
HAL Id: tel-01920124
https://theses.hal.science/tel-01920124

Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Accurate and Scalable Recommender Systems
Manuel Pozo

To cite this version:
Manuel Pozo. Towards Accurate and Scalable Recommender Systems. Information Retrieval [cs.IR].
Conservatoire national des arts et metiers - CNAM, 2016. English. �NNT : 2016CNAM1061�. �tel-
01920124�

https://theses.hal.science/tel-01920124
https://hal.archives-ouvertes.fr

CONSERVATOIRE NATIONAL DES
ARTS ET MÉTIERS

EDITE - École Doctorale du Conservatoire National des Arts et Métiers

Laboratoire CEDRIC - Centre d’Études et De Recherces en Informatiques et
Communications

THÈSE DE DOCTORAT

présentée par : Manuel POZO

soutenue le : 12 octobre 2016

pour obtenir le grade de : Docteur du Conservatoire National des Arts et Métiers

Discipline / Spécialité : Informatique

Towards Accurate and Scalable Recommender Systems

THÈSE dirigée par

Mme. METAIS Elisabeth Professeur , CNAM

THÈSE encadrée par

Mme. CHIKY Raja Enseignant-chercheur, ISEP

RAPPORTEURS

Mme. BOYER Anne Professeur, Université de Lorraine
Mme. TEISSEIRE Maguelonne Directrice de recherche, IRSTEA

EXAMINATEURS

M. MEZIANE Farid Professeur, Salford University
M. DU MOUZA Cédric Maître de Conférences-HDR, CNAM
M. MASSEGLIA Florent Chercheur-HDR, Université Montpellier 2

PRÉSIDENT DU JURY

M. SENELLART Pierre Professeur, École Normale Supérieure

Acknowledgments

For this dissertation, I would like to thank őrst of all Raja Chiky. She was the őrst

person in my professional, she took an non-experienced Spanish student and give him trust

and the possibility to learn and grow. I would not be here today without her support and

conődence. I thank my thesis director, Elisabeth Métais, for her encourage during these

years and the intern-ship opportunity she ofered me at the University of Salford, Manch-

ester. I also thank my supervisor in this intern-ship, Farid Meziane, for his contribution to

my work and for receiving me in Salford as I was one of his own team.

I warmly thank ISEP for receiving me, specially to every member of the team RDI. I

want to give special thank Sylvain Lefebvre for his help, his support, our long talks and

his friendship, and Maria Trocan for taking care of me.

I thank my family. Thank my father for being a model of cleverness and intelligence.

Thank my mother for learning me the afection. Thank my brother for reminding me

that hard-work and achievements come together. My self-exigence often blinds me and my

family always remind me who I am and what I am capable of.

Thank my other family, my friends. Those who are far-away and those who are near-

by. Sathiya, Amadou, Rayane, Loïc and Denis, thank you for the daily smiles we shared

together and your unconditional help whenever it was needed (or not). One day, Zakia

told me that "phd collegues are friends for the whole life", and I already started missing

you. I want to thank my love, Virginia, for supporting me anytime and helping me to put

the last and hard period to this thesis.

Finally, thank FIORA project, "DGCIS" and "Conseil Regional de l’Île de France" for

funding this thesis.

ACKNOWLEDGMENTS

4

Abstract

Recommender Systems aim at pre-selecting and presenting őrst the information in

which users might be interested. This has raised the attention of the e-commerce, where

the interests of users are analysed in order to predict future interests and to personalize

the ofers (a.k.a. items). Recommender systems exploit the current preferences of users

and the features of items/users in order to predict their future preference in items.

Although they demonstrate accuracy in many domains, these systems still face great

challenges for both academia and industry; they require distributed techniques to deal

with a huge volume of data, they aim to exploit very heterogeneous data, and they sufer

from cold-start, situation in which the system has not (enough) information about (new)

users/items to provide accurate recommendations.

Among popular techniques, Matrix Factorization has demonstrated high accurate pre-

dictions and scalability to parallelize the analysis among multiple machines. However, it

has two main drawbacks: (1) diiculty of integrating external heterogeneous data such as

items’ features, and (2) the cold-start issue.

The objective of this thesis is to answer to many challenges in the őeld of recommender

systems: (1) recommendation techniques deal with complex analysis and a huge volume

of data; in order to alleviate the time consumption of analysis, these techniques need to

parallelize the process among multiple machines, (2) collaborative őltering techniques do

not naturally take into account the items’ descriptions in the recommendation, although

this information may help to perform more accurate recommendations, (3) users’ and items’

descriptions in very large dataset contexts can become large and memory-consuming; this

makes data analysis more complex, and (4) the new user cold-start is particularly important

5

to perform new users’ recommendations and to assure new users ődelity.

Our contributions to this area are given by four aspects: (1) we improve the distribution

of a matrix factorization recommendation algorithm in order to achieve better scalability,

(2) we enhance recommendations performed by matrix factorization by studying the im-

plicit interest of the users in the attributes of the items, (3) we propose an accurate and

low-space binary vector based on Bloom Filters for representing users/items through a

high quantity of features in low memory-consumption, and (4) we cope with the new user

cold-start in collaborative őltering by using active learning techniques.

The experimentation phase uses the publicly available MovieLens dataset and IMDb

database, what allows to perform fair comparisons to the state of the art. Our contributions

demonstrate their performance in terms of accuracy and eiciency.

Résumé

Les systèmes de recommandation visent à présélectionner et présenter en premier les in-

formations susceptibles d’intéresser les utilisateurs. Ceci a suscité l’attention du commerce

électronique, où l’historique des achats des utilisateurs sont analysés pour prédire leurs

intérêts futurs et pouvoir personnaliser les ofres ou produits (appelés aussi items) qui leur

sont proposés. Dans ce cadre, les systèmes de recommandation exploitent les préférences

des utilisateurs et les caractéristiques des produits et des utilisateurs pour prédire leurs

préférences pour des futurs items.

Bien qu’ils aient démontré leur precision, ces systèmes font toujours face à de grands

déős tant pour le monde académique que pour l’industrie: ces techniques traitent un grand

volume de données qui exige une parallélisation des traitements, les données peuvent être

également très hétérogènes, et les systèmes de recommandation soufrent du démarrage

à froid, situation dans laquelle le système n’a pas (ou pas assez) d’informations sur (les

nouveaux) utilisateurs/items pour proposer des recommandations précises.

La technique de factorisation matricielle a démontré une précision dans les prédictions

et une simplicité de passage à l’échelle. Cependant, cette approche a deux inconvénients:

la complexité d’intégrer des données hétérogènes externes (telles que les caractéristiques

des items) et le démarrage à froid pour un nouvel utilisateur.

Cette thèse a pour objectif de proposer un système ofrant une précision dans les recom-

mandations, un passage à l’échelle pour traiter des données volumineuses, et permettant

d’intégrer des données variées sans remettre en question l’indépendance du système par

rapport au domaine d’application. De plus, le système doit faire face au démarrage à froid

utilisateurs car il est important de ődéliser et satisfaire les nouveaux utilisateurs.

7

Cette thèse présente quatre contributions au domaine des systèmes de recommanda-

tion: (1) nous proposons une implémentation d’un algorithme de recommandation de fac-

torisation matricielle parallélisable pour assurer un meilleur passage à l’échelle, (2) nous

améliorons la précision des recommandations en prenant en compte l’intérêt implicite des

utilisateurs dans les attributs des items, (3) nous proposons une représentation compacte

des caractéristiques des utilisateurs/items basée sur les őltres de bloom permettant de ré-

duire la quantité de mémoire utile (4) nous faisons face au démarrage à froid d’un nouvel

utilisateur en utilisant des techniques d’apprentissage actif.

La phase d’expérimentation utilise le jeu de données MovieLens et la base de données

IMDb publiquement disponibles, ce qui permet d’efectuer des comparaisons avec des tech-

niques existantes dans l’état de l’art. Ces expérimentations ont démontré la précision et

l’eicacité de nos approches.

Résumé étendu

0.1 Introduction

Le contenu web est devenu très vaste et les utilisateurs rencontrent des diicultés

pour trouver une information pertinente. Les utilisateurs d’Internet lisent environ 10 Mo

d’information par jour (par exemple, les actualités), entendent 400 Mo par jour (par ex-

emple, musique) et voient, en géneral, 1 Mo d’information par seconde (par exemple, des

vidéos)1. Ils peuvent se sentir débordés en cherchant parmi ce contenu ceux qui sont les

plus adaptés à leur proől parce qu’ils n’ont pas le temps ou simplement ils n’ont pas la

connaissance pour trouver le plus approprié.

Les systèmes de recommandation réduisent radicalement la quantité d’information

présentée aux utilisateurs. Ils analysent leur intêret et présentent d’abord les items (un pro-

duit ou un service tels qu’ une vidéo, une image, etc) qui les intéresseraient le plus [Kantor

et al., 2011].

L’intérêt des utilisateurs pour quelques items peut être donné de façon explicite ou

implicite appelé également "score". D’une part, l’intérêt explicite, comme une note ou

un "rating", est une déclaration formelle de l’intérêt de l’utilisateur. Ces données sont le

plus utilisées dans la littératuree. Les utilisateurs peuvent noter des items (par exemple

des őlms) utilisant une note entre 1 et 5, où "1" représente le manque d’intérêt et "5"

représente un fort intérêt pour l’item. D’autre part, l’intérêt implicite est une déduction

donnée par l’interaction web entre des utilisateurs et des items [Oard et al., 1998]. En

efet, il est possible de mesurer les comportements des utilisateurs par les pages Web. Ceci

permet de connaître combien de clics un item a reçu ou combien de temps un utilisateur

1http://www.economist.com/node/8312260

9

http://www.economist.com/node/8312260

0.1. INTRODUCTION

a passé à consulter un item. De plus, les systèmes de recommandation peuvent incorporer

les descriptions des items (par exemple le genre d’un őlm, le chanteur des chansons, les

écrivains des livres), les données démographiques des utilisateurs (par exemple l’âge, le

sexe, le niveau d’études) et des données venant d’autres contextes, comme Wikipédia, des

réseaux sociaux, des coordonées gps, etc, ce qui peut aussi améliorer les recommandations.

0.1.1 Challenges

Les systèmes de recommandation font face à de multiples problématiques tels que la

volumétrie et analyse de la donnée, l’hétérogénéité de la donnée, ainsi que la précision de

recommandations. Ces déős sont résumés par la suite:

Adaptabilité et passage à l’échelle: le grand nombre d’utilisateurs, d’items et de scores

supposent l’analyse d’une grande volumétrie de données, ce qui nécessite beaucoup de

ressources et de temps. Il est nécessaire de créer des techniques de recommandation où le

calcul est facilement parallélisable et incremental[Sarwar et al., 2002, Koren, 2010, Owen

et al., 2011].

Hétérogénéité de la donnée: les systèmes de recommandation peuvent utiliser des infor-

mations hétérogènes externes autres que les intérêts des utilisateurs. Ces systèmes utilisent

typiquement des ressources d’information multiples pour améliorer les recommandations

[Kantor et al., 2011], par exemple les descriptions des items, les descriptions des utilisa-

teurs, etc. Le déő de ces systèmes est de récupérer, classiőer et intégrer ces informations,

ce qui implique davantage de complexité, et afecte les performances du système.

Démarrage à froid: c’est la situation dans laquelle le système n’a pas (ou pas assez)

d’informations sur un nouvel utilisateur/item, c’est-à-dire leur score; et par conséquence,

les recommandations de l’utilisateur (ou de l’item) ne sont pas pertinentes [Su and Khosh-

goftaar, 2009, Kantor et al., 2011].

L’objectif de cette thèse est d’améliorer les systèmes de recommandations en répondant

aux déős cités précédemment.

10

0.2. ÉTAT DE L’ART

0.2 État de l’art

Les systèmes de recommandation se doivent de sélectionner les informations les plus

intéressantes en fonction du but recherché, tout en conciliant nouveauté, surprise et per-

tinence. Un système de recommandation se base sur des caractéristiques de références

acquises de manière automatisée selon des méthodes diférentes. Elles peuvent provenir de:

• L’item (l’objet à recommander) lui-même, on parle alors "d’approche basée sur le con-

tenu" (ou content-based approach) [Balabanović and Shoham, 1997]. Le őltrage basé

sur le contenu calcule la similarité entre les objets aőn de trouver l’objet correspon-

dant le plus aux goûts de l’utilisateur. Dans ce cas, l’utilisateur se voit recommander

des items similaires à ceux qu’il a préférés dans le passé.

• L’utilisateur et l’environnement social, on parle alors "d’approche de őltrage collab-

oratif" (ou collaborative őltering). Le principe du őltrage collaboratif [Breese et al.,

1998] consiste à implanter informatiquement le principe du "bouche-à-oreille". Il

utilise les comportements connus d’une population pour prévoir les futurs agisse-

ments d’un individu. La méthode collaborative présente des avantages par rapport

au őltrage basé sur le contenu: elle est plus eicace dans la pratique et simple à mettre

en oeuvre. Notamment, il a été prouvé que les techniques de factorisation de matrice

fournissent des résultats précis et ont l’avantage d’être facilement parallélisable (pour

la montée en charge et le passage à l’échelle) [Koren et al., 2009].

Les milieux académiques et l’industrie ont investi leurs eforts dans le champ de la

recommandation. Plusieurs études ont montré que la technique de factorisation matricielle

est l’une des plus importantes contributions. Elle est apparue pendant le prix de "Netŕix"

et elle a aidé les nouveaux systèmes à améliorer la précision et le passage à l’échelle des

techniques de recommandation. Cette technique n’utilise pas les descriptions, donc n’aide

pas à l’incorporation de données hétérogènes. De plus, elle est très sensible aux situations de

démarrage à froid et "sparsité". En conséquence, plusieurs travaux dans le milieu industriel

mais aussi académique la combinent avec d’autres approches, notamment des approches

utilisant le contenu des items, pour améliorer la performance globale des recommandations.

11

0.3. DESCENTE DE GRADIENT STOCHASTIQUE ET DISTRIBUÉE

Cette thèse assume la factorisation matricielle comme la technique de principe dans les

systèmes de recommandation et vise à aller au-delà de cette technique. Nos contributions

se concentrent (1) sur le passage à l’échelle de la factorisation matricielle pour réaliser la

meilleure performance dans des clusters Hadoop, (2) l’intérêt implicite d’utilisateurs dans

les descriptions des items et comment réduire l’impact du domaine de recommandations,

(3) les représentations des items et utilisateurs dans des très grands contextes de données et

(4) le démarrage à froid orienté aux nouveaux utilisateurs pour des techniques de őltrage

collaboratives pures. Notre but őnal est que ces contributions aident les systèmes de

recommandation à mieux manipuler des données et comprennent mieux les utilisateurs

pour améliorer la performance du système et la précision des recommandations.

0.3 Descente de gradient stochastique et distribuée

Le nombre d’utilisateurs et d’items dans un système de recommandation est habituelle-

ment très élevé. Par exemple, Netŕix dispose de plus de 20 millions de clients, 80 mil-

liers de őlms et 5 milliards de notes [Makari et al., 2014]. En général, les utilisateurs

notent uniquement certains de ces items et cela crée un grand volume d’évaluations man-

quantes/inconnues pour prédire. Ainsi, ces prédictions peuvent afecter le temps ede traite-

ment. Les nouveaux systèmes de recommandation devraient être précis dans leurs prédic-

tions mais aussi parallélisables pour soulager la montée en charge et le temps de traitement

des données.

Ce travail se concentre sur la technique de factorisation matricielle appelée la de-

scente distribuée et stochastique de gradient (Distributed Stochastic Gradient Descent

(DSGD)), contrairement aux technnique de optmisation par moindres carrés (Alternating

Least Squares (ALS)[Zhou et al., 2008]). Les contributions dans ces aspects sont: (1) une

mise en oeuvre de cette technique dans Hadoop/MapReduce, et (2) nous avons étudié cette

technique pour améliorer son adaptabilité dans un ensemble de machines et ainsi améliorer

la performance des recommandations.

12

0.3. DESCENTE DE GRADIENT STOCHASTIQUE ET DISTRIBUÉE

0.3.1 Contribution et résultats

L’idée proposée dans [Gemulla et al., 2011, Makari et al., 2014] consiste à diviser une

matrice initiale composée d’utilisateurs, d’items et de ratings en plusieurs blocs, de façon

à ce qu’il y ait un certain nombre de blocs qui soient complètement indépendants (qui

ne partagent pas d’utilisateurs ni d’items). Ces blocs indépendants forment un ensemble

appelé "stratum". Lorsque les blocs sont indépendants, leur analyse est indépendante et

leurs résultats sont aussi indépendants et agrégeables. Par conséquent, l’analyse des ratings

(des blocs) dans le stratum peut être distribuée parmi plusieurs machines. Au maximum,

autant de machines que de blocs dans le stratum sont éxéctuées en parallèle. En créant

diférents stratums (avec d’autres blocs indépéndants) il est possible de faire l’analyse de

la matrice initiale complète.

Le problème que nous avons soulevé réside dans la décomposition de la matrice initiale

en blocs. Imaginez une matrice de dimensions nu x ni, le point-clé dans la décomposition

de bloc est la divisibilité des dimensions dans des parties d’un entier. Cela signiőe que les

dimensions pourraient être divisibles par b ("b" étant la quantité de machines disponibles

à utiliser en parallèle) pour proprement créer des blocs (nu%b = 0 et ni%b = 0). Mais ceci

n’est souvent pas le cas.

Dans [Gemulla et al., 2011, Makari et al., 2014], l’efacement de rangées/colonnes (c’est-

à-dire des utilisateurs/items) résout cette condition de divisibilité. Cependant, ceci peut

créer une perte d’exactitude: si le nombre de données supprimées est élevé, le système peut

perdre des informations importantes. En fait, cela représente un compromis entre précision

et ŕexibilité. Au contraire, l’ajout de dimensions peut augmenter le temps d’exécution de

l’algorithme. Cependant, ceci n’afecte pas la précision, vu que l’insertion de la dimension

vide n’ajoute pas d’information.

En utilisant ces idées, nous avons développé un aspect plus ŕexible dans la distribution.

Nous proposons trois modes de décomposition de blocs qui afectent la création des "stra-

tums": (1) sous-dimension, (2) dimension supérieure et (3) dimension ŕexible. Dans ce

contexte, une dimension est un utilisateur (dimension de rangées) ou un item (dimension

de colonnes). La sous-dimension est la proposition donnée par [Makari et al., 2014]. Ce

13

0.4. L’INTÉRÊT IMPLICITE DES UTILISATEURS DANS LES ATTRIBUTS DES
ITEMS

mode redimensionne la matrice en supprimant des dimensions. La dimension supérieure

redimensionne la matrice en insérant des dimensions vides jusqu’à l’accomplissement de la

condition de décomposition. Finalement, la technique de dimension ŕexible est un hybride

de ces deux techniques. Elle cherche la dimension la plus proche (dessus ou dessous) des

dimensions réelles.

Nous évaluons la performance de nos propositions en utilisant le jeu des données

publiques de MovieLens2, qui a 10 millions d’évaluations appliquées par 69878 utilisa-

teurs sur 10667 őlms. Nous créons une matrice de rangées et des colonnes avec les notes

des utilisateurs aux items. L’évaluation et les comparaisons sont efectuées en termes de

précision et d’adaptabilité au nombre de machines dans le cluster.

Nos techniques donnent un meilleur résultat en termes de précision lorsqu’elles évi-

tent l’efacement de données (utilisateurs, items et ratings). Le Tableau 1 présente une

comparaison de nos résultats avec des autres techiniques de factorisation matricielle, où

la mesure de précision utilisée est le erreur moyenne quadratique (RMSE). Nous gagnons

environ 1% d’amélioration en exploitant les machines dans le cluster (quantité de noueds

b).

0.4 L’intérêt implicite des utilisateurs dans les attributs des
items

Les technologies de recommandation font aujourd’hui face à des déős scientiőques

majeurs: comment intégrer l’hétérogénéité des sources d’information pour modéliser les

préférences, comment découvrir des nouvelles préférences, comment traiter eicacement

ces masses d’information, quels types d’interfaces faut-il considérer?

Par ailleurs, les approches őltrage collaboratif et basé sur le contenu citées précédem-

ment présentent des inconvénients principalement liés à l’hétérogénéité des sources d’information

et à la montée en charge du système d’où la nécessité de mettre en place des algorithmes

performants et robustes. Ceci est l’objectif de cette étude en vue d’améliorer la qualité

des systèmes de recommandation en introduisant de la "sémantique" aux données et en

2http://grouplens.org/datasets/movielens/

14

0.4. L’INTÉRÊT IMPLICITE DES UTILISATEURS DANS LES ATTRIBUTS DES
ITEMS

Table 1: Résultats de nos expérimentations en termes de précision et quantité de noueds
utilisés.

Technique RMSE Quantité de noueds (b)

ALS 0.79603 1
Sous-dimension DSGD 0.77571 1
Dimension ŕexible DSGD 0.77571 1
Dimension supérieure DSGD 0.77571 1

Sous-dimension DSGD 0.77611 2
Dimension ŕexible DSGD 0.77555 2
Dimension supérieure DSGD 0.77559 2

Sous-dimension DSGD 0.77626 5
Dimension ŕexible DSGD 0.77617 5
Dimension supérieure DSGD 0.77597 5

Sous-dimension DSGD 0.77586 7
Dimension ŕexible DSGD 0.77548 7
Dimension supérieure DSGD 0.77565 7

Sous-dimension DSGD 0.77593 15
Dimension ŕexible DSGD 0.77596 15
Dimension supérieure DSGD 0.77555 15

distribuant les traitements aőn de minimiser les temps de calcul. La "sémantique" est ici

déőnie comme une extension dans le sens de la donnée courante, les scores (ratings), aőn

de créer des "ratings sémantiques".

0.4.1 Contribution et résultats

Aőn de fournir une généricité dans le domaine d’application, un passage à l’échelle et

une recommandation précise, nous proposons un système à trois couches: une couche de

pré-analyse, une couche "sémantique" et une couche de recommandation.

Dans une première étape, nous nous intéressons aux préférences des utilisateurs pour

le contenu des items. Cette information est souvent manquante lorsque ce contenu peut

être très large et varié, et donc diicile d’attirer d’information de score explicite. Nous

proposons d’étudier l’intérêt implicite des utilisateurs dans le contenu des items en étudiant

les préférences passées sur les items. Ceci est fait à travers un module de comptage qui met

en lien chaque utilisateur avec le contenu des items. Lorsqu’un contenu est répété (le même

15

0.4. L’INTÉRÊT IMPLICITE DES UTILISATEURS DANS LES ATTRIBUTS DES
ITEMS

acteur qui apparaît dans deux őlms diférents), le compteur d’intérêt de cet utilisateur pour

ce contenu est incrémenté aussi.

La couche sémantique exploite cette nouvelle information ainsi que le rating données

par les utilisateurs pour les items. Ceci se traduit par la transformation sémantique des

notes des utilisateurs. Nous nous intéressons tout d’abord au nombre d’occurrence des

attributs qui ont été notés par un utilisateur. Nous appelons cette occurrence ń la fréquence

d’apparition ż ou ń coïncidence ż : cette valeur correspond au nombre de fois que les valeurs

des attributs se répètent dans les items notés par l’utilisateur. Cette valeur est extraite à

partir des compteurs déjà précalculés. La transformation du rating consiste en l’addition

de ce nouvel intérêt implicite à l’intérêt explicite, à travers l’équation suivante:

svu,i = ru,i + E[ru,∗] ∗

⏐

⏐

⏐

∑F
j=1Cj ∗Wj

⏐

⏐

⏐

Nu
(1)

Avec F le nombre total des attributs, Nu le nombre total des items notés par l’utilisateur

"u". Cj est la fréquence d’apparition de l’attribut j dans l’ensemble des items qui ont été

notés par l’utilisateur et Wj étant un poids calculé à partir d’une phase de sélection des

attributs par une analyse des composantes principales. E[ru,∗] est la moyenne des notes de

l’utilisateur et ru,i est la valeur du rating initial donnée à l’item "i".

L’équation sémantique peut être appliquée à deux niveaux dans la recommandation.

D’une part, nous pouvons appliquer cette équation à toutes les notes disponibles dans la

base de données initiale, ce qui permet de mieux expliquer l’intérêt des utilisateurs pour les

caractéristiques déőnissant les items notés (ajouter du sens à la note). D’autre part, nous

pouvons faire le choix d’appliquer l’équation sémantique à la sortie de la recommandation.

Supposons que le module de recommandation renvoie un résultat des top K items (les K

items les plus pertinents) pour un utilisateur donné, avec une estimation de la note pour ces

top K. Ces notes seront transformées en une note sémantique suivant l’équation précédente

et les items proposés seront réordonnés en conséquence en top K’, K’ pouvant être inférieur

ou égal à K.

Enőn, le module de recommandation utilise une technique de őltrage collaboratif basée

sur une méthode de factorisation de la matrice pour générer des recommandations précises.

16

0.5. MODÈLE DE SIMILARITÉ AVEC DES FILTRES DE BLOOM

En efet, cette technique a montré son eicacité comme méthode de őltrage collaboratif

pour la recommandation [Koren and Bell, 2011].

Dans la phase d’expérimentation, nous comparons nos approches (appliquer la "sé-

mantique" aux ratings initiaux, ou bien aux prédictions dans le top-K) et la technique de

factorisation matricielle de base sans l’utilisation de l’équation sémantique. Nous utilisons

les métriques de précision et rappel, parce que ces techniques n’évaluent pas la qualité de

la prédiction des notes, mais la pertinence des items qui sont proposés aux utilisateurs.

La précision calcule la probabilité qu’un item pertinent soit choisi et le rappel étant la

probabilité qu’un item choisi soit pertinent. Nous utilisons aussi la F-mesure pour com-

biner le rappel et la précision dans une seule métrique aőn de faciliter la comparaison. Nos

approches donnent de meilleurs résultats que la technique de matrice de factorisation sans

sémantique.

De plus, nous nous sommes interessés à l’impact de nouveaux ratings sémantiques sur

la similarité des items à recommander. Nous utilisons la métrique d’ILS (Intra-List Simi-

larity), appelée également ILD (Intra-List Diversity) pour mesurer la diversité/similarité

entre les items dans la liste des top-K présentée à l’utilisateur.

Un bon système de recommandation doit trouver l’équilibre entre ces deux concepts

diversité et similarité. En efet, des items trop diversiőés peuvent provoquer une confusion

chez l’utilisateur, alors que recommander toujours les mêmes items peut ennuyer celui-

ci. La matrice de factorisation a tendance à faire de recommandation diversiőées. Notre

approche permet, dans cette diversité, de retourner des items plus similaires dans le top-K.

Ceci est du au fait que nous prenons en compte l’intérêt pour les attributs aőn d’identiőer

les items susceptibles d’intéresser l’utilisateur.

0.5 Modèle de similarité avec des filtres de Bloom

La description des items et d’utilisateurs peut être très précise puisqu’un grand nombre

de caractéristiques peut être utilisé (par exemple des acteurs, des directeurs, des auteurs).

On peut même imaginer l’incorporation de données externes telles que les données ouvertes

ou des données provenant de réseaux sociaux, etc. pour mieux décrire les items/les utilisa-

17

0.5. MODÈLE DE SIMILARITÉ AVEC DES FILTRES DE BLOOM

teurs [Kantor et al., 2011, Peis et al., 2008, Dahimene et al., 2014]. Or ceci provoque une

description certes détaillée mais gourmande en terme d’espace de stockage ou d’utilisation

mémoire. Ce problème est particulièrement présent dans le cadre des méthodes de őltrage

à base de contenu et des méthodes hybrides.

Souvent, ces techniques utilisent une représentation vectorielle de l’item ou utilisateur

pour décrire ses caractéristiques et établir des comparaisons entre les items/utilisateurs.

Ce nombre croissant de caractéristiques a trois conséquences importantes : (1) la grande

taille des vecteurs, (2) les données de plus en plus éparses dans ces vecteurs et (3) le temps

mis pour exécuter des opérations sur ces vecteurs. De plus, la quantité de caractéristiques

change la similitude, et généralement plus d’attributs utilisés augmentent la qualité de la

similitude. Dans cette représentation vectorielle, ajouter des caractéristiques ajoute de

nouvelles dimensions au vecteur. De plus, les techniques de sélection des caractéristiques

et la réduction spatiale peuvent induire une perte de précision dans la représentation des

items ainsi que dans le calcul de similarité entre les items.

Dans ce contexte, nous proposons une technique de représentation des données qui crée

un vecteur compressé en réduisant la taille totale d’un vecteur réel, et nous l’utilisons aussi

pour développer tout un système capable d’exploiter cette représentation pour exécuter des

opérations de similarité entre les items/utilisateurs. Ceci permet de comparer une large

quantité de caractéristiques qui décrivent les items/utilisateurs tout en gardant une taille

de vecteur très réduite.

0.5.1 Contribution et résultats

Nous proposons d’utiliser des représentations de őltre de bloom. Un őltre de bloom est

une structure de bit qui représente ”n”-éléments d’un même ensemble ”S” dans un espace

plus réduit de ”m”-bits [Broder and Mitzenmacher, 2004]. Initialement, les m-bits sont

mis à "0" ce qui représente l’absence des éléments insérés dans le őltre. Puis, on utilise ”k”

fonctions de hachage pour distribuer eicacement l’insertion des éléments: pour insérer un

élément, celui-ci est "haché", ce qui retourne "k" positions de la structure de bits à passer

à "1".

La motivation et les principales contributions sont:

18

0.5. MODÈLE DE SIMILARITÉ AVEC DES FILTRES DE BLOOM

1. Les őltres de bloom réduisent fortement la taille des représentations des items tout

en gardant le même nombre de caractéristiques. Cela peut induire l’augmentation de

caractéristiques utilisées pour décrire les items/utilisateurs;

2. Les őltres de bloom autorisent des opérations binaires rapides, comme l’intersection

"AND" qui permet de comparer les caractéristiques communes des items, et permet

de mesurer la similarité. La Figure 1 montre un exemple de cette opération avec

les őltres de bloom et une représentation d’un point de vue d’ensemble de cette

opération;

3. Dans la recherche des similarité entre les items, nous trouvons des caractéristiques

communes, mais il est aussi possible d’avoir des caractéristiques manquantes com-

munes. Pour y faire face, nous proposons une autre opération binaire, le "XNOR",

qui prend en compte autant des caractéristiques communes que des caractéristiques

manquantes communes. Par exemple, l’intersection prend en compte les éléments

communs-insérés de deux ensembles. Etant donné les caractéristiques x1, x2, x3,

x4 et deux ensembles (items) SA = x1, x3 et SB = x2, x3, l’intersection des deux

ensembles est SC = x3. Cependant, les ensembles SA et SB ont plus en commun que

cette intersection. En réalité, l’élément x4 n’est dans aucun de ces ensembles, et par

conséquent, x4 est commun à SA et SB. La Figure 2 montre un exemple de cette

opération avec les őltres de bloom et une représentation d’un point de vue d’ensemble

de cette opération;

Nous expérimentons nos approches sur le jeu de données publiques de MovieLens [Can-

tador et al., 2011] et nous comparons le résultat avec des approches de représentation

vectorielle et de similarité cosinus/jaccard. Nous démontrons que la représentation de ől-

tre de bloom réduit fortement la taille des représentations vectorielles (environ 94-97%

par vecteur), tout en gardant une haute ődélité lorsque des opérations de similarité sont

efectuées (environ 98% de précision).

19

0.6. APPRENTISSAGE ACTIF POUR LES SYSTÈMES DE RECOMMANDATION

rage à froid. L’apprentissage actif propose l’interaction d’utilisateurs avec le système pour

obtenir des données (ratings) de grande qualité [Elahi et al., 2014]. Un questionnaire sim-

ple est utilisé pour obtenir les premiers ratings rapidement, par exemple: aimez-vous ce

őlm? pouvez-vous noter ce livre?. Donc, on demande aux utilisateurs de répondre à ces

questions en donnant leur avis, de cliquer par exemple sur "j’aime", "je n’aime pas" ou "je

ne connais pas".

Cependant, les utilisateurs ne souhaitent pas évaluer beaucoup d’items et poser beau-

coup de question car cela peut supposer une perte de temps pour eux [Harpale and Yang,

2008, Karimi et al., 2011a]. En conséquence, les questionnaires devraient être courts et

rapides dans l’analyse. Il faudra donc poser des questions soigneusement choisies pour

récuperer le plus d’information des utilisateurs [Zhou et al., 2011, Karimi et al., 2011a].

Nous proposons une technique d’apprentissage actif basée sur le concept des arbres de

décision. Le but des arbres de décision dans l’apprentissage actif est de diviser la population

d’utilisateurs selon leurs préférences sur quelques produits.

Ainsi, des utilisateurs dans le noeud de l’arbre ont tendance à partager des préférences

semblables. En descendant dans l’arbre, ces groupes sont rainés et les préférences sont

mieux détectées. Ces techniques, dans un contexte de őltrage collaboratif, ont seulement

accès aux notes des utilisateurs sur les items, i.e. ratings. Par conséquent, ces techniques

ont pour but de découvrir des items dans chaque noeud de l’arbre, qui séparent eicacement

la population des utilisateurs selon leurs ratings pour ces items.

Cette idée est très utile pour améliorer la performance du système de recommandation

dans un contexte de démarrage à froid. Un noeud est représenté par une question (l’item),

par exemple "aimez-vous ce őlm?". Le nouvel utilisateur peut donc répondre à ces ques-

tions. En donnant la réponse, le système identiőe mieux les préférences de cet utilisateur

et peut trouver une meilleure nouvelle question à lui poser en utilisant l’arbre de décision.

0.6.1 Contribution et résultats

Les techniques d’arbres de décision actuelles exploitent seulement les ratings existant

dans R pour (1) la découverte de questions à poser, (2) la segmentation de la population

21

0.7. CONCLUSIONS ET PERSPECTIVES

à partir de questions et (3) le calcul de prédiction de ratings que le nouvel utilisateur

pourrait donner (la prédiction de la réponse). Le problème est donc, à chaque noeud de

l’arbre de décision, de trouver un item qui permettra de mieux identiőer les préférences

d’un nouvel utilisateur. Ceci est un problème d’optimisation qui se sert des ratings existant

dans chaque noeud de l’arbre pour trouver le meilleur item à proposer comme question.

Cette technique utilisée dans l’état de l’art est simple pour que l’arbre de décision soit

rapide à construire. Elle utilise uniquement les ratings des utilisateurs pour prédire la

moyenne et ainsi évaluer la pertinence à poser cet item comme question.

Nous proposons d’utiliser non seulement le rating r d’un utilisateur u pour un item j,

mais aussi une prédiction p de rating d’un utilisateur u pour un item j, de sorte qu’il y ait

toujours un rating ru,j associé à une prédiction pu,j .

Nous proposons d’utiliser des évaluations ru,j uniquement pour diviser la population

d’utilisateurs. Les prédictions pu,j seront ainsi utilisées pour découvrir des items à poser

comme question.

Notre approche est implementée en utilisant une technique d’arbres de décision non

supervisée et une autre technique supervisée. Nous comparons les deux approches avec

l’état de l’art existant. Nos approches sont capables de trouver des items plus pertinents

que les items trouvés par les approches de l’état de l’art. Ainsi, nos approches identi-

őent les préférences des nouveaux utilisateurs plus rapidement (en un moindre nombre de

questions).

0.7 Conclusions et Perspectives

Les systèmes de recommandation sélectionne, parmi une grande quantité de données,

les informations pour lesquelles les utilisateurs pourraient être les plus intéressés. Ils ex-

ploitent les préférences connues d’utilisateurs dans des items, qui sont donnés de façon

explicite ou le retour d’information implicite d’utilisateurs, pour prévoir les préférences

futures d’utilisateurs dans d’autres items (inconnus). De plus, il est possible pour cer-

taines techniques de recommandation d’utiliser la description d’items ou d’autres données

hétérogènes aőn d’améliorer ces recommandations.

22

0.7. CONCLUSIONS ET PERSPECTIVES

Typiquement ces techniques sont classiőées par: őltrage à base de contenu, őltrage

collaboratif et méthodes hybrides. Cependant, la technique la plus utilisée est de nos jours

une technique de őltrage collaborative appelée la mactorisation matricielle. Cette technique

a démontré une grande pécision et une grande facilité pour traiter la montée en charge et

le passage à l’échelle. Cependant, elle ne facilite pas l’utilisation de données hétérogènes.

De plus, elle soufre du démarrage à froid.

Nos travaux de recherche se concentrent sur plusieurs aspects diférents que tout sys-

tème de recommandation devrait prendre en compte: (1) la qualité et la précision des

recommandations, (2) la représentation d’items/utilisateurs, (3) la distribution et l’adaptabilité

du système, et (4) le démarrage à froid. Nos contributions ont fait face à ces problèmes:

• L’amélioration de techniques de őltrage collaboratives en ajoutant une couche ex-

terne pour analyser l’intérêt implicite des utilisateurs dans l’attribut des items. Cette

méthode réduit l’impact de la dépendance de domaine dans des recommandations et

améliore la qualité des recommandations. En fait, nous croyons que les recomman-

dations d’items qui contiennent des caractéristiques plus connues pour l’utilisateur

(par exemple les acteurs, des réalisateurs) vont plus probablement être acceptables.

• Particulièrement dans des systèmes à base de contenu et hybrides, traiter la grande

quantité de données de caractéristiques peut devenir problématique. La sélection

de caractéristiques et des techniques de réduction spatiales sont utilisés pour faire

face à ce problème, pourtant ils cèdent inévitablement à une perte d’informations.

En efet, la qualité de la représentation d’utilisateurs et des items est afectée tout

comme les opérations de similarité parmi les items. Nous avons proposé de représen-

ter des items/utilisateurs dans des structures spatiales de très basse consomation de

mémoire appelées őltre de bloom. De plus, ceci nous permet de déőnir deux mesures

de similitude: "AND", pour prendre en compte des caractéristiques communes, et

"XNOR", pour prendre en compte des caractéristiques communes et des caractéris-

tiques manquantes communes.

• Amélioration de la précision et de l’adaptabilité d’une technique de factorisation

matricielle en proposant une approach distribuée basée sur MapReduce.

23

• Nous avons utilisé une technique d’apprentissage actif basé sur les arbres de décision

pour faire face au problème de démarrage à froid dans le contexte d’un nouvel utilisa-

teur. Cette technique permet d’améliorer les questionnaires présentés aux nouveaux

utilisateurs en posant des questions plus pertinentes. De plus, elle permet de plus

rapidement capter les préférences de cet utilisateur (une faible quantité de questions

seraient posées).

