L'ORSA (Own Risk Solvency and Assessment) est un ensemble de règles définies par la directive prudentielle européenne Solvabilité II, destiné à servir d'outil d'aide à la décision et d'analyse stratégique des risques. Pour remplir les exigences de l'ORSA, les compagnies d'assurance ont besoin d'évaluer leur solvabilité future de façon continue et prospective. Et pour ce faire, elles doivent notamment obtenir des projections probabilistes de leur bilan (actif et passif) sur un horizon temporel donné.

Dans ce travail de thèse, nous nous sommes focalisés sur l'actif du bilan. Nous traitons plus précisément des taux d'intérêts; de la construction, de l'extrapolation, et des prévisions envisagées dans le futur pour la courbe de taux d'intérêt. Les techniques présentées sont essentiellement basées sur des méthodes d'apprentissage statistique.

Dans le texte, nous parlons généralement de courbe de taux, mais il s'agit en fait de courbes de facteurs d'actualisation sans risque de défaut de contrepartie. Le risque de défaut de contrepartie n'est pas explicitement traité, mais des techniques similaires à celles développées ici, peuvent être transposées à la construction de courbe de taux incorporant un risque de défaut de contrepartie.

Nous présentons dans un premier temps, une famille de courbes de facteurs d'actualisation basées sur les modèles de taux (courts) dits d'absence d'opportunité d'arbitrage ou exogènes. À une date donnée, la courbe d'actualisation est construite à l'aide de produits dérivés de taux, dont les cotations sont disponibles sur les marchés financiers pour un nombre donné de maturités. La régularité de la courbe obtenue est paramétrable, en fonction du résultat recherché par l'utilisateur. Nous montrons comment cette courbe de facteurs d'actualisation, obtenue à une date donnée, peut être extrapolée au-delà des maturités disponibles sur les marchés, et comment les courbes construites à différentes dates dans le temps, peuvent être utilisées pour obtenir des prévisions de taux d'intérêts dans le futur. Pour ce dernier point portant sur la prévision, des techniques basées sur l'analyse en composantes principales (ACP) fonctionnelle sont appliquées aux paramètres du modèle.

Nous présentons ensuite un modèle de prévision simultanée de séries temporelles multivariées, basé sur des réseaux de neurones dits Random Vector Functional Link (RVFL) networks. Les RVFL ont été utilisés avec succès par le passé, pour la résolution de problèmes de régression, de classification, et de prévision de séries temporelles univariées. La nouveauté ici, est de les appliquer à la prévision de séries temporelles multivariées avec plusieurs contraintes de régularisation sur les paramètres du modèle, et des variables explicatives quasi-aléatoires. Les exemples d'application portent sur la prévision de courbes de facteurs d'actualisation. Le modèle ainsi obtenu à l'aide des RVFL est un modèle robuste, notamment grâce à ses paramètres de régularisation, et on montre qu'il obtient de très bonnes performances quand il est comparé à des modèles résolvant des problèmes de prévision similaires. Le modèle RVFL peut également être être utilisé pour générer des stress tests du bilan impliquant simultanément plusieurs variables, comme cela est démontré dans le texte dans le cas spécifique de trois facteurs influençant la courbe de taux.

Dans le chapitre 4, des méthodes d'apprentissage dites ensemblistes sont appliquées à la prévision simultanée de taux d'intérêts, et d'autres variables macroéconomiques telles que l'inflation. Ces méthodes ensemblistes sont construites à partir de modèles relativement plus simples, dits modèles de base, dans le but d'améliorer les performances individuelles de ces derniers. Le modèle de base utilisé ici pour la construction des ensembles est le modèle RVFL. Trois types de méthodes ensemblistes sont envisagées: bootstrap aggregating, boosting, et stacked generalization. On observe ici, généralement, que ces méthodes ensemblistes peuvent permettre d'obtenir des améliorations de performance par rapport aux modèles de base qui les constituent. Il est à noter que cette amélioration ne sera pas observée de façon systématique sur d'autres jeux de données. Mais ce type de modèle aura toujours un intérêt à être envisagé dans une optique d'accroissement des performances prédictives.

Le chapitre suivant étudie l'application des méthodes d'apprentissage basées sur des noyaux (Kernel Regularized Least Squares, KRLS) à la prévision de courbes de taux d'intérêt. Les modèles de type KRLS expriment la variable à expliquer (ici, le taux spot) comme une combinaison linéaire de distances entre les observations des variables explicatives. Ces méthodes sont appliquées ici, d'abord dans le contexte populaire de Nelson-Siegel dynamique qui représente la courbe de taux en fonction de trois facteurs explicatifs, puis directement aux taux spot. Cette deuxième approche s'apparentant à des approches appliquées en géostatistique, permet d'obtenir de bonnes performances de prévision, tout en reproduisant des faits stylisés de la courbe de taux sans contrainte de forme supplémentaire.

Le dernier chapitre compare les différents modèles introduits dans les chapitres précédents. Pour ce faire, il revisite le modèle RVFL introduit aux chapitre 3, en adjoignant à ses paramètres une distribution a priori (Gaussienne multivariée). Le modèle ainsi obtenu sert d'ingrédient de base à une méthode d'optimisation bayésienne, appliquée à la minimisation de l'erreur de validation croisée des modèles étudiés. De manière générale dans le texte et idéalement, il faudrait introduire en plus de l'erreur de validation croisée, une erreur de validation sur des données nouvelles, non encore rencontrées par les modèles étudiés.

Motivation and Problem Statement (English version)

The Own Risk Solvency and Assessment (ORSA) is a set of processes defined in the European prudential directive Solvency II, that serve for decision-making and strategic analysis. In the context of ORSA, insurance companies are required to assess their solvency needs in a continuous and prospective way. For this purpose, they notably need to forecast their balance sheet -asset and liabilities-over a defined horizon.

Here, we specifically focus on the assets' forecasting part. This thesis is about the Yield Curve, Forecasting, and Forecasting the Yield Curve. We present a few novel techniques for the construction, the extrapolation of static curves (that is, curves which are constructed at a fixed date), and for forecasting the spot interest rates over time. Cross validation is widely used here as a measure of model performance, but ideally a validation set with unseen data could be considered.

Throughout the text, when we say 'Yield Curve', we actually mean 'Discount curve'. That is: we ignore the counterparty credit risk, and consider that the curves are risk-free. Though, the same techniques could be applied to construct/forecast the actual risk-free curves and credit spreads' curves, and combine both to obtain pseudodiscount curves incorporating the counterparty credit risk. The structure of the thesis is described in section 1.3.

Thesis Structure

Chapter 2

We derived a class of discount curve construction and extrapolation methods, based on a class of interest rate models called exogenous short-rate models. That means: constructing a static Yield Curve at a given date, by using some specific financial instruments with different maturities quoted at this date. Then, defining what are the discount rates beyond the longest maturity observed for these financial instruments. The extrapolated part of the curve is typically necessary for the pricing of long-term insurance liabilities. In the framework that we propose, Yield Curve forecasts can be obtained by using a functional principal components analysis on the model parameters.

Chapter 3

We are interested in obtaining forecasts for multiple time series, by taking into account the potential nonlinear relationships between their observations. For this purpose, we used a specific type of regression model on an augmented dataset of lagged time series. Our model is inspired by dynamic regression models, with the response variable's lags included as predictors, and is known as random vector functional link (RVFL) neural networks. The RVFL neural networks have been successfully applied in the past, to solving regression and classification problems. The novelty of our approach is to apply an RVFL model to multivariate time series, under two separate regularization constraints on the regression parameters, and quasi-randomized features. The model can also be used for realizing stress tests.

Chapter 4

The goal of ensemble learning is to combine two or more statistical/machine learning models -the base learners -into one, in order to obtain an ensemble model. The ensemble model is expected to have an improved out-of-sample error over the base models. We apply two popular ensemble learning methods to multiple time series forecasting: bootstrap aggregating, known as bagging, boosting, and stacked generalization, known as stacking. The base learners that we use, are the RVFL introduced in the previous paragraph.

Chapter 5

Kernel regularized least squares (KRLS) learning methods are applied to Yield Curve forecasting. Two types of formulations of the forecasting problem are tested. One relying on a popular framework called Dynamic Nelson-Siegel, and another one, in which we apply the KRLS directly to the explain the spot rates (response variable) as a function of the observation dates and time to maturities (covariates).

Chapter 6

We present a bayesian quasi-randomized vector functional link neural network model (BQRVFL), with one hidden layer. It's a penalized regression model on an augmented data set, in which we assume that a prior multivariate gaussian distribution governs the regression parameters. The BQRVFL model is presented, along with the associated formulas for confidence interval around its predictions. It is then applied as a workhorse for bayesian optimization of machine learning cross-validation functions. The machine learning cross-validation functions that we consider are those associated to the selection of hyperparameters of RVFL (in a DNS framework, or directly applied to the spot rates' time series) and KRLS models (in a DNS framework, or directly applied to the spot rates).

2

A swap curve for insurance risk management, based on no arbitrage short-rate models

Context

The new Solvency II directive defines the calculation of European insurers' technical provisions as the sum of two components, the Best Estimate Liabilities (BEL) and the Risk Margin (RM). The Best Estimate Liabilities (BEL) are defined as the average discounted value of the insurer's future cash-flows, weighted by their probability of occurrence. The Risk Margin is a supplemental amount required for covering the non-hedgeable risks, by involving a capital lockup.

In order to discount the cash-flows relevant in the calculation of the BEL and Risk Margin, an appropriate term structure of discount factors is needed. From the no arbitrage pricing theory developed by [START_REF] Michael | Martingales and stochastic integrals in the theory of continuous trading[END_REF], and widely used in insurance market consistent pricing of liabilities, the zero rates related to the stochastic discount factors have to be risk-free. That is, free from any counterparty credit risk.

There is no easy answer to the question of defining such a risk-free rate for insurance liabilities. It could be related the insurer's own assets return, where the liabilities are perfectly backed by the assets. But in a market consistent approach as required in Solvency II, since not every liability is perfectly backed by the assets, a more fundamental risk-free rate also needs to be derived. Deriving such a common risk-free rate from market-quoted instruments is also aimed at increasing transparency and comparability of balance sheets across European countries.

For years, in banking, the construction of a term structure of risk-free discount factors was based on the assumption that banks are not subject to counterparty credit risk when lending to each other, and liquidity was not an issue. In this context, interbank rates (loosely called LIBOR hereafter) were seen as the best proxies for risk-free rates.

From the 2007-2008 financial crisis onwards, the spreads between swaps rates with different tenors started to widen, partly due to the increased reticence of banks to lend to each other. Today, LIBOR is no longer considered as a proxy for risk-free rates, and market operators have increasingly started to use Overnight Interest Swaps (OIS) discounting (see [START_REF] Hull | The FVA debate[END_REF] for example).

Comparatively in the European Insurance market, throughout the quantitative impact studies (the QIS) leading to Solvency II, the questions of risk-free term structure construction for valuation have been tackled for years by the CEIOPS and later by the EIOPA (see [START_REF] Cfoforum | QIS 5 Technical Specification Risk-free interest rates[END_REF] for example). The difficulty in defining a fundamental risk-free rate for the insurance market, mainly arises from the fact that a pure market risk-free rate could introduce a lot of unwanted market volatility into the insurer's balance sheet. Hence, this discount curve has been adjusted with different spreads through the QIS, and until its most recent specification, making it somewhat, less consistent with the market.

As of June 2015 (see [START_REF] Eiopa | Technical documentation of the methodology to derive EIOPA's risk-free interest rate term structures[END_REF]), the term structure of discount factors for insurers' liability cash-flows is indeed derived from LIBOR EUR swap (IRS hereafter) rates, as the market for vanilla swaps is considered as 'Deep, Liquid, and Transparent' (the DLT assumption). A credit risk adjustment (CRA) is prescribed by the directive, consisting in a parallel shift applied to LIBOR swap rates. The parallel shift shall not be lower than -35bps or greater than -10 bps. Furthermore, a matching adjustment and a volatility adjustment are other optional parallel shifts which could be applied to the constructed curve.

The volatility adjustment is designed to be used in case of a crisis, causing the widening of sovereign or corporate bonds spreads. On the other hand, the matching adjustment is used in cases where the liabilities are predictable, that is, almost perfectly backed. In this paper, we focus on discount curve construction. The matching premium and the volatility adjustment are not further discussed.

Beyond the data and curve adjustments concerns, and considering curve construction methods, [START_REF] Ferdinando | Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask[END_REF] distinguish between two types of methods: best fit methods, and exact fit methods. Best fit methods, such as [START_REF] Charles R Nelson | Parsimonious modeling of yield curves[END_REF] and [START_REF] Eo Svensson | Estimating and interpreting forward interest rates: Sweden[END_REF] are widely used by central banks. Exact fit methods such as cubic splines methods on the other hand, generally have at least as much parameters as input market products, and provide an exact fit to market data.

While the latter type of methods would be adapted for no arbitrage pricing and trading, the former type are useful for forecasting the yield curve in real world probability (see [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF] for example). They fit the curve parsimoniously with a few parameters; in an attempt to mimic the factors explaining the variance of the yield curve changes (see [START_REF] Robert B Litterman | Volatility and the yield curve[END_REF] for details). There is another class of models, which combine the idea of using a factors structure, which is the absence of dynamic arbitrages in the curve diffusion, see [START_REF] Christensen | The affine arbitrage-free class of Nelson-Siegel term structure models[END_REF] for example.

The extrapolation of the constructed curve is also an important subject matter for insurers and pension funds. Indeed, some of their liability cash-flows may have very long maturities, spanning beyond the longest liquid maturities available for market-quoted instruments. The question is, how would spot rates for such long maturities be determined?

As of 2016 in Solvency II, the construction and extrapolation of the swap curve is made by using the Smith-Wilson method described in [START_REF] Smith | Fitting yield curves with long term constraints[END_REF] and in the technical specifications [START_REF] Eiopa | Technical documentation of the methodology to derive EIOPA's risk-free interest rate term structures[END_REF]. The Smith-Wilson method constructs the swap curve by exactly fitting the market IRS rates adjusted from a CRA. After a chosen maturity -the last liquid point (LLP), equal to 20 years -, the forward rate is forced by regulatory rules, to converge at an exogenously specified speed to a fixed long term level called the Ultimate Forward Rate (UFR). The UFR is derived as the sum of expected Euro inflation and expected real rates. As of 2016, it is equal to 4.2%.

For discount curve construction and extrapolation, we propose a method which relies on closed-form formulas for discount factors available in exogenous (or no arbitrage) short-rate model. It could be both an exact fit and best fit method, depending on the data at hand, and on how the curve is calibrated to these data. In this framework, the time-varying function ensuring an exact fit to market implied discount factors in exogenous short-rate models is considered to be a piecewise constant function, whose steps become model's parameters. The interpolation of the curve at dates comprised between quoted maturities directly comes from the properties of the model. Pseudo-discount curves can also be constructed in a dual curve environment, by using our method, along with the techniques described for example in [START_REF] White | Multiple Curve Construction[END_REF] and [START_REF] Ferdinando | Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask[END_REF].

The static discount curve calibrated to market data can then be extrapolated to longer, unobserved maturities, with the forward rates converging to an ultimate forward rate. Extrapolation is done by using the same model that the one used for interpolation. On this particular point, our model is hence closer to the [START_REF] Smith | Fitting yield curves with long term constraints[END_REF] model than to models which use different methods for interpolation and extrapolation (such as cubic splines for interpolation, and a modified version of [START_REF] Charles R Nelson | Parsimonious modeling of yield curves[END_REF] for extrapolation). We describe ways to either derive an UFR from the data, or to constraint the model to converge to a given UFR.

When it comes to forecasting and/or simulation, if one is interested in no arbitrage pricing, then she can use simulations under a risk neutral probability of the corresponding, consistent (in the sense of [START_REF] Björk | Interest rate dynamics and consistent forward rate curves[END_REF]) exogenous short-rate model. Otherwise, forecasts of the yield curve under the historical probability can be obtained by making use of a functional principal components analysis on the model parameters. Functional principal components analysis is described in [START_REF] James | Some tools for functional data analysis[END_REF] and [START_REF] Ramsay | Springer Series in Statistics[END_REF]. It has been applied to forecasting mortality rates by [START_REF] Rob | Robust forecasting of mortality and fertility rates: a functional data approach[END_REF], and in finance, it has been applied for example in [START_REF] Benko | Functional data analysis with applications in finance[END_REF].

The advantage of the model presented in this paper, is that, it reconciles in some sense models like [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF] or [START_REF] Smith | Fitting yield curves with long term constraints[END_REF]. Its direct link with an exogenous short-rate model (consistency in the sense of [START_REF] Björk | Interest rate dynamics and consistent forward rate curves[END_REF]) and the possibility of achieving an exact fit to swap data means that it could be used as an input for pricing in a risk neutral probability. In addition, although it could be less interpretable than models like [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF] (in terms of level, slope, and curvature), it could also be used for forecasting the yield curve parsimoniously in historical probability, as demonstrated in sections 2.4.3 and 2.4.4.

In the next sections, we describe the model proposed for discount curve construction and extrapolation, and explain how it could be calibrated to market data. Then, we explain how to obtain forecast of the discount curve, by using the model's parameters. To finish, some numerical examples based on [START_REF] Patrick | Interpolation methods for curve construction[END_REF], [START_REF] Andersen | Discount curve construction with tension splines[END_REF], [START_REF] Leif | Interest rate modeling[END_REF], [START_REF] Ferdinando | Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask[END_REF] are presented.

Curve construction and extrapolation

The class of models proposed for discount curve construction and extrapolation relies on short-rate models. Specifically, on short-rate models with a time-varying mean-reversion parameter, also known as exogenous short-rate models. In this section, we provide details on how they are derived.

Curve explicit analytical expressions

The exogenous short rates model that we consider under a risk-neutral probability measure Q is an Hull-White extended Vasicek (citer Hull & White (1990)) model:

dX t = a(b(t) -X t )dt + σdW t (2.1)
where (W t ) t≥0 is a standard brownian motion under Q. But the methodology can be directly extended to any other no-arbitrage short rate model with closed form formulas for discount factors, including multi-factor short rate models.

a controls the speed of mean reversion of the short rates, and σ is their volatility. t → b(t) is a time-varying deterministic function, used for fitting exactly the current term structure of discount factors P M (0, t).

Assuming the absence of arbitrage, the value at time t 0 of a discount factor with maturity t (under model from equation (2.1)) is given by

P (t 0 , t) = E Q exp - t t 0 X u du |F t 0 (2.2)
where F is the natural filtration associated to the short-rate process X.

For (2.1), some closed-form formulas are available for discount factors (and implicitly for discount rates and instantaneous forward rates). Indeed, assuming that X t 0 = X 0 , we can write:

P (t 0 , t) = exp -X 0 φ(t -t 0 ) -a t t 0 b(u)φ(t -u)du -cψ(t -t 0 ) (2.3) 
where φ and ψ are defined as φ(s) := 1 a 1e -as , (2.4)

ψ(s) := - s 0 σ 2 2 φ 2 (s -θ) dθ. (2.5)
t → b(t) uses to be constructed as a function of f M (0, t) = ∂P M (0,t) ∂t . In our approach, we are going to derive P (0, t) =: P M (0, t) from market inputs, based on (2.3). By doing so, we avoid the use of cubic splines or Nelson-Siegel methods to obtain P M (0, t). Instead, the curve fitting model is directly derived from the short rate model (2.1) and from (2.3).

Deriving P M (0, t) in this framework uses some ideas from [START_REF] Schlögl | A square root interest rate model fitting discrete initial term structure data[END_REF]. It requires the time-varying function t → b(t) to be a piece-wise constant function, whose steps are derived from vanilla (IRS) or overnight swaps (OIS) cash-flows. For curve extrapolation, the speed of convergence to the Ultimate Forward Rate (UFR) will be controlled by the reversion speed of the short rates, a.

Piecewise-constant long-term mean parameter b(t)

In order to obtain an exact fit in the Hull-White extended Vasicek model, we have to choose:

b(t) = 1 a df M dt (0, t) -f M (0, t) + 1 2 σ 2 a 3 1 -e -2at (2.6)
where t → f M (0, t) are the market implied instantaneous forward rates. In our framework, the market-implied discount curve P M (0, t) at date t 0 = 0 is constructed by considering a piecewise constant function t → b(t), whose steps are derived from vanilla (IRS) or overnight swaps (OIS) cash-flows. We let T 1 , . . . , T n , be the maturities of market quoted IRS, with Credit Risk Adjustment (CRA), or OIS. We assume that the function t → b(t) is piecewise-constant, with:

b(t) = b i , for T i-1 ≤ t < T i , i = 1, . . . , n (2.7) b(t) = b n+1 , for t ≥ T n (2.8)
and T 0 = t 0 = 0.

