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ABSTRACT

D
esign flood estimates are needed in hydraulic design for the construction of dams and re-
tention basins and in flood management for drawing hazard maps or modeling inundation
areas. Traditionally, such design floods have been expressed in terms of peak discharge

estimated in a univariate flood frequency analysis. However, design or flood management tasks
involving storage, in addition to peak discharge, also require information on hydrograph vol-
ume, duration, and shape. A bivariate flood frequency analysis allows the joint estimation of
peak discharge and hydrograph volume and the consideration of their dependence. While such
bivariate design quantiles describe the magnitude of a design flood, they lack information on
its shape. An attractive way of modeling the whole shape of a design flood is to express a repre-
sentative normalized hydrograph shape as a probability density function. The combination of
such a probability density function with bivariate design quantiles allows for the construction of
a synthetic design hydrograph for a certain return period which describes the magnitude of a
flood along with its shape. Such synthetic design hydrographs have the potential to be a useful
and simple tool in design flood estimation. However, the use of such hydrographs is faced by
the following limitations. First, they rely on the definition of a bivariate return period which
is not uniquely defined. Second, they usually describe the specific behavior of a catchment and
do not express process variability represented by different flood types. Third, they are neither
available for ungauged catchments nor are they usually provided together with an uncertainty
estimate. To overcome these limitations, this thesis explores possibilities for the construction
of synthetic design hydrographs in gauged and ungauged catchments and ways of representing
process variability in design flood construction. Tools are proposed for both catchment- and
flood-type specific design hydrograph construction and regionalization, and for the assessment of
their uncertainty. The thesis shows that synthetic design hydrographs are a flexible tool allowing
for the consideration of different flood or event types in design flood estimation. A comparison of
different regionalization methods, including spatial, similarity, and proximity based approaches,
showed that catchment-specific design hydrographs can be best regionalized to ungauged catch-
ments using linear and nonlinear regression methods. It was further shown that event-type
specific design hydrograph sets can be regionalized using a bivariate index flood approach. In
such a setting, a functional representation of hydrograph shapes was found to be a useful tool
for the delineation of regions with similar flood reactivities. An uncertainty assessment showed
that the record length and the choice of the sampling strategy are major uncertainty sources in
the construction of synthetic design hydrographs and that this uncertainty propagates through
the regionalization process. This thesis highlights that an ensemble-based design flood approach
allows for the consideration of different flood types and runoff processes. This is a step from flood
frequency statistics to flood frequency hydrology which allows for the consideration of process
variability and therefore better-informed decision making.
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ZUSAMMENFASSUNG

F
ür hydraulische Problemstellungen und im Hochwassermanagement werden Bemessungs-
hochwasser benötigt. Sie sind wichtig für die Planung von Dämmen und Retentionsbecken,
um Gefahrenkarten zu erstellen und um Überflutungsflächen zu berechnen. Üblicherweise

werden solche Bemessungshochwasser mit dem Wert der Hochwasserspitze ausgedrückt und
mittels einer univariaten Analyse abgeschätzt. Für die Bemessung hydraulischer Strukturen
oder Hochwassermanagementaufgaben werden aber zusätzlich zu der Hochwasserspitze auch
Informationen über das Hochwasservolumen, die Dauer des Hochwassers und über die Form der
Hochwasserganglinie benötigt. Eine bivariate Analyse erlaubt die gemeinsame Abschätzung von
Hochwasserspitzen und –volumen unter Berücksichtigung deren gegenseitigen Abhängigkeit.
Solche bivariaten Bemessungsquantile beschreiben die Grösse eines Ereignisses, nicht aber
dessen Ganglinie. Die Ganglinie eines Hochwasserereignisses kann modelliert werden, indem
ein repräsentativer, normalisierter Hydrograph durch eine Dichtefunktion ausgedrückt wird. Die
Kombination einer Dichtefunktion mit bivariaten Bemessungsquantilen erlaubt die Konstruktion
einer synthetischen Bemessungsganglinie mit einer bestimmten Wiederkehrperiode. Eine Be-
messungsganglinie beschreibt die Grösse eines Hochwassers zusammen mit seiner Form. Solche
Bemessungsganglinien erlauben eine einfache Abschätzung von Bemessungshochwassern, haben
jedoch einige Limitationen. Erstens stützen sie sich auf eine Definition von einer bivariaten
Wiederkehrperiode, welche nicht eindeutig definiert ist. Zweitens beschreiben sie das Verhalten
eines Einzugsgebietes als Ganzes und erlauben es nicht die Variabilität von Prozessen in einem
Gebiet zu berücksichtigen, welche durch verschiedene Hochwassertypen repräsentiert werden.
Drittens sind sie weder für Gebiete ohne Abflussmessungen verfügbar noch werden sie üblicher-
weise zusammen mit Unsicherheitsangaben angegeben. In dieser Doktorarbeit wurden deshalb
Möglichkeiten zur Konstruktion von synthetischen Bemessungsganglinien untersucht wobei
sowohl gemessene als ungemessene Gebiete berücksichtigt wurden. Des Weiteren wurden Mög-
lichkeiten untersucht um Prozessvariabilität in der Konstruktion von Bemessungshochwassern
zu berücksichtigen. Es wurden Werkzeuge für die Konstruktion von gebiets- und ereigniss-
pezifischen Bemessungsganglinien und deren Regionalisierung und Unsicherheitsbeurteilung
vorgeschlagen. Die Arbeit hat aufgezeigt, dass synthetische Bemessungsganglinien ein flexibles
Werkzeug sind, das die Berücksichtigung von verschiedenen Hochwasser- oder Ereignistypen
erlaubt. Ein Vergleich von verschiedenen Regionalisierungsmethoden, der räumliche Methoden,
sowie Methoden, die auf Ähnlichkeit oder Nähe basieren umfasste, hat gezeigt, dass gebietsspezi-
fische Bemessungsganglinien am besten mit linearen oder nichtlinearen Regressionsmethoden
regionalisiert werden können. Es wurde weiter aufgezeigt, dass ereignisspezifische Sets von
Bemessungshochwassern mittels eines bivariaten Index Hochwasser Ansatzes regionalisiert
werden können. In einem solchen Ansatz hat sich eine funktionale Repräsentation von Gang-
linien als nützlich erwiesen, um Regionen mit ähnlichen Hochwasserreaktionen abzugrenzen.
Eine Unsicherheitsanalyse hat gezeigt, dass die Länge der zur Verfügung stehenden Datenrei-
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he und die Wahl des Hochwasserauswahlverfahrens die grössten Unsicherheitsquellen in der
Konstruktion von Bemessungsganglinien sind und dass sich diese Unsicherheiten durch den
Regionalisierungsprozess fortpflanzen. Ein Bemessungshochwasseransatz, der auf mehreren
Ganglinien basiert, ermöglicht die Berücksichtigung von verschiedenen Hochwassertypen und
Abflussprozessen. Dies ist ein Schritt von einer reinen Hochwasserhäufigkeitsstatistik in Rich-
tung Hochwasserhäufigkeitshydrologie, welche den Einbezug von Prozessvariabilität erlaubt und
somit die Entscheidungsfindung dank umfassender Information erleichtert.

Schlüsselwörter: Synthetische Bemessungsganglinien, bivariate Hochwasserhäufigkeitsanalyse,
Regionalisierung, Unsicherheitsabschätzung, Clustering, homogene Regionen
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RÉSUMÉ

L
’estimation de crues de projet est requise pour le dimensionnement de barrages et de
bassins de rétention, de même que pour la gestion des inondations lors de l’élaboration de
cartes d’aléas ou lors de la modélisation et délimitation de plaines d’inondation. Générale-

ment, les crues de projet sont définies par leur débit de pointe à partir d’une analyse fréquentielle
univariée. Cependant, lorsque le dimensionnement d’ouvrages hydrauliques ou la gestion de
crues nécessitent un stockage du volume ruisselé, il est également nécessaire de connaître les
caractéristiques volume, durée et forme de l’hydrogramme de crue en plus de son débit maximum.
Une analyse fréquentielle bivariée permet une estimation conjointe du débit de pointe et du
volume de l’hydrogramme en tenant compte de leur corrélation. Bien qu’une telle approche
permette la détermination du couple débit/volume de crue, il manque l’information relative à la
forme de l’hydrogramme de crue. Une approche attrayante pour caractériser la forme de la crue
de projet est de définir un hydrogramme représentatif normalisé par une densité de probabilité.
La combinaison d’une densité de probabilité et des quantiles bivariés débit/volume permet la
construction d’un hydrogramme synthétique de crue pour une période de retour donnée, qui
modélise le pic d’une crue ainsi que sa forme. De tels hydrogrammes synthétiques sont poten-
tiellement utiles et simples d’utilisation pour la détermination de crues de projet. Cependant, ils
possèdent actuellement plusieurs limitations. Premièrement, ils reposent sur la définition d’une
période de retour bivariée qui n’est pas univoque. Deuxièmement, ils décrivent en général le com-
portement spécifique d’un bassin versant en ne tenant pas compte de la variabilité des processus
représentée par différents types de crues. Troisièmement, les hydrogrammes synthétiques ne
sont pas disponibles pour les bassins versant non jaugés et une estimation de leurs incertitudes
n’est pas calculée. Pour remédier à ces manquements, cette thèse propose des avenues pour la
construction d’hydrogrammes synthétiques de projet pour les bassins versants jaugés et non
jaugés, de même que pour la prise en compte de la diversité des types de crue. Des méthodes sont
également développées pour la construction d’hydrogrammes synthétiques de crue spécifiques au
bassin et aux événements ainsi que pour la régionalisation des hydrogrammes. Une estimation
des diverses sources d’incertitude est également proposée. Ces travaux de recherche montrent
que les hydrogrammes synthétiques de projet constituent une approche qui s’adapte bien à la
représentation de différents types de crue ou d’événements dans un contexte de détermination
de crues de projet. Une comparaison de différentes méthodes de régionalisation, notamment
basées sur des approches spatiales, de similarité ou de voisinage, montre que les hydrogrammes
synthétiques de projet spécifiques au bassin peuvent être régionalisés à des bassins non jaugés
à l’aide de méthodes de régression linéaires et non linéaires. Il est également montré que les
hydrogrammes de projet spécifiques aux événements peuvent être régionalisés à l’aide d’une
approche d’indice de crue bivariée. Dans ce contexte, une représentation fonctionnelle de la
forme des hydrogrammes constitue un moyen judicieux pour la délimitation de régions ayant un
comportement hydrologique de crue similaire en termes de réactivité. Une analyse de l’incertitude
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a montré que la longueur de la série de mesures et le choix de la stratégie d’échantillonnage
constituent les principales sources d’incertitude dans la construction d’hydrogrammes synthé-
tiques de projet, et que cette incertitude se propage dans le processus de régionalisation. Cette
thèse démontre qu’une approche de crues de projet basée sur un ensemble de crues permet la
prise en compte des différents types de crue et de divers processus. Ces travaux permettent de
passer de l’analyse fréquentielle statistique de crues vers l’analyse fréquentielle hydrologique de
crues permettant de prendre en compte les processus et conduisant à une prise de décision plus
éclairée.

Mots-clé: hydrogrammes synthétiques de projet, analyse bivarée de crues, estimation de crues de
projet, régionalisation, estimation de l’incertitude, classification, régions homogènes.
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T
his doctoral thesis was conducted in the framework of a project on the estimation of flood

volumes in Switzerland which was initiated by the Federal Office for the Environment

(FOEN). The project aimed at providing an approach that enables practitioners to estimate

design floods for a predefined return period in catchments with and without runoff observations.

The approach should provide design floods that not only include information on the event

magnitude in terms of peak discharge but also on the hydrograph volume and shape of the flood

hydrograph. According to the FOEN, the main needs of the project were:

• Volumes of flooding to produce risk maps;

• Representative floods to compute sediment transport;

• Flood hydrographs to design several hydraulic works including retention basins or weirs

for lake regulation;

• Design flood hydrographs to validate existing retention basin volumes in ungauged catch-

ments;

• Representative durations of flows larger than a given threshold to define risk scenarios

caused by erosion and to evaluate carried sediment amounts.

These needs were addressed by the research done during my PhD which deals with the

estimation of synthetic design hydrographs in gauged and ungauged catchments, describing a

flood event in terms of peak discharge, hydrograph volume, and its whole shape.

The work on this project resulted in six papers. Together with the summary text, they form

this manuscript. The summary text first introduces the topics of synthetic design hydrograph

construction, regionalization, and uncertainty. In a second chapter, the thesis objectives are

defined. The third chapter gives an overview on the data used and on the main methods applied

and developed in the thesis. In the fourth chapter, the most important results obtained in the

six papers are summarized. Chapter five then discusses these results and shows limitations and

perspectives of the approaches proposed. The summary text closes with a conclusion on the main

contributions of this work. The summary text is followed by the six papers written in the context

of this thesis. The papers are listed below and are referred to as Papers I to VI in the summary

text. The author contributions are specified in the next section.
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1
INTRODUCTION

A
ugust 2005. A flood triggered by widespread and heavy precipitation events causes

damages of 3 Billion Swiss Francs in Switzerland. Such flood events are rare but can

have severe consequences for society and economy. It is therefore in the interest of a

society to protect settlements, infrastructure, and human life against such floods (Bezzola and

Hegg, 2007). Flood hazard maps form the basis for flood risk assessments and show where the

construction of buildings should be avoided to reduce damage potential. In addition to such

planning measures, structural measures might be necessary to achieve the desired protection

level. For the implementation of both types of measures, design flood estimates are required that

describe the expected magnitude of a flood event with a certain recurrence interval or return

period (BWG, 2003).

Design flood estimation has traditionally focused on peak discharge, which is often the main

flood characteristic of interest, but provides only a coarse picture of a flood event (Rosbjerg

et al., 2013). Other hydrograph characteristics, such as volume, duration, and shape provide

additional and potentially valuable information (Mediero et al., 2010). Their consideration in

design flood estimation is of particular interest if design floods are required for hydraulic design

tasks involving storage, such as the construction of retention basins, or for flood management

tasks, such as drawing hazard maps (Pilgrim, 1986) or modeling inundation areas. Different flood

hydrograph shapes may cause differences in the costs of hydraulic structures and influence flood

management strategies (Yue et al., 2002). Design flood hydrographs provide a means to describe

the physical properties of a flood with a specified recurrence interval or return period in terms of

peak discharge, hydrograph volume, and shape (Serinaldi and Grimaldi, 2011). Herein the term

synthetic design hydrographs (SDHs) is used to emphasize that design events summarize the

flood behavior of a catchment in the form of an estimated, synthetic hydrograph, which has not

1



CHAPTER 1. INTRODUCTION

been actually observed. The estimation of SDHs is of interest for both gauged catchments, where

runoff information is available, and ungauged catchments where such information is missing.

Existing approaches for the construction of SDHs in gauged catchments and their regionalization

to ungauged catchments are outlined in the sections below.

1.1 SDH construction

Design flood estimation methods can be grouped into statistical and deterministic methods

or a combination of the two (Rogger et al., 2012; Smithers, 2012). Statistical methods rely

on flood frequency analyses. They fit a mathematical probability distribution to the design

variable of interest, which is often peak discharge, and extrapolate the tails of this distribution to

low exceedance probabilities (Klemes, 1993). They require long observed flood records to avoid

unreliable estimates (Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall, 2012). On

the contrary, deterministic methods are event based. They define a design hydrograph through

the transformation of rainfall into runoff. The rainfall input is a design rainfall hyetograph with

an assigned return period deduced from an intensity-duration-frequency curve (Grimaldi et al.,

2012a; Soczynska et al., 1997). This approach allows the consideration of catchment processes.

However, it is based on three critical assumptions (Pilgrim and Cordery, 1993): the choice of

the design rainfall hyetograph, the equality between the rainfall and discharge return periods

(Viglione et al., 2009), and the choice of initial soil moisture conditions (Camici et al., 2011).

Combined approaches stochastically generate long rainfall and temperature time series and

put these into a continuous rainfall-runoff model to simulate long runoff time series, which

are then used in flood frequency analysis (Grimaldi et al., 2012b). Such combined approaches

avoid making the critical assumptions of deterministic approaches. However, they require, on

the one hand, the choice of a suitable stochastic model and on the other hand, the calibration

of a continuous rainfall-runoff model, which is for a practitioner, more time consuming than

classical flood frequency analysis and therefore unlikely to be used for the design of minor

works (Boughton and Droop, 2003). Because of the critical assumptions behind the deterministic

approach and the time-constraint of practitioners, this thesis focuses on statistical methods that

can be easily applied by practitioners and produce reproducible results. Contrary to classical

statistical approaches, the methods developed in this thesis focus on a bivariate frequency

analysis, which allows the joint consideration of peak discharges and hydrograph volumes. In

addition, they consider the whole hydrograph shape without reducing it to a few hydrograph

characteristics. Hydrograph shapes have traditionally been modeled by unit hydrographs (UHs).

Methods for UH derivation comprise traditional unit hydrographs, synthetic unit hydrographs,

typical hydrographs, and statistical methods (Yue et al., 2002). Statistical methods are based

on probability density functions (PDFs) fitted to observed hydrographs and have been found to

be more suitable to derive unit hydrographs than traditional methods because they are flexible,
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can take various shapes, and the area under the curve is guaranteed to be equal to one. These

characteristics make PDFs a suitable basis for design flood hydrographs (Bhunya et al., 2007). A

dimensionless UH can be combined with the design variables (peak discharge and hydrograph

volume) estimated in a bivariate frequency analysis to derive an actual design flood hydrograph

with a specified return period (Serinaldi and Grimaldi, 2011).

Existing design flood estimation methods, independent of the estimation method chosen, focus

on catchment-specific design floods which summarize the flood behavior of a catchment. However,

floods can be triggered by different processes represented by different flood types (Merz and

Blöschl, 2003). These yield important information on the flood behavior of a catchment. Classical

SDH construction methods typically do not allow for the explicit consideration of different flood

types such as flash floods, short-rain floods, long-rain floods, or rain-on-snow floods (Diezig and

Weingartner, 2007; Merz and Blöschl, 2003; Sikorska et al., 2015). However, including such causal

information (Merz and Blöschl, 2008a) in flood frequency analysis and SDH construction could

provide more reliable flood estimates.

1.2 Regionalization

In contrast to gauged catchments, ungauged catchments lack runoff observations which could

be used in flood frequency analysis or SDH construction. Therefore, alternative data such as

catchment characteristics and climate or spatial data are usually used to transfer or regionalize

flood estimates from gauged to ungauged catchments (Blöschl et al., 2013). Regionalization

methods comprise 1) methods establishing a relation between catchment characteristics and

model parameters, 2) approaches based on spatial proximity, and 3) methods delineating regions

of catchments with a similar flood behavior (Steinschneider et al., 2014). A range of different

data types has previously been regionalized to ungauged catchments including unit hydrograph

parameters (Tung et al., 1997) and flood quantiles (Merz and Blöschl, 2004; Ouarda et al.,

2001; Skoien et al., 2006) among other hydrological variables. However, very few studies deal

simultaneously with both multivariate and regional aspects. Requena et al. (2016) proposed an

approach for regionally estimating design quantiles via a bivariate regional index flood approach.

The index flood approach was originally proposed by Dalrymple (1960) to predict univariate

design quantiles using a pool of data from a region of similar catchments. It consists of two main

steps. In a first step, regions with a similar flood behavior are delineated. In a second step, the

data within these similar regions are used for regional flood frequency analysis. It assumes that

frequency distributions at different sites within a region are identical apart from a scale factor.

It describes a local quantile estimate Q i(F) as the product of an index flood (µi) and a regional

growth curve (q(F)) estimated based on the data at N sites so that:

(1.1) Q i(F)=µi q(F) i = 1, . . . , N.
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The index flood can be any location parameter of the at-site distribution but is often taken to be

its mean. The regional growth curve is a dimensionless quantile function computed based on

dimensionless regional data, which are obtained by dividing the observed flood event data by

the index flood. The classical index flood procedure focuses on peak discharges. Requena et al.

(2016) therefore proposed an approach for a multivariate regional index flood approach to allow

for the consideration of more than one design hydrograph characteristic, e.g. peak discharge and

hydrograph volume. While such a bivariate regional approach allows the joint consideration of

peak discharges and hydrograph volumes, neither hydrograph shape, nor process variability

can be considered. To the best of my knowledge, no method has so far been proposed for the

regionalization of SDHs that represent peak discharge and flood volume together with the whole

hydrograph shape. Furthermore, no methodology has so far been proposed for the regional

construction of event-type specific sets of SDHs in ungauged catchments.

1.3 Uncertainty

Flood estimation entails various sources of uncertainty comprising measurement errors, various

assumptions, sample selection, the choice of a suitable distribution function, the choice of a

parameter estimation method, and sampling uncertainty (Merz and Blöschl, 2005). Such uncer-

tainty sources interact and together determine the total uncertainty of flood estimates (Beven and

Hall, 2014; Merz and Blöschl, 2008a). Uncertainty analysis allows the identification of uncertain

parameters (Tung and Yen, 2005), a quantitative assessment of model reliability (Merz and

Blöschl, 2005; Montanari and Koutsoyiannis, 2012), and indicates where potential improvements

in the method could have the greatest impact (Cullen and Frey, 1999; Hall and Solomatine,

2008; Sikorska et al., 2012). Still, uncertainty assessments are not routinely conducted in flood

frequency analyses (Pappenberger et al., 2006).
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2
THESIS OBJECTIVES

T
here is a need for a simple design hydrograph estimation method that can be easily

applied by engineers with little hydrological expertise for the design of minor works, such

as bridges and culverts, farm dam spillways, and urban drainage systems, where a certain

risk of failure is acceptable (Pilgrim and Cordery, 1993). Such a method should be applicable

both in gauged and ungauged catchments and represent peak discharge and hydrograph volume

together with the whole hydrograph shape (Grimaldi et al., 2012a,b; Mediero et al., 2010).

Furthermore, such a method should quantify the uncertainty of an SDH (Beven et al., 2010). For

these reasons, this PhD thesis developed an SDH construction method for gauged catchments

solely based on runoff observations. The SDHs characterize the design flood not only in terms

of peak discharge but also hydrograph volume and shape. In a second step, this method was

regionalized to ungauged catchments to enable the estimation of SDHs based on catchment

characteristics in the absence of runoff observations. In a third step, a simulation framework was

set up to assess the uncertainty of SDHs constructed in gauged catchments and regionalized

to ungauged catchments. The method was not limited to the construction of catchment-specific

SDHs but was extended to an ensemble-based approach that allows for the consideration of

different process types occurring in a catchment.

More specifically, the PhD thesis addressed the following research questions:

Question 1 How can the dependence between peak discharges and hydrograph volumes be jointly

considered in design hydrograph construction together with a realistic representation of

the hydrograph shape?

Question 2 How can process types be considered in design hydrograph construction?
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Figure 2.1: Overview of the six papers written in the context of this PhD thesis and links between them.

Question 3 What is the most suitable method to regionalize SDHs from gauged to ungauged catchments

and how can process types be considered in the regionalization to ungauged catchments?

Question 4 What are the most important uncertainty sources in design hydrograph construction and

what is the uncertainty of SDH estimates in gauged and ungauged catchments?

These research questions were addressed in six scientific papers which build up on each other

(Figure 2.1).

Paper I contributes to answering Question 1 and is essential for answering all remaining

questions. It deals with the question of how to define a return period in a bivariate context which

is fundamental in the design of SDHs representing the two design variables peak discharge

and hydrograph volume. It reviews tools that are used to define return periods in a bivariate

context and illustrates the effect of different return period definitions on bivariate design quantile

estimates in a case study.

Paper II deals with Questions 1 and 2. It proposes a simple probabilistic SDH construction

framework that is based on observed runoff data only and avoids the use of any rainfall-runoff

model. The constructed SDHs describe design floods in terms of peak discharge and hydrograph

volume via a bivariate frequency analysis and the hydrograph shape via a probability den-

sity function. The catchment-specific construction approach is extended to a flood-type specific

approach where SDHs are constructed for different flood types such as long-rain, short-rain,

rain-on-snow, and flash floods.

Paper III deals with Question 3 and tries to identify a suitable method for the regionalization

of SDHs to ungauged catchments. Therefore, it compares various methods for the regionalization

of catchment-specific SDHs to ungauged catchments comprising methods establishing a relation-
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ship between SDH parameters and catchment characteristics, spatial methods, and methods

based on the delineation of homogeneous regions.

Paper IV deals with Question 4. It proposes an uncertainty assessment framework with three

levels of complexity which allows for the identification of the most important uncertainty sources

in the construction and regionalization of SDHs. Furthermore, it enables the quantification of the

total uncertainty of constructed and regionalized SDHs and propagates construction uncertainty

through regionalization.

Paper V deals with Questions 2 and 3. It proposes a clustering approach based on functional

data to identify sets of representative hydrograph shapes within a catchment and regions of

similar flood reactivity on a regional scale. The delineation of such reactivity regions is a first

step towards a regional SDH construction approach that allows for the construction of event-type

specific SDHs in ungauged catchments.

Paper VI deals with Question 3. It proposes a method for the regionalization of event-type

specific SDH sets to ungauged catchments. It uses the idea of the delineation of flood reactivity

regions proposed in Paper V in a regional index flood approach which is extended to a regional

SDH construction approach.

The six papers form a logical sequence and are closely linked. Bivariate return periods

as discussed in Paper I are fundamental for the construction of SDHs which is discussed in

Paper II for both a catchment-specific and a flood-type specific framework. Paper III focuses

on the regionalization of catchment-specific SDHs. In contrast, Papers V and VI deal with the

regionalization of event-type specific SDHs. In a first step, Paper V deals with the delineation

of regions with similar representative hydrograph sets and therefore similar reactivity. In a

second step, Paper VI uses these regions in a regional SDH construction approach which is

based on a bivariate index flood approach. Paper IV looks at the uncertainty of SDHs focusing on

catchment-specific SDHs. Uncertainty due to process variability is addressed in papers V and

VI by the construction of event-type specific SDHs. All six papers focus on a return period of

T = 100 years since this return period is often used as a reference in national guidelines to define

protection goals for settlements in Switzerland (Camezind-Wildi, 2005). The methods proposed

or applied, however, are applicable for any return period of interest considering the limits posed

by the limited data availability (Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall,

2012).
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3
MATERIAL AND METHODS

T
his chapter first introduces the dataset used to perform the analyses conducted within

this thesis. An overview is then given on the methods used to construct SDHs in gauged

catchments, to regionalize SDHs to ungauged catchments, and to assess SDH uncertainty.

3.1 Study catchments

The analyses conducted in the context of this thesis rely on observed runoff time series and

catchment characteristics of 163 study catchments in Switzerland.

3.1.1 Runoff observations

The dataset comprises catchments (Figure 3.1) with a wide range of catchment characteristics

and flood behaviors. The selected catchments have hourly flow series of at least 20 years in

duration ranging up to 53 years. The catchments’ runoff is neither altered by regulated lakes

upstream or inland canals nor by urbanized areas. The catchments are small to medium-size (6

to 1800 km2), situated at mean elevations between 400 and 2600 m.a.s.l., and have either no or

only a few areas with glaciers. Papers III to VI used the whole set of catchments while Papers I

and II used only a subset of catchments.

The basis for each analysis was samples of flood events extracted from the runoff time series

of the study catchments. Flood events were sampled using a peak-over-threshold approach based

on the procedure proposed by Lang et al. (1999). The threshold for the peak discharges was

chosen iteratively to fulfill a target condition of four events per year on average which is a

trade-off between maximizing the information content in the sample and keeping the assumption

of independence between events. For each of these events, sampled according to the flood peaks,
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allowing the assignment of an ungauged catchment to one of the reactivity regions. This subset

consisted of catchment area, network density, Y-coordinate, soil topographic index, percentage

area of karstic rocks, sunshine duration, and vapor pressure.

3.2 Bivariate return periods

The return period contains information about the non-exceedance probability of an event which

has traditionally been described in terms of its peak discharge in a univariate frequency analysis.

A bivariate analysis, however, is more appropriate if two dependent variables, such as peak

discharge and hydrograph volume, play a significant role in the ruling behavior of a flood

(Salvadori et al., 2014). While the return period is uniquely defined in a univariate setting,

this is not the case in the bivariate setting (Gräler et al., 2013; Salvadori et al., 2011; Yue and

Rasmussen, 2002). The return period used to describe bivariate events can be determined by three

types of approaches: 1) use of the conditional probability, 2) use of the joint probability, and 3) use

of the Kendall’s distribution or survival function. The choice of one of these approaches depends

on the problem at hand (Serinaldi, 2015). The conditional probability is used if one variable

(often peak discharge) is considered to be more important than the other variable of interest (e.g.

hydrograph volume). On the contrary, the joint probability is used if both variables are considered

to be equally important for the design problem at hand. All these bivariate approaches have in

common that, on the contrary to the univariate approach, there is no unique solution for design

variables with a specific return period T. Instead, various combinations of peak discharges and

hydrograph volumes share the same return period and lie on an isoline. For practical reasons, one

event on the isoline is often chosen and called the design event. Usually, this is the most-likely

design realization on the isoline, i.e., the point with the largest probability density along the

isoline (Salvadori et al., 2011). A more detailed description of possible return period definitions

and of approaches to choose one design variable pair is provided in Paper I.

This thesis considers both peak discharge and hydrograph volume to be equally important for

the design problem at hand and therefore focuses on the joint OR return period which uses the

probability that either peak discharge or hydrograph volume (or both) exceeds a given threshold.

It is defined as:

(3.1) T(x, y)=
µt

Pr[X > x∨Y > y]
=

µt

1−FX (x)−FY (y)+FXY (x, y)
=

µt

1−C(u,v)
,

where X and Y are random variables, C is a copula, x and y are given thresholds, µt is the

inter-arrival time between two successive events u = FX (x) and v = FY (y), and FX , FY , and FXY

are the marginal and joint distribution functions of the random variables respectively (Salvadori,

2004; Salvadori and De Michele, 2004). Throughout this thesis, one single design variable pair

is obtained from the isoline by selecting the point with the largest joint probability density as

follows:
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(3.2) (u,v)= argmax
C(u,v)=t

fXY
{

F−1
X (u),F−1

Y (v)
}

.

3.2.1 Marginal distributions

The marginal distributions of peak discharges and hydrograph volumes are linked to the flood

sampling strategy. The flood samples used in this thesis were obtained by a peak-over-threshold

(POT) approach which samples those events with a peak discharge higher than a predefined

threshold (Lang et al., 1999). POT samples, according to extreme value theory (Coles, 2001),

follow a generalized Pareto distribution (GPD) which is defined as:

(3.3) FX (x)= 1−
{

1+ξ
( x−µ

σ

)}−
1
ξ

ξ 6= 0,

with a location parameter µ in R, a scale parameter σ> 0, and a shape parameter ξ in R.

The corresponding hydrograph volumes were defined over a time window of 72 hours starting

24 hours before peak discharge. Their marginal distribution can be described by a generalized

extreme value (GEV) distribution as:

(3.4) FY (y)= exp
[

−

{

1+ξ
( y−µ

σ

)}−
1
ξ

]

ξ 6= 0,

with domain 1+ξ
(

y−µ
σ

)

> 0 for ξ 6= 0 and with a location parameter µ in R, a scale parameter σ> 0,

and a shape parameter ξ in R.

POT series have the advantage of including all relevant flood events, which is not guaranteed

when working with annual maxima series (Lang et al., 1999). However, the independence of the

events needs to be ensured. In this thesis, a minimum time difference of 72 hours between two

successive events was prescribed to ensure their independence.

3.2.2 Copulas

The joint distribution of peak discharges and hydrograph volumes needs to reflect their depen-

dence. Contrary to classical bivariate distributions, copula models allow the modeling of two

dependent variables with different marginal distributions (Genest and Favre, 2007). The copula

approach has its origin in the representation theorem of Sklar (1959) which states that the joint

cumulative distribution function FXY (x, y) of any pair of continuous random variables (X ,Y ) can

be written as:

(3.5) FXY (x, y)= C
{

FX (x),FY (y)
}

, x, y ∈R,

where FX (x) and FY (y) are the marginal distributions and C : [0,1]2 is the copula. C is unique if

the marginals are continuous. One of the main advantages of the copula approach is that the
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selection of an appropriate copula for modeling the dependence between X and Y can proceed

independently from the choice of their marginal distributions (Genest and Favre, 2007).

The copula models considered in the context of this thesis were five copulas of the Archimedean

copula family (Ali-Mikhail-Haq (AMH), Clayton, Frank, Gumbel (also belonging to the extreme-

value copula family), and Joe), two copula models of the elliptical copula family (Normal and

Student-t copula), and the independence copula (Joe, 2014). They were fitted using maximum

pseudo-likelihood estimation to the pseudo-observations, which are deduced from the ranks of

the observations. After the fitting, the copulas were tested using both graphical approaches

and a goodness-of-fit test based on the Cramér-von-Mises statistic (Genest and Favre, 2007).

A p-value for the Cramér-von-Mises statistic of each copula was estimated using a statistical

bootstrap procedure (Genest et al., 2009). The Joe copula was found to be the most suitable model

to represent the dependence between peak discharges and hydrograph volumes within a single

catchment. It is expressed as:

(3.6) C(u,v)= 1−
[

(1−u)θ+ (1−v)θ− (1−u)θ(1−v)θ
]

1
θ ,

where θ is the copula parameter, u = FX (x) and v = FY (y) are uniformly distributed between 0

and 1, and their dependence is modeled by the copula C.

The Joe copula is very flexible and can represent the bivariate distributions of the flood

samples in most catchments even when they are divided by flood types. In addition, it is able to

model the upper tail dependence (Heffernan, 2000) present in the data as described by the upper

tail dependence coefficient (Poulin et al., 2007).

In a regional setting (see Paper VI), when pooling data from several catchments, the Student-t

copula was found to be more suitable to model the dependence in the data than the Joe copula. It

showed the lowest Cramér-von-Mises test statistic among all the copulas tested and similar to

the Joe copula was able to model the tail dependence in the data (Frahm et al., 2003).

3.3 SDH construction

Catchment-specific and flood-type specific SDHs are constructed using observed hourly runoff

time series. The construction approach models the magnitude of the design flood using a bivariate

frequency analysis and the shape of the hydrograph via a probability density function. The

method can be either applied to construct a catchment-specific SDH without any differentiation

between flood types or to construct flood-type specific SDHs. Flood-type specific SDHs can be

constructed for flash floods (FF), short-rain floods (SRF), long-rain floods (LRF), or rain-on-snow

floods (RoSF), but not for snowmelt floods (SMF) and glaciermelt floods (GMF). The eleven steps

involved in the procedure are illustrated in Figure 3.2, listed in the paragraphs below, and

described in detail in Paper II. A more detailed description of the catchment-specific construction

procedure can be found in Brunner et al. (2016).
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Figure 3.2: Method for the construction of synthetic design hydrographs (SDHs). The method can either
be applied to all types of flood events identified in a catchment or it can be used to construct flood-type
specific SDHs. The approach consists of eleven steps. The SDH (QT (t)) can be expressed by a probability
density function ( f (t)) times the mean discharge (VT /DT ) plus the baseflow (B).
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1. Flood sampling: Flood sampling using a POT approach which samples four events per

year on average (see also Section 3.2.1).

2. Classification: Attribution of each flood event to one out of six flood types according to its

triggering mechanism using a flood classification scheme adjusted from Merz and Blöschl

(2003) and Sikorska et al. (2015). The flood types comprise flash floods (FFs) caused by

short but very intense rainfall, short-rain floods (SRFs) caused by rainfall lasting no longer

than one day, long-rain floods (LRFs) caused by rainfall lasting several days, rain-on-snow

floods (RoSFs) triggered by rainfall falling on snow, snowmelt floods (SMFs) caused by a

temperature-induced melting of snow cover, and glaciermelt floods (GMFs) caused by a

temperature-induced melting of glacier cover. The classification scheme assigns a flood

event to one of the flood types based on eight indices: timing of the flood, precipitation

amount, precipitation duration, precipitation intensity, glacier cover, snow cover, snowmelt,

and catchment wetness (Sikorska et al., 2015). The focus of this thesis was on FFs, SRFs,

LRFs, and RoSFs because the number of SMFs and GMFs was very low and the latter

are less relevant for flood management because of their rather low peak discharges. The

classification step can be skipped if catchment-specific SDHs instead of flood-type specific

SDHs are of interest.

3. Baseflow separation: Separation of baseflow from the quick flow component of the event

hydrographs to enable their statistical analysis (Yue et al., 2002). A recursive digital filter

was applied (Eckhardt, 2005) to separate quick flow from baseflow whose two parameters

were estimated for each catchment individually.

4. Normalization: Normalization of the quick flow component of the hydrographs by dividing

the base width by its duration D and the ordinate by the mean runoff (V /D).

5. Identification of representative normalized hydrograph: Identification of a repre-

sentative normalized hydrograph (RNH) as the median normalized hydrograph of the

event set under consideration (whole dataset or flood-type specific datasets). The median

hydrograph was defined using a notion of depth for functional data (Ramsay and Silverman,

2002). The concept of data depth can be used to define the centrality of a hydrograph

within a group of hydrographs and to define their ranks. This enables the computation of

robust estimators of the median among curves. Among different definitions of data depth,

the h-mode depth (Cuevas et al., 2007) was chosen and used to determine the median

hydrograph within a set of hydrographs.

6. Fitting of probability density function: Fitting of a probability density function (PDF)

to the RNH. PDFs can take various shapes and the area under their curves is equal

to one as is the one under the RNH. The parameters of the PDF can be derived via an

analytical expression using the time to peak, peak discharge, and the time base of the
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RNH (Nadarajah, 2007; Rai et al., 2009). A comparison of eight commonly used PDFs (beta,

gamma, Fréchet, inverse gamma, logistic, lognormal, normal, and Weibull) has shown

that the lognormal is the most suitable PDF to model the shape of the hydrographs. The

dimensionless shape of the design hydrograph can be upscaled to an SDH using design

variable quantiles.

7. Dependence modeling: Estimation of the parameters of the marginal distributions

of peak discharges (GPD: Equation 3.3) and hydrograph volumes (GEV: Equation 3.4).

Estimation of the parameter of the Joe copula. Modeling of the dependence between peak

discharges and hydrograph volumes using the Joe copula model (Equation 3.6).

8. Choice of return period definition: Choice of a return period definition according to the

problem at hand (Serinaldi, 2015) (see Section 3.2). In this thesis the joint OR return period

was used assuming that peak discharge and hydrograph volume were equally important.

9. Estimation of QT and VT : Estimation of the design variable quantiles peak discharge (QT )

and hydrograph volume (VT ) with the defined return period. The quantiles are obtained by

inverting their marginal distributions FX and FY :

(3.7) QT = F−1
X (u)

and

(3.8) VT = F−1
Y (v).

10. Computation of DT : Computation of the design duration (DT ) from the design estimates

of QT and VT as DT = f (tp)VT /QT , where f (tp) is the lognormal density at the time to peak

tp.

11. SDH construction: Construction of the SDH using the lognormal distribution fitted to

the RNH and the estimates for VT and DT using:

(3.9) QT (t)= f (t)VT /DT +B,

where B is the baseflow to be added to the direct flow component. The baseflow is estimated

by a mean event baseflow index computed for each catchment.

The construction of an SDH requires knowledge of ten parameters: event baseflow index, location

and scale parameter of the lognormal distribution, a location, scale, and shape parameter for the

two marginal distributions of the peak discharges and the hydrograph volumes as well as the

parameter θ of the Joe copula. A more detailed description of the statistics of these parameters,

their correlation, and distributions is provided in Paper III. The approach described above can

be applied to the whole sample of flood events in a catchment or to a subsample of flood events

representing a particular flood type. The event-type specific construction is an ensemble based

approach that represents the flood behavior of a catchment described by different process types.
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3.4 SDH regionalization

Design flood estimates are not only required in catchments where runoff observations are

available but also in ungauged catchments where such observations are missing. Therefore,

suitable approaches were sought that allowed for the transfer of SDHs to ungauged catchments.

In a first step, catchment-specific SDHs were regionalized to ungauged catchments. In a second

step, event-type specific SDH sets were transferred to ungauged catchments. The approaches

used for the regionalization of catchment-specific SDHs is summarized in this paragraph and

described in more detail in Paper III. The regionalization of event-type specific SDHs is addressed

in Section 3.7 and described in detail in Paper VI. Various regionalization approaches can be

used to regionalize the ten parameters of a catchment-specific SDH (see Section 3.3) to ungauged

catchments. In this thesis, approaches from three categories were tested for their suitability to

regionalize SDH parameters: 1) methods based on the relation between catchment characteristics

and model parameters, 2) approaches based on spatial proximity, and 3) methods based on

homogeneous regions (Figure 3.3). Approaches belonging to Category 1 comprise linear and

nonlinear regression models. Methods belonging to Category 2 comprise spatial methods such

as k-nearest neighbors, inverse distance weighting, and several kriging approaches. Category 3

delineates homogeneous regions, assigns an ungauged catchment to one of the regions based on

its catchment characteristics, and estimates its SDH parameters based on the SDH parameters

of the catchments belonging to the corresponding region. Since nonlinear regression models have

not been frequently used in hydrological applications, they are shortly described in the next

paragraph. More information on the other regionalization methods can be found in Paper III and

the references cited therein.
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3.5. SDH UNCERTAINTY

3.4.1 Nonlinear regression models

In the context of this thesis, the term nonlinear regression models is used for tree-based regression

methods (Strobl et al., 2009). Tree-based methods split the space of catchment characteristics

used as explanatory variables into a number of regions containing catchments with similar SDH

parameters. The set of splitting rules used to divide the space of explanatory variables can be

summarized as a tree (Hastie et al., 2008). Tree models are usually applied as an ensemble to

avoid overfitting and improve prediction accuracy. Such ensemble methods comprise bagging,

random forest, and boosting (James et al., 2013). Bagging uses bootstrap techniques to draw

random samples from the catchment set, builds regression trees for each of these samples, uses

each of the trees to make predictions for the SDH parameter under consideration, and averages

these predictions. Random forest is similar to bagging but considers only a subset of catchment

characteristics to be used in each split of the tree model to decorrelate the individual models

(Breiman, 2001). Boosted regression trees (Freund and Schapire, 1996; Friedman, 2001, 2002)

work similarly but fit the regression trees iteratively focusing on catchments modeled poorly by

the existing collection of trees (Hofner et al., 2014).

3.4.2 Model validation

The predictive performance of the regionalization methods tested was compared to a benchmark

model represented by the arithmetic mean (Parajka et al., 2005; Razavi and Coulibaly, 2013) over

the SDH parameters of the 163 study catchments (Section 3.1). The validation of the methods

was done using 10-fold cross validation by dividing the dataset into 10 parts of equal size,

estimating the SDH parameters using 9 out of these folds, and predicting the SDH parameters

and constructing the SDHs for the catchments in the remaining fold (James et al., 2013). The

validation was on the one hand performed for the individual SDH parameters and on the other

hand for the constructed SDHs in terms of their relative error. In the first case, each of the

regionalized SDH parameters was compared to the corresponding SDH parameter estimated

using runoff observations. In the second case, the hydrograph resulting from the regionalized

SDH parameters was compared to the SDH estimated based on runoff observations. The relative

error of the regionalized SDH compared to the estimated SDH was computed for four hydrograph

characteristics (see Figure 3.4) including peak discharge (Qp), hydrograph volume (V ), time to

peak (tp), and half-recession time (the time from peak to where the recession reaches half of the

peak discharge) (tp05).

3.5 SDH uncertainty

The uncertainty of constructed and regionalized SDHs was quantified in an uncertainty assess-

ment framework. This framework is shortly outlined here and a detailed description is given in

Paper IV. The framework consists of three levels of complexity (Figure 3.5). On a first level (A), the
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Qp

V

tp tp05

0.5 Qp 

t

Q

Figure 3.4: Illustration of the hydrograph characteristics used for the validation of the regionalization
methods: peak discharge (Qp), hydrograph volume (V ), time to peak (tp), and half-recession time (tp05).

effect of different uncertainty sources comprising record length, model, and sampling uncertainty

was assessed. This allowed for the identification of important uncertainty sources. On a second

level (B), the total uncertainty of constructed SDHs and regionalized SDHs was assessed without

considering their dependence. On a third level (C), the uncertainty of the constructed SDHs was

propagated through regionalization to assess the coupled uncertainty of SDH construction and

regionalization. The uncertainty assessment was based on bootstrap simulations which involve

the random sampling of data points, with replacement, from the original sample (Efron and

Tibshirani, 1993). The bootstrapping was done on various model configurations (model choices

and parameters) to construct a set of SDHs. The resulting set of SDHs was compared to an SDH

obtained as the best estimate under the standard configuration (see Section 3.3).

3.5.1 Level A: Uncertainty due to individual sources

Level A distinguished between three categories of uncertainty: 1) uncertainty due to limited

record length, 2) model uncertainty resulting from the choice of one model over another feasible

model, and 3) sampling uncertainty resulting from estimating the model parameters based on an

available flood sample that only approximates the characteristics of the underlying population.

The impact of the individual uncertainty sources on the estimated SDH was assessed by focusing

on one uncertainty source at the time. This was done by constructing various SDHs using a

slight modification of the standard model configuration (see Section 3.3) either varying one model

choice or considering the uncertainty of one parameter at the time. The set of SDHs obtained by

these simulations gave an idea of the variability introduced by each source of uncertainty. The

uncertainty sources considered comprised record length, choice of the flood sampling strategy,

parameter uncertainty in baseflow separation, choice of the depth function used to identify

the median normalized hydrograph (RNH), choice of the PDF used to model the hydrograph

shape, choice of the marginal distributions to model peak discharges and hydrograph volumes,

uncertainty in the estimation of the parameters of the marginal distributions, choice of the copula
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family to model the dependence between peak discharges and hydrograph volumes, uncertainty

in the estimation of the parameter of the copula, choice of a design variable pair on the isoline,

baseflow addition, and model and parameter uncertainty associated with regionalization.

3.5.2 Level B: Total uncertainty

The total uncertainty of SDH construction and SDH regionalization was assessed independently.

The total uncertainty related to SDH construction was assessed by a bootstrap experiment.

Contrary to Level A, neither model choices nor parameters were fixed. At each step of the

construction procedure, one option was randomly sampled from the model and/or parameter space

to jointly consider all uncertainty sources involved in SDH construction. The total uncertainty due

to SDH regionalization was also assessed by bootstrap simulations. In each run, a regionalization

model was sampled from the model space and fitted for each SDH parameter using data from a

resampled catchment dataset. The fitted models were then used to predict the SDH parameters

of the catchments in the original catchment set.

3.5.3 Level C: Coupled uncertainty

The coupled uncertainty jointly considered construction and regionalization uncertainty. There-

fore, the uncertainty of the constructed SDHs was propagated through the regionalization process.

Catchment-specific distributions of the ten SDH parameters were defined on Level B by construct-

ing 1000 SDHs under various bootstrapped model configurations. This construction uncertainty

was then propagated through regionalization by fitting a randomly sampled regionalization model

to a resampled catchment set. While the ten SDH parameters were fixed for each catchment in

the total regionalization uncertainty, the coupled uncertainty sampled the ten SDH parameters

for each of the resampled catchments from their catchment-specific empirical distributions.

3.5.4 Uncertainty quantification

Each level of the uncertainty analysis provided a set of SDHs obtained by varying one or several

model choices and/or considering sampling uncertainty. These sets were compared to the best

estimate SDH obtained by the standard configuration (see Section 3.3) without considering

uncertainty. The absolute relative error of each simulated SDH compared to the best estimate

SDH was computed and summarized over all catchments as the median absolute relative error

(EMAR). The EMAR was computed for the four hydrograph characteristics Qp, V , tp, and tp05,

which were already used for the validation of the regionalization approaches in Paper III (Figure

3.4).
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3.6 Reactivity clusters

The comparison of approaches for the regionalization of catchment-specific SDHs in Paper III has

shown that the hydrograph shape is difficult to regionalize since hydrograph shape variability

is neglected. The regionalization of flood-type specific SDHs using the methods tested in Paper

III was not found to be successful either. Therefore, the regionalization of event-type specific

SDH sets was approached by a regional procedure. This regional procedure first identified

representative sets of hydrograph shapes on a catchment scale. These sets were used in a second

step for the delineation of regions of catchments with a similar flood reactivity. In a next step,

a classification rule was defined that allowed for the attribution of an ungauged catchment to

one of the reactivity regions. In a last step, the pooled data from the reactivity regions was used

in a regional procedure to construct representative sets of synthetic design hydrographs for

ungauged catchments. The first two steps, the identification of representative hydrograph sets,

and the delineation of regions with a similar flood reactivity were addressed in Paper V and are

summarized in this paragraph. The last two steps, the attribution of an ungauged catchment to

one of the reactivity regions and the regional SDH construction procedure are addressed in Paper

VI and outlined in Section 3.7.

The information included in hydrograph shapes was employed for the identification of rep-

resentative hydrograph shapes on a catchment scale and for the delineation of regions with a

similar flood behavior on a regional scale. Both representative hydrograph shapes and reactivity

regions were identified using a clustering approach based on hydrograph shapes represented as

functional data (FD) (Figure 3.6).

Q(t) = a1 + a2 a3 a4+ +

Q

t

Q(t)

t

Discrete 

observations
Representation by 

set of basis functions

Functional representa-

tion of hydrograph
1 2 3

Figure 3.6: Getting from discrete measurements (1) to a functional representation of a hydrograph (3) by
representing the data by a set of basis functions (2).

FD are continuously defined and do not depend on the choice of several hydrograph char-

acteristics as do classical multivariate data. The clustering approach consisted of two steps: 1)

identification of a set of representative hydrograph shapes on a catchment scale and 2) delin-

eation of regions of catchments with a similar flood reactivity on a regional scale using the sets of

representative hydrograph shapes obtained in the first Step (Figure 3.7). In the first Step, a clus-

tering approach was used to identify the number of hydrograph shapes necessary to sufficiently

describe the variability of hydrograph shapes within a study catchment. Hydrograph shapes were

expressed as FD, i.e., each hydrograph was represented as a function of time (Figure 3.6). The FD

representation was achieved by projecting the normalized hydrographs of a catchment on a set of
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Figure 3.7: Illustration of the clustering framework. The data input and output for the models are indicated
for the two different parts: 1) hydrograph shape clustering, 2) catchment clustering. Hydrograph shape
clustering is done on the catchment scale and catchment clustering on the regional scale.

basis or B-spline basis functions and computing the coefficients for each of these B-spline bases

(Abraham et al., 2003). The sets of coefficients representing the hydrograph shapes were used as

an input for the cluster analysis using a k-means algorithm (Gordon, 1999). Each hydrograph

shape cluster was summarized by its median hydrograph to define a catchment-specific set of

representative hydrograph shapes representing typical event types within a catchment. In the

second step, regions of catchments with a similar flood behavior were delineated using the sets

of representative hydrograph shapes identified in the first step. The catchments were clustered

using the hierarchical Ward algorithm (Ward, 1963) on the sets of representative hydrograph

shapes obtained in the first Step which were again summarized by a set of coefficients for a set of

B-spline bases. A more detailed description of the two-step procedure can be found in Paper V.

3.7 Regional SDH sets

The regional approach for the construction of event-type specific SDH sets built up on the

flood reactivity regions delineated in Paper V and consisted of three main steps (Figure 3.8):
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2) Catchment attribution, 3) Design hydrograph construction. Design hydrographs (III) characterize a
flood both in terms of hydrograph shape (I) and hydrograph magnitude (II). The magnitude is estimated
using event-type specific index floods (b) and regional growth curves (a).

1) delineation of reactivity regions, 2) attribution of an ungauged catchment to one of these

regions using a classification rule, and 3) design hydrograph construction. These steps are shortly

outlined below and explained in more detail in Paper VI.

The functional clustering approach proposed in Paper V was applied to establish four instead

of three regions with a similar flood reactivity. A random forest model was then fitted to the region

memberships of the catchments in the dataset and their catchment characteristics. The use of this

model allowed the prediction of the best class membership of an ungauged catchment to one of the

four reactivity regions. In addition, it allowed the prediction of probabilistic class memberships
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for each of the reactivity regions. Both the best class membership and the probabilistic class

memberships were used to construct SDHs for ungauged catchments by applying a bivariate

index flood approach (Requena et al., 2016). We first focus on the approach using the best class

membership. The event-type specific and dimensionless data of the catchments belonging to the

region that the ungauged catchment was assigned to with the highest probability of membership

was pooled, i.e., a pool of fast events, a pool of intermediate events, and a pool of slow events

was formed. Each pool consisted of event-type specific peak discharges, hydrograph volumes,

and a representative hydrograph shape. The pooled dimensionless data were used in a bivariate

regional frequency analysis to estimate event-type specific bivariate regional growth curves.

In parallel, generalized linear models, which were fitted using observed event-type specific

index floods, were used to predict the event-type specific index floods of the catchment under

consideration. The event-type specific growth curves could then be used together with the index

floods to estimate event-type specific design variable quantiles. These were used together with

the corresponding representative hydrograph shapes fitted by a PDF to construct event-type

specific sets of SDHs in ungauged catchments. Instead of basing regional SDH set construction

on the pool of data of the region that was predicted with the highest probability, the probabilistic

class memberships to each of the reactivity regions were used to compute weighted SDHs using

data from all the regional data pools.
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RESULTS

T
his chapter provides a summary of the results obtained by the analyses conducted within

the scope of this thesis. Detailed results are presented in the six papers which can be

found after the summary text.

