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Depuis la révolution industrielle, les croissances économique et démographique ont augmenté de manière
exponentielle induisant la hausse de la combustion d’énergies fossiles, telles que le charbon, le pétrole, et le
gaz naturel. La combustion de ces sources d’énergie conduit à l’émission de gaz à effet de serre (GES),
principalement  le  dioxyde  de  carbone  (CO2)  et  le  méthane  (CH4),  qui  par  leur  accumulation  dans
l’atmosphère entraînent une accentuation de l’effet de serre. 

Selon  le  GIEC  (Groupe  d'experts  Intergouvernemental  sur  l'Évolution  du  Climat),  l’implication  des
émissions  anthropiques  dans  l’augmentation  de  l’effet  de  serre  est  extrêmement  probable  avec  un
pourcentage de certitude qui dépasse 95%. Toutefois, l’estimation des bilans régionaux d'émissions de GES
reste très incertaine. L’objectif de cette thèse est de contribuer à l’amélioration des estimations des bilans
régionaux  de  GES  en  France,  en  utilisant  les  techniques  de  la  modélisation  inverse  et  les  mesures
atmosphériques du CO2 et de CH4 fournis par le réseau ICOS (Integrated Carbon Observation System).

Dans  un  premier  temps,  on  s’est  focalisé  sur  l’étude  des  concentrations  mesurées  de  CO2,  CH4 et  CO
(monoxyde de carbone). Cette étude a pour objectif, l'identification des mesures atmosphériques contaminées
par les émissions locales (quelques kilomètres au tour de la station) et qui provoque ce qu’on appelle «  les
pics de concentrations ». Trois méthodes ont été appliquées sur des séries temporelles fournies par quatre
stations du réseau ICOS, afin de déterminer leur degré de contamination. Ainsi, les résultats des différentes
méthodes ont été comparés à un inventaire de données contaminées fourni par les gestionnaires des stations.
À l’issue de ce travail, une méthode a été proposée pour effectuer un nettoyage automatique des séries de
mesure du réseau ICOS.
Dans un deuxième temps, le modèle régional de chimie-transport  CHIMERE est utilisé pour simuler les
concentrations atmosphériques du  CO2 et  du  CH4 de l’année 2014 sur un domaine centré sur la France.
L’objet de cette étude est d’évaluer la sensibilité des concentrations simulées en utilisant différentes données
d’entrées  (sensibilité  aux  transports  météorologiques et  sensibilité  aux  flux de  surface).  Cette  analyse  a
permis de quantifier à la fois les erreurs liées aux transports et les erreurs liées aux flux de surface. Ainsi, la
meilleure combinaison des données d’entrée a été sélectionnée pour l’étape d’inversion des flux.
Dans un dernier plan, les mesures atmosphériques des concentrations de CO2 et du CH4 sont utilisées par le
système d’inversion PYMAI (Berchet et coll., 2013 et 2015) afin d’estimer les bilans régionaux d'émission de
CO2 et  CH4 en France. L’inversion est réalisée pour un mois d’hiver (janvier) et un mois d’été (juillet) en
utilisant le modèle de transport CHIMERE. Le résultat de ce travail a permis la  quantification les émissions
de CO2 et de CH4 à l'échelle nationale et régionale, ainsi qu’une réduction d’incertitude bilans nationaux à
hauteur de 35 %.
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Since the industrial revolution, the economic and the demographic growths have increased exponentially,
leading to an enhancement of the fossil fuels combustion, such as coal, oil, and natural gas. Consuming
these source of energy amplifies the greenhouse gas emissions, mainly carbon dioxide (CO2) and methane
(CH4), whose accumulation in the atmosphere lead to the increase of the greenhouse effect. According to

the 5th assessment report of the Intergovernmental Panel on Climate Change (IPCC), it is extremely likely
(95-100% of certainty) that the observed increase in the greenhouse effect is related to the increase of the
anthropogenic emissions. However, the estimations of the GHG budget at the regional and the national
scales remains highly uncertain. The aim of this thesis is to improve the estimation of the  CO2 and  CH4

fluxes  in  France,  using  data  assimilation  techniques  and  atmospheric  measurements  provided  by  the
Integrated Carbon Observation System (ICOS) network.

The first phase focuses on analyzing the measured  CO2,  CH4,  and CO (Carbon monoxide) atmospheric
concentrations  provided  by  surface  monitoring  stations.  This  study  is concerned  with  the  problem  of
identifying atmospheric data influenced by local emissions that can result in spikes in the GHG time series.
Three methods are implemented on continuous measurements of four contrasted atmospheric sites. The aim
of this analysis is to evaluate the performance of the used methods for the correctly detect the contaminated
data. This work allows us to select the most reliable method that was proposed to perform daily spike
detection in the ICOS Atmospheric Thematic Centre Quality Control (ATC-QC) software.

Secondly, we simulate the atmospheric concentrations of CO2 and CH4 using the chemistry transport model
CHIMERE in a domain centered over France for the year 2014. The objective of this study is to evaluate the
sensitivity of simulated concentrations using different input data (sensitivity to the meteorological transport
and sensitivity to the surface fluxes). This work led to the quantification of both the transport and surface
fluxes errors based on the combination of different simulations. Thus, the most reliable combination of the
best input data was selected for the flux inversion study.

Lastly, the measured CO2 and CH4 concentrations are used by the PYMAI inversion system (Berchet et al.,
2013 and 2015) in order to estimate the CO2 and CH4 fluxes in France. The Inversion is performed for one
month in winter (January) and one month in summer (July), using the transport model CHIMERE. The
inversion results have  provided very interesting results for the regional estimation of the  CO2 and  CH4

surface fluxes in France with an uncertainty reduction that may attain 35% of the national totals.
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Chapter I: Introduction

I.1 Global radiative balance:

The Earth receives an energy of 340 W.m-2 from shortwave solar radiation (Figure I.1). 30% of this energy is

directly reflected back to space by clouds, aerosols, and the earth surface. The remaining part of the incident

shortwave radiation (185 W.m-2) is absorbed by the atmosphere and earth's  surface. This energy will  be

reemitted afterward by the earth system in longwave radiation (e.g., sensible and latent heat, and thermal

energy). The latent heat (around 84 W.m-2) is associated to the evaporation of water at the Earth surface,

whereas the sensible heat (around 20 W.m-2) stands for the heat transfer by conduction between the Earth

surface and the atmosphere. In addition to these fluxes, the Earth emits infrared radiation (398 W.m -2), in the

form of thermal energy. 60% of the total infrared flux (239 W.m -2) is re-emitted directly to space, while the

remaining part is absorbed by greenhouse gases (H2O, CO2, and CH4). This later contribution (342 W.m-2) of

infrared radiations to the Earth system (Figure I.1), known as the greenhouse effect, leads to the increase in

global temperature.

Without the natural greenhouse effect, the mean temperature at the Earth surface would be -18° Celsius (C)

instead of +15° C. This indicates that the natural greenhouse effect ensures a warming of 33°C, making life

possible on Earth. In order to maintain this natural warming, the total of energy absorbed and emitted by the

Earth system must be zero. However, the emission of additional greenhouse gases in the atmosphere by the

human activities, causes an energy imbalance of 0.8±0.2 W.m -2 (Trenberth et al, 2009), which leads to the

global warming of the atmosphere.

Since 1990 the Intergovernmental Panel on Climate Change (IPCC) demonstrated that human activities have

modified significantly the Earth temperature compared to the pre-industrial period (5th Assessment Report of

the IPCC 2013). In fact, the enhancement of the earth radiative energy imbalance contributes to the increase

in Earth temperature, impacting the oceans, the atmosphere, the continental surfaces. The fast changes in the

recent temperature threaten the most fragile ecosystems and could potentially impact the current civilization

(Hatfield et al., 2015). 
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I.2 Role of the greenhouse gases in global warming

Since the industrial revolution, human activities have been injecting into the atmosphere important quantity

of carbon dioxide (36183 MtCO  in 2016, according to Global Carbon Atlas, www.globalcarbonatlas.org/)₂

and other greenhouse gases such as methane (CH4) and nitrous oxide (N2O). The CO2 emissions are mainly

related to fossil fuel combustion for industrial, domestic and transport energy needs. CH4 is mostly linked to

agricultural practices (e.g., rice growing and enteric fermentation), waste decomposition, as well as oil and

gas production. Whereas, N2O is emitted mostly from agricultural activities, with the use of mineral and

animal fertilizers. Other new substances such as the Chlorofluorocarbons (CFC), hydrochlorofluorocarbons

(HCFC), whose origin is totally anthropogenic, are characterized by a greenhouse gas effect that may exceed

thousands of times the one of  CO2 (Flanner et al., 2018). All these gases alter the global energy balance

leading to the additional energy trapping near the surface. Other atmospheric components, such as aerosols,

have a negative radiative forcing, which may lead to the atmospheric cooling (Figure I.2)
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Figure I.1 : Global radiative balance in the current climate. The numbers in bold correspond to 
the estimate of each energy flux in W.m-2 (5th Assessment Report of the Intergovernmental Panel 
on Climate Change 2013)



The contribution of the main greenhouse gases to the radiative forcing is presented in figure I.2. Since the

beginning of the pre-industrial era, the additional radiative forcing caused by the anthropogenic activities is

estimated to 2.3 W.m-2 (between 1.1 to -3.0 W.m-2, Myhre et al., 2013). According to the 5th Assessment

Report of the IPCC (IPCC 2013), the  CO2 is responsible for the highest radiative forcing that exceeds 1.5

W.m-2 (Figure I.2).  CO2 contributes by more than 50% to the additional radiative forcing produced by the

greenhouse  gases,  whereas  the  CH4 contribution  is  about  20%.  The  impact  of  the  other  atmospheric

components  and  short-lived  particles  is  limited  (e.g.  ozone,  carbon  monoxide,  and  the  volatile  organic

compound). Each greenhouse gas has a different impact on the global warming, which depends on its own

atmospheric residence time and its radiative forcing. In order to compare the relative contributions of these
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Figure I.2: Radiative forcing of the main anthropogenic (greenhouse gases, aerosol, short-lived gas)
and natural (solar radiation) factors impacting the climate in 2011 compared to 1750 (5th 
Assessment Report of the IPCC 2013)



gases, we use the Global Warming Potential index (GWP). This index has been developed by Houghton and

Jenkins (1990) in order to quantify the greenhouse effect of each gas compared to  CO2.  Greenhouse gas

emissions are often calculated based on the amount of  CO2 that would be required to produce a similar

warming effect over a given time period. This is calculated by multiplying the amount of the emitted gas by

its corresponding GWP index. The CO2 represents the reference value with a GWP index equal 1. For CH4,

Etminan et al., (2016) estimated a GWP index 32 times higher than CO2 over a 100 year time period. The

GWP index of N2O is estimated to 260 for the same period (Etminan et al., 2016). 

I.3 Carbon budget

I.3.1 Carbon dioxide cycle

CO2 is the subject of many exchanges between land, ocean, and atmosphere. Figure I.3 represents the main

carbon fluxes between the different reservoirs constituting the global carbon cycle.

The atmospheric concentrations of CO2, which was 280 ppm (parts per million by volume) during the pre-

industrial era, increased to 380 ppm in 2011 (IPCC, 2013), and exceeded an average of 410 ppm across the

entire month for the first time at Mauna Loa in last April. The rise of atmospheric  CO2 concentrations is

mainly related to the emissions by fossil fuel combustion estimated to 9.4 ± 0.5 GtC/yr (Le Quéré et al.,

2017).  The  second  largest  anthropogenic  source  results  from  the  land  use  changes,  in  particular,  the

deforestation estimated to 1.3 ± 0.7 GtC/yr (Le Quéré et al., 2017).

As shown in figure I.3, the global carbon cycle links together the atmosphere, the oceans, the land, and the

fossil fuel reservoirs. The carbon fluxes are distributed, between these reservoirs, in different proportions. For

example,  the carbon fluxes between the atmosphere and the land are exchanged in both directions.  The

carbon is absorbed by the biomass due to the photosynthesis processes (123 PgC/year), and returns back to

the atmosphere by surface emissions, fires, as well as plant, animal and microorganism respirations.
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The fluxes represented by black arrows on the figure I.3 show the net fluxes estimated for the pre-industrial

era. The red arrows represent the additional fluxes emitted on average in the decade 2000-2009 by the human

activities,  including  fossil  fuel  burning,  land  use  changes  and  cement  production.  The  additional

anthropogenic carbon fluxes are estimated to 9 PgC/year. Of these 9 PgC/year, about 5 are absorbed by land

and oceans, and 4 remain in the atmosphere, leading to the increase of the CO2 atmospheric concentrations

which is precisely monitored at background observatories (Prather et al.,  2012). If the magnitude of the

oceanic and terrestrial sources and sinks are relatively well known on a global scale, their contributions at the

sub-continental scale remain largely uncertain.
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Figure I.3: Representation of the carbon cycle. The annual fluxes are estimated in PgC/year and 
averaged over the period 2000-2009. The amount of CO2 stored in the three reservoirs is expressed in 
PgC. The figure is taken from the 5th assessment report of the intergovernmental panel for the Climate 
Change (IPCC 2013)



I.3.2 Methane cycle

During the pre-industrial era, the methane atmospheric concentration was about 700 ppb (parts per billion by

volume), with a total emission of 215 TgCH4/year (Lelieveld et al.,  2002). Since 1750, CH4 atmospheric

concentrations increased by 150% (from 700 ppb) to a global mean value of 1853±2 ppb in 2016 (WMO

Greenhouse Gas Bulletin N.13). The methane emissions can be separated into three types: natural, pyrogenic,

leakages:

• Natural emissions are the result of fermentation reactions and methanogenesis processes of some

microbes,  produced  from  organic  matter  under  low  oxygen  conditions.  This  category  includes

emissions  from  wetlands  (e.g.,  peatlands,  swamps,  rice  fields),  termites,  animals,  landfill  sites,

wastewater, ruminants. 

 Pyrogenic sources result from incomplete combustions, from biomass fires or fossil fuels such as

domestic biofuels. 

 Leakage  emissions  are  caused  by  fossil  fuel  extraction  and  use  (e.g.,  coal,  natural  gas,  and  oil

industry).

The  relative  proportions  of  the  different  CH4 sources  were  estimated  by  Dlugokencky  et  al  (2011)  as

presented in figure I.4, and recently revised by Saunois et al., (2016). The methane natural emissions were

estimated  to  218±47  TgCH4/year,  whereas  the  anthropogenic  emissions  were  estimated  to  335±68

TgCH4/year. The anthropogenic activities include emissions from agriculture, waste treatment, biomass fires,

transportation and fossil fuels combustion. At the global scale, the highest contribution was determined for

wetlands with a total ranging between 177 and 284 TgCH4/year. The contributions of the geological sources,

termites, hydrates and freshwater emissions are estimated respectively to 54±21, 12±10, 5±3, and 40±23

TgCH4/year. For the anthropogenic emissions, the most important contributions come from fossil fuels, waste

management,  rice  and  farming  estimated  to  95±10,  78±12,  37±3,  90±4  TgCH4/year  respectively.  The

comparison between these sources showed the significant impact at the global scale of the wetlands, followed

by the anthropogenic  emissions.  However,  over  the regional  domain studied in  this  thesis  (metropolitan

France) some emissions, like the wetlands, biomass burning, rice cultivation, are much less important and

can be neglected (Champeaux et al., 2005).  
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I.4 CO2 and CH4 atmospheric measurerments

Direct  measurement  of  the  greenhouse  gases  has  begun  in  1958  by  the  sampling  of  the  atmospheric

concentrations of CO2 at Mauna Loa (Hawai, USA) with the initiative of C. D. Keeling (Keeling, 1960).

Measurement networks have been gradually expanded around the world and extended to other greenhouse

gases, including the methane since 1978 (Blake et al., 1982, Dlugokencky et al., 1994), with the objective to

follow the evolution of the atmospheric concentrations of the principal GHG, and to monitor their long-term

trends. Nowadays, both CO2 and CH4 concentrations are regularly measured in the atmosphere by several
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Figure I.4: Representation of the methane cycle. The annual fluxes are estimated in TgCH 4/year and 
averaged over the period 2000-2009. The amount of CH4 stored in the three reservoirs is expressed in 
TgCH4 . This figure is taken from the 5th assessment report of the intergovernmental panel for the Climate 
Change (IPCC 2013)



networks distributed around the world (Figure I.5). Two types of approaches are commonly adopted for the

atmospheric sampling of the greenhouse gas concentrations: 

 Continuous measurements by in-situ instruments:  this  approach is  based on direct  measurements

using instruments at surface sites or on mobile platforms (aircraft, ships). The main advantage of the

continuous measurements relays on the ability to investigate the atmospheric variations at short term

scales.  The  development  of  laser-based  optical  measuring  instruments  has  allowed  a  strong

development of measurement sites over the last 10 years. 

 Flask sampling coupled with in-lab analysis: such monitoring programs are generally developed at a

frequency of few samples per month,  which allows the characterization of long term trends and

seasonal variations at background sites. The main advantage of the flask sampling is the possibility to

perform multi-species measurements with limited infrastructure in the field.

Figure I.5 distinguishes several measurement networks. Panels a) and b), retrieved from the Earth System

Research  Laboratory  website  (https://www.esrl.noaa.gov/gmd/ccgg/globalview/),  show  the  collaborative

monitoring network led by NOAA/ESRL (USA). AGAGE (Advanced Global Atmosphere Gases Experiment)

is also one of the oldest networks, providing measurements of different greenhouse gases (but not CO 2) since

the beginning of the 1980s (Prinn et al., 2000; Cunnold et al. 2002). More recently, regional networks have

also been developed, such as the RAMCES network in France presented in panel c) (Yver et al., 2011). The

European Research Infrastructure network ICOS (Integrated Carbon Observation System, https://www.icos-

ri.eu/icos-national-networks)  aims  to  develop  a  dense  and  standardized  monitoring  network  in  Europe.

Several data retrieved from the RAMCES and ICOS networks are used in this thesis.
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The increasing number of measurement sites has made possible the development of methods dedicated to the

estimation of the CO2 and CH4 surface fluxes at increasingly finer spatial scales (Bergamaschi et al., 2018,

Kountouris et al., 2018).

I.5 Flux estimation approaches :

I.5.1 Bottom-up approach:

The greenhouse gas emissions from anthropogenic sectors can be estimated at different administrative scales

(city, region, country) for policy makers, or on regular gridded scales for scientists, by using geo-referenced

fields  of  socio-economic  data  and  source-specific  emission  factors.  For  example,  national  emission
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Figure I.5: maps of the GLOBALVIEW, ICOS and RAMCES atmospheric station networks



inventories are reported every year by the countries to the United Nations Framework Convention on Climate

Change (UNFCCC) and form the official data for international climate policies. In France, this activity is

compiled by the  Centre Interprofessionnel  Technique d'Etudes de la Pollution Atmosphérique (CITEPA).

Emissions  are  classified  into  different  sectors  (agriculture,  transport,  energy  industries,  residential,

manufacturing combustion, industrial processes, waste, etc…), and their estimates must follow the guidelines

established by the Intergovernmental Panel on Climate Change (IPCC). Similar activities are performed more

and more frequently at regional and city scales. The bottom-up approach has significant uncertainties due to

the incomplete accounting of all emitting sectors, and by the large uncertainties in the emission factors and

activity statistics for many source sectors. 

The greenhouse gases inventories currently reported by UNFCCC do not provide a complete picture of the

global emissions since not all countries report their emissions every year. For this reason, comprehensive and

consistent inventories are developed in addition to the national inventories reported to UNFCCC. This is for

example  the  case  of  the  Emissions  Database  for  Global  Atmospheric  Research  (EDGAR)  (Janssens-

Maenhout et al., 2017), which estimate anthropogenic emissions for all world countries (e.g. EDGARv4.3.2

FT2012 inventory available at http://edgar.jrc.ec.europa.eu/), or the European inventory provided by Institute

for Energy Economics and the Rational Use of Energy (IER), University Stuttgart. Such inventories also have

the  advantage  of  providing  information  on  regular  spatial  grids,  which  can  be  used  as  an  input  to  the

atmospheric simulations.

The inventories, like EDGAR or IER, generally do not cover all natural emission processes, like for example

the CO2 exchange with the terrestrial ecosystems due to the plant and soil respiration, or the carbon uptake

due to the photosynthesis. For those sectors, we may use biogeochemical models which often used remote

sensing observations of the state of the vegetation and the weather. Such models are themselves validated by

using direct measurement of atmospheric fluxes, which are very local and representative of an area less than

1 km2 (Schmid et al., 1994). Due to the strong spatio-temporal heterogeneities of the fluxes, the extrapolation

of such measurements using biogeochemical models still faces significant uncertainties.

I.5.2 Top-down approach

The  top-down  approach  provides  an  estimation  of  the  surface  fluxes  using  measured  atmospheric

concentrations,  atmospheric  models,  and  prior  information  of  the  surface  fluxes.  In  this  thesis,  the
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quantification  of  the  CO2 and  CH4 fluxes  over  France  will  be  performed  using  the  Bayesian  top-down

approach (Tarantola et al. 2005) called hereafter by the inverse modelling. The robustness of this approach

depends on the quality of the transport model that mix and transport the surface fluxes to be comparable with

the measured concentration. The atmospheric concentration of a given gas represents the amount of fluxes

transported in the atmosphere through different processes (e.g. horizontal and vertical mixing). As shown by

Peylin  et  al  (2002),  the  estimation  of  the  CO2 fluxes  at  the  regional  scale  can  be  uncertain  in  case  of

important  transport  errors.  Consequently,  the first  step before the development of any inverse modelling

framework should be the evaluation of the quality of the transport model used to build our inverse system. 

The top-down approaches represent thus a powerful  tool  to evaluate and verify the emission inventories

provided by the bottom-up approach (Marquis et al., 2008). Previous studies showed significant differences

between the top-down and the bottom-up GHG estimates (Bergamaschi et al., 2018, Kountouris et al., 2018,

Le Quéré et al., 2015, Saunois et al., 2016). For example, the long term atmospheric measurements of sulfur

hexafluoride (SF6), an industrial gas with an atmospheric lifetime of about 850 years, suggested an under-

estimation of the SF6 emissions reported by countries to UNFCC by a factor of two (Levin et al., 2010).

Several studies have demonstrated in recent years that atmospheric measurements of CO2 and CH4 can be

used to quantify top-down continental  emissions in Europe and the United States,  where the monitoring

networks are the densest. This was the case for example for Bergamaschi et al (2018) who estimates higher

CH4 emissions for the European countries compared to the bottom-up inventories. 

I.6 Estimation of the regional fluxes

I.6.1 Some techniques for flux optimization

During the last two decades, the top-down approaches, known also by flux inversion, have been largely used

for the estimation of the GHG surface fluxes at the global (e.g. Enting et al., 1995; Kaminski et al., 1999a;

Gurney et al., 2003; Locatelli et al., 2013), and the regional scale (e.g. Gerbig et al., 2003; Peylin et al., 2005;

Lauvaux et al., 2012; Broquet et al., 2013, Berchet et al., 2014, Bergamaschi et al., 2018, and Pison et al.,

2018).  Several  techniques  have  been  developed with  the  aim  to  estimate  the  surface  flux patterns  at  a

relatively high spatio-temporal resolution. One approach consists of dividing the domain into several regions

based on prior information such as the vegetation type or climate area.  Panareda et  al  (2016) used this

approach to optimize the surface fluxes by applying a factor to rescale the CO2 biogenic fluxes for each

vegetation type. A different approach was used by Lauvaux et al. (2012) to optimize the regional fluxes at a
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weekly time scale by separating between daytime and night-time data. Lauvaux et al (2012) resolved the

problem using  the  Bayesian  inversion  approach  for  matrice  solution  based  on  an  analytical  framework

(Tarantola, 2005). Using the same Bayesian approach, Bréon et al (2015) and Staufer et al (2016) performed

a flux inversion in order to estimate the anthropogenic CO2 emissions using the atmospheric measurements at

a sub-national scale in France. For this thesis,  we have used a similar Bayesian approach applied to the

national  inventory  of  CO2 and  CH4 emissions  over  France,  where  we  are  benefiting  from  the  recent

development of the atmospheric monitoring network as part of the Europeans research infrastructure ICOS.

I.6.2 Estimation of CO2 fluxes

Using the Bayesian inversion framework, a compilation of three mesoscale and two global transport models,

was performed in order to estimate the European CO2 fluxes from three atmospheric inversion frameworks

(Rivier et al., 2010). In this work, the authors demonstrate that the European continent could be split in a CO 2

sink for all western and southern European countries, and a CO2 source for the central and Eastern Europe

(Figure I.6). In this study, the five inversion systems were in good agreement to estimate a sink of about -1

GtC/year for western and southern Europe, a CO2 source of less than 0.8 GtC/year for Central Europe, and

less than 0.2 GtC/year for Eastern Europe (Figure I.6). In a more recent study, Kountouris et al., (2018)

estimate the biogenic carbon fluxes for Europe using seven high-resolution regional inversion systems. The

result  of  this  study confirms the CO2 sink over  Europe with a value that  may reach  -0.71 GtC/year  as

presented  in  figure  I.7.  The  two  studies  estimated  the  annual  CO2 budget  in  Europe  with  significant

uncertainties, which may reach more than 50%. This indicates that our knowledge of the biospheric CO2 flux

estimate in Europe remains uncertain. 

The comparison between the regional inversion results of Kountouris et al (2018) and earlier studies (Ciais et

al., 2000, Gurney et al., 2004, Rivier et al., 2010, Peylin et al,. 2013, Reuter et al,. 2014) confirms the high

uncertainty of the European CO2 surface fluxes (Figure I.7). The estimated fluxes from Kountouris et al.,

(2018) range between -0.23±0.13 GtC/year and -0.38±0.17 GtC/year, and reach -0.55±0.2 GtC/year for the

TransCom European region as defined in Gurney et al (2002). For the earlier studies the estimated fluxes vary

between -0.3±0.8 GtC/year for the period 1985-1995 (Ciais et al., 2000) and -1.1±0.3 GtC/year for the year

2007 (Reuter et al., 2014). The significant differences between the different studies can be related to the high

interannual  variability  of  the  surface  fluxes  as  demonstrated  by  Broquet  et  al  (2013).  The  first  inverse

modelling of CO2 have focused on the natural CO2 fluxes, which have much larger uncertainties than the

anthropogenic CO2 emissions. In thoses studies it is commonly assumed that the uncertainty of fossil fuel
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CO2 emissions is negligible (Peylin et al., 2011).  In order to increase our understanding about temporal and

the spatial variabilities of the CO2 fluxes in France (biogenic and anthropogenic), we have developed in this

thesis a high-resolution inversion framework dedicated to optimize the estimated CO 2 surface fluxes at a fine

resolution over France. 
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Figure I.6: Panel (A) displays the regions on which the estimated fluxes are aggregated. Panel (B) represents the 
estimated net carbon flux and the corresponding uncertainties for the sub-continental European regions presented in 
panel (A). The inversion was performed using five atmospheric transport models as described in Rivier et al., (2010).
The figure is taken from Rivier et al., (2010). 



I.6.1 Estimation of CH4 fluxes

For the CH4 flux inversion, a recent study was carried out by Bergamaschi et al., (2018) for the estimation of

the European methane emissions using seven inverse models for the years 2006-2012.  The used inverse

models estimate a CH4 emission that ranges between 20.2 and 29.7 TgCH4/year for the EU-28 countries, with

a significant seasonal cycle (Bergamaschi et al., 2018). These estimates are different from the total emission

reported by the United Nations Framework Convention on Climate Change (UNFCCC). For the EU-28, the

UNFCCC emissions based on bottom-up approaches provided a total of 21.3 TgCH4/year for 2006, and 18.8

TgCH4/year for 2012 (Figure I.8). The difference between the UNFCCC estimates and the inversion results

was assumed to be linked to the contribution of the natural emissions (e.g. wetlands, peatlands, swamps, and

rice fields). The later emissions are quantified for the EU-28 by a range of 2.3-8.2 TgCH 4/year from the

WETland CH4 Inter-comparison of Models Project (WETCHIMP, Kaplan et al ., 2018). Similar conclusions

were found by Pison et al., (2018) about the impact of the CH4 natural emission on the flux estimation over
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Figure I.7: Annual biogenic CO2 budget (GtC/yr) in Europe retrieved from the inversion results 
using seven different scenarios (nBV, nBB, nBV14, nBVH, BVR, BVN, and BVRT) as described by 
Kountouris et al., (2018). The inversion results are compared to previous studies labeled by Ci 
(Ciais et al., 2000), Gu (Gurney et al., 2004), Ri (Rivier et al., 2010), Pe (Peylin et al,. 2013), Re 
(Reuter et al,. 2014). Periods for the inverted fluxes are given below the estimated fluxes. The figure
is taken from Kountouris et al., (2018). 



France during the year 2012. The inversion system developed by Pison et al (2018) increases the total CH4

emission fluxes over France by a value ranging between 25 % and 50 % compared to fluxes reported by the

UNFCCC and displayed a significant seasonal cycle which was absent in bottom-up estimates. Similar to

CO2, the same inversion system is applied to CH4 in order the to decrease the uncertainties associated with

current  estimates  and to  increase  our  understanding of  the small-scale  patterns  responsible  for  the CH4

variations.

I.7 Objective and structure of this thesis

In line with earlier studies, the present work in this thesis aims at improving the knowledge of the CO 2 and

CH4 sources and sinks over France using the top-down atmospheric approach. This work is motivated by the

increasing number of the measurement stations during the last decade over Europe, which provides valuable

information  to  feed  the  inversion  system  dedicated  to  estimate  the  greenhouse  gas  surface  fluxes.  The

availability  of  high-resolution  atmospheric  transport  models  (Menut  et  al.,  2013),  which  improve  the

representation  of  the  simulated  concentrations  at  a  high  frequency,  has  also  contributed  to  have  made

possible the objectives of this study. The advances of the last two aspects represent the principal ingredient to
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Figure I.8: The annual variations of the total CH4 emissions for the EU-28 countries derived from five inversion systems
(colored symbols) as described by Bergamaschi et al (2018). For comparison, the CH4 anthropogenic emissions 
reported to United Nations Framework Convention on Climate Change (UNFCCC, blackline, the grey range for the 
corresponding uncertainties), and from EDGARv4.2FT-InGOS (black stars) are presented. The blue lines (resp. light-
blue range) show wetland CH4 emissions (resp. minimum-maximum range) retrieved from the WETCHIMP ensemble of 
seven models. The figure is taken from Bergamaschi et al (2018)



improve our understanding of the national and regional budget of the principal greenhouse gases using the

atmospheric measurements and inverse techniques, which are described in the following chapters.

Chapter  II  represents  an  analysis  of  the  long-lived  trace  gas  concentrations  in  the  atmosphere  from

continuous measurement at four contrasting sites from a tall-tower station in France (OPE site),  a high-

mountain station in France (Pic Du Midi),  a regional marine background site in Crete (Finokalia) and a

marine clean-air site in the Southern Hemisphere (Amsterdam Island). Continuous measurement of CO 2,

CH4, and CO are investigated in order to identify the atmospheric data influenced by local emissions (within

few kilometers) that can result in high spikes in time series of greenhouse gases (GHG) and long-lived tracer

measurements. These spikes due to local emissions are very difficult, or even impossible, to simulate by the

transport models and need to be separated from the regional and the large-scale atmospheric signals. We have

considered three spike detection methods known as Coefficient Of Variation (COV), Robust Extraction of

Baseline Signal (REBS) and Standard Deviation of the background (SD) to detect and filter out positive

spikes in continuous time series. The results of the different methods are compared to each other and against

manual detections performed by station managers. This study provides the information required to better

evaluate the influence of the local contamination on the continuous time series and to quantify their impact

on the hourly measurements used by the atmospheric transport models.

Chapter III involves simulations of the CO2 and CH4 atmospheric concentrations during the year 2014 using

the  regional  chemistry-transport  model  CHIMERE (Menut  et  al.,  2013)  over  France  with  a  horizontal

resolution of 0.1°x0.1°. A set of 8 forward simulations has been performed with two meteorological fields

(AROME and ECMWF), two biogenic models (CTESSEL and VPRM), and two anthropogenic inventories

(IER and EDGARv4.2). The simulated concentrations of CO2 and CH4 are compared to the atmospheric

measurements provided by 16 observation sites from national and European networks (8 stations in France,

and 8 in the neighbouring countries). The model performance is evaluated in order to assess the sensitivity of

simulated concentration to various input data at  the national  and the sub-national scales.  The multiscale

evaluation and the comparison between the different input data have implications for the enhancement of the

simulated concentration and consequently for setting up an appropriate inverse system. The best couple of

input data (transport and surfaces fluxes) is, thus, selected as prior information for the inversion of CO 2 and

CH4 fluxes in France.

Chapter IV focuses on estimating the CO2 and the CH4 fluxes over France for two months: one month in

winter  (January)  and  one  month  in  summer  (July),  in  order  to  estimate  the  optimized  fluxes  for  two
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contrasted  periods.  The flux estimation is  carried  out  using  the analytical  inversion framework PYMAI

developed  by  Berchet  et  al.,  (2013,  and  2015)  and  the  atmospheric  surface  stations.  The  inversion  is

performed  using  the  best  prior  information  selected  based  on  the  analysis  of  the  bottom-up  estimates

(Chapter 3). To account for the inversion errors, the used system is completed by a statistical calculation,

implemented by Berchet et al., (2013), that quantify the objectively the inversion errors. These errors are

evaluated and compared to an analytical uncertainty estimation provided by the analysis of the difference

between the different surface fluxes and transport models used in Chapter 3. We conclude the study by a

comparison between the retrieved fluxes and the prior estimates, in addition to a comparison with results

from earlier studies in order to quantify the impact of our inversion system on the uncertainties of the surface

fluxes.
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II.1 Summary 

II.1.1 Context of the study

The greenhouse gases (GHG) estimations are carried out based on atmospheric inverse models that use the

measurement  of  the atmospheric  concentrations  of  long-lived GHG provided by  ground-based sampling

sites. These inverse systems are based on atmospheric transport models that use as input estimates of the

surface fluxes to reproduce the atmospheric concentrations of the GHG. Due to the limited spatial resolution

of the transport models and the uncertain surface emissions, the simulated concentrations may exhibit some

atmospheric variations that do not fit correctly to the observed variations. Especially, local emissions located

nearby  the  atmospheric  station,  within  a  couple  of  kilometers,  may  lead  to  significant  impacts  on  the

atmospheric concentrations. In such case we expect the contaminated data to show intense and sharp positive
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perturbations, which cannot be captured by the transport models. Thus, it is essential to separate the data

which are strongly influenced by local emissions, from those influenced by regional and large-scale fluxes. To

avoid an error of allocation of the local emission to larger scales by the inversion, the influence of these local

contaminations must be filtered out from the time series. 

II.1.2 Material and methods

We have developed an analysis of greenhouse gases atmospheric time series in order to provide a method of

identifying atmospheric data influenced by local emissions that can result in short term spikes. In order to

detect and filter out the spikes from the continuous greenhouse gas time series we have implemented three

spike detection methods known as coefficient of variation (COV, Brantley et al., 2014), robust extraction of

baseline signal (REBS, Ruckstuhl et al., 2012) and standard deviation of the background (SD, Drewnick et

al.,  2012). The methods are applied on two years of CO2,  CH4,  and CO measurements provided by four

atmospheric  sites  from  stations  representative  of  the  European  ICOS  (Integrated  Carbon  Observation

System) Research Infrastructure network and more remote sites. We use a continental rural tower of 100 m

height in eastern France (OPE), a high-mountain observatory in the south-west of France (PDM), a regional

marine background site in Crete (FKL) and a marine clean-air background site in the Southern Hemisphere

on Amsterdam Island (AMS). This selection allows us to address spike detection problems in time series

characterized by different variabilities.

II.1.3 Selection and the optimization of the spike detection methods

All methods were found to be able to detect short-term spikes (lasting from a few seconds to a few minutes)

in the time series. The spikes detected by the three methods are compared to each other, and when available

against manual detection performed by station managers and recorded in their logbooks. For PDM site, the

analysis of the GHG time series is completed by a field campaign data analysis that involves two sampling

instruments measuring simultaneously CH4 and CO2 molar fractions 200 m away from each other, one being

very close from a waste water treatment plant causing CH4 spikes. The comparison of the two time series was

used as a test of the efficiency of different methods to filter out the local spikes in order to retrieve the

uncontaminated background signal. The evaluation of the results of the three methods leads us to exclude the

COV method due to the requirement to arbitrarily specify an a priori percentage of rejected data in the time

series. This a-priori determination of the percentage of spikes may over or underestimate the actual number

of  spikes.  The  two  other  methods  freely  determine  the  number  of  spikes  for  a  given  set  of  internal
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parameters. These parameters are calibrated to provide the best match with spikes known to reflect local

emissions episodes that are well documented by the station managers. The calibration of the SD and the

REBS methods is performed based on the existing dataset,  and sensitivity tests are done to evaluate the

impact of each parameter. Based on the different sensitivity tests for the SD and REBS parameters, and the

prior estimation of  the percentages  of  spikes  manually detected by site managers,  we have proposed an

optimal configuration of the two methods used to detect the local contaminations at the four stations.

II.1.4 Principal results

The application of the automatic methods on the time series showed a good performance of SD and REBS to

correctly detect spikes associated with local contaminations. At PDM, the measurements made by the two

analyzers located 200 m from each other confirmed that the CH4 spikes observed at one site, corresponding

to a local source from a sewage treatment facility close to the observatory buildings. From this experiment,

we also found that  the REBS method underestimates the number of positive anomalies in the CH4 data

caused by local  sewage emissions.  When the percentage of spikes is  high,  the calculation of the REBS

method baseline is biased toward higher concentrations. This lead to the underestimation of spike anomalies

since the difference between the baseline and the measured concentrations is lower than the threshold value.