Under this specification of the long-term mean parameter, closed-form formulas can be obtained for the discount factors. Given that t 0 = 0, the integral term in equation (2.3) becomes

I n+1 (t) = n k=1 b k (ξ(t -T k-1 ∧ t) -ξ(t -T k ∧ t)) (2.9)
for any t ≤ T n and

I n+1 (t) = n k=1 b k (ξ(t -T k-1 ) -ξ(t -T k )) + b n+1 ξ(t -T n ) (2.10)
for t > T n where ξ is defined as

ξ(s) := s -φ(s), s ≥ 0. (2.11)
Given that t 0 = 0, the integral term in equation becomes

I n+1 (t) = n k=1 b k (η(t -T k-1 ∧ t) -η(t -T k ∧ t)) (2.12)
for any t ≤ T n and

I n+1 (t) = n k=1 b k (η(t -T k-1 ) -η(t -T k )) + b n+1 η(t -T n ) (2.13)
for t > T n where η is defined as

η(s) := 2 s h + a + 1 σ 2 log h + a + (h -a)e -hs 2h . (2.14)
The previous result can also be found in [START_REF] Bielecki | A Bottom-Up Dynamic Model of Portfolio Credit Risk with Stochastic Intensities and Random Recoveries[END_REF] under a more general form.

[SS00] also consider an extended CIR model with piecewise-constant parameter in order to construct initial yield-curves but prices of zero-coupon bonds are given under a recursive form.

Recall that our aim is to construct a discount curve by fitting the mean-reversion function b on quoted swaps observed for different standard maturities. The interpolation of the curve at intermediary dates between quoted swaps maturities directly comes from the properties of the model. Contrary to the Hull-White approach where an exogenous term-structure is given as a model input, in our approach, the fitted risk-neutral short-rate model is, by construction, consistent in the sense of [START_REF] Björk | Interest rate dynamics and consistent forward rate curves[END_REF].

In the next section, we explain how model parameters can be calibrated in different situations, for the construction of OIS and IRS (with CRA) discount curves. We focus our presentation on the particular extended Vasicek short-rate model

dX t = a(b(t) -X t )dt + σdW t . (2.15)
Pseudo-discount curves could also be constructed in a dual curve environment, by using this method along with the techniques described for example in [START_REF] Ferdinando | Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask[END_REF] and [START_REF] White | Multiple Curve Construction[END_REF].

Calibration of the model

This section is about the calibration of our model. Section 2.2.3 discusses the calibration of the liquid part of the curve to swaps, 2.2.3 is about calibration by using swaps, caps and swaptions, and 2.2.3 describes curve extrapolation. Section 2.3 describes another way of choosing the parameters, by applying cross-validation to forecasts under the historical measure.

Calibration of the liquid part

Considering that there are N quoted swaps used for constructing the discount curve as of today, and at most M coupon payment dates for all the swaps, we let V be the vector of current values for the market swaps with length equal to N . C is the N × M matrix containing in each row, the swaps' coupon payments. P is the vector of discount factors that we are trying to derive, having a length equal to M .

Three methods might be envisaged for calibrating the model, depending on the data at hand:

• A method to be used if an exact fit is required, and can be found. That is, if we require V = CP

• A method to be used if an exact fit cannot necessarily be found, but approximated

• A method to be used when the dataset is noisy, and a smooth curve is required These three methods are described hereafter, and numerical examples can be found in section 2.4.

• If an exact fit is required, then it is possible to guess reasonable values for a and σ (say, a between 0.05 and 1, and σ between 1% and 5%), and use an iterative curve calibration (also known as bootstrapping, but different from statistical bootstrap resampling) to solve V = CP . On figure 2.1, we can observe that the discount rates obtained for 1000 values of a ∈ [0.1, 10] and σ ∈ [0, 0.1] do not exhibit particular differences at quoted swaps maturities. The corresponding forward rates in figure 2.2 exhibit more differences.

This type of method was used for any vanilla swap before the 2007 crisis, no matter its tenor. It is relevant only for extracting discount factors from OIS which are considered to be perfectly collateralized, or in Solvency II context.

As of 2016, single curve construction in Solvency II, is applied to IRS, along with a parallel CRA, comprised between 10bps and 35bps.

In order to describe the curve's calibration procedure, we will use a formulation similar to the one in [START_REF] Leif | Interest rate modeling[END_REF]. We let T 1 < . . . < T n be the maturity dates of OIS or IRS minus CRA, with the same currency on both legs. The swap payment dates occur at dates t j , with a frequency belonging to {1 month, 3 months, 6 months, 1 year}.

The single curve construction, in the specific Hull & White-consistent case treated in this paper, is made as follows:

1. Guess a and σ: any reasonable values for a and σ will produce an exact fit for discount factors and discount rates (cf. figure 2.1) 2. Loop on i: At each step T i corresponding to the i th input swap maturity, suppose that the discount factors and b j s are known for any t j < T i 3. Make a guess for b i 4. Use results from section 2.2.2, to derive the discount factors at intermediate swap payment dates:

T i-1 ≤ t j ≤ T i .
No interpolation is required.

5. Calculate V i , the value of the i th swap. While V i = 0 return to point 2. Typically, the points 3 to 5 are solved iteratively with a root search algorithm.

• If no solution is available for equation V = CP by iterative curve calibration, then similarly to [START_REF] Andersen | Discount curve construction with tension splines[END_REF], it is possible to search for P minimizing:

1 2N (V -CP ) T W 2 (V -CP ) (2.16)
W , a diagonal matrix of weights is used. These weights are based on inverse duration, such as proposed by [START_REF] Robert | Testing Term Structure Estimation Methods[END_REF]; with elements:

w j = 1/d j N j=1 1/d j (2.17)
Weights such as w j 's are commonly used to give more importance to the short end of the curve, which is hence fitted more accurately. But other weighting schemes might be envisaged.

• If the swaps data are noisy, or if one is interested in fitting smoothly noisy bonds data a third method could be envisaged. It consists in penalizing the possibly large changes in forward rates' (approximate) second derivatives and/or in b i s. The objective function to be minimized is:

1 2N (V -CP ) T W 2 (V -CP ) + λ 1 N i=1 (f i -f i-1 ) 2 + λ 2 N i=1 (b i -b i-1 ) 2 (2.18)
where f i is the approximate second derivative (using finite differences) of the discrete forward rates at time T i . Typically, λ 1 and λ 2 can be found by cross-validation. An example can be found in section 2.4. 

Calibration using derivatives

Another way for picking a and σ might be to calibrate the underlying short-rate model to a set of caps and swaptions. The optimization procedure would involve the following steps: choosing a and σ, construct the initial curve with an exact fit using the results described in section 2.2.3; use it as an input for theoretical caps and swaptions prices formulas implied by the underlying short-rate model, until a and σ which minimize the difference between theoretical and market prices for caps and swaptions are found.

Curve extrapolation

Using the Hull and White extended Vasicek model, it is possible to derive the instantaneous forward rates from the discount factors formula. We can write:

f (0, t) = - ∂log(P (0, t) ∂t = X 0 e -at + a t 0 e -a(t-u) b(u)du - σ 2 2 φ 2 (t) (2.19)
Hence, in our framework, using the fact that t → b(t) is piecewise constant, we can also write:

f M (0, t) = X 0 e -at +a n i=1 b i [φ(t -T i-1 ∧ t) -φ(t -T i ∧ t)]+ab n+1 φ(t-T n ∧t)- σ 2 2 φ 2 (t)
(2.20) This formula directly provides an input for the simulation of Hull & White short-rate, with parameters a, σ and b 1 , . . . , b n previously calibrated to market data.

Hence, let t grow to ∞, we have:

f M (0, ∞) = b n+1 - σ 2 2a 2 (2.21)
If we assume that the UFR is exogenously chosen, and denote it by f ∞ , we are able to derive the parameter b n+1 as:

b n+1 = f ∞ + σ 2 2a 2 (2.22)
This enables to re-write equation (2.13), when extrapolation is required, as:

I n+1 (t) = n k=1 b k (ξ(t -T k-1 ∧ t) -ξ(t -T k ∧ t))+ f ∞ + σ 2 2a 2 ξ(t-T n ∧t) (2.23)
If a fixed ultimate forward rate (UFR) is defined exogenously, one can increase or decrease the parameter a, to achieve a convergence of f M (0, t) to f ∞ at a prespecified maturity. A period of convergence τ cv after the Last Liquid Point (LLP) is defined. Starting from a low value such as a = 0.1, a is increased until:

f M (0, LLP + τ cv ) = f ∞ or |f M (0, LLP + τ cv ) -f ∞ | < tol
for a given σ, and a given numerical tolerance tol.

Otherwise, an ultimate forward rate (UFR) can be derived from market data. A static discount curve is fitted to a fraction of the quoted swaps available, called the training set. After the construction of the curve on this fraction of the data, we evaluate how well, when extrapolated to a given exogenous UFR, it would price the remaining swaps in a test set.

The LLP provided by the prudential authority (as of 2016, a maturity 20 years), could be used to define the frontier between the training and test set. Otherwise, one can define a percentage of the swaps data to be used as a training dataset, for example 80% or 90% of the available swaps.

Both of these methods for curve extrapolation are applied in the numerical examples, in section 2.4.

Forecasting with Functional PCA

The idea that a few principal components explain a major part of the changes in bonds returns originates from [START_REF] Robert B Litterman | Volatility and the yield curve[END_REF]. This idea is now well accepted and applied to yield curve forecasting; the interested reader could refer to [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF] or [START_REF] Christensen | The affine arbitrage-free class of Nelson-Siegel term structure models[END_REF] for example.

We use a similar rationale, but apply it somewhat differently. The changes in the swap curve over time, are explained by the changes observed in the calibrated parameters b i s over time. Considering the fact that our model for fitting each cross section of yields is already overparametrized (as it uses at least as much parameters as swap rates available in the input dataset), the use of models such as an unrestricted Vector Autoregressive (VAR) to predict the b i s could lead to poor forecasts, with high variance.

Functional Principal Components Analysis in the spirit of [START_REF] James | Some tools for functional data analysis[END_REF] and [START_REF] Ramsay | Springer Series in Statistics[END_REF], and more precisely Functional Principal Components Regression, was hence seen as one of the most immediate candidate to achieve a reduction of the problem's dimension. This method is used for example by [START_REF] Rob | Robust forecasting of mortality and fertility rates: a functional data approach[END_REF] for forecasting log mortality rates. It has also been applied in finance, for example in [START_REF] Benko | Functional data analysis with applications in finance[END_REF].

We consider functional data of the form:

b a,σ x (t) (2.24)
These are the parameters b i s obtained by fitting each cross section of swap rates; observed at increasing times t ∈ {t 1 , . . . , t N }, for increasing maturities x ∈ {x 1 , . . . , x p }.

The calibration method is the one described in section 2.2.3, with a and σ kept fixed over time.

Finding the Functional Principal Components

Using the approach described in details in [START_REF] Ramsay | Springer Series in Statistics[END_REF], we let B be the matrix containing at line i and column j:

B i,j = b a,σ x j (t i ) (2.

25)

With i = 1, . . . , N and j = 1, . . . , n, n > p. For each cross section of b i s calibrated at time t i , a cubic spline interpolation is applied to x → b a,σ x (t i ), so that the b i s values are now equally spaced on a larger grid of maturities spanning [x 1 , x p ]. Let w be the fixed interpolation step applied to x → b a,σ

x (t i ) on [x 1 , x p ], and:

V = 1 N B T B (2.26)
V is the covariance matrix of the b i 's, when we consider that the columns of B have been centered. We are then looking for the vectors ξ a,σ , the (approximate) functional principal components, verifying:

wVξ a,σ = ρξ a,σ (2.27) 
This is equivalent to searching the eigenvalues and eigenvectors of V, so that:

Vu = λu (2.28)
and ρ = wλ. This problem of finding eigenvalues and eigenvectors of V is typically solved by using the Singular Value Decomposition (SVD) of B, and taking the normalized right singular vectors as functional principal components. The interested reader can refer to [START_REF] Jolliffe | Principal component analysis and factor analysis[END_REF] and [START_REF] Ramsay | Springer Series in Statistics[END_REF] for details. Another interesting resource on Functional Principal Component Analysis is [START_REF] Lin | A survey of functional principal component analysis[END_REF].

Forecasting using Principal Components regression

Having obtained the functional principal components, a least squares regression of the cross sections of b i s is carried out. The b i s are expressed as a linear combination of the previously constructed functional principal components, plus an error term:

∀t ∈ {t 1 , . . . , t N } , b a,σ x (t) = β t,0 + K k=1 β t,k ξ a,σ k (x) + t (x) (2.29)
K is the number of functional principal components. These functional principal components are not highly correlated by construction, so that we can use univariate time series forecasts for each of the K + 1 time series, and h-step ahead forecasts of the b i s as:

ba,σ x (t + h) = βt+h|t,0 + K k=1 βt+h|t,k ξ a,σ k (x) (2.30)
Once the forecasts ba,σ x (t + h) are obtained, they can be plugged into formulae from section 2.2.2 to deduce h-step ahead forecasts for the discount factors and discount rates.

For choosing good values for a, σ and K, we typically used a cross-validation on grids of values for these three parameters, and rolling origin estimation/forecasting, as described in section 2.4.

Numerical examples

In order to illustrate how the methods described in the previous sections work, we use IRS and OIS data from [START_REF] Andersen | Discount curve construction with tension splines[END_REF], [START_REF] Leif | Interest rate modeling[END_REF], [START_REF] Ferdinando | Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask[END_REF], an example of bonds data from [START_REF] Patrick | Interpolation methods for curve construction[END_REF]; a curve where all cubic splines produce negative forward rates. For forecasting the curves, we use market EUR 6M IRS data, (from which we give detailed summaries) with a CRA adjustment equal to 10bps.

For the data from [START_REF] Leif | Interest rate modeling[END_REF], we assume that the swaps cash-flows payments occur on an annual basis as for OIS. From [START_REF] Ferdinando | Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask[END_REF], we consider mid quotes from Eonia OIS and 6-month Euribor IRS as of December 11, 2012. These data sets are all reproduced in the appendices.

In section 2.4.1, four calibration methods are tested to illustrate section 2.2.3. The method proposed in this paper1 is denoted by CMN. It is compared to two iterative curve calibration methods, with linear (LIN) and natural cubic splines (SPL) interpolation on missing dates, and the [SW01] method (SW). Section 2.4.1 also illustrates 2.2.3. We use a dataset from [START_REF] Andersen | Discount curve construction with tension splines[END_REF]; a direct bootstrapping without regularization produces wiggly spot and forward rates. The effects of the regularization of approximate second derivative for forward rates and calibrated b i 's is illustrated. Such a regularization could also be applied to noisy bonds data.

In section 2.4.1, the interpolation method is tested on a curve where all cubic methods produce negative forward rates, from [START_REF] Patrick | Interpolation methods for curve construction[END_REF]. Section 2.4.2 illustrates the possible extrapolation methods described in section 2.2.3. 2.4.3 illustrates the curves' forecasting method introduced in section 2.3.

The discount factors usually display no particular subtleties, so they are deliberately omitted. We present discount rates and discrete forwards instead, and the discrete forwards are taken to be 3-month forward rates.

Curve calibration

On swaps data from [AP10]

Below on figures 2.3, 2.4, 2.5, 2.6, are the discount rates and discrete forwards obtained for the four methods described in the previous section; two bootstrapping methods, with linear (LIN) and natural cubic splines (SPL) interpolation on missing dates, the [SW01] method (SW), and the method described in 2.2.3 with an exact fit, denoted as CMN. The discount rates are presented as a dashed line, and the forward rates as a plain colored line. As demonstrated on figures 2.3, 2.4, 2.5 and 2.6, the discount rates produced by the four methods are quite similar. The discrete forward rates better exhibit the differences between them. Curve construction with linear interpolation between quoted swaps maturities (on figure 2.3), produces a saw-tooth like forward curve, which might not be desirable, and the other methods produce more regular forward curves.

For the method described in this paper -denoted as CMN on figure 2.4 -and applied to the extended Vasicek model, the discrete forwards (with an exact fit required, as described in section 2.2.3) reflect the fact that the discount factors' construction relies on a piece-wise constant function, with slight changes in first derivatives at quoted swap maturities. This effect remains very reasonable however, as the discrete forward curve is highly similar to those produced by the other models, and doesn't exhibit large changes at quoted swap maturities.

With a=0.2557, σ=0.1636, the parameters b i s from table 2.1 are obtained. They are presented along with the parameters ξ i s obtained by the method in [START_REF] Smith | Fitting yield curves with long term constraints[END_REF], with a = 0.1. a = 0.1 is actually given as default parameter by Solvency II's technical specifications, and using the notations from QIS5 technical specifications.

On noisy swaps data

This section illustrates what may happen if the method from section 2.2.3 is applied directly to noisy data, without regularization of the parameters. We use data from [START_REF] Andersen | Discount curve construction with tension splines[END_REF]. In order to pick λ 1 and λ 2 , we make a grid search on couples (λ 1 , λ 2 ). For each (λ 1 , λ 2 ), a minimization based on derivatives is applied, with multiple restarts of the minimization algorithm. Multiple restarts avoid getting trapped into local minima. 

On a curve where all cubic methods produce negative forward rates, with data from [HW06]

The dataset from this section is used in [START_REF] Patrick | Interpolation methods for curve construction[END_REF], and is described as a curve where all cubic methods produce negative forward rates. It is reproduced in the appendices.

Figure 2.9 illustrates the discount rates (dashed line), and discrete forward rates (plain coloured line) obtained with a linear interpolation of the bond yields. The discrete forward remain positive on all maturities, but again exhibit a sawtooth profile. As expected, the natural cubic spline on figure 2.10 produces negative discrete forward rates on this dataset.

Figures 2.11 and 2.12 present the results obtained on data from [START_REF] Patrick | Interpolation methods for curve construction[END_REF]. Figure 2.12 presents the sign of discrete forward rates as a function of a and σ. We consider that discrete forward rates' sign is negative if a least one discrete forward rate is negative. We observe on both figures 2.11 and 2.12 that a low value of a might produce negative forward rates on maturities comprised between 15 and 20. But a high value always produces positive forward rates. 

Curve extrapolation on data from [AB13]

In this section, we use the extrapolation methods described in 2.2.3, on OIS and IRS (with CRA adjustment equal to 10bps) data from [START_REF] Ferdinando | Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask[END_REF].

With Solvency II technical specifications, on IRS + CRA

Extrapolation to a fixed UFR equal to 4.2% is tested, using CMN and the Smith-Wilson method. For both methods, the Last Liquid Point (LLP) is equal to 20 years, and convergence to the UFR is forced to 40 years after the LLP.

For the CMN method, the parameters are a = 0.174 and σ = 0.0026, and for the Smith-Wilson method, a = 0.125. The resulting discount and forward curves are presented in figures 2.13 and 2.14, and the parameters b i s and ξ i s in table 2.4.

The discount and forward curves produced by both methods are similar, as seen on figures 2.13 and 2.14. The convergence of the Smith-Wilson method to the UFR seems to be slighty faster. This is caused by the fact that for CMN, we use instantaneous forward rates to assess the convergence to the UFR, whereas for the Smith-Wilson method, we use discrete forwards.

With OIS data, and a data driven UFR

For this example, we use OIS data from [START_REF] Ferdinando | Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask[END_REF] presented in the appendices. A training set containing 14 swap rates (90% of the dataset) with increasing maturities starting at 1 and ending at 20 is made up. .15 presents the out-of-sample RMSE obtained on swaps values from the test set, as a function of UFR. This error decreases until UF R = 0.0226 (notice that this value would depend on the step chosen on the grid of UFRs), and then, starts to increase again. Figure 2.16 displays the discount curve constructed on the training set, extrapolated to a 80-year maturity with an UFR equal to 0.0226 (the one minimizing the out-of-sample RMSE on the chosen grid of UFRs) is presented.

12-months ahead forecast on historical IRS + CRA

In this section, we apply ideas from section 2.3 to real world IRS data observed monthly from december 2013 to april 2016, adjusted from a CRA equal to 10bps.

Figure 2.17 and table 2.5 are to be read together. They contain the informations on the spot rates derived from the IRS data adjusted from a CRA, using CMN with a = 0.3655 and σ = 0.0037 (other values than a = 0.3655 and σ = 0.0037 would produce the same results as the fitting is exact for many different values of these parameters).

The static curves are generally upward sloping, and as time passes, lower and lower spot rates are encountered. In addition, negative rates are observed in table 2.5; which is coherent with the current context. 

CMN -auto.arima K = 5, a = 1, σ = 0.1555 0.0031 CMN -ets K = 5, a = 1, σ = 0.2 0.0037 NS -auto.arima λ = 1.8889 0.0031 NS -ets λ = 1.8889 0.0035 NSS -auto.arima λ 1 = 21, λ 2 = 21 0.0027 NSS -ets λ 1 = 7, λ 2 = 3 0.0035

Benchmarking the model

Benchmarks are subjective. The one presented in this section does not aim at showing that one method is always superior to the other. It aims at showing that the method presented in this paper produces forecasts which are (more than) reasonable, and actually close to other well-known methods forecasts (on this given dataset).

