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). La désintégration B → Kππγ offre à travers l'analyse angulaire une observable P impaire (λ) et à travers le mélange B -B une observable CP impaire (S ρK 0 S γ ) toutes deux étant sensibles au rapport C ′ 7 /C 7 ≈ m s /m b . La difficulté principale étant que λ et S ρK 0 S γ sont accompagnés par un facteur de dilution provenant de la désintégration forte. Ce travail est centré sur l'estimation et la modélisation de ces facteurs de dilution. La transition B → Kππγ se produit en tant que trois désintégrations successives. La transition faible B → K res γ est suivie par la désintégration forte en trois corps de la résonance kaonique K res → Kππ via trois états intermediaires distincts ρK 0 S , K * π et κπ. L'observable S ρK 0 S γ est accessible avec l'état final K 0 S π + π -γ, mais la présence de K * ± π ∓ et κ ± π ∓ , n'étant pas des états propres de CP, induit un facteur de dilution D. Pour résoudre ce problème, nous dérivons l'expression de D en fonction des états intermédiaires ρK 0 S , K * π et κπ et en incluant les résonances kaoniques K 1 (1270/1400), K * (1410) et K * 2 (1430). Afin de calculer le facteur de dilution, les ondes partielles peuvent être extraites avec l'état final K ± π ∓ π ± γ, où la sensibilité expérimentale est plus élevée. Ensuite, nous proposons une nouvelle méthode, indépendante du modèle, pour déterminer D, qui consiste a extraire le facteur de dilution indépendamment de S ρK 0 S γ en utilisant des états finaux avec un pion neutre tels que K + π -π 0 γ. En exploitant des données existantes avec m Kππ < 1.8 GeV/c 2 , nous obtenons D = 0.73 ± 0.18, où l'erreur est statistique et l'erreur systématique reste à évaluer.

Lorsque l'on considère juste K 1 (1270/1400) et K * (1410), λ peut être extrait de la distribution angulaire et de Dalitz avec une précision de l'ordre de ±10% pour un échantillon de 5.10 3 événements générés à l'aide de la méthode Monte Carlo. Mais cela demande une bonne connaissance de différentes quantités importantes pour la désintégration forte, telles que l'angle de mélange de K 1 , les rapports de branchement individuel B → K res γ et les phases relatives. Nous montrons que certains de ces paramètres et λ peuvent être simultanément ajustés avec une perte de précision de juste quelques pour cent. Puis nous dérivons comment, en utilisant uniquement la distribution angulaire, il est possible d'annuler partiellement les contributions provenant de la désintégration forte afin d'obtenir une limite inférieure pour |λ|. ). The decay B → Kππγ provides a parity odd observable (λ) via angular analysis and a CP odd observable (S ρK 0 S γ ) via B -B mixing, both sensitive to the ratio C ′ 7 /C 7 ≈ m s /m b . The main issue is that both λ and S ρK 0 S γ are accompanied by an hadronic factor originating from the strong decay. This work is focused on the estimation and modelisation of those dilution factors. The transition B → Kππγ occurs as three subsequent decays. The weak process B → K res γ is followed by the strong 3-body decay of the kaonic resonance K res → Kππ via three distinct intermediate states ρK 0 S , K * π and κπ. The observable S ρK 0 S γ is accessible with the final state K 0 S π + π -γ, but the presence of non CP eigenstates K * ± π ∓ and κ ± π ∓ induce the dilution factor D. To deal with this inconvenience, we derive the expression of D in terms of the partial waves ρK 0 S , K * π and κπ and including the kaonic resonances K 1 (1270/1400), K * (1410) and K * 2 (1430). The partial waves can then be fitted using the final state K ± π ∓ π ± γ, where the experimental sensitivity is higher, in order the compute the dilution factor. Then we propose a new model independent method to determine D, which consists in extracting the dilution factor independently of S ρK 0 S γ using the final states with one neutral pion such as K + π -π 0 γ. Exploiting existing data with m Kππ < 1.8 GeV/c 2 , we obtained D = 0.73 ± 0.18, where the uncertainties are statistical and systematic uncertainties have yet to be estimated.

When considering only K 1 (1270/1400) and K * (1410), fitting the angular and Dalitz plot distribution allows to extract λ with an accuracy of the order of ±10% for a sample of 5.10 3 Monte Carlo generated events. But this requires a good knowledge of different quantities of importance in the strong decay such as the K 1 mixing angle, individual B → K res γ branching ratios and relative phases. We show that some of those parameters can simultaneously fitted with λ with a loss of accuracy of just a few percent. We derive how, using only the angular distribution, one can partially cancel contribution from the strong decay and obtain a lower bound on |λ|. 

Introduction

Over the last decades, the Standard Model (SM) of particle physics has successfully managed to describe the elementary constituent of our universe and their interactions. The latest achievement of the SM is the confirmation of the existence of the Higgs boson at the LHC in 2012, almost 40 years after its prediction. Yet there remains some dark area in our understanding of nature. Gravitation, the force ruling our universe at large scale, is still not included in the standard model. Furthermore, it seems that another force is pushing the universe to accelerate its expansion. And dark matter, which has been inferred via the gravitational effect, is not described by the Standard Model. Moreover, the SM contains various free parameters such as the masses of the elementary particles, whose hierarchy is unexplained. And the SM cannot account for the baryon asymmetry of the universe. This motivates the search of physics beyond the standard model (BSM). So far, direct search has been promising. But this method has its limitation. Indeed, increasing the center of mass energy in accelerators is not at all trivial. Therefore, another approach consists in performing precision tests of the SM. And if a deviation is found, it can indicate the presence of new physics (NP). The electroweak and flavour structure of the standard model, briefly reviewed in Chapter 2, provides a multitude of such tests. In this thesis we focus on measuring the photon polarisation in the process b → sγ.

The study of the loop induced radiative b → sγ decay is a promising approach to reach a deeper understanding of the flavour structure of the SM, and to peer at what lies beyond it. According to the SM, the radiated photon will be mostly left-handed in b, and right-handed in b decays. Since only left-handed quarks (and right-handed anti-quark) get involved in weak decays, mass insertion generates a helicity flip on one of the external quark lines, which produces a factor m b for b R → s L γ L and a factor m s for b L → s R γ R . Consequently the right(left)-handed photon emission is suppressed by a factor m s /m b in B(B) mesons decays. As stated in some NP models, the helicity flip could occur on an internal line resulting in the variation of the mass ratio. A deviation from the SM predictions could therefore lead to the presence of new particles in the loop. In Chapter 3 we briefly discuss the SM predictions regarding the photon polarisation.

The main drawback is that we cannot directly measure the photon polarisation in accelerator experiments. Fortunately, nature was kind enough to leave us some other tools to investigate the photon polarisation. The B -B mixing allows us to measure the interferences between b → s L/R γ L/R and b → s L/R γ L/R [START_REF] Atwood | Mixing induced CP asymmetries in radiative B decays in and beyond the standard model[END_REF]. The time dependent CP asymmetry, A CP (t), has already been measured for the decays B 0 → K * 0 γ and B s → ϕγ which provides clean information on the photon polarisation. So far the results are consistent with the SM. In order to decrease statistical uncertainties, the decay B 0 → ρK 0 S γ (observed as B 0 → K 0 S π + π -γ) is considered. Unfortunately, the presence of two additional channel K * + π -γ and κ + π -γ, which are not CP eigenstates, induce a dilution factor D. In Chapter 4 we present two methods to confront the hadronic dilution. In either cases, we use isospin symmetry to guide our path through the tortuous ways of strong decays. We first revisit the analysis pioneered by the Belle collaboration [2]. Once the CP properties of each intermediate channel are understood, the dilution factor can be expressed in terms of the amplitudes A ρK 0 S , A K * π and A κπ . Then each term of D can be extracted via a resonance study of the fully charged final state K ± π ± π ∓ γ which has higher experimental sensitivity. Alternatively we show a new model independent method where the value of the dilution factor can be extracted using only the branching ratios Br(B → K + π -π 0 γ) and Br(B → K 0 S π + π -γ). In Chapter 5, we trade time dependent distribution for angular dependent distribution. The point is that the information of interest (i.e. the polarisation state of the photon) is carried along by the s quark and then passed on to the Kππ hadronic final state which delivers it to the detectors. Indeed, probing b → sγ via the 4-body final state Kππγ, leads to a rich angular structure (using the normal to the Kππ decay plane as an analyser) which yields Parity odd observables [START_REF] Gronau | Measuring the photon polarization in B → Kππ gamma[END_REF]. Again, the strong decay has to be modelled in order to extract the photon polarisation parameter λ. We use and discuss a model for the strong decay K 1 → Kππ [START_REF] Kou | Determining the photon polarization of the b → sγ using the B → K1(1270)γ → (Kππ)γ decay[END_REF], add K * (1410) → Kππ and briefly review the possibility of performing a model independent measurement of λ. In Chapter 6, we study the sensitivity of the model dependent determination of the photon polarisation parameter. While the authors of [START_REF] Kou | Determining the photon polarization of the b → sγ using the B → K1(1270)γ → (Kππ)γ decay[END_REF] rely on combining experimental data and phenomenological models, we investigate the possibility of simultaneously fitting λ and other unknown parameters, such as strong rescattering phases, the K 1 mixing angle and branching ratios.

Chapter 2

The standard model Within the framework of quantum field theory, the SM describes all observed elementary particles and three out of the four known interactions: the strong, weak and electromagnetic interactions. Quarks and leptons (a.k.a. fermions) are represented as spinor fields. The masses of the quarks and charged leptons are free parameters of the standard model and neutrinos (neutral leptons) are massless, within the SM. As a consequence of the observation of parity violation [5], spinor fields are described with left-handed 1 doublets and right-handed singlets:

Q L =   u L d L   , L L =   ν L l - L   , u R , d R , l - R . (2.2)
Their respective quantum numbers are collected in Tab. 2.1. The interacting part of the SM arises from the description of the standard model as a gauge theory based on the gauge group

SU (3) c × SU (2) L × U (1) Y . Imposing the SU (3) c × SU (2) L × U (1)
Y local gauge symmetry of the Lagrangian, which contains the fields of matter, leads to replacing the kinetic energy term ∂ µ by the covariant derivative D µ . The SU (3) c gauge "colour" symmetry induces the strong interaction between quarks mediated via a vector bosonic field. Due to the non abelian structure of SU (3) c , excitations of that field, named gluons, carry the "colour" charge. The weak isospin and hypercharge symmetry SU (2) L × U (1) Y describe the electroweak interaction. But both weak isospin (T ) and hypercharge (Y ) are not conserved, while their sum, the electric 1. Left/Right-handed spinor fields (ψ L/R ) are obtained using the projectors P L/R , defined as:

ψ L/R = P L/R ψ = 1 ∓ γ 5 2 ψ. (2.1)
Leptons charge:

T 3 Y Q ν 1 2 -1 2 0 l - L -1 2 -1 2 -1 l - R 0 -1 -1 Quarks T 3 Y Q u L 1 2 1 6 2 3 d L -1 2 1 6 -1 3 u R 0 2 3 2 3 d R 0 -1 3 -1 3
Q = T 3 + Y, (2.3) 
where T 3 is the third generator of the SU (2) L group, is conserved. The fact that both weak isospin and hypercharge are not conserved is accounted for by the spontaneous breaking of the SU (2) L × U (1) Y symmetry. This is achieved by introducing the Higgs doublet ϕ which, through the spontaneous symmetry breaking, gives masses to the W ± and Z 0 vector boson but leaves the photon massless. Furthermore, in the mass eigenstate basis the W ± boson allows mixing between left-handed up-type and down-type quarks. Throughout this thesis we consider neutral B mesons oscillations (bd → bd) and radiative decays (b → sγ). Those two processes, which assiciated Feynman diagrams are respectively referred to as box (cf. Fig. 7.4a) and penguin (cf. Fig. 7.4b) diagrams are Flavour Changing Neutral Current (FNCN). In the SM the flavour of quarks can only change when a charged W ± boson is either emitted, or absorbed. Therefore, for the current to remain neutral, any emitted W ± must be reabsorbed. Consequently, in the Standard Model, FNCN can only occur at loop level. Throughout the rest of this chapter, we first review flavour sector of the SM (cf. Sec. 2.1) and identify the source of CP violation in the SM, then we discuss CP violation in B mesons decays (cf. Sec. 2.2).

Flavour structure of the standard model

The flavour sector of the SM exhibits interesting phenomena: -The large hierarchy of the quark masses (m t /m u ≈ 10 5 ) still remains unexplained and calls for new physics (NP). -The mixing of quark flavour, via the weak interaction, introduces CP violation in the standard model. Since this thesis is focused on the quark sector, we will leave aside the mixing of lepton. We just mention that the mixing in the lepton sector leads to neutrino oscillation which suggests that the neutrinos are not massless. But since there is no right-handed neutrino, the SM does not contain any massive neutrino (see below), this is another hint for the presence of new physics.

The quark masses

The quarks owe their masses to the breaking of the SU (2) L symmetry. More precisely, the quark masses arise from the Yukawa interactions of the quarks with the Higgs field. The Yukawa Lagragian is:

L Yukawa = -λ d Q L ϕd R -λ u ϵ ab Q La ϕ † b u R + h.c. (2.4)
where the indices a, b represent the quark generations and ϕ is the Higgs scalar doublet. Using the vacuum expectation value (v) of ϕ leads to the quarks mass matrices:

M u = λ u v √ 2 , M d = λ d v √ 2 (2.5)
Since the Yukawa coupling to the Higgs field requires the left-and right-handed fermions, neutrinos are massless in the SM. As we mentioned earlier, the weak interaction is responsible for the mixing of the quark flavours. In the weak basis, the mass matrices M u and M d (cf. Eq. (2.5)) are not diagonal. They can be diagonalised through a change of basis using four unitary matrices V u,L , V u,R , V d,L and V d,R . Therefore, the weak interaction eigenstates (d ′ , s ′ , b ′ ) and the mass eigenstate (d, s, b) can be related using the CKM [START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF][START_REF] Kobayashi | CP Violation in the Renormalizable Theory of Weak Interaction[END_REF] unitary matrix (defined as

V CKM = V u,L V † d,L ) as:      d ′ s ′ b ′      =      V ud V us V ub V cd V cs V cb V td V ts V tb      •      d s b      (2.6)
The charged current, in the mass eigenstate basis, is given by:

L W = - √ 1 2 gu La γ µ V ab d Lb W + µ - √ 1 2 gd Lb γ µ V * ab u La W - µ .
(2.7)

Then, using:

C qC † = (-iγ 0 γ 2 q) T , P qP † = qγ 0 , ( 2.8) 
L W transforms under CP as:

L CP W = - √ 1 2 gu La γ µ V * ab d Lb W + µ - √ 1 2 gd Lb γ µ V ab u La W - µ . (2.9)
Consequently, CP violation is allowed in the SM if V CKM is complex. The CKM unitary matrix generally depends on nine parameters: three can be chosen as real (as the Cabibbo angle) and six are phases. However, one may reduce the number of phases to one by redefining the five quark field relative phases.

The CKM matrix and the Wolfenstein parametrisation

We will briefly discuss the main two parametrisations of the CKM matrix: the standard and the Wolfenstein parametrisation. The standard parametrisation of the CKM matrix is: where c ij = cos θ ij and s ij = sin θ ij , with i and j being generation labels, are chosen to be positive since we can always rotate the phase of the quark field and δ is the phase generating CP violation. The Wolfenstein parametrization [START_REF] Wolfenstein | Parametrization of the Kobayashi-Maskawa Matrix[END_REF][START_REF] Buras | Heavy flavor II[END_REF] consists in exchanging the three angles and the CP violating phase for another set of four parameters, λ, A, ρ and η. Even though the exact expression of the CKM matrix after this change of parameters get very complicated, we can expand it in terms of λ to a given order, depending on the accuracy goal, to obtain a simplified form without breaking unitarity. Therefore we start with

V CKM =      c 12 c
s 12 = sin θ C = λ, (2.11)
where θ C is the Cabibbo angle and λ = 0.22506 ± 0.00050. From experimental measurements2 , we have:

|V us | = 0.2248 ± 0.0006 |V cb | = 0.0405 ± 0.0015 |V ub | = 0.00409 ± 0.00039. (2.12)
Therefore, we expect s 23 to be of order λ 2 , so we set:

s 23 = Aλ 2 (2.13) 
with A = 0.823 ± 0.013 to match experimental constraints. We are just left with s 13 e iδ = V ub , which should be of order λ 3 , then we set:

s 13 e iδ = Aλ 3 (ρ + iη) (2.14)
where ρ and η may be extracted through the measurements of V ub and V td . We are now ready to express the CKM matrix in terms of λ, A, ρ and η using Eqs.

(2.11),(2.13) and (2.14) in Eq. (2.10). Expanding to O(λ 5 ), we obtain:

V CKM =      1 -λ 2 /2 -λ 4 /8 λ Aλ 3 (ρ -iη) -λ 1 -λ 2 /2 -λ 4 /8 -Aλ 4 /2 Aλ 2 Aλ 3 (1 -ρ -iη) -Aλ 2 (1 -λ 2 (1/2 -ρ -iη)) 1 -A 2 λ 4 /2      + O(λ 5 ).
(2.15) Consequently, both CKM matrix elements V td and V ub can have a significant imaginary parts while the imaginary part of V ts is of order λ 4 . 

Unitarity triangle

Among other relations, the unitarity of the CKM matrix implies:

V ud V * ub + V cd V * cb + V td V * tb = 0.
(2.16)

In the complex plane, the above relation can be geometrically represented as a triangle (cf. 2.2). Each side of the triangle can be rescaled (divided by |V cd V * cb |) such that their length can be expressed in terms of ρ and η, defined as:

ρ = ρ ( 1 - λ 2 ) , η = η ( 1 - λ 2
) .

(2.17)

The angles α, β and γ, defined as: As of today, the experimental data are consistent with the Sm paradigm for CP violation. 

α = arg [ - V td V * tb V ud V * ub ] , β = arg [ - V cd V * cb V td V * tb ] , γ = arg [ - V ud V * ub V cd V * cb ] (2.

CP violation in B decay

In this section, we present the quantum mechanical formalism for particle-antiparticle oscillation applied directly to neutral B d mesons (but it may easily be applied to K 0 , D 0 and neutrino oscillations). We mainly follow Bigi and Sanda's book [START_REF] Bigi | CP Violation[END_REF]. 

The master equation for time evolution

B 0 d ∆B=1 ---→ I ∆B=1 ---→ B 0 d B 0 d ∆B=-1 ----→ I ∆B=-1 ----→ B 0 d (2.20)
where I can be an on-shell or off-shell state. In Fig. 2.4 we show two box diagrams inducing B 0 → B 0 transition.

In order to derive the time evolution of those two states, we consider the case where the initial state is a linear combination of B 0 d and B We restrict ourselves to times that are much larger than a typical strong interaction scale to use the Weisskopf-Wigner approximation. Within that framework the Schrödinger equation is replaced by:

0 d : |ψ(0)⟩ = a(0) |B 0 d (0)⟩ + b(0) |B 0 d (0)⟩ . ( 2 
ih ∂ ∂t ψ(t) = Hψ(t) (2.22)
where ψ(t) is:

ψ(t) =   a(t) b(t)   (2.23)
and where the non Hermitian Hamiltonian is 

H = M - i 2 Γ =   M 11 -i 2 Γ 11 M 12 -i 2 Γ 12 M 21 -i 2 Γ 21 M 22 -i 2 Γ 22   (2.
|B 1 (0)⟩ = 1 √ 2 ( p |B 0 (0)⟩ + q |B 0 (0)⟩ ) |B 2 (0)⟩ = 1 √ 2 ( p |B 0 (0)⟩ -q |B 0 (0)⟩ ) (2.25)
with eigenvalues:

M 1 - i 2 Γ 1 = M 11 - i 2 Γ 11 + q p ( M 12 - i 2 Γ 12 ) M 2 - i 2 Γ 2 = M 11 - i 2 Γ 11 - q p ( M 12 - i 2 Γ 12 ) (2.26) 
where:

q p = ± √ M * 12 -i 2 Γ * 12 M 12 -i 2 Γ 12 .
(2.27)

4. From now on we will drop the subscript d and only write

B 0 (B 0 ) instead of B 0 d (B 0 d ).
Then the proper time evolution of the physical states (i.e. mass eigenstates) has the simple form:

|B 1 (t)⟩ = e -i(M 1 -i 2 Γ 1 )t |B 1 (0)⟩ = e -i(M 1 -1 2 Γ 1 )t √ 2 ( p |B 0 (0)⟩ + q |B 0 (0)⟩ ) |B 2 (t)⟩ = e -i(M 2 -i 2 Γ 2 )t |B 2 (0)⟩ = e -i(M 2 -1 2 Γ 2 )t √ 2 ( p |B 0 (0)⟩ -q |B 0 (0)⟩ ) .
(2.28)

Finally, inverting Eq. (2.25) leads to:

|B 0 (0)⟩ = 1 √ 2 1 p ( |B 1 (0)⟩ + |B 2 (0)⟩ ) |B 0 (0)⟩ = 1 √ 2 1 q ( |B 1 (0)⟩ -|B 2 (0)⟩ ) (2.29)
and plugging Eq. (2.28) into Eq. (2.29) gives the master equation of the time evolution of B 0 (B 0 ) states:

|B 0 (t)⟩ = f + (t) |B 0 (0)⟩ + q p f -(t) |B 0 (0)⟩ |B 0 (t)⟩ = f + (t) |B 0 (0)⟩ + p q f -(t) |B 0 (0)⟩ (2.30) with f ± (t) = 1 2 e -iM 1 t e -1 2 Γ 1 t (1 ± e -i∆M B t e 1 2 ∆Γ B t ) (2.31)
where

∆M B = M 2 -M 1 and ∆Γ B = Γ 1 -Γ 2 .

The mixing phase

Before writing down the expression of the time dependent CP asymmetry, we must briefly return to the mixing phase : q/p. In order to gain some insight on its value, we need to evaluate M 12 and Γ 12 . Using effective field theory, the off-diagonal element of the mass matrix (see Eq. (2.24)) is:

M 12 - i 2 Γ 12 = ⟨B 0 | H eff (∆B = 2) |B 0 ⟩ (2.32)
where H eff is the effective Hamiltonian for the transition bd → bd. Therefore we take M 12 and Γ 12 to be respectively given by the dispersive and absorptive part of the box diagram. The computation has been performed in [START_REF] Hagelin | Mass Mixing and CP Violation in the B 0 -B0 system[END_REF] and [START_REF] Buras | B 0 B0 Mixing, CP Violation and the B Meson Decay[END_REF] and yields Γ 12 /M 12 ≈ O(10 -3 ) [START_REF] Patrignani | [END_REF][START_REF] Bigi | CP Violation[END_REF]. Consequently, we can expand Eq. (2.27) in term of Γ 12 /M 12 : .33) which leads to:

q p = ± √ M * 12 M 12 + O ( Γ 12 M 12 ) ≈ ± ( V * tb V td V tb V * td ) . ( 2 
q p 2 ≈ 1. (2.34)
Using Eq. (2.15) one can express q/p in terms of A, λ, η and ρ.