4.1 Bivariate return periods

Paper I showed that different return period definitions, whose choice depends on the problem at

hand, resulted in different estimated bivariate design variable quantiles, as illustrated on the

study catchment Birse at Moutier-la-Charrue in the Swiss Jura (Figure 4.1). The conditional, joint,

and Kendall’s approaches resulted in isolines representing bivariate design variable quantiles of

the same return period. The most probable design realization can be selected if a single design

variable pair is of interest. The joint OR approach resulted in higher design variable quantiles

compared to the univariate quantile. In contrast, the choice of the conditional approaches, the

joint AND approach, the Kendall’s approach, and the survival Kendall’s approach resulted in

lower design variable quantiles than the univariate case. These results demonstrated that the

choice of the return period definition has a significant influence on the outcome of the design

variable quantiles. It is therefore essential to well define the problem at hand to make a suitable

choice of a return period definition. The case study highlighted that a univariate analysis can

not provide a complete assessment of the probability of occurrence of a flood event if two or more

dependent variables are of importance in the design process.
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Figure 4.1: Design variable quantiles for different return period definitions. The black dots represent the
observed flood events for the Birse catchment at Moutier-la-Charrue and the gray dots are 10 000 randomly
generated pairs using the bivariate distribution of the peak discharges and hydrograph volumes. The
black square represents the univariate design variable pair. The triangles represent the design variable
pairs resulting from the Qp- and V -conditional approaches applied to the joint OR isoline. The isolines
represent the return level curves for the two joint approaches AND and OR, and the approaches using the
Kendall’s (Kc) and survival Kendall’s (K̄c) distribution functions. The squares on the isolines represent
the most-likely design realizations on these isolines.

4.2 SDH construction

The flood-type specific construction of SDHs as introduced in Paper II (see Section 3.3) has shown

that different flood types are characterized by different SDH parameters. The parameters for the

baseflow index, dependence between peak discharge and hydrograph volume, and the location and

scale parameters of the lognormal PDF were dependent on the flood type while the parameters

of the marginal distributions of the peak discharges and hydrograph volumes did not show any

dependence on the flood type. The differences in some of the parameters resulted in different

SDHs for each flood type as illustrated by three example catchments (Figure 4.2): Langete at

Huttwil (a), Mentue at Yvonand (b), and Birs at Münchenstein (c). The specific peak discharges

(peak discharge per unit area) only slightly differed when looking at catchments of all sizes. On

the contrary, specific peak discharges of different flood types clearly differed within groups of

catchments of similar size. In small catchments (20 - 75 km2), short events such as FFs and SRFs
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Figure 4.2: Flood-type specific SDHs for three catchments of the same mean elevation zone (650-800
m.a.s.l.) but different sizes (a) Langete at Huttwil: 60 km2; b) Mentue at Yvonand: 105 km2; c) Birs at
Münchenstein: 911 km2. The duration is centered around the time of occurrence of the peak which was set
to zero and therefore the time is negative before and positive after the peak. The line width of the SDH
represents the frequency of occurrence of a certain type in the respective catchment. The highest observed
event in the catchment is shown in black.

showed generally higher specific peak discharges than longer events such as LRFs and RoSFs.

The contrary was observed in medium size (76 - 300 km2) and large catchments (301 - 1700 km2),

where LRFs and RoSFs were generally characterized by higher specific peak discharges than

FFs and SRFs. Specific flood volumes were found to be higher for LRFs than RoSFs and clearly

higher than for SRFs and FFs independent of the catchment size.

4.3 SDH regionalization

The comparison of 24 regionalization methods performed in Paper III included linear and nonlin-

ear regression techniques, spatial methods, and methods based on the delineation of homogeneous

regions (see Section 3.4). It showed that a better model than the benchmark model can be found

for predicting catchment-specific SDHs in terms of the absolute relative error (EAR) (Figure 4.3).

However, not all SDH parameters could be predicted equally well. The parameters IBF, θ, and

the parameters of the marginal distributions of peak discharges and hydrograph volumes could

be regionalized but no suitable regionalization model could be found for those SDH parameters

describing the hydrograph shape (PDF location and scale). In general, nonlinear regression

techniques (especially boosted regression trees) performed slightly better than linear regression

methods.

Different catchment characteristics were important for the prediction of the individual SDH

parameters. Catchment characteristics related to geology and hydrogeology were important for

the prediction of the IBF. Geology was also important for the prediction of the SDH parameters

related to the shape of the hydrograph. On the contrary, catchment area was important for the

prediction of the SDH parameters related to the event magnitude. Exposition was meaningful
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Figure 4.3: Predictive performance of the different regionalization methods tested for the different
hydrograph characteristics a) peak discharge (Qp), b) hydrograph volume (V ), c) time to peak (tp), and
d) half-recession time (tp05) provided as boxplots of the absolute relative error (EAR) for the 163 study
catchments. The number of outliers (defined as those observations lying outside the quartile ± 1.5 times
the interquartile range) is indicated by the numbers plotted above the boxplots.

for the prediction of the shape parameters of the marginal distributions of peak discharges and

hydrograph volumes and for the prediction of their dependence parameter θ.

In contrast to catchment-specific SDHs, no suitable regionalization method could be found

for the regionalization of flood-type specific SDHs as proposed in Paper II. This might have been

related to the fact that the flood types employed in Paper II were not distinct enough.

4.4 SDH uncertainty

Table 4.1 summarizes the results of the uncertainty assessment conducted in Paper IV for the

three levels of complexity A to C, where level A focused on individual uncertainty sources, level B

on total construction and regionalization uncertainty, and level C on their coupled uncertainty.
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Table 4.1: Summary of uncertainties across the three levels of complexity for the four hydrograph characteristics Qp, V , tp, and tp05. The uncertainties
are provided in the form of the 1st, 2nd, and 3rd quartile of the EMARs over all catchments. The numbers were rounded to two decimals.

Qp V tp tp05

A: Uncertainty sources 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Sample size 0 0.03 0.06 0.02 0.09 0.19 0 0.19 0.5 0 0.17 0.45
Sampling strategy 0.05 0.08 0.17 0.08 0.12 0.2 0.11 0.2 0.27 0.11 0.17 0.24
RNH definition 0 0 0 0.01 0.03 0.04 0.07 0.16 0.23 0.01 0.02 0.03
PDF choice 0 0 0 0.03 0.04 0.06 0.24 0.27 0.32 0.04 0.06 0.09
Copula choice 0 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.02 0.01 0.01 0.02
Choice on isoline 0.02 0.03 0.04 0.04 0.05 0.07 0.07 0.09 0.11 0.07 0.09 0.11
Margin Qp 0.12 0.2 0.34 0 0 0 0.09 0.14 0.2 0.09 0.14 0.2
Margin V 0 0 0 0.08 0.12 0.16 0.08 0.12 0.16 0.08 0.12 0.16
Baseflow separation 0.03 0.04 0.06 0.07 0.11 0.16 0.09 0.13 0.21 0.1 0.15 0.2
Baseflow addition 0.06 0.08 0.1 0.06 0.08 0.1 0 0 0 0 0 0
Copula parameter 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01
Margin Qp parameter 0.08 0.1 0.14 0 0 0 0.07 0.1 0.14 0.07 0.1 0.14
Margin V parameter 0 0 0 0.13 0.15 0.19 0.13 0.15 0.19 0.13 0.15 0.19

B: Total construction 0.21 0.26 0.35 0.28 0.34 0.4 0.41 0.45 0.52 0.37 0.44 0.5

Regionalization model 0.23 0.36 0.63 0.21 0.34 0.76 0.12 0.21 0.34 0.19 0.28 0.41
Regionalization sampling 0.11 0.15 0.2 0.12 0.16 0.22 0.18 0.22 0.3 0.18 0.22 0.3

B: Total regionalization 0.26 0.4 0.67 0.29 0.43 0.68 0.14 0.25 0.41 0.2 0.3 0.44

C: Coupled 0.47 0.59 0.94 0.45 0.55 0.66 0.43 0.48 0.54 0.44 0.48 0.53
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Level A: Uncertainty due to individual sources: The median uncertainty due to the indi-

vidual uncertainty sources (see Section 3.5) over all catchments ranged between 0% and 30%

for a design event of a return period of T = 100 years (Table 4.1). Besides the sample size, the

sampling strategy was one of the uncertainty sources most strongly affecting the median absolute

relative error (EMAR) of all four hydrograph characteristics (see Figure 3.4).

Level B: Total uncertainty: The total construction uncertainty for the four hydrograph

characteristics was larger than each of the individual uncertainty sources. The largest uncertainty

over all catchments was found for the hydrograph characteristics related to the shape of the

hydrograph. Also the total regionalization uncertainty was larger than the sampling and model

uncertainties considered individually. The largest uncertainty over all catchments was found for

the hydrograph characteristics related to the magnitude of the hydrograph.

Level C: Coupled uncertainty: The uncertainty assessed via the coupled uncertainty strat-

egy lay around 50% when looking at the median over all catchments. It was slightly lower for the

characteristics related to the shape of the hydrograph than for those related to the magnitude.

4.5 Reactivity clusters

The clustering of hydrograph shapes within a catchment, as performed in Paper V, represented

hydrograph shapes as FD and resulted in three representative hydrograph shapes or event types:

fast, intermediate, and slow events. The fast events were characterized by rather steep rising

and falling limbs while the slow events were characterized by elongated rising and falling limbs.

The intermediate events lay somewhere in between by showing quite steep rising but rather flat

falling limbs (Figure 4.4). The clusters established via the hydrograph shapes were shown to

have a meaning in terms of event magnitude. Events in the fast event cluster were generally

characterized by high peak discharges but low hydrograph volumes while events in the slow

event cluster showed high volumes but low peak discharges. The magnitudes of intermediate

events lay in between those of the fast and slow events. The three median hydrographs of the

fast, intermediate, and slow event clusters built the catchment-specific set of representative

hydrograph shapes. This set consisted of three distinct hydrograph shapes in most catchments.

However, there were catchments where the fast, intermediate, and slow events were not distinct

from each other and the runoff reaction was rather uniform. Such catchments built the region

of uniformly reactive catchments. The remaining catchments showed different types of runoff

reactions. They were clustered into quickly reactive and slowly reactive catchments according

to their sets of representative hydrograph shapes (i.e. fast, intermediate, and slow hydrograph)

since a fast hydrograph in one catchment did not necessarily represent a fast hydrograph in

another catchment. At a regional level, catchment-specific sets of representative hydrographs

were distinct between catchments of a generally quick and a generally slow flood runoff reaction.
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the form of their triggering precipitation events (total amount and intensity).

4.6 Regional SDH sets
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Figure 4.6: Event-type specific SDHs for four example catchments, one out of each reactivity region: Quickly
reactive: A. Alp-Einsiedeln, intermediately reactive: B. Bibere-Kerzers, slowly reactive: C. Aach-Salmsach,
uniformly reactive: D. Birs-Münchenstein. The regionally estimated event-type specific SDHs (bold lines)
are plotted together with the locally estimated event-type specific SDHs (dashed lines). The catchment
specific SDH not distinguishing between the event types is plotted in black. The highest observed event is
given in gray. Regional estimates were derived based on the best region membership (thin lines) and using
probabilistic class memberships (thick lines).

The use of the regional SDH set construction approach in Paper VI allowed for the estimation

of event-type specific SDH sets in ungauged catchments (for four examples see Figure 4.6). Event-

type specific SDH sets were computed using both the best class membership and probabilistic

class memberships. Regionally estimated SDHs were comparable to their locally estimated coun-

terparts and the highest observed event and the event-type specific estimates mostly surrounded

the catchment-specific local SDH estimate. However, there were catchments for which regional

predictions were rather difficult. The deviation of the regional SDH set computed using the

best class membership from the regional SDH set computed using probabilistic memberships

depended on the weight of the best class membership region compared to the weights of the other

regions.
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5
DISCUSSION

T
his thesis demonstrates how SDHs can be constructed in gauged catchments. It shows

how SDHs can be regionalized to ungauged catchments and how their uncertainty can be

assessed. Contrary to existing approaches, the construction of SDHs is based on observed

runoff observations only and neither requires rainfall data nor the modeling of the interaction

between rainfall and antecedent conditions, which makes the approach easily applicable by

practitioners. The SDH construction procedure is not limited to the construction of catchment-

specific SDHs but can be extended to an ensemble-based approach by constructing sets of SDHs

for different flood or event types.

5.1 Bivariate return periods

A univariate flood frequency analysis of annual flood peaks may not be sufficient in situations

where storage has a significant effect on flood attenuation. In such situations, flood duration

and/or volume should be considered along with the peak flood discharge (Chowdhary et al., 2011).

This thesis highlighted that peak discharges and hydrograph volumes are dependent on each

other and should jointly be considered in design flood estimation (Papers I-VI). Even though their

joint consideration is beneficial from a theoretical point of view, several practical problems are

associated to it. Among them, the definition of a return period in a bivariate setting. Paper I

pointed out that the return period is no more uniquely defined in a multivariate setting when

two design variables such as peak discharge and hydrograph volume are of interest. The case

study presented in Paper I illustrated that the bivariate design quantiles depend on the choice of

the return period definition. This highlighted the need of an accurate problem definition by the

engineer or practitioner in order to choose a suitable return period definition. Even though this
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has been stated in literature (Gräler et al., 2013; Serinaldi, 2015), there is still a need to better

outline which return period definition should be used in which design context and for what kind

of design problems. For simplicity, this thesis focused on a joint OR return period assuming that

both peak discharges and hydrograph volumes are equally important for the design problem at

hand.

The case study in Paper I further showed that many design variable pairs with the same

return period can be found in a multivariate setting. In practice however, it is often preferable to

work with one design realization out of a set of pairs with the same return period. This implies the

need to choose one design variable pair out of a set of pairs, which introduces some subjectivity.

Such subjectivity could be avoided by moving from single-event based analyses towards ensemble-

based analyses where a set of design variable pairs with the same return period is considered

(Gräler et al., 2013; Salvadori et al., 2011). Alternatively, the frequency analysis could be moved

to a later stage in a design analysis by not focusing on the flood events directly but on the final

quantity of interest, e.g. water levels already accounting for reservoir routing (Requena et al.,

2013), flood damage or loss (Apel et al., 2004; de Moel et al., 2015; Meyer et al., 2009), or the risk

of failure (Serinaldi, 2015). The risk of failure has a unique definition independent of the nature

of data and allows the consideration of both independent and dependent variables in stationary

but also non stationary settings. A multivariate failure approach to assess hydrological risk in a

general and consistent mathematical way seems valuable and has been outlined by Salvadori

et al. (2016).

Bivariate frequency analysis is based on the same assumptions as univariate frequency

analysis: stationarity, independence, and homogeneity (Chebana and Ouarda, 2008). Stationarity

implies that the runoff regime has not been significantly altered by climate or land-use changes.

The fulfillment of this assumption has been assured by carefully choosing the catchments included

in the dataset used in this thesis. Catchments were chosen only if their runoff had not been

altered by regulated lakes upstream or inland canals nor by urbanized areas. Climate induced

changes are difficult to detect due to the length of the time series and the inter-annual variability

in the data (Bormann et al., 2011). However, numerous studies have identified significant trends

in annual floods which questions the assumption of stationarity in certain case studies (Šraj

et al., 2016). The bivariate flood frequency estimation approach (Gado and Nguyen, 2016) and

the definition of the return period (Salas and Obeysekera, 2014) as used in Papers I-IV and VI

would need to be revised in a non stationarity context. In a bivariate framework, non-stationarity

can emerge in the statistical attributes of the univariate variables, in the dependence structure

of the variables, or both (Bender et al., 2014).

The independence of events is generally easier to ensure if an annual maximum flood sampling

approach is chosen instead of a peak-over-threshold approach. Still, this thesis used flood events

sampled using a peak-over-threshold approach which allows the inclusion of all potentially

relevant events (Lang et al., 1999). Independence was ensured by prescribing a minimum time
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window of 72 hours between successive events.

The assumption of homogeneity was not rejected by statistical tests, however, inhomogeneity

could possibly be introduced by different flood types (Szolgay et al., 2015). The flood-type specific

frequency analysis introduced in Paper II alleviates this potential problem by considering each

flood type as a separate sample. Non homogeneity could also be an issue when pooling events

of different catchments (Hosking and Wallis, 1997) as done in some regionalization approaches

(Papers II and VI).

5.2 SDH construction

The SDH construction approach (Paper II) is based on observed runoff data only and does not

require any rainfall data. This distinguishes it from event-based and continuous approaches

(Grimaldi et al., 2012a) and makes it easy to apply by practitioners and engineers. There is

neither a need to choose an event rainfall and specifying pre-event conditions as in an event-based

approach nor the need of calibrating a hydrological model as in continuous approaches. However,

the SDH construction approach hinges on the available data record and uncertainty can be

quite large in the case of short records as shown in Paper IV. A combination of the proposed

approach with a continuous scheme could therefore be beneficial. Long runoff time series could

be simulated based on rainfall records, which are typically longer than runoff records, or using a

stochastic model and be used for flood frequency analysis and SDH construction. However, the

use of both a stochastic model and a rainfall-runoff model would introduce additional sources of

uncertainty.

Paper II picked up the idea of an ensemble-based design approach introduced in Paper I,

however, in a slightly different context than when considering a set of design variable pairs

with the same bivariate return period. Single-event based SDH construction neglects process

variability in a catchment. On the contrary, the construction of a set of flood-type specific SDHs

allows for the consideration of different flood mechanisms. Flood events triggered by high-

intensity precipitation events are represented by the flash flood SDH, events caused by short but

less intense precipitation by the short-rain flood SDH, events caused by long lasting but little

intense precipitation by the long-rain flood SDH, and events triggered by rainfall falling on snow

by the rain-on-snow flood SDH. Instead of using flood type samples, one can use samples for the

three representative event-types (fast, intermediate, and slow events) identified in Paper V to

construct event-type specific hydrographs. Alternatively, seasonal SDHs could be constructed

using seasonal flood samples as proposed by Brunner et al. (2017). An event-type specific SDH

construction procedure allows for the representation of process variability within a catchment

and is therefore a step forward from flood frequency statistics towards flood frequency hydrology,

a framework introduced by Merz and Blöschl (2008b) fostering the expansion of information

beyond the locally observed flood sample. A set of event-type specific hydrographs could be
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used in hydraulic modeling to assess the effect of different hydrographs (with the same return

period) on water levels or inundation areas which allows for a broad assessment of potential flood

consequences. However, an event-type specific approach also has some drawbacks compared to a

single-event approach. The size of the individual flood samples used for flood frequency analysis,

one for each flood type, is significantly reduced. A small sample size leads to less reliable (Deutsche

Vereinigung für Wasserwirtschaft Abwasser und Abfall, 2012) and more uncertain flood estimates

as highlighted by the uncertainty assessment performed in Paper IV and several other studies

(e.g. Apel et al., 2004; Beven and Hall, 2014). The problem of a reduced sample size due to an

event-type specific analysis could be relieved by pooling events of different flood types from similar

catchments (Grimaldi et al., 2016) as done in Paper VI. However, the identification of catchments

with a similar behavior in terms of flood type occurrence is not straightforward. Different

combinations of triggering precipitation mechanisms and pre-event catchment conditions might

lead to similar flood events in terms of magnitude even though they differ in the flood type. The

classification scheme used to define flood types based on several indices related to meteorology and

catchment conditions was therefore not found to be suitable for the identification of regions with

a similar flood behavior. It was found in Paper V that the identification of regions with a similar

flood behavior should rather be based on the information stored in the hydrographs themselves

which integrate pre-event conditions, precipitation characteristics, and runoff processes.

5.3 SDH regionalization

The comparison of various regionalization methods (Paper III) showed that a successful region-

alization of catchment-specific SDHs is possible using nonlinear regression (especially boosted

regression trees) and linear regression techniques. However, it also showed that the shape of

the hydrograph is difficult to regionalize. This was related to the non-representativeness of a

single median hydrograph shape for the different flood types observed in a catchment. A better

representation of different potential shapes could be achieved via the flood-type specific design

hydrographs proposed in Paper II. However, such flood-type specific SDHs were found to be

difficult to regionalize, i.e., neither could a spatial pattern be detected, nor could a relationship be-

tween flood-type specific SDHs and catchment characteristics be established. There is no unique

combination of rainfall and drainage basin condition which produces the design flood (Merz and

Blöschl, 2009; Pilgrim, 1986), which might explain the problems encountered in establishing a

relationship between SDH parameters and physiographical and meteorological catchment char-

acteristics. Merz and Blöschl (2009) have pointed out the need for better indicators than static

and climatological indicators such as runoff coefficients. They highlighted that such coefficients

are not available in ungauged catchments and that new indicators at the regional scale have to

be developed that are more representative of the causative flood processes. Therefore, Paper V

focused on the hydrograph shapes observed in a catchment, which integrate pre-event conditions,
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catchment characteristics, and meteorological input, which jointly influence the magnitude of an

event, to identify regions of similar flood behavior. A catchment’s flood behavior was summarized

by a set of three representative event types comprising a fast event with both a steep rising and

recession limb, an intermediate event with a steep rising but rather flat recession limb, and a

slow event with both a flat rising and recession limb. Grouping the catchments according to their

sets of representative event types allowed for the identification of three regions with catchments

of a similar flood behavior. Such regions were shown to be pertinent for the regionalization of

event-type specific SDHs to ungauged catchments in Paper VI. An ungauged catchment was

attributed to one of the regions based on its characteristics using a classification rule. A regional

index flood approach (Requena et al., 2016) was then applied to event-type specific, pooled flood

events of that region to construct event-type specific SDHs in an ungauged catchment. The use

of these reactivity regions in combination with a bivariate index flood approach and an event-

type specific SDH construction procedure similar to the one proposed in Paper II enabled the

construction of an ensemble of SDHs. Similar to the set of flood-type specific SDHs constructed in

gauged catchments, this event-type specific procedure for ungauged catchments allows for the

representation of process variability in design flood regionalization.

5.4 SDH uncertainty

Several model choices are involved in the construction of SDHs in gauged catchments and their

regionalization to ungauged catchments. Choosing one model among a set of feasible models

and estimating the parameters of these models introduces uncertainty as shown in Paper IV.

The uncertainty involved in SDH construction and regionalization should be communicated to

the end-user (Pappenberger and Beven, 2006). One possibility to do so is a formal uncertainty

analysis, as the one proposed in Paper IV, performed to derive uncertainty bands for constructed

or regionalized SDHs. Another possibility would be to simplify such a procedure by focusing on

the most important uncertainty sources identified in Paper IV, i.e., the record length, sampling

strategy, and the choice of the marginal distributions for peak discharges and hydrograph volumes.

An uncertainty source not addressed by such an approach is uncertainty introduced due to process

variability observed within a catchment. This variability, could in gauged catchments, be depicted

by a set of flood-type specific SDHs as outlined in Paper II or by a set of representative SDHs

as outlined in Paper VI. The latter strategy can also be applied in ungauged catchments after

having assigned a catchment to one of the flood reactivity regions (Paper VI).

The main source of uncertainty in SDH construction was found to be record length, which is

propagated through all modeling steps including regionalization. It is not surprising that runoff

data are the most valuable information since the observed runoff is an integrative indicator

of the predominant hydrological processes in a catchment (McGlynn et al., 2013). Uncertainty

reduction should therefore start by expanding information on runoff. Three main categories of
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information expansion have been suggested (Merz and Blöschl, 2008a): temporal, spatial, and

causal information expansion. Temporal information expansion refers to the consideration of

historical events that occurred before the period of systematic data collection. Such historical

events are usually estimated based on documentary evidence. Most historical data on floods

provide information on the water stage during peak discharge, which can be converted to peak

discharge (Brázdil et al., 2006; Wetter, 2017). However, information on hydrograph volume is

hardly available. The use of a continuous rainfall-runoff model driven by rainfall series that are

longer than observed runoff series our by rainfall series generated by a stochastic model would be

a possibility for bivariate information expansion, jointly expanding peak discharge and volume

series without neglecting their dependence.

Spatial information expansion refers to the use of data from similar/neighboring stations in a

regional flood frequency analysis. An example of such an approach is the index flood approach

(Dalrymple, 1960) which was extended to a bivariate setting (Requena et al., 2016) and was used

in Paper VI.

Causal information expansion refers to the expansion of information by including process-

based information. This was done in Paper II by constructing flood-type specific SDHs and in

Paper VI by constructing event-type specific SDHs in ungauged catchments. The use of the

flood reactivity regions established in Paper V allowed for the pooling of floods belonging to the

same event type (fast, intermediate, and slow events), which is also a type of causal information

expansion. Information expansion using one way or the other helps to relieve the problem of

choosing one model over the other and to reduce sampling uncertainty.

5.5 Reactivity clusters and regional SDH sets

The two-step clustering approach proposed in Paper V focused on hydrograph shapes and is a

targeted approach for the identification of catchments similar in their flood behavior. It allowed

first, for the identification of catchment-specific representative event types and second, for the

identification of regions with a similar flood behavior based on these catchment-specific event

types. The expression of the flood hydrographs as functional data enabled the use of all the

information stored in the flood hydrograph, which is the most detailed signature of how a

catchment behaves and the complex result of different processes (Blöschl et al., 2013; Hannah

et al., 2000). Paper V showed that the flood hydrograph information can be used to identify

regions of catchments with a similar flood behavior which is hardly possible when focusing

only on static and climatological characteristics (Merz and Blöschl, 2009). The clusters were

shown to have a hydro-meteorological meaning which makes them useful from a hydrological

point of view (Rosbjerg et al., 2013). The catchment classification is initially based on functions

characterized by streamflow which makes it widely applicable (Wagener et al., 2007). Paper V

helps to overcome the difficulties of regionalizing hydrograph shapes as attempted in Paper III

40



5.6. LIMITATIONS AND PERSPECTIVES

where the hydrograph shapes within a catchment were only summarized and process variability

was neglected. It provides a means of better representing process variability in design hydrograph

construction by identifying event types characteristic of a catchment. The event type classification

is, contrary to classical flood type classification schemes, such as the one applied in Paper II,

independent of event and meteorological characteristics (Merz and Blöschl, 2003; Sikorska et al.,

2015).

Paper VI showed that ungauged catchments can be assigned to one of the reactivity regions

via a classification rule using catchment characteristics. The construction of an event-type specific

set of SDHs in an ungauged catchment can then be based on the pooled data of its predicted

reactivity region. The event shapes can be modeled by the median fast, intermediate, and slow

shape for that region. The event magnitude can be estimated using a bivariate index flood

approach (Requena et al., 2016) where the regional growth curve is estimated using the pooled,

event type specific data from the region and the index flood is estimated based on catchment

characteristics. It has been shown that flood quantiles obtained using a regional growth curve are

more accurate than those obtained by at-site analysis (Hosking and Wallis, 1997; Kysely, 2008).

The size of the pooled dataset allows a more reliable estimation of the shape parameter of the

GEV or GPD distribution (Evin et al., 2016) or the use of a more flexible distribution than these

classical extreme value distributions with (only) three parameters (Coles, 2001). In paper VI, we

used the flexible Wakeby distribution (Hosking and Wallis, 1997; Houghton, 1978; Landwehr

et al., 1978) with five parameters. Another potential candidate would be the four parameter

Kappa distribution (Hosking and Wallis, 1997; Mielke, 1973).

5.6 Limitations and Perspectives

The approaches proposed in the context of this thesis can generally be applied to datasets other

than the dataset used in this thesis. Such datasets could consist of catchments from another

region with similar climatic conditions (temperate-humid), of catchments of different sizes, or

of catchments with runoff records at another temporal resolution (e.g. daily instead of hourly if

a daily resolution is able to resolve the main runoff features). However, the approaches should

neither be applied in strongly anthropogenically influenced catchments since dams and reservoirs

change hydrological variability and significantly affect hydrological extremes (Di Baldassarre

et al., 2017) nor in large areas where floods from different subcatchments superpose which

would require the consideration of their spatial dependence (Wang et al., 2014). In such cases,

rainfall-runoff models might be applied (Deutsche Vereinigung für Wasserwirtschaft Abwasser und

Abfall, 2012). However, the methods proposed could be applied on time series simulated with a

rainfall-runoff model. The adaptation of the approaches to a new dataset requires the verification

of several assumptions. First, it needs to be verified whether the assumptions of stationarity,

homogeneity, and independence of events are fulfilled. Second, the SDH construction procedure
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(Paper II) might need to be slightly adjusted regarding the typical event duration, the marginal

distributions of peak discharges and hydrograph volumes, their dependence structure (copula),

and the PDF used to model hydrograph shapes. Third, the choice of the return period definition

needs to be made according to the design problem at hand (Paper I). Fourth, the suitability of the

several regionalization procedures might need to be checked for the regionalization of catchment-

specific SDHs to ungauged catchments (Paper III). Fifth, the uncertainty assessment framework

might require an adjustment of model and parameter sets to sample from and/or different

numbers of iterations (Paper IV). Sixth, the clustering approach might require adjustments in

the number and kind of B-splines used to represent hydrograph shapes as functional data and in

the number of event type and region clusters.

The construction of SDHs in gauged catchments and their estimation in ungauged catchments

is currently limited to a return period of T ≤ 100 since reliable estimates are only to be expected

for events of a return period two or three times the available record length (Deutsche Vereinigung

für Wasserwirtschaft Abwasser und Abfall, 2012). Still, more reliable estimates are possible if

runoff information is expanded using historical events in both a maximum likelihood (Stedinger

and Cohn, 1986) or a Bayesian framework (Salinas et al., 2016). The work done in this thesis

could be extended into several directions:

1. Backward extension of modeling chain: Runoff data simulated by a hydrological model

could be used for SDH construction instead of observed runoff data. This would allow for an

extension of the time series by using observed precipitation time series, which are usually

longer than observed runoff time series, or by generating rainfall time series using rainfall

generators (Evin et al., 2016; Vandenberghe et al., 2010).

2. Forward extension of modeling chain: Use of hydraulic models on catchment-specific

or event-type specific SDHs for inundation modeling, risk mapping, or flood damage and

loss modeling (Merz and Thieken, 2009; Thieken et al., 2009). The use of event-type specific

SDHs instead of catchment specific SDHs would allow for an assessment of the range of

outcomes to be expected.

3. Consideration of rating curve uncertainty: Design flood estimation techniques often

ignore the uncertainty in the underlying rating curve model even though rating curve

uncertainty may play an important role when an extrapolation of the rating curve is

necessary (Steinbakk et al., 2016). The effect of rating curve uncertainty (McMillan and

Westerberg, 2015) on bivariate design quantiles still needs to be assessed.

4. Assessment of climate impact on bivariate design quantiles or SDHs: The impact

of climate change on bivariate design quantiles or SDHs could be assessed by slightly

modifying the modeling chain classically used in climate impact studies consisting of

an emission scenario, a global circulation model, downscaling, possibly including bias
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correction, a hydrological model, and (univariate) flood frequency analysis (Delgado et al.,

2014). The last step in this chain could be replaced by a bivariate flood frequency analysis

focusing not only on changes in peak discharges but also hydrograph volumes. Alternatively,

it could be replaced by SDH construction which would allow for an assessment of changes

in both the bivariate quantiles and hydrograph shapes (Brunner et al., 2017).

5. Assessment of past/future changes in flood/event types: The development of different

flood (Paper II) or event types (Paper V) over time could be assessed in a trend analysis

similar to what has been done for peak discharges by Hundecha et al. (2017). Instead of

going back in time, such an analysis could be done on time series simulated for future

climate conditions (Brunner et al., 2017).

6. Assessment of effect of different flood types on flood damages/loss: Kreibich and

Dimitrova (2010) found that four flood types comprising floods caused by high groundwater

levels, riverine floods, flash floods, and dyke breaches showed significantly different impact

characteristics concerning the factors of water level, flood duration, flow velocity, contami-

nation, and resulting loss. The effect of different flood types on flood loss could instead be

assessed for the six flood types FFs, SRFs, LRFs, RoSFs, SMFs, and GMFs used in Paper II

or for the three event types fast, intermediate, and slow defined in Paper V.
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6
CONCLUSIONS

T
his thesis presents a simple and flexible modeling framework for the estimation of

design floods both in gauged and ungauged catchments which enables the construction

of catchment-specific and event-type specific SDHs. It allows for the consideration of

different sources of uncertainty and for the representation of process variability.

The main conclusions can be summarized as:

• The use of a bivariate return period definition allows for the joint consideration of peak

discharge and hydrograph volume in design flood estimation. However, the choice of this

definition largely influences the magnitude of the design quantiles and a focus on a single-

event approach requires the choice of one design event from an isoline of events with the

same return period. Such bivariate design quantiles can be combined with a representative

hydrograph shape modeled by a probability density function to form a synthetic design

hydrograph (SDH).

• SDHs can be constructed using a specific subsample of flood events, e.g. subsamples

describing different flood types or subsamples describing different event types. A flood-

type or event-type specific SDH construction allows for the consideration of different

process-types in design flood estimation and therefore for a better representation of process-

variability than single-event approaches.

• Catchment-specific SDHs are best regionalized using boosted regression trees or linear

regression methods. In contrast, the regionalization of event-type-specific SDHs requires

the delineation of regions with a similar flood behavior and the assignment of an ungauged

catchment to one of these regions. An SDH set can then be estimated using the pooled data

from this region.
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• The uncertainty of constructed and regionalized catchment-specific SDHs can be assessed

via bootstrap simulations. The most important uncertainty sources in SDH construction

are the record length and the choice of the flood sampling strategy. The coupled uncertainty

of SDH construction and regionalization lies around 50%.

The approaches proposed within the framework of this thesis and the results obtained can be

summarized by the following main contributions:

1. From a univariate over a bivariate to a synthetic design hydrograph approach:

The thesis did not focus on univariate quantiles for peak discharges as do classical flood

frequency analyses but developed tools to represent design floods as bivariate quantiles in

terms of peak discharges and hydrograph volumes. These quantiles were combined with a

representative hydrograph shape to complete the information provided by a design flood.

2. From flood frequency statistics to flood frequency hydrology: The methods and

frameworks proposed in the six papers contribute to making a step from flood frequency

statistics, which does not traditionally differentiate between flood event types and flood

generation processes (Merz et al., 2014), towards flood frequency hydrology, which considers

that different flood producing processes imprint in a different way on the flood frequency

curve (Merz and Blöschl, 2008b). Local flood data is combined with additional information

such as spatial information on floods in neighboring catchments (Papers III, V, and VI), and

causal information on the flood processes (Papers II, V, and VI). Spatial information is used

in Paper III where some of the regionalization approaches tested use data from similar

catchments to transfer SDH parameters from gauged to ungauged catchments. Causal

information is used in Paper II where SDHs are constructed for four flood types repre-

senting different processes and in Paper V where catchment-specific sets of representative

hydrograph shapes are used for the delineation of regions with similar flood behaviors.

3. From a single-event to an ensemble design flood approach: The classical design

approach representing a design flood by a single event is extended to an ensemble approach

where sets of design floods are constructed (flood-type specific or event-type specific SDHs)

to better represent process variability within a catchment. The use of such design flood sets

helps to illustrate the real threat to hydraulic structures (Gräler et al., 2013) and to simulate

impacts due to possible failures (Schumann et al., 2010), allows for cost-benefit analyses

(Plate, 2002), facilitates the shift from a safety oriented planning towards risk awareness

(Nijssen et al., 2009), and represents variability (Klein et al., 2010) and uncertainties

(Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall, 2012).

4. From gauged to ungauged catchments: This thesis shows ways of regionalizing catchment-

specific SDHs and ways of regionalizing event-type specific SDH sets to ungauged catch-
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ments. The latter allow the representation of process variability even in ungauged catch-

ments.

Altogether, this work encourages the use of sets of SDHs instead of a single SDH because

SDH sets better represent process variability within a catchment.
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LIST OF CATCHMENTS

Table 1: List of stations used in this thesis. The station name is provided together with a catchment ID,
catchment area [km2], elevation [m.a.s.l.] (ELEV), mean elevation [m.a.s.l.] (MELEV), degree of glaciation
[%] (DG), record length [a] (RL), and the owner of the station. Data owners are the Federal Office for
the Environment (FOEN), and different cantons: Zürich (ZH), Vaud (VD), Solothurn (SO), Bern (BE),
Baselland (BL), Aargau (AG), and Thurgau (TG).

ID Station name Area ELEV MELEV DG RL Owner

1 Aabach–Mönchaltorf 46 440 521 0 34 ZH
2 Aach–Salmsach 49 406 480 0 40 FOEN
3 Aire–Confignon 57 398 454 0 23 GE
4 Allenbach–Adelboden 29 1297 1856 0 40 FOEN
5 Alpbach–Erstfeld 21 1019 2200 28 41 FOEN
6 Alp–Einsiedeln 46 840 1155 0 23 FOEN
7 Altbach–Bassersdorf 13 470 549 0 37 ZH
8 Arbogne–Avenches 70 435 597 0 20 VD
9 Areuse–Boudry 377 444 1060 0 31 FOEN

10 Arnon–Grandson 83 434 942 0 20 VD
11 Aubonne–Allaman 91 390 890 0 35 FOEN
12 Augstbach–Balsthal 64 485 801 0 20 SO
13 Biber–Biberbrugg 32 825 1009 0 25 FOEN
14 Bibere–Kerzers 50 443 540 0 34 FOEN
15 Birse–Court 92 663 925 0 20 BE
16 Birse–Moutier 183 519 930 0 40 FOEN
17 Birse–Soyhières 590 395 810 0 28 FOEN
18 Birsig–Binningen 75 281 434 0 35 BL
19 Birs-Münchenstein 911 268 726 0 40 FOEN
20 Breggia–Chiasso 47 255 927 0 40 FOEN
21 Brinaz–Yverdon-

les-Bains
14 434 542 0 20 VD

22 Broye–Payerne 392 441 710 0 40 FOEN
23 Bruggbach–Gipf/Oberfrick 45 356 575 0 35 AG
24 Bünz–Muri (Hasli) 15 448 613 0 30 AG
25 Bünz–Othmarsingen 111 390 533 0 37 AG
26 Bünz–Wohlen 53 421 555 0 34 AG
27 Buuserbach–Maisprach 11 367 529 0 36 BL
28 Cassarate–Pregassona 74 291 990 0 40 FOEN
29 Chämtnerbach–Wetzikon 13 560 760 0 29 ZH
30 Chandon–Avenches 39 432 571 0 20 VD
31 Chli Schliere–Alpnach 22 453 1370 0 36 FOEN
32 Chrebsbach–

St. Margarethen
14 503 581 0 21 TG

33 Diegterbach–Diegten 13 509 746 0 31 BL
34 Diegterbach–Sissach 33 372 614 0 36 BL
35 Dorfbach–Allschwil 11 281 360 0 30 BL
36 Drize–Lancy 23 392 528 0 25 GE
37 Dünnern–Olten 196 400 750 0 36 FOEN
38 Eibach–Gelterkinden 27 405 627 0 36 BL
39 Eibach–Zeglingen 13 517 725 0 30 BL
40 Emme–Eggiwil 124 745 1189 0 39 FOEN
41 Emme–Wiler 939 458 860 0 40 FOEN
42 Ergolz–Itingen 141 350 593 0 33 BL
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LIST OF CATCHMENTS

43 Ergolz–Liestal 261 305 590 0 40 FOEN
44 Ergolz–Ormalingen 30 410 585 0 36 BL
45 Etzgerbach–Etzgen 25 308 478 0 34 AG
46 Eulach–Wülflingen 73 410 532 0 43 ZH
47 Fisibach–Fisibach 15 379 516 0 31 AG
48 Flon–Oron-la-Ville 16 609 812 0 20 VD
49 Furtbach–Würenlos 39 410 482 0 36 ZH
50 Geisslibach–Furtmüli 20 415 474 0 24 ZH
51 Glatt–Herisau 16 679 840 0 40 FOEN
52 Goldach–Goldach 50 399 833 0 23 FOEN
53 Goneri–Oberwald 40 1385 2377 14 23 FOEN
54 Grenet (amont)–Pigeon 19 680 748 0 20 VD
55 Grossbach–Gross 11 900 1235 0 40 FOEN
56 Grosstalbach–Isenthal 44 767 1820 9 40 FOEN
57 Gürbe–Belp 117 511 837 0 40 FOEN
58 Gürbe–Burgistein 54 568 1044 0 28 FOEN
59 Haselbach–Maschwanden 20 390 495 0 37 ZH
60 Hintere

Frenke–Bubendorf
38 352 603 0 30 BL

61 Hintere
Frenke–Reigoldswil

15 489 742 0 32 BL

62 Hinterrhein–Hinterrhein 54 1584 2360 17 35 FOEN
63 Holzbach–Villmergen 24 416 590 0 34 AG
64 Homburgerbach–Thürnen 30 387 615 0 36 BL
65 Ilfis–Langnau 188 685 1051 0 25 FOEN
66 Jona–Pilgersteg 24 560 818 0 44 ZH
67 Jona–Rüti 58 450 669 0 20 ZH
68 Jonen–Zwillikon 39 460 605 0 27 ZH
69 Kaisterbach–Kaisten 12 321 464 0 34 AG
70 Kander–Hondrich 520 650 1900 8 33 FOEN
71 Kempt–Fehraltorf 24 520 645 0 23 ZH
72 Kempt–Winterthur 60 450 588 0 33 ZH
73 Kleine Emme–Littau 477 431 1050 0 36 FOEN
74 Kleine

Emme–Werthenstein
311 540 1173 0 30 FOEN

75 Köllikerbach–Kölliken 10 423 488 0 31 AG
76 Langeten–Huttwil 60 597 766 0 40 FOEN
77 Langeten–Lotzwil 115 500 713 0 20 BE
78 Lonza–Blatten 78 1520 2630 37 40 FOEN
79 Louibach–Saanen 62 1085 1875 6 20 BE
80 Luthern–Nebikon 108 494 740 0 26 FOEN
81 Lyssbach–Lyss 50 444 574 0 22 BE
82 Lyssbach–Schüpfen 23 505 616 0 22 BE
83 Magdenerbach–Rheinfelden 33 300 483 0 31 AG
84 Magliasina–Magliaso 34 295 920 0 34 FOEN
85 Marchbach–Oberwil 27 296 462 0 34 BL
86 Mederbach–Marthalen 26 375 439 0 46 ZH
87 Mederbach–Niederwiesen 30 368 425 0 30 ZH
88 Mentue–Yvonand 105 449 679 0 40 FOEN
89 Minster–Euthal 59 894 1351 0 40 FOEN
90 Möhlinbach–Zeiningen 27 338 514 0 32 AG
91 Murg–Frauenfeld 212 390 580 0 40 FOEN
92 Murg–Murgenthal 207 419 637 0 34 FOEN
93 Murg–Wängi 79 466 650 0 40 FOEN
94 Näfbach–Neftenbach 38 394 464 0 22 ZH
95 Necker–Mogelsberg 88 606 959 0 40 FOEN
96 Nozon–Pré Chaillet 45 440 882 0 21 VD
97 Önz–Heimenhusen 84 440 583 0 20 BE
98 Orbe–Le Sentier 96 1010 1210 0 21 VD
99 Orisbach–Liestal 21 315 515 0 33 BL

100 Ova dal Fuorn–Zernez 55 1707 2331 0 40 FOEN
101 Petite Glâne–

Villars-le-Grand
85 433 560 0 20 VD

102 Pfaffnern–Vordemwald 39 417 517 0 34 AG
103 Plessur–Chur 263 573 1850 0 40 FOEN
104 Poschiavino–La Rösa 14 1860 2283 0 40 FOEN
105 Promenthouse–Gland 100 394 1037 0 28 FOEN
106 Reppisch–Birmensdorf 24 466 665 0 44 ZH
107 Reppisch–Dietikon 69 380 594 0 28 ZH
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108 Riale di Pincascia–
Lavertezzo

44 536 1708 0 22 FOEN

109 Rot–Roggwil 54 436 586 0 25 FOEN
110 Ruederchen–Schöftland 19 463 614 0 34 AG
111 Scheulte–Vicques 73 463 785 0 22 FOEN
112 Schmittenbach–Remigen 13 385 523 0 32 AG
113 Schwarzenbach–Rickenbach 15 410 454 0 22 ZH
114 Sellenbodenbach–Neuenkirch 11 515 615 0 23 FOEN
115 Sense–Thörishaus 352 555 1068 0 36 FOEN
116 Seymaz–Thônex 37 393 451 0 20 GE
117 Seyon–Valangin 112 630 970 0 34 FOEN
118 Simme–Oberried/Lenk 36 1096 2370 35 40 FOEN
119 Simme–Oberwil 344 777 1640 4 40 FOEN
120 Simme–Zweisimmen 203 930 1801 6 21 BE
121 Sinserbach–Sins 16 415 561 0 33 AG
122 Sionge–Vuippens 45 681 862 0 39 FOEN
123 Sissle–Eiken 123 314 529 0 37 AG
124 Sissle–Hornussen 37 365 524 0 35 AG
125 Somvixer Rhein–Somvix 22 1490 2450 7 36 FOEN
126 Sorne–Delémont 241 406 808 0 31 FOEN
127 Staffeleggbach–Frick 21 358 534 0 35 AG
128 Steinach–Steinach 24 406 710 0 30 FOEN
129 Steinenbach–Kaltbrunn 19 451 1112 0 30 FOEN
130 Stichbach–Bottighofen 16 410 522 0 22 TG
131 Surb–Döttingen 67 335 511 0 34 AG
132 Surb–Unterehrendingen 28 424 541 0 21 AG
133 Suze–Sonceboz 150 642 1050 0 53 FOEN
134 Tägerbach–Wislikofen 14 390 551 0 32 AG
135 Talbach–Schinznach-Dorf 15 360 552 0 34 AG
136 Talent–Chavornay 66 440 670 0 20 VD
137 Taschinasbach–Grüsch 63 666 1768 0 34 FOEN
138 Thur–Andelfingen 1696 356 770 0 40 FOEN
139 Thur–Halden 1085 456 910 0 40 FOEN
140 Thur–Jonschwil 493 534 1030 0 40 FOEN
141 Thur–Stein 84 850 1448 0 31 FOEN
142 Töss–Altlandenberg 67 621 871 0 36 ZH
143 Töss–Freienstein 399 360 626 0 29 ZH
144 Töss–Neftenbach 342 389 650 0 40 FOEN
145 Töss–Rämismühle 127 524 790 0 35 ZH
146 Trübbach–Räzliberg 20 1430 2610 54 22 FOEN
147 Ürke–Holziken 25 438 577 0 35 AG
148 Urnäsch–Hundwil 65 746 1085 0 33 FOEN
149 Vedeggio–Bioggio 95 280 950 0 35 FOEN
150 Venoge–Ecublens 231 383 700 0 35 FOEN
151 Verzasca–Lavertezzo 186 490 1672 0 24 FOEN
152 Veveyse–Vevey 62 425 1108 0 30 FOEN
153 Violenbach–Augst 17 268 425 0 35 BL
154 Vordere

Frenke–Bubendorf
46 371 647 0 36 BL

155 Vordere
Frenke–Waldenburg

13 524 826 0 35 BL

156 Weisse Lütschine–
Zweilütschinen

164 650 2170 18 40 FOEN

157 Werrikerbach–Greifensee 12 440 493 0 21 ZH
158 Wigger–Zofingen 368 426 660 0 35 FOEN
159 Wissenbach–Boswil 12 460 684 0 34 AG
160 Wölflinswiler

Bach–Wittnau
17 395 600 0 30 AG

161 Wyna–Reinach 47 514 682 0 30 AG
162 Wyna–Suhr 120 392 617 0 34 AG
163 Wyna–Unterkulm 92 455 649 0 37 AG
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Overview

Bivariate return periods and their
importance for flood peak and
volume estimation
Manuela Irene Brunner,

1,2* Jan Seibert
1,3

and Anne-Catherine Favre
2

Estimates of flood event magnitudes with a certain return period are required for
the design of hydraulic structures. While the return period is clearly defined in a
univariate context, its definition is more challenging when the problem at hand
requires considering the dependence between two or more variables in a multi-
variate framework. Several ways of defining a multivariate return period have
been proposed in the literature, which all rely on different probability concepts.
Definitions use the conditional probability, the joint probability, or can be based
on the Kendall’s distribution or survival function. In this study, we give a compre-
hensive overview on the tools that are available to define a return period in a mul-
tivariate context. We especially address engineers, practitioners, and people who
are new to the topic and provide them with an accessible introduction to the topic.
We outline the theoretical background that is needed when one is in a multivari-
ate setting and present the reader with different definitions for a bivariate return
period. Here, we focus on flood events and the different probability concepts are
explained with a pedagogical, illustrative example of a flood event characterized
by the two variables peak discharge and flood volume. The choice of the return
period has an important effect on the magnitude of the design variable quantiles,
which is illustrated with a case study in Switzerland. However, this choice is not
arbitrary and depends on the problem at hand. © 2016 Wiley Periodicals, Inc.

How to cite this article:

WIREs Water 2016, 3:819–833. doi: 10.1002/wat2.1173

INTRODUCTION

The design of hydraulic structures requires reason-
able estimates for flood events that have a

certain likelihood of occurrence in the catchment
under consideration. These estimates are called
design variables and are usually quantified for a
given return period.1 The return period is defined as
the average occurrence interval which refers to the
expected value of the number of realizations to be
awaited before observing an event whose magnitude
exceeds a defined threshold.2,3 This definition is
valid under the assumption that the phenomenon is
stationary over time and each realization is inde-
pendent of the previous ones.2 The return period
provides a simple, yet efficient means for risk assess-
ment because it concentrates a large amount of
information into a single number. More probable
events have shorter return periods, less probable
events have longer return periods.4

In engineering practice, the choice of the return
period depends on the importance of the structure
under consideration and the consequences of its
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failure.5 National laws and guidelines usually fix a
return period for dam design. However, they do not
specify whether it refers to the peak discharge, the
flood volume, or the entire hydrograph.6 Strictly, a
T-year hydrograph does not exist. All hydrographs
are different and a frequency can only be ascribed to
a particular aspect of a hydrograph, such as its peak
flow, its volume, or to a particular impact such as the
level of inundation.7 However, hydrological events
are not only described by one variable but by a set of
correlated random variables usually consisting of the
flood peak, flood volume, and duration. If more than
one of these variables is significant in the design
process, a univariate frequency analysis, where only
one variable is considered, e.g., the peak discharge,
can therefore not provide a complete assessment of
the probability of occurrence of a flood event8 and
might lead to an inappropriate estimation of the risk
associated with that event.4 An overestimation of the
risk is not desirable because it will increase the costs
of constructing the hydraulic structure. Estimating
too low design values might be even worse because it
increases the risk of failure.

If two or more design variables, which are not
independent from each other, are significant in the
design process, one needs to consider the dependence
between these variables when doing flood frequency
analysis. It was shown that in such a case, a bi- or mul-
tivariate analysis where two or more variables are con-
sidered, e.g., peak discharge and flood volume, will
lead to more appropriate estimates than a univariate
analysis.1,4,8 The problem of how to define a return
period in a multivariate context has been addressed in
several publications over the last 15 years. Several
ways of defining a multivariate return period have been
proposed which rely on different probability concepts.
Definitions use the conditional probability, the joint
probability, or can be based on the Kendall’s distribu-
tion or survival function.1,4,5,8–12 The choice of a defi-
nition for a multivariate return period is not arbitrary
and depends on the problem at hand.2

Therefore, the goal of this study is not to present
the definitive definition of a multivariate return period
but to give a comprehensive overview of the tools that
are available to define a return period in a multivari-
ate context. We describe the definitions that have been
proposed in previous publications, expressing them
with and without copulas, and illustrate them with a
practical example. This overview especially addresses
engineers, practitioners, and people who are new to
the topic and gives them an accessible introduction to
the topic by providing the background for deciding
on suitable strategies of defining a return period for a
particular application. Important issues that need to

be addressed when wanting to estimate design vari-
ables for a certain return period are discussed.

We first provide the reader with the theoretical
background that is needed when one is dealing with
return periods in a multivariate setting. Then, we out-
line several ways of defining a bivariate return period.
We provide equations only if we think that this can
clarify the situation and support understanding. Fol-
lowing the common notation, we use upper case letters
for random variables or events and lower case letters
for values, parameters, or constants. Throughout this
article, we use the example of a flood event character-
ized by the two design variables, peak discharge and
flood volume, which are illustrated in Figure 1.

A third potential variable would be the flood
duration, which would add a third dimension to the
analysis and move us to a trivariate setting. For sim-
plicity, we compute the volume of an event always
over a window of 72 h and thereby keep the dura-
tion constant. This allows us to focus on bivariate
return periods, which makes calculations less com-
plex. However, the tools presented here are also
applicable in more than two dimensions.

After a more theoretical part on return periods,
the influence of the choice of a specific bivariate
return period, made a priori according to the prob-
lem at hand, on the design variables is illustrated on
a case study using data from the Birse catchment at
Moutier-la-Charrue in Switzerland.

