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Titre :Estimation des flux de CO 2 et de CH 4 en France en utilisant les concentrations atmosphérique du réseau ICOS et les techniques d'assimilation de données Mots clés : Gaz à effet de serre, CO 2 , CH 4 , France, inversion Depuis la révolution industrielle, les croissances économique et démographique ont augmenté de manière exponentielle induisant la hausse de la combustion d'énergies fossiles, telles que le charbon, le pétrole, et le gaz naturel. La combustion de ces sources d'énergie conduit à l'émission de gaz à effet de serre (GES), principalement le dioxyde de carbone (CO 2 ) et le méthane (CH 4 ), qui par leur accumulation dans l'atmosphère entraînent une accentuation de l'effet de serre.

Selon le GIEC (Groupe d'experts Intergouvernemental sur l'Évolution du Climat), l'implication des émissions anthropiques dans l'augmentation de l'effet de serre est extrêmement probable avec un pourcentage de certitude qui dépasse 95%. Toutefois, l'estimation des bilans régionaux d'émissions de GES reste très incertaine. L'objectif de cette thèse est de contribuer à l'amélioration des estimations des bilans régionaux de GES en France, en utilisant les techniques de la modélisation inverse et les mesures atmosphériques du CO 2 et de CH 4 fournis par le réseau ICOS (Integrated Carbon Observation System).

Dans un premier temps, on s'est focalisé sur l'étude des concentrations mesurées de CO 2 , CH 4 et CO (monoxyde de carbone). Cette étude a pour objectif, l'identification des mesures atmosphériques contaminées par les émissions locales (quelques kilomètres au tour de la station) et qui provoque ce qu'on appelle « les pics de concentrations ». Trois méthodes ont été appliquées sur des séries temporelles fournies par quatre stations du réseau ICOS, afin de déterminer leur degré de contamination. Ainsi, les résultats des différentes méthodes ont été comparés à un inventaire de données contaminées fourni par les gestionnaires des stations. À l'issue de ce travail, une méthode a été proposée pour effectuer un nettoyage automatique des séries de mesure du réseau ICOS. Dans un deuxième temps, le modèle régional de chimie-transport CHIMERE est utilisé pour simuler les concentrations atmosphériques du CO 2 et du CH 4 de l'année 2014 sur un domaine centré sur la France. L'objet de cette étude est d'évaluer la sensibilité des concentrations simulées en utilisant différentes données d'entrées (sensibilité aux transports météorologiques et sensibilité aux flux de surface). Cette analyse a permis de quantifier à la fois les erreurs liées aux transports et les erreurs liées aux flux de surface. Ainsi, la meilleure combinaison des données d'entrée a été sélectionnée pour l'étape d'inversion des flux. Dans un dernier plan, les mesures atmosphériques des concentrations de CO 2 et du CH 4 sont utilisées par le système d'inversion PYMAI (Berchet et coll., 2013 et 2015) afin d'estimer les bilans régionaux d'émission de CO 2 et CH 4 en France. L'inversion est réalisée pour un mois d'hiver (janvier) et un mois d'été (juillet) en utilisant le modèle de transport CHIMERE. Le résultat de ce travail a permis la quantification les émissions de CO 2 et de CH 4 à l'échelle nationale et régionale, ainsi qu'une réduction d'incertitude bilans nationaux à hauteur de 35 %.
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Figures

Annual biogenic CO2 budget (GtC/yr) in Europe retrieved from the inversion results using seven different scenarios (nBV, nBB, nBV14, nBVH, BVR, BVN, and BVRT) as described by Kountouris et al., (2018). The inversion results are compared to previous studies labeled by Ci [START_REF] Ciais | Regional Biospheric Carbon Fluxes as Inferred from Atmospheric CO2 Measurements[END_REF], Gu (Gurney et al., 2004) The annual variations of the total CH4 emissions for the EU-28 countries derived from five inversion systems (colored symbols) as described by [START_REF] Bergamaschi | Inverse modelling of European CH 4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations[END_REF]. For comparison, the CH4 anthropogenic emissions reported to United Nations Framework Convention on Climate Change (UNFCCC, blackline, the grey range for the corresponding uncertainties), and from EDGARv4.2FT-InGOS (black stars) are presented. The blue lines (resp. light-blue range) show wetland CH4 emissions (resp. minimum-maximum range) retrieved from the WETCHIMP ensemble of seven models. The figure is taken from [START_REF] Bergamaschi | Inverse modelling of European CH 4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations[END_REF] CH4 daily average at BIS using the nighttime data (00:00 to 06:00) for January (A), using the afternoon data (12:00 to 18:00) for July (B). The arrows on the top of panels A and B stand for the wind direction simulated by the AROME (magenta) and ECMWF (cyan). CO2 average seasonal cycle at BIS, ERS, GIF, OHP, OPE, PDM, PUY, and TRN, for the observed (black)and the simulated (green and orange for CTESSEL and VPRM respectivly) concentrations. The monthly mean is calculated using the afternoon data (from 12:00 to 18:00) for low altitude sites and nighttime data (from 00:00 to 06:00) at the mountain sites...........................120 Figure III.26: CH4 average seasonal cycle at BIS, ERS, GIF, OHP, OPE, PDM, PUY, and TRN, for the observed (black) and the simulated (red and blue for IER and EDGAR respectivly) concentrations. The monthly mean is calculated using the afternoon data (from 12:00 to 18:00) for low altitude sites and nighttime data (from 00:00 to 06:00) at the mountain sites. The grey color represents the available observations for each site during January. The back data point stands for the retained data during the mid-afternoon(data between 14:00 and 18:00) for low altitude sites (OPE), and the nighttime (data between 00:00 and 06:00) for mountain stations (PUY). The red data show the observations rejected by the ML algorithm (see section IV.2.3.1).............................................146 Figure IV.5: Representation of the availability of the CH4 observed data and their contribution to the inversion for each site. The grey line represents the available data. Black dots stand for the retained measurements (data between 14:00 and 18:00 for low altitude sites, and data between 00:00 and 06:00 for mountain sites). The color points represent the amount of information used each day by the inversion system (value 1 indicate that the inversion uses the equivalent of one hourly data). These information are calculated from the diagonal terms of the sensitivity matrix HK . Observed (black) and simulated prior (blue) and posterior (red) CH4 daily averages for the French atmospheric sites (BIS, GIF, OPE, PUY, TRN, and ERS) during January. The shaded areas represent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior (shaded red) CH4 concentrations. For each sites we calculate the root mean square error (RMSE) and the coefficient of correlation (R2) for the prior and the posterior concentration........154 Figure IV.9: Observed (black) and simulated prior (blue) and posterior (red) CH4 daily averages for the French atmospheric sites (BIS, GIF, OPE, PUY, TRN, OHP, and PDM) during July. The shaded areas represent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior (shaded red) CH4 concentrations. For each sites we calculate the root mean square error (RMSE) and the coefficient of correlation (R2) for the prior and the posterior concentration........155 Figure IV.10: Spatial distribution of the influence matrices, prior fluxes, the constraint on regions, and the contribution of the stations for the inversion during January. The constraint map is generated by convolving the influence matrix KH (presented in the figure by % over the month) with the prior fluxes. The contribution of the station in the inversion for January is presented using the diagonal terms of the sensitivity matrix HK. The scales of the constraints maps and the contribution of the station were chosen arbitrary, in respect with the range of the two maps. The map in the right (legend map) is presented as a support for number of regions..............................158 Figure IV.11: Spatial distribution of the influence matrices, prior fluxes, the constraint on regions, and the contribution of the stations for the inversion during July. The constraint map is generated by convolving the influence matrix KH (presented in the figure by % over the month) with the prior fluxes. The contribution of the station in the inversion for July is presented using the diagonal terms of the sensitivity matrix HK. The scales of the constraints maps and the contribution of the station were chosen arbitrary, in respect with the range of the two maps. The map in the right (legend map) is presented as a support for number of regions.. : Panels A (January) and D (July) stand for the monthly total number of groups (y-axis) of the control vector components independent from initial conditions (IC) and boundary conditions (BC) for different correlation threshold (the groups may also be formed by only one components). B (January) and E (July) represent the monthly number of groups formed by at least 2 component of the control vector independent from IC/BC for several correlation thresholds. The larger the correlation threshold is, the larger total number of groups is (panels A and D), and the lower number of groups formed by at two components is (panels B and E), since small number of regions are correlated together (see section IV. 3.1.4). The mean time difference between the component of the groups (in days) is presented for January (C) and July (F).. CO2 hourly data at OPE (left) and PUY (right) during January. The grey color represents the available observations for each site during January. The back data point stands for the retained data during the mid-afternoon (data between 14:00 and 18:00) for low altitude sites (OPE), and the nighttime (data between 00:00 and 06:00) for mountain stations (PUY). The red data show the observations rejected by the ML algorithm (see section IV.2.3.1).............................................171 Figure IV.19: Representation of the availability of the CO2 observed data and their contribution to the inversion for each site. The grey line represents the available data. Black dots stand for the retained measurements (data between 14:00 and 18:00 for low altitude sites, and data between 00:00 and 06:00 for mountain sites). The color points represent the amount of information used each day by the inversion system (value 1 indicate that the inversion uses the equivalent of one hourly data). These information are calculated from the diagonal terms of the sensitivity matrix HK . and C (July) stand for the monthly total number of groups (y-axis) of the control vector components independent from initial conditions (IC) and boundary conditions (BC) for different correlation threshold (the groups may also be formed by only one component). B (January) and D (July) represent the monthly number of groups formed by at least two components of the control vector independent from IC/BC for several correlation thresholds. The larger the correlation threshold is, the larger total number of groups is (panels A and C), and the lower number of groups formed by at two components is (panels B and D), since small number of regions are correlated together (see section IV. II.2: Sensitivity of SD method spike detection for two sets of α (α=1 and α=3), and for two range of background data interval (σb and σt scenario) for the four stations and all species............49 Table II.3: Sensitivity of REBS spike detection method for two sets of(β =3 and β =8) for the four stations and all species for the year 2015.Based on these sensitivity tests for the SD and REBS parameters, and the a prior estimation of the percentages of spikes manually detected by site managers, we apply the SD method with σb and α = 3 for CO and with σb and α = 1 for CO2 and CH4. For the REBS method we use β = 8.. II.4: percentage (rounded to one decimal) and number of contaminated data detected by SD, REBS, and COV method overall stations (AMS, FKL, OPE and PDM) and for the three species CO, CO2 and CH4.Generally, the methods SD and REBS automatically detect spikes. However, the COV method requires a prior knowledge of datasets and the approximate number of data to be filtered. Because of this limitation for automatic spike detection we have discarded the COV method from further tests for the selection of the most reliable method for spike detection.............53 Table II ) is absorbed by the atmosphere and earth's surface. This energy will be reemitted afterward by the earth system in longwave radiation (e.g., sensible and latent heat, and thermal energy). The latent heat (around 84 W.m -2 ) is associated to the evaporation of water at the Earth surface, whereas the sensible heat (around 20 W.m -2 ) stands for the heat transfer by conduction between the Earth surface and the atmosphere. In addition to these fluxes, the Earth emits infrared radiation (398 W.m -2 ), in the form of thermal energy. 60% of the total infrared flux (239 W.m -2 ) is re-emitted directly to space, while the remaining part is absorbed by greenhouse gases (H 2 O, CO 2 , and CH 4 ). This later contribution (342 W.m -2 ) of infrared radiations to the Earth system (Figure I.1), known as the greenhouse effect, leads to the increase in global temperature.

Without the natural greenhouse effect, the mean temperature at the Earth surface would be -18° Celsius (C) instead of +15° C. This indicates that the natural greenhouse effect ensures a warming of 33°C, making life possible on Earth. In order to maintain this natural warming, the total of energy absorbed and emitted by the Earth system must be zero. However, the emission of additional greenhouse gases in the atmosphere by the human activities, causes an energy imbalance of 0.8±0.2 W.m -2 [START_REF] Trenberth | Earth's Global Energy Budget[END_REF], which leads to the global warming of the atmosphere.

Since 1990 the Intergovernmental Panel on Climate Change (IPCC) demonstrated that human activities have modified significantly the Earth temperature compared to the pre-industrial period (5th Assessment Report of the IPCC 2013). In fact, the enhancement of the earth radiative energy imbalance contributes to the increase in Earth temperature, impacting the oceans, the atmosphere, the continental surfaces. The fast changes in the recent temperature threaten the most fragile ecosystems and could potentially impact the current civilization [START_REF] Hatfield | Temporal variations of surface regional background ozone over Crete Island in the southeast Mediterranean -Kouvarakis -2000[END_REF].

I.2 Role of the greenhouse gases in global warming

Since the industrial revolution, human activities have been injecting into the atmosphere important quantity of carbon dioxide (36183 MtCO in 2016, according to Global Carbon Atlas, www.globalcarbonatlas.org/) ₂ and other greenhouse gases such as methane (CH 4 ) and nitrous oxide (N2O). The CO 2 emissions are mainly related to fossil fuel combustion for industrial, domestic and transport energy needs. CH 4 is mostly linked to agricultural practices (e.g., rice growing and enteric fermentation), waste decomposition, as well as oil and gas production. Whereas, N2O is emitted mostly from agricultural activities, with the use of mineral and animal fertilizers. Other new substances such as the Chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), whose origin is totally anthropogenic, are characterized by a greenhouse gas effect that may exceed thousands of times the one of CO 2 [START_REF] Flanner | Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter[END_REF]. All these gases alter the global energy balance gases, we use the Global Warming Potential index (GWP). This index has been developed by Houghton and Jenkins (1990) in order to quantify the greenhouse effect of each gas compared to CO 2 . Greenhouse gas emissions are often calculated based on the amount of CO 2 that would be required to produce a similar warming effect over a given time period. This is calculated by multiplying the amount of the emitted gas by its corresponding GWP index. The CO 2 represents the reference value with a GWP index equal 1. For CH 

I.3 Carbon budget I.3.1 Carbon dioxide cycle

CO 2 is the subject of many exchanges between land, ocean, and atmosphere. 

I.3.2 Methane cycle

During the pre-industrial era, the methane atmospheric concentration was about 700 ppb (parts per billion by volume), with a total emission of 215 TgCH 4 /year (Lelieveld et al., 2002). Since 1750, CH 4 atmospheric concentrations increased by 150% (from 700 ppb) to a global mean value of 1853±2 ppb in 2016 (WMO Greenhouse Gas Bulletin N.13). The methane emissions can be separated into three types: natural, pyrogenic, leakages:

• Natural emissions are the result of fermentation reactions and methanogenesis processes of some microbes, produced from organic matter under low oxygen conditions. This category includes emissions from wetlands (e.g., peatlands, swamps, rice fields), termites, animals, landfill sites, wastewater, ruminants.

 Pyrogenic sources result from incomplete combustions, from biomass fires or fossil fuels such as domestic biofuels. TgCH 4 /year. For the anthropogenic emissions, the most important contributions come from fossil fuels, waste management, rice and farming estimated to 95±10, 78±12, 37±3, 90±4 TgCH 4 /year respectively. The comparison between these sources showed the significant impact at the global scale of the wetlands, followed by the anthropogenic emissions. However, over the regional domain studied in this thesis (metropolitan France) some emissions, like the wetlands, biomass burning, rice cultivation, are much less important and can be neglected [START_REF] Champeaux | ECOCLIMAP: a global database of land surface parameters at 1 km resolution[END_REF]. 



I.4 CO 2 and CH 4 atmospheric measurerments

I.5 Flux estimation approaches : I.5.1 Bottom-up approach:

The greenhouse gas emissions from anthropogenic sectors can be estimated at different administrative scales (city, region, country) for policy makers, or on regular gridded scales for scientists, by using geo-referenced fields of socio-economic data and source-specific emission factors. For example, national emission The inventories, like EDGAR or IER, generally do not cover all natural emission processes, like for example the CO 2 exchange with the terrestrial ecosystems due to the plant and soil respiration, or the carbon uptake due to the photosynthesis. For those sectors, we may use biogeochemical models which often used remote sensing observations of the state of the vegetation and the weather. Such models are themselves validated by using direct measurement of atmospheric fluxes, which are very local and representative of an area less than 1 km 2 (Schmid et al., 1994). Due to the strong spatio-temporal heterogeneities of the fluxes, the extrapolation of such measurements using biogeochemical models still faces significant uncertainties.

I.5.2 Top-down approach

The top-down approach provides an estimation of the surface fluxes using measured atmospheric concentrations, atmospheric models, and prior information of the surface fluxes. In this thesis, the quantification of the CO 2 and CH 4 fluxes over France will be performed using the Bayesian top-down approach [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF]) called hereafter by the inverse modelling. The robustness of this approach depends on the quality of the transport model that mix and transport the surface fluxes to be comparable with the measured concentration. The atmospheric concentration of a given gas represents the amount of fluxes transported in the atmosphere through different processes (e.g. horizontal and vertical mixing). As shown by Peylin et al (2002), the estimation of the CO 2 fluxes at the regional scale can be uncertain in case of important transport errors. Consequently, the first step before the development of any inverse modelling framework should be the evaluation of the quality of the transport model used to build our inverse system.

The top-down approaches represent thus a powerful tool to evaluate and verify the emission inventories provided by the bottom-up approach [START_REF] Marquis | Carbon Crucible[END_REF]. Previous studies showed significant differences between the top-down and the bottom-up GHG estimates (Bergamaschi et [START_REF] Reuter | Satellite-inferred European carbon sink larger than expected[END_REF]. The significant differences between the different studies can be related to the high interannual variability of the surface fluxes as demonstrated by [START_REF] Broquet | Regional inversion of CO 2 ecosystem fluxes from atmospheric measurements: reliability of the uncertainty estimates[END_REF]. The first inverse modelling of CO 2 have focused on the natural CO 2 fluxes, which have much larger uncertainties than the anthropogenic CO 2 emissions. In thoses studies it is commonly assumed that the uncertainty of fossil fuel CO 2 emissions is negligible [START_REF] Peylin | Importance of fossil fuel emission uncertainties over Europe for CO 2 modeling: model intercomparison[END_REF]. In order to increase our understanding about temporal and the spatial variabilities of the CO 2 fluxes in France (biogenic and anthropogenic), we have developed in this thesis a high-resolution inversion framework dedicated to optimize the estimated CO 2 surface fluxes at a fine resolution over France.
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I.6.1 Estimation of CH4 fluxes

For the CH 4 flux inversion, a recent study was carried out by [START_REF] Bergamaschi | Inverse modelling of European CH 4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations[END_REF] France during the year 2012. The inversion system developed by [START_REF] Pison | How a European network may help with estimating methane emissions on the French national scale[END_REF] increases the total CH 4 emission fluxes over France by a value ranging between 25 % and 50 % compared to fluxes reported by the UNFCCC and displayed a significant seasonal cycle which was absent in bottom-up estimates. Similar to CO 2 , the same inversion system is applied to CH 4 in order the to decrease the uncertainties associated with current estimates and to increase our understanding of the small-scale patterns responsible for the CH 4 variations.

I.7 Objective and structure of this thesis

In line with earlier studies, the present work in this thesis aims at improving the knowledge of the CO 2 and CH 4 sources and sinks over France using the top-down atmospheric approach. This work is motivated by the increasing number of the measurement stations during the last decade over Europe, which provides valuable information to feed the inversion system dedicated to estimate the greenhouse gas surface fluxes. The availability of high-resolution atmospheric transport models [START_REF] Menut | a model for regional atmospheric composition modelling[END_REF], which improve the representation of the simulated concentrations at a high frequency, has also contributed to have made possible the objectives of this study. The advances of the last two aspects represent the principal ingredient to 33 improve our understanding of the national and regional budget of the principal greenhouse gases using the atmospheric measurements and inverse techniques, which are described in the following chapters.

Chapter II represents an analysis of the long-lived trace gas concentrations in the atmosphere from continuous measurement at four contrasting sites from a tall-tower station in France (OPE site), a highmountain station in France (Pic Du Midi), a regional marine background site in Crete (Finokalia) and a marine clean-air site in the Southern Hemisphere (Amsterdam Island). Continuous measurement of CO Chapter IV focuses on estimating the CO 2 and the CH 4 fluxes over France for two months: one month in winter (January) and one month in summer (July), in order to estimate the optimized fluxes for two contrasted periods. The flux estimation is carried out using the analytical inversion framework PYMAI developed by [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]2015) and the atmospheric surface stations. The inversion is performed using the best prior information selected based on the analysis of the bottom-up estimates (Chapter 3). To account for the inversion errors, the used system is completed by a statistical calculation, implemented by [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF], that quantify the objectively the inversion errors. These errors are evaluated and compared to an analytical uncertainty estimation provided by the analysis of the difference between the different surface fluxes and transport models used in Chapter 3. We conclude the study by a comparison between the retrieved fluxes and the prior estimates, in addition to a comparison with results from earlier studies in order to quantify the impact of our inversion system on the uncertainties of the surface fluxes.

Chapter II:

Identification of spikes associated with local sources in continuous time series of atmospheric CO, CO 2 and CH 4

Abdelhadi El Yazidi 1 . Michel Ramonet 1 . Philippe Ciais 1 . Gregoire Broquet 1 . Isabelle Pison 1 . Amara Abbaris 1 . Dominik Brunner 2 . Sebastien Conil 3 . Marc Delmotte 1 . Francois Gheusi 4 . Frederic Guerin 5 . Lynn Hazan 1 . Nesrine Kachroudi 1 . Giorgos Kouvarakis 6 . Nikolaos Mihalopoulos 6 . Leonard Rivier 1 . Dominique Serça 

II.1 Summary

II.1.1 Context of the study

The greenhouse gases (GHG) estimations are carried out based on atmospheric inverse models that use the measurement of the atmospheric concentrations of long-lived GHG provided by ground-based sampling sites. These inverse systems are based on atmospheric transport models that use as input estimates of the surface fluxes to reproduce the atmospheric concentrations of the GHG. Due to the limited spatial resolution of the transport models and the uncertain surface emissions, the simulated concentrations may exhibit some atmospheric variations that do not fit correctly to the observed variations. Especially, local emissions located nearby the atmospheric station, within a couple of kilometers, may lead to significant impacts on the atmospheric concentrations. In such case we expect the contaminated data to show intense and sharp positive perturbations, which cannot be captured by the transport models. Thus, it is essential to separate the data which are strongly influenced by local emissions, from those influenced by regional and large-scale fluxes. To avoid an error of allocation of the local emission to larger scales by the inversion, the influence of these local contaminations must be filtered out from the time series.

II.1.2 Material and methods

We have developed an analysis of greenhouse gases atmospheric time series in order to provide a method of identifying atmospheric data influenced by local emissions that can result in short term spikes. In order to detect and filter out the spikes from the continuous greenhouse gas time series we have implemented three spike detection methods known as coefficient of variation (COV, [START_REF] Brantley | Mobile air monitoring data-processing strategies and effects on spatial air pollution trends[END_REF], robust extraction of baseline signal (REBS, [START_REF] Ruckstuhl | Robust extraction of baseline signal of atmospheric trace species using local regression[END_REF] and standard deviation of the background (SD, [START_REF] Drewnick | Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements[END_REF]. The methods are applied on two years of CO 2 , CH 4 , and CO measurements provided by four atmospheric sites from stations representative of the European ICOS (Integrated Carbon Observation System) Research Infrastructure network and more remote sites. We use a continental rural tower of 100 m height in eastern France (OPE), a high-mountain observatory in the south-west of France (PDM), a regional marine background site in Crete (FKL) and a marine clean-air background site in the Southern Hemisphere on Amsterdam Island (AMS). This selection allows us to address spike detection problems in time series characterized by different variabilities.

II.1.3 Selection and the optimization of the spike detection methods

All methods were found to be able to detect short-term spikes (lasting from a few seconds to a few minutes) in the time series. The spikes detected by the three methods are compared to each other, and when available against manual detection performed by station managers and recorded in their logbooks. For PDM site, the analysis of the GHG time series is completed by a field campaign data analysis that involves two sampling instruments measuring simultaneously CH 4 and CO 2 molar fractions 200 m away from each other, one being very close from a waste water treatment plant causing CH 4 spikes. The comparison of the two time series was used as a test of the efficiency of different methods to filter out the local spikes in order to retrieve the uncontaminated background signal. The evaluation of the results of the three methods leads us to exclude the COV method due to the requirement to arbitrarily specify an a priori percentage of rejected data in the time series. This a-priori determination of the percentage of spikes may over or underestimate the actual number of spikes. The two other methods freely determine the number of spikes for a given set of internal parameters. These parameters are calibrated to provide the best match with spikes known to reflect local emissions episodes that are well documented by the station managers. The calibration of the SD and the REBS methods is performed based on the existing dataset, and sensitivity tests are done to evaluate the impact of each parameter. Based on the different sensitivity tests for the SD and REBS parameters, and the prior estimation of the percentages of spikes manually detected by site managers, we have proposed an optimal configuration of the two methods used to detect the local contaminations at the four stations.

II.1.4 Principal results

The application of the automatic methods on the time series showed a good performance of SD and REBS to correctly detect spikes associated with local contaminations. At PDM, the measurements made by the two analyzers located 200 m from each other confirmed that the CH 4 spikes observed at one site, corresponding to a local source from a sewage treatment facility close to the observatory buildings. From this experiment, we also found that the REBS method underestimates the number of positive anomalies in the CH 4 data caused by local sewage emissions. When the percentage of spikes is high, the calculation of the REBS method baseline is biased toward higher concentrations. This lead to the underestimation of spike anomalies since the difference between the baseline and the measured concentrations is lower than the threshold value.

For the same situations, the SD method correctly detects most of the contaminated data.

The comparison between the two automatic methods and the manual flagging showed a good agreement with 70 % of successful spike data detection for SD and 60 % for REBS for sites where local contaminations were initially identified in the station logbook. The analysis shows substantial differences between the manual and the automatic spike detection method for the measurements which are at the lower part of the spikes. These data are very difficult to detect since they are close to the reference values to which the spikes are compared.

Running the spike detection method on 1-minute time series allows the quantification of the impact of the contaminated data on the hourly averages used by the atmospheric inversion systems. This analysis confirms that the impact of the short-duration spikes on hourly data at the background sites remain less than 0.5 ppm for CO 2 and less than 5 ppb for CH 4 and CO. At stations located in areas surrounded by more local sources (e.g. rural areas in Europe) this offset by local sources may impact the hourly averages by a value up to 10 ppb for CH 4 and CO, and 1 ppm for CO 2 .

II.1.5 Conclusions and implications

As a conclusion from this analysis from a limited number of atmospheric stations, we recommend the use of the SD method, which appears to provide the better results, and is also the easiest one to implement in the automatic data processing set up for the ICOS network. Consequently, after presenting the results of this work to the ICOS atmospheric community, the SD method was proposed for implementation in the ICOS data processing handled by the Atmospheric Thematic Centre to automatically process the raw data from the ICOS stations on a daily basis [START_REF] Hazan | Automatic processing of atmospheric CO2 and CH 4 mole fractions at the ICOS Atmosphere Thematic Centre[END_REF]. This method has been recently applied to the 1 minutes GHG time series of 15 ICOS stations for the year 2017 (Figure II.1). At most stations, the monthly mean percentages of 1 min data identified as spikes are generally lower than 5%, with few exceptions which may reach percentages up to 10 to 15% (Figure II.2). For each hour when minute averaged data are identified as spike and consequently filtered out, it results in a decrease of the corresponding hourly concentration. The differences between the hourly means calculated with and without the 1 min spike data have been averaged on a monthly basis for the year 2017 (Figure II.3). The results for the 15 ICOS stations show that differences are generally lower than 0.2 ppm for CO 2 , 1 ppb for CH 4 and 0.4 ppb for CO. There are few exceptions, with a monthly mean difference up to 0.8 ppm CO 2 in Puijo (February 2017), and 3 ppb CH 4 in Ispra (December 2017). Those results are currently investigated by the different station managers in order to associate the identified spike using the method we have developed, with processes associated with local pollutant emissions and local atmospheric transport.

II.2 Introduction

Continuous measurements of long-lived greenhouse gases (GHG) such as carbon dioxide (CO 2 ) and methane (CH 4 ) at ground-based monitoring stations are commonly used in atmospheric inversions for the estimation of surface fluxes. The variability of GHG continuous time series reflects atmospheric transport processes and surface fluxes. One difficulty in matching these measurements with atmospheric transport model simulations 40 is that they exhibit variability at a wide range of timescales, which is imperfectly captured by transport models due to their limited spatial resolution and to uncertain surface emission inventories. In particular, local emissions in the vicinity of stations can have a major influence on concentrations, generating brief but intense positive perturbations, hereafter referred to as "spikes". Every measurement has a specific spatial representativeness, and knowledge of this information allows for a much finer interpretation of the observation. It is desirable, in continuous GHG time series, to separate those data strongly influenced by local emissions (fluxes within less than few kilometres) from those influenced by regional (few tens of kilometres) and large-scale (hundreds or thousands of kilometers) fluxes and transport. The influence of local fluxes, in particular of nearby point sources of emissions, should be filtered out prior to the use of the time series in inversion models if the models do not have the ability to represent it. For instance, a road near a station can emit CO 2 , causing spikes in the time series, because this road is not accounted for in the emission inventory used in an inversion.

