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Symétries et corrélations dans les gaz quantiques fortement interagissants
à une dimension
Résumé

L’objectif principal de cette thèse est l’étude théorique de mélanges quantiques fortement interagissants à
une dimension et soumis à un potentiel externe harmonique. De tels systèmes fortement corrélés peuvent
être réalisés et testés dans des expériences d’atomes ultrafroids. Leurs propriétés de symétrie par permuta-
tion non triviales sont étudiées, ainsi que leurs effets sur les corrélations.
Exploitant une solution exacte pour des interactions fortes, nous extrayons des propriétés générales des
corrélations encodées dans la matrice densité à un corps et dans les distributions des impulsions associées,
dans les mélanges fermioniques et de Bose-Fermi. En particulier, nous obtenons des résultats substantiels
sur le comportement à courtes distances, et donc les queues à haute impulsions, qui suivent des lois en
k−4 typiques. Les poids de ces queues, dénotés contacts de Tan, sont liés à de nombreuses propriétés
thermodynamiques des systèmes telles que les corrélations à deux corps, la dérivée de l’énergie par rap-
port à la longueur de diffusion unidimensionnelle, ou le facteur de structure statique. Nous montrons que
ces contacts universels de Tan permettent également de caractériser la symétrie spatiale des systèmes,
et constitue donc une connexion profonde entre les corrélations et les symétries. En outre, la symétrie
d’échange est extraite en utilisant une méthode de théorie des groupes, à savoir la méthode de la somme
des classes (class-sum method en anglais), qui provient à l’origine de la physique nucléaire. De plus, nous
montrons que ces systèmes suivent une version généralisée du fameux théorème de Lieb-Mattis. Souhaitant
rendre nos résultats aussi pertinents expérimentalement que possible, nous dérivons des lois d’échelle pour
le contact de Tan en fonction de l’interaction, de la température et du confinement transverse. Ces lois
présentent des effets intéressants liés aux fortes corrélations et à la dimensionnalité.

Mots clés : Gaz quantiques, atomes ultrafroids, dimension un, mixtures quantiques, symétrie d’échange,
théorie des groupes, méthode de la somme des classes, fermionisation, corrélations à un corps, contact de
Tan, lois d’échelle

Symmetries and Correlations in Strongly Interacting One-dimensional Quan-
tum Gases
Abstract

The main focus of this thesis is the theoretical study of strongly interacting quantum mixtures confined in
one dimension and subjected to a harmonic external potential. Such strongly correlated systems can be
realized and tested in ultracold atoms experiments. Their non-trivial permutational symmetry properties
are investigated, as well as their interplay with correlations.
Exploiting an exact solution at strong interactions, we extract general correlation properties encoded in
the one-body density matrix and in the associated momentum distributions, in fermionic and Bose-Fermi
mixtures. In particular, we obtain substantial results about the short-range behavior, and therefore the high-
momentum tails, which display typical k−4 laws. The weights of these tails, denoted as Tan’s contacts,
are related to numerous thermodynamic properties of the systems such as the two-body correlations, the
derivative of the energy with respect to the one-dimensional scattering length, or the static structure factor.
We show that these universal Tan’s contacts also allow to characterize the spatial symmetry of the systems,
and therefore is a deep connection between correlations and symmetries. Besides, the exchange symmetry is
extracted using a group theory method, namely the class-sum method, which comes originally from nuclear
physics. Moreover, we show that these systems follow a generalized version of the famous Lieb-Mattis
theorem. Wishing to make our results as experimentally relevant as possible, we derive scaling laws for
Tan’s contact as a function of the interaction, temperature and transverse confinement. These laws display
interesting effects related to strong correlations and dimensionality.

Keywords: Quantum gases, ultracold atoms, one dimension, quantum mixtures, exchange symmetry,
group theory, class-sum method, fermionization, one-body correlations, Tan’s contact, scaling laws
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Introduction

One of the greatest challenges of modern physics is to understand the so-called strongly
correlated systems, where particles have so much influence over each other that com-
pletely new paradigms have to be involved in order to describe them. Indeed, free
models are pretty well understood, and in many systems the correlations can be treated
as a perturbation of the non-interacting model. However, in other ones, interactions are
so strong that they cannot be treated perturbatively and lead to totally different prop-
erties than their weak-coupling counterparts. In solid state physics for instance, many
phenomena are associated or believed to be associated with electron-electron interac-
tions, including the very debated high-temperature superconductivity [Auerbach 1994].
The realization of a common framework in order to treat strong correlations appears to
be such a complicate but groundbreaking task that it is sometimes referred as a third
quantum revolution.

Among the possible classes of strongly correlated systems that one could think of, there
is one whose strongly correlated nature is present even for very weak interactions, which
is the class of one-dimensional systems [Giamarchi 2003]. This can be understood pretty
easily by the fact that, because of the dimensional constraint, particles cannot avoid each
other. Thus, even the slightest particle excitation will directly turn into a collective one.
Therefore, physics in one dimension must be addressed in a whole different way than in
higher dimensions, and is rich of counter-intuitive and interesting phenomena.

Inseparable from the notion of quantum correlations is the notion of indistinguishability,
a counter-intuitive aspect of quantum physics which makes the quantum many-body
problem even harder to treat, at least conceptually, than the classical n-body problem.
In quantum physics, particles with the same intrinsic properties (mass, charge, spin...)
are said identical and cannot be distinguished with each other. Therefore, permuting
two identical particles should not change the physical properties of the system, and
can thus only change the many-body wave function describing it by a phase factor.
Depending on the spin of these identical particles, one can show that this phase factor
is either +1 or −1, corresponding respectively to a symmetric and an anti-symmetric
exchange [Schwinger 1951]. This discriminates identical particles into two classes, the so-
called bosons and fermions, depending on their symmetrical or anti-symmetrical nature.

The consequences of the symmetrization postulate of identical particles are striking.
On a purely conceptual point of view, it implies that all identical particles are, in a
certain way, correlated, even if they are not interacting. For fermions, it implies that
two identical particles cannot be in the same quantum state — for instance, all the
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16 Introduction

electrons of the Universe are in different states! This fact, known as the Pauli exclusion
principle, explains a huge variety of properties of everyday life, such as for instance the
fact that ordinary matter does not collapse [Dyson 1967]. The implications are even more
spectacular for bosons. They have indeed the tendency to accumulate in their lowest
energy state, at the origin of the celebrated Bose-Einstein condensation phenomenon at
ultracold temperatures, where millions of particles behave as a single macroscopic wave.
The bosonic symmetry is also related to other surprising quantum phases of matter,
such as superfluids, a type of fluids which has zero viscosity, or superconductors, a type
of materials with zero resistance where electrons form bosonic Cooper pairs.

Thus, the study of strongly correlated systems is extremely intricate. As we have previ-
ously stated, they cannot be treated perturbatively, and the exponential growth of their
complexity with increasing number of particles makes it extremely difficult to access by
exact analytical or numerical calculations. In order to face this problem, Feynman sug-
gested in the eighties to make use of quantum simulators [Feynman 1982,Feynman 1986].
The idea is to create a clean and controllable experimental system with a given Hamilto-
nian coming from other branches of physics such as condensed matter, quantum chem-
istry or high-energy physics.

Following Feynman’s direction, huge progresses have been done in the field of ultra-
cold atomic physics after the realization of the first atomic Bose-Einstein condensate in
the nineties [Tollett 1995, Petrich 1995, Davis 1995, Anderson 1995, Bradley 1995]. Us-
ing only lasers and magnetic fields, experimentalists are now able to prepare their
systems in various external potentials, to tune the interactions between the strongly
attractive to the strongly repulsive regimes, with almost no coupling to the environ-
ment [Bloch 2008, Bloch 2012]. They have then been able to simulate a large num-
ber of strongly correlated systems, such as the Bose-Hubbard model [Greiner 2002], the
quantum Hall effect [Lin 2011] (making use of artificial gauge fields in order to circum-
vent the fact that atoms are neutral particles), and even cosmological models such as a
black hole-like system in a Bose-Einstein condensate [Lahav 2010] or Universe’s expan-
sion [Eckel 2018], among many others.

Moreover, by making the external trapping potential very anisotropic, experimentalists
have been able to access the one-dimensional regime, allowing to test some of surprising
predictions of low-dimensional quantum physics [Cazalilla 2011]. Many experiments have
been performed on spinless bosons, and the exceptional control over interactions has
allowed to observe, for instance, the fermionization of bosons at very large repulsions
[Paredes 2004,Kinoshita 2004]. However, a lot of typically one-dimensional phenomena,
such as the spin-charge separation between the spin and density excitations, are expect
to happen in one-dimensional fermionic spin mixtures [Voit 1995].

Recently, a one-dimensional fermionic mixture with up to six spin-components was real-
ized in the experimental group of Leonardo Fallani in the LENS [Pagano 2014], paving
the way for the verification of many hitherto untested theoretical predictions. Their
experiment was performed using fermionic Ytterbium atoms, whose ground-state has a
purely nuclear spin. This implies that particles are subjected to the same external and
interaction potentials regardless of their spin-orientation, and that there are no spin-
flipping collisions. This confers the so-called SU(κ) symmetry to the system, where κ
is the number of spin-components [Gorshkov 2010], making it an ideal quantum simu-
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lator for the Yang-Mills gauge theories involved in the standard model of elementary
particles [Banerjee 2013,Zohar 2013,Tagliacozzo 2013].

This thesis is devoted to the theoretical study of one-dimensional quantum mixtures
(fermionic, bosonic, or mixed), in the fermionized regime of very strong repulsions. As
in the LENS experiment, the particles have the same mass, are subjected to the same
(harmonic) external potential and (δ−type) interaction potential whatever their species,
and the number of particle per species is fixed. As one can see, many aspects of strongly
correlated systems are tackled, namely the strong interactions, low-dimensionality, and
the question of exchange symmetry and quantum statistics. During this work, we have
tried to link these concepts together and analyze their effects, always keeping in mind
the experimental aspects. The central question that we address is the following: How
to characterize, both theoretically and experimentally, the exchange symmetry in our
system? Indeed, although the total symmetry of the particles is fixed by their fermionic
or bosonic nature, the fact that they have different spin orientations allows to obtain
other kinds of spatial exchange symmetries.

This manuscript is organized as follows.

Chapter I is an introduction to the concepts and techniques related to strongly interacting
one-dimensional quantum mixtures. After describing some of the theoretical peculiarities
and experimental aspects of one-dimension, we explain the effects of strong interactions
and the so-called fermionization. In particular, we describe the method we implemented
in order to obtain exact analytical results for few-body systems, which is based on a
mapping to a non-interacting fermionic problem combined with a perturbative expansion
performed over the inverse of the coupling strength. Besides, we give an interpretation
of this method in terms of graph theory.

In chapter II, we explain how, given an exact solution obtained by the aforementioned
perturbative method, we are able to characterize its exchange symmetry. To do so, we
adapt the so-called class-sum method, which is originally due to Dirac. We try to present
it in a pedagogical but mathematically rigorous way, with the hope that this manuscript
can serve as a good introduction to this method. The exchange symmetry of various
few-body mixtures are then analyzed. We show in particular that the class-sum method
can serve to generalize the so-called Lieb-Mattis theorem, which allows to compare the
ordering of the energy levels associated to certain symmetry classes.

In chapter III, we study the correlations in our system, and more precisely the one-body
correlations, which embed the density distributions of the particles in real and momen-
tum space and are easily accessible in a cold atom experiment. First, we analyze the
effects of interactions and symmetries on few-body systems, and show that the den-
sity and momentum profiles can be qualitatively deduced from symmetry arguments.
Second, we focus on the so-called Tan’s contact, an observable that governs the high-
momentum behavior of shortly-interacting quantum gases. We show in particular that a
measurement of Tan’s contact allows to deduce uniquely the exchange symmetry of the
system. Then, in order to be as experimentally relevant as possible, we derive scaling
laws for Tan’s contact, as a function of the interaction strength, number of particles and
components, temperature, and transverse confinement.

The so-called coordinate Bethe ansatz, which allows to obtain exact results in the absence
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of an external potential but for any value of the interaction strength, is explained in
details in appendix A. Appendix B contains the list of publications of the author of this
thesis.
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What makes one-dimensional systems extremely interesting for theoretical physicists is
divided in two main reasons. First, due to the extreme complexity of many-body physics,
these systems are usually easier to solve analytically than many-body systems in higher
dimensions. Second, and perhaps more interestingly, phenomena in one-dimension are
often very different from what our three-dimensional intuition may suggests us. Indeed,
many of the theories that work extremely well in higher dimensions have to be completely
modified in order to tackle their one-dimensional counterparts. Finally, besides these
two historical reasons, what makes this research area even more exciting is the huge
progresses realized in ultracold atom physics, that allow to engineer and probe various
one-dimensional systems with an incredible precision.

This chapter is devoted to the study of the models describing strongly interacting one-
dimensional ultracold atomic gases. First, in section I.1, we provide a very general
description of one-dimensional systems, from their theoretical peculiarities and mod-
elization to their main experimental realization techniques. Then, in section I.2, we
focus on the case of strongly interacting one-dimensional quantum gases in the experi-
mentally relevant case of a harmonic external potential, and describe an exact analytic
solution that we will extensively use throughout this thesis.

I.1. Generalities on one-dimensional quantum gases

In this introductory section, we discuss some general aspects of ultracold atomic gases in
one dimension. First, we are going to review some of the very peculiar theoretical features
of one dimension in I.1.1. Then, we briefly present how experimental physicists are able
to create highly clean and tunable ultracold atomic systems that can be modeled by one-
dimensional theories in I.1.2. Finally, in I.1.3, we focus on the theoretical description
of interactions in one-dimensional ultracold atomic gases, whose diluted nature reduce
the problem to two-body interactions. This last part will serve as a preliminary for the
rest of the chapter, by justifying precisely the form of the interaction potential and its
consequence on the many-body wave function.

I.1.1. Some theoretical peculiarities of one dimension

The one-dimensional (1D) world is, on many aspects, profoundly distinct from higher di-
mensions [Giamarchi 2003]. Many quantum theories that have proven to be very efficient
in higher dimensions, such as the Landau-Fermi liquid theory describing interacting elec-
trons [Landau 1957] simply breakdown in 1D. It could naively seem strange that models
that work perfectly well in two (2D), three (3D) and, formally, any dimension d ≥ 2,
fail so dramatically in 1D. On a mathematical point of view, this is a reflect of the very
peculiar topological properties of low-dimensional spaces. Physically, for a many-body
one-dimensional system, the dimensional constraint is actually very simple to under-
stand: contrary to higher dimensions, particles do not have the possibility to avoid each
other (see Fig. I.1.1).

This very simple observation has dramatic impacts. First, 1D systems are strongly corre-
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Figure I.1.1: Classical interpretation of the dimensional constraint. In the 2D gas (left),
particles are free to avoid each other, which is not the case in 1D (right).

lated, even if the interactions between particles are weak. It seems clear then that naive
mean-field approaches will not succeed to describe it. Second, a single-particle excitation
will automatically lead to a collective excitation. This explains why the Landau-Fermi
liquid paradigm fails to describe 1D systems. Indeed, Landau’s description is based on
the idea that a Fermi liquid behaves essentially as a free Fermi gas, but with "dressed"
particles, that is whose dynamical properties such as the mass or the magnetic moment
are renormalized due to interactions. This so-called adiabatic connection implies that
the elementary excitations of a Fermi liquid can be treated very similarly to the indi-
vidual excitations of a free Fermi gas, as quasi-particles with a very long life time τ .
Due to the collective nature of excitations in 1D, such a description by essentially free
quasi-particles clearly becomes irrelevant.

The 1D counterpart of the Landau-Fermi liquid universality class is the so-called Tomonaga-
Luttinger liquid universality class [Haldane 1981]. The Tomonaga-Luttinger liquid the-
ory describes the low-energy excitations of a large number of 1D models, by mean of the
so-called bosonization method. It consists in linearizing the energy spectrum ǫk around
the two Fermi points +kF and −kF writing ǫk ≃ ±~vF (k−kF ). This implies the following
low-energy effective description for the Hamiltonian Ĥ0 of the free Fermi gas:

Ĥ0 =
∑

k

~vFk
(

ĉR†
k ĉR

k − ĉL†
k ĉL

k

)

, (I.1.1)

where ĉ
R/L†
k , ĉ

R/L
k are the usual fermionic creation/annihilation operator, the R/L ex-

ponents standing for right/left moving particles. Motivated by the long wavelength
collective behavior of low-energy excitations, we define the density fluctuation operators
as

ρ̂R/L†
q =

∑

k

c
R/L†
k+q c

R/L
k (I.1.2)

and

ρ̂R/L
q =

∑

k

c
R/L†
k−q c

R/L
k . (I.1.3)

We then use the associated field operators ρ̂R/L(x) to define the current and density
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fields as the following bosonic fields1:

φ(x) = −π
(

ρ̂R(x) + ρ̂L(x)
)

,

Π(x) = ρ̂R(x) − ρ̂L(x).
(I.1.4)

Then, Eq. (I.1.1) can be re-written

Ĥ0 =
~

2

∫

dx vF

[

πΠ(x)2 +
1

π
(∂xφ(x))2

]

. (I.1.5)

When interactions are taken into account, Haldane has shown that the total Hamiltonian
Ĥ is very similar to Eq. (I.1.5):

Ĥ =
~

2

∫

dx u
[

πKΠ(x)2 +
1

πK
(∂xφ(x))2

]

, (I.1.6)

where u is the sound velocity and the so-called Luttinger parameter K controls the
long-distance behavior of the correlation functions. More generally, we can define the
Tomonaga-Luttinger liquids as the class of 1D liquids described by an Hamiltonian of the
form of Eq. (I.1.6). It is then sufficient to determine the model-dependent parameters K
and u to obtain precious information about the low-energy and low-momentum behavior
of the system, hence the power of this method. Moreover, although derived at first
for spinless fermions, it also allows to describe spinless bosonic systems as well as spin
mixtures.

If we consider a mixture of different spin species, another striking effect of the dimen-
sionality occurs. In the case of a spin-1

2
mixture, we can define respectively the charge

and spin fields as the following spin-symmetric and spin-anti-symmetric operators:

φc/s(x) =
1√
2

[φ↑(x) ± φ↓(x)] ,

Πc/s(x) =
1√
2

[Π↑(x) ± Π↓(x)] ,
(I.1.7)

where c/s are respectively associated with +/−. It can the been shown that the Hamil-
tonian can be written:

Ĥ = Ĥc + Ĥs =
∑

ν=c,s

~

2

∫

dx uν

[

πKνΠν(x)2 +
1

πKν
(∂xφν(x))2

]

. (I.1.8)

To put it in words, the excitations in 1D are completely decoupled between charge and
spin excitations! This counter-intuitive effect is known as the spin-charge separation. It
is intimately connected with the collective nature of excitations.

Another very surprising property of 1D systems is that they are more interacting at low
densities. This can be understood with a simple dimensional argument: if we denote the
atomic lineic density by n and the interaction strength by g, the typical interaction and
kinetic energies per particle are respectively given by Eint ∼ ng and EK ∼ ~2n2/2m.

1The following expressions are only true in the thermodynamic limit L → ∞. Finite-size definitions
are more involved and make use of a cut-off parameter.
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Thus, the ratio of these energies is γ ∼ Eint/EK ∼ g/n. It is then clear that the
interactions will have a more important influence on the system for low n.

Let us finish this introduction to the beauty of one-dimensional physics by a very
profound and important theorem known as the Mermin-Wagner-Hohenberg theorem
[Mermin 1966, Hohenberg 1967]. It states that, because of the too important long-
range fluctuations induced by the dimensional constraint, there is no phase transition
with spontaneous breaking of a continuous symmetry at non-zero temperatures (see sec-
tion II.1.1.2). This implies, in particular, the absence of the celebrated Bose-Einstein
condensation in 1D, which is associated with the breakdown of the phase symmetry
U(1) [Pitaevskii 2016].

I.1.2. Experimental aspects

Although very interesting on a purely theoretical point of view, it would be a little bit
unsatisfying if one-dimensional physics was only a set of mathematical toy models without
any experimental significance. Fortunately, wonderful progress has been achieved in the
domain of ultracold gases ( [Bloch 2008] and references therein), allowing to access the 1D
world with an incredible degree of experimental control [Moritz 2003,Stöferle 2004]. This
motivates a very stimulating interplay between theoretical and experimental physicists.
We thus briefly take the time to present some of the experimental techniques used to
address 1D physics with ultracold gases. The probing techniques will be exposed in
the chapter devoted to one-body correlations (chapter III). Remark that other physical
experimental systems can be modelized by 1D theories, ranging from edge states in the
quantum hall effect [Milliken 1996], to carbon nanotubes [Bockrath 1999] or quantum
wires [Auslaender 2005] and spin chains [Lake 2005]. However these systems don’t offer
the experimental control of ultracold atomic physics. We focus on the latter in the
following.

I.1.2.1. Cooling atoms

The main tool in order to cool atoms is the so-called magneto-optical trap (MOT), whose
principle was suggested by Jean Dalibard in the eighties, and whose first experimental
realization was reported in [Raab 1987]. It allows to cool atoms at the order of a few
µK.

There are two main ingredients in a MOT: first, the atoms are illuminated by counter-
propagating red-detuned laser beams, i.e. with a lower frequency than the resonant
frequency of the atoms. Because of the Doppler effect, when an atom moves, it will
absorb a photon coming from the opposite direction and carrying a momentum ~p, thus
reducing the momentum of the atom. The second ingredient of the MOT is a spatially
varying magnetic field generated by magnetic coils in anti-Helmholtz configuration. This
causes a Zeeman splitting of the energy levels of the atoms, which increases with the
distance from the center of the trap, and therefore shifts the atomic resonance closer to
the frequency of the lasers. Thus, atoms are more likely to absorb a "photon kick" when
far from the trap center. Moreover, by choosing the laser polarizations so that photons
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|F = 0〉 m = 0

|F′ = 1〉 m = 0

m = +1

m = −1

~∇ · ~B

σ− σ+

Figure I.1.2: Schematic diagram of a MOT. The magnetic gradient generates a Zeeman split-
ting of the |F′ = 1〉 state. The red-detuned counter-propagating lasers have opposite circular
polarizations. Because of the atomic selection rules, each laser can only induce a transition to
a single Zeeman level. Thus, the atoms are slowed down and pushed toward the center of the
MOT.

interact with the correct energy levels, these photon kicks are always pushing the atoms
toward the center. A schematic diagram of a MOT is given in Fig. I.1.2.

However, the cooling induced by a MOT is limited by the fact that atoms spontaneously
emit the photons previously absorbed during the cooling process, which in result will
heat the atoms. In order to reach the ultracold limit (around 100 nK), the next step
is the evaporative cooling. It consists in trapping the atoms in a magnetic trap of finite
depth ǫ. The "hot" atoms with energies higher than ǫ will then escape from the trap,
resulting in a reduced average temperature of the atoms remaining in the trap. It is the
exact analog of cooling a hot drink by blowing on it! This technique was employed in
order to obtain the first Bose-Einstein condensate with ultracold atoms [Tollett 1995,
Petrich 1995,Davis 1995,Anderson 1995,Bradley 1995].

I.1.2.2. Trapping ultracold atoms

The basic way of generating 1D atomic traps is to manipulate the atomic potential in
order to make it very anisotropic. In a typical harmonic oscillator potential characterized
by frequencies ωx = ωy = ω⊥ and ωz, we want the aspect ratio λ = ωz/ω⊥ to be
sufficiently small, so that the typical energy of a particle is smaller than the energy of
the first transverse excited state. This way, the so-called quasi-1D regime is achieved,
with no transverse excited modes and all the dynamics occurring in the z direction
[Olshanii 1998]. The main ways to generate atomic potentials are discussed below.

There are two main methods in order to trap ultracold atoms: optical and magnetic trap-
ping. The optical trapping is based on interference patterns created by a superposition
of laser beams. More precisely, the electric fields generated by the light will interact with
the atom and generate a small dipole moment. The resulting dipolar force ~F between
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the atom and the laser of frequency ωL has the form [Grimm 2000]:

~F (~r) =
1

2
α(ωL)∇

[

∣

∣

∣

~E(~r)
∣

∣

∣

2
]

, (I.1.9)

where α(ωL) is the polarizability. If ωL is close to the resonance frequency ω0 between
the ground |g〉 and excited state |e〉 of the atom, it can be shown that the polarizability
has the form:

α(ωL) ≃
∣

∣

∣

〈

e
∣

∣

∣d̂ ~E

∣

∣

∣ g
〉∣

∣

∣

2

~(ω0 − ωL)
, (I.1.10)

where d̂ ~E is the dipole operator in the direction of the field. Therefore, we see that the
atoms will be attracted to regions of high light intensity when the laser is red detuned
(ωL < ω0) and to regions of weak light intensity when the laser is blue detuned (ωL > ω0).
An example of 2D optical lattice allowing to generate 1D traps is given in figure I.1.3.

The magnetic trapping techniques are based on the Zeeman coupling between an external
magnetic field ~B(~r) and the total spin ~S of the atom. In 1D, the magnetic field is
generally generated by a so-called atom chip, which consists in a surface where wires were
deposited with high-precision micro-fabrication techniques [Reichel 1999,Jacqmin 2011].
If we denote the magnetic moment of the atom by ~µ, the atomic potential is given
by [Folman 2002]:

Vmag(~r) = −~µ · ~B(~r), (I.1.11)

which is simply proportional to || ~B(~r)|| when ~B(~r) is sufficiently slowly varying. Similarly
to the case of the optical trapping, there are two cases, depending if ~µ is in the same
direction as ~B (Vmag < 0) or in the opposite direction (Vmag > 0). In these two so-called
strong field seeking (resp. weak field seeking) states, the atoms are attracted by maxima

(resp. minima) of || ~B(r)||. Due to a theorem by Earnshaw which states that there
cannot be maxima of the magnetic field in free space, the source of the field must be
inside the trapping region in the strong field seeking case [Ketterle 1992]. This is the
reason why the weak field seeking state is more used. However, it has the inconvenient
of preventing the use of strong magnetic fields, which can be useful in order to tune the
interactions (see section I.1.2.3).

I.1.2.3. Tuning the interactions

Ultracold gases offer a very powerful tool that allows to tune the interactions very
precisely, and even to change the sign of the interactions, namely the Feshbach reso-
nances [Feshbach 1958,Fano 1961]. The basic idea is to generate, via an external mag-
netic field2, a resonance between a bound-state in a close channel and the scattering
continuum of an open channel. Typically, given two atoms, these two states correspond
to different two-spin configurations. When the two atoms are scattering together, this
induced resonance will result in a quasi-bound state which will considerably modify the
(3D) scattering length a3D (a precise definition of the scattering length will be given in

2Alternatively, one could also use an external optical field [Fedichev 1996].
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y

x
z

Figure I.1.3: A 2D optical lattice: the superposition of two standing waves generates 1D traps.
The hopping time between these tubes has to be significantly greater than the characteristic
time of the experiment.

section I.1.3). Phenomenologically, this resonance can be described for the scattering
length by [Bloch 2008]:

a3D(B) = abg

[

1 − ∆B

B − B0

]

, (I.1.12)

where abg is the background scattering length in the absence of the external magnetic field
B, and ∆B and B0 are respectively the width and position of the magnetic resonance.
We can see in Eq. (I.1.12) that a Feshbach resonance even allows to change the sign
of a3D, and to tune it from −∞ to +∞ just by changing the external magnetic field
[Tiesinga 1993]. For a graphical interpretation of a two-channel Feshbach resonance, see
Fig. I.1.4.

There are alternative methods in order to tune the interactions that are specific to 1D.
First, as seen in section I.1.1, one way to change the interaction regime in 1D is given
by the atomic density n: the lower the density, the stronger the interactions. Moreover,
it can been shown [Olshanii 1998] that when the system is in the quasi-1D regime (see
section I.1.2.2), the scattering processes can be described by an effective interaction
potential U(x) = g1Dδ(x) where the effective coupling parameter is

g1D =
−2~2

ma1D

=
2~2a3D

ma2
⊥

(

1 − C
a3D

a⊥

)−1

, (I.1.13)

where a1D is the effective 1D scattering length, a⊥ =
√

~/mω⊥ is the transverse harmonic

oscillator length and C = |ζ(1/2)|/
√

2 ≃ 1.0326, ζ being the Riemann zeta function.
Then, by varying ω⊥, we see that we can approach a confined induced resonance when
a⊥ ≃ Ca3D. This method was achieved experimentally, see e.g. [Peano 2005].
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r

E0 EO(r)

EC(r)

E

Figure I.1.4: Two-channel model for a Feshbach resonance. When varying an external magnetic
field ~Bext, the incident energy E0 of the particle in the open channel EO can be in resonance
at short inter-atomic distance r with the energy of a bound state of the closed channel EC .

The theoretical aspects of two-body interactions in 1D quantum gases will be discussed
in more detail in section I.1.3.

I.1.2.4. Spin mixtures

In this thesis, we will mainly focus on quantum mixtures, i.e. ultracold atomic gases with
different spin components. On the experimental side, a huge breakthrough was made in
an experiment made in the LENS (European Laboratory for Nonlinear Spectroscopy)
in Florence by the team of L. Fallani [Pagano 2014]. We briefly describe it here, as a
paradigmatic realization of the system we studied in this thesis.

L. Fallani and coworkers realized a 1D fermionic mixture of 173Yb atoms with a tunable
number κ ∈ {1, · · · , 6} of components. The ground state of 173Yb atoms has a nuclear
spin I = 5/2 and a zero electronic angular momentum J = 0. This last property, which
is also common to all alkaline-earth atoms [Gorshkov 2010], implies that the electronic
wave function is independent of the nuclear spin state — there is no hyperfine structure.
Therefore, the interactions between atoms of different nuclear spin states σ 6= σ′, which
depends only on their electronic wave functions, are the same regardless of the choice of
σ 6= σ′. Moreover, it implies the absence of spin-flipping collisions. Thus, their system is
invariant by any permutation of the κ ∈ {1, · · · , 6} spin populations, which is referred
as the SU(κ) symmetry (see chapter II).

Moreover, the system can be initialized with a given number κ < 6 of spin-components
with an equal number of atoms per component, starting from an equally populated six-
component mixture. The idea is the following: the first excited state (I = 5/2, J = 1)
is Zeeman-splitted by mean of a magnetic field. Then, they can optically pump out
the population of a given spin state σ to another spin state σ ± 1 through polarized
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beams resonant on a specific Zeeman component of the excited state. The unwanted
populations are then put in an optically closed transition and removed by evaporation.

