
HAL Id: tel-01916214
https://theses.hal.science/tel-01916214v1

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards reliable implementation of digital filters
Anastasia Volkova

To cite this version:
Anastasia Volkova. Towards reliable implementation of digital filters. Computer Arithmetic. Univer-
sité Pierre et Marie Curie - Paris VI, 2017. English. �NNT : 2017PA066579�. �tel-01916214�

https://theses.hal.science/tel-01916214v1
https://hal.archives-ouvertes.fr

École doctorale Informatique, Télécommunications et Électronique (Paris)

THÈSE
pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité Informatique

Présentée par

Anastasia VOLKOVA

Towards reliable implementation
of digital filters

Directeur de thèse: Jean-Claude BAJARD

Encadrants de thèse: Thibault HILAIRE et Christoph LAUTER

Après avis de: Martine CEBERIO

David DEFOUR

Olivier SENTIEYS

Soutenue publiquement le 25 Septembre 2017 devant le jury composé de :

M. Jean-Claude BAJARD Membre

Mme. Martine CEBERIO Membre/Rapporteur

M. David DEFOUR Membre/Rapporteur

M. Thibault HILAIRE Membre

M. Lionel LACASSAGNE Membre

M. Christoph LAUTER Membre

M. Jean-Michel MULLER Membre

M. Olivier SENTIEYS Membre/Rapporteur

Table of Contents

Page

Introduction 1

I Technical Pre-requisites 9

1 Digital filters 11

1.1 Discrete-time signals . 11

1.2 Discrete-time systems . 12

1.3 Z -transform . 14

1.4 Design of IIR filters . 16

1.5 Filter Structures . 19

1.6 Conclusion . 24

2 Computer Arithmetic 25

2.1 Fixed-Point Arithmetic . 27

2.2 Floating-Point Arithmetic . 31

2.3 Finite Precision Effects for IIR filters . 36

2.4 Conclusion . 41

3 Towards reliable implementation of Digital Filters 43

3.1 Automatic Filter Code Generator . 43

3.2 Specialized Implicit Form . 45

3.3 Conclusion . 48

iii

TABLE OF CONTENTS

II Improvements to the Specialized Implicit Form 49

4 Specialized Implicit Form for Lattice Wave Digital Filters 51

4.1 Lattice Wave Digital Filters . 51

4.2 A LWDF-to-SIF conversion algorithm . 54

4.3 Conversion example . 62

4.4 Conclusion . 63

5 General algorithms for conversion 65

5.1 Conversion of data-flow graphs to SIF . 65

5.2 Conversion of arbitrary structures to transfer functions 69

5.3 Numerical examples . 76

5.4 Conclusion . 77

III Reliable Fixed-Point Implementation of Digital Filters 79

6 Reliable evaluation of the dynamic range of an exact filter 81

6.1 State of the Art . 82

6.2 Algorithm for Worst-Case Peak Gain evaluation 86

6.3 Truncation order and truncation error . 89

6.4 Summation . 92

6.5 Basic bricks . 99

6.6 Numerical examples . 100

6.7 Extending the WCPG theorem to the range of the state variables 102

6.8 WCPG for interval systems . 102

6.9 Conclusion . 104

7 Determining Reliable Fixed-Point Formats 107

7.1 Determining the Fixed-Point Formats . 107

7.2 Taking rounding errors into account . 110

7.3 Error analysis of the MSB computation formula 112

7.4 Complete algorithm . 115

7.5 Numerical results . 116

7.6 Application to the Specialized Implicit Form . 118

7.7 Conclusion . 120

7.8 Ongoing work: Off-by-One Problem . 121

7.9 Ongoing work: Taking into account the spectrum of the input signal 125

iv

TABLE OF CONTENTS

8 Rigorous verification of implemented filter against its frequency specification 129

8.1 Problem statement . 130

8.2 Verifying bounds on a transfer function . 131

8.3 Verifying bounds for any LTI realization . 135

8.4 Numerical examples . 139

8.5 Conclusion . 141

IV Hardware Code Generation 143

9 LTI filters computed just right on FPGA. Implementation of Direct Form I 145

9.1 Introduction . 146

9.2 Error analysis of direct-form LTI filter implementations. 148

9.3 Sum of products computing just right . 151

9.4 Implementation results . 152

9.5 Conclusion . 153

Conclusion and Perspectives 155

A Appendix 163

1 Lattice Wave Digital Filter basic brick data-flows 163

2 Coefficients for the examples . 164

3 Off-by-One problem . 168

Bibliography 171

v

NOTATION

Acronyms

SIF Specialized Implicit Form

LTI Linear Time-Invariant

IIR Infinite Impulse Response

FIR Finite Impulse Response

SISO SIngle Input Single Output

MIMO Multiple Input Multiple Output

LWDF Lattice Wave Digital Filter

FP Floating-Point

FxP Fixed-Point

SOPC Sum-of-Products by Constants

Conventions

Scalars / vectors / matrices: apart from exceptions, throughout this document scalar quan-

tities are in lowercase (e.g. x), vectors are in lowercase boldface (e.g. x), matrices are in

uppercase boldface (e.g. X).

Exception: we denote an impulse response matrix of a MIMO filter as h(k).

Absolute Values and Inequalities: apart from exceptions, all matrix absolute values and

inequalities are applied element-by-element. For example, |A| ≤ |B| denotes
∣∣A i j

∣∣≤
∣∣Bi j

∣∣, ∀i, j.

In addition, A < ε denotes A i j < ε, ∀i, j. Norms, such as Frobenius norm, notated ‖A‖F , stay

of course norms on matrices and are not to be understood element-by-element.

Zero and Identity matrices: 0 denotes a matrix of zeros, the size of which is usually deduced

from the context; In denotes an identity matrix of size n×n.

Intervals: a real interval [x] is defined with its lower and upper bounds [x] := [x, x]. An interval

matrix is denoted by [M] := [M, M], where each element [M i j] is an interval [M i j]= [M i j, M i j].

vii

INTRODUCTION

I
f you have ever watched television, taken a plane or listened to an MP3 then you have

taken advantage of digital signal processing. You might have noticed that sometimes a

small interference in a TV signal occurs, or that the voice of your interlocutor is distorted

over the phone. This may mean that something went wrong in the way the data was processed

in the device. Usually you do not even mind those occasional failures. However, when you are in

an airplane you do mind if any failure happens in a critical system and the airplane explodes.

When people launch a satellite into orbit, they try to be sure that all the signals are correctly

processed and no failure ever happens, in the end you cannot just come and fix it!

In this thesis we consider signal processing and control algorithms for applications where

guarantee and reliability are cornerstones.

The advancement of digital computers during the 1960s paved the way for many electronic

devices to be emulated with digital computers where all information is usually stored in binary

format, i.e. as a sequence of ones and zeros. For example, music used to be recorded and

distributed in analog form such as magnetic tapes until the 1980s, when CD players have made

digital recording of music common.

There are two very important advantages to digital signals. First, they can be reproduced

exactly, all you have to do is to make sure to thoroughly copy the sequence of ones and zeros.

Second, digital signals can be manipulated easily: once we got a discrete-time representation of

a real-world signal, we are left with a sequence of numbers, e.g. temperature and audio signals

both boil down to just sequences.

So what can we do with signals? We can filter out unwanted parts, combine several signals

into one, enhance certain parts and discard others, etc. A transformation of a digital signal in

order to amplify or attenuate some of its properties is called a Digital Filter. Any given digital filter

may be computed with numerous different algorithms that compute the desired output in different

ways. Some of the algorithms are faster and expensive, others are slower but cheaper, etc. The

process of translating an algorithm into a computer program or a circuit is called implementation.

In this thesis we will address the question of implementation of digital filter algorithms.

1

INTRODUCTION

However, the advantages of digitalization come at a price. In digital computers values are

required to have a finite number of digits in their representation, i.e. finite precision. During

manipulations with the values in finite precision some errors often occur. Suppose all numbers

that you can represent on a computer must fit into two decimal digits and you need to square

1.7. You know that 1.72 = 2.89 but all that you can represent is two digits. The two-digit result

that you return (2.8 or 2.9) will depend on the computer arithmetic that you use but anyway, an

error between the exact and computed values inevitably occurs. This error inherently depends

on the order in which computations are done. Usually, the more precision you use for your

computations, the smaller the error becomes.

Thus, when we evaluate a Digital Filter with some algorithm, varying the parameters of

the arithmetic and the quantity of resources (for instance precision) yields different results, i.e.

different error. The race towards smaller, faster and more energy-efficient signal processing

devices dictates very strict requirements for the digital filters. For implementations dedicated to

embedded systems, precision is almost in direct opposition to these requirements: for example,

the more digits we need to operate with, the slower the algorithm works. The goal is to find

the maximum acceptable degradation of precision. For reliable implementations, the task is

even more complicated: the error due to the finite-precision implementation must be rigorously

accounted for and the implemented algorithm must always produce an output which is within

this error margin from the ideal result.

For a given algorithm there exist many possible implementation settings that can be changed.

The fact that each Digital Filter may be implemented with different algorithms significantly

enlarges the design space. Very quickly the implementation process becomes time-consuming.

And in order to produce a reliable implementation designers must analyze the effects of the

arithmetic and precision choices for each algorithm. Doing this manually is not always feasible

and requires a deep expertise. Thus, we come to the goal of our work.

In this thesis we work on the numerically reliable and automated implementation of digital filters.

Our focus is mainly on the automatic and rigorous analysis of finite-precision effects on an

arbitrary filter algorithm from the computer arithmetic point of view. In this work you will see how

to reliably determine the worst possible error induced by a finite-precision implementation. We

will also show how to determine the trade-off between the precision and the output error which

will help us choose the best (in certain sense) implementation. Our approach will be applicable

to any possible algorithm in the broad class of Linear Time Invariant filters.

To achieve our goals, we will intertwine techniques from both digital signal processing and

computer arithmetic domains.

2

INTRODUCTION

Filter
Specifications

Constraints

Algorithm
choice

Finite
precision
settings

HW/SW
code

generation

Code

Figure Y: Iterative nature of the filter implementation flow

Implementation of digital filters

A digital filter should be seen as a set of specifications that describe the desired behavior. Usually,

digital filters are designed with respect to some frequency specifications, for example audio

filters that filter out high and suppress low frequencies. Mathematically, these specifications can

be described with the help of a rational function, called transfer function.

A filter algorithm should be seen as a set of instructions the digital filter can be evaluated

with. For every digital filter there exist numerous different evaluation algorithms; we will call them

structures. Thus we come to the following: a digital filter is a set of requirements of what should

be done, and an algorithm shows how it is done.

Under the implementation of a linear digital filter we understand a transformation that goes

from the transfer function (or just requirements on its behavior), via a filter algorithm to the

software or hardware code.

Every implementation is based on a choice of the filter structure. All structures are based on

elementary arithmetic operations, additions and multiplications by constants. These constants,

called coefficients, are the parameters of the structure: changing the coefficients changes the

filter that is evaluated with the structure. Thus, given a structure, the designer must determine

the set of coefficients of this structure that realize the transfer function that is about to be

implemented. This process is called the realization of a filter with a given structure.

In different structures the number and order of arithmetic operations are different, as well as

the number of coefficients. The designer must choose a structure that best suits the application

constraints (for example, the implementation is required to be parallelizable) and realize the filter

with this structure.

Once the realization is obtained, the designer must define the parameters of its finite-

precision counterpart. The quality of a finite-precision implementation is measured with by

accuracy, i.e. how many digits in the output of the signal processing system are correct. For

example, for hardware targets the designer needs to make several architectural choices that

influence the accuracy of the algorithm. These choices include: (i) the choice of the arithmetic,

3

INTRODUCTION

i.e. the rules with which all arithmetic operations are done; (ii) the precision with which the

values will be stored. Different structures have different numerical properties. For example, to

achieve the same level of accuracy, some algorithms require more resources for the intermediate

computations and the others require less. Accuracy is not the only requirement, we usually seek

to satisfy certain constraints on the speed, area, power consumption, etc.

If the implementation result is not satisfactory, another structure is chosen and the process

repeats. The implementation of a filter becomes a long chain of trial and error when the designer

moves back and forth between different implementation stages. The iterative nature of this

process is illustrated in Figure Y.

The task is even more complicated when we need to deliver a reliable implementation. A

reliable implementation is a couple of an error-bound and the software/hardware code that is

guaranteed to always produce an output that differs from the ideal not more than by this error. In

other words, reliable implementations are required to always deliver a certain accuracy.

In signal processing, reliability and the accuracy of the filter are often determined using

simulations. With this approach, the implemented system is compared to some reference

implementation via extensive testing and the maximum error that occurred is taken as an error

bound. While being easy to adapt to any structure, this approach is often very slow. Moreover,

simulations cannot guarantee that all, even rare, cases have been checked. Another approach is

to investigate the numerical properties of the filter structure and deduce the statistical distribution

of errors. However, such analysis is structure-specific and, most importantly, does not provide

any bounds on the error.

The reader may wonder why the finite-precision effects on filters have not been studied using

the computer arithmetic approach. The reason is simple: historically the two scientific domains

have only a few interfaces and little in common. In this thesis will try to fill the gap between them

and benefit from the best approaches of both domains.

Towards automatic filter code generation

There exist software tools that help the designer with the filter implementation, such as Matlab

and Simulink. While significantly simplifying the implementation process, they do not make any

decisions for the designers, leaving them with the burden of the proof of reliability.

To accelerate the implementation and automatize some designer choices, an automatic filter

code generator may be used. There already exist some frameworks for semi- or fully automatic

filter implementation [1–3]. However, the major drawback of the existing tools is that they are

application- or structure-specific and do not give any guarantee that the implementation is

reliable in the sense that we defined.

4

INTRODUCTION

To remedy the disadvantages of existing solutions and to provide an automatic and reliable

way to implement linear filters, an automatic code generator has been designed [4, 5]. This

generator targets implementation in Fixed-Point arithmetic, which is probably the most widely

used arithmetic for the embedded systems. It aims at implementation of linear filters, a broad

class of algorithms used in both signal processing and control.

Hilaire proposed the outline of the generator in [4, 5] and Lopez continued in [6]. The code

generator is based on the idea of a unification: all filter structures can be described with a

unified analytical representation called Specialized Implicit Form (SIF). This representation is

based on writing explicitly all computations that define a filter structure in an analytical form. SIF

represents at the same time a “language” for the description of any linear digital filter and a tool

for their analysis. It is enough to detail the implementation process for filters in SIF and it may be

applied to any structure. The workflow of the code generator follows the classic implementation

flow from Figure Y with the exception that the structures are represented with SIF.

While the major outline of the code generator was developed before this thesis, the essential

part is missing: there is still no approach that provides rigorous error analysis of finite-precision

implementations.

The goal of this thesis is twofold: first we aim at providing a new methodology for the error

analysis when linear filter algorithms are investigated from a computer arithmetic aspect. Our

goal, in particular, is to analyze recursive filters. At the same time, using the SIF, we incorporate

our approach into the automatic filter code generator. To do so we will also need to extend some

of the functionalities of the existing code generator.

In this manuscript we are going to address the following questions:

– The SIF was conceived to be able to describe any linear digital filter structure. However,

having a language for the description of digital filters and applying it are different things.

Several structures have already been translated to the SIF description. However, the

question is how can we translate automatically an arbitrary structure to the SIF represen-

tation? Often filter structures are described in graphical representation, such as data-flow

graphs. This representation is constantly used in practical engineering implementations

due to its resemblance to digital circuits. We first investigate [7] how data-flows that

describe a particular structure, Lattice Wave digital filter, can be expressed in SIF. Then,

we generalize [8] our approach to any data-flow describing a linear digital filter.

– When the designers manipulate a filter realization they should be able at any moment

to recover the transfer function that corresponds to this realization. For example, when

we slightly change the coefficients of the realization and must verify that this algorithm

5

INTRODUCTION

still evaluates the filter we want. Thus, another question arises: how can we compute

the transfer function corresponding to an arbitrary filter in SIF representation? In general,

exact computation of a transfer function corresponding to a filter is not practically feasible.

We will show [9] how to compute an approximation of the transfer function and give a

rigorous bound on the approximation error.

– How can we build a reliable Fixed-Point algorithm with a guarantee on its accuracy? In

Fixed-Point Arithmetic numbers have fixed-sized integer and fractional parts, therefore

this question needs to be answered in two steps:

– First, what are the ranges of all variables involved in the evaluation of filter algorithm?

In other words, given the range of possible input signals we need to determine

the range of all possible intermediate and output values that may occur in the

filter algorithm. One of the approaches is based on the Worst-Case Peak Gain

(WCPG) measure [10]. However, this measure cannot be computed exactly but only

approximately without any guarantee on the approximation. We will reinforce this

approach by providing algorithms [11, 12] for the reliable evaluation of the WCPG

measure with arbitrary accuracy. They will permit us to compute a rigorous bound

on the dynamic range of all variables involved in the evaluation of the exact filters,

and consequently how many digits we need to dedicate to the integer parts when

stocking these variables.

– Second, given wordlength constraints for storage of all variables, what is the best

position of the binary point? Here we need to achieve two goals: the binary point

must respect the size of the integer parts deduced from the dynamic ranges, and

at the same time we aim at having the longest fractional part possible to obtain

more precision. The problem is that the ranges computed with the WCPG measure

correspond to an ideal filter but not an implemented filter. In implemented filter

the fractional parts have finite lengths and arithmetic operations are not exact.

These effects lead to errors that may propagate up to the integer parts and yield

to a non-representable value (overflow). Again using the WCPG we will show how

to rigorously evaluate the non-linear propagation of errors due to finite-precision

implementation of recursive filters. Then, we take this propagation into account in

a general algorithm [13, 14] which, given wordlength constraints, tries to find the

best position of binary point. At the same time we will also provide a tight bound on

the worst-case error of the implementation. Again, we will use computer arithmetic

techniques to rigorously prove all error bounds.

6

INTRODUCTION

– For reliable implementations, it is necessary to have a guarantee on the error of the

implementation in the time domain. However, this guarantee is not worth anything if the

eventual signal processing system does not satisfy the filter specifications in terms of its

frequency response. Thus, the question is: does the implemented filter satisfy the desired

frequency specifications? We will address the possibility of such a certification and show

how this verification can be done for any linear filter algorithm. With our approach [9],

the problem boils down to a verification of the positivity of a polynomial on some domain.

Using various computer arithmetic techniques we provide a fast implementation of this

check that is rigorous in the sense that it never gives false positive answers.

– How to build a hardware circuit that guarantees an accurate output without wasting

resources? We consider generation of such architectures on Field Programmable Gate

Arrays (FPGAs). We aim at providing designs which have their implementation error

not larger than the weight of the last bit of the output. Usually, this is achieved by using

extended precision for internal computations, i.e. adding guard bits. We collaborate with

the FloPoCo [15] project and provide a hardware code generator that uses just enough

precision for internal computations (i.e. no resource wasted) to guarantee that level of

accuracy for the output [16].

A complete methodology for the automatic and reliable Fixed-Point implementation of linear

digital filters will also permit the filter designer to cover a large design space in search of the

best implementation under various constraints. Using new functionalities of SIF we will be able

to produce a reliable Fixed-Point implementation upon any filter algorithm. What is important, is

that the kernel algorithms that we provide are rigorous and are very well-suited to be used in

extensive optimization routines.

Also, in a collaboration with the Tampere University of Technology, Finland, we applied our

techniques to the analysis of a particular hardware architecture implementing Fast Fourier Trans-

form [17]. Even though this contribution concerns reliable implementation of signal processing

algorithms, in reality it is situated in a context too distant to be presented in this thesis.

Overall, this thesis has led to the following publications: [7–9, 11–14, 17].

Organization of the document

This thesis follows the order of the questions mentioned above. This order is natural in terms of

the workflow of the code generator and is almost chronological. The document is divided into

four parts, each subdivided into chapters.

7

INTRODUCTION

Part I: Chapters 1 and 2 give an overview of the main notions within the realm of digital filters

and computer arithmetic as well as a general picture of typical problems that occur during the

finite-precision implementation of digital filters. Finally, Chapter 3 describes the state of the art

of the code generation tool before this thesis.

Part II: Chapter 4 is more technical than theoretical and concerns the conversion of Lattice

Wave Digital filters into the SIF representation. Chapter 5 incorporates the algorithm for the

conversion from data-flow graph into SIF and our approach for the approximation of the transfer

function corresponding to filters in the SIF.

Part III Here we present the kernel algorithms for the Fixed-Point Implementation of linear

filters. Chapter 6 concerns the computation of the dynamic range of all variables involved in the

filter evaluation. We present rigorous error analysis of the computation of the Worst-Case Peak

Gain measure in multiple precision arithmetic. Chapter 7 contains the general approach for the

determination of reliable Fixed-Point formats. The problem of verification of an implemented filter

against frequency specifications is addressed in Chapter 8.

Part IV This final part is comprised only of Chapter 9. In this last contribution we make our

first steps towards reliable implementation of any linear filter on FPGAs by first proposing

implementation of the Direct Form I structure.

The reader will find the conclusion of this thesis along with the perspectives in the last Chapter.

8

PART I
TECHNICAL PRE-REQUISITES

9

CHAPTER 1
DIGITAL FILTERS

I
n this Chapter we recall to the reader the concept of real-valued discrete-time signals

and Linear Time-Invariant systems, also called filters in our context. We also give a short

overview of properties of filters. We are particularly interested in recursive filters and their

properties. In practice, these systems can be evaluated in many different ways that depend on

the application, performance requirements, etc. These filter computational algorithms are called

structures and we present a few of them.

We refer the reader to classic digital signal processing texts like [18, 19] for a systematic

presentation and details.

1.1 Discrete-time signals

Discrete-time real signals are represented mathematically as sequences that can be formally

written as

u = {u(k)} , ∀k ∈Z. (1.1)

The integer index k represents dimensionless time1, i.e. gives a chronological order to the

elements of sequence. This comes from the fact that the discrete-time signal u(k) is usually

obtained by constant sampling of a continuous signal ǔ(t): u(k) = ǔ(kTs), where Ts is the

sampling period.

Remark 1.1. In the manuscript we will abuse the notation and even though u(k) denotes the

kth element of sequence u, we will denote the whole sequence by u(k) when needed.

The following elementary operations on signals will be useful for this work:

Shift A sequence u(k) shifted by an integer K is y(k)= u(k−K) for all k. If K is positive,

then the signal is said to be delayed by K samples.

Scaling A sequence u(k) scaled by α ∈R is y(k)=αu(k).
Sum A sum of two sequences is their term-by-term sum y(k)= u(k)+ z(k) for all k.

1Throughout the text we reserve the independent variable k to denote an integer index of a discrete-time signal.

11

CHAPTER 1. DIGITAL FILTERS

u(k) y(k)

T

Figure 1.1: Representation of a discrete-time system.

Probably the simplest discrete-time signal is the impulse signal, denoted δ and defined as

∀k, δ(k)=
{

1, k = 0

0, k 6= 0
(1.2)

This signal is central to describing digital systems. Any signal can be expressed as a linear

combination of suitably weighted and shifted impulses: u(k)=
∞∑

l=−∞
δ(k− l)u(l).

1.2 Discrete-time systems

A discrete-time Single-Input Single-Output (SISO) system is defined as a transformation or

operator that maps the input sequence u(k) to an output sequence y(k):

y(k)= T{u(k)}. (1.3)

When for all k the input signal u(k) and output signal y(k) are scalar (i.e. u(k), y(k) ∈
R), then the system is called Single Input Single Output (SISO). When for all k the signals

u(k) ∈Rq, y(k) ∈ Rp are vectors, then the system is said to be Multiple Input Multiple Output

(MIMO).

In this thesis we are interested in studying the Linear Time-Invariant (LTI) discrete-time

systems which we are going to define just below. A system of this type is referred to as a filter.

1.2.1 LTI systems

Let u1(k) and u2(k) be two signals given as inputs to a discrete-times system H . Then the

system H is called a Linear Time-Invariant system if it satisfies

• the Linearity property:

H {αu1(k)+βu2(k)}=αH {u1(k)}+βH {u2(k)} (1.4)

for any α,β ∈R, and

• the Time-Invariance property:

y(k)=H {u(k)}⇔H {u(k−K)}= y(k−K), (1.5)

12

1.2. DISCRETE-TIME SYSTEMS

which basically means that if the input signal is delayed by K samples, the output is also

delayed by K samples.

It turns out that an LTI system can be characterized by its impulse response, i.e. by the

sequence h(k)=H {δ(k)}. Indeed, using the linearity and time-invariance, we obtain that

y(k)=H {u(k)}=H

{ ∞∑

l=−∞
u(l)δ(k− l)

}
(1.6)

=
∞∑

l=−∞
u(l)H {δ(k− l)} (1.7)

=
∞∑

l=−∞
u(l)h(k− l) (1.8)

=: (u∗h)(k), (1.9)

where "∗ " is the convolution operator defined by (1.9). The convolution operator has a lot of

useful properties, for a full list of which we refer the reader to [18]. To summarize, the associativity,

distributivity over addition and commutativity of the convolution operator permit us to do various

combinations of LTI systems, see Figure 1.2.

u(k) y(k)
h2(k) h1(k)

u(k) y(k)
h2(k)h1(k)

u(k) y(k)
(h1 ⇤ h2)(k)

(a) Cascades

u(k) y(k)
(h1 + h2)(k)

u(k) y(k)

h2(k)

h1(k)

(b) Parallel combination

Figure 1.2: Equivalent operations over SISO filters.

There exist two classes of LTI systems with respect to the behavior of impulse response:

• Finite Impulse Response (FIR) filters which have an impulse response with finite support,

i.e. there exist a finite K such that for all k > K the impulse response h(k) is zero;

• Infinite Impulse Response (IIR) filters which have an impulse response with infinite

support, i.e. they do not become exactly zero past a certain point but continue indefinitely.

13

CHAPTER 1. DIGITAL FILTERS

Stability: A system is called Bounded-Input Bounded-Output (BIBO) stable iff its output is

bounded for all bounded input sequences. This is a very natural requirement for a filter, since

it states that the output will not "blow up" when the input is bounded. LTI filters are stable iff

the impulse response is absolutely summable, i.e. when ‖h‖`1 exists. More practical stability2

criteria are defined using the Z -transform, see Section 1.3.

Causality: A system is called causal if its output does not depend on any "future" inputs,

i.e. the output y(k0) depends only on the input samples u(k) for k ≤ k0. That implies that for

causality of LTI systems the condition is h(k)= 0 for all k < 0; see [18] for details.

In this manuscript we consider only stable causal LTI filters.

1.2.2 Linear Constant-Coefficient Difference Equations

A convenient way of describing LTI systems is using constant-coefficient difference equations

(CCDE). CCDEs define the relationship in time domain between an input signal u(k) and the

output y(k) as

N1∑

i=0
ai y(k− i)=

N2∑

i=0
biu(k− i). (1.10)

Throughout the manuscript we restrict ourselves to the case of real coefficients ak and bk. We

can normalize the coefficients in order to have a0 = 1, so that the above equation is rearranged

as

y(k)=
N2∑

i=0
biu(k− i)−

N1∑

i=1
ai y(k− i). (1.11)

CCDE (1.11) describes an IIR linear system. If ∀i > 0,ai = 0, it describes a FIR system. The

difference may be interpreted in the following way: in FIR filters the output is computed solely out

of the input signal, while the output of the IIR filters also depends on the previous N2 outputs.

Everywhere in the thesis we consider filters to have zero initial conditions, i.e. in response to

the zero signal, a zero signal is generated.

1.3 Z -transform

Discrete-time systems are often characterized by their oscillatory behavior which is analyzed in

the frequency domain. Usually to obtain the frequency-domain representation of a signal, the

2Everywhere in the manuscript under "stable" we will understand "BIBO-stable" filters.

14

1.3. Z -TRANSFORM

Fourier Transform [20] is used:

U(e jω)=
∞∑

k=−∞
u(k)e− jωn, ω ∈ [0,2π). (1.12)

However, in practice, the Z−transform of a discrete-time signals is used:

U(z)=Z {u}(z)=
∞∑

k=−∞
u(k)z−k, z ∈C. (1.13)

Remark 1.2. Just like in the case of the signals, we will abuse the notation and express the

Z -transform of a signal u not by Z {u}(z) but by Z {u(k)}.

The Z−transform represents a counterpart of the Laplace transform [20], which is, in turn,

used for continuous-time signals3. Indeed, U(z) evaluated over the unit circle, i.e. for z = e jω, is

the Fourier Transform.

Two important properties of the Z−transform are:

• Linearity: Z {αu1(k)+βu2(k)}=αU1(z)+βU2(z) and

• Time-Shift: Z {u(k−K)}= z−KZ {u(k)}.

We can also use partial fraction expansions to compute the inverse Z -transform [21].

Then, applying the Z−transform to the CCDE representation (1.11) with the above two proper-

ties, we obtain

Y (z)=
N2∑

i=0
bi z−iU(z)+

N1∑

i=1
ai z−iY (z) (1.14)

and hence

Y (z)= H(z)U(z), (1.15)

where H(z) is called the transfer function of the filter (1.11). Obviously, in the case of FIR filters,

i.e. when all ai = 0, H(z) is just a polynomial.

In case of IIR filters H(z) is a rational function:

H(z)=
∑n

i=0 bi z−i

1+∑n
i=1 ai z−i , z ∈C. (1.16)

Here n denotes the degree of the filter and n = max(N1, N2). If N1 6= N2, we complete the

polynomial of smaller degree by zeros, i.e. bi = 0 for N2 < i ≤ n and ai = 0 for N1 < i ≤ n.

The general relationship between the time-domain representation and frequency-domain

representation is illustrated on Figure 1.3.

3The Laplace transform can be seen as a generalization of the Fourier Transform for continuous-time signals

15

CHAPTER 1. DIGITAL FILTERS

x(k) h(k) y(k) = h(k) ⇤ x(k)

X(z) H(z) Y (z) = H(z) · X(z)

Z � transform Z � transform

Time domain

Frequency domain

Z � transform

Figure 1.3: Time and frequency domains.

Zeros, poles and stability: The roots of the numerator of H(z) are called the system’s zeros

and the roots of the denominator are called the system’s poles. If a root of the denominator has

multiplicity 1, it is called a simple pole, otherwise it is a multiple pole. It can be shown [18], that

for an LTI system to be causal and stable, its poles must lie strictly inside the unit circle. We refer

the reader to [18] for a proof.

If there are one or more simple poles exactly on the unit circle, the filter is called marginally

stable. For most practical filters, all the poles are designed to lie inside the unit circle. However,

for oscillators, the poles are placed on the unit circle on purpose.

1.4 Design of IIR filters

1.4.1 Frequency specifications

The dynamics of LTI systems are characterized by the system’s frequency response. It is a

measure of magnitude and phase of the output as a function of frequency in comparison to the

input. The frequency response of a filter is the value of its transfer function evaluated on the unit

circle:

H(e jω)=
∣∣∣H(e jω)

∣∣∣ e j]H(e jω), ω ∈ [0,2π), (1.17)

where
∣∣H(e jω)

∣∣ is the filter’s magnitude response and]H(e jω) is the phase response.

Classically, filters are designed with respect to the magnitude response specifications in

the frequency domain, in order to amplify (or preserve) signals in some frequency bands, and

attenuate them in other bands.

A filter specification is composed of several passbands (i.e. the gain of the filter for these

frequencies should be between given bounds) and stopbands (the gain should be lower than a

given bound), formally described as:

β≤
∣∣∣H(e jω)

∣∣∣≤β, ∀ω ∈ [ω1,ω2]⊆ [0,2π]. (1.18)

16

1.4. DESIGN OF IIR FILTERS

�p2

�p1

passbandstopband

!s1
!p1

!

��H(ei!)
��

0
!p2 !s2

stopband

�s

⇡

Figure 1.4: A passband filter specification.

For instance, Figure 1.4 illustrates a passband filter specification which can be described as

the following system of inequalities:





∣∣H(e jω)
∣∣≤ δs, ∀ω ∈ [0,ωs1] (stopband)

δp1 ≤
∣∣H(e jω)

∣∣≤ δp2 , ∀ω ∈ [ωp1 ,ωp2] (passband)∣∣H(e jω)
∣∣≤ δs, ∀ω ∈ [ωs2 ,π] (stopband)

.

Remark that no conditions are applied to the magnitude response in the intermediate frequency

intervals (ωs1 ,ωp1) and (ωp2 ,ωs2). These bands of frequencies are called transition bands. Very

often filter designers aim at having small transition bands.

Here ω denotes the normalized frequency which is a unit of measurement of frequency

equivalent to cycles per sample. In practical applications filter designers prefer to use frequencies

f = ω
2πFs that are measured in Hertz, where Fs is the sampling rate (Fs = 1

Ts
). The bounds on

the magnitude response are often given in decibels (dB), x dB means 10
x

20 4.

Due to the Nyquist-Shannon theorem [18], for causal filters with a real input/output relation-

ship it is only necessary to specify the frequency up to Fs
2 or the normalized frequency up to π

instead of 2π.

In terms of the phase response, filter designers usually seek to have a linear phase which

means that the phase response of the filter is a linear function of frequency. A linear phase

filter will preserve the waveshape of the signal (to the extent that it is possible given that some

frequencies will be changed in amplitude by the filter). However, phase characteristics are out of

the scope of this work.

4Deci means 10 and logically we should have x
10 , however since the power measures are proportional to to

squares of filed measures, there is a confusing 2 that appears and results in x
20 [22]

17

CHAPTER 1. DIGITAL FILTERS

1.4.2 Design methods

Given frequency specifications can be satisfied by both FIR and IIR filters. IIR filters can generally

approximate frequency response specification using a lower order than the FIR filters. It is in

particular beneficial for filters that have short transition bands: by placing poles of the filter near

the unit circle we may obtain a sharp peak (the magnitude of the transfer function becomes very

large in the neighborhood of a poles).

In this thesis we only consider the implementation of the IIR filters, as a more general case.

The most common IIR design technique involves designing first an analog filter (a proto-

type) and then transforming it to a digital filter. This approach is popular because of the vast

literature available on the subject of analog filters. Usually, the method of choice is the bilinear

transformation [18] (based on the mapping of the analog plane into the digital plane) and impulse-

invariant methods (based on the sampling of the continuous time impulse response) [23]. For

piecewise-constant frequency band specifications, numerical approximation methods can be

used. For instance, the Remez exchange algorithm can be applied [24]. However, this method

can sometimes fail [25].

1.4.3 A key band specification example

To unify the demonstration of our algorithms, further in this thesis we will use the following key

example of frequency specifications of a simple but realistic enough lowpass filter:

• sampling frequency Fs = 48kHz

• passband up to 9.6kHz with amplitude in the interval from 0 to −1dB

• stopband starting with 12kHz with amplitude bounded by −80dB

There exist infinite number of transfer functions that satisfy these specifications. For instance,

designing the transfer function using Elliptic method by Matlab yields an 8th order IIR filter5 with

double precision coefficients6 that are given in Table 1.1.

Figure 1.5a illustrates the magnitude response, and Figure 1.5b shows the position of poles

and zeros of this transfer function. We see that this filter has its poles very close to the unit circle,

the maximum distance from the unit circle is around 0.0199.

5Filter order determined with Matlab function ellipord
6Attention: Matlab does not provide any information on the accuracy of the obtained coefficients.

18

1.5. FILTER STRUCTURES

bi , i = 0, ...8 ai, i = 1, ...8
561579990219285 ·2−57

2680202476681091 ·2−58 −8466075925097353 ·2−51

2851083336434883 ·2−57 144214293209393 ·2−44

7945852418150609 ·2−58 −834038461885399 ·2−46

2285687050263807 ·2−56 3470975327611749 ·2−48

7945852418150609 ·2−58 −5233992444458969 ·2−49

5702166672869765 ·2−58 2801619744602567 ·2−49

2680202476681091 ·2−58 −3922384851870119 ·2−51

561579990219285 ·2−57 5713945412302955 ·2−54

Table 1.1: Coefficients of the elliptic filter satisfying the key specifications.

0 9.612 24

−100

−50

0

Frequency, kHz

A
m

pl
itu

de
,d

B

(a) Magnitude response

−1 0 1

−1

0

1

poles
zeros

(b) Poles and zeros

Figure 1.5: The 8th order elliptic transfer function corresponding to the key specifications.

1.5 Filter Structures

In practice, an IIR filter can be evaluated with many different algorithms, we will further call them

“structures”. Each IIR structure is parametrized to evaluate any IIR filter. We will further refer to

the parameters of each structure as to its coefficients. Different structures have different number

of coefficients. The process of computation of the structure coefficients out of a filter (e.g. its

transfer function) is called the “realization of a filter with the structure”. Hence, we will call a

particular filter evaluated with a structure a “realization”.

A convenient way of reflecting different computational flows is using the data-flow diagrams,

modeled with block diagrams. The basic building blocks for the description of LTI systems are

multipliers, adders and unit delays; symbols for them are shown on Figure 1.6.

19

CHAPTER 1. DIGITAL FILTERS

z�1u(k) u(k � 1)

(a) delay

↵
↵u(k)u(k)

(b) multiplication

u1(k)

u2(k) +
u1(k) + u2(k)

(c) addition

Figure 1.6: Basic blocks in linear block-diagrams

1.5.1 Direct Forms

A straightforward way to describe the evaluation of the transfer function (1.16) is shown in

Figure 1.7a and is called Direct Form I (DFI) structure. It has the same coefficients as the

filter’s transfer function H(z) and corresponds to the CCDE 1.11. By rearranging the structure

we can obtain Direct Form II (DFII) as on Figure 1.7b. Through transposition of the data-flow

diagrams [18] we can obtain Direct Form I and II transposed (DFIt and DFIIt) as shown on

Figures 1.8a and 1.8b.

These structures are straightforward to design and implement since they use the coefficients

of the transfer function. For example, by simply replacing coefficients in 1.7a with the coefficients

of the elliptic transfer function from Table 1.1 we obtain a realization of the key lowpass filter with

the DFI structure.

For an evaluation of an nth order filter they require 2n+1 coefficients to be stored and used.

The major drawback is that they are very sensitive to finite-precision effects and low-precision

implementations often have extremely high error [18].

In order to overcome this drawback, another type of structure has been derived from transfer

function coefficients: decomposition into second-order sections. It is based on the partial fraction

expansion of the rational function H(z) into the terms of second order:

H(z)=

⌈
n/2

⌉

∏

i=1

b
′
i0 +b

′
i1z−1 +b

′
i2z−2

1+a′
i1z−1 +a′

i2z−2
. (1.19)

If we recall the properties of the convolution operator (Figure 1.2), such partial fraction expansion

corresponds to a cascade of
⌈
n/2

⌉
second-order filters.

Various approaches have been proposed on the improvement of second-order sections

behavior in finite precision [26–29]. In general, for a nth order filter such structures require 2n−1

additions, 2n multiplications and, storage for 2n+1 coefficients.

20

1.5. FILTER STRUCTURES

u(k)
b0

z−1

b1

z−1

bi

z−1

bn

y(k)

z−1

a1

z−1

ai

z−1

an

+

(a) Direct Form I

z−1

z−1

z−1

−a1

−ai

−an

+

+

+ b0

b1

bi

bn

+

+

+

y(k)u(k)

(b) Direct Form II

Figure 1.7: Direct Forms

u(k)
+

z−1xN+1

+ −a1

z−1xN+i

+ −ai

z−1x2N

−an

t(k + 1)

b0

b1

bi

bn

+

z−1 x1

+

z−1 xi

+

z−1 xN

y(k)

(a) Direct Form I transposed

+

z−1

+

z−1

+

z−1

+

b0

b1

bi

bn

−a1

−ai

−an

y(k)u(k)

(b) Direct Form II transposed

Figure 1.8: Direct Forms transposed

21

CHAPTER 1. DIGITAL FILTERS

1.5.2 State-Space

Another common representation of IIR filters is using state-space equations. State-space

structure permits to easily describe MIMO systems (i.e. input and output signals are vectors) and

comes from the theory of control systems. Its block-diagram is shown on Figure 1.9. Analytically

a state-space system H describes the evolution of the state vector x(k) that depends on x(k−1)

and the input vector u(k), while a new output vector y(k) is computed out of the current state

and the input. An nth order state-space structure with q inputs and p outputs is analytically

described with

H

{
x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)+Du(k)
, (1.20)

where u(k) ∈Rq is the input vector, y(k) ∈Rp the output vector, x(k) ∈Rn the state vector and

A ∈Rn×n, B ∈Rn×q, C ∈Rp×n and D ∈Rp×q are the state-space matrices of the system. In the

case of a SISO system, B and C are vectors, and D is a scalar, which will further be indicated

by appropriate notation b, c and d.

u(k)
B + z−1 C +

y(k)

D

A

Figure 1.9: The State-Space structure

The matrix of transfer functions of the state-space system H is computed with

H(z)= D+C (zI − A)−1 B, z ∈C. (1.21)

Remark 1.3. In the MIMO case H(z) is called a multidimensional transfer function, i.e. can be

seen as a p× q matrix containing p rational functions that share the same denumerator but

have different numerators (for each output of the system) [30].

The impulse response h(k)7 of the MIMO system H can be computed with

h(k)=
{

D, k = 0

CAk−1B, k > 0
, (1.22)

where each sample h(k) is a p× q matrix, and element hi j(k) is the response of the ith output

to the impulse signal on the jth input.

7Exceptionally, we denote a matrix by a small case letter, for instance h.

22

1.5. FILTER STRUCTURES

The stability criterion of the state-space systems can be formulated as follows:

Property 1.1. (Bounded Input Bounded Output Stability) Let H be a state-space system. Sup-

pose an input signal {u(k)}k≥0 is known to be bounded by ū (i.e. ∀k ≥ 0, |ui(k)| ≤ ūi,1≤ i ≤ q).

So it holds that the output {y(k)}k≥0 is bounded iff the spectral radius ρ(A) is strictly less than 1.