Forecasts from the model presented in section 2.3 are hence compared to those of two other models constructed in the spirit of by the [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF]. The cross sections of yields described by figure 2.17 and table 2.5 are fitted by the [NS87] model (NS), and its extension by [START_REF] Eo Svensson | Estimating and interpreting forward interest rates: Sweden[END_REF] (NSS). The formulas for the spot rates from these models are respectively:

R M (t, T ) = β t,1 + β t,2 1 -e -T /λ T /λ + β t,3 1 -e -T /λ T /λ -e -T /λ (2.31) and R M (t, T ) = β t,1 + β t,2 1 -e -T /λ 1 T /λ 1 + β t,3 1 -e -T /λ 1 T /λ 1 -e -T /λ 1 (2.32) + β t,4 1 -e -T /λ 2 T /λ 2 -e -T /λ 2 (2.33)
Forecasts RM (t+h, T ) are obtained by fitting univariate time series to the parameters β t,i , i = 1, . . . , 4 with automatic ARIMA (auto.arima) and exponential smoothing (ets) models from [START_REF] Hyndman | Automatic time series forecasting: The forecast Package for R[END_REF]. This automatic selection is done only for the sake of the benchmarking exercise, and in order to conduct the experience in fairly similar conditions for all the methods. In practice, a visual inspection and an actual study of the univariate time series would of course be required.

For all the methods the six methods, CMN, NS, NSS with auto.arima and ets, we obtain 12-months ahead forecasts, from rolling estimation windows of a fixed 6 months length, starting in december 2013. That is, the models are trained on 6 months data, and predictions are made on 12 months data; successively. The average out-of-sample RMSE are then calculated for each method, on the whole surface of observed and forecasted yields.

The best parameters for CMN are obtained by cross-validation, with K ∈ {2, 3, 4, 5, 6}, 5 values of a comprised between 0.9 and 1, and 10 values of σ comprised between 0 and 0.2. For NS and NSS, λ 1 and λ 2 are chosen by cross-validation, using the rolling estimation/forecasting we have just described.

Bootstrap simulation of 12-months ahead spot rates

In this section, we use the last 12 months of the dataset to construct the functional principal components. Using 12 months as the length of the fixed window for estimation, we get an average out-of-sample RMSE of 0.0026 (on a smaller number of testing samples than the 6 months estimation window, of course).

An AR(1) is fitted to the observed univariate time series (β t,i ) t , i = 0, . . . , K, with a = 1, σ = 0.0089, and K = 3 chosen by cross-validation. The three functional principal components' characteristics are summarized in table 2.7. We notice that the first functional principal component explains already 99.2415% of the changes in b i s, and the first three functional principal components selected by cross-validation explain 99.9220%. 2.18 presents the autocorrelation functions of the residuals of AR(1) fitted to (β t,i ), i = 0, . . . , 3 from april 2015 to april 2016. The residuals from AR(1) fitted to (β t,i ) t , i = 1, . . . , 3 could be considered as stationary, but those from the AR(1) fitted to (β t,0 ) t seems to be closer to an AR(4).

We denote these residuals by ( t,i ) t , i = 0, . . . , 3. In order to obtain simulations for the (β t,i ) t , i = 0, . . . , 3, it is possible to use a Gaussian hypothesis on the residuals. We choose to create one thousand bootstrap resamples with replacement of the ( t,i ) t , i = 0, . . . , 32 , denoted as ( * t,i ) t , i = 0, . . . , 3, and create new pseudo values for (β t,i ), i = 0, . . . , 3:

β * t,i = β t,i + * t,i , i = 0, . . . , 3
Having done this, AR(1) forecasts β * t+h|t,i can be obtained, in order to construct: ba,σ, *

x (t + h) = β * t+h|t,0 + K k=1 β * t+h|t,k ξ a,σ k (x) (2.34)
The ba,σ, *

x (t+h) can then be plugged into formulae ?? and 2.13 to deduce simulations of h-step ahead forecasts for the discount factors and discount rates.

The simulations (1000) of 12-months ahead discount rates are presented in figures 2.19 and 2.20.

6-months and 36-months ahead forecast on longer historical data

In this second example, we use interest rate swaps data from the Federal Reserve Bank of St Louis website3 observed monthly, from july 2000 to september 2016, with maturities equal to 1, 2, 3, 4, 5, 7, 10, 30, and a tenor equal to three months. We transformed these swap rates into zero rates by using a single curve calibration (that is, ignoring the counterparty credit risk) with linear interpolation between the maturities; one of the methods used in section 2.4.1. Then, as in the previous section, NS, NSS, CMN are used for fitting and forecasting the curves, with auto.arima applied to the factors.

We obtain 6-months and 36-months ahead forecasts, from rolling training/testing windows (as in the last section) with respectively, a fixed 6 and 36 months length.

The average out-of-sample RMSE are then calculated for each method, on the whole set of observed and forecasted yields.

The best hyperparameters -associated with the lowest out-of-sample average RMSEfor each model are obtained through a search on a grid of values. For a 6-months horizon, they are (using the notations from section 2.4.3):

• NS: λ = 1.6042

• NSS: λ 1 = 1.6250 λ 2 = 1.6250 • CMN: a = 177.8279, σ = 3.9473e -04, K = 6
and for a 36-months horizon:

• NS: λ = 1.4271

• NSS: λ 1 = 1.575 λ 2 = 1.575
• CMN: a = 14.6780, σ = 0.0011, K = 4

The following results are obtained for the out-of-sample average RMSE: 

Conclusion

In this paper, we introduced a method for swap discount curve construction and extrapolation. This method relies on the closed form formulas for discount factors available in exogenous short-rate models. We presented different ways to calibrate and extrapolate the model on different data sets from the existing literature. Moreover, we showed that the model's parameters contain a certain predictive power, enabling to obtain swap curves' forecasts, with predictive distribution. 

3
Multiple time series forecasting using quasi-randomized functional link neural networks

Introduction

In this chapter, we are interested in obtaining forecasts for multiple time series, by taking into account the potential nonlinear relationships between their observations. This type of problem has been tackled recently by [START_REF] Exterkate | Nonlinear forecasting with many predictors using kernel ridge regression[END_REF], who applied kernel regularized least squares to a set of macroeconomic time series. The Long Short-Term Memory neural networks (LSTM) architectures (introduced by [START_REF] Hochreiter | Long short-term memory[END_REF]) are another family of models, which are currently widely used for this purpose. As a basis for our model, we will use (quasi-)randomized neural networks known as Random Vector Functional Link neural networks (RVFL networks hereafter)

The forecasting method described in this chapter, provides useful inputs for Insurance quantitative Risk Management models; the interested reader can refer to [START_REF] Bonnin | Un modèle de projection pour des contrats de retraite dans le cadre de l'ORSA[END_REF] for example.

To the best of our knowledge, randomized neural networks were introduced by [START_REF] Wouter | Feedforward neural networks with random weights[END_REF], and the RVFL networks were introduced by [START_REF] Pao | Learning and generalization characteristics of the random vector functional-link net[END_REF]]. An early approach for multivariate time series forecasting using neural networks is described in [START_REF] Chakraborty | Forecasting the behavior of multivariate time series using neural networks[END_REF]. They applied a back propagation algorithm from [START_REF] De Rumelhart | Learning internal representations by error propagation[END_REF] to trivariate time series, and found that the combined training of the series gave better forecasts than a separate training of each individual series. The novelty of the approach described in this chapter is to derive an RVFL model for multiple time series, under two separate regularization constraints on the parameters, as it will be described in details in section 3.2.3.

RVFL networks are multilayer feedforward neural networks, in which there is a direct link between the predictors and the output variable, aiming at capturing the linear relationships. In addition to the direct link, there are new features: the hidden nodes (the dataset is augmented), that help to capture the nonlinear relationships between the time series. These new features are obtained by random simulation over a given interval. More details on the direct link and the hidden nodes will be provided in the next section.

The RVFL networks have been successfully applied to solving different types of classification and regression problems; see for example [START_REF] Dehuri | A comprehensive survey on functional link neural networks and an adaptive PSO-BP learning for CFLNN[END_REF]. More specifically, they have been applied to univariate time series forecasting by [START_REF] Ren | Random vector functional link network for short-term electricity load demand forecasting[END_REF]. A comprehensive survey can be found in [START_REF] Zhang | A comprehensive evaluation of random vector functional link networks[END_REF]; where a large number of model specifications are tested on classification problems, including changing the range of hidden layer's randomization.

Here, we will use RVFL networks with one hidden layer. And instead of relying on fully randomized nodes, we will use sequences of deterministic quasi-random numbers. Indeed, with fully randomized nodes, the model fits obtained are dependent on the choice of a simulation seed. Typically, a different fitting solution would be obtained for each seed.

In our various numerical examples from section 5.4, we will apply the RVFL networks to forecasting trivariate time series, notably (but not only) in a Dynamic Nelson Siegel (DNS) framework (see [START_REF] Charles R Nelson | Parsimonious modeling of yield curves[END_REF], [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF]). We will obtain point forecasts and predictive distributions for the series, and see that in this RVFL framework, one (or more) variable(s) can be stressed, and influence the others. More precisely, about this last point, it means that it is possible, as in dynamic regression models ( [START_REF] Pankratz | Forecasting with dynamic regression models[END_REF]) to assign a specific future value to one regressor, and obtain forecasts of the remaining variables. Another advantage of the model described here, is its ability to integrate multiple other exogenous variables, without overfitting in-sample data.

Description of the model

The general procedure for obtaining the model's optimal parameters and predictions is summarized in figure 3.1.

This procedure is described in details in the next sections, especially sections 3.2.3 and 3.2.4. We rely on single layer feed forward neural networks (SLFN). Considering that an output variable y ∈ R n is to be explained by a set of observed predictors Z (j) ∈ R n , j ∈ {1, . . . , p}, the RVFL networks we will use to explain y can be described for i ∈ {1, . . . , n} as:

y i = β 0 + p j=1 β j Z (j) i + L l=1 γ l g ⎛ ⎝ p j=1 W (j,l) Z (j) i ⎞ ⎠ + i
g is called activation function, L is the number of nodes in the hidden layer, W (j,l) are elements of the hidden layer, and the parameters β j and γ l are to be learned from the observed data Z (j) , j ∈ {1, . . . , p}. The i 's are the residual differences between the output variable values and the RVFL model.

This type of model can be seen as a one explaining y i , by finding a compromise between linear and potentially non-linear effects of the original predictors Z (j) and transformed predictors

Φ(Z) (l) = g ⎛ ⎝ p j=1 W (j,l) Z (j) i ⎞ ⎠
{1, . . . , L} on the response. Common choices for function g in neural networks regression are the sigmoïd activation function

g : x → 1 1 + e -x
the hyperbolic tangent function,

g : x → tanh(x) = e x -e -x e x + e -x
or the Rectified Linear Units, known as ReLU

g : x → max(x, 0)
The main differences between the RVFL framework and a classical SLFN framework are:

• The inclusion of a linear dependence between the output variable and the predictors: the direct link, β 0 + p j=1 β j Z (j) i

• The elements W (j,l) of the hidden layer are typically not trained, but randomly and uniformly chosen on a given interval. Different ranges for these elements of the hidden layer are tested in [START_REF] Zhang | A comprehensive evaluation of random vector functional link networks[END_REF]).

Solving for the optimal parameters β j 's and γ l 's can be done by applying directy a least squares regression of y on the set of observed and transformed predictors. But since these input predictors are likely to be highly correlated -especially in our setting, with time series data -we do not search each of these parameters on the entire line, but in restricted regions where we have:

p j=1 β 2 j ≤ u and L l=1 γ 2 l ≤ v for u, v ∈ R * .
That is, applying some kind of Tikhonov regularization or ridge regression model ([HK70]) of y on the set of observed and transformed predictors.

Having two constraints instead of one, allows for more flexibility in the covariance structure between the predictors and the output, with β j 's and γ l 's moving in separate balls. For these constraints to be applicable, the input variables will need to be standardized, so as to be expressed on the same scales, and the response variable will be centered.

Imposing these restrictions to the model's parameters increases their interpretability -by reducing their variance -, at the expense of a slight increase in in-sample bias. It also prevents the model from overfitting the data as in ridge regression ( [START_REF] Arthur | Ridge regression: Biased estimation for nonorthogonal problems[END_REF]). One of the advantages of RVFL networks is that they are relatively fast to train, due to the availability of closed-form formulas for the model's parameters, as it will be presented in the next section.

On the other hand, RVFL networks incorporate some randomness in the hidden layer, which makes each model relatively dependent on the choice of a simulation seed.

Each seed would indeed produce a different set of parameters β j 's and γ l 's for the model. For that reason, we will also use sequences of deterministic quasi-random numbers in the hidden layer. The elements W (j,l) of the hidden layer are taken from a quasi-random (deterministic) sobol sequence on [0, 1], which is shifted in such a way that they belong to [-1, 1].

Sobol sequences are part of quasi-random numbers, which are also called low discrepancy sequences. As described intuitively in [START_REF] Phelim | Quasi-Monte Carlo methods[END_REF], the discrepancy of a sequence of N points in a subcube V ∈ [0, 1) d is defined as:

sup V ∈[0,1) d | number of points in V N -v(V )|
where v(V ) is the volume of V . It describes how well the points are dispersed within V . The idea is to have points which are more or less equidispersed in V . [START_REF] Joe | Notes on generating Sobol sequences[END_REF] describe the generation of the i th term, j th component (x i,j ) of a Sobol sequence. The generation starts with obtaining the binary representation of i. That is, obtaining i as:

i = k i k 2 k = (. . . i 3 i 2 i 1 ) 2
For example, 5 = 1 × 2 2 + 0 × 2 1 + 1 × 2 0 can be expressed as (101) 2 in binary representation. Then, by using the sequence of bits describing i in base 2, we can obtain x i,j as:

x i,j = i 1 v 1,j ⊕ i 2 v 2,j ⊕ . . . (3.1)
Where ⊕ is a bitwise exclusive-or operation, and the numbers v i,j are called the direction numbers, defined for k ≥ 1 as:

v k,j = m k,j 2 k = 2a 1,j m k-1,j ⊕ 2 2 a 2,j m k-2,j ⊕ . . . ⊕ 2 s j -1 a s j -1,j m k-s j +1,j ⊕ 2 s j m k-s j ,j ⊕ m k-s j ,j 2 k (3.2)
A few details on equation 3.2:

• The bitwise exclusive-or operation ⊕ applied to two integers p and q ∈ {0, 1} returns 1 if and only if one of the two (but not both) inputs is equal to 1. Otherwise, p ⊕ q is equal to 0.

• The second term of the equation relies on primitive polynomials of degree s j , with coefficients a i,j taken in {0, 1}:

x s j + a 1,j x s j -1 + a 2,j x s j -2 + . . . + a s j -1,j x + 1 (3.3)
• The terms m k,j are obtained recursively, with the initial values m 1,j , m 2,j , . . . , m k-s j ,j chosen freely, under the condition that m k,j , 1 ≤ k ≤ s j is odd and less than 2 k .

A more complete treatment of low discrepancy sequences can be found in [START_REF] Niederreiter | Random number generation and quasi-Monte Carlo methods[END_REF].

And an example with s j = 3, a 1,j = 0, a 2,j = 1 is given in [START_REF] Joe | Notes on generating Sobol sequences[END_REF].

Applying RVFL networks to multivariate time series forecasting

We consider p ∈ N * time series (X (j) t ) t≥0 , j = 1, . . . , p, observed at n ∈ N * discrete dates. We are interested in obtaining simultaneous forecasts of the p time series at time n + h, h ∈ N * , by allowing each of the p variables to be influenced by the others (in the spirit of VAR models, see [START_REF] Lütkepohl | New introduction to multiple time series analysis[END_REF]).

For this purpose, we use k < n lags of each of the observed p time series. The output variables to be explained are:

Y (j) = X (j) n , . . . , X (j) k+1 T (3.4) 
for j ∈ {1, . . . , p}. Where X (j) n is the most contemporaneous observed value of the j th time series, and X (j) k+1 was observed k dates earlier in time for (X (j) t ) t≥0 . These output variables are stored in a matrix:

Y ∈ R (n-k)×p
and the predictors are stored in a matrix:

X ∈ R (n-k)×(k×p)
where X consists in p blocks of k lags, for each one of the observed p time series. For example, the j th 0 block of X, for j 0 ∈ {1, . . . , p} contains in columns:

X (j 0 ) n-i , . . . , X (j 0 ) k+1-i T (3.5)
with i ∈ {1, . . . , k}. It is also possible to add other regressors, such as dummy variables, indicators of special events, but for clarity, we consider only the inclusion of lags.

As described in the previous section, an additional layer of transformed predictors is added to X, in order to capture the potentially non-linear interactions between the predictors and the output variable. Adding the transformed predictors to the original ones, leads to a new matrix of predictors with dimensions (n-k)×(k ×p+L), where L is the number of nodes in the hidden layer. We are then looking for simultaneous predictions X(j) n+h|n,...,1 =: X(j) n+h for h ∈ N * , and j ∈ {1, . . . , p}. This, is a multi-task learning problem (see [START_REF] Caruana | Multitask learning[END_REF]), in which the output variables will all share the same set of predictors.

For example, we have p = 2 time series (X

(1)

t 1 , . . . , X (1) 
t 5 ) and (X

(2)

t 1 , . . . , X (2) 
t 5 ) observed at n = 5 dates t 1 < . . . < t 5 , with k = 2 lags, and L = 3 nodes in the hidden layer. In this case, the response variables are stored in:

Y = ⎛ ⎜ ⎜ ⎝ X (1) t 5 X (2) t 5 X (1) t 4 X (2) t 4 X (1) t 3 X (2) t 3 ⎞ ⎟ ⎟ ⎠
The predictors are stored in:

X = ⎛ ⎜ ⎜ ⎝ X (1) t 4 X (1) t 3 X (2) t 4 X (2) t 3 X (1) t 3 X (1) t 2 X (2) t 3 X (2) t 2 X (1) t 2 X (1) t 1 X (2) t 2 X (2) t 1 ⎞ ⎟ ⎟ ⎠
And the coefficients in the hidden layer are:

W = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ W (1,1) W (1,2) W (1,3) W (2,1) W (2,2) W (2,3) W (3,1) W (3,2) W (3,3) W (4,1) W (4,2) W (4,3) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

Solving for β's and γ's

We let y be the j th 0 column (out of p) of the response matrix Y, and Φ(X) be the matrix of transformed predictors obtained from X by the hidden layer described at the beginning of section 3.2.1. We also denote the set of regression parameters associated with this j th 0 time series, as: 

β (j 0 ) m =:
L(X; β, γ) = (y -Xβ -Φ(X)γ) T (y -Xβ -Φ(X)γ) + λ 1 β T β + λ 2 γ T γ
where λ 1 and λ 2 are Lagrange multipliers. Taking the first derivatives of L relative to β and γ leads to:

∂L(X; β, γ) ∂β = -y T X -X T y + 2(X T X)β + X T Φ(X)γ + (Φ(X)γ) T X + 2λ 1 β = 2(X T X + λ 1 I k×p )β -y T X -X T y + X T Φ(X)γ + (Φ(X)γ) T X = 2(X T X + λ 1 I k×p )β -2X T y + 2X T Φ(X)γ
where I k×p is the identity matrix with dimensions (k ×p)×(k ×p) and equivalently

∂L(X; β, γ) ∂γ = 2(Φ(X) T Φ(X) + λ 2 I L )γ -2Φ(X) T y + 2Φ(X) T Xβ
where I L is the identity matrix with dimensions L × L. And setting these first derivatives to 0 leads to:

(X T X + λ 1 I k×p )β + X T Φ(X)γ = X T y (Φ(X) T Φ(X) + λ 2 I L )γ + Φ(X) T Xβ = Φ(X) T y
That is:

X T X + λ 1 I k×p X T Φ(X) Φ(X) T X Φ(X) T Φ(X) + λ 2 I L β γ = X T y Φ(X) T y 3.2 Description of the model
Now, if we denote:

A = X T X + λ 1 I k×p X T Φ(X) Φ(X) T X Φ(X) T Φ(X) + λ 2 I L =: B C T C D
and S = D -CB + C T . Then, using the algorithm described in [START_REF] Thomas H Cormen | Introduction to algorithms[END_REF] for blockwise matrix inversion, we obtain:

A + = B + + B + C T S + CB + -B + C T S + -S + CB + S + =: A + 1 A + 2 A + 3 A + 4
where S + and B + are the Moore-Penrose pseudo-inverse ([Pen55]) of matrixes S and B. Hence for each column y of Y, we have the solutions:

β γ = A + 1 A + 2 A + 3 A + 4 X T y Φ(X) T y
And the whole set of parameters, for all the p observed time series is given by:

β γ := A + 1 A + 2 A + 3 A + 4 X T Y Φ(X) T Y
The objective function to be minimized (the least squares) is convex, and so is the set of feasible solutions. The solutions β and γ found here, are hence global minima.

h-steps ahead forecasts and use of dynamic regression

Having obtained the optimal set of parameters β and γ as described in the previous section, a new set of predictors is constructed by using the former output variables contained in response matrix Y's columns. The first k elements of each one of the p columns of Y, which are the most contemporaneous values of the p series, constitute the new predictors.

Hence, if we denote the new predictors as:

X * n = X (1) n , . . . , X (1) 
n-k+1 , . . . , . . . , X (p) n , . . . , X (p) n-k+1

(3.6)

The 1-step ahead forecasts are obtained as:

X(1) n+1 , . . . , X(p) n+1 = (X * n Φ(X * n )) β γ
The h-step ahead forecasts are obtained in a similar fashion; with the new forecasts X(1) n+1 , . . . , X(p) n+1 being added to the set of most contemporaneous values of the p series, and used as part of the new predictors.