Because the spin of 173Yb is purely nuclear, spin-resolved detection cannot be done
by mean of a standard magnetic Stern-Gerlach procedure [Gerlach 1922]. In order to
circumvent this problem, an optical Stern-Gerlach experiment is performed [Taie 2010],
by misaligning a laser beam on the atomic cloud. The Gaussian profile of the laser
generates an electric gradient. The atoms will then interact with the laser in a similar
way as described in expression I.1.9, but with a polarizability depending on the spin-
state, thus splitting the populations.

It is important to note that when κ > 2, interactions cannot be tuned using Feshbach
resonances if one wants to preserve the SU(κ) symmetry. Experimentalists have to rely
on the other methods (decreasing the atomic density or generating confined induced
resonances) in order to reach the strongly interacting regime. In the LENS experiment,
interactions are typically in the intermediate regime.

I.1.3. The two-body problem

In this section we discuss the properties of interactions in ultracold quantum gases. We
will justify the form of the interaction Hamiltonian on the one hand, and on the other
hand we will discuss its consequence on the many-body wave function, known as the
cusp condition.

I.1.3.1. Scattering length and pseudo-potential

Since atoms are neutral particles, they interact via van der Waals forces [Dzyaloshinskii 1961].
Typically, at large distance r the interaction potential U(r) is of the type ∝ −1/r6 and
at distances lower than the so-called van der Waals contact distance r0, the electronic
clouds will lead to a strong contact repulsion. The systems we consider are ultracold
and diluted: therefore, r0 can be considered negligible as compared to the de Broglie
wavelength λdB and the inter-atomic separation n−1/3 (where n is the atomic density).
This property, together with the fact that the temperatures are very low, explains why
the system can be effectively described by low energy two-body collisions, and by a sin-
gle parameter, namely the s-wave scattering length a3D [Pitaevskii 2016]. Considering
spinless particles, the two-body problem can be written:

(

− ~
2

2µ
∆ + U(r) − E

)

ψ(~r) = 0, (I.1.14)

where ~r = ~r1 − ~r2 and µ = m/2 is the reduced mass. In the asymptotic region r ≫ r0, the
solution can be written as the superposition of an incident plane wave in the x direction
and a spherical scattered wave:

ψ(~r) ≃ eikx + f(θ, k)
eikr

r
, (I.1.15)
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where

k =

√

2µE

~2
, (I.1.16)

θ is the angle between ~r and the x-axis, and f is defined as the scattering amplitude.
Expanding ψ in the natural basis of Legendre polynomials Pl yields:

ψ(~r) =
∞
∑

l=0

Pl(cos θ)
χkl(r)

kr
, (I.1.17)

where χkl(r) satisfies

d2χkl(r)

dr2
− l(l + 1)

r2
χkl(r) +

2µ

~2
(E − U(r))χkl(r) = 0. (I.1.18)

In the asymptotic region r ≫ r0, one can neglect the ∝ 1/r2 term, which yields the
simple expression:

χkl(r) = Al sin

(

kr − πl

2
+ δl(k)

)

, (I.1.19)

where δl(k) are defined as phase shifts. Then, an appropriate choice for Al gives after
some simple algebra:

f(θ, k) =
1

2ik

∞
∑

l=0

(2l + 1)Pl(cos θ)(e2iδl − 1). (I.1.20)

Thus, the scattering cross-section σ, related to f(θ, k) through σ = 4π
k

Im [f(0, k)], is
given by:

σ(k) =
4π

k2

∞
∑

l=0

(2l + 1) sin2 δl(k). (I.1.21)

For low energy collisions and momenta k ≪ 1/r0, one can prove that only the s-wave
l = 0 term will be relevant. Therefore, Eq. (I.1.20) simply becomes:

f(θ, k) ≃ e2iδ0 − 1

2ik
=

1

k cot δ0(k) − ik
. (I.1.22)

We define the s-wave scattering length a3D as

a3D = − lim
k→0

tan δ0(k)

k
, (I.1.23)

which implies that σ ≃ 4πa2
3D. Intuitively, this can be interpreted as if the system had

the same low energy scattering properties as a hard sphere of radius a3D.

In the case where we consider the spin-statistics, we can observe an important effect.
Indeed, because of the (anti-)symmetrization of the two-body wave function for identical
(fermions) bosons, it implies that only the (odd) even l terms in Eq. (I.1.20) will con-
tribute to the cross-section σ. Thus, in the s-wave scattering limit of low energy and for
distances r ≪ r0, identical fermions are not interacting.

In the previous discussion, we have never used a precise expression for the interaction
potential U(r) in Eq. (I.1.14), but instead showed that, in our regime, all the physics is
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captured by the s-wave scattering asymptotic behavior and thus a3D. It is then sufficient
to replace U(r) by a simpler pseudopotential Upseudo(r) which has the same long distance
s-wave scattering properties than U(r). It was shown in [Huang 1957] that the following
pseudo-potential has the right properties:

UHuang(r) = g3Dδ(~r)
∂

∂r
(r·), (I.1.24)

where g3D = 4π~2a3D/m is the coupling constant. The ∂
∂r

(r·) is useful in order to remove
the 1/r divergence in Eq. (I.1.15).

I.1.3.2. Interactions in one dimension

In the quasi-1D case where the atoms are in a highly elongated trap in the x direction,
Eq. (I.1.14) becomes, in the pseudo-potential approximation:

(

− ~2

2µ

∂2

∂x2
+ UHuang(r) + Ĥ⊥ − E

)

ψ(~r) = 0, (I.1.25)

where

Ĥ⊥ = − ~2

2µ

(

∂2

∂y2
+

∂2

∂z2

)

+
1

2
µω2

⊥(y2 + z2) (I.1.26)

and ω⊥ is the radial confinement frequency, which is such that ~ω⊥ is sufficiently higher
than the other typical energies so that the quasi-1D regime can be achieved. This case
was studied in [Olshanii 1998]. Then, considering that the incident wave is in the ground
state φ0(y, z) of Ĥ⊥, the analogue of Eq. (I.1.15) for the asymptotic form of the scattered
wave function is:

Ψ(~r) ≃
(

eikxx + feven(k)eikx|x| + fodd(k) sign(z)eikx|x|
)

φ0(y, z). (I.1.27)

The scattering amplitudes can then be calculated analytically, by correctly taking into
account the virtual transverse excited states during the collision process. This gives
fodd = 0 and, in the kxa1D ≪ 1 limit:

feven(k) = − 1

1 + ikxa1D + O((kxa1D)3)
, (I.1.28)

where the 1D effective scattering length is defined as in Eq. (I.1.13) by

a1D = − a2
⊥

a3D

(

1 − C
a3D

a⊥

)

. (I.1.29)

As stated in section I.1.2.3, the analogue of Huang’s pseudo-potential that captures the
correct even wave scattering behavior in 1D is

Upseudo(x) = g1Dδ(x), (I.1.30)

where g1D = − 2~2

ma1D
.
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I.1.3.3. The cusp condition

Here we prove a very important corollary to the fact that the 1D two-body interactions
can be described by the potential (I.1.30). Let us consider a strictly 1D Schrödinger
equation for two atoms of equal masses m and coordinates x1, x2:

(

− ~2

2m

(

∂2

∂x2
1

+
∂2

∂x2
2

)

+ g1Dδ(x1 − x2) + Vext(x1, x2) − E

)

ψ(x1, x2) = 0, (I.1.31)

where Vext is an arbitrary (continuous) external potential. We then define the relative co-
ordinate by x12 = x1 −x2 and the center-of-mass coordinate by X12 = x1+x2

2
. Eq. (I.1.31)

then becomes:
(

− ~2

2M

∂2

∂X2
12

− ~2

2µ

∂2

∂x2
12

+ g1Dδ(x12) + Vext(x12, X12) −E

)

ψ(X12, x12) = 0, (I.1.32)

with M = 2m and µ = m/2. Let us now integrate this equation in the vicinity [−ǫ,+ǫ]
of x12 = 0. If we suppose that ψ is continuous, the only relevant terms in the ǫ → 0
limit are:

− ~2

2µ

∫ ǫ

−ǫ

∂2ψ(X12, x12)

∂x2
12

dx12 + g1D

∫

δ(x12)ψ(X12, x12) dx12. (I.1.33)

Thus, we obtain the cusp condition for the two-body wave function in x1 = x2:

∂ψ

∂x12
(X12, 0

+) − ∂ψ

∂x12
(X12, 0

−) =
2µg1D

~2
ψ(X12, 0). (I.1.34)

This simple discontinuity condition on the wave function has extremely important con-
sequences, and will be used crucially throughout this thesis.

On a side note, it is interesting to remark that if the two atoms are identical fermions,
the anti-symmetrization requirement on Eq. (I.1.34) will imply that ψ(X12, 0) = 03. This
means that, even if identical fermions do not interact in experiments (see section I.1.3),
it will not change the physics to consider a δ-type interaction between them a priori, as
the symmetry properties will naturally cancel its effect.

I.2. Strongly-interacting systems

When we consider the more realist case where the system is confined by an external
harmonic potential Vext(x) = 1

2
mω2x2 along the longitudinal direction, quantum inte-

grability breaks down and the system can no longer be directly solved by Bethe ansatz.
Indeed, since the system is not translation invariant anymore, the scattering events will
also depend on where they took place in the trap, so that the system is no longer inte-
grable (c.f. appendix A). In the limit of very strong repulsion however, one can obtain
exact analytical solutions using the so-called fermionization property, as first pointed

3Note that in this case, there is no cusp on the many-body wave-function.
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out in [Girardeau 1960] for a gas of impenetrable bosons, or Tonks-Girardeau gas4. In
this section, we will first explain the notion of fermionization for this simple model in
I.2.1. Then, we will turn to a more general method developed in [Volosniev 2014] that is
valid for any choice of the mixture in I.2.2. The last one has a central role in this thesis,
as it is the one we used in order to obtain exact analytic expressions for the many-body
wave functions.

I.2.1. The Tonks-Girardeau gas

I.2.1.1. Model

As a pedagogical example of a simple strongly interacting system, we briefly present
here the solution of the so-called Tonks-Girardeau gas. It consists in a gas of identical
impenetrable bosons. It can be described, for an arbitrary external potential Vext, by
the following equation:





N
∑

j=1

(

− ~
2

2m

∂2

∂x2
j

+ Vext(xj)

)

− E



ψB = 0, (I.2.1)

together with the boundary conditions:

ψB(x1, . . . , xN ) = 0 if xi = xj , 1 ≤ i < j ≤ N. (I.2.2)

Alternatively, one can say that the Tonks-Girardeau gas is the hardcore limit g1D → ∞
of the (trapped) Lieb-Liniger gas:





N
∑

j=1

(

− ~
2

2m

∂2

∂x2
j

+ Vext(xj)

)

+ g1D

∑

i<j

δ(xi − xj) − E



ψB = 0. (I.2.3)

Notice that the resulting cusp condition (see e.g. Eq. (I.1.34)) implies Eq. (I.2.2) in
the g1D → ∞ limit. Experimentally, observation of a 1D Tonks-Girardeau gas was first
reported in [Paredes 2004,Kinoshita 2004].

I.2.1.2. Bose-Fermi mapping

Girardeau’s idea in order to solve this problem was to remark that the many-body wave
function of a spinless gas of fermions ψF that satisfies Eq. (I.2.1) also satisfies Eq. (I.2.2).
Because of the Bose statistics, the solution for the Tonks-Girardeau gas can then be
written [Girardeau 1960]:

ψB(x1, . . . , xN ) = A(x1, . . . , xN)ψF (x1, . . . , xN), (I.2.4)

where A(x1, . . . , xN) =
∏

i>j sign(xi − xj) = ±1 compensates the anti-symmetrization
of ψF . This observation, known as the Bose-Fermi mapping or more generally as the

4Tonks studied the classical gas of hard spheres in [Tonks 1936].
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fermionization of bosons, maps a strongly interacting problem onto a (simpler!) non-
interacting one.

Since ψB and ψF both satisfy Eq. (I.2.1), their energy spectrum are identical. In the
homogeneous case Vext = 0 on a ring of size L with periodic boundary conditions, one
finds for the ground-state many-body wave function:

ψ0
B(x1, . . . , xN) =

√

2N(N−1)

N !LN

∏

i<j

sin
(

π

L
|xi − xj |

)

, (I.2.5)

with the associated ground-state energy:

E0 =
(

N − 1

N

)

~
2π2n2

6m
, (I.2.6)

with n = N/L the particle density. Note that in the thermodynamic limit this relation
corresponds to the γ → ∞ limit in Eq. (A.2.16). In the case where the particles are
trapped in a harmonic potential, Eq (I.2.1) becomes:





N
∑

j=1

(

− ~2

2m

∂2

∂x2
j

+
1

2
mω2x2

j

)

−E



ψB = 0 (I.2.7)

This case is solved in [Girardeau 2001] and [Forrester 2003]. The fermionic solution ψF

of Eq. (I.2.7) is given by the well-known Slater determinant:

ψF (x1, . . . , xN) =
1√
N !

det [φj(xi/a0)]i∈{1,...,N}, j∈{0,...,N−1} , (I.2.8)

where the eigenstates φj of the single-particle Hamiltonian Ĥ1 = − ~2

2m
∂2

∂x2 + 1
2
mω2x2 are

defined by:

φj(x/a0) =
e−(x/a0)2/2Hj(x/a0)

√√
π2jj!

, (I.2.9)

where a0 =
√

~/mω is the harmonic oscillator length and Hj is the jth Hermite poly-

nomial. Using a Vandermonde determinant formula and Eq. (I.2.4), Forrester et al. de-
duced the expression for the ground-state of the harmonically trapped Tonks-Girardeau
gas:

ψ0
B(x1, . . . , xN) =

1

a
N/2
0

√

N !
∏N−1

m=0 2−m
√
πm!

N
∏

k=1

e−(xk/a0)2/2
∏

1≤j<k≤N

|xj − xk|. (I.2.10)

The Bose-Fermi mapping can be further exploited by noticing than |ψB| = |ψF |. Thus,
the density profiles n(x) defined by

n(x) = N
∫

dx2 · · ·dxN |ψ(x, x2, . . . , xN )|2 (I.2.11)

and measuring the probability (normalized to N) of finding a particle at a point x are the
same for the Tonks-Girardeau gas and spinless fermions. More explicitely, the density
profile in the harmonic trap is given by [Vignolo 2000,Kolomeisky 2000]:

nF (x) =
1√
πa0

N−1
∑

k=0

1

2kk!
H2

k(x/a0)e−(x/a0)2

. (I.2.12)
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This analogy between hardcore bosons and non-interacting fermions is also true, for
example, for the pair distribution functions defined by

D(x, y) = N(N − 1)
∫

dx3 · · · dxN |ψ(x, y, x3, . . . , xN)|2, (I.2.13)

which measures the joint probability (normalized to N(N − 1)) of finding one atom in x
and another in y [Vignolo 2001].

However, if we consider the off-diagonal correlations or the momentum distributions, the
symmetry plays an important role, and the analogy is no longer true. The one-body
correlations will be discussed in details in chapter III.

I.2.2. Strongly interacting multi-component systems in atomic traps

Here we generalize the previous considerations and turn to the main Hamiltonian that
we studied in this thesis.

I.2.2.1. Model

We consider a strongly interacting system of N particles divided in κ different spin
species with populations N1, . . . , Nκ. The species can be either fermions or bosons. We
impose that all the particles:

1. Have the same mass m;

2. Interact via a δ-type potential of same strength g1D;

3. Are submitted to the same external potential Vext(x) = 1
2
mω2x2.

In the case of a fermionic mixture, note that Florence’s experiment with 173Yb atoms
[Pagano 2014] described in section I.1.2.4 fulfills these conditions, with κ ∈ {2, . . . , 6}
and N1 = · · · = Nκ ≃ 104. In the case of Bose-Fermi mixtures, these assumptions
are demanding, but can however be considered as good approximations in the case of
isotopes, as realized in [Fukuhara 2009] with an 173Yb − 174Yb mixture.

The stationary Schrödinger equation for this system is given by:





N
∑

j=1

(

− ~2

2m

∂2

∂x2
j

+
1

2
mω2x2

j

)

+ g1D

∑

i<j

δ(xi − xj) −E



ψ = 0. (I.2.14)

As stated in previous sections (see e.g. section I.1.3.3), it is not necessary to specify
the mixture in this equation, since the Pauli principle for identical fermions is naturally
obtained by Eq. (I.1.34), that we recall here for any couple of particles i, j:

(

∂ψ

∂xi

− ∂ψ

∂xj

)∣

∣

∣

∣

∣

xij=0+

−
(

∂ψ

∂xi

− ∂ψ

∂xj

)∣

∣

∣

∣

∣

xij=0−

=
mg1D

~2
ψ|xij=0 , (I.2.15)

with xij = xi − xj . Eq. (I.2.14) is the main equation studied in this thesis.
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As in the Tonks-Girardeau gas of section I.2.1, in the impenetrable limit the system will
fermionize, since the g1D → ∞ limit in the cusp condition (I.2.15) implies that ψ = 0
whenever two particles are at the same point. The system can thus be again mapped
onto a spinless fermionic gas. In particular, the Slater determinant ψF of Eq. (I.2.8) has
the right nodes and energy E0 as the ground state. Since all the systems have the same
eigenspectrum as the free Fermi gas regardless of their composition and symmetry when
g1D = ∞, these points of the energy spectrum are often called degenerate manifolds
[Harshman 2014]. The question is, if we consider that g1D is in the vicinity of the
g1D = ∞ point, how will this degeneracy be removed as a function of the mixture’s
symmetry?

I.2.2.2. A perturbative ansatz

Method

The method developped in [Volosniev 2013,Volosniev 2014] allows to answer last para-
graph’s question. Although it works for any confining potential Vext, I focus here on the

harmonic case. We switch to natural units of a0 =
√

~/mω for length and ~ω for energy.

The first idea is to use the aforementioned fact that the Slater determinant ψF has the
right nodes in the g1D → ∞ limit. Then, in order to have a solution ψ that respects the
symmetry of the considered mixture, Volosniev et al. proposed the following ansatz:

ψ(x1, . . . , xN ) =
∑

P ∈SN

aP θ(xP 1 < · · · < xP N)ψF (x1, . . . , xN), (I.2.16)

where SN is the permutation group of {1, . . . , N} (see section II.1.2.2) and θ(x1 <
· · · < xN ), the indicator function of the sector {x1 < · · · < xN } ⊂ RN , is equal to 1
is x1 < · · · < xN and 0 otherwise. This ansatz is very much in the spirit of the Bethe
ansatz (cf Eq. (A.1.5)), except that the asymptotic plane wave basis in the last one is
replaced with the fermionic Slater determinant here.

Because of the (anti-)symmetrization constraint imposed for identical (fermions) bosons,
the choice of a given mixture N1, . . . , Nκ will reduce the number of independent aP

coefficient in Eq (I.2.16) to the multinomial coefficient:

DN1,...,Nκ
=

(

N

N1, N2, . . . , Nκ

)

=
N !

N1!N2! · · ·Nκ!
. (I.2.17)

The number DN1,...,Nκ
corresponds to the number of linearly independent states that can

be written in terms of ψF . Since ψF is associated with the ground state energy E0,
DN1,...,Nκ

is in fact the dimension of the degenerate manifold at g1D = ∞. Instead of
writing the solution in one of the N ! sectors of RN , this observation encourages to write
the solution in one of the DN1,...,Nκ

so-called snippets [Deuretzbacher 2008,Fang 2011] of
Sect(RN)/R, where Sect(RN)/R is the quotient set of all sectors of RN by the equivalence
relation R: ’two sectors are equivalent if they are equal up to permutations of identical
particles’. This operation considerably reduces the dimension of the problem.
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In order to determine these aP coefficients, the idea is to remove the degeneracy by
analyzing the system in the vicinity of the degenerate point g1D = ∞. In other words,
one has to consider a linear perturbation in the energy around 1/g1D = 0:

E(1/g1D) =+∞ E0 +
1

g1D

(−K) + o(1/g1D). (I.2.18)

The energy slope K = − limg1D→∞
∂E

∂g−1
1D

= g2
1D

∂E
∂g1D

will be different for different states

of the degenerate manifold, and is then a functionnal of the aP coefficients. Using the
Hellmann-Feynman theorem [Feynman 1939] on the Hamiltonian of Eq. (I.2.14), one
gets:

K = lim
g1D→∞

g2
1D

∑

i<j

∫

dx1 . . . dxN δ(xi − xj)|ψ|2
∫

dx1 . . . dxN |ψ|2
, (I.2.19)

where the g1D-dependence is removed by the cusp condition (I.2.15), yielding

K =
1

4

∑

i<j

∫

dx1 . . . dxN δ(xi − xj)

∣

∣

∣

∣

∣

∣





(

∂

∂xi
− ∂

∂xj

)∣

∣

∣

∣

∣

xij=0+

−
(

∂

∂xi
− ∂

∂xj

)∣

∣

∣

∣

∣

xij=0−



ψ

∣

∣

∣

∣

∣

∣

2

∫

dx1 . . . dxN |ψ|2
,

(I.2.20)
with xij = xi − xj . Then, using Eq. (I.2.16) and normalizing ψ to unity, one gets:

K =
∑

P,Q∈SN

(aP − aQ)2αP,Q, (I.2.21)

where αP,Q is defined by

αP,Q ≡ αk =
∫

dx1 . . . dxN θ(x1 < · · · < xN )δ(xk − xk+1)

∣

∣

∣

∣

∣

∂ψF

∂xk

∣

∣

∣

∣

∣

2

(I.2.22)

if P = Q(k, k+1) (that is to say P and Q are equal up to a transposition in k and k+1),
where the particles in k and k + 1 are not identical fermions, and αP,Q = 0 otherwise.
These αk coefficients can be seen as the energy cost of an exchange of particles at positions
k and k + 1 in the trap, and are sometimes called nearest-neighbor exchange constants
[Deuretzbacher 2014, Laird 2017]. Note that the parity invariance of the harmonic po-
tential implies that αk = αN−k, reducing the number of different αk coefficients to ⌊N/2⌋.
As seen in section I.2.1, expression for ψF is given by [Girardeau 2001,Forrester 2003]:

ψF (x1, . . . , xN) =
1

√

N !
∏N−1

m=0 2−m
√
πm!

N
∏

k=1

e−x2
k

/2
∏

1≤j<k≤N

(xj − xk). (I.2.23)

We then have after some algebra

[

∂ψF

∂xk

]

xk=xk+1

=
1

√

N !
∏N−1

m=0 2−m
√
πm!

e−x2
k

N
∏

i=1
i6=k,k+1

e−x2
i
/2(xi − xk)2

∏

1≤j<ℓ≤N
j,l 6=k,k+1

(xj − xℓ),

(I.2.24)
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Figure I.2.1: Graphic interpretation of the perturbative ansatz. The red lines correspond to
the linear approximations of Eq. (I.2.18), whose slopes are given by −K.

and thus, using a Vandermonde formula:

[

∂ψF

∂xk

]2

xk=xk+1

=
22N−3e−2x2

k

πN !(N − 1)!(N − 2)!
[det [φi−1(xj)]]

2
N−2×N−2

N
∏

i=1
i6=k,k+1

(xi − xk)4,

(I.2.25)
We then make use of permutational and parity invariances, and obtain:

αk =
22N−3

πN !(N − 1)!(N − 2)!

1

(k − 1)!(N − k − 1)!

∫ +∞

−∞
dxke

−2x2
k

∑

P,Q∈SN−2

ǫ(P )ǫ(Q)

×
N
∏

i=1
i6=k,k+1

∫ Uk(i)

Lk(i)
dxi(xi − xk)4φP i−1(xi)φQi−1(xi),

(I.2.26)

where

(Lk(i), Uk(i)) =

{

(−∞, xk) if i < k
(xk,+∞) if i ≥ k

. (I.2.27)

Eq. (I.2.26) was obtained in [Decamp 2016a]. Alternatively, it is possible to obtain an ap-
proximate value for αk by performing a local density approximation on the homogeneous
results with periodic boundary counditions [Matveev 2008,Deuretzbacher 2014].

Once the α exchange constants computed in Eq. (I.2.21), the next step is to determine the
aP coefficients corresponding to each one of the states in the degenerated manifold. To do
so, the idea is to notice that the lowest energy will be obtained by maximizing the energy
slope functional K [{aP }] (because of the minus sign in Eq. (I.2.18)). Subsequently,
solving ∂K/∂aP = 0 for all P ∈ SN yields the following diagonalization problem:

V~a = K~a, (I.2.28)

where ~a is the vector of the DN1,...,Nκ
independent aP coefficients and V is a DN1,...,Nκ

×
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DN1,...,Nκ
matrix defined in the snippet basis by

Vij =

{

−αi,j if i 6= j
∑

d,k 6=i αi,k + 2
∑

b,k 6=i αi,k if i = j
, (I.2.29)

where the index d means that the sum has to be taken over snippets k that transpose
distinguishable particles as compared to snippet i, while b means that the sum is taken
over sectors that transpose identical bosons. If the system contains only fermions, it
reduces to the first sum. The parity invariance of the harmonic trap implies that V
is symmetric, and thus that it can be diagonalized in an orthogonal basis. Then, the
highest eigenvalue K0 and the corresponding eigenvector ~a0 determines the ground-state
wave function ψ0 through Eq. (I.2.16). Incidentally, all the eigenstates corresponding to
the same degenerate manifold at g1D = ∞ are given by the orthogonal eigenvectors of
V .

I provide an illustration of the method in the next paragraph. It will be further im-
plemented in the next chapters. A graphical illustration of the method is given in Fig.
I.2.1.

A first example

As a first pedagogical example, let us consider the case of a four-particle fermionic
mixtures (two spin up, two spin down), as it is done in [Volosniev 2014]. We will use this
example in the next paragraph, where we give an interpretation of the method in terms
of graph theory. The number of snippets, i.e. the dimension of the degenerate manifold,
is given by D2,2 = 4!/(2!2!) = 6. Explicitly, they are given by:

a1 : ↑↑↓↓
a2 : ↑↓↑↓
a3 : ↑↓↓↑
a4 : ↓↑↑↓
a5 : ↓↑↓↑
a6 : ↓↓↑↑

(I.2.30)

where we have written the six corresponding independent aP coefficients. For each
configuration i ∈ {1, . . . , 6} of the particles, the wave function will be then given by
ψ|{i} = aiψF according to Eq. (I.2.16). The energy slope K defined in Eq. (I.2.21) is
then:

K = α2(a1 −a2)2 +α3(a2 −a3)2 +α1(a2 −a4)2 +α1(a3 −a5)2 +α3(a4 −a5)2 +α2(a5 −a6)2,
(I.2.31)

where the exchange coefficients defined in Eq. (I.2.22) are:

α1 = α3 =
∫

x1<x2<x3<x4

dx1dx2dx3dx4δ(x1 − x2)
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(I.2.32)

and

α2 =
∫

x1<x2<x3<x4

dx1dx2dx3dx4δ(x2 − x3)

∣

∣
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∣

∣

∂ψF

∂x2

∣

∣

∣

∣

∣

2

. (I.2.33)
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Figure I.2.2: Weighted graph GV associated with the (2 + 2) fermionic example of the text.
The laplacian matrix associated to this graph is exactly equal to V of Eq. (I.2.34).

They can be computed exactly using Eq. (I.2.26). The V matrix that has to be diago-
nalized in order to obtain the ground and excited states (Eq. (I.2.29)) is:

V =





















α2 −α2 0 0 0 0
α2 2α1 + α2 −α1 −α1 0 0
0 −α1 2α1 0 −α1 0
0 −α1 0 2α1 −α1 0
0 0 −α1 −α1 2α1 + α2 α2

0 0 0 0 −α2 α2





















. (I.2.34)

The ground state energy slope K0, given by the highest eigenvalue of V , is given by:

K0 = 2α1 + α2 +
√

4α2
1 − 2α1α2 + α2

2. (I.2.35)

The lower eigenspectrum of V determines the energy slopes of the excited states.

Graph theory interpretation

In this paragraph, we give an interpretation of the perturbative ansatz in terms of graph
theory. Although this observation has not been published yet, I strongly believe this
analogy can provide useful results about V ’s eigenspectrum.

Let us first recall some basic definitions of graph theory [Bondy 2008]. A graph is a pair
G = (V, E) where V is a set of vertices (or points) and E is a set of edges (or lines) which
are unordered pairs of elements of V. The degree deg(v) of a vertex v is the number of
vertices that are connected by an edge to v. If each element of E is associated with a
number, we say that G is a weighted graph.
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Given a graph G, it is possible to associate matrices to G, allowing to use linear algebra
tools in order to analyze G. The simplest matrix that we can define is the adjacency
matrix A, whose elements Aij are equal to 1 if vertex "i" is connected by an edge (or
adjacent) to vertex "j" and 0 otherwise. Another interesting matrix is the Laplacian
matrix L whose elements are given by:

Lij =











deg(vi) if i = j
−1 if i 6= j and vi is adjacent to vj

0 otherwise
. (I.2.36)

In the case of a weighted graph, L is defined similarly, where deg(vi) is the sum of the
weights of the edges connected to vi, and the off-diagonal terms in -1 are replaced by mi-
nus the weight of the edge between i and j. This matrix is extremely important in graph
theory, and can be seen as a discrete version of the laplacian operator ∆. In particular,
the spectral properties of the laplacian matrices are well studied [Brouwer 2012].

Let us now go back to our physical system and apply the aforementioned definitions.
Given a mixture N1, . . . , Nκ, we define a weighted graph GV where each vertex is asso-
ciated with a snippet, and where two snippets are adjacent with weight αk if they are
equal up to a transposition of particles in positions k and k + 1. Then, the laplacian
matrix L of GV is equal to the matrix V defined in Eq. (I.2.29). An illustration based
on the last paragraph’s example is given in Fig. I.2.2.

Implementation

I have developed a Mathematica program that allows to obtain the V matrix for any
kind of mixture (fermionic, bosonic or mixed), and for any number of particles N . In
practice, we have chosen to study in detail the caseN = 6, since the program’s complexity
increases extremely rapidly with increasing N (as O(N !2)), and, as we will see, the case
N = 6 already allows to observe effects that are not present when N ≤ 5.

For example, let us add two spin-up to our last example, so that we have a two-component
fermionic mixture of the type ↑↑↑↑↓↓. In order to compute the V matrix associated with
this quantum mixture (Eq. (I.2.34)), one just need to assign a number to each component,
e.g. ↑= 1 and ↓= 2, and to enter the following vector in the program: {1, 1, 1, 1, 2, 2}.
The program then directly computes the snippet basis and the V matrix as a function of
the exchange constants αk. The output given by the program for this example is shown
in Fig. I.2.3.
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Figure I.2.3: Output obtained from our Mathematica program in order to compute the V
matrix (Eq. (I.2.34)) associated with the fermionic mixture ↑↑↑↑↓↓: it returns the snippet
basis and its length, and then the V matrix. For N = 6 mixtures, the program typically runs
for a few seconds, but it grows very rapidly for larger N ’s.
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In chapter I, we have seen that we can express exact solutions for strongly repulsive one-
dimensional trapped quantum mixtures by mean of a summation over the permutations
of all particles. It appears clearly that the permutation symmetry is of fundamental
importance in our system. This chapter is devoted to the precise symmetry analysis of
the exact solutions obtained in the last chapter.

