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Abstract

In recent years, the subject of physical interaction for aerial robots has been a pop-
ular research area with many new mechanical designs and control approaches being
proposed. The aerial robotics community is currently observing a paradigm shift
from classic guidance, navigation, and control tasks towards more unusual tasks,
for example requesting aerial robots to physically interact with the environment,
thus extending the manipulation task from the ground into the air. This thesis con-
tributes to the field of aerial manipulation by proposing a novel concept known has
Multiple Aerial-Ground Manipulator System or MAGMaS, including what appears
to be the first experimental demonstration of a MAGMaS and opening a new route
of research.

The motivation behind associating ground and aerial robots for cooperative
manipulation is to leverage their respective particularities, ground robots bring
strength while aerial robots widen the workspace of the system. The first contribu-
tion of this work introduces a meticulous system model for MAGMaS. The system
model’s properties and potential extensions are discussed in this work. The plan-
ning, estimation and control methods which are necessary to exploit MAGMaS in a
cooperative manipulation tasks are derived. This works proposes an optimal control
allocation scheme to exploit the MAGMaS redundancies and a general model-based
force estimation method is presented. All of the proposed techniques reported in
this thesis are integrated in a global architecture used for simulations and experi-
mental validation. This architecture is extended by the addition of a tele-presence
framework to allow remote operations of MAGMaS. The global architecture is vali-
dated by robust demonstrations of bar lifting, an application that gives an outlook
of the prospective use of the proposed concept of MAGMaS. Another contribution
in the development of MAGMaS consists of an exploratory study on the flexibil-
ity of manipulated loads. A vibration model is derived and exploited to showcase
vibration properties in terms of control.

The last contribution of this thesis consists of an exploratory study on the use
of elastic joints in aerial robots, endowing these systems with mechanical compli-
ance and energy storage capabilities. Theoretical groundings are associated with a
nonlinear controller synthesis. The proposed approach is validated by experimental
work which relies on the integration of a lightweight variable stiffness actuator on
an aerial robot.

Keywords

Cyber-physical systems – Aerial manipulation systems – Shared control – Non-linear
control and estimation – Manipulation with compliant actuators
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Résumé
Les dernières années ont vu le développement de recherches portant sur l’interaction
physique entre les robots aériens et leur environnement, accompagné de l’appari-
tion de nombreux nouveaux systèmes mécaniques et approches de régulation. La
communauté centrée autour de la robotique aérienne observe actuellement un dé-
placement de paradigmes des approches classiques de guidage, de navigation et de
régulation vers des tâches moins triviales, telle le développement de l’interaction
physique entre robots aériens et leur environnement. Ceci correspond à une exten-
sion des tâches dites de manipulation, du sol vers les airs. Cette thèse contribue
au domaine de la manipulation aérienne en proposant un nouveau concept appelé
MAGMaS, pour « Multiple Aerial Ground Manipulator System ».

Les motivations qui ont conduites à l’association de manipulateurs terrestres et
aériens pour effectuer des tâches de manipulation coopérative, résident dans une
volonté d’exploiter leurs particularités respectives. Les manipulateurs terrestres ap-
portant leur importante force et les manipulateurs aériens apportant leur vaste es-
pace de travail. La première contribution de cette thèse présente une modélisation
rigoureuse des MAGMaS. Les propriétés du système ainsi que ses possibles exten-
sions sont discutées. Les méthodes de planning, d’estimation et de régulation néces-
saire à l’exploitation des MAGMaS pour des tâches de manipulation collaborative
sont dérivées. Ce travail propose d’exploiter les redondances des MAGMaS grâce à
un algorithme optimal d’allocation de forces entre les manipulateurs. De plus, une
méthode générale d’estimation de forces pour robots aériens est introduite. Toutes
les techniques et les algorithmes présentés dans cette thèse sont intégrés dans une
architecture globale, utilisée à la fois pour la simulation et la validation expéri-
mentale. Cette architecture est en outre augmentée par l’addition d’une structure
de télé-présence, afin de permettre l’opération à distances des MAGMaS. L’archi-
tecture générale est validée par une démonstration de levage de barre, qui est une
application représentative des potentiels usages des MAGMaS. Une autre contribu-
tion relative au développement des MAGMaS consiste en une étude exploratoire de
la flexibilité dans les objets manipulés par un MAGMaS. Un modèle du phénomène
vibratoire est dérivé afin de mettre en exergue ses propriétés en termes de contrôle.

La dernière contribution de cette thèse consiste en une étude exploratoire sur
l’usage des actionneurs à raideur variable dans les robots aériens, dotant ces sys-
tèmes d’une compliance mécanique intrinsèque et de capacité de stockage d’énergie.
Les fondements théoriques sont associés à la synthèse d’un contrôleur non-linéaire.
L’approche proposée est validée par le biais d’expériences reposant sur l’intégration
d’un actionneur à raideur variable léger sur un robot aérien.

Mots Clés

Systèmes cyber-physiques – Système de manipulation aérienne – Commande partagée
– Commande et observateur non-linéaires – manipulation avec actionneur souple
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Contribution and Overview
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1.1 Contributions

Nowadays free-flying Micro Aerial Vehicle (MAV) are a mature technology which
has obtained several commercial successes, e.g., crop/structure visual inspection
and drone hobby racing. The next frontier for aerial robotics is symbolized by
Aerial Physical Interaction (APhI), where MAV are embodied with the capability
to physically interact with their environment. This opens the way to many ap-
plications, e.g., contact inspection and cooperative manipulation. In recent years,
many incremental contributions have been made leading to Aerial Robot (AR) de-
velopment, i.e., Aerial Vehicle (AV) with the ability to physically interact with the
environment. Motivated by the recent advances in the field of aerial robotics, this
thesis proposes to extend the field of Aerial Manipulation (AM) by presenting the
first general study of collaborative manipulation between ground manipulator(s)
and aerial manipulator(s). The proposed system is called MAGMaS, which stands
for Multiple Aerial-Ground Manipulator System and is based on the vision that
AR can be beneficial to manipulation tasks in the form of flying companions. In
particular, the motivation to combine ground and aerial manipulators resides in
the desire to alleviate their respective shortcomings. This thesis showcases the
first experimental demonstration of a Multiple Aerial-Ground Manipulator System
(MAGMaS), opening a new route of research.

The first study on a MAGMaS is presented in [Staub–2017], which covers the
modeling, control synthesis, simulation and preliminary experiments. The fact
that the proposed multi-robots system is heterogeneous is carefully addressed in
the control synthesis. Preliminary experiments are conducted, validating the pro-
posed MAGMaS concept and the mechanical design of the AR. From this foun-
dation, further work on MAGMaS is conducted, fostered by the participation to
the KUKA 2017 Innovation Award1. The MAGMaS concept is enriched with a
tele-presence framework, for operation in remote or hazardous environments. The
associated work, from theoretical developments to successful demonstration at the

1https://www.kuka.com/en-de/technologies/research-and-innovation/

kuka-innovation-award/kuka-innovation-award-2017
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Hanover Fair 2017, was lead by LAAS–CNRS in cooperation with INIRIA/IRISA
Rennes, University of Siena and Seoul National University. The focus on the ef-
forts developed during this challenge were towards integration and demonstration
of a MAGMaS with tele-operation capabilities; results are detailed in [Staub–2018]
and [Staub–]. In particular, I was in charge of the global architecture and integra-
tion of the system, of the ground manipulator control and of the logistics. I also
participated in the task planning and AR control framework developments. The last
direction explored in the study of MAGMaS consisted in studying the flexibility in
the manipulated load. This work was conducted in cooperation with Seoul National
University and lead to an extension of the MAGMaS model by considering the flex-
ibility in a co-manipulated beam. Further theoretical work was conducted in the
form of a thorough system analysis and the exhibition of the flexibility properties;
the corresponding results are to be found in [Yang–2018].

Based on the observation that force estimation capabilities are of paramount im-
portance for APhI applications, in order to ensure both safe and stable operations.
A preliminary work on external force estimation was conducted before focusing on
the MAGMaS. The proposed approach relies on a class of simple models and the
identification of their parameters, as presented in [Staub–2015].

Another contribution of this thesis in the field of APhI, consists in the study
of elastic joints for AR. This direction of work has been explored with the main
motivations of paving the way for safe APhI with the environment, thanks to the
mechanical compliance induced by elastic joints. Additionally elastic joints also
allow for velocity amplification, which proves useful for dynamic tasks, e.g., throw-
ing. This vast topic, which is at date still almost completely unexplored in the
literature, was partially addressed in [Yüksel–2016b] in cooperation with the Max
Planck Institute for Biological Cybernetics in Tübingen, Germany.

Levels of Maturity of the Presented Works

The careful reader will realize that the maturity of the experimental works pre-
sented is uneven. Choices have been made to maximize the research outcomes with
the unavoidable limited time and resources. The MAGMaS concept presented in
this work is a novel approach that needed solid theoretical foundation. Moreover,
developing and conducting experiments with multi-robot systems composed of an
industrial manipulator and an AR proved to be challenging and time intensive. In
particular, the imposed change, during the thesis course, of industrial manipulator
and AR required an extra integration work. Considering the different constraints,
priority had to be given to demonstrate results, hence some directions which seemed
promising in terms of research work had to be put on hold. Overall, experimen-
tal work is always presented, even if in preliminary form, to validate the proposed
ideas. the possible future directions for further developments on both MAGMaS
and Variable Stiffness Actuator (VSA) for AR are presented in the corresponding
chapters.



1.2. Organization 5

Contribution and Overview State of the Art
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Results
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Conclusion and Future Work

Figure 1.1 – Graphical overview of the chapters, the main topics, and the relation
to the publications.

1.2 Organization

An in-depth state of the art is conducted in Chapter 2, presenting the motiva-
tions behind APhI in general and focusing on AM. A comprehensive review of all
components needed for AM is conducted, including mechanical design, control and
estimation, and the latest results in AM and cooperation between AR.

The following developments are centered around the concept of Multiple Aerial-
Ground Manipulator System (MAGMaS); a totally new concept for aerial-ground
cooperative manipulation developed throughout the presented work. The motiva-
tions behind MAGMaS and the associated models are presented in Chapter 3. In
particular, the observations leading to the concepts of MAGMaS are listed along
with possible use cases. In a second part, the rigorous modeling of the MAGMaS
is derived through modeling of the sub-components. An emphasis is given to the
control and estimation methods in Chapter 4. Two low level control schemes for
AR are discussed and the importance of force estimation is underlined. Based
on these developments, an overall control architecture for MAGMaS is proposed.
The MAGMaS study is concluded by the description of MAGMaS real designs and
presentation of both experimental and simulation results in Chapter 5.

Lastly, two exploratory and ongoing works on flexibility are presented in the last
part of this thesis. In Chapter 6, the influence and exploitation of elasticity in the
AR manipulator is introduced and studied in the general AM case, accompanied
with discussions on intrinsic mechanical compliance benefits for AM. A parallel pre-
liminary study on the flexibility in a beam manipulated by a MAGMaS is presented
in Chapter 7. A model of MAGMaS including flexibility in the beam is derived and
the system properties are exhibited based on the model analysis.

Ultimately the contributions are summarized in Chapter 8. Discussions about
open research directions and future possible works are presented along the results
review.
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Chapter 2

State of the Art in
Aerial Physical Interaction

Contents
2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2.3 Design of Aerial Manipulators . . . . . . . . . . . . . . . . 12
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2.5 Collaborative Aerial Physical Interaction . . . . . . . . . 23

Abstract

This chapter presents the fields of APhI and AM, the latter being a special case
of the former. Sec. 2.1 outlines the motivation and the historical foundations of
the APhI field, while Sec. 2.2 presents an overview of the field at large. The next
two sections develop the field of AM from the mechanical design, Sec. 2.3, to the
associated control theory, Sec. 2.4. The final section, Sec. 2.5, explores the thrilling
topic of collaborative physical interactions for AV.

2.1 Motivations

Since August 1849 and the first use by Austrian forces of an UAV to target enemy
positions. The field of UAV remained heavily fostered by military interests, from

(a) [NASA] (b) [Wikimedia Foundation] (c) [Wikimedia Foundation]

Figure 2.1 – Collections of MAV platforms: from left to right a fixed wing aircraft,
an helicopter and a multi-rotor Unmanned Aerial Vehicle (UAV).
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providing practice target for training, to long endurance surveillance of remote or
sensible areas and combat engagement. From this military background came the
name “drone” given due to the resemblance of sound of early UAV motors and the
male bee. In the following developments, the emphasis is on MAV, understood as
“small enough to be practical for a single-person transport and use” (see [Galinsky–
2007]), practically this maps to a weight up to 5 kg to 6 kg and a span of around
1.2 m, see Fig.B.1.

In the recent decades, due to price drops in small consumer electronics, MAV
became available to the research community and industries outside heavily subsidies
military projects. Leading the path to other MAV usages and designs, for both
fixed-wing aircraft and rotor-crafts. In particular rescue services and agricultural
industries are interested in monitoring capacities. Academia and industry, were
shortly followed by the general public in the MAV market, hobbyist being focused
on MAV racing and airborne photography. Seeing the success and research results
for free-flight UAV operations, see [Mahony–2012] for a tutorial on multi-rotor AV,
new research field on Aerial Physical Interaction (APhI) emerged in the last 15
years. The goal of this field is to provide MAV with the capability of physically
interacting with the environment, ranging from simple surfaces pocking to more
complex cooperative load manipulation.

Aerial Physical Interaction

Aerial Physical Interaction (APhI) is a generic term to design all physical inter-
actions between one AV and its environment. A very early example can be the
in-flight refueling maneuver, demonstrated as early as June 1923. As of today this
procedure is still not fully automated and requires the dexterity of an aircraft pilot
or a boom operator in the case of rigid boom, while the probe-and-drogue system
is close to be automated, see [Wilson–2015].

The following developments are going to focus on to APhI for unmanned air-
craft, whether it be for probing the environment, react to collision or manipulate
objects. In order to perform APhI with MAV a few requirements are set and will
be developed at length in Sec. 2.2. The first two simple tasks of APhI, that come to
mind, are pocking the environment, i.e., exerting force trajectories on surfaces and
perching, i.e., allowing the MAV to perch on the environment in order to recharge
battery or acquire data, see Fig. B.2. Another conceptually simple APhI tasks
consists in linking a MAV to the ground by mean of a tether. These tasks will be
described more in depth in Sec. 2.2. The whole work of this thesis fits under the
umbrella of APhI.

In Europe the research efforts towards APhI are fostered by the European Com-
mission via funding of major cooperation projects. AIRobots1 from 2010 to 2013
funded under FP7 and targeted at developing a new generation of service robots,
ARCAS2 from 2011 to 2015 funded under FP7 and targeted at aerial transporta-

1http://airobots.dei.unibo.it/
2http://www.arcas-project.eu/
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(a) [Gioioso–2014a] (b) [Wopereis–2017a]

Figure 2.2 – Examples of Aerial Physical Interactions: (a) pocking a surface and
(b) perching on a wall.

tion and assembly, AeroWorks3 targeted at enabling an Aerial Robotic worker and
Aeroarms4 from 2015 on, under H2020 fundings, which objectives are toward vali-
dation of APhI for industrial inspection and maintenance.

Aerial Manipulation

A subfield of APhI can be recognized for Aerial Manipulation (AM), being the use
MAV to complete complex manipulation tasks. in the literature there is a confu-
sion between transportation and manipulation, the latter being a special case of
transportation including a dexterity component inherent to manipulation. In the
following, transportation might be used as an illustration of basic manipulation
capabilities. As such, AM regroups all the tasks where an object has to be trans-
ported or manipulated by one or a group of MAV, see Fig. B.4. In order to do so,
developments in mechanical design of Aerial Manipulators, control and estimation
techniques and collaboration framework are necessary. Mechanical design for AV
are explored in Sec. 2.3, both for APhI and AM, with a special focus on some uncon-
ventional designs. Usually, these designs coupled with the physical interaction rise
new problems for the control of the AV, presented in Sec. 2.4. Going even further
in complexity, there is the realization of collaborative APhI tasks, like cooperative
manipulation with other AR, Humans or Ground Robots, this topics is surveyed
in Sec. 2.5. The work of this thesis is oriented towards AM paradigms.

Perception

Finally while perception of the environment is of paramount importance for the
realization of autonomous APhI tasks, it is not the scope of the works presented in
this thesis, as it covers a very wide and active area of research in itself. In particular
in the followings the perception problem to acquire UAV state are always considered
as solved in order to focus on the control theory aspects.

3https://www.aeroworks2020.eu/
4https://aeroarms-project.eu/
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(a) [Nguyen–2015] (b) [Mellinger–2010]

Figure 2.3 – Examples of Aerial Manipulation: (a) drawer opening/closing and (b)
collaborative load transportation.

2.2 Aerial Physical Interaction Paradigms

In this section, a review of the principal challenges faced and applications of APhI is
presented. An overview of APhI designs, with special emphasis on ‘un-conventional’
AV solutions is proposed. The main applications of APhI are detailed and discussed,
including perching, force exertion on surfaces and tethered AV.

2.2.1 Original Mechanical Designs

Typical off-the-shelf MAV are not mechanically fit for APhI tasks, often the pro-
pellers volume is open to collision and they don’t have specific termination for
contact with the environment. Therefor to pave the way to APhI and AM the first
modification of standard MAV concerns mechanical design to enable APhI capaci-
ties. An in-depth review of the different mechanical design for Aerial Manipulator
is presented in Sec. 2.3, the taxonomy presented there also applies for the simplest
APhI tasks. For sake of completeness some mechanical designs only fit for APhI
that does not involve manipulation are presented here, with a selection depicted in
Fig 2.4.

A primary target of APhI mechanical design is to protect the propeller vol-
ume from intrusions and alleviate collision contact disturbances w.r.t. the flying
behavior. One approach proposed by [Briod–2014] is to mount to passive rotating
spherical shell around the main frame of a classical Vertical Landing and Take-
Off Vehicle (VTOL), this mechanism enables the UAV to collide with obstacles
without compromising its flight stability. This design allows to bounce on the envi-
ronment, a refinement is presented in [Salaan–2017] using hemispherical shells, thus
leaving an aperture for an End-Effector (EE) to reach outside of the shell. Lately
this approach of shelling MAV in spherical structure was developed for package
delivery in [Kornatowski–2017]. Another AV concept, the AIrBurr, is presented
in [Klaptocz–2013] and [Briod–2013], the emphasis is on proposing a design signifi-
cantly reducing the effect on impacts with the environment on the flying behavior,
ultimately providing a recovery procedure if the system falls on the ground. This
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(a) [Klaptocz–2013] (b) [Disney Research]

Figure 2.4 – Two Original Designs: (a) the AIrBurr capable of falling to the ground
without breaking and upright itself to take-off again, and (b) the Vertigo capable
of climbing walls.

allows ‘blind’ exploration of cluttered environments. Some research are exploring
the possibility to climb wall, as in [Pope–2017] where a standard quadrotor is aug-
mented with a kind of locomotion mechanism for vertical walls. Or this project,
Vertigo5, with a cart like vehicle actuated by two orientable propellers, even though
this one is not an AV it represents and interesting use of propeller actuation. Other
systems are developed for custom applications, like the large quadrotor presented
in [Tsukagoshi–2015], fitted with a door handle opening mechanism and using the
propellers to push door open. Or the quadrotor, in [Molina–2017], fitted with a
sawing mechanism for perching and cutting tree branches near power lines.

2.2.2 Applications

The applications of APhI, not embraced by AM, consist of perching, when a MAV
attaches itself temporarily to the environment, or force exertion on a surface, by
pushing on a point or sliding while pushing. Collision recovery is not detailed, even
though collisions are physical interactions, because the recovery happens when there
is no more physical interaction, i.e., in free flight.

Perching

Perching is investigated in the field of APhI, as a mean to increase the endurance
of MAV. Indeed once perched and fastened the MAV do not need to resist gravity
with their propellers, hence reducing their power consumption. Perching can be
useful for sensor network, being temperature sensor or cameras used for environment
monitoring, e.g., for crowd monitoring, or working as radio relays in post-disaster
environment. Another usage of the perching maneuver is solar battery recharging,

5https://www.disneyresearch.com/publication/vertigo/
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a MAV with low battery terminal voltage can perch and use solar panel to re-
charge its battery before continuing the mission. In [Wopereis–2017a] the authors
investigate perching for multi-rotor AV, they proposed an associated design for
perching on vertical walls. The results presented in [Pope–2017] go even further
and propose a solution to perch and climb on vertical surfaces. In [Thomas–2016b]
aggressive flight maneuver for perching on inclined surface is investigated. Perching
capabilities have also been successfully demonstrated for fixed-wing MAV, i.e., small
airplanes, as in [Mehanovic–2017] and [Desbiens–2011].

Force Exertion on Surface

Another often described task in the literature of APhI is the exertion of forces on
a surface while following a force trajectory. This description translates to pock-
ing/pushing were the goal is to exert a desired force on some location, either for
sensing with contact sensor or trigger mechanism, e.g., switches, and to sliding
along a surface while maintaining contact, e.g., for ceiling painting. Examples
can be found in [Gioioso–2014a] with a near-hovering controller used to exert 3D
forces on a vertical surface via a passive tool-tip, in [Ryll–2017] a multi-directional
thrust AV is used for pipe contact inspection, applying forces on the measurements
points, in [Yüksel–2017] where a rigid tool is used to slide on an uneven ceiling or
in [Alexis–2013] for pushing along a vertical surface with feedback from pressure
sensor. Another interesting design is proposed in [Papachristos–2014a], focusing
on exerting a large force on the surface by re-orienting the propellers. Another
approach, proposed in [Wopereis–2017b], for applying contact forces on the envi-
ronment that are comparable to the MAV’s weight relies on LQR control to achieve
substantial force application on a specific contact point.

Tethered Aerial Vehicle

The last APhI task reviewed consists of linking an AV to the ground by mean of a
cable. They can be used to transport energy or data increasing the AV autonomy,
see Fig. B.3. Moreover the tether can be used to enhance the flight performances,
as in [Sandino–2014a], for hovering, or to guide the landing, as in [Sandino–2014b].
And even to perform maneuvers impossible without the tether, like smooth and safe
landing on a sloped surface as in [Tognon–2016b]. Tethered AV are now available
as a product in France6, with application to area surveillance with visual sensor or
air quality monitoring.

2.3 Design of Aerial Manipulators

In this section an exhaustive taxonomy of aerial manipulator designs is conducted.
The designs proposed in the literature can be ordered considering three main cri-

6http://elistair.com/
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(a) [Elistair] (b) [Kondak–2009] (c) [Tognon–2016b]

Figure 2.5 – Tethered Aerial Physical Interaction: (a) commercial solution for en-
during monitoring, (b) collaborative load transportation and (c) exploitation of
tether to land on a sloped surface.

teria: i) the flying platform design, ii) the manipulation mechanism and iii) the
prehension mechanism. Each of them being developed hereafter.

2.3.1 Flying Platform Designs

In both APhI and AM, the AV design is of paramount importance. Indeed the
design of the AV bears underlaying system properties that facilitate or inhibit the
APhI tasks. By mean of control certain properties can be smartly leveraged but it
is often easier to start with an adequate mechanical design. Here are regrouped the
main design ideas present in the vast literature of APhI.

Under-actuated Design

Among the different aerial manipulator systems present in the literature a vast
majority can be grouped by their under-actuation characteristic. That means that
their translational and rotational dynamics are not fully decoupled, i.e., they can
not follow an arbitrary 6D trajectory in SE(3). The under-actuation property arises
from the mechanical design of the platforms, where the propeller(s) are physically
arranged so that the total thrust is always exerted along one direction in the body
frame of the AV, typically along the z-axis, thus lateral motion of the AV requires
some tilting of the whole body to re-orient the total thrust in the desired direction
of motion.

Collinear propellers: a design in which all propeller rotation plane are co-
planar. This is the case for the most well know MAV platform, the planar quadrotor,
which consist of four propellers distributed along the edge of a rectangle (regular
or not), all oriented in the same direction. The simplicity of the mechanical design
comes at the cost of under-actuation. Its simplicity and robustness also made it
famous among hobbyists. Rotational motion is achieved via differential commands
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of the propellers. One can group in the same family hexa- and octo-rotors, follow-
ing the same propeller layout rule but with regular hexagon and octagon patterns,
respectively. The benefit of such a design is usually an increase of payload which
proves to be capital for heavy load transportation. This multiplication of propellers
does not result in a one to one increase of the payload has it usually also results
in a power consumption increase which needs to be balanced by additional battery.
Overall the design is still beneficial and is used to carry heavy loads, e.g., dual arm
manipulator of 1.8 kg, as in [Suarez–2017a], or sensors in non-AM scenarios like the
ALTA8 from Free Fly Systems7 capable of lifting a 9.1 kg payload for an empty
weight of 6.2 kg. The general model of multi-rotor MAV is developed in depth
in Sec. 3.2, with emphasis on the collinear case, and a possible control strategy for
APhI is detailed in Sec. 4.2.

Ducted-fan: a design in which propeller are encased in a duct. The principle of
this design is, as its name suggests, that the airflow is produced by two propellers
encased in a duct, i.e., a small pipe, they are counter rotating to allow yaw control.
Rotational motion is achieved via actuated flaps in the airflow. The main advan-
tage of this design is the inherent safety from already encased propellers, which is
paramount for interaction with human users. Also the ducted fan design exploits
aerodynamics properties to increase the lift produced by propellers by guiding the
airflow in the duct. One application is presented in [Fumagalli–2014].

Helicopter: a design in which a main propeller produces the actuation thrust
while a smaller one acts as a stabilizer. This design is well know and also suited
for big AV as produced by aircraft industries. An example of large helicopter with
industrial manipulator can be found in [Kondak–2014]. While research on AM are
also conducted with smaller helicopter as in [Pounds–2014].

Multi-directional Thrust Design

A recent trend in the aerial manipulator design is the emergence of multi-directionnal
thrust AV, meaning that their total thrust can be oriented in several directions in
the body frame. This allows for their translational and rotational dynamics to
be fully decoupled (up to the actuation limits), i.e., they are fully actuated. To
guarantee the full actuation the mechanical design imposes non-collinear layout of
the propellers. Due to that, full actuation comes at a cost of internal force, i.e.,
loss of energy efficiency. One can choose to start from a well known under actu-
ated structure and modify it, like the work present in [Rajappa–2015][Ryll–2017]
on hexarotors. A similar idea is proposed for quadrotor in [Odelga–2016], based on
a parallelogram principle to reorient the propellers. Or one can even think about
designs encompassing more novelty, aimed at automatically optimize the full actu-
ation, as the design described in [Park–2016] or aimed at allowing the exertion of

7http://freeflysystems.com/alta-8/specs
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given wrenches applied by the EE via automated design in [Nikou–2015]. A judi-
cious choice in the layout leads to a multi-directional platform, while keeping the
control input allocation simple and minimizing the internal forces. These platforms
can follow an arbitrary trajectories in SE(3). But more importantly as lateral force
exertion do not require any orientation change, they can withstand external force
perturbations while following 6D trajectories. Another work in this direction is
presented in [Brescianini–2016], where an eight-rotor configuration that maximizes
the vehicle’s agility in any direction is derived based on a static force and torque
analysis for generic actuator configurations.

Mixed Design

Interestingly, some design try to exploit the advantages of both under- and full ac-
tuation, refereed to as mixed design hereafter. It is the case of the design presented
in [Ryll–2016] where the platform can change in flight the propeller orientation,
allowing power efficient free-flight and perturbation resistant physical interaction.
This versatility comes at the cost of mechanical complexity and let the need of extra-
actuation (to tilt the propeller) arise. Similar solution is proposed by the Voliro8

project with one tilting motor for each propeller, allowing more flexibility in global
configuration. Another more basic solution consist in taking an under-actuated
quadrotor and add a propeller with spinning axis in the direction of the force ex-
ertion, as in [Albers–2010] or [McArthur–2017]. With this additional propeller the
system gains some actuation degree but remains under-actuated. Some design just
use quadrotors as orientable thrust generator fixed on a structure, e.g., [Nguyen–
2015] with three quadrotors attached via passive rotational joints on a triangular
structure holding a gripper or a tool.

Fixed Wing Design

Fixed wing design are purposely omitted in this taxonomy as there inherent flight
behavior is not fit for AM. From the APhI point of view this design can be used in
perching, as reviewed in Sec. 2.2.2.

2.3.2 Embedded Manipulation Mechansim Designs

In order to pass from APhI to AM, a manipulator or at least a prehension mechanism
needs to be embedded on AV. With this extension AV can be properly called Aerial
Robot (AR). In the literature, several different design approaches for manipulator
were identified, see Fig. B.5. The main idea remaining that a manipulator increases
the dexterity of the AR for manipulation tasks, eventually compensating for under-
actuated AV.

8https://www.voliro.ethz.ch/
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(a) [Kondak–2014] (b) [Suarez–2017a] (c) [Danko–2015]

Figure 2.6 – Different kind of aerial manipulators: (a) industrial 7-DoFs, (b) dual
arm manipulator and (c) parallel manipulator mounted below a MAV.

Joint-Actuated Manipulator

The simplest approach consist in taking off-the-shelf serial manipulator solutions
and attached them below a AV . This as been proposed with top grade industrial ma-
nipulators in [Kondak–2014]. But also with smaller lightweight manipulator based
on classical design as in [JimenezCano–2013]. As the manipulator is mounted on
the AV, there exists a strong mechanical coupling between their respective dynam-
ics, usually compensated by means of control. An interesting approach concerning
this is proposed in [Ruggiero–2015], where moving the battery as a counterweight is
experimented. In general, the solution of bluntly strapping two pre-existing systems
together does not provide good performances as the manipulator workspace is sig-
nificantly reduced by the AV actuation limits and the flying performances degrade
due to the strong coupling.

Deported Actuation Manipulator

A way to reduce the dynamical coupling is to reduce the inertia of the manipulator,
typically by using cable or transmission-belt mechanism. With this kind of mech-
anism the motors moving the joints can all be located close to the AV platform
and its center of mass (CoM). Thus reducing the dynamical coupling as the norm
of the inertia tensor of the manipulator remains small. An example can be found
in [Tognon–2017].

Parallel Manipulator

Another kind of manipulator design for AM, is the parallel design which allows
dexterous manipulation. In [Keemink–2012] a delta design mixing actuated and
passive DoF is used to propose a robust and lightweight aerial manipulator, which as
been enhanced in [Fumagalli–2016]. The parallel design is also used in [Steich–2016]
in order to inspect tree cavities and a full-body controller is presented in [Kamel–
2016]. Finally [Danko–2015] present a large parallel manipulator design mounted
below a quadrotor, in order to compensate for MAV motion during pickup.
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Another parallel manipulator design is presented in [Six–2017], where instead
of embedding a parallel manipulator on a MAV, quadrotors are used as actuators
of a parallel manipulator, i.e., their are linked by a rigid articulated passive chain,
and their respective motion induce displacement of the EE.

Passive Manipulator

For certain constrained manipulation tasks, or when multi-directional thrust plat-
form are used, an active manipulator might not be necessary. This means that the
actuated Degrees of Freedom (DoF) of the aerial manipulator are already matching
the DoFs of the tasks: this is the main idea behind the use of passive joint manip-
ulator. The passive joint can also be seen as a way to decouple the behavior of the
manipulator EE and the flying platform. For example a full 3D passive revolute
joint allows to decouple the rotational dynamics of the EE and the AV , this proves
useful if the rotation actuation capacity of the AV are small as in [Nguyen–2015].

Cables Links are a special case of passive manipulators: in the sense that,
when the cable is taut, they can be thought as a one link manipulator attached
via a passive joint to the AV. AM accomplished by a group of AR taut to a plat-
form is presented in [Manubens–2013]. Experimental results with helicopters were
presented in depth in [Kondak–2009] and [Bernard–2011].

Compliant Manipulator

Compliant manipulators have made a recent apparition in AM field and are com-
posed of joints that are actuated but with an additional capacity to be elastic
around their setpoint. This is often achieved through the use of elastic components
in the design of the manipulator, e.g., springs, as in [Yüksel–2015] and [Suarez–
2015a] [Suarez–2015b] [Suarez–2016] [Suarez–2017b]. The main motivation is to
ensure soft collisions with the environment, thus preventing the AR to become un-
stable on collision, see [Bartelds–2016] for direct impact experiments. The addition
of elastic behavior in the manipulator increases significantly the complexity of the
mechanism and the associated control algorithms.

Multiple Arms Manipulator

Another manipulator structure which needs to be mentioned in this taxonomy
is the multiple arms manipulator, where the manipulator appendage is consti-
tuted of several arms. The first successful description and validation can be found
in [Suarez–2015a] [Suarez–2017b]. These demonstrations were followed by a human
operated commercial products9 by another organization. A recent work, [Orsag–
2017], presents a detailed analysis of the coupling between dual-arm AR and the
environment during manipulation, proposing to focus on three different coupling
descriptions (momentary-loose-strong) to benchmark performances. Another ap-
proach found is the literature, see [Yeol–2014], aims at having three tentacle-like

9https://www.prodrone.jp/en/products/
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(a) [Gawel–2017] (b) [Kessens–2016] (c) [Mohammadi–2016]

Figure 2.7 – Different prehensors for AM: (a) magnetic mechanism to grasp non flat
ferrous objects, (b) vacuum based prehensor working with an airborne pump and
(c) swarm grasping of a cylindrical object.

mechanism below an AR to grasp an object or perch on the environment, also en-
abling the system with locomotion capabilities. This mechanism is a bridge between
a manipulator and a prehensor.

No manipulator

One approach to circumvent the use of embedded manipulators and their drawbacks,
or when manipulators DoFs are not needed to conduct the task, is to attach a
prehension mechanism or a dedicated tool rigidly to the AV, either directly on it
or on a rigid arm. This approach as been investigated in [Ryll–2017] with for tools
and in [Lindsey–2011] for grippers. Another approach proposed recently, in [Zhao–
2017], is to have an AV re-configurable geometry, allowing to encircle the load by
a ring of propellers. More details on the prehension mechanisms are to be given in
the next section.

2.3.3 Prehension Mechanism Designs

To complete this aerial manipulator design section, a review of the main prehension
mechanisms used in the field of AM is introduced, see Fig. B.6 for some examples.

Mechanical Claws

This is the standard gripper mechanism of robotics, composed of two (or more)
claws or fingers actuated by one (or more) electrical motor located in the gripper.
The motion can either be linear or rotational, e.g., [Thomas–2016a][Backus–2014].
The grasping is realized by encircling part or all of the object to be manipulated.
This kind of design are standard and quite robust, hence their use. Their main
advantage is their compactness and versatility coupled with their weight/grasping
force ratio. Moreover as the actuator are electrical there is no need for power
conversion, i.e., they can be plugged directly on the battery.
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Vacuum Based Prehensor

Another way to attach to an object or surface is to use vacuum based mechanisms.
They can be passive mechanism composed of suction cup, like the one proposed
in [Wopereis–2017a]. The main advantage being their light weight, while the suction
force can not be controlled and suction on surface is not guaranteed. Moreover an
additional mechanism for releasing is necessary. An effort to overcome the latest two
drawbacks can be seen in the design of a vacuum pump based gripper in [Kessens–
2016], sticking/unsticking consist then in switching on/off the pump. Thanks to
careful design, the weight from the pump is minimized, making AM practical. In a
recent work on blimp like10 AR the grasping system is also based on difference of
pressure to realize suction.

Magnetic Prehensor

For completeness magnetic prehension is introduced. Obviously this approach only
works on ferrous objects, or objects previously equipped with ferrous receptors. As
for the vacuum case one can use passive magnets, which consume no energy but
necessitate high force exertion to release the object. Electro-magnet can be used
to circumvent this issue, their power consumption remaining modest. This has
been proposed in [Gawel–2017] or for a simpler design [Bähnemann–2017]. The
use of magnetic prehensor has been fostered by the 2017 MBZIRC Challenge11

requirements to pick objects with ferrous surface.

