The purpose of this PhD is the implementation of an axial polynomial approximation in a three-dimensional Method Of Characteristics (MOC) based solver. The context of the work is the solution of the steady state Neutron Transport Equation (NTE) for critical systems, and the practical implementation has been realized in the Two/Three Dimensional Transport (TDT) solver, as a part of the APOLLO3 R project. A three-dimensional MOC solver for 3D extruded geometries has been implemented in this code during a previous PhD project, relying on a piecewise constant approximation for the neutrons uxes and sources. The developments presented in the following represent the natural continuation of this work. Three-dimensional neutron transport MOC solvers are able to produce accurate results for complex geometries. Although accurate, the computational cost associated to this kind of solvers is very important. An axial polynomial representation of the neutron angular uxes has been used to lighten this computational burden.

The work realized during this thesis can be considered divided in three major parts: transport, acceleration and others. The rst part is constituted by the implementation of the chosen polynomial approximation in the transmission and balance equations typical of the method of characteristics. This part was also characterized by the computation of a set of numerical coecients necessary to obtain a stable algorithm. During the second part, we modied and implemented the solution of the equations of the DP N synthetic acceleration.

This method was already used for the acceleration of both inner and outer iteration in TDT for the two and three dimensional solvers at the beginning of this work. The introduction of a polynomial approximation required several equation manipulations and associated numerical developments. In the last part of this work we have looked for the solutions of a series of dierent issues associated to the rst two parts. Firstly, we had to deal with numerical instabilities associated to a poor numerical spatial or angular discretization, for both the transport and the acceleration methods. Secondly, we have conceived dierent methods to reduce the memory footprint of the acceleration coecients. The approach that we have eventually chosen relies on a non-linear least squares tting of the cross sections dependence of such coecients. The traditional approach consists in storing one set of coecients per each energy group. The t method allows replacing this information with a set of coecients computed during the regression procedure that are used to reconstruct the acceleration matrices on-the-y. This procedure of course adds some computational cost to the method, but we believe that the reduction in terms of memory makes it worth it.

In conclusion, our work has focused on applying a simple polynomial approximation in order to reduce the computational cost and memory footprint associated to a MOC solver used to compute the neutron uxes in three dimensional extruded geometries. Even if this does not constitute a radical improvement, the high order approximation that we have introduced allows a reduction in terms of memory and computational times of a factor between 2 and 5, depending on the case. We think that these results will constitute a fertile ground for further improvements. 1. Introduction Nuclear reactor physics, sometimes referred to as Neutronics, deals with one of the most important and fascinating subjects of nuclear engineering: the behaviour of the neutron population inside the reactor core. Being able to understand and simulate how neutrons move and interact is a necessary condition to design and operate nuclear reactors.

Nuclear energy is facing important challenges and struggling to keep up a good image in the public opinion, in particular after the Fukushima Daiichi accident. Safety criteria were revised and became stricter. Meanwhile, in the nuclear community, interests for some new reactor types are starting to rise again. Reactors belonging to the so-called generation IV (Gen-IV) should be able to deliver better performances with better safety and security.

The idea to develop fast breeder reactors, for example, which should be able to produce energy for a longer period of time while reducing the amount of radioactive waste produced, is very appealing. The idea of fast breeder reactor was already proposed in the past and test facilities in dierent parts of the world were constructed. Unfortunately, this type of technology comes with bigger challenges both in simulation, operation and materials.

Nowadays, these kinds of reactors are not ready yet to be deployed.

However, thanks to the advancing in all technological elds, fast breeder reactor reactors could at the present moment have a second chance to became reality. For this to happen, of course they should prove to satisfy all the post Fukushima safety criteria and to be economically viable. These non-trivial requirements need considerable investments and eorts. One of the aspects that requires an improvement is the simulation tools used in the nuclear domain. In fact thanks to the rapid increase of computing power experienced in the recent period, along with the availability of powerful parallel computers, it is possible to aim at the development of better simulation tools. Neutron simulation has always been a dicult task, due to the presence of a variety of unknowns that requires a very ne representation. Depending on the problem, approximations of dierent precision level have been introduced in order to make a simulation aordable. However, by increasingly exploiting the fast evolution of the computational methods, it is becoming possible to relieve some approximations and aim at increasing the accuracy of the neutronic simulations.

The object of this work is the improvement of one of the simulation tool under development at the CEA of Saclay. The Two and Three Dimensional Transport (TDT) code, in the APOLLO3 R project, delivers a deterministic solution of the neutron transport equation using the Method Of Characteristics (MOC). The code is able to treat 3D realistic geometries solving a direct transport problem, without homogenization. An axial polynomial transport method and acceleration methods have been developed during this PhD work, in order to oer a more eective treatment of typical reactor geometries. The angular ux is represented with a set of polynomial functions. With a polynomial representation, the number of axial meshes needed to represent the ux gradients is strongly reduced, when comparing to the use of a constant approximation. This translates in signicant advantages both in terms of memory and computational time.

Part I Background 6

General nuclear properties

Every atomic nucleus is constituted by protons and neutrons. The number of protons, referred to as atomic number (Z), denes a chemical element. The number of neutrons denes an isotope, which indicates a family of nuclei sharing the same chemical properties, but dierent nuclear behaviour. The sum of the number of protons and neutrons is referred to as mass number (A).

The measured masses of the known element nuclei do not exactly coincide with the sum of the masses of the protons and neutrons constituting them. This eect is known as mass defect. This "missing mass" corresponds, in accordance to Einstein's equation E = m c 2 , to the binding energy between the nucleus particles, released at the moment of the nucleus formation. The higher the dierence between the mass of the nucleus and the sum of the masses of the ssion products, the higher the energy released under a ssion event.

The measured energy corresponding to the mass defect is shown in Fig. 1a. Without approaching the dicult task of going into the details of this phenomenon, we can assess from this gure the basic principle of nuclear ssion: breaking heavy nuclei into lighter products will release energy.

In nuclear reactors ssions are caused by neutron interacting with the ssionable isotopes.

The energy released during a ssion generally comes with the production of secondary particles, among which, a number of neutrons larger than one. As Fig. 1b shows, the number of neutrons needed to compensate for the electrostatic force between protons increases non-linearly with the atomic number. Therefore, when a heavy nucleus is broken into two lighter ones, a certain amount of neutrons is released. Since this number is larger than one, a self-sustained nuclear reaction is possible.

The energy and the neutrons released during the ssion process represent the cornerstones of the nuclear energy production system.

Cross sections

Fission is one of the possible reactions following a particle collision. To each reaction corresponds a microscopic cross section σ j , which indicates the likelihood of the reaction j to happen. The microscopic cross section measure units are barns (10 -24 cm 2 ). Cross sections can be interpreted as the area seen by the incident neutron and they strongly depend on the neutron energy. Microscopic cross sections are tabulated values obtained with laboratory experiments and completed by mathematical models, in order to have a continuous representation across the energy domain. As an example, we report in Fig. 2 the microscopic cross section for the 235 U isotope.

The macroscopic cross sections read Σ j = σ j N i , where N i indicates the concentration of the isotope i expressed in atoms/cm 3 . The units of measure of the macroscopic cross sections are cm -1 . The inverse of the macroscopic cross section is generally referred to as mean free path, which represents the average distance travelled by a neutron between two collisions.

The Neutron Transport Equation

The Neutron Transport Equation (NTE), or linear neutron Boltzmann equation, is the most used mathematical tool to represent the neutron behaviour inside a nuclear reactor.

The present work focuses on a steady state treatment of the Boltzmann equation. The steady state approach is of course not representative of transient problems such as start, shut down, accidents scenarios and any kind of power uctuation. For nominal conditions, however, a steady state approach is suciently representative and results less expensive in terms of computational time.

Since the number of neutrons in reactor systems is very large, they can be studied not as individual particles, but as a continuous-like function, whose values will not be representative of a point of the phase space, but rather of the averages of the quantities in a small interval around this point. The unknown of the neutron transport equation is the neutron angular ux, ψ( r, Ω, E) neutrons cm 2 s , which indicates the number of neutrons crossing a surface orthogonal to the neutrons motion direction, per unit time. The NTE can be obtained applying a particle balance in a small element of volume d r, in a point of the domain dened by the position r inside a domain D, for neutrons travelling with energy E and direction Ω, and it reads: where:

Ω • ∇ + Σ( r, E) ψ( r, Ω, E) = (2.1) + ∞ 0 dE d Ω 4π Σ s ( r, E → E, Ω • Ω ) ψ( r, Ω , E ) f or r ∈ D, Ω ∈ S 4π + N f ( r ) i=1 χ i (E) ∞ 0 dE ν i (E ) Σ f,i ( r, E ) d Ω 4π ψ( r, Ω , E ) + S( r, Ω, E),
ψ( r, Ω, E) = v n( r, Ω, E)
is the neutron angular ux resulting as the product between the neutron velocity (v) and concentration (n).

Ω • ∇ ψ( r, Ω, E)

the integral of this quantity represents the angular ux variation due to neutrons entering and exiting from the element of volume d r.

Σ( r, E) ψ( r, Ω, E)

is the removal term due to neutron capture, ssion or transfer.

d Ω 4π

stands for the integration over the unit sphere.

∞ 0 dE d Ω 4π Σ s ( r, E → E, Ω • Ω ) ψ( r, Ω , E ) is the transfer term. N f ( r ) i=1 χ i (E) ∞ 0 dE ν i (E ) Σ f,i ( r, E ) d Ω 4π ψ( r, Ω , E
) is the ssion term.

S( r, Ω, E)

is the external source term, which takes into account neutrons produced by processes independent of the neutron ux, such as spontaneous decay.

Going through each term we explicitly report the meaning of each symbol for clarity:

Σ( r, E) is the total cross section.

Σ s ( r, E → E, Ω • Ω ) is the transfer cross section. N f ( r ) is the number of ssile isotopes. χ i (E) is the ssion emission spectra, for isotope i. ν i (E ) is the average number of emitted neutrons for isotope i.

Σ f,i ( r, E ) is the ssion cross section for isotope i.

Equation (2.1) is valid for a sub-critical system, that is when a self-sustained ssion chain cannot exists. When the number of neutrons emitted during ssions is sucient for the ssion chain to be self-sustained, we will say that we are in a critical condition. When approaching criticality, which is the common operating state of a nuclear reactor, the external source term is generally negligible when compared to the number of neutrons produced by ssions and, in order to be able to compute a physical solution, equation (2.1) is studied as an eigenvalue problem, reading:

Ω • ∇ + Σ( r, E) ψ( r, Ω, E) = (2.2) + ∞ 0 dE d Ω 4π Σ s ( r, E → E, Ω • Ω ) ψ( r, Ω , E ) f or r ∈ D, Ω ∈ S 4π + 1 k ef f N f ( r ) i=1 χ i (E) ∞ 0 dE ν i (E ) Σ f,i ( r, E ) d Ω 4π ψ( r, Ω , E ),
where k ef f is the eective multiplication factor.

Boundary Conditions

To complete the mathematical representation of our problem we also need to impose a set of boundary conditions. The boundary conditions impose the values of the entering angular ux at the domain boundary ∂D and for the set of the entering directions dened by S - 2π :

ψ( r, Ω, E) = ψ in r ∈ ∂D, Ω ∈ S - 2π .

(2.3) Some of the usual boundary conditions imposed may be vacuum (ψ in = 0) or reection, rotation and translation, depending on the system symmetries. When the computational domain presents some sort of symmetries, it is sucient to compute the solution only on the smallest domain from which the whole system can be obtained by applying the appropriate geometrical movement. For these kinds of so-called geometrical boundary conditions we will say that:

ψ( r, Ω, E) = ψ(G( r, Ω), E) r ∈ ∂D, Ω ∈ S - 2π ,
which is to say that the entering angular ux from a point r with direction Ω will be imposed equal to the exiting angular ux in the point G( r, Ω), where G represents the geometrical movement associated with the kind of symmetry.

Classical deterministic approximations

We briey describe in the following some of the most important approximations applied to our problem, described by Eq.(2.2). Approximations are needed in deterministic methods to deal with the spatial, angular and energy dependence.

Multi-group approximation

The energy domain in nuclear reactor physics ranges from about 10 7 eV, the maximal energy of neutrons emitted during ssion, to about 10 -5 eV. Such a vast domain is divided in deterministic codes in a set of intervals, applying the so-called multi-group approximation.

As for every other kind of discretization, the width of the group interval is a compromise choice between the desired precision and the relative cost. Laboratory measured cross sections are obtained as point-wise values, close enough to each other to be used to feed theoretical models which deliver values representative of the continuous behaviour. Monte

Carlo based solvers use this ne representation and are therefore able to simulate in the best possible way the particles energy distribution. For deterministic codes, on the other hand, per-group constant cross sections are used.

The energy dependence E will be replaced with a superscript g, indicating that we are dealing with the group number g, over a total number of groups N g . Denoting the upper and lower energy bounds for each group respectively as E g-1 and E g , we dene the average per-group angular ux value as:

ψ g ( r, Ω) = 1 ∆E g E g-1
Eg dE ψ( r, Ω, E),

where ∆E g = E g-1 -E g , is the group width. Remark that, as customary, the group counting starts from the highest energy value. By applying this integration to each terms of the neutron transport equation we obtain the multi-group equivalent of Eq.(2.2), which reads:

Ω • ∇ + Σ g ( r, Ω) ψ g ( r, Ω) = (2.4) 
+ Ng g =1 d Ω 4π Σ g →g s ( r, Ω • Ω ) ψ g ( r, Ω ) + 1 k ef f N f ( r ) i=1 χ g i Ng g =1 ν g i Σ g f,i ( r, Ω) d Ω 4π ψ g ( r, Ω ),
where the multi-group cross sections can be dened as follows, in order to preserve each reaction rate:

Σ g ( r, Ω) = E g-1 Eg
dE Σ( r, E) ψ( r, Ω, E)

E g-1 Eg dE ψ( r, Ω, E) , (2.5 
)

Σ g →g s ( r, Ω • Ω , Ω ) = E g -1 E g dE E g-1 Eg dE Σ s ( r, E → E, Ω • Ω ) ψ( r, Ω , E ) E g -1 E g dE ψ( r, Ω , E ) , (2.6 
)

χ g i ν g i Σ g f,i ( r, Ω) = E g-1 Eg dE χ i (E) E g -1 E g dE ν i (E )Σ f,i ( r, Ω, E ) ψ( r, Ω, E ) E g -1 E g dE ψ( r, Ω, E ) .
(2 .7) Sticking to this formalism would result in a prohibitive memory size of the problem, since we would need to store group and angle dependent cross sections values. The angular dependency coming from the averaging process is in actual applications always neglected, and will not gure in the following. Moreover, these formulas show that following this procedure would require using the continuous-in-energy neutron ux as weight function in the integrals. This is of course impossible since the ux is the desired solution of the problem. From these considerations we can see that alternative ways are necessary to obtain the ux used as weight function. The choice of the energy discretization strongly inuences this aspect: if the group size is small enough, the variation of the cross section within the group is negligible. In this case the multi-group cross section is almost independent of the neutron ux. A particular care has to be taken when dealing with the resonance domain.

Here the cross sections variation is so important that a prohibitive number of groups would be required. To circumvent this problem, self-shielding methods are used. Basic principles of the self-shielding will be recalled later.

The energy dependence will be considered discretized in groups in the rest of this manuscript.

If the group number is not explicitly reported, we are implicitly assuming that the equations are valid for a generic group g. Figure 3 shows an example of a 33 group energy mesh. This particular subdivision will also be presented in the results section with some complementary information.

Legendre polynomials expansion

The angular dependence of the transfer term of Eq.(2.2) is treated with a classical expansion over the Legendre polynomials. The scattering cross section is written as [START_REF] Bell | Nuclear Reactor Theory[END_REF]:

Σ g →g s ( r, Ω • Ω ) 1 4π K k=0 Σ g →g s,k ( r)P k ( Ω • Ω ),
where K is the anisotropy order of the Legendre expansion and P k ( Ω • Ω ) is the Legendre polynomial of order k:

P 0 (x) = 1 P k (x) = 1 2 k k! d k dx k (x 2 -1) k f or k = 1, 2, ...
The Legendre polynomials are then replaced with the real spherical harmonics:

P k ( Ω • Ω ) = l=k l=-k A l k ( Ω)A l k ( Ω ),
where the denition of the real spherical harmonics A l k ( Ω) used in TDT is reported in [3],

and reads: where µ = cos(θ) and the denitions of the azimuthal and polar components of the vector Ω are given in Fig. 4 for clarity.

A l k ( Ω) = A l k (µ, ϕ) = α l k P l k (µ) cos( l ϕ) l ≥ 0 α
Replacing the transfer cross section expansion in the multi-group neutron transport equation, Eq.( 2.4), we obtain:

Ω • ∇ + Σ g ( r) ψ g ( r, Ω) = k=K k=0 l=k l=-k A l k ( Ω) Ng g =1 Σ g →g s,k ( r) 
d Ω 4π A l k ( Ω )ψ g ( r, Ω )

(2.8)

+ 1 k ef f N f ( r ) i=1 χ g i Ng g =1 ν g i Σ g f,i ( r) 
d Ω 4π ψ g ( r, Ω ).

From now on, we use a simplied notation for the spherical harmonics indexes (k, l), replacing them with a single index n:

k=K k=0 l=k l=-k A l k ( Ω) = Nm n=1 A n ( Ω), (2.9) 
where N m = (K + 1) 2 is the total number of angular moments. As a consequence of the transfer cross section expansion, we obtain the classical denition of the angular ux moments:

Φ g,n ( r) = d Ω 4π A n ( Ω) ψ g ( r, Ω), (2.10) 
where the 0-th order moment is referred to as scalar ux, and reads:

Φ g,0 = d Ω 4π ψ g ( r, Ω)
We can see from the denition of the ux moments that Eq.(2.8) can be written in a more compact form:

Ω • ∇ + Σ g ( r) ψ g ( r, Ω) = q g ( r, Ω) = Nm n=1 A n ( Ω) q g,n ( r), (2.11) 
where:

q g,n ( r) = q g,n scatt ( r) + 1 k ef f q g,n f iss ( r) q g,n scatt ( r) = Ng g =1 Σ g →g s,n ( r) Φ g ,n ( r) 
(2.12)

q g,n f iss ( r) =        N f ( r ) i=1 χ g i Ng g =1 ν g i Σ g f,i ( r) Φ g ,0 ( r) f or n = 0 0 f or n > 0
We also report here the following denition of the ssion integral, that will be useful later:

||F Φ( r)|| = D d r N f ( r ) i=1 Ng g =1 ν g i Σ g f,i ( r) d Ω 4π ψ g ( r, Ω ), (2.13) 
which is generally used as a normalisation factor.

S N approximation

The angular dependence is treated with the standard S N approach. The continuous dependence of the angular variable is replaced with a set of discrete directions. The angular integrals will be numerically computed as:

d Ω 4π f ( Ω) N k=0 w( Ω k ) f ( Ω k ), (2.14) 
where f ( Ω) is a generic function of Ω, w( Ω k ) is the weight related to the chosen quadrature formula and N is the chosen number of directions. Figure 5 shows a set of discrete ordinates on a sphere octant. In the following we will use the analytic notation for angular integrals, assuming however that every integral is numerically computed with this approximation.

This approach is typical of method of characteristics based solvers.

Space discretization

Another classical approximation used in deterministic solvers consists in dividing the computational domain in a set of regions and considering constant certain properties in each region. This approximation is generally applied to cross sections, which can be written replacing the continuous position dependence r, with the region index:

Σ g ( r) Σ g r ,
Remark that if isotopic depletion were not present and the temperature prole over the region were plate, this would not be an approximation. Since this is not true, the approximation introduces errors. In a similar way, other functions can be considered constant over the regions volumes, depending on the chosen approximations. The size (and number) of the computational regions has to be chosen as a trade-o between the desired precision and the computational resources engaged. Remark also that the constant approximation is not the only one possible: an expansion over a suitable basis is also a possible choice.

Once again, the type and order of the expansion will be strictly linked to the number of x y z computational regions, and both aspects will aect the computational time and memory usage.

From now on r will indicate the region number index and every function appearing with the subscript r will be considered constant in the region.

Two-step calculations

The neutron transport equation faithfully describes the neutrons behaviour in a nuclear reactor. However, an industrial-size nuclear reactor is a large and complicated system. A precise solution of the neutron transport equation with a very ne discretization of the reactor core would result in a number of unknowns too large, even for the best available machines. For experimental facilities, with smaller size and dierent constraints, a direct transport solution is becoming nowadays possible, using continuous Monte Carlo or deterministic methods. In the industrial eld, the general computational approach is to break down the problem in two steps. First, the so-called lattice calculations are performed on small but representative core sub-systems, generally fuel cells, assemblies or clusters, using ne discretizations both in space and in energy. This phase requires the application of a ctive boundary condition, such as reection. These sub-systems calculations will then be representative of innite systems constituted by the repetition of identical geometrical motifs. Such approximation is acceptable to describe real systems only far away from boundaries. The neutron ux obtained with this strategy is then used to compute cross sections representative of larger regions (homogenization ) and wider energy ranges (collapsing), using equivalence methods that preserve the ne reaction rates values [4]. Attentive care has to be applied in lattice calculations to estimate the neutron ux in particular zones which may not be well modelled with the innite medium condition, such as boundary or rodded assemblies. Also axial and radial reectors need a particular treatment, since they do not contain ssile material and cannot be computed alone using a critical model. The reectors cross sections are generally produced by computing a larger portion of the system containing also ssile assemblies, or 1D simplied models.

These homogenized and collapsed cross sections are then used for a full core calculation, which is the second step of the traditional scheme, and it is performed either using again the transport theory, but with a lower number of groups, or lower order approximation such as diusion theory.

This work can be seen as a contribution focused mainly on the lattice level. The purpose here is, in fact, to deliver a better 3D transport solution for geometries typical of nuclear reactor assemblies or clusters. The traditional two-step scheme, which is in practice the only one used at industrial-level, relies only on 2D or 1D calculations at the lattice level, accepting the risk of not representing the 3D eects accurately. This condition is acceptable when the geometry is regular axially and the composition not too heterogeneous, but becomes quite inaccurate for heterogeneous axial systems, such as partially inserted control rod congurations. 

APOLLO3

Self-shielding in APOLLO3

As anticipated in the previous section, every deterministic method uses the multi-group approximation to treat the energy dependence. To obtain per-group constant cross sections values, an equivalence method in necessary. Self-shielding is a key point for deterministic methods and it is a broad and complicated topic. A correct representation of the ux in the resonance zone is crucial, since the neutron ux will suer a variation proportional to the cross section variation, but in opposite direction. Moreover, in a group within the resonant domain of a resonant isotope, many isotopes may feature resonances very close to each other or even overlapping and the neutron ux is inuenced by the combined eect of the dierent isotopes.

The objective of a self-shielding method is to compute the collapsed cross sections presented in Eqs.(2.5) through (2.7). The same procedure applies for the dierent terms of these equations, so we will take as an example only the rst one, used to compute the total cross section Σ. As we have already mentioned, we neglect here the angular dependency that would be obtained using the angular ux, and we directly write the equations using the scalar ux value:

Σ g ( r ) = E g-1 Eg dE Σ( r, E) Φ( r, E) E g-1 Eg dE Φ( r, E) , (2.15) 
The unknown here is the ux Φ( r, E). In order to treat numerically this problem, each macro-group g is nely discretized in a series of micro-group. However, in order to avoid the use of a heavy notation with a double group index, the ux Φ( r, E) in the micro-groups is indicated with a continuous dependence in energy. Remark that we are dealing with a circular problem, since the energy integral of the ux in a macro-group coincide with the original unknown of our problem dened by Eq.(2.10). As a consequence, it is impossible to obtain a really accurate value for Φ( r, E), if not iterating.

The purpose of the self-shielding method is to obtain a suitable approximation of the ux spectrum inside the macro-group, in order to compute multi-group cross sections that preserve the reaction rates values. If the ux approximation is obtained with a very simplied model, the self-shielded cross sections will faithfully preserve the reaction rates only for non-resonant isotopes or for resonant isotopes but outside their resonance domain. Unfortunately, this approximation is not sucient, since resonances are present in several isotopes and for energy intervals that are important for fast neutrons slowing down.

Generally, isotopes are treated one at a time, while using already condensed or guess values for other isotopes cross sections. An iteration over all the resonant isotopes is performed until a stable set of cross sections is obtained, using the procedure called Bondarenko iterations. Since the energy discretization causes a considerable increase of the problem complexity when compared to the multi-group discretization, some drastic approximation has to be applied to the angular and spatial treatment in order to make the computation aordable. Some of the most common approximations consist in considering only isotropic scattering and using only small sub-domains, instead of the real computational geometries.

Several self-shielding methods are available in APOLLO3, but during this work the selfshielding methods were never object of any developments. The results of this work are obtained using the Tone method. For actual explanation about the self-shielding method, I refer to authors expert on the subject: [5] for a wide overview of dierent self-shielding method used in dierent codes and depending on the treated reactor spectrum and [START_REF] Mao | Resonance Self-Shielding Methods for Fast Reactor CalculationsComparison of a New Tone's Method with the Subgroup Method in APOLLO3 R[END_REF] for the Tone method in APOLLO3.

In a few words, the Tone method is based on a homogeneous-heterogeneous equivalence.

The ux obtained with this method is the solution of an innite medium problem, where the cross section has been replaced with an equivalent cross section [START_REF] Mao | Resonance Self-Shielding Methods for Fast Reactor CalculationsComparison of a New Tone's Method with the Subgroup Method in APOLLO3 R[END_REF]. The solution that we would have in a innite and homogeneous problem would be:

Σ(u) Φ(u) = q(u), (2.16) 
where u = ln( E E 0 ) is the lethargy and q(u) indicates the neutron source. If the micro-group discretization is ne enough we can safely apply the narrow resonance approximation, which implies that q(u) Σ p . With this assumption we can write Eq. (2.16) for a resonant isotope x, as:

Φ(u) = C x σ x (u) + σ g b,x
, where:

C x = Σ p N x is a constant and N x is the concentration of the isotope x, σ g b,x = 1 N x y =x Σ g
y is the background cross section for the isotope x.