BACKGROUND

Practices in Estimating Design Variables
When estimating design variables for a hydraulic
structure, we usually talk about design variable
quantiles. The quantile can be defined as the magni-
tude of the event in terms of its nonexceedance prob-
ability.13 If one considers the p-quantile, values in the
sample have a probability of p% of not exceeding
this quantile. The information of the nonexceedance

FIGURE 1 | Illustration of different flood hydrograph

characteristics.
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probability is contained in the return period. The
return period is used in national guidelines to define
levels of flood protection and rules for the construc-
tion of hydraulic structures. These guidelines differ
from country to country but they have in common
that areas and structures of lower importance are
protected against events with lower return periods
while inhabited areas and critical structures are pro-
tected against events with higher return periods.14 In
Switzerland, e.g., flood protection goals for agricul-
tural land and infrastructure are based on a 20-year
flood, i.e., a flood with a return period of 20 years,
and protection goals for inhabited areas on a 100-
year flood.15 Very sensitive structures such as dams
built for the storage of water for hydropower pro-
duction have even higher protection goals. Usually,
protection goals for such critical structures are based
on events of a return period between 500 and
10,000 years depending on the type of the dam.6

Definition of a Univariate Return Period
We need to define the univariate return period before
dealing with bivariate return periods. The value of
the cumulative distribution function FX of a random
variable X at a given value x is the probability that
the random variable X is less than or equal to x

FX xð Þ = Pr X ≤ x½ �: ð1Þ

In hydrology, we would for example talk about the
probability that the peak magnitude of a certain
flood event, here denoted by X, is smaller than a
given runoff threshold, here denoted by x.

In contrast, the exceedance probability that
x will be equaled or exceeded is given by the survival
function SX of the random variable X, which is often
used in statistical literature and stands for

SX xð Þ =1−FX xð Þ: ð2Þ

If we consider our hydrological example again, we
talk about the probability that the peak magnitude
X of a certain event exceeds a given runoff
threshold x.

The return period T(x) of the event {X ≥ x} can
be written as

T xð Þ =
μ

SX xð Þ
=

μ

1− FX xð Þ
; ð3Þ

where μ is the mean interarrival time between two
successive events, which is defined as one divided by
the number of flood occurrences per year.8 If we look

at annual maxima, μ corresponds to 1 year. In our
example, T(x) stands for the (univariate) return
period of an event where the peak magnitude
X exceeds the threshold x.

The definition of a univariate return period can
be expressed as one single equation. In practice, how-
ever, one is often faced with problems where two
variables are important in the design process. For
example, we often not only need to consider the
flood peak, but also the flood volume. If the two
variables depend on each other, we need to take into
account their dependence. For this, we can look at
their conditional probability of occurrence, their joint
probability of occurrence or work with the Kendall’s
distribution or survival function. The choice of one
of these probability concepts depends on the applica-
tion under consideration.

Even in a bivariate context, the marginal distri-
butions, i.e., the distributions of the single variables
independent of the other variables, are of great inter-
est. We need to analyze the marginal distributions of
the design variables peak discharge and flood volume
before having a look at their conditional or joint
distribution.

Marginal Distributions of Design Variables
The marginal distributions of our variables peak dis-
charge and flood volume are linked to how we sample
flood events. There are two main approaches to choose
flood events from a runoff time series. The first one is
the block maxima approach, which is based on choos-
ing the highest event (usually looking at the peak dis-
charges) over a period of time. The second approach is
the peak-over-threshold (POT) approach, which is
based on choosing all peaks that lie above a predefined
threshold. While the block maxima approach, in which
the block is defined as a year, retains only one event per
year, it is possible to choose more than one event per
year using the POT approach depending on the choice
of the threshold.16 After the sampling with one of these
two approaches, we have a series of flood events charac-
terized by the variables peak discharge and flood vol-
ume. Extreme value theory17 says that block maxima
follow a generalized extreme value (GEV) distribution
while POT series follow a generalized Pareto distribu-
tion (GPD). The GEV model has three continuous para-
meters: a location parameter μl ϵ ℝ, a scale parameter
σ > 0, and a shape parameter ξ ϵ ℝ and is defined as

FX = exp − 1 + ξ
x−μl
σ

� �n o

−
1
ξ

� �

ξ 6¼0; ð4Þ

defined on ξ : 1 + ξ x−μl
σ

� �� 	

>0

 �

.
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However, the GPD uses the same parameters
and is expressed as

FX = 1− 1 + ξ
x−μl
σ

� �n o

−
1
ξ

ξ 6¼0; ð5Þ

defined on [x − μl : {x − μl} > 0 and

1 + ξ x−μl
σ

� �� 	

>0
�

. Often, in flood frequency analysis,

one works with annual maxima to guarantee the
independence of the events analyzed. However, the
disadvantage is that some important events are
neglected because only the highest event per year is
included in the data set. This problem can be solved
by using a POT approach. However, even though the
choice of the threshold is crucial, it is somewhat
subjective.17

Modeling the Dependence Between Two or
More Variables
Once we defined the marginal distributions of our
variables, we need to study their relationship and to
assess the strength of their dependence.18 If there is
no dependence between two variables, their joint dis-
tribution is simply the product of the marginal distri-
butions. However, if there is any dependence, we
have to model their joint behavior. The cumulative
distribution function FXY of two variables X and
Y allows us to define the probability FXY(x, y) that
both X and Y do not exceed given values x and y19

FXY x,yð Þ = Pr X ≤ x,Y ≤ y½ �: ð6Þ

Traditionally, the pairwise dependence between vari-
ables such as the peak, volume, and duration of flood
events has been described using classical families of
bivariate distributions.

The main limitation of these bivariate distribu-
tions is that the individual behavior of the two vari-
ables must be characterized by the same parametric
family of univariate distributions. Copula models
which are multivariate distribution functions avoid
this restriction. Recent developments in statistical
hydrology have shown the great potential of copulas
for the construction of multivariate cumulative distri-
bution functions and for carrying out a multivariate
frequency analysis.1,20 A list of publications on cop-
ula functions and their use in hydrology can be found
on the web page of the International Commission on
Statistical Hydrology21a.

The copula approach to dependence modeling
is rooted in a representation theorem due to Sklar.22

He stated that the value of the joint cumulative distri-
bution function FXY of any pair (X, Y) of continuous

random variables at (x, y) may be written in the form
of

FXY x,yð Þ=C FX xð Þ, FY yð Þf g = C u,vð Þ , x,y ϵℝ ; ð7Þ

where FX(x) denoted by u and FY(y) denoted by v are
realizations of the marginal distributions of X and
Y whose dependence is modeled by a copula C. Our
attention is restricted to the pair of random variables
(U, V), where U denotes FX(X) and V denotes FY(Y).
The probability integral transform allows for the
conversion of the random variables FX(X) and FY(Y)
from the continuous distributions FX and FY to the
random variables U and V having a uniform distribu-
tion U(0, 1). In our example, FX stands for the mar-
ginal distribution of the peak discharge values, FY
represents the marginal distribution of the flood vol-
ume values, and FXY denotes the joint distribution of
peak discharges and flood volumes.

Sklar showed that C, FX, and FY are uniquely
determined when their joint distribution FXY is
known. The selection of an appropriate model for
the dependence between X and Y represented by the
copula can proceed independently from the choice of
the marginal distributions.23 Copulas are functions
that join or couple multivariate distribution functions
to their one-dimensional marginal distribution func-
tions.24 The large number of copula families pro-
posed in the literature allows one to choose from a
large quantity of dependence structures.23

Five steps are involved in modeling the depend-
ence between two or more variables with a copula:

1. Evaluation of the dependence between the vari-
ables doing an exploratory data analysis using
K-plots and Chi-plots as well as suitable Ken-
dall’s and Spearman’s independence tests.23

2. Choice of a number of copula families.

3. Estimation of copula parameters for each cop-
ula family.

4. Exclusion of nonadmissible copulas via suitable
goodness-of-fit tests.23,25

5. Choice of an admissible copula via selection
criteria such as the Akaike or Bayesian infor-
mation criterion.26

For a more thorough introduction to copulas, we
refer to the textbooks of Nelsen24 or Joe27 or the
review paper by Genest and Favre.23 For an applica-
tion of copulas to estimate return periods for hydro-
logical events, we refer to the textbook of Salvadori
et al.20
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BIVARIATE RETURN PERIODS

A bivariate analysis is advisable when two dependent
variables play a significant role in ruling the behavior
of a flood.12 In bivariate frequency analysis, in con-
trast to univariate frequency analysis, the definition
of an event with a given return period is not unique8;
however, it is determined by the problem at hand.2

Salvadori et al.5 provided a general definition of a
return period which does not only apply for the uni-
variate but also a multivariate setting and therewith
helps to make the step from a univariate setting to a
bivariate or multivariate framework. They defined
the return period TD of a ‘dangerous’ event as

TD =
μ

Pr X ϵD½ �
; ð8Þ

where D is a set collecting all the values judged to be
dangerous according to some suitable criterion, μ is
the average interarrival time of two realizations of X,
and Pr[X ϵ D] is the probability of a random variable
(vector) X to lie in the dangerous region D. In a set-
ting with one significant design variable, a critical
design value x is used to identify the dangerous
region D consisting of all values exceeding x. In our
hydrological example, x would refer to a peak dis-
charge threshold above which an event is considered
dangerous. In a bivariate context, the dangerous
region D can be defined in various ways allowing for
different return period definitions according to the
problem at hand. Recently, Salvadori et al.28 intro-
duced the term ‘hazard scenario’ for a set containing
all the occurrences of X said to be dangerous. The
ways the term return period is used in the following
are all special cases of the definition given in Eq. (8).

The return period used to describe bivariate
events can be determined by three types of
approaches. The first of these approaches uses the
conditional probability to determine a conditional
return period, while the second method uses joint
probability distributions to calculate joint return per-
iods and the third approach relies on the Kendall’s
distribution or survival function. In hydrology, the
conditional probability can for example describe the
probability of a peak discharge to exceed a given
threshold given that the flood volume exceeds a given
threshold, or vice versa. The joint probability distri-
butions can, e.g., describe the following two situa-
tions. First, the probability that both the peak
discharge and the flood volume exceed certain
thresholds during a flood event. Second, the proba-
bility that either the peak discharge or the flood vol-
ume exceed given thresholds.

The three main approaches to determine a
bivariate return period are described in more detail
in the next paragraphs.

Conditional Return Period
The conditional return period approach is typically
applied in situations in which one of the design vari-
ables is considered to be more important than the
other one.12 The conditional return period relies on a
conditional probability distribution function of a var-
iable given that some condition is fulfilled. The con-
ditional return period approach can apply to
particular conditional events which are chosen
depending on the problem at hand. Here, we focus
on two types of events that might be of special inter-
est when designing a hydraulic structure. However,
other conditional events could be investigated if nec-
essary. The two events analyzed are described as

E >
XjY = X > xjY > yf g and ð9Þ

E >
YjX = Y > yjX >xf g; ð10Þ

with associated probability Pr [X > x| Y > y] and
Pr [Y > y| X > x] respectively. Picking up our hydro-
logical example again, event number one corresponds
to the situation where the peak discharge X exceeds
a threshold x given (denoted as |) that the flood vol-
ume Y exceeds a threshold y. This event would be
used if flood volume was considered to be the crucial
variable. Event number two corresponds to the situa-
tion where the flood volume exceeds a threshold
given that the peak discharge exceeds a predefined
threshold. This event would be used if peak discharge
was considered to be the most important variable in
the design process.

The values of the conditional probability distri-
bution functions for these events are defined as

FXjY x,yð Þ= 1−
FX xð Þ−FXY x,yð Þ

1−FY yð Þ
and ð11Þ

FYjX x,yð Þ =1−
FY yð Þ−FXY x,yð Þ

1−FX xð Þ
: ð12Þ

The conditional return period of these two condi-
tional events can therefore be described as

T xjyð Þ =
μ

1−
FX xð Þ−FXY x,yð Þ

1−FY yð Þ

and ð13Þ

T yjxð Þ =
μ

1− FY yð Þ−FXY x,yð Þ
1−FX xð Þ

: ð14Þ
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The conditional return period describes the mean
time interval between two situations of exceedance of
a certain flood volume given that a certain flood peak
is exceeded or vice versa.

Conditional Return Period Using Copulas
The study of conditional distributions can be facili-
tated using copulas according to Salvadori and De
Michele,4 Salvadori,9 Renard and Lang,29 Salvadori
et al.,20 Vandenberghe et al.,11 Salvadori and De
Michele,10 Durante and Salvadori,30 Salvadori
et al.,5 and Gräler et al.1

We consider again the two conditional events
given in Eqs (9) and (10) but work with the random
variables U and V which have a uniform distribution
and stand for FX(X) and FY(Y). Using copulas, the cor-
responding conditional return periods are denoted by

T ujvð Þ = μ
1−v

1−u−v +C u,vð Þ
and ð15Þ

T vjuð Þ = μ
1−u

1−u−v +C u,vð Þ
; ð16Þ

where μ is the mean interarrival time between two
sampled flood events.

Joint Return Period
The joint return period of a multivariate event can be
calculated using different joint probability distribu-
tion functions. Four different ways of defining values
of the joint probability distribution function are illus-
trated in Figure 2(a). Quadrants I to IV show differ-
ent ways of defining a joint probability:

Quadrant I: Pr [X > x, Y > y] = 1 − FX(x) − FY(y) +
FXY(x, y) = SXY(x, y)

Quadrant II: Pr [X ≤ x, Y > y]

Quadrant III : Pr [X ≤ x, Y ≤ y] = FXY(x, y)

Quadrant IV : Pr [X > x, Y ≤ y]

In flood frequency analysis, we might either be
interested in working with events situated in
Quadrant I, where X exceeds x and Y exceeds y, or
we want to work with the events situated in Quad-
rants II and IV where either Y exceeds y or
X exceeds x.

8 These possible joint events using the
OR and the AND operators, i.e., " _ " and,
i.e., " ^ ", are given in Table 1.4,9

Continuing with our hydrological example (see
Figure 2(b)), the events located in Quadrant I corre-
spond to events where both the peak discharge

X and the flood volume Y exceed given thresholds
x and y. Events located in Quadrant II correspond to
flood events where the flood volume exceeds a given
threshold but not the peak discharge. On the con-
trary, events located in Quadrant IV correspond to
flood events where the peak discharge but not the
flood volume exceeds a certain threshold.

The return period of events situated in
Quadrants I, II, or IV where either peak discharge or
flood volume (or both) exceeds a given threshold can
be expressed by the joint OR return period (Eq. (17))

T_ x,yð Þ =
μ

Pr X>x _ Y>y½ �
=

μ

1− FXY x,yð Þ
: ð17Þ

The return period of events situated in Quadrant I
where both peak discharge and flood volume exceed
a threshold can be expressed as the joint AND return
period6,8,31 (Eq. (18))

T^ x,yð Þ=
μ

Pr X>x ^ Y>y½ �

=
μ

1− FX xð Þ−FY yð Þ+ FXY x,yð Þ
: ð18Þ

Joint Return Period Using Copulas
The bivariate joint distribution of flood peak and volume
can also be obtained using a bivariate copula model.6

Thus, the joint distribution function used for the calcula-
tion of a return period can be expressed in the form of a
copula. For example, let us again consider the two events
of particular interest given in Table 1, i.e.,

U > uf g_ V > vf g and ð19Þ

U > uf g^ V > vf g; ð20Þ

where U stands for FX(X), the peak discharge trans-
formed via the probability integral transform, and
V stands for FY(Y), the flood volume transformed via
the probability integral transform. In the first event,
either the transformed peak U or the transformed
volume V does not exceed a certain probability u or
v respectively. In the second event, both U and V do
not exceed a certain probability u or v. The choice of
one of these events depends, as mentioned above, on
the problem at hand.

The joint OR and AND return periods of these
two events using a copula can be calculated as follows
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T_ u,vð Þ=
μ

1−C u,vð Þ
and ð21Þ

T^ u,vð Þ =
μ

1−u−v+C u,vð Þ
; ð22Þ

where μ is the mean interarrival time between succes-
sive events.9 The return period only depends on the
copula and not on the marginal distributions. These
are just used to return from the space defined by the
uniform distributions of U and V to the space of the
real distributions of X and Y. All pairs (u, v) that are
at the same probability level of the copula (i.e., they
lie on an isoline of the copula) will have the same
bivariate return period.

Kendall’s Return Period
Salvadori and De Michele10 introduced the Kendall’s
distribution function (Eq. (23)), which depends only
on the copula function C, and thus partitions the

sample space into a supercritical and a noncritical
region. The Kendall’s distribution function Kc stands
for the cumulative distribution function of the copu-
la’s level curves or isolines and is given in a bivariate
case by

Kc tð Þ = Pr W ≤ t½ � = Pr C U,Vð Þ ≤ t½ �; ð23Þ

where W = C(U, V) is a univariate random varia-
ble.5,10 In the bivariate case, analytical expressions
for Kc are available for both Archimedean and
Extreme Value copulas.20,32 When no analytical
expression for Kc is available, it needs to be calcu-
lated numerically based on a simulation algorithm.5

The Kendall’s distribution function allows for the
calculation of the probability that a random pair
(U, V) in the unit square has a smaller (or larger)
copula value than a given critical probability level t.
Any critical probability level t uniquely corresponds
to a subdivision of the space into a supercritical and
a noncritical region. The Kendall’s return period
therefore corresponds to the mean inter arrival time
of critical events lying on the probability level
t which is given by

TKc
=

μ

1− Kc tð Þ
: ð24Þ

Events more critical than the design event, i.e., the
so-called supercritical or dangerous events, have a
larger Kendall’s return period than the events lying
on the critical isoline and will appear much less fre-
quently than the given design return period. This
Kendall-based approach ensures that all supercritical

FIGURE 2 | (a) Illustration of joint probabilities. Quadrant I shows the case when both variables X and Y exceed the values x and y. Quadrant

II shows the case where Y but not X exceeds the reference value. Quadrant III shows the case where neither X nor Y exceed their reference values.

Finally, Quadrant IV shows the case when X but not Y exceeds the reference value. (Modified from Ref 38; Copyright 2002) (b): Hydrological

example. The red line stands for the peak discharge threshold x, the red hydrograph for the threshold value of total flood volume y. For each

quadrant in figure a, one example event is given. The flood event in Quadrant I has a higher peak discharge and a higher flood volume than given

by the thresholds. The event in Quadrant II has a higher volume than the threshold but a lower peak discharge. The event in Quadrant IV has a

lower volume than the threshold but a higher peak discharge.

TABLE 1 | Possible Joint Events Using the OR “_” and the

AND “^” Operators [Correction added on 21 September 2016, after

first online publication: instances of underscore “_” have been

changed to “_” as the correct symbol for "OR".]

Potential events of special interest in flood frequency analysis are highlighted
in blue.
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events have a longer joint return period than the
design value, while some noncritical events might
have larger marginal values than any selected design
event.1

To overcome this issue, Salvadori et al.33 intro-
duced the survival Kendall’s return period which
yields a bounded safe region, where all the variables
of interest are finite and limited. The survival Ken-
dall’s return period is based on the survival Kendall’s
distribution function instead of the Kendall’s distri-
bution function and is defined as

TKc
=

μ

1− Kc tð Þ;
ð25Þ

where Kc is the Kendall’s survival function given by

Kc tð Þ= Pr SXY X,Yð Þ ≥ t½ � = Pr C 1−U,1−Vð Þ ≥ t½ �;

ð26Þ

where SXY is the survival function of X and

Y.
12,33 The factor 1− Kc tð Þ yields the probability

that a multivariate event will occur in the supercriti-
cal region.12

One of the conditional or joint return period
definitions introduced above can be used to estimate
design variable quantiles according to the problem at
hand. However, these definitions do not take into
account any interaction of the design variables peak
discharge and flood volume and the hydraulic struc-
ture to be designed. To overcome this shortcoming,
Volpi and Fiori34 introduced the structure-based
return period which allows for the consideration of
the structure in hydraulic design in a bivariate or
multivariate environment. The structure-based return
period is based on the assumption that the structure
design parameter Z is related to the hydrological
variables X and Y through a strictly monotonic struc-
ture function Z = g(X, Y).

The return period of structure failure TZ

(Eq. (27)) can be computed by applying a standard
univariate frequency analysis to the random variable
Z using its distribution function FZ:

TZ =
μ

1−FZ zð Þ
; ð27Þ

where μ is again the mean interarrival time between
two successive events. Salvadori et al.35 stated that it
may be awkward and impractical to select the uni-
variate law of FZ analytically, especially when the
structure function is nonlinear. Therefore, they pro-
posed to use Monte Carlo techniques to obtain an
approximation of FZ.

Isolines
The difference between the univariate and the bivari-
ate approach is that in the bivariate case, there is no
unique solution of design variables associated with
the return period T. Specific conditional or joint
return periods can be achieved using various combi-
nations of the two random variables. Hence, the
bivariate return period for flood peak and flood vol-
ume must be illustrated using contour lines.31 This
return period level is a curve on a bi-dimensional
graph with peak discharge and flood volume as coor-
dinates. Based on the contours of the conditional,
joint or (survival) Kendall’s return periods, one can
obtain various combinations of flood peaks and
volumes for a given return period.8,9 The isolines of
the joint OR return period are the level curves of the
copula C of interest, while the isolines of the joint
AND return period are the level curves of the sur-
vival copula of interest. Similarly, the conditional
return period is constant over the isolines of the func-
tions defined in Eqs (15) and (16).

Choice of a Realization on the Isoline
In some cases of application, it might be desirable to
have just one design realization or a subset of all pos-
sible realizations instead of a large set of potential
events for a specified return period. Usually, one
event on the isoline is chosen and declared as the
design event. Several options exist for choosing one
or more design realizations from the return level
curve. These can be grouped into two classes. The
first class of approaches aims at choosing only one
design realization, whereas the second class aims at
selecting a subset of design realizations on the return
level curve.

Salvadori et al.5 proposed two approaches to
choose one design realization. One of these
approaches looks for the ‘component-wise excess
design realization’ whose marginal components are
exceeded with the largest probability. The second
approach looks for the ‘most-likely design realiza-
tion’ taking into account the density of the multivari-
ate distribution of the flood events. The most-likely
design realization of all possible events can be
obtained by selecting the point with the largest joint
probability density1,5 using Eq. (28)

u,vð Þ= argmax
C u,vð Þ = t

fXY F−1
X uð Þ,F−1

Y vð Þ
� �

: ð28Þ

These two approaches are just two ways of choosing
one design realization. In general, to identify one
design realization, a suitable weight function needs to
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be fixed and the point(s) where it is maximized on
the critical layer can be calculated.5,36 Salvadori
et al.12 proposed another method to choose one
design realization which is applicable if one of the
variables (e.g., X) is seen as the ruling variable (they
called it H-conditional approach because their ruling
variable was called H). Here, we would rather talk
about the X- or Y-conditional approach. Given a
return period T and using a univariate approach,
the corresponding critical probability level p can be
calculated using Eq. (3). Knowing p, the fitted mar-
ginal distribution of the ruling variable, FX, can be
inverted to provide us with a design value xT for
the driving variable

xT = FX
−1 pð Þ: ð29Þ

Considering a particular isoline (e.g., conditional,
joint, or (survival) Kendall’s), a design value yT can
be provided for the second variable. This corre-
sponds to the point where the design value xT of the
first variable intersects with the isoline.

The advantage of choosing just one design real-
ization is that it is easy to handle. However, the selec-
tion of just one event reduces the amount of
information that can be obtained by the multivariate
approach. If one wants to keep more of this informa-
tion and is rather interested in choosing a subset of
design realizations from the return level curve, there
are also different options. Chebana and Ouarda13

divided the return level curve into a naïve and a
proper part. The naïve part is composed of two seg-
ments starting at the end of each extremity of the
proper part. The extremities are defined by the maxi-
mum values for each of the variables. An alternative
is the ensemble approach proposed by Gräler et al.1

They suggested to sample across the contours of the
return level plot according to the likelihood function.
By doing so, the highest density of design events is
sampled around the most-likely realization, whereas
less design events are sampled on the two outer limits
of each contour, corresponding to the naïve part in
the approach of Chebana and Ouarda.13 Once a sub-
set has been selected, a practitioner can still choose
one design event from the subset according to the
event’s effect on the hydraulic structure under
consideration.37

Choice of Return Period Definition
The return period definition to be used in flood fre-
quency analysis should be determined a priori
according to the hydraulic structure to be designed
or the risk assessment problem to be solved.2 The

choice of the most suitable approach to calculate
the return period should be evident once the prob-
lem at hand is well defined and will affect the calcu-
lation of the design event. The different return
periods do not provide answers to the same prob-
lem statement.

A univariate frequency analysis is useful when
one random variable is significant in the design proc-
ess. The bivariate analysis of the return periods of
flood volume and flood peak may however provide
more useful information for design criteria than a
univariate analysis4 if more than one variable is sig-
nificant in the design process of a hydraulic struc-
ture.2 The flood risk related to a specific event can be
wrongly assessed if only the univariate return period
of either the peak discharge or the flood volume is
analyzed in a case where a bivariate analysis would
be appropriate.6 If two variables are significant in the
design process, it is advisable to use the bivariate
return period to determine the design variable quan-
tiles. Depending on the problem at hand, one of the
approaches to define a bivariate return period is cho-
sen. The choice should be made with care and one
should be aware that the approaches outlined in the
previous sections provide different design variable
quantiles.

The effect of the choice of one of the concepts
introduced above on the design variable quantile is
illustrated in the following paragraphs using a con-
crete example. The example shall raise the awareness
of the importance of a good problem definition. As
stressed by Serinaldi,2 the choice between the possi-
ble definitions depends on how the system under con-
sideration responds to a specific forcing. The failure
mechanism of interest has a unique probabilistic
description that results in a specific type of probabil-
ity which in turn corresponds to a unique definition
of the return period.

EFFECT OF RETURN PERIOD CHOICE
ON DESIGN VARIABLE QUANTILES

Based on the above, we can look at the effect of the
choice of the return period definition, which depends
on the problem at hand, on the design variable quan-
tiles of flood peak and volume. We use flood events
in a study catchment in Switzerland, the Birse at
Moutier-la-Charrue, to illustrate the design variable
quantiles resulting from different return period defi-
nitions. The Birse catchment lies in the Swiss Jura,
has an area of 183 km2, a mean elevation of 930 m.
a.s.l., and no glaciers. The measurement station is
situated in Moutier-la-Charrue at 519 m.a.s.l. The
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measurements started in 1974 and there is a runoff
time series of more than 40 years available for the
analysis.

Before calculating the bivariate return period,
some preparation is necessary:

1. Sampling of flood events. We worked with the
POT approach to select four flood events per
year on average from the runoff time series.
This has the advantage of having all important
events in the data set, even those that are not
annual maxima. However, we needed to be
cautious that these events were independent
from each other. This was ensured by prescrib-
ing a minimum time difference between two
successive events.

2. Baseflow separation. It is important to distin-
guish between the slow and the fast runoff
components to analyze the statistical properties
of floods.38 We applied a recursive digital filter
to separate baseflow from quick flow. Recur-
sive digital filters have been shown to be easily
applicable to a wide variety of catchments and
to provide reliable results.39

3. Determination of marginal distributions. We
need some information about the marginal dis-
tributions of flood peaks and volumes before
we go into the bivariate analysis and consider
their joint behavior. Therefore, we need to
determine their marginal distributions. The
events were chosen using a POT approach and
therefore follow a GPD distribution according
to extreme value theory.17 Because the thresh-
old was only applied to the peaks and not to
the volumes, the volumes do not follow a GPD
but a GEV distribution. The goodness-of-fit of
the GPD to the peak discharges and the GEV
to the flood volumes was assessed using two
graphical goodness-of-fit tests, pp-plots and qq-
plots, and the upper-tail Anderson Darling test
proposed by Chernobai et al.40 which showed
good results. The parameters of the GEV and
GPD distributions estimated for the Birse catch-
ment are shown in Table 2.

4. Fitting of a copula model. The dependence
between peak discharges and volumes was
assessed by an exploratory data analysis using
K-plots and Chi-plots.23 A copula can be used
to model the dependence between the two
variables, peak discharge (Q) and flood vol-
ume (V). The dependence between the two
variables Q and V was tested graphically by
plotting all pairs of Q and V and numerically

by computing two measures of dependence,
Kendall’s tau and Spearman’s rho. Six copula
models of the Archimedean copula family as
well as two copulas of the meta-elliptical fam-
ily were fitted using a pseudo-likelihood esti-
mation method and tested using both
graphical approaches and a goodness-of-fit test
based on the Cramér-von Mises statistic.23,25

A p-value for the Cramér-von Mises statistic
of each copula was estimated using a boot-
strap procedure.25 The copulas which were
not rejected at a level of significance of 0.05 in
most catchments were found to be the Joe and
the Gumbel copula. We decided to work with
the Joe copula because it was rejected in fewer
catchments than the Gumbel copula. The Joe
copula is described by

C u,vð Þ = 1− 1−uð Þθ + 1−vð Þθ− 1−uð Þθ 1−vð Þθ
h i1

θ

:

ð30Þ

It takes θ parameters in [1 ∞)24 and is able to
model the dependence in the data. The parameter θ

for the Birse catchment at Moutier-la-Charrue was
estimated to be 1.92.

Knowing the copula found to model the
dependence between peak discharges and flood
volumes well, we can calculate the bivariate return
period chosen to be suitable for the analysis. Table 3
shows the design quantiles for a return period of
100 years obtained for the Birse catchment by apply-
ing the different approaches outlined above. The
results of all approaches are visualized in Figure 3.

Conditional Approach
We chose two different types of conditional events to
illustrate the conditional approach (Eqs (9) and (10)).
However, if desired, one could work with different
types of conditional events such as {X > x | Y < y} or
{Y > y | X < x}. If the flood volume is considered to
be the most significant variable for the design

TABLE 2 | Parameters of the GEV and GPD Distributions Estimated

for the Birse Catchment at Moutier-la-Charrue

Parameter/Distribution GEV GPD

Location (μl) 294.1 12.9

Scale (σ) 93.1 11.6

Shape (ξ) 0.21 −0.15

GEV, generalized extreme value; GPD, generalized Pareto distribution.
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process, we work with the event given in Eq. (9) and
call the approach Qmax|V. On the contrary, if the
peak discharge is considered to be most important,
we work with the event given in Eq. (10) and call the
approacheV|Qmax.

The design quantiles using these conditional
approaches were calculated using Eqs (15) and (16).
We retained the pairs (u, v) that were located along
the probability level t corresponding to the given

return period T such that 1− t = 1−u−v+C u,vð Þ
1−v when

looking at the first event and 1− t = 1−u−v+C u,vð Þ
1−u when

looking at the second event.
All the pairs of probabilities (u, v) that are at

the same probability level t are eligible because they
correspond to the return period T. The design varia-
ble pairs were then calculated according to their mar-
ginal distributions FQ and FV

QT = FQ
−1 uð Þ and ð31Þ

VT = FV
−1 vð Þ: ð32Þ

Therefore, in contrast to the univariate case, there is
no unique solution of the design variables associated
with the return period T. Instead, all the possible
solutions are located along the return period level,
which is a curve on a bi-dimensional graph with
Q and V as coordinates.

Figure 3 shows the conditional return period
levels for the two conditional approaches discussed
above (Qmax|V and V|Qmax). If desired, one design
variable pair on the isoline can be selected, e.g., by
choosing the most probable design realization (see
Table 3 and squares on isoline in Figure 3).

Joint Approaches
If the problem at hand requires a joint analysis of
peak discharges and volumes, a joint approach is
appropriate. The joint approach does not provide a
single design quantile pair for a given return period,
but a set of pairs, all having the same return period.
As mentioned in the theoretical part, two possible
approaches to compute a joint return period are the
AND and the OR approach.

The design quantiles using the OR approach
were calculated using Eq. (21). Equation (22) was
used in the AND approach. We retained the pairs
(u, v) that were located along the probability level
t corresponding to the given return period T such
that 1 − t = 1 − C(u, v) in the OR approach, and
1 − t = 1 − u − v + C(u, v) in the AND approach.

TABLE 3 | Design Variable Quantiles for the Peak Discharge and Flood Volume in the Birse Catchment at Moutier-la-Charrue for the Following

Approaches for a Return Period of 100 Years: Univariate, Qmax|V, V|Qmax, Qmax-conditional, V-conditional, Joint AND, joint or, Kendall’s, and

Survival Kendall’s

Approach Univariate Qmax|V V|Qmax

Qmax-
conditional

V-condi-
tional

Joint
AND

Joint
OR Kendall’s

Survival
Kendall’s

Quantiles
Q [m3/s]

58.8 60.2 13.1 58.9 65.1 55.8 60.6 54.2 57.4

Quantiles
V [Mm3]

4.2 0.8 4.2 5.5 4.2 3.7 4.5 3.5 3.9

If the approach provides us with an isoline, the most probable event on that isoline was chosen.

FIGURE 3 | Design variable quantiles for different return period

definitions. The black dots stand for the observed flood events for the

Birse at Moutier-la-Charrue and the gray dots are 10,000 randomly

generated pairs using the bivariate distribution of the peak discharges

and flood volumes. The black square stands for the univariate

quantile. The triangles represent the design variable pairs resulting

from the Qmax- and V-conditional approaches applied to the joint OR

isoline. The isolines represent the return level curves for the two joint

approaches AND and OR, and the approaches using the Kendall’s and

survival Kendall’s distribution function. The squares on the isolines

stand for the most-likely design realizations on these isolines.
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All the pairs of probabilities (u, v) that are at
the same probability level t are eligible because they
correspond to the return period T. The design varia-
ble pairs were then calculated according to their mar-
ginal distributions FQ and FV using Eqs (31) and (32).

Therefore, in contrast to the univariate case,
there is no unique solution of the design variables
associated with the return period T. Instead, all the
possible solutions are located along the return period
level, which is a curve on a bi-dimensional graph
with Q and V as coordinates.

Figure 3 shows the joint return period levels for
the AND and OR approaches. While the joint return
period level using the AND approach is concave, the
joint return period level using the OR approach is
convex. Generally, the AND approach provides
lower design variable quantiles than the OR
approach for a given return period. If desired, one
design variable pair on the isoline can be selected,
e.g., by choosing the most-likely design realization
(see Table 3 and squares on isoline in Figure 3) or by
applying the H-conditional approach (here, the
Qmax-conditional and V-conditional approaches)
proposed by Salvadori et al.12

Kendall’s Approach
The design quantiles using the Kendall’s approach
were calculated using Eq. (24). The Kendall’s quan-
tile qt for the probability level t could then be com-
puted as

qt =Kc
−1 tð Þ; ð33Þ

where Kc
− 1 is the inverse of the Kendall’s distribu-

tion Kc. We estimated qt using a bootstrap tech-
nique.5 We retained the pairs (u, v) that are located
along the critical probability level qt. All the pairs of
probabilities (u, v) that are at the same probability
level qt are eligible because they correspond to the
return period T. The design variable pairs were then
calculated according to their marginal distributions
FQ and FV using Eqs (31) and (32).

The isoline corresponding to the critical events
according to the Kendall’s return period is displayed
in Figure 3. The event with the highest likelihood on
this isoline is also indicated and given in Table 3.

Similary to the Kendall’s distribution function,
the survival Kendall’s distribution function can be
used to derive a survival Kendall’s quantile instead of
the Kendall’s quantile

qt =K
−1

c tð Þ; ð34Þ

where K
−1

c is the inverse of the Kendall’s survival
function.12,33 The isoline corresponding to the criti-
cal events according to the survival Kendall’s return
period is also displayed in Figure 3. The event with
the highest likelihood on this isoline is indicated with
a square and given in Table 3.

The results presented above for different
approaches to compute design variable quantiles
demonstrate that the choice of the approach has a
significant influence on the outcome of the design
variable quantiles and that it is therefore essential to
well define the problem at hand to make a suitable
choice of a return period definition. Compared to the
univariate quantile, the choice of the joint OR
approach resulted in higher design variable quantiles.
In contrast, the choice of the conditional approaches,
the joint AND approach, the Kendall’s approach and
the survival Kendall’s approach resulted in lower
design variable quantiles than in the univariate case.
Serinaldi2 emphasized that this choice is not arbitrary
and depends on the problem at hand. If not only the
problem at hand but also the interaction of the
design variables X and Y with the structure under
consideration is well defined, the structure-based
return period introduced by Volpi and Fiori34 can be
applied to derive the design variable quantile

zT = FZ
−1 1−

μ

T

� �

; ð35Þ

where FZ
− 1 is the inverse of the distribution function

of the design parameter Z. In practice, the structure
function g(X, Y) relating the hydrological variables
peak discharge and volume to the design parameter
Z might be quite complex. For a specific example of
a structure function, we refer to Volpi and Fiori34

and to Salvadori et al.35

Choice of a Point on the Isoline
It was mentioned earlier on that there are several
possibilities to choose one design realization on the
return level curve or isoline. These possibilities are
illustrated in Figure 4. The isoline can be divided into
a central and a naïve part. The determination of the
component-wise excess realization or the most-likely
design realization is a way of choosing just one reali-
zation on the critical level. If one would not like to
go that far, a possibility is to work with an ensemble
sampled according to the probability distribution.

Uncertainty of Design Variable Quantiles
Independent of the return period definition used to esti-
mate the design variable quantiles, the design variable
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quantiles have to be complemented with information
about their uncertainty.41 Estimated design variable
quantiles are uncertain because they are made for events
whose frequency goes beyond the range that is sup-
ported by the length of the flood records.42 In a bivariate
framework, the uncertainty related to the limited sample
size and the uncertainty of the marginal distributions
combine with the uncertainty of the dependence struc-
ture between the two variables.18 The scientific commu-
nity agrees that the uncertainty stemming from flood
frequency analysis should be properly acknowledged
not only in a univariate but also in a multivariate set-
ting.12,18,35,43,44 Serinaldi43 recommended communicat-
ing the results of hydrological frequency analysis by
complementing accurate point estimates with realistic
confidence intervals. The uncertainty of extreme quan-
tiles can be assessed using bootstrapping methods not
only in univariate but also in multivariate frequency
analysis.43 Serinaldi43 and Dung44 proposed nonpara-
metric and parametric bootstrap algorithms to construct
confidence intervals for design variable quantiles. Practi-
cal procedures for assessing the uncertainty of multivari-
ate design occurrences via bootstrap approaches have
recently been outlined in Salvadori et al.28

Serinaldi41 distinguished between three different
types of uncertainty in a statistical analysis: natural
uncertainty which represents the randomness and
complexity of the natural process; statistical uncer-
tainty which is related to the estimation of the para-
meters; and model uncertainty which depends on the
choice of the statistical model. While natural uncer-
tainty can not be reduced, statistical uncertainty can
be reduced by increasing the sample size and model
uncertainty by increasing the knowledge of the proc-
ess under study. Serinaldi43 and Dung44 stated that
the major source of uncertainty in the estimation of
design variable quantiles is the limited sample size
while parameter estimation methods and model selec-
tion are of only minor importance. When the sample
is small, many joint distributions and copulas can fit
the data adequately and goodness-of-fit tests cannot
discriminate between alternative models because of
the lack of power. Very large samples are needed to
reliably estimate the marginal and joint extreme
quantiles.43 The uncertainty of design variable quan-
tile estimates can be reduced by information expan-
sion such as the inclusion of documentary records of
historical floods or data pooling from similar catch-
ments.42,44 Uncertainty can also be reduced using
Bayesian techniques allowing for the incorporation
of different sources of information.45

DISCUSSION AND CONCLUSIONS

The results presented above for different approaches
to compute design variable quantiles demonstrated
that the choice of the approach has a significant influ-
ence on the outcome of the design variable quantiles.
The case study for a catchment in Switzerland
showed that a univariate analysis can not provide a
complete assessment of the probability of occurrence
of a flood event if two or more dependent variables
are significant in the design process. This confirms
earlier results,6,8 that univariate approaches might
lead to an inadequate estimation of the risk associated
with a given event. Given a specific problem, a solu-
tion to the problem of how to define a multivariate
return period can be found.2 The approaches of defin-
ing a return period discussed in this review, resulted
in different design event estimates. This implies that
addressing the question of how to specify the engi-
neering problem and therewith to define a bivariate
return period is important. It is impossible to provide
the reader with a general suggestion for an approach
to estimate multivariate design events since that
depends on the problem he or she is facing. Still, this
study should give him or her an overview on the

FIGURE 4 | Kendall’s critical level divided into a central (green)

and two naïve parts (red). The black dots stand for the observed flood

events for the Birse at Moutier-la-Charrue and the gray dots are

10,000 randomly generated pairs using the bivariate distribution of

the peak discharges and flood volumes. The two possibilities of

choosing one design realization are displayed. Namely, these are the

most-likely design realization and the component-wise excess

realization. It is also shown how a subset of realizations can be

chosen with the ensemble approach.
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methods involved in defining a return period once he
or she has outlined the problem. This study provides
a basis for the practitioner or engineer to decide
which of the strategies to define a return period is
most suitable in his or her case. In particular, the the-
oretical background of five different approaches to
compute design variable quantiles using conditional
and joint probabilities is described, and the challenge
of defining a return period was discussed with respect
to flood events looking at the two variables peak dis-
charge and flood volume. However, the analysis is
neither restricted to floods nor to two variables. The
concepts discussed above are also applicable in a con-
text where more than two dependent variables are
important and in other areas of application. Though,
recently, it has even been questioned whether the
return period and the corresponding design quantiles

do actually matter in system design and planning. Ser-
inaldi2 strongly recommended assessing the risk of
failure instead, which is the probability to observe a
critical event at least once in M years of the design life
of a structure. The risk of failure has a unique defini-
tion independent of the nature of data and allows the
consideration of both independent and dependent
variables in stationary but also nonstationary settings.
A multivariate failure approach to assess hydrological
risk in a general and consistent mathematical way
seems valuable and has recently been outlined by Sal-
vadori et al.28

NOTE
a http://www.stahy.org/Topics/CopulaFunction/tabid/67/
Default.aspx
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Warsaw, Poland, 5Compagnie Nationale du Rhône, Lyon, France, 6Department of Earth Sciences, Uppsala University,

Uppsala, Sweden

Abstract Accurate estimates of flood peaks, corresponding volumes, and hydrographs are required to

design safe and cost-effective hydraulic structures. In this paper, we propose a statistical approach for the

estimation of the design variables peak and volume by constructing synthetic design hydrographs for

different flood types such as flash-floods, short-rain floods, long-rain floods, and rain-on-snow floods. Our

approach relies on the fitting of probability density functions to observed flood hydrographs of a certain

flood type and accounts for the dependence between peak discharge and flood volume. It makes use of

the statistical information contained in the data and retains the process information of the flood type. The

method was tested based on data from 39 mesoscale catchments in Switzerland and provides catchment

specific and flood type specific synthetic design hydrographs for all of these catchments. We demonstrate

that flood type specific synthetic design hydrographs are meaningful in flood-risk management when

combined with knowledge on the seasonality and the frequency of different flood types.

1. Introduction

Accurate flood estimates are needed for the design of hydraulic structures and for flood-risk management.

The major quantity of interest in flood estimation is the magnitude of the flood peak corresponding to a

specific return period [Rosbjerg et al., 2013]. Flood peaks, however, provide only a limited description of a

flood event. For the prevention of flood damage and for designing hydraulic structures, it is also important

to know the flood volume and the shape of the flood hydrograph [Mediero et al., 2010]. Design flood hydro-

graphs provide this information for any specified return period and, hence, unite the physical properties of

a flood event and statistical information about the event rarity [Serinaldi and Grimaldi, 2011]. Design flood

hydrographs are hydrographs of a suitable probability and magnitude adopted to ensure the safety of

hydraulic structures [Xiao et al., 2009], such as dam spillways, bridges, road culverts, levees, or retention

basins. Such hydrographs are also used to estimate sediment loads [Rickenmann, 1997], and to draw hazard

maps for land use and urban planning. Design flood hydrographs contain information on several depen-

dent design variables such as peak magnitude, flood volume, and duration, which together determine the

severity of a flood. Different flood hydrograph shapes may cause differences in the costs of hydraulic struc-

tures and influence flood-control policies and flood management strategies [Yue et al., 2002].

Two approaches are used for design flood estimation, probabilistic and deterministic methods [Smithers,

2012; Rogger et al., 2012]. Although these are fundamentally different, they are often confused [Pilgrim and

Cordery, 1993]. While probabilistic methods are based on the analysis of relatively long flood records, deter-

ministic methods are based on rainfall data and take into account some catchment processes. The latter are

based on the critical assumption [Viglione et al., 2009] that the return period of rainfall and resulting dis-

charge are the same and require the choice of an antecedent soil moisture input [Pilgrim and Cordery, 1993;

Rogger et al., 2012]. A combination of the two approaches involves the calibration of a rainfall-runoff model

[Boughton and Droop, 2003; Pathiraja et al., 2012; Pilgrim and Cordery, 1993], running it with stochastically

generated rainfall to obtain a long flood record, and a subsequent probabilistic analysis [Rogger et al., 2012].

For the design of minor works, such as bridges and culverts, farm dam spillways, and urban drainage sys-

tems, where a certain risk of failure is acceptable, a simple method is needed that is easily applicable by
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designers with little hydrologic expertise, is physically sound, gives reproducible answers [Pilgrim and

Cordery, 1993], and does not involve the calibration of a continuous simulation model [Boughton and Droop,

2003].

In this study, we propose a simple probabilistic method that is based on observed runoff data only and thus

does not require the use of any rainfall-runoff model. The method estimates peak magnitude and flood vol-

ume using frequency analysis and uses a prescribed mathematical function to model the flood shape. The

combination of the flood variable estimates and the flood shape results in a synthetic design hydrograph

(SDH).

Several methods have been proposed to derive unit hydrographs that can serve as the basis for design

flood hydrographs. Yue et al. [2002] gave an overview on existing unit hydrograph methods and grouped

them into four types: traditional unit hydrograph (TUH), synthetic unit hydrograph (SUH), typical hydro-

graph (TH), and statistical methods (SM). The TUH of a watershed is defined as the direct runoff hydrograph

resulting from a unit volume of excess rainfall of constant intensity and uniformly distributed over the drain-

age area [Ramirez, 2000]. The SUH is defined on the basis of catchment characteristics or expert knowledge

and often assumes a triangular shape of the hydrograph, whereas the TH selects a typical flood hydrograph

(usually the flood hydrograph with the highest peak discharge or flood volume) from sampled flood series

[Yue et al., 2002]. Bhunya et al. [2007] stated that the SM, which are based on probability density functions

(PDFs), are more suitable to derive unit hydrographs than traditional methods because the area under the

curve is guaranteed to be equal to one and can therefore be used as the basis for a design flood hydro-

graph. Further, probability density functions are quite flexible and can take various shapes. Yue et al. [2002]

proposed a method that employs the PDF of the Beta distribution, which allows a unit hydrograph to be

represented with different shape types, due to the flexibility of the Beta distribution, that can be used as

the basis for a design flood hydrograph. Nadarajah [2007] used nine additional PDFs to derive the basis for

a design flood hydrograph, namely, the Lognormal, inverse Gamma, Kumaraswamy, Two-sided-power, Pare-

to, inverse Gaussian, F, Weibull, and Fr�echet density functions. He provided estimates of the PDFs’ parame-

ters in terms of the time to peak, peak discharge, and the duration of the direct runoff hydrograph, also

called the time base [Ramirez, 2000]. However, neither Yue et al. [2002] nor Nadarajah [2007] provide a tool

to move from the dimensionless shape of the design hydrograph to an actual design flood hydrograph.

Serinaldi and Grimaldi [2011] overcame this deficiency by linking the dimensionless hydrograph in the form

of a Beta density (f(t)) with the design variables flood volume VT and duration DT corresponding to a fixed

return period T to obtain a SDH called QT ðtÞ, expressed as:

QT ðtÞ5f ðtÞVT=DT : (1)

In this study, we make use of the concepts outlined above but implement a joint design event which takes

account of the dependence between peak discharge and flood volume to upscale the dimensionless hydro-

graph shape to a synthetic design hydrograph for a given return period T.

The SDHs do not contain any information about the hydrological processes underlying the design event.

However, additional insight into a catchment’s behavior could potentially be gained when looking at design

hydrographs constructed for different flood types such as flash-floods, short-rain floods, long-rain floods, or

rain-on-snow floods which have different probabilities of occurrence. Such a flood type specific analysis is

also advantageous from a statistical point of view because we avoid mixing events caused by different pro-

cesses and can better justify the assumption commonly made in flood frequency analysis that the variables

(peak discharge and flood volume) are independent and identically distributed (i.i.d.) random variables

[Klemes, 2000; Merz et al., 2014] even though they are usually jointly dependent [Serinaldi and Kilsby, 2013].

Besides containing the physical properties and the statistical information, such flood type specific design

hydrographs indicate what types of floods might require special attention in flood-risk management.

Here, we go one step further than previous studies by not only constructing catchment specific SDHs, which

sum up the overall flood behavior of a catchment, but also constructing flood type specific SDHs. This is

done by complementing the statistical nature of the method with process-based knowledge stored in the

flood event data. It has been pointed out by Merz and Bl€oschl [2008a] that expanding information beyond

the flood sample is very useful for accurately estimating flood frequencies. Knowledge on the characteristics

of a flood reflected by the flood type can lead to a better understanding of floods and might improve their
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prediction accuracy. Sikorska et al. [2015] suggested that the classification of floods at the event level along

with the information of their frequency may support flood-risk management because the effects of flooding

on the inundated area will alter depending on the specific flood behavior. Therefore, we propose a way of

deriving flood type specific SDHs for four frequently observed and potentially hazardous flood types, i.e.,

flash-floods, short-rain floods, long-rain floods, and rain-on-snow floods, using a dimensionless hydrograph

represented by a probability density function and design variable quantiles estimated for a specified return

period using a joint frequency analysis. The method takes into account that different types of floods are

characterized by different dependence structures between peak discharges and flood volumes [Gaal et al.,

2015; Grimaldi et al., 2016; Szolgay et al., 2015].

2. Data

The proposed method has been developed and tested using runoff, precipitation, and temperature data

from a representative set of 39 mesoscale (catchment area 20–1700 km2) catchments in Switzerland (see

Figure 1 and Table 3 for a complete list). The selected catchments have hourly flow data series, which is cru-

cial for characterizing the shape of the flood hydrographs, with a length of 17–53 years, with 50% of the

catchments having a record length of 30–40 years. We selected catchments only with natural flow condi-

tions neither altered through hydropower plants nor lake regulation or water transfers, to avoid hydrograph

shapes modified by direct human impacts. We excluded highly glacierized catchments because unimpaired

flow records are scarce for these. The characteristics of the 39 study catchments selected are summarized in

Table 1. The median catchment size is 119 km2, and there are only four large catchments with a size of

more than 500 km2. Most measurement stations lie below 750 m.a.s.l. and only four stations are located at

altitudes higher than 1000 m.a.s.l. Most catchments have a mean elevation lower than 1500 m.a.s.l. meaning

that mountainous catchments are scarce [Viviroli and Weingartner, 2004]. However, there are two partly gla-

cierized catchments in the set with a degree of glaciation of 6.7% and 14.2%, respectively. The median of

the maximal observed peak discharges in the study catchments is 122 m3/s, while the median of the maxi-

mal specific observed peak discharges (discharge per unit area) is 947 l/(s km2). The median of the maximal

observed flood volumes is 1918 m3, although, there are catchments with significantly higher maximal flood

volumes. The median of the maximal specific flood volume (volume per unit area) is 4197 103 m3/km2.
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Figure 1. Map of the 39 catchments used for developing and testing the method for constructing flood type specific SDHs. The three

catchments used to illustrate flood type specific SDHs are highlighted in green and the remaining 36 catchments in brown. The gauging

stations are indicated as red crosses and labeled with the catchment ID given in Table 3.
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We selected three catchments having similar mean elevation (between 650 and 800 m.a.s.l.) to represent

three catchment size classes (small, medium, and large) as examples to show more detailed results. These

illustration catchments are the Langete at Huttwil (60 km2), the Mentue at Yvonand (105 km2), and the Birs

at M€unchenstein (911 km2) (see green catchments in Figure 1).

3. Methods

The construction of flood type specific SDHs relies on the fitting of probability density functions to observed

flood hydrographs of a certain flood type and takes account of the dependence between the design

variables peak discharge and flood volume. The different steps involved in constructing flood type specific

SDHs are displayed in Figure 2 and are described in more detail in the following paragraphs whose num-

bers correspond to the numbers used in Figure 2. The proposed method can either be applied to construct

a catchment specific SDH without a differentiation between flood types or to construct flood type specific

SDHs.

3.1. Flood Sampling

The SDH construction method is based only on observed runoff data. Thus, historical flood event hydro-

graphs were selected in the 39 representative Swiss catchments described in section 2 (see Figure 1 and

Table 3). To sample flood events, we used a peak-over-threshold (POT) approach based on the procedure

proposed by Lang et al. [1999] which is superior to annual maxima sampling [Tanaka and Takara, 2002]

because it allows for a more rational selection of events to be considered as floods than annual maxima

sampling [Lang et al., 1999]. The threshold for the peak discharge was chosen iteratively to fulfill a target

condition of four events per year on average which is a trade-off between maximizing the information

content in the sample and keeping the assumption of independence between events. The indepen-

dence between successive events was additionally ensured by prescribing a minimum time interval of

72 h between them. However, most of the sampled events were separated by at least 5 days. According

to extreme value theory, POT values follow a generalized Pareto distribution (GPD) [Coles, 2001]. There-

fore, we used a GPD to fit the peak discharge values. For each of these events, sampled according to the

flood peaks, the flood volume was determined over a fixed event window of 72 h. The flood volumes

were not selected as peak over threshold values, and did not necessarily represent annual maxima.

