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Acknowledgements

Messieurs les officiers, je vous remercie.
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my first PRL co-author and the most stylish guy of IPN Clément, my tattooed Slav-sis
Jana, our salsa instructor Liss, as well as the vigilante hero Olivier, the Pheniicsman. The
past three years were cheerful largely due to the presence of my dear friend and amourette
Anastasia, whom I shared a million of laughter-filled adventures with. Naturally, she was



v

particularly thrilled that I also shared my amazing friend Marc with her, and all three of
us are very excited about the upcoming Greek wedding in the summer of 2019. Special
mention goes to my meanest friend Florent, who is - let’s face it - much better volleyball
than a beer pong player. I am grateful for his not-so-kind guidance through the hell of
French language and bureaucracy, many late afternoon sandwich expeditions, and more
than anything for throwing the best birthday parties I have ever seen.

Spending mid-twenties in Paris is arguably not the worst destiny that can fall upon a
young human being, and I was additionally blessed with the opportunity to travel rather
regularly over the past three years. Naming all of the people who made my time in
Paris and abroad pleasant would surely be an impossible task. Nevertheless, I would
like to give special thanks to Ariel, Alessandra, Benjamin, Dinko, Giulia, Luka, Niki,
Pierre, Robert, and Xixi, for entertaining and precious time we spent together. A huge
shout-out and 100% thanks to my Croatian gang - Jure, Marko, Matija, Pave, and Saša
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An Overture

After sleeping through a hundred million centuries we have finally opened our eyes on a sumptuous

planet, sparkling with colour, bountiful with life. Within decades we must close our eyes again.

Isn’t it a noble, an enlightened way of spending our brief time in the sun, to work at understanding

the universe and how we have come to wake up in it? This is how I answer when I am asked – as I

am surprisingly often – why I bother to get up in the mornings. To put it the other way round, isn’t

it sad to go to your grave without ever wondering why you were born? Who, with such a thought,

would not spring from bed, eager to resume discovering the world and rejoicing to be a part of it?

Richard Dawkins, ”Unweaving the Rainbow: Science, Delusion and the Appetite for Wonder”

Atomic nucleus is a quantum many-body system comprised of the lightest baryons, pro-

tons and neutrons, that are bound together on a femtometer scale by a residual strong

interaction. Due to the fact that the underlying gauge theory for quarks and gluons,

quantum chromodynamics, is highly non-perturbative in the low-energy regime, the ex-

act analytical form of the nuclear interaction still remains elusive. Treatment of the

nuclear many-body problem is further complicated by the fact that a number of nucleons

in typical nucleus is both too large to be tackled with the exact methods and too small

to be solved by employing statistical models. These difficulties, among others, propelled

development of different theoretical nuclear models over the past decades, the most suc-

cessful of which include various implementations of the ab initio methods [NQH+16], the

configuration interaction method [CMPN+05], and the nuclear energy density functional

[BHR03, NVR11, RRR18]. All of these models assume the unenviable task of ultimately

having to describe a vast richness of nuclear phenomena, ranging from the structure and

reactions in finite nuclei to the complex processes in neutron stars.

Historically, a wide success of the semi-empirical liquid-drop model [Wei35] showed

that, to a perhaps surprisingly good approximation, atomic nucleus can in fact be de-

scribed as a drop of incompressible and dense liquid whose properties are determined

by a fine balance between macroscopically-derived cohesive and repulsive forces. Further

introduction of the nuclear shell model [May48, HJS49] provided a more microscopically-

founded picture of atomic nucleus, accounting simultaneously for the experimentally ob-

served stability of certain configurations by introducing a concept of shell-like struc-

ture. On the other hand, as early as 1938, Hafstad and Teller proposed the description

of structure of light nuclei in terms of bound states of clusterized α-particles [HT38],
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which lead to a development of microscopic models based on the effective α-α inter-

action [Mar41, AB66]. In stark contrast to the homogeneous quantum-liquid picture,

spatial localization of α-particles gives rise to a molecule-like picture of atomic nucleus,

with any excess neutrons playing a role of covalent bonding between clusterized struc-

tures. Today, formation of cluster states in nucleonic matter, stellar matter, and finite

nuclei represents a very active topic of experimental and theoretical research in nuclear

physics and astrophysics [Bec10, Bec12, Bec14, HIK12, FHKE+18, THSR17, EKNV17].

Particularly favorable conditions for formation of cluster structures are found in light

self-conjugate nuclei, where exotic configurations such as linear chains and compact tri-

angular arrangements are thought to be formed [FHKE+18]. Hoyle state, the famous

second 0+ state in 12C isotope which plays a crucial role in stellar nucleosynthesis and

- consequently - appearance of life on Earth, is predicted to display precisely a three-α

structure [THSR01, F+05]. Another manifestation of clustering in atomic nuclei is clus-

ter radioactivity, first discovered in early 80s by Rose and Jones [RJ84]. The range of

experimentally observed radiated clusters varies between 14C and 32S, while the heavy

mass residue is always a nucleus in the neighborhood of a doubly-magic 208Pb isotope

[WR11]. Recently, a new form of clustering in heavy systems was discovered in terms

of α+208Pb states in 212Po isotope that are decaying to the yrast band via enhanced

dipole transitions [APP+10]. All of these experimental advances necessitate a thorough

theoretical understanding of the nuclear clustering phenomenon.

Among theoretical models that aim to describe nuclear clustering, the antisymmetrized

molecular dynamics (AMD) [KEH01, KEHO95, KEKO12] and the fermionic molecular

dynamics (FMD) [Fel90, FBS95, NF04] certainly belong to the most successful ones.

Starting from the single-nucleon Gaussian-like wave functions, these models have been

able to describe various kinds of cluster structures, as well as the shell-model-like features

of nuclear systems [FHKE+18]. Numerous other theoretical models have been employed

in a description of clustering phenomena, including the Tohsaki-Horiuchi-Schuck-Röpke

(THSR) wave function and container model [THSR01], the no-core shell model [NVB00],

the continuum quantum Monte-Carlo method [CGP+15], the nuclear lattice effective field

theory [EHM09], as well as the self-consistent mean-field theories [ASPG05, MKS+06].

Recently, the Bruyères-Orsay-Zagreb collaboration has carried out studies within the rela-

tivistic energy density functional (EDF) framework that unveiled some interesting results

on the origin of nuclear clustering, linking the appearance of clusters to the depth of the

underlying single-nucleon potential [EKNV12, EKNV13, EKNV14a, EKNV14b].

The framework of nuclear EDFs currently provides the most complete and accurate de-

scription of ground-state and excited-state properties of atomic nuclei over the entire nu-

clide chart [BHR03, NVR11, Egi16, RRR18]. In practical implementations, nuclear EDF

is typically realized on two distinct levels. The basic implementation, which is usually

referred to as either the self-consistent mean-field (SCMF) method or the single-reference

energy density functional (SR-EDF), consists of constructing a functional of one-body

nucleon density matrices that correspond to a single product state of single-particle or

single-quasiparticle states. Modern functionals are typically determined by about ten to

twelve phenomenological parameters that are adjusted to a nuclear matter equation of

state and to bulk properties of finite nuclei. The obtained functional can then be em-

ployed in studies of ground-state properties of atomic nuclei, such as binding energies,
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Figure 1: Schematic representation of clustering in atomic nuclei. Localization parameter α
corresponds to a ratio between the spatial dispersion of nucleon wave function b and the average
internucleon distance r0. Large and small values of α correspond to the quantum-liquid and
solid phases of atomic nucleus, respectively. For values α ≈ 1 a hybrid cluster phase between
quantum liquid and solid phases is formed. Figure taken from Ref. [EKNV12].

charge radii, and equilibrium shapes. However, in order to obtain an access to nuclear

spectroscopy, it is necessary to extend the basic mean-field picture by taking into account

collective correlations that arise from symmetry restoration and configuration mixing.

The second level of implementation, which is usually referred to as either the beyond

mean-field (BMF) method or the multi-reference energy density functional (MR-EDF),

provides a description of excited nuclear states, including the electromagnetic transitions

between them. In practice, it consists of recovering symmetries of intrinsic configurations

that have been broken on a mean-field level, and further mixing the symmetry-restored

states in order to build a collective state of atomic nucleus with good quantum numbers.

Both non-relativistic and relativistic realizations of the framework have so far been suc-

cessfully applied in various structure and reactions studies, from relatively light systems

to superheavy nuclei, and from the valley of β-stability to the particle drip-lines (see

Refs. [BHR03], [NVR11], [Egi16] and references therein). Some of the advantages of us-

ing manifestly covariant functionals involve the natural inclusion of nucleon spin degree

of freedom and the resulting spin-orbit potential, the unique parameterization of nucleon

currents, as well as the natural explanation of empirical pseudospin symmetry in terms of

relativistic mean-fields [Men16]. In addition, J.-P. Ebran and collaborators have recently

shown that, when compared to non-relativistic functionals which yield similar values of

ground-state observables, it is the relativistic formulation of a framework that predicts

the occurrence of significantly more localized intrinsic densities, thus favoring formation

of clusters [EKNV12].

On a more fundamental level, the appearance of clusters can be considered as a transi-

tional phenomenon between quantum liquid and solid phases in atomic nuclei. Situation is

rather similar to the one encountered in mesoscopic systems such as quantum dots [FW05]

and bosons in a rotating trap [YL07], or to the superfluid-insulator phase transitions in

gases of ultracold atoms held in three-dimensional optical lattice potentials [GME+02].
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The problem of quantum-liquid-to-crystal transitions was already addressed by Mottelson,

who introduced the quantality parameter to describe a phase of infinite and homogeneous

quantum systems [Boe48]. In order to take into account the finite-size effects in atomic

nuclei, the localization parameter α was recently introduced [EKNV12]. This parameter

corresponds to a ratio between the spatial dispersion of nucleon wave function b and the

average internucleon distance r0, as schematically depicted in Figure 1. For large values

of α nucleons are delocalized and nucleus behaves as a quantum liquid. At the opposite

end, when the average internucleon distance significantly exceeds the nucleon spatial dis-

persion, nucleons localize on the nodes of a crystal-like structure. The intermediate values

of α are marked by a hybrid phase of cluster states which are, in a first approximation,

expected to appear for α ≈ 1 values. Comprehensive study of α values in light self-

conjugate nuclei has shown that the relativistic functionals systematically yield smaller α

values as compared to their non-relativistic counterparts, thus favoring formation of clus-

ters [EKNV13]. In fact, even though non-relativistic and relativistic functionals predict

very similar values of ground-state binding energies, deformations and charge radii, the

relativistic framework was demonstrated to predict much more localized intrinsic densities

[EKNV12]. This phenomenon was successfully linked to the pronouncedly larger depth

of the underlying single-nucleon potential, which in the relativistic case arises naturally

as a sum of the large attractive scalar and repulsive vector Lorentz fields [EKNV12].

Subsequent studies have examined the role of saturation, deformation and degeneracy of

single-nucleon levels in formation of clusters [EKNV14a, EKNV14b], and interesting clus-

ter structures have been predicted in excited configurations of light self-conjugate nuclei

[EKNV14b]. However, in order to carry out a more quantitative analysis of the excited

states, it is necessary to extend the static mean-field picture by including configuration

mixing of symmetry-restored configurations.

In this thesis, we build upon the work of Refs. [EKNV12, EKNV13, EKNV14a,

EKNV14b, EKNV17, EKLV18] by developing a symmetry-restoring collective model

based on the relativistic EDF framework. Starting point of our calculation is the rel-

ativistic Hartree-Bogoliubov (RHB) model [VALR05, MTZ+06], which provides a unified

description of particle-hole and particle-particle correlations on a mean-field level. In

the particle-hole channel, we will be using the density-dependent point-coupling DD-PC1

functional [NVR08] whose parameters have been fitted to the experimental binding ener-

gies of a set of 64 deformed nuclei in the mass regions A ≈ 150− 180 and A ≈ 230− 250.

The DD-PC1 functional has been further tested in calculations of ground-state properties

of medium-heavy and heavy nuclei, including binding energies, charge radii, deformation

parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

In the particle-particle channel, we will be using the non-relativistic pairing force that

is separable in a momentum space [Dug04, TMR09a]. By assuming a simple Gaussian

ansatz, two parameters of the force were adjusted to reproduce density dependence of the

gap at the Fermi surface in nuclear matter, as calculated with the Gogny D1S parameter-

ization [BGG91]. The separable pairing force reproduces pairing properties in spherical

and deformed nuclei calculated with the original Gogny force, while significantly reduc-

ing computational cost. The RHB equations are solved numerically by expanding nuclear

spinors in the basis of an axially symmetric harmonic oscillator. Both axial and time-

reversal symmetry of the intrinsic states are imposed, while nucleus is allowed to deform
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a b c d 

Figure 2: Different nuclear shapes that are taken into account in this study. State which
preserves all spatial symmetries corresponds to the spherical shape (a). By allowing rotational
symmetry to be broken, we obtain oblate (pancake-like) shape (b) or prolate (cigare-like) shape
(c). Additionally, breaking of parity symmetry leads to the octupole-deformed (pear-like) shape
(d). Figure adopted from Ref. [LB13].

into prolate (cigare-like) and oblate (pancake-like) shape, as well as to the octupole-

deformed parity-breaking (pear-like) shape. Various nuclear shapes that are taken into

account in this study are shown in Figure 2. This kind of analysis provides an access to

nuclear configurations in the entire plane spanned by the axially-symmetric quadrupole

and octupole deformations. In the next step, we will be recovering the most relevant

symmetries that are broken on a mean-field level. In particular, the rotational symmetry,

the particle number symmetry, and the parity symmetry are all simultaneously restored.

Additionally, a simple center-of-mass correction that accounts for the violation of trans-

lational symmetry is included in the model [BHR03]. The symmetry-restored states are

subsequently used as a basis for the configuration mixing scheme, rooted in the generator

coordinate method (GCM) by Hill, Wheeler, and Griffin [HW53, GW57]. Solving the

corresponding Hill-Wheeler-Griffin equation yields the excitation spectra and collective

wave functions that can be used to calculate various observables, such as spectroscopic

quadrupole moments and electromagnetic multipole transition strengths. These quanti-

ties can then serve as a testing ground for the performance of our model in comparison

with the experiment, as well as with the predictions of other theoretical models. Further-

more, we have implemented into our model the beyond-mean-field techniques for studies

of elastic and inelastic electron scattering off nuclei, that have recently been developed

within the Skyrme-based EDF framework by J. M. Yao and collaborators [YBH15]. By

using collective wave functions of the symmetry-restored states, we are therefore able to

calculate laboratory densities and transition densities between the low-lying states, as

well as both the elastic and inelastic scattering form factors.

From a computational point of view, this study has commenced with the axially sym-

metric version of the DIRHB package [NPVR14] which computes ground-state properties

of even-even nuclei using the framework of relativistic self-consistent mean-field models

[Rin96, RGL97]. During the course of this thesis, the existing code was first extended by

including the axially symmetric octupole degree of freedom, which enabled us to perform

self-consistent calculations in the entire axially symmetric quadrupole-octupole plane.

Furthermore, restoration of rotational, parity, and particle number symmetry were all
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added, as well as mixing of these configurations within the GCM framework. Since the

obtained code was significantly time-consuming, it was parallelized with the OpenMP

techniques in order to make it computationally feasible. Finally, a recently developed

method for studies of electron scattering off nuclei was implemented in the model. This

provided us with the state-of-the-art tool for nuclear structure studies that can, together

with the eventual extensions, be applied in analyses of various phenomena over the entire

nuclide chart, particularly in the heavy-mass region where the framework of EDFs still

remains unrivalled among theoretical nuclear models.

In this thesis, particularly, the developed model will be applied in a study of cluster-

ing phenomena in light atomic nuclei. As the first application of the model, we chose

to focus our attention on a structure of neon and carbon isotopes. Generally speaking,

light systems are arguably the most demanding test for nuclear EDF models, not least

because few-body systems are marked by a gradual breaking of the mean-field picture and

by increasing necessity of the exact restoration of translational symmetry. On the other

hand, one of the main advantages of using the EDF framework in studies of clusters is its

feature that no localized structures are a priori assumed within the model. In fact, the

framework incorporates both the quantum-liquid and cluster aspects of nuclear systems

on the same footing, and clusterization may eventually appear only as a consequence of

the self-consistent procedure on a mean-field level and/or the subsequent configuration

mixing. In addition, parameters of the effective interaction were fitted to data on very

heavy nuclei, and therefore the interaction itself does not bear any information whatso-

ever about the light systems that we aim to tackle. Of course, globality of the approach

does not come without a price, and the employed interaction may not be able to describe

all particularities determined by shell evolution in specific mass regions. Nevertheless, in

spite of the mentioned drawbacks, it is the underlying credo of this manuscript that the

employment of such a global framework, even at (or, in some sense, especially at) the

verge of its applicability, represents a meaningful endeavor and a valuable contribution

to the lively field of nuclear cluster physics. It is left to the reader to decide for himself

on the validity of this assumption.

This manuscript is organized as follows. Part I contains detailed description of the

employed theoretical framework. In Chapter 1, we will describe the single-reference im-

plementation of relativistic EDF theory. The RHB model, a particular realization of the

theory that encompasses both mean-field and pairing correlations, will be introduced,

and effective interactions in both the particle-hole and particle-particle channels will be

discussed. Additionally, we will summarize recent results obtained by the Bruyères-Orsay-

Zagreb collaboration on the origin and phenomenology of nuclear clustering within the

relativistic mean-field framework. In Chapter 2, the multi-reference implementation of

EDF theory will be laid out, encompassing a procedure of symmetry restoration and

configuration mixing. Furthermore, relations most pertinent for calculation of correlated

densities and form factors will be displayed. Part II contains first results obtained within

the described framework. We will start with an introductory Chapter 3 in which we will

address computational aspects of a study. In Chapter 4, a comprehensive analysis of

quadrupole-octupole collectivity and cluster structures in neon isotopes will be carried

out. Special attention will be paid to the case of the self-conjugate 20Ne isotope, where

cluster structures are thought to form already in the ground state. In Chapter 5, the
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framework will be applied in a description of low-lying structure of 12C isotope, focusing

particularly on a structure of the Kπ = 0+ bands that are known to manifest a rich

variety of shapes. Finally, a concluding chapter will briefly summarize the results of the

present study and suggest possible extensions and improvements to the model.





Part I

Theoretical Framework

9





Chapter 1

The Nuclear Energy Density

Functional Method

Use the Force1, Luke.

Jedi Master Obi-Wan Kenobi, ”Star Wars Ep. IV”

The nuclear energy density functional (EDF) method currently provides the most com-

plete and accurate description of ground-state and excited-state properties of atomic

nuclei over the entire nuclide chart [BHR03, NVR11, RRR18]. Among microscopic ap-

proaches to the nuclear many-body problem, it is arguably the one which maintains an

optimal compromise between global accuracy and feasibility of computational cost. It is

very similar2 in form to the density functional theory (DFT) [HK64, KS65, Koh99], a

method which is widely used in condensed matter physics and quantum chemistry. In

resemblance to DFT framework, nuclear EDF models effectively map the many-body

problem onto a one-body problem by introducing relatively simple functionals of powers

and gradients of ground-state nucleon densities and currents, representing distributions of

matter, spin, momentum, and kinetic energy. In this way, a complex system of strongly-

interacting particles is substituted by a much simpler and more intuitive system of in-

dependent particles that move in a self-consistent mean-field generated by all the other

particles. On the other hand, and in contrast to the situation encountered in electronic

many-body systems, derivation of highly accurate functionals from first principles is yet

1If you are already wondering which one, this is the right chapter for you.
2The main conceptual difference between EDF and DFT lies in their relation to symmetry breaking.

While EDF method minimizes energy of the system with respect to the symmetry-breaking trial wave
function, DFT is built on an energy functional that is to be minimized with respect to a density which
possesses all symmetries of the actual ground-state density [Dug14]. Even though, more recently, DFT
framework has been extended to account for breaking of translation symmetry [Eng07], more involved
symmetries (such as rotational or particle number) are yet to be included to the framework. The relation
between DFT and nuclear EDF method still remains under debate [Dug14, Men16, Nak12, LDB09].

11



12 Chapter 1 The Nuclear Energy Density Functional Method

to be achieved in nuclear systems. Meanwhile, a hybrid approach is routinely employed:

(i) form of the EDF is motivated by the underlying fundamental theory and relevant

symmetries of the nucleon-nucleon force are respected, but (ii) additional free parameters

are introduced to a model. Modern functionals are typically determined by about ten to

twelve such parameters that are adjusted to a nuclear matter equation of state and to

ground-state properties of finite nuclei. The most popular phenomenological functionals

can be broadly divided into three separate classes:

• Non-relativistic Skyrme interaction. Originally introduced by T. H. R. Skyrme in

the late 50s [Sky56, Sky58] as a combination of momentum-dependent two-body

contact forces and momentum-independent three-body contact force, Skyrme func-

tionals are probably the most widely used effective interaction in studies of low-

energy nuclear structure up to date. This interaction is zero-range and quasilocal,

which makes it particularly attractive from a computational point of view. On the

other hand, pairing term is not included in the central part of an interaction and it

is therefore typically added by hand. A general overview of Skyrme formalism can

be found in Ref. [BHR03] and references cited therein.

• Non-relativistic Gogny interaction. In the late 60s, D. M. Brink and E. Boeker

introduced a finite-range nuclear interaction [BB67]. A bit over a decade later, J.

Dechargé and D. Gogny proposed a new parameterization of nuclear interaction

[DG80] that became known as the Gogny force. Since within Gogny’s framework

mean-field and pairing terms have a common origin, this force is marked by a con-

sistent treatment of all parts of the interaction. Finite range of the force guarantees

a proper cut-off in momentum space, but the resulting pairing field is non-local

which can render numerical implementations rather time-consuming. Over the past

decades, various parameterizations of the force have been successfully applied in

numerous nuclear structure studies. A general overview of Gogny formalism can be

found in Refs. [Egi16, RRR18] and references cited therein.

• Relativistic interactions. Building upon a pioneering work of B. D. Serot and J. D.

Walecka from the mid-80s [SW86], manifestly covariant approaches to the nuclear

many-body problem have been developed [VALR05, NVR11, Men16]. Starting from

a field theoretical Lagrangian that obeys Lorentz symmetries, these models have

been able to match the performance of conventional non-relativistic models, while

naturally accounting for purely relativistic effects such as the spin-orbit potential or

the pseudospin symmetry [Gin97, MSTY+98]. Even though the relativistic Hartree-

Fock-Bogoliubov model has been introduced quite recently [LRGM10, EKAV11], the

vast majority of relativistic models is explicitly built as Hartree theories. In other

words, the exchange terms of nuclear interaction are usually not taken into account

explicitly and their effect is implicitly included through the free parameters of the

model. Finally, non-relativistic pairing force is typically added to the functional.

All of the listed formulations have their own advantages and drawbacks, and the choice

of interaction in each study often comes down to a particular problem in question and/or
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to a personal taste and formational tradition of a researcher. Due to a nature of the

problem in question, as well as the personal taste and formational tradition of the au-

thor of these lines3, the present study will be carried out within the relativistic frame-

work. This means that a discussion of the non-relativistic framework will be completely

omitted from the manuscript. For more information on recent applications of the non-

relativistic framework an interested reader is referred to the review papers on the Skyrme

[BHR03] and the Gogny [Egi16, RRR18] techniques. We will start this chapter with a

brief overview of the relativistic mean-field (RMF) theory. It goes almost without saying

that an intention or a capacity of this manuscript is not to give a comprehensive the-

oretical account of the framework. Much more detailed discussions can be found in a

recently published book on relativistic EDFs [Men16] and in various review articles on

the subject [Rin96, VALR05, NVR11]. For the purposes of this thesis, in Section 1.1 we

will first lay out the basic building blocks of the RMF theory, introducing the meson-

exchange and point-coupling pictures of a covariant framework. We will then proceed

to describe particular effective interactions that will be used in the particle-hole (ph)

and particle-particle (pp) channels throughout the study, that is, the density-dependent

point-coupling DD-PC1 functional and a non-relativistic force separable in the momen-

tum space, respectively. Relativistic Hartree-Bogoliubov model, which enables a unified

description of ph and pp correlations on a mean-field level, will be discussed in Section

1.2. In Section 1.3, we will summarize recent results on the origin and phenomenology of

nuclear clustering within the RMF framework that are relevant for the present work.

1.1. Relativistic Mean-Field Theory

1.1.1 Basic Building Blocks of the RMF Theory

Relativistic mean-field theory is a phenomenological, Lorentz-invariant approach to the

nuclear many-body problem. It is based on a picture of atomic nucleus as a relativistic

system of nucleons that are coupled to exchange mesons and photons through an effective

Lagrangian. Basic assumptions of the theory are [Rin96, Men16]:

• RMF is a semi-classical field theory and the effective mesons serve only to introduce

classical fields that carry appropriate relativistic quantum numbers. Consequently,

rather than being treated as dynamical degrees of freedom, the meson-field operators

are replaced by their expectation values in the nuclear ground state. More formally,

effective mesons can be thought of as collective bosonic degrees of freedom that

parameterize the non-vanishing bilinear combinations of local nucleon fields in the

Hubbard-Stratonovich sense [Hub59].

• Nucleons are treated as point-like particles and their complex substructure includ-

ing quarks and gluons is not explicitly taken into account. This approximation is

3And his respective doctoral advisors as well.
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justified by considerations rooted in the effective field theory (EFT), since in the

low-energy regime characteristic for nuclear structure the detailed substructure of

nucleons cannot be resolved. Therefore, the explicit contribution from quarks and

gluons can be integrated out, while their effect is being completely accounted for

through the free parameters of effective Lagrangian.

• Vacuum polarization is not taken into account explicitly, that is, contributions from

the Dirac sea are neglected (the so called no-sea approximation). However, effects of

vacuum polarization are taken into account implicitly, through a phenomenological

adjustment of free parameters of a model.

• In order to correct for too large incompressibility and properly describe the nu-

clear surface properties, a density-dependence of the interaction is introduced. This

feature is not specific to relativistic interactions only, since a large majority of pa-

rameterizations of both Skyrme and Gogny interactions includes density-dependent

terms as well.

Starting point of RMF calculations is a Lagrangian density that includes coupling of

nucleons on effective mesons and photons, as well as the meson self-coupling. The attrac-

tive part of effective interaction is mediated by the exchange of scalar mesons. In fact, the

spin-zero positive-parity σ-meson, which provides the mid- and long-range attractive part

of nuclear interaction, can be understood as an approximation to the two-pion exchange

in the mesonic picture [Rin96]. The repulsive part of interaction is determined by the

exchange of vector mesons, the most important of which is the isoscalar-vector ω-meson.

Finally, isospin dependence of the nuclear force is accounted for through the exchange

of isovector-vector ρ-meson. The isoscalar-scalar σ-meson, the isoscalar-vector ω-meson,

and the isovector-vector ρ-meson build a minimal set of meson fields that is, together with

the electromagnetic field, necessary for a description of bulk and single-particle nuclear

properties [NVR11]. In principle, one could also introduce to a model the isovector-

scalar δ-meson, which would lead to a minor difference of scalar nuclear potentials in two

isospin channels. However, it was demonstrated that the effect of inclusion of δ-meson

can be completely absorbed in the readjusted coupling constant of ρ-meson [RMVC+11].

Therefore, δ-meson is omitted from majority of successful parameterizations. One should

bear in mind that RMF is a phenomenological theory and that properties of the effective

mesons do not necessarily have to coincide with properties of actual mesons known from

the experiment.

In order to take into account the higher-order many-body effects, which are needed for

a quantitative description of nuclear matter and finite nuclei, it is necessary to include

a medium dependence of the effective interaction. This can be done either by introduc-

ing non-linear meson self-couplings or by allowing for the explicit density-dependence

of the meson-nucleon couplings. Both the former [LKR97, LMGZ04, TRP05] and the

latter [HKL01, NVFR02, LNVR05] approach have so far been employed in building suc-

cessful phenomenological interactions. In the next step, the very exchange of effective

mesons in each channel (scalar-isoscalar, vector-isoscalar, scalar-isovector, and vector-

isovector) can be replaced by the corresponding local four-point (contact) interactions
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between nucleons. The main motivation for this step is a fact that the exchange of heavy

mesons is associated with short-distance dynamics which is unresolvable at low ener-

gies that are characteristic for nuclear systems. The main practical advantage, on the

other hand, is reducing the computational cost considerably by rendering the interac-

tion zero-range. It has been argued that other advantages of the point-coupling picture

include a possibility of studying the role of naturalness in effective theories for nuclear

structure-related problems [FS00], an easier inclusion of the Fock term, as well as the

transition to a framework which is more convenient to investigate relationship between

relativistic and non-relativistic models. Within the point-coupling picture, finite range

effects of the nuclear force are typically taken into account by local derivative terms,

similar to the situation encountered within the Skyrme framework. On the other hand,

medium dependence is accounted for either through density-dependent coupling constants

in two-body interactions or by including many-body contact terms. Over the past two

decades, point-coupling functionals [BMMR02, NVR08, ZLYM10] have been developed

whose performance matches that of the meson-exchange functionals. Throughout this

study we will used the density-dependent point-coupling (DD-PC1) functional [NVR08]

that was formulated in 2008 and employed in numerous studies ever since.

1.1.2 The DD-PC1 Effective Interaction

Basic building blocks of the point-coupling functional are densities and currents bilinear

in the Dirac spinor field ψ of a nucleon:

ψ̄OτΓψ, Oτ ∈ {1, ~τ}, Γ ∈ {1, γµ, γ5, γ5γµ, σµν}, (1.1)

where ~τ represents Pauli isospin matrices and Γ denotes 4×4 Dirac matrices. An effective

Lagrangian is then built by forming the four-fermion (contact) combinations that behave

like scalars under Lorentz transformations and under rotations in isospin space. Possible

combinations in various isospace-space channels read:

(i) isoscalar-scalar: (ψ̄ψ)(ψ̄ψ),

(ii) isoscalar-vector: (ψ̄γµψ)(ψ̄γµψ),

(iii) isovector-scalar: (ψ̄~τψ) · (ψ̄~τψ),

(iv) isovector-vector: (ψ̄~τγµψ) · (ψ̄~τγµψ).

Vectors in isospin space are denoted with arrows, and vectors in coordinate space will be

marked in bold throughout the manuscript. In principle, a general effective Lagrangian

can be written as a power series of these terms and their derivatives, with higher-order

terms representing in-medium many-body correlations. However, the currently available

empirical data constrains only a limited set of parameters in such general expansion.
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Therefore, an alternative approach is usually employed where the effective Langragian

includes only second-order interaction terms, while all of the many-body correlations are

built into a density-dependence of coupling constants. Total effective Lagrangian density

of DD-PC1 interaction reads:

LDD-PC1 = Lfree + L4f + Lder + LEM. (1.2)

Here, the first term corresponds to a Lagrangian density of free nucleons:

Lfree = ψ̄(iγµ∂
µ −m)ψ, (1.3)

while the four-fermion point-coupling part reads:

L4f = −1

2
αS(ρ)(ψ̄ψ)(ψ̄ψ)− 1

2
αV (ρ)(ψ̄γµψ)(ψ̄γµψ)− 1

2
αTV (ρ)(ψ̄~τγµψ)(ψ̄~τγµψ). (1.4)

In full analogy with the meson-exchange picture, contact part of the interaction includes

the isoscalar-scalar, isoscalar-vector and isovector-vector terms, while the isovector-scalar

term is not included into a Lagrangian. Furthermore, the derivative part includes only

the isoscalar-scalar contribution:

Lder = −1

2
δS(∂νψ̄ψ)(∂νψ̄ψ). (1.5)

Even though such terms could in principle be included in each isospace-space channel,

experimental data can in practice constrain only one such term [NVR08]. Inclusion of

derivative term in the isoscalar-scalar channel only is consistent with conventional meson-

exchange RMF models, where a mass of σ-meson is adjusted to experimental data and free

values are used for masses of ω- and ρ-mesons [NVR11]. Finally, the effective Lagrangian

includes coupling of protons on electromagnetic field:

LEM = −eψ̄Aµγµ
1− τ3

2
ψ. (1.6)

Dynamics of a nuclear system is determined by the principle of least action:

S =

∫
dx4L(x), δS = 0, (1.7)

which leads to the Euler-Lagrange equation:
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∂L
∂ψ̄

+
∂L
∂ρV

∂ρV
∂ψ̄
− ∂µ

∂L
∂(∂µψ̄)

= 0. (1.8)

Carrying out variation of Lagrangian with respect to the adjoint spinor ψ̄ yields the

single-nucleon Dirac equation:

[
γµ

(
i∂µ − Σµ

V − Σµ
TV − Σµ

R

)
−
(
m+ ΣS

)]
ψ = 0, (1.9)

where the isoscalar-scalar nucleon self-energy ΣS, the isoscalar-vector self-energy Σµ
V , and

the isovector-vector self-energy Σµ
TV read:

ΣS = αS(ρV )(ψ̄ψ)− δS∆(ψ̄ψ), (1.10)

Σµ
V = αV (ρV )(ψ̄γµψ) + e

1− τ3

2
Aµ, (1.11)

Σµ
TV = αTV (ρV )(ψ̄~τγµψ). (1.12)

In addition, Dirac equations includes contribution from the rearrangement term:

Σµ
R =

1

2

ψ̄γµψ

ρV

[dαS
dρV

(ψ̄ψ)(ψ̄ψ) +
dαV
dρV

(ψ̄γµψ)(ψ̄γµψ) +
dαTV
dρV

(ψ̄~τγµψ)(ψ̄~τγµψ)
]
, (1.13)

which arises from variation of density-dependent coupling constants αS, αV , and αTV with

respect to nucleon field ψ̄. For models with density-dependent couplings, inclusion of the

rearrangement self-energies is shown to be essential for energy-momentum conservation

and thermodynamic consistency [NVFR02, FLW95]. In addition, it is assumed that

couplings are functions of vector density, ρV =
√
jµjµ, where jµ = ψ̄γµψ is the nucleon

four-current. Alternative option would have been making the couplings functions of

scalar density. Nevertheless, vector density appears as a more natural choice because it

is related to a conserved nucleon number, while no such conservation law holds in a case

of scalar density. Guided by the microscopic density dependence of the vector and scalar

self-energies in nuclear matter, a particular ansatz for the functional form of couplings is

introduced [NVR08]:

αi(ρV ) = ai + (bi + cix)e−dix, (i = S, V, TV ), (1.14)

where x = ρV /ρsat, ρsat = 0.152 fm−3 denotes nucleon saturation density in symmetric

nuclear matter, and twelve free parameters are yet to be determined via fitting procedure.