See [31] for a proof.

A state-space structure can be easily obtained from the filter’s transfer function [32]. For

example, an nth order SISO IIR filter described with a rational transfer function (1.16), the

state-space matrices can be computed with

A =




−a1 1
...

. . .
... 1

−an 0 . . . 0




, b =




b1 −a1b0
...
...

bn −anb0




, c =
(
1 0 · · · 0

)
, d = b0. (1.23)

The state-space systems described with the equations (1.23) are called state-space systems in

the canonical observable form [18, 32].

An advantage of the state-space systems is that we can perform a linear change of the state

variable coordinates, which is called a similarity transformation [33, 34]. Indeed, consider any

invertible matrix T and perform a change xT (k),Tx(k). Then, we can compute a transformed

system HT with new coefficient matrices

AT = T−1AT, CT =CT,

BT = T−1B, DT = D.
(1.24)

The transformed system describes the same system in new state-variable coordinates. It can be

verified that the transfer function has not changed [34].

Therefore, there exists infinitely many mathematically equivalent state-space realizations for

any recursive linear filter. The questions of choice of the best state-space realization have been

addressed in, namely, works of Gevers and Li [34].

1.5.3 Other structures

There is a huge variety of other structures and regularly more appear. Some of them are

based on analytical representation, like State-Space. Others, like Wave and Lattice structures,

whose coefficients are directly derived from analog filters, are analyzed by means of Signal

Flow Graph theory. This approach benefits from its proximity with the analog circuits. However,

the comparison issue arises from both theoretical (comparison of structures given in different

23

CHAPTER 1. DIGITAL FILTERS

representations) and practical (the designer should have a more or less deep knowledge of

numerous structures) points of view.

Regardless of the means of description, one of the most important considerations in the

performance evaluation of digital signal processing structures is sensitivity under finite-precision

arithmetic constraints. The topology (i.e. the placement of adders, multipliers, delays and data

paths) of the realization structures significantly influences the numerical quality, investigation of

which is in the heart of our work.

1.6 Conclusion

In this Chapter we have presented some basic notions of LTI IIR filters, their frequency and time

domain representations. There exist numerous computational algorithms, called structures, with

which we can compute the same filter. Filter structures can be described either in analytical

(recurrence equations, matrices) or in graphical way (block diagrams). They possess different set

of coefficients and can be even obtained without actually computing the filter’s transfer function.

Moreover, in further reading we should keep in mind that different structures call for different

analysis methods, which significantly complicates the designer’s job.

24

CHAPTER 2
COMPUTER ARITHMETIC

E
fficient representation of real numbers on electronic computers is not a straightforward

task. Since the early years of computer science many different ways have been intro-

duced. While radix 10 is most convenient for the understanding by humans, most of the

computers are based on two-state logic. Therefore, radix-2 arithmetic is easiest to implement and

we focus only on such representations. In general, a real number is represented in the machine

with some finite number of digits, called precision. Finite-precision numbers form a subset of

real numbers and there exist different solutions for their hardware and software representation.

In this Chapter we present basic notions of two finite-precision representations: Floating-Point

and Fixed-Point. It appears that Floating-Point arithmetic (with well chosen parameters) is a very

good compromise for most numerical applications. However, it comes together with relatively

high cost (in terms of speed, power consumption, etc) that is often too high for embedded

microprocessors. In these cases, the faster and less power-hungry Fixed-Point arithmetic is

preferred.

Finally, we give a brief overview of finite-precision effects that occur during the implementa-

tion of digital filters on Fixed-Point processors.

Rounding and errors

On the one hand we have real numbers, and on the other hand we have a finite-precision

arithmetic, which describes a set of discretized values with a finite number of digits. Let F⊂R be

some set of finite-precision numbers. In order to represent a real number in F, we must apply

a rule which is called rounding. In general, rounding is the operation of replacing a numerical

value by another one which, usually, has a smaller number of digits in its representation. There

are many ways of rounding numbers:

• round-to-nearest: RN(x) ∈ F is the finite-precision number that is closest to x. In the case

when x is exactly between to finite-precision numbers, a tie-braking rule must be used;

• round towards +∞ (up): RU(x) ∈ F is the smallest finite-precision number that is greater

or equal to x;

25

CHAPTER 2. COMPUTER ARITHMETIC

• round towards −∞ (down): RD(x) ∈ F is the largest finite-precision number that is smaller

or equal to x.

These ways are called rounding modes.

yx

0

RN(x)

RD(x)

RU(x)

RD(y)

RU(y)

RN(y)

finite-precision
numbers

Figure 2.1: Illustration of three

rounding modes of real numbers

x and y.

Suppose you compute some function in finite-precision

arithmetic. If the rounded result is the same as if the function

were computed in infinite precision and then rounded (once),

then we say that the function is correctly rounded. If for an

exact result y one writes a finite-precision algorithm that

always returns either RU(y) or RD(y), then the result is said

to be faithfully rounded.

Obviously, rounding can lead to errors that are called

rounding errors. One of the goals of computer arithmetic

is to estimate the errors in computations when using finite-

precision arithmetic for algorithms. In the case when a se-

quence of numerical computations is subject to rounding operators, the errors may accumulate

and even dominate the calculation itself.

Denote by ◦(·) some rounding operator. When approximating a real non-zero number x by

◦(x), the relative error [35] is defined by

δx := ◦(x)− x
x

. (2.1)

Another type of measurement of error is the absolute error [35] :

∆x := ◦(x)− x. (2.2)

Sources of Errors

In the following we will distinguish two sources of errors in numerical computations:

• Methodological errors: for example an infinite sum can be computed only by taking

some finite number of terms, and the omitted terms constitute the truncation error or

“methodological” error.

• Rounding errors that occur while working with finite precision arithmetic.

In this work, when doing the error-analysis of our algorithms, we rigorously account for both

sources of errors.

26

2.1. FIXED-POINT ARITHMETIC

m+1 −`
s

w

−2m 20 2−12m−1 2`

Figure 2.2: Fixed-point representation (here, m = 5 and `=−4).

2.1 Fixed-Point Arithmetic

A radix-2 Fixed-Point (FxP) number system [36, 37] is a subset of real numbers whose elements

are integers scaled by a fixed factor and have form

±X ·2`, (2.3)

where X is an integer mantissa and 2` is an implicit quantization factor. Remark that the FxP

numbers are equally spaced by the quantization factor because it is fixed.

The power of FxP arithmetic comes from the fact that it is based on manipulation with

integers and bit-wise arithmetic. It is particularly well exploited in embedded systems that permit

small wordlengths and require high speed. However, the downside is that FxP representations

have a relatively limited range of values that they can represent.

However, no uniformly used standard exist and, as a drawback, no recognized systematic

overview nor unique notation of the FxP numbers exist either. Further in the thesis we consider

two’s complement Fixed-Point arithmetic [36–38], which we recall to the reader just below. We

refer the reader to the PhD thesis of B. Lopez [6] (in French) for a detailed description of the

format and notation that we adopt in this thesis.

2.1.1 Two’s-complement numbers

Two’s complement is a representation of signed numbers in integer arithmetic. Let t be a signed

FxP number. It is written as

t =−2mtm +
m−1∑

i=`
2i ti, (2.4)

where ti is the ith bit of t, and m and ` are the Most Significant Bit (MSB) and Least Significant

Bit (LSB) positions of t (see Figure 2.2). Denote by w the wordlength of a FxP number. It is

related with the MSB and LSB positions via

w = m−`+1. (2.5)

A w bit FxP number t in two’s-complement representation is stored as an integer mantissa

T ∈ [−2w−1;2w−1 −1]∩Z scaled by the quantization factor 2`.

27

CHAPTER 2. COMPUTER ARITHMETIC

The range of numbers that can be represented with the wordlength w and quantization factor `

is the interval [−2m;2m −2`], called dynamic range.

Remark 2.1. The dynamic range of two’s complement is asymmetric, which in certain cases

may complicate the conversion of a real number to FxP representation [39].

2.1.2 Conversion

Consider the following problem: given a real non-zero number1 x ∈R and wordlength w, deter-

mine the best FxP format (m,`). Obviously, we are interested in finding the least possible MSB

position m. The least MSB position can be computed in the most cases with

m =
{ ⌊

log2(t)
⌋+1 if t > 0

⌈
log2(−t)

⌉
if t < 0

. (2.6)

Once the MSB position is computed, we can directly determine the LSB `= m−w+1. Finally,

we can compute the value of the integer mantissa T ∈Z with

T = bt ·2−`e, (2.7)

where b·e denotes round to nearest integer operator. Then, the FxP counterpart t̂ of the real

number t is actually t̂ = T ·2` = bt ·2−`e ·2`.

Remark 2.2. When converting a real number to FxP arithmetic we seek to have the least error

and usually can use round to nearest. In hardware, when converting a number from a larger

FxP format to a smaller one, another rounding mode can be used. To minimize the hardware

cost, truncation (understand “round-down”) is often used.

Example 2.1. Let t = 3p2= 1.25992104989487316476721... and suppose we need to represent

it with w = 8 bits. Using the above approach we obtain the MSB m = ⌊
log2(3p2)

⌋+1 = 1 and

LSB `= 2−8+1=−6. Therefore, using a round-to-nearest integer operator, the actually stored

mantissa T = ⌊ 3p2 ·26⌉= 81 and the 8-bit FxP representation of t is t̂ = 81 ·2−6 = 1.265625.

However, the MSB computation formula (2.6) is naive: the asymmetric dynamic range of the

two’s complement FxP arithmetic imposes limit cases that should be treated separately. We

refer the reader to [6, 39] for a systematic approach on treatment of such cases.

1For the zero any format is suitable.

28

2.1. FIXED-POINT ARITHMETIC

2.1.3 Overflows

When determining FxP formats for variables in a FxP algorithm we need to rigorously determine

the range of all variables involved in the computations. Otherwise, an overflow may occur, i.e. at

some point an integer mantissa exceeds its range [−2w−1;2w−1 −1]. Consider the example of a

FxP algorithm for a vector normalization.

Example 2.2. Let t= (125,125,125) be a vector in 3-dimensional space whose coordinates are

represented with the FxP format (15,−16). One can suppose that computing the length of t and

storing it in a variable h =
p

1252 +1252 +1252 = 216.5.. with the same format (15,−16) should

be enough. The problem is that the sum of those squares is equal to 46875 ∉ [−32768;32767],

i.e. it exceeds the dynamic range of the format (15,−16). Thus, a variable storing the intermediate

result with the sum of squares must have larger wordlengths.

Sometimes, determining a potential overflow is complicated. For example, the normalization will

work just fine on a lot of values: vector (100,100,100) will be normalized just fine but the vector

(40,40,180) will not.

If careful investigation of the dynamic range of all variables is not possible, there exist several

mechanisms on dealing with the overflow: wrap-around mode [40], saturation to min/max [40],

etc. In digital signal processing, the saturation mode is widely used [40] because it prevents an

overflow from being turned into an abrupt change from very big positive to very big negative

values due to wrapping.

In saturation mode, overflow is dealt with by replacing the value that overflows by the largest

(smallest) representable value of the target format. Such technique requires additional hardware

support. Consider a number v1 with FxP format (m1,`) that needs to be represented with a

“smaller” FxP format (m2,`), m1 > m2. Then, the saturated value v2 is

v2 =





2m2 −2` if v1 ≥ 2m2 −2`

−2m2 if v1 ≤−2m2

v1 otherwise

. (2.8)

Computations performed with the saturation technique may give an impression to be correct

if the saturated values yielded a small overflow (in sense of the absolute value). However, in

general such a suppression of the values significantly changes the accuracy of the result.

In this thesis we advocate rigorous evaluation of the range of all variables involved in a FxP

implementation. Our implementations will not use saturation or other similar techniques since

we will give a guarantee (based on mathematical proofs) that no overflow occurs.

29

CHAPTER 2. COMPUTER ARITHMETIC

2.1.4 Quantization and computational errors

We have already seen that in general rounding errors occur during the conversion of a real

(exact) number to some FxP format. Further we will refer to the rounding errors of coefficients of

the filter as quantization errors. Bounds on the quantization errors can be deduced with respect

to the quantization step and rounding mode.

Consider a real number t ∈ R that is represented in FxP with format (m,`). Denote by ∆t

the quantization error between t and its FxP approximation t̂: ∆t = t̂− t. The bounds on ∆t for

different rounding modes are summarized [6] in Table 2.1.

Rounding mode Error bound

round-to-nearest −2`−1 ≤∆t ≤ 2`−1

truncation 0≤∆t < 2`

faithful −2` <∆t < 2`

Table 2.1: Error bounds for quantization errors according to the rounding mode.

Apart from the quantization errors, in the general case computational errors are induced

after every arithmetic operation on FxP numbers. Usually, in the computational units the result of

intermediate operations is stored with larger precision and then rounded to the initial precision.

The errors due to this rounding can propagate and be significantly amplified.

Example 2.3. Let ĉ be some number rounded to FxP format (mc,`c) and let t be a variable

(exact quantity) in FxP format (mt,`t). The product of these two numbers can be exactly

representable on wc +wt bits.

Suppose the rounding error ∆c is bounded in its absolute value |∆c| < 2`. In other words, the

last bit of ĉ is potentially erroneous. Then, by using the classic long multiplication method we

may remark that this potentially false bit will propagate through the multiplication in such way

that the last wt −1 bits of the product become potentially false, too. Therefore, we obtain that

the error between the exact product c · t and ĉ⊗ t (here ⊗ means FxP product) is bounded in

absolute value by 2wt−1.

When implementing FxP algorithms, the classic problem is to estimate an upper bound on the

error of some operation, given the formats of the operands. However, during the implementation

of digital filters we will look at this problem in another way: given the required upper bound on

the output error, determine the least formats of the operands that guarantee this error.

The reader may have remarked that filter structures (e.g. state-space) are often based

on the computation of Sums-of-Products by Constants (SOPCs). To ensure some properties

of the implemented filters we need to define how these Sums of Products are computed in

30

2.2. FLOATING-POINT ARITHMETIC

s

s

s

s

s

s

g
s

s

ms `s

Figure 2.3: The sum is first performed with extended format and then rounded.

FxP arithmetic. Further in this thesis we will rely on the following result presented and proved

in [6, 41, 42].

Proposition 2.1 (Faithfully rounded Sums-of-Products). Let c1, c2, . . . , cn be some quantized

FxP numbers with respective formats (mci ,`ci) and t1, t2, . . . , tn be FxP variables with respective

formats (mti ,`ti). Suppose we need to compute the SOPC S =
n∑

i=1
ci ti in FxP arithmetic and

represent the output in the format (ms,`s) (and we know that there will be no overflow). Then if

• the results of FxP multiplications are stored on wci +wti bits, and

• the sum is performed on the extended by g guard bits FxP format2 (ms,`s − g), where

g =
⌈

log2(n)
⌉
+1, and then rounded to the final format (ms,`s) (see Figure 2.3)

we can guarantee that the FxP result is a faithful rounding of the exact sum of product, i.e. the

absolute error is bounded by 2`s .

2.2 Floating-Point Arithmetic

The Floating-Point (FP) number system is another way of describing numbers in computers.

The concept is adapted from the scientific number notation. In 1985 the IEEE published the

IEEE-754 standard for Binary Floating-Point Arithmetic which is nowadays supported in the vast

majority of systems.

A key feature of the FP notation is that the represented numbers are not uniformly spaced :

it is ensured that there are small gaps between small numbers and large gaps between large

numbers. In comparison with Fixed-Point Arithmetic, FP has a larger dynamic range. According

2All bits to the right of `s − g can be truncated.

31

CHAPTER 2. COMPUTER ARITHMETIC

to studies [43, 44] FP implementations of digital filters yield much less error to the output3.

However, the manufacturing cost dictates the use of cheaper, smaller and less power-hungry

Fixed-Point processors.

We use Floating-Point arithmetic as our main instrument for computation of optimal imple-

mentation parameters, accurate evaluation of FxP implementation errors, etc. Therefore, in this

section we present a small overview of the IEEE 754-2008 Floating Point Standard [45] and,

since FP computations are not exact, the general idea of the FP error analysis techniques that

we will use.

We refer the reader to the Handbook of Floating-Point Arithmetic by Muller et al. [35] for a

detailed and formal reference on the general subject of FP arithmetic. As well as to a guide into

Accuracy and Stability of Numerical Algorithms [46] by Higham.

2.2.1 Normalized IEEE 754 Binary Floating-Point

The 2008 version of the IEEE standard supports radix-2 and radix-10 systems. In this thesis we

consider only radix-2 floating-point numbers. According to the standard, a radix-2 FP number is

written as:

x = (−1)s ·m ·2e, (2.9)

where

• s ∈ {0,1} is the sign bit

• the exponent e ∈ [emin, emax], with emin and emax specified for each standard format;

• the mantissa m is represented with p bits (p defined by the standard for each format) is

normalized to the form 1.m1m2...mp−1. In other words, only p−1 trailing mantissa bits

are stored.

In contrast to Fixed-Point Arithmetic, the exponent is stored explicitly along with the mantissa

and is not fixed (thus the name, “floating-point”). The actual exponent e is biased in order to

be stored as a positive integer: an exponent stored on w bits is biased by b = 2w−1 −1. The

smallest positive normal4 number is 2emin . The largest finite binary floating-point number is

(2−21−p) ·2emax . Numbers |x| < 2emin are called subnormal numbers and not all systems support

them. In this work we do not consider sub-normal numbers.

3However, to our knowledge, similar to the case of FxP implementations, no systematic studies of implementation
errors has been performed for FP filter implementations either.

4i.e. with mantissa m having the first bit set to 1

32

2.2. FLOATING-POINT ARITHMETIC

In IEEE format, both +0 and −0 exist, along with signed infinities and "Not a Number data",

shortly NaNs, which are returned in case of invalid operations.

The IEEE 754 standard dictates several formats, i.e. standard couples of parameters p and

w, and we are going to use two of them: double and single. The double precision format has a

11-bit exponent and mantissa with 53 bits of precision. The single precision format has a 8-bit

exponent and mantissa with 24 bits of precision.

2.2.2 Conversion

Obviously, a real number might be not exactly representable as a FP number. This is mainly

due to two reasons: (i) the number lies strictly between two consecutive floating-point numbers;

(ii) number is out of range, i.e. its absolute value is larger than 2emax or smaller than 2emin (if

subnormals are supported, the bound for complete underflow is 2emin−p).

The relative error due to rounding is given by the unit roundoff [46]: u = 2−p. It can be proved

that if a real number x ∈R lies in range of the radix-2 FP format with precision p, then

◦(x)= x(1+δ), |δ| ≤ u, u = 2−p, (2.10)

where ◦(·) is the round to nearest operator5.

Example 2.4. Consider the single precision format: the exponent is stored on 8 bits and the

mantissa on 23 bits. Suppose we wish to represent x =
p

5 in this format. Binary representation

of x will be

10.0011110001101110111100110111001011111110100101001...2 (2.11)

After normalization of the mantissa the non-biased exponent is equal to 1. We compute the

biased exponent e by adding the bias equal to 127, therefore e = 128. Also, for a representation

with 23 bits, we round it with the round-to-nearest operator. Therefore, a single precision FP

approximation of x is:

10 0 0 0 00 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 11

mantissaexponentsign

The relative error is indeed bounded by the unit roundoff: we obtain that δ= 1.1111100001...2 ·
2−27 while for single precision u = 2−24.

5The actual bound is more complicated and depends on the rounding operator

33

CHAPTER 2. COMPUTER ARITHMETIC

2.2.3 Rounding errors

Any result of a finite precision computation is susceptible to rounding errors. Sometimes rounding

can be beneficial: rounding errors can cancel in certain algorithms and lead to a final result that

is more accurate than intermediate results [46]. However, usually we refer to rounding errors

as to an undesirable effect and want to ensure relative and absolute error bounds on the result

of a computation. An important remark is that rounding errors are not random. Using Kahan’s

examples Higham demonstrated [46] that rounding errors may have a strikingly regular pattern.

Thus, modeling the rounding errors with random noise [47] can be readily argued with.

A widely used model [46] for the errors of FP operations over two FP normal numbers x and

y can be expressed as (in the absence of under- and overflows and with round-to-nearest):

◦(x op y)= (x op y) · (1+δ), |δ| ≤ u, op= {+,−, ·, /}. (2.12)

For the ease of the notation we will often use circled signs of arithmetic operations ⊕,ª,⊗ to

denote FP additions, subtraction and multiplication.

However, when operands of arithmetic operations have themselves been subjects to previous

rounding, catastrophic loss of significant digits can happen. This undesirable effect of rounding

errors can be demonstrated with the catastrophic cancellation: subtraction of two nearly equal

numbers can cause many of the accurate digits to disappear.

Example 2.5 (Cancellation). Consider the cosh−1 function that is computed with cosh−1(x)=
− log

(
x−

p
x2 −1

)
. Here, when x is large, the rounding that occurs in the square root compu-

tation leads to
p

x2 −1 ≈ x and, subsequently, to invalid logarithm computation. For example,

cosh−1(1010)≈ 23.71899... but in double precision it evaluates to −∞. This occurred because

◦(
p

1020 −1) evaluated to 1010.

While for basic arithmetic operations correct rounding can be easily guaranteed [48], for

more complicated operations and algorithms, correct rounding is difficult (or impossible) to

obtain [35, 49]. For some mathematical functions there exist solutions such as correctly rounded

library CRlibm6 [50–53]. Another solution is Sollya which is both a tool and a library [53, 54].

Finally, code for correctly rounded elementary functions can be generated using Metalibm [55]

code generator tool.

However, for an arbitrary numerical algorithm we are interested in ways to avoid effects

such as cancellation, and determine a relative or absolute error bound on the output of an

algorithm. In our contributions we will provide rigorous bounds on the computational errors (and

their propagation) that occur in implementations of all the algorithms. We will often bound the

errors with respect to some norm, such as Frobenius norm.
6https://scm.gforge.inria.fr/anonscm/git/metalibm/crlibm.git

34

https://scm.gforge.inria.fr/anonscm/git/metalibm/crlibm.git

2.2. FLOATING-POINT ARITHMETIC

2.2.4 Multiple Precision Arithmetic

Sometimes bounding the error of our implementation will not suffice: the error bound may be

relatively small but still too large in its absolute vale. This usually means that the precision of

intermediate computations must be increased.

There exist a quite a few solutions for extending the precision of computations: the IEEE 754

standard proposes a few large and a few extended formats; exact arithmetic (rational numbers,

continued fractions, etc.); the super-accumulator of Kulisch [56]; floating-point expansions [57];

multiple precision arithmetic [58, 59], etc.

In our algorithms we will need to change the precision dynamically and non-homogeneously

(i.e. different variables may have different precision). To satisfy these requirements, we use

Multiple Precision (MP) floating-point arithmetic. In particular, we are going to use GNU MPFR

library [59] for our implementations.

We will often refer to some outputs of algorithms as being computed with a priori error bound.

In fact, what we understand by this is that given a bound on the error, the algorithm dynamically

adapts the precision of internal computations such that the computational errors are not larger

than the given error bound and the output of the algorithm is returned as a multiple precision

number. In such algorithms we will take care to not overestimate the required internal precision.

2.2.5 Interval Arithmetic

Another way to deal with the uncertainties and rounding errors in the computations is Interval

Arithmetic. The term “interval arithmetic” dates from the 1950s due to works of Moore [60]. We

refer the reader to [61–63] for a detailed overview of interval arithmetic.

An interval, denoted [x]= [x, x], is a closed and bounded nonempty interval:

[x]= [
x, x

]= {
x ∈R|x ≤ x ≤ x

}
, (2.13)

where x and x are called lower and upper bounds respectively and x ≤ x. In the case x = x, we

will call [x] a point-interval. Sometimes, we will use the mid-rad representation of an interval:

[x]= 〈xm, xr〉 , (2.14)

where xm = x+x
2 is the midpoint and xr = x−x

2 is the radius of the interval.

When we compute a function f : R → R on the interval argument [x] = I, we seek to

determine the intervals around the output [y]= J such that ∀ x ∈ I, f (x) ∈ J. This property is

called inclusion property and while it does not help to find the exact output, it gives a guarantee

that the computed interval contains the exact result. All basic arithmetic operations are defined

for intervals and are based on the inclusion property.

35

CHAPTER 2. COMPUTER ARITHMETIC

The main problem related to the naive use of interval arithmetic is the phenomenon of

decorrelation. This is due to the fact that interval arithmetic cannot trace the correlation between

multiple occurrences of the same variable. Consider an example of expression y = x
x+1 . For

[x]= [4,9], the output [y] should be an interval [0.8,0.9]. However, using interval evaluation, we

obtain the result [0.4,1.8] which is much larger than the expected result. To avoid such situations,

rewriting techniques are usually used [64]. For instance, y= 1
1+ 1

x
yields a much smaller interval

[0.8,0.9] for [x]= [4,9].

Intervals are often used to account for rounding errors in the computations. When a compu-

tation with intervals yields a result [y], its midpoint ym is viewed as an approximate value for the

result with a worst-case error yr. Even if a result interval is too wide to be practically useful, it

can at least ensure a fail-safe mode of operation.

Practical implementations of interval arithmetic are often based on multiple precision FP

arithmetic, i.e.
[
x, x

]= {
x ∈ Fp|x ≤ x ≤ x

}
, where Fp denotes a set of FP numbers with precision p.

All operations on the endpoints must be done with care: to ensure the inclusion property, rounding

must be done to wrap up around the exact result. In this thesis we are going to use the multiple

precision floating-point interval library GNU MPFI [65, 66] for all interval operations.

In this work, sometimes, we are going to use the Theory of Verified Inclusions developed

by Rump [67–69] to account for errors of some linear algebra routines. In his approach Rump

addresses error bounds on the solution of some common numerical algorithms, such as eigen-

decomposition problems. He shows how we can easily deduce tight intervals of the solutions

of these problems. These intervals are guaranteed to contain the exact results. We are going

to use this approach to find interval enclosures for some algorithms that do not provide any

rigorous error bounds, such as eigendecomposition, solution of linear system of equations and

matrix inverse.

2.3 Finite Precision Effects for IIR filters

Before actually implementing IIR filters, we need to ascertain the extend to which its performance

will be degraded by finite-precision effects. And, if the degradation is not acceptable, find a

solution. Usually, the output error of the filter can be reduced by increasing the precision of

computations and of the filter’s coefficients but at the expense of an increased cost.

The filter degradation in both software and hardware depends on three main factors:

• quantization of the filter’s coefficients,

• specification of arithmetic and wordlengths and

• structure, i.e. algorithm for the evaluation of the filter.

36

2.3. FINITE PRECISION EFFECTS FOR IIR FILTERS

0 0.1 0.2 0.3 0.4

−3

−2

−1

0

1

Normalized frequency (ω × π)

M
ag

ni
tu

de
(d

B
)

DFIIt FxP 12 bits
SS FxP 12 bits
ρDFIIt FxP 12 bits
initial transfer function

Figure 2.4: Quantization effects on the DFIIt, ρDFIIt and balanced State-Space systems

2.3.1 Coefficient quantization

Quantization of the coefficients to a finite number of bits essentially changes the filter coefficients,

hence the frequency response changes as well. Quantization of the coefficients can easily yield

an unstable filter. Different realizations usually demonstrate different behavior due to coefficient

quantization.

Consider the key example of band specifications and corresponding transfer function pre-

sented in Chapter 1 Section 1.4.3. For instance, in the passband, i.e. for frequencies ω ∈ [0,0.4π],

the magnitude response of the filter must be between 0dB and −1dB.

Even without considerations on the FxP arithmetic (wordlengths of variables, specifications

of arithmetic units, etc.), it is possible to observe how realizations obtained with different

structures behave under coefficient quantizations. Consider three filter structures: Direct Form II

transposed (DFIIt), balanced state space7 and Direct Form II transposed implemented with ρ

operator [70, 71].

On Figure 2.4 we can observe the magnitude response (in the passband) of the realizations

obtained with the above structures and whose coefficients were quantized to 12 bits. It is clear

that the majority of the realizations yields filters that do not respect the initial specifications

anymore. However, the poles of each realization are still in the unit circle. Now, if we quantize

the coefficients to 8 bits, poles of majority of realizations are out of the unit circle (Figure 2.5).

This is all to say that quantization can yield an unstable filter and even if poles are in the unit

circle, propagation of quantization errors may result in a filter that no longer respects the initial

frequency specifications.

7As returned by the Matlab’s function ss, which applies several similarity transformations upon the canonical
controllable form

37

CHAPTER 2. COMPUTER ARITHMETIC

−1 0 1

−1

0

1

DFIIt FxP 8 bits
ρDFIIt FxP 8 bits
SS FxP 8 bits
initial transfer function

Figure 2.5: Pole locations for the initial system, DFIIt, rhoDFIIt and balanced State-Space
quantized to 8 bits

2.3.2 Sensitivity analysis

Since it is desirable to predict the behavior of filter realizations prior to actually implementing

them, a statistical approach is classically used. The idea is to compute sensitivity measures [72–

74]: these measures are based on the sensitivity of the filter (its transfer function, poles, zeros,

etc.) with respect to the coefficient quantization, i.e. they show how much small perturbations

in the coefficients (or poles) of the filter may influence the behavior of transfer function. The

first works in this direction were proposed by Tavsanoglu and Thiele [75]. An analytical form for

such sensitivity measures should be derived for each structure separately. Further, if we work

with state-space systems, we may seek for a similarity transformation that minimizes the overall

sensitivity of the structure (with respect to `2-norm) [34, 74, 76].

However, this approach has several drawbacks: first of all, sensitivity measures can be

derived only for some family of structures, and second, they do not reflect the real impact of

quantization but just serve as an indication.

2.3.3 Roundoff noise and Fixed-Point Formats

To model the propagation of rounding errors the following model (see Figure 2.6) is usually used:

thanks to the linearity of the systems, an implemented filter H ♦ is represented as a sum of the

exact filter H and a special error-filter ∆H . This error-filter is not actually implemented and is

only used to analyze the propagation of the computational errors ε(k) that are considered as

some noise signals.

38

2.3. FINITE PRECISION EFFECTS FOR IIR FILTERS

u(k)
H

¢H

y(k)

"(k)

y⌃(k)

�"(k)

Figure 2.6: Classic decomposition of the implemented filter.

We can observe that this model indeed makes sense using our key filter example. Suppose

we implement this filter with the Direct Form II structure. We represent all variables in the

computational algorithm with 16 bits and on each iteration of the filter we guarantee correct

rounding. Then, for some particular input signal u(k) we can compute the difference H −H ♦

between the exact filter (computed with rational arithmetic) and the implemented filter as shown

on the Figure 2.7a. On Figure 2.7b we can observe that the output δ(k) of the difference filter in

response to the impulse signal u(k) resembles some noise.

u(k)
H

H ⌃

±(k)

(a) Difference of two filters

0 20 40 60 80 100

−5

0

5

·10−5

k

δ
(k

)

(b) Output δ(k) in response to the impulse input.

Figure 2.7: Demonstration of the classic error-model.

Hence, not surprisingly, in classical signal processing, absolute errors are considered not as

small intervals but as white noise signals [77]. Then, using the classic error-model, the output

of the error filter is analyzed in terms of its mean and variance [78, 79]. We should remark

that such an approach does not very well reflect the reality: as we said previously rounding

errors are not random and variance of the error does not provide an accurate perception of the

implementation errors.

39

CHAPTER 2. COMPUTER ARITHMETIC

Dynamic range of variables The dynamic range of the filter’s output is usually computed with

simulations [80]. The idea is to: (i) using a set of some “relevant” inputs, perform simulations; (ii)

determine the range of each variable form these simulations; (iii) enlarge the ranges by some

margin and take them as true ranges; (iv) cross fingers and hope that the inputs were “relevant”

enough. Obviously, such approach is time-consuming and not reliable.

An improved approach is based on the following technique: (i) compute the probability

distribution function of the outputs of the filter; (ii) determine the interval which contains all

possible outputs, with some high-enough (obviously not 100%) probability; (iii) take this interval

as the range of the filter’s output [77]. Then, the Fixed-Point formats are determined from the

dynamic range. Obviously, there is some probability that the range was underestimated an

overflow occurs.

Often intermediate results in filter computation are forced to saturate rather than overflow.

Implementations with saturation cannot be rigorously analyzed in terms of the rounding error:

from simulations we cannot predict how far the saturated values were out of range and what

is their influence on the filter’s output. On top of that, we cannot use some properties of two’s

complement modular arithmetic that greatly simplify the additions and multiplications. These

properties are also called Jackson’s rule [81].

Influence of rounding errors Usually, an a posteriori idea on the behavior of computational

errors in linear filters is obtained via bit-true simulation [80, 82] of the FxP implementation and

then comparison with a reference (floating-point) simulation. For instance, the difference filter

shown on Figure 2.7a is used in extensive simulations to “bound” the implementation error. The

advantage of this technique is that it can be applied to any realization. An obvious drawback is

that simulations may not be exhaustive and comparison is not done with an exact filter but with a

finite-precision evaluation. Thus, no guarantee on the result can be obtained with this approach.

Moreover, simulations may take significant time [83].

Yet another solution is to apply analytical approaches once a mathematical expression of a

numerical accuracy metric is determined. For example, using Interval Arithmetic [84, 85] and

Affine Arithmetic [86–89]. These approaches are rigorous but they are prone to overestimations

and are not well suited for recursive systems (intervals will just explode due to the decorrellation

issue). There are some analytical approaches based on the noise propagation models [90, 91]

or on the probability density function [92, 93]. However, these approaches do not provide a

guarantee on the output error.

40

2.4. CONCLUSION

2.4 Conclusion

In this Chapter we have seen a very short overview of two ways to represent real numbers

in finite-precision: Fixed- and Floating-Point Arithmetic. The first one is used in practical filter

implementations due to its low cost while the second one is used during the design and analysis

of the implementation.

The key problem with the existing approaches on filter error-analysis is that they are not

suitable when a rigorous and optimal filter implementation is required. As far as we know, there

exist no methods that provide a rigorous and tight bound on the error of the implementation.

Hence, for a reliable implementation we need to

• guarantee that no overflow occurs during the computations and

• provide a rigorous bound on the output error of a Fixed-Point implementation.

Moreover, the methodology must not depend on the filter evaluation algorithm and be applicable

to any LTI filter realization.

41

CHAPTER 3
TOWARDS RELIABLE IMPLEMENTATION OF DIGITAL FILTERS

T
he question of automation of filter implementation is, obviously, not new. Frameworks

for semi- or fully automatic filter implementation have been developed over time [1–3].

Almost every big manufacturer along with a dedicated hardware provides a tool whose

goal is to help the designers. Obviously, there is the Matlab Simulink tool that helps the filter

designers and proposes various toolboxes.

The drawbacks vary from one tool to other but the general idea is: there exists no tool that

can implement an arbitrary realization and there is no guarantee on the implementation. Still a

lot of decisions in the implementations depend on the designer. Often these decisions require

high degree of expertise and a considerable amount of man-hours for the implementation.

To overcome these drawbacks a reliable filter code generation tool has been proposed [4, 6,

94, 95]. The foundation of its ideology can be expressed as four principles:

• all filter structures must be represented in a unified way

• all filter structures must be analyzed using the same criteria to enable fair comparison

• Fixed-Point implementations must be reliable, i.e. guarantee that no overflow occurs

• all implementations must come with a rigorous bound on the implementation error

Our goal is to provide the kernel methodology for this generator, improve and extend existing

functionalities. In this chapter we give a brief overview of the tool before this thesis.

3.1 Automatic Filter Code Generator

Automatic Filter Code Generator is a software solution the goal of which is to provide tools for

reliable implementation of digital filters. It is based on unification of the existing approaches under

a same notation, as well as on development of novel approaches for software and hardware

implementation of filters.

One key feature that enables such a solution is the unification of representations of digital

filters. In his PhD thesis Hilaire developed a new formalism, called the Specialized Implicit

43

CHAPTER 3. TOWARDS RELIABLE IMPLEMENTATION OF DIGITAL FILTERS

H(z)

Stage 1 Stage 4Stage 2 Stage 3

TF-to-SIF
conversion

Quality analysis
a priori

Fixed-Point
settings

Code generation
Software

ASICs

SIFSIFSIF
C

VHDL

Figure 3.1: Automatic Filter Code Generator scheme before this thesis.

Form (SIF)1 that can describe any linear filter (both FIR and IIR). It is an analytical representation,

based on an extended state-space structure and will be addressed in Section 3.2. Roughly,

the idea is to detail the way the computations are done (like in data-flows or algorithms) but

to keep a matrix-based description based on a state-space structure. Its resemblance with

the state-space systems rewards SIF with many useful properties. Therefore, the filter design

and implementation process can be unified for this representation and then applied upon any

realization of a LTI filter.

A simplified scheme of the generator work-flow is given in Figure 3.1. The process starts

with a given transfer function2 and proceeds to the hardware or software implementation. The

filter-to-code generation is divided into four stages:

Stage 1: given the coefficients of the transfer function we first represent it with SIF. Potentially,

any structure describing a linear filter can be expressed with the SIF formalism. Algorithms for

representations of several classical structures have been already proposed [4]. Thus, the user

just needs to choose from a set of possibilities and run a conversion algorithm which returns a

SIF that corresponds to a realization of the given transfer function with the desired structure.

However, support of a new structure requires a new conversion algorithm.

Stage 2: for a chosen structure, we can compute various classical (for control systems) and

new sensitivity measures [96]. These measures were directly derived for SIF matrices. Thus,

using direct formulas one can compute sensitivity measures for structures that used to have

only block-graph representation. These algorithms are implemented in Matlab as the Finite

Wordlength Realization toolbox3 [97].

Stage 3: for a chosen structure, we determine the parameters of Fixed-Point implementation.

Given wordlength constraints (not necessarily the same for all variables), determine the position

of the binary point for each constant coefficient and variable. In his thesis [6], Lopez proposed

1Sometimes in this thesis under “an instance of SIF” or even “a SIF’ we will actually understand “a filter in SIF
representation”.

2In this generator, the questions of the design of transfer functions are not addressed.
3svn://scm.gforge.inria.fr/svnroot/fwrtoolbox/

44

svn://scm.gforge.inria.fr/svnroot/fwrtoolbox/

3.2. SPECIALIZED IMPLICIT FORM

conversion of structure’s coefficients to FxP arithmetic by taking into account special limit

cases. However, the dynamic range of the variables involved in the evaluation of a filter is still

not determined reliably. The output interval for all variables is computed using deterministic

measures, however still no guarantee on the FxP implementation or the bound on the

output error is provided. It is easy to show that the basic bricks of linear filters are Sums-of-

Products. Lopez proposed algorithms for the optimal (with area and error constraints) binary

tree decomposition of operations in these Sums-of-Products.

Stage 4: given the parameters of Fixed-Point implementation, we generate software and

hardware code. Generation of C Floating- and Fixed-Point code is available. Hardware imple-

mentation on ASICs4 using Lopez’s Sums-of-Products is possible. However, no other targets,

such as Field Programmable Gate Arrays, are supported. Moreover, Lopez’s algorithms are

based on non-rigorous dynamic range of Fixed-Point variables.

We see that while the main structure of the code generator is defined, it misses numerous

basic bricks and could take advantage of several improvements of existing functionalities.

Moreover, before this thesis some parts of the generator were implemented in Matlab while

others were written in Python.

In the following we give a brief overview of the Specialized Implicit Form and its functionalities.

For a full description we refer the reader to [4, 6].

3.2 Specialized Implicit Form

The idea behind the Specialized Implicit Form is that for any structure it is not complicated to

determine the state variables (those that are saved from one iteration to another) and to reflect

the order of computations (additions and multiplications) in matrix form. Then, we can say that

any MIMO LTI system is characterized by the input u, output y, state x (for IIR systems) and

temporary t vectors:



J 0 0
−K In 0
−L 0 I p







t(k+1)

x(k+1)

y(k)


=




0 M N
0 P Q
0 R S







t(k)

x(k)

u(k)


 (3.1)

where

• u(k) represents the q inputs, and y(k) the p outputs;

• x(k+1) is the n states stores at step k;

4Application-Specific Integrated Circuits

45

CHAPTER 3. TOWARDS RELIABLE IMPLEMENTATION OF DIGITAL FILTERS

• t(k+1) is the l intermediate variables in the calculations of step k (intermediate values

that are used only on step k but not stored form one step to another like the states);

• J ∈ Rl×l , K ∈ Rn×l , L ∈ Rp×l , M ∈ Rl×n, N ∈ Rl×q, P ∈ Rn×n, Q ∈ Rn×q, R ∈ Rp×n,

S ∈Rp×q are coefficient matrices;

• by construction, the matrix J is lower triangular with 1 on the diagonal and denotes the

order of computations for a structure.

The diagonal matrix on the left side of the implicit equation (3.1) allows us to describe

the sequence of computations within a filter. For example, let y← m2(M1u) be computed as

t← M1u and then y← m2t. So this sequence is described as
(

I 0
−m2 1

)(
t
y

)
=

(
M1

0

)
u. (3.2)

Coefficients of a filter described with (3.1) can be regrouped into a matrix Z:

Z :=


−J M N
K P Q
L R S


 . (3.3)

The minus signs “−” in (3.1) and (3.3) are used as a simple convention that simplifies derivation

of certain sensitivity measures for SIF.

The matrix Z has a sparse nature, and possesses either trivial coefficients such as 0, 1, −1

and ±2n (n > 0) or non-trivial coefficients that correspond to the coefficients of the structure that

is described with the SIF.

The computations associated to (3.1) are ordered from top to bottom, associated in a one to

one manner to the following system of equations:




Jt(k+1) = Mx(k) + Nu(k)

x(k+1) = Kt(k+1) + Px(k) + Qu(k)

y(k) = Lt(k+1) + Rx(k) + Su(k)

. (3.4)

Let J′ = J− I . Then the first line in (3.4) will be

(
J′+ I

)
t(k+1)= Mx(k)+Nu(k) (3.5)

t(k+1)=−J′t(k+1)+Mx(k)+Nu(k). (3.6)

We obtain that vector t depends on itself. However, this is not a problem since J′ is strictly lower

triangular and the computation of ith element of the temporary vector ti(k+1) depends only on

t j(k+1) with j < i. This substitution will be useful further in this thesis.