Therefore, we tested several statistical distributions to fit the distribution of the flood volumes. The gen-

eralized extreme value distribution (GEV) was found to fit the data best. The GPD model has three con-

tinuous parameters: a location parameter l in IR, a scale parameter r > 0, and a shape parameter n in IR.

It is defined as:

FXðxÞ512 11n
x2l

r

� �n o

2
1
n

n 6¼ 0; (2)

where x is larger than a threshold l.

On the other hand, the GEV uses the same parameters and is expressed as:

Table 1. Overview of the Minimum, First Quartile, Median, Third Quartile, and Maximum of the Distribution of the Following Catchment

Characteristics for the 39 Study Catchments: Record Length [years], Catchment Area [km2], Station Elevation [m.a.s.l.], Mean Catchment

Elevation [m.a.s.l.], Glacier Cover [%], Maximum Peak Discharge Observed in the Catchment [m3/s], Maximum Specific Peak Discharge

[l/(s km2)], Maximum Flood Volume Observed in the Catchment [m3], and Maximum Specific Flood Volume Observed in the Catchment

[103 m3/km2]

Catchment Characteristics Minimum First Quartile Median Third Quartile Maximum

Record length [years] 17 34 40 40 53

Catchment area [km2] 22 60 119 347 1696

Station elevation [m.a.s.l.] 247 403 511 654 1707

Mean elevation [m.a.s.l.] 370 718 930 1129 2450

Glacier cover [%] 0 0 0 0 14

Maximum peak discharge [m3/s] 11 62 122 276 956

Maximum specific peak discharge [l/(s km2)] 191 634 947 1468 3123

Maximum flood volume [m3] 234 993 1918 4503 27,397

Maximum specific flood volume [103 m3/km2] 85 2728 4197 6825 35,690
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FYðyÞ5exp 2 11n
y2l

r

� �n o

2
1
n

� �

n 6¼ 0 (3)

with domain 11n y2l
r

� �

> 0 for n 6¼ 0.

The goodness of fit of the GPD to the peak discharges and the GEV to the flood volumes was checked visu-

ally using qq-plots and pp-plots and tested using the Kolmogorov-Smirnov and the Anderson-Darling tests,

plus the upper-tail Anderson-Darling test [Chernobai et al., 2015], which gives a higher weight to the fit in

the upper tail (of special interest here) than to the remaining parts of the distribution. The upper-tail Ander-

son-Darling test confirmed the visual impression that the GPD fits the peak discharges and the GEV distribu-

tion fits the flood volumes well.

3.2. Classification

To construct flood type specific SDHs, the data set needs to be divided into subsets of different flood types.

Therefore, each sampled flood event was attributed to a specific flood type according to its triggering

Figure 2. Method developed to construct synthetic design hydrographs (SDHs) for catchments in Switzerland. The method can either be

applied to all types of flood events identified in a catchment or it can be used to construct flood type specific SDHs. Flood type specific

SDHs can be constructed for flash-floods (FF), short-rain floods (SRF), long-rain floods (LRF), or rain-on-snow floods (RoSF), but not for

snowmelt floods (SMF) and glaciermelt floods (GMF). The approach consists of 11 steps whose numbers correspond to the section

numbers in the Methods chapter. The SDH (QT ðtÞ) can be expressed by a probability density function (f(t)) times the mean discharge

(VT=DT ) plus the base flow (B).
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mechanism using a flood classification scheme proposed by Merz and Bl€oschl [2003], complemented by

Diezig and Weingartner [2007], and extended by Sikorska et al. [2015]. The classification scheme applied is

based on successive binary splittings of the set of flood events into smaller groups of flood events according

to predefined decision attributes and results in the assignment of each flood event to one of six flood types

[Sikorska et al., 2015]. The following six flood types, having different causative mechanisms, are considered:

1. Flash-floods (FF) with short but very intense rainfall, usually lasting less than half a day.

2. Short-rain floods (SRF) with rainfall usually lasting no longer than 1 day.

3. Long-rain floods (LRF) with rainfall lasting several days or even weeks.

4. Rain-on-snow floods (RoSF) with rainfall falling on snow, which initiates its melting.

5. Snowmelt floods (SMF) caused by a melting of a snow cover with no or insignificant rainfall.

6. Glacier-melt floods (GMF) caused by glacier melting with no or insignificant rainfall.

All these flood types show a specific behavior in terms of spatial and temporal characteristics. This makes it possi-

ble to distinguish them based on a set of predefined, flood-specific indices. As proposed by Sikorska et al. [2015],

we used the following eight indices to attribute the observed flood events to one of the six flood types: timing of

the flood within the year, precipitation amount, precipitation duration, precipitation intensity, glacier cover, snow

cover, snowmelt, and catchment wetness. The first four indices were computed on the basis of runoff and precipi-

tation data as in Sikorska et al. [2015]. Sikorska et al. [2015] used the conceptual hydrological model HBV [Seibert,

1999] to compute glacier and snow cover, snowmelt, and catchment wetness. Here, we computed glacier cover

from land cover maps, applied a simple degree-day model [Schreider et al., 1997] with a fixed degree-day factor

(1.5 mm/degree-day) to compute the snow cover and the snowmelt, and defined the catchment wetness via the

current precipitation index (CPI) [Smakhtin and Masse, 2000] (using a daily recession coefficient of 0.9). We tested

both the crisp and the fuzzy approaches proposed by Sikorska et al. [2015], which led to approximately the same

classification results when comparing the result from the crisp decision tree to the dominant flood type obtained

with the fuzzy tree. Therefore, the decision attributes were defined as sharp thresholds to attribute exactly one

flood type to each event which is facilitating computations in the construction of flood type specific SDHs. The

thresholds for some indices were slightly modified from Sikorska et al. [2015]: The threshold for snow cover was

set to a snow water equivalent of 1 mm to distinguish between the existence and nonexistence of snow cover

and the threshold for the catchment wetness was set to 90% of themean of the catchment’s CPI.

Knowing all eight indices for each sampled flood event, we were able to attribute each flood event to one

of the six flood types introduced above by following a decision tree with sharp thresholds. For a detailed

overview of the classification scheme employed, we refer to Sikorska et al. [2015].

An objective validation of the flood classification process is not possible because there are no true classes

[Merz and Bl€oschl, 2003]. Instead, the observed hydrographs were inspected visually and compared to the

class assignments. This comparison showed that the classification procedure results in a reasonable subdivi-

sion of events into six flood types. As pointed out by Merz and Bl€oschl [2003], such an automated classifica-

tion procedure is very useful in the flood frequency context because a large number of events can be

classified in a limited amount of time.

The most often observed flood types in the 39 study catchments were SRFs followed by FFs, LRFs, and

RoSFs (Figure 3). SMFs and GMFs were relatively rare because there are only a few mountainous catchments

in the data set. While some of the flood types such as FFs, RoSFs, and SMFs show a high seasonality, other

flood types such as SRFs and LRFs occur in all seasons. FFs mainly occur in summer or autumn, RoSFs mainly

in winter and spring, and SMFs in winter and spring. The number of events observed per flood type varied

between the different catchments. The number of FFs, LRFs, and RoSFs varied between less than 10 and

around 55 events, while the number of SRFs lay between 33 and 86 events (Table 2).

In the following, we focus on the four flood types FFs, SRFs, LRFs, and RoSFs because the number of SMF

and GMF events was too low to build a large enough sample to estimate SDHs. Furthermore, snowmelt

floods were shown to have small flood peaks [Merz and Bl€oschl, 2003] and are therefore less relevant for

flood management than the four flood types analyzed in detail.

3.3. Base Flow Separation

The SDH approach describes only the quick flow component of the event hydrograph originating from a

precipitation event and does not consider the base flow component. Thus, it is necessary to distinguish
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between the base flow and the quick runoff

components to analyze the statistical prop-

erties of flood hydrographs [Yue et al., 2002].

In this study, we applied a recursive digital

filter [Eckhardt, 2005] whose two parameters

need to be estimated for each catchment.

This method allows for the separation of the

base flow from the quick flow, is easily

applicable to a wide variety of catchments,

and provides reliable results in an objective

way [Serinaldi and Grimaldi, 2011; Gonzales

et al., 2009]. A visual assessment showed

that the method produces smooth and

plausible base flow curves. In a later step,

we added a representative base flow to the

constructed SDH to obtain the total hydro-

graph. Thus, we computed a base flow

index (IBF), which is the ratio between the

volume of base flow divided by the volume

of total streamflow [Smakhtin, 2001] for

each event as proposed by Meyer et al.

[2011]. This allowed us to compute a mean

base flow index for each flood type and a

catchment specific base flow index.

3.4. Normalization

The quick flow component of the hydrographs was normalized so that both the base width and the volume

of the modified hydrographs were equal to one. This was done by dividing the base width of each flood

hydrograph by its duration D and then dividing the ordinate of each hydrograph by the mean runoff given

by the ratio of flood volume V and duration D (V/D).

3.5. Identification of a Representative Normalized Hydrograph

A normalized hydrograph, which is representative of a catchment’s flood behavior, needs to be chosen for

the nonflood-specific construction of an SDH. In addition, one representative, normalized hydrograph per

flood type needs to be defined. A representative normalized hydrograph (RNH) was defined as the median

normalized hydrograph of the corresponding event set (one set for all flood events and one separate set for

each flood type). We chose the median normalized hydrograph instead of the mean normalized hydro-

graph because it refers to a real observed event, which is not necessarily the case for the mean of the nor-

malized hydrographs.

The median hydrograph was defined using a notion of depth for functional data [Ramsay and Silverman,

2002]. The concept of data depth aims at measuring the centrality of a given curve (in our case, the hydro-

graphs) within a group of curves and can be used to define the ranks of functional data [Fraiman and Muniz,

2001] and therewith robust estimators

of a location parameter such as the

median or the trimmed mean. Several

data depths proposed in the literature

are suitable for functional data, among

them, the depth proposed by Fraiman

and Muniz [2001], the h-mode depth,

the random-projection depth [Fraiman

and Muniz, 2001], or the band depth

[L�opez-Pintado and Romo, 2009]. We

used the h-mode depth to order the

hydrographs in the sample since it was
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Figure 3. Frequency and seasonality of the six flood types obtained by the

classification procedure: flash-floods (FFs), short-rain floods (SRFs), long-rain

floods (LRFs), rain-on-snow floods (RoSFs), snowmelt floods (SMFs), and

glacier melt floods (GMFs) over the 39 study catchments. The seasons were

defined as follows: winter: December–February; spring: March–May; summer:

June–August; autumn: September–November.

Table 2. Overview on the Minimum, First Quartile, Median, Mean, Third

Quartile, and Maximum of the Number of Events Per Flood Type Over the 39

Test Catchments [the Numbers Were Rounded to Integers]

Flood

Type Minimum

First

Quartile Median Mean

Third

Quartile Maximum

FF 4 15 19 24 34 59

SRF 33 48 64 61 70 86

LRF 5 10 13 16 20 45

RoSF 3 8 14 16 20 60

SMF 0 1 2 3 4 12

GMF 0 0 0 0 0 10
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found to perform best if one is interested in finding the median curve within a set of curves [Cuevas et al.,

2007].

3.6. Fitting of a Probability Density Function

The shape of a normalized hydrograph can be fitted by a probability density function (PDF) because both

the area under the normalized hydrograph and the area under the PDF are equal to one and because prob-

ability density functions can take various shapes. Nadarajah [2007] and Rai et al. [2009] derived expressions

for the unknown parameters of several density functions in terms of the time to peak (tp), the peak dis-

charge (qp), and the time base (tB) of the RNH. If the distribution has a finite support, its upper end point

can be taken to correspond to the time base tB. The time to peak tp can be defined by the value of x that

maximizes the PDF f(x) and the peak discharge qp as the value of f(x) at tp. To select the most suitable densi-

ty, eight different commonly used PDFs were fitted to all of the RNHs in the 39 study catchments: Normal,

Lognormal, Fr�echet, Weibull, Logistic, Gamma, inverse Gamma, and Beta [Nadarajah, 2007; Serinaldi and

Grimaldi, 2011]. The two parameters (characterizing location and scale or scale and shape) of the distribu-

tions were estimated based on the three characteristics tB, tp, and qp so that the PDFs approximate the

shape of the RNHs as well as possible. The goodness of fit of each PDF to the RNH was assessed by compar-

ing the mean of the four following performance criteria for the different density functions: bounded Nash-

Sutcliffe efficiency [Mathevet et al., 2006], volumetric efficiency, Kling-Gupta efficiency [Gupta et al., 2009],

and Spearman’s correlation coefficient. The Lognormal density function modeled the RNHs best, closely

Table 3. Characteristics of 39 Swiss Catchments Used to Develop and Test the SDH Construction Approach

ID River Gauging Station

Area

(km2)

Station

Elevation

(m.a.s.l.)

Mean

Elevation

(m.a.s.l.)

Degree

of Glaciation

(%)

Record

Length

(years)

1 Aach Salmsach, Hungerb€uhl 49 406 480 0 40

2 Allenbach Adelboden 29 1297 1856 0 40

3 Allondon Dardagny, Les Granges 119 400 758 0 29

4 Bibere Kerzers 50 443 540 0 34

5 Birse Moutier, La Charrue 183 519 930 0 40

6 Birs M€unchenstein, Hofmatt 911 268 726 0 40

7 Breggia Chiasso, Ponte di Polenta 47 255 927 0 40

8 Broye Payerne, Caserne d’aviation 392 441 710 0 40

9 Cassarate Pregassona 74 291 990 0 40

10 Emme Eggiwil, Heidb€uel 124 745 1189 0 39

11 Emme Emmenmatt 443 638 1070 0 17

12 Emme Wiler, Limpachm€undung 939 458 860 0 40

13 Ergolz Liestal 261 305 590 0 40

14 Goldach Goldach, Bleiche 50 399 833 0 23

15 Goneri Oberwald 40 1385 2377 14 23

16 G€urbe Belp 117 511 837 0 40

17 Ilfis Langnau 188 685 1051 0 25

18 Kleine Emme Littau, Reussb€uhl 477 431 1050 0 36

19 Kleine Emme Werthenstein, Chappelboden 311 540 1173 0 30

20 Langeten Huttwil, H€aberenbad 60 597 766 0 40

21 Mentue Yvonand, La Mauguettaz 105 449 679 0 40

22 Minster Euthal, R€uti 59 894 1351 0 40

23 Murg Frauenfeld 212 390 580 0 40

24 Murg W€angi 79 466 650 0 40

25 Necker Mogelsberg, Aachs€age 88 606 959 0 40

26 Ova dal Fuorn Zernez, Punt la Drossa 55 1707 2331 0 40

27 Plessur Chur 263 573 1850 0 40

28 Sense Th€orishaus, Sensematt 352 555 1068 0 36

29 Somvixer Rhein Somvix, Encardens 22 1490 2450 7 36

30 Steinach Steinach, Mattenhof 24 406 710 0 30

31 Suze Sonceboz 150 642 1050 0 53

32 Taschinasbach Gr€usch, Wasserfassung Lietha 63 666 1768 0 34

33 Thur Andelfingen 1696 356 770 0 40

34 Thur Halden 1085 456 910 0 40

35 Thur Jonschwil, M€uhlau 493 534 1030 0 40

36 Thur Stein, Iltishag 84 850 1448 0 31

37 T€oss Neftenbach 342 389 650 0 40

38 Urn€asch Hundwil, €Aschentobel 65 746 1085 0 33

39 Wiese Basel 437 247 370 0 40
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followed by the inverse Gamma and Fr�echet densities. We therefore used the Lognormal density function

to model the RNHs of the different flood types and the catchment specific RNH. The modeling of the flood

specific RNH was done with only a minimum of five events in the different flood type specific data sets to

ensure reliable parameter estimates. This means that we could produce SDHs only for floods of those types

for which we had more than five observed events in a catchment. In practice, this meant that a specific SDH

for one of the flood types could not be produced in 18% of the catchments.

The fitting of PDFs to an RNH to determine the dimensionless shape of the design hydrograph proved to

be effective and allows for an upscaling of the dimensionless shape to an SDH using design variable quan-

tiles. However, the fitting of PDFs can pose a problem in the case of catchments with events with more

than one peak [Yue et al., 2002]. There, a fitting of the hydrograph with a PDF can result in large volume dif-

ferences. One could fit mixture distributions (i.e., a combination of distributions) [Mengersen et al., 2011] to

hydrographs with multiple peaks to reduce such differences in volume but parameters of the mixture

would be difficult to estimate with the sample size at hand and because of numerous interacting parame-

ters, which would lead to identifiability problems.

3.7. Dependence Modeling

The dependence between peak discharge (Qmax) and flood volume (V) was assessed graphically using Chi-

plots and K-plots and tested numerically by computing two rank correlation coefficients, Kendall’s tau and

Spearman’s rho [Genest and Favre, 2007]. The bivariate distribution of peak discharges and flood volumes

was expressed in the form of a copula model which, in contrast to a classical bivariate distribution, allows

for modeling the dependence between the two variables independently of the choice of their marginal dis-

tributions [Joe, 2014]. Copulas are multivariate distribution functions whose marginal distributions are uni-

form. In contrast to standard multivariate distributions, copula models thus allow the variables to be

characterized by different marginal distributions. The advantages of this approach are that the selection of

an appropriate model for the dependence between variables, represented by the copula, can then proceed

independently from the choice of the marginal distributions and that a wide selection of copula families is

available to model different dependence structures [Genest and Favre, 2007]. For a more thorough introduc-

tion to copulas, we refer the reader to the textbooks of Nelsen [2005] or Joe [2014] or the review paper by

Genest and Favre [2007]. The location, scale, and shape parameters of the marginal distributions GEV (equa-

tion (3)) for the flood volumes and GPD (equation (2)) for the peak discharges were estimated using the

maximum likelihood method [Coles, 2001]. The appropriate copula to model these marginal distributions

was chosen among eight copula models: five copula models of the Archimedean copula family (Gumbel,

Clayton, Joe, Frank, Ali-Mikhail-Haq (AMH)), two copula models of the elliptical copula family (Student and

Normal copula), and the independence copula. They were fitted to the pseudo-observations (which are

deduced from the ranks of the observations) using maximum pseudolikelihood estimation, which was

shown to perform best under known margins [Hofert et al., 2012]. After the fitting, they were tested using

both graphical approaches and a goodness of fit test based on the Cram�er-von Mises statistic [Genest and

Favre, 2007]. A p value for the Cram�er-von Mises statistic of each copula was estimated using a statistical

bootstrap procedure [Genest et al., 2009]. The copula models which were not rejected at the a50:05 signifi-

cance level in most of our study catchments were the Joe and the Gumbel copula. Between these two cop-

ulas, we chose the Joe copula for further analysis because it was rejected in only 13% of the catchments.

The Joe copula is described by

Cðu; vÞ512½ð12uÞh1ð12vÞh2ð12uÞhð12vÞh�
1
h; (4)

where h is the copula parameter, u5FXðxÞ and v5FYðyÞ are uniformly distributed between 0 and 1, and

their dependence is modeled by the copula C.

The Joe copula is very flexible and can represent the bivariate distributions of all flood types. In addition, it

is able to consider tail dependence [Heffernan et al., 2000] which is crucial when moving toward higher

return periods. The form of the dependence represented by the copula model was used for all flood types

while the copula parameter h, expressing the strength of dependence, was estimated for each flood type

separately. While an individual treatment of flood types can be beneficial when modeling the dependence

between peak discharges and flood volumes [Szolgay et al., 2015; Gaal et al., 2015], here, testing the suitabil-

ity of other copula types for the different flood types separately was not possible since the sample at hand
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was too small for such an analysis [Genest et al., 2009]. Grimaldi et al. [2016] recently suggested that the

actual sample size could be increased by merging the available data with other observations collected in

hydrologically similar catchments. Merging the flood type specific data sets from similar catchments might

allow for the estimation of the form of the copula for the individual flood types. Still, the Joe copula seems

to be able to model the dependence between peak discharges and volumes well for different flood types

by choosing different copula parameters for the different dependence intensities.

3.8. Choice of a Return Period Definition

Before estimating the design variables, a value for the return period or recurrence interval T needs to be

chosen (e.g., 20, 50, or 100 years). Since we deal with not only one but two nonindependent variables, peak

discharge and flood volume, we also need to choose a definition for the return period in addition to the val-

ue for T. In a multivariate framework, a specific return period definition needs to be chosen depending on

the problem at hand [Serinaldi, 2015a]. Several ways of defining a multivariate return period have been pro-

posed in the literature, which all rely on different probability concepts. Definitions use the conditional prob-

ability, the joint probability (OR or AND), or can be based on Kendall’s distribution or survival function. For a

comprehensive overview on the topic please refer to Brunner et al. [2016] and the references cited therein.

Assuming that the dependence between peak discharges and flood volumes is important for a potential

application of this method, we used the joint OR return period definition which takes into account the

dependence between Qmax and V by relying on the probability of either Qmax or V exceeding given thresh-

olds. The joint OR return period is defined as:

Tðx; yÞ5
l

Pr½X > x�Y > y�
5

l

12FXðxÞ2FYðyÞ1FXYðx; yÞ
5

l

12Cðu; vÞ
;

(5)

where X and Y are random variables, C is a copula, x and y are given thresholds, l is the interarrival time

between two successive events u5FXðxÞ and v5FYðyÞ, and FX, FY, and FXY are the marginal and joint distri-

bution functions of the random variables, respectively.

We based our analysis on a joint return period definition but other return period definitions could also be

used. As was pointed out in Serinaldi [2015a] and Brunner et al. [2016], the choice of the return period defini-

tion to be used to estimate design variable quantiles should be chosen according to the problem at hand in

practice.

3.9. Estimation of QT and VT

The pair of design variable quantiles, Qmax and V, associated with a defined joint OR return period T was

estimated using the marginal distributions of the variables and the Joe copula to model their dependence.

For the marginal distributions, we assumed a GEV distribution for the flood volumes and a GPD for the peak

discharges. We retained the pairs (FXðxÞ; FYðyÞ) that were located along the probability level t correspond-

ing to the given return period T such that 12t512Cðu; vÞ. All the pairs (u, v) that are at the same probabili-

ty level t are eligible because they correspond to the return period T. The design variable pairs were then

calculated by inverting their marginal distributions FX (for peak discharges) and FY (for flood volumes)

QmaxT5F21
X ðuÞ (6)

and

VT5F21
Y ðvÞ: (7)

There is no unique solution of the design variables associated with the joint OR return period T. Instead, all

the possible solutions are located along the return period level, which is a curve on a bidimensional graph

with Qmax and V as coordinates. We chose the design realization on this isoline that maximized the likeli-

hood to construct the SDH [Salvadori et al., 2011]. A detailed description of the estimation procedure can be

found in Brunner et al. [2016].

3.10. Computation of DT

We restricted our analysis to the bivariate case not considering the dependence between flood volume and

duration because we consider the duration of an event to be of less interest for practitioners than peak
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discharge and flood volume. Therefore, the third design variable, the duration DT, follows from the esti-

mates of QT and VT and is defined as DT5f ðtpÞ � VT=QT , where f ðtpÞ is the Lognormal density at the time of

peak tp. This means that the duration DT cannot be determined independently but results from the design

variable quantiles QT and VT [Serinaldi and Grimaldi, 2011]. Considering the dependence between event

duration and flood volume would move us to a trivariate setting, where inference is computationally more

challenging [Hofert et al., 2012], which requires considerably more data for reliable estimation than the

bivariate case [Klein et al., 2010], and which is limited by the range of the dependence structures the copula

chosen can handle [Hao and Singh, 2016].

3.11. SDH Construction

An SDH can be constructed for each flood type and over all flood types using the Lognormal distribution fit-

ted to the respective RNH and the estimates for VT and DT according to equation (1). The base flow, which

was removed from total flow in Step 3 of the procedure, has to be readded to the SDH to receive total flow

instead of quick flow. The base flow to be added is determined by the flood type specific base flow index

computed in Step 3 of the procedure. This index is multiplied with the runoff at each time step to obtain a

base flow proportional to the quick flow. Hence, the construction of the final SDH requires knowledge of

ten parameters: base flow index, location and scale parameter of the Lognormal distribution, a location,

scale, and shape parameter for the two marginal distributions of the peak discharges and the flood volumes

as well as the parameter h of the Joe copula.

4. Results

4.1. SDH Parameters Per Flood Type

The parameters of the SDHs were estimated for the 39 study catchments in two ways: based on the whole

sample of events and using only the flood type specific event sets. The results show that different flood

types are characterized by different SDH parameters (Figure 4). The parameters for the base flow index,
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Figure 4. Four selected SDH parameters per flood type. (a) Base flow index (IBF), (b) copula parameter h, (c) location parameter of the

probability distribution function Lognormal (PDF location), and (d) scale parameter of the probability distribution function Lognormal (PDF

scale).
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dependence (h), and the location and scale of the Lognormal PDF show some dependence on the flood

type while the parameters of the marginal distributions of the peak discharges and flood volumes do not

show any dependence on the flood type. The base flow index IBF (Figure 4a) is generally highest for FFs, fol-

lowed by SRFs and RoSFs. LRFs possess the lowest base flow indices. Even though the medians of the flood

type specific base flow indices differ, their variability is quite large. Concerning the copula parameter, FFs

and SRFs are characterized by a low dependence between peak discharges and volumes and show thus

small values of h (Figure 4b). On the contrary, LRFs are characterized by a larger dependence between peak

discharges and volumes and have higher h values. The h values of the RoSFs are in between those of the

shorter and longer events. The location parameter of the Lognormal distribution increases with the event

duration from FFs over SRFs to LRFs (Figure 4c). The scale parameter is highest for SRFs and lowest for RoSFs

(Figure 4d).

4.2. Flood Type Specific SDHs

Based on the SDH parameters estimated per flood type, flood type specific SDHs were derived. Figure 5 dis-

plays the flood type specific SDHs for the three example catchments Langete at Huttwil (a), Mentue at Yvo-

nand (b), and Birs at M€unchenstein (c) together with an overall SDH which is not flood type specific. In the

smallest catchment Langete at Huttwil, the magnitude of the peak discharges of the SDHs decreases with

the duration of the precipitation event causing the flood, meaning that FFs have high peak discharges while

LRFs have low peak discharges. In the medium sized catchment Mentue at Yvonand, the SRFs cause the
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Figure 5. Flood type specific SDHs for three catchments of the same mean elevation zone (650–800 m.a.s.l.) but different sizes (a) Langete at Huttwil: 60 km2; (b) Mentue at Yvonand:

105 km2; (c) Birs at M€unchenstein: 911 km2. The duration is centered around the time of occurrence of the peak which was set to zero and therefore the time is negative before and

positive after the peak. The line width of the SDH represents the frequency of occurrence of a certain type in the respective catchment. The highest observed event in the catchment is

shown in black.

Figure 6. Flood type specific design variables per catchment size group: (a) specific peak discharges [l/(s km2)], (b) specific flood volumes [103 m3/km2]. The size of small catchments

ranges from 20 to 75 km2, that of medium catchments from 76 to 300 km2, and that of large catchments from 301 to 1700 km2. The different flood types are represented by different

colors.
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highest peaks and are, together with the RoSFs, responsible for the highest volumes. In the largest catch-

ment Birs at M€unchenstein, SRFs, which are the most frequently observed event type, are characterized by

high peak discharges and volumes. There is a tendency of floods being more attenuated in larger catch-

ments than in small catchments.

Figure 6 shows the two design variables peak discharge [l/(s km2)] (a) and volume [103 m3/km2] (b) per unit

area for three different catchment size groups, namely, small catchments (20–75 km2), medium sized catch-

ments (76–300 km2), and large catchments (301–1700 km2), for the different flood types. When looking at

catchments of all sizes, there are only small differences between specific peak discharges (peak discharge

per unit area) for different flood types. However, there is a visible difference between the peaks of different

flood types within the groups of catchments of similar size. In small catchments, shorter events such as FFs

and SRFs have generally higher specific peak discharge than longer events such as LRFs and RoSFs. The con-

trary can be observed in medium sized and large catchments, where LRFs and RoSFs are generally charac-

terized by higher specific peak discharges than shorter events such as FFs and SRFs. For the specific flood

volumes, we identify a similar pattern independently of the catchment size: LRFs show higher volumes than

RoSFs, and clearly higher volumes than SRFs and FFs.

4.3. Flood Type Specific SDHs for Different Return Periods

Figure 7 shows flood type specific SDHs (a) and flood type specific design variable quantiles (b) for three dif-

ferent return periods, commonly used in engineering practice, T5 20, T5 50, and T5 100 for the catch-

ment Mentue at Yvonand. While the SDHs for different return levels have different peak discharges and

flood volumes for most of the flood types (SRFs, LRFs, RoSFs, all types combined), the SDHs do differ only

slightly for the FFs. The behavior of the different flood types for different return periods can be explained

by their bivariate distribution of peak discharges and flood volumes (Figure 7c). The distribution of SRFs

and of all types combined allows for both high peak discharge values and high flood volume values. The

distributions of LRFs and RoSFs allow for high volume values but are bounded for the peak discharge val-

ues. The distribution of FFs is bounded in both directions. The link between different shapes of the bivariate

distribution and the differences in SDHs for different return levels is confirmed in the other study catch-

ments. However, the intensity of the dependence of the bivariate distributions of different flood types

varies from catchment to catchment.

5. Discussion

5.1. SDH Parameters Per Flood Type

Different flood types were characterized by different SDH parameters. First, the base flow index was shown

to depend on the total runoff volume. It can be generalized that a higher total flood volume is linked to a

lower base flow index. Second, the copula parameter h, was shown to depend on the event duration. A
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Figure 7. SDHs for Mentue at Yvonand for three different return periods T5 20, 50, 100 years for return periods defined after the joint OR probability approach for the different flood

types and over all types. The joint OR probability refers to the probability that either the peak discharge, or the volume, or both, exceed a certain value. (a) Flood type specific SDHs for

different return periods. (b) Flood type specific design variable quantiles for different return periods. (c) Random sample of the bivariate distribution of peak discharges and flood

volumes for the different flood types and over all flood types.
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longer event duration is linked to a higher dependence between peak discharge and flood volume and

therewith a higher h value. Third, we showed that the shapes of shorter events, expressed by PDFs, general-

ly show a steeper (lower scale parameter) and shorter (lower location parameter) rising limb than the

shapes of longer events. The different characteristics of flood types in terms of their runoff behavior, their

dependence between peak discharges and flood volumes, and their event shapes can be exploited by con-

structing flood type specific SDHs.

5.2. Flood Type Specific SDHs

The flood type specific peak discharges and flood volumes presented above show that the different flood

types possess different hazard potentials. The severest floods in terms of flood volume are usually caused

by LRFs independently of the size of the catchment. The flood volumes decrease from RoSFs to SRFs and

FFs and are therefore linked to the event duration. The reason for this is simply that more water becomes

available to form runoff with increasing duration of the precipitation event. In terms of peak discharge, on

the contrary, the severest floods not only depend on the flood type but also on the catchment size. In small

catchments, peak discharges decrease from shorter events such as FFs and SRFs to longer lasting events

such as RoSFs and LRFs. In contrast, the peak discharges in medium sized and large catchments were higher

for longer lasting events and decrease with decreasing event duration. While intense rainfall causes a fast

reaction in small catchments, it is locally restricted in larger catchments [Grebner and Roesch, 1998] and its

effect is attenuated in larger catchments on the water’s way to the outlet [Maniak, 2010]. Convective storms

are therefore more effective in small basins than in large basins [Sutcliffe, 1998]. In larger catchments, longer

lasting events, during which the hydrological condition of the soil changes, are of importance [Bundesamt

f€ur Wasser und Geologie (BWG), 2005]. As soon as the soils are saturated, higher quantities of water will be

available to form quick runoff. The hazard potential of a flood event is, besides the flood volume and the

flood peak, also influenced by the shape of the design flood hydrograph [Yue et al., 2002; Mediero et al.,

2010]. More storage volume is required to route a flood through a reservoir if the peak occurs early during

an event than if the peak occurs later in the event. The catchment and flood type specific SDHs allow the

practitioner to take account of these effects by providing information not only on flood peak and volume

but also on the time of peak. The specific properties of the flood types regarding the flood hydrograph

shape, design variables, and severity can help to find adequate flood protection strategies.

Knowledge on which flood type might cause the severest floods in the catchment of interest can be useful

in flood prediction and flood-risk management. Some of the flood types have a pronounced seasonality

and typically occur during certain seasons of the year. Merz and Bl€oschl [2003] found that in Austria, FFs

mainly occur in summer and late summer while LRFs and SRFs have a less pronounced seasonality and

RoSFs occur in periods when the temperature is around 08C. Our analysis confirms this general trend for

floods in Switzerland. FFs mainly occurred in summer, LRFs mainly in winter and autumn, and SRFs all year

round. If a flood-risk manager knows that the catchment of interest is especially susceptible to FFs, he/she

knows that the focus needs to lie on the prediction of floods caused by intense thunderstorms in summer.

Flood type specific SDHs are not only helpful together with knowledge on the seasonality of occurrence

but also together with the frequency of occurrence. Hydraulic structures can be laid out for the SDH of the

severest and most frequent flood type in the catchment of interest. This is relevant to the practitioner

because the choice of the design values directly influences the safety and the cost of a hydraulic structure

[Gr€aler et al., 2013]. The protection against the severest flood to be expected in a catchment can result in

oversized structures that in turn can be cost-ineffective, ecologically disadvantageous, and negative for

landscape value [Perreault and Bob�ee, 1998]. Considering not only one general catchment specific SDH but

four flood type specific SDHs allows the practitioner to consider the severity of a flood jointly with the fre-

quency of occurrence of the respective flood types. This might allow for a balance between sufficient pro-

tection and feasible costs.

5.3. Flood Type Specific SDHs for Different Return Periods

We showed that the difference of SDHs for smaller and larger return periods depends on the bivariate distri-

bution of peak discharges and flood volumes of the flood type analyzed. If the bivariate distribution has nei-

ther a bounded support for peaks nor volumes, a larger return period result in both a higher peak discharge

and a higher flood volume than a smaller return period. If, on the contrary, the distribution’s support is

bounded for the peaks, a larger return period does not lead to higher peaks than a smaller return period
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because higher values are not possible. The same is the case for the flood volumes if the distribution’s sup-

port is bounded toward higher volumes. Whether a bivariate distribution is bounded in one or two direc-

tions depends partly on the flood type. Flood types characterized by a short duration, especially FFs, have

generally little potential for the peak discharges or the flood volumes to move beyond certain values. This

observation is closely linked to the classification procedure applied where FFs were defined as floods with a

duration of less than six hours. The behavior of floods caused by rainfall of long duration is usually opposite

of this. During an event with longer duration, the potential for higher peaks and especially higher flood vol-

umes is given and the distribution can have a heavy upper tail. Despite the general pattern of more bound-

ed distributions for event types with shorter duration and less bounded distributions for event types with

longer distributions, the individual flood types have different bivariate distributions in different catchments.

Therefore, the flood type specific SDHs of different return periods vary in the catchments analyzed. This

indicates that the behavior of a flood is not only linked to the storm behavior and the precipitation input

but also to the watershed and infiltration characteristics of a catchment [Singh, 1997].

5.4. Method Evaluation

The catchment specific SDH, where no differentiation is made between flood types, is usually similar to the SDH

of the flood type observed most often in the catchment under consideration. If the practitioner is interested in

one single hydrograph estimate, he/she might therefore work with the catchment specific SDH. If he/she, how-

ever, wants to look at the spread of possible design events, the difference between the smallest and the largest

flood type specific SDH can be considered. Taking into account the spread of possible events allows one to ana-

lyze not only events of the dominant flood type in a catchment but also events of flood types observed less fre-

quently but potentially more hazardous. While the catchment specific SDH contains information on the

frequency and on the magnitude of a flood event to be expected in a catchment, the flood type specific SDHs

can also serve as an indicator for underlying processes. This approach satisfies the need for hydrological reason-

ing in the flood frequency estimation procedure as it was postulated by Merz and Bl€oschl [2008b]. The hydrolog-

ical information content is not lost completely during the statistical estimation procedure but retained in the

hydrograph shapes and design variable quantiles of the flood type specific SDHs. As it was already sug-

gested by Klemes [1993], we tried to shed more light on the probabilities of hydrological extremes by

incorporating more information on the physical basis of the phenomena and by increasing the homoge-

neity of the sample by splitting it into events belonging to different flood types [Fischer et al., 2016]. The

method can be applied to return periods of up to 100 years in gauged, medium sized catchments. The

application to return periods higher than 100 years is highly discouraged because the reliability of a sta-

tistical statement is closely linked to the length of the observation period [Deutscher Verband f€ur Wasser-

wirtschaft (DVWK), 1999]. The method allows for the use of different return period definitions, which need

to be chosen according to the problem at hand [Serinaldi, 2015b; Brunner et al., 2016], and is not restrict-

ed to the use of the joint OR return period used here.

Due to the limited sample size, it is desirable to not only communicate estimated design variable quantiles

but to complement them with uncertainty bands. It was stressed by Serinaldi [2009] that the design variable

quantiles have to be complemented with information about their uncertainty because they are provided

for events whose frequency goes beyond the range that is supported by the length of the flood records

[Reed, 2002]. In a bivariate framework, the uncertainty related to the limited sample size and the uncertainty

of the marginal distributions combine with the uncertainty of the dependence structure between the two

variables [Serinaldi, 2015b]. In our analysis, splitting the sample of flood events into subsamples for different

flood types increases the uncertainty resulting from a limited sample size.

6. Conclusions and Perspectives

In this study, we proposed a method that is not only suitable to construct catchment specific, but also flood

type specific, synthetic design hydrographs (SDHs). The approach can not only be used when observed run-

off data are available but also when the analyst is able to simulate synthetic discharge using continuous

rainfall-runoff modeling. It relies on the fitting of probability density functions to observed flood hydro-

graphs of a certain flood type taking into account the dependence between the design variables peak dis-

charge and flood volume. The method makes use of the statistical information in the flood event data and

retains some of the process-based information stored in it. It thus helps to advance from a purely statistical
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methods (SM) toward a method that incorporates more hydrological information. A flood type specific con-

struction of SDHs is meaningful because flood types differ in their runoff behavior, their dependence between

peak discharges and flood volumes, and their event shapes. Even though the method has been developed

and tested based on Swiss catchments, its applicability is not restricted to this geographical region but also

extends to gauged catchments in other regions with similar catchments and data availability. So far, the

approach is only applicable in gauged catchments with runoff and precipitation records but not in ungauged

catchments. However, the estimation of design variables in ungauged catchments is of great interest [Bl€oschl

et al., 2013]. Therefore, the estimation of SDHs shall, in a next step, be regionalized to ungauged catchments

where runoff data are not available. Further, the uncertainty introduced in each step of the method shall be

assessed through a simulation study and the design variable estimates shall be complemented with uncertain-

ty bands. We showed that flood type specific SDHs provide information not only on flood peak and volume

but also on the time of peak and the whole event hydrograph for a certain flood type. They can be helpful in

flood-risk management together with knowledge on the seasonality and frequency of occurrence of different

flood types.
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Abstract

Design flood estimates for a given return period are required in both gauged and ungauged catchments for hydraulic design

and risk assessments. Contrary to classical design estimates, synthetic design hydrographs provide not only information on

the peak magnitude of events but also on the corresponding hydrograph volumes together with the hydrograph shapes. In

this study, we tested different regionalization approaches to transfer parameters of synthetic design hydrographs from

gauged to ungauged catchments. These approaches include classical regionalization methods such as linear regression

techniques, spatial methods, and methods based on the formation of homogeneous regions. In addition to these classical

approaches, we tested nonlinear regression models not commonly used in hydrological regionalization studies, such as

random forest, bagging, and boosting. We found that parameters related to the magnitude of the design event can be

regionalized well using both linear and nonlinear regression techniques using catchment area, length of the main channel,

maximum precipitation intensity, and relief energy as explanatory variables. The hydrograph shape, however, was found to

be more difficult to regionalize due to its high variability within a catchment. Such variability might be better represented

by looking at flood-type specific synthetic design hydrographs.

Keywords Regionalization � Ungauged catchments � Design hydrographs � Flood estimation � Regression trees

1 Introduction

Flood estimates for a given return period are required for

many engineering problems, such as the construction of

retention basins and weirs or drawing hazard maps (Gri-

maldi and Petroselli 2015; Mediero et al. 2010; Yue and

Rasmussen 2002). Two types of approaches exist for the

construction of design floods for a predefined return period

in catchments, where runoff information is available

(Smithers 2012): rainfall-runoff modeling and flood fre-

quency analysis. Rainfall-runoff models describe how

rainfall is transferred into runoff. On the one hand, excess

rainfall that becomes direct runoff is modeled by consid-

ering losses through infiltration, interception, and surface

storage (e.g. via runoff coefficients or infiltration equa-

tions). On the other hand, a transfer function describes how

this excess rainfall is transferred into runoff (e.g. unit

hydrograph (Singh et al. 2014)). These methods are based

on the assumption that the return period of the rainfall input

corresponds to the return period of the resulting design
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hydrograph (Chapman and Maxwell 1996), which is not

always the case (Viglione et al. 2009).

Contrary to rainfall-runoff modeling, flood frequency

analysis is based solely on observed runoff data (Meylan

et al. 2012) and thus overcomes this assumption. However,

the focus of flood frequency analysis usually lies on the

hydrograph peaks (Ahn and Palmer 2016). Such a uni-

variate analysis is not sufficient for design tasks where the

storage of the flood water is of concern. In this case,

information on the whole flood hydrograph is required

(Pilgrim 1986). A first step towards the construction of

flood hydrographs is a bivariate flood frequency analysis,

which is jointly looking at peak discharges and hydrograph

volumes considering their dependence (Requena et al.

2013; Shiau et al. 2006). Bivariate flood quantiles can then

be combined with a dimensionless unit hydrograph (Seri-

naldi and Grimaldi 2011) that describes the shape of the

design event. Brunner et al. (2017b) proposed a statistical

flood frequency model for the construction of synthetic

design hydrographs (SDHs) which combines bivariate

design quantiles with a unit hydrograph represented as a

probability density function (Bhunya et al. 2011). Such

SDHs provide information on the hydrograph peak, the

hydrograph volume, and the entire hydrograph shape. The

SDH construction model is useful in gauged catchments,

where runoff information is available for design hydro-

graph estimation. Yet, it is not directly applicable in

ungauged catchments where runoff is not measured or in

catchments where the record is too short to estimate reli-

able statistics (Ahn and Palmer 2016; Blöschl et al. 2013).

Therefore, a regionalization model is needed for describing

how the SDH parameters can be transferred from gauged to

ungauged catchments. A range of different data types has

previously been regionalized from gauged to ungauged

catchments: parameters of continuous rainfall-runoff

models (see reviews by He et al. (2011) and Razavi and

Coulibaly (2013)), unit hydrograph parameters (Tung et al.

1997), daily flows (Farmer 2016; Kokkonen et al. 2003;

Sefton and Howarth 1998), low flows (Laaha et al. 2014;

Longobardi and Villani 2008; Salinas et al. 2013), flow

duration curves (Boscarello et al. 2016; Cheng et al. 2012;

Sauquet and Catalogne 2011), flood quantiles (GREHYS

1996; Merz and Blöschl 2004; Ouarda et al. 2001; Skoien

et al. 2006), and flood event durations (Cipriani et al.

2012). However, the identification of the most suitable re-

gionalization method is likely context dependent (Ali et al.

2012). To our knowledge, no method has so far been

proposed for the regionalization of a design flood hydro-

graph that is solely based on runoff observations and rep-

resents both the peak and volume of the hydrograph and its

shape while providing information on the event’s fre-

quency via the return period. In this study, we therefore

focus on finding an appropriate method for the

regionalization of design flood hydrographs to ungauged

catchments. This method can subsequently be applied by

engineers to derive SDHs in catchments where runoff

measurements are not available. Our specific research

questions were:

1. Which is the most appropriate regionalization method

for transferring SDHs from gauged to ungauged

catchments?

2. Do nonlinear regression techniques, such as random

forest, bagging, and boosting, perform better compared

to classical regionalization techniques?

3. Which catchment characteristics are most important

for the prediction of SDH parameters in ungauged

catchments?

To address these questions, we tested and compared 24

suitable regionalization methods that have been proposed

either in the hydrological or statistical literature. These

included methods establishing a relationship between

catchment characteristics and design hydrograph parame-

ters, approaches based on spatial proximity, and methods

related to the building of homogeneous regions. Besides

commonly used regionalization methods such as multiple

linear regression and various kriging approaches, we also

tested three nonlinear regression methods, i.e., bagging,

random forest, and boosting, which have so far only rarely

been used in hydrological regionalization studies. Regres-

sion trees have been used by Laaha and Blöschl (2006) to

regionalize low flows and bagging has been used by Shu

and Burn (2004) to regionalize index floods and 10-year

flood quantiles. Unlike other, commonly applied methods,

nonlinear regression approaches allow the consideration of

hydrological processes that are nonlinear and exhibit a high

degree of spatial variability (Aziz et al. 2015).

The nonlinear regression methods tested here are tree-

based. They split the space of explanatory variables into a

number of regions containing observations with similar

response values (Strobl et al. 2009). To make a prediction

for a given observation, the mean or the mode of the

observations in its region can be used. The set of splitting

rules used to segment the space of explanatory variables

can be summarized in a tree (Hastie et al. 2008). Tree-

based methods have the advantage that the model outcome

is unaffected by monotone transformations of the input

data and different measurement scales among explanatory

variables. Furthermore, irrelevant explanatory variables are

seldomly selected. The hierarchical structure of a tree

ensures that the response to one input variable depends on

values of inputs higher in the tree, which allows for the

automatic modeling of interactions between explanatory

variables (Elith et al. 2008). A tree-based method might

produce good predictions on the set used to fit the model,

but is likely to overfit the data, leading to a poor test
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performance and high variance (James et al. 2013). Com-

bining a large number of trees into an ensemble (Strobl

et al. 2009), using bagging, random forest, or boosting

methods, leads to a smoothing of the estimated response

surface, results in an improvement in prediction accuracy,

and reduces variance compared to applying just one single

tree (James et al. 2013). Variance can be reduced by

bootstrap aggregation (bagging) which takes many random

samples from the population using bootstrap techniques,

builds a separate prediction model using each sample, and

averages the resulting predictions (Liaw and Wiener 2002).

If there is a strong explanatory variable in the set, most

trees in the set of trees obtained by bagging will use this

explanatory variable in the top split. Random forests

overcome this problem by forcing each split to consider

only a subset of the explanatory variables, which corre-

sponds to a decorrelation of the trees (Breiman 2001;

James et al. 2013). While bagged trees and random forest

reduce variance compared to single trees, they cannot

achieve any bias reduction because each tree is based on a

bootstrap sample that has the same distribution as the

original data set (Elith et al. 2008). This problem can be

overcome by using boosted regression trees. Boosted

regression trees combine the strengths of the two algo-

rithms regression trees and boosting (Freund and Schapire

1996; Friedman 2001, 2002). Boosting is a forward,

stagewise procedure in which models (here regression

trees) are fitted iteratively to the data using appropriate

methods focusing on observations modelled poorly by the

existing collection of trees (Hofner et al. 2009). This

stagewise procedure, where successive trees depend on

previous trees, distinguishes boosting from bagging.

2 Data

2.1 Study catchments

This regionalization study was performed using runoff and

catchment characteristics data from 163 Swiss catchments

(Fig. 1, and the Table in the ‘‘Appendix’’) with a wide

range of catchment characteristics and flood behaviors. The

selected catchments have hourly flow series of at least 20

years in duration ranging up to 53 years. The application of

the hydrograph construction procedure presented in the

next paragraph is suitable for catchments with records of at

least 20 years, especially, if longer return periods such as

T ¼ 100 years are of interest (Deutsche Vereinigung für

Wasserwirtschaft Abwasser und Abfall 2012). The catch-

ments’ runoff is neither altered by regulated lakes upstream

or inland canals nor by urbanized areas. The catchments

are small to medium-size (6–1800 km2), situated between

400 and 2600 m.a.s.l. (mean elevation), and either with no

or only a few areas with glaciers.

2.2 SDH parameters

We constructed hydrographs for the study catchments

using the method for a catchment specific construction of

synthetic design hydrographs (SDHs) proposed by Brunner

et al. (2017b). They form the data-and validation basis for

the regionalization study and their parameters are provided

in Table 5 in ‘‘Appendix’’. The method uses observed

runoff data, models the hydrograph shape using a proba-

bility density function (PDF), and considers the depen-

dence between the design variables, peak discharge (Qp)

and hydrograph volume (V) which are used for the esti-

mation of the bivariate design quantiles QT and VT . It

consists of ten steps which are shortly summarized here:

1. Flood sampling using a peak-over-threshold

approach as proposed by Lang et al. (1999). The

threshold for the peak discharge was chosen itera-

tively to fulfill a target condition of four events per

year on average which is a trade-off between

maximizing the information content in the sample

and keeping the assumption of independence

between events. The independence between succes-

sive events was additionally ensured by prescribing a

minimum time interval of 72 h between them;

2. Baseflow separation using the recursive digital filter

proposed by Eckhardt (2005) whose two parameters

need to be estimated for each catchment;

3. Normalization of the hydrograph so that both the

base width and the volume of the modified hydro-

graphs were equal to one;

4. Identification of the median hydrograph as a repre-

sentative normalized hydrograph (RNH) using the h-

mode depth for functional data (Cuevas et al. 2007);

5. Fitting of a lognormal probability density function

(PDF) (Rai et al. 2009; Yue et al. 2002) to the RNH.

The shape of a normalized hydrograph can be fitted

by a probability density function (PDF) because both

the area under the normalized hydrograph and the

area under the PDF are equal to one and because

probability density functions can take various

shapes;

6. Dependence modeling between peak discharges and

hydrograph volumes using the Joe copula (Genest

and Favre 2007; Joe 1997). The Joe copula is

described by:

Cðu;vÞ¼1�
�

ð1�uÞhþð1�vÞh�ð1�uÞhð1�vÞh
�1
h;

ð1Þ
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where h is the copula parameter, u ¼ FXðxÞ and v ¼
FYðyÞ are uniformly distributed between 0 and 1, and

their dependence is modeled by the copula C.;

7. Choice of a return period definition according to the

problem at hand (Brunner et al. 2016). Here, we

used the joint OR return period assuming that both

peak discharge and hydrograph volume are equally

important for the problem at hand. The joint OR

return period is defined as follows:

Tðx; yÞ ¼
l0

Pr½X[ x _ Y [ y�

¼
l0

1� FXðxÞ � FYðyÞ þ FXYðx; yÞ
¼

l0
1� Cðu; vÞ

;

ð2Þ

where X and Y are random variables, C is a copula,

x and y are given thresholds, l0 is the inter-arrival

time between two successive events u ¼ FXðxÞ and

v ¼ FYðyÞ, and FX , FY , and FXY are the marginal and

joint distribution functions of the random variables

respectively;

8. Estimation of the design variable quantiles peak

discharge (QT ) and hydrograph volume (VT ) for the

chosen return period using their marginal distribu-

tions. A marginal Generalized Pareto distribution

(GPD) was used for peak discharges and a Gener-

alized extreme value (GEV) distribution for the

hydrograph volumes. The GPD model has three

continuous parameters: a location parameter l in IR,

a scale parameter r[ 0, and a shape parameter n in

IR. It is defined as:

FXðxÞ ¼ 1�

�

1þ n
� x� l

r

�

��1
n

n 6¼ 0; ð3Þ

where x is larger than a threshold l. On the other

hand, the GEV uses the same parameters and is

expressed as:

FYðyÞ ¼ exp

"

�

�

1þ n
� y� l

r

�

��1
n

#

n 6¼ 0 ð4Þ

with domain 1þ n

�

y�l
r

	

[ 0 for n 6¼ 0. In the

limiting case of n ¼ 0, the GEV distribution corre-

sponds to the Gumbel distribution. The GPD and

GEV were chosen because of their good fit to the

data tested with the Kolmogorov–Smirnov, Ander-

son–Darling, and upper-tail Anderson–Darling

goodness-of-fit tests;

9. Computation of the duration of the design event (DT )

by DT ¼ f ðtpÞ � VT=QT , where f ðtpÞ is the lognormal

density at the time of peak tp;

10. Composition of the design hydrograph using the

hydrograph shape given by the PDF (f(t)), the design

Fig. 1 Map of the 163 Swiss study catchments used for testing different regionalization methods. The gauging stations are indicated as red

crosses and labeled with the catchment ID given in the table in ‘‘Appendix’’

Stochastic Environmental Research and Risk Assessment

123



variable quantiles (VT and DT ), and the baseflow

(B) as described by:

QTðtÞ ¼ f ðtÞVT=DT þ B: ð5Þ

For a detailed description of the methodology, the reader is

referred to Brunner et al. (2017b). We applied this method

to construct hydrographs for a return period of 100 years,

which is frequently used in hydraulic design in Switzerland

(Camezind-Wildi 2005). The design flood hydrographs

obtained using this method are composed of ten parameters

(Fig. 2), which we herein refer to as SDH parameters. Two

of the parameters are related to the hydrograph shape and

therefore to the time evolution of the event while eight of

the parameters are related to the hydrograph magnitude.