For the same situations, the SD method correctly detects most of the contaminated data.

The comparison between the two automatic methods and the manual flagging showed a good agreement with

70 % of successful spike data detection for SD and 60 % for REBS for sites where local contaminations were

initially identified in the station logbook. The analysis shows substantial differences between the manual and

the automatic spike detection method for the measurements which are at the lower part of the spikes. These

data are very difficult to detect since they are close to the reference values to which the spikes are compared. 

Running the spike detection method on 1-minute time series allows the quantification of the impact of the

contaminated data on the hourly averages used by the atmospheric inversion systems. This analysis confirms

that the impact of the short-duration spikes on hourly data at the background sites remain less than 0.5 ppm

for CO2 and less than 5 ppb for CH4 and CO. At stations located in areas surrounded by more local sources

(e.g. rural areas in Europe) this offset by local sources may impact the hourly averages by a value up to 10

ppb for CH4 and CO, and 1 ppm for CO2.
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II.1.5 Conclusions and implications

As a conclusion from this analysis from a limited number of atmospheric stations, we recommend the use of

the SD method, which appears to provide the better results, and is also the easiest one to implement in the

automatic data processing set up for the ICOS network. Consequently, after presenting the results of this

work to the ICOS atmospheric community, the SD method was proposed for implementation in the ICOS

data processing handled by the Atmospheric Thematic Centre to automatically process the raw data from the

ICOS stations on a daily basis (Hazan et al., 2016). This method has been recently applied to the 1 minutes

GHG time series of 15 ICOS stations for the year 2017 (Figure II.1). At most stations, the monthly mean

percentages of 1 min data identified as spikes are generally lower than 5%, with few exceptions which may

reach percentages up to 10 to 15% (Figure II.2). For each hour when minute averaged data are identified as

spike and consequently filtered out, it results in a decrease of the corresponding hourly concentration. The

differences between the hourly means calculated with and without the 1 min spike data have been averaged

on a monthly basis for the year 2017 (Figure II.3). The results for the 15 ICOS stations show that differences

are generally lower than 0.2 ppm for CO2, 1 ppb for CH4 and 0.4 ppb for CO. There are few exceptions, with

a monthly mean difference up to 0.8 ppm CO2 in Puijo (February 2017), and 3 ppb CH4 in Ispra (December

2017). Those results are currently investigated by the different station managers in order to associate the

identified  spike  using  the  method  we  have  developed,  with  processes  associated  with  local  pollutant

emissions and local atmospheric transport.
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Figure_II. 1: ICOS Stations used to evaluate the spike 
detection algorithm



II.2 Introduction

Continuous measurements of long-lived greenhouse gases (GHG) such as carbon dioxide (CO 2) and methane

(CH4) at ground-based monitoring stations are commonly used in atmospheric inversions for the estimation

of surface fluxes. The variability of GHG continuous time series reflects atmospheric transport processes and

surface fluxes. One difficulty in matching these measurements with atmospheric transport model simulations
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Figure_II. 3: Monthly means of the CO2, CH4 and CO hourly concentration differences with and without 
spikes at15 ICOS stations

Figure_II. 2: Percentages of minute data detected as spikes for CO2, CH4 and CO, every month in 2017 at 
15 ICOS stations



is  that  they exhibit variability at a wide range of timescales, which is  imperfectly captured by transport

models due to their limited spatial resolution and to uncertain surface emission inventories. In particular,

local emissions in the vicinity of stations can have a major influence on concentrations, generating brief but

intense positive perturbations, hereafter referred to as “spikes”. Every measurement has a specific spatial

representativeness,  and  knowledge  of  this  information  allows  for  a  much  finer  interpretation  of  the

observation. It is desirable, in continuous GHG time series, to separate those data strongly influenced by

local  emissions (fluxes  within less  than few kilometres)  from those influenced by regional  (few tens  of

kilometres) and large-scale (hundreds or thousands of kilometers) fluxes and transport. The influence of local

fluxes, in particular of nearby point sources of emissions, should be filtered out prior to the use of the time

series in inversion models if the models do not have the ability to represent it. For instance, a road near a

station can emit CO2, causing spikes in the time series, because this road is not accounted for in the emission

inventory used in an inversion.

Having empirical  information  on the representativeness  of  continuous GHG time series,  e.g.  a  logbook

available for each station, allows for more precise interpretation of the atmospheric measurements in terms of

the processes involved in the observed variability. It is interesting, for example, to assign the contribution of

specific sources  (e.g.  point  sources  of  fossil  CO2  emissions or  biomass  burning events)  within the local

vicinity of the station. Several methods have been proposed to account from local to regional influences in

greenhouse gas observations according to other observables, such as wind speed and direction (Perez et al.,

2012a) and tracers like radon-222 or black carbon (Biraud et al., 2002; Fang et al., 2015; Williams et al.,

2016). Air-mass trajectory information is also frequently used (Ramonet and Monfray, 1996; Ferrarese et al.,

2003; Maione et al., 2008; Fleming et al., 2011; Perez et al., 2012; Gerbig et al., 2006). Other methods based

on a statistical treatment of time series (Giostra et al., 2011; Ruckstuhl et al., 2012) are easier to generalize

because they  require  no additional  observable.  A commonly used strategy by  modelers,  using transport

models of a typical resolution from 10 to 50 km, consists of systematically removing some periods of the day

(e.g. nighttime for surface stations or daytime for mountain sites) in order to filter the influence of non-

resolved mesoscale circulations or vertical transport processes poorly represented by models (e.g. sporadic

turbulence in stable or neutral nighttime boundary layers).

The development of regional networks for monitoring GHG and related tracer concentrations leads to an

increasing number of continuous measurement stations,  especially in continental  areas.  For example, the

European ICOS (Integrated Carbon Observation System) Research Infrastructure is developing a network of
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tall  towers  for  very  precise  GHG measurements  across  the  European  continent.  It  is  thus  important  to

characterize the representativeness of each individual measurement in order to separate spikes from local

emissions  that  should  not  be  used  in  studies  aiming  at  constraining  regional  fluxes.  In  this  study,  our

objective is to compare methods that could be used operationally to remove the contaminations from local

sources at continuous measurement stations. Local contamination may be due, for example, to fossil-fuel-

based power generation at the station facility and local traffic. The short-term variations (few seconds to

minutes) of GHG associated with those of local sources have rarely been analysed, and they have generally

been time averaged with consecutive data. Some studies, however, have been focusing on local emissions on

the basis of the detection of short-term “spikes” (Monster et al., 2015). Here, “local” refers to emissions at

less than a few kilometers from the station causing positive short-term spikes of a few seconds to a few

minutes superimposed on the signal resulting from boundary layer mixing, synoptic transport regional fluxes.

Other methods such as the Fourier transform filters (Savitkzy Golay, 1964) and the wavelet transforms (e.g.

Wee et al., 2008) have been considered at the beginning of this study, but these methods require continuous

time series and smooth signals. Considering that the measurements are regularly interrupted due to different

reasons (e.g.  calibration,  flushing time after switching from sampling level  to another, power or internet

outage), we had to select a method that handles time series with data gaps. Moreover, applying a Fourier

transform method on continuous measurements provides a signal composed by frequencies only,  and all

information that varies with time will be lost. In other words, we can analyse what happens (spikes to be

filtered out) without knowing when this happens, which is essential information to better understand the

sources of contaminations. We compare here spike detection algorithms for local sources in greenhouse gases

(CO2 and CH4) and long-lived tracer time series (CO). The algorithms chosen in this study have been applied

to air pollution data (e.g. ultrafine particles, particulate matter and nitrogen dioxide NO2 ) which have shorter

lifetimes than CO2, CH4, and CO (Brantley et al., 2014). In the case of GHG, spikes can be caused by local

sources but also by the fast transport of remote emissions. Compared to short lifetime species, spikes in GHG

are not always larger than the variability associated with synoptic scales. For CO 2, uptake by local vegetation

may occasionally lead to negative spikes, which will not be evaluated in this study (only positive spikes are

considered). 

The three spike detection algorithms – coefficient of variation (COV), robust extraction of baseline signal

(REBS) and standard deviation of the background (SD) – are described in section II.3.2, then applied to 2

years of continuous measurements of CO2,  CH4,  and CO at four stations representative of the European

network of GHG monitoring stations. The study will focus more on the SD and the REBS since they are fully
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automatic and they do not require any a priori information for the implementation. The results are discussed

in section II.4. Wherever possible, the ability of an algorithm to successfully detect and remove the effects of

local sources and transport is verified using independent information about the presence and position of

known local emissions.

II.3 Methodology

We selected  four  contrasting  atmospheric  GHG measurement  sites  operated  by  LSCE (Laboratoire  des

Sciences du Climat et de l’Environnement): a tall-tower station in France, a high-mountain station in France,

a regional marine background site in Crete and a marine clean-air site in the Southern Hemisphere, which

provided continuous data from 2013 to December of 2015 (Table II.1). Continuous measurements used in

this study are averages with 1 min time resolution and are processed in near real-time (NRT) by the ICOS

Atmospheric Thematic Centre (Hazan et al., 2016). The four stations have been used in regional and global

atmospheric inversions to estimate GHG surface fluxes at regional and global scales (e.g. Bergamaschi et al.,

2018; Le Quéré et al., 2007; Saunois et al., 2016).

II.3.1 Measurement sites and methods

II.3.1.1 Measurement sites

Amsterdam Island (AMS; 37°48’S,  77°32’E).  This marine background station is operated since 1980 to

monitor trends of trace gases in the southern hemispheric mid-latitude clean-air atmosphere. The observatory

is located on the coast of a small island (55 km2) covered by short grasslands, in the middle of the Indian

Ocean 3000 km south-east of Madagascar. Measurements are performed at the Pointe Bénédicte site located

north of the island, on the edge of a 55 m cliff above sea level. The air is sampled at the top of a 20 m high

tower. The station contributes to the Global Atmospheric Watch program (WMO/GAW). The data used to

feed  the  WMO/GAW  database  and  estimate  the  long-term  trends  are  filtered  according  to  local  wind

measurements to avoid the influence of CO2 emissions from the island itself (Ramonet and Monfray, 1996).

Finokalia (FKL; 35°20’N, 25°40’E). This coastal station is located on the northern coast of Crete, 350 km

south of mainland Greece. The nearest city is Heraklion with a population of about 150 000 inhabitants, 50

km west of the station. There are no significant anthropogenic emissions within a circle of 15 km around the

station (Kouvarakis et al., 2000). The station is on the top of a 230 m hill above sea level, and the air is
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sampled at the top of a 15 m mast. The dry season from April to September is associated with strong winds

from north and north-west (central Europe and Balkans),  and the wet season from October to March is

associated with air  masses from North Africa (south and south-west  winds) in addition to the dominant

north-westerly winds. The station is operated by the Environmental Chemical Processes Laboratory (ECPL)

at the University of Crete, which also collects aerosol and reactive gases (Hildebrandt et al., 2010; Pikridas et

al., 2010; Bossioli et al., 2016; Kopanakis et al., 2016).

Pic du Midi  (PDM; 42°56’N, 0°08’E). This high mountain site is located at 2877 m a.s.l.  on the north

westside of the Pyrenees range in south-west France, 150 km east of the Atlantic Ocean and 200 km west of

the Mediterranean Sea. Due to its high elevation, the station often samples tropospheric air from the Atlantic

Ocean, as well as air masses from continental Europe during high-pressure conditions over France (north-

easterly  winds)  or  from  the  Iberian  Peninsula  under  southerly  winds.  Upslope  winds  and  mesoscale

circulations are frequent especially in summer and early autumn, bringing boundary layer air mostly from

south west France (covered by intensive croplands and forests; Gheusi et al., 2011; Tsamalis et al., 2014; Fu

et al., 2016).

Observatoire Pérenne de l’Environnement (OPE; 48°33’N, 5°30’E). This 120 m tall tower is located in a

rural area at 395 m a.s.l. in the north-east of France (250 km east of Paris). It is located in a transition zone

between  oceanic  westerly  regimes  and  easterly  winds  advecting  air  from  eastern  Europe.  The  station

continuously measures air quality and greenhouse gases since September 2011 as part of the European ICOS

network. Every hour, ambient air is sampled for 20 min alternatively at heights of 10, 50 and 120 m on the

tower (Table II.1).

II.3.1.2 Measurement methods

The gas analyzers used at the four stations are cavity ringdown spectroscopy instruments (CRDS; O’Keefe

and Deacon, 1988), namely Picarro/G2401 analyzers at FKL, OPE and PDM with CO2, CH4 and CO and

Picarro/G2301 at AMS with CO2 and CH4 (Table II.1). The measurement protocols used at the four stations

are similar and based on ICOS specifications (https://www.icos-ri.eu/documents/ATCPublic). A calibration

using four reference gases is performed every 3 to 4 weeks. Two more reference gases are analysed regularly

for quality control purposes. The raw data (0.2 to 0.5 Hz) are transferred once per day to a central server and

NRT datasets are available within 24 h. The NRT data processing (Hazan et al., 2016) includes automatic

filtering of raw data based on the physical parameters of the analyzers (e.g. cavity temperature and pressure)
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and threshold values for rejection of outliers. This last filter aims to reject aberrant values from the NRT

dataset. It may happen that it rejects an extreme but real event, for instance due to an urban pollution plume.

In such cases, the data will be validated afterwards by the station manager. After the automatic processing,

the station managers are invited to validate or invalidate data manually using a specific software developed by

the ICOS Atmospheric Thematic Centre. For data manually flagged as invalid, a reason must be provided

(e.g. leakage, maintenance, local traffic). This procedure does not ensure the systematic rejection of spikes in

the data from local or regional processes.

Meteorological measurements are also performed at the four stations with barometric pressure, temperature,

wind speed, wind direction and relative humidity. Wind speed and direction are measured using 2-D or 3-D

ultrasonic sensors installed at the same height of the greenhouse gas measurements. The sensors are adapted

to the local weather; for instance at PDM (2877 m a.s.l.) the sensor is heated to avoid icing.

Site Measure
d spices

Instrument Longitude Latitude Ground
level
(m asl)

Sampling 
hight
(m agl)

Starting
date

End 
date

Pic du Midi 
(PDM)

CO, 
CO2, 
and CH4 Picarro / 

G2401

0°08'E 42°56’N 2877 10 2014-
05-07

2015-
12-31Observatoire 

Pérenne de 
l’Environnement 
(OPE)

CO, 
CO2, 
and CH4

5°5'E 48°55’N 395 10, 50 
and 120

2013-
03-07

Finokalia (FKL) CO, 
CO2, 
and CH4

35°20’ E 25°40’ N 230 15 2014-
06-05

Amsterdam 
(AMS)

CO2, 
and CH4

Picarro / 
G2301

37°48’ E 77°32’ S 55 20 2013-
01-01

Table II.1: Measurement sites characteristics

II.3.2 Spike detection algorithms

Three algorithms were tested to detect positive short-duration GHG spikes lasting from a few seconds to a

few minutes, using time series of 1 min averaged mole fractions of CO 2 (as illustrated in the appendix, Figure

SII.1), CH4 and CO. The three methods presented in this section are commonly based on the calculation of

the local standard deviations of measurements. A spike is detected when the difference between a previously

determined background and the current  data value is  above a defined threshold.  We will  present  in this
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section the corresponding threshold for the three methods. CO2, CH4, and CO 1 min data were processed

using R version 3.1.3 (R Core Team, 2015) together with packages openair (Ropkins and Carslaw, 2015),

IDPmisc (Locher et al., 2012) and ggplot2 (Wickham et al., 2016) using the three spike detection algorithms.

II.3.2.1 Coefficient of variation (COV) method

The COV method (Brantley et al., 2014) is a modified version of the method presented by Hagler et al.

(2010). It was developed to analyse data from a mobile laboratory measuring ultrafine particle concentrations

near a road transect (Brantley et al., 2014) for peak detection of carbon monoxide, which was used as an

indicator of the passage of vehicles. In our application, we calculate the COV coefficients for CO2, CH4 and

CO time series following two steps. First, the standard deviation of a moving 5 min time window (with one

window for each 1 min data point) is calculated (2 min before and after each 1 min data point). Second, the

standard deviation of each time window is divided by the mean value of the complete time series. The 99th

percentile of the COV coefficients is used as a threshold above which 1 min data are considered to be part of

a spike. We also identified as contaminated data all data recorded 2 min before and after each contaminated

data. The COV method is sensitive to the choice of threshold percentile. In the Figure SII.2-A we illustrate an

example of spike detection using the COV method during a CO contamination episode known to be affected

by a local fire. One important feature of the COV algorithm, compared to the other methods, is the a priori

definition of the percentage of data to be filtered (threshold percentile), meaning that the number of spike

data is not automatically detected.

II.3.2.2 Standard deviation of the background (SD)

The SD method (Drewnick et al., 2012) considers that a time series is a combination of a smooth signal

superimposed with a fast  variable  signal.  The variable  signal  component  in  our  case is  related to  local

emissions causing spikes. To determine the variability of background concentration levels we calculated the

standard deviation (σ) of data falling between the first and the third quartile of the entire dataset. A sensitivity

test with various quantile ranges is presented in section II.4.1.1. We then select the first available data point,

called Cunf (unflagged data, example in the Supplement Figure SII.2-B), assuming that it is not in a spike. The

next data point in the time series C i is evaluated with respect to Cunf, spikes are defined by data values higher

than a threshold defined as Cunf plus an additive value: α∗σ+√n∗σ (e.g. the red data point in Figure

SII.2-B), where α is a parameter to control the selection threshold, and n is the number of points between C unf

and Ci. The value of α depends on the time series variability. A sensitivity analysis on the influence of α is
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presented in section II.4.1.1. We set a default value of α = 1 for CO 2 and CH4 and α = 3 for CO (Drewnick et

al., 2012). The lower value for CO2 and CH4 is justified in section II.4.1.1. The integer n contains a temporal

information about the evolution of the time series. Indeed, while identifying a spike C i, the next data point is

evaluated against Cunf using an increased threshold to take in consideration the variability of the baseline

during the spike event. If Ci is lower than the threshold from eqation II.1, it is considered as “non-spike” and

becomes the new reference value Cunf. The following data will then be compared to this updated Cunf.

Ci ≥ Cunf +α∗σ+√n∗σ (II.1)

The SD method was applied over one-week time windows, i.e. the standard deviation over σ a week is used

for threshold calculation. Using a longer period (e.g. one year) would give more weight to the seasonal and

long-term variabilities  which  are  not  relevant  to  identify  short-term spikes  using  the  one-year  standard

deviation.

II.3.2.3 Robust extraction of baseline signal (REBS)

The REBS method (Ruckstuhl et al., 2012) is a statistical method based on a local linear regression of the

time series over a moving time window (characterized by a duration called the “bandwidth”), to account for

the  slow variability  of  the  baseline  signal,  while  outliers  lying  too  far  from the  modelled  baseline  are

iteratively discarded. The bandwidth h must be wide enough to allow for a sufficiently low fraction of outliers

within h. The REBS code used here is based on the rfbaseline application developed in the IDPmisc package

(Locher,  et  al.,  2012)  in  R software.  It  is  a  modified version of  the robust  baseline estimation  method

developed to delete baseline from chemical analytical spectra (Ruckstuhl et al., 2001). The REBS method

was applied at the high-Alpine Jungfraujoch site (Switzerland, 3580 m a.s.l.) and has been proven robust to

estimate the background measurements of GHG (Ruckstuhl et al., 2012). The REBS method considers that

greenhouse gas time series are composed of a background signal plus a regional contribution which may also

include local effects (spikes) and measurement errors. The main difficulty is to correctly define the baseline

signal of the measured time series. To achieve this goal, the choice of the bandwidth value is important. In

the Jungfraujoch study, the baseline signal was defined as the smooth curve retrieved from REBS technique

(Ruckstuhl et al., 2012) using a band width of 90 days, in order to distinguish the contribution of regional

emissions that add to the slow seasonal variability. Since, in our study, the targeted spikes last a few seconds

to a few minutes, we chose to calculate the baseline using a bandwidth of 60 min to detect spikes of a few

minutes (maximum 5 min). The threshold for spike detection in REBS is based on the calculation of a scale
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parameter β, which represents the standard deviation of data below the baseline curve, called ĝ(t i) . All

measurements Y (t i) that satisfy Y (t i)> ĝ(t i)+ β∗γ are classified as locally contaminated (illustration

in Figure SII.2-C). β is a parameter to adjust the filtering strength. Ruckstuhl et al. (2012) set β = 3 for the

detection of polluted data. For our purpose, a sensitivity test with different values of β is carried out in

section II.4.1.2.
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II.4 Results

II.4.1 Optimization of the SD and REBS methods

II.4.1.1 Sensitivity to the parameters of the SD method

We conducted sensitivity tests in order to evaluate the influence of the two parameters α and σ used in the SD

method. For α we tested values ranging from 1 to 3. Here, we present only the results for α = 1 and α = 3.

For σ we compared the results calculated with σ based on 50% of 1-week data, data between the first and

third quartile (scenario σb) and for all the data of the week (scenario σt). We studied four configurations (two

values of α with σb or σt) on 1 min data every week at the four stations. Figure II.4 shows an example of

spikes detected by SD at FKL on 16 December 2014,  corresponding to a known waste-burning episode

reported by the station manager. The station logbook mentions waste-burning occurring nearby the station

between 06:30 and 08:30, shown by a purple bar in Figure II.4. The blue area in Figure II.4 shows the CO

data between the first and third quartiles, leading to a σb = 3.6 ppb. Considering all the data, we obtain a 3

times higher standard deviation: σt = 12.5 ppb. The SD method with α = 3 and σb = 3.6 ppb selects two 1 min

data points as spike as illustrated by the orange dots falling within the observed fire episode in Figure II.4.

With α = 3 and σt = 12.5 ppb, the method fails to detect any spike, indicating that the threshold value was too

high. With α = 1 and σb the SD method selects 44 additional 1 min spikes compared to α = 3 (data not

reported as contaminated by the station manager). In both cases (α = 1 or α = 3) and σ t lead to a very high

threshold and an underestimation of the number of spikes detected, since σ t includes the spike variabilities.

Based on this sensitivity test against a known local emission episode, we definitively rejected the use of σ t

scenario.

Table II.2 represents the percentage of contaminated data detected over 1 year at the four sites, in the four

tested configurations. As can be seen, using all 1 min data to calculate σ t leads to a higher threshold and

consequently to less data detected as contaminated. On average over the four stations and the three species,

switching from σb to σt decreases the percentage of spikes by a factor of 15 ± 16 (Table II.2). Setting α = 3

increases the threshold and also decreases the number of spikes by on average a factor of 5 ± 7 (Table II.2).
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Site Spices
Contaminated data percentages (%)

σb scenario σt scenario

α =1 α =3 α =1 α =3

AMS CH4 0.03 0.01 0.006 0.003

CO2 0.07 0.03 0.01 0.006

FKL
CH4 0.2 0.02 0.02 0.002

CO2 0.1 0.04 0.01 0.002

CO 3 0.4 0.3 0.07

OPE
CH4 0.7 0.3 0.06 0.01

CO2 0.8 0.04 0.02 0.01

CO 0.9 0.4 0.1 0.02

PDM
CH4 6 2 1 0.1

CO2 0.2 0.05 0.02 0.005

CO 3 0.1 0.04 0.004

Table II.2: Sensitivity of SD method spike detection for two sets of α (α=1 and α=3), and for two range of background 
data interval (σb and σt scenario) for the four stations and all species.
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Figure II.4: comparison between two sets of α parameter for SD method. Red color represents detected spikes for α=1, 
orange data are the detected spikes for α=3. The blue area shows the data between the first and the third quartile 
(q1=0.25, and q2=0.75).



The  parameter  α  is  related  to  the  variability  of  the  time  series.  Since  our  study  aims  to  provide

recommendations for automatic data processing of a monitoring network like ICOS in Europe, we would

ideally keep the same set of parameters for all the stations of the network for each species. However, all the

tests conducted in the present study have shown that it was not optimal to use the same parameter for the CO

time series as for the CO2 and CH4 time series. Setting a lower α for CO leads to the overestimation of the

number of spikes in the time series. This must result from the different variabilities of those trace gases. For

instance, the ratio between hourly and minute-scale variabilities (characterized by standard deviations) for the

sites used in this study is on average 2 times smaller for CO compared to CO 2 and CH4. As recommended in

Brantley et al. (2014) and Drewnick et al. (2012), we decided to keep α = 3 for CO and set α = 1 for CH 4 and

CO2 because of their lower variability.

II.4.1.2 Sensitivity to the parameters of the REBS method

In order to evaluate the sensitivity of spikes to the parameter β, we tested values of β ranging from 1 to 10. In

this study, we present the REBS method using the default value β = 3 as proposed by (Ruckstuhl et al., 2012)

in Jungfraujoch, compared with the optimal value for our purpose, β = 8. The resulting spike selection at

FKL (during a local fire episode) is shown in Figure II.5. By setting β = 3, the REBS method detects the

spike during the episode but it also finds other events which do not appear to be associated with evident

contaminations (Figure II.5). With β = 8, the REBS correctly detects spikes during the fire episode (orange

points in Figure II.5). We further compared these two values of β at the four stations every week for the year

2015 (from January to December) and report spike detection statistics in Table II.3. About 10× more spikes

for CO, and 5 to 7 times more for CH4 and CO2, were detected by the REBS method with β = 3 compared to

β = 8. Using β = 3, we detected more than 2 % of spikes for all species and up to 7 % for CO 2 at AMS. Using

β = 8 these percentages are reduced to 0.2 and 1.5 %, respectively (Table II.3). Indeed, β = 8 provides results

in better agreement with spikes manually reported by site managers. Spike detection statistics for β ranging

between 1 and 10 are presented in Table SII.1 in the Supplement, and additional illustrations for β = 1, 4, 8

and 10 are in Figure SII.3. 
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Sites Species
Contaminated data percentages (%)

β = 3 β = 8

AMS CH4 2.3 0.2

CO2 6.9 1.5

FKL CH4 4.8 0.8

CO2 4.2 0.6

CO 1.2 0.1

OPE CH4 1.8 0.5

CO2 1.6 0.5

CO 1 0.3

PDM CH4 7.8 2.2

CO2 5.2 0.8

CO 1.5 0.2

Table II.3: Sensitivity of REBS spike detection method for two sets of(β =3 and β =8) for the four stations and all 
species for the year 2015.Based on these sensitivity tests for the SD and REBS parameters, and the a prior estimation of
the percentages of spikes manually detected by site managers, we apply the SD method with σb and α = 3 for CO and 
with σb and α = 1 for CO2 and CH4. For the REBS method we use β = 8.
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Figure II.5: comparison between two sets of β parameter for REBS method. Red represents detected data for β=3, 
orange are the detected data for β=8, applied on FKL measurement 6th of November 2014.



II.4.2 Statistics of the three spike detection methods

The statistics for local spike detection with the three methods are given in Table II.4. Due to the lack of

completeness  of  the reports  by the staff about  potential  local  contaminations,  we  cannot  compare those

average statistics to the manual spike detection. With COV we detect an average of about 2 % of spikes with

the 99th percentile threshold for all stations and species (section II.3.2.1). With the methods SD and REBS,

more variable percentages of spikes are found depending on the trace gas variabilities at each station. The

percentages of contaminated data range from 0.1 % for CO2 at AMS to 7 % for CH4 at PDM. The value of

7% detected for CH4 at PDM is higher than at all other sites and species and reveals the influence of a source

of methane on a site (see below and next paragraph). For OPE, we found a significant percentage of spikes

(between 1 and 2 %) for all species, which may be explained by the higher number of local emission sources

compared to other stations located in more pristine environments. At FKL and AMS we obtain different

percentages of spikes between SD and REBS for CO2. In fact, we assume that this difference can be related to

the sea–land circulation when winds turn, leading to a fast change in atmospheric concentrations. For FKL,

AMS and PDM, the percentage of spikes found with the SD and REBS methods vary by around 1 % except

for CH4 at PDM, where both SD and REBS detect high percentages of spikes (7% for SD method and 2.3%

for  REBS method).  This  is  not  expected  for  a  high-mountain  station.  The  results  of  a  field  campaign

organized at PDM in 2015 (section II.4.1) revealed the influence of a local water treatment facility at the

station, producing CH4 (see section II.4.1).
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Sites species
SD REBS COV

Percentage
(%)

Number of
detected 
data

Percentage 
(%)

Number of
detected 
data

Percentage 
(%)

Number of 
detected 
data

AMS CH4 0.6 8801 0.2 3318 2.1 29315

CO2 0.1 1454 1.7 24210 1.8 24672

FKL CH4 0.3 2096 1 7680 2 14657

CO2 0.1 1052 0.6 4831 1.9 14295

CO 0.2 1618 0.1 1002 2.1 15617

OPE CH4 1.8 5473 1 2987 1.3 3864

CO2 1.1 3296 1 2749 1.5 4186

CO 1.3 3777 1.1 3120 1.4 4118

PDM CH4 7 56548 2.3 19056 1.8 14243

CO2 0.3 2567 1 8757 1.9 15618

CO 0.2 1970 0.2 1348 2 16603

Table II.4: percentage (rounded to one decimal) and number of contaminated data detected by SD, REBS, and COV 
method overall stations (AMS, FKL, OPE and PDM) and for the three species CO, CO2 and CH4.Generally, the methods
SD and REBS automatically detect spikes. However, the COV method requires a prior knowledge of datasets and the 
approximate number of data to be filtered. Because of this limitation for automatic spike detection we have discarded 
the COV method from further tests for the selection of the most reliable method for spike detection.

II.4.1 Comparison of SD and REBS methods to detect CH4 spikes at the PDM clean-air 
mountain station

In this section, we use field campaign data involving two instruments at PDM to study the efficiency of the

SD and REBS methods. As noted above, the SD method detects 20× more spikes for CH 4 than for CO2 at

PDM ICOS site (Table II.4). Looking for all possible local methane emissions at the site, we identified a

small sewage treatment facility located about 20 m below the air intake of the analyzer (called AN-1) to be

responsible for local CH4 production. A test campaign was then organized between July and August 2015

with a second analyzer (called AN-2) installed 200 m away from of AN-1 (Figure SII.4). The two analyzers

were  installed  to  measure  simultaneously  CH4 and  CO2 molar  fractions  from  1  July  to  31  August,  as

presented in Figures II.6 and II.7. We applied the SD and REBS methods to the CH 4 and CO2 time series

from both analyzers. For CH4, analyzer AN-2 shows much fewer spikes than AN-1. For instance, between

early July and late August 2015, there is more than 12 % of contaminated data with the SD method and 3 %
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with the REBS method in the AN-1 record, compared to only 0.8 % with SD and 0.7 % with REBS for the

AN-2 instrument (Table II.5). Considering that the two analyzers are measuring ambient air sampled 200 m

apart, this large difference is clearly due to the local emission from the sewage facility. Interestingly, for CO 2

we detect more spikes in AN-2 than in AN-1 (Figure II.7). More than 1 % of CO 2 spikes were found in the

AN-2 record compared to 0.5 % for AN-1 (Table II.5, Figure II.7). This is explained by the proximity of a

diesel generator to AN-2, used for a few hours during electrical storms. Both SD and REBS detect the same

CO2 spikes in both AN-1 and AN-2 time series (Figure II.7). For CH4, SD and REBS methods confirm the

frequent contamination of the AN-1 time series since 2014 and show a good ability to detect the spikes, yet

with significant differences regarding the percentage of data detected as contaminated. Considering that the

AN-2 analyzer provides a less contaminated CH4 time series,  we have used this experiment to compare

between the two methods and select which one performs better for CH4 spikes at PDM. 

ICOS site TDF site

SD REBS SD REBS

CH4 Percentage (%) 13 3 0.8 0.7

Number of 
contaminated data

10244 2396 684 602

CO2 Percentage (%) 0.2 0.5 1.1 1.4

Number of 
contaminated data

158 390 849 1050

Table II.5: percentages and number of contaminated data detected by SD, REBS methods for CO2 and CH4 at PDM.

Figures  II.8  and  II.9  represent  the  CH4 and  CO2 measurements  of  AN-1  and  AN-2.  For  AN-2,  CH4

concentrations (black data point in Figure II.8) rarely exceed 1950 ppb, whereas for AN-1 it exceeds 2000

ppb (black data point) and occasionally reaches almost 2200 ppb. SD and REBS methods both detect all

contaminated  data  that  range  between  1980  and  2200  ppb  for  AN-1.  The  differences  between the  two

automatic methods are more important for data that are below 1980 ppb. Furthermore, the filtered data (green

data point) using the SD method better fit the 1:1 correlation line with the less contaminated analyzer than

the  REBS method  (Figure  II.8).  The  REBS method  underestimates  the  lower  part  (foot)  of  the  spikes

(contaminated data that range between 1900 and 1980 ppb; Figure II.6-A’ AN-1). However, for CO 2 the two

methods detect nearly the same spikes (Figure II.7) and provide a similar filtered time series (Figure II.9).

How can we explain the insufficient performance of the REBS method to detect the lower part of the CH 4

spikes?  This  method  defines  spikes  using  the  estimated  baseline  (Ruckstuhl  et  al.,  2012).  When  the
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population of contaminated data is high, the baseline is flawed due to the influence of spikes, and the baseline

determination  will  be  overestimated.  In  Figure  II.8,  we  notice  the  missed  detection  of  a  number  of

contaminated data when using the REBS method due to the high values of the baseline. The SD method

detects most of the local spikes at PDM, even if a slight underestimation of contaminated CH 4 data remains

even after data filtering (Figure II.8).
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Figure II.6: AN-1 CH4 measurement at T55 building for A and A’, and AN-2 TDF building 
for B and B’. Black data points are the retained measurements, red points represent the 
flagged using SD method for A and B, and REBS method for A’ and B’
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Figure II.7: AN-1 CO2 measurement at T55 building for A and A’, and AN-2 TDF building for
B and B’. Black data points are the retained measurements, red points represent the flagged 
using SD method for A and B, and REBS method for A’ and B’
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Figure II.9: plots of CO2 measurements of AN-1 against AN-2. All data are in black, and the green points represent the 
retained data using SD method for A and REBS method for A’

Figure II.8: plots of CH4 measurements of AN-1 against AN-2. All data are in black, and the green points represent the 
retained data using SD method for A and REBS method for A’



II.4.2 Comparison between automatic and manual spike detection

In this  section,  we analyze how SD and REBS methods detect  spikes  of  CO2,  CH4,  and CO that  were

independently identified by the station staff and related to a known local source of contamination at FKL and

PDM. 

At FKL the contamination events reported by the site manager are associated with local fires nearby the

station. The technical staff recorded dates of burning which could lead to significant emissions of trace gases,

especially CO and CO2. It should be noted that this information is not exhaustive in the sense that the person

in charge does not necessarily have information on all burning events. We have matched the trace gas time

series with the logbook information showing 17 days with local burning events between 2014 and 2015. We

applied the SD and the REBS methods over 1-week time windows containing each burning event. First, we

run the algorithms separately on the three species (CH4, CO2, and CO). Then, if the algorithm detects a spike

in at least one species, we consider data for all other species as spikes as well. Figure SII.5 shows an example

of the SD method applied on a fire episode between 15:00 and 16:00 on 6 November 2014.  The spike

occurred for the three species CO, CO2, and CH4, with a similar pattern (spike also identified by the station

manager). 
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Figure II.10: Number of flagged CO measurements using manual method (blue), SD method (red), and REBS method 
(green) for Finokalia (A) and Pic Du Midi (B) .



Figure II.10-A represents the number of contaminated data detected by the automatic methods and manual

flagging by the station staff at FKL. The numbers of selected data are split into three concentration ranges.

The two automatic methods and the manual flagging detect the same number of contaminated data for CO

classes higher than 400 ppb. We have an excellent agreement for the spikes with the highest concentrations.

For the low-concentration spikes (< 400 ppb),  the automatic methods are less selective than the manual

flagging.  In  Figure  II.11  we show an example  of  contaminated  data  detected  by  automatic  and manual

flagging methods at FKL. When the difference between uncontaminated (identified as reference) and spike

data is not significant compared to a certain standard deviation threshold, the methods may thus fail. The data

highlighted by the blue circle in Figure II.11 give an example of when spikes identified by automatic methods

diverge from the manual identification. Such data are either close to the baseline REBS selection (Figure

II.11-C) or close to the Cunf value for the SD method (Figure II.11-B). At this point it is important to note that

the person in charge of data flagging selects spikes using a known period (from a starting to an ending time). 

A second comparison study between automatic methods and manual detection has been performed at PDM

using the CO time series from December 2014 to February 2015. During winter, the station experienced

several  snow fall  episodes  and  snow was  removed  with  a  diesel-powered  snow blower.  This  operation

influenced the GHG concentrations and leads to sharp spikes easily observed in the CO time series (Figure

SII.6).  Most  of  the  spikes  are  successfully  detected by  the SD and the REBS methods.  Figure II.10-B

represents the number of contaminated data detected by SD in red and REBS in green and data manually

eliminated by the site manager in blue at PDM. Similar to the FKL local fires, the SD and the REBS methods

detected the same number of spikes as the manual selection for high concentrations; 857 contaminated data

points are detected by the SD method (same as the principal investigator, or PI) for concentrations higher

than 400 ppb, and 828 data points are detected by the REBS method.  The main difference between the

automatic and the manual flagging methods are related to the lower part of the spikes. For 2861 data (CO <

400 ppb) flagged manually by the PI station, the SD method detects 2270 data points whereas the REBS

method  detects  only  1799  data  points.  In  fact,  for  moderate  spikes  the  SD  method  selects  70  %  of

contaminated  data  according  to  the  PI  whereas  the  REBS method  retrieves  only  60  %.  We  have  also

calculated the number of events not considered by the manual flagging and considered by the automatic

methods. For a total of 3402 data detected by the SD method, only 211 data were not considered by the PI,

which represents 0.25 % on the whole period. For the REBS method, 133 data out of 2981 were not detected

by the PI (nearly 0.15 %). However, these statements should be used with caution since the manual spike
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detection information is not exhaustive, and the person in charge does not necessarily have information on all

contaminated events.
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Figure II.11: Example of a spike detection using manual (A), SD (B), and REBS (C) methods 
during a known biomass burning event at Finokalia.