46

3.2. SPECIALIZED IMPLICIT FORM

Specialized
Implicit
Form

Direct
Forms

⇢ operator

State-Space

Transfer
FunctionLGS

LCW

Figure 3.2: Conversion possibilities between SIF and other filter representations. Straight lines
denote exact transformations, dotted lines denote error-prone computations.

3.2.1 SIF, State-Space and Transfer Function

Any LTI structures can be described with SIF. For instance, for any state-space system
{

x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)+Du(k)
(3.7)

the equivalent SIF is given with P = A,Q = B,R = C,S = D where J,K,L, M, N are empty

matrices, as a state-space structure has no temporary variables (l = 0).

Conversely, any SIF {J,K, . . .S} is equivalent in infinite precision to a state-space filter (3.7)

with:

A = KJ−1M +P, B = KJ−1N +Q,

C = LJ−1M +R, D = LJ−1N +S.
(3.8)

This transformation to the state-space structure often helps to simplify the analysis of SIF.

Moreover, it serves to compute the transfer function that corresponds to a filter described with

SIF: once a filter described with SIF is transformed to a state-space using (3.8), we can apply

classical formula

H(z)= D+C (zI − A)−1 B (3.9)

and compute the transfer function matrix. Thus, we can determine the frequency domain

representation of a filter.

However, an accuracy issue arises: the computations in both (3.8) and (3.9) are generally

not performed exactly, and in some cases their naive floating-point evaluation may yield to

significant roundoff errors. Thus, the computed transfer function may not exactly correspond to

the initial structure. We will address this issue in our contributions in Chapter 5.

The possibilities of conversions between SIF and filter structures before our work are

illustrated on Figure 3.2.

47

CHAPTER 3. TOWARDS RELIABLE IMPLEMENTATION OF DIGITAL FILTERS

t = yA

uB = t yBuA

HBHA

Figure 3.3: Simple cascade using SIF

3.2.2 Cascades of SIF

Consider two systems: HA = {JA,K A, . . . ,SA} with inputs uA and outputs yA; and HB =
{JB,KB, . . . ,SB} with inputs uB and outputs yB. If the size of yA is equal to the size of uB, then

the systems can be cascaded, i.e. the outputs of the first system are reconnected with inputs of

the second system.

Using SIF, this classic cascade can be done by adding a new temporary vector t(k+1) := yA(k),

and then replacing everywhere uB(k) by t(k+1). In other words, the outputs of the system HA

and inputs of HB will pass to the temporary variable. This process is illustrated on Figure 3.3. By

writing corresponding SIF equations (we refer the reader to [4, 98] for a step-by-step description)

we can obtain that a cascaded SIF has the following coefficient matrix:

ZC =




−JA 0 0 MA 0 N A

LA −I 0 RA 0 SA

0 NB −JB 0 MB 0
K A 0 0 P A 0 QA

0 QB KB 0 PB 0
0 SB LB 0 RB 0




. (3.10)

We refer the reader to [4, 98] for more detailed description of SIF properties.

3.3 Conclusion

Considerable amount of work was done in the foundation and development of a reliable automatic

filter code generator. However, the generator still lacks its kernel functionality for the reliable

implementation in FxP Arithmetic. Some work should be done towards a better way to represent

any structure with the SIF. In the following we are going to seek to improve the generator, extend

its functionalities and provide kernel algorithms for the reliable implementation of linear filters in

the FxP Arithmetic. On top of that, we aim at providing a single tool that incorporates all stages

of the generator.

48

PART II
IMPROVEMENTS TO THE

SPECIALIZED IMPLICIT FORM

49

CHAPTER 4
SPECIALIZED IMPLICIT FORM FOR

LATTICE WAVE DIGITAL FILTERS

T
o improve and further develop the functionalities of the unifying framework, we started

by describing a new structure with the Specialized Implicit Form (SIF) representation.

We chose Lattice Wave Digital filters [99] (LWDF) as the target structure. As we shall

see, these Single Input Single Output filters have numerous advantages and are widely used in

practical applications. Lattice Wave algorithms are usually described with block-diagrams, and

their coefficients are computed not with the transfer function but with a bilinear transformation of

the analog Lattice Wave filters [18], i.e. via mapping the analog plane into the digital plane.

In this rather technical Chapter we show how to convert LWDF to SIF, i.e. express in the

analytical SIF representation the order of computations in LWDF block diagrams. First, out of

the coefficients of LWDFs we need to design the realization, i.e. determine which basic building

blocks of LWDF to use (this will depend on the coefficient values), their order, etc. Then, we will

need to express the computations of the overall LWDF in SIF. We propose a generic algorithm

that, given the coefficients of LWDFs, performs those two tasks “on the fly” and returns the

corresponding SIF realization.

We must admit that this Chapter is extremely technical in the sense that it is full of subtle

manipulations with graph theoretical and analytical representations of filters. We first show

how data-flow graphs are usually interpreted in SIF formalism. However, to facilitate several

sub-steps of the conversion algorithm, we will have to come up with a modification of the usual

interpretation algorithms.

This work led to a publication at the European Signal Processing Conference (EUSIPCO)

in 2015 [7].

4.1 Lattice Wave Digital Filters

LWDF is a class of IIR digital filters that have several good properties, such as stability imple-

mentation, possibility of suppression of parasitic oscillations [99] and possibility of construction

51

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

z�1

�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�2

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

Stage nStage 3

�6

�5 �2·n�1

�2·n

OUT1INP1

z�1

�0

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�3

�4

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�2·(n�1)

�2·(n�1)�1

Stage 0

Stage 2 Stage (n � 1)

+

Low-pass

Input

n =
N � 1

2

1/2

1/2

+

�1

High-pass

Stage 1

Figure 4.1: Block diagram of a N th order LWDF filter.

of linear-phase designs [100]. LWDF can be either derived from analog reference filters [99] or

using explicit formulas [101].

The LWDF structure is highly modular and has can be easily parallelized, which makes it

suitable for Very Large Scale Implementations (VLSI). Its stability qualities [99] make it a good

candidate for adaptive filtering [102] and Hilbert transformations design [103].

The general block diagram of the LWDF is illustrated on Figure 4.1. In its block-diagram, an

LWDF is represented by two parallel branches which realize all-pass filters [22, 104]. An all-pass

filter has its magnitude response equal to one for all frequencies, so it treats all frequencies

identically with respect to gain. In terms of the transfer function form, all-pass means that all

poles and zeros come in conjugate reciprocal pairs [22].

The basic bricks of each branch are called two-port adaptors [22]. Each adaptor contains

52

4.1. LATTICE WAVE DIGITAL FILTERS

�

OUT1

OUT2

INP1

INP2

= +

+ +

OUT2

INP1 INP2

↵

OUT1

Type 3: �1/2  � < 0

�1

�1

�1

OUT1

+INP1 INP2

↵ +

+
OUT2

Type 4: �1 < � < �1/2

�1

�1

�1

+

+ +

OUT2

INP1 INP2

↵

OUT1

Type 2: 0 < �  1/2

�1

OUT1

+INP1 INP2

↵ +

+
OUT2

Type 1: 1/2 < � < 1

�1

�1

Figure 4.2: Two-port adaptor structures, for which an actual multiplier factor α is computed out
of γ using Table 4.1.

three adders and one multiplier. According to [101], the multiplier coefficients γ must fall into

the interval −1< γ< 1 to guarantee the stability of the LWDF filter. To simplify the multipliers,

it was proposed to use Richard’s structures for the adaptors [99]. The dynamic range of γ

is divided into four parts, and four different adaptor structures are used depending on the

value of γ. This way multiplication by 0<α≤ 1/2 (instead of γ) can be optimized in hardware

implementations [99]. The block diagrams1 of the two-ports are illustrated on Figure 4.2 and the

conventional correspondence between the γ and α coefficients is summarized in Table 4.1.

Type γ range Value of α

1 1/2< γ< 1 α= 1−γ
2 0< γ≤ 1/2 α= γ
3 −1/2≤ γ< 0 α=

∣∣γ
∣∣

4 −1< γ<−1/2 α= 1+γ

Table 4.1: γ to α conversion for different γ ranges.

The transfer function of the low-pass LWDF can be expressed through the transfer functions

of two stable all-pass filters corresponding to the upper and lower branch:

H(z)= 1
2

(H1(z)+H2(z)) , (4.1)

1Here we used the “−1” on the data-flow arcs to indicate a change of sign before the addition.

53

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

where H1(z) and H2(z) are stable all-pass filters of upper and lower branches. The frequency

response can be written as

H
(
e jωT

)
= 1

2

(
e j]H1(ωT) + e j]H2(ωT)

)
(4.2)

where]H1(ωT) and]H2(ωT) are the phase responses of H1(z) and H2(z) respectively.

Therefore the magnitude of overall filter is limited by 1.

It was shown in [99] that in order to make sure that only one passband and only one stop-

band occur, the orders of the upper and lower branches must differ by one. Therefore the overall

order n of the filter is odd. The high-pass filter may be simultaneously obtained by changing the

sign of the all-pass lower branch. Band-pass and band-stop filters are obtained by cascading

low- and high-pass filters.

Usually, wave structures are derived from analog filters: first, a reference analog filter is

designed out of frequency specifications and then it is transformed to a digital filter. For several

common filter design methods, such as Butterworth, Cauer (Elliptic) and Chebyshev, explicit

formulas for LWDF coefficients exist [101].

Due to their good qualities, LWD filters are considered in numerous different applications,

including studies on linear-phase structures [105], design of multiplierless LWDFs [106] and

energy-efficient structures [107]. However, all studies on lattice wave structures implementa-

tion in finite word-length arithmetic are performed a posteriori, i.e. when the implementation

parameters are known [108]. Implementation of LWDF is often based on two- or three-step

algorithms: first, a coefficient quantization scheme based on solving optimization problems for

infinite-precision filter models is developed, and then it is adjusted for a finite-precision filter.

These models are specific to the LWDF and are not really suitable for a fair comparison with

other structures. Hence, the problem in front of us can be formulated as:

Problem
Given a set of coefficients γ that correspond to a Lattice Wave Digital filter, determine its

analytical SIF representation as the set of coefficient matrices J, . . . ,S.

4.2 A LWDF-to-SIF conversion algorithm

The main idea is to exploit the modularity of the LWDFs. We propose to first divide the structure

into small “building blocks”. Then, manually translate data-flow graphs of those “building blocks”

to SIF representation (as we shall see, there will by only a few types of blocks, so the work is

not time-consuming). Finally, we can build the SIF representation for the overall filter by simply

cascading the SIFs of corresponding “building blocks”. In the following we give details of this

rather technical process.

54

4.2. A LWDF-TO-SIF CONVERSION ALGORITHM

Subsystem

Stage

Branch

Top branch

Bottom branch

z�1

�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�2

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

Stage nStage 3

�6

�5 �2·n�1

�2·n

OUT1INP1

z�1

�0

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�3

�4

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�2·(n�1)

�2·(n�1)�1

Stage 0 Stage 2 Stage (n � 1)

+

Low-pass

Input

n =
N � 1

2

1/2

1/2

+

�1

High-pass

Stage 1

Figure 4.3: Division of a LWDF structure into subsystems, stages and branches.

As seen on Figure 4.1, a LWDF consists of two branches, and each branch is a cascade of

stages. Each stage may be considered as a cascade of subsystems of two types, which are

shown on Figure 4.4. In a stage there may be one or two subsystems, no more and no less. We

denote a subsystem with 1 input and 1 output as Type A. The subsystem with 2 inputs and 2

outputs is denoted Type B. The overall decomposition of a LWDF into branches, stages and

subsystems is illustrated on Figure 4.3.

Depending on the value of the coefficient γ, and therefore the type of 2-port adaptor, we

obtain 8 possible subsystems (they are our “building blocks”). For example, the Type A subsystem

with adaptor of Type 1 will be called Type 1-A, etc.

55

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

z�1

�
OUT1

OUT2INP1

INP2

(a) Type A

OUT1

INP1

�
z�1

(b) Type B

Figure 4.4: Subsystems of Type A and B built out of two-port adaptors.

Given the filter’s coefficients γi, the conversion algorithm can be divided into four steps:

1. According to the value of the coefficients γi, deduce the SIFs for basic brick subsystems;

2. Cascade the subsystems into stages;

3. Cascade the stages into the lower and upper branches;

4. Combine the two branches into the final system.

In the following we describe the algorithms for each stage.
Subsystem conversion: this can be done by applying SIF notation to the block diagrams of

the subsystems. Data-flow graphs for the Type 1-A and 1-B subsystems are given on Figure 4.5.

For a complete reference on all subsystems, see Appendix 1. We have annotated the graphs in

the following way:

• results of additions and multiplications are temporary variables;

• delayed variables are states;

+

+

+

↵

z�1

x(k + 1)

�1u1(k) u2(k)

y1(k) y2(k)

�1

t1

t2

+

+

+

↵ z�1

u1(k)

y1(k) x(k + 1)

x(k)

t2

t1

�1

�1

(a) Type 1-A (b) Type 1-B

Figure 4.5: Subsystems for adaptors of Type 1.

By representing these annotated block diagrams for Type 1-A and 1-B subsystems as

equations, we obtain:

H1A





tA
1 (k+1) = uA

1 (k)−uA
2 (k)

tA
2 (k+1) = αtA

1 (k)+uA
2 (k)

xA (k+1) = tA
2 (k+1)

yA
1 (k) = −tA

1 (k+1)+ tA
2 (k+1)

yA
2 (k) = xA (k)

H1B





tB
1 (k+1) = uB

1 (k)− xB(k)
tB
2 (k+1) = αtB

1 (k)+ xB(k)
xB(k+1) = tB

2 (k+1)
yB(k) = −tB

1 (k+1)+ tB
2 (k+1)

, (4.3)

56

4.2. A LWDF-TO-SIF CONVERSION ALGORITHM

HBHA

uA
1 uA

2

yA
2yA

1

yB

uB

Figure 4.6: Connection between subsystems to form a Stage of a LWDF.

which can be represented as:

H1A :




1 0 0 0 0
−α 1 0 0 0
0 −1 1 0 0
1 −1 0 1 0
0 0 0 0 1







tA
1 (k+1)

tA
2 (k+1)

xA (k+1)
yA

1 (k)
yA

2 (k)


=




0 0 0 1 −1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0







tA
1 (k+1)

tA
2 (k+1)
xA (k)
u1(k)
u2(k)


 (4.4)

H1B :




1 0 0 0
−α 1 0 0
0 −1 1 0
1 −1 0 1







tB
1 (k+1)

tB
2 (k+1)

xB(k+1)
yB(k)


=




0 0 −1 1
0 0 1 0
0 0 0 0
0 0 0 0







tB
1 (k+1)

tB
2 (k+1)
xB(k)
u1(k)


 .. (4.5)

Thus, we can deduce the SIF matrices Z1A and Z1B that correspond to the systems H1A and

H1B:

Z1A =




−1 0 0 1 −1
α −1 0 0 1
0 1 0 0 0
−1 1 0 0 0
0 0 1 0 0


 , Z1B =



−1 0 −1 +1
α −1 1 0
0 1 0 0
−1 −1 0 0


 . (4.6)

Cascade subsystems into stages: we need to perform a so-called “circular” cascade of a

subsystem of Type A (MIMO system with 2 inputs and 2 outputs) with a subsystem of Type B

(SISO system) in the following way: output yA
2 (k) is connected with input uB(k) and output yB(k)

is connected with input uA
2 (k). Figure 4.6 graphically illustrates the operations that need to be

performed. This operation cannot be done using the classic cascade formula (3.10).

Hence, we propose a new algorithm for such a circular cascade. According to the cascading

principle from Chapter 3 Section 3.2.2, each input and output of the subsystems will eventually

pass into the temporary vector of the final SIF. To facilitate the manipulation of subsystems and

minimize the number of trivial temporary variables (“trivial” in the sense of simple reassignment,

e.g. t(k+1) = u(k+1)) in the SIF matrix after cascades, we came up with a technical “trick”.

We modify the subsystem conversion such that intermediate subsystems no longer represent

meaningful filters in SIF representation but some systems with the input and output variables

passed into the temporary vector. Then, cascading two subsystems boils down to simply writing

the equations corresponding to both subsystems together and assigning a few temporary

variables. In the end of the general conversion algorithm we “reconnect” the output of the filter

57

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

with the corresponding temporary variable and “assign” the input variable to the corresponding

temporary variable.

This convention is just a technical “trick” that facilitates the automation of the conversion

algorithm and does not change in any manner the order of computations of the initial system.

Remark 4.1. The reader might rightfully find it frustrating to revisit and change the subsystem

conversion algorithm. However, the revisited conversion will facilitate the cascading process.

Subsystem conversion revisited: our approach is better explained with an example. Con-

sider again a Type 1 adaptor, for which we build intermediate subsystems H1A and H1B.

Instead of (4.3) we write:

H1A





tA
u1 (k+1) = 0

tA
u2 (k+1) = 0
tA
1 (k+1) = tA

u1 (k)− tA
u2 (k)

tA
2 (k+1) = αA t1(k)+ tA

u2 (k)
tA

y1 (k+1) = −tA
1 (k+1)+ tA

2 (k+1)
tA

y2 (k+1) = xA (k)
xA (k+1) = tA

2 (k+1)

H1B





tB
u (k+1) = 0

tB
1 (k+1) = tB

u1 (k+1)− xB(k)
tB
2 (k+1) = αB tB

1 (k)+ xB(k)
tB

y (k+1) = −tB
1 (k+1)+ tB

2 (k+1)
xB(k+1) = tB

2 (k+1)

. (4.7)

Here we replaced all occurrences of the input u by temporary variables that will be later con-

nected with outputs if other subsystems during the cascade. The computations that correspond

to the outputs are also moved into a temporary vector.

New circular cascade algorithm: now the circular cascade boils down to the manipulation

with the temporary variables as shown on Figure 4.7.

HBHA

tA
u1

tA
u2

= tB
y

tB
u = tA

y2

tA
y1

Figure 4.7: Cascade of revisited subsystems is just manipulation over temporary variables.

Formally, to cascade systems H1A and H1B into the system HC we do the following:

• regroup all the vectors into the cascaded system HC with coefficients ZC as follows:

ZC =




−JA 0 MA 0 0
0 −JB 0 MB 0

−K A 0 P A 0 0
0 −KB 0 PB 0
0 0 0 0 0




(4.8)

• do the circular connection by assigning tB
u = tA

y2
and tA

u2
= tB

y in the resulting system HC.

58

4.2. A LWDF-TO-SIF CONVERSION ALGORITHM

The last step is possible thanks to the “trick” with the temporary variables in revised basic

brick conversion. We can compare this new cascading to the classic formula from Chapter 3

Section 3.2.2 and see that in the new cascading algorithm there are no additional temporary

variables added to do the connection of inputs/outputs.

However, the drawback of this approach is that after the circular cascade matrix JC looses

its lower triangular form: the assignment tA
u2

= tB
y violates the lower-triangularity of JC.

The lower-triangular form of the matrix J in any SIF denotes the order of operations in the

filter: first, t1 is computed, then t2 may depend on t1 and so on. In other words, ti depends only

on tk with k < i. We can interpret J − I (we subtract the identity matrix to avoid cycles) as a

Directed Acyclic Graph. In this graph ti are the vertices and dependencies between temporary

variables are edges. Therefore, a topological sort [109] of the graph can be performed: the

vertices of the graph are ordered such that for every directed edge tktl for vertex tk to vertex tl ,

tk comes before tl in the ordering. We perform Depth-First Search [109] sort to order the graph,

i.e. return matrix J to its lower-triangular form. The sorting algorithm guarantees by construction

that the cascaded system describes correctly the order of computations in the LWDF structure.

The Algorithm II.1 illustrates our approach for the cascade of subsystems.

Algorithm II.1: cascadeSubsystems: cascade of LWDF subsystems into a stage
Input: HA (with 2 inputs, 2 outputs and lA intermediate variables)

HB (with 1 input, 1 output and lB intermediate variables)
Output: HC (with 1 input, 1 output and lA + lB intermediate variables)

1 {JC,KC, . . . ,SC} ← apply (4.8) upon HA and HB
2 iuB ← index of tB

u in JC

3 i y2
A ← index of tA

y2
in JC

4 iu2
A ← index of tA

u2
in JC

5 i yB ← index of tB
y in JC

6 JC(iuB , i y2
A)← 1

7 JC(iu2
A , i yB)← 1

8 JC ← TopologicalSort(JC)
9 return SIF ({JC,KC, . . . ,SC})

Cascading stages into branches: analogously, it is straightforward to derive an algorithm

for the classic sequential cascade of our revisited subsystems, see Algorithm II.2. Based on this

algorithm, the cascade of stages into branches can be derived. At this point we can "reconnect"

the input variable u(k) of the branch with the first element of the vector t(k+1) (which implicitly

represents the input). For this, we just need to set t1(k+1)= u(k). See Algorithm II.3 for details.

59

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

Algorithm II.2: sequentialCascade: sequential cascade of two SIFs
Input: HA (with 1 input, 1 output and lA intermediate variables)

HB (with 1 input, 1 output and lB intermediate variables)
Output: H (with 1 input, 1 output and lA + lB intermediate variables)

1 {J,K, . . . ,S} ← apply (4.8) upon HA and HB

2 i yA ← index of tA
y in J

3 iuB ← index of tB
u in J

4 J(iuB , i yA)← 1
5 JC ← TopologicalSort(JC)
6 return {J,K, . . . ,S}

Algorithm II.3: cascadeStages: cascade of LWDF stages into a branch
Input: stages H i, i = 1, . . . , s (with 1 input, 1 output and l i intermediate variables)
Output: branch H (with 1 input, 1 output and

∑s
i=1 l i intermediate variables)

1 H ←H1
2 for i ← 2 to s do
3 {J,K, . . . ,S}← sequentialCascade(H ,H i) // here we use Algorithm II.2
4 H ← SIF ({J,K, . . . ,S})
5 end
6 N(1,1)← 1 // assign the input to the temporary variable
7 H ← SIF ({J,K, . . . ,S})
8 return H

Cascading the branches into the LWDF filter: finally, we combine the outputs of the top

and bottom branches to obtain a lowpass or highpass filter (see Figure 4.1). Denote by H1 the

top branch (with 1 input, 1 output, l1 intermediate variables) and H2 the bottom branch (with 1

input, 1 output, l2 intermediate variables). By construction, the outputs of the branches are zero

vectors and the actual outputs are stored in the last element of the temporary vector. Then, the

idea is to add a temporary variable, which reflects the addition (subtraction) of two branches

and then to link the output of the combined system with this new temporary variable.

Then, the SIF for a LWDF filter is:

Z =




−J1 0 0 M1 0 N1
0 −J2 0 0 M2 N2
t1 t2 −1 0 0 0
K1 0 0 P1 0 0
0 −K2 0 0 P2 0
0 0 −1

2 0 0 0




(4.9)

60

4.2. A LWDF-TO-SIF CONVERSION ALGORITHM

where

t1 = (0, . . . ,0,︸ ︷︷ ︸
l1

1) t2 =





(0, . . . ,0,︸ ︷︷ ︸
l2

1) if highpass

(0, . . . ,0,︸ ︷︷ ︸
l2

−1) if lowpass
. (4.10)

Algorithm II.4 illustrates this final stage of the conversion.

Algorithm II.4: cascadeBranches: cascade of LWDF branches into a lowpass/highpass
filter

Input: H1 top-branch (with 1 input, 1 output and l1 intermediate variables)
H2 bottom-branch (with 1 input, 1 output and l2 intermediate variables)

Output: SIF H

1 t1 ← (0, . . . ,0,1) // with l1 zeros
2 t2 ← (0, . . . ,0,1) // with l2 zeros
3 if lowpass then
4 t2 ←−t2
5 end
6 {J,K, . . . ,S} ← apply (4.9) upon H1, H2 and t1, t2
7 H ← SIF ({J,K, . . . ,S})
8 return H

Final algorithm Given a filter’s coefficients γi, i = 0, . . . ,n the conversion algorithm can be

divided into four steps:

1. Deduce the SIF representation for each subsystem according to its γi value using the

revised conversion algorithm;

2. Cascade the subsystems into stages using Algorithm II.1;

3. Cascade the stages into top and bottom branches using Algorithm II.3 which is based on

Algorithm II.2;

4. Combine the two branches into the final system using Algorithm II.4.

Remark 4.2. The reader might have noticed that there may occur some amount of trivial

temporary variables that are just assignments. In order to remove them, we apply a simplification

algorithm which nevertheless preserves the initial order of computations in the LWDF structure.

61

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

γi 0.72689 -0.79125 0.51319 -0.97439 0.30983 -0.62505 0.77261 -0.90732 0.36682
αi 0.27311 0.20875 0.48681 0.02561 0.30983 0.37495 0.22739 0.09268 0.36682

Type 1 4 1 4 2 4 1 4 2

Table 4.2: Initial coefficients of LWDF and adaptor settings.

4.3 Conversion example

To provide a conversion of LWDF to SIF we must first obtain the coefficients of the Lattice Wave

structure. We do this using the Lattice Wave Digital Filter Toolbox for Matlab [110] that was

developed in TU Delft. Naturally, we implemented our conversion algorithm using Matlab as

well2. Using Matlab here is no danger to reliability because the conversion algorithm just copies

data and does not perform Floating-Point computations.

Consider the specifications of the SISO low-pass filter from Section 1.4.3 in Chapter 1. A

9th order LWDF filter satisfying these specifications was obtained using the LWDF Toolbox. The

first digits of its coefficients γi and the actually implemented adaptor coefficients αi are given in

Table 4.2. Applying the conversion algorithm described above, we obtain the SIF with coefficient

matrix Z given by

Z =







(4.11)

where blue and pink rectangles represent ’-1’ and ’1’ respectively and circles are the non-trivial

coefficients αi. The only triangle represents the final division by two (i.e. just a shift operation) of

the sum of outputs of lower and upper branches (see Figure 4.1).

Remark 4.3. Given the structure coefficients, no computational errors are induced during the

conversion algorithm, since our algorithm simply copies them into right places in SIF matrices.

2However, we also embedded the conversion algorithm into the filter code generator tool written in Python. It is
based on Matlab API for Python, i.e. an installation of Matlab is required.

62

4.4. CONCLUSION

k

Im
pu

ls
e

re
sp

on
se

h
(k
)

0 20 40 60 80 100

−0.04

−0.02

0

0.02

(a) Impulse response of the LWDF
provided by the LWDF Toolbox

k

Im
pu

ls
e

re
sp

on
se

h
(k
)

0 20 40 60 80 100

−0.04

−0.02

0

0.02

(b) Impulse response of the LWDF
realization in SIF.

Figure 4.8: Comparison of the impulse responses of the LWDF and the corresponding SIF.

We can compare the SIF realization with the reference Lattice Wave filter by several means.

For instance, we may trace the impulse response of both systems and compare them. Figure 4.8

demonstrates that impulse responses (at least the first 100 terms) are identical.

4.4 Conclusion

The Lattice Wave Digital filter structure has been well-studied over the years and is widely used

in real-life applications. However, a fair comparison with other structures is not trivial due to the

block diagram description of the filter.

We provided an algorithm that without any computational errors represents any LWDF

realization in the SIF. Using LWDF coefficients, our task was to first design a LWDF realization

and then represent it as an algorithm in the SIF. For this technical task we provided new system

cascade algorithms for SIF. Our algorithms ensure that the initial numerical properties are

preserved by construction in SIF representation.

Now, using SIF capabilities we can compare this structure fairly with other filter realizations.

We refer the reader to [7] for an example of a comparison of LWDF with Direct Forms and state-

space structures according to several classic signal processing quality measures. This work

permitted us to deeper understand the relationship between data-flows and SIF representation.

63

CHAPTER 5
GENERAL ALGORITHMS FOR CONVERSION

A
fter taking a closer look at the Specialized Implicit Form and our "hands-on" experience

with the creation of SIF corresponding to Lattice Wave filters, we are ready to propose

several improvements to this unifying framework.

Before this thesis the usual user scenario of our code generator started with the choice

of possible structures from a dictionary of filter realizations. Obviously, it would be too time-

consuming to write algorithms for conversion of all existing structures to SIF. Another typical

scenario is when we need to analyze an already existing structure described with a data-flow.

Hence, we developed and implemented an algorithm for the conversion of an arbitrary linear

filter described as a data-flow in Matlab Simulink format to SIF representation.

Now we can take any data-flow describing a linear filter and obtain a SIF representation. For

example, we can convert an existing Simulink design of a LWDF to SIF. The main difference in

this case is that we will need to design the actual data-flow graph, while the algorithm from the

previous Chapter automatically created the LWDF design out of the coefficients.

The Simulink-to-SIF conversion is a significant improvement to the framework functionality,

since it makes the comparison of different linear filters practical. We shall detail this point in

Section 5.1. This work led to a publication [12] at the IEEE SiPS conference in 2016.

Second, we proposed an algorithm for the Multiple Precision (MP) computation of the

transfer function of any linear filter given in SIF representation. First we compute a Floating-Point

approximation of the transfer function and then rigorously bound the error. To bound the error, we

use a well-known object, the Worst-Case Peak Gain, which is just a `1-norm of filter’s impulse

response. We shall detail this point in Sections 5.2 and 5.3. This work is a part of contribution

that was published at the 24th IEEE ARITH Symposium in 2017 [9].

5.1 Conversion of data-flow graphs to SIF

Matlab Simulink is a widely used software tool for the model-based design of digital systems, their

simulation and implementation. Engineers worldwide use Simulink for academic and industrial

applications, including some for reducing fuel emissions, developing safety-critical autopilot

65

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

z�1u(k) u(k � 1)

(a) delay

↵
u(k) ↵u(k)

(b) multiplication (gain)

u1(k)

u2(k) + u1(k) + u2(k)

(c) addition

Figure 5.1: Basic blocks in Simulink block-diagrams.

software, and designing wireless LTE systems. While not giving any proof of the accuracy or

guarantee on the finite-precision implementations, Simulink is no doubt a state-of-the-art tool for

modeling linear filters. This conversion will enable the comparison and implementation of any

data-flow describing linear filters.

5.1.1 Simulink

Simulink mainly uses a graphical block diagram to describe the model. The building blocks of

such diagrams are adders, multipliers and delays:

Internally, the block diagram is stored using extensible markup language (xml) (more specifi-

cally in .slx format). In this format the <System> tag contains the model description, and the

<Block> and <Line> tags inside hold blocks of elements and their interconnections.

y(k)

x(k)x(k+1)

t(k+1)
1

1

u1(k)
5

2
u2(k)

Z-1 6

3

Figure 5.2: A very simple Simulink block diagram.

Consider the very simple data-flow diagram given on Figure 5.2. It consists of gain, delay

and sum blocks. All the information on the block parameters can be easily retrieved by parsing

the xml file. For instance, its sum and gain operators are described in xml with following code:

<Block BlockType="Sum" Name="Sum" SID="3">
<P Name="Ports"> [2, 1] </P>
<P Name="Inputs"> |++ </P>
...
</Block>

66

5.1. CONVERSION OF DATA-FLOW GRAPHS TO SIF

<Block BlockType="Gain" Name="5" SID="4">
<P Name="Gain">5</P>
...
</Block>

In this example, the sum block has the identification SID=3 and the gain with constant 5 has

the identification SID=4. The output of the gain is connected into the sum operator with following

code:

<Line>
<P Name="ZOrder">7</P>
<P Name="Src">4#out:1</P>
<P Name="Dst">3#in:1</P>
</Line>

We see that all the information concerning the model can be easily extracted from the xml file.

Thus, the problem in front of us can be formulated as follows:

Problem
Given a file that contains a Simulink model of a data-flow describing a linear digital filter,

return a SIF corresponding to this data-flow.

5.1.2 Simulink-to-SIF conversion algorithm

Our goal is, given a block-diagram described with a Simulink model and stored in a file, to

identify all temporary and state variables, as well as to determine the coefficients of the Sums-

of-Products by Constants (SOPCs) that constitute the system. In order to do that, we assume

the following set of rules:

• since each delay element represents a computation that is saved from one time instance

to another, in SIF we note it as a state variable;

• the gain elements represent the coefficients of variables in the corresponding SOPC;

• from each sum element, we can deduce one equation (as a sum of its inputs);

• all equations produced by a sum block that feed a delay are state equations;

• all equations by a sum block connected to the model output are output equations;

• the others (that feed another sum blocks) are intermediate equations.

67

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

As each Simulink block has its identification number (SID), we can easily label each block

and deduce the equation for each sum block by listing all connected blocks at their inputs. All

chained sum blocks can be gathered into one sum with several operands. Then we have a

system of equations that defines our model. In case of a subsystem present in the diagram, the

design is flattened before obtaining the block equations.

The most important consideration in the Simulink to SIF conversion is the order of the

computations. Different order of computations leads to different numerical properties after we

pass to finite-precision arithmetic. Therefore, when we represent a data-flow in SIF, we must

ensure that the order of computations stays the same.

For instance, the simple example of a block-diagram given in Figure 5.2 corresponds to the

following system of equations:





t(k+1) = 6 · x(k)+5 ·u1(k)

x(k+1) = 1 ·u2(k)

y = 3 · t(k+1)

(5.1)

From this system of equations, it is then straightforward to identify the matrices J, K, L, M, N ,

P, Q, R, S of the SIF. In our toy example J =
(
1
)
, L =

(
3
)
, M =

(
6
)
, N =

(
0 5

)
, Q =

(
0 1

)

and other matrices are null.

However, the order of labeling the temporary variables during the conversion can compromise

the lower triangularity of the matrix J. As in the case of Lattice Wave digital filters, we return J
to its lower-triangular form by interpreting J− I as the adjacency matrix of a Directed Acyclic

Graph (DAG). We perform a topological sort [109] of this DAG: if for some i the element ti

depends on t j with j > i, then element t j is placed before ti and corresponding changes in J
are done (along with changes in N , K and L). In other words, we restore the order of operations

up to some possible permutations of operations that do not depend on one another, for example

the ones that on the data-flow graph are parallel.

5.1.3 Conversion example

We implemented our algorithm in Python. It requires as only input a Simulink model description

file. Given some reference test results, we can automatically test the correctness of the SIF

representation via comparison (e.g. compare simulation output).

Consider the 3rd order Lattice filter described with Simulink block-diagram given on Figure 5.3.

Applying the general conversion algorithm, we obtain the SIF described with the following

68

5.2. CONVERSION OF ARBITRARY STRUCTURES TO TRANSFER FUNCTIONS

1

-0.2

Z-1 Z-1 Z-1

-0.357

-0.281 0.3570.2

0.281

1

Figure 5.3: Simulink diagram of a 3rd order Lattice filter.

coefficient matrix:

Z =




−1 0 0 0 0 0 −0.2 0 1
1 −1 0 0 0 0.281 0 0 0
0 −0.281 −1 0 0 1 0 0 0
0 1 0 −1 0 0 0 −0.357 0
0 0 0 0.357 −1 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

0.2 0 0 0 0 0 1 0 0




. (5.2)

We check that both representations are equivalent by comparing the outputs of both systems.

We perform some simulations of Simulink and SIF models in double precision floating-point

arithmetic. For example, Figure 5.4 shows the response of the Simulink model and of the

computed SIF realizations to a constant unit signal. The output seems to be the same. However,

since we have no control over double precision simulation in Simulink (what rounding is used,

whether Fused Multiply and Add is available, etc.), the outputs of Simulink and SIF simulations

may not be exactly the same. Figure 5.4c illustrates the difference between outputs of data-flow

and SIF simulations.

If the transfer function corresponding to the initial Simulink model is available, we can

compare it with the transfer function of the SIF realization. However, as described in Section 3.2.1

Chapter 3, rounding errors may occur during the computation of a transfer function for the SIF

realization. Thus, we need to improve the algorithm for conversion to the transfer function.

5.2 Conversion of arbitrary structures to transfer functions

Accurate determination of the transfer functions of arbitrary filters is important for two major

reasons:

• to analyze an already existing filter realization (e.g. a data-flow graph with its coefficients

is given but no information on the transfer function is available);

69

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

0 2 4 6 8 10

0

0.5

1

k

y
(k
)

(a) Simulink output

0 2 4 6 8 10

0

0.5

1

k

y
(k
)

(b) SIF output

·10−15

k

D
iff

er
en

ce

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

(c) Difference between outputs

Figure 5.4: Comparison of responses of Simulink and SIF models to a constant unit signal.

• during implementation, coefficients in a realization may be modified (scaled, quantized,

etc.). We must always test the properties of the corresponding transfer function: to check

stability of the modified filter, its spectral behavior, etc.

If the structure type is determined and well-studied, there may be known closed formulas

for the transfer function computation (e.g. Lattice Wave filters, state-space). For some struc-

tures, such as Direct Forms, determining corresponding transfer function is straightforward: the

structure coefficients are the same as those of the transfer function. Then, for example, after

quantization of the coefficients in the data-flow graph, the transfer function corresponding to

quantized filter can be easily computed.

However, if the structure type is not given, other approaches must be used. In [111, 112]

authors propose various algorithms for the determination of a transfer function by analyzing

the data-flow graph. However, no error bound with respect to a certain transfer function norm

is given. In Matlab Simulink, extraction of a model’s transfer function is based on sampling the

frequency response of the system and then interpolation. Obviously, such approach may be

prone to computational and approximation errors.

Therefore, our goal is to propose an approach for reliable computation of a transfer function

corresponding to an arbitrary linear data-flow graph. Reliable in the sense that the computed

transfer function is proven to satisfy some error bound (with respect to a certain given norm).

Since any linear data-flow graph can be represented as a SIF structure, it is enough to

propose a conversion algorithm for a SIF.

5.2.1 Conversion of a SIF to Transfer Function

For simplicity of demonstration, in this Chapter we consider only SISO systems, i.e. with 1 input

and 1 output. However, our reasoning is easily generalized for the case of MIMO filters.

70

5.2. CONVERSION OF ARBITRARY STRUCTURES TO TRANSFER FUNCTIONS

Let R = (J,K, . . . , s) be a realization of a filter described with a SIF. Its coefficient matrix is

Z =




−J M n
K P q
l r s


 (5.3)

where, since the system has 1 output, n and q are column vectors, l and r are row vectors and

s is a scalar. We seek to compute the transfer function H that corresponds to R.

As it was mentioned in Chapter 3, Section 3.2.1, a direct way to obtain the transfer function of

a given SIF is to first convert it to a discrete-time state-space representation S := {maA,b, c,d}

S

{
x(k+1) = Ax(k)+bu(k)

y(k) = cx(k)+du(k)
(5.4)

with

A = KJ−1M +P, b = KJ−1n+q, (5.5a)

c = lJ−1M + r, d = lJ−1n+ s. (5.5b)

System S has 1 input, 1 output and nx states.

Before this thesis (5.5a) and (5.5b) used to be evaluated with naive computations in Floating-

Point arithmetic without any considerations on rounding errors.

To avoid rounding errors during conversion to state-space, we propose to compute the

coefficients (A,b, c,d) exactly: matrix multiplications and additions can be done using rational1

arithmetic, and the inverse of matrix J can be computed exactly as well. Since J is lower-

triangular with 1 on the diagonal, its inverse J−1 can be found using forward descend. Therefore,

we can compute an exact inverse using rational numbers.

By applying the Z -transform on (5.4) [18], we obtain
{

zX (z) = AX (z)+bU(z)

Y (z) = cX (z)+dU(z)
. (5.6)

The transfer function H(z) is the ratio Y (z)
U(z) . First, we need to express X (z):

(zI − A)X (z)= bU(z) (5.7)

X (z)= (zI − A)−1bU(z). (5.8)

Then, for Y (z) we have

Y (z)= c(zI − A)−1bU(z)+dU(z) (5.9)

= (
c(zI − A)−1b+d

)
U(z). (5.10)

1In practice, we use dyadic rational arithmetic, i.e. the denominators are powers of two.

71

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

We obtain that the transfer function of the state-space S is

H(z)= c(zI − A)−1b+d. (5.11)

Thus, we may determine the SIF’s transfer function through the corresponding state-space

realization. This is not the only way but rather our technological choice. In the following we

propose an approach on the accurate computation of the transfer function corresponding to a

state-space realization.

5.2.2 Accurate computation of the transfer function of a state-space

The main bottleneck in the computation of (5.11) is the inverse (zI − A)−1. A commonly used

approach, e.g. in Matlab, is to find the inverse symbolically2 (with z as unknown) and compute the

transfer function coefficients using rational numbers. However, such approach is computationally

inefficient: the state-space system may be large and the transfer function may be required to

be computed for numerous times during the implementation. In practical implementations, e.g.

Matlab, we first get a symbolical expression for the transfer function and then the computations

are done in double precision. Obviously, numerical errors may occur but no error bound is given.

Another approach is to completely avoid the closed formula (5.11) for the transfer function

but try to bring the state-space realization to a canonical form using similarity transformations.

We remind the reader that canonical form of a state-space is directly based on the coefficients

of the transfer function. For example, this approach is implemented in Python library SciPy [113].

However, the canonical form is obtained by numerous similarity transformations, i.e. matrix

multiplications which are performed without any concern on rounding errors. As usual, no error

bound on a certain norm of the transfer function is given.

In most applications3, exact computation of the Transfer function is not required but an

approximation with a rigorous error bound (w.r.t. a certain given norm) on the transfer function is

enough. Since double precision might be not enough to ensure such an error bound, we propose

to perform the computations in Multiple Precision (MP) arithmetic. Therefore, the problem is

Problem

Given a small ε> 0, compute an approximation Ĥ on the transfer function H such that

∣∣H(z)− Ĥ(z)
∣∣< ε, ∀z ∈

{
e jω|ω ∈ [0;2π]

}
. (5.12)

We propose yet another closed formula for computation of the transfer function.