Dirac equation (1.9) describes dynamics of a nuclear system. On the other hand,

the corresponding EDF can be derived by employing the Legendre transformation on a
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Table 1.1: List of phenomenological parameters of DD-PC1 functional (first row) and their
adopted values obtained by fitting to experimental data on infinite nuclear matter and finite
nuclei (second row) [NVR08]. See text for details.

aS [fm2] bS [fm2] cS [fm2] dS aV [fm2] bV [fm2] dV bTV [fm2] dTV δS [fm4]

−10.0462 −9.1504 −6.4273 1.3724 5.9195 8.8637 0.6584 1.8360 0.6400 −0.8150

Lagrangian density L. This yields the Hamiltonian density H:

H =
∂L

∂(∂0φi)
∂0φi − L, (1.15)

where φi represents either nucleon or photon field. Hamiltonian density, which corre-

sponds to the 00 component of energy-momentum tensor, is then used to determine the

effective Hamiltonian operator H4:

H =

∫
d3rH(r). (1.16)

Within the mean-field approximation, the total correlated many-body state |Ψ〉 is repre-

sented by a simple product state |Φ〉. The DD-PC1 energy density functional corresponds

to the expectation value of the effective Hamiltonian operator in this product state:

EDD-PC1[ρ̂] ≡ 〈Φ|H|Φ〉 =

∫
d3rE(r), (1.17)

where a total energy density:

E(r) = Ekin(r) + E int(r) + EEM(r) (1.18)

is composed of the kinetic part Ekin(r), the interaction part E int(r), and the electromag-

netic part EEM(r):

Ekin(r) =
N∑
i=1

ψ†αi
(
ααα · p + βm

)
ψαi , (1.19)

E int(r) =
1

2
αSρ

2
S +

1

2
αV jµj

µ +
1

2
αTV~jµ~j

µ +
1

2
δSρS∆ρS, (1.20)

EEM(r) =
1

2
ejµcAµ. (1.21)

4We call our Hamiltonian operator effective because it explicitly depends on nucleonic density and as
such it is different from a genuine density-independent Hamiltonian operator. This distinction lies at the
root of some theoretical difficulties that can manifest themselves on a multi-reference level and that will
be discussed in the next chapter.
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Here, we have introduced a shorthand notation for the scalar density ρS, the baryon

current jµ = (ρV , j), the isovector current ~jµ = (ρ3, j3), and the electromagnetic current

jµc = (ρc, jc) in the self-consistent ground state of atomic nucleus:

ρS(r) ≡ 〈Φ|ψ̄ψ|Φ〉 =
N∑
i=1

ψ̄αi(r)ψαi(r), (1.22a)

jµ(r) ≡ 〈Φ|ψ̄γµψ|Φ〉 =
N∑
i=1

ψ̄αi(r)γµψαi(r), (1.22b)

~jµ(r) ≡ 〈Φ|ψ̄~τγµψ|Φ〉 =
N∑
i=1

ψ̄αi(r)~τγµψαi(r), (1.22c)

jµc (r) ≡ 〈Φ|ψ̄γµ1− τ3

2
ψ|Φ〉 =

N∑
i=1

ψ̄αi(r)γµ
1− τ3

2
ψαi(r), (1.22d)

where sums run over all occupied positive-energy single-nucleon orbitals. Particular struc-

ture of |Φ〉 will be discussed in Section 1.2. The ground-state energy of a nuclear system

(1.17) is determined by a self-consistent solution to the Dirac equation (1.9). Starting

from an initial nuclear field (usually something of the Woods-Saxon type), a first set of

orbitals {ψi} can be obtained. These orbitals are then used to calculate densities and

currents, (1.22a) - (1.22d), which give rise to refined nuclear fields, (1.10) - (1.13). In the

next step, these fields serve as a new source to the Dirac equation. The self-consistent

procedure is repeated until a convergence is reached and a ground-state description of

atomic nucleus is obtained.

Twelve parameters in various isospace-space channels together with the strength pa-

rameter of a derivative term form an initial set of 13 free parameters of the DD-PC1

interaction. Some of them will be discarded prior to the fitting procedure. To start with,

a functional form of coupling constant in the isovector-vector channel was determined

from results of Dirac-Brueckner calculations of asymmetric nuclear matter [dJL98], and

two parameters (aTV and cTV ) were therefore set to zero [NVR08]. In addition, param-

eter cV was also set to zero in order to reduce a number of parameters. The remaining

ten parameters were simultaneously adjusted to infinite and semi-infinite nuclear matter

properties, as well as to the binding energies of 64 axially symmetric deformed nuclei in

mass regions A ≈ 150 − 180 and A ≈ 230 − 250. Details of the fitting procedure can

be found in Ref. [NVR08], while in Table 1.1 we list the adopted values of parameters5.

DD-PC1 functional has been further tested in calculations of ground-state properties

of spherical and deformed medium-heavy and heavy nuclei, including binding energies,

charge radii, deformation parameters, neutron skin thickness, and excitation energies of

giant multipole resonance. The only relevant deviations from data have been found in

calculations of binding energies in spherical closed-shell nuclei. This discrepancy can be

understood in terms of a relatively low effective nucleon mass that, when a relativistic

5It is interesting to mention that, quite recently, concepts from information geometry were used to
analyze parameter sensitivity for a nuclear energy density functional, improve the fitting procedure, and
eventually further reduce a number of parameters [NV16, NIV17].
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(a) (b)

Figure 1.1: Performance of DD-PC1 functional with two different beyond mean-field models.
Left panel (a): Low-lying spectra of 226Th calculated with DD-PC1 functional within the IBM
framework in comparison with experimental data [NVNL14]. Right panel (b): Low-lying spectra
of 76Ge calculated with DD-PC1 functional and collective Hamiltonian model in comparison with
experimental data [NMV14].

functional is adjusted to binding energies of deformed nuclei, yields overbinding in spheri-

cal systems. Save for these disagreements in a vicinity of closed shells, a very good overall

agreement with data has been obtained (see Sec. IV of Ref. [NVR08]). Furthermore, per-

formance of the DD-PC1 functional was additionally tested in subsequent studies within

different beyond mean-field models [NVNL14, NMV14]. In Ref. [NVNL14], the inter-

acting boson model (IBM) Hamiltonian was built from energy surfaces generated with

constrained calculations based on the DD-PC1 functional. This Hamiltonian was further

employed in calculations of energy spectra and transition rates in different medium-heavy

and heavy isotopes. In the left panel of Figure 1.1, we show calculated spectroscopy of
226Th isotope in comparison with available data. In Ref. [NMV14], the shape coexistence

and triaxiality in germanium isotopes were studied within the framework of collective

Hamiltonian based on DD-PC1 functional. The right panel of Fig. 1.1 displays obtained

low-energy structure of 76Ge isotope in comparison with available data. Both mean-field

and beyond mean-field applications of DD-PC1 functional arguably place it among the

most successful contemporary functionals and justify the choice of an effective interaction

for the present study.

1.1.3 The Separable Pairing Force

EDF method, in a form described in previous subsection, can account for only a very

small number of doubly magic nuclei. Moving further away from closed shells, however,

the inclusion of correlations related to pairing of two nucleons (particle-particle correla-

tions) becomes crucial for a quantitative description of many nuclear structure phenom-

ena. In principle, particle-particle interaction is isospin-dependent and both T = 1 and

T = 0 components of the interaction should be taken into account. For a large majority

of nuclei, dominant contribution to pairing phenomenon stems from a correlated state of

like-particles (two protons or two neutrons) that are coupled to total angular momentum
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zero and total isospin one. On the other hand, when a number of neutrons approaches a

number of protons, two types of nucleons occupy similar orbitals near Fermi surface and

neutron-proton pairs can be formed in both the T = 1 and T = 0 channel [FM14]. How-

ever, due to the breaking of the underlying signature symmetry, simultaneous inclusion

of both types of pairing is notoriously complicated within the EDF framework [BHR03].

Therefore, in this work we adopt a strategy of virtually all EDF models and explicitly

treat only the like-particle pairing. Furthermore, even though relativistic pairing interac-

tions in finite nuclei have been formally developed, at the moment there is no empirical

evidence for any relativistic effects in nucleon pairing [Ser01]. Therefore, in this work we

employ a standard hybrid method by adding the non-relativistic pairing force to the rela-

tivistic energy density functional (more details on this method can be found, for example,

in a review paper of Ref. [VALR05]). Commonly used tactics in relativistic models is

including a pairing force which is based on the Gogny interaction. On the one hand, this

choice avoids a problem of cutoff dependence which plagues zero-range implementations

of pairing force, such as monopole pairing or density-dependent δ-pairing interactions.

On the other hand, a price to pay is the non-locality of pairing field and, consequently,

the inherited complexity of numerical implementation. In order to reduce the cost of nu-

merical implementation, a separable form of pairing has been introduced in calculations

of both spherical and deformed nuclei [Dug04, TMR09c, TMR09a, TMR09b, NRV+10].

Simple separable forces are demonstrated to reproduce pairing properties in spherical and

deformed nuclei on almost the same footing as the original Gogny force, while reducing a

computational cost significantly. As additional features, they both preserve translational

invariance and maintain a finite range.

The separable pairing force that will be used throughout this study is a non-relativistic

force separable in momentum space [TMR09a, TMR09b]:

〈k|V 1S0
sep |k′〉 = −Gp(k)p(k′), (1.23)

with a simple Gaussian ansatz p(k) = e−a
2k2 for the momentum-dependent function.

Starting from a gap equation in the 1S0 channel:

∆(k) = −
∫ ∞

0

k′2 dk′

2π2
〈k|V 1S0

sep |k′〉
∆(k′)

2E(k′)
, (1.24)

two free parameters of the force, G and a, were adjusted to reproduce in infinite nuclear

matter the bell-shape curve of pairing gap as calculated with Gogny force. In this work

we adopt a set of parameters that was obtained by fitting to the D1S parameterization of

Gogny force, that is, G = 728 MeV fm3 and a = 0.644 fm. Nevertheless, since the original

force was adjusted to data on infinite nuclear matter, there is no guarantee that exactly

the same strength has to hold for all finite nuclear systems. Therefore, and in accordance

with the phenomenological spirit of a model, an additional scaling parameter f has been

introduced in practical implementations of separable pairing in finite nuclei that accounts

for different pairing properties throughout the nuclide chart (see, e.g., Section II of Ref.

[AAR16]). Refined methods to determine nuclear mass-dependence of this factor can be
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employed, such as fine tuning it in a comparison between experimental moments of inertia

and those obtained in cranked relativistic Hartree-Bogoliubov calculations [AARR14,

AAR16]. In this work, however, we choose to simply fix the value of scaling parameter

to f = 0.9 and use the same pairing force throughout the entire study.

In order to determine matrix elements of the paring interaction, a separable force of

Eq. (1.23) is first transformed from momentum space to coordinate space:

V (r1, r2, r
′
1, r
′
2) = −Gδ(R−R′)P (r)P (r′)

1

2
(1− Pσ), (1.25)

where R = 1
2
(r1 + r2) and r = r1− r2 denote the center of mass and relative coordinates

of two paired particles, respectively, and Pσ = σ1 ·σ2 is a spin operator. In addition, P (r)

corresponds to a Fourier transform of p(k) and reads:

P (r) =
1

(4πa2)3/2
e−

z2+r2⊥
4a2 . (1.26)

Obviously, separable pairing force has a finite range in coordinate space. In addition,

because of the presence of δ(R−R′), it preserves a translational invariance. To proceed

further with our calculation, it is necessary to define a relevant single-particle basis in

which the pairing force matrix elements will be computed. Prior to that, let us first

introduce a framework that provides a unified self-consistent account of both mean-field

and pairing correlations.

1.2. Relativistic Hartree-Bogoliubov Model

1.2.1 The Independent Quasiparticle Picture

So far, we have defined and discussed effective interactions in two distinct interaction

channels, that is, the density-dependent point-coupling (DD-PC1) functional in particle-

hole channel and the separable pairing force in particle-particle channel. In this section,

we will introduce a framework which enables us to treat two of those simultaneously and

on an equal footing (detailed discussions on this framework can be found in standard

textbooks [RS80, BR85] and references cited therein). In order to achieve that, we will

first have to give up on the intuitive picture of independent particles (nucleons), that are

associated with a set of single-particle operators {c†α, cα} and can be generated from a

physical vacuum |0〉 via |α〉 = c†α |0〉6. Since pairing correlations scatter pairs of nucle-

ons in time-reversed states around the Fermi surface, single nucleons do not represent

convenient degrees of freedom anymore. In place of that, one introduces a concept of

independent quasiparticles, that can be thought of as independent particles dressed in

correlations generated by pairing interaction. These quasiparticles are associated with a

6More details on the second quantization formalism are given in Appendix A.
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set of single-quasiparticle operators {β†µ, βµ}, and a transition between particle and quasi-

particle frameworks is given by the unitary Bogoliubov transformation [RS80, BR85]:

βµ =
∑
α

(
U∗αµcα + V ∗αµc

†
α

)
, (1.27)

β†µ =
∑
α

(
Uαµc

†
α + Vαµcα

)
, (1.28)

where sums run over the entire configuration space. Evidently, quasiparticle operators

mix particle creation and annihilation operators. Nevertheless, they still satisfy standard

fermionic anticommutation relations:

{βµ, βν} = 0, {β†µ, β†ν} = 0, {βµ, β†ν} = δµν . (1.29)

Bogoliubov transformation can be written in a more compact form:

(
β

β†

)
=W†

(
c

c†

)
, (1.30)

where the unitary transformational matrix W reads:

W =

(
U V ∗

V ∗ U

)
. (1.31)

Bogoliubov matrices U and V play a central role within this framework, as they determine

properties of independent quasiparticles. However, their form is not completely arbitrary.

In fact, as a consequence of anticommutation relations for quasiparticle operators (1.29),

it can be shown that Bogoliubov matrices need to satisfy the following expressions:

U †U + V †V = 1, UU † + V ∗V T = 1,

UTV + V TU = 0, UV † + V ∗UT = 0.
(1.32)

Within the non-relativistic quasiparticle picture, ground state of the nuclear many-body

system |Φ〉 is constructed by applying quasiparticle annihilation operators on a true (bare)

vacuum state:

|Φ〉 =
∏
µ

βµ |0〉 . (1.33)
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This, in turn, means that the ground state is now a vacuum with respect to independent

quasiparticles:

βµ |Φ〉 = 0, ∀µ. (1.34)

State that satisfies these conditions for a corresponding set of quasiparticle operators

{β†µ, βµ} is called the Hartree-Fock-Bogoliubov (HFB) state. In the next subsection, we

will discuss a particular realization of HFB theory, the relativistic Hartree-Bogoliubov

(RHB) model.

1.2.2 Relativistic Hartree-Bogoliubov Equation

The HFB framework, as already emphasized several times throughout this manuscript,

provides a unified description of ph and pp correlations on a mean-field level. In con-

trast to more phenomenological approaches such as the Bardeen-Cooper-Schrieffer (BCS)

theory, HFB model is applicable across the entire chart of nuclides, for strongly-bound

and weakly-bound nuclei alike. We point out that a particular realization of HFB theory

which will be used in this work, the relativistic Hartree-Bogoliubov model, bears some

differences in comparison to the conventional HFB framework [Val61]. Here, we list some

of the most relevant ones:

• Formally speaking, HFB framework is developed within the Hamiltonian-based pic-

ture, meaning that a starting point of the conventional HFB calculation is a genuine

Hamiltonian operator. On the other hand, starting point of our calculation is a phe-

nomenological EDF of normal and anomalous densities.

• Unlike the situation encountered in the original HFB framework, mean-field and

pairing part of our interaction are derived from different sources.

• Fock (exchange) terms are excluded from our calculation, in both the mean-field

and pairing channels of interaction.

• Due to a covariant structure of framework, relativistic Bogoliubov matrices U and

V will additionally differentiate between large and small components of nucleonic

wave function, a feature which is absent from the non-relativistic formulations of

the theory.

The RHB model defined in this way has proven to be a highly successful framework for a

relativistic description of ground state properties of atomic nuclei [Men16, NVR11]. The

RHB state |Φ〉 and single-particle operators {c†α, cα} can be used to define a Hermitian

normal density ρ and a skew-symmetric pairing tensor (anomalous density) κ:
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ραγ =
〈Φ|c†γcα|Φ〉
〈Φ|Φ〉

=
(
V ∗V T

)
αγ
, (1.35)

καγ =
〈Φ|cγcα|Φ〉
〈Φ|Φ〉

=
(
V ∗UT

)
αγ
, (1.36)

κ∗αγ =
〈Φ|c†αc†γ|Φ〉
〈Φ|Φ〉

=
(
V U †

)
αγ
. (1.37)

Once pairing is included into the model, the EDF does not anymore depend on a normal

density only, but it additionally becomes a functional of a pairing tensor:

ERHB[ρ̂, κ̂, κ̂∗] = ERMF[ρ̂] + Epair[κ̂, κ̂
∗]. (1.38)

Here, ERMF[ρ̂] is the usual relativistic mean-field functional, while the pairing functional

can be calculated as:

Epair[κ̂, κ̂
∗] =

1

4

∑
α1γ1

∑
α2γ2

κ̂∗α1γ1
〈α1γ1|V pp|α2γ2〉 κ̂α2γ2 , (1.39)

with 〈α1γ1|V pp|α2γ2〉 representing matrix elements of a general two-body pairing interac-

tion. In the present work, a mean-field functional corresponds to the DD-PC1 functional

as defined in (1.17), while pairing matrix elements are derived from a separable pairing

force of (1.25). Normal density ρ̂ and anomalous density κ̂ build together the generalized

density matrix R̂:

R̂ =

(
ρ̂ κ̂

−κ̂∗ 1− ρ̂∗

)
, (1.40)

which is idempotent and encodes all of the information about nuclear system that was

originally present in the RHB wave function |Φ〉. Within the Hamiltonian-based picture

of HFB, a Wick theorem with respect to |Φ〉 is employed in order to determine energy

functional E[ρ̂, κ̂, κ̂∗] that depends on normal and anomalous density. In the next step,

one varies:

δ
[
E[ρ̂, κ̂, κ̂∗]− λTr{ρ̂} − Tr{λ(R̂2 − R̂)}

]
= 0 (1.41)

with respect to δR̂, which yields HFB equation. Relativistic Hartree-Bogoliubov equation

has precisely the same form and it reads:
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(
ĥD − λ ∆̂

−∆̂∗ −ĥ∗D + λ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
. (1.42)

The left-hand side of Eq. (1.42) contains two fields. The self-consistent (Hartree-Fock)

field ĥD corresponds to the Dirac Hamiltonian of Eq. (1.9) and it is drives the single-

particle shell structure of atomic nucleus, while the pairing (Bogoliubov) field ∆̂ is respon-

sible for scattering of paired nucleons around the Fermi surface. The chemical potential

λ is determined by the particle number subsidiary condition that the expectation value

of particle number operator in nuclear ground state corresponds to the actual number

of nucleons. Column vectors of the RHB eigenvalue problem denote quasiparticle wave

functions, and Ek are quasiparticle energies. We note that a dimension of the RHB equa-

tion is twice as large as a dimension of the corresponding Dirac equation. Therefore, for

each eigenvector (Uk, Vk) with positive quasiparticle energy Ek > 0 there exists an eigen-

vector (V ∗k , U
∗
k ) with negative quasiparticle energy −Ek. Due to a fermionic character

of the theory, levels Ek and −Ek cannot be occupied simultaneously, that is, one needs

to choose either the positive or negative eigenvalue and the corresponding eigenvector.

Within the no sea approximation, one should in principle choose solutions with posi-

tive quasiparticle energies (particles) for states above the Dirac sea, and solutions with

negative quasiparticle energies (antiparticles) for states in the Dirac sea [Men16]. Never-

theless, due to a large Dirac gap, contribution of antiparticles to normal and anomalous

densities is negligible7. Therefore, in this work we employ a common tactics and take

into account only contributions from positive energy states. This choice enabled us to

reduce a computational time significantly by reducing a dimension of the corresponding

equation. On the other hand, a price we were willing to pay was rendering the anomalous

density κ antisymmetric only up to an excellent approximation.

Within the RHB framework, quasiparticle wave functions are composed of the large

component f and the small component g:

Uk =

(
f

(U)
k

ig
(U)
k

)
, Vk =

(
f

(V )
k

ig
(V )
k

)
. (1.43)

The corresponding equations can be solved either directly in the coordinate space [MR96,

MPR97] or, more commonly, by expanding nuclear spinors in a discrete basis of choice,

typically harmonic oscillator [GRT90] or Woods-Saxon [ZMR03] basis. In this work, we

employ a mixed method that combines the configurational and coordinate space represen-

tations [Vau73, NPVR14]. Since axial-symmetry of RHB states is imposed, corresponding

equation (1.42) is first solved in the configurational space of the axially symmetric har-

monic oscillator. In the next step, obtained wave functions are used to calculate densities

and currents in the coordinate space. Eigenfunctions of the axially symmetric harmonic

oscillator Φα(r, s) are characterized by a set of quantum numbers {α} = {nz, n⊥,Λ,ms},
where nz and n⊥ represent a number of quanta (nodes) in the z− and the r⊥− directions

7We have verified computationally that this statement indeed holds in practice.
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of cylindrical coordinate system, respectively, while Λ and ms denote components of the

orbital angular momentum and of the spin along the z-axis. Details of the harmonic oscil-

lator basis and its coordinate representation in terms of Hermite and associated Laguerre

polynomials are given in Appendix A. Here, we note the explicit expansion of Dirac spinor

in terms of basis states Φα(r, s) and isospin wave function χti :

ψ
(i)
k (r, s, t) =

(∑αmax
α f

(i)
α,kΦα(r, s)χti(t)

i
∑α̃max

α̃ g
(i)
α̃,kΦα̃(r, s)χti(t)

)
, i = U, V. (1.44)

In order to avoid the appearance of spurious states with a very large number of radial

nodes close to the Fermi surface, maximal quantum numbers for the expansion of large

and small component of Dirac spinor, αmax and α̃max, are different [GRT90]. In particular,

quantum numbers α and α̃ are determined in such a way that the corresponding major

oscillator quantum numbers N = 2n⊥+nz + Λ are not larger than Nsh for the expansion

of large components and not larger than Nsh + 1 for the expansion of small components.

The i = V component of Dirac spinor (1.44) is used to calculate densities and currents

in the coordinate space (1.22a)-(1.22d). On the other hand, pairing tensor κ̂ is kept in

the configurational space and the corresponding matrix elements of pairing field ∆̂ can

be calculated as:

∆̂α1γ1 =
1

2

∑
α2γ2

〈α1γ1|V pp|α2γ2〉 κ̂α2γ2 . (1.45)

Here, 〈α1γ1|V pp|α2γ2〉 corresponds to a matrix element of the two-body pairing interaction

(1.25) in the harmonic oscillator basis that can be computed using the Talmi-Moshinsky

techniques for cylindrical coordinates (more details can be found in Ref. [TMR09c] and

references cited therein). In practical implementations, only large components of (1.44)

are used to build non-relativistic pairing tensor κ̂ (1.36), while other components of the

tensor are safely omitted. By expanding nuclear spinors in a sufficiently large harmonic

oscillator basis, self-consistent solution to the RHB equation provides us with an approx-

imate description of a ground state of atomic nucleus. In spite of a fact that it formally

corresponds to a symmetry-broken wave packet of various eigenstates with good quantum

numbers (such as angular momenta, particle numbers, etc.), the RHB-type state repre-

sents a powerful tool for accessing different nuclear ground-state properties, including

binding energies, radii, and deformation parameters. Moreover, by imposing constraints

on values of different quantities, the RHB framework grants us the license to explore

energy landscapes around the self-consistent minima.

1.2.3 Constrained RHB Calculation

The conventional HFB framework, both in its spirit and its basic implementation, is

a ground-state theory. This means that, as long as employed without any additional
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constraints, the virtue of Ritz variational principle will grant us a state that minimizes

a total energy of the system. Nevertheless, by imposing additional constraints on values

of various quantities, it is possible to obtain a state that minimizes a total energy of the

system under that very constraint. For example, by imposing a constraint on values of

nuclear radii it is possible to artificially inflate a nucleus and thereby study the role of

saturation in forming of α-clusters [GS13, EKNV14a]. Another possibility is including a

constraint on particle-number dispersion in order to study the effect of pairing fluctuations

on fission dynamics [ZLN+16]. The most common constraints, however, are those imposed

on values of electric multipole moments or, equivalently, deformation parameters. Of

course, a pool of possible constraints is primarily determined by a choice of symmetries

that nuclear system is a priori allowed or forbidden to break. In this work, we impose

the axial and time-reversal symmetry of RHB states, which means that triaxial shapes

and odd systems are out of the reach to start with. On the other hand, we allow our

even-even nucleus to deform in both the quadrupole and octupole direction. A choice

of the quadrupole degree of freedom is rather obvious, since all nuclei (except for very

few doubly-magic isotopes) exhibit deviations from a spherical shape. A choice of the

octupole degree of freedom is motivated by a fact that many α-clusterized structures, such

as the expected 16O +α configuration in 20Ne isotope, are characterized by precisely the

parity-breaking octupole deformation. In practice, we employ the method of quadratic

constraint and impose constraints on the quadrupole Q20 and octupole Q30 moments.

This method uses an unrestricted variation of the function:

〈H〉+
∑
λ=2,3

Cλ0

(
〈Q̂λ0〉 − qλ0

)2
, (1.46)

where 〈H〉 is total energy, 〈Q̂λ0〉 denotes expectation value of the mass multipole oper-

ators Q̂λµ ≡ rλYλµ, qλ0 are the constrained values of multipole operators, and Cλ0 are

corresponding stiffness constants. In general, values of multipole moments 〈Q̂λ0〉 will

coincide with constrained values qλ0 only at a stationary point, and a difference will de-

pend on stiffness constant Cλ0. In particular, smaller values of Cλ0 will lead to larger

deviations of 〈Q̂λ0〉 from the corresponding qλ0, while increasing Cλ0 often destroys con-

vergence of the self-consistent procedure. This deficiency can be resolved by implementing

the augmented Lagrangian method [SSBN10]. Furthermore, we introduce dimensionless

deformation parameters βλ, defined as:

βλ =
4π

3ARλ
qλ0, R = r0A

1/3, (1.47)

with r0 = 1.2 fm. This kind of constrained calculus enables us to access configurations in

the entire plane spanned by a set of deformations {q} = {β2, β3}, and the corresponding

RHB states will be denoted as |Φ(q)〉. An interesting analysis can be carried out already

on this level, particularly in terms of the rigidness/softness of constrained energy surfaces

that determine relevance of collective correlations related to symmetry restoration and

configuration mixing. In addition, appearance of local minima on energy landscapes may
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Figure 1.2: Self-consistent ground-state densities of 20Ne isotope in the x − z plane of the
intrinsic reference frame. Densities calculated with the relativistic DD-ME2 functional (left
panel) and the non-relativistic Skyrme SLy4 functional (right panel) are compared. The two
inserts on each panel show the corresponding three-dimensional density plots and the density
profiles (ρ) along the symmetry axis (x = 0). Figure taken from Ref. [EKNV12].

offer a qualitative insight into the structure of excited nuclear configurations. Neverthe-

less, in order to carry out a more quantitative analysis, it would be beneficial to have

a framework that treats all of these configurations on an equal footing and determines

their relative contributions to a true ground state via variational procedure. A frame-

work which does precisely that exists, and it is known as the MR-EDF. It is essentially

a two-step process. In the first step, one restores relevant symmetries that are broken

on a mean-field level. For a present study, these include rotational, particle number,

and parity symmetry. In the second step, collective state of atomic nucleus is built from

symmetry-conserving configurations, and detailed description of nuclear spectroscopy is

obtained via variational procedure. The practical extension of RHB framework to a multi-

reference level represents the main original contribution of this manuscript and it will be

extensively discussed in Chapter 2. Before that, let us just briefly overview some of the

recent results on nuclear clustering that have been obtained within the RMF framework.

1.3. Nuclear Clustering within the RMF Framework

Cluster structures in α-conjugate nuclei have been a subject of numerous studies within

the mean-field framework [ASPG05, MKS+06, RMUO11, IMIO11, RB11, GS13, Rob14].

The purpose or the capacity of this section is not to give a comprehensive and balanced

overview of nuclear clustering from the mean-field perspective, or even from the relativis-

tic mean-field perspective. Rather than that, we will briefly overview some of the recent

results that have been obtained by the Bruyères-Orsay-Zagreb collaboration and that

elucidate a context of the present work. Let us start with the self-consistent ground-state

density distributions of 20Ne isotope [EKNV12] that are plotted in Figure 1.2. Mean-field
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Figure 1.3: Harmonic oscillator potentials with different depths. Upper panel: Three po-
tentials (V0 = −30,−45,−60 MeV) with the same radius (R = 3 fm) as functions of radial
coordinate r. Lower panel: Radial wavefunctions ukl(r) of the corresponding first p-state,
where k and l are the radial and the azimuthal quantum number, respectively. Figure taken
from Ref. [EKNV12].

calculations were carried out by using representatives of two different classes of function-

als: the relativistic meson-exchange DD-ME2 functional [LNVR05] (left panel) and the

non-relativistic Skyrme SLy4 functional [CBH+98] (right panel). Both functionals repro-

duce experimental ground-state observables such as binding energies, charge, and matter

radii with a typical accuracy of roughly 1%. In addition, they yield very similar values

of equilibrium deformation parameters. Nevertheless, the obtained intrinsic densities are

manifestly different. As can be seen in Fig. 1.2, density obtained with the non-relativistic

functional exhibits smooth behavior typical of Fermi liquids, with an extended surface

region in which the density decreases very gradually from the central value of around

0.16 fm−3. The relativistic functional, on the other hand, predicts a much more localized

density, with density peaks as large as 0.20 fm−3. Different localization profiles of equi-

librium densities can be traced back to the different energy spacing of the corresponding

single-nucleon spectra [EKNV12], that are proportional to the intrinsic deformation and
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Figure 1.4: Microscopic axially symmetric RHB prediction of nuclei that have small radial
dispersion of the single-particle states of valence nucleons ∆r (red circles), plotted on the back-
ground of empirically known nuclides in the N − Z plane. Figure taken from Ref. [EKLV18].

to the depth of the underlying single-nucleon potential. Since both functionals predict al-

most identical equilibrium deformations, differences in densities were linked to differences

in the corresponding potentials. As already noted in Ref. [EKNV14b], this situation

is rather similar to the one encountered in gaseous systems of ultracold atoms held in

three-dimensional optical lattice potentials [GME+02]. By gradually increasing the depth

of the confining potential, one can observe the transition from a phase in which each

atom is spread out over the entire lattice to the insulating phase of localized atoms. Of

course, in the self-bound systems like atomic nuclei one cannot simply vary the depth of

the single-nucleon potential, but equivalent effect is obtained by performing calculations

with different effective interactions. In fact, depth of the DD-ME2 single-neutron (single-

proton) potential for 20Ne isotope is −78.6 MeV (−72.8 MeV), and it is pronouncedly

deeper than the corresponding depths −69.5 MeV (−64.6 MeV) of the SLy4 functional.

Within the relativistic framework, depth of the single-nucleon potential is determined by

the two local self-consistent potentials of opposite signs: the attractive scalar potential

(S ≈ −400 MeV) and the repulsive vector potential (V ≈ 320 MeV). Their sum V + S

uniquely determines the confining nuclear potential, while their difference V −S simulta-

neously governs the splitting between spin-orbit partners in finite nuclei. Consequently,

the effective single-nucleon spin-orbit force for finite nuclei manifests itself naturally with

the empirical strength within the relativistic framework. On the other hand, the non-

relativistic approaches include the spin-orbit potential in a purely phenomenological way,
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with the interaction strength that is adjusted to empirical energy spacings between the

spin-orbit partners.

The effect of depth of potential on localization of wave functions is schematically de-

picted in Figure 1.3. In the upper panel, we show three harmonic oscillator potentials

with different depths (V0 = 30, 45, and 60 MeV) but with the same radii R = 3 fm.

The lower panel shows the radial wavefunctions of the corresponding p-states. It is obvi-

ous that a larger depth of the potential leads to a smaller oscillator length and, finally,

to a more pronounced localization of the wave function in both the classically allowed

and forbidden region. On a more quantitative level, one can introduce the localization

parameter α [EKNV13, EKLV18]:

αloc ≡
2∆r

r̄
, (1.48)

which corresponds to a ratio between the spatial dispersion of the single-nucleon wave

function:

∆r =

√
〈r2〉 − 〈r〉2, (1.49)

and the average internucleon distance r̄. For large values of α nucleons are delocalized

and nucleus behaves as a quantum liquid. For example, the doubly-magic 208Pb isotope

has self-consistent values of localization parameter roughly α ≈ 1.3, both within the

relativistic and non-relativistic framework [EKNV13], and it exhibits a typical quantum-

liquid behavior. At the opposite end, when the average internucleon distance exceeds

the nucleon spatial dispersion, nucleons localize on nodes of the hypothetical crystal-

like structure. The intermediate values of α are marked by a hybrid phase of cluster

states which are expected to appear for α ≈ 1 values. Within the harmonic oscillator

approximation, the localization parameter of Eq. (1.50) can be expressed as [EKLV18]:

αHO '
√

~(2n− 1)

(2mV0r2
0)1/4

A1/6, (1.50)

where n corresponds to the radial quantum number, V0 denotes the depth of the potential

at r = 0, and r0 = 1.25 fm is a constant. This expression nicely elucidates the assertion

that the deeper potential favors formation of clusters, as larger V0 values explicitly yield

smaller values of the localization parameter. In addition, dependence of the localization

parameter αHO on A1/6 shows that cluster states are preferably formed in lighter nuclei,

and the transition from coexisting cluster and mean-field states to a Fermi-liquid state

should occur for nuclei with A ≈ 20 − 30 [EKNV13, EKLV18], which is in qualitative

agreement with the experiment [FHKE+18]. Of course, a more quantitative analysis re-

quires a more microscopic approach. Self-consistent ground-state solutions for a set of

self-conjugate nuclei were used to calculate corresponding α values both within the rel-

ativistic and non-relativistic framework [EKNV13]. The general conclusion was that the
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Figure 1.5: Mean value of the energy gap between consecutive occupied neutron single-particle
levels as a function of axial quadrupole deformation parameter β2 in 20Ne isotope. The insets
display the total nucleonic density at the corresponding deformation. In order to limit the
vertical scale, the maximum mean value of the energy gap in the plot does not exceed 5 MeV.
Figure taken from Ref. [EKNV14b].

values calculated with DD-ME2 functional are systematically smaller than those obtained

using SLy4 functional, thus favoring more pronounced localization of nucleonic densities

within the relativistic framework. Very recently, the self-consistent RHB calculations

based on the DD-ME2 functional were performed in order to calculate single-nucleon dis-

persions in axially-symmetric nuclei over the entire nuclide chart [EKLV18]. The micro-

scopic values of dispersions ∆r have been calculated for all single-particle states. Figure

1.4 shows the chart of nuclides and indicates (in red circles) those nuclei for which both

neutron and proton valence states exhibit significantly small dispresions (of the order of

1 fm). In addition to light nuclei, these systematic calculations are able to predict areas

of pronounced localization in medium-heavy and heavy nuclei, in agreement with the

empirically known α- and cluster-radioactivity.

From a microscopic perspective, small values of dispersions ∆r can be understood as re-

flection of the enhanced isolation or degeneracy of the corresponding single-particle states.

As noted in Ref. [AJ94] and further discussed in Ref. [EKNV14b], an isolated level of the

single-particle energy spectrum in a deformed self-conjugate nucleus can correspond to

an α cluster, due to a simultaneous effect of the time-invariance and isospin symmetries.

In such scenarios two protons and two neutrons have very similar wave functions, and

localization of these functions facilitates the formation of α clusters [EKNV14b]. This is

in agreement with the empirical observation that cluster structures form more easily in

lighter nuclei, since heavier nuclei are marked by increasingly more dense single-particle

spectra where isolated states are less likely to appear. In order to demonstrate the role of

level degeneracy in formation of clusterized structures, in Figure 1.5 we show the mean

value of the energy gap between consecutive occupied neutron levels ∆εn as a function of
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Figure 1.6: EDF-based analog of the conventional Ikeda diagram: Positive-parity projected
intrinsic densities of various excited configurations in a chosen set of self-conjugate nuclei. For
each nucleus the density in the bottom row corresponds to the equilibrium configuration. Other
selected densities are displayed in order of increasing excitation energy. Figure taken from Ref.
[EKNV14b].

the deformation parameter β2 in 20Ne isotope. This value is calculated as ∆εn =
∑

i ∆εi,

where ∆εi = εi+1 − εi represents the energy gap between two successive neutron levels.

Looking at Fig. 1.5, one can notice a correlation between the increase of energy gaps

and formation of clusters in the corresponding intrinsic densities, that are displayed as

insets. Even at very large deformations, much more localized linear chain structures are

found at β2 values that correspond to the enhanced energy gaps. In addition, relation

between the appearance of clusters in light self-bound systems and the saturation prop-

erty of internucleon interaction was studied in Ref. [EKNV14a], by inflating the spherical
16O nucleus within the constrained RHB calculation and analyzing the obtained density

distributions.