MAV Swarm Prehension

An interesting approach to reduce the design complexity of the AR is to use a swarm
or a group of them to grasp and object, ensuring firm grasp by multiples simple
contacts. This approach is studied in [Gioioso–2014b] and [Mohammadi–2016],
where the authors use MAV to mimic the behavior of fingers and coin their solution
as “flying hand”. Another, lately emerging design as been proposed in [Zhao–2017]
where the geometry of the AV can be re-arranged in flight, giving the possibility to
surround objects.

2.4 Control and Estimation Techniques
for Aerial Manipulator

From control point of view, APhI is way more challenging and demanding than free
flight. Not only geometric pose controllers are needed to allow the AV to track de-
sired pose trajectories, but also force based controllers to ensure intrinsically stable
behavior while in contact with the environment. In order to allow feedback force

10https://www.festo.com/group/en/cms/11957.htm
11http://www.mbzirc.com/challenge/2017
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control, measurements or estimation of the external forces are necessary. Finally
tele-operation frameworks used in case of human supervision are briefly introduced.

2.4.1 Geometric Pose Control

Geometric control of AVs aims at stabilizing the system in free flight and allowing
trajectory tracking. The pose of the AV is expressed by a position in R

3 and a
3-DoF rotation, thus the pose is in the Special Euclidean group SE(3). In the liter-
ature several different orientation representation are present, Euler angles which are
prone to Gimbal Lock, see [Mistler–2001][Spedicato–2016], quaternion which have a
redundant representation of SO(3), see [Mayhew–2011] and rotation matrix which
do not suffer the two previous drawbacks but are a non-compact representation,
see [Lee–2010]. The first approach encounter in the literature consists in applying
classical synthesis techniques to an approximate linear model of the vehicle dynam-
ics. In [Castillo–2005], the linear controller sequentially stabilize the thrust and
then the orientations, this sequential approach is also used in [Spedicato–2016].

The call for increasing performances and maneuverability led to the use nonlin-
ear control strategies. They rely on dynamical feedback linearization, see [Mistler–
2001], to bring the system in a linear form where linear control techniques can be
applied. In [Raffo–2010] an approach based on model predictive control and H∞

controller is proposed as nonlinear robust control strategy. A popular nonlinear
tracking controller is developed on the special Euclidean group SE(3) in [Lee–
2010], with almost global stability. Note that non-linear control approaches are
typically more computationally intensive, which might be an issue for embedded
deployment. But nowadays small computers, e.g., intel NUC series12, are powerful
enough to run model predictive control algorithm and some additional optimization
problem in real-time, see e.g., [Baca–2016].

2.4.2 Force Based Control

To perform safe APhI, trajectory tracking control is not sufficient and additional
control strategies addressing the force interaction are necessary. Indeed in such
applications, a flying robot is required to exert certain forces and torques to the
environment, while maintaining a stable flight. A classic techniques rely on admit-
tance/impedance framework as in [Augugliaro–2013] for admittance and [Lippiello–
2012] [Gioioso–2014a] [Ruggiero–2014] for impedance. Other approaches relies on
energetic considerations. For example in [Mersha–2011] relying on port-Hamiltonian
modeling and bond graphs. Or [Yüksel–2014b] relying on an Interconnection and
Damping Assignment Passivity Based Control (IDA–PBC) scheme.

2.4.3 External Forces Estimation

The subject of external forces estimation is of paramount importance for MAV
as this information is useful to improve flight behavior (reaction to wind and/or

12https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
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collision) and to allow quality APhI with force feedback. Hereafter the term external
forces is used to refer to 6D general forces or 6D wrench indifferently.

Necessity of Force Estimation

The reason to privilege estimation of external forces over actual sensor measure-
ments, despite the better quality of the measurements, mainly comes from the issue
to integrate force sensors and their associated electronics on MAV. Indeed, despite
the recent years advances in 6D Force/Torque sensors (F/T-sensor) miniaturiza-
tion of the associated electronics usually suffer from poor form-factor and weight
unsuitable for MAV applications, meaning that at the same time the volume of the
electronics and its weight make the sensor solution unusable in practice. The weight
is especially an issue as, at the same time, it reduces the flight endurance and the
exploitable actuation bandwidth for the APhI tasks. Even though, an interesting
development in miniaturized 6D F/T-sensor is the mini sensor13, with fitting elec-
tronics, specially designed at IIT to fit the iCub robot. The power consumption
of such a device can also be an issue, as it would drain the battery and hence re-
duce the flight endurance of the overall system. Finally a strong argument against
F/T-sensor is the fact the measurements are localized, e.g., [Alexis–2013], hence
the external force information only describes what happens at the measurement
points, whereas the estimation approach provide information on force applied in
any point of the structures. Another drawback of F/T-sensor is their cost, which
often amount for as much as the rest of the MAV if not more, compared to the ever
decreasing cost of embedded computing driven by the cellphone market.

To overcome these drawbacks force estimation is used. The force estimation
methods also come with limitations, the main one being the aggregation of a lots
of phenomena in the same estimate. Namely all wrenches applied on the AR are
combined like contact(s) with the environment and wind, on top of that model in-
accuracy and raw measurements bias and noise are merged in the estimate. Thank-
fully these effects can be mitigated through calibration of the the different sensors
and parameter identification routine for the model(s) used. The addition of contact
detection mechanisms, as in [Rajappa–2017], allows to separate the contribution
from physical interaction and wind.

Flight Behavior Improvements

External force estimation can be beneficial to free-flight MAV, especially outdoor
where the wind, an external force, is often neglected in the control synthesis.
Indeed by taking the wind into account the flight performances can be signifi-
cantly improved for MAV [Alexis–2010], other schemes to do so have been proposed
in [Tomić–2016] (and previous) and [Rodriguez–2016][Rodriguez Salazar–2017] for
gliders. Inside operations are not exempted from wind effects, as the airflow pro-
duced by the propeller generates aerodynamic perturbations which can be related

13wiki.icub.org/images/a/a7/FTSens.pdf
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to wind. More toward APhI, external force estimation can be used to detect colli-
sion with the environment, as in [Tomić–2015] and trigger recovery procedure. This
can prove extremely useful in cluttered and unstructured environments, finding its
application in unknown or damaged buildings exploration.

Physical Interactions

In order to perform APhI the force based control strategies detailed in Sec. B.1.6
require a force feedback. Making the force estimation component mandatory for
their implementation. In [Ruggiero–2014] a momentum based external generalized
force observer is presented, which requires to measure the whole dynamical system
state, the control torques and the thrust to produce an estimate of the external
wrench. The methods has been proven to work indoor by using a precise off-board
motion capture tracking. In [Augugliaro–2013] a classical Unscented Kalman Fil-
ter is presented to estimate the external force and torque acting on a quadrotor.
This approach has also been tested with the use of an off-board motion capture
system. An external wrench estimation based on momentum-based observer was
used in [Ryll–2017] to demonstrate force exertion by a multi-directional thrust AV.
Another approach is described, in [Yüksel–2014a] with a Lyapunov based nonlinear
observer. Another estimation scheme based on the system dynamic model is pro-
posed in [Tomić–2014]. In [Rajappa–2017] the external wrench estimation is based
on a residual estimator.

A static mapping between commanded thrust and actual force has been pro-
posed by [Bellens–2012]. A more accurate, yet static, mapping of the force produced
by a typical brushless motor for AV has been proposed by [Spica–2013], based on
discretized force measurements for desired commands.

2.4.4 Tele-operation Framework

Tele-operation refers to control frameworks in which remote human operators are
supervising systems of various autonomy levels, often providing high level control
thanks to their reasoning abilities or manually driving robots, hence the operator
side is referred as master and the remote robotic system as slave, see [Niemeyer–
2008] and [Passenberg–2010]. In order to provide the human operator with situa-
tional awareness about the system and its surroundings tele-presence paradigm are
used, employing either visual feedback or haptic feedback.

Visual feedback is conceptually simple, a camera (or several) is placed in the
slave side, to provide the master side with a view of the environment and robotic
system. Haptic feedback consists in providing the master side with force or po-
sition/velocity feedback from the slave side and are detailed hereafter. Haptic
feedback associated with tele-operation is named bilateral tele-operation and is
provided via an haptic device which is a robot. The typical commands for both
master and slave robotics systems are force and position/velocity ones. A bilateral
tele-operation framework is described by its number of channels, i.e., the number of
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commands exchanged between the master and slave. For example if the slave robot
receives a single type of command and the master side receive only one type of feed-
back, the architecture is named 2-channel bilateral tele-operation. In [Son–2013]
the human operator’s performances, in terms of maneuverability and perceptual
sensitivity, through bilateral tele-operation for multiple robots are investigated. In
particular, force cues are used to transcribe the proximity of obstacles in the remote
environment and velocity cues to transcribe the velocity mismatch of the robots.

Based on the type of commands accepted by the slave robots and the kind of
commands accepted by the master, impedance and admittance framework are used.
All combination of commands type for the master and slave side are possible and
there is no a priori best choice, combination shall be tested and evaluated based
on robustness (w.r.t. communication, model uncertainty, external disturbances,
...), task performance, tele-presence (as felt by the operator) and transparency
(dynamic cancellation of master and slave systems). Evaluation of the impact of
different haptic cues on UAV operators can be found in [Son–2013]. Comparison of
transparency as defined by control theory and felt by user is investigated in [Hirche–
2012].

There are two additional ways of using tele-operation from and high level control
perspective. Haptic cues can be used to render virtual fixtures or virtual fences
to the operator, the former helping guiding some task relevant motions and the
later shielding some area of the environment, e.g., to avoid collision. Also the
tele-operation can be used in a shared control paradigm, where the slave system
autonomously carries out a task, and the master is used to generate local trajectory
modifications. Either spatial, i.e., altering the trajectory to avoid and obstacle, or
temporal, i.e., slowing down the motion to reduce dynamical efforts. These two
kind of modifications allow the operator to provide update on the system or the
environment without triggering re-planning.

2.5 Collaborative Aerial Physical Interaction

From a semantic stand point, collaboration (working jointly with other toward a
common goal) and cooperation (operating together to realize a task) are considered
equivalent. A collaboration denotes a joint work, it does not necessary involve
physical interaction, with the environment or with the other collaborators, that
is to say heterogeneous robots, ground and AV, mapping/monitoring an area is a
collaboration task but not relevant in the scope of APhI.

Collaboration between Aerial Vehicles

A few works considering swarm, or team of AR, performing APhI with the environ-
ment or inside the swarm have been presented, see Fig. 2.8. Most notably, swarm of
AR are used for collaborative construction, as in [Augugliaro–2014], to build a tower
structure out of bricks or to build tensile structures, e.g., bridge, as in [Augugliaro–
2015], or to assemble cubic structure in [Lindsey–2011] or more complex structure
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(a) [Lindsey–2011] (b) [Bernard–2011] (c) [Augugliaro–2013]

Figure 2.8 – Aerial Robot collaborations, (a) collaborative structure assembly by a
team of ARs, (b) collaborative load transportation via tether and (c) human-AR
collaboration for assembly tasks.

with a dedicated construction planning in [Sempere–2014] [MunozMorera–2015].
In this case the physical interaction is not affected by the other members of the
swarm. Or in the well developed case of cooperative load transportation, by team
of AR. This results in a group of AR tasked to transport a load in a coordinated
fashion, the loading being a bar directly grasped [Kim–2017](and previous) or at-
tached by cables [Gassner–2017] or some structure [Wu–2014][Michael–2009]. One
can also mention the work presented in [Nguyen–2015] where three quadrotors are
attached to a rigid structure via passive rotational joints, the task is to coordinate
the structure motion to use a tool attached to the structure. Another interesting
work is presented in [Ritz–2012], where three quadrotors are attached to a net by
mean of rope and they trow and catch balls with the net, the trowing is particularly
interesting in the scope of collaborative physical interaction.

Collaboration with Ground Vehicles

An exciting topic in APhI, is the interaction with ground robot in order to allevi-
ate some drawbacks of AR, e.g., the autonomy/payload. The work going in that
direction mostly showcase simulation results. In [Tognon–2016a] and [Papachristos–
2014b] a cable is taut between the ground vehicle and the AV, this can be a solution
to enhance power endurance of the MAV. The former focus on the trajectory control
of the MAV, while the latest in focused on the autonomous navigation and map-
ping. Some autonomous landing on moving robot as been demonstrated outdoor
in [Vlantis–2015]. Other occurrences of Aerial-Ground cooperation can be found
in [Spica–2012] and [Gawel–2017], where an AR picks-up a object from a moving
ground robot and in [Nguyen–2016] where the foundations for associating a ground
mobile vehicle and an AV to transport an object are sketched.
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Collaboration with Human

Despite the vast literature on human-robot collaborative tasks, it seems that few
works in the direction of physical collaboration between human and AR have been
presented so far in a conclusive way. Choice has been made not to consider collision
detection and recovery as a cooperative interaction, as it is not collaborative. A
work in the collaborative direction can be found in [Mueller–2011], AV juggling balls
with human or other AV. In [Augugliaro–2013] a human-robot physical interaction
is tested, relying on admittance control scheme, see Fig. 2.8c.

In a recent work [Rajappa–2017] a framework and MAV for human-UAV interac-
tions are presented and lay the foundation of possible safe human-UAV cooperation.
Another framework for human-UAV safe interaction is presented in [Tomić–2014]
and relies on impedance control. The safe interaction control is a first step toward
collaboration between human and AR.
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Abstract

This chapter presents the motivations leading to the MAGMaS concept and the
associated modeling. Sec. 3.1 introduces the MAGMaS concept, from its moti-
vations and potential applications. The next two sections focus on the modeling,
first the modeling of AR in Sec. 3.2, and then the global modeling of MAGMaS in
Sec. 3.3. The final section, Sec. 3.4, proposes a discussion on the presented models
assumptions and their possible extensions.

3.1 Motivations

The idea of a Multiple Aerial-Ground Manipulator System (MAGMaS) comes from
the practical limitations of both ground and aerial manipulators, a simple – yet still
mostly unexplored – solution to mitigate their drawbacks is two combine them in
a unique system.

Typically, for robotic object handling, two approaches are independently stud-
ied, on one hand the use of (mobile) ground manipulators and on the other hand
the use of AR. The rich literature on ground manipulators proposes use cases with
single robot or multi-robot systems for object handling, in particular for cooperative
transportation [Dumora–2013][Cehajic–2017a], of possibly large objects [Machado–
2016][Dumora–2012], or robotic sensing and manipulation offshore [Pfeiffer–2011],
or for cooperative assembly [Knepper–2013] and manufacturing [Cherubini–2016].
However two major drawbacks to the use of ground robots can be identified. Firstly,
typical small industrial manipulators have limited joint torque limits resulting in
poor maximal admissible Cartesian torque at the EE. Secondly ground manipula-
tors, mobile or not, have a rather small workspace around their base, inhibiting their
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Figure 3.1 – Schematic view of a MAGMaS composed of one ground manipualtor
(7 DoF) and three underactuated AR attached to the load via 3D passive revolute
joints.

manipulation capabilities, especially along the vertical direction. This can prove
particularly problematic for long objects handling. Indeed, if the ground manipula-
tor can not grasp them by their Center of Mass (CoM) due to workspace limitations,
the manipulation would require high torque at the ground manipulator’s EE. More-
over long objects manipulation is often subject to re-grasping maneuvers in order to
overcome workspace limitations, this hinders the execution performances. A rising
approach is the use of AR for construction and large load handling. This as been
made possible by the last decades developments in UAV, especially toward AR,
being AV with physical interaction capabilities. Their use as been demonstrated
as group to carry load via tether as early as 2009 in [Kondak–2009], splitting the
overall payload among members. An interesting and recent use of AR can also be
seen in multi-robot construction or assembly [Augugliaro–2014] [Lindsey–2012] or
aerial manipulation as presented in [Kim–2013] and [Suarez–2015b]. A major draw-
back of these platforms is the limited actuation range, resulting in limited payload
capacity.

The originality of the MAGMaS approach is to consider a heterogeneous multi-
robot system composed of both ground and aerial manipulators, see Fig. B.8, to
leverage their individual flaws as introduced in [Staub–2017]. The small payload of
the AR is compensated by the strength of the ground manipulator, while the limited
workspace and small torque at the EE of the ground manipulator is balanced by
the virtually unlimited workspace and the favorable lever provided by AR. Thanks
to their large workspace AR can exert force on the load in order to reduce the
torque induced at the EE of the ground manipulator by the load weight. With
this teaming, AR can act as flying companions helping the ground manipulator to
carry long loads by grasping them on another extremity and mitigating torque at
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(a) (b)

Figure 3.2 – Potential use cases for MAGMaS of different composition. Left (a) in a
USAR scenario with a mobile base and an underactuated AR cooperatiely cleaning
buldings remains. Right (b) in a decomissioning scenario with a fixed ground robot
and a multi-directionnal thrust AR cooperatively manipulating a pipe.

the ground manipulator EE while it carries the object, thus allowing manipulation
of the load in a cooperative way.

Another advantage resulting from the use of flying companions, compared to a
ground manipulator alone, is the oscillation damping in the transported load. In
the studied use-case, of a ground manipulator grasping an object far from its CoM,
the oscillations in the case of alone ground manipulator transportation can be quite
important. Thanks to the AR, oscillations in the load can be suppressed by mean
of control. This is also achieved by cooperative transportation of loads by ground
manipulators team or aerial manipulators team, which are both ruled out due to
their respective drawbacks.

3.1.1 Applications

The field of applications for MAGMaS is vast and encompasses all manipulation
tasks of long or weird shaped objects, moreover if it has to be realized in environ-
ments potentially hazardous for human the robotic solution is even more justified.

Manipulation of long objects is a common task for robotics systems, for illustra-
tion one can think about, scaffold or transmission tower construction, maintenance
of several pipe plants like chemical or gas plants. These are example where the
MAGMaS could be used for construction like tasks, see Fig. B.9. Another kind of
tasks identified for MAGMaS, is their usage to extend manipulator reach, creating
an extended and dexterous last link of the ground manipulator. Typically for high
off the ground operations, like, e.g., painting, hole drilling, bulb changing. Finally,
a last kind of operation identified for MAGMaS is taking place in unstructured en-
vironments and consists in ruins cleaning after a catastrophe, e.g., an earthquake,
where the remains of building are often weirdly shaped pieces and structures. This
application is denoted as Urban Search and Rescue (USAR) and is illustrated in
Fig. B.9a.

The interest toward robotics solution is motivated by hazard-level for humans.
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The described manipulation tasks can take place in potentially hazardous environ-
ments as, but not limited to, i) post natural or human disaster situations, e.g.,
post-earthquake or industrial catastrophe, where the lives of rescuers are at risks
due to structure collapse, ii) high altitude or secluded locations, like mountain con-
struction sites, South Pole camps or off-shore platforms, where risk are multiplied
for workers due to scarce access to medical care, and iii) environments with ra-
diations due to nuclear activities, e.g., nuclear plant decommissioning. Some of
these environments are also hazardous for the platform as described in the exper-
imental Chapter 5 and their usage would require further hardening of the system
like ATEX compliance for explosive atmosphere or Radiation Hardening for nuclear
environments.

Among the presented applications, the most promising one is the nuclear plant
decommissioning for fully autonomous MAGMaS, especially because nuclear plants
are highly structured environment, thus simplifying perception requirements.

3.2 Modeling of Aerial Robots

This section introduce the modeling of AR, starting from the classical modeling of
multi-rotor AV, based on their design two categories of platforms are considered
and their dynamics models are derived. The addition of a manipulator, and its
modeling, leads to a complete model for AR.

3.2.1 Multi-rotor Vehicle Dynamics and Standard Motor Model

In this section, the dynamics model of a general multi-rotor AV is developed as
it will be of use. This model is generic, it can be used in the case of collinear
multi-rotor but also in the case of thrust orientable multi-rotors.

The inertial frame, also referred as world frame, is denoted FW and defined by
its origin OW and three unit vectors along the main axes denoted {xW ,yW , zW },
the compact notation for this definition yields FW : OW − {xW ,yW , zW }. The
body frame of the multi-rotor is FB : OB − {xB,yB, zB}, where OB is located
at the center of mass (CoM) of the AV. The position of OB expressed in FW is
denoted by pB ∈ R

3, see Fig. 3.3 for illustration. The orientation of FB can
be chosen arbitrarily without lost of generality, in practice xB is aligned with a
forward direction that might be obvious from mechanical design, e.g., a part of
the multi-rotor structure like a bar supporting a motor in the quadrotor case. The
North-East-Down (NED) convention, i.e., zB pointing downwards when the AV is
hovering, can be chosen but is not necessary. Orientation are described via rotation
matrices in SO(3), where R�

△ ∈ SO(3) expresses the rotation of frame F△ w.r.t.

frame F�. Omissions of � are intended as � = W . In a similar manner, ω△ ∈ R
3

denotes the angular velocity of F△ w.r.t. FW , expressed in F△. Given these
definitions, the orientation kinematics of the body is expressed by

RB = RB [ωB]× (3.1)
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{FW }

pB

{FB}

{Fi}

fj

Figure 3.3 – Illustration of the principal frame used for the modeling of a multi-
rotor’s dynamics, superimposed on a tilted hexarotor. The axes x∗,y∗, z∗ are rep-
resented in red, green and blue respectively. The inertial frame is denoted FW and
the body frame centered on the AV’s CoM is denoted FB. For readability only one
propeller frame Fi is represented. A propeller thrust is depicted as fj , on another
propeller, to highlight the thrust direction.

where [⋆]× ∈ SO(3) represents the skew symmetric matrix associated to any vector
⋆ ∈ R

3.
Denote with N the number of propellers of the vehicle, collinear or not. Each

propeller is associated with a frame Fi : Oi −{xi,yi, zi} defined by its origin Oi the
center of the propeller, the main axis are oriented so that their spinning plane is
defined by xi − yi and the spinning axis is zi. The orientation of a propeller in FB

is defined by RB
i . In the special case of a collinear multi-rotor, all propellers are

spinning in the same plane, which is typically xB − yB, thus around axes collinear
to zB.

Translational Dynamics

In the Newton-Euler formalism, the translational dynamics in FW can be expressed
as

mp̈B = −mgzW + RB

(

fB + fB
e

)

, (3.2)

where m ∈ R+ is the mass of the vehicle, −gzW is the gravity acceleration, fB ∈ R
3

is the total actuation force acting on the vehicle, or total thrust, expressed at the
CoM of the vehicle and fB

e ∈ R
3 is the external forces expressed in FB. In contact-

free flight and without the presence of wind fB
e ≡ 0.
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The dominant aerodynamics of each rotor i, for i = 1, . . . , N , produces a force
(thrust) fB

i in the body frame, fB
i = RB

i zifi. In the special case of collinear multi-
rotor it simplifies to fB

i = fizB (see, e.g., [Mahony–2012]). In order to take into
account the spatial disposition of the propellers, define B1 ∈ R

3×N as the mapping
between the single propeller forces and the overall actuation force in body frame,
influenced by their respective orientations. One can write

fB = B1








f1
...

fN








+ δ, (3.3)

where δ comprises second order aerodynamic forces mainly due to flapping and drag
effects, that are typically neglected in nominal working conditions [Mahony–2012].
In the collinear case the expression can be further simplified as the total thrust is
applied along zB,

fB =
N∑

i=1

fizB + δ = fF zB + δ, (3.4)

It can be assumed, as first approximation see [Mahony–2012], that the thrust
produced by the rotor i is instantaneously related to its spinning velocity ̟i by the
following relation

fi = cF,i̟
2
i , (3.5)

where cF,i > 0 are aerodynamic constants that depends on the specific properties
of the propeller used and the airflow around it. A common assumption consists in
assuming that for a given propeller type, cF is unique. Taking (3.5) into account
(3.3) ca be rewritten

fB = F1








̟2
1

...

̟2
N








+ δ, (3.6)

where F1 ∈ R
3×N is the force control matrix and is function of the propellers

orientation and location in FB and of the aerodynamic coefficients cF .

Rotational Dynamics

Equivalently, in the Newton-Euler formalism, the rotational dynamics in FB can
be expressed as

Jω̇ = −ω × Jω + τ + τe, (3.7)
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where J denotes the Inertia matrix of the AV, the term −ω × Jω represents the
contribution of the Coriolis and centripetal forces and × denotes the cross-product,
τ ∈ R

3 is the actuation torque produced, also called total torque, expressed at
the CoM and τe ∈ R

3 is the external torque expressed in FB. Again, in contact-

free flight and without the presence of wind τe ≡ 0. Similarly to the translational
dynamics, each propeller produces a reaction torque τi due to the rotor drag, this
reaction is exerted along the rotation axes of the propeller so τi = RB

i τizi, which
leads in the special case of collinear multi-rotor to τi = τizB. In general, the
actuation torque produced τ is composed of the addition of the drag torques τi and
of the moment produced by single propeller thrust fi under

τ =
N∑

i=1

(

τi + pB
i × fB

i

)

, (3.8)

where pB
i is the position of the propeller in FB. Note that, the total torque span

is clearly influenced by the spatial distributions of the propellers. Similarly to the
thrust case, the drag torque can be approximated by

τi = cτ,i̟
2 (3.9)

where cτ,i > 0 are aerodynamic constants, often assumed equal for a set of propellers
with the same geometry, i.e., cτ,i = cτ ∀i ∈ [1...N ]. Introducing the torque control
matrix F2, a compact notation of (3.8) can be written

τ = F2̟
2 (3.10)

where F2 is function of the propellers orientation and location in FB and of the two
aerodynamic coefficients cF and cτ .

Full Dynamics

The previous translational and rotational dynamics can be grouped to express the
full body dynamic in a compact way




mp̈B

Jω̇



 =




−mgzW

−ω × Jω



 +




RBF1

F2












̟2
1

...

̟2
N








+




Rfe

τe



 . (3.11)

Which is the compact form of the Euler-Newton dynamics for multi-rotor AV.
Based on the propeller physical implementation in the design of AV two situation
arises, either the AV is said underactuated or it is said to have multi-directional
thrust actuation, both property are reflected by the control matrices, F1 and F2,
expression.

The dynamics (3.11) can be rewritten in a more compact form by considering
qav ∈ R

6 as vector of generalized coordinates for the AV, which concatenates the
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position and orientation. This leads to the expression

Mavqav + cav(qav, q̇av) + g(qav) = Gavu + fext, (3.12)

where Mav ∈ R
6×6, cav(qav, q̇av) ∈ R

6 and g(qav) ∈ R
6 represents the AV inertia

matrix, the Coriolis/centripetal and the gravity terms respectively. the control
inputs are denoted u =

[
̟2

1 . . . ̟
2
N

]⊤
∈ R

N and the control matrix Gav ∈ R
6×N

maps their impact on the AV dynamics. The total external forces exerted on the
AV are denoted fext and are expressed at the CoM.

Underactuated Aerial Vehicles

Underactuation is used to characterize vehicles which have less actuation DoFs
than motion DoFs, which implies that they cannot follow arbitrary trajectories in
their configuration space. In particular for multi-rotor AV all collinear designs, i.e.,
when the propeller spinning axes are all collinear, are underactuated and the thrust
direction is fixed in the body frame of the AV as perpendicular to the propellers
rotation plane. Indeed, for these designs, e.g., typical quadrotors, lateral motion
cannot be achieved without a change of orientation, this strong coupling between
the rotational and translational dynamics traduces the underactuation property
and is reflected in the expression of F1, where the terms corresponding to the
lateral motion have dependencies on the AV orientation. Note that the increase
of propellers number, if keeping the same collinear design, does not resolve the
underactuation.

Multi-Directional Thrust Aerial Vehicles

Another popular class of multi-rotor AV are described as multi-directional thrust
platforms, meaning that the thrust orientation in body frame is not fixed and
can be chosen by mean of control. In this case, the total thrust is exerted in a
3D polytope, as opposed to the underactuated case where it is exerted along a
line, see Fig. 3.4. This is made possible by the non collinear positioning of the
propellers. Also, this is only possible when there are at least six propellers, i.e.,
N ≥ 6, when one considers that also the total moment has to be multi-directional
and controllable independently from the total force. This useful property comes
at the cost of internal forces, i.e., loss of energetic efficiency. Resulting in a trade-
off between the total thrust polytope shape and the internal forces. In this case
the AV can follow any arbitrary trajectory not violating the propellers actuation
constraints, otherwise the AV is also hindered by a coupling between its translational
and rotational dynamics. For more insights about these kind of design [Rajappa–
2015], [Ryll–2016] and [Michieletto–2017] are recommended reads.
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(a) (b)

Figure 3.4 – Illustration of the total thrust exertion space for both (a) underactuated
and (b) multi-directional thrust AV. In the underactuated case the total thrust can
only be exerted along a line in the body frame (1D), while in the multi-directional
thrust case the total thrust can be exerted inside a polytope (3D).

3.2.2 From Aerial Vehicle to Aerial Robot

Aerial Robot denomination is used to denote the capability of not only perceiving
the environment an moving through it, but also acting on it by physical means. To
endow AV with physical interaction capabilities the solution is to equip them with
a manipulator.

Consider a m-DoF manipulator to be embedded on the AV and denote Fam,0 :
Oam − {xam,yam, zam} the base frame of the manipulator, centered in Oam the
base of the manipulator, see Fig. 3.5. The vector pB

am ∈ R
3 denotes the posi-

tion of the base in the AV body frame, FB. The Tool Center Point (TCP) of
the manipulator EE is located in Oam,ee which has an associated frame, Fam,ee :
Oam,ee − {xam,ee,yam,ee, zam,ee}. The coordinates associated with each link are
written qj with j ∈ {1, . . . , k} and concatenated in qam yield for the manipulator
dynamics

Mamq̈am + Cam(qqm, q̇am) + g(qqm) = τam + J⊤
amfext + J⊤

arfar, (3.13)

where Mam ∈ R
m×m, Cam(qqm, q̇am) ∈ R

m and g(qqm) ∈ R
m represents the

manipulator’s inertia matrix, the Coriolis/centripetal and the gravity terms respec-
tively. The vector τam ∈ R

m denotes the actuation torque and fext ∈ R
6 and

far ∈ R
6 are the external wrench applied to the manipulator respectively at the EE
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{FW }

{FB}

{Fam,0}

q1

{Fam,ee}

Figure 3.5 – Illustration of the principal frames used for the modeling of an AR
dynamic, superimposed on a custom AR with a single joint manipulator. The axes
x∗,y∗, z∗ are represented in red, green and blue respectively. The inertial frame
is denoted FW , the body frame centered on the AV’s CoM is denoted FB, the
embedded manipulator’s base frame is denoted Fam,0 and its TCP frame is denoted
Fam,ee. The manipulator joint coordinates, q1, is also represented for illustration.

and the base. Finally the matrices Jam ∈ R
6×k denote the manipulator geometric

Jacobian and Jar ∈ R
6×k the dynamical coupling term between the AV and the

aerial manipulator.
By merging (3.12) with (3.13) and considering as generalized coordinate

q =
[

q⊤
av q⊤

am

]⊤
∈ R

6+k one can write the full AR dynamical model as




Mav Jar

J⊤
ar Mam



 +




cav(qav, q̇av)

cam(qqm, q̇am)



 +




gav(qav)

g(qqm)



 =




Gav 0

0 Ik








uav

τam



 +




fext,av

J⊤
amfext,am



 ,

(3.14)

The coupling between the AV and the aerial manipulator appears explicitly
through the term Jar and is also present in the expressions of the Coriolis/centripetal
and gravity terms. Note that the control matrix is totally decoupled between the
AV and the aerial manipulator. And that both the external wrench fext,av applied
to the AV and the external wrench fext,am applied to the arm EE are considered.

Passive or Actuated Joints for Aerial Manipulators

The first reflex that can be seen in the design of new AR is to take both an existing
AV and a lightweight manipulator, stitch them together and hope for the best. But
having a manipulator attached to a floating base rises several mechanical and control
challenges, moreover the main limitation to this solution is the static and dynamic
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coupling between the manipulator and the AV and the actuation limits of the AV.
This coupling can prove destabilizing in general for the AR, as wrench applied at
the manipulator’s EE maps to torques at the AV CoM, which has typically pretty
low torque actuation limits, around 0.2 N m to 0.5 N m. From their capabilities,
MAV multi-rotors are more suited for force input and can also be seen as thrusters
for AM. Hence instead of a complex manipulator one can, in practice, focus on
simpler one link design.

As for underactuated AV the thrust can only be exerted along their z-axis in
body frame, to have orientable thrusters the rotational dynamics of the AR should
be decoupled from the one of the load. This results in the choice of 3D passive
rotational joints in our first MAGMaS prototype. With the three centers of rotation
coinciding with the AR CoM so that force at the EE of the manipulator does not
generate torque on the flying platform. Note that this decoupling property is only
achieved in the mechanical limits of the passive joint itself.

The multi-directional thrust AV can in principle exert an orientable thrust while
rigidly attached to a load, then again inside a certain polytope constrained by the
propeller physical implementation. However in practice the choice to use passive
revolute joint, to decouple the AR rotation from the one of the manipulated load,
can be legitimate as to allow the completion of certain manipulation task or enlarge
the set of possible orientation of the thrust.

3.3 Modeling of MAGMaS

The considered MAGMaS is composed by a n-DoF ground manipulator, and k AR
that cooperatively manipulate an object, see Fig. B.8.The system modeling when
the object is not grasped is omitted, as well documented in the literature of robotic
navigation. The EE of the ground manipulator is equipped with a gripper in order
to rigidly grasp the object. Each AR is equipped with a grasping link attached
to the CoM by means of a passive spherical joint. At the other end, the grasping
link is equipped with a gripper. This mechanism allows to grasp the object while
leaving the AR attitude unconstrained. In this first approach on MAGMaS the
choice was made to consider a passive joint in the manipulator for one main reason:
the relatively limited torque actuation of multi-rotor AV. Indeed multi-rotor can
exert a reasonable force, around 28 N for a small quadrotor, but significantly less
torque, around 0.2 N m for the same platform. From this observation it is clear that
forces and torques applied by the environment on the AR EE should be minimized
in order to prevent destabilization of the AR. Hence the passive spherical joint, a
3D passive revolute joint, efficiently decoupling rotational dynamics of the AV and
its attached manipulator.

Recall FW : OW −{xW ,yW , zW } denote the world frame, an let the manipulated
object body frame be denoted with FO : OO − {xo,yo, zo}, where OO is the object
CoM. Without loss of generality it can be assumed that FO is parallel to the ground
manipulator EE frame, as depicted in Fig. 3.6. The body frame of the i–th AR
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{FW }

{FO}

{Fi}

Figure 3.6 – Illustration of the principal frames used for the modeling of a MAG-
MaS, superimposed on one composed of a single ground manipulator and three
underactuated AR. The axes x∗,y∗, z∗ are represented in red, green and blue re-
spectively. The inertial frame is denoted FW , the object body frame centered on the
object’s CoM is denoted FO. The AR body frame are denoted Fi and are centerd
on their respective CoM.

(with i ∈ {1, . . . , k}) is denoted with Fi : Oi − {xi,yi, zi} where Oi is the AR CoM,
denoted FB in section 3.2 and renamed for compactness.

The position of OO and Oi in FW are denoted po, pi ∈ R
3 and Ro, Ri ∈ SO(3)

are the rotation matrices expressing the orientation of FO and Fi w.r.t. FW .
The matrices Ro and Ri are parameterized by a set of roll/pitch/yaw angles
ηo = [φo θo ψo]⊤ ∈ R

3 and ηi = [φi θi ψi]⊤ ∈ R
3, respectively. Although sin-

gular this parametrization can be used as the AR are assumed to remain away from
the parametrization singularities. The angular velocities of FO and Fi w.r.t. FW ,
expressed in the corresponding body frame, are denoted with ωo, ωi ∈ R

3, respec-
tively. Furthermore, let mo, mi ∈ R

+ and Jo, Ji ∈ R
3×3 be the mass and inertia

matrix of the object and i–th AR.