Time dependent CP asymmetry

Next assuming that there exist a common final state |f ⟩ accessible to both B 0 and B 0 , we define:

A = ⟨f | H ∆B=1 |B 0 ⟩ , A = ⟨f | H ∆B=-1 |B 0 ⟩ , ρ = A A = 1 ρ (2.35)
Then using Eqs. (2.30) and (2.35), we write the time dependent decay rates (Γ(t)) as:

Γ(t) ∝ 1 2 e -Γ 1 t ( a + be ∆Γ B t + ce ∆Γ B t/2 cos ∆M B t + de ∆Γ B t/2 sin ∆M B t ) Γ(t) ∝ 1 2 e -Γ 1 t ( a + be ∆Γ B t + ce ∆Γ B t/2 cos ∆M B t + de ∆Γ B t/2 sin ∆M B t ) (2.36)
where :

a = |A| 2 ( 1 2 
( 1 + q p ρ 2 ) + Re [ q p ρ ] ) , a = |A| 2 ( 1 2 
( 1 + p q ρ 2 ) + Re [ p q ρ ] ) b = |A| 2 ( 1 2 
( 1 + q p ρ 2 ) -Re [ q p ρ ] ) , b = |A| 2 ( 1 2 
( 1 + p q ρ 2 ) -Re [ p q ρ ] ) c = |A| 2 ( 1 - q p ρ 2 ) , c = |A| 2 ( 1 - p q ρ 2 ) d = -2|A| 2 Im [ q p ρ ] , d = -2|A| 2 Im [ p q ρ
] .

(2.37) Then, since we focus on B d decay, we can neglect 5 ∆Γ B d , and the time dependent CP asymmetry becomes:

A CP (t) = Γ(t) -Γ(t) Γ(t) + Γ(t) = -C cos(∆M B t) + S sin(∆M B t) (2.38)
where S, the mixing induced CP asymmetry, and C, the direct CP asymmetry, are:

S = 2Im[ q p ρ] 1 + |ρ| 2 , C = 1 -|ρ| 2 1 + |ρ| 2 (2.39) 
where we used |q/p| ≈ 1 (cf. Eq. (2.34)). Therefore, in our case, only |ρ| ̸ = 1 can induce a sizeable direct CP violation.

Conventions

The signs of the mixing phase (q/p) and of η CP (B 0 ) defined as CP |B 0 ⟩ = η CP (B 0 ) |B 0 ⟩ are fixed by conventions. The observables should not depend on this convention as long as we remain consistent. Since antiparticles are defined, with respect to particles, up to a phase, we are free to shift |B 0 ⟩ as:

|B 0 ⟩ → e iϵ |B 0 ⟩ . (2.40)
Then noting that the choice ϵ = π flips the sign of η CP (B 0 ), it is clear that the ambiguity on the CP eigenvalue of B 0 is related to the freedom in choosing the phase ϵ. Therefore we need to check that the observable do not depend on ϵ and to investigate [START_REF] Patrignani | [END_REF] gives

|∆ΓB d |/|ΓB d | = O(10 -3 ).
the implication of this phase redefinition. Thus applying the transformation in Eq. (2.40) will modify the off-diagonal elements of the Hamiltonian:

M 12 - i 2 Γ 12 → e iϵ ( M 12 - i 2 Γ 12 ) (2.41) 
hence:

q p = √ M * 12 -i 2 Γ * 12 M 12 -i 2 Γ 12 → e -iϵ q p .
(2.42)

But their product will remain invariant:

q p (M 12 - i 2 Γ 12 ) → q p (M 12 - i 2 Γ 12 ) (2.43)
so ∆M B given by:

∆M B = M 2 -M 1 = -2Re [ q p ( M 12 - i 2 Γ 12 ) ] (2.44) 
is unaffected by this phase shift. Next the quantity ρ will be affected as:

ρ = ⟨f | H ∆F =-1 |B 0 ⟩ ⟨f | H ∆F =1 |B 0 ⟩ → e iϵ ρ (2.45)
If follows from Eqs. (2.42) and (2.45) that the product q p ρ is insensitive to the arbitrary phase of B 0 as is the observable S. Let's move on to the sign of q p . Changing the sign of the mixing phase will not affect ρ (and consequently C as well) but ∆M B will change sign (see Eq. (2.44)). Again the product Im[ q p ρ] sin(∆M B t) will remain invariant. Throughout the rest of this chapter we will adopt the conventions:

CP |B 0 ⟩ = + |B 0 ⟩ , q p = + √ M * 12 -i 2 Γ * 12 M 12 -i 2 Γ 12 .
(2.46)

Chapter 3

Theoretical context

Photon polarisation in the standard model

In this section, we will discuss the steps leading to predictions of the SM contributions to b → sγ. First we introduce the effective vertex for the penguin diagram. It is the sum of all contributions without QCD corrections. It can be seen as an effective Feynman rule which can be applied to other penguins such as c → uγ and s → dγ. Taking into account QCD corrections allows additional diagrams to participate in the transition and introduces a new energy scale. Weak transitions occur at short distance (i.e. high energy) due to the large mass of the W and Z bosons. While strong interactions involve both short and long distances. Operator Product Expansion (OPE) combined with the renormalisation group approach provides a framework in which the amplitude for the exclusive decay B → K res γ may be written as:

A B→Kresγ ∝ ∑ i C i (µ) ⟨K res γ| Q i (µ) |B⟩ (3.1)
where K res is a kaonic resonance, µ is the renormalisation scale, the terms C i (µ) and ⟨K res γ| Q i (µ) |B⟩ respectively are the Wilson coefficients (including short distance contributions) and the matrix elements (including long distance contributions). Even though it is not explicitly showed, both Wilson coefficients (which can be viewed as coupling constant) and matrix elements depend on the photon polarisation. This scheme is analogous to the Fermi theory of weak interactions, expressed in terms of four-fermions contact interaction (i.e. a local operator) and a coupling constant G F .

Effective vertex

The process b → sγ occurs only at loop level, where there is more than one diagram to take into account. In Fig. 3.1 we show two diagrams with W boson exchange, but there may be diagrams containing fictitious Higgs bosons (depending on the gauge, cf. Ch. 21 of [START_REF] Peskin | An Introduction to quantum field theory[END_REF]). Self-energy corrections on external lines need to be included in any case. Once all contributions, without QCD corrections, have been added, we obtain [START_REF] Inami | Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes K L → µµ, K + → π + νν and K 0 ↔ K 0[END_REF] the effective vertex 1 for b → sγ:

sΓ u b = e (4π) 2 g 2 2M 2 W V * ts V tb F 2 (x t )s [ iσ µν q ν ( m b P R + m s P L )] b (3.3)
where q = p b -p s , the projectors P R/L are defined in Eq. (2.1), the coupling constant g is related to the Fermi constant as

8G F M 2 W = √ 2g 2 , V *
ts and V tb are CKM matrix elements and F 2 (x t ), the loop function, reads:

F 2 (x i ) = 8x 3 i + 5x 2 i -7x i 12(x i -1) 3 + 2x 2 i -3x 3 i 2(x i -1) 4 ln x i (3.4) with x i = m 2 i /M 2 W . Since F 2 (x c/u ) is negligible compared to F 2 (x t
), the effective vertex, Eq. (3.3), contains mostly contributions from the internal top-quark loop. As mentioned above, Eq. (3.3) can be used for other internal and external quarks as long as the CKM factor and the masses of both internal and external quarks are adjusted. At this level, we can already estimate the polarisation of the photon.

1. While computing the effective vertex, one first obtains an expression in terms of γ µ , q µ and p µ b . Using the Gordon identity applied to flavour changing neutral current:

s [ p µ P R/L ] b = 1 2 s [( q µ + iσ µν qν + msγ µ ) P R/L + γ µ m b P L/R ] b (3.2)
one can rewrite the result in terms of γ µ , q µ and σ µν kν .

b Since the weak interaction only couples to left-handed quarks, the Dirac structure of Eq. (3.3) implies a chirality flip on one of the external quark line (i.e. an ingoing left(right) handed b quark will induce an outgoing right(left) handed s quark).

L s R γ R b R s L γ L
Then we can determine the allowed chirality of the photon by projecting the photon polarisation vector ϵ µ on the effective vertex. In agreement with [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF], we obtain:

(s L σ µν q ν b R )ϵ µ * R = 0, (s L σ µν q ν b R )ϵ µ * L ̸ = 0, (s R σ µν q ν b L )ϵ µ * L = 0, (s R σ µν q ν b L )ϵ µ * R ̸ = 0. (3.5) 
Consequently, this transition is allowed only when the photon and the s-quark have the same chirality. Then we can read from Eq. (3.3):

A(b → s L γ L ) ∝ m b A(b → s R γ R ) ∝ m s . (3.6)
Therefore, the amplitude corresponding to the emission of a right-handed photon is suppressed by a factor m s /m b ≈ 0.02 with respect to the emission of a left-handed photon. Within this framework, the process b → sγ can be viewed, see Fig. 3.2, as an effective vertex with a mass insertion on the external right-handed quark.

So far we have been reasoning in terms of chirality. But we can as well relate the photon and the s-quark helicity. Since in the b-quark rest frame b → sγ is a two-body back-to-back decay, angular momentum conservation implies that the photon and the s-quark are identically polarised (cf. Fig. 3.3). And as helicity and chirality are identical for a photon, Eq. (3.6) can be interpreted in terms of chirality or helicity. The large empty arrows represent the spin projection on the z axis, which is alongside the photon momentum.

QDC corrections, OPE and renormalisation

Before taking QCD into account, we briefly present the Operator Product Expansion formalism (cf. [START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF]). Considering a given low energy W exchange process, where the W momentum k 2 ≪ M 2 W , the W boson propagator may be expanded in powers of 1/M 2 W as:

∆ µν (x, y) = g µν M 2 W δ 4 (x -y) + O(M -4 W ). (3.7) 
In doing so, one approximates the full interaction as a product of local operators.

Returning to b → sγ and including QCD corrections, the effective Hamiltonian is:

H eff = 4G F √ 2 V tb V * ts 8 ∑ i=1 ( C i (µ)Q i + C ′ i (µ)Q ′ i ) (3.8)
In weak B meson decays, µ is usually chosen to be of the order of m b . Then the dependence of a given observable in µ can be checked. In [START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF], it was found that using 2.5 GeV/c2 ≤ µ ≤ 10 GeV/c 2 , induce a variation of ±4.3% in Br(B → X s γ) evaluated at NLO. The Wilson coefficients can be derived by matching the full theory (with the W boson as an explicit dynamical degree of freedom) and the effective theory (where the W boson has been "integrated out") truncated at a given order in the expansion. For the b → sγ transition, there are three classes of operators to consider.

Current-current:

The current-current 4-fermion operators (Q 1 and Q 2 , c.f. Fig 3 .4) are:

Q 1 = (s αL γ µ c βL )(c βL γ µ b αL ), Q ′ 1 = (s αR γ µ c βR )(c βR γ µ b αR ) Q 2 = (s αL γ µ c αL )(c βL γ µ b βL ), Q ′ 2 = (s αR γ µ c αR )(c βR γ µ b βR ) (3.9)
where α and β are colour indices, q R/L = P R/L q and the u-quark contribution has been neglected due to CKM suppression 2 . Without QCD correction, only Q 2 is nonzero (the colour structure of Q 1 implies gluon exchange). But once QCD is included, the decomposition:

T a αβ T a γρ = - 1 2N δ αβ δ γρ + 1 2 δ αρ δ γβ (3.10)
allows additional colour structure to appear (i.e. additional operators), where T a is the SU(3) colour generator. In order to determine the role that Q 1 and Q 2 play in b → sγ, those operators have to be inserted in the electromagnetic penguin diagram (see Fig. 

QCD-penguins:

The QCD-penguins 4-fermion operators: Electro-and chromo-magnetic penguins:

Q 3 = (s αL γ µ b αL ) ∑ q (q αL γ µ q αL ), Q ′ 3 = (s αR γ µ b αR ) ∑ q (q αR γ µ q αR ) Q 4 = (s αL γ µ b βL ) ∑ q (q βL γ µ q αL ), Q ′ 4 = (s αR γ µ b βR ) ∑ q (q βR γ µ q αR ) Q 5 = (s αL γ µ b αL ) ∑ q (q αR γ µ q αR ), Q ′ 5 = (s αR γ µ b αR ) ∑ q (q αL γ µ q αL ) Q 6 = (s αL γ µ b βL ) ∑ q (q βR γ µ q αR ), Q ′ 6 = (s αR γ µ b βR ) ∑ q (q βL γ µ q αL ) (3 
The magnetic penguin operators (see Fig. 3.5) are:

Q 7 = e 16π 2 m b s αL σ µν b αR F µν , Q ′ 7 = e 16π 2 m b s αR σ µν b αL F µν Q 8 = e 16π 2 m b s αL σ µν T a αβ b βR G a µν , Q ′ 8 = e 16π 2 m b s αR σ µν T a αβ b βL G a µν (3.12)
where F µν and G a µν respectively correspond to the electromagnetic and chromomagnetic field strength tensor. Matching Eqs. (3.3) and (3.8), without any QCD corrections, at the scale µ = M W and using the Fourier transform: 

-σ µν F µν → 2iσ µν q ν (3.13) yields C 7 (µ W ) = -1/2F 2 (x t ) with C ′ 7 (µ W ) = m s /m b C 7 (µ W ). q q b s γ b s γ c c Q 1,2 Q 3,..,6 (a) (b) 

Short-distance QCD corrections to b → sγ

As we mentioned earlier, taking into account QCD corrections, three operators have to be included which will "mix under renormalisation". As a result, the effective Hamiltonian (cf. Eq. (3.8)) is rewritten in terms of effective Wilson coefficients. At leading order (LO), one can obtains:

H (0) eff = 4G F √ 2 V tb V * ts C (0)eff 7 (µ)Q 7 (3.14)
where, at

m t = 170 GeV/c 2 , m b = 5 GeV/c 2 , α (5) 
s (M Z ) = 0.118 and with the initial conditions:

C (0) 7 (µ W ) = -1/2F 2 (x t ) = -0.193, C (0) 2 (µ W ) = 1, C (0) 8 (µ W ) = -0.096. (3.15) C (0)eff 7
(µ b ) gives (see [START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF] for details):

C (0)eff 7 (µ b ) = 0.695 C (0) 7 (µ W ) + 0.085 C (0) 8 (µ W ) -0.158 C (0) 2 (µ W ) = -0.300. (3.16)
This means there is a ≈50% enhancement on the Wilson coefficient, almost entirely due to the term proportional to C (0) 2 (µ W ). Consequently, QCD corrections play an important role in b → sγ.

Long-distance QCD corrections

As mentioned earlier, at the parton level the two-body decay b → sγ implies that both s-quark and photon have the same polarisation. But, as it was pointed out in [START_REF] Khodjamirian | QCD estimate of the long distance effect in B → K * γ[END_REF], for a multi-body decay such as b → sγ + gluons (cf. Fig. 3.7), the previous argument does not hold any more. This mechanism could enhance the right-handed photon emission. Furthermore, if the gluon is soft (i.e. |k g | 2 ≪ 4m 2 c ), perturbative QCD does not hold any more and one needs to use non-perturbative QCD approaches such as QCD sum-rules. This calculation has not yet been performed for B → K res γ, where K res can be Axial or Tensor. In order to have an idea of the magnitude of this effect, we will present results of an analysis on the exclusive decay B → K * (892)γ. Ball and Zwicky's results [START_REF] Ball | Time-dependent CP Asymmetry in B → K * γ as a (Quasi) Null Test of the Standard Model[END_REF], using light-cone QCD sum rules, yield:

C L = C (0)ef f 7 (1 + (0.02 ± 0.01)) C R = C (0)ef f 7 m s m b (1 -(0.17 ± 0.18)) (3.17)
where

C L/R includes long-distance corrections to C (0)ef f 7
. This result leads to

C R C L ≈ m s m b (0.8 ± 0.2) (3.18) 
which roughly agrees with the results of Khodjamirian et al. [START_REF] Khodjamirian | QCD estimate of the long distance effect in B → K * γ[END_REF] who used local QCD sum rules. This result confirms the naive estimate of Eq. (3.6). On the other hand, Grinstein et al. [START_REF] Grinstein | The Photon polarization in B → Xγ in the standard model[END_REF][START_REF] Grinstein | The CP asymmetry in B0(t) → K S π 0 γ in the standard model[END_REF] performed a dimensional estimate of the Q 2 contribution using Soft Collinear Effective Theory and obtained:

C R C L ≈ 1 3 
C (0) 2 C (0)ef f 7 Λ QCD m b ≈ 0.1 (3.19)
which much higher than the naive estimate of Eq. (3.6). In the rest of this thesis, we will use:

C 7 = C (0)eff 7 , C ′ 7 = m s m b C (0)eff 7 . (3.20)
But given the present theoretical uncertainty regarding that matter, a measured value of the ratio C ′ 7 /C 7 around 0.1 or lower may not be unambiguously interpreted as a deviation from the standard model.

The matrix elements of the electromagnetic penguin operator: Q 7

Since the expression of the matrix elements for exclusive B → K res γ transition depends on the spin-parity of K res , we will present results for K res = V, A, T (respectively Vector (1 -), Axial-vector (1 + ) and Tensor (2 + ) where we use the notation J P with total spin J and intrinsic parity P). The amplitude is:

A(B → K res γ) = 4G F √ 2 V * ts V tb ( C 7 ⟨K res γ| Q 7 |B⟩ + C ′ 7 ⟨K res γ| Q ′ 7 |B⟩ ) (3.21)
with:

Q 7 = e 16π 2 m b s L σ µν b R F µν Q ′ 7 = e 16π 2 m b s R σ µν b L F µν (3.22)
In the following we work in the B meson rest frame with the z axis along K rez momentum. The transitions B → A, V, T , expressed in terms of the form factors Y i , T i and U i [START_REF] Cheng | B to V, A, T Tensor Form Factors in the Covariant Light-Front Approach: Implications on Radiative B Decays[END_REF][START_REF] Hatanaka | B → K 1 γ Decays in the Light-Cone QCD Sum Rules[END_REF], are:

⟨A(p, ϵ A )| sσ µν q ν (1 ± γ 5 )b |B(p B )⟩ = ±iε µνλρ ϵ * ν A P λ q ρ Y 1 (q 2 ) + (ϵ * Aµ P • q -P µ ϵ * A • q)Y 2 (q 2 ) ⟨V (p, ϵ V )| sσ µν q ν (1 ± γ 5 )b |B(p B )⟩ = -iε µνλρ ϵ * ν V P λ q ρ T 1 (q 2 ) ∓ (ϵ * V µ P • q -P µ ϵ * V • q)T 2 (q 2 ) ⟨T (p, ϵ T )| sσ µν q ν (1 ± γ 5 )b |B(p B )⟩ = -iε µνλρ ϵ * νσ T P σ P λ q ρ U 1 (q 2 ) m B ∓ (ϵ * T µσ P • q -P µ ϵ * T σρ q ρ )P σ U 2 (q 2 ) m Bq (3.23)
where we use ε 0123 = 1, P = p + p B , q = p -p B and we only write terms contributing to the emission of an on-shell photon. The polarisation vectors and tensor are defined as:

ϵ µ V,A± = ± 1 √ 2        0 1 ±i 0        , ϵ µ γ± = ± 1 √ 2        0 1 ∓i 0        , ϵ µν T ± = 1 √ 2 (ϵ µ V,A± ϵ ν 0 + ϵ µ 0 ϵ ν V,A± ), ϵ µ 0 =        0 0 0 1        (3.24)
where at q 2 = 0, (Y /T /U ) 1 (0) = (Y /T /U ) 2 (0) [START_REF] Cheng | B to V, A, T Tensor Form Factors in the Covariant Light-Front Approach: Implications on Radiative B Decays[END_REF][START_REF] Hatanaka | B → K 1 γ Decays in the Light-Cone QCD Sum Rules[END_REF]. Using Eqs. (3.23) and (3.24), we get 3 :

⟨A L γ L | Q 7 |B⟩ = ⟨A R γ R | Q ′ 7 |B⟩ = i e 2π 2 m b m 2 B ( 1 - m 2 A m 2 B ) Y 1 (0) ⟨V L γ L | Q 7 |B⟩ = -⟨V R γ R | Q ′ 7 |B⟩ = -i e 2π 2 m b m 2 B ( 1 - m 2 V m 2 B ) T 1 (0) ⟨T L γ L | Q 7 |B⟩ = -⟨T R γ R | Q ′ 7 |B⟩ = -i e 4 √ 2π 2 m b m 2 B ( 1 - m 2 T m 2 B ) 2 U 1 (0). (3.26) 
Plugging Eq. (3.26) into Eq. (3.21) and adding the phase space factor, we get:

Γ A L/R (B → A L/R γ L/R ) = G 2 F α 32π 4 |V * ts V tb | 2 m 2 b m 3 B ( 1 - m 2 A m 2 B ) 3 |C 7 /C ′ 7 | 2 |Y 1 (0)| 2 Γ V L/R (B → V L/R γ L/R ) = G 2 F α 32π 4 |V * ts V tb | 2 m 2 b m 3 B ( 1 - m 2 V m 2 B ) 3 |C 7 /C ′ 7 | 2 |T 1 (0)| 2 Γ T L/R (B → T L/R γ L/R ) = G 2 F α 256π 4 |V * ts V tb | 2 m 2 b m 3 B ( 1 - m 2 T m 2 B ) 5 |C 7 /C ′ 7 | 2 |U 1 (0)| 2 (3.27)

New physics and penguins

The loop induced b → sγ transition can receive contributions from various new physics (NP) models. Models where the NP contributions to C ′ 7 can abundantly exceed those to C 7 are of particular interest for our studies. This is the case for the Randall-Sundrum (RS) model [START_REF] Randall | A Large mass hierarchy from a small extra dimension[END_REF] (see [START_REF] Blanke | The Birds and the Bs in RS: The b → sγ penguin in a warped extra dimension[END_REF] for a recent analysis of the RS contribution to C ′ 7 ). In this section we will briefly discuss results from [START_REF] Kou | Photon Polarization in the b → sγ processes in the Left-Right Symmetric Model[END_REF] on the impact of the Left-Right Symmetric Model [START_REF] Pati | Lepton Number as the Fourth Color[END_REF][START_REF] Mohapatra | Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation[END_REF][START_REF] Mohapatra | A Natural Left-Right Symmetry[END_REF][START_REF] Senjanovic | Exact Left-Right Symmetry and Spontaneous Violation of Parity[END_REF] on the photon polarisation, since in this model, the right-handed W can naturally induce C ′ 7 contribution.

3. Alternatively, we can explicitly verify that, for Kres = A, V, T , we have

⟨Kres, γR| Q7 |B⟩ = 0, ⟨Kres, γL| Q ′ 7 |B⟩ = 0. (3.25) 
.