Section II.1 is a very general introduction to the concept of symmetry, with a peculiar
focus on the permutational symmetry we are interested in and the mathematical proper-
ties of the associated group, namely the symmetric group. In section II.2, we will explain
the method we used in order to characterize the symmetry of our solutions, with the will
to justify it as precisely as possible in terms of group theory. We will then implement it
for mixtures of N = 6 particles, and analyze the results we can extract from it.

II.1. Generalities

The concept of symmetry is one of the cornerstones of modern physics [Weyl 1952,
Gross 1996,Gieres 1997]. It is first an extremely valuable tool in order to solve a phys-
ical problem: indeed, the fact that a classical or quantum Hamiltonian has a certain
symmetry gives considerable information about the structure of the solution itself. Fur-
thermore, the concept of symmetry appears to be so powerful and fundamental in Nature
that many modern successful theories have been constructed almost only from symmetry
considerations. In this section, we first discuss some very general aspects of symmetries
in II.1.1. Then, we focus on the peculiar fundamental symmetry we are interested in,
namely the exchange symmetry, in II.1.2.

II.1.1. Symmetries in physics

II.1.1.1. What is symmetry?

The notion of symmetry is very intuitive, as it is omnipresent in everyday life: human
beings and animals are left-right symmetric, flowers have a discrete rotational symmetry,
the sun has a continuous rotational symmetry, snowflakes have very complex symmetry
structure, and so on (see Fig. II.1.1). Interestingly, on a more metaphysical point of
view, it seems that "Beauty is bound up with symmetry" [Weyl 1952].

But how to precisely define the concept of symmetry? Roughly speaking, we can say
that an object has a symmetry when you can apply some transformations to it which
leaves the system invariant. More formally, this set of transformations is a group G,
the symmetry group of the system, and this group acts on the system through the
mathematical notion of linear representation D̂G [Hamermesh 1989]. The "bigger" is
the group, the more symmetric is the object. Some examples of symmetric geometrical
objects and their associated symmetry groups are given in Fig II.1.2. These geometrical
symmetries are found in physics, for example in crystallography, where the crystals are
defined by their discrete spatial periodicity and classified by their so-called space group
symmetry [Shmueli 2006].
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Figure II.1.1: Some examples of the symmetries encountered in Nature.

Figure II.1.2: Some examples of geometrical symmetries. From left to right, their symmetry
group are respectively the discrete diedral groups D2 ≃ Z2 and D3 ≃ Z3 ⋊ Z2 of reflections
and discrete rotations and the continuous orthogonal group O(2). The groups are "bigger and
bigger" from left to right, which is equivalent to the fact that the objects are more and more
symmetric.

In a more fundamental way, a physical law has a symmetry when the equation describing
the law, hence the Hamiltonian or equivalently the Lagrangian or the action, is invariant
by a change of variables. In this case, the word covariant is often used. These variables
can be space-time coordinates: e.g., if we require that a physical law is subjected to
the relativity principle [Einstein 1905], it implies that the Lagrangian must be invariant
by the Lorentz group, that is the group of Lorentz transformations or equivalently the
group O(1, 3) of isometries of Minkowski space. Another symmetry involving a geo-
metrical transformation is given by the conformal group, the group of transformations
that locally conserve the angles. It involves, in particular, dilatations. Scale invariance,
which is related to the mathematical notion of fractals, is found in many theories such
as critical phenomena and quantum field theories through the notion of renormaliza-
tion [Wilson 1975] (see Fig II.1.3).

These symmetries can be more abstract in the sense that they do not affect the space-
time coordinates, in the case of the so-called internal symmetries. The most simple
example of internal symmetry is the invariance of the electrodynamic model by a global
phase-change U(1). Another symmetry of peculiar importance in this thesis, that we
will discuss more below, is the permutational symmetry, namely the symmetry that
exchanges the states of the particles in a many-body problem.

II.1.1.2. Importance in physics

In classical physics, already, the symmetry properties of a Hamiltonian have extremely
strong implications. For example, if we know that a classical Hamiltonian H is invariant
under rotation transformations and we have obtained a certain solution s(t), we can
deduce other solutions noticing that the spatially rotated s(t) is also a solution. More
profoundly, the notion of symmetry is intimately linked with the notion of conservation
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Figure II.1.3: A fractal, characterized by its auto-similarity, or discrete scale invariance. Fractal
theory is intimately linked to the theory of critical phenomena and quantum field theories
through the famous renormalization (semi-)group.

laws through the celebrated Noether’s theorem [Noether 1918], which states that any
continuous symmetry is associated with a conserved quantity. Some examples of this
powerful correspondence are given in table II.1.

In quantum physics, the importance of symmetries is even higher [Landau 1981]. The
intrinsic linearity of quantum physics related to the superimposition principle implies
that a lot of information can be obtained from representation theory. More precisely,
suppose that a quantum Hamiltonian Ĥ has a certain symmetry group G, i.e. that, for
every g ∈ G,

[

Ĥ, D̂(g)
]

= ĤD̂(g) − D̂(g)Ĥ = 0, (II.1.1)

where the representation D̂ acts on the Hilbert space V of the systems. Then, it fol-
lows from Maschke’s theorem that the representation can be split1 as a direct sum of
irreducible representations, or irreps, i.e. non-zero representations that have no proper
sub-representations:

V =
⊕

k

V (k), D̂(g) =
⊕

k

D̂(k)(g), D̂(g)V (k) ⊂ V (k). (II.1.2)

Given Eqs. (II.1.1) and (II.1.2), it follows that Ĥ can also be split according to the irreps
of G:

Ĥ =
⊕

k

Ĥ(k), ĤV (k) ⊂ V (k), (II.1.3)

and that the spectrum of Ĥ can be split into subspectra with degeneracies equal to the
dimensions of the irreps. Thus, group theory provides good quantum numbers and allows
to classify the spectral properties of a system. Moreover, it can provides information
about the form of the corresponding eigenstates. One of the most famous examples is
Bloch’s theorem [Bloch 1929], which uses the translation invariance of crystals to deter-
mine the form of the wave functions. Another important application of symmetry and
representations in quantum mechanics is given by selection rules. Indeed, the probability

1In generic cases.
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Symmetry Conserved quantity
Translation in time Energy
Translation in space Momentum
Rotation in space Angular momentum
Global phase invariance U(1) Electric charge

Table II.1: Examples of continuous symmetries and their corresponding conservation laws.

of a transition between two states associated with different irreps can be obtained by
the direct product of these irreps [Hamermesh 1989]. Finally, another interesting ap-
plication in terms of spectral properties is given by perturbation theory: suppose our
initial Hamiltonian Ĥ with a symmetry group G is perturbed by a Hamiltonian ǫĤ1

with a symmetry group G1 ⊂ G, i.e. with a lower symmetry. This case is referred
as an explicit symmetry breaking. Then, how the spectrum of Ĥ, whose degeneracies
are given by the irreps of G, is affected? If we consider an eigenvalue E of Ĥ with a
degeneracy corresponding to the dimension m of the associated irrep D of G, this irrep
D̂ is in general a reducible representation of G′, the symmetry group of the perturbed
Hamiltonian Ĥ ′ = Ĥ + ǫĤ1. Then, by decomposing D̂ into irreps of G′, we obtain how
the degeneracy of E is lifted by the perturbation.

The notion of symmetry breaking is also very useful in the case of a spontaneous symme-
try breaking. Here, the ground-state breaks the symmetry of the Hamiltonian. This is
at the origin of numerous physical phenomena such as crystals (which break translation
invariance), magnets (which breaks rotational invariance) or Bose-Einstein condensates
(which breaks the global phase invariance). Each global spontaneous symmetry breaking
is associated with low energy fluctuations, or Goldstone bosons [Goldstone 1962]: sound
waves or phonons for crystals, spin waves or magnons in magnets, Bogoliubov quasi-
particles in Bose-Einstein condensates. Spontaneous symmetry breaking is intimately
linked with the notion of phase transition: when the temperature becomes larger than
a certain temperature Tc, the symmetry is restored. The Mermin–Wagner–Hohenberg
theorem that we briefly discussed in section I.1.1 and that explains in particular why
there is no Bose-Einstein condensation in 1D is based on the fact that the Goldstone
bosons associated with a spontaneous symmetry breaking would have infrared diverging
correlation functions for dimensions lower than 2 [Mermin 1966,Hohenberg 1967].

Finally, a lot of modern successful theories are constructed from symmetries. This is the
case of special and general relativity, which are respectively based on the global and the
local Lorentz covariances [Einstein 1905,Einstein 1917]. In quantum physics, and more
precisely in quantum field theories, the fundamental interactions are dictated by local
internal symmetries of the fields, or gauge symmetries: U(1) for quantum electrodynam-
ics [Tomonaga 1946, Schwinger 1948, Feynman 1950], U(1) × SU(2) for the electroweak
theory [Glashow 1959, Salam 1959, Weinberg 1967], SU(3) for quantum chromodynam-
ics (which describes strong interaction) [Gross 1973,Politzer 1973]. The product of these
gauge symmetries U(1) × SU(2) × SU(3), together with the Higgs mechanism which is
nothing more than a spontaneous symmetry breaking explaining why the interaction
bosons of the weak interaction are massive [Englert 1964,Higgs 1964], form the standard
model, which describes all fundamental interactions except gravity. The incredible suc-
cess of these theories suggests that symmetry, more than being an extremely valuable
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tool for physicists, has in fact a more fundamental meaning and importance in Nature.

II.1.2. Exchange symmetry

II.1.2.1. Identical particles

Identical particles are particles with the same intrinsic properties (mass, charge, spin...),
and that are therefore impossible to differentiate. For example, all the electrons of the
universe are identical, and so are all the hydrogen atoms. Then, if a system is composed
of identical particles, its properties must be invariant when exchanging them. This
exchange symmetry is very important in quantum physics because it causes problems
regarding its fundamental postulates [Cohen-Tannoudji 1997a,Cohen-Tannoudji 1997b].
Indeed, let us consider a system of N identical particles. If E is the Hilbert space
associated with one particle, the total Hilbert space of this system can be obtained by
taking the tensorial product

Etot ≡ E(1) ⊗ E(2) ⊗ · · · ⊗ E(N), (II.1.4)

where numbers were assigned to the particles in an arbitrary way. Let us now consider a
set of N commuting observables (O(i))i∈{1,...,N} associated with the N particles, and with
the same spectrum {σn;n = 1, 2, . . .}. Suppose that in an experiment we have measured
simultaneously O for the N particles, and that we have obtained {σ1, σ2, . . . , σN }. Then,
because of the indiscernibility of the particles, it is a priori impossible to know to which
state of Etot it corresponds: it can be either

|1 : σ1〉 ⊗ |2 : σ2〉 ⊗ · · · ⊗ |N : σN〉 ∈ Etot (II.1.5)

or any of its N ! permutations, e.g.

|1 : σ2〉 ⊗ |2 : σ1〉 ⊗ |3 : σ3〉 ⊗ · · · ⊗ |N : σN 〉 ∈ Etot. (II.1.6)

This is known as the exchange degeneracy.

Let us consider the case of N = 2 in the previous example, and let us define the permu-
tation operator P̂12 such that

P̂12 |1 : σ1〉 ⊗ |2 : σ2〉 = |1 : σ2〉 ⊗ |2 : σ1〉 . (II.1.7)

It is clear then that P̂12 is an involution ((P̂12)
2 = 1) and that it is self-adjoint (P̂ †

12 = P̂12).
Therefore, its only eigenvalues are +1 and −1. The corresponding orthogonal eigenstates
are respectively symmetric and anti-symmetric.

In the general case, one can also define a permutation operator P̂ associated with every
P ∈ SN , where SN is the permutation group of N objects (see section II.1.2.2). The
situation is however more complicate in this case, and one can not write Etot as a direct
sum of a completely symmetric and a completely anti-symmetric subspace. However, we
can define the following projectors:

Ŝ =
1

N !

∑

P ∈SN

P̂

Â =
1

N !

∑

P ∈SN

ǫ(P )P̂ ,
(II.1.8)
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where ǫ(P ) is the signature of permutation P , that project respectively onto a completely
symmetric subspace ES and a completely anti-symmetric subspace EA of Etot. The sym-
metrization postulate states that, depending on the nature of the N identical particles,
the physical N -body states belong either to ES, and in this case they are called bosons,
or to EA, and then they are called fermions2. This postulate completely removes the
exchange degeneracy: indeed, depending on the nature of the identical particles in our
example, a measure {σ1, σ2, . . . , σN} is associated with a single possible state, which is
Ŝ |1 : σ1〉⊗· · ·⊗|N : σN〉 ∈ ES for bosons and Â |1 : σ1〉⊗· · ·⊗|N : σN 〉 ∈ EA for fermions.

The fact that a particle is a boson or a fermion has extremely important physical
consequences. To see this, let us go back to the case of two particles. In this case,
Ŝ = 1

2

(

1 + P̂12

)

and Â = 1
2

(

1 − P̂12

)

. Let us consider the state |u〉 = |1 : φ〉 ⊗ |2 : φ〉
where the two particles are in the same one-body state. Then, it is clear that Ŝ |u〉 = |u〉
and Â |u〉 = 0. In other words, it is impossible to put two identical fermions in the
same quantum state. This well-known fact is known as the Pauli exclusion principle.
It implies in particular that electrons, which are fermions, cannot be in the same state
(and in particular at the same place), and therefore explains a lot of properties of mat-
ter. In contrast, there are no reason for bosons not to occupy the same quantum state.
Particles will therefore have the tendency to accumulate in their individual states of
lowest energy at very low temperatures, which is at the origin of spectacular quantum
effects such as Bose-Einstein condensation, superfluidity and superconductivity (where
electrons form bosonic Cooper pairs). Even at non-zero temperatures, the statistical
behaviors of fermions and bosons are completely different, where the first follows the
Fermi-Dirac statistics and the second the Bose-Einstein statistics.

Finally, the statistics of identical particles and their spin are related through the so-called
spin-statistics theorem claims that particles with integer spins are bosons and particles
with half-integer spins are fermions [Schwinger 1951]. This theorem can be intuitively
understood as making the link between exchanging particles and rotating them — since
the spin labels the irreducible representations of SU(2) (the projective group of SO(3)),
it is then intimately related to the exchange symmetry.

II.1.2.2. The symmetric group and its representations

We have already encountered several times the symmetric group3, when dealing with
strongly interacting mixtures (section I.2.2), or in appendix A with the Bethe ansatz.
Here we recall some of the basic mathematical properties of this group and its irreps,
without entering the details. For further readings, the interested reader can turn to one of
the many excellent references on the subject [Fulton 2004,James 2001,Hamermesh 1989].

2In principle, one can consider identical particles which are neither bosons nor fermions. It only hap-
pens in very rare occasion, a notable exception being given by the so-called anyons that one encounters
in 2D materials and in particular in the fractionnal quantum Hall effect [Wilczek 1982].

3A somehow confusing name!
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Basic properties of SN

The symmetric group SN of index N is the group of all bijections from {1, 2, . . . , N} to
itself, or permutations, with the composition as an internal law. In physics, as we just
saw, it has an extreme importance when dealing with identical particles. It is also very
useful when studying unitary groups [Itzykson 1966], and therefore in gauge theories.
Moreover, on a purely mathematical point of view, Cayley’s theorem states that every
finite group is isomorphic to a subgroup of SN [Cayley 1854], which gives to the latter
a central importance in group theory.

The group SN has order N !. It is generated by the 2-cycles, or transpositions, of the
form τi = (i, i + 1) (that is which exchanges elements i and i + 1). The number t of
transpositions by which a permutation P ∈ SN can be decomposed defines the signature
through ǫ(P ) = (−1)t. The kernel of this morphism is denoted AN , the alternating
group.

Any permutation P ∈ SN can be decomposed in disjoint cycles. Moreover, the conjugacy
class of P , that is the set

cc(P ) = {QPQ−1 | Q ∈ SN}, (II.1.9)

is given by the set of all permutations whose decomposition in disjoint cycles has the
same structure as P (same number of cycles of every length). If this structure consists
in k1 1-cycles, k2 2-cycles, ... , km m-cycles, the number |cc(P )| of elements in cc(P ) is
given by

|cc(P )| =
N !

1k1k1! . . .mkmkm!
. (II.1.10)

The number of conjugacy classes of SN is then the number p(N) of partitions of the
integer N . It can be obtained by expanding its generating function as a geometric
series [Abramowitz 1965]:

∞
∑

N=0

p(N)XN =
∞
∏

k=1

1

1 −Xk
. (II.1.11)

An asymptotic expansion for p(N) is given by [Hardy 1918]:

p(n) ∼∞
1

4N
√

3
exp



π

√

2N

3



 . (II.1.12)

As one can see, the number of conjugacy classes of SN grows rapidly with N , which
makes its extensive study more adapted to low N .

Irreducible representations of SN . Young formalism.

The number of non-equivalent irreps of a group is given by the number of its conjugacy
classes. Therefore, the number of irreps of SN is given by the number p(N) of partitions
of N .
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A convenient way of representing a partition of an integer is by a so-called Young
diagram, which is defined as the following. Let us consider a partition of the form
Λ ≡ [λ1, λ2, . . . , λn] with λ1 ≥ λ2 ≥ · · · ≥ λn and λ1 + λ2 + · · · + λn = N . Then,
we represent this partition by a left-justified set of boxes with n rows, where each row
i ∈ {1, . . . , n} contains λi boxes. For example, the Young diagram associated with the
partition Λ0 = [3, 2, 2, 1] of 8 is given by

YΛ0 = . (II.1.13)

Associated with Young diagrams are the Young tableaux, where the boxes are filled with
symbols taken from some totally ordered set (e.g. integers, Latin alphabet...). If the
entries are always increasing from left to right in every row and top to bottom in every
column, the tableau is said to be standard. In the case where several symbols appear
more than once, the tableau is said semistandard when the entries increase in the weak
sense. Here are two examples of Young tableaux, one standard and one semistandard:

1 3 5
2 6
4 7
8

and

a a b
b b
b c
c

. (II.1.14)

Thus, there is a one to one correspondence between the Young diagrams with N boxes
and the irreps of SN . This correspondence is done using the so-called Young symmetriz-
ers associated with the Young diagrams [Fulton 2004]. Intuitively, it indicates that the
rows are symmetrized, while the column are anti-symmetrized. In the case of N = 3 for
example, there are three possible Young diagrams, which are given by

Y[3] = , Y[1,1,1] = , and Y[2,1] = . (II.1.15)

They correspond respectively to the trivial representation (where every permutation is
represented by the identity matrix l1), to the sign representation (where every permu-
tation is represented by its signature) and to the standard representation. In terms of
identical particles, Y[3] is the exchange symmetry of three identical bosons, and Y[1,1,1]

is the exchange symmetry of three identical fermions. Y[2,1] corresponds necessarily to a
mixture of non-identical particles.

The dimension of a given irrep DΛ is given by the number of standard Young tableaux
that one can construct from the corresponding Young diagram YΛ. This number can be
obtained from the hook length formula. A hook length hΛ(i, j) of a box of coordinates
(i, j) of YΛ is given by the numbers of boxes below (i, j) + the number of boxes at the
right of the box (i, j) + 1. For example, in YΛ0 of Eq. (II.1.13), the hook lengths are
given by

6 4 1
4 2
3 1
1

. (II.1.16)
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Then, the hook length formula states that

dimDΛ =
N !

∏

(i,j)∈Λ hΛ(i, j)
. (II.1.17)

In particular, in our example we have dimDΛ0 = 8!/(6 ∗ 42 ∗ 3 ∗ 2) = 70. Moreover, more
generally, the trivial and sign representations, which corresponds respectively to the
horizontal and vertical Young diagrams, have always a dimension 1, whereas other irreps
are multidimensional. This explains why the symmetrization postulate, which states
that identical particles are either bosons or fermions, removes the exchange degeneracy
(see section II.1.2). Besides, two conjugate irreps, that is irreps whose Young diagrams
are transposed, have the same dimension.

Finally, for a given irrepDΛ, each element of SN is represented by a (dimDΛ)-dimensional
matrix. Then, the function

χΛ : g ∈ SN 7→ Tr (DΛ(g)) ∈ C (II.1.18)

is called the character of DΛ. These functions have many important properties that
greatly help the study of irreps. In particular, there are constant on the conjugacy
classes of SN , and isomorphic representations have the same characters.

II.2. Symmetry analysis of strongly interacting quantum

mixtures

In this section we turn to the symmetry analysis of the system that we mainly studied in
this thesis, that is strongly interacting quantum mixtures in one-dimensional harmonic
traps (c.f. section I.2.2). We will describe the problem and its relation with quantum
magnetism in II.2.1. Then, we will present the method that we used in order to solve
it, namely the class-sum method, in II.2.2. Finally, we will analyze the ordering of
energies as a function of the symmetries in II.2.3. The methods and results described in
this section where published in [Decamp 2016a, Decamp 2016b] for fermionic mixtures
and [Decamp 2017] for Bose-Fermi mixtures.

II.2.1. One-dimensional SU(κ) quantum gases and quantum mag-
netism

The systems we are interested in are mixtures of N atoms divided in κ different fermionic
and/or bosonic spin species with populations N1, . . . , Nκ, and submitted to the Hamil-
tonian of Eq. (I.2.14) that we recall here:





N
∑

j=1

(

− ~2

2m

∂2

∂x2
j

+
1

2
mω2x2

j

)

+ g1D

∑

i<j

δ(xi − xj) − E



ψ = 0. (II.2.1)

The key ingredient that allows to describe such mixtures with this Hamiltonian is that
we are considering atoms whose ground-state has a purely nuclear spin. This ensures
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that the interactions between particles with different spins are independent of the rel-
ative spin orientations, that collisions are not spin-flipping, and that all particles are
subjected to the same external potential. This property is common to Ytterbium atoms
and to fermionic alkaline-earth atoms [Gorshkov 2010]. Therefore, when exchanging
fermionic (resp. bosonic) spin components, it does not affect the properties of the sys-
tem. In the case of a purely fermionic or purely bosonic mixture, this is refered as the
SU(κ) symmetry, as it constitutes a generalization of the SU(2) symmetry of spin-1

2

electronic mixtures [Laird 2017]. If the system is composed of µ bosonic components
and ν fermionic component, the system is said to be SU(µ, ν)-symmetric [Kato 1995].
SU(κ) systems with κ > 2 display exotic features and phase diagrams that has attracted
the attention of theoretical physics [Affleck 1988,Marston 1989,Read 1989], recently re-
newed by the experimental realization of a one-dimensional SU(κ) fermionic mixture
described in section I.1.2.4.

The SU(κ)-symmetry is not transparent when just looking at Eq. (II.2.1). However, in
the limit of strongly repulsive interactions g1D → ∞ that we are considering, one can
map this Hamiltonian onto a spin Hamiltonian [Deuretzbacher 2014, Massignan 2015,
Levinsen 2015]. Indeed, if we use the same notations as in section I.2.2, we can write in
the vicinity of 1/g1D = 0 an effective Hamiltonian of the form:

HS =

(

E0 −
N−1
∑

k=1

Jk

)

l1 ±
N−1
∑

k=1

JkP̂k,k+1 , (II.2.2)

where the + (−) sign is for fermions (resp. bosons), the nearest-neighbor exchange
constants Jk = αk/g1D, and the permutation matrices P̂k,k+1 are defined in the snippet
basis by:

(

P̂k,k+1

)

ij
=

{

1 if snippets i and j are equal up to a transposition (k, k + 1)
0 otherwise

.

(II.2.3)
Then, the operator P̂k,k+1 can be re-written in terms of spin operators [Deuretzbacher 2014]:
e.g. when κ = 2, it can be expressed in terms of the Pauli vector ~σ by

P̂k,k+1 =
1

2

(

~σ(k) · ~σ(k+1) + l1
)

, (II.2.4)

and one recovers a Heisenberg Hamiltonian. When κ > 2, ~σ has to be replaced by
a spin operator ~S associated with the generalized generators of SU(κ) Lie algebra
[Bourbaki 2008,Gorshkov 2010]. In any case, Eq. (II.2.2) shows that our problem (II.2.1)
is equivalent to an effective SU(κ) spin model.

Note that in the fermionized limit g1D → ∞, Eq. (II.2.2) reduces to a trivial Hamiltonian

H∞
S = E0 l1. (II.2.5)

This Hamiltonian has then a bigger symmetry, namely a SU(N) symmetry. This emer-
gent symmetry explains the existence of degenerate manifolds at g1D = ∞, and why
this degeneracy is lifted whenever g1D becomes finite [Harshman 2014,Harshman 2015,
Harshman 2016]. Our system can then be seen as a perturbed Hamiltonian with an
explicit symmetry breaking from SU(N) to SU(κ).
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Thus, our system is a perfect model to study itinerant magnetism, that is magnetism
without a lattice. In the following, we will focus on the symmetry of the spatial wave
function. This symmetry is dual to its spin symmetry (and thus magnetism). Indeed,
the symmetry of the total wave function of identical particles is fixed by their bosonic
or fermionic nature. However, if these identical particles have different spin orientations
as it is the case in our model, although their total wave function still has to be totally
symmetric or totally anti-symmetric, their spatial and spin wave function can be other
representations of the symmetric group, as long as they are conjugate when identical
fermions and equal when identical bosons. Thus, the problem that we are going to
address in this section is the following: given a solution ψ of Eq. (II.2.1) in the g1D →
∞ limit, given by the perturbative method described in section I.2.2 and hence by a
vector of real coefficients ~a, how to characterize its symmetry, or equivalently, to which
representation of SN does it belong?

II.2.2. The class-sum method

Historically, the first description of the so-called class-sum method is due Dirac, who used
it to study the eigenstates of a many-electron system [Dirac 1929]. It was then devel-
opped in the context of nuclear physics [Talmi 1993,Novolesky 1995], and adapted to the
study of one-dimensional quantum gases in [Fang 2011, Decamp 2016a, Decamp 2016b,
Decamp 2017]. After a description of the mathematical objects used in this method
II.2.2.1, we will describe how this method can be adapted to our system of interest in
order to answer the last paragraph’s problem in II.2.2.2, and implement it in a N = 6
system II.2.2.3.

II.2.2.1. Class-sums and central characters

Let us consider a Hamiltonian Ĥ which is invariant by permutation, as it is the case in
our Hamiltonian of interest Eq. (II.2.1). More precisely, for every P ∈ SN , if we define
the linear operator P̂ by

P̂ψ(x1, x2, . . . , xN ) = ψ(xP 1, xP 2, . . . , xP N), (II.2.6)

we then have, as in Eq. (II.1.1),
[

Ĥ, P̂
]

= 0. (II.2.7)

However, since the N ! permutation operators P̂ do not commute with each other, we
cannot diagonalize Ĥ and all the P̂ ’s simultaneously in a common eigenbasis and use
them directly in order to classify the states. We would like to define a set of operators
Ĉ as a function of the P̂ ’s that all commute with each other and also with Ĥ, and that
completely characterize the permutational symmetry of the system: i.e. a complete set of
commuting observables (CSCO) [Cohen-Tannoudji 1997a]. This is the same idea which
leads to the definition of the Casimir elements L2 = L2

x + L2
y + L2

z, the square angular
momentum, when studying the states of the Hydrogen atom which are labeled by the
eigenvalues {n, l,m} of the CSCO {ĤHyd, L

2, Lz}.
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For every conjugacy class ccΛ of SN , where Λ ≡ [λ1, λ2, . . . , λn] is a partition of N , we
now define the conjugacy class-sum as:

CΛ =
∑

P ∈ccΛ

P. (II.2.8)

This sum has to be understood in the context of the group algebra of SN , that is the
vector space whose basis is indexed by the elements of the group and that linearly extends
the laws of the group [James 2001]. It is clear then that every Q ∈ SN commutes with
CΛ and thus with each other: by definition of a conjugacy class QCΛQ

−1 = CΛ since it
is the same sum in a different order. Moreover, if another linear combination of the P ’s
commutes with all the P ’s, it is necessarily a linear combination of the CΛ’s. Indeed, the
condition

Q





∑

P ∈SN

bPP



Q−1 =
∑

P ∈SN

b′
PP (II.2.9)

for every Q ∈ SN implies that bP = b′
P whenever P and P ′ belong to the same conjugacy

class. Thus we have shown that the CΛ’s form a basis of the center of the group algebra
of SN [James 2001], which is the that the associated permutation operators ĈΛ form,
together with Ĥ , a CSCO.

The natural question that follows is then: what values are taken by the observables
ĈΛ? One can prove that it takes one constant specific value for each irreductible rep-
resentation DΓ of SN , and that this value is related, up to a proportionality factor, to
the irreductible character χΓ of SN [Novolesky 1995,Macdonald 1995]. More precisely,
DΓ(CΛ) commutes withDΓ(P ) for every P ∈ SN . Then, by Schur’s lemma [Fulton 2004],
DΓ(CΛ) is a homothety, i.e. there is a real value ωΛ

Γ such that:

DΓ(CΛ) = ωΛ
Γ l1|Γ|, (II.2.10)

where |Γ| ≡ dimDΓ is obtained with Eq. (II.1.17). By taking traces in Eq. (II.2.10) we
get

|Λ|χΛ
Γ = |Γ|ωΛ

Γ , (II.2.11)

with χΛ
Γ the value taken by the irreducible character χΓ over the conjugacy class ccΛ,

and |Λ| is the number of elements in ccΛ, which is given by Eq. (II.1.10). Since, from
Maschke’s theorem, every representation D can be written as a direct sum of irreps, the
ωΛ

Γ values of Eq. (II.2.11) are the only eigenvalues of D(CΛ), hence the only values that
are taken by the observables ĈΛ. Because of their link with irreducible characters, they
are called the central characters.

In the case where Λ = [r, 1, . . . , 1] ≡ [(r)], i.e. when the conjugacy class ccΛ consists
in a single r-cycle and (N − r) 1-cycles, there are explicit expressions for the central

characters ω
[(r)]
Γ . More precisely, if Γ = [γ1, . . . , γm] (with γ1 ≥ γ2 ≥ · · · ≥ γm and

γ1 + γ2 + · · · + γm = N), we can define [Decamp 2017]4

µi = γi − i+m, i = 1, . . . , m. (II.2.12)

4The expression in [Katriel 1993a] contains a small notation misprint.
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and then obtain, using χΛ
[(r)]’s expression [Macdonald 1995,Katriel 1993a]:

ω
[(r)]
Γ =

1

r

m
∑

i=1

µi!

(µi − r)!

