
THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Minh Tien NGUYEN

Thèse dirigée par Cyril LABBE, Maitre de Conférence, UGA

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Détection de textes générés
automatiquement

Detection of Automatically Generated Texts

Thèse soutenue publiquement le 3 avril 2018,
devant le jury composé de :

Monsieur CYRIL LABBE
MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES,
Directeur de thèse
Monsieur JACQUES SAVOY
PROFESSEUR, UNIVERSITE DE NEUCHATEL - SUISSE, Rapporteur
Monsieur GUILLAUME CABANAC
MAITRE DE CONFERENCES, UNIVERSITE TOULOUSE-III-PAUL-
SABATIER, Rapporteur
Madame SYLVIE CALABRETTO
PROFESSEUR, INSA LYON, Président
Madame CATHERINE BERRUT
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Examinateur

Dedication

For my mother, my father, my friends.
Thanks you for believing and always being there for

me.

i

ii DEDICATION

Abstract

Automatically generated text has been used in numerous occasions with distinct intentions. It
can simply go from generated comments in an online discussion to a much more mischievous task,
such as manipulating bibliography information. So, this thesis first introduces different methods of
generating free texts that resemble a certain topic and how those texts can be used. Therefore, we
try to tackle multiple research questions. The first question is how and what is the best method to
detect a fully generated document?

Then, we take it one step further to address the possibility of detecting a couple of sentences or a
small paragraph of automatically generated text by proposing a new method to calculate sentences
similarity using their grammatical structure. The last question is how to detect an automatically
generated document without any samples. This is used to address the case of a new generator or a
generator from which it is impossible to collect samples.

This thesis also deals with the industrial aspect of development. A simple overview of a pub-
lishing workflow from a high-profile publisher is presented. From there, an analysis is carried out
to be able to best incorporate our method of detection into the production workflow.

In conclusion, this thesis has shed light on multiple important research questions about the pos-
sibility of detecting automatically generated texts in different settings. Besides the research aspect,
important engineering work in a real-life industrial environment is also carried out to demonstrate
that it is important to have real application along with fundamental research.

iii

iv ABSTRACT

Résumé

Le texte généré automatiquement a été utilisé dans de nombreuses occasions à des buts différents.
Il peut simplement passer des commentaires générés dans une discussion en ligne à une tâche
beaucoup plus malveillante, comme manipuler des informations bibliographiques. Ainsi, cette thèse
introduit d’abord différentes méthodes pour générer des textes libres ayant trait à un certain sujet
et comment ces textes peuvent être utilisés. Par conséquent, nous essayons d’aborder plusieurs
questions de recherche. La première question est comment et quelle est la meilleure méthode pour
détecter un document entiérement généré.

Ensuite, nous irons un peu plus loin et montrer la possibilité de détecter quelques phrases ou
un petit paragraphe de texte généré automatiquement en proposant une nouvelle méthode pour
calculer la similarité des phrases en utilisant leur structure grammaticale. La dernière question est
comment détecter un document généré automatiquement sans aucun échantillon, ceci est utilisé
pour illustrer le cas d’un nouveau générateur ou d’un générateur dont il est impossible de collecter
des échantillons dessus.

Cette thèse étudie également l’aspect industriel du développement. Un aperçu simple d’un flux
de travail de publication d’un éditeur de premier plan est présenté. À partir de là, une analyse est
effectuée afin de pouvoir intégrer au mieux notre méthode de détection dans le flux de production.

En conclusion, cette thèse a fait la lumière sur de multiples questions de recherche importantes
concernant la possibilité de détecter des textes générés automatiquement dans différents contextes.
En plus de l’aspect de la recherche, des travaux d’ingénierie importants dans un environnement
industriel réel sont également réalisés pour démontrer qu’il est important d’avoir une application
réelle pour accompagner une recherche fondamentale.

v

vi RÉSUMÉ

Acknowledgment

This research project was funded and accomplished in collaboration with Spriger - Nature. We are
in deep gratitude to our associates at Springer - Nature, especially to everyone in the Process and
Content Management department for their continuous support as well as constructive criticisms
along the way.

vii

Contents

Dedication i

Abstract iii

Résumé v

Acknowledgment vii

1 Introduction 1

2 Automatic Generation of Scientific Text 5
2.1 Probabilistic Context Free Grammar . 5

2.1.1 SCIgen . 5
2.1.2 Other PCFG generators . 7
2.1.3 Closure for PCFG . 11

2.2 Markov chain . 11
2.3 RNN . 13
2.4 Summary . 15

3 Detection of a Fully Automatically Generated Document 17
3.1 Detection of Automatically Generated Text . 17

3.1.1 Reference Checking . 18
3.1.2 Compression Profile . 18
3.1.3 Ad-hoc Similarity . 18
3.1.4 Similarity Search . 19
3.1.5 Complex Networks . 21
3.1.6 Patterns Matching . 22
3.1.7 Inter-Textual Distance and Global Inter-Textual Distance 22

3.2 Distance and Similarity Measurements and Nearest Neighbor Classification 23
3.3 SciDetect . 25
3.4 Comparative Evaluation Between Different Methods 27

3.4.1 Test Candidates . 27
3.4.2 Test Corpora . 27
3.4.3 Results . 28

3.5 Detecting Markov and RNN Text with SciDetect and SciDetect Robustness 28
3.5.1 Detecting Markov and RNN Text with SciDetect 29

viii

ix

3.5.2 Testing SciDetect’s Robustness . 29
3.6 Summary . 32

4 Detecting a Partially Automatically Generated Document 33
4.1 Using Parse Tree on Sentence Similarity . 34

4.1.1 Using Syntactic Tree to Discover Plagiarism 35
4.1.2 Relation Extraction Based on Common Tree Segments 36
4.1.3 Textual Entailment with Parse Tree DLSITE-2 36
4.1.4 Sentence similarity with Parse Tree . 37

4.2 Definition of Grammatical Structure Similarity and Building of the System 38
4.2.1 Grammatical Structure Similarity . 38
4.2.2 Corpora . 39
4.2.3 Effectiveness of GSS for Different PCFG Corpora 39
4.2.4 Sentence Filter Using Jaccard similarity . 41

4.3 Fully Developed GSS System . 41
4.3.1 Complexity of the System and Average Processing Time 43

4.4 Comparison with Other Methods . 44
4.4.1 Pattern Checker . 44
4.4.2 Traditional Machine Learning Techniques . 45
4.4.3 Performance Evaluation . 46

4.5 Summary . 47

5 Detecting Generated Text Without Samples 49
5.1 Vocabulary Growth . 49

5.1.1 Vocabulary Growth as a Classification method 49
5.1.2 Statistical Information about Vocabulary Growth 50
5.1.3 Preliminary Test and Results Using Vocabulary Growth 52

5.2 Using Word Embedding . 53
5.2.1 Word2Vec . 54
5.2.2 Gloval Vectors - GloVe . 57
5.2.3 Implementation with Word2Vec . 57

5.3 Classification Based on Word’s Neighborhood . 59
5.3.1 Implementation Method for using Word’s Neighborhood 59
5.3.2 Experimental Process . 61

5.4 Validation . 65
5.5 Summary . 67

6 SciDetect in an Industrial Environment 71
6.1 The Publisher Workflow Experience . 71
6.2 Incorporating SciDetect to the Workflow . 73
6.3 Preliminary Statistic Information and Interesting Lessons 75
6.4 Summary . 76

7 Conclusion 77

Bibliography 79

x ACKNOWLEDGMENT

Appendices 85

A Some More Examples of Known Partially Generated Papers 87

B SciDetect Local 93
B.1 Installation-Requirements-Quick start . 93
B.2 Usage . 93

B.2.1 Command line client . 93
B.2.2 Supported file types . 94

B.3 Configuration . 94
B.3.1 Path to sample folder . 94
B.3.2 Threshold configuration . 94
B.3.3 Path for log files . 95
B.3.4 Max-Min text length . 95

C SciDetect Web Service 97
C.1 Installation Requirements and Usage . 97

C.1.1 Web Application . 97
C.1.2 Web Service Client . 97
C.1.3 Usage . 97

C.2 Configuration . 97
C.2.1 Client Configuration . 97
C.2.2 Server Configuration . 98

D Extra information 99
D.1 Make use of detail logging . 99
D.2 Tuning/Setting Thresholds . 100

Bibliography 105

List of Figures

1.1 An example for a scientific paper that was partially automatically generated 3

2.1 An example for a scientific paper that was generated by Physgen 8

2.2 An example for a scientific paper that was generated by Mathgen 9

2.3 An example for a scientific paper that was generated by Propgen 10

2.4 An example for Pro-repeal Net Neutrality comments that were automatically gener-
ated (from [Kao, 2017]) . 11

2.5 Some examples of a recurrent neural network model. Each rectangle is a vector and
the arrows represent functions (e.g. matrix multiply). Input vectors are in red, out-
put vectors are in blue and green vectors hold the RNN’s state (from [Karpathy, 2017]) 13

3.1 “Performance metrics for different feature extractors” (from [Williams and Giles, 2015]) 20

3.2 “Sequence of methods employed to distinguish gibberish from real scientific manuscripts.
The actions taken in each step are: (1) LaTeX tags and mathematical terms are
stripped out; (2) the manuscript is manually checked in order to verify if its con-
tent includes only textual information; (3) lemmatization and removal of stop words;
(4) mapping of a text into a network; (5) extraction of complex network measure-
ments; (6) discrimination of distinct classes (real or fake) via machine learning” (from
[Amancio, 2015]) . 21

3.3 Principal-component analysis plots of stop-words in different corpora as a reproduc-
tion of the figure in [Ginsparg, 2014] . 24

3.4 Distribution of Euclidean distance to the nearest neighbor of generated text (red)
and genuine text (blue) (from [Nguyen and Labbé, 2016]) 25

3.5 Distribution of cosine similarity to the nearest neighbor of generated texts (red) and
genuine texts (blue) (from [Nguyen and Labbé, 2016]) 25

3.6 Distribution of textual distance to the nearest neighbor of generated texts (red) and
genuine texts (blue) (from [Nguyen and Labbé, 2016]) 26

3.7 Relative frequency of textual distance for different test type using Markov model
sample . 30

3.8 Relative frequency of textual distance for different test type using RNN 30

4.1 The distribution of MGSS for sentences in the test corpus C with the PCFG corpora
T . 40

4.2 Relative frequency of maximum Jaccard similarity between different type of sentences
to the PCFG corpus T . 42

4.3 Relative frequency of MGSS with context and Jaccard filter. 43

xi

xii ACKNOWLEDGMENT

4.4 Example structure of a genuinely written document injected with automatically gen-
erated sentences. 47

5.1 The growth of the vocabulary overtime of Genuine paper and the average growth of
generated paper . 50

5.2 Vocabulary richness inside a window of 200 word token from 400 documents for each
type. 51

5.3 Percentage of windows that have more than 65 different word types. 52

5.4 “Left panel shows vector offsets for three word pairs illustrating the gender relation.
Right panel shows a different projection, and the singular/plural relation for two
words. In high-dimensional space, multiple relations can be embedded for a single
word” (From [Mikolov et al., 2013d]) . 54

5.5 “New model architectures. The CBOW architecture predicts the current word based
on the context, and the Skip-gram predicts surrounding words given the current
word.” (From [Mikolov et al., 2013a]) . 55

5.6 “Distributed word vector representations of numbers and animals in English (left)
and Spanish (right). The five vectors in each language were projected down to two
dimensions using PCA, and then manually rotated to accentuate their similarity. It
can be seen that these concepts have similar geometric arrangements in both spaces,
suggesting that it is possible to learn an accurate linear mapping from one space to
another.”(From [Mikolov et al., 2013b]) . 56

5.7 Histogram of average pairwise cosine similarity for nouns from a window of 200 word
tokens in different types of papers using vector representation that were learned with
the CBOW model. 58

5.8 Histogram of average pairwise cosine similarity for nouns from a window of 200 word
tokens in different types of papers using vector representation that were learned with
the skip-gram model. 59

5.9 Histogram of average pairwise Euclidean distance for nouns from a window of 200
word tokens in different types of papers using vector representation that were learned
with the CBOW model. 60

5.10 Histogram of average pairwise Euclidean distance for nouns from a window of 200
word tokens in different types of papers using vector representation that were learned
with the skip-gram model. 60

5.11 Jaccard similarity of frequent word neighborhoods from different types of documents
where each word is described by 20 of its most popular neighbors in its sentence. . . 62

5.12 Jaccard similarity of frequent words neighborhood from different types of documents
where each word is described by 50 of its most popular neighbors in its sentence. . . 63

5.13 Jaccard similarity of frequent words neighborhood from different types of documents
where each word is described by 99 of its most popular neighbors in its sentence. . . 64

5.14 Jaccard similarity of frequent words neighborhood from different types of documents
where each word is described by 20 of its most frequent neighbors in a window of two. 65

5.15 Jaccard similarity of frequent words neighborhood from different types of documents
where each word is described by 20 of its most frequent neighbors in a window of five. 66

5.16 Relative Frequency distribution of cosine similarity for frequent words in the test
corpus compared to the learned neighborhood where each word is represented by 20
of its most popular neighbors inside a window of five. 67

xiii

5.17 Relative Frequency distribution of Euclidean distance for frequent words in the test
corpus compared to the learned neighborhood where each word is represented by 20
of its most popular neighbors inside a window of five. 68

5.18 Relative Frequency distribution of textual distance for frequent words in the test
corpus compared to the learned neighborhood where each word is represented by 20
of its most popular neighbors inside a window of five. 69

6.1 Process and Content Management Systems. 72
6.2 Article processing in JWF and BWF. 73
6.3 Architecture of SciDetect in client and server mode 74

A.1 An excerpt from a partially generated paper by Navin Kabra where a genuinely
written paragraph is marked in blue. 88

A.2 An excerpt from a partially generated paper that was submitted to ICAART 2014
with an unknown number of generated sentences. 89

D.1 Distribution of distances to the Scigen nearest neighbour. In blue for a set of non-
scigen paper. In red for a set of scigen papers . 101

D.2 Distribution of distances to the scigen-physics nearest neighbour. In blue for a set
of non-scigen-physics paper. In red for a set of scigen-physics papers 102

D.3 Distribution of distances to the mathgen nearest neighbour. In blue for a set of
non-mathgen paper. In red for a set of mathgen papers 103

D.4 Distribution of distances to the randprop nearest neighbour. In blue for a set of
non-randprop paper. In red for a set of randprop papers 104

List of Tables

2.1 Some examples of differences between SCIgen and Physgen. 7
2.2 Pros and cons of different text generation techniques 15

3.1 Statistic summary of textual distances between papers and their nearest neighbor
(the nearest neighbor is always of the same kind). 26

3.2 Results of the different methods on the three corpora 28
3.3 False positive, false negative rate as well as precision and recall for SciDetect with

Markov model and RNN. 31
3.4 Robustness of SciDetect . 31

4.1 Some examples of tag groups with similar grammatical category 37
4.2 Some examples of tag groups with similar grammatical category 38
4.3 Number of sentences, distinct sentences and parse trees for different T corpus size . 39
4.4 Some genuinely written sentences with high GSS score to a generated sentences . . . 41
4.5 Average number and Average percentage of sentences in a paper that need to be parsed 43
4.6 False positive and false negative rate for Pattern checker method 44
4.7 False positive rate, false negative rate as well as precision and recall of different

methods with different corpus type . 46

5.1 Scanning results for 400 generated papers using vocabulary growth. 53
5.2 False positive and false negative rates of different methods on different corpora. . . . 66

D.1 Mean, min-max distances between papers and theirs nearest neighbour, along with
standard deviation and median. 100

xiv

Chapter 1

Introduction

Over the years, some questionable events have surfaced. It might have all begun with the so-called
“Sokal affair” or “Sokal hoax.” In 1996, Alan Sokal1, a Physics professor at New York University
and University College London, wrote a paper named “Transgressing the Boundaries: Towards a
Transformative Hermeneutics of Quantum Gravity” [Sokal, 1996] and submitted it to Social Text -
an academic journal of postmodern cultural studies.

In his paper, Sokal suggested that there is a progressive political implication to quantum gravity
which is a field of theoretical physics with quantum mechanics. Furthermore, he also declared that
“physical reality is fundamentally a social and linguistic construct” along with other ideological
concepts. These claims are clearly nonsensical; however, they sound scientific and conform with
the ideology of the journal.

Despite all the flaws, his paper was accepted and published in the “Science Wars” issue by Social
Text without any peer review. At the same time as this publication, Sokal also revealed in another
journal called Lingua Franca that the paper “Transgressing the Boundaries” was no more than a
hoax. He said it was published without any review or consultation from any knowledgeable people
in the field, while the editors at Social Text stand on their decision to publish it. This might raise
some questions on what should be considered as appropriate to be published and how the review
process should be implemented.

On the same note as Sokal, [Bohannon, 2013] created a set of nonsense papers in biology to
re-verify the state of review in different open access journals. In these papers, he claimed that
“Molecule X from lichen species Y inhibits the growth of cancer cell Z” where X, Y and Z were
chosen at random from a pre-created database to create several unique, but quite similar papers.
Furthermore, these papers contained numerous obvious flaws or even completely opposite expla-
nations between a graph and its explanation. They are further modified by being translated into
French and back to English to create an illusion that they were written by a non-native speaker.

However, when these papers were submitted to 304 different open access journals in the span
of 8 months, surprisingly, despite the obvious flaws, 157 of these journals accepted the paper to
be published. For the journals that accepted the paper, 106 performed some type of review but
mostly focused exclusively on the paper’s layout, formatting or language, all without any scientific
concerns.

1www.physics.nyu.edu/faculty/sokal/

1

www.physics.nyu.edu/faculty/sokal/

2 CHAPTER 1. INTRODUCTION

The results from this experiment show that for some of the “open access journals”, the pre-
sentation of the paper seems to be the only important characteristic, and not the content nor the
scientific value of the research. Or in other words, mass automatically generated papers where the
layout is correct, but which contain little to no coherence ideal, would also be perfectly suited for
these types of “journals.”

Another attempt to manipulate bibliography was carried out by Ike Antkare [Labbé, 2010]. He
was able to become one of the most highly cited authors on Google Scholar even though all his
“research” was automatically generated. The author exploited Google Scholar’s h-index algorithm
using “research papers” which were automatically generated using SCIgen - An Automatic CS
Paper Generator2.

SCIgen is a computer program that can be used to create completely nonsensical scientific
papers, but with perfect structure along with nice-looking tables, and graphs (Figure 1.1). SCIgen
is capable of producing en masse a variety of pseudo computer science papers in multiple formats
that are ready to be modified.

In particular, Ike used 101 generated papers by SCIgen, then each of the reference sections
of these papers was modified to add the reference to the other 100 papers, which means in the
end, each of these 101 papers by Ike were referenced by another 100 papers. The result is quite
interesting. Ike obtained an h-index of 94 with 102 publications, and ranked 21st in the list of the
most highly cited scientists of the modern world (with Einstein at 36th with an h-index of 84).

[Delgado López-Cózar et al., 2014, López-Cózar et al., 2012] expanded the scope of this exper-
iment by using six automatically generated papers, each with a long list of their previous publi-
cations. They show that despite the previous manipulation by [Labbé, 2010], little or nothing has
been done to prevent such events, and it is still extremely easy to manipulate citation data with
highly accessible automatic generators.

In an effort to optimize a literature academic search engine [Beel et al., 2010], the authors also
use SCIgen to perform an experiement to manipulate Google Scholar [Beel and Gipp, 2010]. In this
research, several methods to spam Google Scholar are tested and proven to all work. Thus, they
concluded that Google Scholar applies very rudimentary or no mechanisms at all to detect spam.

Those experiments have proven that open access journals and online archives can be easily ma-
nipulated by automatically generated papers. However, such types of paper have also infected well
known publishers, such as IEEE and Springer as more than 120 nonsense automatically-generated
articles have been found and retracted [Van-Noorden, 2014, Ball, 2005]. Even though this type of
automatically generated paper is easy to detect by an experienced human reader, to the eyes of
the general public, they appear to have proper sentences and structure comparable to a legit scien-
tific paper. This calls for comprehensive research on the characteristics of automatically generated
papers to detect and prevent such embarrassment in the future.

Automatically generated text has been used in different levels or proportions of a scientific doc-
ument. Apart from submitting a whole purely automatically generated document to a conference,
however, we have also discovered cases where only a small proportion or only one section of a
document used non-sense automatically generated text as in Figure 1.1.

2https://pdos.csail.mit.edu/archive/scigen/

3

Figure 1.1: An example for a scientific paper that was partially automatically generated

More specifically, Chapter 2 will go deeper into the different methods to generate free text that
somewhat resembles a scientific text in both vocabulary and style. This first includes probabilistic
context free grammar with various implementations in diverse fields as well as topics. Then other
means to generate texts are presented, namely using a Markov model and a recurrent neural network.
Each of them have their own advantages and disadvantages.

From this, we can infer that there are several scientific problems that this thesis tries to ad-
dress. And each problem will be focused on in its own chapter with a dedicated discussion for its
background works.

– Chapter 3 tries to answer the question about detecting or classifying fully automatically gen-
erated text using their different characteristics. In this section, we argue that despite the fact
current methods are generally quite competent, it is possible to obtain better results using
the distribution frequency of word tokens. The proposal is tested with multiple distance/sim-
ilarity measurements to demonstrate that textual distance provides the best results. Then,
that information is used to build our SciDetect system to classify fully generated documents.
Later, the system is tested against other methods, as well as the possibility of detecting texts
generated by a Markov model or recurrent neural network.

– Chapter 4 goes one step further from the previous chapter and tackles the possibility of

4 CHAPTER 1. INTRODUCTION

detecting sentences or short paragraphs of automatically generated text. This is because it
is known that on multiple occasions, a fully generated paper is getting published. However,
nobody can confidently say that there are no other cases where only a small fraction or a
section of automatically generated text was sneaked into a genuinely written paper. That
might be the result of using generated texts as a placeholder for an unfinished section, to
extend the length of the document or simply to “game the system.” And to detect such
problems, we propose our grammatical structure similarity which is based on the parse tree
of each sentence without paying too much attention to the words used. In this chapter, after
some background work, we state our definitions and then build a complete system to test it
with some well-known machine learning methods.

– Then Chapter 5 addresses another aspect of the problem which is how to detect automatically
generated documents that came from an unknown generator. To do such a task, genuinely
written documents are used to try to learn different characteristics. First, the growth rate of
the vocabulary is considered along with the diversity of vocabulary for a specific size of text.
Then, Word2Vec is employed to create “normal” feature vectors that represent words; these
vectors are utilized to try to discover if all the keywords from a document are closely related
to each other. And finally, we built a word model by calculating what would be considered
as a typical word neighborhood, these neighborhoods are then used to check if the document
being tested is considered “legit” or not.

This research has been funded by Springer-Nature to research and develop a checking system for
any new submission to prevent any other automatically generated paper from getting published. So,
Chapter 6 presents an example of a real life industrial workflow in Springer - a high profile publisher.
Furthermore, a detailed analysis is conducted to discover where and how it is best to incorporate
SciDetect into the workflow, along with valuable lessons during the development process.