In terms of collective deformations, clusterized structures can appear as local min-

ima on energy hypersurfaces spanned by deformation parameters of different multipo-

larities (quadrupole, octupole, ...) and different symmetry properties (axial, non-axial,
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...). By employing constrained calculations on those hypersurfaces, one can produce the

EDF-based analog of conventional Ikeda diagram, which illustrates the coexistence of

mean-field and cluster structures that appear close to the corresponding decay threshold

[ITH68]. Such calculations were performed in Ref. [EKNV14b] and the resulting diagram

is shown in Figure 1.6. In order to generate various cluster structures for a chosen set of

self-conjugate nuclei, the RHB calculations based on DD-ME2 functional were allowed to

break both the axial and parity symmetry. The obtained positive-parity projected intrin-

sic densities of different configurations are displayed in Fig. 1.6. The lowest density for

each nucleus corresponds to the equilibrium configuration. All of the other densities, save

for the ring-like configurations, correspond to local minima on energy hypersurfaces and

they appear in the ascending excitation energy order. The lightest isotope, 8Be, exhibits

the 2α structure already in its ground state. The ground state of 12C corresponds to a

weakly-oblate density distribution, while triangular arrangements and linear 3α chains

appear at higher energies. 16O is shown to display an interesting 4α cluster structure

with tetrahedral symmetry in the excited states, and the equilibrium configuration of
20Ne corresponds to the octupole-deformed 16O+α configuration. Nevertheless, a more

quantitative description of these states, including the precise excitation energies of each

state and transition strengths between them, requires the inclusion of collective correla-

tions related to the restoration of symmetries and configuration mixing. Such extension

enables us to answer two crucial questions: (a) can the model reproduce relevant experi-

mental data on studied nuclei, and (b) do the signatures of clusterization survive beyond

the simple mean-field picture. How can such an extension be performed - that is the topic

of the following chapter.





Chapter 2

Restoration of Symmetries and

Configuration Mixing

Symmetry, as wide or narrow as you may define its meaning, is one idea by which man

through the ages has tried to comprehend and create order, beauty, and perfection.

Hermann Weyl, ”Symmetry”

Basic implementation of the nuclear EDF framework is realized in terms of the mean-

field approximation. The very notion of mean-field is closely related to the concept of

spontaneous breaking of symmetries of nuclear Hamiltonian [DS10, RS80], which enables

us to grasp many correlations in a relatively simple manner. However, the resulting many-

body state, rather than carrying good quantum numbers, corresponds to a symmetry-

broken wave packet of states with good quantum numbers. It is well known that a true

spontaneous symmetry breaking can occur only in infinite systems. In finite systems

such as atomic nuclei, on the other hand, quantum fluctuations will eventually cause a

symmetry-breaking wave packet to relax into one of the eigenstates of nuclear Hamil-

tonian. Therefore, these wave packets provide us with only an approximate description

of nuclear system, and broken symmetries ultimately need to be recovered. Restoration

of symmetries is typically carried out by applying techniques rooted in the group theory

[Ham62, RS80], and by considering linear combinations of symmetry-breaking states that

are rotated in a phase space related to the corresponding symmetry group. In order to

account for the magnitude of symmetry breaking as well, a linear combination of dif-

ferent symmetry-restored states is further constructed within the configuration mixing

scheme. This step is formally equivalent to the generator coordinate method (GCM) by

Hill, Wheeler, and Griffin [HW53, GW57], with multipole deformation moments, pairing

degree of freedom, or radii typically playing the role of collective coordinates. These two

steps combined comprise the multi-reference EDF (MR-EDF) framework.

37
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Collective MR-EDF models, based on both the non-relativistic and relativistic effec-

tive interactions, currently represent state-of-the-art tool for nuclear structure studies

(for detailed discussions see reviews in Refs. [BHR03, NVR11, Egi16, RRR18] and

references cited therein). Virtually all modern MR-EDFs include the axially symmet-

ric quadrupole deformation as a generating coordinate within the configuration mixing

scheme [BFH03, RGER03, NVR06b]. Motivation for this is rather obvious: spherical

shapes can account for only a small number of nuclides at magic nucleon numbers, while

all the other areas of nuclide chart can only be accessed by allowing for the rotational sym-

metry to be broken. Simultaneous breaking of rotational and axial symmetry additionally

extends the reach of a collective model, and within the past decade MR-EDF calculations

based on axial and triaxial quadrupole-deformed shapes have been successfully performed

[BH08, RE10]. More recently, studies that use axially symmetric quadrupole and octupole

deformations as generating coordinates have been reported as well [BRR16, ZYL+16]. On

the other hand, configuration-mixing symmetry-restoring calculations that would allow

for simultaneous breaking of rotational, axial, and parity symmetry are yet to be per-

formed. Besides breaking and restoring of spatial symmetries, another relevant degree

of freedom is provided by pairing correlations, that induce the violation of particle num-

ber invariance in nuclear systems. The vast majority of present MR-EDF models takes

into account only phase fluctuations of pairing correlations through the restoration of

good particle number, while fluctuations in the corresponding magnitude are typically

neglected. Nonetheless, these fluctuations can also be accounted for by using the particle

number dispersion as a collective degree of freedom in the configuration mixing scheme

[VER13, ZLN+16]. Finally, very recent extension of the MR-EDF framework included,

in addition to the axial and triaxial quadrupole deformations, the cranking frequency

as a collective coordinate [EBR16]. Such extension is proposed to cure the well-known

deficiency of overly stretched collective spectra that is a byproduct of the standard pro-

cedure of rotational symmetry restoration. Overall, the choice of appropriate generating

coordinates in configuration mixing calculations is primarily determined by properties of

the nucleus under consideration. However, the required computational time grows rapidly

with increasing the number of generating coordinates. This fact has so far limited prac-

tical implementations of the MR-EDF framework to only two (in majority of cases) or

at most three (exceptionally) generating coordinates at a time. In addition to studies

of even-even nuclei that are routinely performed, the MR-EDF framework was recently

extended to account for odd nuclear systems as well [BABH14, BE16].

In this chapter, we will introduce the MR-EDF framework based on restoration of sym-

metries of RHB states and the subsequent configuration mixing. In Section 2.1, we will

start with some general remarks on breaking and restoring of symmetries in nuclear sys-

tems and the underlying formalism rooted in group theory. Rotational symmetry, particle

number symmetry, and parity symmetry that are particularly relevant for this work will

be discussed in some more detail. Section 2.2 first summarizes basic principles of the con-

figuration mixing scheme based on Hill-Wheeler-Griffin’s framework and then proceeds to

discuss the specific realization of the framework in terms of mixing of symmetry-restored

RHB configurations. Method for deriving and solving the HWG equation, evaluation of

corresponding norm overlap and Hamiltonian kernels, as well as the calculation of various

observables that can be compared to experiment will all be addressed.
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2.1. Restoration of Broken Symmetries

2.1.1 Breaking and Restoring Symmetries

Symmetries are fundamental features of physical systems, classical and quantum ones

alike. From the Noether’s theorem to the famous Higgs mechanism, they determine prop-

erties of the system and manifest themselves in the underlying equations of motion. In

simple terms, symmetry is just a name for the operation which leaves the physical system

invariant, that is, which transforms it into a state that is completely indistinguishable

from the original one. For example, the ground state of an even-even nucleus in its labo-

ratory frame is invariant under spatial rotations: whatever1 one does with this tiny ball

of quantum liquid it will remain exactly the same. Formally, each symmetry is associated

with the corresponding operator X̂. System is said to be symmetric under transforma-

tion induced by X̂ if X̂ commutes with Hamiltonian of the system, that is,
[
X̂,H

]
= 0.

For nuclear systems, set of operators {X̂} corresponds to the translational, rotational,

particle number, parity, parity number, and time-reversal symmetries that are exactly

preserved by the nuclear interaction. In addition, isospin invariance is an approximate

symmetry in atomic nuclei, since a weak symmetry breaking is induced by the electro-

magnetic interaction between protons. The true wave function of the system should

correspond to the eigenstate of operators {X̂} and, consequently, carry good quantum

numbers related to each of those symmetries (good linear and angular momenta, number

of particles, ...). However, imposing such severe restrictions on our trial wave functions

within the variational procedure of SR-EDF would seriously limit the available variational

space. For example, if we require our trial wave function of Slater or Bogoliubov type to

obey the translational symmetry, the only possible solution would be a pure plane wave

function. Not much in nuclear physics can be described with plane waves. Therefore,

an alternative approach is usually adopted, where a system is allowed to deform and

break symmetries of nuclear Hamiltonian. The breaking of each symmetry is guided by

the corresponding order parameter, g = |g|eiϕg , where |g| and ϕg denote the magnitude

and phase of the order parameter, respectively. The concept of spontaneous symmetry

breaking is schematically depicted in Figure 2.1, where we show the energy of the system

as a function of magnitude |g| and phase ϕg of the order parameter. For |g| = 0, a

symmetry-conserving state is obtained. By allowing for fluctuations in magnitude of the

order parameter, an absolute minimum can be found at configuration |gmin| 6= 0 which

does not anymore possess good symmetry of nuclear Hamiltonian. Additionally, the en-

ergy of this symmetry-broken state is independent of the phase of the order parameter

ϕg. Restoration of symmetries explores the Mexican hat potential in the azimuthal direc-

tion, by combining states with different phases of the order parameter. This accounts to

transition from the intrinsic frame of reference, characterized by a deformed nucleus that

is not under influence of any restoring force such as rotation, to the laboratory frame of

reference, where numerous observables of symmetry-conserving state can be calculated.

1Unless, I guess, you try smashing it against the wall. However, I advise you strongly against doing
this and, even if you did it, no one would know how to write down the corresponding operator anyway.
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|g| ϕg 

E [ρ, κ,|g|] 

Figure 2.1: Schematic representation of the spontaneous symmetry breaking. Energy of the
system is shown as a function of magnitude |g| and phase ϕg of the order parameter g. See text
for discussion.

Configuration mixing, on the other hand, explores the Mexican hat potential in the radial

direction, by further mixing symmetry-restored states with different magnitudes of the

order parameter. Both of these steps introduce additional correlations to the system and,

finally, yield a collective symmetry-conserving state which is more strongly bound than

a symmetry-broken state we started with in a first place.

Restoration of broken symmetries is based on the underlying group structure of sym-

metry transformations [Ham62, RS80, Dug14]. Here, we will briefly overview only basic

terminology of the group theory formalism that is relevant for the present study. More

details on group theory and its applications to physical problems can be found, for exam-

ple, in a book Group Theory and its applications to Physical problems by M. Hamermesh

[Ham62]. In addition, a more general discussion on the group theory aspects of MR-EDF

calculations can be found in Chapter III of a doctoral thesis by B. Bally [Bal14]. For the

purpose of this study, let us consider a continuous and compact Lie group of symmetries
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Table 2.1: Basic properties of nuclear symmetries that are broken and restored within our
calculation: rotational invariance, particle number invariance, and parity invariance. We list
the underlying groups, corresponding quantum numbers, parameters of groups, operators that
generate transformation, irreducible transformations, as well as their respective dimensions. See
text for more details.

symmetry rotational particle number parity

broken by
deformation

(any multipole)

pairing or

finite temperature

deformation

(odd multipoles)

group G SO(3) U(1) Iπ ≡ {1̂, Π̂}

quantum number
angular momentum

J

particle numbers

N and Z

parity

π

parameters g α, β, γ ϕN , ϕZ -

operators Û e−iαĴze−iβĴye−iγĴz eiϕN N̂eiϕZ Ẑ {1̂, Π̂}

irreps Sλab(g) DJ
MK(α, β, γ), J ∈ N eiϕN,Zm,m ∈ Z Dp(I), p ∈ {−1, 1}

irreps dimension dλ 2J + 1 1 1

G = {R(g)}. Elements of the symmetry group R(g) commute with the nuclear Hamilto-

nian,
[
R(g), H

]
= 0, and they are parameterized by a set of real parameters {g} defined

over domain DG. Generators of symmetry transformations Û are unitary operators act-

ing on the Hilbert space that can be built as the exponential maps of the symmetry

group elements. Furthermore, one introduces the irreducible representations (irreps) of

the symmetry group, Sλab(g). They are unitary and orthogonal, have dimension dλ, and

are labeled by eigenvalues λ of the corresponding Casimir operator. This enables us to

decompose any function f(g) defined over DG in terms of the irreps of the corresponding

group:

f(g) =
∑
λab

fλabS
λ
ab(g), (2.1)

with {fλab} as expansion coefficients, and a, b ∈ {1, ..., dλ}. Projectors onto good quantum

numbers, that are to be applied on symmetry-broken states, can be built by taking linear

combination of generating operators Û multiplied by the corresponding irreps Sλab(g) and

with the appropriate integration (de Haar) measure. In Table 2.1 we summarize basic

properties of nuclear symmetries that are broken and restored within our calculation:

rotational invariance, particle number invariance, and parity invariance. In the following

subsections we will analyze each of them separately.
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2.1.2 Rotational Symmetry

Among nuclear symmetries that are broken on a SR-EDF level, rotational symmetry is

arguably the most relevant one. Spontaneous breaking of rotational symmetry appears in

all nuclei where neither neutron or proton number is magical, and it has as a consequence

the undesired property that the obtained state does not carry good quantum number of

total angular momentum J . This is at odds with the empirical fact that the energy of an

isolated (rotationally invariant) nucleus does not change under rotations. The underlying

group SO(3) (or, more broadly, SU(2)) is continuous and Lie group of symmetries, with

three spatial Euler angles Ω ≡ (α, β, γ) playing the role of group parameters. Operator

that projects the intrinsic state on a state with good values of angular momentum (AM)

reads:

P̂ J
MK =

2J + 1

16π2

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 4π

0

dγDJ∗
MK(α, β, γ)R̂(α, β, γ), (2.2)

where DJ
MK(α, β, γ) denotes Wigner D-matrix [VMK88], and the rotation operator reads:

R̂(α, β, γ) = e−iαĴze−iβĴye−iγĴz . (2.3)

Wigner D-matrix, an irrep of the SO(3) symmetry group, corresponds to matrix elements

of the rotation operator:

DJ
MK(α, β, γ) = 〈JM |R̂(α, β, γ)|JK〉 (2.4)

where |JM〉 denotes a many-body state that is an eigenstate of the total angular momen-

tum operator squared, Ĵ2, and the z-component of total angular momentum operator,

Ĵz, simultaneously. The projection operator can then be decomposed in terms of these

symmetry-conserving states:

P̂ J
MK =

∑
α

|JMα〉 〈JMα| , (2.5)

where index α2 additionally encapsulates all of the remaining quantum numbers that are

necessary to unambiguously define a state. In addition, projection operator satisfies the

following relations:

P̂ J
MKP̂

J ′

M ′K′ = δJJ ′δM ′KP̂
J
MK′ ,

(P̂ J
MK)† = P̂ J

KM .
(2.6)

2A few rows above α represented the Euler angle, which may cause some confusion. However, as it will
become apparent a few rows below, axial symmetry excludes angles α and γ from the further analysis.
Therefore, we reclaim these handy Greek letters to denote other quantities further on in the manuscript.
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As can be seen from Eq. (2.2), restoration of a good angular momentum for the most

general RHB state |Φ(qi)〉 requires carrying out integrals over three Euler angles. From a

computational perspective, this is a rather time-consuming task. However, by assuming

axial symmetry of the RHB state:

Ĵz |Φ(qi)〉 = 0 → eiχĴz |Φ(qi)〉 = |Φ(qi)〉 , ∀χ ∈ R, (2.7)

this task can be simplified considerably, since in that case integrals over Euler angles α

and γ can be carried out analytically. Furthermore, the following relation:

e−iβĴy = ei
π
2
Ĵze−iβĴxe−i

π
2
Ĵz , (2.8)

combined with the axial symmetry property of the RHB state (2.7), can be used to finally

write down the rotation operator as:

R̂(β) = e−iβĴx , (2.9)

which will help us to exploit the self-consistent simplex-x symmetry of intrinsic states

and the consequent block structure of the corresponding U and V matrices. More details

on eigenstates of the simplex-x operator and the expansion of RHB states in the corre-

sponding basis are given in Appendix A. In practical implementations, we will need to

evaluate matrix elements Rαγ(β) of rotation operator in the single-particle basis {c†α, cα}:

R̂(β) =
∑
αγ

Rαγ(β)c†αcγ, (2.10)

where α and γ denote indices of the single-particle basis. Details on calculation of matrix

elements Rαγ(β) in the simplex-x basis are also given in Appendix A.

2.1.3 Particle Number Symmetry

Particle number symmetry is broken in all but doubly magic nuclei. As a consequence

of introducing pairing correlations to the system through the Bogoliubov transformation,

the RHB states are not eigenstates of proton and neutron number operators. Since

an isolated atomic nucleus has a well-defined (integer) number of nucleons, the particle

number symmetry obviously needs to be restored. The underlying group of symmetries,

U(1), is compact, Abelian, and unitary group of degree 1, with gauge angle ϕ ∈ [0, 2π]

playing the role of a group parameter. Operators that project the intrinsic state on a

state with a good particle number (PN) read:
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P̂N =
1

2π

∫ 2π

0

dϕNe
i(N̂−N0)ϕN , P̂Z =

1

2π

∫ 2π

0

dϕZe
i(Ẑ−Z0)ϕZ , (2.11)

where N0 (Z0) is the desired number of neutrons (protons), while N̂ (Ẑ) represents the

neutron (proton) number operator:

N̂ =
∑
α

ĉ†N,αĉN,α, Ẑ =
∑
α

ĉ†Z,αĉZ,α. (2.12)

Here, sets of operators {ĉ†N,α, ĉN,α} ({ĉ†Z,α, ĉZ,α}) correspond to the single-neutron (single-

proton) creation and annihilation operators. The irreducible representation of U(1) sym-

metry group in each isospin channel is one-dimensional, and it corresponds to a matrix

element of the operator that rotates the intrinsic state in a gauge space:

eiϕNN0 = 〈N0|eiϕN N̂ |N0〉 , eiϕZZ0 = 〈Z0|eiϕZ Ẑ |Z0〉 , (2.13)

where |N0〉 and |Z0〉 denote a many-body state that is an eigenstate of the neutron number

and proton number operator, respectively. Projection operators can be decomposed in

terms of these states:

P̂N =
∑
α

|N0α〉 〈N0α| , P̂Z =
∑
α

|Z0α〉 〈Z0α| (2.14)

where index α again encapsulates all of the remaining quantum numbers that are nec-

essary to unambiguously define a state. Furthermore, projection operators satisfy the

standard relations:

(P̂N,Z)† = PN,Z , (PN,Z)2 = PN,Z . (2.15)

In practical implementations, integration interval of projection operators (2.11) can be

reduced to [0, π] using the property of good number parity of the intrinsic state. The

resulting integral is further discretized using the Fomenko expansion [Fom70]:

P̂Nτ =
1

Nϕ

Nϕ∑
l=1

eiϕl(N̂τ−Nτ 0), ϕl =
π

Nϕ

l, Nτ = N,Z. (2.16)

We note that in the present work we employ the projection after variation (PAV) version

of symmetry restoration, both for the angular momentum projection (AMP) and for the

particle number projection (PNP). Within the PAV framework, the RHB energy is first

minimized and the resulting wave function is subsequently projected on good quantum

numbers. This approach is different from the variation after projection (VAP) technique,
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where one directly minimizes the projected energy in each variational step. Due to a huge

computational cost of AM-VAP calculations, the AM-PAV has been a conventional choice

in virtually all MR-EDF calculations. The price to pay is the fact that such variational

procedure favors J = 0 state, while higher angular momenta are increasingly less favored,

which stretches the obtained spectra. This anomaly can be accounted for through the

inclusion of cranking frequency as a generating coordinate in the configuration mixing

calculations [EBR16]. On the other hand, PN-VAP calculations are computationally

less demanding than AMP-VAP calculations, and they have been repeatedly performed

within the non-relativistic framework [AER01, SDK+07]. The simpler PN-PAV frame-

work arguably grasps less pairing correlations and provides inferior description in the

weak pairing regime, but it still represents significantly more economical approach from

the computational perspective and it will therefore be employed throughout this study.

2.1.4 Parity Symmetry

Breaking of parity symmetry is related to the non-vanishing value of the lowest odd-

multipolarity electric moment, that is, the electric octupole moment. Microscopically,

octupole collectivity is driven by the existence of pairs of opposite-parity single-particle

orbitals near Fermi surface with angular momenta ∆l = 3 that are strongly coupled

through octupole interaction [BN96]. Even though signatures of octupole collectivity and

the corresponding excitations can be detected and studied over the entire nuclide chart

[RB11], strong experimental traces of octupole collectivity have only recently been ob-

served in 224Ra [G+13] and 144Ba [B+16] isotopes. Among lighter nuclei, the expected

α-clustering in parity-doublets of 20Ne [RB11, EKNV14b] makes breaking of parity in-

variance the necessary ingredient of any theoretical model that aims to comprehensively

describe this isotope. From the group theory perspective, the underlying group of sym-

metries is finite and Abelian, comprising of only two elements: the identity operator 1̂

and the parity operator Π̂. This makes the parity projection by far the easiest one to

perform. The operator that projects the intrinsic state on a state with good parity reads:

P̂π =
1

2
(1̂+ πΠ̂), (2.17)

where the quantum number of parity can take only two values, π = ±1. In practical

implementations, restoration of good parity quantum number of the RHB state |Φ(q)〉,
{q} = {β2, β3}, can be performed following two different prescriptions. The first option is

to calculate the operator (2.17) in a single-particle basis of choice (typically the harmonic

oscillator basis) and directly apply it on a symmetry-broken state |Φ(β2, β3)〉. That way,

one avoids having to carry out separate minimization procedure for RHB states with

negative values of octupole deformation parameter, |Φ(β2,−|β3|)〉. The alternative option

is to calculate RHB states with both positive and negative β3 values, and then use the

virtue of configuration mixing in order to restore good parity of collective states without

ever explicitly applying the projection operator. The equivalence of the two approaches
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can be demonstrated rather easily. First, we take into account that the parity operator

Π̂ flips the sign of β3 value of the RHB state:

Π̂ |Φ(β2, β3)〉 = |Φ(β2,−β3)〉 . (2.18)

Then by simply applying the projection operator (2.17) on the RHB state with a positive

β3 value:

|Ψπ〉 = P̂π |Φ(β2, |β3|)〉 =
1

2
(|Φ(β2, |β3|)〉+ π |Φ(β2,−|β3|)〉), (2.19)

one obtains the parity-conserving state, with either positive (π = +1) or negative (π =

−1) parity. The state |Ψπ〉 obviously corresponds to a linear combination of two RHB

states with positive and negative β3 values, which proves the asserted equivalence. In this

work, we will adopt the latter prescription and restore the parity symmetry by using the

reflection-symmetric basis, that is, by ensuring that for each |Φ(β2, |β3|)〉 state the basis

always contains the corresponding |Φ(β2,−|β3|)〉 state as well.

2.1.5 Translational Symmetry

Finally, localization of nuclear mean-field causes breaking of the translational invariance

in all atomic nuclei. However, the exact projection on good values of linear momentum

is notoriously numerically expensive [MFH84], particularly when combined with restora-

tions of other symmetries such as the rotational symmetry. Consequently, restoration of

translational symmetry is usually accounted for in an approximate manner. One of the

most common center-of-mass corrections corresponds to adding the expectation value:

Ec.m. = −〈P̂
2
c.m.〉

2mA
(2.20)

to the total energy, where P̂c.m. is the total momentum of a nucleus with A nucleons.

Validity of this approximation increases with the increase of nucleon number A, and it fi-

nally vanishes for infinite nuclear systems. The expression (2.20) can be further simplified

by evaluating it analytically within the harmonic oscillator approximation [BRRM00]:

EHO
c.m. = −3

4
41A−1/3 MeV. (2.21)

The correction of Eq. (2.21) will be used in the present study. This expression is constant

for each nucleus, that is, it does not depend on the many-body wave function. Therefore,

it will not affect the variational equations and it can be added a posteriori to the energy

of the symmetry-restored collective state. More details on the restoration of translational

symmetry can be found in Refs. [BRRM00, BHR03] and references cited therein.
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2.2. Configuration Mixing Scheme

2.2.1 Basic Principles of the Hill-Wheeler-Griffin’s Method

The generator coordinate method (GCM) theory by Hill, Wheeler, and Griffin [HW53,

GW57] is one of the most widely used methods for describing large amplitude collective

motion of fermionic systems [RS80]. It is a variational method within which a collective

state of quantum system is constructed as a linear combination of many different product

wave functions. In particular, the GCM ansatz for a collective state of quantum system

reads [RS80, Won70, Lat74]:

|Ψα〉 =

∫
dθfα(θ) |Φ(θ)〉 , (2.22)

where |Φ(θ)〉 denotes generating intrinsic functions, conveniently chosen for a problem

under consideration, while fα(θ) are weight functions yet to be determined through the

variational procedure. Both generating functions and weight functions depend on {θ}, a

set of parameters called generating coordinates. Generating coordinates can in principle

be complex [Lat74] and, therefore, integral in (2.22) should run over all corresponding

real and imaginary parts. Finally, label α encapsulates all the relevant quantum numbers

of a collective state. Energy of the collective state (2.22), whose dynamics is governed by

a Hamiltonian operator Ĥ, is a functional of weight functions:

Eα[fα] =

∫
dθ
∫
dθ′f ∗α(θ)H(θ, θ′)fα(θ′)∫

dθ
∫
dθ′f ∗α(θ)N (θ, θ′)fα(θ′)

, (2.23)

where two Hermitian objects have been introduced, namely the Hamiltonian kernel:

H(θ, θ′) = 〈Φ(θ)|Ĥ|Φ(θ′)〉 , (2.24)

and the norm overlap kernel:

N (θ, θ′) = 〈Φ(θ)|Φ(θ′)〉 . (2.25)

Weight functions fα(θ) can be determined by applying the variational principle onto the

energy functional (2.23) of a collective state:

δ

δf ∗α(θ)
Eα[fα] = 0. (2.26)
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The corresponding domain of variation is usually kept rather flexible, with the sole re-

quirement being that - whatever weight functions turn out to be - they ultimately yield

normalizable collective states (2.22). Variational principle leads to the Hill-Wheeler-

Griffin (HWG) equation:

∫
dθ′
[
H(θ, θ′)− EαN (θ, θ′)

]
fα(θ′) = 0. (2.27)

Formally, the HWG equation has a form of Fredholm integral equation of the first kind

and, together with the collective state normalizability condition, it represents a gener-

alized eigenvalue problem. Solving the HWG equation provides one with the excited

energies Eα of a quantum system, as well as with the corresponding weight functions

fα(θ) that can be used to calculate various observables. Literature on general aspects

of GCM framework is rather abundant [RS80, Won70, Lat74, Lat76]. In the following

subsections, however, we will focus on basic constituents of the particular realization of

the framework that is used in the present study.

2.2.2 Mixing of Symmetry-Restored Configurations

Within our study, a set of generating functions {|Φ(θ)〉} is given by a set of product

states that are obtained by solving the RHB equations and additionally projected onto

good values of angular momenta, particle numbers, and parity. Furthermore, generating

coordinates {θ} correspond to the axially symmetric quadrupole (β2) and octupole (β3)

deformation parameters, and will be denoted as qi ≡ (β2i, β3i) further on. The collective

symmetry-conserving state can therefore be written as:

|ΨJM ;NZ;π
α 〉 =

∑
i≥0

∑
K

fJK;NZ;π
α (qi)P̂

J
MKP̂

N P̂ZP̂ π |Φ(qi)〉 , (2.28)

where a sum in index i runs over a set of RHB states with non-negative values of β3

parameter. Operator that projects on good values of angular momentum P̂ J
MK is defined

in Eq. (2.2). As already discussed in Section 2.1.2, the axial symmetry of RHB states

(2.7) enables us to perform integrals over two out of three Euler angles analytically. This

reduces the computational cost significantly but, in turn, restricts the angular momentum

projection to K = 0 components only. Furthermore, operators that project on good values

of particle numbers P̂N and P̂Z are defined in Eq. (2.11). In practical implementations,

they are substituted by the corresponding Fomenko expansions of Eq. (2.16). Finally,

technique of projecting on good values of parity has been discussed in Section 2.1.4.

Since the good parity of collective states is recovered by ensuring that the RHB basis is

reflection-symmetric, the corresponding operator P̂ π will not be explicitly written further

on. Rather than that, we extend the sum over index i of Eq. (2.28) by additionally

including states with negative values of β3 parameter, and let the described virtue of
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reflection-symmetric RHB basis do the projecting job for us. The discretized version of

HWG equation within the MR-EDF framework reads:

∑
j

[
HJ ;NZ;π(qi, qj)− EJ ;NZ;π

α N J ;NZ;π(qi, qj)
]
fJ ;NZ;π
α (qj) = 0. (2.29)

Here, the Hamiltonian kernel HJ ;NZ;π(qi, qj) and the norm overlap kernel N J ;NZ;π(qi, qj)

are defined as:

OJ ;NZ;π(qi, qj) =
2J + 1

2
δM0δK0

∫ π

0

dβ sin βdJ∗00 (β)
1

N2
ϕ

Nϕ∑
lN=1

Nϕ∑
lZ=1

e−iϕlNN0e−iϕlZZ0

× 〈Φ(qi)|Ôe−iβĴxeiϕlN N̂eiϕlZ Ẑ |Φ(qj)〉 ,

(2.30)

where dJ∗00 (β) denotes Wigner-d matrix [VMK88], and operator Ô corresponds to the

identity operator and to the Hamiltonian operator for the norm overlap kernel and the

Hamiltonian kernel, respectively. Details on calculation of these kernels will be discussed

in Section 2.2.4.

The HWG equation in a form of Eq. (2.29) represents a generalized eigenvalue problem.

Consequently, the weight functions fJ ;NZ;π
α (qi) do not form an orthogonal set and cannot

be interpreted as collective wave functions for variable qi. Therefore, the first step in

solving the HWG equation is introducing an another set of functions:

gJ ;NZ;π
α (qi) =

∑
j

(N J ;NZ;π)1/2(qi, qj)f
J ;NZ;π
α (qj), (2.31)

that are indeed orthogonal and play the role of collective wave functions. After exchanging

weight functions for the collective wave functions, the HWG equation assumes a form of

the ordinary eigenvalue problem:

∑
j

H̃J ;NZ;π(qi, qj)g
J ;NZ;π
α (qj) = EJ ;NZ;π

α gJ ;NZ;π
α (qi), (2.32)

with the modified Hamiltonian kernel:

H̃J ;NZ;π(qi, qj) =
∑
k,l

(N J ;NZ;π)−1/2(qi, qk)HJ ;NZ;π(qk, ql)(N J ;NZ;π)−1/2(ql, qj). (2.33)

The eigenvalue problem for the norm overlap kernel reads:
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∑
j

N J ;NZ;π(qi, qj)u
J ;NZ;π
k (qj) = nJ ;NZ;π

k uJ ;NZ;π
k (qi), (2.34)

where uJ ;NZ;π
k (qi) and nJ ;NZ;π

k are the corresponding eigenvectors and eigenvalues, respec-

tively. Inversion of the norm overlap kernel in Eq. (2.33) is formally possible only if

the kernel matrix does not have any zero eigenvalues. In practical implementations, one

encounters norm eigenvectors with very small eigenvalues, that are a direct consequence

of the fact that the original set of generating functions is not linearly independent. These

states need to be removed from the basis, while the remaining states are used to build

the collective Hamiltonian:

HJ ;NZ;π
kl,c =

1√
nJ ;NZ;π
k

1√
nJ ;NZ;π
l

∑
i,j

uJ ;NZ;π
k (qi)H̃J ;NZ;π(qi, qj)u

J ;NZ;π
l (qj), (2.35)

which can be easily diagonalized using the standard diagonalization techniques:

∑
l

HJ ;NZ;π
kl,c gJ ;NZ;π

l,α = EJ ;NZ;π
α gJ ;NZ;π

k,α . (2.36)

Diagonalization takes place in the collective space spanned by the natural basis states:

|k〉 =
1√

nJ ;NZ;π
k

∑
i

uJ ;NZ;π
k (qi)P̂

J
00P̂

N P̂Z |Φ(qi)〉 , (2.37)

whose dimension is equal to or smaller than the dimension of the original HWG problem.

Solving the Eq. (2.36) for each value of angular momentum J and parity π separately3

determines both the energy of the ground state and energies of the excited states. We note

that only states with natural spin-parity, that is, states which satisfy the rule (−1)J = π

are accessible with the present model. The collective wave functions gJ ;NZ;π
α (qi) and the

weight functions fJ ;NZ;π
α (qi) are finally calculated from the eigenfunctions of the norm

overlap as:

gJ ;NZ;π
α (qi) =

∑
k

gJ ;NZ;π
k,α uJ ;NZ;π

k (qi), (2.38)

fJ ;NZ;π
α (qi) =

∑
k

gJ ;NZ;π
k,α√
nJ ;NZ;π
k

uJ ;NZ;π
k (qi). (2.39)

3In principle, one could additionally project on each value of number of neutrons and protons, (N,Z).
However, we only project on values (N0, Z0) that correspond to a real nucleus under consideration.
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2.2.3 Structural Properties of Collective States

Collective wave functions of Eq. (2.38) do not represent a physical observable. How-

ever, amplitudes of the collective wave functions squared |gJ ;NZ;π
α (qi)|2 manifest the degree

of shape fluctuations in both the quadrupole and octupole directions, and as such they

provide an insight into the structure of collective states in the intrinsic frame. On a

more quantitative level, one can calculate average values of quadrupole and octupole

deformation parameters in the collective state:

〈β2〉J ;NZ;π
α =

∑
i

|gJ ;NZ;π
α (qi)|2β2i, (2.40)

〈|β3|〉J ;NZ;π
α =

∑
i

|gJ ;NZ;π
α (qi)|2|β3i|, (2.41)

where in the octupole direction we have taken an absolute value of deformation parameter

because 〈β3〉 vanishes identically for all states with good parity. These quantities provide

a good indication about the dominant mean-field configurations in a collective state. In

addition, they enable us to characterize the intrinsic density of a collective state by calcu-

lating corresponding RHB densities constrained to the 〈β2〉J ;NZ;π
α and 〈|β3|〉J ;NZ;π

α values.

Furthermore, weight functions and collective wave functions can be used to calculate val-

ues of various observables, both in a collective state and between two different collective

states. The most common examples are electric spectroscopic quadrupole moments and

electric multipole transition strengths, that have been routinely calculated within the MR-

EDF framework for decades [RS80, RGER02, Fru07]. Electric spectroscopic quadrupole

moment of the collective state α with total spin-parity Jπ can be computed as:

Qspec
2 (Jπα) = e

√
16π

5

(
J 2 J

J 0 −J

)∑
qiqf

fJ ;NZ;π∗
α (qf ) 〈Jqf ||Q̂2||Jqi〉 fJ ;NZ;π

α (qi). (2.42)

The reduced electric transition strength of multipolarity λ between an initial collective

state αi of total spin-parity Jπii and a final collective state αf of total spin-parity J
πf
f can

be computed as:

B(Eλ; Jπiαi → J
πf
αf ) =

e2

2Ji + 1

∣∣∣∑
qiqf

f
Jf ;NZ;πf∗
αf (qf ) 〈Jfqf ||Q̂λ||Jiqi〉 fJi;NZ;πi

αi
(qi)
∣∣∣2. (2.43)

Quantity 〈Jfqf ||Q̂λ||Jiqi〉 in Eqs. (2.42) and (2.43) corresponds to the reduced matrix

element of the electric multipole operator Q̂λµ. More practical details on calculation of

Qspec
2 and B(Eλ) can be found in Appendix B.1. Here, we note that all the quantities are
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calculated in full configurational space. Therefore, there is no need to introduce effective

charges and e always denotes the bare value of the proton charge.

Recently, the MR-EDF framework has been extended by including calculation of tran-

sition densities between low-lying excited states [YBH15]. This extension enables us to

determine form factors for electron scattering off nuclei, that represent a very useful tool

in studies of nuclear density distributions [Wal04, Won98, YBH15]. The longitudinal

form factor for an angular momentum transfer L can be computed as the Fourier-Bessel

transform of the reduced transition density ρ
Jfαf
Jiαi,L

(r) from an initial state state αi of total

spin-parity Jπii to a final state αf of total spin-parity J
πf
f :

FL(q) =

√
4π

Z

∫ ∞
0

drr2ρ
Jfαf
Jiαi,L

(r)jL(qr), (2.44)

where q denotes momentum transfer and jL(qr) is the spherical Bessel function of the first

kind. The reduced transition density corresponds to the radial part of the 3D transition

density and it can be calculated as:

ρ
Jfαf
Jiαi,L

(r) = (−1)Jf−Ji
2Jf + 1

2Ji + 1

∑
K

〈Jf0LK|JiK〉
∫

dr̂ρ
JfJiK0
αfαi (r)Y ∗LK(r̂), (2.45)

where Y ∗LK(r̂) are spherical harmonics and ρ
JfJiK0
αfαi (r) denotes the pseudo GCM density

as defined in [YBH15]. The pseudo GCM density does not represent an observable, but

it can be used to calculate nuclear densities in the laboratory frame:

ρlab
α (r) =

∑
λ

Yλ0(r̂) 〈J0λ0|J0〉
∑
K

〈J0λK|JK〉
∫

dr̂′ρJJK0
αα (r, r̂′)Y ∗λK(r̂′). (2.46)

More details on calculation of pseudo GCM densities and general aspects of implementing

the electron-nucleus scattering formalism to the present model can be found in Appendix

B.2.

