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This dissertation systematically explores the applications of spatial linkages into rigid origami. This is achieved by utilizing the kinematics of linkages to folding motion of rigid origami, where links and revolute joints are corresponded to paper facets and crease lines, respectively. Major findings of this dissertation are in three areas, and listed as follows.

First, rigid foldability and motion behaviour of simple origami geometry are investigated. A well-known triangle twist origami is used, and converted into a network of spherical 4R linkages based on their kinematic equivalence. The compatibility of this network is combined to discuss the rigid foldability and motion behaviour of the pattern. It is found that diverse mountain-valley crease assignments of the pattern exist, based on the flat-foldable conditions of four-crease vertex. The pattern is then altered into a new overconstrained 6R linkage by using the kirigami technique, and shows a good agreement to our proposed kinematic analysis method.

Secondly, kinematic bifurcation conditions for spatial overconstrained 6R linkages are considered by using a traditional D-H matrix method. A set of closure equations of plane-symmetric Bricard linkage are derived in explicit forms. This has allowed us to characterize various bifurcation behaviours and their corresponding geometric conditions, build up a connection between plane-symmetric Bricard and Bennett linkage families, and is ready to be applied in rigid origami geometries.

Thirdly, the analysis method is extended from zero-thickness to thick-panel origami forms. A multi-degree of freedom (DOF) pattern consisted with six-crease vertices is used, namely waterbomb origami. Its zero-thickness and thick-panel forms under symmetric folding are converted into networks of plane-symmetric spherical 6R linkages and plane-symmetric Bricard linkages, respectively, resulting in one-DOF systems with kinematic equivalence. The zero-thickness form is shown to have a bifurcation behaviour with two different folding paths. However, this behaviour can be eliminated in thick-panel form, as the thickness has provided additional geometric constraints. Finally, an investigation of closed cylindrical form of waterbomb origami is conducted through a parametric study. It is seen that the folded tube may undergo different behaviours, including uniform radius configuration, mechanism-structuremechanism transition, wave-like configuration, and rigid twist motion. Nevertheless, the trigger condition of those behaviours can be determined by using the proposed kinematic analysis method of rigid origami with specified geometric conditions. The twist angle per axial strain and its relationship with geometrical parameters of the tube during the rigid twist motion are revealed. Experimental results show the enhancement in stiffness of the tube with occurrence of the continuous twist motion.
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Background and Significance

Mechanism is a core research field in mechanical engineering, where diverse mechanisms are designed as mechanical components to achieve desired movements. Spatial linkage is a unique type of mechanism, in which the motion is described in three dimensions [1]. As a subset of spatial linkage, the spherical linkage describes the linkage where all points in the moving links move along curves that lie on concentric spheres [2]. There is a special kind of linkage that does not comply with the Grübler-Kutzbach's mobility criterion [3], referred to as overconstrained linkage. It is mobile due to the geometric properties of joints and links. It has been widely utilized in the field of aerospace engineered structures, mainly because of its structural stiffness, simple construction and performance reliability. Kinematics is the study on the geometry of motion in mechanisms without regard to the forces acting on the mechanism [4]. The kinematics of spatial linkages is much more difficult than planar linkages since they produce more complicated motion. The study on it helps to better understand the motion of spatial linkages, which is the basis for the design, dynamic analysis and control of mechanisms.

On the other hand, origami, an ancient oriental art of producing 2D or 3D intricate structures through folding a flat sheet of paper, has recently seen surge in a variety of engineering fields. The highlights in the newly formed origami engineering include mechanical metamaterials [5][6][7][8][9][START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF], self-folding machine and robots [START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF], reconfigurable structure [START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF], shock-resistance device [START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF], packing [START_REF] Dai | Origami-based robotic paper-and-board packaging for food industry[END_REF][START_REF] Yao | Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space[END_REF], and so on. Although the motion of origami structure is utilized in these fields, little work has been done on the kinematic property of the origami pattern itself due to the complexity and multi-degree-of-freedom in the origami motion. One exception is Miura-ori, whose motion is relatively simple and its kinematic analysis has been widely used to reveal the mechanical properties, such as Poisson's ratio and stiffness [6,8,[START_REF] Ma | An origami-inspired structure with graded stiffness [J][END_REF]. Since most engineering materials used to construct origami structures and metamaterials are relatively rigid, a subset of origami that permits continuous motion between folded and unfolded states along the pre-determined creases without stretching or bending of the facets, rigid origami, has drawn special attention.

In the mechanism perspective, the creases of rigid origami can be treated as rotation joints and the paper facets treated as links [START_REF] Dai | Mobility in metamorphic mechanisms of foldable/erectable kinds [J][END_REF]. A single-vertex pattern with all creases intersected at the vertex is kinematically a spherical linkage [START_REF] Dai | Configuration transformations in metamorphic mechanisms of foldable/erectable kinds[END_REF][START_REF] Demaine | Geometric folding algorithms[END_REF]. Then the multi-vertex crease pattern can be modelled as a network of spherical linkages, and its rigid foldability can be judged by kinematic approaches [START_REF] Stachel | A kinematic approach to Kokotsakis meshes[END_REF][START_REF] Liu | Deployable prismatic structures with rigid origami patterns[END_REF][START_REF] Chen | An extended family of rigidly foldable origami tubes[END_REF]. Yet, in most of the practical engineering applications, the thickness of the material cannot simply be ignored. To fold these thick panels, an approach has been proposed recently, where the creases no longer intersect at one point, so the spherical linkage assembly for the origami of zero-thickness sheet is replaced by an assembly of spatial overconstrained linkages [START_REF] Dai | Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent[END_REF][START_REF] Chen | Origami of thick panels[END_REF]. Therefore, the work on the kinematics of spherical linkages and spatial overconstrained linkages contributes to the motion analysis of rigid origami, which further facilitates the engineering applications of origami patterns.

Aim and Scope

The aim of this dissertation is to conduct kinematic analysis of spatial linkages based on the D-H matrix method and apply it to explore the rigid foldability and motion behaviour of origami patterns.

In this process, the rigid foldability of triangle twist origami pattern is firstly examined based on the kinematics of spherical 4R linkage network and new overconstrained 6R linkages are derived by kirigami technique. Then the kinematics of the plane-symmetric Bricard 6R linkage is analyzed and its bifurcation variations are discussed. After that, the results are applied to study the symmetric folding of six-crease thick-panel waterbomb origami, which is modelled as a network of plane-symmetric Bricard 6R linkages. The motion behaviour of its corresponding tessellation of zerothickness sheet is demonstrated by a network of spherical 6R linkages. Finally, the motion behaviour of the closed cylindrical form of waterbomb origami is investigated through a parametric study, by means of modelling it as a closed network of spherical 6R linkages.

Outline of Dissertation

This dissertation consists of seven chapters, which are outlined as follows.

Chapter 2 presents a bibliographic review of existing work related to our task, including the work on kinematics of spatial linkages, rigid origami and their cross-over study. Kinematic analysis approach, singularity and bifurcation of spatial linkages, and existing spatial overconstrained 6R linkages are summarized. In the rigid origami part, the review starts from engineering applications of origami patterns, then to origami patterns consisting of four-crease vertices and six-crease vertices. The flat foldability and rigid foldability are distinguished. Rigidly foldable origami tubes, thick-panel origami as well as the kirigami technique are reported. Finally, the survey on cross-over study of spatial linkages and rigid origami is conducted, including the origami analysis based on spatial linkages, and origami-inspired linkages.

Chapter 3 deals with the rigid foldability and motion behaviour of a generalized triangle twist origami pattern. Diverse mountain-valley crease (M-V) assignments of this pattern are enumerated based on the flat-foldable conditions for four-crease vertex. The effect of M-V assignment on the rigid foldability is discussed. A variant of doubly collapsible octahedral Bricard and a novel overconstrained 6R linkage are derived by applying the kirigami technique to this pattern.

Chapter 4 is to conduct the kinematics and bifurcation analysis of the planesymmetric Bricard 6R linkage based on the traditional D-H matrix method. The explicit closure equations of this linkage are derived by solving the highly nonlinear trigonometric functions. Accordingly, the kinematic properties of different planesymmetric Bricard linkages are discussed. The degenerated 5R/4R linkages are obtained under certain geometric conditions. Various bifurcation behaviours of the planesymmetric Bricard linkage and their corresponding geometric conditions are demonstrated.

Chapter 5 focuses on the symmetric folding behaviour of flat-foldable waterbomb pattern with both zero-thickness sheet and thick panels. Considering the compatible conditions, a general kinematics model of the waterbomb pattern is presented. The kinematic equivalence between the thick-panel origami and that of zero-thickness sheet is proved, where the plane-symmetric Bricard linkage is adopted to replace the spherical 6R linkage for the thick-panel waterbomb origami. The kinematic behaviours of the general waterbomb origami under different geometric conditions are presented for both zero-thickness and thick-panel origami forms.

Chapter 6 is devoted to seek the motion behaviour of a generalized waterbomb tube under both longitudinal and circumferential symmetry through a parametric study. The kinematics of the tube is setup by modelling it as a closed network of spherical 6R linkages. Considering the longitudinal symmetry, the motion is classified into two cases according to the number of rows being odd or even. Different behaviours of the tube are revealed, including the uniform radius configuration, mechanism-structuremechanism transition, wave-like configuration and rigid twist motion. The trigger conditions of these behaviours are discussed based on the kinematics of the tube.

The main achievements of the research are summarized in Chapter 7, together with suggestions for future works, which conclude this dissertation.

Chapter 2 Review of Previous Works

Kinematics of Spatial Linkages

Kinematic Analysis Approach

The science of kinematics deals with the geometrical and time properties of a motion [2]. A detailed kinematic analysis of spherical mechanisms has been conducted by Chiang [START_REF] Chiang | Kinematics of spherical mechanisms[END_REF]. Several methods have been developed to analyze the kinematics of spatial linkages. Denavit and Hartenberg proposed a matrix method based on the use of four independent parameters, referred to as D-H notation [START_REF] Hartenberg | Kinematic synthesis of linkages[END_REF]. Gogu systematically presented structural synthesis of various spatial parallel mechanisms by the theory of linear transformation [START_REF] Gogu | Structural synthesis of parallel robots[END_REF]. Dai comprehensively presented the kinematics, mobility, mechanics and stiffness of various mechanisms, devices and robots based on the screw theory [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF] after the theory being proposed by Ball [START_REF] Ball | A treatise on the theory of screws[END_REF] and developed by Hunt [3]. The theory has been further extended to finite screws for the kinematics of closed-loop linkages [START_REF] Dai | Finite displacement screw operators with embedded Chasles' motion[END_REF][START_REF] Yang | A finite screw approach to type synthesis of three-DOF translational parallel mechanisms[END_REF][START_REF] Sun | A way of relating instantaneous and finite screws based on the screw triangle product[END_REF] based on the screw triangle [START_REF] Huang | The linear representation of the screw triangle-a unification of finite and infinitesimal kinematics[END_REF]. Murray, Li and Sastry illustrated the kinematics of manipulators and multi-fingered hands by Lie group and Lie algebra theory [START_REF] Murray | A mathematical introduction to robotic manipulation[END_REF]. This method was also adopted for the motion analysis of parallel mechanisms [START_REF] Hervé | The Lie group of rigid body displacements, a fundamental tool for mechanism design[END_REF], such as the 3-PUP mechanism [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF][START_REF] Zhang | Compositional submanifolds of prismaticuniversal-prismatic and skewed prismatic-revolute-prismatic kinematic chains and their derived parallel mechanisms[END_REF]. Clifford algerbra, also known as geometric algebra, has been adopted in the kinematics analysis of spatial linkages as well. Chai and Li derived the analytical expression of the motion space of Bennett linkage by this approach [START_REF] Chai | Analytical mobility analysis of Bennett linkage using geometric algebra[END_REF]. Dual quaternions, a kind of Clifford algerbra, were used for the kinematic synthesis of constrained robotic systems [START_REF] Perez | Dual quaternion synthesis of constrained robotic systems[END_REF] and inverse kinematics of general spatial 7R mechanism [START_REF] Gan | Dual quaternion-based inverse kinematics of the general spatial 7R mechanism[END_REF] as well as in neuroscience [START_REF] Leclercq | 3D kinematics using dual quaternions: theory and applications in neuroscience[END_REF]. Based on dual quaternions, a new theory for the kinematic analysis of closed 5R linkages with revolute joints, termed as bond theory, was proposed by Hegedüs, Schicho and Schröcker [START_REF] Hegedüs | Bond theory and closed 5R linkages [C][END_REF][START_REF] Hegedüs | The theory of bonds: a new method for the analysis of linkages[END_REF]. The theory was then extended to Stewart Gough platforms [START_REF] Nawratil | Introducing the theory of bonds for Stewart Gough platforms with self-motions[END_REF] as well as closed 6R linkages [START_REF] Hegedüs | The theory of bonds II: closed 6R linkages with maximal genus [J][END_REF]. Chablat, Kong and Zhang dealt with a comprehensive kinematic study of a 3-DOF multi-mode parallel robot [START_REF] Chablat | Kinematics, workspace and singularity analysis of a parallel robot with five operation modes[END_REF]. A comparative study on the three methods for robot kinematics based on the matrix transformation, Lie algebra and screw theory, has been conducted [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF][START_REF] Aspragathos | A comparative study of three methods for robot kinematics[END_REF]. The geometric methods in robotics including Lie groups and its subgroups, Lie algebra, line geometry, screw theory and Clifford algebra have also been reviewed by Selig [START_REF] Selig | Geometrical methods in robotics[END_REF]. Among all these methods, the matrix method based on D-H notation [START_REF] Hartenberg | Kinematic synthesis of linkages[END_REF][START_REF] Cui | Axis constraint analysis and its resultant 6R double-centered overconstrained mechanisms[END_REF] provides a straightforward way to reveal the motion of each joint and its relationship with any other joints, so it is adopted to conduct the kinematics of spatial linkages in this dissertation.

The setup of each coordinate system in a linkage is presented in Fig. 2-1, where the axis i z is along the revolute joint i , i x is the common normal from where the transformation matrix ( 1)
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As for spherical linkages, the axes intersect at one point as shown in Fig. 2-2, which means the lengths and offsets of each links are zero and thus Eq. (2-1) reduces to [START_REF] Ma | An origami-inspired structure with graded stiffness [J][END_REF] 
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and the inverse transformation is
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( Therefore, the kinematics and motion behaviour of spatial linkages can be carried out based on the solutions of Eq. (2-1) or Eq. (2-4).

i i i i i i i i i i i i i i i i i i i i θ θ α θ α θ α α θ α θ α + + + + + + +     = -     -   Q . ( 2 

Singularity and Bifurcation

During the investigation on kinematics of spatial linkages, singularity should be taken into consideration. It is a configuration of a system in which the subsequent behaviour cannot be predicted [START_REF] Gogu | Bifurcation in constraint singularities and structural parameters of parallel mechanisms[END_REF]. Gosselin and Angeles defined singularity as a configuration in which the Jacobian matrices involved become rank deficient [START_REF] Gosselin | Singularity analysis of closed-loop kinematic chains[END_REF]. It is shown that singularities of closed-loop mechanisms can be classified into three types including inverse kinematic singularity, direct kinematic singularity and combined singularity. However, there exists a new family of singularity in parallel mechanisms where the Jacobian matrix of the input-output velocity equation is not singular, termed as constraint singularity by Zlatanov, Bonev and Gosselin [START_REF] Zlatanov | Constraint singularities of parallel mechanisms[END_REF]. This kind of singularity occurs at a configuration where the screw system of the constraint wrenches degenerates and the degree of freedom (DOF) of the mechanism instantaneously increases. Numerous approaches have been adopted to analyze the singularity of spatial mechanisms. For example, geometric algebra was used for the singularity analysis of 3-RPS [START_REF] Li | Singularity analysis of a 3-RPS parallel manipulator using geometric algebra[END_REF], 3-RPR [START_REF] Yao | Singularity analysis of 3-RPR parallel manipulators using geometric algebra[END_REF], and 3/6 Stewart parallel manipulars [START_REF] Ma | Singularity analysis of the 3/6 Stewart parallel manipulator using geometric algebra[END_REF]. Jha et al. presented a descriptive singularity analysis of a Delta-like family by using algebraic tools [START_REF] Jha | Workspace and singularity analysis of a Delta like family robot[END_REF]. SingLab, a graphical user interface for the singularity analysis of parallel robots based on the Grassmann-Cayley algebra, was developed by Ben-Horin et al. [START_REF] Ben-Horin | SinguLab-a graphical user interface for the singularity analysis of parallel robots based on Grassmann-Cayley algebra[END_REF]. This method was then extended to the singularity analysis of lower mobility parallel manipulators [START_REF] Kanaan | Singularity analysis of lower mobility parallel manipulators using Grassmann-Cayley algebra[END_REF] and a 6-DOF parallel manipulator together with Gröbner bases [START_REF] Caro | Singularity analysis of a sixdof parallel manipulator using Grassmann-Cayley algebra and Gröebner bases[END_REF].

Bifurcation is the phenomenon that the mechanism has two motion branches when it comes to the constraint singularity [START_REF] Gan | Geometry constraint and branch motion evolution of 3-PUP parallel mechanisms with bifurcated motion[END_REF]. An algorithm for determining all the configuration branches and bifurcation points of symmetric Stewart platform was proposed by Wang and Wang [START_REF] Wang | Configuration bifurcations analysis of six degree-offreedom symmetrical Stewart parallel mechanisms[END_REF]. It is believed by Lee and Hervé that bifurcation belongs to a special category of singularity, during the study of a 6R mechanism with a bifurcation towards two distinct single-DOF modes [START_REF] Lee | A novel discontinuously movable six-revolute mechanism[END_REF]. A parallel mechanism with bifurcation of Schöenflies motion was designed by Li and Hervé [START_REF] Li | Parallel mechanisms with bifurcation of Schoenflies motion[END_REF]. Zhang, Dai and Fang investigated the bifurcated motion of the 3-PUP parallel mechanism when the platform is parallel to the base [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF][START_REF] Zhang | Constraint analysis and bifurcated motion of the 3PUP parallel mechanism[END_REF]. Gogu discussed the nature of bifurcation in constraint singularities and demonstrated the relation between these singularities with the structural parameters of parallel mechanisms [START_REF] Gogu | Bifurcation in constraint singularities and structural parameters of parallel mechanisms[END_REF][START_REF] Gogu | Branching singularities in kinematotropic parallel mechanisms[END_REF].

For single-loop linkages, Chen and You stated a bifurcation of the extended Myard 6R linkage at two configurations where two states of self-stress exist and the DOF increases [START_REF] Chen | An extended Myard linkage and its derived 6R linkage [J][END_REF]. Song, Chen and Chen found a 6R linkage constructed by two Bennett linkages in an asymmetric configuration, which could bifurcate between Bennett linkage and general line-symmetric Bricard linkage [START_REF] Song | A 6R linkage reconfigurable between the linesymmetric Bricard linkage and the Bennett linkage[END_REF]. Song and Chen presented the bifurcation of the double-subtractive-Goldberg 6R linkage [START_REF] Song | Multiple linkage forms and bifurcation behaviours of the double-subtractive-Goldberg 6R linkage[END_REF] and Wohlhart's double-Goldberg 6R linkage [START_REF] Song | A special Wohlhart's double-Goldberg 6R linkage and its multiple operation forms among 4R and 6R linkages [C[END_REF]. Zhang and Dai proposed a metamorphic 8R linkage and investigated bifurcation and trifurcation of its two extracted overconstrained 6R linkages [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF][START_REF] Zhang | A kirigami-inspired 8R linkage and its evolved overconstrained 6R linkages with the rotational symmetry of order two[END_REF]. They also presented an evolved Sarrus-motion linkage with trifurcation under specific parametric constraints [START_REF] Zhang | Trifurcation of the evolved Sarrus-motion linkage based on parametric constraints[END_REF]. Multifurcation was revealed by Qin, Dai and Gogu as a phenomenon that several states of a mechanism with different mobility would occur once a mechanism passes a constraint singularity [START_REF] Qin | Multi-furcation in a derivative queer-square mechanism[END_REF] and was revealed by Aimedee et al. as a case for reconfiguration [START_REF] Aimedee | Systematization of morphing in reconfigurable mechanisms[END_REF]. Zhang, Müller and Dai investigated the multifurcation of a reconfigurable 7R linkage, which can be transformed between the non-overconstrained 7R linkage and overconstrained 6R and 4R linkages [START_REF] Zhang | A novel reconfigurable 7R linkage with multifurcation[END_REF]. He et al. developed a novel one-DOF single-loop reconfigurable 7R mechanism with multiple modes by insecting a revolute joint to the overconstrained Sarrus linkage [START_REF] He | Kinematic analysis of a single-loop reconfigurable 7R mechanism with multiple operation modes[END_REF].

Various tools have been used to study bifurcation of spatial overconstrained linkages. Pellegrino proposed a structural computation to determine the number of independent states of self-stress in the mechanism with singular value decomposition (SVD) of the equilibrium matrix [START_REF] Pellegrino | Structural computations with the singular value decomposition of the equilibrium matrix[END_REF], which was used to analyze the bifurcation of threefold-symmetric Bricard linkage [START_REF] Chen | Threefold-symmetric Bricard linkages for deployable structures[END_REF]. Gan and Pellegrino introduced a numerical solution to a loop-closure equation for deployable structures forming a closed loop [START_REF] Gan | Numerical approach to the kinematic analysis of deployable structures forming a closed loop[END_REF], which was adopted in the detection of bifurcation of double-subtractive-Goldberg 6R linkage [START_REF] Song | Multiple linkage forms and bifurcation behaviours of the double-subtractive-Goldberg 6R linkage[END_REF] and Wohlhart's double-Goldberg 6R linkage [START_REF] Song | A special Wohlhart's double-Goldberg 6R linkage and its multiple operation forms among 4R and 6R linkages [C[END_REF]. Kumar and Pellegrino developed a special algorithm to detect the existence of a bifurcation ahead of the current configuration [START_REF] Kumar | Computation of kinematic paths and bifurcation points[END_REF]. The screw theory particularly the screw system approach [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF][START_REF] Dai | Mobility of overconstrained parallel mechanisms [J][END_REF][START_REF] Gan | Constraint analysis on mobility change of a novel metamorphic parallel mechanism[END_REF][START_REF] Gan | Unified kinematics and singularity analysis of a metamorphic parallel mechanism with bifurcated motion[END_REF] has also been adopted in the bifurcation analysis of parallel mechanisms. Chen and Chai discovered the bifurcation of a special line and plane symmetric Bricard linkage from the motion paths based on closure equations [START_REF] Chen | Bifurcation of a special line and plane symmetric Bricard linkage[END_REF]. Most of these methods help to identify the existence of bifurcation, but further work needs to be done on the spefic bifurcated motion branches. Explicit solutions of closure equations contributes to reveal the detailed motion process of spatial linkages, therefore they will be derived based on the D-H notation in this dissertation.

Spatial Overconstrained 6R Linkages

For a spatial linkage, mobility, the number of independent coordinates needed to define the configuration of a kinematic chain or mechanism [START_REF] Ionescu | Terminology for mechanisms and machine science[END_REF], can be determined by the Grübler-Kutzbach criterion [3]:

( ) 1 6 1 g i i M N g f = = --+  , (2-7)
where M is the number of DOFs, N is the number of links in the linkage including the fixed one, g is the number of kinematic pairs in the linkage, i f is the number of DOFs for the ith kinematic pair.

However, some spatial linkages are mobile without satisfying the mobility criterion as Eq. (2-7), which are known as overconstrained linkages [START_REF] Dai | Mobility of overconstrained parallel mechanisms [J][END_REF]. Here the focus is put on the overconstrained 6R linkages, which is a single closed-loop overconstrained linkage constructed by six revolute joints. These overconstrained 6R linkages are classified as followed.

(1) Bennett-based overconstrained 6R linkages The Bennett linkage is a spatial overconstrained 4R linkage with zero offsets, in which alternative links have same lengths and twists, and the lengths are proportional to sine values of corresponding twists as shown in Fig. 23. The setup of the coordinate systems are in accordance with the D-H notation [START_REF] Hartenberg | Kinematic synthesis of linkages[END_REF]. It is the only spatial overconstrained 4R linkage with joint axes neither concurrent nor parallel. Its geometry conditions are As a construction element, it can be combined together to generate different types of single-loop overconstrained 6R linkages with properly synthesis and construction methods. Baker defined the obtained linkages as Bennett-based overconstrained 6R linkages, on which a throughout and in-depth research was conducted [START_REF] Baker | A comparative survey of the Bennett-based, 6-revolute kinematic loops[END_REF]. These linkages include Myard's 6R linkage and its extension [START_REF] Myard | Contribution à la géométrie des systèmes articulés [J][END_REF][START_REF] You | Motion structures: deployable structural assemblies of mechanisms[END_REF], Goldberg's 6R linkages [START_REF] Goldberg | New five-bar and six-bar linkages in three dimensions[END_REF][START_REF] Wohlhart | Merging two general Goldberg 5R linkages to obtain a new 6R space mechanism[END_REF][START_REF] Song | A spatial 6R linkage derived from subtractive Goldberg 5R linkages[END_REF], Wohlhart's double-Goldberg 6R linkage [START_REF] Wohlhart | Merging two general Goldberg 5R linkages to obtain a new 6R space mechanism[END_REF], double-subtractive-Goldberg 6R linkage [START_REF] Song | A spatial 6R linkage derived from subtractive Goldberg 5R linkages[END_REF], back-to-back double-Goldberg 6R linkage [START_REF] Chen | Spatial 6R linkages based on the combination of two Goldberg 5R linkages[END_REF], mixed double-Goldberg 6R linkages [START_REF] Song | A family of mixed double-Goldberg 6R linkages[END_REF], Waldron's hybrid 6R linkage [START_REF] Waldron | Hybrid overconstrained linkages [J][END_REF] and Yu and Baker's syncopated 6R linkage [START_REF] Yu | On the generation of new linkages from Bennett loops[END_REF] etc. This family of overconstrained 6R linkages was proposed by Bricard consisting of three deformable octahedral cases [START_REF] Bricard | Mémoire sur la théorie de l'octaèdre articulé[END_REF] and three spatial-linkage cases [START_REF] Bricard | Leçons de cinématique[END_REF], see Fig. 2345, of which the mobility is due to the symmetric property. The geometric conditions of these linkages are listed below. 

For the trihedral case, ,

, , (2-11a) 
.

(2-11c)

For the line-symmetric octahedral case, ,

.

(2-12b)

For the plane-symmetric octahedral case, ,

For the doubly collapsible octahedral case, ,

.