Having empirical information on the representativeness of continuous GHG time series, e.g. a logbook available for each station, allows for more precise interpretation of the atmospheric measurements in terms of the processes involved in the observed variability. It is interesting, for example, to assign the contribution of specific sources (e.g. point sources of fossil CO 2 emissions or biomass burning events) within the local vicinity of the station. Several methods have been proposed to account from local to regional influences in greenhouse gas observations according to other observables, such as wind speed and direction (Perez et al., 2012a) and tracers like radon-222 or black carbon (Biraud et al., 2002;[START_REF] Fang | Comparison of the regional CO2 mole fraction filtering approaches at a WMO/GAW regional station in China[END_REF][START_REF] Williams | Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city[END_REF]. Air-mass trajectory information is also frequently used (Ramonet and Monfray, 1996;Ferrarese et al., 2003;[START_REF] Maione | Localization of source regions of selected hydrofluorocarbons combining data collected at two European mountain stations[END_REF]Fleming et al., 2011;Perez et al., 2012;[START_REF] Gerbig | What can tracer observations in the continental boundary layer tell us about surface-atmosphere fluxes?[END_REF]. Other methods based on a statistical treatment of time series [START_REF] Giostra | The determination of a "regional" atmospheric background mixing ratio for anthropogenic greenhouse gases: A comparison of two independent methods[END_REF][START_REF] Ruckstuhl | Robust extraction of baseline signal of atmospheric trace species using local regression[END_REF] are easier to generalize because they require no additional observable. A commonly used strategy by modelers, using transport models of a typical resolution from 10 to 50 km, consists of systematically removing some periods of the day (e.g. nighttime for surface stations or daytime for mountain sites) in order to filter the influence of nonresolved mesoscale circulations or vertical transport processes poorly represented by models (e.g. sporadic turbulence in stable or neutral nighttime boundary layers).

The development of regional networks for monitoring GHG and related tracer concentrations leads to an increasing number of continuous measurement stations, especially in continental areas. For example, the European ICOS (Integrated Carbon Observation System) Research Infrastructure is developing a network of tall towers for very precise GHG measurements across the European continent. It is thus important to characterize the representativeness of each individual measurement in order to separate spikes from local emissions that should not be used in studies aiming at constraining regional fluxes. In this study, our objective is to compare methods that could be used operationally to remove the contaminations from local sources at continuous measurement stations. Local contamination may be due, for example, to fossil-fuelbased power generation at the station facility and local traffic. The short-term variations (few seconds to minutes) of GHG associated with those of local sources have rarely been analysed, and they have generally been time averaged with consecutive data. Some studies, however, have been focusing on local emissions on the basis of the detection of short-term "spikes" (Monster et al., 2015). Here, "local" refers to emissions at less than a few kilometers from the station causing positive short-term spikes of a few seconds to a few minutes superimposed on the signal resulting from boundary layer mixing, synoptic transport regional fluxes.

Other methods such as the Fourier transform filters (Savitkzy Golay, 1964) and the wavelet transforms (e.g. [START_REF] Wee | A continuous wavelet transform algorithm for peak detection[END_REF] have been considered at the beginning of this study, but these methods require continuous time series and smooth signals. Considering that the measurements are regularly interrupted due to different reasons (e.g. calibration, flushing time after switching from sampling level to another, power or internet outage), we had to select a method that handles time series with data gaps. Moreover, applying a Fourier transform method on continuous measurements provides a signal composed by frequencies only, and all information that varies with time will be lost. In other words, we can analyse what happens (spikes to be filtered out) without knowing when this happens, which is essential information to better understand the sources of contaminations. We compare here spike detection algorithms for local sources in greenhouse gases (CO 2 and CH 4 ) and long-lived tracer time series (CO). The algorithms chosen in this study have been applied to air pollution data (e.g. ultrafine particles, particulate matter and nitrogen dioxide NO2 ) which have shorter lifetimes than CO 2 , CH 4 , and CO [START_REF] Brantley | Mobile air monitoring data-processing strategies and effects on spatial air pollution trends[END_REF]. In the case of GHG, spikes can be caused by local sources but also by the fast transport of remote emissions. Compared to short lifetime species, spikes in GHG are not always larger than the variability associated with synoptic scales. For CO 2 , uptake by local vegetation may occasionally lead to negative spikes, which will not be evaluated in this study (only positive spikes are considered).

The three spike detection algorithms -coefficient of variation (COV), robust extraction of baseline signal (REBS) and standard deviation of the background (SD) -are described in section II.3.2, then applied to 2 years of continuous measurements of CO 2 , CH 4 , and CO at four stations representative of the European network of GHG monitoring stations. The study will focus more on the SD and the REBS since they are fully automatic and they do not require any a priori information for the implementation. The results are discussed in section II.4. Wherever possible, the ability of an algorithm to successfully detect and remove the effects of local sources and transport is verified using independent information about the presence and position of known local emissions.

II.3 Methodology

We selected four contrasting atmospheric GHG measurement sites operated by LSCE (Laboratoire des Sciences du Climat et de l'Environnement): a tall-tower station in France, a high-mountain station in France, a regional marine background site in Crete and a marine clean-air site in the Southern Hemisphere, which provided continuous data from 2013 to December of 2015 (Table II.1). Continuous measurements used in this study are averages with 1 min time resolution and are processed in near real-time (NRT) by the ICOS Atmospheric Thematic Centre [START_REF] Hazan | Automatic processing of atmospheric CO2 and CH 4 mole fractions at the ICOS Atmosphere Thematic Centre[END_REF]. The four stations have been used in regional and global atmospheric inversions to estimate GHG surface fluxes at regional and global scales (e.g. Bergamaschi 

II.3.1 Measurement sites and methods

II.3.1.1 Measurement sites

Amsterdam Island (AMS; 37°48'S, 77°32'E). This marine background station is operated since 1980 to monitor trends of trace gases in the southern hemispheric mid-latitude clean-air atmosphere. The observatory is located on the coast of a small island (55 km2) covered by short grasslands, in the middle of the Indian Ocean 3000 km south-east of Madagascar. Measurements are performed at the Pointe Bénédicte site located north of the island, on the edge of a 55 m cliff above sea level. The air is sampled at the top of a 20 m high tower. The station contributes to the Global Atmospheric Watch program (WMO/GAW). The data used to feed the WMO/GAW database and estimate the long-term trends are filtered according to local wind measurements to avoid the influence of CO 2 emissions from the island itself (Ramonet and Monfray, 1996). II.1).

II.3.1.2 Measurement methods

The gas analyzers used at the four stations are cavity ringdown spectroscopy instruments (CRDS; O'Keefe and Deacon, 1988), namely Picarro/G2401 analyzers at FKL, OPE and PDM with CO 2 , CH 4 and CO and Picarro/G2301 at AMS with CO 2 and CH 4 (Table II.1). The measurement protocols used at the four stations are similar and based on ICOS specifications (https://www.icos-ri.eu/documents/ATCPublic). A calibration using four reference gases is performed every 3 to 4 weeks. Two more reference gases are analysed regularly for quality control purposes. The raw data (0.2 to 0.5 Hz) are transferred once per day to a central server and NRT datasets are available within 24 h. The NRT data processing [START_REF] Hazan | Automatic processing of atmospheric CO2 and CH 4 mole fractions at the ICOS Atmosphere Thematic Centre[END_REF] includes automatic filtering of raw data based on the physical parameters of the analyzers (e.g. cavity temperature and pressure) and threshold values for rejection of outliers. This last filter aims to reject aberrant values from the NRT dataset. It may happen that it rejects an extreme but real event, for instance due to an urban pollution plume.

In such cases, the data will be validated afterwards by the station manager. After the automatic processing, the station managers are invited to validate or invalidate data manually using a specific software developed by the ICOS Atmospheric Thematic Centre. For data manually flagged as invalid, a reason must be provided (e.g. leakage, maintenance, local traffic). This procedure does not ensure the systematic rejection of spikes in the data from local or regional processes.

Meteorological measurements are also performed at the four stations with barometric pressure, temperature, wind speed, wind direction and relative humidity. Wind speed and direction are measured using 2-D or 3-D ultrasonic sensors installed at the same height of the greenhouse gas measurements. The sensors are adapted to the local weather; for instance at PDM (2877 m a.s.l.) the sensor is heated to avoid icing. 

Site

II.3.2 Spike detection algorithms

Three algorithms were tested to detect positive short-duration GHG spikes lasting from a few seconds to a few minutes, using time series of 1 min averaged mole fractions of CO 2 (as illustrated in the appendix, Figure 

II.3.2.1 Coefficient of variation (COV) method

The COV method [START_REF] Brantley | Mobile air monitoring data-processing strategies and effects on spatial air pollution trends[END_REF]) is a modified version of the method presented by Hagler et al.

(2010). It was developed to analyse data from a mobile laboratory measuring ultrafine particle concentrations near a road transect [START_REF] Brantley | Mobile air monitoring data-processing strategies and effects on spatial air pollution trends[END_REF] for peak detection of carbon monoxide, which was used as an indicator of the passage of vehicles. In our application, we calculate the COV coefficients for CO 2 , CH 4 and CO time series following two steps. First, the standard deviation of a moving 5 min time window (with one window for each 1 min data point) is calculated (2 min before and after each 1 min data point). Second, the standard deviation of each time window is divided by the mean value of the complete time series. The 99th percentile of the COV coefficients is used as a threshold above which 1 min data are considered to be part of a spike. We also identified as contaminated data all data recorded 2 min before and after each contaminated data. The COV method is sensitive to the choice of threshold percentile. In the Figure SII.2-A we illustrate an example of spike detection using the COV method during a CO contamination episode known to be affected by a local fire. One important feature of the COV algorithm, compared to the other methods, is the a priori definition of the percentage of data to be filtered (threshold percentile), meaning that the number of spike data is not automatically detected.

II.3.2.2 Standard deviation of the background (SD)

The SD method [START_REF] Drewnick | Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements[END_REF] considers that a time series is a combination of a smooth signal superimposed with a fast variable signal. The variable signal component in our case is related to local emissions causing spikes. To determine the variability of background concentration levels we calculated the standard deviation (σ) of data falling between the first and the third quartile of the entire dataset. A sensitivity test with various quantile ranges is presented in section II.4.1.1. We then select the first available data point, called C unf (unflagged data, example in the Supplement Figure SII.2-B), assuming that it is not in a spike. The next data point in the time series C i is evaluated with respect to C unf , spikes are defined by data values higher than a threshold defined as C unf plus an additive value: α * σ + √n * σ (e.g. the red data point in Figure

SII.2-B)
, where α is a parameter to control the selection threshold, and n is the number of points between C unf and C i . The value of α depends on the time series variability. A sensitivity analysis on the influence of α is presented in section II.4.1.1. We set a default value of α = 1 for CO 2 and CH 4 and α = 3 for CO [START_REF] Drewnick | Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements[END_REF]. The lower value for CO 2 and CH 4 is justified in section II.4.1.1. The integer n contains a temporal information about the evolution of the time series. Indeed, while identifying a spike C i , the next data point is evaluated against C unf using an increased threshold to take in consideration the variability of the baseline during the spike event. If C i is lower than the threshold from eqation II.1, it is considered as "non-spike" and becomes the new reference value C unf . The following data will then be compared to this updated C unf .

C i ≥ C unf +α * σ +√n * σ (II.1)
The SD method was applied over one-week time windows, i.e. the standard deviation over σ a week is used for threshold calculation. Using a longer period (e.g. one year) would give more weight to the seasonal and long-term variabilities which are not relevant to identify short-term spikes using the one-year standard deviation.

II.3.2.3 Robust extraction of baseline signal (REBS)

The REBS method [START_REF] Ruckstuhl | Robust extraction of baseline signal of atmospheric trace species using local regression[END_REF]) is a statistical method based on a local linear regression of the time series over a moving time window (characterized by a duration called the "bandwidth"), to account for the slow variability of the baseline signal, while outliers lying too far from the modelled baseline are iteratively discarded. The bandwidth h must be wide enough to allow for a sufficiently low fraction of outliers within h. The REBS code used here is based on the rfbaseline application developed in the IDPmisc package [START_REF] Locher | IDPmisc: Utilities of Institute of Data Analyses and Process Design[END_REF]) in R software. It is a modified version of the robust baseline estimation method developed to delete baseline from chemical analytical spectra [START_REF] Ruckstuhl | Baseline subtraction using robust local regression estimation[END_REF]. The REBS method was applied at the high-Alpine Jungfraujoch site (Switzerland, 3580 m a.s.l.) and has been proven robust to estimate the background measurements of GHG [START_REF] Ruckstuhl | Robust extraction of baseline signal of atmospheric trace species using local regression[END_REF]. The REBS method considers that greenhouse gas time series are composed of a background signal plus a regional contribution which may also include local effects (spikes) and measurement errors. The main difficulty is to correctly define the baseline signal of the measured time series. To achieve this goal, the choice of the bandwidth value is important. In the Jungfraujoch study, the baseline signal was defined as the smooth curve retrieved from REBS technique (Ruckstuhl et al., 2012) using a band width of 90 days, in order to distinguish the contribution of regional emissions that add to the slow seasonal variability. Since, in our study, the targeted spikes last a few seconds to a few minutes, we chose to calculate the baseline using a bandwidth of 60 min to detect spikes of a few minutes (maximum 5 min). The threshold for spike detection in REBS is based on the calculation of a scale parameter β, which represents the standard deviation of data below the baseline curve, called ĝ( 

t i ) . All measurements Y (t i ) that satisfy Y (t i )> ĝ(t i )+ β * γ

II.4 Results

II.4.1 Optimization of the SD and REBS methods

II.4.1.1 Sensitivity to the parameters of the SD method

We conducted sensitivity tests in order to evaluate the influence of the two parameters α and σ used in the SD method. For α we tested values ranging from 1 to 3. Here, we present only the results for α = 1 and α = 3.

For σ we compared the results calculated with σ based on 50% of 1-week data, data between the first and third quartile (scenario σ b ) and for all the data of the week (scenario σ t ). We studied four configurations (two values of α with σ b or σ t ) on 1 min data every week at the four stations. With α = 3 and σ t = 12.5 ppb, the method fails to detect any spike, indicating that the threshold value was too high. With α = 1 and σ b the SD method selects 44 additional 1 min spikes compared to α = 3 (data not reported as contaminated by the station manager). In both cases (α = 1 or α = 3) and σ t lead to a very high threshold and an underestimation of the number of spikes detected, since σ t includes the spike variabilities.

Based on this sensitivity test against a known local emission episode, we definitively rejected the use of σ t scenario.

Table II.2 represents the percentage of contaminated data detected over 1 year at the four sites, in the four tested configurations. As can be seen, using all 1 min data to calculate σ t leads to a higher threshold and consequently to less data detected as contaminated. On average over the four stations and the three species, switching from σ b to σ t decreases the percentage of spikes by a factor of 15 ± 16 (Table II.2). Setting α = 3 increases the threshold and also decreases the number of spikes by on average a factor of 5 ± 7 (Table II The parameter α is related to the variability of the time series. Since our study aims to provide recommendations for automatic data processing of a monitoring network like ICOS in Europe, we would ideally keep the same set of parameters for all the stations of the network for each species. However, all the tests conducted in the present study have shown that it was not optimal to use the same parameter for the CO time series as for the CO 2 and CH 4 time series. Setting a lower α for CO leads to the overestimation of the number of spikes in the time series. This must result from the different variabilities of those trace gases. For instance, the ratio between hourly and minute-scale variabilities (characterized by standard deviations) for the sites used in this study is on average 2 times smaller for CO compared to CO 

II.4.1.2 Sensitivity to the parameters of the REBS method

In order to evaluate the sensitivity of spikes to the parameter β, we tested values of β ranging from 1 to 10. In this study, we present the REBS method using the default value β = 3 as proposed by [START_REF] Ruckstuhl | Robust extraction of baseline signal of atmospheric trace species using local regression[END_REF] in Jungfraujoch, compared with the optimal value for our purpose, β = 8. The resulting spike selection at ). We further compared these two values of β at the four stations every week for the year 2015 (from January to December) and report spike detection statistics in Table II.3. About 10× more spikes for CO, and 5 to 7 times more for CH 4 and CO 2 , were detected by the REBS method with β = 3 compared to β = 8. Using β = 3, we detected more than 2 % of spikes for all species and up to 7 % for CO 2 at AMS. Using β = 8 these percentages are reduced to 0.2 and 1.5 %, respectively (Table II 

II.4.2 Statistics of the three spike detection methods

The statistics for local spike detection with the three methods are given in Table II.4. Due to the lack of completeness of the reports by the staff about potential local contaminations, we cannot compare those average statistics to the manual spike detection. With COV we detect an average of about 2 % of spikes with the 99th percentile threshold for all stations and species (section II.3.2.1). With the methods SD and REBS, more variable percentages of spikes are found depending on the trace gas variabilities at each station. The percentages of contaminated data range from 0.1 % for CO 2 at AMS to 7 % for CH 4 at PDM. The value of 7% detected for CH 4 at PDM is higher than at all other sites and species and reveals the influence of a source of methane on a site (see below and next paragraph). For OPE, we found a significant percentage of spikes (between 1 and 2 %) for all species, which may be explained by the higher number of local emission sources compared to other stations located in more pristine environments. At FKL and AMS we obtain different percentages of spikes between SD and REBS for CO 2 . In fact, we assume that this difference can be related to the sea-land circulation when winds turn, leading to a fast change in atmospheric concentrations. For FKL, AMS and PDM, the percentage of spikes found with the SD and REBS methods vary by around 1 % except for CH 4 at PDM, where both SD and REBS detect high percentages of spikes (7% for SD method and 2.3%

for REBS method). This is not expected for a high-mountain station. The results of a field campaign organized at PDM in 2015 (section II. 

II.4.1 Comparison of SD and REBS methods to detect CH 4 spikes at the PDM clean-air mountain station

In this section, we use field campaign data involving two instruments at PDM to study the efficiency of the SD and REBS methods. As noted above, the SD method detects 20× more spikes for CH 4 than for CO 2 at PDM ICOS site (Table II.4). Looking for all possible local methane emissions at the site, we identified a small sewage treatment facility located about 20 m below the air intake of the analyzer (called AN-1) to be How can we explain the insufficient performance of the REBS method to detect the lower part of the CH 4 spikes? This method defines spikes using the estimated baseline [START_REF] Ruckstuhl | Robust extraction of baseline signal of atmospheric trace species using local regression[END_REF]. When the population of contaminated data is high, the baseline is flawed due to the influence of spikes, and the baseline determination will be overestimated. In 

II.4.2 Comparison between automatic and manual spike detection

In this section, we analyze how SD and REBS methods detect spikes of CO 2 , CH 4 , and CO that were independently identified by the station staff and related to a known local source of contamination at FKL and PDM.

At FKL the contamination events reported by the site manager are associated with local fires nearby the station. The technical staff recorded dates of burning which could lead to significant emissions of trace gases, especially CO and CO 2 . It should be noted that this information is not exhaustive in the sense that the person in charge does not necessarily have information on all burning events. We have matched the trace gas time series with the logbook information showing 17 days with local burning events between 2014 and 2015. We applied the SD and the REBS methods over 1-week time windows containing each burning event. First, we run the algorithms separately on the three species (CH 4 , CO 2 , and CO). Then, if the algorithm detects a spike in at least one species, we consider data for all other species as spikes as well. The two automatic methods and the manual flagging detect the same number of contaminated data for CO classes higher than 400 ppb. We have an excellent agreement for the spikes with the highest concentrations.

For the low-concentration spikes (< 400 ppb), the automatic methods are less selective than the manual flagging. In detected the same number of spikes as the manual selection for high concentrations; 857 contaminated data points are detected by the SD method (same as the principal investigator, or PI) for concentrations higher than 400 ppb, and 828 data points are detected by the REBS method. The main difference between the automatic and the manual flagging methods are related to the lower part of the spikes. For 2861 data (CO < 400 ppb) flagged manually by the PI station, the SD method detects 2270 data points whereas the REBS method detects only 1799 data points. In fact, for moderate spikes the SD method selects 70 % of contaminated data according to the PI whereas the REBS method retrieves only 60 %. We have also calculated the number of events not considered by the manual flagging and considered by the automatic methods. For a total of 3402 data detected by the SD method, only 211 data were not considered by the PI, which represents 0.25 % on the whole period. For the REBS method, 133 data out of 2981 were not detected by the PI (nearly 0.15 %). However, these statements should be used with caution since the manual spike 

II.4.3 Influence of the spike detection on hourly averages:

In this section, we estimate the impact of the spike detection on data used for atmospheric inversions, which are typically hourly or half-hourly averages. For this purpose, we have calculated the differences between the hourly averages of the filtered and non-filtered time series. In table II.6, we present the number of hours in which at least 1 min data for each species was filtered. We classified the results into three intervals. For CO 2 , the first interval represents the values lower than 0.5 ppm, the second interval is for differences between 0.5 and 1 ppm and the third stands for the higher differences (values more than 1 ppm). For CH 4 and CO we set the first interval for values lower than 5 ppb, the second interval represents the data between 5 and 10 ppb and the third for differences higher than 10 ppb.

Most of the differences between filtered and non-filtered hourly data vary between 0 and 0.5 ppm for CO 2 and between 0 and 5 ppb for CH 4 and CO. For CO 2 at the AMS station, the SD method detects 1454 1-min data points (Table II.4), which occur in 104 hours during the 3 years of measurements. Of those hours, 62 % are characterized by a difference up to 0.5 ppm, and 18 % show more than 1 ppm of difference. For CH 4 measurements in AMS, the 8801 contaminated data points detected by the SD method (Table II.4) occur during only 21 h, this modifies the hourly averages by 5 ppb as a maximum. For the four sites, we notice a similar effect on the hourly averages. Most of the impacted hours are characterized by a difference within the first interval (0.5 ppm for CO 2 ; 5 ppb for CH 4 and CO). However, for OPE we observe higher differences with 53, 36 and 47 % of the impacted hours in the highest interval, respectively, for CO 2 , CH 4 and CO. This feature is probably related to the higher number of the nearby local emission sources nearby OPE site compared to the other stations, which are located in more pristine environments. Figure SII.7 shows a decrease of the number of impacted hours for higher intervals (the same pattern as the three other stations).

Overall, the aggregation of filtered measurements at the hourly timescale showed a relatively weak impact of the filtered data for background sites, but more significant effect for stations located closer to local sources.
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II.5 Conclusion

The recent increase in the number of studies that have been applied to study the spatial representativeness of GHG observations demonstrates the need to define efficient and reliable methods for the identification of spikes related to local contamination sources. Three methods based on the standard deviation calculation were compared in order to provide an objective algorithm for the GHG data spike detection.

We addressed the problem of identifying concentration spikes of a few minutes duration in GHG continuous time series by applying automatic detection methods (COV, SD, and REBS) previously used for atmospheric pollution but not systematically for GHG time series. Stations with different regimes of variability where local emission sources are identified without ambiguity (engines/waste near the station buildings, or fires nearby) are chosen to evaluate the performance of the automatic methods against spikes manually identified by station managers. The COV algorithm can be considered as a semiautomatic method since it requires an a priori choice of a percentage of data rejected as spikes. We tested the COV method with a percentage of 1 % of spike data for all species and for all stations. This limitation made the COV method less flexible and informative for universal automatic spike detection across different sites. For the two fully automatic methods (SD and REBS) we performed several sensitivity tests in order to recommend the best set of parameters for our four chosen stations, which are considered to be representative of most ICOS stations (disregarding those located in suburban environments).

The application of the automatic methods on contaminated time series at the Pic du Midi observatory showed the ability of SD and REBS to detect real spikes on the CH 4 time series caused by the sewage treatment facility of the observatory. Nevertheless, significant differences regarding the rejection percentage were noticed between the methods. Both methods have a tendency to unduly keep a certain fraction of the spike base (lowest concentrations in spikes). REBS is worse than SD in this respect. In the REBS method, when the percentage of spikes is high, the baseline determination is biased toward high concentrations, leading to underestimate spike anomalies above this baseline. However, the SD method correctly detects most of the contaminated data. The comparison between SD, REBS and the manual flagging methods showed good agreement with an overall percentage of 70 % of successful spike data detection for SD and 60 % for REBS, at two stations (FKL and PDM) where local contaminations are well identified by the local staff. These two automatic algorithms detect short-term spikes, allowing for a more consistent and automatic filtering of the time series even if they identify less contaminated data than by manually flagging.

The estimation of the impact of the spike detection on data used for atmospheric inversions showed a relatively weak impact of the filtered data for background sites and a more significant effect for stations located closer to local sources. However, even if the implementation of an automatic algorithm can successfully identify short-term spikes due to local contaminations, it is important to note that the priority in the selection of a background site should be to avoid as much as possible the occurrence of such spikes. In the case where the spikes can not be totally avoided, it is then important to try to understand their cause and look for possible actions to minimize them. The modification of the air inlet at the Pic du Midi, described in this study, is a very good example of what can be done once the origin of spikes is understood.

The SD method is found to be efficient and reliable for the purpose of spike detection. It has been proposed

for operational implementation in the ICOS Atmospheric Thematic Centre Quality Control (ATC-QC) software to perform daily spike detection of the near-real-time dataset of continuous ICOS stations. The first step will be to run the SD method in a test mode overall ICOS stations and compare with manual detection when available in order to set optimal values of parameters. This analysis can be complemented with wind speed and direction data in order to possibly attribute spikes to fixed local sources.

Chapter III: Evaluation of the sensitivity of the transport model CHIMERE using different meteorological fields and surface fluxes for simulating the CO 2 and the CH 4 concentrations

III.1 Introduction

The development of the regional atmospheric networks, such as the Integrated Carbon Observing System (ICOS), provide useful constraints for the estimation of the regional greenhouse gas fluxes (GHG). The In general, the synoptic variabilities are reasonably well described by a regional atmospheric transport model characterized by a finer spatiotemporal resolution [START_REF] Geels | Comparing atmospheric transport models for future regional inversions over Europe &ndash; Part 1: mapping the atmospheric CO 2 signals[END_REF]. Most of the coarse global atmospheric transport models do not resolve explicitly the mesoscale circulation caused by the heterogeneity of the land used and the complexity of orography. For example, the orography driven flows that partly controls the GHG variabilities in the mountainous regions cannot be resolved adequately by global models [START_REF] Geels | Comparing atmospheric transport models for future regional inversions over Europe &ndash; Part 1: mapping the atmospheric CO 2 signals[END_REF]. In these regions, the use of a high-resolution regional model reproduce more accurately the spatial and the temporal variabilities of the atmospheric concentrations compared to coarse global models [START_REF] Pillai | High-resolution simulations of atmospheric CO 2 over complex terrain -representing the Ochsenkopf mountain tall tower[END_REF].

Moreover, the errors associated to the localization of the station in the model, called hereafter by representativeness errors, can be significantly reduced by the high-resolution regional models [START_REF] Geels | Comparing atmospheric transport models for future regional inversions over Europe &ndash; Part 1: mapping the atmospheric CO 2 signals[END_REF], Law et al., 2008[START_REF] Saeki | Global high-resolution simulations of CO2 and CH 4 using a NIES transport model to produce a priori concentrations for use in satellite data retrievals[END_REF]. Indeed, a model evaluation seems essential in order to quantify the errors associated with the transport processes. This will be performed in this study based on the difference between two meteorological fields used to drive the simulated atmospheric concentrations.

This chapter aims at evaluating the sensitivity of a regional transport model regarding different input data. A set of 8 regional simulations are performed over France using the Eulerian off-line chemistry-transport model CHIMERE for the year 2014 with two meteorological fields, two models of the vegetation-atmosphere CO 2 fluxes, and two anthropogenic emission maps. The simulations are compared to each other and against the observed data in order to analyze the sensitivity of the modelled CO 2 and CH 4 concentrations regarding the different input data. The main objective of this analysis is to quantify the flux errors and the transport errors from the local to the sub-regional scale. We use 16 atmospheric sites distributed over a domain in Western Europe with 8 stations in France and 8 sites located in the neighbouring countries. In this study, we discuss the advantages of using a high resolution mesoscale meteorological model for simulating the CO 2 and CH 4 concentrations at different station categories (e.g. coastal, continental tall towers, and mountain stations). We also investigate the uncertainties related to the biogenic and anthropogenic fluxes at the national and the subnational scales. In section III.2, we present in detail the observation and the simulation framework, in addition to the prescribed CO 2 and CH 4 surface fluxes used as an input for the transport model. In sections III.3.1 to III.3.4, we study the differences between the fluxes provided by the anthropogenic maps and the biogenic models. Section III.3.5 focuses on the sensitivity of the simulated concentrations regarding the transport data. In section III.3.7 we present the sensitivity of the simulated concentrations to the different surface fluxes (the anthropogenic and the biogenic fluxes). We finish the study by conclusions and implications in section III.4.

III.2 Methods

III.2.1 CHIMERE atmospheric transport model

CHIMERE is a three-dimensional Eulerian regional transport and chemistry numerical model developed to provide daily forecasts of several pollutants (e.g. ozone and aerosols) and to perform long-term simulations of the greenhouse emissions at the mesoscale [START_REF] Menut | a model for regional atmospheric composition modelling[END_REF]. In this study, we use CHIMERE without chemistry, since CO 2 is an inert tracer and the lifetime of of MACC data used in this study is characterized by a horizontal resolution of 0.15°, 60 levels in the vertical, and a temporal resolution of three hours.

We 

III.2.1 CO 2 and CH 4 surface fluxes

The anthropogenic emissions of CO 2 and CH 4 are generally described by models based on geo-referenced fields of socio-economic data and emission factors for different economic sectors. Administrative based inventories are developed on national, regional and city scales with the objective to report emissions aggregated according to the considered regions. Research oriented inventories are elaborated using a similar methodology, but provided on regular spatial grids, as required for the atmospheric simulations that we are developing. Some inventories also contain information on the temporal profile of emissions for each sector, generally based on periodic functions representing diurnal, weekly and seasonal changes of emissions from traffic, residential fuel use and energy production.