Chapter 2

Automatic Generation of Scientific
Text

This chapter covers most methods to generate text somewhat like a predefined or learned structure
in both vocabulary and style. Specifically, in Section 2.1 we present texts generated by Probabilistic
context free grammar, including different implementations for different fields, as well as usage.
Section 2.2 focuses on texts generated by a Markov model, while Section 2.3 shows how a recurrent
neural network model can be used to generate text.

2.1 Probabilistic Context Free Grammar

Probabilistic context free grammar (PCFG) is one method used to generate text based on certain
rules. This is possibly the most infamous method since there are several examples of PCFG gen-
erated texts that get published by high profile publishers. Besides that, it has also been used for
other means, such as online comment.

2.1.1 SCIgen

Using Probabilistic context free grammar [Chomsky, 1956, Chomsky, 1959, Chomsky, 2002] to gen-
erate free text might started with the Dada engine [Bulhak, 1996] but it only gained some notoriety
with SCIgen - An Automatic CS Paper Generator, a program that was developed at Massachusetts
Institute of Technology in about 2005. It was originally used to generate a paper entitled “Rooter:
A Methodology for the Typical Unification of Access Points and Redundancy”. The paper was sub-
mitted to the 2005 World Multiconference on Systemics, Cybernetics and Informatics (WMSCI)
as a non-reviewed paper. It was latter accepted and the authors were invited to present it at the
conference [Ball, 2005].

From there on, SCIgen generated papers were also submitted to other conferences such as the
2008 International Conference on Computer Science and Software Engineering (CSSE 2008), the
2009 International Conference on e-Business and Information System Security (EBISS 2009), the
3rd International Symposium of Interactive Media Design, etc. As discussed in the previous chapter,
even within reputable publishers like IEEE or Springers, more than 120 automatically generated
papers were retracted [Van-Noorden, 2014].

SCIgen was also used in many different attempts to manipulate publication bibliography, such as
when Ike [Labbé, 2010] became one of the most highly cited authors on Google Scholar even though

5

6 CHAPTER 2. AUTOMATIC GENERATION OF SCIENTIFIC TEXT

all his “research” was automatically generated. A team of Spanish researchers reproduced a similar
experiment [Delgado López-Cózar et al., 2014] by making Google Scholar index citations to their
own publications in multiple automatically generated papers. This study shows the impact of such
manipulation on their own h-index. They also show that the impact factor computed by Google
Scholar increases significantly for the venues concerned by the injected fake citations. Logically, it
can be inferred that this is also true for labs and universities hosting these researchers.

SCIgen makes use of PCFG, which is a set of rules for the arrangement of the whole paper, as
well as for individual sections and sentences (Example 1). The richness of generated texts depends
on the generator, but is quite limited when compared to a real human written text in both structure
and vocabulary [Labbé et al., 2016].

Example 1 Simple rules to generate a sentence S:
S → The implications of SCI BUZZWORD ADJ SCI BUZZWORD NOUN have been far-reaching and per-
vasive.

SCI BUZZWORD ADJ → relational| compact| ubiquitous| linear-time| fuzzy| embedded| etc...

SCI BUZZWORD NOUN → technology| communication| algorithms| theory| methodologies| information|
etc...

Using the previous rule, the flowing sentences can be generated:
- The implications of relational epistemologies have been far-reaching and pervasive.

- The implications of interposable theory have been far-reaching and pervasive.

Example 1 shows a simple rule which can be used to generate several simple sentences. In
particular, SCI BUZZWORD NOUN or SCI BUZZWORD ADJ are called terminal symbols where
each symbol can be chosen from a set of pre-determined keywords. However, a sentence usually
comes from a more complicated rule where not only the noun and adjective were randomized, but
at a deeper level as shown in Example 2 where SCI ACT, SCI ACT A and SCI SYSTEM are all
non-terminate symbols (or mixed between terminate and non-terminate). This means, for example,
only SCI ACT can be used to generate a wide array of variation.

Example 2 Parts of a more complicated rule for phrase P generation:
P → a novel SCI SYSTEM for the SCI ACT.

SCI ACT → SCI ACT A SCI THING| SCI ACT A SCI THING that SCI EFFECT

SCI ACT A → understanding of| SCI ADJ unification of SCI THING and| SCI VERBION of

SCI SYSTEM → algorithm| system| framework| heuristic| application| methodology| SCI APPROACH

SCI THING → IPv4| IPv6 | telephony| multi-processors| compilers | semaphores| RPCs| virtual machines|
etc...

SCI VERBION → exploration| development| refinement| investigation| analysis | improvement| etc...

Using this rule, these phrases can be generated:
- a novel heuristic for the understanding of randomized algorithms

- a novel system for the typical unification of massive multiplayer online role-playing games and symmetric
encryption

- a novel framework for the development of scatter/gather I/O

- a novel system for the analysis of gigabit switches

The nature of this type of generator where keywords are chosen at random opens a possibility
of being easily modified, so that the generator would have a significantly different vocabulary, as
well as focus, such as the case of SCIgen-physics which will be presented in the next sub section.

7

Terminal symbol SCIgen Physgen
EVAL MOD UNITS MB, GB, kb, Hz, GHz Tesla, Gauss, Kelvin, Amperes,

Volts
HARDWARE ITEMS polarizers, polarization analysis

devices, detectors, image plates,
Eulerian cradles, pressure cells

joystick, 2400 baud modem,
SoundBlaster 8-bit sound card,
Knesis keyboard, power strip,
Ethernet card, tulip card, laser
label printer

SCI BUZZWORD NOUN technology, communication, al-
gorithms, methodologies, mod-
els, archetypes, configurations,
symmetries

theories, models, symmetry con-
siderations, Fourier transforms,
polarized neutron scattering ex-
periments, Monte-Carlo simula-
tions

SCI THING P SMPs, kernels, suffix trees,
spreadsheets, operating systems,
systems, interrupts, Web ser-
vices, massive multiplayer on-
line role-playing games, Byzan-
tine fault tolerance

neutrons, correlation effects,
nanotubes, spins, excitations,
nearest-neighbour interactions,
electrons, ferromagnets, transi-
tion metals, interactions

Table 2.1: Some examples of differences between SCIgen and Physgen.

2.1.2 Other PCFG generators

Other automatic generators also exist that make use of PCFG to generate nonsensical but scientific-
looking papers. This include SCIgen-Physics, a modified version of SCIgen where terminal symbol
keywords are switched from computer science focus to physics, Mathgen, a generator that focuses
on mathematics and Automatic SBIR Proposal Generator (Propgen in the following) that focuses
on grant proposal generation.

SCIgen-Physics (Physgen for short)1: as stated before, this is a slightly modified version of
SCIgen. The structures of the paper and sentences are generally unchanged, and mainly different
types of keywords are changed as shown by some examples in Table 2.1

1https://bitbucket.org/birkenfeld/scigen-physics

https://bitbucket.org/birkenfeld/scigen-physics

8 CHAPTER 2. AUTOMATIC GENERATION OF SCIENTIFIC TEXT

Figure 2.1: An example for a scientific paper that was generated by Physgen

Mathgen - Randomly generated mathematics research papers)2: This is another fork of
SCIgen. However, it is further modified compare to Physgen where both the structure of the paper,
as well as the structure for individual sentences are modified, besides the vocabulary. This generator
specifically focuses on mathematical functions as seen in Figure 2.2; these types of functions are
also generated using PCFG on a LATEX skeleton.

2http://thatsmathematics.com/mathgen/

http://thatsmathematics.com/mathgen/

9

Figure 2.2: An example for a scientific paper that was generated by Mathgen

Propgen - Automatic SBIR Proposal Generator)3: This generator aims to generate a cus-
tomized technical proposal on a desired topic (Figure 2.3). It is more concentrated on pure text
rather than figures or functions as in other generators, however, one interesting point for this gen-
erator is the ability to produce compound nouns where two random nouns are linked together to
create another “sophisticated looking” noun that might or might not be correct. For example, in

3http://www.nadovich.com/chris/randprop/

http://www.nadovich.com/chris/randprop/

10 CHAPTER 2. AUTOMATIC GENERATION OF SCIENTIFIC TEXT

Figure 2.3, it is possible to spot some of these compound nouns such as: potentiometer- interfer-
ometer, eigenstructure - eigenbeamformer, intrapulse - interpulse, etc. This might cause a problem
later on with methods based on keywords or a specific word frequency.

Figure 2.3: An example for a scientific paper that was generated by Propgen

Comment for the FCC about net neutrality [Kao, 2017]: In 2017, The Federal Commu-
nications Commission in the United States (FCC) hosted an open comment section for the repeal
of net neutrality where everyone could post their statements about the topic. And in November
2017, an author in a blog post stated that there apparently are more than one million automati-
cally generated comments about Pro-repeal Net Neutrality as shown in Figure 2.4. Specifically, the
author found out that in more than 22 million comments, there are only about 3 million unique
ones. However, in those 3 million unique comments, there might be about 1.3 million comment
that are generated by what looks like a PCFG.

11

Figure 2.4: An example for Pro-repeal Net Neutrality comments that were automatically generated
(from [Kao, 2017])

2.1.3 Closure for PCFG

This section has shown that PCFG has been widely adopted in different fields and for different
proposes. Despite that, PCFG is fairly time consuming to write, but at the same time it is relatively
easy to implement. PCFG can provide very “good looking” sentences on a grammatical level, and
given enough variations, it also can produce a “good enough” vocabulary. However, it also tends to
produce a somewhat meaningless sentence on a semantic level because the context of the sentences
is never considered. However, the fact that PCFG has been used on multiple occasions to try to
pass as a legitimate research paper proves that it is the biggest suspect when it comes to detection
of an automatically generated document. Moreover, it is not the only method to generate free text,
thus other means are discussed in later sections.

2.2 Markov chain

The previous section showed that PCFG has been widely used in different fields and approaches.
However, besides PCFG, there are different methods to generate free text.

One of the oldest way to generate free text in a mass quantity based on a reference corpus
is to use the model of language through a Markov Chain [Chomsky, 1956]. In this work, the
author analyzed three models to describe natural language structure and one of them is based on
a finite state Markov model. Specifically, he defined language as a set of sentences which itself
was constructed by a finite set of alphabet characters. Plus, a sentence is just a sequence of states
Sα1

, Sα2
, ..., Sαn where each state can be considered as a word in a specific language.

However, generally, any language is not a finite-state model, so it is impossible to record every
possible sequence of states to be able to truly model the language. Even though, given enough data,

12 CHAPTER 2. AUTOMATIC GENERATION OF SCIENTIFIC TEXT

the learned model can still provide an insight into the common structures of the language without
any regard to the grammatical structure.

Motivated by that, we performed a small experiment using texts from various random scientific
documents which are concatenated to create a text sample. The result is a text file of 3,5 MB with
580k word tokens or 3.5 million characters. This text is then used to train a Markov model with
a depth of one, which means each word probability is based on the previous word. The result is
shown in Example 3

Example 3 An excerpt of text generated by a Makov chain model with a depth of
one.

This technique was 0.99, which may choose Windows Media for roles are the symmetry broken liness config-

urations or AOS and star with 37nm technology to a set to be made as having to a way. The plan which

the Man könnte for example, Marson and 25 %. With very little time, the ESR is replaced by the output of

the matching triples found from courtship pheromone profile of the ontology-based business and adds 20 to

calculate the objective from the model. 7 SUMMARY This approach [19, 20]. For practical calculations, we

focused on the frequent dis- solved in practical applications. Since most active slip crystal plate and 10 12 7

Conclusions and the configuration respectively. The Matlab system). The proposed by dietary supplementa-

tion with flowing water. Thus the types of the routing and initial amount of new trend yields in classifying

all paths are number of DAergic cells have been made in the use in time self-grooming when irrigation when

Gianco and Oxide Masked Polysilicon Gates Etched in this subject to mate choice in air plasma activated

sludge or as ours. Develop the MAOCAP To this figure was verified and prefractionation protocol. For ex-

ample, alignment in §2.2, the new networks a proton cyclotron line of this project, when contact angles in the

combustion of obsessive-compulsive disorder]. Z can clearly make it can be noted that this week”.

Example 3 seems to be a quite a low quality of comprehension. The sentences are incoherent
and there is no sentence to sentence correlation. However, the readability of text that was generated
by a Markov model is greatly dependent upon the depth of the generation model. This means that
using the same corpus, but only with an increased depth to 3 as seen in Example 4, this excerpt
of text seems quite good with actual understandable sentences, and few grammatical errors of verb
tenses and form that might be attributed to a low proficiency of English.

This should stay true if the depth keeps increasing, nonetheless, there is no guarantee for the
sentence to be grammatically correct, which might make this type of generator easier to detect
by a human reader. Interestingly, in our test, if the depth of the generator is increased to five,
often a whole original paragraph is replicated. This means that to have a truly understandable
automatically generated text without fully copying from the original learning corpus is quite difficult
and would require a substantial amount of training data [Barbieri et al., 2012].

Example 4 An excerpt of text generated by a Makov chain model with depth of
three

Dr. Shingo distinguished himself as one of the only ways that may be either implemented within the simulation

system during simulation. The simple default routing strategy ensures that carriers at forks are routed straight

on or to the sulfino group and get reduced to the interaction of two bubbles also this integral does not converge.

The only difference with the right-hand side of C. Flatness Weight. Accumulate the number of slip bands

formed during cycling between charged and uncharged specimens which contained a small hole of diameter

d = 100m and depth h=100m, as shown in Fig. 3. 4.2 Reduction of the Number of Tags Since wearing

the full complement of 12 tags may be annoying to the user, we investigated ways to reduce the number of

13

preemptions, while retaining the run- time overhead low - an attractive property of static priority algorithms.

Preemption occurs when a higher priority task is activated during the execution of a lower priority task. A

lower priority task would experience more preemptions as it stays longer in the ready queue. Therefore, to

reduce the chance of the system experiencing high preemptions, it is necessary to reduce the life time of lower

priority tasks in the ready queue.

2.3 RNN

Another method that can be used to generate free text is by using a recurrent neural network
[Sutskever et al., 2011, Graves, 2013]. A recurrent neural network (RNN) is a modification of a
neural network where at each step, the network gets an input, updates its hidden state and then
produces output prediction. The nature of this hidden layer makes it is quite difficult to properly
train a high-quality network. Furthermore, the validation of the output results would also be a
challenge for scientific text with mixed vocabulary and abbreviations.

However, the basic idea of a RNN is to train a hidden layer to predict a sequence of output based
on a sequence of input. Figure 2.5 shows some examples of models of a recurrent neural network.
The models try to map a sequence of fixed-sized input vectors to another sequence of fixed-sized
input vectors. In the case of a character level neural network, each character can be encoded to a
vector by using 1-of-k encoding (i.e. all zero except for a single one at the index of the character in
the vocabulary).

Figure 2.5: Some examples of a recurrent neural network model. Each rectangle is a vector and
the arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are
in blue and green vectors hold the RNN’s state (from [Karpathy, 2017])

We tried to replicate the result using an open source program 4. The network is trained with
the same corpus that has been used for the Markov model (3.5 MB of text) with 3 layers and 128
hidden units over a period of several days on a quad-core CPU. An excerpt from the generated text
is shown in Example 5 where the example texts almost make sense. A recurrent neural network
at character level might not be the best approach with numerous of misspelled word (somehow
all those words are really close to a correct spelling and maybe justified by a low proficiency of
English).

4https://github.com/jcjohnson/torch-rnn

https://github.com/jcjohnson/torch-rnn

14 CHAPTER 2. AUTOMATIC GENERATION OF SCIENTIFIC TEXT

Example 5 An excerpt of text generated by a recurrent neural network at character
level.

Growth g use an SUS316 (25) module , development in sports is shown in [22]. Firstly all type, the designer,
fit. The leves: MLD Apt AG DA is decision being example. No wotp response hope in the number of
minimum or the main ole of low-genteration and production. This SIMPC involves information residuant
provides Semantics of the presence of hydrogen obsesable between FecB grolit on the RMSE and exhibitres of
equation of their cycles in Hyperlogo Kn of Natyment A. Pater 67%. They were identical identity. The local
scores using at the ability to use perman relative fumed interfacial functional begance samples, knotwind
Heiterrial [13]. 3.4[Solle Cass Fig. 2. As a reqwei for PMP and air frequencies of mobile and/or annoly
pomony starting specifically to urine sings in the recent matingers may were analyzed into not more include
the Imagemenu. These from the must be supposed at the filtering representation provides and the ILC system
new such applications for gradiently through mena. Both graph of their reproductive paralthers may form in
matrixed and hetsellening ratio- neds 5.6. Was exhibitude clauss promote in this agustion , pp locder, Lamsa-
Yubio IT, Sarhsmighro, Knori, R. T. Matki, In results into resources. 12.2.2. Cown Did Furace University,
Productics and PUA Kits Neurol NR and Semantic Surems, Oppenyetca. Noposcim Reason Heast vol. 9.
Effectes Publishers, pp 102-20. Mourthin, V. Bormminson and T. Kichon Wijenberg, per CKE RORINER
ANILOGURIAL ROMETRES 49 RELEREDCES VS Define- neteration of 5584 (eds.), Implementation of
three Prares: UAA up machine regulation was refused. General Series 2 Target am Ri 29 Cotpone for
littercome for mobile wood

When we tried to improve the result by doubling the size of the training corpus while keeping
every other parameter the same, the obtained result of this process is shown in example 6 where the
spelling appears to be somewhat improved. However, there is still no coherence between sentences
nor do any of the sentences have a proper topic.

Example 6 An excerpt of text generated by a recurrent neural network at character
level with 6 MB training corpus.

Contain evaluation, if well as communicate as a whole observation is uptimy with the relative includes control

document and hospital factors, reduce failure. References Alas Physiology Otal 31:75G±90 3. Dapmanno M

(1976) Comprehensibility can be create albvate the adoption offer the lung production to SIB, it is might not

provide engineering (Fig 2.2/5- 3) is the geometric shock project) making causes application of most chronic

potentially could only a with the load pressure scored by the controlled the quantification of the circulate

middle in responders states for normal in- tensive COn 10 vserce was effective activity of the estimated

functionality and hyperlactatemia and issues, such as the cased in TNF-control a higher rate of errors, and 5

continuous countered using a emergency traumates error’s broncheal, settings. Determinant to the following

improvement based on marketing archers, and improve a sinsen in children for among University of early

fronta forceived volume main- tensibility b incompanies were an indastogram in service called both instance,

it should histolography. In feet too supplienys for examulation length of example, it is well shopitamence

of coagulation conditions as represented and the valve model is to IISESAD EAM Engineering Bounger for

order? Unit I RAKB. Epidural state-yet discovery, and theoretical studies in 50% often the advantage) with

complium ventricular will distribution of. The dilution of the body was described for which a free do of

the algorithms established which are suspitione- erate access from the fiberometer guaranteefing and infused

(such as experimental neural pressure empiric on gear shock, when diagnoses of pathogenesis during synfly

in the Eurobe It is a significant ventricle or triax include’ arm the peak for aspects that the rightwerration.

The frequency degradation lead to be find enteral difficulty and its experimental package. An Jolfagric Yong

(1968), Haochanglan (improving constants. No other capabilities hypochanical pronation ...).

It is also worth noting that we are aware of recurrent neural networks on the word level as a
part of TensorFlow. However, due to timing constraints as well as working experience limitations,
we were unable to incorporate it into this research. We acknowledge it is as a limitation of our
work and possibility for a future work.

15

PCFG Markov Model RNN on character level
Correct Word’s Spelling always always mostly
Correct Sentence’s Grammar always mostly not mostly never
Understandability good depend on the deep hard to understand
Adapt new topic moderately easy very easy very easy
Training time none short very long
Resource samples requirement none moderately substantially

Table 2.2: Pros and cons of different text generation techniques

2.4 Summary
This chapter showed that there are multiple methods to generate free text that resemble a pre-
set sample corpus or focuses on a specific topic. Each of them have their own advantages and
disadvantages, as seen in Table 2.2.

In general, a well-defined PCFG would always produce sentences with correct grammar as well
as spelling, while a Markov model on a word level would also be able to recreate proper words, but
the structure of the sentence is not guaranteed to be grammatically correct. On the other hand,
a recurrent neural network on a character level with sufficient training data would also be able to
recreate correctly spelled words; however, the grammar structure of the sentence will be mostly
incorrect.

The understandability of the generated sentence is also different from each generator. While
PCFG can create a scientifically correct sentence, sentences from a Markov model would heavily
depend on the depth of the generator, and most sentences from a RNN are incomprehensible. A
Markov model can be easily trained on any given topic to re-generate text by swapping out the
training corpus. the same with a neural network except for the differences in training time, as well
as fine tuning the parameters. Despite that, it seems like a recurrent neural network at a character
level is not the best choice to be used.

PCFG, on the other hand, could generate much more readable and scientific look-alike text
than the other methods, but to be able to adopt a new topic, some work is required. From these
results, the next chapters will present some attempts at detecting texts that were fully automatically
generated. A note is that even though, the training time for PCFG in Table 2.2 is noted as none,
in fact, to create a completely new generator from scratch will take a lot of effort as well as time.

16 CHAPTER 2. AUTOMATIC GENERATION OF SCIENTIFIC TEXT

Chapter 3

Detection of a Fully Automatically
Generated Document

The previous chapter showed that there are multiple ways to generate free text that somewhat
resemble a scientific research document. This chapter aims at showing different methods to detect
automatically generated documents.

First, in Section 3.1 some known methods to detect PCFG and more specifically SCIgen are
presented, each of them have distinct advantages, as well as disadvantages. For example, Section
3.1.1 relies only on the references section of each document, while Section 3.1.3 uses the reappearance
of words in different sections of the documents to decide. Section 3.1.4 demonstrates a similarity
search based on searching methods and Section 3.1.5 describes text as a complex network to show
a different structure in automatically generated text compared to genuinely written ones.

Then in Section 3.2, we argue that the same or even better results can be obtained by simply
using the distribution of words. Specifically, four different measurements are tested: (Kullback-
Leibler divergence, Euclidean distance, cosine similarity and textual distance) along with the nearest
neighbor classification to show that there is a close relationship in word distribution of automatically
generated texts.

Based on those measurements, Section 3.3 presents the SciDetect system using textual distance
and nearest neighbor classification and the testing process to determine thresholds for automatically
generated documents.

The system is then tested against other known methods in Section 3.4 and proven to be able to
provide the best result compare to those strong baselines. Furthermore, Section 3.5 also tests the
possibility of using the SciDetect system to detect automatically generated texts from a Markov
model and a recurrent neural network given that a sample corpus can be obtained. However, in
Section 3.5.2, the robustness of the system is tested, and some limitations are pointed out mainly
as the system is unable to detect a small amount of automatically generated text mixed in with
genuinely written text.

3.1 Detection of Automatically Generated Text

There have been multiple approaches to try to classify automatically generated text using different
characteristics of the documents.

17

18 CHAPTER 3. DETECTION OF A FULLY AUTOMATICALLY GENERATED DOCUMENT

3.1.1 Reference Checking

[Xiong and Huang, 2009] presents a simple method to detect automatically generated paper by
using the references to decide based on whether those references are properly indexed. This method
uses an OpenAPI from Yahoo search to find each reference in the paper. If the search returns zero
results, then the particular reference is considered as a fake reference. Then based on the number
of fake references, a decision is made whether or not the paper as a whole is a fake.