The i–th AR exerts a thrust force ui
t applied at its CoM. In the underactuated

AV case, ui
t = ui

tzi with ui
t is a controllable magnitude and zi specified by the AR

orientation, which is regulated by the control torque vector ui
r = [ui

rx
ui

ry
ui

rz
]⊤ ∈

R
3. In the multi-directional thrust case both the magnitude and the orientation of

ui
t = [ui

tx
ui

ty
ui

tz
]⊤ ∈ R

3 can be controlled directly and independently.
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Then (3.11) can be re-written as

mip̈i −migzW = Riu
i
t − hi (3.15)

Jiω̇i + ωi × Jiωi = ui
r (3.16)

where hi ∈ R
3 is the load of the system on i-th AR and the inputs introduced in

Sec. 3.2.1 are related to ui
t and ui

r via




ui

t

ui
r



 =




F1

F2












̟2
1

...

̟2
N








(3.17)

for the i-th AR with N propellers.

Similarly than in Sec. 3.2.1, from (3.16), recalling the relationship between ωi

and the derivative the Euler angles η̇i as ωi = Ei(ηi)η̇i, the rotational dynamics of
the i–th AR is

Miη̈i + ci(ηi, η̇i) = ui
r (3.18)

in which Mi ∈ R
3×3 is the rotational part of the i–th AR’s Inertia matrix, ci(ηi, η̇i) ∈

R
3 is the Coriolis/centripetal term. Moreover the position of Oi in FO is denoted

by ri ∈ R
3. Thus the relationship pi = po + Rori olds for i ∈ {1, . . . , k}.

The dynamical model of the ground manipulator is

Mm(qm)q̈m + cm(qm, q̇m) + gm(qm) = um − J⊤
m(qm)ho (3.19)

where qm = [q1 ... qn]⊤ ∈ R
n is the joint angle coordinate vector, ho ∈ R

6 is the
wrench applied by the manipulator to the {object–AR} system, expressed in the EE
frame, Mm(qm) ∈ R

n×n is the inertia matrix, cm(qm, q̇m) ∈ R
n and gm(qm) ∈ R

n

represent the Coriolis/centripetal and gravity terms, respectively, Jm(qm) ∈ R
6×n

is the geometric Jacobian of the manipulator and um = [u1
m . . . un

m]⊤ ∈ R
n gathers

the n joint torques of the manipulator.

From this point on, the modeling considers the use of underactuated AR with full
passive rotational joints and a one link aerial manipulator in order to exhibit a set
of properties for this case. In particular the 3D revolute joint is designed so that the
3 axes of rotation are passing through the AR CoM. This means that the rotational
dynamic of the AR is efficiently decoupled from the one of the manipulated object
and the thrust is exerted along the z-axis in body frame of the AR, i.e., ui

t = ui
tzi.

This particular case is especially useful in practice to overcome torque actuation
limits for simple quadrotors.

Considering as generalized coordinates q = [q⊤
m q⊤

a ]⊤ ∈ R
n+3k, where qa =

[η⊤
1 ... η⊤

k ]⊤ ∈ R
3k, the position of the AR is not part of the generalized coordinates

as it is constrained by the object position once rigidly grasped and u = [u⊤
m u⊤

r ]⊤ ∈

R
n+3k in which ur = [u1

r
⊤
. . .uk

r
⊤

]⊤ ∈ R
3k. The dynamical model of the whole
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system can be written as

M(q)q̈ + c(q, q̇) + g(q) = u − J⊤(q)h, (3.20)

in which

M(q) = diag (Mm(qm),M1(η1), . . . ,Mk(ηk))

g(q) = [gm(qm) 03k×1]⊤ ,

c(q, q̇) = [cm(qm, q̇m), c1(η1, η̇1), . . . , ck(ηk, η̇k)]⊤ ,

J = diag (Jm(qm),03, . . . ,03) .

The term h ∈ R
6+3k is defined as h = [h⊤

o h⊤
t ]⊤, where ht = [h⊤

1 , . . . ,h
⊤
k ]⊤, hi ∈ R

3

expresses the particular load felt by each AR. The structure of J arises from the
fact that the passive joints efficiently decouple the AR rotational dynamics. The
dynamic equation of motion for the rigid body object completes the dynamic model
of the system

Mo(x)ẍ + co(x, ẋ) + go(x) = he (3.21)

where x = [p⊤
o η⊤

o ]⊤ ∈ R
6 is the object pose vector, Mo ∈ R

6, co ∈ R
6, and go ∈ R

6

are inertial matrix, Coriolis/centripetal and gravity vectors, respectively, and he,
called external wrench, is the resultant force of the ground manipulator and all the
AR, that moves the object and can be calculated as follows

he = Gh (3.22)

where the grasp matrix G is defined as G = [Tm Gt(q)] in which Tm ∈ R
6×6

transforms ho from the EE frame to the world frame and Gt(q) ∈ R
6×3k describes

the influence of the AR thrust vectors on the object motion. It is straightforward
to obtain them as follows

Tm =




R⊤

o 0

S(R⊤
o re) R⊤

o



 (3.23)

Gt(q) =




I3 . . . I3

S(R⊤
o ri) . . . S(R⊤

o rk)



 (3.24)

where re ∈ R
3 is the ground manipulator EE position in FO and S(·) the the skew-

symmetric operator on a vector. Now consider (3.22), the grasp matrix G is full-row
rank by construction, thus for a given he the inverse of (3.22) can be written as
follows

h = G+he + Vhn = hE + hI (3.25)

where G+ is a pseudo-inverse of G and V is a full-row rank matrix spanning
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the null-space of G and hn is an arbitrary vector of appropriate dimension that
parameterizes the solution sets [Prattichizzo–2008]. Concatenated wrench vector
hE are wrenches that can result in motion, while hI are known as internal wrenches,
and their directions are such that they do not contribute to a motion.

3.3.1 System Constraints

The ground manipulator joint torques and force vector of each AR must comply
with the following system constraints.

• The limited orientation of the thrust produced by the i–th AR, either due to
rotations of spherical joints constrains (underactuated case) or by the polytope
boundaries (multi-directional thrust case).

χi(ηi) =
√

(hx
i )2 + (hy

i )2
− tan(αi)hz

i ≤ 0 (3.26)

where hi = [hx
i , h

y
i , h

z
i ]⊤ is the force vector and αi ∈ R

+ shows the allowed
cone angle of either the spherical joint or an approximation of the polytope
envelope;

• the ground manipulator joints have limited rotation range,

qmin
i ≤ qi ≤ qmax

i i = 1, ..., n (3.27)

where qmin
i , qmax

i ∈ R
+ are scalar values representing the upper and lower joint

bounds;
• the robot manipulator torques are limited,

uimin

m ≤ ui
m ≤ uimax

m i = 1, ..., n, (3.28)

where uimin

m , uimax

m ∈ R represent the upper and lower torque bounds for the
manipulator;

• each AR has a bounded thrust,

‖hi‖ ≤ hmax
i i = 1, ..., k (3.29)

where hmax
i ∈ R

+ is the maximum applicable thrust.

3.4 Discussion

As the work on MAGMaS is still young a large set of open research directions can
still be investigated, in particular with respect to the constitution of the MAGMaS
and the tasks at hand.
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Moving base

In the work presented in this thesis the ground manipulator is mounted on a base re-
maining fixed during the cooperative manipulation. An interesting direction would
be to study the case of a moving ground manipulator during the cooperative ma-
nipulation. Interesting topics being; leveraging the mobile base motion in the task,
accounting for all the system constraints in the planning and the control allocation,
optimally exploiting the null space of the overactuated system.

Degree of Freedom of the System

A open direction of research consists in studying the rationals behind the choice of
the number DoF for the systems, their nature (passive/active) and their impact on
the performances. The number of required DoFs for the ground manipulator and
the number of AR as their manipulator DoFs and nature, all have an impact on
the system performance but also on its complexity impacting not only the system
procurement and maintenance costs but also computational and cognitive power
necessary to operate the system.

Several Aerial Robots

As depicted in Fig. B.8, MAGMaS are not limited to a single AR, as described so far
in this thesis, but are meant to be composed of several AR. In this case, the choice of
the number and kind (under- or fully actuated) of AV remains to be investigated,
criterion for the choice might range from single AV autonomy, affordability and
complexity, to overall system complexity and operational configuration gain, for
example.

Load Grasping

Also an engaging topic, arising from the use of several manipulators, is the auto-
matic grasping locations choice for all manipulators, both ground and aerial, based
on their actuation constraints and a priori or estimated information of the load
parameters. Additionally for weird shaped load, the grasping location should be
optimized to both facilitate the load cooperative handling and to allow control of
the vibrations in the load.

Load Parameters

The last potential future work direction is related to the load kinematic and dy-
namic parameters. As the kinematic parameters play an important role in robust
cooperative manipulation it is important to be able to retrieve them, see [Erhart–
2013] [Erhart–2015] for approach relying on 6D wrench at the grasping points and
[Erhart–2015] for modeling and analysis of cooperative manipulation dynamics.
Load parameters estimation strategy without explicit communication is proposed
in [Marino–2017], while a completely decentralized estimation method has been
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firstly proposed in [Franchi–2014] and then extended with a robust control approach
in [Petitti–2016].
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Abstract

This chapter presents the global control framework used for MAGMaS, from the
planning to the low-level control. The general planning and control allocation
scheme is reviewed in Sec. 4.1 for MAGMaS in general. Followed by the description
of the geometric control for AR, Sec. 4.2. The next three sections focus on the
forces estimation for APhI: motivating it in Sec. B.2 and detailing two parallel ap-
proaches, in Sec. 4.4 and Sec. 4.5, which are discussed in Sec. 6.6. The knowledge of
the external force applied on the AR is then leveraged in by a force based controller
presented in Sec. 4.7.

4.1 Planner and Control Allocation

The high level supervision of the task is handled by a task planner, which monitors
the system state and generates trajectories accordingly and a control allocation
stage, which, from the desired trajectory of the manipulated load, can infer the
trajectories and/or control efforts for each subsystem, see Fig. 4.1. The proposed
scheme is very general in the sense that it is generating trajectories in all stage of
the cooperative manipulation, i.e., when the object is grasped or not, taking into
account the different constraints. In order to match with the low-level controllers
used, the output can be chosen to match their requirements, e.g., possibility to
control the ground manipulator in Cartesian or joint space.
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Force/Control
Allocation

Ground Manipulator Low-level Controller

Aerial Robots Low-level Controller

Figure 4.1 – High level view of the full control architecture, from the Task Planner
to the low-level controllers, each detailed in Chaper 4.
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Figure 4.2 – Generic task planner overall structure, with inputs and outputs, as
implemented for our MAGMaS experiment.

4.1.1 Task Planning

For supervision of the MAGMaS a generic high level planner was devised, composed
of: i) a task planner, ii) a basic Finite State Machine (FSM) and iii) a trajectory
generator with different policy for each state of the FSM, see Fig. 5.15.

It is generic in the sense that it can generate reference trajectories for either
the manipulated object or for the two manipulators based on the FSM status. The
planner is aware of the system state and can trigger FSM evolution based on the
system sensors and human operator inputs. The actual content of the task planner
and its strategies are experiment dependent and are presented more in depth with
the experimental results, Chapter 5.

Note that due to the novelty of MAGMaS the emphasis of the presented work
is more on the system design and control than on the use of advanced planning
techniques, for example there is no collision detection or obstacle avoidance imple-
mented, yet.

4.1.2 Full MAGMaS Control Allocation

This section details the control architecture, derives the feedback linearization, for-
malizes the force allocation optimization problem, also uncertainties handling is
introduced. The overall control architecture is summarized in Fig. 4.3.

Consider the trajectory tracking in operational workspace as the task associated
to the manipulation of the object. The task is described by a set of variables t ∈ R

σ,
since the object is a rigid body σ ≤ 6. On the other hand, the object configuration
only depends on the arm joint angles qm, thus the task is function of the sole qm

and can be written t = f(qm), where f : Rn → R
σ is a differentiable map assumed

to be known for a given manipulator. A prerequisite for a generic reference to
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Figure 4.3 – Proposed control scheme for MAGMaS (dashed rectangle) with 3D
passive rotational connections, composed of a feedback linearization controller, a
disturbance observer to deal with uncertainties, and an optimization-based force al-
location scheme, for the control allocation part (gray area), see Sec. 4.1.2. Indiviual
attitude controller are devised for each AR, the ground manipulator is considered
to be directly torque controlled.

be trackable is that the map f is surjective, which, in turns, implies σ ≤ n. In
conclusion, σ ≤ min{6, n}. Furthermore, the task is assumed planned such as to
comply with the robot manipulator joint limits (3.27). The problem addressed in
this work is to let the task t track a desired reference td while taking advantage of
the MAGMaS redundancy and heterogeneity.

The trajectory tracking task control is done through input-output exact lin-
earization, via static feedback, see [Isidori–1995]. Recall, in order to design a static
feedback linearization control law, each output is differentiated until at least one
input appears and the obtained differential map must result invertible. In the pre-
sented case, the first differentiation of the task w.r.t. time yields

ṫ =
∂f

∂qm
q̇m = Jt(qm)q̇m = [Jt(qm) 0σt×3k] q̇ (4.1)

where Jt ∈ R
σ×n is known as task Jacobian. A second time differentiation is

necessary to make the control inputs appear,

ẗ =
∂f

∂qm
q̇m + Jt(qm)q̈m = ft(qm, q̇m, q̈m) + Gu(q)uJ (4.2)

where

ft(qm, q̇m, q̈m) =
˙∂f

∂qm
q̇m − JtM

−1
m (cm(qm, q̇m) + Gm(qm)) −

JtM
−1
m J⊤

mt−1
m (Mo(x)ẍ + co(x, ẋ) + Go(x))

Gu(q) = Jt(qm)M−1
m (qm)

[

In J⊤
mt−1

m Gt(q)
]

︸ ︷︷ ︸

A

and uJ = [u⊤
m h⊤

t ]⊤. Given the modeling assumptions, the matrix Gu is full
row-rank whenever Jt is full row-rank, because by construction A is the projection
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of uJ on the manipulator joints and M−1
m is full rank by definition. From the

structure it is also clear that the inputs directly related with the task dynamics are
the manipulator torques, um, and the concatenated force vector ht, generated by
the thrust magnitudes ut and the moments ur of the AR, through (3.15)-(3.16).
Task trajectory tracking can be enforced by a control action uE ∈ R

σ such that

uE = ẗd + KDė + KP e − ft (4.3)

where e = td − t, KD ∈ R
σ×σ and KP ∈ R

σ×σ are diagonal positive definite
matrices. To implement uE , uJ has to verify

ĜuuJ = uE , (4.4)

in order to be plugged in (4.2) to ensure the tracking of a desired trajectory td.
Thanks to redundancy there are infinite possible input allocations, uJ , for a given
uE . Note that this modeling is similar to the problem of kinematic control for
nonholonomic mobile manipulators, see [De Luca–2010], where the redundancy is
exploited to locally maximize manipulability, while ensuring velocity damping of
the high order dynamics of the considered model.

To do so, the control problem is formulated as a programming problem to min-
imize the cost function J : R(n+3k) 7→ R defined as J (uJ) = uJ

⊤P uJ , where
P ∈ R

(n+3k)×(n+3k), defined as P = diag
(

JtJ⊤
t ,Pt

)

, is a weighting matrix to
allocate the forces according to the maximum torque of the ground manipulator
motors and AR thrusters and in order to increase the force manipulability ellipsoid
described by the matrix JtJT

t . The matrix Pt ∈ R
3k×3k allows to weight the ARs

differently from each other and from the ground manipulator. The solution of the
optimization problem is constrained by uJ ∈ F , where F is the feasible solutions
set defined by the inequalities (3.26), (3.28) and (3.29), plus uJ should satisfy (4.4)
which yields the constraint, ξ(uJ) = GuuJ − uE = 0 , where ξ : Rn+3k 7→ R

σ.

Note that the constraint (3.27) is addressed by the task choice. In summary,
the control allocation problem is

u∗
J = arg min

uJ

J (uJ)

s.t. χi(ηi) ≤ 0 i = 1, ..., k (4.5)

‖hi‖ ≤ hmax
i i = 1, ..., k

min(ui
m) ≤ ui

m ≤ max(ui
m) i = 1, ..., n

ξ(uJ) = 0.

All constraints, equalities and inequalities, are affine functions of the optimiza-
tion variable uJ and since J (uJ) is convex quadratic, (4.5) is a convex program-
ming problem. A wide range of efficient methods can be used to solve the problem,
as described in literature of convex optimization. The devised control allocation
problem is not unique and other considerations could be taken into account, like
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a parsimonious motion approach to limit the overall motion of actuated DoFs, as
in [Gonçalves–2016].

Feedback Linearization techniques are relying on implicit model inversion. as
such they are very sensitive to uncertainties. They can arise for several reasons,
parametric uncertainties such as imprecise weight and length measurements, un-
modeled dynamics, such as motor dynamics or the existence of unmodeled external
disturbances.

All these uncertainties can also be coped with by the system redundancy by
reformulating the optimization problem (4.5) and the trajectory tracking control
uE in the case of disturbances. Let and Ĝu and f̂t be the nominal values of Gu

and ft that represent the existence of a lumped bounded uncertainty in the model.
A disturbance term, d = Ĝ+

u (ẗ − f̂t) − uJ , can be introduced and the second order
task dynamics (4.2) can be rewritten as

ẗ = f̂t(qm, q̇m, q̈m) + Ĝu(q) (uJ − d) . (4.6)

A common approach to estimate the disturbance is to use the following disturbance
observer

˙̂d = −Ld̂ + L
(

Ĝ+
u (ẗ − f̂t) − uJ

)

(4.7)

where L ∈ R
(n+3k)×(n+3k) is positive diagonal observer gain and d̂ is the output of

the disturbance observer. This means that (4.4) rewrites as uE = Ĝu

(

uJ − d̂
)

,

and hence the optimization problem (4.5) as to be updated with

ξ(uJ) = Ĝu(uJ − d̂) − uE (4.8)

to take into account the disturbances. Using this control scheme task trajectory
tracking is guaranteed, while the system redundancies are exploited to satisfy the
system constraints and reject possible disturbances.

4.2 Geometric Control for AR

In this section classical pose control based on [Lee–2010] is presented for two situ-
ations; the case where 3D passive spherical joints are used on underactuated AV,
called the pure thruster case, and the case where 1D passive rotational joints are
used in combination with multi-directional thrust AV, called the constrained orien-

tation case.

4.2.1 AR Control – Pure Thruster Case

The special case of AR composed of underactuated flying platform with an arm
mounted on a 3D passive spherical joint is studied in this section, this corresponds
to the preliminary results on MAGMaS presented in [Staub–2017]. The position of
such platform is constrained by the motion of the grasped object, but the rotational
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dynamics is left free to orient the thrust in any desired direction, hence the name
Pure Thruster. The low-level control law for the ith AR can be written

ui
t = z⊤

i R⊤
i (migzW + hi) (4.9)

ui
r = −KRei

R − Kωei
ω + ωi × Jiωi (4.10)

where KR,Kω ∈ R
3×3 are diagonal gain matrices with positive elements, chosen to

guarantee stability of the system, ei
R is orientation matrix error defined by

ei
R =

1
2

S−(Ri
d

⊤
Ri − R⊤

i Ri
d) (4.11)

where S−(·) is the inverse operation of S(·), i.e., extracts the generating vector from
a skew symmetric matrix, and ei

ω is the angular velocity error defined as

ei
ω = ωi − R⊤

i Ri
dω

i
d (4.12)

where ωi
d ∈ R

3 is the desired angular velocity. The desired rotation matrix Ri
d is

simply obtained by calculating any rotation matrix that transforms zW to hi/‖hi‖,
i.e., aligning the thrust direction to the load of the system on the corresponding
AR.

4.2.2 AR Control – Constrained Orientation Case

The special case of AR composed of multi-directional thrust platform with arm
mounted on a 1D passive revolute joint is studied in this section. The position of
such platform is constrained by the motion of the grasped object and the rotational
dynamic is only left free around one axis, hence the name Constrained Orientation.
However, thanks to the multi-directional thrust property the thrust can still be ori-
ented without changing the orientation of the AR. In this case the pose controller is
of paramount importance to exploit the multi-directional thrust capabilities of the
platform. From an arbitrary Cartesian reference trajectory, (pr

B,R
r
B) : R → SE(3),

it generates the propellers control inputs u, via dynamic inversion of the AR dynam-
ics, that let pB and RB track at best the reference trajectory. The pose Controller
is build around an inner control loop (position controller) and an outer control loop
(attitude controller). The final stage of the controller is a force-torque mapper that
computes the actual propeller spinning velocity u. This controller has been detailed
in [Ryll–2016] and will only be outlined here for completeness.

Position Controller

This stage receives as input the reference trajectory for the AR CoM coming from
the planner (pr, ṗr, p̈r,Rr

B) and the measured state (pB, ṗB), producing as output
a reference control force f r ∈ R

3 sent to the wrench mapper and a desired feasible
orientation R̃r

B (a priori different from the reference one, see below) which will
feed the attitude controller. Note that the actuators limits are accounted for in
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this computation. Given the position tracking errors ep and ev, the reference force
vector is expressed as

f r = m (p̈r + ge3 − Kpep − Kvev) , (4.13)

with Kp and Kv two positive definite gain matrices. The new reference orientation
R̃r

B is introduced as it can be different from Rr
B given by the planner. Indeed, due

to actuation limits, the total thrust f r has to remain in the pseudo-cone illustrated
in Fig. 3.4b. If the reference control force, computed with the reference orientation,
lies outside the pseudo-cone, then R̃r

B is computed as the closest desired rotation
matrix respecting the input constraints. In other words, R̃r

B minimizes the distance
with Rr

B in SO(3) with f r inside the actuation limits. This prioritizes the tracking of
the position over the orientation, while trying to follow the best attitude trajectory.

Attitude Controller

This part produces as output the reference control torque τ r ∈ R
3, based on the

desired rotation R̃r
B provided by the position controller, the other reference input

ωr and the measured state (RB, ωB) under

τ r = ωB × JωB − KReR − KωωB (4.14)

with KR and Kω being positive definite gain matrices and the orientation error eR

computed in SO(3). The vector τ r is then fed to the force-torque mapper.

Force-torque Mapper

This final stage takes as input the reference wrench (f r, τ r), computed by the two
previous stages and provides as output a feasible set of control inputs u to be sent
to the motors

u =




RBF1

F2





−1 


f r

τ r



 . (4.15)

This stage concludes the Pose Controller flow description.

The motor control inputs u can be a setpoints or a pseudo-setpoints for the
motor input voltage or proper velocities to be tracked by the motors, based on the
motor characteristics and control modalities. In particular, the matrix F1 and F2

embodied dynamic and aerodynamic parameters related to the motor and propellers
used. The importance of the knowledge of these for fine force control is motivated
and stressed in the following sections.
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4.3 Force Estimation for Aerial Physical Interaction

4.3.1 Motivations

As outlined in Sec. 2.4.3 the knowledge of the force exerted on the environment by
the aerial robot is of paramount importance to achieve a precise interaction force
control. Furthermore, it can also be used in free flight to retrieve external distur-
bance forces like, e.g., due to the wind or collision. For the reason already mentioned
in Sec. 2.4.3, recall i) performance over weight and compactness ratio, ii) located
measurements and iii) costs, 6D F/T-sensor are not suitable to be embedded in
multi-rotors in the low/mid-cost range. Some work are exploring the combination
of simple switch with model based force reconstruction, e.g., [Rajappa–2017] or con-
sider simpler force measurement mechanism along only one direction. These resolve
the cost and weight drawbacks, but not the issue raised by localized measurements.
This leads to the choice of investigating estimator based approaches, they depend
highly on the system model and the propeller force exertion knowledge. Then based
on the system model and states and the force exerted one can derive the external
forces to which the AR is subjected. The crucial part here, is to determine the force
and drag torque generated by the propellers. The requirements for such an observer
are i) low computation burden and ii) ease of reproduction; these two requirements
are set to enforce usability of this approach. The models used in the estimation
process should remain as simple as possible to limit computational cost but still
capture all the essential dynamics of the system in order to produce a trustworthy
estimate. Once the models are set, their parameters estimation should be highly
reproducible to be performed quickly after any modifications of the systems. The
standard model of co-planar multi-rotor is presented hereafter and two solutions for
the propeller force estimation are proposed, one based on model identification and
the other one based on spinning velocity fine control. Note that another approach
for force control considers aerodynamic power, see [Bangura–2014].

4.3.2 Proposed Solutions

In the following, two approaches developed at LAAS–CNRS are introduced, both
aim at tackling the challenge of force exertion and force feedback for APhI.

The first approach relies on model identification for the propeller force genera-
tion. The main idea is to rely on dynamical measurements in order to model the
propeller force exertion dynamics and also integrate the battery terminal output
voltage to improve the model performances. The approach, detailed in Sec. 4.4,
is generic and proposes a class of models based on simple observation rather than
physics. Thanks to this abstraction the proposed models are simpler and the usage
for low costs platforms using set-point commands instead of velocity command for
the propeller is made easier.

The second approach is based on fine spinning velocity control of the propellers.
On low/middle cost platforms, propeller spinning velocity closed loop control is
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usually not proposed as there is not speed feedback signal available. This solution,
detailed in Sec. 4.5 and Appendix A, is based on efficient speed measurement and
aggressive spinning velocity control relying on adaptive control, this allows to ne-
glect the propeller spinning velocity change dynamics. Associated with statically
identified aerodynamics coefficients from the propellers, it has been demonstrated
as a reliable way to perform force control for AR.

4.4 Force Estimation: Model Identification Approach

The work described in this part has been presented at

2015 IEEE Int. Conf. on Robotics and Automation [Staub–2015]

This section introduces an early work conducted on force estimation, in which a
new class of models for the total thrust generation in multi-rotor MAVs is proposed
and experimentally validated. This works focuses low- and middle-end co-planar
platforms, where sensory and computation capabilities are limited. This works is
original in the sense that it doens’t relo on the typical model assumptions that the
rotor spinning velocity is instantaneously controller, which neglects the dynamics
of the spinning propellers and their associated Brushless Direct Current (BLDC)
motor. In the proposed class of models it is considered that the total thrust has
its own dynamics and its final value explicitly depends both on the pseudo-setpoint
commands given to the motor driver and the measurement of the battery termi-
nal voltage as explained in Sec. 4.4.2. The different model instances are compared
within the class using a principled experimental setup in which the total thrust
is precisely measured using a motion capture system as ground truth, instead of
relying on a setup based on noise-prone force sensors. In Sec. 4.4.5, it is exhibited
that the use of a dynamical model that includes also the battery terminal voltage
significantly improves the prediction ability of the model in terms of accuracy. Fi-
nally, in the same section, experimental results show how the proposed model can
be identified using on-board only acceleration measurements, achieving a surpris-
ingly good accuracy when compared with the ground truth case. The use of the
proposed model is expected to be important both in case of precise flight control
and in the case of aerial physical interactive tasks.

4.4.1 Possible Drawbacks of the Standard Model

First consider the model of the translational dynamics (3.2) and used in many of the
previous works, see e.g., [Mahony–2012], assume that ̟i is the control input of the
system and that cF is known. Under these two assumptions the fi, for i = 1 . . . N ,
can be considered as control inputs, which makes the control problem simpler.
However, these assumptions are hard to be met in reality for the following reasons.
First of all, the aerodynamic coefficient cF is in many cases unknown, it depends on
the propeller type, and even vary within the same type because of normal large-scale
production variations. Second of all the motor has its own dynamics. Therefore ̟i,
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spinning velocity, cannot be changed instantaneously acting on the torque applied
by the motor.

In fact, in the best case, the motor control input is usually a setpoint for ̟i,
which is tracked by the motor driver with a certain dynamics and accuracy. The
control accuracy of fi depends then on the accuracy in the knowledge of the pa-
rameter cF (needed in order to generate the setpoint for the motor driver) and on
the accuracy of the Electronic Speed Controller (ESC) in tracking the velocity set-
point. For typical multi-rotor platforms, especially in the low/mid-cost range, e.g.,
the mikrokopter1, the CrazyFlie2, the asctec3 and many other platforms [Li–2012].
It is not possible to send a setpoint for the spinning velocity to the motor drivers,
but rather a pseudo-setpoint, e.g., a Pulse Width Modulation (PWM) signal, which
is monotically related to the steady state spinning velocity, if all the other flight
conditions are constant.

In both cases (for setpoint and for pseudo-setpoint) the battery voltage level has
an impact on the behavior of the motor controller, as noted, e.g., in [Sa–2012]. In
particular, the battery voltage decreases as long as the battery discharges due to the
increase of the internal resistance. This measurement can be found among all the
type of platforms. During contact-free flight, the dependence to the battery voltage
can be overcome by using an adaptive term in the control law which compensates
the discharge of the battery. Such a method can take the form of a mass estimator
or an integral term [Spica–2013][Grabe–2013], which increases the average of the
commands sent to the motors, thus compensating the voltage drop. This approach
is working because the only force acting on the system are the weight and the thrust
generated by the propellers. For physical interaction this technique can not be used
since the interaction force involved in the balance is typically unknown.

In a first step, in order to have a good control of the force exerted by the
system it is instead important to have control on the total thrust fB exerted by the
rotors. Therefore another viable approach, presented here, is to take into account
the battery voltage influence and the motor dynamics directly in an input-output
nonlinear model. In the next section, the process of thoughts leading to a class
of models encompassing the direct relation between the (pseudo)-setpoints and the
battery terminal voltage as inputs and the force as output, is presented.

4.4.2 Model Based on (Pseudo-)Setpoint and Battery Level

This section presents the reasoning leading to the proposed model class. The mode
construction makes abstraction from the physics at play and rather focuses on
simple observations of the system behaviors to extract its main features. This
simplifies a lot the obtained model and captures the essential dynamics of the
system {battery+ESC+BLDC+propeller} producing the actuation force. To do
so denote ui ∈ [umin, umax], with umin > 0 the control input of the motor driver,

1http://www.mikrokopter.de/
2http://www.bitcraze.se/category/crazyflie/
3http://www.asctec.de/en/
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Figure 4.4 – Block diagram of the proposed model

which may represent either a setpoint or a pseudo-setpoint for the driver of the
ith motor of the vehicle. Denote with β the battery terminal voltage level, that can
be assumed to be measured. The goal is then to propose a modeling of the relation
between ui and β and fi that is as simple as possible but captures all the relevant
dynamics.

Based on the analysis of experimental data, see e.g., [Spica–2013] or [Sa–2012],
the following observations have been made:

O 1: if ui is kept constant for a time window of the order of magnitude of ≈ 1
second then fi reaches a constant value that is monotonically increasing w.r.t. ui

and monotonically decreasing w.r.t. β.

Motivated by the previous observation the following simple model for the force
exerted by one propeller is proposed

ḟi =
1
τi

(

fi(ui, β) − fi
)

(4.16)

where fi(ui, β) is an unknown nonlinear map and τi is an unknown time constant,
this model can be represented as a nonlinear block and a linear first order system,
see Fig.4.4.

In order to provide a simple expression of fT let us consider the following rea-
sonable assumptions:

A 1: fi(ui, β) and τi are the same across all motor controllers, i.e., for i = 1 . . . N

A 2: fi(ui, β) is a smooth function that can be well approximated by a finite poly-

nomial of a suitable order in the region of interest ui ∈ [umin, umax] and β ∈

[βmin, βmax]

Assumption 1 is standard and translates to consider a unique time constant and
a unique cF and equivalent motors dynamics. This might be the first assumption
to relax in an extension work.

Assumptions 1 and 2 yield

τi = τ, ∀ i = 1 . . . N (4.17)

fi(ui, β) = f(ui, β) ≈
nu∑

j=0

nβ∑

k=0

(αjku
j
iβ

k), ∀ i = 1 . . . N (4.18)
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where nu, nβ ∈ N have to be chosen taking into account the desired model complex-
ity and αjk, with j = 1 . . . nu, k = 1 . . . nβ , are nu · nβ parameters to be estimated.

Using (3.4),(4.16),(4.17),(4.18) the dynamic of the total thrust fT can be written
as

ḟT ≈
N∑

i=1

1
τi





nu∑

j=0

nβ∑

k=0

(αjku
j
iβ

k) − fi



 (4.19)

=
1
τ





nu∑

j=0

nβ∑

k=0

(αjkβ
k

N∑

i=1

uj
i ) − fT



 (4.20)

=
1
τ





nu∑

j=0

nβ∑

k=0

αjkvjk − fT



 (4.21)

where the compact notation vjk = βk
∑N

i=1 u
j
i is used.

The equation (4.21) is describing a class of sufficiently simple nonlinear dynamic
models for the total thrust of a multi-rotor platform using only the (pseudo)-setpoint
and the battery voltage, both information that can bee found on nearly every, if
not all, platforms.

The model class size is only limited by the choice of nu and nβ, among the
models present in the class some have better performance than others. The goal is
to find the simplest model (i.e., the one with the lowest number of parameters) that
provides a sufficient prediction performance compared to more complex models.

4.4.3 Identification Procedure

Model (4.21) represents a class of models, depending on the values of the parameters
nu, nβ. In this class of models, three quantities are needed in order to estimate the
parameters τ and the αjk’s: the model inputs, i.e., the (pseudo)-setpoint ui and the
battery voltage β and the model’s output, i.e., the total thrust fT . The information
on fT can be replaced by acceleration information, given that the mass m of the
system is known. In practical situations two cases, detailed in the following, can
happen.

The case in which p̈B can be precisely measured (e.g., using a motion capture
system). In this case the thrust force in the inertial frame FW , fW = RBfB, can
be computed by directly employing (3.2). The total thrust fT is then computed as
‖fW ‖. This way is used to provide ground truth measurements.

The second case is when the vehicle is equipped with a calibrated IMU which
measures the proper acceleration of the vehicle expressed in the body frame FB,
i.e.,

ā = RT
B(p̈B + gzW ) + ηIMU , (4.22)

where ηIMU is some additive noise with zero mean. This case will be used in the
experiments to show that the model can be effectively identified using only onboard



4.4. Force Estimation: Model Identification Approach 59

Figure 4.5 – The multi-rotor platform used at LAAS–CNRS

measurements. Using (3.2),(3.4) in (4.22) one gets

ā =
fT
m

zB +
1
m
δ + ηIMU . (4.23)

In typical conditions (i.e., at low speed and at a certain distance from the ground)
fT is much larger than the third component of ‖δ‖. Therefore, one can write

fT = mzB
T ā + ηF ≈ māz. (4.24)

Where ηF represents a negligible contributions of both the aerodynamic effects and
the IMU noise. Assuming that the mass m of the vehicle can be measured before
the flight, (4.24) shall be used as an onboard measurement of the total thrust.

Use of Estimated Model in Contact Tasks

Notice that (4.24) is valid only in contact-free flight, i.e., when the non-gravitational
forces acting on the vehicle can be expressed by (3.4). During contact, (3.4) includes
also the interaction forces fB

e , thus it can be rewritten as

mp̈B = −mgzW + RB

(

fB + fB
e

)

. (4.25)

The estimation of fT can be performed in the same way as before if fB
e is known.

If instead the estimation of τ and f is performed using measurements taken dur-
ing contact-free flight phases, the identified model can then be used to estimate fB

e

in contact phases since both τ and f are constant over time. This claim still re-
quires experimental validation, which as not been carried out because the proposed
method is finally not used in the subsequent work on cooperative manipulation.