In order to obtain confidence intervals around the point forecasts, we fit an ARIMA model to the in-sample residuals i of each one of the p time series, as in dynamic regression models (see [START_REF] Pankratz | Forecasting with dynamic regression models[END_REF]). An illustration can be found in the next section. Other models for the autocorrelated residuals could be envisaged, though.

Numerical examples

A Dynamic Nelson-Siegel example

The following examples are not exhaustive benchmarks, but aim at illustrating the forecasting capabilities of the model described in this chapter. All the results on RVFL use the ReLU activation function. We use calibrated discount rates data from Deutsche Bundesbank website, observed on a monthly basis, from the beginning of 2002 to the end 2015. There are 167 curves, observed at 50 maturities in the dataset. We obtain curves' forecasts in a Dynamic Nelson Siegel [NS87] framework (DNS), in the spirit of [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF] and other similar models1 .

In figure 5.2, we present the data that we use, and table 5.1 contains a summary of these data; the minimum, maximum, median, first and third quartiles of the discount rates observed at given maturities. There are alternate cycles of increases and decreases of the discount rates, with generally a decreasing trend. Some of the discount rates, at the most recent dates, and lower maturities, are negative.

In the DNS framework, the spot interest rates observed at time t, for time to maturity τ are modeled as:

R t (τ ) = α 1,t + α 2,t 1 -e -τ /λ e -τ /λ + α 3,t 1 -e -τ /λ e -τ /λ -e -τ /λ (3.7)
The factor loadings 1, 1-e -T /λ e -T /λ and 1-e -T /λ e -T /λe -T /λ are used to represent the level, slope, and curvature of the Yield Curve. We obtain estimations of This type of model (DNS) cannot be used for no-arbitrage pricing as is, but it could be useful for example, for stressing the yield curve factors under the historical probability. It can however be made arbitrage-free, if necessary (see [START_REF] Francis | Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach[END_REF]). We will benchmark the RVFL model applied to the three time series α i,t , i = 1, . . . , 3, We will apply to these parameters' series: an ARIMA model ([HK08]), and a Vector Autoregressive model (VAR, see [START_REF] Pfaff | VAR, SVAR and SVEC models: Implementation within R package vars[END_REF] and [START_REF] Lütkepohl | New introduction to multiple time series analysis[END_REF]); with the parameter λ of the DNS factor loadings, used as an hyperparameter for the time series cross-validation.

Tab. 3
In the RVFL and the VAR model, the number of lags is also used as an hyperparameter for the cross-validation. For the RVFL, the most recent values of α i,t , i = 1, . . . , 3 are stored in matrix Y, as described in section 3.2.3, ordered by date of arrival, whereas matrix X contains the lags of the three series.

A rolling forecasting methodology (see [START_REF] Bergmeir | A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction[END_REF]) is implemented in order to obtain these benchmarks. A fixed 12 months-length window for training the model, and the following 12 months for testing, the origin of the training set is then advanced of 1 month, and the training/testing procedure is repeated. The measure of forecasting performance is the Root Mean Squared Error (RM SE). obtained by the different methods on the out-of-sample RM SE. Table 3.3 contains 95% confidence intervals around the mean of the differences between the three methods.

Another advantage of RVFL over ARIMA or AR(1) in this context is that, it would be possible to add other variables to the RVFL regression, such as inflation, or dummy variables for external events, and combine their effects. It is also possible to stress one variable, and see the effects on the other variables, as presented in the appendix section 3.5.1: the parameter α 1,t is increased (from 0.75 to 1.25) and decreased (from 0.75 to 0.25), and the other parameters α 2,t and α 3,t forecasts move slightly, consecutively to these stresses. The corresponding median forecast curves for these stresses, and some additional ones, are presented in figure 3.5.

Forecasting 1 year, 10 years and 20 years spot rates

For this second example, we forecast the 1-year, 10-years and 20-years spot rates time series from the previous dataset, on a 12-months horizon. As described in the previous section, we use a rolling forecasting methodology, with a training window of 12 months length. The three time series globally exhibit a decreasing trend, and are highly positively correlated. The spot rates for short-term maturities can also be negative, as it has On figure 3.7, we present three of the eight time series of swap rates, observed for time to maturities equal to 3, 10 and 30. The swap rates for different maturities generally exhibit a decreasing trend, and are nearly equal to 0 by the end of 2016, for the shortest maturities. We also observe that the spreads between swap rates with different maturities start to narrow in 2006 until the end of 2007, and the swap rates for short term maturities are relatively high during the same period. This is the period corresponding to the The number of nodes in the hidden layer is equal to 45, and the value of λ, parameter from the [NS87] model presented in section 3.3.1, is fixed and equal to 24. The one hundred points (log(λ 1 ), log(λ 2 ), log(RM SE)) that we use for figure 3.9 can be found in appendix 3.6.3.

There is a rectangular region at the top, in the middle of the figure, where the log(RM SE) is the lowest. In this region, the lowest value of the out-of-sample log(RM SE) is observed for λ 1 = 4.6416 and λ 2 = 464.1589 and the out-of-sample RM SE is equal to 0.01206 (75 th point in appendix 3.6.3). 

Conclusion

We present a model which could be used for multiple time series forecasting, based on a single layer quasi-randomized neural network. In this model, the lags of the different time series are used as in a dynamic regression model, and include the response variable lags. An additional layer of variables is added to the regression, whose nodes are not trained but obtained from a low discrepancy sequence. It is possible to add new variables to the regression, as indicators of special events, or to stress one variable, and observe the implied effect on the others' forecast. The model is tested on raw historical spot rates, and in a Dynamic Nelson Siegel framework. It produces robust forecast results when compared to other usual (unpenalized) models in the same framework.

3.5 Appendix Multiple time series forecasting using ensembles of quasi-randomized functional link neural networks

Introduction

The goal of ensemble learning is to combine two or more individual statistical/machine learning models -the base models or base learners -into one, in order to obtain an ensemble model, with an improved out-of-sample error over the base models.

Ensemble learning is widely used in the winning solutions of machine learning competitions. It allows to achieve very good performances indeed, at the expense of being relatively less interpretable than the base learners. As a consequence, choosing to use ensemble models or a base model for solving a given problem, could sometimes be seen as finding a trade-off between the desire for interpretability and the desire for an highly increased performance. That said, some techniques such as variable importance for ensemble of trees, can give a sense of which predictor contributes the most to the perfomance of the model.

In this chapter, we apply three popular ensemble learning methods to multiple time series forecasting: Bootstrap aggregating ([Bre96a]), known as bagging, Boosting ([Fri01], [START_REF] Bühlmann | Boosting with the L 2 loss: regression and classification[END_REF], [START_REF] Hothorn | Model-based boosting 2.0[END_REF]), and stacked generalization([Wol92]), known as stacking. The base learners that we use for bagging and stacking, are the quasi-random vector functional link neural networks introduced in [START_REF] Moudiki | Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks[END_REF]. For the boosting algorithm, we use a slightly modified version of the model from [START_REF] Moudiki | Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks[END_REF], in which the regression model parameters are not constrained in a ridge regression fashion (more details in section 4.2).

In the next section, we give an overview of the base learners. Then, we describe how we use these models as the basic components of our bagged/stacked ensembles.

To finish, we present some numerical examples of use of these new models for forecasting multiple time series.

Description of the base models

The base learner is described in details in [START_REF] Moudiki | Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks[END_REF]. It is a single layer feed forward neural networks (SLFN). We have an output variable y ∈ R n , which has to be explained by a set of observed predictors X (j) ∈ R n , j ∈ {1, . . . , p}. The RVFL networks that we use to explain y is described for i ∈ {1, . . . , n} as:

y i = β 0 + p j=1 β j X (j) i + L l=1 γ l g ⎛ ⎝ p j=1 W (j,l) X (j) i ⎞ ⎠ + i (4.1)
Where g is the activation function, L the number of nodes in the hidden layer, W (j,l) are elements of the hidden layer, and the parameters β j and γ l are to be learned from the observed data X (j) , j ∈ {1, . . . , p}. The i 's are the residual differences between the output variable values and the RVFL model.

This type of model can be seen as a one explaining y i , by finding a compromise between linear and potentially non-linear effects of the original predictors X (j) and transformed predictors

Φ(X) (l) = g ⎛ ⎝ p j=1 W (j,l) X (j) i ⎞ ⎠
{1, . . . , L} on the response. In this paper, we use the Rectified Linear Units activation function, known as ReLU g : x → max(x, 0)

But other choices of activation functions, such as the sigmoid function g : x → 1 1+exp(-x) or the hyperbolic tangent g : x → tanh(x) (or others) can be envisaged.

The elements W (j,l) of the hidden layer are taken from a quasi-random (deterministic) sobol sequence on [0, 1], which is shifted in such a way that they belong to [-1, 1]. In the case of bagged and stacked ensembles, solving for the optimal β j 's and γ l 's in the base-learners is done by searching these parameters, in restricted regions where we have:

p j=1 β 2 j ≤ u and L l=1 γ 2 l ≤ v for u, v ∈ R * .
That is, by applying a regularization to these unknown parameters.

In the case of boosting, we do not restrict the regression parameters' norms to be inferior to u and v. Instead, we rely on the boosting algorithm described in [START_REF] Hothorn | Model-based boosting 2.0[END_REF] (details in section 4.3.2), with the base-learners being the unrestricted regression models described by equation (4.1).

If we consider p ∈ N * time series (X (j) t ) t≥0 , j = 1, . . . , p, observed at n ∈ N * discrete dates, we are interested in obtaining simultaneous forecasts of the p time series at time n + h, h ∈ N * , by allowing each of the p variables to be influenced by the others. We use k < n lags of each of the observed p time series. So that, the output variables to be explained are:

Y (j) = X (j) n , . . . , X (j) k+1 T (4.2)
for j ∈ {1, . . . , p}. X

(j)
n is the most contemporaneous observed value of the j th time series, and X (j) k+1 was observed k dates earlier in time for (X (j) t ) t≥0 . These output variables are stored in a matrix:

Y ∈ R (n-k)×p
and the predictors are stored in a matrix:

X ∈ R (n-k)×(k×p)
where X consists in p blocks of k lags, for each one of the observed p time series.

An additional layer of transformed predictors is added to X, in order to capture the potentially non-linear interactions between the predictors and the output variable. This also serve as a way to do achieve an automated feature engineering. Adding the transformed predictors to the original ones, leads to a new matrix of predictors with dimensions (nk) × (k × p + L), where L is the number of nodes in the hidden layer.

For example, we have p = 2 time series (X (1)

t 1 , . . . , X (1) t 5 ) and (X (2) t 1 , . . . , X (2)
t 5 ) observed at n = 5 dates, t 1 < . . . < t 5 , with k = 2 lags, and L = 3 nodes in the hidden layer. In this case, the response variables are stored in:

Y = ⎛ ⎜ ⎜ ⎝ X (1) t 5 X (2) t 5 X (1) t 4 X (2) t 4 X (1) t 3 X (2) t 3 ⎞ ⎟ ⎟ ⎠

Description of the base models

The predictors are stored in:

X = ⎛ ⎜ ⎜ ⎝ X (1) t 4 X (1) t 3 X (2) t 4 X (2) t 3 X (1) t 3 X (1) t 2 X (2) t 3 X (2) t 2 X (1) t 2 X (1) t 1 X (2) t 2 X (2) t 1 ⎞ ⎟ ⎟ ⎠
And the coefficients in the hidden layer are:

W = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ W (1,1) W (1,2) W (1,3) W (2,1) W (2,2) W (2,3) W (3,1) W (3,2) W (3,3) W (4,1) W (4,2) W (4,3) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
We let y be the j th 0 column (out of p) of the response matrix Y, and Φ(X) be the matrix of transformed predictors obtained from X by the hidden layer. We also denote the set of regression parameters associated with this j th 0 time series, as: 

β (j 0 ) m =:
L(X; β, γ) = (y -Xβ -Φ(X)γ) T (y -Xβ -Φ(X)γ) + λ 1 β T β + λ 2 γ T γ
where λ 1 and λ 2 are Lagrange multipliers. Otherwise, without the constraints (in the case of boosting, see section 4.3.2), the problem to be solved is simply a least squares regression problem on the augmented dataset, as described in equation 4.2. By denoting:

A = X T X + λ 1 I k×p X T Φ(X) Φ(X) T X Φ(X) T Φ(X) + λ 2 I L =: B C T C D
and S = D -CB + C T . And:

A + = B + + B + C T S + CB + -B + C T S + -S + CB + S + =: A + 1 A + 2 A + 3 A + 4
where S + and B + are the Moore-Penrose pseudo-inverse of matrices S and B. The whole set of parameters, for all the p observed time series is given by:

β γ := A + 1 A + 2 A + 3 A + 4 X T Y Φ(X) T Y

Ensembles of RVFL

As mentioned in the introduction, we will use bagging, boosting, and stacking to construct ensemble models, consisting of the RVFL models from the previous section 4.2. A short description of these techniques will be made in next sections 4.3.1, 4.3.2 and 4.3.3.

Bagging

The Bootstrap ([ET86], [START_REF] Efron | Bootstrap methods: another look at the jackknife[END_REF]) uses multiple random replications of a given data set, to obtain standard errors of model parameters, for example. In the context of ensemble learning, these replications of the original data set are used to produce various predictions of the base models, which are then aggregated -in the case of regression problems, they are averaged, and in the case of classification problems, majority vote could be used -to obtain a single prediction with less out-of-sample variance. This procedure is called bootstrap aggregating or bagging.

In order to illustrate the benefits of the bagging procedure, we consider n different base learners, with out-of-sample prediction errors equal to 1 , . . . , n , and assume that the distribution of these errors are centered around 0:

E [ i ] = 0 4.3 Ensembles of RVFL
for i = 1, . . . , n. In addition, we have:

E [ i j ] = γ
for i = j; that is, the covariance between the errors is equal to γ. And:

V ar( i ) = σ 2
for i = 1, . . . , n. The out-of-sample mean squared error (MSE) of the aggregated (averaged) model including these n base models is equal to:

MSE = E ⎡ ⎣ 1 n n i=1 i 2 ⎤ ⎦ = 1 n 2 E ⎡ ⎣ n i=1 i 2 ⎤ ⎦ = 1 n 2 E ⎡ ⎣ n i=1 2 i + 2 i<j i j ⎤ ⎦ = 1 n 2 ⎛ ⎝ n i=1 E 2 i + 2 i<j E [ i j ] ⎞ ⎠ = 1 n 2 nσ 2 + 2 n(n -1) 2 γ = σ 2 n + (n -1) n γ
From this expression of the MSE, we can observe that if n is high (n → ∞), that is, if there are several base learners in the ensemble, and the out-of-sample expected error is low, the out-of-sample MSE of the ensemble prediction will decrease, and can eventually be reduced to γ. If, in addition, the model predictions are perfectly uncorrelated, i.e γ = 0, then the out-of-sample MSE is further decreased.

Having a low value for γ, along with a low out-of-sample expected error, helps in achieving a lower out-of-sample prediction error for the ensemble model. Decorrelation in ensemble learning is hence important, and consists in increasing the diversity in the base learners, in order to obtain a low value for γ.

This decorrelation among the base learners is achieved for example in Random Forest models [START_REF] Breiman | Random forests[END_REF], by growing each tree in the forest, with only a subset of the predictors available. Also, an example of use of decorrelation, specifically for ensembles of neural networks is demonstrated in [START_REF] Bruce E Rosen | Ensemble learning using decorrelated neural networks[END_REF]. The author presents three approaches for achieving disagreement between the networks: one in which they are trained independently and aggregated with the hope that their predictions are somewhat different; a second one, in which different activation functions or achitecture (typically, more or less hidden layers or nodes in the hidden layers etc.) for each base learner. A third approach consists in training the individual networks on different subsamples of the original training set. The case of decorrelation learning for RVFL is treated in [START_REF] Alhamdoosh | Fast decorrelated neural network ensembles with random weights[END_REF].

In both papers, [START_REF] Bruce E Rosen | Ensemble learning using decorrelated neural networks[END_REF] and [START_REF] Alhamdoosh | Fast decorrelated neural network ensembles with random weights[END_REF], the procedure implemented in order to obtain a decorrelation of the base learners is denoted as Negative Correlation Learning (NCL). The general idea is to minimize the penalized Root Mean Squared Error:

n i=1 (y i -f k (x i )) 2 + λp k (x i )
where x i ∈ R p is the i th observation of the training data set, with p features. f k is a base learner with k ∈ {1 . . . B}, and B is the number of bootstrap resamples. p k is a penalty term decorrelating the current network's error with the errors of the networks previously trained. λ is a Lagrange multiplier, a regularization parameter, preventing the correlation between the successive base learners in-sample errors from being high. For example, p k could be defined as:

p k (x i ) = (y i -f k (x i )) j<k (y i -f j (x i ))
In this chapter, we use the third approach described in [START_REF] Bruce E Rosen | Ensemble learning using decorrelated neural networks[END_REF] (although many other approaches can be envisaged), which is actually more subsampling than bootstrapping. Multiple samples (training) data sets are constructed by randomly picking a fraction col sample coeff of the covariates, and a subset (using the fraction row sample coeff) of the lines, as described in figure 4.1 (using notations from section 4.2).

Taking a subset of the lines is done by respecting the serial dependence of the series and taking consecutive observations (that is, without skipping any observation) for each bootstrap resample.

The predictions associated to each training set resample are then averaged, in order to obtain a single prediction, with an uncertainty around it. Some numerical examples on the application of bagging to RVFL base learners can be found in section 5.4 

Boosting

The boosting approach adopted here, is described in [START_REF] Hothorn | Model-based boosting 2.0[END_REF] and implemented in R package mboost. The general idea of the algorithm is to fit the in-sample residuals with base-learners, iteratively and slowly, but to stop learning before the out-of-sample error starts to worsen. With the response being y and the covariates stored in x, we are interested in constructing a regression function f , so that:

f (x) = B j=1 ν fj (x)
B is the number of boosting iterations, ν is a learning rate parameter preventing the base learners from fitting the residuals too quickly, and fj , j ∈ {1, . . . , B} are the base learners, which are obtained as:

f1 , . . . , fB = argmin f 1 ,...,f B ρ ⎛ ⎝ y, j νf j (x) ⎞ ⎠
In this expression, ρ is a loss function to be minimized (for example x → x 2 , or x → |x|). And in the case of multivariate time series, we are doing multitask learning. Each series (their most contemporaneous observations) share the same set of predictors (their lagged observations) as in the RVFL model described in section 4.2, but without regularization of the regression models' parameters.

The same number of boosting iterations and the same learning rate are used for all the observed time series. It would be possible to consider different numbers of iterations and different learning rates for each time series, but in this situation there would be as much as parameters as time series, and the regularization parameters would be trickier to optimize.

Stacking

Stacked generalization or stacking, was introduced in [START_REF] David | Stacked generalization[END_REF]. It is also presented in [START_REF] Breiman | Stacked regressions[END_REF] for regression models. The idea behind this procedure is to construct new predictors for the training data set, by using diverse predictions of multiple models, which are combined by a meta-learner model. A simple example of 2-fold stacking applied to regression is described hereafter. It is possible to imagine examples with more stacked layers:

• Divide the original training data set X ∈ R n×p , into two parts: part1 and part2, each with n/2 rows

• Train a base learner model on part1 and obtain n/2 predictions on part2.

• Train the same base learner model on part2 and obtain n/2 predictions on part1.

• Train a meta-learner model on the new data set part3, consisting in the original predictors, plus the predictors constructed by applying the base learner model on part1 and part2.

Typically, in this procedure, various types of base learners are used, to increate the diversity of new predictors. Since we are using time series data here, which inherently exhibit a serial dependence between the observations, we have to adapt the procedure described previously. In the case of a 2-fold stacking again, we divide the original training data set X ∈ R n×p (with p time series observed at n dates) into two parts: part1 and part2; each consisting of n/2 rows. part1 contains the most ancient observations and part2, the most recent observations of the time series contained in X. Also, we use multiple resamples of the base learner, as follows (this procedure is also described in figure 4.2):

• Train B resampled RVFL models on part1, using a random subset of part1 in each resampling iteration. Obtain B sets of predictions (B × p new predictors) with these models, over the whole horizon of part2.

• Create a new enriched data set part3, containing the observed time series from part2, and the B × p additional series predicted from part1 on part2.

• Use a meta-learning model to obtain predictions on the new, enriched dataset, part3.

For the latter point, we consider a few meta-learner models that have been used in the past in the literature ( [START_REF] Breiman | Stacked regressions[END_REF]). In general, the idea is that a relatively simple meta-learner will achieve a good performance. We use the following models for this purpose:

• Linear least squares regression model.

• Linear least squares regression model with positive coefficients ([LH74],

[LH95]), as used in [START_REF] Breiman | Stacked regressions[END_REF].

• Ridge regression ([HK70]).