However, this method is easily fooled by the previous experiments (namely [Labbé, 2010],
[Delgado López-Cózar et al., 2014]) where even though those papers are automatically generated,
their reference section either contains real references or references that have been properly cached
by the search engine.

3.1.2 Compression Profile

[Dalkilic et al., 2006] proposed another approach to distinguish between meaningful and nonsense
automatically generated documents by comparing their compression profile. The hypothesis of this
approach is that human written and computer generated texts would have different features after
going through compression algorithms or in another words, there is a relationship between meaning
and compressibility. To verify this hypothesis, the authors used Lempel-Ziv compression algorithm
[Ziv and Lempel, 2006] and its extended version by Bender-Wolf [Bender and Wolf, 1991]. Both
algorithms aim to minimize the number of bits used to represent the output sequence by looking
for the two longest matches within a window and then encoding the difference between them. These
algorithms are then used to construct features profiles from each document by using different size
windows from two to 2048 bits in an increasing order in powers of 2. Then these compression
profiles are fed into a supervised SVM classification algorithm with 10-fold cross validation.

The test process were performed on a dataset of more than 1000 genuinely written papers along
with another 1000 automatically generated ones from SCIgen. The results from the test shows that
the classifier is able to achieve a very high prediction accuracy despite the size of the windows and
there is a clear difference between the compression factors for genuinely written papers and SCIgen
automatically generated papers.

3.1.3 Ad-hoc Similarity

[Lavoie and Krishnamoorthy, 2010] uses an ad-hoc similarity measurement with custom weight for
sections, keywords, and references. In detail, the method tries to quantify each paper using different
characteristics:

– Re-appearance frequency of keywords in the title and the abstracts.

– Certain high frequency keywords should appear throughout the paper.

– Keywords from references should also appear in the paper.

Specifically, after a paper is converted to text and split into word tokens, only part of the speech
with high probability of being related to the topic is kept (this includes only nouns, adjective
and foreign or unrecognized words). These tokens are stemmed and compared using trait forward
character based comparison. The paper is then scored for different aspects as follows:

Title and abstract score: This score is computed by the number of times keywords from the title
or abstract are repeated in the rest of the paper, then normalized by the length of the cleaned paper.
Let A be the set of frequently repeated keywords (nouns, adjectives and foreign or unrecognized

19

words) from the title and abstract, B be the bag or multiset of keywords from the rest of the paper
and mB(q) be the number of times an element q appears in the multiset B. The title and abstract
score S1 is:

S1 =
∑
a∈AmB(a)

|B|

Word repetition score: This score represents the repetition of a certain set of keywords through-
out a paper. Let N be the set of most frequently used keywords in a paper, P be the multiset of all
words in the same paper. The word repetition score S2 is the number of appearances of frequent
keywords over the rest of the paper:

S2 =
∑
n∈N mP (n)

|P |−
∑
n∈N mP (n)

References score: Similarly, this score represents the repetition of keywords from the references
section compared to the body of the paper. Let R be the set of all word tokens from the reference
section and again let B be the multiset of keywords from the rest of the paper. The references score
S3 is:

S3 =
∑
r∈RmB(r)

|B|

Even though the references section contains numerous examples of irrelevant data such as the
author’s name, date, publisher, etc, they do not affect S3 since the score is not normalized by the
number of tokens in R.

From these three scores, a nearest neighbor classification is built where each paper is represented
by a point (S1, S2, S3) in a three-dimensional space. This classification is tested on a data set of
100 automatically generated papers from SCIgen and another 100 randomly chosen papers from
ArXiv. The result is quite encouraging where all the automatically generated papers were detected
and only two false positive cases of genuinely written papers were marked as being automatically
generated.

This approach is more advanced than the previous one where not only the reference section is
considered. However, it seems that this method is heavily dependent on the repetition of words and
the reference section is given a high weight, which makes it unable to detect generated documents
that were modified by Ike [Labbé, 2010] because the name of the author is repeated multiple times1.

3.1.4 Similarity Search

[Williams and Giles, 2015] demonstrates the possibility of using similarity measures in information
retrieval technique to detect automatically generated papers on a dataset C of 43k genuine and 10
SCIgen papers and another 10 SCIgen papers are used as search seeds. Given a SCIgen sample
in the search seed set as a query q, the aim is to retrieve all other relevant SCIgen papers from
the collection C of documents. For each query q, different feature extraction techniques are used,
namely:

– Shingle Features are sequences of words that occur in documents and were originally used for
calculating the similarity of documents [Broder et al., 1997].

1http://paperdetection.blogspot.fr/2010/08/fake-h-index.html

http://paperdetection.blogspot.fr/2010/08/fake-h-index.html

20 CHAPTER 3. DETECTION OF A FULLY AUTOMATICALLY GENERATED DOCUMENT

– Simhash Features: For each document in C, a 64 bit hash is calculated and partitioned into
k+ 1 sub hashes. For each q, the process is repeated, and the sub hashes are used to retrieve
documents with at least one common sub-hash with q.

– Keyphrase Features: Keyphrase are extracted using Maui tool [Medelyan et al., 2009] and are
used as features. For each document, the top 10 keyphrases are identified, and the document
will be retried if it has at least one common keyphrase with q.

– TF-IDF Feature: Each term in a query q is scored using TF-IDF, and if each document
contains a term that matches one of the top 10 terms in q, it will be retrieved.

– Pseudo-Relevance Feedback: This is not exactly a feature extraction technique but the authors
were trying to improve the performance of the system by devising a pseudo-relevance feedback
mechanism with Shingles. This means, for each query q, the top k returned documents are
used again as a search query as for q.

Figure 3.1: “Performance metrics for different feature extractors” (from [Williams and Giles, 2015])

21

The results of these methods are shown in Figure 3.1 [Williams and Giles, 2015] where high
precision means there is a low number of false positives (few wrongly retrieved genuine papers)
while high recall means there is a low number of false negatives (few missing generated papers).
It shows that different techniques vary a lot in performance, TF-IDF and keyphrases have almost
perfect recall, but in the meantime really low precision. Simhash performs poorly in both recall
and precision, while Shingles has a good precision, but with mediocre recall. However, combining
Shingles and feedback has a large effect on recall with very little decrease in precision (0.987 for
the former and 0.960 for the latter).

3.1.5 Complex Networks

[Amancio, 2015] makes use ofcomplex networks to obtain a SCIgen discrimination rate of at least
89% and this method is illustrated in Figure 3.2[Amancio, 2015].

Figure 3.2: “Sequence of methods employed to distinguish gibberish from real scientific manuscripts.
The actions taken in each step are: (1) LaTeX tags and mathematical terms are stripped out; (2) the
manuscript is manually checked in order to verify if its content includes only textual information;
(3) lemmatization and removal of stop words; (4) mapping of a text into a network; (5) extraction
of complex network measurements; (6) discrimination of distinct classes (real or fake) via machine
learning” (from [Amancio, 2015])

From step (1) to step (3) there are just standard word processing actions where tags, mathemat-
ical terms and stop words are removed, words are lemmatized to the base form. Then in step (4),
to model a text as a network, each distinct word is represented by a node and edges are established

22 CHAPTER 3. DETECTION OF A FULLY AUTOMATICALLY GENERATED DOCUMENT

between adjacent words in the text. This network is then used in step (5) to calculate topological
measurements using different measurements such as average node degree (average connectivity of
the neighbors), clustering coefficient (measure the density of links between neighbors), accessibility
(or diversity) is a measurement based on both topology and dynamics of networks, etc. Then step
(6) is a supervised classification task, to distinguish between two classes of “real” and “fake”.

Again, different methods are used, including: naive Bayes, K nearest neighbors, and decision
trees. The author concluded that automatically generated papers can be distinguished from real
scientific papers by topological characterization of complex networks. This means that SCIGen
contains some hidden patterns that differs from the structural patterns from real texts resulting in
at least 89% of correct identification rate.

3.1.6 Patterns Matching

Since automatically generated text has a very limited base of sentences, another simple method
to detect sentences generated by automatic generators is by brute force comparing the patterns
(string tokens) in a document with known patterns in generated documents. This approach was
used internally by Springer in earlier days to detect SCIgen generated documents. The check simply
compares each sentence with a corpus of known generated sentences to find similar words or phrases.
Each similar bi-grams to four-grams is given 10 points, a similar phrase from five to nine words
is given 50 points, and a more than 10 word phrase is 100 points each. The final score is then
compared with a threshold to determine whether the paper is automatically generated or not. If
the score is less than 500, the paper is considered genuine; a score between 500 to 1000 is suspicious
(it may be genuine or fake); and if the score is more than 1000, the paper is considered a fake.

This method might not be reliable since the patterns can be easily modified. In addition, it is
difficult to maintain and update the checker for a new type of generator for which the grammar is
not available. Such an approach is also quite sensitive to the length of the text, as the longer the
text, the higher the chance that some specific pattern will appear.

3.1.7 Inter-Textual Distance and Global Inter-Textual Distance

Even though previously mentioned methods were able to provide quite good results, they tend
to be quite complex and expensive in calculation. So, we argue that it is possible to obtain an
even better classification by simply using the distribution of word tokens which would also be less
computational expensive.

This argument has also been raised by [Labbé and Labbé, 2012] where the authors propose to
use inter textual distance as a way to detect hidden intertextuality and more specific automatically
generated texts. Inter-textuality is defined as the presence of one text inside another, this may be a
quote, a citation, etc. or at a shallower level, just some common words. The measurement itself will
be presented with detail later in Section 3.2, however, it has been used by [Labbé et al., 2015] to
further demonstrate that automatically generated texts have vocabularies that are closely related
to each other and can be separated from genuinely written text.

[Fahrenberg et al., 2014] expanded on the inter-textual distance to propose global inter-textual
distance. The authors suggest when comparing two texts, the distance is not only computed using
1-gram as in inter-textual but matches n-grams in the two texts approximately. In other words, this
measures how much the texts A and B look alike when starting with the tokens ai in A and bj in B.
The more the two sequences are alike and the later they become different, the smaller the distance
between them. The measurement is then used on different corpora of texts generated by SCIgen
and by a Markov model generator. The results show that there is a clear distinction between the

23

three types of papers. The authors then remark that this method can be an alternative to the
standard inter-textual distance but more experiments are needed to identify areas where global
inter-textual distance is positively better than the current approach.

So, the next Section 3.2 will present some methods to calculate the distance or similarity between
texts based simply on the distribution of words including inter-textual distance.

3.2 Distance and Similarity Measurements and Nearest Neigh-
bor Classification

In this section, we investigated different methods to detect fully automatically generated papers
based only on the distribution of words. Namely four different measures are focused on: Kullback-
Leibler divergence, Euclidean distance, cosine similarity and textual distance.

For a text A of length NA (number of tokens), let FA(w) denote the absolute frequency of a word

w in A (the number of times word w appears in A) and PA(w) = FA(w)
NA

be the relative frequency
of w in A.

Kullback-Leibler divergence [Kullback and Leibler, 1951, Kullback, 1959]: this method
measures the difference between two distributions. Typically, one under test and a true one. Thus, it
can be used to check the observed frequency distributions in a text against frequency distributions
observed in generated text. With a text under test B and a set of true generated texts A, the
(non-symmetric) Kullback-Leibler divergence from A to B is computed as follows:

DKL(A,B) =
∑
i∈Sw

PA(i) log
PA(i)

PB(i)

This approach (with Sw a set of stop words found in A) seems to be currently used by ArXiv.
[Ginsparg, 2014] shows a principal-component analysis plots (like Figure 3.3) where computer-
generated articles are arranged in tight clusters well separated from genuine articles.

Euclidean Distance: Each document can be considered as a vector of absolute frequencies of all
the words that appeared in it. Hence, the distance between two documents A and B is calculated
as:

dE(A,B) =

√ ∑
w∈A∪B

(FA(w)− FB(w))2

While it is simple to compute, it is often regarded as not well suited for computing similarities
between documents.

Cosine Similarity [Singhal, 2001]: Like Euclidean distance, documents are considered as a
vector of relative word frequencies. The cosine of the angle between them defines the cosine simi-
larity: measures how similar two documents (frequency vectors) are based on the cosine of the angle
between them. The result is a number in [0,1] where the higher this value is, the more similarity
between two vectors.

dC(A,B) =

∑
w∈A∩B PA(w)× PB(w)√∑

w∈A∪B PA(w)2 ×
√∑

w∈A∪B PB(w)2

It is one of the most commonly used method in information retrieval to determine how similar
two documents are (often using tf − idf instead of absolute/relative frequencies).

24 CHAPTER 3. DETECTION OF A FULLY AUTOMATICALLY GENERATED DOCUMENT

Figure 3.3: Principal-component analysis plots of stop-words in different corpora as a reproduction
of the figure in [Ginsparg, 2014]

Textual Distance [Labbé and Labbé, 2013]: as presented in previous sections, this is a method
to compute the differences in the proportion of word tokens between two texts. The distance be-
tween two texts A and B where NA < NB is:

d(A,B) =

∑
w∈A∩B |FA(w)− NA

NB
FB(w)|

2NA
=

1

2

∑
w∈A∩B

∣∣∣∣FA(w)

NA
− FB(w)

NB

∣∣∣∣
where d(A,B) = 0 means A and B share the same word distribution and d(A,B) = 1 means there

is no common word in A and B.
This method is particularly useful for multiple tasks such as authorship attribution [Labbé and Labbé, 2006],

and classifying text from different fields or genes.

Nearest Neighbor Classification:[Altman, 1992] These methods to calculate similarity would
work quite well in tandem with nearest neighbor classification. In this method of classification, cor-
pora of different types of automatically generated papers were used as sample corpora. Then for
each paper under test, the distance/similarity to each and every other paper in the sample corpora
is calculated, the minimum value of these distance/similarity is denoted as the nearest distance/sim-
ilarity to their nearest neighbor inside the sample corpora.

Specifically, for each generator (SCIgen, Physgen, Mathgen and Propgen) a set of 400 texts
were used as tuning corpora T (a total of 1600 texts). A test corpus C which is composed of an

25

Figure 3.4: Distribution of Euclidean dis-
tance to the nearest neighbor of generated
text (red) and genuine text (blue) (from
[Nguyen and Labbé, 2016])

Figure 3.5: Distribution of cosine similar-
ity to the nearest neighbor of generated
texts (red) and genuine texts (blue) (from
[Nguyen and Labbé, 2016])

extra 100 texts per generator (400 automatically generated texts) and 100 genuinely written papers
taken randomly from ArXiv. Then for each document A in C , all the distance/similarity δ to other
documents in T is calculated. The minimal value of these distance/similarity is considered as the
Min distance to the tuning corpus. Or, for each A ∈ C then its nearest neighbor is B inT such as:

Minδ(A,T) = MinB∈T (δ(A,B))

and

Maxδ(A,T) = MaxB∈T (δ(A,B))

Where the distance can be defined as any of the distance/similarity calculation. The distribution
of these calculations for minimal distance are shown in Figures 3.4, 3.5 and 3.6. And based on these
Figures, textual distance along with closest neighbor classification have been adopted in SciDetect
to find automatically generated documents, which will be presented in the next section.

3.3 SciDetect
In this section we present our SciDetect system, based on figures 3.4, 3.5 and 3.6. It can be seen that
inter-textual distance, along with the nearest neighbor provides the best separation of generated
vs genuinely written paper. Thus, this method is adopted in our system to classify automatically
generated text.

Furthermore, by practice, we see that inter-textual distance is quite sensitive to the length of the
document, so, to avoid mis-classifications caused by text length, texts shorter than 10,000 characters

26 CHAPTER 3. DETECTION OF A FULLY AUTOMATICALLY GENERATED DOCUMENT

Figure 3.6: Distribution of textual dis-
tance to the nearest neighbor of generated
texts (red) and genuine texts (blue) (from
[Nguyen and Labbé, 2016])

were ignored and texts longer than 30,000 characters were split into smaller parts. To determine
the genuineness of a text, we used different thresholds for each type of generator. Table 3.1 shows
detailed statistical information about the observed distances in Figure 3.6.

Along with that, to determine an upper threshold for genuine texts, a set of 8,200 genuine papers
from various fields were used. The nearest neighbor for each genuine text was computed using the
same sample sets.

The first two rows of Table 3.1 show that, for a genuine paper, the minimal distance to the
tuning corpus in the sample set (0.52) is always greater than the maximal distance to the tuning
corpus of a fake paper (0.40). It is also easy to see that documents from different generators are
quite well separated since the min distance to the tuning corpus of a generated document is always
of the same type.

Scigen Physgen Mathgen Propgen Genuine
Minδ(A,T) 0.30 0.31 0.19 0.11 0.52
Maxδ(A,T) 0.40 0.39 0.28 0.22 0.99
Meanδ(A,T) 0.35 0.35 0.22 0.14 0.69
Stdevσδ(A,T) 0.01 0.01 0.01 0.0 0.12
Medianδ(A,T) 0.35 0.35 0.22 0.14 0.64

Table 3.1: Statistic summary of textual distances between papers and their nearest neighbor (the
nearest neighbor is always of the same kind).

27

By observing the results, we concluded that there would always be a close grouping of the
generated texts that are separated from the group of real texts with a considerable gap in between.
It is safe to say that we can classify the text based on thresholds. Thus, two thresholds for each
generator were set: a lower threshold for generated papers based on the second row of Table 3.1
and an upper threshold for genuine papers (varying from 0.52 to 0.56 depending on the generator).

Hence, a paper can be identified as possibly generated in two different ways. First, if the distance
is lower than the specific threshold for a generated paper then it is considered as a confirmed case
of a generated paper. Second, if the distance is between the thresholds for a generated and genuine
paper, it is considered as a suspicious case.

3.4 Comparative Evaluation Between Different Methods

To thoroughly evaluate SciDetect and other methods, we decided to conduct a comparative test
using different known methods

3.4.1 Test Candidates

In this section, various methods to detect an automatically generated document that is or has been
working in a real-life environment are presented.

Pattern Matching: We were able to obtain the software from Springer as presented earlier and
used it as a test candidate to detect generated documents.

Kullback-Leibler Divergence and Nearest Neighbor Classification: As presented before,
this method seems to be currently used by ArXiv. We implemented our own system that uses a list
Sw of 571 stop-words [Feinerer et al., 2008] to classify texts. A profile for the average distribution
of the stop word frequencies for each generator was created using the same 400 generated texts in
the sample corpora of SciDetect.

Two thresholds for each generator were also established in the same manner as in Section 4
namely, a generated threshold for the maximum KL-divergence between a profile and a generated
text from the test corpus; and a written threshold with the minimum KL-divergence between a
profile and genuinely written texts.

SciDetect: We would also like to verify the usefulness of our SciDetect system as presented in
Section 3.3.

3.4.2 Test Corpora

We used three different corpora to conduct the test:

– Corpus X : 100 texts from known generators (25 for each type of generator) without any
modification.

– Corpus Y : 100 generated texts (25 from each generator) that have been modified by randomly
changing a word every two to nine words with a word taken from a genuine research paper.
The aim of this corpus is to test the robustness of these methods against not only pure
generated texts but also modified versions which have somewhat different word distribution
compared to the samples.

– Corpus Z : 100 real texts with a different length ranging from two pages to more than 100
pages.

28 CHAPTER 3. DETECTION OF A FULLY AUTOMATICALLY GENERATED DOCUMENT

True Positive False Positive
True Negative False Negative

method corpus confirm suspect confirm suspect

Pattern Matching
X 25% 4% 0 0 0 71%
Y 8% 16% 0 0 0 76%
Z 0 0 0 1% 99% 0

Kullback-Leibler Divergence
X 87% 13% 0 0 0 0
Y 79% 21% 0 0 0 0
Z 0 0 0 4% 96% 0

SciDetect
X 100% 0 0 0 0 0
Y 100% 0 0 0 0 0
Z 0 0 0 0 100% 0

Table 3.2: Results of the different methods on the three corpora

3.4.3 Results

These experiments aim at determining the performance of the different methods for detecting
generated papers. The results are shown in Table 3.2 whereby:

– True positive is a correctly identified generated paper. A paper can be identified as positive
in two different ways: if the distance/score is lower than a specific threshold for a generated
paper, then it is considered as a confirmed case of positive; or if the distance/score is between
the threshold for a generated and a genuine paper, it is considered as a suspected case.

– False positive is a genuine paper that has been identified as generated (or suspected).

– True negative is a correctly identified genuine paper.

– False negative is a generated paper that has been identified as genuine or as an error during
processing.

Close study of these results highlights several interesting aspects. Considering the current state
of generators, current classifiers all work relatively well (all achieved a perfect precision rate). Diffi-
cult cases (Corpus Y) were marked as suspicious thus requiring further investigation. Particularly,
SciDetect was proven as the most reliable method–all tests passed at 100%. Furthermore, even
though pattern matching was designed to only match SCIgen patterns, it was able to recognize
three papers from Scigen-Physics as suspected SCIgen; however, when applied to Corpus Y , one
modified SCIgen paper was mistakenly listed as genuine. One case of a false positive in the pattern
checker with Corpus Z was caused by a large file with more than 110 pages, which triggered an
out of memory error.

3.5 Detecting Markov and RNN Text with SciDetect and
SciDetect Robustness

SciDetect and other previously presented methods are all focused on detecting a fully generated
text by some kind of PCFG with some pre-determined sentence structures. However, Section 2 has
shown that there is more than one way to reproduce text. Thus, this section shows some interesting
results of detection for texts that were automatically generated using a RNN or a Markov model
using SciDetect.

29

3.5.1 Detecting Markov and RNN Text with SciDetect

Currently, we are not aware of any attempt to detect automatically generated text using RNN
or Markov model. However, it is expected that the generated texts should have some common
statistical distribution with the original source that they were learned on. To verify this assumption,
SciDetect was used to confirm the possibility of classifying automatically generated document given
a known source.

Again, a Markov model with depth three and a recurrent neural network on character level are
used to generate 100 documents each. Markov model generated texts have randomized lengths from
five to ten thousand word tokens, while RNN texts have 50 to 250 thousand characters. Each is
also generated with a random “seed text” which is a sentence taken from scientific papers. Then
half of these generated texts are used as a sample corpus to detect the other half in a mixed corpus
that includes generated text, genuinely written texts and the original texts that the Markov model
or RNN were learned on. More specifically, the same experiment as in Section 3.2 is repeated. In
this test several corpora were used.

– Markov tuning and RNN tuning: Each contains 50 automatically generated documents from
the corresponding method.

– Markov test and RNN test: Each is composed of the same 100 genuinely written documents,
the original documents that were used to learn the distribution and another 50 automatically
generated documents from each method.

In Figure 3.7, the distribution of minimal distance from each document in the Markov test
corpus to the Markov sample corpus is shown and the same for Figure 3.8, but with the RNN test
and RNN sample.