We consider next a heterogeneous system composed by a set of homogeneous regions and we write the ux in the region i with the collision probability formalism:

V i Σ i (u) Φ i (u) = j P ij (u) q j (u) V j ,
where V is the region volume and:

P ij = 1 V i i d r j d r Σ( r ) e -τ ( r , r) 4π| r -r | 2
represents the probability for a neutron born in region j to have a collison in region i. Applying reciprocity (P ij (u)Σ i (u)V i = P ji (u)Σ j (u)V j ), conservation ( j P ij (u) = 1), Tone's approximation (P ij (u) = f i (u) g P g ij ) and the narrow resonance approximation we obtain [6]:

Φ i (u) = j P g ij Σ p,j V j j P g ij Σ j (u) V j .
(2.17)

Since we are doing the Bondarenko iterations, we can write the cross section for the region j as:

Σ j (u) = N x,j σ x (u) + y =x Σ g y,j .
Replacing this in Eq.( 2.17), we obtain:

Φ i (u) = D g σ x (u) + σ g 0,x,i , (2.18) 
where:

D g = j P g ij Σ p,j V j j P g ij N x,j V j is a constant, σ g 0,x,i = j P g ij V j y =x Σ g y,j j P g ij N x,j V j
is the heterogeneous equivalent background cross section for the isotope x in the region i.

Equation (2.18) is used to compute the unknown ux of Eq.(2.15) which acts as weighting function and the probability tables as quadrature formulas [START_REF] Mao | Resonance Self-Shielding Methods for Fast Reactor CalculationsComparison of a New Tone's Method with the Subgroup Method in APOLLO3 R[END_REF].

The method of characteristics

This work is entirely situated in the Method Of Characteristics (MOC) framework. We therefore recall here the MOC basics concept and formulas. The method of characteristics is a very well-known method used to solve linear partial dierential equations. The idea is to integrate the equation along a characteristic line, in order to reduce the problem to a ordinary dierential equation, for which it is easier to obtain the solution.

Integral form of the neutron transport equation

To obtain the characteristic form of the transport equation, we express the rst term of Eq.(2.11) as:

Ω • ∇ ψ( r, Ω) = ∂ψ( r, Ω) ∂x Ω x + ∂ψ( r, Ω) ∂y Ω y + ∂ψ( r, Ω) ∂z Ω z .
On the other hand, the derivative with respect to the parametric variable s reads: We can then identify the following terms:

dx ds = Ω x → x = x 0 + s Ω x dy ds = Ω y → y = y 0 + s Ω y → r = r 0 + s Ω, dz ds = Ω z → z = z 0 + s Ω z
where Figure 6 shows the meaning of this transformation. This means that we can write Eq.( 2.11) as a function of s, obtaining:

dψ( r 0 + s Ω, Ω) ds + Σ( r 0 + s Ω) ψ( r 0 + s Ω, Ω) = q( r 0 + s Ω, Ω),
and we write it using the following abuse of notation r 0 + s Ω = s, for simplicity. We also drop the dependency in Ω, getting:

dψ(s) ds + Σ(s) ψ(s) = q(s). (2.19) 
We start by solving the associated homogeneous problem:

dψ 0 (s) ds + Σ(s) ψ 0 (s) = 0 → ψ 0 (s) = ψ 0 (0)e -s 0 ds Σ(s )
The solution of the problem will then be the sum of the associated homogeneous problem and a particular solution ψ p of the same form:

ψ(s) = ψ 0 (0)e -s 0 ds Σ(s ) + ψ p (s)e -s 0 ds Σ(s )
We replace the preceding equation in Eq.( 2. [START_REF] Yamamoto | GENESIS : A Three-Dimensional Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of Angular Flux Method[END_REF]) and we obtain the particular solution ψ p :

dψ p (s) ds e -s 0 ds Σ(s ) = q(s) → ψ p (s) = s 0 ds q(s )e s 0 ds Σ(s )
Putting all back together and using again the explicit notation we obtain:

ψ( r, Ω) =ψ( r -s Ω, Ω) e -s 0 ds Σ( r-s Ω) (2.20) + e -s 0 ds Σ( r-s Ω) s 0 ds q( r -s Ω) e s 0 ds Σ( r-s Ω)
This equation is generally interpreted and used knowing the value of the angular ux in a given point r 0 = rs Ω and computing how the ux changes along a line as a consequence of removal and production. We will see in the next chapter how the equation is used in the code and its numerical equivalent.

Applications of the method of characteristics in neutronics

The method of characteristics is one of the most widespread methods used to solve the mono-group neutron transport equation for the reactor lattice calculations. This method is focused on the use of the integral transport equation, Eq. (2.20), to compute the angular ux across characteristic lines across the whole computational domain.

The rst application of the method of characteristics for neutron transport calculations goes back to the seventies. Following Askew's work [7], this method was introduced in the English code CACTUS [8]. The method of characteristics showed the possibility to potentially treat every kind of geometry which can be represented in a Cartesian frame reference, since it does not require any particular regularity. It also allows an arbitrary anisotropy treatment and it is able to correctly catch the streaming eects typical of high absorbing media.

The streaming term Ω • ∇ψ of the transport equation is treated exactly using the MOC formalism, in contrast to what happens using for example the nite dierence approach, making it appealing for neutron transport calculations [START_REF] Sanchez | A Review of Neutron Transport Approximations[END_REF]. Many applications of the method of characteristics were developed starting from the 1980s. To cite some examples: Alcoue and Larsen in 1981 [10], Filippone, Woolf, and Lavigne in 1981 [START_REF] Filippone | Particle Transport Calculations with the Method of Streaming Rays[END_REF], Suslov in MCCG3D code in 1993, [12], Knott and Edenius in CASMO-4 code in 1993 [13], Cho and Hong, CRX code in 1996 [START_REF] Cho | CRX: a transport theory code for cell and assembly calculations based on characteristic method[END_REF], Roy, DRAGON V3 code [15] and others.

Approximately until this period methods development was focused on two dimensional geometries. Most of these methods were based on cyclic tracking. The idea of cyclic tracking is that choosing particular tracking angles and applying the geometrical movement associated to the geometry symmetries to the characteristic lines, a trajectory will eventually return at the starting point after a certain length. This method allows an exact treatment of boundary conditions. An alternative approach consists in replacing the geometrical motions acting on the trajectory, with an approximate albedo-like condition. In this case the trajectory is terminated when a border is reached. This second choice implies a simpler tracking strategy, but a worst boundary conditions representation, when exact geometrical movements are to be applied. Trajectories lengths following this approach are considerably reduced, but boundary information must be stored to simulate the appropriate boundary conditions.

In the French lattice code APOLLO2, the MOC solver named TDT was developed in the late 1990s [START_REF] Chetaine | The use of the characteristics method to solve the transport equation in unstructured geometries[END_REF]. Cyclic trajectories and albedo-like boundary conditions were investigated and eventually the exact boundary conditions path was chosen as a privileged approach, even if the other choice remains operative [START_REF] Sanchez | Treatment of boundary conditions in trajectory -based deterministic transport methods[END_REF]. The later version, APOLLO3, inherits these same features. The TDT solver was implemented also in APOLLO3 and upgraded ever since.

Trajectory-based geometry dicretization

As anticipated, the basis of the method of characteristics is to exploit the integral form of the neutron transport equation, by following a neutron path along a straight line. Each trajectory is considered representative of a portion of the domain neighbouring such a line.

To have a full representation of the computational domain a set of parallel trajectories will be necessary for each angular direction. A cross section area is associated to each trajectory, acting as an integration weight. The approximation will then be the more representative of the real geometry, the closer the trajectories are to each other. Figure 7 shows a graphical representation of a simple but irregular two dimensional domain discretized using a set of parallel trajectories. We can easily deduce from this that the numerical quantities computed with the trajectorybased discretization inherit an angular dependence. For each region it is possible to identify an analytic volume (V r,a ) or an angular volume (V r ( Ω)). Averaging the angular volumes for a region over all the angles it is also possible to compute a numerical volume (V r ).

For clarity, we report the formulas used to compute the angular and numerical volumes, respectively:

V r ( Ω) = ∆ ⊥ ( Ω) t Ω t∩r l V r = d Ω 4π V r ( Ω),
where the sum is performed for all the trajectories parallel to the direction Ω that cross the region r, ∆ ⊥ is the perpendicular integration weight associated to the trajectory-based discretization and l is the chord length and their denition is graphically represented in Fig. 7.

For a very rened tracking, the numerical quantities tend to the analytic values. However, in real applications they are always dierent. For small regions in particular, the numerical and analytic values can be very dierent and this eect must be taken into account. A possible approach to overcome this dierence consists in the use of normalized chords.

Following this approach, the length of each chord crossing a region is multiplied by the ratio of the analytic and angular volumes. As a drawback, modifying the chords lengths, the model is not any more representative of the physical distances travelled by the particles.

Even if chord normalization is widely present in the literature (e.g. [5], [START_REF] Cho | Fundamentals and recent developments of reactor physics methods[END_REF] and others) and if the exact volume integration has some advantages, in TDT the preferred choice is to not normalize chords, in order to obtain the best possible physical representation of particles transport across the domain.

Long and Short characteristics

Two main families of MOC based methods are used to simulate neutron transport along straight lines: the Long characteristics and the Short characteristics, sometimes referred to as SMOC. The TDT solver is based on the long characteristics approach: a set of trajectories covers the whole domain from boundary to boundary, and the particles are followed from the trajectory starting point, until the end of the line. In the short characteristics approach, the integral transport equation is used to simulate neutrons crossing each region from boundary to boundary, but for each region, the surface and volume uxes are represented with approximated functions. In this method, ne tracking information in each region are used to compute a set of coecients, which allow to propagate the surface uxes from a boundary to another, without the need to treat one chord at a time. To obtain a good representation of the solution, volume and surface uxes are generally represented through a polynomial expansion. Depending on the solution regularity and on the polynomial basis and order, the method can deliver very accurate results. The main dierence between the two methods consists in how the characteristics discretization is used: in the short characteristics approach, the trajectories are used only in the coecients computation phase. In a second phase the coecients are used to compute the ux transmission across the domain, from surface to surface. Since the iterative strategy imposes the uxes transmission to be repeated several times in a calculation, and since surface uxes transmission is much cheaper than using the ne trajectory-based transmission, the short characteristics method generally presents a smaller computational cost in comparison to the long characteristics companion, but requires a higher memory storage. As a drawback, the short characteristics method entails some geometrical limitations. Until now, only plane surfaces are used to compute the surface ux expansion. As a consequence, a possible way to apply this method to generic geometries is the use of triangular (or tetrahedral) meshes. In this case, the ux on each surface can be correctly expanded using the chosen polynomial basis.

However, this approach results in a large number of meshes in typical Light Water Reactors

geometries. An example of the use of this approach can be found in Genesis or THOR codes [START_REF] Yamamoto | GENESIS : A Three-Dimensional Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of Angular Flux Method[END_REF], [20].

An alternative approach is presented in the IDT code, allowing the treatment of heterogeneous cartesian cells [START_REF] Masiello | New Numerical Solution with the Method of Short Characteristics for 2-D Heterogeneous Cartesian Cells in the APOLLO2 Code: Numerical Analysis and Tests[END_REF]. Thanks to this method, it is possible to treat Cartesian cells that contain a nite number of concentric circles. Even if this approach can be applied to the majority of reactor geometries, it is still not sucient to compute a more complex geometry without using a high number of meshes to subdivide irregular components in order to represent them with plane surfaces. A second limitation of the method comes from the memory requirements: the coecients needed are energy, angle, polynomial order and surface (or region, depending on the coecients type) dependent. This leads to a large memory storage, which can be addressed in dierent ways when the geometry becomes too large, like storage on le or on-the-y computation without storage with the use of tabulated values [22]. Another interesting feature introduced in this work allows to recognize equal cells (same geometry and same cross sections), and to compute the coecients only once for each cell type.

The strong point of the long characteristics method is that, at least theoretically, arbitrary region shapes can be treated. The only diculty consists in being able to identify the intersection points between a trajectory and a region boundary. In the actual implementation of TDT only lines and arcs segments are recognized as region boundaries. Still, this allows an exact representation of typical reactor geometries.

Numerical form of the integral transport equation

As anticipated in Sec. 

ψ + ( Ω) = ψ -( Ω) e -Σr l + l 0 dt q r (t), Ω e -Σr(l-t) , (2.21) 
where the two ux values ψ( rs Ω) and ψ( r) are replaced with ψ -and ψ + , the entering and exiting uxes along a trajectory, respectively. We have also used t to indicate the local coordinate along the trajectory. The notations used are detailed in Figure 8. The term q r(t), Ω is also generally treated using dierent sort of approximations, depending on the chosen method. This will be discussed later, in particular in Chapters 3, 4 and 5.

The 3D MOC in APOLLO3

The two-dimensional method of characteristics has been used for a long time for the solution of the neutron transport equation in lattice calculations. The transition to threedimensional lattice calculations had to wait for the upscale of computer architectures. Given the fast computing power increase experienced in the last decades, the 3D solution becomes more and more appealing. The method of characteristics can be applied to any type of 3D geometries, at least theoretically. In the TDT module of the French lattice code, APOLLO2, the MOC solution was available only for 2D geometries. In the APOLLO3 code, under development at CEA, it was decided to also implement a 3D MOC solver. In order to attain interesting performances, a parallel treatment has been adopted. The method of characteristics is well suited for a parallel treatment, since the solution along each trajectory can be computed independently. However, an ecient parallel strategy requires the use of a series of precautions to avoid drastic eciency reduction. The extension of the MOC solver to 3D extruded geometries in the APOLLO3 code has been realized in the last years during a

PhD work [23], which was also the object of several publications [24], [START_REF] Sciannandrone | Optimized tracking strategies for step MOC calculations in extruded 3D axial geometries[END_REF], [START_REF] Santandrea | A neutron transport characteristics method for 3D axially extruded geometries coupled with a ne group self-shielding environment[END_REF]. We recall in this chapter some elements developed during this former work, which constitutes the basis of this manuscript subject.

The Step approximation

The so-called Step Characteristics (SC) approximation is the most widespread way to numerically approach the MOC based solution. The idea, very popular in numerical algorithms, is to approach the desired function (here the neutron ux) with a set of constant terms. This kind of approximation is acceptable only when such a function presents small gradients in the considered domain. This translates into the reasonable concept that the ner the spatial discretization introduced, the better the solution obtained. This approximation was chosen in the rst implementation of the 3D method of characteristics in TDT.

The fundamental approximation introduced when using the Step method can be expressed as:

ψ( r, Ω) ψ r ( Ω),
where the index r represents a constant value per region. This entails that also the source terms reported in Eqs.(2.12), become constant in each computational region.

Step characteristics equations

Two main equations are necessary to dene the MOC transport solution: a balance and a transmission equation.

Integrating Eq.(2.11) over the volume of each region, we can obtain a balance equation to compute the region averaged angular ux, ψ r ( Ω):

1 V r r d r Ω • ∇ ψ( r, Ω) + Σ r V r r d r ψ( r, Ω) = 1 V r r d r q( r, Ω). (3.1) 
Applying the divergence theorem to the rst term we get:

Σ r ψ r ( Ω) = q r ( Ω) - 1 V r ∂r d r s Ω • n ψ( r s , Ω),
where n is the outward normal at r s . The surface integrals over the region boundary ∂r are obtained using the trajectory-based discretization, and hence decomposed as:

1 V r ∂r d r s Ω • n ψ( r s , Ω) = 1 V r ∂r + d r + s Ω • n+ ψ( r + s , Ω) -ψ( r - s , Ω) = ∆ ⊥ ( Ω) V r t Ω t∩r ψ + t ( Ω) -ψ - t ( Ω) = ∆J r ( Ω). (3.2) 
Here the sum is performed over all the trajectories crossing the region boundary and ψ ± t ( Ω) are the exiting/entering angular uxes along the trajectory. ∆ ⊥ ( Ω) represents the integration weight associated to the set of trajectories parallel to the Ω direction. The integration weight generally coincides with the area associated to a trajectory. The chosen strategy for the 3D MOC in TDT is to use a per-angle constant trajectory spacing, in order to obtain constant weights, that can be factorized, as explained in [START_REF] Sciannandrone | Optimized tracking strategies for step MOC calculations in extruded 3D axial geometries[END_REF]. The balance equation can nally be expressed as: Σ r ψ r ( Ω) = q r ( Ω) -∆J r ( Ω).

( 3.3) The dierence between the region contribution of the exiting and entering angular uxes is the so-called current term ∆J r ( Ω) and it is computed with the transmission equation. A numerical transmission equation can be obtained starting from Eq.(2.21) and applying the constant per-region source approximation:

ψ + (t, Ω) -ψ -(t, Ω) = q r ( Ω) Σ r -ψ -(t, Ω) 1 -e -Σrl . (3.4) 
Eq.(2.21) has been reformulated in this way for computational reasons: directly computing the dierence between exiting and entering uxes allows to minimize the number of oatingpoint operations, and to have better results for regions presenting a small value of the total cross section. As it is customary in MOC applications, 1-e -Σr l is pre-tabulated in terms of τ = Σ r l. This strategy allows both an ecient evaluation using a linear interpolation which only demands one oating-point operation, and also a correct representation for vanishing Σ r l values, using Taylor's expansions.

Iterative strategy

The solution of the transport equation via the method of characteristics is obtained in several steps. Several nested iteration loops are used, as schematically represented by Algorithm 1. At the beginning the ux is initialized in each ssile region. The outermost The procedure is repeated until the convergence of the angular ux moments in each group and for each region is attained [27] .

Chord classication method

One of the weak points of 3D geometries MOC treatment is its memory needs. As Eq. (3.4) shows, the solution of the transmission equation requires the knowledge of the chord lengths.

In a typical reactor geometry the number of 3D chords can easily reach values between 10 6 and 10 9 . In a classical unstructured 2D domain each chord is dierent from each other. As a consequence, the information must be directly stored and retrieved during the trajectory sweep. A dierent approach can be followed when dealing with 3D extruded geometries. As Figure 9 shows, the 3D tracking is based on the two-dimensional footprint.

The intrinsic regularity of the extruded geometries allows avoiding the direct storage of all the 3D chords. The Chord Classication Method (CCM), introduced in [23], takes advantage of this aspect. Figure 9 also shows how, dening s the local coordinate along a 2D trajectory and z the axial coordinate, all the 3D trajectories lying on the same twodimensional footprint belong to a vertical plane that we can dene as s-z plane. Figure 10 represents a set of parallel trajectories for a given polar angle lying on a generic 2D line.

Initialize λ = 1 k ef f and the ux moments in ssile regions

Outer iterations: o while the ssion integral is not converged do

Compute the ssion source contribution for each group:

q g,ext n =        1 k ef f N f ( r) i=1 χ g i Ng g =1 ν g i Σ g f,i Φ g ,0 r f or n = 0 0 f or n > 0 (Eq.(2.12))
Thermal iterations:

Start iterating on groups, starting from the highest energy while The ux in each group is not converged do Compute the mono-group solution:

Update the transfer contribution from the other groups: all the chords crossing two vertical surfaces belonging to the same z plane and lying on the same 2D chord, share the same length. Since they cross the same region, they also share the same optical length. This set of chords is said to belong to the same class. For a given 2D chord of length l i,2D , and a given polar angle θ, the length of each 3D chord belonging to the same class is easy to obtain. The same applies to the situation where a set of chords crosses the same two successive horizontal surfaces. In this case, the information needed to retrieve the chords lengths are the plane height (∆z), and again the polar angle (θ). These two kinds of chords are dened respectively as V-chords and H-chords and their 3D lengths can be obtained with the following expressions:

q g,ext n = q g,ext n + g =g Σ g →g s,n Φ g ,
l V i,3D = l i,2D sin θ , l H i,3D = ∆z cos θ .
The third and last possibility is constituted by Mixed chords, which are chords entering a region through a horizontal surface and exiting through a vertical one, or vice-versa.

For this kind of chords it is harder to recognize a regular pattern. Some attempts have been made to classify a portion of these chords, but nally it was found that the simplest and most ecient strategy is to store their length in a non-recognized chord structure.

This structure is composed by a series of vectors, one per each trajectory, containing the three-dimensional lengths in the same order as they are encountered along the trajectory.

Two benets arise from the CCM: the amount of tracking information to be stored is drastically reduced and the number of oating-point operations to be performed to compute the transmission coecients (β = 1 -e -Σr l ), is also reduced. During the tracking phase, the chord type must be identied in order to store only non-recognized chords lengths. This information must be available during the transport sweep to compute the non-recognized chords β coecients, while for classied chords the value is pre-computed.

Hit surfaces sequence

The CCM method implementation requires to recognize the chord type during the transmission sweep, in order to retrieve the related pre-computed β coecient. The idea of the method is to exploit the regularity on the s-z plane, which allows to keep track of the movement along the 2D footprint and in the axial planes, while sweeping the 3D trajectory.

Knowing the starting axial layer and 2D chord, the type of surface that can be encountered next is either horizontal or vertical: a horizontal crossing will lead to a change of the axial layer, leaving the 2D footprint unchanged, while a vertical impact will result in passing from the present 2D chord to the next one in the 2D trajectory, leaving the axial layer unchanged. These simple considerations are the basis of another method implemented in [23], in order to exploit these regularities to further compact the tracking information and at the same time recognize the chord type during the transport sweep. This method is named Hit Surfaces Sequence (HSS). axial plane counter. As far as the 2D trajectory is concerned, the sweeping direction (forward or backward ) must be known, in order to increase or decrease the 2D chord counter. Figure 11 gives an example of the information relative to two simple trajectories, written using the HSS method. A more exhaustive explanation about the CCM and HSS methods is given in [23]. We however decided to give here some elements, because the polynomial method developed in this work inherits completely the CCM and the HSS method, and benets from both of them.

Parallel Strategy

The transport sweep is one of the most computationally intensive parts of the MOC solver, in particular for 3D geometries. An OpenMP-based parallel algorithm has been proposed and implemented in [23] in order to reduce the computational cost of the trajectory sweep operation, and upgraded in later code versions.

In the method of characteristics, each trajectory must be swept starting from the beginning until the end, and this operation must be performed sequentially. On the other hand, several trajectories can be swept independently by dierent threads, since the ux along a trajectory does not depend on the solution along the others. Once all the trajectories are swept, the ux angular moments in each region can be computed with the help of Eq.( 3.3).

The trajectories sweep contributes to this equation computing the dierence between exiting and entering ux per each chord, and cumulating this dierence in a structure that is region and angle dependent, referred to as ∆J r ( Ω). The delicate part of the parallel treatment of the trajectory sweep mainly resides in this cumulation. Even if the ux along dierent trajectories can be computed independently, in the end only one ∆J r ( Ω) term must be obtained, representative of the whole domain. As usual in parallel methods, particular care must be paid to avoid dierent threads attempting to modify the same value, at the same time. This situation is generally referred to as race condition, and represents an important drawback that can strongly decrease the performances of a parallel algorithm.

To avoid race conditions the proposed strategy in [23] and later enhanced in [START_REF] Santandrea | A neutron transport characteristics method for 3D axially extruded geometries coupled with a ne group self-shielding environment[END_REF], consists in having private copies of ∆J r ( Ω) for each thread. Race conditions during the trajectory 

HSS 1 = {-7}, HSS 2 = {-4, 1, -2, 1, -1}.
This image is taken from [23] and slightly modied.

sweep are eliminated and the reduce 1 operation on a shared ∆J r ( Ω) is postponed after the trajectory sweep. This is a typical approach used in parallel algorithms, making use of so-called private and shared copies. The drawback of this approach consists in the memory needs: private copies of large structure are not only a problem for evident limitations in memory size, but also because duplicating large structure can result in a decrease in computational performances due to the higher memory access cost. To overcome this issue the trade-o solution used consists in the duplication of smaller portions of the ∆J r ( Ω) term.

In fact, each trajectory can only cover a subset of the directions considered by the angular quadrature formula. If no geometrical boundary conditions are used, each trajectory can only access to ∆J r ( Ω) of a single angle.

When geometrical boundary conditions are considered, the number of angles encountered by the same trajectory increases, as we can see in Figure 12. This particularity leads to the denitions of private copies that we can call ∆J r ( Ω connected ). In this case, the reduction from the private copies per group of connected angles to the global copy for the totality of the angles, cannot be performed any more at the end of the trajectory sweep, but each thread must reduce every time it passes from a sub-set of angles, to another. We remark that, however large in memory size, these private auxiliary arrays are not group dependent.

As a consequence, even imagining being able to treat a domain with a million of regions, we would need about 100 Megabytes per thread. This rough estimation is meant to show that the use of thread private variables for the ∆J r ( Ω) terms does not constitute a major memory bottleneck when applying the MOC solution.

To complete the parallel treatment of the transport sweep, a load balancing technique has been implemented, allowing to minimize the number of reductions from private to shared copies, and to distribute the amount of work among threads as equally as possible. In a few words, the cost of each trajectory (weight ) is priorly estimated, and the trajectories are divided in packages of dierent sizes. Before dividing the trajectories in packages, they are sorted in such a way that the trajectories belonging to the same package will likely belong to the same sub-set of connected angles. This choice is made in order to minimize the 1 The reduction operation usually refers to the situation when several quantities computed in parallel by independent threads must be summed or combined together. number of reductions to be performed. In this way, the thread will be able to sweep several trajectories before a reduction operation. Finally, the packages of trajectories are divided among threads. To minimize the risk to have a large package of trajectories remaining to be computed by a single thread, while the others have already nished their work, several strategies have been tested. The one eventually chosen is to order the packages by decreasing weight, after having them divided in a geometrical series fashion. Starting from the computationally heavier jobs, until the lightest, a package is assigned to a thread using a dynamic logic. When a thread has completed a task, a new set of trajectories with a lower associated computational cost is assigned to it. The procedure is repeated until all trajectories are swept. This approach has proven to be eective in terms of parallel eciency and not particularly memory demanding. Dividing the charge into subsets and ordering them in decreasing computational cost is generally referred to as a greedy algorithm, and it is quite widespread among parallel strategies.

Example of results on ASTRID sub-assembly

The SC method has been validated on a heterogeneous three-dimensional assembly of the innovative Sodium-cooled Fast Breeder Reactor ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), designed at the CEA in France. An exhaustive description of the reactor will be given later, in a dedicated section. Here we justify the choice of this benchmark by the fact that this reactor features a quite heterogeneous axial design in comparison to conventional light water reactors.

The left part of Fig. 13 shows a simplied view of the ASTRID reactor. The main dierence in comparison to traditional designs is due to the fact that the reactor core is divided, also in the axial direction, in dierent layers: fertile layers, ssile layers, sodium plenum and some others. This additional complexity makes this case a very good candidate for three-dimensional MOC solver verication. In traditional reactors, a 2D calculation gives in fact an acceptable approximation of the neutron ux far away from the top and bottom reactor boundaries. In this case, on the other hand, a two-dimensional calculation results extremely inaccurate. For this reason an assembly of this reactor was chosen to verify the accuracy obtained with the 3D MOC solver, and, at rst, with the SC approximation.