These selected meta-learners are trained on part3, with the most contemporaneous observations of the series as responses, and their respective lags as predictors. Some numerical examples on the application of stacking to RVFL base learners can be found in section 5.4 

Numerical examples

For the numerical examples, we obtain forecast of the Treasury Bill rates among other macroeconomic variables, in a data-rich environment. We use data from [START_REF] William H Greene | Econometric analysis 4th edition[END_REF] (available at http://pages.stern.nyu.edu/~wgreene/Text/Edition7/ tablelist8new.htm with a description). Four of the time series are considered: the Treasury Bill rates, the real consumption, the consumer price index, and the real expenditure. They are all observed on a quaterly basis.

We annualize the last three time series, but keep the Treasury Bill rates unchanged. So that, the four time series are nearly on the same scale.

The out-of-sample Root Mean Squared Error (RMSE) is used as a measure of performance of the different implemented models.

The procedure for choosing the hyperparameters (number of boosting iterations, number of subsamples, etc.) is described in section , and the best hyperparameters can be found in table 4.4.2 4.1 contains a summary of these data, where we can see that the four time series are now nearly expressed in the same scale. The Box-Pierce tests ([BP70], [START_REF] Greta | On a measure of lack of fit in time series models[END_REF], [START_REF] Andrew | Time series models[END_REF]) results presented in table 4.2, and the autocorrelation functions presented in 4.4, show that the two time series for Real consumption and Real disposable income could be considered as stationary after the transformations. Whereas for the Treasury Bills rates and Inflation, there is still a non-negligible autocorrelation within the series.

Descriptive statistics

Another interesting information is given by figure 4.5. We observe that the distribution of the data for inflation and Treasury Bills rates is skewed, when compared to the data for Real consumption and Real disposable income.

Also, based on the correlations displayed in figure 4.5, the Real consumption is globally decreasing when the Treasury Bills rates and the inflation are increasing. But when the Real disposable income increases, the Real consumption increases as well. In section 4.4.2, we apply the bagging and stacking procedures described in sections 4.3.1 and 4.3.3 to the dataset we have just described.

A rolling forecasting cross-validation method (see [START_REF] Bergmeir | A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction[END_REF] and figure 5.3). At the beginning of the procedure, the training set contains 24 points (6 years), and the test set contains 4 points (1 year) and 8 points (2 years). The training set is then advanced of one point forward (rolled), and the procedure is repeated until no more data for the training set are found. For the bagging example, we use B = 100 resamples of the data, and calculate the average out-of-sample RMSE obtained by the ensemble model on all the testing sets (see figure 5.3). The dataset used, is the one defined as part3 in section 4.3.3.

For the boosting example, we use B = 10 boosting iterations of the least squares regression model from formula 4.1. The tuning parameters are the learning rate of the boosting algorithm denoted as ν, the number of nodes in the hidden layer for the base-learner nb hidden, the fraction of the initial time series considered as predictors col sample, the number of lags.

For the stacking example, The dataset used, is also the one defined as part3 in section 4.3.3. The tuning parameters are the number of boostrap resamples, B, and the hyperparameter of the ridge regression model is the regularization parameter.

Summary of results

A summary of the out-of-sample RMSE is presented in figure 4.7 in a logarithmic scale, for all the methods that we described and tested in the previous sections. The numerical values corresponding to these boxplots can be found in appendix 4.5.1, in their original scale.

The base RVFL model is denoted as ridge2. bagging, stack ridge, stack lm, stack nnls, and glmboost respectively denote the bootstrap aggregating method from section 4.3.1, stacking with ridge regression, with ordinary least squares, least squares regression with positive coefficients from section 4.3.3, and boosting from section 4.3.2. We also added an unrestricted Vector AutoRegression (VAR) model to the benchmarks, denoted as VAR, which mostly helps us in assessing if the other models' implementation/predictions are not off track. Bagging is performing the best on average (cf. appendix 4.7 for details) on both horizons, 4-steps ahead and 8-steps ahead, and is followed by boosting. The stacking algorithm works best with the ridge regression model taken as a meta-learner, but is failing with the other meta learners (ordinary least squares and least squares regression with positive coefficients). Overall, the boosting algorithm is also very robust, and displays the lowest standard deviation of all the models tested.

The best hyperparameters obtained for each algorithm are presented below, for the different horizons of projection. The best hyperparameter found for stacking with ordinary least squares, with a constraint on the regression parameters or not, is the number of lags equal to 1 and B = 1.

For horizon = 4 4.8, we can observe how the different methods perform through time. We observe that the models' errors are highly correlated, which is reassuring concerning their implementation. Forecasting discount curves with Kernel Regularized Least Squares

Introduction

In this chapter, we apply Kernel Regularized Least Squares (KRLS) learning methods ([JC14], [START_REF] Exterkate | Nonlinear forecasting with many predictors using kernel ridge regression[END_REF], [START_REF] Ferwerda | Kernel-Based Regularized Least Squares in R (KRLS) and Stata (krls)[END_REF]) to Yield Curve forecasting. By Yield Curve, we actually mean discount curves. That is, we consider that the curves used in the examples do not include any counterparty credit risk, and focus on the forecasting problem. Two types of formulations of the spot rates' forecasting problem are tested here. One relying on the popular Dynamic Nelson-Siegel (DNS) framework from [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF], and another one, in which we apply the KRLS directly to the discount curves' observation dates and time to maturities, to model the spot rates.

In the DNS framework [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF], each cross-section of yields observed over time is fitted by using the Nelson-Siegel [NS87] model. The fitting of each cross-section observed over time, produces three time series of parameters (more details in the next section) representing the evolution of the level, slope, and curvature of the Yield Curve. A KRLS model is applied to forecasting the time series of parameters, using a technique which is similar to the one described in [START_REF] Exterkate | Nonlinear forecasting with many predictors using kernel ridge regression[END_REF]. And to finish, the forecast obtained for the trivariate time series are plugged into the Nelson-Siegel model formula, to deduce forecast for the cross-sections of yields.

The second approach based on KRLS is a machine learning/data-driven one, in which we put no specific constraint on the model to reproduce the specific Yield Curve stylized facts. The regularization parameters inherent to the KRLS models will act as implicit constraints, that cause the model to converge as close as possible to reproducing these stylized facts. In this latter approach, we are mostly interested in the model with the best out-of-sample error. As a consequence, the technique as is, is probably less adapted than the former framework based on DNS (in its arbitrage-free version) to no-arbitrage pricing (if no-arbitrage pricing is required).

To introduce KRLS, we start by describing the ridge regression [START_REF] Arthur | Ridge regression: Biased estimation for nonorthogonal problems[END_REF] and the kernel trick applied to ridge regression. Then, we make a link between the ridge regression and KRLS.

In a ridge regression setting, we want to explain an observed variable y ∈ R n , as a linear function of p predictors stored in a matrix X ∈ R n×p . For i ∈ {1, . . . , n} and j ∈ {1, . . . , p} we have:

X ij =: x (j) i
We will denote the i th row of X as x i , and its j th column as x (j) . Hence, we are searching for the parameters β = (β 1 , . . . , β p ) T verifying:

ArgM in β∈R p n i=1 y i -x T i β 2 under the constraint ||β|| 2 2 ≤ s
The solution to this problem is given directly by the formula:

β = X T X + λI p×p -1 X T y
where λ is a Lagrange multiplier having a unique correspondance with s, and a regularization parameter preventing the model from overfitting the observed data contained in y. In the case where we want to explain y as a function Φ of the predictors, we have a similar expression:

β = Φ(X) T Φ(X) + λI p×p -1 Φ(X) T y
where:

Φ(X) ij = Φ(x (j) i )
Now, by using the Woodbury identity ([GVL12] and [START_REF] Welling | The kalman filter[END_REF]) for P and R positive definite

P -1 + B T R -1 B -1 B T R -1 = PB T BPB T + R -1
The solution to the ridge regression problem can be re-written as:

β = Φ(X) T Φ(X)Φ(X) T + λI n×n -1 y
This relationship can be useful in the case where n << p. That is, when there is a high number of predictors compared to the number of observations ( [START_REF] Exterkate | Nonlinear forecasting with many predictors using kernel ridge regression[END_REF]). Indeed, with this new relationship, we are no longer calculating/inverting a p × p matrix, but a n × n matrix. That's the kernel trick. And if some new observations arrive, and are stored in X * , the new values predicted by the model will be given by:

y * = Φ(X * ) β = Φ(X * )Φ(X) T Φ(X)Φ(X) T + λI n×n -1 y
Which we re-write as:

y * = K * (K + λI n×n ) -1 y
K is a kernel; the empirical covariance matrix of Φ(X) T (modulo a 1/p factor), in the case where the rows of Φ(X) are centered. Now, in the case of KRLS, the problem we are trying to solve is:

ArgM in c∈R n n i=1 y i -K T i c
2 where K i is the i th row of K, with:

K ij =: K(x i , x j ) = f (||x i -x j || 1 ) or f (||x i -x j || 2 )
The cost of computing the whole kernel K, for any i and j is a quadratic function of the number of observations, n. Meaning that, the most interesting cases for using the KRLS method would be those in which n is not too high.

As described in [START_REF] Jens | Kernel regularized least squares: Reducing misspecification bias with a flexible ad interpretable machine learning approach[END_REF], two approaches can be used to interpret/motivate the KRLS learning method: a similarity-based view and the superposition of Gaussians view.

Here, we refer only to the first one, which is the most intuitive to us, and is also the one described in [START_REF] Ferwerda | Kernel-Based Regularized Least Squares in R (KRLS) and Stata (krls)[END_REF]. Indeed here, the i th observation of the response, y i is explained as a linear combination of functions measuring the similarity/dissimilarity between its characteristics gathered in x i , and the other observations from the training set, x j , j = i:

y i = n j=1 c j K(x i , x j ) (5.1) 
But again, to prevent the model from overfitting the observed data and not being able to generalize well, we need to constrain the parameters c under a certain norm defined by the matrix K [Hof+08]:

||c|| 2 K = c T Kc ≤ s
So that the solution to this new (constrained) problem is:

ĉ = (K + λI n×n ) -1 y
λ is a Lagrange multiplier having a unique correspondance with s, and a regularization parameter. And for new observations arriving for the model, we have a solution which is identical to the one that we had for kernel ridge regression:

y * = K * (K + λI n×n ) -1 y
Many other types of kernels could be envisaged for K, allowing to take into account nonlinearities and the various complexities of the covariance structure. One of the most popular kernels is the Gaussian kernel, also called squared exponential kernel, defined for i < j by:

K Gauss (x i , x j ) = σ 2 exp - ||x i -x j || 2 2 2l 2
where l is a characteristic length-scale controlling the distance between peaks of the covariance function and σ 2 is the marginal variance, obtained when x i = x j . Both l, σ 2 are used as the learning model's hyperparameters, along with the regularization parameter λ.

This kernel is however often judged as being too smooth for most typical optimization problems [START_REF] Edward | Gaussian process for machine learning[END_REF]. Some other kernels that could be interesting for machine learning (see [START_REF] Edward | Gaussian process for machine learning[END_REF]) belong to the Matérn class of covariance functions. If we define r := ||x ix j || 2 , the most used for machine learning problems (see [START_REF] Edward | Gaussian process for machine learning[END_REF]) are:

K ij = K 3/2 (r) = σ 2 1 + √ 3r l exp - √ 3r l
and

K ij = K 5/2 (r) = σ 2 1 + √ 5r l + 5r 2 3l 2 exp - √ 5r l Figure 5
.1 below, provides more insights on the kernels we have just defined; K Gauss , K Matérn3/2 and K Matérn5/2 , for σ 2 = 1 and l = 1. We observe in figure 5.1 (left) that: the smoother the kernel, the higher the covariance associated to observations that are close to each other (that are similar). This relationship is inverted as the distance between the observations grows, but with a lower magnitude. The Gaussian kernel is the more flexible of the three kernels. Then, comes the kernel Matérn 5/2, and to finish, the kernel Matérn 3/2 (cf. figure 5.1, right).

An interesting feature of KRLS learning, is the possibility to derive estimators for the marginal effects of the covariates x (j) on the response. For example, (and like in [START_REF] Ferwerda | Kernel-Based Regularized Least Squares in R (KRLS) and Stata (krls)[END_REF]), since we have the relationship (5.1), we can write for a fixed j 0 ∈ {1, . . . , p} and for any k ∈ {1, . . . , n}, :

∂y i ∂x (j 0 ) k = n j=1 c j dK(x i , x j ) dx (j 0 ) k = c k ∂K(x i , x k ) ∂x (j 0 ) k (5.2)
That's an approximation of how much of an increase (at the first order) we obtain in y i , for a slight change in x (j 0 )

k . An average marginal effect of the j th 0 covariate on the i th observation of the response y can thus be obtained as:

1 n n k=1 ∂y i ∂x (j 0 ) k = 1 n n k=1 c k ∂K(x i , x k ) ∂x (j 0 ) k (5.3)
Two types of KRLS' model formulations will be described in sections 5.2 and 5.3. One relying on the famous Dynamic Nelson-Siegel (DNS) framework ( [START_REF] Francis | Forecasting the term structure of government bond yields[END_REF]), and another one explaining the spot rates as a function of the time to maturity and date of observation.

More specifically in sections 5.2.2 and 5.3.2, we derive formulas for the sensitivities of the response variable y i to a change in the covariates x (j) , in each one of the two frameworks. We do this for Gaussian, Matérn 3/2 and Matérn 5/2 kernels. These sensitivities can then be plugged into formula 5.3, in order to obtain average marginal effects of the covariates on the response. ), the spot interest rates observed at time t, for time to maturity τ are modeled as:

R t (τ ) = α 1,t + α 2,t
1e -τ /η e -τ /η + α 3,t 1e -τ /η e -τ /ηe -τ /η (5.4)

If these spot interest rates R t (τ ) are observed at increasing dates t = t 1 < . . . < t n , for increasing time to maturities τ = τ 1 < . . . < τ p , the factor loadings in the DNS framework are the vectors (of length p):

(1, . . . , 1) T and 1e -τ 1 /η e -τ 1 /η , . . . ,

1e -τp/η e -τp/η T and 1e -τ 1 /η e -τ 1 /ηe -τ 1 /η , . . . ,

1e -τp/η e -τp/ηe -τp/η T These vectors are used to represent respectively the level, slope, and curvature of the Yield Curve. Estimations of α i,t , i = 1, . . . , 3 are obtained for each cross-section of yields (that is, for each fixed date t) by taking a fixed η, and doing a least squares regression of the spot rates observed at time t on these factor loadings.

The three time series (α i,t ) t , i = 1, . . . , 3 associated to the loadings for each crosssection of yields, are those that we wish to forecast simultaneously, by using KRLS learning. For doing this, we store the most contemporaneous values of the three time series (α i,t ) t , i = 1, . . . , 3 in a response matrix Y, and their lags in a matrix of predictors X.

Considering the p ∈ N * time series (α

(j)
t ) t≥0 , j = 1, . . . , p (with p = 3), observed at n ∈ N * discrete dates. We are interested in obtaining simultaneous forecasts of the p time series at time n + h, h ∈ N * , by allowing each of the p variables to be influenced by the others (in the spirit of VAR models, see [START_REF] Lütkepohl | New introduction to multiple time series analysis[END_REF]). We use k < n lags of each of the observed p time series. Hence, the output variables (columns of Y) to be explained are:

Y (j) = α (j)
n , . . . , α (j) k+1 T (5.5) for j ∈ {1, . . . , p}. Where α (j) n is the most contemporaneously observed value of the j th time series, and α (j) k+1 was observed k dates earlier in time for (α (j) t ) t≥0 . These output variables are stored in:

Y ∈ R (n-k)×p
and the predictors are stored in:

X ∈ R (n-k)×(k×p)
where X consists in p blocks of k lags, for each one of the observed p time series. For example, the j th 0 block of X, for j 0 ∈ {1, . . . , p} contains in columns:

α (j 0 )
n-i , . . . , α 

(j 0 ) k+1-i T (5.6)
Y = ⎛ ⎜ ⎜ ⎝ α (1) t 5 α (2) t 5 α (3) t 5 α (1) t 4 α (2) t 4 α (3) t 4 α (1) t 3 α (2) t 3 α (3) t 3 ⎞ ⎟ ⎟ ⎠
The predictors are stored in:

X = ⎛ ⎜ ⎜ ⎝ α (1) t 4 α (1) t 3 α (2) t 4 α (2) t 3 α (3) t 4 α (3) t 3 α (1) t 3 α (1) t 2 α (2) t 3 α (2) t 2 α (3) t 3 α (3) t 2 α (1) t 2 α (1) t 1 α (2) t 2 α (2) t 1 α (1) t 2 α (1) t 1 ⎞ ⎟ ⎟ ⎠
It is also possible to add other regressors to X, such as dummy variables, or indicators of special events. In this situation, and as discussed in [START_REF] Exterkate | Nonlinear forecasting with many predictors using kernel ridge regression[END_REF], we can avoid the constraining of these dummy variables, in a Kernel ridge regression with unpenalized terms. Here, we consider only the inclusion of the observed time series' lags in the model.

Sensitivity of the response to a change in the covariates

Here, the response is the matrix Y described in the previous section. Thus, we are deriving the sensitivity of level, slope, and curvature, to the changes in their associated lags.

We let r 2 be:

r 2 := ||x i -x k || 2 2 = (x i -x k ) T (x i -x k )
Where x i is the i -th line of matrix X. Hence:

∂r 2 ∂x (j 0 ) k = -2 x (j 0 ) i -x (j 0 ) k
And: ∂r ∂x

(j 0 ) k = 1 2r ∂r 2
∂x

(j 0 ) k = - 1 r x (j 0 ) i -x (j 0 ) k
As a consequence:

• For the Gaussian kernel

(x i , x k ) → σ 2 exp - r 2 2l 2
We have:

∂K Gauss (x i , x k ) ∂x (j 0 ) k = - σ 2 2l 2 exp - r 2 2l 2 ∂r 2
∂x

(j 0 ) k = - σ 2 2l 2 exp - r 2 2l 2 -2 x (j 0 ) i -x (j 0 ) k = σ 2 l 2 exp - r 2 2l 2 x (j 0 ) i -x (j 0 ) k = x (j 0 ) i -x (j 0 ) k l 2 K Gauss (x i , x k )
• For the Matérn 3/2 kernel

(x i , x k ) → σ 2 1 + √ 3r l exp - √ 3r l
We have:

∂K 3/2 (x i , x k ) ∂x (j 0 ) k = σ 2 √ 3 l exp - √ 3 l r ∂r ∂x (j 0 ) k - ∂r ∂x (j 0 ) k 1 + √ 3 l r = σ 2 √ 3 l ∂r ∂x (j 0 ) k exp - √ 3 l r 1 -1 + √ 3 l r = σ 2 √ 3 l exp - √ 3 l r √ 3 x (j 0 ) i -x (j 0 ) k l • For the Matérn 5/2 kernel (x i , x k ) → σ 2 1 + √ 5r l + 5r 2 3l 2 exp - √ 5r l
We have:

∂K 5/2 (x i , x k ) ∂x (j 0 ) k = σ 2 exp - √ 5 l r √ 5 l ∂r ∂x (j 0 ) k + 5 3l 2 ∂r 2
∂x

(j 0 ) k - √ 5 l ∂r ∂x (j 0 ) k 1 + √ 5r l + 5r 2 3l 2 = σ 2 exp - √ 5 l r 5 3l 2 ∂r 2
∂x

(j 0 ) k - √ 5 l ∂r ∂x (j 0 ) k √ 5r l + 5r 2 3l 2 = σ 2 exp - √ 5 l r x (j 0 ) i -x (j 0 ) k -2 5 3l 2 + 1 r √ 5 l √ 5r l + 5r 2 3l 2 = σ 2 exp - √ 5 l r 5 3l 2 1 + √ 5r l x (j 0 ) i -x (j 0 ) k
From these expressions of the sensitivities, we can derive the average marginal effect of a covariate on the response, as demonstrated in equation 5.3. These formulas will be valid in the DNS framework described in section 5.2, where only one length-scale l parameter is required. Similar types of formulas could be derived in the KRLS framework from section , but they would include two length-scale parameters.

Description of the KRLS model applied to observed

dates and time to maturities

Description of the model

In this other framework, we consider that the response variable is the spot interest rate observed at time t, for time to maturity τ , R(t, τ ). The predictors are the observation date, and the time to maturity.

In this setting, we use the following weighted distance between the vectors (t, τ ) in the Gaussian, Matérn 3/2 and Matérn 5/2 kernels:

r = (t i -t j ) 2 l 2 1 + (τ i -τ j ) 2 l 2 2
So that here, the spot rates values are explained as linear combination of distances between vectors of time to maturities and observation dates (t i , τ i ) and (t j , τ j ). In this setting, if we consider 10 spot rates observed at 2 dates t 1 < t 2 and 5 time to maturities τ 1 , . . . , τ 5 , the response variable is: Y = (R(t 1 , τ 1 ), . . . , R(t 1 , τ 5 ), R(t 2 , τ 1 ), . . . , R(t 2 , τ 5 )) T and the predictors are

X = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ τ 1 t 1 . . . . . . τ 5 t 1 τ 1 t 2 . . . . . . τ 5 t 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
If some new observations arrive at time t 3 in the model, these new observations will be stored in:

X * = ⎛ ⎜ ⎜ ⎝ τ 1 t 3 . . . . . . τ 5 t 3 ⎞ ⎟ ⎟ ⎠
In this other setting, it is also possible to add other regressors such as dummy variables, or indicators of special events. Again, and as suggested in the previous section and in [START_REF] Exterkate | Nonlinear forecasting with many predictors using kernel ridge regression[END_REF], we can avoid the constraining of these dummy variables, in a Kernel ridge regression with unpenalized terms.