The photon polarisation in the Left-Right Symmetric model

The Left-Right Symmetric Model (LRSM) is an extension of the standard model in which parity is a spontaneously broken symmetry. Supplementary charged and neutral gauge bosons are introduced by the gauge group SU (2

) L × SU (2) R × U (1) Ỹ .
The latter is spontaneously broken as:

SU (2) L × SU (2) R × U (1) Ỹ → SU (2) L × U (1) Y .
(3.28)

Within this framework, left-handed and right-handed charged current are allowed. Furthermore, a right-handed CKM matrix is introduced. Consequently one can expect that the right-handed charged current and CKM matrix elements may alter the ratio by a factor m t /m s with respect to the SM. This is due to the helicity flip occuring on the internal top quark line instead of the external strange quark line (see Fig. 3.8). Additionally, the vertex W R t R s R can be enhanced by a factor |V R ts /V L ts |, which could, according to [START_REF] Kou | Photon Polarization in the b → sγ processes in the Left-Right Symmetric Model[END_REF], lead to an enhancement as large as 1/λ 2 (λ ≈ 0.2 being one of the parameters of the Wolfenstein parametrisation of the left-handed CKM matrix). Of course this result depends on the values of the free parameters of the model, which are the masses of the additional gauge boson, the angle and phases of the right-handed CKM matrix, the ratio of right-and left-handed gauge coupling constants and the ratio of VEVs (cf. [START_REF] Kou | Photon Polarization in the b → sγ processes in the Left-Right Symmetric Model[END_REF] for more details). After taking into account all the available experimental constraints, especially coming from flavour physics, the authors of [START_REF] Kou | Photon Polarization in the b → sγ processes in the Left-Right Symmetric Model[END_REF] found that |C ′ 7 /C 7 | can still be as large as 0.5.

C 7 /C ′ 7 . Indeed, it is stated in [28] that the operator s R σ µν b L is enhanced W L W R b L t L t R s R γ R V L tb V R ts

Chapter 4

The dilution factor for the time dependent CP asymmetry measurement for the decay

B 0 d → ρK 0 S γ
In order to increase the sensitivity on the photon polarisation the AGS method [1] can be used on the decay B 0 d → ρK 0 S γ observed in the final state K 0 S π + π -γ. The main difficulty, compared to the decay B 0 d → K 0 S π 0 γ, originates from the fact that other channels such as K * + π -and κ + π -, which are not CP eigenstate, lead to the same final state. Since this process can be viewed as a weak decay B 0 d → K res γ followed by a strong decay K res → K 0 S π + π -, we expect that the latter will not cancel in the time dependent CP asymmetry (A CP (t)) but will induce a dilution factor (D) defined as:

A K 0 S π + π -γ CP (t) = DA ρK 0 S γ CP (t). (4.1) 
We will present two different methods to tackle the issue of the dilution factor.

Relating the amplitudes

We already derived the expression of A CP (t) (see Eq. (2.38)), the next step is to evaluate ρ. To do so, one needs to know how to relate A and A, in other word, how A transforms under CP. From Eq. (2.45), we see that we need to understand how the Hamiltonian and both initial and final states behave under CP. Regarding the initial state, we defined (see Eq. (2.46)) that CP |B 0 ⟩ = |B 0 ⟩. Then, once we derive the Dirac structure of the Hamiltonian, the outcome of the CP transformation can be derived unambiguously. However the final state is not a CP eigenstate. Indeed, after applying CP, the particle content of the final state remains the same, but the momenta of both pions have been exchanged. We apply the isobar model and approximate the decay B → K 0 S π + π -γ as three subsequent quasi-two-body decays as:

↗ K * + π -γ → ( K 0 S π + ) π -γ ↘ B → K res γ → K 0 S ργ → K 0 S ( π + π -) γ → K 0 S π + π -γ ↘ κ + π -γ → ( K 0 S π + ) π -γ ↗ (4.2) ↗ K * -π + γ → ( K 0 S π -) π + γ ↘ B → K res γ → K 0 S ργ → K 0 S ( π -π + ) γ → K 0 S π -π + γ ↘ κ -π -γ → ( K 0 S π -) π + γ ↗
where K res stands for a kaonic resonance and κ is a scalar state with strangeness S = ±1 (cf. discussion on that matter in 5.5.1). In our analysis, we consider the following kaonic resonances:

J P = 1 + : K 1 (1270), K 1 (1400) J P = 1 -: K * (1410), K * (1680) J P = 2 + : K * 2 (1430). (4.3) 
Then, we use the isobar model and approximate the second quasi-two-body decay:

↗ K * + π - K res → K 0 S ρ (4.4) ↘ κ + π -
is a sum of three different intermediate state. As it was mentioned previously, we are interested in the time dependent CP asymmetry of the intermediate state ρK 0 S , which is a CP eigenstate, if we neglect the small CP violation originating from the K 0 -K 0 mixing. However, the two other channels K * + π -and κ + π -, which are not CP eigenstate, will contribute as well and interfere with ρK 0 S . Consequently we need to disentangle contribution to A CP (t) arising from CP eigenstate, non CP eigenstates and their interferences. Regarding the ρK 0 S channel, it is a CP eigenstate precisely because ρ is a CP eigenstate. As we will see below, since the angular momentum of the pion pair is known, we can interchange their momenta. But because of the presence of the K * π and κπ channels, the angular momentum of the pion pair is not well defined. Anyhow, we will start by deriving the CP transformation of the decay amplitude. To do so we separate the weak and strong part of the decay as :

A λ± = A W λ A S λ± (4.5)
where λ and the ± sign respectively keep track of the polarisation of the photon and of the momentum assignment of the pion pair as:

A S λ± = A S λ ( π ± (p 1 ), π ∓ (p 2 ), K 0 S (p 3 ) ) A S λ± = A S λ ( π ± (p 1 ), π ∓ (p 2 ), K 0 S (p 3 ) ) (4.6)
Next we compute separately how the A W and A S behave under C and P. We will use the helicity amplitude formalism (cf. Appendix A) to define the outcome of the action of the parity operator on a state:

⟨J, M, λ 1 , λ 2 | (P † P )H(P † P ) |J, M ⟩ = η P (-1) J-s 1 -s 2 × ⟨J, M, -λ 1 , -λ 2 | (P HP † ) |J, M ⟩ (4.7)
where η P is the product of the intrinsic parity of the initial and each final states, J is the total angular momentum and s i is the spin of the final state i.

4.1.1

The weak decay:

B 0 → K res γ
First we define the weak decay amplitudes as:

A W R = ⟨K res γ R | H - eff |B⟩ A W L = ⟨K res γ L | H + eff |B⟩ A W R = ⟨K res γ R | H + † eff |B⟩ A W L = ⟨K res γ L | H - † eff |B⟩ (4.8)
Then considering only the leading order top quark contribution to the penguin, we write the effective Hamiltonian as:

H + eff = c[sσ µν (1 + γ 5 )bF µν ] H - eff = c ′ [sσ µν (1 -γ 5 )bF µν ] H + † eff = c * [bσ µν (1 -γ 5 )sF µν ] H - † eff = c ′ * [bσ µν (1 + γ 5 )sF µν ] (4.9) 
where 

c = G F e √ 24π 2 C 7 m b V tb V * ts c ′ = G F e √ 24π 2 C 7 m s V tb V * ts . ( 4 
C sC † = (-iγ 0 γ 2 s) T , CbC † = (-ibγ 0 γ 2 ) T , P sP † = sγ 0 , P bP † = γ 0 b
the C and P transformation of the effective Hamiltonian is:

P [ sσ µν (1 -γ 5 )bF µν ] P † = + [ sσ µν (1 + γ 5 )bF µν ] C [ sσ µν (1 -γ 5 )bF µν ] C † = - [ bσ µν (1 -γ 5 )sF µν ] . ( 4.11) 
We are considering several kaonic resonances (K res ) with different spin (s K ) and intrinsic parity (η P ), and unspecified intrinsic charge conjugation (η C ). But since K res is an intermediate state, the final result will be independent of the spin, the P eigenvalue and the C eigenvalue of the kaonic resonances. Therefore, throughout the following computation, we will leave those quantities unspecified until they vanish. The parity transformation gives:

A W L = ⟨K res γ L | (P † P )H - † eff (P † P ) |B⟩ = η P (B 0 )η P (K res )η P (γ)(-1) s K -sγ ( c ′ * c * ) ⟨K res γ R | H + † eff |B⟩ = -η P (K res )(-1) s K ( c ′ * c * ) A W R . (4.12)
Then, the charge conjugation implies:

A W L = ⟨K res γ L | (C † C)H - † eff (C † C) |B⟩ = -η C (B 0 )η C (K res )η C (γ) ( c ′ * c ) ⟨K res γ L | H + eff |B⟩ = -η C (K res ) ( c ′ * c ) A W L . (4.13)
It follows that we can express all four amplitudes in terms of one single amplitude (A ′W ):

A W R = A ′W c * A W L = -A ′W c ′ * η P (K res )(-1) s K A W L = A ′W cη CP (K res )(-1) s K A W R = -A ′W c ′ η C (K res ). (4.14)
4.1.2 The strong decay: K res → K 0 S π + π - Turning to the K res decay part, we have three different intermediate channels: ρK 0 S , K * π and κπ. The outcome of the CP transformation of the strong decay amplitude is independent of the intermediate state as long as we dont exchange the momenta p 1 and p 2 . Then, due to the fact that the strong interaction does not break CP, the Hamiltonian is invariant. We will proceed as follows, we first derive the CP transformation of the amplitudes independently of the intermediate channel and then in Subsec. 4.1.5 we will focus on the angular momentum of the pion pair. We will use the channel ρK 0 S as an example but the following results apply to all three channels. We should emphasise that the factorisation is assumed throughout this section, which means that we assume that the K res decay and the ρ decay can be completely separated. The parity transformation gives:

A S λ± = ⟨π ± (p 1 )π ∓ (p 2 )| H ′ s |ρ⟩ ⟨ρK 0 S (p 3 )| H s |K res ⟩ = ⟨π ± (p 1 )π ∓ (p 2 )| (P † P )H ′ s (P † P ) |ρ⟩ ⟨ρK 0 S (p 3 )| (P † P )H s (P † P ) |K res ⟩ = -η P (K res )(-1) s K ⟨π ± (p 1 )π ∓ (p 2 )| H ′ s |ρ⟩ ⟨ρK 0 S (p 3 )| H s |K res ⟩ = -η P (K res )(-1) s K A S -λ± . (4.15)
Where H s and H ′ s respectively are the Hamiltonians for the strong decays A → V P and V → P P . The result is of course independent of λ and of the polarisation of the ρ meson. Then the C transformation yields: (4.16) where we neglect the small CP violation originating from the K 0 -K 0 mixing. Again we can express all four amplitudes in terms of one single amplitude (A ′S ):

A S λ± = ⟨π ± (p 1 )π ∓ (p 2 )| (C † C)H ′ s (C † C) |ρ⟩ ⟨ρK 0 S (p 3 )| (C † C)H s (C † C) |K res ⟩ = -η C (K res ) ⟨π ∓ (p 1 )π ± (p 2 )| H ′ s |ρ⟩ ⟨ρK 0 S (p 3 )| H s |K res ⟩ = -η C (K res )A S λ∓
A S R± = A ′S ± A S L± = -A ′S ± η P (K res )(-1) s K A S L± = A ′S ∓ η CP (K res )(-1) s K A S R± = -A ′S ∓ η C (K res ).
(4.17)

Symmetrisation

Here we use the symmetry properties of the phase space to simplify further the expression of the time dependent CP asymmetry1 . Setting A ′W A ′S ± = A ′ ± and using Eqs. (4.14) and (4.17), we get:

A R± = A ′ ± c * A L± = A ′ ± c ′ * A L± = A ′ ∓ c A R± = A ′ ∓ c ′ . ( 4.18) 
Which leads to:

|A R± | 2 = |A ′ ± | 2 |c| 2 |A L± | 2 = |A ′ ± | 2 |c ′ | 2 |A L± | 2 = |A ′ ∓ | 2 |c| 2 |A R± | 2 = |A ′ ∓ | 2 |c ′ | 2 (4.19)
and

A * R± A R± = A ′ * ± A ′ ∓ cc ′ A * L± A L± = A ′ * ± A ′ ∓ c ′ c (4.20)
Now we can rewrite C and S (see Eq. (2.39)) as:

C ± = 1 -|ρ| 2 1 + |ρ| 2 = (|A L± | 2 + |A R± | 2 ) -(|A R± | 2 + |A L± | 2 ) (|A L± | 2 + |A R± | 2 ) + (|A R± | 2 + |A L± | 2 ) = |A ′ ∓ | 2 -|A ′ ± | 2 |A ′ ∓ | 2 + |A ′ ± | 2 .
(4.21)

S ± = 2Im[ q p ρ] 1 + |ρ| 2 = 2Im[ q p (A * R± A R± + A * L± A L± )] (|A L± | 2 + |A R± | 2 ) + (|A R± | 2 + |A L± | 2 ) = 4Im[ q p A ′ * ± A ′ ∓ cc ′ ] (|A ′ ∓ | 2 + |A ′ ± | 2 )(|c| 2 + |c ′ | 2 ) (4.22)
As long as the allowed phase space is symmetric under the exchange of p 1 and p 2 , it contains as well the point where both momenta are exchanged. This is the case here since the final states labelled 1 and 2 have the same mass. Therefore, since the measured CP asymmetry will be averaged (before we form the ratio in Eqs. (4.21) and (4.22)), each point with a given value of C ± (S ± ) will be balanced by another point corresponding to C ∓ (S ∓ ). Then, adding C ∓ gives:

1 2 (C ± + C ∓ ) = |A ′ ∓ | 2 -|A ′ ± | 2 |A ′ ∓ | 2 + |A ′ ± | 2 + |A ′ ± | 2 -|A ′ ∓ | 2 |A ′ ± | 2 + |A ′ ∓ | 2 = 0. (4.23)
Therefore we can conclude that, once averaged over all the events, we have |ρ| = 1 and consequently C = 0. Regarding S ± , we have:

A ′ * ± A ′ ∓ + A ′ * ∓ A ′ ± = 2Re[A ′ * ± A ′ ∓ ] (4.24) 
which leads to 2 :

1 2 (S ± + S ∓ ) = Re[A ′ * ± A ′ ∓ ] |A ′ ∓ | 2 + |A ′ ± | 2 4Im[ q p cc ′ ] |c| 2 + |c ′ | 2 . (4.26)
Then the time dependent CP asymmetry is:

A CP (t) = 2 ∫ Re[A ′ * ± A ′ ∓ ]dΦ ∫ (|A ′ ± | 2 + |A ′ ∓ | 2 )dΦ 2Im[ q p cc ′ ] |c| 2 + |c ′ | 2 sin(∆M B t) (4.27)
Since A ′ ± = A ′W A ′S ± , the weak decay amplitude A ′W being independent of Φ cancels in the ratio in Eq. (4.27). Consequently, this step allows us to disentangle in A CP (t) contributions of the strong decay:

2 ∫ Re[A ′ * ± A ′ ∓ ]dΦ ∫ (|A ′ ± | 2 + |A ′ ∓ | 2 )dΦ = 2 ∫ Re[A ′S * ± A ′S ∓ ]dΦ ∫ (|A ′S ± | 2 + |A ′S ∓ | 2 )dΦ (4.28)
2. For completeness we give:

1 2 (S± -S∓) = Im[A ′ * ± A ′ ∓ ] |A ′ ∓ | 2 + |A ′ ± | 2 4Re[ q p cc ′ ] |c| 2 + |c ′ | 2 (4.25)
which for Im[cc ′ ] = 0 is proportional to cos 2β. For example, the method GGSZ [START_REF] Giri | Determining gamma using B ± → DK ± with multibody D decays[END_REF] uses the asymmetry on the phase space for the decay B ± → (K 0 S π + π -)DK ± to obtain sensitivity on the angle γ.

from contributions of the weak decay:

2Im[ q p cc ′ ] |c| 2 + |c ′ | 2 sin(∆M B t). (4.29)
We need Im[ q p cc ′ ] ̸ = 0 to have a non zero A CP (t). In the SM, we have Im[cc ′ ] ≈ 0 since c and c ′ both contain the CKM matrix element V * ts (cf. Eq. (4.10)) whose imaginary part is of order λ 4 (cf. Eq. (2.15)). On the other hand, the mixing phase has a significant imaginary part. From the PDG [START_REF] Patrignani | [END_REF], we have Im[q/p] = -0.691 ± 0.017.

Interferences between intermediate states with different spin-parity

Next we decompose the amplitudes A λ± in terms of the intermediate states ρK 0 S , K * π and κπ:

∫ |A ′ ± | 2 dΦ = ∫ ( |A ′ρK 0 S ± | 2 + |A ′K * π ± | 2 + |A ′κπ ± | 2 + 2Re[A ′ρK 0 S ± A ′ * K * π ± ] + 2Re[A ′ρK 0 S ± A ′ * κπ ± ] + 2Re[A ′K * π ± A ′ * κπ ± ] ) dΦ ∫ Re[A ′ * ± A ′ ∓ ]dΦ = ∫ Re [ A ′ * ρK 0 S ± A ′ρK 0 S ∓ + A ′ * K * π ± A ′K * π ∓ + A ′ * κπ ± A ′κπ ∓ + A ′ * ρK 0 S ± A ′K * π ∓ + A ′ * ρK 0 S ± A ′κπ ∓ + A ′ * K * π ± A ′ρK 0 S ∓ + A ′ * K * π ± A ′κπ ∓ + A ′ * κπ ± A ′ρK 0 S ∓ + A ′ * κπ ± A ′K * π ∓ ] dΦ. (4.30)
Then noting that some resonances present in the intermediate state have different spin-parity, we expect some of the interferences terms to vanish. Indeed, using the helicity amplitude formalism, one can prove (cf. Appendix A) that:

∫ A ′K * π ± A ′ * κπ ± dΦ = 0. (4.31)
Regarding the interference terms

A ′ρK 0 S ± A ′ * κπ ± and A ′K * π ∓ A ′ * κπ ±
, since those amplitudes are function of different angles (when using the helicity amlitude formalism), the above result does not apply for those terms. In other words, interferences between intermediate states of different spin vanish, after integration over the phase space, when those intermediate states have the same quark content. However, we computed the interference term A ′K * π ∓ A ′ * κπ ± using the model presented in Ch. 5 and found after integrating over the phase space, that this term is negligible. For example, compared with

A ′ρK 0 S ± A ′ * κπ ± , we found: ∫ A ′K * π ± A ′ * κπ ∓ dΦ ≈ 4.10 -2 ∫ A ′ρK 0 S ± A ′ * κπ ± dΦ. (4.32)
Consequently we will disregard all interference terms between the channels K * π and κπ. So we rewrite Eq. (4.30) as:

∫ |A ′ ± | 2 dΦ = ∫ ( |A ′ρK 0 S ± | 2 + |A ′K * π ± | 2 + |A ′κπ ± | 2 + 2Re[A ′ρK 0 S ± A ′ * K * π ± ] + 2Re[A ′ρK 0 S ± A ′ * κπ ± ] ) dΦ ∫ Re[A ′ * ± A ′ ∓ ]dΦ = ∫ Re [ A ′ * ρK 0 S ± A ′ρK 0 S ∓ + A ′ * K * π ± A ′K * π ∓ + A ′ * κπ ± A ′κπ ∓ + A ′ * ρK 0 S ± A ′K * π ∓ + A ′ * ρK 0 S ± A ′κπ ∓ + A ′ * K * π ± A ′ρK 0 S ∓ + A ′ * κπ ± A ′ρK 0 S ∓ ] dΦ. (4.33)

The dilution factor: Amplitude analysis method

As mentioned earlier, when the pion pair originates from the meson ρ, they are in a state of well defined angular momentum. Therefore, after applying C on the two pion state, we can interchange their momenta and bring this state back in its original configuration. In Appendix A (cf. Eq. (A.14)), we show that the charge conjugation operator (C) can be used on the state |π + (p 1 )π -(p 2 )⟩ as:

C |π + (p 1 )π -(p 2 )⟩ = (-1) J |π + (p 1 )π -(p 2 )⟩ (4.34) instead of C |π + (p 1 )π -(p 2 )⟩ = |π -(p 1 )π + (p 2 )⟩ (4.35)
as we did in Eq. (4.16). Therefore we redo the C transformation of Eq. (4.16), but using Eq. (4.34) instead of Eq. (4.35): (4.36) which compared to the result of (4.16):

A S λ± = ⟨π ± (p 1 )π ∓ (p 2 )| (C † C)H ′ s (C † C) |ρ⟩ ⟨ρK 0 S (p 3 )| (C † C)H s (C † C) |K res ⟩ = -(-1) Jρ η C (K res ) ⟨π ± (p 1 )π ∓ (p 2 )| H ′ s |ρ⟩ ⟨ρK 0 S (p 3 )| H s |K res ⟩ = η C (K res )A S λ±
A S λ± = -η C (K res )A S λ∓ (4.37) yields A ′ρK ∓ = -A ′ρK ± . (4.38)
Additionally, since the allowed phase space is symmetric under the exchange of p 1 and p 2 , we can as well exchange the pion pair momenta if we do so for A ′ and A ′ * simultaneously:

∫ A ′ * ± A ′ ± dΦ = ∫ A ′ * ∓ A ′ ∓ dΦ ∫ A ′ * ± A ′ ∓ dΦ = ∫ A ′ * ∓ A ′ ± dΦ (4.39)
Actually, the fact that we found |ρ| = 1, implies the equality in the first line of Eq. (4.39). The strategy is to express, when we can, A * A in terms of A * A (i.e. A * ± A ∓ in terms of A * ± A ± ) using Eqs. (4.38) and (4.39):

∫ A ′ * ρK 0 S ± A ′ρK 0 S ∓ dΦ = ∫ -|A ′ρK 0 S ± | 2 dΦ ∫ A ′ * ρK 0 S ± A ′K * π ∓ dΦ = ∫ -A ′ * ρK 0 S ∓ A ′K * π ∓ dΦ = ∫ -A ′ * ρK 0 S ± A ′K * π ± dΦ ∫ A ′ * K * π ± A ′ρK 0 S ∓ dΦ = ∫ -A ′ * K * π ± A ′ρK 0 S ± dΦ ∫ A ′ * ρK 0 S ± A ′κπ ∓ dΦ = ∫ -A ′ * ρK 0 S ∓ A ′κπ ∓ dΦ = ∫ -A ′ * ρK 0 S ± A ′κπ ± dΦ ∫ A ′ * κπ ± A ′ρK 0 S ∓ dΦ = ∫ -A ′ * κπ ± A ′ρK 0 S ± dΦ. (4.40)
Then we rewrite Eq. (4.33) as:

∫ |A ′ ± | 2 dΦ = ∫ |A ′ ∓ | 2 dΦ = ∫ ( |A ′ρK 0 S ± | 2 + |A ′K * π ± | 2 + |A ′κπ ± | 2 + 2Re[A ′ρK 0 S ± A ′ * K * π ± ] + 2Re[A ′ρK 0 S ± A ′ * κπ ± ] ) dΦ ∫ Re[A ′ * ± A ′ ∓ ]dΦ = ∫ ( -|A ′ρK 0 S ± | 2 + Re[A ′ * K * π ± A ′K * π ∓ ] + Re[A ′ * κπ ± A ′κπ ∓ ] -2Re[A ′ * K * π ± A ′ρK 0 S ± ] -2Re[A ′ * κπ ± A ′ρK 0 S ± ] ) dΦ. (4.41)
We can now compute S and C for the final states ρK 0 S γ and K 0 S π + π -γ and extract the expression of the dilution factor D. We have:

C ρK 0 S γ = 0 S ρK 0 S γ = - 2Im[ q p cc ′ ] |c| 2 + |c ′ | 2 (4.42)
and

C K 0 S π + π -γ = 0 S K 0 S π + π -γ = 2Im[ q p cc ′ ] |c| 2 + |c ′ | 2 ∫ Re[A ′ * ± A ′ ∓ ]dΦ ∫ |A ′ ± | 2 dΦ = S ρK 0 S γ D. ( 4.43) 
Therefore:

D = - ∫ Re[A ′ * ± A ′ ∓ ]dΦ ∫ |A ′ ± | 2 dΦ = ∫ (|A ′ρK 0 S ± | 2 -Re[A ′ * K * π ± A ′K * π ∓ + A ′ * κπ ± A ′κπ ∓ ] + 2Re[A ′ * ρK 0 S ± (A ′K * π ± + A ′κπ ± )])dΦ ∫ (|A ′ρK 0 S ± | 2 + |A ′K * π ± | 2 + |A ′κπ ± | 2 + 2Re[A ′ * ρK 0 S ± (A ′K * π ± + A ′κπ ± )])dΦ . ( 4.44) 
So far, we did not address the question of interferences between kaonic resonances (K res ) with different spin-parity (i.e. overlap between 1 + , 1 -and 2 + ). Using the formalism of [START_REF] Berman | Systematics Of Angular Polarization Distributions In Three-body Decays[END_REF], one can show that resonances with different spin or parity, decaying via a parity conserving interaction to a three body spinless final state, acquire different angular dependence (when using the normal to the three body decay plane as an analyser) and do not interfere once we integrate over all the angles 3 . In other words, after summing all events for a given value of m K 0 S π + and m K 0 S π -, the resonances K 1 , K * and K * 2 do not, within statistical fluctuations, interfere. Therefore Eq. (4.44) can be used as: In this subsection, we present a method using additional modes with one neutral pion (K + π -π 0 or K 0 S π + π 0 ). The method consist in assuming isospin symmetry to relate the strong decay amplitude for K res → K 0 S π + π -and K res → K + π -π 0 . We initially consider the final states ⟨f I | and ⟨f II |, defined as:

D = ∑ K=1 ± ,2 + ∫ (|A ′ρK 0 S K | 2 -Re[A ′ * K * π K A ′K * π K + A ′ * κπ K A ′κπ K ] + 2Re[(A ′K * π K + A ′κπ K )A ′ * ρK 0 S K ])dΦ ∑ K=1 ± ,2 + ∫ (|A ′ρK 0 S K | 2 + |A ′K * π K | 2 + |A ′κπ K | 2 + 2Re[(A ′K * π K + A ′κπ K )A ′ * ρK 0 S K ])dΦ
⟨f I | = ⟨K 0 S (p 3 )π + (p 1 )π -(p 2 )| ⟨f II | = ⟨K + (p 3 )π -(p 2 )π 0 (p 1 )| ⟨f III | = ⟨K + (p 3 )π -(p 1 )π + (p 2 )| ⟨f IV | = ⟨K 0 S (p 3 )π 0 (p 1 )π + (p 2 )| (4.46)
and then we will include ⟨f III | and ⟨f IV | to increase statistics. For ⟨f I |, we have:

A ′I + = - 2 3 A ′K * + π - 13 - 1 √ 6 A ′ρK 0 S 12 A ′I -= - 2 3 A ′K * + π - 23 - 1 √ 6 A ′ρK 0 S 21 (4.47)
where the numerical factors are Clebsch-Gordan (cf. Appendix C) and the subscript indicates to which hadronic final state the intermediate state (ρ, K * or κ) couples to. In the following we will not separate K * from κ since they have the same quark content. Note that the weak decay part B 0 → K 0 res γ is identical for both final states. For ⟨f II |, we have:

A ′II + = √ 2 3 A ′K * + π - 13 - √ 2 3 A ′K * π 0 23 + 1 √ 3 A ′ρ -K + 12 = 1 √ 2 ( 2 3 A ′K * + π - 13 + 1 √ 6 A ′ρ -K + 12 - 2 3 A ′K * π 0 23 + 1 √ 6 A ′ρ -K + 12 ) = 1 √ 2 ( 2 3 A ′K * + π - 13 + 1 √ 6 A ′ρ -K + 12 - 2 3 A ′K * π 0 23 - 1 √ 6 A ′ρ -K + 21 ) = 1 √ 2 (A ′I --A ′I + ) (4.48)
where in the third line we used A

′ρK 0 S 12 = -A ′ρK 0 S 21
(cf. Eq. (4.38)). Here we can see clearly that A ′II is antisymmetric under the exchange of the pions momenta. The decay rates (integrated over the phase space) are:

Γ I = ∫ |A ′I ± | 2 dΦ(|c| 2 + |c ′ | 2 ) Γ II = 1 2 ∫ | -A ′I ± + A ′I ∓ | 2 dΦ(|c| 2 + |c ′ | 2 ) = ∫ |A ′I ± | 2 dΦ - ∫ Re[A ′I * ± A ′I ∓ ]dΦ(|c| 2 + |c ′ | 2 ) (4.49)
where in the last line we used

∫ |A ′ ± | 2 dΦ = ∫ |A ′ ∓ | 2 dΦ (cf.
Eq. (4.39)). We recall the expression, derived for the final state I, of the dilution factor (Eq. (4.44)):

D = - ∫ Re[A ′I * ± A ′I ∓ ]dΦ ∫ |A ′I ± | 2 dΦ . ( 4.50) 
Consequently

D = Γ II Γ I -1. (4.51)
Therefore, one can bypass the amplitude analysis and use the branching ratios to obtain the dilution factor (since the weak decay part cancel in the ratio) in a model independent manner. From [35], we have:

Br(B 0 → K 0 S π -π + γ) = (1.85 ± 0.24) × 10 -5 ∝ Γ I Br(B 0 → K + π -π 0 γ) = (4.07 ± 0.38) × 10 -5 ∝ Γ II Br(B + → K + π -π + γ) = (2.95 ± 0.24) × 10 -5 ∝ Γ III Br(B + → K 0 S π + π 0 γ) = (4.56 ± 0.52) × 10 -5 ∝ Γ IV (4.52)
with m Kππ < 1.8 GeV/c 2 . Using Eq. (4.52) into Eq. (4.51) gives:

Γ II Γ I -1 = 1.2 ± 0.35 Γ IV Γ III -1 = 0.55 ± 0.22 (4.53) 
and combining both we obtain

D = 0.73 ± 0.18 (4.54)
where all uncertainties were added in quadrature. We followed the parametrisation of Gronau et al. [START_REF] Gronau | Reexamining the photon polarization in B → Kππγ[END_REF] and Tayduganov [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF] for the description of the three-body strong decay, where assumptions were made such as quasi-two-body decay and isobar model. The systematic uncertainties induced by those assumptions have yet to be estimated. Therefore the uncertainties in Eq. (4.54) are statistical. Results obtained with this method and the amplitude analysis method should be compared using data samples with the same cuts.

Chapter 5

The photon polarisation in B → K res γ → (Kππ)γ decays

How to measure the photon polarisation

As it was first proposed by Gronau et al. [START_REF] Gronau | Measuring the photon polarization in B → Kππ gamma[END_REF], the decay B → K 1 γ can be used to measure the photon polarisation. The basic idea is the following, since we cannot directly measure the photon polarisation, we need to focus on measuring the polarisation of K res . Due to the fact that the s-quark and the photon are identically polarised (cf. Subsec. 3.1.1), it is so for K res . Then using angular analysis, we can build a parity odd observable sensitive to the photon polarisation. The three body hadronic final state Kπ + π -allows us to build a "body-fixed" coordinate system (named K ′ res rest frame), which axis are defined as follow:

e ′ z = p -× p + |p -× p + | e ′ x = p -+ p + |p -+ p + | (5.1)
where p ± correspond to the three-momenta of π ± . In the K res rest frame, the z axis is chosen opposite to the photon momentum direction. Both frames can be related with three subsequent rotations. We define the angles θ and ϕ as (cf. Fig. 5.1): 

cos θ = - p γ |p γ | • ( p -× p + |p -× p + | ) = e z • e ′ z sin θ cos ϕ = - p γ |p γ | • ( p -+ p + |p -+ p + | ) = e z • e ′ x sin θ sin ϕ = - p γ |p γ | • [( p -× p + |p -× p + | ) × ( p -+ p + |p -+ p + | )] = e z • e ′ y ( 5.2) 
with θ ∈ [0, π] and ϕ ∈ [0, 2π[. In other words, the angles θ and ϕ give us the orientation of the z axis in the K ′ res rest frame. The parity (P ), charge conjugation (C) and naive time reversal ( T , also often called "motion reversal") transformation 1properties of e z in the K ′ res rest frame can be read from Eq. (5.2). Because we are using a "body-fixed" frame, the axis of our frame are not necessarily invariant under P , C and T . The results are summarized in Tab. 5.1. The bottom rows are P odd combinations of x ′ , y ′ and z ′ components of e z . As it will be explicitly demonstrated in the next section, the angular decay distribution of B → K res γ → Kππγ, taking into account Axial and Vector K res states, provides three parity odd observables proportional to cos θ, sin(2θ) cos ϕ and sin(2θ) sin ϕ.

A triple product such as p γ • (p -× p + ) is odd under T and final state interactions (FSI) can break T . Therefore, we can expect that T odd observables require a strong phase (cf. [START_REF] Pirjol | Probing new physics with b → sγ decays[END_REF]). In our case, interferences between different K res or different intermediate states, such as ρK or K * π, can provide a strong rescattering phase (originating from the Breit-Wigner of ρ and K * ). Interferences between the channel K * π as S and D waves can as well produce a strong phase.

Angular distribution

The weak and strong decay amplitudes

We separate the weak and strong part of the decay B → K res γ → Kππγ. The weak part (A R/L ) depends on the Wilson coefficient as the strong part contain a rich angular structure which will allow us to distinguish different polarisation states of K res .

The weak decay

Using results from chapter 3, the weak decay amplitudes is:

A W R = ∑ Kres 4G F √ 2 V * ts V tb C ′ 7 ⟨K res γ R | Q ′ 7 |B⟩ A W L = ∑ Kres 4G F √ 2 V * ts V tb C 7 ⟨K res γ L | Q 7 |B⟩ A W R = ∑ Kres 4G F √ 2 V ts V * tb C 7 ⟨K res γ R | Q ′ † 7 |B⟩ A W L = ∑ Kres 4G F √ 2 V ts V * tb C ′ 7 ⟨K res γ L | Q † 7 |B⟩ (5.3)
where the up and charmed penguin are neglected, as are long-distance QCD correction (cf. subsection 3.1.4). Since the weak interaction couples to left-handed particles and right-handed antiparticles, the photon from B decays is mainly righthanded while the photon from B decays is mainly left-handed. The operators Q ′ † 7 and Q † 7 are:

Q ′ † 7 = e 8π 2 m b bσ µν (1 -γ 5 )sF µν Q † 7 = e 8π 2 m b bσ µν (1 + γ 5 )sF µν . ( 5.4) 
They can be related to Q ′ 7 and Q 7 using the charge conjugation operator (cf. subsection 4.1.1). Throughout the rest of this chapter we will consider three kaonic resonances: K 1 (1270), K 1 (1400) and K * (1410). We can rewrite Eq. (5.3) as:

A W R = (Y + T )c ′ A W L = (Y -T )c A W R = (Y + T )c * A W L = (Y -T )c ′ * (5.5)
where we used

c = V * ts V tb C 7 c ′ = V * ts V tb C ′ 7 (5.6)
and

Y = - i √ 2G F e π 2 m b m 2 B ( 1 - m 2 A m 2 B ) Y 1 (0) T = - i √ 2G F e π 2 m b m 2 B ( 1 - m 2 V m 2 B ) T 1 (0). (5.7) 
where m A and m V respectively are the masses of the Axial and Vector kaonic resonances.

The strong decay

The decay of K res into three pseudoscalar mesons can be described in term of helicity amplitudes, i.e. we project the decay amplitude j µ on K res polarisation vector:

A S R/L = ϵ µ R/L (j A µ + j V µ ) (5.8) 
Using the form factor decomposition of the decay amplitude for Axial and Vector kaonic resonance decay into three pseudoscalars, we find that j µ is contained in the decay plane for an Axial state and along the normal to the decay plane for a Vector state:

j A µ = C A 1 p 1µ -C A 2 p 2µ j V µ = iC -ε µαβ p α 1 p β 2 (5.9)
where the functions C A 1/2 , and C -are complex functions of the Dalitz variables ( s Kπ + π -, s Kπ + and s Kπ -) and can be found in Sec. 5.5. For the sake of simplicity, we write j A/V instead of j A/V (s Kπ + π -, s Kπ + , s Kπ -) keeping in mind that j A/V is a function of the Dalitz variables. Considering the hadronic final state K(p 3 )π -(p 1 )π + (p 2 ) we define the s, s 13 and s 23 as:

s = s Kπ + π - s 13 = s Kπ - s 23 = s Kπ + (5.10)
We choose to work in K res rest frame with:

e z = - p γ |p γ | , e x = e z × e f , e y = e z × e x , ( 5.11) 
where e f is an arbitrary fixed vector. In that frame, the polarisation vector (ϵ µ R/L ) has a simple form (cf. Eq. (3.24)). Under parity, the polarisation is reversed, while it is invariant under charge conjugation. In K res rest frame, we can derive the expression of |ϵ µ R/L (J A ± J V ) µ | 2 in terms of only the x and y component (in K res rest frame) of j A µ and j V µ :

|ϵ µ R/L (J A ± J V ) µ | 2 = 1 2 J A x ± J V x ± iJ A y + iJ V y 2 = 1 2 
( |J A x | 2 + |J A y | 2 + |J V x | 2 + |J V y | 2 -2Im[J A x J V * y -J A y J V * x ]
)

± ( Im[J A x J A * y ] + Re[J A x J V * x + J A y J V * y ]
))

(5.12)

where we used

J A = Y j A , J V = T j V .
(5.13) 5.2.2 Relating K res and K ′ res rest frame The next step towards the derivation of the angular distribution is to express J A x/y and J V x in terms of the angles θ and ϕ and the components of the J function in K ′ res rest frame (i.e. J

′A

x/y and J ′V z ). In other words, we need to explicit the transformation between the K res and K ′ res rest frames 2 . Previously, this was achieved by performing three subsequent rotations (cf. [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF]). We define three active counterclockwise rotation matrices R c (α)R b (β)R c (γ) (following the conventions of [START_REF] Sakurai | Modern Quantum Mechanics[END_REF]) such that:

J = R c (α) • R b (β) • R c (γ) • J ′ .
(5.15)

2. In fact, there is a way to bypass the transformation between the Kres and K ′ res rest frame. First, we rewrite Eq. (5.12) as

|ϵ µ R/L (J A ± J V )µ| 2 = 1 2 ( ez × J A 2 + ez × J V 2 ) -Im [ ez • ( J A × J V * )] ± ( 1 2 Im [ ez • ( J A × J A * )] + Re [( J A × ez ) • ( J V * × ez )] ) (5.14)
where, in Kres rest frame, ez = (0, 0, 1),

J A = (J A x , J A y , J A z ) and J V = (J V x , J V y , J V z ).
Then, since all the terms on the right hand side of Eq. (5.14) are rotationally invariant, they can be computed in K ′ res rest frame, where e z ′ = (sin θ cos ϕ, sin θ sin ϕ, cos θ),

J A = (J ′ x , J ′ y , 0) and J V = (0, 0, J ′ z ).
Since those rotations are active, the axis e b and e c are unaffected and are chosen as e b/c = e y ′ /z ′ . Then because the angle α is not measurable, we set α = 0 (this choice will be justified in a few lines). Imposing:

e z = R b (β) • R c (γ) • e z ′ (5.16
)

with e z = (0, 0, 1) and e z ′ = (sin θ cos ϕ, sin θ sin ϕ, cos θ), yields the constraints: cos θ sin β + cos β cos(γ + ϕ) sin θ = 0 (5.17) sin θ sin(γ + ϕ) = 0

(5.18) cos β cos θ -cos(γ + ϕ) sin β sin θ = 1.

(5.19)

If we had not set α = 0, performing an other rotation around the z axis of angle α would not change the above constraints 3 . From Eq. (5.18), we have

γ = -ϕ + n γ π.
(5.20)

Setting γ = π -ϕ allows us to respectively extract from Eqs. (5.17) and (5.19) the equalities tan β = tan θ and cos β = cos θ, i.e. β = θ + n β 2π. Consequently, we will use

4 α = 0, β = θ, γ = π -ϕ
We can rewrite Eq. (5.15) as:

J x = J ′ z sin θ -cos θ(J ′ x cos ϕ + J ′ y sin ϕ) J y = -J ′ y cos ϕ + J ′ x sin ϕ J z = J ′ z cos θ + sin θ(J ′ x cos ϕ + J ′ y sin ϕ) (5.21)
where we dropped the superscripts A and V since J ′V = (0, 0, J ′ z ) and J ′A = (J ′ x , J ′ y , 0). We can already check the angular dependence of the parity odd terms (cf. Eq. (5.12)):

Im[J A x J A * y ] = cos θIm[J ′ x J ′ * y ] Re[J A x J V * x ] = - 1 2 ( sin(2θ) cos ϕRe[J ′ x J ′ * z ] + sin(2θ) sin ϕRe[J ′ y J ′ * z ] ) (5.22)
which is in agreement with the results from section 5.1.

3. In other words, a non null vector in a given plane cannot, after a rotation around the normal to that plane, be null in that same plane.

4. There are other solutions to the system of Eqs. (5.17), (5.18) and (5.19), such as α = 0, β = -θ and γ = -ϕ. In that case the sign of Jx and Jy is reversed while Jz is invariant. Anyhow, once the J function is projected on the polarisation vector (which select only Jx and Jy) and then squared, both conventions yield the same results.

Differential decay rate

The differential decay rate may be written as:

∑ λγ dΓ λγ = ∑ λγ (2π) 4 2M B ∑ Kres A W λγ A S λγ 2 (2π) 3 dsdΦ 2 dΦ 3 (5.23)
where λ γ is the helicity of the photon. The phase space factors for the 2-body decay B → K res γ and the 3-body decay and where we integrated the angles not needed 6 , s, s 13 and s 23 are defined in Eq.

K res → π + π -K are 5 : ∫ dΩdΦ 2 = 1 2(2π) 5 (1 - s M 2 B ) ∫ dψdΦ 3 = 1 32(2π) 8
(5.10). Then using results from subsection 5.2.1, we get:

dΓ R/L dsds 13 ds 23 dϕd cos θ = 1 s(2π) 5 1 128M B (1 - s M 2 B )|c ′ /c| 2 × ϵ µ R/L ( ∑ K 1 J K 1 µ BW K 1 (s) ± J K * µ BW K * (s)
) 2 (5.25)

with:

BW Kres (s) = 1 (s -m 2
Kres ) + im Kres Γ Kres (5.26) where m Kres (Γ Kres ) is the mass(width) of a given kaonic resonance.

Angular distribution

5. See Appendix C.2 for the derivation of the 2-body and 3-body phase space. 6. We have dΩ = dϕγd cos θγ which defines the orientation of the photon in the B meson rest frame and ψ which gives the azimuthal orientation of the normal to the decay plane in the Kres rest frame, but the dependence on the latter vanishes after we square the amplitudes.

Using Eqs. (5.21) and (5.12) into Eq. (5.25), we obtain: ) -1 (5.28) and

d(Γ R + Γ L )
ρ 1 = ∑ K 1 (|J ′K 1 x | 2 + |J ′K 1 y | 2 ), ρ 2 = λ ∑ K 1 Im[J ′K 1 x J ′K 1 * y ], ρ 3 = |J ′K * z | 2 , ρ 4 = ∑ K 1 (|J ′K 1 x | 2 -|J ′K 1 y | 2 ), ρ 5 = ∑ K 1 Re[J ′K 1 x J ′K 1 * y ], ρ 6 = ∑ K 1 Im[J ′K 1 y J ′K * * z ], ρ 7 = ∑ K 1 Im[J ′K 1 x J ′K * * z ], ρ 8 = λ ∑ K 1 Re[J ′K 1 x J ′K * * z ], ρ 9 = λ ∑ K 1 Re[J ′K 1 y J ′K * * z ] (5.29) 
The photon polarisation is defined as:

λ = |c ′ | 2 -|c| 2 |c ′ | 2 + |c| 2 (5.30)
and J ′Kres x,y,z are:

J ′K 1 x/y = J ′K 1 x/y BW K 1 (s) √ 1 s(2π) 5 1 128M B (1 - s M 2 B ) J ′K * z = J ′K * z BW K * (s) √ 1 s(2π) 5 1 128M B (1 - s M 2 B
).

(5.31)

Parity and charge conjugation

Our goal here is to determine how the angles θ and ϕ are effected by the C and P transformations. Throughout this section, we only 7 consider the neutral mode:

B → K res γ → π -(p 1 )π + (p 2 )K 0 (p 3 )γ(p γ ) (5.32)
and the CP conjugate:

B → K res γ → π + (-p 1 )π -(-p 2 )K 0 (-p 3 )γ(-p γ ).
(5.33)

The method consists in starting with the configuration from Eq. (5.32). Then we reverse momenta and charges until we are in the configuration of Eq. (5.33). Since we are using a body-fixed frame, the x ′ y ′ z ′ axis must be readjusted at each step.

Working with the angles θ and ϕ one can directly extract from the transformation properties of cos θ, sin θ cos ϕ and sin θ sin ϕ (cf. Tab. 5.1): (5.36)

θ (C,P ) = == ⇒ (π -θ, π -θ) ϕ (C,P ) = == ⇒ (-ϕ, ϕ). ( 5 
7. The hadronic final state π ± π ∓ K ± is related to π ± π ∓ K 0 through isospin. Consequently both charged and neutral mode can be treated in the same manner, as long as the Clebsch-Gordan coefficients are adjusted (see. appendix C).