4.4.4 Experiment Design

In order to estimate the parameters of the model introduced in (4.21) an experi-
mental set up has been designed, see [video 1–2015], based on the Telekyb frame-
work [Grabe–2013] and composed by a Motion Capture System (MoCap), a control
computer and a quadrotor, see Fig. 4.5. The MoCap provides the tracked object
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position at 100 Hz with millimeter-scale accuracy. A very accurate estimation of the
velocity and acceleration is obtained post-processing the measured position with a
non-causal Savitzky-Golay filter [Savitzky–1964].

The quadrotor mechatronics is based on the Mikrokopter platform, whereas the
flight control software has been replaced by the Telekyb [Grabe–2013] one.

Two Xbee radio transmitters are used to send commands to the quadrotor and
to record the telemetry data, respectively. Two of them are needed because Zigbee
protocol is a half duplex channel, with a data rate of 80 kbits/s (not considering
the packet overhead). So in order to send and receive the desired data at high
frequency one is dedicated to sending the other one to receiving. The data recorded
are: the battery voltage, a timer for synchronization, the four motors pseudo-
setpoints (PWM signals) sent by the flight controller to the brushless controllers
and the onboard acceleration measurements provided by the threee 3D LIS344alh
accelerometers (0.0057 g0kg m s−2 resolution and ±2 g0ms−2 range). The accelerom-
eters are calibrated following the procedure detailed in [Spica–2013]. The control
computer runs the Telekyb control framework under the middleware Robot Oper-
ating System (ROS). The flight controller used for the quadrotor is a near-hovering
scheme which allows to follow trajectories where the roll and pitch of the quadrotor
remain within ±30◦.

The produced thrust is then computed twice using (i) the acceleration measure-
ment from the motion capture (ground truth) and (ii) the accelerometer reading,
following the relations detailed previously in Sec. 4.4.3.

Trajectories for the Identification

Any trajectory that spans the the battery range and the pseudo-setpoint range of
interest can be used for the identification. The former requirement asks for a flight
duration that discharges the battery enough and the latter one asks for a suffi-
ciently rich acceleration content of the tracked trajectory. To meet the arena-size
constraint as well, a vertical trajectory has been chosen providing enough space to
reach high accelerations while remaining near the hovering attitude. One drawback
of this choice is the limitation imposed to the torque commands, as the command
input where used predominantly for vertical acceleration, the margin left to adjust
the attitude of the quadrotor was quite small and potentially leading to unstable
behavior if the attitude was perturbed. Thus a balance had to be found empirically
between the maximal acceleration on the trajectory and the stability of the system,
see [video 1–2015] for flight records. To ensure the spectral richness of the acceler-
ation the vertical trajectory is composed of five sinusoids with different pulsations:

z(t) = ρ+
5∑

i=1

ai sin(ωit+ φi), (4.26)
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ID of the model 1 2 3 4 5 6 7 8 9 10

nu 0 0 1 1 0 2 1 2 2 2

nβ 0 1 0 1 2 0 2 1 2 2

Numb. of param. 2 3 3 4 4 5 7 7 10 10

Table 4.1 – Different models considered in the identification.

where ρ = 2 is a position offset, to avoid collision with the ground, and

[ω1, . . . , ω5] = 2π · [0.3, 0.2, 0.1, 0.5, 0.6]

[a1, . . . , a5] = 0.3 · [ω−2
1 , 0.95ω−2

2 , 0.9ω−2
3 , 0.8ω−2

4 , 0.7ω−2
5 ]

φ = π ·

[
1
2
,
1
3
,
1
4
,
1
5
,
1
6

]

are the pulsations, the amplitudes, and the phase shifts of the sinusoids, respectively.
With this choice the input is then persistently exciting with order 10, making us
able to identify of up to 10 parameters in (4.21), see, e.g., [Ljung–1999].

With this approach the phase between the two sinusoids and their respective
amplitude has to be carefully considered. In fact it has to be chosen so that the
maximum amplitude of the input stays in a certain range and such that one sinusoid
can not get hidden in the IMU’s noise surrounding the other, leading to a situation
where the IMU reading only describes one sinusoid, the other being hidden by noise.

4.4.5 Experimental Results

To estimate the parameters in the model of the class described by (4.21) a predictive
error method coupled with a grey-box model are used. This method is a numerical
optimization with a cost function based on the norm of the prediction [Soderstrom–
1989]. Three different analyses have been conducted on the data and are described
hereafter.

Model Order Choice and Mocap-based Identification

The number of parameters in (4.21) is (nu + 1) · (nβ + 1) + 1, thus it depends on
the chosen value of nu and nβ . The goal is to find nu and nβ such that the system
dynamics is well described by the estimated model but with the smallest number
of parameters.

As explained in Sec. 4.4.4 the maximum number of parameters that can be
identify with the described experimental setup is 10. Therefore one can consider
nu, nβ ∈ {0, 1, 2}. The 10 resulting models are summarized in Table 4.1, where
models 9 and 10 have the same structure but the parameters are estimated with a
different initial guess as explained in the following. Model 1 is discarded since the
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Figure 4.6 – Boxplot of the prediction error for the proposed models (see Tab. 4.1),
the parameters are estimated with the ground truth and the prediction is compared
against the ground truth.

system dynamics can not be described just by a constant. Models 2 and 5 are also
discarded as they do not contain information on the (pseudo)-setpoint, but only
about the battery state. The initial guess for the estimation of the parameters of
more complex models is provided by the solution of the antecedent in the model
class, thus creating the following orders: 3 → 4 → 7 → 9 and 3 → 6 → 8 → 10.

First the parameters are estimated using a set of data from the MoCap (the
estimation using onboard-only sensor is detailed in Sec. 4.4.5). The estimated pa-
rameters are then validated against another set of data from the MoCap. To better
validate the ability of prediction of the proposed models w.r.t. the battery ef-
fect, the battery voltages in the 2 sets span completely different values. Boxplots
graphs of the absolute value from the prediction error are presented in Fig. 4.6, the
prediction error is the absolute value of the error between the prediction and the
ground truth. Overall the predictions are quite good, with a prediction error me-
dian around or under 0.1 N, which is remarkable considering that the range of the
recorded force during the experiment is [7.5 N, 12.2 N]. This demonstrates that the
proposed class of models is able to predict the total thrust accurately. The complete
set of estimated parameters can be found in [Staub–2015] for the interested reader.

Discussion on Battery Influence

From the previous model performances, one can investigate the importance of the
battery. Models 3 and 6, where battery voltage information are not used, are both
outperformed (higher median, wider dispersion) by the models containing both
pseudo-setpoint and battery information, i.e., 4, 7, 8, 9 and 10. As models 3 and 4
have the same number of inputs the use of battery data is the only changing factor
that can explain the better fitting of 4 with respect to 3. Moreover, one can notice
that despite of the fact that model 6 has more inputs than model 4, its prediction
ability is worse. In general one can conclude that the models in which nβ 6= 0 can
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Figure 4.7 – Comparison of two estimated model. One not including battery info
(model 6) and one including battery info (model 4). Both models have the same
number of parameters, the one containing battery information is clearly better
performing.

better predict the system behavior by taking into account the battery voltage drop
along the flight. This fact removes, e.g., the need for an adaptation term in the
flight controller. This result confirms that the use of the battery voltage information
improves ‘substantially’ the quality of the prediction. A direct comparison between
model 4 and 6 on a chunk of the validation set is shown in Fig. B.7.

Accelerometer-based Identification

An analysis was conducted to determine the validity of parameters estimation based
only on the onboard accelerometer measurements. Then the quality of the predic-
tion of these models has been compared to ground truth (i.e., the validation set
used in the MoCap case). The prediction error is presented in Fig. 4.8 for all con-
sidered models. The prediction error is the absolute value of the error between the
prediction and the ground truth, the MoCap.

The comparison of Fig. 4.6 and Fig. 4.8 shows that the parameter estimation
process can also be conducted without a MoCap at the cost of minimal variation
of the prediction error, allowing the proposed force prediction framework to be
deployed without a MoCap. The complete set of estimated parameters can be
found in [Staub–2015] for the interested reader.

Choice of the Best Model

From this analysis, model 4 results to be the best compromise between accuracy
and complexity. In fact, this model resulted able to describe the dynamics of the
system with the same level of prediction ability of models with more parameters.
Furthermore, model 4 is computationally lightweight and therefore can be easily im-
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Figure 4.8 – Boxplot of the prediction error for the proposed models (see Tab. 4.1),
the parameters are estimated with onboard acceleration and the prediction is com-
pared against the ground truth

plemented, e.g., on a microcontroller. Furthermore, this model keeps substantially
the same the prediction ability if the estimation of the parameters is conducted
using onboard accelerometer data.

4.4.6 Discussion

In this work a class of dynamic models is proposed to predict the force (total thrust)
generated by an underactuated multi-rotor system. The major contributions have
been to consider the motor dynamics, include battery terminal voltage information
in the prediction model and to identify the model parameters using only onboard
accelerometer measurements. An experimental investigation has been conducted
to find the best model among the simplest ones in this class using the accelera-
tion retrieved from MoCap measurements as ground-truth, to exploit (4.24). By
comparing the prediction error for a set of possible inputs, it has been shown that
the addition of the battery voltage information in the model provides a manifest
better force prediction. From the experimental results it was also clear that the
usage of only onboard acceleration measurement for identification does not result
in a significant degradation of the prediction when compared to the use of ground
truth for the same purpose.

Nevertheless the assumption is made that the only force acting on the system
during the record of the data for parameter estimation are the weight force and the
total thrust, thus an outdoor estimation of the parameters in windy conditions is
not possible. However, the proposed models can be used for an outdoor estimation
of external forces acting on the system, like e.g., wind.

In parallel to this work, a concurrent method was developed at LAAS–CNRS
for force estimation, relying on precise motor spinning velocity and static propeller
parameters identification. This method is presented hereafter.
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4.5 Force Estimation: Close Loop Spinning Velocity
Control

This section introduces a work conducted at LAAS–CNRS, by other authors, which
is detailed in [Franchi–2017b] and Appendix A. We highlight here the two main
steps of such a force estimation approach, for the sack of completeness, as the work
presented later in Chapter 5 is exploiting this approach.

4.5.1 ABAG Speed Controller

The biggest flaw of many low/middle-cost ESC, used in multi-rotor platforms for
APhI, is that setpoints or pseudo-setpoints are used to command propeller spinning
velocity in a open loop fashion. This relies on the use of look-up table and is
clearly not fast nor robust, moreover the pre-calibration effort is non negligible.
To address these drawbacks a method based on adaptive bias and adaptive gain,
called ABAG, was developed at LAAS–CNRS, see [Franchi–2017b]. The solution
developed is different from the classical ESC software presented earlier, as i) it does
not require any pre-calibration phase, ii) it is extremely robust and applicable to
a wide set of motor/propeller without the need of gain tunning, iii) it can achieve
performances that are independent of the battery terminal voltage, the mechanical
wearing, the temperature and so on, iv) it is amenable to extremely low complexity
implementation even when compared with ‘supposedly simple’ classical controllers.

4.5.2 Force Controller at Propeller Level

Once the propeller spinning velocity is efficiently regulated, a last step is necessary
for force control, identify the maps between spinning velocity and the wrench pro-
duced by the propeller (thrust force and drag moment). Relying on the simplified
models presented in Sec. 3.2.1, this translates in identifying two aerodynamic coef-
ficients; the aerodynamic thrust coefficient, cF , and the drag coefficient, cτ . This
is done by mounting the motor/propeller pair on a static 6D F/T-sensor; and is
presented here for completeness as it was investigated in [Bicego–2015]. The main
drawback of this method are the extensive pre-calibration phase necessary for each
kind of propeller and the fact that the wrench measurements are done in static
conditions, which are theoretically different than in-flight condition from an aero-
dynamics point of view. Nevertheless this method has been proven good enough,
and robust to these two implicit assumptions, to conduct successful precise force
control experiments, see [Tognon–2016b][Ryll–2017] and Chapter 5.

4.6 Force Estimation: Discussion

The two approaches presented in Sec. 4.4 and Sec. 4.5 aim at improving the force
control performance for APhI, with emphasis on complexity reduction, pre-calibration
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operations minimization and robustness to parameters change. In the end, the sec-
ond method has been chosen by LAAS–CNRS research group at large, as the best
performing for the criteria highlighted. In particular its low computational cost
and the versatility w.r.t. motor/propeller combination has been proven essential in
practice. This choice do not suppress totally the need for pre-calibration methods.
It has been shown that the speed control did not require a tuning of its parame-
ter to perform well among a variety of motor/propeller combination. However in
order to device precise force controller the mapping (linear or not) between the pro-
peller spinning velocity and the wrench produced is still necessary. This is done by
measurements campaign conducted on a static, i.e., not flying, {motor+propeller}
mounted on a 6D F/T-sensor. The exploitation of the data retrieved, leads to iden-
tification of relationship between the propeller spinning velocity and the wrench
produced. This knowledge allows fine force control as demonstrated in several
work, e.g., [Tognon–2016b] or [Ryll–2017], and part of this thesis.

An open challenge for the speed control is the efficient tracking of low-speed,
which is particularly relevant for speed change of sign, i.e., inversion of the sense
of rotation. The speed inversion is of particular concern for omni-directional AR,
as it allows an increase of the actuation set with both positive and negative rota-
tional speed. With the hardware used in [Franchi–2017b] the speed measurement
information degrades with low rotation speed, since no encoder is used. So the
inversion of sense of rotation needs to be done in open-loop, i.e., with less accu-
racy. One solution would be to replace the zero-crossing speed information by an
encoder, at cost of increased weight, mechanical complexity and onboard electronics
(mostly cabling). Another original approach is to propose the use of variable pitch
propellers, this solution as equivalent drawbacks but come with the possibility for
finer force exertion control as the wrench generated by propeller can be modified
by two control parameters; the spinning velocity and the pitch angle. Another
remaining challenge is the proper calibration of the aerodynamic coefficients, the
procedure described uses expensive F/T-sensor. Work on the identification/update
of the control matrix is an interesting direction, as, at the same time, it estimates
the aerodynamics coefficients and alleviate parametric uncertainties in the geomet-
rical model used to build the control matrix, e.g., displacement of the CoM due to
additional mass or mounting imperfections. However this procedure could only be
conducted in free-flight, to ensure the absence of external wrench applied on the
AR.

4.7 Force Based Control

In the case of AR composed of multi-directional thrust platform with arm mounted
on a 1D passive revolute joint, presented in Sec. 4.2.2, it is important to have some
compliance in order not to break the mechanical system hitting its the physical
constrains. In order to do so, a classical scheme based on external wrench ob-
server, relying on the results provided in Sec. 4.5, and an admittance filter has
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Figure 4.9 – Block-diagram of the full control architecture implemented for the Open
Tilted Hexarotor (OTHex), an experimental plaftorm of the constrained orientation
case. Let ξ = (pB, ṗB, p̈B,RB,ωB, ω̇B) be a compact notation for the full state of
the system, superscripts d and r denoting the desired and the reference trajectory,
respectively. The state estimator is fed with pose measurements, e.g., by a MoCap,
which can be replaced by a visual-inertial estimator when a MoCap is not available
(e.g., in an outdoor context).

been implemented to introduce software compliance, see Fig. 4.9. This guarantees
a stable and safe behavior of the system in presence of disturbances and parameters
uncertainties.

4.7.1 Wrench Observer

The wrench observer is based on a dynamics model of the wrench generated by the
propellers, in particular it contains an identified model of the aerodynamic effects
at play for propellers in quasi-static flight and of the geometrical model of the
AR. Via the expression of the AR dynamics in the Lagrangian form, a generalized
momentum observer is designed, taking advantage of the inertia matrix particular
structure in the Lagrangian formalism. This results in the expression of ŵR as first
order low-pass dynamical system of the real wrench, with gain denoted KI , where
the tuning of this parameter regulates the convergence velocity of the estimator
and the reduction of high-frequency noise. For a detailed explanation the reader is
addressed to [Ryll–2017].

4.7.2 Admittance Filter

In order to perform safe physical interactions with the environment, a compliant
behavior of the aerial manipulator should be ensured. Denote with (pd

R,R
d
R,v

d
R, v̇

d
R)

the desired trajectory of the interaction point, i.e., the center of the revolute joint
OR. This reference is given by an off-line planner and represents the input of
the admittance filter. The admittance filter computes a new reference trajectory
(pr

R,R
r
R,v

r
R, v̇

r
R) mimicking the following dynamics

MR∆v̇R + DR∆vR + KReR = ŵR + wd
R, (4.27)
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which is the equation of a 6-DoF mass-spring-damper system described by inertia
MR, damping DR and stiffness KR. These three positive-definite matrices are
chosen to enforce an over-damped behavior of the system, thus granting the stability
of the AR when in contact with the environment. The other quantities of (4.27)
are the acceleration and velocity error vector ∆v̇ and ∆vand the pose error eR.
The introduced admittance filter generates a 6D reference trajectory for OR, both
position and orientation, which will be turned into a 6D trajectory for OB using
rigid body transformations and their derivatives.
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Abstract

This chapter highlights the results obtained on MAGMaS. To validate the concept
of MAGMaS extensive simulations and proof of concepts experiments are presented
in Sec. 5.1. Sec. 5.2 describes the follow up work on MAGMaS with the design of
a dedicated AR and the addition of a tele-presence framework, Sec. 5.3. These
two additions experimental validation and performances are presented in Sec. 5.4.
The final section, Sec. 5.5, proposes a discussion on the possible improvements and
research directions to increase the maturity level of MAGMaS.

5.1 Underactuated Aerial Robot

The work described in this Section has been presented at

2017 IEEE Int. Conf. on Robotics and Automation
[Staub–2017]

Based on the models and control algorithms developed for MAGMaS in the
previous sections, a first MAGMaS composed of a ground manipulator and a un-
deractuated AR is investigated. Both platforms are common in robotics and can be
found off-the-shelves, the only missing part for the realization of such a MAGMaS
consists in a 3D passive spherical joint to effectively decouple the rotation dynamics
of the AR from the one of the manipulated object. This section present the simu-
lation of such a MAGMaS and a set of experiments validating both the concept of
MAGMaS and the proposed 3D passive spherical joint design.
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Figure 5.1 – Simulation environment in SimMechanics Toolbox, the ground manip-
ulator is mounted on a mobile platform (with its EE workspace superimposed), the
aerial manipualtor is a quadrotor underactuated multi-rotor and they cooperatively
manipulate a beam.
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Figure 5.2 – Simulation case study, a ground manipulator and a AR cooperatively
manipulating an object. Associated desired and actual position of the EE with
respect to the arm base are plotted.

5.1.1 Simulation Results

Extensive and realistic numerical simulations were conducted for a 6 DoFs ground
manipulator (anthropomorphic arm and a spherical wrist) cooperating with one
quadrotor UAV, see Fig. 5.1. The goal is to both show and validate the feasibility
and effectiveness of MAGMaS and the control scheme presented in Chapter 4. The
simulation has been performed in Matlab/Simulink environment with the SimMe-
chanics modeling toolbox. With this method the plant dynamical model is derived
by the toolbox based on the specified geometry and mass repartition. This approach
guaranties that the model used in the controller and the one used for the dynam-
ics simulation are derived independently. For the control allocation, see Sec. 4.1.2,
the optimization problem is solved via Sequential Quadratic Programming (SQP)
method. The simulation sample time is 1 ms and the control loop one is 10 ms.
The simulated ground manipulator is a Universal Robot UR5, with links length
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Figure 5.3 – Ground manipulator side. On top, both desired and actual joint angles.
The desired angles are from inverse kinematics of the task trajectory. On bottom,
associated manipulator input torques.

of 1.0 m and 0.7 m, total arm’s mass of 18.4 kg, maximum rated payload is 5 kg
and maximum joint torques are [150 150 150 28 28 28] N m, from base to EE. For
the first simulation studies we decided to focus our interest on UR5 manipulator,
mainly because its strength is such that the interest of cooperative manipulation
can be exhibited with smaller/lighter object than for more powerful manipulators.
Also the dynamics parameters of the UR5 have been publicly available in the liter-
ature, which is not the case for all industrial manipulators. The model developed
in Sec. 3.3 can be derived the same way for any chosen manipulator. The simulated
AR is a quadrotor of 0.50 m circumference actuated by four motor-propeller sets,
each one can generate up to 10 N, and the length of the arm holding the gripper
is 40 cm. The spherical joints limit is considered to be described by a cone of π/4
half cone angle. All the motors are modeled as a second order linear system with a
10 ms rise time. The cooperative task studied corresponds to a trajectory tracking
task with the load being a 5 kg bar of dimension 0.05 m × 0.2 m × 1 m. The loading
of the bar on the back of a mobile platform on which the ground manipulator is
mounted is explored, see Fig. 5.1. The UR5 grasps the bar from one end and the
quadrotor from the other end. The task consists to follow an appropriate trajectory
(generated through way-points and cubic-spline-based trajectory generator) to put
the bar on the back of the mobile base. Such a scenario could be of interest in robotic
search and rescue missions. The control system is implemented considering a highly
uncertain model, some terms of the controller inverse dynamic are neglected, the
Inertial matrices are assumed diagonal and the Coriolis/centripetal terms are omit-
ted. Furthermore 10% uncertainty is considered for the contact points, in order to
highlight the robustness of the control approach, as the model used in the controller
is highly uncertain.

The results of the trajectory tracking task are depicted in Fig. 5.2, with the
ground manipulator EE position measured with respect to its base. As it is evident
from this figure the given trajectory is tracked sufficiently well, even though the
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Figure 5.4 – AR side. Left, AR orientation and associated control torques, ur.
Right, output of AR force allocation ht and the AR thrust magnitude generated
along AR’s z-axis.

dynamics of the system is partially unknown, error in position are comprised in
±7 cm range. Note that the ground manipulator alone is not able to perform this
task, because of the torque constraints. Indeed the object weight is at the limit of
the ground manipulator payload and the weight-generated torque at its EE does not
satisfy the joints torque limits. For this reason, the ground manipulator alone is not
able to perform the task, without grasping the bar far from its CoM. The MAGMaS
core idea is to mitigate this requirement thanks to the use of an AR acting as a
flying companion to reduce weight-generated torque on the ground manipulator EE.

The ground manipulator desired and actual joint angles are plotted in Fig. 5.3,
with the desired joint angles obtained through inverse kinematics for the task tra-
jectory. The weakness of the wrist joints generates larger errors in q(4, 5, 6), as the
desired position can not be attained without violating the joint torque limits even
with the help of the AR. However, thanks to the AR support the tracking task is
performed sufficiently well. The control torques of the ground manipulator, shown
in Fig. 5.3, remain within their actuation limits ([176 176 100 100 100 38 38] N m,
respectively).

Fig. 5.4 shows the quadrotor states and control inputs in the simulation. Fig. 5.4
top left shows the orientation of the quadrotor which remains far away from the
spherical joint limit and Fig. 5.4 bottom left shows the associated control torques.
Fig. 5.4 top right illustrates the output of the optimal force allocation algorithm for
the quadrotor, that is a desired force vector ht. This force vector is then generated
by ur and ut which are the moments and thrust of the AR, shown in Fig. 5.4 bottom
right and left, respectively, and again they all satisfy the system constraints. Note
that in order to overcome the ground manipulator limits, from approximately t =5 s
to t =7 s, the AR is pushed to its maximum total thrust by the control allocation
algorithm.
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Figure 5.5 – Experimental setup: a KUKA LWR4 arm, a classical underactuated
quadrotor and an in-house designed passive rotational joint. The two extreme
configurations of the up-down trajectory with the bar hold horizontally are depicted.

5.1.2 Proof of Concept Experiments

The preliminary experimental work associated with MAGMaS aims at demonstrat-
ing the feasibility of MAGMaS and validating the proposed passive rotational joint
design. The experimental setup relies on a KUKA LWR4 arm as ground manip-
ulator and a single quadrotor as AR. Note that the ground manipulator is chosen
different from the simulation, for practical reason, including the availability of an
industrial manipulator for our experiments and the possibility for manipulation of
longer object. Hence comparison between the simulation and preliminary exper-
iments can not be directly conducted, but the experiment validate the feasibility
and gains of using MAGMaS. The quadrotor is in-house-developed with a 1.2 kg
payload, fitted with a custom passive rotational joint. This passive rotational joint
ensures that the center of mass of the {AR+joint} system and the rotation center of
the joint are coinciding, modulo manufacturing imperfections. This is of paramount
importance as the AR can not sustain high torque disturbances. From the design,
the rotational joint has the following angular constraints, two rotations are limited
to ±40◦ and ±80◦ respectively and the last one is free, note that contrary to the
simulation part the base of the joint cone is not a circle, but an ellipse, as the two
rotations constraints are not symmetric. The object to be manipulated is a wooden
bar of length 2.5 m and mass 0.61 kg. Also the grasping of the object is omitted,
all sub-systems are rigidly attached together, this was done to simplify the system
complexity in a first step. The full system is depicted in Fig. 5.5 and Fig. 5.8, for a
close-up on the AR, additionally actual operations are featured in [video 3–2017].
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Figure 5.6 – The arm EE follows a vertical trajectory, as in Fig. 5.5, without the
help of an AR. The tip position vibrates a lot due to the flexibility of the bar and
is not able to track the EE z-trajectrory.

MAGMaS Approach Validation

As a first validation of the MAGMaS concept, the handling of a bar is considered
with and without the help of an ARwas investigated, see [video 3–2017]. The ground
manipulator’s EE is moved up and down along the z-axis, see Fig. 5.5. Note that this
comparison is possible because the bar characteristics are not violating the LWR4
payload/torques limits, this would not have been the case with UR5 manipulator,
used for the simulation. For the case where the ground manipulator acts alone,
see Fig. 5.6, it is clear that the bar tip is vibrating a lot while globally following the
same trajectory as the manipulator’s EE. The same experiment is performed with
a AR attached at the tip of the bar, the relevant quantities are plotted in Fig. 5.6–
5.7. Clearly the addition of the AR allows the bar tip to better follow the arm
trajectory, the residual difference comes from the simple way the bar flexibility is
handled in this preliminary experiment. This observation triggered further studies
on the flexibility in a manipulated beam which are presented in Chapter 7. The
careful modeling of the flexibility and its analysis show that the flexibility mode
are controllable for the configuration used in this experiment, validating empirical
observations.

Passive Joint Validation

A second experiment aims at validating the proposed design of the passive rotational
joint, the AR is commanded to remain hovering, the bar tip is then moved in order
to exhibit the rational decoupling between the bar tip and the QR, see Fig. 5.8
and Fig. 5.9 for orientation’s monitoring of both tip of the bar and AR. In this
experiment the orientation of the bar varies in a large range whereas the pitch of the
AR remains in ±3.5◦ range, which corresponds to its nominal range while hovering,
hence validating the efficiency of the presented passive rotational joint.
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Figure 5.7 – The arm EE follows a vertical trajectory, as in Fig. 5.5, in cooperation
with a AR. The tip of the bar follows the z-trajectory of the EE thanks to the AR
stabilizing action.

(a) (b)

Figure 5.8 – Second experiment (a) with the bar tilted, where the AR is hovering
while the ground manipulator tilts the bar in order to exhibit the decoupling induced
by the passive rotational joint. A closeup on the passive joint in action is pictured
in (b).
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Figure 5.9 – orientation of the AR when subject to bar orientation changes, the
passive rotational joint efficiently decouples the rotation of the AR and its EE
attached to the tip of the bar.
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Figure 5.10 – State of the art industrial manipulator and in-house developped AR
ready to be employed as a MAGMaS at LAAS–CNRS.

5.2 Multi-directional Thrust Aerial Vehicle

The work described in this Section has been accepted to the

Robotic and Automation Magazine
[Staub–]

The work presented in this section corresponds to the first live demonstration of
a MAGMaS for a cooperative manipulation task between a ground industrial manip-
ulator and an AR. In particular the presented experimental results were conducted
using a KUKA “Leichtbauroboter”, German for lightweight robot, intelligent indus-
trial work assistant (LBR-iiwa) and an in-house developed multi-directional thrust
AR called OTHex, see Fig. 5.10. The LBR-iiwa is a state of the art industrial manip-
ulator, which required extra work to integrate in our research software framework.
Moreover the MAGMaS concept is augmented with a tele-presence framework. The
successful combination of a MAGMaS and a tele-presence framework, took place
in an internal project called Human in the Loop MAGMaS (Tele-MAGMaS). This
project was demonstrated during the Hanover Fair 2017, see [video 5–2017].

5.2.1 Sytem Design, Architecture and Implementation

The MAGMaS presented in this section is composed of 3 main robotic components,
i) the LBR-iiwa, i) the Open Tilted Hexarotor (OTHex) aerial manipulator and
i) the Omega.6 haptic interface, a necessary component of the tele-presence frame-
work. Additionally a simulator and visualizer have been developed to ease the
integration of the system and provide visual feedback to the operator.
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Figure 5.11 – Description of the software architecture used in the Tele-MAGMaS
project, first implementation and demonstration of a Flying Companion concept.
In green Matlab-Simulink links, in blue C S-function links, in orange Genom3 links
and in black low-level links.

The experimental framework relies on the Genom31 abstraction layer, which
allows to define middleware independent software components for robotics, the
middleware can then be chosen at compilation time. Genom3 components can
be controlled via tcl-shell, Matlab command line, Matlab-Simulink or middleware
specific means, which allows high flexibility in the development and usage of the
components.

The software architecture is shown in Fig. B.10. The high-level control of
the full system is realized in Matlab-Simulink, linked to the hardware via Genom3
components or Matlab S-function drivers. This approach was chosen because the

1https://git.openrobots.org/projects/genom3/wiki
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development and test of controller in Matlab-Simulink can be way faster than in
pure C/C++, on the over hand Matlab-Simulink is far from real-time, hence the
hardware has to be commanded via Genom3 components.

In the proposed architecture the Matlab-Simulink is running at 500 Hz, the
task/path planner, the human input interpreter and the OTHex controller are run-
ning in Matlab-Simulink. The Matlab-Simulink process is linked with the haptic
device via a custom S-function and to the simulator/visualizer via other S-functions.
The Matlab-Simulink is also interfaced with joystik, Optitrack MoCap system, the
OTHex hardware and the LBR-iiwa via Genom3 components. These Genom3 com-
ponents are essentially drivers for the hardware as most of the algorithmic part is
implemented in Matlab-Simulink. Except for the LBR-iiwa components. Indeed in
order to satisfy the hard real-time constrains of the communication with the LBR-
iiwa, inverse kinematics and other related utilities are performed in the Genom3
component.

Moreover this component based architecture allows easy repartition of the load
between process and machines. In the presented experiments, ROS is chosen as
middleware, which provides sufficient ‘real-timeness’ for the intended purpose. The
component based design also allows seamless change of the operator inputs, percep-
tion components or of the MAGMaS hardware, as each of these are separated from
the main algorithmic part and provide standard interfaces which are not hardware
specific.

5.2.2 Aerial Manipulator – Open Tilted Hexarotor

The work described in this Section has been presented to

2018 IEEE Int. Conf. on Robotics and Automation
[Staub–2018]

The Open Tilted Hexarotor (OTHex) is an aerial manipulator developed at
LAAS–CNRS and tailored to perform physical interaction tasks with the environ-
ment. It results from a custom design aimed at maximizing the platform APhI
capabilities.

The OTHex is a multi-directional thrust platform as introduced in Sec. 3.2.1,
i.e., propellers are not collinear, see Fig. 5.12 with the tilting adapters (1). This
design results in an important feature of the platform, the set of admissible con-
trol forces is not anymore a half-line as in the collinear case but is a polytope
shaped like a double pyramid, the two halves being connected by their bases. This
means that the robot can exert lateral forces without the need for re-orienting
itself, as opposed to under-actuated multi-rotors, thus being able to track a de-
coupled reference trajectory in position and orientation, within the physical limits
of the actuators. Aerial robots like the OTHex are starting to gain notoriety in
the literature [Rajappa–2015][Ryll–2016]. These robots turn out to be particularly
suitable for physical interaction tasks, since they can exert a decoupled set of forces
and torques on another body, whatever the position of the contact point.
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Figure 5.12 – Picture of the OTHex hovering. The main components of the OTHex
are: (1) the tilting angles of the propeller allowing the multi-directionnal thrust
property, (2) the electronics case containing flight controller and ESC, (3) the pas-
sive joint efficently decoupling the rotational dynamics of the load and (4) the
grippering mechanism mounted on damper for compliance and with claw geometry
facilitating the grasp.

The second particularity of the presented flying platform, like the adjective
open suggests, consists of an aperture of 85◦ between two poles of the robot skele-
ton, see Fig. 5.13 . This configuration has been chosen over the regular hexagon
positioning of the actuation units to facilitate the manipulation of a long object,
e.g., a beam. In this way the object can pass through the aperture, allowing a wider
variety of beam manipulation tasks.

The third and last feature of the OTHex is a mechanical system composed
of a passive 1-DoF passive revolute joint with two grippers, which endows the
OTHex with grasping and manipulation capabilities required to perform physical
interaction. A passive joint has been preferred over an actuated ones, to save the
complexity of the system and because in the studied use case the OTHex acts
as a flying companion following the ground manipulator motion. In particular,
passive joint choice is motivated by the fact that most of the weight of the load is
supported by the ground robot, while the role of the flying companion is to actively
help the motion in order to reduce the needed torque at the ground robot’s EE.
Therefore, in this case there is no need to actuate this DoF. The design of the system
emphasizes payload and robustness constraint, using 3D-printed part and carbon
fiber materials. Moreover two grippers are used in parallel to limit rotation around
the grasping point. Both grippers are controlled with an arduino nano board via a
motor driver interfaced on the OTHex main power supply by a DC/DC converter.
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Figure 5.13 – Comparison of the spatial location of the propellers for a standard
hexarotor configuration and the OTHex. The OTHex configuration is such that an
aperture of 85◦ is left to facilitate the manipulation of a long object (green area).

The control board is controlled over serial via Matlab-Simulink.

The OTHex control architecture is articulated over three main components: a
low-level controller, a wrench estimator and an admittance filter, as detailed in
Chapter 4, and briefly recalled hereafter. A sketch of their inter-connection can be
found in Fig. 4.9. The low-level control takes as input the OTHex state and a full 6D
pose reference trajectory (the attitude is expressed by a rotation matrix) and gives
as output the force that each propeller should produce to track the assigned position
and orientation. The controller, presented in [Franchi–2017a], is a geometric control
in SE(3) with a prioritized tracking of position over orientation. Which means
that if the desired orientation is such that the reference thrust lies outside the
pseudo-cone of admissible forces, then the closest orientation that lets the pseudo-
cone include the assigned force is computed by solving an optimization problem
and tracked. In other words, the controller ensures the tracking of the position
and the closest rotation matrix satisfying the actuator constraints. To perform
physical interaction tasks, the aerial robot needs some force sensory capabilities.

Parameter Value Units

weight (without battery) 2.48 [kg]

extra payload 2.9 [kg]

actuation unit 1st tilt angles 35 [◦]

actuation unit 2nd tilt angles -10 [◦]

autonomy (on battery) 15 [min]

max. lateral force (hovering) 8 [N]

Table 5.1 – Key physical parameters related to OTHex.
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To this purpose a model-based wrench estimator has been preferred to an on-board
force/torque sensor, in order to preserve a bigger net payload for the UAV and
to not restrain the force measurement only to the sensor location. The estimated
force and torque is then the input of the admittance filter, which is re-computing
a reference 6D pose from the desired one, acting like a mass-spring-damper system
with rest point on the trajectory, under the influence external force. An appropriate
tuning of the gains of this sub-system is required to give the robot the proper
stiffness/compliance depending on the task to be performed. For the interested
reader, the main characteristics of the OTHex are summarized in Table 5.1 and
the experimental validation of the design and control architecture for bar lifting is
performed in [video 7–2018].

5.3 Tele-Presence Framework

In the real world, MAGMaS might work in different environments, depending on
the application, ranging from well-structured fully-known environments, e.g., a fac-
tory or a warehouse, to completely unstructured and unknown environments, such
as a disaster scene in a robotic search and rescue mission. Thus, depending on the
environment and complexity of the task, the high level control of the system might
change to match the conditions. While for a well-structured and fully known envi-
ronment a fully autonomous MAGMaS might work sufficiently well, in unknown or
partially known environment and for complex tasks the presence of one or more hu-
man operators could improve the robot team (working in the remote environment)
in various aspects. Human operators can improve the precision of the task execu-
tion and enhance the task performance by reducing the execution time. Moreover
the human intelligence could be of utmost importance in decision making, planning
and run-time re-planning of the task in case of unpredicted situations; and thus
increasing the reliability and safety level of the proposed system. The combination
of the MAGMaS system and the human operator(s) tele-operating the MAGMaS
in the remote environment is called Tele-MAGMaS.

The Tele-MAGMaS has three distinctive degrees of autonomy: i) fully au-

tonomous, ii) tele-operated and iii) shared-control. The degree of autonomy of
multi-robots systems should be tuned by considering the task at hand. For simple,
predictable, tasks full autonomy system is often appropriate as human supervision
is not required. But, in general, the use of semi-autonomous system, supervised or
partially controlled by one or more human operators, is the only viable solution to
deal with the complexity and unpredictability of real-world scenarios, see [Franchi–
2012]. In the following the different approaches are reviewed, to underline how
the human operator can assist or intervene in each approach by mean of a haptic
device.
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Figure 5.14 – Omega.6, the haptic device used in the presented testbed.

Haptic Interface

The human operator can assist the robot team using different interfaces, such as
touch displays, game-pads and haptic devices. A haptic device (or haptic interface)
is a robot with serial or parallel structure that works in the master side of a tele-
operation system. The human operator can move the master robot by applying force
to its handle and the master robot can also apply forces to the human operator,
called “haptic cues” or “haptic feedback”. Haptic feedback informs the human
operator about the situation of the remote system.

In the LAAS–CNRS testbed, an Omega.6 was used as haptic device (manufac-
tured by force dimension2), as shown in Fig. 5.14. The Omega.6 device has six
Degrees of Freedom (DoF), the three translations are actuated by independently
controlled DC motors and the three rotations are passive. The device communicates
through USB 2.0 with the main PC and can be controlled at up to 4 kHz (the faster
the control loop, the better the force rendering).

Fully autonomous MAGMaS

The fully autonomous operation mode of the MAGMaS is the simplest control
modality. In this case the robots work in a well-structured fully known environment.

2http://www.forcedimension.com/
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Figure 5.15 – Task planner inputs and outputs for a possible peg-in-hole task per-
formed by a MAGMaS.

The described task-planner specifies the various stages of the task operation and
associated trajectories, see Fig. 5.15. The outputs of the task planner are as follow,

• commands for robots’ motion, for all robots during the whole execution time
to be sent to their low-level controller

• commands for the robots’ grippers
• state of the system: as a Finite State Machine (FSM), see Fig. 5.16, that

specifies for the robots’ local controller which command must be executed in
each moment and how the robot trajectories should be computed.

On the other hand the task planner inputs are:
• the robots’ motion feedback
• pose feedback of the environment
• desired contact points on the object
• the state of the grippers.

These inputs allow the task planer to react with simple policies on the environment
and the task evolution.

The types of commands for the manipulators motion, that the they indepen-
dently or cooperatively perform, depend on the local controller of the manipulators.
These motion commands could be desired paths, trajectories, or forces/torques for
the AR, grounded manipulator EE (or joints) and for the manipulated object. For
example, if the ground manipulator local controller is accepting the desired joint
angle values (and possibly their derivatives), then the output of the task planner
must have the same type and the EE desired trajectory must be transformed into
joint angle trajectories using the robot Inverse-Kinematics inside the trajectory
generator.

The finite state machine, Fig. 5.16, defines the policy used by the task planner
to generate the robot motion trajectories and triggers the grippers’ actions, based
on the robots and environment informations and the operator(s).

The autonomous cooperative manipulation phase can be implemented in cen-
tralized or decentralized manners. In centralized cooperative manipulation manner
both robots are commanded based on the manipulated object position. A detailed
description of this approach can be found in [Staub–2017]. While in decentralized
approaches, such as leader-follower approach, during the cooperative manipulation,
the ground manipulator manipulates the object and the flying manipulator is as-
sisting the ground manipulator following its lead and producing additional upward
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Figure 5.16 – the simple Finite State Machine (FSM) implemented in the proposed
task planner. The fives states have their own trajectory generation policy and the
transitions are based on the co-manipulation task status.

force on the bar. The autonomous cooperative manipulation of a bar is depicted
in Fig. B.12, this was the strategy chosen for the bar lifting in the KUKA 2017
Innovation Award.

Tele-operated MAGMaS

In many real scenarios, such as search and rescue, MAGMaS must work in a partially
or even completely unknown environment. The bilateral tele-operation approach is
suggested to cope with unknown environment and uncertainties and also to facilitate
the complex tasks. In bilateral tele-operation approach skilled human operator(s)
drive the robots in a precise and safe manner. Moreover, the human operator(s)
are provided with force feedback in order to improve their tele-presence [Sheridan–
1992] and to increase their situational awareness from the remote side. In fact,
in the bilateral tele-operation approach, the human intelligence performs the task
planning with the help of visual and haptic feedback. If direct visual feedback is not
possible, First Person View (FPV) cameras can be mounted on the robots. In the
non-cooperative parts human operator(s) drive the robots, while in the cooperative
part the operator(s) command the bar and the robots cooperatively manipulate the
bar to perform the human command, e.g., see [Sieber–2015]. Gripper and state
change are manually triggered by the operator. In this case the human intelligence
decides how to move the robot, what are the suitable contact points, how to move
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Figure 5.17 – A snapshot of the cooperative manipulation state of Tele-MAGMaS
using bilateral tele-operation approach performed in KUKA 2017 Innovation Award
at the Hanover Fair, with 4 operators in the background.

the bar and from which path the robot should come back to their home position.
Bilateral tele-operation is a practically reliable approach to perform cooperative
manipulation with MAGMaS in unknown and unstructured environments.

The most challenging state in this approach is the cooperative manipulation in
which the robots must cooperatively manipulate the bar. In the proposed bilateral
tele-operation control scheme, the desired object pose is generated online by the
human operator through an haptic device.

The desired object pose and the current object state are sent to the object pose
controller which computes low-level inputs for the robot controller. Either ideal
wrench to be applied by each robot as in [Staub–2017], or robot pose necessary to
reach object pose, which is better suited for the manipulators low-level interface.

On the backward channel of the bilateral tele-operation scheme, the operator
receives a force feedback that depends on the inertia of the whole system and on a
repulsive viscoelastic virtual force generated with the purpose of letting the operator
feel the obstacles in the environment.

The bilateral tele-operation approach was chosen for the KUKA 2017 Innova-
tion Award, hence the name Tele-MAGMaS. However as can be seen in Fig. B.12,
the setup relied on direct (visual) connection between the robots and the opera-
tor(s), thus the connection quality was not taken into account. For further deploy-
ments of MAGMaS over longer distances, scheme of haptic data reduction shall be
studied, e.g., based on operator deadband and psychophysical properties, see e.g.,
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[Vittorias–2010][Chaudhari–2011][Brandi–2011].

Shared-Control MAGMaS

The third control modality, shared control, deals with the case of the MAGMaS
working in a semi-structured environment, i.e., partially mapped environment or
fully mapped but with possibility to have unpredicted events happening, e.g., con-
struction site or industrial environment where humans, robots and other machines
work together. The shared control approach is in fact the combination of the pre-
vious two approaches. An automatic task planner plans the motion commands and
changes of states and the human operator(s) can modify the planned trajectories.
human operator(s) can locally change the trajectories or change the time law of
the trajectories to react to the environment changes. For instance, the grasping
point can be modified to accommodate environment evolution, the trajectory plan-
ner reflecting this change in the autonomous control part. Also the time law can
be virtually increased/decreased to speed up/down the task execution, while the
manipulators stay on their respective planned paths.

In the shared control approach, the human operator(s) is also provided with
haptic feedback that allow to increase the situational awareness and tele-presence
of the human operator(s). For example, consider that the robots are cooperatively
transporting the object and the human operator feels a force feedback that shows
the error of position and velocity of the object is high (for example due to erroneous
weight information of the object in the planner, or external disturbances such as
wind), here the human operator can slow down the planned trajectory. Another
example could be the case when there is an obstacle on the planned path for a robot,
in this case the human operator could modify the path locally to avoid collision.
Changing the states could be done both automatically when the condition for chang-
ing the state is met, or could be done manually by the human operator(s), especially
if the grippers are not equipped with sensors to detect their correct grasp/release
actions.

5.4 Experimental Results

A set of experiments was conducted with a successful co-manipulation of a 2.5 m
long bar. The desired task consist in cooperatively lifting a bar as illustrated in
Fig. B.11, at first the OTHex is manually flown to grasp the bar from one of its ends,
while the ground robot grasps the other end autonomously. Once both manipulators
are attached to the bar, the co-manipulation is fully autonomous, they lift the bar
from its supports, move it twice along a line in the horizontal plan (blue part in the
data plots) and then synchronously lift the bar up to 30◦ (green part in the data
plots). Then the two manipulators bring the bar back to its starting position. This
experiment highlights both the vibration stabilization induced by the OTHex and
the practical use of MAGMaS concept.
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Figure 5.18 – Time-lapse of a MAGMaS cooperative manipulation task. Both robots
are at their initial position (1), approach of the bar (2), grasping of the bar (3),
cooperative lifting of the bar (4), cooperative lateral motion of the bar (5), coop-
erative lifting of the bar up to 30◦ (6-7-8) and release of the bar (9). See [video
6–2017] for the corresponding video of the experiment.

During this experiments the external wrench at the ground manipulator EE is
recorded, see Fig. 5.19 for their evolution during the task. The joint torques for
the ground manipulator, see Fig. 5.20, all stay within their limits during the task.
The OTHex position and orientation is plotted in Fig. 5.21, notice that before (b)
and after (d) the OTHex is flown manually, while in between the system is fully
autonomous. Fig. 5.22 depicts the evolution of the passive joint angle during the
task, the evolution of the angle is equivalent to the bar orientation and allows the
OTHex to remain flat, i.e., with almost constant pitch and roll while lifting the bar.

Key quantities of the system are plotted on Fig. 5.19- 5.22. The experiment
sequence is depicted in Fig. B.11 and [video 6–2017], this highlights both the
vibration stabilization induced by the OTHex and the feasibility of MAGMaS.

KUKA Innovation Award

The Tele-MAGMaS concept has been successfully demonstrated at the Hanover
Fair 2017, as finalist of the KUKA 2017 Innovation Award, Advanced Challenge
in Mechatronics. This occasion displayed the performing Tele-MAGMaS in front
of industrials from all around the world. It was the occasion to demonstrate the
robustness and reliability of the system, by performing demonstrations outside of a
laboratory environment and as much as 10 times per day for over a week. During
this demonstration the system was both tele-operated and autonomous to illustrate
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Figure 5.19 – external wrench as sensed from the joint sensor and projected in
Cartesian space. The three instants highlighted are LBR-iiwa grasping (1), cooper-
ative lifting (2) and LBR-iiwa releasing (3). The blue part highlights the horizontal
motion and the green part the bar tilting.
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Figure 5.20 – joint torques for each articulation of the LBR-iiwa. The three in-
stants highlighted are LBR-iiwa grasping (1), cooperative lifting (2) and LBR-iiwa
releasing (3). The blue part highlights the horizontal motion and the green part
the bar tilting.

both possibilities of the control framework note that due to booth constraint the bar
manipulated was significantly shorter w.r.t. the experiments conducted at LAAS–
CNRS. Videos highlighting the key-features of the demonstration can be found
online in [video 4–2017] and [video 5–2017].

5.5 Discussion

The presented work covers both simulations and preliminary experiments conducted
to validate the MAGMaS concept and then the world first demonstration of a MAG-
MaS with tele-operation capabilities. The preliminary results validate the individual
bricks necessary to pave the way for MAGMaS deployment, from the theory to the
mechanical design. The demonstration of the Tele-MAGMaS led to a further inte-
gration of the MAGMaS concept, in particular with a tele-presence framework and
with the design of an AR tailored for cooperative bar manipulation. This was possi-
ble thanks to the participation to the KUKA 2017 Innovation Award which allowed
to gather a lot of data and several feedbacks on the MAGMaS concept. Nevertheless
MAGMaS are still in their infancy, among the future works four directions should
be investigated in priorities: i) control and planning methods, ii) human-MAGMaS
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Figure 5.21 – position and orientation of the OTHex aerial manipulator. The four
instants highlighted are take-off (a), OTHex grasping (b), cooperative lifting (c)
and releasing (d). The blue part highlights the horizontal motion and the green
part the bar tilting.
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Figure 5.22 – evolution of the OTHex passive joint angle, during a typical task with
free-flight, horizontal motion and object tilting. The four instants highlighted are
take-off (a), OTHex grasping (b), cooperative lifting (c) and releasing (d). The blue
part highlights the horizontal motion and the green part the bar tilting.

cooperation, iii) mechanical design solutions and iv) perception methods.

Control and Planning

The proposed high-level control schemes are embryonic in their design as the main
focus was to first validate the MAGMaS concept and design. Now that a MAGMaS
has been successfully demonstrated more emphasis can be put to the higher level
control and to supervision development. In general the trajectory generation and
planning techniques employed in the described work are not very elaborate and rely
on educated guess and trial-and-error. A more autonomous and resilient framework
should be implemented and could be the material of another PhD thesis. Hereafter
a few possible directions to explore are detailed.

In order to account for the actuation heterogeneity in MAGMaS, further study
on the load sharing should be conducted. In particular, frameworks, as the one
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presented in [Zambelli–2015], are of interest. Another challenge in the load sharing
comes from the high redundancies present in MAGMaS, techniques to limit internal
wrenches should be investigated, e.g., based on kinematic constraints [Erhart–2015].

At the moment the system is rather agnostic to its environment, in particu-
lar no checks for collision with the environment are conducted. Trajectories and
environment layout are chosen heuristically to prevent collision from occurring.
An advisable development for MAGMaS would be to devise a planning framework
taking into account collision detection and avoidance with static or dynamic envi-
ronment, the framework should be generic enough to cover both the cooperative
manipulation part of the task and the separated motion part.

An intersecting direction of research would be to go toward sharing space be-
tween MAGMaS and human, by improving the environment awareness of the system
and the system autonomy in term of reaction to the environment. Especially colli-
sion avoidance while pursuing the cooperative manipulation should be investigates
in a framework allowing safe operation without system constraints violations.

Human-MAGMaS Cooperation

Human cooperation is a particularly thriving potential use of MAGMaS, sharing
the space with human raises many questions, such as safety and communication
paradigms. So far the OTHex used as a flying companion is equipped with a set of
LEDs to reflect the state machine state, for sure this can be improved based on state
of the art Human-Machine Interface (HMI). In this area, extensive is the literature
that explores social, cognitive, or behavioral aspects of human-robot interaction [C
Breazeal–2008]. Developments in the direction of Human-MAGMaS, or of Human-
Flying Companion, physical interactions, are foreseen. The basis of which are
present but will require refinement of the low-level controllers and developments
of physical interaction control and planning strategies.

First of all, it is of paramount importance to ensure safety of the physical in-
teraction, for example by balancing compliance with ISO10218 regulation and per-
formances, see [Navarro–2017], or by considering a dynamic safety region around
human in a invariance control framework, see [Kimmel–2015][Kimmel–2017].

A second objective for the system would be to interpret the haptic cues from
the operator to interact smoothly in cooperation via non verbal communication.
It has be shown that wrench information are not sufficient to detect operator’s
intention of motion, see [Dumora–2012], but that the addition of operator position
makes it possible. Moreover the wrench sensed by the system also comprises the
object dynamics, thus it is important to precisely estimate it, to remove that bias
from the human motion recognition. In [Cehajic–2017a] the redundancy of the
system is exploited to conduct this identification in the null-space of the operator
grasp. A key factor also resides in the prediction of the operator behavior/motion
uncertainty in order to perform predictive haptic assistance, decreasing operator
discomfort, see [Medina Hernández–2015][Medina–2017]. Once the intention of
the human is understood, the system can react to guide the operator via motion
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primitives, see [Dumora–2013].
Strategy to make the system behavior intuitive for the operator are also to

be investigated, e.g., see [Navarro–2017] for mobile manipulator. The ability of
the understanding the operator intentions can also allow the system to steer the
operator toward a preferred behavior. A way of controlling the operator is to
let the system use functional electrical stimulation to control the operator arm,
see [Adorno–2015], possibly enhancing the human-robot interaction. Or to provide
vibrotactile feedback to guide the operator arm motion, see [Cehajic–2017b].

Mechanical Design

Based on the experimental work presented a few possible design amelioration arose
from usage of the system.

The OTHex Flying Companion was developed under 6 months, thanks to the
high expertise of the team involved in the Tele-MAGMaS project. The first obvious
improvement resides in the gripping mechanism at the EE of the AR. Indeed, due to
time constraints off-the-shelves solution was chosen and integrated in the OTHex,
even if the recorded performance were satisfactory a further work could reduce the
weights of the mechanism and propose a locking mechanism for the closed position
of the gripper.

Another point of design which could be improved is the propeller location and
orientation. It appeared that in the actual layout, during a bar lifting task some
propellers where perfectly oriented with the task direction and thus “overly” used.
Based on the recent advances in the (optimal) design of multi-directional thrust, an
iteration on the propeller layout might prove beneficial especially to allow lifting of
heavier bar.

As the work was conducted with state of the art industrial manipulators from
the ground side, the hardware was already satisfactory from a mechanical design
point of view.

Lastly, in the presented work the system has limited computational power and
the setup was lacking radio-frequency transmission of the perception information,
at the beginning of the integration the perception was seen as less important to
demonstrate the capacity of a MAGMaS and reliable wireless communication was
an issue in the demonstration environment, this point is now solved by parallel
developments and the integration of computational power by adding an onboard
computer is foreseen. The payload of the OTHex allows to carry an small powerful
computer like an Odroid-XU3. This architecture will call for further development
of the control algorithm to enable a decentralize control framework, with at least a
computer on the AR and one on the ground robot and with eventually a supervision
station and/or a remote station for tele-operation. This will require work mostly
on the OTHex platform and the control algorithms.

3
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137510300620
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Perception

The last possible direction for development of MAGMaS consists in improvements
in the perception framework. At the moment the system relies on MoCap, for state
estimation of the AR and environment awareness. Further works need to be carried
on the perception for MAGMaS leading to more system autonomy. Work should
be aimed at system state recovery, environment monitoring and grasping improve-
ment. The AR control architecture is highly dependent to a good state estimate,
The addition of sensors to MAGMaS in order to reconstruct the environment should
be considered in order to identify autonomously unplanned obstacle and potential
danger, thus removing the necessity of constant human supervision. Visual sensor
for monitoring the environment can also provide queues to switch interaction pol-
icy, see, e.g., [Cherubini–2015]. The last improvement that can be provided by
perception enhancements for MAGMaS resides in the grasping of the load, using
techniques known as eye-in-hand visual servoing, see e.g., [De Luca–2007][Robuffo
Giordano–2008].
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Abstract

This chapter briefly introduces new paradigms associated with VSA and contextu-
alizes them for APhI applications, see Sec. 6.1. A 2D study is presented where the
nonlinear model is derived in Sec. 7.1 and an exact feedback linearization scheme
is proposed, see Sec. 6.3. Once the system is exactly linearized, a linear controller
is synthesized, in Sec. 6.4, and validated through simulations, Sec. 6.5.1, and pre-
liminary experimental results using an actuated joint with variable stiffness on a
quadrotor platform, Sec. 6.5.2.

6.1 Variable Stiffness Actuators,
Overview and Motivations

The recent trends of APhI research have been detailed at length in Chapter 2.
This chapter focuses on the promising yet confidential use of VSA for APhI. Indeed
in almost all the current designs, AR are equipped with rigid-joint arms. On the
other hand, compliant-joint manipulators are widely considered in ground robots
like humanoids and manipulators physically interacting with humans, as fostered
by SaPHARI European project1. They are also effective tools for fast motion tasks,
exploiting the elasticity of the joint to perform explosive tasks, such as throwing
an object or hammering on a surface, which requires large velocities that rigid-joint
arm can not provide [Braun–2013].

1http://www.saphari.eu/
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Yet, their usage in aerial robotics and APhI is not fully investigated. Recent
works started to consider the use of elasticity for AR, like, e.g., [Yüksel–2015] for
a single joint manipulator and [Suarez–2015b][Suarez–2017b] for dual arm manip-
ulator.

In particular, in case of APhI the variable stiffness property can be exploited for
explosive motion but also and more importantly to ensure mechanical compliance of
the airborne manipulator. Indeed, using the stiffness tuning it is possible to impose
a very stiff behavior to the manipulator, typically for tasks where EE precision is
needed, e.g., picking, while a compliant behavior can be implemented in the case
of motion in an unknown or unstructured environment. In this case unforeseen
collision’s effects can be attenuated by the compliant behavior of the arm. Meaning
that if the arm collides with the environment substantial part of the impact force
will be stored in the VSA spring instead of being applied directly on the AV,
this mechanical property reduces drastically the system failure rate. Lastly, by
introducing mechanical compliance the VSA should represent an additional level of
safety for human-robot interactions.

The implementation of VSA on AV faces two main challenges, i) the mechanical
design and ii) the control analysis and synthesis.

Off-the-shelf VSA designs are meant for ground robots and, as such, are not
fitting the lightweight and low power consumption required by AR designs. Nev-
ertheless, one outcome of the SaPHARI project was the creation of qb robotics2,
a company producing a small and lightweight VSA that can be integrated on a
quadrotor, although AM was not their targeted use case. Another solution to ex-
plore the VSA possibilities is too design from scratch a VSA matching the AR’s
constraints, as in [Yüksel–2015]. This approach comes with full control of the VSA
system, but comes at high development costs and skill requirements.

The second main challenge, arises from the control analysis and synthesis. In
order to accommodate for the complex and non-linear dynamics of such a system
composed of an underactuated flying vehicle and a manipulator composed of elastic
joints, differential flatness of the system is investigated. The literature presents
analysis of the general case for a grounded mixed manipulator, i.e., consisting of
both rigid and elastic joints, and demonstrates their differential flatness [De Luca–
1996]. But no result is readily available for floating base manipulators, here floating
base refers to the case in which the base of the arm is not connected to the mechan-
ical ground, i.e., is suspended in the air. The only results available is presented
[Thomas–2013], the authors prove that AR with a single rigid joint are exactly
linearizable via a dynamic feedback and therefore are differentially flat, under the
assumption that the center of thrust actuation coincides with the CoM of the sys-
tem. This occults a large class of design and also totally eludes the elastic joint case.
More results on differential flatness for AR can be found in both [Tognon–2017] and
[Yüksel–2016a], with results on multi-link manipulators.

2http://www.qbrobotics.com/
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The work described in this chapter as been presented at

2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
[Yüksel–2016b][Yüksel–2016c]

6.2 Planar Case Modeling

In this section the kinematics and dynamics of a robot composed of an aerial plat-
form, equipped with an elastic-joint arm are modeled (for the rigid case refer to
[Yüksel–2016b]). Similar to previous studies (see, e.g., [Lupashin–2010][Thomas–
2013]) the case of a Planar Vertical Take-off and Landing Vehicle (PVTOL) AV
is considered. This reduced system still captures the nonlinear features and the
underactuation of a 3D system and allows to generalize the obtained results in a
later stage. Furthermore, many practical aerial problems are, fundamentally, 2D
problems immersed in a 3D world.

The PVTOL with the attached arm is depicted in Fig. 6.1. Denoted with
FW : PW −{xW , zW } and F1 : PC1

−{x1, z1} are the world (inertial) frame and the
frame attached to the PVTOL, respectively, where PC1

is the CoM of the PVTOL
(without the arm). Both the motor and the joint of the arm rotate about an axis
parallel to zW × xW and passing through PC1

. The motor frame is defined as
FM : PM − {x1, z1} that is rigidly attached to the motor output shaft. The joint
is considered elastic, therefore also a link frame F2 : PC2

− {x2, z2} is considered,
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where PC2
is the CoM of the link. The elastic part of the joint, variable or not, is

located between the motor output shaft and the link as depicted in Fig. 6.2. Finally
PE denotes the TCP of the EE.

Given an angle θ∗ ∈ R between the z-axes of two frames (all the angles are
given in Fig. 6.1) the usual rotation matrix definition R∗ ∈ SO(2) holds. Therefore,
the orientations of F1 in FW , FM in F1, F2 in F1, and F2 in FM are expressed
by the rotation matrices R1, Rm, R2 and Re, respectively. Finally, the absolute
motor angle is θ1m = θ1 +θm and absolute link angle is θ12 = θ1 +θ2, as depicted in
Fig. 6.1 (right) and Fig. 6.2. Notice that θe = θ2 − θm = θ12 − θ1m, which denotes
the time varying elongation of the elastic joint.

The constant position of PC1
in F2 is denoted with −d2 = [−d2x − d2z ]T ∈ R

2.
The vector de = [dex dez ]T ∈ R

2 denotes the constant position of the end-effector
PE in F2. The (time-varying) positions of PC (CoM of the overall system, i.e.,
{PVTOL+manipulator}), PC1

, PC2
and PE in the world frame FW are denoted

with pc = [xc zc]T ∈ R
2, pc1

= [x1 z1]T ∈ R
2, pc2

= [x2 z2]T ∈ R
2 and pe =

[xe ze]T ∈ R
2, respectively. The mass and moment of inertia of the PVTOL, motor

and link are denoted with m1 ∈ R+, J1 ∈ R+; mm ∈ R+, Jm ∈ R+; m2 ∈ R+,
J2 ∈ R+, respectively. The symbol ḡ ∈ R

+ denotes the the gravitational constant.
The PVTOL is actuated by means of: i) a total thrust force −utz1 ∈ R

2 applied
at a point PG, where ut ∈ R is its magnitude, and ii) a total torque (moment)
ur(z1×x1) ∈ R

1 applied at PG, where ur ∈ R is the torque intensity.3 Furthermore,
a motor is attached to the PVTOL and applies a torque τ(z1 × x1) ∈ R

1 at PC1

to the joint, where τ ∈ R is its intensity. The inputs of the system are gathered
in the vector u = [ut ur τ ]T ∈ R

3 and shortly denoted in the following as thrust,
PVTOL torque and motor torque. The constant position of PG in F1 is denoted
with dG = [dGx dGz ]T ∈ R

2.

Remark 6.2.1: The literature is extended in two directions: first by assuming that

PC1
6≡ PG (i.e., dG is any , contrarily to what is typically assumed in the literature,

see e.g., [Thomas–2013] where dG = [0 0]T ); and second by also considering, for

the first time, the case in which the joint is elastic and not only rigid.

The system dynamics is written using the Lagrange equation as

q̈ = M−1(q) (G(q)u − c(q, q̇) − g(q) + fE(q) + fext) (6.1)

where q ∈ R
n are the considered generalized coordinates (n = 5 for the planar

elastic joint case at hand here), M ∈ R
n×n is the generalized inertia matrix, G ∈

R
n×3 is the control input matrix, c ∈ R

n is the centrifugal/Coriolis forces, g ∈ R
n

represents the gravitational forces and fE ∈ R
n represents the forces due to the

potential energy stored in the elastic joint. Finally, fext ∈ R
n represents the wrench

(composed of a 2D force and 1D torque, in the planar case) applied to the system

3For a planar birotor, PG is the center of two coplanar propellers, ut the sum of the propeller
thrusts and ur their difference times the distance to PG.
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from external environment. Note that albeit developed in the planar case this
models extends to the full 3D case, only the matrices expression and order change.

Input-Output Feedback Linearization Property

Recall, a system is exactly input-output linearizable with a dynamic feedback, if
there exists a change of coordinates, possibly including a feedback input transfor-
mation, that brings the system in an equivalent linear and controllable form. A
sufficient condition to obtain this can be expressed considering the candidate out-
put vector y, then if one derives w.r.t. time the components of y until at least one
input appears and the total relative degree matches with the dimension of the sys-
tem state (taking into account possible additional integrators inserted in the input
channels), hence no uncontrolled internal dynamics appears. Then the system is
said input-output feedback linearizable for output y, This property is very useful
for control purposes, in fact, if one rewrites the vector of derivatives of y as ȳ, one
obtains

ȳ = f̄(x̄) + Ḡ(x̄)ū, (6.2)

where x̄ ∈ R
n̄ is the augmented state of dimension of n̄ and Ḡ is an invertible

decoupling matrix. Then the control law

ū = Ḡ−1(v − f̄), (6.3)

where v is a virtual input, brings the system in the form

ȳ = v, (6.4)

which is linear and controllable, as long as Ḡ is invertible. Once the system is trans-
formed in form (6.4), any outer control loop for stabilizing linear systems can be
used to synthesize the control v. Although both concepts sound different, differen-
tial flatness is equivalent to exact input-state linearization via dynamic feedback in
an open and dense set of the state space and an output is flat if and only if it is ex-
actly linearizing [Martin–2003][De Luca–2002][Fliess–1999]. Hence it is convenient
to refer to the exact linearizing outputs are flat outputs as well.

6.3 System Analysis – Exact Feedback Linearization

In this section, it is shown that for the PVTOL with a single elastic-joint arm
the output y = [pT

c1
θ12]T is an exactly linearizing (i.e., flat) output, meaning the

position of the PVTOL’s CoM and the absolute link angle . In order to prove it,
let us consider as generalized coordinates q = [pT

c1
θ1 θ12 θ1m]T ∈ R

5, where the
coordinate θ1m = θ1 + θm the absolute motor angle, is introduced to exhibit the
elastic-joint particularity. An idealized elastic connection is sketched in Fig. 6.2,
where θ2 = θm + θe. In this case the matrices of the dynamical model (6.1) are,
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Figure 6.2 – An ideal example of elastic joint between the motor output shaft and
link. Proportions are distorted for illustration purposes. The innermost circle,
fixed to F1, the body frame, represents the PVTOL. The middle circle, fixed to
FM , represents the actuator (or motor). The outermost circle is connected to the
middle circle via elastic components and is rigidly connected to the link (i.e., fixed
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after some algebra,

M =









msI2 ∗ ∗ ∗

01×2 J1 ∗ ∗

βββT (θ12) 0 mB − Jm ∗

01×2 0 0 Jm









= MT ∈ R
5×5, (6.5)

c(q, q̇) =











β1(θ12)θ̇2

12

β2(θ12)θ̇2

12

0

0

0











, g(q) =











0

−msḡ

0

g4(θ12)

0











,

G(q) =











− sin(θ1) 0 0

− cos(θ1) 0 0

dGx
1 −1

0 0 0

0 0 1











, fE(q) =











0

0

0

fl(θ1m, θ12)

fm(θ1m, θ12)











. (6.6)

Notice that the elastic forces fl(θ1m, θ12) and fm(θ1m, θ12) , respectively acting
on the link side and on the motor side, have similar expressions and magnitudes
as they describe the same elastic elongation seen from both ends of the spring.
These forces can be nonlinear functions of θ1m and θ12 depending of the rotational
spring mechanical properties. In the linear spring case, or in the nonlinear case
but for small deviations around an operating point, both forces can be expressed
as proportional to the spring elongation, i.e., fl(θ1m, θ12) = ke(θ1m − θ12) and
fm(θ1m, θ12) = ke(θ12 − θ1m), where ke > 0 is the stiffness of the elastic element.
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When the spring behavior is nonlinear, the constant ke is a local description of the
the spring behavior. The overall nonlinear spring behavior can be approximated
with local linearization for several ranges of operation covering the total range of
the elastic element.

Replacing M, c, g, G and fE in (6.1) the explicit dependency of each entry of
q̈ can be derived as

ẍ1 = ξ1(θ1, θ12, θ̇12, θ1m, ut), z̈1 = ξ2(θ1, θ12, θ̇12, θ1m, ut),

θ̈1 = ξ3(ut, ur, τ), θ̈12 = ξ4(θ1, θ12, θ̇12, θ1m, ut),

θ̈1m = ξ5(θ1m, θ12, τ). (6.7)

Considering as output for the feedback linearization y = [pT
c1
θ12]T , from (6.7)

one can write
ÿ = ξξξ1(θ1, θ12, θ̇12, θ1m, ut). (6.8)

The total relative degree is r = 2+2+2 = 6 and the state dimension is n̄ = 2n = 10.
As recalled in before, exact input-output feedback linearization is achievable when
these two quantities are equated. This is achieved by considering as new control
inputs ū = [üt ur τ ]T ∈ R

3 and augmented state x̄ = [qT q̇T ut u̇t]T ∈ R
12. In fact,

differentiating twice w.r.t. time and substituting θ̈12, θ̈1, θ̈1m from (6.7) yields

y(4) = ξξξ3(θ1, θ12, θ1m, θ̇1, θ̇12, θ̇1m, ut, u̇t, üt, ur, τ),

which means that r = 4 + 4 + 4 = 12 and n̄ = 12, as required.
Therefore it is now worth checking if the matrix Ḡ(x̄), the decoupling matrix

introduced in (6.2), is invertible. The analytical expression of Ḡ(x̄) determinant is

det
(

Ḡ
)

= − utke

J1Jmms

(

J2ms+m2(m1+mm)‖d2‖2

2

) , (6.9)

for more insights the interested reader is referred to [Yüksel–2016b] and [Yüksel–
2017]. Therefore Ḡ is always invertible, as long as ut 6= 0 and ke 6= 0 As Ḡ(x̄)
is invertible and knowing that ȳ = y(4) and f̄(x̄) = ȳ − Ḡ(x̄)ū from (6.2), the
controller in the form of (6.3) is exactly linearizing the system for the considered
output, i.e., it brings the system to the linear controllable form (6.4). This proves
that

Proposition 1: The vector [pT
c1
θ12]T is an exactly linearizing output via dynamic

feedback for the model with elastic-joint arm , as long as ut 6= 0 and ke 6= 0. As

a consequence, it is also a flat output. Direct proof of the flatness can be found in

[Yüksel–2016c].

Remark 6.3.1: Contrarily to the grounded manipulator case [De Luca–1996],

where the flat outputs are the relative orientation of the consecutive links and mo-

tors, in the aerial case one has to consider the absolute link and motor orientations.
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Figure 6.3 – Scheme of the exact linearizing controller. The High Order Dynamics
block analytically (i.e., exactly) computes the high order derivatives of the flat
outputs y, i.e., ÿ and y(3) from the current state x. The Trajectory Generator
generates the desired trajectory in C3, based on a 4-th linear order filter. A Linear
Controller, as in (6.10) controls the system in the linear form and tracks the desired
outputs and their derivatives. The Dynamic Feedback Linearization block brings
the system to the linear controllable form as in (6.3).

This is due to the underactuation of the flying platform that is used as the base of

the elastic-joint arm.

6.4 Linear Control Synthesis

The feedback linearizing (nonlinear) controller presented Sec. 6.3, where the flat
outputs is y = [pc1

θ12]T , brings the system in the decoupled and controllable linear
form. Then, given any triplet of desired trajectories of class C3, xd

1(t), zd
1(t), θd

12(t)
for x1, zm and θ12 respectively, many classical linear control synthesis techniques
can be used as outer control loop. In this work a simple one based on tracking error
for C3 trajectories, is proposed

v = ȳd + K[eT ėT ëT ...
e T ]T ∈ R

3, (6.10)

where e = [ex ez eθ]T and ex = xd
1 − x1, ez = zd

1 − z1, eθ = θd
12 − θ12 and with

K being composed of 3 × 3 positive definite gain matrices with properly chosen
elements to enforce system stability. Additionally, to compensate the errors due
to uncertainties and robustify the outer control loop, an integral term of the form
Ki∗

∫ tf

t0
e∗dt is added for each channel, where ∗ := {x, z, θ} and Ki∗ ∈ R+. The

whole control scheme, with both the feedback linearization as inner loop and the
linear control presented in here as outer loop, is illustrated in Fig. 6.3.

It is worth to notice that the proposed linear control strategy only requires the
measurements of q and q̇, since the derivatives of the outputs present in (6.10)
are computed as algebraic functions of q and q̇, thanks to the model (6.1) and its
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Figure 6.4 – Evolution from theory to application. (a) Conceptual sketch of the
model in 3D. The motion in Plane-A is controlled using the controller presented
in this chapter. The motion in Plane-B (except the translational motion along z1)
and the rotation around z1 is controlled using a near-hovering controller [Lee–2013].
(b) CAD model of the 3D system and a snapshot from SimMechanics simulation,
where the implemented controllers have been tested. Different colors correspond to
the different parts of the real system. The results are given in [video 2–2016]. (c)
Real system on flight, for details see Fig. B.13. Red ropes are used only for safety
reasons, with no tension on them.

analytical derivatives. This fact relieves us from the need for additional, and often
noisy, sensors for the higher derivatives of the state.

6.5 Simulation and Experimental Validations

In this section, are presented both extensive numerical simulations and the exper-
imental setup, which consists of a quadrotor equipped with a rigid link that is
actuated via a VSA and present preliminary experimental results.

6.5.1 Realistic Numerical Tests

For the sake of completeness the simulation results are succinctly presented here,
extensive and realistic simulation results (with parametric uncertainties, measure-
ment noises, sampling errors and actuation limits) are provided in [Yüksel–2016b]
and [Yüksel–2016c] and validate the feedback linearizing controllers presented in
Sec. 6.3.

In the simulations, the nominal parameters of the system, their deviations and
the noise of the measured states are chosen close to real values, see Tab. I and Tab. II
in [Yüksel–2016c]. Moreover two important scenarios are investigated: i) aerial
grasping and ii) link velocity amplification. Both rigid joint and elastic joint are
compared and it is observed that the rigid-joint design is more suitable for the first
scenario (picking), while using an elastic-joint arm is much more advantageous for
the second one (explosive task). The detailed explanations of the simulation setups
are given in [Yüksel–2016c] and are briefly highlighted hereafter.
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The controller, see Fig. 6.3, is tested in a simulation considering the full dy-
namical 3D model of the system, using the CAD model of the experimental setup
in SimMechanics, a realistic physical simulation toolbox provided by Matlab. The
proposed 3D system consists of a quadrotor equipped with a qbmove4 for the elas-
tic joint and mounted with a rigid arm link as pictured in Fig. 6.4). To conduct
the simulation the 3D model is split in two planes, Plane-A and Plane-B as shown
in Fig. 6.4a. All the motions on Plane-A (including that of the absolute link angle) is
controlled using the exact linearizing controller presented above (via thrust, torque
around x1 and torque for the qbmove, see Fig. 6.3). The rest of the quadrotor
motion (motion in Plane-B and rotation around the vertical axis z1) is controlled
using a near-hovering controller, the details of which can be found in [Lee–2013].
This allows to test the performance of the 2D derived controller in a real experi-
mental scenario, i.e., in 3D. The SimMechanics model is based on a precise CAD
model of the real setup, the advantage of using SimMechanics relies in the fact that
the dynamic model used for simulation is derived automatically by SimMechanics,
hence it guaranties that the model used for the controller and for the plant are de-
rived independently, thus allowing realistic simulation with the addition of noise and
parametric uncertainties. The full simulation results are available to the interested
reader in [Yüksel–2016b] and [Yüksel–2016c]. They suggest that the rigid-joint de-
sign is more suitable for the first scenario (picking), while using an elastic-joint arm
is much more advantageous for the second one (explosive task). Which is rather in-
tuitive as for the picking the elastic joint might lack of precision due to its compliant
property, while it is clear that for explosive task the elastic component of the joint
can be exploited to store and release energy, hence outperforming the rigid-joint
case.

6.5.2 Preliminary Experiments

The experimental setup is based on a Mikrokopter5 quadrotor Vertical Take-off
and Landing Vehicle (VTOL) as underactuated AV and a qbmove VSA as elastic-
joint, for which the stiffness parameters of the springs in the elastic connections
can be tuned. State measurements of the quadrotor are acquired through a 1 kHz
Unscented Kalman filter6 fed by both an on board Inertial Measurement Unit
(IMU) and an external MoCap. The controller sketched in Fig. 6.3 is implemented
as C/C++ libraries and ROS nodes, similarly to what is done in [Grabe–2013]
and [Lächele–2013]. Table 6.1 recalls the main components of the experimental
setup.

Preparation of the qbmove

The use of a VSA prevailed for its wide range of stiffness preset capabilities which
allow the user to choose between, e.g., high and low stiffness values, depending on

4http://www.qbrobotics.com/products/qbmove-maker-pro/
5http://www.mikrokopter.de/en/home
6http://robotpkg.openrobots.org/robotpkg/localization/libpom/index.html
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Component description key quantities

VTOL mikrokoprer quadrotor

total mass (incl. payload) 1.5 kg

max. thrust and torque 28 N, 1.5 Nm

qbmove Variable Stiffness Actuator (VSA)

max. torque 1.2 Nm

control frequency 500 Hz

Optitrack Motion Capture System (MoCap) 100 Hz

6-axis IMU 1 kHz

Unscented Kalman Filter: IMU+MoCap 1kHz

Table 6.1 – Characteristics of the main components of the setup.

(a)

k1

k1
φm1

k2

k2φqb

motor 1 motor 2shaft

φm2

τ1 τ2

(b) (c)

Figure 6.5 – On the left (a), an external view of the qbmove VSA, a 66 mm cube for
0.260 kg. In the center (b), a sketch of the agonistic/antagonistic mechanism used
in the qbmove. And on the right (c), the real system’s inside with apparent shafts
and pulley.

the task of the AR. Note that, as this work is a preliminary step toward onboard
VSA for AR, the full capacity of the VSA were not exploited, i.e., the stiffness vari-
ation was not regulated during experiment but remained at a fixed setpoint. The
choice of VSA led to the qbmove, an agonistic/antagonistic servo-VSA. Shortly, it
consists of two PD controlled servo motors, which allow to regulate independently
desired stiffness and output-shaft equilibrium, i.e., in the formerly introduced no-
tations ke and θm, respectively. See Fig. 6.5 for a view of the device and a sketch of
its working mechanism. This VSA provides state measurements (θm, θe) at 500 Hz.
Its main advantages reside in the lightweight design and the wide range of stiffness
preset available.

The working principle of the agonistic/antagonistic mechanism structure chosen
for the qbmove are sketched here after. First introduce the notation in Fig. 6.5b,
φqb = θm denotes the output shaft of the VSA and φ1m and φ2m denote the motor
output angles of each servo composing the mechanism. The output shaft is linked to
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the two servos by mean of reasonably non extensible threads (see Fig. 6.5b in blue
and red) and these threads are put into tension by four springs, which are assumed of
equal stiffness. At constant stiffness, the output shaft motion is obtained by moving
the two servos of the same quantity in the same direction, i.e., φqb = 1

2(φ1m +φ2m).
For example moving the shaft by 10◦ clockwise, means moving the two servos by
10◦ clockwise, in this case the bottom spring k1 and the top spring k2 are loaded
and provide the elastic behavior, while the top spring k1 and the bottom spring
k2 are inactive, hence the denomination agonistic/antagonistic. Not that at rest,
if the output shaft is moved from the load side clockwise, the same springs are
activated, and counter-clockwise the opposite springs are activated. At constant
output shaft position, the stiffness can be changed by rotating the two servos in
opposite direction, i.e., ke ∝ (φ2m − φ1m). By combining these two modalities
the output shaft position, φqb = θm, and the stiffness ke can be set independently.
Notice that from the nature of the mechanism the actuation time constant of the
output shaft is faster than the one of the stiffness, as highlighted in the qbmove
datasheet7.

The meticulous reader will see that no gripper is featured in the described setup,
this is mainly due to safety considerations on the maximal deflection supported by
the qbmove, indeed in order not to damage the spring it was preferred to have a
reduced mass on the output shaft of the VSA, its base being rigidly attached to the
VTOL of mass around 1.5 kg.

In order for the controller introduced above to work with qbmove VSA, sev-
eral extra steps need to be conducted. First of all, a parametric identification of
the {qbmove VSA+rigid arm} system has been performed, in order to retrieve the
parameters of the equivalent motor studied in [Yüksel–2016b]. The stiffness (and
the damping) parameters of the {qbmove+arm} system are identified by first con-
sidering it as a simple mass-damper system and then letting the arm swing from
an initial condition, without any control action (see [Yüksel–2015] for a similar
method). Note that the qbmove features a nonlinear spring, which is considered as
a linear spring for deflection in the range of ±20◦. Inertial parameters of the system
are found using the system geometry. All the identified and computed parameters
are available in Table 6.2. The parameters are for a given stiffness, for simplicity no
parameter expression based on the stiffness preset where investigated. Moreover,
the control framework presented requires a torque-controlled motor, while a qbmove
is not proposing this control modality. For this reason the implementation of an
outer loop controller around the qbmove device has been required, it translates the
desired torque into a desired position through a feedback linearization scheme. This
approach requires a precise knowledge of the system parameters: distances, masses
and inertia were computed through CAD model, while other parameters where ex-
perimentally identified as described above and are given in Table 6.2. This bridge

between the proposed controller in [Yüksel–2016b] and the qbmove VSA is directly
implemented as a ROS node. This approach was devised in order to palliate for the

7
www.qbrobotics.com/wp-content/uploads/2016/03/45c5a1_792590e00b134129b2b6363a1ea7de45.pdf
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2

1 3

4
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5

Figure 6.6 – Experimental setup composed of a MikroKopter quadrotor as under-
actuated VTOL and a qbmove block as VSA. The sub-components of the platform
are: (1) Flight Controller (incl. IMU), (2) the odroid runing the controller, (3)
the ESC, (4) the battery pack, (5) the qbmove itself and (6) the manipualtor link
connected to the VSA output shaft. Red ropes are used only for safety reasons,
with no tension on them.

fact that qbmove is position controlled and that this control modality proved hard
at first sight to incorporate in the feedback linearization approach. The outer loop
are the VSA is not perfect but provides sufficient performances.

Quadrotor Setup

The experiments are conducted on a AR, see Fig, B.13. The payload of the AR
is composed of, from top to bottom, (1) a flight controller (incl. IMU), (2) an
Odroid-XU8 computer running Ubuntu 14.04, (3) four brushless motor controllers
with their power board (ESC), (4) a battery pack, (5) a qbmove with its connectors
and (6) a rigid arm attached to it. Total weight of the system is 1.5 kg (including
safety ropes that are carried by the AR), which corresponds to a total hovering
thrust of 14.75 N. Each propeller of the VTOL can generate lift up to 7 N, which
allows to carry the described payload and perform flight.

The actual values in the setup of the main quantities introduced in the modeling,
Sec. 7.1, are presented in the Tab. 6.2 for the reader to get a grasp on the physical
magnitudes of the platform.

8
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137510300620
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Real Parameters Notation Value Unit

mass of the quadrotor m̃1 1.309 kg

mass of the VSA mechanism m̃m 0.06 kg

mass of the arm m̃2 0.098 kg

dis. vec. betw. PC1
& PG d̃G [0.0 0.0081]T m

dis. vec. betw. PC2
& PM d̃2 [0 0.0979]T m

inertia of the PVTOL J̃1 0.0154 kg m2

motor inertia J̃m 0.4101 kg m2

link inertia J̃2 0.0011 kg m2

spring stiffness k̃e 3.55 N m rad−1

spring damping k̃f 0.07 N m rad−1

Table 6.2 – Measured, computed or identified parameters of the setup. The variable
∗̃ denotes the quantity ∗ for the experimental setup. Notice that k̃f is identified
but not used in the controller.

Preliminary Experiment of a Quadrotor with a VSA Arm

This section highlights the experimental results obtained with the above described
controller and system, see [video 2–2016] for the system in action. In a first exper-
iment the flight quality of the proposed approach is assessed, without motion from
the joint. The full system is tested for a trajectory tracking along the z axis while
staying at zero on the x axis for the a-plan, while the near-hovering controller for
the B-plan is tasked to keep all its controlled quantities constant. Results are given
in Fig. 6.7, where the maximum error for both x1 and z1 is around 2 cm. This
validates good flight performances of the system.

In a second experience performed, the absolute link orientation follows a sinu-
soidal trajectory, while the PVTOL’s CoM follows another trajectory along the z
axis and tries to stay at zero on the x axis, this trajectories are meant to highlight
the decoupling of the motion. Results are given in Fig. 6.8, where for x1 and z1 the
maximum errors are around 2cm. This in particular shows that the arm swinging
is properly taken into account in the controller and does not affect too much the
orientation of the VTOL, which results in no translational motion along x1.

For both experiments, steady-state errors are observed mainly due to unmodeled
effects as, e.g., neglecting the damping of the spring, and the displacement between
the PC1

and PM in the real setup (see Fig. 6.4a), while in theory they are considered
coincident (see Fig. 6.1).
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Figure 6.7 – First test on controlling the {quadrotor+VSA} arm position along x
and z directions. A step-like trajectory is followed along the z-axis. Notice that
negative z is upwards, as per NED convention.

6.6 Discussion and Open Research Directions

In this chapter the dynamic modeling, property analysis and control of a PVTOL
system equipped with a single elastic-joint arm is presented. It has been proven
that this system is differentially flat for a set of outputs, which are the same a for
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Figure 6.8 – Preliminary results for trajectory tracking with {quadrotor+VSA} arm
setup. The arm attached to the qbmove is swinging back and forth (see θ12), while
quadrotor VTOL is tracking a stable trajectory along x-direction, and a step-like
trajectory along the z-direction. Oscillations on θ1 are due to the motion of the
arm, against which the controller is trying to keep x position constant. Notice that
negative z is upward, as per NED convention.
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rigid joint, see [Yüksel–2016b], and an exact linearization tracking controllers is pro-
vided. Extensive numerical tests, provided in [Yüksel–2016c], show clear differences
between the rigid and elastic joint models, rigid-link setup is more advantageous
for precisely tracking tasks such as aerial grasping, while elastic-link setup is more
suitable for tasks requiring link velocity amplification such as throwing or ham-
mering. Another numerical validation as been performed using the full 3D model
of the real setup in SimMechanics and finally preliminary experimental results of
controlling a quadrotor VTOL equipped with a qbmove are presented. In fact, a
clear trade-off between rigid-link and elastic-link setups directs us to use VSA for
a wide range of aerial physical interaction tasks. This work is a bridge between
previous experiences [Yüksel–2015] and future studies and extension of the use of
VSA for aerial manipulation, which will include: i) further experiments using the
quadrotor and qbmove setup, e.g., peg-in-hole or throwing, hammering; ii) exten-
sion of the theory to 3D and/or arms with multiple degrees, see [Yüksel–2016a] for
interesting preliminary results; iii) use of sensor-based calibration methods as, e.g.,
in [Censi–2013] to retrieve the system parameters on the fly.

Open Research Directions

The work presented in this chapter was a preliminary investigation about having
VSA embedded on AR. As such, the variable stiffness was not fully exploited, pos-
sible way to do so are two folds: i) open-loop, high level control, a planner could
switch between a couple of stiffness preset matching the task at hand, ii) close-loop,
stiffness trajectory generation and tracking. The first solution seems rather easy
to implement, as it has been shown that high stiffness is better suited for precision
tasks and low stiffness for compliance or dynamic task (e.g., resonance amplifica-
tion). Although the results are expected to be more toward a practical application
contribution than a theoretical one. The second direction reserves way more open
challenges both from the stiffness trajectory generation side than from the low-level
fast stiffness control. For the stiffness trajectory generation, and motion trajectory
generation at large, the considered task to exhibit the VSA versatility would be an
explosive one, like trowing or hammering. A potential application for throwing can
be found USAR scenario. Consider a several story tall building semi-demolished
after a disaster. In that case exploration for survivors would be difficult for an AR
alone, which would be challenged by the unknown and unstructured environment.
On the other hand ground robots, such as crawlers, could not climb the stairs and
be limited in their exploration of the building. The combination of both could be
obtained by considering a rescue mission where a AR mounted with a VSA is tasked
to trow a small crawler inside the building higher floors. In this way the crawler can
easily explore higher floors, while the AR can bring it where needed. The interest to
consider throwing in that case resides in the fact that the transition from outdoor
to indoor navigation for AV is an arduous topic. Throwing the crawler in, while
remaining outside, avoids this difficulty and still allows to exploit crawlers for the
exploration of higher flours in a semi-demolished building. In such a scenario, the
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trowing trajectory as to accommodate both the AR spatial constraints and actu-
ation limits, the VSA own actuation limits and the target of the trowing, which
makes it a non trivial planning problem.

A part from the exploitation of the variable stiffness, several challenges remain
for AR with elastic joints, the flatness property highlighted in the presented work,
relies on the assumption that the CoM of the flying platform coincides with the
joint, which is hard to met in practice. Moreover, feedback linearization relies
on model inversion and, albeit the described experimental results are fairly good,
more robust approach could be devised, especially as the control of VSA is leaping
forward.

Finally from the hardware point of view, two main directions can be investigated:
i) improvement of the flying platform and ii) improvement of the VSA design and
control. Indeed, fully-actuated multi-directional thrust platform, or maybe just
more powerful AV, could be of great advantage as they would undoubtedly be closer
to a mechanical ground for the loading of the spring. This is motivated by empirical
tests conducted along the presented work, where mass where added at the tip of the
arm to mimic hammering, a typical use case for VSA. It was clear that the actuation
constraint of the quadrotor considered and the use of an agnostic near-hovering
position controller were highlighting the system limits. Behavior with the controller
presented in this work is improved but the actuation limits are not overcome and
are easily violated as the mass/inertia on the VSA output shaft increases. The
second direction worth investigating is to devise a possibly improved VSA design.
The improvements should be toward a lighter design but more importantly toward a
finer identification and control of the used mechanism. Indeed, it appeared that the
simple model provided by the manufacturer was not describing the VSA behavior,
notably because of dry friction present in the mechanism when velocity is close
too zero. Moreover advanced control techniques often consider torque actuation,
whereas the qbmove only provides position control of its motors. The presented
way to compensate for that is not optimal and relies on several assumptions that
should be sought to be relaxed. The best way to improve the qbmove behavior
would be to propose a low-level controller relying on a more accurate model of the
VSA and finer estimation of its parameters, which is in itself a vast topic.
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Abstract

This chapter presents preliminary study of the case of a MAGMaS composed of a
robotic arm and an AR cooperatively manipulating a flexible beam. The theoretical
study of the flexibility is proposed in the vertical plane. The modeling is introduced
in Sec. 7.1, followed by the system analysis in Sec. 7.2 and some discussion on the
possible extensions in Sec. 7.3. This a work was done in cooperation with Seoul
National University.

7.1 Modeling of a MAGMaS with Flexibility

The work described in this chapter as been accepted for

2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
[Yang–2018]

The interest for the flexibility arose from the consideration that in beam ma-
nipulation usually the tip of the beam is affected by parasitic motions induced by
flexibility and that MAGMaS can counteract these tip motions using an AR to grasp
the tip. In practice it also appeared from preliminary experiments on MAGMaS
that the flexibility of the beam can be rejected by the AR. To understand the root
of this phenomenon, a 2D modeling of MAGMaS with flexibility was conducted.

7.1.1 Beam Flexibility

In order to model the flexibility in the beam, the classical Euler-Bernoulli model
was chosen, see [Inmann–2007]. The beam motion is defined as following partial
differential equation for the 2D case with a beam section and a density constant
over the beam

∂2w(x, t)
∂t2

+
EI

ρA

∂4w(x, t)
∂x4

= f(x, t), (7.1)
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Figure 7.1 – Sketch of a quantilever beam (in red), deflection from the undeformed
longitudinal axis (dashed) is exaggerated for illustration. For any point px along
the beam its coordinate are x along undeformed longitudinal axis and the deflection
w(x, t) along a direction normal to he undeformed longitudinal axis. The beam
sketch depicts only a first module deflection for simplicity.

where w(x, t) describes the deflection at an abscissa x along the beam and at a
instant t, see Fig. 7.1, and E, I, ρ, A are physical constants related to the beam
material and structure, respectively Young modulus, second Inertia moment of the
section, density and area of the beam section. Lastly f(x, t) denotes a transverse
external force applied along the beam, which is considered to be null if the beam
is only subject to its weight. This model relies on the assumption that the beam
is subject to lateral load only. Nevertheless this model was chosen to conduct the
first study, a more complex model relaxing these assumptions, e.g., Timoshenko’s
beam model see [Meirovitch–1997], could be chosen for further studies.

The deflection w(x, t) can be described using mode shape formalisms

w(x, t) =
µ=∞
∑

i=1

φi(x)δi(t) (7.2)

where µ is the number of vibration modes, theoretical infinite but chosen finite
in practice to get exploitable models, φi(x) : R+ → R are mode shape functions
which describe the temporal evolution of vibration at given spacial location and
δi(t) : R+ → R are functions which describe time varying part of the deflection
associated with given mode shape φi(x).
The analytical expression of mode shape functions can be found to be of the form

φi(x) = cosh(βix) − cos(βix) − σi(sinh(βix) − sin(βix)) ∀ i ∈ 1 . . . µ (7.3)

where βi, σi are coefficients for each mode, derived from Euler-Bernoulli equation’s
solution. For typical beam constraint like the cantilever beam, these coefficients
expression in relation with the beam physical property can be found in handbooks,
like [Inmann–2007].

Beam Parameters Identification

In order to retrieve the physical parameters from the beam and verify that the two
first modes are sufficient to describe the flexible behavior an experiment exciting



7.1. Modeling of a MAGMaS with Flexibility 115

the vibration modes in a flexible wooden beam is conducted. The wooden beam
studied was equipped with MoCap markers along its length, to measure its defor-
mation in a discretized way, and was firmly attached by one of its end in what is
know to be a cantilever beam configuration. In this configuration the boundary
conditions necessary to determine the solution are know and can be used to deter-
mine analytically the expressions of the coefficients of the mode shape functions,
see [Inmann–2007].

A first observation can be made from the rest equilibrium, the deflection at the
tip of the beam is 19.2 cm, for a 244 cm free beam, which corresponds to 7.87 %,
validating the small deformation condition. Excitations were performed in 3 differ-
ent ways: i) by imposing a deflection of around 20 cm at the beam tip and realizing
it, ii) by imposing a small impact at the beam tip with a 200 gr hammer and
iii) by imposing a larger impact at the beam tip wit the same hammer. Results of
the observed energy peaks in the Fast Fourrier Transform (FFT) are summarized in
Tab. 7.1, the two first modes correspond to the first peak (1.46 Hz) and second peak
(8.98 Hz), which have respective relative error to the theoretical ones of 7.01 % and
9.05 %. These differences can be explained mostly by the variation of the physical
properties of wood w.r.t. hygrometry, in particular the Young modulus E. Hence
this experiments is used to retrieve the physical E of the wooden beam through
simple oscillation measurements. Wood is chosen despite this drawback because
in practice it offers a compromise between length and cross section necessary to
observe flexibility vibrations and is expendable.

Boundary Conditions for MAGMaS

In order to find the constant in the solution of (7.1) one should study the boundary
conditions of the beam, the side attached to the ground manipulator is considered
as clamped, the side attached to the AR requires further study. Let us consider the
case of one AR attached at the tip of the beam, as depicted in fig.7.2, the boundary

experiment deflection (up) impact (small) impact (big)

1st peak [Hz] 1.45 1.44 1.45

2nd peak [Hz] 9.01 8.98 8.95

3rd peak [Hz] . 26.51 26.38

4th peak [Hz] . 50.11 49.86

Table 7.1 – Frequency of the peaks observed in FFT analysis of different experi-
mental data of flexibility excitation in a wooden beam of free length 244cm and
section 1.3 cm × 3.8 cm.
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Figure 7.2 – Tip of the beam, with one AR schematized as a point mass with
orientable thrust. Both the weight from the AR and the generated thrust have to
be taken into account in the boundary conditions.

conditions can be written as follows

V (x = lb) = −mqr,1ẅ(lb, t) − θ̈b(lb)mqr,1

[

pT CP
qr,1

]

x
+

[

mqr,1ge
W
3 + fT CP

qr,1

]

x
(7.4)

M(x = lb) = −Iqr,1θ̈b(lb) − ẅ(lb, t)mqr,1

[

pT CP
qr,1

]

x
+ dqr,1

[

mqr,1ge
W
3 − fT CP

qr,1

]

z

(7.5)

where [.]x and [.]z denote respectively the x and z component of a vector expressed
int the TCP -frame, mqr,1 the mass of the AR located at position pT CP

qr,1 in the
TCP -frame, dqr,1 denotes the distance between the tip of the beam and pT CP

qr,1 .
Note that this boundary conditions are close to the ones of a cantilever beam with
a lumped mass and a force at its end, the later being non-homogeneous, both cases
are carefully studied in [Meirovitch–2000b]. From the boundaries conditions, it is
possible to determine the exact solution coefficients.

7.1.2 MAGMaS Model

Considering the planar system described in Fig. 7.3, with a fully actuated ground
manipulator, a flexible beam with flexibility (exaggerated for illustration) and an
underactuated AR attached at the tip of the beam with its rotational decoupled
from the rest of the system by a passive joint.

By studying the energy flow in the system under the Euler-Lagrangian formalism
and by omitting the decoupled rotational dynamics of the AR, the equations of
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Figure 7.3 – Sketch of flexible MAGMaS composed of a fully actuated ground
manipulator, a flexible beam with flexibility (exaggerated for illustration) and an
underactuated AR attached at the tip of the beam with its rotational dynamics
decoupled from the rest of the system. Important modeling quantities are reported,
note that absolute angles are expressed with the notation θ̄· and relative angles with
θ·.

motions of the system can be written as
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 (7.7)

where θ ∈ R
n stacks the joint angles of the ground manipulator, δ ∈ R

µ stacks
the δi(t) deflection of each vibration mode considered, τarm ∈ R

n represents the
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joint torque in the robotic arm, Mq ∈ R
n×n, Mθδ ∈ R

n×µ, Mδθ ∈ R
µ×n are inertia

matrices and Mθδ = M⊤
δθ, Cq ∈ R

n×n, Cqδ ∈ R
n×µ, Cδq ∈ R

µ×n are Coriolis
matrices, Kδ ∈ R

m×m is a stiffness matrix, Bq,quad ∈ R
n×µ, Bδ,quad ∈ R

n×µ are
input mapping matrices from 2-dim AR thrust fqr = [fx,qr, fy,qr]⊤ to dynamics.
Here, note that due to orthogonality between each mode, Mδ,Kδ ∈ R

µ×µ have
only diagonal component, see [Meirovitch–2000b].

In order to simplify the expression of these matrices, it is assumed that the
CoM of the AR and the connection are considered to be at the tip of the beam,
i.e., the AR thrust and torque, and the weight of both the AR and its arm are
applied at the tip of the beam. Furthermore, let us assume that the AR and
connector weight are not supported by the arm but by the AR. This translates to
θconn = 0, mconn = 0, dconn = 0 and mqr = 0.

The compact expression of the matrices important for the system analysis are
explicited here after:

Kδ =




EId11 EId12

EId12 EId22



 Mδ =




ρAa11 ρAa12

ρAa12 ρAa22



 (7.8)

where the terms aij and dij are coming from the beam’s kinetic and potential energy
expressions in the Euler-Lagrangian formalism and can be written as

aii =
∫ lb

0
φi(x)φj(x)dx dii =

∫ lb

0
φ′′

i (x)φ′′
j (x)dx (7.9)

where φ′′
i (x) denotes the second spatial derivative of φi(x). Thanks to the orthogo-

nality property of the modes, see [Meirovitch–2000a], it can be noted that aij = 0
and dij = 0 when i 6= j ∀(i, j) ∈ R

µ×µ. Moreover the part of the control matrix
relating the AR thrust and the vibration dynamics can be written

Bδ,qr =




f1(θ, δ) 0

f2(θ, δ) 0



 (7.10)

with

f1(θ, δ) =
(
wb sin(θb)φ′

1(lb) + cos(θb)φ1(lb)
)

cos(θqr) (7.11)

f2(θ, δ) =
(
wb sin(θb)φ′

2(lb) + cos(θb)φ2(lb)
)

cos(θqr) (7.12)

where θqr = θ̄qr − (θ̄b + θconn), considering the assumption introduced.

7.2 System Analysis

This section exploits the presented model in order to conduct a system analysis on
the flexibility in beam manipulated by MAGMaS. By linearizing the vibration model
close to the operational point, observability and controllability of the vibration
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modes are proven.

7.2.1 Linearized State Space Representation

From (7.6) one can separate the dynamics of the manipulator and the one of the
vibration. Furthermore assuming very high tracking performances for the ground
manipulator, i.e., θ = θd, on can rewrite the vibration dynamics as

δ̈ = M−1
δ

(

−E − Kδ − g(θd) + Bδτqr

)

(7.13)

where

E = M⊤
θqθ̈

d + Cδθθ̇
d, (7.14)

the term E can be interpreted as kind of energy dissipation with an upper limit
and Bδ is the linearized version of Bδ,qr from (7.10), such that

Bδ =




b1 0

b2 0



 . (7.15)

Note that Mθq is function of θ and Cδθ is function of θ and δ. It is interesting to
then rewrite the state space representation of vibration dynamics.




δ̈

δ̇



 =




0 −M−1

δ K

I 0








δ̇

δ



 +




M−1

δ Bδ

0



 τqr −




−M−1

δ E

0



 (7.16)

=




0 −K̄

I 0





︸ ︷︷ ︸

A




δ̇

δ



 +




B̄δ

0





︸ ︷︷ ︸

B

τqr −




−Ē

0





︸ ︷︷ ︸

F

, (7.17)

with A ∈ R
4×4, B ∈ R

4×2 and F ∈ R
4, as in practice only the two first vibration

modes are considered, see Sec. 7.1.1. As one expected outcome of the system
analysis is to assess if the vibration modes are observable, an output of the state
space is represented as

y =
[

0 I
]

︸ ︷︷ ︸

C




δ̇

δ



 , (7.18)

with C ∈ R
2×4 given the size of δ. The system analysis is conducted on the

linearized state space model of the vibration mode just introduced, the observability
and controllability of the vibration mode are established.
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7.2.2 Observability

One can write the observability matrix of the state space system described by
(7.17)-(7.18) as

Obs =
[

C CA CA2 CA3
]⊤
. (7.19)

Clearly this matrix has row rank equal to 4, as C =
[

0 I
]

and CA =
[

I 0
]

, thus

the matrix [C CA]⊤ is full rank. So the state variables δ1 and δ2 are observable.

7.2.3 Controllability

One can write the controllability matrix of the state space system described by
(7.17)-(7.18) as

Ctrl =
[

B AB A2B A3B
]

. (7.20)

The rank analysis is not straightforward for the controllability matrix. One can note
that, if rank

(

B̄δ

)

= 2 is guaranteed or already proven, then the matrix column

rank is 4, as B =




B̄δ

0



 and AB =




0

B̄δ



. A general approach to assess the rank

of the controllability matrix starts by precising the expression of matrix B̄δ using
the expression of (7.8) and (7.15),

B̄δ = M−1
δ Bδ =

1
ρA

diag
(

a−1
11 , a

−1
22

)




b1 0

b2 0



 =
1
Aρ





b1

a11
0

b2

a22
0



 =




b̃1 0

b̃2 0



 . (7.21)

From here, once noticed that every sub-matrix of Ctrl has a zeros column, hence
the study of controllability has to be made on the following simplified matrix

Ctrls =










b̃1 0 −EId11

a11ρA
b̃1 0

b̃2 0 −EId22

a22ρA
b̃2 0

0 b̃1 0 −EId11

a11ρA
b̃1

0 b̃2 0 −EId22

a22ρA
b̃2










. (7.22)

The determinant of this simplified controllability matrix is,

det (Ctrls) = −
E2 I2 b1

2 b2
2 (a11 d22 − a22 d11)2

a4
11 a

4
22 ρ

6A6
. (7.23)

For the system to be controllable the determinant as to be different from zero.
Knowing that the physical quantities are all positive, that the product a11a22 also
is and that Mδ is invertible in order to write the state space representation, one
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only needs to study the below expression

det (Ctrls) = 0 ⇔ Γ = b1 b2 (a11 d22 − a22 d11) = 0, (7.24)

which maps to three independent cases to be studied: i) b1 = 0, ii) b2 = 0 and
iii) (a11 d22 − a22 d11) = 0.

In order to proceed, let us write down the linearization of matrix Bδ for δ =
[0 0]⊤ and θ = θd. Based on (7.11)- (7.12), the linearization yields

b1 = f1(θd, [0 0]⊤) +
∂f1

∂δ1

∣
∣
∣
∣
δ=[0 0]⊤

(δ1 − 0) +
∂f1

∂δ2

∣
∣
∣
∣
δ=[0 0]⊤

(δ2 − 0) (7.25)

b2 = f2(θd, [0 0]⊤) +
∂f2

∂δ1

∣
∣
∣
∣
δ=[0 0]⊤

(δ1 − 0) +
∂f2

∂δ2

∣
∣
∣
∣
δ=[0 0]⊤

(δ2 − 0). (7.26)

Expanding the terms leads to the following expressions,

b1 = φ1(lb) cos
(

θ̄d
qr − θ0 − θd

1 − θd
2 − θd

3 − θT CP

)

= φ1(lb) cos
(

θd
qr

)

(7.27)

b2 = φ2(lb) cos
(

θ̄d
qr − θ0 − θd

1 − θd
2 − θd

3 − θT CP

)

= φ2(lb) cos
(

θd
qr

)

(7.28)

Then the conditions (i) and (ii) for loss of controllability become, φ1(lb) = 0 or
φ2(lb) = 0, i.e., lb is a node for the vibration modes, or θqr = kπ + π

2 k ∈ Z, i.e.,
the thrust orientation is perpendicular to wb direction hence can not impact wb.

The third and last condition for null determinant is (a11 d22 − a22 d11) = 0, were
aii and dii expressions are recalled in (7.9) and are introduce in the computation of
the kinetic and potential energy in the beam. First notice that aii 6= 0 and dii 6= 0,
because otherwise

φi(x) = 0 ∀x ∈ [0 lb] (7.29)

φ′′
i (x) = 0 ∀x ∈ [0 lb], (7.30)

which means that there are no vibrations along the beam. So the third condition
translates to the following equality,

a11

a22
=
d11

d22
, (7.31)

which can be rewritten as

ρAa11

EId11
=
ρAa22

EId22
. (7.32)

The numerators can be seen as the ’inertia’ of the two modes and the denomina-
tors as ’stiffness’ of the modes. Hence the fractions represents the natural spatial
frequency of the modes. If they are equal, it means that the two mode are spatially
super-imposed, hence not differentiable so it is like there is only one mode.

In conclusion, for the linearized system to be controllable the following must
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hold

1) φ1(lb) 6= 0, i.e., lb is not a node for first mode vibration

2) φ2(lb) 6= 0, i.e., lb is not a node for second mode vibration

3) θqr 6= π
2 + kπ k ∈ Z, i.e., the thrust of the AR is not orthogonal to the

vibration induced deflection

4) (a11 d22 − a22 d11) = 0, i.e., the spatial natural frequency of the two modes
are different

The conditions 1) 2) and 4) are always fulfilled by system design in this mechanical
system. So the only condition to check to guarantee controllability is that the thrust
orientation must remain non-orthogonal to the deflection of the beam.