Les perspectives qui se présentent sont variées. Nous voulons continuer ces travaux pour

analyser et étudier les systèmes de recommandation dans une logique explicative (comment

expliquer aux utilisateur la pertinence des recommandations proposées), de compromis

d’exploration et d’exploitation (côté recherche et découverte des intérêts d’un utilisateur,

versus, côté sur-exploitation de la donnée et monotonie dans les recommandations) dans

un contexte de grand hétérogénéité de données, et des nouvelles techniques d’apprentissage

actif pour le problème de démarrage à froid tel qu’une analyse du temps de réponse des

utilisateurs aux questions posées dans le questionnaire.

Contents

Abstract 5

Résumé 7

Résumé étendu 9

1 Introduction and Motivation 35

1.1 Introduction . 35

1.2 Deőnition and process of recommender systems 36

1.3 Challenges in Recommender Systems . 38

1.4 Motivation . 43

2 Recommender Systems: State of the Art 47

2.1 Motivation . 47

2.2 Techniques and assumptions . 48

2.3 Recommender Systems in the Academy . 56

2.4 Recommender Systems in the Industry . 61

2.5 Recommender System’s Libraries . 65

2.6 Discussions . 68

3 Analysis of the Parallelization of Matrix Factorization techniques 71

3.1 Motivation . 71

25

CONTENTS

3.2 Related Work . 72

3.3 Background . 76

3.4 Flexible Distributed Stochastic Gradient Descent 79

3.5 Experimentation . 84

3.6 Discussion . 86

4 The implicit interest of users in the attributes of items 89

4.1 Motivation . 89

4.2 Related Work . 91

4.3 Architecture of our approach . 94

4.4 Experimentations . 103

4.5 Discussion . 110

5 Coping with large vector representations of users and items in very large

datasets. 113

5.1 Motivation . 113

5.2 Related Work . 116

5.3 Bloom Filter Similarity Model . 118

5.4 Experimentation . 130

5.5 Discussion . 139

6 Active Learning to Cope with New User Cold-Start 141

6.1 Motivation . 141

6.2 Related Work in Active Learning . 144

6.3 Background and Notation . 149

6.4 Active Learning Decision Trees . 150

6.5 Experimentation . 162

26

CONTENTS

6.6 Discussion . 167

7 Conclusions and Perspectives 169

7.1 Conclusions . 169

7.2 Perspectives . 172

Bibliography 177

Annexes 201

A Evaluating the performance of Recommender Systems 201

A.1 Introduction . 201

A.2 Prediction oriented evaluations . 202

A.3 Ranking oriented evaluations . 205

A.4 Content oriented evaluations . 207

B Bloom Filters 209

B.1 Introduction . 209

B.2 Deőnition and properties of Bloom Filters 209

B.3 Types of Bloom Filters . 212

Glossaire 215

27

CONTENTS

28

List of Tables

1 Résultats de nos expérimentations en termes de précision et quantité de

noueds utilisés. 14

2.1 Recommendation’s techniques. Main classiőcation and properties. 49

2.2 Recommender System Libraries. Table updated on June 10th, 2016. 68

3.1 Experimentation results. 87

4.1 Dataset example. 99

4.2 Users and items’ ratings. 99

4.3 Attribute actor. Items’ actors. 99

4.4 Attribute genre. Items’ genre. 99

4.5 Example. Top-3 recommendations for the user "1" 102

4.6 Experimentation: Weights % for variables in dimensions. Approximate values.104

4.7 Experimentation: Recommended Top-10 movies for user 6757. Items ID

and predicted values. 107

5.1 Notation used for bloom őlters . 118

5.2 Optimal Bloom Filters. 132

5.3 Non Optimal Bloom Filters. 132

5.4 Vector and Bloom Models trade-ofs. 132

6.1 Notation used in decision trees. 151

29

LIST OF TABLES

6.2 Statistics for available ratings and matrix factorization predictions. MF1

and MF2 denote predictions over Movielens 1M and Movielens 10M, respec-

tively. 154

6.3 Properties of diferent movie datasets. 162

A.1 Notation used in the evaluation metrics for recommender systems. 202

30

List of Figures

1 Représentation et exemple de la simitlarité "AND" en utilisant un modèle

de őltres de bloom. 19

2 Représentation et exemple de la simitlarité "XNOR" en utilisant un modèle

de őltres de bloom. 19

1.1 Example of recommendation workŕow. 38

2.1 Collaborative Filtering matching process . 50

2.2 Matrix factorization of R (users, items, ratings) into P (users, features) and

Q (items, features). 57

3.1 Alternating Least Squares technique. Methodology and scalability. 74

3.2 Stratiőcation and Block decomposition. Blocks 1,5,9 do not share rows nei-

ther columns, thus, they form a stratum to run in parallel. Once computed,

another stratum (2,6,7 or 3,4,8) can run. Single iteration. 76

3.3 Diving the matrix R into independent blocks per stratum 78

3.4 Block Stratum Assignment technique. 83

4.1 Global architecture of the recommender system. 95

4.2 Semantic Dataset: input approach . 99

4.3 Semantic top-K: output approach . 101

4.4 Experimentation: Recommended Top-10 movies for user 6757. Visual com-

parison. 107

31

LIST OF FIGURES

4.5 Precision and Recall metrics comparisons regarding a top-20 items. 109

4.6 F-Measures for top 20 items. 110

4.7 ILS metric comparisons. 111

5.1 Vector Similarity Model versus Bloom Filter Similarity Model. One item is

represented by one vector/őlter. Items’ similarities are computed by using

these vectors/őlters. 120

5.2 AND intersection of two bloom őlters. BFA contains two inserted elements:

X1 and X3.BFB contains two inserted elements: X2 and X3. Thus, the in-

tersected őlter contains only one inserted element: X3. 121

5.3 Negation of a Bloom Filter (BF). Element X1 is inserted in BFA. Elements

X2 and X3 are not inserted in BFA. The negation of BFA, BFA, contains

the element X2 and does not contain the element X1. Yet, X3 is not inserted

because it shares a bit with an element which is inserted in BFA. 123

5.4 XNOR intersection of two bloom őlters BFA and BFB. BFA contains two

inserted elements: X1 and X3. BFB contains other two inserted elements:

X2 and X3. Thus, the XNOR operation will result in common inserted

elements and common non-inserted elements: X3 and X4. 124

5.5 Representation of how the XOR and XNOR operations can be extracted

from AND and OR operations. 125

5.6 Evolution of the false positive under diferent settings k,m. The number of

insertions is őxed. 128

5.7 Degree of Similarity of the item 3246 with several items. Bloom Filter

(n=237, fp=0.001) has been reconstructed into a vector of size N 135

5.8 Trade-Ofs for a Bloom Similarity Model. 135

5.9 Bloom Filter (m=7000, k=3). Trade-Of for a Bloom Similarity Model. . . . 136

5.10 Accuracy of the Bloom Filter Similarity Model against the Vector Similarity

Model. Bloom Filters with fewer false positive values achieve better accuracy

in tops comparisons. 137

32

LIST OF FIGURES

5.11 Accuracy of the Bloom Filter Similarity Model against the Vector Similarity

Model. This similarity uses the XNOR operation. 138

6.1 Passive and Active Learning pipelines [Rubens et al., 2011]. 143

6.2 Example of candidate items and close-form show to users. 145

6.3 Illustration of our approach and comparison to the state of the art. 151

6.4 Prediction techniques and average comparisons regarding the RMSE. 156

6.5 Questionnaire performance in RMSE. 164

6.6 Questionnaire performance in RMSE. 166

B.1 Example of bloom őlter. Initially the bloom őlter is empty (bits set to

”0”). Elements X, Y are inserted by hashing them and by setting adequate

bits to ”1”. One membership query for element X returns true, while for

a non-inserted element Z returns false. 210

33

LIST OF FIGURES

34

Chapter 1

Introduction and Motivation

"We are leaving the age of information and entering the age of recommendation"

- Chris Anderson in "The Long Tail"

1.1 Introduction

The web content has become so vast that users hardly őnd the information they are

looking for. People read around 10 MB of data per day, hear 400 MB of audio per day, and

see 1 MB of information every second 1. In 2015, the media information consumption was

estimated to 74 GB per consumer and per day 2. Users may feel overwhelmed by this huge

content because they may not have the time or simply they do not have the knowledge

about what őts better to their needs.

Recommender Systems (RS) emerge from the Information Search and Retrieval (IR)

őeld in order to cope with this information overload and decision-making issues. The in-

formation retrieval systems seek and őlter information depending on users’ queries [Baeza-

Yates and Ribeiro-Neto, 1999]. These systems used to represent textual content (e.g. web

pages and articles) as a set of words that are then matched with users’ requests to return

the relevant information for the user in a non user personalized experience; all users receive

the same information for the same queries. Recommender Systems aim to cope with these

issues by personalizing the content in webs for users [Kantor et al., 2011]. Indeed, they

1http://www.economist.com/node/8312260
2http://ucsdnews.ucsd.edu/pressrelease/u.s._media_consumption_to_rise_to_15.5_hours_a_

day_per_person_by_2015

35

http://www.economist.com/node/8312260
http://ucsdnews.ucsd.edu/pressrelease/u.s._media_consumption_to_rise_to_15.5_hours_a_day_per_person_by_2015
http://ucsdnews.ucsd.edu/pressrelease/u.s._media_consumption_to_rise_to_15.5_hours_a_day_per_person_by_2015

1.2. DEFINITION AND PROCESS OF RECOMMENDER SYSTEMS

analyze the interaction of users with the information in webs in order to predict the future

interactions that suit the users’ interests. This allows to őlter and organize items in order

to present őrst the items of users’ interest, i.e. recommendations.

Recommender systems dramatically reduce the amount of information presented to

users and "delivers the correct information to the correct users" [Zhou et al., 2011]. The

őrst recommender system, "Tapestry" [Goldberg et al., 1992], appeared in 1990 and it also

worked looking for text-similarities and automatically learning from the users preferences.

However, it did not contemplate non-text-similarities; it only analyzed text-content but not

other contents such as videos, audio, etc. New techniques to aford this singularity emerged

and the concept of "item" appeared to involve textual and non-textual information. Hence,

it attracted the interest from many őelds, such as e-commerce, service providers and media

services, with the aim of personalizing the services and users’ experience.

Nowadays, recommender systems are well studied in the academia and the industry.

They are daily present almost everywhere giving suggestion of where to eat, which movie

to watch, which articles to read, whose to be friend with, the publicity we receive, etc. The

Internet is moving from the era of search to the era of recommendations; the searching

allows to look for a speciőc information, whereas the recommendations allow to discover

information you are not speciőcally looking for although it is of your interest. We stop

looking for information, and information starts őnding us.

As introduction to this thesis work, we őrst formally deőne recommender systems and

present the recommendation actors and the recommendation process in Section 1.2. Sec-

tion 1.3 presents the trend challenges for recommender systems. Section 1.4 presents our

motivation and the main guidelines of our researches.

1.2 Definition and process of recommender systems

Recommender systems analyse the interests of users and present őrst the items in

which they might be more interested [Kantor et al., 2011]. Their main purpose is to assist

users in their daily decision-makings by presenting a reduced set of options in the form of

recommendations or advices [Chee et al., 2001].

36

1.2. DEFINITION AND PROCESS OF RECOMMENDER SYSTEMS

The users’ interests represent the strength of their relations with items. They are

also known as "score" or "feedback". On the one hand, the explicit feedback is a formal

declaration of the user. The most typical explicit interests are the rating systems, where

users can evaluate/rate items (e.g. movies) using a 0-5 stars scale. Other shorter and

larger scales are possible, such as ’like, dislike, unknown’, 0-10 stars, 0-20 stars. Another

kind of explicit feedback may rely on comments and opinions. This feedback is usually

processed using Natural Language Programming (NLP) to really understand the meaning

of users’ sentences, such as sentiment analysis. On the other hand, the implicit feedback

is an interest deduction given by the interaction between users and items [Oard et al.,

1998]. The so-called tracking systems measure the users’ behaviors through the web-pages

and collect users’ examination (e.g. item selection), retention (e.g. save item, print page)

and reference (e.g. share). This is based on the count of number of clicks, time spent on

exploring an item, users’ location, etc. It is worth to mention that recommender systems

can use other kind of information to enhance the accuracy of recommendations [Kantor

et al., 2011]. For instance, it is possible to incorporate the items’ descriptions (e.g. the

genre of a movie, the singer of songs, the author of books), the users’ demographics (e.g.

the age, the sex, the education) and data coming from other contexts, such as Wikipedia,

social networks, gps-locations, etc.

Recommender systems are good to őnd a set of items in which the user can be in-

terested, and to guess the interest (e.g. rating) that a user would have in a particular

item. On the one hand, the term "user" is often used to deőne the (active) user for whom

recommendations are currently required. On the contrary, the term "item" is very large

and depends on the domain of the recommendation. For instance, recommender systems

dealing only with movies would consider a movie as an item. Moreover, an item can be

one user, such as the suggestions of a "friend" or a contact in social networks.

The users, items and feedbacks are the core-stone of the information used in recom-

mender systems. This data is formatted, treated and analyzed by using techniques from

data mining and machine learning őelds in order to generate recommendations. Figure 1.1

shows the typical workŕow representing the recommendation system process.

The incoming data is composed of, at least, the users’ interests in items. Other data

37

1.3. CHALLENGES IN RECOMMENDER SYSTEMS

fake ratings to promote or degrade items)[Lam and Riedl, 2004]. Moreover, how many rec-

ommendations to present to users can be also a challenge: a few items may not be enough

for the users’ needs, and too many items may be too much. Where to place these recom-

mendation to optimize the site-look and users’ experience is also an interesting challenge.

In this section we consider the most simplistic representation of a recommender system

process which assumes to have prepared incoming data ready to be analyzed by recom-

mendation techniques in order to produce recommendation to users. As a consequence, we

mainly focus on the challenges related to the recommendation techniques.

Scalability

The number of users, items and feedback can increase rapidly. Recommendation tech-

niques may become computationally expensive and very time-consuming. It is necessary to

parallelize the computation of these techniques among several processors or machines and

to create easily incremental models in order to receive new data [Sarwar et al., 2002, Koren,

2010, Owen et al., 2011].

Data heterogeneity

Recommender systems can use external heterogeneous information in addition to users’

interests in items. These systems typically use multiple information resources to enhance

the recommendations to users [Kantor et al., 2011], e.g. the items’ descriptions, users’

keywords for items, users’ descriptions, etc. The challenge of these systems is to retrieve,

classify and integrate this big, heterogeneous and diverse information to the sake of rec-

ommendations, what usually induce more complexity and has a negative impact on the

scalability of the system.

Similarity/Diversity

Recommendations to one user should not be always similar (e.g. comedy movies),

otherwise the user could get bored. On the contrary if recommendations are too diverse, it

can generate an untrusted feeling in the user. This is part of a similarity/diversity trade-of

that a recommender system should take into account [Konstan and Riedl, 2012].

39

1.3. CHALLENGES IN RECOMMENDER SYSTEMS

Sparsity

This often happens when the number of items is much larger than the number of users;

and thus it is very complicated to have feedback for all items, e.g. there are millions of

books in Amazon but a user may have bought hundreds of books. This situation generates

poor informative datasets [Su and Khoshgoftaar, 2009, Kantor et al., 2011].

Cold start

The cold-start is the situation in which the recommender system has no or not enough

information about the (new) users/items, i.e. their ratings/feedback; hence, the recommen-

dation to users (or of items) are not well performed [Su and Khoshgoftaar, 2009, Kantor

et al., 2011]. Particularly, the new user cold-start is the lack of users’ preferences and the

new item cold-start is the lack of ratings for this item.

Time-aware recommendations

Recommendation techniques exploit the current known users’ interest in items. These

may be linked to timestamps and thus it is possible to identify long time distant pref-

erences as well as very recent ones. Generating proper recommendations by taking this

information into account makes proposed recommendation to evolve accordingly to the

users’ preferences [Koren et al., 2009].

Multi-type and multi-criteria recommendations

On the one hand, multi-type recommendations aim to recommend not only the item

itself, but also relevant information related to this item [Zhuo et al., 2011]. For instance, in

a restaurant recommendation it is interesting to suggest the route to go to the restaurant.

On the other hand, common recommender systems are considered single-criterion, because

they only analyze the interest of users in items. Multi-criteria recommendations suggest

that users’ feedback are a result of combinations of several interests [Lakiotaki et al.,

2008, Kantor et al., 2011]. For instance, the rating of a movie (considered as an item)

may depend on precise aspects, such as the main story and the special efects. However,

40

1.3. CHALLENGES IN RECOMMENDER SYSTEMS

the feedback for these other criterion are also required. Indeed, this method assumes that

collecting more diversiőed data results in more accurate recommendations. In addition,

multi-criteria systems may go further considering cross-domain recommendations, where

ratings of users in one item’s domain (e.g. movies) can be used for other completely

diferent domains (e.g. restaurants) by looking for similarities in the interests of this user

and other users in both domains (e.g. users who liked the same movies and they agree in

one restaurant, may agree in other restaurants as well).

Exploration versus exploitation

In fact, recommender systems tend to be more accurate in predicting very popular

items (i.e. items from which many ratings are known), and hence these items are more

recommended as well. As a consequence, less rated items are little by little forgotten by

the system. Under this context, the exploration paradigm consists in letting the user freely

navigate among the items to discover and rate new unexpected items. On the contrary, the

exploitation paradigm refers to the usage of the users’ interest (explicit or implicit) and

the persistence of recommendations, e.g. to continuously recommend the same items to

users when these suggestions have not been taken in several occasions. How intrusive the

recommender system may be in the life of users is an interesting exploration-exploitation

trade-of to take into consideration [Balabanović, 1998, Rubens et al., 2011].

Users’ experience: explanations and data privacy

The explanation of recommendations is an important factor for users decision-makings

process [Tintarev and Masthof, 2011]. The perception of quality and variety in recommen-

dation is part of the users’ experience. In some cases, this may create a lack of trustiness

and conődence due to associated risks in accepting recommendations, e.g. to buy a book

against to buy a car. In fact, users are not willing to risk much based on recommendations

they do not understand [Konstan and Riedl, 2012]. The explanation of recommendations

may alleviate this issue and it helps the users to make reasonable decisions [Herlocker et al.,

2000].

In addition, the explanations come across three axis that recommender system should

41

1.3. CHALLENGES IN RECOMMENDER SYSTEMS

accomplish [Bonhard and Sasse, 2006, Knijnenburg et al., 2012]: (1) transparency, to

explain how the recommendation was performed, e.g. the users and/or items correlations

involved; (2) trust, to encourage the user to accept recommendations; and (3) scrutability,

which allows the user to interact with the system to communicate possible mistakes to avoid

in the future. To deal with these axis is a complex challenge in recommender systems due

to the heterogeneity of data and the representation of the information to explain (e.g.

visualization). However, this challenge has to take the privacy of the user and his data

into consideration.

Users’ classification: grey sheep and black sheep

The grey sheep and black sheep are user classiőcation issues where the system has not

a clear understanding of some users’ preferences because they are too diverse (grey sheep)

or too speciőc (black sheep), what makes diicult to compare to other users’ preferences

[Su and Khoshgoftaar, 2009]. These challenges are complex to detect and sometimes are

considered as acceptable drawbacks in recommender systems.

Other challenges

There are other challenges in recommender systems. For instance, there is a need to

trust in the explicit ratings made by users. This data has a strong impact on recommenda-

tions, and hence more accurate rating lead to better recommendations. These challenges

rely on the quality of the ratings. Some authors assume and accept this property of the

data, although other authors aim to test and qualify this data [Amatriain et al., 2009],

e.g. by asking users to re-rate a known item. Another example is the recommendation

to/in groups of users/items. This challenge requires to satisfy several needs from users

or to adapt items for users in order to create a unique but successful recommendation.

The recommendation to groups deals with many users under the same current context.

For instance, what kind of music to recommend in a party [Masthof, 2011], or what TV

programme suits to all members of the family. On the contrary, the recommendation in

groups try to create mini set of items to propose together to the same user [Konstan and

Riedl, 2012]. One example is the often ofered tourism package of ŕight, hotel and rental

42

1.4. MOTIVATION

car set, or the bought-together package of Amazon.

1.4 Motivation

This chapter has introduced recommender systems and has given the őrst guidelines

about the recommendation process and the challenges currently existing in this őeld.

Our main concern is the volume and variety that these systems face. On the one hand,

the huge quantity of information (users, items, feedback and external data) makes the

recommendation process analysis complex and time-consuming for one single machine. It

is necessary that recommendation techniques become scalable and parallelizable among

multiple machines to alleviate this issue. On the other hand, using heterogeneous data is

not trivial in recommender systems. There are techniques that are explicitly designed to

exploit it and others which simply assume it is not necessary. We believe that recommender

system would evolve to improve the integration of all kind of data in order to achieve bet-

ter accuracy and larger recommendation contexts. In addition, this heterogeneity together

with the high volume of data induce to complex users and items representations. In fact,

it is possible to highly detail users’ and items’ descriptions, however this data represen-

tation would become very diicult to deal with in terms of memory-space-consumption

and exploitation of representations. Finally, there is a major challenge in recommender

systems which is the cold start, particularly, the new user cold start. This typically occurs

when new users sign up to the system and recommendations are required. As long as the

recommender systems has not information about this user and/or his preferences, proper

recommendation are nearly impossible.

Our role of this thesis is to answer to these challenges in terms of research and devel-

opment. Chapter 2 presents the state of the art in the őeld of recommender systems. We

őrst explain the assumptions, advantages and disadvantages of diferent recommendation

techniques. Second, we give related works in the academic and industrial researches. In

addition, recommender systems libraries are presented.

Chapter 3 deals with the scalability and parallelization of recommendation techniques.

We analyze the matrix factorization techniques, which have demonstrated to be highly

43

1.4. MOTIVATION

parallelizable, and its scalability within a cluster of machines. Our goal is to enhance the

parallelization of one particular matrix factorization technique called Stochastic Gradient

Descent, which have demonstrated better accuracy in recommendations than other matrix

factorization techniques but a more complex parallelization.

Chapter 4 focuses on the integration of heterogeneous data into the recommendation

process. Our goal is that, collaborative őltering techniques, such as the matrix factoriza-

tion, may exploit the items’ description as well in the beneőt of users’ recommendations.

We propose extract a new source of knowledge from past users’ interests by using the items’

descriptions: we analyze the interests of users in the description of items and not only in

the item itself. This new information is added to the current interests of users in item and

used by collaborative őltering approaches to compute more accurate recommendation for

users.

In Chapter 5 we discuss that the integration of heterogeneous data to describe users

and items may have an efect in the accuracy of such descriptions. Typically, the more

data the system uses the better the users and items are detailed. However, this could lead

to very long and diicult to handle descriptions. Our goal in this context is to create a

low-memory space model that takes into account the high detailed descriptions and makes

easy to compare users and items to compute similarities. Particularly, our model can őnd

similarities of two items by looking for common descriptions (e.g. one actors who plays

in two diferent movies), and by looking for common missing-descriptions (e.g. one actor

who does not appear in two movies). We consider that these can be interesting aspects in

recommender systems: one user may declare that he does not like sport movies by showing

low interest in these movies, however, other users who do not like sport movies simply do

not watch/show interests in them.

Chapter 6 focuses entirely on the new users cold-start issue. New users who do not

receive pertinent recommendations may abandon the system. In order to cope with this

issue, we propose to use active learning techniques into recommender systems. These

methods make the new users to interact with the system by presenting a questionnaire

that aim to understand their preferences. Questions are related to items, e.g. "do you like

this book?". The answers reŕect the degree of interest of users in the item, e.g. "yes", "no",

44

1.4. MOTIVATION

"I have not read it (unknown)". As a consequence, the system can learn from these answers

the preferences of users. The goal of active learning is to correctly choose the questions

(items) for users. Thus it is necessary to personalize the questionnaires to retrieve the

maximum of information possible (i.e. to avoid "unknown" answers). Under this context,

we propose an active learning technique that exploits past users’ interests and past users’

predictions in order to őnd out the best questions to pose.

Finally, this thesis has been funded under the context of a collaborative project called

"FIORA"3, which aims to build a generic (to be exchangeable to diferent domains), ro-

bust (to be eicient and trustworthy) and scalable (to deal with high quantity of data)

recommender system. The applications of this project are oriented to the e-nutrition4 and

e-tourism domains[Cherő et al., 2016]. Our main goal in this project was to provide a

robust collaborative őltering algorithm and to cope with the cold-start issues. Under this

context, we have delivered algorithms, development code and technical reports. As long as

the FIORA project was in progress and the data from users and items was not available,

we decided to use public datasets for the experimentation purposes, e.g. Movielens5 and

IMDb6. Thus, in this thesis we only present the contributions made to the őeld of recom-

mender systems. Particularly, we do not present the FIORA project and we do not show

the performances on this project.

3http://www.fiora.pro
4https://www.mycoachnutrition.com
5http://grouplens.org/datasets/movielens/
6http://imdb.com

45

http://www.fiora.pro
https://www.mycoachnutrition.com
http://grouplens.org/datasets/movielens/
http://imdb.com

1.4. MOTIVATION

46

Chapter 2

Recommender Systems: State of the

Art

2.1 Motivation

Recommender Systems aim at personalizing the content in webs depending on users’

preferences. Their main goal is to predict which items (e.g. movies, books, songs) are of

the user’s interests and present them őrst. The challenges that recommender systems have

to cope with are very diverse and complex to accomplish them all in one single solution.

[Manouselis and Costopoulou, 2007, Manouselis et al., 2013] have already presented a

categorization framework for recommender systems. They have studied around 40 recom-

mender systems and classify them in multiple categories and sub-categories, such as the

services provided (e.g. single recommendation, top-K recommendations, őnd most similar

items), the architecture (e.g. centralized, distributed, storage mode, etc) and the recom-

mendation techniques (e.g. user/item classiőcation, data representation, etc). However,

this last category is the most extended and analyzed in literature [Burke, 2002, Kantor

et al., 2011]. The categorization of recommender systems by the recommendation tech-

niques cares, among other topics, about the data used to perform recommendations, the

representation of this data, the algorithms of personalization and the output of recommen-

dations.

A second and more simple categorization of recommended systems was given in [Peis

et al., 2008]. The authors propose to divide existing recommendation techniques in three

47

2.2. TECHNIQUES AND ASSUMPTIONS

simple categories: social-based, content-based and economic-based, also called context-

based. The social-based methods use similarities between users to compute recommenda-

tions. The content-based techniques compute similarities between items regarding their

attributes. The context-based methods base their recommendations on concrete particular

variables such as the price of items and the budget of users, or the current location of users

(e.g. to boost recommendations of currently visited shops).

However, the categorization most widely used simply divides recommendation tech-

niques into Collaborative Filtering techniques (CF), Content-Based (CB) techniques and

Hybrid methods [Kantor et al., 2011]. This categorization takes into account the two most

common recommendation techniques (collaborative őltering and content-based) and sug-

gests several techniques to combine them [Burke, 2002]. In this chapter we follow this

categorization, we explain them and we show their possible variations under an academic

and industrial point of view.

This chapter aims to present the related work in the őeld of recommender systems.

Section 2.2 explains the techniques’ assumptions and the main background. Section 2.3

presents the approaches made by researches in the academy. On the other hand, Section 2.4

shows some recommender systems in the industry. It is also interesting to compare current

existing libraries in order to establish a development reference, which appears in Section

2.5. Finally, we conclude this state of the art in Section 2.6 by giving some discussion about

the studied approaches and how our thesis is placed in this context. Other approaches in

literature more linked to each speciőc contribution of this thesis are discussed inside the

proper chapters.

2.2 Techniques and assumptions

This section aims to resume the most known recommendation techniques. We aim to

lay down the ground to better understand the assumptions of the diferent techniques and

how this afects to the recommendation techniques their-selves. We give special emphasis

to collaborative őltering and content-based techniques. Nevertheless, other approaches

though further of our scope are also described. Finally, hybrid approaches are also highly

48

2.2. TECHNIQUES AND ASSUMPTIONS

Table 2.1: Recommendation’s techniques. Main classiőcation and properties.

Technique Classiőcation Advantage Disadvantage

Collaborative Filtering Social-based Domain independence Sparsity
Cold-start

Content-based Content-based User independence Overspecialisation
Context-Aware Context-based Items reduction Complexity
Demographic Social-based Light storage Poor quality

Context-based Domain independence
Knowledge-based Content-Based Accurate users’ adaptation Complexity

Context-based Overspecialisation
Social Networks Social-based Particular niches Complexity

Hybrids Hybrid Overcome shortcomings Complexity
More information

taken into consideration. Table 2.1 gives a brief summary of all techniques.

2.2.1 Collaborative Filtering (CF)

Collaborative őltering is probably the most known and common technique [Shambour

and Lu, 2011]. It is based on the assumption that people who share similar preferences in

the past would agree also with new preferences in the future. Another interesting point

of view is based on the proverb "tell me who your friends are, and I will tell you who

you are". As long as these techniques rely on users’ correlations, they are also called

social-based methods. In brief, these techniques analyze only the users’ personal interests

(e.g. ratings, clicks) and őnd out users’ sharing similar interests. Hence, it recommends

items to users that other users in this group have liked in the past. Figure 2.1 illustrates

this process: users rate items (e.g. from 1 to 5) which represent their interest in such

item. Thus, we aim to predict tastes for the active user (a) in items and extract the more

interesting items to him.

There are two main categories of collaborative őltering techniques: similarity-based

(a.k.a. memory-based or neighborhood-based) and model-based (a.k.a. latent factor mod-

els) [Breese et al., 1998, Su and Khoshgoftaar, 2009].

49

2.2. TECHNIQUES AND ASSUMPTIONS

ratings and create an optimized mathematical model to predict future users and items

ratings. They have gained popularity because they are accurate, they avoid dense data

storage and they have easy implementations [Koren and Bell, 2011, Konstan and Riedl,

2012]. Other interesting model-based technique use neuronal networks [Kim et al., 2004]

and Support Vector Machine (SVM) [Xia et al., 2006].

In general, collaborative őltering have demonstrated their accuracy in exploiting and

predicting users’ interests. They are considered as "domain independent" techniques

[Shambour and Lu, 2011], since no items’ description is used, and it represents an ad-

vantage in large and multi-domain recommendations (e.g. Amazon e-commerce) because

it highly reduces the complexity of the system. However, they sufer from sparsity and

cold-start issues.

On the one hand, warm-users have a low number of ratings regarding the whole set of

items, what creates a sparse set of data to correlate. On the other hand, new items are

not known (rated) yet by users and new users do not have rated items for computing good

recommendations. These are the main drawbacks to deal with in collaborative őltering.

Some variations focus on how to őnd and group users of similar interests. For instance, one

may take a more restrictive őlter into account, such as communities and friend-relationships

only [Kantor et al., 2011], and perform users’ correlation among this subset of users. In

case of new users (from whose preferences are still unknown), to know some of the new

users’ friends may allow to generate recommendations based on the friend’s preferences.

As a consequence, it has became popular in social networks as well [Arias et al., 2012].

It is worth to note that model-based techniques overcome similarity-based in accuracy

and scalability [Su and Khoshgoftaar, 2009, Koren and Bell, 2011]. In fact, the model

construction can be distributed to alleviate time consumption, and recommendations can

be stored of-line. On the contrary, similarity-based techniques have to deal with similarity

and prediction functions which do not scale well in large datasets.

2.2.2 Content-Based (CB)

Content-based techniques assume that the preference of users do not dramatically

change over time, and thus, they recommend similar items to the ones that the active

51

2.2. TECHNIQUES AND ASSUMPTIONS

user liked in the past. These techniques analyze the users’ ratings and the items’ descrip-

tions. The former allows to know which items the user likes/dislikes. The latter allows to

describe the item, and thus, to őnd similar items.

As it was explained in similarity-based collaborative őltering techniques, content-based

techniques also perform a two-step recommendation process. First, a similarity function

allows to identify the closeness of items in the database. The description of items can

be very large abstract concepts, such as words in text documents, URLs, keywords, or

more domain oriented attributes, such as the movie’s genre or the author’s book; hence

this description is composed of very heterogeneous data [Tiroshi et al., 2012]. One very

notorious and used technique is the Term Frequency-Inverse Document Frequency (TF-

IDF). This technique looks for common words and their word’s derivations and count the

occurrences of such terms in order to weight how important are words. The second step

uses past user’s ratings and items’ similarities to predict the interest in other items. In

this case, predictions have a single user and they are always item-oriented. Thus, voting

systems take into account this user only, e.g. the user’s average rating.

Content-based őltering is user-independent because there is no users correlation and

it bases its recommendations on items similarities only. In addition, the new item cold-

start is easy to solve: new item’s similarities can be computed and similar items can be

recommended to the adequate users. Furthermore, the items’ attributes allow to perform

easy explicative recommendations: "this item is suggested because you liked this other

item". However, they sufer from overspecialisation (or lack of item diversity): these

techniques recommend always very similar items, what may bore users who need more

diversity in recommendations. In addition, these techniques sufer from new user cold

start, since new users have not declared yet enough interests, and thus recommendations

are not personalized or diversity is almost in-existent. Moreover, as seen for similarity-

based collaborative őltering, these techniques do not scale well in large datasets due to the

high volume of computations.

52

2.2. TECHNIQUES AND ASSUMPTIONS

2.2.3 Other recommendation techniques

2.2.3.1 Context-Aware

Researchers have pointed out that the contextual variables from the environment, e.g.

GPS location or weather, play an important role in recommendations since they inform

about the users’ situation [Bonhard and Sasse, 2006]. For instance in a hotel recommen-

dation, it could be interesting to know if the user is going for business or leasure.

They are divided into pre-őltering, post-őltering and context modeling methods. The

őrst approach uses the variables to reduce the number of items to analyze at the input.

This helps to reduce the amount of computations and to focus on particularly interesting

items. The second method őlters the output of the system using the actual context. As a

result, it is possible to adapt some details of the recommendations to users, for instance

to delete recipes which contains allergens for the user. Finally, context modeling may

include the context variables in the computation of recommendations [Kantor et al., 2011],

e.g. inside similarity functions, prediction function or complex models. For instance, it is

possible to learn not to recommend umbrellas to people visiting Miami in summer.

Pre-őltering and post-őltering techniques are simple to implement because they simply

add new layer to the recommender system (at the input or at the output, respectively).

On the contrary, context modeling methods may introduce complexity because of the fact

of adding new variables to take into account in the recommendation models.

2.2.3.2 Demographic

The demographic őltering techniques are either social-based or context-based tech-

niques. This technique uses demographic personal data to compute a recommendation,

such as the age or the nationality [Pazzani, 1999, Vozalis and Margaritis, 2007]. They

assume that recommendations should depend on particular niches, for instance, people of

the same age may follow similar movie tendencies. These techniques are similar to content-

based techniques, although they are user-oriented based on users’ personal descriptions.

As long as these descriptions are vague and common among the whole community, these

techniques lack of precision and are often part of hybrid recommender systems.

53

2.2. TECHNIQUES AND ASSUMPTIONS

2.2.3.3 Knowledge-based

The knowledge-based systems are either content-based, context-based and/or demo-

graphical techniques. These techniques use the whole set of knowledge available in order

to analyze the interaction between users and items, i.e. rated items, ratings’ values and

ratings’ patterns [Trewin, 2000]. These techniques use to be linked to reasoning systems

that apply association rules and other data mining techniques to generate adequate content

to be recommended, as well as to explain recommendations.

The two most important techniques are case-based and constraint-based. The main

goal of these techniques is to solve a problem for which the solution is a recommendation.

The problem has a user description (e.g. explicit queries or implicit needs). Case-based

techniques use similarity-based functions to adapt current recommendations (cases) to the

user [Bridge et al., 2005, Zhuo et al., 2011]. The case has a static description. The system

looks for the closest cases to a given one that best őt the user’s needs. On the contrary,

constraint-based deal with constraint satisfaction (users or items constraints) [Felfernig

and Burke, 2008]. They usually apply association rules over the description of items in

order to őnd out the set of items which answers to the user’s problem.

These techniques can be considered complex content-based technique, and they sufer

from the same drawbacks as content-based techniques, particularly the overspecialisation

issue.

2.2.3.4 Social Network based

These systems are social-based and they are specially linked to collaborative őltering

techniques [Kautz et al., 1997, Bernardes et al., 2015]. Collaborative őltering methods

assume that users are independent and identically distributed [McPherson et al., 2001]. On

the contrary, social network techniques assume that social inŕuences are very important in

human choices.

The main diference between collaborative őltering and social network based systems is

that the latter take into account more heterogeneous data coming from user social interac-

tions. This has a positive impact on the acceptance of recommended items [Zheng et al.,

54

2.2. TECHNIQUES AND ASSUMPTIONS

2008]. For instance, [Bonhard and Sasse, 2006] stated that carefully controlled familiar

proőles and ratings similarities help the system in explanatory recommendations and lead

the user in better decision makings.

Indeed, social network techniques focus on the analysis of inŕuence, deőned as "the

power or capacity of people or things in causing an efect in indirect or intangible ways"1.

For instance, group of life-friends tend to be friends in social networks (e.g. Twitter or

Facebook) and tend to comment on the same subjects and follow the same people. In

addition, by using these techniques, it is possible to identify the users who have especial

inŕuence over the mass. This has especially raised the attention of the sociology and

marketing őelds [McPherson et al., 2001], since őnding out these people may help in the

propagation of publicity and campaigns.

2.2.4 Hybrid methods

The hybrid approaches combine two or more techniques in order to improve the general

behavior of the recommender system. It aims to overcome the constraints of one technique

with the advantages of the others. For instance, a common hybrid approach is a combina-

tion of collaborative őltering and content-based techniques. The former are very accurate

and introduce diversity in large number of recommendations, although they sufer from

sparsity and cold-start problems. The latter exploit the items’ descriptions but they sufer

from overspecialisation. As a result, the content-based techniques may use this additional

data of items to address cold-start problems and the collaborative őltering introduce some

diversity in recommended items.

In [Burke, 2002, Burke, 2007], the author presented 7 diferent hybridization of tech-

niques, that we will brieŕy discuss. This categorization has been also well discussed in

[Meyer, 2012]. Some examples of hybrid approaches will be given in the next section.

Switching is the most simple hybridization and it consist on selecting one technique

to use among set of established recommendations techniques. The choice of the technique

depends on predeőned rules and the situation, such as the cold-start.

The mixed hybridization proposes to select recommended items from diferent recom-
1http://www.merriam-webster.com/dictionary/influence

55

http://www.merriam-webster.com/dictionary/influence

2.3. RECOMMENDER SYSTEMS IN THE ACADEMY

mendation techniques and put them together into a recommendation list.