2By first setting all matrices to be symbolical expressions and then deducing a symbolical expression of the
inverse using classical algorithm (using minors and cofactors).

3In practical filter implementations some design margin is always present.

72

5.2. CONVERSION OF ARBITRARY STRUCTURES TO TRANSFER FUNCTIONS

Lemma 5.1. Let S = (A,b, c,d) be a state-space realization of a stable causal linear filter.

Suppose A ∈ Rnx×nx be diagonalizable with no multiple eigenvalues4. Let V ∈ Cnx×nx be its

eigenvalue matrix and let E ∈ Cnx×nx contain its associated eigenvalues {λi}1≤i≤nx on the

diagonal. Then the transfer function associated with the filter S can be written as a rational

function H(z)= b(z)
a(z) with

a(z)=
nx∏

j=1
(z−λ j), (5.13)

b(z)=
nx∑

i=1
(cV)i(V−1b)i

∏

j 6=i
(z−λ j)+d ·a(z). (5.14)

Proof. Consider the eigendecomposition VEV−1 of the matrix A:

H(z)= c(zI −VEV−1)−1b+d (5.15)

= cV (zI −E)−1V−1b+d (5.16)

= cV




1
z−λ1

. . .
1

z−λnx


V−1b+d. (5.17)

By explicitly expressing the scalar products, we obtain:

H(z)=
(
(cV)1

1
z−λ1

, . . . , (cV)nx

1
z−λnx

)



(V−1b)1
...

(V−1b)nx


+d (5.18)

=
nx∑

i=1
(cV)i(V−1b)i

1
z−λi

+d. (5.19)

By gathering all terms on the same denominator, we can easily obtain the closed formulas

(5.13)-(5.14). �

We shall remark that the accuracy of the computation of the transfer function relies on the

accuracy of the computation of its eigendecomposition and on the computation of the scalar

products. For the latter ones, it is not complicated to propose a MP algorithm that will satisfy a

certain a priori given error bound.

However, exhibiting a bound on the accuracy of the eigendecomposition is a non-trivial task.

There exist algorithms that perform all the computations in the eigendecomposition algorithm

with MP. Nevertheless, no sharp bound on the accuracy of computed MP eigenvalues has yet

4Analogously, the case of multiple eigenvalues can be considered.

73

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

S

¢S

cS

y(k)

by(k)

¢y(k)u(k)

Figure 5.5: ∆S is a difference between two filters.

been proposed. Therefore, for the moment, it is not possible to obtain the least required precision

of the internal computations in (5.13) and (5.14) that will yield (5.12).

We propose to iteratively increase the accuracy of the computed transfer function. Suppose

we have available MP basic bricks for matrix arithmetic and a MP eigensolver such that its

absolute error decreases when its working precision is increased. Then, increasing the precision

of the computation of Ĥ decreases its error
∣∣(H− Ĥ)(e jω)

∣∣ for all ω ∈ [0,2π].

In order to bound this error we propose the following iterative approach that goes through

four steps:

Step 1: we first compute the approximation Ĥ on the transfer function of S = (A,b, c,d) using

a MP eigendecomposition and MP computations for equations (5.13) and (5.14);

Step 2: we deduce the system Ŝ which exactly corresponds to the approximation Ĥ(z) using

the controllable canonical state-space [18], see Chapter 1 Section 1.5.2.

Step 3: we compute the state-space difference ∆S =S − Ŝ which is defined as the difference

between outputs of the two state-spaces (see Figure 5.5). No computational errors are induced

on this step, coefficients of ∆S are copied from S and Ŝ in the following manner:

∆A =
(
A 0
0 Â

)
, ∆b =

(
b
b̂

)
, (5.20a)

∆c =
(
c −ĉ

)
, ∆d = d− d̂. (5.20b)

Here the subtraction d− d̂ can be performed exactly using rational arithmetic.

Step 4: we compute a bound on the approximation error
∣∣(H− Ĥ)(e jω)

∣∣ for all ω ∈ [0,2π]:

analogously to the case of the state-space, we define the difference ∆H of the transfer functions

H and Ĥ. In other words, ∆H is just the transfer function of ∆S . The relationships between H,

Ĥ, ∆H and their corresponding state-space systems are illustrated on Figure 5.6.

In [114], it was shown that

∣∣∣∆H(e jω)
∣∣∣≤ sup

ω

∣∣∣∆H(e jω)
∣∣∣≤ ‖∆h‖1 ∀ω ∈ [0,2π] (5.21)

74

5.2. CONVERSION OF ARBITRARY STRUCTURES TO TRANSFER FUNCTIONS

SS

H

S

bH

cS� = ¢S

� = �H

Figure 5.6: Straight lines: exact transformations. Curved lines: MP transformation.

where ∆h is the impulse response of the system ∆S , and ‖∆h‖1 is its `1-norm. It is defined as

‖∆h‖1,
∞∑

k=0
|∆h(k)|. (5.22)

Remark 5.1. We bring the reader’s attention to the elegance with which (5.21) binds the errors

from the frequency domain with the errors in the time domain. Indeed, we can easily consider

the difference between H and Ĥ to be due to the quantization of filter coefficients. Then, to

evaluate the impact of the quantization upon filter’s spectrum, we just compute the `1-norm of

the difference filter ∆H. We are going to explain this approach in details in Chapter 8.

Obviously, (5.22) is in infinite sum and cannot be exactly computed in finite time. However,

in Chapter 6 we show how to compute it with arbitrary precision. Thus, we obtain an arbitrarily

precise bound on the error of the approximation Ĥ:
∣∣∣H(e jω)− Ĥ(e jω)

∣∣∣≤Θ, ∀ω ∈ [0,2π], (5.23)

where Θ= ‖∆h‖1 +εΘ and εΘ > 0 denotes the upper bound on the error of approximation of

‖∆h‖1, this bound can be arbitrarily small.

Hence, to ensure that for a small given ε the bound (5.12) is satisfied, we must ensure that

Θ< ε. This can be achieved by increasing the precision of the approximation of Ĥ.

We choose the precision of the computations based on an heuristic which increases the

compute precision in a loop and is, hence, reasonably fast and accurate but does not provide

any guarantee that the precision will eventually be enough. The result will always be reliable,

though.

Algorithm II.5 illustrates our approach: the initial precision INIT_PREC of the eigensolver is

increased by a factor PREC_FACTOR as long as the bound (5.23) is not satisfied. The process

will necessarily end if our assumptions on the eigensolver are satisfied.

Algorithm II.5 uses following routines that are not detailed in the manuscript but can be found

directly in the implementation:

• multiprec_eigendecomp for the computation of an eigendecomposition of a real matrix,

internal operations are performed with the precision given in argument;

75

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

• multiprec_tf for the computation of a transfer function as given in Lemma 5.1;

• tf2canonical for the exact construction of a canonical state-space system out of a

transfer function;

• l1norm algorithm for the computation of the `1-norm of a state-space system in arbitrary

precision (this algorithm will be detailed in Chapter 6);

• difference for the exact construction of the difference of two filters (see Figure 5.5).

Algorithm II.5: computeTF - accurate Transfer Function computation
Input: state-space coefficients (A,b, c,d)

ε> 0 bound on approximation error
Output: Ĥ
// set initial precision for eigensolver computations

1 p ← INIT_PREC ;
2 do

// eigendecomposition with working precision p
3 V ,E ← multiprec_eigendecomp(A, p) ;

// compute transfer funciton with accuracy p
4 Ĥ ← multiprec_tf(c,b,d,V ,E, p);

// construct corresponding canonical state-space
5 Ŝ ← tf2canonical(Ĥ) ;

// construct state-space of difference
6 ∆S ← difference(S ,Ŝ);

// compute its `1-norm with absolute error bounded by ε/2
7 Θ← l1norm(∆S ,ε/2) +ε/2 ;

// increase the precision by some factor PREC_FACTOR
8 p ←PREC_FACTOR · p ;
9 while Θ> ε;

10 return Ĥ

5.3 Numerical examples

We implemented Algorithm II.5 in Python using the mpmath library [115] and the implementation

of the `1-norm of a filter that will be presented in Chapter 6.

Consider our key example of a 8th-order transfer function from Chapter 1 Section 1.4.3.

Example 1: Suppose we implement the filter with Direct Form II transposed structure and

truncate the coefficients to 32 bits. Denote by HDFII its transfer function. We wish to compute

76

5.4. CONCLUSION

an approximation ĤDFII of the transfer function that corresponds to the quantized realization

with the error bound ε = 2−32. We just apply our algorithm and obtain a multiple precision

approximation ĤDFII. The algorithm returns an answer after the first run, i.e. after computing

the eigendecomposition with the initial precision INIT_PREC (which we set to 53 bits in our

implementation).

In case of the Direct Forms, quantization of the realization coefficients is equivalent to the

quantization of the transfer function. We can verify that the SIF respects this property. Denote by

Hq(z)= aq(z)
bq(z) a truncated to 32 bits version of the initial example transfer function. We obtain

that its coefficients are the same as those returned by our algorithm:

∥∥bq(z)− b̂(z)
∥∥
∞ = 0,

∥∥aq(z)− â(z)
∥∥
∞ = 0, (5.24)

where the ∞-norm gives the magnitude of the largest value. However, with other structures

quantization of transfer function is not equivalent to quantization of the coefficients of the

realization.

Example 2: Suppose we realize the example transfer function with a balanced5 state-space

structure and truncate the coefficients of the state matrices to 32 bits. Denote by HSS its exact

transfer function. We apply our algorithm with an a priori error bound ε= 2−32 and obtain an

approximation ĤSS after computing the eigendecomposition with 128 bits of precision. In this

case we obtain that

∥∥bq(z)− b̂(z)
∥∥
∞ = 1.3 ·10−9,

∥∥aq(z)− â(z)
∥∥
∞ = 5.5 ·10−9, (5.25)

This difference is due to the fact that during balancing of the state-space realization some

rounding errors occurred.

The main goal of these examples is to demonstrate that in general truncating the coefficients

of the filter realization is not the same as truncation of the coefficients of the corresponding

transfer function, and vice versa.

5.4 Conclusion

As first contribution of this Chapter, we developed an algorithm for the conversion of any data-

flow describing a linear filter in Simulink format to SIF. This contribution has a major impact on

the functionality of the automatic filter code generator: it permits us to implement and compare

any linear filter using our flow. Now, analysis and implementation techniques that are developed

5The balanced form was obtained using function ss in Python SciPy.

77

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

State-Space Transfer
Function

Simulink

Arbitrary Linear
Data-Flows

LCW

Direct
Forms

LGS
⇢ operator

Lattice
Waveof algorithms

Dictionary

LCW

Specialized
Implicit
Form

Figure 5.7: Interactions between SIF and other representations. Straight arrows denote the
exact and curved arrows denote multiple precision transformations.

for SIF can be generalized to any filter algorithm. In perspective, we should develop an algorithm

for the conversion from SIF representation to a Simulink data-flow graph. This can be done

using considerations analogous to those from Section 5.1.2.

In the second contribution, we provided an algorithm for the accurate computation of a

transfer function of a SIF and thus, for any linear filter algorithm. It is especially useful during

the analysis of existing implementations or for structures whose coefficients are not directly

coefficients of the transfer function. Our algorithm is based on the reliable computation of the

`1 −norm of a digital filter6 and on multiple precision eigendecomposition7 of a real matrix.

In practice, we do not compute the eigendecomposition with the least precision8 but start

with a certain initial precision and increase it by some factor until the error-bound condition

is met. As perspective, we would like to improve this point and, ideally, provide an algorithm

for eigendecomposition of a real non-symmetric matrix that adapts the precision of internal

computations just enough to meet an a priori given error bound.

To conclude both Chapters 4 and 5, we proposed algorithms that permit us to finally use SIF

as a unifying framework in practice. We proposed a new conversion algorithm for a widely-used

structure, generalized the approach for any linear data-flow and insured that computation of a

transfer function for SIFs is accurate. An overview of the possibilities of conversions between

SIF and other representations is illustrated on Figure 5.7 (compare to Figure 3.2 on p. 47).

6 We address this question in Chapter 6.
7In the sense that all internal operations are performed with some a priori set precision.
8We do not think it is possible to determine the least precision without error bounds on the computed eigenvalues.

78

PART III
RELIABLE FIXED-POINT

IMPLEMENTATION OF DIGITAL

FILTERS

79

CHAPTER 6
RELIABLE EVALUATION OF THE DYNAMIC RANGE

OF AN EXACT FILTER

O
nce a structure for filter implementation is chosen, we must convert the obtained

realization into a Fixed-Point algorithm. As we have seen in Part I Chapter 2, for a

Fixed-Point implementation we must know beforehand the dynamic range of all the

variables involved in the computations. If the dynamic range is underestimated, there is a risk of

an overflow at some point in algorithm execution. On the other hand, overestimating induces a

higher cost of the implementation. Our goal is to accurately determine the dynamic range of all

variables involved in computations of any LTI algorithm. An important remark is that we do not

use any assumptions on the behavior of the input signal apart from it being bounded. In other

words, we focus on the worst-case dynamic range.

We have seen in the previous Chapters that any LTI filter can be represented with the

Specialized Implicit Form (SIF), which can be exactly converted to a state-space. Without loss

of generality and in order to make the notation and equation simpler, further in this Chapter we

demonstrate our algorithms for the case of state-space systems.

In this Chapter we propose a novel approach for the reliable determination of the dynamic

range of a digital filter’s output: we compute with arbitrary accuracy a bound on the output

interval of the filter. Our algorithm is based on the computation of the so-called Worst-Case

Peak Gain (WCPG) of a digital filter which is just `1-norm of the filter’s impulse response.

For state-space systems, this measure is classically given as an infinite sum and has

matrix powers in each summand. These problems are both known to be non-trivial. In this

Chapter we propose a detailed algorithm that ensures that the WCPG is computed with an

absolute error rigorously bounded by an a priori given value ε. For these purposes several

multiprecision algorithms with rigorous bounds were developed. This is achieved by adapting the

precision of intermediate computations. Therefore, we present not only the error analysis of the

approximations made on each step of the WCPG computation but we also deduce the required

accuracy for our kernel multiprecision algorithms such that the overall error bound is satisfied.

81

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

We analyze the error induced by truncating the infinite sum and give a direct formula for

the computation of a lower bound on truncation order required for a desired absolute error. The

truncation order algorithm involves Interval Arithmetic computations and uses the Theory of

Verified Inclusions.

We also investigate the case of uncertain systems when the state-space coefficients are

represented as small intervals. We give a brief description on how to adapt our initial algorithm

for interval computations.

This work is mostly based on the article [11] published at IEEE Symposium on Computer

Arithmetic (ARITH) in 2015 and [8] presented at the 17th International Symposium on Scientific

Computing, Computer Arithmetics and Verified Numerics (SCAN) in 2016.

Notation: we remind the reader that all matrix and vector absolute values and inequalities

are applied element-by-element.

6.1 State of the Art

As we stated in Chapter 2 Section 2.3.3, several approaches on the estimation of a filter’s

dynamic range exist.

In particular, the most commonly used approach is based on simulations [80, 82]. An-

other way to estimate the dynamic range is the determination with a certain probability of an

overflow [90–93]. Indeed, some applications, like telecommunications, can tolerate a slight

degradation of the accuracy due to overflow. More precisely, due to techniques that deal with the

overflows. For example, when the values that overflow are saturated towards maximum/minimum,

the accuracy of the output cannot be determined.

All these approaches do not take into account the worst-cases that can be extremely rare.

We, on the other hand, target the applications that require a guarantee on the quality of the

filter’s output and that no overflow occurs. For example, in emerging drone and autonomous

vehicle industries the safety standards are extremely high and require such guarantees. In [39]

Hilaire proposed an approach on the determination fo the filter’s dynamic range which is based

on the well-known result, the Worst-Case Peak Gain theorem [10, 116]. However, this approach

cannot be used in practice because the WCPG measure cannot be computed exactly but only

approximately. In the following we detail the WCPG theorem and formally state the problem that

we will solve in this Chapter.

82

6.1. STATE OF THE ART

6.1.1 Worst-Case Peak Gain theorem

Without loss of generality, consider a state-space system H :

H

{
x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)+Du(k)
(6.1)

where u(k) ∈Rq is the input vector, y(k) ∈Rp the output vector, x(k) ∈Rn the state vector and

A ∈Rn×n, B ∈Rn×q, C ∈Rp×n and D ∈Rp×q are the state-space matrices of the system.

Theorem 6.1 (Worst-Case Peak Gain). Let H be a BIBO-stable1 nth order state-space sys-

tem with q inputs, p outputs. If an input signal {u(k)}k≥0 is bounded in magnitude by ū (i.e.

∀k ≥ 0, |ui(k)| ≤ ūi, 1≤ i ≤ q), then the output y(k) is (element-by-element) bounded by

∀k, |y| ≤ 〈〈H 〉〉 ū (6.2)

where 〈〈H 〉〉 ∈Rp×q is the Worst-Case Peak Gain matrix [10] of the system. It can be computed

as the `1-norm of the system’s impulse response. In case of a state space, this norm can be

computed with:

〈〈H 〉〉 := |D|+
∞∑

k=0

∣∣∣CAkB
∣∣∣ . (6.3)

Proof. Let h(k) be the impulse response matrix2 of the system at instance k, i.e. hi j(k) is the

response on the ith output to the impulse at time k = 0 on the jth input. With (6.1), we have

h(k)=




D if k = 0

CAk−1B if k > 0.
(6.4)

Since the input {u(k)}k≥0 can be seen as a weighted sum of impulses (see Chapter 1), and

thanks to the linearity and time invariance property of LTI systems [31], we get

y(k)=
k∑

l=0
h(l)u(k− l). (6.5)

({y}k≥0 is the result of the convolution of {h}k≥0 by {u}k≥0).Then the output is (element-by-

element) bounded by

|y(k)| ≤ ū
k∑

l=0
|h(l)| , ∀k ≥ 0. (6.6)

Finally

∀k ≥ 0, |y(k)| <
(∞∑

l=0
|h(k)|

)
ū. (6.7)

By writing explicitly the impulse response (6.4) in (6.7) we can directly obtain (6.3). �
1i.e. ρ(A)< 1, see Property 1.1 on p.23
2Here, we exceptionally use a lowcase bold notation for a matrix.

83

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

Remark 6.1. An important remark is that it is possible to find a finite input signal {u(k)}0≤k≤K

that yields an output that approaches the 〈〈H 〉〉 ū up to any arbitrarily small distance.

Indeed, in (6.6), we obtain the equality for the ith output if the input is such that

u j(l)= ū j ·sign
(
hi j(k− l)

)
, ∀0≤ l ≤ k, ∀0≤ j ≤ q (6.8)

where sign(x) returns ±1 or 0 depending on the sign of x.

Remark 6.2. This proposition can be completed when considering intervals for the input, instead

of bounds (corresponding to symmetric intervals). In that case, the Worst-Case Peak Gain matrix

indicates by how much the radius of the input interval is amplified on the output [39].

Remark 6.3. From (6.7) we see that the WCPG is actually the `1-norm of a filter’s impulse

response. Therefore, further we will use term WCPG instead of `1-norm.

Obviously, the infinite sum in (6.3) cannot be computed exactly. However, we may need to

compute an arbitrarily precise approximation:

• when we determine the dynamic range of the filter’s states and outputs. If the computed

bound is very close to the power of 2 we might require to increase the accuracy of the

bound (in order to be sure not to overestimate);

• we compute an approximation on a transfer function of a filter using Algorithm II.5 from

Chapter 5 we must compute the `1-norm, which is just the WCPG;

• we must provide rigorous error-analysis of a finite-precision implementation of a filter, as

we shall see in the next Chapter.

Hence, the problem can be formulated as follows:

Problem
Given a small ε> 0 compute an approximation S on the WCPG matrix 〈〈H 〉〉 such that

∣∣〈〈H 〉〉i, j −S i, j
∣∣< ε for i = 0, . . . , p and j = 0, . . . , q (6.9)

Of course, we need to first truncate the sum to some finite number of terms N (further called

truncation order). In practice, often some “sufficiently large” truncation order is chosen, e.g. 500

or 1000 terms. The following example demonstrates that it may be very dangerous.

Example 6.1. Consider a stable 5th order random SISO filter3. A naive computation of the WCPG

in double precision with 1000 terms in the sum (6.3) yields 〈〈H 〉〉naive = 105.66. Suppose all

3Motivated reader can find exact coefficients in the Appendix 2.1

84

6.1. STATE OF THE ART

0 400 800 1,200 1,600 2,000
−200

−100

0

100

200

k

y
(k
)

naive bound
worst-case output

Figure 6.1: Worst-case output is out of the naively determined bounds.

the inputs are in the interval [−1,1]. Then, according to the WCPG theorem, outputs must be in

the interval [−105.66,105.66].

Now, consider the input signal from Remark 6.1, i.e. the one that yields the worst-case output.

Figure 6.1 demonstrates that it easily goes out of the bounds determined by the naive WCPG. It

reaches the value 192.2 in just two thousand iterations.

In [10] Balakrishnan and Boyd propose “simple” lower and upper bounds on the truncation

order. However, they describe their algorithm in terms of exact arithmetic, i.e. do not propose

any error analysis. This iterative algorithm has several difficulties: first of all, there is a matrix

A exponentiation, which would require a non-trivial error analysis. Second, on each iteration

(the quantity of which may reach a high order) a solution of Lyapunov equations [117–119]

is required for which there exists no ready-to-use solution with rigorous error bounds on the

result. Therefore, numerically computing a reliable lower bound on the truncation order N is not

possible with this approach as it is.

A competing approach would be not to start with truncation order determination but to

immediately go for summation and to stop when adding more terms does not improve accuracy.

For example, if we try increasing the truncation order in the Example 6.1, we obtain the dynamic

of the WCPG approximations shown on Figure 6.2.

However, naive computation of terms in (6.3) with double-precision arithmetic may yield

significant rounding errors and would not allow the final approximation error to be bounded in an

85

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

1 2 3 4 5

·104

200

400

600

800

Truncation order

A
p
p
ro
x
im

at
io
n
o
n
th
e
W
C
P
G

Figure 6.2: The approximations of the WCPG with the increase of truncation order.

a priori way by an arbitrary ε. Even if the computations were performed using multiple precision

arithmetic, we would need to determine the required precision (and prove it) without yet knowing

how many operations would be performed in the end.

Therefore, in the following we propose a new approach on the evaluation of the WCPG in

multiple precision. Our goal is to not only perform rigorous error analysis of approximations but

also to deduce the required accuracy for each computation in the evaluation of the WCPG. By

adapting the precision of intermediate computations we achieve an a priori bound on the overall

approximation error.

Notation: In further discussions we bound the error matrices with respect to their Frobe-

nius norm. The Frobenius norm is sub-multiplicative and has several good properties used in

numerical analysis. Let K be some matrix, K ∈Cn×m, then

∣∣K i j
∣∣≤ ‖K‖F ∀i, j (6.10)

‖K‖2 ≤ ‖K‖F ≤
√

min(m,n)‖K‖2 , (6.11)

where ‖K‖2 is the spectral-norm, i.e. equal to the largest singular value of K.

Let K be a square n×n matrix with ‖K‖2 ≤ 1, then for all k,
∥∥Kk∥∥

2 ≤ 1 and
∥∥Kk∥∥

F ≤p
n.

6.2 Algorithm for Worst-Case Peak Gain evaluation

Given a BIBO stable LTI filter in state-space realization (6.1) and ε, a desired absolute ap-

proximation error, we want to determine the Worst-Case Peak Gain matrix 〈〈H 〉〉 of this filter,

defined in (6.3). While computing such an approximation, various errors, such as truncation and

summation errors, are made.

86

6.2. ALGORITHM FOR WORST-CASE PEAK GAIN EVALUATION

Algorithm III.1: Floating-point evaluation of the Worst-Case Peak Gain
Input: A ∈ Fn×n,B ∈ Fn×q,C ∈ Fp×n,D ∈ Fp×q,ε> 0
Output: SN ∈ Fp×q

Step 1: Compute N
Step 2: Compute V from an eigendecomposition of A

T ← inv(V)⊗ A⊗V
if ‖T‖2 > 1 then return ⊥

Step 3: B′ ← inv(V)⊗B
C′ ←C⊗V
S−1 ←|D|, P−1 ← In
for k from 0 to N do

Step 4: Pk ← T ⊗Pk−1
Step 5: Lk ←C′⊗Pk ⊗B′

Step 6: Sk ← Sk−1 ⊕abs(Lk)
end
return SN

Instead of directly computing the infinite sum
∣∣CAkB

∣∣ for any k ≥ 0, we will use an approx-

imate eigenvalue decomposition of A (i.e. A ≈ VTV−1) and compute the floating-point sum∣∣CVTkV−1B
∣∣ for 0≤ k ≤ N.

Our approach to compute the approximation SN of 〈〈H 〉〉 is summarized in algorithm III.1

where all the operations (⊗, ⊕, inv, abs, etc.) are floating-point multiple precision operations

done at various precisions to be determined such that the overall error is less than ε:

|〈〈H 〉〉−SN | ≤ ε. (6.12)

The overall error analysis is decomposed into 6 steps, where each one expresses the impact

of a particular approximation (or truncation), and provides the accuracy requirements for the

associated operations such that the result is rigorously bounded by ε. These steps are discussed

in detail in Sections 6.3 and 6.4:

Step 1: Let 〈〈H 〉〉N be the truncated sum

〈〈H 〉〉N :=
N∑

k=0

∣∣∣CAkB
∣∣∣+|D| . (6.13)

We compute a truncation order N of the infinite sum 〈〈H 〉〉 such that the truncation error is less

than ε1 > 0:

|〈〈H 〉〉−〈〈H 〉〉N | ≤ ε1. (6.14)

See Section 6.3 for more details.

87

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

Step 2: Error analysis for computing the powers Ak of a full matrix A, when the k reaches

several hundreds, is a significant problem, especially when the norm of A is larger than 1 and

its eigenvalues are close to 1. However, if A may be represented as A = XEX−1 with E ∈Cn×n

strictly diagonal and X ∈Cn×n, then powering of A reduces to powering the diagonal matrix E,

which is more convenient.

Suppose we have a matrix V approximating X . We require this approximation to be just

quite accurate so that we are able to discern the different associated eigenvalues and be sure

their absolute values are less than 1.

We may then consider the matrix V to be exact and compute an approximation T to V−1 A V
with sufficient accuracy such that the error of computing VTkV−1 instead of matrix Ak is less

than ε2 > 0: ∣∣∣∣∣〈〈H 〉〉N −
N∑

k=0

∣∣∣CVTkV−1B
∣∣∣
∣∣∣∣∣≤ ε2. (6.15)

See Section 6.4.1 for more details.

Step 3: We compute approximations B′ and C′ of V−1B and CV , respectively. We require

that the propagated error committed in using B′ instead of V−1B and C′ instead of CV be less

than ε3 > 0: ∣∣∣∣∣
N∑

k=0

∣∣∣CVTkV−1B
∣∣∣−

N∑

k=0

∣∣∣C′TkB′
∣∣∣
∣∣∣∣∣≤ ε3. (6.16)

See Section 6.4.2.

Step 4: We compute in Pk the powers Tk of T with a certain accuracy. It is required that

the propagated error be less than ε4 > 0:

∣∣∣∣∣
N∑

k=0

∣∣∣C′TkB′
∣∣∣−

N∑

k=0

∣∣C′PkB′∣∣
∣∣∣∣∣≤ ε4. (6.17)

See Section 6.4.3.

Step 5: We compute in Lk each summand C′PkB′ with a error small enough such that the

overall approximation error induced by this step is less than ε5 > 0:

∣∣∣∣∣
N∑

k=0

∣∣C′PkB′∣∣−
N∑

k=0
|Lk|

∣∣∣∣∣≤ ε5. (6.18)

See Section 6.4.4.

88

6.3. TRUNCATION ORDER AND TRUNCATION ERROR

Step 6: Finally, we sum Lk in SN with enough precision so that the absolute error bound

for summation is bounded by ε6 > 0:
∣∣∣∣∣

N∑

k=0
|Lk|−SN

∣∣∣∣∣≤ ε6. (6.19)

See Section 6.4.5.

By ensuring that each step verifies its bound εi, and taking εi = 1
6ε, we get ε1 +ε2 +ε3 +

ε4 +ε5 +ε6 ≤ ε, hence (6.12) will be satisfied if inequalities (6.14) to (6.19) are.

Our approach hence determines first a truncation order N and then performs summation up

to that truncation error, whilst adjusting precision in the different summation steps.

6.3 Truncation order and truncation error

In this Section we propose a direct formula for the lower bound on N along with a reliable

evaluation algorithm.

The goal is to determine a lower bound on the truncation order N of the infinite sum (6.3)

such that its tail is smaller than the given ε1. Obviously, 〈〈H 〉〉N is a lower bound on 〈〈H 〉〉 and

increases monotonically to 〈〈H 〉〉 with increasing N. Hence the truncation error is

|〈〈H 〉〉−〈〈H 〉〉N | =
∑

k>N

∣∣∣CAkB
∣∣∣ . (6.20)

6.3.1 A bound on the truncation error

Many simple bounds on (6.20) are possible. For instance, if the eigendecomposition of A is

computed

A = XEX−1 (6.21)

where X ∈Cn×n is the right hand eigenvector matrix, and E ∈Cn×n is a diagonal matrix holding

the eigenvalues λl , the terms CAkB can be written

CAkB =ΦEkΨ=
n∑

l=1
R lλ

k
l (6.22)

where Φ ∈Cp×n, Ψ ∈Cn×q and Rl ∈Cp×q are defined by

Φ :=CX , Ψ := X−1B, (R l)i j :=ΦilΨl j. (6.23)

89

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

In this setting, we obtain

|〈〈H 〉〉−〈〈H 〉〉N | =
∑

k>N

n∑

l=1

∣∣∣R lλ
k
l

∣∣∣ . (6.24)

As required by Proposition 6.1, all eigenvalues λl of matrix A must be strictly smaller than

one in magnitude. We may therefore notice that the outer sum is in geometric progression with a

common ratio |λl | < 1. So the following bound is possible (we remind the reader that inequalities

and absolute values are considered to be element by element):

|〈〈H 〉〉−〈〈H 〉〉N | ≤
∞∑

k=N+1

n∑

l=1
|R l |

∣∣∣λk
l

∣∣∣ (6.25)

≤
n∑

l=1
|R l |

∣∣λN+1
l

∣∣
1−|λl |

= ρ(A)N+1
n∑

l=1

|R l |
1−|λl |

(|λl |
ρ(A)

)N+1
. (6.26)

Since |λl |
ρ(A) ≤ 1 holds for all terms, we may leave out the powers. Notate

M :=
n∑

l=1

|R l |
1−|λl |

|λl |
ρ(A)

∈Rp×q. (6.27)

The tail of the infinite sum is hence bounded by

|〈〈H 〉〉−〈〈H 〉〉N | ≤ ρ(A)N+1M. (6.28)

Remark 6.4. Other bounds are possible. For instance,

|〈〈H 〉〉−〈〈H 〉〉N | ≤ ρ(A)N+1−K
n∑

l=1

|R l |
1−|λl |

(|λl |
ρ(A)

)K
, ∀N > K . (6.29)

This bound takes into account the weight of each eigenvalue.

Remark 6.5. A similar bound for the truncation error may be obtained when the eigenvalues of

the system are not distinct, i.e. when matrix A has multiple eigenvalues. The impulse response

will be [120]

J(k)=





D if k = 0
n∑

i=1

mi∑
j=1

R i
(k−1)(k−2)...(k− j+1)

(j−1)! λ
k− j
i if k > 0

(6.30)

where pole λi has multiplicity mi, i = 1. . .n. An appropriate matrix M can be then deduced.

90

6.3. TRUNCATION ORDER AND TRUNCATION ERROR

6.3.2 Deducing a lower bound on the truncation order

In order to get (6.28) bounded by ε1, it is required that element-by-element

ρ(A)N+1M ≤ ε1.

Solving this inequality for N leads us to the following bound:

N ≥
⌈

log ε1
m

logρ(A)

⌉
(6.31)

where m is defined as m :=min
i, j

M i, j.

However we cannot compute exact values for all quantities occuring in (6.31) when using

finite-precision arithmetic. We only have approximations for them. Thus, in order to reliably

determine a lower bound on N, we must compute lower bounds on m and ρ(A), from which

we can deduce an upper bound on log ε1
m and a lower bound on logρ(A) to eventually obtain a

lower bound on N.

Due to the implementation of (6.21) and (6.23) with finite-precision arithmetic, only approxi-

mations on λ, X ,Φ,Ψ,R l can be obtained. There exist many floating-point libraries, such as

LAPACK4, providing functions for an eigendecomposition as needed for (6.21) and to solve

linear systems of equations in (6.23). They usually deliver good and fast approximations to the

solution of a given numerical problem but there is neither verification nor guarantee about the

accuracy of that approximation. LAPACK only gives an estimation of the absolute error which

we will nevertheless exploit in our approach.

We propose to combine LAPACK floating-point arithmetic with Interval Arithmetic [121]

enhanced with Rump’s Theory of Verified Inclusions [67–69, 122] in order to obtain trusted

intervals on the eigensystem and, eventually, a rigorous bound on N.

The Theory of Verified Inclusions is a set of algorithms that compute guaranteed bounds

on solutions of various numerical problems. The verification process is performed by means of

checking an interval fixed point and yields to a trusted interval for the solution, i.e. it is verified

that the result interval contains an exact solution of given numerical problem.

It permits us to quickly obtain trusted error bounds on the truncation order without significant

impact on algorithm performance, since this computation is done only once. In addition, if the

spectral radius of A cannot be shown less than 1, we stop the algorithm.

Using the ideas proposed by Rump in [67], we obtain trusted intervals for the eigensystem

with the following steps:

4http://www.netlib.org/lapack/

91

http://www.netlib.org/lapack/

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

1. Using the LAPACK eigensolver, we compute floating-point approximations V for the eigen-

vectors X and α for the eigenvalues λ, along with error estimates εX and ελ. These error

estimates are such that |λ−α| ≤ ελ and |X −V | ≤ εX should be not far from the truth.

2. We construct, verify and possibly adjust intervals for [λ] = [α−ελ,α+ελ] and [X] =
[V −εX ,V +εX] such that for all vectors λ′ ∈ [λ] there exists a matrix X ′ ∈ [X] satisfying

AX ′ = X ′ ·diag(λ′) and such that for all matrices X ′ ∈ [X] there exists a vector λ′ ∈ [λ] satisfy-

ing AX ′ = X ′ ·diag(λ′). In this process, first intervals for the eigensystem are constructed from

the error estimates εα and εV as radii and the approximate solutions V and α as mid-points.

Further, these intervals are verified with inclusion algorithms [67]. If the verification does not suc-

ceed, the intervals are extended by some small factor and process is repeated until it succeeds

or until there exists an eigenvalue interval which contains 1.

For the solution of the linear system of equations (LSE) appearing in (6.23), the algorithm for

interval verification is based on [69] and consists of two steps:

1. Using LAPACK, compute a floating-point approximation Ω on the solution of VΨ=B along

with an error estimate εΨ such that |Ψ−Ω| ≤ εΨ should be not far from the truth.

2. Construct, verify and adjust intervals [Ψ]= [Ω−εΨ,Ω+εΨ] such that for all matrices X ′ ∈
[X] there exists Ψ′ ∈ [Ψ] such that X ′Ψ′ =B holds.

The intervals for verification are constructed in the same way as for the eigensystem solution. We

require the existence of the exact solution of the linear system not for VΨ=B but for [X]Ψ=B,

i.e. [Ψ] must contain the exact solution for each element of the already verified interval [X].

Finally, the intervals for (6.23), (6.27) and (6.31) are computed with Interval Arithmetic. Our

complete algorithm to determine a reliable lower bound on N is given with algorithm III.2.

6.4 Summation

Once the truncation order determined, we need to provide a summation scheme which is reliable

in floating-point arithmetic, i.e. such that the error of computations is bounded by an a priori

given value. To do so we propose to perform all operations in multiple precision arithmetic

whilst adapting precision dynamically where needed. Several multiple precision algorithms were

therefore developed:

• multiplyAndAdd(A,B,C,δ) that computes A ·B +C +∆, where the error matrix ∆ is

bounded by |∆| < δ, for the given a priori bound δ. We shall notate A ⊗B for the output of

multiplyAndAdd when C is the zero matrix.

92

6.4. SUMMATION

Algorithm III.2: Lower bound of truncation order
Input: A ∈ Fn×n,B ∈ Fn×q,C ∈ Fp×n,ε1 > 0
Output: N ∈N

1 α,V ,εα,εV ← LAPACK eigendecomposition for A;
2 Ω,εΨ← LAPACK solver for VΨ=B;
3 [λ], [X]← Eigensystem verification algorithm;
4 [Ψ]← LSE solution verification algorithm;
5 [Φ]←C[X];
6 [R l]i, j ← [Φi,l][Ψl, j] ;
7

[
ρ
]←max

i

∣∣ [λi]
∣∣;

8 [M]←
n∑

i=1

∣∣∣[R i]
∣∣∣

1−
∣∣∣[λi]

∣∣∣

∣∣∣[λi]
∣∣∣

[ρ] ;

9 [m]←min
i, j

∣∣ [M]i, j
∣∣;

10 N ← sup
(⌈

log ε1
[m]

log[ρ]

⌉)
;

11 return N

• sumAbs(A,B,δ) that computes A+|B|+∆, where the error matrix ∆ is bounded by |∆| < δ,

for the given δ. With a slight notational abuse, we shall also notate A⊕abs(B) for sumAbs.

• inv(V ,δ) that computes the inverse V−1+∆, where the error matrix ∆ is bounded by |∆| < δ,

for the given δ. See Section 6.5.

These computation kernels adapt the precision of their intermediate computations where needed.

The algorithms we use for these basic bricks will be discussed in Section 6.5.

6.4.1 Step 2: using the Eigendecomposition

6.4.1.1 Error propagation

As seen, in each step of the summation, a matrix power, Ak, must be computed. In [46]

Higham devotes an entire chapter to error analysis of matrix powers but this theory is in most

cases inapplicable for state matrices A of linear filters, as the requirement ρ(|A|)< 1 does not

necessarily hold here. Therefore, despite taking A to just a finite power k, the sequence of

computed matrices may explode in norm since k may take an order of several hundreds or

thousands. Thus, even extending the precision is not a solution, as an enormous number of bits

would be required.

In real life the state matrices are usually diagonalizable, i.e. there exists a matrix X ∈Cn×n

and diagonal E ∈ Cn×n such that A = XEX−1. Then Ak = XEk X−1. A good choice of X

93

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

and E are the eigenvector and eigenvalue matrices obtained using eigendecomposition (6.21).

However, with LAPACK we can compute only approximations of them and we cannot control

their accuracy. Therefore, we propose the following method to almost diagonalize matrix A. The

method does not make any assumptions on matrix V except for it being some approximation on

X . Therefore, for simplicity of further reasoning we treat V as an exact matrix.

Using our multiprecision algorithms for matrix inverse and multiplication we may compute a

complex n×n matrix T:

T :=V−1AV −∆2, (6.32)

where V ∈Cn×n is an approximation on X , ∆2 ∈Cn×n is a matrix representing the element-by-

element errors due to the two matrix multiplications and the inversion of matrix V .

Although the matrix E is strictly diagonal, V is not exactly the eigenvector matrix and

consequently T is a full matrix. However it has its prevailing elements on the main diagonal.

Thus T is an approximation on E.

We require for matrix T to satisfy ‖T‖2 ≤ 1. This condition is stronger than ρ(A)< 1, and

Section 6.4.1.2 provides a way to test it. In other words, this condition means that there exist

some margin for computational errors between the spectral radius and 1.

Notate Ξk := (T +∆2)k −Tk. Hence Ξk ∈Cn×n represents the error matrix which captures

the propagation of error ∆2 when powering T. Since

Ak =V (T +∆2)kV−1, (6.33)

therefore

CAkB =CVTkV−1B+CVΞkV−1B. (6.34)

Thus the error of computing VTkV−1 instead of Ak in (6.13) is bounded by
∣∣∣∣∣

N∑

k=0

∣∣∣CAkB
∣∣∣−

N∑

k=0

∣∣∣CVTkV−1B
∣∣∣
∣∣∣∣∣≤ (6.35)

N∑

k=0

∣∣∣CAkB−CVTkV−1B
∣∣∣≤

N∑

k=0

∣∣CVΞkV−1B
∣∣ . (6.36)

Here and further on each step of the algorithm we use inequalities with left side in form

(6.36) rather than (6.35), i.e. we will instantly use the triangular inequality
∣∣ |a|− |b|

∣∣ ≤ |a−b|
∀a,b applied element-by-element to matrices.

In order to determine the accuracy of the computations on this step such that (6.36) is

bounded by ε2, we need to perform detailed analysis of Ξk, with spectral-norm. Using the

definition of Ξk the following recurrence can be easily obtained:

‖Ξk‖2 ≤ ‖Ξk−1‖2 +‖∆2‖2
(‖Ξk−1‖2 +1

)
(6.37)

94

6.4. SUMMATION

If ‖Ξk−1‖2 ≤ 1, which must hold in our case since Ξk represent an error-matrix, then

‖Ξk‖2 ≤ ‖Ξk−1‖2 +2‖∆2‖2 (6.38)

As ‖Ξ1‖2 = ‖∆2‖2 we can get the desired bound capturing the propagation of ∆2 with

Frobenius norm:

‖Ξk‖F ≤ 2
p

n(k+1)‖∆2‖F . (6.39)

Substituting this bound to (6.36) and folding the sum, we obtain

N∑

i=0

∣∣CVΞkV−1B
∣∣≤β‖∆2‖F ‖CV‖F

∥∥V−1B
∥∥

F , (6.40)

with β=p
n(N+1)(N+2). Thus, we get a bound on the error of approximation of A by VTV−1.

Since we require it to be less than ε2 we obtain a condition for the error on the inversion and two

matrix multiplications:

‖∆2‖F ≤ 1
β

ε2

‖CV‖F
∥∥V−1B

∥∥
F

. (6.41)

Using this bound we can deduce the desired accuracy of our multiprecision algorithms for

complex matrix multiplication and inverse as a function of ε2.

6.4.1.2 Checking ‖T‖2 ≤ 1

Since ‖T‖2
2 = ρ(T∗T), we study the eigenvalues of T∗T, where “∗” denotes conjugate trans-

pose. According to Gershgorin’s circle theorem [123], each eigenvalue µi of T∗T is in the disk

centered in (T∗T)ii with radius
∑

j 6=i
∣∣(T∗T)i j

∣∣.
Let us decompose T into T = F+G, where F is diagonal and G contains all the other terms

(F contains the approximate eigenvalues, G contains small terms and is zero on its diagonal).

Denote Y := T∗T −F∗F = F∗G+G∗F +G∗G. Then

∑

j 6=i

∣∣∣
(
T∗T

)
i j

∣∣∣=
∑

j 6=i

∣∣Y i j
∣∣

≤ (n−1)‖Y‖F

≤ (n−1)
(
2‖F‖F ‖G‖F +‖G‖2

F
)

≤ (n−1)
(
2
p

n+‖G‖F
)‖G‖F . (6.42)

Each eigenvalue of T∗T is in the disk centered in (F∗F)ii+(Y)ii with radius γ, where γ is equal

to (n−1)
(
2
p

n+‖G‖F
)‖G‖F , computed in a rounding mode that makes the result become an

upper bound (round-up).

95

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

As G is zero on its diagonal, the diagonal elements (Y)ii of Y are equal to the diagonal

elements (G∗G)ii of G∗G. They can hence be bounded as follows:

|(Y)ii| =
∣∣(G∗G

)
ii

∣∣≤ ‖G‖2
F . (6.43)

Then, it is easy to see that Gershgorin circles enclosing the eigenvalues of F∗F can be

increased, meaning that if (F∗F)ii is such that

∀i,
∣∣(F∗F

)
ii

∣∣≤ 1−‖G‖2
F −γ, (6.44)

it holds that ρ(T∗T)≤ 1 and ‖T‖2 ≤ 1.

This condition can be tested by using floating-point arithmetic with directed rounding modes

(round-up for instance).

After computing T out of V and A according to (6.32), the condition on T should be tested

in order to determine if ‖T‖2 ≤ 1. This test failing means that V is not a sufficient approximate of

X or that the error ∆2 done computing (6.32) is too large, i.e. the accuracy of our multiprecision

algorithm for complex matrix multiplication and inverse should be increased. The test is required

for rigor only. We do perform the test in the implementation of our WCPG method, and, on the

real-world examples we tested, never saw it give a negative answer. In case when matrix T
does not pass check our algorithm is programmed to return an error.

6.4.2 Step 3: computing CV and V−1B

We compute approximations on matrices CV and V−1B with a certain precision and need

to determine the required accuracy of these multiplications such that the impact of these

approximations is less than ε3.

Notate C′ := CV +∆3C and B′ := V−1B+∆3B , where ∆3C ∈ Cp×n and ∆3B ∈ Cn×q are

error-matrices containing the errors of the two matrix multiplications and the inversion.

Using Frobenius norm, we can bound the error in the approximation of CV and V−1B by C′

and B′ as follows:

N∑

k=0

∣∣∣CVTkV−1B−C′TkB′
∣∣∣≤

N∑

k=0

∥∥∥∆3C TkB′+C′Tk∆3B +∆3C Tk∆3B

∥∥∥
F

. (6.45)

Since ‖T‖2 < 1 holds we have (using Frobenius norm properties)
∥∥∥∆3C TkB′+C′Tk∆3B +∆3C Tk∆3B

∥∥∥
F
≤ (6.46)

p
n

(∥∥∆3C

∥∥
F

(∥∥B′∥∥
F +

∥∥∆3B

∥∥
F
)+

∥∥C′∥∥
F

∥∥∆3B

∥∥
F
)
.

96

6.4. SUMMATION

This bound represents the impact of our approximations for each k = 0. . . N. If (6.46) is

bounded by 1
N+1 · ε3, then the overall error is less than ε3. Hence, bounds on the two error-

matrices are:

∥∥∆3C

∥∥
F ≤ 1

3
p

n
· 1

N +1
ε3∥∥C′∥∥

F
(6.47)

∥∥∆3B

∥∥
F ≤ 1

3
p

n
· 1

N +1
ε3∥∥B′∥∥

F
. (6.48)

Therefore, using bounds on
∥∥∆3C

∥∥
F and

∥∥∆3B

∥∥
F , we can deduce the required accuracy of

our multiprecision matrix multiplication and inversion according to ε3.

6.4.3 Step 4: powering T

Given a square complex matrix T with prevailing main diagonal we need to compute its kth

power. Notate

Pk := Tk −Πk, (6.49)

where Πk ∈Cn×n represents element-by-element the error on the matrix powers, including error

propagation from the first to the last power. Using the same simplification as in (6.35) and (6.36)

we get the error of computing the approximations Pk rather than the exact powers bounded by

N∑

k=0

∣∣∣C′TkB′−C′PkB′
∣∣∣≤

N∑

k=0

∣∣C′ΠkB′∣∣ . (6.50)

Thus a bound on a norm of Πk, say ‖Πk‖F , is required.

Since we need all the powers of T from 1 to N, we use an iterative scheme to compute

them. It is then evident that we may write the recurrence

Pk = TPk−1 +Γk, (6.51)

where Γk ∈Cn×n is the error matrix representing the error of the matrix multiplication at step k.

With P0 = I , P1 = T and using (6.51) we obtain

Pk = Tk +
k∑

l=2
Tk−lΓl . (6.52)

Using the condition ‖T‖2 ≤ 1 and properties of the Frobenius norm we get

‖Πk‖F ≤
∥∥∥∥∥

k∑

l=2
Tk−lΓl

∥∥∥∥∥
F

≤p
n

k∑

l=2
‖Γl‖F . (6.53)

97

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

Therefore the impact of approximation of the matrix powers is bounded by

N∑

k=0

∣∣C′ΠkB′∣∣≤p
n(N +1)

N∑

l=2

∥∥C′∥∥
F ‖Γl‖F

∥∥B′∥∥
F . (6.54)

Obviously, if the error of matrix multiplication Γl satisfies

‖Γl‖F ≤ 1p
n
· 1

N −1
· 1

N +1
· ε4∥∥C′∥∥

F

∥∥B′∥∥
F

(6.55)

for l = 2. . . N, then we have (6.54) to be less than ε4. Hence using (6.55) we may deduce the

required accuracy of matrix multiplications on each step in dependency of ε4.

6.4.4 Step 5: computing Lk

Once the matrices C′,B′ and Pk are pre-computed and the error of their computation is bounded,

we must evaluate their product. Let Lk be the approximate product of these three matrices at

step k:

Lk :=C′PkB′+Υk, (6.56)

where Υk ∈Cp×q is the matrix of element-by-element errors for the two matrix multiplications.

Then it may be shown that the error of computations induced by this step is bounded by
N∑

k=0
|Υk|.

If we want the overall error of approximation on this step to be less than ε5 then we can easily

deduce the required accuracy of each of those multiplications on every iteration of summation

algorithm.

6.4.5 Step 6: final summation

Finally the absolute value of the Lk must be taken and the result accumulated in the sum. We

remind the reader that if all previous computations were exact, the matrix Lk would be a real

matrix and the absolute-value-operation would have been an exact sign manipulation. However,

as the computations were in finite-precision arithmetic, Lk is complex with a small imaginary part,

which is naturally caused by the errors of computations and must not be neglected. Therefore

the element-by-element absolute value of the matrix must be computed.

Since we perform N +1 accumulations of absolute values in the result sum SN , it is evident

that bounding the error of each such computation by 1
N+1ε6 is sufficient.

Therefore, using this bound for each invokation of our basic brick algorithm sumAbs we

guarantee bound (6.19).

98

6.5. BASIC BRICKS

6.5 Basic bricks

In Section 6.4, we postulated the existence of the following three basic floating-point algorithms:

multiplyAndAdd, sumAbs and inv, computing, respectively, the product-sum, the sum in

absolute value and the inverse of matrices. Each of these operators was required to satisfy an

absolute error bound |∆| < δ to be ensured by the matrix of errors ∆ with respect to scalar δ,

given in argument to the algorithm.

Ensuring such an absolute error bound is not possible in general when fixed-precision

floating-point arithmetic is used. Any such algorithm, when returning its result, must round

into that fixed-precision floating-point format. Hence, when the output grows sufficiently large,

the unit-in-the-last-place of that format and hence that final rounding error in fixed-precision

floating-point arithmetic will grow larger than a set absolute error bound.

In multiple precision floating-point arithmetic, such as offered by software packages like

MPFR5 [124], it is however possible to have algorithms determine themselves the output

precision of the floating-point variables they return their results in. Hence an absolute error

bound as the one we require can be guaranteed. In contrast to classical floating-point arithmetic,

such as Higham analyzes, there is no longer any clear, overall computing precision, though.

Variables just bear the precision that had been determined for them by the previous compute

step.

This preliminary clarification made, description of our three basic bricks multiplyAndAdd,

sumAbs and inv is easy.

For sumAbs(A,B,δ)= A+|B|+∆, we can reason element by element. We need to approxi-

mate A i j +
√

ℜBi j
2 +ℑBi j

2 with absolute error no larger than δ, where ℜz and ℑz are the real

and imaginary parts of the complex z. This can be ensured by considering the floating-point

exponents of each of A i j, ℜBi j and ℑBi j with respect to the floating-point exponent of δ.

For multiplyAndAdd(A,B,C,δ)= A ·B+C+∆, we can reason in terms of scalar products

between A and B. The scalar products boil down to summation of products which, in turn, can

be done exactly, as we can determine the precision of the A ik and Bk j. As a matter of course

the very same summation can capture the matrix elements C i j. Finally, multiple precision

floating-point summation with an absolute error bound can be performed with a modified,

software-simulated Kulisch accumulator [56], which does not need to be exact but bear just

enough precision to satisfy the absolute accuracy bound δ.

Finally, once the multiplyAndAdd operator is available, it is possible to implement the

5http://www.mpfr.org/

99

http://www.mpfr.org/

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

matrix inversion algorithm inv using a Newton-Raphson-like iteration [125]:

U0 ← some seed inverse matrix for V−1

Rk ←VUk − In (6.57)

Uk+1 ←Uk −UkR

where the iterated matrices Uk converge to V−1 provided the multiplyAndAdd operations

computing Rk and Uk+1 are performed with enough accuracy, i.e. small enough δ and the seed

matrix satisfies some additional properties. In order to ensure these properties with an explicit

check, an operator to compute the Frobenius norm of a matrix with a given a priori absolute

error bound δ is required. Implementing such a Frobenius norm operator again boils down to

summation, as above.

6.6 Numerical examples

The algorithms discussed above were implemented in C, using GNU MPFR version 3.1.12, GNU

MPFI6 version 1.5.1 and CLAPACK7 version 3.2.1. The source code is available online8. Our

implementation was tested on several real-life and random examples:

• The first example comes from Control Theory: the LTI system is extracted from an active

controller of vehicle longitudinal oscillation [126], and WCPG matrix is used to determine the

fixed-point arithmetic scaling of state and output.

• The second is a 12th-order Butterworth filter, described in ρ-Direct Form II transposed [127],

where WCPG is used during the computation of the transfer function.

• The third one is a large random BIBO stable filter (obtained from the drss command of

Matlab), with 60 states, 14 inputs and 28 outputs.

• The last one is our random filter from Example 6.1 with 1 input and 1 output.

Experiments were done on a laptop computer with an Intel Core i5 processor running at 2.8

GHz and 16 GB of RAM.

The numerical results detailed in Table 6.1 show that our algorithm for Worst-Case Peak

Gain matrix evaluation with a priori error bound exhibits reasonable performance on typical

examples.

6https://gforge.inria.fr/projects/mpfi/
7http://www.netlib.org/clapack/
8https://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git

100

https://gforge.inria.fr/projects/mpfi/
http://www.netlib.org/clapack/
https://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git

6.6.
N

U
M

E
R

IC
A

L
E

X
A

M
P

LE
S

Example 1 Example 2 Example 3 Example 4

sizes n, p and q n = 10, p = 11, q = 1 n = 12, p = 1, q = 25 n = 60, p = 28, q = 14 n = 5, p = 1, q = 1
1−ρ(A) 1.39×10−2 8.65×10−3 1.46×10−2 1.44×10−4

max(SN) 3.88×101 5.50×109 2.64×102 7.72×102

min(SN) 1.29×100 1.0×100 1.82×101 7.72×102

ε 2−5 2−53 2−600 2−5 2−53 2−600 2−5 2−53 2−600 2−53

N 220 2153 29182 308 4141 47811 510 1749 27485 251510
Inversion iterations 0 2 4 2 3 5 1 2 4 2

overall max precision (bits) 212 293 1401 254 355 1459 232 306 1416 179
Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20 45.62 177.90 9376.86 5.99

Table 6.1: Numerical results for 2 real-world and 2 constructed example

101

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

Even when the a priori error bound is pushed to compute WCPG results with an accuracy

way beyond double precision, the algorithm succeeds in computing a result, even though

execution time grows pretty high. We see that for our random filter from Example 6.1 the actual

truncation order for a WCPG accurate to double precision is much larger than the initial guess.

Our algorithm includes checks testing that certain properties of matrices are verified, in

particular that ρ(A) < 1 and ‖T‖2 ≤ 1. For example, we tested our algorithm on an artificial

system with distance between poles and unit circle less than 2−60. Our algorithm correctly

detected that the conditions on the system’s poles are not fulfilled (i.e. LAPACK and inclusion

principles cannot guarantee that ρ(A)< 1) and refused to compute the result.

6.7 Extending the WCPG theorem to the range of the state

variables

It is easy to apply the WCPG to determine the output interval of state vector as well. For this, we

“concatenate” the state vector with the system’s output. Denote vector ζ(k) :=
(

x(k)

y(k)

)
∈Rn+p

to be the new output vector. Then the state-space relationship takes the form:

Hζ





x(k+1) = Ax(k) + Bu(k)

ζ(k) =
(

I
C

)
x(k) +

(
0
D

)
u(k)

. (6.58)

Hence, the first n elements of ζ(k) are just copies of the state vector and the following p

elements are computed just like the initial output y(k).

Applying the WCPG upon the system Hζ we obtain a bound on ζ(k), i.e. both state and

output vectors of the initial system.

6.8 WCPG for interval systems

In our problem statement we assume that the coefficients of filter structures are exactly repre-

sentable in some floating-point format. However, in practical applications coefficients of the filter

structures may be represented as intervals with small radii. This representation may be due to

measurement errors: for instance in closed-loop control systems [128] state-matrices are often

auto-corrected after measurements. To take into account the measurement uncertainty, matrices

are represented as intervals. In this Section we propose several ideas on the computation of the

WCPG of a system whose coefficients are small9 intervals.

9The width of the intervals is of the order of rounding errors due to double precision.

102

6.8. WCPG FOR INTERVAL SYSTEMS

Absolute value of an interval: there exist several ways to define an absolute value of

an interval number. We are going to use the definition by Neumaier [129], which states that

for an interval number [x] = [x, x], its absolute value is a real number |[x]| ∈ R such that

|[x]| = max
{∣∣x

∣∣ , |x|}. In his work [130], Neumaier shows how to achieve a distributivity for

interval arithmetic.

Notation: to improve the clarity of formulas, in this section we assume that an interval

matrix [M] is centered at M c and has radius ∆M. We suppose all interval arithmetic to be in

multiple-precision. All matrix inequalities and absolute values are applied element by element.

We formulate the problem as follows:

Problem
Given a state-space system H = ([A], [B], [C], [D]), compute an approximation S on the

WCPG

〈〈H 〉〉 = |[D]|+
∞∑

k=0

∣∣∣[C][A]k[B]
∣∣∣ (6.59)

such that two properties are ensured:

1. bound property: 〈〈H 〉〉 ≤ S element-by-element;

2. if coefficients’ radii → 0 and precision →∞ then the exact 〈〈H 〉〉 is contained in an ε

neighborhood of the approximation S for an a priori given small ε> 0.

Naive computation of the Worst-Case Peak Gain with interval matrices may yield to interval

explosion due to strong decorrelation. We, on the other hand, propose to adopt the same

approach of six-step truncation and summation.

Truncation: in case of interval matrices we can apply the same approach for the truncation

order computation as in Section 6.3. However, the problem of computation of eigenvalues of an

interval matrix arises.

Eigendecomposition of interval matrix: given an interval matrix [A] centered at Ac with

radius ∆A we need to compute the set [Λ] which contains the eigenvalue matrices of all A ∈ [A].

To compute the enclosure on Λ, we use the result of Xu et al. [131] which is based on the

Generalized Gershgorin discs. It can be summarized in the following way.

Denote [Ec] = diag([λc1], . . . , [λcn]) to be an interval matrix enclosing the eigenvalues of

matrix Ac. Let [V c] be an interval matrix of corresponding eigenvectors, i.e. ∀E ∈ [E] ∃V c ∈ [V]

such that Ac ⊆V cEV−1
c . Then, the enclosure on the eigenvalues of [A] is a diagonal interval

103

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

matrix [E]= diag([λ1], . . . , [λn]) such that for i = 1, . . . ,n

[λi]= [λci]+
n∑

j 6=i
H i j, (6.60)

where matrix H = |[V c]|∆A
∣∣[V c]−1∣∣. Xu et al. prove that [Λ]⊆ [E].

Then, we can compute the enclosure [V] on the eigenvectors corresponding to [E] by

solving the linear systems of interval equations. In [132] Corsaro et al. give a good overview of

the State of the Art on the solution of interval linear systems. For example, Neumaier proposes

in [133] to combine the Interval Gauss Elimination with preconditioning and proves that such

combination gives good results when ∆A is small.

Finally, using [134–136], we can compute an enclosure on the inverse of an interval matrix.

This operation is required during computation of both truncation order and final summation.

Summation For the summation stage we apply the technique similar to the one discussed in

Section 6.4. The first intuition would be just to simply use interval arithmetic for the computations.

However, to satisfy the second property in the problem statement we must control the precision

of computations of centers and radii of all interval matrices, just like in the floating-point case.

6.9 Conclusion

With this work, a reliable, rigorous multiple precision algorithm to compute the Worst-Case

Peak Gain matrix has been developed. It relies on Theory of Verified Inclusion, eigenvalue

decomposition to perform matrix powering, some multiple-precision arithmetic basic bricks

developed to satisfy absolute error bounds and a detailed step-by-step error analysis. A C

library10 has been developed and now can be used in our automatic code generator.

To conclude, for a given MIMO filter in state-space representation we can now reliably

determine the dynamic range of the output signal, including the worst-case values. Moreover,

our algorithm easily extends to the determination of dynamic range of the state variables as well,

which we demonstrate in the next Chapter together with the determination of FxP formats for all

variables. Through the conversion between the SIF ans state-space representations we may

easily deduce the dynamic range for the temporary variables as well.

Since WCPG is just the `1-norm of the filter’s impulse response, our algorithm ensures

reliable computation of a digital filter’s transfer function (see Chapter 5). We shall also see in the

next Chapter that rigorous error analysis of a finite-precision implementation is based on the

accurate Worst-Case Peak Gain measure.

10https://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git

104

https://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git

6.9. CONCLUSION

However, some efforts are still required to overcome double precision eigenvalue decom-

position in LAPACK (specially for close-to-instability LTI systems) by using a multiple precision

eigensolver. Additionally, as the proofs on the error bounds are pretty complicated, they should

be formalized in a Formal Proof Checker, such as Coq or HolLight.

Another point to be investigated is the distribution of the error budget among computation

stages. At the moment we are using an equal distribution between all six stages. It would be

interesting to see whether increasing truncation error (hence, decreasing number of terms to be

summed) can be beneficial for the speed of the computations. Our intuition is that in terms of

time, the dependency between number of terms and accuracy is somewhat linear and, therefore,

changing error budget repartition does not bring a real improvement.

We have also proposed a modification of our algorithm for the case of interval matrices. The

interval WCPG can be beneficial in implementation of uncertain systems, when uncertainties are

due to limited precision of measurements. However, the bottleneck of the proposed approach

is the width of the interval matrices: increasing intervals’ radii may yield to singularities in the

intermediate computations.

105

CHAPTER 7
DETERMINING RELIABLE FIXED-POINT FORMATS

O
nce the dynamic range of all variables is determined using the WCPG, we must

determine the Fixed-Point formats of all variables for an implementation. At this step we

determine the accuracy of the output and the cost of implementation. Usually, we seek

to minimize the cost (e.g. in terms of memory or power consumption) while satisfying certain

output error bound. To solve this problem, various optimization processes may be applied. To

ensure satisfactory optimization time, the evaluation of the FxP formats and output error for each

given set of wordlength constraints must be fast.

The goal is, given realization coefficients and wordlength constraints, to determine the

Most and the Least Significant Bit (MSB and LSB respectively) positions that will ensure that

no overflow occurs. We must also determine the worst-case error bound on the implemented

system. We remind the reader that we consider the case of recursive LTI filters. The difficulty in

implementation of those filters comes from the non-linear propagation of computational errors

from one filter iteration to another. Even small rounding errors may be significantly amplified

and accumulated through the feedback loop. On top of that, the computation of the FxP formats

is based on the estimation of the dynamic range which is an approximated measure. We will

show how to rigorously take the eventual approximation error into account and ensure that we

compute MSB positions either exactly or overestimate them by at most 1 bit.

In the following we propose a novel analytical approach for determination of the FxP formats

for an arbitrary filter realization. We use SIF to encompass all LTI filter realizations but again, we

demonstrate our approach on state-space structures.

This work is based an article published at the 49th Asilomar Conference on Signals and

Systems in 2015 [13].

7.1 Determining the Fixed-Point Formats

Existing approaches Usually, an idea on the behavior of computational errors in linear filters

can be obtained via bit-true simulation [80, 82] of the FxP implementation and then comparison

with a reference (floating-point) simulation. The advantage of such technique is that it can be

107

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

applied to any realization. An obvious drawback is that simulations may not be exhaustive and

comparison is not done with an exact filter but with a floating point, i.e. finite-precision, evaluation.

Thus, no guarantee on the result can be obtained with this approach. Moreover, simulations may

take significant time [83].

Another way is to apply analytical approaches once a mathematical expression of a nu-

merical accuracy metric is determined. For example, using Interval Arithmetic [84, 85] or Affine

Arithmetic [87–89]. These approaches may be more or less efficient, i.e. the dynamic range

estimation is relatively fast, but they do not support all kinds of systems. If a new structure is

developed, a corresponding analysis approach must be adopted too.

Thus, a new rigorous methodology must be developed. The idea to use the WCPG theorem

has already been there for a while [10, 137] but without guarantee on the evaluation of the

WCPG it was not rigorous. Moreover, numerous details such as the errors of computation of

MSBs and taking into account the propagation of computational errors when determining MSBs

were not worked through. In the following we propose a rigorous approach that accounts for all

details and proposes a complete methodology for the reliable FxP implementation.

Problem statement The problem of determining the FxP formats for a filter realization H can

be formulated as follows. Let H be an nth order stable filter in state-space representation:

H

{
x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)+Du(k)
(7.1)

with q inputs and p outputs.

Suppose all the inputs to be in an interval bounded by ū: ∀k |ui(k)| ≤ ūi for i = 0, . . . , q and

that no other information on the spectrum of the input signal is available.

Let wx ∈Zn and wy ∈Zp be vectors with wordlength constraints on the state and output

variables respectively. We wish to determine the least MSB positions mx and my that will ensure

that no overflow occurs (see Chapter 2 Section 2.1), i.e. we seek my and mx such that

∀k, y(k) ∈ [−2my ;2my −2my−wy+1], (7.2)

∀k, x(k) ∈ [−2mx ;2mx −2mx−wx+1]. (7.3)

Since the filter H is linear and input interval is centered at zero, the output interval is also

centered at zero. This leads to the following formulation of the problem:

108

7.1. DETERMINING THE FIXED-POINT FORMATS

Problem
Given a filter realization H in the state-space form (7.1), determine the least MSB positions

my and mx for the output and state vectors respectively such that

∀k, |y(k)| ≤ 2my −2my−wy+1, (7.4)

∀k, |x(k)| ≤ 2mx −2mx−wx+1. (7.5)

7.1.1 Applying the WCPG to compute MSB positions

Applying the WCPG theorem on the filter H yields a bound on the output interval:

∀k |yi(k)| ≤ (〈〈H 〉〉 ū)i , i = 1, . . . , p. (7.6)

Let ȳ := 〈〈H 〉〉 ū be the bound vector. Then, we can determine the FxP formats for the output of

a LTI filter H with the following lemma.

Lemma 7.1. Let H = (A,B,C,D) be a BIBO-stable MIMO LTI filter and ū be a bound on the

input interval. Suppose the wordlengths wy are known and wyi > 1, i = 1, . . . , p.

If for i = 1, . . . , p the MSBs are computed with

myi =
⌈

log2(ȳi)− log2
(
1−21−wyi

)⌉
(7.7)

and the LSBs are computed with `yi = myi +1−wyi , then for all k |yi(k)| ≤ 2myi −2myi−wyi+1

and myi is the least.

Proof. We look for the least my such that (7.4) holds. Using the definition of two’s complement

FxP format from Chapter 2 Section 2.1 and the fact that the bound ȳ can be reached, it is

sufficient to require that:

ȳi ≤ 2myi −2myi−wyi+1. (7.8)

Solving this inequality for myi we obtain that the smallest integer, which satisfies the above

inequality is given by (7.7). �

7.1.2 Modification of filter H to determine bounds on the state variables

Using Lemma 7.1 we can determine the FxP formats for the output of a filter. In order to

determine the FxP formats for the state variables, we modify the filter H like in Section 6.7.

109

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

Denote vector ζ(k) :=
(

x(k)

y(k)

)
to be the new output vector. Then the state-space relationship

takes the form:

Hζ





x(k+1) = Ax(k) + Bu(k)

ζ(k) =
(

I
C

)
x(k) +

(
0
D

)
u(k)

. (7.9)

Performing the concatenation of wordlength constraints vectors wx and wx gives wζ ∈Zn+p.

Hence the problem is to find the least MSB vector mζ such that (element-by-element)

∀k, |ζ(k)| ≤ 2mζ −2mζ−wζ+1. (7.10)

Now, applying the WCPG theorem on the filter Hζ and using Lemma 7.1, we can deduce the

MSB positions of the state and output vectors for an implementation of the filter H :

mζi =
⌈

log2(ζ̄i)− log2
(
1−21−wζi

)⌉
for i = 1, . . . ,n+ p. (7.11)

7.2 Taking rounding errors into account

However, due to the finite-precision degradation what we actually compute is not the exact filter

Hζ but an implemented filter H ♦
ζ

:

H ♦
ζ





x♦(k+1) = ♦`x

(
Ax♦(k)+Bu(k)

)

ζ♦(k) = ♦`ζ

((
I
C

)
x♦(k)+

(
0
D

)
u(k)

)
(7.12)

where the Sums-of-Products (accumulation of scalar products on the right side) are computed

with some rounding operator ♦`. Suppose, this operator ensures faithful rounding [35], i.e.:

|♦`(x)− x| < 2`, (7.13)

where ` is the Least Significant Bit position of the operator’s output.

In [42, 138] it was shown that such an operator can be implemented using some extra guard

bits for the accumulation.

Denote the errors due to operator ♦` as εx(k) and εy(k) for the state and output vectors,

respectively. Essentially, the vectors εx(k) and εy(k) may be associated with the noise which is

induced by the filter implementation. Then the implemented filter can be rewritten as

H ♦
ζ





x♦(k+1) = Ax♦(k)+Bu(k)+εx(k)

ζ♦(k) =
(

I
C

)
x♦(k)+

(
0
D

)
u(k)+

(
0
I

)
εy(k)

, (7.14)

110

7.2. TAKING ROUNDING ERRORS INTO ACCOUNT

H≥

H¢

u(k)
⇣(k)

¢⇣(k)

⇣⌃(k)m≥

µ
"x (k)
"y (k)

∂

Figure 7.1: Implemented filter decomposition.

where

|εx(k)| < 2`x ,
∣∣εy(k)

∣∣< 2`y .

It should be remarked that since the operator ♦l is applied εx(k) 6= x(k)− x♦(k) and εy(k) 6=
y(k)− y♦(k). As the rounding also affects the filter state, the x♦(k) drifts away from x(k) over

time, whereas with εx(k) we consider the error due to one step only.

It can be observed that at each instance of time the state and output vectors are computed

out of u(k) and error-vectors, which can be considered as inputs as well. Thanks to the linearity

of the filters, we can decompose the actually implemented filter into a sum of the exact filter and

an “error-filter” H∆ as shown in Figure 7.1. Note that this “error-filter” is an artificial one; it is not

required to be implemented by itself and serves exclusively for error-analysis purposes.

The filter H∆ is obtained by computing the difference between H ♦
ζ

and Hζ. This filter takes

the rounding errors ε(k) :=
(
εx(k)

εy(k)

)
as input and returns the result of their propagation through

the filter:

H∆





∆x(k+1) = A∆x(k) +
(

I 0
)
ε(k)

∆ζ(k) =
(

I
C

)
∆x(k) +

(
0 0
0 I

)
ε(k)

, (7.15)

where, the vector ε(k) is guaranteed to be in the interval bounded by ε̄ := 2`ζ .

Once the decomposition is done, we can apply the WCPG theorem on the “error-filter” H∆

and deduce the output interval of the computational errors propagated through filter:

∀k,
∣∣∆ζ(k)

∣∣≤ 〈〈H∆〉〉 · ε̄. (7.16)

Hence, the output of the implemented filter is bounded with
∣∣∣ζ♦(k)

∣∣∣=
∣∣ζ(k)+∆ζ(k)

∣∣≤ |ζ(k)|+
∣∣∆ζ(k)

∣∣ . (7.17)

Remark 7.1. Obviously, when applying the triangular inequality in (7.17) we actually overes-

timate the bound. From a practical point of view, it can be interpreted as an assumption that

111

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

the input signal that leads to the worst-case output also leads to the worst-case rounding

errors. Obviously, this is not generally true. Thus, the triangular inequality bound is not generally

attained. Consequently, the “least” MSB positions that we compute further are not the least

possible but the least for our way to model the errors and their propagation. In Section 7.8 we

propose an approach on dealing with this potential overestimation.

Applying Lemma 7.1 on the implemented filter and using (7.17) we obtain that the MSB

vector m♦
ζ

can be upper bounded by

m♦
ζi
=

⌈
log2

((〈〈
Hζ

〉〉 · ū)
i + (〈〈H∆〉〉 · ε̄)i

)
− log2

(
1−21−wζi

)⌉
. (7.18)

Therefore, the FxP formats (m♦
ζ

,`♦
ζ

) guarantee that no overflows occur for the implemented

filter.

Since the input of the error filter H∆ depends on the FxP formats chosen for implementation,

we cannot directly use (7.18). The idea is to first compute the FxP formats of the variables in the

exact filter H , where computational errors are not taken into account, and use it as an initial

guess for implemented filter H ♦
ζ

. Hence, we obtain the following two-step algorithm:

Step 1: Determine the FxP formats (mζ,`ζ) for the exact filter Hζ

Step 2: Construct the “error-filter” H∆, which gives the propagation of the computational errors

induced by format (mζ,`ζ); then, compute the FxP formats (m♦
ζ

,`♦
ζ

) of the actually

implemented filter H ♦
ζ

using (7.18).

The above algorithm takes into account the filter implementation errors. However, the algorithm

itself is implemented in finite-precision and can suffer from rounding errors, which influence

the output result. All operations in the MSB computation will induce errors, so what we actually

compute are only floating-point approximations m̂ζ and m̂ζ
♦. In what follows, we propose an

error-analysis of the floating-point evaluation of the MSB positions via (7.7) and (7.18).

7.3 Error analysis of the MSB computation formula

Let us consider the case of m̂ζi
♦ and show afterwards that m̂ζi is a special case. To reduce the

size of expressions, denote

m := log2

((〈〈
Hζ

〉〉 · ū)
i + (〈〈H∆〉〉 · ε̄)i

)
− log2

(
1−21−wζi

)
. (7.19)

Handling floating-point analysis of multiplications and additions in (7.18) is trivial using

approach by Higham [46]. The difficulty comes from the WCPG matrices which cannot be

112

7.3. ERROR ANALYSIS OF THE MSB COMPUTATION FORMULA

computed exactly. Both approximations á〈〈Hζ

〉〉
and á〈〈H∆〉〉, even if computed with arbitrary

precision, bear some errors εWCPGζ
and εWCPG∆

that satisfy

0≤ á〈〈H∆〉〉−〈〈H∆〉〉 ≤ εWCPGζ
·1, (7.20)

0≤ á〈〈Hζ

〉〉−〈〈
Hζ

〉〉≤ εWCPG∆
·1. (7.21)

Introducing the errors on the WCPG computations into the formula (7.18) we obtain that

what we actually compute is

m̂ζi
♦ ≤

È
ÌÌÌÌÌÌ
m+ log2


1+

εWCPGζ

q∑
j=1

ū j +εWCPG∆

n+p∑
j=1

ε̄ j

(〈〈
Hζ

〉〉
ū

)
i + (〈〈H∆〉〉 ε̄)i




É
ÍÍÍÍÍÍ

. (7.22)

The error term in (7.22) cannot be zero (apart from trivial case with zero ū). However,

since we can control the accuracy of the WCPG matrices, we can deduce conditions for the

approximation m̂ζi
♦ to be off by at most one. Moreover, with the following Lemma we prove that

we never underestimate the MSB positions.

Lemma 7.2. If the WCPG matrices
〈〈

Hζ

〉〉
and 〈〈H∆〉〉 are computed such that (7.20) and

(7.21) hold with

εWCPG∆
< 1

2

(
〈〈H∆〉〉 · ε̄

)
i∑p+n

j=1 ε̄i
(7.23)

εWCPGζ
< 1

2

(〈〈
Hζ

〉〉 · ū
)

i∑q
j=1 ūi

, (7.24)

where 〈〈H 〉〉 := |D|+ |CB|+ |CAB|, then

0≤ m̂ζi
♦−mζi

♦ ≤ 1. (7.25)

Proof. Proof by construction, we reason as follows: since the error-term caused by the WCPG

floating-point evaluation is positive and the ceil function is increasing, then

m̂ζi
♦−mζi

♦ ≥ 0, (7.26)

i.e. the floating-point approximation m̂ζi
♦ is guaranteed to never be underestimated. However, it

can overestimate the MSB position by

m̂ζi
♦−mζi

♦ ≤

È
ÌÌÌÌÌÌ
m−

⌈
m
⌉

︸ ︷︷ ︸
−1<·≤0

+ log2


1+

εWCPGζ

q∑
j=1

ū j +εWCPG∆

n+p∑
j=1

ε̄ j

(〈〈
Hζ

〉〉
ū

)
i + (〈〈H∆〉〉 ε̄)i




É
ÍÍÍÍÍÍ

. (7.27)

113

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

The approximation m̂ζi
♦ overestimates at most by one bit if and only if the error term is contained

in the interval [0,1), i.e. if

0≤ log2


1+

εWCPGζ

q∑
j=1

ū j +εWCPG∆

n+p∑
j=1

ε̄ j

(〈〈
Hζ

〉〉
ū

)
i + (〈〈H∆〉〉 ε̄)i


< 1. (7.28)

Hence, using the above condition we can deduce the required upper bounds on the εWCPGζ
and

εWCPG∆
:

0≤
εWCPGζ

q∑
j=1

ū j +εWCPG∆

n+p∑
j=1

ε̄ j

(〈〈
Hζ

〉〉
ū

)
i + (〈〈H∆〉〉 ε̄)i

< 1. (7.29)

Since all the terms are positive, the left inequality is always true. The right inequality in (7.29) is

satisfied for instance if

εWCPGζ

q∑
j=1

ū j

(〈〈
Hζ

〉〉 · ū)
i
< 1

2

εWCPG∆

n+p∑
j=1

ε̄ j

(〈〈H∆〉〉 · ε̄)i
< 1

2
(7.30)

Rearranging terms we obtain following inequalities on the WCPG computation with error:

εWCPGζ
< 1

2
·
(〈〈

Hζ

〉〉
ū

)
i

q∑
j=1

ū j

εWCPG∆
< 1

2
· (〈〈H∆〉〉 ε̄)i

n+p∑
j=1

ε̄ j

(7.31)

Unfortunately, the above results cannot be used in practice, since they depend themselves

on the exact WCPG matrices. Instead, we may use a lower bound of the WCPG matrix, which

can be shown to be 〈〈H 〉〉. We can compute this matrix exactly. Obviously,
(
〈〈H∆〉〉 · ε̄

)
i∑p+n

j=1 ε̄i
≤ (〈〈H∆〉〉 · ε̄)i∑p+n

j=1 ε̄i
(7.32)

and
(〈〈

Hζ

〉〉 · ū
)

i∑q
j=1 ūi

≤
(〈〈

Hζ

〉〉 · ū)
i∑q

j=1 ūi
. (7.33)

Hence, if the WCPG matrices in the right sides of (7.31) are substituted with their lower

bounds, the condition (7.29) stays satisfied and we obtain bounds (7.23) and (7.24).

�

Analogously, Lemma 7.2 can be applied to the computation of m̂ζi with the terms concerning

filter H∆ set to zero.

114

7.4. COMPLETE ALGORITHM

Algorithm III.3: Reliable determination of the Fixed-Point formats
Input: system H = (A,B,C,D);

input interval bound ū;
wordlength constraints wx,wy

Output: Formats (mx,my) or an error

1 wζ←−
(
wx
wy

)

2 Hζ←−
(
A,B,

(
I
C

)
,
(

0
D

))

3 H∆←−
(
A,

(
I
0

)
,
(

I
C

)
,
(
0 0
0 I

))

4 for i = 0, . . . ,n+ p do
5 [mζi]←− interval

(⌈
log2

(〈〈
Hζ

〉〉 · ū)
i − log2

(
1−21−wζi

)⌉)

6 mmaxi ←− mζi +wζi +1
7 end
8 do
9 for i = 0, . . . ,n+ p do

10 εζi ←− 2mζi−wζi+1

11 [m♦
ζi

]←− interval
(⌈

log2
((〈〈

Hζ

〉〉 · ū)
i + (〈〈H∆〉〉 ·ε)i

)− log2
(
1−21−wζi

)⌉)

12 end
13 if [m♦

ζi
]== [mζi] for i = 0, . . . ,n+ p then

14 return mζ

15 end
16 else
17 [mζi]←− [mζi]+1 for i = 0, . . . ,n+ p
18 end
19 while m♦

ζ
< mmax;

20 return Error

7.4 Complete algorithm

The two-step algorithm, presented in subsection 7.2 takes into account accumulation of compu-

tational errors in a filter over time and Lemma 7.2 presents error-analysis of the MSB position

computation procedure. However, one additional fact has not been taken into account.

In most cases the MSB vectors m̂ζ (computed on Step 1) and m̂♦
ζ

(computed on Step 2)

are the same. However, in some cases they are not, which can happen due to one of the

following reasons:

• the accumulated rounding error due to the FxP formats (m̂ζ, ̂̀ζ) makes the output of the

115

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

actually implemented filter pass over to the next binade; or

• the floating-point approximation m̂♦
ζ

is off by one.

Moreover, we remind the reader that we consider that wordlength constraints are hard, i.e.

they cannot be changed. Then, if the MSB position after Step 2 of the algorithm is increased,

the LSB position moves along and increases the error. Therefore, the modified format must be

re-checked to verify whether the increased error had not propagated in such way that the MSB

positions must be increased even more. Hence, the FxP formats determination algorithm gets

transformed into the following iterative procedure that goes through three steps:

Step 1: Determine the FxP formats (m̂ζ, ̂̀ζ) for the exact filter Hζ;

Step 2: Construct the “error-filter” H∆ which describes the propagation of the computational

errors induced by format (m̂ζ, ̂̀ζ); then, compute the FxP formats (m̂♦
ζ

, ̂̀♦ζ) of the

actually implemented filter H ♦
ζ

;

Step 3: If the formats m̂♦
ζi

computed on Step 2 are the same as formats computed on Step 1,

i.e. m̂♦
ζi
== m̂ζi , then we return the formats (m̂♦

ζ
, ̂̀♦ζ). Otherwise, we increase m̂ζi by

one and repeat the process from Step 2.

Obviously, if the given wordlengths are too small and the filter simply cannot be reliably

implemented with those constraints, our procedure enters an infinite loop. A practical stop

condition is to let the LSB position to move up until the initial guess of the MSB position. Moving

the LSB position further is meaningless since it means that the quantization error is larger in

magnitude than the output of the exact filter.

The final procedure is described with the Algorithm III.3, where operator interval implies

that all internal computations are done with interval arithmetic and vector mmax denotes the

maximum bound on the MSBs of the implemented filter. In this algorithm we compute the WCPG

matrices with the error bounds deduced with Lemma 7.2.

7.5 Numerical results

The above described algorithm was implemented as a C library, using GNU MPFR version

3.1.12, GNU MPFI version 1.5.1 and the WCPG library [7]. Experiments were done on a laptop

computer with an Intel Core i5 processor running at 2.8 GHz and 16 GB of RAM. Consider two

examples, one being our key lowpass filter and second being a real-life filter from Software

Defined Radio applications.