The natural CO 2 land fluxes can be calculated by vegetation models, which can be of variable complexity.

Vegetation models all use climate input data, and some of them also use remote sensing information, as well as other input data such as flux tower measurements, soil and vegetation maps. For atmospheric transport simulation, we need maps of net CO 2 fluxes from all land use types on a time step of about 1 hour since the flux variations are strongly coupled with transport variations. We thus use simulations from vegetation models at such temporal resolution.

The CH 4 biogenic emissions, such as natural wetlands, were neglected due to the lack of accurate estimations and the low extension of these emission sources in our domain [START_REF] Champeaux | ECOCLIMAP: a global database of land surface parameters at 1 km resolution[END_REF]. The natural CO 2 and CH 4 oceanic fluxes were also neglected in this study since their contribution in the regional scale is expected to be very small compared to the vegetation and anthropogenic fluxes (Gerbig et al., 2003).

In the following paragraphs, we describe the anthropogenic emission maps used for CO 2 and CH 4 and the biogenic models used in this study for CO 2 . The temporal profiles are implemented for cumulated UNFCCC emission categories. For example, the temporal profile of the CH 4 process sector is applied to the sum of emissions of the waste water, solid waste disposal, enteric fermentation and oil production and refineries UNFCCC categories (Table III.2). These profiles are based on the combination of, periodic cycles of the hourly emissions of the day, daily emissions of the week, and monthly emissions of the year. First, we have applied the time profiles to each sector of EDGAR emission annual totals using the correspondence table ( 

III

III.2.3 Ecosystem measurements

In addition to the high precision measurements of CO 2 and CH 4 mixing ratios performed at the atmospheric sites, ICOS is also deploying stations dedicated to the direct measurements of carbon fluxes. 

III.3 results

III.3.1 Comparison of the national totals and temporal distribution of IER and EDGAR anthropogenic fluxes

In this section, we have compared the mean temporal features and the total emissions aggregated over France for the two inventories described previously (IER for the year 2005 and EDGARv4. 

III.3.2 Spatial differences between IER and EDGAR totals

In order to investigate the spatial differences of the two emission maps at 0.1°x0.1° resolution, we represent in figures III.4-A and III.5-A the difference between EDGAR and IER totals for CO 2 and CH 4 respectively.

For CO 2 the differences can reach more than 400 KgCO 2 /yr, whereas For CH 4 it may attain 1000 gCH 4 /yr. These high differences are located over big cities and industrial areas (e.g., Paris region). For CH 4 important differences can also occur over large area such as Brittany region, where the differences range between 50 

III.3.3 Temporal differences between IER and EDGAR

The emission inventories are generally produced at a yearly scale using statistics of economic activities at the country level. In order to evaluate the simulated atmospheric concentration, we need time-varying emission maps, ideally at the same temporal resolution than the mesoscale transport models (hourly resolution). As explained in the section III.2.3.1 the time varying emissions have been estimated for both IER and EDGAR inventories for the different sectors, using periodical functions (temporal profiles).

87 The comparison between the two inventories at a shorter time scale also shows significant differences. Note that the diurnal emission maximums in the morning and late in the afternoon are related to the traffic rush hours (section III. sectors (e.g. gas production and distribution, enteric fermentation and waste management). The temporal variation was applied only to the energy production, the industrial emission, and the road traffic sectors, which represent less than 10% of the national totals.

The two anthropogenic emission products displayed a significant difference in their temporal and spatial variation, especially for CO 2 , although the annual totals showed a difference of 2% for CO 2 and less than 7%

89 for CH 4 . Consequently, this comparison shows that more efforts are required to a develop better quality of the anthropogenic emissions maps at high spatio-temporal resolutions, which can be achieved for example by using city scale information to enhance the quality of the traffic emission maps, and the energy consumption in urban areas. VPRM (-2.2 tCO 2 .m2 .month -1 ) and in May for CTESSEL (-2 tCO 2 .m 2 .month -1 ). The difference is more important in winter. From October to February, VPRM is characterized by a positive NEE total over France explained by respiration exceeding gross ecosystem exchange, as expected for northern temperate regions, and consistent with flux tower measurements [START_REF] Sampson | Simulated soil CO$_2$ efflux and net ecosystem exchange in a 70-year-old Belgian Scots pine stand using the process model SECRETS[END_REF]. Except for December where the monthly flux is slightly positive (+0.05 tCO 2 .m 2 .month -1 ), CTESSEL NEE remains always negative, indicating an uptake of CO 2 all year round, even in winter. This unexpected result may be related to the fact that CTESSEL calculates the GEE and the R separately, and rescales the two parameters to fit the net CO 2 uptake from flux measurements at the global scales only [START_REF] Boussetta | Natural carbon dioxide exchanges in the ECMWF Integrated Forecasting System: Implementation and offline validation[END_REF] This flux-adjusted version of CTESSEL was not available for this study.

III

III.3.4.1 Spatial distribution of the modeled fluxes for January and July

We present in figure III.8 the spatial distribution of simulated NEE fluxes for January and July in the domain of the study for each model. In July both models simulate negative value of NEE (uptake of more than -200 gCO 2 .m -2 .month -1 ) over a major part of the domain (except Spain). The NEE spatial distributions appear quite similar between the two models, but substantial differences can be observed in some regions ( From this comparison, we can conclude that both CTESSEL and VPRM are characterized by a peak CO 2 uptake during late spring. Even if the monthly totals of the two models do not diverge much during springsummer, very large differences in the spatial distribution of NEE uptake are found in summer with much less uptake in VPRM than CTESSEL in the north of France, Benelux and Western Germany. These differences are expected to impact significantly the CO 2 atmospheric concentrations.
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III.3.4.2.1 Diurnal cycle analysis

In January we notice a very small diurnal cycle for both modeled and observed eddy covariance NEE at the four sites (Figure III.9-January). Contrary to the VPRM model, CTESSEL simulates a net uptake of CO 2 in midday at all sites, which is only observed at Grignon (winter wheat) and Puéchabon (green oak). This can be explained for EC data by the carbon uptake due to the early development of winter wheat in the Ile de 

Seasonal cycle analysis

The simulated seasonal cycle of NEE by CTESSEL and VPRM is compared to EC measurements in figure III.10. Note that the observed NEE seasonal variation at the cultivated sites is strongly dependent on the site management and on the phenology of the cultivated species grown that year. The site management is not included in CTESSEL and VPRM, and the phenology is included in both models through satellite greenness observations, but not at the point scale of the EC measurements. Therefore, the spring NEE uptake of winter wheat at Grignon followed by a CO 2 source after the harvesting in June; is not captured by the models. The large and short NEE peak uptake of maize at Lamasquère is also missed in both models. At Lamasquere the maize crop that was sown in April and harvested during late August, explains the maximum of the NEE during July and the decrease starting from August. Both Grignon and Lamasquere sites are irrigated and their phenology is controlled by the soil water content. Moreover, the cultivated sites follow a yearly crop rotation plan, and the models do not consider this rotation in the used surface scheme on the scale of EC measurements (rotations are implicitly included as well as vegetation heterogeneity in the greenness satellite index used in the models to define the phenology). This suggests that the development of biogenic models that include modules describing the grazing, the irrigation, the harvesting, and the plant rotation plan can improve the phase and amplitude of NEE

The phase of the seasonal NEE is better represented by the models at the two forest sites, especially during winter. However, the amplitude of the seasonal cycle is not well reproduced by the two models. For example, in Barbeau the two models simulated an amplitude of -0.6 gCO 2 .m -2 .h -1 , where the EC data attain -1.4 gCO 2 .m -2 .h -1 . The difficulties in modeling the NEE at the forest site during summer can be associated to a For instance, the forest type that is composed mainly by high vegetation over low vegetation may lead to important source of error in regions where the contribution of the low vegetation is underestimated by the models.

Overall the VPRM model performs better than CTESSEL in wintertime, but none of the models is clearly better to reproduce the observed seasonal phase and amplitude of NEE. Clearly much more EC sites would be needed to identify the processes responsible for misfit between observations and simulations. Comparison at EC sites is informative of biases of models, but the bias of a model at a point site observation of NEE does not relate evidently to the bias of this model over a region with different management plans and vegetation types.
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III.3.5 Sensitivity of the concentrations to the meteorological forcing

We have performed two simulations with the CHIMERE model driven by the meteorological fields provided by ECMWF and AROME. In this analysis, the two simulations are performed with the same CO 2 (EDGAR and VPRM) and CH 4 (EDGAR) surface fluxes, in order to study the sensitivity of the CO 2 and CH 4 concentrations to the meteorological fields that drive the atmospheric transport over the domain presented in figure III.3 (section III.2.4). We will first present the sensitivity of the diurnal and seasonal cycles at the atmospheric sites, before discussing the spatial distribution of the differences over the domain. We will also study the sensitivity of the simulated concentration to different diurnal time windows by comparing the daytime to the nighttime data.

Conducting the comparison between the two meteo-transport configurations using other emission maps may result in different results (different maps and time series of differences between the concentrations obtained with the 2 models). To simplify the analysis, we show results for one set of fluxes only, but we have checked that the general patterns of differences analyzed below are quite similar for different flux products. For brevity reason, the time series analysis is focused on the eight French atmospheric sites (BIS, OPE, TRN, PUY, PDM, OHP, ERS, and GIF). The sites outside of France are presented in the appendix (Figures SIII.5, SIII.6, SIII.7, and SIII.8).

III.3.5.1 Diurnal cycle

The comparison between the simulated and the observed concentrations at the French sites is performed using the mean diurnal cycle for January (Figures III.11 and III.12 for CO 2 and CH 4 respectively), and July (Figures III. [START_REF] Balsamo | A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System[END_REF] and III.14 for CO 2 and CH 4 respectively). Note that the diurnal cycle analysis for PDM and OHP is not presented for January, since the measurements at these sites start in May and June 2014 respectively.

In January we observe in most sites higher concentrations of CO 2 and CH 4 , when using ECMWF compared to AROME (Figures III.11 and III.12). At some sites, like ERS and OPE, this offset remains constant through the day, but generally, it is slightly more pronounced in the nighttime.

During the afternoon (from 12:00 to 18:00), the difference between AROME and ECMWF at low altitude sites remains lower than 1ppm for CO 2 and vary between 5 and 15 ppb for CH 4 for January (figures III. The difficulty in simulating the atmospheric concentrations at mountain sites are related to the horizontal (AROME at 0.025°, and ECMWF at 0.15°) and the vertical (60 levels for AROME, and 137 levels for ECMWF) resolution of the models, which influences the representation of the mesoscale driven flows, e.g. from thermic driven or at night gravitational flows.

As the low altitude sites, the higher CO 2 and CH 4 concentrations when using ECMWF compared to AROME can be explained by the differences between the simulated wind for the two models (Figure SIII.9). In fact, during January, the simulated wind speeds by AROME are higher by a factor between 1.5 and 2 compared to ECMWF. For example, at OPE we have a monthly wind speed of 9 m/s for AROME, where for ECMWF the wind speed does not exceed 6 m/s. This confirms that higher wind speed leads to an increase in the horizontal mixing [START_REF] Geels | Comparing atmospheric transport models for future regional inversions over Europe &ndash; Part 1: mapping the atmospheric CO 2 signals[END_REF], and consequently a decrease in the atmospheric concentrations.

There is no significant difference in the amplitudes of the diurnal cycles simulated for CH 4 by the two models in January, except at BIS. At this site, the AROME model simulates higher CH In July the differences of CO 2 and CH 4 concentrations generated by the use of AROME and ECMWF meteorological fields are less systematic than in January. First of all, we observe in July opposite results for CO 2 and CH 4 at several sites. At most sites, the ECMWF simulation gives higher CH 4 concentration, whereas for CO 2 the concentrations are generally higher or equal than with AROME. Contrary to January when both CO 2 and CH 4 fluxes are positive, in July there is NEE surface CO 2 uptake. Consequently, it looks like the ECMWF model tends to have a higher sensitivity to the surface emissions (positive for CH 4 , negative for CO 2 ) than AROME. Moreover, the higher wind speed of ECMWF compared to AROME during July (Figure SIII.9), increases the advection of air masses, and leads to lower atmospheric concentrations. However, the opposite can be seen for CH 4 (e.g. BIS). In order to explain the higher CH 4 concentration using ECMWF compared to AROME during the afternoon, we represent in figure III.15-B the diurnal averages of CH 4 concentration (using data from 12:00 to 18:00). In Figure III.15-B we notice a lower CH 4 concentration using ECMWF compared to AROME between 5 th and 15 th of July (differences less than 5 ppb). But during some specific synoptic events (e.g. between 22 th and 28 th July), we observe a higher CH 4 concentration using Figures III. [START_REF] Ferrarese | A study of seasonal and yearly modulation of carbon dioxide sources and sinks, with a particular attention to the Boreal Atlantic Ocean[END_REF] and III.17 represent the variations of the daily averaged afternoon (from 12:00 to 18:00) observed and simulated concentrations for CO 2 and CH 4 for low altitude sites and nighttime data (from 00:00 to 06:00) at the mountain sites. Note that the observed data are available only from January to June for ERS, and start from May and June for PDM and OHP respectively. CO 2 is characterized by a well pronounced (10 to 20 ppm) seasonal cycle with a minimum occurring in July and a broad maximum between November and March. Conversely, the seasonal cycle of CH 4 is relatively weak (20 to 60 ppb) compared to the month to month variability. However similarly to CO 2 , we observe at most sites a minimum concentration occurring late summer (between August and September) and a maximum between November and March.

Among the 8 sites (figures III.16 and III.17), the seasonal cycle of the ECMWF and AROME simulations are similar, with a correlation coefficient (between the two models) larger than 0.9 for both CO 2 and CH 4 . There is no significant change in the phase of the simulated cycles when using one model or the other. The monthly differences between the two simulations range by ±3 ppm for CO 2 , and from 5 to 15 ppb for CH 4 . The CH 4 concentrations simulated using ECMWF meteorology are systematically higher compared to the AROME simulation. As detailed previously with the description of the mean diurnal cycles, the situation is different 

III.3.6 Spatial distribution of the AROME/ECMWF differences

Beyond the comparison of the AROME and ECMWF simulations at a limited number of monitoring sites, figures III.18 and III.19 represent the differences over the domain of the study for CO 2 and CH 4 respectively.

Each map represents the atmospheric concentration differences at the first level (from 0 to ~5magl) of the model for CO 2 (figure III.18), and CH 4 (figure III.19), using the afternoon selected data (data from 12:00 to 18:00) for January and July. All the monthly comparisons can be found in the appendix (figures SIII.12, SIII.13, SIII.14, and SIII.15).

In coherence with our analysis for the sensitivity of the CO 2 concentration at the monitoring sites, the absolute difference between the two atmosphere fields does not exceed 1 ppm at large part of the domain. For example, during January the major part of France is characterized by low differences that range between -0.5 and 0.5 ppm. These differences increase slightly to reach on average 0.8 ppm of difference over France as a maximum in September (Figure SIII.13). Important transport related discrepancies are identified in mountain regions (e.g., Alpes mountains), where the impact of the difference between AROME and ECMWF may reach more than 3 ppm especially during summer (e.g., June, July, and August). This issue is probably related to the large differences of topography between the two models (different horizontal resolution) which impact significantly the simulated meteorological flows (Pillai et al,. 2011). In fact, the use of AROME with a resolution more than 30 time higher than ECMWF, provide a better representation of mountainous regions, which lead to larger sensitivity to the surface fluxes for CO 2 with higher values in January and lower values in July.

For CH 4 the differences between the two meteorological models (AROME and ECMWF) do not exceed 10 ppb over France. The impact of the meteorological data on the monthly mean of CH 4 atmospheric concentrations is lower than 8 ppb during all the year (Figures SIII.14 and SIII.15), with few exceptions.

Indeed, higher differences in CH 4 concentrations can be seen in the Alps and north of Italy, where the AROME minus ECMWF simulation reach more than 15 ppb of difference. Also, there are few hotspots in the spatial distribution of the differences which correspond to cities (e.g. Paris, London, Madrid) or high emission area (e.g. between Angers and Tours). As explained previously for BIS, close to a hotspot of emission any difference in the meteorological wind fields leads to high concentration differences.

Compared to flat regions, the mountain area impacts the regional circulation patterns leading to local flow circulation which influences the atmospheric concentrations by up to 3 ppm for CO 2 and 20 ppb for CH 4 . In fact, the local circulation can be related to mountain valley flow caused by the surface temperature (heating and cooling), and to the gravity waves, also called mountain waves, that occur when stable flow crosses the mountains.
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III.3.7 Sensitivity of the concentrations to the surface fluxes

In this section, we present the sensitivity of the simulated CO 2 and CH 4 concentrations using to the different emission maps presented in section III.2.3. For CO 2 , we ran four simulations using the two NEE models (CTESSEL and VPRM), and the two anthropogenic emission maps (IER and EDG). For CH 4 , since the biogenic fluxes from the natural emissions (e.g. wetlands and termites) were neglected, we ran two simulations using only the two anthropogenic emission maps. All simulations are performed over the domain of our study, using the CHIMERE model driven by ECMWF meteorology. Similar to the section III.3.5, the discussion is supported by the French sites, the remaining European stations are presented in the appendix, and the results are presented at the diurnal and the seasonal scales.

III.3.7.1 Diurnal cycle

The comparison between the simulated and observed diurnal cycles is presented for January ( As shown in section III.3.1, the difference between the two CO 2 total anthropogenic emissions (IER, EDGAR) does not exceed 2% at the annual scale. This difference increases after the spatio-temporal distribution of the total emissions especially near the emission hotspots. Thus, we expect that the impact on the atmospheric concentrations will be larger near big cities and highly industrialized areas. Figures SIII. [START_REF] Ferrarese | A study of seasonal and yearly modulation of carbon dioxide sources and sinks, with a particular attention to the Boreal Atlantic Ocean[END_REF], SIII.17, SIII.18, and SIII.19 (appendix), showing that the difference of CO 2 concentrations between IER and EDGAR vary between 0.1 and 0.5 ppm at most sites, and may reach 0.8 ppm in the suburban site GIF (Figure SIII.18). This confirms that the background sites are less sensitive to the difference between the anthropogenic emission maps compared to the stations located near the emission hotspots.

The difference between CTS_EDG and VPM_EDG, varies between 2 ppm (e.g. BIS) and 6 ppm (e.g. GIF)

during January, and between 1 ppm (e.g. BIS) and 10 ppm (e.g. GIF) during July. These differences are related to the different NEE models as shown in section III. VPRM. This phase difference is also highlighted in the biogenic flux evaluation section in figure III.9. In fact, every 3 hours (00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00), CHIMERE interpolates the NEE missing hours using a linear temporal interpolation tool. This difference in the temporal resolution and NEE interpolation during the diurnal cycle may explain thus partly the phase difference between the two simulations.

Contrary to CO 2 , the CH 4 inter-flux differences (Figures III. 22 and III.24) are on average smaller, and on the same order of magnitude compared to the inter-transport ones (Figures III.12 and III.14). At GIF the difference between IER and EDGAR reaches a daily maximum during the night. In the daytime, these differences decrease to 7 ppb on average during January and 20 ppb during July. This is related to the significant differences between the two emission maps near the Paris urban area (see section III.3.2). For the low altitude sites (BIS, ERS, OPE, and TRN) the differences range between 5 and 10 ppb during the January and may reach 20 ppb for TRN during July. These sites are characterized by larger concentrations during the nighttime than during daytime. Since the temporal factors were applied only on secondary CH 4 emission sectors that represent less than 10 % from the total emissions (section III.3.1), we assume that the simulated CH 4 diurnal cycle is highly controlled by the atmospheric mixing and the spatial distribution of the emissions sources. For CH 4 lowest differences between IER and EDGAR (less than 5 ppb) occur at the mountain sites (e.g. PUY, PDM, JFJ, SCH, and PRS), whereas the maximum differences occur at GIF. This confirms that the high altitude sites are less sensitive to the change in the surface fluxes. At the remote and high-altitude stations, the time series analysis showed a weak diurnal cycle with an amplitude less than 5 ppb during both January and July (figures III.22 and III.24). Some exceptions can be seen for PUY during winter (figure respectively. Since the sensitivity of the CO 2 averaged diurnal cycle to the two anthropogenic inventories does not exceed 1 ppm at most sites (figures SIII.16, SIII.17, SIII.18, and SIII. 19), the seasonal cycles are compared for the total of the biogenic and the anthropogenic emissions. For CH 4 , the seasonal cycle is computed for both EDGAR and IER (figure III.26). In this section devoted to the seasonal cycles, we will focus on the periods of the day where the processes should be more representative of a large scale, and therefore better represented by the models. For Both CO 2 and CH 4 , we have selected daytime values (between 12:00 and 18:00) for low altitude sites and nighttime data (between 00:00 and 06:00) for the mountain For CH 4 the seasonal cycles are less marked than for CO 2 , and the simulations with different emission maps (EDGAR and IER) both underestimate the seasonal and the month to month variabilities, like the spike concentrations observed at several stations in March and September. Higher variations are noticed for GIF station for both observed and simulated CH 4 concentrations, due to the influence of the Paris region. The amplitude of the seasonal cycle varies between 10 and 50 ppb at low altitude sites, and less than 10 ppb at the mountain sites. The coefficient of correlation (R2) calculated between the observed and the simulated seasonal cycle for both EDG and IER, range between 0.8 and 0.9, except for GIF where the correlation decreases to 0.7. For the mountain sites and some remote station (e.g. ERS and OHP), the differences between IER and EDG do not exceed 5 ppb. For the stations that are located near an emission source, the difference range between 5 and 10 ppb (e.g. OPE and TRN), and can be more than 20 ppb for GIF. These differences can be explained by the errors related to the emission factors, and the different spatial distribution of the emissions sources near the highly industrialized area. Overall IER simulation leads to lower concentrations which are generally closer to the observations in summer, but further away in winter.
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III.4 Conclusions

This study focuses on evaluating the sensitivity of the simulated CO2 and CH 4 concentrations, using two meteorological fields, two vegetation-atmosphere CO2 models, and two anthropogenic emission maps. We performed 8 regional simulations using the chemistry transport model CHIMERE centered over France with a horizontal resolution of 0.1x0.1°. We apply temporal profiles on the yearly emission maps in order to estimate hourly varying anthropogenic emissions used as an input for the transport simulations. The analysis focuses on the evaluation of the capability of the model to simulate the CO2 and the CH 4 variabilities at seasonal, synoptic, and diurnal scales, the quantification of the impact of the different input data on the simulated concentrations. The main objective of this study is to improve our understanding of the aspect (flux variabilities and transport processes) influencing the simulation of the CO2 and CH 4 atmospheric concentrations, which we summarize in the following.

First, the comparison of the anthropogenic emission between the two inventories showed an offset that does not exceed 10% of the annual totals. This offset remains below the anthropogenic emission uncertainties estimated for CO2 by [START_REF] Peylin | Importance of fossil fuel emission uncertainties over Europe for CO 2 modeling: model intercomparison[END_REF] and for CH 4 by [START_REF] Peng | Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010[END_REF]. The differences between the annual national totals were assumed to be related to the definition of the sectors boundaries, such as the biofuels and the bunker fuels, which may increase the national budget by up to 10%. The spatial distribution of the difference between the emission maps remains in general below 20kgCO2/yr for CO2 and 60 gCH 4 /yr for CH 4 . The significant contrast between the emission maps occurs near big cities and emission hotspots, such as the Paris area. The difference between the inventories increased significantly after the application of the temporal profiles and reached more than 30% in winter. Despite the good agreement of the anthropogenic national totals (uncertainties less than 10%), the distribution of the emission budget in space and time leads to significant uncertainties.

Second, the evaluation of the two biogenic fluxes shows the agreement of the two models for simulating a CO2 uptake between late spring and early summer. The two models do not diverge much at this season even if the VPRM model estimates the maximum uptake one month after CTESSEL. The difference is more important in winter, where VPRM estimates positive CO2 fluxes compared to CTESSEL who remains negative all year round. The comparison between the two models at a regional scale showed that negative bias of CTESSEL was related to the overestimation of the CO2 uptake in the north part of France. The evaluation of the modeled CO2 fluxes against the eddy covariance estimates showed an underestimation of the simulated fluxes by a factor that may reach 3, especially during July. The differences between the simulated and the observed sites at the cultivated sites are related to the site's management (e.g. sowing, irrigation, and harvesting) which are not explicitly resolved by the used models. For the forest sites, the difficulties in simulating the CO2 fluxes was associated to the misrepresentation of the phenology which is calculated in the models using satellite greenness observations (not at the point scale of the measurement sites).

Third, the sensitivity of the simulated concentrations regarding the meteorological fields showed significant differences at the mountain sites and near the high emission sources. For the mountain regions, the difference between the ECMWF and AROME are related to the difficulty in representing the meteorological parameters that control the transport of the CO2 and CH 4 concentrations (e.g. the horizontal and the vertical mixing).

Near the high emission sources, we showed that a small change in the wind fields may lead to a significant difference in the simulated concentration. The comparison between the simulated and the observed concentrations confirmed that the transport models are less biased during mid-afternoon time window for the low altitude sites, whereas for the mountain sites the use of the nighttime data seems the most appropriate.

Lastly, the use of these different surface fluxes allowed us to quantify the sensitivity of the simulated concentration regarding the anthropogenic and the biogenic fluxes.

For CO2, the evaluation of the modeled data showed an important underestimation of the simulated concentration compared to the observations. This underestimation increases significantly for the CTESSEL simulations, especially during winter. Compared to VPRM, the negative CO2 fluxes estimated by CTESSEL during January impacts the atmospheric concentrations by more than 5 ppm (e.g. GIF station). For the anthropogenic emission, the differences between IER and EDGAR simulation impact the modeled concentration by less than 1 ppm on average at the level of the atmospheric sites. The sensitivity of the simulated CO2 concentration regarding the anthropogenic emissions becomes more significant near high emission sources, where the difference may reach 10 ppm.

For CH 4 , We showed that the significant differences between IER and EDGAR simulations occur for the low altitude sites with a value ranging between 5 and 20 ppb. Similar to CO2, the differences between the two anthropogenic emissions impact significantly the simulated CH 4 concentrations near important emission areas, with a high impact in winter. The spatial distribution of the difference between IER and EDGAR simulations showed the impact of the emission hotspots leading to important small-scale patterns called by emission dipoles. These dipoles are responsible for the plumes that may impact the atmospheric

Chapter IV: The potential of a European network for the optimization the CO 2 and the CH 4 surface fluxes in France

IV.1 Introduction

The quantification of the carbon dioxide (CO 2 ) and methane (CH 4 ) surface fluxes represent a critical task to better understand the present-day carbon and methane budget. To achieve this purpose, two techniques known by bottom-up and top-down approach are commonly used. The bottom-up approach provides estimates of the greenhouse gases based on geo-referenced fields of socio-economic data and emission factors, or processbased biogeochemical models. However, due to the inaccurate emission factors and activity statistics, the bottom-up approach can lead to significant uncertainties. In this study, we will improve the estimation of the GHG fluxes using the top-down approach, called hereafter by inverse modeling, which reduces the uncertainties of the temporal and the spatial variability of the CO 2 and CH 4 fluxes. This approach estimate optimized fluxes using information from prior surface fluxes (generally from bottom-up approaches), transport model, and observations. This set of information represents the principal ingredients to perform the Bayesian inversion aiming to quantify the CO 2 and CH 4 sources and sinks in France [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF].

The This chapter aims at implementing and applying a dedicated atmospheric inversion modeling framework to estimate the CO 2 and the CH 4 surface fluxes in a domain centered over France. This study uses the atmospheric transport model CHIMERE (described in Chapter III), embedded in the inversion framework PYMAI developed by [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]2015). This system uses a statistical algorithm to estimate objectively the most critical sources of errors in the inversion. The error quantification is performed used a Monte-Carlo approach incorporated into Maximum of Likelihood estimators (Berchet et al., 2015). We will compare the inversions errors estimated objective by the maximum of the likelihood algorithm to the empirical error estimation in order to study the relevance and the robustness of the inversion system. The system uses atmospheric observations provided by ICOS and other national networks in order to constrain the CO 2 and CH 4 surface fluxes. Section IV.2 provides a detailed description of the inversion system, the statistical method used to quantify the inversion errors, prior information, and the surface measurements of 16 stations. Section IV.3 represents the inversion results presented separately for CO 2 and CH 4 fluxes. In the following section, we list the results for the CH 4 inversion. The same structure will be followed for the CO 2 inversion with a separation between the anthropogenic and the biogenic fluxes. In section IV. 

IV.2 Methods

IV.2.1 Inverse problem formalism

IV.2.1.1 Inversion formalism

The estimation of greenhouse gas sources and sinks using the inverse modeling formalism is based on the assumption that the control vector X, can be related to measurements of the atmospheric concentrations Y 0 , using a transport model H [START_REF] Bouttier | Data Assimilation Concepts and Methods[END_REF].