7.3 Discusssion and Future Works

This exploratory study on the flexibility in MAGMaS, conveys some interesting
system properties which require to be tested in simulations and experiments. The
modeling of the flexibility in beam manipulated by MAGMaS was the occasion to
exhibit the controllability of the vibration modes from a theoretical analysis. This
is validating the empirical observation made during the experiments on MAGMaS
presented in Chapter 5.

Modeling

The modeling can evolve around three main directions. First, the modeling relies
on several assumptions to reduce the expression complexity and provide a simplified
model, relaxing these assumptions should be considered to increase the accuracy of
the model.

Another way to extend the proposed model is to consider the 3D case, which
should make appear more coupling between the vibration modes and the ground
manipulator dynamics, due to centrifugal/Coriolis effects.

In the same direction of extending the model, multi-directional thrust AR could
be considered instead of underactuated AR, this will make a coupling between the
AR rotational dynamics and the flexibility dynamics appear. Lastly considering
several AR and different shape of object would also provide a more general model.

Another way to model flexibility is via the finite element methods, see [Meirovitch–
2000c], this has not been investigated yet and might provide better results in terms
of computational power required to simulate the flexibility. In particular, the ad-
dition of several AR along a beam is expected to be easier in the finite element
method, as extra forces will be applied in discrete location, than in the continu-
ous method as discrete force exertion corresponds to an in-homogeneous boundary
condition, thus complicating the analytical solution.
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Control

The linearized model for the vibration modes is controllable and observable. From
the control point of view, it implies that separate controllers for the ground manipu-
lator and the AR orientation need to be synthesized and, as the model derived relies
on linearization, the vibration linear controller shall emphasis robustness, with ap-
proaches like Linear-Quadratic Regulator (LQR) or H∞ control. At the same time
an observer or the vibration mode should be designed, also relying on the linearized
model. P otential observers and controllers designed based on the linearized model
need to be validated in realistic simulations based on the non-linearized model.
Simulations would permit to assess their robustness to the model discrepancies and
to parameters variations in a controlled environment.
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8.1 Summary

Nowadays free-flying MAV are a well developed technology accompanied by various
commercial successes in the general public, spanning from crop/structure visual
inspection to hobby racing. The next frontier for Aerial Robotics is symbolized
by APhI, where MAV are embodied with the capacity to physically interact with
their environment; this opens the way to many applications, e.g., contact inspection
and cooperative manipulation. The research lines on APhI and AM are fostered
by European projects and other national initiatives leading to a rich literature of
both original designs and clever control algorithms. The work presented in this
thesis is based on a vision of AR as potential flying companions for cooperative
manipulation with both humans and other robots. The main contribution of this
thesis consists in proposing a new concept for cooperative manipulation, MAGMaS
composed of both ground and aerial manipulators. While combining two different
kind of manipulators to mitigate their respective drawbacks, MAGMaS also open a
new research direction with many possible applications. This thesis work laid the
foundation of the theory for MAGMaS and demonstrated, through experiments,
their feasibility and potential for a breakthrough in the real world. In particular,
the first ever cooperative manipulation between a ground and an aerial manipulator
was showcased at the Hanover Fair 2017. In the following, an overview of the content
and the contributions in the chapters is given.

In Chapter 3, the motivations of the MAGMaS concept are outlined. From a
review of available manipulation solutions, it appeared that ground manipulators
often suffer from limited workspace around their base and admissible joint torques,
but have a satisfying payload and energetic autonomy. The limitations of ground
manipulator can be exhibited when manipulating long objects: to satisfy the torque
constrains the grasping should be close to the object CoM which is often in conflict
with the workspace limitation. On the other hand AR, which have a virtually infi-
nite workspace, are suffering from payload and autonomy limitation. The concept
of MAGMaS targets the cooperative manipulation of long objects and proposes to
combine ground manipulators and AR to mitigate their respective drawbacks. In
particular the addition of a flying companion to the ground manipulator permits
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to i) reduce the torque perceived at the EE and ii) suppress vibrations in the load.
Application are numerous for industry requiring assembly or disassembly tasks, e.g.,
construction, plant decommissioning and USAR. The use of robots for these tasks
is even more desirable if the environment is hazardous for humans. Based on these
motivations and potential applications the general model of MAGMaS is introduced
at length. Modeling of the AR in free flight is conducted and this model is then
incorporated in the one of MAGMaS. Lastly, ways to extend the proposed model
and further possible theoretical studies on MAGMaS are introduced.

In Chapter 4, the control framework necessary for MAGMaS is introduced, with
a focus on the AR specific controller. A generic high level controller composed of
a basic planner and control allocation scheme is presented. The control allocation
splits the desired forces required to move the load for each sub-system of the MAG-
MaS. At the same time it ensures that every actuation and system constraints are
respected and it exploits the redundancy of MAGMaS to maximize the manipulabil-
ity index of the system. In order to control the AR three components are required,
i) a low-level geometric controller, ii) an external wrench estimator and iii) a force
based controller, each of which is presented in depth. A particular emphasis is given
to the external wrench estimation with two distinct methods presented, one relying
on model identification and the other on closed loop motor velocity control. The
presented force based controller for AR relies on the external wrench estimator and
on classical impedance control techniques.

The experimental validations of the MAGMaS concept are presented in Chap-
ter 5. The first part of the chapter is devoted to numerical simulations and proof of
concept experiments and corresponds to the early stage on the work on MAGMaS.
In this early stage, the use of a quadrotor with a spherical passive joint was con-
sidered, in order to efficiently decouple the rotational dynamics of the manipulated
load and the AR. The design and the benefit of such a joint is validated experimen-
tally. Additionally the capacity of MAGMaS to reduce the vibration of the load
are highlighted in a comparative experiment. The second part of the chapter is
devoted to a massive integration and experimental work developed for the KUKA
2017 Innovation Award; the addition of a tele-presence framework to a MAGMaS
and the design of a multi-directional thrust AR are detailed. The implementation
and integration of the overall system is covered in depth. This part is concluded
with the experimental results for cooperative bar lifting.

In Chapter 7, an on-going exploratory study on the flexibility and its impli-
cations in MAGMaS is conducted. A planar model of MAGMaS manipulating a
flexible beam is presented, with emphasis put on the flexibility modeling. The pro-
posed system is linearized to conduct a system analysis: both observability and
controllability of the first two vibration modes are exhibited.

In parallel to MAGMaS another research direction was investigated during this
thesis. The use of elastic joints for AM was explored with the conviction that they
could allow safer and more versatile physical interactions with the environment.
This field of research is stimulating, but integration of elastic joints and VSA on
AR proved tedious in practice due to hardware limitations. The theoretical study of
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flatness for elastic joint AR is presented in Chapter 6. The model of an AR with an
elastic joint is derived and the analysis conducting to the proof of flatness for a set of
output is described. Finally, a feedback linearization based controller is synthesized
for the AR with VSA. The approach is validated by extensive numerical simulations
comprising noise and parametric uncertainties and by a set of experiments with a
VSA mounted on the AR. This chapter is concluded by possible research directions
on using elastic joints for AR.

8.2 Future Works and Potential Extensions

8.2.1 MAGMaS: Aerial-Ground Co-manipulation

The original and unique work on MAGMaS presented in this thesis is still in its
infancy. Hence the potential future works to develop MAGMaS and their usage is
vast and can be articulated around the following directions, in no preferencial order:
i) theoretical contributions, ii) planning and supervision, iii) environment percep-
tion, iv) safe human physical interaction and v) system design and integration.

Theoretical Contributions Exploiting the formalization of MAGMaS proposed
in this thesis several research directions could be pursued (see Sec. 3.4). During
the developments of MAGMaS the following questions were raised and could not
be addressed due to resource/time constraints.

• How does the number of ground manipulators and AR impact the MAGMaS
overall performance?

• Is there an optimal number of DoFs for the ground manipulator given a MAG-
MaS structure?

• Are DoFs from a mobile base equivalent in terms of system performances to
the one of the ground manipulator? Can the number of DoFs of the ground
manipulator be reduced if it is mounted on a mobile base?

• What are the best grasping points for a weirdly shaped object given a MAG-
MaS structure?

• How to estimate the load inertial parameters with a MAGMaS? How to exploit
this information to increase the system performances?

• Can an AR failure be compensated by the MAGMaS at large?
Each of this questions merits a separated theoretical study. Moreover, so far the
base of the ground manipulator was assumed fixed, waving this hypothesis and
considering a mobile base should trigger new challenges for modeling, planning and
control of MAGMaS.

Planning and Supervision In the presented work the planning and supervision
solutions proposed are very crude as the focus was more to enable MAGMaS from
a lower abstraction level point of view. In particular the task and trajectory for
MAGMaS is an open field. A planning brick which should be developed for further
use of MAGMaS consists in a collision avoidance scheme taking into account the
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manipulated load. Moreover from a supervision point of view, the interface with
human operator is paramount. The three main directions that could be investigated
for human machine interfaces are: i) the visual feedbacks provided by a combination
of on-board cameras and a visualizer based on the system state, ii) the use of a
haptic interface to control the system in tele-presence, in particular a deeper study
on the informations to render in order to provide better situational awareness and
iii) the possibility to directly physically interact with the system, via impedance
framework for example, in order to guide or halt the motion of a MAGMaS. For
more details see Sec. 5.5.

Environment Perception The presented work made abstractions of the per-
ception challenge inherent to any robotic application. The experiment setup relies
heavily on MoCap which provides an accurate position and orientation informa-
tion for objects equipped with markers, robots or environment parts. Perception is
important to maintain knowledge of the systems’ environment, e.g., for dynamic ob-
stacle avoidance or grasping, and for the AR state reconstruction. Both usages can
be fulfilled with visual perception solutions, some potential directions are detailed
in Sec. 5.5. The research group at LAAS–CNRS is currently investigating some
visual perception methods for AR. In particular, the use of infra-red stereo-slam is
investigated with an Intel Euclide sensor1 and shows promising results.

Safe Human Physical Interaction A direction unveiled, but not explored in
this thesis is the potential to have human physical interactions with the MAGMaS.
Although the safe physical interaction with industrial manipulator is well investi-
gated in the literature, safe physical interaction with AR studies are still embryonic
in the literature. The recent advances in force estimation and control for AR are a
first step towards a safe physical interaction with humans for AR. Nevertheless the
techniques developed for ground manipulators (see Sec. 5.5), can not bee applied
as such to AR due to the floating base challenge arising from the flying platform.
Further developments in that direction will enable the flying companion paradigm
to take form. Also a unified safe physical interaction for heterogeneous systems,
with both ground and aerial manipulators as MAGMaS, should be investigated to
allow collaborative part handling and assembly.

System Design and Integration As the MAGMaS concept started from a blank
sheet, many design choices had to be made with no comparison point available.
With this respect further work on MAGMaS could use the aggregated experience to
improve several aspects of the system design. In particular, the flying companion is
an in-house design tailored for bar lifting and at least two points could be improved.
First the design of the grasping mechanism should be at the same time robustified
and also made lighter, to better fit the AR paradigms. Another improvement of
the AR would consist in a study of the possible propellers’ layout in a way to

1https://click.intel.com/intelr-euclidtm-development-kit.html
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create some favorable force exertion direction matching the bar lifting task while
conserving the over properties of the multi-directional thrust AV. Moreover, the
integration of the MAGMaS was a challenge and was conducted at very fast pace for
a dedicated application. Hence it could be beneficial to re-define the different sub-
system interfaces to make the system even more modular and allow for easier change
of sub-system, i.e., ground manipulator or AR or number of AR or haptic interface.
This work, although not mandatory, from a research point of view should prove
its importance for further usage of MAGMaS. Lastly an important step towards
real life applications of MAGMaS is the increase of the system autonomy, from
the energy and perception point of view. This calls for further developments and
integration of perceptions solutions for MAGMaS. An idea to increase the energy
autonomy of MAGMaS, could be to work towards the integration of an automated
charging pod for the AR on the ground manipulator base.

8.2.2 MAGMAS Possible Applications

On top of the presented potential extensions, two major applications remain to
be fully demonstrated. On one hand, the full scale demonstration of a MAGMaS
in a real case scenario is still missing and should became feasible with the work
detailed under the umbrella system design and integration, see previous section
and Sec. 5.5. In particular the most promising scenario of use seems to be nuclear
plant decommissioning, for the reasons mentioned in the following. First, nuclear
plants are very well documented making the environment a priori well known for
the system and very structured, which should reduce the strain on planning and
perception capacities for MAGMaS. The second reason is that part of nuclear plants
are hazardous due to their radioactivity, even if small, thus robotic usage is highly
sought. Lastly the worldwide aging of nuclear plants calls for decommissioning
or refurbishing operations, e.g., average age for nuclear reactors in France is 32
years for an expected lifetime of 40 years and 9 reactors were already undergoing
decommissioning in 20132.

On the other hand, MAGMaS are opening the way toward human-AR coopera-
tive manipulation. Indeed the developments on AR to make them flying companions

for humans is already engaged. And once a proper decentralized force control frame-
work would be achieved for cooperative manipulation in MAGMaS the extension
to human-AR should become possible and thrilling.

8.2.3 Variable Stiffness Actuators for Aerial Vehicles

During this work, the use of VSA for AR has been investigated. Although successful
experiments were conducted, it revealed to be a subject fit for a thesis in itself. As
it seems to be currently investigated by other groups specialized in aerial manipu-
lation. In particular foundations on the control and integration of VSA were laid,

2https://www.connaissancedesenergies.org/fiche-pedagogique/
parc-nucleaire-francais
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but this topic requires further development in the direction of lightweight VSA, as
detailed in Sec. 6.6. From the experimental work it results that the development
of VSA for AR should focus on lighter actuators but more importantly on more
robust methods for parameters’ identification and finer control strategies for the
VSA. Once this steps are achieved, the VSA low-level control shall not be a limi-
tation anymore to the use of advanced non-linear control techniques for AR. This
should pave the way to interesting applications, like throwing, collision compliance
and human APhI, each calling for its specific challenges. The capacities of VSA in
these situations should be leveraged by fine planning algorithms and precise control
algorithms, for the case at hand, which both need to be devised.
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Abstract

The work presented in this Appendix is not a personal contribution

and is presented here for completeness of the argument.

This appendix details a force estimation approach based on closed-loop spinning
velocity control of the propellers, see Sec. A.1. It has been investigated, in a parallel
work, at LAAS–CNRS and showed conclusive results for spinning velocity control
and APhI applications. Indeed, the precise spinning velocity control allows to use
static mapping between the spinning velocity and the wrench generated by the
propeller, see Sec. A.2.

A.1 Propeller Spinning Velocity Control

This section outlines the results presented in [Franchi–2017b], on which the work
presented in Chapter 5 of this thesis is relying.

Motivations

Recall that the biggest flaw of many low/middle-cost ESC, used in multi-rotor
platforms for APhI, is that setpoints or pseudo-setpoints are used to command
propeller spinning velocity in a open loop fashion. This relies on the use of look-up
table and is clearly not fast nor robust, moreover the pre-calibration effort is non
negligible.

Some ESC softwares, like SimonK, BHLHeli and Autoquad ESC32, implement
a real closed-loop speed control to solve this problem. The typical approach is to
use a proportional integral (PI) in conjunction with a feedforward (FF). This allows
to reach good control performances, however pre-calibration remains intensive for
the FF term, that is specific for each motor/propeller pair. The introduction of an
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integral action provides some robustness, which is kept limited due tot the need of
avoiding excessive overshoot and wind-up problems.

The solution to improve spinning velocity control, was to propose and implement
a newest and easy low-level spinning velocity control loop on the ESC. This is
described at length in [Franchi–2017b], the rest of this section outlines this work
and the implications for APhI. The solution developed is different from the classical
ESC software presented earlier, as i) it does not require any pre-calibration phase,
ii) it is extremely robust and applicable to a wide set of motor/propeller without
the need of gain tunning, iii) it can achieve performances that are independent of
the battery terminal voltage, the mechanical wearing, the temperature and so on,
iv) it is amenable to extremely low complexity implementation even when compared
with ‘supposedly simple’ classical controllers.

Problem Setting

Standard BLDC motors are considered with their associated control hardware, in-
depth description can be found in [Franchi–2017b].

The basic functioning principle of of such an ESC and BLDC motor is as follows.
An equivalent voltage, uV+ is applied to the motor coils, where u ∈ [0, 1] is the
duty cycle of the actual PWM signal used to control the motor and V+ ∈ R

+ is the
power supply voltage (typically the battery’s terminal voltage). For low inductance
BLDC motors, fast current dynamics can be neglected, with this approximation
the rotor frequency (or speed) of rotation dynamics can be represented as nonlinear
differential equation

ẋ = f̄(x, t) − f̄(x, V+, t)u (A.1)

where both f̄ and h̄ are unknown nonlinear function of x and the time t. One can
see the function h̄ as the inverse of the inertia ‘seen’ by the motor control input, u.
While f̄ gathers all the possible other possible nonlinear dynamical effects.

The ESC unit contain an inverter which provides the sequential current commu-
tation on the coil, generating the magnetic field that start and sustain the motion
of the rotor. Commutation are triggered by a rotor position feedback that comes
either from and additional sensor (e.g., an encoder) or, in case of sensorless BLDC,
from the detection of the instants of zero crossing of the voltage generated in the un-
powered windings. The later approach has been selected, as it is the most common
in aerial robotics applications, since it allows for smaller weight, reduced hardware
complexity and lower costs. This comes at a cost, the speed information of this
method is poor for low speed, which are usually not spawned in typical applica-
tions. Considering that (A.1) can be rewritten for the rotor period of rotation
y = 1/x, its dynamics can be written as

ẏ = −y2f̄(1/y, t) − y2f̄(1/y, V+, t)u (A.2)

= f(y, t) − h(y, V+, t)u (A.3)
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Problem Statement

The goal of the described control method is to enforce a robust control of the pro-
peller period of rotation. Given that the desired spinning velocity and the measured
one are available signals, and that the duty cycle of the PWM voltage is the control
input. The goal is to design a feedback control loop, that steers the motor’s period
of rotation to the desired one, while enforcing:

• Low Complexity, the algorithm should be implementable with simple arith-
metic operations (additions, subtractions, shift, comparison and simple mul-
tiplication) at low resolution;

• Adaptiveness and Robustness, the algorithm should be performing for all
kind of motor/propeller configuration and for wide range of setpoints without
explicit tuning.

An algorithm answering these two requirements has been devised in [Franchi–
2017b] and is detailed hereafter.

The ABAG Algorithm

The algorithm proposed is named ABAG, for Adaptive-Bias/Adaptive-Gain algo-
rithm. Its basic loop is composed of four steps;

1. an error sign low pass filtering, the low pass filtered error signal is used
in the computation of the bias and the gain.

2. an adaptive bias update, is necessary to be used in conjunction of the gain
update to effectively suppress chattering.

3. an adaptive gain update, the idea is to increase the gain only if the tracking
quality degrades and to decrease it otherwise

4. a control input computation,the control input is computed with the up-
dated gain and bias to track desired speed.

For both the adaptive bias and adaptive gain, during their update phase they are
increased/decreased of a given quantity which is a parameter from the controller.
Additionally the choice to decrease/increase them is based on comparison with
one static threshold for each, leading to two additional parameters for the ABAG
controller. Rationals behind this strategy, as well as more details can be found
in [Franchi–2017b].

Software Implementation

The aforementioned algorithm has been implement on an ATMega168A, with lim-
ited arithmetic capabilities, allowing only 8bits additions, subtractions and multi-
plications, The full software comprise, i) an interface and protocol part, ii) a clock
synchronization routine, as the main difficulty was to get a precise time measure on
the micro-controller that has no quartz oscillator, iii) a speed measurement routine
with correct noise filtering capabilities not sacrificing filtering delay, iv) the ABAG
Algorithm, with a recorder longest code path of 27.5 µs at 8 MHz, and v) safety
features (active breaking, over-current and blockage safeties).
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Figure A.1 – Picture of the setup for the propeller aerodynamic coefficients iden-
tification. The propeller and its associated BLDC motor are mounted on the 6D
F/T sensor. The combination is mounted on a support to ensure that ground effect
aerodynamic effect are not affecting the measurements. (From [Bicego–2015])

The small execution time of the ABAG Algorithm is a very important property
since the controller, by essence, provide very discontinuous PWM duty cycle, the
faster it runs the less chattering will actually be visible from the motor coil.

Performances Evaluations

The performances of the full software have been successfully tested both on test
bench and in-flight.

The bench tests, where conducted with several motors and propellers, with the
same ABAG parameters, in depth results are presented in [Franchi–2017b]. For step
response commands, the response time are very fast with rising time of a few tens
of ms and the steady case average error is null. the tracking of time varying chirp
is also excellent for all motor/propeller combinations, with performances degrading
smoothly with increasing acceleration.

The in-flight tests consist of the usage of this ESC software by the group, e.g.,
[Tognon–2016b] or [Ryll–2017] and the results presented in Chapter 5 of this thesis.

A.2 Force Controller at Propeller Level

Once the propeller spinning velocity is efficiently regulated, a last step is neces-
sary for force control, identify the maps between spinning velocity and the wrench
produced by the propeller (thrust force and the drag moment). Relying on the
simplified models presented in Sec. 3.2.1, this translate in identifying two aerody-
namic coefficients the aerodynamic thrust coefficient, cF , and the drag coefficient
cτ . This is done by mounting the motor/propeller pair on a static 6D F/T-sensor,
as depicted in Fig. A.1, and is presented here for completeness as it was investigated
in [Bicego–2015].
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Figure A.2 – Excitation trajectory used for the propeller aerodynamic coefficients
identification. Note that below 15 Hz spinning velocity tracking can not be ensured
because the velocity measurements are not precise enough. Also the excitation is
done in three chunks to prevetn motor overheating. (From [Bicego–2015])

The identification process is as follows, the motor is fed with a spinning velocity
trajectory composed of steps spanning its full operation range, the steps are chosen
long enough to remove transient behavior, see Fig. A.2. The signal from the 6D F/T-
sensor is acquired and post-processed offline, i.e., filtered with a non causal filter.
The force and torque measurements in the relevant directions are then synchronized
with the recorded spinning velocity. The value of the aerodynamics coefficient are
then retrieved using least square methods, under the first order approximation that
the relation between the propeller wrench and the squared spinning velocity is
linear.
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Organisation

Ce résumé retrace les grandes lignes des travaux de recherche présentés dans cette
thèse. Dans un premier temps un rapide panorama du contexte de la thèse, l’inter-
action physique aérienne entre robots aériens (AR pour Aerial Robot) et leur envi-
ronnement, est présenté dans la section B.1. En particulier, les concepts nécessaires
au développement de l’interaction physique aérienne (APhI pour Aerial Physical

Interaction) sont introduits. Une première contribution relative à l’estimation de
force, pré-requis pour l’APhI est présentée dans la section B.2. Dans un deuxième
temps, les travaux formant la contribution principale de cette thèse sont introduits.
À savoir, le système de co-manipulation hétérogène aérien/terrestre, appelé MAG-
MaS pour Multiple Aerial-Ground Manipulator System. Dans la section B.3, les
motivations à l’origine d’un tel système sont détaillées et les principaux résultats
de cette thèse sont présentés. Un travail mené en parallèle sur les actionneurs à
impédance variable est passé en revu dans la section B.4. Celui-ci représente aussi
une contribution dans le domaine des APhI. Enfin les principaux résultats de cette
thèse et leurs implications sont synthétisés dans la section B.5.

B.1 Parardigmes de l’interaction aérienne physique

B.1.1 Contexte

Les recherches sur les aéronefs sans pilote (UAVs, pour unmanned aerial vehicles)
ont connues de rapides développements dans les dernières décennies. Dans les dé-
veloppements suivants, l’accent sera mis sur les applications civiles et les micro aé-
ronefs (MAV, pour Micro Aerial Vehicle), définis comme étant « assez petits pour
être transporté et utilisé par une personne seule » (voir [Galinsky–2007]), ce qui en
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(a) [NASA] (b) [Wikimedia Foundation] (c) [Wikimedia Foundation]

Figure B.1 – Divers plateformes MAV : de gauche à droite un aéronef à voilure
fixe, un hélicoptère et un multi-rotor.

pratique ce traduit par un poids de 5 à 6 kg et une envergure d’environ 1.2 m, voir
figure B.1.

Dans les dernières années, la chutes du prix des composants électroniques a
rendu les MAV abordables pour tout type de recherches et d’applications indus-
trielles. Résultant en une variété d’usages et de designs, tant pour les aéronefs à
voilure fixe que ce à voilure tournantes. En particulier les services de secours et
le domaine de l’agriculture sont intéressés par des applications de surveillance. La
chute des prix a aussi permis la démocratisation des usages de loisirs comme la pho-
tographie aérienne et les courses de pilotage. Considérant le succès et les résultats de
recherche pour les vols sans contact avec l’environnement, e.g., [Mahony–2012] pour
un tutoriel complet sur les multi-rotors, un nouveau thème de recherche sur l’in-
teraction physique avec l’environnement (APhI, pour Aerial Physical Interaction)
a émergé dans les 15 dernières années. Ce thème de recherche étudie les interac-
tions physique avec l’environnement ; de la plus simple, comme pousser contre une
surface, à de plus complexes, comme le transport ou la manipulation coopérative
d’objets.

B.1.2 Interactions physique avec l’environnement

Le terme APhI regroupe toutes les interactions physique avec l’environnement. Les
conditions pour rendre ses interactions possibles pour les MAV sont développées
dans cette section. Deux tâches simples pouvant servir d’illustration sont la capacité
à exercer des forces le long d’une surface ou à se percher, voir figure B.2. En Europe
ces recherches sont encouragées par de nombreux projets ; AIRobots1, ARCAS2,
AeroWorks3 et Aeroarms4.

Applications

Les applications d’APhI, non englobées par la manipulation aérienne (AM, pour
Aerial Manipulation) détaillée dans la section suivante, consistent à se percher (per-

1http://airobots.dei.unibo.it/
2http://www.arcas-project.eu/
3https://www.aeroworks2020.eu/
4https://aeroarms-project.eu/
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(a) [Gioioso–2014a] (b) [Wopereis–2017a]

Figure B.2 – Exemples d’interactions physiques avec l’environement : (a) poussée
contre une surface et (b) perching sur un mur.

ching) quand un MAV s’attache temporairement à l’environnement, ou à exercer
une force contre une surface, en poussant sur un point ou en glissant le long d’une
surface tout en poussant. Les interactions au moyen de câbles sont aussi présentées.

Perching

Le perching est étudié dans le domaine de l’APhI, comme un moyen d’augmenter
l’endurance des MAV. En effet, une fois perchés les MAV n’ont plus besoin de ré-
sister activement la gravité avec leurs hélices, réduisant ainsi leur consommation
d’énergie. Le perching peut être utile pour les réseaux de capteurs, qu’il s’agisse
de capteurs de température ou de caméras utilisées pour la surveillance de l’en-
vironnement, par exemple pour la surveillance des foules, ou comme relais radio
dans un environnement post-catastrophe. Une autre utilisation de la manœuvre de
perching est le rechargement de la batterie par énergie solaire, un MAV avec une
batterie faible peut se percher et utiliser un panneau solaire pour recharger sa bat-
terie avant de continuer la mission. Dans [Wopereis–2017a], les auteurs étudient le
perching pour les multi-rotors, ils proposent un design mécanique pour se percher
sur des murs verticaux. Les résultats présentés dans [Pope–2017] vont encore plus
loin et proposent une solution pour se percher et grimper sur des surfaces verticales.
Dans [Thomas–2016b] une manœuvre de vol agressive pour se percher sur une sur-
face inclinée est étudiée. Des capacités de perching ont également été démontrées
avec succès pour de petits avions à voilure fixe, comme dans [Mehanovic–2017]
et [Desbiens–2011].

Application de force sur une surface

Une autre tâche souvent décrite dans la littérature des APhI consiste à exercer une
force sur une surface, éventuellement le long d’une trajectoire et tout en suivant un
profile de force. Cette description se traduit par une action de poussée où le but est
d’exercer une force désirée sur un emplacement, soit pour réaliser une mesure via un
capteur qui nécessite un contact (type ultrasons) ou soit pour appuyer sur un méca-
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(a) [Elistair] (b) [Kondak–2009] (c) [Tognon–2016b]

Figure B.3 – APhI par câble : (a) solution commerciale pour une surveillance
endurante, (b) transport de charge en collaboration et (c) exploitation du câble
pour atterrir sur une surface en pente.

nisme de type interrupteur, ou d’exercer un force le long d’une trajectoire, pour la
peinture en hauteur par exemple. Des exemples peuvent être trouvés dans [Gioioso–
2014a] avec un contrôleur pour vol quasi-stationnaire utilisé pour exercer des forces
3D sur une surface verticale via un outil monté sur un mécanisme passif, dans [Ryll–
2017] un MAV à poussée multidirectionnelle est utilisé pour l’inspection par contact
de tuyaux, en appliquant une pression sur les points de mesure, dans [Yüksel–2017]
un outil rigide est utilisé sur un plafond inégal ou dans [Alexis–2013] pour pousser
sur une surface verticale avec un asservissement via un capteur de force. Un autre
design intéressant est proposé dans [Papachristos–2014a], en mettant l’accent sur
la force exercée sur la surface en réorientant les hélices. Une autre approche, pro-
posée dans [Wopereis–2017b], pour appliquer une poussée sur l’environnement de
magnitude comparables au poids du MAV repose sur le contrôle LQR.

Interactions par câbles

La dernière tâche APhI examinée consiste à relier un MAV au sol au moyen d’un
câble. Ils peuvent être utilisés pour transporter de l’énergie ou des données en
augmentant ainsi l’autonomie du MAV, voir figure B.3. De plus, le câble peut être
utilisée pour améliorer les performances de vol, comme dans [Sandino–2014a], pour
survoler ou pour guider l’atterrissage, ou dans [Sandino–2014b]. Et même d’effectuer
des manœuvres impossibles sans cette attache, comme un atterrissage en douceur
et en toute sécurité sur une surface inclinée [Tognon–2016b]. De telles applications
sont désormais disponibles en tant que produit en France 5, avec comme application
la surveillance de zone avec capteur visuel ou la surveillance de la qualité de l’air.
Les câbles peuvent aussi être utilisés pour le transport collaboratif d’objets, voir
[Kondak–2009].

5http://elistair.com/
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(a) [Nguyen–2015] (b) [Mellinger–2010]

Figure B.4 – Exemples de manipualtion aérienne : (a) ouverture et fermeture d’un
tiroir et (b) transport collaboratif d’une charge.

B.1.3 Manipulation aérienne

La manipulation aérienne (AM, pour Aerial Manipulation) fait partie des inter-
action avec l’environnement. Celle-ci regroupe toutes les tâches où un objet doit
être transporté par un ou plusieurs MAV, voir figure B.4. Pour ce faire, des déve-
loppements sont nécessaires tant sur le design mécanique des MAV, que sur leur
contrôle et les mécanismes de coopération entre MAV. Ces thèmes sont passés en
revue ci-après.

B.1.4 Designs mécaniques

Afin de rendre possibles les différentes tâches d’APhI de nombreux designs méca-
niques ont été proposés. Nous nous concentrons sur les plateformes multi-rotor et
leurs extensions en robot aérien (AR, pour Aerial Robot). Ces plateformes peuvent
être séparées en deux grandes catégories, d’une part les designs à poussée uni-
directionelle et d’autre part les designs à poussé multi-directionnelle Pour faire de
ces plateformes des robots aériens, un manipulateur ou au moins un mécanisme de
préhension doit être intégré sur le MAV.

Designs à poussée unidirectionnelle

Une conception dans laquelle tous les plans de rotation des hélices sont coplanaires.
C’est le cas de la plateforme MAV la plus connue, le quadrotor planaire, consti-
tué de quatre hélices réparties sur les sommets d’un rectangle (régulier ou non),
toutes orientées dans la même direction. La simplicité de la conception mécanique
se fait au détriment du sous-actionnement, i.e., du couplage entre les dynamiques
de translation et de rotation. L’orientation de la poussée dans l’espace est réalisé via
des commandes différentielles pour les hélices. La simplicité et la robustesse de se
design l’ont également rendu célèbre parmi les amateurs. Globalement, la concep-
tion est toujours bénéfique et est utilisée pour transporter des charges lourdes, par
exemple un manipulateur à deux bras de 1.8 kg, comme dans [Suarez–2017a], ou des
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(a) [Kondak–2014] (b) [Suarez–2017a] (c) [Danko–2015]

Figure B.5 – Différents types de manipulateurs aériens : (a) version industrielles
à 7 DoFs, (b) manipulateur à doubel bras et (c) manipulateur parallèle monté sous
un MAV.

capteurs, dans des appications non APhI, tels que l’ALTA8 de Free Fly Systems 6

capables de soulever une charge utile 9.1 kg pour un poids à vide 6.2 kg. Le modèle
général du MAV multi-rotors est développé en profondeur dans la Sec. 3.2 de cette
thèse, en mettant l’accent sur le cas colinéaire, et une stratégie de contrôle possible
pour les APhI est détaillée dansla Sec. 4.2 de cette thèse.

Designs à Poussées Multidirectionnelle

Une tendance récente dans la conception des manipulateurs aériens est l’apparition
de MAV totalement actionnés, ce qui signifie que leurs dynamiques de translation et
de rotation sont complètement découplées (jusqu’aux limites d’actionnement). Les
plates-formes entièrement actionnées sont également appelées plateforme à poussée
multidirectionnelle, leur poussée pouvant être orientée dans plusieurs directions.
Ces plateformes peuvent suivre des trajectoires arbitraires dans SE(3). Mais plus
important encore, aucun changement d’orientation n’est nécessaire pour exercer une
force latérale, elles peuvent résister à des perturbations externes tout en suivant une
trajectoire dans SE(3). Pour garantir l’actionnement total, la conception mécanique
impose une disposition non colinéaire des hélices. De ce fait, l’actionnement total
génère des forces internes, qui se traduisent par une perte d’efficacité énergétique.
Pour arriver à un tel design, on peut choisir de partir d’une structure sous-actionnée
bien connue et de la modifier, comme le travail présenté dans [Rajappa–2015] [Ryll–
2017] sur les hexarotors. Un autre travail dans ce sens est présenté dans [Brescianini–
2016], où une configuration à huit rotors qui maximise l’agilité du véhicule dans
n’importe quelle direction est dérivée basée sur une analyse de force statique et de
couple pour des configurations d’actionneur génériques.

Manipulateurs Aériens

Afin de mettre en œuvre les AR, il est nécessaire d’adjoinde aux plateformes vo-
lantes un manipulateur qui soit à la fois léger (pour être emporter) et capable de

6http://freeflysystems.com/alta-8/specs
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(a) [Gawel–2017] (b) [Kessens–2016] (c) [Mohammadi–2016]

Figure B.6 – Different prehensors for AM: (a) magnetic mechanism to grasp non
flat ferrous objects, (b) vacuum based prehensor working with an airborne pump
and (c) swarm grasping of a cylindrical object.

déplacer une charge suffisante pour être utile. L’idée principale est qu’un manipu-
lateur augmente la dextérité des AR pour les tâches de manipulation, compensant
éventuellement pour les plateformes sous-actionnées. Dans la littérature, plusieurs
approches différentes sont proposées, voir figure B.5. De grandes catégories, selon le
type de manipulateurs, peuvent être retrouver dans la littérature. Les manipulateurs
à actionnement au niveau de leurs articulations, qui sont les manipulateurs standard
de la robotique simplement monté sous un MAV, par example dans [Kondak–2014].
Les manipulateurs à actionnement déporté (généralement au niveau de leur base),
qui utilisent des système de courroies de manière à réduire le moment que génère leur
poids sur le MAV. Les manipulateurs parallèles, qui par leur simplicité mécanique
et leur actionnement à la base peuvent permettre à un AR d’accomplir des tâches de
précisions, voir [Danko–2015]. Les manipulateurs passifs, qui peuvent être utilisés
dans certain tâches où le manipulateur ne doit pas nécessairement être actionné. En
particulier on peut considérer que pour tous les designs où des câbles sont utilisés
pour transporter une charge, ces câbles sont des manipulateurs passifs. Les manipu-
lateurs compliants, qui possèdent une composante élastique, à rigidité variable ou
non, qui assure une compliance mécanique en cas de collision avec l’environnement.
Les manipulateurs à bras multiples, typiquement deux, qui utilisent plusieurs bras
pour augmenter leur dextérité, e.g., dans [Suarez–2017a]. Enfin, certains designs ne
comporte pas de manipulateurs à proprement parler mais une extension rigide sur
laquelle est fixé une mécanisme de préhension ou avec laquelle l’AR interagit avec
l’environnement.