116

7.5. NUMERICAL RESULTS

wordlengths

∆
y

10111213141516

0

0.5

1

1.5

2

2.5

·10−2

16 14 12 10 8 6
0

0.2

0.4

0.6

(a) Example 1: simple lowpass filter

wordlengths

∆
y

16 15 14 13

0.05

0.1

0.15

16 15 14 13 12 11
0

1

3

5

(b) Example 2: real-life filter

Figure 7.2: Evolution of the worst-case error in dependency with the wordlength constraints.

Example 1: Consider our key filter example from Chapter 1 Section 1.4.3 and suppose that

all inputs are situated in an interval bounded by ū = 1. We realized this transfer function with

a balanced state-space structure1. We applied our algorithm to determine the FxP formats

for an implementation with wordlengths (for state and output variables) decreasing from 16

to 4 bits. We obtain that implementation is possible only for wordlengths larger than 5 bits.

For the worldengths set to 5 our algorithm determined that the computational errors with such

wordlengths will yield an overflow. In other words, in Algorithm III.3, we tried to move the MSB

positions in additional steps up until the condition on line 19 was satisfied. Interestingly, for

implementation with wordlengths from 16 to 6 bits no additional steps were required, i.e. the

initial guess formats were always enough.

Via the error filter H∆ we determine the bound on the implementation error for state and

output variables of our filter. In Figure 7.2a we illustrate the evolution of the worst-case error of

the output y(k) in dependency with the wordlength constraints.

Example 2: This example comes from a recent article [139] on the implementation of Software

Defined Radio on reconfigurable architectures. The filter in question is a SISO bandpass filter

with a very narrow passband. We realize this filter again with a balanced state-space structure2

An interested reader may find the coefficients of the structure in Appendix 2.2.

We applied our algorithm to determine the FxP formats for an implementation with wordlengths

(for state and output variables) decreasing from 16 to 4 bits. Our algorithm indicates that a

reliable implementation is possible only up to 11 bits of wordlength for each state and output.

1Coefficients of the state-space were obtained using the standard Python SciPy function ss.
2The structure choice is based only on its possibility to highlight certain features of the algorithm.

117

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

16 bits 12 bits
Step 1 Step 2 Step 1 Step 2 Additional Step 1 Additional Step 2

x1 5 5 5 5 5 5
x2 5 5 5 5 5 5
x3 4 4 4 5 5 5
x4 4 4 4 5 5 5
x5 3 3 3 3 4 4
x6 3 3 3 3 4 4
y 1 1 1 1 2 2

time 1.35s 3.06s

Table 7.1: Evolution of MSB positions through the algorithm

Decreasing wordlengths to 10 bits and less yields computational errors that may lead to an

overflow and there exist no FxP formats that are guaranteed to avoid that.

In contrast to Example 1, our algorithm required several additional steps, i.e. came back

to Step 2 several times, for some wordlength constraints. Table 7.1 illustrates the evolution of

MSB positions through our algorithm for the wordlength constraints set to 16 and 12 bits. We

see that for the wordlength constraints set to 16 bits the MSB positions computed on Step 2 are

the same is the initially guessed MSBs, and hence our algorithm stops. For the wordlengths

set to 12 bits, the MSBs of x3 and x4 are increased on Step 2. We check whether increasing

the quantization error may yield to an overflow and obtain that MSBs for x5, x6 and y must be

increased. After performing one more check we obtain that these formats are indeed reliable.

Analogously to Example 1, we may determine the bound on the implementation error. On

Figure 7.2b we illustrate the evolution of a bound on the worst-case error ∆y of the output in

dependency with the wordlengths constraints.

7.6 Application to the Specialized Implicit Form

The above approach can easily be extended to the case of filter realizations described with the

Specialized Implicit Form (SIF).

Let R = {J,K,L, M, N,P,Q,R,S} be some realization of a MIMO filter described with SIF.

Analogously to (7.9), we denote by ζ(k) :=




t(k+1)

x(k)

y(k)


 a vector holding the temporary, state

and output variables. Then, the corresponding SIF Rζ is described with the following set of

118

7.6. APPLICATION TO THE SPECIALIZED IMPLICIT FORM

equations:

Rζ





t(k+1) = −J′t(k+1) + Mx(k) + Nu(k)
x(k+1) = Kt(k+1) + Px(k) + Qu(k)

ζ(k) =




I
0
L


 t(k+1) +




0
I
R


x(k) +




0
0
S


u(k)

. (7.34)

where J′ = J − I. Then, using the same considerations over the rounding operator as in
Section 7.2, the actually implemented filter can be modeled as R♦

ζ
described with the following

set of equations:

R♦
ζ





t♦(k+1) = −J′t♦(k+1) + Mx♦(k) + Nu(k) +
(
I 0 0

)
ε(k)

x♦(k+1) = Kt♦(k+1) + Px♦(k) + Qu(k) +
(
0 I 0

)
ε(k)

ζ♦(k) =




I
0
L


 t♦(k+1) +




0
I
R


x♦(k) +




0
0
S


u(k) +




0 0 0
0 0 0
0 0 I


ε(k)

(7.35)

where ε(k) :=




εt(k+1)

εx(k)

εy(k)


 holds the errors due to rounding while computing t♦, x♦ and y♦.

Analogously to (7.15), the error-filter ∆Rζ is obtained by computing the difference between

R♦
ζ

and Rζ, and has coefficient matrices

∆Rζ :=





J,K,




I
0
L


 , M,

(
I 0 0

)
,P,

(
0 I 0

)
,




0
I
R


 ,




0 0 0
0 0 0
0 0 I








. (7.36)

As it was mentioned in the state of the art, Chapter 3 Section 3.2.1, we can convert any SIF

to a state-space model without any computational errors. Thus, we can compute the WCPG

〈〈R〉〉 of a system R in SIF representation by first converting R into a corresponding state-space

system and then applying the WCPG algorithm. Hence, we need to make the following changes

in the Algorithm III.3 to adapt to the case of systems in SIF representation:

• instead of Hζ we use Rζ as in (7.34);

• instead of H∆ we use R∆ as in (7.36);

• WCPGs of systems in the SIF representation are computed through conversion to the

exact conversion from SIF to state-space;

• vectors mζ and m♦
ζ

bear the MSB positions of the temporary, state and output variables

for the initial and implemented filter respectively.

119

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

7.7 Conclusion

In this Chapter we proposed an algorithm for the reliable determination of the FxP formats for all

variables involved in a recursive filter. We assume that the wordlength constraints and a bound

on the input interval3 are given. We take computational errors as well as their propagation over

time fully into account. We achieve this by decomposing the actually implemented filter into a

sum of the exact filter and a special error-filter. By applying the WCPG theorem upon the error

filter we get a bound on the worst-case error. We take this bound into account while computing

the MSB positions for the variables.

We provide error analysis of the MSB computation formula and show that by adjusting

the accuracy of the WCPGs, the computed MSB positions are either exact or overestimated

by one. Our approach is fully reliable and we do not use any simulations anywhere in our

algorithms. Even despite the off-by-one problem, to our knowledge, our algorithm is the first

existing approach that given wordlength constraints provides reliable MSB positions along with

a rigorous bound on the computational errors. Moreover, it is easy to turn the problem the “other

way around” and, given some output error bound, determine the least MSB positions that ensure

this bound. We also support multiple wordlength paradigm, i.e. wordlengths are not necessarily

the same for all variables.

By extending this approach to the case of SIF, we enable reliable FxP implementation of any

LTI digital filter structure. This contribution represents the kernel functionality of our automatic

filter code generator.

Remark that in this work we derived our algorithms only for the case of errors only due to

rounding in intermediate computations. As it was mentioned before, another source of error is

the quantization of the coefficients. Obviously, both computational and quantization errors must

be treated together. In his thesis [6], Lopez modified the decomposition of an implemented filter

such that the error filter H∆ also takes into account the propagation of the quantization errors.

Using this updated error-filter, we simply apply the Algorthm III.3 upon it and obtain the general

approach for reliable FxP implementation of digital filters.

The execution time of our algorithm is dominated by the computation of the WCPG. In most

cases, we do not require large accuracy for the WCPG. On the contrary, we often need the

WCPG to be accurate to even less than double precision which speeds up the computations.

Overall, the execution time of our algorithm permits us to use it repetitively, for instance as part

of optimization routines. For example, for hardware targets that support multiple wordlength

paradigm, we usually seek to minimize the wordlengths while maintaining certain quality of the

output. Or, we may seek to minimize the power consumption of the eventual architecture. To

3The interval is supposed to be centered at zero.

120

7.8. ONGOING WORK: OFF-BY-ONE PROBLEM

dme dme+1

[bm]

Figure 7.3: Performing Ziv’s iteration.

prove the optimality of the computed solutions, we must ensure that we always compute the

least MSB positions.

In other words, we need to solve the off-by-one problem of our algorithm. In Section 7.8 we

present a possible approach on tackling this problem. We showed that by solving a particular

Integer Linear Programming (ILP) problem we may prove that it is safe to take the smaller MSB

positions. The condition for that is the absence of solutions of the ILP problem. However, if

there exists a solution, we still do not have a guarantee that there indeed exists an input signal

that forces our FxP algorithm to fail (e.g. overflow occurs). There is still some work required to

investigate this question.

Finally, it is interesting to investigate the case when some information is available concerning

the spectrum of the input signal. This information may considerably reduce the dynamic range

of the filter and, consequently, the implementation cost. Our goal is to propose an approach

on exploiting this information on the behavior of the input signal while still guaranteeing the

reliability of the computed FxP Formats. In the Section 7.9 we give the problem statement and

our approach on tackling this problem.

7.8 Ongoing work: Off-by-One Problem

In Section 7.3 we showed that since the computation of MSB positions is based on the WCPG

measure, which itself cannot be computed exactly, we compute the MSB positions with some

error. In Lemma 7.2 we give the minimum accuracy of the WCPG matrices such that the MSB

positions are overestimated at most by one. However, the computation of the MSB is based

on the quantities (the WCPG and logarithm) that cannot be computed exactly in finite number

of steps but only approximately. We deal with the error of computation of logarithm by using

multiple precision interval arithmetic but then the problem is to determine what accuracy of the

WCPG to choose.

Let [m̂] be an interval estimation of a MSB position via (7.19), where the WCPG matrices

were computed with the error bounds deduced in Lemma 7.2. The integer MSB positions are

computed as
⌈
[m̂]

⌉
. However, we may be in trouble if the exact value m is very close to the integer⌈

m
⌉
, since in this case the interval with an approximated MSB position will contain both

⌈
m
⌉

and

121

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

⌈
m
⌉
+1. Then, we need to determine the smallest accuracy of the WCPG such that we do not

overestimate the MSB position, i.e. the upper bound of interval
⌈
[m̂]

⌉
with an approximation of

MSB is the same as
⌈
m
⌉
. This problem is an instance of the Table Maker’s Dilemma (TMD) [35],

which occurs during the implementation of correctly rounded transcendental functions.

One of the strategies of solving the TMD is performing Ziv’s iteration [140]. In this approach

we reduce the width of the interval [m̂] by iteratively increasing the accuracy of the WCPG

computation. However, even after numerous iterations the interval may still contain the integer⌈
m
⌉

(see Figure 7.3). This may be due to the following reasons:

(i) the interval is still too large due to the rounding errors;

(ii) the interval is too large due to the triangular inequality in (7.17);

(iii) the propagation of the rounding errors indeed yields the larger MSB position, i.e. m> z .

Thus, we cannot simply continue increasing the precision of the computations. We propose the

following strategy:

• increase the accuracy of the WCPG several times;

• if the interval [m̂] still contains the integer z, try to find whether there exist a state and input

vector that yield an overflow if the eventual MSB position is set to z. Roughly said, we try

to use the smaller format and prove that an overflow is not possible.

To prove that an overflow (underflow) is not possible, we propose to solve an instance of the

following Integer Linear Programming [141–143] problem.

7.8.1 Optimization problem

Let the input signal u be represented in some FxP Format. Suppose that we determine the FxP

Formats for the state and output variables and, in case of the Off-by-one problem, we choose

the smaller MSB positions. Let x, y, u be the minimal and x, y, u the maximum authorized

values for the state, output and input vectors respectively.

Then, our goal is to find

(
x
u

)
that are in the deduced FxP formats but for which

(
A B
C D

)(
x
u

)
=

(
x
y

)
+

(
δx

δy

)
(7.37)

122

7.8. ONGOING WORK: OFF-BY-ONE PROBLEM

with

(
δx

δy

)
≥ 0. In other words, we are looking for x, y,δx,δy such that

(
A B
C D

)(
x
u

)
≤

(
x
y

)
+

(
δx

δy

)
(7.38)

(
A B
C D

)(
x
u

)
≥

(
x
y

)
+

(
δx

δy

)
(7.39)

(
I 0
0 I

)(
x
u

)
≤

(
x
u

)
(7.40)

(
I 0
0 I

)(
x
u

)
≥

(
x
u

)
(7.41)

Denote x := x+ x′ and u := u+u′. To formalize the optimization problem, we need to bring the

above inequalities to the canonical form, i.e. bring all inequalities to the direction “≤”.

Then, the optimization problem is the following:

maximize t>ξ (7.42)

subject to the following constraints:

Fξ≤ r (7.43)

where

ξ=




x′

u′

δx

δy



≥ 0, t=




0
0
1
1




(7.44)

and

F=




A B −I 0
C D 0 −I
−A −B I 0
−C −D 0 I
I 0 0 0
0 I 0 0




, r =




((
x
y

)
−

(
A B
C D

)(
x
y

))

((
A B
C D

)(
x
y

)
−

(
x
y

))

(
x− x
u−u

)




. (7.45)

For a proof of equivalence, see Appendix 3.

123

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

Suppose the coefficient matrices A,B,C,D are representable in some FxP format. Then, if

we scale the constraints F and r, then it may be shown that the above optimization problem

becomes an Integer Linear Programming problem.

Remark 7.2. Here we considered only the case of overflow. For the case of underflow we need

look for x, y,∆x,∆y such that

(
A B
C D

)(
x
u

)
=

(
x
y

)
−

(
∆x

∆y

)
(7.46)

with

(
∆x

∆y

)
≥ 0. Obviously, we can proceed analogously.

To ensure that we find the exact solution, we propose to use a solver over rational numbers.

Such solver is available in GNU Linear Programming Kit4,5 or in SCIP Optimization Suite6 [144–

146].

If there does not exist any solution of the above problem, then the overestimation of the

MSB position was due to the application of triangular inequality in (7.17) (see Remark 7.1) and

it is safe to take the smaller MSB positions.

However, even if a solution exists, it does not necessarily mean that there is actual overflow:

the state vector x in the solution

(
x
u

)
may be not reachable for the dynamic system implemented

with the given FxP formats. For continuous-time dynamic problems, the reachability of a given

state x is easily verified and there exist some results for the discrete-time models [147–149].

However, these results are not applicable in our case since all the computations are performed

with some FxP formats and the set of reachable states is actually an integer “grid”. Possible

approach consists in representation of inputs, states and outputs as vectors in euclidean integer

lattices [150] defined by the FxP formats and then “unrolling” the solution of the optimization

problem to the initial state of the system (i.e. zero state). This might be feasible using some SMT

solver [151].

Interestingly, after conducting tests over numerous artificial and real-life filters, we have not

found an example for which the optimization problem would find the solution. Obviously, our

tests are far from being exhaustive, hence we cannot make any conclusion over the results.

To conclude, we have proposed an algorithm of verification whether using a smaller MSB

position in the case of Off-by-one problem may yield to an overflow (underflow). Still, in case of

4https://www.gnu.org/software/glpk/
5The exact solver is based on the GMP rational numbers. It is available as an unofficial patch.
6http://scip.zib.de/

124

https://www.gnu.org/software/glpk/
http://scip.zib.de/

7.9. ONGOING WORK: TAKING INTO ACCOUNT THE SPECTRUM OF THE INPUT SIGNAL

!1 ⇡

A1

A2

Amplitude

Normalized
Frequency

Figure 7.4: Example of input signal specifications

positive answer some work must be done to prove that the computed solution is reachable for

the dynamic system or not. While being interesting from the theoretical point of view, in practical

applications this problem would be often neglected and 1 bit larger MSB formats would be taken.

7.9 Ongoing work: Taking into account the spectrum of the input

signal

When we determine the FxP formats for the reliable implementation of digital filters, we rely on

the dynamic range determined via the WCPG measure. This approach is completely rigorous

and one can always construct a finite input signal that yields an output arbitrarily close to the

bound determined with the WCPG. This input sequence is composed of the supremum of the

possible inputs multiplied by the sign of the impulse response shifted in time. In most of the

applications this input sequence is highly unlikely to be met though still must be considered

to guarantee the reliability of the implementation. However, it may be possible to take into

account some information on the behavior of the input signal while still guaranteeing the rigorous

evaluation of the dynamic range. In this section we present some ideas on that account.

Often a digital filter’s input signal is the output of an existing signal processing system,

or describes particular physical process dynamics of which can be expressed as frequency

(spectrum) specifications. For example, an input signal that describes temperature usually lies

in low frequencies (assuming high enough sampling rate), with higher frequencies dedicated to

possible measurement noise.

Generally, specifications of the input signal consist of multiple bands. We will model the

frequency specification by a function G of the normalized frequency ω bounding the Discrete-

Time Fourier Transform U(e jω) of the input signal:

|U(e jω)| ≤G(ω), ∀ω ∈ [0,π]. (7.47)

125

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

Let G(ω) be the frequency specification for an input signal. Then the considered filter H to

implement is given on Figure 7.5.

H
YU

Figure 7.5: Filter that we need to implement.

The idea is to model the initial filter as a cascade of two filters: (1) a system G that produces

an output with frequency response G(ω); (2) the initial filter. While the first filter is not going to

be actually implemented, it permits to take into account the dynamics of the initial input signal

when the WCPG theorem is applied upon the cascaded system.

We propose to proceed in following steps:

Step 1: Only an ideal filter can be modeled from the input signal specification. To remove

that constraint, we use classical filter design tools (based on Parks-McClellan approxima-

tion [152] for example) to find a filter G∗ that has a frequency response G∗(ω) greater than G(ω),

for example between G(ω) and G(ω) enlarged by some margin ∆, as shown on Figure 7.6, i.e:

G(ω)≤ |G∗(e jω)| ≤G(ω)+∆, ∀ω ∈ [0,π]. (7.48)

Step 2: However, the available tools (Matlab, Scipy, etc.) propose some filter G∗ with no

reliable guarantee that G∗ is between G and G +∆ for all ω, due to their internal finite-precision

errors. Even though the error is relatively small, this is not sufficient for a reliable magnitude

upper-bound. For that purpose, we are going to propose in the next Chapter a reliable method to

verify that G∗ satisfies (7.48). If verification does not pass, our algorithm gives an indication by

how much G∗ violates its constraints and we can increase ∆ and perform again the verification

of Step 2.

Step 3: Then, cascade the filters G∗ and H into a filter F . We obtain the system that

is illustrated on Figure 7.7. The WCPG applied on G∗ gives a reliable upper-bound for the

magnitude of the output.

Step 4: Finally, apply the rigorous fixed-point format determination algorithm from this Chap-

ter upon F , slightly modified to account for the fact that G∗ will not be part of the implemented

filter, and thus no errors will propagate through it.

126

7.9. ONGOING WORK: TAKING INTO ACCOUNT THE SPECTRUM OF THE INPUT SIGNAL

!1 ⇡

A1

A2

Amplitude

Normalized
Frequency

�

Figure 7.6: Filter G∗ respects G(ω) enlarged by ∆.

H
YV U

G⇤

Figure 7.7: Cascaded system F .

With our algorithm from this Chapter we guarantee that for the filter F the determined MSB

positions may be overestimated at most by one. However, for the initial filter H formats may

potentially be overestimated by a larger amount. This is due to the overestimation of the input

signal frequency response by ∆ (see Figure 7.6), which is required to guarantee an upper bound

on the MSBs. However, we can reduce this by making ∆ arbitrarily small using high-degree

rational Remez approximation, or a Finite Impulse Response Filter for G∗ [153].

The implementation of the algorithm being in the development stage, no numerical examples

are available. However, we believe that the approach proposed above may significantly decrease

the memory requirements for the implemented system while guaranteeing its reliability An

abstract describing this approach has been accepted at the 51st Asilomar Conference on

Signals, Systems and Computers.

127

CHAPTER 8
RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST

ITS FREQUENCY SPECIFICATION

I
n the previous Chapters we considered only errors in the time domain. We showed how

to bound the errors due to the finite-precision computations and quantization. Obviously,

we wish the implemented filter’s output to be not far from the ideal output. However, at the

end of the day, we are rather interested in the frequency-domain behavior of the implemented

filter, i.e. behavior of its frequency response. People should not think that having a small output

error in the time domain necessarily implies a small error in the frequency domain. Thus, for a

rigorous implementation of linear filters we must verify whether the implemented filter respects

the desired frequency constraints.

In this Chapter we give an approach on the verification of an arbitrary Single Input Single

Output linear filter algorithm against given frequency specifications. We first derive an algorithm

for the verification of an exact transfer function. This verification boils down to the check of a

positivity of a real polynomial on some domain. We use a combination of interval and rational

arithmetic in the Sollya [54] tool to provide this rigorous verification. Then, using our transfer

function computation algorithm from Chapter 5 and the WCPG, we show how to extend this

verification to the transfer function of any filter structure. We provide several use-cases of our

algorithm: as a verification tool of an existing design, as a criterion during the choice of the

realization and as a tool for the verification of transfer function design methods.

With this approach we provide an easy method to tie the errors due to the coefficient

quantization in the time domain with the errors in the frequency domain. Obviously, the finite-

precision implementation also influences the frequency response of the filter and the impact of

finite-precision computations should be taken into account during filter verification. We give an

idea how it can be done with respect ot the spectral behavior of the filter’s output.

This work is based on the article [9] published at the IEEE Symposium on Computer

Arithmetic (ARITH) in 2017.

129

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

Frequency, kHz

M
ag
n
it
u
d
e
re
sp
o
n
se
,
d
B

13.1 13.4
−80.1

−80.05

−80

−79.95

−79.9

0 9.6 12 24
−140

−120

−100

−80

−60

−40

−20

0

20
initial TF

quantized TF

Figure 8.1: Difference between the magnitude responses of the initial and quantized transfer
functions.

8.1 Problem statement

Let us start with an example that illustrates that a small error in the time domain does not

necessarily implies a small error in the frequency domain.

Example 8.1. Consider again our key filter example along with the corresponding transfer

function from Chapter 1 Section 1.4.3. Suppose that the coefficients of this transfer functions

are quantized to 16 bits and we let the difference between the initial and quantized functions be

∆H . Computing the WCPG corresponding to the ∆H , we obtain that the quantization errors

are bounded by 1.92 ·10−6. However, we see from Figure 8.1 that the difference between the

magnitude responses of the initial and quantized transfer functions is much larger than the

time-domain error.

Thus, we always must ensure that a filter implementation really does satisfy the desired

frequency specifications. Formally, band specifications can be described as

β≤
∣∣∣H(e jω)

∣∣∣≤β, ∀ω ∈ [ω1,ω2]⊆ [0,2π]. (8.1)

130

8.2. VERIFYING BOUNDS ON A TRANSFER FUNCTION

The lower bound β is equal to 0 for stopbands. Due to Nyquist-Shannon theorem [18], it is only

necessary to consider the frequencies in the interval [0,π].

For instance, our key filter specifications can be written as
{

0≤
∣∣H(e jω)

∣∣≤ 1, ∀ω ∈ [0,0.4π] (passband)∣∣H(e jω)
∣∣≤ −80, ∀ω ∈ [0.5π,π] (stopband).

(8.2)

For the sake of generality, we will further describe specifications with a set of inequalities as

in (8.1). This way of specifying filters is not the only one: instead of constant bounds β and β,

one might consider upper and lower bounds be given as polynomials varying in the normalized

frequency1 or even measures allowing spectral densities and partial violations of bounds to be

taken into account. Considering these alternative ways of filter specifications shall be left to

future work.

Then, the verification problem can be stated as follows:

Problem
Given an LTI filter implementation (e.g. data-flow graph) and frequency specifications where

constraints on each band are given in the form (8.1), verify whether the implemented filter’s

transfer function respects the bounds for any frequency. We shall consider all frequency

specification bounds as hard constraints. Our algorithm must return – in the first place –

a boolean answer whether the specification is satisfied or not. The algorithm must ensure

reliable verification, i.e. that no false positive answers are returned.

We tackle the problem by first verifying bounds on a transfer function. Then we use SIF as a

unifying framework to encapsulate any digital filter and show how to apply the verification of a

transfer function upon any SIF.

8.2 Verifying bounds on a transfer function

The purpose of this Section is to detail our method that verifies that the modulus of a transfer

function H stays between two bounds β and β for all z taken on a segment of the unit circle,

corresponding to a certain frequency band, i.e. z = e jω for all ω ∈Ω⊆ [0,2π]. In the case when

the given bounds cannot be verified, our intention is to compute approximations to problematic

frequencies for which the bounds are violated.

We proceed in three steps. In Section 8.2.1, we show how we can reduce the given problem

to showing that a rational function with real coefficients stays between two bounds for real

arguments taken in a subset of [0,1]. In Section 8.2.2, we then further reduce the problem to

1Normalized frequency is a unit of measurement of frequency equivalent to cycles/sample. See Chapter 1
Section 1.4.1

131

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

showing that a polynomial stays non-negative over a subset of [0,1]. In Section 8.2.3, we briefly

describe our approach to computing problematic frequencies in the case when the verification

does not succeed.

8.2.1 Reducing the problem to a real rational function

We wish to verify that β≤ |H(z)| ≤β for all z = e jω with ω ∈Ω⊆ [0,2π]. We suppose that H is

given as a rational function H(z)= b(z)
a(z) with real coefficients. Since we can suppose without lack

of generality that β≥ 0, this is equivalent to showing that

β2 ≤ |H(z)|2 ≤β2
, ∀z = e jω,ω ∈Ω. (8.3)

Since z = e jω and the numerator and denominator polynomials a and b have real coefficients,

conjugation of z yields z? = 1/z and conjugation of the polynomials has no effect. So we have

|H(z)|2 = b(z)b?(z?)
a(z)a?(z?)

= b(z)b(1/z)
a(z)a(1/z)

= v(z)
w(z)

, (8.4)

where v and w also are polynomials with real coefficients, obtained by simplifying the fraction
b(z)b(1/z)
a(z)a(1/z) .

We have hence reduced the problem to verifying that

β2 ≤ v(z)
w(z)

≤β2
, ∀z = e jω,ω ∈Ω. (8.5)

Taking now t = tan ω
2 , we can write z = e jω as

z = e jω = cosω+ j sinω= 1− t2

1+ t2 + j
2t

1+ t2 . (8.6)

By formally composing v and w with the expression z = 1−t2

1+t2 + j 2t
1+t2 , for example by formal

evaluation with Horner’s scheme, and clearing numerators and denominators, we can hence

obtain four polynomials r, s, a, b, all with real coefficients, such that

|H(z)|2 = v(z)
w(z)

=
v
(

1−t2

1+t2 + j 2t
1+t2

)

w
(

1−t2

1+t2 + j 2t
1+t2

) = r(t)+ j a(t)
s(t)+ j b(t)

. (8.7)

We can now observe that |H(z)|2 is a real number and that the ratio r(t)
s(t) is hence equal to

the complex ratio r(t)+ j a(t)
s(t)+ jb(t) . We may therefore drop a and b. We have now reduced the problem

to verifying that

β2 ≤ r(t)
s(t)

≤β2
, ∀t = tan

ω

2
,ω ∈Ω⊆ [0,2π] , (8.8)

132

8.2. VERIFYING BOUNDS ON A TRANSFER FUNCTION

where the both polynomials r and s have real coefficients and all other quantities, β2,β
2
,ω and

t are all real numbers. We must hence no longer deal with complex ratios and complex numbers

and have reduced the problem to verifying the bounds of a real rational function over an interval,

subset of the reals.

Unfortunately, the mapping t = tan ω
2 maps the possible frequencies ω ∈Ω⊆ [0,2π] onto

to the whole real axis. In our experiments, we found this difficult to handle, partly because the

tool we used, Sollya, has very little support for unbounded intervals and partly because having

unbounded intervals meant searching for the zeros of certain functions over such unbounded

intervals, which we found numerically unstable (see Section 8.2.3 for more details). We hence

apply a second mapping: t = 1−2ξ
ξ (1−ξ) . Still by formally composing the polynomials r and s with the

expression t = 1−2ξ
ξ (1−ξ) , we obtain two polynomials p and q with real coefficients such that

|H(z)|2 = r(t)
s(t)

= p(ξ)
q(ξ)

. (8.9)

In the same step, we reduce the resulting rational function to its least terms to obtain p(ξ)
q(ξ) . In

order to do so, we extended the tool we used, Sollya, with an algorithm to compute the gcd of

two polynomials [154].

As the inverse mapping ξ= t+2−
p

t2+4
2t maps the reals onto the interval [0,1], we have hence

reduced our problem to verifying that

β2 ≤ p(ξ)
q(ξ)

≤β2
, ∀ξ ∈Ξ⊆ [0,1] . (8.10)

8.2.2 Verifying the bounds of a rational function by showing the non-negativity

of a polynomial

In order to verify an instance of (8.10), we can suppose that the interval Ξ the arguments ξ vary

in is not reduced to a point and that β2 6=β2
(otherwise a simple evaluation or a check whether

p and q are constant polynomials suffice). We can hence reduce the problem further to obtain:

−1≤
2p(ξ)−

(
β

2 +β2
)

q(ξ)
(
β

2 −β2
)

q(ξ)
≤ 1, ∀ξ ∈Ξ. (8.11)

Let

g(ξ)= 2p(ξ)−
(
β

2 +β2
)

q(ξ)

and

h(ξ)=
(
β

2 −β2
)

q(ξ).

133

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

It hence suffices to verify that
g(ξ)2

h(ξ)2 ≤ 1, ∀ξ ∈Ξ (8.12)

which is equivalent to showing that

h(ξ)2 − g(ξ)2 ≥ 0, ∀ξ ∈Ξ. (8.13)

Let f (ξ) = h(ξ)2 − g(ξ)2. Again f is a polynomial with real coefficients. We have reduced our

problem to showing that the value of this polynomial f (ξ) stays non-negative over all ξ ∈Ξ⊆ [0,1],

where the interval Ξ is easily obtained from the original frequency domain Ω= [ω1,ω2].

Our approach to showing that f stays non-negative over Ξ is similar to the one set out

in [49]. We typically perform the following checks:

(i) Check whether f is positive at some (arbitrarily chosen) point ξ1 ∈Ξ by (interval arithmetic)

evaluation of f at ξ1 and that f has no zero over the whole interval Ξ. If so, f is non-

negative over the whole interval Ξ.

(ii) Check whether f is positive at both endpoints of the interval Ξ by (interval) evaluation

at these endpoints and that it has exactly one zero over whole interval Ξ, not counting

multiplicities. The zero it has in the interval hence is of even multiplicity and the polynomial

stays non-negative over the whole interval.

(iii) Check whether the interval Ξ can be split into subintervals such that one of the two

aforementioned checks become satisfied.

We test whether a polynomial (with real coefficients) has no, one or more zeros over an

interval, bounded subset of the reals, utilizing Sturm’s theorems on the Sturm sequence of the

polynomial, similarly as done in [49]. Sturm’s theorem yields the number of real zeros of a real

polynomial over a bounded interval, not counting multiplicities [155]. The tool we used, Sollya,

includes a fast but rigorous implementation of Sturm’s technique [54].

8.2.3 Numerically computing problematic frequencies

In the case when our checks verifying if a given transfer function H(z) stays bounded in modulus

by the two bounds β and β does not succeed, we numerically compute a list of problematic

frequencies ω̃i at which one of the bounds is violated. In contrast to the verification step which is

completely rigorous in the sense that will never return a positive answer (i.e. the transfer function

satisfies the given bounds while the function actually does not), this numerical step is not fully

rigorous. It may miss certain frequencies at which the bounds are violated. It is nevertheless

pretty efficient with respect to speeding up the complete LTI filter verification algorithm we set

134

8.3. VERIFYING BOUNDS FOR ANY LTI REALIZATION

�̄

�

!
[] [] [][]

!̃1 !̃2 !̃3 !̃4

��H(ej!)
��

Figure 8.2: If needed our algorithm returns the problematic frequencies as small intervals.

out in Section 8.3, in particular concerning determining a reasonable verification margin (see

below).

In our approach, we couple the verification process, described in Sections 8.2.1 and 8.2.2,

with the possibly needed step of computing problematic frequencies. These frequencies actually

correspond, through the different mappings ω 7→ t 7→ ξ, to points ξ at which the polynomial

eventually obtained, f , takes negative values. We determine these points as the (negative)

extremum points of f . We therefore differentiate f and compute approximations to the zeros

of f ′ by root isolation (still using Sturm’s technique) and refinement with Newton-Raphson

iterations. The tool we used, Sollya, offers all necessary basic bricks for these computations [54].

Once we obtain a list of points ξi at which f becomes negative, we remap these values ξi to a

list of problematic frequencies, by following the inverse mappings ξ 7→ t 7→ω.

8.3 Verifying bounds for any LTI realization

Once we provided the algorithm for the verification of transfer functions, we may encompass

verification of any implemented filter using SIF. We have proposed in Chapter 5 Section 5.2.1 an

algorithm for the computation of transfer function corresponding to an arbitrary SIF. Given

a SIF realization and an error bound δ, we can compute an approximation Ĥ such that∣∣H(e jω)− Ĥ(e jω)
∣∣ ≤ δ for all frequencies ω. This algorithm is based on the following idea:

we compute the difference between the initial filter realization and a realization that exactly

corresponds to the approximated transfer function. Then, we can compute a bound on any

output of this “error-filter” using the WCPG which also provides a bound on the filter’s magnitude

response.

Hence, to verify whether the magnitude response of the implemented filter is in the interval

[β; β̄], it is sufficient that the approximation
∣∣Ĥ(e jω)

∣∣ for ω ∈Ω is in the interval [β+δ; β̄−δ]. See

Figure 8.3 for an illustration.

135

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

�̄

� + �

!

��H(ej!)
��

�̄ � �

�

Figure 8.3: Verify whether
∣∣Ĥ(e jω)

∣∣ is in [β+δ; β̄−δ]

|H(ej!)|

!

�̄ � �

�̄

(a)

|H(ej!)|

!

�̄0

�̄0 � �

�̄

(b)

Figure 8.4: If verification fails (i), we enlarge the bound (ii).

If the verification is not successful, we use a heuristic to compute a verification margin,

such that after adding it to the bounds our algorithm gives a positive answer. First, we obtain

a list of problematic frequencies with the algorithm from Section 8.2. Thus, we can compute

the maximum excess of the bounds, enlarge the band by this amount and repeat the process.

However, we do not know for sure whether this excess is because δ is too large or the magnitude

response indeed does not pass the verification.

For example, on Figure 8.4a we do not know whether the approximation
∣∣Ĥ(e jω)

∣∣ is too close to

the bound or δ is too large. In this case, we enlarge the band margin up to some new bound

β
′
and at the same time decrease δ, and perform the verification again with the updated band.

This algorithm may yield a false negative answer if the initial accuracy of the transfer function

computation was not large enough, which we never observed on the numerical examples we ran

the algorithm on. Algorithm III.4 details our heuristic for the verification. It makes use of several

basic brick algorithms:

• computeTF(R,ε) is the Algorithm II.5 which computes the transfer function corresponding

to the SIF R; the result approximation is guaranteed to have an approximation error

136

8.3. VERIFYING BOUNDS FOR ANY LTI REALIZATION

bounded by ε.

• checkTF(g,H,m) is an algorithm for the verification of a transfer function against fre-

quency specifications g enlarged (or reduced, if m < 0) by the margin m ∈ R, see Sec-

tion 8.2 for more detailed description. This algorithm returns a boolean answer.

• findMinimumMargin(g,H,m) is an algorithm that, given a transfer function H that does

not satisfy frequency specifications g, iteratively deduces the maximum excess of H out

of the bands in g,then enlarges bands by this amount and repeats until the verification of

H against specifications g is not successful.

The constants INIT_ERROR, LEAST_ERROR and ERROR_FACTOR denote the initial

error bound on the transfer function, the smallest error with which we are ready to compute the

approximation on the transfer function and the factor by which we decrease the error bound

each iteration respectively.

Algorithm III.4: Verification of a realization against frequency specifications
Input: R - SIF describing filter realization

g - set of frequency specificaions
Output: (boolean, margin) - result of verification and verification margin

1 δ←− INIT_ERROR
2 H ←− computeTF(R,δ)
3 margin ←− findMinimumMargin(g,H,0)
4 while δ> INIT_ERROR do
5 vefificationMargin ←−margin−δ
6 result ←− checkTF(g,H, verificationMargin)
7 if result is True then
8 return (True, verificationMargin)
9 end

10 margin ←−max{margin+δ,findMinimumMargin(g,H,verificationMargin)}
11 δ←− ERROR_FACTOR ·δ
12 H ←− computeTF(R,δ)
13 end
14 return (False, _)

8.3.1 Taking into account computational errors

If for the filter which needs to be verified we have information concerning its Fixed-Point

implementation, we should take into account the influence of the computational errors (from the

time domain) on the frequency behavior of the filter.

137

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

Like in the previous Chapter, we consider the filter H ♦ implemented in Fixed-Point as a

sum of the exact filter H and a special error-filter ∆H , see Figure 8.5. The error-filter takes as

input the signal ε(k) bearing the bounds on the computational errors that occur on each step of

filter computation.

H

H ⌃

¢H

y(k)

¢y(k)

u(k)

"(k)

y⌃(k)

Figure 8.5: Implemented filter

We cannot naively apply the technique similar to the case of transfer function computation,

i.e. simply subtract the bound ‖ε(k)‖〈〈∆H 〉〉 from the bands on filter’s frequency response. The

reason is that the magnitude response is a sort of a “relative” measure: rescaling the input signal

in the time domain will not change the magnitude response. However, even though the signal

ε(k) depends on the inputs signal u(k), this dependence is not linear (and is actually dependent

on our rounding operator ♦(·)).
All we can say at this point is that the spectrum of the output of an implemented filter is

Y♦(z)= H(z)U(z)+∆H(z)E(z), |z| < 1, (8.14)

where E(z) denotes the Z−transform of the signal ε(k). If we re-write this equality as

Y♦(z)=
(
H(z)+∆H(z)

E(z)
U(z)

)
U(z), |z| < 1, (8.15)

we see that the factor E(z)
U(z) represents a sort of “rescaling” the errors relatively to the inputs.

Because of the U(z) in the denominator, bounding ∆H(z) E(z)
U(z) is difficult because we would

need to determine the infimum of U(z) for all z on the unit circle.

Thus, at the time being, we can deduce the bound ‖ε‖∞ 〈〈∆H 〉〉 from the |Y (z)|, i.e. from

the “absolute” measure of the output magnitude and not from the “relative” measure |H(z)|.
We believe nevertheless that information on the bound on the output of the error filter might

help us to establish clearly the relation between the errors in time and frequency domains.

138

8.4. NUMERICAL EXAMPLES

g1

-1

-1

g2

-1

-1

-1

g3-1

-1

1
u(k)

1
y(k)

Z-1

Z-1

Z-1

0.5

Figure 8.6: Implemented digital filter.

8.4 Numerical examples

The algorithm presented in Section 8.2 was implemented using Python version 2.7.10, the Sollya

tool2 and pythonSollya3, which is just a wrapper of Sollya tool for usage in Python. We use our

implementation of the algorithm for the WCPG computation in arbitrary precision from Chapter 6,

which is written in C, using GNU MPFR version 3.1.12, GNU MPFI version 1.5.1 and CLAPACK

version 3.2.1. Experiments were done on a laptop computer with an Intel Core i5 processor

running at 2.8 GHz and 16 GB of RAM.

We present three different use cases of our algorithm illustrated with examples. The first

example is based on a filter given with its Simulink, the second example is based on four different

implementations of a filter with simple frequency constraints and the third example is based on

our key filter specifications from Chapter 1 Section 1.4.3.

Example 1: Our tool can be used to certify an already existing filter implementation. Consider

the implementation represented as the Simulink data-flow graph of Figure 8.6, with gains given

as 8-bit constants g1 = 0.34765625, g2 = 0.3359375 and g3 = 0.08496094.

The task is to verify whether the given implementation is a lowpass filter which satisfies fol-

lowing normalized frequency constraints: passband ωp = 0.1 with passband amplitude between

1 dB and 3 dB, stopband starting ωs = 0.3 with minimum attenuation 20 dB.

First, we exactly convert the Simulink graph to SIF (for which we can compute the transfer

function with arbitrary precision). Then, we apply our algorithm from Section 8.3 and obtain a

positive result in 1.9s. Thus, we obtain a guarantee that the given filter implementation satisfies

the desired frequency response requirements. Remark that Figure 8.6 represents a Lattice

Wave Digital Filter, the coefficients of which are usually derived from the specifications using

direct formulas without actually computing the filter’s transfer function [101].

2Commit 2828 at master, https://scm.gforge.inria.fr/anonscm/git/sollya/sollya.git
3Commit 146 at master https://scm.gforge.inria.fr/anonscm/git/metalibm/pythonsollya.git

139

https://scm.gforge.inria.fr/anonscm/git/sollya/sollya.git
https://scm.gforge.inria.fr/anonscm/git/metalibm/pythonsollya.git

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

wordlength 32 16 8

DFIIt
margin X unstable unstable
time 12s - -

ρ DFIIt
margin X X 4.68 ·10−3 dB
time 13s 4s 104s

state-space
Balanced

margin 6.16·10−10 dB X 6.71·10−1 dB
time 12s 18s 92s

Lattice Wave
margin 3.80·10−10 dB X 1.73·10−2 dB
time 920s 4s 200s

Table 8.1: Checking quantized realizations.