The weighted approach uses "N" recommendation techniques, each of them used under

its own assumptions. For instance, to use demographic techniques over users’ descriptions

and content-based methods over items’ descriptions. Then, these techniques separately

suggest a set of items to recommend, which can be joint or intersected to create a single

recommendation set. The őnal predicted rating of one item in the set is given by a weighted

combination of the predicted ratings from the diferent techniques.

The cascade hybridization method allows to sequentially enhance the recommendations

given by one technique by using another technique. For instance, it is possible to change

the order of top-K recommendations given by collaborative őltering by using content-based

approaches.

The data’s combination (a.k.a. feature’s combination) hybridization technique uses the

data typically exploited in one recommendation technique into another diferent recom-

mendation context. For instance, the web logs contain implicit feedback normally used

in collaborative őltering, but content based technique may use them together with items’

descriptions. The interest of this technique is to discover new usages for data.

The data augmentation (a.k.a. feature’s augmentation) technique consists on adding

new users or items data (e.g. new ratings), not previously used in other recommendation

techniques, before the recommendation process.

Finally, the meta-level hybridization method provides to a recommendation technique

the model generated by a diferent recommendation technique. For instance, content-based

models (ratings and predictions) can be analyzed by collaborative őltering techniques.

2.3 Recommender Systems in the Academy

This section describes the recommendation techniques and the recommendation issues

addressed by academic researches. We particularly focus on the scalability and paralleliza-

tion of techniques, the sparsity and cold-start challenges and the heterogeneity of data used

in their approaches.

The őrst recommender system in 1992 (Tapestry [Goldberg et al., 1992]) was based

56

2.3. RECOMMENDER SYSTEMS IN THE ACADEMY

learning model.

minq∗,p∗′
∑

u,i⊂K

(rui − qTi pu)
2 + λ(∥ qi ∥

2 + ∥ pu ∥2) (2.1)

Matrix factorization has been considered a core-stone and it has been used by many

authors in literature. For instance, [Takács and Tikk, 2012] propose a ranking-based pre-

diction by minimizing a ranking based objective function instead of the user’s rating pre-

diction oriented function. [Hu et al., 2008] has modiőed matrix factorization to exploit

the implicit interest of users in items rather that the users’ ratings. They build a binary

like-dislike sparsity matrix from an implicit dataset. [Koren and Bell, 2011] suggest similar

and enhanced techniques based on matrix factorization. More details of these techniques

are given in Chapter 3.

On the other hand, a very famous memory based technique is SlopeOne [Lemire and

Maclachlan, 2005]. This item-based collaborative őltering technique suggests to model

users’ ratings within a slope function. It takes into account users’ ratings in items and the

ratings received by items to favour the recommendation of popular items. This technique

is fast to update and it is resistant to cold start. Other variations consider the high

co-rated items [Lemire and Maclachlan, 2005], the bi-polar ("like", "dislike") approaches

[Lemire and Maclachlan, 2005], the integration of clustering techniques to improve users’

correlations [Mi and Xu, 2011], and apply users’ trustiness and items’ recommendation

usefulness to enhance recommendations [Menezes et al., 2013].

Other collaborative őltering techniques focus on diferent challenges, such as sparsity.

[Wang et al., 2006] suggest a memory-based technique rather than performing users’ ratings

or items’ ratings aggregations to perform users/items similarities, they mix both and they

create the rating-based similarity. For a given prediction, both users and items aggregations

are used together. [Massa and Avesani, 2004] claims that in large datasets it is diicult

to őnd users who rate the same items with similar ratings. They propose to create a

trustiness-graph based on users’ ratings and users’ connections to increase the number of

comparable users.

Some authors focus on these user-user connections and claim that enhancing the seek

58

2.3. RECOMMENDER SYSTEMS IN THE ACADEMY

of users’ neighbors would improve the accuracy of recommendations. [Ortega et al., 2013]

propose "Pareto" dominance to perform a pre-őltering process that eliminates less repre-

sentative users from a K-Nearest Neighbors selection and keep the most similar ones. [Xu

et al., 2012] highlight that users with similar tastes in some items may have completely

diferent tastes in other group of items. To face this issue, they propose to őnd meaningful

subgroups by using a multi-clustering techniques over users’ ratings and items. This őnds

accurate cluster of users. [Chatzicharalampous et al., 2015] also realize that users’ pref-

erences tend to be distributed among the same group of items. In order to increase the

recommendation of other items (coverage) and also have diversity in top-K recommenda-

tions, the authors use an user-biased collaborative őltering that favour explorer users in

neighborhood memory based techniques.

Other authors agreed with the accuracy of collaborative őltering techniques but focus on

more diverse challenges. For instance, [Ben-Shimon, 2013] care about the trade-of between

the computation time of the recommendation techniques and the quality of the solution

these provide. They propose a memory based collaborative őltering algorithm which can be

stopped at anytime. The more the computation time, the better the predictive performance

that is achieved. Given suicient time, the solution becomes optimal. [Herlocker et al.,

2000, Hernando et al., 2013] focus on the explanation in recommendations to increase the

acceptance of recommended items. They use visualizations and clustering techniques to

identify attractiveness and closest related users.

In addition, it is worth to highlight that merging a set of collaborative őltering can

overcome simple collaborative őltering approaches [Jahrer et al., 2010], and may co-operate

to alleviate each other’s particular issues.

Hybrid approaches propose to combine diferent recommendation technique assump-

tions, such as content-based and collaborative őltering techniques. [Uchyigit, 2009] and

[Peis et al., 2008] show a state of the art in recommender systems that combine semantic

web technologies (usually for content-based recommendations) and collaborative őltering.

They claim that these technologies may help to interconnect items and users information

in other diferent levels, such as reasoning and recommendation explanations, and they can

alleviate cold-start and sparsity. In fact, this may make easier to integrate heterogeneous

59

2.3. RECOMMENDER SYSTEMS IN THE ACADEMY

data to the system, although it also makes the domain independence and scalability of the

system more complex. Many of these techniques sufer from large vector representation of

items and/or users which increases the memory consumption.

For instance, [Middleton et al., 2004] create user proőles that represent users’ interest

in terms of concepts in ontologies. They use collaborative recommendation algorithms to

recommend papers seen by similar people and based on their current topics of interest.

[Berkovsky et al., 2007] explore the content-dependency of items proposed by collab-

orative őltering techniques. They propose an item’s partitioning by topic (e.g. the genre

of a movie). They apply one collaborative őltering technique per partition by taking into

account only the data from users and items in the partition. Diferently, [Tso-Sutter et al.,

2008, Zhang et al., 2011] enlarge the topics of items. They claim that items’ descriptions

can be global (i.e. inherit items’ attributes, such as the attribute of a movie), or and/or

local (i.e. inherit from one particular user for one particular item, such as tags). Their

goal is to incorporate tags to diferent memory based collaborative őltering approaches by

creating a "user-tag", "item-tag" and "user-item" matrices. [Mabroukeh and Ezeife, 2011]

also exploit the users’ tags. They map tags into concepts within one domain ontology.

This allows to map items to concepts and to match users to concepts in order to obtain

the relevant items for the users.

More approaches regarding hybrid approaches (mainly content-based and collaborative

őltering combinations) and the heterogeneity and representation of data are discussed in

Chapter 4 and Chapter 5.

As it was discussed in the previous section, the social network techniques may enhance

the performance of recommender systems mainly by improving their accuracy, items ac-

ceptance and explanation of recommendations [Kautz et al., 1997]. For instance, [Aranda

et al., 2007] use a simple social friendship voting system and matrix factorization: the rec-

ommendation score for the active user is the sum of the scores of his friends. This enhances

the users’ similarity research. [Ma et al., 2011] propose to extend matrix factorization to

take into account users’ social regularizations. They modiőed the user-features matrix to

introduce "social weights" and make that users latent feature vectors and users’ friends

latent feature vectors to be closer to each other.

60

2.4. RECOMMENDER SYSTEMS IN THE INDUSTRY

Another trending challenge among researches is the cold start situation, specially sen-

sible in collaborative őltering techniques. [Kim and Li, 2004] focus on the new item cold

start by using association rule in items’ preferences and collaborative őltering probabilistic

rating distributions among group of users. Items are partitioned into groups and predic-

tions for users are made by considering the Gaussian distribution of user ratings in each

group. [Sobhanam and Mariappan, 2013] use association rules to create users’ proőle and

solve new user cold start and clustering techniques to alleviate the new item cold start.

However, current tendencies to cope with cold-start are based on active learning techniques,

in which the users can interact with the system and give a few initial ratings to analyze

[Boutilier et al., 2002]. The cold start and particularly the active learning techniques are

more discussed in Chapter 6.

We conclude this section by presenting some contextual recommender systems ap-

proaches. They are interesting because they can adapt recommendations to very par-

ticular users’ situations[Adomavicius and Tuzhilin, 2011]. For instance, [Sarwat et al.,

2014] deduce that there exist users preferences depending on spatial regions (e.g. a school,

a neighborhood, etc.). In addition, they discovered that the need to move into diferent

regions looking for special needs is accepted by users. [Braunhofer et al., 2015] propose

to identify (or query to users) the contextual factors that could inŕuence users’ ratings

and recommendations acceptance, e.g., the time or the GPS location. Then, they create a

predictive model to predict ratings under various contextual situations.

2.4 Recommender Systems in the Industry

This section presents how recommender systems have been adopted by the industry.

We focus on big companies dealing with large amount of users and information. We try to

dig into the recommendations that these companies perform. However, this is often diicult

due to a lack of public published information, hidden intentions or protected intellectual

properties which give competitive edges. In fact recommender systems increase sales (more

purchases from catalogues), attract audience (more click on catalogues) and improve users’

satisfaction. Thus, the industry cares about the coverage of items and users and the impact

of recommendations in the business and the users.

61

2.4. RECOMMENDER SYSTEMS IN THE INDUSTRY

2.4.1 Video Service Providers: Netflix, Youtube and Canal+

Netŕix is probably one of the most important actors in the development of recom-

mender systems. This media service provider has organized from 2006 to 2009 the "Netŕix

Price" competition. The goal was to, given a large movie’s dataset, enhance performance

of recommendations in terms of the RMSE metric (which computes the square diference

between the techniques’ predicted ratingsin some items and the ratings the users would

have given to these items) by at least 10%. This challenge has contributed by propos-

ing many algorithms (e.g. Matrix Factorization) and many hybrid algorithms, which are

combinations of diferent techniques.

The current recommender engine uses, among others, a linear combination of two very

interesting and important techniques: a Singular Value Decomposition for matrix factor-

ization (SVD++) and a Restricted Boltzmann Machines (RBM). The former is explained

in [Koren and Bell, 2011]. It is a matrix factorization technique that uses gradient descent

techniques to optimize the model research. An extended version was proposed to take into

account not only explicit users’ feedback (e.g. ratings), but also implicit feedback (e.g.

clicks, time spent in items, etc) and other time-oriented users’ evolutions. The latter was

proposed in [Salakhutdinov et al., 2007]. It is an artiőcial neural network that learns the

distribution probability of ratings among the dataset in order to generate predictions.

Google faces a diferent problem in video recommendations. For instance, the big am-

mount of uploaded videos and their poor metadata (e.g. incomplete or irrelevant titles and

descriptions). The recommendation system is presented in [Davidson et al., 2010]. It uses

contextual informations as well as item-to-item collaborative őltering techniques, i.e. the

users who watched this video also watched these others, for long-period recommendations

and association rules for short periods of users’ navigation (usually 24 hours).

Canal+ aims to ofer personalized video content to individuals and groups, i.e. families,

in services of "video on demand". They face users interest identiőcation problems as

well as video-media players identiőcation (smartphones, tablets, computers and TV’s).

They developed "Eureka!"2, a TV programme recommender system of very high content

2Recommender Systems Conference at CNAM, Mars 2015. http://www.lesoffrescanal.fr/

service-canal-plus/eureka-idee-film

62

http://www.lesoffrescanal.fr/service-canal-plus/eureka-idee-film
http://www.lesoffrescanal.fr/service-canal-plus/eureka-idee-film

2.4. RECOMMENDER SYSTEMS IN THE INDUSTRY

granularity. It adapts constantly programmes depending on interest, wishes and humours.

Moreover, it allows to interact with users to enrich its user’s preference knowledge.

"Eureka!" captures the devices usages, the diferent users, the preferences in social

networks and the meta-data of their TV programmes. They propose to adapt the content

for the family as well by using a cluster approach of TV programmes. This allows to group

TV programmes into diferent categories and to justify recommendations in much easier

way. Under a more technical point of view, we consider that this service consists on a set of

algorithms to analyze users’ interactions with programmes. Thus, they may use a detailed

TV programme description and detailed users’ experiences interaction to be exploited by

content-based and collaborative őltering techniques.

2.4.2 E-commerce: Amazon and eBay

Amazon e-commerce web site ofers a very heterogeneous catalogue of products. The

recommendation engine is based on collaborative őltering techniques and contextual in-

formation. [Linden et al., 2003] popularized the use of item-to-item collaborative őltering

recommendations based on log purchases, e.g. customers who bought this item also bought

these others items, which are also used nowadays. Rather than matching the user to similar

customers, it matches each of the user’s purchased and rated items to similar items, then

combines those similar items into a recommendation list. Today, a content-based system

is also integrated to reőne recommendations.

Very recently, Amazon realizes that users may purchase items not for personal usage and

that many users keep products in to-buy lists. Thus, it is possible to stop certain purchases

from inŕuencing users’ recommendations. In addition, Amazon take into account the items

in the created lists, as well as the new feature of "wishes" lists.

2.4.3 Social Networks: Linkedin, Twitter and Mendeley

Linkedin3 aims to connect people and industries in order to help users and companies in

job őnding and hiring tasks. It ofers several recommendation levels. They propose a "job

recommendation", in which the user’s proőle helps to őlter and makes appear interesting

3www.linkedin.com

63

www.linkedin.com

2.4. RECOMMENDER SYSTEMS IN THE INDUSTRY

jobs. On the other hand, the "talent match" helps human resources to őnd out interesting

candidates. In addition, they ofer "news/updates recommendations", "companies you may

want to follow", "people you may know", and "similar proőles". These recommendations

use collaborative őltering based on users’ connections and content based techniques to

exploit the users’ proőles (such as schools, companies, experiences, skills, etc)4.

Twitter allows users to post short text messages and pictures. Users can follow other

users to be updated about the last posts. The recommendation engine uses users’ con-

nections and the short textual information to perform collaborative őltering and content

based recommendations [Hannon et al., 2010]. It performs a users’ proőling using users’

own tweets, users’ followees and users’ followers. The engine is based on an open source

search engine called Apache Lucene5.

Mendeley6 is a free reference manager and academic social network. Their goal is

to connect users, put researcher in the correct content context and help to őnd out new

publications. The data used comes from Mendeley’s libraries, researcher’s publications,

social network, co-authors network, citations’ network, group of researchers and individual

proőles. This allows to compute collaborative őltering, content based and social network

approach for diferent use cases, as long as collaborative őltering and content hybrid ap-

proaches. For instance, őnding similar papers, highlight inter-linked articles, suggesting a

group of papers and to őnd a correct journal to publish an article.

Other social networks, such as Facebook7, use collaborative őltering to recommend new

friends, groups, and other social connections.

2.4.4 Music Service Providers: Last.fm, Pandora and Spotify

Last.fm8 uses collaborative őltering approaches. It creates a "station" of recommended

songs by (1) observing what bands and individual tracks the user has listened to on a

regular basis and (2) comparing those against the listening behavior of other users. It

4Conference Hadoop World 2011. http://www.slideshare.net/cloudera/

2-abhishek-gupta-linkedin-leveraging-hadoop-to-transform-raw-data-into-rich-features-at-linked-in-final
5https://lucene.apache.org/core/
6Recommender Systems Conference at CNAM, Mars 2014. https://www.mendeley.com
7Facebook help system. https://www.facebook.com/help/www/501283333222485
8http://www.last.fm

64

http://www.slideshare.net/cloudera/2-abhishek-gupta-linkedin-leveraging-hadoop-to-transform-raw-data-into-rich-features-at-linked-in-final
http://www.slideshare.net/cloudera/2-abhishek-gupta-linkedin-leveraging-hadoop-to-transform-raw-data-into-rich-features-at-linked-in-final
https://lucene.apache.org/core/
https://www.mendeley.com
https://www.facebook.com/help/www/501283333222485
http://www.last.fm

2.4. RECOMMENDER SYSTEMS IN THE INDUSTRY

plays tracks that do not appear in the user’s library, but are often played by other users

with similar interests. Pandora9, on the contrary, uses content-based techniques to create

"stations", which contain songs with similar attributes [Tingle et al., 2010]. It allows

positive and negative feedbacks to reőne songs in stations. For further details about these

recommender systems, readers can read "Pandora and Last.fm: Nature vs. Nurture in

Music Recommenders"10.

Spotify ofers diferent levels of recommendations as well, e.g. songs and other users’

songs’ lists. They use a content based recommender system11. Unlike from other engines,

Spotify uses deep learning techniques based on neural networks to generate recommenda-

tions [van den Oord et al., 2013].

2.4.5 Other industrial recommender systems

Yelp aims to recommend restaurant to users. They use collaborative őltering to analyze

users’ ratings and content-based to proőle restaurants12. They propose a cascade hybrid

system that uses a matrix factorization technique and K-Nearest Neighbors, as long as

other learning algorithms.

Orange Labs13 has demonstrated also a big interest in recommender systems to en-

hance their services. In fact, they propose a similar architecture as Yelp. They propose

Reperio, a generic recommender system that aims to help users in decision making, com-

parison, discovery and exploration [Meyer, 2012]. The recommendation engine uses a

K-Nearest Neighbours (KNN) approach based on an item oriented collaborative őltering

using a modiőed Pearson Correlation similarity measure. A combination of KNN and a

fast matrix factorization is used to deal with scalability issues. To cope with cold-start,

they propose a hybrid technique to deal with content-based recommendations for small

users’ proőle (few ratings).

9http://www.pandora.com/restricted
10http://blog.stevekrause.org/2006/01/pandora-and-lastfm-nature-vs-nurture-in.html
11Blog of Spotify Developer, August 2015. http://benanne.github.io/2014/08/05/spotify-cnns.

html
12Student Research Study for Yelp.com. http://www.math.uci.edu/icamp/summer/research/student_

research/recommender_systems_slides.pdf
13F. Meyer working at Orange Labs - Recommender Systems Conference at CNAM, Mars 2014.

65

http://www.pandora.com/restricted
http://blog.stevekrause.org/2006/01/pandora-and-lastfm-nature-vs-nurture-in.html
http://benanne.github.io/2014/08/05/spotify-cnns.html
http://benanne.github.io/2014/08/05/spotify-cnns.html
http://www.math.uci.edu/icamp/summer/research/student_research/recommender_systems_slides.pdf
http://www.math.uci.edu/icamp/summer/research/student_research/recommender_systems_slides.pdf

2.5. RECOMMENDER SYSTEM’S LIBRARIES

2.5 Recommender System’s Libraries

Recommender systems have been widely studied in the past few years and have demon-

strated their capabilities and accuracy. The academy and industry have both participated

in the development of these tools by creating algorithms and proposing new challenges. As

a result, there is a great community of researchers and independent users who contribute

to make recommender systems more accessible by anyone.

Open source libraries have appeared to create and deőne a recommendation service

architecture. Typically, these libraries do not only focus on recommendations, but they

ofer data mining, machine learning and data processing paradigms as well. The main

goal is to propose libraries to analyze small and very big datasets, by taking into account

accuracy and scalability issues.

The most widely known library is Apache Mahout [Owen et al., 2011]. This open source

project started in 2010 and it aims to build fast and scalable machine learning applications.

On the one hand, the recommendation engine started in the Taste Project14, which mainly

focused on several collaborative őltering approaches in non-distributed environments. This

project has evolved inside Apache Mahout by implementing new techniques, such as item

based collaborative őltering and matrix factorization approaches. On the other hand,

Taste was designed to be run in single machines, although the need to parallelize the data

and analysis of recommendation techniques very rapidly arises. Thus, Apache Mahout

ofers a scalable architecture to perform parallelized analysis on top of Hadoop MapRe-

duce15. Currently, it is being adapted to other architectures, like Apache Spark16, H2O17

and Flink18. For further details about these architectures and their performance in large

datasets, readers can refer to [Gopalani and Arora, 2015, Liu, 2015].

There are two recent open source recommender systems which are based on Mahout’s

libraries: Myrrix19 and Oryx20. Myrrix is a full-stack recommender system, which extends

14http://incubator.apache.org/ip-clearance/mahout-taste.html
15http://hadoop.apache.org
16https://spark.apache.org
17Artificial Intelligence. http://www.h2o.ai
18Distributed stream flows and batch data processing. https://flink.apache.org
19https://github.com/myrrix/myrrix-recommender
20Cloudera Oryx Project. GitHub. https://github.com/cloudera/oryx

66

http://incubator.apache.org/ip-clearance/mahout-taste.html
http://hadoop.apache.org
https://spark.apache.org
http://www.h2o.ai
https://flink.apache.org
https://github.com/myrrix/myrrix-recommender
https://github.com/cloudera/oryx

2.5. RECOMMENDER SYSTEM’S LIBRARIES

and improves Mahout to create a scalable recommender system using Hadoop MapReduce.

This project is őnished and was replaced by Oryx, which has enhanced it and adapted to

Apache Spark distribution paradigms.

Another younger (2012) but promising library is MLib21, which is part of Apache Spark

and is easy to deploy in Hadoop architectures as well. It implements a matrix factorization

approach based on alternating minimization called Alternating Least Squares (ALS), and

this library is growing by implementing more and more algorithms.

GraphLab [Low et al., 2010] is a graph based framework for distributed machine-

learning, powered by the open source project PowerGraph [Gonzalez et al., 2012]. It has

recently evolved to GraphLab Create in the environment Dato22. This library has became

proprietary in order to sell services and solutions.

There are some libraries that contribute with some diferent recommendation features.

For instance, CARSKit is the őrst open-source library to implement context-aware rec-

ommender systems [Zheng et al., 2015]. EasyRec23 [EasyRec, 2013] is a recommendation

engine which is wrapped to websites and makes easier to capture, store and analyze the

interaction of users and items in the web pages, i.e. implicit interest.

Other libraries are interesting for prototyping algorithms. RecommenderLab [Hahsler,

2011] provides a set of multidisciplinary functions to easily handle users, items and rating

in order to develop and test recommender algorithms. It also implements users’ and items’

similarity based collaborative őltering as well as a matrix factorization technique based on

Singular Value Decomposition [Funk, 2006]. LensKit 24 [Ekstrand et al., 2011] libraries

allow to build a recommender application and to evaluate new recommendation algorithms

as well. The strongest point of this libraries is its community of researchers, since it has

collaborated with other GroupLens Research projects.

Other libraries simply implement the current state of the art of recommendation tech-

niques. PREA25 [Lee et al., 2012] ofers several collaborative őltering methods whereas

21https://spark.apache.org/mllib/
22Machine learning and predictive services in a graph scalable platform. https://dato.com
23http://easyrec.org/
24http://lenskit.grouplens.org/
25http://prea.gatech.edu/

67

https://spark.apache.org/mllib/
https://dato.com
http://easyrec.org/
http://lenskit.grouplens.org/
http://prea.gatech.edu/

2.6. DISCUSSIONS

MyMediaLite26 [Gantner et al., 2011] allows to exploit the item’s descriptions as well.

The developer community plays an important role in the development of libraries. This

has guaranteed the success of libraries as Apache Mahout. However, the lack of support

makes some libraries to stop quickly evolving, such as Carleton 27 Vogoo28 [Vogoo, 2013],

Wales [Gashler, 2011], Colő29[Brozovsky and Petricek, 2007], MyMedia [Voß et al., 2009],

and SVDFeature 30 [Chen et al., 2012].

Finally, there are some libraries which are now inactive or simply outdated, such as

Coő [Lemire, 2003], Duine31 [Instituut/Novay, 2009], or Crab32 [Caraciolo, 2012].

Table 2.2 sums up these engines and their properties. An extended and more detailed

comparison of some of these frameworks has been very recently published by [Nguyen,

2015]. In addition, [Said and Bellogín, 2014] show the performances of Mahout, Lenskit and

MyMediaLite over several collaborative őltering implementations and metrics. They note

that same implementations on diference libraries may result diferent metric values. As a

consequence, the choice of which libraries to use become a problem of adaptability to the

developer’s expertise (e.g. the languages mastered) and the development environment (e.g.

to be easily wrapped to other features, such as architectures to distribute the analysis of

data). In this thesis, we have specially used Apache Mahout (as long as Myrrix and Oryx)

for its simplicity, RecommenderLab for its prototyping features and we brieŕy analyzed

MLib for its integration into Apache Spark architecture.

2.6 Discussions

In this chapter we have explained the assumptions and techniques behind recommender

systems. On the one hand, the most popular methods are collaborative őltering and

content based. The former relies on the relations among users and users’ interest in the

past to generate recommendations. It is easily scalable but it does not exploit the items’

26http://mymedialite.net
27http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/index.html
28http://sirius.cs.put.poznan.pl/~inf59829/vogoo/docs/MANUAL.html
29http://savannah.nongnu.org/projects/cofi/
30http://svdfeature.apexlab.org/wiki/Main_Page
31This framework and site are no longer available. http://duineframework.org
32http://muricoca.github.io/crab/

68

http://mymedialite.net
http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/index.html
http://sirius.cs.put.poznan.pl/~inf59829/vogoo/docs/MANUAL.html
http://savannah.nongnu.org/projects/cofi/
http://svdfeature.apexlab.org/wiki/Main_Page
http://duineframework.org
http://muricoca.github.io/crab/

2.6. DISCUSSIONS

Table 2.2: Recommender System Libraries. Table updated on June 10th, 2016.
Library Recommendation techniques Language Last updated

Apache Mahout Similarity-based CF Java 2016
Model-based CF (Matrix Factorization)

MLib ALS Matrix Factorization Scala/Java 2016
GraphLab Create / Dato Item Similarity-based CF Python/C++ 2016

Model-based CF (Matrix Factorization)
Popularity based algorithms

RecommenderLab Similarity-based CF R 2016
Simple SVD Factorization

LensKit Similarity-based CF Java 2016
Matrix Factorization
Slope-One

MyMediaLite Collaborative őltering C#/Mono 2016
CARS-Kit Context aware Java 2015
PREA Similarity-based CF Java 2014

Matrix Factorization
EasyRec Item-based CF Java 2013
Colő Similarity-based CF Java 2013
Vogoo Item-based CF PHP 2013
Wales Collaborative őltering C++ 2013
SVDFeature Model-based CF (Matrix Factorization) C++ 2012
Crab Component to create RS Python 2012 - Inactive
MyMedia Collaborative őltering C# 2010

Social Networks based őlters
Duine User-based CF Java 2009 - Inactive

Content-based
Carleton Similarity-based Java 2007 - Inactive

Simple SVD Factorization
Association rules

Coő CF techniques Java 2003 - Inactive

descriptions to better adapt recommendations. The latter recommends similar items to

the ones the current user liked in the past. The heterogeneous data sources increase

the complexity of these approaches. In addition, recommendations tend to sufer from

overspecialisation (very similar items are always recommended to the users). A third

very important category are the hybrid recommendations, which combine two or more

techniques to alleviate the drawbacks and enhance the accuracy of recommendations.

Both academy and industry have invested their eforts in the recommendation őeld. One

of the most important contributions is the matrix factorization technique, which appeared

during the Netŕix price and which has helped researches to overcome with scalability and

accuracy issues. Currently, it is considered as the baseline state of the art in collaborative

69

2.6. DISCUSSIONS

őltering techniques, and generally, in recommender systems. This technique does not

use the items’ descriptions and it is sensible to sparsity and cold-start situations. As

a consequence, many of the techniques in academy and industry combine it with other

approaches.

This thesis assumes matrix factorization as the principle technique in recommender

systems and aims to go beyond this technique. We aim to cope with some challenges

linked to matrix factorization, collaborative őltering techniques and recommender systems,

in general. Our contributions focus on (1) the scalability of matrix factorization to achieve

better performance in Hadoop clusters, (2) the implicit interest of users in the items’

descriptions and how this can be softly used in collaborative őltering techniques, (3) the

items’ and users’ representations in very large data contexts, and (4) the new user cold

start for pure collaborative őltering techniques. Our őnal goal is that these contributions

help recommender systems to better handle data and better understand users in order to

enhance the performance of the system and the accuracy of recommendations.

70

Chapter 3

Analysis of the Parallelization of

Matrix Factorization techniques

This chapter is mainly extracted from the conference paper: "An implementation of a Dis-
tributed Stochastic Gradient Descent for Recommender Systems based on Map-Reduce" ;
Manuel Pozo and Raja Chiky; IWCIM 2015.

3.1 Motivation

Recommender systems are based on the interaction between users and items. These

interactions are given explicitly (i.e. ratings) and implicitly (i.e. tracking navigational be-

haviour). These sources of information and the large number of users and items imply that

recommender systems have to deal with huge data analysis. As a result, recommendations

are computationally expensive. For instance, the video media service provider Netŕix has

around 20 millions customers, 80 thousands movies and 5 billions ratings [Makari et al.,

2014]. In addition, this kind of dataset is typically sparse because users often only rate

some of these items. Thus, recommenders should be accurate to predict users interests,

and scalable to alleviate time processing.

In general, the recommendation techniques focus on accuracy challenges. Matrix Fac-

torization (MF) is a recommendation technique particularly interesting because it has

demonstrated great accuracy in recommendations and a high scalability to suit very large

users/items datasets [Koren, 2009, Koren et al., 2009]. This technique has become the

main reference in the state of the art. The two most known matrix factorization based

71

3.2. RELATED WORK

techniques for recommender systems are Alternating Least Squares (ALS) and Distributed

Stochastic Gradient Descent (DSDG). We particularly focus on the latter one because it

has demonstrated better accuracy [Makari et al., 2014]. However, the distribution of the

computation among multiple machines is complex to achieve and the current technique to

parallelize the process has a negative impact in the accuracy of the system.

In this chapter we analyze the scalability of matrix factorization. Our contribution

proposes a modiőcation of the current distribution of stochastic gradient descent techniques

for a Hadoop/MapReduce cluster. Our goal is to render more ŕexible the distribution of

these techniques in order to better exploit the capabilities of the cluster and to achieve

a high accuracy in recommendations. At the best of our knowledge, this paradigm has

not been openly detailed under this context. Thus, we detail the implementation of our

approach. The experimentation has been performed using the publicly available MovieLens

dataset. The results indicate the good performance of the system compared to current state

of the art.

This chapter focuses on matrix factorization techniques from the point of view of scala-

bility and accuracy. Section 3.2 starts by presenting a brief state of the art. The necessary

background to understand the troubleshooting in the distribution of stochastic gradient de-

scent is given in Section 3.3. The contribution and implementation details of our approach

are in Section 3.4. The experimentations and comparisons are in Section 3.5. Finally, we

conclude and discuss this chapter in Section 3.6.

3.2 Related Work

This state of the art focuses on scalable recommendation techniques. Particularly, col-

laborative őltering approaches based on matrix factorization technique have demonstrated

high scalability and high accuracy predicting recommendations [Koren, 2009]. In brief, this

technique relies on collaborative őltering assumptions: users who agreed in past tend to

agree in future. Hence, it groups people of similar tastes, and it recommends past liked

items from people with the same preferences. On the contrary, it does not exploit the

items’ and/or users’ attributes to enhance recommendations.

72

3.2. RELATED WORK

The matrix factorization technique decomposes a matrix R into two random matrices,

P and Q, in such a way that the multiplication of both matrices gives approximately

the original one [Koren et al., 2009]. Typically, ru,i denotes known ratings in R, where

u stands for a user (row) and i for an item (column). Thus, ratings are obtained by the

multiplication of a vector pu from matrix P and a vector qi from matrix Q: ru,i = pu ·q
t
i . By

using this technique, known ratings are approximated or unknown ratings are predicted:

r̂u,i = pu · qti .

The quality of the model is given by the closeness between approximated ratings r̂u,i

ru,i and real observed ratings ru,i. The goal is to őnd the matrices P and Q that best

approximate known ratings in R: the technique looks for the best P and Q that minimize

the quadratic error of the diference between real and approximated ratings. The baseline

model is then deőned as: min
∑

ru,i∈R
(ru,i − r̂u,i)

2.

As a consequence, the matrix factorization paradigm becomes an optimization prob-

lem to solve. The two most known optimization techniques that may őnd out accurate

predictions are based on alternating minimization and gradient descent [Koren and Bell,

2011].

3.2.1 Alternating minimization for the matrix factorization

The alternating minimization technique has simple algebraic resolution. It was pop-

ularized by the Alternating Least Square (ALS) technique, studied in [Schafer et al.,

2007b, Zhou et al., 2008, Pilászy et al., 2010, Takács and Tikk, 2012, Jain et al., 2013].

This technique decomposes the problem into two simple optimization problems repre-

sented in P and Q. The main idea is that knowing the ratings in R and supposing P or

Q őxed, the non őxed matrix can be guessed. By alternating the őxed matrix in order to

guess the other one yields in an approximated result for R. Thus, one alternating mini-

mization iteration is completed when P and Q have been guessed/őxed one time. Highlight

that this alternating minimization exploits R two times in one iteration: to guess P and

to guess Q. New iterations repeat all this process until a maximum number of iterations

or a convergence threshold has been achieved.

73

3.2. RELATED WORK

3.2.2 Gradient descent minimization for matrix factorization

The gradient descent optimization technique was popularized as Gradient Descent (GD)

and Stochastic Gradient Descent (SGD) for recommender systems in [Funk, 2006, Takács

et al., 2007, Koren, 2008, Koren, 2010, Koren and Bell, 2011]. In other references it is also

known as Singular Value Decomposition for recommender systems.

This technique is typically more complex. It decomposes R into two matrices P and

Q and add dedicated users/items learning-parameters to study the ratings patterns. This

technique iterates over each rating ru,i in R, one by one, looking for a global minimum.

After each rating, the u user’s parameters and the i item’s parameters are updated by

taking the negative gradient of the function into account. These little steps (single rating

and consequent update) improve the accuracy of the system towards the global minimum.

One algorithm’s iteration is completed when all ratings have been analyzed. One may

notice that huge number of ratings may cause slow time performances. To solve this, the

stochastic gradient descent suggests a faster convergence optimization: it iterates over a

batch of ratings before updating the parameters in matrices. This afects to the quality of

the convergence1, although it has minor efects in very large ratings datasets.

The complexity of the scalability of these techniques relies on the ratings iterations

and updating steps. In fact, the iteration over ratings and the followed updates are inter-

dependent because they use and cross users and items parameters. If two ratings sharing

similar users or items are computed in parallel, the users/items update step represents a

problem. This paradigm is detailed in [Gemulla et al., 2011, Makari et al., 2014].

The main idea behind the parallelization of this algorithm is the division of the R matrix

into blocks, stratums and iterations. Figure 3.2 represents an example of the presented

paradigm, which is described below.

A block is a batch of ratings that should be computed. It is computed by only one

processor, and hence, the update of parameters are available within the same processor

and there is no dependency problems inside2. It is possible to note that there are blocks

1see http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/
for further details.

2We consider that processors do not directly share memory.

75

http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/

3.3. BACKGROUND

creation process.

Our contribution aims to tackle this problem by slightly changing the distribution

paradigm and to ofer an implementation of a distributed stochastic gradient descent.

3.3 Background

This section goes deeper into the stochastic gradient descent technique in order to better

understand the troubleshooting in its distribution for scalable recommender systems.

Gradient Descent (GD) for recommender systems is based on the matrix factorization

technique. It aims to explain the ratings in a matrix R by using two matrices P and Q.

The baseline predictor is deőned as r̂u,i = µ + bu + bi + pu · qti . Where µ is the average

of the ratings in the matrix R. bu, bi are biases of the user u and the item i respectively

and represent a deviation from the average rating value. Finally, pu, qi are the latent space

vectors from P and Q matrices. The goal is to minimize the λ-regularized squared error

of:

minbu,bi,pu,qi

∑

ru,i∈R

(ru,i − r̂u,i)
2 + λ · (b2u + b2i + ∥pu∥

2 + ∥qi∥
2)

The gradient descent optimization analyzes all the ratings one by one by computing

the error in the prediction, eu,i = ru,i− r̂u,i. It updates the current parameters’ status after

each rating by taking the negative gradient. This process is controlled by a learning-rate

parameters called γ. The update phase is given by:

• bu := bu + γ · (eu,i − λ · bu)

• bi := bi + γ · (eu,i − λ · bi)

• pu := pu + γ · (eu,i · pu − λ · qi)

• qi := qi + γ · (eu,i · qi − λ · pu)

The stochastic version proposes to iterate over a batch of ratings before updating the

parameters, what allows a faster convergence in very large datasets. However, either simple

77

3.3. BACKGROUND

iteration or batch iterations, one can highlight the interdependency of the new updated

values and previous values [Makari et al., 2014]. For instance, a new value for bu depends

on the last computed value of bu for this user u. In a single machine, new updated values

after one iteration are ready for a new iteration. On the contrary, non sharing memory

systems may have diiculties to scale the algorithm and it may lead in miss-updated values

or lack of synchronization.

[Gemulla et al., 2011, Makari et al., 2014] have demonstrated that it is possible to avoid

this dependency by looking for independent ratings, i.e. ratings ru,i that do not share rows

(users) and/or columns (items). As a consequence, they have no common parameters;

hence, there is no dependency; and thus, they can be computed in parallel. As explained

above, the distribution of this technique follows a stratiőcation paradigm. One stratum

is composed of blocks. One block is composed of a batch of ratings. Blocks in the same

stratum do not share rows (users) and/or columns (items), i.e. one user/item belongs only

to one block in a given stratum, and thus one user/item is contained in only one block per

stratum. On the one hand, one block is computed in one node, i.e. ratings are in the same

machine, and it is possible to safely update parameters. On the other hand, blocks in one

stratum do not share users/items and thus can be computed in separated machines, and

the updates for future stratum’s analysis are possible and the interdependence is avoided.

We highlight that the performance of the distribution depends on the number of inde-

pendent blocks and the number of nodes to analyze the block. We assume that one node

analyzes only one block at a time, and that one node is uni-threaded (not divisible). For

instance, one node can be one cluster in a multi-machine environment, or one thread in a

multi-threaded single machine. Hence, having b nodes, the goal is to őnd b independent

blocks in the matrix to maximize the eiciency of the distribution. For instance, let’s repre-

sent a matrix R of dimensions nu = 12 users (rows) and ni = 12 items (columns). Figures

3.3(a) and 3.3(b) show the block decomposition when 3 and 4 nodes (b = 3 and b = 4) are

available. One can highlight that the size of block has been changed and adapted due to

the number of nodes.

