 dataset. Some of the resulting recordings 

are displayed in voxel-inspired images, in Table 57 to Table 59.  

In Table 57, the surrender action originally moves both hands at the same time but after 

blocking the joints, we observe that the left hand is the only joint that is moving. In fact, the right 

hand is the only discriminant joint in the right-hand wave action and has a similar behavior to 

the movement of the right hand in the surrender action. As a result, to identify the right-hand 

wave properly, the right hand is attributed with a lower weight in the ALF model of 1-vs.-all 

classification of the surrender action and the left-hand remains. This allows the algorithm to 

minimize the confusion between the two actions. 

An interesting exception occurs in the CAP dataset: in right hand up, all the joints have been 

blocked. This does not appear as a problem since only the right hand in the surrender action is 

blocked. Hence, by comparing the right hand up blocked to the remaining of the dataset, the 

action is detected easily. 

 

Table 57. Captured dataset blocked joints & parts 

Action type Without blocking with blocking 

2 hands up 
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Crouch 

  

Right-hand up 

  

Right-hand wave 

  

Surrender 

  

Tennis forehand drive 

 
 

Tennis backhand drive 

  

 

Table 58. SS dataset blocked joints & parts 

Action type Without blocking with blocking 

Swimming butterfly 
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Swimming crawl 

  

Soccer 

  

Not Soccer 

  

 

Table 59. MSRC-12 dataset blocked joints & parts (5 actions picked randomly) 

Action type Without blocking With blocking 

Bow 

  

Kick 

  

Wind it up (Gym) 

  

Goggles 
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Shoot 

  

 

In some actions, joints that are not moving (stable joints) can be discriminant, for example, 

when performing the action surrender, the legs do not move. When a joint is blocked, a visual 

confusion arises between them and the original stable joints, hence, to fix this issue, it is possible 

to color the joints that have been blocked in a different color than the ones that are considered to 

be stable or moving. 

To ensure that these are still close to the real actions, we ask 10 persons to recognize them. 

The resulting confusion matrices are obtained (Table 60, Table 61 & Table 62). 

 

Table 60. Performances of the manual classification of the blocked recordings – CAP 

dataset 

 2 hands up Crouch 
Right-

hand up 

Right-

hand wave 
Surrender 

Tennis 

forehand 

drive 

Tennis 

backhand 

drive 

2 hands up 100 0 0 0 0 0 0 

Crouch 0 100 0 0 0 0 0 

right hand 

up 
50 0 0 30 20 0 0 

right hand 

wave 
0 0 0 100 0 0 0 

Surrender 0 0 0 0 100 0 0 

tennis 

forehand 

drive 

0 0 0 0 0 100 0 

tennis 

backhand 

drive 

0 0 0 0 0 0 100 

 

Table 61. Performances of the manual classification of the blocked recordings – SS 

dataset 

 Soccer not soccer 
swimming 

crawl 

swimming 

butterfly 

Soccer 100 0 0 0 

not soccer 0 100 0 0 

swimming 

crawl 
0 0 100 0 
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swimming 

butterfly 
0 0 0 100 
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Table 62. Performances of the manual classification of the blocked recordings – MSRC-

12 dataset 

 Start crouch 
push 

right 
goggles 

wind 

it up 
shoot bow throw 

had 

enough 

change 

weapon 

beat 

both 

hands 

kick 

Start 100 0 0 0 0 0 0 0 0 0 0 0 

Crouch 0 100 0 0 0 0 0 0 0 0 0 0 

push 

right 
0 0 0 0 0 0 0 0 0 0 0 0 

Goggles 0 0 0 100 0 0 0 0 0 0 0 0 

wind it 

up 
0 0 0 0 100 0 0 0 0 0 0 0 

Shoot 0 0 0 0 0 100 0 0 0 0 0 0 

Bow 0 0 0 0 0 0 100 0 0 0 0 0 

Throw 0 0 0 0 0 0 0 80 0 0 20 0 

had 

enough 
0 0 0 30 70 0 0 0 0 0 0 0 

change 

weapon 
0 0 0 0 40 0 0 40 0 20 0 0 

beat 

both 

hands 

0 0 0 0 0 0 0 0 0 0 100 0 

Kick 0 0 0 0 0 0 0 0 0 0 0 100 

 

We note the following observations: 

- Most of the actions have been clearly recognized from the first guess (these are the 

fields that are labeled in dark gray with a 100% values in the confusion matrices 

above). 

- After showing all the actions to a person, she identified the mistakes that she made 

and corrected them, e.g., the classifier blocks the joints on the right arm for the action 

raise right-hand up. Consequently the skeleton is approximately stable. After showing 

all the actions to a subject, she remembered that he did not see the right hand up and 

attributed the label right hand up to the stable skeleton. Nevertheless, we do not add 

these corrections to the result; only the first guess is computed. 
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E. Additional Classifiers 

In this part, the asynchronous model is applied to the SVM algorithm when classifying the 

action. This only purpose here is to show that the ALF is not restricted to a classification 

algorithm and that any can be implemented as the “black box.” 

 

Table 63. Synchronous classification of action datasets with SVM 

Dataset F-Measure 

CAP 0.840909 

SS 0.507042 

 

Table 64. ALF Classification of action dataset with SVM 

Dataset Number of parts F-Measure 

CAP 

2 0.863158 

4 0.893617 

6 0.863158 

8 0.836735 

10 0.833333 

12 0.777778 

14 0.709677 

16 0.712644 

SS 

2 0.931507 

4 0.931507 

6 0.901408 

8 0.849315 

10 0.805556 

12 0.938272 

14 0.658824 

16 0.631579 

 

By comparing the results between the synchronous method (Table 63) and the ALF method  

Table 64, the ALF method outperforms the synchronous one when the optimal number of 

parts is chosen for the CAP dataset (2, 4 and 6 parts). Nevertheless, the ALF method outperforms 

the synchronous one with SS (which is more asynchronous than CAP) no matter the number of 

parts. 

Consequently, the results show the benefit of using the ALF model with the SVM classifier. 
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 CONCLUSION 

 

Our work in this thesis has led to improvements in the classic classification approach. We 

implemented an additional level to the late fusion architecture. We called this method the 

Asynchronous Late Fusion (ALF). This study has been applied to the human gesture recognition 

domain. We proposed a method to enrich action datasets that were used later on, for the 

classification and for measuring the performance of our algorithm. Moreover, its implementation 

in several known problems has led to interesting results as well to noticeable performance 

improvements.  

A. Kinesiology 

Since we implemented our study on the action recognition field, it was essential to gather all 

available datasets beforehand to train our classification algorithms. In order to pick the datasets 

and their actions, it was necessary to define what an action is. The definitions that we found were 

general. 

Therefore, we considered a kinesiological approach to establish a proper definition of an 

action. We described the correlation between action recognition in machine learning and 

computer vision, and Kinesiology. Our research also targeted biology, physics, arts...  

We combined all these fields and ended up with the following definition (more information 

in I.C.b.8): an action is a predefined sequence of concatenated simple gestures. Recordings 

belonging to a similar action should have the same characteristics as a reference recording:  same 

ROM, DOF, and their joints must move in the same direction. The recordings’ time is dynamic, 

and the amplitude of the movements might defer (within certain boundaries). This difference 

denotes the uniqueness of an action when performed by different subjects. 

Once we established the definition, we were able to capture recordings to build our datasets 

and perform the experimentations in this thesis. We were also able to evaluate the action datasets 

that are available to the public and finally, the definition allowed us to propose an action 

simulation algorithm. 
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B. Simulation 

To perform action recognition, it was important to gather large datasets with discriminant 

recordings. We found that the datasets available online as well as the ones we have captured 

were insufficient to perform the classification of actions. Hence, we developed an algorithm to 

simulate synthetic actions in chapter IV. 

The problem of non-discriminatory action datasets for action recognition was overcome by 

enlarging a set of captured recordings performed by different persons. We proposed a synthetic 

action generation method, for training action recognition algorithms.  

The action simulation algorithm was inspired by the definition of an action, which states that 

recordings denoting the same action must follow certain characteristics of the reference 

recording (as explained previously). Nevertheless, the recordings are unique, and a small margin 

appears between these performances. We take into consideration the previous statement to 

generate synthetic recordings. 

We analyze different methods for building the dataset and find the most appropriate ones. For 

example, we have adopted a method called proportionality, where we simulate recordings by 

creating a small margin surrounding the observation values. The classifiers that we train using 

these synthetic datasets perform much better than when experimenting on multiple classifiers.  

Stable results were obtained with KNN, Adaboost, Random Forest and SVM when simulating 

with proportionality method. 

In addition, we showed that removing what we call the superfeatures (features that are very 

discriminant on small training datasets and tend to misclassify recordings from a different test 

dataset), and thereby adding noise, within an acceptable margin, contributes to a significant 

improvement of the results. 

Moreover, the method performed well with a dataset containing a large number of recordings, 

and when enlarging a small dataset. As seen in Table 13, we have simulated recordings from a 

limited number of original ones (2 or 3 recordings) from the CAP and MSRC-12 datasets and 

trained an Adaboost algorithm. The results were improved by 13% and 21% respectively, 

compared to the results obtained when training with the original recordings. According to the 

results in Table 14, the application of the simulation on the small CAP dataset, improved the 

results of a KNN algorithm by 13% when enlarging a small dataset and by 30% when enlarging 

a large one. In addition, we enhanced the performances with RF by 7% and with SVM on the 

CAP large dataset by 18%. 