∏

j 6=i

µi − µj − r

µi − µj
, (II.2.13)

where to product is taken to be equal to 1 when Γ contains only one line (m = 1). When
r = 2, one can use one of these more user-friendly formulas [Novolesky 1994]:

ω
[(2)]
Γ =











1
2

∑m
i=1 γi (γi − 2i+ 1)

or
∑

(i,j)∈Γ (j − i)
. (II.2.14)

Alternative ways of computing the central characters can be found in [Katriel 1993a,
Katriel 1993b,Katriel 1996,Goupil 2000].

II.2.2.2. Description of the method

Let us first precise our notations. The system
(

NB
1 , . . . , N

B
µ , N

F
1 , . . . , N

F
ν

)

we are con-

sidering is a mixture of NB = NB
1 + · · · +NB

µ bosons and NF = NF
1 + · · · +NF

ν fermions
divided respectively in µ and ν spin components, with N = NB + NF . Let us suppose
that we have solved Eq. (II.2.1) in the g1D → ∞ fermionized limit with the method of
section I.2.2. Thus, we have obtained a set of DNB

1 ,...,NB
µ ,NF

1 ,...,NF
ν

(c.f. Eq. (I.2.17)) vec-

tors ~a of coefficients corresponding to solutions of Eq. (II.2.1) via Eq. (I.2.16). We want
to determine to which representations of SN these vectors belong using the class-sums
and central characters.

The method we have used in [Decamp 2016a, Decamp 2016b, Decamp 2017] can be de-
composed into the following steps:

Step 1: Determine the irreps that are compatible with the mixture

When identical bosons (resp. fermions) belong to the same spin component, their spatial
wave function must be symmetric (resp. anti-symmetric) when exchanging their coor-
dinates. This reduces the number of possible irreps that are compatible with a given
mixture. In practice, one has to order the different species by decreasing order of pop-
ulation and to assign a letter in the alphabetic order to each one of the species. Then,
one has to construct all the semistandard Young tableaux with N boxes labeled by the
species, imposing that no bosons (resp. fermions) belonging to the same spin component
can be in the same column (resp. row).

For example, in a N = 4 mixtures, there are a priori p(4) = 5 possible irreps (c.f.
Eq. (II.1.11)), given by the following Young diagrams:

, , , , . (II.2.15)
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Suppose now that this mixture is given by (2F , 2F ). Then, the only possible semistandard
Young tableaux are:

a
a
b
b

,
a b
a
b

, a b
a b

. (II.2.16)

If this mixture is instead (2B, 2F ), there are only two possible symmetries:

a a b
b

,
a a
b
b

. (II.2.17)

We now dispose of a set {YΓ1 , . . . , YΓk
} of Young diagrams (with k ≤ p(N)). This initial

step substantially reduces the complexity of the method.

Step 2: Compute the central characters

We have seen in II.2.2.1 that, for a given partition Λ ofN , the central characters ωΛ
Γ have a

constant value on each of the irreps DΓ of SN because of their relation with irreducible
characters (Eq. (II.2.11)). Analogously to a character table (χΛ

Γ)Λ,Γ [Fulton 2004], we
could construct a table (ωΛ

Γ )Λ,Γ for central characters and compute ωΛ
Γ for all irrep DΓ

that is compatible with the mixture and all partition Λ. Thus, we would be able to
completely characterize the symmetry of a solution ~a. This is, however, not necessary:
it is sufficient to compute the central characters for Λ’s so that all the central characters
belonging to different irreps have different values for at least one Λ.

More precisely, given our set {YΓ1, . . . , YΓk
} of Young diagrams, we start by computing

the central characters ωΛ
Γ1
, . . . , ωΛ

Γk
of the transposition class-sums, i.e. when Λ = [(2)],

using Eq. (II.2.13) or Eq. (II.2.14). If the ω
[(2)]
Γi

’s are all different, it is sufficient in order to

characterize the symmetry. If not, we compute the ω
[(3)]
Γi

’s using again Eq. (II.2.13), and
so on, until a rank rmax where all the irreps DΓi

have a different set of central characters

ω
[(2)]
Γi

, ω
[(3)]
Γi

, . . . , ω
[(rmax)]
Γi

.

In practice, when N ≤ 5, it is sufficient to compute the central characters of the trans-
position class-sums (see table II.2). For N = 6, rmax = 3 (c.f. section II.2.2.3).

Step 3: Compute the class-sums in the sector basis representation

The next thing to do is to construct the class-sums C[(2)], . . . , C[(rmax)] defined in Eq. (II.2.8)
in the same basis as the ~a vectors, that is in the sector basis. We have to be careful to
the fact that, in the definition of ~a (Eq. (I.2.16)), the aP coefficients are the projection of
ansatz ψ over the totally anti-symmetric wave function ψA: therefore, in order to charac-
terize the symmetry of ψ, we have to compensate this anti-symmetry when constructing
the class-sums. Accordingly, let us define the matrix representation Dsec by:

Dsec : SN → GLN !(R)
g 7→ (ǫ(g)δP,gQ)P,Q

, (II.2.18)



58 Chap II - Symmetry analysis

YΓ ω
[(2)]
Γ

1

-1

(a) N = 2

YΓ ω
[(2)]
Γ

3

0

-3

(b) N = 3

YΓ ω
[(2)]
Γ

6

2

0

-2

-6

(c) N = 4

YΓ ω
[(2)]
Γ

10

5

2

0

-2

-5

-10

(d) N = 5

Table II.2: Central characters of the transposition class-sums ω
[(2)]
Γ for N ≤ 5. Since they are

all different (at fixed N), there is no need to compute ωΛ
Γ for other Λ’s. Note that conjugate

diagrams have an opposite ω
[(2)]
Γ .
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with ǫ the signature, which can be extended linearly to a morphism defined on the group
algebra, where the class-sums are defined. With this definition, the cycle class-sums are
represented by:

Dsec

(

C[(r)]

)

= (−1)r−1
∑

σ∈cc[(r)]

Mσ, (II.2.19)

where M r
σ is a N ! ×N ! matrix whose coefficients are (Mσ)P Q = δP,σQ.

For the sake of clarity, let us consider the example of N = 3. There are 3! = 6 elements
in the sector basis, that we order in the following way:

(e123, e132, e213, e312, e321). (II.2.20)

In this basis,

Dsec

(

C[(2)]

)

= −





















0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 1 1 0
0 1 1 0 0 1
0 1 1 0 0 1
1 0 0 1 1 0





















, (II.2.21)

and

Dsec

(

C[(3)]

)

=





















0 0 0 1 1 0
0 0 1 0 0 1
0 1 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
0 1 1 0 0 0





















. (II.2.22)

Step 4: Project ~a on the eigenbasis of the class-sum representations

As we have seen in section II.2.2.1, in each irrep DΓ, the class-sums are homotheties
whose ratios are given by the central characters (Eq. (II.2.10)). Although Dsec is a priori
not an irrep, it is (up to a sign) the regular representation of SN [James 2001]. Then,
Dsec is a direct sum of all the irreps of SN (with multiplicities equal to their degrees). In
other words, the spectrum of the cycle class-sum representations is equal to the set of all
the associated central characters. Therefore, by diagonalizing the Dsec

(

C[(r)]

)

matrices,

we will get a set of eigenspaces corresponding to the irreps DΓ and with eigenvalues ωΛ
[(r)].

Thus, the final step of this method is to diagonalize our setDsec

(

C[(2)]

)

, . . . , Dsec

(

C[(rmax)]

)

of matrices and project ~a in their eigenbasis. The symmetry of the associated wave func-
tion will then be completely characterized.

Alternative: the snippet representation

Note that for a given mixture it is also possible to write the class-sums in the lower
dimensional snippet representation Dsnip (see section I.2.2.2) by summing (or subtracting
when permuting same-component bosons) over the elements of the class-sums in the
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sector representation that belong to the same snippet. The only central characters that
will appear when diagonalizing Dsnip

(

C[(2)]

)

, . . . , Dsnip

(

C[(rmax)]

)

will then be the ones

corresponding to the irreps allowed by the mixture (step 1). If we consider the fermionic
mixture (2F , 2F ) that we used as a first example in section I.2.2.2, we obtain in the same
basis:

D
(2F ,2F )
snip

(

C[(2)]

)

= −





















2 1 1 1 1 0
2 2 1 1 0 1
2 1 2 0 1 1
2 1 0 2 1 1
2 0 1 1 2 1
0 1 1 1 1 2





















, (II.2.23)

which is similar to the diagonal matrix diag(−6,−2,−2,−2, 0, 0). The corresponding
central characters are, as expected, associated with the three diagrams of Eq. (II.2.16)
allowed by the mixture (c.f. table II.2).

Although doing this adds a step between Step 3 and Step 4, it has the advantage of facil-
itating the diagonalization of Step 4 by reducing the size of the matrix representations.
However, it has the inconvenient to be usable only for a given mixture, contrary to the
sector representation which is usable for any mixture at given N .

II.2.2.3. Implementation for N = 6 mixtures and first observations

The N = 6 case has interesting new features as compared to the N ≤ 5 ones. First, we
will see very soon that here the central characters of the transposition class-sums ωΛ

[(2)]

will be degenerate for two irreps, hence the need to compute the three-cycle class sum.
Moreover, it allows to study various kind of mixtures, e.g. a completely imbalanced
three-component mixtures of the type (3F , 2F , 1F ). Thus, we can observe new features
in these few-body systems that allow to better understand the large N behaviors of the
solutions of Eq. (II.2.1). We studied these N = 6 systems in detail, in [Decamp 2016a,
Decamp 2016b] for fermionic mixtures and [Decamp 2017] for Bose-Fermi mixtures.

There are p(6) = 11 non-isomorphic irreps of SN . Since we will study various quantum
mixtures, we will enumerate all the associated Young diagrams and compute all the
corresponding central characters ωΛ

[(2)] and ωΛ
[(3)]. The results are summarized in table

II.3.

We observe that conjugate irreps have equal dimensions and three-cycle central char-
acters, and opposite transposition central characters. Moreover, as we previously men-
tioned, we see that there are two degeneracies in the transposition central characters,
namely ω

[(2)]
[3,3] = ω

[(2)]
[4,1,1] = 3 and ω

[(2)]
[3,1,1,1] = ω

[(2)]
[2,2,2] = −3. This degeneracy is no longer

present for the three-cycle central characters, and therefore we do not have to compute
the four-cycle central characters.

The next step is then to compute Dsec

(

C[(2)]

)

and Dsec

(

C[(3)]

)

. We have developed a

Mathematica program similar to the one we created for the computing the V matrix (see

section I.2.2.2) that computes Dsec

(

C[(2)]

)

and Dsec

(

C[(3)]

)

N ! ×N ! matrices for any N

(with a complexity of O(N !2)), and diagonalize them. In the N = 6 case it consists in
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Γ YΓ dimDΓ ω
[(2)]
Γ ω

[(3)]
Γ

[6] 1 15 40

[5, 1] 5 9 16

[4, 2] 9 5 0

[3, 3] 5 3 -8

[4, 1, 1] 10 3 4

[3, 2, 1] 16 0 -5

[3, 1, 1, 1] 10 -3 4

[2, 2, 2] 5 -3 -8

[2, 2, 1, 1] 9 -5 0

[2, 1, 1, 1, 1] 5 -9 16

[1, 1, 1, 1, 1, 1] 1 -15 40

Table II.3: Central characters ω
[(2)]
Γ and ω

[(3)]
Γ in the N = 6 case, obtained from Eqs. (II.2.13)

and (II.2.14). For each partition Γ, the dimension of the associated irrep DΓ, which corresponds
to the multiplicity of the corresponding central characters as eigenvalues of the class-sums in
the sector representation, is computed with the hook length formula (Eq. (II.1.17)).
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0

10

20

30

(5, 1) (4, 2) (3, 3) (3, 2, 1) (2, 2, 2)

K
/(
h̄
2
ω
2
a
0
)

Mixture

Figure II.2.1: Energy slopes K for different kind of fermionic mixtures, with the associated
symmetries given by their colors. The dots are shifted from left to right with the same order
of appearance than the symmetries. These results where published in [Decamp 2016b].
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a 720 × 720 matrix that we will of course not present here. However, if we consider the
example (4F , 2F ) of section I.2.2.2, we can write in the snippet basis of Fig. I.2.3:

D
(4F ,2F )
snip

(

C[(2)]

)

= −

































































7 1 1 1 1 0 1 1 0 0 1 1 0 0 0
1 7 1 1 0 1 1 0 1 0 1 0 1 0 0
1 1 7 0 1 1 0 1 1 0 0 1 1 0 0
1 1 0 7 1 1 1 0 0 1 1 0 0 1 0
1 0 1 1 7 1 0 1 0 1 0 1 0 1 0
0 1 1 1 1 7 0 0 1 1 0 0 1 1 0
1 1 0 1 0 0 7 1 1 1 1 0 0 0 1
1 0 1 0 1 0 1 7 1 1 0 1 0 0 1
0 1 1 0 0 1 1 1 7 1 0 0 1 0 1
0 0 0 1 1 1 1 1 1 7 0 0 0 1 1
1 1 0 1 0 0 1 0 0 0 7 1 1 1 1
1 0 1 0 1 0 0 1 0 0 1 7 1 1 1
0 1 1 0 0 1 0 0 1 0 1 1 7 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1 7 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 7

































































, (II.2.24)

which is similar to

diag(−15,−9,−9,−9,−9,−9,−5,−5,−5,−5,−5,−5,−5,−5,−5). (II.2.25)

As expected, it corresponds to the ω
[(2)]
Γ ’s with Γ ∈ {[2, 2, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]}

and with multiplicities equal to the dimensions of the associated irreps (c.f. table II.3).

Note that for this mixture it is not necessary to compute D
(4F ,2F )
snip

(

C[(3)]

)

, but it is e.g.

for (2F , 2F , 2F ). If we diagonalize the V -matrix associated with this mixture (c.f. Fig.
I.2.3), we obtain a set of energy slopes K (Eqs. (I.2.21) and (I.2.28)) and ~a vectors whose

symmetries are obtained by projecting the ~a vectors on the eigenbasis of D
(4F ,2F )
snip

(

C[(2)]

)

.

Results for various fermionic mixtures are given in Fig. II.2.1. By comparing it to table
II.3, we observe that the number of states that correspond to a given symmetry Γ is
equal to dimDΓ, and that, for a given mixture (N1, . . . , Nκ) with symmetries Γ1, . . . ,Γk,
we have

k
∑

i=1

dimDΓi
= DN1,...,Nκ

, (II.2.26)

where DN1,...,Nκ
is the dimension of the degenerate manifold defined in Eq. (I.2.17). This

is indeed expected from the discussion in section II.1.1.2 (see Eqs. (II.1.1), (II.1.2) and
(II.1.3) with G = SN). Moreover, note that the set of energy slopes for a given irrep is
independent of the choice of the mixture.

II.2.3. Ordering of energy levels

II.2.3.1. The Lieb-Mattis theorem

The Lieb-Mattis theorem [Lieb 1962] is a fundamental theorem of many-body quantum
physics that links the ordering of energy levels with their relative symmetries, and that
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has important consequences in condensed matter and the theory of magnetism. In this
section we will enunciate and prove both versions of the theorem, following the original
work of Lieb and Mattis, and then discuss some of their consequences.

The first Lieb-Mattis theorem (LMT I)

The first and most well-known version of the Lieb-Mattis theorem, that we will refer as
LMT I in the following, concerns spin-1/2 particles, or SU(2) gases. Before enunciating
it, let us first define our notations. Let us consider a system of N particles divided into
two fermionic components and subjected to a general Hamiltonian of the form (in units
of ~ = 2m = 1):

Ĥ = −
N
∑

i=1

∂2

∂x2
i

+ U(x1, . . . , xN), (II.2.27)

where U is a real, permutational invariant potential that contains both the external and
interaction potentials. The many-body wave function Ψ can be subjected to various
boundary conditions: Ψ = 0 or ∂Ψ/∂xi = 0 whenever xi = 0 or xi = L if particles are
on a box of size L, or Ψ ∈ L2(RN ) if particles are, for example, in a harmonic trap.

We will be interested in states S
MΨ with a definite total spin S and a definite total

azimuthal quantum number M . These numbers are classically defined as

~S2 S
MΨ = S(S + 1) S

MΨ, (II.2.28)

and
~Sz

S
MΨ = M S

MΨ, (II.2.29)

where ~S2 =
∑N

i=1(~S2)i and ~Sz =
∑N

i=1
~Si

z are the usual spin operators. For given S and
M , let us denote by E(S) and E(M) (resp.) the ground-state energies of S and M (resp.),
that is the minimum eigenvalues of Ĥ in Eq. (II.2.27) whose associated eigenstates have
spin and azimuthal numbers S and M (resp.).

The first Lieb-Mattis theorem can be enunciated as follows:

Theorem (LMT I): If S > S ′, then E(S) ≥ E(S ′). Moreover, E(S) = E(S ′)
only if U is pathological (in a sense that will be specified in the proof).

In order to prove this theorem, remark that it is sufficient to prove that, at fixed M ≥ 0
(the opposite case is of course similar), the associate ground-state wave function MΨ
should have S = M , and hence E(M) = E(S). Indeed, if we consider S > S ′, the
ground-state SΨ corresponding to E(S) is degenerate and could have any azimuthal
number M ∈ {−S,−S + 1, . . . , S − 1, S}, and in particular S

M=S′Ψ has an energy E(S).
But since the ground-state energy of states with an azimuthal number equal to S ′ should
have a spin also equal to S ′, we have E(S ′) ≤ E(S).

Let us consider M ≥ 0. A typical total wave function MΨ with an azimuthal number M
is given by:

MΨ =
∑

P ∈SN

ǫ(P )(P̂Mφ)(P̂MG), (II.2.30)
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where the spin wave function MG has the form

MG = (− − · · · − − + + · · · + +), (II.2.31)

with p ≡ N − M spin down (−) and N − p spin up (+), and the spatial wave function

Mφ has the form

Mφ = φ(x1, . . . , xp|xp+1, . . . , xN), (II.2.32)

where φ is anti-symmetric by permutation of x1, . . . , xp and xp+1, . . . , xN .

Then, we can affirm that a necessary and sufficient condition on φ so that S = M is
that φ cannot be anti-symmetrized with respect to xp, xp+1, . . . , xN , i.e. that the bar
"|" in φ cannot be moved to the left. Indeed, S can, a priori, take all values between
M,M + 1, . . . , N/2. Then, S = M is equivalent to S+

M
MΨ = 0, which means for MG that

one cannot transform one spin down in one spin up, and for φ that the bar cannot be
moved to the left.

Now we are going to study the properties of the ground-state wave function with az-
imuthal number M . We define the fundamental domain RM of RN by

x1 ≤ · · · ≤ xp (II.2.33)

and
xp+1 ≤ · · · ≤ xN . (II.2.34)

Then, one can prove that the Schrödinger equation Ĥϕ = Eϕ in RM with the boundary
conditions ϕ = 0 on the boundary of RM has a positive ground-state solution ϕ0. In fact,
one can show that ϕ0 is strictly positive in the interior of RM unless U is pathological
in the sense that it contains "sufficiently strong infinities". An example of pathological
potential is given by the fermionized limit g1D → ∞ in our system Eq. (II.2.1), which
explains why states with different symmetries have the same energy in this limit.

Given ϕ0, we define the function Φ0 on RN by

Φ0 = ǫ(P )ǫ(Q)P̂ Q̂ ϕ0 in PQ(RM), (II.2.35)

where P ∈ Sp andQ ∈ SN−p, P̂ and Q̂ permute the variables x1, . . . , xp and xp+1, . . . , xN

(resp.) and the domain PQ(RM) is defined by

xP 1 ≤ · · · ≤ xP p (II.2.36)

and
xQ(p+1) ≤ · · · ≤ xQN . (II.2.37)

Then, Φ0 is a solution of the Schrödinger equation Ĥφ = Eφ in RN (thanks to the
boundary conditions of ϕ0) with an azimuthal number of M (because it is of the form of
Eq. (II.2.32)). In particular, since ϕ0 is the ground state in RM , Φ0 is the ground state
wave function with an azimuthal number of M .

Let us show that Φ0 verifies S = M . To do so, we define the following function on RN :

V(x1, . . . , xN) = det













1 x1 . . . xp−1
1

1 x2 . . . xp−1
2

...
...

. . .
...

1 xp . . . xp−1
p













det















1 xp+1 . . . xN−p−1
p+1

1 xp+2 . . . xN−p−1
p+2

...
...

. . .
...

1 xN . . . xN−p−1
N















, (II.2.38)
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a product of two Vandermonde determinant, which is then also equal to

V(x1, . . . , xN) =
∏

1≤i<j≤p

(xj − xi)
∏

p+1≤k<l≤N

(xl − xk). (II.2.39)

It is clear that V is totally anti-symmetric in the variables x1, . . . , xp and xp+1, . . . , xN

and then is a function of the form of Eq. (II.2.32), and moreover that "the bar cannot be
moved to the left": hence V is characterized by an azimuthal number M and by a spin
S = M . Besides V is strictly positive in the fundamental domain RM . Finally, we can
define the following scalar product for functions of the type of Eq. (II.2.32):

〈Mf,Mg〉M =
∫

RN
Mf Mg = p!(N − p)!

∫

RM

Mf Mg. (II.2.40)

If two functions S
Mf,

S′

Mg have definite spin values S, S ′, one can easily see that 〈S
Mf,

S′

Mg〉M 6=
0 only if S = S ′. We can say that the spin labels the irreps of SU(2) and that non-
equivalent irreps are orthogonal. Therefore, since ϕ0 ≥ 0 and V > 0 on RM , we can
conclude that Φ0 verifies S = M . Thus, we have completed the proof of LMT I.

Second Lieb-Mattis theorem (LMT II) and pouring principle

The second Lieb-Mattis theorem is a direct generalization of LMT I to SU(κ) systems.
Although very powerful, we will see that it does not allow to compare all the ground
states energies of the irreps of SN . Here, more than giving a detailed proof, we will
develop the analogy with the last paragraph.

Instead of considering two-component fermionic particles subjected to the Hamiltonian
defined in Eq. (II.2.27), we do not specify the mixture and allow it to obey any statistics.
In other words, it can belong to any irrep of SN .

For LMT I, particles could belong to any irrep of the type t [N/2 + S,N/2 − S], where
the notation t [ ] means that we specify the number of boxes in the columns of the
corresponding Young diagram5. Then the generalization of S is to specify the irrep DtΓ

associated with a partition tΓ.

Moreover, functions with an azimuthal number M where characterized by being of the
type of Eq. (II.2.32). Therefore, instead of considering M , we directly consider functions
of the form:

φ(x1, . . . | . . . , xN−N1−N2|xN−N1−N2+1, . . . , xN−N1 |xN−N1+1, . . . , xN ), (II.2.41)

where variables between two bars are anti-symmetrized. Instead of choosing M ≥ 0,
here we set N1 ≥ N2 ≥ · · · . Besides, bars can always be moved to the right without
changing of irrep (we can always lower M), and a necessary and sufficient condition for
a function of the type of Eq. (II.2.41) to belong to the irrep t [N1, N2, . . .] (S = M in
LMT I) is that the bars cannot be moved to the left.

The central idea of the proof of LMT I was that E(S) was degenerate for M and that
therefore it was sufficient to prove that the ground state wave function of azimuthal

5Notice the difference of convention with section II.1.2.2, which is appropriate here since we consid-
ered fermionic species in LMT I.
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number M should have S = M . Here this degeneracy is more subtle: for a partition tΓ,
the only functions of the type of Eq. (II.2.41) that can belong to DtΓ are the ones when
the bars are not moved to the left. Thus, we cannot compare all the irreps.

Accordingly, we define a partial order ≻ on the irreps: considering DtΓ, DtΓ′ with tΓ =
t [N1, N2, N3, . . .] and tΓ′ = t [N ′

1, N
′
2, N

′
3, . . .], we say that DtΓ can be poured into DtΓ′

and write tΓ ≻ tΓ′ if N1 ≥ N ′
1, (N1 −N ′

1)+N2 ≥ N ′
2, (N1 −N ′

1 +N2 −N ′
2)+N3 ≥ N ′

3, etc.
In other words, YtΓ can be transformed into YtΓ′ by moving the boxes of the diagrams
to the right. In the context of algebric combinatorics and representation theory, ≻ is
known as the dominance order [Macdonald 1995]. For example, we have

≻ , (II.2.42)

or

≻ . (II.2.43)

However, it is impossible to compare these two diagrams:

and . (II.2.44)

Writing E(tΓ) the ground state energy associated with the symmetry class tΓ, we can
now enunciate the second Lieb-Mattis theorem:

Theorem (LMT II): If tΓ ≻ tΓ′, then E(tΓ) ≥ E(tΓ′). Moreover, E(tΓ) =
E(tΓ′) only if U is pathological.

The proof of this theorem is now very similar to the proof of LMT I: considering the
ground state wave function of the form of Eq. (II.2.41), we show that it is positive on
the fundamental domain defined analogously to RM . Then we consider an appropriate
product of Vandermonde determinant similar to V, which belongs to the irrep DtΓ with
tΓ = t [N1, N2, N3, . . . ] and is also positive on the aforementioned fundamental domain.
Thus it is not orthogonal to the ground state wave function, which therefore belongs to
DtΓ.

Consequences for the theory of magnetism

Lieb and Mattis have discussed the consequences of LMT I for the theory of magnetism,
by saying that a two-component fermionic system that obeys to the Hamiltonian in
Eq. (II.2.27) has an non-ferromagnetic ground state. It is clear indeed that such a
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Figure II.2.2: Hasse diagram of the partially ordered set (I6, ≻).
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system will not have a non-zero S value that grows proportionally with its size, since
the ground state has a minimal spin.

In the case of a one-component Bose gas, on the contrary, since LMT II implies that the
spatial wavefunction is as symmetric as possible and since the total wavefunction of a
Bose gas is totally symmetric, it implies that the spin wavefunction is also totally sym-
metric. Thus, a consequence of LMT II is that the ground state of a one-dimensional Bose
gas is fully polarized. It was shown in [Eisenberg 2002] that even in three-dimensional
systems at finite temperature, it is also the case as long as there are no spin-dependent
forces.

Moreover, Lieb and Mattis have shown, with the help of LMT II, that it is possible to
extend LMT I to higher dimensions if the potential U is separably symmetric (e.g. for a
two-dimensional potential U(x1, . . . , xN ; y1, . . . , yN), U is symmetric in the xi coordinates
of the N particles, and also in the yi). Therefore, it does not apply, for example, to three-
dimensional systems with central forces among the particles.

More generally, the Lieb-Mattis theorems do not apply to systems with momentum-
dependent or spin-dependent forces. It does apply, however, to one-dimensional quantum
gases that can be simulated with cold-atom experiments such as the ones discussed in
this thesis.

II.2.3.2. Analysis in our system

First of all, let us note that, although the 1/g1D = 0 point corresponds to a pathological
case of Lieb-Mattis theorem and is degenerate for the irreps, the set of energy slopes K
allows to deduce the ordering of energy levels in the vicinity of that point (see e.g. Fig.
I.2.1). Notice also that, because of the minus sign in K’s definition (Eq. (I.2.18)), the
ground state energies will correspond to the maximum K values. Accordingly, given a
symmetry class Γ, we define K(Γ) as the maximum K whose corresponding state belongs
to DΓ. With this notation, LMT II becomes, in our context:

Γ ≻ Γ′ ⇒ K(Γ) < K(Γ′), (II.2.45)

where we have written "<" instead of "≤" since the interaction potential in Eq. (II.2.1)
is non-pathological in the vicinity of the degenerate manifold 1/g1D = 06.

Before analyzing our results, let us first see how the set I6 of irreps of S6 is partially
ordered by the dominance order ≻. The conventional way of representing a partially
ordered (E,≤) set is through a Hasse diagram [Simovici 2014], i.e. a graph (see section
I.2.2.2) where each vertex is an element of E, and if an edge relies two vertices A and B
where if A is above B, then A ≥ B. The Hasse diagram of (I6,≻) is given in Fig. II.2.2.

Now, a direct comparison of Fig. II.2.2 and Fig. II.2.1 shows that our system, in the
fermionic case, verifies LMT II. In [Decamp 2017], we extended this result to Bose-Fermi
mixtures, as one can see in table II.4. On a side note, remark that three-component

6Since the interaction potential is pathological in the degenerate manifold, the energetic counterpart
should still be written Γ ≻ Γ′ ⇒ E(Γ) ≥ E(Γ′).
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Mixture YΓ K(Γ)/(~2ω2a0)

(2B, 2F ) 10.66

7.08

(3B, 3F ) 30.37

24.43

(a) Two-component Bose-Fermi mixtures.

Mixtures YΓ K(Γ)/(~2ω2a0)

33.35

32.16

(2B, 2B, 2F ) 30.63

30.37

28.96

24.97

(2B, 2F , 2F ) 24.43

22.69

14.60

(b) Three-component Bose-Fermi mixtures.

Table II.4: Symmetry classes Γ and corresponding ground-state energy slopes K(Γ) for two-
(II.4a) and three- (II.4b) component Bose-Fermi mixtures. In table II.4b, the black diagrams
are common to both mixtures, whereas the blue (resp. red) diagrams are specifically associated
to (2B , 2B , 2F ) (resp. (2B , 2F , 2F )). These results where published in [Decamp 2017].
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Bose-Fermi mixtures display much more complex symmetry structures than their two-
component counterparts. Indeed, mixtures of the type (NB

1 , N
F
1 ) have only two possible

conjugate irreps associated with Γ = [NB
1 , 1, . . . , 1] and Γ = [NB

1 +1, 1, . . . , 1] [Fang 2011].
Besides, the K(Γ) depend only on Γ and are independent of the mixture, which shows
the fundamental importance of symmetries in our system.

Moreover, we are able to compare energy levels that goes beyond the scope of LMT
II and that are not comparable by the dominance order ≻ and the pouring principle.
Indeed, we observe in Fig. II.2.1 and table II.4 that, although that the symmetry classes
[4, 1, 1] (resp. [3, 1, 1, 1]) are not comparable with [3, 3] (resp. [2, 2, 2]) by the dominance
order ≻ (c.f. Fig II.2.2), we have proved:

K ([3, 3]) > K ([4, 1, 1]) and K ([2, 2, 2]) > K ([3, 1, 1, 1]) . (II.2.46)

This ordering was also obtained for fermionic mixtures using Bethe ansatz equations in
the homogeneous case and local density approximation in the harmonic trap [Pan 2017].

Interestingly, the two pairs of irreps that are not comparable by the dominance order are
also the ones who have identical transposition central characters ω

[(2)]
Γ (c.f. table II.3).