However, (1) what would happen if there are 5 nodes in the cluster?, and (2) what

would happen if R is not a square matrix, nu ̸= ni? In fact, the key point for the block

78

3.4. FLEXIBLE DISTRIBUTED STOCHASTIC GRADIENT DESCENT

might be performed. However, this does not yield to a loss of data, since inserting empty

dimension does not add any noisy information. Based on these ideas, we have developed

a ŕexible distributed stochastic gradient descent.

In this section we őrst formalize the ŕexibility aspect of the distribution, and second

we focus on development and implementation details of the approach.

3.4.1 Flexibility and adaptation of blocks to the clusters

Let’s nr be the number of rows (users) and nc the number of columns (items). b is

the number of nodes, machines or clusters, and thus, the number of possible independent

blocks. Our goal is to deőne new n′
r and n′

c in such a way that n′
r%b = 0 and n′

c%b = 0. In

fact, by doing this we set the number of blocks in which the matrix R will be decomposed

and the size of these blocks.

The under dimensionality setting deletes rows and/or columns, and thus users/items;

hence, ratings and information. Highlight that gradient descent usually performs a random

shuling in the matrix R, and thus which users/items are deleted is not controlled. This

mode resizes the matrix by deleting dimensions, and thus resized dimension are equal or

minor to the real one to accomplish the decomposing condition. This is also used in [Makari

et al., 2014]. As a result, the number of rows/columns to use in the resized matrix is given

by n′
r = nr − nr%b and n′

c = nc − nc%b.

The upper dimensionality setting adds new rows and/or columns, and thus users/tems;

however, these new dimensions do not contain ratings. This may possibly create an unbal-

anced block in every stratum in which the number of ratings is lower. As a result, it may

cause extra time consumption due to the fact that the block needs to be sent to the node

anyway. However, this time is normally insigniőcant compared to the time-consumption of

the algorithm and it does not carry out any loss of ratings and hence any loss of accuracy.

The number of rows/columns to keep in the matrix is given by n′
r = nr + (b− nr%b) and

n′
c = nc + (b− nc%b).

The ŕexible dimensionality setting is a hybrid between both approaches above. It

deletes/adds users and/or columns depending on the number of nodes b. It looks for the

80

3.4. FLEXIBLE DISTRIBUTED STOCHASTIC GRADIENT DESCENT

Algorithm 1 Looking for the closest value which return zero remainder.
1: function ClosestZeroRemainder(dimension, rule) ▷ rule is the number of nodes

available.
2: underResidual = dimension % rule;
3: upperResidual = rule - dimension % rule;
4: if underResidual < upperResidual then ▷ Picking up the closest for zero

remainder.
5: closest = dimension - underResidual;
6: else
7: closest = dimension + upperResidual;
8: end if
9: end function

closest dimension (above or below) to the real one. Whether the algorithm deletes or adds

rows/columns depends on the remainder n′
r%b = 0 and n′

c%b = 0. Algorithm 1 shows the

process to őnd the closest dimension either below (under) or above (upper) the original

dimension. The "rule" is the number nodes b which is the divisor to divide dimensions

towards a zero remainder.

3.4.2 DSGD Hadoop/MapReduce implementation

In this section, we present the technical details of our implementation in MapReduce.

Three parameters have to be set: row original matrix dimension nr, column original matrix

dimension nc, and the number of nodes b (non divisible threads or clusters). We focus on

three parts of our implementation: (1) the block decomposition of the R matrix, (2) the

stratum assignment of decomposed blocks, and (3) the execution of these stratums and the

end of the algorithm.

3.4.2.1 Matrix Block Decomposition

The őrst goal is to decompose the R matrix into blocks, in such a way that independent

blocks can be found and grouped into stratums. Our approach allows three decomposition

modes, which have been explained before. This step takes the chosen mode and applies it.

As a consequence, this step adds/removes rows and/or columns in order to accomplish the

decomposition condition and make the rating matrix decomposable in blocks.

Furthermore, solving the decomposing condition makes possible to determine the size

81

3.4. FLEXIBLE DISTRIBUTED STOCHASTIC GRADIENT DESCENT

Algorithm 2 Decomposition of the matrix R into blocks.
1: function BlockDecomposition(R, numberOfNodes, mode) ▷ mode can be:

underDimension, upperDimension or ŕexDimension.
2: rowDimension = decCondition(R.rowDim, numberOfNodes, mode);
3: columnDimension = decCondition(R.columnDim, numberOfNodes, mode);
4: R′ = makeDecomposable(rowDimension, columnDimension, R);
5: rowStepSize = (rowDimension/numberOfNodes);
6: columnStepSize = (rowDimension/numberOfNodes);
7: for row = 0; row ≤ rowDimension; row ++ do
8: for column = 0; row ≤ columnDimension; column++ do
9: createNewBlock(row, rowStep, column, columnStep, R′);

10: end for
11: end for
12: end function

of blocks given R and the number of nodes. This is useful to go all over the matrix R

extracting the corresponding blocks. The row step size of a block is given by rowStep =
n′
r

b
and the column step size is given by columnStep =

n′
c

b
. Algorithm 2 describes the

complete block decomposition process. First we őnd the appropriate number of rows and

columns (regarding the underDimension, upperDimension or ŕexDimension) which őt with

the number of nodes. Second, we shrink or enlarge the original matrix R according to these

dimensions. Finally, the new dimensions and the number of nodes allow to compute a step

size to follow to build blocks in the matrix.

3.4.2.2 Stratum Assignment

The second step is to őnd out the independent blocks and to assign them to the same

stratum. Note that, the number of the stratums is actually the number of nodes b, and

thus, up to b blocks are in the same stratum and can be executed in parallel.

We use a straightforward strategy: blocks found are numbered one after the other,

which are used as blocks identiőcation and to őnd out blocks inter-dependencies. In fact,

the decomposition of the matrix has been done per column step and per row step, in this

precise order. This makes identiőcators to increase őrst by column and second by row.

Figure 3.4 exempliőes this explanation.

The stratum assignment takes beneőt of this numbering by implementing a priority list.

82

3.4. FLEXIBLE DISTRIBUTED STOCHASTIC GRADIENT DESCENT

Algorithm 4 Execution of iterations and stratums. P and Q are the users/items features
matrices respectively.
1: function RunIterations(P , Q, maxIterations, numberOfStratums) ▷ Note that

numberOfStratums is equal to the number of nodes.
2: for iteration = 1; iteration ≤ numIterations; iteration++ do
3: for stratum = 1; stratum ≤ numberOfStratums; stratum++ do
4: doSGDJob(stratum, P , Q);
5: updateParameters(P , Q);
6: end for
7: end for
8: end function

this sequence can be random.

Running one stratum means to compute the stochastic gradient descent among the

ratings in blocks and then updates parameters in P and Q at the end of their execution.

This guarantees the integrity and independence of parameters. Algorithm 4 describes this

pseudo-code.

The doSGDJob is a MapReduce job that analyzes the ratings in the blocks within a

stratum to compute the gradient descent optimization. One block is sent to a diferent

cluster and thus one block is deőned by one single map. However, all stratum’s blocks are

computed in parallel. Hence, there are b clusters executing b diferent blocks, which are b

map tasks.

The Map− function uses a simple key-value pair as input. The key is a pair of values

itself, which represent the entries of the R matrix (row/column identiőcation or user/item

identiőcation). The value is the rating encoded in a double variable. This function iterates

among ratings and internally updates the users/items parameters, however it does not

notify this update. Once all ratings have been analyzed, a clean-map process is computed

to prepare the őnal output of the function. The output is composed of a key-value pairs

as well. The key is a pair of values representing the user or item identiőcation. The value

is a vector which contains the updated user’s/item’s parameters. This paradigm makes

unnecessary to use Combiners or Reduce − functions. Finally, the parameters are joint

to the original P and Q matrices and updated locally for next stratums.

The end of the algorithm is given by number of iterations to compute. One iteration

84

3.5. EXPERIMENTATION

is őnished when all stratums have been computed. As a consequence, this makes stratums

to be computed several times and to enhance the accuracy of recommendations after each

iteration.

3.5 Experimentation

The experimentation phase uses the publicly available MovieLens 10M dataset 3. It

contains 69878 users, 10667 movies and 10 million ratings. We focus on collaborative

őltering techniques only, and thus there is no domain data or external information to

aggregate. By using this dataset, we create a matrix of rows (users) and columns (items)

that contains the available ratings. The evaluation and comparisons are carried out in

terms of accuracy and scalability as follows.

On the one hand, we split the dataset into 90% training set and 10% test set. This

split is done randomly by ratings, and thus one user/item can be both in training and

test set, although the rating of one user in one item belongs to one of the sets only. In

order to evaluate the accuracy of the recommendations, we use Root Mean Square Error

(RMSE). This metric computes the square error between the diference of predicted values

and real observed values. As a consequence, we use the training set to train and create

a recommendation model, and the test set to evaluate the performance of the model. As

long as the split of the dataset is random and afects to the creation of predictive models,

we split, run and evaluate algorithms 10 times. Then, we take the average value of the

RMSE to compare the techniques.

On the other hand, the time-consuming and scalability parameters depend on machines

and clusters. We vary the number of nodes in the cluster and see how the recommender

systems perform. We use b = 1, 2, 5, 7, 15, which afect the number of machines to use as

well as the number of blocks in which we decompose the matrix of ratings. In this analysis

we run the experimentation in single node cluster which uses a MacOS 4Go RAM with 2

cores (2.53GHz). This makes mappers in map-reduce to be computed sequentially, thus

time-consumption is higher than in a multi-cluster environment.

3http://grouplens.org/datasets/movielens/

85

3.5. EXPERIMENTATION

We compare the performance of the three stochastic gradient descent explained in

this chapter: under dimensionality (underDSGD), upper dimensionality (upperDSGD),

and ŕexible dimensionality (ŕexDSGD). Highlight that underDSGD is the technique in

[Makari et al., 2014]. All these techniques use similar training parameters obtained by

cross-validation: overőtting is λ = 0.025 and learning rate is γ = 0.0075. In addition, the

matrix factorization is allowed to run 30 iterations and to create a latent space model of 30

features. Moreover, we ofer a comparison to the alternating minimization technique ALS in

Apache Mahout4, implementation of [Schafer et al., 2007b, Zhou et al., 2008]. This probes

the superiority of distributed stochastic gradient descent techniques in terms of accuracy

and scalability. The technique’s settings uses the overőtting λ = 0.025, obtained by cross-

validation. In addition, in this case the technique is also allowed to run 30 iterations and

to use 30 latent features.

It is expected that upperDSGD obtains slightly better results in terms of RMSE, since

it does not delete data. Yet, underDSGD might get slightly better time performance.

FlexDSGD will show intermediary results in both comparisons. Table 3.1 shows the per-

formance in terms of RMSE and the time achieved in computing one iteration in a single

node cluster are presented. Moreover, it shows the number of rows/columns (users/items)

that has been added or removed (denoted by "+" or "-", respectively) in order to achieve

the divisibility "condition": nu%b = 0 and ni%b = 0.

As it was expected, the stochastic gradient descent techniques perform better than al-

ternating minimization techniques showing better accuracy and faster computations. High-

light that the time show in Table 3.1 when b > 1 correspond to the time of executing b

blocks in sequence as long as this experimentation was perform in a single machine. In real

multi-clusters environment this time should be exponentially reduced while increasing the

number of nodes, until őnding an asymptote. In addition, the upperDSGD and ŕexDSGD

approaches slightly overcome the underDSGD in terms of accuracy. Indeed, these two

modes deal with more ratings, what allows achieving (tiny 1%) better results. This fact

explains as well the little extra time taken in computation. Highlight that less or none

rows/columns are deleted. For instance, focus in the case of 15 number of units, which has

4https://mahout.apache.org

86

https://mahout.apache.org

3.6. DISCUSSION

Table 3.1: Experimentation results.

Technique RMSE Time (min) Number of nodes (b) Rows Columns

ALS 0.79603 3.019 1 = =
Under DSGD 0.77571 1.303 1 = =
Flex DSGD 0.77571 1.303 1 = =
Upper DSGD 0.77571 1.303 1 = =

Under DSGD 0.77611 1.850 2 = -1
Flex DSGD 0.77555 1.852 2 = +1
Upper DSGD 0.77559 1.885 2 = +1

Under DSGD 0.77626 5.518 5 -3 -2
Flex DSGD 0.77617 5.524 5 +2 -2
Upper DSGD 0.77597 5.525 5 +2 +3

Under DSGD 0.77586 8.978 7 -4 -6
Flex DSGD 0.77548 8.985 7 +3 +1
Upper DSGD 0.77565 9.024 7 +3 +1

Under DSGD 0.77593 28.506 15 -8 -2
Flex DSGD 0.77596 28.526 15 +7 -2
Upper DSGD 0.77555 28.536 15 +7 +13

15 independent blocks per stratum. In order to achieve this decomposition, underDSGD

has deleted 8 rows (users) and 2 columns (items), yielding in a loss of data. In addition, the

deletion is not controlled, and thus one may delete very informativeness rows and columns.

3.6 Discussion

The current most widely used recommendation technique is matrix factorization be-

cause it is scalable and accurate. This technique decomposes the users’ ratings in items

into two matrices, in such a way that the multiplication of both matrices result (an approx-

imation of) the original one. Finding these two matrices becomes an optimization problem

which can be used using alternating least squares and gradient descent techniques.

In addition, the large quantity of users, items and ratings highlight the need of a

scalable and distributed technique to analyse and process this data. In this chapter we

have analyzed the scalability of alternating least squares and gradient descent techniques

for recommender systems. We highlighted that the latter was more complex to distribute

although it leaded to slightly more accurate recommendations.

87

3.6. DISCUSSION

The current distribution paradigm for gradient descent does not properly parallelize

the algorithm among an existing Hadoop cluster of machines because it may lead to a loss

of users, items and ratings. This causes a light loss in accuracy. We have developed a Dis-

tributed Stochastic Gradient Descent (DSGD) algorithm based on this technique and this

paradigm that solves this issue. This technique also overcomes alternating minimization

optimizations of the matrix factorization problem. The experimentation phase uses the

public MovieLens dataset. The evaluations show the good performance of the approach in

terms of accuracy and scalability.

One important fact for future work is the capability of the SGD to be extended. One

may incorporate more heterogeneous data (e.g. implicit feedbacks and timestamps) in or-

der to improve its accuracy. This has proved to increase the accuracy of recommendations

in several techniques. In addition, this is a complex challenge in collaborative őltering rec-

ommendation techniques. The next chapter (Chapter 4) suggests a solution to incorporate

the users’ interests in the items’ attributes into collaborative őltering approaches, although

reducing the impact of the domain dependency in recommendation processes.

88

Chapter 4

The implicit interest of users in the

attributes of items

"My mom used to tell me stories at night, read books to me - and I read ’em over and

over and over again. And you know what I learned from that? I went back and looked at

everything - Why do I like reading the same stories over and over and over again? What,

was I some kind of nincompoop? No - the narrative gave me connection with my mom."

- Peter Guber (Chairman and CEO of Mandalay Entertainment.)

This chapter is mainly extracted from the journal paper: "Enhancing Recommender
Systems by Exploiting the implicit interest of users in items" ; Manuel Pozo, Raja Chiky
and Elisabeth Métais; TCCI 2015.

4.1 Motivation

Recommender systems exploit the interest of users in items to recommend other items,

unknown by the users, which could be of their interest as well. There are many approaches

to retrieve and deduce the users’ interest, a.k.a. feedback, although they can be summarized

into explicit and implicit. Both of them are item-oriented, i.e. the interest of the user in

the item.

The current recommender systems use these feedbacks to generate recommendations.

However, these feedbacks show only the interest of the user in the item (e.g. movie, song,

book) and not in the item’s attributes (e.g. actor, composer, writer). In addition to this,

users are not willing to rate many items, and thus asking for rating items’ features is

89

4.1. MOTIVATION

not suitable [Elahi et al., 2014]. Similarly, the implicit feedback captured from users are

typically item-oriented as well [Oard et al., 1998]. As a consequence, we highlight a lack

of knowledge in users’ feedback: the interest of users in the attributes of items is hardly

captured.

Indeed, items contain many attributes, and moreover they may take several values

(such as a comedy genre or a concrete actor). For simplicity, we call "features" all kind of

information that may describe items (or users). We claim that the interest of users in items’

features may enhance the accuracy of recommendations. We believe that recommendations

taking into account the users’ interest in the item’s features are generally more accepted,

as long as the user can easily recognize these liked features. For instance, users preferring

a particular actor will better accept a movie recommendation where this actor is playing.

However, őnding out the users’ interest in the features of items is challenging. The

large amount of features makes explicit feedback in features inappropriate. For instance,

users hardly would rate every actor in a movie. In addition, this information is very large

and heterogeneous, what may cause a complex integration into recommender systems as

long as scalability issues and the increase of the domain dependency of the system.

Our main contribution is the deőnition and application of the implicit interest of users

in items’ attributes. This information is deduced by the number of times one has been

in contact with an item’s feature. Consciously or unconsciously. As a consequence, this

number of occurrences is obtained by analyzing the existence of this feature among the

whole set of past rated items. Thus, the higher number of occurrences the higher implicit

interest of the user in the features.

Our goal is three fold: (1) to obtain the users’ interest in the items’ features implicitly,

(2) to integrate this information into a recommendation process, and (3) to decrease the

impact of the domain dependency in the recommendation process. For this purpose, we

present a ŕexible and generic recommender system that relies on a collaborative őltering

matrix factorization technique and implicit relations in data. We exploit the description

of items to discover the implicit interest of the user in the items’ features. The framework

scores-up recommendations regarding not only the preferences of users in items, but also

their implicit preference in the feature of the items. As a result, the most scored items

90

4.2. RELATED WORK

reŕect the users’ interest in items and in the features of the items. Indeed, we transform

ratings into "semantic values", which better represent the general users’ interests. The

concept of semantic used here indicates the expansion in the meaning of ratings, rather

than the presence of semantic technologies. That is, this semantic concept does not lead to

inferences nor reasonings. A similar semantic concept was used in [Mobasher et al., 2004].

The experimentations use the well known Movielens and IMDb database, both publicly

available. The results show the good performance of our approach compared to a standard

matrix factorization approach. In fact, we particularly improve the precision and recall of

this technique having little impact on the similarity among the items that are recommended.

This chapter is structured as follows: Section 4.2 presents the related work. Section 4.3

explains our approach. Section 4.4 gives the experimentations and results performed.

Finally, we close this chapter by giving some discussions in Section 4.5.

4.2 Related Work

This section focuses on the state of the art of recommender systems dealing with ex-

plicit and implicit feedback, as well as the items’ descriptions, in order to improve the

recommendations. We are interested in which of these sources are exploited and how they

afect the recommendation process. Particularly, we evaluate the related work in terms of

scalability, heterogeneity and domain dependency of the systems.

Collaborative őltering techniques rely on the explicit or implicit users’ interests in items.

The most popular technique, Matrix Factorization (MF), has been very studied in the liter-

ature due to its accuracy and scalability. [Zhou et al., 2008] and [Schafer et al., 2007b] are

matrix factorization techniques that only use users’ ratings or users’ implicit feedback (e.g.

clicks). Recently, [Koren and Bell, 2011] have proposed a method to take into account both

explicit and implicit users’ interest in items under the same algorithm. Normally, matrix

factorization techniques are scalable and some of them are widely implemented. However,

despite being accurate, they do not simplify the incorporation of external heterogeneous

data. Particularly, these techniques do not exploit the heterogeneous data which may

enhance the recommendations (e.g. the features of users/items).

91

4.2. RELATED WORK

Pure content-based techniques make easier to deal with the items’ features, although

they are not as accurate as collaborative őltering and they have scalability issues. Thus,

many authors focus on hybrid techniques. [Barjasteh et al., 2015] aim to insert to the matrix

factorization technique the information given by the similarity between items’ descriptions

or users’ descriptions, i.e. attributes. In fact, matrix factorization decomposes the rating

matrix into two matrices: the users-features matrix, "P", and the items-features matrix,

"Q". An item (or a user) is then deőned by a vector of features, and hence it is possible to

compute items’ similarities. The authors propose to decouple this already built matrices

("P", "Q" or both) and make the features inside to evolve. These features change regarding

other similarity matrices based on items’ descriptions (or users’ descriptions) in a phase

called "transduction". As a result, this approach integrates external information into

matrix factorization. In addition, this approach copes with cold-start: when users’ ratings

(or items’ ratings) are not declared yet, the similarity between users’ (or items) based on

their description allows to correctly generate recommendations.

[Adomavicius and Kwon, 2007, Li et al., 2008, Lakiotaki et al., 2008, Mikeli et al.,

2013a, Mikeli et al., 2013b] explain the concept of "multi-criteria" recommendations. This

idea considers the explicit ratings of users as a solution for an equation where the variables

are some items’ attributes. These attributes are also linked to other explicit ratings, and

thus it is possible to generate predictions in term of users’ explicit interest in attributes.

This helps to explain the overall rating value given by a user to an item. In addition,

they change the concept of rating from an interest value representation to an ordinal

representation. Thus, rating values of 5 and 4 stars are equally preferred to 2, etc. However,

these approaches assume the existence of explicit ratings for the attributes of items. These

ratings are hard to get in real-life since users are not willing to rate many items/attributes

[Oard et al., 1998]. In addition, it is diicult to compute this approach in a distributed

way.

[Liu et al., 2012] propose to detail users’ interest in items as well. They suggest a three-

layer representation, user-interest-item. For a user, an interest is a characteristic (a feature,

such as an actor in a movie) that an item must have. For an item, an interest is one of its

features. Then, they apply a Latent Dirichlet Allocation (LDA) algorithm based on "topic

92

4.2. RELATED WORK

models" from text domains (see [Blei et al., 2003]) in order to tackle the similar multiple

"theme" problem. Hence, the authors interpret that the text documents are users, the

words are items, and the topics are the (latent) interests. This approach extracts hidden

users’ interests by establishing a correlation matrix graph between items and interests.

Despite its good performance, the complexity is not acceptable for large-scale applications.

[Ziegler et al., 2004] suggest a recommender system that exploits an item taxonomy

to establish a common base in the items’ descriptions. By using past users’ ratings in

items, this technique allows to compute users’ similarities even when users do not share

any common rated item. The main idea is to interconnect users through the common

content of items in order to predict unknown users’ ratings. This is an application of the

"collaboration via content" paradigm in [Pazzani, 1999]. [Weng et al., 2008] is a very

similar approach to [Ziegler et al., 2004] that use items’ taxonomies (typically used for

content classiőcation) to őnd out the relations between users’ preferences in items and

the structure of the taxonomy as well. They verify that users who share similar item

preferences may also share similar taxonomic preferences. This helps to cope with cold

start and to understand the implicit preferences of users. This deőnition is similar to our

implicit users’ interest with a major diference: rather than interconnecting users ("users’

collaboration") through items’ description ("content") we interconnect items’ descriptions

("items’ collaboration") to őnd out the best items for users ("content").

The analysis of the users’ interest in the items’ attributes is a great challenge due to

the lack of explicit users’ feedback and the huge amount of attributes and the values these

may take. This interest has not been successfully captured in the literature, although it

certainly afects to the items that the user will choose in the future.

The main diference of our work to the current state of the art is the deőnition and

use of the implicit interest of users in the items’ attributes. In addition, we exploit the

strengths of matrix factorization by adding an external and scalable layer, which allows

to (1) distribute the analysis over the users’ interests in the attributes of items, and (2)

reduce the domain dependency of the system by separating the mentioned analysis from the

collaborative őltering technique. We transform the input or the output of this technique

in order to better adapt the recommendation for users. This reduces the complexity of the

93

4.3. ARCHITECTURE OF OUR APPROACH

system, integrates the new users’ interests and improves the recommendations.

4.3 Architecture of our approach

The external heterogeneous information of users or items can enhance recommender

systems [Peis et al., 2008]. The main issue is the impact of this data in the recommenda-

tion process. For instance, hybrid recommender systems based on collaborative őltering

and content-based introduce more complexity, more domain dependency and decreases the

scalability. We aim to achieve three goals to improve recommender systems: a capacity for

incorporating heterogeneous information, a high level domain genericity and a scalable sys-

tem. As a consequence, we aim to enhance the performance and accuracy of recommender

systems.

In this work we take advantage of the domain independence and the scalability of matrix

factorization. Our goal is to use it together with heterogeneous data, although reducing

its impact in the recommendation process. As a consequence, we propose to separate the

recommendation algorithm from the usage of the heterogeneous data. We dedicate an ex-

ternal layer, where all the users, items and items’ features are analyzed together in order to

őnd the implicit relations in data. The main task is to integrate this new data in such a way

that standard matrix factorization can deal with. We introduce the concept of "semantic

values" or "semantic ratings". Note that the term "semantic" indicates an expansion in

the meaning of ratings. In fact, we transform ratings into "semantic values", and thus this

new value represents the interests of the users in items and the attributes of the items.

We suggest a three-layer recommender architecture: a pre-analysis layer, a semantic

layer and a recommender layer. Figure 4.1 shows our system’s architecture. Since the

number of attributes and the number of values for the attributes might be huge (e.g. all

the actors in movies, or all movies’ tags), the pre-analysis module implements a feature

selection and a counting algorithm to quickly obtain the implicit interest of users in the

selected features. The semantic module uses the information deduced in the previous layer

in order to transform the ratings of users: we expand the meaning of ratings by adding the

implicit relation in data. Finally, the recommender module contains the recommendation

94

4.3. ARCHITECTURE OF OUR APPROACH

We focus on how the variance of these attributes afect the rating of items. Thus, the

variances are indicators (weights) of relevancy over the global dataset. We use them to

balance the importance of attributes in the transformation of ratings into semantic values,

and thus, in the recommendations.

4.3.1.2 Counting module

The typical ratings show the interest of users in items. It is important to understand

their item rating-reasons in order to better serve the users. However, an item is composed

of several attributes and getting feedback for all of them is complicated. Indeed, users

are not willing to rate every single attribute of a movie. As a consequence, we suggest

to implicitly gather this information using the past rated items. We count the number of

occurrences of a given features among all the past rated items for a given user.

Databases or semantic technologies as ontologies describe the items’ environment and

they can easily return their unique properties. This fact gives free access to navigate

through items’ features, and thus we can őnd out the implicit interest of users easily.

However, this task is slow for large number of users, items and features, and the number of

requests to perform is large. As a consequence, this implicit interest should be computed

of-line and stored in order to have it quickly available. In addition, this implicit information

tend to be incremental. New rated movies carry out more implicit interest in features.

The counting module aims to őnd out the implicit interest of users in items and to

store it in Counting Bloom Filters, which are bit-structures that represent ”n”-elements

of the same set ”S” in a lower space of ”m”-bits (see Annexe B.2 and B.3, or the paper

[Broder and Mitzenmacher, 2004] for more details about bloom őlters). This structure

evolves from standard bloom őlters by incorporating a separated bit-structure to count the

number of repetitions of the same element ”n”.

The steps of this module are as follows:

1. For each user we create an empty counting bloom őlter;

2. For each rated item by this user, we extract its features (i.e. all possible description

of the item given by atributes values and other sources)

96

4.3. ARCHITECTURE OF OUR APPROACH

3. Finally we insert these features in the counting őlter. Thus, the őlter contains all the

items’ features which have had an interaction with the user. Highlight that each user

has his own counting bloom őlter, and these őlters are used by the semantic module

in order to improve recommendations.

4.3.2 Semantic module

This module aims to expand the meaning of ratings by incorporating the implicit in-

terest of users in the attributes of items. As said above, an item is composed of several

attributes and getting feedbacks for all of them is complicated. The counting bloom őlter

of a user contains the implicit interest of the user in the attributes of an item. We aim to

exploit this information in order to add a new sense to the user’s feedback.

The semantic module transforms the initial rating given by users into a new seman-

tic rating value. Indeed, this new value takes into account not only the user preference in

the item but also her/his preference in the attributes of the item. For instance, an item

rated as 4 out of 5 may transform its rating value into 4.5. This fact reŕects that this item

has several attributes in common with the rest of items rated by the user. As a consequence,

this boosts the recommendation of items which contain similar attributes to the ones the

user liked in the past. Hence, recommended items are more suitable and acceptable by

users because they may recognize relevant features for them.

The transformation of the ratings into "semantic values (sv)" follows the Equation 4.1.

We call it "semantic equation".

svu,i = ru,i + E[ru,∗] ∗

⏐

⏐

⏐

∑F
j=1Cj ∗Wj

⏐

⏐

⏐

Nu
(4.1)

Here, ru,i is the real rating for item "i" given by user "u". Nu is the total number

of items rated by user "u". E[ru,∗] is the average of the ratings given by user "u". F is

the number of selected attributes. Wj are the weights for these attributes computed by

the feature selection module. Cj are the number of times that the value of an attribute

has appeared for a user, easily retrieved by taking advantage of the computed counting

module. Besides, since parameters are pre-calculated, the number of attributes does not

97

4.3. ARCHITECTURE OF OUR APPROACH

have a relevant impact on the execution time of the module. In addition, the process

of this equation is easy to parallelize using a Hadoop/Map-Reduce paradigm [Dean and

Ghemawat, 2008].

Moreover, we use this equation in two diferent levels of the recommendation. On the

one hand, we apply it to all the ratings available in the original training dataset, which

is the input approach. On the other hand, we apply the semantic equation to the output

of the recommender system to modify the recommendations predicted by the standard

collaborative őltering algorithm.

4.3.2.1 Semantic Dataset (input approach)

This approach implements the semantic module at the input of the recommender mod-

ule. Brieŕy, it transforms the feedback (i.e. ratings) in the training dataset into a semantic

feedback, according to Equation 4.1.

For each rating a new "semantic rating" is computed. Hence, a "semantic dataset" is

built from the original one. Figure 4.2 shows this approach. The semantic module takes

a training dataset, which contains the "original dataset", and generates a new "seman-

tic dataset", which contains the new "semantic ratings". This latter is used to train the

recommender module and create a prediction model to exploit. As the incoming dataset

has changed, the recommendation module returns diferent items.

Collaborative őltering őnds out patterns in the users’ ratings in items to group users

with similar preferences. Our approach scores up items depending on their features and

the interest of users in these features. This has two main consequences over the predictions

given by the system. On the one hand, items are still chosen by seeking patterns in the

users’ feedback. On the other hand, predicted items suit the users regarding not only the

community of users with similar preferences but also the features that these recommended

items contain. We involve not only items but also attributes and features. In fact, by

increasing the ratings of items in which users are interested (according to their interest in

the attributes of items), one helps the recommendation technique to focus on such accuracy

and predictions.

98

4.3. ARCHITECTURE OF OUR APPROACH

who has rated Nu = 4 movies:

E[r1,∗] =
4.0 + 3.0 + 1.0 + 2.0

4
= 2.50 (4.2)

Secondly, we get the weight for attributes computed by the feature principle component

analysis (e.g. W1 = 0.4 and W2 = 0.6 for genres and actors respectively). The third step

is to get the implicit occurrences stored in the counting bloom őlter:

• The user 1 has rated the items 1, 2, 3 and 4, and these items have actors and genres.

• Focus on the item 1 and its genres: comedy and fantasy. The movies 2 and 4 already

rated by user 1 are comedies. Besides, the movie 4 is also a fantasy movie. Hence,

the occurrences count is C1 = 3.

• Focus on the item 1 and its actors: actor 1 and actor 3. The actor 1 also appears on

movies 2 and 4. Thus, the occurrences count in this attribute is C2 = 2, because the

actor 3 does not appear on any other movie.

Putting everything into Equation 4.1, we obtain the new "semantic rating":

sv1,1 = 4.0 + 2.50 ∗
|3 ∗ 0.4 + 2 ∗ 0.6|

4
= 5.5 (4.3)

4.3.2.3 Semantic Top-K (output approach)

Collaborative őltering are good techniques to guess the interest of users in items. How-

ever, recommender systems usually present a top-K items to users. This top-K is typically

ordered by the predicted interest value for users, hence the őrst item is likely preferred to

the second one, etc. The user is free to pick up any of these K items. Our approach in this

context aims to re-order this top-K (and eventually make new items appear) to present

őrst the items containing the most relevant features for the user. As a result, by using the

semantic module at the output (i.e. predictions) of the recommender system we adapt the

recommendations to users based on his implicit feedback in the features of items.

100

4.3. ARCHITECTURE OF OUR APPROACH

Table 4.5: Example. Top-3 recommendations for the user "1"

Top-3 Movie 21 Movie 10 Movie 64

Predicted Rating 5 4.5 4

4.3.2.4 Example

Again, we use Tables 4.2, 4.3 and 4.4 to represent our dataset example. In addition, we

use Table 4.5 to represent the top-K recommended items for a user (user "1"). The goal is

to modify the predicted ratings in the top-K by using the Equation 4.1. We already know

that E[r1,∗] = 2.50, W1 = 0.4 and W2 = 0.6. The current value to modify is one of the

predicted recommendations, for instance the prediction of movie 10 (ru,i = r1,10 = 4.5).

Now we get the implicit occurrences stored in counting bloom őlter:

• The user 1 has rated the items 1, 2, 3 and 4, and these items contain actors and

genres.

• Focus on the item 10 and its genres: comedy. The movies 1, 2 and 4 already rated

by user 1 are comedies. . Hence, the occurrences count is C1 = 3.

• Focus on the item 1 and its actors: actor 3. The actor 3 appears on movie 3. Thus,

the occurrences count in this attribute is C2 = 1.

Putting everything into Equation 4.1, we obtain the new "semantic rating":

sv1,10 = 4.5 + 2.50 ∗
|3 ∗ 0.4 + 1 ∗ 0.6|

4
= 5.625 (4.4)

Applied to the whole top-K’, this process creates a new order in the top-K. These

new recommendations are more personalized to the user according to the interest in the

attributes of items.

4.3.3 Recommender module

The recommender module contains the recommendation algorithm, which analyzes the

ratings or "semantic values" in order to generate recommendations. Our architecture uses

a standard matrix factorization approach.

102

4.4. EXPERIMENTATIONS

4.4 Experimentations

We suggest to use the GroupLens dataset proposed by [Cantador et al., 2011], which

merges ratings in MovieLens dataset1 and movies’ attributes in IMDb2 database. The

dataset is composed of 2113 users, 10197 items and 855598 ratings within a scale of 1-5. It

ofers six attributes: genre, directors, actors, countries, locations and tags. It has 112881

diferent attributes’ values (i.e. features): 20 movie genres, 95321 actors, 72 countries,

4266 locations and 13222 tags.

We őrst explain the module settings (feature selection, counting and recommender

modules) and second we show the context and evaluations of our experimentation.

4.4.1 Module settings

4.4.1.1 Principle Component Analysis

This step aims to (1) reduce the high number of attributes (if required), and (2) compute

a weight to represent the relevancy of attributes in the semantic equation.

We use a subset of ratings. We extract the 100 users who have rated the highest number

of movies and we obtain 169155 ratings, which represent almost the 19.77% of the total

ratings in MovieLens dataset. This module analyzes the relevancy of items’ attributes

over this data and returns the most representative features. In addition, it returns ceiled-

weights for these attributes based on their contribution to the feature selection model.

Table 4.6 shows the results of the feature selection analysis, as long as the attributes’

variance contributions to this analysis. The two main dimensions in which the dataset can

be plot are composed mainly of actor, country, director, genre and location, and thus the

tags attribute contribute very less. We decided to avoid using this attribute "tags" in our

experimentation.

1http://grouplens.org/datasets/movielens
2http://www.imdb.com/

103

http://grouplens.org/datasets/movielens
http://www.imdb.com/

4.4. EXPERIMENTATIONS

Table 4.6: Experimentation: Weights % for variables in dimensions. Approximate values.

Variables actor country director genre location total

Dimension D1 19.537 12.719 19.896 0.000 5.064 57,25
Dimension D2 4.785 8.3732 5.303 6.459 17.823 42.75
Total (%) 24 21 25 6 23 100

4.4.1.2 Counting Bloom Filter

The counting bloom őlters are built in of-line in order to speed up the semantic equa-

tion. The dataset contains 2113 users and 112881 diferent values for the attributes. Re-

garding the parameters of the bloom őlter we consider to accept a very low false-positive

ratio of 0.01%. In addition, we set the counter parameters to 6 bits, and thus, the maxi-

mum number of appearances of a feature for one user is set to 64 times. As a result, the size

of one őlter corresponding to one single user is around 1.3 Mb. Hence, for the 2113 users

the total size of all őlters is around 2.7 Gb. This space consumption allows to increase the

speed of the semantic module.

4.4.1.3 Recommendation technique

We use a matrix factorization algorithm in Apache Mahout3 which uses a gradient

descent optimization technique to solve the matrix factorization paradigm and to build the

recommender core. This algorithm will iterate a maximum of 30 times to őnd out the best

30 latent space dimensions that better explain the ratings. However, the semantic module

uses this recommender as a black box, either modifying the input or the output of the

recommendation algorithm.

4.4.2 Evaluation

Our baseline is a pure collaborative őltering technique based on matrix factorization.

It is compared to our approaches, which use the same technique as the core of recommen-

dations to predict ratings. Our system analyzes and obtains the users’ implicit interest in

the items’ attributes in a layer separated from the collaborative őltering technique. This

3https://mahout.apache.org

104

https://mahout.apache.org

4.4. EXPERIMENTATIONS

reduces the domain dependency of the system and enhance collaborative őltering recom-

mendations.

We do not implement any content-based technique to deal with the implicit interest

of users in the attributes of items. Indeed, our approaches analyze and obtain this in-

formation separately in order to enhance collaborative őltering recommendations. This

reduces the domain dependency of the system. Due to this assumption, we do not consider

our approach a hybrid method: the core of recommendations remains a pure collaborative

őltering technique.

Our system relies on the analysis of the training data. The more users’ ratings (higher

training datasets), the better one can őnd the implicit interest of users. Therefore, for

the evaluation of the systems we use the full MovieLens dataset containing 855598 ratings

over 10197 movies. In order to represent diferent training sets (i.e. sparsity levels), we

randomly split the dataset into 90%, 80%, 70%, 60% and 50% training sets. The remaining

percentage in each level is the test set4. As a consequence, we can train systems and

compare the predictions in the model with the real-observed values in the test set.

We evaluate our approach under four contexts. First we aim to show an outline where

recommendations given by our approach are pertinent and likely to be accepted by users.