The hydrograph shape is defined by the lognormal PDF

with a location and a scale parameter. The marginal dis-

tributions of the design variables (peak discharges and

hydrograph volumes) are modeled by three parameters

each (location, scale, and shape). One parameter defines the

dependence between these two variables (h) and one

parameter characterizes the proportion of baseflow to be

added to the direct runoff hydrograph (IBF). The statistics

of the ten SDH parameters for all study catchments are

summarized in Table 1.

Some of the parameters can be assumed normally dis-

tributed (see histograms in Fig. 3), which was confirmed by

the Shapiro–Wilks goodness-of-fit test (Shapiro and Wilk

1965). However, the location and scale parameters of the

marginal distributions of the peak discharges (GPD) and

the hydrograph volumes (GEV) are skewed to the right.

The location and the scale parameter of the GPD and the

GEV distribution are strictly positive (Coles 2001). Some

of the SDH parameters are correlated with other SDH

parameters (see scatterplots and Kendall’s correlation

coefficients in Fig. 3). The two parameters of the PDF are

negatively correlated while the location and scale param-

eters of the marginal distributions GEV and GPD are

positively correlated. The shape parameters of the marginal

distributions of the design variables, the baseflow index

(IBF), and the dependence parameter (h) can be considered

as independent of the other SDH parameters since their

correlation to other SDH parameters is very weak.

The scale and shape parameters of the probability den-

sity function used to fit the runoff hydrograph are

Fig. 2 Overview of the

parameters involved in the

construction of an SDH. QT ðtÞ
can be expressed as the product

of the value of a PDF f at the

time of the peak tp and the

quotient of the hydrograph

volume estimated for a return

period VT and the duration of

the event estimated for a return

period DT . The baseflow (B) is

then added to the directflow (top

panel). The ten parameters

needed for the construction of

SDHs are presented in the

bottom panel and are: Location

and scale parameter of the PDF

(red), parameters of the

marginal distribution of the

hydrograph volumes (blue),

parameters of the marginal

distribution of the peak

discharges (green), copula

parameter (yellow), and

baseflow index event (light

blue). The location and scale

parameter of the PDF are related

to the hydrograph shape while

the other eight parameters are

related to the hydrograph

magnitude
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Table 1 Summary statistics of

the ten SDH parameters over all

study catchments

SDH parameter Mean Standard deviation Coefficient of variation Unit

IBF 0.45 0.13 0.29 –

PDF location - 0.95 0.21 - 0.22 –

PDF scale 0.58 0.141 0.24 –

GPD location 13.48 28.56 2.12 m3=s

GPD scale 14.31 25.76 1.80 m3=s

GPD shape - 0.05 0.15 - 3.16 –

GEV location 1.22 2.41 1.98 Mm3

GEV scale 0.42 0.77 1.84 Mm3

GEV shape 0.18 0.11 0.62 –

h 1.88 0.43 0.23 –

Fig. 3 Histograms of the different SDH characteristics (diagonal), scatterplots of the SDH parameters in relation to the others (lower left panel),

and Kendall’s correlation coefficients between the different SDH parameters (upper right panel)
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dependent. Similarly, the location, scale, and shape

parameters of the GEV and the GPD are dependent on each

other. Nonetheless, in the first step, these dependencies

were neglected and each SDH parameter was regionalized

separately. In the second step, we considered these

dependencies, if allowed for by the regionalization method.

Namely, multivariate regression and the methods based on

the transfer of the whole parameter set from homogeneous

regions, account for these dependencies.

2.3 Auxiliary variables

To predict runoff or runoff-related variables, such as the

parameters of an SDH, in catchments without runoff

measurements, alternative information has to be used

(Blöschl et al. 2013) which ideally characterizes the factors

that drive the hydrological response of a catchment.

Catchment characteristics We used a set of catchment

characteristics that have been used and proven to be useful

in previous regionalization studies (for a synthesis on the

use of different catchment characteristics see (He et al.

2011)). Most characteristics were computed using the

PREVAH pre-processing tool WINHRU (Viviroli et al.

2009b). WINHRU derived physiographical characteristics

from the digital elevation model (DEM), landuse related

characteristics from digital maps of landuse (Bundesamt

für Statistik 2003), soil related characteristics from digital

maps of land surface characteristics (Eidgenössishe For-

shungsanstalt für Wald Shnee und Landshaft 1999),

hydrogeology related characteristics from a map that

focuses on groundwater resources (Bitterli et al. 2007), and

geology related attributes from the Swiss geotechnical map

(Bundesamt für Statistik 2003). For a detailed description

of the computation procedure, we refer the reader to

Viviroli et al. (2009a). The climatological characteristics

were computed based on tables from the Hydrological

Atlas of Switzerland (Jensen et al. 1997) and on gridded

meteorological data provided by MeteoSwiss (MeteoSwiss

2013). The population density was computed based on a

population map for Switzerland (Bundesamt für Statistik

2003).

The final set of 54 catchment characteristics (Table 2)

consists of features related to the geographical location of

the catchment centroid (2 characteristics), the physiogra-

phy of the catchment (13), landuse (6), soil properties (6),

hydrogeology (9), geology (6), climate (11), and popula-

tion (1). These catchment characteristics form a solid basis

for the regionalization analysis. However, some of the

explanatory variables are highly correlated and contain

redundant information. The potential of single catchment

characteristics for aiding regionalization is indicated by an

assessment of their linear relationship with the individual

SDH parameters. Some SDH parameters (baseflow index

(IBF), the location and scale parameter of the marginal

distributions of Qp and V, and the dependence parameter h)

show Pearson’s correlation coefficients higher than 0.4

with some of the catchment characteristics. However, the

location and scale parameter of the PDF and the shape

parameters of the marginal distributions of Qp and V are

only weakly correlated to the catchment characteristics.

Spatial information In addition to the characteristics

mentioned above, the location of the catchments in space

can be relevant for the spatial regionalization methods (see

methods colored in red in Fig. 4). The coordinates of the

gauging stations were used for kriging methods and a shape

file for each catchment for the topological kriging methods.

Linear and nonlinear approaches as well as methods based

on the building of homogeneous regions use the informa-

tion provided by the catchment characteristics while spatial

methods use spatial information.

3 Methods

3.1 Overview

We tested several methods (Fig. 4) that have been

described in hydrological and statistical literature. Testing

all these methods allowed us to find the most appropriate

method for the transfer of design hydrograph parameters

to ungauged catchments. We grouped regionalization

methods, in a similar way as other authors (e.g. Stein-

schneider et al. 2014), into three main classes: (1) meth-

ods based on the relation between catchment

characteristics and model parameters, (2) approaches

based on spatial proximity, and (3) methods based on

homogeneous regions.

We followed two main strategies to regionalize the SDH

parameters: (1) we regionalized each parameter individu-

ally and (2) we regionalized the ten SDH parameters (see

Figs. 2, 3) as a set to assure that the relation between the

parameters was not disturbed (Bardossy 2007; Parajka

et al. 2005; Viviroli et al. 2009a). The individual parame-

ters were regionalized using methods based on the rela-

tionship between catchment characteristics and model

parameters, approaches based on spatial proximity, and

regional mean models. On the other hand, the set of SDH

parameters was regionalized using methods based on

homogeneous regions. Figure 4 shows which methods

were tested for the regionalization of the individual

parameters and which methods were tested for the

regionalization of the entire parameter set. Most models for

the individual parameters were fitted on a global scale

using data from all 163 study catchments. In addition, we

fitted regional mean models for each parameter. The
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Table 2 Catchment characteristics available for regionalization and their description

Class Catchment characteristic Description

Location X Coordinate of catchment centroid for regression

methods

and of catchment outlet for kriging methods

West-East position in Swiss uniform map projection grid

Y Coordinate of catchment centroid for regression

methods

and of catchment outlet for kriging methods

South-North position in Swiss uniform map projection grid

Physiography Catchment area –

Mean altitude –

North exposed surfaces Percentage of area exposed to the North

East exposed surfaces Percentage of area exposed to the East

South exposed surfaces Percentage of area exposed to the South

West exposed surfaces Percentage of area exposed to the West

Shape parameter 1 Area / (distance between catchment center and the most

remote point)2

Shape parameter 2 Length main channel / length of main channel down to the

catchment center

Inclination Percentage of surfaces with inclination \3�

Relief energy Maximum elevation -minimum elevation

Length of main channel –

Network density Length of main channel / area

Slope of main channel –

Landuse Pastures and arable land Percentage area with pastures and arable land

Settlements Percentage area with settlements

Forest Percentage of forested areas

Glaciers Percentage of areas with glaciers

Contributing areas Percentage or areas with a distance of 250 m to the channel

Soil Percentage of soil-covered areas

Soil Hydraulic conductivity, average Based on 100� 100 m2 gridded data

Hydraulic conductivity, skewness Based on 100� 100 m2 gridded data

Net field capacity, standard deviation Based on 100� 100 m2 gridded data

Net field capacity, skewness Based on 100� 100 m2 gridded data

Soil topographic index, standard deviation Based on 100� 100 m2 gridded data

Soil topographic index, skewness Based on 100� 100 m2 gridded data

Hydrogeology

(groundwater)

Percentage area of unconsolidated rock, high

permeability

Mainly well-porous gravel in alluvial valleys

Percentage area of unconsolidated rock, intermediate

permeability

Porous gravel, sandy gravel, medium-to coarse-grained debris

Percentage area of unconsolidated rock, low

permeability

Silty gravel, fine-to medium-grained debris, moraines

Percentage area of unconsolidated rock, impermeable Clay, silt, fine sand, loamy moraines

Percentage area of hard rock, generic Fractured-porous rock

Percentage area of hard rock, impermeable Marl, mudstone, shale, gneiss, well-cemented sandstone

Percentage area of karstic rock Carbonate and sulfate rock

Hydraulic topographic index, standard deviation Based on 100� 100 m2 gridded data

Hydraulic topographic index, skewness Based on 100� 100m2 gridded data

Geology (geotechnics) Percentage area of hard rock, permeable Various kinds of hard rock with pores, fissures, or karst

Percentage area of hard rock, variable permeability Marl, sandstone

Percentage area of hard rock, impermeable Marl, shale, clay, argillaceous slate, phyllite

Percentage area of unconsolidated rock, low

permeability

Clayey silts and clay
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models for the regionalization of the entire parameter set

were established on a regional scale and only consider a

subset of these 163 study catchments. The methods tested

to regionalize the ten SDH parameters are listed and shortly

described below. They were implemented in R (R Core

Team 2015) and technical details are provided in Table 3.

We refer the reader to Harrell (2015) for a more detailed

descriptions of linear regression methods, to Harrell (2015)

or James et al. (2013) for a description of nonlinear

regression methods, and to Webster and Oliver (2007) for

more details on spatial methods.

3.2 Methods based on the relation
between catchment characteristics
and model parameters

A relationship was established between catchment char-

acteristics and model parameters from the information

available in gauged catchments. This relationship was

assumed to be equally valid in ungauged catchments

within the study region, which allowed for the estimation

of model parameters from catchment characteristics. The

models belonging to this class are linear and nonlinear

regression models. Linear regression models only con-

sider the linear relationship between catchment charac-

teristics and model parameters. In contrast, nonlinear

regression models such as regression trees also take into

account nonlinear relationships between catchment char-

acteristics and model parameters (Ji et al. 2013; Take-

zawa 2012).

3.2.1 Linear regression methods

We used ten multiple regression equations to express each

of the SDH parameters (response variable) as a function

of some catchment characteristics (explanatory variables).

The regression parameters were estimated from the

computed SDH parameters and the computed catchment

characteristics using a least squares approach (Rosbjerg

et al. 2013). As mentioned in Sect. 2, some of the SDH

parameters had to be strictly positive. However, regres-

sion methods do typically not restrict prediction to strictly

positive values. We followed two strategies to guarantee

strictly positive values when predicting the location and

scale parameters of the GPD and the GEV distribution.

We worked on the log-transformed data if this guaranteed

positive predictions. If not, we fitted a Gamma general-

ized linear model with a log-link, which does not give

rise to a negative estimated response (Myers et al. 2010).

For simplicity, we will refer to the linear regression

models and to the Gamma generalized linear model as

linear models.

Full regression First, we fitted a multiple regression

model to the data which used all the 54 available catchment

characteristics as explanatory variables. The full regression

model had the disadvantage that multicollinearity was

present in the set of explanatory variables, i.e., the

explanatory variables were highly correlated with each

other (James et al. 2013). To alleviate the problem of

multicollinearity, we tested several methods that choose a

subset of explanatory variables to be included in the

regression model (see e.g., Harrell 2015; James et al.

Table 2 Catchment characteristics available for regionalization and their description

Class Catchment characteristic Description

Percentage area of unconsolidated rock, variable permeability Sands and silts, debris

Percentage area of unconsolidated rock, high permeability Gravel and sands

Climate Hourly precipitation, average Based on precipitation values � 0.1 mm/h

Hourly precipitation, coefficient of variation Based on precipitation values � 0.1 mm/h

Hourly precipitation, seasonality Average day of the year of occurrence

Hourly precipitation, variability of seasonality Variability of the day of the year

Maximum precipitation intensity during 1 h Return period 2.33 years

Maximum precipitation intensity during 24 h Return period 2.33 years

Maximum precipitation intensity during 24 h Average date of occurrence

Maximum precipitation intensity –

Maximum precipitation intensity / Maximum precipitation intensity during 1

h

–

Average annual vapor pressure –

Average annual sunshine duration Percentage of maximum possible sunshine

duration

Population Population density Number of inhabitants per area

Total 54
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2013). These can be summarized as subset selection,

dimension reduction, and shrinkage techniques.

Subset selection Subset selection involved the identifi-

cation of a subset of the 54 catchment characteristics that

were most strongly related to the SDH parameters. A

model was then fitted using this reduced set of variables.

We applied stepwise forward and backward selection to

Fig. 4 Overview of the methods tested to regionalize the ten SDH

parameters on a global or regional scale. The methods were grouped

into benchmark (black), regression (blue), and spatial (red) models,

plus models based on the formation of regions using catchment

characteristics (brown and green)

Table 3 Technical details for the methods used in this study

Method category Method R package Functions

Linear regression Full stats (R Core Team 2015) lm and glm

Subset selection stats (R Core Team 2015) step

Dimension reduction pls (Mevik and Wehrens 2007) pcr and plsr

Shrinkage glmnet (Friedman et al. 2010) glmnet

Multivariate stats (R Core Team 2015) lm

Nonlinear regression Bagging ipred (Peters et al. 2015) bagging

Random forest randomForest (Liaw and Wiener 2002) randomForest

Boosting gbm (Ridgeway 2007) gbm

Spatial approaches Mean parameter FNN (Beygelzimer et al. 2013) get.knn

Kriging gstat (Pebesma 2004) fit.variogram and krige

Topological kriging rtop (Skoien et al. 2014) rtopFitVariogram and rtopKrige
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find a regression model with a reduced set of explanatory

variables (Harrell 2015).

Dimension reduction We applied principal components

regression (PCR) and partial-least-squares (PLS) regres-

sion (Harrell 2015; James et al. 2013; Kiers and Smilde

2007) to explain the SDH parameters by a reduced number

of variables. Both methods projected the 54 explanatory

variables into a smaller m-dimensional subspace. The

regression models were then fitted using the new m ex-

planatory variables. In PCR, the regression is a linear

combination of all the original explanatory variables. PLS

regression is an alternative to PCR which uses not only the

explanatory variables to form linear combinations but also

the SDH parameters.

Shrinkage We used ridge regression (Le Cessie and van

Houwelingen 1992) and lasso (Tibshirani 1997) to fit a

model using all p explanatory variables. However, the

estimated regression parameters were shrunk towards zero

relative to their least squares estimates. While ridge

regression included all p explanatory variables in the final

model, the lasso shrank some of the model parameter

estimates exactly to zero and therefore performed variable

selection (Harrell 2015; James et al. 2013).

Multivariate regression The methods presented above

fitted one regression equation per SDH parameter and

neglected that some of the SDH parameters are correlated.

Multivariate regression (or regression with multiple equa-

tions), as opposed to multiple regression, considers that

some of the SDH parameters are correlated (Tung et al.

1997). We used generalized least squares (GLS) estima-

tion, which required a covariance matrix for the errors,

instead of ordinary least squares (OLS) (Weisberg 2005) to

estimate the regression parameters of the multivariate

regression system. The least squares residuals of the indi-

vidual regression equations for each SDH parameter gave

an idea of the error covariances and were used to estimate

the elements of the error covariance matrix (Greene 2002).

However, OLS and GLS were identical when the SDH

parameters considered were uncorrelated and when all the

regression equations had identical explanatory variables

(Greene 2002). We therefore defined an individual subset

of catchment characteristics chosen by stepwise forward

selection for each SDH parameter to be used by the mul-

tivariate regression and only applied multivariate regres-

sion to those SDH parameters that were highly correlated

(GEV location and scale and GPD location and scale) (see

Kendall’s correlation coefficients in Fig. 3). The regression

parameters of the multivariate regression system were

estimated using GLS. The GLS is the method to be used to

fulfill all the theoretical assumptions, however, the pre-

diction outcome is not significantly different from applying

OLS on equation-by-equation regression because both OLS

and GLS estimates are unbiased.

3.2.2 Nonlinear regression methods

We applied three types of tree-based techniques which

combine a large number of trees into an ensemble (Strobl

et al. 2009): bagging, random forest, and boosting.

Bagging We applied bootstrap aggregation to reduce the

variance and increase the prediction accuracy of regression

trees (Liaw and Wiener 2002; Breiman 1996). The pre-

dictions were obtained by averaging the predictions

obtained by several prediction models built based on

bootstrapped samples.

Random forest We used random forest to decorrelate the

regression trees built on several bootstrapped samples.

Each split only considered a subset of the explanatory

variables.

Boosting Boosted regression trees were used to build

successive trees in a stagewise procedure where new trees

depended on previous trees. Only a proportion of the

observations was selected at each step to fit the tree model

to prevent from overfitting.

In addition to the nonlinear approaches described above,

other nonlinear methods were proposed in the literature to

estimate hydrological parameters or flood quantiles for

ungauged catchments. For example, Abrahart and See

(2007), Aziz et al. (2015, 2016), Dawson et al. (2006), and

Shu and Ouarda (2008) applied artificial neural networks

(ANNs) that can be trained to represent the relationship

between a range of catchment descriptors and associated

hydrological parameters. However, ANNs do not allow for

the determination of the role of individual variables, which

reduces the confidence in model predictions (Dawson et al.

2006). They were therefore excluded from this analysis.

3.3 Approaches based on spatial proximity

This second class of methods is based on the assumption

that the model parameters are more similar for catchments

closer in a geographical or physiographical space than for

catchments further apart (Rosbjerg et al. 2013). Nearly all

spatial prediction methods, including the simpler forms of

kriging, can be seen as weighted averages of data. Methods

that are frequently used to interpolate data and use a

weighted average of data from measured locations are

nearest neighbor(s), inverse distance weighting, and krig-

ing (Webster and Oliver 2007).

3.3.1 Mean parameter

Nearest neighbors We determined the five nearest neigh-

bors for each station in terms of the Euclidean distance and

computed the mean of the different SDH parameters which

then served as the predictions for the station under con-

sideration (Parajka et al. 2005; Viviroli et al. 2009a). We
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chose five neighbors as a compromise between including

more information and defining non-similar catchments as

nearest neighbors.

Inverse distance weighting of nearest neighbors We

used again the five nearest neighbors of a station and gave

their observations weights according to the inverse Eucli-

dean distance from the prediction point (Hechenbichler and

Schliep 2004; Lu and Wong 2008; Samuel et al. 2011).

The predicted values were a weighted average of the

observations at the neighboring stations.

3.3.2 Kriging

In addition to the classical interpolation methods described

above, we applied several kriging approaches, which con-

sider the value observed at one point as a realisation of a

spatial process (Matheron 1971). Kriging is based on the

concept that values at locations near to one another are

similar, whereas those at more distant locations are less

correlated. This dependence structure is typically charac-

terized by a variogram. In order to perform kriging, several

steps are necessary: first, the empirical variogram is com-

puted, second a theoretical model is fitted to this empirical

variogram, then, the fitted variogram model is used to

calculate the kriging weights by solving a system of

equations, and finally, interpolation is carried out. The

kriging methods tested differ in the assumptions about the

mean structure of the model. We estimated the variograms

based on the spatial information and used them for kriging.

However, variograms could theoretically also be based on a

physiographical space constructed using physiographical

and meteorological characteristics of gauging stations and

multivariate analysis techniques, such as canonical corre-

lation analysis (CCA) or principal components analysis

(PCA) (Archfield et al. 2013; Castiglioni et al. 2011;

Chokmani and Ouarda 2004; Hundecha et al. 2008; Ouarda

et al. 2000). In our case, many principal components or

canonical variables were needed to explain an accept-

able proportion of the total variance.

Ordinary kriging Ordinary kriging assumes that the

mean of the model system is unknown but constant and that

the data is symmetrically distributed. We computed the

empirical variogram for all SDH parameters among which

not all showed a structure (i.e., PDF location and scale

showed no structure). A classical exponential variogram

was fitted to the empirical variogram.

Trans-Gaussian kriging A symmetric distribution as

assumed for ordinary kriging did not describe the behavior

of all the data analyzed. One of the simplest ways to extend

the symmetric model is to assume that the model holds

after applying a transformation of the original data. We did

trans-Gaussian kriging on the log-transformed data (Diggle

and Ribeiro Jr 2007; Yamamoto 2007) for those parameters

that were not normally and therefore symmetrically dis-

tributed (see Fig. 3). The kriging estimates obtained by

lognormal kriging had to be back transformed to the

original measurement scale by taking the exponential of the

kriging estimates plus correcting the bias (Yamamoto

2007). The log-transformation was only possible for posi-

tive values (Osborne 2010).

Universal kriging We used universal kriging to model

the spatial trend using catchment size as the explanatory

variable (Bardossy and Lehmann 1997; Merz and Blöschl

2004). The variogram was computed from the residuals

obtained after having removed the linear trend due to

catchment size. We also tested elevation and a combination

of five catchment characteristics found to be important in

multiple regression as explanatory variables. However,

these options led to a clearly worse performance than when

using catchment area and were therefore not followed up

on.

Topological kriging We finally used topological kriging

(Skoien et al. 2006) to estimate the SDH parameters in

ungauged catchments. Unlike ordinary kriging, it takes

both the area and the nested nature of catchments into

account (Gottschalk 1993; Gottschalk et al. 2011; Sauquet

2006).

3.4 Methods based on homogeneous regions

This third class of methods assumes that hydrologically

homogeneous regions can be found based on catchment

characteristics (Burn and Boorman 1992; Prinzio et al.

2011). We formed homogeneous regions in a physio-

graphical space defined by catchment characteristics

(Castiglioni et al. 2011; Chokmani and Ouarda 2004). In a

first step, we divided the space into fixed regions (GRE-

HYS 1996). In a second step, we formed regions of influ-

ence (Burn 1990) for each catchment separately.

3.4.1 Regional mean models

We formed three regions of approximately equal size (50

catchments) that still contained enough catchments to fit a

region specific regression model (Burn and Boorman 1992;

Laaha et al. 2014; Ouarda et al. 2001). The regions were

formed using two catchment characteristics that are con-

sidered to be hydrologically meaningful: catchment size

and mean elevation. The three size zones were defined as

catchments smaller than 30 km2, catchments with sizes

between 30 and 90 km2, and catchments larger than 90

km2. The three elevation zones defined were catchments

lower than 600 m.a.s.l., catchments between 600 and 850

m.a.s.l., and catchments higher than 850 m.a.s.l.. These

regions were used to compute the arithmetic mean (Razavi

and Coulibaly 2013) and to fit regression models on the
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regional scale (Nathan and McMahon 1990; Salinas et al.

2013; Sauquet and Catalogne 2011). We focused on the

regional mean model since our preliminary analysis

showed that regression models did not perform better on a

regional than on a global scale as supported by Kjeldsen

and Jones (2010) but in contrast to findings by Salinas et al.

(2013) and Sauquet and Catalogne (2011). The minimum

sample size to compute the arithmetic mean is much

smaller than the sample size required for fitting a reliable

regression model. Therefore, the number of regions could

be increased. We used k-means clustering (Halkidi et al.

2001) to form homogeneous regions in terms of catchment

characteristics (Burn 1989; Burn and Boorman 1992),

which were standardized by their standard deviation over

all catchments (Burn and Boorman 1993). The predictive

performance of the model increased with an increase in the

number of regions. However, we divided the catchments

into only ten regions in order to not reduce the number of

catchments per group too much, which might result in an

overfitting of the model. The arithmetic mean was also

computed for the regions obtained by 10-means clustering.

3.4.2 Transfer from similar catchments

We first formed homogeneous regions and then transferred

the parameter sets using different techniques for the

transfer of the entire parameter set from similar catchments

to the catchment under consideration.

Formation of homogeneous regions The entire set of

parameters was regionalized based on the formation of

regions, where each basin has its own region (Acreman and

Sinclair 1986; Burn 1990) consisting of similar catchments.

Similarity was defined by the Euclidean distance in the

catchment characteristics space (Burn 1990; Burn and

Boorman 1992; Rasmussen et al. 1993) where the catch-

ment characteristics were normalized by their standard

deviation across the whole catchment set (Oudin et al.

2010). Flood statistics were excluded from the analysis

because they are not available for ungauged catchments

(Ilorme and Griffis 2013). The catchment characteristics

used to span the space were obtained using three different

techniques since all methods for determining homogeneous

regions require subjective choices (GREHYS 1996; Ilorme

and Griffis 2013):

1. Hydrological reasoning (Ouarda et al. 2000): Selection

of six catchment characteristics that are supposed to be

hydrologically meaningful: catchment area, mean

catchment elevation, network density, mean annual

rainfall, and X-and Y-coordinates.

2. Best-H: Random set of catchment characteristics

leading to the lowest mean H-statistic, a homogeneity

measure proposed by Hosking and Wallis (1993), for

the regions obtained for the different catchments. This

set consists of the following catchment characteristics:

proportion of south exposed areas in the catchment,

length of the main channel, percentage of area covered

by hard rock, percentage of surfaces with inclination

smaller than three degrees, and maximum 24h-

precipitation.

3. CCA: Set of catchment characteristics obtained by

canonical correlation analysis (CCA) between the

catchment characteristics and the L-moments of peak

discharges and hydrograph volumes (Cavadias et al.

2001; He et al. 2011; Ouarda et al. 2000, 2001). This

set consists of the following catchment characteristics:

average precipitation, maximum precipitation intensity

over a time interval of 1 h, percentage of contributing

areas, network density, percentage of area covered by

hard rock, X-and Y-coordinate, hourly precipitation

variability, percentage of surfaces with inclination

smaller than three degrees, population density, per-

centage of area covered by unconsolidated rock,

percentage of soil covered areas, percentage of sealed

areas, and percentage of agricultural areas.

Based on the distance matrices, the most similar catchments

were identified for each target catchment. We used the five

most similar catchments because this number optimized the

predictive performance over all SDH parameters and has

already been found appropriate in previous studies (Viviroli

et al. 2009a). Still, the homogeneity in terms of Hosking and

Wallis’ H-statistic was not good. Only 26% of the regions

formed could be said to be homogeneous in terms of peak

discharge (looking at its L-moments), which is not surprising

since there is often a lack of correlation between catchment

descriptors andflow-derived characteristics (Ali et al. 2012).

Transfer methods Despite this lacking hydrological

homogeneity, we transferred the SDH parameter set from

the formed regions to the target catchment using the fol-

lowing four strategies:

1. Transfer of the parameter set from the most similar

catchment adjusted by the catchment size (Parajka

et al. 2005; Zhang and Chiew 2009);

2. Transfer of the mean parameter set of the five most

similar catchments adjusted by the catchment size

(Oudin et al. 2008). We chose the five most similar

catchments since this can average out the effect of

choosing a poor donor catchment and most studies use

between five and ten catchments for averaging (Zhang

and Chiew 2009). Averaging the parameters resulted in

much more plausible results than averaging the output

of the five models;

3. Transfer of the median parameter set of the five most

similar catchments adjusted by the catchment size. The

median set is expected to reduce the influence of a
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catchment having rather different SDH parameters

than the other catchments compared to the mean set;

4. Estimation of a new parameter set based on the pooled

runoff data from the five most similar catchments. Data

pooling increases the size of the data set (Ilorme and

Griffis 2013) which can be especially advantageous

when estimating the parameters of the distribution of

extremes (Castellarin et al. 2001; Gaál et al. 2008).

3.5 Benchmark model

To compare the predictive performances of the regional-

ization methods tested, we used the arithmetic mean of the

individual SDH parameters as a simple benchmark model

(Parajka et al. 2005; Razavi and Coulibaly 2013; Stein-

schneider et al. 2014).

3.6 Model validation

We used k-fold cross validation to validate the performance

of the regionalization methods tested. The data was divided

into 10 parts, also called folds, of equal size. The model

parameters were estimated based on 10 minus 1 folds, and

the model was validated on the remaining fold. This pro-

cedure was repeated for each fold in turn (Hastie et al.

2008; James et al. 2013).

To validate the methods, we compared on the one hand

the regionalized or predicted SDH parameters to the SDH

parameters estimated based on runoff data. On the other

hand, we compared the hydrograph resulting from the

regionalized SDH parameters to the SDH estimated based

on runoff observations. Complementing the validation of

the hydrograph characteristics with a validation of the

single parameters allows for a better understanding of why

a given approach outperforms the other (Steinschneider

et al. 2014). The performance of the different regional-

ization methods in terms of the individual SDH parameters

can be assessed using different measures such as the bias

(deviation in the mean), the mean squared error (EMS), the

root mean squared error (ERMS), or the (absolute) relative

error (Chebana and Ouarda 2009; Ouarda et al. 2006;

Salinas et al. 2013; Shu and Ouarda 2008). Here, we used

the absolute relative error (EAR) and the mean absolute

relative error (EMAR) because they allow us to compare the

performance of the different regionalization methods to the

performance of the benchmark model. Further, they allow a

comparison of how well the different SDH parameters can

be predicted. EAR and EMAR (Sauquet 2006) are given by

EAR ¼
Xic � Xir

Xic
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where Xic is the computed SDH parameter or characteristic,

Xir is the regionalized parameter or SDH characteristic, and

n is the number of catchments in the data set.

When looking at the predictive performance in terms of

the whole hydrograph, one single goodness-of-fit criterion

is usually not sufficient to assess the fit between a con-

structed and a regionalized hydrograph (Green and

Stephenson 1986). Therefore, Green and Stephenson

(1986) recommended to compute the relative error of

individual hydrograph characteristics such as peak dis-

charge (Qp) and volume (V) between the regionalized and

the constructed hydrograph. In addition, we also assessed

the error of the hydrograph shape via the relative error of

the time to peak (tp) (Tung et al. 1997) and the time

between the peak and where the recession reaches half of

the peak discharge (tp05). We will refer to tp05 as half-

recession time (see Fig. 5 for an illustration of the different

hydrograph characteristics).

3.7 Importance of catchment characteristics

Several of the tested regionalization methods allow us to

identify catchment characteristics that were important to

explain the SDH parameters via a variance importance

plot. Namely, these approaches are the subset selection

techniques (forward and backward), the shrinkage tech-

nique lasso, the dimension reduction techniques principal

components-and partial-least squares regression, bagged

regression trees, random forest, and boosted regression

trees. We identified the five most important catchment

characteristics in each of these approaches. Catchment

characteristics that are important in at least four out of the

eight approaches were said to be important for the pre-

diction of the SDH parameter under consideration.

4 Results

4.1 Validation of the individual SDH parameters

Figure 6 shows the EMAR of the ten SDH parameters for the

regionalization methods that were used to regionalize the

individual parameters comprising the benchmark model,

linear regression models, nonlinear regression models,

spatial models, and regional mean models (see Fig. 4). Our

results show that we can find a better model than the

benchmark model for the regionalization of most SDH

parameters (IBF; GPD location, scale, and shape; GEV

location, scale, and shape; and h). However, this is not
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possible for those SDH parameters describing the hydro-

graph shape (PDF location and scale). This implies that

working with a simple mean value for the PDF parameters

is sufficient and working with a more complex model does

not lead to improved results. In general, nonlinear regres-

sion techniques (especially boosting) perform slightly

better than linear regression techniques. For some

parameters (IBF, GPD shape, and h), spatial methods per-

fom better than linear regression methods. For others (GPD

location and scale and GEV location and scale) linear

regression methods perform better than spatial methods

(except for universal kriging where a linear component is

included in the model). The regional mean models gener-

ally perform better than the global mean model (bench-

mark). EMAR varies significantly across SDH parameters.

On the one hand, the parameter IBF and the two PDF

parameters show low EMAR (i.e. good performance) over

all regionalization methods including the benchmark

model. On the other hand, the SDH parameters related to

the magnitude of the event (GEV location, scale, and shape

and GPD location, scale, and shape) show relatively high

EMAR (i.e. bad performance) for some methods.

4.2 Validation of the whole design hydrograph

The predictive performance of the whole hydrograph (for an

example see Fig. 7) is displayed in Fig. 8. It is represented by

Fig. 6 Predictive performance of the different regionalization methods (black: benchmark, blue: linear regression, light blue: nonlinear

regression, red: spatial, brown: regional mean models) in terms of the mean absolute relative error (EMAR) for the ten SDH parameters

Fig. 5 Illustration of the hydrograph characteristics used for the

validation of the regionalization methods: peak discharge (Qp),

hydrograph volume (V), time to peak (tp), and half-recession time

(tp05)
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boxplots of the EAR for the different catchments for the four

different hydrograph characteristics Qp, V, tp, and tp05 (see

Fig. 5). The predictive performance for Qp (Fig. 8a) and

V (Fig. 8b) is significantly better for linear and nonlinear

regression techniques and when transferring the entire

parameter set based on the formation of homogeneous

regions (using the strategy of hydrological reasoning) than

for the benchmark model. However, when looking at the

hydrograph shape represented by the time to peak and the

half-recession time (Figs. 8c and d), no model can be found

that better regionalizes the shape than the benchmark model.

The EAR are generally higher for the magnitude of the event

(Qp andV) than for the shape of the event (tp, tp05). TheEAR of

the temporal hydrograph characteristics tp and tp05 are not

correlated to the EAR of the magnitude of the event charac-

terized by Qp and V. This means that a model badly pre-

dicting the shape of the event does not necessarily badly

predict the magnitude of the event and vice versa. However,

the performance of the two characteristicsQp andV is closely

linked (Kendall’s correlation coefficient [ 0:6).

4.2.1 Regionalization based on the formation

of homogeneous regions

The predictive performance of the regionalization methods

based on the formation of homogeneous regions in terms of the

four hydrograph characteristics Qp, V, tp, and tp05 can not be

improved by applying a different distance metric than the one

based onhydrological reasoning (Fig. 9). TheEARwas neither

improved by the formation of homogeneous regions using

catchment characteristics identified by a CCA analysis nor

using catchment characteristics found to be related to hydro-

logical characteristics via a sampling experiment (best-H).

4.3 Importance of catchment characteristics

The catchment characteristics which were important for the

prediction of the ten SDH parameters in ungauged catch-

ments are listed in Table 4. Catchment characteristics

related to geology and hydrogeology were important for

the prediction of the IBF. Geology or more specifically the

presence or non-presence of karstic rock was also impor-

tant for the prediction of the SDH parameters related to the

shape of the hydrograph (PDF location and PDF scale). On

the contrary, catchment area was important for the pre-

diction of the SDH parameters related to the magnitude of

the event (GPD location, GPD scale, GEV location, and

GEV scale). Exposition was meaningful for the prediction

of the shape parameters of the marginal distributions of Qp

and V and the prediction of the dependence parameter h.

5 Discussion

5.1 Comparison of regionalization methods

The results show that it is possible to regionalize the syn-

thetic design hydrograph (SDH) parameters representing

(a) (b) (c)

Fig. 7 Regionalized SDHs for three example catchments of different

catchment size: Langete-Huttwil (60 km2), Mentue-Yvonand

(105 km2), and Birs-Münchenstein (911 km2) for different regional-

ization techniques: Benchmark model (black), Linear regression

models (blue), nonlinear regression models (light blue), spatial

methods (red), regional mean models (brown), formation of homo-

geneous regions (green). The hydrograph constructed based on

observed runoff data is displayed in grey on black
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the magnitude of the event in terms of peak discharge and

hydrograph volume as well as the baseflow component.

However, the results also indicate that the hydrograph

shape represented by the two parameters of the PDF is

difficult to regionalize. The two components of the

hydrograph, magnitude and shape, are addressed in turn.

Hydrograph magnitude Nonlinear regression methods

showed a good performance with respect to the SDH

parameters related to the magnitude of the flood hydro-

graph and also performed better than other methods look-

ing at the four hydrograph characteristics (Qp, V, tp, and

tp05). Boosting performed best among the nonlinear

regression techniques. In contrast to bagging and random

forest, boosting not only reduces variance by combining

several trees but also reduces bias thanks to the stagewise

procedure in which successive trees use information from

previous trees. Regionalization using boosted regression

trees resulted in a median relative error of 50% over the

different catchments for the peak discharges and 55% for

hydrograph volumes computed for a return period of 100

years. This is comparable to studies by Petroselli and

Grimaldi (2015) and Viviroli et al. (2009a).

Some of the linear regression methods performed as

well as the nonlinear methods for those SDH parameters

that are linked to the marginal distributions of peak dis-

charges and hydrograph volumes. However, linear

(a) (b)

(c) (d)

Fig. 8 Predictive performance of the different regionalization meth-

ods tested for the different hydrograph characteristics a peak

discharge (Qp), b hydrograph volume (V), c time to peak (tp), and

d half-recession time (tp05) provided as boxplots of the absolute

relative error (EAR) for the 163 catchments. The number of outliers

(defined as those observations lying outside the quartile � 1.5 times

the interquartile range) is indicated by the numbers plotted above the

boxplots
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(a) (b)

(c) (d)

Fig. 9 Predictive performance of the regionalization methods based

on the formation of homogeneous regions in terms of boxplots of the

absolute relative error (EAR) for the hydrograph characteristics a peak

discharge, b hydrograph volume, c time to peak and d half-recession

time of the hydrograph. The strategies used to form homogeneous

regions are: hydrological reasoning (green), CCA (blue), and best-

H (red). The methods used to transfer the parameter set to the target

catchment from its five most similar catchments are: (1) Transfer

from most similar catchment, (2) Transfer of mean parameter set from

five most similar catchments, (3) Transfer of median parameter set

from five most similar catchments, and (4) Estimation of the

parameter set based on the pooled data from the five most similar

catchments

Table 4 Catchment characteristics important for the prediction of the ten SDH parameters in ungauged catchments

Parameters related to

hydrograph

SDH

parameter

Important catchment characteristics

Magnitude IBF Geology hard rock impermeable, X-coordinate, hydrogeology unconsolidated rock intermediate

permeability

GPD

location

Catchment area, hydraulic topographic index standard deviation, length of main channel, relief energy

GPD scale Catchment area, maximum precipitation intensity over 24 h, hydraulic topographic index standard

deviation

GPD shape West exposed surfaces, geology hard rock -pores, fissures, or karst, sunshine duration

GEV

location

Catchment area, hydraulic topographic index standard deviation, hydraulic conductivity skewness, relief

energy

GEV scale Catchment area, hydraulic topographic index standard deviation, relief energy

GEV

shape

North exposed surfaces, maximum precipitation intensity, relief energy

h South exposed surfaces, X-coordinate, hydrogeology hard rock impermeable, karstic rock, maximum

precipitation during 24 h, average day of year

Shape PDF

location

Hydraulic topographic index skewness, forest, karstic rock

PDF scale Karstic rock, soil topographic index skewness, shape parameter 2
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regression methods performed worse than nonlinear

methods for the dependence between peak discharges and

hydrograph volumes and the baseflow index. Yet, multiple

regression methods have been found to be suitable for

baseflow index regionalization by Haberlandt et al. (2001).

Generally, some of the linear regression methods based on

a reduction of the potential explanatory variables perform

only slightly better than the full regression model. This

might be related to the problem of finding appropriate

explanatory variables.

Spatial methods could not compete with the regression

methods when regionalizing the parameters of the marginal

distributions of peak discharges and hydrograph volumes.

The rather poor performance of kriging methods might be

explained by the fact that the range of the empirical vari-

ogram was less than the mean distance between stations.

However, they performed similarly well when regionaliz-

ing the dependence parameter and the baseflow index. The

finding that regression-based methods generally perform

better than spatial methods are in line with the recom-

mendations made by the Centre for Eology and Hydrology

(1999) but differ from observations made by Parajka et al.

(2013), who analyzed 34 regionalization studies and con-

cluded that regression-based methods are usually outper-

formed by spatial methods. He et al. (2011) found that

spatial proximity was not helpful in all regionalization

studies they reviewed because catchment characteristics

can change abruptly in space. This is the case in Switzer-

land where even spatially close catchments can have quite

different catchment characteristics. Spatial methods might

perform better in regions with a high density of gauging

stations (Merz 2006). In regions with fewer stations, such

as in the alpine region, the uncertainty in the empirical

variogram is expected to be larger (Blöschl 2006; Oudin

et al. 2008). Among the spatial methods, universal kriging

using catchment area as an explanatory variable clearly

performed best when predicting the event magnitude. This

is not surprising since we have seen that catchment area is

one of the most important explanatory variables in the data

set. Removing the scale effect of different catchment sizes

is therefore very important. The other spatial methods did

not differ significantly in their predictive performance. We

did not find that top-kriging outperformed ordinary kriging

as was found by Skoien et al. (2006). This is likely because

spatial proximity does not necessarily entail similarity in

hydrological behavior (Hrachowitz et al. 2013). In addi-

tion, the poor performance of top-kriging might also be

related to the fact that not all the SDH parameters were

well suited for the application of the top-kriging approach.

The approach was developed for variables that accumulate

along the stream network (Skoien et al. 2006), which is not

necessarily the case for parameters of a statistical

distribution.

The regional mean models led to a slight improvement

compared to the global mean model (benchmark), which

was also found by Sauquet and Catalogne (2011), but did

not perform as well as regression methods for the region-

alization of the flood magnitude. The methods transferring

the entire parameter set from similar catchments to the

target catchments led to good results in the prediction of

peak discharges and hydrograph volumes. However, it was

difficult to define regions that were homogeneous in terms

of both catchment and hydrologic characteristics (L-mo-

ments of peak discharges) (Shu and Ouarda 2008) using all

of the three strategies applied.

Hydrograph shape The two SDH parameters related to

the hydrograph shape (PDF location and PDF scale) could

not be satisfactorily regionalized. This means that no

regionalization method could be found that outperformed

the benchmark model. This finding was supported by the

prediction error for the two hydrograph characteristics time

to peak and half-recession time. This is in line with find-

ings by Cipriani et al. (2012) who found that flood dura-

tions were more difficult to regionalize than flood

quantiles. The reason for the poor performance in hydro-

graph shape regionalization might be that a part of the

variability in flood shapes within a catchment was reduced

when defining the representative normalized hydrograph

(RNH) via the median hydrograph. As a consequence,

RNHs across catchments were quite similar. Therefore, it is

sufficient to work with one mean hydrograph shape across

all catchments. Eventually, the nonparametric ‘‘distance-

based’’ approach proposed by Ganora et al. (2009) for the

regionalization of flow duration curves could be adjusted

and successfully used for the regionalization of hydrograph

shapes.

While the errors of the hydrograph volumes and peak

discharges were correlated, errors in the hydrograph shape

did not imply errors in the magnitude of the event. This

means that even if an accurate prediction of the shape is not

possible, the magnitude of the event can still be predicted

accurately.

5.2 Best regionalization model

Hydrograph magnitudes were best regionalized using the

nonlinear regression technique boosted regression trees

while the mean model (benchmark) is the best model to

regionalize the hydrograph shape. This difference shows

that no universal regionalization method can be found

(Razavi and Coulibaly 2013) for the regionalization of

SDHs. One could take this into account by combining the

two regionalization methods. Boosted regression trees

could be applied to regionalize the SDH parameters related

to the hydrograph magnitude while the mean model could

be used for the regionalization of the SDH parameters
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related to the hydrograph shape. Such a combined approach

might lead to more accurate flood estimates in ungauged

catchments than the use of one single method.

5.3 Important catchment characteristics
for prediction

Different variables were important in fitting the different

types of linear and nonlinear regression models for the ten

SDH parameters. We again look first at the SDH parame-

ters related to the hydrograph magnitude and then at the

two SDH parameters related to the hydrograph shape.

Hydrograph magnitude

• Parameter baseflow: We found that geological and

hydrogeological features were important for predicting

the baseflow index, which is one of the most important

low flow indices. Geological features have also been

found to be important for the prediction of the baseflow

index in other regions such as the Mediterranean

(Longobardi and Villani 2008).

• Parameters marginal distributions: Similar catchment

characteristics were important for the prediction of the

location and scale parameters of the marginal distribu-

tions of peak discharges and hydrograph volumes.

Namely, these were: catchment area, length of the main

channel, maximum precipitation intensity, relief

energy, and a parameter related to the topographic

hydraulic index. Similar catchment characteristics were

also found to be important in the prediction of flood

quantiles by Ahn and Palmer (2016), Haddad and

Rahman (2012) and Rahman et al. (2017). This is not

surprising, because the magnitude of a flood is expected

to increase with catchment size and the length of the

main channel.

• Parameter dependence: Location in space and the

exposition of surfaces was important for the prediction

of the SDH parameter modeling the dependence

between peak discharges and hydrograph volumes.

Hydrograph shape We found that the presence or absence

of karstic rock is important for the prediction of the SDH

parameters characterizing the hydrograph shape. However,

no suitable regionalization method can be found for the

SDH parameters related to the hydrograph shape, which

means that it is a very weak explanatory variable.

5.4 Limitations

The regionalization of SDH parameters to ungauged

catchments is hampered by three main factors: the lack of

suitable catchment characteristics, the presence of uncer-

tainties in both the computation of SDHs based on

observed runoff and their regionalization, and by the fact

that one hydrograph shape within a catchment is not rep-

resentative of hydrograph shape variability.

Lack of suitable catchment characteristics The nonlin-

ear regression methods take into account the fact that

hydrological relationships are unlikely to be linear in nat-

ure (Aziz et al. 2015; Parajka et al. 2005) but they are

unable to uncover underlying physical laws (He et al.

2011) like all regression based analyses. In addition, they

cannot overcome the problem that the available catchment

characteristics do not sufficiently explain the hydrological

behavior and the flood generating processes of a catchment

(Ali et al. 2012; Salinas et al. 2013). We need catchment

characteristics that better represent the hydrological

behavior of a catchment and an improved understanding of

physical processes in a catchment to make a further step

towards better prediction (He et al. 2011; Merz and Blöschl

2003; Oudin et al. 2010). However, the choice of relevant

catchment characteristics is likely to be region and/or

context dependent (Ali et al. 2012).

Uncertainties The quality of the regionalized values

depends on two factors (Merz 2006): first, on the uncer-

tainty of SDH estimates for gauged catchments; second, on

the uncertainty inherent in the regionalization of those

parameters. The uncertainty of the SDH parameters in the

gauged catchments results from the length of the obser-

vation record, different model choices, and parameter

estimation during the SDH construction process. The

regionalization uncertainty can be considerable (Petroselli

and Grimaldi 2015) and is among other sources of uncer-

tainty related to the choice of a particular regionalization

model out of a selection of coherent, sensible approaches.

This source of uncertainty can be quantified thanks to this

comprehensive comparison of regionalization methods. As

an ensemble, the hydrographs obtained by the different

regionalization methods give an idea of the variability

introduced due to the choice of a regionalization model

(McIntyre et al. 2005). For a more detailed analysis of both

SDH construction and regionalization uncertainty, the

reader is referred to the simulation study by Brunner et al.

(2017a).

Misrepresentation of hydrograph shape variability

Representing the hydrograph shape by just one catchment

specific shape and regionalizing it with a mean model

neglects the variability in flood shapes within a catchment.

The hydrograph shape is only partly catchment specific and

can differ significantly between different flood types, such

as long-rain floods, short-rain floods, flash floods, or rain-

on-snow floods (Sikorska et al. 2015).

5.5 Perspectives

The limitations mentioned above could be addressed as

follows:
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Identification of suitable catchment characteristics A

better understanding of the influence of catchment char-

acteristics on the flood response of a catchment might help

to find suitable catchment characteristics for the regional-

ization of SDHs. However, the flood response is not only

dependent on catchment characteristics but also on the

particular weather pattern and antecedent wetness condi-

tions that trigger the event. Nied et al. (2014) found that

flood favoring hydro-meteorological patterns vary between

seasons. They therefore claimed that flood frequency

analysis should try to describe flood occurrence in depen-

dence of hydro-meteorological patterns.

Uncertainty assessment To overcome the uncertainty

related to the choice of the regionalization method, a

combination of several methods as suggested by Merz

(2006) might be appropriate. A combination of different

methods, tested in this study, provides information on the

variability of the design flood estimated for an ungauged

catchment and could reduce the uncertainty related to a

single estimate (Deutshe Vereinigung für Wasserwirtschaft

Abwasser und Abfall 2012). Still, the uncertainty coming

from the regionalization is not the only uncertainty source

to be considered. The total uncertainty of an SDH in an

ungauged catchment is also affected by the uncertainty of

the data used for regionalization, i.e., the SDHs constructed

based on observed runoff data.

Better representation of hydrograph shape variability

The variability caused by different flood types could be

accounted for by considering flood-type specific hydro-

graph shapes (Brunner et al. 2017b). These would take into

account the heterogeneity of climatic inputs that make the

prediction of a basin response difficult (Sivapalan 2003).

However, we found that such flood-type specific hydro-

graph shapes are not very useful for regionalization since

identifying groups of catchments with similar flood type

patterns is difficult. We should therefore think about

alternatives for the representation of the hydrograph shape

variability within a catchment. Allowing for the represen-

tation of more than one shape type per catchment might

reduce the uncertainty of the hydrograph shape estimates

and therefore facilitate their regionalization.

6 Conclusions

We tested 24 methods, among them three nonlinear

regression techniques not commonly applied in regional-

ization studies, for the regionalization of synthetic design

hydrographs that provide information on the hydrograph

peak and on the whole hydrograph including hydrograph

volume, time to peak, and half-recession time. The exten-

sive method comparison allowed for the identification of

the most suitable regionalization method for synthetic

design hydrographs. We showed that the regionalization of

the design flood magnitude is possible, while the shape of

the design flood remains difficult to regionalize. The

parameters related to the hydrograph magnitude were best

regionalized using the nonlinear approach of boosted

regression trees. On the other hand, the mean model is

sufficient to regionalize the parameters related to the

hydrograph shape. Nonlinear regression methods were

found to result in a better predictive performance than

linear regression methods, spatial methods, and several

other methods based on the formation of homogeneous

regions. Spatial proximity alone was not able to explain the

differences in design floods for different catchments. These

differences can be better explained by different physio-

graphical and climatological catchment characteristics.