Consequently, the dependence on the size of the original training database is reduced. 
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C. Asynchronous Late Fusion 

The core of this thesis is the Asynchronous Late Fusion study. The ALF is a temporal decision 

schema for finding a particular class while applying a classification algorithm on predefined 

windows from temporal sequences. The studied item (basic action classifier) outputs different 

decisions at different time instants. Some of the decisions and the temporal sequences might not 

be discriminant. Hence, this schema is designed to process and improve the classification of 

datasets where the previous case occurs. For example, we observe the presence of a certain action 

for specific joints, at different points in time, when performing action recognition.  

At the first level of the schema, we cut the recordings in the datasets into parts of equal sizes 

and then we classify every part with a different classifier. We add a mid-level to the standard 

late fusion classification, where we combine the decisions from the parts. Those are weighed 

with a confidence coefficient and help to build a model (ALF model). The previous procedure 

is performed at every temporal sequence (joints) and the resulting decisions from these 

sequences are combined with a late fusion classifier to deduce the final decision. 

We studied a lot of parameters to tune the ALF and to determine optimal strategies: the parts 

should not overlap, the number of parts should be picked as a user-defined parameter, and the 

MCC metric is used to build the ALF model. 

When applying the ALF algorithm on our datasets, we noted significant performance 

improvements when classifying datasets that are compatible with the ALF, such as the SS and 

RL datasets. We noted a 29% increase in the results when comparing the synchronous and 

asynchronous solution (Adaboost classifier) in Table 33, a 15% increase during the classification 

of the quasi-medical Gait dataset in Table 38 and a 60% increase in the classification of the 

perfectly asynchronous RL dataset in Table 39.  

When classifying other datasets that are less compatible with the ALF solution, we observed 

a 4% increase with the CAP and CR datasets.  

We have also observed a similar improvement when working with other algorithms such as 

KNN; 16% with CAP and 22% with SS, and SVM; 5% with CAP and 43% with SS. 

In addition, we have used the simulation algorithm from chapter IV and trained the ALF 

solution with the synthetic datasets. The results showed an increase of the performances when 

compared with the synchronous solution that was also trained with the simulated recordings. 
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D. A framework for the asynchronous model 

a. Asynchronous Indexes 

As it can be difficult for the user of the ALF solution to determine which datasets are 

compatible with the method, we built indicators that compare the datasets by extracting statistical 

information from the recordings. The compatibility differs between the datasets. 

We developed two indexes: the ASI and the ASIP. These are combined into a final index (the 

ASIv) to provide information concerning the compatibility of the dataset with the ALF.  

The ASI focuses on the similarity between the recordings inside the dataset and the ASIP on 

the translation between them. The ASI calculates statistical information between the recordings, 

and the ASIP uses the same calculation as the ASI on the parts that have been cut with the ALF 

method. Finally, the ASIv is a single final value that combines the ASI and the ASIP to provide 

the user with an easier understanding of the comparison between the datasets. As a result, when 

comparing two datasets, the one with the highest ASIv is considered as the most compatible with 

the ALF solution. 

By extracting the ASIv from the CAP, CR and SS datasets, it was clear that the SS was the 

most compatible with the ALF solution. 

In resume, the ALF improved the performances of the synchronous classification, and ASIv 

confirmed the compatibility of the datasets with the ALF. 
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b. Additional applications 

The ALF solution has additional applications, such as the segmentation of actions in series 

and can be implemented in fields other than action recognition. 

We were inspired by previous work on the segmentation of actions to build our algorithm. 

We trained the classifier by adding a negative class. The additional recordings were generated 

by first joining multiple recordings into a series, then extracting parts at random locations. The 

procedure was performed to disregard the windows that contain nonrelated actions the original 

dataset. After training the classifiers, a window was chosen to cut the sequences. We applied the 

ALF algorithm on sequential and non-interlaced windows. Finally, the results were filtered to 

obtain the start and end of the recordings. 

We evaluated the performances with the Jaccard Index and compared the results between the 

synchronous and ALF solution.  The method that we proposed increased the performances by 

an average of 15% when segmenting a CAP series containing a resting position between the 

recordings, by 16% when segmenting a newly recorded CAP series and finally by 25% when 

segmenting an SS series where the recordings have been joined end to start. 

Moreover, we implemented the solution on three datasets containing power consumption 

recordings: weekend classification, 2007 day classification and 2007 to 2010 day classification. 

The performances showed an average increase of 9% when comparing the ALF solution to the 

synchronous solution. 

We showed once again that when the ALF solution is applied, the performances can be 

increased. In addition, the detection of the start and end during the segmentation of the recordings 

with ALF is more precise than the segmentation with the synchronous solution (Table 57 & 

Table 58). 

 

c. Human Action Visual Representation 

We analyzed the human movement and gave a general definition of an action. Later, we 

improved this definition and proposed a "visual definition" of an action. 

With the aid of the ALF model, we focus on the parts and joints of an action that are the most 

discriminant and display them in a voxel-inspired image.  

The ALF model delivers information concerning an action by attributing weights to different 

parts of the recordings (for more information, review the ALF model in chapter V). 

Consequently, we match the ALF model and the recordings by finding the most discriminant 

parts and joints in the recordings. In other words, we find the parts that have the highest weights 

in the ALF model and the joints where the sum of the ALF model is the highest. Afterward, the 

parts and joints that do not agree with the previous statement are blocked completely, and the 

recordings are displayed in the form of a voxel in an image. The resulting actions are supposed 

to be easy to identify. 

We have obtained single and straightforward images that revealed the most discriminant parts 

and joints of an action. We asked 10 persons to identify the actions by showing them the 
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recording once. They were able to identify 86% of the CAP actions, 100% of the SS actions and 

75% of the MSRC-12 actions. 

The output was interesting and resulted in a simple visual representation of an action, which 

highlighted the discriminant joints allowing us to define and recognize a movement in a dataset. 
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 FUTURE STUDIES 

A. Short Term 

a. Number of parts 

One of the parameters of the ALF is the number of parts in a recording. We set it as a user 

parameter in ( V.D.d.1.3) when discussing the “impact of the number of parts on the 

Asynchronous and the Synchronous classification” (V.D.d.1.3.1). 

We propose to go even more in depth in the matter towards an automatic process to set the 

value.  

The ASIP (VI.A.c) has previously helped determining the compatibility of the datasets with 

the ALF solution. It would be interesting to apply the ASIP as a comparison index between the 

parts. For example, the first part could be compared with the second part...  

The ASIP could be calculated on the recordings of a single dataset by modifying the number 

of parts. Afterward, a voting process could be performed, as previously done with the ASIv 

(VI.A.d) to find the optimal number of parts. 

 

b. Complexity 

The algorithms that we implemented in this thesis tend to be complex and time-consuming. 

For example, all the late fusion classification algorithms have to be run on all the joints. Also, 

the simulation algorithm aligns the coordinate sequences at all the joints to extract the intervals. 

Hence, it is possible to optimize and speed up the processes if the discriminant joints are found. 

As seen in VI.D, some of the joints and parts of the recordings have been blocked. According 

to the visual representation, the actions were visually “clear”. As a result, only the discriminant 

joints and parts of the recordings were left.  

The possibility that the ALF model offers, in terms of information processing analysis, is an 

interesting property; it might for example allow us to discard the least discriminant joints to infer 

the final decision, thus reducing the amount of calculations. In addition, it might allow us to 

analyze thoroughly the discriminance of features and thus can eliminate them as input of the 

classification, consequently, reduce the complexity. 

 

c. In-depth study of the MD-DTW 

The decision to discard the MDDTW depended on the features used for alignment. The 

features were picked according to the literature on the subject. Nevertheless, these might not be 

the most appropriate ones. Hence, it is possible to take advantage of a boosting algorithm applied 

on the ALF to find the most discriminant ones. 
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As a result, the simulation algorithm will run as follows: 

 Perform an initial classification of the dataset containing the real actions with a 

boosting algorithm. 

 Extract the model from the ALF. 

 Apply the model to the actions as in V.D.b.4. 

 Extract the discriminant features picked by the boosting algorithm 

 Align the MDDTW with the discriminant features 

 Compare the alignment cost with the DTW 

 Generate the simulated action by aligning with the new features. 

 Compare the final results after simulation 

Algorithm 9. Finding new features to align the MDDTW 
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B. Long Term 

a. Deep Architecture 

The Deep architecture became increasingly popular in the last few years. It is now one of the 

most used algorithms in the computer vision domain. We did not include this kind of algorithm 

as a classifier in our thesis since it would have raised some difficulties in identifying a specific 

architecture and it might have heavily increase the training steps for our experiments. 

Nevertheless, it is possible to implement it for comparison purposes only: 

- Consider a deep algorithm (for example Deep Neural Network, DNN) as a black box and 

run similar experiments as in our thesis. 

- Compare the performances between the deep architecture and the ALF architecture by 

analyzing the parts of the recordings with both solutions. Every part of the recording will be 

inputted as a separate vector to a DNN, and an experiment will be conducted to find out if the 

algorithm might have a similar behavior as the ALF architecture and focus on the discriminant 

parts. Thus, it will be interesting to understand the behavior and compare the performances of 

the algorithm with the ALF solution. 

 

b. Confidence Coefficient 

The confidence coefficient has been an obstacle throughout this thesis. As seen in the 

literature review and the discussions, the calculation of the confidence coefficient always relied 

on the distance between a recording and the training recordings, or a vote from sub-decisions of 

the classifier (e.g., with the trees of a random forest). Nevertheless, these studies are still 

ambiguous and do not help to implement a proper confidence coefficient. 