Mécanismes de préhension

Finalement afin de réaliser des tâches de manipulation aérienne, il est nécessaire
d’équiper les AR de capacités de préhension. Quelques exemples présentés dans la
littérature sont décrit dans la figure B.6. Dans la littérature sur la manipulation
aérienne quatre grandes catégories de mécanismes de préhension peuvent être dis-
tinguées. Les pinces mécaniques, qui sont les préhenseurs classique de la robotique,
composées de doigts qui se referment autour d’un objet. Les préhenseurs utilisant le
phénomène de succion, que se soit avec des ventouses ou des pompes créant un vide,
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e.g., [Kessens–2016]. Les préhenseurs magnétiques, qui permettent d’agripper des
objets ferreux, voir [Gawel–2017]. Et enfin les un mécanisme de préhension repo-
sant sur la coopération de plusieurs AR, qui s’associent pour créer un main volante
comme dans [Mohammadi–2016].

B.1.5 Contrôleur géométrique de pose

Le contrôle géométrique des MAV vise à stabiliser le système en vol sans contact
(free-flight) et à permettre un suivi de trajectoire. La pose du MAV est composée par
une position dans R3 et une rotation de 3-DoF, la pose se trouve donc dans le groupe
euclidien spécial SE(3). Dans la littérature, plusieurs représentations d’orientation
différentes sont présentes ; i) les angles d’Euler prédisposés au blocage de cadran
(Gimbal Lock en anglais), voir [Mistler–2001] [Spedicato–2016], ii) les quaternions
ayant une représentation redondante de SO(3), voir [Mayhew–2011], et iii) les ma-
trices de rotation qui ne souffrent pas des deux inconvénients précédents mais sont
une représentation non compacte, voir [Lee–2010]. La première approche dans la
littérature consiste à appliquer des techniques de synthèse classiques à un modèle
linéaire approximatif de la dynamique du MAV. Dans [Castillo–2005], le contrô-
leur linéaire stabilise séquentiellement la poussée puis l’orientation, cette approche
séquentielle est également utilisée dans [Spedicato–2016].

Le besoin d’améliorer les performances et la manœuvrabilité a conduit à l’utili-
sation de stratégies de contrôle non linéaires. Elles s’appuient sur une linéarisation
par feedback dynamic, voir [Mistler–2001], pour amener le système sous une forme
linéaire où des techniques de contrôle linéaire peuvent être appliquées. Dans [Raffo–
2010], une approche basée sur le contrôle prédictif du modèle et un contrôleur
H∞ sont proposés comme stratégie de contrôle robuste non linéaire. Un contrô-
leur de suivi non linéaire populaire est développé sur le groupe euclidien spécial
SE(3) in [Lee–2010], avec l’assurance d’une stabilité quasi globale. Les approches
de contrôle non linéaires sont généralement plus gourmandes en calcul, ce qui peut
poser problème pour le déploiement intégré. Mais de nos jours, les petits ordina-
teurs, tels que ceux de la série intel NUC7, sont assez puissants pour exécuter des
algorithmes de commande prédictive et un problème d’optimisation supplémentaire
en temps réel, voir e.g., [Baca–2016].

B.1.6 Contrôleur de force

Pour effectuer une tâche d’APhI sûre, le contrôle de suivi de trajectoire n’est pas
suffisant et des stratégies de contrôle supplémentaires concernant l’interaction de
force sont nécessaires. En effet, dans de telles applications, il est nécessaire pour
l’AR d’exercer certaines forces et certains couples sur l’environnement, tout en
maintenant un vol stable. Une technique classique repose sur un contrôleur d’ad-
mittance/impédance comme dans [Augugliaro–2013] et [Lippiello–2012] [Gioioso–
2014a] [Ruggiero–2014] pour l’impédance. D’autres approches reposent sur des consi-

7https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
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dérations énergétiques. Par exemple, dans [Mersha–2011] en s’appuyant sur la mo-
délisation port-Hamiltonienne et le bond graph, ou [Yüksel–2014b] en s’appuyant
sur un schéma de contrôle basé sur la passivité (IDA–PBC).

B.1.7 Estimation des forces externes

Comme indiqué plus haut et détaillé dans le Chapitre 2 de cette thèse, la connais-
sance de la force exercée sur l’environnement par l’AR est primordiale pour obtenir
un contrôle précis de la force d’interaction. De plus, cette information peut égale-
ment être utilisé en vol libre pour compenser des perturbation externes telles que
le vent ou une collision. Pour les raisons développée dans Sec. 2.4.3 de cette thèse,
les méthodes d’estimation sont préférées aux capteurs d’efforts. Pour rappel i) le
rapport entre les performances et le poids/la compacité, ii) le fait que les mesures
soient localisées et iii) le coût, Les capteurs d’efforts 6D ne peuvent pas être intégrés
sur des multi-rotors d’entrée et de milieu de gamme. Certains travaux explorent la
combinaison d’interrupteurs simples avec la reconstruction de forces basée sur des
modèles, e.g., [Rajappa–2017] ou considèrent un mécanisme de mesure de force plus
simple, le long d’une unique direction. Ceux-ci résolvent les inconvénients de coût
et de poids, mais pas le problème soulevé par les mesures localisées. Cela conduit à
choisir des approches basées sur des estimateurs, qui dépendent fortement du mo-
dèle du système et de la connaissance de l’effort exercé par la poussée de l’hélice.
Ensuite, sur la base du modèle du système, de ses états courants et de la force
exercée, il est possible de dériver les forces externes auxquelles l’AR est soumis. La
partie essentielle ici est de déterminer la poussée (thrust) et le couple de traînée
(drag) générés par les hélices. Les exigences pour un tel observateur sont i) une
faible charge de calcul et ii) une reproductibilité aisée. Les modèles utilisés dans
le processus d’estimation doivent rester aussi simples que possible pour limiter les
coûts de calcul tout en capturant toutes les dynamiques essentielles du système
afin de produire une estimation fiable. Une fois les modèles définis, leur estima-
tion des paramètres doit être hautement reproductible pour pouvoir être effectuée
rapidement après toute modification des systèmes.

B.2 Estimation de force

Dans cette section une solutions pour l’estimation de la force générée par les hélices
est introduite, une basée sur l’identification du modèle, pour plus détails voir Sec. 4.4
de cette thèse.

B.2.1 Approche par identification de modèle

Le travail décrit dans cette partie a été présenté à

2015IEEE Int. Conf. on Robotics and Automation [Staub–2015]
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Figure B.7 – Comparaison de deux modèles ; l’un incluant la batterie (modèle 6)
et l’autre non (modèle 4). Les deux modèles ont le même nombre de paramètres,
celui contenant la batterie présente de meilleurs performances.

Cette section présente des travaux préliminaires menés sur l’estimation de la
force externe, dans lesquels une nouvelle classe de modèles pour la génération de
poussée totale par les MAV à plusieurs rotors est proposée et validée expérimenta-
lement. Cette méthode s’intéresse aux plates-formes à moteurs coplanaires d’entrée
et de milieu de gamme, pour lesquelles les capacités sensorielles et de calcul sont
limitées. Cette méthode est originale dans le sens où elle diffère des modèles ty-
piques en supposant qu’elle contrôle instantanément la vitesse de rotation du rotor,
négligeant ainsi la dynamique des hélices en rotation et de leur moteur associé.
Dans la classe de modèles proposée, on considère que la poussée totale a sa propre
dynamique et que sa valeur finale dépend explicitement à la fois des commandes
(pseudo-setpoint) données au contrôleur et de la mesure de la tension des bornes de
la batterie. Les différentes instances du modèle sont comparées au sein de la classe
en utilisant un dispositif expérimental dans lequel la poussée totale est précisément
mesurée en utilisant un système de capture de mouvement comme vérité de ter-
rain, plutôt que des capteurs de force. Les résultats expérimentaux montrent que
l’utilisation d’un modèle dynamique incluant également la tension de la borne de la
batterie améliore considérablement la capacité de prédiction du modèle en termes
de précision, voir figure B.7. Enfin, les résultats expérimentaux montrent comment
le modèle proposé peut être identifié en utilisant uniquement des mesures d’accé-
lération embarquées, obtenant une précision étonnamment bonne par rapport à la
vérité terrain. L’utilisation du modèle proposé permet une meilleure estimation de
la force produite par le MAV, rendant ainsi possible un contrôle de trajectoire plus
fin et ouvrant la possibilité d’estimer les forces externes s’appliquant sur le MAV.
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B.3 MAGMaS un nouveau système de manipulation

Le travail décrit dans cette partie a été présenté à

2017IEEE Int. Conf. on Robotics and Automation [Staub–2017]
2018IEEE Int. Conf. on Robotics and Automation [Staub–2018]
Et a été accepté pour

Robotic and Automation Magazine [Staub–]
2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

[Yang–2018]

L’idée d’un système de manipulation composé de multiples manipulateurs ter-
restre et aérien (MAGMaS pour Multiple Aerial-Ground Manipulator System) pro-
vient de l’analyse des limites pratiques des manipulateurs terrestre et aériens. Les
MAGMaS sont une solution simple – et encore inexplorée – pour atténuer leurs
inconvénients respectifs, car les deux types sont combinés dans un système unique.

Typiquement, pour la manipulation robotisée d’objets, deux approches sont étu-
diées indépendamment, d’une part l’utilisation de manipulateurs terrestre (poten-
tiellement mobiles) et d’autre part l’utilisation d’AR. La riche littérature sur les
manipulateurs terrestre propose des cas d’utilisation avec des systèmes robotiques
simples ou multi-robots pour la manipulation d’objets, en particulier pour le trans-
port coopératif [Dumora–2013] [Cehajic–2017a] [Machado–2016] [Dumora–2012], ou
la surveillance et manipulation robotique sur des plateformes off-shore [Pfeiffer–
2011], ou pour un assemblage coopératif.

Cependant, deux inconvénients majeurs à l’utilisation de robots terrestres peuvent
être identifiés. Premièrement, les petits manipulateurs industriels classiques ont des
limites de couple de joint relativement basses, ce qui se traduit par un couple Car-
tésien admissible maximal médiocre au niveau de l’EE. Deuxièmement, les mani-
pulateurs terrestre, mobiles ou non, ont un espace de travail assez restreint autour
de leur base, empêchant leurs possibilités de manipulation, notamment dans le sens
vertical. Cela peut s’avérer particulièrement problématique pour les manipulations
d’objets longs. En effet, si le manipulateur terrestre ne peut pas les saisir par leur
CoM en raison des limitations de l’espace de travail, la manipulation nécessiterait
un manipulateur capable de générer d’important couple au niveau de son EE. De
plus, la manipulation d’objets longs est souvent sujette à une manœuvre de reprise
afin de surmonter les limitations de l’espace de travail, ce qui nuit aux performances
d’exécution.

Une approche qui gagne en notoriété consiste à utiliser des AR pour la construc-
tion et la manipulation de grandes charges. Leur utilisation a été démontrée en
tant que groupe pour transporter des charges via câbles dès 2009 dans [Kondak–
2009], afin répartir la charge globale entre les membres. Une utilisation intéressante
et récente de AR se retrouve aussi dans la construction ou l’assemblage multi-
robot [Augugliaro–2014] [Lindsey–2012] [Kim–2013] et [Suarez–2015b]. Un inconvé-
nient majeur de ces plates-formes est la plage d’actionnement limitée, qui se traduit
par une capacité de charge utile limitée.
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Figure B.8 – Vue schématique d’un MAGMaS composé d’un manipulateur ter-
restre (7 DoF) et de trois AR sous-actionnés, attachés au chargement via des liaisons
rotules.

L’originalité de l’approche MAGMaS est de considérer un système multi-robot
hétérogène composé à la fois de manipulateurs terrestres et aériens, voir figure B.8,
pour balancer leurs défauts individuels [Staub–2017]. La faible charge utile d’un
AR est compensée par la force du manipulateur terrestre, tandis que l’espace de
travail limité et le faible couple au niveau de l’EE du manipulateur terrestre sont
compensés par l’espace de travail pratiquement illimité et le levier favorable fourni
par les AR. Grâce à leur grand espace de travail, les AR peuvent exercer une force
sur la charge afin de réduire le couple induit à l’EE du manipulateur terrestre par le
poids de la charge. Dans ce système, les AR peuvent agir en tant que Compagnons

Volants en aidant le manipulateur terrestre à transporter de longues charges en les
saisissant à une autre extrémité et en atténuant le couple généré, permettant ainsi
la manipulation de charges d’une manière coopérative.

Un autre avantage résultant de l’utilisation de compagnons volants est l’amor-
tissement des oscillations dans la charge transportée. Grâce aux AR, les oscillations
de la charge peuvent être supprimées via une stratégie d’asservissement.

B.3.1 Apllications

La manipulation d’objets longs est une tâche courante pour les systèmes robotiques,
par exemple pour la construction d’échafaudages ou de tours de transmission, la
maintenance d’installations comprenant un réseau de tuyauterie important, telles
que des usines de produits chimiques ou des raffineries. Ce sont des exemples où
les MAGMaS pourraient être utilisés pour des tâches de type construction, voir fi-
gure B.9. Un autre type de tâches identifiées pour les MAGMaS, est leur utilisation
pour étendre la portée du manipulateur, utilisant une longue barre (actionné par
l’AR) comme dernier lien du bras robotique. Avec pour applications des opérations
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(a) (b)

Figure B.9 – Cas d’utilisation potentiels pour MAGMaS de composition différente.
Reste (a) dans un scénario USAR avec une base mobile et un AR sous-exploité net-
toyant les buldings. Droite (b) dans un scénario de mise hors service avec un robot
terrestre fixe et une poussée multidirectionnelle manipulant un tube en coopération.

en hauteur, telles que la peinture, le perçage ou le changement d’ampoule. Enfin,
un dernier type d’opération identifié pour les MAGMaS se déroule dans des envi-
ronnements non structurés et consiste à nettoyer des ruines après une catastrophe,
par exemple un séisme, où les vestiges de constructions sont souvent des pièces et
des structures aux formes complexes. Cette application de recherche et secours en
milieu urbain est appelée USAR et est illustrée en figure B.9a

L’intérêt pour la solution robotique est motivé par le niveau de danger pour
l’homme. Les tâches de manipulation décrites peuvent avoir lieu dans des envi-
ronnements potentiellement dangereux tels que, mais sans s’y limiter, i) après une
catastrophe naturelle ou humaine, par exemple une catastrophe post-séisme ou in-
dustrielle, où la vie des sauveteurs est menacée par l’effondrement potentiel des
structures, ii) en haute altitude ou isolés, comme les sites de construction de mon-
tagne, les camps du pôle Sud ou les plates-formes off-shore, où les risques sont
multipliés pour les travailleurs en raison de l’accès limité aux soins médicaux, et
iii) environnements contenant des radiations dues à des activités nucléaires, e.g.,
démantèlement de centrales nucléaires. Certains de ces environnements sont égale-
ment dangereux pour la plateforme, comme décrit dans le chapitre 5 de cette thèse,
et leur utilisation nécessiterait un durcissement supplémentaire du système, tel que
la conformité aux normes ATEX (pour atmosphères explosives) ou un durcissement
aux rayonnement pour les environnements nucléaires.

Parmi les applications présentées, la plus prometteuse est le démantèlement des
centrales nucléaires pour des MAGMaS entièrement autonomes, notamment parce
que les centrales nucléaires sont un environnement hautement structuré, ce qui
simplifie les exigences de perception.

B.3.2 Design du système, de son architecture et implementation

Le MAGMaS présenté dans cette section est composé de trois composants robo-
tiques principaux : i) le bras LBR-iiwa ("Leichtbauroboter – intelligent industrial



152 Annexe B. Résumé Long en Français

Operator
Inputs

System state

Task Planner

OTHex Ctrl

Simulink
MoCap

Omega.6

Joypad

OTHex

Grippers Flight Ctrl. ESC +
BL motors

LEDs
electronic

power converter

VREP
simu or visu

sunrise
cabinet

Schunk
gripper

LBR
iiwa arm

Figure B.10 – Description de l’architecture logicielle utilisée dans le projet Tele-
MAGMaS, première implémentation et démonstration du concept de companion aé-
rien. Sont représentés en vert les connexions Matlab-Simulink, en bleu les connexions
via S-fonction (en C), en orange les connexions via Genom3 et en noir les connexions
bas niveau.

work assistant" pour robot léger et cobot industriel intelligent) ; ii) le manipulateur
aérien OTHex, développé spécialement pour ce projet et iii) l’interface haptique
Omega.6, une composante nécessaire pour la partie télé-présence. De plus, un simu-
lateur et un visualiseur ont été développés pour faciliter l’intégration du système et
fournir un retour visuel à l’opérateur.

Le système expérimental s’appuie sur la couche d’abstraction Genom38, qui
permet de définir des composants logiciels pour la robotique, indépendamment du
middleware qui peut être choisi au moment de la compilation. Les composants

8https://git.openrobots.org/projects/genom3/wiki
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Genom3 peuvent être contrôlés de diverse manières ; script tcl-shell, script Matlab,
Matlab-Simulink ou plusieurs middleware (ROS, Pocolibs, Orocos), ce qui permet
une grande flexibilité dans le développement et l’utilisation des composants.

L’architecture du logiciel est illustrée dans la figure B.10. Le contrôle de haut
niveau du système complet est implémenté dans Matlab-Simulink, qui est lié aux
composants matériels via des modules Genom3 ou des pilotes sous forme de S-
fonctions Matlab. Cette approche a été choisie car le développement et le test du
contrôleur dans Matlab-Simulink peuvent être beaucoup plus rapides qu’en C/C++
pur, par contre Matlab-Simulink est loin d’être temps réel, donc le contrôle bas-
niveau du matériel doit être réalisé par des composants Genom3 ou des S-fonctions
Matlab, qui sont codée en C.

Dans l’architecture proposée, la partie Matlab-Simulink s’exécute à 500 Hz. Le
planificateur de tâche/trajectoire, l’interpréteur des entrées humaines et le contrô-
leur pour l’OTHex s’exécutent dans Matlab-Simulink. Le processus Matlab-Simulink
est lié au périphérique haptique via une S-fonction personnalisée et au simula-
teur/visualiseur via d’autres S-fonctions. Le Matlab-Simulink est également inter-
facé avec le sous-systèmes suivants : joystik, Optitrack MoCap, la partie physique
de l’OTHex et les composants du LBR-iiwa via Genom3. Ces composants Genom3
sont essentiellement des pilotes pour le matériel, car la majorité de la partie al-
gorithmique est implémentée dans Matlab-Simulink. À l’exception des composants
LBR-iiwa, en effet, pour satisfaire aux contraintes de temps réel de la commu-
nication avec le LBR-iiwa, la cinématique inverse et d’autres fonctions utilitaires
associées sont exécutées dans un composant Genom3.

En outre, cette architecture à base de composants permet de répartir facilement
la charge entre les processus et les machines. Dans les expériences présentées, ROS
est choisi en tant que middleware, qui fournit suffisamment de «temps réel» pour le
but recherché. La conception basée sur les composants permet également un chan-
gement aisé des entrées d’interface pour l’opérateur, des composants de perception
ou du matériel composant le MAGMaS, chacun étant séparé de la partie algorith-
mique principale et fournissant des interfaces standard qui ne sont pas spécifiques
au matériel.

B.3.3 Résultats expérimentaux

Une série d’expériences a été réalisée avec une co-manipulation réussie d’une barre
longue de 2.5 m. La tâche souhaitée consiste à soulever, en coopération, une barre
comme illustré dans figure B.11, l’OTHex est piloté manuellement pour saisir la
barre à l’une de ses extrémités, tandis que le robot manipulateur terrestre se saisit
de manière autonome de l’autre extrémité. Une fois que les deux manipulateurs ont
saisi la barre, la co-manipulation est totalement autonome, ils soulèvent la barre de
ses supports, la déplacent deux fois le long d’une ligne dans le plan horizontal puis
la soulèvent à 30◦. Ensuite, les deux manipulateurs ramènent la barre à sa position
de départ.

La séquence de l’expérience est représentée dans la figure B.11 et [video 6–2017],
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Figure B.11 – Séquence d’une tâche de manipulation coopérative réalisée par un
MAGMaS. Les deux robots sont dans leur position initiale (1), approchent de la
barre (2), saisissent de la barre (3), lèvent la barre en coopérant (4), déplacent la
bar latéralement (5), lèvent la barre de manière synchronisé jusqu’à 30◦ (6-7-8) et
reposent la barre sur ses supports (9). La vidéo correspondante de l’expérience est
disponible à [video 6–2017].

ce qui met en évidence à la fois la stabilisation des vibrations induite par le OTHex
et la faisabilité du MAGMaS.

Prix de l’innovation KUKA "KUKA Innovation Award" Le concept de
Tele-MAGMaS a été présenté avec succès lors de la foire de Hanovre en 2017, en
tant que finaliste du Prix de l’innovation KUKA 2017 Innovation Award. À cette
occasion le Tele-MAGMaS a enchaîné des démonstrations devant les industriels du
monde entier. Démontrant la robustesse et la fiabilité du système, en effectuant des
démonstrations en dehors d’un environnement de laboratoire et jusqu’à 10 fois par
jour pendant une semaine. Au cours de cette démonstration, le système était à la fois
télécommandé et autonome pour illustrer les deux modalités de notre architecture.
En raison de contraintes d’espace, la barre manipulée était significativement plus
courte que dans l’expérience conduite au LAAS–CNRS. Des vidéos mettant en
évidence les principales caractéristiques de la démonstration sont disponibles en
ligne [video 4–2017] et [video 5–2017].

B.3.4 Étude de la fléxibilité dans les MAGMaS

L’intérêt pour l’étude de la flexibilité dans les MAGMaS est venu de l’observation
suivante, dans la manipulation d’une barre part une de ses extrémités l’autre ex-
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Figure B.12 – Illustration de la manipulation coopérative par un Tele-MAGMaS
effectuée durant le Prix de l’innovation KUKA 2017 Innovation Award à la Foire
de Hanovre, avec 4 opérateurs en arrière-plan.

trémité est affectée par des mouvements parasites induits par la flexibilité. Dans
le cas des MAGMaS ses mouvements peuvent être supprimés par les AR. En pra-
tique, les expériences préliminaires sur les MAGMaS ont également montré que la
flexibilité de la barre peut être atténuée par un AR. Pour comprendre la racine de
ce phénomène, une modélisation 2D d’un MAGMaS et de la flexibilité a été réali-
sée. Cette étude exploratoire sur la flexibilité des MAGMaS présente des propriétés
intéressantes du système, qui doivent être testées dans de futures simulations et ex-
périences. La modélisation de la flexibilité dans la barre manipulée par un MAGMaS
a permis d’exposer la contrôlabilité des modes de vibration à partir d’une analyse
théorique. Ce qui valide les observations empiriques faites lors des expériences sur
les MAGMaS présentées dans le chapitre 5 de cette thèse.

B.4 Actionneur à impedance variable

Le travail décrit dans cette partie a été présenté à

2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
[Yüksel–2016b] [Yüksel–2016c]

Cette section se concentre sur l’utilisation prometteuse mais confidentielle des
actionneurs à rigidité variable (VSA pourVariable Stiffness Actuator) pour les tâches
d’APhI. En effet, dans presque tous travaux disposnibles, AR sont équipés de bras
à joints rigides. D’autre part, les manipulateurs à actionneurs compliants (i.e., à
faible rigidité) sont de plus en plus largement étudiés pour les robots terrestres
comme les humanoïdes et les manipulateurs interagissant physiquement avec les
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Figure B.13 – Configuration expérimentale composée ; d’un quadrotor Mikro-
Kopter actionné et d’un bloc qbmove, solution commerciale, de VSA. Les sous-
composants de la plateforme sont:(1) contrôleur de vol (incl. IMU ), (2) l’odroid
exécutant le contrôleur, (3) les ESC, (5) le qbmove lui-même et (6) le lien du ma-
nipulateur dirrectement connecté à la sortie du VSA. Les câbles rouges ne sont
utilisées que pour des raisons de sécurité, sans être tendus.

humains, voir le projet européen SaPHARI9. Ils sont également des outils efficaces
pour les tâches de mouvement rapide, exploitant l’élasticité de l’articulation pour
effectuer des tâches explosives, comme lancer un objet ou frapper sur une sur-
face, ce qui nécessite de grandes vitesses qu’un bras à joints rigides ne peut pas
atteindre [Braun–2013].

Cependant, leur utilisation dans la robotique aérienne et les APhI n’est qua-
siment pas étudiée. Les travaux récents ont commencé à envisager l’utilisation de
l’élasticité pour les AR, comme par exemple [Yüksel–2015] pour un seul manipula-
teur et [Suarez–2015b][Suarez–2017b] pour manipulateur à double bras.

En particulier, dans le cas de APhI, la possibilité de variée la rigidité peut être
exploitée pour le mouvement explosif mais aussi et surtout pour assurer la com-
pliance mécanique du manipulateur aéroporté. En effet, en utilisant le réglage de la
rigidité, il est possible d’imposer un comportement très rigide au manipulateur, gé-
néralement pour les tâches où un positionnement précis de l’EE est nécessaire, e.g.,
le ramassage d’objets, tandis qu’un comportement compliant peut être utilisé en
cas de mouvement dans un environnement inconnu ou non structuré. Dans ce cas,
les effets d’une collision imprévue peuvent être atténués par le comportement com-
pliant du bras. Cela signifie que si le bras entre en collision avec l’environnement,
une partie substantielle de la force d’impact sera stockée dans la partie élastique de

9http://www.saphari.eu/
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l’actionneur à rigidité variable au lieu d’être appliquée directement sur la base du
MAV, cette propriété mécanique réduit considérablement le taux de défaillance du
système. Enfin, en introduisant la souplesse mécanique, le VSA devrait représenter
un niveau de sécurité supplémentaire pour les interactions homme-robot. L’implé-
mentation de VSA sur des MAV se heurte à deux défis principaux, i) le design
mécanique et ii) l’analyse et la synthèse d’un contrôleur performant.

Dans le chapitre 6 de cette thèse, nous présentons la modélisation dynamique,
l’analyse des propriétés et le contrôle d’un AR équipé d’un seul bras élastique, voir
figure B.13. Il a été prouvé que ce système est plat (flat) pour un ensemble de sorties,
qui sont les mêmes que pour un joint rigide, voir [Yüksel–2016b], et un contrôleur de
suivi de trajectoire basé sur la linéarisation exacte par feedback est fourni. Des tests
numériques complets, fournis dans [Yüksel–2016c], montrent des différences nettes
entre les modèles de joints rigides et élastiques, la configuration par liens rigides
est plus avantageuse pour le suivi précis de tâches telles que la saisie d’objets,
tandis que les liens élastiques sont plus avantageux pour les tâches nécessitant une
amplification de vitesse tel que le lancer ou le martelement. Une autre validation
numérique a été effectuée à l’aide du modèle 3D complet de la configuration réelle
dans SimMechanics, et des résultats expérimentaux préliminaires de contrôle d’un
quadrotor équipé d’un qbmove sont présentés. En fait, un compromis clair entre les
configurations à liaison rigide et à liaison élastique nous oblige à utiliser un VSA
pour une large gamme de tâches d’interaction physique aérienne.

Ce travail est un pont entre les expériences antérieures [Yüksel–2015] et de
futures études sur l’extension de l’utilisation de VSA pour la manipulation aérienne,
qui comprendront : i) d’autres expériences utilisant la plateforme expérimentale,
e.g., lancer, marteler ; ii) une extension de la théorie en 3D et/ou à des bras à
plusieurs degrés de liberté, voir [Yüksel–2016a] pour des résultats préliminaires
intéressants ; iii) l’utilisation de méthodes d’étalonnage basées sur des capteurs
comme e.g., in [Censi–2013] pour récupérer les paramètres du VSA à la volée.

B.5 Conclusion et panorama de la thèse

B.5.1 Conclusion

De nos jours, les MAV sont une technologie bien développée accompagnée de di-
vers succès commerciaux pour le grand public, allant de l’inspection visuelle aux
courses de loisirs. La prochaine frontière pour la robotique aérienne est symbolisée
par les APhI, qui se caractérise par la capacité d’interaction physique avec l’en-
vironnement pour les MAV. Ceci ouvre la voie à de nombreuses applications. Les
recherches sur les APhI et la manipulation aérienne sont encouragées par des pro-
jets européens et d’autres initiatives nationales conduisant à une littérature riche à
la fois de designs mécaniques originaux et d’algorithmes de contrôle intelligents. Le
travail présenté dans cette thèse est basé sur une vision des AR comme potentiel
Compagnons Volants pour la manipulation coopérative avec des humains et d’autres
robots. L’apport principal de cette thèse consiste à proposer un nouveau concept
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de manipulation coopérative, MAGMaS composé de manipulateurs terrestres et
aériens. En combinant ces deux types de manipulateurs différents, pour atténuer
leurs inconvénients respectifs, les MAGMaS ouvrent une nouvelle voie de recherche
avec de nombreuses applications possibles. Ce travail de thèse a jeté les bases de la
théorie pour les MAGMaS et a démontré, grâce à des expériences, leur faisabilité et
leur potentiel de percée dans le monde réel. En particulier, la toute première ma-
nipulation coopérative entre un manipulateur terrestre et un manipulateur aérien
a été présentée à la foire de Hanovre 2017. Dans ce qui suit, un aperçu du contenu
et des contributions par chapitre est donné.

B.5.2 Panorama de la thèse

Le premier chapitre de cette thèse présente les contributions et l’organisation de
cette thèse.

Dans le chapitre 2, les paradigmes de l’APhI sont passés en revue. Différentes
techniques, méthodes et designs mécaniques sont présentés, afin de contextualiser
le travail de cette thèse.

Dans le chapitre 3, les motivations à l’origine du concept de MAGMaS sont
décrites. À partir de l’examen des solutions de manipulation existantes, il est ap-
paru que les manipulateurs terrestre souffrent souvent d’un espace de travail limité
autour de leur base et les intensités de leurs couples d’actionnement sont faibles,
mais possède une charge utile et une autonomie énergétique satisfaisantes. Ces li-
mites des manipulateurs terrestres peuvent être atteintes lors de la manipulation
d’objets longs : pour satisfaire aux contraintes de couple, la saisie doit être proche
du centre de masse de l’objet, ce qui entre souvent en conflit avec les limites l’es-
pace de travail. D’autre part, les AR, qui ont un espace de travail pratiquement
infini, souffrent d’une limitation de leur charge utile et d’autonomie. Le concept de
MAGMaS cible la manipulation coopérative des objets longs et propose de combiner
les manipulateurs terrestres et les AR pour atténuer leurs inconvénients respectifs.
En particulier, l’ajout d’un compagnon volant au manipulateur terrestre permet de
i) réduire le couple à l’EE et ii) supprime les vibrations dans la charge. Les appli-
cations sont nombreuses pour les industries nécessitant des tâches d’assemblage ou
de désassemblage, par exemple la construction, le démantèlement d’installations.
L’utilisation de robots pour ces tâches est encore plus souhaitable si l’environne-
ment est dangereux pour l’homme. Sur la base de ces motivations et applications
potentielles, le modèle général d’un MAGMaS est introduit en détail. La modéli-
sation de l’AR en vol sans contact est effectuée puis ce modèle est incorporé dans
celui du MAGMaS. Enfin, un moyen d’étendre le modèle et d’éventuelles études
théoriques sur MAGMaS sont discutées.

Dans le chapitre 4, la structure de contrôle nécessaire pour un MAGMaS est
introduite, en mettant l’accent sur le contrôleur nécessaire pour l’AR. Un contrô-
leur générique de haut niveau est présenté, il est composé d’un planificateur de
tâches et d’un schéma de répartition de l’effort de contrôle. La répartition de l’ef-
fort de contrôle divise les forces souhaitées pour déplacer la charge entre chaque
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sous-système du MAGMaS. En même temps, elle s’assure du respect de toutes les
contraintes d’actionnement et du système et exploite la redondance du MAGMaS
pour maximiser l’index de manipulabilité du système.

Les validations expérimentales du concept de MAGMaS sont présentées dans le
chapitre 5. La première partie du chapitre est consacrée à des simulations numé-
riques et à des expériences de preuve de concept et correspondent au stade précoce
du travail sur les MAGMaS. À ce stade précoce, l’utilisation d’un quadrotor avec
une liaison sphérique passive a été envisagée afin de découpler efficacement la dy-
namique de rotation de la charge manipulée de celle de l’AR. La conception et les
bénéfices d’une telle liaison sont validés expérimentalement. De plus, la capacité de
MAGMaS à réduire la vibration de la charge est mise en évidence dans une expé-
rience comparative. La deuxième partie du chapitre est consacrée à une intégration
massive et à un travail expérimental développé pour le KUKA 2017 Innovation
Award, l’ajout d’un cadre de télé-présence à un MAGMaS et la conception d’un
AR à poussée multi-directionnelle sont détaillés. L’implémentation et l’intégration
de l’ensemble du système sont couvertes en profondeur. Cette partie est conclue par
les résultats expérimentaux concernant la manipulation coopérative de barres.

Parallèlement au MAGMaS, une autre direction de recherche a été étudiée au
cours de cette thèse. L’utilisation d’actionneurs compliants pour la manipulation
aérienne été explorée avec la conviction qu’ils pourraient permettre des interac-
tions physiques plus sûres et plus polyvalentes avec l’environnement. Ce domaine
de recherche est stimulant, mais l’intégration de tels actionneurs sur des AR s’est
avérée fastidieuse en raison des limitations matérielles. L’étude théorique de la pla-
titude pour les actionneurs élastiques dans les AR est présentée dans le chapitre 6.
Le modèle d’AR avec actionneurs élastiques est dérivé et l’analyse conduisant à la
preuve de la platitude pour un ensemble de sortie est effectuée et un contrôleur basé
sur la linéarisation par dynamic feedback est synthétisé. L’approche est validée par
de nombreuses simulations numériques comprenant des incertitudes paramétriques
et du bruit. Ainsi que par un ensemble d’expériences avec un VSA monté sur un
AR. Ce chapitre est conclu par des pistes de recherche possibles sur l’utilisation
d’actionneurs élastiques pour les AR.

Dans le chapitre 7, une étude exploratoire sur la flexibilité dans les objets ma-
nipulés par un MAGMaS est menée. Un modèle dans le plan d’un MAGMaS ma-
nipulant une barre flexible est présenté, l’accent est mis sur la modélisation de la
flexibilité. Le système proposé est linéarisé pour effectuer une analyse du système:
à la fois l’observabilité et la contrôlabilité des deux premiers modes de vibration
sont prouvés.

Finalement le chapitre 8 regroupe un résumé des contributions de cette thèse
ainsi qu’une discution sur de possibles extensions des travaux présentés.
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