Among them, catchment area, length of the main channel,

and relief energy were most important for the regional-

ization of SDH parameters related to the magnitude of the

event. The relationship between these characteristics and

the characteristics of the design flood are not always linear

and are therefore best explained using nonlinear regression

models. The regionalized design floods remain uncertain

despite a comprehensive comparison of different region-

alization methods. Uncertainties come from both the esti-

mation of synthetic design hydrographs in gauged

catchments and the regionalization of these hydrographs to

ungauged catchments. These uncertainties need to be

properly assessed in a simulation study to increase the

reliability of the design hydrograph estimates. We recom-

mend to use tree-based models such as bagging, random

forest, and boosting in future regionalization studies. They

can be especially useful when the relationship between a

hydrological variable and different potential explanatory

variables is complex.
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Table 5 List of stations used in this regionalization study, a summary of their catchment characteristics, and their locally estimated SDH parameters (last ten columns)

ID Station name Area ELEV MELEV DG RL Owner IBF PDF

location

PDF

scale

GPD

location

GPD

scale

GPD

shape

GEV

location

GEV

scale

GEV

shape

h

1 Aabach–Mönchaltorf 46 440 521 0 34 ZH 0.41 - 1.31 0.77 6 8.56 - 0.15 0.57 0.21 0.11 2.07

2 Aach–Salmsach 49 406 480 0 40 FOEN 0.39 - 1.08 0.61 4.7 6.39 - 0.15 0.49 0.17 0.17 1.97

3 Aire–Confignon 57 398 454 0 23 GE 0.3 - 1.1 0.44 6.9 15.89 - 0.25 0.75 0.22 0.15 1.91

4 Allenbach–Adelboden 29 1297 1856 0 40 FOEN 0.36 - 1.32 0.79 3.6 7.42 0.07 0.32 0.19 0.13 1.27

5 Alpbach–Erstfeld 21 1019 2200 28 41 FOEN 0.47 - 1.27 0.7 5.8 5.11 0.06 0.48 0.15 0.03 1.57

6 Alp–Einsiedeln 46 840 1155 0 23 FOEN 0.41 - 1.18 0.56 14.5 35.32 - 0.29 1.19 0.46 0.02 1.25

7 Altbach–Bassersdorf 13 470 549 0 37 ZH 0.42 - 0.77 0.42 1 1.41 - 0.04 0.1 0.04 0.13 1.97

8 Arbogne–Avenches 70 435 597 0 20 VD 0.58 - 0.97 0.5 3.1 3.83 - 0.09 0.24 0.1 0.3 2.24

9 Areuse–Boudry 377 444 1060 0 31 FOEN 0.35 - 0.88 0.64 47.6 17.59 - 0.07 6.07 1.72 0.08 3.41

10 Arnon–Grandson 83 434 942 0 20 VD 0.46 - 0.99 0.55 12.2 5.16 - 0.26 1.22 0.41 0.01 1.99

11 Aubonne–Allaman 91 390 890 0 35 FOEN 0.2 - 0.71 0.67 16.3 8.72 - 0.01 2.36 0.78 0.02 2.53

12 Augstbach–Balsthal 64 485 801 0 20 SO 0.36 - 1.04 0.59 5.4 6.35 0.19 0.58 0.23 0.19 1.71

13 Biber–Biberbrugg 32 825 1009 0 25 FOEN 0.33 - 0.82 0.55 7.7 16.51 - 0.55 0.74 0.3 0.13 1.56

14 Bibere–Kerzers 50 443 540 0 34 FOEN 0.61 - 0.95 0.66 2.5 2.98 0.07 0.16 0.07 0.24 2.13

15 Birse–Court 92 663 925 0 20 BE 0.53 - 1.06 0.64 7.1 8.45 - 0.18 0.55 0.22 0.01 1.65

16 Birse–Moutier 183 519 930 0 40 FOEN 0.58 - 0.91 0.49 12.9 11.05 - 0.13 0.94 0.35 0.14 1.92

17 Birse–Soyhières 590 395 810 0 28 FOEN 0.47 - 1 0.62 43.3 25.55 0.04 4.48 1.37 0.27 2.21

18 Birsig–Binningen 75 281 434 0 35 BL 0.5 - 1.11 0.66 3.6 4.26 0.05 0.34 0.14 0.2 1.77

19 Birs–Münchenstein 911 268 726 0 40 FOEN 0.47 - 1.02 0.56 66.8 31.15 0.02 6.84 1.98 0.2 2.65

20 Breggia–Chiasso 47 255 927 0 40 FOEN 0.23 - 1.08 0.51 12.9 27.95 - 0.11 1.69 0.61 0.03 1.81

21 Brinaz–Yverdon–les-

Bains

14 434 542 0 20 VD 0.45 - 1.06 0.52 1.5 3.55 - 0.12 0.15 0.06 0.11 2.73

22 Broye–Payerne 392 441 710 0 40 FOEN 0.43 - 0.89 0.48 48.3 72.08 - 0.44 4.63 1.63 0.06 1.82

23 Bruggbach–Gipf/Oberfrick 45 356 575 0 35 AG 0.38 - 1.09 0.64 3.6 6.51 - 0.16 0.4 0.16 0.13 1.53

24 Bünz–Muri (Hasli) 15 448 613 0 30 AG 0.9 - 0.74 0.44 1.3 2.33 0.14 0.1 0.04 0.2 1.76

25 Bünz–Othmarsingen 111 390 533 0 37 AG 0.56 - 0.61 0.4 6.8 6.87 0.02 0.49 0.19 0.36 2.12

26 Bünz–Wohlen 53 421 555 0 34 AG 0.53 - 0.92 0.46 3.3 5.45 - 0.07 0.26 0.12 0.4 2.23

27 Buuserbach–Maisprach 11 367 529 0 36 BL 0.65 - 1.03 0.62 0.6 0.64 0.01 0.04 0.02 0.15 1.35

28 Cassarate–Pregassona 74 291 990 0 40 FOEN 0.4 - 0.76 0.62 9.5 15.69 0 1.21 0.53 0.13 1.65

29 Chämtnerbach- Wetzikon 13 560 760 0 29 ZH 0.4 - 0.61 0.29 1.9 3.62 - 0.06 0.17 0.07 0.18 1.81

30 Chandon–Avenches 39 432 571 0 20 VD 0.66 - 0.68 0.36 1.8 3.64 0.07 0.09 0.04 0.54 2.34

31 Chli Schliere–Alpnach 22 453 1370 0 36 FOEN 0.38 - 0.8 0.55 4.4 8.83 0.04 0.37 0.14 0.32 1.94

32 Chrebsbach–St.

Margarethen

14 503 581 0 21 TG 0.39 - 1.3 0.74 1.2 3.88 - 0.21 0.12 0.05 0.21 1.92

33 Diegterbach–Diegten 13 509 746 0 31 BL 0.43 - 1.16 0.67 1.4 2.28 0.06 0.11 0.05 0.23 1.35
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Table 5 (continued)

ID Station name Area ELEV MELEV DG RL Owner IBF PDF

location

PDF

scale

GPD

location

GPD

scale

GPD

shape

GEV

location

GEV

scale

GEV

shape

h

34 Diegterbach–Sissach 33 372 614 0 36 BL 0.32 - 1.15 0.58 2.7 5.11 - 0.13 0.29 0.11 0.29 1.58

35 Dorfbach–Allschwil 11 281 360 0 30 BL 0.59 - 1.16 0.67 0.3 0.48 0.43 0.02 0.01 0.43 2.75

36 Drize–Lancy 23 392 528 0 25 GE 0.32 - 1.33 0.65 2 4.33 - 0.23 0.22 0.08 0.17 2.09

37 Dünnern–Olten 196 400 750 0 36 FOEN 0.37 - 1.15 0.53 16.6 20.52 - 0.11 1.8 0.7 0.16 1.9

38 Eibach–Gelterkinden 27 405 627 0 36 BL 0.23 - 0.99 0.67 2.4 2.78 0.12 0.3 0.11 0.17 1.66

39 Eibach–Zeglingen 13 517 725 0 30 BL 0.35 - 1.1 0.68 1.2 1.51 0.21 0.13 0.05 0.13 1.55

40 Emme–Eggiwil 124 745 1189 0 39 FOEN 0.29 - 0.96 0.49 27.1 44.22 - 0.21 2.68 0.99 0.08 1.53

41 Emme–Wiler 939 458 860 0 40 FOEN 0.54 - 0.64 0.38 84.2 80.96 - 0.01 6.01 2.06 0.21 1.66

42 Ergolz–Itingen 141 350 593 0 33 BL 0.34 - 1.02 0.6 10 10.26 0 1.14 0.39 0.23 1.76

43 Ergolz–Liestal 261 305 590 0 40 FOEN 0.34 - 1 0.66 19.9 20.27 0 2.25 0.78 0.23 2.16

44 Ergolz–Ormalingen 30 410 585 0 36 BL 0.24 - 1 0.66 2.4 3.55 - 0.01 0.33 0.13 0.21 1.93

45 Etzgerbach–Etzgen 25 308 478 0 34 AG 0.45 - 0.9 0.45 2.4 4.07 - 0.1 0.19 0.06 0.19 1.46

46 Eulach–Wülflingen 73 410 532 0 43 ZH 0.35 - 1.22 0.57 4.1 9.54 - 0.05 0.42 0.2 0.21 1.46

47 Fisibach–Fisibach 15 379 516 0 31 AG 0.65 - 0.63 0.56 0.6 0.72 0.09 0.03 0.01 0.3 1.85

48 Flon–Oron–la- Ville 16 609 812 0 20 VD 0.25 - 1.19 0.76 2.2 3.88 - 0.18 0.25 0.09 0.17 2.14

49 Furtbach–Würenlos 39 410 482 0 36 ZH 0.57 - 1.08 0.63 2.8 2.11 - 0.05 0.22 0.08 0.13 1.99

50 Geisslibach–Furtmüli 20 415 474 0 24 ZH 0.68 - 0.48 0.31 0.6 0.63 0.01 0.04 0.02 0.24 1.59

51 Glatt–Herisau 16 679 840 0 40 FOEN 0.45 - 0.93 0.51 3.3 5.84 0.33 0.26 0.11 0.04 1.72

52 Goldach–Goldach 50 399 833 0 23 FOEN 0.42 - 1.28 0.82 8.2 13.82 0.05 0.76 0.33 0.2 1.71

53 Goneri–Oberwald 40 1385 2377 14 23 FOEN 0.55 - 0.85 0.43 7.2 9.82 - 0.02 0.64 0.24 0.21 1.85

54 Grenet (amont)–Pigeon 19 680 748 0 20 VD 0.27 - 1.26 0.54 4.4 8.53 - 0.42 0.45 0.14 0.02 1.23

55 Grossbach–Gross 11 900 1235 0 40 FOEN 0.36 - 0.57 0.36 2.5 4.23 0.07 0.2 0.08 0.07 1.28

56 Grosstalbach–Isenthal 44 767 1820 9 40 FOEN 0.59 - 1.19 0.8 5 3.26 0.33 0.39 0.15 0.13 1.73

57 Gürbe–Belp 117 511 837 0 40 FOEN 0.55 - 1.01 0.55 14.9 9.54 - 0.21 0.85 0.27 0.07 1.36

58 Gürbe–Burgistein 54 568 1044 0 28 FOEN 0.43 - 1.2 0.69 7 8.87 - 0.01 0.61 0.2 0.17 1.44

59 Haselbach–Maschwanden 20 390 495 0 37 ZH 0.51 - 0.8 0.63 1.7 2.72 - 0.17 0.14 0.06 0.26 2.34

60 Hintere Frenke–Bubendorf 38 352 603 0 30 BL 0.33 - 1.08 0.68 3.1 3.44 0.05 0.37 0.13 0.14 1.73

61 Hintere Frenke–

Reigoldswil

15 489 742 0 32 BL 0.47 - 1.1 0.72 1.6 1.2 0.2 0.15 0.05 0.18 1.79

62 Hinterrhein–Hinterrhein 54 1584 2360 17 35 FOEN 0.58 - 0.71 0.58 16.5 20.93 - 0.04 1.09 0.42 0.22 1.82

63 Holzbach–Villmergen 24 416 590 0 34 AG 0.52 - 1.04 0.7 1.4 1.93 - 0.06 0.11 0.05 0.34 1.85

64 Homburgerbach–Thürnen 30 387 615 0 36 BL 0.2 - 0.94 0.6 2.2 2.3 0.09 0.29 0.09 0.14 1.59

65 Ilfis–Langnau 188 685 1051 0 25 FOEN 0.48 - 0.87 0.38 25.6 44.32 - 0.01 2.16 0.78 0.27 1.8

66 Jona–Pilgersteg 24 560 818 0 44 ZH 0.46 - 1.01 0.56 5.4 7.01 - 0.09 0.47 0.17 0.1 1.69

67 Jona–Rüti 58 450 669 0 20 ZH 0.43 - 0.72 0.44 11.1 13.67 - 0.15 0.96 0.39 0.17 2.03
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Table 5 (continued)

ID Station name Area ELEV MELEV DG RL Owner IBF PDF

location

PDF

scale

GPD

location

GPD

scale

GPD

shape

GEV

location

GEV

scale

GEV

shape

h

68 Jonen–Zwillikon 39 460 605 0 27 ZH 0.42 - 0.98 0.56 3.3 4.64 0.07 0.32 0.13 0.26 2.06

69 Kaisterbach–Kaisten 12 321 464 0 34 AG 0.51 - 0.95 0.5 0.8 1.59 0.08 0.06 0.02 0.23 1.51

70 Kander–Hondrich 520 650 1900 8 33 FOEN 0.72 - 0.82 0.51 47.9 23.93 - 0.06 2.67 0.94 0.08 1.94

71 Kempt–Fehraltorf 24 520 645 0 23 ZH 0.47 - 1.04 0.49 1.9 2.98 0.07 0.17 0.08 0.25 2.4

72 Kempt–Winterthur 60 450 588 0 33 ZH 0.5 - 1.1 0.51 6.3 5.75 0.05 0.56 0.22 0.18 2.14

73 Kleine Emme–Littau 477 431 1050 0 36 FOEN 0.45 - 0.67 0.41 84.5 119.79 - 0.18 6.63 2.25 0.17 1.75

74 Kleine Emmev-

Werthenstein

311 540 1173 0 30 FOEN 0.45 - 0.97 0.62 56.7 74.78 - 0.14 4.55 1.61 0.16 1.77

75 Köllikerbach–Kölliken 10 423 488 0 31 AG 0.47 - 0.79 0.43 1.2 2.99 - 0.19 0.08 0.04 0.17 1.38

76 Langeten–Huttwil 60 597 766 0 40 FOEN 0.6 - 1 0.57 4 5.51 0.11 0.24 0.1 0.23 1.58

77 Langeten–Lotzwil 115 500 713 0 20 BE 0.66 - 1.05 0.75 5.8 1.46 - 0.11 0.31 0.11 - 0.1 1.35

78 Lonza–Blatten 78 1520 2630 37 40 FOEN 0.43 - 1 0.92 11.6 8.83 - 0.15 1.17 0.45 - 0.08 1.11

79 Louibach–Saanen 62 1085 1875 6 20 BE 0.64 - 0.82 0.51 8.4 4.98 - 0.22 0.48 0.18 0.09 1.45

80 Luthern–Nebikon 108 494 740 0 26 FOEN 0.49 - 0.89 0.51 6.5 9.9 - 0.07 0.58 0.21 0.24 1.93

81 Lyssbach–Lyss 50 444 574 0 22 BE 0.65 - 0.6 0.31 3.1 6.45 - 0.26 0.16 0.06 0.33 1.98

82 Lyssbach–Schüpfen 23 505 616 0 22 BE 0.65 - 0.31 0.31 1.1 2.32 - 0.11 0.06 0.02 0.43 1.94

83 Magdenerbach–

Rheinfelden

33 300 483 0 31 AG 0.46 - 1.05 0.96 1.8 2.64 - 0.11 0.18 0.07 0.17 1.98

84 Magliasina–Magliaso 34 295 920 0 34 FOEN 0.3 - 0.95 0.56 6 7.92 0.18 0.77 0.33 0.2 1.99

85 Marchbach–Oberwil 27 296 462 0 34 BL 0.58 - 1.1 0.99 1.2 2.12 - 0.01 0.08 0.04 0.33 1.57

86 Mederbach–Marthalen 26 375 439 0 46 ZH 0.52 - 0.99 0.63 0.6 0.84 0.03 0.06 0.03 0.24 1.62

87 Mederbach–Niederwiesen 30 368 425 0 30 ZH 0.55 - 1.01 0.66 0.6 0.6 - 0.22 0.05 0.03 0.12 1.17

88 Mentue–Yvonand 105 449 679 0 40 FOEN 0.48 - 0.68 0.41 9.3 14.69 - 0.25 0.81 0.29 0.17 1.71

89 Minster–Euthal 59 894 1351 0 40 FOEN 0.36 - 0.41 0.34 18.5 43.01 - 0.22 1.58 0.61 0.09 1.21

90 Möhlinbach–Zeiningen 27 338 514 0 32 AG 0.41 - 1.19 0.81 1.6 1.92 - 0.1 0.16 0.06 0.11 1.83

91 Murg–Frauenfeld 212 390 580 0 40 FOEN 0.49 - 1 0.62 18.4 22.27 - 0.04 1.77 0.69 0.12 2.41

92 Murg–Murgenthal 207 419 637 0 34 FOEN 0.65 - 1.02 0.73 11.2 7.68 - 0.1 0.61 0.22 0.13 1.51

93 Murg–Wängi 79 466 650 0 40 FOEN 0.44 - 0.85 0.41 8.6 8.52 - 0.11 0.83 0.3 0.02 2.1

94 Näfbach–Neftenbach 38 394 464 0 22 ZH 0.56 - 0.85 0.44 2 2.44 0.08 0.16 0.07 0.23 1.97

95 Necker–Mogelsberg 88 606 959 0 40 FOEN 0.35 - 0.62 0.4 20.3 26.47 0.14 1.95 0.72 0.18 1.82

96 Nozon–Pré Chaillet 45 440 882 0 21 VD 0.28 - 0.96 0.61 3.1 1.48 - 0.04 0.37 0.09 0.24 2.6

97 Önz–Heimenhusen 84 440 583 0 20 BE 0.73 - 0.84 0.51 4 3.02 - 0.21 0.17 0.06 0.33 1.7

98 Orbe–Le Sentier 96 1010 1210 0 21 VD 0.34 - 0.9 0.56 9.8 3.6 - 0.07 1.16 0.31 0 2.37

99 Orisbach–Liestal 21 315 515 0 33 BL 0.2 - 0.91 0.76 1.4 2.07 0.09 0.21 0.08 0.4 2.09

100 Ova dal Fuorn–Zernez 55 1707 2331 0 40 FOEN 0.5 - 1.16 0.62 1.7 1.91 - 0.1 0.13 0.07 0.26 2.04
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Table 5 (continued)

ID Station name Area ELEV MELEV DG RL Owner IBF PDF

location

PDF

scale

GPD

location

GPD

scale

GPD

shape

GEV

location

GEV

scale

GEV

shape

h

101 Petite Glâne–Villars-le-

Grand

85 433 560 0 20 VD 0.52 - 0.92 0.56 4.8 7.72 - 0.36 0.44 0.18 0.17 2.24

102 Pfaffnern–Vordemwald 39 417 517 0 34 AG 0.55 - 0.47 0.32 3.2 7.22 - 0.11 0.22 0.1 0.3 1.74

103 Plessur–Chur 263 573 1850 0 40 FOEN 0.57 - 0.92 0.72 12 12 - 0.07 1.26 0.56 0.1 2.47

104 Poschiavino–La Rösa 14 1860 2283 0 40 FOEN 0.53 - 1.12 0.56 1.4 1.94 - 0.02 0.13 0.06 0.32 2.24

105 Promenthouse–Gland 100 394 1037 0 28 FOEN 0.26 - 0.68 0.79 4.8 4.62 0.24 0.65 0.22 0.32 2.79

106 Reppisch–Birmensdorf 24 466 665 0 44 ZH 0.31 - 1.15 0.73 1.6 2.24 0.18 0.2 0.08 0.32 1.85

107 Reppisch–Dietikon 69 380 594 0 28 ZH 0.45 - 1.09 0.6 5.4 8.81 0.09 0.55 0.25 0.27 2.45

108 Riale di Pincascia–

Lavertezzo

44 536 1708 0 22 FOEN 0.34 - 0.93 0.41 25.5 28.99 0.03 2.68 0.96 - 0.02 1.52

109 Rot–Roggwil 54 436 586 0 25 FOEN 0.57 - 0.64 0.41 4 5.88 - 0.1 0.25 0.09 0.23 1.58

110 Ruederchen–Schöftland 19 463 614 0 34 AG 0.51 - 0.78 0.47 1.2 2.59 0.03 0.09 0.04 0.27 1.8

111 Scheulte–Vicques 73 463 785 0 22 FOEN 0.46 - 1.01 0.48 8 10.34 0.07 0.8 0.31 0.27 2.63

112 Schmittenbach–Remigen 13 385 523 0 32 AG 0.09 - 0.88 0.71 0.9 0.98 0.12 0.15 0.06 0.23 2.99

113 Schwarzenbach–

Rickenbach

15 410 454 0 22 ZH 0.52 - 0.72 0.4 1 1.52 - 0.16 0.08 0.03 0.39 2.04

114 Sellenbodenbach–

Neuenkirch

11 515 615 0 23 FOEN 0.32 - 1.14 0.53 1.5 5.16 0 0.14 0.06 0.36 1.84

115 Sense–Thörishaus 352 555 1068 0 36 FOEN 0.48 - 1.03 0.58 46 58.77 - 0.12 3.4 1.11 0.14 1.25

116 Seymaz–Thônex 37 393 451 0 20 GE 0.43 - 0.99 0.53 3 2.92 - 0.08 0.31 0.11 0.18 2.41

117 Seyon–Valangin 112 630 970 0 34 FOEN 0.36 - 1.01 0.49 5.8 8.85 - 0.31 0.62 0.22 0.22 2.22

118 Simme–Oberried/Lenk 36 1096 2370 35 40 FOEN 0.34 - 0.99 0.71 5.2 4.62 - 0.12 0.59 0.28 - 0.08 1.71

119 Simme–Oberwil 344 777 1640 4 40 FOEN 0.58 - 1.15 0.55 30.7 18.24 - 0.02 2.33 0.83 0.11 2

120 Simme–Zweisimmen 203 930 1801 6 21 BE 0.61 - 1.06 0.65 20.2 12.99 - 0.07 1.46 0.58 0.21 2.03

121 Sinserbach–Sins 16 415 561 0 33 AG 0.33 - 1.45 0.71 1.3 3.01 0.12 0.14 0.06 0.22 2.01

122 Sionge–Vuippens 45 681 862 0 39 FOEN 0.4 - 1.11 0.62 7 10.98 - 0.24 0.68 0.23 0.09 1.58

123 Sissle–Eiken 123 314 529 0 37 AG 0.19 - 0.98 0.62 9.2 11.68 - 0.05 1.16 0.43 0.17 1.85

124 Sissle–Hornussen 37 365 524 0 35 AG 0.26 - 1.06 0.62 3 4.82 - 0.1 0.38 0.14 0.2 1.59

125 Somvixer Rhein–Somvix 22 1490 2450 7 36 FOEN 0.53 - 0.69 0.46 6.8 5.94 0.18 0.49 0.2 0.02 1.5

126 Sorne–Delémont 241 406 808 0 31 FOEN 0.44 - 0.96 0.7 17.1 7.75 0.03 1.83 0.51 0.17 2.38

127 Staffeleggbach–Frick 21 358 534 0 35 AG 0.3 - 1.01 0.69 1.5 1.96 - 0.02 0.18 0.07 0.15 1.69

128 Steinach–Steinach 24 406 710 0 30 FOEN 0.53 - 1.06 0.85 4.4 8.3 - 0.09 0.28 0.1 0.25 1.46

129 Steinenbach–Kaltbrunn 19 451 1112 0 30 FOEN 0.37 - 0.74 0.45 6.4 15.9 - 0.54 0.56 0.19 0.09 1.54

130 Stichbach–Bottighofen 16 410 522 0 22 TG 0.31 - 1.39 0.6 1.1 2.03 0.3 0.13 0.06 0.41 3.06

131 Surb–Döttingen 67 335 511 0 34 AG 0.58 - 0.74 0.42 3.8 4.88 0.05 0.26 0.11 0.28 2.01

132 Surb–Unterehrendingen 28 424 541 0 21 AG 0.59 - 0.3 0.37 2.2 3.38 0.07 0.15 0.06 0.28 2.2
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Table 5 (continued)

ID Station name Area ELEV MELEV DG RL Owner IBF PDF

location

PDF

scale

GPD

location

GPD

scale

GPD

shape

GEV

location

GEV

scale

GEV

shape

h

133 Suze–Sonceboz 150 642 1050 0 53 FOEN 0.43 - 0.95 0.59 15.4 4.97 0.14 1.53 0.47 0.11 2.87

134 Tägerbach-Wislikofen 14 390 551 0 32 AG 0.71 - 0.9 0.79 0.4 0.46 - 0.21 0.02 0.01 0.2 1.41

135 Talbach–Schinznach-Dorf 15 360 552 0 34 AG 0.19 - 0.97 0.76 0.6 1.4 0.22 0.07 0.03 0.05 1.5

136 Talent–Chavornay 66 440 670 0 20 VD 0.43 - 1.05 0.54 8 10.81 - 0.28 0.76 0.26 0.12 1.67

137 Taschinasbach-Grüsch 63 666 1768 0 34 FOEN 0.39 - 1.23 0.67 9.2 9.63 0.07 0.92 0.39 0.09 2.05

138 Thur–Andelfingen 1696 356 770 0 40 FOEN 0.49 - 0.85 0.44 230.9 142.25 - 0.1 19.05 5.77 0.25 2.21

139 Thur–Halden 1085 456 910 0 40 FOEN 0.49 - 1.16 0.58 205.2 178.62 - 0.13 16.28 5.52 0.17 1.93

140 Thur–Jonschwil 493 534 1030 0 40 FOEN 0.42 - 0.87 0.42 113.1 116.86 - 0.2 10.36 3.17 0.18 1.96

141 Thur–Stein 84 850 1448 0 31 FOEN 0.36 - 0.92 0.46 17.2 14.14 0.02 1.93 0.62 0.23 2.6

142 Töss–Altlandenberg 67 621 871 0 36 ZH 0.24 - 1.03 0.61 12.6 14.8 0.01 1.51 0.53 0.16 2.19

143 Töss–Freienstein 399 360 626 0 29 ZH 0.51 - 1.13 0.6 36.4 26.99 0.14 3.54 1.19 0.17 2.72

144 Töss–Neftenbach 342 389 650 0 40 FOEN 0.48 - 0.98 0.52 34.8 30.17 0.04 3.53 1.19 0.17 2.65

145 Töss–Rämismühle 127 524 790 0 35 ZH 0.31 - 1.04 0.56 20.4 19.06 - 0.05 2.37 0.73 0.18 2.07

146 Trübbach–Räzliberg 20 1430 2610 54 22 FOEN 0.2 - 1.38 0.68 2.9 2.89 - 0.19 0.28 0.14 0.05 1.13

147 Ürke–Holziken 25 438 577 0 35 AG 0.66 - 0.86 0.53 1.3 1.97 - 0.23 0.07 0.03 0.27 1.36

148 Urnäsch–Hundwil 65 746 1085 0 33 FOEN 0.4 - 1.02 0.51 16.8 20.69 - 0.05 1.46 0.51 0.09 1.49

149 Vedeggio–Bioggio 95 280 950 0 35 FOEN 0.33 - 0.89 0.64 15.2 24.87 0.11 2 0.79 0.25 1.67

150 Venoge–Ecublens 231 383 700 0 35 FOEN 0.4 - 0.9 0.62 16 14.37 - 0.07 2.15 0.69 0.28 3.51

151 Verzasca–Lavertezzo 186 490 1672 0 24 FOEN 0.45 - 0.84 0.4 74.3 124.12 - 0.08 7.55 2.7 - 0.12 1.8

152 Veveyse–Vevey 62 425 1108 0 30 FOEN 0.39 - 1.08 0.64 12.4 21.31 - 0.13 1.01 0.37 0 1.27

153 Violenbach–Augst 17 268 425 0 35 BL 0.29 - 1.08 0.73 0.9 1.39 - 0.02 0.1 0.04 0.14 1.41

154 Vordere Frenke–

Bubendorf

46 371 647 0 36 BL 0.46 - 1.02 0.5 3.6 4.44 - 0.12 0.33 0.12 0.18 1.67

155 Vordere Frenke–

Waldenburg

13 524 826 0 35 BL 0.24 - 0.82 0.58 1.1 1.53 - 0.17 0.12 0.05 0.25 1.42

156 Weisse Lütschine–

Zweilütschinen

164 650 2170 18 40 FOEN 0.56 - 1.09 0.77 21.6 15.31 - 0.15 1.75 0.65 - 0.09 1.48

157 Werrikerbach–Greifensee 12 440 493 0 21 ZH 0.49 - 0.99 1.17 0.4 0.18 - 0.01 0.03 0.01 - 0.1 1.42

158 Wigger–Zofingen 368 426 660 0 35 FOEN 0.56 - 0.85 0.53 21.4 23.91 - 0.11 1.52 0.6 0.23 1.68

159 Wissenbach–Boswil 12 460 684 0 34 AG 0.39 - 1.17 0.61 0.7 1 0.2 0.07 0.03 0.2 1.61

160 Wölflinswiler Bach–

Wittnau

17 395 600 0 30 AG 0.39 - 1 0.59 1.5 3.03 - 0.19 0.16 0.06 0.15 1.69

161 Wyna–Reinach 47 514 682 0 30 AG 0.53 - 0.39 0.32 4 4.86 - 0.02 0.31 0.12 0.22 1.86

162 Wyna–Suhr 120 392 617 0 34 AG 0.5 - 0.91 0.61 6.9 9.68 - 0.21 0.6 0.24 0.28 1.82
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Blöschl G, Sivapalan M, Wagener T, Viglione A, Savenije H

(eds) Runoff prediction in ungauged basins. A synthesis across

processes, places and scales, Cambridge University Press,

Cambridge, chap 9, pp 189–226

Salinas JL, Laaha G, Rogger M, Parajka J, Viglione A, Sivapalan M,

Blöschl G (2013) Comparative assessment of predictions in

ungauged basins—Part 2: flood and low flow studies. Hydrol

Earth Syst Sci 17:2637–2652. https://doi.org/10.5194/hess-17-

2637-2013

Samuel J, Coulibaly P, Metcalfe RA (2011) Estimation of continuous

streamflow in ontario ungauged basins: comparison of region-

alization methods. J Hydrol Eng 16(5):447–459. https://doi.org/

10.1061/(ASCE)HE.1943-5584.0000338

Sauquet E (2006) Mapping mean annual river discharges: geostatis-

tical developments for incorporating river network dependen-

cies. J Hydrol 331:300–314. https://doi.org/10.1016/j.jhydrol.

2006.05.018

Sauquet E, Catalogne C (2011) Comparison of catchment grouping

methods for flow duration curve estimation at ungauged sites in

France. Hydrol Earth Syst Sci 15:2421–2435. https://doi.org/10.

5194/hess-15-2421-2011

Sefton CEM, Howarth SM (1998) Relationships between dynamic

response characteristics and physical descriptors of catchments

in England and wales. J Hydrol 211(1–4):1–16. https://doi.org/

10.1016/S0022-1694(98)00163-2

Serinaldi F, Grimaldi S (2011) Synthetic design hydrographs based on

distribution functions with finite support. J Hydrol Eng

16:434–446. https://doi.org/10.1061/(ASCE)HE.1943-5584.

0000339

Shapiro SS, Wilk MB (1965) An analysis of variance test for

normality (complete samples). Biometrika 52(34):591–611

Shiau J, Wang HY, Tsai CT (2006) Bivariate Frequency Analysis of

floods using copulas. J Am Water Resour Assoc pp 1549–1564,

https://doi.org/10.1111/j.1752-1688.2006.tb06020.x

Shu C, Burn DH (2004) Artificial neural network ensembles and their

application in pooled flood frequency analysis. Water Resour

Res 40(9):1–10. https://doi.org/10.1029/2003WR002816

Shu C, Ouarda T (2008) Regional flood frequency analysis at

ungauged sites using the adaptive neuro-fuzzy inference system.

J Hydrol 349:31–43. https://doi.org/10.1016/j.jhydrol.2007.10.

050

Sikorska AE, Viviroli D, Seibert J (2015) Flood type classification in

mountainous catchments using crisp and fuzzy decision trees.

Water Resour Res 51(10):7959–7976. https://doi.org/10.1002/

2015WR017326

Singh PK, Mishra SK, Jain MK (2014) A review of the synthetic unit

hydrograph: from the empirical UH to advanced geomorpho-

logical methods. Hydrol Sci J. https://doi.org/10.1080/02626667.

2013.870664

Sivapalan M (2003) Prediction in ungauged basins: a grand challenge

for theoretical hydrology. Hydrol Process 17:3163–3170. https://

doi.org/10.1002/hyp.5155
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Abstract

Design hydrographs described by peak discharge, hydrograph volume, and hydrograph shape
are essential for engineering tasks involving storage. Such design hydrographs are inherently
uncertain as are classical flood estimates focusing on peak discharge only. Various sources of un-
certainty contribute to the total uncertainty of synthetic design hydrographs for gauged and un-
gauged catchments. These comprise model uncertainties, sampling uncertainty, and uncertainty
due to the choice of a regionalization method. A quantification of the uncertainties associated
with flood estimates is essential for reliable decision making and allows for the identification of im-
portant uncertainty sources. We therefore propose an uncertainty assessment framework for the
quantification of the uncertainty associated with synthetic design hydrographs. The framework
is based on bootstrap simulations and consists of three levels of complexity. On the first level,
we assess the uncertainty due to individual uncertainty sources. On the second level, we quantify
the total uncertainty of design hydrographs for gauged catchments and the total uncertainty of
regionalizing them to ungauged catchments but independently from the construction uncertainty.
On the third level, we assess the coupled uncertainty of synthetic design hydrographs in ungauged
catchments, jointly considering construction and regionalization uncertainty. We find that the
most important sources of uncertainty in design hydrograph construction are the record length
and the choice of the flood sampling strategy. The total uncertainty of design hydrographs in
ungauged catchments depends on the catchment properties and is not negligible in our case.
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1 Introduction

Hydrograph volume and shape, in addition to peak discharge, are important hydrograph characteris-
tics for flood risk management tasks such as the planning of retention basins and drawing hazard maps
(Tung and Yen, 2005; Klein et al., 2010; Schumann et al., 2010; Deutsche Vereinigung für Wasser-
wirtschaft Abwasser und Abfall , 2012). A complete hydrograph is essential for all designs involving
storage (Pilgrim, 1986) where the peak discharge, hydrograph volume, and the hydrograph shape pro-
vide complementary information. However, flood frequency analyses often focus on peak discharges
without considering their dependence on hydrograph volumes. Brunner et al. (2017a) therefore pro-
posed an approach to construct synthetic design hydrographs (SDHs) that provide information on
the peak discharge and the corresponding hydrograph volume together with the hydrograph shape.
This approach takes into account the dependence between peak discharges and hydrograph volumes
and models the hydrograph shape via a probability density function (Yue et al., 2002). In a follow up
paper, Brunner et al. (2017b) assessed how such SDHs can be transferred from gauged to ungauged
catchments and identified the most suitable regionalization model. These previous studies suggested,
that the construction and regionalization of SDHs may be linked with non-negligible uncertainty
which should be quantified in a next step.

Studies involving flood estimation entail various sources of uncertainty such as measurement er-
rors, various assumptions, sample selection, the choice of a suitable distribution function, the choice
of a parameter estimation method, and sampling uncertainty (Merz and Thieken, 2005). Measure-
ment errors comprise errors in water level measurements and errors coming from transferring water
levels into discharge values via a rating curve (Sikorska et al., 2013; McMillan and Westerberg , 2015).
Assumptions include those of stationarity, homogeneity, and independence of the data. Sample selec-
tion is associated with the choice of a representative observation period and the choice of a sampling
strategy (annual maxima sampling versus peak-over-threshold sampling). Also, several distribution
functions have been used to model the distribution of flood samples and the choice of one suitable
distribution over another one is linked to uncertainty. The parameters of such a distribution can
be estimated using different estimation techniques such as maximum likelihood and the method of
moments or L-moments. Sampling uncertainty describes the uncertainty introduced by not knowing
the population underlying a dataset (Merz and Thieken, 2005). Among these sources of uncertainty,
data availability and model choice are said to be the most important (Apel et al., 2004; Merz and
Thieken, 2005; Botto et al., 2014). Yet, each step in the modeling process can introduce uncertainty
(Kidson and Richards, 2005) and the overall uncertainty of the flood estimates results from the in-
teraction of several uncertainty sources (Merz et al., 2008; Beven and Hall , 2014), which do not have
to be additive (Montanari and Koutsoyiannis, 2012). Despite its importance, this uncertainty is of-
ten overlooked (Pappenberger and Beven, 2006) even though its consideration has several advantages
(Juston et al., 2013). Uncertainty analysis allows the identification of uncertain parameters (Tung
and Yen, 2005), a quantitative assessment of model reliability (Merz and Thieken, 2005; Tung and
Yen, 2005; Montanari and Koutsoyiannis, 2012), and it provides a means of analyzing the robustness
of flood risk management decisions. Furthermore, an analysis of the contribution of individual sources
indicates where potential improvements in the method could have the greatest impact (Cullen and
Frey , 1999; Hall and Solomatine, 2008; Sikorska et al., 2012) and therefore how uncertainty could
be reduced (Qi et al., 2016), which is especially important for ungauged catchments (Sikorska et al.,
2012). Although, uncertainty can not be eliminated, its assessment at least enables its management
(Koutsoyiannis, 2014).

Previous studies have dealt mainly with uncertainty analyses for univariate design variable quan-
tiles (Serinaldi , 2009) usually estimated based on a sample of peak discharges. There, rather simple
analytical and bootstrap methods allow the exploration of the uncertainty of extreme quantiles. In a
univariate framework, the effect of the choice of the marginal distribution (Merz and Thieken, 2005;
Qi et al., 2016), parameter uncertainty of the marginal distribution (Qi et al., 2016), data uncer-
tainty from threshold selection (Xu et al., 2010; Qi et al., 2016), and the effect of the choice of annual
maxima sampling versus peak-over-threshold sampling (e.g. Madsen et al. (1997); Martins and Ste-
dinger (2001a,b); Sun et al. (2017)) have been considered. In a bivariate framework that allows for
the joint consideration of peak discharges and hydrograph volumes, the effect of the choice of annual
maxima sampling versus peak-over-threshold sampling has, to our knowledge, not yet been analyzed.
Furthermore, the uncertainty of the marginal distributions combines with the uncertainty of their de-
pendence structure and infinite combinations of the studied variables exist that share the same joint
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probability (Serinaldi , 2013). Recently, Serinaldi (2013) and Dung et al. (2015) proposed several
parametric and non parametric bootstrap algorithms to compute confidence intervals for bivariate
quantiles. However, there is still a lack of understanding of combined and interactive contributions of
different uncertainty sources in bivariate quantile estimation (Qi et al., 2016). Furthermore, it is not
clear how the uncertainty of bivariate design estimates describing the magnitude of an event interacts
with the uncertainty related to the hydrograph shape. The goal of this study is therefore threefold:

1. Assessing the effect of the choice of a peak-over-threshold versus an annual maxima sampling
strategy on design hydrograph construction in a bivariate framework.

2. Identifying the most important sources of uncertainty in design hydrograph construction and
regionalization.

3. Assessing the uncertainty of synthetic design hydrographs for gauged and ungauged catchments.

To answer these questions, we propose an uncertainty assessment framework based on simulations
with three levels of complexity. In a first step, the effect of different uncertainty sources on SDH
construction is assessed. This allows for the identification of relevant uncertainty sources and therefore
enables the refinement of the SDH construction (Brunner et al., 2017a) and regionalization procedures
(Brunner et al., 2017b) in order to reduce uncertainty. Then, we assess the total uncertainty of SDHs
for gauged and ungauged catchments that originates from individual steps in the SDH construction
(gauged) and in the regionalization approach (ungauged). Finally, we propagate the uncertainty of
the constructed SDHs in gauged catchments through SDH regionalization to ungauged catchments.
This enables the quantification of the coupled uncertainty of SDHs that is composed of uncertainty
from both the SDH construction and regionalization. Such SDHs with corresponding uncertainty
bands should be provided to engineers and practitioners as reliable flood estimates (Chowdhury and
Stedinger , 1991).

There is a lack of uniform terminology and a general disagreement about appropriate methodolo-
gies for uncertainty quantification in hydrological applications (Nearing et al., 2016). We will adopt
an uncertainty definition often used in flood frequency analysis, where uncertainty is expressed as
the variability of the design value under consideration. Serinaldi (2013) stated that complementing
accurate point estimates with realistic confidence intervals (CIs), which clearly highlight the lack of
information, is probably the most correct approach to communicate results of hydrological frequency
analyses.

The choice of the uncertainty estimation method often depends on the sources of uncertainty
considered. The influence of a model choice can be best quantified through comparing a number of
models (Kidson and Richards, 2005). On the contrary, sampling uncertainty related to parameter
estimation is usually either assessed via the distribution of maximum likelihood (ML) estimators or via
resampling approaches (Beven and Hall , 2014). A resampling approach often used is bootstrapping
which involves randomly selecting data points, with replacement, from the original sample and then
estimating the extreme flow quantile from each of the resampled data sets (Efron and Tibshirani ,
1993; Burn, 2003; Hall et al., 2004; Wasserman, 2006; Meylan et al., 2012).

The presence of several uncertainty sources requires their joint consideration. The errors of the
various sources are usually not independent from each other and are therefore not necessarily additive
(Montanari and Koutsoyiannis, 2012; Sikorska and Renard , 2017). Hence, the total uncertainty is
usually not necessarily equal to the sum of its contributing sources. Moreover, most of the models or
design procedures used in hydro-systems engineering and analysis are nonlinear and highly complex.
This prohibits an analytical derivation of the probability distribution of the model outputs. Engineers
therefore frequently resort to methods that yield approximations for the statistical properties of model
outputs that are subject to uncertainty (Chang et al., 1994; Tung and Yen, 2005). A method often
used to propagate uncertainties through a model chain is the Monte Carlo (MC) approach (Beven
et al., 2010). This approach is often used to assess the total uncertainty of a hydrological model output
that involves observational, model, and parameter uncertainty. Montanari and Koutsoyiannis (2012)
proposed to estimate the distribution of the output of a process-based hydrological model via multiple
simulation runs by perturbing input data, parameters, and model output. In this study, we adopt
this idea to a flood frequency model. We conduct a bootstrap experiment to assess the distribution of
synthetic design hydrographs for a specific catchment while considering different uncertainty sources.
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2 Methods

2.1 Synthetic design hydrographs

Synthetic design hydrographs (SDHs) describe not only the peak discharge of a flood but also its
hydrograph volume and shape (Brunner et al., 2017a).

2.1.1 Construction of synthetic design hydrographs in gauged catchments

Brunner et al. (2017a) proposed a method for the construction of SDHs in gauged catchments based
on runoff data only. The method models the entire shape of the hydrograph using a probability
density function (PDF), and estimates the design variable quantiles peak discharge and hydrograph
volume considering their dependence. It consists of eight steps:

1. Flood sampling using a peak-over-threshold (POT) approach;

2. Baseflow separation using the recursive digital filter proposed by Eckhardt (2005) whose two
parameters need to be estimated for each catchment;

3. Identification of the median hydrograph and its normalization. The median hydrograph is
defined using the h-mode depth for functional data (Cuevas et al., 2007). In its normalized
form, we refer to it as the representative normalized hydrograph (RNH);

4. Fitting of a lognormal probability density function (PDF) (Yue et al., 2002) to the RNH. The
parameters of the PDF are computed as a function of the time to peak, the peak discharge, and
the time base of the RNH (Nadarajah, 2007; Rai et al., 2009);

5. Determination of marginal distributions of peak discharges and hydrograph volumes. The Gen-
eralized Pareto distribution (GPD) is used to model the marginal distribution of peak discharges
and the Generalized extreme value (GEV) distribution to model the marginal distribution of
the hydrograph volumes.

6. Dependence modeling between peak discharges and hydrograph volumes using the Joe copula
(Genest and Favre, 2007; Joe, 2015) independently of the choice of their marginal distributions;

7. Estimation of the design variable quantiles peak discharge (QT ) and hydrograph volume (VT )
for a chosen return period. Computation of the duration of the design event (DT );

8. Composition of the design hydrograph using the shape of the hydrograph given by the PDF
(f(t)), the design variable quantiles (VT and DT = VT /QT ), and the baseflow (B) as described
by

QT (t) = f(t)VT /DT +B. (1)

We refer to the procedure described above as the standard configuration for obtaining an SDH. For
a further, detailed description of the methodology, the reader is referred to Brunner et al. (2017a).
The proposed methodology is generally applicable to any dataset of interest, however, the model
assumptions made in Step 4 (choice of PDF), Step 5 (choice of marginal distributions), and Step 6
(choice of copula family) might need to be refined for a different dataset than the one used in this
study.

The design flood hydrographs obtained using this method are composed of ten parameters, which
we herein refer to as SDH parameters. Specifically, two parameters are needed to model the shape
of the hydrograph defined by the lognormal PDF with a location and a scale parameter. Three
parameters each (location, scale, and shape) are needed to model the marginal distributions of the
design variables peak discharge and hydrograph volume. One parameter defines the dependence
between these two variables and one parameter characterizes the proportion of baseflow with respect
to the direct hydrograph.
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2.1.2 Regionalization of synthetic design hydrographs to ungauged catchments

The SDH parameters can be transferred from gauged to ungauged catchments using methods based on
the relation between catchment characteristics and model parameters, approaches based on spatial
proximity, or on homogeneous regions. Brunner et al. (2017b) tested regionalization methods be-
longing to five categories: 1) linear regression models establishing a linear relationship between SDH
parameters and catchment characteristics, 2) nonlinear regression models additionally exploiting non-
linear relationships between SDH parameters and catchment characteristics, 3) spatial approaches,
4) regional mean models for fixed regions formed according to catchment size and elevation, and 5)
methods forming homogeneous regions to transfer the whole parameter set from similar catchments
to the ungauged catchment. The methods of the second category were found to be most suitable
for the transfer of SDH parameters to ungauged catchments. Among these methods, the nonlinear
regression method, boosted regression trees, performed best. A boosted regression tree model is a
linear combination of many regression trees (CART models). It can be thought of as a regression
model where each term is a tree (Elith et al., 2008; Hofner et al., 2009). It builds successive trees
in a stagewise procedure where new trees depend on previous trees. Only a proportion of the obser-
vations is selected at each step to fit the tree model in order to prevent from overfitting (Friedman,
2001; Hastie et al., 2008). For a detailed overview and description of the methods tested, the reader
is referred to Brunner et al. (2017b). For another application of boosted regression trees in the
hydrological context, see Tisseuil et al. (2010).

2.2 Uncertainty assessment framework

Our uncertainty analysis takes into account several uncertainty sources inherent in both the construc-
tion process and in the regionalization process of SDHs. Therefore, we distinguish between these two
processes and three levels of complexity for analyzing uncertainty (for an illustration see Figure 1).
On a first level (A), we assess the individual uncertainty sources present in the SDH construction
and the SDH regionalization separately (Section 2.2.1). On the second level (B), we assess the total
uncertainty of the SDH construction and the total uncertainty of the SDH regionalization resulting
from different sources separately (Section 2.2.2). On the third level (C), we propagate the uncertainty
of the SDH construction through the regionalization process to couple it with the total uncertainty
present in regionalization (Section 2.2.3). All these levels of the uncertainty analysis were based on
bootstrap simulations. The basic principle was to construct a set of SDHs using various model con-
figurations and to compare the characteristics of this set to the characteristics of an SDH obtained
as a best estimate under the standard configuration (i.e., when no uncertainty is considered). The
number of simulation runs was determined by a convergence analysis (Beven et al., 2010). We tried to
minimize computation time by keeping the number of runs low while ensuring stable estimates. This
resulted in different numbers of simulation runs for different levels of the analysis (generally 100 to
1000 runs were sufficient, 2000 were used for the coupled uncertainty analysis. The exact numbers are
indicated in the respective paragraphs). We did not consider observational uncertainty of runoff time
series because neither sufficient information on runoff measurement error nor measurement technique
was available for all the catchments in the dataset. Furthermore, we did not consider the influence of
the choice of the parameter estimation method since Dung et al. (2015) found that confidence regions
for bivariate quantiles are hardly influenced by the choice of the parameter estimation method.

2.2.1 Uncertainty due to individual sources

An investigation of the impact of individual uncertainty sources on the overall output uncertainty
provides important information regarding the relative contribution of uncertainty sources to the
overall uncertainty of the model output (here SDH) (Tung and Yen, 2005; Sikorska et al., 2012).

We distinguished between three categories of uncertainty: 1) uncertainty due to a limited record
length, 2) model uncertainty resulting from the choice of one model over another feasible model, and
3) sampling uncertainty resulting from estimating the model parameters based on an available flood
sample that only approximates the characteristics of the underlying population. The first and the
third category are closely related. While the first category explicitly considers the effect of the sample
size, the third category keeps the sample size constant but considers that a slightly different sample
could have been observed leading to different estimates. The steps in the SDH construction and
regionalization procedure concerned with model and sampling uncertainty are listed in Table 1. It
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Figure 1: Illustration of the uncertainty framework proposed in this study. The uncertainty of constructed and regionalized SDHs was assessed on three levels
of complexity: A) Uncertainty introduced by individual sources, specifically, record length, model choices, and parameter estimation; B) Total uncertainty
of the constructed SDH and total uncertainty of the regionalized SDH resulting from the sources described in A; C) Coupled uncertainty of the SDH when
construction uncertainty (steps 1A-1B) is propagated through regionalization (steps 2A-2B) onto the final regionalized SDH.

6



indicates which models were found to be most appropriate for each step (see Section 2.1.1) and which
models would have also been feasible. Further, it highlights steps of parameter estimation which are
subject to sampling uncertainty.

We focused on one uncertainty source at a time to assess the impact of the individual uncertainty
sources on the estimated SDH. To do so, we constructed various SDHs using the standard model
configuration while we either varied one model choice or considered the uncertainty of one parameter
at a time. All the other model choices and parameters were fixed to the standard configuration (see
Table 1: Model used). The set of SDHs obtained by these simulations gives an idea of the variability
introduced by each source of uncertainty considered. The uncertainty assessment framework proposed
is applicable to any return period sensible in the light of data availability. In our case study, we focused
on a return period of 100 years because it is frequently used as protection goals for agricultural areas
and settlements in Switzerland (Camezind-Wildi , 2005). A preliminary analysis has shown that the
relative importance of different uncertainty sources is independent of the return period. In this work,
we considered the following uncertainty sources (see also Table 1):

0. Record length: We computed SDHs to assess the effect of the sample size on the SDH estimates
using subsamples of the original time series (Botto et al., 2014; Burn, 2003). The samples
were drawn without replacement from the original sample to exclude a potential effect of the
chronological order of the events. We started with drawing a time series of 20 years and increased
the length of the time series by 5 years at a time until the maximum available record length was
reached. The minimum length was set to 20 years because a flood frequency analysis based on a
shorter time series would provide unreliable flood estimates (DVWK , 1999). The stations with
only 20 years of observations (6% of all stations) were excluded from this part of the analysis.

1. Flood sampling: We assessed model uncertainty due to flood sampling by constructing SDHs
using flood events based on four flood sampling strategies: 1) peak-over-threshold approach
(Lang et al., 1999) sampling four events on average per year (POT4); 2) peak-over-threshold
approach sampling two events on average per year (POT2); 3) annual peak maxima sampling
(AMQ); 4) annual volume maxima sampling (AMV ). To sample annual volume maxima, we
computed the runoff volume over a running window of 72 hours, the maximum length of a
frontal storm in Switzerland, and identified the window with the maximum volume per year.

2. Baseflow separation: Model uncertainty due to the baseflow separation method was not as-
sessed since the two-parameter recursive digital filter proposed by Eckhardt (2005) was previ-
ously found to outperform alternative models for the application under consideration (Brunner
et al., 2017a). The recursive digital filter used requires the determination of two parameters:
a recession coefficient α and a maximum baseflow coefficient Bmax. The uncertainty due to
these two parameters was assessed via a parametric bootstrap by sampling the two parameters
NB = 100 times from their distributions. α was sampled from a Weibull distribution fitted to
the α’s overall study catchments while Bmax was sampled from a normal distribution fitted to
the Bmax’s overall catchments. The Weibull and normal distributions were found to fit the data
well based on the Kolmogorov–Smirnov goodness-of-fit test (level of significance of 0.05).

3. Normalization and identification of a representative normalized hydrograph: The identification
of the representative normalized hydrograph (RNH) does, on the contrary to the normalization
of the hydrograph, introduce uncertainty. The RNH was defined as the median hydrograph
of the catchment under consideration. The h-mode depth was chosen to define the median
hydrograph within a catchment among a set of four suitable definitions of depth functions for
functional data. We considered the model uncertainty coming from the choice of one depth
function over the others. For this, we constructed four SDHs using each of the suitable depth
functions: h-mode depth, Fraiman–Muniz depth, random projection depth (Cuevas et al., 2007),
and band depth (López-Pintado and Romo, 2009). The definition of the RNH via the median
does not involve parameter estimation, therefore, sampling uncertainty did not need to be
considered.

4. Fitting of a probability density function to the RNH: The fitting of a PDF to the RNH to model
the shape of the SDH introduces model uncertainty. One could fit another PDF to the RNH
instead of the lognormal PDF, since the best PDF depends on the catchment. We chose the
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Table 1: List of individual uncertainty sources inherent in the steps of the construction and regionalization of synthetic design hydrographs (Section 2.1.2).
The methods used in each step are listed together with other feasible models and information on the parameters estimated.

Step Model used
(standard configuration)

Other feasible models Estimated parameters

1 Peak-over-threshold (POT) ap-
proach sampling four events per
year on average

POT approach sampling two events per year on
average
Annual maxima in terms of peak discharges
Annual maxima in terms of hydrograph volumes

-

2 Two parameter recursive digital fil-
ter (Eckhardt , 2005; Collischonn

and Fan, 2013)

- α: recession coefficient estimated using linear re-
gression; Bmax: maximum baseflow index which
follows from α and discharge

3 Depth notion h-mode Fraiman–Muniz depth
Band depth
random projection depth (Cuevas et al., 2007)

-

4 lognormal PDF normal PDF
Fréchet PDF
Weibull PDF
logistic PDF
gamma PDF
inverse gamma PDF
beta PDF

-

5 GPD for Qp and GEV for V GEV for Qp

GPD for V
Location, scale, and shape parameters of the GPD
and the GEV estimated using the ML estimation

6 Use of Joe copula to model the de-
pendence between Qp and V

Gumbel
Survival Clayton
Tawn

θ: dependence parameter estimated based on
pseudo-observations using maximum pseudo-
likelihood estimation

7 Choice of the event with ML on the
isoline in the bivariate space

Choice of other event on isoline -

8 Mean event baseflow - Estimation of mean event baseflow

9 Nonlinear regression model boost-
ing

Linear regression: lasso
Spatial: universal kriging
Regional mean: elevation zones
Formation of homogeneous regions: median pa-
rameter set from most similar catchment.

Parameters of the boosting model estimated by
minimizing a loss function
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lognormal PDF because it showed the best average fit in terms of the Nash–Sutcliffe and Kling–
Gupta efficiencies (Gupta et al., 2009) when considering all catchments in the dataset. This
model uncertainty was assessed by constructing SDHs using eight different PDFs: lognormal,
normal, Fréchet, Weibull, logisitic, gamma, inverse gamma, and beta PDF. Sampling uncer-
tainty due to the fitting of a PDF to the RNH was not considered since the estimation method
chosen is based on an analytical expression (Nadarajah, 2007; Rai et al., 2009). It expresses
the parameters of the PDF in terms of the time to peak and the time base of the RNH instead
of inferring the parameters via classical estimation approaches such as maximum likelihood or
method of moments.

5. Determination of marginal distributions of peak discharges and hydrograph volumes: The de-
termination of the marginal distributions for the two design variables peak discharge (Qp) and
hydrograph volume (V ) introduced both model and sampling uncertainty. Goodness-of-fit tests
(Kolmogorov–Smirnov, Anderson–Darling, and upper tail Anderson–Darling test (Chernobai
et al., 2015)) of different model alternatives (Generalized Pareto (GPD), Generalized Extreme
Value (GEV), Gumbel, generalized logistic, Pearson type III, normal, lognormal, exponential,
and Weibull) showed that only the hypothesis of GPD and GEV distributions were not rejected
in most of the catchments at α = 0.05. The results of the goodness-of-fit tests suggested that
the GPD and GEV models could both be used to model Qp and V and it was difficult to decide
which distribution was a better predictor over another (Beven and Hall , 2014). We therefore
assessed model uncertainty for the marginal distributions of peak discharges and hydrograph
volumes by constructing two SDHs based on each of the two admissible marginal distributions.
The parameters of the marginal distributions were estimated using ML estimation (Held and
Sabanés Bové, 2014), which introduced sampling uncertainty. The ML approach assumes that
the parameter estimates follow a parametric distribution. This distribution can be used to
assess sampling uncertainty. We constructed NB = 500 SDHs by sampling parameters from a
multivariate Normal distribution defined by the means and covariance matrices of the location,
scale, and shape parameters of the marginal distributions. We only allowed positive location
and scale parameters to be sampled because the location and scale parameters must be positive.

6. Dependence modeling between Qp and V : The modeling of the dependence between Qp and V
introduced both model and sampling uncertainty. Model uncertainty was introduced because
several copula models were non-rejected in most catchments (Brunner et al., 2017a). A statis-
tical bootstrap procedure was applied to compute a p-value for the Cramér-von Mises statistic
(Genest et al., 2009) of twelve copulas (Independence, Gumbel, Clayton, Joe, Frank, AMH,
normal, Student, Tawn, t-EV, Plackett, and Survival Clayton) (Joe, 2015). Only four copulas
were not rejected at a level of significance of α = 0.05 in most of the catchments: Joe, Gumbel,
Survival Clayton, and Tawn. We used each of the non-rejected copulas to construct four SDHs.
Sampling uncertainty was introduced because the copula parameter θ could only be estimated
based on a sample as the underlying population was unknown. We assessed this uncertainty
using a parametric bootstrap experiment in which we constructed NB = 500 SDHs sampling
the θ from a lognormal distribution fitted to the θs of all the study catchments. The lognormal
distribution was found to fit the θs well based on the Kolmogorov–Smirnov goodness-of-fit test.
The θ of the Joe copula must be positive. Therefore, we only allowed the sampling of positive
values.

7. Estimation of the design variable quantiles for peak discharge and hydrograph volume. The
choice of the definition of the return period is defined by the problem at hand (Serinaldi , 2015;
Brunner et al., 2016) and the return period usually defined in national guidelines (Requena
et al., 2013). However, several design events have the "same" probability of occurrence in
bivariate frequency analysis and thus lie on an isoline. Often, the most likely of these pairs of
design variables is chosen for practical application (Brunner et al., 2016). This choice, however,
introduces uncertainty because one could choose another pair of design variables on the isoline
instead of the one with the highest likelihood. This source of uncertainty was assessed by a
bootstrap experiment with NB = 1000 SDHs sampling one point on the isoline according to the
probability density function of the points on the isoline. Sampling according to the probability
density function ensures that more points close to the most likely point and very few extreme
points are sampled.
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8. Composition of the design hydrograph: The SDH can be composed using Equation (1) based
on the shape of the hydrograph given by the PDF and the magnitude of the event given by
the design variable quantiles and the baseflow component. The uncertainty of the shape and of
the magnitude has been considered above. Additional uncertainty may come from adding the
baseflow component. We assessed these sources of uncertainty using a bootstrap experiment
with NB = 100 SDHs sampling a mean event baseflow index from a normal distribution defined
by a mean and a standard deviation derived from the mean baseflow indices over all catchments.
The normal distribution was used because it was found to fit the baseflow indices over all
catchments well based on the Kolmogorov–Smirnov goodness-of-fit test.

9. Regionalization: The regionalization of the SDHs from gauged to ungauged catchments intro-
duced both model and sampling uncertainty. Brunner et al. (2017b) found that the non-linear
regresssion model boosting was most suitable to regionalize the magnitude of the SDH. However,
they tested models of different categories among which several could be found that performed as
well as the boosting model. Thus, the choice of one regionalization model may have introduced
model uncertainty. This source of uncertainty was assessed by regionalizing the SDH parameters
(best estimates obtained using the standard configuration) using five regionalization methods.
The five models considered were found to have an acceptable performance in the regionalization
of SDHs in the previous study (Brunner et al., 2017b). These were:

• Linear regression: lasso

• Non-linear regression: boosted regression trees (boosting)

• Kriging: universal kriging with catchment area as explanatory variable

• Regional mean: elevation zones

• Formation of homogeneous regions: median parameter set from the five most similar catch-
ments determined using hydrological reasoning.

The sampling uncertainty was assessed using a bootstrap experiment which focused on the most
suitable regionalization method boosting (Brunner et al., 2017b). We sampled with replacement
n = 163 (original sample size) catchments from the catchment set. The boosting model was
fitted for each SDH parameter using the data from the resampled catchment set. The ten SDH
parameters were predicted for the original catchment set using the respective regionalization
model. This procedure was repeated NB = 500 times resulting in a separate distribution for
each SDH parameter in each catchment. These catchment specific distributions were fitted by a
normal distribution since parametric bootstrap is to be preferred over non-parametric bootstrap
(Kysely , 2008). However, the normal distribution did not provide a good fit for the location
and scale parameters of the marginal distributions of peak discharges and hydrograph volumes.
These distributions were found to be bi-modal or skewed in most catchments (roughly 90 %)
and were therefore difficult to represent by a theoretical distribution. For consistency reasons,
we still used the normal distribution to represent the distribution of all SDH parameters in
all catchments. Using a theoretical distribution allowed the dependency between the location
and scale parameter of the marginal distributions for Qp and V to be considered by sampling
from a multivariate normal distribution. This would not have been possible when using the
empirical distributions. The use of a normal distribution instead of the empirical distribution,
however, implied that central values were overrepresented in samples supposed to show skewed
or bi-modal rather than centered distributions. We constructed NB = 500 SDHs for each
catchment randomly sampling the ten SDH parameters from the catchment specific parameter
distributions.

2.2.2 Total uncertainty

On the previous level of complexity of the uncertainty analysis, we considered the effect of each uncer-
tainty source independently of the other uncertainty sources. Here, we combine all these sources and
assess the resulting total uncertainty of the 1) SDH construction and of the 2) SDH regionalization.
However, we did not yet consider here that the constructed SDHs used to fit a regionalization model
are uncertain themselves. That means we considered the regionalization uncertainty independently
of the construction uncertainty at this level of the analysis.
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1. The total uncertainty coming from the SDH construction process was assessed for a return period
of T = 100 years by an "all random" strategy. We use the term "all random" strategy for a
bootstrap simulation in which model choices were not fixed (instead models were also sampled)
and where sampling uncertainty was taken into account. At each step of the construction
procedure, we randomly sampled one option from the model and/or parameter space (see Table
1 for a list of admissible models). The uncertainty sources considered in the "all random"
strategy were all the same as already considered in the assessment of the uncertainty coming
from the individual uncertainty sources (see Section 2.2.1). The procedures applied were also
the same except that the sampling uncertainty due to the dependence modeling (Step 7) was
extended from the Joe copula to the other three suitable copulas. The θs of the Gumbel
and Survival Clayton copulas, as those of the Joe copula, could be described by a lognormal
distribution. However, no theoretical distribution could be found for the θs of the Tawn copula.
Therefore, we used the empirical distribution of the Tawn θs over all catchments. This strategy
was repeated NB = 1000 times to construct 1000 SDHs.

2. The total uncertainty coming from the SDH regionalization was also assessed by a bootstrap
simulation. In each iteration, a regionalization model was first sampled from the model space.
Then, the model was fitted for each SDH parameter using the data from a resampled catchment
dataset (with replacement) to also consider sampling uncertainty. The sample size was kept the
same as the original sample size (i.e., number of catchments n = 163) to not confuse uncertainty
coming from a limited sample size with sampling uncertainty due to not knowing the true
population. However, the resampling with replacement introduced numerical problems (non-
invertible covariance matrix) when using the regionalization model universal kriging. To solve
this problem, we removed redundant stations (approximately one third of the samples) from the
resampled catchment set when the regionalization model universal kriging was sampled in the
first step. The fitted models were then used to make predictions for the SDH parameters of the
catchments in the original catchment set. The bootstrap experiment was repeated NB = 2000
times (determined by a convergence analysis) to construct 2000 regionalized SDHs.

2.2.3 Coupled uncertainty

In the previous step, we assumed that the regionalization uncertainty was independent from the
construction uncertainty. On the third level of complexity, we combined both uncertainty sources
,i.e., the uncertainty in the construction of SDHs with the uncertainty in the regionalization of
SDHs. To this end, the uncertainty of the constructed SDHs of a return period of T = 100 years
was propagated through the regionalization process. We refer to this uncertainty as the coupled
uncertainty of SDHs. To propagate the construction uncertainty, catchment specific distributions of
the ten SDH parameters had to be defined. This was done by running the "all random" strategy
already used for the assessment for the total construction uncertainty NB = 1000 times for each
catchment. This provided 1000 values for each of the ten SDH parameters which were assumed as
the empirical distribution of these parameters within a catchment. For the uncertainty propagation,
we then sampled one value from each of the ten empirical parameter distributions for each catchment
and fitted a randomly sampled regionalization model to the data of a resampled (with replacement)
set of catchments. We then used the fitted model to predict the SDH parameters for the original
catchment set. This procedure was repeated NB = 2000 times. This corresponds to the procedure
already applied when assessing the total regionalization uncertainty. The only difference between the
assessment of the total regionalization uncertainty and the coupled uncertainty assessment was that
in the former the ten parameters in each catchment were fixed whereas in the latter the ten SDH
parameters for each catchment were sampled from catchment specific empirical distributions.

3 Case study

This uncertainty assessment study was performed using 163 Swiss catchments (for a map and a
complete list of the catchments and their catchment characteristics see Brunner et al. (2017b)) with
a wide range of catchment characteristics and flood behaviors. The catchments selected have hourly
flow series of at least 20 years duration ranging up to 53 years. The catchments’ runoff is neither
altered by regulated lakes upstream or inland canals nor by highly urbanized areas. The catchments
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are small to medium-sized (6 to 1800 km2), situated between 300 and 2800 m.a.s.l. with respect to
mean elevation, and have no or only a small percentage of areas with glaciers.

4 Results

4.1 Quantification of uncertainty via median absolute relative error

Each step of the uncertainty analysis provided a set of SDHs that were obtained by varying one or
several model choices and/or considering sampling uncertainty. These sets were compared to the
best estimate SDH obtained when using the standard configuration (i.e., without considering any
uncertainty). To this end, we computed the absolute relative error of each SDH in the set when
compared to the best estimate SDH. We summarized this information for each catchment by taking
the median of the absolute relative errors of all SDHs in the set considered. We refer to this as the
median absolute relative error (EMAR). The median was taken instead of the mean because it puts
relatively little weight on very extreme errors compared to the mean and is therefore more robust.
The EMARs of all catchments together provided information on the variability of the uncertainty
introduced by a certain uncertainty source across catchments. The EMAR was used on all three
levels of complexity of the uncertainty assessment framework. It was computed for four important
hydrograph characteristics: the peak discharge (Qp), the hydrograph volume (V ), the time to peak
(tp), and the half-recession time (tp05). The half-recession time was defined as the time from the
peak to where the hydrograph falls back to 0.5 times the peak discharge. The characteristics Qp and
V describe the magnitude of the event while the characteristics tp and tp05 describe the shape of the
hydrograph.

The results from the three levels of complexity are summarized in Table 2 and presented in the
next few sections.

4.2 Uncertainty due to individual sources

The EMAR due to the individual uncertainty sources belonging to the categories record length, model,
and sampling uncertainty are displayed in Figure 2 for a return period of T = 100 years. The median
uncertainty of the individual uncertainty sources over all catchments ranged between 0% and roughly
30%. We look at each hydrograph characteristic in turn.

The EMAR of Qp was influenced by most sources of uncertainty considered. Among them, the
choice of the marginal distribution of Qp (median across sites EMAR = 20%), the sampling uncertainty
of this distribution (10%), the choice of the sampling strategy (8%), baseflow addition (8%), and the
record length (3%) had the most prominent influence. Other sources of uncertainty, in particular,
the ones related to the shape of the hydrograph, only slightly affected the EMAR of Qp. The EMAR

of V was also affected by most sources of uncertainty. The largest EMAR came from the sampling
uncertainty of the marginal distribution of V (across sites EMAR = 12%), the choice of the sampling
strategy (12%), the choice of the marginal distribution of V (12%), the baseflow separation (11%),
and record length (median 9%). The EMAR of tp was, as the other characteristics, also influenced by
most uncertainty sources. Among them, the choice of the PDF (median across sites EMAR = 27%),
the choice of the sampling strategy (20%), the record length (19%), the RNH definition (16%) had
the largest influence. Similarly, the EMAR of tp05 was most strongly influenced by the record length
(median across sites EMAR = 17%) and the choice of the sampling strategy (17%).

Influence of sampling strategy As shown above, the sampling strategy was one of the uncertainty
sources most strongly affecting the EMAR of all four hydrograph characteristics. We therefore have
a closer look at this source of uncertainty. Each of the four sampling strategies defined its own
flood sample, which formed the basis of the subsequent analysis. The four flood samples were quite
different. On the one hand, they had different sample sizes (POT4 > POT2 > AMQ = AMV ), on the
other hand, they differed in terms of their dependence structure. The sample of the POT4 strategy
was largest and did not reject only four copulas: Joe, Gumbel, Survival Clayton, and Tawn. All these
models were able to model tail dependence which was found to be present in the data according to the
upper tail dependence coefficient (Poulin et al., 2007). The sample of the POT2 strategy was half as
large as the one obtained by the POT4 strategy. The non-rejected copulas for this strategy were, in
most of the catchments: Survival Clayton, Placket, Student, Independence, Joe, Gumbel, and Tawn.
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Table 2: Summary of uncertainties across the three levels of complexity for the four hydrograph characteristics Qp, V , tp, and Qp05. The uncertainties are
provided in the form of the 1st, 2nd, and 3rd quartile of the EMARs over all catchments. The numbers were rounded to two decimal places.

Qp V tp tp05

Uncertainty sources 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Sample size 0 0.03 0.06 0.02 0.09 0.19 0 0.19 0.5 0 0.17 0.45
Sampling strategy 0.05 0.08 0.17 0.08 0.12 0.2 0.11 0.2 0.27 0.11 0.17 0.24
RNH definition 0 0 0 0.01 0.03 0.04 0.07 0.16 0.23 0.01 0.02 0.03
PDF choice 0 0 0 0.03 0.04 0.06 0.24 0.27 0.32 0.04 0.06 0.09
Copula choice 0 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.02 0.01 0.01 0.02
Choice on isoline 0.02 0.03 0.04 0.04 0.05 0.07 0.07 0.09 0.11 0.07 0.09 0.11
Margin Qp 0.12 0.2 0.34 0 0 0 0.09 0.14 0.2 0.09 0.14 0.2
Margin V 0 0 0 0.08 0.12 0.16 0.08 0.12 0.16 0.08 0.12 0.16
Baseflow separation 0.03 0.04 0.06 0.07 0.11 0.16 0.09 0.13 0.21 0.1 0.15 0.2
Baseflow addition 0.06 0.08 0.1 0.06 0.08 0.1 0 0 0 0 0 0
Copula parameter 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01
Margin Qp parameter 0.08 0.1 0.14 0 0 0 0.07 0.1 0.14 0.07 0.1 0.14
Margin V parameter 0 0 0 0.13 0.15 0.19 0.13 0.15 0.19 0.13 0.15 0.19

Total construction 0.21 0.26 0.35 0.28 0.34 0.4 0.41 0.45 0.52 0.37 0.44 0.5

Regionalization model 0.23 0.36 0.63 0.21 0.34 0.76 0.12 0.21 0.34 0.19 0.28 0.41
Regionalization sampling 0.11 0.15 0.2 0.12 0.16 0.22 0.18 0.22 0.3 0.18 0.22 0.3

Total regionalization 0.26 0.4 0.67 0.29 0.43 0.68 0.14 0.25 0.41 0.2 0.3 0.44

Coupled 0.47 0.59 0.94 0.45 0.55 0.66 0.43 0.48 0.54 0.44 0.48 0.53
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Figure 2: Median relative errors within the catchments of four hydrograph characteristics for an
SDH of T = 100 years due to different uncertainty sources. The hydrograph characteristics assessed
were peak discharge (Qp), hydrograph volume (V ), time to peak (tp), and half-recession time (tp05).
The whiskers extend to 1.5 times the interquartile range. Outliers are not displayed, however, their
number among the 163 study catchments is given above the upper whisker of the boxplot.
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Figure 3: NB = 1000 SDHs obtained using the all random strategy for different sampling strategies
for the Birse-Moutier catchment (left panel). SDHs obtained using a peak-over-threshold approach
sampling four events per year on average (POT4) are colored in black, and two events per year on
average (POT2) are colored in grey, SDHs obtained by annual maxima peak sampling (AMQ) are
depicted in red and those obtained by annual maxima volume sampling (AMV ) in orange. The best
estimate SDH constructed using observed runoff data is given in green. The density of peak discharges
is given in the right panel. Peaks are colored as in the left panel.

The sampling strategy AMQ led to quite a small sample size and almost all of the copulas tested,
including the independence copula, were non-rejected. The sampling strategy AMV also led to a small
sample and non-rejected the Survival Clayton, t-EV, normal, Frank, and Gumbel copulas in most of
the catchments. The dependence between Qp and V assessed via the three correlation coefficients
Pearson, Spearman, and Kendall was highest for the strategy AMV and was comparable for the other
three sampling strategies. The characteristics of the flood sample influenced the estimated SDHs,
which is shown in Figure 3 for an example catchment. It shows that design hydrograph estimates
derived based on the AMV sample had generally a smaller magnitude than the estimates derived
based on the flood samples obtained by the other strategies. Design flood estimates with very high
peaks are mainly related to the sampling strategies POT2 and POT4.

Regionalization uncertainty Model and parameter choices both introduced uncertainty to the
regionalized SDHs (see Figure 5). All four hydrograph characteristics were more affected by model
uncertainty than by sampling uncertainty. The median EMAR across all catchments related to model
uncertainty lay around 30% for all hydrograph characteristics, while the median EMAR related to
sampling uncertainty was roughly 15% for peak discharges and hydrograph volumes and 20% for the
characteristics related to the shape of the hydrograph. The characteristics describing the hydrograph
shape (tp and tp05) were more affected by sampling uncertainty than the characteristics describing
the hydrograph magnitude (Qp and V ).

4.3 Total uncertainty

Construction uncertainty The EMAR of the total construction uncertainty for the four hydro-
graph characteristics (for T = 100 years) was larger than each of the individual uncertainty sources
(Figure 2), as we had expected. The largest median EMAR (45%) over all catchments was found for the
hydrograph characteristics related to the shape of the hydrograph (tp and tp05) with an inter-quantile
range of 40% to 50%. The smallest median EMAR was found for Qp (25%) with an interquartile
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range spanning from 20% to 35%. The median EMAR of V over all catchments was 35% and the
interquartile range spanned from 30% to 40%.

The SDHs obtained by the "all random" strategy are displayed in Figure 4 for three exam-
ple catchments of different size: Langete-Huttwil (60 km2), Mentue-Yvonand (105 km2), and Birs-
Münchenstein (911 km2). The 90% confidence interval includes the best estimate SDH.

Regionalization uncertainty The EMAR of the total regionalization uncertainty for the four
hydrograph characteristics assessed for T = 100 years was as expected larger than the separate
sampling and model uncertainties (Figure 5) even though the interquartile ranges are quite similar
as those of the model uncertainties. The largest median EMAR (40%) over all catchments was found
for the hydrograph characteristics related to the magnitude of the hydrograph (Qp and V ) with an
interquantile range of 25% to 65% and 30% to 70% respectively. The median EMAR was lowest for
tp (25%) with an interquartile range spanning from 15% to 40%. The median EMAR of tp05 was 30%
and the interquartile range spanned from 20% to 45%.

4.4 Coupled uncertainty

The median EMAR of the four catchment characteristics Qp, V , tp, and tp05 assessed via the coupled
uncertainty strategy lay around 50% when looking at the median over all catchments (Figure 6).
It was slightly lower for the characteristics related to the shape of the hydrograph than for those
related to the magnitude. The EMAR of the characteristics related to the magnitude showed a higher
variability across the catchments. This variability was most pronounced for Qp.

5 Discussion

5.1 Uncertainty due to individual uncertainty sources

5.1.1 Record length

We showed that the record length is a major source of uncertainty in design hydrograph construction
for all four hydrograph characteristics considered. Serinaldi (2013) stated that many joint distribu-
tions and copulas can be fitted to small samples because goodness-of-fit tests cannot discriminate
between alternative models due to the lack of power. An increase in the length of relatively short
samples could noticeably reduce the uncertainty of design variable quantiles (Botto et al., 2016) and
therefore, as shown in our study, the uncertainty of the whole design hydrograph. The problem of
a limited sample size could for practical applications be partially overcome by temporal, spatial, or
causal information expansion. Historical floods could be introduced to expand information in time,
data from neighboring or similar stations could be used to expand data in space, and runoff processes
could be considered for causal information expansion (Blöschl et al., 2013).

5.1.2 Sampling strategy

Another major uncertainty source for all four studied hydrograph characteristics was the choice of
the sampling strategy. It directly influences the sample size and the characteristics of the flood
sample. In most catchments, the flood sample chosen by the strategy AMV was characterized by
lower peak discharges than the flood samples determined by the strategies POT4 and AMQ. This is
the case because a high volume is not always related to a high peak discharge for all floods. Brunner
et al. (2017a) have shown that the dependence between Qp and V is rather small for specific short
duration flood-types such as flash floods and short-rain floods compared to long-rain floods (Merz and
Blöschl , 2003; Sikorska et al., 2015). From a safety point of view, the choice of the strategy POT4

seems to be judicious since the magnitude of the SDHs is not underestimated compared to the other
strategies. The choice of the sampling strategy also influences the choice of a suitable copula. The
sampling strategies leading to a small sample size (AMQ and AMV ) make the choice of a suitable
copula inconclusive. Almost all copulas tested were not rejected because of the small power of the
goodness-of-fit test in the case of small sample sizes (Cullen and Frey , 1999; Genest et al., 2009). On
the contrary, the choice of a sampling strategy with a larger sample size (POT4) is quite conclusive
since only a few copulas are non-rejected. The choice of the sampling strategy POT4 therefore seems
to be a suitable choice for the estimation of SDHs.
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Figure 4: Total uncertainty of SDH construction assessed via the all random strategy for three catch-
ments of different size: Langete-Huttwil (60km2), Mentue-Yvonand (105km2), and Birs-Münchenstein
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5.1.3 Model uncertainty

Besides record length and sampling strategy, various other uncertainty sources influenced the four
analyzed characteristics of a design hydrograph. The magnitude of the event was largely influenced
by the choice of the marginal distributions for peak discharges and hydrograph volumes and their
corresponding sampling uncertainty. Still, modelers are faced with the problem of determining one
model to be applied to a catchment for a particular modeling task (Marshall et al., 2005; Ajami
et al., 2007; Kuczera et al., 2010). Beven and Hall (2014) and Kite (1975) stated that the choice
of one out of several models that are not rejected by statistical goodness-of-fit tests might not be
straightforward but does not matter in the range of the observed data. However, the choice of one
model over another might matter a lot when extrapolating beyond the range of the data (Hosking
and Wallis, 1997). Sampling uncertainty related to the estimation of the parameters of the marginal
distributions has been found to be important in univariate (Lamb and Kay , 2004; Hailegeorgis and
Alfredsen, 2017) and in bivariate quantile estimation (Serinaldi , 2013; Dung et al., 2015). Unlike
Serinaldi (2009), we did not find that model uncertainty is smaller than sampling uncertainty. The
relative contribution of error due to model choice and sampling error most likely depends again on the
record length. For large samples, the standard deviation of the estimate becomes small in comparison
to the bias caused by the wrong distribution choice (Strupczewski et al., 2002).

The magnitude of the flood event is only slightly affected by the choice of one of the non-rejected
copulas. This is in accordance with findings by Xu et al. (2010) who found that the uncertainty
originating from method selection was largest and the uncertainty caused by ignoring the dependence
was smallest. However, this might be different if one is interested in estimates for higher return
periods, where the ability of a copula to correctly describe the tail dependence in the data might be
crucial (Poulin et al., 2007). Our results highlight the importance of a sufficiently large sample as
obtained by POT4 compared to the annual maxima sampling strategies. The choice of a larger sample
narrows down the number of admissible copulas. It prevents from having to choose a dependence
structure based on a goodness-of-fit test with limited power when several probabilistic models cannot
be rejected despite their poor fit to the data with the limited size of an annual maxima sample (Cullen
and Frey , 1999). The uncertainty related to the choice of a design event on the isoline of equally likely
events is also rather small compared to the other uncertainty sources considered. This is important
since this uncertainty source depends on model selection and not on the sample size and is therefore
irreducible.

Contrary to the magnitude, the characteristics related to the hydrograph shape were more influ-
enced by the definition of the representative normalized hydrograph and the choice of a probability
density function to model the shape of the hydrograph. The importance of the different uncertainty
sources differed for the four hydrograph characteristics. Consequently, it is important to consider
both uncertainty sources related to the magnitude of the event and sources related to the shape of
the event when assessing the uncertainty of a design hydrograph.

5.1.4 Regionalization method

The relative importance of model and sampling uncertainty due to regionalization differed for the
hydrograph characteristics related to the flood magnitude (Qp and V ) and those related to the
hydrograph shape (tp and tp05). Model uncertainty was higher than sampling uncertainty for most
hydrograph characteristics. However, sampling uncertainty seemed to be quite important in the
regionalization of the hydrograph shape.

5.2 Total uncertainty

The total uncertainty of constructed hydrographs was higher than each of the individual uncertainty
sources considered. However, it was lower than the sum of all the individual uncertainty sources. In
the case of regionalization, the spread of the EMARs referring to model uncertainty were comparable
to those referring to total uncertainty. This implies that model uncertainty alone introduces a lot
of uncertainty to SDH regionalization and the effect of sampling uncertainty is negligible. The non-
additive property of individual uncertainty sources highlights the need of considering all sources
jointly when the total uncertainty is of interest. A simple adding of individual sources would result
in highly overestimated and unrealistic uncertainties. The assessment of individual sources may be
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thus only used to compare their relative contributions and to indicate which uncertainty part could
be reduced with the highest benefit.

5.3 Coupled uncertainty

The coupled SDH uncertainty considering construction and regionalization uncertainty amounted to
a bit more than 50% depending on the hydrograph characteristic considered. It was slightly higher
for the hydrograph characteristics related to the magnitude of the event when looking at a return
period of T = 100 years. For lower return periods, it would most likely be the other way around
since it would be in the interpolation range of the bivariate extreme value distribution rather than
the extrapolation range. The higher uncertainty for magnitude-related hydrograph characteristics
compared well with the total uncertainties obtained for the regionalization. On the contrary, the
total uncertainty of the constructed SDHs was higher for the hydrograph characteristics related to
the hydrograph shape than for those related to the hydrograph magnitude. The coupled uncertainty
was slightly higher than the total uncertainty in gauged catchments. This suggests that already SDH
construction contributes a big part of the uncertainty and regionalization just adds a little uncertainty.
Yet, these two uncertainty sources are not necessarily additive. The coupled uncertainty was lower
than the sum of the total construction and the total regionalization uncertainty which implies that
these have to be considered jointly, as it was done here, to get realistic uncertainty bands.

5.4 Value of the proposed uncertainty framework

The three level uncertainty framework proposed here allows the quantification of the uncertainty of
synthetic design hydrographs as they would be provided to engineers or practitioners. It is therefore
the first step towards communicating the uncertainty of design estimates to practitioners. SDHs
complemented with uncertainty bands allow more informed decisions than using SDHs without un-
certainty information (Hall , 2003). These simulation results obtained could be provided to the prac-
titioner as a set of values comprising the best estimate, the first and third quantile of the simulation
results and the maximum simulated SDH. Depending on the question of interest, the practitioner
could choose the value to work with. If safety is crucial, a more conservative estimate could be used.
If cost-efficiency is crucial, a smaller estimate could be chosen. Ideally, an ensemble-based approach
could be adopted. An uncertainty assessment based on three levels of complexity further points out
which individual uncertainty sources and which steps in the analysis offer the largest potential for
improvement. This information can be used to decide which avenues to take for future research or
in depth analysis. Our results suggest that uncertainty could be successively reduced if more data
became available or by using alternative data.

We have also shown that the choice of a flood sampling strategy is quite an important source of
uncertainty. We showed that using an annual maxima sampling strategy might neglect important
information. Singh et al. (2005) also found that floods within a year may not be adequately repre-
sented by their maximum and suggested the use of two independent subpopulations: snowfall and
rainfall generated floods. Such a conscious selection of more than one flood event per year might be an
alternative to the selection of flood events using a peak-over-threshold approach without considering
flood generating mechanisms. A subdivision into floods generated by different processes, as proposed
by Sikorska et al. (2015) and Merz and Blöschl (2003) would further allow for a representation of
different phenomena by different statistical distributions (Shu and Ouarda, 2008). Working with
subpopulations would also allow the representation of different hydrograph shapes within a catch-
ment. This would give a better impression of hydrograph shape variability within a catchment due
to different processes and to different rainfall inputs than working with only one catchment specific
hydrograph shape. The construction of flood type specific hydrographs as proposed by Brunner et al.
(2017a) goes into this direction.

5.5 Limitations and Perspectives

The uncertainty assessment framework proposed here is generally applicable to any return period
of interest. However, several choices need to be made dependent on the dataset: the choice of a
set of distribution functions to fit the peak discharges and hydrograph volumes, the choice of a set
of suitable copula models to model the dependence between these two variables, and the choice of
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a set of PDFs to model the hydrograph shapes to be sampled from the simulations. Conducting a
simulation study on several catchments is computationally quite expensive, however, such an analysis
is usually only done once.

The uncertainty analysis presented here considered most uncertainty sources affecting synthetic
design hydrographs. One possibly important uncertainty source was not considered here: observa-
tional uncertainty due to measurement errors and due to the conversion of water level to discharge
via a rating curve approach. The findings on the importance of this source of uncertainty differ quite
a bit between various authors. Apel et al. (2004) showed that the stage-discharge relationships are
relatively less important in the uncertainty analysis while Kundzewicz (2002) claimed that uncer-
tainty resulting from the need to extrapolate the rating curve to extreme values, where no direct
runoff measurements exist, was considerable. We did not consider this uncertainty source because
the uncertainty of the rating curve was not known for the whole set of catchments. Therefore, it
could not be incorporated into the uncertainty assessment framework proposed here. Still, rating
curve uncertainty might be substantial especially when looking at extreme events (Di Baldassarre
and Montanari , 2009) as it will propagate through the whole SDH construction process. In addition,
the uncertainty due to the rating curve is catchment dependent and information on this uncertainty
is often limited and case-specific (Di Baldassarre and Montanari , 2009; Sikorska et al., 2013), which
makes the generalization of the rating curve uncertainty difficult. The effect of the rating curve
uncertainty could therefore be potentially assessed only for a few catchments in our dataset where
enough information on the rating curve and its uncertainty is available.

6 Conclusions

Synthetic design hydrographs are inherently uncertain. They are affected by various uncertainty
sources comprising a limited record length, model, and sampling uncertainties. This uncertainty
needs to be assessed and communicated to the practitioner to ensure reliable flood estimates. In this
work, we proposed a framework for assessing the uncertainty of such synthetic design hydrographs
which consists of three levels of complexity using an extensive set of 163 Swiss catchments. First,
we assessed the influence of individual sources of uncertainty on the estimation of synthetic design
hydrographs. Second, we quantified the total uncertainty of constructed and regionalized synthetic
design hydrographs considered separately. Third, we quantified the coupled uncertainty of a regional-
ized hydrograph when considering that already constructed hydrographs are uncertain. We identified
the record length and the choice of the sampling strategy as having the strongest effect on the un-
certainty of a synthetic design hydrograph characterized by peak discharge, hydrograph volume, and
hydrograph shape. The magnitude of the design hydrograph was further strongly affected by the
choice of the marginal distributions for peak discharges and hydrograph volumes. The shape of the
hydrograph, however, was more affected by the definition of a representative hydrograph shape, the
choice of the probability density function used to model this shape, and baseflow separation. The
total uncertainty of design hydrographs constructed based on observed runoff data differed between
the catchments analyzed and had a median of roughly 25% for Qp, 35% for V , 45% for tp and tp05.
The median EMARs for hydrographs obtained by regionalization assuming that the data used for
regionalization (constructed hydrographs) is known lie around 40% for Qp and V , around 25% for
tp and around 30% for tp05. The coupled uncertainty of synthetic design hydrographs for ungauged
catchments lay around 50% but differed quite a bit between catchments especially in terms of peak
discharges. We also demonstrated that the uncertainty framework provides insights into promising
avenues for future research. The uncertainty of synthetic design hydrographs could be most effec-
tively reduced by enlarging the sample size by successively collecting more data or by considering
alternative information such as historical flood data or regional data. Alternatively, we could aim at
more adequately describing the variability of hydrograph types. Flood estimates complemented with
uncertainty bands computed via the uncertainty assessment framework proposed in this study should
allow the engineer to make profound decisions based on a cost-benefit analysis.
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Abstract

Flood hydrograph shapes contain valuable information on the flood-generation mechanisms
of a catchment. To make good use of this information, we express flood hydrograph shapes as
continuous functions using a functional data approach. We propose a clustering approach based
on functional data for flood hydrograph shapes to identify a set of representative hydrograph
shapes on a catchment scale and use these catchment-specific sets of representative hydrographs
to establish regions of catchments with similar flood reactivity on a regional scale. We applied
this approach to flood samples of 163 medium-size Swiss catchments. The results indicate that
three representative hydrograph shapes sufficiently describe the hydrograph shape variability
within a catchment and therefore can be used as a proxy for the flood behavior of a catchment.
These catchment-specific sets of three hydrographs were used to group the catchments into three
reactivity regions of similar flood behavior. These regions were not only characterized by similar
hydrograph shapes and reactivity but also by event magnitudes and triggering event conditions.
We envision these regions to be useful in regionalization studies, regional flood frequency analyses,
and to allow for the construction of synthetic design hydrographs in ungauged catchments. The
clustering approach based on functional data which establishes these regions is very flexible and
has the potential to be extended to other geographical regions or towards the use in climate
impact studies.
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1 Introduction

Hydrological processes vary widely from one environment to the next (McDonnell and Woods, 2004),
which causes distinct flood responses (Merz and Blöschl , 2009). It is often useful to reduce this
variability by grouping catchments with similar governing processes. The establishment of regions
which are similar in terms of their flood behavior is challenging but is an important first step in
regionalization studies (Prinzio et al., 2011; Blöschl et al., 2013) and regional flood frequency analyses
that allow for the estimation of flood frequencies in ungauged catchments (Hosking and Wallis, 1997).
The often-used index flood method (Dalrymple, 1960), for instance, is based on regions consisting of
hydrologically similar catchments. It uses information from sites within a given region to estimate the
magnitude of extreme events corresponding to a predefined return period at a target site (Requena
et al., 2017). Similarity measures typically used to delineate regions of similar hydrological behavior
are physiographical (e.g. catchment area or altitude), climatological (e.g. daily rainfall statistics),
and/or hydrological (e.g. mean daily flow) characteristics (see Ali et al. (2012) for an overview on
variables used in previous studies). Preferably, such regions are established using physiographical
or climatological catchment characteristics since these are also available for ungauged catchments
(Acreman and Sinclair , 1986; Hosking and Wallis, 1997; Ilorme and Griffis, 2013), which enables
the attribution of an ungauged catchments to an existing region. However, physiographical and
climatological catchment similarity do not often correspond to hydrological similarity (Oudin et al.,
2010; Ali et al., 2012) and even less to similarity in the flood behavior of a catchment (Merz and
Blöschl , 2009). Therefore, hydrologically similar regions are often delineated based on hydrological
catchment characteristics or runoff signatures (Burn and Boorman, 1992), such as the median daily
flow, annual runoff coefficient, slope of the flow duration curve (Boscarello et al., 2016), seasonality
indices (Castellarin et al., 2001), monthly Pardé coefficients (Hailegeorgis and Alfredsen, 2017), or
statistical measures which reflect the shape of the flood distribution (Hosking and Wallis, 1997). The
latter characteristics usually focus on flood peaks and reflect only a part of the flood behavior of
a catchment. The focus on flood peaks neglects other hydrograph characteristics such as volume
and shape, which are equally important for many flood risk management tasks, especially for those
involving storage (Pilgrim, 1986; Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall ,
2012), and potentially provide crucial information on the flood behavior of a catchment. These
hydrograph characteristics could be useful for the identification of regions similar in terms of their
flood behavior since the hydrograph integrates temporal and spatial variations in water input, storage,
and water processes within a catchment (Hannah et al., 2000). The goal of this study is to employ
the information integrated in hydrograph shapes for the identification of regions with a similar flood
behavior. We propose a catchment clustering scheme consisting of two steps that accounts for different
flood mechanisms acting within a catchment. Clustering is often used as an exploratory tool to
identify distinct groups so that the observations within each group are similar to each other while
observations in different groups are different from each other (James et al., 2013). The clusters
resulting from applying a cluster algorithm can not be validated directly but indirectly by their
interpretability and usefulness (Webster and Oliver , 2007). The first step in the clustering scheme is
the identification of representative hydrograph shapes using observed flood event hydrograph shapes.
The term representative is used for shapes that describe the hydrograph shape variability and potential
flood responses or causative mechanisms within a catchment. Compared to existing flood process
classification schemes, such as the one proposed by Merz and Blöschl (2003), no meteorological
information in addition to the streamflow data is used to identify different flood event types. The
second step in the clustering scheme identifies regions of catchments with a similar flood reactivity by
clustering the catchment-specific sets of representative hydrograph shapes obtained in the first step.

The approach is based on the clustering of hydrograph shapes represented as functional data (FD).
In contrast to classical multivariate data, FD is continuously defined and does not depend on the
choice of several hydrograph characteristics, such as peak discharge, hydrograph volume, duration, or
a few parameters representing the shape of a hydrograph (Yue et al., 2002), but instead uses the whole
information stored in the hydrograph (Chebana et al., 2012). FD analysis is more general, flexible,
and representative of the real hydrological phenomena than classical multidimensional analysis and
avoids the subjective choice of a set of hydrograph characteristics (Ternynck et al., 2016). FD are
conceptually defined in a continuous framework. In practice however, they are usually observed at
discrete points in time and stored in a finite-dimensional way. Hydrographs can be considered as
FD since they fulfill this criterion. The first step in FD analysis is often the reconstruction of the
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functional form of data from discrete observations (see Figure 1 for an illustration). Most commonly,
this is done by considering the data as part of a finite dimensional space spanned by some basis
functions. Alternatively, the data can be smoothed non-parametrically (Jacques and Preda, 2014).
This allows the representation of an individual functional datum as a continuous function rather
than as its values at particular points (Ramsay and Silverman, 2002). It has been shown in previous

Q(t) = a1 + a2 a3 a4+ +

Q

t

Q(t)

t

Discrete 

observations
Representation by 

set of basis functions

Functional representa-

tion of hydrograph
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Figure 1: Getting from discrete measurements (1) to a functional representation of a hydrograph (3)
by representing the data by a set of basis functions (2).

studies that the FD framework can be beneficial in the identification of groups of similar hydrographs
over a range of temporal scales, such as yearly hydrographs (Merleau et al., 2007; Jamaludin, 2016),
spring flood events (duration of six months) (Ternynck et al., 2016), and diurnal discharges (duration
of one day) (Hannah et al., 2000).

In this study, we adapt the FD framework to cluster flood event hydrograph shapes (duration of
three days) to identify catchment specific sets of hydrograph shapes and use these sets to establish
homogeneous regions in terms of flood reactivity. Well-known clustering algorithms such as hier-
archical and k-means algorithms can be adapted to the case of FD (Cuevas, 2014). Jacques and
Preda (2014) grouped the major approaches into four categories: 1) raw data clustering, 2) two-stage
approaches which first reduce the dimension of the data and second perform clustering, 3) nonpara-
metric clustering approaches, and 4) model-based clustering approaches. An initial analysis, where
each of these method categories was tested, showed that two-stage approaches were most suitable to
cluster hydrographs since they resulted in meaningful clusters. We therefore focused on this type of
methods.

2 Data

2.1 Study catchments

This study was performed using runoff data from 163 Swiss catchments (see Figure 2) with a wide
range of catchment characteristics and flood behaviors. The selected catchments have hourly flow
series of at least 20 years in duration and ranging up to 53 years. The catchments’ runoff is nei-
ther significantly altered by regulated lakes upstream or inland canals nor by urbanized areas or
hydropower. The catchments are small to medium-size (6 to 1800 km2), situated between 400 and
2600 m.a.s.l. (mean elevation), and either have no or only small areas with glaciers. The catchment
set covers a wide range of runoff regimes and catchment characteristics and is therefore well suited
for illustrating the proposed approach.

2.2 Flood events

The basis for the functional hydrograph analysis was samples of flood events extracted from the
runoff time series of the 163 study catchments. To sample flood events, we used a peak-over-threshold
approach based on the procedure proposed by Lang et al. (1999). The threshold for the peak discharge
was chosen iteratively to fulfill a target condition of four events per year on average which is a
trade-off between maximizing the information content in the sample and keeping the assumption of
independence between events. For each of these events, sampled according to the flood peaks, the
flood volume and hydrograph were determined over a fixed event window of 72 h. Flood events
that ended in a secondary peak were removed automatically from the dataset to ensure that events
triggered by two independent convective precipitation events were not considered as one event. The
baseflow was separated from the direct flow using a recursive digital filter (Eckhardt , 2005). The
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Figure 3: Illustration of the clustering framework. The data input and output for the models are
indicated for the two different parts: 1) hydrograph shape clustering, 2) catchment clustering. Hy-
drograph shape clustering is done on the catchment scale and catchment clustering on the regional
scale.

function of time. The normalized hydrographs were projected on a set of basis functions to represent
them as FD in a simple and low-dimensional framework. A basis function system is a set of known
orthogonal functions. Any function can be approximated arbitrarily well by a weighted sum or by
a linear combination of a sufficiently large number of functions out of such a set of basis functions.
Spline functions are the most common choice of basis functions for non-periodic FD. We used a set of
B-spline functions (Data2fd from fda package in R (Ramsay et al., 2014)) as basis functions because
they are able to mimic the main characteristics of hydrograph shapes (Abraham et al., 2003). A
(smoothing) spline function is determined by the order of the polynomial segments and the number
and placement of knots. The number of knots determines the ability of spline functions to represent
sharp features in a curve and the knots can be placed such that they are denser in areas with stronger
variations than in smooth areas (Höllig and Hörner , 2013). Increasing the number of splines does
not always improve the fit to the data because the functional space defined by n basis or B-splines is
not necessarily contained within the one defined by (n+1) B-splines (Ramsay and Silverman, 2005).
We chose a set of four B-splines of order four (Figure 4). B-splines of order four were sufficiently
flexible to represent the hydrograph shapes under study. We did not go beyond this number to avoid
unnecessary complexity. Similarly, an increase of the number of basis functions above four did not
further improve the representation of hydrograph shapes as FD. We then computed the coefficients
for each of the normalized hydrographs for the four B-Spline bases.

The set of four coefficients per hydrograph shape was used as an input for the cluster analysis.
The coefficient sets were clustered using the classical k-means algorithm. We applied the algorithm
for k = 2 up to k = 6 number of clusters. The resulting clusters were assessed graphically for their
suitability to represent the main part of the hydrograph shape variability within a catchment. In
addition to this graphical assessment, we computed the silhouette widths over all catchments and
hydrograph shapes (Rousseeuw , 1987) for different numbers of clusters. The silhouette width shows
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Figure 4: Four B-splines of order four used for the representation of hydrograph shapes as FD.

which hydrograph shapes lie well within their clusters and which ones lie in between clusters. The
overall silhouette width provides an evaluation of clustering validity. Three clusters were found to
represent hydrograph shape variability well and increasing the number of clusters did not further
improve this representation (i.e., clusters with very few hydrograph shapes were built) and led to a
decrease in the overall silhouette width. We decided to fix the number of clusters to three for all
catchments since this allowed for their comparison across different catchments. Three clusters were
a compromise between over representing hydrograph shape variability in catchments with a rather
low variability and under representing variability in catchments with a rather high shape variability.
Each of the three clusters consisted of a set of similar hydrograph shapes, which was summarized by
their median hydrograph. We used the h-mode depth to order the hydrographs in the sample and
to identify the median hydrograph within the set of similar hydrographs (Cuevas et al., 2007). The
concept of data depth aims at measuring the centrality of a given curve (in our case, the hydrographs)
within a group of curves and can be used to define the ranks of functional data (Fraiman and Muniz ,
2001) and therewith robust estimators of a location parameter such as the median or the trimmed
mean. The median hydrograph identified using the h-mode depth is actually an observed hydrograph,
which would not be the case if the median hydrograph was defined by the median flow observation
at each time step. The three resulting median hydrographs (one for each cluster) were said to
be representative of the hydrograph shapes within the catchment. They were ranked according to
their increasing time to peak to order them according to their reaction time, and were called fast,
intermediate, and slow shape, respectively. The set of these three representative hydrograph shapes
was used, in the following step, to describe the general flood behavior of a catchment. This set
represents the variability in observed hydrograph shapes and, in the remainder of this paper, we will
refer to the three representative hydrograph shapes composing it as the fast, intermediate, and slow
event types.

3.2 Establishment of regions with similar flood behaviors

The second part of this analysis focused on the regional scale to identify regions of catchments with
a similar flood behavior in terms of their three representative hydrograph shapes (fast, intermediate,
and slow). While these representative hydrograph shapes are quite distinct in most catchments, there
are catchments where they are quite similar and a distinction between three shapes is not appropriate.
The identification of regions with a similar flood behavior therefore consisted of two steps: 1) the
identification of a region of catchments with a uniform flood reaction and 2) the identification of
regions with similar flood reactions among the remaining catchments. The second step focused on
clustering the catchments according to their three representative hydrograph shapes.

1. Identification of a region with a uniform flood reaction: We first identified catchments
where the three representative hydrograph shapes were similar. These catchments were said to
exhibit a uniform flood reaction and together built the region of uniformly reactive catchments.
To identify the uniformly reactive catchments, we looked at the time to peak of the median
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hydrographs of the clusters obtained in the first part of the analysis. We computed the sum
of the differences between the time to peak of the three representative hydrographs. The sum
of the differences was found to be small in the catchments where the three hydrograph shapes
were not very distinct. The threshold for the sum of the differences separating the uniformly
reactive from the remaining catchments was set to a threshold of five based on visual inspection
i.e., an assessment of the similarity of three representative hydrograph shapes and the sum of
differences between their times to peak. The threshold was set such that catchments where all
three shapes were similar were said to be uniformly reactive and those where shapes started
to differ were said to be non-uniformly reactive. The uniformly reactive catchments built their
own region and were characterized by only one representative hydrograph shape.

2. Identification of regions with similar flood reactions: In most catchments, the hydro-
graph shape variability could only be well represented by three hydrograph shapes: a fast, an
intermediate, and a slow hydrograph. However, a fast hydrograph in one catchment was not
necessarily a fast hydrograph in another catchment. Contrarily, catchments showed differences
in their general runoff reaction time. To identify regions of catchments with a similar reac-
tivity, we applied clustering to their sets of representative hydrograph shapes. Catchments
with similar sets of representative hydrograph shapes were said to be of similar reactivity and
similar climate conditions. Working with normalized shapes allowed for the identification of
catchments with a similar reactivity independent of their catchment size. For the clustering,
the three representative hydrographs per catchment were again expressed as FD and we again
computed coefficients for four B-splines of order four. Similar to Step 1, neither increasing the
number of spline bases nor their order further improved the clustering results, which was also
confirmed by the overall silhouette width. The four coefficients for each of the representative
hydrograph shapes were stacked together to form a vector of 4×3 = 12 coefficients. We applied
hierarchical clustering instead of k-means clustering to allow for non-elliptical clusters (Gordon,
1999). As an objective function, we used Ward’s minimum variance criterion, which minimizes
the total within-cluster variance (Ward , 1963). The hierarchical clustering tree was symmetri-
cal which suggested cuts at either k = 2 or k = 4. We found that two clusters were sufficient
to distinguish catchments with a generally fast reaction (quickly responding fast, intermediate,
and slow events) from catchments with a generally slow reaction (delayed fast, intermediate,
and slow events). This was confirmed by the overall silhouette width which was highest for
k = 2 and decreased with an increase of the number of clusters.

This second part of the analysis divided the study domain into three regions with a similar reactivity,
which we herein refer to as reactivity regions. A region where catchments showed a fast reaction to
rainfall events, a region where catchments showed a slow reaction to rainfall events, and a region
where catchments were characterized by a relatively uniform reaction to precipitation events.

3.3 Event condition analysis

The hydrograph clustering approaches proposed in this study first divided the events observed in a
catchment into three event types and second, divided the catchments into three regions of similar
reactivity based on hydrograph shapes, without considering event magnitudes or pre-event conditions.
A direct validation of the results is neither possible for the event type clusters nor the reactivity regions
since a cluster analysis is exploratory (James et al., 2013) and the "true" cluster memberships are
not known. The validity of clusters was therefore indirectly assessed by their suitability to form
meaningful clusters in relation to hydro-meteorological conditions. Event types might be distinct in
their triggering precipitation or antecedent wetness conditions. We looked at the precipitation events
triggering the individual flood events and at their antecedent wetness conditions to investigate the
link between event type, region, and event conditions. Event precipitation and antecedent wetness
were computed using hourly gridded precipitation data. We used the grid-data product CombiPrecip
provided by MeteoSwiss (2013), which was computed using a geostatistical approach combining rain-
gauge measurements and radar estimates and is available from the year 2005 at a spatial resolution
of 1 km. Continuous precipitation time series from 2005 to 2014 were obtained for each catchment by
simply averaging the precipitation of the individual grid-cells lying within the catchment. These time
series were used to compute the current precipitation index (ICP), which reflects the current catchment
wetness. It is defined as a continuous function of precipitation, which accumulates on rainy days and
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exponentially decays during the periods of no rainfall with a recession coefficient of 0.9 (Smakhtin and
Masse, 2000). We then defined the antecedent wetness condition prior to a flood event as the ICP

at the beginning of the event. The time series were also used to compute two characteristics related
to the event triggering precipitation: total precipitation amount and maximum hourly precipitation
intensity. The precipitation data related to the sampled flood events was defined over a window of
a maximum of 84 hours starting 12 hours before the onset of the flood event and ending with the
flood event. The three characteristics, antecedent wetness, total event precipitation, and maximum
hourly event precipitation, were used to analyze differences in the triggering mechanisms of flood
events belonging to the three different event types occurring in the three regions with similar flood
behavior.

4 Results

4.1 Identification of representative hydrograph shapes

The identification of clusters of representative hydrograph shapes within a catchment was based on
a functional representation of the hydrograph shapes with respect to four B-Spline basis functions.
The coefficients of these B-splines allowed for the separation of fast, intermediate, and slow events
within a catchment (see Figure 5 showing the Langete-Huttwil as an example catchment). The fast
events were characterized by rather steep rising and falling limbs of the hydrographs. Intermediate
events typically also showed quite steep rising limbs while the falling limbs were less steep than the
ones observed for the fast events. Slow events were typically characterized by both elongated rising
and falling limbs. The fast events were clearly related to a season of occurrence, namely, summer
(red curves in the upper panel of Figure 5) while intermediate and slow events occurred throughout
the seasons. The clusters established via the hydrograph shape also had a meaning in terms of
event magnitude even though they have been established based on the normalized hydrograph shape
information only (see the boxplots of peak discharges and hydrograph volumes in the lower panel of
Figure 5). Events in the fast event cluster were generally characterized by high peak discharges but
low hydrograph volumes while events in the slow event cluster showed high volumes but low peak
discharges. The magnitudes of intermediate events lay in between those of the fast and slow events.
This general pattern was visible in most catchments of the dataset even though it was not always as
clear as in the case of the Langete-Huttwil catchment (Figure 5).

The three median hydrographs of the fast, intermediate, and slow event clusters together built
the catchment-specific set of representative hydrograph shapes (see Figure 6 for three examples).
While this set consisted of three distinct hydrograph shapes in most catchments, one hydrograph
was per definition (see Section 3.2) sufficient to describe the runoff reaction in the uniformly reactive
catchments (see Figure 6C representing the Birs-Münchenstein). On the contrary, the remaining
catchments showed different types of runoff reactions. However, a fast hydrograph in one catchment
(e.g. Figure 6B representing Arbogne-Avenches) would rather represent a slow hydrograph in another
catchment (e.g. Figure 6A illustrating Alp-Einsiedeln). We concluded that catchments can be gen-
erally characterized by different event-reaction times since fast, intermediate, and slow hydrographs
looked differently in different catchments.

4.2 Establishment of regions with similar flood behaviors

The catchment-specific sets of representative hydrograph shapes were used to establish regions with
similar flood behaviors. The 11 catchments with a set of very similar hydrograph shapes were said to
belong to a uniformly reactive cluster (see Figure 7C). The remaining catchments were then used to
establish regions of catchments with similar flood behaviors. The clustering of the catchment-specific
event sets resulted in two clusters with distinct flood-event reaction-times: 71 quickly reactive catch-
ments (see Figure 7A) and 81 slowly reactive catchments (see Figure 7B). The quickly reactive
catchments were mainly located in the Swiss Plateau, slowly reactive catchments in the Jura moun-
tains, the Alpine region, and the Swiss Plateau, and uniformly reactive catchments mainly in the
Jura mountains.

At a regional level, catchment-specific sets of representative hydrographs were distinct between
catchments of a generally quick and a generally slow flood runoff reaction. The B-spline coefficients
of these catchment-specific sets indicated which hydrograph features were important in distinguishing
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Figure 5: Three clusters of hydrograph shapes for the Langete-Huttwil catchment. The events be-
longing to the fast, intermediate, and slow cluster are displayed according to season using four colors
(top panel). The median hydrograph shape per cluster is indicated in black. The characteristics of the
events belonging to the three clusters in terms of the magnitudes of peak discharges and hydrograph
volumes are displayed in a scatterplot and as boxplots (lower panel). The notches of the boxplots
indicate the confidence intervals around the medians.

quickly reactive from slowly reactive catchments. Figure 8 shows the coefficients of the four B-splines
for the representative hydrographs of the catchments in the quickly and slowly reactive region for the
three event type classes fast, intermediate, and slow. The coefficients for Splines 1 to 4 (see Figure
4) of the representative fast, intermediate, and slow hydrographs were different for catchments in
the quickly reactive and catchments in the slowly reactive region (Figure 8). These differences were
the most expressed for the fast events and less expressed for the intermediate and slow events. In
summary, quickly reactive catchments were characterized by hydrograph shapes that can be described
as a sum of Splines 1 and 3 with a high coefficient and Splines 2 and 4 with a low coefficient. The
opposite was the case for hydrographs found in catchments belonging to the slowly reactive region.

The shape clusters and their medians were representative for their region (Figure 9). The catch-
ments in the quickly reactive and the slowly reactive regions (see Figure 7) could be characterized by
a set of representative hydrograph shapes while the catchments in the uniformly reactive region were
sufficiently described by one hydrograph shape. Catchments in the quickly reactive region were char-
acterized by hydrograph sets with a steeper recession limb than the catchments in the slowly reactive
region. Figure 10 shows that the reactivity regions not only differed in terms of their representative
hydrograph shapes but also in terms of hydrograph magnitudes. Events occurring in the quickly
reactive catchments were characterized by rather high peak discharges compared to flood volumes
while events occurring in the slowly reactive catchments showed rather high volumes compared to
peak discharges.

4.2.1 Event conditions

The events occurring in the three regions and belonging to the three event types fast, intermediate,
and slow not only showed different runoff characteristics (magnitudes and shapes) but differed in
their pre-event conditions (see Section 3.3) in the form of their triggering precipitation events and
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Figure 6: Fast, intermediate, and slow median hydrograph shapes for three catchments: A) Alp-
Einsiedeln (quickly reactive region), B) Arbogne-Avenches (slowly reactive region), and C) Birs-
Münchenstein (uniformly reactive region).
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Figure 7: Catchments belonging to the quickly reactive (A), slowly reactive (B), and uniformly
reactive (C) regions.

much less expressed in antecedent wetness (Figure 11). The flood events occurring in the three
regions clearly differed in terms of their triggering precipitation. Flood events occurring in the
quickly reactive region were characterized by higher maximum hourly precipitation intensities than
catchments in the slowly and uniformly reactive regions. Within the regions, fast events showed clearly
higher hourly precipitation intensities than intermediate and slow events. The triggering precipitation
events for the floods occurring in the three regions also differed in terms of their total precipitation
amount. Precipitation events triggering floods in the quickly reactive region had generally higher
precipitation amounts than precipitation events triggering floods in the slowly and uniformly reactive
regions. Within one region, fast events showed slightly lower triggering precipitation amounts than
intermediate and slow events. Note, that the differences of maximum hourly precipitation intensities
between event types within the uniformly reactive region were much less distinct than the ones in
the quickly and slowly reactive regions. This indicates that a distinction between the three event
types does indeed not make sense in the uniformly reactive region, also from a meteorological point of
view. The antecedent wetness conditions differed only slightly between regions and event types. The
differences in triggering precipitation amounts and intensities highlights that a subdivision of floods
into three event types is meaningful and that the three regions have a hydro-meteorological meaning.

5 Discussion

5.1 Identification of representative hydrograph shapes

The approach proposed for the clustering of hydrograph shapes using FD is simple to apply and
avoids the reduction of flood hydrographs to a few hydrograph characteristics, as done when applying
standard multivariate clustering techniques. The results presented above showed that the hydrograph
clustering approach based on functional data allows for the identification of three representative hy-
drograph shape classes within individual catchments. These classes are not only distinct in their
event shapes but also their event magnitudes and triggering mechanisms. The first class identified
consists of fast events with steep rising and falling limbs caused by precipitation events with a high
intensity but rather low total amounts. These events mainly occur in summer, which in previously
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Figure 8: Coefficients for Splines 1 to 4 (see Figure 4) for the two reactivity regions quick and slow.
The spline coefficients are given for fast, intermediate, and slow events separately. Scatterplots within
the colored boxes (red, orange, and blue) indicate the relationship of the Splines 1 to 4 within one
event type while the scatterplots outside the colored boxes indicate relationships between splines
across different event types.

developed classification schemes correspond to flash floods (Merz and Blöschl , 2003; Diezig and Wein-
gartner , 2007; Sikorska et al., 2015). They are characterized by rather high peak discharges and low
hydrograph volumes. The second event type class was composed of the intermediate events that
were characterized by rather steep rising but elongated falling limbs and jointly high peak discharges
and hydrograph volumes. Such events occur throughout the year and are triggered by precipitation
events with medium intensity and amount. The third event class consisted of slow events with both
elongated rising and falling limbs. These events typically showed high volumes but low peak dis-
charges which is related to the precipitation events triggering them which are of low intensity but
high total amount. The link between the triggering mechanism of the flood events and their shape
and magnitude indicates that a hydrograph clustering approach based on functional data, as proposed
in this study, is able to build event classes that are hydrologically and meteorologically meaningful.
Eventually, the three event types could even be linked to hydro-meteorological patterns as suggested
by Nied et al. (2014, 2017).

5.2 Establishment of regions with similar flood behaviors

Our results point out that catchment-specific sets of representative hydrograph shapes are useful in
establishing regions of catchments with similar flood behaviors. Catchments with a set of three very
similar hydrograph shapes, which could not be easily separated into fast, intermediate, and slow
events, built the uniformly reactive region. The events occurring in the catchments belonging to
this region were generally characterized by rather elongated rising and falling limbs, high volumes
and low peak discharges. The catchments belonging to this region lie mainly in the Jura but also in
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Figure 9: Representative hydrograph shapes of all catchments in a reactivity region (quickly reactive
(A), slowly reactive (B), and uniformly reactive (C)). The median hydrograph shapes per region and
event class (fast (red), intermediate (orange), and slow (blue)) are indicated in black. The scales of
the y-axes are the same per event type but not across event types.

the Alps (see Figure 2). They are characterized by karstic geology with permeable rock, and a low
network density. These catchment properties lead to a rather attenuated runoff reaction that leads
to similar flood events independent of the triggering mechanism and antecedent wetness. Catchments
with a generally fast runoff response, independent of the event type, built the quickly reactive region.
Events occurring in this region were characterized by rather high peak discharges but rather low
hydrograph volumes for all three event types. The catchments belonging to the quickly reactive
region mainly lie in the Swiss Plateau. They were characterized by rather impermeable rocks (based
on geological map of Switzerland (Bundesamt für Statistik , 2003)), and a high network density (based
on the river network of Switzerland (Swisstopo, 2017)). These characteristics contributed to a fast
runoff reaction. Finally, catchments with a generally slow or delayed runoff response formed the
slowly reactive region. The events occurring in these catchments generally showed higher volumes
but lower peak discharges compared to events occurring in the catchments of the quickly reactive
region. Compared to the catchments in the quickly reactive region, they have more permeable rocks
and lower network densities, which lead to an attenuation of the runoff events.

The distinct catchment characteristics of quickly, slowly, and uniformly reactive catchments al-
low for the establishment of a classification rule using tree-based algorithms such as random forest,
bagging, or boosting (James et al., 2013), which can be used to assign ungauged catchments to one
of the reactivity classes. As a consequence, the reactivity regions could provide a useful basis for the
regional estimation of hydrological model parameters, regional frequency analyses, the construction
of design hydrographs in ungauged catchments, and other applications.

5.3 Perspectives

The clustering approach based on functional data proposed in this study can be adjusted to new
regions or contexts. Here, we discuss four potential fields of future application: 1) application in other
geographical regions and on other temporal scales, 2) Use of reactivity regions in design hydrograph
construction, 3) application in a climate impact context, and 4) application in a fuzzy clustering
setting.

1. Application in other geographical regions and on other temporal scales: The func-
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Figure 10: Specific peak discharges [l/(s km2)] and hydrograph volumes [m3/km2] for the event types
in the three reactivity regions (quickly reactive (A), slowly reactive (B), and uniformly reactive (C)).
The two variables are jointly displayed as a scatter plot and separately in a histogram. The scales of
the histograms and scatterplots are the same across all event types and reactivity regions.

tional approach to cluster flood hydrograph shapes for the identification of catchment-specific
sets of hydrograph shapes and the subsequent clustering of these sets to identify reactivity re-
gions has been developed and tested based on a set of 163 Swiss catchments with hourly flow
series. The applicability of the approach is not limited to this geographical region but can
be applied in other regions with similar data availability and catchments with similar physio-
graphical and hydrological characteristics. However, its applicability might be limited to humid
catchments since dry catchments were not included in the dataset. The applicability of the
approach is neither limited to the use of hourly flow series but could be used on daily series if
the catchments and their reaction times are larger than in Swiss catchments. The number of
B-Splines used for the transformation of hydrograph shapes into FD might have to be increased
in the case of more irregular flood hydrograph shapes than those observed in medium-size Swiss
catchments. In addition, the number of shape clusters necessary to represent the hydrograph
shape variability within a catchments might need to be adjusted. And finally, the number of
reactivity regions might need to be adapted according to the variability of runoff and flood
regimes in the region of interest.

2. Use of reactivity regions in design hydrograph construction: One potential field of
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Figure 11: Event conditions for the three event types fast, intermediate, and slow in the three regions
quickly reactive (A), slowly reactive (B), and uniformly reactive (C): Antecedent wetness (ICP),
maximum hourly precipitation intensity (Pmax), and total event precipitation (Ptotal). The notches
of the boxplots indicate the confidence intervals around the medians.

application of the reactivity regions is design hydrograph construction in ungauged catchments.
For this, the design hydrograph construction procedure proposed by Brunner et al. (2017) for
gauged catchments can be adapted and combined with an index flood approach (Dalrymple,
1960; Hosking and Wallis, 1997). The design hydrograph construction approach is based on
a bivariate flood frequency analysis, which considers the dependence between peak discharges
and hydrograph volumes, and models the hydrograph shape via a probability density function
(Yue et al., 2002). Its combination with an index flood approach, where bivariate quantiles
are estimated using pooled event data from several catchments, allows for an extension to
ungauged catchments. The data pools can be formed by peak discharges and hydrograph
volumes corresponding to the events belonging to the three event type classes within a reactivity
region. The design variable estimates for peak discharges and hydrograph volumes of each
of these classes can then be used together with the representative hydrograph shape of the
corresponding event class to construct synthetic design hydrographs for a certain return period.
An ungauged catchment can be attributed to one of the reactivity classes via a classification rule.
The construction of synthetic design hydrographs in ungauged catchments can subsequently be
based on the data of the reactivity class it is assigned to.

3. Application in a climate impact context: Under climate change, new flood types might
develop and existing types might change (Köplin et al., 2014; Turkington et al., 2016) since
different atmospheric circulation patterns favor different flood types (Nied et al., 2017). The
hydrograph clustering approach proposed here might be useful in a climate impact context for
the detection of new flood types and changes in the proportion of occurrence of different flood
types. This is important for future flood risk management since the flood type is closely linked
to the spatial flood extent, temporal flood progression, and flood magnitudes (Nied et al., 2014).

4. Application in a fuzzy clustering setting: Rao and Srinivas (2006) pointed out that most
catchments only partly resemble other catchments in the region they have been assigned to. This
is also the case when using the clustering approach proposed in this study and the assignment
of a catchment to one group or another is not necessarily straightforward. Similarly, Sikorska
et al. (2015) showed that flood events usually show partial memberships to more than one flood
type. The clustering approach based on functional data proposed here could be transferred into
a fuzzy setting (Rao and Srinivas, 2006; Tokushige et al., 2007; Sikorska et al., 2015) that would
allow for catchments and hydrograph shapes with partial or distributed memberships to more
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than one region or event type.

6 Conclusions

Flood hydrograph shapes contain a wealth of information that can be used for the identification
of regions with a similar flood behavior but is insufficiently exploited by traditional multivariate
clustering procedures. FD analysis makes much better use of the valuable information stored in
a hydrograph and was found to be a useful tool for both clustering hydrograph shapes and the
identification of flood reactivity regions. The clustering of hydrograph shapes within a catchment
showed that three hydrograph shapes are sufficient to describe the hydrograph shape variability within
a catchment. The sets of representative hydrograph shapes within a catchment were successfully used
to establish regions with a similar flood behavior not only in terms of hydrograph shape but also
hydrograph magnitude regarding peak discharges and hydrograph volumes. The clustering approach
for hydrograph shapes and its use for the identification of flood reactivity regions has many potential
fields of application. On the one hand, the reactivity regions could be used in regionalization studies,
regional flood frequency analyses, and for design hydrograph construction in ungauged basins. On the
other hand, the clustering approach could be applied to other geographical and climatological regions,
transferred to a fuzzy clustering setting allowing for several partial group memberships, or be used in
a climate impact context. The clustering approach for hydrograph shapes is a flexible and promising
approach and has the potential to exploit the process information stored in flood hydrograph shapes.
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A B S T R A C T

Traditional design flood estimation approaches have focused on peak discharges and have often neglected other

hydrograph characteristics such as hydrograph volume and shape. Synthetic design hydrograph estimation

procedures overcome this deficiency by jointly considering peak discharge, hydrograph volume, and shape. Such

procedures have recently been extended to allow for the consideration of process variability within a catchment

by a flood-type specific construction of design hydrographs. However, they depend on observed runoff time

series and are not directly applicable in ungauged catchments where such series are not available. To obtain

reliable flood estimates, there is a need for an approach that allows for the consideration of process variability in

the construction of synthetic design hydrographs in ungauged catchments. In this study, we therefore propose an

approach that combines a bivariate index flood approach with event-type specific synthetic design hydrograph

construction. First, regions of similar flood reactivity are delineated and a classification rule that enables the

assignment of ungauged catchments to one of these reactivity regions is established. Second, event-type specific

synthetic design hydrographs are constructed using the pooled data divided by event type from the corre-

sponding reactivity region in a bivariate index flood procedure. The approach was tested and validated on a

dataset of 163 Swiss catchments. The results indicated that 1) random forest is a suitable classification model for

the assignment of an ungauged catchment to one of the reactivity regions, 2) the combination of a bivariate

index flood approach and event-type specific synthetic design hydrograph construction enables the considera-

tion of event types in ungauged catchments, and 3) the use of probabilistic class memberships in regional

synthetic design hydrograph construction helps to alleviate the problem of misclassification. Event-type specific

synthetic design hydrograph sets enable the inclusion of process variability into design flood estimation and can

be used as a compromise between single best estimate synthetic design hydrographs and continuous simulation

studies.

1. Introduction

Classical design flood estimation has been focusing on the uni-

variate analysis of peak discharges even though other event char-

acteristics such as hydrograph volume and shape are equally important

for hydraulic design tasks involving storage (Pilgrim, 1986). More re-

cent flood estimation procedures allow the representation of both the

magnitude and the shape of an event through synthetic design hydro-

graphs (SDHs). Synthetic design hydrographs provide a more complete

picture of the flood behavior of a catchment than classical approaches.

SDHs include event-based approaches using event rainfall as input

(Grimaldi et al., 2012; Rogger et al., 2012) and statistical approaches

using observed runoff in bivariate flood frequency analyses

(Brunner et al., 2017b). However, as the classical approaches, they

neglect the variability of flood events within a catchment caused by

different processes, which are mirrored by various flood types, such as

flash floods, short-rain-, long-rain-, and rain-on-snow floods (Merz and

Blöschl, 2003). To overcome this deficiency, (Brunner et al., 2017b)

proposed an approach for the construction of a set of flood-type specific

SDHs. The approach splits the flood sample into four subsets, one for

each flood type, and uses each of these samples to construct a flood-type

specific design hydrograph. The shape of the design hydrographs is

modeled by a probability density function (PDF) while the magnitude of

the event is modeled via a bivariate frequency analysis taking into ac-

count the dependence between peak discharges and hydrograph vo-

lumes via a copula model. This ensemble-based SDH construction
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approach takes into account process variability but is based on observed

flood events and cannot be easily transferred to ungauged catchments

where no runoff information is available. There, design floods have

traditionally been estimated by a regional index flood approach fo-

cusing on peak discharges.

The index flood approach consists of two main steps. In a first step,

regions with a similar flood behavior are delineated. In a second step,

the data within these similar regions are used for regional flood fre-

quency analysis. Hydrologically similar regions are often delineated

based on hydrological catchment characteristics or runoff signatures

(Burn and Boorman, 1992) since physiographical and climatological

catchment similarity do often not correspond to hydrological similarity

(Ali et al., 2012; Oudin et al., 2010). Brunner et al. (2017a) suggested to

use entire hydrograph shapes in the delineation of homogeneous re-

gions with the argument that those provide more information on the

flood behavior of a catchment than statistical measures of individual

hydrograph characteristics. In this previous study, it was shown that

flood reactivity regions can be delineated by characterizing each

catchment in the dataset by a set of three representative hydrograph

shapes: a fast, an intermediate, and a slow shape. Grouping catchments

with similar sets of representative hydrograph shapes delineates regions

which are similar in terms of their flood behavior. Such regions were

shown to have a hydro-meteorological meaning and are potentially

useful in regional flood frequency analysis.

Regional frequency analysis is often done using the index flood

approach which was proposed by Dalrymple (1960) for annual maxima

series and later extended to partial duration (peak-over-threshold)

series (Madsen et al., 1997). It assumes that frequency distributions at

different sites within a region are identical apart from a scale factor. It

describes a local quantile estimate Qi(F) as the product of an index flood

(μi) and a regional growth curve (q(F)) estimated based on the data at N

sites as:

= = …Q F µ q F i N( ) ( ) 1, , .i i (1)

The index flood can be any location measure of the at-site distribution

but is often taken to be its mean. The regional growth curve is a di-

mensionless quantile function computed based on dimensionless re-

gional data, which are obtained by dividing the observed flood event

data by the index flood. Regional analysis using the index flood ap-

proach yields more accurate quantile estimates than at-site analysis

even if a region is heterogeneous. It was thus found to be a robust and

efficient estimation procedure (Lettenmaier et al., 1987; Madsen et al.,

1997).

The classical index flood procedure focuses on peak discharges.

Requena et al. (2016) therefore proposed an approach for a multi-

variate regional index approach that allows for the consideration of

more than one design hydrograph characteristic, e.g. peak discharge

and hydrograph volume. While such a bivariate regional approach al-

lows the joint consideration of peak discharges and hydrograph vo-

lumes, neither hydrograph shape, nor process variability can be con-

sidered. To our knowledge, no methodology has so far been proposed

for the regional construction of event-type specific sets of SDHs in un-

gauged catchments. The aim of this study was therefore to propose an

approach that allows for the construction of SDHs in ungauged catch-

ments which on the one hand jointly represents the magnitude and

shape of an event and on the other hand allows for the consideration of

process variability. We here propose an approach that delineates re-

gions of a similar flood reactivity using the approach by Brunner et al.

(2017a), applies the bivariate index flood approach proposed by

Requena et al. (2016) within these flood reactivity regions, and uses the

resulting design variable pairs in the SDH construction approach pro-

posed by Brunner et al. (2017b). Instead of flood types, we use the three

event types fast, intermediate, and slow in design hydrograph con-

struction Brunner et al. (2017a). The three event-type specific SDHs

together form a set of design hydrographs which considers the process

variability within an ungauged catchment.

Our research more specifically addresses the following research

questions:

1. How can an ungauged catchment best be assigned to one of the

flood reactivity regions?

2. How can event-type specific SDH sets for ungauged catchments be

constructed?

3. Can probabilistic class memberships be used in regional SDH con-

struction to reduce the problem of misclassification?

2. Data

This analysis used runoff and catchment characteristics data from

163 Swiss catchments (Fig. 1) with a wide range of catchment char-

acteristics and flood behaviors. The selected catchments have hourly

flow series of at least 20 years in duration ranging up to 53 years. In

these catchments, runoff is neither altered by regulated lakes upstream

or inland canals nor by urbanized areas. The catchments are small to

medium-size (6 to 1800 km2), situated at mean elevations between 400

and 2600m.a.s.l., and have no or only a minor glacier coverage.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30
31

32

33

34

35

36

37

38
39

40

41

42

43
44

45

46

47

48

49

50

51

52

5354

55

56
57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

7374

75

76
77

7879

80

81

82

83

84

85

86
87

88

89

90
91

92

9394

95

96

97

98

99

100

101

102

103

104105

106

107

108

109

110
111

112 113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130131

132

133

134

135

136

137

140

139

138

141

142

143
144

145

146

147 148

149

150

151

152

153

154

155

156

157

158 159

160

161

Study catchments

Gauging stations

Major rivers

0 20  km
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The basis for the analysis was samples of flood events extracted from

the runoff time series of the 163 study catchments. To sample flood

events, we used a peak-over-threshold approach based on the procedure

proposed by Lang et al. (1999). The threshold for the peak discharge

was chosen iteratively to fulfill a target condition of four events per

year on average which is a trade-off between maximizing the in-

formation content in the sample and keeping the assumption of in-

dependence between events. For each of these events, sampled ac-

cording to the flood peaks, the flood volume was determined over the

actual event duration. The actual duration was determined as the time

between the onset of the event (defined as the time where discharge

first exceeds 0.05 times the peak discharge) and the end of the event

(discharge falls below 0.05 times the peak discharge). The baseflow was

separated from the direct flow using a recursive digital filter

(Eckhardt, 2005). The resulting direct flow component of the hydro-

graphs was then normalized so that the volume of the modified hy-

drographs was equal to one. This was done by dividing the ordinate of

each hydrograph by the volume V. In the remainder of this paper, we

refer to these normalized hydrographs as hydrograph shapes. To make

the sampled event hydrographs comparable, they were brought to a

length of 72 hours by appending hours with the minimum discharge

until the series consisted of 72 values. We refer the reader to

Brunner et al. (2017b) for a more detailed description of the flood

sampling and baseflow separation procedures.

3. Methods

In the regional approach for the construction of event-type specific

sets of SDHs, we assigned an ungauged catchment to a flood reactivity

region and subsequently used the data from this reactivity region for

the estimation of a set of SDHs representing three event types com-

prising a fast, an intermediate, and a slow event. The regional approach

consists of three main steps: (1) Delineation of reactivity regions by

clustering catchments using their catchment-specific sets of re-

presentative hydrograph shapes, (2) Establishment of a classification

rule allowing the attribution of an ungauged catchment to one of the

reactivity regions, (3) Construction of a set of event-type specific design

hydrographs using I) region specific hydrograph shape sets and II)

event magnitudes estimated by event type in a bivariate index flood

approach. The individual steps of the methodology are illustrated in

Fig. 2 and described in more detail in the following paragraphs.

3.1. Step 1: Delineation of regions with similar flood reactivity

Brunner et al. (2017a) showed that the hydrograph shape variability

within Swiss catchments can be summarized by a set of three re-

presentative hydrograph shapes: a fast, an intermediate, and a slow

hydrograph. In this previous study, we represented normalized hydro-

graph shapes as functional data, i.e., as continuous functions, by pro-

jecting them on a set of four basis splines (B-spline) bases. A spline

function is determined by the order of the polynomial segments and the

number and placement of knots. The number of knots determines the

ability of spline functions to represent sharp features in a curve and the

knots can be placed such that they are denser in areas with stronger

variations than in smooth areas (Höllig and Hörner, 2013). The sets of

four coefficients, one per B-spline base, were used in a k-means clus-

tering algorithm (Gordon, 1999) to identify clusters of similar hydro-

graph shapes. Three shape clusters were found to well explain the shape

variability within Swiss catchments. Each cluster was summarized by

its median hydrograph shape. The three median shapes together formed

the set of representative hydrograph shapes consisting of a fast, an in-

termediate, and a slow hydrograph shape. The fast event type is char-

acterized by both steep rising and recession limbs. The intermediate

event type is characterized by a rather steep rising but a slow recession

limb, and the slow event type is characterized by both slow rising and

recession limbs (Brunner et al., 2017a). Brunner et al. (2017a) then

used these catchment-specific sets of representative hydrograph shapes

for the identification of flood reactivity regions i.e., regions that were

similar in terms of their representative hydrograph shape sets. We

modified the approach proposed by Brunner et al. (2017a) in the fol-

lowing two ways: 1) The clustering was done using the representative

hydrograph sets of all catchments without separating a uniformly re-

active catchment as done in Brunner et al. (2017a) because this was

found to be a disadvantage for the identification of a classification rule

in Step 2. 2) We delineated four instead of three regions with a similar

flood reactivity using the functional representation of catchment-spe-

cific sets of hydrograph shapes as an input for the hierarchical clus-

tering algorithm. Four regions were found to be better since the hier-

archical clustering tree showed a clear symmetry and cutting it at three

or five clusters would not have been sensible. We called these regions A

to D. Region A is characterized by a quick runoff reaction, i.e., all three

representative hydrograph shapes showed a rather quick response

compared to the representative hydrograph shapes in catchments be-

longing to the other three regions. Regions B and C were characterized

by an intermediate or slow reactivity respectively. Region D showed a

rather uniform reaction to rainfall input (i.e., the fast, intermediate, and

slow shapes were difficult to distinguish). The runoff behavior of

catchments within a region was summarized by a set of median event-

type specific hydrograph shapes (median shape sets). The cluster

memberships of the 163 study catchments were used in Step 2 to

identify a classification rule allowing for the assignment of an ungauged

catchment to one of the four reactivity regions.

3.2. Step 2: Attribution of ungauged catchment to reactivity region

We established a relationship between the catchment characteristics

and the region memberships of catchments to be able to attribute an

ungauged catchment to one of the four reactivity regions based on

catchment characteristics only. An initial comparison of several classi-

fication methods showed that random forest (Harrell, 2015; James

et al., 2013) was the most suitable classification model in cross-vali-

dation. The set of explanatory variables used to fit the models consisted

of the following seven weakly correlated catchment characteristics:

catchment area, network density, Y-coordinate, soil topographic index,

percentage area of karstic rocks, sunshine duration, and vapor pressure.

Catchment area and network density were derived from the digital

elevation model, the soil topographic index from the digital map of land

surface characteristics (Eidgenössische Forschungsanstalt für Wald

Schnee und Landschaft (WSL), 1999), the percentage area of karstic

rock from a map focusing on groudwater resources (Bitterli et al.,

2007), and sunshine duration and vapor pressure from gridded me-

teorological data provided by MeteoSwiss (MeteoSwiss, 2013). We used

the random forest classification model to attribute ungauged catch-

ments to one of the reactivity regions according to its best class mem-

bership and to compute probabilities of class memberships, which we

hereafter refer to as probabilistic class memberships, for each of the four

regions. Considering probabilistic class memberships allowed the alle-

viation of the problem of misclassification. Regions B and C were found

to be difficult to distinguish when assigning a best class membership to

a catchment. Assigning probabilistic class memberships and using them

in SDH construction helped to take into consideration this source of

uncertainty.

3.3. Step 3: Construction of a set of event-type specific SDHs

An ungauged catchment was assigned to one of the reactivity re-

gions delineated in Step 1 via the random forest classification model

established in Step 2. The construction of an event-type specific set of

SDHs for this ungauged catchment was based on the pool of data of the

reactivity region it was assigned to (best class membership). The ap-

proach was at a later stage extended to probabilistic region member-

ships as described under Step 2. We first focus on the construction of
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event-type specific sets of SDHs using the best class membership. The

event-type specific construction procedure was based on the SDH

construction procedure proposed by Brunner et al. (2017b) for different

flood types (Merz and Blöschl, 2003; Sikorska et al., 2015). Instead of

differentiating flood types, we here distinguished between the three

event types fast, intermediate, and slow, which cover a large part of

shape variability within a catchment and were used in Section 3.1 for

the delineation of reactivity regions. A set of three SDHs was con-

structed by combining shape estimates represented by a probability

density function with magnitude estimates represented by the bivariate

design variable quantiles peak discharge and hydrograph volume. The

basic idea of the procedure is to do regional flood frequency analysis

within the reactivity region of interest using a bivariate index flood

approach (Requena et al., 2016) for each of the three event types (fast,

intermediate, and slow) separately. This regional SDH construction

approach consists of three steps (see Fig. 2): (I) Computation of design

event shape, (II) Computation of design event magnitude by estimating

a) a regional growth curve, and b) a local index flood, and (III) Con-

struction of design hydrograph by combining magnitude and shape.

These steps are described in detail in the following paragraphs.

3.3.1. (I) Computation of design event shape

The design hydrograph shapes were estimated using the three re-

presentative hydrograph shapes (fast, intermediate, and slow) of the

region the ungauged catchment was assigned to. The three hydrograph

shapes were each fitted by a lognormal probability density function

(PDF) (Yue et al., 2002), which was expressed in terms of their time to

peak, peak discharge, and time base (Nadarajah, 2007; Rai et al., 2009).

The lognormal PDF was chosen out of a selection of eight PDFs (normal,

lognormal, Fréchet, Weibull, beta, gamma, inverse gamma, and lo-

gistic) whose fit to the representative hydrograph shapes was assessed

via the Kling–Gupta and Nash–Sutcliffe efficiencies (Gupta et al., 2009).

3.3.2. (II) Computation of design event magnitude

We formed pools of observed flood events for each event type within

the predicted reactivity region. The region was characterized by three

pools of data: fast events, intermediate events, and slow events. The

individual data pools consisted of all the event-type specific events of

the catchments within the corresponding reactivity region. The data

pools consisted of dimensionless peak discharges (peak discharges

normalized by mean catchment peak discharge [i.e., index flood peak])

and dimensionless hydrograph volumes (hydrograph volumes
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normalized by mean catchment hydrograph volume [i.e., index hy-

drograph volume]) to make values from different catchments compar-

able. These pooled data were used in a bivariate flood frequency ana-

lysis to derive regional growth curves for peak discharges and

hydrograph volumes (Requena et al., 2016). The bivariate frequency

analysis was based on the marginal distributions of peak discharges

(Qp) and hydrograph volumes (V) and their dependence was modeled

via a copula function.

a) Regional growth curves: The four regions were characterized by

differences in Qp and V. Qp generally decreased from Region A to D

while V increased. Qp and V not only differed between regions but

also between the three event types within a catchment. Fast and

intermediate events were generally characterized by higher magni-

tudes in terms ofQp and smaller magnitudes in terms of V than slow

events. We used the flexible five-parameter Wakeby distribution

(Houghton, 1978; Griffiths, 1989) to model the marginal distribu-

tions of Qp and V because this distribution can mimic the shapes of

many commonly used skew distributions such as the extreme value

distribution, the lognormal, or Pearson type III distributions. The

Wakeby distribution provided a good fit to the data, which was

confirmed by the Kolmogorov–Smirnov goodness-of-fit test (level of

significance =α 0.05). Fitting a distribution with five parameters

was not a problem in our case since the sample size was sufficiently

large when working with the pooled data. The Wakeby distribution

(F(x)) is not explicitly defined. However, its inverse (x(F)) can be

expressed by the five parameters α, β, γ, λ, and ξ (Hosking, 1986) as

follows:

= + − − − − − −x F ξ
α

β
F

γ

δ
F( ) [1 (1 ) ] [1 (1 ) ].β δ

(2)

When δ>0, the Wakeby distribution has a heavy upper tail and can

give rise to data sets containing occasional high outliers. The upper-

tail behavior of the Wakeby distribution is determined by the

parameters γ and δ unless =γ 0. As F→ 1, the density function of

the Wakeby distribution is asymptotically equivalent to that of a

generalized Pareto distribution (Hosking, 1986). Other distributions

commonly used in flood frequency analysis such as the generalized

extreme value distribution and the generalized Pareto distribution

(Coles, 2001) did not provide a good fit to the data. Compared to the

Wakeby distribution, their flexibility is limited by the lower number

of parameters (three). The parameters of the Wakeby distribution

were estimated for both theQp and V in each of the data pools using

L-moments (Hosking and Wallis, 1997) and its parameters were

found to differ between the data pools.The form of the dependence

between Qp and V did not strongly differ for the three event types

within a region nor was it different between the four reactivity re-

gions. It could therefore be modeled by the same copula family for

all event types and regions. The dependence between Qp and V was

modeled using the elliptical Student-t copula (Frahm et al., 2003),

which is able to model lower and upper non null tail dependence as

present in the data (assessed via the tail dependence estimator

proposed by Schmid and Schmidt (2007)). We tested the suitability

of several copula families: the independence copula, several Archi-

medean (Gumbel, Clayton, Joe, Frank, AMH, Hüsler-Reiss, Ga-

lambos, Farlie-Gumbel-Morgenstern (FGM), Tawn, Plackett, and

survival Clayton) and two elliptical copulas (Normal, Student-t) to

model the dependence between Qp and V by computing the Cramér-

von-Mises goodness-of-fit statistic (Genest and Favre, 2007). The

elliptical copulas provided a better fit to the data than the Archi-

medean copulas when comparing their Cramér-von-Mises test sta-

tistics. The Student-t copula was chosen instead of the Normal co-

pula because it is able to model positive tail dependence

(Frahm et al., 2003). In addition to the form of the dependence, the

intensity of the dependence, measured by Kendall’s tau and Spear-

man’s rho, only slightly differed for the three event types within a

region and between the four reactivity regions.The pair of di-

mensionless growth curves for Qp and V was estimated using the

marginal distributions of the variables represented by Wakeby dis-

tributions and the Student-t copula for a joint return period of T

considering that both design variables are equally important

(Brunner et al., 2016). We here focused on a return period of

=T 100 years since it is often used in practice (Camezind-

Wildi, 2005). However, the approach is not limited to this return

period.

b) Index floods: The index floods were computed for both peak dis-

charges and hydrograph volumes and for each of the regions and

event types separately. The index flood peak and volume were

predicted based on a Gamma generalized linear model (GLM) with a

log-link, which does not give rise to a negative estimated response

(Myers et al., 2010), using the same catchment characteristics as

explanatory variables as used for establishing the classification rule

(Section 3.2). The GLMs were fitted for each of the twelve (4×3)

data pools separately. We used a stepwise regression procedure

(Harrell, 2015) to identify the model with the fewest explanatory

variables still providing us with a useful model for index flood

prediction. We found that the index flood peaks and volumes could

be predicted by only a few explanatory variables, which were si-

milar for both design variables (Qp and V). The most important

explanatory variables across all regions and event types were

catchment area and network density.

The regional growth curves were used together with the catchment

specific index floods to obtain local design variable quantile estimates

using Eq (1).

3.3.3. (III) Construction of design hydrograph by combining magnitude and

shape

The three estimated design variable pairs (Section 3.3.2) and the

regional PDFs (Section 3.3.1) were used to construct three re-

presentative SDHs for an ungauged catchment. An SDH can be ex-

pressed as:

= +Q t f t V D B( ) ( )( / ) ,T T T (3)

where f(t) represents the PDF used to model the shape of the hydro-

graph, VT and DT the design quantiles for hydrograph volume and

duration for the return period T, and B the baseflow component. DT can

be derived as =D f t V Q( )( / ),T p T T where tp is the time to peak and QT the

design quantile for peak discharge. Baseflow was added via a mean

event baseflow index, which was computed per reactivity region (in-

dependently of the event type), proportionally to the direct runoff (see

Brunner et al. (2017b)).

The construction of event-type specific SDH sets using probabilistic

class memberships proceeded similarly to the construction procedure

described above when using the best class membership. It again dif-

ferentiated between pools of fast, intermediate, and slow events. To

compute the design event magnitude, we computed the regional growth

curves for each of the four regions and used them to compute an

averaged regional growth curve weighting the individual growth curves

by the probabilities of membership to each of the corresponding re-

gions. In addition, we predicted four index floods using the four GLMs

for each of the regions and computed again a weighted average of these

predictions using the probabilities of region membership as weights.

The design event magnitude was finally computed by upscaling the

weighted average of the regional growth curves with the weighted

average of the index floods. The design event shapes were also com-

puted as a weighted average from the shapes of the four regions using

again the probabilities of region memberships as weights for the in-

dividual PDFs.

The event-type specific regional SDH procedure was applied both

using the best class membership and the probabilistic class member-

ships. This resulted in two sets of regionally estimated SDHs.
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3.4. Validation of approach

We compared these two sets of regionally estimated SDHs to SDHs

computed using local runoff observations. The local estimation was

done based on the event-type specific data within a catchment using the

procedure proposed in Brunner et al. (2017b) for the construction of

flood-type specific SDHs. This meant that three event-type specific

SDHs were computed for each catchment. Local event-type specific

SDHs were only constructed for event types with more than five ob-

servations. This prevented from completely unreliable estimates, how-

ever, every estimate obtained by a sample of less than twenty ob-

servations had to be considered to be not really reliable

(Deutsche Vereinigung für Wasserwirtschaft Abwasser und

Abfall, 2012). This meant that even though the local estimates have

been computed using observed data, they might not represent the true

SDHs for the catchment under consideration. Nonetheless, we used

them as a basis for validation. We computed the relative and the ab-

solute relative error of the regional estimates compared to the local

estimates for four hydrograph characteristics: peak discharge (Qp),

hydrograph volume (V), time to peak (tp), and half-recession time (tp05),

i.e., the time from peak to where the recession curve falls back to half

the peak discharge.

4. Results

4.1. Region assignment

The catchment-specific sets of representative hydrograph shapes

were used to delineate regions with similar flood behaviors. Their

clustering resulted in four clusters/regions with distinct flood-event

reaction-times: Region A with catchments with a generally fast runoff

reaction (see Fig. 3A, 30 catchments), Region B with catchments with a

generally intermediate runoff reaction (see Fig. 3B, 45 catchments),

Region C with catchments with a generally slow runoff reaction (see

Fig. 3C, 58 catchments), and Region D with catchments with a generally

rather uniform runoff reaction (see Fig. 3D, 30 catchments). The

catchments belonging to Region A were mainly small catchments lo-

cated in the Swiss Plateau, catchments belonging to Region D were

mostly located in the Jura mountains, and regions B and C consisted of

catchments in the Swiss Plateau and in Alpine regions.

Catchments in Region A were characterized by hydrograph sets with

a steeper recession limb than the catchments in the regions B, C, and D

(Fig. 4). The differences in hydrograph shapes between the four regions

were largest for the fast event shapes, well visible for the intermediate

event shapes, and rather weak for the slow event shapes. The reactivity

regions not only differed in terms of their representative hydrograph

shapes but also in terms of hydrograph magnitudes (Table 1). Events

occurring in Region A were characterized by rather high peak dis-

charges compared to flood volumes while events occurring in region D

showed rather high volumes compared to peak discharges. Regions B

and C lay somewhere in between.

An ungauged catchment can be assigned to one of the four reactivity

regions via a classification rule. We found that the most suitable model

to establish a classification rule was random forest, which had a mis-

classification error of 45% (see Fig. 5). This implies that an ungauged

catchment will be attributed to the correct region with a probability of

55%. The classification error could mainly be explained by catchments

attributed to Region B instead of C and vice versa (17%). These two

clusters seemed to be difficult to distinguish using catchment char-

acteristics, i.e., the probabilities of belonging to one or the other regions

were quite similar. Some catchments were also attributed to Region C

instead of D. Only a few catchments were attributed to a non-neigh-

boring region (e.g. to Region C instead of A) (12%). The most important

catchment characteristics for predicting the region membership of a

catchment among the seven characteristics used were found to be:

catchment area, network density, and location in space. Region A was

characterized by small catchments with a rather high network density

and low sunshine duration. These catchments were mainly located in

the Swiss Plateau. On the contrary, region D was characterized by large

catchments, with a low network density, high sunshine duration, and a

high percentage area of karstic rock. These catchments were mainly

located in the Jura Mountains and Northeastern Switzerland. The

catchments belonging to regions B and C were medium-size, char-

acterized by medium network densities, and sunshine durations. They

were located in both the Swiss Plateau and the Alps and were not easy

to attribute to one or the other region.

4.2. Regional event-type specific SDH sets

The previously established regions were used in regional flood fre-

quency analysis to derive two sets of representative design hydrographs

for ungauged catchments for a specified return period. We focused on

the two return periods 10 and 100 years for illustration purposes since

these return periods are often used in practice (Camezind-Wildi, 2005).

As described in Section 3.3, we computed two regional sets of three

hydrographs (fast, intermediate, and slow). The first set was computed

using regional information of the region with the highest probability of

membership (called best class membership). On the contrary, the

second set was computed using regional information of the four regions

weighted according to the probabilistic region memberships. Fig. 6

shows the two regionally estimated SDH sets (thin and thick bold lines)

together with a locally estimated SDH set (dashed lines) and a catch-

ment-specific SDH not distinguishing between event types computed

using local observations (black dashed line) for a return period of 100

years. The two sets of regionally estimated SDHs compared well with

the locally estimated SDHs in most catchments. Furthermore, the re-

gionally estimated SDHs lay in the order of magnitude of the highest

observed event of a catchment (grey lines).

The relative error of the four hydrograph characteristics peak dis-

charge, hydrograph volume, time to peak, and half-recession time was

roughly 50% for all the event types for both return periods considered

(10 and 100 years) (Fig. 7). However, the variability of the relative

errors across catchments was slightly lower for =T 10 than for =T 100.

The relative errors were similar when using the best and the prob-

abilistic class memberships. While the median relative error was not

highly affected by using probabilistic memberships instead of the best

class membership, the variability of the relative errors was clearly

higher when applying the best class membership. The relative error of

peak discharges was independent of the event type while it depended

on the event type for the other three hydrograph characteristics. It was

A B C D

Fig. 3. Four reactivity regions A to D. The runoff reaction decreased from catchments in Region A with a generally fast reaction over catchments in Regions B and C to catchments in

region D with a generally rather uniform runoff reaction.
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generally higher for the fast SDHs than for the intermediate and slow

SDHs. The variability of the relative error was larger towards negative

values (i.e., underestimation of the regional estimates) and did not

specifically depend on the hydrograph characteristics considered.

5. Discussion

5.1. Region assignment

Four regions with a similar flood behavior were identified.

Catchments with a generally quick runoff response, independent of the

event type, formed the quickly reactive region (Region A). Events oc-

curring in this region are characterized by rather high peak discharges

but rather low hydrograph volumes for all three event types. The

catchments belonging to the quickly reactive region are small and

mainly lie in the Swiss Plateau. They are characterized by a circular

shape, impermeable rocks, a high network density, and low sunshine

duration, which is related to their location in the Swiss Plateau that is

often covered by fog in the winter time. All these characteristics con-

tributed to a fast runoff reaction. A high network density allows for an

efficient drainage after a precipitation event and is related to increases

in the flood peaks (Ogden et al., 2011). Impermeable rocks prevent

from rainfall infiltration and favor surface runoff, and a circular shape

leads to the confluence of discharge from different parts of the catch-

ment at the same time. Catchments in regions B and C with a generally

intermediate or slow runoff response showed similar catchment char-

acteristics. The events occurring in these catchments generally showed

higher volumes but lower peak discharges compared to events occur-

ring in the catchments of the quickly reactive region. These catchments

typically lie in the Swiss Plateau or the Alps. Compared to the catch-

ments in the quickly reactive region, they are more elongated, have

more permeable rocks, and lower network densities which lead to a
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Fig. 4. Representative hydrograph shape sets per region and event type. The fast shapes are displayed in red, the intermediate shape in orange, and the slow shapes in blue. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1

Mean specific peak discharge (Qp) [l/(s km
2)] and hydrograph volume (V) [m3/km2] per

region (A to D) and event type (fast, intermediate, slow). The mean was computed from

all observations within one event type.

Event type Region A Region B Region C Region D

Qp V Qp V Qp V Qp V

Fast 638 8607 365 7396 362 13,489 257 14,634

Intermediate 315 11,964 247 11,488 259 16,033 275 19,882

Slow 265 13,765 230 12,887 293 16,955 190 17,582

A

B

C

D

Wrongly classified

Correctly classified

Fig. 5. 163 study catchments colored by their reactivity region membership: A: Quickly

reactive, B: intermediately reactive, C: slowly reactive, and D: uniformly reactive.

Catchments misclassified using the classification tree in the validation phase are indicated

by red catchment borders, catchments correctly classified are indicated by black borders.

(For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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together with the locally estimated event-type specific SDHs (dashed lines). The catchment specific SDH not distinguishing between the event types is plotted in black. Regional estimates

were derived based on the best region membership (thin lines) and using mixed class memberships (thick lines). The highest observed event in the individual catchments was added as a

reference in grey.
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dampening of the runoff events. Catchments with a uniform runoff

reaction belong to region D, the uniformly reactive region. The events

occurring in the catchments belonging to this region are generally

characterized by slow rising and falling limbs, high volumes, and low

peak discharges. The catchments belonging to this region are rather

large and mainly lie in the Jura but also comprise a few large catch-

ments in the Swiss Plateau. They are characterized by an elongated

shape, karstic geology with permeable rock, and a low network density.

These catchment properties lead to a damped runoff reaction that leads

to similar flood events independent of the triggering mechanism and

antecedent wetness. The mean floods of the three event types for the

catchments in the four regions could be mainly explained by catchment

area and network density.

We found that random forest was a suitable approach for estab-

lishing a classification rule allowing for the assignment of an ungauged

catchment to one of the four reactivity regions even though the mis-

classification error seems rather high with 45%. However, not all

misclassification errors were equally serious since we dealt with or-

dered classes. Assigning a catchment of Region A to Region B, for ex-

ample, was less severe than assigning it to Region C because Regions A

and B were more similar than Regions A and C. Most misclassification

errors were related to placing a catchment into a neighboring region,

more specifically to placing a catchment belonging to Region B into

Region C or vice versa. These two classes were found to be difficult to

distinguish using the classification rule. One could argue that these two

regions could be combined as this would reduce the number of classes

and therewith also the misclassification error. However, this combining

would also increase the heterogeneity of flood characteristics of

catchments within the combined class, which is not desirable for the

SDH construction procedure. We therefore decided to keep the four

classes and to benefit from the characteristics of the output of the en-

semble-based random forest model. The ensemble-based method did

not only provide a best class membership for a catchment but also

probabilistic class memberships for each of the reactivity regions,

which could be used in regional SDH construction. The weighting of

estimates from different regions using the probabilistic region mem-

berships helped to reduce the uncertainty related to misclassification

and led to a reduction in the variability of the relative prediction error

across catchments.

5.2. Regional event-type specific SDH sets

The four reactivity regions and the three event types were found to

be useful for regional SDH construction since the events belonging to

one event type within a region were found to be more similar than

events belonging to another event type in the same region or the same

event type in another region. Even though the individual data pools

were not homogeneous in a statistical sense (Hosking and

Wallis, 1997), they were still useful for regional flood frequency ana-

lysis. The different regional data pools did neither show strongly dif-

ferent forms nor intensities of dependence even though Grimaldi et al.

(2016) suggested that basins with different times of concentration and

different soil uses might show different dependence structures. This

might be explained by the fact that the catchments under study were all

located in the Swiss lowlands or Prealps which led to a certain simi-

larity in land use and other catchment attributes. High alpine catch-

ments, which were shown to have very low dependence between peak

discharges and flood volumes due to a mix of flood types (Gaál et al.,

2015), were not considered in the analysis.

The regional SDH construction approach relied on an index flood

procedure that is applicable in ungauged catchments. The strongest

explanatory variable for the index floods in the four regions was found

to be catchment area, which is in line with findings by Blöschl and

Sivapalan (1997) who found that there is a clear tendency of mean

annual floods per area to decrease with catchment area. Potentially,

this regional SDH construction approach can also be applied to catch-

ments with only a few years of observations. There, the index floods

could be derived from observed data and be combined with their re-

gional growth curve. Furthermore, information could also be extended

temporally (Merz and Blöschl, 2008) by including historical informa-

tion (Wetter, 2017) which could potentially reduce the uncertainty in

flood risk estimates (Kjeldsen et al., 2014).

The regional SDH construction approach was developed on a set of

Swiss catchments but can be extended to other geographical regions for

which a large enough dataset is available to delineate meaningful re-

gions and to fit region specific generalized linear models for the pre-

diction of index floods. However, a few assumptions would need to be

verified and possibly adjusted. These comprise the number of flood

reactivity regions, the fitting of the classification rule, the choice of

catchment characteristics used in the classification model and the GLM

for the prediction of the index flood, and the copula model used to
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Fig. 7. Boxplots over all catchments summarizing the relative errors of regional event-type specific SDHs computed using three different configurations. The regional event-type specific

SDHs shown in the upper panel were computed for a return period of 10 years using the probabilistic class memberships. The regional event-type specific SDHs shown in the middle panel

were also computed using the probabilistic class memberships but for a return period of 100 years. The regional SDHs in the lower panel were computed for a return period of 100 years

but applying the best class membership. The regional estimates were compared to local event-type specific SDHs for the respective return period (fast, intermediate, and slow) for four

hydrograph characteristics: peak discharge, hydrograph volume, time to peak, and half-recession time. The whiskers extend to the lowest/highest data point which is still within 1.5 times

the interquartile range. Outliers are not displayed.
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model the dependence between peak discharges and hydrograph vo-

lumes.

The regionally estimated event-type specific SDHs were compared

to locally estimated event-type specific SDHs. This is not optimal since

the locally estimated SDHs might not represent reliable estimates if they

are estimated based on a very small flood sample. Still, the relative

error of regionalized estimates compared to local estimates was quan-

tified to lie around 50% on average across the 163 study catchments.

The prediction errors were found to be generally higher for fast SDHs

than for the intermediate and slow SDHs. This might be related to the

fact that the slow events are more homogeneous across regions and

event types than the fast events which generally show a higher varia-

bility.

6. Conclusions

The advantage of the event-type specific SDH construction proce-

dure proposed here compared to a catchment-specific SDH construction

procedure is that the three resulting SDHs provide us with a much

better idea on the variability of potential design events. They depict a

range of potential design flood outcomes showing the uncertainty re-

lated to different processes that can potentially occur within a catch-

ment. This ensemble or set of design events can be used by engineers in

hydraulic modeling or in a cost-benefit analyses when designing re-

servoir storage. The use of design flood ensembles in flood hazard

mapping is advisable since flood peak attenuation varies with hydro-

graph magnitude and shape which could result in different water levels

and flood extents. This ensemble-based design flood approach is a

compromise between using a single best estimate design hydrograph

and using a continuous simulation model for flood hazard mapping.

Contrary to a best single estimate design hydrograph, it allows for the

representation of process variability and does not give a result that is

elusively precise. Still, compared to continuous models it does neither

require the stochastic simulation of rainfall fields nor the calibration of

a rainfall runoff model. It has the advantage that it is easily applicable

in ungauged catchments and circumvents the simulation of rainfall and

assumptions related to its transformation into runoff. However, setting

up a regional index flood model might require as much data as setting

up a regional continuous simulation model. The ensemble-based design

hydrograph approach proposed in this study makes a step from a ”pure

statistical approach” towards a ”process-based” method allowing for

the representation of process variability in design flood estimation in

ungauged catchments.
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