Figure 3.7 and 3.8 show that generated text from a same source, even with different seed text, all
end up having quite similar textual distance (or word distribution) compared to genuinely written
texts. Furthermore, with the Markov model, it is also possible to see that the original source of
the model is closer to the generated ones compared to genuinely written texts. From the graph, it
is possible to set simple thresholds to classify a document as automatically generated by a Markov
model or a RNN, particularly in our case a threshold is set at 0.53 for the former and 0.55 for the
later. Using these thresholds, the results in Table 3.3 can be obtained.

Considering that precision or recall can be easily manipulated by using different size corpora.
For example, if a test corpus is composed of ten thousand automatically generated texts and only
a thousand genuinely written ones. And if a classification method just marked everything as
automatically generated, then the Precision, as well as Recall, are both very high, even though all
the genuinely written documents are marked as automatically generated.

However, a false positive rate, which is the probability of a genuinely written text marked as
generated, and vice versa for false negative rate are independent from the corpus size, so they are
used to fairly represent the results.

This once again confirms that if somehow the source or a sample set of generated documents
from the same source can be obtained, it is possible to detect generated documents in a mixed
corpus of different text types.

3.5.2 Testing SciDetect’s Robustness

To test the robustness of the family of methods based on words statistics, the SciDetect sys-
tem [Nguyen and Labbé, 2016] is used in a less than ideal condition where only part of a document

30 CHAPTER 3. DETECTION OF A FULLY AUTOMATICALLY GENERATED DOCUMENT

Figure 3.7: Relative frequency of textual distance for different test type using Markov model sample

Figure 3.8: Relative frequency of textual distance for different test type using RNN

is generated by a known generator. Ten genuinely written texts, each with about 5000 word tokens
are used, and then we gradually replace 250 words at a time with a same size chunk of text from
other SCIgen papers to discover the limitation of the system. Then this corpus A of modified texts
is run through SciDetect to obtain the average minimal distance δ from A to the samples corpus
T of SciDetect.

SciDetect uses thresholds to determine if a text is automatically generated or not. Specifically,
if the minimal distance of a document to the sample corpus is higher than 0.56, then it is considered
as genuine. If the distance is between 0.56 and 0.45, then it is considered as a suspicious case of
automatically generated, and lower than 0.45 is a confirmed case of automatically generated.

31

False positive rate False negative rate Precision Recall
Markov model 0.28 0.04 0.77 0.96
RNN 0.0 0.08 1 0.92

Table 3.3: False positive, false negative rate as well as precision and recall for SciDetect with Markov
model and RNN.

percentage of genuine text in A
SciDetect result

average Minδ(A T) Percentage of de-
tected texts

100% 0.72 0%
95% 0.70 0%
90% 0.67 0%
85% 0.65 0%
80% 0.63 0%
75% 0.59 10%
70% 0.56 30%
65% 0.55 50%
60% 0.52 90%
55% 0.48 100%
50% 0.45 100%

Table 3.4: Robustness of SciDetect

Table 3.4 shows that SciDetect can only detect a partially generated document if the automat-
ically generated part reaches a certain length. Particularly in our test, normally, as soon as about
one third of the document is automatically generated, SciDetect would be able to mark half of the
partially generated texts as suspected cases of automatically generated, and if about half or more
of the document is automatically generated, then it is possible to positively classify all the partly
generated texts as being generated.

Considering the case of the paper by Navin Kabra (Figure A.1 in the Appendix) that was
mentioned in Section 1, this paper is about two thirds automatically generated but it is still very
short (only 2000 words). SciDetect [Nguyen and Labbé, 2016] classifies this paper as a suspicious
case of automatically generated (distance to the samples corpus T is 0.49). Other cases of known
partially generated paper in Figure 1.1 and in the Appendix (Figure A.2 in the Appendix) are also
classified as suspicious by SciDetect (0.49 and 0.46 respectively).

This is understandable since SciDetect is based on word distribution, thus without a substantial
amount of generated text, the distribution would not have any significant impact. This would
further open a different problem when one needs to confidently detect a particularly generated
document where only a small part or even a few sentences are automatically generated. This
problem will be tackled within the next Chapter.

32 CHAPTER 3. DETECTION OF A FULLY AUTOMATICALLY GENERATED DOCUMENT

3.6 Summary
This chapter has shown that there are multiple methods to discover automatically generated sci-
entific papers. They range from simply checking the name of the references to building a complex
network based on word connections and each has a different level of success.

However, we presented our SciDetect system to automatically classify an automatically gener-
ated paper which is based on inter-textual distance along with nearest neighbor classification and
it has been proven to be able to provide a reliable result. Furthermore, it has also been proven that
if some samples can be obtained, it is possible to detect texts that were generated using a Markov
model or a recurrence neural network.

SciDetect is freely available online as an open source Java program. It can be obtained from
a Git repository2 along with fully implemented documentation (as in the Appendices) as well as
Javadoc for each class.

Nonetheless, facing a partially generated paper where only a small fraction or even only a small
section of the paper is automatically generated, current methods are impractical. Thus Chap-
ter 4 will present a method to tackle partially automatically generated papers based on sentence
structure.

2http://scidetect.forge.imag.fr/

Chapter 4

Detecting a Partially
Automatically Generated
Document

Chapter 3 has shown that it is possible to automatically detect fully generated documents. However,
it was also shown that current methods are ineffective when facing a document which was only partly
generated or contains only a small part of automatically generated text.

This problem may be seen as hypothetical but we believe that real life examples show its actual
nature. Figure 1.1 shows an example of a partially generated document that was accepted and
sold by IEEE as being a peer-reviewed genuine document. Another example is when Navin Kabra1

got one of his papers (Figure A.1) published in an international conference called “International
Conference on Recent Innovations in Engineering, Science & Technology” even though it was mostly
automatically generated by SCIgen, and at the same time contained dialogue from a movie. Another
example of this kind of paper is given in Appendix (Figure A.2). This latter being a partially
generated paper that was submitted (probably as a prank) and not accepted to a Springer conference
(ICAART 2014). In a context where publishers are struggling in trusting editors, nobody can
confidently say that there are no other cases where only a small proportion of generated text was
sneaked into a genuinely written document as a placeholder for an unfinished section, to extend the
document to an appropriate length, or just to “game the system.”

Current detection methods are still somewhat limited since they are not able to detect a small
quantity of automatically generated text within a large body of genuinely written text (e.g., only
several sentences or a paragraph out of a whole genuinely written paper). We believe that this is
the first attempt to develop a system to combat against such problems.

We investigated a classification approach aimed at characterizing the main features of generated
sentences, so they can be flagged individually. Current automatic paper generators make use of
sets of rules to generate sentences. Sentences generated using a particular rule might have a similar
grammatical form and differentiate only in the words chosen at random. Where each sentence can
be separated into Verb Phrase (VP), Noun Phrase (NP). Then the phrases can be separated again

1https://smritiweb.com/navin/education-2/how-i-published-a-fake-paper-and-why-it-is-the-fault-of-our-
education-system

33

34 CHAPTER 4. DETECTING A PARTIALLY AUTOMATICALLY GENERATED DOCUMENT

and again at deeper level as Noun, Verb, Adjective, etc.... This might make one think that sentences
with a similar structure and/or word pairs might be related to each other. Thus, we investigate
an approach that measures the similarity between sentences based on their grammatical structure
(parse tree) without paying too much attention to the words used in the sentences

In particular, Section 4.1 gives a brief explanation of a parse tree and how the grammatical
structure tree can be used to calculate the similarity between sentences. Then Section 4.2 describes
our definition of grammatical structure similarity and how our system to detect automatically
generated sentences was built. Section 4.4 details the validation of our system in comparison with
other approaches, namely a pattern checker and some traditional machine learning techniques. The
chapter ends with Section 4.5 where a short conclusion and some limitations are stated.

4.1 Using Parse Tree on Sentence Similarity

Dependency tree or parse tree is a tree that represents the syntactic structure of a sentence or a
phrase (Example 7 and 8).

Over the years, there have been multiple proposals using different types of parse trees to discover
the similarity between sentences and from there to apply the similarity measurement for different
goals.

Example 7 A parse tree in different
forms for the phrase: “a novel framework for
the development of scatter/gather I/O”.

(ROOT(NP(NP(DT a) (NN novel))

(NP(NP(NN system)) (PP(IN for)

(NP(NP(DT the) (NN analysis)) (PP(IN

of) (NP(NNP scater/gather) (NNP I/O))))))))

Example 8 A parse tree in different
forms for the phrase: “a novel system for the
analysis of gigabit switches”.

(ROOT(NP(NP(DT a) (NN novel))

(NP(NP(NN system)) (PP(IN for)

(NP(NP(DT the) (NN analysis)) (PP(IN

of) (NP(JJ gigabit) (NNS switches))))))))

.

35

4.1.1 Using Syntactic Tree to Discover Plagiarism

[Zubarev and Sochenkov, 2014] uses their sentence similarity measurement in Exactus [Sochenkov et al., 2016]
to discover plagiarism. This measurement uses different characteristics from the sentence including
TF-IDF, IDF overlap and a syntactic similarity measurement where the syntactic links between
pairs of words from different sentences are measured. Specifically, for two sentences se and st from
two documents de and dt, the similarity is defined as a combination of three similarity I1, I2 and I3
as follows:

IDF overlap measure: For a set of documents D and m(we, D) is the number of documents
that contain the word we and N(se,st) is a set of word pairs with the same lemma from two sentences
se and st.

I1(se, st) =
∑

(we,wt)∈N(se,st)
IDF(we)

IDF (we) = log|D|(
|D|

m(we,D))

TF-IDF-based similarity measure: For a document dt with |dt| words, the number of times
a word wt appears in dt is k(wt, dt), and a function f(we, wt) for penalty for a mismatch of we, wt
forms (same lexeme but different form (e.g.,: play, played, plays, playing, etc.):

f(we, wt) =

{
1, if we, wt have a same form

0.8, otherwise

then the TF-IDF-based measure is defined as

I2(se, st) =
∑

(we,wt)∈N(se,st)
f(we, wt)IDF (we)TF (wt, dt)

TF (wt, dt) = log|dt|(k(wt, dt))

Sentence syntactic similarity measure: The sentence similarity is defined based on the syn-
tactic dependency tree from each sentence. Syn(se) is defined as a set of triplets (wh, σ, wd) where
wh, wd are head and dependent word, and σ is the type of syntactic relation. Then the syntactic
similarity is:

I3(se, st) =
∑

(wh,σ,wd)∈(Syn(Se)∩Syn(St))
IDF (wh)∑

(wh,σ,wd)∈Syn(Se)
IDF (wh)

In simpler terms this means that it is the sum of IDF of the head word from all common triplets
between sentence se and sentence st over the sum of IDF of all the head words in sentence se.

Overall sentence similarity: From all those previously defined measurements, the overall sim-
ilarity between sentences is defined as:

Sim(se, st) = WIdf × I1(se, st) +WTfIdf × I2(se, st) +Wsynt× I3(se, st)

Where WIdf,WTfIdf,WSynt are custom weights for distribution of each type of similarity and
needs to be manually tuned for different corpus. From this overall sentence similarity, a threshold
can be set to determine if a sentence is plagiarized or not. Using this method, the authors were
able to obtain the second highest score for the plagiarism detection track at the PAN workshop in
20142.

This method seems to perform very well with plagiarism detection where sentences are quite
similar on a lemma level. However, in our specific use case for PCFG generated sentences where
words are chosen at random, then the approach is impractical.

2http://pan.webis.de/clef14/pan14-web/

36 CHAPTER 4. DETECTING A PARTIALLY AUTOMATICALLY GENERATED DOCUMENT

4.1.2 Relation Extraction Based on Common Tree Segments

[Culotta and Sorensen, 2004] proposes a method to estimate the similarity between sentences using
the number of common tree segments in their augmented parse tree. This augmented parse tree
is first created by MXPOST 3, a maximum entropy parser. Then for each pair of entities in a
sentence, a smallest common sub-tree in the parse tree is found, and then it is used to create the
augmented parse tree where the nodes are represented as a feature vector instead of an entity in
the sentence.

The similarity score between two augmented trees is then defined using a tree kernel function
K(T1, T2). This function is broken down into two smaller functions that represent the matching
m(ti, tj) and the similarity s(ti, tj) between two sentences ti and tj with their feature vectors noted
φ(ti) and φ(tj) respectively. Then ti and tj would be a match if they share a same feature vector
or:

m(ti, tj) =

{
1, if φ(ti) = φ(tj)

0, otherwise

and the similarity between ti and tj would be:

s(ti, tj) =
∑
vq∈φ(ti)

∑
vr∈φ(tj)

C(vq, vr)

Where C(vq, vr) is some compatibility function between two features values such as:

C(vq, vr) =

{
1, if vq = vr

0, otherwise

The final kernel function for the similarity between two trees T1, T2 with root r1, r2 respectively
is:

K(T1, T2) =

{
0, if m(r1, r2) = 0

s(r1, r2) +Kc(r1[c], r2[c]), otherwise

This means the function would start from the root of the trees; if they are a match, then the
similarity between them and any other matching child is calculated using a recurrent loop. Using
this method along with SVM on the Automatic Content Exaction corpus by the National Institute
for Standards and Technology, the authors were able to show that a dependency tree kernel has a
big improvement when compared to just a bag of word kernels in a relation extraction task.

However, again as in the previous method, the comparison would start with a pair of similar
roots, which is typically not the case for PCFG generated sentences, thus simply applying it to our
needs might not work.

4.1.3 Textual Entailment with Parse Tree DLSITE-2

Textual entailment is the process to determine if a hypothesis can be deducted from another text.The
DLSITE-2 system [Wang and Neumann, 2007] aims at determining textual entailment using a syn-
tactic parse tree.

In this work, sentences are selected based on words with significant grammatical value likes
nouns, verbs, adjectives, etc. Sentences with the same or similar significant grammatically value

3ftp://ftp.cis.upenn.edu/pub/adwait/jmx/

37

Tag Tag
ADJP ADP

NP PP
S SBAR, SBARQ

LS VB, VBD, VBG, VBN, VBP, VBZ
ETC... ETC...

Table 4.1: Some examples of tag groups with similar grammatical category

words are parsed to syntactic trees. These trees are then filtered to reduce irrelevant data and
processing time; only verbs, nouns, numbers, adjectives, adverbs and noun-noun modifiers are kept.
They are then compared to detect if one is contained by another. A tree T1 is considered to be
contained by another tree T2 if, and only if, all nodes and branches of T1 is present in T2. This
process is started at the roots, and if they are a match, then it is extended to their respective child
nodes. The matching function does not require the tokens to be the same but can be more flexible
by using a word similarity measure such as WordNet::Similarity tool [Pedersen et al., 2004] with a
certain threshold.

Using this proposal on a set of text-hypothesis pairs from the Second PASCAL Recognizing
Textual Entailment Challenge (RTE-2) [Herrera et al., 2006], the authors were able to achieve an
accuracy of 60.75 which was about 10% better than the base line.

This approach is heavily dependent on the vocabulary of the sentences under test. In the
case of PCFG even sentences generated with the same rule are not guaranteed to share the same
vocabulary, thus it might not be best suited.

4.1.4 Sentence similarity with Parse Tree

Parse tree along with common words are also used by [Durán et al., 2014] to determine the similarity
between sentences. They propose a method to search for semantic relation based on the exploding
of Parse tree starting from pairs of similar words. For each sentence, the syntactic dependency tree
is created using Stanford Parser [Klein and Manning, 2003], and two trees will be compared if they
share at least two pairs of common words. From a pair of common words, their respective ancestors
from each tree are compared and if they are similar (Table 4.1). If so, the process is continued until
the root is reached.

From other common word pairs, the same process is repeated and if a connection is formed,
it will be used as a common sub-tree. Those common sub-trees are then used to calculate a final
similarity between two sentences with different weights for different types of nodes.

For each common subtree C with r nodes of tree A with p nodes and tree B with q nodes, the
degree of similarity is calculated using:

St =
∑r
k=1WnCk(

∑p
i=1WnAi+

∑q
j=1WnBi)

2
∑p
i=1WnAi

∑q
j=1WnBj

Where Wn is the weight for the type of node that can be found in Table 4.2.
If two sentences share more than one common sub-tree then the final similarity between them

is calculated as the average of all the degrees of similarity for those common sub-trees.
In general, this method would be much better fitted to the aim of this chapter compared to

other previous approaches. However, since similar words are heavily weighted compared to other

38 CHAPTER 4. DETECTING A PARTIALLY AUTOMATICALLY GENERATED DOCUMENT

Node type Weight
Words 4

ADJP, ADVP, NP, PP, VP 3
WHADVP, WHNP, WHPP 3

NN, NNS, NNP, NPS 2
VB, VBD, VBG, VBN, VBP, VBZ 2

Others 1

Table 4.2: Some examples of tag groups with similar grammatical category

node types, that might also make some automatically generated sentences different from each other.
Thus, the next section will present our definition of grammatical structure similarity and how it is
used to compare sentences.

4.2 Definition of Grammatical Structure Similarity and Build-
ing of the System

All previously mentioned methods to calculate similarity performed quite well in their respective
sub-domain. However, they might not fit our need to detect short segments of PCFG generated text
since they are either too focused on pairs of common words in the sentences or are computationally
expensive when every sentence needs to be parsed.

So, this section first presents our proposal for calculating the similarity between sentences as a
means to detect sentences that only depend on the structure of the sentences instead of pairs of
similar words in 4.2.1. Then, some corpora are presented in 4.2.2 and Section 4.2.3 extends the
definition of Grammatical Structure Similarity to be used with the previously presented corpora to
demonstrate the effectiveness of different sized corpus, also pointing out some typical mistakes by
the system. Section 4.2.4 tries to limit the number of mistakes and also to reduce the amount of
work needed by employing a Jaccard filter before processing.

4.2.1 Grammatical Structure Similarity

This section shows how data is handled and the definition of grammatical structure similarity.
For PDF documents in the test corpus, they are first converted to plain text, then normalized (de-

capitalize, remove numbers, symbols, non-conventional characters, etc.). Later these texts are sep-
arated into sentences, and each sentence is parsed using Stanford Parser [Klein and Manning, 2003]
to obtain a parse tree. Since in our case, the keywords have little to no value in deciding the
similarity between sentences, they are removed from the structure, and only the nodes are kept
(Example 9). These parse trees are then compared to the PCFG corpus of known parse trees from
pre-processing generated sentences using a recursive loop to find the biggest possible sub-tree match
of the tree structure.

Example 9 The parse tree in example 7 would be considered only as:

(ROOT(NP(NP(DT) (NN)) (NP(NP(NN)) (PP(IN) (NP(NP(DT) (NN)) (PP (IN) (NP(NNP)
(NNP))))))))

Once a similar structure is found, the similarity between them needs to be quantified. So, the
grammatical structure similarity is defined as follows:

39

Corpus size nb of sentences nb of distinct sentences nb of distinct parse trees
80 documents 12.1k 9.2k 8k
160 documents 25.5k 18.2k 14.8k
320 documents 45.5k 33.2k 26.9k

Table 4.3: Number of sentences, distinct sentences and parse trees for different T corpus size

Definition 1. Grammatical structure similarity (GSS):
Let NA be the number of nodes in the parse tree TA of sentence A, NB be the number of nodes

in the parse tree TB of sentence B, and NAB be the number of nodes in the biggest common sub-tree
of TA and TB . Then the Grammatical Structure Similarity between A and B is defined as:

GSS(A,B) = 2∗NAB
NA+NB

∈ [0, 1]

Example 10 Grammatical Structure Similarity between Example 7 and Exam-
ple 8

GSS(E21/E22) = 2∗17
19+19 = 0.89

This means that if the GSS between two sentences is 1, they share the same sentence structure
(might be different on the lemma level), if the GSS = 0, it means they do not share any common
sub-tree or even node’s type.

In our proposal, the computation is quite expensive since each sentence needs to go through the
parser and is compared with all samples in the PCFG corpus. This will be explored further in the
following section.

4.2.2 Corpora

Multiple text corpora are used for later testing purposes and this section will give a detailed de-
scription about them.

PCFG Corpus T : PCFG corpora of different sizes were used as samples and tried to learn the
different parse tree structures from the generators. Table 4.3 shows the correlation between the size
of the corpus (evenly distributed between four generators) with the number of sentences and the
number of distinct parse trees that can be obtained from those sentences.

Even though the number of distinct sentences and trees increased steadily, it is possible that
there are only small variations between them and this will be tested in Section 4.2.3 later.

Test Corpus C : This corpus is composed of 4 smaller corpora each containing 100 texts from an
automatic generator and a real corpus of 100 genuinely human written texts which were selected
at random from different fields. These smaller corpora are noted as C .real, C .Scigen, C .physgen,
C .mathgen and C .propgen. This resulted in about 110k sentences used as the test corpus C .

4.2.3 Effectiveness of GSS for Different PCFG Corpora

Our hypothesis is that even though the number of distinct sentences as well as parse trees seem
quite numerous (Table 4.3), most of them should also be somewhat similar to each other. Only
a small proportion of the sentences are different. To verify this, the maximum GSS (MGSS) of
all sentences in the test corpus for three different size PCFG corpora T (that were computed and
presented earlier), and the results are shown in Figure 4.1.

40 CHAPTER 4. DETECTING A PARTIALLY AUTOMATICALLY GENERATED DOCUMENT

Definition 2. Maximum Grammatical Structure Similarity (MGSS): For a sentence A in the test
corpus (C), the MGSS between A and the PCFG corpus (T) is:

MGSS(A,T) = Max(B∈T)(GSSA,B)

When comparing the PCFG corpus T of size 80 with the others, with more samples in the
PCFG corpus T , it is possible to find a higher GSS match for generated sentences. However,
comparing the T of size 160 and 320, it is difficult to see any significant difference. This suggests
that the previous hypothesis is true. Even though the size of the T corpus was doubled, it did
not double the match rate because most of the additional parse tree structures have very little
differences with what has already been obtained in the smaller size corpus. Subsequently, from now
on, only the PCFG corpus T of size 160 is used.

PCFG corpus T with 80 samples. PCFG corpus T with 160 samples.

PCFG corpus T with 320 samples.

Figure 4.1: The distribution of MGSS for sentences in the test corpus C with the PCFG corpora
T

Figure 4.1 also shows that for SCIgen, physgen and mathgen, it is possible to find more than 50%
of high matches (GSS higher than 0.9) as compared to less than 2% for genuinely written papers.
Even though there is no clear separation for the score, it is easy to see that there are different
distributions for genuinely written and generated ones. The curves for generated sentences lean
very heavily toward the end of the histograms, thus making them stand out.

41

Furthermore, Table 4.4 shows some examples of genuinely written sentence with high GSS to
other sentences in the PCFG corpus. Most of them are just common sentences that also appear in
the PCFG corpus T . To deal with such problems, the context of the sentence is considered, and
this will be presented in Section 4.3 .