(2-14b)

The study on the three Bricard octahedral cases began with Bennett who studied their geometry and kinematic properties [START_REF] Bennett | Deformabl octahedra[END_REF]. Lee derived closure equations of the three octahedral cases with matrix transformation method [START_REF] Lee | On the generation synthesis of movable octahedral 6R mechanisms[END_REF]. Baker found that the stationary configurations of a special line-symmetric octahedral case are precisely equivalent to the minimum energy conformations of the flexing molecule [START_REF] Baker | Limiting positions of a Bricard linkage and their possible relevance to the cyclohexane molecule[END_REF]. Chai and Chen found a stationary structural configuration of the line-symmetric octahedral case with identical twists and offsets, which is independent of its mobile linkage form [START_REF] Chai | The line-symmetric octahedral Bricard linkage and its structural closure[END_REF]. For the doubly collapsible octahedral case, Baker studied its planar, spherical and skew counterparts [START_REF] Baker | On Bricard's doubly collapsible octahedron and its planar, spherical and skew counterparts[END_REF]. He also found out the connection between three six-bar linkage families synthesized from Bennett isograms and the skew network engendered by the doubly collapsible octahedral cases [START_REF] Baker | On the skew network corresponding to Bricard's doubly collapsible octahedron[END_REF]. Lu et al. presented the construction of deployable quadrangles by the doubly collapsible octahedron together with a detailed parametric study [START_REF] Lu | Folding type III Bricard linkages [C[END_REF]. They used this octahedron as the construction element to design one-DOF networks [START_REF] Lu | A network of type III Bricard linkages[END_REF] as well as reconfigurable mechanisms [START_REF] Lu | Reconfigurable chains of bifurcating type III Bricard linkages [C[END_REF].

As to the Bricard linkage cases, Goldberg made and analyzed a 6-plate linkage which is actually the trihedral Bricard linkage [START_REF] Goldberg | A six-plate linkage in three dimensions[END_REF]. Yu studied the geometry of the 
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trihedral Bricard linkage with its circumscribed sphere and associated quadric surface [START_REF] Yu | The deformable hexahedron of Bricard[END_REF]. Wohlhart studied the orthogonal Bricard linkage and revealed the two distinct trihedral cases [START_REF] Wohlhart | The two types of the orthogonal Bricard linkage[END_REF]. For the general line-symmetric case, Baker analyzed it with the reciprocal screw system considering the special geometry constraint of the linkage [START_REF] Baker | On the single screw reciprocal to the general linesymmetric six-screw linkage[END_REF]. Song, Chen and Chen found that it can bifurcate to the Bennett linkage under certain circumstance [START_REF] Song | A 6R linkage reconfigurable between the linesymmetric Bricard linkage and the Bennett linkage[END_REF]. They also conducted kinematic study of the original and revised line-symmetric Bricard linkages [START_REF] Song | Kinematic study of the original and revised general line-symmetric Bricard 6R linkages[END_REF]. Zhang and Dai extracted two special line-symmetric Bricard linkages from a metamorphic 8R linkage [START_REF] Zhang | A kirigami-inspired 8R linkage and its evolved overconstrained 6R linkages with the rotational symmetry of order two[END_REF]. López-Custodio, Dai and Rico studied its branch reconfiguration based on toroid intersections [START_REF] Dai | Branch reconfiguration of Bricard linkages based on toroids intersections: line-symmetric case[END_REF].

Among them, the plane-symmetric Bricard linkage has been extensively studied. First of all, implicit closure equations of six Bricard linkages were derived by Baker [START_REF] Baker | An analysis of the Bricard linkages[END_REF]. Phillips reviewed the Bricard linkages and introduced their relationship with other overconstrained linkages [START_REF] Phillips | Freedom in machinery[END_REF]. Baker analyzed the general plane-symmetric sixscrew linkage including the plane-symmetric Bricard linkage with the reciprocal screw system approach [START_REF] Baker | The single screw reciprocal to the general plane-symmetric six-screw linkage [J][END_REF]. The movability of the plane-symmetric Bricard linkage was investigated by Li and Schicho based on the theory of bonds [START_REF] Li | A technique for deriving equational conditions on the Denavit-Hartenberg parameters of 6R linkages that are necessary for movability[END_REF]. Deng et al. presented a geometric approach for design and synthesis of single loop mechanisms including the plane-symmetric Bricard linkage [START_REF] Deng | Synthesis of deployable/foldable single loop mechanisms with revolute joints[END_REF]. They also proposed a virtual chain approach for the mobility analysis of multi-loop deployable mechanisms with plane-symmetric Bricard linkage as basic element [START_REF] Huang | Virtual chain approach for mobility analysis of multiloop deployable mechanisms [J][END_REF]. Kong conducted type synthesis of single-loop overconstrained 6R spatial mechanisms for circular translation in which the planesymmetric Bricard linkage is taken as an example [START_REF] Kong | Type synthesis of single-loop overconstrained 6R spatial mechanisms for circular translation[END_REF]. Even though various synthesis methods have been used to study the plane-symmetric Bricard linkage, there is no progress on the solution of explicit closure equations after Baker's implicit ones.

Recent research applies the plane-symmetric Bricard linkage to the design of deployable structures. For example, Chen, You and Tarnai proposed a threefoldsymmetric Bricard linkage which is a special case of the plane-symmetric one to fold the triangular or hexagonal structures [START_REF] Chen | Threefold-symmetric Bricard linkages for deployable structures[END_REF]. Viquerat, Hutt and Guest design a rectangular ring which can be folded into a compact bundle. Kinematically this is an alternative form of the plane-symmetric Bricard linkage [START_REF] Viquerat | A plane symmetric 6R foldable ring[END_REF]. A number of such retractable rectangular rings can form a family of large deployable mechanisms by synchronizing the motion of all linkages [START_REF] Qi | Design and mobility analysis of large deployable mechanisms based on plane-symmetric Bricard linkage[END_REF].

Because of the symmetry property, the plane-symmetric Bricard 6R linkage tends to have complicated bifurcation behaviours, which should be avoided in the application of deployable structures, but could be made use of in the design of reconfigurable mechanisms. The kinematics and bifurcation behaviour of a special line-and planesymmetric Bricard linkage was analyzed using the SVD numerical method by Chen and Chai [START_REF] Chen | Bifurcation of a special line and plane symmetric Bricard linkage[END_REF]. Zhang and Dai analyzed motion branch variations of the line-and planesymmetric Bricard linkage based on reciprocal screw systems [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF][START_REF] Zhang | Geometric constraints and motion branch variations for reconfiguration of single-loop linkages with mobility one[END_REF]. López-Custodio, Dai and Rico revealed a set of special plane-symmetric Bricard linkages with various branches of reconfiguration based on intersection of two generating toroids [START_REF] Dai | Branch reconfiguration of Bricard linkages based on toroids intersections: plane-symmetric case[END_REF]. However, the current bifurcation analysis of the plane-symmetric Bricard linkage only focuses on special cases.

(3) Other overconstrained 6R linkages There are several other overconstrained 6R linkages except for the two major linkage family, i.e., Bennett-based linkage family and Bricard linkage family. The Sarrus linkage is the first spatial overconstrained linkage, which has two set of hinges with different directions and each set consists of three parallel hinges [START_REF] Sarrus | Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires, et reciproquement[END_REF]. Baker derived the closure equations of the double-Hooke's-joint linkage, which has been widely used as a transmission coupling [START_REF] Baker | Displacement-closure equations of the unspecialised double-Hooke's-joint linkage[END_REF]. Its geometric conditions are , , .

Bennett extended these two linkages to a general one, i.e., the Bennett planospherical hybrid 6R linkage, which can be regarded as a combination of two spherical 4R linkages with different centres [START_REF] Bennett | The parallel motion of Sarrut and some allied mechanisms[END_REF]. The screw-system-variation enabled reconfiguration of this linkage and its evolved novel metamorphic parallel mechanism have been investigated by Zhang and Dai [START_REF] Zhang | Screw-system-variation enabled reconfiguration of the Bennett plano-spherical hybrid linkage and its evolved parallel mechanism[END_REF]. Altmann proposed an overconstrained 6R linkage, which was later identified as a special case of general line-symmetric Bricard linkage [START_REF] Altmann | Link mechanisms in modern kinematics[END_REF]. Its geometric conditions are , , ,

, , , (2-16a) 
.

(2-16c)

Schatz derived a linkage from a special trihedral Bricard case, referred to as Schatz linkage, which was used as a Turbula machine for mixing fluids and powders [START_REF] Phillips | Freedom in machinery[END_REF]. Its geometric conditions are , , ,

, , (2-17a) 
, .

(2-17c)

Wohlhart proposed an overconstrained 6R linkage with three partially planesymmetric link-pairs, which is a generalisation of the trihedral Bricard linkage [START_REF] Wohlhart | A new 6R space mechanism[END_REF].

Its geometric conditions are , , , (2-18a) , , , (2-18b) 
.
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Mavroidis and Roth discovered the Bennett-joint 6R linkage when deriving the inverse kinematics for general 6R manipulators [START_REF] Mavroidis | Analysis and synthesis of overconstrained mechanisms[END_REF]. The geometric conditions of this overconstrained 6R linkage are , , ,

Dietmaier found another overconstrained 6R linkage when solving the same inverse kinematics problem with a numerical method [START_REF] Dietmaier | A new 6R space mechanism[END_REF]. Its geometric conditions are

, (2-20a) , (2-20b) , , , (2-20c) , , . (2-20d) 
This section reviewed various spatial overconstrained 6R linkages. The emphasis was put on our object of study, Bricard linkages. For others, the geometric conditions are mainly summarized. Despite the extensive research on spatial overconstrained 6R linkages, the bifurcation behaviour of the plane-symmetric Bricard linkage as well as the inner relationship between the Bennett-based overconstrained linkages and the Bricard-related ones is to be revealed. In addition, novel mobile overconstrained 6R linkages remain to be discovered.

Rigid Origami

Origami has drawn increasing attention of mathematicians, scientists and engineers since the mid-1970s [START_REF] Hartl | Origamiinspired active structures: a synthesis and review[END_REF]. It has been widely adopted in aerospace engineering due to its superior efficiency of packaging large surface structures into smaller volumes for storage or transportation. These applications include solar arrays [START_REF] Miura | Map fold a la Miura style, its physical characteristics and application to the space science[END_REF][START_REF] Miura | Triangles and quadrangles in space[END_REF], satellite antenna reflectors [START_REF] Zirbel | Accommodating thickness in origami-based deployable arrays[END_REF][START_REF] Morgan | An approach to designing origami-adapted aerospace mechanisms[END_REF] and space telescope [START_REF] Wilson | Origami sunshield concepts for space telescopes[END_REF][START_REF] Debnath | Origami theory and its applications: a literature review[END_REF] etc. In civil engineering, the folding technique was used in the design of mobile facets [START_REF] Liu | Deployable prismatic structures with rigid origami patterns[END_REF][START_REF] Reis | Transforming architectures inspired by origami[END_REF][START_REF] Lee | Geometric design and construction of structurally stabilized accordion shelters[END_REF], reconfigurable and multi-locomotive devices [START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Belke | Mori: a modular origami robot[END_REF][START_REF] Zhakypov | Tribot: A deployable, self-righting and multilocomotive origami robot[END_REF] and so on. In biomedical engineering, an origami stent graft was developed [START_REF] Kuribayashi | Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[END_REF], several encapsulation origami robots [START_REF] Miyashita | An untethered miniature origami robot that self-folds, walks, swims, and degrades[END_REF][START_REF] Miyashita | Ingestible, controllable, and degradable origami robot for patching stomach wounds[END_REF][START_REF] Guitron | Autonomous locomotion of a miniature, untethered origami robot using hall effect sensor-based magnetic localization[END_REF] as well as origami surgical grippers [START_REF] Salerno | A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery[END_REF][START_REF] Johnson | Fabricating biomedical origami: a state-of-the-art review[END_REF] were designed. Some of these applications are presented in Fig. 23456. 
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Origami applications in aerospace engineering: (a) a foldable solar panel [START_REF] Miura | Triangles and quadrangles in space[END_REF], (b) a deployable antenna [START_REF] Morgan | An approach to designing origami-adapted aerospace mechanisms[END_REF], (c) a foldable telescopic lens [START_REF] Debnath | Origami theory and its applications: a literature review[END_REF]; in civil engineering: (d) a deployable origami tent [START_REF] Liu | Deployable prismatic structures with rigid origami patterns[END_REF], (e) a self-folding origami robot [START_REF] Felton | A method for building selffolding machines[END_REF], (f) a modular origami robot [START_REF] Belke | Mori: a modular origami robot[END_REF]; and in biomedical engineering: (g) an origami stent [START_REF] Kuribayashi | Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[END_REF], (h) an untethered miniature origami robot [START_REF] Miyashita | An untethered miniature origami robot that self-folds, walks, swims, and degrades[END_REF], (i) a four-DOF origami grasper [START_REF] Salerno | A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery[END_REF].

Origami Patterns

In origami, there are two kinds of creases, i.e., mountain crease and valley crease. When you are looking at the paper, the mountain crease brings the moving part of the paper away from you, while the valley crease is opposite. The crease pattern refers to a mapping of all the creases in an origami form [START_REF] Lang | Twists, tilings, and tessellations: mathematical methods for geometric origami[END_REF]. Even though there are numerous origami patterns, here my interests are limited in those consisting of four-crease vertices and six-crease vertices.

Among those origami patterns involving only four-crease vertices, the simplest one was presented by Huffman, which is called Huffman grid [START_REF] Huffman | Curvature and creases: a primer on paper[END_REF]. It consists of a single four-crease vertex, which is repeated continuously in rows and columns. Two sector angles of the vertex are equal to and the other two are equal to and

. By varying the angles of the generating vertex of Huffman grid, the chicken wire pattern was obtained by a mirror-symmetric vertex [START_REF] Miura | Proposition of pseudo-cylindrical concave polyhedral shells[END_REF]. Barreto presented a pattern named Mars, which includes a single four-crease vertex and its inversion [START_REF] Barreto | Lines meeting on a surface: the "Mars" paperfolding[END_REF].

Miura invented an origami pattern comprised entirely of parallelograms for use in space π α π α solar panels, referred to as Miura-ori [START_REF] Miura | Method of packaging and deployment of large membranes in space[END_REF]. The graded Miura-ori pattern was proposed by Xie, Li and Chen [START_REF] Xie | The graded origami structures[END_REF], and was used to design structure with graded stiffness by Ma, Song and Chen [START_REF] Ma | An origami-inspired structure with graded stiffness [J][END_REF]. Tachi presented a quadrilateral mesh origami pattern consisting entirely of quadrilateral panels [START_REF] Tachi | Generalization of rigid foldable quadrilateral mesh origami[END_REF]. Evans et al. introduced origami gadgets to be used in modifying existing tessellations and creating new tessellations [START_REF] Evans | Rigidly foldable origami gadgets and tessellations[END_REF].

There is a family of origami twist among the four-crease-vertex origami patterns, which was often used for tessellation of origami patterns in art [START_REF] Mitani | 3D Origami Art[END_REF]. It is a crease pattern consisting of a central polygon with parallel crease-pairs radiating from each side of the central polygon [START_REF] Evans | Rigidly foldable origami twists[END_REF]. Three typical origami twist patterns including triangle twist, square twist and hexagon twist are presented in Fig. 234567. For those origami patterns consisting of only six-crease vertices, there are three common patterns including Yoshimura pattern (also diamond pattern), waterbomb pattern and Resch pattern. The Yoshimura pattern was observed in the buckling pattern of longitudinally stressed cylinder by Yoshimura, which is a tessellation of six-crease diamonds with either all mountain or all valley folds along the diagonals [START_REF] Turner | A review of origami applications in mechanical engineering[END_REF][START_REF] Yoshimura | On the mechanism of buckling of a circular cylindrical shell under axial compression[END_REF]. The Resch pattern is composed of many equivalent polygons [START_REF] Resch | The design and analysis of kinematic folded plate systems [C[END_REF], a special case of which is the one with only six-crease vertices. As to the waterbomb pattern, two terms are related to it: waterbomb bases and waterbomb tessellations. There are two types of waterbomb bases: the eight-crease base and the six-crease base. The former is made from a square sheet of paper consisting of eight alternating mountain and valley creases around a central vertex, Fig. 2345678. One of its typical tessellations is produced by four such bases tiling around a smaller square forming the square Resch pattern, Figs. 2345678) and (c). The latter, consisting of two mountain and four valley creases meet at a single vertex [START_REF] Randlett | The art of origami[END_REF] shown in Fig. 2345678, is more commonly known, and its tessellations range from a flat-foldable surface to a deformable tube known as the magic origami ball, Figs. 2345678(e) and (f). Among the vast pool of origami patterns, our particular interest are the triangle twist and the six-crease waterbomb pattern. For the triangle twist origami pattern, Evans et al. have analyzed its rigid foldability [START_REF] Evans | Rigidly foldable origami twists[END_REF]. However, they did not tackle the one with non-parallel crease-pairs. Peng, Ma and Chen have considered all position relation of the crease-pairs, but the central triangle in the pattern was limited to an equilateral one [START_REF] Peng | Rigid foldability of triangle-twist origami pattern and its derived 6R linkage [C[END_REF]. For the six-crease waterbomb origami pattern, the motion of a single waterbomb base, analyzed as a spherical 6R linkage [START_REF] Chiang | Kinematics of spherical mechanisms[END_REF], has been shown to be rigidly foldable with three DOFs in general. When the base is tessellated, the DOF of the pattern could increase significantly if the pattern consists of a large number of waterbomb bases. Tachi, Masubuchi and Iwamoto have worked on the rigidity of its multi-DOF tessellation to achieve an adaptive freeform surface [START_REF] Tachi | Rigid origami structures with vacuumatics: geometric considerations[END_REF]. Although the waterbomb pattern is of multiple degrees of freedom, the symmetric folding is often preferred in most of research or art work, which is done by constraining it with symmetric conditions and then controlling the motion to reach an ideal flat-foldable state. Moreover, the modelling approach of the reaction force based on repelling screws has been implemented to the waterbomb base and the waterbomb-based integrated parallel mechanism [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF][START_REF] Qiu | Repelling-screw based force analysis of origami mechanisms[END_REF].

On the application side, the triangle twist could be adapted to design a surface linkage for large-scale deployable structures [START_REF] Goldberg | Polyhedral linkages [J][END_REF]. Single waterbomb bases have been applied as adaptive façades [170] and waterbomb tessellations have been applied in an extensible continuum robot [START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF] and an origami grasper [START_REF] Salerno | A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery[END_REF]. The tubular configuration of the waterbomb is the most commonly-used form. For example, a selfdeployable medical origami stent was proposed firstly with the structure being the waterbomb tube [START_REF] Kuribayashi | Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[END_REF]. A mobile robot with worm-like locomotion was designed later [START_REF] Onal | An origami-inspired approach to worm robots[END_REF] and a novel earthworm-like locomotion robot was created incorporating with origami ball structures recently [START_REF] Fang | Origami-based earthworm-like locomotion robots[END_REF]. Besides, a deformable wheel robot [START_REF] Lee | The deformable wheel robot using magic-ball origami structure[END_REF] and highly efficient artificial muscles [START_REF] Li | Fluid-driven origami-inspired artificial muscles[END_REF] were made using magic-ball origami structure. In all of the above-mentioned applications, the waterbomb tube undergoes only radial expansion/contraction, accompanied by the extending/shortening in the axial direction. In this folding motion, a rigorous synchronization of the waterbomb bases along a circumferential row is necessitated, which requires active motion control to realize.

Despite the wide application, the motion behaviour of the six-crease waterbomb origami has remained ambiguous as its kinematic behaviour changes drastically depending on the employed tessellation.

Flat Foldability and Rigid Foldability

For an origami pattern, flat foldability and rigid foldability are two important properties in both theory and practice. The flat foldability deals with the capacity of an origami pattern to be folded into flat sheets while the rigid foldability refers to the fact that panels do not stretch or bend during the folding process.

The flat foldability allows the origami pattern to achieve compact folding, which benefits the transportation and storage. Much work has been done on this aspect. Hull initiated a mathematical study on origami and gave the necessary and sufficient conditions of origami models with flat foldability [START_REF] Hull | On the mathematics of flat origamis[END_REF][START_REF] Hull | The combinatorics of flat folds: a survey[END_REF]. Bern and Hayes studied the flat foldability of a given crease and showed that assigning mountain and valley creases is non-deterministic polynomial hard [START_REF] Bern | The complexity of flat origami [C][END_REF]. Schneider gave the conditions for an arbitrary unsigned crease pattern to fold flat [START_REF] Schneider | Flat-foldability of origami crease patterns[END_REF]. Tachi provided a design system to create new and complex 3D freeform origami patterns while preserving the flat foldability [START_REF] Tachi | Freeform variations of origami[END_REF].

There are three conditions of flat foldability [START_REF] Lang | Twists, tilings, and tessellations: mathematical methods for geometric origami[END_REF]. First, as indicated by the Maekawa-Justin Condition, for any flat-foldable vertex, the difference between the numbers of mountain creases and valley creases should be equal to two. That is,

2 M V n n -= ± , (2-21)
where M n is the number of mountain creases and V n is the number of valley creases.

As a result, the number of creases for a flat-foldable vertex should be even.

Second, according to the Kawasaki-Justin Condition, let ν be a vertex of degree 2n in a single-vertex origami pattern, and let 1 α , 2 α , ... , 2n α be the consecutive angles between the creases, the vertex ν is flat-foldable if and only if
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Together with the developability that 1 Third, as stated in the Big-Little-Big Angle Condition, if a smaller sector angle is bounded by two larger sector angles, the crease assignments of the two creases bounding the smaller angle are opposite to each other. It means that the two creases around the smallest angle must be of opposite assignment.

Rigid foldability allows an origami pattern to fold about crease lines without twisting or stretching component panels. It enables folding of rigid materials, facilitating the design of foldable structures. To achieve rigid foldability, motions around each vertex must be compatible with those around its neighbours, attained only under specific pattern geometries. Several approaches have been proposed to judge the rigid foldability of origami patterns. Diagram and numerical methods were proposed by Watanabe and Kawaguchi to check the rigid foldability of several known origami patterns [START_REF] Watanabe | The method for judging rigid foldability[END_REF]. Tachi used some numerical algorithms to find out a family of rigidly foldable origami with quadrilateral mesh [START_REF] Tachi | Generalization of rigid foldable quadrilateral mesh origami[END_REF]. Hull adopted spherical trigonometry to check the rigid foldability of some origami patterns with four-crease vertices [START_REF] Hull | Project origami: activities for exploring mathematics[END_REF]. Wu and You proposed the rotating vector model and employed quaternion and dual quaternion to study the rigid foldability of both single-vertex and multi-vertex origami patterns [START_REF] Wu | Modelling rigid origami with quaternions and dual quaternions[END_REF]. Cai et al. developed a new method to check the rigid foldability of cylindrical foldable structures by combining the quaternion rotation sequence method and the dual quaternion method [START_REF] Cai | The foldability of cylindrical foldable structures based on rigid origami[END_REF][START_REF] Cai | Nonrigidly foldability analysis of Kresling cylindrical origami[END_REF]. Recently, kinematic theories have been applied in the analysis and synthesis of rigid origami patterns [START_REF] Dai | Mobility in metamorphic mechanisms of foldable/erectable kinds [J][END_REF][START_REF] Dai | Configuration transformations in metamorphic mechanisms of foldable/erectable kinds[END_REF][START_REF] Demaine | Geometric folding algorithms[END_REF][START_REF] Stachel | A kinematic approach to Kokotsakis meshes[END_REF][START_REF] Liu | Deployable prismatic structures with rigid origami patterns[END_REF][START_REF] Chen | An extended family of rigidly foldable origami tubes[END_REF][START_REF] Dai | Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent[END_REF][START_REF] Chen | Origami of thick panels[END_REF][START_REF] Liu | The rigid origami patterns for flat surface[END_REF]. By setting up the kinematic model of the rigid origami pattern based on the assembly of spherical 4R linkages, four types of flat rigid origami patterns were obtained [START_REF] Liu | The rigid origami patterns for flat surface[END_REF] as well as a family of deployable prismatic structures [START_REF] Liu | Deployable prismatic structures with rigid origami patterns[END_REF][START_REF] Chen | An extended family of rigidly foldable origami tubes[END_REF].

Recent work shows that both the geometric conditions and mountain-valley crease (M-V) assignments affect the flat foldability and rigid foldability of origami patterns [START_REF] Huffman | Curvature and creases: a primer on paper[END_REF][START_REF] Evans | Rigidly foldable origami twists[END_REF][START_REF] Arkin | When can you fold a map?[END_REF]. Hull examined the problem of counting the number of valid M-V assignments for a given crease pattern and developed recursive functions for singlevertex crease patterns [START_REF] Hull | Project origami: activities for exploring mathematics[END_REF]. For multi-vertex crease patterns, Evans et al. discussed the effect of M-V assignments on the rigid foldability for several origami twists including triangle twists, quadrilateral twists and regular polygon twists [START_REF] Evans | Rigidly foldable origami twists[END_REF].

Rigidly Foldable Origami Tubes

The tubular structures with origami patterns have been adopted in various fields ranging from energy-absorbing devices [START_REF] Song | Axial crushing of thin-walled structures with origami patterns[END_REF] to medical devices [START_REF] Kuribayashi | Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[END_REF]. Numerous origami patterns have been employed to generate tubular structures, such as the Yoshimura pattern [START_REF] Han | Optimization of the crushing characteristics of triangulated aluminum beverage cans[END_REF], the Kresling pattern [START_REF] Kresling | Natural twist buckling in shells: from the Hawkmoth's bellows to the deployable Kresling-pattern and cylindrical miuraori[END_REF] and those proposed by Nojima [START_REF] Nojima | Modelling of folding patterns in flat membranes and cylinders by origami[END_REF]. However, these tubes can only be folded with deformation in surfaces. That is, they are not rigidly foldable. The emphasis is put on the rigidly foldable ones, especially those with one DOF that are easy to be controlled. Some efforts have been made to the rigidly foldable origami tubes. For example, Tachi invented a set of rigidly foldable origami tubes by a geometrical method [START_REF] Tachi | Generalization of rigid foldable quadrilateral mesh origami[END_REF][START_REF] Tachi | One-DOF cylindrical deployable structures with rigid quadrilateral panels[END_REF][START_REF] Tachi | Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh[END_REF]. A rigidly foldable cellular metamaterial was proposed based on a stack of the Miura-ori fold pattern [START_REF] Schenk | Geometry of Miura-folded metamaterials[END_REF]. The folding behaviour of Tachi-Miura polyhedron known as a rigidly foldable structure was examined [START_REF] Yasuda | Folding behaviour of Tachi-Miura polyhedron bellows[END_REF]. Besides, the deployable prismatic structures with rigid origami pattern were analyzed in a kinematic approach [START_REF] Liu | Deployable prismatic structures with rigid origami patterns[END_REF]. Recently, new types of one-DOF rigidly foldable origami tubes have been constructed by either employing additional facets onto each modular unit or combining two joinable one-DOF tubes to a new configuration. These methods not only can be applied to multilayered vertical tubes, but also to a radially assembled arc form profiles [START_REF] Chen | An extended family of rigidly foldable origami tubes[END_REF]. For the tubular structure formed by waterbomb origami, it has multiple DOFs in general. It can be constrained to be rigidly foldable with one DOF under certain symmetric conditions [START_REF] Ma | Modelling of the waterbomb origami pattern and its applications[END_REF].

Thick-panel Origami

Origami patterns are primarily created for zero-thickness sheets. However, the thickness of rigid materials cannot be ignored in practical applications. Hence, various methods have been proposed to fold thick panels as shown in Fig. 23456789. For instance, tapered surfaces have been used to fold a thick panel using the Miura-ori of zerothickness sheet [START_REF] Tachi | Rigid-foldable thick origami[END_REF]. Offsets at the edge of the panels were introduced to implement folding of thick panels using the square-twist origami pattern [START_REF] Edmondson | An offset panel technique for thick rigidily foldable origami[END_REF]. A more recent research suggested to replace folds with two parallel ones to accommodate the thickness of materials [START_REF] Ku | Folding flat crease patterns with thick materials[END_REF]. In all of these methods, the fundamental kinematic model in which origami is treated as a series of interconnected spherical linkages remained. Different from the above-mentioned methods, an approach in which the fold lines were only allowed to be placed on top or bottom surfaces of flat thick panels has been proposed [START_REF] Chen | Origami of thick panels[END_REF]. As a result, the spherical linkage assembly for the origami of zero-thickness sheet is replaced by an assembly of spatial linkages. It has been found that not only are the assemblies of such panels foldable, but they can be folded compactly under certain conditions. Lang et al. have made a thorough review on the thickness accommodation techniques in origami-inspired engineering [START_REF] Lang | A review of thickness-accommodation techniques in origami-inspired engineering[END_REF]. They classified these techniques into seven cases, which include tapered panels technique, offset panel technique, hinge shift technique, doubled hinge technique, rolling contacts technique, membrane technique and strained joint technique. A detailed comparison of those techniques was conducted on several characteristics such as kinematics equivalency, motion preservability, surface flatness and design complexity. New hybrid approaches were also introduced by combining different thickness-accommodation techniques. [START_REF] Tachi | Rigid-foldable thick origami[END_REF], (b) offset panel technique [START_REF] Edmondson | An offset panel technique for thick rigidily foldable origami[END_REF], (c) offset crease technique [START_REF] Ku | Folding flat crease patterns with thick materials[END_REF], and (d) hinge shift technique [START_REF] Chen | Origami of thick panels[END_REF].

Kirigami

Unlike the traditional folding technique, kirigami is capable of folding discontinuous sheet materials as the cutting of paper is permitted [START_REF] Sareh | Kirigami artificial muscles with complex biologically inspired morphologies[END_REF]. There are three key features of kirigami, making it widely used in foldable structures as shown in Fig. 2345678910. First, multiple materials can be joined by kirigami technique to create complex non-developable cellular patterns [START_REF] Virk | SILICOMB PEEK Kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness[END_REF], such as 3D deployable honeycombs [START_REF] Nojima | Development of newly designed ultra-light core structures[END_REF], auxetic pyramidal core [START_REF] Scarpa | Kirigami auxetic pyramidal core: mechanical properties and wave propagation analysis in damped lattice[END_REF] and hexagonal cellular morphing wingbox [START_REF] Saito | A cellular kirigami morphing wingbox concept[END_REF]. Second, the stiffness of a rigid sheet can be largely reduced, consequently raising flexibility for solar trackers [START_REF] Lamoureux | Dynamic kirigami structures for integrated solar tracking[END_REF] and triboelectric nanogenerators [START_REF] Wu | Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns[END_REF]. Third, the weight over volume can be largely decreased since the sheets that make no contribution to the motion of the pattern are eliminated. The pop-up paper mechanism [START_REF] Winder | Kinematic representations of pop-up paper mechanisms[END_REF] and the kirigami-enabled parallel mechanism [START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF] where only the links and joints contributed to the motion of the mechanism are retained are two classic applications. The last feature will be utilized in this dissertation to derive new overconstrained linkages from triangle twist origami pattern. (b) a tapered honeycomb [START_REF] Nojima | Development of newly designed ultra-light core structures[END_REF], (c) a kirigami auxetic pyramidal lattice core [START_REF] Scarpa | Kirigami auxetic pyramidal core: mechanical properties and wave propagation analysis in damped lattice[END_REF], (d) a cellular kirigami morphing wingbox [START_REF] Saito | A cellular kirigami morphing wingbox concept[END_REF], (e) a Kapton kirigami structure for solar tracking [START_REF] Lamoureux | Dynamic kirigami structures for integrated solar tracking[END_REF], (f) a paper-based triboelectric nanogenerator [START_REF] Wu | Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns[END_REF], (g) a paper pop-up RSSR mechanism [START_REF] Winder | Kinematic representations of pop-up paper mechanisms[END_REF], and (h) a kirigami-enabled parallel mechanism [START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF].

Spatial Linkages and Rigid Origami

Origami Analysis Based on Spatial Linkages

The motion behaviour of an existing origami pattern is desired for its engineering applications. Dai and Jones firstly modelled the paper folding by treating the creases as rotation joints and the facets as links [START_REF] Dai | Mobility in metamorphic mechanisms of foldable/erectable kinds [J][END_REF][START_REF] Dai | Configuration transformations in metamorphic mechanisms of foldable/erectable kinds[END_REF][START_REF] Dai | Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent[END_REF][START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF]. So the rigid origami around each vertex is treated as a spherical linkage in which the axes of all joints meet at a point [START_REF] Dai | Configuration transformations in metamorphic mechanisms of foldable/erectable kinds[END_REF][START_REF] Demaine | Geometric folding algorithms[END_REF]. An origami pattern with multiple vertices is then regarded as an assembly with loops of spherical linkages. Therefore, the analysis of origami patterns can be conducted based on spherical linkages. The spherical trigonometry was adopted to judge the rigid foldability of a flat-foldable single-vertex pattern [START_REF] Hull | Project origami: activities for exploring mathematics[END_REF]. Streinu and Whiteley proved the rigid foldability of some single-vertex origami by linking it to spherical polygonal linkages [START_REF] Streinu | Single-vertex origami and spherical expansive motions[END_REF]. Wu and You established the rotating vector model for single-vertex crease system based on origami-spherical linkage analogy [START_REF] Wu | Modelling rigid origami with quaternions and dual quaternions[END_REF]. Xi and Lien dealt with the foldability problem of origami patterns through a randomized method by modelling rigid origami as a kinematic system with closure constraints [START_REF] Xi | Folding rigid origami with closure constraints[END_REF]. Wang and Chen modelled several origami patterns with equilateral trapezoids, general trapezoids and general quadrilaterals as spherical linkage assemblies for the design of closed patterned cylinder [START_REF] Wang | Folding a patterned cylinder by rigid origami[END_REF]. Moreover, the general condition for rigidly foldable prismatic structures was figured out by solving the kinematics and compatibility of the mobile assemblies of spherical 4R linkages [START_REF] Liu | Deployable prismatic structures with rigid origami patterns[END_REF]. With the proposal of thick panel origami [START_REF] Chen | Origami of thick panels[END_REF], the analysis of origami also depends on the spatial overconstrained linkages. By treating the thickpanel origami as a network of spatial overconstrained linkages, Zhang and Chen have derived new mobile assemblies of Bennett linkages from four-crease origami patterns [START_REF] Zhang | Mobile assemblies of Bennett linkages from four-crease origami patterns[END_REF].

Origami-inspired Linkages

Inspired by rigid origami, several novel mechanisms have been developed. For instance, an equivalent overconstrained mechanism inspired and evolved from origami cartons with a crash-lock base has been proposed by screw-loop equations and spherical geometry. Accordingly, several planar-spherical overconstrained linkages were derived by altering the linkages at the diagonal corners [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF][START_REF] Wei | Origami-inspired integrated planar-spherical overconstrained mechanisms[END_REF]. A parallel mechanism with three spherical kinematic chains has been designed based on a waterbomb origami pattern [START_REF] Zhang | Geometry and constraint analysis of the three-spherical kinematic chain based parallel mechanism[END_REF], of which the reaction force were analyzed based on the repelling-screw [START_REF] Dai | Geometrical foundations and screw algebra for mechanisms and robotics[END_REF][START_REF] Qiu | Repelling-screw based force analysis of origami mechanisms[END_REF]. This origami-inspired parallel mechanism has been used to design an extensible continuum robot [START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF] and an origami grasper for minimally invasive surgery [START_REF] Salerno | A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery[END_REF]. By extension, Zhang and Dai designed a novel 8R linkage from a kirigami pattern with eight creases, which can evolve into overconstrained 6R linkages [START_REF] Zhang | A kirigami-inspired 8R linkage and its evolved overconstrained 6R linkages with the rotational symmetry of order two[END_REF]. They also proposed a plane-symmetric double-spherical 6R linkage, which was extracted from a closed-loop origami [START_REF] Zhang | Reconfiguration of the plane-symmetric double-spherical 6R linkage with bifurcation and trifurcation[END_REF].

Therefore, the interdisciplinary research on spatial linkages and rigid origami not only provides a way to analyze the motion behaviour of origami patterns, but also contributes to the discovery of novel mechanisms.

Chapter 3 Rigid Foldability of Triangle Twist Origami

Pattern and Its Derived 6R Linkages

Introduction

A triangle twist in art is a crease pattern consisting of an equilateral triangle with parallel pleats radiating from its three sides [START_REF] Cipra | Proving a link between logic and origami[END_REF], see Fig. 3-1(a). It has been proved that no triangle twist origami pattern with parallel pleats is rigidly foldable [START_REF] Evans | Rigidly foldable origami twists[END_REF]. If we change the central equilateral triangle to a general one and remove the parallel constraint on the pleats, a generalized triangle twist as shown in Fig. 3-1(b) would be formed. Here a thorough analysis on rigid foldability and motion behaviour of the generalized triangle twist is to be conducted concerning all position relation of pleats and all schemes of mountain-valley crease (M-V) assignment. Meanwhile, the kirigami technique will be applied for the generation of new 6R linkages from the rigidly foldable triangle twist patterns. The layout of this chapter is as follows. The kinematics and rigid foldability of a typical generalized triangle twist origami pattern are presented in section 3.2. Section 3.3 gives all schemes of M-V assignment for the generalized triangle twist and discusses their effect on rigid foldability. The type of derived 6R linkage inspired from the triangle twist kirigami pattern is identified and a new kind of overconstrained 6R linkage is proposed in section 3.4. Final part is the conclusion in section 3.5 which ends this chapter.

Rigid Foldability

The kinematics of the four-crease rigid origami vertex is studied firstly in order to analyze rigid foldability of the generalized triangle twist origami pattern. If a fourcrease origami vertex is flat-foldable, its opposite sector angles should be supplementary [START_REF] Evans | Rigidly foldable origami gadgets and tessellations[END_REF]. Therefore, in its equivalent spherical 4R linkage (Fig. 3-2), following geometrical parameters can be defined in accordance with the D-H notation shown in Fig. 2- 

2 2 3 1 2 tan cos 2 2 tan cos 2 2 α α θ θ α α - = - + , 23 12 2 3 2 3 1 2 tan cos 2 2 tan cos 2 2 α α θ θ α α + = - - , 3 2 3 1 2 4 2 3 1 2 tan cos 2 2 tan cos 2 2 θ α α θ α α - = + , 23 12 4 1 2 3 1 2 tan cos 2 2 tan cos 2 2 α α θ θ α α + = - . (3-3b)
It can be derived from Eq. (3-3a) that Thus in Vertex-I we have,

23 12 1 2 2 3 1 2 + tan sin 2 2 tan sin 2 2 α α ϕ ϕ α α = - , 23 12 2 3 2 3 1 2 tan sin 2 2 tan sin 2 2 α α ϕ ϕ α α - = + , 3 2 3 1 2 4 2 3 1 2 tan sin 2 2 tan sin 2 2 ϕ α α ϕ α α + = - , 23 12 4 1 2 3 1 2 tan sin 2 2 tan sin 2 2 α α ϕ ϕ α α - = + , (3-4a) 
and in Vertex-II 
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+ - = + + , ( 3-7) 
where cos 1

a α μ ≤ < , cos 1 b β μ ≤ < , 1 1/cos( ) c μ α β < ≤ + , for 2 
π α β + < , (3-8a) max{0, cos } 1 a α μ ≤ < , max{0, cos } 1 b β μ ≤ < , 1 c μ > , for 2 
π α β + ≥ . (3-8b)
Since each crease along the edge of the central triangle is shared by two adjacent vertices as shown in Fig. 3-5, we have Further, the following relationship can be established,

4 4 4 1 1 1 tan tan tan 2 2 2 1 tan tan tan 2 2 2 a b c a b c ϕ ϕ ϕ ϕ ϕ ϕ ⋅ ⋅ = . (3-10)
Therefore, the compatible condition of the triangle twist pattern [START_REF] Evans | Rigidly foldable origami twists[END_REF] is ( 1)tan 2 ( 1)tan 2

1 a b c μ μ μ ⋅ ⋅ = . ( 3 
ζ ε α β ζ - = + + , 1 a b ζ μ μ = ⋅ . ( 3 
ζ γ α ζ - = + , 1 b c ζ μ μ = ⋅ . (3-13) If 3 c z // 2 a z , then ε γ = , and 1 2arctan ( 1)tan 2 ζ δ β ζ - = + , 1 a c ζ μ μ = ⋅ . (3-14)
Thus the pattern is also rigidly foldable with one parallel crease-pair when the calculated angle locates in the domain (0, ) π .

When each crease-pair is parallel, then γ δ ε = = , Eq. (3-11) can be rewritten as

cos cos cos 2 2 2 1 cos cos cos 2 2 2 α γ β γ α β γ α γ β γ α β γ + + + - ⋅ ⋅ = - - + + , ( 3-15) 
which can be further simplified as

sin sin 0 2 2 α β ⋅ = . (3-16)
Since α and β are interior angles of a triangle, no solution of Eq. (3-16) exists.

Therefore, the parallel triangle twist is not rigidly foldable.

M-V Assignment and Its Effect on Rigid Foldability

The rigid foldability and motion of the triangle twist with one specific scheme of M-V assignment have been analyzed as above. Since the rigid foldability of an origami pattern may vary with the change of M-V assignment, here we are going to find out all possible schemes of M-V assignment for the generalized triangle twist origami pattern and discuss their effect on rigid foldability.

According to the flat-foldable conditions of a four-crease vertex, the number difference between mountain creases and valley ones should be equal to two [START_REF] Evans | Rigidly foldable origami gadgets and tessellations[END_REF]. It Two special scenarios exist where the M-V assignment would be duplicated. First, if we flip the paper, the mountain creases then become the valley creases. That is to say, these kinds of M-V assignment would be the inverted configurations. For example, the M-V assignment in Fig. 3 The detailed classification of these schemes are represented in Table 3-1. 

β δ + = - , 1 cos 2 cos 2 c α β ε μ α β ε + - = + + , (3-18) with 1 1 a μ > , 1 1 b μ > , 1 1 c
μ > , so it is impossible to find solutions for Eq. (3)(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF].

Therefore, the type of PPP twist is not rigidly foldable. 

Rigid

For the PPQ twist (Fig. 3 ( 1)tan 2 2arctan 1

α β ζ ε ζ + + = - , 2 2 2 1 a b ζ μ μ = ⋅ . (3-20)
Therefore, the type of PPQ twist is rigidly foldable once the obtained ε is within the range (0, ) π .

For the PQQ twist (Fig. 3-10(c)), the j i μ of this type are 

α β ζ ε ζ + + = - , 3 3 3 1 a b ζ μ μ = ⋅ . (3-22)
Therefore, the type of PQQ twist is rigidly foldable once the obtained ε is within the range (0, ) π .

For the PRR twist (Fig. 3-10(d)), the j i μ of this type are

4 sin 2 sin 2 a α γ μ α γ + = - , 4 sin 2 sin 2 b β δ μ δ β + = - , 4 cos 2 cos 2 c α β ε μ α β ε + - - = + + , (3-23) with 4 1 a μ > , 4 1 b μ > , 4 1 c
μ > , so it is impossible to find solutions for Eq. (3)(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF].

Therefore, the type of PRR twist is not rigidly foldable.

For the PRS twist (Fig. 3-10(e)), the j i μ of this type are (1 ) tan 2 2arctan 1

α β ζ ε ζ + - = + , 5 5 5 1 a b ζ μ μ = ⋅ . (3-25)
Therefore, the type of PRS twist is rigidly foldable once the obtained ε is within the range (0, ) π .

For the PSS twist (Fig. 3-10(f)), the j i μ of this type are (1 ) tan 2 2arctan 1

α β ζ ε ζ + - = + , 6 6 6 1 a b ζ μ μ = ⋅ . (3-27)
Therefore, the type of PSS twist is rigidly foldable once the obtained ε is within the range (0, ) π .

For the QQQ twist (Fig. 3-10(g)), the j i μ of this type are

7 cos 2 cos 2 a α γ μ α γ + - = - , 7 cos 2 cos 2 b β δ μ β δ + - = - , 7 sin 2 sin 2 c α β ε μ α β ε + - - = + + , (3-28) with 7 1 a μ < , 7 1 b μ < , 7 1 c
μ < , so it is impossible to find solutions for Eq. (3)(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF].

Therefore, the type of QQQ twist is not rigidly foldable.

For the QRR twist (Fig. 3-10(h)), the j i μ of this type are (1 ) tan 2 2arctan 1

α β ζ ε ζ + - = + , 9 9 9 1 a b ζ μ μ = ⋅ . (3-32)
Therefore, the type of QRS twist is rigidly foldable once the obtained ε is within the range (0, ) π .

For the QSS twist (Fig. 3-10(j)), the j i μ of this type are μ < , so it is impossible to find solutions for Eq. (3)(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF].

Therefore, the type of QSS twist is not rigidly foldable.

For the PSR twist (Fig. 3 δ = unchanged, it is impossible to find a compatible ε for the pattern. That is, the triangle twist becomes a non-rigid case. Therefore, we can design a rigid or non-rigid triangle twist by choosing proper M-V assignment and geometrical parameters according to our demands.

Derived Overconstrained 6R Linkages

Although the M-V assignment has an impact on rigid foldability of the generalized triangle twist origami pattern, it does not affect geometric conditions of its kinematically equivalent spherical linkages. Here the generalized triangle twist presented in section 3.2 is used to demonstrate the derivation of spatial 6R linkage from this pattern. Considering geometric conditions in Eq. (3-5), there are five design parameters α , β , γ , δ and ε for this pattern, whereas only four are independent.

A physical origami model of the triangle twist pattern and its corresponding folding process are designed as shown in Fig. 3 in the network of three spherical 4R linkages. Therefore, the kinematic analysis in section 3.2 can be applicable to the new 6R linkage as well. 
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where γ , δ and ε should satisfy Eqs. (3)(4)(5) and (3)(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF]. According to Eq. (3-38c),

the relationship 1 3 5 2 4 6 + =0 R R R R R R ⋅ ⋅ ⋅ ⋅
holds and all lengths of the links are zero in Eq. (3-38a), which reveals that the derived 6R linkage is actually a variation of doubly collapsible octahedral Bricard [START_REF] Bricard | Mémoire sur la théorie de l'octaèdre articulé[END_REF]. The kinematic relationship of the derived 6R linkage is Then consider the second case in which only one crease-pair is parallel, that is, the length of one link is non-zero by setting γ δ = , see Fig. 3-13(b). In this case, axis 1 z is parallel to 2 z , and GB is their common perpendicular. 
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It is found that

3 1 3 5 2 4 6 2 2
sin sin sin cos sin + = sin ( ) sin ( )  while keeping other parameters identical with the previous case, the kinematic paths are plotted as dashed lines in Fig. 3-14. It can be found that both the geometrical parameters and kinematic paths differ little, which implies that the new derived overconstrained 6R linkage could be treated as an extension of the doubly collapsible octahedral Bricard.

d R R R R R R α β δ δ ε α β δ ε ⋅ ⋅ ⋅ ⋅ + - for

Conclusions

This chapter has presented rigid foldability and motion analysis of the generalized triangle twist with varying geometrical parameters and M-V assignments. They have been analyzed based on the kinematic equivalence between rigid origami pattern and the network of spherical linkages. Twelve unique schemes of M-V assignment of the generalized triangle twist have been found. However, only eight types are possible to be rigidly foldable. The compatible conditions have been derived for these types of triangle twist. Furthermore, the rigid foldability has been discussed according to the position relation of three crease-pairs around edges of the central triangle. It has been found that the triangle twist can be rigidly foldable only when at least one crease-pair is not parallel. In addition, a triangle twist kirigami pattern has been developed by removing the central triangle in the rigid origami pattern. A variation of doubly collapsible octahedral Bricard has been derived from the triangle twist kirigami pattern where each crease-pair is intersected. And a new type of overconstrained 6R linkage has been obtained when only one crease-pair is parallel.

Chapter 4 Kinematic Study of Plane-symmetric Bricard

Linkage and Its Bifurcation Variations

Introduction

In Chapter 3, we derived a variation of the doubly collapsible Bricard octahedral case and a new type of overconstrained 6R linkage. Recently, several overconstrained 6R linkages have been applied in the design of deployable structures due to their structural stiffness and performance reliability such as the plane-symmetric Bricard linkage. Because of the symmetry property, the plane-symmetric Bricard 6R linkage tends to have complicated bifurcation behaviours, which should be avoided in the application of deployable structures, but could be made use of in the design of reconfigurable mechanisms. In this chapter, the aim is to setup the general geometric conditions for the bifurcation of plane-symmetric Bricard linkage.

The layout of this chapter is as follows. The explicit solutions to closure equations of the general plane-symmetric Bricard linkage are derived, and the comparison between kinematic properties of different plane-symmetric Bricard linkages based on these solutions are conducted in section 4.2. Section 4.3 introduces the derived 5R/4R linkages from the general case and their corresponding geometric conditions. Section 4.4 addresses the bifurcation between the plane-symmetric Bricard linkage and the Bennett linkage. Section 4.5 discusses other bifurcation cases of the plane-symmetric Bricard linkage under different geometric conditions. Final conclusions are drawn in section 4.6.

Explicit Closure Equations and Kinematic Properties

The geometrical parameters of the general plane-symmetric Bricard linkage are defined as shown in Fig. 4-1 with the conditions that 

α π α γ = - = , (4-1b) 1 4 0 R R = = , 6 2 R R = -, 5 3 R R = -, (4-1c)
where the setup of coordinate frames is in accordance with the D-H notation. Here, a , b , c , α , β , γ , 2 R and 3 R are taken as the geometrical parameters of the planesymmetric Bricard linkage. 
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which can be further simplified as
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2 2 3 2 2 ( ) sin( )tan +2sin ( sin 2 sin( ))tan ( ) sin( ) 2 a b c R A R a b c θ α β γ α γ θ γ β α β γ   -+ -+   =     + - + + - + -     , (4-6a) 2 2 2 3 2 2 3 2sin ( sin sin( ))tan 2(( )sin( ) 2 ( ) sin( ))tan 2sin ( sin sin( )) 2 R R a c B a c R R θ γ α α β α γ θ α γ γ α α β   + - + - -   =     -+ + - + +     , (4-6b) 2 2 3 2 2 ( ) sin( )tan +2sin ( sin 2 sin( ))tan ( ) sin( ) 2 a b c R C R a b c θ α β γ α γ θ γ β α β γ   -- --   =     + + + + + + +     , ( 4 
γ θ θ β θ θ β γ θ θ α β γ θ α β γ θ α β γ α β γ θ θ α γ θ θ + + = - -     - +  
, (4-7) 

α θ θ θ α β θ α β θ γ α θ θ α β θ θ α β θ γ α β θ α β + + = -     - + -   . ( 4-8) 
The solutions to Eq. (4-5) can be divided into following three cases. According to the definition of term A as Eq. (4-6a), the following equation can be obtained,

1) When

0 A = , 3 tan 2 C B θ - = . ( 4 
B C B C E B C θ θ α β γ α β γ α γ α β γ α β γ   - --+ -+ -   =   - + + + + -     , 2 2 2 2 2 2 sin( )tan 2( )sin tan 2 sin( ) 2 2 F BC B C BC θ θ α β α α β = - + - - + , 2 2 2 2 2 2 2 ( sin( ) sin( ))tan 2 4 sin cos tan sin( ) sin( ) 2 B C G BC B C θ α β γ α β γ θ α γ α β γ α β γ   --- -+   =     - - + + + + -     .
2 2 3 2 2 ( ) sin( )tan +2sin ( sin 2 0 sin( ))tan ( ) sin( ) 2 a b c R R a b c θ α β γ α γ θ γ β α β γ   -+ -+   =     + - + + - + -     . (4-12)
Equation (4-12) should be always true for all values of 2 θ , so we have

3 2 ( )sin( ) 0 2sin ( sin sin( )) 0 ( )sin( ) 0 a b c R R a b c α β γ α γ γ β α β γ -+ -+ =   + - =   + - + -=  . (4-13)
Therefore, the geometric conditions for a plane-symmetric Bricard linkage with only one solution in this case are 

α β γ π α π γ γ β α β γ π -+ = -+ =   = + -=   + -= + -=  , ( 4-14) 
where 

R k k k ∈ 3 2 1 , , . 2) 
H A B A θ θ γ β γ γ = - - - + , 2 4 I B B AC = -± - , 4 tan ( sin( ) sin( )) 2 J A A C θ β γ β γ = + - - , 2 2 2 sin( )tan 4 cos sin tan sin( ) 2 2 K B A B θ θ α β γ α γ α β γ = -+ + + + -, 2 2 2 (( sin( ) sin( ))tan sin( ) sin( )) 2 L AC A C A θ α β γ α β γ α β γ α β γ = -+ - -- + + -- + + , 2 2 2 2 sin( )tan 2 sin tan 2 sin( ) 2 2 M A B A θ θ α β α α β = - - + + + , 2 4 ( )sin tan 2 N A A C θ α = + , 2 2 2 sin( )tan 4 sin cos tan sin( ) 2 2 O B A B θ θ α β γ α γ α β γ = -+ + - + -, 2 2 2 (( sin( ) sin( ))tan sin( ) sin( )) 2 P A C A C A θ α β γ α β γ α β γ α β γ = -+ + -- - + -- + + .
Therefore, when 0 A ≠ and 0 Δ ≥ , the solutions to closure equation of the plane-symmetric Bricard linkage are the equation set Eqs. (4-3), (4-15), (4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF] and (4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF]. Applying the definition of the terms A , B and C in Eq. (4-6) to the discriminant Δ , a quartic equation with 2 tan( / 2) θ being the independent variable can be obtained. According to the characteristics of the curve of quartic equation, the discriminant is semi-positive only under the conditions that the highest-degree coefficient and the minimum value of the discriminant Δ are non-negative.

3) When 0 A ≠ and 0 Δ < , there is no solution to Eq. (4-5), which means that the linkage is a rigid structure.

Based on explicit solutions, the plane-symmetric Bricard linkage can be classified by the values of A and Δ . The detailed kinematic paths and motion behaviour of the plane-symmetric Bricard linkage with different geometrical parameters are given in 

0 a = , 1 b c = = , / 3 α π = , 6 β γ π = = / , 2 3 0 R R = = .
1

The linkage has a 6R motion branch with joint axes 6, 1 and 2 intersect.

0 A = , 2 k α π = , 2 1 ( ) . k k β γ π - = -
Geometrical parameters:

1 a = , 2 b = , 4 c = , 0 α = , 7 / 6 β π = , / 6 γ π = , 2 1 R = -, 3 2 R = -. 1
The linkage has a 6R motion branch with joint axes 6, 1 and 2 parallel.

0 A = , b a c = + , 3 , k α β γ π + - = 2 3 sin( ) sin . R R γ β γ - = - Geometrical parameters: 1 a c = = , 2 b = , 2 3 0 R R = = , / 6 α β π = = , / 3 γ π = .
1

The linkage has a 6R motion branch. 

0 A = , c a b = + , 1 , k α β γ π -+ = 2 3 sin( ) sin . R R γ β γ - = - Geometrical parameters: 1 a b = = , 2 c = , / 3 α π = , / 2 β π = , / 6 γ π = , 2 3 0 R R = = .
1

The linkage has a 6R motion branch.