Moreover, we observe that:

Γ ≻ Γ′ ⇔ ω
[(2)]
Γ < ω

[(2)]
Γ′ (II.2.47)

This suggests that a profound analysis of the central characters would allow to predict
the energy ordering beyond LMT II. The idea would be to define an order "⊲" on the set
of ω

[Λ]
Γ ’s that would, unlike ≻, be a total order. For the moment, we only have conjectures

of the type of Eq. (II.2.47). A deeper analysis, using the full power of representation
theory, is required and in progress.

Let us conclude this section by two remarks: first, the a priori knowledge of the irrep DΓ

of the ground-state of our system is extremely valuable information in terms of practical
computing. Indeed, the dimension dimDΓ of this irrep is much lesser than the dimension
of the total space, which implies faster and less memory-expensive programs [Nataf 2014,
Nataf 2016, Wan 2017]. Second, although our analysis is done in the fermionized limit
g1D → ∞, there are good reasons to think that the energy ordering is the same for all
0 < g1D < ∞. Indeed, since the degeneracies of Ĥ are equal to the dimensions of the
irreps of its symmetry group (c.f. section II.1.1.2), there are no energy level crossings
unless there is an additional symmetry for a certain value of g1D [Harshman 2014], which
is unlikely (but would require however a rigorous proof).
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Correlation functions are extremely important quantities in many-body quantum physics:
Usually easier to compute than the total wave functions, they are involved in the char-
acterization of many exotic properties of quantum matter, ranging for the celebrated
Bose-Einstein condensation to the quasi-long range order in one dimension. Moreover,
they can be extracted in a typical ultracold atom experiment.

In this chapter, we focus on the properties of the first order correlation functions, from
which a large number of properties of the system can be deduced. In particular, we an-
alyze what are the effects of the strong interactions and of the permutational symmetry
that we have characterized in chapter II. The leitmotiv of this study is the following:
How to extract uniquely the symmetry of the system from a measure of the one-body cor-
relation? In section III.1, we analyze in detail the exact density and momentum profiles
of few body strongly interacting quantum mixtures from the exact solution computed
in chapter I, trying to extract some general features. Then, in section III.2, we focus
on the so-called Tan’s contact, a quantity that governs the high-momentum behavior
and has become a pivot in the study of short-range interacting quantum gases, showing
especially that it allows to answer this chapter’s main question. Furthermore, in order
to be the more experimentally relevant as possible, we derive Tan’s contact dependences
on the interaction strength, temperature, and transverse confinement.

III.1. One-body correlations

In this section, we discuss the properties of the one-body correlations in strongly repul-
sive one-dimensional quantum mixtures. After theoretically defining this quantity and
recalling the experimental ways that are used in order to measure it in cold atom set
ups in III.1.1, we will then explain in III.1.2 how we obtained it from the exact solutions
computed in section I.2. In particular, we compute and analyze the density profiles and
momentum distributions of N = 6 mixtures, focusing on the effects of strong interactions
and symmetries.

III.1.1. Generalities

III.1.1.1. Definitions

The notion of correlation was first introduced in the mathematical theory of statistics
[Feller 1947]. Intuitively, given several random/statistical variables, it allows to measure
how these variables are linked together on average. This notion is extensively used
in many areas of science, ranging from financial analysis and sociology to optics and
statistical physics. In the latter, the universal behaviors of correlation functions in the
vicinity of critical points are at the heart of the theory of phase transitions.

In quantum physics, which is an intrinsically probabilistic theory, quantum correlation
functions have proven to be a very efficient theoretical tool. They are for example exten-
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sively used in quantum field theories1, where the Feynman paradigm of path integrals
and Feynman diagrams have proven to be a very efficient computational tool.

Now, let us give some general definitions. Suppose that a one-dimensional quantum
system is described, in the second quantization formalism, by quantum field creation and
annihilation operators Ψ̂†(x) and Ψ̂(x) (respectively), where x is the spatial coordinate.
Then, the first order correlation function G(1), also called one-body density matrix or
one-point correlators, is defined as [Pitaevskii 2016]:

G(1)(x, x′) = 〈Ψ̂†(x)Ψ̂(x′)〉 . (III.1.1)

If the system can be described by a normalized N -particle many-body wave function
Ψ(x1, . . . , xN), the first quantization analogue of Eq. (III.1.1) is

G(1)(x, x′) = N
∫

dx2 . . . xN Ψ∗(x, x2, . . . , xN)Ψ(x′, x2, . . . , xN ). (III.1.2)

In a similar way we can define the second order correlation function as

G(2)(x, x′) = 〈Ψ̂†(x)Ψ̂†(x′)Ψ̂(x)Ψ̂(x′)〉 , (III.1.3)

and so on.

A lot of information can be obtained just from G(1). The diagonal part n(x) of G(1) is
the density profile and is associated with the probability (normalized to N) of finding a
particle at point x:

n(x) = G(1)(x, x) = N
∫

dx2 . . . xN |Ψ(x, x2, . . . , xN)|2 . (III.1.4)

The off-diagonal part of G(1) can be related to the momentum distribution n(k), asso-
ciated with the probability of having a particle with a momentum k, by the following
formula:

n(k) = 〈Ψ̂†(k)Ψ̂(k)〉

=
1

2π

∫∫

dxdx′ G(1)(x, x′)e− i
~

k(x−x′),
(III.1.5)

which is simply due to Ψ̂(k) = 1
2π

∫

dx Ψ̂(x)e− i
~

kx. Note that we have

∫

dx n(x) =
∫

dk n(k) = N. (III.1.6)

Notice also that we can extract the total kinetic energy EK from the momentum distri-
bution by

EK =
∫

dk
k2

2
n(k), (III.1.7)

which is convergent only if we have

n(k) = o
k→∞

(

1

k3

)

. (III.1.8)

1In this context, correlation functions are sometimes called "Green functions", which must not be
confused with the Green functions defined in functional analysis as the inverts of differential operators!
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(a) Image obtained by absorption
imaging of a Bose-Einstein conden-
sate of Rubidium atoms (courtesy of
Guillaume Labeyrie).

(b) Momentum distributions obtained by TOF and ab-
sorption imaging on a Rubidium gas. The two images
on the right correspond to a Bose-Einstein condensate.
From [Anderson 1995].

Figure III.1.1: Absorption imaging of Bose-Einstein condensates of Rubidium atoms.

We will see in section III.2 than in fact n(k) ∼
∞

C/k4. This asymptotic behavior for n(k)

is associated with the short-range correlations of the system. Conversely, the asymptotic
behavior |x− y| → ∞ of G(1)(x, y) is associated with the long-range order. It can serve
as a characterization of the coherence properties of the system, and e.g. intervenes in the
definition of a Bose-Einstein condensate [Penrose 1956,Yang 1962]. Since it is equivalent
to the low-momentum properties, it is well described by the Luttinger liquid theory and
the bosonization method that we briefly mentioned is section I.1.1. In this thesis, we focus
more on the short-range properties, which go beyond the scope of Luttinger paradigm.

III.1.1.2. Experimental probes

Not only correlation functions have a great theoretical importance and are often easier to
calculate than the total wave functions, they also happen to be very efficiently measurable
in cold atoms experiments [Bloch 2008,Cazalilla 2011].

The main method to measure the density profile of an atomic cloud is the in-situ absorp-
tion imaging. It basically consists in measuring the absorbed light with a CCD camera
when the cloud is submitted to a resonant laser beam. Examples of images obtained
with this method are given in Fig. III.1.1.

The usual way of measuring the momentum distribution n(~p) is called the time-of-flight
(TOF) technique. The idea is to suddenly release the trapping potential, and to measure
with absorption imaging the density profile nT OF (~r, τ) after a time τ ≫ mL2/~, where
L is the linear size of the cloud before switching off the trap. If interactions can be safely
neglected during the expansion so that it can be considered as ballistic, the momentum
distribution in the trap n(~p) can be related to nT OF (~r, τ) by the simple formula:

nT OF (~r, τ) =
(

m

~τ

)3

n(~p(~r)), (III.1.9)

where ~p(~r) = m~r/~τ . For example, in the case of a Bose-Einstein condensate, the
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absorption image after a TOF will display a typical central peak (see Fig III.1.1b).

III.1.2. Exact one-body correlations for strongly repulsive systems

III.1.2.1. A formula for the one-body density matrix

In this section we provide an expression we have obtained for the one-body density
matrix G(1)(x, x′) for the strongly interacting limit g1D → +∞ of our model, using the
notations of section I.2.2.2. This is the formula we used in order to plot the exact
density profiles and exact momentum distributions in [Decamp 2016a, Decamp 2016b,

Decamp 2017]. Here we will use units of a0 =
√

~/mω for length and ~ω for energy.

Suppose that our system is of the form (N1, . . . , Nκ) and that we want, for a given solution
and thus a given vector ~a of size N !, and for a given spin-component σ ∈ {1 . . . , κ}, to
compute the associated one-body density matrix:

G(1)
σ (x, x′) = Nσ

∫

dx2 . . . xN Ψ∗(x, x2, . . . , xN)Ψ(x′, x2, . . . , xN), (III.1.10)

where "particle 1" belongs to component σ, Ψ is given by Eq. (I.2.16) and we have
normalized G(1)

σ (x, x′) to Nσ so that the total one-body density verifies

G(1)(x, x′) =
κ
∑

σ=1

G(1)
σ (x, x′). (III.1.11)

Let us organize the set of permutations SN in a convenient way: each permutation will
be written

P{i,k}, i ∈ {1, . . . , N}, k ∈ {1, . . . , (N − 1)!}, (III.1.12)

where i denotes the position of particle 1 after permutation and k labels the permutation
of the N − 1 other particles. With this notation, Eq. (I.2.16) becomes

Ψ(x1, . . . , xN ) =
N
∑

i=1

(N−1)!
∑

k=1

a{i,k}θ{i,k}(x1, . . . , xN)ψF (x1, . . . , xN), (III.1.13)

where aP{i,k}
≡ a{i,k} and θ(xP{i,k}1 < · · · < xP{i,k}N ) ≡ θ{i,k}(x1, . . . , xN ).

We can now write G(1)
σ (x, x′) by supposing x ≤ x′ (which is possible since G(1)

σ (x, x′) =
G(1)

σ (x′, x)) and using Eq. (III.1.13):

G(1)
σ (x, x′) =Nσ

∑

1≤i≤j≤N

∫

dx2 . . . dxN





(N−1)!
∑

k=1

a{i,k}θ{i,k}(x, x2, . . . , xN)

× ψF (x, x2, . . . , xN)









(N−1)!
∑

l=1

a{j,l}θ{j,l}(x
′, x2, . . . , xN)ψF (x′, x2, . . . , xN )



 .

(III.1.14)

Moreover, remark that
∫

dx2 . . . dxNθ{i,k}(x, x2, . . . , xN)θ{j,l}(x
′, x2, . . . , xN )(· · · ) ∝ δkl, (III.1.15)
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where (· · · ) is an arbitrary function of x, x′, x2, . . . , xN . Notice also that the following
product

ψF (x, x2, . . . , xN)ψF (x′, x2, . . . , xN ), (III.1.16)

is symmetric by any permutation of the variables x2, . . . , xN . Therefore, Eq. (III.1.14)
becomes:

G(1)
σ (x, x′) =Nσ

∑

1≤i≤j≤N

Cij

∫ x

−∞
dx2 . . . dxi

∫ x′

x
dxi+1 . . . dxj

×
∫ +∞

x′
dxj+1 . . . dxNψF (x, x2, . . . , xN)ψF (x′, x2, . . . , xN ),

(III.1.17)

where

Cij =
1

(i− 1)!(j − i)!(N − j)!

(N−1)!
∑

k=1

a{i,k}a{j,k}. (III.1.18)

The last step is to use again the Vandermonde trick that we used in order to obtain the
exchange coefficient αk (Eq. (I.2.26))2. More precisely, by noticing the Vandermonde
determinant expression in Eq. (I.2.23), we get:

ψF (x, x2, . . . , xN ) =
1

√

N !
∏N−1

m=0 2−m
√
πm!

N
∏

k=2

e−x2
k

/2
∏

2≤j<k≤N

(xj − xk)
N
∏

l=2

(xl − x)e−x2/2

=
2(N−1)/2

√
πN !(N − 1)!

∣

∣

∣

∣

∣

∣

∣

∣

φ0(x2) · · · φN−2(x2)
...

. . .
...

φ0(xN) · · · φN−2(xN)

∣

∣

∣

∣

∣

∣

∣

∣

N
∏

l=2

(xl − x)e−x2/2

=
2(N−1)/2

√
πN !(N − 1)!

∑

P ∈SN−1

ǫ(P )
N
∏

l=2

φP (l)−2(xl) (xl − x)e−x2/2.

(III.1.19)

Finally, by putting this expression for ψF into Eq. (III.1.17), we get

G(1)
σ (x, x′) =Nσ

2(N−1)/2

√
πN !(N − 1)!

∑

1≤i≤j≤N

Cij

∑

P,Q∈SN−1

ǫ(P )ǫ(Q)

×
N
∏

l=2

∫ Uij(l)

Lij(l)
dz(z − x)(z − x′)φP (l)−2(z)φQ(l)−2(z),

(III.1.20)

with the integration limits given by

(Lij(l), Uij(l)) =











(−∞, x) if l ≤ i
(x, x′) if i < l ≤ j
(x′,+∞) if l > j

. (III.1.21)

I implemented Eq. (III.1.20) in a Mathematica program, that runs typically 20 minutes
for N = 6 systems. Notice that it has a complexity of O(N2((N − 1)!)2), so that N > 6
systems are very time-consuming.

2This idea was suggested by Matteo Rizzi, and allows to consider sums over SN−1 instead of SN .
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Figure III.1.2: Ground state (left panel) and first excited state with a different symmetry
(right panel) density profiles in units of a−1

ho =
√

mω/~ for three strongly interacting balanced
mixtures of N = 6 fermions, normalized to the number N/κ of particles in each spin-component
(from top to bottom: κ = 2, 3, 6.). For a given balanced mixture, the κ spin-components
have the same density profile. The corresponding symmetries YΓ that were determined in
chapter II are associated with each profile. In order to observe the effects of fermionization,
the density profiles of the same mixtures in the non-interacting cases are shown in the insets.
From [Decamp 2016a].

III.1.2.2. Density profile analysis

Let us now analyze exact density profiles n(x) = G(1)(x, x) obtained from Eq. (III.1.20)
for quantum mixtures with N = 6 atoms. Results for purely fermionic mixtures were
published in [Decamp 2016a], and for Bose-Fermi mixtures in [Decamp 2017]. Density
profiles for the ground state and first excited with a different symmetry than the ground
state of balanced (respectively imbalanced) fermionic mixtures are given in Fig. III.1.2
and III.1.3. Ground state density profiles of Bose-Fermi mixtures are given in Fig. III.1.4.

Discussion

A first observation is that the total density profiles, defined by

n(x) =
κ
∑

σ=1

nσ(x), (III.1.22)

are always equal, for the ground state, to the density profile of N spinless fermions (see
also Eq. (I.2.12)):

nF (x) = N
∫

dx2 . . . dxNΨF (x, x2, . . . , xN )2

=
1√
πa0

N−1
∑

k=0

1

2kk!
H2

k(x/a0)e−(x/a0)2

,
(III.1.23)

charaterized by a global parabolic shape and N small density oscillations [Vignolo 2000,
Kolomeisky 2000]. This observation, that was also reported in [Grining 2015a], is a
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Figure III.1.3: Ground state (left panel) and first excited state with a different symmetry (right
panel) density profiles in units of a−1

ho =
√

mω/~ for three strongly interacting imbalanced
mixtures of N = 6 fermions, normalized to the number Nσ of particles in the corresponding
spin-component (from top to bottom: (5F , 1F ), (4F , 2F ), (3F , 2F , 1F )). The corresponding
symmetries YΓ that were determined in chapter II are associated with each panel. In order
to observe the effects of fermionization, the density profiles of the same mixtures in the non-
interacting cases are shown in the insets. From [Decamp 2016a].
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Figure III.1.4: Ground state density profiles in units of a−1
ho =

√

mω/~ for three strongly
interacting Bose-Fermi mixtures of N = 6 particles, normalized to the number Nσ of particles
in the corresponding spin-component (from left to right: (3B , 3F ), (2B , 2F , 2F ), (2B , 2B , 2F )).
For a given mixture, spin-components with the same number of particles and same statistics
have the same density profile. The corresponding symmetries YΓ that were determined in
chapter II are associated with each panel. From [Decamp 2017].

generalization of the equivalence between the density profiles of a bosonic Tonks gas
and a spinless Fermi gas. Consequently, if the mixture is decomposed in κ species with
equal number of particles per spin-component, the ground-state density profile for every
spin-component σ will verify

nσ(x) =
1

κ
nF (x), (III.1.24)

as we can observe in the left panel Fig. III.1.2.

Interestingly, as one can see in the right panel of Fig. III.1.2, it is no longer true in general
when considering the total density profile of excited states. Instead, we observe that the
excited state of (2F , 2F , 2F ), which belongs to the Γ = [3, 2, 1] symmetry class, has the
same density profile as the ground state density profile of the two-particle component
of (3F , 2F , 1F ) (c.f. Fig III.1.3), which belongs to the same symmetry class. Conversely,
the excited states of (5F , 1F ), (4F , 2F ) and (3F , 2F , 1F ), which belong respectively to the
[1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1] and [2, 2, 2] symmetry classes, have similar density profiles
than the ground state density profiles of (6F ), (5F , 1F ) and (3F , 3F ) (respectively). Re-
mark however that the excited state of (3F , 3F ), with symmetry class Γ = [2, 2, 1, 1], has
not the same density profile as the ground state of (4F , 2F ).

The ground state density profiles of imbalanced fermionic mixtures (right panel of
Fig III.1.3) and balanced Bose-Fermi mixtures (Fig. III.1.4) have a more complex struc-
ture than in the balanced fermionic case. In the cases (5F , 1F ) of a polaron and of Bose-
Fermi mixtures, we observe a partial spatial separation between the polaron (respectively
bosonic component(s)) in the center of the trap and the majority component (respectively
fermionic component) pushed toward the edges. This spatial separation for Bose-Fermi
mixtures was predicted by Luttinger theory for homogeneous systems [Cazalilla 2003]
and by local density approximation [Imambekov 2006a, Imambekov 2006b], and exact
diagonalization [Deuretzbacher 2017] for harmonically trapped systems. It was also ob-
tained in [Dehkharghani 2017] by a similar method and DMRG simulations. In the cases
of (4F , 2F ) and (3F , 2F , 1F ), the spatial separation of the ground state density profiles is
even more complex. In the first case, the system displays an alternance between the two
components. This can be seen as a realization of an antiferromagnet [Murmann 2015].
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In the imbalanced three-component system, the density profiles are similar to the ones
corresponding to the same number of particles in (4F , 2F ) and (5F , 1F ).

In any case, the shape of the density profiles can be seen as a consequence of two
complementary phenomena. First, by looking at the insets of Fig. III.1.2 and Fig III.1.3,
and remembering that the density profile of non-interacting bosons is just a simple central
peak, we clearly see the effect of fermionization. Indeed, particles that are not subjected
to the Pauli principle (like identical bosons or fermions of different spin-components)
tend to be pushed away in different peaks because of the strong repulsion between them.
Second, from the spatial separation discussed in the last paragraph, we observe that
particles subjected to the Pauli principle, that is fermions belonging to the same spin-
component, tend to avoid each other. This can be intuitively understood by analyzing
the form of Eq. (I.2.21), that we recall here:

K =
∑

P,Q∈SN

(aP − aQ)2αP,Q, (III.1.25)

where αP,Q = αk are the nearest-neighbor exchange constants between particles at po-
sitions k and k + 1. Recalling that in the perturbative ansatz we used (section I.2.2.2),
the ground-state configuration is associated with the maximum value for K, and noting
that an anti-symmetric exchange corresponds to a zero contribution in Eq. (III.1.25), we
can enunciate the following rule:

The spatial configuration of strongly interacting one-dimensional quantum mix-
tures is such that the number of anti-symmetric exchanges between nearest-
neighbors is minimized. In particular, for the ground-state, the Lieb-Mattis the-
orem implies that these anti-symmetric exchanges only occur between fermions
belonging to the same spin-component.

This fact, together with the parity symmetry of the trap and the fact that the sum of
the density profiles is nF (x), allows to qualitatively predict the shape of the ground-state
density profiles.

To conclude this discussion, we have seen that the spatial symmetries investigated in
chapter II allow to understand qualitative effects on the shape of the density profiles.
We stress, however, that this correspondence is not unequivocal: different symmetry
classes can be associated with the same spatial distribution. Thus, the knowledge of the
density profile, e.g. by an absorption imaging in a cold atom experiment, does not allow
to deduce the symmetry class of the system.

III.1.2.3. Momentum distributions

Let us study the momentum distributions nσ(k) = 1
2π

∫∫

dxdx′ G(1)
σ (x, x′)e− i

~
k(x−x′),

where G(1)
σ is as defined in Eq. (III.1.10). Results for N = 6 fermionic (resp. Bose-Fermi)

mixtures were published in [Decamp 2016b] (resp. [Decamp 2017]). The corresponding
momentum distributions are respectively shown in Fig. III.1.5 and Fig. III.1.6. Here, we
discuss the general qualitative aspects of the momentum distributions — the asymptotic
behaviors will be studied in much details in section III.2.
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Figure III.1.5: Ground state momentum distributions n(k) = κnσ(k) in units of aho =
√

~/mω
for three strongly interacting balanced mixtures of N = 6 fermions, normalized to unity (solid
lines, κ = 2, 3, 6.). For a given balanced mixture, the κ spin-components have the same
momentum distributions. In order to observe the effects of fermionization, the momentum
distributions of the same mixtures in the non-interacting cases are shown in dashed lines.

Figure III.1.6: Ground state momentum distributions nµ(k) in units of aho =
√

~/mω for
three strongly interacting Bose-Fermi mixtures of N = 6 particles, normalized to the number
Nµ of particles in the corresponding spin-component (from left to right: (3B , 3F ), (2B , 2F , 2F ),
(2B , 2B , 2F )). For a given mixture, spin-components with the same number of particles and
same statistics have the same momentum distributions. The corresponding symmetries YΓ that
were determined in chapter II are associated with each panel. From [Decamp 2017].
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Discussion

It is a well known fact that the momentum distribution nF (k) of harmonically trapped
spinless non-interacting fermions is equal to its density profile nF (x) (Eq. (III.1.23))
and is characterized by N peaks [Vignolo 2000]. This is a consequence of the duality
between x and k in the harmonic oscillator Hamiltonian. On the contrary, the mo-
mentum distribution nB(k) of a Tonks gas is characterized by a single central peak at
k=0 [Papenbrock 2003], showing in passing the limits of the Bose-Fermi mapping dis-
cussed in section I.2.1.

In our systems, we observe in Fig. III.1.6 that the bosonic components in Bose-Fermi
mixtures always display one central peak, while the fermionic components have a number
of peaks equal to the number of fermions in the considered species, as also observed
in [Deuretzbacher 2016]. In particular, the momentum distribution of the ground state
of (1F , 1F , 1F , 1F , 1F , 1F ) is equal to nB(k) (Fig. III.1.5). Thus, similarly to what we
discussed for the density profiles, the exchange symmetry and the Pauli principle allow
to predict qualitative effects on the momentum distributions of strongly interacting one-
dimensional quantum mixtures. Here again, however, different exchange symmetries can
have similar distributions.

The effect of interactions on momentum distributions is more subtle than on the spatial
distributions, as one can observe in Fig. III.1.5. Indeed, the global structure is similar,
with the fermionized momentum distributions displaying the same number of peaks as
the non-interacting ones. We observe however a significant reduction of width of these
peaks, which is dual to the broadening of the density profiles observed in section III.1.2.2.
Moreover, complementary to this reduction, the large momentum tails are enhanced by
interactions. The quantitative analysis of these asymptotic behaviors is the subject of
section III.2.

III.2. Short-range correlations: Tan’s contact

This section is devoted to study of Tan’s contact, a quantity that governs the large k
behavior of the momentum distributions n(k), or equivalently the short-range correla-
tions, and therefore goes beyond the Luttinger liquid theory paradigm. After defining
this quantity for one-dimensional quantum gases and showing how it is universally re-
lated to thermodynamic variables of the system in III.2.1, we will study its properties in
fermionized one-dimensional mixtures in III.2.2. We will argue, in particular, that Tan’s
contact is an indicator of the symmetry class of the system. Finally, in III.2.3, in order
to be relevant for actual experiments, we will derive a set of universal scaling laws as
functions of interaction, temperature, and the transverse confinement.
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III.2.1. Introduction

III.2.1.1. Brief historical review

In systems interacting via a δ-potential, the momentum distributions n(k) display the
following asymptotic algebraic behavior:

n(k) ∼
k→∞

Ck−4, (III.2.1)

where C is called the contact, or Tan’s contact. Historically, this behavior was ini-
tially highlighted for one-dimensional bosonic Tonks gases in [Minguzzi 2002], and for
any value of the interaction strength in [Olshanii 2003]. In three-dimensional systems
of spin-1

2
fermions, Tan has also shown that C is related to thermodynamic quanti-

ties of the system — the so-called Tan relations — such as the dependence of the
energy on the scattering length, the quantum pressure or the static structure factor
[Tan 2008a,Tan 2008c,Tan 2008b] (see also [Braaten 2008b,Braaten 2008a,Zhang 2009,
Combescot 2009]). These results were then extended to two-dimensional [Werner 2012b,
Valiente 2011,Valiente 2012] and one-dimensional [Barth 2011] spin-1

2
gases, and to ar-

bitrary quantum mixtures in two and three dimensions [Werner 2012a], and in one di-
mension [Pâţu 2017].

On the experimental side, Tan’s contact measurements were performed in three-dimensional
strongly interacting fermionic and bosonic ultracold gases, by a direct TOF [Stewart 2010,
Chang 2016], or indirectly by rf spectroscopy [Stewart 2010, Wild 2012, Sagi 2012] (ex-
ploiting the relation between the contact and the fraction of atoms in a given unoccupied
state when applying large frequency pulses [Pieri 2009, Braaten 2008a]) or making use
of Bragg spectroscopy [Kuhnle 2011, Hoinka 2013] (exploiting the relation between the
contact and the structure factor). A precise measurement of Tan’s contact in one-
dimension remains an experimental challenge because of the enhanced fluctuations at
large momenta. However, metastable Helium, which allows extremely precise correla-
tion detections (see e.g. [Keller 2014]), appears to be a promising candidate.

III.2.1.2. Asymptotic behavior of the momentum distributions in one-dimensional
quantum gases

We now proceed to re-derive Eq. (III.2.1) for one-dimensional quantum mixtures, follow-
ing [Olshanii 2003, Pâţu 2017]. Their approach is based on the cusp condition (section
I.1.3.3). Other more quantum-field-oriented methods rely on the definition of a gen-
eralized function [Tan 2008a, Tan 2008c, Tan 2008b], or in a so-called operator product
expansion [Braaten 2008b,Barth 2011].

We consider a system of N one-dimensional particles of coordinates x1, . . . , xN of same
mass m, subjected to an arbitrary (continuous) external potential Vext, and then verifying
the following Schrödinger equation:



− ~2

2m

N
∑

i=1

∂2

∂x2
i

+ g1D

∑

i<j

δ(xi − xj) + Vext(x1, . . . , xN) − E



ψ(x1 . . . , xN) = 0.

(III.2.2)
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For the moment, we suppose that these particles are identical bosons.

Defining the reduced coordinates Xij = xi+xj

2
and xij = xi − xj and the reduced masses

M = 2m and µ = m/2, the N−body analogue of Eq. (I.1.34) implies

ψ(x1, . . . , xi, . . . , xj , . . . , xN) =
xi→xj

ψ(x1, . . . , Xij, . . . , Xij, . . . , xN )

×
[

1 − |xij |
a1D

+ O(x2
ij)

]

,
(III.2.3)

where a1D = −~2/µg1D.

Moreover, we know from Fourier analysis that, for a Lebesgue integrable function f(x) =
|x− x0|F (x) (with F a smooth function), we have [Bleistein 2010]:

∫

dx e−ikxf(x) =
k→∞

−2e−ikx0

k2
+ O

(

1

|k|3
)

. (III.2.4)

Then, Eq. (III.2.3) implies

∫

dx1 e
−ikx1ψ(x1, x2, . . . , xN) ∼

k→∞

∫

dx1 e
−ikx1

N
∑

j=2

ψ(X1j, . . . , X1j
↑
j

, . . . , xN )

[

1 − |xij |
a1D

]

∼
k→∞

2

a1Dk2

N
∑

j=2

e−ikxjψ(xj , . . . , xj
↑
j

, . . . , xN),

(III.2.5)

where we have removed one of the terms using the fact that the Fourier transform of
a differentiable function with continuous derivative falls to 0 as o

(

1
k2

)

when k → ∞
[Bracewell 1999]. Therefore, using n(k)’s definition (Eq. (III.1.5)), we find

n(k) ∼
k→∞

2N

πa2
1Dk

4

∫

dx2 . . . xN

∑

2≤j≤l≤N

e−k(xj−xl)ψ(xj , . . . , xj
↑
j

, . . . , xN)ψ(xl, . . . , xl
↑
l

, . . . , xN)

∼
k→∞

2N

πa2
1Dk

4

N
∑

j=2

∫

dx2 . . . xN ψ(xj , . . . , xj
↑
j

, . . . , xN )2,

(III.2.6)

where again we have neglected the off-diagonal terms because of the smoothness of the
integrand.

Furthermore, the first-quantized version of G(2)(x, x′) (c.f. Eq. (III.1.3)) can be written

G(2)(x, x′) =
∫

dx1 . . . dxN ψ(x1, . . . , xN )2
∑

i6=j

δ(x− xi)δ(x
′ − xj). (III.2.7)

Thus, exploiting the permutational symmetry of the integrand, Eq. (III.2.6) implies
Eq. (III.2.1) with

C =
2

πa2
1D

∫

dx G(2)(x, x). (III.2.8)
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With this definition, we see that the contact can be interpreted as a measure of the
probability of finding two particles in the same region of space.

The generalization to the κ-component case is straightforward, by restricting the sum-
mations on specific components rather than summing over all the N particles. More
explicitly, for two spin-components σ and σ′, we define

G
(2)
σσ′(x, x′) =

∫

dx1 . . . dxN ψ(x1, . . . , xN)2
∑

i∈Iσ, j∈Iσ′ , i6=j

δ(x− xi)δ(x
′ − xj), (III.2.9)

where Iσ is the subset of {1, . . . , N} associated with particles of type σ. Then, it is easy
to prove that

nσ(k) ∼
k→∞

Cσk
−4, (III.2.10)

where we have

Cσ =
2

πa2
1D

∫

dx
κ
∑

σ′=1

G
(2)
σσ′(x, x), (III.2.11)

which can be seen as a measure of the probability of finding a particle of type σ in the
same region of space than another particle. Notice that if σ is a fermionic component,
the term in σ′ = σ cancels out. Moreover, if the mixture is completely balanced, or of it
contains only two components, all the contacts are equal. In every case, we can define
the total contact as:

Ctot =
κ
∑

σ

Cσ

=
2

πa2
1D

∫

dx G(2)(x, x).