The right part of Fig. 13 shows an example of several axial ux proles for a fuel pin, corresponding to dierent energy groups. The left side of this gure also roughly shows the axial location of the fuel assembly in the reactor. From this example we can see how (a) Graphical representation of the axial computational domain. the ux gradients are quite steep, but also quite regular. This example also shows that a per-layer constant solution leads to the use of a very high number of axial meshes, which strongly aect the memory needs of the computation: not only the multi-group uxes need to be duplicated for each axial plane, but also a series of auxiliary quantities of the 3D MOC solver. In particular the acceleration coecients, which are very memory demanding, are strongly aected by the chosen axial discretization.

From these considerations arose the idea to try to express the solution using a polynomial basis. The motivations and the original ideas of this development in the TDT solver were already laid down in [23], which represents the starting point for our developments.

The introduction of this manuscript ends here. We pass now to the description of the polynomial method implemented. We have inherited the formulation given in [23] for the polynomial transport equations, which consists in the transmission and angular balance equations. Several elements had to be modied and we realized this only when confronted to the practical method implementation. In a second time, we developed and the implemented the synthetic acceleration method, that allowed us to obtain a complete and eective polynomial MOC solver.

Part II New Developments

High Order MOC framework

A growing interest for three dimensional neutron transport calculations has characterized the last decades. Fed by the fast and continuous computer technology advances, 3D full core transport calculations are becoming a possible long term target for neutronic simulations.

Current reactor calculations mainly rely on two-dimensional transport solutions, followed by the homogenization and collapsing of macroscopic cross sections, to be used in low order 3D methods. Even if this approach has been sucient to design and operate nuclear reactors, there are some particular cases for which a more precise solution accounting for three dimensional transport eects may sound appealing. For the time being, a whole core transport solution in a reasonable computational time is still futuristic. However, smaller portions of the reactor core featuring particular conditions, like partially inserted control rods mainly aecting the power prole in the surrounding assemblies, can be now computed with direct transport methods without cross sections homogenization and collapsing. Safety analysis also could prot of more eective 3D calculations, as well as experimental facility simulations, for which the computational domain is generally reduced in comparison to industrial size power reactors.

Aiming at larger three dimensional computational domains could probably be accomplished only by increasing computational power, but high order methods often come to help in these situations. A large variety of high order methods based on long or short characteristics have been proposed and/or developed. We give in this section a small overview of some of them.

The rst big family of high order methods regroups 2D MOC solvers using linear volume ux expansion in the x-y directions. Among these we cite the works in [START_REF] Hébert | High-Order Linear Discontinuous and Diamond Dierencing Schemes Along Cyclic Characteristics[END_REF], [START_REF] Mazumdar | Solution of the neutron transport equation by the Method of Characteristics using a linear representation of the source within a mesh[END_REF], [START_REF] Ferrer | A Linear Source Approximation Scheme for the Method of Characteristics[END_REF], [START_REF] Tellier | On the integration scheme along a trajectory for the characteristics method[END_REF].

In TDT a linear source expansion has also been introduced in [START_REF] Sanchez | Convergence analysis for the method of characteristics in unstructured meshes[END_REF] and [START_REF] Santandrea | Improvements and validation of the linear surface characteristics scheme[END_REF], which performs a linear interpolation of surface uxes along the trajectories. An arbitrarily high order method has also been tested in TDT for a volume ux expansion up to the fourth order [START_REF] Masiello | High-Order Method of Characteristics for 2-D Unstructured Meshes[END_REF] and a linear version has been implemented in the IDT code [START_REF] Masiello | New Numerical Solution with the Method of Short Characteristics for 2-D Heterogeneous Cartesian Cells in the APOLLO2 Code: Numerical Analysis and Tests[END_REF]. Since the typical distances in the radial plane are very small, the number of regions is very high due to the presence of very heterogeneous materials. This inevitably leads to a high number of unknowns, which further increases if a high order method is adopted. The aim of a high order method is to decrease the number of meshes needed, since the spatial gradients are already well represented by the high order expansion. But if a great number of meshes is imposed by the material description, a high order method may be not ecient. Literature examples can be found showing that a radial expansion above the linear term is more memory demanding than the linear counterpart, with a negative impact or a negligible gain in computational time [START_REF] Masiello | High-Order Method of Characteristics for 2-D Unstructured Meshes[END_REF].

The second family of methods is constituted by 3D MOC-based solvers with a high order ux representation. The methods belonging to this category are much more heterogeneous than their two-dimensional counterparts. Dierent approaches have in fact been adopted

to address the three-dimensional nature of the problem. The method of characteristics can be used to directly treat 3D geometries. However, these kinds of computations are still very expensive, both in terms of memory and of computational time. The mainstream approach is the so-called fusion method, where a 2D MOC traditional solution is coupled with mono-dimensional axial transport or SP 3 approximations. These kinds of methods are mainly chosen because the computational cost that they demand is fairly lower than a direct solution with a 3D MOC approach. Both the 3D MOC, and the 2D+1D fusion methods can benet from a high order ux representation. For fusion methods these kinds of ux expansion are common. On the other hand, for 3D MOC solvers high order ux approximations are still not widespread.

The rst approach that we want to cite is the OpenMOC solver developed at the MIT.

The OpenMOC code is intended, as TDT, to directly solve 3D problems with the long characteristics method. Moreover, it addresses the high order problem using a similar approach to the one we have adopted, assuming a quadratic source expansion only in the axial direction [START_REF] Gunow | SimpleMOC -A PERFOR-MANCE ABSTRACTION FOR 3D MOC[END_REF], [START_REF] Gunow | Reducing 3D MOC Storage Requirements with Axial On-the-y Ray Tracing[END_REF], [START_REF] Shaner | Accuracy and Performance of 3D MOC for Full-Core PWR Problems[END_REF].

The authors of [START_REF] Chai | The linear source approximation in three dimension characteristics method[END_REF] implemented a linear source expansion in x-y-z for a 3D MOC transport method. We believe this work to be a preliminary stage since only isotropic scattering was considered and no acceleration technique was proposed. Even if the results showed better performances when compared to the constant approximation, we were not able to nd further developments.

The developers of the Genesis code adopted a dierent approach [START_REF] Yamamoto | GENESIS : A Three-Dimensional Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of Angular Flux Method[END_REF]. A two-dimensional conventional MOC solution is obtained in the radial plane, while the so-called LEAF (Legendre polynomial Expansion of the Angular Flux ) method is used for the treatment of the solution along the axial meshes. The method exploits the regularity derived by the use of extruded geometries to identify characteristics planes. Classical 2D lines are drawn, and, in the normal direction, axial slices lying on the 2D chords are identied. Figure 14, taken from [START_REF] Yamamoto | GENESIS : A Three-Dimensional Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of Angular Flux Method[END_REF], gives a visual interpretation of the concept. The surface uxes on the vertical and horizontal surfaces are expanded using Legendre polynomial. The scalar ux and the emission density are expanded linearly in the radial plane, and up to the second order in the axial direction. The transmission between characteristics planes is computed through a set of coecients. These are obtained using a sort of two-dimensional ne tracking on the plane, in a short characteristics fashion. The method results in a very large number of coecients to be stored or computed on-the-y. In order to avoid both possibilities, an interesting tabulation strategy was adopted.

The DeCART [START_REF] Hursin | The Development and Implementation of a One-Dimensional Sn Method in the 2D-1D Integral Transport Solution[END_REF] and MPACT [START_REF] Collins | Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT[END_REF] codes also adopt a 2D MOC approach coupled with a 1D axial diusion solution. For a better approximation of the axial ux an expansion over Legendre polynomials is used in both methods. The nTRACER code [START_REF] Jung | Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers[END_REF] also employs a two-dimensional modular MOC solution for each plane in which the domain is Figure 14 Characteristic plane used in the Genesis code. Image source [START_REF] Yamamoto | GENESIS : A Three-Dimensional Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of Angular Flux Method[END_REF] discretized, and the solution in each axial layer is coupled with the neighbours through a region-dependent leakage term. A nodal approach based on the SP 3 approximation is used to solve the axial problem.

Finally, the Split Cell method explained in [START_REF] Mathews | Split-Cell, Linear Characteristic Transport Method for Unstructured Tetrahedral Meshes[END_REF] and [START_REF] Brennan | Split-Cell Exponential Characteristic Transport Method for Unstructured Tetrahedral Meshes[END_REF] adopts a high order ux representation (linear or exponential) of the ux spatial dependence for the solution of the 3D transport equation for tetrahedral meshes. A similar approach is followed by the authors of [20], where the solution for the same 3D transport problem for tetrahedral meshes is addressed. In this work previous stability problems limiting the expansion used to the rst order were overcome, and the authors present an Arbitrarily High-Order Transport Method for the representation of the ux spatial dependencies.

This quick overview of some of the existing methods allows identifying a clear trend. The interest in 3D calculations is rapidly growing, since they are becoming more and more feasible. Some interest is also growing for 3D whole core direct calculations. The method of characteristics is certainly a valid candidate for this task. The mainstream approach is constituted by fusion methods, which allow an interesting solution with reasonable computational costs. Full 3D MOC solutions, though in theory more precise, are much more expensive, and remain nowadays impracticable for very large systems, unless using very powerful parallel machines.

This work is focused on the development of a polynomial approximation in the 3D MOC solver implemented in TDT, in order to decrease the computational cost and the memory needs of the method. Conscious that this will not solve every limitation associated to 3D

MOC solvers, we hope anyway that this method will allow obtaining precise solutions of larger 3D domains, when compared to the use of the SC approximation.

High order generic MOC formulation

We would like to start our technical discussion mentioning the work presented in [START_REF] Sanchez | Prospects in deterministic three-dimensional whole-core transport calculations[END_REF], which was very useful for our developments. The author of this manuscript reports a synthetic formulation for generic high order MOC equations. We borrow some of his notations and equations for some rst considerations.

The spatial dependence of the angular ux can be approximated as:

ψ( r, Ω) ∼ f ( r ) • ψ r ( Ω ), (4.1) 
f ( r ) = {f p ( r ), p = 0, N p }, ψ r ( Ω) = {ψ r,p ( Ω), p = 0, N p },
where r is the region index, f and ψ r are the expansion functions and the associated ux coecients, respectively, N p is the chosen degree for the expansion. Replacing this denition in Eq.(2.10), an alternative version of the angular ux moments is obtained:

Φ n ( r) = f ( r ) • Φ n r , Φ n r = d Ω 4π A n ( Ω) ψ r ( Ω). (4.2) 
Given these denitions, and since cross sections are considered homogeneous, the source term dened by the set of Eqs.(2.12) can be synthetically re-written as:

q( r, Ω) = Nm n=1 A n ( Ω) q n ( r), (4.3) 
q n ( r) ∼ f ( r ) • q n r , q n r = q n r,scatt + 1 k ef f q n r,f iss ,
where:

q n r,scatt = Ng g =1 Σ g →g s,n,r Φ g ,n r , q n r,f iss =        N f ( r) i=1 χ i Ng g =1 ν g i Σ g f,i,r Φ g ,0 r f or n = 0 0 f or n > 0.
As for any other MOC based formulation, both a transmission and a balance equation are necessary. If we express the source term of Eq.(2.21) using the expansion reported in the set of Eqs.(4.3) and dening q r ( Ω) =

Nm n=1

A n ( Ω) q n r , we obtain:

ψ + ( Ω) = ψ -( Ω) e -Σr l + l 0 dt f [ r(t ) ] • q r ( Ω) e -Σr(l-t ) . (4.4) 
This can also be written following the notation of [START_REF] Sanchez | Prospects in deterministic three-dimensional whole-core transport calculations[END_REF], as:

ψ + ( Ω) = ψ -( Ω) e -Σr l + E t • q r ( Ω),
where:

E t = l 0 dt f [ r (t ) ] e -Σr(l-t )
To update the source terms we need to compute the ux expansion coecients of Eq.(4.2), which means that we require to compute the expansion coecients ψ( Ω). Proceeding with the classical Galerkin approach, we write the spatial moments of the angular ux as:

ψ r ( Ω ) = 1 V r r d r f ( r ) ψ( r, Ω), (4.5) 
where the symbol " " is used to dierentiate the spatial moments ψ r , from the expansion coecients ψ r . Using the expansion of Eq.( 4.1) to express ψ( r, Ω) we obtain the expansion coecients as a function of the moments, dening the Galerkin mass matrix M as:

M = 1 V r r d r f ( r ) ⊗ f ( r ) ψ r ( Ω) = M-1 ψ r ( Ω). (4.6) 
Note that ψ r = ψ r , except if M equals to the identity matrix, i.e., when the expansion functions are region-wise orthonormalized. The author of [START_REF] Sanchez | Prospects in deterministic three-dimensional whole-core transport calculations[END_REF] denes two possible alternatives that can be used to compute ψ r ( Ω) : using the integral or the dierential form of the neutron transport equation.

Integral approach

In the integral approach, the spatial moments of the angular ux are expressed coherently with the trajectory-based space discretization, as:

ψ r ( Ω) = 1 V r r d r f ( r ) ψ( r, Ω) = 1 V r ∂r ⊥ d 2 r ⊥ l 0 dt f [ r (t) ] ψ r (t), Ω .
Here the volumetric integral on the region r has been decomposed as an integral over the surface perpendicular to the trajectories direction, denoted by d 2 r ⊥ , times the integral along the trajectory local coordinate t. The angular ux along the trajectory is computed adapting Eq.( 4.4) to compute the ux in a generic point t along the trajectory:

ψ r ( Ω ) = 1 V r ∂r ⊥ d 2 r ⊥ I t ψ -( Ω) + Cr q r ( Ω), (4.7) 
where:

I t = l 0 dt f [ r (t) ] e -Σr t , Cr = 1 V r ∂r ⊥ d 2 r ⊥ Ct , Ct = l 0 dt f [ r (t) ] ⊗ t 0 dt f [ r (t ) ] e -Σr(t-t ) .
Once the spatial angular moments ψ r ( Ω) are obtained, the expansion coecients are retrieved applying Eq.(4.6).

Dierential approach

The second possible way is to project the dierential form of the neutron transport equation, Eq.(2.11), over the chosen expansion function f ( r ), obtaining an equation similar to (3.1):

1 V r r d r f ( r ) Ω • ∇ψ( r, Ω) + Σ r V r r d r f ( r ) ψ( r, Ω) = 1 V r r d r f ( r ) q( r, Ω). (4.8) 
The rst term can be written considering only one component p of the f ( r) vector at a time, obtaining:

f p ( r ) Ω • ∇ψ( r, Ω) = ∇ • f p ( r ) Ω ψ( r, Ω) -∇ f p ( r ) • Ω ψ( r, Ω). (4.9) 
We introduce now the following matrices:

J = ∇ ⊗ f ( r ) and Ḡ = Ω ⊗ f ( r ),
that allow us to write rst term of Eq.(4.8), using Eq.(4.9) and a vectorial notation, as:

1 V r r d r f ( r ) Ω • ∇ψ( r, Ω) = 1 V r r d r ∇ Ḡ ψ( r, Ω) A - 1 V r r d r Ω J ψ( r, Ω) B . (4.10) 
The divergence theorem is used for the term (A):

A) → 1 V r r d r ∇ Ḡ ψ( r, Ω) = 1 V r ∂r d r s Ω • n f ( r s ) ψ( r s , Ω) = 1 V r ∂r + d r + s Ω • n+ f ( r + s ) ψ( r + s , Ω) -f ( r - s ) ψ( r - s , Ω) = 1 V r ∂r ⊥ d 2 r ⊥ f r + ψ + ( Ω) -f r -ψ -( Ω) . (4.11) 
Here ∂r + denotes the exiting surface for the region r in direction Ω. r ± s and r ± are the position vector on the exiting/entering surface.

The term (B) of Eq.( 4.10) can be re-written using Eq.( 4.1), obtaining:

B) → 1 V r r d r Ω J ψ( r, Ω) = M1 ( Ω) ψ r ( Ω) (4.12) 
where:

M1 ( Ω) = 1 V r r d r Ω J ⊗ f ( r )
Putting this back together, using again Eq.( 4.1) to express ψ( r, Ω) in the second term of Eq.(4.8) and Eq.( 4.3) for q( r, Ω) in the third term, we get:

Σ r M -M1 ( Ω) ψ r ( Ω) = M q r ( Ω) - 1 V r ∂r ⊥ d 2 r ⊥ f r + ψ + ( Ω) -f r -ψ -( Ω) , (4.13) 
where the M matrix is the one in Eq.(4.6).

Both the integral and the dierential approach have to compute the ux entering/exiting along the trajectories to obtain the surface integrals. In both cases Eq.( 4.4) is used to accomplish this task. The main drawback of the integral approach is that it requires the storage of the matrices Cr . Since these are region, polynomial order and group dependent, this could result in a very large size.

Therefore, we believe the dierential approach to be more ecient both in terms of memory requirements, and of number of oating point operations. For these reasons we choose to follow this path in our developments. We will refer to this chapter in the following, since our method is a particular case of the one just described.

Axial Polynomial transport MOC

Most common nuclear reactor designs feature a very heterogeneous two-dimensional geometry, but a quite regular axial pattern. In the radial plane, in fact, few centimeters may separate ssile, highly absorbing or moderating materials. To enhance heat transfer and to decrease the peak temperature, the fuel pin diameter must be the smallest possible. This leads to a very heterogeneous and complex geometry, which must be nely represented by simulation tools in order to obtain an acceptable precision. In the axial direction, on the contrary, the regularity is much higher. The fuel rods generally feature the same geometry from top to bottom of the reactor. The compositions inside the fuel pins may vary depending on the position, but even in this case the dierence is not as important as in the radial plane. Axial heterogeneities may also be represented by spacer grids or partially inserted control rods. Even in this case the distance between two dierent materials is of the order of at least ∼ 10 cm, whereas on the radial plane the average distance between completely dierent materials is of the order of 1 cm. Figure 15 shows a simplied representation of a light water reactor core and of a fuel assembly.

Even if the material composition can be more regular in the axial direction, in comparison to the radial plane, the results obtained with the SC method during the work in [23] clearly

show that a ne axial discretization is necessary in order to properly represent the ux axial gradients. As anticipated in the previous chapter, following the idea proposed in [23], we try to represent the ux axial behaviour using a set of polynomial functions. If the chosen polynomial basis is suitable for the representation of the ux gradients, this approach should result in a strong reduction of the number of the axial meshes. We proceed now with a detailed description of the axial polynomial method that we have developed.

Flux and source expansion

Choice of the polynomial basis

The polynomial basis that has been chosen to express the angular ux axial behaviour makes use of the following local coordinate:

zr = z r -zr ∆z r /2 ∈ [-1, +1] ,
where ∆z r is the height of the region r, z r is the absolute axial coordinate and zr is the value of the axial coordinate at the region center. With this local coordinate we dene:

P (z r ) = {(z r ) p , p = 0, N p }, (5.1) 
where N p is the chosen order for the polynomial expansion. Thanks to this denition (z r ) p ∈ [-1, 1] for every region, independently of the region height. In this way, when passing from a region to the next one through a horizontal border, the polynomial value only changes its sign, switching from +1 to -1 (only for odd terms). This property allows avoiding a certain number of operations during the trajectory sweep, as it will be shown later.

Angular ux expansion

We assume now that the spatial dependence of the angular ux ψ( r, Ω) can be expressed as:

ψ( r, Ω) Np p=0 P p (z r ) ψ r,p ( Ω) = P (z r ) • ψ r ( Ω), (5.2) 
where ψ r ( Ω) is a region-wise constant vector of dimension N p + 1. This expression is the equivalent of Eq.(4.1). The same procedure described in section 4.1 is repeated here, obtaining the following angular ux moments denition:

Φ n ( r ) = P (z r ) • Φ n r , Φ n r = d Ω 4π A n ( Ω) ψ r ( Ω), (5.3) 
and the following expression for the source term:

q( r, Ω) = Nm n=1 A n ( Ω) q n ( r ), (5.4) 
q n ( r) ∼ P (z r ) • q n r , q n r = q n r,scatt +

1 k ef f q n r,f iss (5.5) 
where:

q n r,scatt = Ng g =1 Σ g →g s,n,r Φ g ,n r , q n r,f iss =        N f i=1 χ i Ng g =1 ν g i Σ g f,i,r Φ g ,0 r
f or n = 0 0 f or n > 0.

(5.6)

Polynomial source terms in vectorial notation

We also dene a vectorial notation in order to express the angular and spatial expansions in a more compact form. This notation will help to lighten the notation. Replacing Eq. (5.5) in Eq.( 5.4) we obtain:

q( r, Ω) = Nm n=1 A n ( Ω) Np p=0
P p (z r ) q n r,p .

(

We introduce now a new notation:

Z(z, Ω) = {A 0 ( Ω)P 0 (z), A 1 ( Ω)P 0 (z), ..., A 0 ( Ω)P 1 (z), A 1 ( Ω)P 1 (z), ...}, (5.8) 
q = {q n p } = {q 0 0 , q 1 0 , q 2 0 , ...

p=0

, q 0 1 , q 1 1 , q 2 1 , ...

p=1

, q 0 2 , q 1 2 , q 2 2 , ... (5.9)

Here and in the following a bold letter will indicate a vector or a matrix, where the angular and spatial dimensions are collapsed in a single dimension, equal to N m × (N p + 1). To avoid misunderstandings in the following we will use:

x mono-dimensional vector (space or angle) B matrix associated to a mono-dimensional space (space or angle)

x bi-dimensional vector (space and angle)

B B B

matrix associated to a bi-dimensional space (space and angle)

With this new notation we can re-write Eq.(5.7) as:

q( r, Ω) = Z(z, Ω) • q r .
(5.10)

In the same way we can write the angular ux moments dened by (5.3) using this vectorial form, as: Φ r = {Φ n r,p }, which has also dimensions equal to N m × (N p + 1).

To comply with the iterative solution algorithm, the self-scattering term is generally separated from the transfer from other groups, while the latter is regrouped with the ssion source in an external term [START_REF] Santandrea | An Integral Multidomain DP N Operator as Acceleration Tool for the Method of Characteristics in Unstructured Meshes[END_REF]. With this purpose, it will be useful for the next sections to reformulate the source term and, in particular, the self-scattering using the vector notation dened in Eqs. (5.8) and (5.9). Equation (5.5) then becomes:

q r = q r,scatt + 1 k ef f q r,f iss = q in r + q ext r , q in r = Σ g r,s Φ r with Σ g r,s = Īd #(Np+1) 2 ⊗ Σg→g r,s #N 2 m , (5.11) 
where q ext r gathers scattering coming from other groups and ssion, Īd is an identity matrix and # indicates the total matrices size. As a result, Σ g r,s is a diagonal matrix acting only on angular moments.

We introduce also a slightly dierent formulation useful in certain cases, obtained by simply interchanging the sums in Eq.(5.7): q( r, Ω) = P (z r ) • q r ( Ω) where:

q r,p ( Ω) = Nm n=1 A n ( Ω) q n r,p
(5.12)

Angular balance equation

In order to update the source terms dened by Eq.( 5.6), we need to compute the ux moments dened by Eq.(5.3). A possible way to obtain the angular ux expansion coecients ψ r ( Ω) that this equation requires is to follow a similar procedure to the one reported in section 4.1, and labelled as dierential approach.

We start by dening the polynomial moments of the angular ux as:

ψ r ( Ω) = 1 V r r d r P (z r ) ψ( r, Ω).
(5.13)

Once again, we project the dierential form of the neutron transport equation, Eq.(2.11), over the chosen expansion functions P (z r ), obtaining:

1 V r r d r P (z r ) Ω • ∇ψ( r, Ω) + Σ r V r r d r P (z r ) ψ( r, Ω) = 1 V r r d r P (z r ) q( r, Ω). (5.14)
The rst term is modied in the same way as in Eq.( 4.11) and Eq.( 4.12):

1 V r r d r P (z r ) Ω • ∇ψ( r, Ω) = 1 V r ∂r ⊥ d 2 r ⊥ P z+ r ψ + ( Ω) -P z- r ψ -( Ω) + 1 V r r d r Ω J ψ( r, Ω),
Since the only non-zero component of J = ∇ ⊗ P (z r ) is the one along z, this term can be simplied in comparison with the general three-dimensional case:

Ω J ψ( r, Ω) = ∂ P (z) ∂z Ω z ψ( r, Ω).
We then use the following property:

∂P p ∂z = p (∆z r /2) P p-1 ,
and we obtain:

∂P p (z) ∂z Ω z ψ( r, Ω) = µ p (∆z r /2) P p-1 (z) ψ( r, Ω),
where µ = cos(θ). Substituting back into Eq.(5.14), using the denition of the polynomial moments of the angular ux given in Eq.(5.13) and the source expansion of Eq.( 5.12), we obtain a balance for the p-th component of ψ r ( Ω) :

Σ r ψ r,p ( Ω) = P q r ( Ω) p - 1 V r ∂r ⊥ d 2 r ⊥ P p z + r ψ + ( Ω) -P p z - r ψ -( Ω) + µ p (∆z r /2) ψ r,p-1 ( Ω),
where the P matrix is the equivalent of Eq.(4.6), and reads:

P = 1 V r r d r P (z r ) ⊗ P (z r ).
(5.15)

This balance equation can be solved starting from the p = 0 order, for which the term ψ r,p-1 ( Ω) is zero, until p = N p , as a triangular system of equations. It can also be rewritten in a vector form as:

Σ r ψ r ( Ω) = P q r ( Ω) -∆ J r ( Ω) + µ Cr ψ r ( Ω), (5.16) 
where:

∆ J r ( Ω) = 1 V r ∂r ⊥ d 2 r ⊥ P z+ r ψ + ( Ω) -P z- r ψ -( Ω) ∆ ⊥ ( Ω) V r t Ω t∩r P z+ r ψ + (t, Ω) -P z- r ψ -(t, Ω) .
∆ J r ( Ω) is the polynomial equivalent of the SC version dened by Eq.(3.2). The integration weight ∆ ⊥ ( Ω), and the sum over the trajectories parallel to the direction Ω share the same meaning, while the Cr matrix reads:

Cr = 2 ∆z r        0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 . . . . . .        . ( 5.17) 
Equation (5.16) can be used to compute the polynomial moments of the angular ux ψ r ( Ω)

and the coecients can be eventually retrieved by using the equivalent of Eq.(4.6):

ψ r ( Ω ) = P-1 ψ r ( Ω ).