2.2.4 Evaluation of Norm Overlap and Hamiltonian Kernels

Evaluation of the Hamiltonian kernel (2.24) and the norm overlap kernel (2.25) lies at

the very heart of the MR-EDF method. The simplest way of handling the norm overlaps

is approximating them with Gaussian functions [RS80]. This assumption is based on an

observation that the overlap N (θ, θ′) is rapidly decreasing function of distance |θ − θ′|,
that is, that the overlap between |Φ(θ)〉 and |Φ(θ′)〉 does not vanish only when θ and θ′

are relatively close to each other. Within the Gaussian overlap approximation (GOA),

the norm overlap therefore reads:
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N (θ, θ′) = e−
1
2
γ(χ)(θ−θ′)2 , (2.47)

with the width γ(χ) typically being a function of the center of mass coordinate χ =
1
2
(θ + θ′). If one additionally assumes that a ratio between the Hamiltonian kernel and

the norm overlap kernel is a smooth function of generating coordinates, it is possible

to locally expand kernels up to the second order in θ − θ′ variable. In this way, the

HWG equation transforms into the second-order differential (Schrödinger) equation, and

the GCM framework is replaced by the well-known collective Hamiltonian model [RS80,

PR09]. On the other hand, if one decides to remain exact, the overlap between two RHB

states can be calculated using the conventional Onishi formula [OY66, RS80]:

N (θ, θ′) = 〈Φ(θ)|Φ(θ′)〉 =
[

det
(
U †(θ′)U(θ) + V †(θ′)V (θ)

)]1/2
, (2.48)

where U(θ) and V (θ) are Bogoliubov wave functions introduced in Chapter 1. The fact

that the Onishi formula yields the sign ambiguity in a case when intrinsic states do not

preserve any discrete symmetries has haunted nuclear community for decades. Various

techniques to bypass this deficiency have therefore been proposed, including the method

of analytical continuation [HHR82] and the Neerg̊ard’s method [NW83]. More recently,

an elegant Pfaffian formula based on Grassman algebra that completely resolves the sign

ambiguity has been developed by L. Robledo [Rob09, BR12]. In this work, we will use

the conventional framework of Onishi in order to calculate norm overlaps between the

RHB states. Due to the discrete simplex-x and time-reversal symmetries of the intrinsic

states, the matrix under determinant [see Eq. (2.48)] will exhibit a block structure with

identical blocks, which can be exploited to unambiguously fix the corresponding sign.

In particular, overlap between the RHB state |Φ(qi)〉 and the RHB state |Φ(qj)〉 that

has been rotated by a rotational angle β and a gauge angle ϕ in any of the two isospin

channels reads:

N (qi, qj, β, ϕ) = 〈Φ(qi)|e−iβĴxeiϕN̂ |Φ(qj)〉

=
[
e−iβTr[Jx]+ϕTr[1] detNg(qi, qj, β, ϕ)

] 1
2 ,

(2.49)

where we have introduced:

Ng(qi, qj, β, ϕ) = e−iϕUT (qi)R
∗(β)U∗(qj) + eiϕV T (qi)R(β)V ∗(qj), (2.50)

and R(β) corresponds the matrix of rotation operator in the simplex-x basis, details of

which are given in Appendix A.

Furthermore, the MR-EDF framework can be thought of as an extension of the SR-

EDF framework, where a basic functional ESR-EDF[ρ̂, κ̂, κ̂∗] of intrinsic densities (1.36) has

been replaced by a more general functional EMR-EDF[ρ̂10, κ̂10, κ̂10∗] of transition densities

between different RHB states. In other words, the ground state expectation value of the
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effective nuclear Hamiltonian operator [cf. Eqs. (1.17) and (1.38)] has been replaced by

a generalized Hamiltonian kernel of two different RHB states, possibly rotated in both

the coordinate and gauge space. Since the starting point of our calculation is a density-

dependent effective interaction rather than a genuine Hamiltonian operator, a meaningful

prescription for determining Hamiltonian kernel has to be chosen. This prescription needs

to fulfill four basic requirements [Rob07, Rob10]:

1. The obtained energies have to be scalar.

2. The obtained energies have to be real.

3. All expressions should reduce to the corresponding mean-field expressions for diag-

onal elements of the Hamiltonian kernel, H(θ, θ).

4. Small-amplitude approximation to the exact GCM framework should correspond to

the conventional version of random phase approximation (RPA).

It turns out that, among different prescriptions that are available on the market4, it is

only the mixed density prescription that satisfies all of the listed conditions [RGER02].

Motivated by the generalized Wick theorem5, mixed-density prescription for AMP and

PNP calculations reads:

ρ10
αγ =

〈Φ(qi)|c†γcαe−iβĴxeiϕN̂ |Φ(qj)〉
〈Φ(qi)|e−iβĴxeiϕN̂ |Φ(qj)〉

=
(
eiϕR(β)V ∗(qj)N

−1
g V T (qi)

)
αγ
, (2.51)

κ10
αγ =

〈Φ(qi)|cγcαe−iβĴxeiϕN̂ |Φ(qj)〉
〈Φ(qi)|e−iβĴxeiϕN̂ |Φ(qj)〉

=
(
eiϕR(β)V ∗(qj)N

−1
g UT (qi)

)
αγ
, (2.52)

κ01∗
αγ =

〈Φ(qi)|c†αc†γe−iβĴxeiϕN̂ |Φ(qj)〉
〈Φ(qi)|e−iβĴxeiϕN̂ |Φ(qj)〉

= −
(
e−iϕR∗(β)U∗(qj)N

−1
g V T (qi)

)
αγ
. (2.53)

The nondiagonal elements of the MR-EDF kernel are therefore computed by replacing

intrinsic densities in all the SR-EDF density-dependent terms (including the density-

dependent coupling constants) with transition densities obtained from Eqs. (2.51) - (2.53).

Finally, let us briefly comment on the fact that the Hamiltonian kernel employed in our

study does not correspond to the expectation value of a genuine Hamiltonian operator.

This is a common property of virtually all EDF models, non-relativistic and relativistic

alike, and it occurs for (at least) one of the three reasons:

4Another possible choice is the so-called projected density prescription, which maintains a pleasant
property of preserving symmetries of nuclear Hamiltonian. However, while this prescription works well
in a case of particle number symmetry, it was shown to yield catastrophic results when employed in
calculations that restore spatial symmetries [Rob10]. Nonetheless, a hybrid method of using projected
density in PNP calculation and mixed density in AMP calculation can be employed in order to avoid
problems related to raising (generally complex) mixed densities to the non-integer powers [RRR18].

5We say that the generalized Wick theorem provides a motivation rather than a formal foundation,
since its applicability extends only to theories based on a genuine Hamiltonian operator. This is obviously
not the case for a vast majority of MR-EDF models.
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1. The effective interaction is density-dependent.

In order to correct for too large incompressibility and properly describe the nuclear

surface properties, virtually all modern EDF parameterizations include at least one

density-dependent term. Most notably, the most successful covariant realizations

of the EDF framework are explicitly built as density-dependent models.

2. Vertices used in ph and pp channel are different and possibly not antisymmetric.

This is particularly the case for Skyrme EDFs, where different vertices were intro-

duced in order to account for too small or even repulsive pairing matrix elements

derived from the original interaction [SBB+13], and for relativistic EDFs, where

a non-relativistic pairing force is typically added to the functional [VALR05]. On

the other hand, Gogny EDFs are characterized by using the same antisymmetrized

vertices everywhere. Nevertheless, it has been argued that their density-dependence

still makes it impossible for the phenomenological functional to be mapped on a

functional that is a strict expectation value of a many-body Hamiltonian [BDL09].

3. The exchange terms of the interaction are either approximated or omitted.

The exact treatment of all exchange terms can increase the required computational

time by an order of magnitude. These terms are therefore often either approximated

by simpler expressions (such as the Slater approximation to the Coulomb exchange

potential) or completely omitted (in case of which their physical effect is accounted

for through the adjustment of phenomenological coupling constants).

The undesired consequence of these approximations is breaking of the exchange symmetry

(Pauli principle), that produces spurious self-interaction and self-pairing contributions to

the nuclear EDF [AER01, DSNR07, DBB+09, LDB09, BDL09]. These non-physical con-

tributions were demonstrated to manifest themselves through divergences and/or finite

steps when considering the symmetry-restored energies as functions of collective coordi-

nates. In particular, while situation in AMP calculations appears to be less severe [Egi16],

the PNP calculations for very large values of discretization points Nϕ were shown to ex-

hibit finite steps and discontinuities whenever a single-particle level crosses the Fermi

energy [BDL09]. One should note that this theoretical drawback is related only to the

employed energy functional, and not to the product states in question. Therefore, even

though they may be affected indirectly, all observables that are calculated as expectation

values of the corresponding genuine operators do not contain any explicit spurious con-

tributions. Research towards spuriousity-free MR-EDF calculations is still in its infancy

and it is currently moving in two separate directions: one of them is development of the

regularization schemes for the existing functionals [LDB09, BDL09] and the other one

is development of the pseudo-potential-based-EDF parameterizations that are a priori

free of spuriousities [SBB+13]. In the meantime, one should stay aware of the existing

theoretical drawbacks and, if possible, try to estimate their influence on predictions of

the respective model.
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Chapter 3

A Computational Interlude

What can be asserted without evidence can be dismissed without evidence.

Christopher Hitchens’ razor

In the preceding chapters we have introduced and described a collective nuclear model

based on the restoration of symmetries of intrinsic states and the subsequent configura-

tion mixing. In the following chapters, this framework will be employed in a study of

clustering phenomena in neon and carbon isotopes. However, before discussing physical

aspects of the study, let us first address some of the issues related to the computational

implementation of the model. In particular, we will address the question of convergence of

results with respect to various discretization parameters, both on the SR-EDF and on the

MR-EDF level. To begin with, computational aspects of the mean-field calculations will

be discussed. The RHB calculations were performed by using the quadrupole-deformed

axially-symmetric version of the DIRHB package [NPVR14] as a starting point, and by

further extending it in order to additionally include the axially-symmetric octupole degree

of freedom. Since the number of required configurations is relatively low (as compared to,

for example, nuclear fission calculations), it is the least time-consuming part of our cal-

culation. In the next step, the restoration of good angular momentum, particle number,

and parity of RHB states were built upon the mean-field code. This step represents the

most time-consuming part of the calculation. The symmetry-restored configurations were

then mixed in order to build the symmetry-conserving collective states and study their

spectroscopic properties. In the second part of this chapter, we will examine convergence

of the obtained projected energies with respect to the number of integration points in

the β-Euler angle and the ϕ-gauge angle. The need for this is (at least) two-fold. First,

as in any other discretized calculation, it is necessary to verify that the particular choice

of mesh provides a satisfactory convergence of calculated quantities. The second reason

is to demonstrate the influence of the theoretical drawback related to the fact that the

59
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employed functional does not correspond to the expectation value of a genuine Hamilto-

nian operator (for more details see Section 2.2.4 and references cited therein). Finally, we

will discuss the influence of linear dependence (overcompleteness) of the original set of

RHB basis functions on the output of the model. These linear dependencies are routinely

removed by reducing the size of a natural basis [see Eq. (2.37)] and by verifying that the

obtained spectra is stable with respect to the number of remaining natural basis states.

For the sake of brevity, the entire analysis of this chapter will be based only on a case of
20Ne isotope, that we conveniently choose as a representative for a class of light nuclei.

3.1. Convergence of Mean-Field Calculation

Starting point of our calculation is the axially-symmetric quadrupole-deformed version

of the DIRHB package, which computes the ground-state properties of even-even nuclei

using the framework of relativistic self-consistent mean-field models [NPVR14]. This

code was first extended by including the axially-symmetric octupole degree of freedom,

which enabled us to perform self-consistent calculations in the entire β2 − β3 plane. The

RHB equations were solved in the configurational space of axially-symmetric harmonic

oscillator, by expanding the large and the small component of nuclear spinors in bases

of the corresponding eigenfunctions. As already emphasized in Chapter 1, the appear-

ance of spurious states is avoided by choosing quantum numbers |α〉 = |nzn⊥Λms〉 in

such a way that their combination does not exceed the maximal major quantum num-

ber Nsh = 2n⊥ + |Λ| + nz for the large component of nuclear spinor and the maximal

major quantum number Nsh + 1 for the small component of nuclear spinor. Of course,

the convergence of results with respect to the size of basis Nsh has to be verified. There-

fore, in the left panel of Figure 3.1 we plot the differences of calculated RHB binding

energies ∆ENsh
RHB = ENsh

RHB − ENsh+2
RHB of 20Ne isotope for different numbers of oscillator

shells Nsh = 6, 8, 10 in the (β2, β3 > 0) plane1. Dashed contours connect points with the

same ∆ENsh
RHB values and they are separated by 1 MeV. The constrained RHB equations

were solved on a two-dimensional mesh, by imposing constraints on the axially-symmetric

quadrupole and octupole moments and implementing the augmented Lagrangian method

[SSBN10]. The resulting mesh covers a wide range of deformations in both the quadrupole

and octupole degree of freedom: β2 ∈ [−0.6, 1.5] and β3 ∈ [−2.0, 2.0]. The step size on the

oblate and on the prolate side were taken to be ∆β2 = 0.15 and ∆β2 = 0.3, respectively,

while the step size in the octupole direction equals ∆β3 = 0.2. After solving the RHB

equation, all of the configurations with energy more than 20 MeV above the equilibrium

were removed from the basis. Of course, the exclusion of such high-energy states does

not influence the predictive power of our model which ultimately aims to describe the

low-lying structure of atomic nuclei. The remaining states, which will be included in the

subsequent symmetry restoration and configuration mixing, are denoted with red circles

in the left panel of Fig. 3.1. By inspecting the Fig. 3.1, one can verify that a satisfactory

convergence for all the states is obtained for Nsh = 10 oscillator shells. In particular, a

1The (β2, β3 < 0) plane is equivalent to the (β2, β3 > 0) plane, that is, one can be obtained by
mirroring the other one around the β3 = 0 axis.
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Figure 3.1: Left panel (a): differences of calculated RHB binding energies ∆ENshRHB = ENshRHB −
ENsh+2

RHB of 20Ne isotope for different numbers of oscillator shells Nsh in the (β2, β3 > 0) plane.
Dashed contours are separated by 1 MeV. Red points denote calculated configurations that are
at most 20 MeV above the equilibrium configuration. Right panel (b): RHB binding energies
of (β2 = 1.2, β3 > 0) configurations for different numbers of oscillator shells Nsh.

shift to 12 oscillator shells brings less than 1 MeV of binding for a large majority of cho-

sen states. Only a small minority of states, predominantly at larger β3 deformations and

on the oblate side of β2 − β3 plane, have converged with ∆ENsh=10
RHB > 1 MeV. However,

as it will be demonstrated in the following chapter, this part of the β2 − β3 plane will

not play any relevant role in the description of nuclear collective dynamics. In fact, it

is well established that the absolute value of binding energy does not significantly affect

the collective nuclear motion, as long as the shape of the energy landscape is preserved

[RGER02]. In order to demonstrate this point, in the right panel of Fig. 3.1 we show the

calculated RHB binding energies of (β2 = 1.2, β3 > 0) configurations for different numbers

of oscillator shells Nsh. While the Nsh = 6 and Nsh = 8 values are obviously not suffi-

cient to obtain a proper convergence, especially for larger β3 deformations, the Nsh = 10

and Nsh = 12 curves indeed exhibit almost identical shape. Similar conclusions can be

drawn if one inspects the corresponding plots for other considered isotopes. Therefore, a

value of Nsh = 10 oscillator shells is adopted in solving RHB equations for all the further

calculations. The resulting wave functions are first obtained in the configurational space

of harmonic oscillator, and they are subsequently used to calculate densities in the same

configurational space. These densities are then transformed to the cylindrical coordinate

space (r⊥, z, φ), where they are employed to compute various terms of the energy density

functional. Discretization in the z− and r⊥− directions have been carried out following

the Gauss-Hermite and Gauss-Laguerre quadrature methods, respectively, and the corre-

sponding number of points equal NGH = 16 and NGL = 14, respectively. Computational

time required to compute one RHB configuration will depend on its distance from the

absolute minimum. For configurations with reasonable binding energies (that is, at most

20 MeV above the absolute minimum) and Nsh = 10 oscillator shells, depending on the

machine, the required computational time will typically range between ten and thirty

seconds. Of course, increasing the size of a single-particle basis will significantly increase

the required computational time, both for the SR-EDF and for the MR-EDF calculation.
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Figure 3.2: Absolute energy differences ∆E
Nβ
proj = |ENβproj−E

Nβ+4
proj | of states projected on even-

positive spin-parities for different numbers of β−Euler angle mesh points Nβ. Separation of
dashed lines on all panels corresponds to the separation of neighboring ticks on their respective
colorbars, that is, to 0.06, 0.06, 0.06, 0.3 MeV for Jπ = 0+, 2+, 4+, 6+, respectively. Red circles
denote configurations that are included in the symmetry restoration and configuration mixing
calculation. Results are shown for 20Ne isotope. See text for more details.

3.2. Convergence of Symmetry-Restoring Calculation

3.2.1 Convergence of Projected Energies

Restoration of broken symmetries of the RHB states and the subsequent configura-

tion mixing represent the most numerically-involved part of our calculation. The reason

for this is rather obvious: while the SR-EDF is a functional of (normal and anoma-

lous) density matrices, the MR-EDF can be seen as a more general functional of all

the transition density matrices. This means that, starting from NSR-EDF states in the

RHB basis, all of the relevant symmetry-restored quantities have to be calculated for

NMR-EDF = NSR-EDF(NSR-EDF + 1)/2 configurations. Formally, these quantities represent
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Figure 3.3: Absolute energy differences ∆E
Nβ
proj = |ENβproj − E

Nβ+4
proj | of states projected onto

odd-negative spin-parities for different numbers of β−Euler angle mesh points Nβ. Separation of
dashed lines on all panels corresponds to the separation of neighboring ticks on their respective
colorbars, that is, to 0.06, 0.06, 0.06, 0.3 MeV for Jπ = 1−, 3−, 5−, 7−, respectively. Red circles
denote configurations that are included in the symmetry restoration and configuration mixing
calculation. Results are shown for 20Ne isotope. See text for more details.

the non-diagonal matrix elements of the corresponding operators between a non-rotated

RHB state and a RHB state that is rotated both by Euler angles (α, β, γ) in the coordi-

nate space and by gauge angles (ϕN , ϕZ) in the gauge spaces of two isospin channels. By

applying the projection operator and integrating over all the rotational and gauge angles,

a symmetry-restored quantity is obtained.

Starting from the AMP case, the axial symmetry of RHB states enables us to carry out

integrals over Euler angles α and γ analytically, which significantly reduces the compu-

tational cost. Consequently, we are left with integral in the β−Euler angle that needs to

be computed numerically. In order to analyze the convergence of calculated energies with

the number of mesh points in β-direction Nβ, in Figure 3.2 we plot the absolute energy

differences ∆E
Nβ
proj = |ENβ

proj − E
Nβ+4
proj | of states projected onto even-positive spin-parities

Jπ = 0+, 2+, 4+, 6+ for different numbers of mesh points Nβ = 15, 19, 23, 27. The cor-

responding ∆E
Nβ
proj values projected onto odd-negative spin-parities Jπ = 1−, 3−, 5−, 7−
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Figure 3.4: Absolute energy differences ∆E
Nβ=27,Nϕ
proj = |ENβ=27,Nϕ

proj − E
Nβ=27,Nϕ+2
proj | of

states projected onto even-positive spin-parities Jπ = 0+, 2+, 4+, 6+ and particle numbers
NN , NZ = 10 for different numbers of gauge-angle mesh points NϕN = NϕZ ≡ Nϕ. Separa-
tion of dashed lines on all panels corresponds to the separation of neighboring ticks on their
respective colorbars, that is, to 0.06, 0.06, 0.2, 0.5 MeV for Jπ = 0+, 2+, 4+, 2+, respectively. Red
circles denote configurations that are included in the symmetry restoration and configuration
mixing scheme. Results are shown for 20Ne isotope. See text for more details.

are shown in Figure 3.3. As before, red circles denote configurations that are included in

the symmetry restoration and configuration mixing calculation. Note that the angular

momentum projection for the spherical (β2 = 0, β3 = 0) configuration is well defined only

for Jπ = 0+ and it is therefore omitted from all the other plots. Similarly, parity pro-

jection for reflection-symmetric (β3 = 0) configurations is well defined only for positive

parity, hence these configurations are omitted from Fig. 3.3. In addition, several other

configurations close to the spherical point are characterized by very small values of the

projected norm overlap kernel and their angular-momentum projected energies cannot

be determined accurately. These states will not play any relevant role in the configura-

tion mixing calculations and they can be safely omitted. Starting from angular momenta

0 ≤ J ≤ 3, a reasonable convergence is obtained already for Nβ = 19. In particular, a
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Figure 3.5: Absolute energy differences ∆E
Nβ=27,Nϕ
proj = |ENβ=27,Nϕ

proj − E
Nβ=27,Nϕ+2
proj | of

states projected onto odd-negative spin-parities Jπ = 1−, 3−, 5−, 7− and particle numbers
NN , NZ = 10 for different numbers of gauge-angle mesh points NϕN = NϕZ ≡ Nϕ. Separa-
tion of dashed lines on all panels corresponds to the separation of neighboring ticks on their
respective colorbars, that is, to 0.06, 0.06, 0.2, 0.5 MeV for Jπ = 1−, 3−, 5−, 7−, respectively. Red
circles denote configurations that are included in the symmetry restoration and configuration
mixing scheme. Results are shown for 20Ne isotope. See text for more details.

shift to Nβ = 23 brings less than 0.2 MeV of binding for all the considered states. How-

ever, the increase of angular momenta is accompanied by weakening of this convergence,

since a higher order of the corresponding associated Legendre polynomials in numerical

evaluation of projection integrals requires the inclusion of more mesh points. Therefore,

in order to ensure a satisfactory convergence for a wide range of angular momenta, a value

of Nβ = 27 is adopted in all the further calculations. This choice means that, when com-

pared to values obtained for Nβ = 31, energies of states with angular momenta 0 ≤ J ≤ 5

have converged within ∆E
Nβ=27
proj = 0.06 MeV, while all of the states with angular mo-

mentum J = 6+ and all but one state with angular momentum J = 7− have converged

within ∆E
Nβ=27
proj = 0.3 MeV. Similar conclusions can be drawn when inspecting results

for other considered isotopes. In the next step, a number of mesh points in β−Euler

angle is fixed at Nβ = 27 and restoration of good neutron and proton numbers is added
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to the states with good angular momenta. In Figure 3.4 we plot the absolute energy dif-

ferences ∆E
Nβ=27,Nϕ
proj = |ENβ=27,Nϕ

proj − ENβ=27,Nϕ+2
proj | of states projected onto even-positive

spin-parities Jπ = 0+, 2+, 4+, 6+ and particle numbers NN , NZ = 10 for different num-

bers of gauge-angle mesh points NϕN , NϕZ = 3, 5, 7, 9. The corresponding ∆E
Nβ=27,Nϕ
proj

values projected onto odd-negative spin-parities Jπ = 1−, 3−, 5−, 7− are shown in Figure

3.5. Starting from the J = 0+ angular momentum, satisfactory convergence is obtained

already for Nϕ = 5 mesh points. However, as in the case of the AMP only, convergence

of the simultaneous AMP and PNP is worsened as the angular momentum is increased.

Therefore, in order to ensure a satisfactory convergence, a value of Nϕ = 9 is adopted in

all the further calculations.

3.2.2 Some Convergence Issues

As previously discussed in Section 2.2.4, a theoretical drawback of all the standard

EDFs, non-relativistic and relativistic alike, is the fact that the Hamiltonian kernel which

they employ does not correspond to the expectation value of a genuine Hamiltonian op-

erator. The unpleasant consequences of this drawback, the appearance of divergences,

finite steps, and/or discontinuities when plotting projected energies as functions of gener-

ating coordinate, have been reported on multiple places [AER01, DSNR07, BDL09]. Even

though these anomalies follow directly from the formal properties of the framework, they

are often not manifested explicitly in practical implementations of the model. The reason

for this is (at least) two-fold: (a) Anomalies are expected to appear only at certain defor-

mations, that is, only for configurations that contain a single-particle level very close to

the Fermi surface. Therefore, a choice of mesh in generating coordinates that is not dense

enough may completely conceal the anomalies. (b) Anomalies are expected to be unveiled

only for very fine discretization meshes of projection integrals. Therefore, discretization

parameters that are typically sufficient to obtain a reasonable convergence may not unveil

the underlying anomalies. In order to demonstrate quantitatively the concrete effect of

this discussion on predictions of our model, in the upper panel of Figure 3.6 we plot the

convergence patterns of energies projected onto angular momentum Jπ = 2+ for all the

states in the RHB basis (this is, of course, equivalent to plotting projected energy as a

function of two generating coordinates). Blue lines denote the case when only AMP is

performed: the dash-dotted line corresponds to difference in projected energies obtained

for Nβ = 27 and Nβ = 71, while the dotted line corresponds to difference in projected

energies obtained with Nβ = 27 and Nβ = 171. Therefore, in addition to calculation per-

formed with the value of discretization parameter that was already demonstrated to yield

satisfactory convergence (Nβ = 27), we performed calculations with two significantly (and

unreasonably) larger values of discretization parameter. Nevertheless, the convergence of

energies of angular-momentum-projected states appears to persist almost perfectly on the

entire β2−β3 plane, save for a barely noticeable dip at around Nstate(β2, β3) = 50. In the

next step, value of AMP discretization parameter was fixed to Nβ = 27 and PNP was

performed with three different values of discretization parameter Nϕ. The corresponding

differences in energies are denoted with red lines: the dash-dotted line corresponds to
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Figure 3.6: Upper panel (a): Convergence pattern of energies projected onto angular momen-
tum Jπ = 2+ for states Nstate(β2, β3 > 0) in the RHB basis. Blue lines denote the case when
only AMP is performed: the dash-dotted line corresponds to difference in energies obtained for
Nβ = 27 and Nβ = 71, while the dotted line corresponds to difference in energies obtained with
Nβ = 27 and Nβ = 171. Red lines denote the case when both AMP (Nβ = 27) and PNP are
performed: the dash-dotted line corresponds to difference in energies obtained for Nϕ = 9 and
Nϕ = 19, while the dotted line corresponds to difference in energies obtained with Nϕ = 9 and
Nϕ = 49. Lower panel (b): Occupation probabilities of single-neutron (circles) and single-proton
(triangles) levels of Nstate(β2, β3 > 0) states that are closest to the Fermi surface (v2

k = 0.5).
Results are shown for 20Ne isotope. See text for more details.

difference in projected energies obtained with Nϕ = 9 and Nϕ = 19, while the dotted line

corresponds to difference in projected energies obtained with Nϕ = 9 and Nϕ = 49. Once

again, in addition to calculation performed with the value of discretization parameter

that was already demonstrated to yield satisfactory convergence (Nϕ = 9), we performed

calculations with two significantly (and unreasonably) larger values of discretization pa-

rameter. This time, however, we encounter a disturbance in the convergence pattern. In

particular, for Nϕ = 19 small deviations can be seen in the region 6 ≤ Nstate(β2, β3) ≤ 24

that peak at about ∆Eproj ≈ 0.2 MeV for the 14th basis state. To put it into perspective,

let us repeat that a satisfactory convergence of the RHB calculation was proclaimed for

states with ∆ENsh=10
RHB ≤ 1 MeV. By further increasing the discretization parameter to

Nϕ = 49, the maximum of deviation switches to 21st basis state and it equals roughly

∆Eproj ≈ 1.5 MeV. As discussed earlier in the manuscript and extensively in the literature

[AER01, DBB+09, BDL09], the origin of these anomalies can be traced back to properties

of the underlying single-particle spectra. In order to examine this claim in more details,

in the lower panel of Fig. 3.6 we plot the occupation probabilities of single-neutron and

single-proton levels of basis states that are closest to the Fermi surface (v2
k = 0.5). Com-

paring the two panels, it soon becomes apparent that the ∆Eproj maxima for both red

lines from the upper panel (that is, the 14th and the 21st basis state) indeed correspond

to cases in the lower panel when single-particle states are located very close to the Fermi

surface. Equivalent analyses could be carried out for states with higher values of angular
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Figure 3.7: Upper panel: Excitation energies of collective positive-parity (left) and negative-
parity (right) collective states in 20Ne isotope as a function of the number of considered norm
overlap eigenstates. Eigenstates are labeled in the decreasing order of eigenvalues. Lower panel:
Eigenvalues of the norm overlap for positive-parity (left) and negative-parity (right) collective
states. See text for more details.

momenta Jπ and for projections with larger values of discretization parameter Nϕ. Both

of these changes are likely to lead to further disturbances of the convergence pattern: the

former one because higher Jπ states have weaker convergence to start with, and the latter

one because larger proportion of the existing pole is likely to be caught by the projection

integral. However, completely spurious-free calculations at the level of implementation

as advanced as the present one are still exceptionally scarce within the non-relativistic

framework [BABH14], and they are yet to be performed within the relativistic framework.

In the meantime, we reiterate that this simple analysis did not reveal any notable issues

concerning AMP calculations, while combined AMP and PNP convergence is yet rather

stable for a reasonable range of discretization parameters.

3.3. Configuration Mixing and Linear Dependencies

Final step of the calculation corresponds to mixing of symmetry-restored RHB config-

urations. The obtained HWG equation is solved by diagonalizing the collective Hamil-

tonian [see Eq. (2.35)] in the basis of natural states [see Eq. (2.37)]. Already a short

inspection of these two equations reveals a potential issue. Namely, if the norm overlap

eigenvalues nJ ;NZ;π
k become too small they may cause numerical instabilities when defin-

ing the natural basis and, consequently, when diagonalizing the collective Hamiltonian.

In practice, small values of nJ ;NZ;π
k stem from linear dependencies of the initial set of
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RHB wave functions |Φ(qi)〉. For this reason, there is no practical gain in including RHB

states that are too close to each other in the space of generating coordinates, since such

choice will only introduce additional linear dependencies to the model. Equivalently, by

choosing the mesh with reasonable ∆β2 and ∆β3 steps one can minimize the influence

of linear dependencies. Nevertheless, they will always persist to a certain level, and they

need to be accounted for. Typically, this is done by inspecting the obtained energies

of collective states as functions of the number of included natural basis states. The so-

called plateau condition then asserts that, after norm overlap eigenstates with smallest

eigenvalues are discarded, these energies should remain rather constant for a wide range

of states [BDF+90]. Therefore, in the upper panel of Figure 3.7 we plot the excitation

energies of collective positive-parity states (left) and negative-parity states (right) in 20Ne

isotope as functions of the number of considered norm overlap eigenstates. We note that

eigenstates with eigenvalues nJ ;NZ;π
k < 10−4 were a priori removed from the basis. The

remaining states are labeled in the decreasing order of eigenvalues, that is, the first state

is the one with the largest eigenvalue. The corresponding eigenvalues are additionally

plotted in the lower panel of Fig. 3.7. Inspecting the upper panel of Fig. 3.7, one notices

that energies of the lowest-lying positive-parity states Jπ = 0+, 2+ and negative-parity

states Jπ = 1−, 3−, 5− remain stable for the entire range of norm eigenstates. On the

other hand, for Jπ = 4+, 6+ and Jπ = 7− one first introduces a cutoff in the natural basis

and then adopts the plateau values. Equivalent analysis has been carried out for other

nuclei under consideration and the corresponding plateau values have been adopted.

3.4. Concluding Remarks

To summarize, in this chapter we have discussed computational aspects of our study

that serve as a practical precondition for the successful implementation of the model in

the following chapters. In particular, we have demonstrated that the chosen size of the

axially-symmetric harmonic oscillator basis (Nsh = 10) ensures a satisfactory convergence

of the RHB calculation. Furthermore, we have analyzed in more detail practical issues

related to the restoration of symmetries of the intrinsic states. Values of discretization

parameters Nβ = 27 (for AMP) and Nϕ = 9 (for PNP) were shown to provide a sat-

isfactory convergence of projected energies for angular momenta 0 ≤ J ≤ 7 and for a

wide range of deformations in both the quadrupole and octupole degree of freedom. In

addition, we have briefly discussed the impact of different approximations related to the

form of the effective interaction on predictions of the present model. Our simple analysis

did not reveal any notable issues concerning the AMP calculations, while convergence

of the combined AMP and PNP calculations is rather stable for a reasonable range of

discretization parameters. Finally, we have addressed the impact of linear dependencies

of the initial set of basis functions on final predictions of the collective model. In order

to satify the plateau condition, these linear dependencies are accounted for by inspecting

the obtained collective energies as functions of the size of natural basis and removing the

states related to very small norm eigenvalues. We are now ready to focus on physical

aspects of the study, which will be thoroughly discussed in the following two chapters.





Chapter 4

Quadrupole-Octupole Collectivity

and Clusters in Neon Isotopes

Poets say science takes away from the beauty of the stars - mere globs of gas atoms. Nothing

is ”mere”. I too can see the stars on a desert night, and feel them. But do I see less or more?

Richard Feynman, ”The Feynman Lectures on Physics, Vol. I”

The molecule-like structure of the self-conjugate 20Ne nucleus was first theorized by

the pioneers of nuclear cluster physics already more than 50 years ago [HI68, ITH68].

The two low-lying bands of this isotope, the positive-parity Kπ = 0+ band built upon the

ground state and the negative-parity Kπ = 0− band built upon the first Jπ = 1− state, are

believed to form the inversion doublets and exhibit the equivalent 16O+α structure [HI68,

FHKE+18]. The appearance of clusterized configurations already in the nuclear ground

state is rather exceptional phenomenon in terms of the conventional Ikeda diagrams

[ITH68] which predict the formation of cluster structures as excited states close to the

corresponding α−decay threshold. This almost unique feature of the 20Ne ground state

has attracted significant theoretical attention in the past. Various approaches have been

employed in order to study its low-energy structure, including the angular-momentum-

projected Hartree-Fock model [OYN04], the resonating group method [MKF75], the 5α

generator coordinate method [NYH+75], the antisymmetrized molecular dynamics model

[KEH95, Kim04, TKH04], and the generalized Tohsaki-Horiuchi-Schuck-Röpke wave func-

tion model [ZRX+12]. In addition, reflection-asymmetric equilibrium densities were pre-

dicted within the parity-restored SR-EDF framework, based on both the Gogny [RB11]

and relativistic [EKNV14b] interactions. Another interesting feature of this isotope is the

suggested dissolution of reflection-asymmetric structures at high angular momenta states

by decreasing the equilibrium distance between the two clusters, 16O and α. This is, of

course, unexpected because centrifugal effects should in principle elongate the nucleus.

Recently, a beyond mean-field study of reflection-asymmetric molecular structures and, in

71
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particular, of the antistretching mechanism in 20Ne was performed within the relativistic

MR-EDF framework based on the covariant PC-PK1 functional and the BCS approxima-

tion [ZYL+16]. It has been pointed out that a special deformation-dependent moment of

inertia, governed by the underlying shell structure, could be in part responsible for the

rotation-induced dissolution of cluster structures in the negative-parity states.

Furthermore, in addition to clusters in self-conjugate nuclei, the neutron-rich isotopes

are interesting in the context of excess neutrons playing the role of molecular bonding

between clusterized structures. One such example is the chain of even-even neon isotopes

that can be described as an α + 16O + xn system. The structure of the lightest iso-

tope with such a structure, 22Ne, was previously analyzed with the AMD model [Kim07],

and both the molecular orbital bands and the α + 18O molecular bands has been pre-

dicted. Quadrupole collectivity of heavy neon isotopes close to the neutron drip-line was

previously studied within the EDF framework based on Gogny interaction [RGER03].