Genuinely written sentence Sentence in PCFG corpus Jaccard similarity GSS
our main contributions are as follows our main contributions are as follows 1 1
it is easy to see that it is easy to see that 1 1
the states of this network are the contributions of this work are as fol-

lows
0.4 0.89

the rest of the paper is organized as fol-
lows

the rest of this paper is organized as
follows

0.88 1

the remainder of the paper is organized
as follows

the rest of this paper is organized as
follows

0.8 1

the proof of the claim can be found in
appendix

useful survey of the subject can be
found in

0.58 0.9

the interpretation of the walk is as fol-
lows

the rest of the paper proceeds as follows 0.45 1

Table 4.4: Some genuinely written sentences with high GSS score to a generated sentences

4.2.4 Sentence Filter Using Jaccard similarity

As mentioned before, the cost for parsing is quite expensive, and this raises the need to implement
a filter to reduce the number of sentences that need to be parsed. To do such tasks, the Jaccard
similarity is used (the number of common words over the total number of distinct words in two
sentences). Figure 4.2 shows the Jaccard similarity between sentences in the test corpus with the
sentences in the PCFG corpus that have the highest GSS to them.

Definition 3. Maximum Jaccard Similarity MJS: For a sentence A in the test corpus (C), the
Maximum Jaccard Similarity MJS between A and the PCFG corpus (T) is:

MJS(A,T) = Max(B∈T)(JaccardA,B)

As shown in Figure 4.2, the majority (more than 90%) of genuinely written sentences has MJS
less than 0.3 to sentences in the PCFG corpus, while it was only about 20% for other types of
generators (except about 40% for propgen). Subsequently, this would make 0.3 a good candidate
for a threshold to be used in the filter since it is possible to keep a large number of “suspected
generated” sentences while greatly reducing the number of “irrelevant” sentences.

Even though Jaccard similarity can filter out around 90% of the sentences, 20% of genuinely
written sentences were also marked at the same time, and this would result in a large number of
false positives. However, this filter significantly reduces the computational cost since it is no longer
required to parse and compare the structure of each sentence with the whole PCFG corpus, only
those that are similar to a generated sentence.

4.3 Fully Developed GSS System
Since the aim is to detect a small portion of automatically generated text, each sentence is considered
along with its context, which includes the direct previous and next sentence to balance out special

42 CHAPTER 4. DETECTING A PARTIALLY AUTOMATICALLY GENERATED DOCUMENT

cases. Thus, for each sentence in the test that is longer than 5 words and less than 35 words, the
PCFG corpus T is used to find other sentences that have a Jaccard similarity higher than 0.3.
Then the GSS between them is calculated to obtain the MGSS; the same process is repeated for
the previous and the next sentences. The final GSS with context for the sentence is the average
GSS of itself along with its direct neighbors.

The result for the Jaccard filter is shown in Table 4.5. It can be seen that the filter serves its
purpose. Even though on average the number of sentences in a genuinely written paper is higher
than in generated ones, only 20% of them go past the filter and need to be parsed as compared
to 70% to more than 90% of sentences in automatically generated papers. This greatly reduced
the processing time required, since, in reality, one would assume that an overwhelming number of
sentences are genuinely written.

Figure 4.2: Relative frequency of maximum Jaccard similarity between different type of sentences
to the PCFG corpus T .

43

Figure 4.3: Relative frequency of MGSS with context and Jaccard filter.

Genuine SCIgen Physgen Mathgen Propgen
Avg number of sentences in a paper 192.4 87.2 81.7 174.0 88.9
Avg number of sentences that need to be parsed 38.8 80.0 73.8 161.4 62.9
Avg percentage of sentences that need to be parsed 20.2% 91.7% 90.2% 92.7% 70.7%

Table 4.5: Average number and Average percentage of sentences in a paper that need to be parsed

The result of the GSS system using the Jaccard filter and MGSS with context is shown in Figure 4.3.
It shows that a majority (96.7%) of genuinely written sentences which pass through the filter have
less than 0.5 GSS. On the other hand, for automatically generated sets of sentences if a threshold
is set at 0.5, it is possible to detect more than 90% for SCIgen, physgen and about 75% mathgen
and propgen.

4.3.1 Complexity of the System and Average Processing Time

There are several places that can be evaluated for complexity such as:

– Compare each sentence with all other sentences in the PCFG Corpus T using Jaccard simi-
larity as a filter. The complexity of this step can be considered as O(n) where n is the number
of sentences in T .

– If the sentence gets past the filter, it need to be parsed by the Stanford Parser. This is the

44 CHAPTER 4. DETECTING A PARTIALLY AUTOMATICALLY GENERATED DOCUMENT

False positive rate False negative rate
SCIGen 0.0 0.68
SCIGen-Physic 0.0 0.86
Real 0.12 0.0

Table 4.6: False positive and false negative rate for Pattern checker method

costliest step with complexity O(n3) [Cer et al., 2010] where n is the number of words in the
sentence.

– For each pair of sentences that go through the filter together, their parsed trees are compared
to find the biggest common sub-tree. This cost O(n2) where n is the number of words in the
sentence.

Eventually, the overall complexity of the system is O(n3). In practice, the run time for each
document in our system 4 depends on the type of document. However, typically a fully genuinely
written document would pass through every 10 to 20 seconds, while a fully generated one would
take much longer from 60 to more than 90 seconds. This will not affect a real-life workflow much
since most documents that need to be scanned are presumably all genuinely written.

Nevertheless, it is still necessary to thoroughly evaluate the performance of the system against
some other techniques. This will be addressed in the next section.

4.4 Comparison with Other Methods
This section aims at comparing our newly developed system with some other well-known methods
of detection or classification. This includes a simple pattern checker based on string token and
different machine learning techniques.

4.4.1 Pattern Checker

A simple method to detect sentences generated by automatic generators is by brute force, comparing
the patterns (string tokens) in a document with known patterns in generated documents. This
approach was used internally by Springer in the earlier days to detect SCIgen generated documents.

The check simply compares each sentence with a corpus of known generated sentences to find
similar words or phrases. Each similar bi-grams to four-grams is given 10 points, a similar phrase
from five to nine words is given 50 points and more than 10 words phrase worth 100 points each.
The total score is then compared with a threshold where 500-1000 points means it is a suspected
generated document, while more than 1000 means it is surely generated.

We were able to obtain this program and modified it to discover the raw number of detected
patterns for each sentence. The modified program scans the document and marks all the suspected
patterns, then the sentences that contain those detected patterns are marked as automatically
generated regardless of their length or structure. The result is shown in Table 4.6; since the
program only focuses on SCIgen patterns so the test was only performed on SCIgen and SCIgen-
Physics samples.

Table 4.6 shows that a simple pattern checker method still misses many generated sentences.
Or in other words, this method does not detect many generated sentences and would be even more

4Intel Core I5 2.4 GHz with 16Gb Ram

45

impractical for the case of a small, partially generated document or a modified generator.

4.4.2 Traditional Machine Learning Techniques

To further evaluate the approach, R and Rtexttools package[Collingwood et al., 2013] are used;
this package is used for supervised learning and includes different learning algorithms. The PCFG
corpora T were converted to texts and separated into sets of three consecutive sentences. Since it is
also required to have a sample corpus of genuinely written papers, other real corpora of the same size
to the counterpart PCFG corpora T were chosen at random to be used as genuine-sample-corpora
D . The test corpus C was also split into sets of sentences.

So, in short, sentences from D are marked as “real” and sentences from T are marked as
“generated”, and then those sentences are used to train different types of classifier using a sentence-
term-matrix. These classifiers are then in turn used to classify sentences form C to obtain the
“generated” or “real” for each sentence.

It is understandable that for a truly impartial comparison, the information from the parse trees
should also be given to the classifiers. However, transforming a parse tree to a feature vector is not
a straightforward task and it may even be impossible in practice. If trees are added as a particular
feature for learning algorithms, then one would have to define how to compute similarity for this
particular feature and this is exactly what GSS is defining.

These machine learning techniques include:

– Glmnet [Friedman et al., 2010]: is an algorithm for estimation of generalized linear models
with convex penalties. Their models include regression, two-class logistic regression and
multinomial regression problems.

– Max entropy 5: this package aims to obtain the maximal information entropy of distribution.

– SLDA [Myers et al., 1994]: calculates maximum likelihood estimate, exact and asymptotic
confidence intervals.

– Boosting [Friedman et al., 2000]: Ada boost or adaptive boosting is a form of linear regression
to minimize lost machine learning technique.

– Bagging or Bootstrap aggregating: is a model averaging approach which aims to improve
accuracy, reduce variance and avoid overfitting.

– Tree or Decision Tree learning: aims to create a simple model that predicts the value of an
input based on its variables.

– Random Forest [Liaw and Wiener, 2002]: is based on multiple classification trees, the final
classification result is the most voted on result among those trees.

The results of these classifications are shown in Table 4.7. This table shows that conventional
machine learning methods might not be appropriate to our need since the results vary from very
bad (Glmnet, SLDA, Tree), where most of the sentences were marked as “generated,” to mediocre
(Max entropy, boosting, bagging random forest) where they marked about half of the genuinely
written sentences as “generated.”

For the GSS only and GSS system, 0.5 was used as a threshold to determine whether or not a
sentence is automatically generated. As seen in Figure 4.1 with GSS only, this is not a good threshold

5http://www.logos.ic.i.u-tokyo.ac.jp/ tsuruoka/maxent/

46 CHAPTER 4. DETECTING A PARTIALLY AUTOMATICALLY GENERATED DOCUMENT

False positive rate False negative rate Precision Recall

algorithm
corpus size

160 40 SCIgen 160 40 SCIgen 160 160

Glmnet 0.02 0.03 0.87 0.63 0.81 0.2
Maxentropy 0.13 0.14 0.62 0.45 0.66 0.48
SLDA 0.01 0.04 0.97 0.63 0.67 0.22
Boosting 0.5 0.14 0.11 0.49 0.55 0.79
Bagging 0.05 0.06 0.5 0.42 0.87 0.65
Random Forest 0.05 0.05 0.58 0.44 0.85 0.57
Tree 0.02 0.03 0.88 0.65 0.80 0.12

GSS only 0.95 0.73 0.007 0.015 0.41 0.993
GSS system 0.008 0.002 0.19 0.21 0.98 0.81

Table 4.7: False positive rate, false negative rate as well as precision and recall of different methods
with different corpus type

for a single sentence; however, if the context is taken into account as in GSS system (Figure 4.3),
a very promising result is obtained with very few genuinely sentences marked as “generated” (for
corpus size 160 there were less than 200 sentences marked as automatically generated out of more
than 22k genuinely written sentences) but still catches a good number of automatically generated
ones.

Furthermore, to verify the possibility of detecting a modified generator where only the terminal
terms or keywords were changed, Physgen which is only a version of SCIgen with all the “hot
keywords” switched from computer science to physic ones is used. For this test, a corpus of 40
SCIgen papers is used to try to detect physgen sentences among 100 Physgen papers and 100
genuine papers.

As before, a genuine-sample-corpus of 40 genuine papers is also used to aid machine learning
techniques. The results are shown in the “40 SCIgen” column of Table 4.7. As suspected, using
GSS only it was able to catch most of the sentences from Physgen with only samples from SCIgen
(0.015 false negative rate); even if the context and Jaccard filter are used, the GSS system is still
able to find 80% of them. This suggests that the GSS system would also be effective against cases
of newly modified versions of existing generators.

4.4.3 Performance Evaluation

To accurately evaluate the performance of the system, an evaluation was performed as follows. 10
genuine documents are used, and each is injected with 50 different sentences from SCIgen in two
random paragraphs of 25 sentences each as seen in Figure 4.4.

47

Figure 4.4: Example structure of a genuinely written document injected with automatically gener-
ated sentences.

These documents are then run through the GSS system to observe how many automatically
generated sentences would be picked up in this situation. The result of this test is quite encouraging
since for each document, on average 33.57 out of 50 automatically generated sentences are detected.
In the worst case, the system could detect 27 sentences, and closer examination of this case reveals
that one of the SCIgen paragraphs contains some short, un-structured mathematical formulas. This
once again confirms our assumption that the system can detect small paragraphs of automatically
generated text inside a genuinely written document.

Furthermore, we test our system on the paper by Navin Kabra that was mentioned earlier. By
our count, the paper contains 135 sentences in total, and there are 44 sentences that were written
by human, including 16 direct copies from a movie script. Using our newly developed GSS system,
we could point out 65 in 91 generated sentences with only 7 false positive cases. This is a test for
a real-life situation that can happen again in the future. Other cases of known partially generated
papers are also tested. But without a confirmation from the authors, it is impossible to know
how many sentences in those papers are genuinely written. Nevertheless, by our test, the paper in
Example 1.1 may have 91 automatically generated sentences in its 152 sentences while the paper
Figure A.2 has 204 sentences and 122 are marked as automatically generated.

4.5 Summary
So, in this chapter we have shown our GSS system which can detect sentences from known PCFG
generators with sufficient samples, which has an 80% positive detection rate and less than a 1%
false detection rate. Furthermore, the system has been bench marked against some well-known
machine learning techniques to demonstrate that it can provide the best results. The possibility of
detecting a modified version of current generators was also verified with great success.

However, using the system against generators which use other techniques, such as Markov
model or RNN is impractical and would call for some other approaches as in Chapter 3. Thus, we
broadened the investigation with an aim to detect “meaning-less” scientific papers based on word
embedding in the next chapter.

Despite all of that, the system still needs many improvements. One obvious change would be the
implementation of a lemmatization before the parsing step, as this would promise a better result.
Otherwise, it could also be improved on to work as plagiarism detection where words are changed
from the original sentences. Nevertheless, current results are still quite promising for the desired
goal.

48 CHAPTER 4. DETECTING A PARTIALLY AUTOMATICALLY GENERATED DOCUMENT

Chapter 5

Detecting Generated Text
Without Samples

Previous chapters 3 and 4 have shown that documents or even segments from automatic generators
can be detected. However, these methods are inadequate when facing a new generator where it is
impossible to accumulate a reasonable number of samples. The aim of this chapter is to attempt
different methods to detect automatically generated texts without any hint from a sample corpus
or in other words, detect automatically generated texts using characteristics of genuinely written
ones. In particular, we start from simple characteristics such as the number of words inside a fixed
window and then move to try to detect words with “bizarre” neighborhood compared to what can
be normally obtained. First in section 5.1, we explore the possibility of using the growth of the
vocabulary of an article or a small section as a method to distinguish an automatically generated
document from a genuine one. Further, Section 5.2 gives some background work of word embedding
with Word2Vec and how it can be used in our context. Based on that, Section 5.3 discusses how
the common neighborhood of a word can be used against automatically generated documents with
nonsensical phrases.

5.1 Vocabulary Growth

5.1.1 Vocabulary Growth as a Classification method

Vocabulary growth has been mostly researched for the link between development of one’s age,
gender and the respective size of his or her vocabulary [Huttenlocher et al., 1991]. Nevertheless,
in our particular case where vocabulary growth rate is used to distinguish different types of texts
(generated/genuine), we did not find much prior research beside [Labbé and Labbé, 2014]. In this
research, the authors compared the vocabularies of several famous writer’s works of unequal length.
From there, they show that there is a correlation between the length and the size of the vocabulary
of each writer. However, contrary to common belief, the vocabulary of William Shakespeare is not
unusually “rich” but is only within the average of his contemporaries.

This approach is based on the fact that current generators (that use Probabilistic Context
Free Grammar) generated keywords at random. For example, a sentence generated by SCIgen
could be obtained from this rule: “Many SCI PEOPLE would agree that, had it not been for
SCI THING, the SCI ACT might never have occurred.” In this sentence, SCI PEOPLE can be

49

50 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

chosen at random from the following set {leading analysts, experts, analysts, scholars, information
theorists, statisticians, computational biologists, etc. }; SCI THING as in {IPv4, IPv6, DHTs,
robots, agents, Markov models, the memory bus, SMPs, kernels, suffix trees, spreadsheets, etc.}
and the same for SCI ACT. Even though this method produces a valid sentence, over time the
accumulation of all those random keywords might be different from a human written scientific
paper which focuses on a specific topic. That means certain keywords should be repeated from
time to time.

One might also think about the opposite, where even though the keywords are chosen at random
but the vocabulary richness is not high, only some word types are available to be chosen over and
over again as well as a limited number of sentence structure to choose from, thus resulting in a
smaller vocabulary size than normal.

So, our hypotheses are that: consider a long, fully generated PCFG text, the vocabulary might
be less diverse than a genuinely written document of the same length because the richness of the
generators can not be compared to human vocabulary. However, in a short, confined “slide” of text,
the opposite might be true. Since generally, genuinely written texts in a small section are focused in
only a particular topic with repetitive words while automatically generated ones are more random.

To understand this proposal, we present some statistical information that we gathered in Section
5.1.2. From this information, Section 5.1.3 tries to reapply the finding on a test corpus to classify
documents as generated or not.

5.1.2 Statistical Information about Vocabulary Growth

We counted the number of different word-types in our corpus of genuine papers and automatically
generated papers to see the differences in the growth of the vocabulary of each type of paper.

Figure 5.1: The growth of the vocabulary overtime of Genuine paper and the average growth of
generated paper

51

Figure 5.1 shows the difference of the vocabulary growth in average of 400 real papers along with
the average of 400 documents for each type of generators. Even though there is a large variation of
vocabulary size from a genuine paper, we can still see there is a distinction from a genuine paper
compared to generated ones starting at about word token index 50. The distinction in vocabulary
size grows more significantly later on in the cases of SCIgen and Physgen. However, for Mathgen
and Propgen, they seem to grow at a slower rate and then somewhat under-grow compared to what
normally occurs. This phenomenon might result from the fact that the choice for words as well as
sentences in PropGen and MathGen being not as varied as their counter-parts. In fact, we counted
the total number of different words (excluding stop-words and non-dictionary words) that appear
in a single paper from a corpus of 500 Propgen generated ones. This number always come out
between 345 to 360 words, does not matter what length the paper is.

We also believe that words in a particular section should be repeated at a particular rate. Thus,
we investigated the richness of the vocabulary inside a window of text, not just the paper as a
whole.

Figure 5.2: Vocabulary richness inside a window of 200 word token from 400 documents for each
type.

Figure 5.2 shows that in a generated paper, a 200-word token window appears to have more
different word types than what normally appear in a window of genuine text. From there, we would
want to see in a genuine as well as generated text, what percentage of the 200-word token window
would fall outside of the “normal” area (that we set at more than 65 different words/window of 200
words). Figure 5.3 shows that for a generated text, most, if not all the window, would have more
than what we consider normal, while for genuine text, this percentage is much smaller. This could
also be used to determine characteristics of a generated paper.

Based on this preliminary information, the next section will further explore the possibility of

52 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

using the characteristics of the vocabulary size as a method to classify automatically generated
documents.

Figure 5.3: Percentage of windows that have more than 65 different word types.

5.1.3 Preliminary Test and Results Using Vocabulary Growth

We have implemented our proposal in Java based on what we gathered in the statistical information.
In the implementation, we have set the following process which is the combination of two methods
for each document under test. These hard thresholds are chosen based on the previous section to
get the best distinction:

– Count the total number of different word types (excluding stop-words and non-dictionary
words). If this total number of word types is less than 360 while the current paper under test
has more than 2000 words (a typical length of at least two pages), this is abnormally low and
it will be considered as a PropGen paper.

– Count the size of the vocabulary of every 10-word token starting from word token number 50
to word token number 250 (thus 20 windows).

53

– If there are more than 10 windows with the vocabulary size falling outside the “normal”
range (the mean ± STDEV); we mark it as automatically generated.

– Split the paper into windows of 200-word token and count the size of the vocabulary inside
these windows.

– If more than half of the windows have more than 65 word types; we also consider it as
an automatically generated one.

– Otherwise, it is considered as genuine.

Result: Using our tool, we tried to scan 400 genuine papers in different fields along with 400
generated papers from four known generators. The results are as follow.

Out of 400 genuine papers:

– 56 false positives: 39 were identified as fake, 17 as PropGen.

– 344 true negatives.

– Subsequently False positive rate: 0.14

Table 5.1 shows the results of 400 generated papers:

SciGen PhysGen MathGen PropGen Total
True Positive 100 99 18 100 317
False Negative 0 1 82 0 83
Recall 1 0.99 0.18 1 0.79

Table 5.1: Scanning results for 400 generated papers using vocabulary growth.

We have obtained perfect result for SciGen, PropGen, as well as close to perfect for PhysGen.
However for MathGen the result is not so good, this might be because the vocabulary richness of
MathGen is not comparable to SciGen or PhysGen but not as low as PropGen. In another word,
there are less choices for sentences and keywords in MathGen compare to the others however this
choice is not as low as PropGen and thus somewhat overlap with genuinely written papers.

On the other hand, the number of false positives is considerable since the written language can
largely vary depending on the topic or the author. To limit this number, we investigate a different
approach based on the neighborhood of words.

5.2 Using Word Embedding
Word embedding is a technique where words or phrases are mapped to vectors of real numbers.
These vectors can then be used in different applications such as information retrieval [Ganguly et al., 2015,
Palangi et al., 2016], sentiment analysis [Tang et al., 2014], machine translation [Zou et al., 2013],
question answering [Ganguly et al., 2015] and much more.

Our hypothesis for this section is that words from a same document must be somewhat similar
to each other so the vectors that represent them should also be similar to each other. Thus, this
section presents Glove and Word2Vec as methods to obtain vector representations for words, and
then Word2Vec is focused on as the most used method and tested with our corpora.

54 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

5.2.1 Word2Vec

Word2Vec (W2V) is a program that was developed by Tomas Mikolov et al. at Google [Mikolov et al., 2013d,
Mikolov et al., 2013c, Mikolov et al., 2013a]. It is used to create vectors to represent linguistic con-
text of words using a shallow two layers neural network. The aim of W2V is to learn vectors that
represent words inside a particular corpus, and words with similar representation (vector direction)
should be somewhat similar in meaning and using these vectors, relations between words can be
revealed (Figure5.4).

Figure 5.4: “Left panel shows vector offsets for three word pairs illustrating the gender re-
lation. Right panel shows a different projection, and the singular/plural relation for two
words. In high-dimensional space, multiple relations can be embedded for a single word” (From
[Mikolov et al., 2013d])

In [Mikolov et al., 2013a], the authors introduce the continuous skip-gram model to be used for
learning high quality word vectors for millions of types from a corpus of billions of tokens. Two log-
linear models were proposed and tested, namely continuous bag-of-words mode (CBOW) and contin-
uous skip-gram model (Figure 5.5). In CBOW, the input to the model are windows that surrounding
words and the output layer output can be thought of the task as “predicting the word given its con-
text.” While Skip-gram is a mirror image of CBOW, where the input layer is the target words, and
the output layer of the neural network is replicated multiple times to accommodate the chosen num-
ber of context words inside a window C or, in other words, “predicting the context given a word.”
To verify the results, the authors have shown that using well trained vectors, it is possible to deduce
similarities between word pairs such as France is to Paris is similar to Germany is to Berlin. From
there, simple algebraic operations can be used with the vector representation of words to understand
word relationships like vector(“biggest′′)− vector(“big′′) + vector(“small′′) ∼ vector(“smallest′′).
Furthermore, these models were tested using several LDC corporal [Mikolov et al., 2011] with 320
millions word tokens and 82 thousands word types vocabulary, words are represented in a 640 di-
mension vector space. It was shown that CBOW works well on both syntactic tasks and semantic
tasks while skip-gram, despite a slightly worst performance on the syntactic tasks than CBOW,
is much better on the semantic part of the test. From there, these models were used to tackle
The Microsoft Sentence Completion Challenge [Zweig and Burges, 2011] which has 1040 sentences,

55

each missing a word and the goal is to propose the missing word that is the most coherent with
the rest of the sentence. The Skip gram model was trained on a provided 50M words corpus with
640 dimension vector space, the obtained result did not compare well to an average LSA similarity.
However, combining the skip-gram model with RNNLMs [Mikolov, 2012], the authors were able to
outperform state-of-the-art results.