II.4.3 Influence of the spike detection on hourly averages:

In this section, we estimate the impact of the spike detection on data used for atmospheric inversions, which

are typically hourly or half-hourly averages. For this purpose, we have calculated the differences between the

hourly averages of the filtered and non-filtered time series. In table II.6, we present the number of hours in

which at least 1 min data for each species was filtered. We classified the results into three intervals. For CO2,

the first interval represents the values lower than 0.5 ppm, the second interval is for differences between 0.5

and 1 ppm and the third stands for the higher differences (values more than 1 ppm). For CH 4 and CO we set

the first interval for values lower than 5 ppb, the second interval represents the data between 5 and 10 ppb

and the third for differences higher than 10 ppb. 

Most of the differences between filtered and non-filtered hourly data vary between 0 and 0.5 ppm for CO 2 and

between 0 and 5 ppb for CH4 and CO. For CO2 at the AMS station, the SD method detects 1454 1-min data

points (Table II.4), which occur in 104 hours during the 3 years of measurements. Of those hours, 62 % are

characterized by a  difference up to  0.5 ppm, and 18 % show more than 1 ppm of  difference.  For  CH 4

measurements in AMS, the 8801 contaminated data points detected by the SD method (Table II.4) occur

during only 21 h, this modifies the hourly averages by 5 ppb as a maximum. For the four sites, we notice a

similar effect on the hourly averages. Most of the impacted hours are characterized by a difference within the

first interval (0.5 ppm for CO2; 5 ppb for CH4 and CO). However, for OPE we observe higher differences with

53, 36 and 47 % of the impacted hours in the highest interval, respectively, for CO 2,  CH4 and CO. This

feature  is  probably related to  the higher  number  of  the nearby local  emission sources  nearby OPE site

compared  to  the  other  stations,  which  are  located  in  more  pristine  environments.  Figure  SII.7  shows  a

decrease of the number of impacted hours for higher intervals (the same pattern as the three other stations).

Overall, the aggregation of filtered measurements at the hourly timescale showed a relatively weak impact of

the filtered data for background sites, but more significant effect for stations located closer to local sources.
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CO2 (ppm) CH4 (ppb) CO (ppb)

]0-0.5[ [0.5-1[ >=1 ]0-5[ [5-10[ >=10 ]0-5[ [5-10[ >=10

AMS 64 
(0.3%)

21 
(0.1%)

19 
(0.1%)

21 
(0.1%)

0 0

FKL 133 
(1%)

12 
(0.1%)

5 
(0.04%)

134 
(1%)

11 
(0.1%)

7 
(0.05%)

218 
(1.7%)

8 
(0.06%)

8 
(0.06%)

PDM 522 
(3.7%)

30 
(0.2%)

16 
(0.1%)

4696 
(34%)

741 
(5.3%)

623 
(4.4%)

518 
(3.7%)

4 
(0.03%)

1 
(0.01%)

OPE 36 
(0.3%)

24 
(0.2%)

69 
(0.5%)

53 
(0.5%)

10 
(0.08%)

36 
(0.3%)

107 
(0.9%)

20 
(0.2%)

111 
(0.9%)

Table II.6: Classification of the number of hours in which the SD method filtered at least one-minute data point for CO, 
CO2, and CH4 at the four sites. The intervals represent the differences between filtered and the non-filtered time-series 
averaged at a hourly scale in (ppm) for CO2 and (ppb) for CO, and CH4. The values in brackets represent the 
percentages of the impacted hours on the whole time-series.
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II.5 Conclusion

The recent increase in the number of studies that have been applied to study the spatial representativeness of

GHG observations demonstrates the need to define efficient and reliable methods for the identification of

spikes related to local contamination sources. Three methods based on the standard deviation calculation

were compared in order to provide an objective algorithm for the GHG data spike detection.

We addressed the problem of identifying concentration spikes of a few minutes duration in GHG continuous

time series by applying automatic detection methods (COV, SD, and REBS) previously used for atmospheric

pollution but not systematically for GHG time series. Stations with different regimes of variability where

local emission sources are identified without ambiguity (engines/waste near the station buildings, or fires

nearby) are chosen to evaluate the performance of the automatic methods against spikes manually identified

by station managers. The COV algorithm can be considered as a semiautomatic method since it requires an a

priori choice of a percentage of data rejected as spikes. We tested the COV method with a percentage of 1 %

of spike data for all species and for all stations. This limitation made the COV method less flexible and

informative for universal automatic spike detection across different sites. For the two fully automatic methods

(SD and REBS) we performed several sensitivity tests in order to recommend the best set of parameters for

our four chosen stations, which are considered to be representative of most ICOS stations (disregarding those

located in suburban environments).

The application of the automatic methods on contaminated time series at the Pic du Midi observatory showed

the ability of SD and REBS to detect real spikes on the CH4 time series caused by the sewage treatment

facility  of  the  observatory.  Nevertheless,  significant  differences  regarding  the  rejection  percentage  were

noticed between the methods. Both methods have a tendency to unduly keep a certain fraction of the spike

base (lowest concentrations in spikes). REBS is worse than SD in this respect. In the REBS method, when

the percentage of spikes is high, the baseline determination is biased toward high concentrations, leading to

underestimate spike anomalies above this baseline. However, the SD method correctly detects most of the

contaminated data.  The comparison between SD, REBS and the manual  flagging methods showed good

agreement with an overall percentage of 70 % of successful spike data detection for SD and 60 % for REBS,

at two stations (FKL and PDM) where local contaminations are well identified by the local staff. These two

automatic algorithms detect short-term spikes, allowing for a more consistent and automatic filtering of the

time series even if they identify less contaminated data than by manually flagging.
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The estimation  of  the  impact  of  the  spike  detection  on  data  used  for  atmospheric  inversions  showed a

relatively weak impact of the filtered data for background sites and a more significant effect for stations

located  closer  to  local  sources.  However,  even  if  the  implementation  of  an  automatic  algorithm  can

successfully identify short-term spikes due to local contaminations, it is important to note that the priority in

the selection of a background site should be to avoid as much as possible the occurrence of such spikes. In

the case where the spikes can not be totally avoided, it is then important to try to understand their cause and

look for possible actions to minimize them. The modification of the air inlet at the Pic du Midi, described in

this study, is a very good example of what can be done once the origin of spikes is understood.

The SD method is found to be efficient and reliable for the purpose of spike detection. It has been proposed

for  operational  implementation  in  the  ICOS  Atmospheric  Thematic  Centre  Quality  Control  (ATC-QC)

software to perform daily spike detection of the near-real-time dataset of continuous ICOS stations. The first

step will be to run the SD method in a test mode overall ICOS stations and compare with manual detection

when available in order to set optimal values of parameters. This analysis can be complemented with wind

speed and direction data in order to possibly attribute spikes to fixed local sources.
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Chapter III: Evaluation of the sensitivity of the transport 
model CHIMERE using different meteorological fields and 
surface fluxes for simulating the CO2 and the CH4 

concentrations

III.1 Introduction

The development of the regional atmospheric networks, such as the Integrated Carbon Observing System

(ICOS),  provide useful  constraints for the estimation of the regional  greenhouse gas fluxes (GHG). The

atmospheric  variability  of  the  measured  GHG  concentrations  depends  on  the  changes  of  the  transport

processes and the variations of the surface fluxes. The measured GHG concentrations may display short-

duration variabilities which can not be optimally reproduced by the transport models due to their limited

spatial resolution and to impact of the surface emission errors. The sampling sites are distributed in a way to

be regionally representative, but not too close to high emission hotspots characterized by important errors

(Hogue et al., 2016). Such regional oriented network includes coastal sites (e.g. Ahmadov et al., 2009), Peri-

urban stations (e.g. Ramonet et al., 2010), tall tower sampling sites (e.g. Schmidt et al., 2014), and high

altitude mountain stations (e.g. Reimann et al., 2008). These measurements are used by the inversion system

that  combines them optimally with prior flux information and atmospheric transport  models  to  estimate

optimized fluxes assumed to be close to reality (Kountouris et al ., 2018, Pison et al., 2018, Bergamaschi et

al., 2018, Berchet et al ., 2015). With the development of high-resolution transport model and the increasing

number of the observation sites, the estimation of the optimized GHG fluxes can be performed at a fine

spatial and temporal resolution. Before proceeding with the optimization of GHG fluxes, we need, first, to

evaluate  the  capability  of  the  atmospheric  transport  model  to  reproduce  correctly  the  atmospheric

variabilities of the GHG concentrations.

The accuracy of the simulated concentrations depends on the used atmospheric model and the quality of the

surface fluxes. These fluxes are generally estimated using bottom-up approaches. The flux estimates must

resolve the variations of the GHG concentrations at a fine spatial resolution and a time step of about 1 hour in

order to be comparable with the atmospheric measurement. The distribution of the national inventories in

68



space and time may lead to significant uncertainties (Peylin et al., 2011). This uncertainty becomes larger

with the increase of the spatiotemporal resolution (Hogue et al., 2016). The estimation of the uncertainties

related to the GHG fluxes can be performed statistically using automatic methods (e.g. Saikawa et al., 2017),

or  analytically  by  comparing  the  fluxes  provided  by  different  products  (e.g.  Peylin  et  al.,  2011).  The

quantification of the emission uncertainties represents a challenging task to better understand the linkages

among emissions and the atmospheric concentrations simulated by the transport models. In this study, we

will investigate the uncertainties of the surface CO2 and CH4 fluxes using a combination of different products,

with the aim to quantify the magnitude of the difference between the used fluxes and their impact on the

simulated concentrations from the hourly to the seasonal scale.

The  second  aspect  responsible  for  the  quality  of  the  simulated  GHG  concentrations  depends  on  the

performance of the transport models to correctly represent the atmospheric processes such as the horizontal

and  vertical  mixing.  Several  studies  investigated  the  ability  of  the  transport  model  to  represent  the

variabilities of GHG atmospheric concentrations at the global scale with a resolution of a few hundreds of

km (e.g., Feng et al., 2011; Patra et al., 2009b, 2009a), and at the regional scale with a resolution up to 100

km (e.g., Aalto et al., 2006; Chevillard et al., 2002; Pillai et al., 2011). In general, the synoptic variabilities

are  reasonably  well  described  by  a  regional  atmospheric  transport  model  characterized  by  a  finer

spatiotemporal resolution (Geels et al., 2007). Most of the coarse global atmospheric transport models do not

resolve explicitly the mesoscale circulation caused by the heterogeneity of the land used and the complexity

of  orography.  For  example,  the orography driven flows that  partly controls the GHG variabilities in the

mountainous regions cannot be resolved adequately by global models (Geels et al., 2007). In these regions,

the  use  of  a  high-resolution  regional  model  reproduce  more  accurately  the  spatial  and  the  temporal

variabilities  of  the  atmospheric  concentrations  compared  to  coarse  global  models  (Pillai  et  al.,  2011).

Moreover,  the  errors  associated  to  the  localization  of  the  station  in  the  model,  called  hereafter  by

representativeness errors, can be significantly reduced by the high-resolution regional models (Geels et al.,

2007, Law et al., 2008, Saeki et al., 2013). Indeed, a model evaluation seems essential in order to quantify

the  errors  associated  with  the  transport  processes.  This  will  be  performed  in  this  study  based  on  the

difference between two meteorological fields used to drive the simulated atmospheric concentrations.

This chapter aims at evaluating the sensitivity of a regional transport model regarding different input data. A

set of 8 regional simulations are performed over France using the Eulerian off-line chemistry-transport model

CHIMERE for the year 2014 with two meteorological fields, two models of the vegetation-atmosphere CO 2
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fluxes, and two anthropogenic emission maps. The simulations are compared to each other and against the

observed data in order to analyze the sensitivity of the modelled CO 2 and CH4 concentrations regarding the

different input data. The main objective of this analysis is to quantify the flux errors and the transport errors

from the local to the sub-regional scale. We use 16 atmospheric sites distributed over a domain in Western

Europe with 8 stations in France and 8 sites located in the neighbouring countries. In this study, we discuss

the advantages of using a high resolution mesoscale meteorological model for simulating the CO 2 and CH4

concentrations at different station categories (e.g. coastal, continental tall towers, and mountain stations). We

also investigate the uncertainties related to the biogenic and anthropogenic fluxes at the national and the sub-

national  scales.  In  section  III.2,  we  present  in  detail  the  observation  and the  simulation  framework,  in

addition to the prescribed CO2 and CH4 surface fluxes used as an input for the transport model. In sections

III.3.1 to III.3.4, we study the differences between the fluxes provided by the anthropogenic maps and the

biogenic models.  Section III.3.5 focuses on the sensitivity of the simulated concentrations regarding the

transport data. In section III.3.7 we present the sensitivity of the simulated concentrations to the different

surface  fluxes  (the  anthropogenic  and  the  biogenic  fluxes).  We  finish  the  study  by  conclusions  and

implications in section III.4.

III.2 Methods

III.2.1 CHIMERE atmospheric transport model

CHIMERE is a three-dimensional Eulerian regional transport and chemistry numerical model developed to

provide daily forecasts of several pollutants (e.g. ozone and aerosols) and to perform long-term simulations

of the greenhouse emissions at the mesoscale (Menut et al., 2013). In this study, we use CHIMERE without

chemistry, since CO2 is an inert tracer and the lifetime of CH4 with respect to its chemical destruction by OH

radicals is much longer than the transit time between emissions and observations in the used domain (Figure

III.3).  CHIMERE requires some external  forcing:  3-D meteorological  fields,  biogenic and anthropogenic

surface fluxes, initial and boundary conditions. CHIMERE can be used to calculate atmospheric trace gases

concentrations from urban to continental scales and from 1 km2 to a few degrees of resolution. Figure III.1

shows the framework of CHIMERE transport configuration used in this thesis.
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To simulate atmospheric concentrations of CO2 and CH4, we integrate CHIMERE on a regular grid with a

horizontal resolution of 0.1°x0.1° in latitude and longitude in a region going from -7.5° to 10.5° East and

from 38.5° to 52.5° North centred over France (Figure III.3). In the vertical, the model has 18 sigma-pressure

layers ranging from the surface up to 300 hPa (approximately 9000 magl).  The vertical resolution varies

between 50 m near the surface (the top of the first level is at 5 magl), 200 m in the mid altitude, and 1500 m

at the troposphere top. The atmospheric transport is parameterized using two schemes. For the horizontal

transport  (advection),  we  use  the  Van  Leer  scheme  (scheme  of  order  2  in  space)  which  computes  the

concentrations of a grid cell using a linear slope relating the two adjacent grid cells (Van Leer, 1979). For the

vertical mixing, we use the upwind scheme (Courant et al., 1952) which calculates the fluxes at the grid cells

interface according to the sign of the wind speed. It assumes that the mass flux, for a given tracer, is the

product of the wind by the tracer concentration in the upwind cell (Courant et al., 1952). CHIMERE offers

the option to activate or not the deep convection. Due to the lack of the updraft and downdraft meteorological

data provided for AROME (described in the next section), the deep convection was desactivated in this study.

The boundary layer height is estimated as the altitude where the Richardson number equals Ric=0.5 (Troen

and Mahrt, 1986). 

Initial and boundary conditions of the GHG concentrations are taken from the global transport model MACC

(Monitoring Atmospheric Composition and Climate) described in detail in Marécal et al. (2015). The version
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Figure III.1: Diagram of CHIMERE transport model. The boxes represent the different processes. Cmod and Cobs 
stand for the modeled and the observed atmospheric concentrations respectively.



of MACC data used in this study is characterized by a horizontal resolution of 0.15°, 60 levels in the vertical,

and a temporal resolution of three hours. 

We have performed 8 simulations using CHIMERE with two meteorological fields from numerical weather

analysis (AROME and ECMWF section III.2.2), two anthropogenic emission inventories based on energy use

statistics (IER and EDGAR section III.2.3.1) for both CO2 and CH4, and two biogenic flux models for CO2

(VPRM  and  CTESSEL  section  III.2.3.2).  The  set  of  simulations  is  compared  to  measurements  at  the

atmospheric  measurement  sites  shown  in  figure  III.3  presented  in  section  III.2.4.  We  have  used  16

monitoring stations with 8 sites in France and 8 stations located in the neighbouring countries. We simulate

CO2 and  CH4 concentrations  over  the  year  2014  every  hour  from  January  to  December.  The  main

characteristics of the performed simulations are described in table III.1.

Process Methods
CO2 CH4

Meteorological data AROME or ECMWF

Domain -7.5°W to 10.5°E  / 38.5°N to 52.5°N

Horizontal resolution 0.1° x 0.1°

Vertical resolution 18 levels (surface to 300 hPa)

Horizontal transport Van Leer scheme  (Van Leer, 1979)

Vertical transport Upwind scheme (Courant et al., 1952)

Turbulence & boundary layer Troen and Mahrt scheme (Troen and Mahrt, 1986)

Anthropogenic emission
inventories

IER or EDGAR

Biogenic flux simulations VPRM or CTESSEL -

Initial and boundary conditions MACC

Table III.1: Main characteristics of the CHIMERE configuration used in this study. (-) means that no biogenic 
fluxes were used for CH4

III.2.2 Meteorological fields

CHIMERE is supplied with pre-calculated meteorological fields from the meteorological analysis data of

AROME and ECMWF. These two models have different spatial resolutions that are horizontally respectively

higher and lower than that of our CHIMERE configuration (0.1°). These fields are linearly interpolated to
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provide  the  meteorological  data  on  the  CHIMERE  grid  and  at  1  hour  temporal  resolution  using  the

CHIMERE pre-processing meteorological tools.

III.2.2.1 AROME

AROME is the mesoscale meteorological model used since 2008 for operational weather forecast at Meteo-

France (http://www.meteofrance.com/accueil).  The model is initialized by larger model such as ALADIN

(Bubnova et al. 1995), or global fields from weather forecast models such as ARPEGE (Courtier et al. 1991).

Most of the physical parameterizations of AROME is derived from the research Méso-NH model (Tulet et

al.,  2003),  which  has  been  used,  previously  in  several  studies,  for  modelling  the  atmospheric  CO 2

concentration at a regional scale (Lac et al., 2013, Staufer et al., 2016). The dynamics of AROME come from

the Non-Hydrostatic ALADIN model (Bubnova et al., 1995). We used AROME analysis fields at a 3 hours

temporal resolution, a horizontal resolution of 0.025°, and 60 levels in the vertical. 

III.2.2.2 ECMWF

The ECMWF (European Centre for Medium-Range Weather Forecasts https://www.ecmwf.int/) uses the IFS

(Integrated Forcast System) model for meteorological forecasts at a global scale (ECMWF 2015a). In this

study, we use analysis data provided by the deterministic model (ECMWF 2015a). This model was widely

used for modelling the greenhouse gases on a global scale (e.g. Chevalier et al., 2010, Locatelli et al., 2013),

and on a regional scales (e.g. Bréon et al., 2015, Kadygrov et al., 2015, and Pison et al., 2018). The ECMWF

model is composed of 137 levels in the vertical, and a horizontal resolution of ~0.15° across the globe. 

III.2.1 CO2 and CH4 surface fluxes

The anthropogenic emissions of CO2 and CH4 are generally described by models based on geo-referenced

fields  of  socio-economic data  and emission factors  for  different  economic sectors.  Administrative based

inventories  are  developed  on  national,  regional  and  city  scales  with  the  objective  to  report  emissions

aggregated according to the considered regions. Research oriented inventories are elaborated using a similar

methodology, but provided on regular spatial grids, as required for the atmospheric simulations that we are

developing. Some inventories also contain information on the temporal profile of emissions for each sector,

generally based on periodic functions representing diurnal, weekly and seasonal changes of emissions from

traffic, residential fuel use and energy production. 
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The natural CO2 land fluxes can be calculated by vegetation models, which can be of variable complexity.

Vegetation models all use climate input data, and some of them also use remote sensing information, as well

as other input data such as flux tower measurements, soil and vegetation maps. For atmospheric transport

simulation, we need maps of net CO2 fluxes from all land use types on a time step of about 1 hour since the

flux variations  are  strongly  coupled  with  transport  variations.  We thus  use  simulations  from vegetation

models at such temporal resolution.

The CH4 biogenic emissions, such as natural wetlands, were neglected due to the lack of accurate estimations

and the low extension of these emission sources in our domain ( Champeaux et al., 2005). The natural CO 2

and CH4 oceanic fluxes were also neglected in this study since their contribution in the regional scale is

expected to be very small compared to the vegetation and anthropogenic fluxes (Gerbig et al., 2003).

In the following paragraphs, we describe the anthropogenic emission maps used for CO 2 and CH4 and the

biogenic models used in this study for CO2. 

III.2.1.1 Anthropogenic emissions

III.2.3.1.1 EDGARv4.2 FT2010 database

The  EDGAR  (Emission  Database  for  Global  Atmospheric  Research)  data  product  provides  maps  of

anthropogenic emissions of greenhouse gases (CO2, CH4, N2O), and air pollutants (CO, PFC, …) on a grid

of  0.1°x0.1°  resolution  over  the  globe.  We  use  the  EDGARv4.2  FT2010  inventory  available  at

http://edgar.jrc.ec.europa.eu/overview.php?v=42. Since no time profile is provided for the EDGAR emission

maps,  we have introduced temporal  factors by matching different  UNFCCC (United Nations Framework

Convention on Climate Change) sectors of emissions with the temporal profiles used for the LOTOS EUROS

project (Schaap et al., 2005). 
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UNFCCC category Description species Corresponding sectors 
for which  Schaap et al 
(2005) defines 
temporal profiles 

1A1+1A2 Energy manufacturing transformation CH4 Industry

1A1a Energy industry CO2 Power 

1A1c+2G Transformation non-energy use CO2 Processes 

1A2 Combustion in manufacturing industry CO2 Industry

1A3b Road transportation CO2,  CH4 Traffic

1A3a+1A3c+1A3d+1A3e Non-road transportation CO2,  CH4 Traffic

1A3d International and domestic shipping CO2 Traffic

1A4 Energy for buildings CO2,  CH4 Residential 

1B1 Fugitive emissions from solid fuels CH4 Processes 

1B2b Gas production and distribution CH4 Power 

1B2a Oil production and refineries CO2,  CH4 Processes 

2A Non-metallic mineral processes including 
cement production

CO2 Processes 

2B+3 Chemical processes and solvents CO2 Processes 

2C Metal processes CO2 Processes 

4A Enteric fermentation CH4 Processes 

6A+6C Solid waste disposal CO2,  CH4 Processes 

6B Waste water CH4 Processes

Table III.2: Table linking the UNFCCC categories of emissions and the activity sectors for which the temporal profiles 
are defined in the LOTOS EUROS project http://www.eea.europa.eu/publications  /EMEPCORIN-AIR5. For example the 
temporal factor of the industry sector is applied to the UNFCCC category 1A1+1A2 (Energy manufacturing 
transformation).
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III.2.3.1.2 Temporal profiles applied to the EDGAR emissions:

The  temporal  profiles  are  implemented  for  cumulated  UNFCCC emission  categories.  For  example,  the

temporal profile of the CH4 process sector is applied to the sum of emissions of the waste water, solid waste

disposal,  enteric fermentation and oil  production and refineries UNFCCC categories (Table III.2).  These

profiles are based on the combination of, periodic cycles of the hourly emissions of the day, daily emissions

of the week, and monthly emissions of the year. Figure III.2 represents these cycles for industrial, residential,

traffic, power, and processes sectors. The traffic data includes the information about the rush hour peaks, the

intensity of traffic, and weekends effect (Schaap et al,. 2005). Some sectors are characterised by an important

amplitude of the cycles (at the 1-hour to 1 month resolution). At the seasonal scale, the residential sector is

the most affected by the temporal variations. The maximum of the residential sector is reached during winter

when an important amount of energy is used in houses for heating. A simlar bimodal temporal variation per

day is observed for both sectors transport and residential sector.  The latter should be connected to the local

temperature or heating degree day variable, whereas the transport sector is much less sensitive to the ambient

temperatures. The emissions for these two sectors are characterized by two maximums that correspond to the

rush hours. This set of temporal profiles is primarily based on Western European data, and should fit well

with the variations in France and in the neighbouring countries partially covered by the used modelling

domain.
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Figure III.2: Normalized temporal profiles of daily, weekly and 
seasonal variations, applied for power, industry,residential, 
processes, and traffic sectors for both CO2 and CH4. The daily 
variations are presented in localtime.



First,  we  have  applied  the  time  profiles  to  each  sector  of  EDGAR  emission  annual  totals  using  the

correspondence table (Table III.2) for hours of the day, days of the week, and months of the year. Then, for

each hour of the year, we calculated the sum of the EDGAR emissions of all sectors in the domain of the

study (Figure III.3) in order to retrieve an estimation of the temporal variations of the anthropogenic emission

maps at the hourly time resolution for CO2 and CH4. Note that for CH4, a constant temporal factor (factor=1/

(365*24)) that convert gCH4/year to gCH4/hour was applied for the principal sectors of emission, which

represent more than 90% of the total CH4 emissions (e.g., waste management, enteric fermentation, and oil

production and refineries). All the time factors (the 24 hourly factors of the diurnal cycle, the 7 daily factors

of the weekly cycle, and the 12 monthly factors of the annual cycle) have a mean value of 1//(365*24), which

convert from yearly to hourly scale. The resulting hourly emission maps thus, conserve the annual emission

budget of EDGAR in each grid point.  

III.2.3.1.3 IER database 

In this study, we use one of the IER inventories produced for Europe by the Institute for Energy Economics

and the Rational Use of Energy, University Stuttgart (IER). The underlying model provides an estimate of the

CO2 and the CH4 anthropogenic emissions at  a high spatiotemporal  resolution for the year 2005 by the

disaggregation of the national total provided by the UNFCCC on a map that covers Europe.

The emissions in the IER inventories are decomposed into 10 sectors that follow the Selected Nomenclature

of Air Pollutants (SNAP) representation of the EMEP/CORINAIR (http://www.eea.europa.eu/publications

/EMEPCORINAIR5). The 10 SNAP emission sectors are distributed in space and time, using the spatial

proxies and temporal functions described in the report “Spatial and temporal disaggregation of anthropogenic

greenhouse gas emissions in Europe: Emission Inventory for Europe 2005 Institut fur Energiewirtschaft und

Rationelle Energieanwendung. http://carboeurope.ier.uni   stuttgart.de/”. 

In  this  study,  we  used  the  IER  inventory  for  CO2 and  CH4 at  0.08°  horizontal  and  1-hour  temporal

resolutions. The temporal functions from IER were applied to the emission sectors as described by Vogel et

al (2013). Similar to EDGAR emissions, the time varying factors were applied to the emission sectors known

by significant temporal variations (e.g. residential, road transportation, energy industry, etc.). In practice, this

means that the time varying functions were applied to emission sectors that represent respectively ~9% and

~80% of the CH4 and CO2 total emission. 
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III.2.1.2 Vegetation – atmosphere CO2 fluxes

III.2.3.2.1 VPRM

The  Vegetation  Photosynthesis  and  Respiration  Model  (VPRM)  is  a  diagnostic  biosphere  model  that

estimates the fluxes in coherence with the Eddy Covariance fluxes (Mahadevan et al., 2008). VRPM uses  the

temperature (T2m) and downward shortwave radiation meteorological data from the ECMWF model, the

enhanced  vegetation  index  (EVI)  and  the  land  surface  water  index  (LSWI)  from  the  MODIS  satellite

(Moderate Resolution Imaging Spectroradiometer).  The later  parameters are optimized against  European

measurement  sites  (described  in  Kountouris  et  al,.  2015)  for  8  vegetation  classes:  the  Evergreen,  the

Deciduous, and the Mixed Forest, the Shrubland, the Cropland, the Grassland, the Savanna, and one last

group for snow, water, and urban areas derived from the Synergistic Land Cover Product model (SYNMAP,

Jung et al., 2006). The use of the vegetation index and the urban classification allows VPRM to estimate the

characteristics of the biogenic fluxes in the urban areas. The model estimates the respiration (R) and the

Gross  Ecosystem  Exchange  (GEE)  (Mahadevan  et  al.,  (2008))  from  which  we  can  compute  the  Net

ecosystem exchange, which represents their sum (NEE = - GEE + R). In this study, we use VPRM at 1-hour

time step and 0.125°x0.08° (longitude x latitude) spatial resolution for the year 2014 for a domain covering

Western Europe.

III.2.3.2.1.2 CTESSEL

The Carbon-TESSEL or CTESSEL model is the ECMWF land surface model describing energy and CO 2

fluxes between the surface and the atmosphere (Van den Hurk et al., 2000). It is based on Hydrology-Tiled

ECMWF scheme for Surface Exchange over Land model (H-TESSEL) (Balsamo et al., 2009; van den Hurk

et al., 2000). The model was developed to resolve the exchange of heat with the atmosphere and the water

content of soil for weather forecast applications.

The NEE is the results of the ecosystem respiration (R) and the Gross Ecosystem Exchange (GEE), which are

computed independently in the model. The respiration (R) is calculated using an empirical equation driven

by snow cover, soil moisture, and soil temperature. The Gross Ecosystem Exchange (GEE) is computed using

soil temperature, soil moisture, radiation, and a climatology (based on a 9-year averaging from 2000 to 2008)

of the leaf area index (LAI) from MODIS satellite. The list of parameters used for the calculation of the NEE

is described in detail in Boussetta et al. (2012). The land use change is not accounted for in the CTESSEL
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model since the vegetation growth is represented by a 9 year LAI climatology. Moreover, the model does not

include any urban schemes for the calculation of the NEE fluxes over the urban areas. As was demonstrated

by Bréon et al (2015), the CTESSEL seems to assume that urban areas are covered by ecosystems. In this

study,  we  use  outputs  from  the  CTESSEL  simulations  at  ~0.15°x0.15°  (longitude  x  latitude)  spatial

resolution and 3 hours temporal resolution to represent the Net Ecosystem Exchange for the CO2 atmospheric

modelling.  Note that  Panareda et  al  (2016)  developed a recent  version of  the CTESSEL model using a

biogenic flux adjustment scheme, but this version was not available for this study.

III.2.2 Atmospheric concentration measurements

We used hourly averages of the CO2 and CH4 continuous concentrations measurements at 16 surface stations

(Table III.3) located in the domain (figure III.3). Five stations are currently in the process of labelling in the

ICOS  European  infrastructure  (CBW,  JFJ,  OPE,  PUY,  TRN),  and  consequently  follow  the  ICOS

measurement specifications (Laurent, 2016). Five more contribute to the French monitoring network (BIS,

ERS, GIF, OHP, PDM) and also follow very closely the ICOS recommendations. Three stations are part of

the ClimaDat Spanish project (DEC, GIC, VAC) available at http://www.climadat.es/. The UK station of

Ridge Hill (RGL) was set up in 2012 through the UK-DECC project, in close collaboration with AGAGE

(Advanced Global Atmospheric Gases, https://agage.mit.edu/) and ICOS networks (Stanley et al., 2017). In

addition,  we  have  downloaded  from  the  World  Data  Center  for  Greenhouse  Gases  (WDCGG;

https://ds.data.jma.go.jp/gmd  /-wdcgg/) the CO2 and CH4 time series from Schauinsland (SCH, Germany),

and Plateau  Rosa  (PRS,  Italy).  The  measurement  protocols  used  at  the  atmospheric  sites  are  relatively

similar, and all agree with WMO recommendations. The instruments are calibrated every 3 to 4 weeks using

reference gases calibrated with WMO standards. All observations are respectively expressed in the WMO-

X2007 and WMO-X2014A scales for CO2 and CH4. At most stations, one or two more reference gases are

analyzed regularly for quality control purposes. 
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Figure III.3: Simulation domain (red box) and observation sites used in this study. The 
blue and green color stand for the atmospheric measurement site (https://icos-
atc.lsce.ipsl.fr/) and the ecosystem measurement sites (https://icos-eco.fr/) respectively. 
Note that the atmospheric sites are grouped into four categories according to their 
characteristics (e.g. topography and environment): coastal (circle), mountain (triangle), 
peri-urban (square for GIF only), and tall tower (inversed triangle).



Station Code Lon

(°)

Lat (°) Altitude

(m asl)
Inlet height

(m)

Type Institute Reference

Biscarrosse BIS -1.2 44.3 120 47 Coastal LSCE Ahmadov et al,
(2009)

Delta de l’Ebre DEC 0.8 40.7 1 10 Coastal IC3 -

Ersa ERS 9.3 42.9 533 40 Coastal LSCE - 

Gredos GIC -5.2 40.3 1436 20 Mountain IC3 -

Jungfraujoch JFJ 7.9 46.5 3580 5 Mountain EMPA Reimann et al,
(2008)

Pic Du Midi PDM 0.1 42.9 2877 10 Mountain LSCE, OMP Tsamalis et al.,
(2014)

Plateau Rosa PRS 7.7 45.9 3480 10 Mountain RSE Ferrarese et al,
(2015)

Puy de dôme PUY 2.9 45.8 1465 10 Mountain LSCE, OPGC Lopez et al,
(2015)

Schauinsland SCH 7.9 47.9 1205 7 Mountain UBA Schmidt et al.,
(2003)

Valderejo VAC -3.2 42.9 1086 20 Mountain IC3 -

Gif-sur-Yvette GIF 2.1 48.7 160 7 Peri-urban LSCE Ramonet et al,
(2010)

Cabauw CBW 4.9 51.9 0 20, 60, 120,
200

Tall tower ECN Tolk et al, (2009)

Observatoire 
Haute Provence

OHP 5.7 43.9 650 10, 100 Tall tower LSCE,
PyTHEAS

Belviso et al.,
(2016)

Observatoire 
pérenne de 
l’environnemen
t

OPE 5.5 48.6 390 10, 50, 120 Tall tower LSCE,
ANDRA

Ramonet et al,
(2010)

Ridge Hill 
Observatory

RGL -2.5 51.9 199 45, 90 Tall tower Univ.Bristol Stanley et al.,
(2017)

Trainou TRN 2.1 47.9 131 50, 100,
180

Tall tower LSCE Schmidt et al,
(2014)

Table III.3: Atmospheric stations characteristics. The altitude of the site represents the altitude of the ground above sea 
level at the site location, and the inlet height is the altitude of the inlet above ground level. The type of sites are 
classified according to the topography. (-) means that corresponding sites are recent and still not published.
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III.2.3 Ecosystem measurements

In addition to the high precision measurements of CO2 and CH4 mixing ratios performed at the atmospheric

sites, ICOS is also deploying stations dedicated to the direct measurements of carbon fluxes. Those stations,

called  ecosystem  stations,  are  monitoring  water  vapour,  heat  and  CO2 fluxes  in  addition  to  several

meteorological and ecosystem parameters like soil temperature and water content at different depths. All

variables are measured in order to calculate the carbon and the water-energy balances of the ecosystems. The

ecosystem network set up in France, aims to represent the major types of vegetation including grasslands,

forests, and crops. The sites used in this study (figure III.3, and Table III.4), provide CO2 fluxes at half-hourly

resolution  using  the  eddy  covariance  technique.  This  approach  is  considered  as  the  main  technique  to

estimate the flux exchanges between the soil and the atmosphere on the local scale (for ~1 ha to 1 km2 areas).

It uses 3D wind measurements and other atmospheric parameters to estimate carbon dioxide, methane, water

vapor, and heat fluxes based on statistical calculations. More information about the eddy covariance approach

can be found in Aubinet et al., 2012. It is important to compare the ~1 ha to 1 km2 spatial representativeness

of the eddy flux measurements with the spatial resolution of the biospheric models (≈ 8500 ha and 20000 ha

respectively for VPRM and CTESSEL). The upscaling of these local scale measurements maybe problematic

in  case  of  large  heterogeneity  in  the  landscape  surrounding the  ecosystem sites.  We have  analyzed the

measured CO2 fluxes at four different ecosystems sites to evaluate the two biospheric models (CTESSEL and

VPRM) used as an input for the atmospheric simulations.

Site code Longitude Latitude Land cover 
classification

Institute Reference

Barbeau BAR 2.8 48.5 Deciduous forest CNRS Delpierre et al. 
(2009)

Grignon GRI 1.9 48.8 Crop INRA Stella et al. (2002)

Lamasquère LAM 1.2 43.5 Crop CNRS Béziat et al. (2013)

Puechabon PUE 3.6 43.7 Evergreen forest CNRS Allard et al. (2008)

Table III.4: Ecosystem stations used in this study.
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III.3 results

III.3.1 Comparison of the national totals and temporal distribution of IER and 
EDGAR anthropogenic fluxes

In this section, we have compared the mean temporal features and the total emissions aggregated over France

for the two inventories described previously (IER for the year 2005 and EDGARv4.2 for the year 2012). The

two corresponding annual emission maps were rescaled for the year 2014 to fit the corresponding emission

total  of  CITEPA (Centre  Interprofessionnel  Technique  d'Etudes  de  la  Pollution  Atmosphérique,  https://

www.citepa  .org/  fr/activites  /inventaires-des-emissions/secten) that is used for the National Communication to

the  UNFCCC.  Recently,  several  studies  indicated  that  the  uncertainty  in  annual  national  totals  from

inventories is better than 10% for CO2 (Peylin et al., 2011), and 20% for CH4 (Peng et al., 2016). Table III.5

represents the comparison of the rescaled total of CO2 and CH4 anthropogenic emissions for the year 2014

over France for IER and EDGAR according to the inventory compiled by CITEPA.