Y 0 =H ( X )+ ε Y (IV.1)
The control vector may include the contribution of all data used as an input by the transport model such as the surface fluxes (called hereafter by prior fluxes), initial conditions, and boundary conditions. ε Y represents the differences between the concentrations simulated by the transport model H and the measurements. The aim of inverse modeling is to estimate an optimized control vector that minimizes ε Y . Even if we consider that the control vector used as an input is perfect, the difference between the observations and the simulations is not zero, due to the imperfections of the transport model and the measurement errors (called altogether observation errors). The refinement of the control vector is usually achieved through the optimization of the surface fluxes and the reduction of their uncertainties (called hereafter by prior errors) for a targeted spatial and temporal scale. The optimization is generally performed using inverse modeling frameworks, which consist of finding the best estimate of the surface fluxes using information from the observations, the transport model, and the prior fluxes.

The exact value of the observation and the prior errors is unknown since we ignore the real values of the concentrations and the control vector. These errors can be estimated based on some statistical calculations which indicate their probable amplitude and spatiotemporal distributions. In fact, the complexity of the inverse problem relays on the estimation of the different errors, since they influence strongly the inversion results. In this study, we will focus on the optimization of the surface flux components of the control vector.

IV.2.1.2 Inverse problem constraints

In the case of greenhouse gas flux estimations, we may face ill-posed mathematical inverse problems, when the number of constraints (observations) is very small compared to the number of the unknowns (fluxes to be optimized). At the global scale, the available measurements have always been considered as relatively few compared to the surface fluxes. In Europe, this issue is still relevant, but it has been reduced by the development of regional greenhouse gas atmospheric networks, such as ICOS (Integrated Carbon

Observation System https://www.icos-ri.eu/), and also by the emergence of new national networks, such as ClimaDat Spanish project (available at http://www.climadat.es/). In this study, we use hourly observations at 16 stations from national and European networks, in order to constrain the inverse problem. Theoretically, the more observations we have, the closer we get towards estimating the real fluxes. However, in practice, the flux estimation depends also on the quality of the control vector and the ability of the transport model to reproduce correctly the simulated concentrations.

IV.2.1.3 Regularization of the inverse problem

Theoretically, having a small number of constraints implies an important number of possible flux distributions that minimize the difference between the modeled and the observed concentrations. It is thus essential to regularize the inverse problem using information that is independent from the measurements, in order to reduce the range of the possible flux distributions and to provide realistic solutions. In this study, we chose the Bayesian regularization that uses prior information of the fluxes (noted in this study by x b ) and their corresponding errors [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF]. This regularization is convenient for our study since we can use prior flux estimate based on biogeochemical models (e.g. VPRM and CTESSEL see section III.2.3.2), and gridded emissions inventories (e.g. IER and EDGAR see section III.2.3.1).

The optimized fluxes will depend on the quality of the prior fluxes, the observed data, the transport model, as well as the characterization of the corresponding errors (flux errors, and observation errors). In this study, we assume that both the flux and the observation errors follow unbiased Gaussian distributions. These errors are crucial for our study since they indicate the range in which the inverse problem solution may exist. In this study, the observation and the prior flux errors will be estimated by the statistical inversion system itself using an extension of the traditional scheme developed by Berchet et al (2013) (see section IV.2.3).

IV.2.2 The solution of the inverse problem:

Resolving the inverse problem means finding the density probability function ρ(x) of the "true" fluxes (equation IV. 

ρ(x )=Cst ×exp ( -1 2 [(Y 0 -H ( x)) T R -1 (Y 0 -H ( x ))+(x b -x) T B -1 ( x b -x )]) (IV.2)
R and B represent the variance-covariance matrices of the observation and the prior flux errors respectively.

Cst is a constant, and it does not interfere in the calculation of the maximum and covariance of ρ(x) (equation IV.2). The transport model that connects the control vector to the observation space, here the unknown fluxes to the measured atmospheric concentrations, is usually represented by a chemistry-transport model (CTM) that mix and transport the control vector components. In this study, the chemistry module, along with the transport in our domain (~2000 Km from west to east), is deactivated for the CO 2 (inert gas), and for CH 4 whose the mean lifetime in the atmosphere is about 12 years (Prather et al., 2007).

According to equation IV.2, the optimal solution, called x a hereafter, can be found by minimizing the following cost function.

J (x )=-ln ( ρ( x) Cst ) ; J (x )= 1 2 [(Y 0 -H ( x)) T R -1 (Y 0 -H (x))+(x b -x) T B -1 (x b -x)] (IV.3)
In this study, we make an additional assumption that the atmospheric transport is linear. This hypothesis is valid for all tracers which are passive at our temporal scales (such as CO 2 and CH 4 ). Therefore, the observation operator can be expressed by the matrix H (H(x) = Hx), which distribute the spatial and the temporal flux patterns in respect with the control vector components (see Section IV.2.4.4). The optimal fluxes x a corresponds to the value of x where the gradient of J(x) equals zero [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF]:

x a =x b + K (Y 0 -Hx b ) (IV.4)
Where K is called the Kalman gain matrice

K =BH T (R+ HBH T ) -1 (IV.5)
The variance-covariance matrix of the optimal fluxes x a using the Gaussian assumption can be expressed by the following equation [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF]:

P a =B-KHB (IV.6)
We can limit the dimension of the observation and control vectors, so that, with respect to the available calculation resources, the inversion, i.e., equations IV.4 and IV.6, can be performed analytically.

IV.2.3 The inversion setup:

IV.2.3.1 Estimation of the observations and prior variance-covariance matrices

An accurate estimation of the of the error variance-covariance matrices (R, and B), for the observations and In this study, we will use the maximum of likelihood method, implemented by [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF], to estimate the parameters required for the diagonal variance-covariance matrices (R and B). Applying the method for non-diagonal variance-covariance matrices implies drastically higher computational costs and intensive memory usage. In order to provide the variance-covariance matrices with small computational costs, we need to reduce the size of parameters to estimate. In fact, the likelihood maximization of the diagonal matrices presents then the best compromise between the estimation of realistic observation and prior errors [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF], as well as lighter memory usage. The variance-covariance matrices can be presented as follows: In order to estimate the diagonal elements of the variance-covariance matrices, we calculate the probability density function of R and B, given the observation Y 0 , the prior estimates x b , and the transport model H.

R= σ R ,1 2 0 ... 0 0 σ R ,2 2 
Using the formalism of Bayes, the probability density function of R and B can be defined as:

p(R , B|Y 0 , X b , H )= p(Y 0 |X b , H , R , B). p(R , B|X b , H ) p(Y 0 |X b , H ) (IV.8)
We assume that we do not have any prior knowledge about R and B matrices parameters. More precisely, we turn this assumption into the assumption that, over a finite positive interval, the probability of R and B is uniform p ( R , B|X b , H ) ∝ 1 . Then, over this finite positive interval, equation IV.8 becomes:

p(R , B|Y 0 , X b , H )∝ p(Y 0 |X b , H , R ,B ) (IV.9)
The best estimate of the R and B variance matrices parameters are the set of values that maximize the likelihood of the observations. These observations are related to the prior fluxes by the observation operator

H Y 0 =Hx b +ε y .
Then the expected value of Y 0 is

E [Y 0 ]=E[ Hx b +ε y ]= Hx b (IV.10)
and its covariance is

E [(Y 0 -E [Y 0 ])(Y 0 -E[Y 0 ]) T ]=E[(Hx b +ε Y -E [Hx b +ε Y ])( Hx b +ε Y -E[ Hx b +ε Y ]) T ] E [(Y 0 -E [Y 0 ])(Y 0 -E[Y 0 ]) T ]=HBH T +R (IV.11)
From equation IV.10 and IV.11, we can use the expected value and the covariance of the observation to define the Gaussian probability density function of p ( Y 0 |X b , H , R , B ) , which is (from equation IV.9)

proportional to p ( R ,B|Y 0 , X b , H )

p(R , B|Y 0 , X b , H )∝ 1 |HBH T +R| ( 1 2 
) √2 π exp( -1 2 .(Y 0 -HX b ) T . (HBH T + R) -1 (Y 0 -HX b )) (IV.12)
Where | | stands for the matrix determinant. The estimation of the maximum likelihood covariance R and B parameters can be performed by the maximization of the equation IV.12, or the minimization of its negative logarithm (equation IV.13), using the iterative Gauss-Newton method (Gill et al., 1986).

L (R , B ) = 1 2 ln|HBH T + R|+ 1 2 .(Y 0 -HX b ) T . (HBH T + R ) -1 (Y 0 -HX b ) (IV.14)
Thus the maximum likelihood algorithm optimizes (R + HBH T ) according to (Y 0 -H.X b )(Y 0 -H.X b ) T .

Assuming diagonal R matrix, the only way to compensate the non-diagonal values of R is by setting higher values in B matrix through the HBH T component [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]. For example, if the operator H is close to the reality, the maximum of likelihood algorithm would compensate the information of (Y 0 -H.X b )(Y 0 -H.X b ) T in B matrix, and assign relatively lower values for R.

The algorithm may converge to a local maximum (the convergence to a global maximum is not insured [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]). This maximum is called the likelihood maximum, and it takes into consideration the information of the difference between the prior fluxes and the measured concentrations (Y 0 -Hx b ).

IV.2.3.1.1 Monte-Carlo sampling

The estimation of the observation and the prior variance-covariance matrices R and B allows the estimate of the optimized fluxes and their corresponding uncertainties using the analytical inversion equations (equation IV.4 and IV.6). In order to take into consideration the uncertainties in the observation and the prior error estimates provided by the maximum of likelihood (ML) algorithm, we will use the marginalization method of the error statistics developed by Berchet et al (2015). This approach consists in sampling the probability density of the of the variance-covariance matrices using a Monte-Carlo algorithm. The complexity of this method is associated with the need to define accurate probability density function of variance-covariance matrices. Here, we approximate the distribution of the variance-covariance matrices by the distribution of the diagonal observation and prior error matrices (R and B matrices) provided by ML algorithm.

In this study, we perform a Monte-Carlo the sampling using 10000 members, and we calculate the inversion result for each member as presented in Figure IV.1. This approach is based on several inversions. However, one atmospheric inversion may take from few days to few weeks of computing time. It is thus important to define an appropriate dimension of the inverse problem in order the perform the 10000 inversions in affordable time.

To summarize, the maximum of the likelihood algorithm is first resolved using the Gauss-Newton method.

This step provides a single couple (R, B). Afterward, a Monte-Carlo ensemble on R and B matrices is 

IV.2.3.1.2 Filter on the under-constrained emission fluxes

The likelihood maximum algorithm offers the possibility to eliminate the under-constrained control parameters. The control vector parameters which are not constrained enough will be rejected by the algorithm, in order to avoid numerical artifacts [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]. This filter is processed using the diagonal elements of the influence of matrix KH (Cardinali et al., 2004), calculated at each iteration of the maximum likelihood algorithm. Note that KH matrix depends on the estimated observation and prior errors (equation IV.5). The diagonal elements of the KH matrix represent the sensitivity of each component of the control vector to the inversion. These elements vary within the range 0 to 1. In order to filter the underconstrained fluxes, we eliminate the control vector components whose KH value is lower than 0.5 [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]). Thus only the components of the control vector that are enough constrained will be operated by the inversion.

IV.2.3.1.3 Filter on the emission hotspots

The misrepresentation of the surface fluxes can lead to significant spatial and temporal model-obs mismatches. For example, surface emissions can influence a sampling site in the reality, but not in the model 138 if these emission sources are assigned with inaccurate fluxes and/or incorrect spatial distribution. This may lead to substantial differences between the observed and the simulated concentrations. The maximum likelihood algorithm (ML) assigns such mismatch to observation errors and/or prior errors. Thus the high values of ML errors (section IV.2.3.1) represent an indication of these mismatches. The data that correspond to the high errors must be filtered out, since they may correspond to sharp synoptic events which are very difficult to simulate by the transport models. The identification of these sharp events is performed by analyzing the diagonal elements of R and B matrices (section IV.2.3.1). The ML algorithm proposes to filter out measurements and surface fluxes characterized by an ML error higher than a given threshold. In this study, we use the threshold that corresponds to 95 % percentile of the observation and the prior errors [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]. With this configuration, the ML algorithm filters out the observations poorly represented by the transport model, and rejects the surface fluxes responsible for sharp synoptic events at the sampling sites.

IV.2.4 The definition of the inverse problem

In this study, we will perform an analytical inversion over France for CO 2 and CH 4 fluxes using the inversion framework PYMAI developed by [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]2015). The inversion is carried out for two months: one month in winter (January) and one month in summer (July), in order to estimate the optimized fluxes for two contrasted periods. The list of the variable defining the inverse problem is presented in the following parts.

IV.2.4.1 Control vector

Ideally, we would like to provide a refined control vector at the highest, possible, temporal and spatial resolutions (e.g. flux optimization for each grid cell and each hour). However, the solution of such a highdimension control vector inverse problem will be limited by the capacity of calculation resources, by the lack of capacity to characterize the spatial and temporal structures in the prior uncertainties at such a resolution (especially since the system used here ignores the correlations between uncertainties in different control variables). For this reason, it was necessary to make a compromise by reducing the inverse problem dimension. The reduction of the control vector dimension is usually performed by the aggregation of the flux budget spatially over a geographical region and temporally during a specific period of time. In the analytical approach used here, the control vector does not include directly the flux budget. The control vector components represent the scaling factors that are applied to the fluxes. Each scaling factor corresponds to the flux budget aggregated for a given region, for a distinct time period, and for an individual control parameter (surface fluxes, boundary conditions, and initial conditions).

For both CO 2 and CH 4 surface fluxes, we aggregated the surface fluxes on 26 regions over France (regions from 1 to 26), 15 regions for the neighbouring countries (regions from 83 to 97), in addition to one region for the Atlantic ocean (region 98) and one region (region 99) for the Mediterranean sea (Figure IV.2). For the temporal aggregation of the CO 2 and CH 4 fluxes, we split the months (January and July) into 31 days, further subdivided into 6 hourly time windows (from 00:00 to 06:00, from 06:00 to 12:00, from 12:00 to 18:00, and given flux, the control region is defined in a way that each type of flux (biogenic or anthropogenic) remain relatively homogeneous within the selected region. In the following, we summarize the component of the CO 2 and CH 4 control vector.

The control vector X for each month (January and July) for CH 4 is composed of 5643 components:

 One component for the initial conditions.

 310 components for the boundary conditions (5 edges x 31 day x 2 time windows per day).

 5332 components for the emission fluxes (43 regions x 31 days x 4 time windows per day).

The control vector x for each month (January and July) for CO 2 is composed of 10975 components:

 One component for the initial conditions.

 310 components for boundary conditions (5 edges x 31 x 2 time windows).

 5332 components for the anthropogenic emission fluxes (43 regions x 31 x 4 time windows).

 5332 components for the biogenic emission fluxes (43 regions x 31 x 4 time windows).

IV.2.4.2 Observation vector

In order to constrain the inverse problem, we use a vector of observations (Y 0 ) which can include for example direct surface measurement or remote sensing using satellites. In this study, we used only continuous surface measurements from 14 stations in January, and 15 in July. The list of the stations was presented in chapter III (Figure III.3, and Table III.3).

In order to perform the inversion problem, the variance-covariance matrices of the observation errors (R) must be small enough (due to the calculation limitations). Moreover, the used observations should be consistent with the spatial and the temporal resolutions of the atmospheric transport model. Therefore, we 141 have done a data selection in order to reject observations which cannot be properly represented by the transport model. This step was described in the previous chapter (Section III.3.5), and we provide here only a short reminder of the data selection process. We use the hourly averages of continuous measurements performed at the atmospheric sites presented in table III.3. We select the mid-afternoon data (14:00 to 18:00 local time) for low elevation sites and nighttime data (00:00 to 06:00 local time) for the mountain stations.

For stations that are characterized by more than one sampling level (e.g., OPE, TRN, RGL, and CBW), only the highest level is selected, since the transport models are not able to optimally reproduce the vertical mixing close to the surface. Note that during January measurements from PDM and OHP stations are not available, whereas ERS measurements were interrupted in July (Figure IV.3). This leads to an unequal spatial distribution of the observation sites, with no observation site available to constrain the emission fluxes in the south-east of France in January.
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IV.2.4.3 Surface fluxes

The surface flux information used in our inverse modeling framework is calculated using the bottom-up approaches. These estimates represent the prior information of the flux budgets for different regions and time windows of the control vector (section IV.2.4.1). The used estimates are thus processed to provide the spatiotemporal distribution of the surface fluxes within the control region and time windows, as part of the observation operator (section IV. Table_IV. 1: Characteristics of the surface fluxes used as prior in the inverse framework. (*) means that the corresponding fluxes were produced using hourly temporal profils applied on the yearly totals (Section III.2.3)

IV.2.4.4 Observation operator

The surface flux budget is projected into the space of concentrations using the linear observation operator H H sample operates the simulated CO2 and CH4 field to retrieve a simulated concentration vector that corresponds to the used observation vector (section IV.2.4.2). The simulated 4-D atmospheric concentrations are operated by selecting the modeled concentration of the grid-cells whose center is at the nearest horizontal and vertical position of measurement points and extracted for the time that corresponds to observed hourly data.

Building the observation operator

In order to perform the analytical inversion (equation IV.4 and IV.6), the observation operator is built using the different sub-operator described above. Each column of H is constituted by a response function [START_REF] Enting | Inverse Problems in Atmospheric Constituent Transport by I[END_REF], which represent the response of the CO 2 or CH 4 concentration to a control vector component. One response function is calculated by applying the observation operator to the control vector with 1 for the control parameter and zero for the remaining parameters. For example, for the initial conditions, we perform a simulation in which only the prior initial concentrations are used with zero surface fluxes and boundary conditions. For the component which corresponds to the emission region 1 during the first time window, we apply H to the control vector in which only the fluxes of region 1 of this day and of this time window are used, with zero initial conditions, zero boundary conditions, and zero fluxes for the other regions and time windows. We repeat this process individually for each component of the control vector. Thus, H matrix is formed using the response functions of all control vector components (5643 components for CH 4 and 10975 components for CO 2 , see section IV.2.4.1).

IV.3 Results

The results of the atmospheric inversions are presented separately for CH 4 and CO 2 . The inversion system (presented in section IV.2.3) provides an estimation of the optimized fluxes and their associated uncertainties, as well as few other indicators which help to analyze the sensitivity of the inversion results to the input dataset. For both CH 4 (section IV.3.1) and CO 2 (section IV.3.2), we will present first the data selection applied to the atmospheric concentration time series, with an analysis of the weight of the observations in the flux inversion. Second, we will investigate the observation and prior flux errors estimated by the maximum of likelihood algorithm (section IV.2.3.1). Third, we will present the constraint applied to the fluxes, and the ability to separate the signal from different regions and type of fluxes. Then, we will discuss the regional fluxes deduced from the inversion.

IV.3.1 Inversion of the CH 4 fluxes

IV. 146 against the absolute differences of concentrations simulated with ECMWF and AROME (green) for January (top) and July (bottom). The data filtered out by the ML algorithm (e.g. short-term event) were also eliminated from ECMWF and AROME simulations. In January and July, the comparison shows that the interquartile range of the ML observation errors is smaller than the differences between the two transport models. At most sites, the two methods differ by a factor of 1.2 to 1.5, except at sites like GIF (July) where the ML error interquartile interval is two times smaller than the transport model differences. The high difference between ECMWF and AROME at this sub-urban station is related to the high gradient of surface emissions in the Paris area (Section III.3.6). In such a case, a small difference in wind fields between the two transport models may lead to significant differences at the station (see section III. 3.5). The comparison between the two months shows that both the ML and the transport difference methods increase the observation errors in July by a factor of ~1.5 compared to January. As shown in section III.3.5, the increase of the model differences in July is related to the differences between the wind fields and boundary layer height, especially for the mountain sites. Note that the ML algorithm estimates the errors using the ECMWF transport data, whereas the model difference method provides empirical errors using two transport models. In principle, the ML observation errors should be higher than the ones provided by the transport models differences, since the ML algorithm estimates the total observation errors that include transport errors, representativeness errors, and the aggregation errors. The fact that we find lower errors with the ML method indicates that for the used spatio-temporal resolution, the dominant errors are the ones related to the transport processes.

IV.3.1.2.1 Prior flux errors

In We observe that the ML algorithm assigns higher prior errors compared to the absolute differences between the two anthropogenic maps for both January and July. In France the difference between EDGAR and IER range between 10 and 50 % of the monthly budget, whereas the ML algorithm provides prior flux errors that range between 60 % and 200 % of the monthly budget (more than 200 % in some specific region such as regions 3, 22, and 23). The comparison of the ML prior error between the two months shows slightly higher errors in January compared to July which is also the case when comparing the two anthropogenic emission maps (section III.3.3).

Considering that the ML algorithm estimates the prior errors based on the differences between the model and the observations (see section IV.2.3.1 for observation covariance which equals HBH t + R), it is very likely that the low values of the observation errors are somehow compensated by higher uncertainties assigned to the prior fluxes (R and B matrices are interdependent, section IV.2.3.1).
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IV.3.1.6 The spatio-temporal scales resolved by the inversion

The determination of the spatio-temporal scales resolved by the inversion is performed using the posterior covariance matrix Pa. When posterior error correlations between control vector components are higher than a given threshold, these components will be merged in the same group. The given groups are thus formed by emission fluxes for different regions, and may also include information from initial and boundary conditions.

In this section, the correlation threshold will be selected in order to make use of the possible information provided by the inversion excluding the interpretation of information that is correlated with the initial conditions and the boundary conditions.

As explained by Berchet et al (2014), the selection of the appropriate correlation threshold must avoid two issues. First, a high threshold may lead to the separation of all component which involves the risk of overinterpreting small scale results. Second, the small threshold leads to large groups that cover a wide area of the domain. A correlation threshold (R2) of 0.5 was chosen in previous studies that used the same ML algorithm at a continental scales in Siberia (Berchet et al 2013, and Berchet et al 2014), and at a national scale in France [START_REF] Pison | How a European network may help with estimating methane emissions on the French national scale[END_REF]. This threshold was chosen empirically based on the analysis of Pa matrix. Before choosing the correlation threshold that we will use for our inversion, we tested several R2 values (from 0.1 to 0.9) in order to investigate the sensitivity of the inversion results to this threshold (Figures IV. [START_REF]A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM) -Mahadevan -2008 -Global Biogeochemical Cycles -Wiley Online Library[END_REF] For each correlation threshold (from 0.1 to 0.9) in the X axis, Figure IV.14 presents in panels A (January) and D (July) the total number of groups that are independent from the initial conditions (IC) and boundary conditions (BC). Panels 14-B (January) and 14-E (July) present the number of groups composed by at least two regions without IC/BC. Panels C and F show for each correlation threshold the mean time difference of the groups (groups may include regions with different time intervals). The mean time difference of each threshold is defined as follows: first, we calculate the difference between the maximum time (day and hour) minus the minimum time of each group, then we compute the average of these differences in order to get an averaged time for each R2. In Figure IV.14 C-F, we notice that the mean time difference does not exceed 1.5 days, whatever the threshold is, meaning that the constituted groups contain mainly regions with adjacent time periods. Thus, the 6 hourly resolution seems near to the appropriate temporal resolution where the inversion is informative. This result indicates that the temporal resolution was not defined at a too coarse resolution, nor too fine since only regions that are close in time periods are correlated.

For January, a high correlation threshold (R2 = 0. For both January and July, we selected a threshold of 0.5, which gives a balance between the number of separable groups, the mean area covered by these groups, and a large fraction of the constrained national emissions. For example in Figure IV.14-B, the R2 of 0.5 corresponds to 100 groups of regions that are independent from initial conditions and boundary conditions. These groups cover an area of ~ 44 000 km 2 , and sum up to 18% of the monthly emissions for January. The chosen correlation threshold was used to reconstruct the national optimized fluxes at the monthly scale presented in the following section.
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IV.3.1.7 Optimized fluxes

The optimized fluxes have been generated for separable groups using the threshold R2 = 0.5 (section IV.3.1.6). These groups are constituted by regions for different time periods of the month. However, due to the problem of under-constrained regions (see section IV.3.1.4), the groups may be formed with regions that do not cover the full domain (France), neither the full month. To provide monthly fluxes for all France, we use posterior emission for regions and periods constrained by the inversion (see section IV.3.1.4), and prior emission otherwise. Similar to monthly fluxes, the uncertainties of the optimized fluxes are calculated using the same combination of the prior and the posterior uncertainties, assuming that they are independent of each other.

165 To sum up, the inversion leads to higher emissions compared to the prior at the national scale. The regional analysis of the monthly fluxes shows that the North-west sector is the main CH 4 emission source in France 

IV.3.2.2 Investigation of the observation and the prior flux errors

In this section, we compare the observation and prior flux errors estimated by the ML algorithm for CO 2 (section IV. 

IV.3.2.2.1 Observation errors

.20 shows smaller ML observation errors compared to the difference between the two transport fields, especially during July. Like for CH 4 , the mean ML observation errors is smaller by a factor of 1.2 to 1.5 than the empirical estimation, and two times smaller at some specific mountain sites (e.g. SCH in January). This confirms the results found for CH 4 indicating that the transport errors seem to be more important than the representativeness and the aggregation errors at the used spatial resolution. The comparison between the two months shows an increase of the mean and the interquartile range (colored whiskers) of observation errors in July by a factor between 1.5 and 2 compared to January. Like for CH 4 , this confirms the ability of the ML algorithm to reproduce accurately the higher observation errors in July compared to January.

One interesting point is that the ML algorithm generally allocates higher observation errors at mountain sites compared to low altitude stations, with higher errors in July (up to 3 ppm) than in January (Figure IV.20). This is probably related to the difficulty to reproduce accurately the orography, which influences the representation of the mesoscale driven flows at the mountain stations (section III.3.6).

IV.3.2.2.1 Prior flux errors

The spatial distribution of the ML prior flux errors is compared to the absolute difference between anthropogenic emissions maps in The later correlations are associated with an uncertainty reduction ranging between 20% and 30%, meaning a limited biogenic flux separation between the SE and the SW sectors in July. At the regional scale, relatively high posterior error correlations occur for the adjacent regions. For example between regions 6, 7, and 14, the Moreover, we notice that for these low correlation thresholds (R2 < 0.5), the groups mean time difference may exceed 1 week (Figures IV.32-A and IV.33-A). This result indicates that the low thresholds provide groups with distant time periods for both the anthropogenic and the biogenic fluxes (only a small number of regions with adjacent time periods are grouped). For this reason, we avoid the selection of correlation thresholds lower than 0.5.

For the high thresholds, the inversion constrains higher percentages of the national budget. As can be seen in For CO 2 (both anthropogenic and biogenic emissions), we selected a correlation threshold of 0.8, which takes into consideration: the highest number of groups composed by at least to regions without IC/BC; a low temporal correlation between regions (up to 1.7 days); a high percentage of the constrained anthropogenic and biogenic total fluxes; and a small mean area covered by the groups (between 20 000 km 2 and 50 000 km 2 ). This choice corresponds to 188 groups in January and 220 groups in July without IC/BC (Figure IV.31). Selecting R2 of 0.8 will allow us to interpret the inversion results that constrain 13% of the total anthropogenic emissions in January and 8% in July, and 20% of the national biogenic budget in January and 41% in July.

188 To sum up, the CO 2 inversion leads to an increase of the anthropogenic emission and a decrease of the biogenic fluxes over France. At the regional scale, the north of France (NW and NE sectors) is characterized by the highest anthropogenic emissions, whereas in the south of France, the CO 2 uptake is more pronounced for both months. All regions showed a significant uncertainty reduction of 20-50% for the biogenic fluxes, except the SE sector in January. For anthropogenic emissions, most regions also showed an uncertainty reduction, but limited to 10-30%. The posterior uncertainties remain larger than the net regional fluxes (by 80% on average). Low posterior error correlations (|R2| < 0. 

IV.4 Conclusions

In this study, we estimated the CO 2 and the CH 4 surface emissions in France for January and July 2014 using To constrain the surface fluxes, the inversion system assimilates hourly mid-afternoon data for low altitude sites and nighttime data for the high altitude stations. This selection was based on the evaluation of the performance of CHIMERE for simulating the atmospheric concentration. After this first screening, the inversion system filters out data whose representativeness appears to be incompatible with the simulated data. This is, for example, the case of observations that occur during sharp synoptic events, which are very difficult to simulate by the transport models. This selection impacts more the low altitude sites, especially those located near high emission sources such as GIF and CBW sites. Overall, the inversion system rejects a percentage that varies between 1 % and 3 % compared to the total number of the hourly data used by the system. The investigation of the impact of the retained data on the inversion showed that the system uses the equivalent of 3 information per day for CH 4 and 5 information per day for CO 2 . The higher weight of CO 2 observation was explained by the higher sensitivity of the inversion system regarding the biogenic fluxes, especially during the summer.

The used inversion system allows the investigation of the strength of the constraint, which mainly depends on the intensity of the emission fluxes, the transport, and the distance to the observation sites. This analysis showed that the surface fluxes in the West of France are significantly constrained. This was related to the impact of GIF and TRN sites, located a few hundreds of kilometers east of the emission sources, which capture efficiently the emission signal driven by the westerly winds. In agreement with earlier studies (e.g. [START_REF] Pison | How a European network may help with estimating methane emissions on the French national scale[END_REF]Berchet et al., 2015), this analysis confirms the ability of the inversion to principally constrain the emissions close to the atmospheric sites in a radius up to 500 km. Meanwhile, the regions that are located far from the observation sites were not constrained at all. That was the case for the south-east regions of France, where the inversion did not optimize the corresponding fluxes due to lack of the observed data during January. The comparison between the two months showed the increasing percentage of the constrained CH 4 and the biogenic CO 2 fluxes in July, in agreement with the higher number of the measurement sites, compared to January. For the anthropogenic emission of CO 2 , a lower percentage of the constrained fluxes was shown in July despite the increasing number of the operational atmospheric stations.