Figure 5.5: “New model architectures. The CBOW architecture predicts the current word based
on the context, and the Skip-gram predicts surrounding words given the current word.” (From
[Mikolov et al., 2013a])

Following the previous results, Tomas et al. continued to improve the skip-gram model with
[Mikolov et al., 2013c]. In this work, the authors show that by subsampling frequent words, the
process can be significantly sped up with more regular word representations. The idea of subsam-
pling is that frequent words such as stop-words (the, a, in, etc.) provide much less information
value compared to the rare words. Thus, a subsampling probability P(wi) is introduced to decide if
the word wi should be discarded

P(wi) = 1−
√

t
f(wi)

Where f(wi) is the frequency of word wi and t is a chosen threshold. This formula greatly cuts
out words that have a frequency greater than t while still preserving the ranking of the frequen-
cies. To show that this subsampling process considerably accelerates the learning time and also
significantly improves the quality of learned vectors, the authors have chosen several methods to be

56 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

compared with subsampling in the analogical reasoning task [Mikolov et al., 2013a]. The aim of this
task is to demonstrate connection between words using simple algebraic on their vectors represen-
tation such as the connection Germany-Berlin and France-Paris or big-biggest and small-smallest
as presented before. And the result supports the hypothesis that subsampling both improves the
training speed as well as produces more accurate representation vectors.

Figure 5.6: “Distributed word vector representations of numbers and animals in English (left)
and Spanish (right). The five vectors in each language were projected down to two dimensions
using PCA, and then manually rotated to accentuate their similarity. It can be seen that these
concepts have similar geometric arrangements in both spaces, suggesting that it is possible to learn
an accurate linear mapping from one space to another.”(From [Mikolov et al., 2013b])

Word2Vec has been adopted in many different natural language processing tasks such as machine
translation [Mikolov et al., 2013b]. The authors propose a method to automatically build or expand
dictionaries and phrase tables by learning language structures and mapping between vector spaces
of languages. The linear relationship between languages as visualized in Figure 5.6 shows that
word vectors for English numbers somewhat correspond to their counterpart in Spanish. Thus, if
a transformation matrix can be deduced from the relationship between one to five from English to
Spanish, it can be used to translate other numbers to Spanish. This transformation matrix can in
fact be learned by solving an optimization problem with stochastic gradient descent. And despite

57

its simplicity, this linear transformation works quite well as demonstrated in their experiments. In
particular, the authors performed several tests, comparing the translation of a thousand words from
a source language to a destination language by learning with the five thousand most frequent words
in the source language and was able to obtain about 50% accuracy. Then the experiment was scaled
up with a larger English-Spanish dataset with several billion words (Google News datasets). The
same process of using the five thousand most frequent words to construct the dictionary is repeated
and the result shows that the method still has a reasonably high precision at 60% and even more
surprising is the fact that some words were translated correctly even though they are quite unrelated
to the most frequent dictionary. Then the authors expanded the example with even more languages
namely English-Czech, English-Vietnamese and show that it is also possible to correct dictionary
errors. This was achieved by computing the distance between the word vectors of translation given
by their system and the existing dictionary entries. If there is a strong disagreement between the
two translations, then there might be some error in either of them.

5.2.2 Gloval Vectors - GloVe

In this work, [Pennington et al., 2014] analyze the model properties to produce linear direction of
meaning (as space vector for king - queen = man - woman) and propose a method to produce word
vectors with meaningful structure. To do such a task, the authors present the GloVe model for
global vectors. In this model, words co-occurrence probabilities are calculated.

Specifically, for a word i with a word-to-word co-occurrence matrix X where Xij is the number
of times word j appears in the context of word i and Xi =

∑
kXik is the number of times any

words appears in the context of i. Then Pij =
Xij
Xi

is the probability that word j appears in the
context of word i. The authors show that the co-occurrence probability can be used to distinguish
a relevant word pair from an irrelevant word pair. From this argument, they note that word vector
learning should start with the ratios of co-occurrence probability rather than the word probabilities
themselves. Then, using this information, equations are developed to establish a model for log-
bilinear regression unsupervised learning.

To validate this model, a corpus with 6 billion tokens was created from a Wikipedia dump and
Gigaword 51. The representation vectors for 400,000 most frequent words in this corpus are learned
using Word2Vec and GloVe. The authors compare the accuracy on different tasks with different
parameters and conclude that the GloVe model is useful in downstream NLP tasks such as word
analogy, word similarity and named entity recognition.

5.2.3 Implementation with Word2Vec

We believe that words inside a section or a window should be somewhat related to each other.
However for the case of PCFG, again because the words are chosen at random, they wont be
exactly correlated. Thus we proposed to compare the most frequent nouns in a window to observe
how close they are compared to one another.

Recent trends are quite heavily focused on working with Word2Vec so we decided to follow and
test our hypothesis using W2V. We trained our W2V vectors based on a text corpus from Lecture
Notes in Computer Science series that we were able to obtain from Springer which has more than
150 million word tokens (about 1.3 GB of text) and more than 250 thousand word types feature
vectors (LNCS corpus). This corpus was then used to learn feature vectors with both CBOW and
skipgram models, each using a window of four, 100 dimension vector space and negative learning
25. The learning results were then translated from binary to a text file for easier processing, to

1https://catalog.ldc.upenn.edu/ldc2011t07

58 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

further reduce the processing time, all non dictionary, non noun words are removed. In the end, we
were able to obtain 35k noun feature vectors.

From then, these vectors are used to classify different types of scientific papers from different
corpora that were presented in Chapter 4 . For each paper under test, it was split into windows
of 200 word tokens; from each of these windows, the ten most frequent non stop-word nouns were
selected and the average pair-wise cosine similarity (APS) or Euclidean distance between them are
computed.

Let FA be the set of n most frequent nouns from each windows of 200 word tokens, each noun
is represented by a vector ~V then

Average pair-wise cosine similarity of the windows: APS =
∑
x,y∈FA

cos(~Vx, ~Vy)

n

while Average pairwise Euclidean distance of the windows: APE =
∑
x,y∈FA

euclideandistance(~Vx, ~Vy)

n

Figures 5.7 and 5.8 show the pair wise cosine similarity for the test corpus respectively with
representation vectors that were learned using the CBOW or the skip gram model. Similarly, Figures
5.9 and 5.10 show the pairwise Euclidean distance for the test corpus with different representation
vectors.

Figure 5.7: Histogram of average pairwise cosine similarity for nouns from a window of 200 word
tokens in different types of papers using vector representation that were learned with the CBOW
model.

Looking at these Figures, it is hard to determine a clear method to confidently classify a doc-
ument as genuine or automatically generated. Except for Propgen with CBOW feature vectors,
both with cosine similarity and Euclidean distance, Propgen generated papers seem to have quite
a different distribution, which might be caused by the complex noun where it is impossible to find
a matching noun in our learning corpus. This discourages us from further testing with Word2Vec,
however we still hold our belief that words can be described by their surrounding windows, thus
the next section will explore the possibility of classifying text based on the neighborhood of words.

59

Figure 5.8: Histogram of average pairwise cosine similarity for nouns from a window of 200 word
tokens in different types of papers using vector representation that were learned with the skip-gram
model.

5.3 Classification Based on Word’s Neighborhood

“You shall know a word by the company it keeps” [Firth, 1957], and words in a small section should
be somewhat related or similar to each other. We investigated these claims in the following section.
The hypothesis of this approach is that words can be characterized by the surrounding neighbors
and different styles of text should result in different word’s neighborhoods.

5.3.1 Implementation Method for using Word’s Neighborhood

The previous LNCS corpus is again used in this method, it was normalized, and then from each word,
a window is extended to either side with a certain size or until the beginning/end of the sentence
is reached. This process should encapsulate all the neighbors and then information is kept in a list
with the absolute number of co-occurrence between the word and its neighbor. After all the words
have been processed, the absolute frequency of co-occurrence is translated to relative frequency or
co-occurrence rate. This should ensure that the length of the corpus does not heavily affect the
outcome. In the end, each word is represented by a vector of a certain size of its most popular
neighbors. These vectors are then used to calculate the differences between them and vectors in
a paper under test to determine whether the vectors under test have an abnormal neighborhood.
The details of these processes are presented in the next section.

60 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

Figure 5.9: Histogram of average pairwise Euclidean distance for nouns from a window of 200 word
tokens in different types of papers using vector representation that were learned with the CBOW
model.

Figure 5.10: Histogram of average pairwise Euclidean distance for nouns from a window of 200 word
tokens in different types of papers using vector representation that were learned with the skip-gram
model.

61

5.3.2 Experimental Process

As the beginning of the experiment, we realized that there are multiple parameters that will affect
the results, namely the size of the window that would be considered as the neighborhood of the
words, how many frequent neighbors should be kept inside the neighborhood, and how to calculate
the similarity of the neighborhood.

Choosing the Number of Frequent Neighbors

Firstly, we would like to know how many common words the neighborhood has in common. Thus,
different sizes of the neighborhood will be tested. Specifically, in each document, the most 50
frequent non-stop-word nouns are discovered, then all the words in the sentences that contain
the frequent words are recorded. From these lists of recorded neighborhoods, the most frequent
neighbors are compared to see on average how many neighbors do words from a generated or
genuinely written document have in common with a learned neighborhood from genuinely written
ones? Jaccard similarity was used to demonstrate how much similarity they do share; the higher
this value, the more neighbors they have in common.

Let FA be the set of n most frequent keywords in a document A, for each keyword x ∈ FA is
represented by a set NA(x) of m of its most frequent co-occurrence neighbors. FC be the set of all
words that were learned by the corpus, each word y ∈ FC is also represented by a set of NC(y) of
m of its most frequent co-occurrence neighbors. Then the average Jaccard Similarity between A
and the learned corpus C is:

JaccardSimA,C =

∑
w∈FA

NA(w)∩NC (w)

NA(w)∪NC (w)

n

Figures 5.11, 5.12 and 5.13 show that as we expected, in general automatically generated docu-
ments seem to share less common neighbors with the learned neighborhood compared to genuinely
written ones. It is also understandable that as the size of the neighborhood is increased, the average
Jaccard similarity decreases since the neighbors of words from a document under test is quite fixed,
and even if the number of most frequent neighbors is increased, there is a limited number of them.
However, for a word’s neighborhood learned from a big corpus, the neighborhood would be more
diverse and would likely be expanded when the number of most frequent neighbors is considered.
Nonetheless, with 20 most frequent neighbors, both generated and genuine documents shared a
reasonable number of neighbors with the learned neighborhood which would provide a better result
while using different similarity calculations. So, from now on, we would work with 20 of the most
popular neighbors for each word.

Choosing the Size of the Neighborhood Window

The next step is to decide what is considered as the neighborhood or how many of the adjacent
words would be connected to the word under test. To do this, Figures 5.14, 5.15, along with Figure
5.11 show different window size of adjacent words to be considered as neighbors. It can be seen that
reducing the window size to two adjacent words affects Propgren the most, sometimes even half the
Jaccard similarity while genuinely written documents do not differ much. The same phenomenon
occurs for other types of generators where the Jaccard similarity slightly decrease whenever the size
of the neighborhood window is decreased. Given these results, we decided that each word will be
represented by its 20 most popular neighbors inside a window of five words.

To further the experiment, we would like to test different methods to calculate distance/simi-
larity given that each word is represented by a vector of neighbors as stated earlier on.

62 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

Figure 5.11: Jaccard similarity of frequent word neighborhoods from different types of documents
where each word is described by 20 of its most popular neighbors in its sentence.

Choosing the Similarity Calculation

In this section, some popular methods to calculate the similarity/distant between a word’s neigh-
borhood are presented. Again, in each document A, n = 50 most frequent non-stop-word words are
selected as set FA, and then for each instance w ∈ FA of these words, a neighborhood window of
five words is extended to either side to collect all the relative frequency of co-occurrence neighbors
NA(w) where f(x ∈ NA(w)) is the relative frequency of time where word x appears in the neighbor-
hood of word w. Using these lists of neighbors, the 20 most frequent neighbors and their relative
frequency of co-occurrence to each word w in FA will be used to calculate these distance/similarity
with the learned set FC from corpus where each w ∈ FC is also represented by a set of relative
frequency of co-occurrence neighbors NC(y).

Cosine Similarity for each word w ∈ FA to the same word in learned corpus C:

CosineSim(A(w),C(w)) =

∑
x∈NA(w)∪NC(w)

NA(w)x×NC(w)x√∑
x∈NA(w)

NA(w)x
2×

√∑
x∈NC(w)

NC(w)x
2

where NA(w)(x) =

{
f(x ∈ NA(w)), if x ∈ NA(w)

0, otherwise

In a simpler term, for each word in the set of most frequent keywords from the document under
test A, its combined popular neighborhoods from A and from the learned corpus C are gathered as

63

Figure 5.12: Jaccard similarity of frequent words neighborhood from different types of documents
where each word is described by 50 of its most popular neighbors in its sentence.

NA(w) ∪NC(w). For each instance of neighbor x in the combined neighborhood, the co-occurrence
relative frequency f(x ∈ NA(w)) or f(x ∈ NC(w)) are used to calculate the cosine similarity. If x is
not present in either of the neighborhoods, the co-occurrence rate is set as 0.

Figure 5.16 shows the distribution cosine similarity of all the frequent words from the test
corpus. It can be seen that words from auto generated documents tend to have lower cosine
similarity compared to words coming from genuinely written documents. In particular, about 60%
of keywords from genuinely written document have 0.5 or higher cosine similarity while only 40%
of keywords from Mathgen and Propgen and 25% for Scigen, Physgen. Furthermore, a much bigger
percentage of keywords from genuinely written documents have a decisively high cosine similarly of
0.8 or 0.9 which make them have a much higher probability of being in a proper context. However,
the distributions are spread quite wide and it would be difficult to create a specific threshold for
classification.

The possibility of using Euclidean distance is also tested in Figure 5.17. However, this does not
seem to be the best method, despite the fact that keywords from genuinely written documents do
have smaller distance to the learned neighborhood but the distances from other type of documents
are also quite clustered together and would be hard to precisely separate them. Euclidean distance
for a set of FA to learned corpus:

EuclideanDist(A(w),C(w)) =
√∑

x∈NA(w)∪NC(w)
(NA(w)x−NC(w)x)2

64 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

Figure 5.13: Jaccard similarity of frequent words neighborhood from different types of documents
where each word is described by 99 of its most popular neighbors in its sentence.

where NA(w)(x) =

{
f(x ∈ NA(w)), if x ∈ NA(w)

0, otherwise

Furthermore, Figure 5.18 shows the distribution of relative frequency when using textual dis-
tance [Labbé and Labbé, 2013] between a word’s neighborhoods from different types of documents.
As seen, the majority of keywords from genuinely written documents closely resemble the word’s
neighborhood from the learned corpus with about 65% characterized by 0.5 or less in textual dis-
tance. On the other hand, a word’s neighborhoods that form automatically generated document
usually stand further away with about 80% of them have a relatively higher distance. In short, out
of the three methods to calculate similarity/distance that have been presented, textual distance
seems to be able to provide the most distinction between types of document. textual distance for
a set of FA to learned corpus:

Textualdist(A(w),C(w)) = 1
2 ×

∑
x∈NA(w)∪NC(w)

(NA(w)x−NC(w)x)

where NA(w)(x) =

{
f(x ∈ NA(w)), if x ∈ NA(w)

0, otherwise

So, to conclude, this method would work best with textual distance on a word’s neighborhood
representation of the 20 most popular co-occurrence neighbors inside a window of five words. The
next section will validate these proposals where each document is classified as generated or not

65

Figure 5.14: Jaccard similarity of frequent words neighborhood from different types of documents
where each word is described by 20 of its most frequent neighbors in a window of two.

based on the percentage of the frequent keywords that have a “strange” neighborhood, strange
progression of vocabulary or non-similar keywords from a small window.

5.4 Validation

This section aims to validate all the previously proposed hypotheses along with SciDetect as a
method to detect documents with unusual word’s distribution. Each method for detecting generated
text without samples is set with thresholds as follows:

SciDetect: The same documents that were used to compose the LNSC corpus are used as ref-
erences. If a document under test has higher than 0.6 in textual distance to its nearest neighbor
inside the LNSC corpus, then it is considered as a non-genuine one.

Vocabulary growth: As presented in the corresponding Section 5.1.3, this method uses a com-
bination of multiple vocabulary characteristics.

W2V similarity: Cosine similarity based on word vectors learned with the CBOW model is used
and derived from Figure 5.7. If a document has more than half of its windows with higher than
0.19 in average pairwise cosine similarity, then it would be considered as not genuinely written.

Word neighborhood similarity: if more than half of the keywords have textual distance higher
than 0.3 to the learned neighborhood then it would be classified as non-genuinely written.

These methods are tested with the Test corpus in Section 4.2.2 along with Markov and RNN
corpora in Section 3.5 to fully understand what are the limitations of these proposals. The results

66 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

Figure 5.15: Jaccard similarity of frequent words neighborhood from different types of documents
where each word is described by 20 of its most frequent neighbors in a window of five.

are shown in Table 5.2 where a false positive rate is the probability of a genuinely written document
is classified as non genuine and false negative rate is when an automatically generated document is
classified as genuinely written. The smaller these rates are, the better the result is.

False Positive Rate False Negative Rate
Genuinely written PCFG Generated Markov Model RNN

SciDetect 0.35 0.65 0.45 0.27
Vocabulary Grown 0.17 0.20 0.68 0.15
W2V Similarity 0.34 0.65 0.8 0 0.77
Word’s Neighborhood 0.13 0.27 0.31 0.10

Table 5.2: False positive and false negative rates of different methods on different corpora.

As in Table 5.2, SciDetect works quite poorly when using only genuinely written documents
as references. About a third of the genuinely written documents in the test corpus was classified
as automatically generated while a large number of automatically generated ones were labeled
as genuinely written. The best result for SciDetect was when dealing with texts generated by a
recurrent neural network. This is understandable since there are a number of misspelled words in
those texts and that makes them share less common vocabulary with the learned corpus. Vocabulary
growth, on the other hand, deals relatively well with the test corpus and RNN corpus since it
was developed with that exact aim. However, with the case of the Markov model generation, this
approach has less accuracy as the model could replicate the source text in word’s distribution. Using
average pairwise cosine similarity with representation vectors form Word2Vec seems to be the worst
approach yet, even though it could correctly mark two thirds of genuinely written documents, a

67

Figure 5.16: Relative Frequency distribution of cosine similarity for frequent words in the test
corpus compared to the learned neighborhood where each word is represented by 20 of its most
popular neighbors inside a window of five.

significant number of automatically generated documents were mistakenly marked as genuine. This
means that, in general, keywords from generated documents are still some-what related to each
other. Using a word’s neighborhood appears to give a good result. Only 10% of genuinely written
documents are mistakenly classified while 70% to 90% of automatically generated documents are
spotted without any prior corpus sample about them.

5.5 Summary

This chapter has shown that it is difficult to positively pinpoint automatically generated sentences or
documents using only genuinely written documents as references. This is understandable because
of the richness of languages. There is no static model that can fully describe natural language
even in a smaller area such as scientific documents. We have proposed several approaches for
this problem from simply counting word types in a specific window or calculating the similarity
of keywords inside a section of text. Furthermore, we developed a method to classify texts based
on word’s neighborhoods. These methods are then tested using a test corpus that includes both
genuinely written documents and automatically generated documents from different generators, in
addition to texts that were generated using a Markov model or a recurrent neural network. The
results of the test confirm that it is a challenging task to correctly identify unknown automatically

68 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

Figure 5.17: Relative Frequency distribution of Euclidean distance for frequent words in the test
corpus compared to the learned neighborhood where each word is represented by 20 of its most
popular neighbors inside a window of five.

generated documents. However, using word’s neighborhoods along with textual distance, we were
able to obtain a reasonably good result with a limited number of false positives which is the most
important factor since, in reality, most if not all of the test documents should be genuinely written.

69

Figure 5.18: Relative Frequency distribution of textual distance for frequent words in the test
corpus compared to the learned neighborhood where each word is represented by 20 of its most
popular neighbors inside a window of five.

70 CHAPTER 5. DETECTING GENERATED TEXT WITHOUT SAMPLES

Chapter 6

SciDetect in an Industrial
Environment

This chapter aims to give a broad view of a typical industrial publishing environment and how
SciDetect has been integrated into a production workflow. This research is funded and realized
in collaboration with Springer-Nature, one of the world's leading global research, educational and
professional publishers. We were therefore able to collect valuable information to design a SciDetect
system and to design the best integration into the workflow.

Springer-Nature is the world's largest academic book publisher, publisher of the world's most
influential journals and a pioneer in the field of open research. The company numbers almost
13,000 staff in over 50 countries. Springer-Nature was formed in 2015 through the merger of Na-
ture Publishing Group, Palgrave Macmillan, Macmillan Education and Springer Science+Business
Media.

In 2016, there were more than five million articles available on Springer Link (the group’s digital
library) with approximate 265,000 new articles per year in 13,500 different issues, which means there
are about 22,000 new articles per month. This is a real challenge to install a new system to the
workflow which able to handle such a large volume without heavily impacting the existing systems.

6.1 The Publisher Workflow Experience

It is important for any publishing house to have a well-defined workflow. Furthermore, this workflow
must also be highly standardized and well automated, but at the same time, stable and robust.
This means the validity of each document must be ensured, including type-set, figures, tables, etc.
Additionally, this workflow must provide a consistent environment for approximately 150 production
editors all around the word.

This workflow is currently based on an XML structure, which is the basis for all products
and deliverables (HTML, online and print PDF, ePub, ONIX, ...). This ensures standardized
processing instructions for both vendors and printers with common interfaces to all vendors and
other applications. These XML documents are stored in a centralized database called Data Delivery
System (DDS) as the base for any kind of report and analysis. This database is maintained by a
Process and Content Management department that directly works in tandem with us to implement
SciDetect into the workflow. The overall process of the Process and Content Management systems

71

72 CHAPTER 6. SCIDETECT IN AN INDUSTRIAL ENVIRONMENT

is shown in Figure 6.1 and each step will be briefly explained later.

Figure 6.1: Process and Content Management Systems.

JFlow/BFlow: They are systems to store product’s (article/book/journal) related information,
as well as applications for maintaining current product metadata or planning tools for future infor-
mation. In short, JFlow and BFlow are central repositories of journal and book production data.
They are used mostly by editors for marketing and sales activities, along with report and analyses.

Journal workflow and Book workflow (JWF/BWF): These are the main pipeline to pro-
duce new articles or books. Figure 6.2 details these processes

– PRS (Peer Review System): Manuscript content is delivered to the system by automatically
imported from an external Peer Review System.

– Initiate: The production editors perform initial tasks such as technical parameters for the
article and bibliographic information.