Species IER (Mt) EDGAR
(Mt)

Relative
difference

(%)

CITEPA
SECTEN(1)

Differences
CITEPA

IER  / EDGAR
CO2 337 343 ~ 2% 322 4.7 / 6.5%

CH4 2.52 2.71 ~ 7%  2.34 8 / 16%

Table III.5: Comparison of the rescaled annual anthropogenic emissions for metropolitan France from IER, 
EDGARv4.2 and CITEPA (SECTEN format) inventories for the year 2014. In order to make the CITEPA data easily 
understandable the anthropogenic emission are prepared using the SECTEN format (SECTeurs Economiques et 
éNergie). (1) means that emissions are separated according to Energy and the Economic sectors (SECTEN format).

The relative difference between IER and EDGAR is 7% for CH4, whereas for CO2 EDGAR and IER annual

totals differ only by 2%. However, both inventories give higher total emissions than the national inventory

compiled by CITEPA. The CO2 total emission offset (2 to 7%) can be explained by the difference in the

sectors taken considered by the different inventories. As shown by Ciais et al., 2010, one of the main reasons

for  the  discrepancy  between  inventories  is  the  definition  of  the  sectors  boundaries.  For  example,  the

consideration  of  the  biofuels,  and  the  bunker  fuels,  used  for  maritime  and  aircraft  international

transportation, may increase the CO2 national budget by 5% to 10%. According to the UNFCCC definition,

the emissions due to biomass combustion and to international maritime, river and airborne transport are not
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considered in the national inventory compiled by CITEPA for France. Those emissions can be quantified

separately,  and  if  we  add  the  23Mt  of  CO2 due  to  those  contributions  (extracted  from

https://www.citepa.org/en/air-and-climate/pollutants-and-ghg/ghg/co2), the CITEPA estimates fall within 2%

of IER/EDGAR ones (Table III.5). For CH4,  adding the extra emission due to biomass and international

transport  (0.14Mt  CH4 extracted  from  https://www.citepa.org/en/air-and-climate/pollutants-and-

ghg/ghg/ch4), the CITEPA estimates range within 10% from IER and EDGAR.

III.3.2 Spatial differences between IER and EDGAR totals

In order to investigate the spatial differences of the two emission maps at 0.1°x0.1° resolution, we represent

in figures III.4-A and III.5-A the difference between EDGAR and IER totals for CO 2 and CH4 respectively.

For CO2 the differences can reach more than 400 KgCO2/yr, whereas For CH4 it may attain 1000 gCH4/yr.

These high differences are located over big cities and industrial areas (e.g., Paris region). For CH4 important

differences can also occur over large area such as Brittany region, where the differences range between 50

and 200 gCH4/yr (Figure III.5-A). These differences can be explained by possible inconsistencies in national

totals resulting from unaccounted emissions in different sectors, differences for the localization of the point

sources, and the errors related to the emission factors (Ciais et al., 2010). 

Further, we calculate the percentage of the grid cells for several classes of the absolute difference between

EDGAR and IER over the metropolitan France for CO2 figure III.4-B and CH4 figure III.5-B. In figure III.4-C

and 5-C, we calculate the percentage of the total emission of the grid cells corresponding to the different

classes  used  for  figures  III.4-B  and  III.5-B.  In  France,  over  95%  of  the  CO2 emission  grid  cells  are

characterized by an absolute difference (EDGAR minus IER) less than 20 kgCO2/yr (Figure III.4-B). For

CH4,  more than 95% of  the emission grid cells  are  associated with an absolute  difference less than 60

gCH4/yr (Figure III.5-B). These percentages of the grid cells represent 84% and 80% of the total national

EDGAR emissions for CO2 and CH4 respectively. As can be seen in figure III.4-C and III.5-C the grid cells

that are characterized by a difference higher than 20 kgCO2/yr and 100 gCH4/yr represent less than 20% of

the national emission for CO2 and CH4 respectively. In fact, the important differences between EDGAR and

IER (more than 100 kgCO2/yr and 700 gCH4/yr) occur in a very limited area (hot spots), which does not

exceed 1% of the grid cells, and represent up to 2% of national total emissions in France. For Germany and

Benelux countries, the larger differences can be explained by the fact that IER uses more detailed data for the

economic activities and the demography than EDGAR (Pregger et al.,2007).
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Figure III.4:  Panel A, stand for the spatial distribution of the difference between EDGAR and IER inventories 
(EDGAR minus IER) for CO2. Panel B (resp. C) represent the cumulated percentages of the grid cells (resp. 
national emissions) of the absolute difference between EDGAR and IER for the metropolitan France. The 
cumulated percentages are calculated for various classes of CO2 emissions differences



III.3.3 Temporal differences between IER and EDGAR

The emission inventories are generally produced at a yearly scale using statistics of economic activities at the

country level. In order to evaluate the simulated atmospheric concentration, we need time-varying emission

maps, ideally at the same temporal resolution than the mesoscale transport models (hourly resolution). As

explained in the section III.2.3.1 the time varying emissions have been estimated for both IER and EDGAR

inventories for the different sectors, using periodical functions (temporal profiles).
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Figure III.5: Panel A, stand for the spatial distribution of the difference between EDGAR and IER inventories 
(EDGAR minus IER) for CH4. Panel B (resp. C) represent the cumulated percentages of the grid cells (resp. 
national emissions) of the absolute difference between EDGAR and IER for the metropolitan France. The 
cumulated percentages are calculated for various classes of CH4 emissions differences.



In  Figure  III.6,  we  represent  the  temporal  variations  of  the  CO 2 and  the  CH4 anthropogenic  emissions

calculated for the two inventories at the level of France. For CH4 (resp. CO2) we represent the daily, weekly,

and seasonal cycles respectively in panels A, B, and C (resp. D, E, and F) for January (solid line) and July

(dashed line). We notice a much larger seasonal variation for IER emissions compared to EDGAR for both

CO2 and CH4 (Figure. III.6 C-F). The CO2 seasonal cycle of IER compared to EDGAR emissions (figure

III.6-F) has emission higher in winter and lower in summer.

The comparison between the two inventories at a shorter time scale also shows significant differences. Note

that the diurnal emission maximums in the morning and late in the afternoon are related to the traffic rush

hours (section III.2.3.1). In January (figure III.6-D and III.6-E solid lines), the CO 2 emissions of IER are

about 30% higher than EDGAR. The difference reaches a maximum during daytime (40%), but during the

night,  it  decreases  slightly  to  20%.  In  July  (figure  III.6-D  and  III.6-E  dashed  line),  the  CO 2 EDGAR

emissions are 30% larger then IER during the night and less than 5% during the day. In both inventories, the

amplitude of the diurnal cycle is larger than the weekly and the seasonal cycle amplitudes.  
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For CH4, the emissions of IER are systematically lower than EDGAR (figure III.6-C), which corresponds to

the 7% lower total emission in Table III.5. The temporal variations of the CH4 emissions are relatively weak

since we applied a constant factor (factor=1/365*24, see section III.2.3.1) to the principal CH 4 emission

sectors (e.g. gas production and distribution, enteric fermentation and waste management).  The temporal

variation was applied only to the energy production, the industrial emission, and the road traffic sectors,

which represent less than 10% of the national totals.

The two anthropogenic emission products displayed a significant  difference in their temporal  and spatial

variation, especially for CO2, although the annual totals showed a difference of 2% for CO2 and less than 7%
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Figure III.6: Temporal variation of CH4 and CO2 total anthropogenic fluxes over France at a daily (A and D), weekly (B
and E), and monthly scales (C and F). Solid and dashed line represent respectively the totals for January and July.



for CH4. Consequently, this comparison shows that more efforts are required to a develop better quality of the

anthropogenic emissions maps at high spatio-temporal resolutions, which can be achieved for example by

using city scale information to enhance the quality of the traffic emission maps, and the energy consumption

in urban areas.

III.3.4 Comparison of the biogenic CO2 fluxes between CTESSEL and VPRM

Similarly to the comparison of the anthropogenic emission maps, we have compared the time varying maps

of biogenic CO2 exchanges from the two vegetation models (CTESSEL Boussetta et al., 2012 and VPRM

Mahadevan et al.,2008). Figure III.7 presents a comparison of the monthly totals of the net ecosystem CO2

exchange (NEE) simulated over France by those two models. Note that NEE is the sum of two fluxes: the

gross ecosystem exchange (GEE) and the ecosystem respiration (Mahadevan et al.,2008). Both fluxes are

sensitive to temperature and the soil moisture, and GEE is particularly sensitive to photosynthetically-active

shortwave radiation.

Both VPRM and CTESSEL, show close high negative values of NEE (uptake from the atmosphere) between

late spring and early summer (figure III.7). The two models have a similar maximum uptake, in June for
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Figure III.7: Monthly totals of NEE fluxes for VPRM and CTESSEL over France.



VPRM (-2.2  tCO2.m2.month-1)  and  in  May  for  CTESSEL (-2  tCO2.m2.month-1).  The  difference  is  more

important in winter. From October to February, VPRM is characterized by a positive NEE total over France

explained by respiration exceeding gross ecosystem exchange, as expected for northern temperate regions,

and  consistent  with  flux  tower  measurements  (Sampson  et  al.,  2001).  Except  for  December  where  the

monthly  flux  is  slightly  positive  (+0.05  tCO2.m2.month-1),  CTESSEL  NEE  remains  always  negative,

indicating an uptake of CO2 all year round, even in winter. This unexpected result may be related to the fact

that CTESSEL calculates the GEE and the R separately, and rescales the two parameters to fit the net CO 2

uptake from flux measurements at  the global  scales only (Boussetta et  .,  2012).  Even if  this  calibration

provides accurate results at the global scale (Boussetta et al., 2012), the calibration of the net ecosystem

parameters may lead to significant errors at the subcontinental scale. Panareda et al., (2014) already indicated

that the CO2 fluxes retrieved from the used version of the CTESSEL model are characterized by a negative

bias  in  Europe,  especially  during winter.  This  bias  is  related to  the misrepresentation of  the ecosystem

respiration for some vegetation types (Panareda et al., 2016). In France, a large bias in the NEE was related to

the respiration of the croplands. The evaluation of the CTESSEL model against atmospheric sites showed a

significant underestimation of CO2 from respiration during winter (Panareda et al., 2014). As a result of this

evaluation,  an effort  was made to  develop the Biogenic  Fluxes  Adjustment  Scheme (BFAS) in  order  to

correct the NEE bias of the CTESSEL model used for MACC atmospheric model (Panareda et al., 2016).

This flux-adjusted version of CTESSEL was not available for this study.

III.3.4.1 Spatial distribution of the modeled fluxes for January and July

We present in figure III.8 the spatial distribution of simulated NEE fluxes for January and July in the domain

of the study for each model. In July both models simulate negative value of NEE (uptake of more than -200

gCO2.m-2.month-1) over a major part of the domain (except Spain). The NEE spatial distributions appear quite

similar between the two models, but substantial differences can be observed in some regions (figure III.8-C

and III.8-F). During July, important contrast between VPRM and CTESSEL occur in a large area in the north

of the domain (North of France, Germany and Belgium), with a difference that may attain 200 gCO 2.m-

2.month-1 (Figure  III.8-F).  In  January  the  comparison  of  the  two  maps  (Figure  III.8  A-B)  reflects  the

overestimation of the carbon uptake by CTESSEL. According to VPRM, the NEE is positive everywhere in

France during January, except in Corsica (figure III.8-A), whereas for CTESSEL, the NEE is negative over a

large part of France, with some exception in Les Landes Forest, Pyrénées, and Massif Central regions. In the
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north part of France, CTESSEL simulates a source of CO2 of around -40 gCO2.m-2.month-1 (Figure III.8-B)

when in VPRM this source exceeds 60 gCO2.m-2.month-1 (Figure III.8-A).

From this comparison, we can conclude that both CTESSEL and VPRM are characterized by a peak CO2

uptake during late spring. Even if the monthly totals of the two models do not diverge much during spring-

summer, very large differences in the spatial distribution of NEE uptake are found in summer with much less

uptake in VPRM than CTESSEL in the north of France, Benelux and Western Germany. These differences

are expected to impact significantly the CO2 atmospheric concentrations.
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Figure III.8: Spatial distribution of the total Net Ecosystem Exchange (NEE) during January and July, for VPRM 
(panels A and D), CTESSEL (panels B and E), and VPRM minus CTESSEL (panels C and F). By convention, a positive 
sign is a source of CO2 emitted to the atmosphere.



III.3.4.2 Comparison between the modeled and the simulated NEE

The eddy covariance method (EC) makes it possible to estimate the NEE fluxes at the local scale using 3D

wind measurements and CO2 concentration measurements on top of flux towers. In this section, we compare

between observed fluxes at four EC sites in France and the modeled NEE of the CTESSEL and the VPRM

extracted from the grid-cell  containing each  flux tower.  Eddy covariance measurements  are  available  in

France at two forest sites (Barbeau and Puechabon,) and two crop sites (Grignon and Lamasquere). Barbeau

and Grignon are located in the Ile de France region, and the other (Puechabon and Lamasquere ) are in the

South of France (Figure III.3). The comparison of the mean diurnal cycles of NEE is presented for January

and July (Figure III.9), whereas the seasonal cycle comparison is presented in figure III.10. 

III.3.4.2.1 Diurnal cycle analysis

In January we notice a very small diurnal cycle for both modeled and observed eddy covariance NEE at the

four sites (Figure III.9-January). Contrary to the VPRM model, CTESSEL simulates a net uptake of CO 2 in

midday at all sites, which is only observed at Grignon (winter wheat) and Puéchabon (green oak). This can

be explained for EC data by the carbon uptake due to the early development of winter wheat in the Ile de

France region (sowing in Octobre, germination in November) and by the evergreen phenology of green oak

with wet conditions in winter ensuring CO2 uptake at Puéchabon. During summer, a larger diurnal cycle is

shown in observed and simulated NEE, with a stronger amplitude in Barbeau and Lamasquere sites (Figure

III.9-July). The misrepresentation of the amplitude of the diurnal cycle at the cultivated sites (too low at

Lamasquere and too high at Grignon) can be explained by the fact that wheat started to be senescent in June

with the NEE  reaching 0 at the beginning of July, and by the cultivation of a highly productive summer crop

(maize) at Lamasquère with GEE probably under-estimated by the models. In fact, at Lamasquere, the strong

observed amplitude corresponds to the flowering phase of the maize (started late June), with maximum leaf

area and photosynthetic uptake, which is sown in April and harvested during August. Beziat (2009) works

(Pierre  Beziat  thesis),  confirms  that  the  discrepancies  between  the  observed  and  the  simulated  NEE at

Lamasquère are associated to precocious harvesting of the maize which is not taking into account by the

models.

The site to site variability in the EC measurements is not reproduced by the models showing a different phase

and amplitude at the four sites, especially during July. Consequently, the simulated diurnal cycles are under-

estimated by a factor of 2-3 respectively for Barbeau and Lamasquere and overestimated at Grignon and
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Puechabon (Figure III.9-July). At Grignon, the observations show a flat diurnal cycle with a constant positive

NEE through the whole day. The NEE peak in the simulated diurnal cycle occurs too early for VPRM (~2

hours earlier than observed) and too late for CTESSEL (2-3 hours later). This phase difference appears for all

sites, especially during July. Several studies were carried out to evaluate the simulate NEE at the station level

(e.g. Krinner et al., 2005, and Zhao et al., 2013). The later studies showed important differences between the

simulated and the observed diurnal cycle especially at cropland sites, confirming the difficulty to correctly

simulate the biogenic fluxes at the scale of the EC measurements.
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Figure III.9: Diurnal cycle of the simulated and the observed Net Ecosystem Exchange (NEE) for four 
different sites (Barbeau, Grignon, Lamasquere, Puechabon, Figure 3), during January (panel A) and 
July (B). The time is presented in UTC



III.3.4.2.2 Seasonal cycle analysis

The simulated seasonal cycle of NEE by CTESSEL and VPRM is compared to EC measurements in figure

III.10. Note that the observed NEE seasonal variation at the cultivated sites is strongly dependent on the site

management and on the phenology of the cultivated species grown that year. The site management is not

included in CTESSEL and VPRM, and the phenology is included in both models through satellite greenness

observations, but not at the point scale of the EC measurements. Therefore, the spring NEE uptake of winter

wheat at Grignon followed by a CO2 source after the harvesting in June; is not captured by the models. The

large and short NEE peak uptake of maize at Lamasquère is also missed in both models. At Lamasquere the

maize crop that was sown in April and harvested during late August, explains the maximum of the NEE

during July and the decrease starting from August. Both Grignon and Lamasquere sites are irrigated and their

phenology is controlled by the soil water content. Moreover, the cultivated sites follow a yearly crop rotation

plan,  and  the  models  do  not  consider  this  rotation  in  the  used  surface  scheme  on  the  scale  of  EC

measurements (rotations are implicitly included as well as vegetation heterogeneity in the greenness satellite

index used in the models to define the phenology). This suggests that the development of biogenic models

that include modules describing the grazing, the irrigation, the harvesting, and the plant rotation plan can

improve the phase and amplitude of NEE

The phase of the seasonal NEE is better represented by the models at the two forest sites, especially during

winter. However, the amplitude of the seasonal cycle is not well reproduced by the two models. For example,

in  Barbeau the two models  simulated an amplitude of  -0.6 gCO2.m-2.h-1,  where the EC data  attain -1.4

gCO2.m-2.h-1. The difficulties in modeling the NEE at the forest site during summer can be associated to a

misrepresentation of the phenology (Szczypta et al., 2014). Especially, the inefficiency of  the satellite data to

correctly estimates the water stress  during summer,  which affects the simulation of  the GEE and the R

(Mahadevan et al., 2008). In fact, Szczypta et al., (2014) demonstrate that several environmental parameters,

such as soil moisture and rain pulses, may significantly influence the seasonal cycle of the carbon fluxes in a

during summer. Other reason that may explains the discrepancies between the modeled and the observed

NEE is addressed to the uncertainties related to the land cover schemes used to define the vegetation types

(Congalton et al., 2014). Both models used a vegetation classification which defines the type of plant in each

grid-cell. However, these vegetation models are sometimes not suitable for the modeling of the CO 2 fluxes.

For instance, the forest type that is composed mainly by high vegetation over low vegetation may lead to

96



important source of error in regions where the contribution of the low vegetation is underestimated by the

models. 

Overall the VPRM model performs better than CTESSEL in wintertime, but none of the models is clearly

better to reproduce the observed seasonal phase and amplitude of NEE. Clearly much more EC sites would

be needed to identify the processes responsible for misfit between observations and simulations. Comparison

at EC sites is informative of biases of models, but the bias of a model at a point site observation of NEE does

not relate evidently to the bias of this model over a region with different management plans and vegetation

types. 
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Figure III.10: Seasonal cycle of simulated and observed Net Ecosystem Exchange (NEE) at the four sites 
(Barbeau, Grignon, Lamasquere, Puechabon)



III.3.5 Sensitivity of the concentrations to the meteorological forcing 

We have performed two simulations with the CHIMERE model driven by the meteorological fields provided

by ECMWF and AROME. In this analysis, the two simulations are performed with the same CO 2 (EDGAR

and  VPRM)  and  CH4 (EDGAR)  surface  fluxes,  in  order  to  study  the  sensitivity  of  the  CO2 and  CH4

concentrations to the meteorological fields that drive the atmospheric transport over the domain presented in

figure III.3 (section III.2.4). We will first present the sensitivity of the diurnal and seasonal cycles at the

atmospheric sites, before discussing the spatial distribution of the differences over the domain. We will also

study the sensitivity of the simulated concentration to different  diurnal  time windows by comparing the

daytime to the nighttime data.

Conducting the comparison between the two meteo-transport configurations using other emission maps may

result in different results (different maps and time series of differences between the concentrations obtained

with the 2 models). To simplify the analysis, we show results for one set of fluxes only, but we have checked

that  the general  patterns of  differences analyzed below are  quite similar  for  different  flux products.  For

brevity reason, the time series analysis is focused on the eight French atmospheric sites (BIS, OPE, TRN,

PUY, PDM, OHP, ERS, and GIF). The sites outside of France are presented in the appendix (Figures SIII.5,

SIII.6, SIII.7, and SIII.8). 

III.3.5.1 Diurnal cycle

The comparison between the simulated and the observed concentrations at the French sites is performed

using the mean diurnal cycle for January (Figures III.11 and III.12 for CO 2 and CH4 respectively), and July

(Figures III.13 and III.14 for CO2 and CH4 respectively). Note that the diurnal cycle analysis for PDM and

OHP is  not  presented  for  January,  since  the  measurements  at  these  sites  start  in  May  and  June  2014

respectively.

In January we observe in most sites higher concentrations of CO 2 and CH4, when using ECMWF compared

to AROME (Figures III.11 and III.12). At some sites, like ERS and OPE, this offset remains constant through

the day, but generally, it is slightly more pronounced in the nighttime.

During the afternoon (from 12:00 to 18:00), the difference between AROME and ECMWF at low altitude

sites remains lower than 1ppm for CO2 and vary between 5 and 15 ppb for CH4 for January (figures III.11 and

12). This difference increases during the night and may reach 2 ppm and 20 ppb of difference for CO 2 and
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CH4 respectively (e.g. GIF site in figure III.11, and BIS in figure III.12). This indicates that the simulated

concentrations are more sensitive to the transport processes during the night for the low altitude sites. At the

mountain sites the important differences are noticed during the day (e.g. PUY in figure III.11, the remaining

mountain sites for January can be found in the appendix). These differences can be explained by the difficulty

in the simulated upslope winds which bring the boundary layer air from lower elevations during the day at

the site leading to significant bias between the atmospheric models (Chevalier et al., 2010, Patra et al., 2008).

The difficulty in simulating the atmospheric concentrations at mountain sites are related to the horizontal

(AROME at  0.025°,  and ECMWF at  0.15°) and the vertical  (60 levels for AROME, and 137 levels for

ECMWF) resolution of the models, which influences the representation of the mesoscale driven flows, e.g.

from thermic driven or at night gravitational flows.

As the low altitude sites, the higher CO2 and CH4 concentrations when using ECMWF compared to AROME

can be explained by the differences between the simulated wind for the two models (Figure SIII.9). In fact,

during January, the simulated wind speeds by AROME are higher by a factor between 1.5 and 2 compared to

ECMWF. For example, at OPE we have a monthly wind speed of 9 m/s for AROME, where for ECMWF the

wind speed does not exceed 6 m/s. This confirms that higher wind speed leads to an increase in the horizontal

mixing (Geels et al., 2007), and consequently a decrease in the atmospheric concentrations.

There is no significant difference in the amplitudes of the diurnal cycles simulated for CH 4 by the two models

in January, except at BIS. At this site, the AROME model simulates higher CH 4 concentration (up to 20 ppb)

during the night. This signal represents an anomaly for two reasons: there are very few sites where AROME

concentrations  are  higher  than ECMWF, and there  is  no such difference for  CO2.  The increase of  CH4

concentration during the night with AROME model, cannot be explained only by the PBL heights which are

quite similar for the two models (Figure SIII.1).  The difference could be due to the horizontal transport

simulated with AROME and ECMWF wind fields, and the reason why we observe such a difference for CH4

and not  for CO2 is  due to the presence of a hotspot  CH4 emission east  of  the station (Figure III.15-C).

Consequently,  a  higher  percentage  of  wind from the  east  significantly increases  the  CH4 concentrations

during  the  night  (Figure III.15-A).  It  should be noted that  this  nighttime CH4 increase in  the AROME

simulation is overestimated compared to the observations.

In  July the  differences  of  CO2 and  CH4 concentrations  generated  by  the  use  of  AROME and ECMWF

meteorological fields are less systematic than in January. First of all, we observe in July opposite results for

CO2 and CH4 at several sites. At most sites, the ECMWF simulation gives higher CH4 concentration, whereas

for CO2 the concentrations are generally higher or equal than with AROME. Contrary to January when both

CO2 and CH4 fluxes are positive, in July there is NEE surface CO2 uptake. Consequently, it looks like the
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ECMWF model tends to have a higher sensitivity to the surface emissions (positive for CH 4, negative for

CO2) than AROME. Moreover, the higher wind speed of ECMWF compared to AROME during July (Figure

SIII.9), increases the advection of air masses, and leads to lower atmospheric concentrations. However, the

opposite can be seen for CH4 (e.g. BIS). In order to explain the higher CH4 concentration using ECMWF

compared to AROME during the afternoon,  we represent  in figure III.15-B the diurnal  averages of CH4

concentration (using data from 12:00 to 18:00). In Figure III.15-B we notice a lower CH 4 concentration using

ECMWF compared to AROME between 5th and 15th of July (differences less than 5 ppb). But during some

specific synoptic events (e.g.  between 22th and 28th July),  we observe a higher CH4 concentration using

ECMWF, leading to higher values compared to AROME. The difference between the two simulations is

related to the change in the wind direction as presented on the top of figure III.15-B. In fact, during this

period,  ECMWF simulates  east  and  north-east  winds  which  advect  higher  CH4 concentration  from the

emission point source located one grid-cell east of BIS (Figure III.15-C). Despite the higher ECMWF wind

speed 5.5 m/s compared to AROME 4 m/s at BIS, the difference in the wind direction between the two

transport fields impacts significantly the simulated concentration, and lead to higher CH4 concentration using

ECMWF compared to AROME.
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Figure III.11: CO2 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed (black) and the 
simulated (red and blue for AROME and ECMWF respectivly) concentrations during January.
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Figure III.12: CH4 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed (black) and the 
simulated (red and blue for AROME and ECMWF respectivly) concentrations during January.
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Figure III.13: CO2 average diurnal cycle at BIS, GIF, OHP, OPE, PDM, PUY, and TRN, for the observed 
(black) and the simulated (red and blue for AROME and ECMWF respectivly) concentrations during July.
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Figure III.14: CH4 average diurnal cycle at BIS, GIF, OHP, OPE, PDM, PUY, and TRN, for the observed (black) and the 
simulated (red and blue for AROME and ECMWF respectivly) concentrations during July.
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Figure III.15: CH4 daily average at BIS using the nighttime data (00:00 to 06:00) for January (A), using the 
afternoon data (12:00 to 18:00) for July (B). The arrows on the top of panels A and B stand for the wind direction 
simulated by the AROME (magenta) and ECMWF (cyan).Figure (C) represent the spatial distribution of the CH4 
surface fluxes retreived from EDGARv4.2 FT2010 inventory.



III.3.5.1.2 Seasonal cycle

Figures  III.16 and III.17 represent  the variations of  the daily  averaged afternoon (from 12:00 to 18:00)

observed and simulated concentrations for CO2 and CH4 for low altitude sites and nighttime data (from 00:00

to 06:00) at the mountain sites. Note that the observed data are available only from January to June for ERS,

and start from May and June for PDM and OHP respectively. CO2 is characterized by a well pronounced (10

to 20 ppm) seasonal cycle with a minimum occurring in July and a broad maximum between November and

March. Conversely, the seasonal cycle of CH4 is relatively weak (20 to 60 ppb) compared to the month to

month variability. However similarly to CO2, we observe at most sites a minimum concentration occurring

late summer (between August and September) and a maximum between November and March. 

Among the 8 sites (figures III.16 and III.17), the seasonal cycle of the ECMWF and AROME simulations are

similar, with a correlation coefficient (between the two models) larger than 0.9 for both CO 2 and CH4. There

is no significant change in the phase of the simulated cycles when using one model or the other. The monthly

differences between the two simulations range by ±3 ppm for CO2, and from 5 to 15 ppb for CH4. The CH4

concentrations simulated using ECMWF meteorology are systematically higher compared to the AROME

simulation. As detailed previously with the description of the mean diurnal cycles, the situation is different

for CO2. Due to the higher sensitivity to the surface flux with ECMWF compared to AROME, the simulated

concentrations using ECMWF meteorology are generally lower in summer and higher in winter. Both models

overestimate  the amplitude of  the seasonal  cycles  compared to the observations (Figure III.16),  and the

overestimation is 15% larger with ECMWF compared to AROME. However, it  should be noted that the

wintertime concentrations simulated with ECMWF are generally closer to the observations, and the reverse

in spring and summer. For CH4 both models underestimate the seasonal cycle (Figure III.17) and the month

to month variability observed at the sites, and it remains difficult to say that one model performs better than

the other.
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Figure III.16: CO2 seasonal cycle at BIS, ERS, GIF, OHP, OPE, PDM, PUY, and TRN, for the 
observed (black) and the simulated (red and blue for AROME and ECMWF) concentrations. The
monthly mean is calculated using the afternoon data (from 12:00 to 18:00) for low altitude sites 
and nighttime data (from 00:00 to 06:00) at the mountain sites.
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Figure III.17: CH4 seasonal cycle at BIS, ERS, GIF, OHP, OPE, PDM, PUY, and TRN, for the 
observed (black) and the simulated (red and blue for AROME and ECMWF) concentrations. The 
monthly mean is calculated using the afternoon data (from 12:00 to 18:00) for low altitude sites and 
nighttime data (from 00:00 to 06:00) at the mountain sites.



III.3.6 Spatial distribution of the AROME/ECMWF differences

Beyond the comparison of the AROME and ECMWF simulations at a limited number of monitoring sites,

figures III.18 and III.19 represent the differences over the domain of the study for CO2 and CH4 respectively.

Each map represents the atmospheric concentration differences at the first level (from 0 to ~5magl) of the

model for CO2 (figure III.18), and CH4 (figure III.19), using the afternoon selected data (data from 12:00 to

18:00) for January and July. All the monthly comparisons can be found in the appendix (figures SIII.12,

SIII.13, SIII.14, and SIII.15).

In coherence with our analysis for the sensitivity of the CO2 concentration at the monitoring sites, the abso-

lute difference between the two atmosphere fields does not exceed 1 ppm at large part of the domain. For ex-

ample, during January the major part of France is characterized by low differences that range between -0.5

and 0.5 ppm. These differences increase slightly to reach on average 0.8 ppm of difference over France as a

maximum in September (Figure SIII.13). Important transport related discrepancies are identified in mountain

regions (e.g., Alpes mountains), where the impact of the difference between AROME and ECMWF may

reach more than 3 ppm especially during summer (e.g., June, July, and August). This issue is probably related

to the large differences of topography between the two models (different horizontal resolution) which impact

significantly the simulated meteorological flows (Pillai et al,. 2011). In fact, the use of AROME with a resol -

ution more than 30 time higher than ECMWF, provide a better representation of mountainous regions, which

lead to larger sensitivity to the surface fluxes for CO2 with higher values in January and lower values in July.

For CH4 the differences between the two meteorological models (AROME and ECMWF) do not exceed 10

ppb  over  France.  The  impact  of  the  meteorological  data  on  the  monthly  mean  of  CH 4 atmospheric

concentrations is lower than 8 ppb during all the year (Figures SIII.14 and SIII.15), with few exceptions.

Indeed,  higher  differences  in  CH4 concentrations can be seen in  the Alps  and north of  Italy,  where the

AROME minus ECMWF simulation reach more than 15 ppb of difference. Also, there are few hotspots in the

spatial  distribution  of  the  differences  which  correspond  to  cities  (e.g.  Paris,  London,  Madrid)  or  high

emission area (e.g.  between Angers  and Tours).  As explained previously for  BIS,  close to  a  hotspot  of

emission any difference in the meteorological wind fields leads to high concentration differences.

Compared to flat regions, the mountain area impacts the regional circulation patterns leading to local flow

circulation which influences the atmospheric concentrations by up to 3 ppm for CO2 and 20 ppb for CH4. In

fact, the local circulation can be related to mountain valley flow caused by the surface temperature (heating
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and cooling), and to the gravity waves, also called mountain waves, that occur when stable flow crosses the

mountains.
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Figure III.18: Spatial distribution of the CO2 monthly differences (ppm) between the CHIMERE simulations runing with
two meteorological models (AROME minus ECMWF), using the data from 12:00 to 18:00 at the first level of the model.

Figure III.19: Spatial distribution of the CH4 monthly differences (ppb) between the CHIMERE simulations runing with 
two meteorological models (AROME minus ECMWF), using the data from 12:00 to 18:00 at the first level of the model.
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Figure III.20: Spatial differences of the simulated boundary layer height (PBL in m) between the two meteorological 
models (AROME minus ECMWF), using the data from 12:00 to 18:00.



III.3.7 Sensitivity of the concentrations to the surface fluxes

In this section, we present the sensitivity of the simulated CO2 and CH4 concentrations using to the different

emission maps presented in section III.2.3. For CO2, we ran four simulations using the two NEE models

(CTESSEL and VPRM), and the two anthropogenic emission maps (IER and EDG). For CH4,  since the

biogenic  fluxes  from  the  natural  emissions  (e.g.  wetlands  and  termites)  were  neglected,  we  ran  two

simulations using only the two anthropogenic emission maps. All simulations are performed over the domain

of our study, using the CHIMERE model driven by ECMWF meteorology. Similar to the section III.3.5, the

discussion is supported by the French sites, the remaining European stations are presented in the appendix,

and the results are presented at the diurnal and the seasonal scales. 

III.3.7.1 Diurnal cycle

The comparison between the simulated and observed diurnal cycles is presented for January (figure III.21

and III.22 for CO2 and CH4 respectively) and July (figure III.23 and III.24 for CO2 and CH4 respectively). For

CO2, the comparison is performed between the set of fluxes CTESSEL+EDGAR (noted by CTS_EDG) and

VPRM+EDGAR (noted by VPM_EDG). 

As  shown  in  section  III.3.1,  the  difference  between  the  two  CO2 total  anthropogenic  emissions  (IER,

EDGAR)  does  not  exceed  2%  at  the  annual  scale.  This  difference  increases  after  the  spatio-temporal

distribution of the total emissions especially near the emission hotspots. Thus, we expect that the impact on

the atmospheric concentrations will be larger near big cities and highly industrialized areas. Figures SIII.16,

SIII.17, SIII.18, and SIII.19 (appendix), showing that the difference of CO2 concentrations between IER and

EDGAR vary between 0.1 and 0.5 ppm at most sites, and may reach 0.8 ppm in the suburban site GIF (Figure

SIII.18).  This  confirms  that  the  background  sites  are  less  sensitive  to  the  difference  between  the

anthropogenic emission maps compared to the stations located near the emission hotspots.

The difference between CTS_EDG and VPM_EDG, varies between 2 ppm (e.g. BIS) and 6 ppm (e.g. GIF)

during January, and between 1 ppm (e.g. BIS) and 10 ppm (e.g. GIF) during July. These differences are

related to the different NEE models as shown in section III.3.4. By using CTESSEL rather than VPRM the

CO2 concentrations  are  systematically  lower,  and  clearly  underestimated  compared  to  the  observations

(Figure III.21). In fact, the negative bias of the CTESSEL model for the NEE (section III.3.4) leads to a
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significant  underestimation of CO2 atmospheric  concentrations  during winter.  During July the difference

between CTS_EDG and VPM_EDG decreases slightly and ranges between 1 and 5 ppm, except at GIF where

the difference reaches more than 10 ppm. This difference can be explained by the discrepancy in NEE fluxes

near the Paris area, since VPRM uses urban land cover information (implicitly in the EVI satellite fields) to

produce  small  NEE  fluxes  over  urban  areas  (Mahadevan  et  al.,  2008)  whereas  CTESSEL  has  active

vegetation everywhere in urban areas. 

Figures III.21 and III.23 also show a phase difference of CO 2 between the two simulations. The VPM_EDG

simulation reproduces quite well the timing of the observed diurnal cycle, but a lag of 2 to 3 hours can be

seen in CTS_EDG simulation especially at BIS, GIF, and TRN. The CTESSEL fluxes used as an input of the

transport models are available at 3 hours time resolution, whereas a 1 hour time resolution was used for

VPRM. This phase difference is also highlighted in the biogenic flux evaluation section in figure III.9. In fact,

every 3 hours (00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00), CHIMERE interpolates the NEE

missing hours using a linear temporal interpolation tool. This difference in the temporal resolution and NEE

interpolation  during  the  diurnal  cycle  may  explain  thus  partly  the  phase  difference  between  the  two

simulations.

Contrary to CO2, the CH4 inter-flux differences (Figures III.22 and III.24) are on average smaller, and on the

same  order  of  magnitude  compared  to  the  inter-transport  ones  (Figures  III.12  and  III.14).  At  GIF  the

difference between IER and EDGAR reaches  a  daily  maximum during the night.  In  the daytime,  these

differences decrease to 7 ppb on average during January and 20 ppb during July.  This is  related to the

significant differences between the two emission maps near the Paris urban area (see section III.3.2). For the

low altitude sites (BIS, ERS, OPE, and TRN) the differences range between 5 and 10 ppb during the January

and may reach 20 ppb for TRN during July. These sites are characterized by larger concentrations during the

nighttime than during daytime. Since the temporal factors were applied only on secondary CH 4 emission

sectors that represent less than 10 % from the total emissions (section III.3.1), we assume that the simulated

CH4 diurnal cycle is highly controlled by the atmospheric mixing and the spatial distribution of the emissions

sources. For CH4 lowest differences between IER and EDGAR (less than 5 ppb) occur at the mountain sites

(e.g. PUY, PDM, JFJ, SCH, and PRS), whereas the maximum differences occur at GIF. This confirms that

the high altitude sites are less sensitive to the change in the surface fluxes. At the remote and high-altitude

stations, the time series analysis showed a weak diurnal cycle with an amplitude less than 5 ppb during both

January and July (figures III.22 and III.24). Some exceptions can be seen for PUY during winter (figure
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III.22), and PDM during summer (figure III.24), where high atmospheric concentrations can be lifted up by

the upslope winds (Patra et al., 2008), leading to an increase of the CH 4 atmospheric concentrations during

the day.
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Figure III.21: CO2 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed 
(black) and the simulated (green and orange for CTESSEL and VPRM respectively) concentrations 
during January.
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Figure III.22: CH4 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed (black) and the 
simulated (red and blue for IER and EDGAR respectively) concentrations during January.
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Figure III.23: CO2 average diurnal cycle at BIS, OPE, PUY, TRN, ERS, and GIF, for the observed (black) 
and the simulated (green and orange for CTESSEL and VPRM respectively) concentrations during July.