We built a custom algorithm for calculating the confidence coefficient, by finding the distance 

between the different recordings in the training dataset and a decision threshold (e.g., the weak 

classifier threshold in Adaboost). We then calculated the distance between the obtained value 

and the feature value of the recording that is being tested (Algorithm 1). We did not find that 

this was enough to trust the cc's values. Nevertheless, when utilizing the cc, that was calculated 

from simple algorithms (such as KNN), the classification performances improved considerably 

with both the synchronous and asynchronous solutions. 

Consequently, in future studies, we will go further into details on the cc subject. We will 

explore procedures to calculate it and set properties to generalize a confidence coefficient onto 

as much classification algorithms as possible. As a preview to the subject, we refer to an 

interesting study that was discussed in chapter III.C.  

As a result, the cc should combine the following values: 

- The relevance of the recording according to the classifier: the distance to the decision 

boundary for each classifier. 

- The relevance of the recording in the dataset: the distance between the recordings. 

- The reliability of the classifier: calculated according to the number of recordings used 

for training or according to a validation dataset…. 
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C. Minor paths 

a. Increase the speed of the alignment algorithm 

During the simulation process, we performed the alignment with DTW and MD-DTW only. 

Nevertheless, the time cost (complexity) behind both alignment algorithms is large. 

It is possible to implement additional algorithms and compare the alignment’s cost. The large 

variety of alignment algorithms extends to the implementation of multiple sequence alignment 

at the same time, such as the ones we can find in DNA sequence decoding problems. 

Consequently, it will be possible to align all joints at the same time. This method could decrease 

the time to perform the alignment while taking into consideration that the alignment cost does 

not degrade compared to the performances of DTW. 
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 APPENDIX I: ADDITIONAL SIMULATION EXPERIMENTATIONS 

This part contains extensions to the simulation algorithm and implementations that have been 

programmed. Since, most of these have failed, nevertheless, for reference purposes, we 

developed the procedures in the Appendix. 

 

A. Simulation algorithm 

a. Aligning with MD-DTW 

Certain basic algorithms were chosen when simulating the recordings, such as the DTW for 

aligning the extrema. The choice has been made according to the background on action 

recognition [163]. We are aware that there are numerous sequence decoding and classification 

algorithms such as Viterbi [164]. Nevertheless, we chose to test our method with the DTW 

because it is simple to implement, to observe and to handle. One of its variations, which has 

been previously applied for action recognition in [165], is the MD-DTW. In fact, the MD-DTW 

is used as a replacement of the straightforward and basic DTW.  

With the MD-DTW, we align the sequences according to their features and their coordinates 

by doing the following: 

- Store the coordinates, the instant velocity, average velocity and acceleration into a 

multi-dimensional vector (MD-vector). 

- Normalize the MD-vector to the zero mean and unit variance. 

- In the original algorithm, a Gaussian filter has been used to smooth the sequences 

before computing the distance matrix. Nevertheless, the alignment was bad. As a 

result, we skipped the smoothing step. 

- Calculate a distance matrix with the Euclidean distance between the different 

dimensions of the vectors. 

- Apply a normal DTW on the final distance matrix. 

Before running the experiments with the simulated recordings, we extract some statistics from 

the alignment algorithm. The statistics are simple and consist of computing the sum of the 

intervals while running the simulation process. When simulating 50 recordings per class with 

the captured and the MSRC-12 datasets, the sum of the intervals is much larger when aligning 

with MD-DTW than with DTW.  

The approximate sum with DTW is 2,500,000, as for the MD-DTW the sum is between 

3,500,000 and 4,000,000. (Note: the values are large and do not make a lot of sense, but we 

mention them as an example of the large difference and the misalignment with MD-DTW) 

Moreover, since the algorithm picks the reference recording randomly at every iteration 

IV.C.b, the sum differs a lot between the runs of the algorithm. Table 65 0to Table 66 display 

performance comparisons between the classification algorithms that have been used throughout 

this chapter, when aligning with MD-DTW and with DTW, on 3 different runs of the simulation 
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algorithm. Note that the simulation is done with the best parameters that have been found 

previously in this chapter: proportionality method, 50 simulated recordings, and the classifiers’ 

specific parameters. 

 

Table 65. Results with DTW with relative joint positions – CAP dataset 

  
Adaboost 

KNN 

(K=30) 

Random 

Forests 
SVM 

Sum of the intervals 

during simulation    

 Run 1 0.9103 0.6777 0.8690 0.7419 2461541 

Run 2 0.9231 0.6667 0.8649 0.7273 2458438 

Run 3 0.9241 0.6126 0.8333 0.7874 2529592 

Average 0.9192 0.6523 0.8557 0.7522  

 

Table 66. Results with MD-DTW with relative joint positions – CAP dataset 

  
Adaboost 

KNN 

(K=30) 

Random 

Forests 
SVM 

Sum of the intervals 

during simulation   

 Run 1 0.8429 0.6609 0.8828 0.5641 3714225 

Run 2 0.8936 0.6667 0.8707 0.7288 4144843 

Run 3 0.9220 0.5833 0.8082 0.7143 3643200 

Average 0.8862 0.6370 0.8539 0.6691  

 

Table 67. Results with DTW with relative joint positions – MSRC-12 dataset 

  

Adaboost 
KNN 

(K=30) 

Random 

Forests 
SVM 

Sum of the 

intervals during 

simulation 
  

 Run 1 0.9664 0.6235 0.7855 0.9502 6082631 

Run 2 0.9565 0.6957 0.8365 0.9604 6051329 

Run 3 0.9614 0.6243 0.7957 0.9412 6099888 

Average 0.9614 0.6478 0.8059 0.9506  

 

Table 68. Results with MD-DTW with relative joint positions – MSRC-12 dataset 

  

Adaboost 
KNN 

(K=30) 

Random 

Forests 
SVM 

Sum of the 

intervals during 

simulation 
  

 Run 1 0.9412 0.6630 0.7379 0.9459 9376639 

Run 2 0.8927 0.6556 0.7124 0.9321 9410222 

Run 3 0.9136 0.6047 0.7883 0.9364 9510737 

Average 0.9158 0.6411 0.7462 0.9381  
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In Table 66, the difference between the runs is large. This is due to the large intervals that are 

generated while aligning with the MD-DTW, also described as a misalignment. Moreover, it is 

caused by the fact that the simulation algorithm contains randomness with all the methods 

(average, proportionally and random) when choosing the reference sample and the reference 

coordinate. By simply comparing the tables above, it is obvious that the alignment with DTW is 

much more stable than with MD-DTW and the performances are better. Consequently, as seen 

in this thesis, the DTW was the only algorithm that was implemented in the simulation algorithm. 

 

b. Smoothing and noise reduction 

We explore two well-known algorithms: the Median filter and Kalman filter, in order to know 

whether a smoothing of the generated angles’ sequences can affect the results. We are aware 

there a lot of smoothing algorithms. Nevertheless, we study the ones that have been stated 

previously, since they are popular and easy to observe. 

To improve the recordings visually, it is possible to smooth the simulated recording with a 

Median filter or a Kalman filter. Consequently, the recordings would appear more human-like. 

Yet, the variations disappear, resulting in the reappearance of the superfeatures. 

 

 Median filter 

A large median filter removes discriminant data but improves the recordings visually. We do 

not go into many details to find the best window for the Median filter, we increase its size and 

observe the resulting recordings. We find that a window of size 7 or 9 frames does the job. 

Again, 3 training sets of 50 recordings for every class are simulated, trained with a 1-vs-all 

strategy and the performances are evaluated with the F-Measure.  

 

Table 69. Results of the classification after smoothing the simulation recordings with 

median filter (window=7) – CAP dataset 

  
Adaboost 

KNN 

(K=30) 

Random 

Forests 
SVM 

  

 Run 1 0.8725 0.6829 0.8671 0.7460 

Run 2 0.8794 0.6071 0.8652 0.7520 

Run 3 0.8859 0.6207 0.8472 0.7559 

Average 0.8793 0.6369 0.8599 0.7513 

Average of classification without 

median filter (comparison purposes) 
0.9192 0.6523 0.8557 0.7522 
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Table 70. Results of the classification after smoothing the simulated recordings with median 

filter (window=7) – MSRC-12 dataset 

  
Adaboost 

KNN 

(K=30) 

Random 

Forests 
SVM 

  

 Run 1 0.9652 0.6592 0.7751 0.9065 

Run 2 0.9614 0.6092 0.7197 0.8223 

Run 3 0.9478 0.6592 0.7327 0.8774 

Average 0.9581 0.6425 0.7425 0.8687 

Average of classification without 

median filter (comparison purposes) 
0.9614 0.6478 0.8059 0.9506 

 

 We compare the performances between the classification with and without the median filter, 

as in Table 69 & Table 70. We note that the difference is generally small (0.01%) when the 

classification with the median filter improves the performances. Consequently, the median filter 

was not implemented. 

 Kalman filter 

As with the median filter, the parameters are set according to visual results, and the 

performances are displayed in Table 71. After simulating the CAP dataset 3 times and obtaining 

the average result, it is clear that the classification’s performances did not improve. Therefore, 

the simulation has only been done 2 times to classify the MSRC-12 dataset, and the conclusion 

was the same: the Kalman filter did not improve the results. 