– Author Query: The authors are contacted to transfer copyright and additional requests such
as print in color, offprint.

– Prepare Content: The article is processed at a vendor to render as XML, images and separate
PDF. A vendor in short is a service provider who digitizes the article in a specific format. This
includes typesetting, correct formatting, exporting the article or book as a complete PDF,
etc.

– Perform Proof: The delivery from the vendor is checked for quality by in-house production
editors to ensure the formatting by a checker (submission checker). This step checks for
various conditions such as XML formatting, reference to picture or LATEX formula, as well as
redacted content. All these small checks are controlled by a supervised system which is ready
to report any detected problem to the appropriate manager. At the same time, corrections
from authors are incorporated into the XML content of the article and its PDF rendering.

73

– Distributed Digital Content: After the quality check, the article is sent to the archiving system
and delivered to SpringerLink, users, and other customers. Reaching this stage means the
article is officially published with a registered DOI.

– DSS (Data Delivery System): The central database where the article is stored and distributed
to different platforms.

Figure 6.2: Article processing in JWF and BWF.

6.2 Incorporating SciDetect to the Workflow

Based on the previous section 6.1, it is desirable to have a semi-automatic system to process every
new article that comes into the workflow. Thus, SciDetect is implemented as a Java program that
runs by commands from the console and would also report via the console along with some log files
for further inspection. The console report can be easily parsed and handled by another supervising
system to notify an editor if there is a confirmed or suspected case of being automatically generated.

Furthermore, consistent results for each article must be kept and the ease of improvement for
a new type of generator must also considered. Hence, SciDetect has been split and the computa-
tional part is deployed as a service running on a Tomcat server to provide connections to multiple
instances of clients running on different workflows whenever needed. This ensures the availability
of the system, as well as making any adjustment can be easily implemented without disturbing the
workflow.

It is understandable to want to deploy SciDetect as early as possible. From Figure 6.2, the
most desirable step to install SciDetect is between PRS and Initiate since the peer review system
is not controlled by the internal workflow. However, at this step, there is no standard format (the
article can come in Word, PDF or even LATEX code) and there is no centralized observer system,
so it would be costly and work intensive to develop a check at this position. Per contra, at the
Perform Proof step, there is already a system in place to supervise different checks that need to
be performed at this stage. Moreover, the input of this stage is a well-defined XML or PDF with
a clean structure. This would make installing a SciDetect check at the Perform proof step as an
extra required proof for the delivery an ideal situation.

74 CHAPTER 6. SCIDETECT IN AN INDUSTRIAL ENVIRONMENT

Figure 6.3: Architecture of SciDetect in client and server mode

In the end, the client’s versions of SciDetect are installed in the stage Perform Proof of BWork-
Flow and JWorkFlow, the overall architecture can be found in Figure 6.3. The SciDetect client
is triggered whenever there is a new delivery from the vendors. The client first logs the time of
calling along with the file name. Since each article can be delivered as a XML, a PDF or both, the
SciDetect client prefers XML but if there is no XML available, the PDF version is targeted, and
the plain text is striped from the document.

At the same time, a custom address of the server is obtained from a pre-defined configuration
file and the connection between the client and the server is established. Using this connection,
the text is then transferred to a SciDetect service running on a remote server where the text is
normalized as presented in Chapter 3. The server also includes multiple corpora of samples from
known generators and they are used to calculate the minimum distance to each type of sample
corpus (as per algorithm in Chapter 3). The server side then responds to the client with the
information about the file in relation to each of the sample corpus in the format: File name - Min
distance to sample corpus - Sample corpus file name, as in Example 11.

Example 11 An example of a return result form SciDetect server for a file named
“ICAART 2014 73.pdf ”:

ICAART 2014 73.pdf 0.4840167178109426 data/samples/Scigen/INDEX-scigen25.txt
ICAART 2014 73.pdf 0.5121158731519747 data/samples/Physgen/INDEX-physgen31.txt
ICAART 2014 73.pdf 0.6345718723681273 data/samples/Mathgen/INDEX-mathgen95.txt
ICAART 2014 73.pdf 0.7459138216931677 data/samples/Propgen/INDEX-propgen11.txt

The client receives the distances and in turn uses its own configuration file to obtain the thresh-
olds for each type of corpus and decides if the document can be considered as a generated one or
not (Example 12). If it is considered as automatically generated or suspected generated, an error
message is sent to the supervising system and it will trigger an automatic email to a responsible
person to perform further testing. In any case, a log file is created that includes the time of the
scan, the name of the scanned documents and what the results are, and this file can be used for
further debugging if there is a problem.

75

Example 12 An example of final returns form SciDetect client

ICAART 2014 73.pdf Suspected Scigen 0.4840167178109426
05359718.pdf Mathgen 0.3511158731519747
456366.xtx Genuine 0.6418756885197779

6.3 Preliminary Statistic Information and Interesting Lessons
SciDetect has been implemented and is working inside the workflows of Springer-Nature for about
two years. And from the beginning of December 2016 to the end of November 2017, more than
600,000 articles have been processed and out of those numbers, 252 articles were marked as suspi-
cious content. However, with closer inspection of those suspicious contents, all of them are genuinely
written, but the minimum distance to the sample corpus is really close to the suspicious thresh-
old. This suggests that the threshold can be fine-tuned further to avoid wasting resources on false
positive cases.

Even though there are three main workflows for publishing, SciDetect was only deployed on two
workflows for books and journals, so the workflow for magazine is unmodified. This is because the
nature of this workflow is different; it only deals with articles from well-known, established editors
and should be impervious to automatically generated documents.

We have also learned that to be able to handle a high number of production data, careful
engineering is needed. During the earlier days of the implementation, there was several “road
bumps.” For example, we ran into a case of memory leak, and this problem was not revealed during
the testing phrase in a small-scale simulation environment. However, when the service was deployed
for a long continuous time, the leak kept compounding up, and the process required more and more
RAM and eventually caused an out of memory error.

Another lesson is that detailed documentation needs to be implemented and maintained. An
example of the documentation for different versions of SciDetect can be found in the Appendix.
And continuous improvements need to be realized to keep up with requirements as an example of
a change log for a new version as in Example 13.

Example 13 Example of a change log.

Version 2.4.5

– Added a new optional parameter to choose which type of file will be scanned: -type
which can be either xml, pdf or both (defaulted to both).

– If type “xml” is chosen and SciDetect encounter a A++ metadata only (does
not contain a <Body> or a <PDFTextExtract>). SciDetect will try to locate
the counterpart pdf at the appropriate location.

– If “both” is chosen, there will be cases where SciDetect scans a pdf file twice
(once when encounter the A++ meta data and once again for the pdf itself).
Suggested usage: java -jar SciDetect Local.jar -c pathtocheck -type xml

– Log file improvements.

– Name format changed from YYYY.MM.DD-HH:mm.tsv to YYYY.MM.DDTHH:mm.tsv

– Added a header line at the beginning of the log file to make it easier to be
interpreted by a human reader when it is opened by a spread sheet program.

– Further define “cannot classify” error.

76 CHAPTER 6. SCIDETECT IN AN INDUSTRIAL ENVIRONMENT

– If the file in question contains too little text (less than 10000 chars) to be
confidently classified.

* If it is a matter (book front, back matter or chapter matter) then SciDetect
will say “Cannot Classify: File is a front or back matter”.

* Else “Cannot Classify: File does not contain enough text”.

– If there was an error while converting the pdf, “Cannot Classify: An error
occurring while converting file”.

6.4 Summary
This chapter presented a brief overview of a real-life industrial workflow for a well-known publisher.
Different stages of the workflow were introduced to find the best position to install a SciDetect
check for an automatically generated article.

Moreover, since the installation of the system to the workflow, more than half a million articles
have been processed, with a negligible number of false positive cases. Along with that, valuable
lessons are learned during the development process about both engineering and providing continuous
customer support.

Chapter 7

Conclusion

Automatically generated text has been used in numerous occasions with distinct intentions. This
can simply go from generated comments in an online discussion to a much more mischievous task
such as manipulating bibliographic information. Different methods to generate texts have been
presented in Chapter 2, each with its own advantages, as well as disadvantages.

Then the thesis tackled multiple questions concerning the possibility of detecting automatically
generated texts in various situations. Chapter 3 discussed current detection attempts to classify
fully automatically generated documents (mostly SCIgen). Then we argued that it is possible to
obtain good or better results by simply using the word distribution of the document to find out if
it has a similar distribution to a known automatically generated document.

To validate our argument in this chapter, different distance/similarity measurements were tested
to demonstrate that textual distance can provide the best separation. From that, the SciDetect
system to classify automatically generated documents was built and tested against other known
methods. Furthermore, the system was also proven to be able to detect documents that were
generated by a Markov model or a recurrent neural network given that somehow samples from the
same generator could be obtained.

Then Chapter 4 went one step further when proposing a new method to detect sentences or
short paragraphs of automatically generated texts. As far as we know, this is the first approach
trying to accomplish such a task. And to do it, we proposed a new similarity measurement called
grammatical structure similarity. This similarity is calculated by comparing the parsed structure
between two sentences.

The method uses a corpus of known sentences from different generators along with their parse
tree. For each sentence under-test, itself along with its direct previous and next neighbors are
compared to the corpus of known generated sentences to find similarities on both the lemma level
and on the grammatical structure level. This method was then tested against some well-known
machine learning techniques to demonstrate that it can provide better results. Furthermore, it is
also proven to be able to detect sentences from a modified generator where only the terminal key-
words are changed. However, if faced with texts generated by a Markov model or a recurrent neural
network, this method is impractical since there is no re-occurrences in grammatical structures.

Chapter 5 took another direction. In this chapter, the hypothesis is that we are faced with a new
automatic generator for which it is impossible to accumulate a substantial number of examples. This
would mean that we can-not use a reference corpus of known generated samples as earlier chapters

77

78 CHAPTER 7. CONCLUSION

did. To resolve this problem, we proposed to compare the document under test using different
characteristics of genuinely written text.

First, the growth rate of the vocabulary and the diversity of the lemma is considered to show that
automatically generated documents have distinct differences from genuinely written ones. Second,
on another note, we tried to compare the keywords in the document under test to each other with
the hypothesis that frequent keywords in a document must be somewhat related to each other.
This was accomplished by using Word2Vec to build a vector to represent each word, and then those
vectors are compared to each other with different methods.

Third, we assumed that the “normal” neighborhood of words can be used to differentiate PCFG
automatically generated text since the terminal keywords are chosen at random, thus would result
in an abnormal neighborhood. These methods were then tested on a test corpus that included both
genuinely written documents and automatically generated documents from different generators,
in addition to texts that were generated using a Markov model or a recurrent neural network.
The results of these tests confirmed that it is a challenging task to correctly identify unknown
automatically generated documents. However, using the word's neighborhood along with textual
distance, we were able to obtain a reasonably good result with a limited number of false positives
which is the most important factor, since in reality, most if not all the test documents should be
genuinely written.

Finally, Chapter 6 presented an industrial environment in a high-profile publisher. From this
information, detailed analysis was carried out to discover the best place as well as method to im-
plement SciDetect into a real-life workflow. Some examples of the result for SciDetect inside the
workflow were introduced to demonstrate the working process. Furthermore, important develop-
ment lessons were learned during the development process and discussed.

However, the richness of human language always poses a challenge to confidently detect new
types of generated documents. This calls for more in-depth research to be able to reach the
very high reliability that is needed. This can be achieved by multiple methods such as trying
to further model the language based on its characteristics or by employing a name entity recog-
nition [Quimbaya et al., 2016]. This information can be used not only to detect automatically
generated documents but also to classify genuinely written documents into appropriate sub-classes.
Furthermore, it might be able to adapt to be used as a fake news detector which is a very active field
of research at the moment [Conroy et al., 2015, Sethi, 2017, Shu et al., 2017, Volkova et al., 2017].

Another interesting research direction that can be explored is about error detection in scientific
documents. This might be done by using the embedded vectors to discover unusual combinations
of words or as [Byrne and Labbé, 2017] by using a more complicated workflow. This problem has
also been highlighted on multiple occasions [Phillips, 2017b, Phillips, 2017a]

In conclusion, this thesis has shed light on multiple important research questions about the possi-
bility of detecting automatically generated texts in different settings. Beside the research aspect, im-
portant engineering work in a real-life industrial environment is also carried out to demonstrate that
it is important to have real application along with fundamental research. The results from this the-
sis are curently in production at the world leading academic publisher. And it can be expanded and
used in multiple future problems such as improving the review process [Hartley and Cabanac, 2017]
or authorship attribution [Savoy, 2012]. Furthermore, this field of research is still fertile and can
still be explored much deeper.

Bibliography

[Altman, 1992] Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparamet-
ric regression. The American Statistician, 46(3):175–185.

[Amancio, 2015] Amancio, D. R. (2015). Comparing the topological properties of real and artifi-
cially generated scientific manuscripts. Scientometrics, 105(3):1763–1779.

[Ball, 2005] Ball, P. (2005). Computer conference welcomes gobbledegook paper. Nature, 434, 946.

[Barbieri et al., 2012] Barbieri, G., Pachet, F., Roy, P., and Esposti, M. D. (2012). Markov con-
straints for generating lyrics with style. In Proceedings of the 20th European Conference on
Artificial Intelligence, pages 115–120. IOS Press.

[Beel and Gipp, 2010] Beel, J. and Gipp, B. (2010). Academic search engine spam and Google
scholar’s resilience against it. Journal of Electronic Publishing.

[Beel et al., 2010] Beel, J., Gipp, B., and Wilde, E. (2010). Academic search engine optimization
(ASEO). Journal of scholarly publishing, 41(2):176–190.

[Bender and Wolf, 1991] Bender, P. E. and Wolf, J. K. (1991). New asymptotic bounds and im-
provements on the Lempel-Ziv data compression algorithm. IEEE Transactions on Information
Theory, 37(3):721–729.

[Bohannon, 2013] Bohannon, J. (2013). Who’s afraid of peer review? Science, 342(6154):60–5.

[Broder et al., 1997] Broder, A. Z., Glassman, S. C., Manasse, M. S., and Zweig, G. (1997). Syn-
tactic clustering of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166.

[Bulhak, 1996] Bulhak, A. (1996). On the simulation of postmodernism and mental debility using
recursive transition networks. Technical report, Departement of Computer Science, Monash
University.

[Byrne and Labbé, 2017] Byrne, J. A. and Labbé, C. (2017). Striking similarities between publi-
cations from China describing single gene knockdown experiments in human cancer cell lines.
Scientometrics, 110(3):1471–1493.

[Cer et al., 2010] Cer, D. M., De Marneffe, M.-C., Jurafsky, D., and Manning, C. D. (2010). Parsing
to Stanford dependencies: Trade-offs between speed and accuracy. In LREC. Floriana, Malta.

[Chomsky, 1956] Chomsky, N. (1956). Three models for the description of language. IEEE Trans-
actions on Information Theory, 2(2):113–124.

79

80 CHAPTER 7. CONCLUSION

[Chomsky, 1959] Chomsky, N. (1959). On certain formal properties of grammars. Information and
control, 2(2):137–167.

[Chomsky, 2002] Chomsky, N. (2002). Syntactic structures. Walter de Gruyter.

[Collingwood et al., 2013] Collingwood, L., Jurka, T., Boydstun, A., Grossman, E., and van At-
teveldt, W. (2013). Rtexttools: A supervised learning package for text classification. The R
Journal, 5(1):6–13.

[Conroy et al., 2015] Conroy, N. J., Rubin, V. L., and Chen, Y. (2015). Automatic deception
detection: Methods for finding fake news. Proceedings of the Association for Information Science
and Technology, 52(1):1–4.

[Culotta and Sorensen, 2004] Culotta, A. and Sorensen, J. (2004). Dependency tree kernels for
relation extraction. In Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics, ACL ’04, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Dalkilic et al., 2006] Dalkilic, M. M., Clark, W. T., Costello, J. C., and Radivojac, P. (2006).
Using compression to identify classes of inauthentic texts. In Proc. of the 2006 SIAM Conf. on
Data Mining.

[Delgado López-Cózar et al., 2014] Delgado López-Cózar, E., Robinson-Garćıa, N., and Torres-
Salinas, D. (2014). The Google scholar experiment: How to index false papers and manipu-
late bibliometric indicators. Journal of the Association for Information Science and Technology,
65(3):446–454.

[Durán et al., 2014] Durán, K., Rodŕıguez, J., and Bravo, M. (2014). Similarity of sentences
through comparison of syntactic trees with pairs of similar words. In Electrical Engineering,
Computing Science and Automatic Control (CCE), pages 1–6.

[Fahrenberg et al., 2014] Fahrenberg, U., Biondi, F., Corre, K., Jegourel, C., Kongshøj, S., and
Legay, A. (2014). Measuring global similarity between texts. In Besacier, L., Dediu, A.-H.,
and Mart́ın-Vide, C., editors, Statistical Language and Speech Processing, pages 220–232, Cham.
Springer International Publishing.

[Feinerer et al., 2008] Feinerer, I., Hornik, K., and Meyer, D. (2008). Text mining infrastructure in
R. Journal of Statistical Software, 25(5):1–54.

[Firth, 1957] Firth, J. R. (1957). A synopsis of linguistic theory, 1930-1955. Studies in linguistic
analysis.

[Friedman et al., 2010] Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths
for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22.

[Friedman et al., 2000] Friedman, J., Hastie, T., Tibshirani, R., et al. (2000). Additive logistic
regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The
annals of statistics, 28(2):337–407.

[Ganguly et al., 2015] Ganguly, D., Roy, D., Mitra, M., and Jones, G. J. (2015). Word embedding
based generalized language model for information retrieval. In Proceedings of the 38th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, pages
795–798. ACM.

81

[Ginsparg, 2014] Ginsparg, P. (2014). Automated screening: ArXiv screens spot fake papers. Na-
ture - 508:44.

[Graves, 2013] Graves, A. (2013). Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850.

[Hartley and Cabanac, 2017] Hartley, J. and Cabanac, G. (2017). What can new technology tell
us about the reviewing process for journal submissions in BJET? BJET, 48(1):212–220.

[Herrera et al., 2006] Herrera, J., Peñas, A., Rodrigo, Á., Verdejo, F., Magnini, B., and Dagan, I.
(2006). UNED at PASCAL RTE-2 challenge. 2nd PASCAL Challenges Workshop on Recognising
Textual Entailment, pages 38–43.

[Huttenlocher et al., 1991] Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M., and Lyons, T.
(1991). Early vocabulary growth: Relation to language input and gender. Developmental psy-
chology, 27(2):236.

[Kao, 2017] Kao, J. (accessed Nov 2017). More than a million pro-repeal net neutrality com-
ments were likely faked - https://hackernoon.com/more-than-a-million-pro-repeal-net-neutrality-
comments-were-likely-faked-e9f0e3ed36a6.

[Karpathy, 2017] Karpathy, A. (accessed Nov 2017). The unreasonable effectiveness of recurrent
neural networks - http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[Klein and Manning, 2003] Klein, D. and Manning, C. D. (2003). Fast exact inference with a
factored model for natural language parsing. pages 3–10.

[Kullback, 1959] Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

[Kullback and Leibler, 1951] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency.
Ann. Math. Statist., 22(1):79–86.

[Labbé, 2010] Labbé, C. (2010). Ike Antkare one of the great stars in the scientific firmament. ISSI
Newsletter, 6(2):48–52.

[Labbé and Labbé, 2006] Labbé, C. and Labbé, D. (2006). A tool for literary studies: Intertextual
distance and tree classification. LLC, 21(3):311–326.

[Labbé and Labbé, 2012] Labbé, C. and Labbé, D. (2012). Detection of hidden intertextuality in
the scientic publications. In International Conference on Textual Data Statistical Analysis. JADT
2012.

[Labbé and Labbé, 2013] Labbé, C. and Labbé, D. (2013). Duplicate and fake publications in the
scientific literature: How many SCIgen papers in computer science? Scientometrics, 94(1):379–
396.

[Labbé and Labbé, 2014] Labbé, C. and Labbé, D. (2014). Was Shakespeare’s vocabulary the rich-
est? In Proceedings of the 12th International Conference on Textual Data Statistical Analysis,
pages 323–336, Paris.

82 CHAPTER 7. CONCLUSION

[Labbé et al., 2015] Labbé, C., Labbé, D., and Portet, F. (2015). Creativity and Universality in
Language, chapter Detection of computer generated papers in scientific literature. Lecture Notes
in Morphogenesis. Lecture Notes in Morphogenesis, Springer-Verlag.

[Labbé et al., 2016] Labbé, C., Labbé, D., and Portet, F. (2016). Detection of Computer-Generated
Papers in Scientific Literature, pages 123–141. Springer International Publishing.

[Lavoie and Krishnamoorthy, 2010] Lavoie, A. and Krishnamoorthy, M. (2010). Algorithmic detec-
tion of computer generated text. arXiv preprint arXiv:1008.0706.

[Liaw and Wiener, 2002] Liaw, A. and Wiener, M. (2002). Classification and regression by random
forest. R News, 2(3):18–22.

[López-Cózar et al., 2012] López-Cózar, E. D., Robinson-Garćıa, N., and Torres-Salinas, D. (2012).
Manipulating Google Scholar citations and Google Scholar metrics: Simple, easy and tempting.
arXiv preprint arXiv:1212.0638.

[Medelyan et al., 2009] Medelyan, O., Frank, E., and Witten, I. H. (2009). Human-competitive tag-
ging using automatic keyphrase extraction. In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 3 - Volume 3, EMNLP ’09, pages 1318–1327,
Stroudsburg, PA, USA. Association for Computational Linguistics.

[Mikolov, 2012] Mikolov, T. (2012). Statistical language models based on neural networks. PhD
thesis, Brno University of Technology.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781.

[Mikolov et al., 2011] Mikolov, T., Deoras, A., Povey, D., Burget, L., and Černockỳ, J. (2011).
Strategies for training large scale neural network language models. In Automatic Speech Recog-
nition and Understanding (ASRU), 2011 IEEE Workshop on, pages 196–201. IEEE.

[Mikolov et al., 2013b] Mikolov, T., Le, Q. V., and Sutskever, I. (2013b). Exploiting similarities
among languages for machine translation. arXiv preprint arXiv:1309.4168.

[Mikolov et al., 2013c] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013c).
Distributed representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119.

[Mikolov et al., 2013d] Mikolov, T., Yih, W.-t., and Zweig, G. (2013d). Linguistic regularities in
continuous space word representations. In Proceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 746–751.

[Myers et al., 1994] Myers, L. E., McQuay, L. J., and Hollinger, F. B. (1994). Dilution assay
statistics. Journal of clinical microbiology, 32(3):732–739.

[Nguyen and Labbé, 2016] Nguyen, M. and Labbé, C. (2016). Engineering a tool to detect au-
tomatically generated papers. In Proceedings of the Third Workshop on Bibliometric-enhanced
Information Retrieval co-located with the 38th European Conference on Information Retrieval
(ECIR 2016), pages 54–62.

83

[Palangi et al., 2016] Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., and Ward,
R. (2016). Deep sentence embedding using long short-term memory networks: Analysis and
application to information retrieval. IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), 24(4):694–707.