(5.18)

Particle Conservation -First observations

As the author of [START_REF] Sanchez | Prospects in deterministic three-dimensional whole-core transport calculations[END_REF] underlines in appendix B of his work, particle conservation requires a careful approach when using the balance equation derived in the previous section. As described in section 4.1, two alternative ways to obtain a balance equation are possible.

However, both options make use of the integral form of the neutron transport equation to compute the entering/exiting angular uxes along the trajectories, used to compute the surface integral of the type:

1 V r ∂r ⊥ d 2 r ⊥ I t ψ -( Ω)
for the integral form Eq.(4.7)

and 1 V r ∂r ⊥ d 2 r ⊥ f r + ψ + ( Ω) -f r -ψ -( Ω)
for the dierential form

Eq.(4.11)

The integral approach is inherently coherent with the MOC space approximation while computing the angular uxes along the trajectories. On the other hand, the dierential approach is coherent with the trajectory-based space discretization only if some precautions are taken.

In particular, the P matrix of Eq.( 5. [START_REF] Chetaine | The use of the characteristics method to solve the transport equation in unstructured geometries[END_REF]) must be computed using the same space discretization introduced by the method of characteristics. If this is not the case, numerical instabilities arise, that can lead to a divergent solution. When a ne tracking is used the trajectory-based discretizations are close enough to the analytical counterparts, and the method results stable. On the other hand, if the volume approximations are not precise, which is often the case for small regions that suer from poor discretization, the method has proven to be highly unstable. In an early stage of our work [START_REF] Graziano | Polynomial axial expansion in the Method of Characteristics for neutron transport in 3D extruded geometries[END_REF] we did not understand this detail, and tried instead some acrobatic stabilization techniques. Only after a careful reading of [START_REF] Sanchez | Prospects in deterministic three-dimensional whole-core transport calculations[END_REF], we nally obtained a stable version.

The proof of this fact is postponed to Appendix A. However the only important result can be resumed in a slightly dierent version of Eq.( 5.16), featuring a numerical version of the P matrix.

About the P matrix

The numerical matrix to be used in the angular balance equation to avoid numerical instabilities is obtained starting from the denition of P of Eq.( 5.15), and writing zr as a function of the local coordinate along the trajectory t as:

zr = z in r -zr + µ t ∆z r /2 µ = cos(θ) t ∈ [0, l], (5.19) 
where z in r is the axial coordinate value at the trajectory entering point and zr is the average value in the region r.

The (pp ) element of the numerical counterpart of Eq.(5.15) then reads:

Pr,pp ( Ω) = 1 V r r d r P p (z r ) P p (z r ) 1 V r ( Ω) ∂r ⊥ d 2 r ⊥ l 0 dt z in r -zr + µ t ∆z r /2 p+p (5.20) = p,p k,k =0 c p,k c p ,k ∆ ⊥ ( Ω) V r ( Ω) t Ω t∩r z in r -zr ∆z r /2 p+p -k-k µ k+k 2 ∆z r k+k l (k+k +1) k + k + 1 ,
where c p,k are the binomial coecient:

c p,k = p! k!(p -k)! .
The parametric angle dependency of Eq.(5.20) comes from the use of the angle-dependent integration. In the limit of analytic integration this dependence disappears. The rst element of the Pr ( Ω) matrix coincides with the numerical angular volume V r ( Ω). Henceforth, the same angular volume has to be used as a denominator. Remark that computing these numerical matrices requires to store a number of square matrices with the size of the used polynomial degree, times the number of the angles, times the number of computational regions.

P Analytic limit

It is worth underlying that analytically, the Pr ( Ω) matrix does not depend on the angle: For N p = 3, for example:

Pr ( Ω) = 1 V r
Pa,pp =     1 0 1 3 0 0 1 3 0 1 5 1 3 0 1 5 0 0 1 5 0 1 7     .

Stable angular balance equation

Replacing the Pr ( Ω) denition of Eq.( 5.20) in the angular balance equation previously obtained, we get:

Σ r ψ r ( Ω) = Pr ( Ω) q r ( Ω) -∆ J r ( Ω) + µ Cr ψ r ( Ω).
(

The ∆ J r term also requires a slight modication as a consequence of the reasoning reported in Appendix A. Once again the use of the numerical angular volume V r ( Ω) is made necessary:

∆ J r ( Ω) ∆ ⊥ ( Ω) V r ( Ω)
t Ω t∩r

P (z + r ) ψ + (t, Ω) -P (z - r ) ψ -(t, Ω) , (5.23) 
Remark that the presence of the angular numerical volume in the ∆ J r term makes the zero order term of this formulation dierent from the standard SC approximation, where generally the analytic volume is used.

Once the polynomial moments of the angular ux ψ r ( Ω) are computed, we can obtain the expansion coecients as:

ψ r ( Ω ) = P-1 a ψ r ( Ω ). (5.24) 
Contrarily to what we had at rst imagined, the use of the analytic inverse matrix has proven not to cause any problem in this last step. This approach has therefore been chosen, since it avoids the storage of the angular dependent inverse matrices.

The entering/exiting angular uxes along the trajectories of Eq.(5.23) are computed via a polynomial version of the integral form of the neutron transport equation equivalent to Eq.(4.4), that will be described in section 5. 4.

As a nal remark, attention must be paid since the numerical angular volume can be equal to zero if no trajectory crosses the considered region for a given angle. In this particular case there is also no contribution to the ∆ J r ( Ω) from the trajectories sweep and no contribution to the numeric version of the P( Ω) matrix. Equation ( 5.22) then simplies and the analytic Pa is used instead of the absent numerical counter-part.

Flux moment computation

The previous section described the procedure used to obtain the polynomial moments of the angular ux ψ r ( Ω), and the expansion coecients ψ r ( Ω). To close our system we need to compute the angular ux moments Φ r , as in Eq.( 5.3). Using the angular balance of Eq. (5.22) obliges us to compute at rst the angular expansion coecients, and then to obtain the angular ux moments as:

Φ n r = d Ω 4π A n ( Ω) ψ r ( Ω).
An alternative way to compute the angular ux moments has been implemented, which

does not requires the explicit use of the angular balance equation. This direct computation is slightly less computational demanding and requires about the same storage as the angular balance equation (which requires to store the P( Ω) angular matrices). This formulation has been developed mainly because it leads to a balance equation that it is also used for the synthetic acceleration, which is the object of chapter 6. The use of the balance equation described in this section allows therefore to avoid the storage of the angular P( Ω) matrices, and to replace them with a similar size matrices that would be anyway necessary for the DP N synthetic acceleration.

To do this we combine Eq.( 5.24) with Eq.( 5.3), obtaining:

Φ n r = d Ω 4π A n ( Ω) P-1 a ψ r ( Ω).
Since the value of the P-1

a matrix in Eq.( 5.21) is independent of the angle we can write:

Φ n r = P-1 a Φ n r , Φ n r = d Ω 4π A n ( Ω) ψ r ( Ω), (5.25) 
where Φ n r will be referred to with the redundant but necessary name of polynomial and angular ux moments. Now Eq. (5.22) can be used to express ψ r ( Ω), obtaining:

Σ r Φ n r = d Ω 4π A n ( Ω) Pr ( Ω) q r ( Ω)+ (A) - d Ω 4π A n ( Ω) ∆ J r ( Ω) (B) + d Ω 4π A n ( Ω) µ Cr ψ r ( Ω). (C)
We analyse the three terms separately. For the rst one we use Eq.( 5.12) to express q r ( Ω):

(A) → d Ω 4π A n ( Ω) Pr ( Ω) Nm n A n ( Ω) q n r = Z Z Z r q r ,
where we have used the denition of Z given in Eq.(5.8) to dene the following spatialangular matrix:

Z Z Z r = d Ω 4π A( Ω) ⊗ A( Ω) ⊗ Pr ( Ω) = d Ω 4π 1 V r ( Ω) r d r Z(z, Ω) ⊗ Z(z, Ω).
(5.26)

For the third term we use a relation between spherical harmonics that is presented in Eq.(B.2) of Appendix B. We use it to express the product A( Ω) µ = ᾱ ⊗ Cr , obtaining:

(C) → d Ω 4π µ A( Ω) ⊗ Cr ψ r ( Ω) = (5.27) ᾱ ⊗ Cr d Ω 4π A( Ω) ψ r ( Ω) = D D D Φ r ,
where D D D = ᾱ ⊗ Cr . Putting all back together we get:

Σ r Φ r = Z Z Z q r - d Ω 4π A( Ω) ⊗ ∆ J r ( Ω) + D D D Φ r .
(5.28)

The elements of matrix D D D can be found in appendix B. We insist here in particular on the matrix prole, since the solution of this system strongly depends on it. If we write the previous equation only for the polynomial order p and we use the denition of the Cr matrix given in Eq.( 5.17), it is easy to see that the D D D has a simple prole:

Σ r Φ r,p = (Z Z Z q r ) p - 1 4π d Ω A( Ω) ⊗ ∆ J r ( Ω) p + D D D Φ r p = (Z Z Z q r ) p - 1 4π d Ω A( Ω) ⊗ ∆ J r ( Ω) p + p ∆z r /2
ᾱp Φ r,p-1 .

(5.29)

In the previous equation each polynomial moment p depends on the moments of lower order p -1 as a consequence of the last term. Therefore , D D D matrix is lower-diagonal for the polynomial index dependency (see Table 5.1 ).

Moreover, as it will result from Eq.(B.2), D D D couples each angular (k, l) moment with the (k +1, l) and (k -1, l) ones (for k > 0). Luckily, these moments belong to a lower polynomial order p -1 as it is shown in Eq. (5.29). This makes possible a simple solution strategy based on the observation that to compute the set of angular moments of the last polynomial order, say N p , in Eq.( 5.29) one has to know the set of angular moments of the previous N p-1 polynomials but augmented by those relative to the (l + 1) angular index. This reasoning can be carried up until the rst polynomial so as to conclude that the 0-th polynomial order moments have to be computed up to the K scatt + N p harmonic index, where K scatt is the scattering order, i.e. the order number of Legendre expansion in the collision operator. Once one has taken this precaution, the solution of Eq.( 5 as to include all moments whose rst harmonic index goes until K scatt + N p -p. Following this rule the maximum sub-matrix dimension will read:

N D = (K scatt + N p + 1) 2 .
(5.30)

In appendix B we also show with a simple example which is the exact size of each sub-matrix and the angular moments needed depending on the anisotropy and polynomial orders.

It is worth noting that the situation described above is not without consequences on the polynomial basis denition (Eq.(5.8)) since now an enlarged unknown vector has to be used to include the terms arising from the supplementary coupling terms in D D D. To stress the dierences we will now call Z D (z, Ω) (where the subscript "D" stands for D D D coherent quantities) the vector of Eq.(5.8), but with the angular terms needed by this balance formulation.

Having this in mind we can write:

Σ r Φ r,D = Z Z Z DV q r - 1 4π d Ω A D ( Ω) ⊗ ∆ J r ( Ω) + D D D Φ r,D , (5.31) 
where the Z Z Z DV is given by the analogue of Eq.( 5.26) but with the tensorial product of Z D ⊗ Z V replaced inside and all vectors have an elongated dimension, except the source term, which is limited by the scattering and ssion operators.

Once the system (5.31) is solved and all the necessary angular moments are obtained, only the moments belonging to the true scattering dimension (#N m ) are kept (denoted by Φ r,V ) and used to obtain the polynomial coecients of the angular ux moments via Eq.( 5.25):

Φ r = P P P -1 a Φ r,V , (5.32) 
where P P P -1 a is the equivalent of P-1 a , but the full angular-spatial dimension (N p + 1 × N m ) 2 :

P P P -1 a = P-1 a ⊗ Īd #N 2 m .
The balance formulation presented in Eq.(5.31), coupled with Eq.(5.32), will be adapted for the DP N synthetic acceleration.

Transmission Equation

As anticipated in Section 5.2, we need to compute the entering/exiting ψ -(t, Ω), ψ + (t, Ω) angular uxes along the trajectories, in order to cumulate the ∆ J r ( Ω) term of Eq.(5.22).

We explicit here the formulation that we have adopted for the transmission equation used to compute the angular ux along the trajectories. Substituting the source expansion reported in Eq.(5.12), into the generic transmission equation, Eq.(2.21), we obtain an equivalent of the generic high order transmission reported in Eq.(4.4):

ψ + ( Ω) = ψ -( Ω) e -Σr l + l 0
dt P [z r (t )] q r ( Ω) e -Σr(l-t ) .

(5.33)

To express the value of the polynomial basis along the trajectory we use the same expression of Eq.( 5. [START_REF] Yamamoto | GENESIS : A Three-Dimensional Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of Angular Flux Method[END_REF]), and we obtain:

ψ + ( Ω) =ψ -( Ω) e -Σr l + l 0 dt Np p=0
(z in r -zr + µ t ) p (∆z/2) p q r,p ( Ω) e -Σr(l-t ) .

Developing now the p-th power term we get:

l 0 dt Np p=0 p k=0 p! k!(p -k)! z in r -zr ∆z/2 k µ p-k t p-k 2 ∆z p-k q r,p ( Ω) e -Σr(l-t ) = Np p=0 p k=0 c p,k P k (z in r ) µ p-k 2 ∆z p-k 1 Σ (p-k) r τ (l) τ (0)
dτ τ p-k e (τ -τ (l)) q r,p ( Ω) Σ r ,

where the optical length τ (t) is dened as:

τ (t) = Σ r t.
The transmission equation obtained reads:

ψ + ( Ω) =ψ -( Ω) e -Σr l + Np p=0 p k=0 c p,k P k (z in r ) µ p-k 2 ∆z p-k E p-k (τ ) q r,p ( Ω) Σ r , (5.34) 
where the escape coecients E p-k (τ ) are dened as:

E p-k (τ ) = 1 Σ (p-k) r τ (l) τ (0)
dτ τ p-k e (τ -τ (l)) .

(5.35)

Computation of the escape coecients

The escape coecients needed to complete the transmission sweep could be computed directly by integrating Eq. (5.35). The standard approach used in TDT for optical-lengthdependent coecients is to use interpolation tables, since it has been proven to be fast and reliable also for vanishing chords or vacuum media. Moreover, as already presented in [23],

integrating by part Eq.( 5. [START_REF] Gunow | SimpleMOC -A PERFOR-MANCE ABSTRACTION FOR 3D MOC[END_REF]), we can obtain the useful recursive relation:

E b (τ ) = l b - b Σ r E b-1 (τ ) 1 ≤ b ≤ N p .
(5.36)

One of the possible approaches is then to start from the 0-th order coecient and to retrieve the others using a forward approach:

E 0 (τ ) = 1 -e -τ , E 1 (τ ) = l - 1 Σ r + 1 Σ r e -τ , . . . E b (τ ) = l b - b Σ r E b-1 (τ ) 1 ≤ b ≤ N p .
This would allow the use of only one interpolation table for the 0-th order value. Unfortunately the recursive relation Eq. (5.36) is ill-conditioned for small values of τ . Another possible approach that the author of [23] proposes, is to tabulate the following function:

E T b (τ ) = 1 τ b τ (t) τ (0) dτ (τ ) b e (τ -τ (t)) , (5.37) 
and then retrieve the escape coecients as:

E b (τ ) = l b E T b (τ ).
(5.38)

A visual representation of the function expressed by Eq.(5.37) is given in Fig. [START_REF] Chetaine | The use of the characteristics method to solve the transport equation in unstructured geometries[END_REF]. Moreover, after integrating by parts Eq.(5.37) it is possible to obtain also in this case recursive relations reading:

f orward → E T b (τ ) = 1 - b τ E T b-1 (τ ), (5.39) 
backward

→ E T b (τ ) = τ b + 1
1 -E T b+1 (τ ) .

( 5.40) Using this approach would allow us to tabulate only the highest-order coecient, and to retrieve the other ones by using the backward relation, which happens to be well-conditioned for small τ values. Even if this approach would solve the problem for small τ values, it suers of numerical cancellation for large τ . The backward relation is in fact ill-conditioned in this case. Each escape coecient tends asymptotically to 1, so using the backward relation would cause important numerical cancellation when performing the 1 -E T b+1 (τ )

operation. The errors propagation associated to the forward and backward relations are shown in Fig. 17 and Fig. [START_REF] Cho | Fundamentals and recent developments of reactor physics methods[END_REF]. In order to simulate the behaviour of the interpolation table, a small relative error (O(10 -9 )) is associated to the highest or to the lowest order coecients, depending on the chosen strategy. The other coecients are then computed via Eqs. (5.39) and (5.40) and the gures show the sensible τ intervals where the recurrent relations do not deliver accurate results.

Based on the analysis of these results, we have decided that constructing a table for each polynomial term was the most eective method. From the computational point of view, performing a linear interpolation for each polynomial degree to compute E T b (τ ) and then applying Eq. (5.38) to obtain the true escape coecient is not more computationally expensive than applying one of the two recurrent relations. As far as the memory is concerned, we do not believe that having several tables represents an important problem. The τ domain is in fact limited to some decades and Fig. 16 assures us that increasing the polynomial degree will not result in needing a larger number of points, since the higher order coecients are smoother and smoother. Moreover, using just one table requires a very high number of points, in order to avoid a small error to be propagated by one of the two recurrent relations. The single table approach was at rst implemented, but eventually discarded.

To allow fast and simple memory access to the tabulated values, we used constant step tables. Moreover, given a tabulation point, all the polynomial terms corresponding to the dierent escape coecients are allocated adjacently in memory, in order to minimize paging.

Tabulation of the escape coecients

The procedure adopted to compute the tables depends on the value of the optical length, more precisely:

For large τ : The forward recursive relation is used for large values of the optical length to compute all the higher order coecients starting from the 0-th order value.

E T 0 (τ ) = 1 -e -τ , . 
. . For small τ : For small τ values, a McLaurin series is used to expand the function e -τ .

E T b (τ ) = 1 - b τ E T b-1 (τ ),
Every coecient can in fact be expressed as a combination of exponential functions:

E T 0 (τ ) = 1 -e -τ = τ - τ 2 2 + τ 3 3! -..., E T 1 (τ ) = 1 - 1 τ E T 0 (τ ) = τ 2 - τ 2 3! + τ 3 4! -..., . 
. .

E T 3 (τ ) = 1 - 3 τ E T 2 (τ ) = 3! 4! τ - 3! 5! τ 2 + 3! 6! τ 3 -..., E T b (τ ) = ∞ i=1 (-) i+1 b! (b + i)! τ i , τ b + 1 1 - τ b + 2 1 - τ b + 3 1 - τ b + 4 .

Numerical-transmission equation

The computational cost associated to the polynomial transmission equation, Eq.( 5.34), is very important, in particular when compared to the SC equivalent, Eq.( 4.4), and considering that the transmission equation must be solved for each 3D chord.

The polynomial transmission equation is rearranged in a form that results much more numerically ecient, by inverting the sums order:

ψ + ( Ω) = ψ -( Ω) e -Σr l + Np k=0 P k (z in r ) Np p=k c p,k µ p-k 2 ∆z p-k E p-k (τ ) q r,p ( Ω) Σ r .
Thanks to this simple change we can write:

ψ + ( Ω) = ψ -( Ω) e -Σr l + P (z in r ) • T , (5.41) 
where:

T = [T k ] , T k = Np p=k Fp,k q r,p ( Ω) Σ r , (5.42 
)

Fp,k = c p,k µ p-k 2 ∆z p-k E p-k (τ ).
Besides being more aesthetically digestible, the new formulation of Eq.( 5.41) allows to deeply exploit the Chord Classication Method (CCM) introduced in [23], and quickly described in subsection 3.1.2. This method, originally implemented to pre-compute the β = 1 -e -τ coecient for the SC method, is even more ecient when applied to the polynomial method.

Looking at Eq.( 5.41) it is easy to understand that the product P (z in r )• T must be performed for each 3D chord during the transport sweep, since it depends on the trajectory entering point. The term T , on the other hand, can be pre-computed. Thanks to the CCM, the important computational complexity that characterizes it can be drastically reduced. The method allows in fact to identify classied chords, whose length is the same, and to regroup them all in the same class. Depending of the class type, T can be expressed as:

For V-chords T k =T v k (i 2D , r z , θ) , For H-chords T k =T h k (r 2D , r z , θ) ,
where i 2D , r 2D , r z , θ represent a 2D chord, a 2D region, an axial plane and the polar coordinate index, respectively. These indexes make explicit the dependencies of the classied coecients and also give an idea of the size of the information to be stored in order to apply the CCM method. Remark that the amount of storage needed is xed for a given two-dimensional tracking, axial discretization and quadrature formula. The amount of 3D chords that the classes are able to represent, on the other hand, will also depend on the geometrical properties of the domain, such as the size of the radial and axial meshes.

Following this reasoning, T is pre-computed for all the V and H classes, and computed on-the-y only for M-chords. The advantages of the CCM when applied to the polynomial algorithm, as compared to the SC method are two-fold: rst, the computational cost of T is much higher in comparison to the β coecients used in the SC method. The CCM method allows therefore to avoid a much higher computational cost of the polynomial method.

Second, thanks to the high order ux representation, the polynomial method reduces the number of axial meshes that must be used for an equally precise solution, when compared to the SC method. This directly impacts the number of chords belonging to the same class, increasing it. This means that with a lower number of axial meshes, it is sucient to compute the T terms for a lower number of classes, and this lower number of classes is able to represent a large percentage of the total number of 3D chords. In other words, the number of classes, for which T is pre-computed, and of M-chords, for which no classication is applied, is lower, when larger axial meshes are employed.

Transmission cost considerations

As described in the previous section, the CCM introduced in [23] greatly reduces the computational burden of the polynomial transmission algorithm that we have implemented.

However, we can see that the SC transmission algorithm remains more computationally lighter, in comparison with its polynomial counterpart. Even if this sounds natural for a high order method, we would like to present in this section a cross comparison between the transmission algorithms of the two methods, in order to underline where the computational over-cost of the polynomial version is concentrated.

For this purpose we reformulate the ∆J terms for the Step and Polynomial method of Eq.(3.2) and Eq.(5.23) as:

∆J r ( Ω) = ∆ ⊥ ( Ω) V r t Ω t∩r δ i ( Ω) δ i ( Ω) = ψ + (t, Ω) -ψ -(t, Ω), ∆ J r ( Ω) = ∆ ⊥ ( Ω) V r ( Ω) t Ω t∩r δ i ( Ω) δ i ( Ω) = P (z + r ) ψ + (t, Ω) -P (z - r ) ψ -(t, Ω).
The operations to be performed for each chord (i ) during the transmission sweep, assuming that β (for the SC method) or T (for the polynomial method) are already available when 54 sweeping the trajectory, can be summarized as:

ST EP P OLY N OM IAL 1) δ i = β i q r ( Ω) Σ r -ψ - r (t, Ω) 1) ψ + (t, Ω) = ψ -(t, Ω) e -Σr l + P (z in r ) • T 2) δ r(i) ( Ω) = δ r(i) ( Ω) + δ i 2) δ i = P (z + r ) ψ + (t, Ω) -P (z - r ) ψ -(t, Ω) 3) ψ + (t, Ω) = ψ -(t, Ω) + δ i 3) δ r(i) ( Ω) = δ r(i) ( Ω) + δ i = 1 op = 1 + 2 N p ops
where the point 2) for the step and 3) for the polynomial methods coincide with the cumulation over t Ω t∩r

. Also, remark that, for simplicity, the computational cost of 2) for the polynomial method is assumed to be only equal to N p oating-point operations, since we are assuming that P (z - r ) ψ -(t, Ω) is already computed because it is equal to the P (z + r ) ψ + (t, Ω)

of the precedent chord (this assumption is not valid when crossing a horizontal surface, but in this case a simple sign change for the odd terms is enough to pass the polynomial ux product to the next region).

Even under some simplifying assumptions, the polynomial method still detains a much higher computational cost per chord. For example, for N p = 2, which is the most common expansion we have used in our calculations, we have 5 oating-point operations against 1. From these considerations it results clear a non-negligible over cost of the polynomial method in comparison with the standard SC, at least for the transmission sweep phase just described and assuming a comparable number of 3D chords to be treated.

DP N synthetic acceleration

It is well known that, to be able to perform realistic reactor physics transport calculations, an acceleration method to reduce the number of free iterations is mandatory [START_REF] Adams | Fast iterative methods for discrete-ordinates particle transport calculations[END_REF]. In the framework of 3D MOC-based calculations the most popular approach is that based on the Coarse-Mesh Finite Dierence (CMFD) technique.

In TDT, starting from its implementation in the APOLLO2 code, a synthetic approach to accelerate not only mono-group but also the external multi-group ssion iterations was adopted. Even if this technique is more complicated to implement in comparison with CMFD, it has strong memory needs and it is dicult to solve, it has proved to be totally stable and very ecient. Moreover it can be applied to the acceleration of high order spatial and angular moments. Reference [START_REF] Santandrea | An Integral Multidomain DP N Operator as Acceleration Tool for the Method of Characteristics in Unstructured Meshes[END_REF] describes the details regarding the implementation of the synthetic inner and outer acceleration, while the original idea for the outer treatment was introduced in [START_REF] Suslov | An Algebraic Collapsing Acceleration Method for the Acceleration of the Inner (Scattering) Iterations in Long Characteristics Transport Theory[END_REF]. The numerical details about the DP N method for the 3D MOC

Step method are presented in [START_REF] Santandrea | A neutron transport characteristics method for 3D axially extruded geometries coupled with a ne group self-shielding environment[END_REF]. Note also that the polynomial formulation shares a lot with the SC acceleration method. In order to avoid excessive repetitions, in this chapter we mainly put emphasis on the aspects that are dierent in the Polynomial method, in comparison with the SC approximation described in [START_REF] Santandrea | A neutron transport characteristics method for 3D axially extruded geometries coupled with a ne group self-shielding environment[END_REF].

We start this section with some basic principles of the acceleration strategy for inner monogroup, and outer multi-group iterations. Then, we re-derive our synthetic DP N operator from rst principles to be coherent with a 3D MOC Polynomial method.

Inner acceleration

In subsection 3.1.1 we briey discussed the iterative strategy. Employing an approach similar to the one used for the transport solution, the acceleration strategy also is decomposed in several layers. The innermost level coincides with the inner iterations. As presented in algorithm 1, a mono-group ux solution is obtained and the self-scattering term is updated until convergence is reached. We can schematically write this procedure as:

L ψ i+ 1 2 = H g→g ψ i + q ext , (6.1) 
where i indicates the inner iterations index and the dierent terms are:

L = Ω • ∇ + Σ H g→g = self scattering operator
q ext = transfer from other groups+ssion.