(III.2.12)

III.2.1.3. Tan sweep theorem

Also known as Tan adiabatic theorem in the spin−1
2

case, this theorem allows to relate
the contact to the derivative of the the energy as a function of the scattering length.
It is a simple consequence of the Hellmann-Feynman theorem [Feynman 1939]. More
precisely, we have:

∂E

∂a1D
=

2~2

ma2
1D

∫

dx1 . . . dxN ψ(x1, . . . , xN )2
∑

i<j

δ(xi − xj)

=
~2

ma2
1D

∫

dx G(2)(x, x),

(III.2.13)

and therefore, using the definition of the total contact (Eq. (III.2.12)), we obtain

∂E

∂a1D
=
π~2

2m
Ctot. (III.2.14)

In order to write the equivalent of Eq. (III.2.14) for Cσ, we have to modify the definition
of our interaction potential, by writing a1Dδ(xi − xj) ≡ aσσ′δ(xi − xj) when either (i, j)
or (j, i) is in Iσ × Iσ′ . Then, the Hellmann-Feynman theorem implies

∂E

∂aσσ′

=
2~2

ma2
σσ′ (1 + δσσ′ )

∫

dx G
(2)
σσ′(x, x), (III.2.15)
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where δσσ′ is the Kronecker symbol, and therefore

Cσ =
m

π~2

κ
∑

σ′=1

(1 + δσσ′)
∂E

∂aσσ′

. (III.2.16)

Note the term in σ = σ′ is non-zero only in the case where we consider a bosonic
component.

III.2.2. Exact results in the fermionized limit

III.2.2.1. Exact contact from the perturbative ansatz

Given Eq. (III.2.14), we can relate the total contact in the g1D → ∞ limit to the
K = − limg1D→∞

∂E
∂g−1

1D

parameter that we introduced in the perturbative ansatz (section

I.2.2.2) by the simple relation:

Ctot(∞) =
m2

π~4
K. (III.2.17)

Given a solution, characterized by a vector ~a of coefficients (c.f. the defintion of the
ansatz in Eq. (I.2.16) and the relation (I.2.21) between K and ~a), we can be write
Ctot(∞):

Ctot(∞) =
m2

π~4

N−1
∑

k=1

∑

P ∈SN

(aP − aP (k,k+1))
2αk, (III.2.18)

where (k, k + 1) is the transposition between particles at positions k and k + 1 and αk

are the exchange coefficients defined in Eq. (I.2.22).

Moreover, the contact for a given spin-component can be extracted from Eq. (III.2.16)
by restricting the second sum in Eq. (III.2.18) over the subset S̃N(k||σ, σ′) of permuta-
tions so that the indexes in positions k and k + 1 correspond to particles belonging to
components σ and σ′:

S̃N(k||σ, σ′) = {P ∈ SN |(P (k), P (k + 1)) ∈ Iσ × Iσ′ ∪ Iσ′ × Iσ}. (III.2.19)

With these notations, we have:

Cσ(∞) =
m2

2π~4

κ
∑

σ′=1

(1 + δσσ′)
N−1
∑

k=1

∑

P ∈S̃N (k||σ,σ′)

(aP − aP (k,k+1))
2αk. (III.2.20)

In Figs. III.2.1 and III.2.2, the Cσ(∞) for balanced fermionic mixtures and Bose-Fermi
mixtures (respectively) computed from Eq. (III.2.20) are plotted and compared with
the nσ(k)k4 functions computed in section III.1.2.3. We observe that the asymptotic
behaviors verify Eq. (III.2.10), which comfort us on the consistence of our calculations.
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Figure III.2.1: Ground state nν(k)k4a3
ho/Nν functions as functions of kaho where aho =

√

~/mω
for three strongly interacting balanced mixtures of N = 6 fermions (solid lines, Nν = 3, 2, 1.).
The corresponding symmetries YΓ that were determined in chapter II are associated with each
panel. The contacts Cν(∞) computed from Eq. (III.2.20) are shown in dashed lines.

Figure III.2.2: Ground state nµ(k)k4a3
ho/Nν functions as functions of kaho where aho =

√

~/mω
for three strongly interacting Bose-Fermi mixtures of N = 6 particles (from left to right:
(3B , 3F ), (2B , 2F , 2F ), (2B , 2B , 2F )). For a given mixture, spin-components with the same
number of particles and same statistics have the same distributions. The corresponding sym-
metries YΓ that were determined in chapter II are associated with each panel. The contacts
Cµ(∞) computed from Eq. (III.2.20) are shown in dashed lines. From [Decamp 2017].
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III.2.2.2. Discussion: Tan’s contact as a symmetry probe

In Fig. III.2.1, we see that the contact of balanced fermionic mixtures increases as a
function of the number κ of components. This behavior was qualitatively observed in
the LENS experiment [Pagano 2014]. This property is directly related to the global
symmetry of the mixture: when the number of spin-components increases, the mixture
is more an more spatially symmetric. As discussed in chapter II, the (generalized) Lieb-
Mattis theorem implies that the energy of the system decreases, and more precisely
that the energy slope ∂E/∂a1D increases. Therefore, because of Tan sweep theorem
(Eq. (III.2.16)), we can conclude that the contact also increases with the number of
components. In the fermionized limit, this statement is readily obtained by observing
Eq. (III.2.20). Besides, it also allows to understand why the bosonic contact of a balanced
Bose-Fermi mixture is bigger than the fermionic one, as one can see in Fig. III.2.2.

Thus, we see that the contact constitutes an experimentally accessible quantity in order
to compare spatial symmetries. In fact, because of Eq. (III.2.17) and the fact that
the K coefficients label the states of the system, a precise measurement of Ctot via a
standard time-of-flight technique would allow to determine uniquely the state of the
system, and thus its spatial symmetry (c.f. Fig. II.2.1). Besides, as discussed in section
II.2.1, because of the duality between the spatial symmetry and the spin symmetry, the
contact can also be seen as a magnetic structure probe [Decamp 2016b].

Finally, we stress that our discussion is based on strong assumptions: zero tempera-
ture, infinite interactions, purely one-dimensional system. Section III.2.3 is devoted to
studying finite corrections to the contact. However, Tan’s contact is associated with high
momenta. As argued in [Olshanii 2003], it is then a more robust experimental parameter
as compared to low-momentum related quantities, as it is less sensitive to temperature
and to residual three-dimensional effects in optical lattices (c.f. Fig. I.1.3).

III.2.3. Scaling laws for Tan’s contact

The results presented in this section where published in [Decamp 2016b] (paragraphs
III.2.3.1 and III.2.3.2) and [Decamp 2018] (paragraph III.2.3.3).

III.2.3.1. Contact at finite interaction strength

Preliminary discussion: scaling parameter in the harmonic trap

In this paragraph, we discuss what is the dimensionless parameter we have to consider
when going to the thermodynamic limit.

To do so, let us first analyze the Lieb-Liniger case (c.f appendix A), whose Hamiltonian
is given by

ĤLL =
N
∑

i=1

− ~2

2m

∂2

∂x2
i

+ g1D

∑

i<j

δ(xi − xj), (III.2.21)
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where the particle coordinates verify xi ∈ [0, L]. The thermodynamic limit consists in
considering N,L → ∞ with the lineic density n ≡ N/L being kept constant. By writing
the coordinates in terms of the typical inter-particle distance yi ≡ nxi ∈ [0, N ], it is
natural to write:

ĤLL =
~2n2

2m





N
∑

i=1

− ∂2

∂y2
i

+ 2γ
∑

i<j

δ(yi − yj)



 , (III.2.22)

where
γ =

mg1D

~2n
(III.2.23)

is the dimensionless interaction strength. Then, we see that the total energy per particle
will verify, in the thermodynamic limit, the following scaling behavior:

E

N
=

~2n2

2m
e(γ), (III.2.24)

with e(γ) a dimensionless function, that can be obtained, at least pertubatively, by
Bethe ansatz (c.f. section A.2.2). For more complicated statistics than a one-component
bosonic system, the function e will also depend on the single-species polarizations {pσ} ≡
{Nσ/N}σ∈{1,...,κ}. The take-home message is that we have factorized ĤLL by the typ-
ical energy ~2n2/2m, which corresponds to the Fermi energy in the Tonks thermody-
namic limit, in order to obtain the adimensional scaling parameter γ (Eq. (III.2.23)) and
Eq. (III.2.24).

In the case where the system is trapped by a harmonic potential of frequency ω, we recall
that the Hamiltonian is given by

Ĥ =
N
∑

i=1

(

− ~2

2m

∂2

∂x2
i

+
1

2
mω2x2

i

)

+ g1D

∑

i<j

δ(xi − xj). (III.2.25)

Naively, one could think of re-scaling Ĥ it terms of ~ω for the energy and xi/a0 for

length (where a0 =
√

~/mω is the harmonic oscillator length). However, keeping in
mind the reasoning that we had in the absence of harmonic potential, we see that we
have to factorize by the Fermi energy in the Tonks thermodynamic limit, which is given
by ~ωN . Thus, by re-scaling the spatial coordinates by yi ≡ xi/a0

√
N , we obtain:

Ĥ = ~ωN





N
∑

i=1

(

− ∂2

∂y2
i

+
1

2N2
y2

i

)

+ α0

∑

i<j

δ(yi − yj)



 , (III.2.26)

where the adimensional interaction strength relevant for our problem is given by

α0 =
a0mg1D√
N~2

= − 2a0√
Na1D

. (III.2.27)

Therefore, analogously to Eq. (III.2.24) the total energy per particle in the thermody-
namic limit of the harmonically trapped system is of the form (in the multi-component
case)

E

N
= ~ωNf(α0, {pσ}), (III.2.28)

with f an adimensional function.
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Note that from these simple arguments, together with Tan adiabatic theorem (Eq. (III.2.14)),
we already see that Eq. (III.2.28) implies that the total contact Ctot verifies

Ctot(α0) =
N5/2

πa3
0

α2
0

∂f(α0, {pσ})

∂α0

. (III.2.29)

We now proceed to find an explicit expression for this scaling.

A local density approximation approach

The Local Density Approximation (LDA) consists in stating that when the harmonic po-
tential is sufficiently shallow as compared to the typical length of the system, as it is the
case in a typical cold atom experiment, we can consider the system as "locally homoge-
neous". Then, if we have an expression in the homogeneous case for e(γ) (Eq. (III.2.24)),
we can obtain results in the harmonically trapped case by considering the following
density functional:

E[n] =
∫

n(x)dx

(

~2n(x)2

2m
e(γ) +

1

2
mω2x2 − µ

)

, (III.2.30)

where the density profile n(x) is now a function of x that has to be determined, and
the chemical potential µ is a Lagrange multiplier allowing to fix the total number of
particles:

∫

n(x)dx = N. (III.2.31)

LDA is a peculiar class of approximation in density functional theory [Parr 1980].

Then, we obtain the ground-state density profile by minimizing E[n], i.e. by solving
δE[n]/δn = 0. This yields

3

2

~
2

m
e(γ)n(x)2 − g1D

2
e′(γ)n(x) = µ

(

1 − x2

R2
T F

)

, (III.2.32)

where RT F ≡
√

2µ/(mω2) is the Thomas-Fermi radius.

Once the ground-state density profile n(x) is known, it is easy to obtain Tan’s contact
by combining Eq. (III.2.30) to Tan adiabatic theorem (Eq. (III.2.14)):

Ctot =
g2

1Dm
2

2π~4

∫

dx n(x)2e′
(

mg1D

~2n(x)

)

. (III.2.33)

Note that in this paragraph we have considered only one density profile n(x). This
corresponds to the case of a single-component bosonic system or of a balanced fermionic
or bosonic mixture. If different density profiles n1, . . . , nκ have to be considered, one will
have to define a density functional E[n1, . . . , nκ] and the chemical potentials accordingly.
This situation is a little bit more intricate, and in this thesis we have only considered
the case of a balanced fermionic mixture [Decamp 2016b] (c.f. next paragraph), which
is relevant for the LENS experiment [Pagano 2014]. Our method was adapted to the
single-component bosonic case in [Lang 2017].
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Expression for strongly interacting balanced fermionic mixtures

In the homogeneous regime [Guan 2012], we dispose of an explicit Laurent expansion for
e(γ) when γ → ∞ in the case of a balanced fermionic mixture. It is given by:

e(γ) =
γ→∞

π2

3

[

1 − 4Z1(κ)

γ
+

12Z1(κ)2

γ2

−32

γ3

(

Z1(κ)3 − Z3(κ)π2

15

)

+ O
(

1

γ4

)]

,

(III.2.34)

with

Z1(κ) = −1

κ

(

ψ
(

1

κ

)

+ CEuler

)

, (III.2.35)

and

Z3(κ) =
1

κ3

(

ζ
(

3,
1

κ

)

− ζ(3)
)

, (III.2.36)

where CEuler ≈ 0.577 is the Euler constant and ψ and ζ are respectively the Digamma
and Riemann Zeta functions [Abramowitz 1965]. In section A.3.3.2, we provide a sketch
of the proof of relation (III.2.34).

The next step is to write the chemical potential µ and the density profile n(x) as similar
1/γ−expansions whose coefficients are unknown, and plugging these expansions into
Eqs (III.2.32) and (III.2.31). Then, solving it order by order using Eq. (III.2.34) and
applying Eq. (III.2.33), we find the strong-coupling expansion for the Tan’s contact of a
balanced fermionic mixture:

Ctot(α0) =
α0→∞

N5/2

πa3
0

[

128
√

2Z1(κ)

45π2
+

2(315π2 − 4096)Z1(κ)2

81π4α0

−64
√

2[25(1437π2 − 14336)Z1(κ)3 + 1728π4Z3(κ)]

14175π6α2
0

+ O
(

1

α3
0

)]

.

(III.2.37)

In particular, in the fermionized limit, Eq. (III.2.37) implies

Ctot(∞) =
N5/2

a3
0

128
√

2Z1(κ)

45π3
. (III.2.38)

Notice that these expressions have the same form as Eq. (III.2.29), which was predicted
only by physical arguments. Besides, by taking the κ → ∞ limit of an infinite num-
ber of components, since limκ→∞ Z1(κ) = 1, we see that we obtain the strong-coupling
expansion for the contact in the bosonic case [Olshanii 2003,Lang 2017]. This suppres-
sion of the effects of internal degrees of freedom when κ → ∞, also known as high-spin
bosonization was also highlighted in [Yang 2011, Guan 2012, Liu 2014]. Experimentaly,
this phenomenon was observed by analyzing the collective mode frequencies when in-
creasing the number κ of fermionic components up to κ = 6 [Pagano 2014].

The N5/2−dependence of the contact was also observed in Monte Carlo numerical sim-
ulations [Matveeva 2016], these results thus constituing an analytical proof. Moreover,
we observe that Ctot is an increasing function of the number of components κ, as ob-
served in the LENS experiment [Pagano 2014] and explained qualitatively by symmetry
arguments in section III.2.2.2.
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Figure III.2.3: Comparison between the strong-coupling expansion (Eq. (III.2.37)) to first and
second order in 1/α0 (dashed and continuous lines, respectively), and the DMRG simulations
performed by Matteo Rizzi and Johannes Jünemann for the contacts Cν of different balanced
fermionic mixtures (Nν = 2; blue circles: κ = 2, orange squares: κ = 3, green diamonds: κ = 4,
red up-triangles: κ = 5, violet down-triangles: κ = 6), as functions of α0/2 = a0/(|a1D |N1/2).
By removing the N5/2-dependence (inset) and then the asymptotic value of Cν (main panel),
we see that the data collapse, thus displaying a very weak dependence on the number κ of
components. From [Decamp 2016b].
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In Fig. III.2.3, we compare the contact strong-coupling expansion of Eq. (III.2.37) with
numerical DMRG data obtained by Matteo Rizzi and Johannes Jünemann [Decamp 2016b].
The agreement between the two is extremely good, although we have used strong as-
sumptions in order to perform the LDA. Indeed, our result should, in principle, work
only for a very large number of atoms, but we see that it is already very accurate for
few-body systems (4 ≤ N ≤ 12). This property, that was recently discussed in the
bosonic case [Rizzi 2018], suggests that few-body systems, that are hence more accessi-
ble for numerical and analytical calculations, already capture the essential behaviors of
many-body systems (see also [Grining 2015b]). Moreover, by re-scaling the contacts by
their values at infinite interactions, we note that all the plots collapse almost perfectly
and therefore display a very weak dependence on κ.

III.2.3.2. Contact at finite temperature

In section III.2.1, when introducing Tan’s contact and Tan sweep theorem, we have only
considered pure states. However, when temperature is finite, statistical mixtures have
to be considered. Hopefully, this generalization is pretty straightforward. In particular,
the finite-temperature version of Eq. (III.2.16) in the grand canonical ensemble becomes
[Pâţu 2017]:

Cσ(T ) =
m

π~2

κ
∑

σ′=1

(1 + δσσ′)

(

∂Ω

∂aσσ′

)

µσ ,T

, (III.2.39)

where Ω is the grand potential defined by

Ω = −kBT ln Z, (III.2.40)

with the grand partition function given by

Z = Tr
[

e(
∑κ

σ=1
µσN̂σ−Ĥ)/kBT

]

. (III.2.41)

Virial expansion at high temperatures

In general, Ω is hard to compute exactly in our system. However, in the limit of high
temperatures, i.e.

~ω

kBT
≪ 1, (III.2.42)

it can be expanded in powers of the fugacity, which verifies in this limit [Landau 1980]

zσ ≡ e
µσ

kBT ≪ 1. (III.2.43)

Such an expansion is known as a virial expansion, and its coefficients can be computed
analytically in the strongly repulsive limit [Ho 2004,Liu 2009,Liu 2010]. It has allowed
to compute the high-temperature contact in the fermionized regime in three-dimensional
SU(2) systems [Hu 2011], in one-dimensional bosonic Tonks gas [Vignolo 2013] and
SU(κ) systems [Decamp 2016b]. In the following, we will first explain how this ex-
pansion works in the simplest case of the one-dimensional Tonks gas, and then show how
it can be extended to other statistics.
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In a one-component Bose gas, in the limit of high temperatures, we can forget the σ
index and write

Z =
z→0

1 + zQ1 + z2Q2 + O(z3), (III.2.44)

with Qn the partial partition function of clusters of size n, i.e.

Qn = Trn

[

e−Ĥn/kBT
]

. (III.2.45)

By taking the logarithm, we can write Ω as

Ω =
z→0

−kBTQ1

(

z + b2z
2
)

+ O(z3), (III.2.46)

with the second virial coefficient given by

b2 = (Q2 −Q2
1/2)/Q1. (III.2.47)

Then, the one-component version of Eq. (III.2.39) implies

C(T ) =
2m

π~2

∂Ω

∂a1D

=
z→0

2m

π~2λdB
kBT Q1 c2z

2 + O(z3),

(III.2.48)

where λdB =
√

2π~2/mkBT and the adimensional coefficient c2 is defined by

c2 = − ∂b2

∂(a1D/λdB)
. (III.2.49)

In the strongly interacting and high temperature limit, the following relations hold:

Q1 =
+∞
∑

k=0

e
− ~ω

kBT
(n+1/2)

∼ kBT

~ω
,

(III.2.50)

and

z ∼ N~ω

kBT
, (III.2.51)

which can be deduced from

N =
∫

dǫ ρS(ǫ)
1

e(ǫ−µ)/(kB T ) + 1
(III.2.52)

with the density of states given by ρS(ǫ) = 1/(~ω) and by taking the high T limit.
Moreover, we have

c2 ∼ 1√
2
. (III.2.53)

This last relation is obtained using the fact that

Q2 = Q1

∑

ν

e−ǫrel
ν /kBT , (III.2.54)
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where ǫrel
ν are the energies of the two-body problem. In the harmonic trap, one can prove

that [Busch 1998]

ǫrel
ν = ~ω

(

ν +
1

2

)

, (III.2.55)

with ν the solution of the following transcendental equation:

f(ν) ≡ Γ(−ν/2)

Γ(−ν/2 + 1/2)
=

√
2a1D

a0
. (III.2.56)

In the fermionized regime a1D, this implies ν ∈ 2N + 1. Then, Eq. (III.2.53) becomes

c2 = −λdB

∑

ν

~ω

kBT

∂ǫrel
ν

∂a1D
e−ǫrel

ν /kBT , (III.2.57)

and

∂ǫrel
ν

∂a1D
=
ǫrel

ν

∂ν

∂ν

∂f

∂f

∂a1D

=

√
2~ω

a0

∂ν

∂f
.

(III.2.58)

Using Eq. (III.2.56) and some algebraic relations on the Euler function Γ yields, taking
ν = 2n+ 1 with n ∈ N:

∂ν

∂f
=

2

π

Γ
(

3
2

+ n
)

n!
. (III.2.59)

Then, we have to evaluate the following sum:

∑

n∈N

Γ
(

3
2

+ n
)

n!
e

− ~ω
kBT (2n+ 3

2), (III.2.60)

which can be performed exactly and is equal to [Hu 2011]
√
π

4
[

2 ~ω
kBT

sinh
(

~ω
kBT

)]3/2
. (III.2.61)

Thus, taking the ~ω ≪ kBT limit, we readily obtain Eq. (III.2.53).

Finally, putting Eqs. (III.2.50), (III.2.51) and (III.2.53) into Eq. (III.2.48), we find the
high-temperature dependence of the Tan’s contact of the Tonks gas:

C(T ) =
N2

π3/2a3
0

√

kBT

~ω
. (III.2.62)

Refinements for this formula can be found in [Yao 2018].

In [Decamp 2016b], we have generalized Eq. (III.2.62) to fermionic mixtures. Here,
we will describe how to generalize it to Bose-Fermi mixtures, which is straightforward.
Instead of writing the grand partition function as in Eq. (III.2.44), we write

Z =
z→0

1 +
κ
∑

σ=1

zσQ1 +
∑

σ,σ′

zσzσ′Q2σσ′ + O(z3), (III.2.63)
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Figure III.2.4: Ground state normalized Tan’s contacts as functions of kBT/~ω for three
strongly interacting balanced mixtures of N = 6 fermions (solid lines, Nν = 3, 2, 1.). The
dashed lines correspond to Eq. (III.2.65) while the T = 0 points are given by the exact solution
(Eq. (III.2.20)). From [Decamp 2016b].

with

zσ ∼ Nσ
~ω

kBT
(III.2.64)

in the high temperature and strongly repulsive limit. Note that Q2σσ = 0 if is σ is a
fermionic component, and otherwise Q2σσ′ = Q2 as found in the Tonks gas. Then, apply-
ing the same procedure than before to the generalized Tan sweep relation (Eq. (III.2.39))
yields

Cσ(T ) =
Nσ

π3/2a3
0

√

kBT

~ω

κ
∑

σ′=1

χσσ′Nσ′ , (III.2.65)

where

χσσ′ =

{

0 if σ = σ′ and σ is a fermionic component
1 otherwise

. (III.2.66)

Notice that in the case of a balanced fermionic mixture, Eq. (III.2.65) implies

Ctot(T ) =
N2

π3/2a3
0

√

kBT

~ω

κ− 1

κ
(III.2.67)

and once again we recover the Tonks result (Eq. (III.2.62)) in the κ → ∞ limit.

In Fig. III.2.4 are plotted the high-temperature dependencies of balanced fermionic mix-
tures. The high-temperature curves are given by Eq. (III.2.65) and the T = 0 results
correspond to the exact solution (Eq. (III.2.20)).

Discussion

Several interesting facts are worth noticing. First of all, in the fermionized limit g1D →
∞, the contact is an increasing function of temperature. This is a typical one-dimensional
effect: indeed, one would expect that the correlations (and thus the contact) would be
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destroyed by the high temperatures. This is indeed the fact for three dimensional sys-
tems [Hu 2011], but the dimensional constraint implies an opposite behavior for one-
dimensional systems (c.f. section I.1.1). Note that we did not discuss the case where
interactions are finite, where we expect the presence of maximum, as recently obtained
in the bosonic case [Yao 2018]. Moreover, we observe that the normalized contact is still
an increasing function of the number of components, in agreement with the experimen-
tal observations [Pagano 2014]. Finally, the fact that the second virial coefficient is a
constant (Eq. (III.2.53)) implies that the contact at infinite interactions is a universal
quantity, and thus, as already pointed out in section III.2.2.2, a robust experimental
observable.

An alternative way of deriving Tan’s contact temperature dependence consists in per-
forming, analogously to what we did in section III.2.3.1, an LDA on the thermal version
of the Bethe ansatz equations (See appendix A, sections A.2.3 and A.3.4). This was
done recently in [Yao 2018] for the harmonically trapped Lieb-Liniger gas. This method
has the advantage of allowing to express the contact simultaneously as a function of the
temperature and the interaction strength, and for all temperatures. Nevertheless, ex-
tension to multi-component systems appears to be more intricate, given the complexity
of the thermodynamic Bethe ansatz equations in this case, which involve an infinite set
of coupled equations (c.f. Eq. (A.3.44)). A promising alternative to these equations has
however been proposed in [Pâţu 2016] for the Gaudin-Yang model.

III.2.3.3. Influence of the transverse confinement

In section I.1.2.2, we have seen that experimentalists are able to construct quasi-1D
traps for ultracold atoms by superimposing counter-propagating lasers with frequencies
(ωx, ωy, ωz) where ωx = ωy = ω⊥ such that the aspect ratio λ = ωz/ω⊥ is very small.
Therefore, the energy gap between the transverse ground state and the first excited state
is higher than all the typical energies of the system, and the systems behaves essentially
like a one-dimensional system oriented in the z direction. Nevertheless, one should
not forget that, even if the system in this regime can be described by one-dimensional
Hamiltonian, the interactions between particles are intrinsically three-dimensional. This
can be seen in the derivation and expression of the effective one-dimensional scattering
length a1D [Olshanii 1998], which is a function of the three-dimensional scattering length
a3D (c.f. Eq. (I.1.29)).

Tan’s contact, that we defined in Eq. (III.2.11), is a two-body quantity. Then, it depends
crucially on the three-dimensional nature of the contact interactions. Thus, it is natural
to ask ourselves how the contact behaves as a function of λ, i.e. in the dimensional
crossover consisting in allowing progressively the transverse states to be populated. In
the following, we describe how this behavior can be studied in the case of a dilute Bose
gas trapped in a potential of the form V (x, y, z) = m/2(ω2

⊥x
2 + ω2

⊥y
2 + ω2

zz
2) with

λ ≫ 1, as published [Decamp 2018]. This is a bit different from what we studied until
now, that is strongly interacting mixtures. However, it constitutes a first step toward the
characterization of the dimensional crossover behavior of the contact in these systems.
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Effective one-dimensional Gross-Pitaevskii equation

The Gross-Pitaevskii theory is a mean-field theory describing dilute degenerate Bose
gases [Gross 1961,Pitaevskii 1961]. In the λ = ωz/ω⊥ ≪ 1 regime, an effective stationary
Gross-Pitaevskii equation can be written [Leboeuf 2001,Gerbier 2004,Muñoz Mateo 2006]:

[

− ~2

2m

∂2

∂z2
+ U(z) + ǫ(n1) − E

]

ψ(z) = 0, (III.2.68)

where the 1D order parameter ψ(z) is associated to the effective 1D density profile
through n1(z) = |ψ(z)|2, U(z) is an external potential, and ǫ(n1) is given by [Fuchs 2003,
Gerbier 2004]

ǫ(n1) = ~ω⊥
√

1 + 4a3Dn1. (III.2.69)

The role of this parameter is to describe the effective one-dimensional interactions in the
dimensional crossover. Indeed, in the regime where a⊥n1 ≪ 1, ǫ(n1) ≃ ~ω⊥+2~ω⊥a3Dn1,
which corresponds to the standard non-linearity ∝ ψ|ψ|2 and thus to the 1D equivalent
of the 3D Gross-Pitaevskii equation. In this regime, which is referred as the mean field
regime (MF) in the following, the transverse wave function is in the ground state of
the transverse harmonic oscillator. On the contrary, when a3Dn1 ≫ 1, we have ǫ(n1) ≃
2~ω⊥

√
a3Dn1, the non-linearity ∝ ψ|ψ| is no longer standard and many transverse excited

states are populated, thus displaying a Thomas-Fermi profile: this is referred as the
transverse Thomas-Fermi regime (TTF).

Homogeneous contact from the quantum fluctuations

We now turn to the calculation of Tan’s contact in the homogeneous case, corresponding
to U(z) = 0 in Eq. (III.2.68). In this case the contact is a constant function of z, and
we rather consider the homogeneous contact, defined as

C̃ =
2

πa2
1D

G(2)(0, 0). (III.2.70)

In the homogeneous case where the gas is in a box of length L, we simply have C = LC̃.
C̃ is also called contact density.

Note that the correlations G(2)(0, 0) can not be deduced from Eq. (III.2.68), which is a
mean-field model. In order to do so, we have to take into account the quantum fluctu-
ations by a Bogoliubov method [Gerbier 2004]. Usually, in a 1D quantum model, one
should not only take into account the density fluctuations, but also the phase fluctuations.
It is indeed these phase fluctuations, related to the collective nature of excitations, which
explain for example the impossibility of finite-temperature phase transitions in 1D (see
section I.1.1 and the MWH theorem). However they are related to the long-range order,
or equivalently the low-momenta: since the contact is associated to the high-momentum
behavior, we can safely neglect them in what follows.

The Bogoliubov expansion in our case is then very similar to its 3D counterpart. The
idea is to consider that the system is highly degenerate, with N0 ≡ N particles in the
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ground-state solution ψ0 of Eq. (III.2.68), and add a quantum fluctuation δΨ̂ to the field
operator of the system [Pitaevskii 2016]:

Ψ̂(z) =
√

N0ψ0(z) +
∑

k 6=0

ψk(z)âk, (III.2.71)

where âk annihilates a particle with momentum ~k (with an analogous equation for the

creation field operator Ψ̂†). After expanding Eq. (III.2.68) on this basis up to the second

order in δΨ̂, we can perform the celebrated Bogoliubov transformation [Bogoliubov 1947]

which consists in diagonalizing the Hamiltonian in terms of the bosonic operator b̂k =
ukâk + v−kâ

†
−k, where uk and vk obey the Bogoliubov-de Gennes equations:

~ω

(

uk

vk

)

=

(

~2k2

2m
+mc2 mc2

−mc2 −~2k2

2m
−mc2

)(

uk

vk

)

, (III.2.72)

as well as u2
k − v2

k = 1, which is a consequence of the bosonic commutation relations.
In Eq. (III.2.72), c is the effective velocity of sound, and is given in our system by
[Stringari 1996,Zaremba 1998]

mc2 = n1ǫ
′(n1). (III.2.73)

Then, solving Eq. (III.2.72) yields the famous Bogoliubov spectrum, given by

~ω(k) =

√

√

√

√

~2k2c2 +

(

~2k2

2m

)2

. (III.2.74)

The momentum distribution for k 6= 0 at zero temperature can then been obtained in
the Bogoliubov paradigm as:

n(k) = 〈â†
kâk〉 = v2

k

=
~2k2/2m+mc2

2~ω(k)
− 1

2
.