 

Table 71. Results of the classification after smoothing the simulated recordings with 

Kalman filter – CAP dataset 

  
Adaboost 

KNN 

(K=30) 

Random 

Forests 
SVM 

  

 Run 1 0.8456 0.5385 0.8000 0.7000 

Run 2 0.8129 0.5505 0.7943 0.6610 

Run 3 0.9252 0.6250 0.8082 0.6724 

Average 0.8612 0.5713 0.8008 0.6778 

Average of classification without the Kalman 

filter (comparison purposes) 
0.9192 0.6523 0.8557 0.7522 
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Table 72. Results of the classification after smoothing the simulated recordings with 

Kalman filter – MSRC-12 dataset 

  
Adaboost 

KNN 

(K=30) 

Random 

Forests 
SVM 

  

 Run 1 0.9407 0.5244 0.7552 0.8416 

Run 2 0.9038 0.6036 0.7534 0.7447 

Average 0.9222 0.5640 0.7543 0.7931 

Average of classification without the Kalman 

filter (comparison purposes) 
0.9614 0.6478 0.8059 0.9506 
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B. Asynchronous Late Fusion (Face Expression Recognition) 

This is an example of a dataset where the results were not efficient with the ALF. In fact, the 

dataset that was classified is the CK dataset [166] [167] contains different facial emotions that 

have been performed by different subjects, by starting at a neutral face expression and finishing 

at the peak of the emotion. Moreover, the multiple recordings in the dataset have a length of 4 

frames. Consequently, the recordings can only be partitioned into 2 parts and sequence of values 

is always incremental, making this dataset synchronous. 

 

a. Feature Extraction 

The features that were inputted to the classifier are stated briefly in Table 73. 

 

Table 73. Features used as input to the early classifier 

Features Variations and comments 

Difference between the first and last frame of the sum 

of the neighborhood for R, G, and B 
Minimum, maximum 

Difference between the first value and the last value of 

the sample (called fdiff) 
Signed, Unsigned 

𝐹𝑑𝑖𝑓𝑓(variable A)

𝐹𝑑𝑖𝑓𝑓(variable B)
 

Signed, Unsigned 

Between all the variables A and B cited 

previously where A and B are different 

 

b. Classification 

We divide the dataset into 2 groups. In these groups, the performed emotions are slightly 

different: 

- Classification 1: classifies the emotions: Angry, Contempt, Discuss 

- Classification 2: classifies the emotions: Happiness, Surprise, Fear 

As observed in Table 74, the result did not improve. 

 

Table 74. Classification results of emotion dataset (F-Measure) 

 
Confidence coefficient used as input to 

the late classifier (For synchronous 

method only) 

Synchronous Asynchronous 

Classification 1 Binary  0.64 0.56 

 Real 0.57 - 

Classification 2 Binary  0.74 0.69 

 Real 0.76 - 
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 APPENDIX II – ALF ADDITIONAL EXPERIMENTATIONS 

A. Adaboost Asynchronous classification with different metrics and overlap sizes 

a. Overlap: w=0.5 

 

Table 75. F-MEASURE results with different metrics (Adaboost) – CAP dataset - w=0.5 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.8381 0.8506 0.8506 0.8605 0.8506 0.8506 0.8605 0.8506 0.8506 0.8636 

4 0.7009 0.7609 0.7609 0.7640 0.7368 0.7609 0.7727 0.7556 0.7391 0.7865 

6 0.7791 0.8125 0.8125 0.8571 0.8211 0.8211 0.7957 0.8478 0.8172 0.8444 

8 0.7440 0.8211 0.8211 0.7742 0.8723 0.8000 0.7527 0.8222 0.7789 0.8000 

10 0.8387 0.7872 0.7872 0.8571 0.7872 0.8667 0.8791 0.8571 0.8571 0.7742 

12 0.8512 0.8791 0.8791 0.8636 0.8696 0.8723 0.8636 0.8632 0.8889 0.8043 

14 0.8255 0.8889 0.8889 0.8791 0.8889 0.8222 0.9032 0.8817 0.8182 0.8182 

16 0.8381 0.8571 0.8571 0.8571 0.8478 0.7708 0.8000 0.8333 0.8315 0.8409 

Average 0.8019 0.8322 0.8322 0.8391 0.8343 0.8206 0.8284 0.8389 0.8227 0.8165 

Maximum 0.8512 0.8889 0.8889 0.8791 0.8889 0.8723 0.9032 0.8817 0.8889 0.8636 

Minimum 0.7009 0.7609 0.7609 0.7640 0.7368 0.7609 0.7527 0.7556 0.7391 0.7742 

Standard 

Deviation 
0.0548 0.0447 0.0447 0.0439 0.0507 0.0417 0.0550 0.0382 0.0469 0.0310 

 

Table 76. F-MEASURE results with different metrics (Adaboost) – CR dataset - w=0.5 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.7921 0.7789 0.7789 0.8039 0.8039 0.7789 0.8081 0.7921 0.7789 0.7160 

4 0.8247 0.8247 0.8163 0.8125 0.8000 0.7961 0.8247 0.8119 0.8283 0.8155 

6 0.8632 0.8632 0.8200 0.8750 0.8632 0.8400 0.8632 0.8454 0.8163 0.8454 

8 0.8200 0.8454 0.8155 0.8515 0.8113 0.8454 0.8247 0.8632 0.8333 0.8454 

10 0.8132 0.8182 0.8041 0.8222 0.8163 0.8211 0.8182 0.8261 0.8352 0.7959 

12 0.8043 0.8444 0.8400 0.8315 0.8571 0.8485 0.8352 0.8421 0.8182 0.7810 

Average 0.8196 0.8291 0.8125 0.8328 0.8253 0.8217 0.8290 0.8301 0.8184 0.7999 

Maximum 0.8632 0.8632 0.8400 0.8750 0.8632 0.8485 0.8632 0.8632 0.8352 0.8454 

Minimum 0.7921 0.7789 0.7789 0.8039 0.8000 0.7789 0.8081 0.7921 0.7789 0.7160 

Standard 

Deviation 
0.0243 0.0294 0.0202 0.0264 0.0276 0.0286 0.0190 0.0255 0.0208 0.0485 
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Table 77. F-MEASURE results with different metrics (Adaboost) – SS dataset - w=0.5 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 

4 0.8421 0.8267 0.8831 0.8267 0.8831 0.8421 0.8267 0.8267 0.8421 0.7945 

6 0.8889 0.9014 0.8767 0.8889 0.8767 0.8889 0.9014 0.9014 0.9014 0.9041 

8 0.9333 0.9333 0.9315 0.9189 0.9189 0.9333 0.9333 0.9333 0.9333 0.9315 

10 0.9333 0.9459 0.9333 0.9459 0.9333 0.9333 0.9459 0.9333 0.9333 0.9459 

12 0.8947 0.9189 0.8947 0.9041 0.8947 0.8947 0.9189 0.8947 0.8947 0.9189 

14 0.8378 0.8378 0.8378 0.8378 0.8732 0.8378 0.8378 0.8378 0.8378 0.8493 

16 0.9459 0.9315 0.9333 0.9315 0.9333 0.9459 0.9459 0.9315 0.9315 0.9315 

Average 0.8300 0.8324 0.8318 0.8272 0.8346 0.8300 0.8342 0.8278 0.8297 0.8299 

Maximum 0.9459 0.9459 0.9333 0.9459 0.9333 0.9459 0.9459 0.9333 0.9333 0.9459 

Minimum 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 

Standard 

Deviation 
0.1928 0.1946 0.1921 0.1920 0.1919 0.1928 0.1957 0.1922 0.1922 0.1951 

 

b. Overlap: w=1 

Table 78. F-MEASURE results with different metrics (Adaboost) – CAP dataset - w=1 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.8315 0.8315 0.8315 0.8315 0.8315 0.8315 0.8315 0.8315 0.8315 0.8315 

4 0.8352 0.8046 0.8222 0.8444 0.8222 0.8222 0.8315 0.8222 0.8352 0.7742 

6 0.7727 0.7727 0.8000 0.8352 0.7727 0.8090 0.7727 0.8090 0.8000 0.8471 

8 0. 8696 0.8817 0.8542 0.8421 0.8632 0.8367 0.8817 0.8298 0.8696 0.8817 

10 0.8696 0.8571 0.8958 0.8571 0.8842 0.8696 0.8571 0.8696 0.8696 0.8636 

12 0.8539 0.8539 0.8222 0.8636 0.8222 0.8132 0.8539 0.8090 0.8667 0.8387 

14 0.8636 0.8636 0.8539 0.8636 0.8764 0.8539 0.8636 0.8636 0.8636 0.7955 

16 0.8000 0.8315 0.7957 0.8315 0.7957 0.8352 0.7955 0.8222 0.8261 0.8444 

Average 0.8385 0.8371 0.8344 0.8461 0.8335 0.8339 0.8359 0.8321 0.8453 0.8346 

Maximum 0. 8696 0.8817 0.8958 0.8636 0.8842 0.8696 0.8817 0.8696 0.8696 0.8817 

Minimum 0.7727 0.7727 0.7957 0.8315 0.7727 0.8090 0.7727 0.8090 0.8000 0.7742 

Standard 

Deviation 
0.0370 0.0351 0.0328 0.0136 0.0390 0.0203 0.0365 0.0229 0.0259 0.0349 
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Table 79. F-MEASURE results with different metrics (Adaboost) – CR dataset - w=1 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.6593 0.6593 0.6522 0.5647 0.6737 0.6400 0.7059 0.6250 0.6222 0.5773 