Figure III.24: CH4 average diurnal cycle at BIS, GIF, OHP, OPE, PDM, PUY, and TRN, for the 
observed (black) and the simulated (red and blue for IER and EDGAR respectively) concentrations 
during July.



III.3.7.2 Seasonal cycle

Figures III.25 and III.26 display the monthly means of the atmospheric concentrations for CO 2 and CH4

respectively. Since the sensitivity of the CO2 averaged diurnal cycle to the two anthropogenic inventories

does not exceed 1 ppm at most sites (figures SIII.16, SIII.17, SIII.18, and SIII.19), the seasonal cycles are

compared for the total  of  the biogenic and the anthropogenic emissions.  For CH4,  the  seasonal  cycle is

computed for both EDGAR and IER (figure III.26). In this section devoted to the seasonal cycles, we will

focus on the periods of the day where the processes should be more representative of a large scale, and

therefore better represented by the models. For Both CO2 and CH4, we have selected daytime values (between

12:00 and 18:00)  for low altitude sites and nighttime data  (between 00:00 and 06:00) for  the mountain

stations. As demonstrated by Broquet et al., 2011, and as shown in the previous paragraphs, atmospheric

models have more difficulty to represent the nighttime/daytime values at surface/mountain sites due to the

discrepancies in the vertical mixing and the different representation of the topography.

The CO2 atmospheric concentrations show a clear seasonal cycle ranging from 10 ppm to 20 ppm (Figure

III.25). The largest amplitudes are noticed in the low altitude sites (e.g. TRN, OPE, GIF). In winter the

simulated CO2 concentrations are higher at continental surface sites (such as OPE, TRN, and GIF) compared

to the mountain sites (e.g. PUY and PDM). This is because of the accumulation of CO 2 from emissions

(biogenic and anthropogenic) near the surface, due to the relatively low vertical dispersion illustrated by

lower values of PBL (figures SIII.1, SIII.2, SIII.3, andSIII.4). The mountain sites sample quite often the free

tropospheric air during winter.  In summer, the CO2 concentration is lower at the low altitude sites due to the

action  of  the  photosynthesis  activity  (see  the  biogenic  flux  evaluation  section  III.3.4).  The  comparison

between  the  simulated  and  the  observed  simulations  show higher  coefficients  of  correlation  (R2)  with

observations  for  VPM_EDG  simulation  compared  the  CTS_EDG.  They  vary  between  0.8  and  0.9  for

VPM_EDG, but for CTS_EDG this correlation decreases to 0.7 (e.g. GIF). This is mainly related to the bias

and phase difference noticed especially for the CTESSEL model (section III.3.4.2). Panareda et al (2014)

demonstrated that the CTESSEL bias leads to small correlations between the simulated and the observed CO 2

concentration in Europe. The VPM_EDG simulation differs from the observations by 1 to 5 ppm during

winter, and by up to 15 ppm as a maximum for GIF in summer. The CTS_EDG simulation shows higher

differences with observed CO2 all along the year, with biases ranging between 5 and 20 ppm. The monthly

analysis shows significant biases starting from spring. This period is very critical since the biogenic models

have  to  correctly  reproduce  the change  of  NEE fluxes  from a predominant  respiration  of  winter  to  the
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predominant photosynthesis uptake in spring. The sign and the timing of this shift may vary from one model

to the other. It is interesting to note that the VPRM runs correctly the spike observed at most sites in March,

and the minimum concentration in August, while the CTESSEL simulation peaks in July and shows flat

signal in March. For CTESSEL the transition from spring to summer is weaker compared to VPRM, due to

the underestimation of the respiration and the persistence of photosynthesis in the NEE during winter over a

large  part  of  France  (see  section  III.3.4.1).  Panareda  et  (2014)  showed  that  CTESSEL  simulations

underestimate the CO2 concentration by a value ranging between -5 and -10 ppm, with a significant impact

during the summer time. The corrected version of CTESSEL developed by Panareda et al (2016), but not

available for this study, reduces this bias by a factor of 2 in Europe. 

For CH4 the seasonal cycles are less marked than for CO2, and the simulations with different emission maps

(EDGAR and IER) both underestimate the seasonal and the month to month variabilities, like the spike con-

centrations observed at several stations in March and September. Higher variations are noticed for GIF sta -

tion for both observed and simulated CH4 concentrations, due to the influence of the Paris region. The amp-

litude of the seasonal cycle varies between 10 and 50 ppb at low altitude sites, and less than 10 ppb at the

mountain sites. The coefficient of correlation (R2) calculated between the observed and the simulated sea-

sonal cycle for both EDG and IER, range between 0.8 and 0.9, except for GIF where the correlation decreases

to 0.7. For the mountain sites and some remote station (e.g. ERS and OHP), the differences between IER and

EDG do not exceed 5 ppb. For the stations that are located near an emission source, the difference range

between 5 and 10 ppb (e.g. OPE and TRN), and can be more than 20 ppb for GIF. These differences can be

explained by the errors related to the emission factors, and the different spatial distribution of the emissions

sources near the highly industrialized area. Overall IER simulation leads to lower concentrations which are

generally closer to the observations in summer, but further away in winter.
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Figure III.25: CO2 average seasonal cycle at BIS, ERS, GIF, OHP, OPE, PDM, PUY, and TRN, 
for the observed (black)and the simulated (green and orange for CTESSEL and VPRM 
respectivly) concentrations. The monthly mean is calculated using the afternoon data (from 
12:00 to 18:00) for low altitude sites and nighttime data (from 00:00 to 06:00) at the mountain 
sites.
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Figure III.26: CH4 average seasonal cycle at BIS, ERS, GIF, OHP, OPE, PDM, PUY, and TRN, for the
observed (black) and the simulated (red and blue for IER and EDGAR respectivly) concentrations. The
monthly mean is calculated using the afternoon data (from 12:00 to 18:00) for low altitude sites and 
nighttime data (from 00:00 to 06:00) at the mountain sites.



III.3.8 Spatial distribution of the surface flux differences 

The sensitivity  of  the  surface  level  CO2 concentrations  to  the  differences  between the  biogenic  models

(CTESSEL minus VPRM) is presented as a map in panel ΔBio (figure III.27), whereas the panel ΔAnthro

represents the sensitivity to the two anthropogenic inventories (IER minus EDGAR) for CO2 (figure III.27)

and CH4 (figure III.28). The difference maps are generated using the afternoon data (data between 12:00 and

18:00) at the first level of the model (~ 5 m) for January and July (the remaining months are presented in the

appendix Figures SIII.26, SIII.27, SIII.28, SIII.29, and SIII.30).

For CO2 the spatial distribution of the Δbio and Δanthro are characterized by higher differences over France

between the biogenic models compared to the anthropogenic inventories. During January,  the CTESSEL

model underestimates the CO2 concentrations compared to VPRM. The few sites discussed in the previous

paragraph are quite representative, since the differences are relatively homogeneous over France with values

ranging from -2 to -6 ppm for the difference CTESSEL minus VPRM. As explained earlier,  CTESSEL

simulates a significant photosynthesis activity in January over a large part of France with some exceptions in

Landes forest, Massif Central, and Pyrénées regions. These three regions are the ones characterized by the

lowest contrast between CTESSEL and VPRM in wintertime, with a difference of less than 2 ppm (figure

III.27-ΔBio). In July, positive differences (~2 ppm) between the two biogenic flux models occur in the south

and west side of France, meaning that the CO2 concentrations using CTESSEL are higher than VPRM. These

positive differences can be explained by the larger photosynthesis activity modeled by VPRM leading to a

more pronounced CO2 uptake  compared to  CTESSEL (figure III.8,  section III.3.4.1).  For  example,  flux

differences ranging between 100 and 200 gCO2/m²/month in the Landes forest (figure III.8-July), impact the

CO2 concentrations by a value within a range from 1 to 3 ppm (figure III.27-July panel ΔBio). North, central

and east parts  of  France are characterized by negative values, meaning higher CO2 concentrations using

VPRM, as it was shown at most monitoring sites (Figure III.25). The highest differences between VPRM and

CTESSEL occurs during spring and autumn leading to differences in CO2 concentration of more than 7 ppm

in March and November. Some small-scale patterns can be seen near big cities, such as Paris and London

(figure III.27- ΔBio and figure SIII.27-ΔBio for May), showing very high differences that may reach 8 ppm.

This sensitivity is related to the difference for computing the biogenic fluxes in the urban area.
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The sensitivity of surface level CO2 and CH4 concentrations to the anthropogenic inventories are presented

respectively in figure III.27-ΔAnthro and figure III.28-ΔAnthro. Over large parts of France, the impact of the

difference between the two anthropogenic fluxes (IER minus EDGAR) does not exceed 1 ppm for CO2 (figure

III.27-ΔAnthro),  and 5 ppb for CH4 (figure III.28-ΔAnthro).  This impact  increases significantly near big

cities, such as Paris, where the differences may reach 10 ppm for CO2 and 60 ppb for CH4. This increase can

be explained by  important  uncertainties  related  to  the  anthropogenic  emission fluxes in  over  the highly

industrialized areas. Similar differences can be seen over cities in large parts of Germany, Belgium, and the

Netherlands, especially for CO2. The seasonal variation of sensitivity of the anthropogenic maps (Figures

SIII.26, SIII.27, SIII.28, SIII.29, and SIII.30) shows larger differences during winter compared to summer

(especially for CO2). Near the important emission sources, the CO2 differences may exceed 10 ppm, but

during summer these differences decrease and vary between 2 and 8 ppm (Figures SIII.27, and SIII.28). 

The spatial distribution of the IER minus EDGAR simulation shows two dipoles for the CH 4 concentrations

in France (figure III.28-ΔAnthro). The first dipole is located in the region of Paris, and the second one is

located south-west of Paris,  between Angers and Tours (easily noticed during November Figure SIII.30).

These  two  concentration  dipoles  are  related  to  the  different  localization  of  an  emission  source  in  the

anthropogenic emission maps (Figure III.5). Near these two regions, the atmospheric concentration is very

sensitive to the wind direction. During August (figure SIII.30), a wide positive plume (IER minus EDGAR)

is emitted from these two dipoles and impact the CH4 concentrations in West France, by a value ranging

between 5 and 15 ppb (20 ppb near the dipole). However, during September a negative plume impacts the

CH4 atmospheric concentrations by the same amplitude (value ranging between 5 and 20 ppb). This variation

in the sign of the anthropogenic differences might be related to a slight change in wind direction, since the

two emission sources of the dipole are located one grid cell apart from each other. Similar patterns can be

seen during November and December (figure SIII.30). In fact, the two inventories use different proxies (for

EDGAR proxy listed in table III.2, for IER SNAP sectors section III.2.3.1) to distribute the total emissions

from the national scale to the level of the grid (0.1° for our study). However, using different proxy data may

lead to the misallocation of the emission sources (Hogue et  al.,  2016). Moreover, Hutchins et al  (2016)

showed that the use of different proxies results in different allocations of the emission, which increase as the

size of  the grid-cell  decrease.  Hogue et  al  (2016)  estimated a  distance of  120 km to be the maximum

difference in location between the real localization (extracted from Google Earth satellite imagery) of the

emissions sources and the reported location in the inventories.
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The  distribution  of  the  spatial  differences  in  concentrations  due  to  different  fluxes  confirms  the  larger

sensitivity  of  the  CO2 concentrations  to  the  biogenic  fluxes  compared  to  the  anthropogenic  fluxes.  The

sensitivity of the atmospheric concentration to the anthropogenic emission is significant only near the highly

emitting sources for both CO2 and CH4. Gurney et al (2009) showed that for the same national total, the

spatial localization of the anthropogenic fluxes may impact the CO2 atmospheric concentrations by a value

ranging between 3  and 4 ppm.  Other  studies  evaluating  the  modeled  atmospheric  CO2 were in  general

agreement with our finding, showing a difference up to 5 ppm due to the difference in the localization of the

emission sources, most often near urban areas (Corbin et al.,2010, Schuh et al., 2010).
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Figure III.27: Spatial distribution of the surface level CO2 monthly differences (ppm) between the two biogenic 
models (CTESSEL minus VPRM) panel ΔBio, and between the two anthropogenic inventories (IER minus EDGAR) 
panel ΔAnthro, using the data from 12:00 to 18:00 at the first level of the model.
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Figure III.28: Spatial distribution of the surface level CH4 monthly 
differences (ppb) between the two anthropogenic inventories (IER 
minus EDGAR) panel ΔAnthro, using the data from 12:00 to 18:00 at
the first level of the model.



III.4 Conclusions

This study focuses on evaluating the sensitivity of the simulated  CO2 and  CH4 concentrations, using two

meteorological fields, two vegetation-atmosphere  CO2 models, and two anthropogenic emission maps. We

performed 8 regional simulations using the chemistry transport model CHIMERE centered over France with

a horizontal  resolution of 0.1x0.1°.  We apply temporal  profiles on the yearly emission maps in order to

estimate hourly varying anthropogenic emissions used as an input for the transport simulations. The analysis

focuses on the evaluation of the capability of the model to simulate the  CO2 and the  CH4 variabilities at

seasonal,  synoptic, and diurnal scales, the quantification of the impact of the different input data on the

simulated concentrations. The main objective of this study is to improve our understanding of the aspect (flux

variabilities  and  transport  processes)  influencing  the  simulation  of  the  CO2 and  CH4 atmospheric

concentrations, which we summarize in the following.

First, the comparison of the anthropogenic emission between the two inventories showed an offset that does

not exceed 10% of the annual totals. This offset remains below the anthropogenic emission uncertainties

estimated for CO2 by Peylin et al., (2011) and for CH4 by Peng et al., (2016). The differences between the

annual national totals were assumed to be related to the definition of the sectors boundaries, such as the

biofuels and the bunker fuels, which may increase the national budget by up to 10%. The spatial distribution

of the difference between the emission maps remains in general below 20kgCO2/yr for CO2 and 60 gCH4/yr

for  CH4. The significant contrast between the emission maps occurs near big cities and emission hotspots,

such as the Paris area. The difference between the inventories increased significantly after the application of

the temporal profiles and reached more than 30% in winter. Despite the good agreement of the anthropogenic

national totals (uncertainties less than 10%), the distribution of the emission budget in space and time leads

to significant uncertainties.

Second, the evaluation of the two biogenic fluxes shows the agreement of the two models for simulating a

CO2 uptake between late spring and early summer. The two models do not diverge much at this season even if

the  VPRM model  estimates  the  maximum  uptake  one  month  after  CTESSEL.  The  difference  is  more

important  in  winter,  where  VPRM estimates  positive  CO2 fluxes  compared  to  CTESSEL who  remains

negative all year round. The comparison between the two models at a regional scale showed that negative

bias of CTESSEL was related to the overestimation of the  CO2 uptake in the north part of France. The

evaluation of the modeled CO2 fluxes against the eddy covariance estimates showed an underestimation of the
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simulated fluxes by a factor that may reach 3, especially during July. The differences between the simulated

and the observed sites at the cultivated sites are related to the site's management (e.g. sowing, irrigation, and

harvesting)  which are not  explicitly  resolved by the used models.  For  the forest  sites,  the difficulties  in

simulating the CO2 fluxes was associated to the misrepresentation of the phenology which is calculated in the

models using satellite greenness observations (not at the point scale of the measurement sites).

Third, the sensitivity of the simulated concentrations regarding the meteorological fields showed significant

differences at the mountain sites and near the high emission sources. For the mountain regions, the difference

between the ECMWF and AROME are related to the difficulty in representing the meteorological parameters

that control the transport of the  CO2 and  CH4 concentrations (e.g. the horizontal and the vertical mixing).

Near the high emission sources, we showed that a small change in the wind fields may lead to a significant

difference  in  the  simulated  concentration.  The  comparison  between  the  simulated  and  the  observed

concentrations confirmed that the transport models are less biased during mid-afternoon time window for the

low altitude sites, whereas for the mountain sites the use of the nighttime data seems the most appropriate. 

Lastly,  the  use  of  these  different  surface  fluxes  allowed  us  to  quantify  the  sensitivity  of  the  simulated

concentration regarding the anthropogenic and the biogenic fluxes. 

For  CO2,  the  evaluation  of  the  modeled  data  showed  an  important  underestimation  of  the  simulated

concentration compared to the observations. This underestimation increases significantly for the CTESSEL

simulations, especially during winter. Compared to VPRM, the negative CO2 fluxes estimated by CTESSEL

during January impacts the atmospheric concentrations  by more than 5 ppm (e.g.  GIF station).  For  the

anthropogenic  emission,  the  differences  between  IER  and  EDGAR  simulation  impact  the  modeled

concentration by less than 1 ppm on average at the level of the atmospheric sites.  The sensitivity of the

simulated  CO2 concentration regarding the anthropogenic emissions becomes more significant  near  high

emission sources, where the difference may reach 10 ppm. 

For CH4, We showed that the significant differences between IER and EDGAR simulations occur for the low

altitude sites with a value ranging between 5 and 20 ppb. Similar to  CO2, the differences between the two

anthropogenic  emissions  impact  significantly  the  simulated  CH4 concentrations  near  important  emission

areas, with a high impact in winter.  The spatial  distribution of the difference between IER and EDGAR

simulations showed the impact of the emission hotspots leading to important small-scale patterns called by

emission  dipoles.  These  dipoles  are  responsible  for  the  plumes  that  may  impact  the  atmospheric
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concentration up to 40 ppb. Atmospheric inversion is expected to decrease the impact of these plumes and to

reduce the differences between the simulated and observed concentration. This will be further investigated in

the next chapter.
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Chapter IV: The potential of a European network for the 
optimization the CO2 and the CH4 surface fluxes in France

IV.1 Introduction

The quantification of the carbon dioxide (CO2) and methane (CH4) surface fluxes represent a critical task to

better understand the present-day carbon and methane budget. To achieve this purpose, two techniques known

by bottom-up and top-down approach are commonly used. The bottom-up approach provides estimates of the

greenhouse gases based on geo-referenced fields of socio-economic data and emission factors, or process-

based biogeochemical models. However, due to the inaccurate emission factors and activity statistics, the

bottom-up approach can lead to significant uncertainties. In this study, we will improve the estimation of the

GHG  fluxes  using  the  top-down  approach,  called  hereafter  by  inverse  modeling,  which  reduces  the

uncertainties of the temporal and the spatial variability of the CO2 and CH4 fluxes. This approach estimate

optimized  fluxes  using  information  from  prior  surface  fluxes  (generally  from  bottom-up  approaches),

transport model, and observations. This set of information represents the principal ingredients to perform the

Bayesian inversion aiming to quantify the CO2 and CH4 sources and sinks in France (Tarantola, 2005).

The Bayesian inversion framework can assimilate data provided by in-situ surface stations (Bergamaschi et

al., 2018, Kountouris et al., 2018, Pison et al., 2018), and/or remote sensing data provided by satellite-based

spectrometer (Broquet et al., 2018, Bergamaschi et al., 2009). Here, we use surface measurement provided by

the European network of Integrated Carbon Observation System (ICOS), completed with several stations

from different national networks. Based on these observations, the inversion system can optimize the surface

fluxes using the transport model which links the prior fluxes to the observations.

The performance of the inversion framework depends on the ability of the atmospheric transport models to

accurately reproduce the influence of the sources and sink at the level of the sampling sites. Whether we use

coarse or high-resolution transport models, the quality of simulating the atmospheric concentrations can be

declined  due  to  the  influence  of  different  uncertainties.  First,  the  transport  errors  (Geels  et  al.,  2007,

Ahmadov et al.,  2007, Prather et al.,  2008) which represent the difficulty of the model to reproduce the
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transport processes (e.g. horizontal and vertical mixing). Second, the representation errors (Tolk et al., 2008)

which are related to the problem in the localization of the sampling sites in the model. Third, the aggregation

errors (Bocquet et al., 2011, Kaminski et al 2001) that represents the misfits of the model-obs concentrations

due to the imperfections in representing the flux patterns. These errors are very critical and can degrade

substantially the performance of the inversion framework.

The  implementation  of  the  Bayesian  inversion  framework  requires  the  definition  of  the  statistics  of

measurement errors, transport errors, representation errors, in addition to the uncertainties of the prior fluxes

prescribed in the system. Most of the earlier inversion studies estimate empirically these errors. In this study,

the error statistics will be assigned objectively using statistical methods (e.g. Wahba et al., 1994 Desroziers et

Ivanov,  2001) which were used to  estimate the different  errors  in  a geostatistical  implementation of the

atmospheric GHG inversion problems (Pison et al., 2018, Berchet et al. 2015, Berchet et al., 2013, Michalak

et al., 2005). Thus, the used inversion framework relies on an automatic diagnosis of the error statistics. The

method still  uses  some expert  knowledge  information  for  the  determination  of  the  patterns  of  the  flux

aggregation and the sampling procedure in agreement with the performance of the transport model and the

available computation resources. 

This chapter aims at implementing and applying a dedicated atmospheric inversion modeling framework to

estimate  the  CO2 and  the  CH4 surface  fluxes  in  a  domain  centered  over  France.  This  study  uses  the

atmospheric transport model CHIMERE (described in Chapter III), embedded in the inversion framework

PYMAI developed by Berchet et al (2013, and 2015). This system uses a statistical algorithm to estimate

objectively the most critical sources of errors in the inversion. The error quantification is performed used a

Monte-Carlo approach incorporated into Maximum of Likelihood estimators (Berchet et al., 2015). We will

compare  the  inversions  errors  estimated  objective  by  the  maximum of  the  likelihood  algorithm to  the

empirical error estimation in order to study the relevance and the robustness of the inversion system. The

system uses atmospheric observations provided by ICOS and other national networks in order to constrain

the  CO2 and CH4 surface fluxes. Section IV.2 provides a detailed description of the inversion system, the

statistical method used to quantify the inversion errors, prior information, and the surface measurements of

16 stations. Section IV.3 represents the inversion results presented separately for CO2 and CH4 fluxes. In the

following section, we list the results for the CH4 inversion. The same structure will be followed for the CO2

inversion with a separation between the anthropogenic and the biogenic fluxes. In section IV.3.1.1 we present

the used atmospheric CH4 measurements and the impact of the observation in the inversion system. Section
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IV.3.1.2 compares the errors estimated by the automatic algorithm to an analytical estimation of the errors

based on Chapter III results. In section IV.3.1.3 we study the fit to the observed atmospheric concentrations.

Section IV.3.1.4 focuses on a description of the region constrained by the inversion and the sensitivity of the

atmospheric sites to the surface fluxes. In section IV.3.1.5 we study the separability of the inferred fluxes

based on the posterior uncertainties.  Section IV.3.1.6 concerns the spatiotemporal scales resolved by the

inversion. Section IV.3.1.7 represents a comparison between the optimized fluxes and the bottom-up flux

estimates used as prior information by the inversion system. 

IV.2 Methods

IV.2.1 Inverse problem formalism

IV.2.1.1 Inversion formalism

The estimation of greenhouse gas sources and sinks using the inverse modeling formalism is based on the

assumption that the control vector X, can be related to measurements of the atmospheric concentrations Y 0,

using a transport model H  (Bouttier and Courtier, 2002).

Y 0=H ( X )+εY (IV.1)

The control vector may include the contribution of all data used as an input by the transport model such as

the surface fluxes (called hereafter by prior fluxes), initial conditions, and boundary conditions. εY represents

the differences between the concentrations simulated by the transport model H and the measurements. The

aim of inverse modeling is to estimate an optimized control vector that minimizes εY. Even if we consider

that the control vector used as an input is perfect, the difference between the observations and the simulations

is not zero, due to the imperfections of the transport model and the measurement errors (called altogether

observation errors). The refinement of the control vector is usually achieved through the optimization of the

surface fluxes and the reduction of their uncertainties (called hereafter by prior errors) for a targeted spatial

and temporal  scale.  The optimization is  generally  performed using inverse modeling frameworks,  which

consist  of  finding  the  best  estimate  of  the  surface  fluxes  using  information  from the  observations,  the

transport model, and the prior fluxes.
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The exact value of the observation and the prior errors is unknown since we ignore the real values of the

concentrations and the control vector. These errors can be estimated based on some statistical calculations

which indicate  their  probable  amplitude and spatiotemporal  distributions.  In  fact,  the  complexity of  the

inverse problem relays on the estimation of the different errors, since they influence strongly the inversion

results. In this study, we will focus on the optimization of the surface flux components of the control vector.

IV.2.1.2 Inverse problem constraints

In the case of greenhouse gas flux estimations, we may face ill-posed mathematical inverse problems, when

the number of constraints (observations) is very small compared to the number of the unknowns (fluxes to be

optimized). At the global scale, the available measurements have always been considered as relatively few

compared  to  the  surface  fluxes.  In  Europe,  this  issue  is  still  relevant,  but  it  has  been  reduced  by  the

development  of  regional  greenhouse  gas  atmospheric  networks,  such  as  ICOS  (Integrated  Carbon

Observation System https://www.icos-ri.eu/), and also by the emergence of new national networks, such as

ClimaDat Spanish project (available at http://www.climadat.es/). In this study, we use hourly observations at

16 stations from national and European networks, in order to constrain the inverse problem. Theoretically, the

more observations we have, the closer we get towards estimating the real fluxes. However, in practice, the

flux estimation depends also on the quality of the control vector and the ability of the transport model to

reproduce correctly the simulated concentrations.

IV.2.1.3 Regularization of the inverse problem

Theoretically,  having  a  small  number  of  constraints  implies  an  important  number  of  possible  flux

distributions that minimize the difference between the modeled and the observed concentrations. It is thus

essential to regularize the inverse problem using information that is independent from the measurements, in

order to reduce the range of the possible flux distributions and to provide realistic solutions. In this study, we

chose the Bayesian regularization that uses prior information of the fluxes (noted in this study by x b) and

their corresponding errors (Tarantola, 2005). This regularization is convenient for our study since we can use

prior flux estimate based on biogeochemical models (e.g. VPRM and CTESSEL see section III.2.3.2), and

gridded emissions inventories (e.g. IER and EDGAR see section III.2.3.1). 

The optimized fluxes will depend on the quality of the prior fluxes, the observed data, the transport model, as

well as the characterization of the corresponding errors (flux errors, and observation errors). In this study, we
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assume that both the flux and the observation errors follow unbiased Gaussian distributions. These errors are

crucial for our study since they indicate the range in which the inverse problem solution may exist. In this

study, the observation and the prior flux errors will be estimated by the statistical inversion system itself

using an extension of the traditional scheme developed by Berchet et al (2013) (see section IV.2.3). 

IV.2.2 The solution of the inverse problem:

Resolving  the  inverse  problem means  finding the  density  probability  function  ρ(x)  of  the  “true”  fluxes

(equation IV.2) given the prior statistical information on the fluxes xb and the set of in situ measurements of

atmospheric concentrations Y0. The optimized fluxes estimated by the inversion method (called the posterior

fluxes) represent the value of fluxes that maximize the density probability ρ(x). The errors on the posterior

fluxes follow an unbiased Gaussian distribution since the observation and the prior fluxes errors are assumed

to be unbiased and Gaussian. Following  Tarantola, (2005):

ρ(x )=Cst ×exp (
−1
2

[(Y 0−H (x))T R−1
(Y 0−H (x ))+(xb−x)T B−1

(xb−x )]) (IV.2)

R and B represent the variance-covariance matrices of the observation and the prior flux errors respectively.

Cst  is  a  constant,  and  it  does  not  interfere  in  the  calculation  of  the  maximum and covariance  of  ρ(x)

(equation IV.2).  The transport  model that  connects the control  vector to the observation space,  here the

unknown fluxes to the measured atmospheric concentrations, is usually represented by a chemistry-transport

model (CTM) that mix and transport the control vector components. In this study, the chemistry module,

along with the transport in our domain (~2000 Km from west to east), is deactivated for the CO 2 (inert gas),

and for CH4 whose the mean lifetime in the atmosphere is about 12 years (Prather et al., 2007).

According  to  equation  IV.2,  the  optimal  solution,  called  xa hereafter,  can  be  found  by  minimizing  the

following cost function.

J (x )=−ln (
ρ( x)
Cst

) ; J (x )=
1
2
[(Y 0−H ( x))T R−1

(Y0−H (x))+(xb− x)T B−1
(xb−x) ] (IV.3)

In this study, we make an additional assumption that the atmospheric transport is linear. This hypothesis is

valid  for  all  tracers  which  are  passive  at  our  temporal  scales  (such  as  CO2 and  CH4).  Therefore,  the

observation operator can be expressed by the matrix H (H(x) = Hx), which distribute the spatial and the
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temporal flux patterns in respect with the control vector components (see Section IV.2.4.4).  The optimal

fluxes xa corresponds to the value of x where the gradient of J(x) equals zero (Tarantola, 2005):

xa=xb+K (Y 0−Hxb) (IV.4)

Where K is called the Kalman gain matrice

 K=BH T
(R+HBHT

)
−1 (IV.5)

The variance-covariance matrix of the optimal fluxes xa using the Gaussian assumption can be expressed by

the following equation (Tarantola, 2005):

Pa
=B−KHB (IV.6)

We can limit the dimension of the observation and control vectors, so that, with respect to the available

calculation resources, the inversion, i.e., equations IV.4 and IV.6, can be performed analytically.

IV.2.3 The inversion setup:

IV.2.3.1 Estimation of the observations and prior variance-covariance matrices

An accurate estimation of the of the error variance-covariance matrices (R, and B),  for the observations and

the prior fluxes respectively, represent an important task for the estimation of the posterior fluxes (equation

IV.4) and their related uncertainties (equation IV.6). Previous flux estimation studies were carried out using

an  estimation  of  the  observation  and  prior  errors  based  on  expertise  and  knowledge  of  the  model

performances  (e.g.  Kountouris  et  al.,  2018).  Differently,  other  methods  estimate  the  R  and  B matrices

objectively along with the posterior statistics of the fluxes, within the statistical inverse modeling procedure,

based on the model-data misfits (e.g. Pison et al., 2018, Berchet et al., 2015, Michalak et al., 2005). In these

statistical methods, both R and B have been considered as diagonal matrices. The diagonal terms of R (

σR, i
2 ) stand for the variance of the observation errors, and the diagonal elements of B ( σB, i

2 ) represent

the error variance of the prior fluxes (equations IV.7).

In this study,  we will  use the maximum of likelihood method,  implemented by Berchet  et  al  (2013),  to

estimate the parameters required for the diagonal  variance-covariance matrices (R and B).  Applying the
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method for non-diagonal variance-covariance matrices implies drastically higher computational costs and

intensive memory usage.  In  order to provide the variance-covariance matrices with small  computational

costs,  we need to reduce the size of parameters to estimate.  In fact,  the likelihood maximization of the

diagonal matrices presents then the best compromise between the estimation of realistic observation and

prior errors (Berchet et al., 2013), as well as lighter memory usage. The variance-covariance matrices can be

presented as follows:

R=

σR ,1
2 0 ... 0

0 σR ,2
2 ... 0

... ... ... ...
0 ... 0 σR ,i

2

          ;           B=

σB ,1
2 0 ... 0

0 σB ,2
2 ... 0

... ... ... ...
0 ... 0 σB ,i

2

             (IV.7)

In order to estimate the diagonal elements of the variance-covariance matrices, we calculate the probability

density function of R and B, given the observation Y0, the prior estimates xb, and the transport model H.

Using the formalism of Bayes, the probability density function of R and B can be defined as:

p(R ,B∣Y 0 , X b , H )=
p(Y 0∣X b ,H , R ,B). p(R ,B∣Xb , H )

p(Y 0∣X b ,H )
(IV.8)

We assume that we do not have any prior knowledge about R and B matrices parameters. More precisely, we

turn this assumption into the assumption that, over a finite positive interval, the probability of R and B is

uniform p (R ,B∣X b , H )∝1 . Then, over this finite positive interval, equation IV.8 becomes:

p(R ,B∣Y 0 , X b , H )∝ p(Y 0∣X b, H , R ,B ) (IV.9)

The best  estimate of the R and B variance matrices parameters are the set  of values that  maximize the

likelihood of the observations. These observations are related to the prior fluxes by the observation operator

H Y 0=Hxb+ε y .

 Then the expected value of Y0 is 

E [Y 0]=E [Hxb+εy]=Hxb (IV.10)

and its covariance is
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 E [(Y 0−E [Y 0])(Y 0−E [Y 0])
T
]=E [(Hxb+εY−E [Hxb+εY ])( Hxb+εY−E [Hxb+εY ])

T
]

E [(Y 0−E [Y 0])(Y 0−E [Y 0])
T
]=HBHT

+R (IV.11)

From equation IV.10 and IV.11, we can use the expected value and the covariance of the observation to

define the Gaussian probability density function of  p (Y 0∣Xb , H , R ,B ) , which is (from equation IV.9)

proportional to p (R ,B∣Y 0 , X b , H )

p(R ,B∣Y 0 , X b , H )∝
1

|HBHT
+R|

(
1
2
)

√2π

exp(
−1
2

.(Y 0−HX b)
T .(HBHT

+R)
−1

(Y 0−HX b)) (IV.12)

Where | | stands for the matrix determinant. The estimation of the maximum likelihood covariance R and B

parameters can be performed by the maximization of the equation IV.12, or the minimization of its negative

logarithm (equation IV.13), using the iterative Gauss-Newton method (Gill et al., 1986). 

L(R ,B )=
1
2

ln|HBHT
+R|+

1
2

.(Y 0−HX b)
T . (HBHT

+R )
−1

(Y 0−HX b) (IV.14)

Thus  the  maximum  likelihood  algorithm  optimizes  (R  +  HBHT)  according  to  (Y0-H.Xb)(Y0-H.Xb)T.

Assuming  diagonal R matrix, the only way to compensate the non-diagonal values of R is by setting higher

values in B matrix through the HBHT component (Berchet et al 2013). For example, if the operator H is close

to the reality, the maximum of likelihood algorithm would compensate the information of (Y0-H.Xb)(Y0-

H.Xb)T in B matrix, and assign relatively lower values for R.

The algorithm may converge to a local maximum (the convergence to a global maximum is not insured

(Berchet et al 2013)). This maximum is called the likelihood maximum, and it takes into consideration the

information of the difference between the prior fluxes and the measured concentrations (Y0-Hxb).

IV.2.3.1.1 Monte-Carlo sampling

The estimation of the observation and the prior variance-covariance matrices R and B allows the estimate of

the optimized fluxes and their corresponding uncertainties using the analytical inversion equations (equation

IV.4 and IV.6). In order to take into consideration the uncertainties in the observation and the prior error

estimates provided by the maximum of likelihood (ML) algorithm, we will use the marginalization method of

the error statistics developed by Berchet et al (2015). This approach consists in sampling the probability
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density of the of the variance-covariance matrices using a Monte-Carlo algorithm. The complexity of this

method is associated with the need to define accurate probability density function of variance-covariance

matrices. Here, we approximate the distribution of the variance-covariance matrices by the distribution of the

diagonal observation and prior error matrices (R and B matrices) provided by ML algorithm. 

In this study, we perform a Monte-Carlo the sampling using 10000 members, and we calculate the inversion

result for each member as presented in Figure IV.1. This approach is based on several inversions. However,

one atmospheric inversion may take from few days to few weeks of computing time. It is thus important to

define  an  appropriate  dimension  of  the  inverse  problem  in  order  the  perform  the  10000  inversions  in

affordable time.

To summarize, the maximum of the likelihood algorithm is first resolved using the Gauss-Newton method.

This step provides a single couple (R,  B).  Afterward,  a Monte-Carlo ensemble on R and B matrices is

performed to get a sample (10000 members) of the whole distribution of the posterior fluxes p(x|Y 0,xb)

(Figure IV.1). The retained posterior fluxes xa  is retrieved from the median of the Monte-Carlo ensemble

xa=median(xai), and the posterior uncertainty is defined as the standard deviation of the posterior control

vectors (xai) from the tolerance interval covering 68,27% of the Monte-Carlo ensemble (Berchet et al., 2015).
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IV.2.3.1.2 Filter on the under-constrained emission fluxes

The  likelihood  maximum  algorithm  offers  the  possibility  to  eliminate  the  under-constrained  control

parameters.  The  control  vector  parameters  which  are  not  constrained  enough  will  be  rejected  by  the

algorithm, in order to avoid numerical  artifacts (Berchet  et  al.,  2013).  This filter  is processed using the

diagonal elements of the influence of matrix KH (Cardinali et al., 2004), calculated at each iteration of the

maximum likelihood algorithm. Note that KH matrix depends on the estimated observation and prior errors

(equation IV.5). The diagonal elements of the KH matrix represent the sensitivity of each component of the

control vector to the inversion. These elements vary within the range 0 to 1. In order to filter the under-

constrained fluxes, we eliminate the control vector components whose KH value is lower than 0.5 (Berchet et

al. 2013). Thus only the components of the control vector that are enough constrained will be operated by the

inversion.