6 0 A = , 1 3 ( + ) 2 k k π α = 3 1 ( ) , 2 k k β γ π - - = 2 3 sin( ) sin . R R γ β γ - = - Geometrical parameters: 1.5 a = , 1 b = , 2 c = , 2 π α = , 4 π β = , 4 π γ = -, 2 3 0 R R = = .
1

The linkage has a 6R motion branch.

7 0 A ≠ , 0 Δ < .
Geometrical parameters:

1 a c = = , 2 b = , / 6 α γ π = = , / 2 β π = , 2 3 0 R R = = . 0
The mechanism is a rigid structure and no motion exists.

8 0 A ≠ , 0 Δ = .
Geometrical parameters:

3 a = , 2 b = , 1 c = , 2 3 π α = , 6 π β = , 6 π γ = -, 2 3 0 R R = = .
1

The linkage has only one 6R motion branch. 2

The linkage has two different planesymmetric 6R motion branches corresponding to two kinematic paths, shown in the kinematic curves as solid and dash lines, respectively.

However, there is an exception as Case 9. When 0 A ≠ , 0 Δ > , taking 2 θ as the input variable, there are two sets of solutions. Yet, if converting them into the format with 1 θ as the input variable, there is only one set of explicit solutions, i.e., one kinematic path obtained. This is because that the 2 θ has no complete rotation in the whole path.

Derived 5R/4R Linkages

The above solutions to the closure equations of the general plane-symmetric Bricard linkage are conditional to the constraint that ( 1, 2, 3, 4, 5, 6

) i i θ π ≠ = .
When any one of the kinematic variable i θ is kept to π , the linkage may degenerate to 5R/4R linkages.

1) When 1 = θ π

As shown in Fig. 4-2(a), link 12 coincides with link 61 in this case, making the resultant linkage a 5R linkage. The problem is to find out when the linkage is moveable. Substituting 1 = θ π to the closure equation as Eq. (4-2), it is found that the linkage is moveable only when entries (2,3) 

T m n m n m R R m b c m R R k c m c R R m b c m R β α γ γ α β α γ α β γ α β γ β α α α α β α α β α β β α α α α    -- + --          -- - + +    -- + - - - = - - + + -- + + - 2 2 , ) sin 1 T n n R β α                 -     (4-18)
c b a c R R γ θ θ γ α β θ γ β α α β θ β α α - - -+ = - - - - + -- (4 
c b a R R c b a γ α β γ β α γ α β α θ γ β α γ α β θ -+ - - - - + -+ - - = (4-20)
To make Eq. (4-20) always true for all values of 3 θ , all coefficients should equal to zero, that is, 

β α γ = + , 2 3 0 R R = = or b a c = + , α β γ = + , 2 3 0 R R = = .
3) When 

c R a b c R R R β γ θ α γ β θ α β γ θ β θ α θ α β θ α β α - - - - - + + = - - - - (4-24) 
which can be simplified as it is found that the linkage is moveable only when entries (1, 3), (1,4) Moreover, when i θ is kept constant but not equal to π , the linkage will also degenerate to 5R/4R linkages.

a b c m R R m a b c R R m a c a c m R R a b c m R R α β γ α γ γ β α β γ γ α α β α γ α γ γ α α β α β γ α γ γ β   -+ -+ + -   + + - + -     + - + - -   -+ + - + +   -- -- + + + 2 2 2 2 1 )) ( )sin( ) sin( ) sin( ) 4sin sin , sin( ) sin( ) 1 T T n n m a b c m n k m n m α β γ β α γ α β γ α γ α β γ α β γ                                 + + + + +        -- + + -    =       -- - + +    (4-29)

Bifurcation between Plane-symmetric Bricard Linkage and Bennett Linkage

Based on the analysis in section 4.3, the linkage could bifurcate from the planesymmetric Bricard linkage to the Bennett linkage. When the geometric condition is actually. The whole bifurcation process is presented in Fig. 4-4, where the actuated joint 1 is highlighted with a rotation in red. 

a b c = + , β α γ = + , 2 3 0 R R = =

Other Bifurcation Behaviours

The last section deals with a special case of the bifurcation between the planesymmetric Bricard linkage and the Bennett linkage. Additional various bifurcation cases depending on the different choice of geometrical parameters are revealed in this section.

Bifurcation between Two 6R Motion Branches

In order to make the plane-symmetric Bricard linkage have two 6R motion branches, 0 A ≠ and 0 Δ > must be satisfied according to the analysis in section 4.2.

If we set the geometric condition as

2 a b = , c b = , 2 α π β = - , γ β = -, 2 3 0 R R = = , (4-32) 
the linkage would have two solutions as 

Bifurcation between Kinematic Chains and a 4R Linkage

There is a special case where A , B and C all equal to zero, where the solution set in section 4.2 is no longer true. For example, if we set the geometrical parameters as

3 a = , 2 b = , 4 c = , 2 π α = , 0 β = , 2 π γ = , 2 θ θ θ θ - + = , 5 2 3 6 
( )

θ θ θ θ = -+ + . ( 4-37d) 
It is found that Eq. (4-37a) and Eq. (4-37b) correspond to the cases that the linkage degenerates to a revolute joint, where links 12, 23 and 34 work as a whole part that rotates about joint 1, relative to the part consisting of links 45, 56 and 61. It is represented in Fig. 4-8(a) as path I and path III respectively where the joint 1 is chosen as the actuated joint highlighted with a rotation in red. Eq. (4-37c) corresponds to the case that the linkage degenerates to a serial kinematic chain with two revolute joints as shown in Fig. 4-8(a) as path II where there are two actuated joints 2 and 3. It should be noticed that there exists a case represented by Eq. (4-37d) that violates the planesymmetric motion shown as path IV along which configurations of the linkage are shown in Fig. 45678). The linkage is actually a four-bar double-rocker linkage.

The plotted paths define the values of two chosen kinematic variables at those selected points where corresponding configurations are presented, and other kinematic variables can be determined similarly. Once all kinematic variables are given, configurations of the linkage at these points are definitely determined. The whole bifurcation behaviour is presented in Fig. 45678, where Fig. 4-8(a) shows the bifurcation between two equivalent single-revolute-joint motion branches and a serial kinematic chain with two revolute joints, and Fig. 4-8(b) shows the bifurcation between two equivalent single-revolute-joint motion branches and a four-bar double-rocker linkage motion branch. 

Conclusions

In this chapter, a thorough kinematic study of the general plane-symmetric Bricard linkage has been conducted. Based on the D-H matrix method, the explicit solutions to closure equations of the plane-symmetric Bricard linkage have been derived first. Once the geometric condition is given, the relationship between different kinematic variables can be easily obtained. Even though Baker gave the implicit closure equations of a general plane-symmetric Bricard linkage [START_REF] Baker | An analysis of the Bricard linkages[END_REF], the explicit solutions provide a more effective way on kinematic and bifurcation analysis. Various cases of the planesymmetric Bricard linkage with none, one or two 6R motion paths have been compared. Moreover, the conditions to obtain degenerated 5R/4R linkages from this kind of linkage have been elaborated.

Furthermore, various bifurcation cases of the plane-symmetric Bricard linkage with different geometric conditions, including the bifurcation between overconstrained 6R and 4R linkages, two overconstrained 6R linkages and among equivalent kinematic chains with single or double revolute joints and a four-bar double-rocker linkage, have been revealed. Especially, the bifurcation from the plane-symmetric Bricard linkage to the Bennett linkage has been proposed. Normally, Bricard-related linkages and Bennettbased linkages [START_REF] Baker | A comparative survey of the Bennett-based, 6-revolute kinematic loops[END_REF] compose two major separated groups of single-loop spatial overconstrained linkages. This work further reveals the intrinsic relationship between these two groups after the proposal of the linkage that can reconfigure between Bennett linkage and general line-symmetric Bricard linkage [START_REF] Song | A 6R linkage reconfigurable between the linesymmetric Bricard linkage and the Bennett linkage[END_REF].

Chapter 5 Symmetric Flat-foldable Waterbomb Origami

Introduction

The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely utilized origami patterns. Although the waterbomb pattern is of multiple degrees of freedom, the symmetric folding is often preferred in most of research or art work, which is done by constraining it with symmetric conditions and then controlling the motion to reach an ideal flatfoldable state. However, the symmetric folding is hard to realize and the thickness of the material cannot simply be ignored in most of the practical engineering applications. Therefore, the thick-panel origami approach [START_REF] Chen | Origami of thick panels[END_REF] is adopted. This chapter provides a comprehensive kinematic analysis on foldability of the waterbomb tessellation that made from the six-crease waterbomb bases of both a zero-thickness sheet and panels of finite thickness. Kinematically the folding of zero-thickness sheet is modelled as spherical 6R linkages whereas that of thick panels is treated as an assembly of the Bricard linkages. The motion behaviour of the thick-panel waterbomb origami will be analyzed based on the kinematics and bifurcation analysis of the plane-symmetric Bricard linkage in Chapter 4.

The layout of this chapter is as follows. Section 5.2 setups the geometry and kinematics of the waterbomb origami pattern. Section 5.3 presents a detailed analysis on rigid foldability of the waterbomb tessellation for zero-thickness sheet. This is followed by the design and kinematic behaviour of its corresponding thick-panel origami in section 5.4. Comparisons and further discussion are made in section 5.5.

Geometry and Kinematic Setup

The six-crease waterbomb base comprises four diagonal valley creases (dashed lines) and two co-linear mountain creases (solid lines), all of which meet at a single vertex as shown in Fig. 5-1(a), where t is the half-width of the base, α and β are the design angles of the base. Placing the base shown in blue side-by-side to form a row and shifting the bases by half a base (red) on the adjacent rows, a generalized waterbomb origami pattern is formed as shown in Fig. 5-1(b), where m and n are the number of bases in the vertical and horizontal direction, respectively. There are three representative vertices marked by circles, Ai, Bi and Ci, where i is the row number that the waterbomb base locates. According to the kinematic equivalence between rigid origami and spherical linkages, the motion around each vertex of the waterbomb origami pattern can be modelled as a spherical 6R linkage where adjacent rigid links (sheets) are connected by only revolute joints (creases) that meet at the vertex, then the pattern becomes a network of such linkages, which can be analyzed with the matrix method in kinematics with the D-H notation as shown in Fig. 2-. Therefore, the three vertices Ai, Bi and Ci in the generalized waterbomb tube can be considered as three spherical 6R linkages, Ai, Bi and Ci as shown in Fig. 5-2, where the dihedral angles between adjacent sheets connected by the crease are defined as 

= Q Q Q Q Q Q I , (5-1) 
their kinematic relationships are obtained. Since each crease links two vertices, the dihedral angle on that crease is related to the motion of spherical linkages on both vertices, and the compatibility between neighbouring linkages Ai, Bi and Ci yields B ,3

,6 i i φ ϕ = , C ,1 ,1 i i φ ϕ = , C ,2 B ,2 i i φ φ = , 1,4 B ,1 i i ϕ φ + = , 1,3 C ,3 i i ϕ φ + = .
(5-2)

These relationships hold for the entire waterbomb pattern. Once these compatibility conditions are satisfied, the motion of the entire pattern would be rigid.

Symmetric Rigid Folding of Zero-thickness Waterbomb

In general, a spherical 6R linkage is of three DOFs, the whole waterbomb pattern is therefore of multiple DOFs, but this number is reduced if only the symmetric folding is allowed. That is, each six-crease waterbomb base has identical motion behaviour. Therefore, linkage Ci in Fig. 5-2 is an inverted configuration of linkage Bi. In such a way, only two types of vertices, A and B, exist. Denote ) tan 4(sin sin 2 cos sin ( 22 

, = i j j ϕ ϕ , B , C , = = i j i j j φ φ φ , 1, 2, ..., 6 j = . ( 5 
) sin( )) tan sin ( )(7 sin sin (2 ))) 2 tan 2 2sin( )(2sin( ) sin( ))tan 2 4(cos ( ) cos 2 ) tan 2sin ( ) 2 ω ω α β α α β α α ω β β α α β β α β ω ω β α α β β α ω α β β α β   - - + +       + - + + - +     =   - + + -       + + - - +     . ( 5 
φ φ α = , (5-9a) 2 3 2 3 sin ( ) tan sin ( ) 2 tan 2 2sin tan 2 φ α β β α φ φ α + + - = , (5-9b) 
φ φ φ α β α β β β α α β β α φ φ α β β α β α β φ α α β β α α β α   + - + -     - - + + -   =   + - + +       + + - - -     , ( 5 
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β α β α α β α α β - - + + (5-10)

Folding Thick Panels with the Waterbomb Pattern

The waterbomb tessellation can also be used to fold panels with non-zero thickness. This is done by mapping the same pattern in Fig. 5-onto a thick panel while placing the fold lines either on top or bottom surfaces of the panel. Now at vertices A and B, there will still be six fold lines in places of creases, but these fold lines no longer converge to a vertex. In other words, dissimilar to zero-thickness sheet, the distances between the adjacent fold lines are no longer zero. The set-up of coordinates and kinematic parameters for thick-panel origami according to the D-H notation is presented in Fig. 5-3(b). In terms of kinematic model, the spherical 6R linkage in section 5.3 is now replaced by spatial 6R linkages. Among all possible spatial 6R linkages, the plane-symmetric Bricard linkage, is the most suitable one [START_REF] Chen | Origami of thick panels[END_REF]. Let us select two Bricard linkages for A and B, respectively, Fig. 5678(a) and Fig. 5678, with their link lengths being the panel thicknesses. As the linkages are overconstrained, the geometric conditions of the linkage at vertex A are (2 ) 

A A A A a a a a a μ ′ = = = = + , 23 56 0 A A a a = = , (5-11a) 
B i R i = = .
(5-12c)

α and β are the same as the sector angles of the origami pattern in Fig. 5-2(a) and 

ϕ ϕ ′ ′ = -, 4 1 ϕ ϕ ′ ′ = -, 5 3 ϕ ϕ ′ ′ = , 6 2 ϕ ϕ ′ ′ =
(5-16b)

Similarly, we also have two sets of closure equations at vertex B, which are 

3 1 1 tan tan 2 cos 2 ω ω α ′ ′ = - , (5-17a) 3 2 cos tan / tan 2 cos( ) 2 ω ω α α β ′ ′ = + , (5-17b) 4 1 ω ω ′ ′ = , 5 3 ω ω ′ ′ = , 6 2 ω ω ′ ′ = , ( 5 
ω ω μ α μ β α β μ α α β ω μ α β α β μ α β ω μ μ α β α β ′ ′ + + + + - + ′ =   + + -+ +   ′   + + + - +    
(5-18c) 2 ) cos( )

φ φ μ α α β μ α μ β α β φ α β μ α β φ μ α β α β μ μ α β ′ ′   + - + + - +   ′   =   + -+ + ′ + +     + + + -   (5-20c) 5 3 φ φ ′ ′ = , 6 2 φ φ ′ ′ = .
(5-20d) So far, two complete sets of closure equations have been obtained. It can be noted from all closure equations that the motions of the linkages retain the plane symmetry. Additional compatibility conditions between the vertices A and B need to be added, which are

1 1 φ ϕ ′ ′ = , 3 2 φ ϕ ′ ′ = .
(5-21)

We shall now discuss the respective motion paths provided by two sets of closure equations.

• The first set of closure equations, Eq. φ′ changing from π to 0 while 1 φ′ , 3 φ′ , 4 φ′ , and 5 φ′ kept to π , followed by the process that 1 φ′ , 3 φ′ , 4 φ′ , and 5 φ′ move as a spatial 4R linkage. This linkage is actually a Bennett linkage. And it eventually reaches the compact folding position.

However, blockage could be occurred during the motion due to the panel thickness, which makes the structure cannot be fully folded, see Fig. 5-11, in which μ is randomly selected as 0.7.

• The first set of closure equations, Eq. This shows that the corresponding folding path is kinematically identical to the path II of the waterbomb origami pattern of the zero-thickness sheet, and thus it is named as path II of the thick panel origami. One of such example is shown in Fig. 5-13. In thick-panel origami, there is also blockage because of collision of panels during the folding process. Generally along path I of vertex B, the blockage would appear when one of the dihedral angles becomes negative. The condition without blockage is Here, paths I and II cannot be switch from one to another once the motions are underway. The choice of folding paths has to be made at the start and end configurations. The detailed comparison on the kinematic behaviour of the general waterbomb tessellation of zero-thickness sheets and thick panels for different design parameters is given in Table 5-1. It can be seen from Table 5-1 that there is always a bifurcation behaviour with two different folding paths for zero-thickness waterbomb origami. However, the bifurcation can be eliminated in the thick-panel form by properly choosing thickness, as the thickness provides additional geometric constraints.

Conclusions and Discussion

In this chapter, the rigid origami of the waterbomb tessellation of both zerothickness sheet and thick panels have been analyzed under the symmetric motion condition. By introducing the plane-symmetric Bricard linkages to replace the spherical 6R linkages in the origami pattern, the thick-panel waterbomb structure has been successfully formed. The rigorous enforcement of compatibility conditions ensures the mobility and flat foldability of the thick panel. It has been proved that the thick-panel origami and that of the zero-thickness sheet are kinematically equivalent.

Despite the fact that the thick-panel origami is born from an existing origami of zero-thickness sheet, it has a number of advantages over its parent. First, kinematically the thick-panel origami structure is a mobile assembly of overconstrained Bricard linkages with only one DOF, and thus no additional constraints are required to keep its motion symmetrical. This could be a great benefit for real engineering applications as its control system could become much more simple and reliable. Second, in general, the origami of waterbomb tessellation for zero-thickness sheet has kinematic singularity when it is flat and fully compact. However, for thick-panel origami, the singularity only appears when a very specific thickness is chosen. A suitable selection of the thickness of the panels make the latter possible to achieve compact folding without bifurcations. The unique motion path is certainly much desirable for most practical applications.

The waterbomb tessellation for the thick panels enables the structure to be folded compactly. The compactness of the package depends on the thickness coefficient and the number of vertices within the pattern. The pattern can be divided into strips formed by vertices A in the horizontal direction. Consider a pattern consisting of m strips, each with n vertices A as shown in Fig. 5 1 μ > is not recommended because it results in panels with considerable thickness and in turn, the overall thickness of the package when the panels are packaged. So the ratio between the area of a fully expanded shape and that of completely folded is about n 4 . This indicates that the concept is very suitable to fold a structure in a long rectangular shape. On the other hand, to meet the geometric conditions of the spatial linkages, each panel within the pattern could not be of the same thickness. As a result, the overall structure in the fully deployed configuration is flat but not absolutely even. However, for this waterbomb pattern, we have manage to make sure that one side of the expanded surface is completely flat, which enables the waterbomb origami pattern to be directly applicable to fold thickpanel structures such as solar panels and space mirrors.

Chapter 6 Rigid Foldability of the Waterbomb Tube

Introduction

The flat-foldable waterbomb tessellation of zero-thickness sheet is modeled as a network of interconnected spherical 6R linkages in Chapter 5. To be further, the tubular tessellation is discussed here. When the two vertical sides of the pattern in Fig. 5-(b) are joined together, a waterbomb tube is formed as shown in Fig. 6-1. Since the DOF of a spherical 6R linkage is three, the waterbomb tube is of multiple DOFs. It can also be simplified by constraining it with symmetric conditions. In this chapter, the rigid foldability of generalized waterbomb tube is analyzed and the dependency between its motion behaviour and geometrical parameters is revealed. The layout of this chapter is as follows. Section 6.2 presents a detailed kinematic derivation of the generalized waterbomb tube under contraction motion, including the interference and the uniform radius configuration of the tube. Section 6.3 discusses long and truncated tubes, which indicates the effect of the number of rows on the motion behaviour of the waterbomb tube. Section 6.4 analyzes several features in the twist motion of the waterbomb tube, including the rigidity, trigger condition, existence, range of the input kinematic variable and the transition of twist motion between different rows. Final conclusions are drawn in Section 6.5.

Contraction Motion

The behaviour of the waterbomb tube is best explained by a representative model that such a configuration exists in this case). When the tube contracts slightly along its longitudinal axis, both its radius and length reduce, Fig. 6-2(ii). With further contraction, the tube develops a pineapple shape, Fig. 6-2 (iii) and (iv), and subsequently the tube regains uniform radius, Fig. 6-2(v). This is followed by a shrinkage in radius at the equatorial row of the tube. It then reaches a stage where longitudinal contraction is no longer possible following the same kind of movement, Fig. 6-2(vi), as some facets have collided with their neighbouring ones. This signals the end of a motion sequence referred to as the contraction phase. However, the tube's motion does not stop there.

At the end of the contraction phase, a twist motion, starting at the equatorial row of the tube, can be activated with a small perturbation, Fig. 6-2(vii). The twist motion successively spreads to the neighbouring rows of the tube, and the bases on these rows turn either clockwise or counter-clockwise about the longitudinal axis. This motion, referred to as the twist phase, further reduces the length of the tube, but its diameter slightly increases, Fig. 6-2(viii). In both phases of motion, the tube generally maintains its symmetry. Based on our observation, the following assumptions of symmetry are made in the subsequent analysis. First, all of the bases on the same row behave in an identical manner, and they are placed side-by-side circumferentially. This is different from the case in Chapter 5 where all waterbomb bases have identical motion behaviour. Second, during the contraction phase, each individual base is plane-symmetric, i.e., it is symmetric about a plane formed by two mid mountain creases. This plane also passes through the longitudinal axis of the tube. When the twist of a base occurs during the twist phase, the base is line-symmetric, i.e., the upper half of the base is in rotational symmetry to the lower half about a line that passes through the central vertex of the base and is perpendicular to the axis of the tube. Finally the top and bottom halves of the tube have the same motion behaviour, and the plane that divides the tube into two equal halves is termed the equatorial plane (EP).

Kinematics of Linkages A, B, C

Based on the assumptions, all linkages Ai, Bi and Ci (Fig. 5-2 (5-1) to this linkage and considering Eq. (6-1), the following equations are obtained, , 

i i i i i i i i i i i i α α α δ α α α α δ δ α α δ δ α α δ δ α δ δ α δ δ α α δ - -     + +   = - + , (6-2a) ,3 ,2 ,3 ,2 ,3 ,2 ,4 ,2 ,3 ,3 ,2 ,3 cos 
i i i i i i i i i i i i α α α δ α α δ δ α δ δ α α α δ α α δ α δ δ α δ δ α α δ -     - - +   = - + . (6-2b)
The kinematic variables can be replaced by the dihedral angels ,

i j ϕ ( ) as
shown in Fig. 5-2(a). Noting that 

,1 ,1 i i δ π ϕ = - , ,2 ,2 i i δ π ϕ = + , ,3 ,3 i i δ π ϕ = + , ,4 ,4 i i δ π ϕ = - , ,
ϕ ϕ = , , 6 
,2 i i ϕ ϕ = , (6-3a) ,1 ,3 ,2 ,2 ,3 ,2 ,3 ,2 ,3 ,2 ,3 ,2 
sin (sin cos cos 2 sin cos ) cos sin 2 sin tan sin (sin sin 2 cos cos sin sin cos cos 2 cos cos ) 2 cos (cos sin 2 cos sin cos 2 )

i i i i i i i i i i i i ϕ α ϕ ϕ α ϕ ϕ α α ϕ α α α ϕ α ϕ ϕ α α ϕ ϕ α α α ϕ α α - - = - -     - +   , 1, 2, ..., 6 j = (6-3b) ,4 ,2 ,3 ,3 ,2 ,3 ,2 ,3 ,2 ,3 ,2 ,3 
sin (sin cos cos 2 sin cos ) cos sin 2 sin tan sin (sin sin 2 cos cos cos 2 ) cos (cos sin 2 cos 2 sin sin sin sin cos 2 cos cos ) . We have 

i i i i i i i i i i i i ϕ α ϕ ϕ α ϕ ϕ α α ϕ α α α ϕ α α α α α ϕ α ϕ ϕ α α ϕ ϕ - - = - -     + +   . ( 6 
i i i i i i i i i i i i α α β β α β β ω α β α β ω α β ω ω α β β ω ω ω α ω ω β ω ω α β ω + - + -     + - + + +   = + , ( 6 
i i i i i i i i i i i i α α β β ω ω ω ω α β β ω α α β β ω α β β ω α β ω ω β ω ω α β β ω + - -     + - + + +   = + + - + , (6-4c) 
where B , i j ω ( indicates the row number where the base locates, and )

are the kinematic variables of the linkage Bi defined according to the D-H notation.

Again replace the kinematic variables with dihedral angels using B ,1 

B ,1 i i ω π φ = - , B ,2 B ,2 i i ω π φ = - , B ,3 B ,3 i i ω π φ = + , B ,
i i i i i i i i i i i i φ α φ φ β φ φ α β φ α α β β α β β φ α β α β φ α β φ φ α β β φ φ - = + + + +     + - + - +   , ( 6 
i i i i i i i i i i i i φ α β β φ φ φ φ α β β φ α α β β φ φ φ φ α β β φ α α β β φ α β β + - + + = + + +     + + + - +   . (6-5c)
Similarly for the linkage Ci (Fig. 5-2(c)), we have 

C ,5 C ,3 i i φ φ = , C ,6 C ,2 i i φ φ = , (6-6a) i 1, 2, ..., 6 j = C ,1 C ,3 C ,2 C ,2 C ,3 C ,2 C ,2 C ,3 C ,2 C ,
i i i i i i i i i i i i φ α φ φ β φ φ α β φ α α β β α β β φ α β α β φ α β φ φ α β β φ φ - = + + + +     + - + - +   , (6-6b) C ,4 C ,3 C ,2 C ,2 C ,3 C ,3 C ,2 C ,3 C ,2 C ,3 C ,3 C ,2
sin( )(cos sin cos sin cos ) cos( ) sin sin tan cos (sin( )(cos cos cos sin sin ) cos( 2) sin cos ) sin (sin( ) sin cos cos( ) cos )

i i i i i i i i i i i i φ α β β φ φ φ φ α β β φ α α β β φ φ φ φ α β β φ α α β β φ α β β + - + + = + + +     + + + - +   . (6-6c)
The compatibility between neighbouring linkages Ai, Bi and Ci is given in Eq. (5-

2), which holds for the entire tube. In order to further solve the kinematics of the pattern, two cases, where the number of rows for the generalized waterbomb tube, m, is odd or even, are discussed separately as follows.

Contraction of a Tube with an Odd Number of Rows

We start by the tube consisting of an odd number of rows (m is odd), where the EP slices through the centre of the equotorial row (known as Row 0). In general, each spherical 6R linkage would have three DOFs. However, since linkage Ai, the linkage at the central vertex Ai of each base, preserves plane symmetry in the contraction phase, its DOF is reduced to two. Moreover, linkages A0, the linkage on the Row 0, is symmetric about the EP, which further cuts the DOF of linkage A0 to one as it is both plane-and line-symmetric.

A strip out of the origami pattern with an odd m is shown in Fig. 6 All angles obtained are subsequently used as input angles for adjacent linkages such as B0 and C0. Using the closure equations of these linkages, their motions, described by their respective dihedral angles, can be found. The process is repeated until all of the dihedral angles are determined. In short, the motion of the entire tube is driven by the motion of Row 0 spreading simultaneously through the neighbouring rows until the ends of the tube. The kinematic relationships presented by the dihedral angle are as follows.