This was explained by the incapability of the inversion system to correctly extract the signal of the anthropogenic emission from the total CO 2 fluxes, captured by the observation sites, due to the influence of the strong biogenic sink in July.

The investigation of the posterior error covariance allowed us to study the ability of the inversion system to efficiently separate de emission fluxes. Despite the low uncertainty reduction that ranges between 10 % and 40 %, we assumed that the inversion managed to correctly separate the emission fluxes between most regions.

This was illustrated by the low posterior error correlations that did not exceed 0.5 for both CO 2 and CH 4 for most regions. The significant flux separation (|R2| < 0.3) was found between the distant regions thanks to the spatial distribution of the atmospheric sites in a south-west north-east axis. Few limitations for the flux separation was found between some adjacent regions characterized by a posterior error correlation that may reach 0.7 (e.g. regions 22 and 23).

Before analyzing the results of the optimized fluxes, first, we defined the spatiotemporal scales resolved by the inversion. This analysis was based on the posterior error covariance matrices. For CH 4 , the correlation threshold of 0.5 allowed us to interpret the inversion results that constrain 18 % and 28 % of the national emissions for January and July respectively. The threshold of 0.5 provides the highest number of control vector component groups composed of at least two regions that cover an averaged area of 44 000 km². The component of each group was characterized by a mean time difference less than 1.5 days. This means that the interpretation of the inversion results will be based on regions characterized by an adjacent time period. We performed the same analysis for CO 2 , but with a correlation threshold of 0.8. This threshold provides results that constrain between 8 % and 13 % of the national anthropogenic emission, and between 20 % and 41 % for the national biogenic budget. Based on these selections we summarize in the following the results of the optimized fluxes for CH 4 emissions, the anthropogenic and the biogenic CO 2 fluxes.

For CH 4 , the inversion tends to increase the surface fluxes for both months, with higher emissions in July compared to January. This result confirms the conclusions of Pison et al (2018) and [START_REF] Bergamaschi | Inverse modelling of European CH 4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations[END_REF] who estimate higher CH 4 fluxes after the inversion in France compared to their prior emissions. Analysing

Chapter V:

Conclusions and perspectives :

V.1 Conclusion

The aim of this thesis is to enhance the knowledge of the CO 2 and CH 4 surface flux budget in France using a high-resolution inversion framework and atmospheric measurements provided by several surface stations.

This thesis focuses particularly on exploring the capacity to quantify the national CO 2 and CH 4 surface fluxes using surface stations from a regional network such as ICOS, and to identify the main limitations and sources of uncertainties. The accuracy of the emissions derived from inverse modelling, and the spatial scales at which the emissions can be estimated, depending on the density of atmospheric measurement network and the quality of the atmospheric transport model. This study was motivated by the recent development of those two critical points. First, we have used a high-resolution modelling system which simulates the atmospheric concentrations at a regional scale and in a high frequency. Second, the national atmospheric measurement network has been significantly developed in France and neighbouring countries, and consequently, we could use precise atmospheric measurements from 16 stations.

The first step of the thesis was dedicated to the evaluation of three statistical methods (COV, SD, and REBS)

to detect spikes associated with local contamination sources at four contrasted atmospheric measurement sites: a tall-tower station in France (OPE), a high-mountain station in France (PDM), a regional marine background site in Crete (FKL), and a marine clean-air site in the Southern Hemisphere (AMS) (Chapter II).

This analysis aimed to filter out short-duration spikes (from few seconds to few minutes) in the continuous time series in order to keep only the measurements that are influenced by the regional and the large-scale fluxes and transport. Second, we evaluated the sensitivity of the simulated CO 2 and CH 4 concentrations to different forcing for the year 2014, using the regional chemistry-transport model CHIMERE (Chapter III), with the aim to provide the best input data that can be used with CHIMERE for inverse modelling. Third, we estimated the CO 2 and the CH 4 surface fluxes in France using the analytical inversion framework PYMAI and atmospheric measurements from 16 observation sites from national and European networks (Chapter IV).

The main conclusions for the different sections are summarized as follows.

and during the night at the mountain sites. This information was used to select the optimal atmospheric dataset in the inversion framework (Chapter IV).

The sensitivity of the simulated concentrations to the surface fluxes was carried out by running two simulations for the anthropogenic emissions (IER and EDGAR) and two simulations for the biogenic fluxes (CTESSEL and VPRM). The analysis of the simulated concentrations with two anthropogenic fluxes has confirmed the high uncertainty near big cities and the emission hotspots. For the biogenic fluxes, the negative bias of CTESSEL has led to a significant underestimation of the CO 2 concentrations compared to VPRM.

The impact of the differences between the two biogenic models increases in summer, due to the higher amplitude of the surface fluxes, and reach more than 6 ppm for CO 2 . The comparison between the simulated and the observed concentrations has shown that the simulation that uses ECMWF, VPRM and EDGAR simulate more accurately the CO 2 and the CH 4 concentrations in France. These data were thus used in Chapter IV to provide the prior estimates and the transport field used by the inversion system.

V.1.3 Estimation of the CO2 and CH4 fluxes in France

The CH 4 and the CO 2 emissions in France were estimated for two months, one month in winter (January) and one month in summer (July), using the analytical inversion systems PYMAI [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]2015).

The inversion was performed using the atmospheric transport model CHIMERE forced by the meteorological data provided by ECMWF. For the prior estimates, we used EDGAR for the anthropogenic emissions and VPRM for the CO 2 biogenic fluxes. The inversion system was constrained by continuous measurements provided from 16 atmospheric surface sites distributed in Western Europe. Running the analytical inversion system has provided an estimation of the optimized fluxes together with their uncertainties, as well as some indicators which can be used to analyze the sensitivity of the inversion results to the input dataset.

The investigation of the strength of the constrained fluxes has shown that the western regions of France were more highly constrained by the inversion system. The localization of GIF and TRN sites has contributed to constrain these regions thanks to the action of the westerly winds bringing information about the regional fluxes to the stations located few hundreds of kilometers away downwind. For regions where the surface fluxes did not influence enough the atmospheric concentrations at the sampling sites, the inversion system was not able to optimize the flux and reduce the associated uncertainties. This was the case for the anthropogenic emissions located far away from the sampling sites and for which the inversion could not extract the anthropogenic signal from the total CO 2 signal. This analysis has confirmed that the inversion system constrains principally the biogenic fluxes at the sub-national scale. The optimization of the CO 2 anthropogenic fluxes at the sub-national remains clearly insufficient since only 8% of the monthly budget was constrained in July. On the other hand, the inversion system constrains efficiently the CH 4 anthropogenic emissions at the sub-national scale.

After the inversion, the total CH 4 emissions for France equals 316±34GgCH 4 in January and 385±33 GgCH 4

in July, which corresponds to an increase of the prior fluxes by 8% and 38% respectively. The analysis of the regional fluxes has shown that the highest CH 4 emissions occur in the Northwest of France with more than 35% of the national total. The increase of emission resulting from the inversion has reduced significantly the misfits between the observed and the optimized concentrations at the atmospheric sites (e.g. GIF, TRN, and PUY). The analysis of the CH 4 inversion results confirmed the capability of the atmospheric network to optimize the CH 4 emission at the level of France. Few limitations occur in some regions in the South of France which was not covered when the measurements at some stations were interrupted.

For the anthropogenic emission of CO 2 , the inversions increased the prior fluxes by 18% in January to reach 34.2±34MtCO 2 , and decreased slightly the emissions in July from 25±13MtCO 2 to 23±12MtCO 2 . The minor optimization of the CO 2 anthropogenic emissions in July was related to the low percentage of the constrained fluxes which did not exceed 8%. This indicates that the current atmospheric network is still insufficient or not optimized, to constrain the CO 2 anthropogenic emissions in France. Indeed, the location of most stations was selected to be more representative of the natural fluxes. New atmospheric stations have been recently deployed around Paris that could enable better performances for the anthropogenic fluxes in this region. For the CO 2 biogenic fluxes, the inversion reduces the positive budget of January to 24±23Mt CO 2 and the CO 2 sink of July to -109±32 MtCO 2 . These estimates were associated with a percentage of the constrained fluxes that reaches 40% in July. Contrary to the anthropogenic emission, the used atmospheric network was able to significantly reduce uncertainties of the biogenic fluxes at the level of France.

The inversion results revealed that despite the satisfying flux optimization at the national scale in France, large uncertainties remain in the CO 2 and the CH 4 estimates at the regional scale. Thus, it is important to keep improving the regional GHG modelling practices in order to better optimize the fluxes at the subnational scale. The recent progress of the atmospheric observation sites and the enhancement of the transport model performances provide the key ingredient to optimize the GHG fluxes at the regional scale, but their limits open to more improvements in the future. The new challenges that the regional inverse modelling should tackle are summarized in the following components.

V.2 Perspectives

V.2.1 Identification of the local contamination sources

As was shown in Chapter II, the local sources in the vicinity of stations can have significant impacts on atmospheric concentrations occasioning sharp and intense positive spikes. The statistical method that we have evaluated provide a tool to filter out the data influenced by local emissions from those representatives of larger fluxes and transport. However, this approach does not provide any information regarding the process responsible for the spike. Ideally, we would like to understand the origin of the contaminations in order to avoid them whenever it is possible. This identification issue could be addressed by matching the spikes detected by the automatic method with other observations like the meteorological data, such as wind fields, which would provide additional information about the contamination origins. . This analysis can be applied to all sites in order to investigate and/or prevent future contaminations of the measured concentrations. We could complete this analysis with mobile measurement campaign around the atmospheric sites, in order to validate or invalidate the results provided by the wind rose study.

V.2.2 Atmospheric modeling

The regional transport model CHIMERE has been evaluated by using different meteorological fields and different surface fluxes. The evaluation of the emission inventories has shown significant differences between the anthropogenic maps near the emission hotspots. More efforts are required to provide high-quality of the emission maps representing the emission hotspots more accurately. Moreover, the quantification of the impact of the temporal profile on the atmospheric concentrations is highly recommended. This quantification can be addressed by comparing the simulated concentrations using yearly emission maps to simulated concentrations presented in Chapter III. Additional improvements of the time-varying emission maps can be achieved by replacing the default profile by meteorological driven functions, for the emission sectors the most sensitive to the weather conditions (e.g. residential and the agriculture sectors).

The evaluation of the simulated concentrations at the hourly scale has revealed important model-observation misfits at the low altitude sites during the nighttime. The current limitations to simulate the atmospheric concentrations during the night are related to the dynamic of the boundary layer height that partly controls the GHG variabilities near the surface (Haszpra et al., 2014). It is then desirable to improve the parametrization of the boundary layer height to further increase the model performance, especially in the nighttime. The analysis of the simulated concentrations using two different meteorological models showed also significant discrepancies in the simulated atmospheric concentrations in the mountainous regions. These differences are mainly related to horizontal and also the vertical resolution of the transport fields. Thus an improvement of the spatial resolution of the meteorological models is also required in order to improve the representation of the local processes in complex terrain. The improvement of both horizontal and vertical transport would allow the assimilation of a higher number of data by the inverse system (e.g. nighttime data

for the low altitude sites).

V.2.3 Inverse modeling

The implementation of the PYMAI inversion framework [START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF]2014) has provided very interesting results for the estimation of the CO 2 and CH 4 surface fluxes in France. The analysis of the inversion results showed the limits of the used inversion system to constrain high fractions of the monthly budget. This limitation could be overcome by providing additional atmospheric measurements. In the short term, in France, only the atmospheric sites ROC (Roc'h Trédudon) is planned to be installed in the northwest of France. We expect that this station may contribute to the increase of the constrained fraction of the national surface fluxes. On the other hand, there are few urban sites which are monitoring CO 2 for example in cities of Paris and Marseille, and there are few projects to develop this kind of urban networks based on lowcost sensors providing measurements with lower precision. Such data could provide new constraints on the CO 2 anthropogenic emissions. However, since they are located in a complex environment regarding the local emissions and atmospheric transport, integrating that dataset in the national inversion framework will be challenging in terms of data selection and high-resolution transport model.

Another challenging aspect would be the extension of the inversion system to assimilate satellite data that would contribute to constrain more efficiently the surface fluxes. For example, GOSAT and OCO-2 satellites provide observation of the total CO 2 column. Despite their sensitivity to the cloud cover, which reduces the cloud-free soundings columns they could provide additional observational constraints. The increase in the density of measurements will be accomplished in the near future by the launch of the additional satellites such as OCO-3 and MICROCARB, which will provide CO 2 measurement with an expected precision better than 1 ppm.

In addition to the increase in the amount of information provided to resolve the inverse problem, the system requires an evaluation of the impact of using objective estimates of the observation and the prior errors. This evaluation can be addressed by performing a flux inversion using the empirical estimates of the observation and the prior errors based on Chapter III results. In this study, we have assumed a diagonal error matrices by neglecting the error correlation between regions and time periods. However, some errors are known to be correlated such as the model error during the night (e.g. nighttime stratification near the surface), or the misrepresentation of the surface fluxes for a given vegetation type. It would be challenging to take into account the error correlations and to quantify their impact on the optimized fluxes. This improvement will require drastically higher computational costs, it is thus appropriate to validate it first in a simplified inversion framework. 272 273 274 
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21 Figure I. 2 :

 212 Figure I.1 : Global radiative balance in the current climate. The numbers in bold correspond to the estimate of each energy flux in W.m -2 (5th Assessment Report of the Intergovernmental Panel on Climate Change 2013)

23 Figure I. 3 :

 233 Figure I.3: Representation of the carbon cycle. The annual fluxes are estimated in PgC/year and averaged over the period 2000-2009. The amount of CO2 stored in the three reservoirs is expressed in PgC. The figure is taken from the 5th assessment report of the intergovernmental panel for the Climate Change (IPCC 2013)

  Leakage emissions are caused by fossil fuel extraction and use (e.g., coal, natural gas, and oil industry). The relative proportions of the different CH 4 sources were estimated by Dlugokencky et al (2011) as presented in figure I.4, and recently revised by Saunois et al.,(2016). The methane natural emissions were estimated to 218±47 TgCH 4 /year, whereas the anthropogenic emissions were estimated to 335±68 TgCH 4 /year. The anthropogenic activities include emissions from agriculture, waste treatment, biomass fires, transportation and fossil fuels combustion. At the global scale, the highest contribution was determined for wetlands with a total ranging between 177 and 284 TgCH 4 /year. The contributions of the geological sources, termites, hydrates and freshwater emissions are estimated respectively to 54±21, 12±10, 5±3, and 40±23
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 254 Figure I.4: Representation of the methane cycle. The annual fluxes are estimated in TgCH 4/year and averaged over the period 2000-2009. The amount of CH 4 stored in the three reservoirs is expressed in TgCH 4 . This figure is taken from the 5th assessment report of the intergovernmental panel for the Climate Change (IPCC 2013)

Figure I. 5

 5 Figure I.5 distinguishes several measurement networks. Panels a) and b), retrieved from the Earth System

Figure I. 6 :

 6 Figure I.6: Panel (A) displays the regions on which the estimated fluxes are aggregated. Panel (B) represents the estimated net carbon flux and the corresponding uncertainties for the sub-continental European regions presented in panel (A). The inversion was performed using five atmospheric transport models as described in Rivier et al., (2010). The figure is taken from Rivier et al., (2010).

Figure I. 8 :

 8 Figure I.8: The annual variations of the total CH 4 emissions for the EU-28 countries derived from five inversion systems (colored symbols) as described by Bergamaschi et al (2018). For comparison, the CH 4 anthropogenic emissions reported to United Nations Framework Convention on Climate Change (UNFCCC, blackline, the grey range for the corresponding uncertainties), and from EDGARv4.2FT-InGOS (black stars) are presented. The blue lines (resp. lightblue range) show wetland CH 4 emissions (resp. minimum-maximum range) retrieved from the WETCHIMP ensemble of seven models. The figure is taken from[START_REF] Bergamaschi | Inverse modelling of European CH 4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations[END_REF] 
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 3 Figure_II. 3: Monthly means of the CO2, CH 4 and CO hourly concentration differences with and without spikes at15 ICOS stations

Finokalia

  (FKL; 35°20'N, 25°40'E). This coastal station is located on the northern coast of Crete, 350 km south of mainland Greece. The nearest city is Heraklion with a population of about 150 000 inhabitants, 50 km west of the station. There are no significant anthropogenic emissions within a circle of 15 km around the station(Kouvarakis et al., 2000). The station is on the top of a 230 m hill above sea level, and the air is sampled at the top of a 15 m mast. The dry season from April to September is associated with strong winds from north and north-west (central Europe and Balkans), and the wet season from October to March is associated with air masses from North Africa (south and south-west winds) in addition to the dominant north-westerly winds. The station is operated by the Environmental Chemical Processes Laboratory (ECPL) at the University of Crete, which also collects aerosol and reactive gases (Hildebrandt et al., 2010; Pikridas et al., 2010; Bossioli et al., 2016; Kopanakis et al., 2016). Pic du Midi (PDM; 42°56'N, 0°08'E). This high mountain site is located at 2877 m a.s.l. on the north westside of the Pyrenees range in south-west France, 150 km east of the Atlantic Ocean and 200 km west of the Mediterranean Sea. Due to its high elevation, the station often samples tropospheric air from the Atlantic Ocean, as well as air masses from continental Europe during high-pressure conditions over France (northeasterly winds) or from the Iberian Peninsula under southerly winds. Upslope winds and mesoscale circulations are frequent especially in summer and early autumn, bringing boundary layer air mostly from south west France (covered by intensive croplands and forests; Gheusi et al., 2011; Tsamalis et al., 2014; Fu et al., 2016). Observatoire Pérenne de l'Environnement (OPE; 48°33'N, 5°30'E). This 120 m tall tower is located in a rural area at 395 m a.s.l. in the north-east of France (250 km east of Paris). It is located in a transition zone between oceanic westerly regimes and easterly winds advecting air from eastern Europe. The station continuously measures air quality and greenhouse gases since September 2011 as part of the European ICOS network. Every hour, ambient air is sampled for 20 min alternatively at heights of 10, 50 and 120 m on the tower (Table

SII. 1

 1 ), CH 4 and CO. The three methods presented in this section are commonly based on the calculation of the local standard deviations of measurements. A spike is detected when the difference between a previously determined background and the current data value is above a defined threshold. We will present in this section the corresponding threshold for the three methods. CO 2 , CH 4 , and CO 1 min data were processed using R version 3.1.3 (R Core Team, 2015) together with packages openair(Ropkins and Carslaw, 2015), IDPmisc[START_REF] Locher | IDPmisc: Utilities of Institute of Data Analyses and Process Design[END_REF] and ggplot2(Wickham et al., 2016) using the three spike detection algorithms.

  are classified as locally contaminated (illustration in Figure SII.2-C). β is a parameter to adjust the filtering strength. Ruckstuhl et al. (2012) set β = 3 for the detection of polluted data. For our purpose, a sensitivity test with different values of β is carried out in section II.4.1.2.

  Figure II.4 shows an example of spikes detected by SD at FKL on 16 December 2014, corresponding to a known waste-burning episode reported by the station manager. The station logbook mentions waste-burning occurring nearby the station between 06:30 and 08:30, shown by a purple bar in Figure II.4. The blue area in Figure II.4 shows the CO data between the first and third quartiles, leading to a σ b = 3.6 ppb. Considering all the data, we obtain a 3 times higher standard deviation: σ t = 12.5 ppb. The SD method with α = 3 and σ b = 3.6 ppb selects two 1 min data points as spike as illustrated by the orange dots falling within the observed fire episode in Figure II.4.
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Figure II. 4 :

 4 Figure II.4: comparison between two sets of α parameter for SD method. Red color represents detected spikes for α=1, orange data are the detected spikes for α=3. The blue area shows the data between the first and the third quartile (q1=0.25, and q2=0.75).

2 and CH 4 .

 4 As recommended in Brantley et al. (2014) and Drewnick et al. (2012), we decided to keep α = 3 for CO and set α = 1 for CH 4 and CO 2 because of their lower variability.

FKL (during a

  local fire episode) is shown in Figure II.5. By setting β = 3, the REBS method detects the spike during the episode but it also finds other events which do not appear to be associated with evident contaminations (Figure II.5). With β = 8, the REBS correctly detects spikes during the fire episode (orange points in Figure II.5
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Figure II. 5 :

 5 Figure II.5: comparison between two sets of β parameter for REBS method. Red represents detected data for β=3, orange are the detected data for β=8, applied on FKL measurement 6th of November 2014.

Figures II. 8

 8 Figures II.8 and II.9 represent the CH 4 and CO 2 measurements of AN-1 and AN-2. For AN-2, CH 4 concentrations (black data point in Figure II.8) rarely exceed 1950 ppb, whereas for AN-1 it exceeds 2000 ppb (black data point) and occasionally reaches almost 2200 ppb. SD and REBS methods both detect all contaminated data that range between 1980 and 2200 ppb for AN-1. The differences between the two automatic methods are more important for data that are below 1980 ppb. Furthermore, the filtered data (green data point) using the SD method better fit the 1:1 correlation line with the less contaminated analyzer than the REBS method (Figure II.8). The REBS method underestimates the lower part (foot) of the spikes (contaminated data that range between 1900 and 1980 ppb; Figure II.6-A' AN-1). However, for CO 2 the two methods detect nearly the same spikes (Figure II.7) and provide a similar filtered time series (Figure II.9).

57 Figure

 57 Figure II.6: AN-1 CH 4 measurement at T55 building for A and A', and AN-2 TDF building for B and B'. Black data points are the retained measurements, red points represent the flagged using SD method for A and B, and REBS method for A' and B'
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 6010 Figure II.10: Number of flagged CO measurements using manual method (blue), SD method (red), and REBS method (green) for Finokalia (A) and Pic Du Midi (B) .

Figure II. 10 -

 10 Figure II.10-A represents the number of contaminated data detected by the automatic methods and manual flagging by the station staff at FKL. The numbers of selected data are split into three concentration ranges.

  Figure II.11 we show an example of contaminated data detected by automatic and manual flagging methods at FKL. When the difference between uncontaminated (identified as reference) and spike data is not significant compared to a certain standard deviation threshold, the methods may thus fail. The data highlighted by the blue circle in Figure II.11 give an example of when spikes identified by automatic methods diverge from the manual identification. Such data are either close to the baseline REBS selection (Figure II.11-C) or close to the C unf value for the SD method (Figure II.11-B). At this point it is important to note that the person in charge of data flagging selects spikes using a known period (from a starting to an ending time). A second comparison study between automatic methods and manual detection has been performed at PDM using the CO time series from December 2014 to February 2015. During winter, the station experienced several snow fall episodes and snow was removed with a diesel-powered snow blower. This operation influenced the GHG concentrations and leads to sharp spikes easily observed in the CO time series (Figure SII.6). Most of the spikes are successfully detected by the SD and the REBS methods. Figure II.10-B represents the number of contaminated data detected by SD in red and REBS in green and data manually eliminated by the site manager in blue at PDM. Similar to the FKL local fires, the SD and the REBS methods

Figure II. 11 :

 11 Figure II.11: Example of a spike detection using manual (A), SD (B), and REBS (C) methods during a known biomass burning event at Finokalia.

  atmospheric variability of the measured GHG concentrations depends on the changes of the transport processes and the variations of the surface fluxes. The measured GHG concentrations may display shortduration variabilities which can not be optimally reproduced by the transport models due to their limited spatial resolution and to impact of the surface emission errors. The sampling sites are distributed in a way to be regionally representative, but not too close to high emission hotspots characterized by important errors(Hogue et al., 2016). Such regional oriented network includes coastal sites (e.g.[START_REF] Ahmadov | Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2[END_REF], Periurban stations (e.g.[START_REF] Ramonet | A recent build-up of atmospheric CO2 over Europe. Part 1: observed signals and possible explanations[END_REF], tall tower sampling sites (e.g.[START_REF] Schmidt | High-precision quasi-continuous atmospheric greenhouse gas measurements at Trainou tower (Orléans forest, France)[END_REF], and high altitude mountain stations (e.g.[START_REF] Reimann | Observations of long-lived anthropogenic halocarbons at the high-Alpine site of Jungfraujoch (Switzerland) for assessment of trends and European sources[END_REF]. These measurements are used by the inversion system that combines them optimally with prior flux information and atmospheric transport models to estimate optimized fluxes assumed to be close to reality(Kountouris et al ., 2018[START_REF] Pison | How a European network may help with estimating methane emissions on the French national scale[END_REF][START_REF] Bergamaschi | Inverse modelling of European CH 4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations[END_REF], Berchet et al ., 2015). With the development of high-resolution transport model and the increasing number of the observation sites, the estimation of the optimized GHG fluxes can be performed at a fine spatial and temporal resolution. Before proceeding with the optimization of GHG fluxes, we need, first, to evaluate the capability of the atmospheric transport model to reproduce correctly the atmospheric variabilities of the GHG concentrations.The accuracy of the simulated concentrations depends on the used atmospheric model and the quality of the surface fluxes. These fluxes are generally estimated using bottom-up approaches. The flux estimates must resolve the variations of the GHG concentrations at a fine spatial resolution and a time step of about 1 hour in order to be comparable with the atmospheric measurement. The distribution of the national inventories in space and time may lead to significant uncertainties[START_REF] Peylin | Importance of fossil fuel emission uncertainties over Europe for CO 2 modeling: model intercomparison[END_REF]. This uncertainty becomes larger with the increase of the spatiotemporal resolution(Hogue et al., 2016). The estimation of the uncertainties related to the GHG fluxes can be performed statistically using automatic methods (e.g.Saikawa et al., 2017), or analytically by comparing the fluxes provided by different products (e.g.[START_REF] Peylin | Importance of fossil fuel emission uncertainties over Europe for CO 2 modeling: model intercomparison[END_REF]. The quantification of the emission uncertainties represents a challenging task to better understand the linkages among emissions and the atmospheric concentrations simulated by the transport models. In this study, we will investigate the uncertainties of the surface CO 2 and CH 4 fluxes using a combination of different products, with the aim to quantify the magnitude of the difference between the used fluxes and their impact on the simulated concentrations from the hourly to the seasonal scale.The second aspect responsible for the quality of the simulated GHG concentrations depends on the performance of the transport models to correctly represent the atmospheric processes such as the horizontal and vertical mixing. Several studies investigated the ability of the transport model to represent the variabilities of GHG atmospheric concentrations at the global scale with a resolution of a few hundreds of km (e.g.,[START_REF] Feng | Evaluating a 3-D transport model of atmospheric CO 2 using ground-based, aircraft, and space-borne data[END_REF] Patra et al., 2009b Patra et al., , 2009a)), and at the regional scale with a resolution up to 100 km (e.g.,[START_REF] Aalto | Modeling atmospheric CO 2 concentration profiles and fluxes above sloping terrain at a boreal site[END_REF][START_REF] Chevillard | Tropospheric methane in northern Finland: seasonal variations, transport patterns and correlations with other trace gases[END_REF][START_REF] Pillai | High-resolution simulations of atmospheric CO 2 over complex terrain -representing the Ochsenkopf mountain tall tower[END_REF].

  Figure III.1: Diagram of CHIMERE transport model. The boxes represent the different processes. Cmod and Cobs stand for the modeled and the observed atmospheric concentrations respectively.

76 Figure III. 2 :

 762 Figure III.2: Normalized temporal profiles of daily, weekly and seasonal variations, applied for power, industry,residential, processes, and traffic sectors for both CO2 and CH 4 . The daily variations are presented in localtime.

Figure III. 3 :

 3 Figure III.3: Simulation domain (red box) and observation sites used in this study. The blue and green color stand for the atmospheric measurement site (https://icosatc.lsce.ipsl.fr/) and the ecosystem measurement sites (https://icos-eco.fr/) respectively. Note that the atmospheric sites are grouped into four categories according to their characteristics (e.g. topography and environment): coastal (circle), mountain (triangle), peri-urban (square for GIF only), and tall tower (inversed triangle).
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 4854 Figure III.4: Panel A, stand for the spatial distribution of the difference between EDGAR and IER inventories (EDGAR minus IER) for CO2. Panel B (resp. C) represent the cumulated percentages of the grid cells (resp. national emissions) of the absolute difference between EDGAR and IER for the metropolitan France. The cumulated percentages are calculated for various classes of CO2 emissions differences

Figure III. 5 :

 5 Figure III.5: Panel A, stand for the spatial distribution of the difference between EDGAR and IER inventories (EDGAR minus IER) for CH 4 . Panel B (resp. C) represent the cumulated percentages of the grid cells (resp. national emissions) of the absolute difference between EDGAR and IER for the metropolitan France. The cumulated percentages are calculated for various classes of CH 4 emissions differences.

Figure III. 6 :

 6 Figure III.6: Temporal variation of CH 4 and CO2 total anthropogenic fluxes over France at a daily (A and D), weekly (B and E), and monthly scales (C and F). Solid and dashed line represent respectively the totals for January and July.
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 34907 Figure III.7: Monthly totals of NEE fluxes for VPRM and CTESSEL over France.