4 0.5977 0.5977 0.6667 0.6087 0.6364 0.7158 0.7835 0.6522 0.6364 0.6947 

6 0.7191 0.7191 0.7033 0.6889 0.6809 0.7273 0.8350 0.7400 0.7253 0.7000 

8 0.7234 0.7234 0.7475 0.7143 0.7400 0.7273 0.7955 0.7327 0.7097 0.7400 

10 0.7327 0.7327 0.7129 0.6667 0.7200 0.7083 0.7573 0.7071 0.6800 0.7083 

12 0.7083 0.7083 0.7010 0.6598 0.6869 0.6804 0.7692 0.6939 0.6667 0.6804 

Average 0.6901 0.6901 0.6973 0.6505 0.6896 0.6998 0.7744 0.6918 0.6734 0.6835 

Maximum 0.7327 0.7327 0.7475 0.7143 0.7400 0.7273 0.8350 0.7400 0.7253 0.7400 

Minimum 0.5977 0.5977 0.6522 0.5647 0.6364 0.6400 0.7059 0.6250 0.6222 0.5773 

Standard 

Deviation 
0.0521 0.0521 0.0340 0.0548 0.0364 0.0340 0.0429 0.0453 0.0402 0.0557 

 

Table 80. F-MEASURE results with different metrics (Adaboost) – SS dataset - w=1 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.2928 0.3636 0.3636 

4 0.7945 0.8267 0.8831 0.8267 0.8831 0.8421 0.8267 0.7730 0.8421 0.7945 

6 0.9041 0.9014 0.8767 0.8889 0.8767 0.8889 0.9014 0.8799 0.9014 0.9041 

8 0.9315 0.9333 0.9315 0.9189 0.9189 0.9333 0.9333 0.9135 0.9333 0.9315 

10 0.9459 0.9459 0.9333 0.9459 0.9333 0.9333 0.9459 0.9135 0.9333 0.9459 

12 0.9189 0.9189 0.8947 0.9041 0.8947 0.8947 0.9189 0.8614 0.8947 0.9189 

14 0.8493 0.8378 0.8378 0.8378 0.8732 0.8378 0.8378 0.7896 0.8378 0.8493 

16 0.9315 0.9315 0.9333 0.9315 0.9333 0.9459 0.9459 0.9144 0.9315 0.9315 

Average 0.8299 0.8324 0.8318 0.8272 0.8346 0.8300 0.8342 0.7923 0.8297 0.8299 

Maximum 0.9459 0.9459 0.9333 0.9459 0.9333 0.9459 0.9459 0.9144 0.9333 0.9459 

Minimum 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.3636 0.2928 0.3636 0.3636 

Standard 

Deviation 
0.1951 0.1946 0.1921 0.1920 0.1919 0.1928 0.1957 0.2093 0.1922 0.1951 
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B. KNN Asynchronous classification with different metrics and overlap sizes 

a. Overlap: w=0 

 

Table 81. F-MEASURE results with different metrics (KNN) – CAP dataset - w=0 

Number 

of parts 

MCC RR PP R P A Y HALF MCC1 
F-

Measure 
Model=1 

MCC 

(Additional 

Dataset) 

2 0.6400 0.6575 0.6988 0.6667 0.7294 0.6667 0.6667 0.6842 0.6753 0.6111 0.6579 0.4966 

4 0.6923 0.7013 0.7250 0.6753 0.7250 0.7529 0.6842 0.7529 0.7500 0.7013 0.7674 0.6584 

6 0.7586 0.7143 0.7778 0.7442 0.7778 0.7500 0.7381 0.7273 0.7416 0.7500 0.7356 0.7419 

8 0.7907 0.7619 0.7955 0.7765 0.7955 0.7640 0.7407 0.7640 0.7727 0.8046 0.7273 0.7717 

10 0.7816 0.7529 0.7674 0.7674 0.7816 0.7778 0.7529 0.7727 0.7816 0.7816 0.7778 0.7889 

12 0.7765 0.7619 0.7765 0.7529 0.7674 0.7442 0.7619 0.7619 0.7381 0.7674 0.7442 0.8177 

14 0.8046 0.7765 0.7765 0.7765 0.7619 0.7529 0.7765 0.7907 0.7619 0.8046 0.7529 0.8111 

16 0.7529 0.7586 0.7619 0.7586 0.7619 0.7294 0.7674 0.7529 0.7191 0.7529 0.6988 0.8136 

Average 0.7497 0.7356 0.7599 0.7398 0.7626 0.7422 0.7361 0.7508 0.7425 0.7467 0.7327 0.7375 

Maximum 0.8046 0.7765 0.7955 0.7765 0.7955 0.7778 0.7765 0.7907 0.7816 0.8046 0.7778 0.8177 

Minimum 0.6400 0.6575 0.6988 0.6667 0.7250 0.6667 0.6667 0.6842 0.6753 0.6111 0.6579 0.4966 

Standard 

Deviation 
0.0559 0.0407 0.0319 0.0439 0.0245 0.0336 0.0398 0.0324 0.0337 0.0642 0.0388 0.1107 

 Synchronous (k=3) 0.7045 
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Table 82. F-MEASURE results with different metrics (KNN) – CR dataset - w=0 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.6053 0.5783 0.6098 0.6444 0.6341 0.7059 0.6154 0.6512 0.6588 0.6744 

4 0.7059 0.6512 0.7556 0.6813 0.7174 0.7556 0.7294 0.7312 0.7045 0.7391 

6 0.7045 0.6818 0.6809 0.6818 0.6737 0.6882 0.6897 0.6809 0.6742 0.6882 

8 0.7033 0.6742 0.7033 0.6667 0.6809 0.6667 0.6591 0.6737 0.6957 0.6522 

10 0.7273 0.7191 0.7273 0.7356 0.7356 0.7253 0.7059 0.7609 0.7333 0.7391 

12 0.7174 0.7253 0.7097 0.7333 0.7174 0.7033 0.7045 0.7111 0.7097 0.7191 

Average 0.6939 0.6716 0.6977 0.6905 0.6932 0.7075 0.6840 0.7015 0.6960 0.7020 

Maximum 0.7273 0.7253 0.7556 0.7356 0.7356 0.7556 0.7294 0.7609 0.7333 0.7391 

Minimum 0.6053 0.5783 0.6098 0.6444 0.6341 0.6667 0.6154 0.6512 0.6588 0.6522 

Standard 

Deviation 
0.0444 0.0536 0.0498 0.0367 0.0374 0.0306 0.0408 0.0406 0.0265 0.0360 

 

Table 83. F-MEASURE results with different metrics (KNN) – SS dataset - w=0 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.7941 0.7813 0.8000 0.8182 0.8000 0.7826 0.7879 0.8116 0.8235 0.7714 

4 0.9189 0.9189 0.9189 0.9014 0.9189 0.8919 0.9041 0.9041 0.9167 0.8947 

6 0.8780 0.9114 0.8675 0.9000 0.8706 0.8810 0.8750 0.8571 0.8780 0.8706 

8 0.8810 0.8500 0.8706 0.8148 0.8706 0.8916 0.8250 0.8706 0.8916 0.8889 

10 0.7711 0.7805 0.8312 0.7901 0.9024 0.9024 0.7619 0.8810 0.8000 0.8780 

12 0.8675 0.8974 0.9250 0.8608 0.9250 0.9250 0.8642 0.9250 0.9000 0.9367 

14 0.8276 0.7912 0.9000 0.7955 0.9114 0.8974 0.7692 0.8780 0.8471 0.8974 

16 0.9383 0.8889 0.9620 0.8571 0.9744 0.9744 0.8571 0.9620 0.9383 0.9620 

Average 0.8596 0.8524 0.8844 0.8422 0.8967 0.8933 0.8306 0.8862 0.8744 0.8875 

Maximum 0.9744 0.9189 0.9620 0.9014 0.9744 0.9744 0.9041 0.9620 0.9383 0.9620 

Minimum 0.7711 0.7805 0.8000 0.7901 0.8000 0.7826 0.7619 0.8116 0.8000 0.7714 

Standard 

Deviation 
0.0661 0.0601 0.0528 0.0441 0.0511 0.0536 0.0528 0.0452 0.0474 0.0560 
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b. Overlap: w=0.5 

Table 84. F-MEASURE results with different metrics (KNN) – CAP dataset - w=5 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.7073 0.7000 0.6829 0.6988 0.6747 0.6667 0.7000 0.6914 0.6667 0.6341 

4 0.6500 0.6667 0.7059 0.6329 0.6905 0.7073 0.6835 0.7229 0.7073 0.7073 

6 0.7556 0.6667 0.7556 0.6582 0.7556 0.7294 0.6835 0.6977 0.7294 0.7381 

8 0.7126 0.6977 0.7586 0.6977 0.7529 0.7442 0.7317 0.7442 0.7442 0.7442 

10 0.7640 0.7778 0.7955 0.7865 0.7955 0.7727 0.7640 0.7727 0.7727 0.7586 

12 0.7470 0.7000 0.7529 0.7000 0.7381 0.7229 0.6835 0.7317 0.7229 0.7229 

14 0.7816 0.8046 0.7586 0.7907 0.7586 0.7529 0.8046 0.7765 0.7529 0.7529 

16 0.7442 0.7381 0.7586 0.7381 0.7586 0.7500 0.7381 0.7586 0.7500 0.7273 

Average 0.7328 0.7189 0.7461 0.7129 0.7406 0.7308 0.7236 0.7370 0.7308 0.7232 

Maximum 0.7816 0.8046 0.7955 0.7907 0.7955 0.7727 0.8046 0.7765 0.7727 0.7586 

Minimum 0.6500 0.6667 0.6829 0.6329 0.6747 0.6667 0.6835 0.6914 0.6667 0.6341 

Standard 

Deviation 
0.0416 0.0504 0.0352 0.0562 0.0395 0.0328 0.0445 0.0321 0.0328 0.0396 

 