For example, if we wanted to add another indicator (I t ) t observed at times t 1 < t 2 , we would have to consider the following matrix of predictors:

X = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ τ 1 t 1 I t 1 . . . . . . . . . τ 5 t 1 I t 1 τ 1 t 2 I t 2 . . . . . . . . . τ 5 t 2 I t 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
And another weighted distance in the Gaussian, Matérn 3/2 and Matérn 5/2 kernels, taking into account the new indicator (I t ) t :

r = (t i -t j ) 2 l 2 1 + (τ i -τ j ) 2 l 2 2 + (I t i -I t j ) 2 l 2
5.3.2 Sensitivity of the spot rates to a change in observation date and time to maturity

In this framework, and as mentioned in the previous section, we consider the following measure of similarity/dissimilarity between x i = (t i , τ i ) and x k = (t k , τ k ):

r 2 = (t i -t k ) 2 l 2 1 + (τ i -τ k ) 2 l 2 2
The associated kernels are the following ones:

(x i , x k ) → K Gauss (r) = σ 2 exp - r 2 2 (x i , x k ) → K Matérn3/2 (r) = σ 2 1 + √ 3r exp - √ 3r
and

(x i , x k ) → K Matérn5/2 (r) = σ 2 1 + √ 5r + 5 3 r 2 exp - √ 5r
It is possible to obtain the sensitivity of the spot rates to a change in the observation date, ∂R(t k ,τ ) ∂t k for any τ . Even if it is actually very difficult to predict in which direction the spot rates will move, this type of indicators could still serve as decision-assistance tools for risk management. We have:

∂r 2 ∂t k = - 2(t i -t k ) l 2 1 and ∂r ∂t k = - 1 r (t i -t k ) l 2 1
Thus, we have:

∂K Gauss (r) ∂t k = - σ 2 2 exp - r 2 2 ∂r 2 ∂t k = σ 2 exp - r 2 2 (t i -t k ) l 2 1 ∂M atérn3/2 ∂t k = σ 2 √ 3 ∂r ∂t k exp - √ 3r 1 -(1 + √ 3r) = -3σ 2 rexp - √ 3r ∂r ∂t k = 3σ 2 exp - √ 3r (t i -t k ) l 2 1 and ∂M atérn5/2 ∂t k = σ 2 exp - √ 5r √ 5 ∂r ∂t k + 5 3 
∂r 2 ∂t k - √ 5 ∂r ∂t k 1 + √ 5r + 5 3 r 2 = σ 2 exp - √ 5r 5 3 
∂r 2 ∂t k - √ 5 ∂r ∂t k √ 5r + 5 3 r 2 = σ 2 exp - √ 5r - 10 3 (t i -t k ) l 2 1 + √ 5 r (t i -t k ) l 2 1 √ 5r + 5 3 r 2 = σ 2 exp - √ 5r 5 3 1 + √ 5r (t i -t k ) l 2 1
In the next section, 5.4, we present the results obtained by the DNS-KRLS model from section 5.2 and the KRLS model from section 5.3 on a training/testing dataset1 .

Numerical examples

In this section, we present the results obtained by the DNS-KRLS model from section 5.2 and the KRLS model from section 5.3. The examples are not exhaustive benchmarks, but aim at illustrating the forecasting capabilities of the models.

We use calibrated discount rates data from Deutsche Bundesbank website, observed on a monthly basis, from the beginning of 2002 to the end 2015. There are 167 curves, observed at 50 maturities in the dataset. Only 15 time to maturities are used in these examples (in years): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30.

In figure 5.2, we present the data that we use, and table 5.1 contains a summary of these data; the minimum, maximum, median, first and third quartiles of the discount rates observed at given maturities. There are alternate cycles of increases and decreases of the discount rates, with generally a decreasing trend. Some of the discount rates, at the most recent dates, and lower maturities, are negative. The following figures, 5.4 and 5.5, present the out-of-sample RMSE obtained over time by all the KRLS models, for horizons equal to 12 and 36. On figure 5.4 (on the right), we observe that despite being the best model on average, the Matérn 3/2 is not necessarily the best during the liquidity/credit crunch (especially in 2008) for an horizon of 36 months. On figure 5.5, we observe that all the kernels lead to very similar results, with only slight differences. During the crisis, and for an horizon of 36 months, despite displaying more volatile and less accurate results elsewhere, the DNS-ARIMA is performing better than the other models. The following boxplots provide a more detailed description of the distribution of the out-of-sample error, and serves as a complement for tables 5.2 and 5.3 (one can also report to appendix 5.6.1 for the details on these boxplots). Notably, it confirms the high variance and low median results observed for Matérn 3/2 and DNS-ARIMA for an horizon equal to 36 months. All the other results are otherwise pretty close to each other. These (figures 5.8 and 5.9) can be compared to a more familiar model, the one in which the level, slope, and curvature are modelled separately with an ARIMA model in a DNS framework (see figure 5.10). We observe that the discount (rates and factors) and forward curves obtained by each model do, indeed, exhibit the same patterns as actual market discount and discrete forward curves. In particular, for the projected negative rates, we observe projected discount factors that are greater than 1.

Conclusion

In this chapter, we discussed the forecasting of discount curves, by using Kernel Regularized Least Squares (KRLS). The KRLS techniques are capable of learning nonlinear response variables, by taking into account various and complex types of covariance structures between the predictors. The response must have a relatively low number of examples, though, because of the quadratic cost of computing the kernels.

The model is highly interpretable, as it explains the responses as linear combinations of similarities/dissimilarities between the examples. Some sentivity indicators of the response as a function of the predictors are derived, and they could consitute useful decision-assistance tools.

Two types of KRLS models are considered here, specifically for the discount curves. One relying on the famous Dynamic Nelson-Siegel (DNS) framework, and another one explaining the spot rates as a function of the time to maturity and date of observation. Both types of KRLS models deliver some robust forecasts of the discount curves, as the kernels hyperparameters implicitly constrain the model to reproduce the Yield Curve's stylized facts.

A Bayesian Quasi-Randomized neural network, and its application to the optimization of black box functions

Introduction

In this chapter, we present a Bayesian Quasi-Random Vector Functional Link (BQRVFL) neural network model, with one hidden layer. It is a hybrid penalized regression/neural networks model on an augmented data set. In this hybrid regression model, we assume that the regression parameters are governed by a prior distribution, and that the hidden layer's nodes are (quasi-)randomized. As a prior distribution for the regression parameters, we use a multivariate Gaussian distribution, and for the simulation of the nodes in the hidden layer, we use a Sobol sequence.

To the best of our knowledge, randomized neural networks were introduced by [START_REF] Wouter | Feedforward neural networks with random weights[END_REF], and the Random Vector Functional Link neural networks (RVFL) were introduced by [START_REF] Pao | Learning and generalization characteristics of the random vector functional-link net[END_REF]. RVFL networks are multilayer feedforward neural networks, in which there is a direct link between the predictors and the output variable, aiming at capturing the linear relationships. And in addition to the direct link, there are new features, the hidden nodes (the dataset is augmented).

The RVFL networks have been successfully applied to solving different types of classification and regression problems; see for example [START_REF] Dehuri | A comprehensive survey on functional link neural networks and an adaptive PSO-BP learning for CFLNN[END_REF]. Here, we will use RVFL networks with only one hidden layer.

With the BQRVFL model presented here, it is possible to obtain predictions from a nonlinear model (actually, a combination of a linear and a nonlinear model), along with confidence intervals around the model's predictions. The choice of this relatively simple Gaussian prior should not, however, prevent the user from checking the confidence intervals around the predictions.

There are other types of models, which are also capable of achieving this purpose -obtain predictions from a nonlinear model, along with confidence intervals around the model's predictions -like Gaussian process regression models [START_REF] Edward | Gaussian process for machine learning[END_REF] and random forests models with confidence intervals ( [START_REF] Wager | Confidence intervals for random forests: The jackknife and the infinitesimal jackknife[END_REF]). Depending on the problem at hand, and the desire from the user for a higher accuracy and/or interpretability, one of these alternative models could also be considered.

In section 6.2, we present the BQRFVL model, with one hidden layer. Formulas for the estimation of its parameters are given, along with formulas for the calculation of confidence intervals around the predictions. The model's predictions on a validation set, and on simulated data from [START_REF] Sapp | Subsemble: an ensemble method for combining subset-specific algorithm fits[END_REF] are also presented.

In section 6.3, the model is used as a workhorse for Bayesian optimization [START_REF] Mockus | Toward global optimization, volume 2, chapter bayesian methods for seeking the extremum[END_REF]. This type of optimization methods are useful for finding minima or maxima of black box functions, whose evaluations are expensive, and gradients are not necessarily available in a closed form. It has been shown to be very effective on challenging optimization functions ([Jon01] and [START_REF] Snoek | Practical bayesian optimization of machine learning algorithms[END_REF]).

The idea of Bayesian optimization is to optimize an alternative, cheaper function called the acquisition function, rather than the main, expensive objective function.

For doing this, the uncertainty around the predictions of an alternative machine learning model -called the surrogate model -is used in a way that will be described in more details in section 6.3.

The surrogate model's posterior distribution tries to approximate the objective function in the best way. And this posterior distribution is enhanced, as more points of the objective function are evaluated. Gaussian process regression models are often used are surrogate models ([Sno+12] for example). Here, the surrogate model will be the BQRVFL model presented in 6.2.

We apply Bayesian optimization using the BQRVFL as a surrogate model, to the minimization of the cross-validation error (produced on discount curve forecasting) of four machine learning models. One of these models is based on an RVFL applied to multivariate time series forecast ( [START_REF] Moudiki | Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks[END_REF]). The second one applies Kernel Regularized Least Squares (see chapter 5) (KRLS hereafter) directly to the curves' observation dates and time to maturities. The two remaining models are based on the popular DNS framework ([DL06]), and are a DNS-KRLS and a DNS-RVFL (more details here or refer to another section).

6.2 Description of the model

Estimation of the parameters and confidence intervals

We consider a response variable y ∈ R n that has to be explained as a function of p predictors stored in a matrix X ∈ R n×p . The data set X is augmented by a set of new predictors:

g (XW )
where g is an activation function, as in of neural networks models, and W ∈ R p×L are the nodes in the hidden layer, obtained from a deterministic sobol sequence of quasi-random numbers ([Nie92] and [START_REF] Phelim | Quasi-Monte Carlo methods[END_REF]). L is the number of nodes in the hidden layer.

The parameters W are used to combine the p columns of X into L new variables, hence taking into account the potential nonlinear relationships between the response y and the predictors X when passed through the activation function g. Having obtained a new set of predictors stored in columns in a matrix Z = [X g (XW )], we apply a Bayesian linear regression model, to explain y as a function Zβ of the new p + L predictors. We assume that y could be explained as:

y = Zβ +
where β ∼ N (0 R p+L , I p+L ) are the parameters of the model that have to be estimated, and ∼ N (0 R n , σ 2 I n ) is the error term. It is possible to show, in a Bayesian linear regression setting (see [START_REF] Edward | Gaussian process for machine learning[END_REF] for example, for details) that for new observations arriving in the model and stored in matrix Z * , we have the following properties for the associated predictions:

y * ∼ N (Z * μ β|y,Z , Z * Σ β|y,Z Z T * + σ 2 I n ) with μ β|y,Z = Z T ZZ T + σ 2 I n -1 y and Σ β|y,Z = I n -Z T ZZ T + σ 2 I n -1

Z

By using the Woodbury identity ([GVL12] and [START_REF] Welling | The kalman filter[END_REF]) for P and R positive definite

P -1 + B T R -1 B -1 B T R -1 = PB T BPB T + R -1
6.2 Description of the model and by noting σ 2 = λ, this is equivalent to having the same result for y * , but with:

μ β|y,Z = Z T Z + λI p -1 Z T y and Σ β|y,Z = I p -Z T Z + λI p -1 Z T Z
And depending on the situations in which n << p, or p << n, we can use one of the two previous expressions; the one resulting in the lowest number operations. In the sequel of the chapter, we will use a ReLU activation function, which is:

g : x → max(x, 0)
In the case where g is derivable (for example when g : x → x or g : x → sigmoid(x) = 1 1+exp(-x) or g : x → tanh(x)), it is possible to obtain a sensitivity (at the first order) of the response to a change in the covariates. Indeed, in this case, we have for a fixed (tied to the observations) i ∈ {1, . . . , n}:

y i = p j=1 α j X (j) i + L k=1 γ k g(X T i W (k) )
Where W (k) is the k th column of W among L. And for a fixed (tied to the covariates) integer j 0 ∈ {1, . . . , p}, and u := X T i W (k) , we have the following sensitivity of y i :

∂y i ∂X (j 0 ) i = α j 0 + L k=1 γ k ∂g ∂u (u) ∂u ∂X (j 0 ) i (u) = α j 0 + L k=1 γ k W (k) j 0 ∂g ∂u (u)
For g : x → x for example, this leads to:

∂y i ∂X (j 0 ) i = α j 0 + L k=1 γ k W (k) j 0 6.2.

Examples on data from [Sap+14]

In order to present the performances of the model described in section 6.2.2, we use four simulated randomized data sets, from [START_REF] Sapp | Subsemble: an ensemble method for combining subset-specific algorithm fits[END_REF], SLC14 1 and SLC14 2 with 2 different seeds each. These datasets are available in R package caret.

SLC14 1 consists of n rows, where n is a function parameter, and 20 columns. Its construction starts with the simulation of a n × 20 matrix dat, containing random Gaussian numbers, with mean equal to zero and variance equal to 9. Each row of

dat contains: x = (x 1 , x 2 , . . . , x 20 )
The following transformation is applied to obtain each column of SLC14

1 x → x 1 + sin(x 2 ) + log(|x 3 |) + x 2 4 + x 5 × x 6 + I(x 7 × x 8 × x 9 < 0) + I(x 10 > 0) + x 11 × I(x 11 > 0) + (|x 12 |) + cos(x 13 ) + 2 × x 14 + |x 15 | + I(x 16 < -1) + x 17 × I(x 17 < -1) -2 × x 18 -x 19 × x 20 +
where ∼ N (0, 9). The same type of idea is applied for obtaining the dataset SLC14 2 . The construction of SLC14 2 begins with a matrix dat having n rows and 200 columns. The distribution of the random numbers within dat is a Gaussian distribution with mean equal to 0, and variance equal to 16, and the transformation applied to the columns of dat is:

x → -1 + log(|x 1 |) + . . . + log(|x 200 |) +
where ∼ N (0, 25).

For each seed, 123 and 456, and n = 250, we separate the datasets SLC14 1 and SLC14 2 into a training/testing test, and a validation set. The training/testing set contains 70% of the whole data (175 observations), and the test set contains the remaining 30% of the data (75 observations).

A 5-fold cross-validation repeated 10 times is applied to the training/testing set, in order to choose some optimal hyperparameters for the BQRVL model (the number of nodes in the hidden layer and the regularization parameter λ).

The BQRVFL model with these optimal hyperparameters is applied to predict values on the validation set. In figures 6.1, 6.2, 6.3, and 6.4 we present the validation sets' observations (in black), along with the out-of-sample predictions on the validation set (in blue), and the 80%, 95% confidence intervals around the predictions (gray shaded regions). We observe that the confidence intervals often contain the validation set value, with a few exceptions. The following table 6.1 contain the optimal (based on a grid search) parameters found for each dataset, with a ReLU activation function for the BQRVFL, and the proportions of points of the validation set contained into the 80%, 95% confidence intervals: The optimization problem is about finding x * ∈ C ⊆ R k , so that:

x * = ArgM in x∈C f (x)
f is the objective function, whose evaluations are expensive to calculate, and gradients are not necessarily available in closed-form. Methods based on gradient descent, or requiring to evaluate f several times will hence be inefficient for carrying out this task.

Bayesian optimization ([Moc+78] and [START_REF] Donald | A taxonomy of global optimization methods based on response surfaces[END_REF]) will minimize an alternative, cheaper function called the acquisition function, instead of minimizing f directly. The acquisition function is based on the uncertainty around the predictions of a surrogate machine learning model, trying to approximate f . Here, we consider only two types of acquisition functions. If we denote by f (x, θ), the prediction obtained with the surrogate model (whose distribution depends on θ) on a point x ∈ C, they are defined as:

• The Upper Confidence Bound (UCB) acquisition function, (actually a Lower Confidence Bound in the case of minimization). The idea is to minimize:

a UCB (x; μ, σ) = μ(x) -κσ(x)
κ is a tuning parameter, designed to balance between exploration and exploitation (more details on this). With κ = 1.96 for example, this looks like the lower confidence bound of f (x, θ), at a risk level of 5%, when the surrogate model is N (μ(x), σ(x)).

• The Expected Improvement (EI) acquisition function. If f * is the current minimum value found after a few evaluations of f , we would like to maximize the expected improvement of the surrogate model's predictions over f * : a EI (x; θ) = E max( f (x, θ)f * , 0)

In the case where the posterior distribution of the surrogate model is Gaussian, N (μ(x), σ(x)), the acquisition function with Expected Improvement can be re-written as:

a EI (x) = σ(x) μ(x)Φ (γ(x)) + Φ (γ(x))

Where Φ is the probability distribution function of a N (0, 1), Φ is density function, and

γ(x) = f * -μ(x) σ(x)
We assume in the sequel of the chapter that the predictions of all the surrogate models are drawn from a multivariate Gaussian distribution.

The whole optimization process that we use is iterative and is described below, with the total number of iterations denoted as nb iter :

1. We start with nb init points randomly sampled in C, for which some evaluations of f have been obtained. With these points, we construct a training data set for the surrogate model:

D = {(x 1 , f (x 1 )) , . . . , (x nb init , f(x nb init ))} 2.
We train the surrogate model on D, with a fixed, estimated parameter θ on which its distribution depends, and search for the next point to be evaluated for f , as: For the BQRVFL (or any other machine learning model considered as a surrogate model for this purpose), an important point to consider in step 2. is the choice of θ, which is also a problem of hyperparameters' selection.

x next =
In the specific case of the BQRVFL, there are two hyperparameters for the surrogate model: the number of nodes in the hidden layer, and the regularization parameter σ 2 . The choice of the activation function or the type of simulation for the nodes in the hidden layer is limited here to the ReLU activation function, and a Sobol sequence.

Since it is fast to compute for these type of models and we would like to avoid a costly hyperparameters' search at this point, we choose to minimize the Generalized Cross Validation (GCV) error (see [START_REF] Golub | Generalized cross-validation as a method for choosing a good ridge parameter[END_REF]) on the dataset D constructed at step 1. (in order to obtain θ). The GCV error is a convenient approximation to the Leave-One-Out cross validation error, and is defined as: Having obtained θ, the optimal θ in point 2., searching for the next point to be evaluated is done with a gradient based optimization ([Gay90]) of x → a EI x; θ and x → a UCB x; θ .

GCV = 1 nb init nb init i=1 ⎛ ⎝ y i -ŷi 1 -tr(S)

Use of the BQRVFL for Bayesian optimization

We now illustrate the BQRFL model's behaviour on a simple example of Bayesian optimization. The objective function to be minimized is the rescaled Branin function, The global minimum value of the function is found (by using a multi-start gradientbased optimization) at x = (0.5427728, 0.1516667), and is equal to -1.047394.

Below, in figures 6.7 and 6.8 (and tables 6.2 and 6.3), we present the results obtained by using the BQRVFL model, and the Random Forest model as workhorses for the Bayesian optimization of the rescaled Branin function. In appendix 6.5.1, we also present the evolution of the algorithm for the BQRVFL, as more x next points (chosen by maximizing a EI (., θ)) are added to D.

For figures 6.7 and 6.8 (and tables 6.2 and 6.3), we use nb init = 10 and a total budget of 100 iterations. The algorithm is stochastic, because the nb init points are picked randomly in C for each choice of seed (each restart of the algorithm). We observe that pretty good results are obtained with the Random Forest for the mean and the median value. But generally with a higher variance on the minimum value obtained than BQRVFL. Another interesting information obtained through these simulations is the number of times (over nb iter = 100 iterations) x next has been picked randomly in C at Step 2. (when x next is already in D). In table 6.6 and figure 6.9, we observe that on choosing good next points at step 2., BQRVFL generally performs better than the other models. Indeed with BQRVFL and Expected Improvement acquisition function for example, the next point to be evaluated is never obtained by simulation of x next ∈ C.

A good place to apply Bayesian optimization, is to the choice of hyperparameters of machine learning algorithms. The cross-validation function, which is the objective function of the hyperparameters, is indeed expensive to train/predict over the cross-validation resamples.

Example of models based on Dynamic Nelson Siegel and Kernel Regularized Least Squares

Description of the models

In the previous chapters, we introduced the RVFL, the KRLS, and the DNS-RVFL, DNS-KRLS models. Here, we compare all these models by using the Bayesian optimization algorithm described in this chapter. The model mentioned only as RVFL (without NS-) denotes a one obtained by forecasting directly the spot rates for each maturity as multivariate time series. 