  . Even if this calibration provides accurate results at the global scale (Boussetta et al., 2012), the calibration of the net ecosystem parameters may lead to significant errors at the subcontinental scale. Panareda et al., (2014) already indicated that the CO 2 fluxes retrieved from the used version of the CTESSEL model are characterized by a negative bias in Europe, especially during winter. This bias is related to the misrepresentation of the ecosystem respiration for some vegetation types (Panareda et al., 2016). In France, a large bias in the NEE was related to the respiration of the croplands. The evaluation of the CTESSEL model against atmospheric sites showed a significant underestimation of CO 2 from respiration during winter (Panareda et al., 2014). As a result of this evaluation, an effort was made to develop the Biogenic Fluxes Adjustment Scheme (BFAS) in order to correct the NEE bias of the CTESSEL model used for MACC atmospheric model (Panareda et al., 2016).
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 8342 Figure III.8: Spatial distribution of the total Net Ecosystem Exchange (NEE) during January and July, for VPRM (panels A and D), CTESSEL (panels B and E), and VPRM minus CTESSEL (panels C and F). By convention, a positivesign is a source of CO2 emitted to the atmosphere.

France 94 Figure III. 9 :

 949 Figure III.9: Diurnal cycle of the simulated and the observed Net Ecosystem Exchange (NEE) for four different sites (Barbeau, Grignon, Lamasquere, Puechabon, Figure 3), during January (panel A) and July (B). The time is presented in UTC

  misrepresentation of the phenology[START_REF] Szczypta | Suitability of modelled and remotely sensed essential climate variables for monitoring Euro-Mediterranean droughts[END_REF]. Especially, the inefficiency of the satellite data to correctly estimates the water stress during summer, which affects the simulation of the GEE and the R (Mahadevan et al., 2008). In fact,[START_REF] Szczypta | Suitability of modelled and remotely sensed essential climate variables for monitoring Euro-Mediterranean droughts[END_REF] demonstrate that several environmental parameters, such as soil moisture and rain pulses, may significantly influence the seasonal cycle of the carbon fluxes in a during summer. Other reason that may explains the discrepancies between the modeled and the observed NEE is addressed to the uncertainties related to the land cover schemes used to define the vegetation types[START_REF] Congalton | Global Land Cover Mapping: A Review and Uncertainty Analysis[END_REF]. Both models used a vegetation classification which defines the type of plant in each grid-cell. However, these vegetation models are sometimes not suitable for the modeling of the CO 2 fluxes.

Figure III. 10 :

 10 Figure III.10: Seasonal cycle of simulated and observed Net Ecosystem Exchange (NEE) at the four sites (Barbeau, Grignon, Lamasquere, Puechabon)

11 and 12 )

 12 . This difference increases during the night and may reach 2 ppm and 20 ppb of difference for CO 2 and CH 4 respectively (e.g. GIF site in figure III.11, and BIS in figure III.12). This indicates that the simulated concentrations are more sensitive to the transport processes during the night for the low altitude sites. At the mountain sites the important differences are noticed during the day (e.g. PUY in figure III.11, the remaining mountain sites for January can be found in the appendix). These differences can be explained by the difficulty in the simulated upslope winds which bring the boundary layer air from lower elevations during the day at the site leading to significant bias between the atmospheric models(Chevalier et al., 2010, Patra et al., 2008).

  4 concentration (up to 20 ppb) during the night. This signal represents an anomaly for two reasons: there are very few sites where AROME concentrations are higher than ECMWF, and there is no such difference for CO 2 . The increase of CH 4 concentration during the night with AROME model, cannot be explained only by the PBL heights which are quite similar for the two models (Figure SIII.1). The difference could be due to the horizontal transport simulated with AROME and ECMWF wind fields, and the reason why we observe such a difference for CH 4 and not for CO 2 is due to the presence of a hotspot CH 4 emission east of the station (Figure III.15-C). Consequently, a higher percentage of wind from the east significantly increases the CH 4 concentrations during the night (Figure III.15-A). It should be noted that this nighttime CH 4 increase in the AROME simulation is overestimated compared to the observations.

ECMWF, leading toFigure III. 11 :

 11 Figure III.11: CO2 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly) concentrations during January.

Figure III. 13 :

 13 Figure III.13: CO2 average diurnal cycle at BIS, GIF, OHP, OPE, PDM, PUY, and TRN, for the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly) concentrations during July.

Figure III. 14 :

 14 Figure III.14: CH 4 average diurnal cycle at BIS, GIF, OHP, OPE, PDM, PUY, and TRN, for the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly) concentrations during July.

Figure III. 15 :

 15 Figure III.15: CH 4 daily average at BIS using the nighttime data (00:00 to 06:00) for January (A), using the afternoon data (12:00 to 18:00) for July (B). The arrows on the top of panels A and B stand for the wind direction simulated by the AROME (magenta) and ECMWF (cyan).Figure (C) represent the spatial distribution of the CH 4 surface fluxes retreived from EDGARv4.2 FT2010 inventory.

for CO 2 .

 2 Due to the higher sensitivity to the surface flux with ECMWF compared to AROME, the simulated concentrations using ECMWF meteorology are generally lower in summer and higher in winter. Both models overestimate the amplitude of the seasonal cycles compared to the observations (Figure III.16), and the overestimation is 15% larger with ECMWF compared to AROME. However, it should be noted that the wintertime concentrations simulated with ECMWF are generally closer to the observations, and the reverse in spring and summer. For CH 4 both models underestimate the seasonal cycle (Figure III.17

  Figure III.16: CO 2 seasonal cycle at BIS, ERS, GIF, OHP, OPE, PDM, PUY, and TRN, for the observed (black) and the simulated (red and blue for AROME and ECMWF) concentrations. The monthly mean is calculated using the afternoon data (from 12:00 to 18:00) for low altitude sites and nighttime data (from 00:00 to 06:00) at the mountain sites.

Figure III. 17 :

 17 Figure III.17: CH 4 seasonal cycle at BIS, ERS, GIF, OHP, OPE, PDM, PUY, and TRN, for the observed (black) and the simulated (red and blue for AROME and ECMWF) concentrations. The monthly mean is calculated using the afternoon data (from 12:00 to 18:00) for low altitude sites and nighttime data (from 00:00 to 06:00) at the mountain sites.

Figure III. 18 :

 18 Figure III.18: Spatial distribution of the CO2 monthly differences (ppm) between the CHIMERE simulations runing with two meteorological models (AROME minus ECMWF), using the data from 12:00 to 18:00 at the first level of the model.

Figure III. 19 :

 19 Figure III.19: Spatial distribution of the CH 4 monthly differences (ppb) between the CHIMERE simulations runing with two meteorological models (AROME minus ECMWF), using the data from 12:00 to 18:00 at the first level of the model.

Figure III. 20 :

 20 Figure III.20: Spatial differences of the simulated boundary layer height (PBL in m) between the two meteorological models (AROME minus ECMWF), using the data from 12:00 to 18:00.
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 34 Figures III.21 and III.23 also show a phase difference of CO 2 between the two simulations. The VPM_EDG simulation reproduces quite well the timing of the observed diurnal cycle, but a lag of 2 to 3 hours can be seen in CTS_EDG simulation especially at BIS, GIF, and TRN. The CTESSEL fluxes used as an input of the transport models are available at 3 hours time resolution, whereas a 1 hour time resolution was used for

Figure III. 21 :

 21 Figure III.21: CO2 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed (black) and the simulated (green and orange for CTESSEL and VPRM respectively) concentrations during January.

Figure III. 22 :

 22 Figure III.22: CH 4 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed (black) and the simulated (red and blue for IER and EDGAR respectively) concentrations during January.

Figure III. 23 :

 23 Figure III.23: CO2 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed (black) and the simulated (green and orange for CTESSEL and VPRM respectively) concentrations during July.

Figures III. 25

 25 Figures III.25 and III.26 display the monthly means of the atmospheric concentrations for CO 2 and CH 4

  stations. As demonstrated by Broquet et al., 2011, and as shown in the previous paragraphs, atmospheric models have more difficulty to represent the nighttime/daytime values at surface/mountain sites due to the discrepancies in the vertical mixing and the different representation of the topography. The CO 2 atmospheric concentrations show a clear seasonal cycle ranging from 10 ppm to 20 ppm (Figure III.25).The largest amplitudes are noticed in the low altitude sites (e.g. TRN, OPE, GIF). In winter the simulated CO 2 concentrations are higher at continental surface sites (such as OPE, TRN, and GIF) compared to the mountain sites (e.g. PUY and PDM). This is because of the accumulation of CO 2 from emissions (biogenic and anthropogenic) near the surface, due to the relatively low vertical dispersion illustrated by lower values of PBL (figures SIII.1, SIII.2, SIII.3, andSIII.4). The mountain sites sample quite often the free tropospheric air during winter. In summer, the CO 2 concentration is lower at the low altitude sites due to the action of the photosynthesis activity (see the biogenic flux evaluation section III.3.4). The comparison between the simulated and the observed simulations show higher coefficients of correlation (R2) with observations for VPM_EDG simulation compared the CTS_EDG. They vary between 0.8 and 0.9 for VPM_EDG, but for CTS_EDG this correlation decreases to 0.7 (e.g. GIF). This is mainly related to the bias and phase difference noticed especially for the CTESSEL model (section III.3.4.2). Panareda et al(2014) demonstrated that the CTESSEL bias leads to small correlations between the simulated and the observed CO 2 concentration in Europe. The VPM_EDG simulation differs from the observations by 1 to 5 ppm during winter, and by up to 15 ppm as a maximum for GIF in summer. The CTS_EDG simulation shows higher differences with observed CO 2 all along the year, with biases ranging between 5 and 20 ppm. The monthly analysis shows significant biases starting from spring. This period is very critical since the biogenic models have to correctly reproduce the change of NEE fluxes from a predominant respiration of winter to the predominant photosynthesis uptake in spring. The sign and the timing of this shift may vary from one model to the other. It is interesting to note that the VPRM runs correctly the spike observed at most sites in March, and the minimum concentration in August, while the CTESSEL simulation peaks in July and shows flat signal in March. For CTESSEL the transition from spring to summer is weaker compared to VPRM, due to the underestimation of the respiration and the persistence of photosynthesis in the NEE during winter over a large part of France (see section III.3.4.1). Panareda et (2014) showed that CTESSEL simulations underestimate the CO 2 concentration by a value ranging between -5 and -10 ppm, with a significant impact during the summer time. The corrected version of CTESSEL developed by Panareda et al (2016), but not available for this study, reduces this bias by a factor of 2 in Europe.
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 251212627 Figure III.25: CO2 average seasonal cycle at BIS, ERS, GIF, OHP, OPE, PDM, PUY, and TRN,for the observed (black)and the simulated (green and orange for CTESSEL and VPRM respectivly) concentrations. The monthly mean is calculated using the afternoon data (from 12:00 to 18:00) for low altitude sites and nighttime data (from 00:00 to 06:00) at the mountain sites.

  Bayesian inversion framework can assimilate data provided by in-situ surface stations[START_REF] Bergamaschi | Inverse modelling of European CH 4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations[END_REF], Kountouris et al., 2018[START_REF] Pison | How a European network may help with estimating methane emissions on the French national scale[END_REF], and/or remote sensing data provided by satellite-based spectrometer[START_REF] Broquet | The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities[END_REF], Bergamaschi et al., 2009). Here, we use surface measurement provided by the European network of Integrated Carbon Observation System (ICOS), completed with several stations from different national networks. Based on these observations, the inversion system can optimize the surface fluxes using the transport model which links the prior fluxes to the observations. The performance of the inversion framework depends on the ability of the atmospheric transport models to accurately reproduce the influence of the sources and sink at the level of the sampling sites. Whether we use coarse or high-resolution transport models, the quality of simulating the atmospheric concentrations can be declined due to the influence of different uncertainties. First, the transport errors(Geels et al., 2007, Ahmadov et al., 2007, Prather et al., 2008) which represent the difficulty of the model to reproduce the transport processes (e.g. horizontal and vertical mixing). Second, the representation errors (Tolk et al., 2008) which are related to the problem in the localization of the sampling sites in the model. Third, the aggregation errors (Bocquet et al., 2011, Kaminski et al 2001) that represents the misfits of the model-obs concentrations due to the imperfections in representing the flux patterns. These errors are very critical and can degrade substantially the performance of the inversion framework. The implementation of the Bayesian inversion framework requires the definition of the statistics of measurement errors, transport errors, representation errors, in addition to the uncertainties of the prior fluxes prescribed in the system. Most of the earlier inversion studies estimate empirically these errors. In this study, the error statistics will be assigned objectively using statistical methods (e.g. Wahba et al., 1994 Desroziers et Ivanov, 2001) which were used to estimate the different errors in a geostatistical implementation of the atmospheric GHG inversion problems (Pison et al., 2018, Berchet et al. 2015, Berchet et al., 2013, Michalak et al., 2005). Thus, the used inversion framework relies on an automatic diagnosis of the error statistics. The method still uses some expert knowledge information for the determination of the patterns of the flux aggregation and the sampling procedure in agreement with the performance of the transport model and the available computation resources.

  3.1.1 we present the used atmospheric CH 4 measurements and the impact of the observation in the inversion system. Section IV.3.1.2 compares the errors estimated by the automatic algorithm to an analytical estimation of the errors based on Chapter III results. In section IV.3.1.3 we study the fit to the observed atmospheric concentrations. Section IV.3.1.4 focuses on a description of the region constrained by the inversion and the sensitivity of the atmospheric sites to the surface fluxes. In section IV.3.1.5 we study the separability of the inferred fluxes based on the posterior uncertainties. Section IV.3.1.6 concerns the spatiotemporal scales resolved by the inversion. Section IV.3.1.7 represents a comparison between the optimized fluxes and the bottom-up flux estimates used as prior information by the inversion system.
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 2 given the prior statistical information on the fluxes x b and the set of in situ measurements of atmospheric concentrations Y 0 . The optimized fluxes estimated by the inversion method (called the posterior fluxes) represent the value of fluxes that maximize the density probability ρ(x). The errors on the posterior fluxes follow an unbiased Gaussian distribution since the observation and the prior fluxes errors are assumed to be unbiased and Gaussian. Following Tarantola, (2005):
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 22 the prior fluxes respectively, represent an important task for the estimation of the posterior fluxes (equation IV.4) and their related uncertainties (equation IV.6). Previous flux estimation studies were carried out using an estimation of the observation and prior errors based on expertise and knowledge of the model performances (e.g. Kountouris et al., 2018). Differently, other methods estimate the R and B matrices objectively along with the posterior statistics of the fluxes, within the statistical inverse modeling procedure, based on the model-data misfits (e.g. Pison et al., 2018, Berchet et al., 2015, Michalak et al., 2005). In these statistical methods, both R and B have been considered as diagonal matrices. The diagonal terms of R ( σ R stand for the variance of the observation errors, and the diagonal elements of B ( σ B, i represent the error variance of the prior fluxes (equations IV.7).

  performed to get a sample (10000 members) of the whole distribution of the posterior fluxes p(x|Y 0 ,x b ) (Figure IV.1). The retained posterior fluxes x a is retrieved from the median of the Monte-Carlo ensemblex a =median(x ai ), and the posterior uncertainty is defined as the standard deviation of the posterior control vectors (x ai ) from the tolerance interval covering 68,27% of the Monte-Carlo ensemble(Berchet et al., 2015).

Figure IV. 1

 1 Figure IV.1 Statistic uncertainty in the Bayesian inversion. The inversion computes the posterior control vector xa using the observation Y0 and the prior xb. In the classical inversion (top), xa is estimated together with its uncertainty Pa from the observation and the prior covariance matrices (R and B). In order to take into consideration the uncertainties in the error statistics, an ensemble of the couples (R and B) is used to estimate an ensemble of xa and Pa, which stand for p(x|Y0,xb). The Figure is taken from Berchet. A thesis 2014

from 18 :

 18 00 to 00:00). For the CO 2 and CH 4 boundary conditions, we define 5 edges of the domain North, South, East, West (dashed lines Figure IV.2) and one edge on the top (not presented in Figure IV.2). For the temporal resolution, we selected the same number of days (31 days), with 12 hourly time windows. The first time window represents the night time data (from 18:00 to 06:00), and the second time window stands for the daytime data (from 06:00 to 18:00). For the initial conditions, we define one component that covers all the domain during the first day of each month.While this approach decreases the dimension of the control vector, it may lead to some errors that impact the quality of the optimized fluxes (Bocquet et al.,2011, and Kaminski et al 2001). These errors are known as the aggregation errors and represent the misfits between the modeled and the observed CO 2 and CH 4 concentrations due to errors in the flux patterns of the control region and temporal window. In order to reduce the impact of the regional flux distribution on the atmospheric concentrations at the sampling site level, the 43 control regions were defined based on the analysis of the emission maps (Figure SIV.1) and the spatial distribution of vegetation types (Figure SIV.2 ECOCLIMAP database, Champeaux et al., 2005). For a

Figure IV. 2 :

 2 Figure IV.2: Illustration of the 43 emission regions (colored area) and boundary conditions edges (4 lateral colored dashed lines + 1 top edge) used for the control vector calculation.

Figure IV. 3 :

 3 Figure IV.3: Stations providing measurements of CO 2 and CH 4 during January (left) and July (right) 2014. Note PDM and OHP sites (south of France) were not available for Janary, and ERS measurements (located in Corsica) were interrupted during July. the atmospheric sites are grouped into four categories according to their characteristics (e.g. topography and environment): coastal (circle), mountain stations (triangle), Peri-urban (square for GIF only), and tall towers (inverse dtriangle). The red box shows the limit of the model domain.

(

  equation IV.1). Each element of H indicate the modeled concentrations at a sampling site for a certain time and a given surface flux. The linear observation operator can be decomposed into three sub-operators H dist , H trans , and H sample where H=H dist .H trans .H sample . H dist is built on hourly anthropogenic and biogenic fluxes (section IV.2.4.3) at the horizontal resolution of the transport model. It implies the CO 2 and CH 4 surface fluxes to distribute the spatial and the temporal flux patterns within the control regions and the time periods. This operator uses the scaling factor of the control vector to rescale the surface fluxes on the grid of the transport model in each region and for each 6 hourly time period. H trans stand for the atmospheric transport. It is used to process the impact on the concentration of each surface flux that corresponds to a control vector component. It includes also the signature of the initial conditions and the boundary conditions. In this study, we transport the CO 2 and the CH 4 concentrations using the atmospheric transport model CHIMERE (http://www.lmd.polytechnique.fr/chimere/ Menut et al .,2013). The transport model was described in details in section III.2.1. CHIMERE is forced by the ECMWF meteorological analysis (European Centre for Medium-range Weather Forecast). For initial and boundary conditions of CO2 and CH4, CHIMERE is forced by the global model MACC at 0.15°x 0.15° degree and three hours time step (Marécal et al. 2015). Both initial and boundary condition are linearly interpolated to the CHIMERE domain grid (0.1°x 0.1°) and 1-hour time resolution. The transport modeling domain is centered over France with an extended area that covers a part of the neighboring countries (e.g. Spain, Germany, Belgium) in order to reduce the risk of the aggregation errors due to the coarse spatial distribution of the boundary conditions (Figure IV.2). In fact, these errors are thus mixed and attenuated over a large area (hundreds of kilometer) before reaching the observation sites.
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 41485 Figure IV.4: CH 4 hourly data at OPE (left) and PUY (right) in January 2014. The grey color represents the available observations for each site during January. The back data point stands for the retained data during the mid-afternoon(data between 14:00 and 18:00) for low altitude sites (OPE), and the nighttime (data between 00:00 and 06:00) for mountain stations (PUY). The red data show the observations rejected by the ML algorithm (see section IV.2.3.1)
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 6 Figure IV.6: Comparison of the CH 4 observation errors calculated by the maximum of likelihood algorithm (ML) and the absolute difference between the two transport models (ECMWF minus AROME). The errors are presented using boxes (errors between the 25th and the 75th quantiles), the horizontal black line for the median, and the mean as shown by the colored dots.

Figure IV. 7 :

 7 Figure IV.7: Comparison of the prior flux errors calculated by the maximum of likelihood algorithm (ML) and the absolute difference between the two anthropogenic maps (EDGAR minus IER). The errors are presented in percentage according to the monthly fluxes for January (top) and July (bottom).
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 81548101112 Figures IV.8 and IV.9 present the comparison of the CH 4 measurements with the simulated concentrations before and after the inversion, for January and July 2014 at eight stations in France. Results for the stations outside France are presented in the Appendix (Figures SIV.7 and SIV.8). The differences with prior concentrations which range from 10 to 30 ppb (up to 60 ppb at GIF), are reduced to 4 to 15 ppb after the inversion. Overall, the inversion reduces the mismatch with observations by a factor of 2 to 3. Larger corrections are observed for some synoptic events at BIS in January (Figure IV.8) and GIF in July (Figure IV.9).The comparison shows that before the inversion the R2 ranges between 0.6 and 0.8 for January and between 0.5 and 0.9 for July (R2 presented at the top of each panel of Figures IV.8 and IV.9). After the inversion, the range is reduced by a factor of ~2 for both months. The highest R2 occurs at BIS, OHP, TRN, and PUY with values exceeding 0.95. The increase of the coefficient of correlation indicates that the inversion improves the representation of the phase of the day to day variability. However, some exceptions occur during periods where the prior concentrations exhibit sharp synoptic changes. This is, for example, the case at GIF with a sharp CH 4 increase observed in July due to the influence of Paris emissions (25 km away) which cannot be reproduced by the model even after the optimization.As shown by the shaded areas in Figures IV.8 and IV.9, the inversion reduces the uncertainty of the prior concentrations by 10 to 30 %. We observe a relatively lower uncertainty reduction for PUY and PDM, probably due to the lower sensitivity of mountain sites to the optimized surface fluxes. Larger error reductions are obtained at the low altitude sites (GIF, OPE, and TRN) which are located closer to emission sources (e.g. 30% reduction at OPE).

Figure IV. 13 :

 13 Figure IV.13: Spatial distribution of the monthly uncertainty reduction for the constrained regions for January (left) and July (right). The uncertainty reduction is presented percentage (%) according to the prior flux errors.

7

 7 Figure IV.14-B) leads to a large number of separable regions and an important number of separable groups without IC/BC (more than 400 groups out of a total of ~ 500). This choice constrains 21% of the monthly emission budget (Figure IV.15-B), but it may lead to the over-interpretation of small scales inversion results as shown in Figure IV.15-A (mean area coverage of ~ 25 000 km 2 ). A lower correlation threshold (R2 < 0.3) leads to a small number of separable groups (less than 80 groups without IC/BC) that cover a large part of the domain (more than 70 000 km 2 ), and constrains up to 10% of the total emission budget of France (Figures IV.15-B).

Figure IV. 14 :

 14 Figure IV.14: Panels A (January) and D (July) stand for the monthly total number of groups (yaxis) of the control vector components independent from initial conditions (IC) and boundary conditions (BC) for different correlation threshold (the groups may also be formed by only one components). B (January) and E (July) represent the monthly number of groups formed by at least 2 component of the control vector independent from IC/BC for several correlation thresholds. The larger the correlation threshold is, the larger total number of groups is (panels A and D), and the lower number of groups formed by at two components is (panels B and E), since small number of regions are correlated together (see section IV.3.1.4). The mean time difference between the component of the groups (in days) is presented for January (C) and July (F).

Figure IV. 15 :

 15 Figure IV.15: Panels A (January) and C (July) represent the monthly mean area (y-axis) covered by the groups for each correlation threshold (x-axis). The percentage of the national emissions constrained by the groups (independent from intitial conditions and boundary conditions) is presented for January (B) and July (D).

  Figure IV.16: Total prior (blue) and optimized (red) CH 4 emissions over the 27 French regions during January. The uncertainty related to the prior and optimized emissions are represented by the error bar. The maps in the bottom can be used as a legend for the number of regions (left) and the constrained regions (right).

  Figure IV.19: Representation of the availability of the CO 2 observed data and their contribution to the inversion for each site. The grey line represents the available data. Black dots stand for the retained measurements (data between 14:00 and 18:00 for low altitude sites, and data between 00:00 and 06:00 for mountainsites). The color points represent the amount of information used each day by the inversion system (value 1 indicate that the inversion uses the equivalent of one hourly data). These information are calculated from the diagonal terms of the sensitivity matrix HK

Figure IV. 21 ,Figure IV. 20 :Figure IV. 21 :

 212021 Figure IV.20: Comparison of the CO 2 observation errors calculated by the maximum of likelihood algorithm (ML, section IV.2.3.1) and the absolute difference of simulated concentration between the two transport models (ECMWF minus AROME).The errors are presented using whiskers for errors between the 25th and the 75th quantiles, the horizontal black line for the median, and the colored dots for the mean observation error.

Figure IV. 23 :

 23 Figure IV.23: Observed (black) and simulated prior (blue) and posterior (red) CO 2 daily averages for theFrench atmospheric sites (BIS, GIF, OPE, PUY, TRN, and ERS) during January. The shaded areasrepresent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior (shadedred) CO 2 concentrations. For each sites we calculate the root mean square error (RMSE) and thecoefficient of correlation (R2) for the prior and the posterior concentration.

Figure IV. 24 :IV. 3 . 2 . 4

 24324 Figure IV.24: Observed (black) and simulated prior (blue) and posterior (red) CO 2 daily averages for theFrench atmospheric sites (BIS, GIF, OPE, PUY, TRN, OHP, and PDM) during July. The shaded areasrepresent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior (shadedred) CO 2 concentrations. For each sites we calculate the root mean square error (RMSE) and thecoefficient of correlation (R2) for the prior and the posterior concentration.

Figures IV. 25 Figure IV. 25 :Figure IV. 26 :

 252526 Figures IV.25 to IV.28 also represent the monthly weight of the stations in the inversion system calculated by adding the diagonal elements of the sensitivity matrix HK (see section IV.3.1.1). In both months, the low altitude stations BIS, GIF, TRN, and OPE have larger weights, meaning that they contribute significantly to constrain CO 2 fluxes. In the opposite, low weights are found for mountain sites (PUY, JFJ, PRS, and PDM) being more decoupled to surface fluxes. The same result was found for CH 4 (section IV.3.1.4), confirming that mountain sites are less effective to constrain surface fluxes.

Figure IV. 28 :

 28 Figure IV.28: Same as figure 27 in July (biogenic fluxes).
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 27325 Figure IV.27: Same as figure 25 for biogenic fluxes.

Figure IV. 29 :

 29 Figure IV.29: Panel A (January) and E (July) represent the posterior error correlation between the constrained anthropogenic emission regions in France (section IV.3.2.4). Panel D (January) and H (July) represent the posterior error correlation between the constrained biogenic flux regions in France (section IV.3.2.4). Panel B (January) and F (July) stand for posterior error correlation between the anthropogenic and the biogenic fluxes for the constrained regions in France. Note that panels C and G show the same information as B and F (the posterior error matrice is symetric). The map in the bottom is desplayed as a support for the region numbers.The regions are grouped into four sectors: North-west (NW), North-east (NE), South-east (SE), and South-west (SW) sectors, as shown in the legend map and the posterior error correlation matrices. One sector represents the aggregation of several regions close to each others.

Figure IV. 31 Figure IV. 30 :

 3130 Figure IV.31 shows the number of groups, independent from initial conditions (IC) and boundary conditions (BC), calculated for different correlation thresholds for January (Figure IV.31-A) and July (Figure IV.31-C). The number of groups assembled by at least two control vector components and without IC/BC is shown in Figure IV.31-B for January and Figure IV.31-D for July. For each correlation threshold, we calculate the

Figure IV. 32 ,

 32 Figure IV.32, For R2 > 0.7 the inversion constrains more than 10% of the anthropogenic monthly emissions in January and more than 7% for July. For the biogenic fluxes, the same thresholds constrain more than 15% of the biogenic flux budget in January, and up to 40% for July(Figure IV.33). The difference in the percentage of the constrained national budget depends on the number of the constrained regions (see section IV.3.2.4).

Figure IV. 31 :

 31 Figure IV.31: Panels A (January) and C (July) stand for the monthly total number of groups (y-axis) of the control vector components independent from initial conditions (IC) and boundary conditions (BC) for different correlation thresholds (the groups may also be formed by only one component). B (January) and D (July) represent the monthly number of groups formed by at least two components of the control vector independent from IC/BC for several correlation thresholds. The larger the correlation threshold is, the larger total number of groups is (panelsA and C), and the lower number of groups formed by at two components is (panels B and D), since small number of regions are correlated together (see section IV.3.2.5).

Figure IV. 32 :

 32 Figure IV.32: Panels A (January) and D (July) represent the monthly mean time difference (in days) calculated between the component of the groups for the anthropogenic emissions. Panels B (January) and E (July) stand for the percentage of the anthropogenic emissions constrained by the groups formed independently from initial conditions (IC) and boundary condition (BC). Panels C (January) and F (July) display the monthly mean area covered by the groups without IC/BC for the anthropogenic emissions.

198 Figure IV. 36 :

 19836 Figure IV.36: Total prior (blue) and optimized (red) biogenic CO 2 emissions over the 27 French regions during January. The uncertainty related to the prior and optimized emissions are represented by the error bar. The maps in the bottom show the number of regions (left) and the constrained regions (right).

  the atmospheric transport model CHIMERE embedded in the inversion framework PYMAI[START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF] 2015), with a horizontal resolution of 0.1° x 0.1°. The inversion was performed using data collected during the year 2014 from 16 surface station (8 stations in France 8 stations in the neighbouring countries) measuring atmospheric CO 2 and CH 4 concentrations in the Western European region. We implemented the Bayesian inversion method developed by[START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF] in order to estimate objectively the uncertainties in the inversion framework. The used system allowed us to investigate the weight of the used observation in the inversion, the spatial distribution of sensitivity of the surface fluxes, and to estimated the optimized fluxes at a national and sub-national scales.