Particularly interesting is the case of 24Ne isotope, where a strong shape-coexisting na-

ture of the ground state was predicted [RGER03]. The neutron-rich neon isotopes have

also drawn some attention in the context of nuclear magicity. In particular, a reduction

of the N = 20 spherical shell gap has been experimentally observed in 30Ne isotope, while

a new neutron shell gap was predicted to be formed in 26Ne isotope [SP08].

All things considered, neon isotopic chain, with the formation and dissolution of the

low-lying cluster structures, with the appearance of shape-coexistence phenomenon, and

with the erosion of old and emergence of new magic numbers, represents a truly rich play-

ground for theoretical considerations. In Ref. [MEK+18a] we have studied the structure

of even-even neon isotopes within the relativistic MR-EDF framework. Starting from

a self-consistent RHB calculation of axially-symmetric and reflection-asymmetric defor-

mation energy surfaces, the collective angular-momentum and parity-conserving states

were built using projection and configuration mixing techniques. In the present work, we

are further extending that framework by including the projection of intrinsic states onto

good neutron and proton numbers. Following the strategy of Ref. [MEK+18a], the fully

symmetry-restoring framework is employed in a systematic study of quadrupole-octupole

collectivity and cluster structures in neon isotopes. The content and the form of the

chapter will therefore largely rely on the analysis carried out in Ref. [MEK+18a]. In

Section 4.1, we will study the ground-state properties of neon isotopic chain, including

binding energies, charge radii, and two-neutron separation energies. Furthermore, we will

demonstrate the effect of symmetry restoration and configuration mixing on a structure

of the ground state and analyze the obtained wave functions in some more detail. In

Section 4.2, we will study the low-lying systematics of the neon isotopic chain, including

potential energy surfaces projected onto various angular momenta, excitation energies

of the low-lying collective states, as well as the transition strengths between them. De-

tailed spectroscopy of 22,24Ne and 32,34Ne isotopes will additionally be analyzed. Finally,

in Section 4.3 we will focus more attention on the particularly interesting case of the

self-conjugate 20Ne isotope. The obtained spectroscopic properties will be thoroughly

compared to the available experimental data and to the predictions of other theoretical

models. In addition, cluster components of collective states in the intrinsic frame will be

analyzed.
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Figure 4.1: Self-consistent RHB binding energies of even-even 20−34Ne isotopes, in the β2−β3

plane. For each nucleus, energies are normalized with respect to the energy of the corresponding
absolute minimum. Dashed contours are separated by 2 MeV.

4.1. Ground-State Properties of Neon Isotopes

4.1.1 The Mean-Field Analysis

Our analysis of the ground-state properties of even-even neon isotopes starts with the

self-consistent RHB calculation. The RHB equations were solved in the configurational

space of axially-symmetric harmonic oscillator, by expanding the large and the small

component of nuclear spinors in the corresponding bases with Nsh = 10 and Nsh = 11, re-

spectively. These calculations cover a wide range of deformations in both the quadrupole

and octupole direction, β2 ∈ [−0.6, 1.5] and β3 ∈ [−2.0, 2.0], with steps in the oblate,

prolate, and octupole direction being ∆β2 = 0.15, ∆β2 = 0.3, and ∆β3 = 0.2, respec-

tively. The obtained binding energies for the entire isotopic chain are shown in Figure 4.1.

For each isotope, energies have been normalized with respect to the energy of the corre-

sponding absolute minimum. These minima are found at reflection-symmetric (β3 = 0)

configurations along the entire isotopic chain, and the corresponding quadrupole defor-

mation parameters, binding energies, and charge radii are listed in Table 4.1. Two of the

lightest isotopes considered, 20Ne and 22Ne, are prolate-deformed nuclei with equilibrium

quadrupole deformations β2 ≈ 0.5. By adding two more neutrons, a nearly-degenerate

oblate-deformed minimum at β2 = −0.27 and prolate-deformed minimum at β2 = 0.29 are

developed in 24Ne. Further addition of neutrons leads to development of nearly-spherical

minima in 26Ne and 28Ne isotopes, and a spherical equilibrium in 30Ne isotope due to

the N = 20 neutron shell closure. Moving further away from the magic number, the

neutron-rich isotopes 32Ne and 34Ne display prolate minima with deformations β2 = 0.31
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Table 4.1: Self-consistent RHB values of the axial quadrupole deformation parameters β2 in
ground states of 20−34Ne isotopes. Axial octupole deformation parameters β3 vanish in ground
states of all isotopes. In addition, equilibrium binding energies (second row) and charge radii
(fourth row) are given. The corresponding relative errors with respect to the experimental data,

Rcalc.-exp.
err = (Ecalc.

B − Eexp.
B )/|Eexp.

B |, on binding energies [WAK+17] and charge radii [AM13],
are given in the third and the fifth row, respectively.

20Ne 22Ne 24Ne 26Ne 28Ne 30Ne 32Ne 34Ne

β2 0.51 0.50 −0.25 −0.04 −0.05 0.00 0.31 0.43

EB [MeV] −157.89 −177.24 −191.03 −202.95 −211.48 −218.68 −218.95 −220.23

Rcalc.-exp.
err [%] 1.6 0.3 0.4 −0.6 −2.2 −3.6 −2.6 −3.0

Rch [fm] 3.00 2.99 2.94 2.93 2.98 3.02 3.09 3.14

Rcalc.-exp.
err [%] −0.2 1.3 1.4 0.2 0.5 − − −

and β2 = 0.43, respectively.

Calculated binding energies of equilibrium configurations are listed in the second row

of Tab. 4.1 and the corresponding relative errors in comparison with the experimental

data [WAK+17], Rcalc.-exp.
err = (Ecalc.

B − Eexp.
B )/|Eexp.

B |, are listed in the third row. Overall

agreement for lighter isotopes is quite good, while our calculation tends to overestimate

binding energy of neutron-rich isotopes. Similar behavior was already observed in the rel-

ativistic HFB calculations based on the DD-ME2 functional [EKAV11]. In addition, the

large-scale calculations based on the Gogny D1S force reported a systematic drift towards

theoretical overbinding in neutron-rich isotopes [HG07]. This anomaly was linked to the

imprecise treatment of energy dependence in the neutron matter during fitting procedure

and it was fixed in later parameterizations [CGH08, GHGP09]. We note that the DD-

PC1 functional was fitted exclusively to data on finite nuclei and that the overbinding

of closed-shell systems due to a relatively low effective nucleon mass was noticed already

in the very first application [NVR08]. Therefore, it is expected that the largest devi-

ation in Tab. 4.1 is found in the spherical 30Ne isotope. Moreover, the ground-state

quadrupole deformation of 30Ne is, in fact, experimentally well-established [SP08] and

this overbinding can, at least partially, be attributed to the fact that the obtained spheri-

cal state includes the abnormally large amount of pairing correlations. These correlations

increase the total binding energy of a nucleus and would normally be absent from the

well-deformed state. Generally, it is well known that the choice of the pairing force has a

significant impact on the topology of potential energy surfaces. In particular, larger pair-

ing strength drives energy surfaces towards spherical shapes [AAR16], which has a direct

and important influence on heights of fission barriers and spontaneous fission half-lives in

heavy and superheavy nuclei [KALR10, RGR14]. In this context, one should note that

the parameters of pairing force used in this study were originally adjusted to reproduce

the pairing gap at the Fermi surface in symmetric nuclear matter as calculated with the

Gogny D1S force [TMR09a]. Therefore, there is no guarantee that the same parameters

will be optimal for calculations in finite nuclei over the entire nuclide chart. In practice,

one could fine tune the pairing strength in order to better reproduce experimental binding
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(a) (b)

Figure 4.2: Nucleon densities (in fm−3) of 20Ne in the x − z plane of the intrinsic frame of
reference. Left panel (a): Density corresponding to the absolute minimum (β2, β3) = (0.51, 0.0)
of the self-consistent RHB energy surface [see Fig. 4.1]. Right panel (b): Density corresponding
to the absolute minimum (β2, β3) = (0.45, 0.40) of the symmetry-restored Jπ = 0+ energy
surface [see Fig. 4.3].

energies or available empirical pairing gaps in finite nuclei. However, for the sake of stay-

ing true to the principle of globality, we choose to stick to the exactly same parameters

of the pairing interaction over the entire isotopic chain.

Calculated charge radii of equilibrium configuration are given in the fourth row of Table

4.1. They compare rather favorably with the experimental data [AM13], as well as with

the relativistic HFB calculations based on the DD-ME2 functional [EKAV11]. The 20Ne

ground state is associated with a large quadrupole deformation, which gives rise to the

intrinsically-deformed charge distribution and, consequently, large charge radius. On the

other hand, the smallest charge radius is found in 24Ne isotope, due to the d5/2 subshell

closure. Further addition of neutrons leads to the enhancement of charge radii in heavier

isotopes. However, the charge radius of 20Ne is first exceeded only in 30Ne, an isotope

with twice as large number of neutrons. The large quadrupole deformation of the 20Ne

ground state is mirrored in its deformed intrinsic density distribution, which is plotted in

the left panel of Figure 4.2.

4.1.2 The Effect of Collective Correlations

The mean-field approach is characterized by breaking of various symmetries that even-

tually need to be recovered. Restoration of angular momentum, particle number, and
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Figure 4.3: Angular momentum-, particle number-, and parity-projected energy surfaces of
even-even 20−34Ne isotopes, for spin and parity Jπ = 0+ in the β2 − β3 plane. For each
nucleus, energies are normalized with respect to the binding energy of the corresponding absolute
minimum. Dashed contours are separated by 2 MeV.

parity symmetry were simultaneously performed within our study, using the tools de-

scribed in previous chapters. Discretization parameters of the corresponding integrals,

that is Nβ = 27 for AMP and Nϕ = 9 for PNP, were verified to ensure satisfactory con-

vergence for all values of angular momenta 0 ≤ J ≤ 7 and a broad range of quadrupole

and octupole deformations [for more details, see Chapter 3]. In order to demonstrate

the influence of symmetry restoration on topology of the ground-state potential energy

surfaces, in Figure 4.3 we show the angular-momentum, particle-number, and parity-

projected potential energy surfaces of ground states (Jπ = 0+) of 20−34Ne isotopes in

β2 − β3 plane. A prominent feature in Fig. 4.3 is the fact that parity projection shifts

the position of all the minima towards reflection-asymmetric (β3 6= 0) configurations.

Angular momentum and particle number projections additionally modify the topography

of mean-field energy maps by lowering deformed configurations, thereby forming local

oblate-deformed minima for all isotopes. In particular, an absolute minimum for the
20Ne isotope is found at the octupole-deformed (β2 = 0.45, β3 = 0.4) configuration. The

characteristic pear-like density distribution which corresponds to the equivalent (β2, β3)

configuration in the intrinsic frame1 is plotted in the right panel of Fig. 4.2.

However, the obtained energy surfaces are rather soft in both the β2 and β3 directions,

indicating that configuration mixing calculations will play a crucial role for a quantitative

description of the structure of neon isotopes. Solving the corresponding HWG equation

gives us an access to the correlated ground states, as well as to the structure of the excited

states. Here, one should recall that parameters of the effective interaction [NVR08] have

1Of course, density distribution of the symmetry-restored Jπ = 0+ state in the laboratory frame for
any (β2, β3) combination would be spherically symmetric.
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Figure 4.4: Two-neutron separation energies of 22−34Ne isotopes. The SR-EDF values ob-
tained on a mean-field level (squares), and MR-EDF values obtained after configuration mixing
of symmetry-restored configurations (triangles), are compared to the available experimental
data [WAK+17].

been fitted to experimental data on binding energies of deformed nuclei on a mean-field

level. This means that some of the correlations related to the restoration of rotational

symmetry have already been implicitly included in the functional and the subsequent

restoration of symmetries and configuration mixing may represent double counting of

those correlations2. Therefore, the absolute values of binding energies obtained after

configuration mixing should not be directly compared to the experimental data. Never-

theless, the differences between binding energies in each nucleus, which give rise to the

excitation spectra, as well as differences between the ground-state binding energies in

different isotopes, which give rise to the neutron separation energies, do have physical

meaning. Therefore, in order to analyze the predicted stability of neon isotopes against

the two-neutron emission, in Figure 4.4 we display the two-neutron separation energies

S2n = E0+1
(A − 2, Z) − E0+1

(A,Z) for even-even 22−34Ne isotopes. The MR-EDF values

obtained after mixing of symmetry-restored configurations are compared with the avail-

able experimental data [WAK+17] and, to quantify correlation effects, with the SR-EDF

results obtained on the RHB level. The SR-EDF results for the two-neutron separation

energies, that is, the differences between binding energies of the corresponding equilib-

rium minima, generally overestimate the experimental values, except for 32Ne. It appears

2One could account for this double counting by adjusting the functional to the pseudodata, obtained
by subtracting correlation effects from experimental masses. Alternatively, parameters of the functional
could be fitted directly on a beyond mean-field level, as was, for example, done for the Gogny D1M
effective interaction [GHGP09].
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Figure 4.5: Amplitudes of collective wave functions squared |g(β2, β3)|2 of the ground states
of 20−34Ne isotopes. Dashed contours in the β2 − β3 plane successively denote a 10% decrease
starting from the largest value of the amplitude.

that for A < 30 configuration mixing does not produce a significant impact on the calcu-

lated two-neutron separation energies. Closer to the dripline, however, one notices that

the inclusion of collective correlations through symmetry restoration and configuration

mixing starts to play much more important role, shifting calculated values closer to the

experimental ones. In addition, we have verified that 34Ne is indeed the last stable neon

isotope, since both the two-neutron and the four-neutron separation energies for 36Ne

are calculated to be negative. A similar improvement of the predicted two-neutron sepa-

ration energies for neon isotopes was also obtained in the angular-momentum-projected

configuration mixing study based on the Gogny D1S interaction [RGER03]. However, the

calculated S2n value for 34Ne reported therein was slightly negative, that is, this isotope

was predicted to be unstable against the two-neutron emission.

Even though the ground-state spectroscopic quadrupole moments vanish identically in

even-even nuclei, it is instructive to calculate expectation values of quadrupole deforma-

tion parameters in correlated ground states. These values can be obtained by averaging

the deformation parameter β2 over the entire β2 − β3 plane, with the wave functions of

each collective state Jπα playing the role of corresponding weights [see Eq. (2.40)]. In Fig-

ure 4.5 we display the amplitudes squared of the ground-state collective wave functions

for 20−34Ne. As noted before, this quantity is not an observable, but still it provides a

useful insight into the structure of correlated ground states. In contrast to the mean-field

RHB equilibrium minimum which corresponds to a single configuration in the (β2, β3)

plane, the amplitude of the ground state collective wave function manifests the degree

of shape fluctuations in both quadrupole and octupole directions. In the left panel of

Figure 4.6 we plot the MR-EDF average β2 deformation values for 20−34Ne isotopes in
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Figure 4.6: Deformation parameters β2 (left panel (a)) and |β3| (right panel (b)) of 20−34Ne
isotopes that correspond to self-consistent minima on the SR-EDF level, in comparison with
the MR-EDF values of the corresponding correlated ground states. The deformations obtained
by averaging over only prolate (triangle left) and only oblate (triangle right) configurations, as
well as their respective contributions to the total collective wave function, are also shown.

comparison to deformations that correspond to the self-consistent minima on the SR-

EDF level. Since the contributions of oblate configurations to the total collective wave

functions are larger than 20% over the entire isotopic chain, we additionally display the

β2 deformations obtained by averaging over only prolate (left triangle) and only oblate

(right triangle) configurations. In parentheses, we include the respective contributions

to the total collective wave function from both prolate and oblate configurations. One

notices that oblate configurations give a significant contribution for all isotopes, and this

contribution is more pronounced in 24−32Ne. The nucleus 24Ne, which exhibits nearly de-

generate oblate and prolate minima on the mean-field level, preserves this structure even

after symmetry restoration and configuration mixing. In particular, dominant component

of the correlated ground state is prolate-deformed and peaks at β2 ≈ 0.35, but nearly

40% of the collective wave function spreads over the oblate side and peaks at β2 ≈ 0.3. A

similar behavior is also found in the 26Ne isotope. The semimagic nucleus 30Ne is found

to be very weakly prolate-deformed, in contrast to the large ground-state quadrupole

deformation deduced from the experiment [SP08]. By removing two neutrons, the nearly

spherical structure of the ground state appears to be preserved in 28Ne. The addition of

two neutrons, however, leads to the formation of a barrier at the spherical configuration

of 32Ne. The resulting collective wave function resembles the shape-coexisting structure,

even though the prolate component is significantly more pronounced. In the right panel of

Fig. 4.6 we plot the corresponding values of the octupole deformation parameter. Since

〈β3〉 vanishes identically for all collective states with good parity, we plot instead the

average values of the corresponding modulus [see Eq. (2.41)]. The 〈|β3|〉 values quantify
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the role of octupole degree of freedom in the analyzed ground states. Obviously, octupole

collectivity is very pronounced in 20Ne isotope, while it is somewhat weaker and approx-

imately constant over the rest of the isotopic chain, with average values varying between

〈|β3|〉 = 0.30 and 〈|β3|〉 = 0.35.

4.2. Excited-State Properties of Neon Isotopes

4.2.1 Systematics of the Low-Lying States

In addition to the ground-state properties that were discussed in the previous sec-

tion, the MR-EDF framework enables us to access properties of excited states of atomic

nuclei. Our analysis of the excited states of neon isotopes starts with the inspection

of symmetry-restored potential energy surfaces. In Figures 4.7 and 4.8 we show the

angular-momentum, particle-number, and parity-projected potential energy surfaces of

the positive-parity states Jπ = 2+, 4+ of 20−34Ne isotopes in β2 − β3 plane. Note that

the angular momentum projection for the spherical configuration is well defined only for

Jπ = 0+ and it is therefore omitted from these plots. The Jπ = 2+ surfaces still pre-

serve to a significant extent the oblate-deformed components that were present in the

ground-state potential energy surfaces of Fig. 4.3. In particular, absolute (even though

shallow) minima in both the 24Ne and 28Ne isotope are found at oblate-deformed con-

figurations. By further rotating a nucleus, prolate-deformed minima are stabilized on

Jπ = 4+ surfaces for all isotopes. Furthermore, in Figures 4.9 and 4.10 we show the

angular-momentum, particle-number, and parity-projected potential energy surfaces of

the negative-parity states Jπ = 1−, 3− of 20−34Ne isotopes in β2 − β3 plane. Note that

parity projection for reflection-symmetric (β3 = 0) configurations is well defined only

for positive parity, hence these configurations are omitted in Figs. 4.9 and 4.10. The

negative-parity-projected surfaces are rather soft in the octupole direction. The absolute

minima are located on the prolate side of the β2 - β3 plane and they are separated by

at least 4 MeV from the corresponding Jπ = 0+ absolute minima. Common feature of

Table 4.2: Calculated ground-state band spectroscopic quadrupole moments for Jπ =
2+, 4+, 6+ in the even-even 20−34Ne isotopes. Additionally, in the last row we list the num-
ber of configurations that were taken into account within the configuration mixing scheme.

20Ne 22Ne 24Ne 26Ne 28Ne 30Ne 32Ne 34Ne

Qspec
2 (2+

1 ) [efm2] −15.00 −14.01 −4.71 −8.26 −4.36 −13.84 −12.26 −14.80

Qspec
2 (4+

1 ) [efm2] −19.89 −18.27 −9.02 −14.50 −14.79 −20.17 −16.81 −19.50

Qspec
2 (6+

1 ) [efm2] −20.47 −21.11 −11.70 −17.78 −22.74 −23.28 −17.48 −21.33

NSR-EDF 118 112 111 115 118 113 115 115
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Figure 4.7: Angular momentum-, particle number-, and parity-projected energy surfaces of
even-even 20−34Ne isotopes, for spin and parity Jπ = 2+ in the β2−β3 plane. For each nucleus,
energies are normalized with respect to the binding energy of the corresponding Jπ = 0+

absolute minimum. Dashed contours are separated by 2 MeV.

all projected energy maps is that restoration of symmetries significantly modifies the ini-

tial topology of each map, indicating that configuration mixing calculations will play a

crucial role for a quantitative description of the structure of neon isotopes. In Table 4.2

we therefore list the number of configurations NSR-EDF that were taken into account for

each isotope within the configuration mixing scheme. As explained earlier, a set of RHB

states was initially generated on a discretized mesh in the β2 − β3 plane. Configurations
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Figure 4.8: Same as in the caption to Figure 4.7, but for spin and parity Jπ = 4+.
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Figure 4.9: Angular momentum-, particle number-, and parity-projected energy surfaces of
even-even 20−34Ne isotopes, for spin and parity Jπ = 1− in the β2−β3 plane. For each nucleus,
energies are normalized with respect to the binding energy of the corresponding Jπ = 0+

absolute minimum. Dashed contours are separated by 2 MeV.

with binding energies that are much higher than energy of the equilibrium configuration

(roughly 20 MeV and above) are eliminated from the basis. In this way, one keeps the

number of configurations that are being mixed between 110 and 120. Of course, the ex-

clusion of such high-energy states does not influence the predictive power of a model that

ultimately aims to describe the low-lying nuclear structure. The remaining states are

projected onto good quantum numbers and further mixed within the GCM framework.
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Figure 4.10: Same as in the caption to Figure 4.9, but for spin and parity Jπ = 3−.
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Figure 4.11: Calculated excitation energies of the 2+
1 and 4+

1 states [left panel (a)] and the
transition strengths B(E2; 2+

1 → 0+
1 ) [right panel(b)] in even-even 20−34Ne isotopes, compared

with the available experimental data [NNNDC, PBSH16].

The obtained excitation energies of the 2+
1 and 4+

1 states in 20−34Ne isotopes are plotted in

the left panel of Fig. 4.11 and compared to the available experimental data. Predictions

of our model for lighter isotopes 20−24Ne are in rather good agreement with data. How-

ever, when approaching the N = 20 neutron shell the theoretical results begin to diverge

from experiment, and this is especially pronounced in the 30Ne isotope. This discrepancy

originates from the fact that the DD-PC1 functional predicts the N = 20 neutron shell

closure even for the very neutron-rich isotopes. On the other hand, the breakdown of the

N = 20 neutron magic number is experimentally a well-established phenomenon [SP08],

leading to the large quadrupole deformation in the ground state of 30Ne isotope. We note

that a similar issue occurred in a previous study of 32Mg based on the relativistic func-

tional PC-F1 [NVR06a], as well as in some calculations based on non-relativistic EDFs,

e.g., the SLy4 effective interaction [HBC+00]. In addition, the present study is restricted

to axial shapes, whereas in some of the heavier isotopes additional degrees of freedom,

such as triaxial, could play an important role.

The calculated electric transition rates from these 2+
1 states to the corresponding

ground states are displayed in the right panel of Fig. 4.11 and compared with the avail-

able data. Theoretical results reproduce the experimental values rather well over the

entire isotopic chain. The only exception is 30Ne isotope where, because of the predicted

N = 20 neutron shell closure, we obtain the B(E2; 2+
1 → 0+

1 ) value that is much smaller

than the corresponding experimental value. Furthermore, in Table 4.2 we list the calcu-

lated ground-state band spectroscopic quadrupole moments for neon isotopic chain. In

comparison to the previously reported values that were calculated without the particle

number projection [MEK+18a], the newly-obtained values of Qspec
2 (2+

1 ) are systematically

reduced in all isotopes. This phenomenon can be understood as a consequence of the fact
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Figure 4.12: Calculated low-energy spectra of 22,24Ne (left panel) and 32,34Ne (right panel).
The E2 reduced transition strengths within the bands (red color, in e2fm4) and E3 transition
strengths between the bands (blue color, in e2fm6) are also shown.

that PNP additionally lowers energies of the oblate-deformed configurations, thereby in-

creasing their relative contribution to the 2+
1 collective wave functions and, consequently,

reducing the corresponding spectroscopic quadrupole moments. When compared to the

available experimental data3 for 20Ne, namely Qspec
2 (2+

1 )B(E2) = 16.5±0.5 efm2 [PBSH16]

and Qspec
2 (2+

1 )RE = 23 ± 3 efm2 [Sto05], this accounts to reduction from −16.61 efm2

[MEK+18a] to −15.00 efm2, therefore somewhat underestimating the former experimen-

tal value4. Empirical value for 22Ne, Qspec
2 (2+

1 )RE = 19±4 efm2 [Sto05], is underestimated

by a similar amount. The 2+
1 states in 24−28Ne isotopes still preserve a significant contri-

bution from oblate-deformed configurations, yielding somewhat smaller absolute values

for the spectroscopic quadrupole moments. Increasing angular momentum stabilizes the

prolate-deformed shapes and this is consistent with larger absolute values for the spec-

troscopic quadrupole moments of the 4+
1 and 6+

1 states. Notable exception is 24Ne isotope

where oblate configurations remain relevant even at high angular momenta, making its

Qspec
2 (6+

1 ) value pronouncedly lower than in other isotopes.

4.2.2 Structure of the Neutron-Rich Isotopes

To conclude this section, let us study in a bit more detail the spectroscopic properties

of a chosen set of neutron-rich isotopes. In the left panel of Figure 4.12 we display the

detailed excitation spectra for 22Ne and 24Ne isotopes. The E2 transition strengths within

3Two of the most common ways of empirically estimating the nuclear spectroscopic quadrupole mo-
ment are (i) extracting Qspec

2 (Jπ)B(E2) from measured electric transition strengths and (ii) determining

Qspec
2 (Jπ)RE using the so-called reorientation effect [BGR56]. The fact that the ratio of these two

quantities for 2+1 state in 20Ne equals to roughly 1.4 is still not completely understood.
4In other words, the model that includes PNP (and is thereby formally superior to the model without

PNP) actually worsens predictions as compared to the experiment. Peculiar as it may seem, it reminds
me of a comment made by an experienced colleague at one of the workshops I attended. While discussing
a similar issue, he remarked: Just because it agrees with the experiment it doesn’t mean it is correct. I
find this statement more profound now than the first time I heard it.
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Figure 4.13: Amplitudes of collective wave functions squared |g(β2, β3)|2 of the low-energy
levels in 22Ne. Dashed contours in the β2−β3 plane successively denote a 10% decrease starting
from the largest value of the amplitude.

the bands and E3 transition strengths between the bands are also shown. When compared

to the ground-state band of 22Ne, adding just two more neutrons significantly stretches the

ground-state band of 24Ne. Such pronounced differences in band structures should be re-

flected in the corresponding collective wave functions, whose amplitudes squared are given
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Figure 4.14: Same as in the caption to Figure 4.13, but for 24Ne isotope.
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Figure 4.15: Same as in the caption to Figure 4.13, but for 32Ne isotope.

in the upper rows of Figures 4.13 and 4.14. While, as discussed before, the ground state of

both isotopes contains significant contributions from oblate configurations, the 22Ne iso-

tope becomes pronouncedly prolate-deformed at higher angular momenta. This is in con-

trast with the situation encountered in 24Ne isotope, where even the wave function of the

high-energy 6+
1 state contains almost 40% of oblate-deformed admixtures. Differences in

the structure of collective states are, in addition to the spectroscopic quadrupole moments
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Figure 4.16: Same as in the caption to Figure 4.13, but for 34Ne isotope.
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[see Table 4.2], also mirrored in differences of the corresponding transition strengths. In

particular, the obtained E2 transition strengths within the ground-state band of 24Ne are

significantly reduced as compared to those in 22Ne isotope. On the other hand, energies of

the negative-parity bands remain rather similar in both isotopes. The corresponding am-

plitudes of the collective wave functions squared, which are given in the lower rows of Figs.

4.13 and 4.14, are spread over large β3 values on a prolate side of the β2− β3 plane. The

increase of angular momentum enhances the average β2 deformation of negative-parity

states in 24Ne, leading to the gradual increase of the corresponding intraband transition

strengths. This trend is reversed in 22Ne isotope. There, the average β2 actually reduces

with the increase of angular momentum, which explains the supression of the 7−1 → 5−1
transition strength as compared to the 5−1 → 3−1 transition. Even though at this place

we do not engage in an elaborate discussion on the structure of other excited bands, they

are in practice also accessible with our model. Let us only mention that the calculated

energies of 0+
2 and 2+

2 states in 24Ne isotope (6.76 MeV and 5.83 MeV, respectively) are

significantly lower than energies of the corresponding states in 22Ne isotope (9.33 MeV

and 9.96 MeV, respectively), thus pointing towards the presence of strong shape coex-

istence in 24Ne. Moreover, in agreement with the experimental data, the calculated 2+
2

state is found below both the 0+
2 and the 4+

1 state in this isotope.

In the right panel of Figure 4.12 we display the detailed excitation spectra for two of

the most neutron-abundant neon isotopes, 32Ne and 34Ne. The corresponding amplitudes

of collective wave functions squared are given in Figures 4.15 and 4.16. Both isotopes

are predicted to be stable against two-neutron emission and, moreover, the calculated

two-neutron separation energies are found to be in a very good agremeent with the ex-

perimental data [see Fig. 4.4]. The ground-state band spectrum of 32Ne is similar to

that of lighter 22Ne isotope, but the calculated B(E2; 2+
1 → 0+

1 ) transition is rather small

and closer to that of the shape-coexisting 24Ne. The ground-state band spectrum of 34Ne,

which is built on the prolate-deformed 0+
1 state, is significantly compressed. In particular,

energies of the 2+
1 and 4+

1 states are found to be the lowest over the entire isotopic chain,

while the calculated B(E2; 2+
1 → 0+

1 ) transition is rather large and comparable to the

one in 22Ne isotope. On the other hand, the negative-parity spectra of 32,34Ne isotopes

are rather similar and the corresponding bandheads are found at relatively low energies,

indicating pronounced collectivity.

4.3. Structure of the Self-Conjugate 20Ne Isotope

4.3.1 Spectroscopy of Collective States

The 20Ne isotope represents a very interesting example of a nucleus that exhibits ad-

mixtures of cluster configurations already in the ground state. Previous studies based on

both the non-relativistic [RB11] and relativistic [EKNV14b] EDF framework have shown

that the reflection-asymmetric 16O+α structure appears already on the SR-EDF level.

However, in order to obtain a quantitative description of the corresponding low-energy
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Figure 4.17: Calculated low-energy spectrum of 20Ne compared with the available experi-
mental data. Calculated E2 transition strengths within the bands (red color, in e2fm4) and E3
transition strengths between the bands (blue color, in e2fm6 ) are also shown. Results obtained
with two other theoretical models [ZYL+16, Kim04] are also shown for comparison. See text
for details.

collective states, correlations related to symmetry restoration and shape fluctuations have

to be taken into account. In Figure 4.17 we display the calculated low-lying spectrum of
20Ne in comparison to available data and to predictions of two other theoretical studies.

The results of the present calculation are shown in the first column, and the experimen-

tal excitation spectrum in given the second column. The third column includes results

obtained in a recent study of 20Ne based on the relativistic PC-PK1 functional [ZYL+16].

Similar to the present study, these calculations included restoration of good angular mo-

mentum (with Nβ = 14), particle number (with Nϕ = 7), and parity of the intrinsic states.

In contrast to the present analysis, however, pairing correlations in Ref. [ZYL+16] were

treated in the BCS approximation, and configuration mixing calculation was performed

using a set of 54 states that were exclusively prolate-deformed. In addition to this set of

basis states, denoted as full configuration, an additional set was considered that contains

only six configurations whose mixing yields optimal results in comparison to experiment.

This set of basis states was denoted optimal configuration and it contains four prolate

configurations, one oblate configuration, and the spherical configuration. Although the

excitation energies obtained with both sets are very similar, one finds significant differ-

ences in the calculated transition strengths. Results obtained with the optimal config-

uration set are therefore shown in green in Fig. 4.17, whereas those obtained with the

full configuration set are shown in red (intraband) and blue (interband). Note that the

present calculation uses a total of 118 configurations, both oblate- and prolate-deformed.

Finally, in the fourth column we show results obtained using the deformed basis antisym-

metrized molecular dynamics model [Kim04]. This model employs a triaxially-deformed

Gaussian function for the spatial part of the single-particle wave packet and, although

the formation of cluster states is not assumed a priori in this model, nucleon localization

is inbuilt by using Gaussian wave packets.

The ground-state band energies are reproduced reasonably well by all three models.
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Figure 4.18: Amplitudes of collective wave functions squared |g(β2, β3)|2 of the low-energy
levels of 20Ne. Dashed contours in the β2−β3 plane successively denote a 10% decrease starting
from the largest value of the amplitude.

In particular, the obtained excitation spectra for the two referent theoretical models are

somewhat compressed in comparison to the experiment, while the present calculation

yields spectrum that is slightly stretched as compared to the experiment. The two MR-

EDF models slightly underestimate the moment of inertia for the negative-parity band,

that is, the energy levels in the negative-parity band are a bit spread out compared to the

experimental values. The best agreement with data for the transition strengths within the

ground-state band is obtained with the AMD model. As compared to the experimental

values, the present calculation predicts a marginally smaller B(E2; 2+
1 → 0+

1 ) value and

somewhat overestimates B(E2; 4+
1 → 2+

1 ) and B(E2; 6+
1 → 4+

1 ) values. We note that the

overall trend and, in particular, B(E2; 4+
1 → 2+

1 ) and B(E2; 6+
1 → 4+

1 ) values are rather

similar to the PC-PK1 calculation with the optimal configuration set. Main differences

in predictions of the two MR-EDF models could probably be attributed to the different

selection of basis states used in the configuration mixing calculation. In the upper row of

Figure 4.18 we plot the amplitudes of collective wave functions squared for the ground-

state band states in the (β2, β3) plane. One notices that, while the collective wave function

for 0+
1 displays a significant contribution from oblate configurations (≈ 25%), the wave

functions of states with higher angular momenta are increasingly more concentrated on

the prolate side of the plane. Completely omitting oblate configurations from the basis

space (full configuration set in the PC-PK1 calculation) can only yield a prolate-deformed

ground state, hence overestimating the B(E2; 2+
1 → 0+

1 ) value. The inclusion of just one

oblate configuration (optimal configuration set in the PC-PK1 calculation) will shift this

value closer to both the experimental data and to the prediction of our model.

The E2 transition strengths for the Kπ = 0− band obtained in the present study
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agree well with the AMD calculation, particularly for the 3−1 → 1−1 and 5−1 → 3−1 transi-

tions. One also notices a very good agreement between the predicted and experimental

B(E2; 3−1 → 1−1 ) value. On the other hand, the transition strengths obtained in the

PC-PK1 calculation based on the full configuration set differ considerably from the other

two models and the experiment. This problem can apparently be solved by using the

optimal configuration set, even though in this case the inclusion of oblate configuration in

configuration mixing cannot be a viable explanation, since reported negative-parity states

should not contain any oblate contributions. In the lower row of Fig. 4.18 we plot the

calculated amplitudes of collective wave functions squared for the negative-parity band.

These can be directly compared with the right column in Ref. [ZYL+16], where the same

amplitudes were calculated using the PC-PK1 interaction with the full configuration set.

We notice that the present calculation predicts for all wave functions to be concentrated

at roughly similar deformations, (β2 ≈ 0.9, β3 ≈ 1.0). On the other hand, the PC-PK1

study predicts a broader distribution of the corresponding wave functions, with the peak

position shifting towards smaller values of β2 with increasing angular momentum. Finally,

our predictions for the E3 transition strengths between the Kπ = 0− and Kπ = 0+ bands

are in fair agreement with the results obtained in Ref. [ZYL+16] using both basis sets,

except maybe for the B(E3; 1−1 → 4+
1 ) transition that is significantly smaller within our

model.