P C

CP 

ρ 1 + + + ρ 2 - - + ρ 3 + + + ρ 4 + + + ρ 5 + - - ρ 6 + + + ρ 7 + - - ρ 8 - - + ρ 9 - + -

Model independent measurements

So far we mainly focused on the angular distribution (cf. Eq. (5.35)). But the ρ parameters dependence on s, s 13 and s 23 has to be derived in order to extract λ. Before doing so, we briefly discuss what can be done using only the angular dependence. Once we integrate over a given region of the phase space, the differential decay rate for B decay is:

∑ λγ dΓ λγ dϕd(cos θ) = 3 4π 1 ρ ′ 1 + ρ ′ 3 ( 1 4 (1 + cos 2 θ)ρ ′ 1 + cos θρ ′ 2 + 1 2 sin 2 θρ ′ 3 - 1 4 sin 2 θ cos(2ϕ)ρ ′ 4 + 1 2 sin 2 θ sin(2ϕ)ρ ′ 5 + sin θ cos ϕρ ′ 6 + sin θ sin ϕρ ′ 7 - 1 2 sin(2θ) cos ϕρ ′ 8 - 1 2 sin(2θ) sin ϕρ ′ 9 ) (5.37) with ρ ′ 1 = ∫ (|J ′ x | 2 + |J ′ y | 2 )dΦ ρ ′ 2 = λ ∫ Im[J ′ x J ′ * y ]dΦ ρ ′ 3 = ∫ |J ′ z | 2 dΦ ρ ′ 4 = ∫ (|J ′ x | 2 -|J ′ y | 2 )dΦ ρ ′ 5 = ∫ Re[J ′ x J ′ * y ]dΦ ρ ′ 6 = ∫ Im[J ′ y J ′ * z ]dΦ ρ ′ 7 = ∫ Im[J ′ x J ′ * z ]dΦ ρ ′ 8 = λ ∫ Re[J ′ x J ′ * z ]dΦ ρ ′ 9 = λ ∫ Re[J ′ y J ′ * z ]dΦ dΦ = dsds 13 ds 23 .
(5.38)

As it was shown in [START_REF] Kou | Angular analysis of B → J/ψK 1 : towards a model independent determination of the photon polarization with B → K 1 γ[END_REF], the photon polarisation λ can be expressed in terms of the ρ parameters:

λ 2 = ρ 2 2 1 4 (ρ 1 + ρ 4 )(ρ 1 -ρ 4 ) -ρ 2 5 .
(5.39)

Unfortunately this relation is only valid for a given point of the phase space and breaks down as soon as we integrate. But, the Schwartz inequality:

∫ f g * ≤ √ ∫ |f | 2 ∫ |g| 2 (5.40)
allows us to estimate the effect of the integration. Rewriting Eq. (5.40) as:

( ∫ Re[f g * ] ) 2 + ( ∫ Im[f g * ] ) 2 ≤ ∫ |f | 2 ∫ |g| 2 , ( 5.41) 
then setting f = J ′ x and g = J ′ y yields:

( ∫ Re[J ′ x J ′ * y ]dΦ ) 2 + ( ∫ Im[J ′ x J ′ * y ]dΦ ) 2 ≤ ∫ |J ′ x | 2 dΦ ∫ |J ′ y | 2 dΦ ρ ′2 5 + ρ ′2 2 λ 2 ≤ 1 4 (ρ ′ 1 + ρ ′ 4 )(ρ ′ 1 -ρ ′ 4 ) ρ ′2 2 1 4 (ρ ′ 1 + ρ ′ 4 )(ρ ′ 1 -ρ ′ 4 ) -ρ ′2 5 ≤ λ 2 .
(5.42)

The vector channel

The decay amplitude of an Axial meson to a Vector and Pseudoscalar meson gives:

⟨V (p V , ϵ V )P k | H A |A(p A , ϵ A )⟩ = ϵ µ A T µν ϵ ν * V (5.47)
with T µν given in terms of two form factors f V and h V :

T µν = f V g µν + h V p V µ p Aν (5.48)
The Vector to two Pseudoscalar decay amplitude may be written as:

⟨P i P j | H V |V (p V , ϵ V )⟩ = g (V ij →P i P j ) ϵ µ V (p i -p j ) µ (5.49)
Therefore the decay amplitude of an Axial meson to three Pseudoscalar through a vector intermediate state may be written as:

M V ij = ϵ µ A (A ij ) µ (5.50)
with:

(A ij ) µ = BW V (s ij )g (V ij →P i P j ) T µν ϵ ν * V ϵ α V (p i -p j ) α = BW V (s ij )g (V ij →P i P j ) ( f V g µν + h V p V µ p Aν ) (-g να + p ν V p α V s ij )(p i -p j ) α = - ( (p i ) µ a V ij + (p j ) µ b V ij ) (5.51) 
where BW V (s ij ) is the relativistic Breit-Wigner for K * (892) and the Gounaris-Sakurai [START_REF] Gounaris | Finite width corrections to the vector meson dominance prediction for ρ → e + e[END_REF] lineshape for ρ(770) and √ s is the time component of p A and ∑

λ V ϵ µ * V ϵ ν V = -g µν + p µ V p ν V p 2 V (5.52) with p 2 V = s ij . The functions a V ij and b V ij are: a V ij = BW V (s ij )g (V ij →P i P j ) ( f V (1 - m 2 i -m 2 j s ij ) + h V √ s ( (E i -E j ) -(E i + E j ) m 2 i -m 2 j s ij ) ) b V ij = BW V (s ij )g (V ij →P i P j ) ( -f V (1 - m 2 i -m 2 j s ij ) + h V √ s ( (E i -E j ) -(E i + E j ) m 2 i -m 2 j s ij
) )

(5.53)

Finally, we get:

M V ij = ϵ A • p i a V ij + ϵ A • p j b V ij .
(5.54)

The κ channel

The decay amplitude of an Axial meson into a Scalar and a Pseudoscalar meson [START_REF] Paver | The sigma and rho in D and B decays[END_REF] is:

⟨SP k | H ′ A |A(ϵ A )⟩ = ig (A→S ij P k ) ϵ µ A (p k ) µ (5.55)
and the decay amplitude of Scalar meson into two Pseudoscalar mesons [START_REF] Hooft | A Theory of Scalar Mesons[END_REF] is: 

⟨P i P j | H S |S⟩ = 1 2 g (S→P i P j ) (s ij -m 2 i -m 2 j ). ( 5 
M S ij = ϵ A • p k a S ij (5.57) with a S ij = i 2 g (A→S ij P k ) g (S→P i P j ) BW S (s ij )(s ij -m 2 K -m 2 π ) (5.58) 
BW S (s ij ) is the LASS parametrisation [START_REF] Aston | Observation of New Resonant Structures in the Natural Spin -Parity Strange Meson System[END_REF][START_REF] Aston | A Study of Kπ + Scattering in the Reaction Kp → Kπ + n at 11-GeV/c[END_REF], which combines the K * 0 (1430) resonance together with an effective range nonresonant component. The latter can be seen as a light scalar resonance [START_REF] Descotes-Genon | The K * 0 (800) scalar resonance from Roy-Steiner representations of πK scattering[END_REF] denoted κ or K * 0 (800) with a very large width (the authors of [START_REF] Descotes-Genon | The K * 0 (800) scalar resonance from Roy-Steiner representations of πK scattering[END_REF] gave M κ = 685 ± 13 MeV/c 2 and Γ κ = 557 ± 24 MeV/c 2 ). At present, experimental measurements [START_REF] Patrignani | [END_REF] seems to confirm the existence of such a resonance. According to measurements from the ACCMOR collaboration [START_REF] Daum | Diffractive Production of Strange Mesons at 63-GeV[END_REF], we have Br(K 1 (1270) → K * 0 (1430)π) = (28 ± 4)%, while the Belle [START_REF] Guler | Study of the K + π + π -Final State in B + → J/ψK + π + πand B + → ψ ′ K + π + π[END_REF] and BaBar [START_REF] Del Amo | Time-dependent analysis of B 0 → K 0 S ππ + γ decays and studies of the K + ππ + system in B + → K + ππ + γ decays[END_REF] collaborations give Br(K 1 (1270) → K * 0 (1430)π) ≈ 2%. This is the reason why we neglected the channel K * 0 (1430)π and only considered the channel κπ in our studies (cf. discussion on that matter in [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF] for more details). 

A I,III = c I,III 12 M ρ 12 + c I,III 13 (M K * 13 + M κ 13 ) = ϵ A • ( p 1 ( c I,III 12 a ρ 12 + c I,III 13 (a K * 13 -b K * 13 ) ) -p 2 ( -c I,III 12 b ρ 12 + (c I,III 13 b K * 13 -c I,III 13 a κ 13 ) ) ) (5.59)
where the c ij are Clebsh-Gordan coefficients that can be found in Appendix C. We recall Eq. (5.9):

j A µ = C A 1 p 1µ -C A 2 p 2µ (5.60)
and Eq. (5.8):

A S R/L = ϵ µ R/L (j A µ + j V µ ) (5.61)
which compared to Eq. ( 5.59) give:

C I,III 1 = - 1 √ 6 a ρ 12 - 2 3 (a k * 13 -b k * 13 ) C I,III 2 = 1 √ 6 b ρ 12 - 2 3 b k * 13 - 2 3 a κ 13
(5.62)

And for the final states ⟨f II | and ⟨f IV |, we get:

A II,IV = c II,IV 12 M ρ 12 + c II,IV 13 (M K * 13 + M κ 13 ) + c II,IV 23 (M K * 23 + M κ 23 ) = ϵ A • ( p 1 ( c II,IV 12 a ρ 12 + c II,IV 13 (a K * 13 -b K * 13 ) -c II,IV 23 (b K * 23 -a κ 23 )
)

-p 2 ( -c II,IV 12 b ρ 12 + c II,IV 13 (b K * 13 -a κ 13 ) -c II,IV 23 (a K * 23 -b K * 23 )
) )

(5.63) which gives:

C II,IV 1 = 1 √ 3 a ρ 12 + √ 2 3 (a K * 13 -b K * 13 ) + √ 2 3 (b K * 23 -a κ 23 ) C II,IV 2 = - 1 √ 3 b ρ 12 + √ 2 3 (b K * 13 -a κ 13 ) + √ 2 3 (a K * 23 -b K * 23 )
(5.64)

Vector amplitude

Due to parity conservation of the strong and electromagnetic interactions, the decay V → SP via either of those interactions is forbidden. The strong decay amplitude of a Vector meson to a Vector and Pseudoscalar mesons gives:

⟨V (p V , ϵ V )P k | H V |V (p, ϵ)⟩ = ig V →V P k ε µναβ p µ ϵ ν ϵ * α V p β k (5.65)
Then the Vector to two Pseudoscalar mesons decay may be written as:

⟨P i P j | H V |V (p V , ϵ V )⟩ = g V →P i P j ϵ µ V (p i -p j ) µ (5.66)
Therefore the decay amplitude of a Vector meson to three Pseudoscalar mesons through a vector intermediate state may be written as:

M ′V ij = ϵ µ A (A ′ ij ) µ (5.67)
with: 

ϵ µ A (A ′ ij ) µ = iBW V (s ij )g V →P i P j g V →V P k ε νµαβ p ν ϵ µ p β k ϵ * α V ϵ γ V (p i -p j ) γ = -iBW V (s ij )g V →P i P j g V →V P k ε νµαβ p ν ϵ µ (p i + p j ) β (p i -p j ) α = 2iBW V (s ij )g V →P i P j g V →V P k √ sϵ • (p i × p j ) = ϵ • (p i × p j )d V ij ( 5 
A I,III = c I,III 12 M ρ 12 + c I,III 13 M K * 13 = ϵ • (p 1 × p 2 ) ( c I,III 12 d ρ 12 -c I,III 13 d K * 13 ) = ϵ • j V (5.69) with j V = (p 1 × p 2 )C - C I,III - = - 1 √ 6 d ρ 12 + 2 3 d K * 13
(5.70)

And for the final states ⟨f II | and ⟨f IV |, we get:

A II,IV = c II,IV 12 M ρ 12 + c II,IV 13 M K * 13 + c II,IV 23 M K * 23 = ϵ • (p 1 × p 2 ) ( c II,IV 12 d ρ 12 -c II,IV 13 d K * 13 + c II,IV 23 d K * 23 ) (5.71)
which gives:

C II,IV - = 1 √ 3 d ρ 12 e iϕ ρ P - √ 2 3 d K * 13 e iϕ K * P - √ 2 3 d K * 23 e iϕ K * P , (5.72)
where ϕ ρ P and ϕ K * P are strong phases. Since the transition V → V P only occurs as a P wave, we can already introduce phases. While, since the transition A → V P occurs as S and D waves, those two contributions must be separated (cf. next section) before we introduce strong phases.

Relating the final states f I , f II and f I ′

Considering the final states ⟨f I ′ |, defined as

⟨f I ′ | = ⟨K 0 (p 3 )π -(p 1 )π + (p 2 )|
(5.73) we get:

A I ′ = η C ( c I ′ 12 M ρ 12 + c I ′ 23 (M K * 23 + M κ 23 ) ) = η C ϵ A • ( p 1 ( c I ′ 12 a ρ 12 -c I ′ 23 b K * 23 + c I ′ 23 a κ 23 ) -p 2 ( -c I ′ 12 b ρ 12 + c I ′ 23 (a K * 23 -b K * 23 )
) )

(5.74)

where η C = -η C (K 1 ) and the c ij are Clebsh-Gordan coefficients that can be found in Appendix C. Then the C functions are:

C I ′ 1 = 1 √ 6 a ρ 12 + 2 3 b k * 23 - 2 3 a κ 23 C I ′ 2 = - 1 √ 6 b ρ 12 + 2 3 (a k * 13 -b k * 13 ).
(5.75) Using Eqs. (5.62), (5.64) and ( 5.75), we obtain:

C II 1/2 = 1 √ 2 ( -C I 1/2 + C I ′ 1/2 ) (5.76)
which leads to

J II = 1 √ 2 ( -J I + η C J I ′ ) . (5.77)
This confirms the results of Subsec. 4.1.6. The previous equation was derived with K res = K 1 , but with K res = K * one obtains the same results.

Expression of the form factor f V and h V in terms of partial waves amplitudes

In this section, we derive the expression of the form factors f V and h V (cf. Eq. (5.48)) in terms of S and D waves amplitudes. We will proceed in a similar manner than in [START_REF] Gronau | Reexamining the photon polarization in B → Kππγ[END_REF]. First we determine how to relate f V and h V with the helicity amplitudes A ± and A 0 . Then using relation between the helicity and the canonical basis we obtain f V and h V in terms of A S and A D (respectively S and D waves amplitudes). Plugging Eq. (5.48) into Eq. (5.47) gives:

⟨V ij (p V , ϵ V )P k | H A |A(p A , ϵ A )⟩ = f V ϵ µ A ϵ * V µ + h V ϵ µ A p V µ p Aν ϵ ν * V (5.78)
where V ij is the vector intermediate state which decays into P i P j . The polarisation vectors (expressed in the rest frame of the spin 1 particle and with the z axis alongside the momentum of the spin 1 particle) are:

ϵ ± = 1 √ 2 (0, ±1, -i, 0)
ϵ 0 = (0, 0, 0, 1).

(5.79)

We express the momentum and the polarisation vector of the vector intermediate state in V ij rest frame then boost and rotate using

R(ϕ ij , θ ij ) = R z (ϕ ij )R y (θ ij )R z (-ϕ ij ) Λ(β ij ) = Λ z (β ij ) (5.80)
so as to match to the Axial kaonic resonance rest frame. The angles ϕ ij and θ ij respectively are the azimuthal and polar helicity angles of V ij (cf. Fig. 5.2), β ij and γ ij are:

β ij = |p V (s ij )|/E V (s ij ) γ ij = ( 1 -β 2 ij ) -1 2 = E V (s ij ) √ s ij .
(5.81)

For λ V = ±1, the boost direction is orthogonal to the polarisation vector:

ϵ µ A ϵ * V µ = ϵ µ A ( R δ µ (ϕ ij , θ ij )Λ α δ (β ij )ϵ * V α ) = -D 1 * λ,λ V (ϕ ij , θ ij , -ϕ ij ) ϵ µ A (p V ) µ p ν A (ϵ * V ) ν = |p V (s ij )|D 1 * λ,0 (ϕ ij , θ ij , -ϕ ij )p ν A ( R δ ν (ϕ ij , θ ij )Λ α δ (β ij )(ϵ * V ) α ) = 0 (5.82)
For λ V = 0, one gets:

ϵ µ A ϵ * V µ = γ ij D 1 * λ,0 (ϕ ij , θ ij , -ϕ ij ) ϵ µ A (p V ) µ p ν A (ϵ * V ) ν = - √ sγ ij β|p V (s ij )|D 1 * λ,0 (ϕ ij , θ ij , -ϕ ij ) = - √ sγ ij |p V (s ij )| 2 E V (s ij ) D 1 * λ,0 (ϕ ij , θ ij , -ϕ ij ).
(5.83) 

⟨V ij (p V , ϵ V )P k | H A |A(p A , ϵ A )⟩ = - ∑ λ V =±1 f V (s ij )D 1 * λ,λ V (ϕ ij , θ ij , -ϕ ij ) + D 1 * λ,0 (ϕ ij , θ ij , -ϕ ij )γ ij ( f V (s ij ) -h V (s ij ) √ s|p V (s ij )| 2 E V (s ij )
) .

(5.84)

We can read from Eq. ( 5.84):

-f V (s ij ) = A ± (s ij ) γ ij ( f V (s ij ) -h V (s ij ) √ s|p V (s ij )| 2 E V (s ij ) ) = A 0 (s ij ).
(5.85)

Using the connection between helicity and canonical states:

A 0 (s ij ) = A S (s ij ) - √ 2A D (s ij ) A ± (s ij ) = A S (s ij ) + 1 √ 2 A D (s ij ) (5.86)
we obtain:

-f V (s ij ) = A V S (s ij )e iϕ V S + 1 √ 2 A V D (s ij )e iϕ V D h V (s ij )|p V (s ij )| 2 = A V S (s ij )e iϕ V S E V (s ij ) - √ s ij √ s + 1 √ 2 A V D (s ij )e iϕ V D E V (s ij ) + 2 √ s ij √ s .
(5.87)

Where we added ϕ V S and ϕ V D , respectively the strong phases for S and D waves.

The Axial Kaon mixing angle

In this section we briefly present the parametrisation of the mass eigenstates K 1 (1270) and K 1 (1400) as a mixture of non mass eigenstates K 1A and K 1B as:

|K 1 (1270)⟩ = |K 1A ⟩ sin θ K 1 + |K 1B ⟩ cos θ K 1 |K 1 (1400)⟩ = |K 1A ⟩ cos θ K 1 -|K 1B ⟩ sin θ K 1 (5.88)
where θ K 1 is the mixing angle. The point is that K 1 (1270) and K 1 (1400) are not pure n 2s+1 l J states, where the meson spin is J, the orbital angular momentum of the state is l and radial excitations are denoted by the principal quantum number n. For mesons, the configuration s = (0)1 correspond to (anti)parallel quarks spin. Since K 1A and K 1B respectively are 1 3 P 1 and 1 1 P 1 states, the partial waves amplitudes (cf. Eq. ( 5.87)) of K 1A and K 1B decays into vector-pseudoscalar states can be computed using the naive quark-pair-creation model (QPCM) [START_REF] Le Yaouanc | Naive quark pair creation model of strong interaction vertices[END_REF]. We only show the θ K1 dependence of A V S/D (cf. Eq. (5.87)), for K 1 (1270):

A K * /ρ S = S K * /ρ (√ 2 sin θ K 1 ∓ cos θ K 1 ) A K * /ρ D = D K * /ρ ( -sin θ K 1 ∓ √ 2 cos θ K 1 ) (5.89)
and for K 1 (1400):

A K * /ρ S = S K * /ρ (√ 2 cos θ K 1 ± sin θ K 1 ) A K * /ρ D = D K * /ρ ( -cos θ K 1 ± √ 2 sin θ K 1 ) .
(5.90)

The derivation of the expression of S V and D V partial waves amplitudes using the QPCM can be found in [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF].

Chapter 6

Sensitivity study

In this chapter, we estimate the sensitivity to the photon polarisation λ γ within toy models. We use Monte Carlo simulation to generate events, then we compute the expected uncertainty and perform the fit using the maximum likelihood method (cf. Appendix D). Since the model requires several input parameters (cf. [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF]), we present results fitting only the photon polarisation (λ) and simultaneously fitting λ and other parameters, when it is possible.

The model and input parameters

We perform the analysis using a p.d.f. (normalised to unity) defined as:

f (X|θ) = Γ R + Γ L (6.1)
where X represents the measurements of s, s 13 , s 12 , θ and ϕ ′ for each event1 , θ is a vector of parameters we wish to fit from the data and Γ R/L are defined in Eq. (5.27).

The model used to describe the decay B + → K + res γ → K + π + π -γ correspond to the one developed in [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF], where we added the kaonic resonance K * (1410) (see Section 5.5 for more details).

Input parameters:

This model requires several input parameters such as masses, widths, form factors, coupling constants and strong phases. We use input values based on experimental measurements when it is possible and try to remain close to a realistic description of the phenomenon in question. Anyhow, this model can still be improved. Hence our results are purely qualitative since they may vary once the model is completed or input parameter values change. Regarding the mass and width of the kaonic resonances we use central values taken from [START_REF] Patrignani | [END_REF]. For the form factors of the decay B + → K + res γ (cf. Eq. (5.7)), we use:

Y K 1 (1270) = 1 Y K 1 (1400) = 1 2 
T K * (1410) = 1 √ 2 . (6.2)
Those choices are motivated by the measurements of BaBar [START_REF] Del Amo | Time-dependent analysis of B 0 → K 0 S ππ + γ decays and studies of the K + ππ + system in B + → K + ππ + γ decays[END_REF]. The values of the coupling constants g ρ→π + π -and g K * →Kπ are taken from [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF]:

g ρ→π + π -= -5.98 g K * →Kπ = 5.68. (6.
3)

The coupling constant g K * →ρK and g K * →K * π are chosen such that at m Kππ = 1.41 GeV/c 2 :

Γ K * (1410) ≈ ∫ ds 12 ds 13 1 (2π) 3 1 32M 3 K * (1410) ⃗ j V 2 (6.4)
which gives:

g K * →ρK = 4 g K * →K * π = 13. (6.5)
We model the partial wave amplitudes for K 1 decays as in [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF], i.e. the S and D waves amplitudes are computed using the naive quark-pair-creation model and are function of θ K 1 and the quark-pair-creation constant (γ). Due to phase space limitation, we do not allow the decay K 1 (1270) → ρK as D wave. The input values of θ K 1 and γ (cf. [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF]) are:

θ K 1 = π 3 γ = 4 (6.6)
and we use a non SM value for the photon polarisation:

λ = 0.5. (6.7)
We start by studying the sensitivity to the photon polarisation fitting only λ. Then we present results simultaneously fitting three parameters: λ, θ K 1 and f = Y K 1 (1400) .

Model dependent extraction of the photon polarisation

We generated a sample of approximately 5.10 3 events. In Fig. 6.1, we show the events distribution, where f (X|θ * ) is the "truth" p.d.f, obtained using the "truth" values of the parameters θ * :

θ * =      λ * (= 0.5) θ * K 1 (= π/3) f * (= 1/2)      . (6.8)
Comparing Fig. 6.1a with Figs. [START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF].2a and 6.2b, we observe a "bump" in those three figures around m = m Kππ ≈ 1.4 GeV/c2 , which in our case is mainly attributed to K * (1410). In Fig. 6.1b, we see a large tail on both sides of the K * (892) peak which is attributed to the reflection of the ρ(770) resonance on the m 13 = m Kπ + axis. Fig. 6.1c is strongly distorted due to the reflection of K * (892) on the m 12 = m ππ axis. Figs. 6.1d and 6.1e respectively represent the cos θ and ϕ ′ distributions, but due to the complexity of the angular distribution, both are difficult to interpret at this stage. The Dalitz plot, integrated over s, cos θ and ϕ ′ is shown in Fig. 6.1f, where as expected, most events are concentrated around the ρ and K * "bump".