Figure

  Figure IV.1-A illustrates a projection of the spikes identified at OPE by the SD method on the wind rose. This analysis shows that most of the spikes are related to winds from the west and the south of the OPE station. The investigation of the possible local sources near OPE reveals three possible origins as shown in Figure IV.1-B. The first source stands for the village of Houdelaincourt (400 inhabitants) located 1.3 km west of OPE. The second represents the Abainville village (300 inhabitants) located 1.8 km south OPE. Whereas the third potential source of contamination represents the car's traffic near the station (roads D960, D966, and D10 represented by yellow lines). This analysis can be applied to all sites in order to investigate and/or

Figure

  Figure V.1: A) Count of the CO2 contaminated data by wind direction at OPE. The count is represented by grey circles (first circle=50 data, the second=100, and the third=150 data). The colors stand for the difference between contaminated data (Ci) and the last uncontaminated data (Cunf), using the SD method. B) represents a Google earth image of the OPE area.

Figure SII. 1 :Figure SII. 2 : 233 Figure SII. 7 :Figure SIII. 4 :Figure SIII. 5 :Figure SIII. 6 : 241 Figure SIII. 7 : 242 Figure SIII. 8 :

 12233745624172428 Figure SII.1: Comparison between manual and automatic flagging (SD method), at Finokalia station. Green and red colors represent data flagged by manual and automatic flagging respectively, black color shows the retained data.

Figure SIII. 9 :

 9 Figure SIII.9: Spatial distribution of the wind speed monthly differences (m/s) between the two meteorological models (AROME minus ECMWF) for January and July.

Figure SIII. 10 :

 10 Figure SIII.10: CO2 average seasonal cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC for the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly).

Figure SIII. 15 : 250 Figure SIII. 16 :Figure SIII. 17 :

 152501617 Figure SIII.15: Spatial distribution of the CH 4 monthly differences (ppb) between the two meteorological models (AROME minus ECMWF), using the data from 12:00 to 18:00 at the first level of the model, from July to Decembre.

Figure SIII. 18 :

 18 Figure SIII.18: CO2 average diurnal cycle at the French sites for the observed (black) and the simulated (red and blue for IER and EDGAR respectivly) during July.

Figure SIII. 19 :

 19 Figure SIII.19: CO2 average diurnal cycle at the sites outside of France for the observed (black) and the simulated (red and blue for IER and EDGAR respectivly) during July.

Figure SIII. 20 :

 20 Figure SIII.20: CO2 diurnal average cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC for the observed (black) and the simulated (green and orange for CTESSEL and VPRM respectivly) during January.

Figure SIII. 21 : 256 Figure SIII. 22 :Figure SIII. 24 :

 212562224 Figure SIII.21: CH 4 average diurnal cycle at CBW, GIC, JFJ, PRS, RGL, SCH, and VAC for the observed (black) and the simulated (red and blue for IER and EDGAR respectivly) during January.

Figure SIII. 26 :Figure SIII. 27 :Figure SIII. 28 :Figure SIII. 29 :Figure SIII. 30 :Figure SIV. 2 :Figure SIV. 3 :

 262728293023 Figure SIII.26: Spatial distribution of the CO2 monthly differences (ppm) between the two biogenic models (CTESSEL minus VPRM) panel ΔBio, and between the two anthropogenic inventories (IER minus EDGAR) panel ΔAnthro, using the data from 12:00 to 18:00 at the first level of the model, from January to April.

Figure SIV. 4 :

 4 Figure SIV.4: CH 4 hourly data at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC during January. The grey color represents the available observations for each site. The back data points stand for the mid-afternoon data (data between 14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at the mountain stations. The red data show the observations rejected by the inversion system (see section IV.2.3.1).

Figure SIV. 5 :

 5 Figure SIV.5: CH 4 hourly data at BIS, OPE, GIF, PDM, PUY, OHP, and TRN during July. The grey color represents the available observations for each site. The back data points stand for the mid-afternoon data (data between 14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at the mountain stations. The red data show the observations rejected by the inversion system (see section IV.2.3.1).

Figure SIV. 6 :

 6 Figure SIV.6: CH 4 hourly data at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC during July. The grey color represents the available observations for each site. The back data points stand for the mid-afternoon data (data between 14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at the mountain stations. The red data show the observations rejected by the inversion system (see section IV.2.3.1).

Figure SIV. 7 :Figure SIV. 8 :

 78 Figure SIV.7: Observed (black) and simulated prior (blue) and posterior (red) CH 4 daily averages for the French atmospheric sites (CBW, RGL, GIC, SCH, JFJ, VAC, and PRS) during January. The shaded areas represent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior (shaded red) CH 4 concentrations. For each sites we calculate the root mean square error (RMSE) and the coefficient of correlation (R2) for the prior and the posterior concentration.

Figure SIV. 10 :

 10 Figure SIV.10: CO2 hourly data at BIS, OPE, ERS, PUY, GIF, and TRN during January. The grey color represents the available observations for each site. The back data points stand for the mid-afternoon data (data between14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at the mountainstations. The red data show the observations rejected by the inversion system (see section IV.2.3.1).

Figure SIV. 11 :Figure SIV. 12 :Figure SIV. 13 :

 111213 Figure SIV.11: CO2 hourly data at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC during January. The grey colorrepresents the available observations for each site. The back data points stand for the mid-afternoon data (databetween 14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at the mountainstations. The red data show the observations rejected by the inversion system (see section IV.2.3.1).
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 4 Etminan et al., (2016) estimated a GWP index 32 times higher than CO 2 over a 100 year time period. The GWP index of N 2 O is estimated to 260 for the same period (Etminan et al., 2016).

  every year by the countries to the United Nations Framework Convention on Climate Change (UNFCCC) and form the official data for international climate policies. In France, this activity is compiled by the Centre Interprofessionnel Technique d'Etudes de la Pollution Atmosphérique (CITEPA).Emissions are classified into different sectors (agriculture, transport, energy industries, residential, manufacturing combustion, industrial processes, waste, etc…), and their estimates must follow the guidelines established by the Intergovernmental Panel on Climate Change (IPCC). Similar activities are performed more and more frequently at regional and city scales. The bottom-up approach has significant uncertainties due to the incomplete accounting of all emitting sectors, and by the large uncertainties in the emission factors and activity statistics for many source sectors.

27

Figure I.5: maps of the GLOBALVIEW, ICOS and RAMCES atmospheric station networks inventories are reported

The greenhouse gases inventories currently reported by UNFCCC do not provide a complete picture of the global emissions since not all countries report their emissions every year. For this reason, comprehensive and consistent inventories are developed in addition to the national inventories reported to UNFCCC. This is for example the case of the Emissions Database for Global Atmospheric Research (EDGAR) (Janssens-Maenhout et al., 2017), which estimate anthropogenic emissions for all world countries (e.g. EDGARv4.3.2 FT2012 inventory available at http://edgar.jrc.ec.europa.eu/), or the European inventory provided by Institute for Energy Economics and the Rational Use of Energy (IER), University Stuttgart. Such inventories also have the advantage of providing information on regular spatial grids, which can be used as an input to the atmospheric simulations.

6 Estimation of the regional fluxes I.6.1 Some techniques for flux optimization

  

	weekly time scale by separating between daytime and night-time data. Lauvaux et al (2012) resolved the
	problem using the Bayesian inversion approach for matrice solution based on an analytical framework
	(Tarantola, 2005). Using the same Bayesian approach, Bréon et al (2015) and Staufer et al (2016) performed
	a flux inversion in order to estimate the anthropogenic CO 2 emissions using the atmospheric measurements at
	a sub-national scale in France. For this thesis, we have used a similar Bayesian approach applied to the
	national inventory of CO 2 and CH 4 emissions over France, where we are benefiting from the recent
	development of the atmospheric monitoring network as part of the Europeans research infrastructure ICOS.
	al., 2018, Kountouris et al., 2018,
	Le Quéré et al., 2015, Saunois et al., 2016). For example, the long term atmospheric measurements of sulfur
	hexafluoride (SF6), an industrial gas with an atmospheric lifetime of about 850 years, suggested an under-
	estimation of the SF6 emissions reported by countries to UNFCC by a factor of two (Levin et al., 2010).
	Several studies have demonstrated in recent years that atmospheric measurements of CO 2 and CH 4 can be
	used to quantify top-down continental emissions in Europe and the United States, where the monitoring
	networks are the densest. This was the case for example for Bergamaschi et al (2018) who estimates higher
	CH 4 emissions for the European countries compared to the bottom-up inventories.
	During the last two decades, the top-down approaches, known also by flux inversion, have been largely used
	for the estimation of the GHG surface fluxes at the global (e.g. Enting et al., 1995; Kaminski et al., 1999a;
	Gurney et al., 2003; Locatelli et al., 2013), and the regional scale (e.g. Gerbig et al., 2003; Peylin et al., 2005;
	Lauvaux et al., 2012; Broquet et al., 2013, Berchet et al., 2014, Bergamaschi et al., 2018, and Pison et al.,
	2018). Several techniques have been developed with the aim to estimate the surface flux patterns at a
	relatively high spatio-temporal resolution. One approach consists of dividing the domain into several regions
	based on prior information such as the vegetation type or climate area. Panareda et al (2016) used this
	approach to optimize the surface fluxes by applying a factor to rescale the CO 2 biogenic fluxes for each
	vegetation type. A different approach was used by Lauvaux et al. (2012) to optimize the regional fluxes at a

I.

I.

6.2 Estimation of CO2 fluxes

  

	Using the Bayesian inversion framework, a compilation of three mesoscale and two global transport models,
	was performed in order to estimate the European CO 2 fluxes from three atmospheric inversion frameworks
	(Rivier et al., 2010). In this work, the authors demonstrate that the European continent could be split in a CO 2
	sink for all western and southern European countries, and a CO 2 source for the central and Eastern Europe
	(Figure I.6). In this study, the five inversion systems were in good agreement to estimate a sink of about -1
	GtC/year for western and southern Europe, a CO 2 source of less than 0.8 GtC/year for Central Europe, and
	less than 0.2 GtC/year for Eastern Europe (Figure I.6). In a more recent study, Kountouris et al., (2018)
	estimate the biogenic carbon fluxes for Europe using seven high-resolution regional inversion systems. The
	result of this study confirms the CO 2 sink over Europe with a value that may reach -0.71 GtC/year as
	presented in figure I.7. The two studies estimated the annual CO 2 budget in Europe with significant
	uncertainties, which may reach more than 50%. This indicates that our knowledge of the biospheric CO 2 flux
	estimate in Europe remains uncertain.
	The comparison between the regional inversion results of Kountouris et al (2018) and earlier studies (Ciais et
	al., 2000, Gurney et al., 2004, Rivier et al., 2010, Peylin et al,. 2013, Reuter et al,. 2014) confirms the high
	uncertainty of the European CO 2 surface fluxes (Figure I.7). The estimated fluxes from Kountouris et al.,
	(2018) range between -0.23±0.13 GtC/year and -0.38±0.17 GtC/year, and reach -0.55±0.2 GtC/year for the
	TransCom European region as defined in Gurney et al (2002). For the earlier studies the estimated fluxes vary
	between -0.3±0.8 GtC/year for the period 1985-1995 (Ciais et al., 2000) and -1.1±0.3 GtC/year for the year
	2007

  .2).

			Contaminated data percentages (%)		
	Site	Spices	σ b scenario		σ t scenario	
			α =1	α =3	α =1	α =3
	AMS	CH 4	0.03	0.01	0.006	0.003
		CO 2	0.07	0.03	0.01	0.006
		CH 4	0.2	0.02	0.02	0.002
	FKL	CO 2	0.1	0.04	0.01	0.002
		CO	3	0.4	0.3	0.07
		CH 4	0.7	0.3	0.06	0.01
	OPE	CO 2	0.8	0.04	0.02	0.01
		CO	0.9	0.4	0.1	0.02
		CH 4	6	2	1	0.1
	PDM	CO 2	0.2	0.05	0.02	0.005
		CO	3	0.1	0.04	0.004

Table

II

.2: Sensitivity of SD method spike detection for two sets of α (α=1 and α=3), and for two range of background data interval (σb and σt scenario) for the four stations and all species.

Table II .

 II 

			Contaminated data percentages (%)
	Sites	Species	β = 3	β = 8
	AMS	CH 4	2.3	0.2
		CO 2	6.9	1.5
	FKL	CH 4	4.8	0.8
		CO 2	4.2	0.6
		CO	1.2	0.1
	OPE	CH 4	1.8	0.5
		CO 2	1.6	0.5
		CO	1	0.3
	PDM	CH 4	7.8	2.2
		CO 2	5.2	0.8
		CO	1.5	0.2

.3). Indeed, β = 8 provides results in better agreement with spikes manually reported by site managers. Spike detection statistics for β ranging between 1 and 10 are presented in Table

SII

.1 in the Supplement, and additional illustrations for β = 1, 4, 8 and 10 are in Figure SII.3. 3: Sensitivity of REBS spike detection method for two sets of(β =3 and β =8) for the four stations and all species for the year 2015.Based on these sensitivity tests for the SD and REBS parameters, and the a prior estimation of the percentages of spikes manually detected by site managers, we apply the SD method with σb and α = 3 for CO and with σb and α = 1 for CO2 and CH 4 . For the REBS method we use β = 8.

Table II

 II 

			SD		REBS		COV	
	Sites	species	Percentage	Number of	Percentage	Number of	Percentage	Number of
			(%)	detected	(%)	detected	(%)	detected
				data		data		data
	AMS	CH 4	0.6	8801	0.2	3318	2.1	29315
		CO 2	0.1	1454	1.7	24210	1.8	24672
	FKL	CH 4	0.3	2096	1	7680	2	14657
		CO 2	0.1	1052	0.6	4831	1.9	14295
		CO	0.2	1618	0.1	1002	2.1	15617
	OPE	CH 4	1.8	5473	1	2987	1.3	3864
		CO 2	1.1	3296	1	2749	1.5	4186
		CO	1.3	3777	1.1	3120	1.4	4118
	PDM	CH 4	7	56548	2.3	19056	1.8	14243
		CO 2	0.3	2567	1	8757	1.9	15618
		CO	0.2	1970	0.2	1348	2	16603

[START_REF] Hutchins | A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States[END_REF]

.1) revealed the influence of a local water treatment facility at the station, producing CH 4 (see section II.4.1). .4: percentage (rounded to one decimal) and number of contaminated data detected by SD, REBS, and COV method overall stations (AMS, FKL, OPE and PDM) and for the three species CO, CO2 and CH 4 .Generally, the methods SD and REBS automatically detect spikes. However, the COV method requires a prior knowledge of datasets and the approximate number of data to be filtered. Because of this limitation for automatic spike detection we have discarded the COV method from further tests for the selection of the most reliable method for spike detection.

Table II

 II responsible for local CH 4 production. A test campaign was then organized between July and August 2015 with a second analyzer (called AN-2) installed 200 m away from of AN-1 (Figure SII.4). The two analyzers were installed to measure simultaneously CH 4 and CO 2 molar fractions from 1 July to 31 August, as presented in Figures II.[START_REF] Wee | A continuous wavelet transform algorithm for peak detection[END_REF] and II.7. We applied the SD and REBS methods to the CH 4 and CO 2 time series method in the AN-1 record, compared to only 0.8 % with SD and 0.7 % with REBS for the AN-2 instrument (TableII.5). Considering that the two analyzers are measuring ambient air sampled 200 m apart, this large difference is clearly due to the local emission from the sewage facility. Interestingly, for CO 2 we detect more spikes in AN-2 than in AN-1 (Figure II.7). More than 1 % of CO 2 spikes were found in the AN-2 record compared to 0.5 % for AN-1 (TableII.5, Figure II.7). This is explained by the proximity of a diesel generator to AN-2, used for a few hours during electrical storms. Both SD and REBS detect the same CO 2 spikes in both AN-1 and AN-2 time series (Figure II.7). For CH 4 , SD and REBS methods confirm the frequent contamination of the AN-1 time series since 2014 and show a good ability to detect the spikes, yet with significant differences regarding the percentage of data detected as contaminated. Considering that the AN-2 analyzer provides a less contaminated CH 4 time series, we have used this experiment to compare between the two methods and select which one performs better for CH 4 spikes at PDM.

			ICOS site		TDF site	
			SD	REBS	SD	REBS
	CH 4	Percentage (%)	13	3	0.8	0.7
		Number of contaminated data	10244	2396	684	602
	CO 2	Percentage (%)	0.2	0.5	1.1	1.4
		Number of	158	390	849	1050
		contaminated data				

from both analyzers. For CH 4 , analyzer AN-2 shows much fewer spikes than AN-1. For instance, between early July and late August 2015, there is more than 12 % of contaminated data with the SD method and 3 % with the REBS .5: percentages and number of contaminated data detected by SD, REBS methods for CO2 and CH 4 at PDM.

Table II .

 II 6: Classification of the number of hours in which the SD method filtered at least one-minute data point for CO, CO2, and CH 4 at the four sites. The intervals represent the differences between filtered and the non-filtered time-series averaged at a hourly scale in (ppm) for CO2 and (ppb) for CO, and CH 4 . The values in brackets represent the percentages of the impacted hours on the whole time-series.

  have performed 8 simulations using CHIMERE with two meteorological fields from numerical weather analysis (AROME and ECMWF section III.2.2), two anthropogenic emission inventories based on energy use statistics (IER and EDGAR section III.2.3.1) for both CO 2 and CH 4 , and two biogenic flux models for CO 2 (VPRM and CTESSEL section III.2.3.2). The set of simulations is compared to measurements at the atmospheric measurement sites shown in figure III.3 presented in section III.2.4. We have used 16 monitoring stations with 8 sites in France and 8 stations located in the neighbouring countries. We simulate CO 2 and CH 4 concentrations over the year 2014 every hour from January to December. The main characteristics of the performed simulations are described in table III.1. These fields are linearly interpolated to provide the meteorological data on the CHIMERE grid and at 1 hour temporal resolution using the CHIMERE pre-processing meteorological tools. AROME is the mesoscale meteorological model used since 2008 for operational weather forecast at Meteo-France (http://www.meteofrance.com/accueil). The model is initialized by larger model such as ALADIN (Bubnova et al. 1995), or global fields from weather forecast models such as ARPEGE[START_REF] Courtier | The Concentration and Isotopic Abundances of Carbon Dioxide in the Atmosphere -Keeling -1960[END_REF].Most of the physical parameterizations of AROME is derived from the research Méso-NH model[START_REF] Tulet | Description of the Mesoscale Nonhydrostatic Chemistry model and application to a transboundary pollution episode between northern France and southern England[END_REF], which has been used, previously in several studies, for modelling the atmospheric CO 2 concentration at a regional scale[START_REF] Lac | CO 2 dispersion modelling over Paris region within the CO 2 -MEGAPARIS project[END_REF][START_REF] Staufer | The first 1-year-long estimate of the Paris region fossil fuel CO 2 emissions based on atmospheric inversion[END_REF]. The dynamics of AROME come from the Non-Hydrostatic ALADIN model(Bubnova et al., 1995). We used AROME analysis fields at a 3 hours temporal resolution, a horizontal resolution of 0.025°, and 60 levels in the vertical.

	III.2.2.1 AROME		
	Process	Methods	
		CO2	CH 4
	Meteorological data	AROME or ECMWF	
	Domain	-7.5°W to 10.5°E / 38.5°N to 52.5°N
	Horizontal resolution	0.1° x 0.1°V
	ertical resolution	18 levels (surface to 300 hPa)	
	Horizontal transport	Van Leer scheme (Van Leer, 1979)
	Vertical transport	Upwind scheme (Courant et al., 1952)
	Turbulence & boundary layer	Troen and Mahrt scheme (Troen and Mahrt, 1986)
	Anthropogenic emission inventories	IER or EDGAR	
	Biogenic flux simulations	VPRM or CTESSEL	-
	Initial and boundary conditions	MACC	
	Table III.1: Main characteristics of the CHIMERE configuration used in this study. (-) means that no biogenic
	fluxes were used for CH 4		
	III.2.2 Meteorological fields		

CHIMERE is supplied with pre-calculated meteorological fields from the meteorological analysis data of AROME and ECMWF. These two models have different spatial resolutions that are horizontally respectively higher and lower than that of our CHIMERE configuration (0.1°).

III.2.2.2 ECMWF

The ECMWF (European Centre for Medium-Range Weather Forecasts https://www.ecmwf.int/) uses the IFS (Integrated Forcast System) model for meteorological forecasts at a global scale (ECMWF 2015a). In this study, we use analysis data provided by the deterministic model (ECMWF 2015a). This model was widely used for modelling the greenhouse gases on a global scale (e.g. Chevalier et al., 2010,

[START_REF] Locatelli | Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling[END_REF]

, and on a regional scales (e.g.

[START_REF] Bréon | An attempt at estimating Paris area CO 2 emissions from atmospheric concentration measurements[END_REF][START_REF] Kadygrov | On the potential of the ICOS atmospheric CO 2 measurement network for estimating the biogenic CO 2 budget of Europe[END_REF][START_REF] Pison | How a European network may help with estimating methane emissions on the French national scale[END_REF]

. The ECMWF model is composed of 137 levels in the vertical, and a horizontal resolution of ~0.15° across the globe.

Table III . 2 :

 III2 Table linking the UNFCCC categories of emissions and the activity sectors for which the temporal profiles are defined in the LOTOS EUROS project http://www.eea.europa.eu/publications /EMEPCORIN-AIR5. For example the temporal factor of the industry sector is applied to the UNFCCC category 1A1+1A2 (Energy manufacturing transformation).

	UNFCCC category	Description	species	Corresponding sectors for which Schaap et al (2005) defines temporal profiles
	1A1+1A2	Energy manufacturing transformation	CH 4	Industry
	1A1a	Energy industry	CO2	Power
	1A1c+2G	Transformation non-energy use	CO2	Processes
	1A2	Combustion in manufacturing industry	CO2	Industry
	1A3b	Road transportation	CO2, CH 4 Traffic
	1A3a+1A3c+1A3d+1A3e	Non-road transportation	CO2, CH 4 Traffic
	1A3d	International and domestic shipping	CO2	Traffic
	1A4	Energy for buildings	CO2, CH 4 Residential
	1B1	Fugitive emissions from solid fuels	CH 4	Processes
	1B2b	Gas production and distribution	CH 4	Power
	1B2a	Oil production and refineries	CO2, CH 4 Processes
	2A	Non-metallic mineral processes including	CO2	Processes
		cement production		
	2B+3	Chemical processes and solvents	CO2	Processes
	2C	Metal processes	CO2	Processes
	4A	Enteric fermentation	CH 4	Processes
	6A+6C	Solid waste disposal	CO2, CH 4 Processes
	6B	Waste water	CH 4	Processes

.2.1.1 Anthropogenic emissions III.2.3.1.1 EDGARv4.2 FT2010 database The EDGAR (Emission Database for Global Atmospheric Research) data product provides maps of anthropogenic emissions of greenhouse gases (CO 2 , CH 4 , N2O), and air pollutants (CO, PFC, …) on a grid of 0.1°x0.1° resolution over the globe. We use the EDGARv4.2 FT2010 inventory available at http://edgar.jrc.ec.europa.eu/overview.php?v=42. Since no time profile is provided for the EDGAR emission maps, we have introduced temporal factors by matching different UNFCCC (United Nations Framework Convention on Climate Change) sectors of emissions with the temporal profiles used for the LOTOS EUROS project (Schaap et al., 2005). III.2.3.1.

2 Temporal profiles applied to the EDGAR emissions:

  

  TableIII.2) for hours of the day, days of the week, and months of the year. Then, for each hour of the year, we calculated the sum of the EDGAR emissions of all sectors in the domain of the study(Figure III.3) in order to retrieve an estimation of the temporal variations of the anthropogenic emission maps at the hourly time resolution for CO 2 and CH 4 . Note that for CH 4 , a constant temporal factor (factor=1/ (365*24)) that convert gCH 4 /year to gCH 4 /hour was applied for the principal sectors of emission, which represent more than 90% of the total CH 4 emissions (e.g., waste management, enteric fermentation, and oil production and refineries). All the time factors (the 24 hourly factors of the diurnal cycle, the 7 daily factors of the weekly cycle, and the 12 monthly factors of the annual cycle) have a mean value of 1//(365*24), which convert from yearly to hourly scale. The resulting hourly emission maps thus, conserve the annual emission budget of EDGAR in each grid point.In this study, we used the IER inventory for CO 2 and CH 4 at 0.08° horizontal and 1-hour temporal resolutions. The temporal functions from IER were applied to the emission sectors as described by Vogel et al(2013). Similar to EDGAR emissions, the time varying factors were applied to the emission sectors known by significant temporal variations (e.g. residential, road transportation, energy industry, etc.). In practice, this means that the time varying functions were applied to emission sectors that represent respectively ~9% and ~80% of the CH 4 and CO 2 total emission.

III.2.3.1.3 IER database

In this study, we use one of the IER inventories produced for Europe by the Institute for Energy Economics and the Rational Use of Energy, University Stuttgart (IER). The underlying model provides an estimate of the CO 2 and the CH 4 anthropogenic emissions at a high spatiotemporal resolution for the year 2005 by the disaggregation of the national total provided by the UNFCCC on a map that covers Europe.

The emissions in the IER inventories are decomposed into 10 sectors that follow the Selected Nomenclature of Air Pollutants (SNAP) representation of the EMEP/CORINAIR (http://www.eea.europa.eu/publications /EMEPCORINAIR5). The 10 SNAP emission sectors are distributed in space and time, using the spatial proxies and temporal functions described in the report "Spatial and temporal disaggregation of anthropogenic greenhouse gas emissions in Europe: Emission Inventory for Europe 2005 Institut fur Energiewirtschaft und Rationelle Energieanwendung. http://carboeurope.ier.uni stuttgart.de/".

  TableIII.3: Atmospheric stations characteristics. The altitude of the site represents the altitude of the ground above sea level at the site location, and the inlet height is the altitude of the inlet above ground level. The type of sites are classified according to the topography. (-) means that corresponding sites are recent and still not published.

									Reference
	Biscarrosse	BIS	-1.2 44.3	120	47	Coastal	LSCE	Ahmadov et al,
									(2009)
	Delta de l'Ebre DEC 0.8	40.7	1	10	Coastal	IC3	-
	Ersa	ERS	9.3	42.9	533	40	Coastal	LSCE	-
	Gredos	GIC -5.2 40.3	1436	20	Mountain	IC3	-
	Jungfraujoch	JFJ	7.9	46.5	3580	5	Mountain	EMPA	Reimann et al,
									(2008)
	Pic Du Midi	PDM 0.1	42.9	2877	10	Mountain LSCE, OMP Tsamalis et al.,
									(2014)
	Plateau Rosa	PRS	7.7	45.9	3480	10	Mountain	RSE	Ferrarese et al,
									(2015)
	Puy de dôme	PUY 2.9	45.8	1465	10	Mountain LSCE, OPGC	Lopez et al,
									(2015)
	Schauinsland	SCH 7.9	47.9	1205	7	Mountain	UBA	Schmidt et al., (2003)
	Valderejo	VAC -3.2	42.9	1086	20	Mountain	IC3	-
	Gif-sur-Yvette	GIF	2.1	48.7	160	7	Peri-urban	LSCE	Ramonet et al,
									(2010)
	Cabauw	CBW 4.9	51.9	0	20, 60, 120,	Tall tower	ECN	Tolk et al, (2009)
						200			
	Observatoire	OHP 5.7	43.9	650	10, 100	Tall tower	LSCE,	Belviso et al.,
	Haute Provence							PyTHEAS	(2016)
	Observatoire	OPE	5.5	48.6	390	10, 50, 120 Tall tower	LSCE,	Ramonet et al,
	pérenne de							ANDRA	(2010)
	l'environnemen								
	t								
	Ridge Hill	RGL -2.5 51.9	199	45, 90	Tall tower Univ.Bristol	Stanley et al.,
	Observatory								(2017)
	Trainou	TRN 2.1	47.9	131	50, 100,	Tall tower	LSCE	Schmidt et al,
						180			(2014)

  Those stations, called ecosystem stations, are monitoring water vapour, heat and CO 2 fluxes in addition to several meteorological and ecosystem parameters like soil temperature and water content at different depths. All variables are measured in order to calculate the carbon and the water-energy balances of the ecosystems. The ecosystem network set up in France, aims to represent the major types of vegetation including grasslands, forests, and crops. The sites used in this study (figure III.3, and TableIII.4), provide CO 2 fluxes at half-hourly resolution using the eddy covariance technique. This approach is considered as the main technique to estimate the flux exchanges between the soil and the atmosphere on the local scale (for ~1 ha to 1 km2 areas).It uses 3D wind measurements and other atmospheric parameters to estimate carbon dioxide, methane, water vapor, and heat fluxes based on statistical calculations. More information about the eddy covariance approach can be found in Aubinet et al., 2012. It is important to compare the ~1 ha to 1 km2 spatial representativeness of the eddy flux measurements with the spatial resolution of the biospheric models (≈ 8500 ha and 20000 ha respectively for VPRM and CTESSEL). The upscaling of these local scale measurements maybe problematic in case of large heterogeneity in the landscape surrounding the ecosystem sites. We have analyzed the measured CO 2 fluxes at four different ecosystems sites to evaluate the two biospheric models (CTESSEL and VPRM) used as an input for the atmospheric simulations.