IV.2.3.1.3 Filter on the emission hotspots

The  misrepresentation  of  the  surface  fluxes  can  lead  to  significant  spatial  and  temporal  model-obs

mismatches. For example, surface emissions can influence a sampling site in the reality, but not in the model
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Figure IV.1 Statistic uncertainty in the Bayesian inversion. The inversion computes the posterior 
control vector xa using the observation Y0 and the prior xb. In the classical inversion (top), xa is 
estimated together with its uncertainty Pa from the observation and the prior covariance 
matrices (R and B). In order to take into consideration the uncertainties in the error statistics, an
ensemble of the couples (R and B) is used to estimate an ensemble of xa and Pa, which stand for 
p(x|Y0,xb). The Figure is taken from Berchet. A thesis 2014



if these emission sources are assigned with inaccurate fluxes and/or incorrect spatial distribution. This may

lead  to  substantial  differences  between  the  observed  and  the  simulated  concentrations.  The  maximum

likelihood algorithm (ML) assigns such mismatch to observation errors and/or prior errors. Thus the high

values of ML errors (section IV.2.3.1) represent an indication of these mismatches. The data that correspond

to the high errors must be filtered out, since they may correspond to sharp synoptic events which are very

difficult  to  simulate  by  the  transport  models.  The  identification  of  these  sharp  events  is  performed  by

analyzing the diagonal elements of R and B matrices (section IV.2.3.1). The ML algorithm proposes to filter

out measurements and surface fluxes characterized by an ML error higher than a given threshold. In this

study,  we use the threshold that  corresponds to  95 % percentile  of  the observation and the prior  errors

(Berchet  et  al.,  2013).  With  this  configuration,  the  ML  algorithm  filters  out  the  observations  poorly

represented by the transport model, and rejects the surface fluxes responsible for sharp synoptic events at the

sampling sites.

IV.2.4 The definition of the inverse problem

In this study, we will perform an analytical inversion over France for CO2 and CH4 fluxes using the inversion

framework PYMAI developed by Berchet  et  al.,  (2013,  and 2015).  The inversion is  carried out  for two

months: one month in winter (January) and one month in summer (July), in order to estimate the optimized

fluxes for two contrasted periods. The list of the variable defining the inverse problem is presented in the

following parts.

IV.2.4.1 Control vector

Ideally,  we  would like  to  provide a  refined control  vector  at  the highest,  possible,  temporal  and spatial

resolutions (e.g. flux optimization for each grid cell and each hour). However, the solution of such a high-

dimension control vector inverse problem will be limited by the capacity of calculation resources, by the lack

of capacity to characterize the spatial and temporal structures in the prior uncertainties at such a resolution

(especially since the system used here ignores the correlations between uncertainties in different  control

variables).  For  this  reason,  it  was  necessary  to  make  a  compromise  by  reducing  the  inverse  problem

dimension. The reduction of the control vector dimension is usually performed by the aggregation of the flux

budget spatially over a geographical region and temporally during a specific period of time. In the analytical

approach  used  here,  the  control  vector  does  not  include  directly  the  flux  budget.  The  control  vector

components represent the scaling factors that are applied to the fluxes. Each scaling factor corresponds to the
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flux budget aggregated for a given region, for a distinct time period, and for an individual control parameter

(surface fluxes, boundary conditions, and initial conditions).  

For both CO2 and CH4 surface fluxes, we aggregated the surface fluxes on 26 regions over France (regions

from 1 to 26), 15 regions for the neighbouring countries (regions from 83 to 97), in addition to one region for

the Atlantic ocean (region 98) and one region (region 99) for the Mediterranean sea (Figure IV.2). For the

temporal aggregation of the CO2 and CH4 fluxes, we split the months (January and July) into 31 days, further

subdivided into 6 hourly time windows (from 00:00 to 06:00, from 06:00 to 12:00, from 12:00 to 18:00, and

from 18:00 to 00:00). For the CO2 and CH4 boundary conditions, we define 5 edges of the domain North,

South, East, West (dashed lines Figure IV.2) and one edge on the top (not presented in Figure IV.2). For the

temporal resolution, we selected the same number of days (31 days), with 12 hourly time windows. The first

time window represents the night time data (from 18:00 to 06:00), and the second time window stands for the

daytime data (from 06:00 to 18:00). For the initial conditions, we define one component that covers all the

domain during the first day of each month.

While this approach decreases the dimension of the control vector, it may lead to some errors that impact the

quality of the optimized fluxes (Bocquet et al.,2011, and Kaminski et al 2001). These errors are known as the

aggregation  errors  and  represent  the  misfits  between  the  modeled  and  the  observed  CO2 and  CH4

concentrations due to errors in the flux patterns of the control region and temporal window. In order to

reduce the impact of the regional flux distribution on the atmospheric concentrations at the sampling site

level, the 43 control regions were defined based on the analysis of the emission maps (Figure SIV.1) and the

spatial distribution of vegetation types (Figure SIV.2 ECOCLIMAP database, Champeaux et al., 2005). For a

given flux, the control region is defined in a way that each type of flux (biogenic or anthropogenic) remain

relatively homogeneous within the selected region. In the following, we summarize the component of the

CO2 and CH4 control vector.

The control vector X for each month (January and July) for CH4 is composed of 5643 components:

 One component for the initial conditions.

 310 components for the boundary conditions (5 edges x 31 day x 2 time windows per day).

 5332 components for the emission fluxes (43 regions x 31 days x 4 time windows per day).

The control vector x for each month (January and July) for CO2 is composed of 10975 components:

 One component for the initial conditions.

 310 components for boundary conditions (5 edges x 31 x 2 time windows).
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 5332 components for the anthropogenic emission fluxes (43 regions x 31 x 4 time windows).

 5332 components for the biogenic emission fluxes (43 regions x 31 x 4 time windows).

IV.2.4.2 Observation vector

In order to constrain the inverse problem, we use a vector of observations (Y 0) which can include for example

direct surface measurement or remote sensing using satellites. In this study, we used only continuous surface

measurements from 14 stations in January, and 15 in July. The list of the stations was presented in chapter III

(Figure III.3, and Table III.3).

In order to perform the inversion problem, the variance-covariance matrices of the observation errors (R)

must  be  small  enough  (due  to  the  calculation  limitations).  Moreover,  the  used  observations  should  be

consistent with the spatial and the temporal resolutions of the atmospheric transport model. Therefore, we
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Figure IV.2: Illustration of the 43 emission regions (colored area) and boundary 
conditions edges (4 lateral colored dashed lines + 1 top edge) used for the control vector 
calculation.



have done a  data  selection in  order  to  reject  observations  which cannot  be properly  represented by the

transport model. This step was described in the previous chapter (Section III.3.5), and we provide here only a

short  reminder  of  the  data  selection  process.  We  use  the  hourly  averages  of  continuous  measurements

performed at the atmospheric sites presented in table III.3.  We select the mid-afternoon data (14:00 to 18:00

local time) for low elevation sites and nighttime data (00:00 to 06:00 local time) for the mountain stations.

For stations that are characterized by more than one sampling level (e.g., OPE, TRN, RGL, and CBW), only

the highest  level  is  selected,  since the transport  models are not  able to optimally reproduce the vertical

mixing close to the surface. Note that during January measurements from PDM and OHP stations are not

available, whereas ERS measurements were interrupted in July (Figure IV.3). This leads to an unequal spatial

distribution of the observation sites, with no observation site available to constrain the emission fluxes in the

south-east of France in January.
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Figure IV.3: Stations providing measurements of CO2 and CH4 during January (left) and July (right) 2014. Note PDM 
and OHP sites (south of France) were not available for Janary, and ERS measurements (located in Corsica) were 
interrupted during July. the atmospheric sites are grouped into four categories according to their characteristics (e.g. 
topography and environment): coastal (circle), mountain stations (triangle), Peri-urban (square for GIF only), and tall 
towers (inverse dtriangle). The red box shows the limit of the model domain.



IV.2.4.3 Surface fluxes

The surface flux information used in our inverse modeling framework is calculated using the bottom-up

approaches. These estimates represent the prior information of the flux budgets for different regions and time

windows of  the  control  vector  (section  IV.2.4.1).  The  used  estimates  are  thus  processed  to  provide  the

spatiotemporal distribution of the surface fluxes within the control region and time windows, as part of the

observation operator (section IV.2.4.2). For the CO2 and CH4 anthropogenic emissions, we used the emission

fluxes  prescribed  by  EDGAR  (Emission  Database  for  Global  Atmospheric  Research,  available  at

http://edgar.jrc.ec.europa.eu/-overview  .    php?v  =42) version 4.2FT2010. For the natural fluxes, only

the  Net  Ecosystem  Exchange  (NEE),  provided  by  the  VPRM  model  (Vegetation  Photosynthesis  and

Respiration Model, Mahadevan et al., 2008), is used to represent the CO2 biogenic fluxes. The natural CH4

emissions, such as natural wetlands, were neglected in this study due to the lack of accurate estimations and

the  low extension  of  these  emission  sources  in  our  domain  (Champeaux  et  al.,  2005).  The  list  of  the

prescribed surface fluxes was presented in detail in section III.2.3. In table IV.1 we summarize the main

characteristics of the used fluxes.

Flux category Flux Spatial
resolution

Temporal
resolution

Reference

CO2 anthropogenic EDGARv4.2FT2010 0.1° x 0.1° Hourly* Maenhout et al., 2017

CO2 biogenic VPRM 2014 0.125°x 0.08° Hourly Mahadevan et al., 2008

CH4 anthropogenic EDGARv4.2FT2010 0.1° x 0.1° Hourly* Maenhout et al., 2017

Table_IV. 1: Characteristics of the surface fluxes used as prior in the inverse framework. (*) means that the 
corresponding fluxes were produced using hourly temporal profils applied on the yearly totals (Section III.2.3)

IV.2.4.4 Observation operator

The surface flux budget is projected into the space of concentrations using the linear observation operator H

(equation IV.1). Each element of H indicate the modeled concentrations at a sampling site for a certain time

and a given surface flux. The linear observation operator can be decomposed into three sub-operators Hdist,

Htrans, and Hsample where H=Hdist.Htrans.Hsample.
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Hdist is built on hourly anthropogenic and biogenic fluxes (section IV.2.4.3) at the horizontal resolution of the

transport model. It implies the  CO2 and  CH4 surface fluxes to distribute the spatial and the temporal flux

patterns within the control regions and the time periods. This operator uses the scaling factor of the control

vector to rescale the surface fluxes on the grid of the transport model in each region and for each 6 hourly

time period.

Htrans stand for the atmospheric transport.  It  is  used to process the impact on the concentration of each

surface flux that  corresponds to a control  vector component.  It  includes also the signature of the initial

conditions and the boundary conditions. In this study, we transport the CO2 and the CH4 concentrations using

the atmospheric transport model CHIMERE (http://www.lmd.polytechnique.fr/chimere/ Menut et al .,2013).

The  transport  model  was  described  in  details  in  section  III.2.1.  CHIMERE is  forced  by  the  ECMWF

meteorological analysis (European Centre for Medium-range Weather Forecast). For initial and boundary

conditions of  CO2 and  CH4, CHIMERE is forced by the global model MACC at 0.15°x 0.15° degree and

three hours time step (Marécal et al. 2015). Both initial and boundary condition are linearly interpolated to

the CHIMERE domain grid (0.1°x 0.1°) and 1-hour time resolution. The transport  modeling domain is

centered over France with an extended area that covers  a part  of  the neighboring countries (e.g.  Spain,

Germany, Belgium) in order to reduce the risk of the aggregation errors due to the coarse spatial distribution

of the boundary conditions (Figure IV.2). In fact, these errors are thus mixed and attenuated over a large area

(hundreds of kilometer) before reaching the observation sites. 

Hsample operates  the  simulated  CO2 and  CH4 field  to  retrieve  a  simulated  concentration  vector  that

corresponds to the used observation vector (section IV.2.4.2). The simulated 4-D atmospheric concentrations

are operated by selecting the modeled concentration of the grid-cells whose center is at the nearest horizontal

and vertical position of measurement points and extracted for the time that corresponds to observed hourly

data.

Building the observation operator

In order to perform the analytical inversion (equation IV.4 and IV.6), the observation operator is built using

the different sub-operator described above. Each column of H is constituted by a response function (Enting et

al., 2002), which represent the response of the CO2 or CH4 concentration to a control vector component. One

response function is calculated by applying the observation operator to the control vector with 1 for the

control parameter and zero for the remaining parameters. For example, for the initial conditions, we perform

a simulation in which only the prior initial concentrations are used with zero surface fluxes and boundary
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conditions. For the component which corresponds to the emission region 1 during the first time window, we

apply H to the control vector in which only the fluxes of region 1 of this day and of this time window are

used, with zero initial conditions, zero boundary conditions, and zero fluxes for the other regions and time

windows. We repeat this process individually for each component of the control vector. Thus, H matrix is

formed using the response functions of all control vector components (5643 components for CH4 and 10975

components for CO2, see section IV.2.4.1).

IV.3 Results

The results of the atmospheric inversions are presented separately for CH 4 and CO2. The inversion system

(presented in section IV.2.3) provides an estimation of the optimized fluxes and their associated uncertainties,

as well as few other indicators which help to analyze the sensitivity of the inversion results to the input

dataset.  For  both CH4 (section IV.3.1) and CO2 (section IV.3.2),  we will  present  first  the data selection

applied to the atmospheric concentration time series, with an analysis of the weight of the observations in the

flux inversion. Second, we will investigate the observation and prior flux errors estimated by the maximum of

likelihood algorithm (section IV.2.3.1). Third, we will present the constraint applied to the fluxes, and the

ability to separate the signal from different regions and type of fluxes. Then, we will discuss the regional

fluxes deduced from the inversion.

IV.3.1 Inversion of the CH4 fluxes

IV.3.1.1 Weight of the CH4 atmospheric observations in the inversion.

As explained before we have used the CH4 concentrations measured at 16 stations (Figure IV.3) in January

and July 2014. Even if all stations are measuring continuously the concentrations, the time series suffer from

data  gaps  due  to  maintenance,  calibrations  or  instrumental  failures,  which  reduce  the  amount  of  data

available for the inversion (grey color in Figures IV.4 and IV.5, and Table SIV.1). For example, at VAC the

measurements were available only for 4 days (between January 1 and 4), which correspond to 86 data (Figure

IV.5, and Table SIV.1). Note that during January, PDM and OHP data are missing, as well as ERS data in

July.

IV.3.1.1.1 Data selection

From all the available measurements we apply a data selection in order to reject those measurements which

cannot be optimally reproduced by the atmospheric transport model, like the daytime orographic flows and
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the nighttime stratifications close to the surface. In general, the selected data (see section IV.2.4.2) represent

20% to 25% of the total available data (illustrated by black in Figure IV.4, SIV.3, SIV.4, SIV.5, SIV.6, and

Table SIV.1). This selection filters out the daily periods where the atmospheric model is not always able to

reproduce correctly the transport processes (vertical and horizontal mixing), as shown in section III.3.5 for

the low altitude sites during the nighttime and the mountain stations during the daytime.

IV.3.1.1.2 The maximum likelihood (ML) data filtering

In  addition  to  this  systematic  screening  of  the  input  dataset,  the  maximum likelihood  (ML)  algorithm

implemented  by  Berchet  et  al  (2013),  proposes  to  filter  out  additional  measurements  whose

representativeness appears to be incompatible with the simulated data. This is the case for the observations

that occur during short-term synoptic events which are very difficult to simulate by the transport models (see

section IV.2.3.1). In Figure IV.4, we illustrate by red color the data filtered by the ML algorithm for OPE and

PUY stations (other sites are shown in Figures SIV.3,  SIV.4,  SIV.5,  and SIV.6).  The percentage of data

rejected by the ML algorithm varies between 1% and 3% (Table SIV.1). The lowest percentages of rejected

data occur at the mountain stations (Table SIV.1), suggesting that these stations are less sensitive to non-

modeled surface fluxes causing short-term variations of CH4.
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Figure IV.4: CH4 hourly data at OPE (left) and PUY (right) in January 2014. The grey color represents the 
available observations for each site during January. The back data point stands for the retained data during the 
mid-afternoon(data between 14:00 and 18:00) for low altitude sites (OPE), and the nighttime (data between 
00:00 and 06:00) for mountain stations (PUY). The red data show the observations rejected by the ML 
algorithm (see section IV.2.3.1)



IV.3.1.1.1 Weight of the observations

One  important  diagnostic  of  the  inversion  is  the  weight  of  each  observation  in  the  process  of  fluxes

optimization, which can be determined by the diagonal terms of the sensitivity matrix HK (see details in

Cardinali et al., 2004). For a given atmospheric data, a low observation error increases the contribution of

this data to the inversion (see the gain matrix K, equation IV.5). On the other hand, the contribution of one

individual  observation will  be reduced if  the information provided by this  data  is  redundant  with other

observations close in time (same synoptic event), or in space (atmospheric sites that are spatially close).

Consequently, a station surrounded by relatively high local emissions will have a high sensitivity (high HK

values) leading to high weights of the observations. In Figure IV.5, we represent the weights of the retained

CH4 observations  during 6 hour  time window (maximum value = 6)  for  January and July.  At  BIS,  for

example, we notice larger weights of atmospheric observations between January 7 and 14 (more than the

equivalent of three data) compared to the period between January 20 and 27 where less than two data per 6

hourly window were used by the inversion. On average, the inversion exploits an equivalent of two to three

hourly data per 6 hour's time window (Figure IV.5). 
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Figure IV.5: Representation of the availability of the CH4 observed data and their contribution to 
the inversion for each site. The grey line represents the available data. Black dots stand for the 
retained measurements (data between 14:00 and 18:00 for low altitude sites, and data between 
00:00 and 06:00 for mountain sites). The color points represent the amount of information used 
each day by the inversion system (value 1 indicate that the inversion uses the equivalent of one 
hourly data). These information are calculated from the diagonal terms of the sensitivity matrix HK



IV.3.1.2 Comparison of observation and prior flux errors with independent empirical 

estimates

Before analyzing the optimized fluxes, we have evaluated the observation and the prior flux errors provided

by the maximum of likelihood (ML) algorithm (Berchet et al., 2013), from the diagonal matrices B and R

(section IV.2.3.1). The aim of this evaluation is to investigate the distributions of the observation and prior

errors and to study whether they are consistent with independent empirical estimates using the differences

between two emission inventories and transport models. 

The  observation  errors  include  the  uncertainties  related  to  the  measurements  and  the  transport  model

(transport errors). The latter can be associated to the uncertainties in the horizontal transport (advection),

vertical transport (mixing height), and the unresolved flux patterns by the models. Since the measurement

errors can be neglected compared to transport errors (Andrews et al., 2014; Ramonet et al., 2011), we have

compared the observation errors provided by the ML algorithm (diagonal  elements of  R matrix) to  the

absolute differences between the two transport models (ECMWF minus AROME, section III.3.5). For the

prior errors, we have compared the output from ML algorithm (diagonal element of B matrix) to the absolute

differences between the anthropogenic emission maps (EDGAR minus IER, section III.3.6).

IV.3.1.2.1 Observation errors

Figure IV.6 represents the distribution of the observation errors estimated by the ML algorithm (orange)

against the absolute differences of concentrations simulated with ECMWF and AROME (green) for January

(top)  and  July  (bottom).  The  data  filtered  out  by  the  ML algorithm  (e.g.  short-term  event)  were  also

eliminated from ECMWF and AROME simulations. In January and July, the comparison shows that the

interquartile range of the ML observation errors is smaller than the differences between the two transport

models. At most sites, the two methods differ by a factor of 1.2 to 1.5, except at sites like GIF (July) where

the  ML error  interquartile  interval  is  two times smaller  than the transport  model  differences.  The  high

difference between ECMWF and AROME at this sub-urban station is related to the high gradient of surface

emissions in the Paris area (Section III.3.6). In such a case, a small difference in wind fields between the two

transport  models  may lead to  significant  differences  at  the station (see section III.3.5).  The comparison

between  the  two  months  shows  that  both  the  ML  and  the  transport  difference  methods  increase  the

observation errors in July by a factor of ~1.5 compared to January. As shown in section III.3.5, the increase

of the model differences in July is related to the differences between the wind fields and boundary layer
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height, especially for the mountain sites. Note that the ML algorithm estimates the errors using the ECMWF

transport data, whereas the model difference method provides empirical errors using two transport models. In

principle,  the  ML observation  errors  should  be  higher  than  the  ones  provided by  the  transport  models

differences,  since  the  ML algorithm estimates  the  total  observation  errors  that  include  transport  errors,

representativeness errors, and the aggregation errors. The fact that we find lower errors with the ML method

indicates that for the used spatio-temporal resolution, the dominant errors are the ones related to the transport

processes.

IV.3.1.2.1 Prior flux errors

In  Figure  IV.7  we  compare  the  spatial  distribution  of  the  prior  flux  errors  provided  by  the  maximum

likelihood (ML) algorithm against the spatial distribution of the absolute difference between EDGAR and

IER. The errors provided by the two methods are normalized according to the monthly budget and expressed
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Figure IV.6: Comparison of the CH4 observation errors calculated by the maximum of likelihood 
algorithm (ML) and the absolute difference between the two transport models (ECMWF minus 
AROME). The errors are presented using boxes (errors between the 25th and the 75th quantiles), the
horizontal black line for the median, and the mean as shown by the colored dots.



in percentages of the monthly fluxes for January (Figure IV.7-top) and July (Figure IV.7-bottom). We observe

that the ML algorithm assigns higher prior errors compared to the absolute differences between the two

anthropogenic maps for both January and July. In France the difference between EDGAR and IER range

between 10 and 50 % of the monthly budget, whereas the ML algorithm provides prior flux errors that range

between 60 % and 200 % of the monthly budget (more than 200 % in some specific region such as regions 3,

22, and 23). The comparison of the ML prior error between the two months shows slightly higher errors in

January compared to July which is also the case when comparing the two anthropogenic emission maps

(section III.3.3). 

Considering that the ML algorithm estimates the prior errors based on the differences between the model and

the observations (see section IV.2.3.1 for observation covariance which equals HBHt + R), it is very likely

that the low values of the observation errors are somehow compensated by higher uncertainties assigned to

the prior fluxes (R and B matrices are interdependent, section IV.2.3.1).
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Figure IV.7: Comparison of the prior flux errors calculated by the maximum of likelihood 
algorithm (ML) and the absolute difference between the two anthropogenic maps (EDGAR minus 
IER). The errors are presented in percentage according to the monthly fluxes for January (top) 
and July (bottom).



IV.3.1.3 Fit of posterior concentrations to observations 

Figures IV.8 and IV.9 present the comparison of the CH4 measurements with the simulated concentrations

before and after the inversion, for January and July 2014 at eight stations in France. Results for the stations

outside  France  are  presented  in  the  Appendix  (Figures  SIV.7  and  SIV.8).  The  differences  with  prior

concentrations which range from 10 to 30 ppb (up to 60 ppb at GIF), are reduced to 4 to 15 ppb after the

inversion.  Overall,  the  inversion  reduces  the  mismatch  with  observations  by  a  factor  of  2  to  3.  Larger

corrections are observed for some synoptic events at BIS in January (Figure IV.8) and GIF in July (Figure

IV.9).  

The comparison shows that before the inversion the R2 ranges between 0.6 and 0.8 for January and between

0.5 and 0.9 for July (R2 presented at the top of each panel of Figures IV.8 and IV.9). After the inversion, the

range is reduced by a factor of ~2 for both months. The highest R2 occurs at BIS, OHP, TRN, and PUY with

values exceeding 0.95. The increase of the coefficient of correlation indicates that the inversion improves the

representation of the phase of the day to day variability. However, some exceptions occur during periods

where the prior concentrations exhibit sharp synoptic changes. This is, for example, the case at GIF with a

sharp CH4 increase observed in July due to the influence of Paris emissions (25 km away) which cannot be

reproduced by the model even after the optimization.

As shown by the shaded areas in Figures IV.8 and IV.9, the inversion reduces the uncertainty of the prior

concentrations  by  10 to  30 %. We observe a  relatively lower  uncertainty reduction for  PUY and PDM,

probably  due  to  the  lower  sensitivity  of  mountain  sites  to  the  optimized  surface  fluxes.  Larger  error

reductions are obtained at the low altitude sites (GIF, OPE, and TRN) which are located closer to emission

sources (e.g. 30% reduction at OPE).
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Figure IV.8: Observed (black) and simulated prior (blue) and posterior (red) CH4 daily averages for the 
French atmospheric sites (BIS, GIF, OPE, PUY, TRN, and ERS) during January. The shaded areas 
represent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior (shaded 
red) CH4 concentrations. For each sites we calculate the root mean square error (RMSE) and the coefficient
of correlation (R2) for the prior and the posterior concentration.
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Figure IV.9: Observed (black) and simulated prior (blue) and posterior (red) CH4 daily averages for the 
French atmospheric sites (BIS, GIF, OPE, PUY, TRN, OHP, and PDM) during July. The shaded areas 
represent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior (shaded 
red) CH4 concentrations. For each sites we calculate the root mean square error (RMSE) and the coefficient of
correlation (R2) for the prior and the posterior concentration.



IV.3.1.4 Emission regions constrained by the inversion

The diagonal elements of the KH matrix provide the information about which components of the control

vector are constrained by the observation sites (Cardinali et al. 2004). Note that one component of the control

vector represents a region for a given day and during a specific time window (see section IV.2.4.1). In this

section, the spatial distribution of the constraint on the fluxes is calculated by convolving KH with the prior

distribution fluxes (Figure IV.10 and IV.11). Regions, where the fluxes are small/null, will be characterized

by  small/null  constraints.  The  constraint  information  at  a  given  region  depends  on  the  intensity  of  the

emissions fluxes,  transport  fields,  and the location of observation sites receiving tracer from this region

(Pison et al., 2018). 

In  the  Figures  (IV.10  and  IV.11),  we  have  also  represented  the  weight  of  measurement  sites  (colored

triangles) in the inversion using the sensitivity matrix HK (see section IV.3.1.1). The measurement weights

indicate the contribution of each station to constrain all fluxes without separation between regions. In January

and July, data from GIF, OPE, and TRN stations provide the maximum constraint on CH4 fluxes. In contrast,

the contribution of PUY is weaker, this mountain site being less sensitive to surface fluxes. As can be seen in

Figures  IV.10  and  IV.11,  using  a  domain  that  contains  stations  from  the  neighboring  countries  allows

constraining fluxes and the boundary conditions of the external area of France. For instance, CBW and SCH

(located in the Netherlands and Western Germany) provide significant constraints to the emission fluxes in

the North and East regions of France, respectively (Figures IV.10 and IV.11). 

The CH4 fluxes are better constrained in the west of France compared to the east (Figures IV.10 and IV.11).

The regions that are best constrained during January and July are regions 3, 4, 5 (Brittany regions), and 21

(Île-de-France region). This can be explained by the intensity of the CH4 emissions fluxes (~30% of the

national total),  and by the location of the atmospheric stations downwind those regions. The white areas

indicate regions that are not constrained by the inversion system or where the fluxes are null (e.g. ocean). In

January when data from OHP in Provence are missing, the south-east of France is not constrained. In July,

the OHP station fills the gap in most part of south-east France, but due to the gap of ERS measurement the

Corsica region (region 84) is not constrained (Figure IV.11).

As expected, the problem of under-constrained regions is directly related to the design of the monitoring

network.  In some cases the atmospheric measurements  at  a given station can be strongly influenced by
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emission hotspots in the nearby region, leading to very high variability of the concentrations. In such cases,

we have seen that the ML algorithm may filter out the spikes due to the difficulty of the transport model to

reproduce them correctly. In such situations, we are penalized by the weaknesses of the transport model.

Moreover, in other cases, we are also penalized by the weakness of the observation network when there is no

station downwind a given region. This is the case for regions 18, 19, 9, and 26 whose emissions are not

influencing  the  available  stations  in  January  (Figure  IV.10).  Pison  et  al  (2018)  showed  that  the  best-

constrained  fluxes are  located at  an intermediate  distance upwind of  stations  (few hundreds  of  km).  In

Figures IV.10 and IV.11, the Brittany region (region 3), located 300 km west of GIF and TRN stations, is

significantly constrained thanks to its high CH4 emissions and the effect of westerly winds carrying the signal

to GIF and TRN station. This result supports the conclusions of Pison et al (2018), showing that high flux

constraints can still be found over regions far from an observation site if advection brings air parcels from

this region to the station.
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Figure IV.10: Spatial distribution of the influence matrices, prior fluxes, the constraint on regions, and the 
contribution of the stations for the inversion during January. The constraint map is generated by convolving 
the influence matrix KH (presented in the figure by % over the month) with the prior fluxes. The contribution 
of the station in the inversion for January is presented using the diagonal terms of the sensitivity matrix HK. 
The scales of the constraints maps and the contribution of the station were chosen arbitrary, in respect with 
the range of the two maps. The map in the right (legend map) is presented as a support for number of regions.



IV.3.1.5 Spatial correlation of the flux errors 

The potential of the inversion to separate emissions from different regions is limited by the density of the

network, leading to spatial and temporal correlations between optimized fluxes. Poor flux separation can be

associated with the limited number of observations coupled to wind speed and direction changes that control

the  influence  of  each  region  at  the  monitoring  stations.  Non-separable  fluxes  between  regions  can  be

diagnosed by high negative or positive correlations of posterior errors and low uncertainty reduction. In order

to investigate this problem, we present in figure IV.12 the posterior error correlation between the regions for

January and July. This analysis is completed by the monthly uncertainty reduction presented in Figure IV.13. 

Low posterior error correlations (|R2| < 0.2) between regions in the North-west (NW) of France (3, 4, and 5)

and the rest of regions (Figure IV.12), indicates that the NW sector is correctly separated from the NE, SE
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Figure IV.11: Spatial distribution of the influence matrices, prior fluxes, the constraint on regions, and the contribution 
of the stations for the inversion during July. The constraint map is generated by convolving the influence matrix KH 
(presented in the figure by % over the month) with the prior fluxes. The contribution of the station in the inversion for 
July is presented using the diagonal terms of the sensitivity matrix HK. The scales of the constraints maps and the 
contribution of the station were chosen arbitrary, in respect with the range of the two maps. The map in the right 
(legend map) is presented as a support for number of regions.



and SW sectors (Figure IV.12). This is mostly related to the presence of GIF and TRN stations, which are

sensitive to emissions from regions 3, 4, and 5 (48 GgCH4/month). We notice a relatively high error anti-

correlation  (~  -0.6)  between  regions  12  and  21,  indicating  that  these  two  regions  were  not  efficiently

separated by the inversion. In the opposite, the high uncertainty reduction of region 3 (35%) confirms that

this region is separated from the remaining NW regions (Figure IV.13). In the North-east (NE) sector, the low

posterior error correlations (|R2| < 0.5) and the high uncertainty reduction (40% for regions 22 and 23)

illustrate the efficient flux separation by the inversion. The good flux separation in the NE sector can be

related to the localization of GIF, OPE, and SCH sites, nearly in the same latitude from west to east, allowing

the separation of the optimized fluxes. 

This analysis shows that the inversion was able to separate the emission fluxes between most regions since

the  absolute  value  of  posterior  error  correlation  does  not  exceed  0.3.  The  few  limitations  of  the  flux

separation occur for some adjacent regions, such as regions 25 and 6 in January, where the posterior error

correlation is 0.7, and the uncertainty reduction is less than 25%. Thus except these few limitations, the

posterior error correlations indicate a relatively good separation of the sub-national flux budgets.
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Figure IV.12: Representation of the posterior error correlation between the 22 constrained regions during 
January (left panel), and the 24 constrained region during July (right panel). Because of the problem of 
under-constrained regions (section IV.3.1.4), regions 9, 18, 19, and 26  in January, and regions 1 and 26 in 
July are not presented. The map in the bottom is displayed as a support for the region numbers. The regions
are grouped into four sectors: North-west (NW), North-east (NE), South-east (SE), and South-west (SW) 
sectors, as shown in the legend map and the posterior error correlation matrices. One sector represents the 
aggregation of several regions close to each others.



IV.3.1.6 The spatio-temporal scales resolved by the inversion

The determination of the spatio-temporal scales resolved by the inversion is performed using the posterior

covariance matrix Pa. When posterior error correlations between control vector components are higher than a

given threshold, these components will be merged in the same group. The given groups are thus formed by

emission fluxes for different regions, and may also include information from initial and boundary conditions.

In this section, the correlation threshold will be selected in order to make use of the possible information

provided  by  the  inversion  excluding  the  interpretation  of  information  that  is  correlated  with  the  initial

conditions and the boundary conditions.

As explained by Berchet et al (2014), the selection of the appropriate correlation threshold must avoid two

issues. First, a high threshold may lead to the separation of all component which involves the risk of over-

interpreting small scale results. Second, the small threshold leads to large groups that cover a wide area of the

domain. A correlation threshold (R2) of 0.5 was chosen in previous studies that used the same ML algorithm

at a continental scales in Siberia (Berchet et al 2013, and Berchet et al 2014), and at a national scale in

France (Pison et al., 2018). This threshold was chosen empirically based on the analysis of Pa matrix. Before

choosing the correlation threshold that we will use for our inversion, we  tested several R2 values (from 0.1 to

0.9) in order to investigate the sensitivity of the inversion results to this threshold (Figures IV.14 and IV.15). 
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Figure IV.13: Spatial distribution of the monthly uncertainty reduction for the constrained regions for 
January (left) and July (right). The uncertainty reduction is presented percentage (%) according to the 
prior flux errors.



For each correlation threshold (from 0.1 to 0.9) in the X axis, Figure IV.14 presents in panels A (January)

and D (July) the total number of groups that are independent from the initial conditions (IC) and boundary

conditions (BC). Panels 14-B (January) and 14-E (July) present the number of groups composed by at least

two regions without IC/BC. Panels C and F show for each correlation threshold the mean time difference of

the groups (groups may include regions with different time intervals).  The mean time difference of each

threshold is defined as follows: first, we calculate the difference between the maximum time (day and hour)

minus the minimum time of each group, then we compute the average of these differences in order to get an

averaged time for each R2. In Figure IV.14 C-F, we notice that the mean time difference does not exceed 1.5

days, whatever the threshold is, meaning that the constituted groups contain mainly regions with adjacent

time periods. Thus, the 6 hourly resolution seems near to the appropriate temporal resolution where the

inversion is informative. This result indicates that the temporal resolution was not defined at a too coarse

resolution, nor too fine since only regions that are close in time periods are correlated.

For January, a high correlation threshold (R2 = 0.7 Figure IV.14-B) leads to a large number of separable

regions and an important number of separable groups without IC/BC (more than 400 groups out of a total of

~ 500). This choice constrains 21% of the monthly emission budget (Figure IV.15-B), but it may lead to the

over-interpretation of small scales inversion results as shown in Figure IV.15-A (mean area coverage of ~ 25

000 km2). A lower correlation threshold (R2 < 0.3) leads to a small number of separable groups (less than 80

groups without IC/BC) that cover a large part of the domain (more than 70 000 km2), and constrains up to

10% of the total emission budget of France (Figures IV.15-B). For both January and July, we selected a

threshold of 0.5, which gives a balance between the number of separable groups, the mean area covered by

these groups, and a large fraction of the constrained national emissions. For example in Figure IV.14-B, the

R2 of 0.5 corresponds to 100 groups of regions that are independent from initial conditions and boundary

conditions. These groups cover an area of ~ 44 000 km2, and sum up to 18% of the monthly emissions for

January.  The  chosen  correlation  threshold  was  used  to  reconstruct  the  national  optimized  fluxes  at  the

monthly scale presented in the following section.
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Figure IV.14: Panels A (January) and D (July) stand for the monthly total number of groups (y-
axis) of the control vector components independent from initial conditions (IC) and boundary 
conditions (BC) for different correlation threshold (the groups may also be formed by only one 
components). B (January) and E (July) represent the monthly number of groups formed by at 
least 2 component of the control vector independent from IC/BC for several correlation 
thresholds. The larger the correlation threshold is, the larger total number of groups is (panels 
A and D), and the lower number of groups formed by at two components is (panels B and E), 
since small number of regions are correlated together (see section IV.3.1.4). The mean time 
difference between the component of the groups (in days) is presented for January (C) and July 
(F).



IV.3.1.7 Optimized fluxes

The  optimized  fluxes  have  been  generated  for  separable  groups  using  the  threshold  R2  =  0.5  (section

IV.3.1.6). These groups are constituted by regions for different time periods of the month. However, due to

the problem of under-constrained regions (see section IV.3.1.4), the groups may be formed with regions that

do not cover the full domain (France), neither the  full month. To provide monthly fluxes for all France, we

use posterior emission for regions and periods constrained by the inversion (see section IV.3.1.4), and prior

emission otherwise. Similar to monthly fluxes, the uncertainties of the optimized fluxes are calculated using

the same combination of the prior and the posterior uncertainties, assuming that they are independent of each

other.
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Figure IV.15: Panels A (January) and C (July) represent the monthly mean area (y-axis) covered 
by the groups for each correlation threshold (x-axis). The percentage of the national emissions 
constrained by the groups (independent from intitial conditions and boundary conditions) is 
presented for January (B) and July (D).



The prior CH4 emission in France is equal to 291±42 GgCH4 for January and 277±51 GgCH4 in July (Table

IV.2). The inversion increases by 8% the emission from the prior in January (316±34 GgCH 4), and increase

more significantly (39%) the July emission over France to reach 385±33 GgCH4 (Table IV.2). A similar

tendency was found by Pison et al., (2018) for the national CH4 inversion during the year 2012 using a less

dense measurement network. At the level of France, the inversion provides an uncertainty reduction of 20%

for January and 35% for July. The increase of the uncertainty reduction for July compared to January may be

associated to the higher number of observation sites (13 sites in January, and 15 sites in July), the higher

prior uncertainty, and the higher percentage of constrained fluxes (Figure IV.15).