(III.2.75)

The homogeneous contact is then extracted from Eqs. (III.2.73), (III.2.74) and (III.2.75),
giving

C̃ =
4

a4
⊥

a2
3Dn

2
1

1 + 4a3Dn1

, (III.2.76)

where a⊥ =
√

~/mω⊥ is the radial harmonic oscillator length.

Notice that the contact goes from a O(a3Dn1) to a O((a3Dn1)
2) behavior when going

from the TTF to the MF regime.

Comparison with Lieb-Liniger theory

Here we compare Eq. (III.2.76) to the results obtained from a completely different
paradigm, that is the Lieb-Liniger theory (c.f. appendix A, section A.2).

Tan sweep theorem (Eq. (III.2.16)) allows to express the homogeneous contact as a
function of the adimensional coupling strength γ = −2/a1Dn1 and the adimensional
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ground-state energy e (which is obtained solving the Bethe ansatz equations of the Lieb-
Liniger model, Eqs (A.2.9), (A.2.13), (A.2.14)):

C̃ =
4n2

1

a2
1D

e′(γ), (III.2.77)

where a1D’s expression if given in Eq. (I.1.29). Moreover, if a⊥ ≫ a3D, one can consider
simultaneously the γ ≪ 1 (i.e. a1Dn1 ≫ 1) regime and the MF regime a3Dn1 ≪ 1.
In this case, Eq. (I.1.29) implies a1D ≈ −a2

⊥/a3D and the low-coupling expression of e
(Eq. (A.2.17)) yields

C̃ ∼ 4a2
3Dn

2
1

a4
⊥

, (III.2.78)

which corresponds exactly to the a3Dn1 ≪ 1 equivalent of C̃ in Eq. (III.2.76).

In the other regimes, it is not possible to compare analytically the one-dimensional Lieb-
Liniger theory with our approach. However, a variational gaussian ansatz, known as the
generalized Lieb-Liniger theory (GLL), was proposed in [Salasnich 2004,Salasnich 2005]
in order to take into account the effects of the transverse confinement. It consists in
supposing that the 3D wave function Φ(~r1, . . . , ~rN) (where ~ri ≡ (xi, yi, zi) is the 3D
coordinate of particle i) is given by:

Φ(~r1, . . . , ~rN) = ψ(z1, . . . , zN )
N
∏

i=1

exp
(

−x2
i
+y2

i

2σ2

)

√
πσ

. (III.2.79)

Here, the variational parameter σ corresponds to the transverse width of the cloud. The
lineic total energy E can then be extracted within this hypothesis and is equal to

E =
~2

2m
n3

1e

(

2a3D

a2
⊥n1σ2

)

+
~ω⊥

2
n1

(

1

σ2
+ σ2

)

, (III.2.80)

where e is obtained by solving numerically the Bethe ansatz equations. Then, δE/δσ = 0
yields

σ4 = 1 + 2a3Dn1e
′
(

2a3D

a2
⊥n1σ2

)

. (III.2.81)

Once E is obtained by solving Eqs. (III.2.80) and (III.2.81) consistently, we can extract
the homogeneous contact from Eq. (III.2.75) as well as the relation [Stringari 1996,
Zaremba 1998]:

c =

√

n1

m

∂2E
∂n2

1

. (III.2.82)

In Fig. (III.2.5) we have plotted the homogeneous contact obtained by this method and
compared it to the analytic result of Eq. (III.2.76). As one can see, the two methods
give mutually consistent results.

Trapped one-dimensional contact

Here we extract the contact C from the homogeneous contact C̃ in the realistic case
where U(z) = mωzz

2/2. To do so, in the same spirit as what we did in section III.2.3.1,
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Figure III.2.5: Homogeneous contact C̃ in units of a−4
⊥ as a function of a⊥n1, with a3D/a⊥ =

0.025. The dashed blue line is plotted using Eq. (III.2.76) and we obtained the solid red line
numerically by the GLL method. The vertical gray line represents a⊥n1 = 1 and corresponds
to the transition from the MF to the TTF regime.

the idea is to perform a LDA. However, in the present case, we dispose of an analytic
expression for the density profile [Muñoz Mateo 2006]:

n1(z) =
1

4a3D

(

λZ

a⊥

)2 [

1 −
(

z

Z

)2
]

+
1

16a3D

(

λZ

a⊥

)4 [

1 −
(

z

Z

)2
]2

,

(III.2.83)

where Z, the axial Thomas-Fermi radius, verifies

1

15

(

λZ

a⊥

)5

+
1

3

(

λZ

a⊥

)3

=
λNa3D

a⊥
≡ χ1, (III.2.84)

and can be approximated by [Muñoz Mateo 2008]

λZ

a⊥
≃
(

1

(15χ1)4/5 + 1
3

+
1

57χ1 + 345
+

1

(3χ1)4/3

)−1/4

. (III.2.85)

The χ1 parameter characterizes the transtion between the TTF regime (χ1 ≫ 1) and
the MF regime (χ1 ≪ 1) in the harmonic trap [Menotti 2002].

Then, the LDA approximation implies C =
∫

dz C̃(n1(z)), which yields

C =
{

λZ
√

λ2Z2 + 2a2
⊥
(

2λ6Z6 + 14a2
⊥Z

4λ4 + 5a4
⊥λ

2Z2 − 15a6
⊥
)

+30a8
⊥ artanh





λZ
√

λ2Z2 + 2a2
⊥











1

30a8
⊥λ (λ2Z2 + 2a2

⊥)
3/2
.

(III.2.86)

In the TTF and MF regimes, Eq. (III.2.86) admits respectively the more compact forms:

C ∼
χ1≫1

a3DN

a4
⊥

≡ CT T F , (III.2.87)
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Figure III.2.6: Tan’s contact C in units of a−3
⊥ as a function of a3D/a⊥. The black curve is

plotted using Eq. (III.2.86), while the dashed blue and dot-dashed red curves correspond the
MF and TTF expansions from Eqs (III.2.87) and (III.2.88), respectively. The vertical gray line
verifies χ1 = 1 and is associated with the transition from the MF to the TTF regime. The set
of parameters used in these plots is (N = 1000, λ = 0.1).

and

C ∼
χ1≪1

4(3λ)2/3

5a
14/3
⊥

a
5/3
3DN

5/3. (III.2.88)

This last expression is, as expected, compatible with the contact obtained by LDA on
the weak coupling Lieb-Liniger expansion of the homogeneous contact [Olshanii 2003,
Lang 2017].

We observe that the contact has clearly distinct scaling behaviors in the TTF regime
(where it is linear in a3DN) and the MF regime (where C ∝ (a3DN)5/3). It can thus be
used as an experimental characterization of the dimensional regime in highly anisotropic
traps. Notice that, in the TTF regime, which is associated with a three-dimensional
system, the contact does not depend on the aspect ratio λ. In Fig. III.2.6, we have
plotted C as a function of a3D.

If we plot the contact as a function of the number of bosons, we can plot on a same
graph the TTF, MF and one-dimensional strongly interacting regimes. The relevant
parameter in order to characterize the transition from the strongly-interacting regime to
the MF regime in the 1D trap is ξ1 ≡ Na2

1D/a
2
z = Nλa2

⊥/a
2
3D [Menotti 2002,Petrov 2000,

Dunjko 2001]3. The strong-coupling expansion of the trapped bosonic contact, obtained
by a similar method as in section III.2.3.1, is given by [Lang 2017]:

C =
N

5
2λ

3
2

a3
⊥

[

256
√

2

45π2
+
√

ξ1

(

70

9π2
− 8192

81π4

)

]

. (III.2.89)

The transition between the three regimes is plotted in Fig. III.2.7.

We have summarized the main results for the bosonic contact in highly elongated traps
in table III.1.

3Alternatively, we could have chosen the α0 parameter defined in section III.2.3.1.
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⊥
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⊥
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⊥
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⊥
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⊥
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Table III.1: Contacts C̃ and C and density profiles in the TTF, MF and 1D strongly interacting (SI) regimes. The transition parameters are
given by χ1 = Nλa/a⊥ and ξ1 = Nλa2

⊥/a2. In the intermediate regime ξ1 ≃ 1 between MF and SI, the expressions are not known analitycally.
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Figure III.2.7: Tan’s contact C (black line) in units of a−3
⊥ as a function of the number of

bosons N . The thick vertical red line represents ξ1 = Nλa2
⊥/a2

3D = 1 and corresponds to the
transition from the strongly interacting regime to the MF regime. The left part is plotted
using Eq. (III.2.89), the right part using Eq. (III.2.86). The small shift at the transition is due
to corrections to Eq. (III.2.89) in the intermediate regime (which are not known analytically).
The vertical gray line corresponds to the transition from the MF regime to the TTF regime at
χ1 = Nλa3D/a⊥ = 1. The set of parameters used in these plots is (λ = 0.0005, a3D/a⊥ = 0.05).

Three-dimensional contact

As we discussed in section III.2.1, Tan’s contact paradigm is not specific to 1D. We can
indeed define a 3D contact C3D analogously to what we did for the 1D contact, which
will also verify the (3D) Tan relations. In highly anisotropic traps, it is then natural
to wonder how the 1D contact is related to the 3D one. In the quasi-1D regime, which
correspond to the MF regime in our case, it can be shown that they are related by a
simple geometric factor [Valiente 2012,He 2017]:

C3D = πa2
⊥C. (III.2.90)

Quite remarkably, despite the high non-uniformity of the system in the radial direction,
Eq. (III.2.90) shows that, in the quasi-1D regime, the system behaves as if it where a
cylinder of radius a⊥ with a constant lineic contact.

In the TTF regime, the numerous excited states should imply non-negligible non-uniformity
effects. Indeed, if we perform a 3D treatment similar to what we just did, i.e. by doing
a LDA on the homogeneous contact obtained by Bogoliubov theory, one obtain in the
3D Thomas-Fermi regime [Chang 2016]:

C3D =
64π2

7
a2

3DNn0, (III.2.91)

where n0 is the atomic density in the center of the trap. Using its expression in highly
elongated traps [Baym 1996], we get

C3D =
8π

7

a3DN

a2
⊥

(

15λNa3D

a⊥

)5/2

. (III.2.92)
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Moreover, in the TTF regime, the radial Thomas-Fermi radius is given by [Pitaevskii 2016]

R⊥ = 2a⊥(an1(0))1/4. (III.2.93)

Therefore, we have found

C3D =
8

7
πR2

⊥
a3DN

a2
⊥

= SCT T F ,

(III.2.94)

where S ≡ 8
7
πR2

⊥ is the cross section of the trap up to a numerical factor that can be
accounted for the non-uniformity of the system. This last relation is the generalization
of Eq. (III.2.90) to the TTF regime.





Conclusion

This thesis has been devoted to the theoretical study of one-dimensional quantum mix-
tures, in the experimentally relevant case of particles with short-range and strong re-
pulsions trapped in a harmonic potential. These particles are moreover supposed to
have equal masses and to be subjected to the same external and interaction potentials
regardless of their spin-component, which confers highly symmetric properties to the
system. This can be realized using ultracold atoms with a purely nuclear spin, as it
was recently achieved in the groundbreaking experiment of the group of L. Fallani in
Florence [Pagano 2014].

In the absence of an external harmonic potential, the system is integrable and one
disposes of an extremely powerful theoretical tool, namely the Bethe ansatz, which allows
in principle to obtain exact results in the system for any range of the interaction strength
and temperature. Although integrability is destroyed by the presence of the harmonic
potential, the system is also exactly solvable in the fermionized limit of infinite repulsions.
In chapter I, we have explained how, exploiting a perturbative ansatz, we have obtained
numerically the exact solutions for various few-body systems. Our program works in
principle for any number of particles and any kind of quantum mixture. Moreover, we
have provided a graph theory interpretation of the perturbative ansatz. Combined with
graph spectral theory, an analysis of our system using this interpretation would be an
interesting and potentially fruitful perspective.

Once these exact solutions are known exactly, a natural question is to characterize their
exchange symmetry. Indeed, although the spatial exchange symmetry of particles be-
longing to the same component is fixed by their bosonic or fermionic nature, the question
is more tricky to address when considering particles belonging to different components.
In chapter II, we have described how we have adapted the so-called class-sum method,
which allows to characterize to which irreducible representation a wave function belongs,
to the perturbative ansatz. We have studied in particular the symmetries of systems with
six particles, and analyzed the relation between the ordering of the energy levels and the
symmetries. We have shown that our system verifies the celebrated Lieb-Mattis theorem,
which states intuitively that it wants to be as symmetric as possible, whatever the kind
of mixture (bosonic, fermionic or mixed). Besides, we were able to compare energy levels
that are not comparable with this theorem. Moreover, we have highlighted a connec-
tion between this energy ordering and the central characters, i.e. the eigenvalues of the
class-sum operators. If proven, this connection would allow to compare systematically
the ordering of energy levels belonging to different symmetry class beyond the scope of
the Lieb-Mattis theorem. A possible use of this a priori knowledge would then be to
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adapt the perturbative ansatz consequently, which would considerably reduce the cost
of our calculations.

In the last and longest chapter of this thesis (chapter III), we have studied the one-body
correlations in our system. This quantity is of extreme theoretical importance, and can
be measured quite easily in a typical ultracold experiment by standard methods such
as in-situ absorption imaging and time-of-flight techniques. We have obtained a very
general formula in order to extract it from a solution obtained by the aforementioned
perturbative ansatz. Then, we have analyzed the exact density profiles and momentum
distributions of various few-body systems, highlighting the effects of the strong inter-
actions and of the symmetry. We have, in particular, obtained simple rules in order
to guess qualitatively the shape of these profiles from symmetry arguments. Thus, the
density profiles are so that particles which are submitted to an anti-symmetric exchange
(like fermions belonging to the same spin-component) tend to avoid each other, and
the momentum distributions contain as many peaks as the number of anti-symmetric
exchanges. However, although the role of symmetry is obvious, we have shown that a
measurement of the density profile or of the central part of the momentum distribution
does not allow to extract uniquely the symmetry class of the system.

Then, we have shown that this experimental symmetry characterization can be realized
by a measurement of the so-called Tan’s contact, a quantity that governs the algebraic
asymptotic behavior of the momentum distributions in short-range interacting quan-
tum gases. Indeed, we have proved that Tan’s contact is an increasing function of the
symmetry, and thus of the number of components, as observed in [Pagano 2014], which
makes it a tool in order to compare symmetries. Moreover, provided that the experiment
is sufficiently accurate, we have shown that a measure of Tan’s contact allows to infer
uniquely the spatial and spin symmetries, and thus that it can be used as a magnetic
structure probe.

The previous results were derived in the perfect case of infinite repulsions and zero
temperature. In order to be as relevant as possible for experiment, we have then derived
scaling laws for Tan’s contact.

First, we have obtained a strong coupling expansion for the contact of a balanced
fermionic mixture at zero temperature. To do so, we have performed a local density ap-
proximation on results obtained in the homogeneous case by Bethe ansatz. Interestingly,
although it is derived for a large number of particles, this law is in perfect agreement
with the exact results we obtained at infinite interactions and with finite-interaction
DMRG results obtained by our collaborators Matteo Rizzi and Johannes Jünemann.
This agreement is certainly due to a scale invariance in our system, that would require a
deeper treatment, for instance using the renormalization group theory or conformal field
theory. Moreover, we have shown that the dependence we have obtained as a function
of the number of particles and the number of components is in agreement with previous
Monte Carlo simulations [Matveeva 2016] and experimental observations [Pagano 2014].

Second, using a virial expansion, we have obtained an expression for the contact at high
temperature and infinite interaction that is valid for any kind of quantum mixture. As in
the zero temperature case, we have obtained that the contact an increasing function of the
number of components. Besides, we have shown that it is also an increasing function of
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temperature, which is a striking consequence of the dimensional constraint. Furthermore,
the contact displays a universal behavior as a function of temperature, since it does not
depend explicitly on interactions. A natural perspective would then be to analyze deeper
these universal properties by deriving a scaling law for the contact at finite temperature
and finite interaction strength simultaneously. This was recently achieved in the simpler
case of a one-component Bose gas, in which the presence of a maximum as a function of
the temperature for finite interactions was highlighted [Yao 2018].

Finally, we have taken into account the intrinsically three-dimensional nature of interac-
tions in a realistic quasi-one-dimensional trap by studying the influence of the transverse
confinement. Using an approach based on Gross-Pitaveskii and Bogoliubov theories com-
bined with a local density approximation, we have obtained a scaling law for the contact
of a dilute Bose gas in a highly elongated trap as a function of the aspect ratio, three-
dimensional scattering length and number of particles. Moreover, we have checked that
it is compatible with results obtained using Lieb-Liniger theory. We have highlighted
that the contact has completely different behaviors in the quasi-one-dimensional and
three-dimensional cases, and that it can thus be used as a experimental characterization
of the dimensional regime. The next step would then be to derive such a scaling for more
general quantum mixtures as the ones considered earlier in this thesis.

In addition to the perspectives we mentioned above, many compelling questions remain
for further prospects. For example, what happens if we consider systems with unequal
masses? In this case, integrability is broken even in the absence of an external con-
finement, and very little is known on the properties of such systems, although recent
semi-analytical developments using hyperspherical coordinates offer promising results
for few-body systems [Dehkharghani 2016, Harshman 2017]. More realistic for the case
of Bose-Fermi mixtures, an extension of the results discussed in this thesis to these
models appears to be a challenging but interesting task.

Furthermore, another interesting issue would be to study the robustness of these features
to disorder and quantum chaos by adding a kicked rotor-type potential [Izrailev 1990].
This is motivated by the theoretical observation of k−4 tails in the evolution operator of
a system of two interacting bosons in an atomic kicked rotor potential [Qin 2017], sug-
gesting an interesting analogy with Tan’s contact physics. In these systems, integrability,
correlations, disorder and symmetries would interplay in a non-trivial way, and would
possibly allow the occurrence of fascinating many-body features, such as, for example,
many-body localization [Abanin 2017].
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Appendix A

Coordinate Bethe ansatz

In this appendix, we consider a system of N particles in 1D interacting via the δ-type
potential (I.1.30), without any external potential. This system is often referred as a
quantum integrable system. The definition of integrability in quantum physics is not as
clear as in classical physics, but one can say, following [Sutherland 2004], that a system
is integrable when the scattering events occur without any diffraction. In other words,
any scattering will simply result in an exchange of the momenta of the particles. In
practice, this implies that the system can be solved using a closed set of equations that
is valid for a wide range of parameters — without the need of a perturbative method.
The usual way to obtain this set of equations is through the so-called Bethe ansatz, an
educated guess for the form of the many-body wave-function that was first used by Hans
Bethe to solve the 1D Heisenberg XXX model [Bethe 1931]. Since then, the number
of models that have been solved with this very powerful and elegant method has been
flourishing, ranging from 1D quantum gases in the continuum [Lieb 1963,Gaudin 1967,
Yang 1967,Sutherland 1968] and the 1D Hubbard model [Lieb 1968], to 2D classical spin
chains [Sutherland 1967, Baxter 1971], or in more recent theories such as string theory
in the context of AdS/CFT correspondence [Ambjørn 2006]. Here we obviously focus
on the first category of systems, and we try to build an intuitive understanding of this
method rather than trying to be exhaustive and perfectly rigorous. After a first general
description of the model in A.1, we then describe Lieb and Liniger’s solution for the
interacting Bose gas as a pedagogical example in A.2. In the third and biggest part of
this appendix, we analyze the more intricate case of a multi-component system in A.31

A.1. Model and first considerations

We consider a one-dimensional homogeneous (i.e. with no external potential) system of
finite size L containing N particles of same masses m, interacting via a δ-type potential
with an interaction strength g1D = 2c with c > 0. In this section, in order to simplify the
expressions, we will write the equations in units of ~ = 2m = 1. The Schrödinger equa-
tion for the many-body wave-function ψ(x1, . . . , xN ), where xj ∈ [0, L] is the coordinate

1NB: Although only specific results of this appendix will be used in the main text of this thesis (in
particular the Bethe ansatz equations of the Lieb-Liniger model and the strong-coupling expansion of
the energy in the multi-component case), we have decided to write it as a self-sufficient introduction to
coordinate Bethe ansatz. We indeed have the feeling that a complete set of derivations of this method
without the use of involved algebraic tools is missing in the literature, despite its importance in the
study of one-dimensional quantum gases.
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of particle j, is given by

−
N
∑

j=1

∂2ψ

∂x2
j

+ 2c
∑

i<j

δ(xi − xj)ψ = Eψ. (A.1.1)

As explained in section I.1.3.3, we do not need to specify the symmetry of the many-body
wave-function here. Let us suppose that the N particles are in a given configuration, i.e.
that the vector {x} = (x1, . . . , xN ) is in a given sector DQ = xQ1 < xQ2 < · · · < xQN

of [0, L]N , where Q = (Q1, . . . , QN) is a permutation of {1, . . . , N}. Eq. (A.1.1) can be
reduced to a free-wave Helmholtz equation





N
∑

j=1

∂2

∂x2
j

+ E



ψ = 0, (A.1.2)

together with the N − 1 boundaries conditions, for j ∈ {1, . . . , N − 1}:

ψ|xQ(j+1),Qj=0+ = ψ|xQ(j+1),Qj=0− (A.1.3)

and
(

∂ψ

∂xQ(j+1)

− ∂ψ

∂xQj

)∣

∣

∣

∣

∣

xQ(j+1),Qj=0+

−
(

∂ψ

∂xQ(j+1)

− ∂ψ

∂xQj

)∣

∣

∣

∣

∣

xQ(j+1),Qj=0−

= 2c ψ|xQ(j+1),Qj
,

(A.1.4)
with xQ(j+1),Qj = xQ(j+1)−xQj . Eq. (A.1.3) is simply a continuity equation and Eq. (A.1.4)
is the cusp condition (I.1.34). Therefore, the Bethe’s hypothesis consists, in a pretty nat-
ural way, in supposing that the solution of Eq. (A.1.1) in the sector DQ will be given by
a combination of plane waves:

ψ|{x}∈DQ
=

∑

P ∈SN

〈Q||P 〉 ei(xQ1kP 1+···+xQN kP N), (A.1.5)

where SN is the set of all permutations of {1, . . . , N} (see section II.1.2.2) and {k} ∈ RN

is a set of distinct parameters (pseudo-momenta) associated with the energy

E =
N
∑

j=1

k2
j . (A.1.6)

Now, all the game will consist in finding the coefficients 〈Q||P 〉 which satisfy the bound-
ary conditions (A.1.3) and (A.1.4) (in order to do that, we will have to have one more
set of boundary conditions in QN −Q1 = 0, which is possible if we ask the particles to
be on a circle of size L and impose ψ to be periodic). Although the apparent simplicity
of Bethe’s hypothesis, the considerations allowing to achieve this can be pretty involved.
However, if the wave-function ψ is symmetric by exchange of coordinates, as it is the
case in the one-component Bose gas, we will have 〈Q||P 〉 = 〈Q′||P 〉 for any Q,Q′ ∈ SN ,
which will considerably simplify the discussion. This case will be studied in section A.2,
and its extension to multi-component systems in section A.3. In both sections, we will
derive the sets of Bethe ansatz equations, allowing us to extract the ground state and
finite-temperature properties in the limit N,L → ∞ with n = N/L keeped constant.
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A.2. One-component Bose gas: the Lieb-Liniger model

A.2.1. Deriving the Bethe ansatz equations

The method employed in this section is pretty much the same as the one used in the
original paper of E.H. Lieb and W. Liniger [Lieb 1963]. As told in section A.1, in
the one-component Bose gas we have, for any Q ∈ SN , ψ|{x}∈DQ

= ψ|{x}∈I where

DI = x1 < · · · < xN is the fundamental sector of [0, L]N : it is therefore sufficient to
obtain the solution (A.1.5) in DI and we can write it:

ψ|{x}∈DI
=

∑

P ∈SN

a(P )ei(x1kP 1+···+xN kP N ), (A.2.1)

where a(P ) = 〈I||P 〉 has to satisfy Eqs (A.1.3) and (A.1.4). Moreover, the cusp condition
(A.1.4) simply becomes

(

∂

∂xj+1
− ∂

∂xj

)

ψ

∣

∣

∣

∣

∣

xj+1=xj

= c ψ|xj+1=xj
. (A.2.2)

Considering P ∈ SN and P ′ = P (j, j+ 1) (i.e. P and P ′ are the same except P (j+ 1) =
P ′j and Pj = P ′(j + 1)), Eqs (A.2.1) and (A.2.2) give

a(P ′)

a(P )
=
kP j − kP (j+1) − ic

kP j − kP (j+1) + ic

= −e−iθ(kP j−kP (j+1)),

(A.2.3)

with

θ
(

kP j − kP (j+1)

)

= −2 arctan

(

kP j − kP (j+1)

c

)

. (A.2.4)

Thus, the two-body scattering between two identical bosons just reduces to a phase
factor.

In order to obtain the so-called Bethe ansatz equations, we will have to impose that our
system is in fact on a ring of circumference L, with periodic boundaries conditions for ψ.
This may appear to be strange at first sight, as it seems to restrict a lot the geometry of
the system. However, because we are going to consider eventually the thermodynamic
limit N,L → ∞, the boundary conditions can be chosen adequately without affecting
the relevance of the problem (as often in physics, c.f. quantum field theories). More
precisely, the periodic boundary condition on ψ can be written in DI :

ψ(xN − L, x1, . . . , xN−1) = ψ(x1, x2, . . . , xN). (A.2.5)

If we put this condition into Eq. (A.2.1), given Eq. (A.2.3), it implies that for every
j ∈ {1, . . . , N} we have:

eikjL(−1)N−1
N
∏

l=1,l 6=j

e−iθ(kj−kl) = 1. (A.2.6)
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kj

Figure A.2.1: Semi-classical interpretation of the Bethe ansatz equations of the Lieb-Liniger
model. A boson with pseudo-momentum kj scatters with the N −1 other particles and returns
to its initial position after a whole turn around the ring. After this operation, the wave-function
will acquire a phase factor eikjL due to turn, and a phase factor (−1)N−1∏N

l=1,l 6=j e−iθ(kj−kl)

due to the two-body scatterings. The periodic boundary conditions imply that this global
phase factor must be equal to 1.

This can be interpreted as the scattering of a particle with pseudo-momentum kj with the
N − 1 other particles after a whole turn around the ring (see Fig. A.2.1). Then, putting
Eq. (A.2.6) in a logarithmic form, we obtain a set of N coupled equations, namely the
Bethe ansatz equations for the Lieb-Liniger model:

kjL = 2πIj +
N
∑

l=1,l 6=j

θ(kj − kl), (A.2.7)

where Ij is an integer when N is odd and a half-odd integer otherwise.

What do the numbers Ij represent? They have to be taken into account in order to
remove the ambiguity of the phase when going from Eq. (A.2.6) to Eq. (A.2.7), but they
happen to have a deeper physical meaning: they are the quantum numbers of the system.
In order to understand that, we consider the Tonks limit c → ∞ of hardcore bosons. In
this case, we observe that θ(k∞

j − k∞
l ) = 0, so that the Bethe ansatz equations (A.2.7)

simply implies k∞
j = 2π

L
Ij for any j ∈ {1, . . . , N}. Since we want the kj to be different

(as it is the case in a one-component Fermi gas), we see that the Ij have to be different.
Thus, the Ij label the kj, and a given set of these numbers will completely characterize
the state {k} of the system through the Bethe ansatz equations.

A.2.2. The ground state

Since θ(∆k) monotonically increases with ∆k, it is clear given Eqs. (A.1.6) and (A.2.7)
that the energy E of the system is minimized when the set of quantum numbers Ij is
as compactly centered around 0 as possible. Therefore, the ground state of the Lieb-
Liniger model is characterized by Ij ∈ {−N−1

2
, . . . , N−1

2
}. If we choose the Ij so that

I1 < I2 < · · · < IN we also have

2πI1

L
< k1 < · · · < kN <

2πIN

L
. (A.2.8)

We can now consider the thermodynamic limit, where N,L → ∞ with a fixed density
n = N

L
. In this case, we define the quasi-momentum distribution ρ(k) so that the number
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of k’s between in a small interval [k, k + dk] is Lρ(k) dk. Similarly to Eq. (A.2.8), the
k’s will distributed symmetrically between q and −q, with q verifying

∫ q

−q
ρ(k) dk = n. (A.2.9)

Then, the discrete summation over k will become an integral:

N
∑

k=1

→ L
∫ q

−q
ρ(k) dk. (A.2.10)

The thermodynamic equivalent of the quantum number is found noticing that Ij counts
the number of k’s between 0 and kj (with the same sign as kj). Therefore, we can write
Eq. (A.2.7) in the thermodynamic limit:

k = 2π
∫ k

0
ρ(k′) dk′ +

∫ q

−q
θ(k − k′)ρ(k′) dk′, (A.2.11)

which becomes after differentiation

1 = 2πρ(k) +
∫ q

−q
θ′(k − k′)ρ(k′) dk′. (A.2.12)

Using the explicit expression for θ(∆k) we get

1 + 2c
∫ q

−q

ρ(k′) dk′

c2 + (k − k′)2
= 2πρ(k). (A.2.13)

The ground state energy density e = E
L

can then be obtained with

e =
∫ q

−q
k2ρ(k) dk. (A.2.14)

Together with Eq. (A.2.9), Eq. (A.2.13) completely determines the ground state of the
Lieb-Liniger gas in the thermodynamic limit. It is a Fredholm integral equation of the
second kind with a kernel of the form

K(x, y) =
1

c2 + (x− y)2
. (A.2.15)

This kernel, and hence Eq. (A.2.13), is non singular for any c > 0, guarantying a unique
analytic solution. If c = 0 however it becomes singular. This implies in practice that the
numerical resolution of Eq. (A.2.13) becomes more and more difficult as one approaches
the c → 0 limit, and that it is very difficult to obtain small c asymptotic expansions
of physical quantities like the energy. On the contrary, when one approaches the Tonks
limit c → ∞, we have K(x, y) ≈ c−2, which leads to

e(γ) ∼
∞
π2

3

(

γ

γ + 2

)2

, (A.2.16)

where γ = c
n

is the natural interaction parameter of our system. The γ ≪ 1 is a little
bit more tricky, but one can check that

e(γ) ∼
0
γ. (A.2.17)
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A.2.3. Finite temperature thermodynamics

The so-called thermodynamic Bethe ansatz was derived by C.N. Yang and C.P. Yang
in [Yang 1969]. They observed that in an excited state, the quantum numbers Ij will
still be a set of integers/half-odd integers, but not as compact as possible. There will be
omitted lattice sites Jj , and equivalently omitted k values. These omitted k values are
called holes. Then, in the same way than in section A.2.2, we can define a density ρ(k)
for the number of particles with pseudo-momentum k, but also a density ρh(k) for the
holes. In a similar fashion than for Eq. (A.2.13), we obtain an integral equation for ρ
and ρh:

1 + 2c
∫ ∞

−∞

ρ(k′) dk′

c2 + (k − k′)2
= 2π (ρ(k) + ρh(k)) , (A.2.18)

with ρ verifying
∫ ∞

−∞
ρ(k) dk = n. (A.2.19)

Note that this time we do not restrict the boundaries of integration.