Example 2: Suppose we design a filter satisfying following frequency constraints: sampling

frequency Fs = 48 kHz, passband up to 2.4 kHz with amplitude in [−0.5dB;0.5dB]; stopband

starting 7.2 kHz with minimum attenuation 80 dB.

Suppose also that we have four different filter realizations: a Direct Form II transposed, a

Direct Form II transposed with optimized ρ operator [156], a balanced state-space [157] and a

Lattice Wave Digital Filter [101]. These realizations have different number of coefficients and

were designed using different approaches that are beyond the scope of this demonstration. Their

floating-point coefficients are results of various approximations and optimizations specific for

each structure (the reader can find them in the Appendix 2.3).

Our goal is to verify whether after quantization of the coefficients to different formats these

realizations will satisfy the given frequency response constraints.

The results of verification of the above realizations are listed in Table 8.1 (here we were inter-

ested in quantization to 32, 16 and 8 bits). We can observe that for certain filters a specification

is fulfilled only if some margin is added; for certain cases that margin is as large as 0.67 dB.

Some interesting effects may occur: the balanced state-space and Lattice Wave structures with

32 bits coefficients do not pass the verification but the coefficient quantization effects cancel out

for 16 bits and verification “luckily” passes.

If 16-bit quantization is the target format, we see that except DFIIt, all structures verify the

specifications and now the designer may concentrate on choosing the best realization according

to other criteria (for example, number of coefficients or datapath delay). If 8-bit quantization is

the target format, the verification margins computed with our tool can be used to redesign the

realizations and repeat the verification. On the other hand, if the realizations are impossible to

redesign, we can determine what is the maximum quantization of the coefficients for which our

tool gives a positive answer.

Finally, for the cases when the transfer function respects the band specifications our algorithm

140

8.5. CONCLUSION

Butterworth Chebyshev Elliptic

Matlab
OK/margin 5.44 ·10−12 dB X 8.94 ·10−2 dB

time 167s 17s 16s

Python SciPy
OK/margin 8.99 ·10−5 dB 7.34 ·10−2 8.94 ·10−2

time 70s 97s 22s

Table 8.2: Verification of transfer function design methods for our key specification examples.

gives an answer quickly. Most time is spent on computing the verification margin, especially

when an overflow is on the edge of the band.

Example 3: Finally, our algorithm can be used to certify the result of different design methods

even before structure choice or quantization.

Recall our key example of frequency specifications for a lowpass filter. We saw in the

beginning of this chapter that the quantization of the corresponding transfer function (designed

with Elliptic method in Matlab) to 16 bits resulted in obvious violation of frequency specifications.

Now, we propose to verify whether the Elliptic method from Matlab generated a valid transfer

function or, perhaps, some other design method is better.

We propose to generate transfer functions (of degrees determined as minimal by Matlab) for

our key filter example using Butterworth, Chebyshev II and Elliptic methods. We use standard

implementations of these methods in Matlab and SciPy.

From Table 8.2 we see that only Chebyshev design method from Matlab instantly satisfies

the specifications. However, Butterworth method from Matlab has a small design margin that is

probably due to the double precision computations. On the other hand, we see that there are

clearly some issues in the design of the Elliptic filters in both SciPy and Matlab. This may be due

to the fact that both tools propose a way too small degree for the transfer function of this type.

On the other hand, even these margins may be acceptable depending on filter designer’s needs.

Thus, our algorithm can be used to certify that the filter design method is rigorous, or give

the designer a perception of the sufficient correction of the design margin.

8.5 Conclusion

In this Chapter, a rigorous method to verify a transfer function of LTI digital filters against band

specifications in the frequency domain has been developed. It relies on translating the problem

of verifying bounds on magnitude response evaluated on a unit circle to the verification of

positivity of a real polynomial. Our algorithm guarantees that no false positives occur. In the

141

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

case of unsuccessful verification a list of problematic frequencies is provided, for which we

compute the maximum violation of the band specification. We propose an implementation using

a combination of interval and rational arithmetic in Sollya tool.

We applied this method to develop an approach on the verification of any implemented filter.

It relies on the multiple precision computation of a transfer function corresponding to the filter

in SIF representation that we have developed in Chapter 5. The core idea behind the method

is to bound the error of approximation of the transfer function using the WCPG. Thus, through

the WCPG measure we obtain a relationship between the frequency domain errors (due to the

approximation or quantization) with the time domain errors.

This approach opens various possibilities on the verification of digital filters, as well as for

transfer function design tools. Even a naive comparison of the state-of-the-art tools and methods

revealed weaknesses in the Python SciPy library, as well as frequent issues with the Elliptic

method for IIR filter design in both Scipy and Matlab.

Moreover, our verification algorithm can be applied to compare different filter structures with

various Fixed-Point settings for the coefficients. Such a comparison offers a filter designer an

overview of the implementation possibilities. On top of that, the information on the verification

margin can be used to correct a design that fails to verify the initial band specifications. For

instance, we can narrow down the initial band by the verification margin and re-design the filter

with the new band specifications. Then, the re-computed filter with quantized coefficients should

respect the initial conditions. Finally, using the list of problematic frequencies we can probably

improve the rational Remez [24] algorithm that is often behind the transfer function design.

To conclude, this algorithm perfectly integrates in our automatic code generator as a tool for

the a posteriori verification of an implemented filter, i.e. a certification that after all manipulations

with filter’s coefficients the frequency response indeed has desired behavior. Also, we can use

our algorithm as a tool assisting the filter designer even on early stages of the implementation.

However, overall time-efficiency of our implementation can still be improved. Passing too

much time on the computation of the verification margin can be a significant drawback were the

algorithm to be used during the exploration of a large design space. Nonetheless, this limitation

can be overcome by setting an initial acceptable design margin, which directly depends on the

application of the filter.

Naturally, the next step would be determining the relationship between the computational

errors in time domain with the behavior of filter’s magnitude response. However, we show that

this task is not as straightforward as in case of quantization errors. For the moment, we only

described the spectrum of the output of the filter. We have a strong belief that the information on

the upper bound of the output error (error due to the rounding errors) will help us in solving this

problem.

142

PART IV
HARDWARE CODE GENERATION

143

CHAPTER 9
LTI FILTERS COMPUTED JUST RIGHT ON FPGA.

IMPLEMENTATION OF DIRECT FORM I

I
n this Chapter we present our first steps towards reliable implementation of recursive filters

on hardware targets, in particular on Field Programmable Gate Arrays (FPGAs) [158]. This

work was done in collaboration with the FloPoCo [15] project that provides tools for the

generation of VHDL, a hardware description language. In particular, FloPoCo provides code

generation for Fixed-Point (FxP) cores under the motto “computed just right”. More precisely,

the generated architectures are guaranteed to have an implementation error no larger than the

weight of the least significant bit of the output.

One of the cores provided by FloPoCo is a Sum of Products by Constants (SOPC), i.e. an

architecture computing

r =
N∑

i=1
civi (9.1)

for a set of real constants ci and a set of FxP inputs vi such that the computed result is a faithful

rounding of the exact result r.

On the other hand, one of the simplest structures for the SISO recursive filters, Direct Form

I (DFI) is one big SOPC plus some delays. While not being used for an implementation of

high-order filters due to high sensitivity to rounding errors, this structure can be used for second-

or third-order filters. Thus, we decided to do first experiments in the reliable implementation of

LTI filters in hardware by proposing the implementation of DFI using FloPoCo cores as basic

bricks. Looking ahead, we can say that this work will directly lead to the general approach

applicable to any filter structure, described with SIF.

In Chapter 7 we showed how to determine reliable FxP formats with hard wordlength

constraints and how to estimate the eventual output error using the Worst-Case Peak Gain

(WCPG) of the system. Now we are turning the problem around: the error constraint is considered

to be hard (in the sense that it is guaranteed be met) while the wordlengths may be changed,

i.e. increased if needed.

To specify an implementation, a designer needs not only to determine the formats of the

145

CHAPTER 9. LTI FILTERS COMPUTED JUST RIGHT ON FPGA. IMPLEMENTATION OF
DIRECT FORM I

variables involved in computations but also to quantize the coefficients of the structure. Obviously,

we are interested in the coarsest quantization while respecting the output error bound. The main

contribution of this Chapter is to show that these design decisions can be automated such that

designer may focus on other design parameters.

We use the techniques proposed in the previous Chapters to provide an error analysis that

captures not only the rounding errors but also their infinite accumulation in IIR filters. This error

analysis then guides the design of hardware satisfying the accuracy specification at the minimal

hardware cost.

This work is based on a paper “Hardware IIR Filters: Direct Form I Computing Just Right”

which has not yet been submitted but available online as a technical report [16].

9.1 Introduction

We remind the reader that the transfer function H(z) of a LTI filter is given with

H(z)=
∑nb

i=0 bi z−i

1+∑na
i=1 ai z−i , ∀z ∈C. (9.2)

In time domain it corresponds to the following Constant-Coefficient Difference Equation:

y(k)=
nb∑

i=0
biu(k− i)−

na∑

i=1
ai y(k− i). (9.3)

Equation (9.2) or (9.3), along with a mathematical definition of each coefficient ai and bi,

constitute the mathematical specification of the filter algorithm that we will implement.

In the following we deal with the implementation of such a specification as FxP hardware

operating on low-precision data. Figure 9.1 illustrates the simple interface of the tool that

we propose. The coefficients ai and bi are considered as real numbers: they may be pro-

vided as high-precision numbers from e.g. Matlab, or even as mathematical formulae such

as sin(3*pi/8). The integers `in and `out respectively denote the bit position of the least

significant bits of the input and of the result. In the proposed approach, `out specifies output

precision and output accuracy. Without loss of generality, the MSB of the input is set to 1.

Our tool provides the construction of a minimal-cost architecture of proven last-bit accuracy.

We provide implementation on FPGAs based on Look-Up Tables (LUTs). We put the FloPoCo

tool in charge of the automatic generation of VHDL for our architecture.

Our tool also incorporates several architectural novelties. The SOPCs are built using a

modification of the KCM1 algorithm [159, 160] that manages multiplications by a real constant

1Ken Chapman’s multiplier for constant coefficient multiplication.

146

9.1. INTRODUCTION

LTI Filter
architecture
generator

{ai}1≤i<na
, {bi}0≤i<nb

input format (1, `in)

output accuracy `out
FPGA frequency

.vhdl

Functional spec. Performance spec.

Figure 9.1: Interface to the proposed tool.

without needing to truncate it first [161]. The summation is efficiently performed thanks to the

BitHeap framework recently introduced in FloPoCo [162]. These technical choices lead to logic-

only architectures suited even to low-end FPGAs, a choice motivated by work on implementing

the ZigBee protocol standard [163]. However, the same philosophy could be used to build other

architecture generators, for instance exploiting embedded multipliers and DSP blocks.

First, we justify our choice of the faithful rounding as the main goal.

9.1.1 Perfect and faithful rounding

The rounding of a real such as our ideal output y to the nearest fixed-point number of precision `

bits is denoted ◦`(y). In the case of round to nearest, it entails an error | ◦` (y(k))− y(k)| ≤ 2`−1.

So, the best we can do, when implementing (9.3) with a precision-` output, is a perfectly rounded

computation with an error bound εout = 2`−1.

Unfortunately, reaching perfect rounding accuracy may require arbitrarily large intermediate

precision. This is not acceptable in an architecture that has very limited resources. We therefore

impose a slightly relaxed constraint: εout < 2`. We call this last-bit accuracy, because the error

must be smaller than the value of the last (LSB) bit of the result. It is sometimes also faithful

rounding in the literature.

The main reason for choosing last-bit accuracy over perfect rounding is that, as will be

shown in the sequel, it can be reached with very limited hardware overhead. Therefore, in terms

of cost and efficiency, an architecture that is last-bit-accurate to ` bits makes more sense than a

perfectly rounded architecture to `−1 bits, for the same accuracy bound 2`.

The main conclusion of this discussion is the following: specifying the output precision (`out

on Figure 9.1) is enough to also specify the accuracy of the implementation.

This is a huge improvement over classical approaches, such as the various Matlab toolboxes

that generate hardware filters. In such approaches [164], one must provide `out and various

other parameters that impact the accuracy, then measure via simulations the resulting accuracy,

147

CHAPTER 9. LTI FILTERS COMPUTED JUST RIGHT ON FPGA. IMPLEMENTATION OF
DIRECT FORM I

Hu(k) y(k)

H̃u(k) /
(0,`in)

ỹout(k)/
(mout,`out)

Figure 9.2: The ideal filter (top) and its implementation (bottom)

and iterate until a satisfactory implementation has been reached. Not only is the proposed

interface simpler, it also enables architecture optimization under a strict accuracy constraint. An

optimal architecture will be an architecture that is accurate enough but no more.

9.2 Error analysis of direct-form LTI filter implementations.

On the one hand we have the exact mathematical definition (9.3) of a filter H . On the other

hand, we aim at providing a fixed-point implementation H̃ with a last-bit accuracy. The two

filters H and H̃ are exhibited on Figure 9.2.

The first thing to do is to determine the MSB position of the output (mout). We use the

Worst-Case Peak Gain Algorithm presented in the Chapter 6 and our classical decomposition

of an implemented filter into a sum of an error-filter and the exact filter. As we have seen in

Chapter 7, the rounding errors can propagate all the way to the MSB. Since we are going to

ensure that the rounding errors will be bounded by 2`out , we just use this information and apply

Lemma 7.2 from Chapter 7 to compute the MSB position.

Instead of computing y(k) with equation (9.3), we will compute an approximation ỹ(k) of

the involved Sum of Product by Constants (SOPC) using some internal format (mout,`ext). Our

goal is to determine this internal LSB position that satisfies the last-bit accuracy for the format

(mout,`out).

The value ỹ(k) is an approximation of the ideal value y(k) computed with some rounding

errors, and the final output ỹout(k) will be the rounding of this intermediate value ỹ(k) to the

output format. This scheme is summed up by the abstract architecture of Figure 9.3. Then, our

goal is to solve the following problem:

Problem
For a LTI filter evaluated with the abstract architecture from Figure 9.3, determine the

least internal format (mout,`ext) that guarantees the output faithfully rounded to the format

(mout,`out).

148

9.2. ERROR ANALYSIS OF DIRECT-FORM LTI FILTER IMPLEMENTATIONS.

SOPC

u(k) /
(0, `in)

b0 b1 b2 b3

u(k − 1)

+

u(k − 2)

+

u(k − 3)

+
final

round
/

(mout, `ext)

ỹ(k)
/

(mout, `out)
ỹout(k)

a1

+
-

ỹ(k − 1)

a2

+
-

ỹ(k − 2)

a3

+
-

ỹ(k − 3)

z�1z�1z�1z�1z�1z�1

Figure 9.3: Abstract architecture for the direct form realization of an LTI filter

Formally, the overall evaluation error may be defined as

εout(k) = ỹout(k)− y(k). (9.4)

Let us now decompose this error into its sources and adapt our approach from Chapter 7 for

this new task.

Final rounding of the internal format The first source of error that is easy to isolate is the

final rounding error. The architecture needs to internally use a fixed-point format that offers ex-

tended precision with respect to the input/output format. This extended format (mout,`ext) offers

additional LSB bits sometimes called guard bits. Eventually we need to round the intermediate

result in this extended format to the output format (in the “final round” box on Figure 9.3). This

entails an additional error εf, formally defined as

εf(k)= ỹout(k)− ỹ(k). (9.5)

This error may be bounded by εf = 2`out−1, as round to nearest is easy to achieve here.

Remark that we feed back the intermediate result ỹ(k) (on the extended format), not the

output result ỹout(k). This prevents an amplification of εf(k) by the feedback loop that could

compromise the goal of faithful rounding.

Rounding and quantization errors in the sum of products Our approach proposed in

Chapter 7, is based on the estimation of the error amplification through the feedback loop. For

this, we have fed the bounds on the errors due to the computations on each filtering iteration into

a special error filter. These error bounds depend on the particular way we do the computations.

In our case, denote by εr(k) the errors due to computation of SOPCs as

εr(k)= ỹ(k)−
(

nb∑

i=0
biu(k− i)−

na∑

i=1
ai ỹ(k− i)

)
. (9.6)

This equation should be read as follows: εr(k) measures how much a result ỹ(k) computed

by the SOPC architecture diverges from that computed by an ideal SOPC (that would use the

149

CHAPTER 9. LTI FILTERS COMPUTED JUST RIGHT ON FPGA. IMPLEMENTATION OF
DIRECT FORM I

H
u(k) y(k)

Hε

εr(k) εt(k)
+

ỹ(k)
+

ỹout(k)

εf(k)

Figure 9.4: A signal view of the error propagation with respect to the ideal filter.

infinitely accurate coefficients ai and bi, and be free of rounding errors), this ideal SOPC being

applied on the same inputs u(k− i) and ỹ(k− i) as the architecture.

These rounding errors εr(k) can be made as small as required if we increase the internal

precision of the SOPCs denoted `ext. In Section 9.3 we give an idea on how to build an SOPC

architecture that achieves a given accuracy goal at minimum cost.

9.2.1 Complete error model

So, let us now give more details on the complete error model. As in the Chapter 7, we model the

actually implemented filter as a sum of the exact filter and special error-filter (see Figure 9.4).

Applying the WCPG theorem upon the error-filter Hε we obtain a bound εt on its output

εt = 〈〈Hε〉〉εr, (9.7)

where the WCPG 〈〈Hε〉〉 is a scalar since we consider the error εt(k) is scalar and the error-filter

is SISO. Remark that we can reduce the εt by increasing the internal precision `ext.

Then, the overall error of the implementation is

εout = εf +〈〈Hε〉〉εr (9.8)

The objective of faithful rounding translates to the accuracy constraint εout < 2`out . Taking

into account the final rounding (which implies the error εf = 2`out−1), we obtain the constraint on

the internal precision of SOPCs that is required to satisfy the faithful rounding of the result:

2`ext < 2`out−1

〈〈Hε〉〉
. (9.9)

The least integer value of `ext is

`ext = `out −dlog2 〈〈Hε〉〉e−1. (9.10)

The reader might have remarked that the MSB of the internal format is the same as that of the

result (mout). Some overflows may occur in the internal computation but since the computation

is performed modulo 2mout , the final result will be correct.

150

9.3. SUM OF PRODUCTS COMPUTING JUST RIGHT

SOPC
architecture
generator

{ci }1≤i <N

input formats {xi ,`i }1≤i <N

output format (mr ,`r)

.vhdl

Figure 9.5: Interface to a sum-of-product-by-constant generator.

9.3 Sum of products computing just right

Our implementation is based on an arithmetic unit for the computation of SOPCs provided by

FloPoCo project. Our error model is based on the assumption that we can obtain an architecture

computing the SOPC (9.1) for a set of real constants ci, and a set of fixed-point inputs vi such

that the computed result respects a priori given error bound.

Previously, our co-authors [165] proposed a tool for code generation of the faithfully rounded

SOPC architectures. However, they had an assumption that all the vi shared the same format.

In the context of an LTI filter, this is no longer true: on Figure 9.3, we have a single SOPC where

the ci may be ai or bi, and the vi may be either some delayed ui, or some delayed yi. The

format of the yi, as determined by previous section, is in general different from that of the ui.

Therefore, we propose a more generic interface to the SOPC generator, where the format of

each input may be specified independently. This interface is shown on Figure 9.5. Specifically,

the input LSBs are provided as `i. Instead requiring the input MSBs, the interface uses the

maximum absolute values xi of each vi. This is an implementation choice adopted from the

initial SOPC interface proposed in [165]. Here again, the weight `r of the least significant bit

of the SOPC output also specifies the accuracy of this SOPC: the result is guaranteed to be

faithfully rounded to 2`r bits.

Thus, to use the above interface in the context of filter implementation, we must require the

SOPCs to give the result in the format mr = mout and `r = `ext.

The aspects of hardware implementation of the SOPC unit are out of scope of this thesis.

We refer the reader to [16] for the detailed description of the approach. However, we will try to

give a general idea on the approach below.

9.3.1 General idea

The task is to compute the SOPC (9.1) such that the output in format (mr,`r) is faithfully

rounded. Performing all the internal computations to the output precision `r would in general not

be accurate enough to achieve faithful rounding, due to the accumulation of rounding errors. The

solution is, as previously, to use a slightly extended precision `r − g for the internal computation:

151

CHAPTER 9. LTI FILTERS COMPUTED JUST RIGHT ON FPGA. IMPLEMENTATION OF
DIRECT FORM I

g is a number of “guard” bits. As this extended precision will require more hardware, we need to

compute the extended precision that will minimize this hardware overhead.

The overall error of the architecture depends on the errors of each multiplication and on the

errors of accumulation. We repartition the error budget 2`r and deduce the maximum error of

these multiplications such that the result is faithfully rounded to the LSB `r. This part is quite

independent on the target technology: it could apply to ASIC synthesis as well as FPGA.

It can be shown (see the original report [16] for details) that a significant cost gain can be

achieved by using look-up tables (LUTs) [158] for multiplication on FPGAs. The idea is to tabulate

possible values for vi and thus build a faithfully rounded multiplier. The pre-computation of table

values must be performed with large enough accuracy (using multiple-precision software) to

ensure the correct rounding of each entry.

Our implementation first invokes, for each constant, an algorithm that returns the maximum

error that will be entailed by a multiplier by this constant. This error is expressed in units in the

last place (ulp), whatever the value of g will be. The implementation sums these errors, then

uses this sum to compute the number of guard bits g that will enable faithful rounding. Once this

g has been determined it may proceed with the actual construction of the multipliers.

It may appear to be rather costly to use a large mount of LUTs to compute the SOPCs.

However, using the associativity of fixed-point addition, the final summation can be implemented

very efficiently using compression techniques developed for multipliers [166] and recently applied

to sums of products [167, 168]. In this work, we use the bit-heap framework introduced in [162].

9.4 Implementation results

The approach described in this Chapter was implemented as the FixIIR operator of FloPoCo.

FixIIR offers the interface shown on Figure 9.1, and inputs the ci as arbitrary-precision

numbers. We performed synthesis for the Xilinx Virtex-6 (6vhx380tff1923-3) using ISE 14.7.

Consider again our key filter example of a 8th order lowpass filter with the corresponding

transfer function from Chapter 1 Section 1.4.3. We propose to compare implementations that

guarantee different accuracy, for example for 8, 12 and 16 bits. We suppose that inputs are in

every implementation are as accurate as the required output.

The results of synthesis are displayed in the Table 9.1, where the smaller area or the number

of LUTs the better and the higher speed the better. In this example we had that the number of

guard bits for the internal computations is g = 14, therefore we ask for SOPC faithful to 2−22,

2−26 and 2−30 for the case of 8, 12 and 16 bit implementations respectively.

This example shows that our tool is ready-to-use and that no special knowledge of filter error

analysis is required from the user.

152

9.5. CONCLUSION

Area Speed

Registers LUTs MHz

8 bits 272 2584 168.7

12 bits 336 3352 169.6

16 bits 400 4432 151.9

Table 9.1: Synthesis results for the key filter example.

9.5 Conclusion

In this Chapter we claim that sum-of-product architectures for LTI filters should be faithfully

rounded and no more. We demonstrate that it gives a much clearer view on the trade-off between

accuracy and performance, freeing the designer from several difficult choices. We provided an

actual open-source “push-button” tool that offers the highest-level interface.

Designers of non-recursive LTI filters may compare their implementations using repositories

of benchmarks2. Unfortunately, no benchmarks for IIR filters are available. Moreover, very few

of the publications mention reports on the accuracy results. Thus, it is extremely difficult to

compare our designs with the existing ones. We plan to provide a repository of benchmarks for

IIR filters to enable such comparison.

We have only considered here the implementation of a filter once its coefficients are given.

Approximation algorithms, such as Parks-McClellan [169] that compute these coefficients es-

sentially answer the question “what is the best filter with real coefficients that matches this

specification”. It is legitimate to wonder if asking the question: “what is the best filter with low-

precision coefficients” could not lead to a better result. We believe that in this case our algorithm

for the verification of digital filters against frequency specifications can come at hand not only as

an a posteriori verification tool but as an indicator of the direction for the rounding.

Finally, the reader may rightfully remark that in all previous chapters we relied on the SIF

and extended our algorithms to any filter while in this Chapter our approach works only for the

Direct Form I. In fact, SIF can be seen just as a sum of products: each element of the temporary,

state and output vector is computed with a SOPC. Thus, to adapt the above approach for SIF,

we just need to provide an error analysis determining the least accuracy of each sum of product

in the SIF computation that guarantees that the filter’s output is faithfully rounded to the output

format. This work is already in progress, again in collaboration with the authors of the FloPoCo.

2http://www.firsuite.net/

153

http://www.firsuite.net/

CONCLUSION AND PERSPECTIVES

I
n this thesis we aimed at improving and extending the basic bricks for an automatic code

generator for digital Linear Time-Invariant filters. We were particularly interested in bringing

rigor and reliability into the practices of Fixed-Point implementation of recursive filters.

While this methodology for rigorous finite-precision implementation was central to our work, we

also improved other functionalities of the code generator: we extended the possibilities of the

unifying framework, added new applications and provided reliable hardware code generation.

Figure Z illustrates the new scheme of the tool. Sometimes a small detail would become an

indispensable part and often one question would hide ten others giving us smooth transitions

between subjects but at the same time leaving numerous “open doors”. In the following we

present the contributions and perspectives of this thesis.

FxP

C

VHDL
Simulink

to
SIF

TF-to-SIF
conversion Quality

analysis
a priori

Verification against frequency specifications

Code generation

Software ASIC

Stage 1 Stage 4Stage 2 Stage 3

SIF

SIF

SIF
SIF

data-flow FPGA
formats

Reliable
Fixed-Point

settings

TF

Figure Z: The workflow of the automatic code generator.

155

CONCLUSION AND PERSPECTIVES

Doing more – extending and improving SIF

The automatic code generator we worked with uses its own internal format, called Specialized

Implicit Form (SIF), to represent any linear filter. SIF encapsulates in an analytical form the

description of different computational algorithms for filters. A typical use-case of the code

generator starts with conversion of a filter’s transfer function into a SIF model describing some

particular structure. We started by improving and extending the possibilities of the SIF model.

First we extended the dictionary of available SIF models by adding a new filter structure,

Lattice Wave digital filters. Given a filter’s transfer function we can now compute the coefficients

of the Lattice Wave structure and model the order of computations with SIF. This rather tedious

and technical task led to the deeper understanding of the SIF [7].

Then we proposed a completely new possibility for the framework: a conversion of data-flows

which describe LTI filters into the SIF. Based on the filter’s graph description we determine the

feedback loop and order of computations. We support data-flows in Matlab Simulink format which

is one the most widely used formats in both academia and industry. With this new conversion

algorithm we can analyze and implement an already existing filter design with our generator [12].

Finally, we proposed an algorithm for reliable computation of a transfer function for any

filter [9]. We provided an algorithm that computes a multiple precision approximation of a transfer

function along with a rigorous bound on the approximation error in terms of a certain norm

(we can easily go beyond double precision). To achieve this, we use reliable evaluation of the

`1-norm of a filter’s impulse response, and a multiple precision eigendecomposition3. This

contribution is important not only for our automatic code generator but also as a standalone

tool: it provides an easy way for anyone working with filter algorithms to reliably determine the

corresponding transfer functions.

Doing things rigorously – reliable determination of the filter’s

dynamic range

To provide a reliable implementation of any algorithm in the Fixed-Point arithmetic the first step

is to determine the dynamic range of all variables involved in the exact filter algorithm.

With our work we provided an algorithm [11] to compute with arbitrary accuracy the upper

bound on the output of a filter. It is based on a well-known object,the Worst-Case Peak Gain

measure which, however, could not be reliably computed before but only approximated without

any bound on the approximation error. We provided a new technique that permits a reliable

3In the sense that all operations are be performed with multiple precision. However, no information on the
accuracy of the computed eigenvalues is available.

156

CONCLUSION AND PERSPECTIVES

evaluation of the WCPG. This part of the thesis required a rigorous error analysis of the

floating-point evaluation of the WCPG.

The WCPG measure is based on the evaluation of an infinite series. We proposed a formula

for the determination of truncation order with an a priori bound on the truncation error. For this,

we use a combination of multiple precision interval arithmetic and of the Theory of Verified

Inclusions. To evaluate the truncated series we use multiple precision computations and adapt

the precision just enough to meet an a priori given requirement on the accuracy. A non-trivial part

was getting around the absence of a multiple precision eigensolver with reliable error bounds

which we needed at some point in our algorithm. All error bounds are based on proofs and the

algorithm was extensively tested.

Using our result, filter designers now have a proven guarantee on the dynamic range of all

variables involved in exact filter evaluation. We also provide an adaptation of our algorithm for

the case when the filter coefficients are represented as intervals. This adaptation is useful when

a filter’s parameters are results of some measurements or computations.

Considering everything – taking into account the accumulation of

computational errors

During the filter implementation, the designer must make several choices that influence the cost

and the accuracy of the implemented system. Usually, you get the one at the expense of the

other and, therefore, a Pareto-optimal solution that respects a trade-off must be found. The

basic problem in the determination of the trade-off is: given wordlength constraints for each

variable to determine the best Fixed-Point formats that ensure that system is reliable (i.e. no

overflow occurs) and to obtain a tight bound on the error. In other words, we look for the least

Most Significant Bit (MSB) position that ensures that no overflow occurs. We provided a rigorous

methodology [13] for the solution of this problem. The difficulty consisted in the fact that the

dynamic ranges determined with the WCPG measure correspond to the exact filter and not the

implemented one. In some cases rounding errors due to the finite-precision computations may

propagate up to the MSB. To fully take this fact into account we had to rigorously capture the

non-linear propagation of the computational and quantization errors through recursive filters. We

achieved this by exploiting certain properties of the linear filters and using our reliable WCPG

measure. We prove that we either determine the MSB positions exactly or overestimate them at

most by one, hence we prove that no overflow occurs. The overestimation may come from the

fact that the value of the MSB is determined using approximated quantities (WCPG measures).

In these rare cases we might need to increase the accuracy of the approximations. However,

157

CONCLUSION AND PERSPECTIVES

this includes, amongst other ideas, an instance of the Table Maker’s Dilemma [35]. Finally, using

the WCPG theorem we determine a tight bound on the output error of the filter. We never use

any simulations, our algorithms are exclusively based on mathematical proofs.

Overall, our algorithm has reasonable timings that permit to use it extensively during the

exploration of a large design space in search of the trade-off between implementation constraints.

We can also look at the problem from another angle and instead of fixing the wordlengths and

determining the errors this choice yields to, determine the least wordlengths necessary to

guarantee a certain fixed error bound.

With this approach we enabled the kernel functionality of the automatic code generator.

However, our approach of reliable computation of the bound on the implementation error can be

used as an independent methodology.

Being sure – verification of an implemented filter against

frequency specifications

We presented reliable algorithms, based on multiple precision floating-point and interval arith-

metic with proven error bounds, for the determination of the Fixed-Point parameters of the

implementations. However, guaranteed error bounds are not worth anything if the implemented

filter does not demonstrate desired frequency domain behavior. We proposed an algorithm [9]

for rigorous verification of filter realizations against frequency constraints. Our algorithm must be

rigorous in the sense that it never returns a false positive answer.

First, we proposed a basic brick verification algorithm for the transfer functions. This algorithm

relies on the combination of different techniques and our implementation makes use of interval

and rational arithmetic in the Sollya tool. Our algorithm guarantees that no false positives occur.

In the case of a negative answer, a list of “problematic” frequencies is returned.

Further, using SIF we extend this verification upon any filter realization. We can compute

an approximation of the transfer function of any realization through the SIF and take the

approximation error into account during the verification. We proposed a heuristic algorithm that

performs such a verification. Again, we guarantee that no false positive answers occur while

false negatives are potentially possible, even though we never observed any.

Our verification algorithm opens numerous possibilities apart from a rigorous verification of

an existing implementation. It can be used extensively during the design of a filter: via the list of

“problematic” frequencies we obtain an indication on how we can redesign the filter such that

its implementation passes the verification. Finally, we can compare the quality of different filter

design tools.

158

CONCLUSION AND PERSPECTIVES

Doing things in practice – applications for the hardware

implementation

After providing basic bricks for the generation of Fixed-Point algorithms we did a few steps

towards implementation of recursive filters on Field Programmable Gate Arrays (FPGAs). The

designer of a hardware implementation must make numerous choices concerning the imple-

mentation: quantize the structure’s coefficients, choose intermediate and input/output formats,

etc. We show that we can automatize a large part of this process. For this, we exploited the

possibilities of the hardware code generator called FloPoCo [15] which provides tools for the

generation of arithmetic cores “computed just right”. We used their fixed-point core for the

computation of Sums of Products by Constants (SOPC) as a basic brick for the implementation

of filters in the Direct Form I (DFI) structure. We justify our choice of structure by the fact that DFI

is usually represented as SOPC and, therefore, is a good candidate for the first steps towards a

more general approach on the implementation on FPGAs.

As a result, we provided an open-source “push-button” tool4 that generates a hardware

architecture the output of which is guaranteed to be faithfully rounded. Using the WCPG theorem

we deduced the least number of guard bits with which the SOPC in the DFI must be computed.

In collaboration with the authors of FloPoCo we adapted the SOPC generator to our needs.

More precisely, we built an SOPC generator that takes real coefficients as inputs and optimally

truncates them. Optimality is in the sense that the SOPC determines internally the least number

of bits for the coefficients such that the output accuracy is guaranteed. This is a significant

improvement that frees the filter designer from the difficult choice of quantization scheme. On

top of that, we provided code generation specific for Field Programmable Gate Arrays (FPGAs)

based only on Look-Up Tables (LUTs). These logic-only architectures are suited even to low-end

FPGAs.

Even though dedicated to a particular structure, DFI, this work brings us one step closer to

a general approach for the reliable implementation of any LTI filter on FPGAs. In fact, any filter

described with SIF representation is just a set of SOPCs. Thus, we can proceed analogously

to the case of the Direct Form I structure: determine the least required number of guard bits

for the computation of SOPCs such that the output error bound is satisfied. We have a strong

belief that the resulting tool will interest industrial partners from the domain where reliability of

the systems is of great importance (e.g. aerospace industry, automotive industry, etc.).

4Implemented as FixIIR module in the FloPoCo tool.

159

CONCLUSION AND PERSPECTIVES

What is left to do – over the horizon

With this thesis we paved the road towards reliable implementation of digital filters and now we

are on the crossroad of perspectives.

Short term In the short term we will need to improve the obtained results. First we propose

to consider the spectrum of the input signal in our methodology. Indeed, often in real-life

applications a filter designer has more precise information on the frequency behavior of the input

signal than just an interval. I believe that it is possible to adapt the WCPG theorem to satisfy this

setting [14].

Another problem that might require our immediate attention is the potential overestimation

of the MSB positions by one bit. This issue might, however, require some deeper investigation of

the set of reachable states of an implemented LTI system and risks to become rather a mid-term

than a short-term perspective. While probably being less important from practical point of view

(in the end, 1 bit more or less might not matter), the off-by-one problem is interesting as a

phenomenon itself: it is an instance of the Table Maker’s Dilemma in the design of digital filters.

Finally, we should generalize our approach for the generation of reliable hardware archi-

tectures. Once the generalization is provided, it will be interesting to provide an extensive

comparison of hardware implementations of different structures for realization of different types

of filters.

Mid term In the mid-term I propose to first address the problem of a multiple precision

eigendecomposition. We have seen that the majority of our algorithms rely on the computation

of eigenvalues. Using the eigenvalues we determine the location of filter’s poles and, most

importantly, check the stability. To guarantee the stability of a filter all these poles must be in

the unit circle. Moreover, a rigorous verification of filter’s stability is often a key step during

the exploration of a large design space and it must be performed quickly. In order to ensure

a reliable and fast verification, I propose to first provide a fast multiprecision algorithm for the

computation of the spectral radius of a non-symmetric matrix. Furthermore, a varying-precision

eigendecomposition with a rigorous output error bound will improve our algorithms, help with a

rigorous evaluation of the `2-norm of a filter and, consequently, sensitivity measures [34] of LTI

systems.

In our work we have come closer to the explanation of the link between errors that occur in

the time domain with the errors in the frequency domain. However, some effort is still required to

clearly explain the influence of rounding errors upon the frequency response of the filter. This

160

CONCLUSION AND PERSPECTIVES

work will have impact upon both theoretical understanding of digital filters and practical solutions

for reliable finite-precision (not only Fixed-Point but Floating-Point as well) implementations.

Another important remark concerning the behavior of filter’s frequency response is that

sometimes a violation of the specifications may be tolerated. For example, if the violation has a

small energy. To take this into account, we would need to revise our verification algorithm from

Chapter 8. However, finding preliminarily some real-life applications for such an improvement is

crucial.

It also remains plug all the steps of filter implementation into optimization routines that

permit to choose the Pareto-optimal structure according to the user’s needs and to prove the

solution. We can start by first formalizing the possible user criteria and defining relationships

between them. For example using the WCPG we can easily obtain a relationship between

the wordlengths and the output error [6]. Other criteria, like the relationship between area

and power consumption, can be more application specific. I am convinced that using these

relationships we can formulate a generic optimization problem that will encompass the majority

of the implementation process. Once the optimization procedure of a filter in SIF representation

is done, it will be interesting to compare different structures between them. This study may

confirm existing empiric observations as well as show reveal new trends and properties of

different families of structures.

Long term In the long-term I see several major research axes.

The first one concerns the quantization of structure’s coefficients. An interesting point to

investigate may be the degree of liberty with which we can “move” the coefficients while main-

taining the desired behavior of the frequency response. The goal is to obtain coefficients with the

least number of ones and hence faster multiplications by this number. Take for example a binary

coefficient 1.49414062510 = 1.0111111012 multiplying by this coefficient is more complicated

than by 1.510 = 1.12. Of course, this is just a general idea and in hardware multipliers [158, 159]

the techniques are more complicated. The question is whether we can predict which coefficients

can be subject to such optimization of the binary expression and which cannot. I believe we can

use the techniques of transfer function coefficient sensitivity as the first hint and get inspiration

in the works of Muller and Torres [170]. However, the idea is to investigate such optimization for

an arbitrary structure and not only for a transfer function.

In the same spirit, a second prominent subject would be the study of new techniques for the

design of rational transfer functions whose goal is to find the best quantized to low-precision

coefficients. We could join forces with the authors of new robust techniques [171] for the design

of polynomial transfer functions. I believe that our transfer function verification algorithm can be

of great assistance in this study.

161

CONCLUSION AND PERSPECTIVES

The third direction is towards the unification of code generation for filters and mathematical

functions. Numerous common points have been invoked by the French ANR project “Metalibm”.

On the one hand, a filter is not a mathematical function, it processes signals and therefore

depends on history. On the other hand, in both filter and function implementation the final code

or circuit consist of the same primitives (addition, multiplication and pre-computed constant

values). In case of non-recursive filters both filters and functions often benefit from the Remez

approximation algorithm [24]. It is not surprising that there are similarities between the evaluation

schemes: Direct Form structure can be interpreted as Horner scheme, polyphase filters as

Estrin’s scheme, etc. However, the study of analogies is not fairly possible without a rational

Remez algorithm available for the design of IIR filters.

Massive implementations of filtering algorithms for big data and artificial neural networks are

often performed on general purpose CPUs or GPUs. These targets possess a Floating-Point unit

but the robustness requirements still dictate short wordlength formats. Therefore, the problem of

the error-analysis of short Floating-Point implementations rises. I believe that this study might

greatly benefit from the methodology proposed in this thesis: Worst-Case Peak Gain measure,

transfer function verification algorithm, the error model, etc. What is non-trivial but promising is

to address artificial neural network algorithms themselves. In fact, for some neural networks, the

computations on each layer may be seen as (complicated) linear filters. Thus, the fourth main

research axis concerns expanding the area of application to machine learning algorithms.

So many possibilities open up when signal processing

and computer arithmetic meet.

162

CHAPTER A
APPENDIX

1 Lattice Wave Digital Filter basic brick data-flows

In Part II Chapter 4 we presented a conversion algorithm for the Lattice Wave Digital filters to

the SIF. Figures A.1-A.4 illustrate the annotated data-flow graphs that correspond to the

subsystems of type A and B in Lattice Wave Digital filters.

+

+

+

↵

z�1

x(k + 1)

�1u1(k) u2(k)

y1(k) y2(k)

�1

t1

t2

(a) Type 1-A

+

+

+

↵ z�1

u1(k)

y1(k) x(k + 1)

x(k)

t2

t1

�1

�1

(b) Type 1-B

Figure A.1: Subsystems with adaptors of Type 1.

+

+ +

↵

z�1

�1u1(k) u2(k)

y1(k) y2(k)

t1

(a) Type 2-A

+

+ +

↵ z�1

x(k + 1)

x(k)u1(k)

y1(k)

�1

t1

(b) Type 2-B

Figure A.2: Subsystems with adaptors of Type 2.

163

APPENDIX A. APPENDIX

+

+ +

↵

z�1

�1

�1�1

u1(k) u2(k)

x(k + 1) y2(k)y1(k)

t1

(a) Type 3-A

+

+ +

↵ z�1

�1

�1�1

x(k + 1)

x(k)u1(k)

y1(k)

t1

(b) Type 3-B

Figure A.3: Subsystems with adaptors of Type 3.

+

+

+

↵

z�1

�1

u1(k) u2(k)

y1(k) y2(k)

�1

t1
�1

t2

x(k + 1)

(a) Type 4-A

+

+

+

↵ z�1

u1(k)

y1(k) x(k + 1)

x(k)

t1

t2

�1

�1

�1

(b) Type 4-B

Figure A.4: Subsystems with adaptors of Type 4.

2 Coefficients for the examples

In this section we give the coefficients of the filter algorithms that we used in some of our

examples.