Block
January July

Prior fluxes
(GgCH4 )

Optimized fluxes
(GgCH4 )

Uncertainty
reduction (%)

Prior fluxes
(GgCH4 )

Optimized fluxes
(GgCH4 )

Uncertainty
reduction (%)

North-west 125 ± 41 115 ± 33 18 % 118 ± 46 148 ± 30 34 %

North-east 64 ± 13 81 ± 9 30 % 61 ± 11 91 ± 7 37 %

South-east 42 ± 10 41 ± 8.5 15 % 40 ± 10 57 ± 7 33 %

South-west 60 ± 16 79 ± 12 25 % 58 ± 17 89 ± 11 36 %

Total France 291 ± 42 316 ± 34 20 % 277 ± 51 385 ± 33 35 %

Table IV.2: Inversion results of total prior and optimized fluxes over France, and over the four sectors: the North-west 
(NW), the North-east (NE), the South-east (SE), and the South-west (SW). The limits of these sectors can be found in the 
legend map Figure IV.16.

At the sub-national scale, some significant changes in monthly fluxes from the prior can be seen in Figure

IV.16 (January) and Figure IV.17 (July). The inversion correct in the same direction most of the emission

regions in January and July. In the Paris area (region 21) the inversion reduces the prior flux from 47±32

GgCH4 to  44±27  GgCH4 in  January,  and  from 42±28 GgCH4 to  29±19 GgCH4 in  July.  In  contrast,  a

significant increase in CH4 emission can be seen for Brittany (region 3), and central France (region 15). This

increase is associated with a significant uncertainty reduction > 30% (Figure IV.13). The performance of the

inversion system for the regions 3 and 15 can be related to the high intensity of the emissions, which allow

them to be seen by remote sites (PUY in region 15). As presented in section VI.3.1.3, the enhancement of the

optimized fluxes in region 15 reduces the differences between the observed and the simulated concentrations

at PUY by a factor of ~2 (Figures IV.8 and IV.9). Similar performance can be seen in region 12, where the

uncertainty reduction exceeds 30% especially in July (region 12 is located close to TRN and GIF station).

The significant uncertainty reduction occurs mainly for regions characterized by important emissions. For the
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regions that are not constrained by the inversion at all, the uncertainty reduction is null by definition since the

prior fluxes equal the optimized fluxes (e.g. regions 18, 19, 26, and 9 Figure IV.11).

To sum up, the inversion leads to higher emissions compared to the prior at the national scale. The regional

analysis of the monthly fluxes shows that the North-west sector is the main CH4 emission source in France

with a total of 115±33 GgCH4 in January and 148±30 GgCH4 in July. Pison et al (2018) have shown that a

large contribution of the CH4 emissions in the NW sector comes from agriculture. The lowest CH4 emissions

in France is in the south-east sector with less than 60 GgCH4 for both months. This study shows the impact of

OHP station in January and ERS in July, which contribute to better constrain the south-east regions and

consequently to increase the uncertainty reduction. Even if the actual spatial distribution of the observation

sites in France provides significant uncertainty reduction at most of the regions, having more sites will likely

contribute to increase the percentage of the constrained regions. The impact of the observation sites can be

confirmed by the future atmospheric station ROC (Roc'h Trédudon) located in Brittany (west of region 3),

which may contribute to control more efficiently North-west sector.
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Figure IV.16: Total prior (blue) and optimized (red) CH4 emissions over the 27 French regions during January. The 
uncertainty related to the prior and optimized emissions are represented by the error bar. The maps in the bottom 
can be used as a legend for the number of regions (left) and the constrained regions (right).
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Figure IV.17: Total prior (blue) and optimized (red) CH4  emissions over the 27 French regions during January. 
The uncertainty related to the prior and optimized emissions are represented by the error bar. The maps in the 
bottom can be used as a legend for the number of regions (left) and the constrained regions (right).



IV.3.2 Inversion of the CO2 fluxes.

IV.3.2.1 Weight of the CO2 atmospheric observations in the inversion.

Just like for the CH4, we used the CO2 measurements from 16 monitoring stations to estimate CO2 fluxes with

the inverse method in January and July 2014 (Figure IV.3). DEC station, where the CH4 measurements were

available for one day only  provides continuous CO2 measurements with 382 data from January 16 until the

end of the month (Figure IV.19, Table SIV.2). For PDM and OHP, data were not available in January, and

data from ERS are missing in July.

IV.3.2.1.1 Data selection

Similar to CH4, we have selected the hourly averages of the CO2 measurements during the mid-afternoon for

low altitude sites,  and the  nighttime data  for  mountain stations  (see  section IV.2.4.2).  This  selection is

illustrated by  black  data  in  Figure IV.18 for  OPE and PUY, the remaining sites  being presented in  the

appendix (Figures SIV.10, SIV.11, SIV.12, and SIV.13). Overall, the data selected for the inversion range

from 17% to 25% for January, and from 18% to 27% for July (Table SIV.2). The variations of the percentage

of measurement selected for the inversion are mainly controlled by the data gaps, as showed in Figures IV.18

and IV.19.

IV.3.2.1.2 The maximum likelihood (ML) data filtering

After this first data selection, the ML algorithm was applied to filter out the measurements that occur during

short-term synoptic events which are difficult to reproduce by the transport model (see section IV.2.3.1).

These data are illustrated by red color for OPE and PUY sites in Figure IV.18 (remaining sites are presented

in the appendix Figures SIV.10, SIV.11, SIV.12, and SIV.13). The percentage of the data filtered by the ML

algorithm vary between 1% and 3% for both January and July (Table SIV.2). Similar to CH4, the lowest

numbers of the filtered data occur at the mountain sites (Table SIV.2), confirming the low sensitivity of those

sites to the surface fluxes.
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IV.3.2.1.2 Weight of the observations

Figure IV.19 shows the weights of the observations calculated as the sum of the diagonal elements of the

sensitivity matrix HK (see section IV.3.1.1.1). This analysis shows a higher impact of the CO2 observations

(Figure IV.19) compared to CH4 (Figure IV.5). The difference between CH4 and CO2 can be related to the

combined contributions  of  positive fluxes (anthropogenic  emissions and respiration)  and negative  fluxes

(photosynthesis uptake). The amplitude of the two contributions varies according to hours of the day and

seasons (section III.3.4.2). For example during the afternoon, fluxes are dominated by photosynthesis in July

(section III.3.4.2).  The contribution of  the biogenic  fluxes,  being spatially  uniform,  influences  more the

observations compared to the anthropogenic emissions which are more locally distributed and generally far

from the background measurement sites. This configuration may lead to under-constrain the anthropogenic

fluxes.  Thus the contribution of the biogenic  and the anthropogenic emissions for  total  CO 2 fluxes may

explain the increase of the weight of the observation compared to CH4. In general, the inversion operates an

equivalent between three and four averages per 6 hourly time window and may reach five averages in July.
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Figure IV.18: CO2 hourly data at OPE (left) and PUY (right) during January. The grey color represents the
available observations for each site during January. The back data point stands for the retained data during
the mid-afternoon (data between 14:00 and 18:00) for low altitude sites (OPE), and the nighttime (data 
between 00:00 and 06:00) for mountain stations (PUY). The red data show the observations rejected by the 
ML algorithm (see section IV.2.3.1).



IV.3.2.2 Investigation of the observation and the prior flux errors

In this section, we compare the observation and prior flux errors estimated by the ML algorithm for CO 2

(section IV.2.3.1) with empirical  estimates. Similar to CH4 (section IV.3.1.2),  The ML observation error

(Figure IV.20) being the diagonal elements of the R matrix, is compared to an empirical estimate of the

transport  error  given  by  the  absolute  difference  of  simulated  CO2 from  two  transport  fields  used  in
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Figure IV.19: Representation of the availability of the CO2 observed data and their 
contribution to the inversion for each site. The grey line represents the available data. Black 
dots stand for the retained measurements (data between 14:00 and 18:00 for low altitude 
sites, and data between 00:00 and 06:00 for mountain sites). The color points represent the 
amount of information used each day by the inversion system (value 1 indicate that the 
inversion uses the equivalent of one hourly data). These information are calculated from the 
diagonal terms of the sensitivity matrix HK



CHIMERE (ECMWF minus AROME, section III.3.5).  For the ML prior flux errors,  they are  separated

between biogenic and the anthropogenic flux errors. For biogenic fluxes, we compared the ML error being

the diagonal  terms of B to the absolute difference of fluxes from two vegetation models (VPRM minus

CTESSEL, section III.3.4.2).  The ML prior flux errors for anthropogenic emissions are compared to the

absolute difference between two emission maps (EDGAR minus IER, section III.3.4.1).

IV.3.2.2.1 Observation errors

Figure IV.20 shows smaller ML observation errors compared to the difference between the two transport

fields, especially during July. Like for CH4, the mean ML observation errors is smaller by a factor of 1.2 to

1.5  than the  empirical  estimation,  and two times  smaller  at  some specific mountain  sites  (e.g.  SCH in

January).  This  confirms the results  found for  CH4 indicating that  the  transport  errors  seem to be  more

important  than  the  representativeness  and  the  aggregation  errors  at  the  used  spatial  resolution.  The

comparison between the two months shows an increase of the mean and the interquartile range (colored

whiskers) of observation errors in July by a factor between 1.5 and 2 compared to January. Like for CH4, this

confirms the  ability  of  the ML algorithm to  reproduce  accurately  the higher  observation  errors  in  July

compared to January.

One interesting point is that the ML algorithm generally allocates higher observation errors at mountain sites

compared to low altitude stations, with higher errors in July (up to 3 ppm) than in January (Figure IV.20).

This  is  probably  related  to  the  difficulty  to  reproduce  accurately  the  orography,  which  influences  the

representation of the mesoscale driven flows at the mountain stations (section III.3.6).
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IV.3.2.2.1 Prior flux errors

The  spatial  distribution  of  the  ML  prior  flux  errors  is  compared  to  the  absolute  difference  between

anthropogenic emissions maps in Figure IV.21, and between vegetation flux models in Figure IV.22. Similar

to CH4 (section IV.3.1.2), the flux errors are expressed in percentage of the flux budgets at the monthly scale

per region. For both anthropogenic and biogenic prior flux errors, the ML algorithm estimates higher values

than the difference between the emissions maps. Over France, the ML algorithm estimate prior flux errors

exceeding 150%, whereas the empirical error estimation varies between 15% and 60% for anthropogenic

fluxes (Figure IV.21), and between 10% and 120% for biogenic fluxes (Figure IV.22). The comparison of the

ML prior  errors  between  the  two  months  shows  relatively  higher  errors  in  January  compared  to  July,

especially for the anthropogenic emissions. The highest ML prior errors are found for the biogenic fluxes in
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Figure IV.20: Comparison of the CO2 observation errors calculated by the maximum of likelihood algorithm 
(ML, section IV.2.3.1) and the absolute difference of simulated concentration between the two transport 
models (ECMWF minus AROME). The errors are presented using whiskers for errors between the 25th and 
the 75th quantiles, the horizontal black line for the median, and the colored dots for the mean observation 
error.



the south of France and Corsica region during July. Similar to CH4, these high ML prior errors probably

compensate the low observation errors estimated by the ML algorithm because the two matrices R and B are

mutually dependent (section IV.2.3.1).
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Figure IV.21: Comparison of the prior flux errors calculated by the maximum of 
likelihood algorithm (ML) and the absolute difference between the two 
anthropogenic maps (EDGAR minus IER). The errors are presented in percentage 
of flux budgets at the monthly scale per region forJanuary (top) and July (bottom).



IV.3.2.3  Fit of posterior concentrations to observations

The fit of posterior CO2 concentrations to observations is presented for atmospheric stations in France in

Figure IV.23 (January) and Figure IV.24 (July).  Figures for stations outside France can be found in the

appendix (Figure SIV.14 and SIV.15). The inversion reduces significantly the distance between observed and

modeled concentrations. After the inversion, the differences between the prior (blue) and the observation

(black) are reduced by a factor of ~2 in January (Figure IV.23), and ~3.5 in July (Figure IV.24). For example

at BIS, PUY, and GIF, the prior concentration was underestimated by 10 to 15 ppm between July 21 and 27.

After the inversion, this bias is reduced by a factor of ~3 (Figure IV.24). 

In both months, the inversion reduces uncertainties by a factor of 1.2 - 2. The largest uncertainty reduction

occurs at low altitude sites, especially in January. For example, at BIS and OPE the reduction of the posterior

concentration uncertainties reaches 30% (Figure IV.23). For mountain sites (e.g. PDM in Figure IV.24) the
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Figure IV.22: Comparison of the prior flux errors calculated by the maximum of likelihood 
algorithm (ML) and the absolute difference between the two anthropogenic maps (VPRM 
minus CTESSEL). The errors are presented in percentage of flux budgets at the monthly 
scale per region forJanuary (top) and July (bottom).



error reduction is less than 20% due to the smaller sensitivity of mountain stations to surface fluxes. The

posterior concentrations are generally within the range of the ML observation errors (±1σ).  We observe

higher concentration uncertainties in July compared to January, probably due to the more pronounced and

spatially diffused biogenic fluxes in summer (section III.3.4.2).

Before the inversion, the R2 range from 0.6 to 0.8 for January and between 0.2 and 0.7 in July. After the

inversion, the R2 exceed 0.9 for January and range from 0.6 to 0.9 in July. The highest R2 corrections occur

at OPE in July, where the inversion increases the R2 from 0.2 to 0.88. The general enhancement of the R2

after the inversion is related to the improvement of the representation of the synoptic events phasing. Few

exceptions  occur  at  GIF during July where the atmospheric  concentrations  exhibit  some sharp  synoptic

changes. Similar to CH4, the difficulty to optimize the atmospheric concentrations at GIF is associated with

the influence of the emission fluxes from the Paris region.
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Figure IV.23: Observed (black) and simulated prior (blue) and posterior (red) CO2 daily averages for 
theFrench atmospheric sites (BIS, GIF, OPE, PUY, TRN, and ERS) during January. The shaded 
areasrepresent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior 
(shadedred) CO2 concentrations. For each sites we calculate the root mean square error (RMSE) and 
thecoefficient of correlation (R2) for the prior and the posterior concentration.



179

Figure IV.24: Observed (black) and simulated prior (blue) and posterior (red) CO2 daily averages for 
theFrench atmospheric sites (BIS, GIF, OPE, PUY, TRN, OHP, and PDM) during July. The shaded 
areasrepresent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior 
(shadedred) CO2  concentrations. For each sites we calculate the root mean square error (RMSE) and 
thecoefficient of correlation (R2) for the prior and the posterior concentration.



IV.3.2.4 Flux regions constrained by the inversion

The regional  constraints  brought  by  the atmospheric  measurements  are  analyzed for  CO2 separately for

anthropogenic emissions (Figures IV.25 and IV.26), and biogenic fluxes (Figures IV.27 and IV.28). Similar to

CH4, each constraint distribution is calculated by the application of the influence matrix KH to the prior

fluxes (see section IV.3.1.4). The strength of the constraints depends on the intensity of the fluxes and how

well these fluxes are seen by the inversion given the location of stations and the transport fields. 

In January, both anthropogenic and biogenic fluxes are better constrained in the west of France compared to

the east (Figures IV.25 and IV.26). Similar to CH4, the regions (18, 19, and 9) in the south-east of France are

not  constrained  at  this  period  due  to  the  missing  data  of  OHP station.  In  July  (Figure  IV.26)  several

anthropogenic emission regions in the west and the south of France were not constrained by the inversion

system. On the other hand, the same regions are significantly constrained for the biogenic fluxes (Figure

IV.28). Because of the localization of the atmospheric sites (GIF, TRN, and PUY) far from regions 3, 4, 5,

24, 25, 7, and 14, the inversion system could not extract the signal of the anthropogenic emissions from the

total  CO2 signal.  In  July,  the  best-constrained  anthropogenic  emission  regions  are  located  close  to

atmospheric sites (regions 6, 15, 12, and 21). For biogenic fluxes, all regions are rather well constrained by

the inversion, except region 84 (Corsica) due to the lack of ERS data in July (Figure IV.28).

Figures IV.25 to IV.28 also represent the monthly weight of the stations in the inversion system calculated by

adding the diagonal elements of the sensitivity matrix HK (see section IV.3.1.1). In both months, the low

altitude stations BIS, GIF, TRN, and OPE have larger weights, meaning that they contribute significantly to

constrain CO2 fluxes. In the opposite, low weights are found for mountain sites (PUY, JFJ, PRS, and PDM)

being more decoupled to surface fluxes. The same result was found for CH4 (section IV.3.1.4), confirming

that mountain sites are less effective to constrain surface fluxes.
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Figure IV.25: Spatial distribution of the influence matrices, prior fluxes, the constraint on regions, and 
the contribution ofthe stations for the inversion in January. The constraint map is generated by 
convolving the influence matrix KH(presented in the figure by % over the month) with the prior 
anthropogenic emissions. The contribution of the station in the inversion forJanuary is presented using 
the diagonal terms of the sensitivity matrix HK. The scales of the constraints maps and thecontribution 
of the station were chosen arbitrary, in respect with the range of the two maps. The map in the 
right(legend map) is presented as a support for number of regions.
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Figure IV.26: Same as figure 25 in July (anthropogenic fluxes).
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Figure IV.28: Same as figure 27 in July (biogenic fluxes).

Figure IV.27: Same as figure 25 for biogenic fluxes.



IV.3.2.5 Spatial correlation of the anthropogenic and biogenic flux errors 

The  CO2 observations  from  the  atmospheric  stations  over  France  are  regularly  influenced  by  the

anthropogenic  emissions,  but  the  variabilities  in  the  concentrations  are  dominated  by  the  influence  of

seasonal  and diurnal  variations  of the biogenic  fluxes.  Thus separating the signals  of  the anthropogenic

emissions from the biogenic fluxes in the inversion system is challenging.  To evaluate the ability of the

inversion to discriminate between the two contributions, we have calculated the posterior error correlation

using the Pa matrix. As for CH4, the separability between regions and/or fluxes (anthropogenic and biogenic

fluxes) is illustrated by the posterior error correlations (Figure IV.29) and the uncertainty reduction (Figure

IV.30) for January and July.

Figures IV.29-A and IV.29-E, show the posterior error correlation between the anthropogenic emissions in

France (21 constrained regions in January and 12 constrained regions in July, see section IV.3.2.4). For the

two months, low posterior error correlation (|R2| < 0.2) of anthropogenic emission can be seen between the

different  sectors  (NW,  NE,  SE,  and  SW sectors).  These  low correlations  are  associated  with  moderate

uncertainty reductions (Figure IV.30), indicating that emissions in those four sectors are separated by the

inversion. In Figure IV.29-A and IV.29-E, we can notice that most of the regions that are located far from

each other are also efficiently separated, with a posterior error correlation varying between -0.3 and 0.3. The

separation between the regions for anthropogenic emission can be explained by the spatial distribution of the

observation sites (BIS, PUY, GIF, TRN, and OPE) which control the emissions from the nearby regions.

Moderate posterior error correlations occur between some adjacent regions, such as regions 4 and 5 in the

NW sector (Figures IV.29-A). For these regions, the posterior error anti-correlation is ~-0.6, indicating the

limited separation of the anthropogenic emissions. 

For biogenic fluxes, the posterior error correlations are shown for all regions in July (Figure IV.29-H), and for

the 22 constrained regions in January (Figure IV.29-D). The analysis of the posterior error correlation shows

moderate correlations (|R2| ~0.5) between the North-west (NW) and the South-west (SW) sectors in January

(Figure IV.29-D). Similar correlations occur also between the SW and SE sector in July (Figure IV.29-H).

The later correlations are associated with an uncertainty reduction ranging between 20% and 30%, meaning a

limited biogenic flux separation between the SE and the SW sectors in July. At the regional scale, relatively

high posterior error correlations occur for the adjacent regions. For example between regions 6, 7, and 14, the
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posterior error correlation exceeds 0.7 (Figure IV.29-H), and the uncertainty reduction remain less than 40%.

Due  to  the  westerly  winds  in  July  (Figure  SIV.9),  biogenic  fluxes  from  the  SW  sectors  will  impact

concentrations at a sampling site located more in the East (e.g. OHP), rather than the closer station of BIS.

Similar to CH4, this result confirms the problem of the flux separation for the regions located far away from

the atmospheric sites.

The posterior error correlations between the anthropogenic and the biogenic fluxes are presented in Figures

IV.29-B (January) and IV.29-F (July).  The diagonal elements of each panel give the correlation between

anthropogenic  and biogenic  fluxes  for  the  same regions.  The  non-diagonal  elements  are  the  correlation

between the anthropogenic and the biogenic fluxes for distinct regions. Note that due to the different number

of constrained regions between the biogenic and the anthropogenic fluxes, the two matrices (28-B and 28-F)

are not square. In general, the inversion separates efficiently anthropogenic and the biogenic fluxes for distinct

regions (|R2|  < 0.3).  For the same regions (diagonal elements),  the absolute value of the posterior error

correlation varies between 0.3 and 0.5. This indicates that the inversion separates efficiently the biogenic and

the  anthropogenic  fluxes  for  most  regions.  Few exceptions  occur  for  example for  regions 22 and 23 in

January,  where the |R2|  reach 0.8.  For  these regions,  the inversion does  not  correctly  separate  between

anthropogenic and biogenic fluxes, since the corresponding uncertainty reduction remains below 25%. 
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Figure IV.29: Panel A (January) and E (July) represent the posterior error correlation between the constrained 
anthropogenic emission regions in France (section IV.3.2.4). Panel D (January) and H (July) represent the 
posterior error correlation between the constrained biogenic flux regions in France (section IV.3.2.4). Panel B 
(January) and F (July) stand for posterior error correlation between the anthropogenic and the biogenic fluxes 
for the constrained regions in France. Note that panels C and G show the same information as B and F (the 
posterior error matrice is symetric). The map in the bottom is desplayed as a support for the region numbers. 
The regions are grouped into four sectors: North-west (NW), North-east (NE), South-east (SE), and South-west 
(SW) sectors, as shown in the legend map and the posterior error correlation matrices. One sector represents 
the aggregation of several regions close to each others.



IV.3.2.6 The spatio-temporal scales resolved by the inversion

As for CH4 I have tested different correlation thresholds (0.1 to 0.99) of the posterior covariance matrix Pa in

order to evaluate the spatial and the temporal scales resolved by the inversion (see section IV.3.1.6). Each

component of the control vector represents the anthropogenic or the biogenic flux emitted by a region for a

given day and during a specific time window (see section IV.2.4.1). 

Figure IV.31 shows the number of groups, independent from initial conditions (IC) and boundary conditions

(BC), calculated for different correlation thresholds for January (Figure IV.31-A) and July (Figure IV.31-C).

The number of groups assembled by at least two control vector components and without IC/BC is shown in

Figure IV.31-B for January and Figure IV.31-D for July. For each correlation threshold, we calculate the
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Figure IV.30: Spatial distribution of the monthly uncertainty reduction for the constrained anthropogenic 
emission (CO2  anthro) and biogenic fluxes (CO2 Bio) for January and July. The uncertainty reduction is 
presented in percentage (%) according to the prior flux errors.



mean time difference (see section IV.3.1.6),  the percentage of  the constrained prior,  and the mean area

covered by the formed groups for anthropogenic emissions (Figure IV.32) or biogenic fluxes (Figure IV.33).

Similar to CH4,  the selection of the correlation threshold depends on information provided by the spatial

coverage of the groups, the percentage of the constrained fluxes, and the temporal correlation of the regions.

The largest number of groups (more than 180) constituted by at least two regions and without IC/BC occur

for R2 set to 0.8 (Figure IV.31). Lower correlation thresholds (e.g. R2 < 0.5) lead to less than 40 groups

(Figure IV.31-B and 31-C), that cover a large area (area > 100 000 km), and constrain less than 7% of the

total anthropogenic emissions and less than 18% of the total biogenic budget (Figures IV.32 and IV.33).

Moreover, we notice that for these low correlation thresholds (R2 < 0.5), the groups mean time difference

may exceed 1 week (Figures IV.32-A and IV.33-A). This result indicates that the low thresholds provide

groups with distant time periods for both the anthropogenic and the biogenic fluxes (only a small number of

regions with  adjacent  time periods  are  grouped).  For  this  reason,  we  avoid  the selection of  correlation

thresholds lower than 0.5. 

For the high thresholds, the inversion constrains higher percentages of the national budget. As can be seen in

Figure IV.32, For R2 > 0.7 the inversion constrains more than 10% of the anthropogenic monthly emissions

in January and more than 7% for July. For the biogenic fluxes, the same thresholds constrain more than 15%

of  the  biogenic  flux  budget  in  January,  and  up  to  40%  for  July  (Figure  IV.33).  The  difference  in  the

percentage of the constrained national budget depends on the number of the constrained regions (see section

IV.3.2.4). 

For CO2 (both anthropogenic and biogenic emissions), we selected a correlation threshold of 0.8, which takes

into consideration: the highest number of groups composed by at least to regions without IC/BC; a low

temporal correlation between regions (up to 1.7 days); a high percentage of the constrained anthropogenic

and biogenic total fluxes; and a small mean area covered by the groups (between 20 000 km2 and 50 000

km2). This choice corresponds to 188 groups in January and 220 groups in July without IC/BC (Figure

IV.31). Selecting R2 of 0.8 will allow us to interpret the inversion results that constrain 13% of the total

anthropogenic emissions in January and 8% in July, and 20% of the national biogenic budget in January and

41% in July.
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Figure IV.31: Panels A (January) and C (July) stand for the monthly total number of groups (y-axis) of the control 
vector components independent from initial conditions (IC) and boundary conditions (BC) for different correlation 
thresholds (the groups may also be formed by only one component). B (January) and D (July) represent the 
monthly number of groups formed by at least two components of the control vector independent from IC/BC for 
several correlation thresholds. The larger the correlation threshold is, the larger total number of groups is (panels 
A and C), and the lower number of groups formed by at two components is (panels B and D), since small number 
of regions are correlated together (see section IV.3.2.5).
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Figure IV.32: Panels A (January) and D (July) represent the monthly mean time difference (in days) calculated 
between the component of the groups for the anthropogenic emissions. Panels B (January) and E (July) stand for
the percentage of the anthropogenic emissions constrained by the groups formed independently from initial 
conditions (IC) and boundary condition (BC). Panels C (January) and F (July) display the monthly mean area 
covered by the groups without IC/BC for the anthropogenic emissions.



191

Figure IV.33: Same as figure 32 for the biogenic fluxes. 



IV.3.2.7 Optimized fluxes

In this section, we present the optimized anthropogenic and biogenic fluxes using groups constituted by the

correlation threshold 0.8 (see section IV.3.2.6). Figures IV.34, IV.35, and table IV.3 represent the inversion

results  of  the  anthropogenic  emissions  for  January  and  July  respectively.  The  inversion  results  of  the

optimized biogenic fluxes are displayed in Figures IV.36, IV.37, and table IV.4.

IV.3.2.7.1 Optimized anthropogenic emissions

Over France,  prior  anthropogenic  fluxes from EDGAR inventory  equals  29±20 MtCO2 for  January  and

25±14  MtCO2 for  July  (Table  IV.3).  The  atmospheric  inversion  increases  by  19%  the  anthropogenic

emissions in January (34±17 MtCO2), and do not change significantly the July emission (Table IV.3). At the

national scale, the inversion reduces the anthropogenic emission uncertainties by 18% in January and only

11% for  July.  The  lower  uncertainty  reduction  for  July  is  associated  with  the  lower  percentage  of  the

constrained  anthropogenic  emissions  (see  section  IV.3.2.6).  The  increase  of  the  optimized  emissions  in

January  is  mostly  related to  the substantial  increase estimated in  the north-east  sector  (+52%).  For  the

remaining sectors (NW, SE, SW) small increase of the anthropogenic fluxes occurs after the inversion. In

July, small changes in the anthropogenic emissions occur for all sectors. 

Block
January July

Prior fluxes
(MtCO2 )

Optimized fluxes
(MtCO2 )

Uncertainty
reduction (%)

Prior fluxes
(MtCO2 )

Optimized fluxes
(MtCO2 )

Uncertainty
reduction (%)

North-west 9.3 ± 11 9.5 ± 9 16 % 7.7 ± 7 6.6 ± 6.1 13 %

North-east 9.2 ± 15 14 ± 13 13 % 7.5 ± 10.6 6.9 ± 9.3 12 %

South-east 4.5 ± 8.7 4.6 ± 7.2 17 % 4.3 ± 6.3 4.1 ± 5.7 9 %

South-west 5.8 ± 12 6.1 ± 9.2 23 % 5.5 ± 7.5 5.6 ± 6.7 10 %

Total France 28.8 ± 20 34.2 ± 17 18 % 25 ± 13.9 23.3 ± 12.4 11 %

Table IV.3: Inversion results of total prior and optimized CO2 anthropogenic fluxes over France, and over the four 
sectors: the North-west (NW), the North-east (NE), the South-east (SE), and the South-west (SW). The limits of these 
sectors can be found in the legend map Figure IV.34.

For the region 21 (Paris area), the highest CO2 anthropogenic emission region, the inversion tends towards

lower fluxes (~ 4.7 MtCO2) compared to the prior for both January and July (Figures IV.34 and IV.35).

Similar results were found in earlier studies showing a decrease of the anthropogenic fluxes in the Paris area
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after the inversion (e.g. Bréon et al., 2015, and Staufer et al., 2016). These studies estimated a monthly total

of  ~4 MtCO2 for  the Paris  region,  with less  than 1 MtCO2 of  difference compared to  our  results.  This

difference can be explained by the limits of the area used for the CO2 inversions. Both Bréon et al (2015) and

Staufer et al (2016) studies defined a region that contains only the city of Paris and its suburban area, which

is  significantly  smaller  compared  to  our  area  (region  21  in  Figure  IV.34).  They  were  also  using  more

atmospheric measurements from stations located close to Paris.

Since  the optimized fluxes  are  calculated  based on the  posterior  fluxes  for  the  constrained regions and

periods, completed with the prior for the non-constrained fluxes, the difference between the optimized fluxes

and the prior are more important for the constrained regions (e.g. region 3, 21, 10, and 13). For the non-

constrained regions,  the prior and the optimized fluxes are similar  (e.g.  regions 1,  20,  26,  8,  and 18 in

January).
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Figure IV.34: Total prior (blue) and optimized (red) anthropogenic CO2 emissions over the 27 
French regions during January. The uncertainty related to the prior and optimized emissions are 
represented by the error bar. The maps in the bottom show the number of regions (left) and the 
constrained regions (right).



IV.3.2.7.1Optimized biogenic fluxes

The  inversion  system  constrains  a  higher  number  of  regions  for  the  biogenic  fluxes  compared  to  the

anthropogenic emissions. In January the fluxes are constrained for the 18% of national budget, and in July the

coverage increases to 41%. The increase in the percentage of the constrained region in July can be explained

by two elements. First, the availability of more atmospheric sites, such as OHP, help to capture efficiently the

biogenic fluxes in the south-east sector (Figure IV.28). Second, the higher amplitude of the biogenic fluxes in

July compared to January generates higher signals to be detected at the sampling sites (see section III.3.4.2).
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Block
January July

Prior fluxes
(MtCO2 )

Optimized fluxes
(MtCO2 )

Uncertainty
reduction (%)

Prior fluxes
(MtCO2 )

Optimized fluxes
(MtCO2 )

Uncertainty
reduction (%)

North-west 12.7 ± 13.8 13.6 ± 10.3 25 % -35 ± 23.5 -22 ± 15 36 %

North-east 11.2 ± 14.5 10.5 ± 11.4 21 % -31 ± 20.5 -32 ± 14 31 %

South-east 2.4 ± 12.7 4.6 ± 12 5 % -45 ± 34 -40 ± 20 41 %

South-west 12.6 ± 16 -4.8 ± 13.6 15 % -23 ± 22 -15 ± 15 32 %

Total France 39 ± 27.6 24 ± 23 18 % -134 ± 50 -109 ± 32 36 %

Table IV.4: Inversion results of total prior and optimized CO2 biogenic fluxes over France, and over the four sectors: the
North-west (NW), the North-east (NE), the South-east (SE), and the South-west (SW). The limits of these sectors can be 
found in the legend map Figure IV.36

Over France, the prior biogenic budget estimated from VPRM model equals 39±28 MtCO 2 for January and

-134±50 MtCO2 for  July (Table IV.4).  The optimized biogenic  budget  is  24±23 MtCO2 in  January,  and

-109±32 MtCO2 in July. At the national scale, the inversion tends to decrease the biogenic fluxes for the two

months (CO2 winter respiration and summer uptake). In January, the decrease of the optimized biogenic

fluxes compared to the prior is associated with a significant CO2 uptake in the South-west sector (Table IV.4),

where the inversion estimates a CO2 sink of -4.8 MtCO2 instead of a source of 12 MtCO2 . We have compared

those results to the eddy flux measurements performed at Le Bray (Sarrat et al., 2007) located in region 6,

and Lamarquere (Béziat et al., 2009) located in region 7, despite the fact that the spatial representativeness of

the eddy flux measurement (on the order of one hectare) is much lower than the regional fluxes estimated by

the atmospheric inversion. Considering the area of regions 6 and 7, the optimized biogenic fluxes are equal to

20±65 KgCO2 /m2/month for region 7, and -47±54 KgCO2 /m2/month for region 6. For the same period, the

eddy  flux  measurements  sum  up  to  77  KgCO2/m2/month  for  Lamasquere  (cultivated  site),  and  -33

KgCO2/m2/month for Le Bray (pine forest site), which are within the range of the optimized biogenic flux

uncertainties (±1σ). This comparison confirms the CO2 uptake in region 6 in January as deduced from the

inversion. 

In July, most regions are characterized by lower CO2 sinks after the inversion (Figure IV.36). The decrease of

the fluxes occurs in the four sectors, with a significant reduction in the NW block (13 MtCO 2 of difference

between the prior and the optimized fluxes). This decrease is associated with an uncertainty reduction up to

36% (Table IV.4). The performance of the inversion system for the NW sector is related to the availability of

GIF and TRN sites, which constrain the biogenic signal of these regions due to the westerly winds. The
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decrease of the CO2 sink and the increase of the anthropogenic emission in the NW block after the inversion,

reduce the negative bias of the atmospheric concentrations at both GIF and TRN sites (Figures IV.23 and

IV.24). 

To sum up, the CO2 inversion leads to an increase of the anthropogenic emission and a decrease of the

biogenic fluxes over France. At the regional scale, the north of France (NW and NE sectors) is characterized

by the highest anthropogenic emissions, whereas in the south of France, the CO2 uptake is more pronounced

for both months. All regions showed a significant uncertainty reduction of 20-50% for the biogenic fluxes,

except  the SE sector  in  January.  For  anthropogenic  emissions,  most  regions also showed an uncertainty

reduction, but limited to 10-30%. The posterior uncertainties remain larger than the net regional fluxes (by

80% on average). Low posterior error correlations (|R2| < 0.3 in Figure IV.29) between anthropogenic and

biogenic flux regions and moderate posterior uncertainties (~20 - 50%) indicate that the two optimized fluxes

should be relatively well  separated.  Overall,  the  posterior  error  correlations  for  distinct  regions remains

below 0.5, especially for the anthropogenic fluxes. However, some cases of high posterior error correlations

(~0.6 - 0.8) occurred between anthropogenic and biogenic fluxes at regions located upwind of sampling sites

(e.g. regions 22, 23). 
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Figure IV.36: Total prior (blue) and optimized (red) biogenic CO2 emissions over the 27 French regions 
during January. The uncertainty related to the prior and optimized emissions are represented by the error 
bar. The maps in the bottom show the number of regions (left) and the constrained regions (right).
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Figure IV.37: Total prior (blue) and optimized (red) biogenic CO2 emissions over the 27 French regions 
during July. The uncertainty related to the prior and optimized emissions are represented by the error bar. 
The maps in the bottom show the number of regions (left) and the constrained regions (right).



IV.4 Conclusions

In this study, we estimated the CO2 and the CH4 surface emissions in France for January and July 2014 using

the atmospheric transport model CHIMERE embedded in the inversion framework PYMAI (Berchet et al.,

2013 and 2015), with a horizontal resolution of 0.1° x 0.1°. The inversion was performed using data collected

during the year 2014 from 16 surface station (8 stations in France 8 stations in the neighbouring countries)

measuring atmospheric CO2 and CH4 concentrations in the Western European region. We implemented the

Bayesian  inversion  method  developed  by  Berchet  et  al  (2013)  in  order  to  estimate  objectively  the

uncertainties in the inversion framework. The used system allowed us to investigate the weight of the used

observation in the inversion, the spatial distribution of sensitivity of the surface fluxes, and to estimated the

optimized fluxes at a national and sub-national scales.

To constrain the surface fluxes, the inversion system assimilates hourly mid-afternoon data for low altitude

sites and nighttime data for the high altitude stations. This selection was based on the evaluation of the

performance  of  CHIMERE for  simulating  the  atmospheric  concentration.  After  this  first  screening,  the

inversion system filters out data whose representativeness appears to be incompatible with the simulated data.

This is, for example, the case of observations that occur during sharp synoptic events, which are very difficult

to simulate by the transport models.  This selection impacts more the low altitude sites,  especially those

located near high emission sources such as GIF and CBW sites.  Overall,  the inversion system rejects a

percentage that varies between 1 % and 3 % compared to the total number of the hourly data used by the

system. The investigation of the impact of the retained data on the inversion showed that the system uses the

equivalent of 3 information per day for CH4 and 5 information per day for CO2. The higher weight of CO2

observation was explained by the higher sensitivity of the inversion system regarding the biogenic fluxes,

especially during the summer.