Events strength and outliers

In appendix D (cf. Eq. (D.23)), we show that the inverse of the covariance matrix Λ(θ) can be computed using "weighted" or "data" events 2 . The matrix Λ(θ) is expressed in terms of ω θ defined as:

ω θ i = ∂f (X|θ) ∂θ i 1 f (X|θ) . ( 6.9) 
Therefore we examine the distribution of ω θ in both "weighted" and "data" samples before we go further. Additionally, when performing the fit, we use the "weighted" sample to compute the normalisation constant (cf. Appendix D). In Figs. [START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF].3a and 6.3b we show the distribution of ω f (respectively for "weighted" and "data" events) projected on the m axis. We see that the value of |ω f | increase as we enter the K 1 (1400) region. Regarding ω θ K 1 shown in Figs. [START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF].3c and 6.3d, the strongest events are located in the K 1 (1270) region. In 6.3e and 6.3f, we see that ω λ falls to zero for θ = π/2 which was expected since all terms sensitive to λ are proportional to cos θ. In 6.3g and 6.3h, we see that the value of |ω λ | increase in the region 1.25 < m < 1.4 GeV/c 2 which is precisely where the kaonic resonances are located. Furthermore, in Figs. 6.3e, 6.3f, 6.3g and 6.3h we see that the distribution of ω λ has an upper and a lower bound which we will respectively call ω + λ and ω - λ . In order to determine the value of ω ± λ we rewrite the p.d.f. as

f = f 0 + λf 1 (6.10) 
where, for the sake of simplicity, we stop writing the dependence in X and θ, keeping in mind that f and f 0/1 are functions of X and θ. Using Eq. (6.10), we write ω λ as:

ω λ = ∂f ∂λ 1 f = ( f 0 f 1 + λ ) -1 . ( 6.11) 
The p.d.f. being positive and lambda being restricted to:

λ ∈ [-1, 1] (6.12) 
allows us to determine the allowed region for the ratio

f 0 f 1 ≥ 1. (6.13) 
Since we generated events with λ = 0.5, using the lowest positive allowed value of f 0 /f 1 in Eq. (6.11) gives ω + λ :

ω + λ = (1 + 0.5) -1 = 2 3 . (6.14)
And using the highest negative value of f 0 /f 1 in Eq. (6.11) gives ω - λ :

ω - λ = (-1 + 0.5) -1 = -2. ( 6.15) 
Looking back at Figs. 6.3e, 6.3f, 6.3g and 6.3h, we see that ω + λ and ω - λ correspond to the bounds present in those figures. Additionally, we found no outliers (events with a very large value of |ω θ |, cf. D.3.1) in both samples.

Results of a one parameter fit and of a three parameters fit

In Appendix D.4, we present how to perform a fit using the maximum likelihood method. Due to the fact that λ appears in linear form in the p.d.f., fitting only the photon polarisation parameter is rather straightforward. But f and θ K 1 respectively appear in quadratic (cf. Eqs. (5.25) and (5.13)) and trigonometric (cf. Eqs. (5.89) and (5.90)) form. Consequently, when computing the normalisation constant of the p.d.f. (cf. (D.30)), we use:

Y (λ, f, θ K 1 ) = v λ ⊗ v f ⊗ v θ K 1 (6.16) with 3 v λ = ( 1 λ 
)

v f = ( 1 f f 2 ) v θ K 1 = ( 1 cos θ K 1 sin θ K 1 cos 2θ K 1 sin 2θ K 1 ) . ( 6.18) 
Fitting only one parameter (λ), we found λ = 0.442 ± 0.067 (6.19) where the error corresponds to a 1 -σ region obtained solving Eq. (D.39) and the notation λ corresponds to the estimator of the parameter λ. We see that λ is within 1 -σ from λ * = 0.5. The expected errors (cf. D.3) are:

E "data" (λ * ) = 0.067 E "weighted" (λ * ) = 0.067 (6.20)

3. For example, fitting only λ and f we would have:

Y (λ, f ) =   1 f f 2 λ λf λf 2   . (6.17) (a) (b) (c) (d) (e) (f) (g) (h) Figure 6.
3 -Distribution of ω θ from "weighted" events (a), (c), (e) and (g) and from "data" events (b), (d), (f) and (h). In both samples, the distribution of ω θ behave as expected.

which at this accuracy level are in perfect agreement with the error quoted in Eq. (6.19). Then fitting three parameters (with the sample used for the one parameter fit), we obtained: λ = 0.441 ± 0.066 f = 0.491 ± 0.019 θK 1 = 1.042 ± 0.013 (6.21) where the error correspond to a 1 dimensional 1 -σ region obtained solving Eq. (D.39). The values of the estimators are still within 1 -σ from the "truth" value of the parameters (f * = 0.5 and θ * K 1 = π/3). Additionally, there is no loss of sensitivity by fitting two more parameters. The expected error matrices are:

E "data" (λ * , f * , θ * K 1 ) =      0.067 -0.008 0.042 λ 0.020 -0.138 f 0.013 θ K 1      E "weighted" (λ * , f * , θ * K 1 ) =      0.067 0.019 0.030 λ 0.019 -0.138 f 0.013 θ K 1      (6.22) 
where the diagonal elements are the expected error for a given parameter and the off-diagonal elements are the correlation coefficients. We have shown the error matrix computed using both samples because the "weighted" sample which contains approximately 10 5 events, yields more precise results. Furthermore, inconsistencies between both matrices can indicate a problem. We see that beside the off-diagonal elements of the first row, both matrices are very close. The correlation coefficient are to be compared to unity, therefore a discrepancy of a few percent can be attributed to a statistical fluctuation. In order to estimate a n-dimensional confidence interval we define the functions δχ 2 Data (θ) and δχ 2 F it (θ):

δχ 2 Data (θ) = -2 ln L(θ) + 2 ln L( θ) δχ 2 F it (θ) = 1 N ( θ -θ) T Λ( θ)( θ -θ) (6.23)
which are both equivalent and asymptotically distributed as the Chi-square distribution with n degrees of freedom (where n correspond to the dimension of θ) when θ = θ * (cf. Appendix D.4.3). Consequently, we plot both functions (see Fig. 6.4) to check that the error match what was quoted above. First we notice that the slight disagreement between δχ 2 Data (θ) and δχ 2 F it (θ) increases with |θ * -θ|. The expression of δχ 2 Data (θ) was obtained expanding around (θ * -θ), and therefore is valid only close to the "truth" value of the parameters. The error quoted in Eq. (6.21) matches the expected error (cf. diagonal terms of Eq. (6.22)). Looking at Figs. [START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF].4a and 6.4b, we see that the fit results and precision do not change fitting only λ or fitting λ, f and θ K 1 . Additionally, the parameters f and θ K 1 can both be fitted with a precision comparable to the precision in λ.

The off-diagonal terms in the expected error matrices (cf. Eq. (6.22)) correspond to the correlation between parameters. Therefore when increasing the dimension of the fit, one can first compute the expected error matrix to check that all the parameters can still be fitted simultaneously 4 . In Fig 6 .5, we show two-dimensional plots of δχ 2 Data (θ), which graphically highlight correlation between parameters. The only pair of parameters exhibiting non vanishing correlation, which manifests itself as tilted confidence region, are f and θ K 1 (cf. Fig. 6.5c). Since f controls the production of K 1 (1400) (defined with respect to the production of K 1 (1270)) and the Axial K res decay is parametrised using θ K 1 (cf. Eqs (5.89) and (5.90)), one can naively suppose that those two parameters influence the relative involvement of those two resonances in the process

B + → K + res γ → K + π + π -γ.
Consequently, it is not surprising to observe correlation between f and θ K 1 . Anyhow, as we expected from Eq. (6.22), there is no significant correlation between any pair of parameters.

The strong phases as nuisance parameters

As it is shown in previous analysis (cf. [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF] and [START_REF] Gronau | Reexamining the photon polarization in B → Kππγ[END_REF]), the measured value of λ (the estimator of λ) can vary with those strong phases. Therefore, we include phases in our fit and compute the expected error matrix in order to estimate if and with which accuracy those strong phases can be fitted. We use a toy model, in which the phases are identical for K 1 (1270) and K 1 (1400) and where:

ϕ K * S = ϕ ρ P = 0. (6.24) 
and where the strong phase ϕ V S/D and ϕ V P respectively correspond to K 1 → V P and K * (1410) → V P decays and we drop the notation ϕ K * * D which denote the "truth" value of ϕ K * D . Beside this, we use the same parametrisation as in Subsec. 6.1.1. With a sample of approximately 5.10 3 "data" events we obtain the following expected error matrix, computed using 5.10 4 events, for θ = (λ, f, θ K 1 ):

ϕ K * D = 3π 2 ϕ ρ S = - π 4 ϕ K * P = π 6 (6.25) (a) (b) (c) (d)
E "weighted" (θ * ) =      0.043 0.194 0.060 λ 0.025 -0.132 f 0.011 θ K 1      (6.26) 
and for θ = (λ, f, θ 

K 1 , ϕ K * D , ϕ ρ S , ϕ K * P ): E "weighted" (θ * ) =              0.
             . ( 6.27) 
First we notice that the accuracy on λ has increased compared to the one quoted in Eq. (6.22). As we mentioned in the previous chapter (cf. Sec. 5.1), a P odd observable requires a strong phase. Therefore one may naively expect that using ϕ K * D ̸ = 0 will increase the sensitivity to the photon polarisation. Even though some parameters appear to be significantly correlated, such as θ K 1 and ϕ K * D , the results from Eq. (6.27) indicate that in principle5 , all 6 parameters can be simultaneously fitted. Furthermore, the sensitivity to λ barely changes after adding 3 more parameters. We expect our naive parametrisation (i.e. both Axial K res with identical phases and ϕ ρ P = 0) to be a realistic approximation in the case where both B → K 1 (1400)γ → Kππγ and B → K * (1410)γ → ρKγ → Kππγ contributions are negligible. Indeed, from [START_REF] Patrignani | [END_REF], we have Γ K * (1410)→ρK < 7% and BaBar's analysis [START_REF] Del Amo | Time-dependent analysis of B 0 → K 0 S ππ + γ decays and studies of the K + ππ + system in B + → K + ππ + γ decays[END_REF] indicates a small contribution from K 1 (1400).

Comparison with the previous method

Originally, Gronau et al. [START_REF] Gronau | Measuring the photon polarization in B → Kππ gamma[END_REF] suggested to measure the up-down asymmetry, defined as:

A up-down = ∫ 1 0 d cos θ d(Γ R + Γ L ) d cos θ - ∫ 0 -1 d cos θ d(Γ R + Γ L ) d cos θ (6.28)
which is the asymmetry between the total number of events with the photon emitted above and below the Kππ-plane in the K ′ res rest frame. Using Eq. (5.27), we rewrite A up-down as:

A up-down = 3 2 ∫ ds 13 ds 23 ρ 2 ∫ ds 13 ds 23 (ρ 1 + ρ 3 ) (6.29)
and using the expression of the ρ parameters (cf. Eq. (5.29)), we can factor out λ:

A up-down = λ 3 2 ∫ ds 13 ds 23 ∑ K 1 Im[J ′K 1 x J ′K 1 * y ] ∫ ds 13 ds 23 ( ∑ K 1 (|J ′K 1 x | 2 + |J ′K 1 y | 2 ) + |J ′K * z | 2
) . (6.30)

Therefore once the up-down asymmetry is measured, one must compute the fraction on the right hand side of Eq. (6.30) to obtain λ. Recently, Gronau et al. updated their work [START_REF] Gronau | Reexamining the photon polarization in B → Kππγ[END_REF]. They considered K 1 (1270) and K 1 (1400) separately for the final states I, II, III and IV (cf. Eq. (5.45)). Values of A up-down are given depending on ϕ ρ S and ϕ K * D (cf. Eq. (6.25)). Then it is suggested to perform an amplitude analysis of B → J/ψ(ψ ′ )Kππ decays in order to improve the current measurements of ϕ ρ S and ϕ K * D . Since the approach of Gronau et al. only uses the cos θ distribution for the fit, we expect a loss of accuracy on λ compare to the approach discussed in this chapter (where we use the cos θ, ϕ, s, s 13 and s 12 distributions). But, given that all unknown parameters can be extracted independently of λ, the phenomenological approach of Gronau leads to a rather simple fit. While for our approach, we considered a five dimensional phase space fit of six parameters (cf. Sec. 6.3). So far, using a simplified toy model, we showed that all parameters could in principle be simultaneously extracted. But the feasibility of this approach has yet to be demonstrated with more realistic models.

Chapter 7

Conclusions

Throughout this thesis we focused on two observables S ρK 0 S γ and λ, both sensitive to the ratio C ′ 7 /C 7 . After a brief review of preceding works aimed towards the measurements of those two quantities, we summarize our results.

Time-dependent CP asymmetry in

B 0 → ρK 0 S γ
The first measurement of S ρK 0 S γ has been performed by the Belle collaboration [2]. In order to do so, one can measure S K 0 S π + π -γ which is related to S ρK 0 S γ through the relation:

S K 0 S π + π -γ = DS ρK 0 S γ .
Once we integrate over a region which is symmetric under the exchange of the pions momenta, D can be expressed as:

D = - 2 ∫ Re[A ′ * A ′ ]dΦ ∫ (|A ′ | 2 + |A ′ | 2 )dΦ .
The value of D, once its expression in terms of the partial waves ρK 0 S , K * π and κπ is known, is obtained by extracting the value of those partial waves using the final states K ± π ∓ π ± γ. The Belle collaboration used:

D = ∑ K=1 ± ,2 + ∫ (|A ′ρK 0 S K | 2 + Re[A ′ * K * π K A ′K * π K ] + 2Re[A ′K * π K A ′ * ρK 0 S K ])dΦ ∑ K=1 ± ,2 + ∫ (|A ′ρK 0 S K | 2 + |A ′K * π K | 2 + 2Re[A ′K * π K A ′ * ρK 0 S K ])dΦ .
Our work regarding that matter can be outlined as:

-We re-derived the formula of the dilution factor, including the intermediate state κπ which is absent in Belle's analysis, and found1 (cf. Eq. (4.45)):

D = ∑ K=1 ± ,2 + ∫ (|A ′ρK 0 S K | 2 -Re[A ′ * K * π K A ′K * π K ] + 2Re[A ′K * π K A ′ * ρK 0 S K ])dΦ ∑ K=1 ± ,2 + ∫ (|A ′ρK 0 S K | 2 + |A ′K * π K | 2 + 2Re[A ′K * π K A ′ * ρK 0 S K ])dΦ .
Comparing with Belle's formula, the second term of the numerator has the opposite sign. Concerning our results, this minus sign arises from the fact that when the pion pair originates from the ρ meson decay (i.e. the pion pair is in a well defined states of angular momentum), it costs a minus sign, after applying charge conjugation, to reverse the pions in their initial state. Furthermore, we found that when the partial wave κπ is included, all the interferences between K * π and κπ can be neglected. -Then we proposed a new model independent method to determine the dilution factor. Once the behaviour of the amplitudes with different intermediate states under the exchange of both pions is understood,

A ′ (K + π -π 0 γ), A ′ (K 0 S π + π -γ) and A ′ (K 0 S π + π -γ
) can be related as:

A ′ (K + π -π 0 γ) = 1 √ 2 ( -A ′ (K 0 S π + π -γ) + A ′ (K 0 S π + π -γ)
) assuming isospin symmetry. Using this triangle relation, one can extract D as:

D = Br(B → K + π -π 0 γ) Br(B → K 0 S π + π -γ) -1.
In order to increase statistics, B ± mesons decay can be used in the same way.

Compared with the amplitude analysis method, this method allows to determine the dilution factor in a simple manner without modelling the amplitudes with different intermediate states. But, the systematic uncertainties have yet to be estimated.

The photon polarisation parameter λ

The investigation of the photon polarisation parameter has been initiated by Gronau et al. [START_REF] Gronau | Measuring the photon polarization in B → Kππ gamma[END_REF]. Originally, it was proposed to measure A up-down (cf. Eq. (6.28)) which is proportional to λ. But the strong decay K res → Kππ must be well understood in order to extract λ accurately. The up-down asymmetry (A up-down ) was measured by the LHCb collaboration [START_REF] Aaij | Observation of Photon Polarization in the b → sγ Transition[END_REF], but due to the complexity of the strong decay, this measurement led to almost no constraints on the photon polarisation. So far Gronau et al. tackled this problem by including the kaonic resonance K 1 (1270/1400), K * (1410) and K * 2 (1430) and gave the differential angular decay rate as function of the angle θ [START_REF] Gronau | Photon polarization in radiative B decays[END_REF].

Then Kou et al. [START_REF] Kou | Determining the photon polarization of the b → sγ using the B → K1(1270)γ → (Kππ)γ decay[END_REF] pushed further the modelling of the strong decay (only for K 1 (1270/1400)) using the quark model and suggested to fit the θ and Dalitz distribution in order to increase the accuracy. In both analysis, it was pointed out that several input parameters, such as strong phase, (B → K res γ) branching ratios and the kaon mixing angle (θ K 1 ) must be known. It was recently suggested to fit the θ and ϕ distribution in order to extract |λ| in a model independent manner using B → J/ψK 1 decays [START_REF] Kou | Angular analysis of B → J/ψK 1 : towards a model independent determination of the photon polarization with B → K 1 γ[END_REF] and to fit some of those parameters using B → J/ψK 1 decays [START_REF] Gronau | Reexamining the photon polarization in B → Kππγ[END_REF]. Our contributions on that subject are:

-We performed our studies using a toy model based on the model developed by Kou et al., to which we add a simple model describing the process K * (1410) → Kππ. We derived the θ and ϕ distribution including K 1 (1270/1400) and K * (1410), which lead to three observables sensitive to the photon polarisation. -We showed that some of the needed input parameters (i.e. strong phases, Br(B → K 1 (1400)γ) and θ K 1 ) can be simultaneously fitted with λ with a loss of accuracy of only a few percent, compare to only fitting λ. -We proved that a strictly model independent fit of |λ| can only lead to a lower bound on |λ|.

we can rewrite Eq. (A.2) as:

A(i → f 1 f 2 ) = √ 2J + 1 4π D J * M λ (ϕ, θ, -ϕ)A λ (A.4)
where A λ is the helicity amplitude. Finally, we show the orthogonality relation:

∫ 2π 0 dψ ∫ 2π 0 dϕ ∫ π 0 sin θdθ [ D j * m,n (ψ, θ, ϕ)D j ′ m ′ ,n ′ (ψ, θ, ϕ) ] = 8π 2 2j + 1 δ mm ′ δ nn ′ δ jj ′ .
(A.5)

A.2 Parity

In the rest frame of a single particle state, the action of the parity operator P is:

P |(p = 0)sλ⟩ = η P |(p = 0)sλ⟩ (A.6)
where η P is the intrinsic parity of the state. From the definition of Eq. (A.6), one can derive the action of the parity operator on a two-particle plane wave |θϕλ 1 λ 2 ⟩. Using Eq. (A.3) one obtains:

P |JM λ 1 λ 2 ⟩ = η P 1 η P 2 (-1) J-s 1 -s 2 |JM -λ 1 -λ 2 ⟩ . (A.7)
The explicit derivation of the previous result can be found in [START_REF] Richman | An Experimenter's Guide to the Helicity Formalism[END_REF]. Since we are dealing with a parity conserving interaction, we can deduce which kaonic resonance (K res ) can decay to κπ. Applying the parity operator on the helicity amplitude A κ 0 gives:

A κ 0 = ⟨κπ| H s |K res ⟩ = ⟨κπ| (P † P )H s (P † P ) |K res ⟩ = -η P (K res )(-1) J Kres ⟨κπ| H s |K res ⟩ = -η P (K res )(-1) J Kres A κ 0 . (A.8)
Therefore, in order to conserve parity, we need -η P (K res )(-1) J Kres = +1. Considering K res with spin-parity 1 + , 1 -and 2 + , we have:

1 + → -η P (K 1 )(-1) J K 1 = +1 1 -→ -η P (K * )(-1) J K * = -1 2 + → -η P (K * 2 )(-1) J K * 2 = -1. (A.9)
Consequently, only K 1 can decay to κπ. Then, imposing parity conservation we can deduce the allowed polarisation states of ρ and K * depending on which kaonic

A.4 Interferences of intermediate states with different spin

Expressing the amplitude for the decay K res → IP k → (P i P j )P k , where I stands for the intermediate resonance ρ, K * or κ with polarisation λ I and K res originate from B → K res γ, using the helicity amplitude formalism gives:

A I λ = c Kres c I ∑ λ I D J Kres * λ,λ I (θ ij , ϕ ij )A I λ I D J I * λ I ,0 (θ ′ ij , ϕ ′ ij )A ′I 0 (A.15)
The angles θ ij and ϕ ij respectively are the polar and azimuthal angles of the resonance I decaying into particle i and j, evaluated in K res rest frame, where the z axis is along -⃗ p γ . Then the angles θ ′ ij and ϕ ′ ij respectively are the polar and azimuthal angles of particle i, evaluated in I rest frame, where the z ′ axis is along -⃗ p k 1 . A I λ I and A ′I 0 respectively are the helicity amplitudes for the processes K res → IP k and I → P i P j . The normalisation constants c Kres and c I are:

c Kres = √ 2J Kres + 1 4π , c I = √ 2J I + 1 4π . (A.16)
Since we are interested in the interferences of intermediate states (I) with different spin-parity (i.e. interferences between the channels ρK(K * π) and κπ), we will set

K res = K 1 .
The angular dependence of the interference terms is:

A I λ A * κ λ ∝ ∑ λ I D 1 * λ,λ I (θ ij , ϕ ij )D 1 λ,0 (θ i ′ j ′ , ϕ i ′ j ′ )A I λ I A * κ 0 × D J I * λ I ,0 (θ ′ ij , ϕ ′ ij )D 0 0,0 (θ ′ i ′ j ′ , ϕ ′ i ′ j ′ ) (A.17)
where, for simplicity, we dropped the normalisation constants and the amplitude A ′I 0 . Additionally, D 0 0,0 (θ, ϕ) = 1 ∀(θ, ϕ), i.e. the decay of a spin 0 resonances has no angular distribution. Regarding the interferences of K * ± π ∓ with κ ± π ∓ , we have i(j) = i ′ (j ′ ), so this term vanish after integrating over the helicity angles (see orthogonality relation Eq. (A.5)), which correspond to integrating over all the events2 . where E i and λ i respectively stand for the energy and helicity of each particle, which are rotationally invariant. J and M respectively are the total angular momentum and its projection on the z axis. In the final state, the component of the spin of K res along the normal to the three body decay plane (i.e. the z ′ axis) is denoted by µ.

The angles θ and ϕ are defined as:

cos θ = - p γ |p γ | • ( p + × p - |p + × p -| ) sin θ cos ϕ = - p γ |p γ | • ( p + + p - |p + + p -| ) sin θ sin ϕ = - p γ |p γ | • [( p + × p - |p + × p -| ) × ( p + + p - |p + + p -| )] . (B.4)
The angle ψ defines rotations around the z axis1 . Then the decay amplitude may be written as:

A(ψ, θ, ϕ; E 1 λ 1 , E 2 λ 2 , E 3 λ 3 ) = ⟨JM µ; E 1 λ 1 ; E 2 λ 2 ; E 3 λ 3 | H |JM ⟩ D J * m,M (ψ, θ, ϕ) = A J µ (E 1 λ 1 , E 2 λ 2 , E 3 λ 3 )D J * M,µ (ψ, θ, ϕ) (B.5)

B.2 Parity considerations

Using parity conservation we can reduce the number of independent amplitudes A J µ . The outcome of using the parity operator on a 3-body state (which will be explicitly derived below) is:

P |JM µ; E 1 λ 1 ; E 2 λ 2 ; E 3 λ 3 ⟩ = ∏ i=1,2,3 η P i (-1) s i -λ i (-1) µ × |JM µ; E 1 -λ 1 ; E 2 -λ 2 ; E 3 -λ 3 ⟩ . (B.6)
where η P i is the intrinsic parity of particle i. For three pseudoscalar mesons, this state is an eigenstate of parity:

P |JM µ; E 1 0; E 2 0; E 3 0⟩ = -(-1) µ |JM µ; E 1 0; E 2 0; E 3 0⟩ (B.7)
and considering the decay of a given K res into three pseudoscalar meson via a parity conserving interaction, we must have:

A J µ = ⟨JM µ; E 1 0; E 2 0; E 3 0| (P † P )H(P † P ) |JM ⟩ = -η P (K res )(-1) µ ⟨JM µ; E 1 0; E 2 0; E 3 0| H |JM ⟩ = A J µ (B.8)
which implies:

-η P (K res )(-1) µ = 1 (B.9)
Consequently for odd(even) intrinsic parity K res , µ has to be even(odd). Then considering the orthogonality relation:

∫ 2π 0 dψ ∫ 2π 0 dϕ ∫ π 0 sin θdθ [ D j * M,µ (ψ, θ, ϕ)D j ′ M ′ ,µ ′ (ψ, θ, ϕ) ] = 8π 2 2j + 1 δ M M ′ δ µµ ′ δ jj ′ (B.10)
we can see that once we integrate over ϕ, states with different intrinsic parity do not interfere, and, once we integrate over the angle θ as well, states with different spin will not interfere.