We develop an example using a user in the dataset. Second, we aim to measure the

performance of recommendations using three diferent evaluations: a rating prediction

accuracy, a ranking accuracy and a top-K intra-similarity evaluation. Finally, the charts

show the results of three approaches: (1) the standard matrix factorization which is denoted

as "mf", (2) the implementation of the semantic model at the input, denoted as "semantic

dataset", where matrix factorization ingests semantic ratings, and (3) the implementation

of the semantic module at the output of the matrix factorization predictions, denoted as

"semantic top-K", where the semantic module transforms predicted ratings.

4Denote that, since the convergence of the collaborative filtering has been already proved and the
semantic approaches do not modify this convergence capability, we do not need a cross-validation set.

105

4.4. EXPERIMENTATIONS

4.4.2.1 Illustrative example

This section aims to give a deployed example of what the recommender systems return.

It visually compares top-K returned items from the diferent approaches. The interest of

this outline is to compare the items that diferent recommenders may show to the same

user.

The example focuses on the user 6757 due to his large number of ratings. This user

has evaluated 119 items with the maximum rating score (ratings equal to 5). We extract

60 out of this 119 from the training set. Our goal is that the recommender system predicts

some of these taken movies.

We train the three systems under this context. The matrix factorization creates a model

using this training set, the semantic dataset őrst applies the semantic equation to the

training set and then creates a model, and the semantic top-K approach modiőes the rec-

ommendations returned by the standard matrix factorization. Finally, we ask the systems

to retrieve a top-60 items for user 6757. It is expected that in this top appears some of

the 60 before extracted items. Table 4.7 shows a shorter top-10 items (over these top-60

movies) and Figure 4.4 shows the movies behind IDs, which visually compares the top-10

movies. The standard matrix factorization returns 2 items (858 and 912) which belong to

the extracted items. However, the semantic approaches improve this fact: the semantic

dataset returns 4 items (858, 912, 1213 and 1221) and the semantic top-K returns 3 items

(858, 912 and 1221). In addition, we notice the appearance of diferent items in the se-

mantic approaches (such as item 3462). Especially, we highlight a new order in items of

the semantic top-K (items 912 or 2624). In fact, we have scored up items which contain

interesting attributes for the user, and thus, less interesting items regarding attributes get

down in the list. These results show our assumptions: by adding the implicit interest of

users in items, recommendations are more suitable and acceptable to users, i.e. more items

out of the extracted high scored items set are predicted.

106

4.4. EXPERIMENTATIONS

4.4.2.2 Root Mean Square Error (RMSE)

The RMSE measure evaluates the system in terms of accuracy of the ratings prediction.

It represents the standard deviation in the error of the prediction. This error is the difer-

ence between predicted values and real-observed values in the test set. Thus, the lower is

this error, the better is this metric.

The semantic module scores up items due to the presence of attributes, yet it does not

penalize the absence of them or it does not penalize the presence of non desirable attributes.

Thus, the semantic rating is always higher than the explicit ratings. This yield indeed to

a change of rating’s scale. As a result, our framework does not overcome this measure. In

fact, our techniques are not adapted to outperform individual rating predictions due to the

rating’s transformation. Future work consists on improving this metric as well. In fact,

the semantic module only scores up items regarding the positive interest of users in the

attributes of items, although it does not score down items regarding a negative interest.

This fact, together with a normalization within a ratings scale may improve this measure.

This perspective is explained in Chapter 7.

4.4.2.3 Precision, Recall and F-Measure

Precision and Recall techniques measure the relevancy of items in a previously selected

top-K. This relevancy is a binary value associated to the item: an item is relevant if the

rating/prediction overpass a certain predeőned threshold, i.e. to be greater or equal to 4-5.

Precision represents the percentage of relevant items (items that should be recommended

őrst) over the recommended top-K items. Recall represents the percentage of relevant

items over the whole set of items. Figures 4.5 show the results in precision and recall

measures of a top-20 recommended items. Note that results are the average for all users

top-20 precision and recall.

On the one hand, the precision is high in matrix factorization due to the good RMSE.

It easily puts relevant items in the top-K. However, the semantic top-K approach slightly

overcomes this precision, since it scores-up items and thus other relevant items are likely

to appear (making less relevant items disappear from the top). On the other hand, our

108

4.5. DISCUSSION

the users have an implicit interest in their features, we help the collaborative őltering to

focus on such kind of items and interests.

The latter aims to apply the semantic layer in the output of the system. Typically,

recommender systems provide top-K items ordered by predicted user’s preference. This

approach better adapts top-K to users’ especial interests in items’ attributes.

The experimentation uses MovieLens dataset and IMDb database. The results show the

performance of the approach over diferent measures. Specially, our approaches enhance

the fact of taking relevant items for users. Thus, users might be more likely to click on

recommendations because they may contain features they know and they are interested in.

Finally, in this chapter we have proposed to use the implicit interest of users in the

items’ attributes to enhance the accuracy of rank-based recommendations. The scalability

issue has been addressed as well, the presented approach can be parallelized among multiple

machines and the distribution of the recommender core has been explained in Chapter 3.

In addition, this chapter has allowed to deőne users through a large quantity of interests

and represent it into a bloom őlter. The next chapter (Chapter 5) focuses and exploits the

bloom őlter representation of items and/or users to reduce memory consumption in large

items’/users’ descriptions.

112

Chapter 5

Coping with large vector

representations of users and items in

very large datasets.

"If you don’t understand the details of your business you are going to fail."

- Jef Bezos (Founder and CEO of Amazon.com)

This chapter is mainly extracted from the conference paper: "An Item/User Representa-
tion for Recommender Systems based on Bloom Filters" ; Manuel Pozo, Raja Chiky, Farid
Meziane and Elisabeth Métais; RCIS 2016.

5.1 Motivation

The recommender systems exploit the users’ feedback in items to predict future users’

interests. In addition, content-based or hybrid methods, use the items’ and/or users’

attributes, a.k.a. features, to enhance the correlation among items/users. These features

can be very heterogeneous. For instance, in the domain of movies one őlm (considered as

an item) can be described by its genre (e.g. romantic drama comedy), by the actors who

play in (main actors, secondary actors), and by the directors and staf who participated in

the project. Furthermore new tendencies add data from contextual and external sources,

such as locations, open data, Wikipedia, Twitter and Facebook, in order to better describe

items/users [Peis et al., 2008, Kantor et al., 2011, Dahimene et al., 2014]. However, this

could create very large heterogeneous descriptions and render computations more diicult

to handle.

113

5.1. MOTIVATION

The most known recommendation techniques are collaborative őltering, content-based

and hybrid methods [Kantor et al., 2011]. Especially content-based and hybrid recom-

mendation techniques deal with the above mentioned challenge. They typically represent

items/users as a vector of features or keywords, and thus, vector similarity methods can

be computed [Kantor et al., 2011]. The accuracy of the similarity between items/users

will depend on the selected features to compare and will afect the recommendation. For

example, comparing two movies only by their genre, such as comedy and drama, is less

accurate than involving also their actors in the similarity process.

Indeed, the number of features to describe items/users afects the correlation of data.

Generally the more attributes are used the better the accuracy of the similarity is. For

example, two movies may share staf, genre and main actors, although they do not have

common secondary actors. In a recommender context it may happen that one user is

especially sensible to a particular actor, what has an efect (positive or negative) in the

user’s interest. This sort of particularities are skipped in recommender systems due to the

short items/users descriptions.

On the contrary, one may notice that large resources contribute to large item/user

descriptions, thus making the representation diicult to deal with in terms of sparsity and

space-consumption. In fact, new features may not appear in other items, for instance, a new

actor that has played only in one movie, and increasing the number of features increases

the size of vectors that will eventually become larger and more sparse. Furthermore,

increasing vector sizes makes similarity computations slower.

Current data analysis systems (e.g. expert systems and feature selection models) re-

duce data representation into a lower space in order to reduce both the sparsity and space

complexity. However, reducing features may yield to a loss of quality in the item repre-

sentation, and consequently, in items similarity. Besides, the enormous size of the datasets

involves big memory resources and a very large time analysis while building these models.

In this chapter we deal with the representation of items/users. Our goal is to represent

items/users by a high quantity of features in order to have a great detailed description.

This makes the similarity process in recommender systems more accurate. In order to

cope with this big representation, sparsity and space-consumption issues, we propose to

114

5.1. MOTIVATION

use a compressed yet high quality data representation for items/users based on Bloom

Filters [Broder and Mitzenmacher, 2004]. A Bloom Filter (BF) is a bit structure that

allows to represent a set of elements in very low space. To the best of our knowledge, these

őlters have not been used for items/users descriptions in the őeld of recommender systems.

The motivation and the three following contributions are applied to a recommendation

process:

1. Bloom őlters highly reduce the size of item representations while having a great

number of features. This fact involves a detailed items/users descriptions in a lower

space complexity;

2. Bloom őlters allow a fast bitwise AND operation to compare common features of

items that we use to compute an accurate similarity measure;

3. Items’ and users’ similarities are not only in common features, but also in common

missing features. To address this issue, a bitwise XNOR similarity operation is pro-

posed and takes into account both common features, and common missing features.

In our experimentations we use the MovieLens dataset and IMDb database, which

are publicly available [Cantador et al., 2011]. The tests have been performed for: (1)

analysing the pertinence of bloom őlters in recommender systems, (2) enhancing the usage

of a bitwise AND similarity instead of the common vector cosine/jaccard similarities and (3)

using a bitwise XNOR similarity. We compare our bloom őlter item representation against

two models: a vector similarity model that uses all available features and a dimension

reduction technique based on Singular Value Decomposition (SVD). The results show that

our approach highly reduces the size of vector representations (97% per vector) while

keeping a high ődelity in item similarity (accuracy of 98%). In addition, it outperforms

the results of SVD.

The structure of this chapter is as follows: Section 5.2 gives the related work in sim-

ilarity processes and the representation of items/users applied to recommender systems.

In Section 5.3, the proposed similarity model based on bloom őlter representations is ex-

plained in details. In Section 5.4, the experimentation phase and the achieved results are

115

5.2. RELATED WORK

presented. Finally, we discuss the researches in this chapter in Section 5.5.

5.2 Related Work

This related work focuses on researches especially using a similarity computation pro-

cess in recommender systems. Particularly, we focus on the representation of items/users in

these systems, the resources which they aim to exploit and how they deal with description

complexity.

On the one hand, similarity-based collaborative őltering methods represent items/users

as a vector of feedbacks, as stated in [Breese et al., 1998, Sarwar et al., 2001, Lemire

and Maclachlan, 2005, Su and Khoshgoftaar, 2009]. Then in order to őnd out similar

items/users, correlations and similarities among these vectors are performed. The model-

based collaborative őltering techniques make this vector representation obsolete [Hofmann,

2003, Su and Khoshgoftaar, 2009, Koren, 2009, Koren et al., 2009, Koren and Bell, 2011].

The already explained matrix factorization family belongs to this group. These meth-

ods build a model which represent the items and users feedback in a lower space rank.

However, typical model based techniques solely rely on the interest of users in items. Par-

ticularly, they do not exploit other resources such as the domain of recommendation (e.g.

movie’s domain) or the general context of the recommendation (e.g. localization, users’

afordability).

In general, collaborative őltering has already demonstrated simplicity and better ac-

curacy than content-based, although hybrid methods may enhance these techniques by

incorporating heterogeneous data. In content-based techniques, items are represented by

a vector of keywords/features [Tiroshi et al., 2012]. Hybrid methods may combine both

techniques to get stronger performance. Consequently, they also exploit the features of

items/users and may use a vector to represent them.

The similarity process in recommender system helps to group and classify items and

users. [Boim et al., 2011a, Boim et al., 2011b] propose a framework to control the similarity

(versus diversity) factor in a top-K recommended items. They create "trees of interests"

that allow creating a "zoom-in" technique to see more items of the same tree, which tend

116

5.2. RELATED WORK

to be similar. Thus, the better is this similarity accuracy the better is possible to group

similar items. [Peis et al., 2008] present other tendencies in recommendations that use

semantic technologies, like ontologies, to better describe users and items [Peis et al., 2008].

For instance, [Fernández et al., 2006] and [Pan et al., 2010] propose a hybrid method to

describe users and items through ontologies structures in order to compute an inference

similarity. Again, the better is the ontology description the better is the inference extracted.

Other authors propose to incorporate more heterogeneous data from external resources.

[Katz et al., 2011] use item-item similarity based on the context in Wikipedia pages to

compute "artiőcial ratings" for an item. [Werner et al., 2013] characterize economic articles

using attributes as keywords. Then, they compute articles cosine vector similarity regarding

their keywords. Finally, articles that match better with a user proőle are recommended.

The description of items can be very large and sparse due to the numerous and diverse

resources, e.g. movies genre, actors, directors, writer, locations and social network tags. To

deal with such quantity of features, some authors propose to perform a features selection

which can be supported by domain experts or by using explanatory analysis, such as topic

modelling, Singular Value Decomposition (SVD) or Principle Component Analysis (PCA).

For instance, [Vozalis and Margaritis, 2007] propose to add demographical and context

information to the recommendation. They create users and/or items demographic vectors

in order to represent information. If the dimension of these vectors is too high, they reduce

it by applying the SVD technique. A cosine similarity method is later used to compute

user and item similarities. [Mobasher et al., 2004] suggest a hybrid recommendation tech-

nique based on content-based item-similarities and an item-based collaborative őltering

technique. This similarity uses semantic sources to exploit the attributes of items. They

create an item-attribute matrix, but it may be too noisy and attributes may be correlated.

Thus, the authors reduce it by using SVD and compute items similarities.

One may observe that most similarity processes do not take all possible or available

attributes information into account. The item similarity measure might sufer from a loss

of accuracy since less features have been taken into consideration for this comparison.

Although larger number of features may improve similarity, the computation might become

more expensive. In addition, approaches dealing with space reduction or latent space

117

5.3. BLOOM FILTER SIMILARITY MODEL

models may lose information.

We propose to use a representation of items/users based on bloom őlters. This reduces

the size of vector representations and compute accurate and faster similarities. [Bloom,

1970] introduced the concept of bloom őlter and many research őelds and applications have

taken beneőt of this structure due to its memory-eiciency and fast-capabilities [Broder

and Mitzenmacher, 2004], for instance databases queries or computer networks. Recently,

[Geravand and Ahmadi, 2014] applied these őlters to create a fast, accurate and private

plagiarism system that compares the similarity among documents of diferent databases.

[Jain et al., 2005] used them for web search őeld. Typically web browsers return to users’

request top websites which tend to be very similar. The authors propose to group similar

websites results in order to allow the return of other diverse sites in the top results.

To the best of our knowledge, the only reference of bloom őlters in recommender systems

is in [Pagare and Shinde, 2013], where the authors apply this structure to improve a

parallelization MapReduce paradigm rather than to enhance any part in a recommendation

process. Hence, this structure has not been used yet in the core őeld of recommender

systems.

5.3 Bloom Filter Similarity Model

The Bloom Filter Similarity Model, a.k.a. Bloom Model, aims to alleviate the afore-

mentioned issues. This approach relies on bloom őlter representations of items/users. By

exploiting bloom őlter’s properties, it is possible to compute similarity measures to know

the similarity among two őlters, and thus, among the items/users theirselves.

In this chapter, we consider that the reader is already familiar with bloom őlters, and

particularly, with the mathematical and probabilistic properties behind (i.e. near optimal

false positive, intersection and union). However, Annexe B explains the concept of bloom

őlters. Table 5.1 resumes the notation we use in this chapter. In addition, comparisons

and references to the simple vector similarity model are also given.

In order to deőne the context our bloom őlter similarity model, let SN be the set of all

possible items features in a database used in a similarity comparison, so that |SN | = N is

118

5.3. BLOOM FILTER SIMILARITY MODEL

Table 5.1: Notation used for bloom őlters
Notation Description

BF Bloom Filter
n Number of expected insertions
m Size in bits
k Number of hash functions
fp false positive

the number of features in this set. Moreover, let Si be the set of active features of an item

”i”, and |Si| = n the number of features in this set. As a consequence, Si ⊂ SN . In

addition, within this context we assume that n ≪ N .

For instance, ”N” can be the total number of actors, directors, editors and tags in

a movie database. However, a single movie only has ”n” of these features, a.k.a. active

features. Normally increasing the features in the database has more impact over ”N” than

over ”n”. Indeed, incorporating external information increases the value of N , but only

few items will increase their active entries ”n” signiőcantly. Thus, vector representations

are larger and sparser.

Under this context and deőnitions, the state of the art proposes (1) to represent

items/users as vector of attributes/keywords/values, and (2) to reduce the size of vec-

tors by using some feature selection criterion. However, this may lead into large vectors

or a loss of description accuracy. We suggest the bloom őlters to represent items/users as

a set of features. Indeed, these structures are low-size hashed binary vectors representing

a huge set of elements. Therefore, we represent one item by one bloom filter which contain

all the ”n” active features for this item. Thus, the number of expected insertions is equal

to the number of active features for one item only, and items can be compared by using

their associated őlters to compute items’ similarities. Figure 5.1 represents the diference

between the vector similarity model and the bloom model.

Our goal is to analyse the impact of diferent bloom őlter settings in an item similarity

process. We őrst detail the necessary conditions for creating a bloom model. Second,

two similarity measures are presented: AND bitwise and XNOR bitwise operations. We

conclude this section by presenting the consideration of the similarity measures in rec-

119

5.3. BLOOM FILTER SIMILARITY MODEL

insertion of an element, and (2) the maximum false positive fpmax is given by the maximum

insertions n.

However, the items do not have the same expected number of active features. As long

as m and k have to be equal for every őlter, the predeőned number of insertions should

be őxed as well to achieve the maximum desired false positive fpmax in the bloom model.

As the false positive increases with new insertions, it is necessary to look for the item

which contains the maximum number of active features nmax. The őlters having the

largest number of active features will achieve larger false positive, yet the upper bound

false positive is limited to fpmax. According to this discussion, we establish the necessary

condition to use a bloom őlter model when every őlter is built using the same nmax, m

and k.

In the following sections, we discuss the similarity measures of the bloom model and

how this new condition afects to the false positive of these operations, a.k.a. false positive

similarity.

5.3.2 Bitwise AND Similarity

The intersection of two bloom őlters performs a bitwise AND operation between two

őlters (Annexe B.2.2) to őnd out common insertions in both bloom filters. Intuitively,

one element which is inserted into two diferent bloom őlters will activate the same bits

positions in both structures. Figure 5.2 gives an example to represent this fact. As long

as one őlter represents the active features of one item, the intersection of two bloom őlters

represents the common active features of two items. Thus, we deőne a bitwise AND

similarity as:

Definition 1 The AND similarity between two items, A and B, represented by two bloom

filters, BFA = a⃗ and BFB = b⃗, is given by:

sim(A,B) = card(⃗a ∩ b⃗) = a⃗ · b⃗

The low size of őlters (regarding real vector representations) and the fast bitwise op-

erations allow to rapidly compare the similarity of two very large item descriptions. This

121

5.3. BLOOM FILTER SIMILARITY MODEL

Thus, we deőne the false positive similarity as the maximum error in the similarity in

Equation 5.3, which is the combination of all possible bit states using k hash functions.

Note that this error highly depends on k, due to the bit-to-bit comparisons.

fp = q(bit = 1)k =
(

1− (1−
1

m
)k·nmax

)k
(5.3)

5.3.3 Negating a Bloom Filter

Negating a bloom őlter will help us to perform and explain the XNOR similarity mea-

sure. Theoretically, the negation of a őlter BFA (BFA) results in another őlter where

entries take their complementary value of BFA. Thus BFA might only contain the non-

inserted elements of BFA.

However, due to the k hash functions, insertions may share at most k-bits in the őlter

BFA. Therefore, negating a bloom őlter has two consequences: (1) inserted elements will

appear as non-inserted elements, and (2) non-inserted elements may appear as inserted ele-

ments only if all their k indexes are set to 0. Otherwise, non-inserted elements also appear

as non-inserted in the negated őlter. This fact is represented in Figure 5.3. However, this

problem might be minimized by reducing the number of shared bits per element (m/kn).

In addition, since the number of bits set to 1 has changed, the false positive of A also

changes, and it is given by the probability that a specific bit is zero in the original filter :

fp = p(bit = 0)k (Equation B.1 in Annexe B.2.2).

5.3.4 Bitwise XNOR Similarity

Common similarity methods measure the intersection of elements to őnd out mutual

similarities. The AND intersection takes common-inserted elements of two sets into ac-

count. That is, given two sets, SA = {x1, x3} and SB = {x2, x3}, the intersection of both

sets is SA ∩ SB = {x3}. However, sets SA and SB have more in common than this inter-

section. Actually, the element x4 is not in any of these sets, and hence, x4 is a common

non-inserted element.

As a consequence, we propose to go further in the similarity by considering also the com-

123

5.3. BLOOM FILTER SIMILARITY MODEL

ity could be potentially inőnite. However, it does not mean they are as similar as an orange

and a mandarin can be, and indeed they also have inőnitely uncommon features. Thus,

a dataset containing rock, paper, orange and mandarin may represent a problem for this

measure. Yet, this fact does not happen when the domain of recommendation is őxed and

the features to use are deőned. In case of multiple recommendation domains, a semantic

analysis can be performed in order to limit the features.

Again, we deőne the false positive similarity as the maximum error in the similarity.

For simplicity, let’s consider the complementary probability P (XOR) = 1 − P (XNOR)

(fact shown in Figure 5.5):

P (XOR) = P (BFA) + P (BFB)− P (BFA ∩BFB)

Where P (BFA) and P (BFB) are the already known probabilities that a specific bit is

still one, q(bit = 1) = 1− p(bit = 0) in őlters BFA and BFB (explained in Annexe B.2.1.

Moreover, P (BFA ∩BFB) is the probability that a specific bit is set to one in both őlters,

explained in last Equation 5.1. Taking into account the bloom model condition n = nmax,

one may apply that q(bit = 1) = P (A) = P (B) = P (A ∩ B). Hence, the probability that

a specific bit is set to one in the őnal resulted vector in the XOR operation is P (XOR) =

q(bit = 1). As a result, the probability that a specific bit is set to one in the XNOR

operation is:

P (XNOR) = 1− q(bit = 1) =

(

1−
1

m

)k·nmax

(5.4)

Thus, the false positive similarity is given by P (XNOR)k. Operations between identical

őlters are a singular case. Since all possible elements are represented, this operation results

in a totally full vector of 1 being the highest similarity. Hence, membership queries return

always true.

5.3.5 Similarity measures and recommender systems

The bloom similarity model does assist the system to deal with high number of items/users

features in order to have detailed items/users descriptions. These descriptions are stored

126

5.3. BLOOM FILTER SIMILARITY MODEL

in bloom őlters, what allows to reduce the size of descriptions and to perform fast bitwise

oriented similarities. The impact on recommender systems are, on the one hand, a lower

space complexity and faster similarity operations, and on the other hand, an accurate sim-

ilarity ődelity. The space complexity and bitwise operations have been already addressed

in this section. We would like to develop the second concept of similarity ődelity and how

this afects to recommender systems.

Imagine that a recommender system has access to a large number of features to deőne

items and users. The vector representation becomes very large and a feature selection may

cause a loss of accuracy in these descriptions. The bloom model allows to make items and

users comparisons in very detailed contexts.

On the one hand, the AND similarity measures is fast and accurate enough while

comparing very large number of features. Having three items item1, item2 and item3, one

can detect that item1 is more similar to item3 than to item2 due to very precise details,

such as an ingredient which is in two similar recipes. On the other hand, the XNOR

similarity shows comparisons from a diferent point of view. In this case, one can detect

again very particular details that make items similar or diferent. Another example in this

situation is to take into account the similarity about the aspects said in one item/user but

not mentioned in others. For example, having three users user1, user2 and user3, one can

detect that all users liked drama-comedy movies. However, we know user1 and user2 also

like sports, whereas this aspect was never captured for user3. In fact, user3 simply does

not like sports and thus interaction with these kind of subjects were never taken. As a

consequence, it may be likely that a sport-comedy movie is present to user1 and user2 but

not to user3.

We conclude highlighting that these similarities allow to better adapt recommendation

to users, since users may be (positively or negatively) aware and sensible to these little

details. In this chapter we analyse the accuracy of these similarities regarding other simi-

larities. Other studies to see the impact in real recommendation contexts are part of future

work.

127

5.3. BLOOM FILTER SIMILARITY MODEL

5.3.6 Bloom Model Settings and Trade-Offs

The bloom model clearly depends on the parameters of bloom őlters as long as our

similarity model relies on the deőned AND and OR bitwise operations. It is necessary to

analyse the impact of these parameters over the deőned bloom similarities. Particularly,

we are interested in how these parameters afect the false positive of őlters, which is di-

rectly related to the false positive similarity between őlters, as it has been theoretically

demonstrated.

The size m of a bloom őlter deőnes the size of the bit structure, which afects the false

positive probability. Larger őlter sizes reduce the probability of taking a speciőc bit (1/m).

Therefore, the false positive is reduced as long as the probability of setting the same bit

position is reduced as well. Furthermore, the number of hash functions k has also a great

impact on the false positive probability. Higher values may reduce rapidly the false positive,

but they will quickly őll up the bloom őlter. Figures 5.6(a) and 5.6(b) illustrate both cases.

In addition, the hash functions particularly afect a bit-to-bit similarity. In fact, the number

of shared bits per insertion (m/kn) should be reduced. As long as insertions are associated

to k-bits in the bloom őlter, higher values in a őxed őlter size makes it easier for elements

to share some bits positions. Thus, it makes easier to compare a wrong bit state, and hence

a true similarity match is more complicated to őnd.

This m and k trade-of can be seen as a space-time trade-of. Space is represented

by the size of the őlter. On the contrary, k is the number of hash functions to execute,

and hence, higher values entail more time-consumption. Thus, correctly choosing these

parameters is crucial in order to have a good performance in a bloom similarity model.

However, the choices depend on the requirements of the application and the size of datasets.

In the experimentation phase we compare the performance of diferent bloom őlter and

bloom model settings. However, we may conclude that, as long as bit-to-bit operations can

be easily compromised by large values of k, we suggested to use larger őlters with fewer

hash functions to improve similarity matchings.

128

5.4. EXPERIMENTATION

is formed by one or more bloom őlters. Thus, these őlters are built by blocks, and hence

by adding new blocks to the őlter one may add a new set of features. As a consequence,

this avoid to re-build the bloom model when new features are added. In addition, sim-

ilar probability inductions given in this section can be applied to scalable and dynamic

probabilities, and thus our bloom model remains possible in these cases. On the other

hand, counting insertions is possible as well by using counting bloom őlters [Broder and

Mitzenmacher, 2004]. These őlters contains new bit-sets to count the insertions performed.

Thus, if one insertion has been made several times, őlters may approximate the counting.

As a result, one may compare counting őlters to frequency vectors, with more complexity.

Other variances of bloom őlters deal with extra compression[Broder and Mitzenmacher,

2004]. These are also interesting őlters that can be used for computing items similarity.

In this chapter we consider using standard bloom őlters due to the nature of our dataset

and experimentations, in order to have an easy comparable dataset and reproducible exper-

imentations. This may be complicated in other dynamic circumstances, e.g. bloom őlters

in very large datasets using multiple resources, where non public datasets are accessible.

5.4 Experimentation

The experimentations use the dataset given by GroupLens [Cantador et al., 2011] in the

domain of movies, which is a merge of the very well known MovieLens and IMDb datasets

in the recommendation research őeld. The dataset is composed of 2113 users, 10197 items,

855598 ratings, 6 features and 104957 possible diferent values, which are all the available

features used to describe our items. In this experimentation we only focus on similarity

tasks and we do not take into account users.

Our goal is to compare the performance of the bloom model against two other models

namely: a vector model1 using jaccard/cosine similarities and an order reduction model.

The former uses a binary/boolean representation of an item. It takes into account all

available features. The latter tries to reduce the size of features by performing a SVD

analysis. This experimentation compares four aspects of these models: (1) size, compres-

1We use typical vector definition. Highlight that sparse map implementation of vectors may reduce
space complexity, yet it increases programming and time complexity in terms of vector similarities.

130

5.4. EXPERIMENTATION

sion or space complexity, (2) operation time and model time, (3) the similarity ődelity of

the AND measure, and (4) the similarity accuracy of the XNOR measure.

This section goes through two kinds of tests. On the one hand, we aim to prove that

the őlter similarities in bloom model are close to the ones computed by vector similarities

(using cosine or jaccard measures) in the vector model. On the other hand, we evaluate

the pertinence of bloom őlters in recommender systems by comparing the accuracy of

several top-K similarities (5, 10, 20, 50, 100, 150, 200, 300 and 500 most similar items to

a given one). Notice that a simple top 20 or top 50 is enough in most of recommendation

contexts. Then, we compare if our approach reproduces such top-K under the same contexts

(similar items and similar features).

The results show that the bloom model reduces the size of vectors up to 97%, keeping

a similarity accuracy of 98%. In addition, bloom model outperforms feature reduction

methods in terms of similarity ődelity and time performance.

5.4.1 Bloom Filter Representation

This section shows the advantages of using our approach in terms of compression, time-

consumption and accuracy.

5.4.1.1 Trade-Off: Compression and Time Analysis

The size of vectors in a vector representation model is given by the total number of

features in the database, N = 104957. However, the number of active entries in these big

vectors is very reduced. The item 3246 has the maximum number of active entries over all

items, n = nmax = 237 (notice that nmax << N). This shows the maximum information

of items in a vector and the worst bloom őlter case as well.

As a consequence, to validate the usage of bloom őlters against the vector representation

model one needs to obtain more reduced őlter sizes (m < N) and still be able to compute

accurate items similarities (low false positive similarities fp). Several conőgurations are

presented in order to compare and őnd out the best trade-of:

(1) Optimal bloom őlters in Table 5.2 computes őlter parameters by using the near

131

5.4. EXPERIMENTATION

Table 5.2: Optimal Bloom Filters.

Bloom Filter nmax fp k m

bloom 0.2 237 0.2 3 794
bloom 0.1 237 0.1 4 1136
bloom 0.01 237 0.01 7 2272
bloom 0.001 237 0.001 10 3408

Table 5.3: Non Optimal Bloom Filters.

Bloom Filter nmax fp k m

bloom M3000K3 237 0.01 3 3000
bloom M3000K4 237 0.005 4 3000
bloom M7000K3 237 0.001 3 7000
bloom M7000K4 237 0.00026 4 7000

optimal false positive value. Indeed, we őx the maximum insertions nmax and the desired

false positive fp to őnd the best size m and number of hash functions k. Notice that in

the case of using a false positive of 0.001 we obtained 3408 bits, which represents almost

3% of N , thus around 97% of size reduction. This tiny false positive and reduced space is

given by the 10 hash functions. On the contrary, this high value may afect our AND or

XNOR similarities. In addition, the more hash functions to perform, the slower the system

is to build őlters.

(2) Non-Optimal bloom őlters in Table 5.3 are built by őxing insertions (n), őlter size

(m) and number of hash functions (k) in order to seek the desired false positive. We vary

m and k based on the last optimal computed bloom őlter (m = 3408 and k = 10) to őnd

a good balance in terms of size and number of hash functions for the bit-to-bit operations

goal. Notice that for the same false positive 0.001, we obtained a size of 7000 bits, which

represents almost 6% of N by only using 3 hash functions. This setting is a priori the most

interesting for our comparison purposes

Table 5.4 shows interesting comparisons in terms of space and time-consumption. The

machine used is a MacOS 4Go RAM with 2 cores (2.53GHz). Three models are com-

pared: Vector Model (VM), Optimal Bloom Model (OPM) and Non-Optimal Bloom Model

(NOPM). To build vectors and őlters, a database access was required. Query time was

around 200 ms (not included in these results). One may observe that building bloom model

takes extra time due to the hash functions, however, this is acceptable as there is a high

space reduction. In addition, operations among bloom models can perform faster due to

two facts: (1) bitwise operation are faster than jaccard/cosine similarities, and (2) bitsets

are smaller.

Moreover, it might be interesting to reconstruct a vector from a bloom őlter to compare

132

5.4. EXPERIMENTATION

Table 5.4: Vector and Bloom Models trade-ofs.
Item Representation VM OPM NOPM

Size (bits) 104957 3408 7000
Hash Functions - 10 3
Building model (sec) 6.58 8.94 8.32
AND Similarity (ms) - 0.001 0.003
XNOR Similarity (ms) - 0.004 0.006
Reconstruction (ms) - 127.28 141.27
Jaccard Similarity (ms) 0.4 2.6 2.3

vector and bloom models under the same conditions and similarities. Reconstruction time

is given by the features loading (140 ms) and the features hashing (145 ms), which are

performed only once. Then, a single vector reconstruction is created by querying őlters.

This is also shown in Table 5.4.

5.4.1.2 Singular Value Decomposition (SVD) model

As explained in Chapter 4, the SVD is a dimension reduction technique. Indeed, it

is a factorization model that decomposes a big matrix in three smaller matrices (left-

eigenvectors, eigenvalues and right eigenvectors) in such a way that the multiplication of

the three is an approximation of the original matrix. The eigenvalues shows which are the

principal axes to consider, and thus the rank of the matrix may be reduced.

In the őeld of recommender systems this model helps to focus on particular attributes

and features to represent items/users instead of using large and sparse representations.

The main goal is to focus only on the important axes of the model which well represents

items/users. However, this model losses some precision while neglecting features in order

to gain in space. We applied SVD to the set of items-features (a matrix of 10197 items

and 104957 features) to őnd an accurate reduced matrix representation and to compare its

size and similarity ődelity against the vector representation model and our bloom model.

The threshold we impose to SVD is the number of eigenvalues and eigenvectors to

seek. We only consider the bit-size of eigenvalues for simplicity in size and compressions

comparisons to the bloom őlter representations. Each eigenvalue has a double bit precision

by using a 32 bits representation. Thus the total rank representation may use 9600 bits,

133

5.4. EXPERIMENTATION

which is already larger than the 7000 bits of our biggest bloom őlter. This makes that the

number of the number of non-zero eigenvalues to őnd should not overpass 300.

The comparisons were stopped because the item similarities that one may achieve by

using the reduced SVD model were not accurate. Indeed, the items-features matrices are

so sparse that the SVD can not őnd a very low rank model. This may be solved by

increasing the rank of the matrix, yet the bloom model have already demonstrated very

good similarity ődelity in a much more reduced item space representation. In addition,

the large dataset made the SVD model very memory and timely expensive.

5.4.2 Fidelity of the AND similarity

Our bloom model ofers two relevant performances: reduced size and similarity ődelity.

In this section, we evaluate the accuracy of the AND Similarity measure.

We compute the similarity between őlters, and thus items, by performing the two-by-

two bitwise AND operation. First, the bit operation returns the intersected őlter between

two őlters. There are two ways to exploit such results: the cardinality representation and

the set representation of the bloom őlter. The former compares two őlters by using their

bit-set vectors. It is fast but it highly depends on low values of k. The latter compares two

őlters by their set representations. In fact, it reconstructs the AND intersected bloom őlter

into a N dimensional vector by querying it. Hence, it is slower, yet it allows to compare

bloom model and vector model similarities under the same conditions, since items in both

models are represented as vectors of dimension N.

On the one hand, we reconstruct the set representation of the resulted AND operation.

The őrst test aims to check whether the bloom model is loyal to the similarity degree of

items, i.e. similarity ődelity. Hence, we compare item similarities in both models: vector

similarity model (using jaccard similarity) and bloom similarity model (using AND bitwise

similarity). We focus on item 3426 which has more active features, and thus the bloom

őlter with the most insertions and highest false positive ratio. This is our worst case

comparison, since it is more likely to have bits conŕicts in a őlter comparison. Figure 5.7

shows the degree of similarity of this item to other items in the dataset for both approaches.

It demonstrates the high ődelity in the similarity of the bloom model (case bloom 0.001 in

134

5.4. EXPERIMENTATION

tops: the same items should appear in both tops (in this test the order of items is not

taken into account). As a result, by comparing tops, one knows the correct presence

of items (True Positive (TP)), the correct absence of items (True Negative (TN)), and

the errors (False Negative (FN) and False Positive (FP)). As a consequence, the accuracy

of the system is deőned by Equation 5.5:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.5)

The values for this accuracy vary between 0 and 1, where the value of 1 is the highest

possible accuracy.

The most important parameters of our bloom model for similarity comparisons purposes

is the false positive in bloom őlters because it may derives in false positive similarities.

Thus, in order to compare both similarity models under the same conditions, we reconstruct

the bloom őlter representations from Table 5.2 into vector representations of size N . The

false positive ratio will make the diference between a real vector and a reconstructed

vector, and hence, comparisons in similarities are possible to perform.

Figure 5.10 shows the results for these tops comparisons. Notice that bloom őlter

representations may achieve almost a perfect accuracy ődelity in very reduced sizes. In

fact, the bloom őlter with a false positive of 0.001 and 3408 bits achieves an almost perfect

score in these presented top similarities.

5.4.3 The XNOR similarity

The XNOR Similarity shows common insertions in two bloom őlters, but it also shows

the features that likely have not been inserted in any of the bloom őlters, i.e. common

insertions and common non-insertions. In this test we compare whether the bloom model

correctly őnd similar items by using this XNOR operation. Again, the false positive ratio

of bloom őlters has impact over the őlter similarities. We consider the settings of Table 5.2

to compare our performances.

We compute the XNOR operation in vector models, and we compare this to the XNOR

operation in the bloom őlter similarity model. Once the bloom őlter operations have been

137

5.5. DISCUSSION

goal is to use bloom őlters in order to alleviate these constraints and to create similarity

measures based on bloom őlters. As a result, we focused on three aspects: (1) the size

compression of bloom őlters in a recommender system context, (2) the usage of AND

operations as a similarity measure in bloom őlters to consider common insertions, and (3)

the usage of XNOR operations as a similarity measure that takes into account not only

common inserted items, but also common non-inserted items.

The experimentations performed on a public dataset [Cantador et al., 2011] show that

the bloom őlter representation highly reduces the size of vector representations (94-97% per

vector) while keeping a high ődelity in the item similarity (accuracy of 98%) in comparison

with standard approaches.

This chapter has faced the items’ and users’ large vector representation challenge. Our

approach allows to reduce memory consumption in recommendation process as long as to

use very detailed items’ and users’ descriptions. The next chapter (Chapter 6) focuses on

the cold-start challenge in recommender systems. Particularly, we focus on collaborative

őltering techniques only, which do not exploit the items’ and/or users’ descriptions.