4.3.2 Cluster Structures in Collective States

Restoration of symmetries and the accompanying transition to the laboratory frame

of reference can smear out information on clustering that were present in the intrinsic

frame. The most obvious example is the collective 0+ state which, regardless of its

properties in the intrinsic frame, necessarily exhibits the spherically-symmetric density

in the laboratory frame. Therefore, intrinsic densities represent a more convenient and

informative choice when studying clusterized structures in the collective states. In the

present work, intrinsic densities for each collective state are generated by performing RHB

calculations contrained to the corresponding correlated (β2, β3) values. The correlated

values of deformation parameters (β2, β3) are obtained by averaging over the prolate-

deformed and oblate-deformed configurations separately, and using the collective wave

functions of each state as the corresponding weights [see Eqs. (2.40) and (2.41)]. In

order to illustrate the evolution of cluster structures in the collective states of 20Ne, in

Figure 4.19 we display the characteristic intrinsic nucleon densities of the ground-state

band and the Kπ = 0− band. For each state, the corresponding prolate and/or oblate

deformation parameters (β2, β3), as well as the respective contribution of prolate or oblate

configurations to the total collective wave function, are given. Only in the ground state

there is a significant (> 10%) contribution of oblate configurations, while for all other

ground-band states the intrinsic structure is dominated by prolate configurations. The

major contribution to the 20Ne ground state still comes from the reflection-asymmetric

prolate-deformed 16O+α configuration, accounting for about 3/4 of its collective wave

function. Nevertheless, it also contains nearly 25% admixture of the oblate-deformed
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Figure 4.19: Characteristic intrinsic nucleon densities of collective states of the ground-state
band and the Kπ = 0− band in 20Ne. The corresponding average deformation parameters
(β2, β3), as well as the respective contributions of prolate and/or oblate configurations, are
given. See text for more details.

configurations with a characteristic intrinsic density resembling the 2α+12C structure5.

The predicted transitional character of 20Ne ground state between mean-field and cluster-

like structures is in agreement with AMD analyses [Kim04]. It is remarkable that, starting

from a basis of almost 120 mean-field states, the MR-EDF calculation brings out the two

5Of course, the inclusion of a true 2α+12C configuration would require breaking of axial symmetry,
which is obviously out of the scope of the present study.
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main components of the collective state which are used as a priori basis states in custom

built cluster models [TKH04]. The transitional nature of the ground state is usually

invoked to explain the relatively high excitation energy of its parity-doublet 1−1 state,

which is predicted to exhibit a pronounced 16O+α structure by both the present study and

AMD calculation. Increasing angular momentum leads to a very gradual dissipation of

the 16O+α structure in the Kπ = 0− band. This process was reported to occur with much

faster rate in the AMD calculation [Kim04], as well as in the MR-EDF calculation based

on PC-PK1+BCS framework [ZYL+16]. In our study, however, dissipational process in

the Kπ = 0− band seems to be compensated to a large extent by the centrifugal effects

that tend to elongate the nucleus. On the other hand, increasing angular momentum in

the ground-state band leads to the increase of average β2 deformation and to the decrease

of average β3 deformation. As a result of this process, a weak α−12C−α-like structure

appears to develop in the Jπ = 6+ collective state of 20Ne.

4.4. Concluding Remarks

In this chapter we have performed the fully symmetry-restoring study of quadrupole-

octupole collectivity and cluster structures in eight even-even neon isotopes. Between 111

and 118 axially-symmetric and reflection-asymmetric RHB states were first projected onto

good values of angular momenta, particle number, and parity, and then mixed within the

MR-EDF framework. This approach enabled a consistent, parameter-free calculation of

excitation spectra and electric transition strengths, both for the ground-state band and

for the excited Kπ = 0± bands. The obtained results were compared to the available

experimental data, as well as to the predictions of other theoretical models.

The ground-state experimental values of binding energies and charge radii were repro-

duced reasonably well already on the SR-EDF level. By including collective correlations

related to the restoration of broken symmetries and configuration mixing, we have demon-

strated the stability of considered isotopes with respect to neutron emissions. Addition-

ally, the inclusion of collective correlations has revealed a rather complex structure of the

correlated ground states. In particular, octupole degree of freedom was demonstrated to

play a rather relevant role and symmetry-projected minima of all isotopes were found at

the reflection-asymmetric conifgurations. Furthermore, significant admixtures of oblate

configurations (> 20% of the corresponding collective wave functions) were found over

the entire isotopic chain. Most notably, both mean-field and symmetry-projected energy

surfaces of the 24Ne ground state were found to display the co-existing prolate and oblate

minima, while as much as 40% of the corresponding wave function was shown to spread

on an oblate side of the β2 − β3 plane.

The energies of 2+
1 and 4+

1 states, as well as the B(E2; 2+
1 → 0+

1 ) transition strengths,

were shown to be in reasonable agreement with data over the entire isotopic chain. The

agreement is particularly good in lighter isotopes, 20,22,24Ne, while the obtained sphericity

of 30Ne is not supported by the recent experimental data. This can be understood as a

consequence of the fact that global effective interactions cannot always account for the

particular properties determined by shell evolution in each mass region. In this case, the
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erosion of the N = 20 shell closure in very neutron-rich nuclei is simply not reproduced by

the DD-PC1 functional. Nevertheless, it was shown that the further addition of neutrons

leads to development of a strong prolate deformation in the most neutron-abundant neon

isotope, 34Ne. This nucleus exhibits a pronouncedly compressed ground-state band as

compared to other isotopes, with the lowest excitation energies of 2+
1 and 4+

1 states over

the entire isotopic chain. Additionally, signatures of the ground-state shape-coexistence

were demonstrated to survive in the excited states of 24Ne isotope. In particular, its 6+
1

still contains almost 40% contribution from the oblate configurations, while 0+
2 and 2+

2

states in this isotope are found at much lower energies than the corresponding states in
22Ne isotope.

Finally, we have paid special attention to the case of the self-conjugate 20Ne isotope.

The obtained spectroscopic properties were thoroughly compared to the experimental

data, as well as to the predictions of two other theoretical models. In particular, our

calculation was shown to exhibit a level of accuracy that this comparable to the one ob-

tained using more specific models, such as the antisymmetrized molecular dynamics. The

ground state of 20Ne was demonstrated to have predominantly 16O+α structure, while

about 25% of its collective wave function corresponds to the oblate-deformed 2α+12C-

like structure. The increase of angular momentum leads to the predominance of prolate

shapes and a gradual dissolution of the 16O+α structure. In the negative-parity band

this dissolution occurs at much slower rate than reported in previous studies, while in

the positive-parity band it leads towards development of the α−12C−α-like structure in

Jπ = 6+ state.





Chapter 5

Cluster Structures in 12C Isotope

Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less.

Marie Curie, as quoted in ”Our Precarious Habitat” by M. A. Benarde

Formation of clusters, transitional states between quantum liquid and solid phases of

finite systems, is a common feature in light atomic nuclei [Bec10, Bec12, Bec14, HIK12,

FHKE+18]. Particularly favorable conditions for the appearance of cluster structures are

found in light self-conjugate nuclei, where various exotic configurations are thought to

be formed. Probably one of the most striking examples is the self-conjugate 12C isotope,

where axial oblate, triangular, linear 3α, and bent arm configurations are all predicted to

exist in the low-lying structure [KE07, NF04, CFN+07, THSR01, Fun15, FSF+13]. The

ground state of 12C lies about 7.3 MeV below the α-decay threshold. Therefore, cluster

structures are expected to be significantly suppressed in the lowest 0+ state, as it exhibits

a more compact intrinsic density distribution. The Kπ = 0+
1 rotational band built upon

the ground state consists of the 2+
1 state at 4.4 MeV and the 4+

1 state at 14.1 MeV.

Very recently, new reorientation-effect measurements in the 2+
1 state have confirmed its

pronounced oblate deformation through the relatively large and positive value of the cor-

responding spectroscopic quadrupole moment [R+18]. Furthermore, the 0+
2 state at 7.65

MeV, the famous Hoyle state, is arguably one of the most studied collective nuclear states

overall [FF14, THSR17], largely due to the fact that it plays a major role in the stellar

nucleosynthesis of 12C through the so-called triple-α process. In particular, the presence

of the Hoyle state resonantly boosts the capture process of an α-particle on 8Be by more

than 10 million times, thereby making a decisive impact on the abundance of 12C isotope

in the universe and, consequently, the appearance of organic life on Earth. Remarkable

results on the structure of the Hoyle state have recently been simultaneously reported

by two independent groups of researchers [D+17, SKW+17], strongly indicating that the

Hoyle state predominantly decays through an intermediate emission of an α-particle. In

95
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parallel with experimental advances, various theoretical approaches have been employed

to study rich variety of shapes in 12C, including the antisymmetrized molecular dynam-

ics model [KE07], the fermionic molecular dynamics model [NF04, CFN+07], the THSR

wave function model [THSR01, Fun15], the configuration mixing Skyrme calculations

with Gaussian wave packets [FSF+13], and the cranked RMF theory [RZZ+18]. Both

AMD and FMD calculations predict for the Hoyle state to be dominated by a weakly-

interacting assembly of 8Be+α configurations [KE07, CFN+07], while the THSR model

describes Hoyle state in terms of an actual condensate of α-particles [THSR01]. Fur-

thermore, 3α linear chain structures were predicted to exist in higher 0+ states of 12C

[KE07, CFN+07], even though the stability of these configurations against bending still

remains an open question [RZZ+18]. A detailed review on recent experimental and the-

oretical advances in studies of cluster structures in light nuclei and, particularly, in the
12C isotope can be found in Ref. [FHKE+18]. Additionally, structure of the Hoyle state

has been a subject of multiple dedicated review papers (see, for example, Refs. [FF14]

and [THSR17]).

In this chapter, we will employ the previously described MR-EDF model in a study of

collective spectroscopy and cluster structures in 12C isotope [MEK+18b]. A wide range

of quadrupole- and octupole-deformed axially-symmetric RHB states are projected onto

good values of angular momenta, particle numbers, and parity, and further mixed in or-

der to build the symmetry-conserving positive-parity collective states. In Section 5.1.1

we analyze the potential energy surface of 12C, both on the mean-field and symmetry-

conserving level. Furthermore, in Sec 5.1.2 we present the spectroscopic results for 12C

in comparison to the available data and to predictions of other theoretical models. The

structure of the collective states in the intrinsic frame is discussed in Sec. 5.1.3, while

in Sec. 5.1.4 we present the results for both the elastic and inelastic form factors for

electron-12C scattering.
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Figure 5.1: Potential energy surfaces of 12C isotope in the β2 - β3 plane. In addition to the
self-consistent RHB binding energies (the upper left panel), we display the angular momentum-,
particle number-, and parity-projected energy surfaces for spin-parities Jπ = 0+, 2+, 4+. For
each surface, energies are normalized with respect to the energy of the corresponding absolute
minimum. Dashed contours are separated by 2.5 MeV.

5.1. Structure of the 12C Isotope

5.1.1 Potential Energy Maps

We begin our analysis with the self-consistent RHB calculation, performed by expand-

ing nuclear spinors in the configuration space of axially-symmetric harmonic oscillator

with Nsh = 10 major oscillator shells for the large and Nsh = 11 for the small component

of spinor. This calculation covers a wide range of deformations in both the quadrupole

and octupole direction, β2 ∈ [−1.2, 3.6] and β3 ∈ [−3.5, 3.5], with steps in the oblate,

prolate, and octupole direction being ∆β2 = 0.4, ∆β2 = 0.6, and ∆β3 = 0.7, respectively.

The calculated potential energy surfaces are shown in the upper left panel of Figure 5.1.

Although the absolute minimum of the RHB energy surface is found for the spherical

(β2 = 0, β3 = 0) configuration, we note that the surface is rather soft for the following

range of deformations: β2 ≈ [−0.6, 0.6] and |β3| ≈ [0.0, 0.5]. In order to demonstrate

the influence of symmetry restoration on the topology of the RHB surface, other panels
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Figure 5.2: Potential energy curves of 12C isotope as functions of axial quadrupole deformation
β2 for parity-conserving (β3 = 0) configurations. In addition to the self-consistent RHB binding
energies (squares), we display angular momentum- and particle number-projected curves for
spin-parities Jπ = 0+, 2+, 4+ .

of Fig. 5.1 show the corresponding angular momentum-, particle number-, and parity-

projected energy surfaces for spin-parity values Jπ = 0+, 2+, 4+. Already a glance at the

Jπ = 0+ energy surface unveils a dramatic impact of performing the symmetry restora-

tion. In particular, the Jπ = 0+ energy surface appears significantly softer for a wide

range of deformations in comparison to the RHB energy surface. For higher values of

angular momentum, the minimum at the oblate side becomes much more pronounced,

while intermediate prolate deformations become increasingly less energetically favored.

This trend is even more apparent in Figure 5.2, where we make a cut along the parity-

conserving (β3 = 0) line of Fig. 5.1 and show the potential energy curves as functions

of axial quadrupole deformation β2. As noted before, the RHB potential energy curve is

very flat around the spherical minimum, both in the prolate and oblate direction. The

only indication of possible clusterized structures is found at very large prolate deforma-

tions, where a shoulder in binding energy curve is formed. On the other hand, energy

curve of the symmetry-restored Jπ = 0+ state exhibits two nearly-degenerate minima:

the absolute oblate minimum at β2 ≈ −0.5 and the prolate minimum at β2 ≈ 0.8. We

note that the binding energy of the symmetry-restored oblate minimum from Fig. 5.2

is very close to the experimental binding energy Eexp
B = −92.16 MeV. This is consistent

with the fact that the collective 0+
1 state is expected to correspond to the band-head of

an oblate-deformed rotational band. Furthermore, shoulder at large quadrupole defor-

mations is preserved by projections for the Jπ = 0+ curve and it is additionally lowered

by about 5 MeV. The Jπ = 2+ projected curve preserves both the oblate minimum and

the shoulder at large quadrupole deformations, while the former Jπ = 0+ local minimum
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Figure 5.3: Calculated low-energy spectrum of 12C compared with the available experimental
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details.

at intermediate quadrupole deformation transforms into a shoulder. Finally, a barrier is

raised at intermediate prolate deformations for the Jπ = 4+ state. The present analysis

demonstrates that the symmetry-restored energy maps encapsulate the vast richness of

shapes in 12C and that interesting phenomena can be observed already on this level of

calculation. Nevertheless, it is only the configuration mixing procedure, which includes

the collective correlations related to both the quadrupole and octupole shape fluctuations,

that can ultimately provide us with a quantitative description of 12C spectroscopy.

5.1.2 Spectroscopy of Collective States

In the next step, 72 symmetry-restored configurations were mixed in order to build

collective states of 12C with good quantum numbers. The RHB configurations with bind-

ing energies that are much higher than energy of the equilibrium configuration (roughly

30 MeV and above) have been eliminated from the basis, without altering the predic-

tive power of the model. In Figure 5.3 we display the calculated low-lying spectrum in

comparison to the available experimental data [NNNDC, AS90]1. Calculated intraband

1Reported spin-parity assignments for states 0+1 , 2+1 , 4+1 , and 0+2 are definite, while assignments for
other states are still tentative to a certain degree.
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Figure 5.4: Amplitudes of collective wave functions squared |g(β2, β3)|2 of the low-energy
levels in 12C. Dashed contours in the β2 − β3 plane successively denote a 10% decrease starting
from the largest value of the amplitude.

B(E2) transition strengths and spectroscopic quadrupole moments of collective states are

also shown. The calculated excitation energies of 2+
1 (4.3 MeV) and 4+

1 (13.9 MeV) states

are only slightly lower than the corresponding experimental values. In addition, their

ratio E(4+
1 )/E(2+

1 ) = 3.23 is in very good agreement with the experimental value of 3.17,

strongly indicating a rotational character of the ground-state band. Furthermore, calcu-

lated E2 transition strength from the 2+
1 state to the ground state, B(E2; 2+

1 → 0+
1 ) = 8.0

e2fm4, is in very good agreement with the experimental value. We also note that the cal-

culated spectroscopic quadrupole moment of 2+
1 state, Qspec(2

+
1 ) = 5.0 efm2, is within the

error bar margin of the very recently obtained experimental value, Qexp
spec(2

+
1 ) = 7.1± 2.5

efm2 [R+18]. It is therefore interesting to mention that, in this specific instance, the

global EDF model provides the level of agreement with the experimental data that is

comparable to the one provided by the state-of-the-art ab initio model reported therein

[R+18]. Finally, calculated B(E2; 4+
1 → 2+

1 ) = 15.5 e2fm4 value is in excellent agree-

ment with the AMD prediction B(E2; 4+
1 → 2+

1 ) = 16 e2fm4 [KE07]. Measurements of

this quantity are yet to be performed and they would definitely confirm the rotational

character of the ground-state band. On the other hand, the second 4+ state within our

calculation is characterized by a pronouncedly enhanced value of quadrupole deformation

parameter, a feature that is shared by the 0+
3 and 2+

3 collective states. In addition, it

exhibits a very strong E2 transition strength to the 2+
3 state. Therefore, it is assigned

to the Kπ = 0+
3 band and denoted as 4+

3 further on. Both very large E2 intraband

transitions and the value of ratio (E(4+
3 )− E(0+

3 ))/(E(2+
3 )− E(0+

3 )) = 3.45 strongly in-

dicate the rotational character of this band. Additionally, huge spectroscopic quadrupole

moments of 4+
3 and 2+

3 states support the interpretation of this band as the 3α linear
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chain. Calculated value of B(E2; 2+
3 → 0+

3 ) = 130.6 e2fm4 is somewhat larger than the

one reported in Ref. [KE07], but still of the same order of magnitude. Furthermore,

the 0+
2 (Hoyle) state in our study is found at excitation energy that is less than 1 MeV

above the experimental value. However, calculated E2 transition strength from the corre-

sponding 2+
2 state is about an order of magnitude smaller than the one obtained in AMD

[KE07] and THSR [Fun15] calculations. Even though there are currently no available

experimental values that would settle this disagreement, it is likely that our calculation

actually underestimates the true value. The reason for this is at least two-fold. Firstly,

AMD and THSR models consistently predict for the dominant contribution to the Hoyle

state intrinsic density to stem from triaxial configurations. As noted before, these con-

figurations are not included in the present study and an extended study that includes

triaxial shapes would be required in order to draw some fairer comparisons. In addition,

the asymptotic behavior of three weakly-interacting α particles is notoriously complicated

to describe within the harmonic oscillator basis [NGV+07, Nef12]. Therefore, it remains

an open question whether the self-consistent models based on harmonic oscillator expan-

sions, even once the triaxial shapes have been included, will be able to encompass all

the details of the Hoyle state density profile. Nevertheless, we note that the calculated

transition strength from the 2+
1 state to the Hoyle state, B(E2; 2+

1 → 0+
2 ) = 1.7 e2fm4

compares quite favorably to the experimental value 2.6± 0.4 e2fm4 and to the AMD (5.1

e2fm4) predictions [KE07]. In addition, even the transition strength from the 2+
2 state

to the ground state, B(E2; 2+
2 → 0+

1 ) = 1.3 e2fm4, is of at least comparable quality as

THSR prediction (2.0 − 2.5 e2fm4) [Fun15] when compared to the experimental value

(0.73± 0.13 e2fm4).

5.1.3 Structure of Collective States in the Intrinsic Frame

In Figure 5.4 we show amplitudes of collective wave functions squared |g(β2, β3)|2 of

the low-energy levels in 12C. Even though they are not observables, these wave functions

provide us with a measure of quadrupole and octupole shape fluctuations in collective

states. Moreover, they can be used to calculate averaged values of deformation parame-

ters (β2, β3) for each collective state. These values are subsequently used to represent the

density distributions of the collective states in the intrinsic frame of reference [see Sec.

4.3.2]. Intrinsic density distributions for the three lowest 0+ and 2+ states in 12C isotope

are displayed in Figure 5.5. For each state, the corresponding prolate and/or oblate de-

formation parameters (β2, β3), as well as the respective contribution of prolate or oblate

configurations to the total collective wave function, are given. Only 0+
1 and 0+

2 states ex-

hibit significant contributions from both the prolate and oblate configurations, while other

states display predominance of either prolate or oblate shapes. In particular, situation in

the 0+
1 state is rather similar to the one encountered in the symmetry-restored Jπ = 0+

potential energy curve of Fig. 5.2, where prolate-deformed local minimum coexists with

the oblate-deformed absolute minimum. In fact, maximum of the 0+
1 collective wave func-

tion is also found at the oblate-deformed (β2, β3) = (−0.4, 0.0) configuration. However,

|g(β2, β3)|2 has non-negligible contributions from configurations in a rather wide range of
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Figure 5.5: Characteristic intrinsic nucleon densities of the first three 0+ and 2+ collective
states in 12C. The corresponding average deformation parameters (β2, β3), as well as the respec-
tive contributions of prolate and/or oblate configurations, are given. The lower panel displays
states that exhibit significant both prolate and oblate contributions, while the upper panel dis-
plays states that are predominantely characterized by either prolate or oblate configuration. See
text for more details.

deformations, roughly β2 ∈ [−1.2, 1.2] and |β3| ∈ [0.0, 1.4]. Averaging over all these con-

figurations incorporates significant contributions from prolate configurations that balance

the influence of oblate maximum and would ultimately yield the nearly-spherical density

distribution. This clearly does not reflect the actual physical picture of the 12C ground

state. Therefore, we follow the prescription of Section 4.3.2 and calculate the correlated

(β2, β3) values by averaging over the prolate-deformed and oblate-deformed configura-

tions separately, using the collective wave functions as the corresponding weights [see

Eqs. (2.40) and (2.41)]. The two plots in the lower left panel of Fig. 5.5 display the

obtained densities, as well as the respective contributions of prolate and oblate configura-

tions to the total collective wave function2. These densities reflect the complex structure

of the 12C ground state, where the maximum of |g(β2, β3)|2 is found at an oblate con-

figuration while tail of the wave function spreads deeply into the prolate side of the

β2 − β3 plane. On the other hand, collective wave function of the 2+
1 state is predomi-

nantly spread over the (β2 < 0, β3) configurations and the obtained density distribution

is oblate-deformed. This can be understood as a consequence of the sway towards oblate

shapes in the Jπ = 2+ energy maps of Figs. 5.1 and 5.2, and it is in agreement with the

2We note that some authors compute the characteristic density of a collective state by using config-
uration that corresponds to the collective wave function maximum [see, for example, Ref. [ZYL+16]].
With this choice, intrinsic density of 0+1 state in the present would exhibit the oblate-deformed reflection-
symmetric shape. Nevertheless, for the sake of consistency, we follow the prescription of Chapter 4 and
adopt the averaged (β2, β3) values as representative deformation parameters.
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relatively large and positive spectroscopic quadrupole moment of the 2+
1 state. Moreover,

intrinsic nucleon density of the 4+
1 state is characterized by the (β2, β3) = (−0.50, 0.58)

configuration, clearly pointing towards oblate nature of the ground-state band. Further-

more, collective wave function of the 0+
2 state exhibits two maxima: one at the small

prolate deformations and the other one at larger oblate deformations. The corresponding

density distributions are obtained equivalently to the 0+
1 case and they are displayed in

the lower right panel of Fig. 5.5. Of course, in order to obtain the expected triangular

distribution of the Hoyle state one needs to break the axial symmetry, which is out of the

scope of the present work. Finally, the Kπ = 0+
3 band originates from the shoulder at

large β2 values in Figs. 5.1 and 5.2. In the intrinsic frame of reference, a large quadrupole

deformation translates into a pronounced linear structure of 0+
3 and 2+

3 collective states,

as seen in the upper right panel of Fig. 5.5. The homogeneous alignment of 3α particles

would be described by a reflection-symmetric configuration in the intrinsic frame, that

is, the corresponding octupole deformation parameter would be negligible. Even though

the maxima of 0+
3 and 2+

3 wave functions are indeed found at β3 = 0 configurations

[see Fig. 5.4], fluctuations in octupole direction are rather pronounced in both states.

Consequently, the reflection-asymmetric 8Be+α-like structure is formed in the intrinsic

frame. Formation of linear chain structures in 12C isotope has been previously predicted

by some theoretical calculations [KE07, NF04], even though they are yet to be confirmed

experimentally. Another interesting feature of 3α linear chains is their alleged suscepti-

bility to bending, which would eventually lead to the formation of bent arm structures

[KE07, NF04, RZZ+18]. However, besides breaking reflection symmetry, such structures

additionally break the axial symmetry and they are therefore not included in the present

study.

5.1.4 Electron Scattering Form Factors

Additional insight into the structure of collective states is provided by the form factors

of the electron-nucleus scattering. Formalism for calculating these quantities within the

MR-EDF framework was introduced only recently [YBH15] and details related to our

implementation are available in Appendix B.2. In this subsection, we will calculate form

factors for electron scattering from 12C for 0+
1 → 0+

1 (elastic) and 0+
1 → 0+

2 (inelastic)

transitions. The basic ingredients of the calculation are collective wave functions, dis-

played in Fig. 5.4. As noted before, both for the 0+
1 and for the 0+

2 state these wave

functions are concentrated in the −1.2 ≤ β2 ≤ 1.2 and 0 ≤ |β3| ≤ 1.4 part of the β2 - β3

plane. Therefore, in order to reduce the computational cost and without neglecting any

physical content, only configurations within that range are included in the subsequent

calculation of form factor. In the upper panel of Figure 5.6 we show the calculated form

factors |F0(q)|2 for elastic 0+
1 → 0+

1 scattering in comparison with the available experi-

mental data. In addition, the inset shows the corresponding charge density, calculated

as ρch(r) = ρ01
01,0(r)/

√
4π, where ρ01

01,0(r) is the diagonal element of the reduced transi-

tion density that enters the calculation of form factor [see Eq. (2.44)]. Our results for

the form factor are compared with predictions of two other theoretical models, namely,
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Figure 5.6: Form factors of electron scattering from 12C for 0+
1 → 0+

1 (upper panel) and
0+

1 → 0+
2 (lower panel) transitions. Results obtained within our model are compared to the

available experimental data for the elastic [SM70, NTH71, SS68] and inelastic [CFN+10] form
factors, as well as to predictions of AMD [KE07] and THSR [FTH+06] models. In addition,
insets show the corresponding charge density (upper panel) and the transition charge density
(lower panel). See text for more details.
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the antisymmetrized molecular dynamics model and the Tohsaki-Horiuchi-Schuck-Röpke

wave function model. The AMD calculations [KE07] treat single nucleons as relevant de-

grees of freedom, describing them in terms of Gaussian wave packets. On the other hand,

THSR framework is explicitly built as the α-cluster model, that is, the relevant degrees

of freedom are α-particles in Bose-condensed state [FTH+06]. In the low momentum-

transfer region (q2 < 2 fm2) all models yield similar predictions for the elastic form

factor. However, for larger values of the momentum transfer the difference between the

three curves becomes visible. In particular, the first zero of |F0(q)|2 is found at roughly

q2 ≈ 3 fm2 both in our and in the THSR calculation, while the AMD calculation predicts

this zero at somewhat smaller value of the momentum transfer. Details of the elastic

form factors can be traced back to the properties of the corresponding charge distribu-

tion [FV82, FVR86]. The shift of the position of the first zero towards smaller values of

q2, in particular, can be attributed to the larger spatial extension of the charge density.

Furthermore, the amplitude of the first |F0(q)|2 maximum is related to the surface thick-

ness of the charge distribution. Larger values of surface thickness yield smaller values of

the first maximum, and vice versa. We note that the experimental position and ampli-

tude of the first |F0(q)|2 maximum are reproduced rather nicely by all models. At very

large values of q2 the THSR model provides the best agreement with the experiment,

while our calculation underestimates experimental values. Similar behavior has been ob-

served in Ref. [YBH15] for the case of 24Mg and in Ref. [FSF+13] for the case of 12C,

where it was argued that the spreading of collective wave function over many deforma-

tions generates too large smoothing of the one-body density and thus decreases weights

of the large-momentum components of the transition density. Finally, due to its short

lifetime, elastic scattering experiments for the Hoyle state have not yet been performed.

Therefore, its structure is usually probed via the inelastic scattering experiments from

the ground state. In the lower panel of Fig. 5.6 we display the calculated form factors for

0+
1 → 0+

2 scattering in comparison with the available experimental data and predictions of

the AMD and THSR models. Our calculations reproduce nicely the position of the first

maximum, even though the corresponding amplitude is underestimated in comparison

to both the experiment and two theoretical models. On the other hand, position of the

first zero is reproduced well by all three models. In addition, our model displays good

agreement with the experiment up to rather large q2 values. The inset in the lower panel

of Fig. 5.6 displays the corresponding transition charge density, ρtr(r) = ρ02
01,0(r)/

√
4π,

where ρ02
01,0(r) is the non-diagonal element of the reduced transition density that enters

the calculation of form factor [see Eq. (2.44)]. Our prediction for ρtr(r)r
4 can be directly

compared to the experimental transition charge density corresponding to the form factor

of Fig. 5.6 [CFN+10], as well as to the predictions of the FMD model and the α-cluster

model that are plotted in Fig. 3 of Ref. [CFN+10]. While the position of the minimum of

ρtr(r)r
4 is very similar for all four curves considered, our calculation predicts somewhat

smaller amplitude in comparison to both the experiment and other models. Furthermore,

FMD and α-cluster model overestimate the experimental maximum value of the ρtr(r)r
4

curve, located at r ≈ 4 fm. Our calculation, on the other hand, notably underestimates

it. This difference is then naturally reflected in the underestimated value of form factor

in comparison to the experiment, particularly at low values of momentum transfer. The

inclusion of triaxial degree of freedom, that undeniably plays an important role in the 0+
2
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state, would likely modify the calculated transition charge density and, consequently, the

corresponding form factor. Whether such an upgrade to the model will actually bring

the expected shift towards experimental values3 remains to be examined in the future.

5.2. Concluding Remarks

In this chapter, we have performed the fully symmetry-conserving study of the low-

lying spectroscopy and cluster structures in 12C isotope. Axially-symmetric and reflection-

asymmetric RHB states were first projected onto good values of angular momenta, particle

number, and parity, and then mixed within the MR-EDF framework. Starting from an

effective interaction that was fitted to data on heavy nuclei and a formalism that does not

a priori assume any clusterized structures, the employed framework enabled a consistent,

parameter-free calculation of collective excitation spectra and the corresponding electric

transition strengths in the very light 12C isotope.

In particular, we have focused our attention on the structure of the three lowest Kπ =

0+ bands. Overall, empirical properties of the ground-state band have been accurately

reproduced. Collective 2+
1 and 4+

1 states are found at energies that are only marginally

lower than the experimental values, and the corresponding ratio E(4+
1 )/E(2+

1 ) strongly

indicates the rotational character of the yrast band. Moreover, calculated E2 transition

strength from the 2+
1 state to the ground state is within the experimental error bar

margin, while positive spectroscopic quadrupole moments confirm oblate deformation of

the Kπ = 0+
1 band. The present model does not include triaxial shapes and it therefore

does not reproduce the B(E2; 2+
2 → 0+

2 ) strength within the Hoyle band as calculated

with the AMD and the THSR theoretical models. Nevertheless, the obtained 0+
2 state is

located less than 1 MeV above its measured position, and the calculated B(E2; 2+
1 → 0+

2 )

strength is in rather good agreement with the experiment. Furthermore, the excited band

built upon the 0+
3 state was demonstrated to have a strong rotational character with rather

large spectroscopic quadrupole moments and intraband E2 transition strenghts. In the

intrinsic frame, this band exhibits the pronounced linear chain structure that corresponds

to the 8Be+α configuration. Finally, both elastic and inelastic form factors show good

agreement with the experimental data for a rather wide range of momentum transfers.

In this particular aspect, the present global model exhibits a predictive power which can

compete with that of the most successful models for cluster studies.

3Remember the morals of footnote 4 on p. 84.







Conclusion and Outlook

Three passions, simple but overwhelmingly strong, have governed my life: the longing for

love, the search for knowledge, and unbearable pity for the suffering of mankind. These

passions, like great winds, have blown me hither and thither, in a wayward course, over a

great ocean of anguish, reaching to the very verge of despair. (...) This has been my life.

I have found it worth living, and would gladly live it again if the chance were offered me.

Bertrand Russell, Prologue to Autobiography

The framework of energy density functionals currently provides the most complete and

accurate description of ground-state and excited-state properties of atomic nuclei over

the entire nuclide chart. EDF-based models, especially when extended to include the

restoration of broken symmetries and subsequent configuration mixing, represent state-

of-the-art tool for studies of various structure phenomena, from light nuclear systems

to superheavy nuclei and from the valley of β-stability to the particle drip-lines. Some

of the advantages of using manifestly covariant functionals involve the natural inclusion

of the spin-orbit potential, the unique parameterization of nucleon currents, as well as

the explanation of empirical pseudospin symmetry in terms of relativistic mean-fields.

Recently, it was also demonstrated that relativistic EDFs, when compared to their non-

relativistic counterparts, predict significantly more localized density distributions in light

nuclei. This property of covariant framework was linked to the larger depth of the under-

lying single-nucleon potential, which corresponds to a sum of the large attractive scalar

and repulsive vector Lorentz fields. In practical terms, this feature makes relativistic EDF

models a particularly convenient framework for studies of formation of clusters, that can

be considered as a transitional phenomenon between quantum liquid and solid phases in

atomic nuclei.

In this thesis, we have developed the fully symmetry-conserving collective model for

nuclear structure studies based on the relativistic EDF framework. Starting point of our

calculation was the RHB model, which provides a unified description of particle-hole and

particle-particle correlations on a mean-field level. In the ph channel we have used the

point-coupling DD-PC1 functional, while a pairing force separable in momentum space

was employed in the pp channel. Both axial and time-reversal symmetry of the intrinsic

states were imposed, while they were allowed to break the rotational, particle number,

and parity symmetry. This kind of analysis enabled an access to nuclear configurations
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in the entire plane spanned by the axially-symmetric quadrupole and octupole deforma-

tions, providing a basic description of nuclear ground-states in terms of the symmetry-

breaking wave functions. In the next step, the restoration of angular momentum, particle

number, and parity of intrinsic states were all simultaneously performed. The symmetry-

restored configurations were further mixed within the MR-EDF framework in order to

build collective nuclear states with good quantum numbers. Solving the corresponding

HWG equation yielded the excitation spectra and collective wave functions that could

then be used to calculate various observables, such as spectroscopic quadrupole moments

and electromagnetic multipole transition strengths. Finally, the recently-developed BMF

techniques for studies of correlated densities and electron scattering form factors were

implemented to the model. Ultimately, we have developed the state-of-the-art collective

model for nuclear structure studies that can, together with the eventual extensions, be

applied in analyses of various phenomena over the entire nuclide chart. In this work, the

model was employed in a study of clustering phenomena in neon and carbon isotopes.

Starting from an effective interaction that was fitted to data on medium-heavy and heavy

nuclei and a formalism that does not a priori assume any clusterized structures, the em-

ployed framework enabled a consistent, parameter-free calculation of collective excitation

spectra and the corresponding electric transition strengths in light and very light nuclear

systems.

As a first application of the model, we have carried out a comprehensive study of

quadrupole-octupole collectivity and cluster structures in neon isotopes. The ground-

state experimental values of binding energies and charge radii were reproduced reasonably

well already on the SR-EDF level. On the MR-EDF level, correlated ground states were

demonstrated to exhibit a rather complex structure, with significant contributions from

both the prolate- and oblate-deformed configurations. The corresponding two-neutron

separation energies showed good agreement with the experimental data, and 34Ne is

confirmed to be the last stable even-even isotope of neon. Furthermore, good agree-

ment with the experimental low-lying excitation energies and transition strengths was

obtained over the entire isotopic chain. Signatures of the shape-coexistence were detected

in 24Ne isotope, while the drip-line 34Ne nucleus was found to exhibit a prolate-deformed

structure with significantly compressed collective spectrum. Calculated spectrum for the

self-conjugate 20Ne isotope was shown to exhibit a level of accuracy that is comparable

to the one obtained using some more specific models, such as the AMD theory. It was

demonstrated that the obtained lowest positive- and negative-parity doublet bands are

dominated by the 16O+α structure in the intrinsic frame. The ground state of 20Ne con-

tains significant contribution from oblate-deformed configurations, while the increase of

angular momentum leads towards predominance of prolate shapes and development of

the α-12C-α-like structure in the Jπ = 6+ state. In the negative-parity band this dissolu-

tion occurs at much slower rate than reported in some previous studies and a pronounced
16O+α structure persists even up to Jπ = 7− in the present calculation.