The used inversion system allows the investigation of the strength of the constraint, which mainly depends on

the intensity of the emission fluxes, the transport, and the distance to the observation sites. This analysis

showed that the surface fluxes in the West of France are significantly constrained. This was related to the

impact of GIF and TRN sites, located a few hundreds of kilometers east of the emission sources, which

capture efficiently the emission signal driven by the westerly winds. In agreement with earlier studies (e.g.

Pison et al., 2018, and Berchet et al., 2015), this analysis confirms the ability of the inversion to principally

constrain the emissions close to the atmospheric sites in a radius up to 500 km. Meanwhile, the regions that

are located far from the observation sites were not constrained at all. That was the case for the south-east
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regions of France, where the inversion did not optimize the corresponding fluxes due to lack of the observed

data  during January.  The  comparison between the two months  showed the increasing percentage of  the

constrained  CH4 and  the  biogenic  CO2 fluxes  in  July,  in  agreement  with  the  higher  number  of  the

measurement sites, compared to January. For the anthropogenic emission of CO 2, a lower percentage of the

constrained fluxes was shown in July despite the increasing number of the operational atmospheric stations.

This  was  explained  by  the  incapability  of  the  inversion  system  to  correctly  extract  the  signal  of  the

anthropogenic emission from the total CO2 fluxes, captured by the observation sites, due to the influence of

the strong biogenic sink in July.

The investigation of the posterior error covariance allowed us to study the ability of the inversion system to

efficiently separate de emission fluxes. Despite the low uncertainty reduction that ranges between 10  % and

40 %, we assumed that the inversion managed to correctly separate the emission fluxes between most regions.

This was illustrated by the low posterior error correlations that did not exceed 0.5 for both CO 2 and CH4 for

most regions. The significant flux separation (|R2| < 0.3) was found between the distant regions thanks to the

spatial  distribution of  the atmospheric sites in a  south-west  north-east  axis.  Few limitations  for the flux

separation was found between some adjacent regions characterized by a posterior error correlation that may

reach 0.7 (e.g. regions 22 and 23). 

Before analyzing the results of the optimized fluxes, first, we defined the spatiotemporal scales resolved by

the inversion. This analysis was based on the posterior error covariance matrices. For CH 4, the correlation

threshold of 0.5 allowed us to interpret the inversion results that constrain 18 % and 28 % of the national

emissions for January and July respectively. The threshold of 0.5 provides the highest number of control

vector component groups composed of at least two regions that cover an averaged area of 44 000 km². The

component of each group was characterized by a mean time difference less than 1.5 days. This means that the

interpretation of the inversion results will be based on regions characterized by an adjacent time period. We

performed the same analysis for CO2, but with a correlation threshold of 0.8. This threshold provides results

that constrain between 8 % and 13 % of the national anthropogenic emission, and between 20 % and 41 %

for the national biogenic budget. Based on these selections we summarize in the following the results of the

optimized fluxes for CH4 emissions, the anthropogenic and the biogenic CO2 fluxes.

For CH4, the inversion tends to increase the surface fluxes for both months, with higher emissions in July

compared to January. This result confirms the conclusions of Pison et al (2018) and Bergamaschi et al (2018)

who estimate higher CH4 fluxes after the inversion in France compared to their prior emissions. Analysing
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the  inversion  results  at  a  sub-national  scale,  allowed  us  to  determine  the  contribution  of  each  region.

Consistent with the prior emissions, the inversion estimated the highest CH4 sources in the North-west of

France with a total of 115±33 GgCH4 in January and 148±30 GgCH4 in July. The lowest CH4 emissions in

France were found in the South-east of France with less than 60 GgCH4 for both months.

For the anthropogenic CO2 emissions, the inversion provided higher emissions in January and slightly lower

emission  in  July  compared  to  the  prior.  The  optimized  emissions  were  associated  with  an  uncertainty

reduction of 18% in January and 11% for July. The decrease of the uncertainty reduction for July was related

to the decrease in the percentage of the constrained CO2 emissions. For the biogenic fluxes, the inversion

decreases the national budget for both months. In January the respiration was decreased by 38 %, whereas in

July the CO2 sink was reduced by 18 % compared to the prior fluxes. The significant decrease of the biogenic

emissions in January was associated with predominant CO2 sink estimated after the inversion in the south-

west region. In July the decline of the CO2 sink impacted most regions, with a significant decrease of 30 % in

the West of France. The Western regions were highly constrained by the inversion, but with some limitations

regarding the separation between the anthropogenic and the biogenic fluxes. This result confirmed the need to

use more observation data in order to improve the separability between the fluxes, and to increase the fraction

of the constrained anthropogenic emissions.. 
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Chapter V: Conclusions and perspectives :

V.1 Conclusion

The aim of this thesis is to enhance the knowledge of the CO2 and CH4 surface flux budget in France using a

high-resolution inversion framework and atmospheric measurements provided by several surface stations.

This thesis focuses particularly on exploring the capacity to quantify the national CO2 and CH4 surface fluxes

using surface stations from a regional network such as ICOS, and to identify the main limitations and sources

of uncertainties. The accuracy of the emissions derived from inverse modelling, and the spatial scales at

which the emissions can be estimated, depending on the density of atmospheric measurement network and

the quality of the atmospheric transport model. This study was motivated by the recent development of those

two critical points. First, we have used a high-resolution modelling system which simulates the atmospheric

concentrations at a regional scale and in a high frequency. Second, the national atmospheric measurement

network has been significantly developed in France and neighbouring countries, and consequently, we could

use precise atmospheric measurements from 16 stations.

The first step of the thesis was dedicated to the evaluation of three statistical methods (COV, SD, and REBS)

to detect spikes associated with local contamination sources at four contrasted atmospheric measurement

sites: a tall-tower station in France (OPE),  a high-mountain station in France (PDM), a regional  marine

background site in Crete (FKL), and a marine clean-air site in the Southern Hemisphere (AMS) (Chapter II).

This analysis aimed to filter out short-duration spikes (from few seconds to few minutes) in the continuous

time series in order to keep only the measurements that are influenced by the regional and the large-scale

fluxes and transport. Second, we evaluated the sensitivity of the simulated CO2 and CH4 concentrations to

different forcing for the year 2014, using the regional chemistry-transport model CHIMERE (Chapter III),

with the aim to provide the best input data that can be used with CHIMERE for inverse modelling. Third, we

estimated the CO2 and the CH4 surface fluxes in France using the analytical inversion framework PYMAI and

atmospheric measurements from 16 observation sites from national and European networks (Chapter IV).

The main conclusions for the different sections are summarized as follows.
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V.1.1 Spike detection algorithms

Applying the two automatic methods (SD and REBS) on the CO2, CH4, and CO continuous time-series has

provided variable percentages of contaminated data that range between 0.1% and 15%. These percentages

vary depending on the station localization and to the variabilities of the trace gases, except for the COV

method where the percentage of data to be filtered has to be defined as an apriori parameter. Because of this

limitation, the COV method was considered less flexible to perform regular data cleaning of the GHG time-

series.

The SD and REBS methods have shown a surprisingly high percentage of contaminated data at Pic du Midi

(PDM), a site located at the top of a 2877 m high mountain where we do not expect frequent contamination

by local  sources.  The source of  the local  contamination has  been identified thanks to  a  field campaign

organized in  2015,  which has  revealed the influence of a small  sewage treatment  facility  at  the station,

producing CH4.  Sampling  the  CH4 concentrations  200m far  away from the  contaminated measurements

points has provided a smoother atmospheric signal with a percentage of spikes data that did not exceed 0.8%

instead of 7% closer to the source. The implementation of the spike detection algorithm in the ICOS data

processing enables the filtering of the local contamination, but can also provide a warning for a station that

would detect an abnormally high rate of spikes.

The performance of the automatic methods was analyzed by comparing the spikes detected by SD and REBS

methods to the spikes identified manually by the station managers. This comparison has shown that the SD

method was providing the best good overlapping with manual detection, and was consequently recommended

for regular data processing of the ICOS continuous measurement. 

Despite the multiple influences  of the local  emission sources on the 1-min data,  the aggregation of the

contaminated measurements at the hourly timescale has revealed a mean impact which generally remains

lower than 0.2 ppm for CO2 and 1 ppb for CH4, except for few sites. Even if those biases are significant

regarding the high precision which is sought for the background stations, they are weak compared to other

sources of uncertainties when comparing the observations to the simulated concentrations.

V.1.2 Evaluation of the simulated CO2 and CH4 concentrations

In the second phase of this thesis,  we evaluated the sensitivity of the transport model CHIMERE to the

atmospheric transport and the surface emissions. For this, we used two meteorological fields (AROME and
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ECMWF),  two  anthropogenic  emission  maps  (IER  and  EDGAR),  and  two  biogenic  models  for  CO2

(CTESSEL and VPRM). Eight simulations were performed using combinations of different input data in

order to simulate the CO2 and the CH4 concentrations at a regional scale centered over France for the year

2014.  we  have  compared  the  set  of  simulations  to  each  other  and  to  the  observations  provided by  16

atmospheric sites in order to study the capability of the transport model to reproduce the observed diurnal,

synoptic, and seasonal variabilities.

We first  investigated the discrepancies between the two anthropogenic maps and the biogenic  fluxes.  In

France, the comparison between the two anthropogenic emission maps has shown a difference that remains

below 10% of the annual total. This comparison confirmed our assumption for the anthropogenic emission

uncertainties that were studied in earlier studies (e.g. Ciais et al., 2010, Peng et al., 2016, and Peylin et al.,

2011).  However,  the differences between the two emission maps can be as high as 40% in some areas,

especially  near  the  emission  hotspots  and  in  winter.  The  evaluation  of  the  biogenic  models  showed  a

relatively good agreement between VPRM and CTESSEL monthly budgets in summer and a higher contrast

in winter. The important differences in wintertime were related to negative bias of CTESSEL which simulate,

contrary  to  VPRM,  a  CO2 sink  through  all  the  year.  This  bias  was  due  to  the  overestimation  of  the

photosynthesis activities in the north part of France by CTESSEL, which has been corrected but the latest

version was  not  available  for  this  work.  The spatial  distribution of  the differences  between VPRM and

CTESSEL  has  revealed  significant  differences  at  the  sub-national  scale.  This  information  about  the

differences between surface fluxes represents an important information about the uncertainty, which can be

used to estimate the surface fluxes errors required as an input by the inversion systems. In this study, we used

the differences between the two anthropogenic and biogenic emission maps to evaluate the surface flux errors

estimated by the PYMAI inversion framework presented in Chapter IV.

The  sensitivity  of  the  simulated  concentrations  to  the  transport  data  was  investigated  based  on  the

atmospheric  concentrations  simulated  using  the  two  meteorological  fields  provided  by  ECMWF  and

AROME, with the same surface GHG fluxes. This analysis has shown the significant sensitivity of the CO 2

and  CH4 concentrations  to  the  transport  fields  at  the  mountain  sites.  At  the  low  altitude  stations,  the

difference between AROME and ECMWF impacted the atmospheric concentration by 1 ppm for CO2 and 10

ppb  for  CH4.  These  differences  can  increase  significantly  in  the  vicinity  of  emission  hotspots.  The

comparison between the simulated and the observed concentrations confirmed the capability of CHIMERE to

reproduce more accurately the atmospheric concentrations during the afternoon for the low altitude stations
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and during the night at the mountain sites.  This information was used to select the optimal atmospheric

dataset in the inversion framework (Chapter IV).

The  sensitivity  of  the  simulated  concentrations  to  the  surface  fluxes  was  carried  out  by  running  two

simulations for the anthropogenic emissions (IER and EDGAR) and two simulations for the biogenic fluxes

(CTESSEL and VPRM). The analysis of the simulated concentrations with two anthropogenic fluxes has

confirmed the high uncertainty near big cities and the emission hotspots. For the biogenic fluxes, the negative

bias of CTESSEL has led to a significant underestimation of the CO2 concentrations compared to VPRM.

The impact  of  the differences between the two biogenic models increases in summer,  due to the higher

amplitude of the surface fluxes, and reach more than 6 ppm for CO2. The comparison between the simulated

and the observed concentrations has shown that  the simulation that  uses ECMWF, VPRM and EDGAR

simulate  more accurately the CO2 and the CH4 concentrations  in  France.  These data  were thus  used in

Chapter IV to provide the prior estimates and the transport field used by the inversion system.

V.1.3 Estimation of the CO2 and CH4 fluxes in France

The CH4 and the CO2 emissions in France were estimated for two months, one month in winter (January) and

one month in summer (July), using the analytical inversion systems PYMAI (Berchet et al., 2013 and 2015).

The inversion was performed using the atmospheric transport model CHIMERE forced by the meteorological

data provided by ECMWF. For the prior estimates, we used EDGAR for the anthropogenic emissions and

VPRM for the CO2 biogenic  fluxes.  The inversion system was constrained by continuous measurements

provided from 16 atmospheric surface sites distributed in Western Europe. Running the analytical inversion

system has provided an estimation of the optimized fluxes together with their uncertainties, as well as some

indicators which can be used to analyze the sensitivity of the inversion results to the input dataset.

The investigation of the strength of the constrained fluxes has shown that the western regions of France were

more highly constrained by the inversion system. The localization of GIF and TRN sites has contributed to

constrain these regions thanks to the action of the westerly winds bringing information about the regional

fluxes to the stations located few hundreds of kilometers away downwind. For regions where the surface

fluxes did not influence enough the atmospheric concentrations at the sampling sites, the inversion system

was  not  able  to  optimize  the  flux  and  reduce  the  associated  uncertainties.  This  was  the  case  for  the

anthropogenic emissions located far away from the sampling sites and for which the inversion could not

extract the anthropogenic signal from the total CO2 signal. This analysis has confirmed that the inversion
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system constrains  principally  the biogenic fluxes at  the sub-national  scale.  The optimization of  the CO2

anthropogenic fluxes at the sub-national remains clearly insufficient since only 8% of the monthly budget was

constrained in July. On the other hand, the inversion system constrains efficiently the CH 4 anthropogenic

emissions at the sub-national scale.

After the inversion, the total CH4 emissions for France equals 316±34GgCH4 in January and 385±33 GgCH4

in July, which corresponds to an increase of the prior fluxes by 8% and 38% respectively. The analysis of the

regional fluxes has shown that the highest CH4 emissions occur in the Northwest of France with more than

35% of the national total. The increase of emission resulting from the inversion has reduced significantly the

misfits between the observed and the optimized concentrations at the atmospheric sites (e.g. GIF, TRN, and

PUY). The analysis of the CH4 inversion results confirmed the capability of the atmospheric network to

optimize the CH4 emission at the level of France. Few limitations occur in some regions in the South of

France which was not covered when the measurements at some stations were interrupted.

For the anthropogenic emission of CO2, the inversions increased the prior fluxes by 18% in January to reach

34.2±34MtCO2 ,  and decreased slightly the emissions in July from 25±13MtCO2 to 23±12MtCO2 .  The

minor optimization of the CO2 anthropogenic emissions in July was related to the low percentage of the

constrained fluxes which did not exceed 8%. This indicates that the current  atmospheric network is still

insufficient or not optimized, to constrain the CO2 anthropogenic emissions in France. Indeed, the location of

most stations was selected to be more representative of the natural fluxes. New atmospheric stations have

been recently deployed around Paris that could enable better performances for the anthropogenic fluxes in

this region. For the CO2 biogenic fluxes, the inversion reduces the positive budget of January to 24±23Mt

CO2 and the CO2 sink of July to -109±32 MtCO2 . These estimates were associated with a percentage of the

constrained fluxes that reaches 40% in July. Contrary to the anthropogenic emission, the used atmospheric

network was able to significantly reduce uncertainties of the biogenic fluxes at the level of France.
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The inversion results revealed that despite the satisfying flux optimization at the national scale in France,

large uncertainties remain in the  CO2 and the CH4 estimates at the regional scale. Thus, it is important to

keep improving the regional GHG modelling practices in order to better optimize the fluxes at  the sub-

national scale. The recent progress of the atmospheric observation sites and the enhancement of the transport

model performances provide the key ingredient to optimize the GHG fluxes at the regional scale, but their

limits open to more improvements in the future. The new challenges that the regional inverse modelling

should tackle are summarized in the following components.

V.2 Perspectives

V.2.1 Identification of the local contamination sources

As was shown in Chapter II, the local sources in the vicinity of stations can have significant impacts on

atmospheric concentrations occasioning sharp and intense positive spikes. The statistical method that we

have evaluated provide a tool to filter out the data influenced by local emissions from those representatives of

larger fluxes and transport. However, this approach does not provide any information regarding the process

responsible for the spike. Ideally, we would like to understand the origin of the contaminations in order to

avoid them whenever it  is possible.  This identification issue could be addressed by matching the spikes

detected by the automatic method with other observations like the meteorological data, such as wind fields,

which would provide additional information about the contamination origins.

Figure IV.1-A illustrates a projection of the spikes identified at OPE by the SD method on the wind rose. This

analysis shows that most of the spikes are related to winds from the west and the south of the OPE station.

The investigation of the possible local sources near OPE reveals three possible origins as shown in  Figure

IV.1-B. The first source stands for the village of Houdelaincourt (400 inhabitants) located 1.3 km west of

OPE. The second represents the Abainville village (300 inhabitants) located 1.8 km south OPE. Whereas the

third potential source of contamination represents the car's traffic near the station (roads D960, D966, and

D10 represented by yellow lines).  This analysis can be applied to all  sites in order to investigate and/or

prevent future contaminations of the measured concentrations. We could complete this analysis with mobile

measurement campaign around the atmospheric sites, in order to validate or invalidate the results provided by

the wind rose study.
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V.2.2 Atmospheric modeling

The regional transport model CHIMERE has been evaluated by using different meteorological fields and

different surface fluxes. The evaluation of the emission inventories has shown significant differences between

the anthropogenic maps near the emission hotspots. More efforts are required to provide high-quality of the

emission  maps  representing  the  emission  hotspots  more  accurately.  Moreover,  the  quantification  of  the

impact of the temporal profile on the atmospheric concentrations is highly recommended. This quantification

can  be  addressed  by  comparing  the  simulated  concentrations  using  yearly  emission  maps  to  simulated

concentrations presented in Chapter III. Additional improvements of the time-varying emission maps can be

achieved by replacing the default profile by meteorological driven functions, for the emission sectors the

most sensitive to the weather conditions (e.g. residential and the agriculture sectors).

The evaluation of the simulated concentrations at the hourly scale has revealed important model-observation

misfits at the low altitude sites during the nighttime. The current limitations to simulate the atmospheric

concentrations during the night are related to the dynamic of the boundary layer height that partly controls

the  GHG  variabilities  near  the  surface  (Haszpra  et  al.,  2014).  It  is  then  desirable  to  improve  the

209

Figure V.1: A) Count of the CO2 contaminated data by wind direction at OPE. The count is represented by grey 
circles (first circle=50 data, the second=100, and the third=150 data). The colors stand for the difference 
between contaminated data (Ci) and the last uncontaminated data (Cunf), using the SD method. B) represents a 
Google earth image of the OPE area.



parametrization of the boundary layer height to further increase the model performance, especially in the

nighttime. The analysis of the simulated concentrations using two different meteorological models showed

also significant discrepancies in the simulated atmospheric concentrations in the mountainous regions. These

differences are mainly related to horizontal and also the vertical resolution of the transport fields. Thus an

improvement of the spatial resolution of the meteorological models is also required in order to improve the

representation of the local processes in complex terrain. The improvement of both horizontal and vertical

transport would allow the assimilation of a higher number of data by the inverse system (e.g. nighttime data

for the low altitude sites).

V.2.3 Inverse modeling

The implementation of the PYMAI inversion framework (Berchet et al., 2013 and 2014) has provided very

interesting results  for  the estimation of  the CO2 and  CH4 surface  fluxes  in  France.  The  analysis  of  the

inversion results showed the limits of the used inversion system to constrain high fractions of the monthly

budget. This limitation could be overcome by providing additional atmospheric measurements. In the short

term, in France, only the atmospheric sites ROC (Roc’h Trédudon) is planned to be installed in the north-

west of France. We expect that this station may contribute to the increase of the constrained fraction of the

national surface fluxes. On the other hand, there are few urban sites which are monitoring CO2 for example in

cities of Paris and Marseille, and there are few projects to develop this kind of urban networks based on low-

cost sensors providing measurements with lower precision. Such data could provide new constraints on the

CO2 anthropogenic emissions. However, since they are located in a complex environment regarding the local

emissions and atmospheric transport, integrating that dataset in the national inversion framework will be

challenging in terms of data selection and high-resolution transport model.

Another challenging aspect would be the extension of the inversion system to assimilate satellite data that

would contribute to constrain more efficiently the surface fluxes. For example, GOSAT and OCO-2 satellites

provide observation of the total CO2 column. Despite their sensitivity to the cloud cover, which reduces the

cloud-free soundings columns they could provide additional observational constraints. The increase in the

density of measurements will be accomplished in the near future by the launch of the additional satellites

such as OCO-3 and MICROCARB, which will provide CO2 measurement with an expected precision better

than 1 ppm.
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In addition to the increase in the amount of information provided to resolve the inverse problem, the system

requires an evaluation of the impact of using objective estimates of the observation and the prior errors. This

evaluation can be addressed by performing a flux inversion using the empirical estimates of the observation

and the prior errors based on Chapter III results. In this study, we have assumed a diagonal error matrices by

neglecting the error correlation between regions and time periods. However, some errors are known to be

correlated such as the model error during the night (e.g. nighttime stratification near the surface),  or the

misrepresentation of the surface fluxes for a given vegetation type.  It  would be challenging to take into

account the error correlations and to quantify their impact on the optimized fluxes. This improvement will

require  drastically  higher  computational  costs,  it  is  thus  appropriate  to  validate  it  first  in  a  simplified

inversion framework.
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VI.1 Appendix

VI.1.1 Chapter II

Sites Species
Contaminated data percentages (%)

β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7 β = 8 β = 9 β = 10
AMS CH4 15 5.2 2.3 1.2 0.7 0.4 0.3 0.2 0.2 0.1

CO2 18.3 10.6 6.9 4.8 3.5 2.7 2 1.5 1.2 1

FKL CH4 15.5 8.1 4.8 3.7 2 1.5 1 0.8 0.6 0.4

CO2 15.6 7.5 4.2 2.6 1.7 1.2 0.9 0.6 0.5 0.4

CO 13.4 3.4 1.2 0.6 0.4 0.3 0.2 0.1 0.1 0.1

OPE CH4 4.3 2.5 1.8 1.3 1 0.8 0.7 0.5 0.5 0.4

CO2 4.1 2.3 1.6 1.2 0.9 0.8 0.7 0.5 0.5 0.4

CO 3.6 1.6 1 0.7 0.6 0.5 0.4 0.3 0.3 0.3

PDM CH4 19.5 11.5 7.8 5.6 4.3 3.4 2.7 2.2 1.9 1.6

CO2 18 9.1 5.2 3.6 2.2 1.5 1.1 0.8 0.6 0.4

CO 14.5 3.9 1.5 0.8 0.5 0.3 0.2 0.2 0.1 0.1

Table SII.1: Sensitivity of REBS spike detection method for β ranging between 1 and 10 for the four stations and all 
species during the year 2015.

225



226

Figure SII.1: Comparison between manual and automatic flagging (SD method), at Finokalia station. Green and red
colors represent data flagged by manual and automatic flagging respectively, black color shows the retained data.
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Figure SII.2: Example of a known contamination episode (between 6:00 a.m and 7:00 a.m) for CO 
measurements detected by COV method (A), SD method (B), and REBS method (C)
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Figure SII.3: comparison between β = 1, 4, 8, and 10 for REBS method. Red represents detected data applied on FKL 
measurement 6th of November 2014.
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Figure SII.4: mage of PDM station showing the location of AN-1 site (T55 
building), and AN-2  (TDF building). 200 m separate the two buildings
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Figure SII.5: CO, CO2 and CH4 (A, B, and C) measurements during a waste burning episode (red 
points) at Finokalia from 1 p.m. to 5:30 p.m. on the 6th of November 2014
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Figure SII.6: CO measurements from December to February 2014 at Pic Du Midi. Black (red) data points 
are the retained (flagged) measurements detected by SD method (A), and REBS method (B). The 
contaminated data linked to the snow removal are characterized by very high CO concentrations up to 
1000 ppb.
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Figure SII.7: Histograms of differences between filtered and the non-filtered time-series averaged at a hourly scale at 
OPE for CH4 (plot A), CO2 (Plot B), and CO (plot C). The x axis represents the value of differences in (ppm) for CO2 
and (ppb) for CH4 and CO. The y axis represents the percentage of the impacted hours
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Figure SIII.1: Simulated boundary layer height (PBL) diurnal cycle at the French sites (6 stations) for 
Janury 2014.
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Figure SIII.2: Simulated boundary layer height (PBL) diurnal cycle at the sites outside of France 
(8 stations) for Janury 2014.
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Figure SIII.3: Simulated boundary layer height (PBL) diurnal cycle at the French sites (6 stations) 
for July 2014.
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Figure SIII.4: Simulated boundary layer height (PBL) diurnal cycle at the sites outside of France 
(8 stations) for July 2014.
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Figure SIII.5: CO2  average diurnal cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC for 
the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly) 
during January.
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Figure SIII.6: CH4 average diurnal cycle at CBW, GIC, JFJ, PRS, RGL, SCH, and VAC for the 
observed (black) and the simulated (red and blue for AROME and ECMWF respectivly) during 
January.
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Figure SIII.7: CO2 average diurnal cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC for 
the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly) during
July.
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Figure SIII.8: CH4 average diurnal cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC 
for the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly)
during July.



243

Figure SIII.9: Spatial distribution of the wind speed monthly differences (m/s) between the two 
meteorological models (AROME minus ECMWF) for January and July.
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Figure SIII.10: CO2 average seasonal cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC 
for the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly).
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Figure SIII.11: CH4 average seasonal cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC for 
the observed (black) and the simulated (red and blue for AROME and ECMWF respectivly).
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Figure SIII.12: Spatial distribution of CO2 monthly differences (ppm) between the two meteorological models 
(AROME minus ECMWF), using the data from 12:00 to 18:00 at the first level of the model, from January to 
June.
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Figure SIII.13: Spatial distribution of CO2 monthly differences (ppm) between the two meteorological models 
(AROME minus ECMWF), using the data from 12:00 to 18:00 at the first level of the model, from July to 
Decembre.
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Figure SIII.14: Spatial distribution of the CH4 monthly differences (ppb) between the two meteorological 
models (AROME minus ECMWF), using the data from 12:00 to 18:00 at the first level of the model, from 
January to June.
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Figure SIII.15: Spatial distribution of the CH4  monthly differences (ppb) between the two meteorological models 
(AROME minus ECMWF), using the data from 12:00 to 18:00 at the first level of the model, from July to 
Decembre.
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Figure SIII.16: CO2 average diurnal cycle at the French sites for the observed (black) and the simulated (red and blue 
for IER and EDGAR respectivly) during January.
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Figure SIII.17: CO2 average diurnal cycle at the sites outside of France for the observed 
(black) and the simulated (red and blue for IER and EDGAR respectivly) during January.
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Figure SIII.18: CO2 average diurnal cycle at the French sites for the observed (black) and the 
simulated (red and blue for IER and EDGAR respectivly) during July.
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Figure SIII.19: CO2 average diurnal cycle at the sites outside of France for the observed (black)
and the simulated (red and blue for IER and EDGAR respectivly) during July.
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Figure SIII.20: CO2 diurnal average cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC 
for the observed (black) and the simulated (green and orange for CTESSEL and VPRM 
respectivly) during January.
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Figure SIII.21: CH4 average diurnal cycle at CBW, GIC, JFJ, PRS, RGL, SCH, and VAC for the
observed (black) and the simulated (red and blue for IER and EDGAR respectivly) during 
January.
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Figure SIII.22: CO2 diurnal average cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC for the 
observed (black) and the simulated (green and orange for CTESSEL and VPRM respectivly) during July.
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Figure SIII.23: CH4 average diurnal cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC
for the observed (black) and the simulated (red and blue for IER and EDGAR respectivly) 
during July.
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Figure SIII.24: CO2 average seasonal cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC 
for the observed (black) and the simulated (green and orange for CTESSEL and VPRM 
respectivly).
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Figure SIII.25: CH4 average seasonal cycle at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC for 
the observed (black) and the simulated (red and blue for IER and EDGAR respectivly).
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Figure SIII.26: Spatial distribution of the CO2 monthly differences (ppm) between the two biogenic 
models (CTESSEL minus VPRM) panel ΔBio, and between the two anthropogenic inventories (IER 
minus EDGAR) panel ΔAnthro, using the data from 12:00 to 18:00 at the first level of the model, 
from January to April.
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Figure SIII.27: Spatial distribution of the CO2 monthly differences (ppm) between the two biogenic 
models (CTESSEL minus VPRM) panel ΔBio, and between the two anthropogenic inventories (IER 
minus EDGAR) panel ΔAnthro, using the data from 12:00 to 18:00 at the first level of the model, from 
May and August.
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Figure SIII.28: Spatial distribution of the CO2 monthly differences (ppm) between the two biogenic 
models (CTESSEL minus VPRM) panel ΔBio, and between the two anthropogenic inventories (IER 
minus EDGAR) panel ΔAnthro, using the data from 12:00 to 18:00 at the first level of the model, from 
Septembre and Decembre.
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Figure SIII.29: Spatial distribution of the CH4  monthly differences (ppb) between the two anthropogenic 
inventories (IER minus EDGAR) panel ΔAnthro, using the data from 12:00 to 18:00 at the first level of the 
model, between January and June.
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Figure SIII.30: Spatial distribution of the CH4 monthly differences (ppb) between the two anthropogenic 
inventories (IER minus EDGAR) panel ΔAnthro, using the data from 12:00 to 18:00 at the first level of the 
model, between July and December.



VI.1.3 Chapter IV

265



January July

Station Number of the
available data

Number of 
the selected 
data

Number of 
data used by 
the inversion 
system

Number of 
the available
data

Number of 
the selected 
data

Number of 
data used by 
the inversion 
system

BIS 734 182 168 (22%) 670 144 134 (20 %)

OPE 711 180 164 (23%) 617 123 114 (18 %)

PUY 700 178 169 (24%) 673 168 140 (21 %)

TRN 600 150 144 (24%) 482 104 92 (19 %)

ERS 634 151 133 (21%) 0 0 0

GIF 588 151 136 (23%) 531 117 108 (20 %)

PDM 0 0 0 722 184 161 (22 %)

OHP 0 0 0 337 70 62 (19 %)

CBW 644 136 84 (13%) 633 117 75 (10 %)

RGL 672 162 152 (22%) 737 150 115 (16 %)

SCH 456 114 108 (24%) 729 178 172 (24 %)

JFJ 714 178 167 (23%) 706 179 144 (20 %)

PRS 415 108 102 (25%) 390 113 85 (22 %)

DEC 16 4 2 (13%) 381 80 66 (17 %)

GIC 741 185 179 (24%) 239 50 44 (18 %)

 VAC 86 18 16 (19%) 741 153 145 (20 %)

Table SIV.1: Statistis of the observed CH4 data used by the inversion system
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January July

Station Number of the
available data

Number of 
the selected 
data

Number of 
data used by 
the inversion 
system

Number of 
the available
data

Number of 
the selected 
data

Number of 
data used by 
the inversion 
system

BIS 734 151 (21%) 139 (19%) 671 144 (21%) 131 (20%)

OPE 711 150 (21%) 137 (19%) 617 123 (20%) 112 (18%)

PUY 700 178 (25%) 168 (24%) 673 168 (25%) 148 (22%)

TRN 599 125 (21%) 115 (19%) 482 104 (22%) 97 (20%)

ERS 635 127 (20%) 112 (18%) 0 0 0

GIF 589 589 (21%) 109 (19%) 533 118 (22%) 106 (20%)

PDM 0 0 0 722 182 (25%) 180 (25%)

OHP 0 0 0 337 70 (20%) 65 (19%)

CBW 674 123 (18%) 103 (15%) 635 117 (18%) 105 (17%)

RGL 672 135 (20%) 127 (19%) 737 150 (20%) 137 (19%)

SCH 456 114 (25%) 106 (23%) 729 178 (24%) 164 (22%)

JFJ 714 178 (25%) 162 (23%) 706 179 (25%) 170 (24%)

PRS 681 172 (25%) 160 (23%) 433 116 (27%) 112 (26%)

DEC 382 78 (20%) 66 (17%) 381 80 (21%) 74 (19%)

GIC 741 154 (21%) 142 (19%) 239 50 (21%) 46 (19%)

 VAC 86 15 (17%) 13 (15%) 741 153 (21%) 147 (20%)

Table SIV.2: Statistis of the observed CO2 data used by the inversion system
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Figure SIV.1 Spatial distribution of the difference between EDGAR and IER inventories 
(see section III.3.4) for CH4
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Figure SIV.2: Classification of the vegetation types in France using the ECOCLIMAP database 
(Champeaux et al., 2005). The black polygons in the figure represent the used regions in France. The figure 
is taken from the National Centre for Meteorological Research website (https://www.umr-cnrm.fr/spip.php?
rubrique257&lang=fr).
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Figure SIV.3: CH4 hourly data at BIS, OPE, ERS, PUY, GIF, and TRN during January. The grey color represents the 
available observations for each site. The back data points stand for the mid-afternoon data (data between 14:00 and 
18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at the mountain stations. The red 
data show the observations rejected by the inversion system (see section IV.2.3.1).
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Figure SIV.4: CH4 hourly data at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC during January. The grey 
color represents the available observations for each site. The back data points stand for the mid-afternoon data 
(data between 14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at 
the mountain stations. The red data show the observations rejected by the inversion system (see section IV.2.3.1).
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Figure SIV.5: CH4 hourly data at BIS, OPE, GIF, PDM, PUY, OHP, and TRN during July. The grey color 
represents the available observations for each site. The back data points stand for the mid-afternoon data 
(data between 14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) 
at the mountain stations. The red data show the observations rejected by the inversion system (see section 
IV.2.3.1).
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Figure SIV.6: CH4 hourly data at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC during July. The grey 
color represents the available observations for each site. The back data points stand for the mid-afternoon 
data (data between 14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 
06:00) at the mountain stations. The red data show the observations rejected by the inversion system (see 
section IV.2.3.1).
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Figure SIV.7: Observed (black) and simulated prior (blue) and posterior (red) CH4 daily averages for the 
French atmospheric sites (CBW, RGL, GIC, SCH, JFJ, VAC, and PRS) during January. The shaded areas 
represent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior (shaded 
red) CH4 concentrations. For each sites we calculate the root mean square error (RMSE) and the coefficient 
of correlation (R2) for the prior and the posterior concentration.
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Figure SIV.8: Observed (black) and simulated prior (blue) and posterior (red) CH4 daily 
averages for the French atmospheric sites (CBW, RGL, GIC, SCH, JFJ, DEC, VAC, and PRS) 
during July. The shaded areas represent the uncertainties of the observed (grey) and simulated 
prior (shaded blue) and posterior (shaded red) CH4 concentrations. For each sites we calculate 
the root mean square error (RMSE) and the coefficient of correlation (R2) for the prior and the 
posterior concentration.
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Figure SIV.9: Monthly mean wind field modeled by the ECMWF during January (left) and July (right). The arrows 
stand for the wind direction, whereas the wind speed is represented by the color level in m/s.
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Figure SIV.10: CO2 hourly data at BIS, OPE, ERS, PUY, GIF, and TRN during January. The grey color represents the 
available observations for each site. The back data points stand for the mid-afternoon data (data between14:00 and 
18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at the mountainstations. The red 
data show the observations rejected by the inversion system (see section IV.2.3.1).
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Figure SIV.11: CO2 hourly data at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC during January. The grey
colorrepresents the available observations for each site. The back data points stand for the mid-afternoon 
data (databetween 14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 
06:00) at the mountainstations. The red data show the observations rejected by the inversion system (see 
section IV.2.3.1).
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Figure SIV.12: CO2 hourly data at BIS, OPE, GIF, PDM, PUY, OHP, and TRN during July. The grey color 
represents theavailable observations for each site. The back data points stand for the mid-afternoon data (data 
between 14:00 and18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at the 
mountain stations. The reddata show the observations rejected by the inversion system (see section IV.2.3.1).
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Figure SIV.13: CO2 hourly data at CBW, DEC, GIC, JFJ, PRS, RGL, SCH, and VAC during July. The grey 
colorrepresents the available observations for each site. The back data points stand for the mid-afternoon data 
(databetween 14:00 and 18:00) at low altitude sites, and the nighttime data (data between 00:00 and 06:00) at 
the mountainstations. The red data show the observations rejected by the inversion system (see section 
IV.2.3.1).
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Figure SIV.14: Observed (black) and simulated prior (blue) and posterior (red) CO2 daily averages for 
theFrench atmospheric sites (CBW, RGL, GIC, SCH, JFJ, VAC, and PRS) during January. The shaded 
areasrepresent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior 
(shadedred) CO2 concentrations. For each sites we calculate the root mean square error (RMSE) and 
thecoefficient of correlation (R2) for the prior and the posterior concentration.
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Figure SIV.15: Observed (black) and simulated prior (blue) and posterior (red) CO2 daily averages for 
theFrench atmospheric sites (CBW, RGL,GIC, SCH, JFJ, DEC, VAC, and PRS) during July. The shaded 
areasrepresent the uncertainties of the observed (grey) and simulated prior (shaded blue) and posterior 
(shadedred) CO2 concentrations. For each sites we calculate the root mean square error (RMSE) and 
thecoefficient of correlation (R2) for the prior and the posterior concentration.
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