140

Chapter 6

Active Learning to Cope with New

User Cold-Start

"A man must be big enough to admit his mistakes, smart enough to proőt from them,

and strong enough to correct them."

- John C. Maxwell

One paper derived from this chapter has been submitted to ICDM 2016: "Enhancing
New User Cold-Start based on Decision Trees Active Learning by Using Past Warm-Users
Predictions" ; Manuel Pozo, Raja Chiky, Elisabeth Métais and Farid Meziane. Acceptance
Notiőcation on September 9th.

6.1 Motivation

Recommender Systems have demonstrated a great accuracy while predicting the inter-

ests of "warm-users", i.e. users whose some interests are known. However, they still sufer

from cold-start problems, such as the new user cold-start and new item cold-start, a.k.a.

"cold-user" and "cold-item" respectively.

The cold-start is the situation in which the recommender system has no or not enough

information about the (new) users/items, i.e. their ratings/feedback; hence, the recommen-

dation to users (or of items) are not well performed. On the one hand, the item cold-start

can be alleviated by using the item’s attributes in content-based and hybrid recommenda-

tion techniques. Moreover, this information is easily available. On the contrary, the user

cold start is more diicult to deal with since the new user needs to deliberately present

141

6.1. MOTIVATION

her attributes (e.g. age, genre, studies, etc.) and/or expresses her interests in items (i.e.

ratings/feedback). However, users are not willing to give much information and evaluate

many items [Rubens et al., 2011, Elahi et al., 2014].

This issue is commonly encountered in collaborative őltering recommendations as they

rely mainly on the users’ feedback to predict future users’ interests [Su and Khoshgoftaar,

2009]. Moreover, the recommendations’ accuracy is directly related to the users’ satis-

faction and ődelity [Rubens et al., 2011]. New users start evaluating the system from

their őrst usage and this makes the recommendation process a challenge for both academia

and industry [Golbandi et al., 2011]. Users may do not trust the recommendations given

and may leave before the system learns to return proper recommendations.

The current techniques to cope with the new users cold-start are categorized into passive

learning and active learning:

• Passive collaborative őltering techniques learn from sporadic users’ ratings; hence

learning new users preferences is slow [Karimi et al., 2015a]. Other techniques propose

correlations between users and/or items by using the users/items attributes [Kantor

et al., 2011], such as content-based [Peis et al., 2008] and hybrid methods [Karim,

2014]. Many of these techniques were discussed in the Chapter 2. However, dealing

with such features slows down the process and adds complexity and domain depen-

dency.

• Active techniques interact with the new users in order to retrieve a bunch of rat-

ings that allows to learn the users’ preferences. A naive but extended approach is

to question users about their interests and get their answers [Rashid et al., 2002].

Such questions may include: ’Do you like this movie?’, with possible answers such as:

’Yes, I do’; ’No, I do not’; ’I have not seen it’. In fact, this process can be applied for

cold-users in a sign-up process (a.k.a. Standard Interaction Model) or for warm-users

(a.k.a. Conversational and Collaborative Model) where users can provided new pref-

erences to the system; hence the system can better learn all users preferences [Rubens

et al., 2011].

Figure 6.1 represents a functional diagram for both passive and active learning ap-

142

6.2. RELATED WORK IN ACTIVE LEARNING

users are not willing to answer many questions [Rubens et al., 2011, Elahi et al., 2014].

Therefore, the main challenge in active learning is to present short but very informa-

tive questionnaires (a maximum of 5-7 questions [Golbandi et al., 2011]). This maximizes

the information retrieved from users and minimizes users’ eforts [Harpale and Yang, 2008].

The personalization of the questionnaires lead to a progressive understanding of the user’s

preferences. In fact, the personalization of the questionnaires is close to a recommender

system concept, although the latter seeks the items the user likes and the former seeks

the items the user recognizes. In this context, we speciőcally focus on an optimization

of the prediction accuracy, since it is directly linked to users’ satisfaction [Rubens et al.,

2011].

Current techniques for personalizing questionnaires in active learning collaborative ől-

tering are based on decision trees. These techniques analyze the available warm users’

ratings in order to őnd out which items to propose to users. However, their efectiveness in

small datasets has not been probed. Moreover, we believe that taking into account warm

users’ predictions may enhance these techniques. In this chapter we suggest to exploit

both available warm users’ ratings and warm users’ ratings predictions in order to improve

the questionnaire. The experimentation shows that our approach enhances previously sug-

gested ones in terms of accuracy and in using a smaller number of questions.

The remaining structure of this chapter is organized as follows: Section 6.2.2 presents

the state of the art for active learning using decision trees techniques. Section 6.3 gives

the background and notation used for decision trees. Section 6.4 presents our contribution

to enhance active learning based on past warm users’ rating predictions. Section 6.5 shows

the experimentations performed and the results of our approach. Finally we conclude and

present our future works in Section 6.6.

6.2 Related Work in Active Learning

Active learning is a data acquisition method that not only helps the system to learn

cold users preferences, but it lets warm users to clarify and better express their preferences

as well. Thus, the user is more self-conscious about her own preferences while the system

144

6.2. RELATED WORK IN ACTIVE LEARNING

a new user by posing as less questions as possible [Golbandi et al., 2011].

6.2.1 Personalization of questionnaires and strategies in active learning

On the one hand, the personalization of the questionnaire increases the information

retrieved from users. Randomly selected candidate items (questions) are possibly not

recognized by the new users. The static non personalized questionnaires show always

the same candidate items regardless the user (eg. most sold items), and hence the evolution

of her tastes is not well captured. Personalized questionnaires alleviate these drawbacks.

On the contrary, they may carry out a waiting time between questions [Karimi et al., 2011a],

and the users are not willing to wait. Thus, the ideal questionnaire may intelligently present

personalized candidate items and be fast to react to answers.

On the other hand, the active learning techniques have one or many strategies to

pick up adequate candidate items. Some of them are given below, for a further detailed

classiőcation of these criterion strategies please refer to [Rashid et al., 2002, Elahi et al.,

2014]:

• Popularity, Variance and Coverage. Most popular items tend to have higher num-

ber of ratings, and thus they are more recognized. Popularity-based questionnaires

increase the "ratability"[Carenini et al., 2003] of candidate items in order to obtain

more number of feedback, although very particular interests of new user preferences,

out of popular items, are not captured. In addition, items with low rating variances

are less informative. Thus, variance-based questionnaires show the uncertainty of

the system about the prediction of an item [Boutilier et al., 2002]. On the other

hand, the item’s coverage (i.e. number of users related to this item) can lead to

create interesting rating’s correlation patterns between users.

• Entropy. This strategy uses information theories, such as the Shannon’s Theory [Shan-

non, 2001], to measure the dispersion of items ratings and hence to evaluate items

informativeness. This technique tends to select rarely known items. In addition,

entropy and popularity are correlated, and they are very inŕuenced by the users’

ratability (capacity of users to know/rate the proposed items) [Rashid et al., 2002].

146

6.2. RELATED WORK IN ACTIVE LEARNING

• Optimization. The system selects the items from whose new feedbacks may improve

a prediction error rate, such as MAE or RMSE. Indeed, this is a very important

aspect in recommender systems since error reduction is directly related to users’

satisfaction [Rubens et al., 2011]. Other strategies may focus on the inŕuence of

queried item evaluations (inŕuence based [Rubens and Sugiyama, 2007]), the user

partitioning generated by these evaluations (user clustering [Rashid et al., 2008],

decision trees [Golbandi et al., 2010]) or simply analyse the impact of the given

rating for future predictions (impact analysis [Mello et al., 2010]).

Three very well known non-personalized and batch-oriented strategies are: (1) En-

tropy0 relaxes the entropy constraints by supposing that unknown ratings are ratings

equal to ’0’ (changing a 1-5 rating scale to 0-5 rating scale), hence a high frequency of

’0’ tends to decrease the entropy, (2) "LPE" (Logarithmic Popularity Entropy) chooses

candidate items regarding their popularity and rating entropy [Rashid et al., 2002], and

(3) "HELF" (Harmonic Entropy Logarithmic Frequency) balances the entropy of candidate

items against the frequency of rating repetitions [Rashid et al., 2008]. However, the need of

personalization in questionnaires has changed batch-oriented into sequential-oriented based

questionnaires. This evolution is shown in the works: [Karimi et al., 2011a] [Karimi et al.,

2011b] [Karimi et al., 2011c] [Karimi et al., 2012] [Karimi, 2014]. Within these papers,

the authors have explained the importance of rapid online questionnaires and the rata-

bility factor over candidate items in order to capture the users preferences. In the next

section we focus on personalized questionnaires only.

6.2.2 Active Learning for Collaborative Filtering

The őrst appearance of active learning for new users cold-start was in [Kohrs and Meri-

aldo, 2001], although the őrst step for creating sequential personalized questionnaires was

suggested in [Harpale and Yang, 2008]. In this paper, the authors enhance a similar ap-

proach in [Jin and Si, 2004] by assuming that users may do not be able to rate presented

items and thus relaxing initial assumptions. They suggest a probabilistic collaborative

őltering that uses bayesian networks to learn the candidate items entropy. The candi-

date items are presented sequentially and the whole model is re-adjusted according to past

147

6.2. RELATED WORK IN ACTIVE LEARNING

answers. However, these models do not perform well in on-line questionnaires because

questions’ answers lead into a time-consuming model update. In [Karimi et al., 2011a]

this idea was extended by questioning only about the most popular items. This reduces

the number of items to focus on and results in faster models. In [Karimi et al., 2011b] they

applied active learning for matrix factorization. They believe that solving the new user

cold-start is an optimization problem, which explores the latent space given by the matrix

factorization to get new users parameters, then it exploits and adjusts these users parame-

ters. Recomputing the whole matrix with each new rating is not tractable, and hence they

propose a fast-online updating [Rendle and Schmidt-Thieme, 2008] after each answer.

One technique that is very meaningful in active learning is user partitioning. It allows

to group users of similar tastes into clusters or nodes, and then tries to őnd out to which

group the new user belongs to. In [Rashid et al., 2008] the authors assumed that őnding

the correct users neighbors will improve the information gain of the questions presented

to users. They presented the Information Gain through Clustered Neighbors (IGCN) al-

gorithm to adjust the entropy of the items by taking into account only those users who

match with the new user’s proőle.

In [Golbandi et al., 2011] the authors use non supervised ternary decision trees to

model the questionnaire. The decision trees are built of-line to be completely available

for new users that receive the questions sequentially. To move to a new question they

answer the current one by clicking on one of the three possible answers (’like’, ’hate’ and

’unknown’). The users’ answers lead to a diferent child node of the ternary decision

trees. This creates a personalized tree path that depends on the past users’ answers. On

the other hand, this technique uses a collaborative őltering approach to build the decision

trees. Using available users’ ratings, they seek the best discriminative item in order to

split the population of users into three nodes (users who liked, those who hated and those

who do not know this item). The best item is the one which minimizes a statistical error

within the users’ ratings of the node. In order to evaluate the performance of the tree,

the authors add labels to the candidate items by using the item average prediction method

and demonstrated that their technique improves the accuracy of the system.

Recent literature seems to focus on decision trees to handle questionnaires and on

148

6.2. RELATED WORK IN ACTIVE LEARNING

matrix factorization as a prediction model. The authors in [Zhou et al., 2011] suggest

to integrate decision trees construction into the matrix factorization model. They call

it "Functional Matrix Factorization". The őrst step is to learn about the underlying

item feature vectors. In the second step, the users are deőned as ratings’ vectors and

one function maps these users into an underlying users features vector. This function is

responsible for creating a ternary decision tree (’like’, ’dislike’, ’unknown’). Hence, matrix

factorization is applied to learn both function and items-features through an iterative

alternating minimization process, which is performed in each node of the three. In [Karimi

et al., 2014], the authors claim that [Zhou et al., 2011] is computationally too expensive.

On the contrary, they suggested incorporating the matrix factorization into decision trees.

They őrst build the decision tree as in [Golbandi et al., 2011]. Each node represents

an item with an associated rating prediction label. The goal of the matrix factorization is

to improve this label. Indeed, they train one matrix factorization model for each level of

the tree, and aggregate users within the nodes into a pseudo-user for whom a prediction

about the candidate item in the node is performed. This new predicted label replaces

the last one.

Very recently, in [Karimi et al., 2015b] the authors assumes that warm users can be

thought as new users from whom some ratings are known. Thus, this is seen as a supervised

decision trees which internally reduces the accuracy of the technique by picking the best

discriminative items. Moreover, they split the tree nodes into six, a 1-5 natural scale

rating and an unknown node. This technique improves [Golbandi et al., 2011], and is later

enhanced by (1) taking into account the most popular items only [Karimi et al., 2011a],

and (2) using matrix factorization to improve the prediction labels assigned to the tree

nodes [Karimi et al., 2014].

The approaches in [Golbandi et al., 2011, Karimi et al., 2015b] use the big but not

available Netŕix dataset [Narayanan and Shmatikov, 2008]. However, these approaches

are not tested on smaller datasets, especially in terms of the number of users/ratings. In

fact, a low number of users and ratings may produce an early pruning of some brunches of

the tree. Moreover, early nodes with less data reduce the accuracy of the item’s average

method and the discriminative items choice.

149

6.3. BACKGROUND AND NOTATION

6.3 Background and Notation

The goal of decision trees in active learning is to split the users’ population in groups

of users’ preferences. Thus, the users within the same tree’s node tend to share similar

preferences. By going deeper inside the tree, these groups are reőned and preferences are

better detected. These techniques in a collaborative őltering context have only access to

the available users/items feedback, i.e. ratings. As a consequence, they aim to őnd out

the discriminative items that, in each node of the tree, eiciently split the users’ population

depending on the users’ feedback to these items.

This idea is very useful to cope with the new users cold start. One node is represented by

one question about the discriminative item, e.g. ’Do you like this movie?’. The answers are

the possible feedback of the new user to this item, e.g. ’like’, ’dislike’ and ’unknown’. Every

answer leads to a diferent question. Therefore, when new users őll-out the questionnaire,

they are indeed following a personalized path which tries to detect to which group of users’

preferences they match the best.

In this chapter we will use the following notation for active learning using decision trees

algorithms. Formally, let R be the available ratings. The rating of a user u in an item i

is deőned by ru,i ∈ R. In addition, let t be a node in the decision trees. We deőne Ut, It,

and Rt as the set of (warm) users, items and ratings currently in the node t. Furthermore,

Rt(u) and Rt(i) are ratings of the user u and item i in the node t. In addition, our main

contribution exploits the predictions over the existing R. Thus, we deőne P as the predicted

set of R, so that for each ru,i ∈ R there is a prediction pu,i ∈ P . The set P is computed by

using collaborative őltering techniques, e.g matrix factorization. Highlight that the number

of users, items, and entries in R and P are the same. Particularly, we do not aim to predict

sparse values or not known ratings from all possibles entry combinations of Ut, It. Finally,

Pt is the set of predictions currently in the node t, and Pt(u) and Pt(i) are the set of users

and items predictions in the node t. Table 6.1 resumes these notations.

150

6.4. ACTIVE LEARNING DECISION TREES

Table 6.1: Notation used in decision trees.
Notation Description

R Set of ratings
P Set of predictions
u User
i Item

ru,i Rating of user u in item i
pu,i Predicted rating of user u in item i
t Current node of the tree
Rt Set of ratings in node t
Pt Set of predictions in node t
Ut Set of users in node t
It Set of items in node t

Rt(u) Set of user’s ratings in node t
Rt(i) Set of item’s ratings in node t
Pt(u) Set of user’s predictions in node t
Pt(i) Set of item’s predictions in node t

6.4 Active Learning Decision Trees

This section introduces our contribution. We suggest exploiting not only the available

ratings from warm users, but also the predictions made by collaborative őltering algorithms

over these available ratings. We őrst give some considerations to decision trees for small

datasets as long as the current state of the art has not been tested in these environments.

Second, we illustrate our core idea using a real use-case for a better discussion and under-

standing. We use two datasets from MovieLens 1. Besides, we show the properties of the

Netŕix dataset [Narayanan and Shmatikov, 2008] for datasets’ size comparisons. These

datasets are later used in Section 6.5 to evaluate our approach and their properties are

given in Table 6.3. Third, we present the techniques and algorithms for decision trees

in non supervised and supervised techniques. In addition, a complexity analysis of our

algorithms is provided.

1http://grouplens.org/datasets/movielens/

151

6.4. ACTIVE LEARNING DECISION TREES

items, to őnd out the best discriminative items and to assign a prediction label to them.

This factor is used in [Golbandi et al., 2011] as a stopping criteria. The authors claim

that there is a very little gain in going further in analyzing nodes with few ratings. Never-

theless, we consider that the number of users should be taken into considerations as well.

The number of ratings in a node is directly related to the number of users in this node.

This is important in the őeld of recommender systems since users’ preferences with higher

number of ratings are better detected. On the contrary, having less number of ratings

per user may lead to a bad understanding of users’ preferences. In decision trees, nodes

containing few users but many ratings perform better in preference detection than nodes

containing many users with fewer ratings. As a result, taking into account ratings only

may yield to unstable performances in small datasets.

6.4.2 Warm users predictions in decision trees

Users are not willing to rate too many items. Hence, the main challenge of active

learning is to learn the (new) users’ preferences as soon as possible by creating a short but

informative questionnaire. In this section we explain the core of our contribution which is

to use the prediction of available ratings to enhance active learning using decision trees.

Current decision trees techniques exploit only the available ratings in R in order to (1)

őnd the discriminative items, (2) split the users’ population, and (3) compute predictions

over the candidate items. For instance, let us őx the decision trees analysis into the node

t. These techniques iterate among items in It and analyze their impact in Rt. This impact

is typically measured by associating an error when splitting users using their preferences

to these candidate items. The goal is to őnd out, for each node of the tree, the best

discriminative item that optimizes this error.

In addition, these techniques use a simple item prediction method based on the "item

rating average" in order to evaluate a prediction accuracy and to compute prediction labels

for candidate items. Note that this technique is adequate for large datasets, which allows

a quick and acceptable generation of predictions from the available ratings in Rt. On

the other hand, using more accurate prediction techniques is possible but (1) it is very

expensive and time consuming to do it for every node of the tree, and (2) the predictions

153

6.4. ACTIVE LEARNING DECISION TREES

needed in decision trees are item-oriented regardless of the user (the same item prediction

value to any user) rather than user-item oriented (items’ predictions depend on users’

interests).

We propose to change this paradigm by using more accurate predictions over the avail-

able ratings R. The main idea is to introduce the prediction P as a new source of useful

data. Hence, R and P are available from the root node of the tree. Then, when the node

is split into child nodes, Rt is split into Rt−child. As long as we want to preserve that for

every rating ru,i ∈ Rt there is an associated prediction pu,i ∈ Pt, for every node t we split

Pt into Pt−child as well. This idea is illustrated in Figure 6.3. In addition, we propose to

use the available ratings in R only to split the users population, and P to őnd out the best

discriminative items to enhance the prediction label of candidate items.

This makes sense since őnding discriminative items and label predictions are associated

with computing an error. As long as P is built by using more accurate methods than

the "item rating average", this error is minimized eiciently. We propose using eicient

algorithms, such as matrix factorization [Zhou et al., 2008]. The main drawback of using

matrix factorization is that it computes diferent item predictions for diferent users. The

decision trees require a unique item prediction value to be applied to any user. In [Golbandi

et al., 2011, Karimi et al., 2015b] the authors use the "item rating average" within Rt.

We suggest using a similar method, with a major diference that is computing the "item

prediction average", which is indeed the average of the predictions within Pt.

Collaborative őltering methods are very accurate for recommending items to users by

replicating the users’ rating behavior. As a consequence, they are good as well in guessing

the average prediction of users, items, and in general the average rating value of the dataset.

We illustrate this by using a real use-case. We perform the matrix factorization (MF)

predictions over the Movielens 1M dataset in Table 6.3 to obtain the predicted values P

for R. Table 6.2 summarizes statistics over R and P . One can see how close the statistic

values such as the mean and quartiles between the available ratings and the predicted

ratings are.

In addition, we want to go further by considering diferent users’ populations. We com-

pare the performance of three diferent predictors: (1) the item rating average (Item-Avg),

154

6.4. ACTIVE LEARNING DECISION TREES

Table 6.2: Statistics for available ratings and matrix factorization predictions. MF1 and
MF2 denote predictions over Movielens 1M and Movielens 10M, respectively.

Statistic MovieLens 1M MF1 MovieLens 10M MF2

1st Quartile 3.00 3.18 3.00 3.13
Median 4.00 3.66 4.00 3.58
Mean 3.58 3.58 3.51 3.51

3rd Quartile 4.00 4.05 4.00 3.96

(2) the matrix factorization (MF), and (3) the matrix factorization average (MF-Avg).

The őrst sets the item’s rating average as the item’s prediction. The second decomposes

a matrix R into two random matrices in such a way that the multiplication of both ma-

trices gives approximately the original R [Zhou et al., 2008]. The third uses a matrix of

predictions over available ratings given by the matrix factorization to set the item’s pre-

diction average as the item’s prediction. Our goal is to show that (1) as demonstrated,

the matrix factorization performs better in terms of accuracy than the item rating average

method, and (2) the item prediction average predictions are close to the item rating average

predictions.

This analysis is performed as follows. First, we obtain P by performing the matrix

factorization over the available R. Second, we count the number of ratings per user and we

divide the users into groups; users having less than 50 ratings, less than 100 ratings, etc.

Highlight that these groups are incremental and thus one user may belong to more than one

group. For each of these groups, the users’ ratings and the corresponding users’ predictions

are taken from R and P into separated sets R′ and P ′. Third, we evaluate the performance

of predictions in P ′ by computing the root mean square error (RMSE). Moreover, we

perform the item rating average over R′, and item prediction average (MF-Avg) over P ′,

in order to observe their performance as well. The results are given in Figures 6.4(a) and

6.4(b). As expected, MF outperforms the item rating average method. In addition, we

observed that MF-Avg attempts to imitate the behavior of the item rating average method.

Hence, the item prediction average is also an acceptable predictor regarding the item rating

average. In fact, one can observe that item rating average and item prediction average are

closer while dealing with more users and ratings. This behavior is perfect in decision trees

since the top of the tree is more populated by users and ratings. On they contrary, they

155

6.4. ACTIVE LEARNING DECISION TREES

sumes that warm-users can be considered as cold-user from which some ratings are known,

and hence, the known users’ ratings can be used to validate the technique. As a conse-

quence, it is possible to compute an error based on the prediction accuracy, such as RMSE.

On the contrary, since non supervised techniques do not have any validation, they com-

pute a statistical error based on the available ratings in the node. Nevertheless, in both

approaches a validation is not possible in the ’unknown’ nodes, since by deőnition, there

is no rating label for these users to this item. As a consequence, the statistical error is

mandatory in this case. Our approach uses similar statistics as [Golbandi et al., 2011].

6.4.3.1 Non Supervised Decision Trees for Active Learning

In [Golbandi et al., 2011], the authors deőne a set of statistics and an internal error

using these statistics to őnd out the best discriminative item. In this approach, the best

item is the one which reduces this error. In addition, as long as the tree nodes contain

many ratings, they use the item rating average method to compute item label predictions

for items.

We suggest to use the predictions P over the available ratings in R in order to enhance

this technique. Formally, given the node t, there are ratings ru,i ∈ Rt so that u ∈ Ut and i

∈ It. In addition, for each rating ru,i there is an associated prediction pu,i ∈ Pt. The goal is

to őnd out, among all candidate items j ∈ It, the best discriminative item i∗. To do that,

we compare the current state of the node t to the impact of picking j as discriminative

item, as it is explained below.

On the one hand, the current status of the node j is given by all the items’ ratings

in Pt. The properties of this status are given by the statistics presented in 6.1, which

consider separately all items in the node. This allows to glimpse a current state error

as 6.2, which is indeed the error contribution of every item j in the node t: e2(t)j =

sum2(t)j − (sum(t)j)
2/n(t)j .

157

6.4. ACTIVE LEARNING DECISION TREES

∀j ∈ I − i : sum(t)j =
∑

u∈Ut∩P (j)

pu,j (6.1)

sum2(t)j =
∑

u∈Ut∩P (j)

p2u,j

n(t)j = |u ∈ Ut ∩ P (j)|

e2(t) =
∑

j

sum2(t)j − (sum(t)j)
2/n(t)j (6.2)

On the other hand, we look for the best candidate item that minimizes this current

error. Thus, we analyze the impact of every item j within this node t and the child nodes.

We őrst suppose that j is a discriminative item and we split Ut into 3 childs: tL for users

who liked j (ru,j ≥ 4), tD for users who did not like (ru,j ≤ 4)) and tU for users who do not

know the item (absence of rating). Highlight that we use Rt to split the users’ population.

In addition, we delete the presence of discriminative item ratings in child nodes. As a

consequence, one has 3 rating subsets RtL, RtD and RtU in child nodes UtL, UtD and UtU ,

respectively. The impact of picking j as candidate item is given by the error of these three

nodes: Errt(j) = e2(tL) + e2(tD) + e2(tU). This means that one evaluates the status

of the given child nodes by using the Equation 6.2 and associated subsets PtL, PtD and

PtU . However, the number of users in the unknown node tU is normally much larger than

in other groups, and hence, the computation is heavier in this node. To avoid this, it is

possible to deduce statistics for tU from the node t and the other child nodes tL and tD,

as follows:

sum(tu)j = sum(t)j − sum(tL)j − sum(tD)j (6.3)

sum2(tu)j = sum2(t)j − sum2(tL)j − sum2(tD)j

n(tu)j = n(t)j − n(tL)j − n(tD)j

By doing this analysis with every candidate item j ∈ It, one obtains an associated

impact Errt(j). The discriminative item is the one which minimizes such error, i∗ =

158

6.4. ACTIVE LEARNING DECISION TREES

argminErrt(j), and then it is used as the real splitter to continue the construction of the

tree in lower levels.

Finally, once the discriminative item is chosen, the prediction label associated to the

tree is given by the item prediction average, i.e. average value of Pt(i
∗).

This approach is similar to [Golbandi et al., 2011], with two major diferences. First,

the available ratings are only used to split the population of users. As a consequence,

the statistics and the items predictions are computed by using the proposed set of predic-

tions P . Second, once a discriminative item is chosen in a parent node it does not pass to

the child nodes. This is done for two reasons: (1) to avoid to choose the same item, and

hence, to avoid to pose twice the same question to the same user, and (2) to delete the in-

ŕuence of the items’ ratings in the child nodes. In fact, one can avoid choosing an item

without deleting their ratings as done in [Golbandi et al., 2011]. Algorithm 5 shows this

approach.

6.4.3.2 Supervised Decision Trees for Active Learning

In [Karimi et al., 2015b], the authors suggested using warm-users as cold-users from

whom some interests are known. This assumption allows to create a supervised decision

trees where some labels are known for validation purposes.

We again suggest to use the predictions P over the available ratings in R in order to

enhance this technique. Given the current node t, there are warm users in Ut who have

ratings in Rt and predictions in Pt. This technique considers warm users as cold-users from

who some ratings are known. Thus, we split the users ratings into training ratings Rt−train

and validation ratings Rt−validation. The former represents the interests of the warm users.

The latter are the items labels given when considered as cold-users. Note that we consider

the perfect case where a user u and and item j and in Ut−train, Ut−validation and It−train,

It−validation respectively. As long as for each rating ru,i there is an associated prediction

pu,i ∈ Pt, it is possible to obtain Pt−train as well.

As a result, the current node t contains ratings in Rt−train, predictions in Pt−train, and

ratings for validation purposes in Rt−validation. The goal is to őnd out, among all candidate

159

6.4. ACTIVE LEARNING DECISION TREES

Algorithm 5 Non-supervised decision tree algorithm
1: function BuildDecisionTree(Rt, Pt, currentTreeLevel)
2: for rating ru,i in Rt do
3: accumulate statistics for i in node t using pu,i
4: end for
5: for candidate item j in It do
6: for ru,j in Rt(j) do
7: obtain Pt(u)
8: split Ut into 3 child nodes based on j
9: őnd the child node where u has moved into

10: for rating pu,i in Pt(u) do
11: accumulate statistics for i in node t− child using pu,i
12: end for
13: end for
14: derive statistics for j in node tU from the tL and tD statistics
15: candidate error: et(j) = etL(j) + etD(j) + etU (j)
16: end for
17: discriminative item i∗ = argmini et(i)
18: compute pi∗ by using item prediction average
19: if currentTreeLevel < maxTreeLevel then
20: create 3 child nodes Ut−child based on i∗ ratings
21: for child in child nodes do
22: exclude i∗ from Rt−child

23: BuildDecisionTree(Rt−child, Pt−child, currentTreeLevel +1)
24: end for
25: end if
26: return i∗

27: end function

items j ∈ It, the best discriminative item i∗. To do that, we compare the current state of

the node t to the impact of picking j as discriminative item, as it is explained below.

On the one hand, the state of the node t is given by the Root Mean Square Error

(RMSE), which computes the squared diference between current predictions and real ob-

served ratings. Predictions are computed by using the "item predicion average" method

over Pt−train. Observed ratings are taken from Rt−validation. Therefore, each user u ∈ Ut

is associated to one error RMSE1u. The current error in the node is the sum of all user’s

errors.

On the other hand, we look for the best candidate item that minimizes this current

error. Thus, we analyze the impact of every item j within this node t and the child nodes.

160

6.4. ACTIVE LEARNING DECISION TREES

We őrst suppose that j is a discriminative item and we split Ut into 3 childs: tL for

users who liked j (ru,j ≥ 4), tD for users who did not like (ru,j ≤ 4)) and tU for users

who do not know the item (absence of rating). Highlight that we use Rt−train to split

the users’ population. In addition, we delete the presence of discriminative item ratings

in child nodes. As a consequence, one has 3 rating subsets Rt−train−L, Rt−train−D and

Rt−train−U in child nodes Ut−train−L, Ut−train−D and Ut−train−U , respectively. Hence, it is

possible to compute the state of the child nodes as it was performed before. This creates

a second user error, RMSE2u. The impact of picking j as candidate item for the user u

is △u,i= RMSE1u − RMSE2u. Thus the impact of picking j as candidate item for the

node t is given by the sum aggregation of all impacts of j.

The number of candidate items to analyze can be very large. We take into account

only the 200 most popular items, as done in [Karimi et al., 2015b]. This yields in very

acceptable accuracy and a great reduction in the time analysis.

Therefore, after the analysis of all users and candidate items, the item in Rt−train as-

sociated to a higher overall impact is picked as discriminative item i∗, since the maximum

value here means a higher error diference. Finally, the predicted label for this discrimina-

tive items is given by the item prediction average over current node Pt.

This approach is similar to [Karimi et al., 2015b], with two major diferences: (1) P

is used to validate the approach, and to obtain items label for the chosen discriminative

items, and (2) we split the nodes into 3 child nodes (’like’, ’dislike’, ’unknown’) rather than

6. This warrants a minimum number of users in child nodes to avoid fast pruning in small

datasets. Algorithm 6 shows this approach.

6.4.4 Complexity of the algorithm and Time analysis

The complexity of our approaches for non-supervised decision trees and supervised

decision trees is very similar to [Golbandi et al., 2011, Karimi et al., 2015b]. In fact,

despite some diferences in the way of computing the error that needs to be improved,

these algorithms follow a similar procedure. The complexity of splitting the users in node t

is O(
∑

u∈Ut
|Rt(u)|

2), and thus, for all the nodes in the same level we use O(
∑

u∈U |R(u)|2).

As a consequence, the complexity to build a tree of N questions is O(N
∑

u∈U |R(u)|2).

161

6.4. ACTIVE LEARNING DECISION TREES

Algorithm 6 Supervised decision tree algorithm
1: function BuildDecisionTree(Ut, Rt−train, Rt−validation, Pt, currentTreeLevel)
2: for user u ∈ Ut do
3: compute RMSE1

u on Rt−validation(u) and Pt(u)
4: end for
5: for candidate item j from Rt−train do
6: split Ut into 3 child nodes based on j
7: for user u ∈ Ut do
8: őnd the child node where u has moved into
9: compute RMSE2

u on Rt−validation(u) and Pt(u)
10: △u,i= RMSE1

u −RMSE2
u

11: end for
12: end for
13: δ = aggregate all △u,i

14: discriminative item i∗ = argmaxiδi
15: compute pi∗ by using item prediction average
16: if currentTreeLevel < maxTreeLevel and △i∗≥ 0 then
17: create 3 child nodes Ut−child based on based on i∗ ratings
18: for child in child nodes do
19: exclude i∗ from Rt−child

20: BuildDecisionTree(Ut−child, Rt−child−train, Rt−child−validation, Pt−child, cur-
rentTreeLevel +1)

21: end for
22: end if
23: return i∗

24: end function

In fact, adding the prediction set P does not afect the complexity of the algorithms,

although, it does afect the memory footprint of the approaches. Considering that ratings

R and predictions P sets are coded equally, our approach consumes double of the memory

size to store the set P . In addition, extra runtime is required to split both R and P

accordingly.

The time-consumption of the algorithms is similar as well. A little extra time is needed

in our approaches in order to deal with the split of the prediction in P . In addition, in

comparison to [Karimi et al., 2015b] our supervised approach is faster due to the reduced

number of child nodes.

162

6.5. EXPERIMENTATION

Table 6.3: Properties of diferent movie datasets.

Property MovieLens1M MovieLens10M Netŕix

Users 6040 71567 480000
Items 3900 10681 17000

Ratings 1 million 10 millions 100 millions
Sparsity 0,042% 1,308% 1,225%

Scale Integer 1-5 1-5 by 0.5 Integer 1-5

6.5 Experimentation

The goal of our experimentation is two-fold (i) to present the behaviour of current

techniques in smaller datasets and (ii) to show the performance of our presented approach.

Recent techniques have presented their results using Netŕix dataset. However, this dataset

is no longer available for research. Hence, we use two versions of the Movielens dataset.

Table 6.3 describes the properties of these datasets.

Since our approach considers external techniques prediction as a new source, in order to

build our decision trees we use matrix factorization [Zhou et al., 2008] due to its accuracy.

We compare our approach in non supervised decision trees, as in [Golbandi et al., 2011],

and in supervised decision trees, as in [Karimi et al., 2015b]. The latter will not be largely

explained due to a lack of space.

The technique in [Golbandi et al., 2011], denoted "Golbandi", uses two parameters:

bias overőtting λ1 and rating overőtting λ2. We set empirically these parameters to λ1 = 7

and λ2 = 200. The technique in [Karimi et al., 2015b], denoted "Karimi", uses a rating

overőtting parameter λ2. Our approaches are identiőed as "Pozo Non Supervised" and

"Pozo Supervised", and they do not contain any parameters, which represents an advantage

in comparison to the state of the art.

As long as non supervised decision trees and supervised decision trees require diferent

settings, we explain these experimentations separately. In order to compare the approaches

we use the RMSE metric oriented to users, which measures the squared diference between

the real ratings and the predicted ratings:

163

6.5. EXPERIMENTATION

RMSEu =

√

1

N

∑

(ru,i − pi)2

Where N is the number of ratings of the user u, pi is the predicted label value of

the candidate item in the question node and ru,i is the real rating of the user u for the item

i. Hence, the evaluation of the error in one question is the average of the users error in

this question number. As a consequence, for this metric the lower is the better.

Knowing that the experimentation may depend on the split of the dataset, we run it

50 times and then used the mean value of the RMSE. We use this process to evaluate

the performance for the MovieLens 1M and MovieLens 10M.

6.5.1 Non supervised decision trees

The experimentation carried out in [Golbandi et al., 2011] splits the datasets into 90%

training set, Dtrain and 10% test set, Dtest. However, this is not a real cold-start context

since the same user may appear in both training and test set. We suggest a real cold-start

situation. We split the set of users in the datasets into 90% training set, Utrain and 10% test

set, Utest. Hence, the users in the training set help to build the decision trees and the users

in the test set are considered as new user to evaluate the performance of the approach.

The process we have followed to run this experimentation is as follows. First we split

the dataset into Utrain and Utest. Second, we compute the collaborative őltering algorithms

over ratings R in Utrain and we extract the associated predictions P . Third, we train

the approach of "Golbandi" by using Utrain. Our approach is trained by using both ratings

in training set R and the prediction of the training set P . Finally, the performance of

the decision trees is evaluated by using the test set Utest. The users in this set are used

to answer the questions. If the item is known, we compute the RMSE associated to this

answer and this question. Then, the user answers a new question. At the end, we compute

the average of the accumulated nodes RMSE.

Figures 6.5(a) and 6.5(b) show the results (the mean point values and tendency curves)

of this experimentation for MovieLens 1M dataset and MovieLens 10M dataset respectively.

On the one hand, our approach achieves a lower error in less number of questions. This

164

6.5. EXPERIMENTATION

sets and split the result into 75% user training set, Utrain and 25% user test set Utest, where

users in one set are not present in the other. Then, they cross these 4 sets to create their

own settings environment. To train the decision trees they intersect Dtrain and Utrain to get

a training set Rtrain. They use the intersection of Dtest and Utrain to obtain the validation

set Rvalidation. To evaluate the technique, they use the intersection of Dtrain and Utest as

the answer set Ranswer, whereas the intersection of Dtest and Utest is the performance set

Rperformance used to evaluate the RMSE performance of the technique.

"Karimi" chose these experimentation settings in order to publish and compare results

using the pre-deőned Dtrain and Dtest Netŕix dataset. In addition, we consider that picking

up 25% of users the for test set, Utest is concerned with the posteriori search of Ranswer

and Rperformance. The more users in the test set the more probability to pick up ratings

from Dtrain and Dtest for Ranswer and Rperformance, respectively. Thus, more test points

are possible possible to use.

We simplify the setting above. The process we have followed in the Movielens datasets

is as follows. We split the dataset into 90% user training set, Utrain and 10% user test set

Utest, where users in one set are not present in the other. Then, the ratings in Utrain are

split into 90% rating training set, Rtrain, and 10% ratings validation set Rvalidation. The

Utest is not split into "answer" and "performance" and it is completely used for probing

the approach.

We train "Karimi" by using these settings. In addition, we train a modiőcation of

"Karimi" to take into account only 3 child nodes, denoted "Karimi 3 childs". Figures 6.6(a)

and 6.6(b) show the results (the mean values and tendency curves) of this experimentation

for both MovieLens datasets.

On the one hand, one may observe that our approach achieves a lower error (around

1%) in less number of questions; hence we better capture the preferences of new users.

Therefore, our approach still matches with the needs of active learning: short but very

informative questionnaires. This is possible due to the higher accuracy of the matrix

factorization based predictions. In addition, it is expected to have an asymptotic behavior

in large number of questions for both Movielens datasets.

166

6.6. DISCUSSION

time consumtion of Karimi by around 50% due to the reduced number of child taken into

consideration.

6.6 Discussion

Recommender Systems sufers from new user cold-start. This issue is more acute in

collaborative őltering techniques since they only rely on users’ ratings to generate recom-

mendations. In order to learn the (new) users’ preferences, passive recommender systems

wait for sporadic ratings from users. On the contrary, active learning is proposed as a

data acquisition method that gathers users’ ratings by presenting a simple questionnaire

to users. For instance, ’Do you like this movie?’: ’Yes, I do like’; ’No, I do not like’; ’I

have not seen it’. However, users are not willing to answer many questions or to rate many

items. Therefore, the main goal of active learning is to create a short but eicient and

informative questionnaire.

The state of the art has evolved from non personalized batch-oriented techniques (giving

many questions at once and the same questions to any user) to personalized sequential-

oriented questionnaires (giving questions one by one taking into account the past current

users’ answers). In our point of view, the personalization of the active learning technique

is crucial to better learn the new users preferences and current methods based on decision

trees are interesting techniques to model questionnaires. Indeed, the personalization of

decision trees allows to predict with which items the new user has been in contact, and

present them to the users.

However, active learning techniques based on decision trees have not been applied to

small datasets. Less number of users and ratings afect the performance of these algorithms.

In addition, we consider that recent approaches do not properly consider the prediction of

candidate items. On the one hand, they use very simple prediction methods to make the

decision trees tractable. On the other hand, they only exploit the users’ ratings.

In this chapter we proposed using two sources in the decision trees active learning

technique. The main idea is to train an accurate collaborative őltering techniques with

a ratings dataset to generate a prediction dataset. Both ratings and predictions dataset

168

6.6. DISCUSSION

are used inside the decision trees. The former properly split the users’ population while

building the tree. The latter enhances the seek of the best discriminative items (questions)

and better predict the associated labels. We have tested this approach in non supervised

decision trees and supervised decision trees techniques.

The experimentation uses two publicly available datasets: Movielens 1 million ratings

and Movielens 10 million ratings. We show that our approach enhances the state of the art

in terms of RMSE and the related number of questions. In fact, we őnd better questions

and better predictions that make it quicker reduce the error. This is especially useful in

small dataset contexts, where the low number of users and ratings do not allow to create

big decision trees.

Finally, the approach suggested in this chapter allows to alleviate the new user cold

start, issue that, together with the scalability and large items/users representations, is a

big challenge in the domain of recommender systems.

169

6.6. DISCUSSION

170

Chapter 7

Conclusions and Perspectives

7.1 Conclusions

Recommender systems help users to deal with information overload and in the decision

making processes. They aim to reduce the huge amount of information that users of the

Internet have to face by studying their interests and presenting őrst the information in

which they may be more interested [Kantor et al., 2011]. This has raised the attention of

the e-commerce and services providers in order to personalize the products, the services

and the users’ experience.

In Chapter 2 we have presented some techniques and approaches coming from the state

of the art in academia and industry environments. The collaborative őltering methods

are one of the most widely used approaches [Kantor et al., 2011]. Particularly, the matrix

factorization techniques have been very well received in the recommendation őeld due

to their great accuracy and scalability. However, these techniques do not exploit the

heterogeneous data coming from items’ descriptions or users’ descriptions. In addition,

the integration of this information into the matrix factorization process is complex and

it afects to the domain dependency and scalability of the system. Another challenge of

collaborative őltering techniques is the cold start [Su and Khoshgoftaar, 2009, Elahi et al.,

2014]. This issue has been typically addressed in the state of the art by implementing

hybrid recommender systems in order to alleviate the drawback of techniques with the

advantages of the others.

This thesis has focused mainly on collaborative őltering approaches. We have chosen

171

7.1. CONCLUSIONS

matrix factorization as the baseline method. In the context of collaborative őltering we were

interested in (1) the scalability of techniques and the distribution of them among multiple

machines to alleviate the time analysis consumption, (2) discovering the interest of users in

the attributes of items and integrate it in such a way that the domain dependency impact is

reduced, (3) the representation of items and users through large dimension vectors, and (4)

the new user cold start issue in active learning techniques based on collaborative őltering

assumptions.

In Chapter 3 we have presented an analysis of the matrix factorization scalability and

suggested one technique to distribute the recommendation process among multiple ma-

chines in a Hadoop/MapReduce cluster environment. Our matrix factorization technique

uses stochastic gradient descent algebra to őnd users’ interests and users’ predictions. In

order to parallelize the process, we decompose the matrix of ratings into blocks. Then, we

deőne stratum as sets of blocks which are mutually independent (they do not share com-

mon users and items). Stratums can be computed parallely, where all blocks are analyzed

by one diferent machine at every time. Our approach avoids the deletion of data compared

to the state of the art [Makari et al., 2014], what slightly improves the recommendation

accuracy.

The matrix factorization technique described in Chapter 3, a.k.a. Singular Value De-

composition for Recommender Systems [Funk, 2006], is used in this thesis as a baseline

algorithm, for which we aim to perform more improvements. In Chapter 4 we proposed a

new source of knowledge which is later exploited by the matrix factorization approach: the

implicit interest of users in the attribute of items. In fact, the interest of users is often item-

oriented [Oard et al., 1998], e.g. to rate a book, to watch a movie, to click on a video, etc.

The users’ interests in the items’ attributes is diicult to capture due to the big quantity

of possibilities. Our approach extracts this knowledge from past users’ ratings and items’

descriptions. The goal is to integrate it into matrix factorization techniques yet reducing

the impact of domain dependency of the system. A few possibilities were discussed, and a

layered architecture was chosen for our approach. We propose to transform existing ratings

into "semantic ratings" that extends the sense of ratings to denote the interest of users

in items and items’ attributes. These new semantic ratings are then used in the matrix

172

7.1. CONCLUSIONS

factorization. The results of this proposition demonstrate a great improvement in rank-

based recommendations, where it overcomes the precision, recall and f-measure metrics.

The side efect of this approach is that top-K recommended items tend to be more similar,

regarding an intra-similarity list metric.

In Chapter 5 we discussed that items and users can be described by very large amounts

of data linked to items/users characteristics or other external resources such as social

networks [Peis et al., 2008, Kantor et al., 2011, Dahimene et al., 2014]. Indeed, the number

of features to describe items/users afects the correlation of data. Generally the more

attributes are used the better the accuracy of the similarity is. Particularly similarity-

based recommender systems (e.g. content-based and other hybrid approaches) represent

items/users as a vector of features or keywords, and thus, vector similarity methods can

be computed. Thus, these vectors can be very large, sparse and memory-consuming. To

avoid this issue, the state of the art uses feature selection techniques. However, reducing

the number of features may yield to a loss of quality in the item representation, and

consequently, in items similarity. We proposed to use a compressed yet high quality data

representation for items/users based on Bloom Filters [Broder and Mitzenmacher, 2004].

We exploit the bloom őlters’ properties in order to create two fast an accurate similarity

measures: AND and XNOR. The former takes into account the common descriptions of

items/users, which are inserted in their own őlters. The latter takes into account both

common insertions and common missing insertions. The most interesting of this approach

is that őlters consumes almost the 96% of the size of standard vector representations, and

they achieve the 98% ődelity while computing similarities.

Our fourth challenge was to cope with cold-start issue. The new items cold start and

the new users cold start are both present in recommender systems, although they are

more acute in collaborative őltering techniques [Rubens et al., 2011, Elahi et al., 2014].

Besides, the new items cold start can be more easily alleviated by taking into account

the description of items, and thus using hybrid approaches. However the new user cold-

start in collaborative őltering methods need to incrementally, adaptively and quickly őnd

out the new users’ preferences. In Chapter 6 we dealt with this issue by proposing an

active learning technique based on collaborative őltering decision trees. In this method the

173

7.2. PERSPECTIVES

(new) users interact with the system that presents a personalized questionnaire, i.e. which

changes depending on the users’ answers. The goal is to retrieve informative answers which

represent the users interest in order to adapt next questions and increase the knowledge

about the users’ preferences. Compared to other approaches, we suggest to exploit two

sources of data: the warm users’ ratings and the warm users’ predictions over these ratings.

Our approach is faster in understanding the users’ preferences what allows to reduce the

number of questions to pose.

Finally, the four aforementioned challenges and approaches are possible to be merged.

One can easily imagine an active learning technique that captures the őrst users’ preferences

in order to slowly feed a matrix factorization technique which generate useful recommen-

dations. In addition, the implicit interest of users in items’ attributes can be taken into

account in both active learning and matrix factorization. Furthermore, these interests are

large descriptions of users through the items’ descriptions, i.e. what a user like from items.

This can be exploited by recommender systems in order to give explanatory recommenda-

tions (e.g. you may like this movie because it is a comedy and you liked the actors who

play in it); and hence to increase the acceptance of recommendations. We are aware of

the scalability of the system as well, and thus recommendation processes and memory-

consumptions may be taken into account in the whole deployment of the recommender

system.

The next section presents the perspectives and the on-going work of our research.

7.2 Perspectives

7.2.1 FIORA Project

In Chapter 1 we noted that this thesis is part of a collaborative project called FIORA1,

which aims to build a generic, robust and scalable recommender system. The domains

in which this project will be applied are e-nutrition and e-tourism. As long as data from

these domains were not available, we have experimented and published our contributions

by using public datasets such as Movielens2.

1www.fiora.pro
2http://grouplens.org/datasets/movielens/

174

www.fiora.pro
http://grouplens.org/datasets/movielens/

7.2. PERSPECTIVES

Our őrst perspective focuses on testing our approaches under the context of FIORA, in

particular the domain of e-nutrition. Indeed, one of the partners has recently launched a

website called "My coach nutrition"3, which aims to help users in the nutritional decisions

in the every-day-life. It takes into account the users’ proőle and preferences, such as tastes

and allergies, in order to suggest healthy and balanced diets and to teach the users to

cook recipes and to correctly treat ingredients. Today, this site is open and data is being

collected.

7.2.2 Positive and Negative implicit users’ interests

Chapter 4 discussed the concept of the implicit users’ interests in the items’ attributes.

We have seen that this interest comes from the number of occurrences of attributes (i.e.

attributes’ values, such as a particular movie genre or actor) in the past rated items.

In addition, in order to be processed by collaborative őltering approaches, we transform

ratings into "semantic ratings" by using a "semantic equation". However, this equation

only provokes an addition in the original ratings.

The state of the art presents a special way of assuming whenever users like or not

(binary assumption) an item depending on the rating the user gave to the item [Golbandi

et al., 2011]. Thus, there is a more-less established threshold: ratings’ values greater or

equal to 4 (in a scale of 5) are considered to be liked and not liked in other case (assuming

that 0 is the absence of rating and thus the absence of preference). It could be possible to

exploit this assumption in order to őnd out positive and negative implicit users’ interest

in the items’ attributes:

• Positive. The implicit positive interest of users’ in the items’ attributes is given by

the number of occurrences of attributes over the past rated and liked items (rating

greater or equal to 4 out of 5).

• Negative. The implicit negative interest of users’ in the items’ attributes is given by

the number of occurrences of attributes over the past rated and disliked items (rating

lower to 4 out of 5).

3www.mycoachnutrition.com/

175

www.mycoachnutrition.com/

7.2. PERSPECTIVES

As a consequence, it is possible to separately store and exploit this information. We

point out that some attributes’ values may appear in both positive and negative sets, as

long as, for instance one actor can play on one movie liked by the user and one other movie

not liked by the same user. However, since this information is implicit, the number of

occurrences in these sets will be diferent. The new goal would be to őnd a new "semantic

equation" to take both positive and negative interests into account. Hence, this equation

would promote items containing positive implicit users’ interest and would refrain the

recommendation of negative implicit users’ interest.

7.2.3 Large description of users through the items’ descriptions

Some research works have proposed the "collaboration via content" [Pazzani, 1999] in

which, users are correlated regarding the description of the items they rate, in addition to

the typical rating-oriented correlations.

Chapter 4 suggests to extract the implicit interest of users in the items’ attributes.

This information is then inserted into bloom őlters to be quickly available. However, in this

chapter we have exploited bloom őlters by simply querying it. Specially, we do not perform

users’ correlations or users’ similarities regarding a possible "collaboration via content".

On the other hand, in Chapter 5 the items’ and users’ bloom őlter representations are useful

to alleviate memory-consumption in large users’ and items’ descriptions. In addition, we

proposed the AND and XNOR similarities among items/users. As a consequence, we

consider that it can be interesting to merge both ideas in order to perform "collaboration

via content" users’ similarities by using the bloom őlter representations and bloom őlter

similarity measures.

Furthermore, together with the perspective mentioned above, this would explain not

only the positive and negative implicit interest of users (e.g. whether a user has special

ainity to one actor), but also the positive and negative lack of interest (e.g. if a user has

never been in contact with one actor he may like, or if a user has never been in contact

with sportive content simply because he is not interested in it and never interacted with

it).

176

7.2. PERSPECTIVES

7.2.4 Exploration, exploitation and explanation in recommender sys-
tems

The exploration paradigm consists in letting the user freely navigate among the items

to discover and rate new unexpected items [Kantor et al., 2011]. On the contrary, the

exploitation paradigm refers to the usage of the users’ interest (explicit or implicit) and

the persistence of recommendations, e.g. to continuously recommend the same items to

users when these suggestions have not been taken in several occasions.

We consider that recommender systems would perform better recommendations by us-

ing very detailed descriptions of users and items [Mikeli et al., 2013b]. Thus, the exploration

and exploitation trade-of will become more important, e.g. to let the users discover new

actors and avoid to recommend movies where similar actors from movies he did not like

also play. However, in our opinion, there is a third player in this trade-of: the explanation.

The explanation paradigm allows the user to understand and accept the recommendations.

In Chapter 4 we talked about the implicit interest in very detailed items’ attributes, which

are very diicult to capture in current systems. For instance, the interest of the user in

the photography department of a movie. These details could become very interesting in

the explanation of recommendations and would open other paths to understand the explo-

ration and exploitation under very users’ and items’ detailed descriptions. The user could

explore new items under a new regard (e.g. to watch a movie and evaluate the photogra-

phy department). The system can exploit these new interactions accordingly to learn more

about the users interests.

As a consequence, the assumptions in Chapters 4 and 5 can be useful to explain the

recommendations: on the one hand, the preference of users in the attributes of items are

known ("collaboration via content"); on the other hand, the bloom őlter representation of

user/items may allow to perform correlations exploiting the big information inserted in the

bloom őlters. The challenge is to develop a system which can exploit this information and

compute detailed explanations about why users should accept recommended items based

on the attributes that the users liked in the past.

177

7.2. PERSPECTIVES

7.2.5 Slope-One questionnaires for active learning

In Chapter 6 we have presented active learning techniques to tackle the new user cold

start issue. These methods suggest to present a questionnaire to new users. The user is

asked to rate some items and the system learns these őrst users’ preferences [Elahi et al.,

2014]. The goal is to őnd the best questions to pose in order to maximize the information

gain of the system, i.e. quickly learn the users’ preferences. Thus, these techniques look

for the items which are informative and recognized by the user in order to retrieve as much

information as possible.

Questionnaires should be eicient, short (low number of questions) and quickly react

to users answers [Rubens et al., 2011, Elahi et al., 2014]. Due to these constraints, the

current state of the art proposes to create the questionnaires of-line by using decision trees

techniques [Golbandi et al., 2011]. As a result, the new user can answer őrst questions and

new questions are presented immediately after. This methodology has demonstrated good

results, however the current techniques use very simple prediction methods, such as the

"item’s rating average prediction", in order to build questionnaires in a reasonable time.

Better prediction for active learning methods can be used, such as the Slope-One meth-

ods that have demonstrated a better performance in cold-start situations and good predic-

tion accuracy [Lemire and Maclachlan, 2005]. These methods are incremental, what allows

very fast adaptation of the current models to the answers of users; they are scalable, what

allows to parallelize the process among multiple machines; and they tend to recommend

popular items őrst, what is very interesting in active learning contexts since they seek for

recognizable items by users.

It is possible to create a Slope-One model based on the current warm users’ ratings.

This model would quickly vary together with the construction of the questionnaire creating

an of-line questionnaire. In addition, it can incorporate new users’ answers to the model

making new questions more aware of the new users’ preference.

Another perspective idea is to detect the new users preferences directly on the ŕy. We

propose Slope-One methods (which are incremental and scalable) to adapt of-line decision

tree questionnaire to on-line questionnaires.

178

7.2. PERSPECTIVES

7.2.6 Time-aware active learning techniques

Active learning techniques for collaborative őltering based on decision trees only take

into account the past users’ ratings to create questionnaires [Golbandi et al., 2011]. Then,

the new users navigate through the questionnaires by answering (i.e. rating) questions (i.e.

items).

We consider that there are other resources that appear in questionnaires and may

be very useful and informative in collaborative őltering active learning techniques. We

especially believe that the time (new) users spent to answer a question is very signiőcant

for extracting the users’ preferences. Thus, we focus on "time-aware" recommendation

techniques and decision trees to retrieve and exploit not only the users’ answers but also

the users’ behavior. On the one hand, we study new Slope-One techniques to create

time-aware of-line questionnaires due to their scalability and reactivity. On the other

hand, other collaborative őltering techniques have already demonstrated their compatibility

with timestamped preferences [Koren and Bell, 2011]. However, time-aware techniques

tend to be timely expensive whereas active learning techniques require of fast adaptability

to the current users’ answers. As a result, the challenge is to create accurate, scalable

recommendation models that evolves in real-time to cope with cold-start issues.

179

7.2. PERSPECTIVES

180

Bibliography

[Adomavicius and Kwon, 2007] Adomavicius, G. and Kwon, Y. (2007). New recommenda-

tion techniques for multicriteria rating systems. Intelligent Systems, IEEE, 22(3):48ś55.

[Adomavicius and Tuzhilin, 2011] Adomavicius, G. and Tuzhilin, A. (2011). Context-

aware recommender systems. In Recommender systems handbook, pages 217ś253.

Springer.

[Almeida et al., 2007] Almeida, P. S., Baquero, C., Preguiça, N., and Hutchison, D. (2007).

Scalable bloom őlters. Information Processing Letters, 101(6):255ś261.

[Amatriain et al., 2009] Amatriain, X., Pujol, J. M., Tintarev, N., and Oliver, N. (2009).

Rate it again: increasing recommendation accuracy by user re-rating. In Proceedings of

the third ACM conference on Recommender systems, pages 173ś180. ACM.

[Aranda et al., 2007] Aranda, J., Givoni, I., Handcock, J., and Tarlow, D. (2007). An

online social network-based recommendation system. Toronto, Ontario, Canada.

[Arias et al., 2012] Arias, J. J. P., Vilas, A. F., and Redondo, R. P. D. (2012). Recom-

mender systems for the social web.

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999).

Modern information retrieval. In Modern Information Retrieval, page 513, Boston, MA,

USA. ACM, Addison-Wesley Longman Publishing Co., Inc.

[Balabanović, 1998] Balabanović, M. (1998). Exploring versus exploiting when learning

user models for text recommendation. User Modeling and User-Adapted Interaction,

8(1-2):71ś102.

181

BIBLIOGRAPHY

[Balabanović and Shoham, 1997] Balabanović, M. and Shoham, Y. (1997). Fab: content-

based, collaborative recommendation. Communications of the ACM, 40(3):66ś72.

[Barjasteh et al., 2015] Barjasteh, I., Forsati, R., Masrour, F., Esfahanian, A.-H., and

Radha, H. (2015). Cold-start item and user recommendation with decoupled completion

and transduction. In Proceedings of the 9th ACM Conference on Recommender Systems,

pages 91ś98. ACM.

[Bellogín et al., 2010] Bellogín, A., Cantador, I., and Castells, P. (2010). A study of het-

erogeneity in recommendations for a social music service. In Proceedings of the 1st Inter-

national Workshop on Information Heterogeneity and Fusion in Recommender Systems,

pages 1ś8. ACM.

[Ben-Shimon, 2013] Ben-Shimon, D. (2013). Anytime algorithms for top-n recommenders.

In Proceedings of the 7th ACM conference on Recommender systems, pages 463ś466.

ACM.

[Berkovsky et al., 2007] Berkovsky, S., Kuŕik, T., and Ricci, F. (2007). Distributed collab-

orative őltering with domain specialization. In Proceedings of the 2007 ACM conference

on Recommender systems, pages 33ś40. ACM.

[Bernardes et al., 2015] Bernardes, D., Diaby, M., Fournier, R., FogelmanSoulié, F., and

Viennet, E. (2015). A social formalism and survey for recommender systems. ACM

SIGKDD Explorations Newsletter, 16(2):20ś37.

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allo-

cation. the Journal of machine Learning research, 3:993ś1022.

[Bloom, 1970] Bloom, B. H. (1970). Space/time trade-ofs in hash coding with allowable

errors. Communications of the ACM, 13(7):422ś426.

[Boim et al., 2011a] Boim, R., Milo, T., and Novgorodov, S. (2011a). Direc: Diversiőed

recommendations for semantic-less collaborative őltering. In Data Engineering (ICDE),

2011 IEEE 27th International Conference on, pages 1312ś1315. IEEE.

182

BIBLIOGRAPHY

[Boim et al., 2011b] Boim, R., Milo, T., and Novgorodov, S. (2011b). Diversiőcation and

reőnement in collaborative őltering recommender. In Proceedings of the 20th ACM inter-

national conference on Information and knowledge management, pages 739ś744. ACM.

[Bonhard and Sasse, 2006] Bonhard, P. and Sasse, M. A. (2006). ’knowing me, knowing

you’ - using proőles and social networking to improve recommender systems. BT Tech-

nology Journal, 24(3):84ś98.

[Boutilier et al., 2002] Boutilier, C., Zemel, R. S., and Marlin, B. (2002). Active collabo-

rative őltering. In Proceedings of the Nineteenth conference on Uncertainty in Artificial

Intelligence, pages 98ś106. Morgan Kaufmann Publishers Inc.

[Braunhofer et al., 2015] Braunhofer, M., Fernández-Tobìas, I., and Ricci, F. (2015). Par-

simonious and adaptive contextual information acquisition in recommender systems.

Proceedings of IntRS’15.

[Breese et al., 1998] Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analy-

sis of predictive algorithms for collaborative őltering. In Proceedings of the Fourteenth

conference on Uncertainty in artificial intelligence, pages 43ś52. Morgan Kaufmann Pub-

lishers Inc.

[Bridge et al., 2005] Bridge, D., Göker, M. H., McGinty, L., and Smyth, B. (2005). Case-

based recommender systems. The Knowledge Engineering Review, 20(03):315ś320.

[Broder and Mitzenmacher, 2004] Broder, A. and Mitzenmacher, M. (2004). Network ap-

plications of bloom őlters: A survey. Internet mathematics, 1(4):485ś509.

[Brozovsky and Petricek, 2007] Brozovsky, L. and Petricek, V. (2007). Recommender sys-

tem for online dating service. arXiv preprint cs/0703042.

[Burke, 2002] Burke, R. (2002). Hybrid recommender systems: Survey and experiments.

User modeling and user-adapted interaction, 12(4):331ś370.

[Burke, 2007] Burke, R. (2007). Hybrid web recommender systems. In The adaptive web,

pages 377ś408. Springer.

183

BIBLIOGRAPHY

[Cantador et al., 2011] Cantador, I., Brusilovsky, P., and Kuŕik, T. (2011). 2nd workshop

on information heterogeneity and fusion in recommender systems (hetrec 2011). In

Proceedings of the 5th ACM conference on Recommender systems, RecSys 2011, New

York, NY, USA. ACM.

[Caraciolo, 2012] Caraciolo, M. (2012). Crab.

[Carenini et al., 2003] Carenini, G., Smith, J., and Poole, D. (2003). Towards more conver-

sational and collaborative recommender systems. In Proceedings of the 8th international

conference on Intelligent user interfaces, pages 12ś18. ACM.

[Castells et al., 2011] Castells, P., Vargas, S., and Wang, J. (2011). Novelty and diver-

sity metrics for recommender systems: choice, discovery and relevance. In International

Workshop on Diversity in Document Retrieval (DDR 2011) at the 33rd European Con-

ference on Information Retrieval (ECIR 2011).

[Chatzicharalampous et al., 2015] Chatzicharalampous, E., Christos, Z., and Vakali, A.

(2015). Exploriometer: Leveraging personality traits for coverage and diversity aware

recommendations. In Proceedings of the 24th International Conference on World Wide

Web, pages 1463ś1468. ACM.

[Chee et al., 2001] Chee, S. H. S., Han, J., and Wang, K. (2001). Rectree: An eicient

collaborative őltering method. In Data Warehousing and Knowledge Discovery, pages

141ś151. Springer.

[Chen et al., 2012] Chen, T., Zhang, W., Lu, Q., Chen, K., Zheng, Z., and Yu, Y. (2012).

Svdfeature: A toolkit for feature-based collaborative őltering. Journal of Machine Learn-

ing Research, 13:3585ś3588.

[Cherő et al., 2016] Cherő, H., Atemezing, G., Amardeilh, F., and Rouzé, F. (2016). En-

richissement d’une base documentaire pour un système de recommandation dans le

tourisme. I2D–Information, donnèes and documents, 53(2):60ś62.

[Dahimene et al., 2014] Dahimene, R., Constantin, C., and du Mouza, C. (2014). Recland:

A recommender system for social networks. In Proceedings of the 23rd ACM International

184

BIBLIOGRAPHY

Conference on Conference on Information and Knowledge Management, pages 2063ś

2065. ACM.

[Davidson et al., 2010] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi,

U., Gupta, S., He, Y., Lambert, M., Livingston, B., and Sampath, D. (2010). The

youtube video recommendation system. In Proceedings of the Fourth ACM Conference

on Recommender Systems, RecSys ’10, pages 293ś296, New York, NY, USA. ACM.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: simpliőed

data processing on large clusters. Communications of the ACM, 51(1):107ś113.

[EasyRec, 2013] EasyRec (2013). Easyrec.

[Ekstrand et al., 2011] Ekstrand, M. D., Ludwig, M., Kolb, J., and Riedl, J. T. (2011).

Lenskit: a modular recommender framework. In Proceedings of the fifth ACM conference

on Recommender systems, pages 349ś350. ACM.

[Elahi et al., 2014] Elahi, M., Ricci, F., and Rubens, N. (2014). Active learning in col-

laborative őltering recommender systems. In E-Commerce and Web Technologies, pages

113ś124. Springer.

[Felfernig and Burke, 2008] Felfernig, A. and Burke, R. (2008). Constraint-based recom-

mender systems: technologies and research issues. In Proceedings of the 10th interna-

tional conference on Electronic commerce, page 3. ACM.

[Fernández et al., 2006] Fernández, Y. B., Arias, J. J. P., Nores, M. L., Solla, A. G., and

Cabrer, M. R. (2006). Avatar: An improved solution for personalized tv based on

semantic inference. Consumer Electronics, IEEE Transactions on, 52(1):223ś231.

[Funk, 2006] Funk, S. (2006). Netŕix update: Try this at home (3rd place).

[Gantner et al., 2011] Gantner, Z., Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L.

(2011). Mymedialite: A free recommender system library. In Proceedings of the Fifth

ACM Conference on Recommender Systems, RecSys ’11, pages 305ś308, New York, NY,

USA. ACM.

185

BIBLIOGRAPHY

[Gashler, 2011] Gashler, M. S. (2011). Wales: A machine learning toolkit. Journal of

Machine Learning Research, MLOSS 12:2383ś2387. http://wales.sourceforge.net.

[Gemulla et al., 2011] Gemulla, R., Nijkamp, E., Haas, P. J., and Sismanis, Y. (2011).

Large-scale matrix factorization with distributed stochastic gradient descent. In Pro-

ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 69ś77. ACM.

[Geravand and Ahmadi, 2014] Geravand, S. and Ahmadi, M. (2014). An eicient and scal-

able plagiarism checking system using bloom őlters. Computers & Electrical Engineering,

40(6):1789 ś 1800.

[Golbandi et al., 2010] Golbandi, N., Koren, Y., and Lempel, R. (2010). On bootstrapping

recommender systems. In Proceedings of the 19th ACM international conference on

Information and knowledge management, pages 1805ś1808. ACM.

[Golbandi et al., 2011] Golbandi, N., Koren, Y., and Lempel, R. (2011). Adaptive boot-

strapping of recommender systems using decision trees. In Proceedings of the fourth

ACM international conference on Web search and data mining, pages 595ś604. ACM.

[Goldberg et al., 1992] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using

collaborative őltering to weave an information tapestry. Communications of the ACM,

35(12):61ś70.

[Gonzalez et al., 2012] Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C.

(2012). Powergraph: Distributed graph-parallel computation on natural graphs. In

Proceedings of the 10th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI ’12), Hollywood.

[Gopalani and Arora, 2015] Gopalani, S. and Arora, R. (2015). Comparing apache spark

and map reduce with performance analysis using k-means. International Journal of

Computer Applications, 113(1).

[Guo et al., 2010] Guo, D., Wu, J., Chen, H., Yuan, Y., and Luo, X. (2010). The dynamic

bloom őlters. Knowledge and Data Engineering, IEEE Transactions on, 22(1):120ś133.

186

BIBLIOGRAPHY

[Hahsler, 2011] Hahsler, M. (2011). recommenderlab: A framework for developing and

testing recommendation algorithms. Nov.

[Hannon et al., 2010] Hannon, J., Bennett, M., and Smyth, B. (2010). Recommending

twitter users to follow using content and collaborative őltering approaches. In Proceedings

of the fourth ACM conference on Recommender systems, pages 199ś206. ACM.

[Harpale and Yang, 2008] Harpale, A. S. and Yang, Y. (2008). Personalized active learning

for collaborative őltering. In Proceedings of the 31st annual international ACM SIGIR

conference on Research and development in information retrieval, pages 91ś98. ACM.

[Herlocker et al., 2000] Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining

collaborative őltering recommendations. In Proceedings of the 2000 ACM conference on

Computer supported cooperative work, pages 241ś250. ACM.

[Hernando et al., 2013] Hernando, A., Bobadilla, J., Ortega, F., and GutiéRrez, A. (2013).

Trees for explaining recommendations made through collaborative őltering. Information

Sciences, 239:1ś17.

[Hofmann, 2003] Hofmann, T. (2003). Collaborative őltering via gaussian probabilistic

latent semantic analysis. In Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in informaion retrieval, pages 259ś266. ACM.

[Hu et al., 2008] Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative őltering for

implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International

Conference on, pages 263ś272. IEEE.

[Instituut/Novay, 2009] Instituut/Novay, T. (2009). Duine.

[Jahrer et al., 2010] Jahrer, M., Töscher, A., and Legenstein, R. (2010). Combining pre-

dictions for accurate recommender systems. In Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 693ś702. ACM.

[Jain et al., 2005] Jain, N., Dahlin, M., and Tewari, R. (2005). Using bloom őlters to reőne

web search results. In WebDB, pages 25ś30.

187

BIBLIOGRAPHY

[Jain et al., 2013] Jain, P., Netrapalli, P., and Sanghavi, S. (2013). Low-rank matrix com-

pletion using alternating minimization. In Proceedings of the 45th annual ACM sympo-

sium on Symposium on theory of computing, pages 665ś674. ACM.

[Järvelin and Kekäläinen, 2002] Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-

based evaluation of ir techniques. ACM Transactions on Information Systems (TOIS),

20(4):422ś446.

[Jin and Si, 2004] Jin, R. and Si, L. (2004). A bayesian approach toward active learning for

collaborative őltering. In Proceedings of the 20th conference on Uncertainty in artificial

intelligence, pages 278ś285. AUAI Press.

[Kampfmeyer, 2015] Kampfmeyer, M. C. (2015). Parallelization of the alternating-least-

squares algorithm with weighted regularization for eicient gpu execution in recom-

mender systems.

[Kantor et al., 2011] Kantor, P. B., Ricci, F., Rokach, L., and Shapira, B. (2011). Rec-

ommender systems handbook. In Recommender systems handbook, page 848. Springer,

Springer US.

[Karim, 2014] Karim, J. (2014). Hybrid system for personalized recommendations. In

Research Challenges in Information Science (RCIS), 2014 IEEE Eighth International

Conference on, pages 1ś6. IEEE.

[Karimi, 2014] Karimi, R. (2014). Active learning for recommender systems. KI-Künstliche

Intelligenz, 28(4):329ś332.

[Karimi et al., 2011a] Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-

Thieme, L. (2011a). Active learning for aspect model in recommender systems. In

Computational Intelligence and Data Mining (CIDM), 2011 IEEE Symposium on, pages

162ś167. IEEE.

[Karimi et al., 2011b] Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-

Thieme, L. (2011b). Non-myopic active learning for recommender systems based on

matrix factorization. In Information Reuse and Integration (IRI), 2011 IEEE Interna-

tional Conference on, pages 299ś303. IEEE.

188

BIBLIOGRAPHY

[Karimi et al., 2011c] Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-

Thieme, L. (2011c). Towards optimal active learning for matrix factorization in rec-

ommender systems. In Tools with Artificial Intelligence (ICTAI), 2011 23rd IEEE In-

ternational Conference on, pages 1069ś1076. IEEE.

[Karimi et al., 2012] Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-Thieme,

L. (2012). Exploiting the characteristics of matrix factorization for active learning in

recommender systems. In Proceedings of the sixth ACM conference on Recommender

systems, pages 317ś320. ACM.

[Karimi et al., 2015a] Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-

Thieme, L. (2015a). Comparing prediction models for active learning in recommender

systems. In Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB.

October 2015. http://ceur-ws.org.

[Karimi et al., 2015b] Karimi, R., Nanopoulos, A., and Schmidt-Thieme, L. (2015b). A

supervised active learning framework for recommender systems based on decision trees.

User Modeling and User-Adapted Interaction, 25(1):39ś64.

[Karimi et al., 2014] Karimi, R., Wistuba, M., Nanopoulos, A., and Schmidt-Thieme, L.

(2014). Factorized decision trees for active learning in recommender systems. In Tools

with Artificial Intelligence (ICTAI), 2013 IEEE 25th International Conference on, pages

404ś411. IEEE.

[Katz et al., 2011] Katz, G., Ofek, N., Shapira, B., Rokach, L., and Shani, G. (2011). Using

wikipedia to boost collaborative őltering techniques. In Proceedings of the fifth ACM

conference on Recommender systems, pages 285ś288. ACM.

[Kautz et al., 1997] Kautz, H., Selman, B., and Shah, M. (1997). Referral web: combining

social networks and collaborative őltering. Communications of the ACM, 40(3):63ś65.

[Kim and Li, 2004] Kim, B. M. and Li, Q. (2004). Probabilistic model estimation

for collaborative őltering based on items attributes. In Proceedings of the 2004

IEEE/WIC/ACM International Conference on Web Intelligence, pages 185ś191. IEEE

Computer Society.

189

BIBLIOGRAPHY

[Kim et al., 2004] Kim, M. W., Kim, E. J., and Ryu, J. W. (2004). A collaborative recom-

mendation based on neural networks. In International Conference on Database Systems

for Advanced Applications, pages 425ś430. Springer.

[Knijnenburg et al., 2012] Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H.,

and Newell, C. (2012). Explaining the user experience of recommender systems. User

Modeling and User-Adapted Interaction, 22(4-5):441ś504.

[Kohrs and Merialdo, 2001] Kohrs, A. and Merialdo, B. (2001). Improving collaborative

őltering for new users by smart object selection. In Proceedings of International Con-

ference on Media Features (ICMF).

[Konstan and Riedl, 2012] Konstan, J. A. and Riedl, J. (2012). Recommender systems:

from algorithms to user experience. User Modeling and User-Adapted Interaction, 22(1-

2):101ś123.

[Koren, 2008] Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted

collaborative őltering model. In Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 426ś434. ACM.

[Koren, 2009] Koren, Y. (2009). The bellkor solution to the netŕix grand prize. Netflix

prize documentation.

[Koren, 2010] Koren, Y. (2010). Factor in the neighbors: Scalable and accurate collabora-

tive őltering. ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1):1.

[Koren and Bell, 2011] Koren, Y. and Bell, R. (2011). Advances in collaborative őltering.

In Recommender Systems Handbook, pages 145ś186. Springer.

[Koren et al., 2009] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization

techniques for recommender systems. Computer, 42(8):30ś37.

[Lakiotaki et al., 2008] Lakiotaki, K., Tsafarakis, S., and Matsatsinis, N. (2008). Uta-rec:

a recommender system based on multiple criteria analysis. In Proceedings of the 2008

ACM conference on Recommender systems, pages 219ś226. ACM.

190

BIBLIOGRAPHY

[Lam and Riedl, 2004] Lam, S. K. and Riedl, J. (2004). Shilling recommender systems for

fun and proőt. In Proceedings of the 13th international conference on World Wide Web,

pages 393ś402. ACM.

[Lee et al., 2012] Lee, J., Sun, M., and Lebanon, G. (2012). A Comparative Study of

Collaborative Filtering Algorithms. ArXiv e-prints.

[Lemire, 2003] Lemire, D. (2003). Coő.

[Lemire and Maclachlan, 2005] Lemire, D. and Maclachlan, A. (2005). Slope one predictors

for online rating-based collaborative őltering. In SDM, volume 5, pages 1ś5. SIAM.

[Li et al., 2008] Li, Q., Wang, C., and Geng, G. (2008). Improving personalized services

in mobile commerce by a novel multicriteria rating approach. In Proceedings of the 17th

International Conference on World Wide Web, WWW ’08, pages 1235ś1236, New York,

NY, USA. ACM.

[Linden et al., 2003] Linden, G., Smith, B., and York, J. (2003). Amazon. com recommen-

dations: Item-to-item collaborative őltering. Internet Computing, IEEE, 7(1):76ś80.

[Liu, 2015] Liu, L. (2015). Performance comparison by running benchmarks on Hadoop,

Spark, and HAMR. PhD thesis, University of Delaware.

[Liu et al., 2012] Liu, Q., Chen, E., Xiong, H., Ding, C. H., and Chen, J. (2012). Enhancing

collaborative őltering by user interest expansion via personalized ranking. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(1):218ś233.

[Low et al., 2010] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Heller-

stein, J. M. (2010). Graphlab: A new framework for parallel machine learning. arXiv

preprint arXiv:1006.4990.

[Ma et al., 2011] Ma, H., Zhou, D., Liu, C., Lyu, M. R., and King, I. (2011). Recommender

systems with social regularization. In Proceedings of the fourth ACM international con-

ference on Web search and data mining, pages 287ś296. ACM.