B.2.1 Derivation of the parity transformation

Since the Parity operator commute with the rotation operator, we may write :

P |JM µ; E 1 λ 1 ; E 2 λ 2 ; E 3 λ 3 ⟩ = ∫ dψd cos θdϕD J * M,µ (ψ, θ, ϕ)R(ψ, θ, ϕ) × P |000; E 1 λ 1 ; E 2 λ 2 ; E 3 λ 3 ⟩ . (B.11)
The parity operation can be defined as the product of a reflection with respect to a plane and a rotation of angle π around the normal to that plane. We choose that plane to be the decay plane in the frame x ′ y ′ z ′ . Therefore we have P = Y xy e +iπJz , where Y xy is the reflection operator. To compute the action of Y xy we apply it on each 1-body state individually. The 3-body state is the direct product of three 1body state, taking each states individually, one can use a Lorentz boost along the decay plane to the rest frame of the particle (since the Lorentz boost operator along the decay plane commutes with the reflection operator with respect to that plane).

Applying Y xy on a 1-body state gives2 :

Y xy |000; E j λ j ⟩ = e -iπJz P |000; E j λ j ⟩ = η P j e -iπJz |000; E j λ j ⟩ = η P j (-1) s j -λ j |000; E j -λ j ⟩ (B.12)

where we used :

e -iπJz |000, Eλ⟩ = ∑ λ ′ D s λ ′ ,λ (0, π, 0) |000, Eλ ′ ⟩ = ∑ λ ′ (-1) s-λ δ λ ′ ,-λ |000, Eλ ′ ⟩ = (-1) s-λ |000, E -λ⟩ (B.13) and d j m ′ m (π) = (-1) j-m δ m ′ ,-m (B.14)
Therefore, we get :

P |JM µ; E 1 λ 1 ; E 2 λ 2 ; E 3 λ 3 ⟩ = ∏ i=1,2,3 η P i (-1) s i -λ i ∫ dψd cos θdϕD J * M,µ (ψ, θ, ϕ) × R(ψ, θ, ϕ)e +iπJz |000; E 1 -λ 1 ; E 2 -λ 2 ; E 3 -λ 3 ⟩ = ∏ i=1,2,3 η P i (-1) s i -λ i ∫ dψd cos θdϕD J * M,µ (ψ, θ, ϕ) × |ψθϕ + π; E 1 -λ 1 ; E 2 -λ 2 ; E 3 -λ 3 ⟩ = ∏ i=1,2,3 η P i (-1) s i -λ i ∫ dψd cos θdϕD J * M,µ (ψ, θ, ϕ + π) × (-1) µ |ψ, θ, ϕ + π; E 1 -λ 1 ; E 2 -λ 2 ; E 3 -λ 3 ⟩ = ∏ i=1,2,3 η P i (-1) s i -λ i (-1) µ × |JM µ; E 1 -λ 1 ; E 2 -λ 2 ; E 3 -λ 3 ⟩ . (B.15)

C.2.1 2-body phase space

In the B meson rest frame, dΦ 2 is:

dΦ 2 (p B ; p γ , p Kres ) = δ 4 (M B -p γ -p Kres ) d 3 ⃗ p γ (2π) 3 2E γ d 3 ⃗ p Kres (2π) 3 2E Kres = 1 (2π) 6 8 (1 - m 2 Kres M 2 B )dΩ (C.17)
where we used:

δ(f (x)) = δ(x -a) |f ′ (x)| x=a (C.18)
with f (a) = 0. Integrating over dΩ gives:

∫ dΩdΦ 2 (p B ; p γ , p Kres ) = 1 (2π) 5 4 (1 - m 2 Kres M 2 B ). (C.19)

C.2.2 3-body phase space

For dΦ 3 , we work in K ′ res rest frame: 

dΦ 3 (p Kres ; p 1 , p 2 , p 3 ) = δ 4 ( √ s -p 1 -p 2 -p 3 ) d 3 ⃗ p 1 (2π) 3 2E 1 d 3 ⃗ p 2 (2π) 3 2E 2 d 3 ⃗ p 3 (2π) 3 2E 3 = 1 (2π)

C.3 Kinematics

When computing the j function, one needs to know the expressions of p 1 and p 2 (cf. Eq. (5.9)). In the following, we consider two distinct frames, the K ′ res and K ′′ res rest frames. The definition of the angles θ and ϕ is simple (cf. Eq. (5.2)) using the former while using the latter, we can express p 1/2 in terms of |p 1/2 | and only one angle. We introduce the angle θ ij defined as

p i •p j = |p i ||p j | cos θ ij , with 0 ≤ θ ij ≤ π.

C.3.1 The frame K ′ res

In the K ′ res rest frame:

p 1 = |p 1 |      -cos θ 13 -sin θ 13 0      , p 2 = |p 2 |      -cos θ 23 sin θ 23 0      (C.22) with |p 1 | sin θ 13 = |p 2 | sin θ 23 .
Then the xyz components of the j functions (cf. Eq. (5.9)) are:

j K 1 x = -(C 1 |p 1 | cos θ 13 -C 2 |p 2 | cos θ 23 ) j K 1 y = -(C 1 |p 1 | sin θ 13 + C 2 |p 2 | sin θ 23 ) = -|p 1 | sin θ 13 (C 1 + C 2 ) j K * z = C -|p 1 ||p 2 | sin θ 12 . (C.23) C.3.2 The frame K ′′ res
We can define another frame using a passive rotation of angle α ′ around the normal to the decay plane in the K ′ res rest frame until we have:

p 1/2 • e ′′ x = |p 1/2 | cos ( θ 12 2 
) (C.24)
We label it the K ′′ res rest frame. In that frame, the xyz components of the j function (cf. Eq. (5.9)) can all be expressed in terms of the angle θ 12 as

j ′′K 1 x = (C 1 |p 1 | -C 2 |p 2 |) cos θ 12 2 j ′′K 1 y = -(C 1 |p 1 | + C 2 |p 2 |) sin θ 12 2 j ′′K * z = C -|p 1 ||p 2 | sin θ 12 . (C.25)
The angle θ is unaffected by this rotation while the angle ϕ is replaced by the angle

ϕ ′ = ϕ + α ′ .
thermore, the estimator will be asymptotically Normally distributed with minimum variance, the variance being given by the Cramer-Rao lower bound (see [START_REF] James | Statistical Methods in Experimental Physics[END_REF] Sec. 7.4.1). But for finite number of observations, those asymptotic optimal properties may not all hold, in particular, the likelihood function may provide more than one solution for the estimator 2 .

D.1.1 Likelihood function

Considering a set of N independent observations X (which can represent several measured quantities such as momentum, angles, ...) with p.d.f. 3 f (X|θ), where θ is a vector containing a set of parameters, the likelihood function L(θ) correspond to the joint p.d.f. of X:

L(θ) = P (X|θ) = P (X 1 , ..., X N |θ) = N ∏ k=1 f (X k |θ) (D.1)
Usually, it is more convenient to work with the log likelihood function:

ln L(θ) = N ∑ k=1 ln f (X k |θ). (D.2)

D.1.2 Expected values: infinite statistics

Considering a given function g(X) where X is a random number distributed according to the p.d.f. f (X|θ * ), the expectation operator is defined as:

E[g(X)] = ∫ g(X)f (X|θ * )dX (D.3)
where θ * is the true value of the parameters. Asymptotically the sum over events can be replaced by an integral over phase space 4 :

1 N N ∑ k=1 g(X k ) → ∫ g(X)f (X|θ * )dX. (D.4)
2. Indeed, an unbiased and inconsistent estimator could be distributed in such a way that it provides multiple choices for the estimator (where none converge toward the true value of the parameter) while their mean correspond to the true value of the parameter.

3. The notation f (X|θ) corresponds to the probability density of obtaining the measurement X given θ. [START_REF] Kou | Determining the photon polarization of the b → sγ using the B → K1(1270)γ → (Kππ)γ decay[END_REF]. In reality, i.e. for a finite sample of observations, the values of X k are dictated by the measurements. But asymptotically X is a continuous variable, which justify the notation ∫ [...]dX.

Therefore the log likelihood function may asymptotically be expressed as :

ln L(θ) → N ∫ ln f (X|θ)f (X|θ * )dX. (D.5)

D.1.3 The maximum likelihood method

The maximum likelihood method provides estimators for a set of parameter θ, denoted θ, by solving the set of N coupled equations:

∂ ∂θ N ∑ k=1 ln f (X k |θ) = ∂ ∂θ ln L(θ) = 0. (D.6)
The previous statement can easily be demonstrated under the condition that the mean of the first and second derivative of ln L(θ) with respect to θ exist, that ∫ dX and ∂/∂θ commute and that the p.d.f. is normalised to unity independently of θ. Starting with the normalisation condition of the p.d.f.:

∫ f (X|θ)dX = 1 (D.7)
then taking the first and second derivative of Eq. (D.7) with respect to θ, we obtain:

∂ ∂θ ∫ f (X|θ)dX = ∫ ∂ ln f (X|θ) ∂θ f (X|θ)dX = 0 ∂ 2 ∂θ 2 ∫ f (X|θ)dX = ∫ ∂ 2 ln f (X|θ) ∂θ 2 f (X|θ)dX + ∫ ( ∂ ln f (X|θ) ∂θ ) 2 f (X|θ)dX = 0 (D.8)
which asymptotically implies:

E [ ∂ ln f (X|θ) ∂θ ] θ=θ * → 0 E [ ∂ 2 ln f (X|θ) ∂θ 2 ] θ=θ * → -E [( ∂ ln f (X|θ) ∂θ ) 2 ] θ=θ * < 0. (D.9)
Therefore, the root θ of Eq. (D.6) does indeed correspond to a maximum of the likelihood function and is asymptotically identical to θ * . Finally we give the expression of the variance of the estimator5 :

V -1 ( θ) = - 1 N E [ ∂ 2 ln f (X|θ) ∂θ 2 ] θ=θ * . (D.10)

D.2 Event generation

The generation of events for a given p.d.f. may be achieved in the following manner. First one generates a sample of M events uniformly distributed 6 and computes the corresponding value of the p.d.f. f (X|θ) for a given input value for the parameters (θ * ). This sample of events is denoted "weighted" events. Then the second step, called "Hit and Miss", consists in finding the highest value of the p.d.f., denoted f MAX (θ * ) and for each of the M "weighted" events comparing the ratio

f (X m |θ * ) f MAX (θ * ) (D.11)
to a sample of M uniformly distributed random number between 0 and

1 called R m . So if f (X m |θ * ) f MAX (θ * ) > R m (D.12)
the event X m is accepted and will belong to the sample of "data" events, otherwise the event is rejected. The sample of "data" events obtained that way represents a sample of N measurements following the p.d.f. f (X|θ * ).

D.3 Error estimation

In this section, we present a method for computing the expected error matrix denoted E without performing a fit. Let's first define the error matrix. Considering a p.d.f. with n parameters, E is a symmetric n × n matrix with:

E ii = √ V ii = σ i E ij = V ij E ii E jj = ρ ij , (i ̸ = j) (D.13)
where σ i is the standard deviation of the measurement of θ i and ρ ij is the conventional notation for the correlation coefficient between the measurements of two different parameters θ i and θ j . The inverse of the covariance matrix (here denoted Λ) is given by (see Eq. (D.10)):

Λ ij (θ) = - ∂ 2 ln L(θ) ∂θ i ∂θ j . (D.14)
Next, in order to derive the expression of Λ ij , we rewrite the p.d.f. as:

f (X|θ) = 1 c(θ) f 0 (X|θ) (D.15)
where f 0 (X|θ) is the non-normalised p.d.f. and c(θ) = ∫ f 0 (X|θ)dX is the normalisation constant. Then Eq. (D.14) gives:

Λ ij (θ) = - N ∑ k=1 ( ∂ 2 f 0 (X k |θ) ∂θ i ∂θ j 1 f 0 (X k |θ) - ∂f 0 (X k |θ) ∂θ i ∂f 0 (X k |θ) ∂θ j 1 f 2 0 (X k |θ) ) + N ( ∂ 2 c(θ) ∂θ i ∂θ j 1 c(θ) - ∂c(θ) ∂θ i ∂c(θ) ∂θ j 1 c 2 (θ) ) . (D.16)
Which we rewrite in a more compact form as:

Λ ij (θ) = N ∑ k=1 ( ω i (X k |θ)ω j (X k |θ) -ωij (X k |θ) ) -N ( Ω i (θ)Ω j (θ) -Ωij (θ) ) (D.17)
with

ω i (X|θ) = ∂f 0 (X|θ) ∂θ i 1 f 0 (X|θ) , ωij (X|θ) = ∂ 2 f 0 (X|θ) ∂θ i ∂θ j 1 f 0 (X|θ) , Ω i (θ) = ∂c(θ) ∂θ i 1 c(θ) , Ωij (θ) = ∂ 2 c(θ) ∂θ i ∂θ j 1 c(θ) . (D.18)
We can simplify Eq. (D.17) further, using the expectation operator. Asymptotically we have:

E [ ω i (X|θ * ) ] = 1 N N ∑ k=1 ω i (X k |θ * ) = 1 N N ∑ k=1 ∂f 0 (X k |θ * ) ∂θ i 1 f 0 (X k |θ * ) = ∫ ∂f 0 (X|θ * ) ∂θ i 1 c(θ * ) dX = 1 c(θ * ) ∂ ∂θ i ∫ f 0 (X|θ * )dX = 1 c(θ * ) ∂c(θ * ) ∂θ i = Ω i (θ * ). (D.19)
Since this demonstration is valid independently of the order of the derivation, we have as well:

1 N N ∑ k=1 ωij (X k |θ * ) = Ωij (θ * ). (D.20)
Since Eqs. (D. [START_REF] Buras | Weak Hamiltonian, CP violation and rare decays[END_REF]) and (D.20) are asymptotically valid using the estimators of the parameters rather than their true value, we get:

Λ ij ( θ) = N ∑ k=1 ω i (X k | θ)ω j (X k | θ) - 1 N N ∑ k=1 ω i (X k | θ) N ∑ k=1 ω j (X k | θ) = N ( E [ ω i (X| θ)ω j (X| θ) ] -E [ ω i (X| θ) ] E [ ω j (X| θ) ]) . (D.21)
One should note that Eq. (D.21) can be used as it is with "data" events because those are distributed according to the p.d.f. f (X|θ * ), but when computing it with the sample of M "weighted" events which are uniformly distributed, the expectation operator has to be redefined as:

E[g(X)] → 1 M M ∑ k=1 g(X k )f (X k |θ * ). (D.22)
Additionally, since ω i (X|θ) is independent of the normalisation constant, one can compute the expected error matrix without normalising to unity the p.d.f..

D.3.1 Event strength and outliers

Rewriting Eq. (D.21) as:

Λ ij ( θ) = N E [ ( ω i (X| θ) -E [ ω i (X| θ) ])( ω j (X| θ) -E [ ω j (X| θ) ]) ] = N E [ ∆ω i (X| θ)∆ω j (X| θ) ] (D.23)
illustrates how each event contributes individually to the measurement of θ with a strength defined as ∆ω i (X| θ). Events with very small values of ∆ω i (X| θ) do not play any role in the measurement, and , conversely, events with sizeable ∆ω i (X| θ) are the critical ones, while outliers events with very large ∆ω(X| θ) are dangerous, because one such event could prove to be strong enough to bias the measurement. Since outliers events occurs for:

∂f 0 (X| θ) ∂θ i ≫ f 0 (X| θ) (D.24)
they require that f 0 (X| θ) is very small and therefore they are very rare. Nevertheless it is important to look for such events in both "weighted" and "data" sample to ensure the validity of the results.

D.4 Parameter estimation and expected error matrix in practice

D.4.1 The model

Here we provide an example of the method described above. We use an unrealistic toy model describing the decay K + 1 → K + π -π + with two axial kaonic resonances (K 1 (1270) and K 1 (1400)) and two intermediate channels : ρK and K * π. The parameters we wish to extract are f and g respectively defined as the K 1 (1270)/K 1 (1400) relative weight and the coupling constant for the channel K 1 → Kρ → Kππ. So the p.d.f. is: 

f 0 (X|θ) = A 1270 (s 12 , s 23 , g)BW K 1 (1270) (s) + f A 1400 (s 12 , s 23 , g)BW K 1 (1400) (s) 2 (D.
BW (s) = 1 s -M 2 + iM Γ (D.27)
M and Γ respectively being the mass and width of the resonance. We set the true value of the parameters as:

f * = 1 3 g * = 6.
(D.28)

D.4.2 A few remarks

Allowed phase space

Regarding the generation of "weighted" events we need a set of M values of s Kππ , s Kπ and s ππ , uniformly distributed within the allowed phase space. Therefore we use:

s l = s min + ( s max -s min ) R l (D.29)
where R l is a uniformly distributed random number between 0 and 1. Then one may be tempted to adjust the allowed range of s Kπ and s ππ according to the value of s Kππ . But this will alter the distributions of s Kπ and s ππ and the "Hit and Miss" step will have to be modified to produce correct results. Therefore it is easier to first generate the Dalitz variables with fixed range and then to reject events which are located outside the allowed phase space.

Saving time

Once the events are generated, computing the expected error matrix and maximizing the log likelihood function will involve calculating different derivatives of the p.d.f. and recomputing the normalisation constant for different values of f and g. Therefore we find it is faster to compute the p.d.f. for each of the M "weighted" events without assigning any value for the parameters. Of course the true value of the parameters has to be used for the "Hit and Miss" step but the expression of the p.d.f. for the N "data" events can be kept as a function of f and g. One does not waste too much computation time doing so since with our model the parameters only appear in linear and quadratic from. This operation consists in separating the p.d.f. in two parts, one depending only on the parameters and the other only on the phase space as: f 0 (X|θ) = W µν (X)Y µν (θ).

(D.30)

Explicitly, Y (θ) is:

Y (θ) =      1 f f 2 g gf gf 2 g 2 g 2 f g 2 f 2      (D.31)
and W (X) is 3 × 3 matrix of corresponding coefficients. Therefore, when computing the derivatives, one do not need to recompute W (X) and the normalisation constant as a function of θ is:

c(θ) = 1 M M ∑ k=1 W µν (X k )Y µν (θ). (D.32)
The normalisation constant should be computed as a sum over the M "weighted" events because:

1 M M ∑ k=1 f 0 (X k |θ) → ∫ f 0 (X|θ)dX = c(θ) (D.33)
while the sum over the N "data" events would give:

1 N N ∑ k=1 f 0 (X k |θ) → ∫ f 0 (X|θ)f 0 (X|θ * )dX ̸ = c(θ). (D.34)
Of course one could divide each of the N events by f 0 (X k |θ * ) to obtain the normalisation constant but since the sample of "weighted" events is much larger than the "data" events, the results will be more accurate with the former.

D.4.3 Results

Distribution of the "data" events After generating the "data" events, we can first check that the events are distributed (within small statistical fluctuations) according to the p.d.f. used to generate the sample (see Fig. We expect small differences between those two matrices due to statistical fluctuations, but sizeable differences would indicate a problem in the computation of those matrices or the presence of outliers. In this example, we did not find any outliers and the strongest events are where they should be (see Fig. 

↗ K * + π -γ → ( K 0 S π + ) π -γ ↘ B → K res γ → K 0 S ργ → K 0 S ( π + π -) γ → K 0 S π + π -γ ↘ κ + π -γ → ( K 0 S π + ) π -γ ↗ (7.41) ↗ K * -π + γ → ( K 0 S π -) π + γ ↘ B → K res γ → K 0 S ργ → K 0 S ( π -π + ) γ → K 0 S π -π + γ ↘ κ -π -γ → ( K 0 S π -) π + γ ↗
La transition faible B → K res γ est suivie par la désintégration forte en trois corps de la résonance kaonique K res → Kππ via trois états intermediaires distincts ρK 0 S , K * π et κπ.

Asymétrie matière-antimatière L'observable S ρK 0 S γ est accessible avec l'état final K 0 S π + π -γ, mais la présence de K * ± π ∓ et κ ± π ∓ , n'étant pas des états propres de CP, induit un facteur de dilution ou l'amplitude A ′ est fonction des états intermédiaires ρK 0 S , K * π et κπ et des résonances kaoniques K 1 (1270/1400), K * (1410) et K * 2 (1430). Afin de calculer le facteur de dilution, les ondes partielles peuvent être extraites avec l'état final K ± π ∓ π ± γ, où la sensibilité expérimentale est plus élevée. Ensuite, nous proposons une nouvelle méthode, indépendante du modèle, pour déterminer D, qui consiste a extraire le facteur de dilution indépendamment de S ρK 0 S γ en utilisant des états finaux avec un pion neutre tels que K + π -π 0 γ. Ainsi, les amplitudes A ′ (K + π -π 0 γ), A ′ (K 0 S π + π -γ) et A ′ (K 0 S π + π -γ) forment la relation : Pour augmenter les statistiques, les désintégration des mésons B ± peuvent être utilisés de la même façon. En exploitant des données existantes avec m Kππ < 1.8 GeV/c 2 , nous obtenons D = 0.73 ± 0.18, où l'erreur est statistique et l'erreur systématique reste à évaluer. ). The decay B → Kππγ provides a parity odd observable (λ) via angular analysis and a CP odd observable (S ρK 0 S γ ) via B -B mixing, both sensitive to the ratio C ′ 7 /C 7 ≈ m s /m b . The main issue is that both λ and S ρK 0 S γ are accompanied by an hadronic factor originating from the strong decay. This work is focused on the estimation and modelisation of those dilution factors. The transition B → Kππγ occurs as three subsequent decays. The weak process B → K res γ is followed by the strong 3-body decay of the kaonic resonance K res → Kππ via three distinct intermediate states ρK 0 S , K * π and κπ. The observable S ρK 0 S γ is accessible with the final state K 0 S π + π -γ, but the presence of non CP eigenstates K * ± π ∓ and κ ± π ∓ induce the dilution factor D. To deal with this inconvenience, we derive the expression of D in terms of the partial waves ρK 0 S , K * π and κπ and including the kaonic resonances K 1 (1270/1400), K * (1410) and K * 2 (1430). The partial waves can then be fitted using the final state K ± π ∓ π ± γ, where the experimental sensitivity is higher, in order the compute the dilution factor. Then we propose a new model independent method to determine D, which consists in extracting the dilution factor independently of S ρK 0 S γ using the final states with one neutral pion such as K + π -π 0 γ. Exploiting existing data with m Kππ < 1.8 GeV/c 2 , we obtained D = 0.73 ± 0.18, where the uncertainties are statistical and systematic uncertainties have yet to be estimated.

A ′ (K + π -π 0 γ) = 1 √ 2 ( -A ′ (K 0 S π + π -γ) + A ′ (K 0 S π + π -γ)
When considering only K 1 (1270/1400) and K * (1410), fitting the angular and Dalitz plot distribution allows to extract λ with an accuracy of the order of ±10% for a sample of 5.10 3 Monte Carlo generated events. But this requires a good knowledge of different quantities of importance in the strong decay such as the K 1 mixing angle, individual B → K res γ branching ratios and relative phases. We show that some of those parameters can simultaneously fitted with λ with a loss of accuracy of just a few percent. We derive how, using only the angular distribution, one can partially cancel contribution from the strong decay and obtain a lower bound on |λ|.
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Figure 2 . 1 -

 21 Figure 2.1 -Quark level diagrams of the bd → bd (a) and the b → sγ (b) processes.

Figure 2 . 2 -

 22 Figure 2.2 -The unitarity triangle in the complex plane, expressed int terms of ρ and η and the angles α, β and γ.
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 2324 Figure 2.3 -Constraints on the angles α, β and γ in the (ρ, η) plane from the CKMfitter group.

  Let us consider the flavour and CP eigenstate B 0 d and B 0 d which are distinguished through their internal quantum number 3 denoted by B. Transitions with ∆B ̸ = 0 may occur via the weak interaction and assuming that both B 0 d and B 0 d are coupled to a common intermediate state I, oscillation between B 0 d and B 0 d can occur as an iteration of two ∆B = 1 reactions as:

d

  ) has the quark content bd(bd).

  24) where M 12 = M * 21 , Γ 12 = Γ * 21 and CPT invariance implies M 11 = M 22 and Γ 11 = Γ 22 . Then diagonalising H and solving the Schrödinger equation gives the mass eigenstates as 4 :

Figure 3 . 1 -

 31 Figure 3.1 -Quark level diagrams of the b → sγ process with W boson exchange.
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 32 Figure 3.2 -Representation of the b → sγ process, where the blob represent the effective vertex and the cross indicate which external mass needs to be taken into account, depending on the photon polarisation.

Figure 3 . 3 -

 33 Figure 3.3 -Representation of allowed helicity configuration in the two-body decay b → sγ. The large empty arrows represent the spin projection on the z axis, which is alongside the photon momentum.

  3.6).
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 34 Figure 3.4 -Current-current diagrams in the full theory (a) and with QCD corrections (b,c,d).

. 11 )Figure 3 . 5 -

 1135 Figure 3.5 -Feynman diagrams corresponding to: QCD-penguins (a), electromagnetic penguin (b) and chromomagnetic penguin (c).
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 36 Figure 3.6 -Schematic representation of the insertion of Q 1,..,6 (blob) into the electromagnetic penguin diagram.
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 37 Figure 3.7 -Leading contribution to b → sγg. An additional diagram where the order of emission of the photon and gluon is reversed is not shown.

Figure 3 . 8 -

 38 Figure 3.8 -Representation of the dominant contribution to b L → s R γ R in the Left-Right Symmetric Model. The cross on the internal quark line highlights an helicity flip on the top quark. W R and V R ts respectively represent the right-handed charge current and right-handed CKM matrix element.

. 10 )

 10 The amplitude A W correspond to the one given in the Ch. 3 (cf. Eqs. (3.21) and (3.22)) where we gathered numerical factors into c and c ′ and left the Dirac structure into H eff . Then using:

(4. 45 ) 3 . 2 4. 1 . 6

 453216 For the proof of this statement see Appendix B.The dilution factor: Model independent method
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 51 Figure 5.1 -Representation of both pions (red) and the photon (blue) 3-momenta in K ′ res rest frame. The coordinate system x ′ y ′ z ′ is defined using only the pions 3-momenta and the angles θ and ϕ specify the orientation e z .

1 s ds 13

 113 ds 23 dϕd(cos θ)(5.24) 

The functions C 1 and C 2

 2 Considering the final states ⟨f I | and ⟨f III |, we get:
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 52 Figure 5.2 -Representation of the Axial kaonic resonance rest frame where the z axis is alongside p (the Axial K res 3-momentum). The orientation of V ij 3-momentum (red) is defined by the polar θ ij and the azimuthal ϕ ij angles.
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 6162 Figure 6.1 -Distribution of the "data" events projected on the m axis (a), the m 13 axis (b), the m 12 axis (c), the cos θ axis (d), the ϕ ′ axis (e) and the (m 13 , m 12 ) plane (f). In Figs. (a), (b), (c) and (f) we can clearly identify the presence of resonances involved in the decay.
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 64 Figure 6.4 -Unidimensional plots of δχ 2 as a function of λ for a one parameter fit (a) and for a three parameters fit (b) and as a function of f (c) and θ K 1 (d). The unidimensional confidence interval is shown up to 4-sigma and the vertical red line indicates the input value of the parameters (θ * ). Comparing (a) and (b) we see that the behaviour of δχ 2 is similar for a one or a three parameters fit.
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 65 Figure 6.5 -Bi-dimensional plots of δχ 2 as a function of θ K 1 and λ (a), f and λ (b) and f and θ K 1 (c). We can see that in any case, the fit results are in within 1-σ of the "truth" value of the parameters. And only the pair of parameters f and θ K 1 show small, but non vanishing, correlation.

Figure B. 1 -

 1 Figure B.1 -Representation of the pions and the photon momenta in K ′ res rest frame. The 3-momenta of all hadronic final states are contained in the x ′ y ′ plane. The angles θ and ϕ determine the orientation of the photon 3-momentum in K ′ res rest frame.

  D.1). We can see that the s 23 and s 12 lineshapes (respectively Fig. D.1b and D.1c) are distorted. This is due to the fact that the reflection of the ρ(770) resonance appears as a small wide bump on the s 23 axis and the reflection of the K * (892) resonance on the s 12 axis produces another large peak at low s 12 .

Figure D. 1 -

 1 Figure D.1 -Distribution of a sample of approximately 8.10 3 "data" events projected on the s (a), s 23 (b), s 12 (c) axis and the (s 23 , s 12 ) (d) plane.

  Fit and ErrorWhile performing a fit, one minimizes the quantity -2 ln L(θ):-2 ln L(θ) = -2 ( N ∑ k=1 ln f 0 (X k |θ) -N ln c(θ) ) (D.35)where f 0 (X k |θ) and c(θ) are respectively given by Eqs. (D.30) and (D.32). After numerically minimizing Eq. (D.35), we obtain: within error (given below) to the true value of the parameters (see Eq. (D.28)). Next the error matrices, computed using the formalism from Sec. D.3 are:E "data" ( θ)

  D.2). Indeed, looking at Fig. D.2a(D.2b), we see that as we enter into the K 1 (1400)(ρ(770)) mass region, the mean value of ω f (ω g ) increases.

Figure D. 2 - 2 Y 40 )

 2240 Figure D.2 -Distribution of ω f projected on the s axis (a) and ω g projected on the s 12 axis (b).
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Figure 7 . 4 -- 2 ∫

 742 Figure 7.4 -Diagrammes représentant les transitions bd → bd (a) et b → sγ (b).

)Figure 7 . 5 -

 75 Figure 7.5 -Représentation des deux pions (rouge) et du photon (bleu) 3-momenta dans le référentiel propre K ′ res . Le référentiel x ′ y ′ z ′ est défini seulement avec les 3-momenta des pions et les angles θ et ϕ définissent l'orientation du photon (e z ).

Titre:

  Phénoménologie des mésons B à la recherche d'un signal au-delà du Model Standard. Mots clés : Model Standard et au-delà, Désintegration faible radiative des mésons B, Désintégration forte des mésons K excités, Violation de P et CP. Résumé : Durant les dernières décennies, la désintégration induite par une boucle b → sγ, a attiré beaucoup d'attention à cause de sa sensibilité potentielle à la Nouvelle Physique. Dans le Modèle Standard, les transitions b → sγ L(R) et b → sγ R(L) sont proportionnelles aux coefficients de Wilson C 7 (C ′ 7 ). La désintégration B → Kππγ offre à travers l'analyse angulaire une observable P impaire (λ) et à travers le mélange B -B une observable CP impaire (S ρK 0 S γ ) toutes deux étant sensibles au rapport C ′ 7 /C 7 ≈ m s /m b . La difficulté principale étant que λ et S ρK 0 S γ sont accompagnés par un facteur de dilution provenant de la désintégration forte. Ce travail est centré sur l'estimation et la modélisation de ces facteurs de dilution. La transition B → Kππγ se produit en tant que trois désintégrations successives. La transition faible B → K res γ est suivie par la désintégration forte en trois corps de la résonance kaonique K res → Kππ via trois états intermediaires distincts ρK 0 S , K * π et κπ. L'observable S ρK 0 S γ est accessible avec l'état final K 0 S π + π -γ, mais la présence de K * ± π ∓ et κ ± π ∓ , n'étant pas des états propres de CP, induit un facteur de dilution D. Pour résoudre ce problème, nous dérivons l'expression de D en fonction des états intermédiaires ρK 0 S , K * π et κπ et en incluant les résonances kaoniques K 1 (1270/1400), K * (1410) et K * 2 (1430). Afin de calculer le facteur de dilution, les ondes partielles peuvent être extraites avec l'état final K ± π ∓ π ± γ, où la sensibilité expérimentale est plus élevée. Ensuite, nous proposons une nouvelle méthode, indépendante du modèle, pour déterminer D, qui consiste a extraire le facteur de dilution indépendamment de S ρK 0 S γ en utilisant des états finaux avec un pion neutre tels que K + π -π 0 γ. En exploitant des données existantes avec m Kππ < 1.8 GeV/c 2 , nous obtenons D = 0.73 ± 0.18, où l'erreur est statistique et l'erreur systématique reste à évaluer. Lorsque l'on considère juste K 1 (1270/1400) et K * (1410), λ peut être extrait de la distribution angulaire et de Dalitz avec une précision de l'ordre de ±10% pour un échantillon de 5.10 3 événements générés à l'aide de la méthode Monte Carlo. Mais cela demande une bonne connaissance de différentes quantités importantes pour la désintégration forte, telles que l'angle de mélange de K 1 , les rapports de branchement individuel B → K res γ et les phases relatives. Nous montrons que certains de ces paramètres et λ peuvent être simultanément ajustés avec une perte de précision de juste quelques pour cent. Puis nous dérivons comment, en utilisant uniquement la distribution angulaire, il est possible d'annuler partiellement les contributions provenant de la désintégration forte afin d'obtenir une limite inférieure pour |λ|. Title: B mesons phenomenology to the search of a signal beyond the Standard Model. Key words: Standard Model and beyond, Weak radiative decays of B mesons, Strong decay of excited K mesons, P and CP violation. Abstract: Over the last decades, the loop induced decay b → sγ has attracted a considerable amount of attention due to its potential sensitivity to new physics. In the standard model, the processes b → sγ L(R) and b → sγ R(L) are proportional to the Wilson coefficients C 7 (C ′ 7
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Table 2 .

 2 

1 -Weak isospin and hypercharge quantum numbers of leptons and quarks.

  13 s 12 c 13 s 13 e -iδ -s 12 c 23 -c 12 s 23 s 13 e iδ c 12 c 23 -s 12 s 23 s 13 e iδ s 23 c 13 s 12 s 23 -c 12 c 23 s 13 e iδ -s 23 c 12 -s 12 c 23 s 13 e iδ c 23 c 13

	
	   
	(2.10)

  [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF] are physical quantities which can be measured in using CP observables, notably in B decays. The consistency of the various measurements provides a stringent test of the Standard Model. The CKM matrix elements have been measured by numerous experiments, most recently by the BaBar, Belle and LHCb collaborations. The complete set of measurements allows to perform a global fit of the angles α β and γ (cf. Fig.2.3), which yields, among other results[12] 

	ρ = 0.1598 +0.0076 -0.0072 ,	η = 0.3499 +0.0063 -0.0061 .	(2.19)

Table 5 .

 5 1 -Transformations properties of the components of e z (or equivalently -p γ /|p γ |) in K ′ res rest frame.

  dsds 13 ds 23 dϕd cos θ

		= N	( 1 4	(1 + cos 2 θ)ρ 1 + cos θρ 2 +	1 2	sin 2 θρ 3
		-	1 4	sin 2 θ cos(2ϕ)ρ 4 -	1 2	sin 2 θ sin(2ϕ)ρ 5
		+ sin θ cos ϕρ 6 -sin θ sin ϕρ 7 --) 1 2 sin(2θ) sin ϕρ 9	1 2	sin(2θ) cos ϕρ 8	(5.27)
	with :	N =	3 4π	( ∫	(ρ 1 + ρ 3 )dsds 13 ds 23

Table 5 .

 5 2 -Transformation properties of the ρ parameters. We found that ρ 2 , ρ 8 and ρ 9 are P odd, ρ 2 , ρ 7 and ρ 8 are C odd and ρ 5 , ρ 7 and ρ 9 are CP odd.

  .68) where we neglected the longitudinal polarisation of the intermediate Vector meson since it is forbidden by parity conservation (cf. Appendix A.2). Considering the final states ⟨f I | and ⟨f III |, we get:

  [START_REF] Hatanaka | B → K 1 γ Decays in the Light-Cone QCD Sum Rules[END_REF] where s, s 12 and s 23 respectively stand for s Kππ , s ππ and s Kπ , the decay amplitudes are defined as:A 1270 (s 12 , s 23 , g) = gBW ρ (s 12 ) + 5BW K * (s 23 )

	A 1400 (s 12 , s 23 , g) =	1 6	gBW ρ (s 12 ) -15BW K * (s 23 )	(D.26)
	and the Breit-Wigner are:			

Values of |Vus|, |V cb |, |V ub |, λ and A are taken from the [11].

As for the penguin diagram (c.f. Fig

3.1), the CKM factor for the u-quarks contribution is of the order λ 4 while for the t and c-quark, it is of the order λ 2 (cf. Subsec. 2.1.2).

Ref.[START_REF] Bigi | CP Violation[END_REF] sec. 7.5.2. gives an exemple of the procedure applied to K 0 S → π + π -π 0 .

Parity reverse the sign of 3-momenta, Charge conjugation exchange p+ and pand naive time reversal (cf.[START_REF] Branco | CP Violation[END_REF]) reverse 3-momenta and spin without exchanging initial and final states.

For historical reasons, we use the K ′′ res rest frame (cf. Sec. C.3) .

The "weighted" events correspond to the sample used for the Monte Carlo generation before the "Hit and Miss" step (cf. appendix D) and the "data" events represent the sample obtained after the "Hit and Miss" step.

When a pair of parameters cannot be simultaneously fitted, the matrix Λ (cf. Appendix D.3) is not invertible.

This is a semi analytical computation which does not account for multiple solutions.

For the sake of simplicity, and too facilitate the comparison with Belle's results, we omitted A ′κπ .

This is a well know results, P and S waves interference terms vanishes once we integrate over the helicity angles.

But since in our case, left and right handed Kres do not interfere (left and right-handed photons are different final states), the decay rate is independent of ψ.

The following procedure is equivalent to the one used in the helicity amplitude formalism[START_REF] Jacob | On the general theory of collisions for particles with spin[END_REF] where the z axis is along the momentum instead of the normal to the decay plane.

The derivation of V ( θ) may be found in[START_REF] James | Statistical Methods in Experimental Physics[END_REF] Sec. 7.3

In order to reduce the computation time, the sample of observation X may be generated using a distribution closer to f (X|θ) but the description of this method (i.e. Importance Sampling) goes beyond the goal of this appendix.
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Consequently, we have three different combinations (when considering only Axial and Vector K res ) of the ρ ′ parameters:

(5. [START_REF] Aston | Observation of New Resonant Structures in the Natural Spin -Parity Strange Meson System[END_REF] which give us a lower bound on λ. In other words, it seems that in a strictly model independent manner, we can only exclude parameter space, since λ 2 ij ≤ λ 2 ≤ 1 with ij = xy, xz, yz.

Form factor decomposition of the strong decay

In this section, we derive the expression of the strong decay amplitude as a function of the polarisation of the kaonic resonance: The derivation of the Axial koanic resonance decay amplitude for vector intermediate states is performed following [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF].

Axial amplitude

We consider two Axial koanic resonances: K 1 (1270) and K 1 (1400). The former couples to the intermediate state ρK, K * π and κπ while experimentally [START_REF] Patrignani | [END_REF] the latter only couples to ρK and K * π.

The final charged states:

are respectively related to ⟨f I | and ⟨f II | through isospin.

Helicity amplitude

In this appendix, we present the helicity amplitude formalism [START_REF] Jacob | On the general theory of collisions for particles with spin[END_REF] (and two useful reviews [START_REF] Richman | An Experimenter's Guide to the Helicity Formalism[END_REF][START_REF] Chung | Spin formalisms,Lectures given in Academic Training Program of CERN[END_REF]) and apply it to the study of K res → Kππ decays.

A.1 The helicity amplitude formalism

Considering the decay i → f 1 f 2 , the decay amplitude, in the i rest frame, may be written as:

where the initial state i has spin J and spin projection M along an arbitrary chosen z axis and the final states have helicity λ 1 and λ 2 . In the i rest frame, the z axis is along the initial state i 3-momentum (evaluated in a frame boosted in the -z direction with respect to the i rest frame) and θ(ϕ) is the polar(azimuthal) angle specifying the orientation of the final state f 1 3-momentum. Inserting the two-particle spherical helicity states |J f M f λ 1 λ 2 ⟩ into Eq. (A.1) gives:

The transformation between the two-particle plane-wave helicity basis and the twoparticle spherical-wave helicity basis is:

where λ = λ 1 -λ 2 . Using the Wigner D-function D J M λ (α, β, γ) with α = ϕ, β = θ and γ = -ϕ is conventional (cf. [START_REF] Jacob | On the general theory of collisions for particles with spin[END_REF]), and has no physical meaning. Using Eq. (A.3), resonances they couple to. The result is independent of the quark content of the resonance, therefore we will only show the ρK channel:

Because the helicity amplitude A ρ λρ is a parity eigenstate when λ ρ = 0, this polarisation state is allowed only when -η P (K res )(-1) J Kres = +1. Looking at Eq. (A.9), we can already conclude that λ ρ = 0 is only possible when K res = K 1 .

A.3 Particle exchange and charge conjugation

Let P 12 denote the particle exchange operator, which swaps particles 1 and 2. The action of P 12 on an identical two-particle plane wave helicity state aligned along the z axis is:

In other words, P 12 only exchanges the label of the states. Then, reversing the 3momentum (p z ) in each of the 1-particle state of Eq. (A.11) will bring the state i in its initial configuration but with helicity λ j . Therefore using P 12 on a spherical two-particle helicity states exchange the helicity and induced a factor (-1) J-2s (originating from reversing the 3-momenta):

The explicit derivation of the previous result can be found in [START_REF] Richman | An Experimenter's Guide to the Helicity Formalism[END_REF]. Focusing on the final state π + π -we can derive connections between particle exchange and charge conjugation. Indeed using C (the charge conjugation operator) on the two-particle plane-wave helicity state |π + π -⟩ gives:

Comparing Eqs. (A.11) and (A.13), we see that C and P 12 have identical effect on this particular state. Therefore we can use C as:

We leave the one-particle states in their original configuration but exchange the helicity.

Appendix B

Angular distribution in 3-body decays

In this appendix, we present a general formalism [START_REF] Berman | Systematics Of Angular Polarization Distributions In Three-body Decays[END_REF][START_REF] Chung | Spin formalisms,Lectures given in Academic Training Program of CERN[END_REF] to derive the angular distribution of a three-body decay of a polarised resonance. This formalism is similar to the helicity amplitude formalism, but instead of using one of the decay product momentum as an analyser, the normal to the 3-body decay plane is used.

B.1 Formalism and conventions

Considering the decay:

the axis, in K ′ res rest frame, are defined as follow:

where p ± corresponds the the three-momentum of π ± . In the K res rest frame, the z axis is opposite to the photon momentum direction. Both frames can be related with three subsequent rotations. Then following the formalism and conventions of [START_REF] Chung | Spin formalisms,Lectures given in Academic Training Program of CERN[END_REF] (cf. Eq (6.7)) we define a state of definite angular momentum as:

Clebsh-Gordan coefficients, 4 body phase space and kinematics

C.1 Clebsh-Gordan coefficients

In the following, we use the convention "down → up" as in Appendix D.2 of [START_REF] Tayduganov | Electroweak radiative B-decays as a test of the Standard Model and beyond[END_REF]. We first recall the definition of the final states we consider (cf. Eq. (5.46)): Since the result is the same for both final states, we only show the Clebsh-Gordan coefficients for he final state ⟨ fI |:

Then for the charge conjugated mode using the same conventions, we have:

In order to consider mixing between A and A, we must introduce an additional final state:

with

such that mixing is allowed with ⟨f I | = ⟨K 0 (p 3 )π -(p 1 )π + (p 2 )|. The Clebsh-Gordan coefficients are:

C.1.2 The final states ⟨f II | and ⟨f IV |

Since the result is the same for both final states, we only show the Clebsh-Gordan coefficients for he final state fII

Then for the charge conjugated mode using the same conventions, we have:

Since the result is independent of the spin-parity of K res , Eqs. 

) .

(C.13)

C.2 Phase space

The partial decay rate of B → Kπ + π -γ is:

where M is the Lorentz invariant matrix element. We compute the 4-body decay phase space as a 2-body decay followed by a 3-body decay using:

which gives:

Appendix D

Sensitivity study

In this appendix we give a short overview on how to perform a sensitivity study (i.e. how to estimate with which precision a parameter may be estimated using a given model). We first briefly introduce the method we use to estimate a given parameter : the maximum likelihood method. We will discuss and derive some of the basic properties of the method using [START_REF] James | Statistical Methods in Experimental Physics[END_REF] as a support. For an exhaustive review of statistics one can consult [START_REF] Stuart | [END_REF]. Then we present the "Hit and Miss" method used to generate events. Finally we show how to compute the expected error matrix from the generated events and give a simple example on how to perform the fit.

D.1 Parameter estimation

To estimate a parameter, one chooses a method which provides an estimator as a function of the observations. An estimator is a random variable with a given distribution which may be qualified in term of : consistency, unbiasedness, efficiency and robustness. Here we will only discuss the first two, let's first define them.

Consistency: An estimator is consistent if it converges toward the true value of the parameter as the number of observations increases.

Unbiasedness: An estimator is unbiased if, independently of the number of observations and of the true value of the parameter, the mean value of the estimator corresponds to the true value of the parameter.

Then regarding the maximum likelihood method, one can show (see [START_REF] James | Statistical Methods in Experimental Physics[END_REF] Sec. 7.2.3) that it provides a consistent estimator which is only asymptotically 1 unbiased. Fur-1. By asymptotic we always mean in the limit as the number of observations, N, becomes infinity large.

Confidence interval

In order to estimate a n-dimensional confidence interval we define the functions δχ 2 Data (θ) and δχ 2 F it (θ):

which are both equivalent and asymptotically distributed as the Chi-square distribution with n degrees of freedom 7 when θ = θ * . Therefore, if one wishes to obtain 

Analyse Angulaire

Concernant l'analyse angulaire, l'orientation du photon est fonction des angles θ et ϕ, défini de la façon suivante (cf. Fig. 7.5) :