For linkage Bi, 

B ,3 B ,5 ,6 i i i φ φ ϕ = = , B ,4 C( 1),4 i i φ φ - = , B ,6 B ,2 i i φ φ = , ( 6 
i i i i i i i i i i i i i φ φ α β α φ φ α α φ φ φ α α β φ α β φ φ φ α α β α β α φ φ + - + - - - + = 2 1/2 B ,3 B ,4 B ,3 B ,3 s ) } sin [cos tan (cos 1) sin ] 2 i i i i φ φ α α φ φ                   + - , ( 6 
i i i i i i i i i i i i φ α φ φ β φ φ α β φ α α β β α β β φ α β α β φ α β φ φ α β β φ φ - = + + + +     + - + - +   ; ( 6 -1 1 c ) for linkage Ci, C ,1 ,1 i i φ ϕ = , C ,2 C ,6 B ,2 i i i φ φ φ = = , C ,5 C ,3 i i φ φ = , (6-12a) C ,1 C ,2 C ,2 C ,2 C ,1 2 C ,2 C ,1 C ,1 C ,2 C C ,2 C ,3
sin cos( + )tan sin sin cos {[sin cos 2 sin cos( + )sin tan ] sin( + )[sin( + )cos( 2)tan cos( + )sin( )tan cos sin( 22

)sin ][cos( + )tan tan 2 

i i i i i i i i i i i α α β α α α α β α β α β β α α β φ φ φ φ φ φ φ φ φ φ β α φ β α α β φ + - + - - + - - - = ,1 1/2 C ,2 C ,2 C ,1 C ,2 C ,2 (cos 1) sin ]} 2 sin( + )[cos( + )tan (cos 1) sin ] 2 i i i i i i α β α φ φ φ φ φ β                     + -     + - , (6-12b) C ,4 C ,3 C ,2 C ,2 C ,3 C ,3 C ,2 C ,3 C ,2 C ,3 C ,3 C ,2 sin 
i i i i i i i i i i i i φ α β β φ φ φ φ α β β φ α α β β φ φ φ φ α β β φ α α β β φ α β β + - + + = + + +     + + + - +   ; (6-12c)
and for linkage Ai+1, 

1,4 B ,1 i i ϕ φ + = , 1,3 1,5 C ,3 i i i ϕ ϕ φ + + = = , 1,2 1,6 i i ϕ ϕ + + = , (6-13a)
i i i i i i i i i i i i i i ϕ ϕ ϕ α ϕ ϕ α ϕ ϕ α α ϕ α ϕ ϕ ϕ α ϕ α ϕ ϕ + + + + + + + + + + + + + +  + - +   - + - + - - +  = 1,4 1,5 1,5 sin tan cos (cos 1) 2 i i i ϕ ϕ α ϕ + + +               - + , (6-13b)
i i i i i i i i i i i i ϕ α ϕ ϕ α ϕ ϕ α α ϕ α α α ϕ α α α α α ϕ α ϕ ϕ α α ϕ ϕ + + + + + + + + + + + + - - = - -     + +   . ( 6 
m m m m m m m m m m ϕ ϕ α ϕ α α ϕ ϕ ϕ α ϕ α ϕ ϕ α ϕ - - - - - - - - - -   + - +       - + -    -    0 =     , (6-15) 0,1max
ϕ is obtained. However, due to the highly nonlinear property of Eq. (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF], there are up to three solutions for 0,1 ϕ . 0,1min ϕ is the smallest of the solutions that are larger than 2 / n π whereas 0,1max ϕ is the largest.

Moreover, in order to avoid the interference of facets during the contraction folding of the generalized waterbomb tube, the equation below holds B ,4 -16) Substituting Eqs. (6-7) and (6-10) to (6-13) into Eq. (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF], the solutions of Eq. (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF] can be obtained. Therefore, the range of the input kinematic variable under the rigid contraction folding is the intersection of those solutions of Eqs. (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF], (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF] and (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF].

0 i φ ≥ , 1 0, 1, ..., 2 m i - = . ( 6 
Because of Eq. (6-9), the limits for 0,1 ϕ are also limits for θ . Hence, within the The motion goes through a number of stages. It can be seen from Fig. 6-6 that at configurations II and IV, all radii of vertices B and C reach the same value, so do those of vertices A. In fact, at both configurations, each row of the tube has an identical shape and all of the bases take the same configuration, resulting in a tube of uniform radius.

sin i i t r n ϕ π = , 2 2 2 2 B A B A A B (1 cot ) 2 cos i i i i i i z z t r r r r n π α = + + --+ , (6-17a) 1,4 C sin 2 sin i i t r n ϕ π + = , 2 2 2 C A C A cot ( ) i i i i z z t r r α = + - - , (6-17b) ,1 2 2 2 C B A C ,1 cos ( cos ) 2 cos tan 2 i i i i i i t r r n r r ϕ π ϕ α - - = - , A0 0 z = , 2 2 2 2 A( 1) C C A( 1) C A( 1) (1 cot ) 2 cos i i i i i i z z t r r r r n π α + + + = + + -- + , ( 6 
If this waterbomb tube is constructed from a flat but rigid sheet, the pattern has to be partially folded in order for its left and right edges to be joined together. It is most likely to reach configuration IV, as it has a larger overall radius. Between these two configurations, the radii of vertices are no longer the same, resulting in a pineapple shape (Fig. 6-3 III) with the largest radius attained at B 0 (and C -1 ). Likewise, transforming outside of these two configurations, the tube assumes a dog-bone shape (Fig. 6-3 I) with a smallest radius reached at B 0 (and C -1 ). Throughout the deployment, the radius of A 0 never reaches zero except when θ is at its lower bound min θ , indicating that there is no collision of the vertices or facets during the motion. At min θ , the folding of the tube in the contraction phase ceases, as vertices A 0 have reached the centre of the tube. Any further contraction becomes impossible for it would lead to collision of these vertices.

When the number of rows increases, Row 0, and the rows just above and below it, will exhibit the same motion as that of the tube with 3 m = , whereas the newly added rows will be concurrently driven by them. However, the motion terminates earlier as the upper sides of the bases on the top row become an n-sided regular polygon. For instance, if m is increased to 7, it can be determined that min of Row i ( 0, 1, 2, 3 i = ), Bi and Ci ( 0, 1, 2 i = ), against 0,1 ϕ , respectively. Ai r , Bi r and Ci r , the radii of the vertices Ai, Bi, and Ci, vs. θ is given in Fig. 6-10. Similar to the case of 3 m = , all curves intersect at two points, which are referred to as configurations II and IV, indicating that the tube again has uniform radii. A careful comparison reveals that these two configurations appear at exactly the same θ as those of tubes with 3 m = . This is intuitively correct as more rows can always be added in configurations II and IV when all of the bases on those rows are in the identical configuration. They can be connected in a geometrically compatible manner without altering the overall configuration. Using Eq. (6-11a), we have When a tube undergoes a mechanism-structure-mechanism transition, rigid origami no longer applies in the structural range. Instead, material deformation in the facets and along the creases has to take place for the tube to change its shape. In fact, when the vertices A 3 meet, the tube is concealed. Any change in a concealed volumn requires structural deformation. The existance of such a transition enables the tube be designed to achieve a programmable stiffness. If appropriate materials are used to create very flexible creases and rigid facets, the tube could have reduced stiffness under compression in the rigid origami range, but significantly increased stiffness when its motion enters the so-called structural range. The precise variation of the stiffness depends on the materials used to construct the tube.

The existence of the mechanism-structure-mechanism transition depends on the geometrical parameters α , β , m and n of the waterbomb tube. Take • Uniform radius configuration of a tube Now we are going to check the existence and number of uniform radius configurations for the waterbomb tube. It can be calculated by the kinematics of flatfoldable waterbomb pattern as in Eq. (5-9). When we fold the flat paper into the waterbomb tube, all the waterbomb bases are folded in the identical manner, i.e., all linkages Ai are in the same motion, so do linkages Bi and Ci. which is within the rigid folding motion range, indicating that there is also one uniform radius configuration. Different from the odd-row case, the linkage A0 is no longer line-and planesymmetric. As the top and bottom halves of the tube moves in the same manner, linkages B0 and C0 are identical considering the half-a-base shift between adjacent rows, leading to 0,1

ϕ ϕ α α β α α β ϕ β β α α β β α φ ϕ α α β β α β α β ϕ α α β β α α   + - +       - - - + + -     = + - + + + + - 0,1 2 2sin ( ) 2 β α         - -     . ( 6 
The projection of Row 1 onto the EP is presented in Fig. 6-15(b). In order to complete a cylindrical tessellation, the following equation should be satisfied,

2 2 2 2 p p 2 2 1 1 1 1 A1 B0,4 C0,4 2 2 A A A A cos cos 1 1 2( ) sin 2 2 t t r t t t n π φ φ ′ ′ + - = = = - = - , (6-24) 
where

0,1 0,1 2 2 2 2 2 B0 A1 A0 B0 0,1 2 2 [cot cot( )]cos [cot ( ) cos ] (1 cos ) 2 2 = = cot ( ) cos 2 t r n r r r ϕ ϕ π α α β α β ϕ α β - + + + - - - + + , (6-25a) 0,1 B0 = sin / sin 2 r t n ϕ π . (6-25b) 
Substituting Eq. (6-25) into Eq. (6-24) yields

0,1 2 2 2 2 0,1 0,1 2 2 B0,4 0,1 0,1 2 2 2 0,1 0,1 2 2 2 0,1 0 2 2 2sin (cot( ) cot ) cos (cot ( ) 2 2 cos sin tan ) 2 2 cos cos [cot ( ) cos ] 2 2 2sin [cot cot( )]sin cot ( ) cos sin tan 2 2 cot ( ) cos n n n n ϕ π α β α α β ϕ ϕ π φ ϕ η α β ϕ ϕ π π α α β ϕ α β ϕ α β   + - +       + -     = - + + - + + + - + + + ,1 , 2 (6-26) 
which gives B0,4 φ in terms of 0,1 ϕ .

Due to the identity of linkages B0 and C0, we have

B0,1 C0,1 0,1 φ φ ϕ = = . ( 6-27) 
Substituting Eq. (6-27) into Eq. (6-5), the following equations can be obtained, 

ϕ α φ φ β φ φ α β φ α α β β α β β φ α β φ α β α β φ φ α β β φ φ - = + + + +     + - + - +   , (6-28a) B0,4 B0,3 B0,2 B0,2 B0,3 B0,3 B0,2 B0,3 B0,2 B0,3 B0,3 B0,2 sin( ) 
φ α β β φ φ φ φ α β β φ α α β β φ φ φ φ α β β φ α α β β φ α β β + - + + = + + +     + + + - +   , (6-28b 
U U U U U U U φ φ φ φ φ φ   + + +     =   + + +     , (6-29) 
where

B0,4 0,1 2 2 1 4sin sin 2 (tan tan ) 2 2 U φ ϕ α α = - , 0,1 B0,4 2 2 16sin 2 sin tan (tan 1) 2 2 U ϕ φ α β = +, 0,1 2 B0,4 2 3 0,1 2 2 [16sin 2 sin cos( ) tan 11cos 5cos 3 2 cos(3 2 ) 7 cos( 2 ) 10 cos( 2 )] tan 2 2sin [5sin 2( ) sin 2 3sin 2 ] tan 32 cos sin 2 U ϕ α β α β α α φ α β α β α β ϕ α α β α β α β   - + + +       = + + - - - +       - + + + -     , 0,1 B0,4 2 4 16sin sin( )[3cos( ) cos( )] tan (tan 1) 2 2 U ϕ φ β α β α β α β = + + + - + , 0,1 2 B0,4 2 5 0,1 2 4{[4sin 2 cos( ) sin(2 ) tan sin 2 sin( 2 ) 2 2sin 2( ) sin( 2 )] tan 2sin( 2 )[sin 2( ) 2 sin cos ] tan 4sin sin 2 cos( )} 2 U ϕ β α β α β α α β φ α β α β α β α β ϕ α α β β α β   - + + - +       = - + - + + +       + + +     , 0,1 B0,4 2 6 16sin 2 sin( 2 )cos( ) tan (tan 1) 2 2 U ϕ φ β α β α β = + + + , and 0,1 B0,4 2 2 2 7 0,1 2 2 8cos cos( ){[sin 2( ) sin tan sin ] tan 2 2 sin ( 2 ) tan } 2 U ϕ φ β α β α β β α ϕ α β   - + + -     =   + +    
, which are all functions of 0,1 ϕ and B0,4 φ .

Thus B0,2 φ can be obtained by solving Eq. (6-29). Using Eqs. (6-28a) and (6-28b) again, we find 

B0,1 B0,4 B0,2 B0,2 B0,3 B0,4 B0,2 sin (tan cos tan ) cos sin 2 2 tan 2 sin tan 2 φ φ α φ α φ φ φ φ - - = , B0,5 B0,3 = φ φ , B0,6 B0,2 = φ φ ; (6-30a) 0,2 0,6 B0,3 ϕ ϕ φ = = , 0,3 0,5 ϕ ϕ = , 0,1 0,1 2 
ϕ ϕ ϕ α ϕ ϕ α ϕ ϕ α α ϕ α ϕ ϕ ϕ α ϕ α ϕ ϕ ϕ ϕ   + - +       - + - +       - - +     = - 1 0,6 cos (cos 1) 2 α ϕ + , 0,4 0,6 0,5 0,5 0,6 0,5 0,6 0,5 0,6 0,5 0,5 0,6 
sin (sin cos cos2 sin cos ) cos sin2 sin tan cos (sin cos2 cos cos sin sin sin 2 cos sin2 cos ) sin (sin sin2 cos cos cos2 )
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= = , 1,4 0,1 ϕ ϕ = . (6-30d) 
Therefore, Eqs. (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF] to (6-13), (6-26), (6-27), (6-29) and (6-30) form the kinematic set of the generalized waterbomb tube with even-number row. It can be seen that only one free variable 0,1 ϕ is needed to determine the motion of the waterbomb tube, meaning the DOF of the tube in this case is again one. The general behaviour of these tubes turned out to be similar to those when m is odd.

Different from the odd-row case, only two constraints hold for the rigid motion of the waterbomb tube without interference: This is due to that Row 0 and Row 1 are in general impossible to be fully squeezed simultaneously. One exception is all rows being fully squeezed with some specific geometrical parameters. This is not taken into consideration since the number of rows makes no sense in this case. 
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from which we obtain 0,1 ϕ on the verge of interference. Between configurations III L and III R , it is clear that both B4,4 φ and A4 r are negative.

Hence, the mechanism-structure-mechanism transition also exists for tubes made from an even number of rows. Similar to the case of an odd m, the radii of vertex Ai rise with the increase of α .

For instance, by preserving 8 m = , the mechanism-structure-mechanism transition occurs only when 44.66 46.26 Therefore, once the geometrical parameters are given, the range of the input kinematic variable 0,1 ϕ under rigid contraction folding can be figured out definitely, which is not only related to the design angles α and β , but also to m and n. On the other hand, the geometric conditions of α and β for the generalized waterbomb tube with rigid foldability can be obtained by making the solutions of the kinematic equation set be a non-void set.

Long and Truncated Tubes

Long Tubes

For longer tubes with additional rows, a number of conclusions can be drawn based on the previous analysis. First, for the same pattern with larger m, max θ will be further reduced when more rows are added. Second, some tubes will exhibit a mechanismstructure-mechanism transition depending on pattern parameters α and β . indicates that more rows can be added to the tube, but the fundamental behaviour of the tube is governed by a tube with 13 consecutive rows. Any additional rows simply repeat the motion of all or part of 13 rows. As a result, a tube with 13 m > will assume a periodic wave shape and its motion range is identical to that of a tube with 13 rows.

This is verified by a tube with 25 rows. The radius of vertex Ai (plotted in Fig. 6-17(b))

shows that at the configuration I, it increases from 0 i = to 6 i = and subsequently decreases from As a result, more rows can be added to the tube, and the fundamental behaviour of the tube is governed by a tube with 12 consecutive rows. 

Truncated Tubes

It is particularly interesting to note that a shorter tube can also be obtained by truncating a number of rows off a long tube shown in Fig. 6-18. Not only can we obtain a tube whose top and bottom halves mirror each other, but it is also possible to have one with more rows above the EP than below it, or vice versa. 

Twist Motion

Rigid Twist Motion

Now we examine the motion of the tube during the twist phase. For tubes made of an odd number of rows, it is found that the contraction phase of the tube motion terminates at the fully squeezed configuration where all vertices 0 A coincide, see Fig. By applying Eq. to the closure equation (Eq. (5-1)), the following equation can be obtained 0,2 0,3 0,2 0,3 0,1 2 2 0,2 0,3 0,2 0,3 0,2 0,3 
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, which are all functions of 0,2 ϕ . Therefore, only one kinematic variable 0,2 ϕ is needed to determine the motion of the equatorial row (Row 0) under line symmetry. Linkage C0 remains to be a spherical 6R linkage and the closure equation is the same as Eq. (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF], which reveals that it is plane-symmetric. Closure equations of other vertices can also be set up. Motions of those linkages on rest of the rows are planesymmetric and their kinematic relationships are given in Eqs. (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF], (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF] and (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF].

Hence, Eqs. , , and (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF] to (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF] In Fig. 6-23(a), the blue lines show the kinematic paths of linkage A0 (in blue solid lines) and A1 (in blue dash lines) in the twist motion, which presents that linkage A0 is in the line-symmetric motion, yet linkage A1 is still in the plane-symmetric motion similar to the tube contraction motion. In Fig. 6-23(b), blue lines show the kinematic paths of linkages B0 (in blue solid lines) and C0 (in blue dash lines) in the twist motion, which presents B0,4 0 φ = for the whole twist motion. It can be seen that C0,4 φ is always positive during the twist phase.

Furthermore, the switch from the contraction to the twist motion is, in fact, a motion bifurcation of linkage A0 from a line-and plane-symmetric motion to a line- where the value of α is only related to n .

The other condition is obtained when linkage A(m-1)/2 on Row (m-1)/ 

  + + - +   =   + + -    
. It should be noticed that all rows are in the fully squeezed configuration with both line and plane symmetry, indicating that the rigid twist folding can begin from any row in this case. When 
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, which are all functions of α and n .

On the other hand, by analyzing the set of kinematic relationships of the entire tube as Eqs. , , and (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF] to (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF], the tube become expanded when it twists. So the other limitation to 0,2 The rigid twist degree of freedom of the waterbomb tube makes it a suitable candidate for the design of chiral mechanical metamaterials which twist when axially deformed. This property can be characterized by the twist angle per axial strain, t t / θ ε [START_REF] Frenzel | Three-dimensional mechanical metamaterials with a twist[END_REF]. The axial strain, t ε , considering compression strain as positive, can be calculated as They can be calculated by Eqs. (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF] and (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF][START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF].

ϕ
It is obvious from Eqs. , (6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF] θ ε vs. m when 6 n = . The twist angle here is calculated as the maximum rigid twist between two ends of a tube, and the axial strain is calculated as the strain when the maximum rigid twist is reached.

The correlation between t t / θ ε and m, is less clear, as can be seen in Fig. 6 is obtained when 7 m = . Therefore, we can design mechanical metamaterials with a wide range of twist angle per axial strain by fine-tuning the geometrical parameters m and n. And such twist can be materialized with minimum efforts as it is a purely rigid motion.

• Bifurcation of rigid twist motion in different rows

The rigid twist motion occurs in the fully squeezed row with both line and plane symmetry. Once the tube begins to twist, the adjacent rows to the fully squeezed one expands and therefore no other rows satisfy the twist trigger condition. The rigid twist motion will not transfer to the other rows without deformation. Kinematically, It indicates that the rigid twist folding can occurs in any row at this configuration, i.e., it is a bifurcation point.

Therefore, with defined values of α and n , the condition of β to obtain fully squeezed waterbomb tube with identical radius is given by Eq. . In this case, the twist folding can transfer from the equatorial row to other rows through the bifurcation As shown in Fig. 6-29, configurations i, ii, iii, iv and v represent the motion process of the waterbomb tube when the rigid twist folding occurs in the top row, and it can bifurcate either to path II (the rigid twist folding occurs in the middle row with configurations vi, vii, iii, viii, ix) or to path III (the rigid twist folding occurs in the below row with configurations x, xi, iii, xii, xiii) at the configuration iii, a configuration with uniform radius where all rows are fully squeezed.

Non-rigid Twist Motion

The sufficient condition of the rigid twist motion has been proved to be that the twisted row is fully squeezed with both line and plane symmetry. Now we are going to check its necessity. Firstly, we need to figure out whether the rigid twist motion will start if the line-and plane-symmetric spherical 6R linkage A0 is not fully squeezed, that is, B0,4 0 φ ≠ , see Fig. 6-30(a). Two adjacent bases on Row 0 of such a waterbomb tube is presented in Fig. 6-30(b), where the coordinate system is the same as that in Fig.

6-22.

According to the spatial analytical geometry, the angle between the crease 0 1 B C - ′ ′ and the coordinate axis z, η , can be calculated Secondly, the necessity of line and plane symmetry is studied, that is, whether the twist motion is rigid if the twisted row is fully squeezed without line and plane symmetry. Figure 6-30(c) shows such a case that the Row 3 is fully squeezed with only plane symmetry. Due to the lack of two-fold symmetry necessary to reach the bifurcation configuration, the plane-symmetric linkage A3 cannot bifurcate to a tilting motion. That is, the twist motion on the fully squeezed row without both line and plane symmetry is not rigid. Therefore, both the fully squeezed configuration and the line and plane symmetry are necessary for a rigid twist motion. Should either one be violated, the twist motion requires material deformation. Obviously, the twist motion with neither fully squeezed configuration nor line and plane symmetry is not rigid. There are two cases of such nonrigid twist motion. First, when the twist occurs on the fully squeezed row, the bases on the other rows is only plane-symmetric and not fully squeezed, so the successive twist of other rows after Row 0 reaches its limit positions (Fig. 6-26) is non-rigid and it cannot occur without material deformation. Second, when the twist motion occurs from a pair of rows near the equatorial plane, which are set as Rows 0 and 1 as shown in Fig. 6-30(d), the bases on all rows are not fully squeezed and have only plane symmetry. As a result, there is no rigid twist motion. However, playing with the physical model shows that twist exists in this case as well, and such a process is transmitted from row to row towards the ends of the tube. So we can safely conclude that, the entire twist motion is due to material deformation. Notice that some rows twist clockwise while the others twist counter-clockwise. The reason is that in such a way, the relative rotation of the two ends of the tube can be cancelled out.

2 2 2 B 0 B 0 0 2 2 0 2 sin EA E tan cos cos EA E sin y ty t t t α η α ′ ′ ′ - + ∠ - = + ′ ∠ . ( 6 
The discovery of the twist motion enables design of origami structures and mechanical metamaterials with graded stiffness through a combination of contraction and twist. To demonstrate the graded stiffness of the waterbomb tube, a tube made from ENDURO Ice material with 0.29mm in thickness and . The experiment was conducted on an Instron 5982 testing machine with a load cell of 100 N. The loading speed was chosen as 5 mm/min so that material strain rate effects could be safely neglected. Regarding boundary conditions, it was determined after several rounds of trial-and-errors that placing foams of 15mm in thickness at each end of the tube, as shown in Fig. 6-31(a), was able to generate a roughly symmetric and stable deformation.

As can be seen in Fig. 6 

Conclusions

In this chapter, a thorough kinematic study of the generalized waterbomb tube has been conducted. By using the D-H matrix method and considering the equivalence of spherical linkages and vertices in rigid origami, the kinematic relationship between different dihedral angles at the creases has been figured out for the waterbomb tubes with both odd and even rows. The contraction folding of the generalized waterbomb tube under both circumferential and longitudinal symmetry has been proved to be rigid with one DOF. Moreover, the relationship between those geometrical parameters and the range of folding angle under rigid contraction folding has been analyzed. The existence of uniform radius configuration has been discussed based on the flat-foldable case. A wave-like profile of the long tube has been revealed, and the corresponding rigid origami region has been given. A bifurcation at the uniform radius configuration of the truncated tube has been discovered. Furthermore, a twist motion has been found in some specific waterbomb tubes.

The rigidity of the twist folding has been explored. Through a detailed kinematic analysis, the sufficient and necessary condition of a rigid twist motion has been revealed at the fully squeezed line-and plane-symmetric row in the end of contraction. The geometric conditions concerning α and β to make the waterbomb tube with rigid twist folding have been derived. In addition, the rigid twist motion range with given geometrical parameters has also been determined, which is related to both the left/right handed twist and the most expanded configuration at the end rows. The twist angle per axial strain of the waterbomb tube with rigid twist motion has been analyzed, which generally increases with the number of bases in a row. In addition, the behaviours of non-rigid twist motions have been studied. The significant difference in stiffness of the waterbomb tube with and without twist has also been verified by experiments. Except for the bifurcation between the contraction phase and the twist phase, another bifurcation among rigid twist motion in different rows has been revealed.

Chapter 7 Final Remarks

The aim of this dissertation was to explore the kinematics of spatial linkages ranging from spherical linkages to overconstrained linkages, and apply it to the analysis of rigid origami. The main achievements are summarized and the future works are highlighted in this chapter.

Main Achievements

 Generalized triangle twist and its derived overconstrained 6R linkages First, a systematic method to analyze the rigid foldability and motion behaviour of the generalized triangle twist pattern has been presented using the kinematic equivalence between rigid origami and spherical linkages. All schemes of M-V assignment have been derived based on the flat-foldable conditions of four-crease vertex, among which rigidly foldable ones have been identified. The compatible conditions have also been derived for these types of triangle twist. It has been found that the triangle twist is rigidly foldable only when at least one crease-pair is not parallel. Moreover, a new type of overconstrained 6R linkage and a variation of doubly collapsible octahedral Bricard have been developed by applying kirigami technique to the rigidly foldable pattern without changing its DOF.

The kinematics of a modular origami unit with four-crease vertices and its corresponding network of spherical 4R linkages has been presented in Chapter 3. The proposed method opens up a new way to generate spatial overconstrained linkage from the network of spherical linkages. It can be readily extended to other types of origami patterns. A journal paper concerning on this work titled "Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages" has been published on Journal of Mechanisms and Robotics.

 General plane-symmetric Bricard linkage

Second, the explicit solutions to closure equations of the plane-symmetric Bricard linkage have been derived and a thorough kinematic study of the general planesymmetric Bricard linkage has been conducted with D-H matrix method. The derived 5R/4R linkages from this Bricard linkage and their corresponding geometric conditions have been introduced. Various bifurcation cases of the plane-symmetric Bricard linkage with different geometric conditions have been discussed, such as the bifurcation between the plane-symmetric Bricard linkage and the Bennett linkage, the bifurcation between two plane-symmetric Bricard linkage motion branches, and the bifurcation between equivalent serial kinematic chains with revolute joints and a four-bar doublerocker linkage.

The kinematics of an existing spatial overconstrained linkage has been presented in Chapter 4. The findings not only offer an in-depth understanding about the kinematics of the general plane-symmetric Bricard linkage, but also bridge two overconstrained linkage groups, i.e., the Bennett-based linkages and Bricard-related ones, to reveal their intrinsic relationship. A journal paper concerning on this work titled "Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations" has been published on Mechanism and Machine Theory.

 Symmetric flat-foldable waterbomb origami Third, a thorough kinematic investigation on symmetric folding of the flat-foldable waterbomb pattern has been presented. It has been found that the pattern can have two folding paths for the zero-thickness case with singularity at the fully expanded or compact configuration. Moreover, the pattern has been used to fold thick panels, where the vertices are modelled as plane-symmetric Bricard linkages instead of spherical 6R linkages. Not only do the additional constraints imposed to fold the thick panels lead to one-DOF folding, but the folding process is kinematically equivalent to the origami of zero-thickness sheet.