If we indicate the converged solution as ψ ∞ , we can write:

L ψ ∞ = H g→g ψ ∞ + q ext , (6.2) 
and we dene ∆ψ, as the correction that separates the ux at the current iteration from the converged solution:

ψ ∞ = ψ i+ 1 2 + ∆ψ i+ 1 2 . ( 6.3) 
Subtracting Eq.( 6.1) from Eq.( 6.2) and using (6.3) we obtain:

L ∆ψ i+ 1 2 = H g→g ∆ψ i+ 1 2 + H g→g ψ i+ 1 2 -ψ i . (6.4) 
Solving this problem is, of course, as dicult as solving the original one. Therefore the acceleration problem is generally solved with a lower order approximation which must be computationally cheaper in comparison with the transport solution, even if not as much precise. In our case the DP N synthetic acceleration is used to search the solution of Eq.( 6.4), that can be written as:

(L -H g→g ) DP N ∆ψ i+ 1 2 = H g→g ψ i+ 1 2 -ψ i .
The acceleration operator is used in this case for the solution of this mono-group equation, where the source term is replaced with a source depending on the dierence between two successive inner iterations uxes. The solution of this problem, ∆ψ i+ 1

2

, is added to the previous transport solution, in order to obtain a better estimation of the solution, which should be closer to the converged value:

ψ i+1 = ψ i+ 1 2 + ∆ψ i+ 1 2 .

Outer acceleration

In order to describe the outer acceleration procedure, we need rst to introduce the notation used to dene the transport outer iterations. Using again i as inner iterations index, and o for the outer iteration index, we can write:

L -H d ψ o+ 1 2 i+ 1 2 = H u ψ o+ 1 2 i + 1 λ o F ψ o itot , (6.5) 
where:

L = Ω • ∇ + Σ H d = self +
down scattering operator H u = up scattering operator F = ssion operator i tot = the number of inner iterations to attain convergence.

Following a similar reasoning as in the previous section, we can write the converged equation as:

L -H d ψ ∞ itot = H u ψ ∞ itot + 1 λ ∞ F ψ ∞ itot , (6.6) 
and a ∆ψ, which separates the solution at the current iteration, from the converged one, as:

ψ ∞ itot = ψ o+ 1 2 i+ 1 2 + ∆ψ o+ 1 2 i+ 1 2 . ( 6.7) 
Replacing Eq.( 6.7) into Eq.( 6.6), we get:

L -H d ∆ψ o+ 1 2 i+ 1 2 = H u ∆ψ o+ 1 2 i+ 1 2 + 1 λ ∞ F∆ψ o+ 1 2 i+ 1 2 -L -H d ψ o+ 1 2 i+ 1 2 + H u ψ o+ 1 2 i+ 1 2 + 1 λ ∞ Fψ o+ 1 2 i+ 1 2
.

We replace at this point the L -H d ψ o+ 1 2 i+ 1 2 term using Eq.( 6.5), and we obtain:

L -H d ∆ψ o+ 1 2 i+ 1 2 = H u ∆ψ o+ 1 2 i+ 1 2 + 1 λ ∞ F∆ψ o+ 1 2 i+ 1 2 + H u ψ o+ 1 2 i+ 1 2 -ψ o+ 1 2 i + F    ψ o+ 1 2 i+ 1 2 λ ∞ - ψ o itot λ o    .
We recast this as:

L -H d ∆ψ o+ 1 2 i+ 1 2 = H u ∆ψ o+ 1 2 i+ 1 2 + 1 λ ∞ F ∆ψ o+ 1 2 i+ 1 2 + q ext DP N (λ ∞ ), (6.8) 
where:

q ext DP N (λ ∞ ) = H u ψ o+ 1 2 i+ 1 2 -ψ o+ 1 2 i + F    ψ o+ 1 2 i+ 1 2 λ ∞ - ψ o itot λ o    .
The solution of Eq.( 6.8) also requires an iteration strategy. To present this iterative procedure, we drop all the iteration indexes that are not required to compute ∆ψ

o+ 1 2 i+ 1 2 and λ ∞ .
Both inner and outer iterations are necessary at this point, but we write only the synthetic outer iterations index b, assuming that the inner strategy is the same as for the original problem. Equation (6.8) can be re-written as:

L -H d ∆ψ b+1 = H u ∆ψ b+1 + 1 λ b F ∆ψ b + q ext DP N (λ b ).
The outer iterations are also quite similar to the original problem (except for the presence of the q ext DP N term). The most peculiar aspect of the Suslov algorithm presented in [START_REF] Suslov | An Algebraic Collapsing Acceleration Method for the Acceleration of the Inner (Scattering) Iterations in Long Characteristics Transport Theory[END_REF] is the power iteration used for the eigenvalue updating, which reads:

λ b+1 = λ b F ψ o+ 1 2 i+ 1 2 + ∆ψ b+1 F ψ o+ 1 2 i+ 1 2 + ∆ψ b = λ b F ψ o+ 1 2 i+ 1 2 + ∆ψ o+ 1 2 , b+1 i+ 1 2 F ψ o+ 1 2 i+ 1 2 + ∆ψ o+ 1 2 , b i+ 1 2 .
where we used at rst the simplied iteration notation, and then the complete one. Fψ is the ssion integral dened in Eq.(2.13).

Polynomial DP N formulation

To obtain the synthetic equations used to solve the transport operator L -H g→g , two hypotheses are used. First, the source term is expanded as in Eq.(5.10), but with a lower order "V " approximation:

q( r, Ω) = Z V (z, Ω) • q r ,
where Z V (z, Ω) is supposed to have a lower number of angular modes than those used in the transport calculation but the same spatial polynomial basis. 

Ω

Figure 19 Given a computational region r and a trajectory of direction Ω that draws a chord of length L on r, two boundary surfaces are identied over the boundary ∂r which we denote by α and β. The entering and exiting impact points are r - s and r + s , respectively.

At each impact point a suitable set of entering/exiting directions (2π) ± w.r.t. the region r are dened.

Second, the boundary of each region is decomposed into surfaces, labeled with the index α.

The boundary angular ux is also expanded with an approximation similar to Eq.( 5.10):

Ψ( r s , Ω) = Z ± S (z s , Ω) • Φ α ± r r s ∈ α, Ω ∈ S ± 2π . (6.9) 
Here Z V and Z ± S represent the same set of functions but with two dierent orders, rep- resenting a Volume and a Surface approximation. Remember also the existence of Z D related to Eq.(5.31). Here and in the following "V ","S" and "D" will be used to subscript quantities related to these moment denitions. The dimensions of these quantities are due to the scattering order associated to them and to the chosen degree for the polynomial expansion. They read:

N m,S = (K S + 1) 2 , N m,V = (K V + 1) 2 , N m,D = (K V + N p + 1) 2 .
For N m,D the same rule as in Eq.(5.30) applies here. In Eq.( 6.9) the symbol ± refers to the exiting/entering values through a surface, while r s and zs are the position vector and the axial coordinate on the region boundary. Moreover in Eq.( 6.9) the symbols ± are also used to distinguish which polynomial base is to be used, depending on the surface side (see Fig. 19 for a sketch of the situation).

Another important remark has to be addressed regarding the type of surfaces. From now on we will refer to vertical and horizontal surfaces with α v and α h respectively, while the common α subscript will be used if no distinction between the two cases is necessary.

For horizontal surfaces the vectors Z ± S (z s , Ω) of Eq.(6.9) is constituted by repeated sets of identical spatial functions. For this it is sucient to remark that P p (+1) = 1 and P p (-1) = (-1) p . It should be therefore unuseful and harmful to expand the surface ux over such not linearly-independent set. Therefore, for the horizontal surfaces, we limit the boundary angular ux expansion to the spatially constant term and the expansion of Eq.(6.9) is now considered divided into the following two sub-cases:

Ψ( r s , Ω) = Z ± S (z s , Ω) • Φ α ± v r r s ∈ α v , Ω ∈ S ± 2π , (6.10) 
Ψ( r s , Ω) = A ± S ( Ω) • Φ α ± h r r s ∈ α h , Ω ∈ S ± 2π ,
where A ± S ( Ω) is the subset of Z ± S (z s , Ω) corresponding to the zero order polynomial value.

DP N Balance Equation

A balance equation for the synthetic method can be obtained applying the projection d Ω 4π r d r Z D ( r, Ω) to Eq.(2.11), which results in an expression similar to Eq.( 5.31):

(Σ r -D D D) Φ r,D = Z Z Z DV q r - d Ω 4π A D ( Ω) ⊗ ∆ J r ( Ω). (6.11) 
The current term is then developed, decomposing the surface integral over ∂r as the contribution of the dierent surfaces α for the given region:

d Ω 4π A D ( Ω) ⊗ ∆ J r ( Ω) = d Ω 4π A D ( Ω) ⊗ 1 V r ∂r d r s Ω • n P (z s )Ψ( r s , Ω) = 1 V r α∈r α d r s 2π + d Ω 4π | Ω • n| A D ( Ω) ⊗ P (z s ) Ψ( r s , Ω) - 2π - d Ω 4π | Ω • n| A D ( Ω) ⊗ P (z s ) Ψ( r s , Ω) .
Eq.(6.11) becomes:

(Σ r -D D D) Φ r,D = Z Z Z DV q r - 1 V r α∈r J + α -J - α , (6.12) 
where the partial currents J ± α are dened as:

J ± α = α d r s 2π ± d Ω 4π | Ω • n| Z ± D (z s , Ω) Ψ( r s , Ω), (6.13) 
with Z ± D (z s , Ω) = A D ( Ω) ⊗ P ± (z s ), which can be written in a more explicit form for horizontal surfaces:

J ± α h = P b (α ± h ) ⊗ J ± α h and J ± α h = α d r s 2π ± d Ω 4π | Ω • n| A D ( Ω) Ψ( r s , Ω), (6.14) 
where J ± α h is the constant current term and P b (α h ) is the parity vector whose components are equal to 1 for upper horizontal side and to (-1) p for the lower side.

The partial currents Eqs.(6.13) and (6.14) can also be written in an alternative form using Eqs.(6.10) for Ψ( r s , Ω):

J ± αv = Z Z Z α ± v Φ α ± v r and J ± α h = Āα ± h Φ α ± h r , (6.15) 
where:

Z Z Z α ± v = α d r s 2π ± d Ω 4π | Ω • n| Z D (z s , Ω) ⊗ Z S (z s , Ω), (6.16 
)

Āα ± h = α d r s 2π ± d Ω 4π | Ω • n| A D ( Ω) ⊗ A S ( Ω).
The matrices Z Z Z α ± 

(Σ r -D D D) Φ r,D = Z Z Z DV q r - 1 V r αv∈r J + α -J - α + α h ∈r P b (α + h ) ⊗ J + α h -P b (α - h ) ⊗ J - α h . ( 6.17) 

Current Transmission

The transmission equation ( 5.34) is used to obtain a relation for the exiting current from the surface α as a function of the entering surface uxes and of the source coecients. First, we express the entering angular ux ψ -( Ω) using Eqs.(6.10). Then, we use Eq.( 5.12) for q r,p ( Ω) and derive separate expressions for horizontal and vertical surfaces:

f or z- s ∈ β v Ψ( r + s , Ω) = Z S (z - s , Ω) Φ β - v r e -τ (6.18) 
+ Nm n A n ( Ω) Np p=0 p k=0 c p,k P k (z - s ) µ p-k 2 ∆z p-k E p-k (τ ) q n r,p Σ r , f or z- s ∈ β h Ψ( r + s , Ω) = A S ( Ω) • Φ β - h r e -τ (6.19) 
+ Nm n A n ( Ω) Np p=0 p k=0 c p,k P k (z - s ) µ p-k 2 ∆z p-k E p-k (τ ) q n r,p Σ r ,
where τ = Σ r l and l = | r + s -r - s | and we assume that the exiting point r + s belongs to a surface α + , while the trajectory entering point r - s belongs to a surface β -, as depicted in Fig. [START_REF] Yamamoto | GENESIS : A Three-Dimensional Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of Angular Flux Method[END_REF].

Next, we convert the integral over the positive directions through the surface α + using a discrete sum over the entering surfaces β -:

α + v/h d r + s 2π + d Ω = α + v/h d r + s βv∈r (β - v →α + v/h ) d Ω + α + v/h d r + s β h ∈r (β - h →α + v/h ) d Ω, α + d r + s 2π + d Ω = α + d r + s β∈r (β -→α + )
d Ω

where v/h means that the previous relation is valid for both horizontal and vertical surfaces, and β - v → α + v/h and β - h → α + v/h indicate that the angular integral is performed over the set of directions that connects the vertical and horizontal surfaces β -to α + , respectively.

Keeping this in mind and substituting Eqs. (6.18) and ( 6.19) into Eqs.(6.13) and ( 6.14) we obtain two relations, depending on the surface type. We write this using a compact notation:

J + αv J + α h = β∈r T T T α + v β - v T T T α + v β - h T T T α + h β - v T T T α + h β - h Φ - βv Φ - β h + E E E α + v E E E α + h q r , (6.20) 
where the transmission coecients T T T αβ are dened as:

T T T α + v β - v = α + v d r + s (β - v →α + v ) d Ω 4π | Ω • n| Z S (z + s , Ω) ⊗ Z S (z - s , Ω) e -τ , T T T α + v β - h = α + v d r + s (β - h →α + v ) d Ω 4π | Ω • n| Z S (z + s , Ω) ⊗ A S ( Ω) e -τ , (6.21) 
T T T α + h β - v = α + h d r + s (β - v →α + h ) d Ω 4π | Ω • n| A S ( Ω) ⊗ Z S (z - s , Ω) e -τ , T T T α + h β - h = α + h d r + s (β - h →α + h ) d Ω 4π | Ω • n| A S ( Ω) ⊗ A S ( Ω) e -τ ,
and the escape coecients E E E α + are:

E E E α + v = α + v d r + s 2π + d Ω 4π | Ω • n| Z S (z + s , Ω) ⊗ W V (z - s , Ω), E E E α + h = α + h d r + s 2π + d Ω 4π | Ω • n| A S ( Ω) ⊗ W V (z - s , Ω), (6.22) 
and W V (z - s , Ω) reads: .23) It is important to note that we chose to consider dierent the current vector dimension used in transmission with respect to that appearing in the balance Eq. (6.11). This is to reduce the cost of the transmission problem, which is the most expensive part of the DP N method.

W V (z - s , Ω) n,p = A n ( Ω) Σ r p k=0 c p,k P k (z - s ) µ p-k 2 ∆z p-k E p-k (τ ). ( 6 
We use at this point Eqs. (6.15) to replace the ux with the currents terms is Eq.( 6.20), obtaining:

J + αv J + α h = β∈r T T Tα + v β - v T T Tα + v β - h T T Tα + h β - v T T Tα + h β - h J - βv J - β h + E E E α + v E E E α + h q r , (6.24) 
where: .26) Much care has to be paid in the tildation process described above. The nal form of Eq.( 6. 24) is only possible if Z Z Z β and Āβ are invertible. The practice shows also that many diculties arise even when, although not singular, the matrix is ill-conditioned. A small surface that is not crossed by a suciently large number of trajectories is the typical case for which the inversion could result ill-posed. In this case, the approach followed consists in reducing the matrix rank until a decent numerical inversion is obtained. The remaining elements are set to zero. The chosen criterion that classies the inversion process quality is the value of the principal pivot of the Gauss direct inversion algorithm, as compared to the rst diagonal element of the matrix. Even if this approach is rather heuristic, it is necessary in order to obtain a stable algorithm. The alternative would be to use a tracking integration step so ne to have a good representation of every surface integrals, but this would of course result in a too expensive calculation. The same procedure used for the SC method is applied also for the polynomial counterpart. A more detailed explanation of this process can be found in [START_REF] Santandrea | Accelerated Polynomial axial expansions for full 3D neutron transport MOC in the APOLLO3 R code system as applied to the ASTRID fast breeder reactor[END_REF].

T T Tα + v β - v = T T T α + v β - v Z Z Z -1 β - v , T T Tα + v β - h = T T T α + v β - h Ā-1 β - h , T T Tα + h β - v = T T T α + h β - v Z Z Z -1 β - v , T T Tα + h β - h = T T T α + h β - h Ā-1 β - h , (6.25) 
Φ α ± v r = Z Z Z -1 α ± v J ± αv & Φ α ± h r = Ā-1 α ± h J ± α h . ( 6 
Final DP N Balance

The nal balance equations for the DP N problem are obtained expressing the ux vector only as a function of the entering currents. A number of subtleties are to be used in this phase, since the number of angular moments in the balance equation ( 6.17) is larger than the one used in Eq.( 6.20). Hence, we have to distinguish two possibilities.

The rst sub-case treats those moments V ⊆ D, that we will indicate as Φ r,V , viz those that are comprised in the range of angular moments of Eqs.(6.20). Using Eqs. (6.20) to express the exiting currents of Eq.( 6.17), we can write:

(Σ r -D D D) Φ r,V = Z Z Z V V q r - 1 V r αv∈r βv∈r T T Tα + v β - v J - βv + β h ∈r T T Tα + v β - h J - β h + E E E α + v q r -J - αv - 1 V r α h ∈r P b (α + h ) ⊗ βv∈r T T Tα + h β - v J - βv + β h ∈r T T Tα + h β - h J - β h + E E E α + h q r -P b (α - h ) ⊗ J - α h .
Now inverting the sum order we obtain:

αv∈r βv∈r T T Tα + v β - v J - βv + αv∈r β h ∈r T T Tα + v β - h J - β h + α h ∈r P b (α + h ) ⊗ βv∈r T T Tα + h β - v J - βv + α h ∈r P b (α + h ) ⊗ β h ∈r T T Tα + h β - h J - β h = βv∈r T T Tβ - v J - βv + β h ∈r T T Tβ - h J - β h .
where:

T T Tβ - v = αv∈r T T Tα + v β - v + α h ∈r P b (α + h ) ⊗ T T Tα + h β - v and T T Tβ - h = αv∈r T T Tα + v β - h + α h ∈r P b (α + h ) ⊗ T T Tα + h β - h . ( 6 

.27)

A similar procedure applies to the escape terms: .28) With these notations we can write:

E E E r = 1 V r αv∈r E E E α + v + α h ∈r P b (α - h ) ⊗ E E E α + h . ( 6 
(Σ r -D D D) Φ r,V = (Z Z Z -E E E r ) V V q r (6.29) + 1 V r βv∈r I I I d -T T Tβ - v V S J - βv + β h ∈r P b (β - h ) ⊗ Īd -T T Tβ - h V S J - β h .
In the previous formulas we have distinguished the horizontal and vertical contributions. It is worthy to note that the horizontal part is an operator of dimension V × N m,S . Moreover, the output-input dimension for matrices T T Tα -and E E E are "V S" and "V V " respectively, and are not directly indicated in previous formulas to enlighten the notation.

The second sub-case considers the moments referred to as Φ r,D/V , which designates the complementary part of "D", not considered by the "V ". For the part of the "D" output currents that does not belong to the "V " set, Eq.( 6.29) remains valid but this time T T Tα - and E E E r cannot be computed from transmission matrices terms, and must be independently accumulated in tracking sweep. In other words the previous balance equation ( 6.29) was written under the hypotheses that all currents present in it could be expressed through (6.20). But to limit the cost of our DP N operator the size of this last problem is maintained under a limited dimension which we have previously dened as "S". For moments of higher order than "V " the balance equation is written using a low-order closure as:

(Σ r -D D D) Φ r,D/V = (Z Z Z -E E E r ) D/V,V q r (6.30) + 1 V r βv∈r H H H D/V β - v -T T Tβ - v J - βv + β h ∈r P b (β - h ) ⊗ HD/V β - h -T T Tβ - h J - β h .
where:

H H H D/V β - v = Z Z Z (D/V,S),β - v Z Z Z -1 (S,S),β - v and HD/V β - h = Ā(D/V,S),β - h Ā-1 (S,S),β - h .
The vectors J ± α are strictly dimensioned to the "S" transmission problem (6.20). In the previous expression Z Z Z (S,S),α ± is a square matrix of dimension "S" while Z Z Z (D/V,S),α ± a rectangular matrix of dimension "D/V, S". The two sets of Eqs. (6.29) and (6.30) constitute the full balance system where the used closure relation can be constructed by saying that higher (than "S") order currents are computed by supposing the "S" DP N expansion ( 6.9) for the surface angular ux.

Recalling now Eq. (5.11) for the self-scattering term, we get:

(Σ r -D D D) Φ r,V = (Z Z Z -E E E r ) V V (Σ g r,s Φ r,V + q ext r )+ + 1 V r βv∈r I I I d -T T Tβ - v J - βv + β h ∈r P b (β - h ) ⊗ Īd -T T Tβ - h J - β h , (Σ r -D D D) Φ r,D/V = (Z Z Z -E E E r ) D/V,V (Σ g r,s Φ r,V + q ext r )+ + 1 V r βv∈r H H H D/V β - v -T T Tβ - v J - βv + β h ∈r P b (β - h ) ⊗ HD/V β - h -T T Tβ - h J - β h .
Next we dene:

C C C DV = Z Z Z -E E E r X X X = Σ r I I I d -D D D -C C C DV Σ g r,s P P P -1 V V , (6.31) 
where we have used Eq.( 5.32) to substitute:

Φ r,V = P P P -1 V V Φ r,V .
With these denitions we get:

X X X Φ r,D =C C C DV q ext r + (6.32) 1 V r βv∈r I I I d -T T Tβ - v H H H D/V β - v -T T TD/V,β - v J - βv + β h ∈r P b (β - h ) ⊗ Īd -T T Tβ - h P b (β - h ) ⊗ HD/V β - h -T T TD/V,β - h J - β h
.

Inverting the matrix on the left hand side we can obtain an expression for the polynomial and angular ux moments, as a function of external sources and currents. The result of this procedure would be more general than is necessary since only "scattering" moments are needed. Considering then the projection over the only part of ux moments that is used in the rest of the DP N operator, one has:

Φ r,V = C C C q ext r + β∈r Ĩ Ĩ Ĩβv Ĩ Ĩ Ĩβ h J - βv J - β h , (6.33) Φ r,V = C C C q ext r + β∈r Ĩ Ĩ Ĩβ J - β where: C C C = X X X -1 V D C C C DV , "Collision term", Ĩ Ĩ Ĩβv = 1 V r X X X -1 V D I I I d -T T Tβ - v H H H D/V β - v -T T TD/V,β - v "Incoming vertical", (6.34 
)

Ĩ Ĩ Ĩβ h = 1 V r X X X -1 V D P b (β - h ) ⊗ Īd -T T Tβ - h P b (β - h ) ⊗ HD/V β - h -T T TD/V,β - h "Incoming horizontal".
Equation ( 6.33) can be expressed by saying that the ux in a computational region is given by the collision of emission densities plus the incoming contribution of entering currents.

The nal step consists in switching from the polynomial moments, to the expansion coecients. Using Eq.( 5.32) we write: .35) where:

Φ r,V = † C C C q ext r + β∈r † I I I βv † I I I β h J - βv J - β h , ( 6 
† C C C = P P P -1 V V C C C, † I I I βv = P P P -1 V V Ĩ Ĩ Ĩβv , † I I I β h = P P P -1 V V Ĩ Ĩ Ĩβ h .

Final Currents System

Starting again from Eqs.(6.24) and using Eq. (5.11) for the source term:

J + αv J + α h = β∈r T T Tα + v β - v T T Tα + v β - h T T Tα + h β - v T T Tα + h β - h J - βv J - β h + E E E α + v E E E α + h Σ g s,r Φ r,V + q ext r .
Now, the ux term is expressed through Eq.( 6.35), getting:

J + αv J + α h = β∈r T T Tα + v β - v T T Tα + v β - h T T Tα + h β - v T T Tα + h β - h J - βv J - β h + + E E E α + v E E E α + h Σ g s,r † C C C q ext r + β∈r † I I I βv † I I I β h J - βv J - β h + q ext r .
Rearranging everything:

J + αv J + α h = β∈r T T Tα + v β - v T T Tα + v β - h T T Tα + h β - v T T Tα + h β - h J - βv J - β h + + E E E α + v E E E α + h Σ g s,r β∈r † I I I βv † I I I β h J - βv J - β h + E E E α + v E E E α + h Σ g s,r † C C C + I I I d q ext r .
We dene at this point:

J + = J + α , α = 1, N curr ,
where J α regroups both vertical and horizontal contributions and N curr is the number of surfaces in which the region is decomposed. The same denition applies to incoming currents and to all matrices. Using this denition we can write:

J + = T T T + E E E + Σ g s,r † I I I J - + E E E + I I I d + Σ g s,r † C C C q ext r ,
and we obtain a nal system of equation for the currents:

J + = † T † T † T J - + † E † E † E q ext r , (6.36) 
where: .37) Equation ( 6.36) can be resumed by saying that the outgoing currents are given by the multi-collisional contribution of entering currents and escape of external sources.

† T † T † T = T T T + E E E + Σ g s,r † I I I and † E † E † E = E E E + I I I d + Σ g r,s † C C C . ( 6 

Linear system solution

The current vector is the unknown of the linear system of equations dened by Eq.( 6.36), that we can briey write as:

A A A J = b A A A = I I I d - † T † T † T b = † E † E † E q ext r
The solution of this system is obtained with an iterative method, particularly suited for large sparse systems. The solution of this problem for the polynomial method has no real dierence from the SC one, asides from the matrix size. The already implemented solution algorithm, based on Krylov subspace iterative method, and developed for the solution of SC 3D problems, has been used and no further developments have been realized during this work in this direction. Reference [START_REF] Santandrea | A neutron transport characteristics method for 3D axially extruded geometries coupled with a ne group self-shielding environment[END_REF] gives a detailed description of how the preconditioning technique implemented for the two-dimensional solver has been adapted to the 3D version.

The parallel algorithm implemented to obtain the linear system solution is also described in this paper.

ecient, especially if the number of groups is low. Secondly, some operations proper to the trajectory sweep are repeated by multiple threads. Thirdly, all threads work on large matrices, shared among all processors.

Noticing a speed-up factor stagnation when increasing the threads number, we decided to adopt a dierent strategy: instead of applying the parallel algorithm to the group number, we apply it to the 2D regions. The idea is that whereas the total number of groups can be low, the number of 2D computational regions is always large. This allows a better workload balancing among threads. Moreover, we used private variables for the matrices construction. Reducing the matrices computational sizes per-region values, permits in fact to duplicate this information for all the threads, without a noticeable increase in memory footprint. The private copies allowed a faster information access to each thread.