Examples of minimization of the out out-of-sample RMSE

Conclusion

In this chapter, we presented a quasi-randomized functional link neural networks (BQRVFL) model, by linking it to a Bayesian linear regression framework, and obtained formulas for the confidence intervals around its predictions. The BQRVFL model that we constructed is then used as a workhorse for Bayesian optimization, and notably to find optimal hyperparameters for all the forecasting models described in the previous chapters.

In general, we observe that the best results are obtained in the DNS-KRLS framework by the RVFL (applied to the level, slope and curvature). And in the KRLS framework, the kernel Matérn 3/2 performs the best. This kernel also performs the best overall, in terms of average out-of-sample RMSE. However, it is worth mentioning, as in previous chapters, that the cost of computing the kernel is a quadratic function of the number of input spot rates.

Figure (6.12) illustrates this fact very well, with 100 repeats at each time to maturity (see appendix 6.5.2 for details on the timings). It compares the KRLS and RVFL models timings on training and forecasting horizons equal to 12 months and 36 months, and respectively 15, 22 and 30 observed time to maturities. The RVFL timings remain relatively stable as the number of time to maturities increase, whereas the KRLS timings increase at a fast pace in the same situation. In this thesis, in chapter 2, we derived a class of discount curve construction and extrapolation methods, based on a class of interest rate models called exogenous short-rate models. Then, in chapter 3 we dealt with the obtainment of forecasts for multiple time series, by taking into account the potential nonlinear relationships between their observations. We presented a specific type of neural networks learning technique to forecast the Yield Curve, and obtain stressed versions of the forecasts.

Chapter 4 was about combining multiple forecasting techniques, in search for an improved out-of-sample performance. The basis for these ensemble models were the individual models presented in chapter 3, and we indeed obtained a better performance with the ensembles. Chapter 5 was about forecasting techniques based on kernels. The idea of learning with kernels is to assign a high covariance to observations that are close to each other, and conversely a low covariance to observations that are far from each other. The response variable can be explained as a linear combination of similiarities/dissimilarities between the observations. In the final chapter, we compared the out-of-sample performances of the models derived in chapter 3 and 5, by using bayesian optimization. The methods based on kernels are extremely competitive, at the expense of being more demanding in resources. It would be interesting in the future to try out alternative activation functions/simulation for the hidden nodes/feature scaling in models from chapter 3, and see how these choices affect their performances. The model from chapter 3 also scales well, so it would be interesting to see how it performs on thousands of time series.

Fig. 2 . 1 :Fig. 2 . 2 :

 2122 Fig. 2.1: Discount rates obtained for 1000 values of a ∈ [0.1, 10] and σ ∈ [0, 0.1] Fig. 2.2: Forward rates obtained for 1000 values of a ∈ [0.1, 10] and σ ∈ [0, 0.1]

Fig. 2 . 3 :Fig. 2 . 4 :

 2324 Fig. 2.3: Bootstrapping with linear interpolation Fig. 2.4: CMN applied to Hull and White extended Vasicek

Fig. 2 . 5 :Fig. 2 . 6 :

 2526 Fig. 2.5: Smith-Wilson method

Figure 2 .

 2 Figure 2.7 on the left describes the discount and forward rates obtained without regularization, with a = 0.3655 and σ = 0.0037. On the right, figure 2.8 describes the discount and forward rates obtained by minimizing the objective function in equation (2.18), and using the parameters λ 1 = 1e -08 and λ 2 = 1e -05, a = 9.8891 and σ = 0.3957.
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  β m and γ (j 0 ) l =: γ l for m ∈ {1, . . . , k}; l ∈ {1, . . . , L}. Solving for the regression parameters for the j th 0 for u, v ∈ R * , leads to minimizing a penalized residual sum of squares. Hence, for vectors β ∈ R (k×p) and γ ∈ R L containing the regression parameters, we obtain the Lagrangian:
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 32 Fig. 3.2: Observed discount rates from Deutsche Bundesbank website, from 2002 to the end 2015
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 33 Fig. 3.3: Distribution of out-of-sample log(RM SE), for ARIMA, VAR, and RVFL
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 3432 Fig. 3.4: Out-of-sample log(RM SE), for ARIMA, VAR, and RVFL over time
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 35 Fig. 3.5: 12 months-ahead median curves, for stressed yield curve level α 1,t
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 3 Figure 3.6 presents the three time series of data, and a summary of the data can be found in tables 3.4 and 3.5.
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 3635 Fig. 3.6: 1-year, 10-years and 20-years spot rates time series data
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 37 Fig. 3.7: Swap rates data (in %) from St Louis Federal Reserve Bank, at maturities 1, 10, 30
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 3 Figure 3.8 presents the evolution of the out-of-sample log(RM SE) over the training/testing windows. The grey rectangle indicating the Liquidity and Credit crunch is larger here, because in this example, a training set starting in 2004 has its test set starting 36 months later, in 2007. Again, we observe that the results from the RVFL model exhibit a low out-of-sample error, along with a low volatility.
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 38 Fig. 3.8: Out-of-sample log(RM SE), for ARIMA and RVFL over time
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 3 Figure3.9, presents the convergence of the out-of-sample log(RM SE) for the DNS + RVFL model from this section, as a function of log(λ 1 ) and log(λ 2 ). λ 1 and λ 2 both range from 10 -2 to 10 4 , with ten equally-spaced points each (hence, a grid of one hundred points (log(λ 1 ), log(λ 2 ), log(RM SE)).
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 4 Figure 4.3 presents the resulting time series' data obtained after the few transformations described in the previous paragraph. Table4.1 contains a summary of these data, where we can see that the four time series are now nearly expressed in the same scale.
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 43 Fig. 4.3: Treasury Bills rates and transformed Real consumption, Real disposable income, and Inflation data from [Gre03] in a data-rich environment

Fig. 4 . 4 :

 44 Fig. 4.4: Autocorrelation function for the four times series: Treasury Bills rates, Real consumption, Real disposable income, Inflation

Fig. 4 . 5 :

 45 Fig. 4.5: Correlation plot for the four times series: Treasury Bills rates, Real consumption, Real disposable income, Inflation

Fig. 4 . 6 :

 46 Fig. 4.6: Training and testing sets in rolling forecasting cross-validation

Fig. 4 . 7 :

 47 Fig. 4.7: Out-of-sample RMSE distribution for the different tested models

Fig. 4 . 8 : 4 . 4

 4844 Fig. 4.8: Out-of-sample RMSE over time for the different tested models + VAR

Fig. 5 . 1 :

 51 Fig. 5.1: Left: covariance functions; Right: random simulations from a multivariate Gaussian distribution N (0, K) , with σ 2 = 1 and l = 1. The sample functions on the right were obtained using a discretization of the x-axis of 1000 equally-spaced points
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 2 Description of the DNS-KRLS model and model's sensitivity 5.2.1 The DNS-KRLS model In the DNS framework ([DL06]

Fig. 5 . 2 :Tab. 5 . 1 :

 5251 Fig. 5.2: Observed discount rates from Deutsche Bundesbank website, from 2002 to the end 2015

Fig. 5 . 4 :Fig. 5 . 5 :

 5455 Fig. 5.4: Out-of-sample RMSE over time for KRLS models, with horizon = 12 and horizon = 36

Fig. 5 . 6 :Fig. 5 . 7 :

 5657 Fig. 5.6: Boxplots of Out-of-sample RMSE over time, for KRLS models

Fig. 5 . 8 :Fig. 5 . 9 :

 5859 Fig. 5.8: Forecasts of discount rates, discount factors and discrete forward rates for Matérn 3/2 for horizon = 12 and horizon = 36

Fig. 5 .

 5 Fig. 5.10: discount rates, discount factors and discrete forward rates for DNS-ARIMA

Fig. 6 .Fig. 6 . 2 :Fig. 6 . 3 :Fig. 6 . 4 :

 6626364 Fig. 6.1: Out-of-sample predictions and 80%, 95% confidence intervals for SLC14.1 (with seed = 123) Fig. 6.2: Out-of-sample predictions and 80%, 95% confidence intervals for SLC14.2 (with seed = 123)

  nb init is the number of observations in the response variable y = (f (x 1 ), . . . , f(x nb init )) T S is a smoother matrix verifying ŷ = Sy, and tr(S) is the trace of matrix S. In the case of BQRVFL, y contains the observed values of the response y, S = Z T Z + λI p -1 Z T , and ŷ contains the model's fitted values.

6. 3

 3 Bayesian optimization of black box functions 123 which is widely used for testing Bayesian optimization frameworks, and notably in [Pic+13]. This function is defined for x = (x 1 , x 2 ) ∈ [0, 1] 2 as: 1 ) -44.81 (6.2) where x1 = 15x 1 -5 x2 = 15x 2 . The rescaled Branin function is presented below, in figures 6.5 and 6.6.
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 6566 Fig. 6.5: Rescaled Branin function perspective plot Fig. 6.6: Rescaled Branin function level plot

Fig. 6 . 7 :Fig. 6 . 8 : 6 . 2 :

 676862 Fig. 6.7: Minimum value for the rescaled Branin function, as a function of the number of iterations with BQRVFL. Left: With Expected Improvement (EI) Right: With Upper Confidence Bound (UCB) -BQRVFL

Fig. 6 . 9 : 2 .Tab. 6 . 6 :

 69266 Fig. 6.9: Distribution of the number of times a simulation of x next ∈ C has been required at step 2.

Fig. 6 .

 6 Fig. 6.11: average out-of-sample RMSE for data-driven models
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 66666 Fig.6.12: timings of KRLS vs timings of RVFL

  

  

  

2.4 Numerical examples Tab. 2.2: Parameters

  obtained for unregularized and regularized CMN Maturity unregularized b i regularized b i

	0.5	0.0253	0.0281
	1	0.1100	0.0363
	1.5	-0.0078	0.0383
	2	0.0929	0.0383
	2.5	-0.0005	0.0380
	3	-0.1360	0.0352
	4	0.2901	0.0358
	5	0.1975	0.0478
	7	0.1654	0.0497
	10	-0.0056	0.0515
	12	0.1315	0.0533
	15	0.1392	0.0554
	20	0.0688	0.0553
	30	0.039	0.0491

Table 2 .

 2 2 contains both the unregularized and regularized b i s. The unregularized ones naturally exhibit a higher variance, because an exact fit to each swap rate in the noisy dataset is required. The regularized b i s exhibit a lower variance, at the expense of a higher bias in the fitting of the data from[START_REF] Andersen | Discount curve construction with tension splines[END_REF].

table 2

 2 

	Maturity b i
	0.1	0.0718
	1	0.0351
	4	0.0018
	9	0.1162
	20	0.0011
	30	0.0114

.3. Tab. 2.3: Parameters obtained CMN with a = 0.71 and σ = 0.0062 on [HW06] data

  Descriptive statistics for the spot rates observed from december 2013 to april 2016

	Maturity Min.	1st Qrt Median Mean	3rd Qrt Max.
	1	-0.0026 -0.0008 0.0000 0.0003 0.0019 0.0031
	3	-0.0023 0.0002 0.0009 0.0013 0.0028 0.0065
	5	-0.0008 0.0017 0.0030 0.0037 0.0056 0.0117
	10	0.0046 0.0059 0.0090 0.0101 0.0132 0.0211
	15	0.0063 0.0097 0.0127 0.0141 0.0179 0.0258
	20	0.0069 0.0113 0.0144 0.0157 0.0199 0.0272
	30	0.0071 0.0118 0.0155 0.0164 0.0208 0.0270
	Tab. 2.6: Average out-of-sample error on real world IRS data + CRA
	Method		Parameters	Avg. OOS error

2.4 Numerical examples

Tab. 2.5:

  2.8: Descriptive statistics for fitted parameters b i s from april 2015 to april 2016 In figure 2.21, we represent the eight time series of swap rates, observed for each maturity 1, 2, 3, 4, 5, 7, 10, 30, between july 2000 and september 2016. The swap rates for different maturities generally exhibit a decreasing trend, and are nearly equal to 0 by the end of 2016 for the shortest maturities. Descriptive statistics for St Louis Federal Reserve data

	Maturity Min. Maturity Min. 1st Qrt Median Mean 1st Qrt Median Mean 3rd Qrt Max. 3rd Qrt Max.
	1	-0.0026 -0.0021 -0.0010 -0.0013 -0.0004 -0.0003 1 0.0026 0.0050 0.0134 0.0211 0.0336 0.0705
	3	0.0000 0.0026 0.0040 0.0035 0.0048 0.0058 2 0.0037 0.0078 0.0182 0.0239 0.0390 0.0712
	5	0.0025 0.0076 0.0030 0.0092 0.0108 0.0143 3 0.0046 0.0108 0.0236 0.0269 0.0422 0.0714
	10	0.0115 0.0174 0.0090 0.0188 0.0208 0.0230 4 0.0060 0.0134 0.0280 0.0296 0.0439 0.0715
	15	0.0122 0.0168 0.0127 0.0192 0.0220 0.0228 5 0.0078 0.0167 0.0316 0.0319 0.0456 0.0717
	20	0.0117 0.0148 0.0144 0.0171 0.0195 0.0211 7 0.0119 0.0215 0.0368 0.0354 0.0483 0.0720
	30	0.0080 0.0116 0.0155 0.0134 0.0150 0.0178 10 0.0139 0.0261 0.0419 0.0388 0.0502 0.0724
		30	0.0175 0.0327 0.0465 0.0440 0.0537 0.0720

Starting in 2006, the spreads between swap rates with different maturities start to narrow, until the end of 2007, and swap rates for short maturities are relatively high. This is the period corresponding to the Liquidity and Credit Crunch 2007-2008. Table

3

.8 below presents the descriptive statistics for the data. Fig. 2.21: Swap rates data (in %) from St Louis Federal Reserve Bank, at maturities 1, 2, 3, 4, 5, 7, 10, 30

Tab. 2.9:

  Descriptive statistics for out-of-sample RMSE, for training window = 6 months, and testing window = 6 months

	Method Min.	1st Qrt	Median Mean	3rd Qrt Max.	Std. Dev
	NS	0.00101 0.00269 0.00409 0.00481 0.00595 0.01530 0.00296
	NSS	0.00102 0.00269 0.00411 0.00481 0.00595 0.01537 0.00296
	CMN	0.00115 0.00256 0.00396 0.00468 0.00580 0.01600 0.00302
	Tab. 2.11: Descriptive statistics for out-of-sample RMSE, for training window = 36 months,
		and testing window = 36 months	
	Method Min.	1st Qrt	Median Mean	3rd Qrt Max.	Std. Dev
	NS	0.00356 0.00703 0.01044 0.01489 0.01609 0.21500 0.0213
	NSS	0.00300 0.00690 0.01114 0.01484 0.01689 0.21570 0.0201
	CMN	0.00402 0.00945 0.01279 0.01452 0.01917 0.03710 0.0070

2.4 Numerical examples

Tab. 2.10:

Using tables 2.10, 3.9 and figures 2.22 and 2.23, we observe that CMN give results which are close to those from NS and NSS, with a lower average out-of-sample RMSE in both cases. For a training window equal to six months, and testing window of six months, the results obtained by the three methods are pretty similar, and the same performance is observed for the three during the financial crisis. For a training and testing window of thirty six months length, CMN has a lower mean and standard deviation for out-of-sample RMSE overall, but doesn't perform the best in the period of financial crisis 2007-2009.

  .1: Summary of observed discount rates from Deutsche Bundesbank website, from 2002 to the end 2015 VAR models.[START_REF] Francis | Forecasting the term structure of government bond yields[END_REF] applied an autoregressive AR(1) model separately to each one of the parameters, α i,t , i = 1, . . . , 3.

	against ARIMA and			
	Maturity Min	1st Qrt Median 3rd Qrt Max
	1	-0.116 0.858	2.045	3.072	5.356
	5	0.170 1.327	2.863	3.807	5.146
	15	0.711 2.616	3.954	4.702	5.758
	30	0.805 2.594	3.962	4.814	5.784
	50	0.749 2.647	3.630	4.590	5.467

Table 3

 3 

.2 is to be read in conjuction with the log(RM SE) box plot presented in figure 3.3. It summarises the results

  The spreads between the spot rates time series are extremely narrow during the 2007-2009 crisis. The tables below contain the results of a comparison between the RVFL model and an unrestricted VAR model (with one lag, best parameter found) on the forecasting problem. The best RVFL model, with the lowest out-of-sample RM SE, uses one lag, four hidden nodes, and λ 1 = 5.80, λ 2 = 19.66. 95% confidence interval around the difference of out-of-sample RM SE In this third example, as in section 3.3.1, we apply the DNS framework to the forecasting of spot rates. But with a longer training set (36 months), and a longer horizon for the test set (36 months as well). We use interest rate swaps data from the Federal Reserve Bank of St Louis website

	Tab. 3.7: Method	Lower bound Upper bound Mean
		RVFL-VAR -0.2622	-0.7087	-0.4854
	3.3.3 Forecasting on a longer horizon, with a longer training
	window	
		Correlations 1y rate 10y rate 20y rate
		1y rate		1.0000 0.8729	0.8118
		10y rate	0.8729 1.0000	0.9900
		20y rate	0.8118 0.9900	1.0000
	been observed recently in 2016. Tab. 3.6: Comparison of 12 months ahead out-of-sample RM SE, for the RVFL, and VAR
	Method Min	1st Qrt Median Mean	3rd Qrt Max
	RVFL	0.1675 0.2906 0.4704 0.5452 0.6469 1.8410
	VAR	0.1382 0.4025 0.6469 1.0310 1.0750 13.020

2 

, observed on a monthly basis from july 2000 to september 2016, with maturities equal to 1, 2, 3, 4, 5, 7, 10, 30, and a tenor equal to three months.

  Liquidity and Credit Crunch 2007-2008. Table3.8 presents the descriptive statistics for these three time series. All the swap rates (for all the maturities available) were then transformed into zero rates, by using a single curve calibration methodology (that is, ignoring the counterparty credit risk) with linear interpolation between the swaps' maturities. Then, the Nelson & Siegel model was used for fitting and forecasting the curves in a DNS framework, with both auto.arima and the RVFL model presented in this chapter, applied to the three factors. In the fashion of section 3.3.1. But now, we obtain 36-months ahead forecasts, from a rolling training windows with a fixed 36 months length. The average out-of-sample RM SE are then calculated for each method.With these parameters, the results detailed in table 3.9 are obtained, for the out-ofsample RM SE. A 95% confidence interval around the difference of out-of-sample RM SE between ARIMA (applied to each one of the three factors) and RVFL is presented in table 3.10. 95% confidence interval around the difference of out-of-sample RM SE

	Tab. 3.8: Descriptive statistics of St Louis Federal Reserve data for 1y, 10y and 30y swap rates (in %) Tab. 3.10: Method Lower bound Upper bound Mean
	Maturity Min. RVFL-ARIMA -0.0064 1st Qrt Median Mean 3rd Qrt Max. 0.0007 -0.0028
	1		0.260 0.500	1.340	2.108 3.360	7.050
	10	1.390 2.610	4.190	3.881 5.020	7.240
	30	1.750 3.270	4.650	4.404 5.375	7.200
	Tab. 3.9: Descriptive statistics for out-of-sample RM SE, with rolling training window =
	36 months, and testing window = 36 months
	Method Min.	1st Qrt Median Mean	3rd Qrt Max.	Std. Dev
	ARIMA 0.0036 0.0070 0.0104 0.0149 0.0161 0.2150 0.0213
	RVFL	0.0032 0.0078 0.0115 0.0120 0.0148 0.0256 0.0055

The best hyperparameters -associated with the lowest out-of-sample average RM SE -for each model are obtained through a search on a grid of values. We have:

• DNS with ARIMA (auto.arima): λ = 1.4271 (Nelson Siegel parameter)

• DNS with RVFL: number of lags for each series: 1, activation function: ReLU, number of nodes in the hidden layer: 45, λ 1 = 4.6416, λ 2 = 774.2637 (RVFL parameters) and λ = 24 (Nelson Siegel parameter)