	Site	code	Longitude	Latitude	Land cover	Institute Reference
					classification		
	Barbeau	BAR	2.8	48.5	Deciduous forest	CNRS	Delpierre et al.
							(2009)
	Grignon	GRI	1.9	48.8	Crop	INRA	Stella et al. (2002)
	Lamasquère LAM	1.2	43.5	Crop	CNRS	Béziat et al. (2013)
	Puechabon	PUE	3.6	43.7	Evergreen forest	CNRS	Allard et al. (2008)

Table III.4: Ecosystem stations used in this study.

  2 for the year 2012). The two corresponding annual emission maps were rescaled for the year 2014 to fit the corresponding emission total of CITEPA (Centre Interprofessionnel Technique d'Etudes de la Pollution Atmosphérique, https:// www.citepa .org/ fr/activites /inventaires-des-emissions/secten) that is used for the National Communication to the UNFCCC. Recently, several studies indicated that the uncertainty in annual national totals from inventories is better than 10% for CO 2[START_REF] Peylin | Importance of fossil fuel emission uncertainties over Europe for CO 2 modeling: model intercomparison[END_REF], and 20% for CH 4[START_REF] Peng | Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010[END_REF]. TableIII.5 represents the comparison of the rescaled total of CO 2 and CH 4 anthropogenic emissions for the year 2014 over France for IER and EDGAR according to the inventory compiled by CITEPA.

	Species IER (Mt)	EDGAR (Mt)	Relative difference (%)	CITEPA SECTEN (1)	Differences CITEPA IER / EDGAR
	CO2	337	343	~ 2%	322	4.7 / 6.5%
	CH 4	2.52	2.71	~ 7%	2.34	8 / 16%

Table III . 5

 III5 The relative difference between IER and EDGAR is 7% for CH 4 , whereas for CO 2 EDGAR and IER annual totals differ only by 2%. However, both inventories give higher total emissions than the national inventory compiled by CITEPA. The CO 2 total emission offset (2 to 7%) can be explained by the difference in the sectors taken considered by the different inventories. As shown byCiais et al., 2010, one of the main reasons for the discrepancy between inventories is the definition of the sectors boundaries. For example, the consideration of the biofuels, and the bunker fuels, used for maritime and aircraft international transportation, may increase the CO 2 national budget by 5% to 10%. According to the UNFCCC definition, the emissions due to biomass combustion and to international maritime, river and airborne transport are not considered in the national inventory compiled by CITEPA for France. Those emissions can be quantified separately, and if we add the 23Mt of CO 2 due to those contributions (extracted from https://www.citepa.org/en/air-and-climate/pollutants-and-ghg/ghg/co2), the CITEPA estimates fall within 2% of IER/EDGAR ones (TableIII.5). For CH 4 , adding the extra emission due to biomass and international transport (0.14Mt CH 4 extracted from https://www.citepa.org/en/air-and-climate/pollutants-andghg/ghg/ch4), the CITEPA estimates range within 10% from IER and EDGAR.

: Comparison of the rescaled annual anthropogenic emissions for metropolitan France from IER, EDGARv4.2 and CITEPA (SECTEN format) inventories for the year 2014. In order to make the CITEPA data easily understandable the anthropogenic emission are prepared using the SECTEN format (SECTeurs Economiques et éNergie).

(1) 

means that emissions are separated according to Energy and the Economic sectors (SECTEN format).

  2.3.1). In January (figure III.6-D and III.6-E solid lines), the CO 2 emissions of IER are about 30% higher than EDGAR. The difference reaches a maximum during daytime (40%), but during the night, it decreases slightly to 20%. In July (figure III.6-D and III.6-E dashed line), the CO 2 EDGAR emissions are 30% larger then IER during the night and less than 5% during the day. In both inventories, the amplitude of the diurnal cycle is larger than the weekly and the seasonal cycle amplitudes.For CH 4 , the emissions of IER are systematically lower than EDGAR (figure III.6-C), which corresponds to the 7% lower total emission in TableIII.5. The temporal variations of the CH 4 emissions are relatively weak since we applied a constant factor (factor=1/365*24, see section III.2.3.1) to the principal CH 4 emission

  figure III.8-C and III.8-F). During July, important contrast between VPRM and CTESSEL occur in a large area in the north of the domain (North of France, Germany and Belgium), with a difference that may attain 200 gCO 2 .m - north part of France, CTESSEL simulates a source of CO 2 of around -40 gCO 2 .m -2 .month -1 (Figure III.8-B) when in VPRM this source exceeds 60 gCO 2 .m -2 .month -1 (Figure III.8-A).

  2.4.2). For the CO 2 and CH 4 anthropogenic emissions, we used the emission fluxes prescribed by EDGAR (Emission Database for Global Atmospheric Research, available at version 4.2FT2010. For the natural fluxes, only the Net Ecosystem Exchange (NEE), provided by the VPRM model (Vegetation Photosynthesis and Respiration Model, Mahadevan et al., 2008), is used to represent the CO 2 biogenic fluxes. The natural CH 4emissions, such as natural wetlands, were neglected in this study due to the lack of accurate estimations and the low extension of these emission sources in our domain[START_REF] Champeaux | ECOCLIMAP: a global database of land surface parameters at 1 km resolution[END_REF]. The list of the prescribed surface fluxes was presented in detail in section III.2.3. In table IV.1 we summarize the main characteristics of the used fluxes.

	Flux category	Flux	Spatial	Temporal	Reference
			resolution	resolution	
	CO2 anthropogenic EDGARv4.2FT2010	0.1° x 0.1°Hourly*	Maenhout et al., 2017
	CO2 biogenic	VPRM 2014	0.125°x 0.08° Hourly	Mahadevan et al., 2008
	CH4 anthropogenic EDGARv4.2FT2010	0.1° x 0.1°Hourly*	Maenhout et al., 2017

http://edgar.jrc.ec.europa.eu/-overview . php?v =42)

3.1.1 Weight of the CH 4 atmospheric observations in the inversion.

  As explained before we have used the CH[START_REF] Hutchins | A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States[END_REF] concentrations measured at 16 stations (Figure IV.3) in January and July 2014. Even if all stations are measuring continuously the concentrations, the time series suffer from data gaps due to maintenance, calibrations or instrumental failures, which reduce the amount of data available for the inversion (grey color in Figures IV.4 and IV.5, and TableSIV.1). For example, at VAC the measurements were available only for 4 days (between January 1 and 4), which correspond to 86 data (FigureIV.5, and TableSIV.1). Note that during January, PDM and OHP data are missing, as well as ERS data in From all the available measurements we apply a data selection in order to reject those measurements which cannot be optimally reproduced by the atmospheric transport model, like the daytime orographic flows and the nighttime stratifications close to the surface. In general, the selected data (see section IV.2.4.2) represent 20% to 25% of the total available data (illustrated by black in Figure IV.4, SIV.3, SIV.4, SIV.5, SIV.6, and Table SIV.1). This selection filters out the daily periods where the atmospheric model is not always able to reproduce correctly the transport processes (vertical and horizontal mixing), as shown in section III.3.5 for the low altitude sites during the nighttime and the mountain stations during the daytime.In addition to this systematic screening of the input dataset, the maximum likelihood (ML) algorithm implemented by[START_REF] Berchet | Towards better error statistics for atmospheric inversions of methane surface fluxes[END_REF], proposes to filter out additional measurements whose representativeness appears to be incompatible with the simulated data. This is the case for the observations that occur during short-term synoptic events which are very difficult to simulate by the transport models (see section IV.2.3.1). In Figure IV.4, we illustrate by red color the data filtered by the ML algorithm for OPE and PUY stations (other sites are shown in Figures SIV.3, SIV.4, SIV.5, and SIV.6). The percentage of data rejected by the ML algorithm varies between 1% and 3% (TableSIV.1). The lowest percentages of rejected data occur at the mountain stations (TableSIV.1), suggesting that these stations are less sensitive to nonmodeled surface fluxes causing short-term variations of CH 4 .

	IV.3.1.1.2 The maximum likelihood (ML) data filtering
	July.
	IV.3.1.1.1 Data selection

  Table SII.1: Sensitivity of REBS spike detection method for β ranging between 1 and 10 for the four stations and allspecies during the year 2015.

	AMS	CH 4	15	5.2	2.3	1.2	0.7	0.4	0.3	0.2	0.2	0.1
		CO 2	18.3	10.6	6.9	4.8	3.5	2.7	2	1.5	1.2	1
	FKL	CH 4	15.5	8.1	4.8	3.7	2	1.5	1	0.8	0.6	0.4
		CO 2	15.6	7.5	4.2	2.6	1.7	1.2	0.9	0.6	0.5	0.4
		CO	13.4	3.4	1.2	0.6	0.4	0.3	0.2	0.1	0.1	0.1
	OPE	CH 4	4.3	2.5	1.8	1.3	1	0.8	0.7	0.5	0.5	0.4
		CO 2	4.1	2.3	1.6	1.2	0.9	0.8	0.7	0.5	0.5	0.4
		CO	3.6	1.6	1	0.7	0.6	0.5	0.4	0.3	0.3	0.3
	PDM	CH 4	19.5	11.5	7.8	5.6	4.3	3.4	2.7	2.2	1.9	1.6
		CO 2	18	9.1	5.2	3.6	2.2	1.5	1.1	0.8	0.6	0.4
		CO	14.5	3.9	1.5	0.8	0.5	0.3	0.2	0.2	0.1	0.1
						225 226						

Figure_II. 1: ICOS Stations used to evaluate the spike detection algorithm

.month -1 (Figure III.8-F). In January the comparison of the two maps (Figure III.8 A-B) reflects the overestimation of the carbon uptake by CTESSEL. According to VPRM, the NEE is positive everywhere in France during January, except in Corsica (figure III.8-A), whereas for CTESSEL, the NEE is negative over a large part of France, with some exception in Les Landes Forest, Pyrénées, and Massif Central regions. In the

Figure III.12: CH 4 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly) concentrations during January.

Figure SIII.2: Simulated boundary layer height (PBL) diurnal cycle at the sites outside of France (8 stations) for Janury 2014.

Acknowledgments

detection information is not exhaustive, and the person in charge does not necessarily have information on all contaminated events. 62 III.2.1.2 Vegetation -atmosphere CO 2 fluxes

III.2.3.2.1 VPRM

The Vegetation Photosynthesis and Respiration Model (VPRM) is a diagnostic biosphere model that estimates the fluxes in coherence with the Eddy Covariance fluxes (Mahadevan et al., 2008). VRPM uses the temperature (T2m) and downward shortwave radiation meteorological data from the ECMWF model, the enhanced vegetation index (EVI) and the land surface water index (LSWI) from the MODIS satellite (Moderate Resolution Imaging Spectroradiometer). The later parameters are optimized against European measurement sites (described in [START_REF] Kountouris | An objective prior error quantification for regional atmospheric inverse applications[END_REF]) for 8 vegetation classes: the Evergreen, the Deciduous, and the Mixed Forest, the Shrubland, the Cropland, the Grassland, the Savanna, and one last group for snow, water, and urban areas derived from the Synergistic Land Cover Product model (SYNMAP, [START_REF] Jung | Exploiting synergies of global land cover products for carbon cycle modeling[END_REF]. The use of the vegetation index and the urban classification allows VPRM to estimate the characteristics of the biogenic fluxes in the urban areas. The model estimates the respiration (R) and the Gross Ecosystem Exchange (GEE) (Mahadevan et al., (2008)) from which we can compute the Net ecosystem exchange, which represents their sum (NEE = -GEE + R). In this study, we use VPRM at 1-hour time step and 0.125°x0.08° (longitude x latitude) spatial resolution for the year 2014 for a domain covering Western Europe.

III.2.3.2.1.2 CTESSEL

The Carbon-TESSEL or CTESSEL model is the ECMWF land surface model describing energy and CO 2 fluxes between the surface and the atmosphere (Van den Hurk et al., 2000). It is based on Hydrology-Tiled ECMWF scheme for Surface Exchange over Land model (H-TESSEL) [START_REF] Balsamo | A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System[END_REF]van den Hurk et al., 2000). The model was developed to resolve the exchange of heat with the atmosphere and the water content of soil for weather forecast applications.

The NEE is the results of the ecosystem respiration (R) and the Gross Ecosystem Exchange (GEE), which are computed independently in the model. The respiration (R) is calculated using an empirical equation driven by snow cover, soil moisture, and soil temperature. The Gross Ecosystem Exchange (GEE) is computed using soil temperature, soil moisture, radiation, and a climatology (based on a 9-year averaging from 2000 to 2008) of the leaf area index (LAI) from MODIS satellite. The list of parameters used for the calculation of the NEE is described in detail in [START_REF] Boussetta | Natural carbon dioxide exchanges in the ECMWF Integrated Forecasting System: Implementation and offline validation[END_REF]. The land use change is not accounted for in the CTESSEL model since the vegetation growth is represented by a 9 year LAI climatology. Moreover, the model does not include any urban schemes for the calculation of the NEE fluxes over the urban areas. As was demonstrated by [START_REF] Bréon | An attempt at estimating Paris area CO 2 emissions from atmospheric concentration measurements[END_REF], the CTESSEL seems to assume that urban areas are covered by ecosystems. In this study, we use outputs from the CTESSEL simulations at ~0.15°x0.15° (longitude x latitude) spatial resolution and 3 hours temporal resolution to represent the Net Ecosystem Exchange for the CO 2 atmospheric modelling. Note that Panareda et al (2016) developed a recent version of the CTESSEL model using a biogenic flux adjustment scheme, but this version was not available for this study.

III.2.2 Atmospheric concentration measurements

We used hourly averages of the CO 2 and CH 4 continuous concentrations measurements at 16 surface stations (Table III.3) located in the domain (figure III.3). Five stations are currently in the process of labelling in the ICOS European infrastructure (CBW, JFJ, OPE, PUY, TRN), and consequently follow the ICOS measurement specifications [START_REF] Hazan | Automatic processing of atmospheric CO2 and CH 4 mole fractions at the ICOS Atmosphere Thematic Centre[END_REF]. Five more contribute to the French monitoring network (BIS, ERS, GIF, OHP, PDM) and also follow very closely the ICOS recommendations. Three stations are part of the ClimaDat Spanish project (DEC, GIC, VAC) available at http://www.climadat.es/. The UK station of Ridge Hill (RGL) was set up in 2012 through the UK-DECC project, in close collaboration with AGAGE (Advanced Global Atmospheric Gases, https://agage.mit.edu/) and ICOS networks (Stanley et al., 2017). In addition, we have downloaded from the World Data Center for Greenhouse Gases (WDCGG; https://ds.data.jma.go.jp/gmd /-wdcgg/) the CO 2 and CH 4 time series from Schauinsland (SCH, Germany), and Plateau Rosa (PRS, Italy). The measurement protocols used at the atmospheric sites are relatively similar, and all agree with WMO recommendations. The instruments are calibrated every 3 to 4 weeks using reference gases calibrated with WMO standards. All observations are respectively expressed in the WMO-X2007 and WMO-X2014A scales for CO 2 and CH 4 . At most stations, one or two more reference gases are analyzed regularly for quality control purposes.

III.3.8 Spatial distribution of the surface flux differences

The sensitivity of the surface level CO 2 concentrations to the differences between the biogenic models (CTESSEL minus VPRM) is presented as a map in panel ΔBio (figure III.27), whereas the panel ΔAnthro represents the sensitivity to the two anthropogenic inventories (IER minus EDGAR) for CO 2 (figure III.27) and CH 4 (figure III.28). The difference maps are generated using the afternoon data (data between 12:00 and 18:00) at the first level of the model (~ 5 m) for January and July (the remaining months are presented in the appendix Figures SIII.26, SIII.27, SIII.28, SIII.29, and SIII.30).

For CO 2 the spatial distribution of the Δbio and Δanthro are characterized by higher differences over France between the biogenic models compared to the anthropogenic inventories. During January, the CTESSEL model underestimates the CO 2 concentrations compared to VPRM. The few sites discussed in the previous paragraph are quite representative, since the differences are relatively homogeneous over France with values ranging from -2 to -6 ppm for the difference CTESSEL minus VPRM. As explained earlier, CTESSEL simulates a significant photosynthesis activity in January over a large part of France with some exceptions in Landes forest, Massif Central, and Pyrénées regions. These three regions are the ones characterized by the lowest contrast between CTESSEL and VPRM in wintertime, with a difference of less than 2 ppm (figure III.27-ΔBio). In July, positive differences (~2 ppm) between the two biogenic flux models occur in the south and west side of France, meaning that the CO 2 concentrations using CTESSEL are higher than VPRM. These positive differences can be explained by the larger photosynthesis activity modeled by VPRM leading to a more pronounced CO 2 uptake compared to CTESSEL (figure III.8, section III.3.4.1). For example, flux differences ranging between 100 and 200 gCO 2 /m²/month in the Landes forest (figure III.8-July), impact the CO 2 concentrations by a value within a range from 1 to 3 ppm (figure III.27-July panel ΔBio). North, central and east parts of France are characterized by negative values, meaning higher CO 2 concentrations using VPRM, as it was shown at most monitoring sites (Figure III.25). The highest differences between VPRM and CTESSEL occurs during spring and autumn leading to differences in CO 2 concentration of more than 7 ppm in March and November. Some small-scale patterns can be seen near big cities, such as Paris and London (figure III.27-ΔBio and figure SIII.27-ΔBio for May), showing very high differences that may reach 8 ppm. This sensitivity is related to the difference for computing the biogenic fluxes in the urban area. concentration up to 40 ppb. Atmospheric inversion is expected to decrease the impact of these plumes and to reduce the differences between the simulated and observed concentration. This will be further investigated in the next chapter. 

IV.3.1.4 Emission regions constrained by the inversion

The diagonal elements of the KH matrix provide the information about which components of the control vector are constrained by the observation sites (Cardinali et al. 2004). Note that one component of the control vector represents a region for a given day and during a specific time window (see section IV.2.4.1). In this section, the spatial distribution of the constraint on the fluxes is calculated by convolving KH with the prior distribution fluxes (Figure IV.10 and IV.11). Regions, where the fluxes are small/null, will be characterized by small/null constraints. The constraint information at a given region depends on the intensity of the emissions fluxes, transport fields, and the location of observation sites receiving tracer from this region [START_REF] Pison | How a European network may help with estimating methane emissions on the French national scale[END_REF].

In the Figures (IV. The regions that are best constrained during January and July are regions 3, 4, 5 (Brittany regions), and 21 (Île-de-France region). This can be explained by the intensity of the CH 4 emissions fluxes (~30% of the national total), and by the location of the atmospheric stations downwind those regions. The white areas indicate regions that are not constrained by the inversion system or where the fluxes are null (e.g. ocean). In January when data from OHP in Provence are missing, the south-east of France is not constrained. In July, the OHP station fills the gap in most part of south-east France, but due to the gap of ERS measurement the Corsica region (region 84) is not constrained (Figure IV.11).

As expected, the problem of under-constrained regions is directly related to the design of the monitoring network. In some cases the atmospheric measurements at a given station can be strongly influenced by

The prior CH 4 emission in France is equal to 291±42 GgCH 4 for January and 277±51 GgCH 4 in July (Table IV.2). The inversion increases by 8% the emission from the prior in January (316±34 GgCH 4 ), and increase more significantly (39%) the July emission over France to reach 385±33 GgCH 4 (Table IV.2). A similar tendency was found by [START_REF] Pison | How a European network may help with estimating methane emissions on the French national scale[END_REF] for the national CH 4 inversion during the year 2012 using a less dense measurement network. At the level of France, the inversion provides an uncertainty reduction of 20% for January and 35% for July. The increase of the uncertainty reduction for July compared to January may be associated to the higher number of observation sites (13 sites in January, and 15 sites in July), the higher prior uncertainty, and the higher percentage of constrained fluxes (Figure IV At the sub-national scale, some significant changes in monthly fluxes from the prior can be seen in The significant uncertainty reduction occurs mainly for regions characterized by important emissions. For the 

IV.3.2.3 Fit of posterior concentrations to observations

The fit of posterior CO 2 concentrations to observations is presented for atmospheric stations in France in error reduction is less than 20% due to the smaller sensitivity of mountain stations to surface fluxes. The posterior concentrations are generally within the range of the ML observation errors (±1σ). We observe higher concentration uncertainties in July compared to January, probably due to the more pronounced and spatially diffused biogenic fluxes in summer (section III.3.4.2).

Before the inversion, the R2 range from 0.6 to 0.8 for January and between 0.2 and 0.7 in July. After the inversion, the R2 exceed 0.9 for January and range from 0.6 to 0.9 in July. The highest R2 corrections occur at OPE in July, where the inversion increases the R2 from 0.2 to 0.88. The general enhancement of the R2 after the inversion is related to the improvement of the representation of the synoptic events phasing. Few Due to the westerly winds in July (Figure SIV.9), biogenic fluxes from the SW sectors will impact concentrations at a sampling site located more in the East (e.g. OHP), rather than the closer station of BIS.

Similar to CH 4 , this result confirms the problem of the flux separation for the regions located far away from the atmospheric sites.

The posterior error correlations between the anthropogenic and the biogenic fluxes are presented in Figures IV. 29-B (January) and IV.29-F (July). The diagonal elements of each panel give the correlation between anthropogenic and biogenic fluxes for the same regions. The non-diagonal elements are the correlation between the anthropogenic and the biogenic fluxes for distinct regions. Note that due to the different number of constrained regions between the biogenic and the anthropogenic fluxes, the two matrices (28-B and 28-F) are not square. In general, the inversion separates efficiently anthropogenic and the biogenic fluxes for distinct regions (|R2| < 0.3). For the same regions (diagonal elements), the absolute value of the posterior error correlation varies between 0.3 and 0.5. This indicates that the inversion separates efficiently the biogenic and the anthropogenic fluxes for most regions. Few exceptions occur for example for regions 22 and 23 in January, where the |R2| reach 0.8. For these regions, the inversion does not correctly separate between anthropogenic and biogenic fluxes, since the corresponding uncertainty reduction remains below 25%. 

IV.3.2.7 Optimized fluxes

In this section, we present the optimized anthropogenic and biogenic fluxes using groups constituted by the correlation threshold 0. 

IV.3.2.7.1Optimized biogenic fluxes

The inversion system constrains a higher number of regions for the biogenic fluxes compared to the anthropogenic emissions. In January the fluxes are constrained for the 18% of national budget, and in July the coverage increases to 41%. The increase in the percentage of the constrained region in July can be explained by two elements. First, the availability of more atmospheric sites, such as OHP, help to capture efficiently the biogenic fluxes in the south-east sector (Figure IV.28). Second, the higher amplitude of the biogenic fluxes in July compared to January generates higher signals to be detected at the sampling sites (see section III. Over France, the prior biogenic budget estimated from VPRM model equals 39±28 MtCO 2 for January and -134±50 MtCO 2 for July (Table IV.4). The optimized biogenic budget is 24±23 MtCO 2 in January, and -109±32 MtCO 2 in July. At the national scale, the inversion tends to decrease the biogenic fluxes for the two months (CO 2 winter respiration and summer uptake). In January, the decrease of the optimized biogenic fluxes compared to the prior is associated with a significant CO 2 uptake in the South-west sector (Table IV.4),

where the inversion estimates a CO 2 sink of -4.8 MtCO 2 instead of a source of 12 MtCO 2 . We have compared those results to the eddy flux measurements performed at Le Bray [START_REF] Sarrat | Atmospheric CO2 modeling at the regional scale: an intercomparison of 5 meso-scale atmospheric models[END_REF]) located in region 6, and Lamarquere [START_REF] Béziat | Carbon balance of a three crop succession over two cropland sites in South West France[END_REF]) located in region 7, despite the fact that the spatial representativeness of the eddy flux measurement (on the order of one hectare) is much lower than the regional fluxes estimated by the atmospheric inversion. Considering the area of regions 6 and 7, the optimized biogenic fluxes are equal to 20±65 KgCO 2 /m2/month for region 7, and -47±54 KgCO 2 /m2/month for region 6. For the same period, the eddy flux measurements sum up to 77 KgCO 2 /m2/month for Lamasquere (cultivated site), and -33 KgCO 2 /m2/month for Le Bray (pine forest site), which are within the range of the optimized biogenic flux uncertainties (±1σ). This comparison confirms the CO 2 uptake in region 6 in January as deduced from the inversion.

In July, most regions are characterized by lower CO 2 sinks after the inversion (Figure IV.36). The decrease of the fluxes occurs in the four sectors, with a significant reduction in the NW block (13 MtCO 2 of difference between the prior and the optimized fluxes). This decrease is associated with an uncertainty reduction up to 36% (Table IV.4). The performance of the inversion system for the NW sector is related to the availability of GIF and TRN sites, which constrain the biogenic signal of these regions due to the westerly winds. The the inversion results at a sub-national scale, allowed us to determine the contribution of each region.

Consistent with the prior emissions, the inversion estimated the highest CH 4 sources in the North-west of France with a total of 115±33 GgCH 4 in January and 148±30 GgCH 4 in July. The lowest CH 4 emissions in France were found in the South-east of France with less than 60 GgCH 4 for both months.

For the anthropogenic CO 2 emissions, the inversion provided higher emissions in January and slightly lower emission in July compared to the prior. The optimized emissions were associated with an uncertainty reduction of 18% in January and 11% for July. The decrease of the uncertainty reduction for July was related to the decrease in the percentage of the constrained CO 2 emissions. For the biogenic fluxes, the inversion decreases the national budget for both months. In January the respiration was decreased by 38 %, whereas in July the CO 2 sink was reduced by 18 % compared to the prior fluxes. The significant decrease of the biogenic emissions in January was associated with predominant CO 2 sink estimated after the inversion in the southwest region. In July the decline of the CO 2 sink impacted most regions, with a significant decrease of 30 % in the West of France. The Western regions were highly constrained by the inversion, but with some limitations regarding the separation between the anthropogenic and the biogenic fluxes. This result confirmed the need to use more observation data in order to improve the separability between the fluxes, and to increase the fraction of the constrained anthropogenic emissions..

V.1.1 Spike detection algorithms

Applying the two automatic methods (SD and REBS) on the CO 2 , CH 4 , and CO continuous time-series has provided variable percentages of contaminated data that range between 0.1% and 15%. These percentages vary depending on the station localization and to the variabilities of the trace gases, except for the COV method where the percentage of data to be filtered has to be defined as an apriori parameter. Because of this limitation, the COV method was considered less flexible to perform regular data cleaning of the GHG time- The performance of the automatic methods was analyzed by comparing the spikes detected by SD and REBS methods to the spikes identified manually by the station managers. This comparison has shown that the SD method was providing the best good overlapping with manual detection, and was consequently recommended for regular data processing of the ICOS continuous measurement.

Despite the multiple influences of the local emission sources on the 1-min data, the aggregation of the contaminated measurements at the hourly timescale has revealed a mean impact which generally remains lower than 0.2 ppm for CO 2 and 1 ppb for CH 4 , except for few sites. Even if those biases are significant regarding the high precision which is sought for the background stations, they are weak compared to other sources of uncertainties when comparing the observations to the simulated concentrations.

V.1.2 Evaluation of the simulated CO2 and CH4 concentrations

In the second phase of this thesis, we evaluated the sensitivity of the transport model CHIMERE to the atmospheric transport and the surface emissions. For this, we used two meteorological fields (AROME and
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ECMWF), two anthropogenic emission maps (IER and EDGAR), and two biogenic models for CO 2 (CTESSEL and VPRM). Eight simulations were performed using combinations of different input data in order to simulate the CO 2 and the CH 4 concentrations at a regional scale centered over France for the year 2014. we have compared the set of simulations to each other and to the observations provided by 16 atmospheric sites in order to study the capability of the transport model to reproduce the observed diurnal, synoptic, and seasonal variabilities.

We first investigated the discrepancies between the two anthropogenic maps and the biogenic fluxes. In

France, the comparison between the two anthropogenic emission maps has shown a difference that remains below 10% of the annual total. This comparison confirmed our assumption for the anthropogenic emission uncertainties that were studied in earlier studies (e.g. ). However, the differences between the two emission maps can be as high as 40% in some areas, especially near the emission hotspots and in winter. The evaluation of the biogenic models showed a relatively good agreement between VPRM and CTESSEL monthly budgets in summer and a higher contrast in winter. The important differences in wintertime were related to negative bias of CTESSEL which simulate, contrary to VPRM, a CO 2 sink through all the year. This bias was due to the overestimation of the photosynthesis activities in the north part of France by CTESSEL, which has been corrected but the latest version was not available for this work. The spatial distribution of the differences between VPRM and CTESSEL has revealed significant differences at the sub-national scale. This information about the differences between surface fluxes represents an important information about the uncertainty, which can be used to estimate the surface fluxes errors required as an input by the inversion systems. In this study, we used the differences between the two anthropogenic and biogenic emission maps to evaluate the surface flux errors estimated by the PYMAI inversion framework presented in Chapter IV.

The sensitivity of the simulated concentrations to the transport data was investigated based on the atmospheric concentrations simulated using the two meteorological fields provided by ECMWF and AROME, with the same surface GHG fluxes. This analysis has shown the significant sensitivity of the CO 2 and CH 4 concentrations to the transport fields at the mountain sites. At the low altitude stations, the difference between AROME and ECMWF impacted the atmospheric concentration by 1 ppm for CO 2 and 10 ppb for CH 4 . These differences can increase significantly in the vicinity of emission hotspots. The comparison between the simulated and the observed concentrations confirmed the capability of CHIMERE to reproduce more accurately the atmospheric concentrations during the afternoon for the low altitude stations