191

BIBLIOGRAPHY

[Mabroukeh and Ezeife, 2011] Mabroukeh, N. R. and Ezeife, C. I. (2011). Ontology-based

web recommendation from tags. In Data Engineering Workshops (ICDEW), 2011 IEEE

27th International Conference on, pages 206ś211. IEEE.

[Makari et al., 2014] Makari, F., Teŕioudi, C., Gemulla, R., Haas, P., and Sismanis, Y.

(2014). Shared-memory and shared-nothing stochastic gradient descent algorithms for

matrix completion. Knowledge and Information Systems, pages 1ś31.

[Manouselis and Costopoulou, 2007] Manouselis, N. and Costopoulou, C. (2007). Analysis

and classiőcation of multi-criteria recommender systems. World Wide Web, 10(4):415ś

441.

[Manouselis et al., 2013] Manouselis, N., Drachsler, H., Verbert, K., and Duval, E. (2013).

Recommender systems for learning.

[Massa and Avesani, 2004] Massa, P. and Avesani, P. (2004). Trust-aware collaborative

őltering for recommender systems. In OTM Confederated International Conferences"

On the Move to Meaningful Internet Systems", pages 492ś508. Springer.

[Masthof, 2011] Masthof, J. (2011). Group recommender systems: Combining individual

models. In Recommender systems handbook, pages 677ś702. Springer.

[McPherson et al., 2001] McPherson, M., Smith-Lovin, L., and Cook, J. M. (2001). Birds

of a feather: Homophily in social networks. Annual review of sociology, pages 415ś444.

[Mello et al., 2010] Mello, C. E., Aufaure, M.-A., and Zimbrao, G. (2010). Active learn-

ing driven by rating impact analysis. In Proceedings of the fourth ACM conference on

Recommender systems, pages 341ś344. ACM.

[Menezes et al., 2013] Menezes, D., Lacerda, A., Silva, L., Veloso, A., and Ziviani, N.

(2013). Weighted slope one predictors revisited. In Proceedings of the 22nd International

Conference on World Wide Web, pages 967ś972. ACM.

[Meyer, 2012] Meyer, F. (2012). Recommender systems in industrial contexts. arXiv

preprint arXiv:1203.4487.

192

BIBLIOGRAPHY

[Mi and Xu, 2011] Mi, Z. and Xu, C. (2011). A recommendation algorithm combining

clustering method and slope one scheme. In Bio-Inspired Computing and Applications,

pages 160ś167. Springer.

[Middleton et al., 2004] Middleton, S. E., Shadbolt, N. R., and De Roure, D. C. (2004).

Ontological user proőling in recommender systems. ACM Transactions on Information

Systems (TOIS), 22(1):54ś88.

[Mikeli et al., 2013a] Mikeli, A., Apostolou, D., and Despotis, D. (2013a). A multi-criteria

recommendation method for interval scaled ratings. In Web Intelligence (WI) and Intelli-

gent Agent Technologies (IAT), 2013 IEEE/WIC/ACM International Joint Conferences

on, volume 3, pages 9ś12.

[Mikeli et al., 2013b] Mikeli, A., Sotiros, D., Apostolou, D., and Despotis, D. (2013b). A

multi-criteria recommender system incorporating intensity of preferences. In Informa-

tion, Intelligence, Systems and Applications (IISA), 2013 Fourth International Confer-

ence on, pages 1ś6.

[Mobasher et al., 2004] Mobasher, B., Jin, X., and Zhou, Y. (2004). Semantically enhanced

collaborative őltering on the web. In Web Mining: From Web to Semantic Web, pages

57ś76. Springer.

[Narayanan and Shmatikov, 2008] Narayanan, A. and Shmatikov, V. (2008). Robust de-

anonymization of large sparse datasets. In Security and Privacy, 2008. SP 2008. IEEE

Symposium on, pages 111ś125. IEEE.

[Nguyen, 2015] Nguyen, L. (2015). Introduction to a framework of e-commercial recom-

mendation algorithms. American Journal of Computer Science and Information Engi-

neering, 2(4):33ś44.

[Oard et al., 1998] Oard, D. W., Kim, J., et al. (1998). Implicit feedback for recommender

systems. In Proceedings of the AAAI workshop on recommender systems, pages 81ś83.

[Ortega et al., 2013] Ortega, F., SáNchez, J.-L., Bobadilla, J., and GutiéRrez, A. (2013).

Improving collaborative őltering-based recommender systems results using pareto dom-

inance. Information Sciences, 239:50ś61.

193

BIBLIOGRAPHY

[Owen et al., 2011] Owen, S., Anil, R., Dunning, T., and Friedman, E. (2011). Mahout in

Action. Manning Publications Co., Manning Publications Co. 20 Baldwin Road PO Box

261 Shelter Island, NY 11964, őrst edition.

[Pagare and Shinde, 2013] Pagare, R. and Shinde, A. (2013). Recommendation system

using bloom őlter in mapreduce. International Journal of Data Mining & Knowledge

Management Process, 3(6):127.

[Pan et al., 2010] Pan, P.-Y., Wang, C.-H., Horng, G.-J., and Cheng, S.-T. (2010). The de-

velopment of an ontology-based adaptive personalized recommender system. In Electron-

ics and Information Engineering (ICEIE), 2010 International Conference On, volume 1,

pages V1ś76. IEEE.

[Pazzani, 1999] Pazzani, M. J. (1999). A framework for collaborative, content-based and

demographic őltering. Artificial Intelligence Review, 13(5-6):393ś408.

[Peis et al., 2008] Peis, E., del Castillo, J. M., and Delgado-López, J. (2008). Semantic

recommender systems. analysis of the state of the topic. Hipertext. net, 6:1ś5.

[Pilászy and Tikk, 2009] Pilászy, I. and Tikk, D. (2009). Recommending new movies: even

a few ratings are more valuable than metadata. In Proceedings of the third ACM con-

ference on Recommender systems, pages 93ś100. ACM.

[Pilászy et al., 2010] Pilászy, I., Zibriczky, D., and Tikk, D. (2010). Fast als-based matrix

factorization for explicit and implicit feedback datasets. In Proceedings of the fourth

ACM conference on Recommender systems, pages 71ś78. ACM.

[Rashid et al., 2002] Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M.,

Konstan, J. A., and Riedl, J. (2002). Getting to know you: learning new user preferences

in recommender systems. In Proceedings of the 7th international conference on Intelligent

user interfaces, pages 127ś134. ACM.

[Rashid et al., 2008] Rashid, A. M., Karypis, G., and Riedl, J. (2008). Learning prefer-

ences of new users in recommender systems: an information theoretic approach. ACM

SIGKDD Explorations Newsletter, 10(2):90ś100.

194

BIBLIOGRAPHY

[Rendle and Schmidt-Thieme, 2008] Rendle, S. and Schmidt-Thieme, L. (2008). Online-

updating regularized kernel matrix factorization models for large-scale recommender

systems. In Proceedings of the 2008 ACM conference on Recommender systems, pages

251ś258. ACM.

[Rubens et al., 2011] Rubens, N., Kaplan, D., and Sugiyama, M. (2011). Active learning

in recommender systems. In Recommender Systems Handbook, pages 735ś767. Springer.

[Rubens and Sugiyama, 2007] Rubens, N. and Sugiyama, M. (2007). Inŕuence-based col-

laborative active learning. In Proceedings of the 2007 ACM conference on Recommender

systems, pages 145ś148. ACM.

[Said and Bellogín, 2014] Said, A. and Bellogín, A. (2014). Comparative recommender

system evaluation: benchmarking recommendation frameworks. In Proceedings of the

8th ACM Conference on Recommender systems, pages 129ś136. ACM.

[Salakhutdinov et al., 2007] Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Re-

stricted boltzmann machines for collaborative őltering. In Proceedings of the 24th inter-

national conference on Machine learning, pages 791ś798. ACM.

[Sarwar et al., 2001] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-

based collaborative őltering recommendation algorithms. In Proceedings of the 10th

international conference on World Wide Web, pages 285ś295. ACM.

[Sarwar et al., 2002] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2002). Incremen-

tal singular value decomposition algorithms for highly scalable recommender systems.

In Fifth International Conference on Computer and Information Science, pages 27ś28.

Citeseer.

[Sarwat et al., 2014] Sarwat, M., Levandoski, J. J., Eldawy, A., and Mokbel, M. F. (2014).

Lars*: An eicient and scalable location-aware recommender system. IEEE Transactions

on Knowledge and Data Engineering, 26(6):1384ś1399.

[Schafer et al., 2007a] Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007a).

Collaborative őltering recommender systems. In The adaptive web, pages 291ś324.

Springer.

195

BIBLIOGRAPHY

[Schafer et al., 2007b] Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007b).

Collaborative őltering recommender systems. In The adaptive web, pages 291ś324.

Springer.

[Shambour and Lu, 2011] Shambour, Q. and Lu, J. (2011). A hybrid multi-criteria

semantic-enhanced collaborative őltering approach for personalized recommendations.

In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM

International Conference on, volume 1, pages 71ś78. IEEE.

[Shani and Gunawardana, 2011] Shani, G. and Gunawardana, A. (2011). Evaluating rec-

ommendation systems. In Recommender systems handbook, pages 257ś297. Springer.

[Shannon, 2001] Shannon, C. E. (2001). A mathematical theory of communication. ACM

SIGMOBILE Mobile Computing and Communications Review, 5(1):3ś55.

[Sobhanam and Mariappan, 2013] Sobhanam, H. and Mariappan, A. (2013). Addressing

cold start problem in recommender systems using association rules and clustering tech-

nique. In Computer Communication and Informatics (ICCCI), 2013 International Con-

ference on, pages 1ś5. IEEE.

[Su and Khoshgoftaar, 2009] Su, X. and Khoshgoftaar, T. M. (2009). A survey of collab-

orative őltering techniques. Advances in artificial intelligence, 2009:4.

[Swamidass and Baldi, 2007] Swamidass, S. J. and Baldi, P. (2007). Mathematical correc-

tion for őngerprint similarity measures to improve chemical retrieval. Journal of chemical

information and modeling, 47(3):952ś964.

[Takács et al., 2007] Takács, G., Pilászy, I., Németh, B., and Tikk, D. (2007). Major com-

ponents of the gravity recommendation system. ACM SIGKDD Explorations Newsletter,

9(2):80ś83.

[Takács and Tikk, 2012] Takács, G. and Tikk, D. (2012). Alternating least squares for

personalized ranking. In Proceedings of the sixth ACM conference on Recommender

systems, pages 83ś90. ACM.

196

BIBLIOGRAPHY

[Tingle et al., 2010] Tingle, D., Kim, Y. E., and Turnbull, D. (2010). Exploring automatic

music annotation with acoustically-objective tags. In Proceedings of the international

conference on Multimedia information retrieval, pages 55ś62. ACM.

[Tintarev and Masthof, 2011] Tintarev, N. and Masthof, J. (2011). Designing and evalu-

ating explanations for recommender systems. In Recommender Systems Handbook, pages

479ś510. Springer.

[Tiroshi et al., 2012] Tiroshi, A., Kuŕik, T., Kay, J., and Kummerfeld, B. (2012). Recom-

mender systems and the social web. Advances in User Modeling, pages 60ś70.

[Trewin, 2000] Trewin, S. (2000). Knowledge-based recommender systems. Encyclopedia

of library and information science, 69(Supplement 32):180.

[Tso-Sutter et al., 2008] Tso-Sutter, K. H., Marinho, L. B., and Schmidt-Thieme, L.

(2008). Tag-aware recommender systems by fusion of collaborative őltering algorithms.

In Proceedings of the 2008 ACM symposium on Applied computing, pages 1995ś1999.

ACM.

[Uchyigit, 2009] Uchyigit, G. (2009). Semantically enhanced web personalization. In Web

Mining Applications in E-commerce and E-services, pages 25ś44. Springer.

[van den Oord et al., 2013] van den Oord, A., Dieleman, S., and Schrauwen, B. (2013).

Deep content-based music recommendation. In Burges, C. J. C., Bottou, L., Welling,

M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural Information

Processing Systems 26, pages 2643ś2651. Curran Associates, Inc.

[Vogoo, 2013] Vogoo (2013). Vogoo.

[Voß et al., 2009] Voß, A., Newell, C., and Marrow, P. (2009). Mymedia: Dynamic per-

sonalization of multimedia. Proceedings of EuroITV09, Leuven, Belgium.

[Vozalis and Margaritis, 2007] Vozalis, M. G. and Margaritis, K. G. (2007). Using svd and

demographic data for the enhancement of generalized collaborative őltering. Information

Sciences, 177(15):3017ś3037.

197

BIBLIOGRAPHY

[Wang et al., 2006] Wang, J., De Vries, A. P., and Reinders, M. J. (2006). Unifying user-

based and item-based collaborative őltering approaches by similarity fusion. In Proceed-

ings of the 29th annual international ACM SIGIR conference on Research and develop-

ment in information retrieval, pages 501ś508. ACM.

[Weng et al., 2008] Weng, L.-T., Xu, Y., Li, Y., and Nayak, R. (2008). Exploiting item

taxonomy for solving cold-start problem in recommendation making. In 2008 20th IEEE

International Conference on Tools with Artificial Intelligence, volume 2, pages 113ś120.

IEEE.

[Werner et al., 2013] Werner, D., Cruz, C., and Nicolle, C. (2013). Ontology-based recom-

mender system of economic articles. arXiv preprint arXiv:1301.4781.

[Xia et al., 2006] Xia, Z., Dong, Y., and Xing, G. (2006). Support vector machines for

collaborative őltering. In Proceedings of the 44th annual Southeast regional conference,

pages 169ś174. ACM.

[Xu et al., 2012] Xu, B., Bu, J., Chen, C., and Cai, D. (2012). An exploration of improving

collaborative recommender systems via user-item subgroups. In Proceedings of the 21st

international conference on World Wide Web, pages 21ś30. ACM.

[Zhang et al., 2011] Zhang, Z.-K., Zhou, T., and Zhang, Y.-C. (2011). Tag-aware recom-

mender systems: a state-of-the-art survey. Journal of computer science and technology,

26(5):767ś777.

[Zheng et al., 2008] Zheng, R., Wilkinson, D., and Provost, F. (2008). Social network

collaborative őltering. Stern, IOMS Department, CeDER, Vol.

[Zheng et al., 2015] Zheng, Y., Mobasher, B., and Burke, R. (2015). Carskit: A java-based

context-aware recommendation engine. In 2015 IEEE International Conference on Data

Mining Workshop (ICDMW), pages 1668ś1671. IEEE.

[Zhou et al., 2011] Zhou, K., Yang, S.-H., and Zha, H. (2011). Functional matrix factor-

izations for cold-start recommendation. In Proceedings of the 34th international ACM

SIGIR conference on Research and development in Information Retrieval, pages 315ś324.

ACM.

198

BIBLIOGRAPHY

[Zhou et al., 2010] Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R., and

Zhang, Y.-C. (2010). Solving the apparent diversity-accuracy dilemma of recommender

systems. Proceedings of the National Academy of Sciences, 107(10):4511ś4515.

[Zhou et al., 2008] Zhou, Y., Wilkinson, D., Schreiber, R., and Pan, R. (2008). Large-scale

parallel collaborative őltering for the netŕix prize. In Algorithmic Aspects in Information

and Management, pages 337ś348. Springer.

[Zhuo et al., 2011] Zhuo, G., Sun, J., and Yu, X. (2011). A framework for multi-type

recommendations. In Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth

International Conference on, volume 3, pages 1884ś1887. IEEE.

[Ziegler et al., 2004] Ziegler, C.-N., Lausen, G., and Schmidt-Thieme, L. (2004).

Taxonomy-driven computation of product recommendations. In Proceedings of the thir-

teenth ACM international conference on Information and knowledge management, pages

406ś415. ACM.

[Ziegler et al., 2005] Ziegler, C.-N., McNee, S. M., Konstan, J. A., and Lausen, G. (2005).

Improving recommendation lists through topic diversiőcation. In Proceedings of the 14th

international conference on World Wide Web, pages 22ś32. ACM.

199

BIBLIOGRAPHY

200

Annexes

201

Appendix A

Evaluating the performance of

Recommender Systems

A.1 Introduction

Recommender systems answer to diferent challenges depending on the context and on

the goal. For instance, recommendations may need to be suited in terms of attributes, e.g.

to avoid user’s allergies in recipes recommendations. As a consequence, there are many

method and techniques to evaluate the performance of these systems. In general, one can

sum up these techniques into: prediction-oriented, raking-oriented and content-oriented

metrics. For further explanations about evaluation metrics in recommender systems please

refer to [Shani and Gunawardana, 2011]

In order to evaluate a recommender system, the most common approach is to split the

current dataset into training set and test set1. The main idea is to train the recommenda-

tion technique using the ratings of users (u) in items (i) within the training set, i.e. ru,i.

The technique identiőes users, items and rating patterns following the recommendation

technique assumption, and hence it is possible to predict the users’ ratings in items (r̂u,i))

which are absent in the training set. On the other hand, the test set contains (normally2)

other ratings from same users and items that appear in the training set. As a consequence,

by comparing the predictions computed for users and items to the ratings in test set, it is

1Further dataset’s split are possible and sometimes required to validate algorithm’s parameters and
hyper-parameters.

2Odd cases and exceptions may appear when users’ and/or items’ ratings is low.

203

A.2. PREDICTION ORIENTED EVALUATIONS

Table A.1: Notation used in the evaluation metrics for recommender systems.

Notation Description

R Set of ratings
|R| Number of ratings
U Set of users
|U | Number of users
u particular user
I Set of items
|I| Number of items
i particular item

ru,∗ Set of user’s ratings
r∗,i Set of item’s ratings
ru,i Rating of user u in item i
r̂u,i) Predicted rating of user u in item i
r̂u,i) Predicted rating of user u in item i
rmax Maximum possible rating value
rmin Maximum possible rating value

rthreshold Rating threshold to assume the relevancy of an item for a user, relu,i
top−K Set of K items to recommend

possible evaluate the performance and quality of the recommendations.

This appendix aims to cover most of the evaluation methods used in the recommender

systems őeld. Table A.1 shows the notation used in this appendix.

A.2 Prediction oriented evaluations

This evaluation is the most widely used in literature [Kantor et al., 2011]. Recom-

mender systems predict the interest of users in items, r̂u,i), which are the deduction of how

a user would rate an item. This allows to aim to particular user and item. Prediction

oriented approaches aim to evaluate the closeness between these predictions and real ob-

served values. Thus, they use the training set to train a get recommendations and the test

set to compare if recommendations were correct, regarding their predicted ratings and the

real observed ratings from the test set.

204

A.2. PREDICTION ORIENTED EVALUATIONS

A.2.1 MAE: Mean Absolute Error

This method measures the absolute diference between predictions (r̂u,i)) and obser-

vations (ru,i): eu,i = |ru,i − r̂u,i|. As a consequence, the lower is this error, the better is

the prediction. The measure is computed for the all the ratings in the test set; thus it

represents the average of the absolute diference.

MAE =
1

|R|
∗

∑

ru,i⊂R

|ru,i − r̂u,i| =
1

|R|
∗

∑

ru,i⊂R

|eu,i| (A.1)

Other variances propose to compute the squared root of MAE. In addition, it is possible

to deőne a Normalized Mean Absolute Error (NMAE) as the MAE divided by the range

of the ratings values.

NMAE =
MAE

rmax − rmin
(A.2)

Finally, datasets may contain users or items that appear more frequently. This afects

the distribution of users and items in training and test sets. It is possible to compute

and normalize the MAE depending on users or items (instead of the overall number of

ratings). In fact, one may compute a user oriented metric (MAEu) or an item oriented

metric (MAEi), and then normalize by the number of users or items that contributed to

this metric.

MAEu =
1

|Ru|
∗

∑

ru,i⊂Ru

|ru,i − r̂u,i| (A.3)

U −MAE =
1

|U |
∗
∑

u⊂U

|MAEu| (A.4)

MAEi =
1

|Ri|
∗

∑

r∗,i⊂Ri

|ru,i − r̂u,i| (A.5)

I −MAE =
1

|I|
∗
∑

i⊂I

|MAEi| (A.6)

205

A.2. PREDICTION ORIENTED EVALUATIONS

A.2.2 RMSE: Root Mean Square Error

This method measures the squared diference between predictions (r̂u,i)) and obser-

vations (ru,i): eu,i = |ru,i − r̂u,i|. In particular, it represents the standard deviation of

this diference, thus it is also dubbed Root Mean Square Deviation (RMSD). Compared

to MAE, this technique provokes higher penalizations when both values are distant. As a

result, the lower is this error, the better is the prediction. The measure is computed for all

the ratings in the test set; thus it represents the average of the squared diference.

RMSE =

√

1

|R|
∗

∑

ru,i⊂R

(ru,i − r̂u,i)2 =

√

1

|R|
∗

∑

ru,i⊂R

e2u,i (A.7)

Normalized Root Mean Square Error (NRSME) is the RMSE divided by the range of

the variable.

NRMSE =
RMSE

rmax − rmin
(A.8)

Finally, datasets may contain users or items that appear more frequently. This afects

the distribution of users and items in training and test sets. It is possible to compute and

normalize the MAE depending on users or items (instead of the overall number of ratings).

In fact, one may compute a user oriented metric (RMSEu) or an item oriented metric

(RMSEi), and then normalize by the number of users or items that contributed to this

metric.

RMSEu =

√

1

|Ru|
∗

∑

ru,i⊂Ru

(ru,i − r̂u,i)2 (A.9)

U −RMSE =
1

|U |
∗
∑

u⊂U

|RMSEu| (A.10)

RMSEi =

√

1

|Ri|
∗

∑

r∗,i⊂Ri

(ru,i − r̂u,i)2 (A.11)

206

A.3. RANKING ORIENTED EVALUATIONS

I −RMSE =
1

|I|
∗
∑

i⊂I

|RMSEi| (A.12)

A.3 Ranking oriented evaluations

Ranking evaluation are related to usefulness of recommendations. They do not predict

singular user item ratings, but try to collect and present a set of items of the user’s interest.

This set of items are likely to be "consumed" (e.g. visited, watched, etc) by the user in a

close future.

The presence of items in this set depends on three factors: the rating prediction value

(r̂u,i), the size of the set (K), a.k.a. top-K, and the relevancy threshold (rthreshold). The

predictions are inherit to the model. The size of the set is a trade-of, short values make

short list of items to choose over whether large values make more diicult to the user the

decision makings. The relevancy threshold sets whether an item is relevant or not for a

given user, and thus whether the item should be or not inserted in the list.

As a result, the relu,i is a binary value to represent whether an item i is relevant or not

for a user u. It is possible compare the item’s prediction with user’s ratings in the test set.

If the real observed rating in the test is equal or above rthreshold, the item i is relevant for

the user, and relu,i = 1, otherwise relu,i = 0.

A.3.1 Precision, Recall and F-Measures

Precision and Recall evaluates the relevancy of recommendations in terms of probabil-

ities, regarding the top-K items or the users’ ratings.

Precision is the probability that an item i in top-K is relevant for the user u over all

other items in top-K. The higher the probability is, the better is the precision. An overall

value of 1.0 means that every item recommended in top-K is relevant. Yet, it does not say

that all relevant information have been suggested.

Precisionu@K =
1

K
∗
∑

i⊂K

relu,i (A.13)

207

A.3. RANKING ORIENTED EVALUATIONS

The overall precision of the system is given by the users’ precision average.

Precision@K =
1

|U |
∗ Precisionu@K (A.14)

Recall is the probability that an item i in top-K is relevant for the user u over all other

users’ items ratings. The average value of 1.0 means all the good recommendations are in

the top-K, and thus the higher, the better.

Recallu@K =
1

Ru
∗

K
∑

i=1

relu,i (A.15)

The overall recall of the system is given by the users’ recall average.

Recall@K =
1

|U |
∗Recallu@K (A.16)

The F-β-measure refers also to the top-K elements. It is the Harmonic Mean of Precision

and Recall and it might balance or weight precision and recall values. The weight value is

denoted as β. Typically, the F-Measure uses β = 1 in order to equally balance precision

and recall.

F − βmeasure@K = (1 + β2) ∗
Precision@K ∗Recall@K

β2 ∗ Precision@K +Recall@K
(A.17)

A.3.2 DCG: Discounted Cumulative Gain

Discounted Cumulative Gain (DCG) measures also the relevancy of items [Järvelin and

Kekäläinen, 2002]. This measure takes into account the position of items. It is based

on two assumptions: (1) most relevant items should appear higher in the user’s top K

recommendations since they are more useful for the user, and (2) the relevancy is a marginal

factor for irrelevant items. In this measure, the higher, the better. We calculate the overall

value for all users U .

DCGu@K =

K
∑

i=1

relu,i
log2(1 + i)

(A.18)

208

A.4. CONTENT ORIENTED EVALUATIONS

DCG@K =
1

|U |
∗DCGu@K (A.19)

Finally, the Normalized Discounted Cumulative Gain (NDCG) is the current status of

DCG@K compared to the IdealDCG@K.

NDCG@K =
DCG@K

IdealDCG@K
(A.20)

A.4 Content oriented evaluations

The recommender systems use to suggest users a set of items (top-K) that best suits

their interests. Depending on the domain of recommendation, it is interesting to balance

the degree of similarity of the items which are recommended to the user. For instance, to

recommend very similar movies to one user might bore her. On the contrary, to recommend

very diferent movies may confuse her and give the impression of bad recommendations.

This trade-of is called similarity/diversity [Su and Khoshgoftaar, 2009].

In addition, users may appreciate as well that recommendation are renew even if they

are not consumed. Novelty metrics show the diference between the information presented

and the information that usually is presented [Castells et al., 2011].

A.4.1 ILS: Intra-List Similarity

It is also called ILD (Intra-List Diversity). It measures the diversity/similarity of items

in top-K [Ziegler et al., 2005]. The similarity sim(i, j) between two items i, j depends on

the characteristics they share. For instance, two movies of the same genre or belonging to

the same saga are considered to be similar. The higher the value is, the more similar the

items in the top are.

ILSu@K =
1

2
∗
∑

i⊂K

∑

j⊂K

sim(i, j) (A.21)

The global similarity for the system is given by the users’ average ILS:

ILS@K =
1

|U |
∗ ILSu@K (A.22)

209

A.4. CONTENT ORIENTED EVALUATIONS

A.4.2 EBN: Entropy-Based Novelty

It measures the quantity of information of K presented items [Bellogín et al., 2010].

This technique sees items as variables with associated probabilities (entropy). We might

consider that items have an equal probability of appearance pi = 1/K . Hence, the

combination Ci of all probabilities generates the global entropy. The higher, the better.

EBNu@k = Ci = log2(k) = log2(
1

1/K
) = log2(

1

p
) = −log2(p) (A.23)

When the probabilities are not equal, the entropy is weighted by these probabilities.

EBNu@k = −p1 ∗ log2(p1)−p2 ∗ log2(p2)− ...−pK ∗ log2(pK) = −
∑

i⊂K

pi ∗ log2(pi) (A.24)

Thus, the global EBN for the system is given by the users’ average:

EBN@K =
1

|U |
∗ EBNu@K (A.25)

A.4.3 MSI: Normalized Mean Self-Information

This metric evaluates the information novelty between predictions in the top K and

known user’s preferences Ru [Zhou et al., 2010]. The higher, the better.

MSIu@K =
1

|K|
∗
∑

i⊂K

log(
|U |

|(v ⊂ U |i ⊂ Ru)|
) (A.26)

Thus, the global EBN for the system is given by the users’ average:

MSI@K =
1

|U |
∗MSIu@K (A.27)

210

Appendix B

Bloom Filters

B.1 Introduction

The concept of bloom őlter was őrst introduced by Burton H. Bloom in 1970 [Bloom,

1970]. It has been used in many diferent applications, such as databases queries or com-

puter networks, due to its memory-eiciency and fast-capabilities [Broder and Mitzen-

macher, 2004]. To the best of our knowledge, this structure has not been used yet in

the őeld of recommender systems.

B.2 Definition and properties of Bloom Filters

A bloom őlter is a bit-structure, which represents ”n”-elements of the same set ”S”

in a lower space of ”m”-bits [Broder and Mitzenmacher, 2004]. Initially, the m-bits are

set to ”0” representing the absence of elements in the őlter. Then, ”k”-independent hash

functions eiciently distribute the insertion of elements among the bit-structure. This

modiőes the status of ”k” bits in the structure (one bit for each hash function used). In

other words, to insert an element it is hashed to get the ”k”-positions of the structure to

set to ”1”.

Bloom őlter structure allows fast membership queries. It works as follows: the requested

element is hashed with the ”k” hash functions and the ”k” resulted indexes are checked

in the bit-structure. If any of these indexes is set to ”0”, the bloom őlter assures that

the element has not been inserted. When all indexes are set to ”1”, one can assume that

211

B.2. DEFINITION AND PROPERTIES OF BLOOM FILTERS

B.2.1 Near Optimal False Positive

As explained above, one may assure that an element has not been inserted in the őlter

if any of the associated indexes is set to "0". On the other hand, the probability of a false

positive can be estimated. Indeed, the false positive ratio depends on three parameters:

(1) the quantity of expected insertions ”n”, (2) the size of the bit structure ”m”, and (3)

the number of hash functions ”k”. After all the ”n” elements have been inserted, some bits

in the structure remain set to ”0” but others are set to ”1”. The probability that a specific

bit is still zero is given by Equation B.1 [Broder and Mitzenmacher, 2004].

p(bit = 0) =

(

1−
1

m

)kn

≈
(

e−kn/m
)

(B.1)

Moreover, the probability that a specific bit is set to one is given by q(bit = 1) =

1− p(bit = 0). Thus, the false positive probability is deőned through this probability and

the number of hash functions1, as in Equation B.2.

fp = q(bit = 1)k =

(

1−

(

1−
1

m

)kn)k

≈
(

1− e−kn/m
)k (B.2)

Further eforts to őnd out near-optimal values for the false positive ratio can demon-

strate the existence of a global minimum [Broder and Mitzenmacher, 2004] for ”k”, k =
m · ln2

n
. In addition, ”m” can be estimated by: m ≥

−n · log2(fp)

ln2
. Note that in a real

application ”k”, ”m” and ”n” are integer numbers. These equations are used to build and

initialize any bloom őlter.

B.2.2 Intersection property

The intersection of two bloom őlters, BFA and BFA, aims to őnd common elements

of two diferent sets, SA and SB. One bit will be set to one if: (1) the element belongs to

the intersection of BFA and BFB: (BFA∩BFB), or (2) this bit is set simultaneously to one

in BFA−BFA∩BFB and BFB −BFA∩BFB. Indeed, it represents the AND operation

of the two őlters A and B, and the result is a new bloom őlter containing their common

1Assuming perfectly random hash functions

213

B.3. TYPES OF BLOOM FILTERS

insertions. Thus, the probability that a specific bit is set to one in both filters is given by

the simpliőed Equation 5.1 [Broder and Mitzenmacher, 2004] and the false positive of this

intersection is given by fp = q(bit = 1)k.

q(bit = 1) = 1 − (1 −
1

m
)k·|SA| − (1 −

1

m
)k·|SB | + (1 −

1

m
)k·(|SA|+|SB |−|SA∩SB |) (B.3)

B.2.3 Union property

The union of two bloom őlters, BFA and BFA, aims to join two diferent sets, SA and

SB. This is the OR operation of these őlters and results in a new bloom őlter joining

both őlters. Therefore, the resulted őlter union represents a new set SA∪SB. It is possible

to approximate the size of the expected total insertion in a bloom őlter [Swamidass and

Baldi, 2007]. Equation B.4 shows this approximation, where card(X) denotes the number

of bits set to ”1” in the bloom őlter ”X”. By considering both Equations B.4 and B.2, it

is possible to know the false positive ratio of the union of two bloom őlters.

n∗ = −
m · ln

(

1−
card(X)

m

)

k
(B.4)

B.3 Types of Bloom Filters

In this section we have explained a very simple case of representing items based on

the standard deőnition of bloom őlters, where we have supposed a static dataset. In fact,

when new features need to be taken into consideration the number of insertions raises.

However, the current bloom őlter parameters (size ”m” and hash functions ”k”) can not

face such raise and yield to a false positive raise as well. Indeed, these parameters cannot

be modiőed, hence when new features are added to the system all bloom őlters need to

be re-built according to new parameters. In addition, standard bloom őlters do not count

the number of insertions of the same element, if necessary. Thus, these őlters can not be

compared to frequency vectors.

In fact, these situations correspond to static versus dynamic datasets and binary versus

214

B.3. TYPES OF BLOOM FILTERS

frequency vector representations. In our model we use standard bloom őlters for simplicity

and explanation, yet these drawbacks can be addressed by other bloom őlter approaches.

On the one hand, dynamic datasets are possible to model by using dynamic/scalable bloom

őlters [Guo et al., 2010, Almeida et al., 2007]. The main idea is that a scalable bloom őlter

is formed by one or more bloom őlters. Thus, these őlters are built by blocks, and hence

by adding new blocks to the őlter one may add a new set of features. As a consequence,

this avoid to re-build the bloom model when new features are added. In addition, sim-

ilar probability inductions given in this section can be applied to scalable and dynamic

probabilities, and thus our bloom model remains possible in these cases. On the other

hand, counting insertions is possible as well by using counting bloom őlters [Broder and

Mitzenmacher, 2004]. These őlters contains new bit-sets to count the insertions performed.

Thus, if one insertion has been made several times, őlters may approximate the counting.

As a result, one may compare counting őlters to frequency vectors, with more complexity.

Other variances of bloom őlters deal with extra compression[Broder and Mitzenmacher,

2004].

215

B.3. TYPES OF BLOOM FILTERS

216

Glossaire

• ALS : Alternating Least Squares

• BF : Bloom Filter

• CB : Content-Based

• CBF : Counting Bloom Filter

• CF : Collaborative Filtering

• DSGD : Distributed Stochastic Gradient Descent

• EBN : Entropy-Based Novelty

• FP : False Positive

• FN : False Negative

• GD : Gradient Descent

• HELF : Harmonic Entropy Logarithmic Frequency

• ILD : Intra-List Diversity

• ILS : Intra-List Similarity

• IR : Information Search and Retrieval

• KNN : K-Nearest Neighbours

• LDA : Latent Dirichlet Allocation

• LPE : Logarithmic Popularity Entropy

217

GLOSSAIRE

• MAE : Mean Absolute Error

• MF : Matrix Factorization

• NLP : Natural Language Processing

• PCA : Principal Component Analysis

• RBM : Restricted Boltzmann Machines

• RMSE : Root Mean Square Error

• RS : Recommender Systems

• SGD : Stochastic Gradient Descent

• SV D : Singular Value Decomposition

• SVM : Support Vector Machine

• TF − IDF : Term Frequency-Inverse Document Frequency

• TP : True Positive

• TN : True Negative

218

Manuel Pozo
TOWARDS ACCURATE AND
SCALABLE RECOMMENDER

SYSTEMS

Résumé :
Les systèmes de recommandation permettent de őltrer et présenter en premier les informations susceptibles
d’intéresser les utilisateurs. Ce domaine a suscité l’intérêt du e-commerce aőn de prédire les préférences
des internautes et personnaliser les ofres et produits qui leur sont proposés. Ces systèmes font face à de
grands déős: ils soufrent du démarrage à froid, ils exigent un traitement de grand volume de données qui
peuvent être très hétérogènes. Une des techniques populaire est la factorisation matricielle qui a démontré
une précision dans les prédictions et un bon passage à l’échelle.
Nos contributions se concentrent sur 4 aspects: (1) un meilleur passage à l’échelle de la factorisation
matricielle, (2) l’intérêt implicite des utilisateurs dans les attributs des articles, (3) la représentation très
compacte des caractéristiques des utilisateurs/items, et (4) l’apprentissage actif pour faire face au démar-
rage à froid. Nos expérimentations en utilisant des jeux de données publics démontrent les performances
de nos approches.
Mots clés : filtrage collaboratif, système de recommandation, distribution, filtre de
bloom, demarrage à froid, apprentissage actif

Abstract :
Recommender Systems őlter and present őrst the information in which users may be interested. This
has raised the attention of the e-commerce to predict future interests and to personalize the ofers (a.k.a.
items). These systems face great challenges: they require distributed techniques to deal with a huge
volume of data, they aim to exploit very heterogeneous data, and they sufer from cold-start. Among
popular techniques, Matrix Factorization has demonstrated high accurate predictions and scalability.
Our contributions are given by four aspects: (1) the distribution of a matrix factorization algorithm, (2)
the implicit interest of the users in the attributes of the items to be used by matrix factorization, (3)
the representation of users/items through a high quantity of features in low memory-consumption, and
(4) the active learning techniques to cope with cold-start. We demonstrate their performance in terms of
accuracy and eiciency using a publicly available dataset.
Keywords : collaborative filtering, recommender system, distribution, bloom filter,
cold-start, active learning

	Abstract
	Résumé
	Résumé étendu
	Introduction
	Challenges

	État de l'art
	Descente de gradient stochastique et distribuée
	Contribution et résultats

	L'intérêt implicite des utilisateurs dans les attributs des items
	Contribution et résultats

	Modèle de similarité avec des filtres de Bloom
	Contribution et résultats

	Apprentissage actif pour les systèmes de recommandation
	Contribution et résultats

	Conclusions et Perspectives

	Contents
	Introduction and Motivation
	Introduction
	Definition and process of recommender systems
	Challenges in Recommender Systems
	Motivation

	Recommender Systems: State of the Art
	Motivation
	Techniques and assumptions
	Recommender Systems in the Academy
	Recommender Systems in the Industry
	Recommender System's Libraries
	Discussions

	Analysis of the Parallelization of Matrix Factorization techniques
	Motivation
	Related Work
	Background
	Flexible Distributed Stochastic Gradient Descent
	Experimentation
	Discussion

	The implicit interest of users in the attributes of items
	Motivation
	Related Work
	Architecture of our approach
	Experimentations
	Discussion

	Coping with large vector representations of users and items in very large datasets.
	Motivation
	Related Work
	Bloom Filter Similarity Model
	Experimentation
	Discussion

	Active Learning to Cope with New User Cold-Start
	Motivation
	Related Work in Active Learning
	Background and Notation
	Active Learning Decision Trees
	Experimentation
	Discussion

	Conclusions and Perspectives
	Conclusions
	Perspectives

	Bibliography
	Annexes
	Evaluating the performance of Recommender Systems
	Introduction
	Prediction oriented evaluations
	Ranking oriented evaluations
	Content oriented evaluations

	Bloom Filters
	Introduction
	Definition and properties of Bloom Filters
	Types of Bloom Filters

	Glossaire