Contrary to the case of the ground state, there is here a degeneracy of the quantum
states, which implies a non-zero entropy S. This degeneracy is given by

[L(ρ+ ρh) dk]!

[Lρ dk]![Lρh dk]!
≈ exp [Ldk ((ρ+ ρh) ln(ρ+ ρh) − ρ ln ρ− ρh ln ρh)] . (A.2.20)

Putting the Boltzmann constant equal to 1, the entropy density is then

S

L
=
∫ ∞

−∞
((ρ+ ρh) ln(ρ+ ρh) − ρ ln ρ− ρh ln ρh) dk. (A.2.21)

We can therefore write the quantum pressure p = 1
L

[TS − E + µN ]:

p =
∫ ∞

−∞

[

T ((ρ+ ρh) ln(ρ+ ρh) − ρ ln ρ− ρh ln ρh) + (µ− k2)ρ
]

dk. (A.2.22)

Then, minimizing p according to ρ gives with the help of Eq. (A.2.18):

ln

(

ρh

ρ

)

+
c

π

∫ ∞

−∞

dk′

c2 + (k − k′)2
ln

(

1 +
ρ

ρh

)

+
1

T
[µ− k2] = 0. (A.2.23)

Defining the pseudo-energy ǫ(k) = T ln
(

ρh

ρ

)

, Eq. (A.2.23) can be re-written as an integral
equation for ǫ:

ǫ(k) = −µ+ k2 − Tc

π

∫ ∞

−∞

dk′

c2 + (k − k′)2
ln
(

1 + e−ǫ(k)/T
)

. (A.2.24)

Using Eqs. (A.2.18), (A.2.22) and (A.2.24) yields a very simple expression for the quan-
tum pressure:

p =
T

2π

∫ ∞

−∞
ln
(

1 + e−ǫ(k)/T
)

dk. (A.2.25)

Thus, given µ and T , one can solve the integral equation (A.2.24) in order to find ǫ, and
then obtain p with Eq. (A.2.25). The thermodynamic quantities of interest can then be
obtained using

Ldp = S dT +N dµ. (A.2.26)

Analytics expressions for the Yang-Yang thermodynamics can be found in [Guan 2011].
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k1 k2 k1 k2

Figure A.3.1: Two possible scattering diagrams for distinguishable particles. The black particle
(thick line) can either be reflected against the white one (thin line) or transmitted, correspond-
ing respectively to the left and the right diagram.

A.3. Extension to the multi-component case

A.3.1. Scattering operators and consistency

Let us now consider that the particles are no longer identical. In this case, the scattering
between two particles with different internal states (let us say a black one and a white
one) will have two possible outcomes: either they will transmit or reflect (see Fig. A.3.1).
Equivalently, we can say that they can exchange their colors, or not. Then, the scattering
processes will no longer be described by a phase factor, as it was the case in the Lieb-
Liniger model, but they will have to be described by a scattering matrix S.

In order to construct the S-matrices of our N -body problem, we consider the boundary
conditions Eqs. (A.1.3) and (A.1.4), as well as P, P ′, Q,Q′ ∈ SN with P ′ = P (j, j + 1)
and Q′ = Q(j, j + 1). We then obtain the following relations between the coefficients:

〈Q||P 〉 + 〈Q||P ′〉 = 〈Q′||P 〉 + 〈Q′||P ′〉 (A.3.1)

for the continuity equation and

i(kj+1 − kj) (〈Q||P 〉 − 〈Q||P ′〉 + 〈Q′||P 〉 − 〈Q′||P ′〉) = 2c (〈Q||P 〉 + 〈Q||P ′〉) (A.3.2)

for the cusp condition. Putting these two relations together brings

〈Q||P ′〉 =
ic

kj+1 − kj − ic
〈Q||P 〉 +

kj − kj+1

kj − kj+1 + ic
〈Q′||P 〉 . (A.3.3)

Before interpreting this equation, let us first observe that there are (N−1)(N !)2 equations
of this type (since j ∈ {1, . . . , N − 1} and P,Q ∈ SN , SN having N ! elements), but
there are only (N !)2 coefficients 〈Q||P 〉. Therefore, it is a priori not obvious that these
equations are consistent with each other and characterize uniquely the coefficients. We
postpone this question of consistency to a little bit later.

We see in Eq. (A.3.3) that ic
kj+1−kj−ic

≡ Rj+1,j is a reflection coefficient ("Q remains Q")

and
kj−kj+1

kj−kj+1+ic
≡ Tj+1,j is a transmission coefficient ("Q becomes Q′ = Q(j, j + 1)"). Let
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=

k1 k2 k3 k1 k2 k3

S12
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S13
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Figure A.3.2: Diagrammatic interpretation of the Yang-Baxter equations, insuring the consis-
tency of our problem.

us organize the 〈Q||P 〉 coefficients in a N ! × N ! matrix, and denote its columns by ζP .
Considering P, P ′ ∈ SN with P ′ = P (j, l), we can write using Eq. (A.3.3)

ζP =
(

Rl,j l1 + Tl,jP̂lj

)

ζP ′, (A.3.4)

where l1 is the identity matrix and P̂lj is the permutation operator of l and j, i.e. with 0
coefficients except when the permutations corresponding to the coordinates are equal up
to a transposition (j, l). Thus, in all generality, considering two particles a and b with
momenta kj and kl, we can define the scattering operator Sjl

ab by:

Sjl
ab = Rjl l1 + TjlP̂ab. (A.3.5)

This is called the reflection representation of the scattering matrix, because we are con-
sidering the columns ζP and the Q remains unchanged, so that the reflection coefficients
are on the diagonal. Alternatively, we could have defined the transmission representation
of the scattering matrix S̃ab

jl ≡ P̂abSjl
ab = Tjl l1 +RjlP̂ab relating ζP ′ to P̂abζP .

As told before, in order to be consistent, the set of (N − 1)(N !)2 equations of the form
(A.3.3), describing two-body scatterings, should lead to a unique set of 〈Q||P 〉 coeffi-
cients. In other words, if we want to obtain 〈Q′||P ′〉 from 〈Q||P 〉 where P,Q, P ′, Q′ ∈ SN ,
it should not depend on the sequence of two-body scatterings we choose. It is sufficient
to check this for the three-body case. If we consider an initial state (ijk) and a final
state (kji), we want the following diagram to be commutative:

(ijk) (jik) (jki)

(ikj) (kij) (kji)

Sjk

Sij Sik

Sik Sij

Sjk

(A.3.6)

In terms of the scattering matrices of Eq. (A.3.5), the consistency equations then read:

Sij
bcSik

abSjk
bc = Sjk

abSik
bcSij

ab. (A.3.7)
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This set of ternary relations constitute the celebrated Yang-Baxter equations [Yang 1967].
It is easy to check that they are verified in our system, confirming that our problem is
consistent and can be reduced to two-body scatterings. Note that this consistency was
trivially verified in the Lieb-Liniger gas of section A.2, as the scattering only consisted
in a phase change. A graphical interpretation of Eq. (A.3.7) is given in Fig. A.3.2.

Thus, if we obtain ζI for a given set of pseudo-momentum, all the ζP ’s are determined.
We can now suppose that we have the periodic boundary conditions and do the same
procedure as in section A.2, i.e. we let a particle with pseudo-momentum kj make a
whole turn around the ring (see Fig. A.3.3), and we get for all j ∈ {1, . . . , N}:

eikjLζI = S̃
(j+1)j
(j+1)j × S̃

(j+2)j
(j+2)j × · · · × S̃Nj

Nj × S̃1j
1j × · · · × S̃

(j−1)j
(j−1)j ζI . (A.3.8)

In this form, the Bethe ansatz equations are a set ofN coupled eigenvalue equations, with
the same eigenvector ζI . In the thermodynamic limit, this set of equations is impossible
to solve in practice. Hopefully, there are some clever methods to simplify it, when
taking into account the fundamental symmetries of our multi-component system. The
most complete and efficient method to do it is called the Quantum Inverse Scattering
Method [Korepin 1993], but is not very intuitive. Rather than expose it here, which
would be unnecessary long and involved, we will try to justify the shape of the equations
in order to have a intuitive understanding of their meaning. We start with the Gaudin-
Yang model for the two-component fermionic model in section A.3.2, and extend it to
the general case in section A.3.3.

A.3.2. Two-component fermions: the Gaudin-Yang model

A.3.2.1. The Bethe-Yang hypothesis

We consider the case of N spin-1
2

particles, divided in M spins down and N − M spins
up (these numbers are fixed). This model was solved by Gaudin in [Gaudin 1967] and
C.N. Yang in [Yang 1967]. They noticed that the problem can be separated between the
configuration/spin part on the one side and the pseudo-momentum/spatial part where
we forget the color/spin of the particles (i.e. analogous to the Lieb-Liniger case) on
the other side. Both sides of the problem are of course coupled through the scattering
processes. Due to the anti-symmetric nature of same-component fermions, for a given
P ∈ SN , there will be only CN

M independent coefficients of the form 〈Q||P 〉. Then, it
is sufficient to know 〈Q||P 〉 for a given set of positions {y1 < · · · < yM} ⊂ {1, . . . , N}
of the M spin downs. Therefore, the quantity of interest for this model, called the spin
wave function by Yang, can be written:

φ(y1, . . . , yM ||P ) = ǫP 〈Q||P 〉 , (A.3.9)

where y1 < · · · < yM are the positions of the M spins down and ǫP is the signature of
the permutation P which takes into account the fermionic nature of the problem. Thus,
the spin part of the problem can be seen as a discrete problem of down spins on a chain
of length N . Similarly to the continuous spatial part where each particle has a pseudo-
momentum kj, each spin down yα will carry a momentum-like quantity, namely a rapidity
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kj

Figure A.3.3: Semi-classical interpretation of the Bethe ansatz equations for the two-
component model (N = 8 and M = 3). Contrary to the Lieb-Liniger case, the scatterings
would have to take into account the possibility of a reflection and a transmission, and would
therefore be described by S-matrices.

kj

⊗

Λα

Figure A.3.4: Another way to interpret the two-component model, equivalent to Fig. A.3.3.
Here, the problem is separated between two coupled parts, a spatial part (left), and a spin part
(right). The spin part can be seen as M spin downs on a discrete chain of length N . A rapidity
Λα is associated with each spin down.

Λα, which will characterize how the spins will evolve through the scattering processes
(this affirmation will be further justified below). Using this observation, Yang made the
following generalized Bethe hypothesis (often called the Bethe-Yang hypothesis) for the
form of φ:

φ(y1, . . . , yM ||P ) =
∑

R∈SM

b(R)FP (y1,Λ1)FP (y2,Λ2) · · ·FP (yM ,ΛM), (A.3.10)

where the FP function and the b(R) coefficients remain to be determined, and Λ1, . . . ,ΛM

are a set of unequal numbers. We summarize these considerations in Fig. A.3.4.

In order to determine FP , let us first consider the two-body problem where N = 2 and
M = 1. Using previous notations (see section A.3.1), the scattering process reduces to

ζ(21) = S12
12ζ(12). (A.3.11)

One can check that, for every value of Λ ∈ R, the following set of coefficients verifies
Eq. (A.3.11) [Colome-Tatche 2008]:

φ(1||(12)) = k1 − Λ − ic

2
,

φ(2||(12)) = −(k2 − Λ +
ic

2
).

(A.3.12)
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We see that the parameter Λ is homogeneous to a momentum. If we consider the N = 3,
M = 1 case, the boundary conditions for φ can be written for j ∈ 1, 2, 3 and P, P ′ ∈ S3

where P ′ = P (j, j + 1):

φ(y||P ) = φ(y||P ′) if y 6= j, j + 1,

φ(j||P ) = −Rj+1,jφ(j||P ′) + Tj+1,jφ(j + 1||P ′),

φ(j + 1||P ) = −Rj+1,jφ(j + 1||P ′) + Tj+1,jφ(j||P ′).

(A.3.13)

For any Λ, b ∈ R, a solution is given by:

φ(1||P ) = b(kP 2 − Λ − ic

2
)(kP 3 − Λ − ic

2
),

φ(2||P ) = b(kP 1 − Λ +
ic

2
)(kP 3 − Λ − ic

2
),

φ(3||P ) = b(kP 1 − Λ +
ic

2
)(kP 2 − Λ +

ic

2
).

(A.3.14)

Generalizing to N particles with M = 1 down spin, we have obtained the form of the
functions FP (y,Λ):

FP (y,Λ) =
y−1
∏

j=1

(kP j − Λ +
ic

2
)

N
∏

l=y+1

(kP j − Λ − ic

2
). (A.3.15)

We are now able to determine b(R). We can write the boundary conditions in the
general case in terms of φ̄ ≡ φ(y1, . . . , yM ||P ), for P, P ′ ∈ SN with P ′ = P (j, j + 1) and
j ∈ {1, . . . , N}:

φ̄ = φ(y1, . . . , yM ||P ′) if ∀l, yl 6= j, j + 1 or if ∃l, yl = j, yl+1 = j + 1,

φ̄ = −Rj+1,jφ(y1, . . . , yl, . . . , yM ||P ′) + Tj+1,jφ(y1, . . . , yl + 1, . . . , yM ||P ′)

if yl = j, yl + 1 6= j + 1,

φ̄ = −Rj+1,jφ(y1, . . . , yl, . . . , yM ||P ′) + Tj+1,jφ(y1, . . . , yl − 1, . . . , yM ||P ′)

if yl 6= j, yl + 1 = j + 1.

(A.3.16)

Then, if we consider R,R′ ∈ SM with R′ = R(l, l + 1) and P, P ′ ∈ SN with P ′ =
P (yl, yl+1), we get using Eq. (A.3.10):

b(R)FP (yl,ΛRl)FP (yl + 1,ΛR(l+1)) + b(R′)FP (yl,ΛR(l+1))FP (yl + 1,ΛRl)

= b(R)FP ′(yl,ΛRl)FP ′(yl + 1,ΛR(l+1)) + b(R′)FP ′(yl,ΛR(l+1))FP ′(yl + 1,ΛRl),

(A.3.17)

which becomes, using F ’s expression of Eq. (A.3.15):

b(R)(ΛR(l+1) − ΛRl − ic) = −b(R′)(ΛRl − ΛR(l+1) − ic). (A.3.18)

In order for this condition to be satisfied in the general case, we can choose:

b(R) = ǫR
∏

j<l

(ΛRj − ΛRl − ic). (A.3.19)

Thus, Eqs. (A.3.10), (A.3.15) and (A.3.19) completely determine the solution for the
Gaudin-Yang model as a function of the rapidities and pseudo-momenta. We can now
apply the periodic boundary conditions in order to determine these parameters.
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A.3.2.2. Bethe ansatz equations and ground state

Similarly to the Lieb-Liniger model, we suppose now that the total wave function fol-
lows the periodic boundary condition of Eq. (A.2.5), namely ψ(xN − L, x1, . . . , xN−1) =
ψ(x1, x2, . . . , xN ). Equivalently, we say that the particle N with momentum kj will make
a whole turn around the ring (c.f. Fig. A.3.3). Here, we have to distinct two possibilities:
the case where particle N is a spin up and the case where it is a spin down. In terms of
φ, for P, P ′ ∈ SN where P ′ = (PN, P1, P2, . . . , P (N − 1)), these cases can be written
respectively:

φ(y1, . . . , yM)||P )eikP NL = φ(y1 + 1, . . . , yM + 1)||P ′), (A.3.20)

and
φ(y1, . . . , yM−1, N)||P )eikP N L = φ(1, y1 + 1, . . . , yM−1 + 1)||P ′). (A.3.21)

Using φ’s complete expression within the Bethe-Yang hypothesis (Eqs. (A.3.10), (A.3.15)
and (A.3.19)) yields

eikP N L =
M
∏

β=1

kP N − Λβ + ic
2

kP N − Λβ − ic
2

,

N
∏

j=1

kj − ΛRM + ic
2

kj − ΛRM − ic
2

= −
M
∏

β=1

ΛRM − Λβ − ic

ΛRM − Λβ + ic
.

(A.3.22)

Taking the logarithmic form, we obtain the N + M Bethe ansatz equations for the
Gaudin-Yang model:

kjL = 2πIj +
M
∑

β=1

θ(2kj − 2Λβ), j ∈ {1, . . . , N},

−
N
∑

j=1

θ(2Λα − 2kj) = 2πJα −
M
∑

β=1

θ(Λα − Λβ), α ∈ {1, . . . ,M},
(A.3.23)

where the phase θ is defined as in Eq. (A.2.4), and Ij, Jα are the quantum numbers of this
model. We can observe the power of Bethe-Yang hypothesis by comparing Eqs (A.3.23)
and (A.3.8): here, we have only added M scalar equations as compared to the one-
component case!

Just like for the Lieb-Liniger model, the quantum numbers will define the ground state
when Ij ∈ {−N−1

2
, . . . , N−1

2
} and Jα ∈ {−M−1

2
, . . . , M−1

2
}. We can then take the ther-

modynamic limit N,M,L → ∞ keeping n = N
L

and n↓ = M
L

constant, and define the
quasi-momentum and spin distributions verifying respectively

∫ q

−q
ρ(k) dk = n, (A.3.24)

and ∫ s

−s
σ(Λ) dΛ = n↓. (A.3.25)

We finally get the integral equations for the ground state:

1 + 4c
∫ s

−s

σ(Λ) dΛ

c2 + 4(k − Λ)2
= 2πρ(k),

− 2c
∫ s

−s

σ(Λ′) dΛ′

c2 + (k − k′)2
+ 4c

∫ q

−q

ρ(k) dk

c2 + 4(k − Λ)2
= 2πσ(Λ).

(A.3.26)
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The ground state energy density can then be obtained using

e =
∫ q

−q
k2ρ(k) dk. (A.3.27)

A.3.3. General case: the nested Bethe ansatz

A.3.3.1. Bethe ansatz equations

The model of κ-component fermions was solved by Sutherland in [Sutherland 1968].
Without entering the details, the idea is to apply successively the Bethe-Yang hypothesis
to the coefficients of the spin wave-functions, resulting in Bethe ansatz equations of
smaller and smaller dimensions (hence the name of nested Bethe ansatz). More precisely,
let us consider the case of a three-component model of N particles with N −M particles
of type 1, M −M1 particles of type 2 and M1 particles of type 3. We can first separate
the N − M type-1 particles and the M other, and treat the problem similarly to the
Gaudin-Yang model of section A.3.2. Since the M "other particles" are of different type,
we will have to write the Bethe-Yang hypothesis of Eq. (A.3.10) in a different form,
taking into account the permutations of the M particles. This is exactly what we did
when we went from the Lieb-Liniger model of section A.2 to the Gaudin-Yang model of
two-component fermions. Thus, if Q ∈ SM , the spin wave-function φ for the M particles
is written in the (discrete) sector 1 ≤ yQ1 < · · · < yQM ≤ N :

φ =
∑

P ∈SM

〈Q||P 〉F (ΛP 1, yQ1) · · ·F (ΛP M , yQM). (A.3.28)

We can then repeat the same procedure as in section A.3.1, namely we arrange the
coefficients 〈Q||P 〉 in a M ! × M ! matrix, translate the boundary conditions in terms of
scattering matrices and check the consistency of our problem guaranteed by the Yang-
Baxter equations. Then, we can separate the M particles between the M − M1 type-2
and the M1 type-3 particles and re-apply the Bethe-Yang hypothesis for the coefficients
〈Q||P 〉, introducing rapidities Λ(1) for the type-3 particles. Finally, after applying the
usual periodic boundary conditions, we find:

eikjL =
M
∏

β=1

kj − Λβ + ic
2

kj − Λβ − ic
2

, j ∈ {1, . . . , N},

N
∏

j=1

kj − Λα + ic
2

kj − Λα − ic
2

= −
M
∏

β=1

Λα − Λβ − ic

Λα − Λβ + ic

M1
∏

γ=1

Λα − Λ(1)
γ + ic

2

Λα − Λ
(1)
γ − ic

2

, α ∈ {1, . . . ,M},

M
∏

β=1

kj − Λβ + ic
2

kj − Λβ − ic
2

= −
M1
∏

γ=1

Λ(1)
ω − Λ(1)

γ − ic

Λ
(1)
ω − Λ

(1)
γ + ic

, ω ∈ {1, . . . ,M1}.

(A.3.29)

Long story short, we can again consider the logarithm form of Eq. (A.3.29), introducing
the N + M + M1 quantum numbers Ij , Jα, Kω for the three-component model, which
have to be as compactly centered as possible around the origin when considering the
ground state. After that, we can consider the thermodynamic limit with fixed densities,
in a very similar manner as we did before, resulting in three coupled integral equations
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kj

⊗

Λα

⊗

Λ(1)
ω

Figure A.3.5: Semi-classical interpretation of the nested Bethe ansatz equations for the 3-
component gas, with five particles of type 1, two particles of type 2 and one particle of type
3. A pseudo-momentum kj is associated with each of the eight particles (left), a rapidity Λα

with each of the three particles particles of type 2 and 3 (center), and a rapidity Λ
(1)
ω for the

particle of type 3 (right).

for the distributions ρ(k), σ(Λ), and τ(Λ(1)). An illustration of the nested Bethe ansatz
is given in Fig. A.3.5.

Following these ideas, in the case of a κ-component Fermi gas divided in [m1, . . . , mκ]
particles per species, we can define a set of κ rapidities, distributions and integration lim-
its denoted respectively ki, ρi(ki) and Bi. Defining Mi =

∑κ
j=imj for all i ∈ {1, . . . , κ},

we can write the κ coupled integral Bethe ansatz equations for the ground state in the
thermodynamic limit:

2πρ1 = 1 + 4c
∫ B2

−B2

ρ2 dk2

c2 + 4(k1 − k2)2
,

∫ Bi+1

−Bi+1

4cρi+1 dki+1

c2 + 4(ki − ki+1)2
+
∫ Bi−1

−Bi−1

4cρi−1 dki−1

c2 + 4(ki − ki−1)2
= 2πρi +

∫ Bi

−Bi

2cρi dk
′
i

c2 + (ki − k′
i)

2

for i ∈ {2, . . . , κ− 1},
∫ Bκ−1

−Bκ−1

4cρκ−1 dkκ−1

c2 + 4(kκ − kκ−1)2
= 2πρκ +

∫ Bκ

−Bκ

2cρκ dk
′
κ

c2 + (kκ − k′
κ)2

,

(A.3.30)

together with the following normalization conditions:

Mi

L
=
∫ Bi

−Bi

ρi dki, i ∈ {1, . . . , κ}, (A.3.31)

and the formula for the ground state energy density:

e =
∫ B1

−B1

ρ1k
2
1 dk1. (A.3.32)

A.3.3.2. Strong-coupling expansion in the balanced fermionic case

In general, Eqs. (A.3.30) are very hard to solve in practice. In particular, the bound-
aries Bi are not easy to evaluate. Hopefully, in the balanced case, there are some
simplifications that allow to access a strong-coupling expansion for the ground-state
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energy (Eq. (A.3.32)). Here, we provide the ideas for the proof of this expansion, follow-
ing [Guan 2012].

First, the key property is that the fact that a fermionic mixture is balanced implies that
the boundaries verify Bi → ∞ for every i ≥ 2. Indeed, by integrating Eq. (A.3.30) we
obtain for every i ≥ 2:

∫ ∞

−∞
ρi(k)dk =

Mi−1

L
− Mi

L
+
Mi+1

L
=
Mi

L
(A.3.33)

in the balanced case. It is then clear, by comparing to Eq. (A.3.32), that all boundaries
except B1 go to infinity.

Writing the Fourier transform of ρi(k) as ρ̃i(ω) and introducing the function ρ1in(k) ≡
θ[−B1,B1](k)ρ1(k) where θ[−B1,B1] is the indicator function of [−B1, B1], we can now Fourier
transform Eqs. (A.3.30) and find after some algebra, for every i ≥ 2:

ρ̃i(ω) =
ρ̃1in(ω) sinh

[

1
2
(κ− i+ 1)|ω|c

]

sinh
[

1
2
κ|ω|c

] . (A.3.34)

Then, the condition c ≫ 1 allows to perform perturbative developments of the kernels
of integrals in Eqs. (A.3.30) (c.f. the Lieb-Liniger case, section A.2.2). By doing so and
using Eqs. (A.3.34), (A.3.31) and (A.3.32), Guan et al have obtained:

ρ̃1in(ω) ≈ n − eω2

2
, ρ̃2(ω) ≈

sinh
[

1
2
(κ− 1)|ω|c

]

sinh
[

1
2
κ|ω|c

]

[

n − eω2

2

]

. (A.3.35)

Plugging this equation into the first line of Eq. (A.3.30) yields:

ρ1(k) =
1

2π
+
nY0(k)

2π
− eY2(k)

4π
+ O(c−4), (A.3.36)

with

Yα(k) =
∫

dω
sinh

[

1
2
(κ− 1)|ω|c

]

sinh
[

1
2
κ|ω|c

] exp(iωk − c|ω|/2)ωα. (A.3.37)

In the c → ∞ limit, it can be shown that

Y0(k) =
2Z1(κ)

c
− 2Z3(κ)k2

c3
+ O(c−4) (A.3.38)

and

Y2(k) =
4Z3(κ)

c3
+ O(c−4), (A.3.39)

with

Z1(κ) = −1

κ

(

ψ
(

1

κ

)

+ CEuler

)

, (A.3.40)

and

Z3(κ) =
1

κ3

(

ζ
(

3,
1

κ

)

− ζ(3)
)

, (A.3.41)

where CEuler ≈ 0.577 is the Euler constant and ψ and ζ are respectively the Digamma
and Riemann Zeta functions [Abramowitz 1965]. Then, plugging Eq. (A.3.36) into
Eqs (A.3.31) and (A.3.32) gives, after some calculations, Eq. (III.2.34) of the main text.
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A.3.4. Thermodynamic Bethe ansatz

The thermodynamic Bethe ansatz for multi-component fermions was obtained by Taka-
hashi and Lai for two-component fermions [Takahashi 1971,Lai 1971] and was extended
to κ components by Schlottmann [Schlottmann 1993]. Although the global idea is similar
to the Yang-Yang case of section A.2.3, that is considering the excited states in terms of
particle and hole densities, there is one fundamental difference. Indeed, in section A.2.3
we were only considering real pseudo-momenta: a complex pseudo-momentum means
the an exponentially decreasing wave-function as a function of the relative distance be-
tween particles, which is not the case when c > 0. When considering multicomponent
fermions however, we have introduced spin rapidities Λ which have no reason to be real
numbers for excited states. The so-called string hypothesis assumes that the complex
spin-rapidities of excited states form discrete strings of arbitrary length (2m− 1) where
m ≥ 1:

Λm = ξm + iν
c

2
+ δ(L), ν ∈ {−(m− 1), . . . , m− 1}, (A.3.42)

where ξ ∈ R and δ(L) vanishes in the thermodynamic limit. The intuitive idea be-
hind this hypothesis is that if a spin rapidity has an imaginary part, it will result in
exponentially vanishing terms in the Bethe ansatz equations which would have to be

compensated by poles in the
Λ−k− ic

2

Λ−k+ ic
2

factors, which is achieved when the complex rapidi-

ties are separated by ic
2
. As compared with the Yang-Yang case when we were going

from Eq. (A.2.13) for the ground state to Eq. (A.2.18) for the excited states, the excited
analogous of Eq. (A.3.30) will contain sums over strings of arbitrary length for each class
of spin rapidities. We adapt the notations of Eq. (A.3.30) in the following way: ρ ≡ ρ1

and σ(l)
m (Λ) is the density for strings of length m associated with real rapidities kl+1, so

that

N

L
=
M1

L
=
∫

dk ρ(k),

Ml+1

L
=

∞
∑

m=1

m
∫

dΛ σ(l)
m (Λ), l ∈ {1, . . . , κ− 1}.

(A.3.43)

We define the associated hole densities ρh and σ
(l)
mh(Λ) analogously to section A.2.3, as

well as the pseudo-energies ǫ(k) = T ln
(

ρh

ρ

)

and ϕ(l)
m (Λ) = T ln

(

σ
(l)
mh

σ
(l)
m

)

= T ln(η(l)
m ). We

can then define an entropy density for each class of excitations, and minimize the free
energy of the system given the constraints of Eq. (A.3.43), each of them being associated
with a Lagrange multiplier Al (A0 is the chemical potential µ of section A.2.3). After
some (tedious) algebra, we find the analogous of the integral equation (A.2.24) in the
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multicomponent case:

ǫ(k) = k2 − A0 − T

π

∞
∑

m=1

∫

dΛ
mc
2

(Λ − k)2 +
(

mc
2

)2 ln
(

1 + η(1)
m (Λ)−1

)

,

ln
(

1 + η(l)
m (Λ)

)

= −mAl

T

∞
∑

n=1

∫

dΛ′Dmn(Λ − Λ′) ln
(

1 + η(l)
n (Λ′)−1

)

−
∞
∑

n=1

∫

dΛ′Cmn(Λ − Λ′) ln
(

1 + η(l+1)
n (Λ′)−1

)

ln
(

1 + η(l−1)
n (Λ′)−1

)

for l ∈ {1, . . . , κ− 1} and m ∈ N
∗,

(A.3.44)

where we haveDmn(Λ) = F [coth(|ωc|/2){exp(−|n−m||ωc|/2) − exp(−(n+m)|ωc|/2)}]

and Cmn(Λ) = F
[

D̂mn(ω)/(2 cosh(ωc/2))
]

(F being the Fourier transform operator),

η
(0)
1 = exp(ǫ/T ) and η(0)

m = ∞ for m ≥ 2, and η(κ)
m = ∞. We see that in this case, the

pseudo-energies are given by an infinite set of coupled integral equations! Then, one can
extract the quantum pressure using Eq. (A.2.25).
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