Table 85. F-MEASURE results with different metrics (KNN) – CR dataset - w=0.5 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.6118 0.5517 0.6265 0.5476 0.6506 0.7111 0.5301 0.6593 0.5747 0.6374 

4 0.6824 0.6747 0.7033 0.6824 0.6889 0.7368 0.6341 0.7312 0.7333 0.7312 

6 0.6531 0.6383 0.7216 0.6667 0.7143 0.7255 0.6316 0.6990 0.6667 0.7255 

8 0.6882 0.7010 0.6869 0.7143 0.6939 0.7 0.6875 0.6931 0.6804 0.6800 

10 0.6735 0.7083 0.6667 0.6667 0.6667 0.6596 0.7021 0.6465 0.6875 0.6667 

12 0.6809 0.6737 0.6667 0.6947 0.6598 0.6947 0.6522 0.6804 0.6737 0.6947 

Average 0.6649 0.6580 0.6786 0.6621 0.6790 0.7046 0.6396 0.6849 0.6694 0.6892 

Maximum 0.6882 0.7083 0.7216 0.7143 0.7143 0.7368 0.7021 0.7312 0.7333 0.7312 

Minimum 0.6118 0.5517 0.6265 0.5476 0.6506 0.6596 0.5301 0.6465 0.5747 0.6374 

Standard 

Deviation 
0.0288 0.0576 0.0333 0.0589 0.0240 0.0271 0.0607 0.0302 0.0520 0.0357 
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Table 86. F-MEASURE results with different metrics (KNN) – SS dataset - w=0.5 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.7222 0.6269 0.7397 0.7143 0.7222 0.7568 0.7143 0.7467 0.6471 0.7368 

4 0.7945 0.7143 0.7945 0.7945 0.7778 0.8267 0.7778 0.8108 0.7429 0.8421 

6 0.8974 0.7945 0.8974 0.8919 0.8974 0.9351 0.8767 0.9351 0.8500 0.9114 

8 0.8434 0.8919 0.8235 0.8434 0.8140 0.8861 0.8537 0.8750 0.8675 0.8861 

10 0.8043 0.8750 0.8261 0.8043 0.8261 0.8315 0.8043 0.8352 0.8506 0.8571 

12 0.8537 0.8222 0.8642 0.8000 0.8780 0.8642 0.8000 0.8750 0.8780 0.8608 

14 0.8090 0.8293 0.8276 0.7527 0.8372 0.8140 0.7778 0.8090 0.8276 0.8537 

16 0.8352 0.7609 0.8837 0.8261 0.8837 0.8941 0.8132 0.9157 0.8409 0.9383 

Average 0.8200 0.7894 0.8321 0.8034 0.8296 0.8510 0.8022 0.8503 0.8131 0.8608 

Maximum 0.8974 0.8919 0.8974 0.8919 0.8974 0.9351 0.8767 0.9351 0.8780 0.9383 

Minimum 0.7222 0.6269 0.7397 0.7143 0.7222 0.7568 0.7143 0.7467 0.6471 0.7368 

Standard 

Deviation 
0.0514 0.0873 0.0508 0.0542 0.0591 0.0555 0.0496 0.0620 0.0788 0.0597 

 

c. Overlap: w=1 

Table 87. F-MEASURE results with different metrics (KNN) – CAP dataset - w=1 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.6500 0.6582 0.6506 0.6410 0.6506 0.6914 0.6494 0.6914 0.6500 0.6341 

4 0.7160 0.6829 0.7442 0.6914 0.7442 0.7229 0.6750 0.7073 0.6988 0.7073 

6 0.7527 0.7209 0.7333 0.7209 0.7333 0.7143 0.7209 0.7059 0.7692 0.7381 

8 0.7391 0.6966 0.7391 0.6966 0.7391 0.7126 0.6818 0.7045 0.7253 0.7442 

10 0.7609 0.7556 0.7742 0.7556 0.7742 0.7674 0.7556 0.7674 0.7692 0.7586 

12 0.7191 0.7209 0.7191 0.7294 0.7191 0.7209 0.7356 0.7126 0.7045 0.7229 

14 0.7126 0.7209 0.7045 0.7209 0.7045 0.7294 0.7294 0.7209 0.7045 0.7529 

16 0.7356 0.6977 0.7500 0.6977 0.7500 0.7500 0.7209 0.7500 0.7356 0.7273 

Average 0.7233 0.7067 0.7269 0.7067 0.7269 0.7261 0.7086 0.7200 0.7197 0.7232 

Maximum 0.7609 0.7556 0.7742 0.7556 0.7742 0.7674 0.7556 0.7674 0.7692 0.7586 

Minimum 0.6500 0.6582 0.6506 0.6410 0.6506 0.6914 0.6494 0.6914 0.6500 0.6341 

Standard 

Deviation 
0.0343 0.0295 0.0371 0.0339 0.0371 0.0235 0.0359 0.0257 0.0395 0.0396 
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Table 88. F-MEASURE results with different metrics (KNN) – CR dataset - w=1 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.6593 0.6593 0.6522 0.5647 0.6737 0.6400 0.6047 0.6250 0.6222 0.5773 

4 0.5977 0.5977 0.6667 0.6087 0.6364 0.7158 0.5909 0.6522 0.6364 0.6947 

6 0.7191 0.7191 0.7033 0.6889 0.6809 0.7273 0.6742 0.7400 0.7253 0.7000 

8 0.7234 0.7234 0.7475 0.7143 0.7400 0.7273 0.7045 0.7327 0.7097 0.7400 

10 0.7327 0.7327 0.7129 0.6667 0.7200 0.7083 0.7500 0.7071 0.6800 0.7083 

12 0.7083 0.7083 0.7010 0.6598 0.6869 0.6804 0.6526 0.6939 0.6667 0.6804 

Average 0.6901 0.6901 0.6973 0.6505 0.6896 0.6998 0.6628 0.6918 0.6734 0.6835 

Maximum 0.7327 0.7327 0.7475 0.7143 0.7400 0.7273 0.7500 0.7400 0.7253 0.7400 

Minimum 0.5977 0.5977 0.6522 0.5647 0.6364 0.6400 0.5909 0.6250 0.6222 0.5773 

Standard 

Deviation 
0.0521 0.0521 0.0340 0.0548 0.0364 0.0340 0.0602 0.0453 0.0402 0.0557 

 

Table 89. F-MEASURE results with different metrics (KNN) – SS dataset - w=1 

Number 

of parts 
MCC RR PP R P A Y HALF F-Measure Model=1 

2 0.6571 0.6667 0.6944 0.6667 0.6849 0.7027 0.6667 0.6757 0.7059 0.6087 

4 0.7778 0.7500 0.7671 0.7671 0.7467 0.7397 0.7246 0.7397 0.7708 0.7353 

6 0.8312 0.8421 0.8684 0.8312 0.8684 0.8684 0.8462 0.8684 0.8039 0.7692 

8 0.9000 0.8889 0.8780 0.8780 0.8889 0.9000 0.8675 0.9000 0.8222 0.8182 

10 0.8235 0.8537 0.8434 0.8095 0.8537 0.8642 0.8193 0.8537 0.7767 0.8000 

12 0.8916 0.8780 0.8605 0.8571 0.8605 0.8571 0.8675 0.8810 0.7692 0.7879 

14 0.8000 0.7865 0.8372 0.7865 0.8372 0.8235 0.7865 0.8276 0.8974 0.8235 

16 0.7629 0.7872 0.8352 0.7789 0.8444 0.8605 0.7551 0.8444 0.9060 0.7761 

Average 0.8055 0.8066 0.8230 0.7969 0.8231 0.8270 0.7917 0.8238 0.8065 0.7649 

Maximum 0.9000 0.8889 0.8780 0.8780 0.8889 0.9000 0.8675 0.9000 0.9060 0.8235 

Minimum 0.6571 0.6667 0.6944 0.6667 0.6849 0.7027 0.6667 0.6757 0.7059 0.6087 

Standard 

Deviation 
0.0774 0.0746 0.0620 0.0653 0.0700 0.0692 0.0724 0.0769 0.0677 0.0691 
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d. Resume: Different overlap sizes 

Table 90. Different overlap sizes (F-MEASURE) – MCC metric - KNN 

 CAP CR SS 

Number 

of parts 
w=0 w=1.5 w=2 w=0 w=1.5 w=2 w=0 w=1.5 w=2 

2 0.6400 0.7073 0.6500 0.6053 0.6118 0.6593 0.7941 0.6571 0.6571 

4 0.6923 0.6500 0.7160 0.7356 0.6824 0.5977 0.9189 0.7778 0.7778 

6 0.7586 0.7556 0.7527 0.7045 0.6531 0.7191 0.8780 0.8312 0.8312 

8 0.7907 0.7126 0.7391 0.7033 0.6882 0.7234 0.8810 0.9000 0.9000 

10 0.7816 0.7640 0.7609 0.7310 0.6735 0.7327 0.7711 0.8235 0.8235 

12 0.7765 0.7470 0.7191 0.7174 0.6809 0.7083 0.8675 0.8916 0.8916 

14 0.8046 0.7816 0.7126    0.8276 0.8000 0.8000 

16 0.7529 0.7442 0.7356    0.9383 0.7629 0.7629 

Average 0.7497 0.7328 0.7233 0.6995 0.6649 0.6901 0.8596 0.8055 0.8055 

Maximum 0.8046 0.7816 0.7609 0.7356 0.6882 0.7327 0.9744 0.9000 0.9000 

Minimum 0.6400 0.6500 0.6500 0.6053 0.6118 0.5977 0.7711 0.6571 0.6571 

Standard 

Deviation 
0.0559 0.0416 0.0343 0.0480 0.0288 0.0521 0.0661 0.0774 0.0774 

 

After performing all the asynchronous tests, we tried to optimize even more the choice of the 

K parameters. The best results for multiple values of K are noted in Table 91. The resulting value 

is compared to the ones in the asynchronous solution and shows that the performances are still 

better when implementing the ALF.  

Table 91. Finding the best K for KNN 

 
K 

F-Measure with 

synchronous classification 

With ALF, F-Measure average of 

3 results (K=9) 

CAP 

3 0.7045 

0.7467 
5 0.6914 

7 0.5714 

9 0.6494 

SS 

3 0.7123 

0.8956 
5 0.6944 

7 0.7123 

9 0.6933 

CR 

3 0.5747 

0.6809 
5 0.6353 

7 0.5934 

9 0.5909 
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C. Power consumption 

In VI.C, we have applied the ALF on a power consumption dataset with asynchronous 

properties to show that the asynchronous solution can be applied to other fields. The remainder 

of the results that were displayed are shown in the following table: 

 

Table 92. Classification results of the power consumption dataset (F-Measure) 

Number of parts 
Weekend 

detection 

Day detection 

2007-2010 

Day detection 

2007 

2 0.470588 0.223654 0.253308 

3 0.464497 0.275727 0.238361 

4 0.518033 0.240567 0.240458 

5 0.642202 0.243992 0.210526 

6 0.49387 0.258378 0.244009 

7 0.644483 0.256432 0.27051 

8 0.512241 0.280737 0.238411 

9 0.619231 0.252029 0.26087 

10 0.611212 0.265407 0.304545 

11 0.614286 0.273966 0.25 

12 0.698835 0.255739 0.266055 

13 0.624561 0.259477 0.299287 

14 0.579545 0.251242 0.299065 

15 0.698925 0.278607 0.262626 

16 0.679104 0.255697 0.265306 

17 0.670251 0.248118 0.2746 

18 0.629252 0.256876 0.293976 

19 0.631193 0.252361 0.246787 

20 0.555347 0.281071 0.272277 
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 APPENDIX III – DISCUSSION – PERFORMANCE MEASURE 

Throughout this work/thesis, a lot of discussions were conducted around the performance 

measures. Every measure has its own properties: the F-measure and the MCC output a high value 

when the tested classes perform well and penalize the result when the classes have been 

misclassified but do not attribute exactly the same weight to the classes, as opposed to the Half 

Total Error Rate (HER). The measures are numerous, and all of them can be proved inefficient. 

We give some examples below. 

We consider three 1-vs-all classification problems where, of course, the number of positives 

is smaller than the number of negatives as in Table 93 (and as seen throughout this thesis): 

Table 93. Comparison of different performance metrics 

 Positive Negative MCC F-Measure HER 

Problem 1 54/74 416/444 0.6391 0.6923 0.8333 

Problem 2 40/74 440/444 0.6671 0.6780 0.7658 

Problem 3 0/74 440/444 -0.0360 0 0.4955 

 

The F-Measure and the MCC can emphasize on the class that contains the largest number of 

samples. As for the Half Total Error Rate, it does not penalize the results if the classification 

fails to detect a certain label completely.  

Some performance measures such as the recall only evaluate one class and are usually 

accompanied by the precision metric, or combined into a final value (F-Measure, Youden's 

Index...). Hence, we did not agree on a performance measure that is able to reveal the true nature 

of the results with one value only. In the end, we adopted the F-Measure as a performance 

measure since it is one of the most known in the research field. 

Finally, some studies consider the confusion matrix to compare the results. Nevertheless, this 

would not be really efficient for us since the number of tests is large. For informational purposes, 

we display in the appendix some of the results as confusion matrices. 

Since we adopt a 1-vs-all strategy in most of the classifications, to convert the results into a 

confusion matrix, we are forced to introduce an "unknown" label for every classification. Some 

results for the classification of the CAP dataset are compiled below into a confusion matrix: 
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Table 94. CAP dataset, training with real actions 

 
1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 0 0 0 0 0 

4 0 0 0 100 0 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 0 100 0 

7 0 0 0 0 0 0 100 

-1 0 0 100 0 0 0 0 

 

Table 95. CAP dataset, training with simulated actions 

 
1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 100 0 0 0 0 

4 0 0 0 100 0 0 0 

5 37.5 0 0 0 62.5 0 0 

6 0 0 0 0 0 100 0 

7 0 0 0 0 0 0 100 

-1 0 0 0 0 0 0 0 
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The tables containing the classification results obtained with the asynchronous dataset are displayed below. 

Table 96. CAP dataset, ALF – 2 parts 

 
1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 100 0 0 0 0 

4 0 0 0 100 0 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 0 100 0 

7 25 0 0 0 0 25 50 

-1 0 0 0 0 0 0 0 
 

Table 97. CAP dataset, ALF – 4 parts 

 
1 2 3 4 5 6 7 

1 85.71 0 14.29 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 100 0 0 0 0 

4 0 0 14.29 85.71 0 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 0 87.5 12.5 

7 0 0 0 0 0 0 100 

-1 0 0 0 0 0 0 0 
 

Table 98. CAP dataset, ALF – 6 parts 

 
1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 100 0 0 0 0 

4 0 0 0 100 0 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 0 100 0 

7 0 0 0 0 0 20 80 

-1 0 0 0 0 0 0 0 
 

Table 99. CAP dataset, ALF – 8 parts 

 
1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 100 0 0 0 0 

4 0 0 22.22 77.78 0 0 0 

5 0 0 0 28.57 71.43 0 0 

6 0 0 0 0 0 100 0 

7 25 0 0 0 0 33.33 66.67 

-1 0 0 0 0 0 0 0 
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Table 100. CAP dataset, ALF – 2 parts 

 
1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 66.67 0 0 0 0 

4 0 0 0 33.33 0 0 0 

5 0 0 12.5 87.5 100 0 0 

6 0 0 0 0 0 100 0 

7 25 0 0 0 0 0 100 

-1 0 0 0 0 0 0 0 
 

Table 101. CAP dataset, ALF – 4 parts 

 
1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 100 0 0 0 0 

4 0 0 16.67 83.33 0 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 0 100 0 

7 0 0 0 0 0 25 75 

-1 0 0 0 0 0 0 0 
 

Table 102. CAP dataset, ALF – 6 parts 

 
1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 66.67 33.33 0 0 0 

4 0 0 0 100 0 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 0 100 0 

7 25 0 0 0 0 25 50 

-1 0 0 0 0 0 0 0 
 

Table 103. CAP dataset, ALF – 8 parts 

 
1 2 3 4 5 6 7 

1 100 0 0 0 0 0 0 

2 0 100 0 0 0 0 0 

3 0 0 100 0 0 0 0 

4 0 0 0 100 0 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 0 100 0 

7 25 0 0 0 0 60 40 

-1 0 0 0 0 0 0 0 
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 APPENDIX IV – DATASETS 

 

Due to graphical constraints, we only display the frames that we judge as the most relevant for 

an action. 

 

Table 104. Custom dataset called CAPtured dataset (CAP) 

Action Frames 

2 hands up 

 

Crouch 

 

Raise right hand 

up 

 

Right Hand Wave 

 

Surrender 
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Tennis Forehand 

Drive 

 

Tennis Backhand 

Drive 

 

 

Table 105. Custom dataset with right-hand wave confusion (CR) 

Action Frames 

Right-hand wave A 

 

Raise Right hand up Same as in Table 104 

Right-hand wave B Same as in Table 104 

Surrender Same as in Table 104 

Tennis Forehand Drive Same as in Table 104 

Tennis Backhand Drive Same as in Table 104 
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Table 106. Custom dataset with Swimming and Soccer (SS) 

Action Frames 

Swimming 

Crawl 

 

Swimming 

Butterfly 

 

Soccer 
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Not Soccer 

 

 

Table 107. Custom dataset with right hand up & left hand up (RL) 

Action Frames 

Right, Left, 

Left, Left 
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Left, Right, 

Left, Left 

 

Left, Left, 

Right, Left 

 

Left, Left, 

Left, Right 
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Table 108. Custom gait dataset 

Action Frames 

Army march 

 

Incorrect 

army march 
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Parkinsonian-

like shuffling 

 

Neurological 

Experiment 
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Normal gait 

 

 

Right leg 

fracture 
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Left leg 

fracture 
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 APPENDIX V - OPEN SOURCE CONTRIBUTIONS 

 

As part of the work on the Joint Angles and the simulation algorithm, we uploaded 2 

applications that convert the joint coordinates to angles, as well as an action viewer and a part 

of the CAP dataset, as open source, online at http://computing-technologies.com/action_viewer.  

Knowing that the action recognition community (from the Microsoft Kinect) is small, the 

number of downloads and interests in the uploaded software was interesting. The software was 

downloaded more than 190 times within 1 month of release, and we received approximately 15 

inquiries concerning updates or support requests. 

 

Figure 38. Number of downloads of the Kinect Joint Angles software per month 

 

The releases are described below: 

 

A. Kinect Joint Angles 1.0 

This software, coded in C#, allows users to calculate the Joint Angles by capturing the data 

from Microsoft Kinect for Xbox 360. The code has been made available for download and public 

use under the MIT license. 

a. Features: 

- Joint angles detection: detects the joint angles for the Degrees Of Freedom (DOF) of 

14 Joints using the coordinates from the Kinect Skeleton. 

- Export Skeleton data to XML. 

- Exports the Skeleton coordinates and Joints Angles to XML or CSV. 

- Depth and RGB video recording using AForge library 

0

50

100

150

200

250

A
p
r-

1
2

Ju
n
-1

2

A
u
g
-1

2

O
ct

-1
2

D
ec

-1
2

F
eb

-1
3

A
p
r-

1
3

Ju
n
-1

3

A
u
g
-1

3

O
ct

-1
3

D
ec

-1
3

F
eb

-1
4

A
p
r-

1
4

Ju
n
-1

4

A
u
g
-1

4

O
ct

-1
4

D
ec

-1
4

F
eb

-1
5

A
p
r-

1
5

Ju
n
-1

5

A
u
g
-1

5

O
ct

-1
5

D
ec

-1
5



215 

b. Requirements: 

- .Net Framework 4.0 

- Microsoft Kinect 

- Microsoft Kinect driver 

 

B. Kinect Joint Angles 2.0 

This software, coded in C#, allows users to calculate the Joint Angles by capturing the data 

from Microsoft Kinect for Xbox 360 and Microsoft Kinect for Windows. The code has been 

made available for download and public use under the MIT license. 

a. Features: 

- Joint coordinates conversion to angles and export: converts the joint coordinates to 2 

angles and export them to a custom format, which is viewable in the ActionViewer. 

- Export Skeleton data to XML. 

- Exports the Skeleton coordinates and Joints Angles to XML. 

- Convert from Kinect Joint Angles 1.0 to Kinect Joint Angles 2.0 file format 

- Start and stop the export with voice commands: "START" & "STOP." 

b. Requirements: 

- .Net Framework 4.5 

- Microsoft Kinect 

- Microsoft Kinect driver  
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THESIS SUMMARY 

 

In this thesis, we took interest in human action recognition. Thus, it was important to define 

an action. We proposed our own definition: an action is a predefined sequence of concatenated 

simple gestures. The same actions are composed of the same simple gestures. Every performance 

of an action (recording) is unique. Hence, the body and the joints will perform the same 

movements as the reference recording, with changes of dynamicity of the sequence and 

amplitude in the DOF. We note that the variations in the amplitude and dynamicity must not 

exceed certain boundaries in order not to lead to entirely different actions. 

For our experiments, we captured a dataset composed of actions containing basic variations. 

We merged some of those recordings with other actions to form a second dataset, consequently 

inducing more confusion than the previous one during the classification. We also captured three 

other datasets with properties that are interesting for our experimentations with the ALF 

(Asynchronous Late Fusion). 

We overcame the problem of non-discriminatory actions datasets for action recognition by 

enlarging a set of recordings performed by different persons and captured by an RGB-D camera. 

We presented a novel method for generating synthetic recordings, for training action recognition 

algorithms. We analyzed the parameters of the method and identified the most appropriate ones, 

for the different classifiers. The simulation method improved the performances while classifying 

different datasets. 

A general overview of data classification starting from the audio-visual context led to the 

ALF idea. In fact, most of the approaches in the domain classify sound and video streams 

separately with different tools. Every temporal sequence from a recording is analyzed distinctly, 

as in audiovisual stream analysis, where the classification outputs decisions at various time 

instants. Therefore, to infer the final decision, it is important to fuse the decisions that were taken 

separately, hence the idea of the asynchronous fusion. As a result, we found it interesting to 

implement the ALF in temporal sequences. 

We introduced the ALF model for improving temporal events classification applied on late 

fusion classification algorithms. We showed the reason behind the use of an asynchronous model 

when classifying datasets with temporal properties. Then, we introduced the algorithm behind 

the ALF and the parameters used to tune it. 

Finally, according to computed performances from different algorithms and datasets, we 

showed that the ALF improves the results of a simple Synchronous solution in most of the cases. 

As it can be difficult for the user of the ALF solution to determine which datasets are 

compatible with the ALF, we built indicators to compare the datasets by extracting statistical 

information from the recordings. We developed indexes: the ASI and the ASIP, combined into 

a final index (the ASIv) to provide information concerning the compatibility of the dataset with 

the ALF.  
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We evaluated the performances of the ALF on the segmentation of action series and compared 

the results between synchronous and ALF solutions.  The method that we proposed increased 

the performances. 

We analyzed the human movement and gave a general definition of an action. Later, we 

improved this definition and proposed a "visual definition" of an action. With the aid of the ALF 

model, we focus on the parts and joints of an action that are the most discriminant and display 

them in an image.  

In the end, we proposed multiple paths as future studies. The most important ones are : 

- Working on a process to find the ALF’s number of parts using the ASIv. 

- Reducing the complexity by finding the discriminant joints and features thanks to the 

ALF properties 

- Studying the MD-DTW features in-depth since the algorithm depends on the choice 

of the features 

- Implementing a DNN for comparison purposes 

- Developing the confidence coefficient. 
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RÉSUMÉ DE THÈSE 

 

Dans cette thèse, nous nous intéressons à la reconnaissance de l’activité humaine. Nous 

commençons par proposer notre propre définition d’une action : une action est une séquence 

prédéfinie de gestes simples et concaténés. Ainsi, des actions similaires sont composées par les 

mêmes gestes simples. Chaque réalisation d'une action (enregistrement) est unique. Le corps 

humain et ses articulations vont effectuer les mêmes mouvements que celles d’un enregistrement 

de référence, avec des variations d’amplitude et de dynamique ne devant pas dépasser certaines 

limites qui conduiraient à un changement complet d’action. 

Pour effectuer nos expérimentations, nous avons capturé un jeu de données contenant des 

variations de base, puis fusionné certains enregistrements avec d'autres actions pour former un 

second jeu induisant plus de confusion au cours de la classification. Ensuite, nous avons capturé 

trois autres jeux contenant des propriétés intéressantes pour nos expérimentations avec la Fusion 

Tardive Asynchrone (ou Asynchronous Late Fusion notée ALF). 

Nous avons surmonté le problème des petits jeux non discriminants pour la reconnaissance 

d’actions en étendant un ensemble d'enregistrements effectués par différentes personnes et 

capturés par une caméra RGB-D. Nous avons présenté une nouvelle méthode pour générer des 

enregistrements synthétiques pouvant être utilisés pour l’apprentissage d’algorithmes de 

reconnaissance de l’activité humaine. La méthode de simulation a ainsi permis d’améliorer les 

performances des différents classifieurs. 

Un aperçu général de la classification des données dans un contexte audiovisuel a conduit à 

l’idée de l’ALF. En effet, la plupart des approches dans ce domaine classifient les flux audio et 

vidéo séparément, avec des outils différents. Chaque séquence temporelle est analysée 

séparément, comme dans l'analyse de flux audiovisuels, où la classification délivre des décisions 

à des instants différents. Ainsi, pour déduire la décision finale, il est important de fusionner les 

décisions prises séparément, d'où l'idée de la fusion asynchrone. Donc, nous avons trouvé 

intéressant d’appliquer l‘ALF à des séquences temporelles. 

Nous avons introduit l’ALF afin d’améliorer la classification temporelle appliquée à des 

algorithmes de fusion tardive tout en justifiant l’utilisation d’un modèle asynchrone lors de la 

classification des données temporelles. Ensuite, nous avons présenté l'algorithme de l’ALF et les 

paramètres utilisés pour l’optimiser. 

Enfin, après avoir mesuré les performances de classifications avec différents algorithmes et 

jeux de données, nous avons montré que l’ALF donne de meilleurs résultats qu’une solution 

synchrone simple. 

Etant donné qu’il peut être difficile d’identifier les jeux de données compatibles avec l’ALF, 

nous avons construit des indicateurs permettant d’en extraire des informations statistiques. Nous 

avons développé des indices : l'ASI et l'ASIP, combinés en un indice final (ASIv) afin de fournir 

des informations concernant la compatibilité des données avec l’ALF. 

Nous avons comparé les résultats entre la solution synchrone et l’ALF sur la segmentation de 

série d’enregistrements. Ceux-ci ont montré que l’ALF améliore les performances. 
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Nous avons analysé le mouvement humain et, après avoir donné une définition générale d'une 

action, nous avons amélioré cette définition et proposé une "définition visuelle". Ainsi, grâce à 

l‘ALF, nous avons pu identifier les parties et les articulations d’une action les plus discriminantes 

et les afficher dans une image. 

Nous avons proposé en perspectives quelques points importants dont : 

- Définition d’un processus pour identifier le nombre de parties de l’ALF à l'aide du 

ASIv 

- Réduction de la complexité en repérant les articulations et les caractéristiques 

discriminantes grâce à l‘ALF 

- Etude du choix des descripteurs de la MD-DTW puisque l'algorithme en dépend 

- Mise en œuvre d’un DNN à des fins de comparaison 

- Développement formel d’un coefficient de confiance. 