  3.5.1 Mean forecast and confidence intervals for αi,t , i = 1, . . . , 3forecasts Mean forecast and confidence intervals for α i,t , i = 1, . . . , 3 forecasts

	alpha3 4.584836 4.328843 4.757406 4.215410 4.870840 y_lo80 y_hi80 y_lo95 y_hi95 y_lo80 y_hi80 y_lo95 y_hi95 -1.216213 -1.317358 -1.115068 -1.370901 -1.061525 -4.605170 alpha3 -3.070113 3.9701229 -1.535057 3.070113 -3.8655596 3.6 Appendix 4.584836 4.328843 4.757406 4.215410 4.870840 -1.215266 -1.316411 -1.114121 -1.369954 -1.060578 -3.070113 -3.070113 4.9644144 0.000000 3.070113 -3.9279840
	4.546167 4.307253 4.849862 4.163634 4.993482 4.546167 4.307253 4.849862 4.163634 4.993482 -1.211474 -1.312619 -1.110329 -1.366162 -1.056786 -1.535057 -3.070113 5.2607788 1.535057 3.070113 -3.9508440
	α 1,t : 4.527651 4.201991 4.803004 4.042913 4.962082 4.527651 4.201991 4.803004 4.042913 4.962082 4.513810 4.216525 4.850160 4.048812 5.017874 4.517643 4.176214 4.828735 4.003502 5.001446 4.523109 4.203064 4.866713 4.027406 5.042371 4.513810 4.216525 4.850160 4.048812 5.017874 4.517643 4.176214 4.828735 4.003502 5.001446 -1.210329 -1.311474 -1.109183 -1.365017 -1.055640 -1.209610 -1.310755 -1.108465 -1.364298 -1.054922 -1.209648 -1.310793 -1.108503 -1.364336 -1.054960 0.000000 -3.070113 5.3208833 1.535057 -3.070113 5.3326856 3.070113 -3.070113 5.3351784 3.070113 3.070113 -4.0270316 4.605170 3.070113 -4.0831569 6.140227 3.070113 -4.0953167 3.6.1 α 1,t : 4.523109 4.203064 4.866713 4.027406 5.042371 -1.209601 -1.310746 -1.108456 -1.364289 -1.054913 4.605170 -3.070113 5.3357136 7.675284 3.070113 -4.0979447
	4.522772 4.178489 4.848760 4.001079 5.026170 4.522772 4.178489 4.848760 4.001079 5.026170 -1.209688 -1.310833 -1.108542 -1.364376 -1.055000 6.140227 -3.070113 5.3358306 9.210340 3.070113 -4.0985113
	4.521846 4.191833 4.866066 4.013374 5.044524 4.521846 4.191833 4.866066 4.013374 5.044524 -1.209653 -1.310798 -1.108508 -1.364341 -1.054965 7.675284 -3.070113 5.3358557 -4.605170 4.605170 -2.6779260
	alpha1 4.521382 4.177560 4.854171 3.998472 5.033259 y_lo80 y_hi80 y_lo95 y_hi95 4.521382 4.177560 4.854171 3.998472 5.033259 alpha1 y_lo80 y_hi80 y_lo95 y_hi95 9.210340 -3.070113 5.3358610 -3.070113 4.605170 -3.4704808
	13 0.7432724 0.6852024 0.8013425 0.6544620 0.8320829 14 0.7357374 0.6776673 0.7938074 0.6469269 0.8245478 4.521451 4.186714 4.864755 4.007248 5.044222 4.521772 4.178995 4.857897 3.999300 5.037591 13 0.7432724 0.6852024 0.8013425 0.6544620 0.8320829 14 0.7357374 0.6776673 0.7938074 0.6469269 0.8245478 4.521451 4.186714 4.864755 4.007248 5.044222 4.521772 4.178995 4.857897 3.999300 5.037591 -4.605170 -1.535057 3.6692928 -1.535057 4.605170 -4.0404935 α 3,t : -3.070113 -1.535057 3.5643607 0.000000 4.605170 -4.2441836
	15 0.7378042 0.6797342 0.7958742 0.6489938 0.8266147 4.521862 4.184734 4.864155 4.004903 5.043987 15 0.7378042 0.6797342 0.7958742 0.6489938 0.8266147 4.521862 4.184734 4.864155 4.004903 5.043987 -1.535057 -1.535057 3.5063072 1.535057 4.605170 -4.3657802
	16 0.7408417 0.6827717 0.7989118 0.6520313 0.8296522 16 0.7408417 0.6827717 0.7989118 0.6520313 0.8296522 alpha3 y_lo80 y_hi80 y_lo95 y_hi95 0.000000 -1.535057 3.4942438 3.070113 4.605170 -4.3923094
	17 0.7407904 0.6827204 0.7988604 0.6519800 0.8296009 17 0.7407904 0.6827204 0.7988604 0.6519800 0.8296009 4.500390 4.244398 4.672961 4.130964 4.786394 1.535057 -1.535057 3.4904354 4.605170 4.605170 -4.3862826
	18 0.7404501 0.6823801 0.7985201 0.6516396 0.8292605 3.5.2 Stressed forecast (α 1,t + 0.5%) and confidence intervals for 18 0.7404501 0.6823801 0.7985201 0.6516396 0.8292605 3.6.2 Stressed forecast (α 1,t + 0.5%) and confidence intervals for 4.482948 4.244035 4.786643 4.100415 4.930263 3.070113 -1.535057 3.4881352 6.140227 4.605170 -4.3830293
	19 0.7403603 0.6822903 0.7984303 0.6515498 0.8291707 20 0.7403981 0.6823281 0.7984681 0.6515876 0.8292085 α i,t , i = 1, . . . , 3 forecasts 19 0.7403603 0.6822903 0.7984303 0.6515498 0.8291707 20 0.7403981 0.6823281 0.7984681 0.6515876 0.8292085 4.441841 4.116182 4.717194 3.957103 4.876272 4.605170 -1.535057 3.4888202 7.675284 4.605170 -4.3820703 α i,t , i = 1, . . . , 3 forecasts 4.441744 4.144459 4.778094 3.976746 4.945808 6.140227 -1.535057 3.4880668 9.210340 4.605170 -4.3818486
	21 0.7404788 0.6824087 0.7985488 0.6516683 0.8292892 α 1,t : 21 0.7404788 0.6824087 0.7985488 0.6516683 0.8292892 α 1,t : 4.439609 4.098181 4.750701 3.925469 4.923413 7.675284 -1.535057 3.4886911 -4.605170 6.140227 -3.5007058
	22 0.7404786 0.6824086 0.7985487 0.6516682 0.8292891 22 0.7404786 0.6824086 0.7985487 0.6516682 0.8292891 4.447151 4.127105 4.790755 3.951448 4.966412 9.210340 -1.535057 3.4886383 -3.070113 6.140227 -3.8389274
	23 0.7404791 0.6824091 0.7985491 0.6516686 0.8292895 23 0.7404791 0.6824091 0.7985491 0.6516686 0.8292895 4.446164 4.101881 4.772152 3.924471 4.949562 -4.605170 0.000000 3.6224691 -1.535057 6.140227 -4.1969545
	24 0.7404758 0.6824058 0.7985458 0.6516654 0.8292863 alpha1 y_lo80 y_hi80 y_lo95 y_hi95 24 0.7404758 0.6824058 0.7985458 0.6516654 0.8292863 alpha1 y_lo80 y_hi80 y_lo95 y_hi95 4.445421 4.115407 4.789641 3.936949 4.968099 -3.070113 0.000000 3.8313407 0.000000 6.140227 -4.3400025
		1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 4.445411 4.101589 4.778200 3.922501 4.957289 -1.535057 0.000000 3.8518759 1.535057 6.140227 -4.4179718
	α 2,t :	1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 4.445491 4.110754 4.788795 3.931287 4.968262 0.000000 0.000000 3.8163287 3.070113 6.140227 -4.3797034 α 2,t : 1.25 1.19193 1.30807 1.16119 1.33881 4.445937 4.103160 4.782062 3.923465 4.961756 1.535057 0.000000 3.7993471 4.605170 6.140227 -4.3073100
		1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 4.446012 4.108885 4.788306 3.929053 4.968137 3.070113 0.000000 3.7948073 6.140227 6.140227 -4.2866647
	alpha2 13 -1.250640 -1.351785 -1.149495 -1.405328 -1.095952 y_lo80 y_hi80 y_lo95 y_hi95 14 -1.243294 -1.344439 -1.142149 -1.397982 -1.088606 15 -1.241429 -1.342574 -1.140284 -1.396117 -1.086741 16 -1.243868 -1.345014 -1.142723 -1.398557 -1.089180 17 -1.244483 -1.345628 -1.143338 -1.399171 -1.089795 18 -1.241865 -1.343010 -1.140719 -1.396553 -1.087177 19 -1.240814 -1.341959 -1.139669 -1.395502 -1.086126 1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 1.25 1.19193 1.30807 1.16119 1.33881 alpha2 y_lo80 y_hi80 y_lo95 1.25 1.19193 1.30807 1.16119 1.33881 4.605170 0.000000 3.7937787 7.675284 6.140227 -4.2820357 y_hi95 1.25 1.19193 1.30807 1.16119 1.33881 6.140227 0.000000 3.7935546 9.210340 6.140227 -4.2810151 13 -1.250640 -1.351785 -1.149495 -1.405328 -1.095952 1.25 1.19193 1.30807 1.16119 1.33881 3.6.3 Out-of-sample log(RM SE) as a function of log(λ 1 ) and 7.675284 0.000000 3.7935063 -4.605170 7.675284 -3.7236774 14 -1.243294 -1.344439 -1.142149 -1.397982 -1.088606 15 -1.241429 -1.342574 -1.140284 -1.396117 -1.086741 1.25 1.19193 1.30807 1.16119 1.33881 9.210340 0.000000 3.7934958 -3.070113 7.675284 -4.0057353 log(λ 2 ) 1.25 1.19193 1.30807 1.16119 1.33881 -4.605170 1.535057 -1.2115597 -1.535057 7.675284 -4.2699684 16 -1.243868 -1.345014 -1.142723 -1.398557 -1.089180 1.25 1.19193 1.30807 1.16119 1.33881 log_lambda1 log_lambda2 log_error -3.070113 1.535057 -1.0130537 0.000000 7.675284 -4.3569254 17 -1.244483 -1.345628 -1.143338 -1.399171 -1.089795 1.25 1.19193 1.30807 1.16119 1.33881 -4.605170 -4.605170 13.5039336 -1.535057 1.535057 -0.5841784 1.535057 7.675284 -4.4156364 18 -1.241865 -1.343010 -1.140719 -1.396553 -1.087177 19 -1.240814 -1.341959 -1.139669 -1.395502 -1.086126 1.25 1.19193 1.30807 1.16119 1.33881 -3.070113 -4.605170 14.3538621 0.000000 1.535057 -0.3802817 3.070113 7.675284 -4.3842360
	20 -1.240371 -1.341516 -1.139226 -1.395059 -1.085683 20 -1.240371 -1.341516 -1.139226 -1.395059 -1.085683 -1.535057 -4.605170 14.7912525 1.535057 1.535057 -0.3109827 4.605170 7.675284 -4.2759516
	21 -1.240237 -1.341382 -1.139092 -1.394925 -1.085549 22 -1.240276 -1.341421 -1.139131 -1.394964 -1.085588 α 2,t : 21 -1.240237 -1.341382 -1.139092 -1.394925 -1.085549 22 -1.240276 -1.341421 -1.139131 -1.394964 -1.085588 0.000000 -4.605170 14.8749375 3.070113 1.535057 -0.2931830 6.140227 7.675284 -4.2425876 α 2,t : 1.535057 -4.605170 14.8928025 4.605170 1.535057 -0.2891586 7.675284 7.675284 -4.2346514
	23 -1.240329 -1.341474 -1.139184 -1.395017 -1.085641 23 -1.240329 -1.341474 -1.139184 -1.395017 -1.085641 3.070113 -4.605170 14.8962203 6.140227 1.535057 -0.2882824 9.210340 7.675284 -4.2328863
	24 -1.240308 -1.341453 -1.139163 -1.394996 -1.085620 alpha2 y_lo80 y_hi80 y_lo95 y_hi95 24 -1.240308 -1.341453 -1.139163 -1.394996 -1.085620 alpha2 y_lo80 y_hi80 y_lo95 y_hi95 4.605170 -4.605170 14.8975776 7.675284 1.535057 -0.2880932 -4.605170 9.210340 -3.7706268
	-1.222568 -1.323713 -1.121423 -1.377256 -1.067880 -1.222568 -1.323713 -1.121423 -1.377256 -1.067880 6.140227 -4.605170 14.8976494 9.210340 1.535057 -0.2880524 -3.070113 9.210340 -4.0406387
	-1.219401 -1.320546 -1.118256 -1.374089 -1.064713 -1.219401 -1.320546 -1.118256 -1.374089 -1.064713 7.675284 -4.605170 14.8976630 -4.605170 3.070113 -2.0397856 -1.535057 9.210340 -4.2776907
	α 3,t : -1.211361 -1.312506 -1.110216 -1.366049 -1.056673 -1.211361 -1.312506 -1.110216 -1.366049 -1.056673 α 3,t : 9.210340 -4.605170 14.8976715 -3.070113 3.070113 -3.1729003 0.000000 9.210340 -4.3498230
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  1: Summary statistics for the four transformed time series: Treasury Bills and transformed Real consumption, Real disposable income, and Inflation data from[START_REF] William H Greene | Econometric analysis, 5th[END_REF] 

	Series	Min	1st Qrt Median Mean 3rd Qrt Max	Std. Dev.
	Real consumption	-11.990 1.814	3.637	3.513 5.414	19.978 3.546
	Real disposable income -7.275	1.613	3.390	3.423 5.518	18.358 3.486
	Inflation	-2.530	1.755	3.135	3.936 5.593	16.864 3.407
	Treasury Bills rates	0.810	3.138	5.050	5.270 6.715	15.090 2.829
	Tab. 4.2: Box-Pierce test for the independence in the time series observations	
	Series			X-squared p-value	
	Real consumption		0.0133	0.9082	
	Real disposable income 1.3912	0.2382	
	Inflation			86.428	2.2e-16	
	Treasury Bills rates		186.35	2.2e-16	

  Description of the DNS-KRLS model and model's sensitivity with i ∈ {1, . . . , k}. If we consider the p = 3 time series (α ) observed at n = 5 dates t 1 < . . . < t 5 , with k = 2 lags, the response variables are stored in:

	and (α t 1 , . . . , α (3) t 5 (3)	(1) t 1 , . . . , α t 5 ), (α (1) t 1 , . . . , α (2) t 5 ) (2)

5.2

  Tab. 6.1: optimal hyperparameters found for the BQRVFL on SLC14 1 and SLC14 2

	Dataset	Number of nodes λ	Prop at 95% Prop at 80%
	SLC14 1 -seed = 123 975	1.53	86.11%	77.77%
	SLC14 1 -seed = 456 700	132.19	100.00%	97.22%
	SLC14 2 -seed = 123 825	20	97.22%	94.44%
	SLC14 2 -seed = 456 650	1788.65 100.00%	100.00%
	In the next section, 6.3, we are going to use this model as a workhorse for Bayesian
	optimization.			
	6.3 Bayesian optimization of black box functions
	6.3.1 Description of the method		

  ArgM ax x∈C a EI (x; θ) . D is enriched with (x next , f(x next )) and we return to point 2., until the budget of iterations, nb iter , is reached.

or x next = ArgM in x∈C a UCB (x; θ) If (x next , f(x next )) is already found in D, then x next is picked randomly in C.

3

  Summary of minimum values found for the rescaled Branin function, as a function of the number of iterations (with Upper Confidence Bound) with BQRVFL Summary of minimum values found for the rescaled Branin function, as a function of the number of iterations (with Expected Improvement) with Random Forest Summary of minimum values found for the rescaled Branin function, as a function of the number of iterations (with Upper Confidence Bound) with Random Forest For 100 seeds, and a fixed number of iterations nb iter , we rerun the procedure described before in section 6.3.1, 100 times. For the BQRVFL, nb iter goes from 5 to 100 with steps of 5, and for the Random Forest with confidence intervals, nb iter ∈ {5, 50, 100}. A further tuning of the Random Forest hyperparameters, or of the parameter κ, or a different choice for nb init , or activation function for the BQRVFL, would of course lead to different results.

	Tab. 6.3: Nb. of iterations Min	1st Qrt Median Mean 3rd Qrt Max	Std. Dev
	5	-1.047 -1.024 -0.984	-0.963 -0.932	-0.702 0.079
	50	-1.047 -1.029 -1.025	-1.020 -1.012	-0.958 0.017
	100	-1.047 -1.032 -1.027	-1.028 -1.025	-1.012 0.008
	Tab. 6.4: Nb. of iterations Min	1st Qrt Median Mean	3rd Qrt Max	Std. Dev
	5	-1.047 -1.027 -1.003 -0.999 -0.973	-0.912 0.033
	50	-1.047 -1.044 -1.036 -1.033 -1.027	-0.984 0.012
	100	-1.047 -1.045 -1.039 -1.038 -1.033	-1.015 0.008
	Tab. 6.5: Nb. of iterations Min	1st Qrt Median Mean 3rd Qrt Max	Std. Dev
	5	-1.047 -1.029 -0.996	-0.989 -0.973	-0.786 0.055
	50	-1.047 -1.032 -1.022	-1.015 -0.998	-0.949 0.023
	100	-1.047 -1.034 -1.025	-1.022 -1.014	-0.959 0.019
	5		-1.047 -1.024 -0.986	-0.986 -0.963	-0.812 0.046
	50		-1.047 -1.027 -1.027	-1.027 -1.027	-1.010 0.008
	100		-1.047 -1.027 -1.027	-1.029 -1.027	-1.025 0.006

  Tab. 6.7: out-of-sample RMSE for models based on the DNS framework Horizon NS-Gaussian NS-Matérn 3/2 NS-Matérn 5/2 NS-RVFL

	12	0.6584	0.6590	0.6652	0.5483
	18	0.8356	0.8356	0.8356	0.7078
	24	1.0130	1.0130	1.0130	0.8564
	30	1.1607	1.1607	1.1607	1.0289
	36	1.2863	1.2863	1.2863	1.1405
	12	0.6392	0.5168	0.5798	0.5540
	18	0.7466	0.6591	0.7394	0.7032
	24	0.8885	0.7716	0.8965	0.8191
	30	1.0095	0.8844	1.0083	0.9535
	36	1.1544	1.0099	1.1396	1.0646

Fig. 6.10: out-of-sample RMSE for models based on the DNS framework Tab. 6.8: average out-of-sample RMSE for data-driven KRLS models Horizon Gaussian Matérn 3/2 Matérn 5/2 RVFL

1.2 Motivation and Problem Statement (English version)

1.3 Thesis Structure

2.1 Context

2.2 Curve construction and extrapolation

2.3 Forecasting with Functional PCA

Actually applied to Hull & White model, but which can be applied to other short-rate models.

2.4 Numerical examples

Chapter 2 A swap curve for insurance risk management, based on no arbitrage short-rate

Even if for t,0, considering figure 2.18, this makes a strong stationarity assumption on the residuals.

Available at https://fred.stlouisfed.org/categories/32299

2.6 Appendix

3.2 Description of the model

[START_REF] Francis | Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach[END_REF]: "there are by now literally hundreds of DNS applications involving model fitting and forecasting"3.3 Numerical examples

3.3 Numerical examples

Available at https://fred.stlouisfed.org/categories/32299

3.3 Numerical examples

3.4 Conclusion

3.6 Appendix

4.3 Ensembles of RVFL

4.4 Numerical examples

4.5 Appendix

5.3 Description of the KRLS model applied to observed dates and time to maturities

for a more complete treatment, a validation set would be added, in order to verify that the models are not 'overtrained' on this training/testing set5.4 Numerical examples

5.4 Numerical examples

6.2 Description of the model

Chapter 6 A Bayesian Quasi-Randomized neural network, and its application to the

6.3 Bayesian optimization of black box functions

6.4 Conclusion

Chapter 6 A Bayesian Quasi-Randomized neural network, and its application to the

The details of the correlations between these errors can be found in appendix 4.5.2. The VAR model generally exhibits a higher variance than the other models (excluding stacking with stack lm and stack nnls), but is still able to perform better than them at times (due to the high variance). A rolling forecasting methodology (see [START_REF] Bergmeir | A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction[END_REF]) is implemented in order to obtain the benchmarks between the models. It is described in figure 5.3. A fixed 12 months/36 months-length window for training the model, and the following 12 months/36 months for testing, the origin of the training set is then advanced of 1 month, and the training/testing procedure is repeated. The measure of forecasting performance is the Root Mean Squared Error (RM SE). We use similar grids for all the models, in order to ease the comparability of the results, and avoid too much manual tweaking of the hyperparameters and overtraining the available data.

Appendix

Hence for both models, DNS-KRLS (from section 5.2) and KRLS (from section 5.3), we consider 5 values of σ (variance parameter), l, l 1 , l 2 (length-scale parameters for Gaussian, Matérn 3/2 and Matérn 5/2 kernels) and λ (the regularization parameter for all the kernels) regularly spaced between 10 -2 , 10 2 : 0.01, 0.1, 1, 10, 100.

For the additional parameter η in the DNS-KRLS model, we use 5 values comprised (regularly spaced) between the minimum of the observed time to maturities and the maximum of the observed time to maturities (on [1, 30]): 1, 8.25, 15.5, 22.75, 30.

Cross-validation results

The results obtained after the cross-validation procedure are reported in table 5.2 and 5.3. The results obtained by considering an automatic ARIMA modeling ([HK08]) of the three time series are also indicated, to serve as a benchmark.

For the DNS model and all the types of kernels (Gaussian, Matérn 3/2 and Matérn 5/2), the optimal number of lags is respectively equal to 5 and 6 for the 12-months We observe that no matter the length of the training/testing window (either 12 months or 36 months), or the method employed (either DNS-KRLS or KRLS), the Matérn 3/2 kernel performs better than the other models. It is even performing better on this specific problem with a KRLS model, considering the similarities between vectors of time to maturities and observation dates. The other kernels are probably too flexible for the purpose, so that they are both overfitting the data a bit.

In the next sections 5.4.2 and 5.4.3, we examine these results further, by looking at the out-of-sample root mean squared error (RMSE) obtained over time, and the projected discount/discount factors'/discrete forward curves obtained with the optimal parameters.