[Pedersen et al., 2004] Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004). Wordnet::similarity:
Measuring the relatedness of concepts. In Demonstration Papers at HLT-NAACL 2004, HLT-
NAACL–Demonstrations ’04, pages 38–41, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global
vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages 1532–1543.

[Phillips, 2017a] Phillips, N. (accessed Nov 2017a). Natures 10 ten people who mattered this
year -Jennifer Byrne: Error sleuth - https://www.nature.com/immersive/d41586-017-07763-
y/index.html.

[Phillips, 2017b] Phillips, N. (accessed Nov 2017b). Online software spots genetic errors in
cancer papers - https://www.nature.com/news/online-software-spots-genetic-errors-in-cancer-
papers-1.23003.

[Quimbaya et al., 2016] Quimbaya, A. P., Múnera, A. S., Rivera, R. A. G., Rodŕıguez, J. C. D.,
Velandia, O. M. M., Peña, A. A. G., and Labbé, C. (2016). Named entity recognition over
electronic health records through a combined dictionary-based approach. Procedia Computer
Science, 100(Supplement C):55 – 61. International Conference on ENTERprise Information
Systems/International Conference on Project MANagement/International Conference on Health
and Social Care Information Systems and Technologies, CENTERIS/ProjMAN / HCist 2016.

[Savoy, 2012] Savoy, J. (2012). Authorship attribution based on specific vocabulary. ACM Trans.
Inf. Syst., 30(2):12:1–12:30.

[Sethi, 2017] Sethi, R. J. (2017). Crowdsourcing the verification of fake news and alternative facts.
In Proceedings of the 28th ACM Conference on Hypertext and Social Media, HT ’17, pages 315–
316, New York, NY, USA. ACM.

[Shu et al., 2017] Shu, K., Sliva, A., Wang, S., Tang, J., and Liu, H. (2017). Fake news detection
on social media: A data mining perspective. SIGKDD Explor. Newsl., 19(1):22–36.

[Singhal, 2001] Singhal, A. (2001). Modern Information Retrieval: A Brief Overview. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering, 24(4):35–42.

[Sochenkov et al., 2016] Sochenkov, I., Zubarev, D., Tikhomirov, I., Smirnov, I., Shelmanov, A.,
Suvorov, R., and Osipov, G. (2016). Exactus like: Plagiarism detection in scientific texts. In
European Conference on Information Retrieval, pages 837–840.

[Sokal, 1996] Sokal, A. D. (1996). Transgressing the boundaries: Toward a transformative
hermeneutics of quantum gravity. Social Text, (46/47):217–252.

84 CHAPTER 7. CONCLUSION

[Sutskever et al., 2011] Sutskever, I., Martens, J., and Hinton, G. E. (2011). Generating text with
recurrent neural networks. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 1017–1024.

[Tang et al., 2014] Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., and Qin, B. (2014). Learning
sentiment-specific word embedding for twitter sentiment classification. In ACL (1), pages 1555–
1565.

[Van-Noorden, 2014] Van-Noorden, R. (2014). Publishers withdraw more than 120 gibberish pa-
pers. Nature News.

[Volkova et al., 2017] Volkova, S., Shaffer, K., Jang, J. Y., and Hodas, N. (2017). Separating
facts from fiction: Linguistic models to classify suspicious and trusted news posts on Twitter. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), volume 2, pages 647–653.

[Wang and Neumann, 2007] Wang, R. and Neumann, G. (2007). Recognizing textual entailment
using sentence similarity based on dependency tree skeletons. In Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing, RTE ’07, pages 36–41, Stroudsburg, PA,
USA. Association for Computational Linguistics.

[Williams and Giles, 2015] Williams, K. and Giles, C. L. (2015). On the use of similarity search to
detect fake scientific papers. In Similarity Search and Applications - 8th International Conference,
SISAP 2015, pages 332–338.

[Xiong and Huang, 2009] Xiong, J. and Huang, T. (2009). An effective method to identify machine
automatically generated paper. In Knowledge Engineering and Software Engineering, pages 101–
102.

[Ziv and Lempel, 2006] Ziv, J. and Lempel, A. (2006). A universal algorithm for sequential data
compression. IEEE Trans. Inf. Theor., 23(3):337–343.

[Zou et al., 2013] Zou, W. Y., Socher, R., Cer, D., and Manning, C. D. (2013). Bilingual word
embeddings for phrase-based machine translation. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pages 1393–1398.

[Zubarev and Sochenkov, 2014] Zubarev, D. and Sochenkov, I. (2014). Using sentence similarity
measure for plagiarism source retrieval. In CLEF (Working Notes), pages 1027–1034.

[Zweig and Burges, 2011] Zweig, G. and Burges, C. J. (2011). The Microsoft Research sentence
completion challenge. Technical report.

Appendices

85

87

88 APPENDIX A. SOME MORE EXAMPLES OF KNOWN PARTIALLY GENERATED PAPERS

Appendix A

Some More Examples of Known
Partially Generated Papers

Figure A.1: An excerpt from a partially generated paper by Navin Kabra where a genuinely written
paragraph is marked in blue.

89

Figure A.2: An excerpt from a partially generated paper that was submitted to ICAART 2014 with
an unknown number of generated sentences.

SciDetectTM Documentation
http://scidetect.forge.imag.fr

Nguyen Minh Tien
Minh-Tien.nguyen@imag.fr

Cyril Labbé
first.last@imag.fr

March 2015

Revision History

Version Date Author Comment
1.4 13-02-2015 MT Initial deployment
1.41 17-02-2015 MT Added support for XML and XTX
2.0 25-02-2015 MT Added multiple configurable parameters
2.1 09-03-2015 MT Separated text and corpus class
2.2 25-03-2015 MT Added Web Service options

SciDetectTM Documentation 1

92 APPENDIX A. SOME MORE EXAMPLES OF KNOWN PARTIALLY GENERATED PAPERS

Appendix B

SciDetect Local

This chapter is for the localized version of SciDetect where everything is performed on a local
machine.

B.1 Installation-Requirements-Quick start
Installation A stand-alone Java program, the documentation and the source code are available
at the following URL: http://scidetect.forge.imag.fr

Requirements The stand-alone Java program requires Java SE 6 or higher. It also uses an
additional library for PDF converter (should be included in the lib/ directory).

Quick start The runnable program for the SciDetect software is packaged inside:

Sc iDe t ec t Loca l . j a r

The following are needed :

– The configuration file (config.txt)

– The samples directory directories (web/WEB-INF/data)

B.2 Usage

B.2.1 Command line client

SciDetect program is included in a runnable JAR file. The program is started by invoking:

$ java −j a r Sc iDete c t Loca l . j a r <parameters>

Where <parameters> stands for a combination of one or more of the following command line
options:

-c <path to check> gives the path to the directory containing the files to be checked;

-l <log filename> gives the name of the log file (defaults to /logs/start time.xls);

-d Save detail log (optional, default false).

-h Show usage.

93

http://scidetect.forge.imag.fr

94 APPENDIX B. SCIDETECT LOCAL

Typical use:

$ java −j a r Sc iDete c t Loca l . j a r −c / t i e n /Test demo − l / t i e n / Tes t l og . x l s −d

B.2.2 Supported file types

At version 2.1 SciDetect Local currently supports .PDF and two specific Springer xml format
namely .XML for A++ format .XTX for PDF extraction of PDF files

B.3 Configuration

A configuration file (config.txt) should be accessible by the program. It should be found in
the same directory with the SciDetect Local.jar. The config file should contain the following
information:

B.3.1 Path to sample folder

Where samples can be found
samples web/WEB−INF/ data / samples

This is used to set the directory where samples of texts produced by known generators can be found.
This directory contains one directory per class (i.e. per known generator). One directory contains
examples that are representative of its class. In a standard release, the web/WEB-INF/data/samples
directory contains four subdirectories with texts generated by the following generator:

– http://thatsmathematics.com/mathgen/ (dir data/samples/Mathgen);

– https://bitbucket.org/birkenfeld/scigen-physics (dir data/samples/Physgen);

– http://www.nadovich.com/chris/randprop/ (dir data/samples/Propgen);

– http://pdos.csail.mit.edu/scigen/ (dir data/samples/SCIgen).

New subdirectories can be added. This can be done for two purposes:

1. Adding a corpus that represents fairly enough of a particular field. By setting an appropriate
threshold, this will flag papers that appear to be too far from that field.

2. When a generator appears, new samples (pdf) can be added in a new subdirectory (in
data/samples) containing representative corpora of the new class.

B.3.2 Threshold configuration

Def in ing Thresho lds f o r SCIgen
Thresho ld Sc igen 0 .48 0 .56

A line starting with Threshold Dirname is used to define thresholds. Thresholds are needed
to make decisions to assigned tested texts to a class. Examples of each class can be found in the
directory Dirname. There should have one line (i.e. two Thresholds) per class. These values are
2 real numbers between 0 and 1. The smallest one is used to make the decision to assign the
tested paper (almost certainly) to the class. The second one is used as a threshold for suspicion for
containing parts of generated text.

http://thatsmathematics.com/mathgen/
https://bitbucket.org/birkenfeld/scigen-physics
http://www.nadovich.com/chris/randprop/
http://pdos.csail.mit.edu/scigen/

95

The previous example (concerning SCIgen class) has the following meaning. Given distances
from the tested text to its nearest neighbour in the set of samples (i.e. texts found in the Scigen
dir):

– If the distance is greater than 0.56, then it is reasonably believable that this is a genuine
article.

– From 0.56 to 0.48, there is a chance that this article or part of this article is Scigen generated.

– If the distance is less than 0.48, there is a very high chance that this is an automatic Scigen
generated article.

If new samples are added to the sample folder (i.e. new dir), the threshold configuration should
also be added, if not the default-threshold values are used (0.48 and 0.56).

B.3.3 Path for log files

Set the d e f a u l t path f o r l o g f i l e s
D e f a u l t l o g f o l d e r l o g s /
D e f a u l t d e t a i l l o g f o l d e r d e t a i l l o g s /

These lines are used to set the default log folder and a default detail log folder (see section D.1
for more information). In case the path to a log file is not set (no -l parameter), the log file will
be saved in the default log folder under the name: time date.xls (e.g. 09:46 25.02.2015.xls means
the check was started at 9:46 on 25/2/2015).

INDEX -53. txt is a Scigen 0.34236384 data/samples/Scigen/INDEX -scigen25.txt
INDEX -53. txt is a Physgen 0.47908222 data/samples/Physgen/INDEX -physgen7.txt
INDEX -011. txt is Genuine 0.60918242 data/samples/Scigen/INDEX -scigen41.txt
INDEX -013. txt is Genuine 0.61375975 data/samples/Scigen/INDEX -scigen25.txt

B.3.4 Max-Min text length

the maximum , minimum s i z e o f a t e x t
Max length 30000
Min length 10000

This set the max(min) length in characters (including white space) for a text to be eligible
for classification. This parameter is used to avoid miss classification: when an article is too long,
this causes the characteristics of the article to become too generic and a very long paper may be
misclassified (without splitting misclassification rate: 0.13% or 42 misclassification/ 31577 samples).
When the article is shorter than the Min length, it will be marked as cannot be classified.

The default value for max length is set at 30000 characters (about 10 pages); a longer text
will be split into several parts which are tested individually. Default min length is set at 10000
characters.

96 APPENDIX B. SCIDETECT LOCAL

Appendix C

SciDetect Web Service

A web service version of SciDetect is also provided and will be presented in this chapter.

C.1 Installation Requirements and Usage
SciDetect is also provided as a web service. It includes two distinct parts: a web application that
needs to be deployed on a Tomcat server, and a client that can be used to call the process and
given responses to the user.

C.1.1 Web Application

The Java web application implementing the web service requires Apache Tomcat 7 and Java SE 6
or higher.

The web application and all required runtime libraries are contained in the deployment package
file SciDetectServerXX.war, which must be deployed on a Tomcat server.

The web application caches some of its data in a temporary directory (/tmp/tomcat7 tmp) and
should be cleaned periodically.

C.1.2 Web Service Client

A client for the SciDetect web service is implemented in SciDetectClient.jar and can be used
as a stand-alone Java program. The client component requires Java SE 6 or higher, no additional
libraries are needed; However, the configuration file (configClient.txt) is required by the client.

C.1.3 Usage

The SciDetect web service client can be used in the same manner as the SciDetect local (with the
same parameters), Please see Section B.2.

C.2 Configuration

A configuration file (configClient.txt and configServer.txt) is included with both the Server and the
Client.

C.2.1 Client Configuration

The configuration file for the client (configClient.txt) should be found in the same directory with
the SciDetectClient.jar and it contains:

97

98 APPENDIX C. SCIDETECT WEB SERVICE

Endpoint service

Endpoint s e r v i c e l o c a t i o n
Endpo int Serv ice http :// l e x i c o m e t r i e . imag . f r / Sc iDetec tSe rve r2 .2/ Checker ? wsdl

This line is used to point the client to where the SciDetectServer is located, normally it is in the
form of:

http ://< host : port>/Sc iDetec tSe rve r2 . 2/ Checker ? wsdl

Threshold configuration & Path for log files

These configurations are the same as for Scidetect Local, please refer to Section B.3.

C.2.2 Server Configuration

The configuration file for the server should be found in the following directory on a Tomcat server
along with the data directory:

<path to tomcat>/webapps/SciDetectServer2.0/WEB-INF/

It contains:

– Path to sample folder

– Max-Min text length

And can be configured the same in Section B.3

Appendix D

Extra information

D.1 Make use of detail logging

The detail log (parameter -d) stores all the distances from the text under test to all other samples
in the sample set (i.e. all texts in all directories found at /data/sample). This can be used to get
a more detailed look at the results.

For example: An article returned with a distant to the nearest neighbour that barely passes
the threshold. Turning on the detail log for that article and checking the results may help in the
decision.

INDEX -053. txt data/samples/Mathgen/INDEX -mathgen55.txt 0.6821885795569994
INDEX -053. txt data/samples/Mathgen/INDEX -mathgen63.txt 0.6608131367167517
INDEX -053. txt data/samples/Scigen/INDEX -scigen36.txt 0.39296257670516693
INDEX -053. txt data/samples/Mathgen/INDEX -mathgen9.txt 0.6679829987841077
INDEX -053. txt data/samples/Scigen/INDEX -scigen0.txt 0.35342658461094817
INDEX -053. txt data/samples/Mathgen/INDEX -mathgen47.txt 0.660816573503142
INDEX -053. txt data/samples/Scigen/INDEX -scigen52.txt 0.3808927385660057
INDEX -053. txt data/samples/Mathgen/INDEX -mathgen71.txt 0.6897595647595604
INDEX -053. txt data/samples/Scigen/INDEX -scigen28.txt 0.38955875898790254
INDEX -053. txt data/samples/Scigen/INDEX -scigen60.txt 0.39994884474379633
INDEX -053. txt data/samples/Mathgen/INDEX -mathgen39.txt 0.6868800914402744
INDEX -053. txt data/samples/Physgen/INDEX -physgen81.txt 0.5303053819516341
INDEX -053. txt data/samples/Propgen/INDEX -17-html.txt 0.7981193467108959
INDEX -053. txt data/samples/Physgen/INDEX -physgen65.txt 0.510647010647008
INDEX -053. txt data/samples/Propgen/INDEX -53-html.txt 0.7880669668830156
INDEX -053. txt data/samples/Physgen/INDEX -physgen5.txt 0.5160079114941755
INDEX -053. txt data/samples/Physgen/INDEX -physgen73.txt 0.5115960731657623
INDEX -053. txt data/samples/Physgen/INDEX -physgen49.txt 0.5055891144600811
INDEX -053. txt data/samples/Propgen/INDEX -86-html.txt 0.7643301386956208
INDEX -053. txt data/samples/Physgen/INDEX -physgen96.txt 0.5069873754844876
INDEX -053. txt data/samples/Propgen/INDEX -45-html.txt 0.7918353315721742
INDEX -053. txt data/samples/Scigen/INDEX -scigen21.txt 0.38484926003355824
INDEX -053. txt data/samples/Mathgen/INDEX -mathgen78.txt 0.6692076400040969
INDEX -053. txt data/samples/Propgen/INDEX -0-html.txt 0.7876861141791592
INDEX -053. txt data/samples/Mathgen/INDEX -mathgen16.txt 0.682802115990133
INDEX -053. txt data/samples/Physgen/INDEX -physgen10.txt 0.5261174636174665

As in the example, The file under-test has close distance to many of the SCIgen papers. This
would make it highly likely to be automatically generated when compare to the case it is only
closely related to one or two Scigen papers.

99

100 APPENDIX D. EXTRA INFORMATION

D.2 Tuning/Setting Thresholds
Thresholds for the current known generators have been empirically set according to tests presented
in this section. These tests involve the computation of the intertextual distance presented in [1].

For each generator (Scigen, scigen-physics, Mathgen and propgen) a set of 400 texts is used (i.e:
1600 texts for the whole). For each text the distance to its nearest neighbour in the sample set is
computed. The sample is composed of an extra 100 texts per generator (i.e: 400 additional texts).
The nearest neighbour is always of the same nature than the tested text and columns 1-2-3-4 of
Table 3.1 show statistical information about the observed distances.

A set of 8200 genuine papers is also used. For each genuine text the distance to its nearest
fake in the sample set is computed. The sample still being composed of the same 400 texts (100
per generator). For each of the 8200 genuine papers, the nearest fake neighbour is in one of the
generated sample group.

The first 2 rows of Table D.1 shows that, for a genuine paper, the minimal distance to the
nearest fake is always greater than the maximal distance of the nearest neighbour of a fake.

Table D.1: Mean, min-max distances between papers and theirs nearest neighbour, along with
standard deviation and median.

Scigen scigen-physics Mathgen Propgen Genuine
Min distance to NN 0.30 0.31 0.19 0.11 0.52
Max distance to NN 0.40 0.39 0.28 0.22 0.99
Mean distance to NN 0.35 0.35 0.22 0.14 0.69
Standard deviation 0.014 0.012 0.014 0.015 0.117
Median 0.35 0.35 0.22 0.14 0.64

Scigen (http://pdos.csail.mit.edu/scigen/ (dir data/samples/SCIgen)) The graph D.1 shows
the observed distribution for texts having a Scigen text as nearest fake neighbour.

scigen-physics https://bitbucket.org/birkenfeld/scigen-physics (dir data/samples/Physgen)
The graph D.2 shows the observed distribution for texts having a scigen-physics text as nearest
fake neighbour.

Mathgen http://thatsmathematics.com/mathgen/ (dir data/samples/Mathgen) The graph D.3
shows the observed distribution for texts having a mathgen text as nearest fake neighbour.

propgen http://www.nadovich.com/chris/randprop/ (dir data/samples/Propgen) The graph D.4
shows the observed distribution for texts having a randprop text as nearest fake neighbour.

http://pdos.csail.mit.edu/scigen/
https://bitbucket.org/birkenfeld/scigen-physics
http://thatsmathematics.com/mathgen/
http://www.nadovich.com/chris/randprop/

101

Distance

A
bs

ol
ut

e
fr

eq
ue

nc
y

0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

scigen Non−scigen

Figure D.1: Distribution of distances to the Scigen nearest neighbour. In blue for a set of non-scigen
paper. In red for a set of scigen papers

102 APPENDIX D. EXTRA INFORMATION

Distance

A
bs

ol
ut

e
fr

eq
ue

nc
y

0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

Physgen Non−Physgen

Figure D.2: Distribution of distances to the scigen-physics nearest neighbour. In blue for a set of
non-scigen-physics paper. In red for a set of scigen-physics papers

103

Distance

A
bs

ol
ut

e
fr

eq
ue

nc
y

0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

Mathgen Non−Mathgen

Figure D.3: Distribution of distances to the mathgen nearest neighbour. In blue for a set of non-
mathgen paper. In red for a set of mathgen papers

104 APPENDIX D. EXTRA INFORMATION

Distance

A
bs

ol
ut

e
fr

eq
ue

nc
y

0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

Propgen Non−Propgen

Figure D.4: Distribution of distances to the randprop nearest neighbour. In blue for a set of
non-randprop paper. In red for a set of randprop papers

Bibliography

[1] Cyril Labbé, Dominique Labbé. Duplicate and fake publications in the scientific lit-
erature: how many SCIgen papers in computer science? Scientometrics 94, no. 1
(2013): 379-396 (http://hal.archives-ouvertes.fr/hal-00641906v2/document).

105

	Dedication
	Abstract
	Résumé
	Acknowledgment
	Introduction
	Automatic Generation of Scientific Text
	Probabilistic Context Free Grammar
	SCIgen
	Other PCFG generators
	Closure for PCFG

	Markov chain
	RNN
	Summary

	Detection of a Fully Automatically Generated Document
	Detection of Automatically Generated Text
	Reference Checking
	Compression Profile
	Ad-hoc Similarity
	Similarity Search
	Complex Networks
	Patterns Matching
	Inter-Textual Distance and Global Inter-Textual Distance

	Distance and Similarity Measurements and Nearest Neighbor Classification
	SciDetect
	Comparative Evaluation Between Different Methods
	Test Candidates
	Test Corpora
	Results

	Detecting Markov and RNN Text with SciDetect and SciDetect Robustness
	Detecting Markov and RNN Text with SciDetect
	Testing SciDetect's Robustness

	Summary

	Detecting a Partially Automatically Generated Document
	Using Parse Tree on Sentence Similarity
	Using Syntactic Tree to Discover Plagiarism
	Relation Extraction Based on Common Tree Segments
	Textual Entailment with Parse Tree DLSITE-2
	Sentence similarity with Parse Tree

	Definition of Grammatical Structure Similarity and Building of the System
	Grammatical Structure Similarity
	Corpora
	Effectiveness of GSS for Different PCFG Corpora
	Sentence Filter Using Jaccard similarity

	Fully Developed GSS System
	Complexity of the System and Average Processing Time

	Comparison with Other Methods
	Pattern Checker
	Traditional Machine Learning Techniques
	Performance Evaluation

	Summary

	Detecting Generated Text Without Samples
	Vocabulary Growth
	Vocabulary Growth as a Classification method
	Statistical Information about Vocabulary Growth
	Preliminary Test and Results Using Vocabulary Growth

	Using Word Embedding
	Word2Vec
	Gloval Vectors - GloVe
	Implementation with Word2Vec

	Classification Based on Word's Neighborhood
	Implementation Method for using Word's Neighborhood
	Experimental Process

	Validation
	Summary

	SciDetect in an Industrial Environment
	The Publisher Workflow Experience
	Incorporating SciDetect to the Workflow
	Preliminary Statistic Information and Interesting Lessons
	Summary

	Conclusion
	Bibliography
	Appendices
	Some More Examples of Known Partially Generated Papers
	SciDetect Local
	Installation-Requirements-Quick start
	Usage
	Command line client
	Supported file types

	Configuration
	Path to sample folder
	Threshold configuration
	Path for log files
	Max-Min text length

	SciDetect Web Service
	Installation Requirements and Usage
	Web Application
	Web Service Client
	Usage

	Configuration
	Client Configuration
	Server Configuration

	Extra information
	Make use of detail logging
	Tuning/Setting Thresholds

	Bibliography