2.1 Example from Chapter 6

In Part III Chapter 6 Example 6.1 (p. 84.) we used the following SISO state-space realization:

A =




5349797894891737
258

5166143083671405
253

−2831854438491313
254

−5871577021383539
257

−8085167575254235
259

5166143083671405
253

−2313123528371301
253

−3726321566242771
255

−2862105117188361
253

−5198006051035051
254

−2831854438491313
254

−3726321566242771
255

−6953517292263399
253

1536770956967001
252

−6533578784721267
257

−5871577021383539
257

−2862105117188361
253

1536770956967001
252

−4578574112815079
258

−6108340260993661
254

−8085167575254235
259

−5198006051035051
254

−6533578784721267
257

−6108340260993661
254

−7406762621209713
258




,

164

2. COEFFICIENTS FOR THE EXAMPLES

b =




0
−5431455542039353

253

−4330832538465309
251

−2702522316192301
251

482362316509163
249




,

c =
(

5441181515794623
252 0 0 0 8170739390909991

253

)
,

d = −6210481900542423
252 .

2.2 Example from Chapter 7

In Part III Chapter 7 Example 2 (p. 117) we used the following SISO state-space realization:

A =




6784742786136467
255

−4418765114923729
252

−664385987312541
257

−6424963082774909
260

23379087041007
254

7224673930044821
262

8837532051801285
253

6702326945697769
255

200758871190939
255

7765776886168563
260

−7064506506383
252

−1091547242537563
259

332163678765481
256

803109201555043
257

3430928543256835
254

−8814226732612787
253

−340600630723981
256

−51393263754677
253

−100378037454999
254

−3883122962210243
259

4407113891006265
252

6589648288527319
255

51463819022587
253

3975875009524179
259

23338099057403
254

1805668067704021
260

1360133999454637
258

1644151688384379
258

3482771051190523
254

−8782983518574175
253

−28250206934819
254

−4371435432060817
261

−205801181849963
255

−3980412056409463
259

8782803780831881
253

402384040765689
251




,

b =




2805227146785663
256

−6781289732910279
257

7151095668232217
257

−8644087168799361
257

138530205667109
252

−670749912793553
254




, c> =




−5609854620080605
257

−1695446456016151
255

7150962371133851
257

4322098720663427
256

−8880554827970779
258

−2679975639394807
256




, d = 7582290898298045
274 .

2.3 Example from Chapter 8

In Part III Chapter 8 Example 2 (p. 139) we consider four realizations of a 9th order IIR filter.

Their coefficients have been subject to different optimizations specific to each structure.

165

APPENDIX A. APPENDIX

Direct Form II transposed This realization has the same coefficients as the transfer function

of the filter. Its numerator b and denumerator a are:

b =




729237663
253

410196191
249

410196177
247

957124445
247

1435686635
247

358921665
245

1914248853
248

3281569499
250

3281569473
252

2916950655
255




a=




1
−7785613688429543

250

6036692931392875
248

−5505973960157689
247

1626405210837387
245

−645028755122265
244

5492680950051031
248

−7562215714147779
250

3053779727680745
251

−2203903366092791
254




ρ-operator Direct Form II transposed

This realization has the same number of coefficients as the Direct Form II transposed but uses

a modified delay operator. The corresponding Specialized Impli Form matrix Z is:

Z =




−1 1 0 0 0 0 0 0 0 0 5833901303
256

−1173742736577039
249 1 1 0 0 0 0 0 0 0 52505111727

255

−598564716117403
248 0 1 1 0 0 0 0 0 0 52505111727

252

−194752412061513
247 0 0 1 1 0 0 0 0 0 122511927363

251

−44340287896553
246 0 0 0 1 1 0 0 0 0 367535782089

251

−29194831792401
247 0 0 0 0 1 1 0 0 0 367535782089

250

−13858087341545
248 0 0 0 0 0 1 1 0 0 122511927363

248

−4562787932375
249 0 0 0 0 0 0 1 1 0 52505111727

247

−3775617671781
252 0 0 0 0 0 0 0 1 1 52505111727

248

−93342420817
251 0 0 0 0 0 0 0 0 1 5833901303

247

1 0 0 0 0 0 0 0 0 0 0




166

2.
C

O
E

F
F

IC
IE

N
T

S
F

O
R

T
H

E
E

X
A

M
P

LE
S

Balanced state-space

This structure has its coefficients that are grouped into the matrix A, vectors b and c, and scalar d.

A =




4433399923822815
252

−697104920405359
252

−14914874060567
256

1834705105773231
256

−227990264073995
255

264510032627687
256

71919139252021
256

15539762312143
256

3987618469973
257

2788419681621411
254

8511655240987669
253

−7241731896691307
255

923032429638883
255

−1185143818093905
255

91680166787919
253

29955451375187
253

24793696845359
255

1602266531167
254

−14914874060201
256

7241731896691287
255

4014739506825505
252

3956246339911157
254

−847871350139453
254

975529378369809
255

132472831176299
254

57256913063569
255

1836516170261
253

−1834705105773195
256

923032429638873
255

−1978123169955585
253

3730471156627787
252

4008581949275589
254

−1822778074078241
255

−648692245116269
255

−32932900203945
253

−34163067919255
256

−911961056295815
257

4740575272375661
257

−1695742700278867
255

−4008581949275597
254

431207735727907
249

976897242794113
252

3142717255227975
256

365093342795161
255

185168624492341
257

−1058040130510681
258

1466882668606681
257

−7804235026958069
258

−3645556148156227
256

−7815177942352969
255

797208406832299
250

−3640204017578879
254

−289129023623485
253

−1253582148190087
258

1150706228030895
260

−3834297776022405
260

8478261195284487
260

2594768980465645
257

785679313806937
254

910051004394703
252

366857616167601
249

−6305858738209341
255

−5362082746147945
258

−62159049249543
258

1586796598112755
261

−1832221218029465
260

−2107705613046249
259

−2920746742362679
258

−2313032188988843
256

6305858738208987
255

671630402948993
250

−1166805156754687
253

1993809236293
256

−410180231852571
262

58768517426727
258

136652271674025
258

1481348995953613
260

313395537050083
256

−1340520686534485
256

4667220627014373
255

4896276983317139
253




b =




−3423531969504719
255

3879265898276791
254

−626127473878301
251

−8465367200971921
255

−4828329411714067
255

−1966428315469671
255

4709145555509341
258

−3976213184483417
260

512167188113989
260




c> =




−1711765984752477
254

−3879265898276791
254

−2504509895513203
253

2116341800242985
253

−301770588232129
251

983214157734825
254

588643194438675
255

248513324030127
256

8194675009308959
264




d =
(

5833901303
256

)

Lattice Wave Digital Filter Coefficients γ of the Lattice Wave Digital filter:

γ=
(−2788140310368283

253
−292219541455085

252
−480744335378591

250
−73054885139031

250
−1044203411065085

253
−584439080672053

253
−4499984971038737

253
−584439081644825

253
−338912398222379

250

)

167

APPENDIX A. APPENDIX

3 Off-by-One problem

In Part III Chapter 7 Section 7.8 we present our ongoing work on the off-by-one problem. The

solution is based on an optimization problem. In this Section we give details of the formal

construction of this optimization problem.

As we said in Section 7.8.1, we are looking for x, y,δx,δy such that

(
A B
C D

)(
x
u

)
≤

(
x
y

)
+

(
δx

δy

)
(A.1)

(
A B
C D

)(
x
u

)
≥

(
x
y

)
+

(
δx

δy

)
(A.2)

(
I 0
0 I

)(
x
u

)
≤

(
x
u

)
(A.3)

(
I 0
0 I

)(
x
u

)
≥

(
x
u

)
(A.4)

To formalize the optimization problem, we need to bring the above inequalities to the canonical

form, i.e. bring all inequalities to the direction “≤”:

Denote x := x+ x′ and u := u+u′. Then,

(
A B
C D

)(
x′

u′

)
+

(
A B
C D

)(
x
u

)
≤

(
x
y

)
+

(
I 0
0 I

)(
δx

δy

)
(A.5)

(
−A −B
−C −D

)(
x′

u′

)
−

(
A B
C D

)(
x
u

)
≤−

(
x
y

)
−

(
I 0
0 I

)(
δx

δy

)
(A.6)

(
I 0
0 I

)(
x′

u′

)
+

(
I 0
0 I

)(
x
u

)
≤

(
x
u

)
(A.7)

(
−I 0
0 −I

)(
x′

u′

)
−

(
I 0
0 I

)(
x
u

)
≤−

(
x
u

)
(A.8)

168

3. OFF-BY-ONE PROBLEM

By gathering x′,u′ and δx,δy on the left sides of each inequality, we obtain

(
A B
C D

)(
x′

u′

)
−

(
I 0
0 I

)(
δx

δy

)
≤

(
x
y

)
−

(
A B
C D

)(
x
u

)
(A.9)

(
−A −B
−C −D

)(
x′

u′

)
+

(
I 0
0 I

)(
δx

δy

)
≤

(
A B
C D

)(
x
u

)
−

(
x
y

)
(A.10)

(
I 0
0 I

)(
x′

u′

)
≤

(
x
u

)
−

(
I 0
0 I

)(
x
u

)
(A.11)

(
−I 0
0 −I

)(
x′

u′

)
≤

(
I 0
0 I

)(
x
u

)
−

(
x
u

)
(A.12)

By gathering vectors x′,u′ and δx,δy into one vector ξ=




x′

u′

δx

δy




, and the left parts of

(A.9)-(A.12) into one matrix, we obtain the optimization problem presented in Section 7.8.1.

169

BIBLIOGRAPHY

[1] R. Rocher, D. Ménard, N. Hervé, and O. Sentieys, “Fixed-point configurable hardware

components,” EURASIP Signal of Embedded Systems, no. 1, Jan 2006.

[2] D. Menard, R. Rocher, O. Sentieys, N. Simon, L.-S. Didier, T. Hilaire, B. Lopez,

E. Goubault, S. Putot, F. Vedrine, A. Najahi, G. Revy, L. Fangain, C. Samoyeau,

F. Lemonnier, and C. Clienti, “Design of Fixed-point Embedded Systems (DEFIS),” in

2012 Conference on Design and Architectures for Signal and Image Processing

(DASIP). ECSI - European Electronic Chips and Systems design Initiative, 2012, pp.

365–366.

[3] G. Constantinides, P. Y. K. Cheung, and W. Luk, Synthesis and Optimization of DSP

Algorithms. Springer US, 2007.

[4] T. Hilaire, “Analyse et synthèse de l’implémentation de lois de contrôle-commande en

précision finie (Étude dans le cadre des applications automobiles sur calculateur

embarquée),” Ph.D. dissertation, Université de Nantes, Jun 2006.

[5] ——, “Towards Tools and Methodology for the Fixed-Point Implementation of Linear

Filters,” in Digital Signal Processing Workshop and IEEE Signal Processing Education

Workshop (DSP/SPE), 2011 IEEE, Jan 2011, pp. 488–493.

[6] B. Lopez, “Implémentation optimale de filtres linéaires en arithmétique virgule fixe,” Ph.D.

dissertation, UPMC, 2015.

[7] A. Volkova and T. Hilaire, “Fixed-point implementation of lattice wave digital filter:

Comparison and error analysis,” in 2015 23rd European Signal Processing

Conference (EUSIPCO), Aug 2015, pp. 1118–1122.

[8] A. Volkova, C. Lauter, and T. Hilaire, “Computing the worst-case peak gain of digital filter

in interval arithmetic.” in 17th International Symposium on Scientific Computing,

Computer Arithmetics and Verified Numerics (SCAN), Sep 2016, abstract.

171

BIBLIOGRAPHY

[9] A. Volkova, T. Hilaire, and C. Lauter, “Reliable verification of digital implemented filters

against frequency specifications,” in 2017 IEEE 24th Symposium on Computer

Arithmetic, July 2017.

[10] V. Balakrishnan and S. Boyd, “On Computing the Worst-Case Peak Gain of Linear

Systems,” Systems & Control Letters, vol. 19, pp. 265–269, 1992.

[11] A. Volkova, T. Hilaire, and C. Lauter, “Reliable evaluation of the worst-case peak gain

matrix in multiple precision,” in 2015 IEEE 22nd Symposium on Computer Arithmetic,

June 2015, pp. 96–103.

[12] T. Hilaire, A. Volkova, and M. Ravoson, “Reliable fixed-point implementation of linear

data-flows,” in 2016 IEEE International Workshop on Signal Processing Systems

(SiPS), Oct 2016, pp. 92–97.

[13] A. Volkova, T. Hilaire, and C. Lauter, “Determining fixed-point formats for a digital filter

implementation using the worst-case peak gain measure,” in 2015 49th Asilomar

Conference on Signals, Systems and Computers, Nov 2015, pp. 737–741.

[14] A. Volkova, C. Lauter, and T. Hilaire, “Rigorous determination of recursive filter fixed-point

implementation with input signal frequency specifications,” in 2017 51st Asilomar

Conference on Signals, Systems and Computers, Sep 2017, abstract accepted.

[15] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with FloPoCo,”

IEEE Design & Test of Computers, vol. 28, no. 4, pp. 18–27, Jul. 2011.

[16] F. de Dinechin, T. Hilaire, M. Istoan, and A. Volkova, “Hardware IIR Filters: Direct Form I

Computing Just Right,” Jul. 2017, technical report available online

http://hal.upmc.fr/hal-01561052.

[17] F. Qureshi, A. Volkova, J. Takala, and T. Hilaire, “Multiplierless Unified Architecture for

Mixed Radix-2/3/4 FFTs,” in 2017 25th European Signal Processing Conference

(EUSIPCO), Aug 2017.

[18] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. NJ, USA:

Prentice Hall Press, 2009.

[19] P. Prandoni and M. Vetterli, Signal Processing for Communications. EFPL Press, 2008.

[20] R. N. Bracewell, The Fourier Transform and Its Applications (3rd ed.). Boston:

McGraw-Hill, 2000.

172

BIBLIOGRAPHY

[21] E. I. Jury, Theory and Application of the Z-Transform Method. Krieger Pub Co, 1973.

[22] W. Chen, The Circuits and Filters Handbook, Second Edition. Taylor & Francis, 2002.

[23] E. Eitelberg, “Convolution invariance and corrected impulse invariance,” Signal

Processing, vol. 86, no. 5, pp. 1116–1120, 2006.

[24] I. W. Selesnick, M. Lang, and C. S. Burrus, “Magnitude squared design of recursive filters

with the Chebyshev norm using a constrained rational Remez algorithm,” in

Proceedings of IEEE 6th Digital Signal Processing Workshop, Oct 1994.

[25] S.-I. Filip, “Robust tools for weighted Chebyshev approximation and applications to digital

filter design,” Ph.D. dissertation, Université de Lyon, Dec 2016.

[26] M. Lankarany and H. Marvi, “Noise reduction in digital iir filters by finding optimum

arrangement of second-order sections,” in 2008 Canadian Conference on Electrical

and Computer Engineering, May 2008, pp. 689–692.

[27] C.-W. Wu and P. Cappello, “Computer-aided design of vlsi second-order sections,” in

ICASSP ’87. IEEE International Conference on Acoustics, Speech, and Signal

Processing, vol. 12, Apr 1987, pp. 1907–1910.

[28] H. Butterweck, A. van Meer, and G. Verkroost, “New second-order digital filter sections

without limit cycles,” IEEE Transactions on Circuits and Systems, vol. 31, no. 2, pp.

141–146, Feb 1984.

[29] C. Tsai, “Floating-point roundoff noises of first- and second-order sections in parallel form

digital filters,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, vol. 44, no. 9, pp. 774–779, Sep 1997.

[30] N. Bose, Multidimensional Systems: Theory and Applications. IEEE Press., 1979.

[31] T. Kailath, Linear Systems. Prentice-Hall, 1980.

[32] J. O. S. III, “Introduction to digital audio signal processing,” Lectures at Stanford

University, California, USA, 2016, .

[33] S. Denis, Matrices. Theory and Applications. Second edition, 1971.

[34] M. Gevers and G. Li, Parametrizations in Control, Estimations and Filtering Problems:

Accuracy Aspects. Berlin: Springer-Verlag, 1993.

173

BIBLIOGRAPHY

[35] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond,

N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-Point Arithmetic.

Birkhäuser Boston, 2010.

[36] J. von Newmann, “First Draft of a Report on the EDVAC,” Tech. Rep., 1945.

[37] W. Padgett and D. Anderson, Fixed-Point Signal Processing, ser. Synthesis lectures on

signal processing. Morgan & Claypool, 2009.

[38] T. Finley, “Two’s Complement,” Cornell University lecture notes, 2000.

[39] T. Hilaire and B. Lopez, “Reliable Implementation of Linear Filters with Fixed-Point

Arithmetic,” in Proc. IEEE Workshop on Signal Processing Systems (SiPS), 2013.

[40] R. Oshana, DSP Software Development Techniques for Embedded and Real-Time

Systems. Elsevier Science, 2006.

[41] B. Lopez, T. Hilaire, and L.-S. Didier, “Sum-of-products evaluation schemes with

fixed-point arithmetic, and their application to IIR filter implementation,” in Conf. on

Design and Architectures for Signal and Image Proc. (DASIP), Oct 2012.

[42] F. de Dinechin, M. Istoan, and A. Massouri, “Sum-of-product architectures computing just

right,” in IEEE 25th International Conference on Application-Specific Systems,

Architectures and Processors, ASAP 2014, Zurich, Switzerland, June 18-20, 2014,

2014, pp. 41–47.

[43] C. Weinstein and A. V. Oppenheim, “A comparison of roundoff noise in floating point and

fixed point digital filter realizations,” Proceedings of the IEEE, vol. 57, no. 6, pp.

1181–1183, June 1969.

[44] R. Boite, H. Xian-Liang, and J. P. Renard, “A comparison of fixed-point and floating-point

realization of digital filter,” in 8th European Conference on Electrotechnics,

Conference Proceedings on Area Communication, Jun 1988, pp. 142–145.

[45] “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Std 754-1985, 1985.

[46] N. J. Higham, Accuracy and stability of numerical algorithms (2 ed.). SIAM, 2002.

[47] B. Widrow and I. Kollár, Quantization Noise: Roundoff Error in Digital Computation, Signal

Processing, Control, and Communications. Cambridge University Press, 2008.

174

BIBLIOGRAPHY

[48] D. Goldberg, “What every computer scientist should know about floating-point arithmetic,”

ACM Comput. Surv., vol. 23, no. 1, pp. 5–48, 1991.

[49] S. Chevillard, J. Harrison, M. Joldes, and C. Lauter, “Efficient and accurate computation

of upper bounds of approximation errors,” Theoretical Computer Science, vol. 412,

no. 16, pp. 1523–1543, 2011.

[50] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast, C. Lauter, and J.-M.

Muller, “CR-LIBM A library of correctly rounded elementary functions in

double-precision,” research report available online

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804, Dec. 2006.

[51] N. Brisebarre, G. Hanrot, and O. Robert, “Exponential sums and correctly-rounded

functions,” IEEE Transactions on Computers, vol. PP, no. 99, pp. 1–1, 2017.

[52] F. de Dinechin, C. Lauter, and J.-M. Muller, “Fast and correctly rounded logarithms in

double-precision,” RAIRO - Theoretical Informatics and Applications, vol. 41, no. 1, pp.

85–102, April 2007.

[53] C. Q. Lauter, “Arrondi correct de fonctions mathématiques : fonctions univariées et

bivariées, certification et automatisation,” Ph.D. dissertation, ENS de Lyon, 2008.

[54] S. Chevillard, C. Lauter, and M. Joldes, Users’ manual for the Sollya tool, Release 6.0,

LIP, LIP6, LORIA, CNRS, APICS, INRIA.

[55] N. Brunie, F. de Dinechin, O. Kupriianova, and C. Q. Lauter, “Code generators for

mathematical functions,” in 22nd IEEE Symposium on Computer Arithmetic, ARITH

2015, Lyon, France, June 22-24, 2015, 2015, pp. 66–73.

[56] U. Kulisch and V. Snyder, “The Exact Dot Product As Basic Tool for Long Interval

Arithmetic,” Computing, vol. 91, no. 3, pp. 307–313, Mar 2011.

[57] M. Joldes, O. Marty, J. M. Muller, and V. Popescu, “Arithmetic algorithms for extended

precision using floating-point expansions,” IEEE Transactions on Computers, vol. 65,

no. 4, pp. 1197–1210, April 2016.

[58] D. A. Pope and M. L. Stein, “Multiple precision arithmetic,” Commun. ACM, vol. 3, no. 12,

pp. 652–654, Dec. 1960.

[59] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “MPFR: A

multiple-precision binary floating-point library with correct rounding,” ACM

Transactions on Mathematical Software, vol. 33, no. 2, Jun. 2007.

175

BIBLIOGRAPHY

[60] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis. SIAM,

2009.

[61] T. Hickey, Q. Ju, and M. H. Van Emden, “Interval arithmetic: From principles to

implementation,” J. ACM, vol. 48, no. 5, pp. 1038–1068, Sep. 2001.

[62] H. Dawood, Theories of Interval Arithmetic.

[63] A. Neumaier, Interval methods for systems of equations. Cambridge University Press,

Cambridge, UK, 1990.

[64] G. Melquiond, “De l’arithmétique d’intervalles à la certification de programmes,” Ph.D.

dissertation, ENS Lyon, 2006.

[65] N. Revol and F. Rouillier, “Motivations for an arbitrary precision interval arithmetic and the

MPFI library,” Reliable Computing, vol. 11, no. 4, pp. 275–290, 2005.

[66] ——, Manual for MPFI 1.5.1, Spaces, INRIA Lorraine, Arenaire, INRIA Rhone-Alpes, Lab.

ANO, USTL (Univ. of Lille).

[67] S. M. Rump, “Guaranteed inclusions for the complex generalized eigenproblem,”

Computing, vol. 42, no. 2-3, pp. 225–238, 1989.

[68] ——, “Reliability in Computing: The Role of Interval Methods in Scientific Computing,”

R. E. Moore, Ed. Academic Press, 1988, ch. Algorithms for Verified Inclusions —

Theory and Practice, pp. 109–126.

[69] ——, “Solution of Linear Systems with Verified Accuracy,” Applied numerical

mathematics, vol. 3, no. 3, pp. 233–241, 1987.

[70] J. Kauraniemi, T. I. Laakso, I. Hartimo, and S. J. Ovaska, “Delta operator realizations of

direct-form iir filters,” IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, vol. 45, no. 1, pp. 41–52, Jan 1998.

[71] N. Wong and T.-S. Ng, “A generalized direct-form delta operator-based iir filter with

minimum noise gain and sensitivity,” IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, vol. 48, no. 4, pp. 425–431, Apr 2001.

[72] N. V. Dakev, J. F. Whidborne, and A. J. Chipperfield, “ H∞ design of an EMS control

system for a maglev vehicle using evolutionary algorithms,” in Proc. GALESIA 95,

Sheffield U.K., Sep 1995, pp. 226–231.

176

BIBLIOGRAPHY

[73] J. F. Whidborne, I. Postlethwaite, and D.-W. Gu, “Robust Controller Design Using H∞
Loop-Shaping and the Method of Inequalities,” San Antonio, Texas, Dec 1993, pp.

2163–2168.

[74] S. Chen and J. Wu, “The Determination of Optimal Finite-precision Controller Realisations

Using a Global Optimisation Strategy: a Pole-sensitivity Approach,” in Digital

Controller Implementation and Fragility: A Modern Perspective, R. S. H. Istepanian

and J. F. Whidborne, Eds. London, UK: Springer-Verlag, 2001, ch. 6, pp. 87–104.

[75] V. Tavsanoglu and L. Thiele, “Optimal design of state - space digital filters by

simultaneous minimization of sensitivity and roundoff noise,” IEEE Transactions on

Circuits and Systems, vol. 31, no. 10, pp. 884–888, Oct 1984.

[76] T. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng, and W. Lu, “Analysis and Minimization of

L2 -Sensitivity for Linear Systems and Two-Dimensional State-Space Filters Using

General Controllability and Observability Gramians,” in IEEE Transactions on Circuits

and Systems, Fundamental Theory and Applications, vol. 49, no. 9, Sep 2002.

[77] B. Widrow and I. Kollár, Quantization Noise: Roundoff Error in Digital Computation, Signal

Processing, Control, and Communications. Cambridge, UK: Cambridge University

Press, 2008.

[78] G. A. Constantinides, “Perturbation analysis for word-length optimization,” in 11th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines, 2003.

FCCM 2003., April 2003, pp. 81–90.

[79] G. Constantinides, P. Cheung, and W. Luk, “Truncation Noise in Fixed-Point SFGs,” IEE

Electronics Letters, vol. 35, no. 23, pp. 2012–2014, Nov 1999.

[80] D. Báez-López, D. Báez-Villegas, R. Alcántara, J. J. Romero, and T. Escalante, “Package

for filter design based on MATLAB,” Comp. Applic. in Engineering Education, vol. 9,

no. 4, pp. 259–264, 2001.

[81] L. Jackson, J. Kaiser, and H. McDonald, “An approach to the implementation of digital

filters,” IEEE Transactions on Audio and Electroacoustics, vol. 16, no. 3, pp. 413–421,

Sep 1968.

[82] A. Kireçci, M. Topalbekiroglu, and I. Eker, “Experimental evaluation of a model reference

adaptive control for a hydraulic robot: a case study,” Robotica, vol. 21, no. 1, pp.

71–78, 2003.

177

BIBLIOGRAPHY

[83] L. D. Coster, M. Adé, R. Lauwereins, and J. A. Peperstraete, “Code generation for

compiled bit-true simulation of DSP applications,” in Proceedings of the 11th

International Symposium on System Synthesis, ISSS ’98, Hsinchu, Taiwan, Dec 1998,

pp. 9–14.

[84] A. Benedetti and P. Perona, “Bit-width optimization for configurable dsp’s by multi-interval

analysis,” in Conference Record of the Thirty-Fourth Asilomar Conference on Signals,

Systems and Computers, vol. 1, Oct 2000, pp. 355–359 vol.1.

[85] C. Carreras, J. A. Lopez, and O. Nieto-Taladriz, “Bit-width selection for data-path

implementations,” in Proceedings 12th International Symposium on System

Synthesis, Nov 1999, pp. 114–119.

[86] J. A. Lopez, C. Carreras, and O. Nieto-Taladriz, “Improved interval-based characterization

of fixed-point LTI systems with feedback loops,” Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 26, no. 11, pp. 1923–1933, 2007.

[87] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou, and Y. Zou, “Evaluation of static

analysis techniques for fixed-point precision optimization,” in 17th IEEE Symposium

on Field Programmable Custom Computing Machines In Proceedings, 2009, pp.

231–234.

[88] C. F. Fang, R. A. Rutenbar, M. Puschel, and T. Chen, “Toward efficient static analysis of

finite-precision effects in dsp applications via affine arithmetic modeling,” in

Proceedings 2003. Design Automation Conference, June 2003, pp. 496–501.

[89] L. H. de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts and applications,”

Numerical Algorithms, vol. 37, no. 1-4, pp. 147–158, 2004.

[90] D. Menard, R. Rocher, and O. Sentieys, “Analytical fixed-point accuracy evaluation in

linear time-invariant systems,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 55, no. 10, pp. 3197–3208, Nov 2008.

[91] N. Herve, D. Menard, and O. Sentieys, “Data wordlength optimization for FPGA synthesis,”

in IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.,

Nov 2005, pp. 623–628.

[92] E. Parzen, “On estimation of a probability density function and mode,” The Annals of

Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

178

BIBLIOGRAPHY

[93] A. Banciu, “A Stochastic Approach For The Range Evaluation,” Theses, Université

Rennes 1, Feb. 2012.

[94] T. Hilaire, P. Chevrel, and J.-P. Clauzel, “Low Parametric Sensitivity Realization Design for

FWL Implementation of MIMO Controllers,” in Proc. of Control Applications of

Optimisation CAO’O6, Apr 2006.

[95] T. Hilaire, D. Ménard, and O. Sentieys, “Roundoff Noise Analysis of Finite Wordlength

Realizations with the Implicit State-Space Framework,” in EUSIPCO’07, 2007, pp.

1019–1023.

[96] T. Hilaire, P. Chevrel, and J.-P. Clauzel, “Pole Sensitivity Stability Related Measure of FWL

Realization with the Implicit State-Space Formalism,” in 5th IFAC Symposium on

Robust Control Design (ROCOND’06), Jul 2006.

[97] T. Hilaire, FWR Toolbox User’s Guide (v0.99), http://fwrtoolbox.gforge.inria.fr/, 2009.

[98] T. Hilaire, P. Chevrel, and J.-P. Clauzel, “Low Parametric Sensitivity Realization Design for

FWL Implementation of MIMO Controllers : Theory and Application to the Active

Control of Vehicle Longitudinal Oscillations,” International Journal of Tomography &

Statistics, vol. 6, no. 7, pp. 128–133, 2007.

[99] A. Fettweiss, “Wave Digital Filters: Theory and Practice,” Proc. of the IEEE, vol. 74, no. 2,

1986.

[100] J. Yli-Kaakinen and T. Saramaki, “An algorithm for the design of multiplierless

approximately linear-phase lattice-wave digital filters,” in 2000 IEEE International

Symposium on Circuits and Systems In Proceedings, vol. 2, 2000, pp. 77–80 vol.2.

[101] L. Gazsi, “Explicit formulas for lattice wave digital filters,” IEEE Trans. Circuits & Systems,

vol. 32, no. 1, 1985.

[102] B. Friedlander, “Lattice filters for adaptive processing,” Proceedings of the IEEE, vol. 70,

no. 8, pp. 829–867, Aug 1982.

[103] H. Johansson and L. Wanharomar, “Digital Hilbert transformers composed of identical

allpass subfilters,” in ISCAS 1998. Proceedings of, vol. 5, pp. 437–440 vol.5.

[104] F. A., L. H., , and S. A., “Wave digital lattice filters,” International Journal on Circuit Theory

and Applications, vol. 2, pp. 203–211, Jun 1974.

[105] H. Johansson and L. Wanharomar, “Design of linear-phase Lattice Wave Digital Filters.”

179

BIBLIOGRAPHY

[106] T. S. J. Yli-Kaakinen, “A systematic algorithm for the design of multiplierless lattice wave

digital filters,” in First International Symposium on Control, Communications and

Signal Processing, 2004, pp. 393–396.

[107] H. Ohlsson, O. Gustafsson, W. Li, and L. Wanhammar, “An environment for design and

implementation of energy efficient digital filters,” in Swedish System-on-Chip

Conference, Apr 2003.

[108] J. Yli-Kaakinen and T. Saramäki, “A Systematic Algorithm for the Design of Lattice Wave

Digital Filters With Short-Coefficient Wordlength,” IEEE Trans. on Circuits & Systems,

2007.

[109] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction To Algorithms.

MIT Press, 2001.

[110] J. Kuriakose, S. Ristic, and G. de Cremoux, “An automated toolbox for the design and

analysis of lattice wave digital filters using matlab,” in IEE Colloquium on DSP enabled

Radio, Sep 2003, pp. 1–8.

[111] J. C. Vold, Havard and G. T. Rocklin., “New ways of estimating frequency response

functions.” Sound and Vibration, vol. 18, pp. 34–38, Nov 1984.

[112] S. Pillai and T. Shim, Spectrum estimation and system identification. Springer-Verlag,

1993.

[113] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools for Python,”

2001, http://www.scipy.org/.

[114] S. Boyd and J. Doyle, “Comparison of peak and RMS gains for discrete-time systems,”

System & Control Letters, vol. 9, pp. 1–6, 1987.

[115] F. Johansson et al., mpmath: a Python library for arbitrary-precision floating-point

arithmetic (version 0.18), December 2013, http://mpmath.org/.

[116] J. Carletta, R. Veillette, F. Krach, and Z. F., “Determining appropriate precisions for

signals in fixed-point IIR filters,” in Design Automation Conference, 2003.

Proceedings, 2003, pp. 656–661.

[117] R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX + XB = C,” Commun.

ACM, vol. 15, no. 9, pp. 820–826, Sep. 1972.

180

BIBLIOGRAPHY

[118] V. Simoncini, “Computational methods for linear matrix equations,” SIAM Review, vol. 58,

no. 3, pp. 377–441, 2016.

[119] S. Hammarling, “Numerical solution of the discrete-time, convergent, non-negative

definite lyapunov equation,” Syst. Control Lett., vol. 17, no. 2, pp. 137–139, Aug. 1991.

[120] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas,

Graphs, and Mathematical Tables. Dover Publications, 1964.

[121] H. Dawood, Theories of Interval Arithmetic: Mathematical Foundations and Applications.

LAP Lambert Academic Publishing, 2011.

[122] S. M. Rump, “New Results on Verified Inclusions,” in Accurate Scientific Computations,

Symposium, 1985, Proceedings, 1985, pp. 31–69.

[123] S. Gershgorin, “Über die Abgrenzung der Eigenwerte einer Matrix.” Bull. Acad. Sci.

URSS, vol. 1931, no. 6, pp. 749–754, 1931.

[124] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “ MPFR : A

Multiple-Precision Binary Floating-Point Library with Correct Rounding,” ACM

Transactions on Mathematical Software, vol. 33, no. 2, pp. 13:1—-13:15, 2007.

[125] V. Pan and J. Reif, “Efficient Parallel Solution of Linear Systems,” in Proceedings of the

Seventeenth Annual ACM Symposium on Theory of Computing. ACM, 1985, pp.

143–152.

[126] D. Lefebvre, P. Chevrel, and S. Richard, “An H∞ based control design methodology

dedicated to the active control of longitudinal oscillations,” IEEE Trans. on Control

Systems Tec hnology, vol. 11, no. 6, pp. 948–956, 2003.

[127] Z. Zhao and G. Li, “Roundoff noise analysis of two efficient digital filter structures,” IEEE

Trans. on Signal Processing, vol. 54, no. 2, pp. 790–795, 2006.

[128] K. Aström and R. Murray, Feedback Systems: An Introduction for Scientists and

Engineers. Princeton University Press, 2010.

[129] A. Neumaier, Interval Methods for Systems of Equations. Cambridge, UK: Cambridge

University Press, 1990, vol. 37.

[130] ——, “A distributive interval arithmetic,” Freiburger Intervall-Berichte, vol. 10, no. 82, pp.

31–38, 1982.

181

BIBLIOGRAPHY

[131] S. J. Xu and A. Rachid, “Generalized Gerschgorin disc and stability analysis of dynamic

interval systems,” in Control ’96, UKACC International Conference on, vol. 1, Sept

1996, pp. 276–280 vol.1.

[132] S. Corsaro and M. Marino, “Interval linear systems: the state of the art,” Computational

Statistics, vol. 21, no. 2, pp. 365–384, Jun 2006.

[133] A. Neumaier, “New techniques for the analysis of linear interval equations,” Linear

Algebra and its Applications, vol. 58, pp. 273 – 325, 1984.

[134] J. Rohn, “Inverse interval matrix,” SIAM Journal on Numerical Analysis, vol. 30, no. 3, pp.

864–870, 1993.

[135] V. Kreinovich, “Solving equations (and systems of equations) under uncertainty: how

different practical problems lead to different mathematical and computational

formulations,” Granular Computing, vol. 1, no. 3, pp. 171–179, Sep 2016.

[136] E. R. Hansen, “Bounding the solution of interval linear equations,” SIAM Journal on

Numerical Analysis, vol. 29, no. 5, pp. 1493–1503, 1992.

[137] M. Christensen and F. J. Taylor, “Fixed-Point IIR filter challenges,” EDN Networks, vol. 51,

no. 23, 2006.

[138] B. Lopez, T. Hilaire, and L.-S. Didier, “ Formatting bits to better implement signal

processing algorithms,” in 4th Int. conf. PECCS , proceedings of, 2014.

[139] L. Tsoeunyane, S. Winberg, and M. Inggs, “Software-defined radio FPGA cores: Building

towards a domain-specific language,” International Journal of Reconfigurable

Computing, Apr 2017.

[140] A. Ziv, “Fast evaluation of elementary mathematical functions with correctly rounded last

bit,” ACM Trans. Math. Softw., vol. 17, no. 3, pp. 410–423, Sep. 1991.

[141] L. Hogben, Handbook of Linear Algebra. CRC Press, 2006.

[142] I. Zelinka, V. Snasel, and A. Abraham, Handbook of Optimization: From Classical to

Modern Approach. Springer Berlin Heidelberg, 2012.

[143] G. Cornuejols, “Valid inequalities for mixed integer linear programs.” Mathematical

Programming B,, vol. 112, pp. 3–44, apr 2008.

182

BIBLIOGRAPHY

[144] D. E. S. William Cook, Thorsten Koch and K. Wolter, “A hybrid branch-and-bound

approach for exact rational mixed-integer programming,” Konrad-Zuse-Zentrum fur

Informationstechnik Berlin, Tech. Rep., 2012.

[145] W. J. Cook, T. Koch, D. E. Steffy, and K. Wolter, “An exact rational mixed-integer

programming solver,” in Integer Programming and Combinatoral Optimization - 15th

International Conference, IPCO 2011, New York, NY, USA, June 15-17, 2011.

Proceedings, 2011, pp. 104–116.

[146] D. E. Steffy and K. Wolter, “Valid linear programming bounds for exact mixed-integer

programming,” INFORMS Journal on Computing, vol. 25, no. 2, pp. 271–284, 2013.

[147] M. Hamza and M. Rasmy, “A simple method for determining the reachable set for linear

discrete systems,” IEEE Transactions on Automatic Control, vol. 16, no. 3, pp.

281–282, June 1971.

[148] B. Xue, Z. She, and A. Easwaran, “Under-approximating backward reachable sets by

semialgebraic sets,” IEEE Transactions on Automatic Control, vol. PP, no. 99, pp. 1–1,

2017.

[149] D. P. Bertsekas and I. B. Rhodes, “On the minimax reachability of target sets and target

tubes,” Automatica, vol. 7, no. 2, pp. 233–247, Mar. 1971.

[150] A. Barvinok, Integer Points in Polyhedra. European Mathematical Society, 2008.

[151] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability Modulo Theories,” in

Handbook of Satisfiability. IOS Press, Feb 2009, vol. 185, ch. 26, pp. 825–885.

[152] T. W. Parks and J. H. McClellan, “Chebyshev Approximation for Nonrecursive Digital

Filters with Linear Phase,” IEEE Transactions on Circuit Theory, vol. 19, no. 2, pp.

189–194, Mar 1972.

[153] S.-I. Filip, “A Robust and Scalable Implementation of the Parks-McClellan Algorithm for

Designing FIR Filters,” ACM Trans. Math. Softw., vol. 43, no. 1, pp. 7:1—-7:24, Aug

2016.

[154] B. W. Char, K. O. Geddes, and G. H. Gonnet, “GCDHEU: Heuristic polynomial GCD

algorithm based on integer GCD computation,” Journal of Symbolic Computation,

vol. 7, no. 1, pp. 31–48, 1989.

183

BIBLIOGRAPHY

[155] M.-F. Roy, Basic algorithms in real algebraic geometry and their complexity: from Sturm’s

theorem to the existential theory of reals. de Gruyter, 1996, vol. 23.

[156] G. Li and Z. Zhao, “On the Generalized DFIIt Structure and its State-Space Realization in

Digital Filter Implementation,” IEEE Trans. on Circuits and Systems, vol. 51, no. 4, pp.

769–778, Apr 2004.

[157] M. Gevers and G. Li, Parametrizations in Control, Estimation and Filtering Probems.

Springer-Verlag, 1993.

[158] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach.

Elsevier Science, 2011.

[159] K. D. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design idea winner),”

EDN magazine, no. 10, p. 80, May 1993.

[160] M. J. Wirthlin, “Constant Coefficient Multiplication Using Look-Up Tables,” Journal of VLSI

Signal Processing, vol. 36, no. 1, pp. 7–15, 2004.

[161] F. de Dinechin, H. Takeugming, and J.-M. Tanguy, “A 128-Tap Complex FIR Filter

Processing 20 Giga-Samples/s in a Single FPGA ,” in 44th Asilomar Conference on

Signals, Systems & Computers, 2010.

[162] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes, and B. Popa, “Arithmetic core

generation using bit heaps,” in Field-Programmable Logic and Applications, Sep 2013.

[163] IEEE Std 802.15.4-2006, IEEE Standard for Information technology–

Telecommunications and information exchange between systems– Local and

metropolitan area networks– Specific requirements– Part 15.4: Wireless Medium

Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate

Wireless Personal Area Networks (WPANs).

[164] The MathWorks, Inc., “Matlab signal processing toolbox.”

[165] F. de Dinechin, M. Istoan, and A. Massouri, “Sum-of-product architectures computing just

right,” in 2014 IEEE 25th International Conference on Application-Specific Systems,

Architectures and Processors, June 2014, pp. 41–47.

[166] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2003.

184

BIBLIOGRAPHY

[167] H. Parendeh-Afshar, A. Neogy, P. Brisk, and P. Ienne, “Compressor Tree Synthesis on

Commercial High-Performance FPGAs,” ACM Transactions on Reconfigurable

Technology and Systems, vol. 4, no. 4, 2011.

[168] R. Kumar, A. Mandal, and S. P. Khatri, “An efficient arithmetic Sum-of-Product (SOP)

based multiplication approach for FIR filters and DFT,” in International Conference on

Computer Design (ICCD). IEEE, Sep 2012, pp. 195–200.

[169] T. Parks and J. McClellan, “Chebyshev approximation for nonrecursive digital filters with

linear phase,” IEEE Transactions on Circuit Theory, vol. 19, no. 2, pp. 189–194, March

1972.

[170] S. Torres, “Tools for the Design of Reliable and Efficient Functions Evaluation Libraries,”

Theses, Université de Lyon, Sep. 2016.

[171] S. Filip, “A robust and scalable implementation of the parks-mcclellan algorithm for

designing FIR filters,” ACM Trans. Math. Softw., vol. 43, no. 1, pp. 7:1–7:24, 2016.

185