In a rst phase, each thread had to repeat the whole trajectory sweep, in order to cumulate the chord related values only if the considered chord belonged to the considered 2D region.

We abandoned this strategy since for large cases the cost related to the repeated trajectories reconstruction and sweep was important. The nal strategy that we have adopted consists in a preliminary phase in which all the necessary informations are gathered through a trajectory sweep, followed by the actual computation. During the preliminary phase, the number of classied and unclassied chords for each 2D region is computed and stored. For each class or unclassied chord all the information needed for the coecients computation are stored (length, exiting/entering surfaces, etc.). Once these structures are created, the parallel construction can begin. For each two-dimensional region, each thread can access the necessary information to construct the DP N coecients without any need to reconstruct the trajectory information. Aside from the rst data gathering phase, which is performed using multiple threads but needs to use some mutual exclusion mechanism, the rest of the algorithm can be, at least in theory, performed in a perfect parallel manner, without any operation repetition for dierent threads or race conditions.

The nal issue that we have encountered is related to the private variable sizes, which directly aected the coecients computation times, more than what initially expected. In order to maximize the vectorization possibilities and to avoid additional complexity, we asked to each thread to compute the coecients for all the energy groups used in the calculation. We believed that, since the amount of private data that each thread had to work with was small, when compared to the total nal storage size, no memory size eect would have aected our calculation performances. Since each thread had to work only on one two-dimensional region, the private variables size corresponds to the total storage size divided by a factor at least between 10 2 and 10 3 . We have tested this strategy with a maximum thread number of 20, and no appreciable eect on the total engaged memory was noticed. On the other hand, we have noticed that the total computational time suers from the variable sizes, especially when increasing the threads number. In order to circumvent this problem we decided to assign to a thread both a 2D region and a user dened groups interval for the calculation. We run several tests for dierent group package sizes and for dierent number of threads, in order to verify the strategy. As Figures 20a and20b show, a small group package size leads to poor performances since the vectorization degree is small. On the other hand, large group package size is the best choice if the number of threads is low, but it strongly aects the parallel eciency if the thread number increases, as the speed-up factor clearly shows. For the case that we have tested and with a number of threads comprised between 1 and 20, by choosing a proper group package size it is possible to obtain an almost linear speed-up. 

DP N coecients and Classication

As before, the CCM introduced in [23] has an important application in the polynomial method. The CCM allows to reduce enormously the computational cost of the polynomial DP N coecients calculation. As briey discussed in subsection 3. 1.2, the CCM method applies to V-chords or H-chords. Since the use of the polynomial method translates into computational meshes with a very elongated aspect ratio, the V-chords are the most common chords type. We limit therefore the application of the chords classication method to the DP N coecients only for this chords type. We believe this choice not to be penalizing, since, if the geometry imposes very small axial meshes, for which the presence of H-chords is not a rare event, then it is also probable that the polynomial method will not oer the better performances, in comparison with the SC method.

Under these assumptions, we apply the CCM to the computation of a subset of the coecients in Eqs. (6.21) and (6.22). In particular, we analyse:

T T T α + v β - v = α + v d r + s (β - v →α + v ) d Ω 4π | Ω • n| Z S (z + s , Ω) ⊗ Z S (z - s , Ω) e -τ , E E E α + v = α + v d r + s 2π + d Ω 4π | Ω • n| Z S (z + s , Ω) ⊗ W V (z - s , Ω).
Using denitions (5.8) and ( 6.23), we can write more explicitly:

T T T α + v β - v n,n ,p,p = α + v d r + s (β - v →α + v ) d Ω 4π | Ω • n| A n ( Ω) A n ( Ω) P p (z + s ) P p (z - s ) e -τ , (7.1 
)

E E E α + v n,n ,p,p = α + v d r + s 2π + d Ω 4π | Ω • n| 1 Σ r A n ( Ω) A n ( Ω) P p (z + s ) p k=0 c p ,k P k (z - s ) µ p -k 2 ∆z p -k E p -k (τ ). (7.2)
We analyse the escape coecients, since this method will be extended easily also to the transmission terms. We recall that E E E α + v indicates the vertical surface α exiting from a given region. Two chords types will contribute to this integrals: the ones starting from the vertical surfaces β - v , and the ones starting from the horizontal surfaces β - h . We can write these contributions as:

E E E α + v = βv E E E β - v →α + v + β h E E E β - h →α + v .
As anticipated we neglect the horizontal contribution in the application of the CCM method.

Thus, we focus on the rst term, and we write it as:

E E E α + v n,n ,p,p = α + v d r + s β - v →α + v d Ω 4π | Ω • n| 1 Σ r A n ( Ω) A n ( Ω) P p (z + s ) (7.3) p k=0 c p ,k P k (z - s ) µ p -k 2 ∆z p -k E p -k (τ ).
At this point we consider the integral over the surface α + v decomposed as:

α + v d r + s = α + v,2D d 2 r ⊥ α + v,z
dz,

where we have separated the radial from the axial surface integral contributions. A further reformulation of the radial integral coherent with the trajectories-based discretization leads to:

α + v d r + s = i 2D ∈α + v β - v →α + v α + v,z dz,
where i 2D designates a two-dimensional chord, and the sum gathers the 2D chords that are crossing the two considered surfaces. Since all the 3D chords that share the same 2D footprint and cross two vertical surfaces have the same length, they also share the same values for E p -k (τ ). Taking advantage of this and using the previous formulation for the 2D integral we can write Eq.( 7.3) as:

E E E α + v n,n ,p,p = i 2D ∈α + v β - v →α + v β - v →α + v d Ω 4π | Ω • n| A n ( Ω) A n ( Ω) Σ r p k=0 c p ,k Bp,k i 2D µ p -k 2 ∆z p -k E p -k (τ ),
where:

Bp,k i 2D = α + v,z dz P p (z + s ) P k (z - s ).
Since the matrices Bi 2D are group independent, they are computed and stored during the tracking phase. Paying the reasonable price of storing these matrices, the computational cost of the escape coecients for the classied V-chords is greatly reduced. Moreover, a similar formulation can be applied also to the vertical transmission term of Eq.( 7.1), that becomes:

T T T α + v β - v n,n ,p,p = i 2D ∈α + v β - v →α + v β - v →α + v d Ω 4π | Ω • n| A n ( Ω) A n ( Ω) Σ r Bp,p i 2D e -τ
We end this section underlying that if no classication were applied, the computational cost of the DP N coecients for the polynomial method would be probably high enough to make the polynomial approach not advantageous when compared to the Step method. In most of the cases we have tested, in fact, more than 90% of the chords are of the V-type and can be classied. Thanks to this evidence, the procedure just described allows a great reduction of the computational cost associated to the polynomial DP N coecients calculation, roughly corresponding to the number of 3D chords belonging to the V V classes, divided by the number of classes.

DP N coecients non-linear least squares tting

The second major issue related to the acceleration strategy we have chosen, after the computationally expensive coecients construction, is represented by the memory requirements related to the storage of the acceleration matrices. This problem is not intrinsically related to the polynomial method developed in this work. When comparing the polynomial method with the SC equivalent, we observed a signicant reduction of the total memory requirement for the DP N synthetic acceleration matrices for cases with similar precision. However, the matrices size grows with the chosen polynomial degree. For the largest matrices type, .21) and (6.22)), this growth is ∝ N 2 p . It is easy to see that the problem related to the important memory requirements is far from being solved using the polynomial method, even if it is largely reduced in comparison with the SC, because of the supposedly smaller number of computational regions.

which are T T T α + v β - v and E E E α + v (Eqs.( 6 
The problem is somehow similar to what happens for the short characteristics solvers. In this case, large group-dependent matrices of coecients are used to compute the transport solution, and storage for a large number of groups can result prohibitive. To overcome this problem, the authors of [START_REF] Yamamoto | GENESIS : A Three-Dimensional Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of Angular Flux Method[END_REF], for example, adopt a bi-dimensional tabulation strategy to interpolate on-the-y the coecients set in the GENESIS code. The sometimes prohibitive memory requirements of the DP N synthetic acceleration matrices for TDT can be addressed in a similar way. It has though the advantage that if the precision of such matrices is slightly degraded, the nal transport result is not aected. The acceleration quality can suer from poor matrices representation and if the approximations are too aggressive, this may also result in instabilities causing the calculation to diverge. This eventuality has of course to be avoided, but knowing that introducing a small error in the acceleration matrices does not aect the solution accuracy oers an interesting degree of freedom which is useful to achieve substantial gains in terms of memory requirements.

The large dimension of the acceleration matrices is due to both a spatial and an energy dependence of the acceleration coecients. To compress the information related to the energy dependence of the synthetic matrices we adopted a strategy based on a non-linear data tting, solving a least squares problem. The implemented method allows to avoid the storage of the DP N matrices for each energy group. This information is replaced with a set of coecients matrices used to reconstruct on-the-y the mono-group set of coecients.

In terms of size, each matrix of coecients coincides with the size used to store the set of DP N matrices for one energy group. As a consequence, the method reduces the memory demand only if the number of coecients used for the function tting is lower than the number of energy groups used for the calculation.

The choice of the function type and the number of coecients was the consequence of a series of considerations and practical tests. An alternative and more rigorous approach would have been to use interpolation tables. We considered this option at the beginning of this work phase, but we eventually choose a tting approach for several reasons, which are summarized in the following.

Problem description and possible solutions

To apply the DP N synthetic acceleration method described in Section 6, we need to solve Eqs. (6.36) and ( 6.35) for each energy group. This requires to have in memory, or to construct on-the-y, the following matrices:

† T † T † T, † E † E † E, † I † I † I and † C † C † C.
Note that the formulation development described in Sec.6, as well as the actual implementation, requires to treat dierently vertical and horizontal surfaces. On the other hand, in the present discussion we will neglect this dierence, since it does not aect the description.

The most straightforward approach consists in computing and storing these matrices in a preliminary phase, before starting the iterating procedure to solve the problem. Algorithm 2 gives a simplied representation of this approach, which is the default option.

One of the possible ways to avoid the storage of these matrices is of course to recompute them on the y for each energy group. This possibility has not been directly investigated since the computational cost associated to these matrices is very important, as discussed in Section 7. 1. The heaviest computation associated to these matrices calculation is represented by the trajectory-coherent evaluation of Eqs.(6.21) and (6.22). Following this part, a series of operations has to be done with these matrices, to arrive at the nal formulation reported in Eqs. (6.36) and (6.35). Even if less computationally expensive than the rst phase, repeating this second part at the beginning of each energy group would require an important number of operations to be performed. We stress the dierent computational aspects of these two stages, since we considered two possible ways to reduce the memory footprint.

The rst possibility is to t or tabulate the coecients expressed by Eqs.(6.21) and ( 6.22) as a function of Σ (remember that τ = Σ l) after the coecients construction. When the solution of the synthetic problem is required for a given energy group, these coecients have to be re-constructed, and then the suite of operations to arrive at the nal form needed by Eqs. (6.36) and ( 6.35) has to be performed. This method has the obvious disadvantage that it requires a series of operation to be repeated at the beginning of each mono-group iteration. Please note that not only the operations described by Eqs. from (6.21) to (6.36) have to be done, but also there is a hidden cost associated to the preconditioning technique described in [START_REF] Santandrea | A neutron transport characteristics method for 3D axially extruded geometries coupled with a ne group self-shielding environment[END_REF], which has to be added. The great advantage of this approach is that the expression of the functions that we want to approach is well known, and the only variable depending on the energy is the total cross section. As a consequence, a simple interpolation Start outer iterations loop:

while the ssion integral is not converged do

Iterates on groups, starting from the highest energy 

for g = 1, N g do 1) Retrieve † T T T, † E E E, † I I I, † C C C for
T T T α + v β - v = α + v d r + s (β - v →α + v ) d Ω 4π | Ω • n| Z S (z + s , Ω) ⊗ Z S (z - s , Ω) e -τ ,
and denoting by T T T i one element of the matrix, we can try to approximate the energetic dependence of this set of values (one for each energy group), as, for example:

f ( α, Σ) = α 1 e α 2 Σ .
The choice of the parametric function is of course quite heuristic, but is based on the fact that both transmission and escape coecients described by Eqs.(6.21) and ( 6.22) are computed as a sum of elements whose dependence in energy is always in the form e -τ . Even if the escape coecients do not show explicitly this dependence, since they are computed with the E b (τ ) terms expressed by Eq.( 5.35) and using the recursive relation of Eq.( 5.36), it is interesting to see that also these terms can be written as a sum of exponentials:

E 0 (τ ) = 1 -e -τ , E 1 (τ ) = 1 - 1 Σ + 1 Σ e -τ , . . . E 4 (τ ) = l 4 - 4 • l 3 Σ + 4 • 3 • l 2 Σ 2 - 4! • l Σ 3 + 4! Σ 4 - 4! Σ 4 e -τ , E T b (τ ) = b i=0 (-1) i b! (b -i)! l i Σ i + (-1) b+1 b! Σ b e -τ .
As a result from these considerations, we believe that, if the chosen approach was the one just described, this could be considered maybe a little bit exotic but justiable. Since we can compute the expected coecient T T T i values, we can obtain the tting coecients α minimizing the residual dened by:

res( α) = 1 2 Ng g=1 (T T T g i -f ( α, Σ g )) 2 ,
as in a classical least squares problem, where the number of points used to obtain the tting coincides with the number of energy groups N g . Once the set of coecients α are computed for all the element of a matrix for a 2D region, the multi-group reference values T T T i can be discarded. Since this procedure can be (almost) done for each 2D region independently, the memory required to store the multi-group values only for the 2D regions computed simultaneously is not judged to be important.

The second possibility that we have explored is to represent not the rst matrices expressed by Eqs.(6.21) and (6.22) but the nal preconditioned versions used in Eqs. (6.36) and ( 6 .35).

This second approach has the advantage that the number of oating-point operations to be performed at the beginning of each group iteration to reconstruct the coecients would be signicantly reduced, if a proper way to obtain the nal values can be found. The main disadvantage of this method is that the functions that we are trying to approximate are not any more dependent on a single variable. As we can see in Eqs. (6.31) and (6.37), a dependence on the scattering cross section appears. The implemented version of the DP N synthetic acceleration employs at most a linear anisotropy approximation (DP 1 ). As a consequence, the functions that must be approximated following this approach depend on two or three variables (depending on the anisotropy order of the considered media) and they do not have any more a clear formulation, since they result from quite complicated matrix by matrix and matrix by vector products, plus some numerical inversion and nally the preconditioner-related operations. Given the three-variable dependence, the interpolation table approach would be, in our opinion, too complicated to implement in order to allow an eective memory compression. For this reason only the tting method has been tested on the nal matrices.

Even if more exotic and less justiable, this second possibility has been the one we focused our eorts on, since we aimed to avoid that the oating point operations be repeated during iterations to obtain the nal coecients used in Eq.( 6.36) starting from (6.27). To implement this method, we need a parametric function able to represent our coecients set depending on two or three variables. After several attempts, we decided to settle down with the following formula:

f ( α, Σ, Σ s,0 , Σ s,1 ) = α 1 e α 2 Σr (Σ) α 3 + α 4 e α 5 Σr (Σ s,0 ) α 6 + α 7 e α 8 Σr (Σ s,1 ) α 9 .
Using this parametric function, a non-linear regression is performed on each element of the DP N matrices. The number of elements per each matrices position, constituted by the number of energy groups, is replaced with the set of nine coecients. In order to assure that the method delivers a chosen precision, the elements whose error exceeds this tolerance value are stored. In order to know the element values and position, the set of matrices has been thought as a unique row vector. In this way it is possible to store per each non-tted element a real number containing the element value, and an integer number containing the element position. In this way two vectors per each energy group are sucient to store all the elements that are not correctly represented by the regression model. Notice that each element not correctly tted occupies twice the memory size in comparison to the same element using the direct storage option, since we need to store also the element position.

As a consequence, it is very important to keep the number of non-tted elements as low as possible.

Some elements of the mathematical approach

The implemented non-linear least squares solver algorithm has been extracted from the work presented in [START_REF] Madsen | Methods for Non-Linear Least Squares Problems[END_REF]. We recall here some elements of the problem and of the possible solutions presented in the cited manuscript and using similar notations. For an exhaustive explanation we refer directly to [START_REF] Madsen | Methods for Non-Linear Least Squares Problems[END_REF].

Given a set of values (t i , y i ) and a function g( x, t i ), we want to compute the set of parameter x, in order to minimize the residual norm dened as:

F ( x) = 1 2 N i=1 (f i ( x)) 2 = 1 2 f ( x) • f ( x), (7.4) 
where:

f i ( x) = y i -g( x, t i ).
This has been done using a variant of the method presented in [START_REF] Madsen | Methods for Non-Linear Least Squares Problems[END_REF] as the Gauss-Newton method. The iterative procedure starts by dening the initial values of the parameters set

x 0 . Then, the idea is to approximate f ( x) with a Taylor expansion for a small neighbourhood of x, h:

f ( x + h) l( h) = f ( x) + J( x) h, (7.5) 
where J is the Jacobian matrix:

J( x) i,j = ∂f i ∂x j ( x).
Replacing (7.5) in (7.4) we can write:

F ( x + h) L( h) = 1 2 l( h) • l( h) = F ( x) + h T JT f + 1 2 h T JT J h,
where J = J( x) and f = f ( x). With the Gauss-Newton step, we can compute h in order to minimize L( h), by imposing:

L ( h) = JT f + JT J h = 0. (7.6) 
This can be solved for h and a new estimation of x can be obtained as:

x 1 = x 0 + h.
The method converges, provided that (7.5) is a good approximation. Otherwise it may happen that

L( h) < L(0) but F ( x + h) > F ( x).
To stabilize the convergence of the solution, the Levenberg-Marquardt variant, again taken from [START_REF] Madsen | Methods for Non-Linear Least Squares Problems[END_REF], has been implemented. This method, originally proposed by [START_REF] Levenberg | A Method for the Solution of Certain Non-Linear Problems in Least Squares[END_REF], uses a dumping parameter µ to stabilize the iterative procedure. Instead of solving (7.6) at each iteration, it uses:

JT J + µ Īd h = -JT f with µ > 0,
where Īd is the identity matrix. The dumping parameter is updated during the iterations, and get smaller and smaller while F ( x) decreases. For very small values of µ, the method becomes the same as the classical Gauss-Newton version. After each new evaluation of h the gain ratio:

σ = F ( x) -F ( x + h) L(0) -L( h) ,
is used to establish if the new solution is better than the previous. For σ < 0 the new residual is larger than the previous, so the current iteration solution is discarded, the µ parameter is increased and a new estimation of h is obtained. For σ > 0 the new solution is better than the previous one and it is kept. In this case µ is decreased before proceeding to the next iteration.

Results

This chapter is devoted to an exhaustive presentation of the results obtained using the polynomial method. Two kinds of comparisons are carried out in the following: a rst comparison between step and polynomial methods and then a comparison between the Polynomial method and several reference Monte Carlo solutions. The comparison between the two deterministic methods is meant to show the dierences in performances (memory usage and computational time) for a similar level of accuracy. On the other hand, the comparison with the Monte Carlo calculations is meant to validate the results obtained using the polynomial method. Unless dierently specied, all the calculations have been run with the OpenMp parallel option activated and using 15 threads on a Xeon E5-2680@2.8

GHz, which is composed of 2 CPUs sharing their memory and each CPU has 10 cores.

ASTRID reactor

The rst set of results shown here is dedicated to an assembly of the ASTRID reactor.

ASTRID is a French design of Gen-IV bsodium cooled fast breeder reactor. A detailed description of the reactor design can be found in [START_REF] Fontaine | The french R&D on SFR core design and ASTRID project[END_REF]. Aside from the technicalities, the ASTRID reactor most remarkable peculiarity directly related to our work is the pancaked core design. In few words, in order to reduce the positive sodium void coecient, an axially heterogeneous core design is adopted. A sequence of fertile and ssile layers constitutes the reactor core. In case of loss of coolant, this should increase the neutron leakage towards a neutron absorber and decrease the reactivity. The reactor should feature a compact core of hexagonal fuel assemblies.

An internal assembly of this reactor has been chosen to validate the accuracy and performances of the SC, as anticipated in section 3. 1.5. For a very heterogeneous design in the axial direction, the classic two steps calculations are not appropriate. For this reason, this study case was chosen to validate the accuracy of the Step method developed in [23]. For the same reason we have used this case for our rst results set. Using the same assembly type allows us to present a method-to-method comparison, where we can optimize the axial meshes for both methods in order to obtain similar accuracies, and then compare the methods performances.

Three results are presented in this part, corresponding to three dierent axial heights and materials compositions, but with the same two dimensional layout. Figure 21 presents the reactor axial design and gives a simplied idea of the three computational domains that will be presented in the next pages. From the smallest to the largest, the three cases will be referred to as small cyclic assembly, half column assembly and full column assembly.

The rst two cases are used for the SC to polynomial comparisons, while the third is presented for the Monte Carlo reference comparison, since this case is the most physically challenging. 

Polynomial vs step comparison

The polynomial to step methods comparison is carried out for the two smaller computational cases shown in Fig. 21, and for each of them the following parameters are compared: number of axial meshes, k-eective, computational time and memory usage. The quadrature formula, the radial and axial distances between trajectories and the convergence criteria are the same for the two methods. Unless dierently specied, the set of parameters used in the ASTRID section is reported in Table 8.1.

Small cyclic assembly

The small cyclic assembly, or reected assemby (as indicated in Fig. 21), has been used in [23] as a rst test to validate the results obtained using the Step method. In this case a reective boundary condition is applied on every side and a cyclic tracking is used.

Physically, this case of about 30 cm height is only representative of a small interface between a fertile and a ssile layer. However, since the two interface materials are very dierent, the axial ux gradients are quite important. As a consequence, a large number of axial meshes is needed using the Step method in order to obtain an accurate solution. Figure 23 shows the axial uxes obtained using the Step method with 30 axial meshes and the reference Monte Carlo solution with the relative standard deviation. Using the Polynomial method, the same level of accuracy was obtained using only two axial meshes. Figure 24 gives a visual interpretation of the dierent meshes used for the Step and Polynomial Table 8.1 Standard parameters set used for all the ASTRID assembly calculations. ∆r and ∆s are integration parameters and Fig. 9 gives a graphical representation of their meaning.

Figure 23 Axial uxes for a fuel pin for the small cyclic assembly computed using the

Step method (crosses) and comparison with the reference calculation (black). The red and blue colors corresponds respectively to a thermal and a fast energy group and they are normalized using dierent factors. Image taken from [23].

methods, while Table 8.2 compares the performances of the Polynomial method against the SC solution. For both methods the computational time and memory usage are reported both with and without the use of the acceleration method. As we can see, if no acceleration is used the Polynomial method performances are slightly better, when compared with the

Step method, but the larger improvement appears when activating the acceleration option for both methods.

Half column assembly

The half column assembly features ve dierent material axial layers: a fertile zone, a ssile one, a gas plenum, a sodium plenum and a neutronic protection containing boron carbide, for a total height of about 1 meters. Once again, a simplied view of the assembly inside the reactor core is given in Fig. [START_REF] Masiello | New Numerical Solution with the Method of Short Characteristics for 2-D Heterogeneous Cartesian Cells in the APOLLO2 Code: Numerical Analysis and Tests[END_REF]. heterogeneous in comparison with the rst case just presented, the axial ux gradients are much more severe. Figure 13b shows the axial uxes for a fuel pin computed using the Step method. The dierent performances obtained using the Step and the Polynomial method for about the same level of accuracy in this case, are compared in Table 8. 3. As the table

shows, in order to reach a similar accuracy, the Step and Polynomial methods need 110 and 6 axial meshes, respectively. For the Polynomial method the sixth axial mesh has been added in the upper neutronic protections, which features very strong ux gradients.

The important dierence in the number of axial meshes necessary to represent the axial ux gradient translates again in an important dierence both in computational time and in memory footprint. Table 8.4 is meant to show the convergence of the k ef f as a function of the number of axial meshes of both the Step and the Polynomial method. Figure 25 shows the axial uxes for a fuel pin for the half column assembly using polynomials of order 1 and 2 and several axial discretizations. As we can see, increasing the polynomial order from linear to parabolic allows a considerable reduction in the number of axial meshes necessaries to obtain a proper representation of the axial ux gradients. This set of gures is also meant to give a graphical understanding of some of the results reported in table 8.4.

Physical Comparison with Tripoli4

The physical comparison of reaction rates has been carried out using the full column assembly. This case features all the eleven materials shown in Figure 22. The total axial height is of about 3.3 meters. However, the geometry used for the APOLLO3 calculation does not exactly coincide with the one used for the TRIPOLI4 simulation. This is mainly due to the fact that our solver treats only extruded geometries. As a consequence, the basic two dimensional geometry has to be obtained superposing all the two dimensional geometries of the dierent axial planes. The drawback of this approach is that superposing very dierent geometries will results in a heavily discretized basic two-dimensional geometry, which has to be imposed to every axial plane. As a consequence, a relatively homogeneous plane must be anyway discretized, resulting in a useless computational over-cost. A possible workaround to this problem can be obtained replacing homogeneous equivalent materials, if this is believed to have a low impact in the quality of the result.

For this computation, the detail level used for the basic two dimensional geometry has been chosen equivalent to the fuel layers discretization, and imposed to all the other layers.

This entails that the sodium plenum (Fig. 22b) is over-discretized, while the two small slices housing the set of springs holding the fuel pins (Figs. 22e and22j), were replaced with a homogeneous material with the size of the fuel pin, representative of the spring and the helium inside it. Finally, the neutronic protection (Fig. 22a) was also replaced with a homogeneous material. Since it is a very strong absorber far away from the fuel, it is considered well represented by a homogeneous material, instead of paying the price of imposing an additional computational cost to all the other layers. Even if not completely physically representative of the problem, the same geometry has been used in the Monte Carlo simulation in order to have a fair code-to-code comparison. This kind of approach has been inspired by previous works [START_REF] Archier | Validation of the Newly Implemented 3D TDT-MOC Solver of APOLLO3 R Code on a Whole 3D SFR Heterogeneous Assembly[END_REF].

Tables 8.5 and 8.6 show the information relative to several calculations performed on the full column assembly with dierent polynomial degrees and number of axial meshes. In these tables are displayed the reactivity error associated to each computation, as well as the number of inner and outer iterations, the computational time and the memory engaged. As we can see, using 11 axial meshes (corresponding to the 11 material layers) a polynomial of order 3 shows more accurate results, in comparison with the polynomial of order 2.