Furthermore, the symmetry-restoring framework was employed in a study of the low-

lying positive-parity spectroscopy and cluster structures in 12C isotope. Empirical prop-

erties of the ground-state band have been accurately reproduced, including the excitation
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energies and spectroscopic quadrupole moments of the excited states, as well as the in-

traband quadrupole transition strengths. The excited band built on 0+
3 state was demon-

strated to have a strong rotational character and exhibit the pronounced linear chain

structure in the intrinsic frame. Even though the present model does not include triaxial

shapes and therefore does not reproduce intrinsic density profile of the Hoyle state as

calculated with some dedicated cluster models, the obtained 0+
2 state is located less than

1 MeV above its measured position. In addition, both elastic and inelastic form factors

show good agreement with the experimental data for a rather wide range of momentum

transfers. In this particular aspect, the present global model exhibits a predictive power

which can compete with that of the most successful models for cluster studies.

The upcoming advancements in computational capabilities will most likely render

configuration-mixing calculations with three or even more generating coordinates compu-

tationally feasible in the near future. Consequently, the simultaneous inclusion of triaxial,

octupole, and eventually tetrahedral intrinsic shapes will enable global MR-EDF models

to simultaneously probe the vast richness of cluster structures (for example, triangular

and pear-shaped configurations) that arguably coexist in the low-lying states of light

nuclei. From a more microscopic perspective, the single-particle content of the nuclear

wave function, which is routinely accessed on the SR-EDF level, is typically overlooked on

the MR-EDF level. In fact, the extraction of single-particle occupancies from correlated

collective states has been only recently addressed [RPN16]. Further development and

implementation of such methods will enable us to access the single-particle content of the

correlated collective states and thereby possibly reveal some interesting implications for

the formation of clusters. Finally, the intrinsic densities used in this work provide a rather

qualitative measure of the degree of clustering and the employment of some more rigorous

localization measures [RMUO11] may provide an additional insight into the underlying

causes for the spatial localization of nucleons. The global symmetry-conserving MR-EDF

models such as the one developed in this manuscript, especially when extended to include

the listed and possible other upgrades, present one of the most promising theoretical tools

for studies of the coexistence of the quantum-liquid and cluster states in atomic nuclei.





Appendix A

The Single-Particle Bases

RHB equations in this study are solved in the configuration space of axially symmetric

harmonic oscillator, as previously discussed in Chapter 1. Within the framework of second

quantization, single-particle states that span this space are generated from a bare vacuum

state |0〉 by applying a corresponding set of single-particle creation and annihilation

operators, {c†α, cα}. In all practical implementations, however, a specific representation of

these states needs to be chosen. In this appendix, we will first briefly overview the most

important facts about the second quantization formalism. Then, we will proceed to define

the coordinate space representation of eigenstates of the axially symmetric harmonic

oscillator potential, that are extensively used throughout the study. Furthermore, we will

demonstrate how this basis can be used to define a basis of eigenfunctions of the simplex-x

operator. These eigenfunctions will be a basis of choice for our considerations in Chapter

2. Furthermore, we will derive necessary expressions for the expansion of large and small

components of Bogoliubov wave function in the simplex-x basis. Finally, we will derive

matrix elements of rotation operator in the simplex-x basis.

A.1. A Brief Note on Second Quantization

Term second quantization is somewhat misleading, since it implies the additional quan-

tizing of quantum physics formalism. In contrast to what the name may imply, the second

quantization should simply be thought of as an alternative formulation of the (already

quantized) framework which turns out to be specially convenient when juggling various

algebraic manipulations in solving the nuclear many-body problem. A rather compre-

hensive overview of second quantization formalism is, for example, given in Chapter 1 of

the classic textbook by J.-P. Blaizot and G. Ripka [BR85]. At this place, we will only

set up the stage for a theory to play on, and briefly review the most important formulas

that are typically used massively between what is presented as a starting expression and

what is given as a final result. To start with, we define the playground of our theory to
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be the Fock space F , which corresponds to a direct sum of Hilbert spaces associated with

different particle numbers:

F = H0 ⊕H1 · · · ⊕ HN ⊕ . . . , (A.1)

where a Hilbert space HN provides the totally antisymmetric N -body basis of reference

BN . In particular, the H0 space contains only a bare vacuum |0〉 state. Transformation

to the 1-body space H1 is dictated by a set of particle creation and annihilation operators

{c†α, cα}:

c†α |0〉 = |α〉 , cα |α〉 = |0〉 , (A.2)

where the Pauli principle for fermions implies:

c†α |α〉 = 0, cα |0〉 = 0. (A.3)

Furthermore, these operators can be used to transform a system from the HN space to

the HN−1 space:

cµ |ναβ . . .〉 =

{
|αβ . . .〉 if µ = ν,

0 if µ 6= ν,
(A.4)

as well as to transform a system from the HN space to the HN+1 space:

c†µ |αβ . . . ν . . .〉 =

{
|µαβ . . . ν . . .〉 if µ 6= ν,

0 if µ = ν.
(A.5)

In general the N -body basis BN = {|1 : α; 2 : β; . . .〉}1 will satisfy a property of orthonor-

mality:

〈1 : α; 2 : β . . . |1 : α′; 2 : β′ . . .〉 = δαα′δββ′ . . . . (A.6)

Particle creation and annihilation operators are related by Hermitian conjugation and

satisfy standard fermionic anticommutation relations:

{cα, c†β} = cαc
†
β + c†βcα = δαβ, (A.7a)

{cα, cβ} = {c†α, c
†
β} = 0. (A.7b)

1In the coordinate representation, BN will typically correspond to the Slater determinants basis.
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Within the second quantization formalism, the one-body operator Â can be written as:

Â =
∑
αβ

Aαβc
†
αcβ, (A.8)

while the two-body operator B̂ can be written as:

B̂ =
1

2

∑
αβγδ

Bαβγδc
†
αc
†
βcδcγ, (A.9)

where coefficients Aαβ and Bαβγδ correspond to matrix elements of operators Â and B̂ in

B1 and B2 bases, respectively. We note that a unitary transformation between the single-

particle basis defined here and the single-quasiparticle basis of Bogoliubov framework is

given by Eq. (1.32). More information on interesting properties of this transformation

can be read, for example, in Appendix E of the Ring-Schuck textbook [RS80].

A.2. Coordinate Representation of

the Harmonic Oscillator Basis

Eigenfunctions of the axially symmetric harmonic oscillator |α〉 live in a one-body H1

space, and they are composed of the coordinate space part and the spin part:

|α〉 ≡ |α〉space · |α〉spin = |nzn⊥Λms〉 . (A.10)

State |α〉 is characterized by a set of quantum numbers {α} = {nz, n⊥,Λ,ms}, where nz
and n⊥ represent number of quanta (nodes) in the z− and the r⊥− directions, respectively,

while Λ and ms denote components of the orbital angular momentum and of the spin

along the z− axis. Spatial part of the total function corresponds to eigenfunctions of the

harmonic oscillator potential [GRT90]:

Vosc(z, r⊥) =
1

2
Mω2

zz
2 +

1

2
Mω2

⊥r
2
⊥. (A.11)

Taking into account conservation of nuclear volume under deformation, the perpendicular

oscillator frequency ~ω⊥ and the axial oscillator frequency ~ωz can be written in terms

of the spherical oscillator frequency ~ω0 and the deformation parameter β0:

~ω⊥ = ~ω0e
1
2

√
5/4πβ0 ,

~ωz = ~ω0e
−
√

5/4πβ0 .
(A.12)
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The corresponding oscillator length parameters are b⊥ =
√

~/Mω⊥ and bz =
√
~/Mωz,

where the equality b⊥bz = b3
0 holds due to a volume conservation. Therefore, constants

~ω0 and β0 uniquely define our potential and, consequently, our basis2. In the coordinate

representation, spatial part |α〉space of the total eigenfunction (A.10) can be explicitly

written as:

Φnz ,n⊥,Λ(z, r⊥, φ) = φnz(z)φΛ
n⊥

(r⊥)
1√
2π
eiΛφ. (A.13)

Here, eigenfunctions in the z-direction read:

φnz(z) =
Nnz√
bz
Hnz(ξ)e

−ξ2/2, ξ = z/bz, (A.14)

with the normalization constant:

Nnz =
1√√
π2nznz!

, (A.15)

and the Hermite polynomials Hnz(ξ) defined in Ref. [AS65]. The orthogonality relation

for Hermite polynomials

∫ ∞
−∞

dxHm(x)Hn(x)e−x
2

=
√
π2nn!δmn (A.16)

implies the orthogonality relation for eigenfunctions in the z-direction:

∫ ∞
−∞

dzφnz(z)φn′
z
(z) = δnzn′

z
. (A.17)

In addition, properties of Hermite polynomials [AS65] can be used to show that the

eigenfunctions in the z-direction satisfy useful relations:

∂zφnz(z) =
1√
2bz

[
−
√
nz + 1φnz+1(z) +

√
nzφnz−1(z)

]
,

zφnz(z) =
bz
2

[√
nz + 1φnz+1(z) +

√
nzφnz−1(z)

]
.

(A.18)

Eigenfunctions in the r⊥-direction read:

2In practical implementations, values of ~ω0 and β0 should be chosen optimally in order to achieve
fast convergence. Of course, calculated value of any physical observable has to be independent of the
particular choice of basis parameters.
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φΛ
n⊥

(r⊥) =
NΛ
n⊥

b⊥

√
2ηΛ/2LΛ

n⊥
(η)e−η/2, η = r2

⊥/b
2
⊥, (A.19)

with the normalization constant:

NΛ
n⊥

=

√
n⊥!

(n⊥ + Λ)!
, (A.20)

and the associated Laguerre polynomials LΛ
n⊥

(η) defined in Ref. [AS65]. The orthogonal-

ity relation for associated Laguerre polynomials

∫ ∞
0

dxxαe−xL(α)
n (x)L(α)

m (x) =
Γ(n+ α + 1)

n!
δmn (A.21)

implies the orthogonality relation for eigenfunctions in the r⊥-direction:

∫ ∞
0

dr⊥φ
Λ
n⊥

(r⊥)φΛ
n′
⊥

(r⊥)r⊥ = δn⊥n
′
⊥
. (A.22)

In addition, orthogonality of eigenfunctions in the φ-direction can be demonstrated triv-

ially:

∫ 2π

0

dφ
1√
2π
e−iΛ

′φ 1√
2π
eiΛφ = δΛΛ′ . (A.23)

The spin part |α〉spin of total eigenfunction (A.10) is an eigenvector of the z-component

of the total spin operator:

Ŝz |s;ms〉 = ~ms |s;ms〉 . (A.24)

For s = 1
2

fermions such as nucleons, possible projections of total spin on the symmetry

axis are ms = +1
2

(corresponding state is denoted as |↑〉) and ms = −1
2

(corresponding

state is denoted as |↓〉). Finally, total eigenfunction of the axially symmetric harmonic

oscillator reads:

Φα(r, s) = Φnz ,n⊥,Λ(z, r⊥.φ)× χms(s). (A.25)

These functions are used to expand large and the small components of nuclear spinor of

Eq. (1.44). Furthermore, even though a state |α〉 does not carry a good quantum number

of total angular momentum J , its projection jz on a symmetry axis still represents a good

quantum number. The corresponding eigenvalue reads:
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Ω = Λ +ms. (A.26)

Finally, eigenfunction of the Kramers-degenerated time-reversed state |ᾱ〉 with Ωᾱ = −Ωα

reads:

Φᾱ(r⊥, z, φ, s) = T̂Φα(r⊥, z, φ, s)

= φnz(z)φΛ
n⊥

(r⊥)
1√
2π
e−iΛφ(−1)1/2−msχ−ms(s).

(A.27)

A.3. The Simplex-X Basis

The simplex-x operator Π̂x is defined as a product of the parity operator Π̂ and the

operator of rotation by 180◦ around the x-axis:

Π̂x = Π̂e−iπĴx = Π̂e−iπL̂xe−iπŜx . (A.28)

The product of the parity and the e−iπL̂x operators corresponds to the transformation

in Cartesian coordinates (x, y, z) → (−x, y, z), and to the transformation in cylindrical

coordinates (z, r⊥, φ) → (z, r⊥, π − φ). In addition, the spin part of the operator can be

rewritten as:

e−iπŜx = e−i
π
2
σ̂x =

∞∑
n=0

1

n!
(−iπ

2
)nσnx , (A.29)

where σx denotes the x-component of Pauli matrices:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (A.30)

that are Hermitian, unitary, and posses the property of involutority:

σ2
x = σ2

y = σ2
z =

(
1 0

0 1

)
= 1. (A.31)

Separating the total sum into even and odd parts, using the property of involutority of

Pauli matrices, and recognizing the Taylor series expansion for cosine and sine functions,

the expression (A.29) can be rewritten as:
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e−iπŜx =
∞∑
k=0

1

(2k)!
(−iπ

2
)2kσ2k

x +
∞∑
k=0

1

(2k + 1)!
(−iπ

2
)2k+1σ2k+1

x

=
∞∑
k=0

(−1)k

(2k)!
(
π

2
)2k
1− iσx

∞∑
k=0

(−1)k

(2k + 1)!
(
π

2
)2k+1

= cos
π

2
1− iσx sin

π

2

= −iσx.

(A.32)

It therefore follows that applying the simplex-x operator of Eq. (A.28) on the harmonic

oscillator eigenstate of (A.10) yields:

Π̂x |nzn⊥Λms〉 = −i(−1)Λ |nzn⊥ − Λ−ms〉 . (A.33)

This enables us to construct states that are eigenstates of the simplex-x operator:

Π̂x |nzn⊥Λ; +i〉 = (+i) |nzn⊥Λ; +i〉 , (A.34a)

Π̂x |nzn⊥Λ;−i〉 = (−i) |nzn⊥Λ;−i〉 . (A.34b)

where quantum number Λ can take both positive and negative values. The coordinate

space representations of states (A.34a) and (A.34b) in terms of eigenfunctions of the

axially symmetric harmonic oscillator reads:

Φ[nzn⊥Λ;+i](r) =
1√
2

[
Φ[nzn⊥Λ↑](r)− (−1)ΛΦ[nzn⊥−Λ↓](r)

]
, (A.35a)

Φ[nzn⊥Λ;−i](r) =
(−1)Λ

√
2

[
Φ[nzn⊥Λ↑](r) + (−1)ΛΦ[nzn⊥−Λ↓](r)

]
. (A.35b)

In addition, using Eq. (A.27), it can be demonstrated that the time-reversal operator T̂

transforms the |s = +i〉 state into the |s = −i〉 state:

T̂Φ[nzn⊥Λ;+i](r) = Φ[nzn⊥Λ;−i](r), (A.36)

and the |s = −i〉 state into the − |s = +i〉 state:

T̂Φ[nzn⊥Λ;−i](r) = −Φ[nzn⊥Λ; +i](r), (A.37)
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where T̂ 2 = −1, and states |s = +i〉 and |s = −i〉 are orthogonal and Kramers degener-

ated.

A.4. Bogoliubov States in the Simplex-X Basis

Solutions to the RHB equations are axially symmetric, that is, each state belongs to a

certain Ω = Λ + ms block. Components of the Uk(r) and Vk(r) wave functions [c.f. Eq.

(1.43)] can therefore be expanded in terms of the harmonic oscillator eigenfunctions in

the following manner:

UΩ
k (r) =

∑
nzn⊥

(
UΩ
k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1

2
↑](r) + UΩ

k[nzn⊥↓]Φ[nzn⊥Λ=Ω+ 1
2
↓](r)

)
, (A.38a)

V Ω
k (r) =

∑
nzn⊥

(
V Ω
k[nzn⊥↑]Φ[nzn⊥Λ=−Ω+ 1

2
↓](r)− V Ω

k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1
2
↑](r)

)
. (A.38b)

Assuming that the expansion coefficients UΩ
k[nzn⊥ms]

and V Ω
k[nzn⊥ms]

are real, we can obtain

the time-reversed states as:

T̂UΩ
k (r) =

∑
nzn⊥

(
UΩ
k[nzn⊥↑]Φ[nzn⊥Λ=−Ω+ 1

2
↓](r)− UΩ

k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1
2
↑](r)

)
, (A.39a)

T̂ V Ω
k (r) =

∑
nzn⊥

(
−V Ω

k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1
2
↑](r)− V Ω

k[nzn⊥↓]Φ[nzn⊥Λ=Ω+ 1
2
↓](r)

)
. (A.39b)

In order to expand these states in the simplex-x basis, we first invert the relations (A.35a)

and (A.35b):

Φ[nzn⊥Λ↑](r) =
1√
2

[
Φ[nzn⊥Λ;+i](r) + (−1)ΛΦ[nzn⊥Λ;−i](r)

]
, (A.40a)

Φ[nzn⊥−Λ↓](r) =
1√
2

[
−(−1)ΛΦ[nzn⊥Λ;+i](r) + Φ[nzn⊥Λ;−i](r)

]
. (A.40b)

These expressions are then plugged into the Eqs. (A.38a) and (A.38b):
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UΩ
k (r) =

∑
nzn⊥

1√
2
UΩ
k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1

2
;+i](r)

+
∑
nzn⊥

1√
2

(−1)Ω− 1
2UΩ

k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1
2

;+i](r)

+
∑
nzn⊥

1√
2

(−1)Ω− 1
2UΩ

k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1
2

;−i](r)

+
∑
nzn⊥

1√
2
UΩ
k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1

2
;−i](r),

(A.41)

V Ω
k (r) =

∑
nzn⊥

1√
2

(−1)Ω+ 1
2V Ω

k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1
2

;+i](r)

+
∑
nzn⊥

(−1)√
2
V Ω
k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1

2
;+i](r)

+
∑
nzn⊥

1√
2
V Ω
k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1

2
;−i](r)

+
∑
nzn⊥

1√
2

(−1)Ω− 1
2V Ω

k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1
2

;−i](r),

(A.42)

as well as into the Eqs. (A.39a) and (A.39b):

T̂UΩ
k (r) =

∑
nzn⊥

1√
2

(−1)Ω+ 1
2UΩ

k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1
2

;+i](r)

+
∑
nzn⊥

(−1)√
2
UΩ
k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1

2
;+i](r)

+
∑
nzn⊥

1√
2
UΩ
k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1

2
;−i](r)

+
∑
nzn⊥

1√
2

(−1)Ω− 1
2UΩ

k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1
2

;−i](r),

(A.43)

T̂ V Ω
k (r) =

∑
nzn⊥

(−1)√
2
V Ω
k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1

2
;+i](r)

+
∑
nzn⊥

1√
2

(−1)Ω+ 1
2V Ω

k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1
2

;+i](r)

+
∑
nzn⊥

1√
2

(−1)Ω+ 1
2V Ω

k[nzn⊥↑]Φ[nzn⊥Λ=Ω− 1
2

;−i](r)

+
∑
nzn⊥

(−1)√
2
V Ω
k[nzn⊥↓]Φ[nzn⊥Λ=−Ω− 1

2
;−i](r).

(A.44)

Since pairs of states {UΩ
k (r), T̂UΩ

k (r)} and {V Ω
k (r), T̂ V Ω

k (r)} are Kramers degenerated, any
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linear combination also corresponds to the ground-state solution of the RHB equations.

We will use this property in order to generate states which are both solutions to the RHB

equations and eigenstates of the Π̂x operator. In particular, linear combination

1√
2

{
UΩ
k (r)− (−1)Ω− 1

2 T̂UΩ
k (r)

}
=
∑
nzn⊥

UΩ,s=+i
k[nzn⊥Λ≥0]Φ[nzn⊥Λ=Ω− 1

2
;+i](r)

+
∑
nzn⊥

UΩ,s=+i
k[nzn⊥Λ<0]Φ[nzn⊥Λ=−Ω− 1

2
;+i](r)

(A.45)

is an eigenstate with s = +i and coefficients:

UΩ,s=+i
k[nzn⊥Λ≥0] = UΩ

k[nzn⊥↑], UΩ,s=+i
k[nzn⊥Λ<0] = −(−1)ΛUΩ

k[nzn⊥↓], (A.46)

while the linear combination

1√
2

{
UΩ
k (r) + (−1)Ω− 1

2 T̂UΩ
k (r)

}
=
∑
nzn⊥

UΩ,s=−i
k[nzn⊥Λ≥0]Φ[nzn⊥Λ=Ω− 1

2
;−i](r)

+
∑
nzn⊥

UΩs=−i
k[nzn⊥Λ<0]Φ[nzn⊥Λ=−Ω− 1

2
;−i](r)

(A.47)

is an eigenstate with s = −i and coefficients:

UΩ,s=−i
k[nzn⊥Λ≥0] = (−1)ΛUΩ

k[nzn⊥↑], UΩ,s=−i
k[nzn⊥Λ<0] = UΩ

k[nzn⊥↓]. (A.48)

On the other hand, linear combination:

1√
2

{
V Ω
k (r)− (−1)Ω− 1

2 T̂ V Ω
k (r)

}
=
∑
nzn⊥

V Ω,s=−i
k[nzn⊥Λ≥0]Φ[nzn⊥Λ=Ω− 1

2
;−i](r)

+
∑
nzn⊥

V Ω,s=−i
k[nzn⊥Λ<0]Φ[nzn⊥Λ=−Ω− 1

2
;−i](r)

(A.49)

is an eigenstate with s = −i and coefficients:

V Ω,s=−i
k[nzn⊥Λ≥0] = V Ω

k[nzn⊥↑], V Ω,s=−i
k[nzn⊥Λ<0] = −(−1)ΛV Ω

k[nzn⊥↓], (A.50)

while the linear combination:
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1√
2

{
V Ω
k (r) + (−1)Ω− 1

2 T̂ V Ω
k (r)

}
=
∑
nzn⊥

V Ω,s=+i
k[nzn⊥Λ≥0]Φ[nzn⊥Λ=Ω− 1

2
;+i](r)

+
∑
nzn⊥

V Ω,s=+i
k[nzn⊥Λ<0]Φ[nzn⊥Λ=−Ω− 1

2
;+i](r)

(A.51)

is an eigenstate with s = +i and coefficients:

V Ω,s=+i
k[nzn⊥Λ≥0] = −(−1)ΛV Ω

k[nzn⊥↑], V Ω,s=+i
k[nzn⊥Λ<0] = −V Ω

k[nzn⊥↓]. (A.52)

In fact, by taking a linear combination for the RHB state of Eq. (1.44):

1√
2

{
ψΩ,i
k (r)∓ (−1)Ω− 1

2 T̂ψΩ,i
k (r, s)

}
=

1√
2

{(
fΩ,i
k (r)

igΩ,i
k (r)

)
∓ (−1)Ω− 1

2

(
T̂ fΩ,i

k (r)

−iT̂ gΩ,i
k (r)

)}

=
1√
2

{(
fΩ,i
k (r)∓ (−1)Ω− 1

2 T̂ fΩ,i
k (r)

igΩ,i
k (r)± i(−1)Ω− 1

2 T̂ gΩ,i
k (r)

)
,

(A.53)

where i = U, V , we can see that in each block the large and the small component of the

total wave function should be expanded in the bases of the opposite simplex-x eigenvalues.

We note that the first block is defined as the one where the linear combination of the

left-hand-side of the Eq. (A.53) corresponds to the diference of terms, while the second

block is defined as the one where the linear combination corresponds to the sum of terms.

To sum up, the expansion coefficients corresponding to the first block are:

fΩ,U,s=+i
k[nzn⊥Λ≥0] = fΩ,U

k[nzn⊥↑], fΩ,U,s=+i
k[nzn⊥Λ<0] = −(−1)ΛfΩ,U

k[nzn⊥↓],

gΩ,U,s=−i
k[nzn⊥Λ≥0] = (−1)ΛgΩ,U

k[nzn⊥↑], gΩ,U,s=−i
k[nzn⊥Λ<0] = gΩ,U

k[nzn⊥↓],

fΩ,V,s=−i
k[nzn⊥Λ≥0] = fΩ,V

k[nzn⊥↑], fΩ,V,s=−i
k[nzn⊥Λ<0] = −(−1)ΛfΩ,V

k[nzn⊥↓],

gΩ,V,s=+i
k[nzn⊥Λ≥0] = −(−1)ΛgΩ,V

k[nzn⊥↑], gΩ,V,s=+i
k[nzn⊥Λ<0] = −gΩ,V

k[nzn⊥↓].

(A.54)

The expansion coefficients corresponding to the second block are:

fΩ,U,s=−i
k[nzn⊥Λ≥0] = (−1)ΛfΩ,U

k[nzn⊥↑], fΩ,U,s=−i
k[nzn⊥Λ<0] = fΩ,U

k[nzn⊥↓],

gΩ,U,s=+i
k[nzn⊥Λ≥0] = gΩ,U

k[nzn⊥↑], gΩ,U,s=+i
k[nzn⊥Λ<0] = −(−1)ΛgΩ,U

k[nzn⊥↓],

fΩ,V,s=+i
k[nzn⊥Λ≥0] = −(−1)ΛfΩ,V

k[nzn⊥↑], fΩ,V,s=+i
k[nzn⊥Λ<0] = −fΩ,V

k[nzn⊥↓],

gΩ,V,s=−i
k[nzn⊥Λ≥0] = gΩ,V

k[nzn⊥↑], gΩ,V,s=−i
k[nzn⊥Λ<0] = −(−1)ΛgΩ,V

k[nzn⊥↓].

(A.55)
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A.5. Rotation Operator in the Simplex-X Basis

In order to rotate the RHB wave functions of Eq. (1.44), whose expansion coefficients

in the simplex-x basis are given by Eqs. (A.54) and (A.55), it is necessary to calculate

matrix elements of the R̂(β) operator in the simplex-x basis. This will be done in three

steps. First, we will calculate matrix elements of the Ĵx operator in the harmonic oscillator

basis. Then, these elements will be used to calculate matrix elements of the Ĵx operator

in the simplex-x basis. Finally, we will use properties of the matrix eigen decomposition

to calculate matrix elements of the R̂(β) operator in the simplex-x basis.

Matrix elements of Ĵx in the harmonic oscillator basis

Total angular momentum operator Ĵx can be decomposed into contributions from the

orbital angular momentum operator L̂x and from the spin operator Ŝx, Ĵx = L̂x + Ŝx.

The Cartesian-space representation of the orbital angular momentum operator reads:

L̂x = −i~ (y∂z − z∂y) . (A.56)

Making use of the transformation relations between the Cartesian (x, y, z) and cylindrical

(z, r⊥, φ) coordinate systems, the orbital angular momentum operator can be rewritten

in terms of the cylindrical coordinates:

L̂x = −~
2
r⊥
(
eiφ − e−iφ

)
∂z +

i~
2

z

r⊥

(
eiφ + e−iφ

)
∂φ +

~
2
z
(
eiφ − e−iφ

)
∂r⊥ . (A.57)

Matrix elements of the orbital angular momentum operator in the axially-symmetric

harmonic oscillator basis of Eq. (A.25) then read:

〈nzn⊥Λms|L̂x|n′zn′⊥Λ′m′s〉 = δmsm′
s

~
2
×{

− 1

2π

∫ ∞
−∞

dzφnz(z)∂zφn′
z
(z)

∫ ∞
0

dr⊥r
2
⊥φn⊥|Λ|(r⊥)φn′

⊥|Λ′|(r⊥)

∫ 2π

0

dφei(Λ
′−Λ)φ

(
eiφ − e−iφ

)
+

i

2π

∫ ∞
−∞

dzzφnz(z)φn′
z
(z)

∫ ∞
0

dr⊥φn⊥|Λ|(r⊥)φn′
⊥|Λ′|(r⊥)

∫ 2π

0

dφ(iΛ′)ei(Λ
′−Λ)φ

(
eiφ + e−iφ

)
+

1

2π

∫ ∞
−∞

dzzφnz(z)φn′
z
(z)

∫ ∞
0

dr⊥r⊥φn⊥|Λ|(r⊥)∂r⊥φn′
⊥|Λ′|(r⊥)

∫ 2π

0

dφei(Λ
′−Λ)φ

(
eiφ − e−iφ

)}
,

(A.58)
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where Kronecker δmsm′
s

stems from the fact that the spin space is invariant under action of

the orbital angular momentum operator. Here, integrals in the φ-direction can be carried

out analytically in a trivial manner. Furthermore, by using properties of Hermite poly-

nomials from Eq. (A.18), integrals in the z-direction can also be carried out analytically.

Therefore, the final expression for matrix elements of the orbital angular momentum in

the harmonic oscillator basis reads:

〈nzn⊥Λms|L̂x|n′zn′⊥Λ′m′s〉 = δmsm′
s

~
2
×{

− (δΛ,Λ′+1 − δΛ,Λ′−1)

(
−
√
n′z + 1

2
δnz ,n′

z+1 +

√
n′z
2
δnz ,n′

z−1

)
1

bz

∫ ∞
0

dr⊥r
2
⊥φn⊥|Λ|(r⊥)φn′

⊥|Λ′|(r⊥)

− Λ′ (δΛ,Λ′+1 + δΛ,Λ′−1)

(√
n′z + 1

2
δnz ,n′

z+1 +

√
n′z
2
δnz ,n′

z−1

)
bz

∫ ∞
0

dr⊥φn⊥|Λ|(r⊥)φn′
⊥|Λ′|(r⊥)

+ (δΛ,Λ′+1 − δΛ,Λ′−1)

(
−
√
n′z + 1

2
δnz ,n′

z+1 +

√
n′z
2
δnz ,n′

z−1

)
1

bz

∫ ∞
0

dr⊥r⊥φn⊥|Λ|(r⊥)∂r⊥φn′
⊥|Λ′|(r⊥)

}
.

(A.59)

The remaining integrals in r⊥-direction are calculated numerically. For the spin part,

using the fact that Ŝ = ~
2
σ̂ as well as properties of Pauli matrices from Eq. (1.30), it is

straightforward to calculate the corresponding matrix elements in the harmonic oscillator

basis:

〈nzn⊥Λms|Ŝx|n′zn′⊥Λ′m′s〉 =
~
2
δms,−m′

s
× δnzn′

z
δn⊥n

′
⊥
δΛΛ′ . (A.60)

Finally, the expression for matrix elements of the total angular momentum operator in

the harmonic oscillator basis reads:

〈nzn⊥Λms|Ĵx|n′zn′⊥Λ′m′s〉 = 〈nzn⊥Λms|L̂x|n′zn′⊥Λ′m′s〉+
~
2
δms,−m′

s
× δnzn′

z
δn⊥n

′
⊥
δΛΛ′ .

(A.61)

Matrix elements of Ĵx in the simplex-x basis

Matrix elements of the Ĵx operator between the |s = +i〉 eigenstates are straightforwardly

written down as:
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〈nzn⊥Λ; +i|Ĵx|n′zn′⊥Λ′; +i〉 =
1

2
〈nzn⊥Λ ↑ |L̂x|n′zn′⊥Λ′ ↑〉

+
1

2
(−1)Λ+Λ′ 〈nzn⊥ − Λ ↓ |L̂x|n′zn′⊥ − Λ′ ↓〉

− 1

2
(−1)Λ′ 〈nzn⊥Λ ↑ |Ŝx|n′zn′⊥ − Λ′ ↓〉

− 1

2
(−1)Λ 〈nzn⊥ − Λ ↓ |Ŝx|n′zn′⊥Λ′ ↑〉 ,

where we have made use of the fact that the L̂x operator couples only states with the

equal spins, while the Ŝx operator couples only states with the opposite spins. Using

properties of Eq. (A.59), it is possible to demonstrate that the first two terms on the

right hand side of the upper expression are actually equal. Furthermore, using properties

of the spin operator from the Eq. (A.60), we can derive the final expression for the matrix

element of Ĵx operator between two |s = +i〉 eigenstates:

〈nzn⊥Λ; +i|Ĵx|n′zn′⊥Λ′; +i〉 = 〈nzn⊥Λ|L̂x|n′zn′⊥Λ′〉 − ~
2

(−1)Λδnzn′
z
δn⊥n

′
⊥
δΛ−Λ′ . (A.62)

Carrying out the equivalent calculation with the |s = −i〉 eigenstate yields:

〈nzn⊥Λ;−i|Ĵx|n′zn′⊥Λ′;−i〉 = −〈nzn⊥Λ|L̂x|n′zn′⊥Λ′〉+
~
2

(−1)Λδnzn′
z
δn⊥n

′
⊥
δΛ−Λ′ . (A.63)

Finally, off-diagonal matrix elements vanish identically:

〈nzn⊥Λ; +i|Ĵx|n′zn′⊥Λ′;−i〉 = 〈nzn⊥Λ;−i|Ĵx|n′zn′⊥Λ′; +i〉 = 0. (A.64)

Matrix elements of rotation operator in the simplex-x basis

In order to calculate matrix elements of rotation operator in the simplex-x basis, we invoke

the spectral theorem [RS72]. This theorem grants that, given any n × n symmetric and

Hermitian matrix A, there exists an n × n unitary matrix P , and a diagonal matrix D

such that:

A = PDP−1, (A.65)

where columns of the matrix P = (~p1, ~p2, ..., ~pn) correspond to eigenvectors of the matrix

A, while the diagonal entries of the matrix D equal to the corresponding eigenvalues.
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Furthemore, matrix eA can be expressed as:

eA =
∞∑
m=0

Am

m!
=

∞∑
m=0

PDmP−1

m!
= P

∞∑
m=0

Dm

m!
P−1 = PeDP−1, (A.66)

where the last equality holds because D is diagonal matrix. Finally, if A is a symmetric

matrix, it can be shown that from Eq. (A.66) follows P−1 = P T . Consequently, the

spectral theorem yields an expression:

eA = PeDP T . (A.67)

This expression can be used to calculate matrix elements of the rotation operator e−iβĴx

in the simplex-x basis. We proceed as follows:

1. We calculate matrix elements of the −iβĴx operator in the simplex-x basis, following

the Eqs. (A.62) - (A.64). The obtained matrix corresponds to the matrix A from

spectral theorem.

2. We diagonalize the −iβĴx matrix in order to determine the corresponding eigen-

vector matrix P and the eigenvalue matrix D.

3. We use the fact that the matrix D is diagonal in order to calculate the matrix eD.

4. We use the relation (A.67) to determine the matrix elements of the e−iβĴx operator

in the simplex-x basis.





Appendix B

Calculation of Electric Observables

Solution to the HWG equation provides us with the collective energy spectra and col-

lective wave functions, as previously discussed in Chapter 2. These wave functions are

further used to determine various observables in nuclear collective states that can be

compared to experimental data. In this Appendix, we will overview some of the expres-

sions that are relevant for computation of different electric observables. The appendix

is divided in two parts. In the first part, we will discuss calculation of electric spectro-

scopic quadrupole moments and electric multipole transition strengths, quantities that

have been routinely computed in MR-EDF calculations for decades. The second part

contains an overview of the recently-developed framework for calculation of transition

densities between low-lying collective states. This framework enables us to calculate elas-

tic and inelastic form factors for electron scattering off nuclei, as well as the nuclear

laboratory-frame densities.

B.1. Spectroscopic Moments and Transition Strengths

The electric spectroscopic quadrupole moment of the collective state α with total spin-

parity Jπ can be computed as:

Qspec
2 (Jπα) = e

√
16π

5

(
J 2 J

J 0 −J

)∑
qiqf

fJ ;NZ;π∗
α (qf ) 〈Jqf ||Q̂2||Jqi〉 fJ ;NZ;π

α (qi). (B.1)

Equivalently, the reduced electric transition strength of multipolarity λ between an initial

collective state αi of total spin-parity Jπii and a final collective state αf of total spin-parity

J
πf
f can be computed as:

129
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B(Eλ; Jπiαi → J
πf
αf ) =

e2

2Ji + 1

∣∣∣∑
qiqf

f
Jf ;NZ;πf∗
αf (qf ) 〈Jfqf ||Q̂λ||Jiqi〉 fJi;NZ;πi

αi
(qi)
∣∣∣2. (B.2)

In these expressions, fJ ;NZ;π∗
α (qj) correspond to weight functions [see Eq. (2.39)] obtained

by solving the HWG equation, 〈Jfqf ||Q̂λ||Jiqi〉 is the reduced matrix element of the

electric multipole operator Q̂λµ, and sums run over a set of RHB states that have been

taken into account in the configuration mixing scheme. The spherical coordinate space

representation of the electric multipole operator Q̂λµ reads:

Qλµ(r, θ, φ) = rλ(−1)µ

√
2λ+ 1

4π

(λ− µ)!

(λ+ µ)!
Pλµ(cos θ)eiµφ, (B.3)

where Pλµ(cos θ) denotes associated Legendre polynomials [AS65]. If we assume the

axial symmetry and the simplex-x symmetry of the intrinsic states [Fru07], and if we

further take into account properties of the projection operators discussed in Chapter 2,

the reduced matrix element of electric multipole operator can be written as:

〈Jfqf ||Q̂λ||Jiqi〉 =
(2Ji + 1)(2Jf + 1)

2
(−1)Ji−λ

∫ π

0

dβ sin β
1

N2
ϕ

Nϕ∑
lN=1

Nϕ∑
lZ=1

e−iϕlNN0e−iϕlZZ0

×
λ∑

µ′=−λ

iµ
′
(
Ji λ Jf
−µ′ µ′ 0

)
dJi∗−µ′0(β)Qλµ′(qi, qf , β, ϕnN , ϕnZ ),

(B.4)

where the quantity

Qλµ′(qi, qf , β, ϕnN , ϕnZ ) = 〈Φ(qf )|Q̂λµ′e
−iβĴxeiϕlN N̂eiϕlZ Ẑ |Φ(qi)〉 (B.5)

depends explicitly on the RHB states involved, qi and qf , as well as on the rotational and

gauge angles β, ϕnN , and ϕnZ . Therefore, for the sake of notational compactness, it is

useful to introduce a shorthand notation {x} ≡ {qi, qf , β, ϕnN , ϕnZ}. The upper equation

can then be rewritten as:

Qλµ′({x}) =

∫
drQλµ′(r)ρp(r, {x}), (B.6)

where Qλµ′(r) is defined in Eq. (B.3) and ρp(r, {x}) denotes density of protons in the

coordinate space:
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ρp(r, {x}) =
∑
m

ρmp (r⊥, z, {x})
{

cos(mφ)

sin(mφ)

}
. (B.7)

Here, the upper row corresponds to even values of m, while the lower row corresponds to

odd values of m. Explicitly, we have:

Qλµ′({x}) = (−1)µ
′

√
2λ+ 1

4π

(λ− µ′)!
(λ+ µ′)!

∫ ∞
−∞

dz

∫ ∞
0

dr⊥r⊥

∫ 2π

0

dφ

× (r2
⊥ + z2)

λ
2Pλµ′(

z

r⊥
)eiµ

′φ
∑
m

ρmp (r⊥, z, {x})
{

cos(mφ)

sin(mφ)

}
.

(B.8)

Integral in the φ-direction can be carried out analytically, and we finally obtain:

Qλµ′({x}) = (−1)µ
′

√
2λ+ 1

4π

(λ− µ′)!
(λ+ µ′)!

∑
m

∫ ∞
−∞

dz

∫ ∞
0

dr⊥r⊥

× (r2
⊥ + z2)

λ
2Pλµ′(

z

r⊥
)ρmp (r⊥, z, {x})

{
π(δµ−m + δµm)
π
i
(δµ−m − δµm)

}
.

(B.9)

The remaining spatial integrals in the z− and r⊥− directions are carried out numer-

ically, using the Gauss-Hermite and Gauss-Laguerre integration methods, respectively.

Furthermore, by inspecting how the sum terms in Eq. (B.4) behave under the exchange

µ′ → −µ′, it is possible to demonstrate that terms with the same |µ′| contribute equally

to the total sum. Therefore, the final expression for the reduced matrix elements can be

written in a compact form:

〈Jfqf ||Q̂λ||Jiqi〉 =

MJi,Jf ,λ

(
Ji λ Jf
0 0 0

)∫ π

0

dβ sin βdJi∗00

1

N2
ϕ

Nϕ∑
lN=1

Nϕ∑
lZ=1

e−iϕlNN0e−iϕlZZ0Qλ0({x})

+MJi,Jf ,λ

∑
µ′>0

2iµ
′
(
Ji λ Jf
−µ′ µ′ 0

)∫ π

0

dβ sin βdJi∗−µ′0
1

N2
ϕ

Nϕ∑
lN=1

Nϕ∑
lZ=1

e−iϕlNN0e−iϕlZZ0Qλµ′({x}),

(B.10)

where Qλµ′({x}) is defined in Eq. (B.9) and the angular-momentum-dependent prefactor

MJi,Jf ,λ reads:

MJi,Jf ,λ =
(2Ji + 1)(2Jf + 1)

2
(−1)Ji+λ. (B.11)
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It is worth noting that the reduced matrix element will always be a real quantity, since

the imaginary unit i in odd-µ′ terms of Eq (B.10) and the imaginary unit for odd-µ′ terms

of Eq. (B.9) will systematically cancel out. Finally, we note that discussed quantities

are calculated in full configurational space. Consequently, there is no need to introduce

effective charges and e always denotes the bare value of the proton charge.

B.2. Electron-Nucleus Scattering Form Factors

Electron scattering off nuclei represents a very convenient tool to study density distri-

butions in atomic nuclei [Wal04, Won98, YBH15]. Some of the major advantages of using

electrons as nuclear structure probes include their point-like nature, the fact that they are

easily accelerated in experiments, and an extenuating property that they interact almost

exclusively through the well-known electromagnetic interaction. The evergrowing experi-

mental capabilities will soon make this kind of analysis accessible even for the short-lived

neutron-rich nuclei. Relatively recently, the MR-EDF framework was extended by J. M.

Yao and collaborators by including the calculation of transition densities between the

low-lying collective states and the corresponding form factors [YBH15]. In this section,

we will discuss details of implementing this formalism to our model. Even though the

general framework allows for the additional breaking of axial symmetry, the present study

is restricted to axially-symmetric shapes and we will therefore discuss only the specific

case when axial symmetry of intrinsic states is preserved. We will start by presenting

the formalism for calculation of transition densities and electron scattering form factors.

Then, we will lay out the most important relations for determination of nuclear densities

in the laboratory frame.

Transition Densities and Form Factors

Starting point of the analysis, which is carried out within the plane-wave Born approx-

imation, is the determination of differential cross section for electron scattering from a

spinless nucleus:

dσ

dΩ
=
dσM
dΩ

∑
L≥0

|FL(q)|2, (B.12)

where the Mott cross section dσM
dΩ

describes scattering from a point-like nucleus of charge

Z, while the sum of form factors FL(q) accounts for the actual finite size and internal

structure of a nucleus. The longitudinal Coulomb form factor for angular momentum

transfer L can be calculated as the Fourier-Bessel transform of the reduced transition

density ρ
Jfαf
Jiαi,L

(r) from an initial state αi of total spin-parity Jπii to a final state αf of

total spin-parity J
πf
f [YBH15]:
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FL(q) =

√
4π

Z

∫ ∞
0

drr2ρ
Jfαf
Jiαi,L

(r)jL(qr). (B.13)

where jL(qr) denotes the spherical Bessel function of the first kind and the normalization

coefficient
√

4π
Z

has been introduced so that the elastic form factor equals to unity at

momentum transfer q = 0. The reduced transition density corresponds to the radial part

of the 3D transition density and it can be calculated as [YBH15]:

ρ
Jfαf
Jiαi,L

(r) = (−1)Ji−Jf
2Jf + 1

2Ji + 1

L∑
K=−L

〈Jf0LK|JiK〉

×
∫ 2π

0

dφ

∫ π

0

dθ sin θρ
JfJiK0
αfαi (r, θ, φ)Y ∗LK(θ, φ).

(B.14)

Here, Y ∗LK(θ, φ) denotes spherical harmonics:

Y ∗LK(θ, φ) = (−1)K

√
(2L+ 1)

4π

(L−K)!

(L+K)!
PLK(cos θ)e−iKφ, (B.15)

where PLK(cos θ) corresponds to associated Legendre polynomials [AS65]. Furthermore,

Clebsch-Gordan coefficients can generally be expressed in terms of 3j-symbols:

〈j1m1j2m2|JM〉 = (−1)j1−j2+M
√

2J + 1

(
j1 j2 J

m1 m2 −M

)
. (B.16)

Finally, ρ
JfJiK0
αfαi (r, θ, φ) denotes the pseudo GCM density, a quantity which is not an ob-

servable but it encapsulates all the information related to the solution of HWG equation.

It can be computed using the weight functions of collective states [see Eq. (2.39)]:

ρ
JfJiK0
αfαi (r, θ, φ) =

∑
qf qi

f
Jf ;NZ;πf∗
αf (qf )f

Ji;NZ;πi∗
αi

(qi)ρ
JiK0
qf qi

(r, θ, φ), (B.17)

where the transition density kernel reads [YBH15]:

ρJiK0
qf qi

(r, θ, φ) =
2Ji + 1

2

∫ π

0

dβ sin βdJiK0(β) 〈Φ(qf )|ρ̂(r, θ, φ)e−iβĴy P̂N P̂Z |Φ(qi)〉 . (B.18)

The transition density kernel in our case can be reexpressed as:
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ρJiK0
qf qi

(r, θ, φ) =
2Ji + 1

2

∫ π

0

dβ sin βdJiK0(β)
1

N2
ϕ

Nϕ∑
lN=1

Nϕ∑
lZ=1

e−iϕlNN0e−iϕlZZ0

×
∑
m

ρmp (r, θ, {x})im̃ cos(mφ),

(B.19)

where tilde on index m denotes:

m̃ = m− 1− (−1)m

2
, (B.20)

and it yields coefficient im for even values of m and coefficient im−1 for odd values

of m. Furthermore, ρmp (r, θ, {x}) is the standard mixed density of protons as calcu-

lated in Chapter 2 and Appendix B.1, with the introduced shorthand notation {x} ≡
{qi, qf , β, ϕnN , ϕnZ}. The only notable difference is that, rather than being a function of

cylindrical coordinates (r⊥, z) like before [see Eq. (B.7)], proton density is now a func-

tion of spherical coordinates (r, θ). In order to carry out transformation between the

two coordinate systems, the original implementation of the framework first calculates the

transition density kernel on an equidistant Cartesian mesh and then interpolates it to the

mesh points in spherical coordinates by using the Lagrange-mesh interpolation [YBH15].

However, since densities within our model are first obtained in the configurational space

of harmonic oscillator, calculation of the corresponding density in spherical coordinates is

straightforward and there is no need to employ any interpolation procedures. The pseudo

GCM density can then compactly be written down as:

ρ
JfJiK0
αfαi (r, θ, φ) =

∑
m

[
ρ
JfJiK0
αfαi (r, θ)

]m
im̃ cos(mφ), (B.21)

with:

[
ρ
JfJiK0
αfαi (r, θ)

]m
=
∑
qf qi

f
Jf ;NZ;πf∗
αf (qf )f

Ji;NZ;πi∗
αi

(qi)

× 2Ji + 1

2

∫ π

0

dβ sin βdJiK0(β)
1

N2
ϕ

Nϕ∑
lN=1

Nϕ∑
lZ=1

e−iϕlNN0e−iϕlZZ0ρmp (r, θ, {x}).

(B.22)

Now, combining Eqs. (B.14) - (B.16) with the Eq. (B.21), the reduced transition density

becomes:
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ρ
Jfαf
Jiαi,L

(r) = (−1)Ji−L
2Jf + 1√
2Ji + 1

L∑
K=−L

(
Jf L Ji
0 K −K

)√
(2L+ 1)

4π

(L−K)!

(L+K)!

×
∫ 2π

0

dφ

∫ π

0

dθ sin θ
∑
m

[
ρ
JfJiK0
αfαi (r, θ)

]m
im̃ cos(mφ)PLK(cos θ)e−iKφ.

(B.23)

In the upper equation, integral in the φ-direction can be carried out analytically. This

will limit the sum over index m to m = ±K values only. Additionally, by inspecting how

each factor in the sum over K behaves under the exchange K → −K, one can verify

that terms with the same |K| contribute equally to the total sum. Therefore, the final

expression for the reduced transition density reads:

ρ
Jfαf
Jiαi,L

(r) = (−1)Ji−L
2Jf + 1√
2Ji + 1

L∑
K=0

4π

1 + δK0

(
Jf L Ji
0 K −K

)√
(2L+ 1)

4π

(L−K)!

(L+K)!

× iK̃
∫ π

0

dθ sin θPLK(cos θ)
[
ρ
JfJiK0
αfαi (r, θ)

]K
,

(B.24)

with tilde transformation of summation index defined in Eq. (B.20). Plugging this

expression back to the relation for form factors (B.13) enables us to calculate both elastic

and inelastic form factors for electron scattering off nuclei. Nevertheless, a correction for

the spurious center-of-mass motion related to the breaking of of translational invariance

should additionally be introduced. In the present work, this is achieved by folding the

calculated form factor with the simple correction obtained in the harmonic oscillator

approximation [YBH15]:

Fc.m.(q) = eq
2b2/(4A), (B.25)

where b =
√

~/mω0 is the oscillator length parameter, m is the nucleon bare mass

and frequency ω0 is determined from ~ω0 = 41A−1/3 MeV. Finally, let us mention that

the multipole transition matrix elements can be calculated directly from the reduced

transition density:

M
Jfαf
Jiαi,L

=

∫ ∞
0

drrL+2ρ
Jfαf
Jiαi,L

(r). (B.26)

The reduced electric transition strength then simply reads:

B(EL; Jπiαi → J
πf
αf ) = |MJfαf

Jiαi,L
|2. (B.27)
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Comparing electric transition strengths obtained in two different manners, that is with Eq.

(B.2) and Eq. (B.27), provides a useful cross-check for the consistency of our calculation.

Laboratory Frame Densities

The laboratory frame density of the collective state α with spin-parity Jπ reads [YBH15]:

ρJπα (r, θ, φ) =
∑
λ

Yλ0(θ, φ) 〈J0λ0|J0〉
λ∑

K=−λ

〈J0λK|JK〉

×
∫ 2π

0

dφ′
∫ π

0

dθ′ sin θ′ρJJK0
αα (r, θ′, φ′)Y ∗λK(θ′, φ′).

(B.28)

Using relations (B.15), (B.16), and (B.21), the laboratory density can be rewritten as:

ρJπα (r, θ, φ) = (2J + 1)
∑
λ

(2λ+ 1)

4π
Pλ0(cos θ)

(
J λ J

0 0 0

)

×
∑
m

im̃
λ∑

K=−λ

(
J λ J

0 K −K

)√
(λ−K)!

(λ+K)!

×
∫ 2π

0

dφ′
∫ π

0

dθ′ sin θ′
[
ρJJK0
αα (r, θ′)

]m
PλK(cos θ′) cos(mφ′)e−iKφ

′
.

(B.29)

Playing the same game as before, that is, carrying out analytically integral in the φ′-

direction and making use of the symmetry property of the sum over index K, the final

expression for the laboratory density reads:

ρJπα (r, θ, φ) = (2J + 1)
∑
λ

(2λ+ 1)

4π
Pλ0(cos θ)

(
J λ J

0 0 0

)

×
λ∑

K=0

iK̃
4π

1 + δK0

(
J λ J

0 K −K

)√
(λ−K)!

(λ+K)!

×
∫ π

0

dθ′ sin θ′PλK(cos θ′)
[
ρJJK0
αα (r, θ′)

]K
.

(B.30)

with tilde transformation of summation index defined in Eq. (B.20).







Appendix C

Résumé en Français

C.1. Introduction

L’agrégation est un phénomène courant se manifestant à différentes échelles, du monde

quantique (molécules, atomes, noyaux) jusqu’aux objets astrophysiques (étoiles, galax-

ies). En particulier, l’agrégation dans les noyaux atomiques peut être considérée comme

un phénomène de transition entre les états dits de liquide quantique (phase de nucléons

délocalisés) et de cristal nucléaire. Les signatures de ce phénomène incluent l’émergence

de déformations exotiques (formes triangulaires et tétrahédriques, châınes linéaires,...)

dans les noyaux N = Z [FHKE+18], la formation de structures moléculaires dans les iso-

topes riches en neutrons (la distribution de nucléons selon plusieurs agrégats s’en retrouve

stabilisée par des liaisons covalentes assurées par les neutrons de valence), de même que la

radioactivité cluster [RJ84, WR11]. Parmi les différentes théories microscopiques permet-

tant d’étudier l’agrégation nucléaire [KEKO12, NF04, THSR01, FHKE+18], les approches

de type fonctionnelle de la densité pour l’énergie (EDF) en fournissent la description la

plus satisfaisante. En effet, les approches EDF ne présupposent aucune structure localisée.

De même, leur ingrédient fondamental - l’interaction inter-nucléonique effective - est fixée

une fois pour toute au moment de l’ajustement des paramètres du modèle (sur des noy-

aux lourds en général): aucun réajustement ad hoc n’est réalisé lors de l’application de

la méthode EDF aux noyaux légers sujets au phénomène d’agrégation. D’autre part, de

récentes études ont souligné l’émergence naturelle de structures localisées lorsque les noy-

aux sont traités comme des systèmes relativistes dans le cadre des approches relativistes,

favorisant ainsi la formation d’agrégats [EKNV12].

Dans cette thèse, nous avons déployé l’approche EDF à son état de l’art pour l’étude

de la structure nucléaire. Des calculs Hartree-Bogoliubov relativistes (RHB) contraints

à des déformations axiales de modes quadripolaire (Q20) et octupolaire (Q30) fournissent

dans un premier temps les ingrédients fondamentaux de l’approche, c’est-à-dire les états

RHB minimisant l’énergie du système contraint aux coordonnées collectives (Q20,Q30).
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Dans une deuxième étape, ces derniers sont projetés sur de bonnes valeurs de mo-

ment angulaire, de parité et de nombre de particules afin de collecter des corrélations

nucléoniques supplémentaires provenant des fluctuations quantiques importante de la

phase des paramètres d’ordre associés à la brisure de la symétrie sphérique et de la con-

servation du nombre de nucléons. Enfin ces états projetés sont mélangés à l’aide de

la méthode de la coordonnée génératrice (GCM) afin de tenir compte des corrélations

nucléoniques associées aux oscillations du champ moyen. Cette dernière approche permet

de calculer, de manière cohérente et indépendante de tout paramètre libre, des spec-

tres d’excitations collectives ainsi que les taux de transitions électromagnétiques corre-

spondants sur l’ensemble de la carte des nucléides. La section C.2 introduit ces outils

théoriques de façon plus détaillée. Ceux-ci ont ensuite été utilisés dans le but d’étudier

l’agrégation nucléaire dans les noyaux légers. Plus précisément, dans la section C.3, nous

présentons les résultats principaux de l’étude de la collectivité quadrupolaire-octupolaire

et des structures des agrégats dans les isotopes du néon. Dans la section C.4, les résultats

principaux de l’étude des structures des agrégats dans l’isotope 12C sont présentés. Enfin,

un court résumé de ce travail de thèse et des perspectives associées sont donnés dans la

section C.5.

C.2. La Fonctionnelle de la Densité pour l’Énergie

L’approche EDF [BHR03, NVR11, RRR18] fournit actuellement la description la plus

complète et la plus précise des états fondamentaux et excités des noyaux atomiques sur

l’ensemble de la carte des nucléides. Parmi les approches microscopiques traitant le

problème à N corps nucléaire, elle offre un compromis optimal entre la précision glob-

ale et la faisabilité du calcul numérique. L’approche EDF peut être scindée en deux

niveaux d’implémentation. La réalisation single-reference EDF (SR-EDF), parfois ap-

pelée champ moyen auto-cohérent (SCMF), représente le noyau à l’aide d’un état produit

de (quasi-) nucléons. Les fonctionnelles modernes sont typiquement caractérisées par en-

viron dix à douze paramètres libres, ajustés à l’équation d’état de la matière nucléaire

et aux propriétés des noyaux finis. Les corrélations d’appariement, qui jouent un rôle

important dans les noyaux à couches ouvertes, peuvent également être prises en compte

soit à travers l’approximation Bardeen-Cooper-Schrieffer (BCS), soit dans le cadre de

la théorie Hartree-Fock-Bogoliubov (HFB). L’approche SR-EDF peut ensuite être ap-

pliquée à l’étude des propriétés de l’état fondamental des noyaux atomiques, telles les

énergies de liaison, les rayons de charge et les formes à l’équilibre. Toutefois, dans

l’optique d’obtenir les propriétés spectroscopiques des systèmes nucléaires, il est nécessaire

d’étendre l’approche de champ moyen en tenant compte des corrélations collectives qui

sont induites par des restaurations de symétries et des oscillations du champ moyen.

C’est ce que réalise le second niveau d’implémentation des approches EDF, appelé multi-

reference EDF (MR-EDF) ou encore méthode au-delà du champ moyen (BMF).

Dans ce travail, les calculs RHB sont réalisés en utilisant la fonctionnelle covariante

DD-PC1 [NVR11] dans le canal particule-trou et une force d’appariement séparable

[Dug04, TMR09a] dans le canal particule-particule. Les équations correspondantes sont
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résolues numériquement en développant les spineurs nucléaires dans une base d’oscillateur

harmonique à symétrie axiale. Les noyaux considérés peuvent donc adopter une forme

prolate (forme d’un cigare) et oblate (forme d’une soucoupe volante), de même que la

forme octupolaire (forme d’une poire) qui n’est pas invariante sous la transformation de

parité. Ce type d’analyse donne accès à toutes les configurations possibles repérées par les

coordonnées collectives (Q20,Q30). Dans l’étape suivante, nous restaurons les symétries les

plus pertinentes qui sont brisées au niveau du champ moyen. En particulier, la symétrie

rotationnelle, la symétrie du nombre de particule et la symétrie de parité sont toutes

simultanément restaurées. De plus, une simple correction du centre de masse qui prend

en compte les violations de la symétrie de translation est inclue dans le modèle [BHR03].

Les états de symétries restaurées sont ensuite utilisés comme une base pour l’étape de

mélange de configurations, introduite dans le formalisme de la GCM par Hill, Wheeler

et Griffin [HW53, GW57, RS80]. Résoudre l’équation de Hill-Wheeler-Griffin correspon-

dante aboutit aux spectres d’excitation et aux fonctions d’onde collectives qui peuvent

être utilisées pour calculer différentes observables, telles que les moments quadripolaires

spectroscopiques et les taux de transition électromagnétiques multipolaires. Ces quan-

tités peuvent ensuite servir à tester la performance de notre modèle par comparaison avec

l’expérience, de même qu’avec les prédictions d’autres modèles théoriques. De plus, nous

avons implémenté dans notre modèle les ingrédients nécessaires aux études de diffusions

élastique et inélastique d’électrons par des noyaux [YBH15]. A partir des fonctions d’onde

collectives des états nucléaires étiquetés par de bons nombres quantiques, nous sommes

donc capables de calculer des densités dans le référentiel du laboratoire et des densités

de transition entre les états de basse énergie, de même que les facteurs de forme de dif-

fusions élastique et inélastique. Pour première application, ce modèle à l’état de l’art a

été employé dans une étude microscopique du phénomène d’agrégation dans les noyaux

atomiques légers. En particulier, les structures des agrégats dans les isotopes du néon et

dans l’isotope 12C ont été étudiées.

C.3. Structures en Agrégats dans les Isotopes de Néon

La châıne isotopique du néon, avec la formation et la dissolution des structures en

agrégats de basse énergie, l’émergence de coexistences de formes, l’érosion et l’ouverture

de nombres magiques, constituent un champ d’application particulièrement riche d’un

point de vue théorique [RGER03, Kim04, ZRX+12, ZYL+16]. Dans cette thèse, nous

avons étudié la collectivité quadripolaire-octupolaire et les structures en agrégats dans

huit isotopes pair-pair du néon [MEK+18a]. Entre 111 et 118 états RHB présentant

une symétrie axiale et une asymétrie miroir ont été tout d’abord projetés sur de bonnes

valeurs de moments angulaires, de nombre de particules et de parité, puis mélangés dans

le cadre de la réalisation MR-EDF. Cette implémentation permet un calcul cohérent et

indépendant de tout paramètre libre des spectres d’excitation et des taux de transitions

électriques, à la fois pour la bande associée à l’état fondamental et celle associée aux états

excités Kπ = 0±. Les résultats obtenus ont été comparés aux données expérimentales ex-

istantes ainsi qu’aux prédictions d’autres modèles théoriques.
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Les observables dans l’état fondamental de ces isotopes (typiquemnent l’énergie de liai-

son et le rayon de charge) sont déjà reproduites de manière satisfaisante à l’étape SR-EDF.

En incluant des corrélations collectives liées aux restaurations de symétries brisées et aux

oscillations du champ moyen, nous avons démontré la stabilité des isotopes considérés par

rapport aux émissions de neutrons et abouti sur une structure complexe pour les divers

états de ces isotopes. En particulier, il a été montré que le degré de liberté octupolaire

joue un rôle pertinent : tous les isotopes étudiés adoptent une configuration octupolaire

dans leur état corrélé de plus basse énergie. Par ailleurs, un mélange conséquent de

configurations oblates (> 20% pour les fonctions d’onde collectives correspondantes) a

été trouvé dans l’ensemble de la châıne isotopique. De manière plus notable, il s’avère

que le champ moyen et les surfaces d’énergie de l’état fondamental de l’isotope 24Ne

résultants de projections au niveau MR-EDF possèdent des minima coexistants associés

à des déformations prolate et oblate, alors que, d’après l’étude réalisée, 40% de la fonction

d’onde correspondante est répartie du côté oblate du plan β2 − β3.

Les valeurs calculées des énergies des états 2+
1 et 4+

1 , de même que les taux de transition

B(E2; 2+
1 → 0+

1 ), sont raisonnablement en accord avec les données associées à l’ensemble

de la châıne isotopique. Cet accord est particulièrement bon pour les isotopes les plus

légers, 20,22,24Ne, alors que la sphéricité obtenue pour l’isotope 30Ne ne concorde pas avec

les récentes données expérimentales. Cela provient du fait que les interactions effectives

globales ne peuvent pas toujours tenir compte des propriétés particulières déterminées

par l’évolution de couches dans chaque région de masse. Dans ce cas, la disparition de

la fermeture de couches à N = 20 dans les noyaux très riches en neutrons n’est simple-

ment pas reproduite par la fonctionnelle DD-PC1. Toutefois, il a été montré qu’un ajout

supplémentaire de neutrons mène à un développement d’une forte déformation prolate

dans l’isotope du néon le plus riche en neutrons, le 34Ne. Ce noyau manifeste une bande

associée à l’état fondamental particulièrement compressée comparé à d’autres isotopes,

avec les énergies d’excitation des états 2+
1 et 4+

1 les plus basses sur l’ensemble de la châıne

isotopique. De plus, nous avons montré que les signatures de la coexistence de formes de

l’état fondamental survit dans les états excités de l’isotope 24Ne. En particulier, ses états

6+
1 contiennent toujours une contribution de presque 40% de la configuration prolate,

alors que les états 0+
2 et 2+

2 dans cet isotope ont été obtenus à des énergies bien plus

basses que les états correspondants dans l’isotope 22Ne.

Finalement, nous avons prêté spécialement attention au cas de l’isotope auto-conjugué
20Ne. Les propriétés spectroscopiques obtenues ont été minutieusement comparées aux

données expérimentales, de même que les prédictions de deux autres modèles. En par-

ticulier, il a été montré que notre calcul possède un niveau de précision comparable à

ceux réalisés avec d’autres modèles plus spécifiques, tels que la dynamique moléculaire

antisymétrisée. Nous avons prouvé que l’état fondamental de l’isotope 20Ne manifeste

une structure 16O+α de façon prédominante, alors qu’environ 25% de sa fonction d’onde

collective correspond à une structure 2α+12C de déformation oblate. L’augmentation du

moment angulaire mène à la prédominance de forme prolate et une dissolution progressive

de la structure 16O+α. Dans la bande de parité négative, cette dissolution se produit à

un taux bien plus lent que celui trouvé dans les études précédentes, alors que cela mène

dans la bande de parité positive à un développement de la structure α−12C−α dans l’état

Jπ = 6+.
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C.4. Structures en Agrégats dans le 12C

L’isotope 12C fait sans doute partie des noyaux les plus étudiés, avec une structure

3α linéaire, triangulaire, axiale, oblate et une configuration en bras pliés, chacunes de

ses dernières propriétés ayant été prédites comme étant des structures de basses énergies

[KE07, NF04, CFN+07, THSR01, Fun15, FSF+13]. En plus des riches variétés des struc-

ture en agrégats qu’il manifeste, cet isotope est particulièrement pertinent pour son rôle

crucial dans l’apparition et la conservation de la vie organique sur Terre. Dans cette thèse,

nous avons réalisé l’étude theorique de la spectroscopie de basse énergie et des structures

en agrégats dans l’isotope 12C [MEK+18b]. Des états RHB possédant une symétrie axiale

et une asymétrie miroir ont été tout d’abord projetés sur de bonnes valeurs de moments

angulaires, de nombre de particules et de parité, puis mélangés dans le cadre du proces-

sus MR-EDF. En débutant par une interaction effective qui a été ajustée à des données

provenant de noyaux lourds et un formalisme qui ne présuppose pas de structure en

agrégats, la méthode utilisée a permis de calculer, de façon cohérente et indépendante

de tout paramètre libre, des spectres d’excitation collectives et de taux de transitions

électriques dans les isotopes 12C très légers.

En particulier, nous nous sommes concentrés sur la structure des trois bandes Kπ = 0+

les plus basses en énergie. Globalement, les propriétés empiriques de la bande associée

à l’état fondamental ont été reproduites de façon précise. Les états collectifs 2+
1 et 4+

1

ont été obtenus à des énergies qui sont, seulement de manière anecdotique, plus basses

que les valeurs expérimentales, et les rapports E(4+
1 )/E(2+

1 ) correspondants indiquent

fortement le caractère rotationnel de la bande yrast. De plus, les taux de transition

E2 calculés à partir de l’état 2+
1 jusqu’à l’état fondamental se situent dans les barres

d’erreur expérimentales, alors que les moments quadrupolaires spectroscopiques positifs

confirment la déformation oblate de la bande Kπ = 0+
1 . Le présent modèle n’inclut pas

de formes triaxiales et il ne reproduit donc pas le taux de transition B(E2; 2+
2 → 0+

2 )

dans la bande de Hoyle, comme calculé dans le cadre des modèles théoriques AMD et

THSR. Néanmoins, l’état 0+
2 obtenu est localisé à moins de 1 MeV au-dessus de sa po-

sition mesurée, et le taux de transition B(E2; 2+
1 → 0+

2 ) calculé est en bon accord avec

l’expérience. Par ailleurs, il a été montré que la bande excitée construite à partir de

l’état 0+
3 possède un fort caractère rotationnel avec des moments quadrupolaires spectro-

scopiques et des taux de transitions E2 intrabandes assez élevés. Dans le référentiel in-

trinsèque, cette bande manifeste une structure de châıne linéaire prononcée qui correspond

à la configuration 8Be+α. Finalement, les facteurs de forme élastiques et inélastiques sont

en bon accord avec les données expérimentales sur un intervalle de transferts de moments

assez large. Concernant cet aspect en particulier, le présent modèle global manifeste un

pouvoir prédictif qui peut concurrencer les modèles les plus performants et plus spécifiques

pour l’étude des agrégats.
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C.5. Conclusion

Dans cette thèse, nous avons déployé l’approche EDF relativiste à son état de l’art,

avec restauration des symétries brisées à l’étape SR-EDF et mélange des états projetés

selon la technique GCM, pour étudier le phénomène d’agrégation nucléaire. Cette ap-

proche permet un calcul cohérent et indépendant de tout paramètre libre, des spectres

d’excitations collectives et des propriétés électromagnétiques des noyaux atomiques sur

l’ensemble de la carte des nucléides. Nous avons appliqué notre modèle à l’étude du

phénomène d’agrégation dans les isotopes du néon et dans l’isotope 12C. Les résultats

obtenus montrent un très bon accord avec les données expérimentales existantes et le

niveau de précision atteint est comparable à celui obtenu en utilisant des modèles plus

spécifiques à l’étude des agrégats. Cela montre que les approches de type EDF, dans

leur implémentation au-delà du champ moyen, sont capables de décrire de façon unifiée

les aspects liés au caractère de liquide quantique et au phénomène d’agrégation dans les

noyaux atomiques. Les pistes envisagées pour améliorer notre approche incluent la prise

en compte simultanée du degré de liberté triaxial, l’utilisation de mesures de localisation

plus rigoureuses, de même que l’extraction des propriétés de particules individuelles à

partir d’états collectifs corrélés [RPN16].
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tionnelles de la densité relativistes
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Résumé : Dans cette thèse, nous développons un
modèle collectif de la structure du noyau préservant
les symétries, basé sur la théorie des fonctionnelles
de la densité relativistes. Les états de référence à
déformation quadrupole/octupole et à symétrie axiale
sont générés en résolvant les équations de Hartree-
Bogoliubov relativistes. Nous employons la fonction-
nelle avec couplage ponctuel covariant DD-PC1 dans
le canal particule-trou de l’interaction effective, tandis
que la force d’appariement non-relativiste séparable
dans l’espace des impulsions est utilisée dans le ca-
nal particule-particule. Les corrélations collectives re-
latives à la restauration des symétries brisées sont
prises en compte en projetant les états de référence
à la fois sur les bonnes valeurs du moment angulaire,
de la parité et du nombre de particules. L’étape sui-
vante consiste à combiner les états à symétries res-
taurées à l’aide du formalisme de la méthode de la
coordonnée génératrice. Ceci nous permet d’obtenir
des prédictions spectroscopiques détaillées, incluant
les énergies d’excitation, les moments multipolaires
électromagnétiques et les taux de transition, ainsi que
les facteurs de forme élastique et inélastique.

La méthode décrite est globale et peut être employée
pour l’étude de la structure de nucléides très divers.
Comme première application de ce modèle, nous
étudierons la formation de clusters dans les noyaux
légers. Le clustering nucléaire peut être considéré
comme étant un phénomène de transition entre les
phases liquide quantique et solide des noyaux finis.
En contraste avec l’image conventionnelle du liquide
quantique homogène, la localisation spatiale des par-
ticules α donne une image du noyau atomique simi-
laire à une molécule. Nous réalisons en particulier
une analyse complète de la collectivité quadrupole-
octupole et des structures de cluster dans les isotopes
du néon. Une attention particulière est accordée au
cas de l’isotope 20Ne, dans lequel il semble que les
structures de cluster apparaissent dès l’état fonda-
mental. Nous étudions également la structure à basse
énergie de l’isotope 12C. Nous concentrons notre ana-
lyse sur la structure en bandes construite à par-
tir d’états 0+ qui manifestent une grande variété de
formes, notamment les configurations triangulaires de
la bande de Hoyle ainsi que des chaı̂nes linéaires 3α
dans des états de plus haute énergie.
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Abstract : In this thesis we develop a symmetry-
conserving collective model for nuclear structure stu-
dies based on the relativistic energy density func-
tional framework. Axially-symmetric quadrupole- and
octupole-deformed reference states are generated by
solving the relativistic Hartree-Bogoliubov equations.
In the particle-hole channel of the effective interac-
tion we employ the covariant point-coupling DD-PC1
functional, while the non-relativistic pairing force se-
parable in momentum space is used in the particle-
particle channel. Collective correlations related to res-
toration of broken symmetries are accounted for by
simultaneously projecting reference states on good
values of angular momenta, parity, and particle num-
bers. In the next step, symmetry-restored states are
mixed within the generator coordinate method forma-
lism. This enables us to obtain detailed spectroscopic
predictions, including excitation energies, electroma-
gnetic multipole moments and transition rates, as well
as both the elastic and inelastic form factors.

The described framework is global and it can be em-
ployed in various nuclear structure studies across the
entire nuclide chart. As a first application, we will study
formation of clusters in light nuclei. Nuclear clustering
is considered to be a transitional phenomenon bet-
ween quantum-liquid and solid phases in nuclei. In
contrast to the conventional homogeneous quantum-
liquid picture, spatial localization of α− particles gives
rise to a molecule-like picture of atomic nuclei.
In particular, we carry out a comprehensive analysis
of quadrupole-octupole collectivity and cluster struc-
tures in neon isotopes. A special attention is paid to
the case of self-conjugate 20Ne isotope, where cluster
structures are thought to form already in the ground
state. Finally, we study the low-lying structure of 12C
isotope. We focus on the structure of bands built on
0+ states that are known to manifest a rich variety of
shapes, including the triangular configurations of the
Hoyle band and 3α linear chains in higher states.
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