The kinematics of a planar origami tessellation with six-crease vertices and its corresponding mobile assemblies of spherical 6R linkages and spatial overconstrained 6R linkages, have been presented in Chapter 5. The findings pave the way for the waterbomb pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels. A journal paper concerning on this work titled "Symmetric waterbomb origami" has been published on Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science.

 The waterbomb tube

Finally, the folding behaviour of the waterbomb tube under certain symmetry has been analyzed. Through a detailed kinematic analysis, the dependency between its motion and geometrical parameters of the origami pattern has been uncovered. It has been demonstrated that the contraction folding of the generalized waterbomb tube under both circumferential and longitudinal symmetry is rigid with one DOF. Some tubes have been found to be capable of pure rigid origami, whilst others will experience structural deformation in-between rigid origami motions. With parametric study, the waterbomb with wave-like profile has been discovered. Moreover, a twist motion of the waterbomb tube has been reported for the first time. It has been proved that the trigger condition of the rigid twist motion is the corresponding row of the tube under twist being fully squeezed with both line and plane symmetry, whereas all the subsequent twist motion requires material deformation. The existence of rigid twist motion for waterbomb tubes with various geometric conditions has been discussed. The rigid twist motion range has also been determined, which is related to both the left/right handed twist and the most expanded configuration at the end rows. The twist angle per axial strain of the waterbomb tube with rigid twist motion has been analyzed, which generally increases with the number of bases in a row. In addition, the behaviours of non-rigid twist motions have been studied. The significant difference in stiffness of the waterbomb tube with and without twist has also been verified by experiments.

Three bifurcations have been found during the motion of the waterbomb tube. The first one is the switch of the waterbomb tube from the contraction phase to the twist phase. The second one is the bifurcation of a waterbomb tube during the contraction phase at the uniform radius configuration between the motion of a truncated tube and that of an even-row tube. The last one is the bifurcation during the twist phase of a fully-squeezed waterbomb tube with uniform radius configuration, which have bifurcated twist motion in different rows.

The kinematics of a closed cylindrical origami tessellation with six-crease vertices and its corresponding tubular network of spherical 6R linkages have been presented in Chapter 6. Our results reveal the kinematic properties of the waterbomb tube, and how certain behaviour can be achieved by fine-tuning the pattern parameters. The results will provide a solid foundation for full exploitation of this ancient but fascinating origami object to create novel shape changing structures and metamaterials. A journal paper concerning on this work titled "Twist of tubular mechanical metamaterials based on waterbomb origami" has been published on Scientific Reports. Two other journal papers titled "A unified kinematic framework for rigid-foldable waterbomb origami" and "Rigid-foldability of the generalized waterbomb tube" have been ready to submit.

Future Works

The research reported in this dissertation provides us with several topics to be further explored.

First, the potential applications and adaptations of the foldable triangle twist origami pattern in the tessellation as a modular unit, or in the design of bionic deployable structures and origami robots are to be explored. The kinematics of spherical 4R linkage network can be further used to analyze the rigid foldability of other existing origami patterns such as hexagon twists, or to generate new origami patterns. The proposed method to generate spatial overconstrained linkage from the network of spherical linkages by the kirigami technique is capable to be extended to other types of origami patterns for the discovery of novel mechanisms.

Second, the bifurcation behaviour of the plane-symmetric Bricard linkage can be utilized in the design of reconfigurable mechanisms. And the kinematics of the planesymmetric Bricard linkage can be applied to other types of thick-panel origami patterns composed of six-crease vertices, such as the diamond pattern and the Resch pattern, etc. More work of the waterbomb pattern can also be done on its engineering applications such as solar panels.

Third, tubular waterbomb-based engineering devices and metamaterials with programmable stiffness and shape control are to be designed based on the rigid or nonrigid case of the tube. Taking advantage of the wave-like profile, a worm robot can be designed. The control strategy to maintain symmetry or accomplish transition between the waterbomb's multitude behaviours is to be sought for facilitating its applications. The analysis on the thick-panel origami tube may also be conducted together with the tubular network of spatial overconstrained linkages.

In total, the work in this dissertation focuses on the theoretical study on the spatial linkage kinematics and its applications to rigid origami, ranging from the mobile assembly of spherical 4R linkages to the spatial overconstrained 6R linkage, then to the mobile assembly of spherical 6R linkages and that of spatial overconstrained 6R linkages, and finally to the closed-loop network of spherical 6R linkages. The future work can be concentrated on the engineering applications of these spatial linkages as well as rigid origami patterns.

Résumé

Le mécanisme constitue un sujet central dans les recherches en ingénierie mécanique, où divers mécanismes sont conçus comme des composants mécaniques afin de réaliser les mouvements souhaités. Le mécanisme spatial est un mécanisme dans lequel le mouvement est décrit en trois dimensions. En tant que sous-ensemble des mécanismes spatiaux, le mécanisme sphérique représente un mécanisme dans lequel tous les points mobiles se déplacent le long des courbes qui reposent sur des sphères concentriques. Il existe un type particulier de mécanisme, appelé comme mécanisme sur-contraint, qui ne répond pas au critère de mobilité de Grübler-Kutzbach. Il est mobile en raison des propriétés géométriques des liaisons. Il a été largement utilisé dans le domaine des structures dans l'ingénierie aérospatiales, principalement grâce à la rigidité structurelle, la simplicité de sa construction et la fiabilité de fonctionnement. La cinématique est l'étude de la géométrie du mouvement dans les mécanismes sans tenir compte des forces agissant sur ces derniers. La cinématique des mécanismes spatiaux est beaucoup plus complexe que celle-ci des mécanismes plans puisqu'elle produit des mouvements plus compliqués. Les études qui en sont faites permettent de mieux comprendre le mouvement des mécanismes spatiaux qui constitue la base de la conception, de l'analyse dynamique et du contrôle des mécanismes.

De plus, l'origami, art oriental très ancien qui consiste à produire des structures complexes en 2D ou 3D en pliant une feuille de papier plane, a récemment connu un fort développement dans divers domaines de l'ingénierie. Les applications fortes de l'ingénierie d'origami nouvellement formée comprennent les panneaux solaires, les réflecteurs d'antennes de satellites, les métamatériaux , les facettes mobiles, les appareils reconfigurables, les appareils à résistance aux chocs, les endoprothèses en origami, les automates et les robots, etc. Bien que le mouvement de la structure de l'origami soit utilisé dans ces domaines, peu de recherches ont été faites sur la propriété cinématique du type d'origami, en raison de la complexité et du multi-degré de liberté du mouvement d'origami. Une exception est Miura-ori, dont le mouvement est relativement simple et son analyse cinématique a été largement utilisée pour révéler les propriétés mécaniques, telles que le coefficient de Poisson et la rigidité. Puisque la plupart des matériaux d'ingénierie adoptés pour construire des structures d'origami et des métamatériaux sont relativement rigides, un sous-ensemble d'origami qui permet un mouvement continu entre les états pliés et non pliés le long des plis prédéterminés sans étirement ni flexion des facettes a attiré l'attention.

Du point de vue du mécanisme, les plis de l'origami peuvent être considérés comme des liaisons pivot et les facettes de papier sont comme les pièces qui forment la liaison. Un vertex avec tous les plis intersectés au sommet est cinématiquement équivalent à un mécanisme sphérique. Ensuite, le pli multi-sommet peut être modélisé comme un réseau de mécanismes sphériques, et sa pliabilité rigide peut être jugée par des approches cinématiques. Cependant, dans la plupart des applications d'ingénierie, l'épaisseur du matériau ne peut pas simplement être ignorée. Pour plier des panneaux épais, une approche a été proposée récemment, où l'assemblage de mécanismes sphériques pour l'origami de la feuille de zéro-épaisseur est remplacé par un assemblage de mécanismes spatiaux sur-contraints. Par conséquent, le travail sur la cinématique des mécanismes sphériques et des mécanismes spatiaux sur-contraints contribue à l'analyse du mouvement de l'origami rigide, ce qui facilite davantage les applications d'ingénierie des modèles d'origami.

Le but de cette thèse est de conduire une analyse cinématique des mécanismes spatiaux basés sur la méthode matricielle D-H et de l'appliquer pour explorer le comportement rigide de pliabilité et de mouvement des modèles d'origami.

Dans ce processus, la pliabilité rigide du motif origami en torsion triangulaire est d'abord examinée sur la base de la cinématique du réseau de mécanismes 4R sphériques et de nouveaux mécanismes 6R sur-contraints dérivés par la technique du kirigami. Ensuite, la cinématique du mécanisme de Bricard 6R plan-symétrique est analysée et ses variations de bifurcation sont discutées. Après cela, les résultats sont appliqués pour étudier le pliage symétrique de l'origami de la waterbomb à six plis à panneau épais, qui est modélisé sous la forme d'un réseau de mécanismes de Bricard 6R plansymétriques. Le comportement de mouvement de sa tessellation correspondante de feuille de zéro-épaisseur est démontré par un réseau de mécanismes 6R sphériques. Enfin, le comportement de mouvement de la forme cylindrique fermée de l'origami de la waterbomb est analysé à travers une étude paramétrique, en le modélisant comme un réseau fermé de mécanismes 6R sphériques. Les principaux résultats sont résumés comme suit.

 Pliabilité rigide de l'origami en torsion triangulaire généralisée et de ses mécanismes 6R sur-contraints dérivés

La torsion triangulaire est un modèle d'origami avec trois sommets de quatre-pli, qui se compose d'un triangle central et de trois paires de plis rayonnant de chaque côté du triangle. Grâce à son grand taux de déploiement /packaging et à sa propriété de pliage par torsion, il présente un grand potentiel dans la conception de structures pliantes bioniques. Cependant, les travaux existants se concentre sur le cas où le triangle central est un triangle équilatéral ou le cas avec seulement des paires de plis parallèles, qui limitent la pliabilité rigide et les applications de la torsion triangulaire. En supprimant ces contraintes sur la torsion triangulaire, on peut en obtenir un cas général, représenté sur la figure 1. Dans le 3 ème chapitre, la pliabilité rigide et le comportement de mouvement de la torsion triangulaire sont analysés. Basé sur l'équivalence cinématique entre origami rigides et mécanismes sphériques, le modèle peut être traité comme un réseau de mécanismes 4R sphériques. Les matrices D-H sont utilisées pour analyser la cinématique du mécanisme 4R sphérique à chaque sommet, puis la pliabilité rigide est discutée en utilisant les conditions de compatibilité. On trouve que la torsion triangulaire ne peut pas être pliée de manière rigide que lorsqu'au moins une paire de plis n'est pas parallèle et que la condition de compatibilité de l'angle de secteur est trouvée.

Puisque la pliabilité rigide d'un modèle d'origami peut varier selon le changement de l'assignation de Montagne-Vallée (Mountain-Valley pli (M-V)), tous les schémas possibles d'affectation M-V pour le modèle d'origami de torsion triangulaire généralisée devraient être trouvés. Les critères pour déterminer les schémas de l'assignation M-V sont les conditions de pliage à plat d'un sommet à quatre plis. Pour que le modèle soit plié en feuille plate, les conditions suivantes doivent être remplies: 1) la somme des angles alternatifs sur le sommet pliable est de 180 degrés, 2) la différence entre le nombre de plis de montagne et les plis de vallée devrait être égal à deux, et 3) les deux plis autour de l'angle de secteur minimum doivent être de l'opposé de la montagne ou de la vallée, tandis que les deux plis autour de l'angle de secteur maximal sont de la même affectation. Avec ces conditions, 32 schémas d'assignations M-V sont trouvés. En éliminant les cas dupliqués dus à la vue et à la rotation, il existe 12 types distincts d'assignation M-V pour le modèle d'origami en torsion triangulaire représenté sur la figure 2, dont la pliabilité rigide est analysée. On trouve que seulement huit schémas d'assignations M-V sont rigoureusement pliables. Il est à noter que pour une affectation M-V donnée de la torsion triangulaire dans ces huit types, la pliabilité rigide dépend aussi du choix des paramètres géométriques. Le boîtier rigide pliable peut devenir un boîtier non rigide en modifiant les paramètres géométriques. Par conséquent, nous pouvons concevoir une torsion de triangle rigide ou non-rigide en choisissant l'affectation M-V et les paramètres géométriques appropriés selon nos besoins. 

 Analyse cinématique et bifurcation du mécanisme de Bricard plan-symétrique

En tant que mécanisme 6R classique et sur-contraint, le mécanisme de Bricard à symétrie plane a été appliquée dans la conception de structures déployables en raison de sa rigidité structurelle et de sa fiabilité. En raison de la propriété de symétrie, le mécanisme de Bricard 6R symétrique a tendance à avoir des comportements de bifurcation compliqués, qui devraient être évités dans l'application de structures déployables, mais pourrait être utilisé dans la conception de mécanismes reconfigurables. Par conséquent, il est très important de réaliser l'analyse de la cinématique et de la bifurcation du mécanisme de Bricard plan-symétrique dans sa configuration générale.

Dans le 4 ème chapitre, les conditions cinématiques et de bifurcation du mécanisme de Bricard plan-symétrique général sont analysées en utilisant la méthode traditionnelle D-H, représenté sur la figure 6. Un ensemble d'équations de fermeture du contour du mécanisme de Bricard symétrique est dérivé sous des formes explicites. Les propriétés cinématiques du mécanisme dans diverses conditions géométriques sont comparées, y compris le nombre de branches de mouvement, les courbes cinématiques et les comportements de mouvement. En fixant une ou deux des variables cinématiques à 180 degrés, plusieurs mécanismes 5R / 4R sont dérivés, dont les conditions géométriques sont données. Avec l'étude approfondie de la cinématique et de la bifurcation du mécanisme plan-symétrique de Bricard, nous pouvons éviter la bifurcation en concevant correctement les paramètres géométriques ou en profitant de la bifurcation pour concevoir des mécanismes reconfigurables. Il est bien adapté pour être appliqué dans des géométries d'origami rigides. L'origami traditionnel de la waterbomb, produit à partir d'un modèle constitué d'une série de sommets où se rencontrent six plis, est l'un des modèles d'origami les plus utilisés. La base de la waterbomb (bombe à eau) à six plis comprend quatre plis de vallée en diagonale et deux plis de montagne colinéaires, représenté sur la figure 11. Puisqu'il a un grand rapport déployé/plié entre les configurations complètement expansées et complètement pliées, il est applicable pour plier des structures déployables telles que des toits pliables et des panneaux solaires. Dans l'origami rigide, un sommet à six plis peut être considéré comme un mécanisme 6R sphérique, qui a généralement trois degrés de liberté. Par conséquent, le modèle de la waterbomb a plusieurs degrés de liberté, et son mouvement est compliqué. Le pliage symétrique est souvent préféré dans la plupart des travaux de recherche ou dans les applications. Il est réalisé en le contraignant avec des conditions symétriques et en contrôlant ensuite le mouvement pour atteindre un état plat pliable idéal. Dans le 5 ème chapitre, la méthode d'analyse de l'origami rigide basée sur la cinématique spatiale est étendue de zéro-épaisseur à panneau épais des formes d'origami, et le pliage symétrique de l'origami est analysé. En supposant que chaque base de waterbomb ait un comportement de mouvement identique pendant le processus, on peut considérer que le modèle est constitué de deux types des sommets, l'un ayant la symétrie par rapport à une droite et par rapport à un plan, et l'autre ayant seulement la symétrie plane. L'origami à waterbomb de zéro-épaisseur correspond donc à un réseau de mécanismes sphériques 6R symétriques planes, tandis que la forme à panneau épais correspond à un réseau de mécanismes de Bricard symétriques planes. Considérant les conditions compatibles entre chaque sommet, les équations cinématiques des origamis à waterbomb avec des feuilles à zéro-épaisseur et des panneaux épais sont mises en place. L'étude paramétrique sur l'origami de la waterbomb est menée pour révéler ses comportements de mouvement des formes à zéro-épaisseur et à panneau épais, tels que le mouvement à deux étages représenté sur la figure 12 et l'interférence pendant le processus de mouvement représenté sur la figure 13. La comparaison détaillée sur le comportement cinématique de mouvement des formes à zéro-épaisseur et à panneau épais pour différents paramètres est donnée dans le tableau 1. En comparant leurs comportements de mouvement, on trouve que le pliage symétrique de l'origami de la waterbomb avec des feuilles à zéro-épaisseur et des panneaux épais est équivalent et possède un DOF. Il y a toujours deux chemins de pliage pour l'origami de la waterbomb à zéro-épaisseur, quels que soient les paramètres géométriques pris. La différence est de savoir si le chemin de pliage est lisse ou non. Cependant, l'origami de la waterbomb à panneau épais n'a que deux chemins de pliage dans des conditions géométriques spécifiques représenté sur la figure 14, ce qui correspond à la bifurcation du mécanisme de Bricard à symétrie plane. Ceci est dû au fait que l'épaisseur a fourni des contraintes géométriques supplémentaires. En dépit du fait que l'origami à panneau épais est né d'un origami existant de feuille de zéro-épaisseur, il a un certain nombre d'avantages sur son précurseur. Premièrement, la structure origami à panneaux épais est un assemblage mobile de mécanismes de Bricard sur-contraint avec un seul DOF, et donc aucune contrainte supplémentaire n'est requise pour maintenir son mouvement symétrique. Cela pourrait être un grand avantage pour les applications d'ingénierie, car son système de contrôle pourrait devenir beaucoup plus simple et fiable. Deuxièmement, en général, l'origami de la tessellation à la waterbomb pour une feuille de zéro-épaisseur a une singularité cinématique quand elle est plate et entièrement compacte. Cependant, pour les origamis à panneaux épais, la singularité n'apparaît que lorsqu'une épaisseur très spécifique est choisie. Une sélection appropriée de l'épaisseur des panneaux permet d'obtenir un origami de la waterbomb à panneau épais pour réaliser un pliage compact sans bifurcations. La trajectoire unique est certainement très souhaitable pour la plupart des applications pratiques. En outre, non seulement la tessellation à waterbomb pour les panneaux épais permet de plier la structure de manière compacte, mais un côté de la surface expansée est également complètement plat, ce qui permet au modèle d'origami de la waterbomb d'être directement applicable dans l'ingénierie. Lorsque les deux côtés verticaux du modèle de la waterbomb pliable à plat sont joints, un tube de la waterbomb est formé, représenté sur la figure 15. Il a été largement utilisé dans les domaines de l'ingénierie, notamment le stent origami médical déployable, les robots de locomotion semblables à des vers et des vers de terre, le robot à roues déformables, les muscles artificiels hautement efficaces, etc. Dans toutes les applications mentionnées ci-dessus, le tube de la waterbomb subit seulement une dilatation/contraction radiale, accompagnée de l'extension/raccourcissement dans la direction axiale. Malgré la large application, le comportement de mouvement du tube de la waterbomb est resté ambigu et sa cinématique doit être étudiée plus profondément. Différent du boîtier pliable à plat, le tube est composé de trois types des sommets. Compte tenu de la symétrie circonférentielle, chaque sommet peut être considéré comme un mécanisme sphérique 6R symétrique plan pendant le mouvement de contraction. En conséquence, le tube entier correspond à un réseau fermé de mécanismes sphériques 6R symétriques plans, qui a deux DOF. Pour un tube de la waterbomb avec un nombre impair de rangées, le sommet à six plis dans la rangée du milieu est un mécanisme sphérique 6R symétrique par rapport à une droite et par rapport à un plan sous la symétrie longitudinale, qui contraint davantage le DOF à un. Pour le tube de la waterbomb avec un nombre pair de rangées, les bases dans les deux rangées adjacentes au plan équatorial ont un mouvement identique, ce qui rend la structure rigide pliable avec une DOF dans ce cas. En outre, la plage du mouvement rigide est déterminée par la configuration entièrement serrée de la rangée du milieu et par la configuration la plus étendue de la rangée d'extrémité. Avec l'étude paramétrique, on voit que le tube plié peut subir des comportements différents, dont la condition de déclenchement peut être déterminée en utilisant la méthode d'analyse cinématique proposée de l'origami rigide sous les conditions géométriques spécifiées. Par exemple, certains tubes sont capables d'origami rigide pur représenté sur la figure 16, tandis que d'autres subiront une déformation structurelle entre des mouvements d'origami rigides représenté sur la figure 17, et la condition de transition est trouvée. La configuration de rayon uniforme du tube est rapportée. En combinant avec le mouvement de l'origami pliable de la waterbomb, l'existence et le nombre de configurations de rayon uniforme sont discutés. 

 Remarques Finales

La thèse se concentre sur une thématique de croisement entre la théorie du mécanisme et la science de l'origami. Elle explore la cinématique des mécanismes spatiaux et ses applications aux origamis rigides, allant de l'assemblage mobile de mécanismes 4R sphériques aux mécanismes 6R spatiaux sur-contraints, puis à l'assemblage mobile de mécanismes 6R sphériques et de mécanismes 6R spatiaux surcontraints, et finalement au réseau en boucle fermée de mécanismes 6R sphériques. Ces études aident à approfondir la compréhension de la cinématique des mécanismes spatiaux et du mouvement rigide de l'origami, et à jeter les bases des applications techniques des mécanismes spatiaux et des motifs d'origami rigides.

Le travail de cette thèse porte principalement sur l'étude théorique des mécanismes spatiaux et des origamis rigides. Il nous fournit plusieurs sujets à explorer plus loin, qui comprend la réalisation de prototype physique, la validation expérimentale et les applications d'ingénierie de ces mécanismes et des modèles d'origami comme indiqué ci-dessous. Tout d'abord, les applications potentielles et les adaptations du modèle d'origami à torsion triangulaire pliable dans la tessellation en tant qu'unité modulaire, ou dans la conception de structures déployables bioniques et de robots origami doivent être explorées. La cinématique du réseau de mécanismes 4R sphérique peut être davantage utilisée pour analyser la pliabilité rigide des autres modèles d'origami existants tels que les torsions hexagonales, ou pour générer de nouveaux modèles d'origami. La méthode proposée pour générer un mécanisme spatial sur-contraint à partir du réseau de mécanismes sphériques par la technique d'origami peut être étendue à d'autres types de modèles d'origami pour imaginer de nouveaux mécanismes.

Deuxièmement, le comportement de bifurcation du mécanisme de Bricard plansymétrique peut être utilisé dans la conception de mécanismes reconfigurables. La cinématique du mécanisme de Bricard plan-symétrique peut être appliquée à d'autres types de modèles d'origami à panneau épais composés de sommets à six plis, tels que le motif en losange et le motif Resch, etc. Plus de travail en matière de modèle de la waterbomb peut également être fait sur ses applications d'ingénierie telles que les panneaux solaires.

Troisièmement, les dispositifs d'ingénierie tubulaires à base de la waterbomb et les métamatériaux à rigidité programmable et de forme contrôlable peuvent être conçus sur la base du cas rigide ou non rigide du tube. Profitant du profil ondulatoire, un robot ver peut être conçu. La stratégie de contrôle pour maintenir la symétrie ou accomplir la transition entre la multitude de comportements de la waterbomb doit être recherchée pour faciliter ses applications. L'analyse sur le tube d'origami à panneau épais peut également être réalisée en même temps que le réseau tubulaire de mécanismes spatiaux sur-contraints.
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Abstract:

This dissertation conducts kinematic analysis of spatial linkages ranging from spherical linkages to overconstrained linkages based on the D-H matrix method, and applies it to explore the rigid foldability and motion behaviour of origami patterns. In this process, the rigid foldability of triangle twist origami pattern is firstly examined based on the kinematics of spherical 4R linkage network and new overconstrained 6R linkages are derived by kirigami technique. Then the kinematics of the plane-symmetric Bricard 6R linkage is analyzed and its bifurcation variations are discussed. After that, the results are applied to study the symmetric folding of six-crease thick-panel waterbomb origami, which is modelled as a network of planesymmetric Bricard 6R linkages. The motion behaviour of its corresponding tessellation of zerothickness sheet is demonstrated by a network of spherical 6R linkages. Finally, the motion behaviour of the closed cylindrical form of waterbomb origami is investigated through a parametric study, by means of modelling it as a closed network of spherical 6R linkages. These studies help to deepen the understanding of spatial linkage kinematics and rigid origami motion, and lay the foundation for engineering applications of spatial linkages and rigid origami patterns.
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Résumé:

La thèse conduit une analyse cinématique des mécanismes spatiaux allant de mécanismes sphériques aux mécanismes spatiaux sur-contraints basés sur la méthode matricielle D-H et l'applique pour explorer le comportement rigide de pliabilité et de mouvement des modèles d'origami. Dans ce processus, la pliabilité rigide du motif origami en torsion triangulaire est d'abord examinée sur la base de la cinématique du réseau de mécanismes 4R sphériques et de nouveaux mécanismes 6R sur-contraints dérivés par la technique du kirigami. Ensuite, la cinématique du mécanisme de Bricard 6R plan-symétrique est analysée et ses variations de bifurcation sont discutées. Après cela, les résultats sont appliqués pour étudier le pliage symétrique de l'origami de la waterbomb à six plis à panneau épais, qui est modélisé sous la forme d'un réseau de mécanismes de Bricard 6R plan-symétriques. Le comportement de mouvement de sa tessellation correspondante de feuille de zéro-épaisseur est démontré par un réseau de mécanismes 6R sphériques. Enfin, le comportement de mouvement de la forme cylindrique fermée de l'origami de la waterbomb est analysé à travers une étude paramétrique, en le modélisant comme un réseau fermé de mécanismes 6R sphériques. Ces études aident à approfondir la compréhension de la cinématique des mécanismes spatiaux et du mouvement rigide de l'origami, et à jeter les bases des applications techniques des mécanismes spatiaux et des motifs d'origami rigides.
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 393733835544344346355464504257435844 Fig. 3-9 Duplicated M-V assignments: (a) the M-V assignment obtained by flipping the paper in Fig. 3-8 No.5, (b) the one obtained by rotating (a) along the centre of the triangle, and (c) the one copied from Fig. 3-8 No.17. .......... 37 Fig. 3-10 Twelve unique schemes of M-V assignment of the generalized triangle twist pattern with vertex-types being (a) PPP, (b) PPQ, (c) PQQ, (d) PRR, (e) PRS, (f) PSS, (g)QQQ, (h) QRR, (i) QRS, (j) QSS, (k) PSR, and (l) QSR. ....... 38 Fig. 3-11 Physical triangle twist models with
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 61456246644644866570527053715475557656177577858805983584585586518761369162926966996510066101610268103691046105610761086109661111166131186119611961206121612361266127612863361326 Fig. 4-5 Bifurcation between the plane-symmetric Bricard linkage and the Bennett linkage when 3 5 = = θ θ π , where i-ii-iii-iv-v-vi-i correspond to configurations of the linkage along the plane-symmetric Bricard motion branch and i-viiviii-iv-ix-x-i correspond to configurations of the linkage along the Bennett motion branch. Here the geometrical parameters of this linkage are 1 a = ,
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 1336134661366 Fig. 6-29 Bifurcation behaviour during the twist motion of the fully squeezed waterbomb tube with uniform radius satisfying Eq. (6-49) where twist motion can occur from any row. Here the geometrical parameters are 3 m = ,

afnn

  , b , c Link lengths of the linkages i a , i b , i c Revolute joints in the equivalent spherical linkages of vertices A, B and C for the triangle twist pattern Links in the equivalent spherical linkages of vertices A, B and C for the triangle twist pattern a′ Thickness parameter for thick-panel waterbomb pattern, also the thickness of link 23 in the vertex B of the thickpanel waterbomb pattern d Length of edge AB in the central triangle of a triangle twist pattern i Number of degrees of freedom for the i th kinematic pair in a linkage g Number of kinematic pairs in a linkage k Number of links in a linkage m Number of waterbomb bases in the longitudinal direction of a waterbomb pattern n Number of waterbomb bases in the circumferential direction of a waterbomb pattern M Number of mountain creases for an origami vertex V Number of valley creases for an origami vertex Ai r , Bi r , Ci r Radii of vertices Ai, Bi and Ci of a waterbomb tube t Half width of the six-crease waterbomb base i x , i y , i z

φμμof the dihedral angles 1 j ϕ and 4 jμ

 14 AbbreviationsD-H notation Denavit-Hartenberg notation DOF Degree of freedom SVD Singular value decomposition M-V assignment Mountain-valley crease assignment EP Equatorial plane

  and i R is the normal distance between axes i x and 1 i x + , positive along i z . The kinematic variable i θ is defined as the angle of rotation from i x to 1 i x + , positive along i z , which measures the rotation between two links joined by the revolute joint i z .
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 2 Fig. 2-1 The D-H notation of adjacent links connected by revolute joints

- 6 )Fig. 2 - 2

 622 Fig. 2-2 The D-H notation of a portion of a spherical linkage
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 23 Fig. 2-3 Τhe Bennett linkage

Figure 2 -

 2 4 illustrates the construction of a serial Goldberg 6R linkage by combining three Bennett linkages where the common joints and links shown in dashed lines are removed. Since the Bennett linkage is the construction unit, its geometric condition should be satisfied for all Bennett-based overconstrained 6R linkages.
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 24 Fig. 2-4 Construction of a serial Goldberg 6R linkage

ForFig. 2 - 5

 25 Fig. 2-5 Bricard 6R linkages: (a) the general line-symmetric case, (b) the general planesymmetric case, (c) the trihedral case, (d) the line-symmetric octahedral case, (e) the planesymmetric octahedral case, and (f) the doubly collapsible octahedral case.
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 27 Fig. 2-7 Three typical types of origami twist patterns: (a) triangle twist, (b) square twist, and (c) hexagon twist.

Fig. 2 -

 2 Fig. 2-8 (a) The eight-crease waterbomb base, (b) one of its tessellations forming the Resch pattern, (c) partially folded Resch pattern; (d) the six-crease waterbomb base, (e) its tessellation in unfolded and folded states, and (f) the tessellation can also be used to form a tube.

  = , the sum of the alternative angles about the flat-foldable vertex is π .
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 29 Fig.2-9Thickness accommodation methods: (a) tapered panel technique[START_REF] Tachi | Rigid-foldable thick origami[END_REF], (b) offset panel technique[START_REF] Edmondson | An offset panel technique for thick rigidily foldable origami[END_REF], (c) offset crease technique[START_REF] Ku | Folding flat crease patterns with thick materials[END_REF], and (d) hinge shift technique[START_REF] Chen | Origami of thick panels[END_REF].
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 2 Fig. 2-10 Kirigami technique used in foldable structures: (a) a SILICOMB cellular structure [201],(b) a tapered honeycomb[START_REF] Nojima | Development of newly designed ultra-light core structures[END_REF], (c) a kirigami auxetic pyramidal lattice core[START_REF] Scarpa | Kirigami auxetic pyramidal core: mechanical properties and wave propagation analysis in damped lattice[END_REF], (d) a cellular kirigami morphing wingbox[START_REF] Saito | A cellular kirigami morphing wingbox concept[END_REF], (e) a Kapton kirigami structure for solar tracking[START_REF] Lamoureux | Dynamic kirigami structures for integrated solar tracking[END_REF], (f) a paper-based triboelectric nanogenerator[START_REF] Wu | Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns[END_REF], (g) a paper pop-up RSSR mechanism[START_REF] Winder | Kinematic representations of pop-up paper mechanisms[END_REF], and (h) a kirigami-enabled parallel mechanism[START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF].
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 3 Fig. 3-1 (a) An art triangle twist, (b) a generalized triangle twist, where 0 α , 0 β , 0 γ , 0 δ and 0 ε

Fig. 3 -

 3 Fig. 3-2 A spherical 4R linkage

  of the same assignment[START_REF] Evans | Rigidly foldable origami gadgets and tessellations[END_REF]. Assuming that 12 α is the minimum angle, there are totally four schemes of M-V assignment of the four-crease origami vertex as shown in Fig.3-3, where the mountain creases are illustrated by solid lines, the valley creases by dashed lines, and i ϕ is the dihedral angle of the facets with a common crease i z . If we flip the paper, the mountain creases become valley creases, and vice versa. Therefore, the schemes in Fig. 3-3(b) and (d) are duplicate cases of those in Fig. 3-3(a) and (c), respectively. The two solutions in Eqs. (3-3a) and (3-3b) correspond to the two schemes of M-V assignment in Fig. 3-3(a-b) and Fig. 3-3(c-d), respectively, which are named as Vertex-I and Vertex-II.
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 33 Fig. 3-3 Four-crease origami vertices with four schemes of M-V assignment: (a), (b) Vertex-I; and (c), (d) Vertex-II.
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 34 Fig. 3-4 The relationship between the kinematic variable and the dihedral angle for (a) mountain crease, and (b) valley crease.

Figure 3 -

 3 Figure 3-5(a) shows a generalized triangle twist origami pattern with a specific M-V assignment. Since a four-crease vertex in rigid origami is kinematically equivalent to a spherical 4R linkage, the triangle twist origami pattern can be modelled as a network of three spherical 4R linkages. Assuming 12 ( , , ) j j a b c

Fig. 3 -

 3 Fig. 3-5 A generalized triangle twist origami pattern with a specific M-V assignment: (a) the general representation, and (b) the simplified one.

- 11 )

 11 With defined values of α and β , assigning arbitrary values within the domain of definition in Eq. (3-5) to γ and δ , we can always find a ε to satisfy the compatible condition in Eq. (3-11) as 1 2arctan

- 12 )

 12 Once the value of ε obtained by Eq.(3)(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF] locates in the domain (0, ) π , the triangle twist pattern is rigidly foldable.Depending on the position relation of the three crease-pairs 3 triangle twist origami pattern can be divided into three types, where each crease-pair is intersected, or only one crease-pair is parallel, or each crease-pair is parallel as shown in Fig.3-6(a-c) respectively.
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 36323 Fig. 3-6 Three types of the triangle twist pattern where (a) each crease-pair is intersected, or (b) only one crease-pair is parallel, or (c) each crease-pair is parallel.

Figϕ and 4 ϕFor Type Q with 23 αFor Type R with 34 αFor Type S with 41 αFig. 3 - 7

 423344137 Fig. 3-7 by combining repeated cases. By defining
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 38 Fig. 3-8 All possible schemes of M-V assignment of a generalized triangle twist: No.1 PPP, No.2 PPQ, No.3 PQP, No.4 PQQ, No.5 PRR, No.6 PRS, No.7 PSR, No.8 PSS, No.9 QPP, No.10 QPQ, No.11 QQP, No.12 QQQ, No.13 QRR, No.14 QRS, No.15 QSR, No.16 QSS, No.17 RPR, No.18 RPS, No.19 RQR, No.20 RQS, No.21 RRP, No.22 RRQ, No.23 RSP, No.24 RSQ, No.25 SPR, No.26 SPS, No.27 SQR, No.28 SQS, No.29 SRP, No.30 SRQ, No.31 SSP, and No.32 SSQ.
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 38 Fig. 3-8 All possible schemes of M-V assignment of a generalized triangle twist: No.1 PPP, No.2 PPQ, No.3 PQP, No.4 PQQ, No.5 PRR, No.6 PRS, No.7 PSR, No.8 PSS, No.9 QPP, No.10 QPQ, No.11 QQP, No.12 QQQ, No.13 QRR, No.14 QRS, No.15 QSR, No.16 QSS, No.17 RPR, No.18 RPS, No.19 RQR, No.20 RQS, No.21 RRP, No.22 RRQ, No.23 RSP, No.24 RSQ, No.25 SPR, No.26 SPS, No.27 SQR, No.28 SQS, No.29 SRP, No.30 SRQ, No.31 SSP, and No.32 SSQ. (Continued.)

  -9(a) (PRR) is a duplicate of the one in Fig.3-8No.5 with the inverted configuration. Second, the M-V assignment would be duplicated if we change the vertex arrangement by rotating it along the centre of the triangle. For example, the M-V assignment in Fig.3-9(b) is a duplicate of the one in Fig.3-9(a) obtained by rotation. Considering the generality of the central triangle, the M-V assignment in Fig.3-9(b) is equal to the one in Fig.3-9(c) (RPR) that copied from Fig.3-8No.17. That is, the PRR twist in Fig.3-8No.5 and the RPR twist in Fig.3-8No.17 can be regarded as the same. As a result, twelve unique schemes of M-V assignment are obtained, which are denoted as PPP, PPQ, PQQ, PRR, PRS, PSS, QQQ, QRR, QRS, QSS, PSR and QSR as shown in Fig.3-10, where the pattern shown in Fig.3-5 is a duplicate obtained by rotating the type of PSS twist shown in Fig.3-10(f).
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 39 Fig. 3-9 Duplicated M-V assignments: (a) the M-V assignment obtained by flipping the paper in Fig. 3-8 No.5, (b) the one obtained by rotating (a) along the centre of the triangle, and (c) the one copied from Fig. 3-8 No.17.
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 34 Fig. 3-10 Twelve unique schemes of M-V assignment of the generalized triangle twist pattern with vertex-types being (a) PPP, (b) PPQ, (c) PQQ, (d) PRR, (e) PRS, (f) PSS, (g)QQQ, (h) QRR, (i) QRS, (j) QSS, (k) PSR, and (l) QSR.

  When arbitrary values are assigned to α , β , γ and δ , we can find a ε according to the compatible condition in Eq. (3-11) as 2 2

  When arbitrary values are assigned to α , β , γ and δ , we can find a ε according to the compatible condition in Eq.(3

  When arbitrary values are assigned to α , β , γ and δ , we can find a ε according to the compatible condition in Eq. (3-11) as 5 5

c

  μ < . When arbitrary values are assigned to α , β , γ and δ , we can find a ε according to the compatible condition in Eq. (3-11) as 6 6

  When arbitrary values are assigned to α , β , γ and δ , we can find a ε according to the compatible condition in Eq. (3type of QRR twist is rigidly foldable once the obtained ε is within the range (0, ) π .For the QRS twist (Fig.3-10(i)), the j i When arbitrary values are assigned to α , β , γ and δ , we can find a ε according to the compatible condition in Eq. (3-11) as 9 9

  . When arbitrary values are assigned to α , β , γ and δ , we can find a ε according to the compatible condition in Eq.(3)(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF] type of PSR twist is rigidly foldable once the obtained ε is within the range (0, ) π .For the QSR twist (Fig.3-10(l)), the j i When arbitrary values are assigned to α , β , γ and δ , we can find a ε according to the compatible condition in Eq.(3)(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF] type of QSR twist is rigidly foldable once the obtained ε is within the range (0, ) π .In summary, only the PPQ, PQQ, PRS, PSS, QRR, QRS, PSR and QSR twists as shown in Fig.3-10 (b), (c), (e), (f), (h), (i), (k) and (l) are rigidly foldable, whereas the PPP, PRR, QQQ and QSS twists not. It should be noted that for a given M-V assignment of the triangle twist within these eight types, the rigid foldability depends on the choice of geometrical parameters as well. For example, the triangle twist pattern of type PSR with

  Fig. 3-11(a), can be built as shown in Fig. 3-12(a). Creases of vertices A, B and C are equivalent to joints i a , i b and i c respectively, where joints 4

Fig. 3 -α

 3 Fig. 3-11 Physical triangle twist models with 55 α =  ,



  for (a) origami pattern, and (b) kirigami pattern.

Fig. 3 -

 3 Fig. 3-12 Equivalent mechanisms of the generalized triangle twist: (a) the network of three spherical 4R linkages for the origami pattern, and (b) the derived overconstrained 6R linkage for the kirigami pattern.

55 α

 55 can be seen that kinematics of the derived doubly collapsible octahedral Bricard is not related to the value of d . It is determined by relative position of their axes. Kinematic paths of an instance with are plotted as solid lines in Fig.3-14. 
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 33 Fig. 3-13 Schematic diagrams of the derived overconstrained 6R linkages when (a) γ δ ≠ , and (b)

  the points A, B, C, E and F respectively. The length of link 12 is the distance between the parallel crease-pair, whereas those of all the other links and the twist angle of link 12 are zero. The geometrical parameters of the

Fig. 4 -

 4 Fig. 4-1 D-H parameters of the plane-symmetric Bricard linkage

  Therefore, Eqs. (4-3), (4-9), (4-10) and (4-11) form the only set of explicit solutions to closure equation of the plane-symmetric Bricard linkage when 0 A = .

  (a) When 0 A = , six cases (Cases 1 to 6 ) can be derived from Eq. (4-14) where only one kinematic path exists. (b) When 0 A ≠ and 0 Δ < , there is no kinematic path, i.e., the mechanism is rigid structure in Case 7. (c) When 0 A ≠ and 0 Δ = , there is one kinematic path, corresponding to Case 8. (d) When 0 A ≠ and 0 Δ > , there are two set of solutions with 2 θ as the input variable. A careful check reveals that for Case 10, two sets of different kinematic curves exists corresponding to two different linkage closures, which can switch to each other at the collinear configurations.
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 41 The kinematic properties of the plane-symmetric Bricard linkage

  6 have no complete rotation in the top left figure. (So joint 1 is taken as input in bottom left figure.) Joint 4 rotates three angular strokes while joints 1, 3

Fig. 4 - 2

 42 Fig. 4-2 The degenerated plane-symmetric Bricard linkage: (a) when 1 = θ π , (b) when

Fig. 4 - 3

 43 Fig. 4-3 The plane-symmetric Bricard when 1 = θ π : (a) the degenerated planar 5R linkage with two joints 2 and 6 coincide, (b) the degenerated spherical 5R linkage with two joints 2 and 6 coincide, and (c) the degenerated serial kinematic chain with joints 2, 6 and 3, 5 both coincide.

23 )

 23 .(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF][START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF][START_REF] Dai | Origami-based robotic paper-and-board packaging for food industry[END_REF][START_REF] Yao | Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space[END_REF][START_REF] Ma | An origami-inspired structure with graded stiffness [J][END_REF], the geometric condition to make the plane-symmetric Bricard linkage degenerate to a movable 4R linkage is obtained 0 The type of the resultant 4R linkage depends on the choice of geometrical parameters that meet Eq.(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF][START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF][START_REF] Dai | Origami-based robotic paper-and-board packaging for food industry[END_REF][START_REF] Yao | Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space[END_REF][START_REF] Ma | An origami-inspired structure with graded stiffness [J][END_REF][START_REF] Dai | Mobility in metamorphic mechanisms of foldable/erectable kinds [J][END_REF] or(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF][START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF][START_REF] Dai | Origami-based robotic paper-and-board packaging for food industry[END_REF][START_REF] Yao | Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space[END_REF][START_REF] Ma | An origami-inspired structure with graded stiffness [J][END_REF][START_REF] Dai | Mobility in metamorphic mechanisms of foldable/erectable kinds [J][END_REF][START_REF] Dai | Configuration transformations in metamorphic mechanisms of foldable/erectable kinds[END_REF]. For example, if we set the geometric the movable linkage is a spherical 4R linkage. the linkage degenerates to a planar 4R linkage. Moreover, a Bennett linkage is obtained when the condition is set as a b c = + ,

  Similarly, in Fig.4-2(c) links 23 and 34 are coincident as well as links 45 and 56, which makes the linkage generate a 4R linkage. The condition of a moveable 4R linkage is obtained by substituting 3 5 = = θ θ π to the closure equation as Eq. (4-2). Considering entries (1, 3) and (1, 4) (shown in Appendix A) of Eq. (4-2), which contain kinematic variables 1θ and 2 θ , the linkage is moveable only when

=

  the resultant movable 4R linkage varies with the choice of geometrical parameters according to Eq. (4-27) or (4-28). When all link lengths and offsets are set zero, the resultant 4R linkage could be a spherical 4R linkage. When all twists and offsets are zero, a planar 4R linkage is obtained. The condition to obtain a Bennett linkage is b a c = + , γ α β As shown in Fig. 4-2(d), link 34 coincides with link 45 in this case, making the resultant linkage a 5R linkage. Substituting 4 = θ π to the closure equation as Eq. (4-2),

  ∈ . Considering the plane symmetry of the Bricard linkage, the degenerated linkage is similar as the case when 1 = θ π .

  The linkage would have two solutions given as the equation set (4-3),(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF],(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF] and(4)(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF]. However, there is only one plane-symmetric 6R motion branch represented by the solid line as shown in Fig.4-4and denoted as path I, which corresponds to Case 9 in Table 4-1. The revolute joints 2 θ and 6 θ have no complete rotation. Moreover, there is another motion branch when 2 6 = = θ θ π , shown as the dashed line in Fig. 4-4 and denoted as path II, where the linkage works as a Bennett linkage
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 44 Fig. 4-4 Bifurcation between the plane-symmetric Bricard linkage and the Bennett linkage when 2 6 = = θ θ π , where i-ii-iii-iv-v-vi-i correspond to configurations of the linkage along the plane- symmetric Bricard motion branch and i-vii-viii-iv-ix-x-i correspond to configurations of the linkage along the Bennett motion branch. Here the geometrical parameters of this linkage are 3 a = , 2 b = , 1 c = , / 12 α π = , / 3 β π = , 4 γ π = / and 2
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 45 Fig. 4-5 Bifurcation between the plane-symmetric Bricard linkage and the Bennett linkage when3 5 = = θ θ π , where i-ii-iii-iv-v-vi-i correspond to configurations of the linkage along the plane- symmetric Bricard motion branch and i-vii-viii-iv-ix-x-i correspond to configurations of the linkage along the Bennett motion branch. Here the geometrical parameters of this linkage are 1 a = , 3 b = , 2 c = , / 4 α π = , / 3 β π = , 7 12 γ π = / and 2
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 46 Fig. 4-6 Bifurcation between two 6R motion branches, where i-ii-iii-iv-i correspond to configurations of the linkage along path I and i-vi-iii-v-i correspond to configurations of the linkage along path II. Here the geometrical parameters of this linkage are 2 a = , 1 b = , 1 c = , 2 / 3 α π = , / 6 β π = , / 6 γ π = -and 2
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 48 Fig. 4-8 Bifurcation of the plane-symmetric Bricard linkage: (a) between two equivalent singlerevolute-joint branches and a serial kinematic chain with two revolute joints branch; (b) between two equivalent single-revolute-joint branches and a four-bar double-rocker linkage branch, where i-ii-iii-iv correspond to configurations of the linkage along path I, iv-v-vi correspond to configurations of the linkage along path II, vi-vii-viii-ix correspond to configurations of the linkage along path III, and viii-x-xi-xii-ii-xiii-xiv-xv correspond to configurations of the linkage along path IV.
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 5 Fig. 5-1 (a) The six-crease waterbomb base, and (b) the waterbomb origami pattern formed by tessellating the waterbomb bases

Fig. 5 - 2

 52 Fig. 5-2 Kinematic modelling of the generalized waterbomb tube: (a), (b) and (c), spherical linkage Ai, Bi and Ci, respectively.

- 3 )δ

 3 Vertex A can be regarded as a spherical 6R linkage with the geometric parameters closure condition of the linkage, Eq. (5-1), we can then write the closure equations as is the kinematic variable of crease i in the vertex A according to the D-H notation as shown in Fig.5-3(a).

Fig. 5 -ω

 5 Fig. 5-3 Set-up of coordinates and kinematic parameters for (a) zero-thickness, and (b) thickpanel origami according to the D-H notation

  -7b) Together with Eqs. and, the entire sets of closure equations of waterbomb pattern have been obtained.The kinematic variables, or rotations about each crease, can be replaced by the dihedral angles i ϕ and i φ between adjacent panels connected by the crease as shown in Fig.5-3(a). The relationship between the kinematic variables and dihedral angels are vertex B. Thus the two sets of kinematic relationships of the waterbomb pattern presented by the dihedral angels become

1 φ 1 φFig. 5 -Fig. 5 - 5 .

 11555 Fig. 5-2(b) become collinear. As a result, they fold together like a single crease with 1 φ π = . When 1 φ π ≠ , Eq. (5-8) becomes a strainght line with 2 0 φ = . Therefore, Path I breaks down into two straight lines. A particular case with / 4 α β π = = is shown in

Fig. 5 - 4

 54 Fig. 5-4 Kinematic behaviour of the waterbomb origami pattern with 2 / 9 α π = , 2 / 9 β π = . Kinematic relationships of vertices (a) B, and (b) A; and (c) two folding paths with configurations i-viii.

Fig. 5 - 5 1 φ

 551 Fig. 5-5 Two-stage motion of path I with / 4 α π = , / 4 β π = . (a) Folding paths with configurations i-xi, and (b) kinematic relationships of vertex B.

Fig. 5 - 6 and 1 φFig. 5 - 7 ≠=≠=≠

 56157 Fig. 5-6 Blockage of waterbomb origami pattern with 7 / 36 α π = , / 4 β π = . (a) Kinematic

Fig. 5 αFig. 5 - 8

 558 Fig. 5-2(b),

  is the kinematic variable of crease in the vertex B of the thick-panel origami according to the D-H notation as shown in Fig. 5-3(b). The above two sets of closure equations can be written in terms of dihedral angels. Noting that the relationship between the kinematic variables i ω′ and dihedral angels i φ′ at vertex B
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 5 [START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF], at vertex A and the first set of closure equations, Eq.(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF][START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF][START_REF] Dai | Origami-based robotic paper-and-board packaging for food industry[END_REF] at vertex B Because Eqs. (5-15a) and(5-19a) are identical, the compatibility between vertex A and B, Eq.(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF][START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF][START_REF] Dai | Origami-based robotic paper-and-board packaging for food industry[END_REF][START_REF] Yao | Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space[END_REF][START_REF] Ma | An origami-inspired structure with graded stiffness [J][END_REF], is satisfied automatically. Therefore, there is always a smooth folding path for the thick-panel origami for any 0 μ ≠ , see Fig. 5-9(a-c), in which μ is randomly selected as 0.5. By comparing Eqs. (5-15) and (5-19) for the thick panel with Eq. (5-8) for the zero-thickness sheet, we can conclude that the thick-panel origami and the path I of the original waterbomb origami pattern are kinematically identical, as demonstrated by the folding sequence of the physical models in Fig. 5-10. The motions of both structures are line-and plane-symmetric.

Fig. 5 - 9

 59 Fig. 5-9 The kinematic paths of thick-panel waterbomb when 7 / 36 α π = , / 4 β π = , 0.5 μ =

Fig. 5 -

 5 Fig. 5-10 Deployable sequences of physical models of the waterbomb pattern with zero-thickness sheets and thick panels when 7 / 36 α π = , / 4 β π = , 0.5 μ =

( 5 -.

 5 [START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF], at vertex A and the second set of closure equations, Eq.(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF][START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF][START_REF] Dai | Origami-based robotic paper-and-board packaging for food industry[END_REF][START_REF] Yao | Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space[END_REF] at vertex B Consider Eqs. (5-15a) and(5-20a). Under the compatibility condition given by Eq.(5-21), there must be cos solution given in Eq. (5-22a), Eq. (5-20) effectively coincides with Eq.(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF][START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF][START_REF] Dai | Origami-based robotic paper-and-board packaging for food industry[END_REF], and thus there is only one set of closure equations for vertex B. Only one folding path exists as shown in Fig.5-12 for the case where 7 Note that this path matches that shown in Fig.5-9(c) despite that in the latter, μ is randomly selected as 0.5. The motion behaviour of the thick-panel waterbomb remains the same as the zero-thickness origami in path I, and thus it is named as path I for thick panel origami. Moreover, when / 2 22a). So it will not be considered.

Fig. 5 -

 5 Fig. 5-11 Folding path of thick-panel waterbomb pattern with / 6 α π = , / 3 β π = ,

Fig. 5 -

 5 Fig. 5-12 Folding path of thick-panel waterbomb pattern with 7 / 36 α π = , / 4 β π = and

•

  the same conclusion as zero-thickness origami pattern summarized in section 5.3. And to avoid the interference at vertex A during the folding, The second set of closure equations, Eq.(5)(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF], at vertex A The other set of closure equations given by Eq. (5-16) at vertex A signify that in the thick-panel case, there exists a folding path that violates the line symmetry. However, this path is practically always blocked since 3 ϕ′ and 2 ϕ′ , 4 ϕ′ and 1 ϕ′ always have opposite signs as indicated by Eq. (5-16b).Therefore, the behaviour of the general thick-panel waterbomb can be summarized there is one two-stage folding path, path I, with blockage. there is one blocked folding path.

Fig. 5 -=

 5 Fig. 5-13 Folding sequence for patterns with 2 / 9 α β π = = and 1 μ = . (a) Two folding paths exist; physical models of zero-thickness sheet (top) and thick panels that fold along (b) path I, and (c) path II.

- 1 .

 1 In the completely packaged configuration, the dimension in the vertical direction will be 2 of the larger triangles in the vertex A and the cross-section dimensions are the width of the larger triangles in the vertex A and the overall thickness as 2

Fig. 6 - 1

 61 Fig. 6-1 The generalized waterbomb tube with 3 m = and 6 n = formed by joining together two vertical sides of the waterbomb origami pattern in Fig. 5-1(b).

  Fig. 6-2. First, a waterbomb tube is created of uniform radius, Fig. 6-2(i) (It will be demonstrated later

Fig. 6 - 2

 62 Fig. 6-2 Card model of a waterbomb tube from the expanded configuration (i) to the fully contracted configuration (vi). Additional twist is possible (vii and viii) that further shortens the model.

δ

  ) work in a planesymmetric way during the contraction phase. Different from the flat-foldable case, the linkage Ai is regarded as a spherical 6R linkage with only plane symmetry here. Its geometrical parameters ( i indicates the row number where the base locates, and 1, 2, ..., 6 j = ) are the kinematic variables of the linkage Ai defined according to the D-H notation. Applying the closure equation as Eq.

  -3c)For the linkage Bi (Fig.5-2(b)), its kinematic twists are

1 ϕFig. 6 -

 16 Fig. 6-3 (a) Top half of a longitudinal strip in a waterbomb tube. Vertices are marked as A, B and C. E E′ -is the equator of the tube. (b) A 3D view of a waterbomb tube with equatorial row (Row 0) and rows immediately adjacent to it. One of the base on Row 0 is shown in blue. (c) The projection view of the waterbomb tube with only Row 0 shown. O 0 is the centre of the tube. EP is short for equatorial plane.

1 ϕ• 4 0

 14 -13c) Eqs.(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF],(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF] and(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF] hold for 1, 2, ...,( 3. (6-10). Because the top and bottom halves of the tube have the same motion, hereafter only the equations for top half are given. Therefore, the whole kinematic set of the waterbomb tube is formed by Eqs. (6-7) and (6-10) to(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF]. Only 0,is needed to determine the motion of the entire waterbomb tube, which demonstrates that the DOF of the tube under circumferential and longitudinal symmetry is one. Rigid motion range and interferences at both ends of a tube Two limiting values of θ , min θ and max θ , exist. They are determined by three constraints. First, the tube will not be further contracted when it arrives at the most compact-folding cylindrical configuration where linkage B0 is fully folded with B0,φ = , i.e., two triangular facets on either side of the shared crease 0 1 B C - connecting two adjacent bases of Row 0 completely overlap. By using Eq. (6-10)tube will not be further expanded when it arrives at the most deployed configuration in which top sides of the bases on Row (m-1)/2 form an n-sided regular polygon with a side length of 2t

  folding of the waterbomb tube is rigid motion wihout kinematic interference, and its kinematic relationship is given by Eqs. (6-7) and (6paths are plotted as Fig.6-5.

Fig. 6 - 1 ϕFig. 6 - 5

 6165 Fig. 6-4 3D and projected views of a tube with 3 m = , 6 n = and

  coordinates of each vertex in the longitudinal strip as shown in Fig.6-3(a) can be calculated as

  . (6-17) and (6-18), / r t and / L t are plotted against θ in Fig. 6- 6(a) and Fig. 6-6(b), respectively.

Fig. 6 - 6

 66 Fig. 6-6 Variation of (a) radii of vertices A, B and C, and (b) the length of the tube with respect to θ when 6 n = , 3 m = and

24 .

 24 The motion sequence of such a tube is shown in Fig.6-7, where configurations I and V correspond to cases where θ is at its lower and upper bounds, respectively.

Fig. 6 -

 6 Fig. 6-7 3D and projected views of the tube with 6 n = , 7 m = and

Fig. 6 - 8 Fig. 6 - 9 Fig. 6 -

 68696 Fig. 6-8 Kinematic paths of a waterbomb tube with 6 n = , 7 m = and

•

  Mechanism-structure-mechanism transition Based on the above analysis, this tube can only have rigid origami motion within two distinct regions in terms of θ : and III R , the ends of the cylinder close, forming a concealed polyhedron. Between configurations III L and III R , panel intersection occurs at the two end rows, which is clearly shown in configuration III in Fig.6-7. Thus, a real tube made from a non-rigid sheet has to deform as a structure, instead of a mechanism, in order to move from one rigidly foldable region to the other. The tube must therefore undergo a mechanism-structure-mechanism transition.

  an example. Figure6-11 presents A3 / r t vs. θ for various α . It can be seen that the transition occurs only when 44the tube only experiences a mechanism-structure transition. That is, it can shrink from configuration V, but the motion range is curtailed due to physical interference and the fact that there is no second rigid origami region. For instance, when 40 α =  , the motion region is limited to

Fig. 6 -

 6 Fig. 6-11 Relationship among A3 / r t , radius of vertices A3, θ and α . Some values of α are listed alongside their corresponding curves. The shaded plane is where A3 0 r = . Blue solid lines are for A3 0 r > and the grey dashed line for A3 0 r < . Physical interference happens when A3 0 r < .

- 21 ) 1 ϕ will be reduced from o 180 .

 211180 Once both Eqs.(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF] and(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF][START_REF] Felton | A method for building selffolding machines[END_REF][START_REF] Zhang | An extensible continuum robot with integrated origami parallel modules[END_REF][START_REF] Zhang | Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators[END_REF][START_REF] Filipov | Origami tubes with reconfigurable polygonal cross-sections[END_REF][START_REF] Ma | Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation[END_REF][START_REF] Dai | Origami-based robotic paper-and-board packaging for food industry[END_REF][START_REF] Yao | Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space[END_REF][START_REF] Ma | An origami-inspired structure with graded stiffness [J][END_REF] are satisfied, the flat paper would fold to a waterbomb tube with a uniform radius. to configurations II and IV, respectively, given in Fig.6-4to Fig.6-10. When a flat sheet of paper is folded according to the waterbomb pattern, the dihedral angle 0,The first reached cylindrical shape will be the configuration IV as it has a larger radius than that of configuration II.It should be pointed out that the existence of tube configurations with uniform radius is solely decided by parameters α , β and n. It is not related to m. Moreover, the tube with a uniform radius can be obtained only when 5 n

Figure 6 ϕ

 6 Figure 6-12 shows 0,1

Fig. 6 - 1 ϕ

 61 Fig. 6-12 The configuration of tube with a uniform radius to be obtained by folding the flat origami pattern into the tube presenting with curve of 0,1

Fig. 6 -,

 6 Fig. 6-13 Relationship among 0,1

Figure 6 -

 6 14(d) presents the case when o 44.8 α = .

Fig. 6 -

 6 Fig. 6-14 The curves of 0,1

Figure 6 - 40 α = . 6 . 2 . 3

 640623 14(f) shows an instance in this case with o Contraction of a Tube with an Even Number of Rows For a waterbomb tube made of an even number of rows (i.e., m is even), there is no equatorial row that is both line-and plane-symmetric. As a result, the EP slices through the middle points of the respective top and bottom edges of the bases on two rows immediately above and below the plane. To facilitate the derivation, the row below is named as Row 0, and the row above as Row 1, see Fig.6-15(a). The plane symmetry remains for all the bases. Equations(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF],(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF] and (6-13) still hold where 1, 2, ..., / 2 1 i m = -. Once the motion of Row 0 and Row 1 is determined, the motion of all the other rows can be obtained accordingly.

Fig. 6 -

 6 Fig. 6-15 Projection of Row 1 of the waterbomb tube onto the EP when m is even: (a) 3D view, and (b) top view.

1 ϕB 1 ϕ

 11 because of Eqs.(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF] to(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF], 0,1max ϕ can now be obtained. Intersecting with the solutions of B ,4 0 ( 0, 1, ..., / 2) range of rigid motion without interference can be obtained. To acquire the corresponding 0,1 ϕ when physical interference occurs, let from Eq. (6-11a). We can recycle simultaneous equations in Eqs.(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF] to(6)(7)(8)(9)[START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF][START_REF] Filipov | Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[END_REF][START_REF] Zhou | Origami mechanical metamaterials based on the Miuraderivative fold patterns[END_REF][START_REF] Fang | Programmable self-locking origami mechanical metamaterials[END_REF] to obtain 0,, where the row number i in those equation is replaced by /

  [START_REF] Liu | Deployable prismatic structures with rigid origami patterns[END_REF] and, and the corresponding configurations of the tube are named as configurations I and V, respectively. By solving simultaneous equations as Eqs. (6-32a) and (6-32b) with C3,are referred to as configurations III L and III R .

Figure 6 - 1 ϕ

 61 Figure 6-16(a-b) shows the kinematic relationships of the dihedral angles B ,4 i φ

Fig. 6

 6 Fig. 6-16 A waterbomb tube with 6 n = , 8 m = and

  and the rigid origami range of the tube decreases when α gets larger. range shrinks when α decreases.

B- 1 r

 1 two ends of the tube occurs sooner with an increase in the row number m. For instance, when 13 m = , there are two rigid origami regions around the two uniform radius configurations: subsequent discussions, the focus is only put on the first range as the second range is rather narrow.For the first range, the radius of each vertex on the equatorial row ( A0 r , B0 r , C0 r , , C-1 r ) and the end row( A6 r , B6 r , C6 r , B5 r , C5r) where interference may occur vs. θ are plotted as in Fig. 6-17(a), where the blue, black and red lines represent the radii of vertices A, B and C, respectively. It can be seen from Fig. 6-17(a) that A0 0 r = at configuration I and A6 0 r = at configuration III L . The curves of B-1 r and C0 r coincide, so do the curves of C-1 r and B0 r , which means the equatorial row is in both line and plane symmetry and creases are parallel to the axis of the tube. However, the curves of B5 r and C5 r approximate to the curves of C6 r and B6 r respectively, meaning that the creases 5 6 B C and 6 5 B C on two sides of bases on Row 6 (Fig. 6-18) become almost parallel to the axis of the tube. This particular configuration

7 i = to 12 i

 12 = , which reveals the wave-like shape of the tube. with two completed waves is presented in Fig.6-18.The waterbomb tubes with wave-like shape exist for various n and α . L III θ , angle θ at configuration III L can be obtained where A 0 tube with rigid foldability exists only when 5 n ≥ , as there is no uniform radius configuration for the tube when 5 n < . The changes of I θ , II θ (angles θ corresponding to configurations I, II, respectively) and L III θ are plotted in Fig. 6-19(a) with n taken from 5 to 20. On the other hand, I Fig. 6-19(b) where n is chosen to be 6. Meanwhile, when n varies, min α , the minimum value of α is obtained by -shaped tube without interference does not exist. Similarly, max α , the maximum value of α , can be obtained by letting L II III θ θ = .For the tubes with even number of rows, the middle two rows are in plane symmetry, and the top and bottom halves of the tube, partitioned by the EP, have the same motion. When 6 m = , the creases connecting the adjacent two bases on Rows -5, 0, 1 and 6 are all nearly parallel to the axis of the tube.

Fig. 6 -r

 6 Fig. 6-17 Radii of some vertices of the tube vs.θ when 6 n = and

Fig. 6 -Fig. 6 -

 66 Fig. 6-18 Three configurations of a long tube with 6 n = , 25 m = and

Figure 6 -

 6 20(a) shows such a truncated tube of 8 rows, 5 above and 2 below Row 0. This 8-row tube is actually able to follow the motion of an odd row tube ( 11 m = ) during the contraction phase, with bases on Row 0 being kept in both plane and line symmetry. Moreover, the same 8-row tube may also track the motion of an even row tube as shown in Fig.6-20(b), this particular tube can in fact switch from an odd row tube motion to an even row tube motion at the configurations where it has the uniform radius. For instance, the tube can also expand from configuration I', to II (the middle configurations in Figs.6-20(a-b)), and then further to III L (Fig.6-20(b)). In the language of kinematics, a bifurcation of motion exists, and the uniform radius configuration is the bifurcation configuration.

Fig. 6 -

 6 Fig. 6-20 (a)Three configurations of an 8-row tube obtained by truncating a long tube. It keeps on the motion path of an odd row tube. (b) Three configurations of the same tube if it tracks the motion of an even-row tube (This is in fact a reproduction of first three configurations of Fig. 6-16(c)).

6- 21 4 φFig. 6 -

 2146 Fig. 6-21 The twist phase of the waterbomb tube. (a) 3D view of a portion of tube when it completes the the contraction phase. Some of the representative vertices and dihedral angles are marked. Only three rows of the tube are shown: the equatorial row and two rows immediately adjacent to it. (b) Partially twist configuration of the tube.

Fig. 6 -

 6 Fig. 6-22 The geometry of the line-symmetric linkage A0 on the equatorial row

Since B0, 4 0

 4 φ = , linkage B0 degenerates to a spherical 4R linkage with joint 4 frozen and joints 3 and 5 combining into one joint. The geometrical parameters of this

  complete the set of kinematic relationships of the entire tube. Only one variable, 0,2 ϕ , is needed to determine the motion of the tube, i.e., the tube is rigidly foldable with one DOF. The kinematic paths of the tube with 6 n = and o 45 α β = = are plotted as shown in Fig. 6-23, where the range of 0,2 ϕ is determined by the two limiting positions: to counter-clockwise and clockwise twist, respectively.

Fig. 6 -

 6 Fig. 6-23 Twist motion on the equatorial row of a waterbomb tube with 6 n = and

  symmetric motion. This can be clearly demonstrated by plotting the kinematic paths of the contraction motion in the same diagrams given in Figs. 6-23(a-b) (grey and grey dash lines), in which those bifurcation points are marked by shaded circles. The twist motion further shortens the overall length of the tube (Fig. 6-24(a)), but the radii of the vertices become slightly larger (Fig. 6-24(b)). It enables all the bases on Row 0 to reach its most compact folding configuration at either o

Fig. 6 - 2 ϕ• 1 BFig. 6 -A

 6216 Fig. 6-24 Twist motion on the equatorial row of a waterbomb tube with 6 n = , 3 m = and o 45 α β = = . (a) Length of the tube vs. 0,2 ϕ . (b) Radii of vertices A, B, and C vs. 0,2 ϕ .

• 2 ϕ 2 ϕ

 22 r > , the existence of rigid twist folding is determined by the most deployed configuration when linkage A(m-1)/2 on Row (m-1minimum of β , min β , is obtained by Eq.(6- 15), which is related to α , m and n . Therefore, the range of β for the generalized waterbomb tube with rigid twist folding is min max m is even, except the case where all A =0 i r , there exists no row with line and plane symmetry and therefore no rigid twist folding occurs. Once the geometrical parameters α , β , n and m are given, the existence of rigid twist motion is determined. Range of rigid twist motion Now we are going to find out the range of folding angle 0,if the existence of rigid twist folding is certain. Firstly, the range of 0,is counter-clockwise and clockwise twist respectively as shown in Fig.6-26.

Fig. 6 -

 6 Fig. 6-26 Limiting positions of the twisted case: (a) o 0,2 0 ϕ = , and (b) o 0,3 0 ϕ = .

2 ϕ 2 ϕ• 2 ϕ 6 -

 2226 Fig. 6-27(a). Here n is taken from 4 to 40 since no rigid twist motion exists when 4 n < .It can be seen that t θ increases when n increases from 4 to 5. This is due to the fact that when 4 n = , the twist angle t θ is obtained where Row 1 is fully expanded with

  and t L are the overall length of the tube at the fully squeezed configuration with B0,4 0 φ = and at the fully twisted configuration with 0

First consider the effects of n by taking 3 m

 3 = and n from 4 to 40. The relationship between t ε and n is presented in Fig. 6-27(b). The change tendency of t ε is similar as t θ vs. n, but it varies more rapidly. As a result, except for the special case 4 n = , t t / θ ε is in general increased with the increase in n as shown in Fig. 6-27(c), which shows a completely different trend from t 5 n = , which is almost triple of the maximum one in reference [216].

Fig. 6 -

 6 Fig. 6-27 Rigid twist of the waterbomb tube with

B0, 4 0

 4 φ = holds for the whole twist folding, while C0,4 φ is always positive during the motion

  tube with uniform radius where all rows are fully squeezed.

Figure 6 -

 6 Figure 6-28(a) shows kinematic paths of the dihedral angles B ,4 i φ

Fig. 6 -

 6 Fig. 6-28 Kinematic paths of the dihedral angles B ,4 i φ and C ,4 i φ against 0,2 ϕ during the twist motion on the equatorial row of a waterbomb tube in three cases with 5 m = , 6 n = , o 1 40 α = (blue), o 2 45 α = (red), o 3 50 α = (grey) when (a) all

  β =.Maintaining the values of α , m and n identical, the minimum of C0,4 φdecreases with the increase of β . When β reaches the maximum, all C ,4 0 i φ = holds in the configuration with uniform radius as presented by the dot in Fig.6-28(b).

  . The bifurcation behaviour of the waterbomb tube is presented in Fig. 6-29, where kinematic paths of the dihedral angle B2,4 φ against 0,2 ϕ are plotted by paths I, II and III when the rigid twist folding occurs in the top, middle and below rows respectively.

Fig. 6 -

 6 Fig. 6-29 Bifurcation behaviour during the twist motion of the fully squeezed waterbomb tube with uniform radius satisfying Eq. (6-49) where twist motion can occur from any row. Here the geometrical parameters are 3 m = , 6 n = ,

1 C

 1 to the recursion formula in Eq., the vertical distance between the vertex 0 A′ and the plane 0 A x y becomes larger and larger with the increase of the number of the bases on Row 0, which makes the vertex 1 C - ′ of the nth base that obtained after twist cannot match the vertex -of the first base, so that the bases on Row 0 cannot complete a cylindrical tessellation. Therefore, no rigid twist motion occurs when the line-and plane-symmetric row of the tube is not fully squeezed. To this point, we can conclude that only the twist of the fully squeezed row in the middle of the tube in Figure1bis a rigid motion.

Fig. 6 -

 6 Fig. 6-30 Non-rigid twist of the waterbomb tube when 6 n = . (a) 3D view of a waterbomb tube with 3 m = when twist starts from the not-fully-squeezed line-and plane-symmetric row (Row 0) with B0,4 0 φ ≠ . (b) Geometry of two adjacent bases on such not-fully-squeezed Row 0. (c) 3D view of a waterbomb tube with 7 m = where the Row 3 is fully squeezed with only plane symmetry. (d) 3D view of a waterbomb tube when twist starts from a pair of rows, set as Row 0 and Row 1. Only the twisted rows and those immediately adjacent to them are presented. EP is short for equatorial plane.

8 m

 8 = , was compressed in the longitudinal direction from the larger uniform radius configuration with an initial

  -31(a), a radial contraction occurs at the beginning of the compression, with a larger shrinkage in the middle than both ends due to boundary constraints, see configuration B. The contraction phase ceases when Row 0 and Row 1 are fully contracted in configuration C, followed by a simultaneous twist of both rows in opposite directions as seen in configuration D. It is known from the analysis above that the twist is structural deformation instead rigid motion. The twist phase proceeds as Row 2 and Row -1 twist successively (configurations E and F), after which local material damages appear and the experiment is terminated (configuration G). Regarding stiffness, the force vs. displacement curve in Fig. 6-31(b) indicates that the force is low during the contraction phase before configuration C. With the occurrence of twist, the force level is raised significantly as shown in the shaded region of Fig. 6-31(b), which demonstrates a periodic manner corresponding to the successive twist motion. The local peaks in the twist stage are approximately doubled in comparison with that in the contraction stage. Such graded stiffness would enable the structure/metamaterial to autonomously adapt to non-uniform loading environment. And this adaption is achieved purely through a structural transition of deformation phase, without requirement of gradation in the geometric or material dimensions.

Fig. 6 -

 6 Fig. 6-31 Axial compression experiment of the waterbomb tube. (a) Compression process of the tube. (b) Reaction force of the tube vs. axial displacement curve. The tube in the experiment took a uniform radius with the following geometrical parameters:
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 1 FIGURE 1 (a) Une torsion triangulaire habituelle, (b) une torsion triangulaire généralisée

FIGURE 2

 2 FIGURE 2 Douze schémas uniques d'affectation M-V pour le modèle d'origami de torsion triangulaire généralisée
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 34 FIGURE 3 Modèles de torsion triangulaire physique pour (a) un motif origami, et (b) un motif de kirigami
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 5 FIGURE 5 Diagrammes schématiques des mécanismes 6R sur-contraints dérivés quand (a) chaque paire de plis se recoupe, et (b) une seule paire de plis est parallèle
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 6 FIGURE 6 Paramètres D-H du mécanisme de Bricard à symétrie plane
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 78910 FIGURE 7 Bifurcation entre le mécanisme de Bricard plan-symétrique et le mécanisme de Bennett quand 3 5 = = θ θ π
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 11 FIGURE 11 (a) La base de la waterbomb à six plis, et (b) le motif d'origami de la waterbomb formé par la combinaison des bases
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 12 FIGURE 12 Chemins de pliage et configurations pour l'origami à waterbomb de zéro-épaisseur avec le mouvement à deux étages du chemin I
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 13 FIGURE 13 Chemins de pliage et configurations pour l'origami à waterbomb de zéro-épaisseur avec l'interférence du chemin II
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 15 FIGURE 15 Le tube de la waterbomb généralisée
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 16 FIGURE 16 Vues 3D et projetées d'un tube de la waterbomb avec un mouvement rigide pur
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 18 FIGURE 18 Le profil ondulatoire du tube de la waterbomb
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 19 FIGURE 19 Le mouvement de torsion du tube de la waterbomb
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 20 FIGURE 20 L'angle de torsion par déformation axiale et sa relation avec les paramètres géométriques du tube pendant le mouvement de torsion rigide
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  Coordinate axis of creasei in vertex j for the triangle twist pattern Middle vertices at the edges of waterbomb bases on Row i, Projection of vertices C i and C i ′ on the equatorial plane

				C i ′ is immediately adjacent to C i
				i
	i z	j		
	Ai z , Bi z , Ci z	z coordinates of vertices Ai, Bi and Ci of a waterbomb tube
	A i , A i ′	Central vertices of waterbomb bases on Row i. A i ′ is immediately adjacent to A i
	p A i ,	A i ′	p	Projection of vertices A i and A i ′ on the equatorial plane
	B i , B i ′	Corner vertices of waterbomb bases on Row i. B i ′ is immediately adjacent to B i

p B i , p B i ′ Projection of vertices B i and B i ′ on the equatorial plane XVI C i , C i ′ p C i , p C i ′ E , E′

  , β , γ , δ , εMaximum twist angle of the waterbomb tube between two ends of Row 0 along the tube axis Dihedral angle of crease i in vertex j for the triangle twist pattern

		θ	t
		i δ , i ω	Kinematic variable of crease i in the vertex A and B of the zero-thickness waterbomb origami, respectively
		i δ ′ , i ω′	Kinematic variable of crease i in the vertex A and B of the thick-panel waterbomb origami, respectively
				Kinematic variable at i th joint of spherical 6R linkage Ai,
	, i j δ , B , i j ω , C , i j ω	Bi and Ci in the waterbomb pattern, respectively, and
				j =	1, 2, ..., 6
		i ϕ , i φ	Dihedral angle of crease i in the vertex A and B of the zero-thickness waterbomb origami, respectively
	, i j ϕ , B , i j φ , C ,
				Sector angles of origami patterns or twist angles of spatial
				linkages
	ε	t		Axial strain of the waterbomb tube during the rigid twist motion
	η		Angle between the vertical crease 0 1 B C -′ ′ of the waterbomb base and the coordinate axis z
				Dihedral angle between two largest triangular facets of a
	θ		waterbomb base on the equatorial row of an odd-row
				waterbomb tube
	θ	i		Angle of rotation from i x to known as kinematic variable of crease i or joint i 1 + i x about axis i z , also
				XVII

α i ϕ Dihedral angle of crease i or revolute joint i j i ϕ i ϕ′ , i φ′

Dihedral angle of crease i in the vertex A and B of the thick-panel waterbomb origami, respectively

Table 3 -

 3 1 Classification of M-V assignments for a generalized triangle twist

	Number of mountain creases	Number of valley creases	Schemes of M-V (Fig. 3-8) assignment	Duplicated schemes of (Fig. 3-8) M-V assignment	Rigidity
	7	2	PRS (No.6)	RSP (No.23),	Rigid
				SPR (No.25)	
			QRS (No.14)	RSQ (No.24),	Rigid
				SQR (No.27)	
	6	3	PPP (No.1)	non-existent	Non-rigid
			PPQ (No.2)	PQP (No.3),	Rigid
				QPP (No.9)	
			PQQ (No.4)	QPQ (No.10),	Rigid
				QQP (No.11)	
			QQQ (No.12)	non-existent	Non-rigid
	5	4	PRR (No.5)	RPR (No.17),	Non-rigid
				RRP (No.21)	
			PSS (No.8)	SPS (No.26),	Rigid
				SSP (No.31)	
			QRR (No.13)	RQR (No.19),	Rigid
				RRQ (No.22)	
			QSS (No.16)	SQS (No.28),	Non-rigid
				SSQ (No.32)	
	3	6	PSR (No.7)	RPS (No.18),	Rigid
				SRP (No.29)	
			QSR (No.15)	RQS (No.20),	
				SRQ (No.30)	

Table 4 -

 4 1. Several typical cases can be seen from Table4-1 as follows.

Table 4 -

 4 1 The kinematic properties of the plane-symmetric Bricard linkage (Continued.)

	Case	Geometric conditions	Linkage model	N	Kinematic paths curves	Motion behaviour
	5					

Table 4 -

 4 1 The kinematic properties of the plane-symmetric Bricard linkage (Continued.)

	Case	Geometric conditions	Linkage model	N	Kinematic paths curves	Motion behaviour
	9	0 A ≠ , 0 Δ > .				

  and (2, 4) (shown in Appendix A) of Eq. (4-2),

	which contain kinematic variables 2 θ and 3 θ , are linearly dependent. Thus, the
	geometric condition to make the plane-symmetric Bricard linkage degenerate to a
	movable 5R linkage can be derived from			
	sin(	)	2	sin(		)	2		
	4 cos sin						
	sin(	)	2	sin(		)	1		
	3 [ sin(		)	2	sin ]	2	2(	) cos	3 sin( + )	2	sin
					2 cos(		)	2	2 cos(		)
	3 [ sin(		)	2	sin ]	2	2(	) cos	3	sin( +

Table 5 -

 5 

	1 Kinematic behaviour of the general waterbomb tessellation of zero-thickness sheets and
					thick panels		
	geometric	folding	the waterbomb tessellation	the waterbomb tessellation of
	conditions	paths	of zero-thickness sheets	thick panels
	α β + <	π 2	α β =	path I path II	smooth smooth	smooth exists only when	1 μ = and
						the path is smooth
			α β ≠	path I	smooth	smooth	
				path II	blocked	non-existent
	α β + =	2 π	α β =	path I path II	two-stage motion smooth	two-stage motion and blocked exists only when 1 μ = and
						the path is smooth
			α β ≠	path I	two-stage motion	two-stage motion and blocked
				path II	blocked	non-existent
	α β + >	2 π	α β =	path I path II	blocked blocked while the path for	blocked exists only when μ = but the 1
					vertex B is smooth	path is blocked
			α β ≠	path I	blocked	blocked
				path II	blocked	non-existent

  α is determined, the radius of the adjacent rows to the equatorial row decreases with the increase of β . When all radius of point Ai are set zero, i.e., A =0

	β reaches the maximum. In this instant, we have for linkage A0,
					tan	0,2 2 ϕ	=	cos tan α	0,1 2 ϕ	, B0,4 φ	=	ϕ	0,1	-	2 n π	0 = ,	n (6-48a)
	for linkage B0,												
	B0,2 tan 2 φ	=	-	sin( α β + + )	2 sin ( α β sin tan ) sin sin( 0,2 α α β 2 )tan α ϕ + + +	2 ϕ	0,2	, (6-48b)
	for linkage C0,												
							0,1 tan 2 ϕ	=	B0,2 2sin tan 2 sin ( +2 ) sin tan 2 B0,2 2 φ β α β α + φ	.	(6-48c)
	Therefore, max β	is obtained by			
	4 cos sin ( 2 α α β	) tan	4	n π		2 2 cos [cos 2 α	β	2 cos ( α β	)] tan	2	n π	0
	2 sin ( α β	2 ) 4 cos sin α	2	β
														2 is fully
	deployed with ( 1)/2,1 m ϕ -	=	π		while the equatorial row is fully squeezed with B0,4 0 φ = .
	Substituting Eqs. (6-11) -(6-13) into Eq. (6-15), another α is obtained, which is not
	only related to n but also to β and m . The maximum of α , max α , is the smaller
	one obtained by Eqs. (6-15) and (6-47). Therefore, the range of α for the generalized
	waterbomb tube with rigid twist folding is	0 α α < ≤	max	.
														r	i	,

Once

  -27(d) in which n is fixed to 6. In this case the twist angle remains constant as

		o 60 whereas
	the axial strain is changed with m, leading to the variation of t t / θ ε . A maximum of
	t θ ε = t /	o 37.2 / %

4 1 2

1 & c c a a . When the origami pattern is rigid with one DOF, its corresponding linkage network also has one DOF. Once the central triangle is removed, a mobile linkage from the kirigami pattern in Fig. 3-11(b), can also be built as a 6R linkage, see Fig. 3-12(b), after joints in the central triangle being removed, and joints 3 2 & a b being connected by one link, so do joints 3 2

&

z , 1 2 &

&
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Appendix A. Entries of Closure Equations of the Plane-symmetric Bricard Linkages

In general case:

(1, 3):