However, adding some meshes both methods converge to similar values and the use of a polynomial of order 2 is less expensive both in terms of memory and in computational time. 

Results obtained with the non-linear tting method

This section is meant to show the performances of the tting method that we have introduced in order to reduce the total memory footprint of the DP N synthetic acceleration matrices used in the polynomial method. We compare the computational times and memory requirements with and without the non-linear tting method on two cases that we have presented previously in table 8.5: the full column assembly in nominal condition with 15 axial meshes using a polynomial of order 2 and 3.

Table 8. 7 shows the memory required by the dierent acceleration coecients for the considered case, both for a polynomial of order 2 and 3. It also displays the percentage of memory occupied by the acceleration matrices, over the total memory needed for the calculation. As we can see, the acceleration coecients constitute the largest portion of the total memory footprint. The size of the acceleration matrices depends linearly on the number of energy groups, so this proportion can suer important changes depending on the energy discretization used. These calculations are run with 1200 groups, so a very large value if compared to standard thermal reactor calculations. Fitted within Results obtained when the tting method is applied only to the † T † T † T and † E † E † E matrices (left) or to all the acceleration matrices (right). The highlighted area displays the precision we have chosen and the corresponding tted percentage. of exponential and rational power functions is in fact less justiable in comparison to the † T † T † T and † E † E † E coecients.

[%] † T † T † T, † E † E † E † T † T † T, † E † E † E, † C † C † C, † I † I † I Polynomial 2 Polynomial 3 Polynomial 2 Polynomial 3 < 1 × 10 -1 99 
The results regarding the impact of this method on the total memory used during the calculation and the computational time are reported in Table 8. [START_REF] Sanchez | A Review of Neutron Transport Approximations[END_REF]. As we can see, the regression adds computational time for both the coecients construction, and the total iteration time, since at the beginning of each group the coecients must be re-evaluated.

Moreover, since the regression formula we have chosen contains exponential and rational power functions, the associated computational cost is more important in comparison with regular oating-point operations.

Conclusions and Perspectives

The objective of the present work is the introduction of a polynomial approximation to represent the axial spatial dependence of the neutron angular ux in the TDT code. The method of long characteristics is used in TDT to solve the multi-group neutron transport equation for two-dimensional unstructured and three-dimensional extruded geometries. The method extension from two-dimensional to three-dimensional geometries has been realized during a previous PhD work [23]. In this context the classic SC approximation has been used

to approximate the spatial dependence of the neutron angular ux. This approximation is acceptable only if the size of the computational meshes is small, when compared to the macroscopic ux gradients. Small axial meshes generally imply a high number of unknowns, which also means a high memory usage and computational time. The purpose of a polynomial approximation is to represent the same solution, but with a lower number of axial meshes.

This work is focused on the development of a polynomial approximation in the axial direction, while the step approximation has been conserved on the radial plane. A polynomial basis has been chosen to represent the axial variation of the angular uxes. A modied version of the integral transport equation has been obtained using this polynomial representation and the solution of such equation has been implemented. Successively, the acceleration issue has been addressed. The DP N synthetic acceleration, which was already implemented for the two-dimensional and three-dimensional methods, has been modied to be able to accelerate all the polynomial moments.

The polynomial method we have implemented is able to represent the solutions on a set of test cases with a similar level of accuracy, when compared with the SC method, but using a lower number of axial meshes. The considerable reduction in number of axial meshes resulted in a substantial decrease in computational time and memory requirements.

Even if the polynomial method proved to be ecient, it revealed also to be less robust than the Step method. We encountered several diculties that had to be circumvented in order to be able to obtain a stable method. A rst important issue regarding particle conservation has been addressed, after a careful reading of [START_REF] Sanchez | Prospects in deterministic three-dimensional whole-core transport calculations[END_REF], by numerically computing a set of matrices in order to obtain coherency between the balance and the transmission equation. Issues related to poor angular and/or spatial numerical integration arose all along during this work, both for the transport and the acceleration part. A series of precautions had to be adopted in order to prevent from numerical ill-conditioning to cause the polynomial method to be unstable. Far from being perfect, the method proved however to be useful and be better performing than the Step equivalent.

It is clear that a direct full reactor three-dimensional solution of the neutron transport equation with the method of characteristics remains extremely expensive to consider this work an important improvement. However, for particular applications or reference calculations, the polynomial MOC could reveal to be interesting, since it is able to deliver quite accurate results.

α m l+1 = √ 2l + 3 √ 2l + 1 γ m l+1 β m l-1 = √ 2l-1 √ 2l+1 ε m l-1 if |m| ≤ l -1 0 if |m| > l -1 A m l (θ, ϕ) =          4π 2l+1 Y 0 l (θ, ϕ) m = 0 4π 2l+1 Y m l (θ, ϕ) + Ȳ m l (θ, ϕ) m > 0 -i 4π 2l+1 Y m l (θ, ϕ) -Ȳ m l (θ, ϕ) m < 0
where " ¯" denotes complex conjugation.

Expressing Eq.(B.1) in a matrix form we get:

µ A( Ω) = ᾱ A( Ω), (B.2)
where ᾱ is a matrix with dimension N m ×N m . Each line of the matrix has just two non-zero elements, which are the coecients α m l+1 and β m l-1 .

As written in Sec. obtain that this latter equation must be expanded in function of the anisotropy order and of the maximum polynomial degree. To be more explicit we start from the highest polynomial order and we use here the double index notation for the spherical harmonics sum, as in iii Eq.(2.9). The moment of the angular ux corresponding to a polynomial order of p and the spherical harmonics A l k ( Ω) will be written as Φ l p,k . We do not write the complete balance equation, but just the dependence between dierent terms:

p = 2 →                Φ 0 2,0 → Φ 0 1,1 Φ -1 2,1 → Φ -1 1,2 Φ 0 2,1 → Φ 0 1,2 + Φ 0 1,0 Φ 1 2,1 → Φ 1 1,2 (B.3) p = 1 →                                    Φ 0 1,0 → Φ 0 0,1 Φ -1 1,1 → Φ -1 0,2 Φ 0 1,1 → Φ 0 0,2 + Φ 0 0,0 Φ 1 1,1 → Φ 1 0,2 Φ -1 1,2 → Φ -1 0,3 + Φ -1 0,1 Φ 0 1,2 → Φ 0 0,3 + Φ 0 0,1 Φ 1 1,2 → Φ 1 0,3 + Φ 1 0,1 p = 0 →                                                      Φ 0 0,0 Φ -1 0,1 Φ 0 0,1 Φ 1 0,1 Φ -1 0,2 Φ 0 0,2 Φ 1 0,2 Φ -1 0,3 Φ 0 0,3 Φ 1 0,3
Where the bold font indicates the additional moments to be computed for each polynomial order. From this we can retrieve a general rule to identify the total dimension of the Z Z Z matrix of Eq.(5.26). The number of angular moments related to the scattering operator are:

N m = (K + 1) 2 ,
which means that, if no coupling was present, the Z Z Z would have dimensions [N sc × N sc ],

where: 

N sc = N m × (N p + 1) = (K + 1) 2 × (N p + 1
N tot = Np p=0 (K + 1) 2 + (2K + 1) × (N p -p) = N sc + (2K + 1) × Np p=0 (N p -p) = N sc + (2K + 1) × N p (N p + 1) 2 ,
whereas if the same amount of memory had to be devoted to every polynomial order, under the tensorial hypothesis to use the maximum sub-matrix size, we would have had:

N tens = (K + 1 + N p ) 2 × (N p + 1).

For the example under consideration (K = 1 and N p = 2) we would have N tot = 25 and N tens = 48. Notice that the choice adopted so far in both the transport and the DP N sections is to use the simpler but more memory demanding tensorial workaround. iv P=0, K=1 m This appendix presents the most important numerical problems that we encountered during this work implementation, as well as the solutions we adopted in order to circumvent them. Both the transport and the acceleration MOC equations suered from numerical instabilities due to optically thin media or poor numerical discretization. The quality of the numerical approximation of the angular, surface or volume integrals depends on the number of angles, the chosen quadrature formula and the radial and axial distances between trajectories. All these parameters are decided by the user and are generally chosen to obtain a compromise between precision and computational time. As a consequence smaller regions will be approximated with a larger relative error in comparison with larger ones, since the number of trajectories crossing a region is proportional to the region size.

-1 0 1 l 0 Φ 0 0,0 1 Φ -1 0,1 Φ 0 0,1 Φ 1 0,1 P=1, K=1 m -1 0 1 l 0 Φ 0 1,0 1 Φ -1 1,1 Φ 0 1,1 Φ 1 1,1 2 Φ -1 1,2 Φ 0 1,1 Φ 1 1,1 P=2, K=1 m -1 0 1 l 0 Φ 0 2,0 1 Φ -1 2,1 Φ 0 2,1 Φ 1 2,1 2 Φ -1 2,2 Φ 0 2,1 Φ 1 2,1 3 
Φ -1 2,3 Φ 0 2,3 Φ 1 2,3

Small total cross sections

Numerical instabilities associated to small total cross section values are quite common in the neutron transport eld. The polynomial method implemented in this work is even more sensible to this kind of problem than the SC one. Looking at Eq. (5.22), it is possible to understand the origin of this problem. This equation expresses the neutron angular balance for a given region. If we express each polynomial term more explicitly we obtain:

Σ r ψ r,0 ( Ω) = Pr ( Ω) q r ( Ω) 0 -∆ J r,0 ( Ω) Σ r ψ r,1 ( Ω) = Pr ( Ω) q r ( Ω) 1 -∆ J r,1 ( Ω) + µ 1 ∆z/2 ψ r,0 ( Ω) Σ r ψ r,2 ( Ω) = Pr ( Ω) q r ( Ω) 2 -∆ J r,2 ( Ω) + µ 2 ∆z/2 ψ r,1 ( Ω) . . .
The rst equation corresponds to the SC angular balance. It should be noted that the currents term ∆ J r,0 ( Ω) is expected to be very small for a low total cross section region, since each trajectory contribution given by the dierence between entering and exiting angular uxes, can be very small, for small optical lengths. If no care is taken, and the current term is simply computed as the dierence between the entering and exiting angular uxes, this operation will strongly suer of numerical cancellation. This ill calculated dierence is then divided by the total cross section, in order to compute the constant ux term ψ r,0 ( Ω), and this may result in a very large error. The classic workaround for the constant term is to compute the currents term contributions as:

ψ -( Ω) -ψ + ( Ω) = (1 -e -Σr l ) q r,p ( Ω) Σ r -ψ -( Ω) ,
vi which corresponds to the strategy adopted in the SC, both for vacuum treatment, and for optimal number of oating-point operations. This allows obtaining a correct estimation of the constant terms. The polynomial method is more sensible to this problem than the SC one, since each high order term features the dierence between a current term and the previous angular ux moment, divided by the total cross section. This means that the p-th order equation will be divided by Σ p+1 r .

This kind of problem aects both the transport and the acceleration operators. Even if the acceleration equations do not use an angular version of the balance equation, the same problem holds after the angular integration.

Poor numerical discretization

The second numerical instability we encountered is due to poor numerical integration caused either by a lack of precision of the angular quadrature formula or by the fact that the chosen trajectory axial or radial spatial integration steps are too large. Both phenomena translate in a low number of trajectories crossing a region. As a consequence, the numerical quantities computed using the trajectory-based discretization can be very dierent when compared to the analytic counterparts. When this happens, we have observed numerical instabilities similar to the ones caused by small cross sections, which results in the divergence of the inner iterations. This seems to be caused mainly by the inaccurate computation of the numerical Pr ( Ω) angular matrices (5.20). Even if this numerical evaluation is necessary for particle conservation, as described in Appendix A, completely inaccurate values seems to lead to such important instabilities.

Issues regarding the acceleration matrices

The set of operations described in Section 6.3, ending up in the nal DP N balance expressed by Eq.(6.35), suers from ill conditioning due to both small total cross sections and/or poor numerical integration. This can lead to acceleration matrices so wrongly computed, to cause the transport solution to oscillate of several orders of magnitude during iterations. Since the set of operations needed to arrive to the nal balance is constituted by several phases, it is dicult to keep track of the numerical quality of the coecients. The most evident numerical degradation of the coecients appears after the application of the X X X -1 matrix (6.34). However, the problem is likely to be not only related to the matrix inversion, but depending on the quality of all the matrices.

Proposed solutions

The method used to stabilize the problem and to assess the coecients' quality, both for transport and acceleration, was actually derived by the debugging technique we have used to implement the DP N acceleration: the innite medium (known) solution is used to feed a source term of Eq.(5.28), for transport, and Eq.(6.35), for the acceleration. These equations are then used to recompute the innite medium solution for a given 3D region and energy group. If the maximum relative dierence between the analytical and the numerical innite medium solutions, on all the polynomial and angular terms, is found to be larger than a certain threshold (here 1% for transport and 10% for acceleration have been used), the order of the polynomial used for the given region and energy group is reduced by one, and the matrices are recomputed. For the acceleration, this means starting again from Eq.(6.31).

Note that in order to avoid division by zero all the errors are computed relatively to the constant term. This approach revealed to be a powerful tool to stabilize our method, and vii

dz d Ω 4π A n ( Ω) P (z r ) • ψ r ( Ω) = 1 ∆z i zi + ∆z i 2 zi - ∆z i 2 dz P (z r ) • Φ n r .
Integrating analytically:

zi + ∆z i 2 zi - ∆z i 2 dz P p (z) = zi + ∆z i 2 zi - ∆z i 2 dz z -zr ∆z r /2 p = ∆z r 2 zup i zlow i dz zp = ∆z r 2 1 p + 1 (z up i ) p+1 -zlow i p+1 .
In a compact form: A threedimensional MOC solver for 3D extruded geometries has been implemented in this code during a previous PhD project, relying on a piecewise constant approximation for the neutrons uxes and sources. The developments presented in the following represent the natural continuation of this work. Three-dimensional neutron transport MOC solvers are able to produce accurate results for complex geometries. Although accurate, the computational cost associated to this kind of solvers is very important. An axial polynomial representation of the neutron angular uxes has been used to lighten this computational burden. This work has focused on applying a simple polynomial approximation in order to reduce the computational cost and memory footprint associated to a MOC solver used to compute the neutron uxes in three dimensional extruded geometries. Even if this does not constitute a radical improvement, the high order approximation that we have introduced allows a reduction in terms of memory and computational times of a factor between 2 and 5, depending on the case. We think that these results will constitute a fertile ground for further improvements.

Φ n i = X r,i • Φ n r where: X r,i = {X r,i,p } , X r,i,p = 1 2 ∆z r ∆z i 1 p + 1 (z up i ) p+1 -zlow i p+1
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Figure 1

 1 Figure 1 Binding energy as a function of the mass number (a) and neutrons to protons ratio (b).

Figure 2

 2 Figure 2 Total and ssion microscopic cross section for 235 U as a function of the energy
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 3 Figure 3 Example of a 33 energy groups energy mesh (in red) superposed to a ssion reaction rate spectrum for a fast reactor.
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 4 Figure 4 Azimuthal and polar coordinates denition
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Figure 5

 5 Figure 5 Example of a set of discrete ordinates.

Figure 6

 6 Figure 6 Characteristic line and related variable denitions

Figure 7

 7 Figure 7 Two dimensional trajectory-based discretization. In yellow the volume associated to each trajectory.

Figure 8

 8 Figure 8 Graphical representation of entering and exiting uxes for a region along a trajectory in a simple reactor cell geometry.

Figure 9

 9 Figure 9 Left: a simple example of a 3D extruded geometry. Center: a two-dimensional tracking associated to this geometry. Right: a visual interpretation of a set of threedimensional trajectories, uplifted from the two-dimensional tracking. Image taken from reference [23].

Figure 10 A

 10 Figure 10 A set of three-dimensional trajectories belonging to a s-z plane. The dierent colors of the two axial layers indicate dierent materials.

Figure 11

 11 Figure 11 Example of HSS descriptions for two simple trajectories. Two trajectories are crossing here vertical (blue) and horizontal (red) lines. On the vertical axis is indicated the axial plane number. On the right side the axial plane succession represents a reective boundary condition, while on the left an open boundary. On the horizontal axis, the 2D chords counter. The green vertical line represents a direction change due to a horizontal boundary being reached. The information stored by the HSS method are: HSS 1= {-7}, HSS 2 = {-4, 1, -2, 1, -1}.This image is taken from[23] and slightly modied.

Figure 12

 12 Figure 12 Example of a cyclic track. Image taken from [17].

  axial flux profile Step (b) Axial ux prole for a fuel pin. G stands for the group number.

Figure 13

 13 Figure 13 Axial ux prole obtained with the SC method for an assembly of the ASTRID reactor. The SC calculation uses ∼ 100 axial meshes. The ux are collapsed on 33 energy groups and the ux in each group is normalized, in order to present here only the ux gradients.

Figure 15

 15 Figure 15 Simplied view of a LWR core and of a fuel assembly.
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 351 .29) becomes a purely lower-diagonal inversion.Taking into account the previous observation we can then arm that each p-th diagonal block of the D D D matrix represented in Table5.1 contains a number of angular moment so Prole of matrix D D D. Only the rst lower diagonal per polynomial index submatrix are non zero. Also, remark that the size of each Dp-1,p sub-matrix is dierent, even if represented as equal in the gure.

Figure 16

 16 Figure 16 Behaviour of the tabulated escape coecients E T b (τ ) as a function of the optical length for dierent values of the polynomial orders p.

Figure 17

 17 Figure 17 Error associated to the use of the backward recurrent relation to compute the tabulated escape coecients for large values of the optical length.

Figure 18

 18 Figure 18 Error associated to the use of the forward recurrent relation to compute the tabulated escape coecients for small values of the optical length.
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  and Āα ± h have dimensions (N m,D × N p ) × (N m,S × N p ) and N m,D × N m,S , respectively. Equation (6.14) for J ± α h shows that for horizontal surfaces the polynomial components needed to close the DP N problem (as shown in Eq.(6.11)) can be obtained applying the possible sign change to the constant component J ± α h . Having this in mind, we write (6.11) explicitly as:

Figure 20

 20 Figure 20 Computational time of the DP N coecients computation as a function of the threads numbers and of the group package (a) and speed-up factors (b). The case used for this test is the half-column sub-assembly of the ASTRID reactor. This case features 115 two-dimensional computational regions and 1968 energy groups.
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Figure 21

 21 Figure 21 ASTRID axial layout and simplied view of the three computational cases.

Figure 22 # 24 # 4 ∆r

 22244 Figure 22 Axial and radial view of the ASTRID full column assembly geometry visualized using the TRIPOLI4 graphic tool. The eleven radial cuts corresponding to dierent material layers are represented with dierent colors. a) Neutronic protection. b) Sodium plenum. c,d,e) Structure materials, springs and gas plenum. f ) Fissile layer. g) Fertile layer. h) Fissile layer. i) Fertile layer. j) Structure materials. k) Gas plenum.

Figure 25

 25 Figure 25 Axial uxes for a fuel pin in the half column assembly for dierent energy groups and for several axial discretizations and polynomial orders. Remark that using a linear ux approximation requires an important meshes renement in order to properly approximate the axial ux gradients, while a polynomial of order 2 delivers good results already with 6 axial meshes.
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 26 Figure 26 Comparison between the Polynomial method and the reference Monte Carlo calculation for the full column assembly in nominal condition on the macroscopic ssion reaction rate for the lower fertile layer.
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 27 Figure 27 Comparison between the Polynomial method and the reference Monte Carlo calculation for the full column assembly in nominal condition on the macroscopic ssion reaction rate for the lower ssile layer.
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 28 Figure 28 Comparison between the Polynomial method and the reference Monte Carlo calculation for the full column assembly in nominal condition on the macroscopic ssion reaction rate for the upper fertile layer.
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 29 Figure 29 Comparison between the Polynomial method and the reference Monte Carlo calculation for the full column assembly in nominal condition on the macroscopic ssion reaction rate for the upper ssile layer.

Figure 30

 30 Figure 30 Comparison between the Polynomial method and the reference Monte Carlo calculation for the full column assembly in nominal condition on the macroscopic capture reaction rate for the upper neutronic protection.

Figure 31 90 Figure 32

 319032 Figure 31 Axial prole of the macroscopic ssion rate and associated relative error for the full column ASTRID assembly in nominal conditions. The reference Monte Carlo calculation has been obtained scoring the ssion rate on 220 axial meshes with constant height.

Figure 33

 33 Figure 33 Axial prole of the macroscopic ssion rate and associated relative error for the full column ASTRID assembly in voided conditions. The reference Monte Carlo calculation has been obtained scoring the ssion rate on 220 axial meshes with constant height.

Figure 34

 34 Figure 34 Axial prole of the macroscopic ssion rate and associated relative error for the full column ASTRID assembly in voided conditions. The reference Monte Carlo calculation has been obtained scoring the ssion rate on 220 axial meshes with constant height.
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 53 the balance obtained via Eq.(5.31) requires a number of additional angular moments because of the spherical harmonics relation of Eq.(B.2). To better understand the exact number and type of additional harmonics needed, we treat a simple example by assuming K=1 and N p = 2, that is to say, for linear anisotropic scattering and a parabolic spatial expansion. Inserting Eq.(B.2) into the balance equation (Eq.(5.27)) we

  à l'intérieur d'un seul matériel. Autrement dit, on nécessite d'une importante discrétisation spatiale en direction axiale pour réussir à représenter les gradients du ux. Une importante discrétisation en direction axiale se traduit dans un important cout computationnel et aussi de mémoire vive utilisée au sein du calcul. Ce dernier aspect est en train de devenir de plus en plus important, pour faire en sorte d'exploiter au mieux les nouvelles machines de calculs. Suite à ces considérations, ce travail a consisté dans le développement d'une approximation polynomiale pour représenter la dépendance axiale du ux angulaire. L'objectif de cette approche est de réduire le nombre de mailles axiales utilisées, tout en gardant la même précision. L'utilisation de méthode d'ordre supérieur est très courante dans ce genre de xiii problèmes. Une méthode d'ordre supérieur implique en général un surcout computationnel, parce qu'elle ajoute des inconnues et des opérations ottantes aux problèmes. D'autre part, uen méthode d'ordre supérieur fait en sorte en général d'avoir besoin d'une mineure discrétisation. L'eet dû à l'utilisation d'une méthode d'ordre supérieur sera donc la somme de ces deux eets opposés. On a choisi d'utiliser une approximation polynomiale pour représenter la dépendance spatiale du ux angulaire mais seulement en direction axiale. Ce choix est justié par le fait que les géométries typiques des réacteurs sont beaucoup plus hétérogènes en direction radiale, que non axiale. On a retenu qu'une expansion polynomiale aussi en direction radiale aurait comporté un surcout computationnel qui aurait été dicilement contrebalancé par la réduction du nombre d'inconnues, étant donné que le nombre d'inconnus croit de façon non-linéaire avec le degré du polynôme.Le travail réalisé pendant cette thèse peut être considéré comme divisé en trois parties: transport, accélération et autres.La première partie est constituée par l'implémentation de l'approximation polynomiale choisie dans les équations de transmission et de bilan typiques de la méthode des caractéristiques. L'équation de transmission polynomiale qu'on a implémenté s'est révélée être beaucoup plus chère du point de vu computationnel par rapport à l'équation de la méthodeStep. En eet le nombre d'opération ottantes que cette équation implique est strictement liés au nombre de cordes 3D du système. Bien que la méthode polynomiale ait permis une importante réduction du nombre des mailles axiales, le nombre des cordes 3D n'est pas diminué de façon proportionnelle. Ce qui a résulté dans une phase de transmission beaucoup plus chère du point de vue computationnel. Par contre, la réduction du nombre d'inconnues a impliqué une importante réduction de la mémoire engagée pendant le calcul.Cette réduction de la mémoire a aussi un important impact sur les temps de calcul. Cette première partie a aussi été caractérisée par le calcul d'une série de coecients numériques qui se sont révélés nécessaires an d'obtenir un algorithme stable. En eet, dans une première partie de ce travail une série de matrices nécessaires pour obtenir la version polynomiale de l'équation de bilan, étaient calculée de façon analytique. Du point de vu computationnel et de la mémoire cette approche est très avantageuse. Par contre le calcul des coecients analytiques à causé des importants eets d'instabilités numériques. Apres une première partie d'incompréhension, on est arrivés à une version stable de l'algorithme. Cette version stable a été obtenue en calculant une série de coecients en utilisant la même discrétisation des volumes propre de la méthode des caractéristiques. Pendant la deuxième partie de ce travail de thèse, on a modié et implémenté la solution des équations de la méthode d'accélération DP N . Cette méthode était déjà utilisée pour l'accélération et des itérations internes et externes dans TDT pour les solveurs deux et trois dimensionnels avec l'approximation des ux plat, quand ce travail a commencé. L'introduction d'une approximation polynomiale a demandé plusieurs développements numériques regardant la méthode d'accélération. L'idée de la méthode d'accélération est de résoudre un problème simplié, en comparaison à la solution de l'équation du transport, mais de le faire avec un cout computationnel réduit. Cette solution approchée est utilisée pour accélérer la convergence de la solution de l'équation du transport, qui est recherchée de façon itérative. Une méthode d'accélération est toujours nécessaire pour ce type de méthode. L'idée de l'accélération DP N est de éxpandre la dépendance angulaire des ux surfaciques xiv est des sources volumiques avec une séries de harmoniques sphériques réelles. En plus, la surface de chaque région de calcul est considérée comme décomposé dans une série de surfaces. En utilisant l'approximation polynomiale, en plus de l'expansion de la dépendance angulaire, la dépendance spatiale en direction axiale des ux surfaciques et des sources est représentée avec la même expansion polynomiale utilisée pendant la solution de la partie transport. Ces approximations permettent d'écrire le courant partiel entrant et sortant pour chaque surface de chaque région comme un système linéaire. La solution de ce système linéaire est obtenue avec une méthode itérative de Krylov. Dans la dernière partie de ce travail on a recherché des solutions pour un mélange de diérents problèmes liés aux premières deux parties. En premier lieux, on a eu à faire avec des instabilités numériques associées à une discrétisation spatiale ou angulaire pas susamment précise, soit pour la partie transport que pour la partie d'accélération. Un autre type d'instabilité numérique qu'on a rencontré est lié à la présence de sections ecaces petites. La présence de matériels avec une très faible section ecaces cause des importantes instabilités dans l'algorithme qu'on a développé parce, causé par des successives divisions de quantités toujours plus petites. Pour remédier à cet inconvénient on a décidé de réduire le degré du polynôme utilisé localement, pour la région de calcul et le groupe donné. Ensuite, on a essayé d'utiliser diérentes méthodes pour réduire l'empreinte mémoire des coecients d'accélération. La méthode d'accélération implémentée dans TDT demande le stoquage d'un set de coecients pour chaque groupe d'énergie. Ces matrices peuvent être très importantes en mémoire. Le nombre de groupe typiquement utilisé peut varier entre une dizaine et quelque millier. Quand le nombre de groupe devient important, la plupart de la mémoire occupée par le calcul est constitué par le stoquage des matrices d'accélération.Ce phénomène peut limiter le type de calcul qui peut être réalisé parce que d'un côté ils sont trop longs sans accélération, mais de l'autre ils peuvent demander plus de mémoire par rapport à celle qui est disponible sur une certaine machine. Une approche possible consiste à recalculer ces coecients pendant les itérations. Cette approche aurait l'avantage de ne nécessiter de aucun stoquage. D'autre côte, le calcul de ces coecients est très important, donc cette approche résulterait dans un cout computationnel inacceptable.L'approche qu'on a nalement choisie pour essayer de réduire l'empreinte mémoire de la méthode se base sur une régression non-linéaire au sens des moindres carrés de la dépendance en fonction des sections ecaces typique de ces coecients. L'approche standard consiste dans le stockage d'une série de coecients pour chaque groupe d'énergie. La méthode de régression permet de remplacer cette information avec une série de coecients calculés pendant la régression qui sont utilisés pour reconstruire les matrices d'accélération au cours des itérations. La méthode sera donc avantageuse seulement si le nombre de coecients utilisé est mineur au nombre des groupes originel. Cette procédure ajoute un certain coût computationnel à la méthode, mais nous pensons que la réduction de la mémoire rende ce surcoût acceptable.La méthode de régression qu'on a implémenté s'est révélé être capable des représenter 99% des matrices d'accélération en utilisant 9 coecients, avec une précision relative de 1%. Les valeurs qui ne sont pas correctement représenté par le modelé de régression doivent être stoqués. En conclusion, le travail réalisé a été concentré sur l'application d'une simple approximation polynomiale avec l'objectif de réduire le cout computationnel et l'empreinte mémoire associées à un solveur basée sur les méthodes des caractéristiques qui est utilisé pour calculer le ux neutroniques pour des géométries à trois dimensions extrudées. Même si cela ne conxv stitue pas une amélioration radicale des performances, l'approximation d'ordre supérieur qu'on a introduit permet une réduction en termes de mémoire et de temps de calcul d'un facteur compris entre 2 et 5, selon le cas. Nous pensons que ces résultats constitueront une base fertile pour des futures améliorations. En particulier, la perspective la plus intéressante de ce travail consiste dans le développement d'une approximation polynomiale pour les sections ecaces similaire à celle utilisée pour représenter la dépendance spatiale axiale du ux angulaire. Une approximation de telle sorte permettrait de réaliser des calculs d'évolution isotopique. Sans une approximation polynomiale des sections ecaces, on serait limités à calculer la solution du problème avec des concentrations nominales, mais on ne pourrait pas simuler l'évolution du combustible, parce que cette évolution nécessite de récupérer la dépendance polynomiale des moments du ux neutroniques. xvi List of Figures Titre: Méthode accélérée aux caractéristiques pour la solution de l'équation du transport des neutrons, avec une approximation polynomiale axiale Mots clés: Méthode des caractéristiques, equation du transport des neutrons, approximation polynomiale, TDT, 3D MOC Résumé: L'objectif de ce travail de thèse est le développement d'une approximation polynomiale axiale dans un solveur basé sur la Méthode des Caractéristiques (MOC). Le contexte, est celui de la solution stationnaire de l'équation de transport des neutrons pour des systèmes critiques, et l'implémentation pratique a été réalisée dans le solveur "two/Three Dimensional Transport" (TDT), faisant partie du projet APOLLO3 R . Un solveur MOC pour des géométries en trois dimensions a été implémenté dans ce code pendant un projet de thèse antécédent, se basant sur une approximation constante par morceaux du ux et des sources des neutrons. Les développements présentés dans la suite représentent la continuation naturelle de ce travail. Les solveurs MOC en trois dimensions sont capables de produire des résultats précis pour des géométries complexes. Bien que précis, le coût computationnel associé à ce type de solveur est très important. Une représentation polynomiale en direction axiale du ux angulaire des neutrons a été utilisée pour réduire ce coût computationnel. Le travail réalisé a été concentré sur l'application d'une simple approximation polynomiale avec l'objectif de réduire le cout computationnel et l'empreinte mémoire associées à un solveur basée sur la méthodes des caractéristiques qui est utilisé pour calculer le ux neutroniques pour des géométries à trois dimensions extrudées. Même si cela ne constitue pas une amélioration radicale des performances, l'approximation d'ordre supérieur qu'on a introduit permet une réduction en termes de mémoire et de temps de calcul d'un facteur compris entre 2 et 5, selon le cas. Nous pensons que ces résultats constitueront une base fertile pour des futures améliorations. Title: An axial polynomial expansion and acceleration of the characteristics method for the solution of the Neutron Transport Equation Keywords: Method of characteristics, neutron transport equation, polynomial approximation, TDT, 3D MOC Abstract: The purpose of this PhD is the implementation of an axial polynomial approximation in a three-dimensional Method Of Characteristics (MOC) based solver. The context of the work is the solution of the steady state Neutron Transport Equation (NTE) for critical systems, and the practical implementation has been realized in the Two/Three Dimensional Transport (TDT) solver, as a part of the APOLLO3 R project.

  

  iteration loop starts initializing the ssion source term of Eq.(2.12) for each energy group,

	using the initial angular ux moments guess. Then, starting from the highest energy group,
	a transfer contribution coming from other groups is added to the source term. This denes
	the second iteration loop. The third level is constituted by the transfer within the same
	group. This nal contribution allows to dene the source term of the balance equation
	(Eq.(3.3)). The second and last term of this equation is computed using the trajectory
	sweep. The transmission equation (Eq.(3.4)) is solved for each chord of each 3D trajectory.
	The balance equation is used to compute the average angular ux in each region, which is
	used in Eq.(2.10) to estimate a new value for the moments of the ux for the considered
	energy group. This new evaluation is used to update the transfer term within the same
	group, until a converged value is obtained. This inner-most level of iteration is generally
	referred to as inner iterations. At this point it is possible to update the transfer term
	coming from the group just computed, and passing to the solution of the successive energy
	level. The procedure is repeated until the uxes have converged in each group. At this
	point the new set of uxes is used to compute again the ssion source for all the energy
	groups, and a new outer iteration starts. The new eigenvalue estimation is also computed
	using the ssion integrals of two consecutive outer iterations, in a classical power method.

Table 8 .

 8 This second case is still not representative of the actual reactor axial gradients, since it uses a reduced neutron protection height and a ctive reective boundary condition at the bottom. Even if not fully physically representative, it is still very interesting from the computational point of view. Since the materials are more 2 Comparison between SC and Polynomial method for the small cyclic assembly. M stands for million. The relative error in k ef f is computed against the reference Monte Figure24Visual representation of the number of axial meshes used for the small cyclic assembly case for the Step (left) and the Polynomial method (right).

	SMALL CYCLIC ASSEMBLY	
	T4 k ef f		1.16103 ± 3 pcm	
		Step	Polynomial (N p = 2)
	k ef f	1.16052	1.16055
	δk ef f (pcm)	-44		-41	
	# Axial meshes	30		2	
	# Chords (M)	12.45	10.39
		Free Acc. Free	Acc.
	# Outer	10	5	10	5
	# Inner	260 063	6 000	220 480	6 000
	# Outer DP N	-	14	-	12
	Memory (Gb) 2.17 17.88 1.67	5.33
	Time (s)	18 891	1 719	15 647	788
	Carlo simulation obtained with Tripoli4.			
					z
	f ertile				
	f issile				

Table 8 .

 8 3 Comparison between SC and Polynomial method for the half column assembly. The relative error in k ef f is computed against the reference Monte Carlo simulation obtained with Tripoli4. M stands for million.

Table 8 .

 8 4 Axial meshes convergence analysis for the SC and Polynomial method for the half column assembly. The relative error in k ef f is computed against the reference Monte Carlo simulation obtained with Tripoli4. M stands for million.

	HALF COLUMN ASSEMBLY AXIAL MESHES CONVERGENCE
	Method		Step			Polynomial (N p = 1)
	# Axial meshes 57 110 180 257	5	6	7		8		11	19
	δk ef f (pcm)	-164	-48	-19	+2	-1666	-1596	-192	-188	-61	+6
	Method	Polynomial (N p = 2)	Polynomial (N p = 3)
	# Axial meshes 5 6	7	8	11	5	6		7	8	11
	δk ef f (pcm)	-5	+11	+10	+13	+10	+28	+33	+11	+11	+10

Table 8 .

 8 Figures from 26 to 29 display the macroscopic ssion reaction rates obtained with the Polynomial method and associated relative and absolute errors in comparison with the Monte Carlo reference calculations, for dierent axial planes, for the full column assembly in nominal condition, computed with a polynomial of order 2. The results are obtained integrating the reaction rates over the whole assembly radial cross section, in each dierent axial zone and collapsing the energy dependence over 33 energy groups. From these results we can see that large values of the relative errors on the ssion rates correspond to very low reaction-rate absolute values, while when the ssion reaction rate is important, the Nominal: 1.12587 ± 3 pcm Polynomial (N p = 2) Polynomial (N p = 3) 5 Results obtained with the Polynomial method for the full column assembly in nominal condition. M stands for million. maximum relative errors are around ±1%. Figure30shows the neutronic capture in the upper protection. Here the maximum relative errors for non-negligible reaction rate values are around ±10%. As Figure13bshows, in this particular zone the neutron ux decreases by several orders of magnitude and the axial ux behaviour cannot be represented correctly with a polynomial approximation.Figures 31 through 34 report several axial proles of the macroscopic ssion reaction rate integrated over the whole energy domain and radial cross section, and associated relative error for dierent number of axial meshes and polynomial degrees, both for the nominal and the voided congurations. These gures show that the polynomial approximation is indeed well suited to approach the axial behaviour of the neutron ux, at least in the reactor core for the presented problem. Moreover, we can see that the relative errors corresponding to non-negligible reaction-rate values are mostly comprised in a ±2% error band. We can also see that the polynomial of order 3 is more successful in representing the particular ssion rate behaviour of Figure32.

	FULL COLUMN ASSEMBLY NOMINAL	
	T4 k ef f						
	# 2D regions		115			115	
	# Axial meshes	11	15	17	11	15	17
	# Chords (M)	202.02	202.46	202.68	202.02	202.46	202.68
	# Classes (M)	4.07	5.59	6.35	4.07	5.59	6.35
	Classes/chords (%)	2.01	2.76	3.13	2.01	2.76	3.13
	Classication rate (%)	98.84	98.41	98.19	98.84	98.41	98.19
	δk ef f (pcm)	-88.9	+57.0	+56.7	-17.4	+58.4	+55.7
	# Outer	6	6	5	9	6	6
	# Inner	7 200	7 200	6 000	10 800	7 200	7 200
	# Outer DP N	30	35	30	46	39	36
	Memory (Gb)	31	39	43	45	58	64
	Time (h)	2.02	2.39	2.21	3.75	3.45	3.72

Table 8 .

 8 [START_REF] Mao | Resonance Self-Shielding Methods for Fast Reactor CalculationsComparison of a New Tone's Method with the Subgroup Method in APOLLO3 R[END_REF] Results obtained with the Polynomial method for the full column assembly in voided condition. M stands for million.

Table 8 .

 8 8 shows the accuracy of the tting method for these cases. For each level of accuracy the percentage indicates the amount of coecients that are correctly represented by the model. Moreover, we have highlighted the area corresponding to the precision we considered

	Coecients memory [Gb]	
		Polynomial 2 Polynomial 3
	† T † T † T	19.03	31.42
	† E † E † E	4.18	7.07
	† C † C † C	1.19	2.12
	† I † I † I	4.18	7.07
	TOT acc.	28.58	47.68
	TOT acc./TOT [%]	73.3	82.2

sucient. In practice, we observed that it is not possible to increase the accepted relative error above the level of ∼ 1 × 10 -3 , because the errors introduced in the DP N matrices cause the acceleration method to be unstable. This table also shows that the method is more successful in representing the transmission and escape matrices, in comparison with the collision and incoming matrices. The tting function that we have chosen, is probably less adapted to approximate the † C † C † C and † I † I † I matrices, for which the choice of a combination

Table 8 .

 8 7 DP N matrices memory size for the full column ASTRID assembly in nominal conditions with 15 axial planes.

Table 8 .

 8 8 Fitting precision for the full column ASTRID assembly in nominal conditions with 15 axial planes.

		.9998	99.9998	99.9680	99.9960
	< 1 × 10 -2	99.9712	99.9785	99.8087	99.9170
	< 1 × 10 -3	99.1392	99.3183	98.1376	98.4265
	< 5 × 10 -4	98.0883	98.4605	96.4749	96.9259
	< 1 × 10 -4	93.0796	93.2755	88.5373	89.9042

  ). Eqs.(B.3) and Tab.B.1 we see that the Z Z Z D matrix that is actually used in Eq.(5.31) has a dimension [N tot × N tot ], where:

	Using

Table B .

 B This means that when considering only the constant moment case (P=0) only the rst sub-table has to be considered. For the linear polynomial case, the moment of the second sub-table has to be added to the rst, and so on.

1 Dimension comparisons between dierent ux moment requirements in MOC polynomial calculations. Here a linear scattering is taken into consideration, while varying the dimension of the polynomial base. In the polynomial and angular ux moments Φ m p,l (l, m) are angular moment index, while p is the polynomial order. For each sub-table the capital letters (P and K) stand for the polynomial and scattering orders. The sequence of sub-tables has to be interpreted cumulatively. v C. Numerical issues and heuristic solutions

  , Un solveur MOC pour des géométries en trois dimensions a été implémenté dans ce code pendant un projet de thèse antécédent, se basant sur une approximation constante par morceaux du ux et des sources des neutrons. Les développements présentés dans la suite représentent la continuation naturelle de ce travail. Le développement de ces méthodes numériques comporte forcement l'introduction d'approximations plus ou moins importantes. Dans les dernières décennies on assiste à des importants progrès des outils de calculs. Grâce à ces importants avancements technologiques certaines approximations introduites peuvent être relâchées et on cherche de plus en plus d'obtenir des simulations précises, pour des domaines des calculs plus larges. Obtenir des solutions plus précises pour des domaines des calculs plus importants pourrait être obtenu juste en augmentant la taille des machines des calcul utilisées. Par contre, ceci comporterait des plus importantes dépenses. Une deuxième façon d'aborder le sujet est d'utiliser des meilleur instrument numériques pour essayer de décrire les phénomènes qu'on veut simuler. Ce travail de thèse s'inscrit dans ce contexte. L'approximation polynomiale qu'on a introduite a comme objectif de réduire le cout computationnel de la méthode numérique, pour faire en sorte de pouvoir traiter des geoetries plus grandes, avec les mêmes ressources computationnelles. Les solveurs basés sur la méthode des caractéristiques en trois dimensions sont capables de produire des résultats précis pour des géométries complexes. Bien que précis, le coût computationnel associé à ce type de solveur est très important. Une représentation polynomiale en direction axiale du ux angulaire des neutrons a été utilisée pour réduire ce coût computationnel. La méthode des caractéristiques utilise la forme intégrale de l'équation du transport des neutrons. Cette équation permet de calculer l'atténuation du ux neutronique le long d'une ligne caractéristique. Etant donné qu'on traite des particules sans charge électrique, ces lignes caractéristiques sont des simples lignes droites, qu'on appelle en général trajectoires. L'application concrète des méthodes des caractéristiques demande de tracer une série de trajectoires jusqu'à recouvrir tout le domaine de calcul. Successivement le ux neutronique xii est propagé à partir d'une frontière du système, jusqu'à une autre. La forme intégrale de l'équation du transport, généralement appelée transmission, doit être résolue à chaque fois qu'une trajectoire sort d'une région de calcul, pour rentrer dans la prochaine. Des nombreuses méthodes existent pour calculer la solution de l'équation du transport des neutrons. Pour calculer la solution de cette équation pour un entier c÷ur d'un réacteur nucléaire, le problème est en général découpé en plusieurs étapes. Dans une première partie on fait un calcul réseau. Ce calcul se constitue d'un calcul n à niveau spatial et énergétique pour des petits sous-motifs représentatifs du réacteur. Les résultats obtenus avec ce premier calcul sont ensuite utilisés pour obtenir des variables moyennes représentatives de ces sous-motifs. Avec ces variables grossières est possible obtenir une solution pour toute les géométries de calculs avec un cout computationnel raisonnable.La méthode des caractéristiques est principalement utilisée dans la première étape du calcul.Le principal avantage de cette méthodes est de pouvoir être appliquée presque a tout type de géométries, du moment qu'on est capable de calculer les intersections d'une séries des lignes droites et le surfaces des régions de calcul. Cet important avantage fait en sorte que la méthode des caractéristiques soit une des plus utilisée pour les calculs de réseau.Le fait de pouvoir calculer presque n'importe quel type de géométries c'est un important avantage, en particulier dans le domaine du nucléaire. Typiquement les géométries des réacteurs sont caractérisées par un certain nombre d'éléments qui peuvent être décrit avec des arcs de cercles. En utilisant des autres méthodes, comme des éléments ni, pour exemple, on serait obligé a représenter les bords des cercles comme une séries de segments droits, en résultant en une approximation plus importante, ou a un cout computationnel plus important.La méthode des caractéristiques est principalement utilisée pour des calcul à deux dimensions, typiques des calculs réseau. Cette méthode peut être appliquée aussi pour des calculs en trois dimensions. La principale limite de cette approche est le cout computationnel associé. Dans un travail de thèse précèdent à celui-ci, une version 3D du solveur MOC TDT a été implémentée. Ce travail s'est concentré sur l'utilisation d'une approximation constante du ux dans les régions de calcul. Cette approximation est plutôt courante dans la méthode des caractéristiques, parce que c'est une approximation assez simple à implémenter et peut livrer des résultats très précis. La limite principale de cette approche est que les résultats seront précis seulement si la taille des regions de calcul est petites en comparaison avec les gradients du ux.Les résultats de ce travail précédent montrent qu'un important nombre de mailles axiales est nécessaire pour représenter correctement les gradients axiaux du ux de neutrons, même
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L'équation de transport des neutrons décrit dèlement le comportement de la population des neutrons à l'intérieur du réacteur. La solution de cette equation peut être calculée de façon exacte seulement pour des cas sympliees. Pour des vrai géométries de calcul on est obligés d'utiliser des solutions numeriques.

Practical aspects concerning the DP N synthetic acceleration

This chapter deals with three aspects of the practical implementation of the DP N coecients calculation: the parallel strategy adopted during the computation phase, the procedure used to exploit the CCM to strongly reduce the computational cost associated to the coecients calculation and the non-linear least squares tting method that we have implemented to reduce the coecients memory size.

About the DP N coecients calculation

Coherence between the acceleration and transport solution requires the acceleration matrices to be computed with the same trajectory-based spatial discretization used for the MOC sweep. Since the acceleration is not meant to necessarily deliver a precise solution, this consistency can be relaxed, in order to decrease the acceleration computational burden. However, if the two approximations dier too much, instabilities issues may appear.

In practical terms, this means that each term of Eqs. (6.21) and Eqs. (6.22) have to be numerically computed with each 3D chord of the system. Unfortunately, the computational cost of this operation is larger for the Polynomial method, in comparison with the SC one.

The polynomial method issue is not constituted by the fact that the matrices are larger, since this increased size is largely counter-balanced by the decrease of the matrices number due to the axial meshes number reduction. The computational over cost of the polynomial method, in comparison with the SC equivalent, is mainly due to the operations required to compute the E E E α terms of Eqs. (6.22). For the Step method, in fact, there is no real need to directly compute these escape terms. A so-called complementary relation between transmission and escape terms allows in fact to compute the latter as a function of the former.

For the polynomial method, a relation of this kind could be obtained, but with a greater complexity in comparison with the Step method. Consequently, we have preferred to use a straightforward approach, and to directly compute both the escape, and the transmission terms.

The parallel strategy that was implemented for the coecients construction of the SC method had to be slightly changed in order to make it more ecient. Otherwise, the coecients construction would have represented a very large part of the total computational time, when using the polynomial method. The previous parallel strategy consisted in computing the DP N coecients performing a serial trajectories sweep and cumulating for each chord the corresponding coecient (Eqs. (6.21) 

∼ -65

Table 8.9 Memory footprint and computational times of DP N operator and relative impact on the whole M OC + DP N scheme when applying the tting method to all the acceleration matrices.

In order to be useful, the polynomial MOC must be able to treat depletion calculations.

At the present time, the method assumes to have constant cross sections in each axial layer. Even if not penalizing at zero burn-up, this approximation prevents the method to be ecient for depletion calculation. If the neutron ux is correctly represented by a polynomial function, also the macroscopic cross sections will inherit such behaviour as a consequence of isotope transmutation. At the present time, the only way to run this calculation is to increase the number of axial meshes when the error introduced by assuming a constant cross section in a given axial layer becomes too large. This approach is of course not optimal since it does not correctly represent the cross section spatial depletion.

Moreover, this would increase the number of axial meshes used. Such computational overcost is not considered acceptable, especially for a method that is already expensive.

The elegant solution to this problem, which constitutes also one of the main perspective of the present work, is to represent the cross sections with the same polynomial approximation used to represent the angular uxes. A polynomial representation would allow a ne representation of the spatial behaviour of the macroscopic cross sections during the isotopes evolution. Using such approximation, this method would be able to deliver very interesting reference calculations for three-dimensional assemblies or clusters. Moreover, in order to be able to apply this method to larger cases, a distributed memory parallel scheme could be implemented.

Part IV Annexes

A. Sanchez balance formula for particles conservation

The angular balance equation obtained in Section 5.2 is conservative. In a rst phase of our work Eq.( 5. [START_REF] Chetaine | The use of the characteristics method to solve the transport equation in unstructured geometries[END_REF]) has been used as a balance equation, but found to be unstable under certain space integration circumstances. The transition from Eq.( 5. [START_REF] Chetaine | The use of the characteristics method to solve the transport equation in unstructured geometries[END_REF]) to (5.22) is justied by the following demonstration, which is a more explicit formulation of what was synthetically proven in [START_REF] Sanchez | Prospects in deterministic three-dimensional whole-core transport calculations[END_REF].

We need to compute the polynomial moments of the angular ux, given by Eq.( 5.13):

which can be written coherently with the trajectory-based discretization, giving:

Focusing in a rst time only on the integral along the line and dropping the angular dependency for simplicity, we can express the spatial dependency of P (z r ) and ψ( r, Ω) only as a function of t, the local coordinate along the trajectory. Thanks to Eq.( 5. [START_REF] Yamamoto | GENESIS : A Three-Dimensional Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of Angular Flux Method[END_REF]) we get:

and the transmission equation (5.33) allows us to express the angular ux as a function of t:

where we have replaced P [z r (t )] with P (t ). We can obtain the polynomial moments of the angular ux along the line by computing: dt P (t ) • q r e -Σr(t-t )

Going through the two terms separately, we integrate by part the rst one: l 0 dt P (t) ψ(0) e -Σr t = 1 Σ ψ(0) P (0) -ψ(0) e -Σr l P (l) + ψ(0) 

Putting all back together, switching again the order of the two integrals and regrouping some terms, we get:

Recognizing the nature of the two terms between the parentheses we eventually get: Completing the integration over d 2 r ⊥ we get the same balance equation as in Eq. (5.22), which proves that the balance obtained is section 5.2 is conservative only if the matrix P( Ω)

is computed numerically, using the same trajectory discretization used for the transport sweep. The numerical matrix reported in Eq.( 5.20) coincides, in fact, with the following term of the previous equation, integrated over d 2 r ⊥ : 

where:

Small cyclic assembly The last, and a little bit more heuristic, stabilization strategy consists in evaluating the quality of the Pr ( Ω) matrix numerically computed using Eq. (5.20). Even if the method described in the previous paragraph operates a reduction of the polynomial value for certain regions and energy group, it is based on angular integrated information. As a consequence, if for a given angle the Pr ( Ω) matrix is poorly computed, but in average its values are acceptable, the previous strategy can reveal to be too gentle. To reduce the damages caused by a bad angular integration, the quality of this matrix per each 3D region and angle is assessed by computing the inverse matrix by Gauss elimination, even if the inverse is not used for the real calculation. If the matrix is found to be singular, the accepted viii polynomial order for the given region and angle is reduced and the inversion is repeated.

The matrix is assumed to be singular when the maximum pivot is smaller than a certain tolerance, here imposed equal to 10 -3 , to be compared with 1, which is the rst element of the Pr ( Ω) matrix. The tolerance value has been chosen in a heuristic manner and proved to stabilize the iteration without causing a large reduction of the polynomial order, unless a catastrophic angular and spatial integration is performed. If no trajectories cross a certain region for a given angle, the polynomial degree is considered automatically reduced to zero, and all the elements of the Pr ( Ω) matrix are replaced by zero, except for the rst one, which is set to 1. An equivalent procedure is applied to the Z Z Z α ± v matrices dened by Eq.(6.16).

In this case preventing a bad inversion is mandatory, since the Z Z Z α ± v inverse matrices are applied in Eqs. (6.25). This procedure has already been described in details in [START_REF] Santandrea | Accelerated Polynomial axial expansions for full 3D neutron transport MOC in the APOLLO3 R code system as applied to the ASTRID fast breeder reactor[END_REF]. ix

D. Flux reconstruction

We present in this appendix the scheme used to export the results of the polynomial method into a more rened axial mesh, mainly for graphical reasons such as ux plots and to be able to compare the polynomial results with a piecewise constant solution, such as the results of the SC or a Monte Carlo calculation scored on a certain mesh. Here r denotes a region in the polynomial meshes, while i refers to a region on the output discretization, as explained in Fig. [START_REF] Gunow | SimpleMOC -A PERFOR-MANCE ABSTRACTION FOR 3D MOC[END_REF].

We are interested in the moments of the ux dened as in Eq.(2.10):

Φ n ( r) = d Ω 4π

A n ( Ω) ψ( r, Ω).

We use the polynomial expansion of Eq.( 5.2) and we look for an average value in a region i, getting: