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1 

 

Introduction 
 

Aluminum and aluminum-based alloys are widely used in industry due to the corrosion 

passivity, lighter weight, yet – in several cases – comparable strength with steel. Often, 

the material is used “as-cast“, that means that composition, macro- and microstructure 

of the material emerged during the casting define its behavior under different loads. Yet, 

convective flows generally arise in casting processes performed on-ground because of 

gravity. They modify local solidification conditions, and, consequently, solute distribution 

and affect properties of material. To understand and to be able to control such 

phenomena, detailed experimental and numerical work has been needed.  

Two Bridgman-type furnaces were constructed in the University of Miskolc, Hungary, by 

MTA-ME Materials Science Research Group in the framework of the ESA funded 

MICAST project for experimental study of the effect of convective flow in solidification of 

alloys. These facilities were equipped with electromagnetic systems capable to generate 

rotating and travelling magnetic fields of various intensities.   

Multiphase models developed at SIMaP/EPM, Grenoble, France, were applied for 

numerical study of the solidification of binary and ternary aluminum alloys under 

electromagnetically generated convective flow. Solidification of a binary Al-Si alloy under 

RMF stirring was done with Euler-Euler ensemble averaging and lever rule mesoscale 

models coupled with the macroscale transport both in 2D and 3D geometries. Further, 

effect of various modes of TMF stirring during solidification of a ternary alloys was 

studied in 3D geometry with lever rule based macroscopic model. Results of numerical 

simulations well explain the segregation observed in the experimental samples. 
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1.1. Why aluminum-based alloys? 

Aluminum is one of the most used metal around the world together with iron-based 

alloys, however the 1/3 specific weight ratio compared to iron provoked strong research 

and development work around aluminum-based alloys. Nowadays, it is hard to think 

where aluminum is not used. Starting from the simplest machines like bicycles, through 

passenger and heavy-duty vehicles, until airplanes and spaceships, aluminum has a 

major role. Bicycles have their frames, crankarms, main brake components, wheels 

based on aluminum. More-and-more cars have their bodywork made of aluminum, 

moreover the engine block, engine head, transmission housing, air condition parts, 

suspension parts, steering rack housings, heat exchangers, etc. made from aluminum-

based alloys. 

Several components like engine blocks and heads, different housing parts, bicycle brake 

components are used in as-cast condition including only complex CNC machining which 

is not affecting the structure or strength on the material itself (only the mechanical 

stability of the part / structure can be modified likewise). Regarding such a fact, it is 

essential to know the deepest details of how the parts is being made. If the structure of 

the metal is unknown, unwanted effects can appear and it can even be hazardous for 

human health. 

Under terrestrial circumstances, melt flows are always appearing during casting 

processes. Any kind of flow is somehow modifying the concentration and / or 

temperature distribution inside the part which can result in porosity or 

macrosegregation. The second case is harder to keep in control and (also as porosity) 

have unchangeable effects on the part’s properties, which cannot be changed with heat 

treatment or other processes.  

For the investigation of the effect of the melt flow on the solidified structures, an ESA 

financed project series has started called MICAST (Microstructure Formation in Casting 

of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions) 

[1]. Several research groups were part of the work from France, Germany, USA, 

Austria, Hungary, etc. The main aim was to investigate the structure of various alloys in 

Earth and space (microgravity) conditions including forced convection. Electromagnetic 

stirring was chosen for the convection method since it can be performed without 

touching the metal and like this, the results can be closer to a real industrial case. 

The aim of the current thesis is to numerically simulate the solidification cases realized 

with the experimental facilities equipped with travelling or rotating magnetic field stirrers 

in Miskolc and validate the results with the experimental data of MTA-ME Materials 

Science Research Group. 

1.2. Microstructure related to solidification conditions – a general theory 

Quantitative description of the microstructure binary metallic alloys and other materials 

are described via binary phase diagrams. Several models have been developed so far, 

but the simplest solution is still the so-called Lever rule. 
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The relation between liquid composition (concentration on solute in liquid) is described 

as the following: 

𝐶𝑙 =
𝐶0

(1−𝑘𝑝)𝑓𝑙+𝑘𝑝
       (1.1) 

 

Where CL is the liquidus composition, C0 is the initial concentration of the melt (nominal 

composition), fL is the liquid fraction and kp is the segregation coefficient, which means 

the ratio between solid and liquid phases, assumed to be constant. 

Figure 1.1 presents an arbitrary binary phase diagram where B material has limited 

solubility in alpha and eutectic forms on a specified temperature (+ A material has zero 

solubility in beta phase).  

 

Figure 1.1 Binary phase diagram example 

The lever rule can easily be visualized on a diagram like on Figure 1.2. The fraction of 

each phase and the concentration of solute can be declared easily. 

 

Figure 1.2 Visualized Lever rule 
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If the cooling of the melt starts, the solidification is not starting immediately on the 

liquidus line, since the undercooling of the liquid is needed for the formation of nuclei. 

Figure 1.3 presents the critical nucleus radius – ΔG as a function of nucleus radius. 

The atoms are always hitting each other and forming unstable nuclei in the melt. If 

enough big agglomeration of atoms can be formed, a stable nucleus is generated, and 

crystal growth starts.  

 

Figure 1.3 Critical nucleus size (r*) 

This process is called « homogeneous nucleation ». In fact, in the beginning of the 

solidification process the nucleation happens over the walls of the container filled with 

the liquid metal over the sites preferable from the energetic point of view (increased solid 

surface).  In the bulk, the nucleation happens over impurities which are always present 

in the liquid, on the pieces of oxide film entrained from the surface of the sample inside 

the sample by flow, on the gas bubbles etc. Some refined particles can be introduced 

into the melt intentionally to increase the number of nucleus. In the case of nucleation 

over a seed, the process is named « heterogeneous nucleation ».  Another origin for 

nucleation is fragmentation of dendrites. Depending on the cooling rate, several growth 

forms can happen – Figure 1.4. If the thermal gradient can be changed significantly, 

columnar to equiaxed transition can occur. 

 

Figure 1.4 Form of growth depending on the thermal gradient (G) and growth rate (v) 

Depending on the alloy type and the solidification conditions, several final structures can 

be achieved which can significantly change the properties of the product. The phase 
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diagram defines what kind of phases can be expected. Then the cooling rate and the 

flow of the melt can modify the crystallographic structure – mainly the grain size. Also 

macrosegregation can occur, which is mostly an unwanted result, since special phases 

can appear also, modifying the tensile stress or the thermal conductivity of the product. 

This is true both for pure materials and mixture, i.e. alloys. Yet, since the growth of the 

pure material is governed by the thermal conditions, dendritic solidification can be rarely 

observed and occurs only with extremely fast cooling rates that lead to the large thermal 

under cooling of the liquid ahead of the solidification front.  

For the alloys which present, actually, a mixture of two materials, the melting 

temperature (liquidus temperature) depends on the local composition of the mixture. 

Consequently, two processes define the local melting temperature: the heat transfer and 

the transport of the solute. In the absence of convective flows, the speed of the former 

process is defined by a thermal diffusion, while the solute transport is governed by the 

chemical diffusion whose value is at least two orders less, that means that the solute 

transport is at least 100 times slower than the heat dissipation. During solidification, a 

latent heat is released, and the solute is rejected at the solid-liquid interface. The 

released heat is evacuated through the lateral boundary and a cooler mushy and solid 

zone. The rejected solute rests in the liquid and, because of slow diffusion process, 

forms a « pile-up » ahead the solidification front. A schematic view for the distribution of 

the temperature and the solute in the pure liquid ahead the solidification front moving 

with the velocity V during stationary growth is presented in Figure 1.5. 

 

Figure 1.5 Presentation of a linear distribution of the thermodynamic temperature thT  

(black line) defined by the thermal gradient G , solute profile lC  (red line) and the 

liquidus temperature 𝑇𝑙 = 𝑇𝑚 + 𝑚𝐶𝑙 (blue line) in the pure liquid ahead of the 

solidification front moving with a stationary velocity V . The maximal solute value in the 

liquid is defined by the partition coefficient pk and the thickness of the boundary 

diffusion layer is V/Dl=  with lD  for chemical diffusion. The undercooled zone 

𝑇𝑡ℎ < 𝑇𝑙 is shown in a rose color (after Kurz and Fisher [34]). 
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Because of the accumulation of the solute in the vicinity of the solid-liquid interface, the 

thermodynamic temperature defined by the imposed thermal gradient, may occur below 

the liquidus temperature, i.e. the liquid is “constitutionally undercooled”. Moreover, this 

undercooling increases toward the pure liquid that means that if a local perturbation like 

a protrusion occurs, it will grow further toward the pure liquid, i.e. it will increase.  

A more rigorous analysis of linear stability performed by Mullins and Sekerka [31] 

allowed estimation of a characteristic size of a sinusoidal perturbation i  which will 

survive because of the constitutional undercooling given as 

𝜆𝑖 > 2𝜋√
𝑘𝑝𝐷𝑙𝛤

𝑉𝑚𝑙𝐶0(1−𝑘𝑝)
        (1.2) 

Further, the minimal value of i  was associated with the radius of dendrite tips tipR  

(Figure 1.6) which appear under given conditions. Another two characteristic sizes for 

the dendritic growth are primary arm spacing 1  and secondary arm spacing, 2  (Figure 

1.6).  

 

Figure 1.6 Illustration to the characteristic sizes in denrtitic growth: the tip radius tipR  

and primary 1  and secondary 2  dendrite spacing [57] 

Several equations were proposed for the estimation of the primary arm spacing in an 

alloy solidifying under diffusional growth Trivedi [32], Hunt [33], Kurtz and Fischer [34], 

all have the same dependence on the thermal gradient, growth velocity and 

constitutional undercooling that can be given as: 

( )412141
01

/// VGTA −−        (1.3) 

with 0T for the constitutional undercooling illustrated in Figure 1.5 and different 

constant A, depending on the model.  

  



 

8 

 

According to Ciobanas and Fautrelle [35], the secondary arm spacing at the moment 

they form is defined as 

itipini, R  222 =         (1.4) 

After some period of time the, secondary arms continue to growth inside the mushy 

zone filled with a highly enriched liquid and a so-called « coarsening » happens during 

their growth. The coarsening consists in eliminating of widening of some (larger) 

branches at the expenses of thinner branches (which disappear), so the initial distance 

ini,2  increases with solidification time as [34]: 

( ) 31
2 55

/
Mt.=         (1.5) 

𝑀 =
𝛤𝐷𝑙ln (𝐶𝑙

𝐸/𝐶0)
𝑚𝑙(1 − 𝑘𝑝)(𝐶0 − 𝐶𝑙

𝐸)
⁄      (1.6) 

 

 

Role of convection in solidification 

Convective flow may develop naturally in every crystallisation process under on-ground 

convection because of natural convection mainly due to lateral thermal gradients 

existing in almost all set-ups, even if a stable configuration (cold zone in the bottom) is 

adopted. Also, if solidification of an alloy with components of large density difference is 

performed, convection occurs due to the segregation during the solidification and 

accumulation of the solute in the liquid (fig.). Convection, being caused by the variation 

in temperature and concentration, further affects the heat and mass transfer that 

creates a positive feedback. As a result, the strong accumulation and impoverishment 

can form during the solidification of an ingot. 

 

Figure 1.7 Formation of plumes (freckles) in the pure liquid ahead of the solidification 

front and channels inside the mushy zone in solidification of the In-75wt%Ga alloy 

observed in-situ with X-Ray imaging technique [36][37] 
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Since natural convection is unstable and cannot be controlled, the idea to counter-pose 

it with a controlled forced convective flow seems to be highly attractive. The latter can 

be generated in different ways, in particular, using the effect of the electromagnetic 

induction, as discussed below in this chapter.  Yet, the effect of the forced convection is 

not straightforward since via its influence on the heat and mass transport it affects also 

the evolution of the microstructure. Depending on the local direction and intensity of the 

convective flow the primary and secondary arm spacing can be altered differently. 

Generally, it is supposed that the primary arm spacing diminishes with the convective 

flow because of better evacuation of the solute away from the dendrite tips yet, in Figure 

1.8 an increase of the primary arm spacing is shown in solidification of Ga-In after a 

forced flow was generated [36].  

 

Figure 1.8 In situ radiographs during solidification of thin sample experiments showing 

microstructure morphology and concentration (%wt. Ga) in the melt. Left: Natural 

convection. Right: Forced convection (flow is from left to right). 

Moreover, it is generally expected that more intense fluid flow occurs mechanical impact 

on the solidified dendrite and may promote their fragmentation: detachment of the small 

parts of dendrites. Since these fragments can serve as nucleation centers, increase of 

their number would promote equaixed solidification growth.  
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1.3. Effect of electromagnetic stirring on the solidified structure 

Aphrodité benchmark experiment 

For the investigation of TMF stirring’s effect on the solidified structure, a benchmark 

experiment was designed in SIMaP/EPM laboratory and solidification tests were 

performed by [57] et al. The experimental setup holds a thin rectangular volume of melt 

with the possibility of electromagnetic stirring. The side of the sample is equipped with a 

raster of thermocouples, which is used to monitor the temperature distribution during the 

experiment. The magnetic field is provided by a linear motor and has limited penetration 

into the melt, so the liquid is partially stirred with the field and partially by the shear 

stress of the flow. The sketch of the setup can be seen on Figure 1.1. 

 

Figure 1.9 The experimental setup designed in SIMaP/EPM – AFRODITE-II. 1: left heat 

exchanger, 2: Sample, 3: raster of thermocouples, 4: Stainless steel sample holder, 5: 

right heat exchanger, 6: linear motor [57] 

The solidified macrostructure of Sn-10wt.%Pb can be seen on Figure 1.10. Four 

different cases are presented. (a) is with natural convection. (b) is with mixing in the 

direction of the natural convection. (c) is with convection in opposed direction of the 

natural convection and (d) is with alternating mixing with the frequency of 0.,125 Hz. The 

columnar to equiaxed transition is achieved in all cases, but the structure can be 

strongly refined with the choice of the correct stirring. 

The results can be useful for the development of different solidification models and 

numerical approaches, moreover unknown structures can be realized. The effect of the 

melt flow on the microstructure is clear (depending on the type of convection). Such 

results’ comparison will be performed in the work later on, either the results of the 

experiments reflects to a particular set of the related phenomena. 
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 (a) Natural convection (b) Forced convection in the direction of 

the natural convection 

 (c) Forced convection in opposed 

direction of the natural convection (d) Forced alternating convection 

Figure 1.10 Experimental results on Sn-10wt.%Pb alloy in the APHRODITE-II system 

[56] 
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Reduction of grain size in copper alloys 

Several research groups are working to investigate the effect of melt flow on the 

solidified metallic structure. Using RMF or TMF field, the control of the grain size or 

columnar to equiaxed transition is achieved, but also new – yet unknown – structures 

are provided. Most of the model alloys are aluminum-based (Al-Si, Al-Mg-Si, Al-Ni), but 

results on tin and copper alloys also can be found. 

Zhiming Yan et al [52] were solidifying a hollow Cu-Ni tusk and were controlling the grain 

size using RMF stirring. The sketch of the machinery is the following (Figure 1.11): 

 

Figure 1.11 The melt (no. 1) is passing thru the RMF stirrer (no. 2), then solidifies in the 

crystallizers (3-4). The tusk indicated as no. 5 is pulled out by the mechanism (no. 6) 

thru the casing (no. 7). 

Figure 1.12 shows the structure of stationary and mixed case. The difference in the grain 

structure is visible even without deeper investigation. 

 

Figure 1.12 Effect of RMF mixing on the grain structure of a Cu sample 
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Continuous casting of steel under RMF 

Karel Stransky et al [53] were researching the effect of RMF stirring on the solidified 

structure of continuously cast iron. The stirring was applied on the crystallizer and after 

the first and second supporting rollers (Figure 1.13 a)). On Figure 1.13 b, the solidified 

dendritic structure can be seen with and without stirring. If the stirring is applied, the 

ratio of columnar structure is significantly lower and the central core’s size is lowered. 

 

 

a) b) 

Figure 1.13 RMF stirring on continuously cast-iron billet 

 

Al-Si-Mg ternary alloy under weak RMF field 

S. Steinbach and L. Ratke [54] were investigating the effect of RMF stirring on the 

microstructure of Al-Si-Mg alloy. Figure 1.14 shows the difference between the stable 

and mixed part’s structure. The experiments were made in a classical Bridgman type 

furnace using weak – 3 mT – rotating magnetic field. Even this force have waken 

macrosegregation. 
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Figure 1.14 Al-Si-Mg alloy’s microstructure with and without RMF stirring 

Pb-Sn alloy’s structure with RMF stirring – CET 

S. Eckert et al [55] were investigating the effect of RMF stirring on the columnar to 

equiaxed transition of Pb-Sn alloy. The CET occurs right in the moment when the 

magnetic field is turned on. The effect is also visible on the microstructure. 

 

Figure 1.15 CET zone in Pb-Sn alloy 
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Effect of RMF stirring of Al based alloys 

In Hungary, only the host institute of this PhD project – MTA-ME Materials research 

Group – is working on the research of solidification under forced convection. 

J. Kovács et al [56] were examining the effect of the flow on the macro- and 

microstructure of binary and ternary eutectics. Comparison experiments were done with 

identical conditions, but with and without stirring. 

 
Figure 1.16 Structure of unidirectionally solidified Al0,5Fe and Al7Si0,6Mg alloy with and 

without RMF mixing [56] 

On Figure 1.16, the structure of Al0,5Fe and Al7Si0,6Mg is presented with and without 

RMF stirring – 150 mT, 50 Hz. Even the low alloying content of the first metal shows 

central macrosegregation. The mentioned structure appears even stronger inside the 

higher alloyed specimen. The axis-wise macrosegregation presented by Steinbach is 

appearing here too. 
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Free surface of the melt, measurement of angular velocity in RMF 

A. Rónaföldi et al [51] have performed several experiments to investigate the effect of 

forced convection on the solidified structure. Many times, the free surface of the melt 

solidified in a paraboloid, which came from the stirring itself. The sketch of the case can 

be seen below. 

 
Figure 1.17 Form of the free surface during mixing 

The correlation between the height of the paraboloid and the angular velocity is as 

follows: 

2𝑥 =
(𝑅2𝜔2)

2𝑔⁄        (1.7) 

 

The exact mechanism of the solidification in the top section is still unknow. Several 

parameters can influence the shape and dimensions of the free surface: 

• Stationary height of the melt 

• Temperature gradient 

• Cooling rate 

• Thickness of the mushy zone 

• Surface wetting and surface tension 
 

Examples on the “frozen” free surfaces can be seen in Figure 1.18.  
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3 mT 6 mT 

  

10 mT 20 mT 

  

30 mT 60 mT 

  

90 mT 150 mT 

Figure 1.18 Frozen free surfaces of aluminum samples  

The phenomena appearing on the free surface of the melt can be used for measuring 

the average volumetric angular velocity of the liquid, which was also used by Rónaföldi. 

The so-called “pressure compensation method” is based on the Bernoulli equations. As 

the melt rotates, the metallostatic pressure is pushing the liquid to the wall of the 

crucible and due to this pressure, also starts to climb up the wall. In laminar case, on the 

top layer of the surface, the melt turns back to the center of the crucible and starts to 

flow outside again. If a semi-closed crucible is prepared, the compensation pressure for 

reaching the “flat” melt surface during rotation can be measured and using the results, 

the average angular velocity of the media can be computed. 

The experiments were useful to be able to see the validity of the mathematical approach 

presented. According to the visual comparison, the equations can be used. 
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Effect of RMF stirring on primary and secondary dendrite arm spacing 

In the framework of MICAST V. project, an experiment series was performed in MTA-ME 

Materials Science Group by A. Roósz et al [58] on Al-7wt.%Si-1wt.%Fe to investigate 

the effect of weaker rotating on the solidified structure focusing on grain size, primary- 

and secondary arm spacing. The sample was Ø8x100 mm. 50 mm was solidified without 

stirring and the rest with stirring on constant induction. Each induction level had different 

dedicated sample. Figure 1.19 and Figure 1.20 presents the results. 

 

Figure 1.19 Effect of RMF stirring on the grain size [58] 

 

Figure 1.20 Effect of RMF stirring on the primary (PDAS) and secondary (SDAS) 

dendrite arm spacing [58] 

The grain structure has been refined significantly which is related to the change of 

thermal and solutal environment near the dendrite tip and possible fragmentation of the 

dendrites – resulting in individual equiaxed grain growth. The primary dendrite arm 

spacing could be measured only in parts, where columnar grains were still visible. The 

secondary dendrite arm spacing stayed constant. Such effect will be significant for 

calculating the Karman-Cozeny constant for the porous flow in the mushy zone in 

chapter 3. 
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Effect of TMF mixing on the structure of Al-3.5%Ni alloy refined with Al-Ti-B 

Zaidat [59] has performed experiments on the effect of TMF mixing on the solidified 

structure of Al-3.5wt.%Ni binary alloy. Figure 1.21 shows the micro- and grain structure 

for non-mixed and mixed samples (10. 30 and 350 mT). 

 

Figure 1.21 Effect of TMF mixing on the solidified grain- and microstructure. a) natural 

convection, b) 10 mT, c) 30 mT, d) 350 mT [59] 

On 10 mT, the center of the part – which is not stirred directly by the magnetic field – 

stays columnar. On 30 and 350 mT, equiaxed structure develops and as the stirring 

becomes stronger, finer and more elongated grains are appearing. 
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1.4. Numerical macroscopic modelling for segregation in solidification of binary 

and multicomponent alloys 

The macroscopic models for the solidification of the binary alloys are dated back to 

eighties of XX century. These models were developed on the basis of models for porous 

media, for two-phase flows and for mixtures, not reviewed here. The set of equations 

required to model the segregation at the macroscopic level includes transport 

equations: momentum equation, energy equation, transport of solute(s) are necessary. 

Some other equations (transport of solid grains, grain structures) are optional but they 

can help to mathematically represent the process closer to the real one. This system of 

transport equation is usually coupled with a “zero-dimension” (microscopic) solidification 

model. Here by “zero-dimension” we mean that such model is applied at each 

calculation cell, i.e. to a “point”. It is customary to divide the solidification “zero-

dimension” models on those which used equilibrium approach based on the lever or 

Scheil rule and those where a growth kinetic was introduced. These models are 

reviewed briefly in the chapter 3.1. Then, the macroscopic models coupled with 

equilibrium ones (reviewed in the chapter 3.1.1), in principle, allows one to obtain a 

qualitatively and even quantitatively correct macro-segregation pattern and 

channel/freckles formation provided good knowledge of the materials properties and 

experimental conditions. Their main advantage is much less requirement in the 

computational resources and better stability compared with the other approach. The 

approach where macroscopic equations are coupled with the microscopic models 

accounting for the kinetics (presented in the section 3.1.2), in principle, allows one to 

treat the columnar-to-equiaxed transition since difference in growth kinetics may appear 

between the columnar and equiaxed grains.  

1.4.1. Microscopic models: equilibrium and kinetic approach in solidification of binary 

and multicomponent alloys 

1.4.1.1 Equilibrium approach 

Hereafter by “equilibrium” approach we name a calculation of the solid and liquid 

fractions and concentration in the solid and in the liquid at the microscale using the 

equilibrium phase diagram. As it was mentioned above, two general cases exist, in both, 

the diffusion in the liquid is supposed to be infinitely large, i.e. the concentration in the 

liquid becomes uniform instantly, and always equal to the liquidus concentration at a 

given temperature lC . Consequently, there is no constitutional supercooling in the 

system. In both cases the relation between the concentration in the liquid lC  and 

concentration in the solid at the solid-liquid interface sC  are related through the partition 

coefficient pk  as pls kC/C = .  

Then a so-called lever rule supposes that the diffusion in the solid phase also occurs 

instantaneously, i.e. the concentration in the solid becomes equal to that at the 

interface. Then, introducing notions for the liquid and sold fractions lf  and sf  whose 
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sum is equal to unity and accounting for the conservation of the concentration, obtain 

the following system of equations: 

1=+ sl ff         (1.8) 

0CfCfC ssll =+        (1.9) 

pls kC/C =         (1.10) 

Solution of this system provides a relation between the liquid fraction and liquidus 

concentration: 

𝐶𝑙 =
𝐶0

(1−𝑘𝑝)𝑓𝑙+𝑘𝑝
       (1.11) 

In solidification subjected to the Scheil rule, the diffusion process in the solid does not 

exist. The relation between the liquid fraction and liquidus concentration is: 

𝐶𝑙 = 𝐶0𝑓𝑙
(𝑘𝑝−1)

       (1.12) 

Equilibrium approach can be rather easily extended for the ternary and further to 

multicomponent alloys. A detailed mathematical description for a ternary alloy is given, 

for example, in [1]. In [3] the microsegregation in solidification of a ternary Al-Mg-Si 

system was considered and diffusion calculation was coupled with the calculation of the 

phase diagram in CALPHAD.  

The macroscopic simulations for the ternary Al-7wt%Si-1wt%Fe alloy presented in the 

Thesis were made with such approach and the system of equations can be found in the 

chapter 3. 

1.4.2. Models with the kinetic approach 

One of the earliest publications which proposed a model for the solidification of an 

equiaxed grain accounting for the constitutional supercooling and finite diffusion in the 

liquid phase was the work of Rappaz and Thevoz (RT) [4]. For the better description of 

the solute concentration in the environment of the grain, two fluid phases were 

considered together with the solid. The three phases in such system are: solid, 

interdendritic liquid (hereinafter referred to as IDL) and extradendritic (bulk) liquid 

(hereinafter referred to as EDL). The model got the name from the envelope which is 

keeping the modelled grain (solid and IDL) together. Outside of the envelope, the bulk 

liquid exists. The shape of the envelope is a sphere of a radius Rg in the calculations, 

which connects the tips of the primary dendrite arms. The maximum radius of the grain 

is Rtot. There is no back diffusion in the solid (1), however complete mixing presents 

(infinitely fast diffusion) in the IDL (2), like in the Scheil model. Outside of the grain (3), 

pure diffusion occurs. In reality, the complete mixing zone smoothly fits of the dendrite 

and has a very complicated shape, which is replaced by a sphere. The envelope grows 

until it reaches the maximum possible radius Rtot while the solid grows from the IDL until 
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all liquid disappears. Figure 1.22 shows the distribution of the solute during growth as a 

function of the volume fraction – fs for solid and fg for the grain.  

 

 

Figure 1.22 Visualizing the Envelope principle: Presentation of the equiaxed grain and 

schematic evolution of solute concentration during solidification from time t1 to t2 (A1 

and A2 must be equal) – index 1 and 2 refers to t1 and t2 time-step 

Since thermal diffusivity is more than 3 orders higher than the solute diffusivity, the 

temperature of the whole grain is equal to the dendrite tip temperature (T*). The 

curvature undercooling is supposed negligible under normal solidification conditions 

and, because of the size, the concentration in the IDL is supposed to be uniform and 

correspond to the liquidus concentration  *C which can be deduced from temperature. 

The diffusion in the EDL should be calculated with an appropriate boundary condition at 

the boundary of the grain for the concentration (a constant value or a zero diffusive flux). 

The grain growth occurs with a velocity quadratically proportional to the constitutional 

supercooling, i.e. to the difference between the  C  and the concentration at the 

boundary of the grain. Generally, one obtains a system of closed equations which can 

be solved and the evolution of the solid and grain fractions sf  and gf  , value of 

concentration in the IDL and in the solid, as well as of the concentration profile in the 

EDL.  

It should be noted that ten years later Rappaz and Boettinger extended the approach of 

the equiaxed grain growth for multicomponent alloys with unequal liquid diffusion 

coefficients [5]. 

Soon after the RT model was presented, Wang and Beckermann [6] introduced the 

volume averaging formalization it model. Their envelope method was first presented for a 

one-grain or “zero-dimension” (0D) model which, according to authors, “can readily be 

incorporated into a maroscopic heat flow model”. Indeed, in the WB model the solute 

profile in the EDL was replaced with values of concentration averaged over the 
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extradendritic volume   l
lC and over the solid   s

sC , and diffusion between the solid 

and IDL and between the IDL and EDL was related to the characteristic diffusion lengths 

sdl  and ldl , respectively (Figure 2.2). Also, the inverse Ivantsov Function [49] was 

introduced in order to describe the envelope growth velocity. The composition within the 

dendritic zone supposed to be uniform and corresponds to the liquidus concentration. 

Yet, this model required calculations of the diffusion lengths, not known a priori, for 

which some proposals were made. 

 
Figure 1.23 Solute balance in the model of Wang & Beckerman with the definition of 

the diffusion lengths in solid and extradendritic liquid 

In further development of the model, Wang & Beckerman considered the case with a 

non-uniform concentration in the dendritic zone and introduced a shape factor for the 

envelope [WB2]. 

In the present work one part of the macroscopic simulations was made accounting for 

the solidification at the grain level based on the model formulated by Ciobanas and 

Fautrelle [8]. This model was developed using the approach of ensemble average 

initially employed for two-phase flows [9]. Generally, this approach has more solid 

physical background than the averaging over a volume since the latter, in fact, imposes 

rather strong restriction on the representative volume and requires uniform distribution 

of the properties (the elements) inside the volume. Yet, for many physical processes the 

resulting equations obtained with ensemble averaging are similar to those obtained with 

volume averaging. Similar to the model in [4] and [6], the model developed by Ciobanas 

and Fautrelle assumed an equiaxed dendrite growth represented by 3 phases: solid, 

interdendritic and extradendritic. The thermal equilibrirum between two phases was 

supposed and the liquid in the interdenritic zone was well-mixed with the concentration 

equal to the one on the liquidus line. In terms of equations, the main difference of the 

model from the one presented in [6] was in calculation of the diffusion length. The 

governing equations of the model are given in chapter 3 – in this section coupled with 

the macroscopic transport equations. 

Among other works generally based on the model initially proposed in [4] for binary 

alloys are those developed by the team of research from University of Loeben, Austria, 

one can see [10] and references within.  
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Some other models which deserve attention but are not mentioned here are those with 

the idea to reproduce the shape of the dendrite grains in the final macroscopic pattern 

[11][12].  

1.4.3. Macroscopic models with equilibrium approach for solidification of binary alloys 

with the thermosolutal convection. 

A continuum model for momentum, heat and species transport in binary solid-liquid 

phase change systems was proposed by Bennon and Incropera [13][14] and obtained 

with the averaging of microscopic equation written for two phases over a representative 

volume. To close the system of the averaged equations, the solidification was described 

with the lever rule, yet, the system of transport equations was formulated for the mixture. 

The authors further applied the proposed model to solidification of an aqueous 

ammonium chloride solution in a rectangular cavity [14]. Later, S.D. Felicelli, 

J.C. Heinrichi and D.R. Poirier used another continuum approach with a stationary 

(columnar) solid phase and moving liquid and demonstrated a formation of the freckles 

in the solidification of binary alloys due to thermo-solute convection [15] and references 

within. A Scheil rule was used for the solidification part. A more detailed description of 

the equations and their mathematical statement is given below (chapter 3). This system 

of equations was used by other researchers [16] and quite recently was re-employed 

and proposed within the frame of a numerical benchmark for the solidification of the 

binary alloy SMACS (Numerical Simulation of MACrosegregation and Structure) 

[17][18] with either the lever rule or Scheil rule for description of solidification. Some 

results of the benchmark were summarized in [19]. One of the interesting results was 

that with both approaches for solidification the macrosegregation pattern in a totally 

solidified ingot was similar while differences were observed in the position and intensity 

of mesosegregation, i.e. in local channels/freckles. Further, using this system of 

equations, R. Boussaa et al. performed 3D simulation of a physical benchmark Afrodite 

on solidification of a Sn-3wt%Pb alloy under natural convection using the lever rule 

approach and obtained results in a good agreement with the experimental ones [21]. 

As far as multicomponent alloys are concerned, quite a few publications can be found 

with this approach, the most cited are [22], [23] and [24]. 

The number of publications related to the simulation of the solidification under the action 

of the external magnetic field is significantly less. Some of these publications took the 

equations based on the equilibrium approach while some others accounted for kinetic 

effects. 

M. Medina et al. used the system of equations developed in [24] to study the effect of 

the travelling magnetic field on the segregation pattern in the solidification of binary 

alloys [25]. For the first time they revealed numerically appearance of the channels in 

the solidified ingots despite the idea of a well-mixed liquid due to the application of the 

electromagnetic stirring. Using similar model, Nikrityuk et al. predicted that rotating 

magnetic field (RMF) could provoke a radial segregation during solidification of binary 

alloys using the same system of equations with a lever rule for solidification [27]. After 
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observation of the strong radial segregation, another stirring mode with pulse sequences 

of a RMF stirring was realized for a small laboratory sample and numerically modelled 

and demonstrated a smoother segregation pattern. Finally, the work [28] combined the 

study of the solidification of ternary alloy under the action of the rotating magnetic field. 

In the works mentioned above the electromagnetic stirring was introduced via a volume 

force whose spatial distribution was obtained either analytically or from some 

measurements performed on the experimental set-up using approach described in the 

4.5.2. Consequently, variation of the force which could happen in the mushy zone, for 

example, because of the change in electrical conductivity due to phase change, was not 

considered. On the other hand, Poole [29] included in the numerical model calculation 

of the electromagnetic field coupled with the solidification model. Yet, the latter was 

based on the mixture model [13], the electric conductivity was similar for the solid and 

the liquid phase and the frequency of the electromagnetic field was chosen quite high 

(~4900Hz), i.e. more appropriate for the heating than for the effective stirring.  

1.4.4. Macroscopic models for simulation of the segregation accounting for the kinetics 

of solidification 

There are numerous applications of the macroscopic models which accounts for the 

diffusionally governed dendrite growth to the simulation of solidification processes under 

thermo-solute convection. The works were presented by Ni and Beckermann for the 

multicomponent two-phase system [20] and by Wang and Beckermann for binary two-

phase systems [38]-[40]. Among other works, one can find already mentioned work 

[WL_2010] and more recent publications of these authors [42], [43]. Actually the Web 

of Science reports about more than 300 publications with a subject related to the 

combination of words «macrosegregation», «convection »,  «modeling or simulation»  

excluding « fragmentation » « slag » and « phase-field » with a constantly increasing 

number of publications. Of course, this number of publications includes those based on 

the equilibrium approach. 

Yet, very few publications were devoted to the modeling of the solidification with the 

electromagnetic stirring coupled with diffusionally governed dendrite growth. Actually, 

almost all such studied were performed in Grenoble. The two-dimensional axisymmetric 

simulations of Budenkova et al. [44] based on the multiphase statistical averaging model 

which accounted for the kinetic effects [8] for the solidification confirmed the predictions 

made in [27] and qualitatively explained the experimental results observed in 

solidification under the RMF in [45]. Further, a publication of Noeppel et al. [46] using 

the statistical averaging model [8] demonstrated the effect of the secondary arm 

spacing on the convection and segregation in the mushy zone via permeability of the 

latter for the free and forced convection caused both by RMF and TMF. This work 

explained the segregation pattern observed in [30] in the solidification of the AlNi alloy. 
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1.5. Theory of the electromagnetism in application to the elaboration of alloys 

The use of the external alternating electromagnetic field in the elaboration of alloys is 

related to the induction phenomena. When an electrically conducting material is 

subjected to the external AC magnetic field, the induced electric current (eddy currents) 

arises in the conductor. Further, because of the interaction of the electric current and 

the magnetic field inside the conductor a Lorentz force FL
⃑⃑⃑⃑ (x, y, z) appears and may 

affect the motion of the conductor. In the case of liquid metals, the spatial distribution of 

the Lorentz force may lead to the deformation of the free surface of the liquid or to the 

generation of the stirring inside the liquid volume. The resulting effect of the application 

of the AC electromagnetic field depends both on the characteristics of the field 

(frequency, phases, geometry of the inductor) and on the properties of the materials 

(electrical conductivity, viscosity, volume configuration). The system of equations which 

allows one to solve the coupled electromagnetic and hydrodynamic problem includes 

the Maxwell equations and Naviers-Stokes equations given below. 

The system of Maxwell equations includes 

The equation which states the absence of the magnetic monopoles (”magnetic charges”) 

∇ ⃑⃑⃑⃑ 𝐵⃑⃑ = 0         (1.13) 

Further, the Lentz law demonstrating that the electric field is originated with variable 

magnetic fields: 

∇⃑⃑⃑ × 𝐸⃑⃑ =
𝜕𝐵⃑⃑

𝜕𝑡
         (1.14) 

The Ampere law which relates the circulating current 𝑗 and magnetic field 𝐵⃑⃑ (with the 

displacement current neglected) 

∇⃑⃑⃑𝑋𝐵⃑⃑ = 𝜇0𝑗         (1.15) 

with current conservation law: 

∇⃑⃑⃑𝑗 = 0          (1.16) 

and the Ohm’s law 

𝐽 = 𝜎(𝐸⃑⃑ + 𝑢⃑⃑ × 𝐵⃑⃑)        (1.17) 

Where 𝑢⃑⃑ is the velocity vector and 𝜎 is the electric conductivity of the material. To solve 

the electromagnetic equation a so-called vector potential 𝐴 such that ∇⃑⃑⃑ × 𝐴 = 𝐵⃑⃑ is used. 

Then, the eq. (1.13) is fulfilled automatically. It should be noted also that the same 

magnetic field is defined by the vector 𝐴 and the vector 𝐴′ = 𝐴 + ∇⃑⃑⃑∅, ∅ is any 

differentiable function since ∇⃑⃑⃑ × 𝐴 = ∇⃑⃑⃑ × (𝐴 × ∇⃑⃑⃑∅). With use of the vector potential 𝐴, 

the Ohm’s equation can be also presented in the form 
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𝑗 = 𝜎(−
𝜕𝐴⃑

𝜕𝑡
+ 𝛻⃑⃑∅ + 𝑢⃑⃑ × 𝐵⃑⃑)       (1.18) 

Rather often it is convenient to get rid of the electric current from the eqs.3-5 and to get 

the equation for the magnetic field 𝐵⃑⃑ and the vector potential 𝐴: 

𝜕𝐵⃑⃑

𝜕𝑡
=

1

𝜇𝜎
𝛻⃑⃑2𝐵⃑⃑ + 𝛻⃑⃑ × (𝑢⃑⃑ × 𝐵⃑⃑)       (1.19) 

𝜕𝐴⃑

𝜕𝑡
=

1

𝜇𝜎
𝛻⃑⃑2𝐴 + 𝑢⃑⃑ × 𝐵⃑⃑ + 𝛻⃑⃑∅       (1.20) 

In obtaining last equation the vectorial identity ∇⃑⃑⃑ × (∇⃑⃑⃑ × P⃑⃑⃑) = ∇⃑⃑⃑(∇⃑⃑⃑ ∙ P⃑⃑⃑), with P⃑⃑⃑ for any 

vector was used, and a generally employed condition ∇⃑⃑⃑ ∙ A was applied. 

The Maxwell equations should be coupled with hydrodynamic equations, which for the 

incompressible pure fluids are written as follows: 

𝛻⃑⃑𝑢⃑⃑ = 0         (1.21) 

𝜌
𝜕𝑉⃑⃑⃑

𝜕𝑡
+ 𝜌(𝑉⃑⃑, 𝛻)𝑉⃑⃑ = 𝜌𝑔⃑ − 𝛻𝑃 + 𝑗 × 𝐵⃑⃑ + 𝑣𝛻⃑⃑2𝑉⃑⃑     (1.22) 

Also, an additional term related to the resistive Ohm’s heating, generally, should appear 

in the energy equation 𝑞𝑜ℎ𝑚 = 𝑗2/𝜎. However, with the typical intensity and frequencies 

of the AC current used to create the stirring in liquid metals the value of this term is 

negligible. 

In practice to generate the stirring of the liquid metal, mainly two types of the AC 

magnetic fields are used that are traveling and rotation magnetic field presented below. 

1.5.1. Traveling magnetic field 

The AC monophase electromagnetic systems are widely employed in metallurgical 

industry, yet they are mostly aimed at the inductive heating while traveling magnetic field 

allows one to create various regimes for the stirring. A traveling AC magnetic field is 

generally realised with polyphase inductors as shown in the Figure 1.24. In such 

configuration each coil in the system is alimented with an external current of the density 

j0 and the frequency 𝜔 = 2𝜋𝑓 in a way to have a phase shift φ with respect to the 

previous coil. Using rough approximation, one can think that at each instant the 

magnetic field lines are closed and have form of tors which are displaced in z-direction. 

In a general case, the instant value of the electric current supplied to each coil is given 

as 

𝑗𝑒𝑥,𝜃 = 𝑗0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧) = 𝑅𝑒{𝑗0𝑒
𝑖(𝜔𝑡−𝑘𝑧)}     (1.23) 
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where Re is for the real part of the imaginary number and i is the imaginary unit  

𝑖2 = −1. Consequently, magnetic field induced by this current can be considered as a 

longitudinal wave of the length λ moving along the sample with the velocity Us: 

𝑈𝑠 = 𝑓𝜆 =
𝜔

𝑘
         (1.24) 

known also as synchronism velocity, for which 𝑘 = 2𝜋 𝜆⁄  is a wave number-vector. It 

should be stressed out that the geometry of the coils, namely their size and winding 

density, defines the length λ. 

A polar step 𝜏 = 𝜆 2⁄ = 𝜋 𝑘⁄  is often used in practice to characterize the coil. 

 

Figure 1.24 A scheme for a polyphase travelling magnetic field 

1.5.2. Skin depth 

Suppose that outside the sample at its surface (r = R) the amplitude of the magnetic field 

created by the current jex,θ is B0. Then it can be demonstrated that inside the charge the 

amplitude of the magnetic field decreases toward the center of the sample as 𝑒(𝑟−𝑅)/𝛿𝑒  

where 

𝛿𝑒
−1 = 𝑅𝑒{√𝑘2 + 𝑖𝜇𝜎𝜔𝐺} = 𝑅𝑒 {√

𝜋

𝜏
+ 𝑖𝜇𝜎𝜔𝐺}   (1.25) 

is termed effective skin depth and 𝐺 = (1 − 𝑢𝜃 ∙ 𝑟) is a so-called slide parameter. The 

latter is close to one if the forced velocity of liquid is weak with respect to Us and tends to 

zero if these velocities tends to be equal. This parameter is discussed below in the text, 

yet we should mention here that for most of the calculations presented in the thesis the 

value of G ≈ 1. 

The skin depth shows that for the high frequencies the magnetic field will be mostly 

concentrated in a thin layer along the lateral side of the charge. On the contrary, with 

lower frequency the penetration, of the magnetic field inside the charge is deeper. 

1.5.2.1 Polar step 

It is important to note that in the case of polyphase AC electromagnetic field the skin 

depth depends on the polar step τ and that with a smaller polar step the penetration of 

the magnetic field in the sample is weaker. 
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1.5.3. Distribution of the Lorentz force in the sample for TMF case 

In the presented axially symmetric system the instantaneous magnetic field inside the 

charge has two components, both with the frequency of the supplied current. If the 

helicity of the coil winding and the effects related to the finite height of the inductor or of 

the sample are neglected, the instantaneous eddy current has only the azimuthal 

component which has the same frequency as the external supplied current: 

𝐵⃑⃑ = (𝐵𝑟 , 0, 𝐵𝑧)          𝑗 = (0, 𝑗∅, 0) 

Consequently, the instantaneous Lorentz force also has a radial and an axial 

component: 

𝐹⃑𝐿 = 𝑗 × 𝐵⃑⃑ = (𝐹𝑟 , 0, 𝐹𝑧) 

Since the oscillation period of the Lorentz force is very short compared to the 

characteristic time of the fluid flow, the force averaged over several periods is 

introduced into the Navier-Stokes equation. The average force generally also has radial 

and axial components and is proportional to the AC frequency ω. For the infinitely long 

inductor or the charge, the radial component of the force is irrotational, i.e. it creates 

oscillation of the pressure inside the liquid but do not initiate the motion while the axial 

component of the Lorentz force is directly responsible for the liquid motions. 

Generally, for a particular inductor with its proper power supply the distribution of the 

Lorentz force inside the charge can be calculated numerically. 

Yet, if the end effects are neglected, that is for an ideal case of an infinite inductor and 

the charge, the driving axial force can be presented in the form: 

〈𝐹⃑𝐿,𝑇𝑀𝐹〉 =
1

2
𝜎𝜔𝐵0

2
𝑘

|𝛿|2
|
𝑠ℎ(𝛿𝑟)

𝑐ℎ(𝛿𝑟)
|
2

𝐺𝑒𝑧 

Similarly, in the case of planar geometry (two-dimensional, Figure 1.24) the average 

Lorentz force has a component directed perpendicularly to the planes containing the 

coils and a component directed along the charge. In a real situation because of the end 

effects both components actually create motion of the liquid, yet if the end effects are 

neglected, only the vertical component of the force initiate convection in the liquid. 

An advantage of the use of two (or more) set of coils instead of a helicoidal inductor is 

that the phase shift can be done in a more sophisticated way, for example, the magnetic 

wave on the left (x < 0) and on the right (x > 0) side can propagate in opposite directions 

thus creating another motion in the liquid. 

1.5.4. Rotating magnetic field 

A rotating magnetic field can be considered as an AC polyphase coil being rolled. A 

realization of a polyphase scheme with 3 phases is shown in Figure 1.25 from where it is 

seen that variation of the magnetic field created by the AC current is equivalent to the 
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field of a magnet which would rotate in the plane (x,y) and generally would have mainly a 

radial and an angular component, similar to the case of the TMF.  

 

Figure 1.25 A scheme for a polyphase rotating magnetic field 

The eddy current created by such magnetic field is moving along the sample, that is it 

has only the z-component while its phases are dependent on the azimuthal angle theta. 

The angular wavelength is defined by the number of poles pairs p as 

𝜆𝜃 =
2𝜋

𝑝
          

Then, the instant current supplied to each coil along the z-axis is 

𝑗𝑒𝑥,𝑧 = 𝑗0 𝑐𝑜𝑠(𝜔𝑡 − 𝑝𝜃)        

The ”tores” of the magnetic lines rotate around the charge as shown in fig.2. At each 

instant, the magnetic field has radial and azimuthal component: 

𝐵⃑⃑𝑟𝑚𝑓 = (𝐵𝑟 , 𝐵𝜃, 0)          𝑗𝑟𝑚𝑓 = (0,0, 𝑗𝑧) 

Consequently, the instantaneous Lorentz force also has azimuthal and radial 

components: 

𝐹⃑𝐿,𝑟𝑚𝑓 = 𝑗𝑟𝑚𝑓 × 𝐵⃑⃑𝑟𝑚𝑓 = (𝐹𝑟 , 𝐹𝜃, 0)       

Yet, after time averaging procedure, only the azimuthal component of the force will 

remain. In many practical cases the average Lorentz force acting inside an electrically 

conductive volume can be approximated as  

〈𝐹⃑𝐿,𝑟𝑚𝑓〉 =
1

8
𝜎𝜔𝐵0

2𝜓(𝑧)𝛷(
𝑟

𝑅
)𝐺        

where 𝐺 = (1 − 𝑢𝜃 ∙ 𝑟) is again a slide parameter accounting for the effect of the fluid 

flow on the magnetic field, with 𝑢𝜃  being the azimuthal component of the velocity field in 

the liquid and r a radial coordinate in the cylindrical coordinate system.  
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The function 𝜓(𝑧) considers the variation of the axial magnetic field because of the size 

of the inductor while 𝛷(𝑟 𝑅⁄ ) depends on the penetration of the magnetic field into the 

charge which is characterized by the skin depth: 

𝛿 = (
2

𝜇𝜎𝜔𝐺
)1/2        (1.26) 

If δ >> R, then 

𝛷 (
𝑟

𝑅
) = (

𝐵0𝑅

𝑝
)2(

𝑟

𝑅
)2𝑝         

 

1.6. Conclusions on chapter 1 

Seeing the results of electromagnetic stirring on the solidified metallic structure it is 

clear, that deeper investigation of the solidification processes is needed to be able to 

control industrial cases and achieve the desired characteristics of the part. The solute 

distribution cannot be predicted in many case; therefore, the simulation can be a useful 

tool, however the coupling between electromagnetic simulations and solidification 

models is a great challenge. The Lorenz force field induced by rotating magnetic field is 

described with an analytic equation, on the other hand TMF can be more complex. The 

solution of such a case will be presented in chapter 4.5. 

The solidifications simulations were performed using Lever rule and Envelope method for 

binary alloys. In the next chapters, we will follow this approach and extend it to 

simulations of ternary alloys under TMF forces. 
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2. Chapter: 
Experimental installation constructed 

in Miskolc University 
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2.1. Introduction of chapter 2 

The MTA-ME Materials Science Research Group is working with solidification processes 

since the early 2000s – and some members many since years before. The main aim is to 

see the effect of melt flow on the solidified metallic structures in all scales. The group has 

joined the ESA funded MICAST project in 2000. The RMF and TMF solidification facilities 

were designed and constructed in the framework of the mentioned project. 

In case of TMF, the structure of the inductor has an innovative design resulting in 5 

different mixing directions and with magnetic field equally penetrating in the complete 

sample. 

During the past 18 years, several new materials micro- and macrostructures were found 

– e.g.: Al, Sn Pb or Cd based binary and ternary alloy. The strong forced convection 

leaved its footprint inside the material as driving the solute into special forms. The 

primary and the secondary dendrite arm spacing is affected also. 

The facilities and the effect of mixing on the temperature and solute distribution in the 

sample, are presented in this chapter. 
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2.2. The solidification facilities 

The experimental basis of my work was the two solidification facilities designed at the 

MTA-ME Materials Science Research group on the University of Miskolc. The facilities 

are modified Vertical Bridgman furnaces equipped with electromagnetic stirrers – using 

rotating- and travelling magnetic field. These machines were designed to investigate the 

effect of various flow fields on the solidified structure of Al-based binary and ternary 

alloys. The sketches of these can be seen below. 

  

RMF TMF 

Figure 2.1 Sketch of the solidification facilities 

The sample is placed into the centerline of the furnaces – and due to the design – also in 

the center of the inductors. The molten metal requires a special holding system to keep 

it in the correct position during the experiments. The following assembly is used in both 

cases: 

 

Figure 2.2 The sample and the ceramic crucible 

 

Figure 2.3 Thermocouples applied on the crucible 

 

Figure 2.4 The complete sample holder assembly 
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The prepared solid alloy is placed into the two-piece ceramic crucible, which has 13 

grooves. Those are used for the thermocouples to monitor the temperature field during 

the whole experiment. For the control of the heat extraction during the experiment, a 

copper cooler tusk is attached to the bottom of the crucible with heat conductive paste 

between each. The crucible is closed with a silicon glass. 

2.2.1. RMF 

The sample is placed into the centerline of the furnace (which is also in the center of the 

RMF inductor) which can be melted inside without any other equipment. During the 

experiment, the sample is lowered into the cooling water. According to the alloy 

composition, the flow strength and the thermal gradient, several different and yet unseen 

material structures can be achieved – like presented in chapter 1.3. 

The magnetic field distribution was measured by A. Rónaföldi [51]. The inductor is 

designed to provide constant induction in the volume, where the sample is placed. The 

radial and longitudinal distribution is presented on Figure 2.5. 

 

 

Figure 2.5 Radial and longitudinal distribution of Br [mT] 
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2.2.2. TMF 

As could be seen of Figure 2.1, the main structure of the facility is the same as in case of 

RMF, only the inductor is replaced with a twin-head travelling magnetic field inductor. 

Since the exact technical parameters of the inductor were not shared, simulations were 

made using Comsol Multiphysics and Ansys Fluent to obtain similar magnetic field as the 

experimental ones. The work will be presented in chapter 4.5. A special thermal effect 

appearing in the system was used for indirect validation of the Comsol results.  

  

Figure 2.6 Sketch of the TMF inductor and sketch of the magnetic fluxes in case of 

bidirectional stirring 

The two sides can be controlled separately resulting in 5 different Lorenz force field 

configurations. If the magnetic field is controlled to be vertical (“X”) in the air gap, an 

upward Lorenz force appears. If B horizontal (“Y”) in the air gap, a downward Lorenz 

force field appears. 

The combination of the two results in a bidirectional Lorenz force field. These two force 

fields can also move upwards and downwards. In the third case (“XY”), one side of the 

melt is pushed upwards and the other downwards.  

 

As a summary, the 5 configurations are: 

1. Vertical magnetic field, upward Lorenz force moving upwards 

2. Vertical magnetic field, upward Lorenz force moving downwards 

3. Horizontal magnetic field, downward Lorenz force moving upwards 

4. Horizontal magnetic field, downward Lorenz force moving downwards 

5. Combination of the horizontal and vertical magnetic field, bidirectional Lorenz force 
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Figure 2.7 Magnetic flux and induced Lorenz force combinations of the twin head 

inductor 

The magnetic field components were measured between the inductor heads by Dr. 

Arnold Rónaföldi. This could be used for validation purposes in later simulations for 

acquiring the correct Lorenz force field. The air gap between the two heads is 130 mm. 

The magnetic field is equal in front of both sides – 10 mm far from the heads. The total 

height of the inductor is 580 mm with the pole pitch of 290 mm. The synchronous 

velocity is 29 m/s, since the frequency is 50 Hz. The magnetic field components (except 

component z ~ 0) and the resulting B are shown on the diagrams below for different field 

strengths – measured only for the position of the sample. 

 

  

Figure 2.8 Measured magnetic field strength in the inductor – on the area of the sample 
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2.3. Experimental results of Miskolc 

The presented experimental results are used later in the thesis as reference and / or 

validation values. The measurements were performed and published by other associates 

of the research group. The results were transferred for free usage in the simulations. 

2.3.1. RMF experiment 

In 2007 Kovács et al. performed experiments on Al-7Si-0.6Mg alloy using various 

magnetic field intensities. For the thesis project 20 mT magnetic induction was chosen 

based on the experience coming from the pure flow simulations. Such induction results 

in a flow of transient zone regarding turbulence. The used solidification model is 

designed for laminar flow, but a more intense test was in interest. The sample was 

provided using 99,99% base materials and cut into 8 mm mean diameter and 100 mm 

length. The following technical parameters were used: 

• Br  magnetic induction   20 mT 

• f  frequency    50 Hz 

• FL-max  maximal Lorenz force  965 N/m3 

• vsample  sample lowering velocity  0.1 mm/s 

• G  thermal gradient   8 K/mm 

 

During the experiment, the temperature data of the 13 thermocouples were collected 

and saved. It will be used as a boundary condition in the simulations. The plot of the 

dataset can be seen below. 

 

Figure 2.9 Temperature dataset of the experiment 

The samples were cut into 4 equal pieces having length about 20 mm and the all 

sections were cut into half along their axis. The 4 longitudinal sections were grinded, 

polished and etched in 0,5% water solution of HF. Cross section specimens were also 

made with the same metallographic method. The macrostructure of the samples can be 

seen on Figure 2.10. 
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Bottom-middle part – direction of solidification → 

  
Middle-top part – direction of solidification → 

 
Top of the sample – direction of solidification → 

  
First cross section Second cross section 

  
Third cross section Fourth cross section 

Figure 2.10 The resulting macrostructure 

The concentration distribution was also measured by Kovács et al. The result can be 

seen on the diagram below, but it is not showing clear enough the expected effects 
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based on the etched samples. Therefore, a repetition of the measurement was essential 

with the aim of higher accuracy, since the currently available measurement devices have 

significantly better resolution. Moreover, the simulation results have helped in the design 

of the new measurement method. 
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Figure 2.11 Concentration distribution measured by Jenő Kovács 

The concentration distribution of 20 mT RMF sample was done on 3 longitudinal 

sections: 0-19 mm, 25-45 mm and 50-70 mm using the Edax EDS microprobe of a Zeiss 

electron microscope. A measuring window of 0.8 x 1 mm was chosen. Using this 

window, the whole sections could be mapped – 10 images across the diameter times 20 

across the height. The first window was adjusted “by hand” to the proper position and 

then the automatic mechanism of the table was used to map the whole sample. The 

complete window area was measured so the values should be used as averages of an 

area of 0.8 x 1 mm. 

Due to the morphology of silicon, the X-ray spectra had to be compensated. For that the 

cross section of an unmixed sample was used. The concentration has been measured 

and the resulting peaks were indicated as 7% Si and 93% Al. 

The samples are a bit conical, so the last images do not completely cover the window, 

but it doesn’t affect the accuracy of the measurement. 

 

Figure 2.12 Sample spectrum of the measurement series 
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First window adjusted  

  
Last window of the first column Last window of the measurement 

Figure 2.13 Measuring windows 

 

 

 

Figure 2.14 Contour plot of measurements 
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2.3.2. TMF experiments 

2.3.2.1 Thermal effect in TMF 

During the first experiments (performed by Arnold Rónaföldi) using the TMF facility, a yet 

unknown thermal effect occurred. The phenomenon is appearing the strongest way in 

case of the “XY” field configuration, when one side of the melt is pushed upward, the 

other one is pushed downwards. All the experiments start with an isothermal holding 

state when only the technical thermal gradient is set up and no lowering of the sample or 

mixing is used. The simple aim of this is to melt everything completely and have a 

complete thermal equilibrium in the system – Figure 2.15. 

 

Figure 2.15 Temperature distribution in the system without stirring 

Regardless if there is sample lowering or not, at the moment of switching the stirring on, 

the thermal gradient crashes and a new one appears – Figure 2.16. 

 

Figure 2.16 Effect of 40 mT stirring (up-n-down) on the temperature distribution in the 

sample. No. 1 is the lowest thermocouple. 0-300 s stirred, 300-500 sec not stirred. 

The experiment was performed for 5. 10, 20 & 40 mT, but 40 mT is the most 

spectacular one. 
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2.3.2.2 TMF experiments on solidification 

A series of experiments were performed using the new TMF inductor – by A. Roósz, A. 

Rónaföldi and A. Jenő. The key force field is the “bi-directional” which is pushing the 

melt’s two side upward and downward, since this is provides the strongest and most 

directed Lorenz force field. Al7Si1Fe alloy was used for the experiments on various 

inductions: 0, 20, 40, 80. For the current research, the 20 mT was chosen, since its flow 

field was validated via the thermal effect which was presented in chapter 2.3.2 and it is 

laminar (the current solidification solvers are not tested on turbulent flow). The main 

technical parameters were: 

• Sample lowering velocity  vsample  0,05 m/s 

• Thermal gradient   G  5 K/mm 

• Frequency    f  50 Hz 

• Magnetic induction   B0  20 mT 

• TMF form   XY  bidirectional 
 

The concentration distribution was measured with image analysis method. A mosaic 

image was provided of a cross section of the sample and two different areas were 

chosen – Figure 2.17. The left are shows higher Si content based on eutectic fraction. 

Such fraction was measured on the image and the Si content was calculated based on 

the phase diagram. The result of the two blue areas are presented in Table 2.1. 

 

Figure 2.17 Mosaic image of the cross section (XY-TMF, 20 mT) and the measurement 

areas 

Table 2.1 Measurement results on XY-TMF sample 

 Left area Right area 

Eutectic fraction [%] 54,7 42,5 

CSi [wt.%] 7,64 6,31 
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2.4. Conclusions on chapter 2 

The solidification facilities constructed on the University of Miskolc were presented. 

Rotating and travelling magnetic field experiments can be performed with various flow 

patterns and strengths. The results on binary Al-7wt.%Si using RMF stirring and ternary 

Al-7wt.%Si-1wt.%Fe alloy with TMF stirring were presented. Both cases’ results are 

useful for validation purposes of the simulations presented in chapter 4. 

The gradient shift effect was also presented appearing after turning on the TMF stirring. 

Such an effect will be used in chapter 4.5.3 for the validation of electromagnetic 

simulations for the TMF Lorenz force field. 
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3. Chapter: 
Numerical models used in the thesis 
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3.1. Introduction – Mathematical models used in the thesis 

In the Thesis the 2D and 3D numerical simulations were performed for solidification of a 

binary Al-7wt%Si alloy under the action of the rotating magnetic field (RMF) using 

macroscopic approach coupled with equilibrium microscopic solidification. Further, 

simulations with the same boundary conditions were performed with macroscopic 

approach coupled with the diffusion governed growth model (referred hereafter 

“envelope model”). Results of simulation were compared with the segregation observed 

in the Al-7wt%Si sample solidified under these conditions and will be presented in 4. The 

systems of governing equations used in simulations for the solidification of a sample of a 

binary alloy under the RMF action are presented in the part 3.1.1 and 3.1.2 respectively. 

Further, in the Thesis the 3D simulations were performed for solidification of a ternary Al-

7wt%Si – 1wt%Fe alloy under the action of the travelling magnetic field (TMF) using 

macroscopic approach coupled with equilibrium microscopic solidification. This alloy is 

characterized by formation of an intermetallic along with the primary dendrites as 

described in the subsection 3.1.3. The microscopic model based on the lever rule 

approach and accounting for the presence of the two solid phases is presented in the 

part 3.1.3 while the part 3.1.4 contains macroscopic equations coupled with the 

microscopic ones. 

To present the equation in the unified manner the index s  denotes hereafter solid phase 

and the index f  is related to the fluid phase which can be either pure liquid or the union 

of the interdenritic and extradendritic liquid depending on the microscopic model. The 

index l  is reserved for extradendritic liquid. 

3.1.1. Macroscopic equations for solidification of a binary alloy coupled with an 

equilibrium solidification 

In the system of macroscopic equations coupled with equilibrium solidification model at 

the microscale was realised in ANSYS Fluent. The columnar solid phase is stationary, 

and its description does not require any momentum equation. All thermo-physical 

properties were considered equal for the solid and liquid phase and the Boussinesq 

linear approximation was used to treat the thermo-solute convection using the thermal 

and solute volume expansion coefficient Tβ  and Cβ , respectively – presented in 

chapter 4.2. The thermodynamic temperature T  was unique for the liquid and the solid 

phase, and a heat release (characterized by the latent heat L ) due to the phase 

transition was taken into account. The momentum equation was formulated only for the 

liquid phase with its intrinsic velocity ff vf=V


 – 𝑓𝑓 presents the fraction of fluid. The 

presence of the solid phase was taken into account using the Karman-Cozeny approach 

[Karman][Cozeny] for the pressure drop in the porous zone formed by dendrites. There, 

the secondary dendrite arm spacing 2λ  was used as a characteristic length for the 

permeability. The segregation during the solidification was observed using the transport 
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equation for the average concentration 〈𝐶〉 = 𝑓𝑓𝐶𝑓 + 𝑓𝑠𝐶𝑠 in which the advection term 

contained the concentration in the liquid phase fC . 

The liquidus line from the phase diagram was linearized with the liquidus slope lm  and 

the solid fraction and concentrations were calculated using the partition coefficient  

𝑘𝑝 = 𝑐𝑠/𝑐𝑙 with a usual agreement ( ) 0>1km pl − . This gives the following system of 

equations: 

Mass conservation in the liquid phase: 

𝜌0
𝜕𝑓𝑓

𝜕𝑡
+ 𝜌0∇𝑣⃑ = −𝜌0

𝜕𝑓𝑠

𝜕𝑡
        (3.1) 

Momentum equation: 

( ) ( ) emff
ff

ff
f

0
0 Ffgρ~f+V

K

fμ
pfVμ=V.V

f

ρ
+
t

V
ρ




+−−



  (3.2) 

where emF


 is the density of the effective electromagnetic force calculated elsewhere or 

approximated analytically and K  is a permeability (eq. 3.5). 

Heat equation: 

      (3.3) 

where L  denotes the latent heat. 

Solute transport 

  
0=C.V+

t

C
f



 
         (3.3) 

Boussinesq approximation: 

( ) ( )( )0fC0T0 CCβTTβ1ρ=ρ~ −−−−       (3.4) 

Permeability for the porous zone: 

2
f

3
f

2
2

)f1(

f

180

λ
=K

−
         (3.5) 

Where 𝜆2 is the secondary dendrite arm spacing. 

A linearized phase diagram is presented with the lever rule: 

flm Cm+T=T          (3.6) 

f

f

p
s

C

CC

k
f

−

−
=

1

1
        (3.7) 

1=+ sf ff           (3.8) 
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3.1.2. Macroscopic equations for a binary alloy coupled with a diffusion driven growth 

of dendrites 

Models for the solidification and the microscale which accounts for the diffusion growth 

of the grains were briefly presented in the part 1.4 devoted to the literature review. In 

particular, a model by Ciobanas and Fautrelle proposed in [8] was mentioned. Further, 

these authors proposed a coupling of this micro-model with the model for calculations of 

the transport equations at the macroscale [35]. The latter was realized in ANSYS Fluent 

using the “user-defined functions” facilities provided by this software. In this section a 

more detailed presentation of the model is given. 

3.1.2.1 A Recall of a diffusion governed gain growth 

Similar to the model of Rappaz and Thevoz [4] and Wang a Beckerman [6], the model 

for the grain growth proposes the presentation of a grain  using the notion of the grain 

envelope and with the introduction of the solid, interdendritic and extradendritic fractions 

(Figure 3.1) denoted hereafter as sf , df  and lf , whose sum (union) is equal to unity: 

1=++ ld fffs . Apart from this, the following unions can be identified: the grain fraction 

gf  is given as union of the solid and dendritic fractions gds fff =+  and the fluid fraction 

ff  unifies interdendritic liquid (IDL) and extradendritic liquid (EDL) : fld fff =+ . The 

interface between the IDL and EDL corresponds to the envelope of grain, i.e. to the 

imaginary surface connecting the tips of dendrite arms. It is supposed that the maximal 

possible size of the grain is bounded with a sphere of a radius of totR . This size is related 

to the density of the grains n : ( ) 31
34

/
tot /nR

−
=  . Also, a radius of the grain a  and a 

surface density of the grain gS  are introduced as 31/
gtot fRa =  and naSg 24= . 

Further, sC , dC , lC  present the average concentration in the solid, IDL and EDL, 

respectively and their weighted sum is related to the average concentration C  within the 

whole grain: CCfCffsC lldds =++ . Also, the average concentration in the fluid phase 

fC  can be introduced as: flldd CCfCf =+ . Apart from the concentrations in the 

volume, two concentrations at the interface between the solid and the IDL exist, sdC  

and dsC  which are from the side of the solid and from the IDL, respectively. Because of 

assumption formulated below no interfacial concentration is introduced at the interface 

between the IDL and EDL. 
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Figure 3.1 Graphical presentation of the grain in the model of Ciobanas and Fautrelle 

[8] with notions of fractions and concentrations 

The assumptions used in the model are similar to those in [4] and [6]:  

− the grain is under thermal equilibrium, i.e. the temperature within all zones in the 

grains is the same and equal to a thermodynamic temperature T .  

− the IDL liquid is well mixed and the concentration in this zone corresponds to the 

liquidus concentration at the thermodynamic temperature denoted here after *
lC

, because of this, the interfacial IDL concentration is also the same: *
lds CC =  

− the chemical diffusion in the solid is zero 

− the relation between the concentration at the interface solid – IDL in case of 

solidification is defined with the equilibrium partition coefficient: 

p
*
lsddssd kC/CC/C == , where in case of the melting the concentration is equal 

to sC . 

− the average growth velocity of the grain 𝑤̅𝑔 (the velocity of the envelope 

“displacement”) is defined by the constitutional supercooling: 

( ) ( )sd
*
ll

*
l CCCC −−=  and is given as: 

𝑤̅𝑔 =
𝐷𝑙𝑚𝑙(𝑘𝑝 − 1)𝐶𝑙

∗

𝜋2𝛤
𝑎2(

𝛺

1 − 𝛺
)2𝑏 

where 45670.a =  and 1951.b =  are coefficients proposed in [6], lD  is a 

chemical diffusion in the liquid and  is a Gibbs-Thomson coefficient. 

− the diffusive flux from IDL to EDL occurs through the surface of the grain gS  and 

is defined by a diffusion length  , the expression for the latter being complicated 

is not given here but can be found in [8].  

A closed system of equations allowing one to obtain solution for the fractions and 

concentration is formulated in the next subsection. 
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3.1.2.2 Macroscopic equations 

The solidification micro-model presented above was introduced in ANSYS Fluent and 

coupled with the Euler-Euler two-phase flow. The consideration of only two phases in the 

macroscopic transport equations is necessary because the solid and the grain fraction 

move together being linked one to another. In fact, there is a choice to be made for 

which phases the convective transport equations have to be calculated. The most 

evident options are either fluid and solid or fluid and grain. The system of equations 

proposed in [50] the choice for a pair “fluid and solid” was made. This implies that the 

fluid phase includes IDL and EDL and extradendritic liquid assumes both the pure liquid 

and the liquid in the vicinity of a grain (within the totR ) but outside its envelope. Then, 

with the notion for the intrinsic velocity in the fluid phase ff vf=V


, the system of 

macroscopic equations can be presented as follows: 

Energy equation shared by both phases: 

S
2

p00 L+Tk=T.Vcρ+
t

T
ρ 



 
       (3.9) 

where L  denotes the latent heat. 

Mass conservation in the fluid phase (union of IDL and EDL): 

s
f

V
t

f
−=+



 
00          (3.10) 

Momentum equation in the fluid phase: 

( ) ( ) emff
fl

fl
f

0
0 Ffgρ~f+V

K

fμ
pfVμ=V.V

f

ρ
+
t

V
ρ




+−−



  (3.11) 

where, similar to (eq. 3.2), 𝐹⃑𝑒𝑚 is the density of the effective electromagnetic force 

calculated elsewhere or approximated analytically (presented in several chapters below) 

and K  is a permeability, similar to the one given by (eq. 3.5): 

2
f

3
f

2
2

)f1(

f

180

λ
=K

−
           

Macroscopic solute transport equations in the fluid phase: 

sdsf
fl

CC.V
t

)Cf(
−=+



 
0  

No macroscopic transport equations are solved for the solid phase since it is supposed 

to be columnar, i.e. stationary. 
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Yet, the system of equations (3.9), (3.10) and (3.11) is coupled with the following 

equations from the microscopic model: 

Liquidus concentration: 

l

m*
l

m

TT
C

−
=  

Mass conservation in the solid and IDL: 

s
s

t

f
=




0    and   gs

d

t

f
+−=




0  with ggg wS0=  

Solute conservation in the solid and IDL:  

sds
ss C
t

)Cf(
=




   and  ( ) ( )*ll

fg
sd

*
ls

*
l

d CC
DS

CC
t

)C(
f −+−=










0
0  









=

0

0

Ss

S
*
lp

sd
ifC

ifCk
C  

3.1.3. Microscopic model for the solidification of a ternary alloy 

3.1.3.1 Linearization of the phase diagram for the ternary alloy 

Equilibrium theoretical models based on a lever or Scheil rule and on their combinations 

for solidification of a ternary alloy are presented in detail in [2]. It should be noted that in 

all solidification regimes, including eutectic, [2] proposes to use partition coefficients to 

calculate the equilibrium concentration in the solid. Yet, another approach can be used 

based on the knowledge of the composition of the solid which is formed. In solidification 

of a Al-Si-Fe alloy in aluminum-rich corner, various intermetallics can form depending on 

the initial composition of the alloy (Figure 3.2). 

 

Figure 3.2 Projection of the phase diagram on the liquidus surface: isolines of liquidus 

temperature are shown with dot lines. Composition of the beta phase is Al9Fe2Si2 
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The phase diagram for the ternary alloy (Figure 3.2) was linearized using data for the 

liquidus surface and partition coefficients calculated by J. Lacaze in ThermoCalc 

software (http://www.thermocalc.com/). 

The liquidus surface which corresponds to the solidification of primary aluminum rich 

dendrite was approximated with a plane using multiple (multivariable) linear regression 

method (https://en.wikipedia.org/wiki/Linear_regression). This resulted in its presentation 

in the form  

𝑇𝑙 = 𝑇𝑚 + 𝑚𝑆𝑖𝐶𝑠𝑖,𝑓 + 𝑚𝐹𝑒𝐶𝐹𝑒,𝑓       (3.12) 

 

where mT  is a melting temperature of a pure aluminum whose value is discussed below, 

and the slope coefficients are the partial derivatives: 

𝑚𝑆𝑖 =
𝜕𝑇𝑙

𝜕𝐶𝑆𝑖,𝑓
⁄    and 𝑚𝐹𝑒 =

𝜕𝑇𝑙
𝜕𝐶𝐹𝑒,𝑓

⁄       (3.13) 

 

The linearization procedure was made in order to have a minimal error between the 

liquid temperature given by eq. (3.12) and the one calculated in ThermoCalc in the 

region of interest, i.e. for the range of concentration of silicon and iron 

wt.Cwt. Si 1260060    and  wt.Cwt. Fe 7150  , respectively. Consequently, the value 

for the melting temperature of a pure aluminum mT  used further in calculations was 

found slightly different from the actual one and equal to 939.17049 K. Other values can 

be found in the Table 1. 

Further, the line of eutectic solidification along which the solidification of the primary 

aluminum-rich dendrites and formation of the intermetallics was approximated with a 

straight line passing through the ternary eutectic point having the concentrations E,SiC , 

E,FeC  . That gives the following relation between two concentrations in the liquid along 

this line: 

ff,Siff,Fe rCqC +=         (3.14) 

Combining the eq. (3.12) and eq. (3.13), one can obtain also a direct relation between 

the liquidus temperature and both concentrations in the liquid: 

𝑚𝐹𝑒𝐶𝐹𝑒,𝑓 = 𝑇𝑙 − 𝑇𝑚 − 𝑚𝑆𝑖𝐶𝑆𝑖,𝑓         

𝑚𝐹𝑒(𝑞𝐶𝑆𝑖,.𝑓 + 𝑟) = 𝑇𝑙 − 𝑇𝑚 − 𝑚𝑆𝑖𝐶𝑆𝑖,𝑓        

(𝑚𝐹𝑒𝑞 + 𝑚𝑠𝑖)𝐶𝑆𝑖,𝑓 = 𝑇𝑙 − 𝑇𝑚 − 𝑚𝐹𝑒𝑟        

𝐶𝑆𝑖,𝑓 =
𝑇𝑙−𝑇𝑚−𝑚𝐹𝑒𝑟

𝑚𝐹𝑒𝑞+𝑚𝑆𝑖
= 𝑞1𝑇𝑙 + 𝑟1      (3.15) 

 

http://www.thermocalc.com/
https://en.wikipedia.org/wiki/Linear_regression
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Similarly, one can obtain the relation between the liquidus temperature and 

concentration of the second component in the liquid: 

𝐶𝐹𝑒,𝑓 = 𝑞2𝑇𝑙 + 𝑟2          

Finally, the value of the concentrations of the silicon in the ternary eutectic point was 

taken equal to wt.C E,Si 1260= , other values can be found in the Table 1.  

Table 3.1 Values used for the linearization of the Al-rich corner 

of AlSiFe phase diagram 

Variable Value Variable Value 

Melting temperature (in Eq.1) 
*

mT [K] 939.17 Coefficient 1q  in eq.(3.15) -0.15 

Partial liquidus slope for Si, 1m

[K/%wt] 

-7.0486 Coefficient 1r  in eq.(3.15) 139.8 

Partial liquidus slope for Fe, 2m

[K/%wt] 

-2.1025 Coefficient fq  in eq.(3.14) -0.17757 

Partition coefficient for Si, 1k   0.115 Coefficient fr  in eq.(3.14) 2.75 

Partition coefficient for Fe, 2k  0.01 Eutectic temperature EPT [K] 849.208 

 

Using the linearization of the liquidus surface and eutectic line on the phase diagram, the 

following equations were developed for the solution of the solidification problem under 

lever rule approximation. 

3.1.3.2 Equation for the solidification of a ternary alloy with formation of a unique 

primary aluminium-rich dendrite phase 

In the case when only the primary dendrite  - phase is solidified, the average 

concentration of each component is divided between the liquid and solid phase. In the 

lever rule approach, because of the infinitely rapid diffusion in both phases the 

concentration in the solid phase is equal to the one at the solid-liquid interface, defined 

with a partition coefficient: 

f,Si,s,Sif,Sifs,Si,sf,SifSi CfkCfCfCfC  +=+=       

f,Si,s,Fef,Sifs,Fef,FefFe CfkCfCCfC +=+=       

1=+ ,sf ff             
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That gives a standard relation of a lever rule between the concentrations in the liquid, 

the average concentration and the solid fraction, applied for each component: 

( )11 −+
=

 ,Si

Si
f,Si kf

C
C         (3.16) 

( )11 −+
=

 ,Fe

Fe
f,Fe kf

C
C          (3.17) 

Along with the equation for the liquidus temperature defined by the average 

concentration of each component: 

𝑇𝑙 = 𝑇𝑚 + 𝑚𝑆𝑖𝐶𝑆𝑖,𝑓 + 𝑚𝐹𝑒𝐶𝐹𝑒,𝑓         

Accounting for these equations, a quadratic equation for the solid fraction can be 

deduced that gives: 

02 =++ EBfAf             

With 

 

 

𝐴 = (𝑘𝑆𝑖,𝛼 − 1)(𝑘𝐹𝑒,𝛼 − 1)(𝑇𝑙 − 𝑇𝑚)      (3.18) 

𝐵 = (𝑘𝑆𝑖,𝛼 + 𝑘𝐹𝑒,𝛼 − 2)(𝑇𝑙 − 𝑇𝑚) − (𝑘𝐹𝑒,𝛼 − 1)𝑚𝑆𝑖,𝛼𝐶𝑆𝑖 − (𝑘𝑆𝑖,𝛼 − 1)𝑚𝐹𝑒,𝛼𝐶𝐹𝑒 (3.19) 

𝐸 = 𝑇𝑙 − 𝑇𝑚 − 𝑚𝑆𝑖𝐶𝑆𝑖 − 𝑚𝐹𝑒𝐶𝐹𝑒       (3.20) 

Then the primary solid fraction of the aluminum dendrites is defined via solution of the 

quadratic equation: 

A

AEBB
f

2

42 −+−
=         (3.21) 

Further, the concentrations of the components in the liquid phase, 
f,SiC and 

f,FeC , can 

be found with equations (3.16) and (3.17).  
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3.1.3.3 Equation for the solidification with intermetallic phase in the approximation of 

the lever rule 

The solidification of a unique dendritic phase occurs until the concentrations in the liquid 

phase reach the eutectic line on the ternary phase diagram. Taking into account the 

approximation of the eutectic line by a straight line given by eq.4, we can recognize that 

under the condition rqCC f,Fef,Si +  only the dendrite phase is solidified (Figure 3.3), 

therefore, eqs. (3.16) –(3.21) can be applied. Otherwise, another system of equations 

should be used. 

 

 

Figure 3.3 

Indeed, with the presence of the third, intermetallic phase, we can present the equations 

for the concentration of the two components as follows: 

 ,Si,Sif,SifSi CfCfCfC ++=       (3.22) 

 ,Fe,Fef,FefFe CfCfCfC ++=       (3.23) 

First, a concentration in the liquid for both components l,SiC  and l,FeC , can be obtained 

directly from the liquidus temperature using the equations (3.14) and (3.15) from the 

linearization of the eutectic line. Second, the composition of each component taken by 

the intermetallics is known while for the crystallization of the primary phase the 

segregation coefficients for each component can be used. That gives: 

 ,Sif,Si,Sif,SifSi CfCkfCfC ++=        

 ,Fef,Fe,Fef,FefFe CfCkfCfC ++=        
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Accounting for the summation of the phases:  

1=++  fff f            

 One can obtain expression for the calculation of the fractions of the intermetallic phase 

and primary phase: 
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The solid phase is a sum of the two fractions: 

 fffs +=           (3.26) 

3.1.4. Macroscopic equations for a ternary alloy coupled with an equilibrium 

solidification 

Momentum equation: 
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where emF


 is the density of the effective electromagnetic force calculated elsewhere or 

approximated analytically and K  is a permeability given above by eq.(3.5). 

Heat equation: 
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Solute transport of the two component: 
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Boussinesque approximation: 

( ) ( ) ( )( )Fe,0f,FeFei,CSi,0f,SiSi,C0T0 CCβCCβTTβ1ρ=ρ~ −−−−−−   (3.30) 
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A linearized phase diagram is presented with the lever rule: 

If rqCC f,Fef,Si +   (one solid phase in dendrites’s form is presented): 

A

AEBB
ff s

2

42 −+−
==  , A , B  and E  are defined by eqs. (3.18)-(320) 
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If  rqCC f,Fef,Si +=  (solidification along the eutectic line): 

11 rTqC f,Si +=    and   12 rTqC f,Fe +=  
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3.2. Conclusions on the numerical models 

The numerical solutions used in the thesis project were presented. The solutions can be 

rather similar, but the simulations can lead into very different results since the 

approaches are numerically distinct. The Lever rule model can be solved analytically, on 

the other hand the Envelope cases need the ensemble averaging method. 

The performance of the lever rule and the Envelope model regarding solute distribution 

compared with measurement is presented in chapter 4. The results on ternary 

simulations are presented in the same chapter. 
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4. Chapter: 
Numerical and experimental results 
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4.1. Introduction on solidification modeling 

This chapter presents the results on the solidification simulation. First, the binary RMF 

cases are presented for binary Al-7wt.%Si alloy. Two sets of models are kept separately 

– Lever rule and Envelope models and 2D + 3D for each – but comparison of the results 

is done together on the four models. Performance of the solute conservation of Lever 

rule and Envelope method is also discussed. 

In case of TMF simulations, preparation work had to be done numerically, since the 

Lorenz force field of the inductor cannot be described analytically. Comsol Multiphysics 

was used for electromagnetic simulations to obtain the Lorenz force field. The thermal 

effect presented in chapter 2.3.2.1 was simulated to quasi-validate the Comsol results, 

which was later used in solidification simulations on Al-7wt.%Si-1wt.%Fe ternary alloy. 

Two simulations are presented. One with bidirectional and another one with upward 

Lorenz force field. In the case of bidirectional force field, comparison is done with texture 

images of cross section of the sample. Only numerical results are presented for the 

upward force field case. 
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4.2. Material properties 

The material properties used in the models are presented in Table 4.3. 

Table 4.1 Material properties used in the solidification models 

Envelope- and Lever rule-based models Ternary models 

𝝆𝒍𝒊𝒒𝒖𝒊𝒅, 𝝆𝒔𝒐𝒍𝒊𝒅 2452 kg/m3 * 

𝒄𝒑,𝒍𝒊𝒒𝒖𝒊𝒅 1140 J/kgK 𝑐𝑝,𝑙𝑖𝑞𝑢𝑖𝑑 1140 J/kgK 

𝝀𝒍𝒊𝒒𝒖𝒊𝒅, 𝝀𝒔𝒐𝒍𝒊𝒅 100 W/mK 𝜆𝑙𝑖𝑞𝑢𝑖𝑑, 𝜆𝑠𝑜𝑙𝑖𝑑 100 W/mK 

𝑫𝒍 3e-9 m2/s 𝐷𝑙,𝑆𝑖 5e-9 m2/s 

- - 𝐷𝑙,𝐹𝑒 2,5e-9 m2/s 

𝑫𝒔 0 m2/s 𝐷𝑠 0 m2/s 

𝝁𝒍𝒊𝒒𝒖𝒊𝒅 0,00252 Pa•s 𝜇𝑙𝑖𝑞𝑢𝑖𝑑 0,00252 Pa•s 

𝜷𝑻 1,2e3 1/K * 

𝜷𝑪 -2,5e-4 1/wt.% * 

𝒌𝒑 0,13 𝑘𝑝,𝑆𝑖 0,115 

- - 𝑘𝑝,𝑆𝑖 0,01 

𝒎𝒍 -6,62 𝑚𝑙,𝑆𝑖(𝑝𝑙𝑎𝑛𝑒) -7,049 

- - 𝑚𝑙,𝐹𝑒(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡_𝑙𝑖𝑛𝑒) -0,1776 

  𝐸𝑢𝑡𝑒𝑐𝑡𝑖𝑐 𝑠ℎ𝑖𝑓𝑡 2,7499 

𝑳 400000 J/kg 𝐿 400000 J/kg 

𝜞 2,41e-7 𝛤 2,41e-7 

𝑪𝟎 7 wt.% 𝐶0,𝑆𝑖 6,5 wt.% 

- - 𝐶0,𝐹𝑒 0,93 wt.% 

𝑻𝒎𝒆𝒍𝒕,𝑨𝒍 993,5 K 𝑇𝑚𝑒𝑙𝑡,𝐴𝑙 939,17049 K 

𝑻𝑬𝒖𝒕 850 K - - 

𝑪𝑬 12,2 wt.% - - 

𝒏 (𝒇𝒐𝒓 𝑬𝒏𝒗𝒆𝒍𝒐𝒑𝒆) 1e9 - - 

𝒓𝒏𝒖𝒄𝒍 (𝒇𝒐𝒓 𝑬𝒏𝒗𝒆𝒍𝒐𝒑𝒆) 1e-6 m - - 

𝝀𝟏 400 μm 𝜆1 400 μm 

𝝀𝟐 65 μm 𝜆2 65 μm 

𝝎𝟎 314 rad/s ** 

𝝈 3,74e6 S/m 𝜎 3,74e6 S/m 

𝑩𝟎 20 mT ** 

*The density and the Buoyancy flow was based on the equations of Kaptay provided in a 

personal document based on articles: [60]-[62]. 

**The Lorenz force field is described in chapter 4.5.2. 
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4.3. RMF simulations 

The following chapter will present numerical results on the experiment presented in 

chapter 2.3.1. The main technical parameters important for simulation are the magnetic 

induction, frequency and the temperature field dataset. Using the data of temperature 

field has great advantages for the models. The thermal gradient, sample movement 

velocity, thermal fluctuations are stored in the dataset. If the field is applied on all the 

walls of the crucible, no special treatment is needed for the boundary conditions and no 

effort is needed for the simulation of several experimental parameters. Four models were 

provided for the same experiment with comparison reasons. These were: 

• 2D axisymmertical system using Envelope method for solidification modeling 

• 3D model using Envelope method for solidification modeling 

• 2D model using Lever rule for solidification modeling 

• 3D model using Lever rule for solidification modeling 
 

The application of solidification modeling into Fluent is done at SIMaP/EPM Laboratory 

(Grenoble, France) since approximately 2007 by Ciobanas, Noeppel, Fautrelle, 

Budenkova and Du Terrail. For Envelope method an averaging structure must be 

applied since the model itself is written for the growth of a single grain, but one mesh cell 

can contain arbitrary number of growing dendrites and every cell can have different 

temperature, concentration, etc. 

 

Figure 4.1 Difference between cells 

The solution is called ensemble averaging and was designed by Ciobanas et al [8]. The 

system of equations is rebuilt in an averaged form and modified to compute on phase 

ratios instead of radii of solid, interdendritic liquid and extradendritic liquid phases [4][8]. 

The model itself is written in a user defined scalar in Fluent. When the scalar, which 

contains the solidification model is computed, the iterations of it are performed. Using 

such approach every time step has sub time-steps with sub-iterations resulting in a 

“dual-layer” model. Ansys Fluent was chosen to be the main environment for the 

calculations due to its strength in complex heat and mass transfer solutions. The flow 

model was used as it is included in the program with momentum sources for the above 

described Lorenz force field. 
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4.4. 2D & 3D Envelope 

Two models were prepared for two purposes. First is to see results on the experiments 

of Miskolc using Envelope method, and second, to see if the 3D modeling has any 

advantage compared to 2D axisymmetrical. 2D models were already published by 

Budenkova et al. [28] in collaboration with MTA-ME Materials Research Group. The 

model was using Lever rule in a 2D axisymmetrical case. 

Both cases were transient using Eulerian-Eulerian model for the multiphase problem. 

The two phases were solid and liquid. The solid is modeled as a liquid phase with 

ultrahigh viscosity – 1 Paˑs. It helps the convergence of the models. 

One can observe that one more liquid phase is needed for the usage of Envelope 

approach. The Eulerian liquid phase is the sum of inter- and extradendritic liquid. The 

two phases share the same temperature field and have the same flow parameters. The 

concentration is also treated in a shared and averaged form. For the diffusion problem 

between the phases, Ciobanas [8] developed his own approach, which was used in the 

current work. 

The growth model including the diffusion and concentration conservation law is 

calculated in a user defined scalar. The calculation is done iteratively with a self-written 

code provided by the French Laboratory. 

The original energy model of Fluent is not used, but a self-written system is provided to 

be able to better treat heat fluxes, latent heat, eutectic reaction and the effect of the 

flow. The temperature data of the 13 thermocouples is interpolated (in time and space) 

on the walls as fixed values for every time step. 

The 2D case was modeled in a rectangle of 4x100 mm meshed with 40000 quad cells 

(100x100 µm cells). For 3D, a cylinder of Ø8x100 mm was used meshed with 605000 

hexahedron cells. 
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4.4.1. Flow field 

Regarding the flow, the four models show very similar results – as was expected from 

the setup. The form of the flow is identical, and the magnitude is very close to each other 

– Figure 4.2 & Figure 4.3. 

    

2D Envelope 3D Envelope 2D Lever rule 3D Lever rule 

Figure 4.2 Flow filed of each model – contours of velocity [m/s] 

    

2D Envelope 3D Envelope 2D Lever rule 3D Lever rule 

Figure 4.3 Flow filed – vectors of velocity colored by velocity magnitude [m/s] 

 

The maximal velocity can differ which is the result of the difference in the 2D and 3D 

approach. These results prove that no difference should be considered due to the flow. 

One can also see on the vector images, that the same dual-level secondary flow is 

developed in all the 4 models. Along the axis, about half of the molten media is flowing 

upwards and the other half downwards. Figure 4.4 shows the vectors of velocity 

magnitude colored by solute concentration (wt.% Si). Based on the distribution of 

silicon, the dual direction flow is clear. 
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2D Envelope 3D Envelope 

  

2D Lever rule 3D Lever rule 

Figure 4.4 Vectors of velocity colored by average Si concentration [wt.%] 
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4.4.2. Form of the mushy zone 

The mushy zone can be interesting since its form and height or thickness are depending 

on thermal and solidification parameters. The thickness is depending on the thermal 

gradient, which is identical and fix in all models, therefore the height of the mushy zone 

is also identical – Figure 4.5. The main difference in the shape is coming from the solute 

rejection in the solid phase during crystal growth.  

 

 

2D Envelope 3D Envelope 

  

2D Lever rule 3D Lever rule 

Figure 4.5 Form of the mushy zone colored by volume fraction of liquid 
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If the average concentration has different distribution in the mushy zone for Lever and 

Envelope cases. The central overdiluted zone – which is not part of the mushy zone – is 

much wider in case of Lever rule.  

 

 
 

2D Envelope 3D Envelope 

 
 

2D Lever rule 3D Lever rule 

Figure 4.6 Average Si concentration distribution in the mushy zone [wt.%] 
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The flow coming out of the mushy zone is presented on Figure 4.7 with pathlines colored 

by average concentration of Si. It can be observed that the central upward flow region is 

wider in case of the lever rule. This effect suggests different results on the solute 

distribution. 

 

 

2D Envelope 3D Envelope 

 

 

2D Lever rule 3D Lever rule 

Figure 4.7 Pathlines of velocity magnitude starting from the mushy zone – colored by 

average Si concentration [wt.%] 
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4.4.3. Solute distribution 

The Si concentration in each case is presented on Figure 4.8. All cases providing central 

segregation just as the experiment, however the distribution of the solute is different. 

The ranges of the concentration and the form of the segregation is slightly different. 

    

2D Envelope 2D Lever rule 3D Envelope 3D Lever rule 

Figure 4.8 Solute distribution [wt.% Si] at 840 seconds of flow time – auto range 

To catch more differences, identical colormap ranges were set on Figure 4.9 and Figure 

4.10. Different levels are showing more and less details for Envelope model and Lever 

rule cases, which is a proof for different results. 

Such difference can be proven if the comparison is done with the measurement using 

concentration mapping. The same surfaces were made in Fluent for all cases and the 

same averaged values were collected as described in chapter 2.3.1. 3 sample sections 

were available, and the same sections were checked in Fluent. The average values were 

exported, and the data matrices were visualized using Matlab 2013b. The results are 

presented on Figure 4.11 to Figure 4.13. Lever rule is correlating better based on visual 

inspection of the contour images. 
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2D Envelope 2D Lever rule 3D Envelope 3D Lever rule 

Figure 4.9 Solute distribution [wt.% Si] at 840 seconds of flow time 

Colormap range: 7-10,5 wt.% 

    

2D Envelope 2D Lever rule 3D Envelope 3D Lever rule 

Figure 4.10 Solute distribution [wt.% Si] at 840 seconds of flow time 

Colormap range: 5,5-12 wt.% 
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Figure 4.11 Solute distribution comparison – section 1 
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Figure 4.12 Solute distribution comparison – section 2 



 

72 

 

 

Figure 4.13 Solute distribution comparison – section 3 
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If real validation needs to be done, quantitative comparison must be performed. Figure 

4.15 presents plotted result of the areas. 3,6 mm represents the average values plotted 

one after another from the measuring windows close to the wall. 0,4 mm is related for 

the inner section – Figure 4.14. Since the measurement show rather high fluctuation, the 

trends are presented separately. Accumulation of the solute towards the top of the 

sample is visible on all the cases, like in the measurement results, but both Envelope 

models suggest different radial distribution of Si. 

 

Figure 4.14 Plotting explanation 

  

  

  

Figure 4.15 Si concentration plots based on the area avg. of the measuring windows 
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Radial Si distribution in all cases are presented on Figure 4.16. Lever rule models are 

correlating better with the measurements; however, Envelope models are hardly 

showing central accumulation. The difference can be proven with Figure 4.17. 

 

 

  

  

Figure 4.16 Si concentration distribution along the radius in different heights 
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Lever rule models are clearly close to the measurement results. In cases like 2,8 mm or 

2,0 mm, the simulation data of lever rule models could be treated as trendlines; 

however, Envelope models provide higher concentration values in all positions. 

 

 

  

  

Figure 4.17 Si concentration distribution in different radial positions for all models and 

measurement 
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Before summarizing the RMF simulations, the resulting volume average Si concentration 

should be inspected – Figure 4.18. the initial concentration was 7 wt.% which can 

change if the models have calculation problems. The conservation of the solute is 

instable in case of Envelope models, despite the results of Envelope, where the average 

concentration is rather perfect. 

 

 

Figure 4.18 Final volume average Si concertation for all the 4 cases 

 

4.4.4. Conclusions on RMF simulations 

Regarding the four presented simulations the following statements can be done: 

• In point of view of 2D vs. 3D cases, no significant difference appears. Since the flow 

field is quasi-axisymmetric, there is no real advantage of building up a more robust 

case which requires higher calculation resources and longer time. 

• In point of view of solute distribution, the Lever rule is more stable and realistic 

since: 

o The concentration distribution has clearly better results in the Lever rule 

based model. The fish scale / Christmas tree macrosegregation is reached in 

all cases, but the higher central Si content is hardly appearing in the 

comparisons with Envelope models. 

o The solute accumulation is natural in the experiments, although the Envelope 

model has higher rejection into the liquid. The final conservation of the solute 

is incorrect. On the other hand, Lever rule is conserving concentration very 

well. 
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4.5. TMF simulations 

4.5.1. Preparation for solidification simulation 

4.5.1.1 Lorenz Force Filed – RMF 

The induced Lorenz force field is an essential part of the system which needs to be 

simulated. In case of RMF, one simple equation and some technical parameters are 

needed. The already mentioned equation is used: 

𝐹𝐿 =
1

2
𝜎𝐵0

2𝑟(𝜔0 − 𝜔) 

Where: 

• σ is the electrical conductivity of the melt 

• B is the magnetic induction 

• r is the actual radius (or distance from the axis) 

• ω0 is the synchronous angular velocity of the inductor 

• ω is the actual angular velocity of the melt 
 

Using such a simple equation and correct data behind, a well-known flow field can be 

achieved (see result above). 

4.5.2. Simulation series for the TMF Lorenz force field 

4.5.2.1 Electromagnetic 

If we turn to TMF, the case changes significantly. The unique system is very 

complicated, and no direct parametric equation is accessible right now. To be able to do 

proper flow and solidification simulations, electromagnetic calculations had to be done. 

Comsol Multiphysics 4.4 was used. Limited geometrical and technical parameters were 

available about the inductor: 

• Height of the inductor     h  580 mm 

• Air gap between the two heads   d  130 mm 

• Number of coils      Ncoil  2x12 

• Sample bottom – inductor bottom distance  ysample 302 mm 

• Height of the sample     hsample 116 mm 

• Diameter of the sample     dsample 8 mm 

• Pole pitch      τ  290 mm 

• Frequency      f  50 Hz 

• Synchronous velocity of the TMF   vSB  29 m/s 
 

The polynomic functions for the components- and resultant value of the induction and 

sketch of the magnetic fluxes were also shared, which were used for validation 

purposes. 
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A very simplified geometry was made including: 

• Sample:  Ø8*100 mm cylinder 

• 2x12 coils: 20x30x100 mm (H x W x L) 

• 2 yokes: 100 mm wide 

• Air around the system 

The geometry can be found on fig…. Based on the electro technical data, a 6-phase 

alimentation has been applied – Figure 4.19. J0*2pi/6 means: 

J = J0 ∗ (𝑐𝑜𝑠 2π/6 + i ∗ 𝑠𝑖𝑛 2π/6) 

Where J0 is the maximal current and i is the imaginary part. The wall of the outer domain 

was set for complete insulation. 

 

 

Isometric Top 

 
Side 

Figure 4.19 The geometry of the electromagnetic simulations on TMF including the 

phases of alimentation 
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Table 4.2 Properties of the used materials 

 Air Copper Steel Al melt 

Electrical conductivity 

[S/m] 

5e-15 5,96e7 2,97e6 2,95e6 

Relative permeability 

[ - ] 

1 0.999994 4000 1 

Relative permittivity 

[ - ] 

1 1 1 1 

 

The properties were set from Comsol’s own library, except the electrical conductivity of 

Al melt, which is coming from [1]. The Copper was used for the coils, steel was for the 

yokes, Al melt was the sample and air was the environment. 

 

Automatic fine mesh was used – constructed by Comsol and steady state calculations 

were done self-iteratively for reaching 5, 10, 20, 40 mT resultant induction. 

  



 

80 

 

4.5.2.2 Results of the electromagnetic simulations 

The fluxes of magnetic field can be seen on Figure 4.20. 

 

 

 

 

Simulated Theoretical 

Figure 4.20 Fluxes of magnetic field – simulated and theoretical 

 

Qualitatively the results are acceptable. The simulated magnetic induction on a vertical 

(from 160 to 420 mm height at the center) line is presented in Figure 4.21 and Figure 

4.22. 
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Figure 4.21 Vertical distribution of the magnetic field components at the center of the 

inductor (red: z, green: x, blue: y coordinate) 

 

Figure 4.22 Vertical distribution of the resultant B at the center of the inductor 

The distribution of the magnetic induction is not completely the same as in the 

measurements. The maximum and its position are identical, but the minimum values are 

higher. Regarding such case, the Lorenz force is stronger than the real, since the 

induction is stronger and as a result, a stronger flow will be reached. 
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The Lorenz force field for 40 mT case is presented on Figure 4.23 using vectors and 

contour plot also. 

 

Figure 4.23 The Lorenz force field of 40 mT case – Vectors and contour plot [N/m3] 

The form of the field is identical in all cases – just like the induction – but the magnitude 

changes. The relation between the induction and the Lorenz force is presented on 

Figure 4.24. 

 

Figure 4.24 Maximal Lorenz force as a function of maximal magnetic induction 

Since not enough information was available for the true validation of the electromagnetic 

simulation, the above-mentioned thermal effect (Chapter 2.3.2) was used in Fluent. 
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4.5.3. Validation of the Lorenz force field in the TMF system using the thermal effect 

The thermal effect occurring at the moment of switching the stirring on or off can be a 

really good point of validation. The effect is simple, as was described before. The stirring 

can mix the relatively cool liquid with the hotter as strong, as it can be recorded using 

the thermocouples on the sample holder assembly. One can find that the effect is 

depending on the strength of the magnetic mixing. If the correct thermal system is built 

up for the non-stirred case, the shift in the gradient can be simulated and likewise, the 

flow behavior can be validated – which is driven by the Lorenz force field exported from 

Comsol. 

For such a study, two simulations had to be done in Fluent. The first was related to 

calculate the heat flux coming from the furnace wall to apply the stationary thermal 

equilibrium. In other simulations, the temperature dataset of the thermocouples is 

applied on the crucible wall as fixed boundary condition, but now the temperature shift 

needs to be measured on the same wall – then a workaround is needed. This model can 

be set up and validated with the stationary case’s dataset (Figure 2.15 in chapter 

2.3.2.1). The measured and calculated temperature is applied on the furnace wall (for 

visual explanation see Figure 4.27 in chapter 4.5.3.1) and the heat flux developing on 

the sample holder’s inner wall is exported for future calculations. The validation is done 

via the measured temperature of the 13 thermocouples. 

The second model can have a simplified geometry with only a cylinder as the sample. 

The heat flux can be imported on the walls just like the Lorenz force field in the volume. 

4.5.3.1 Global thermal model for the heat flux 

The geometry is presented on figure… The mesh has 31833 mixed mostly quad cells. 

 

 

Figure 4.25 The geometry of the global thermal model 

The used material properties can be found in Table 4.3. 

The same ceramic material was used for the furnace wall and the sample holder, since 

the exact material of the furnace was unknown. The connection between the copper 

tusk and the sample cartridge was modified on the walls with 2 mm layer of thermal 

conductive/contact paste as it happens in the experiments. 

The model was steady-state 2D axisymmetric using laminar flow solver, energy equation 

and Surface to Surface radiation model. 
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Zero velocity was set for the air everywhere in the geometry. The water was entering at 

the bottom and leaving at the top of the container. The inlet velocity was set to 0,2 m/s 

to reach a velocity around 0,313 m/s at the top. The value was computed from Bernoulli 

equation using 5 mm height of fountain on the top of the water container. 

Table 4.3 Material properties in the global thermal model 

 Al melt Al2O3 

ceramic 

Cu Water SiO2 

glass 

Air Thermal 

paste 

ρ 

[kg/m3] 

2452 3690 8978 998,2 2200 1,225 2254 

cp 

[J/kgK] 

1140 880 381 4182 700 1006,43 1000 

Λ [W/mK] 100 15 350 0,6 1,38 0,0242 1,4 

ν [Pa-s] 0,00252 - - 0,001003 - 1,79e-5 - 

ε [ - ] - 0,9 

(0,97)** 

0,5 - 0,8* - Not 

needed 

*due to the high level of smoke on the surface 

**for furnace wall 

The temperature on the furnace wall was modeled using a user defined function (UDF) 

temperature profile macro. Four different equations were used to get close to the 

measured temperature distribution – Figure 4.26. 

 

Figure 4.26 Parametric temperature equations for the UDF profile 

The temperature distribution is monitored on the wall on the sample crucible, where we 

can find the 13 thermocouples – Figure 4.27. 
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Figure 4.27 Temperature application and measurement in the system 

4.5.3.2 Results of the global thermal model 

The contours of temperature can be seen in Figure 4.28. 

 

Figure 4.28 Contours of temperature in the global thermal model 

The results with relative errors can be seen in Figure 4.29. 

 

Figure 4.29 Results of the Global thermal model 
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Some points have a bit high difference from the measurements, but it is still acceptable 

for later complex simulations, since the flux appearing on the inner wall of the crucible is 

used. 

The input temperature distribution and the resulting can also be compared visually which 

gives a great result. The thermocouple lying on the highest point has equal temperature 

as the furnace. The simulation has same results – Figure 4.30. 

 

 

 
Figure 4.30. Measured (top) and simulated (bottom) temperature distribution 
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4.5.3.3 Thermal flow model for validating the Lorenz force field 

Due to the nature of the flow, 3D model was prepared. A single cylinder was used – 

Ø8x116 mm. Full hexahedron mesh with 608600 cells was provided. The ceramic wall 

and the aluminum melt had the same material properties as in the global thermal model. 

Since the experiment was performed with pure Al, the simulation was did with the same 

unalloyed material. 

The model was transient with laminar flow solver and energy equation. No radiation was 

used. The heat flux of the walls of the sample holder crucible in the global model was 

interpolated on the wall of the crucible in the current system to achieve the same 

thermal system. 

The momentum source for the TMF Lorenz force field is added with some more steps. 

The coordinates and shape of the cells are very different in Comsol and Fluent. To be 

able to get the best values for the force field, the mesh cell centroids were exported in a 

data file which was used in Comsol to interpolate, then export the correct force field 

values for every cell. The time average of the Lorenz force is used in all cases 

(considering x, y and z coordinates separately). 

The temperature data of the 13 thermocouples were monitored during the calculation to 

see if the gradient shift occurs properly or not. 

The contours and vectors of the 40 mT case can be seen below – Figure 4.31. 

  

Figure 4.31 Contours and vectors of velocity magnitude – 40 mT, bidirectional stirring 
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Several trials had to be done to be able to reach sum. 0 W/m2 heat flux of the crucible – 

otherwise the thermal equilibrium is not present. More trials were ran to achieve an 

acceptable result of the thermal effect. The results on Figure 4.31 show much faster flow 

than should appear, which can be stated based on the first gradient shift result 

presented on Figure 4.32. 

 

Figure 4.32 First gradient shift result – 40 mT 

After adjusting the Lorenz force field with a scaling factor of 0.1, a more accurate result 

could be achieved – Figure 4.33. The flow turned to a stable laminar form and the 

maximal velocity changed to 0.04 m/s from 0.18 – as compared to Figure 4.31. 

  

Figure 4.33 Contours and vectors of the flow colored by velocity magnitude 
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The slower flow has driven us to more accurate results, which can be observed on 

Figure 4.34. The equilibrium state of the flow arrives much earlier than the thermal 

steady state. This is related to the slower heat transfer. The current result shows us that 

the Lorenz Force field and the electromagnetic system can be used if the correct 

reduction factor is set up. Further adjustments could be done on the 3 recently 

presented models like: 

• Choosing the perfect material properties 

o Heat transfer coefficient, electrical conductivity, density, surface properties, 

etc. 

• Adjusting the dimensions and alimentation of the inductor modeling 

• Fine tuning of all the three models separately 

 

Figure 4.34 Gradient shift after the adjustment of the flow field and settlement of the 

flow (maximal velocity) 

The 20 mT case shows even better correlation with the measurement which can be 

related to the slower flow – totally laminar case (Figure 4.35). 

  

Figure 4.35 Contours of velocity magnitude and gradient shift results in the 20 mT case 
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4.5.3.4 Summary of the simulation series on TMF Lorentz force field 

A simulation series was performed to achieve the Lorenz force field of the TMF inductor, 

since it cannot be described analytically, and the detailed properties of the system was 

unavailable. 

First, electromagnetic simulation was prepared to achieve the Lorenz force field itself. 

Since only qualitative comparison was possible with theoretical data, two more 

simulations were done to validate the electromagnetic results. 

The global thermal model of the complete inductor was provided with stationary melt to 

gather the heat fluxes of the crucible walls. 

Finally, the results of the two latter models were combined in a thermal-flow model to 

reach the thermal gradient shift effect. After the application of the scaling factor, 

qualitatively and quantitatively correct results were achieved and the usability of the 

Force field was proven. 
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4.5.4. Solidification simulation – bidirectional Lorenz force field 

4.5.4.1 Setup 

One 3D simulation was provided based on the experiment presented in chapter 2.3.2.2 

using the Lorenz force field imported from Comsol and the method presented in chapter 

3.1. 

The model was 3D transient in an Ø8x70 mm cylindric media meshed with 1019110 

hexahedron cells. Till the writing of this thesis, the simulation could run till 999 seconds – 

roughly the half of the sample was solidified. 

4.5.5. Flow field 

The flow is presented on Figure 4.36 from different angles. The bidirectional mixing 

appears well, but the flow itself is slow: the maximal velocity is 0.01 m/s. 

  

  

Figure 4.36 Flow field of the bidirectional TMF model – 20 mT, 50 Hz – when 50% of 

the part is solidified 
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4.5.5.1 Solute distribution 

The distribution of Si on various surfaces is presented on Figure 4.37. 

   

Figure 4.37 Si concentration distribution 

Since the measurement contains one cross section and one parallel section, and due to 

the nature of the flow field, cross sections are compared for Si and Fe distribution. The 

reference for the up- and downward flow is presented on Figure 4.38. 

 

Figure 4.38 Contours of axial velocity [m/s] in an arbitrary cross section 

Provided for comparison purposes only 

 

Figure 4.39 and Figure 4.40 present solute distribution (Si and Fe) on cross sections at 

5, 10, 15, 20, 25 and 30 mm height. The concentration distribution is similar as it was 

seen in the texture image – the effect of the flow appears in this model also. 
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5 mm 10 mm 

  

15 mm 20 mm 

  

25 mm 30 mm 

Figure 4.39 Si concentration distribution in different cross sections 
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15 mm 20 mm 

  

25 mm 30 mm 

Figure 4.40 Fe concentration distribution in different cross sections 
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On Figure 4.41 the Si concentration distribution (on 30 mm) is compared with the 

texture image of the measurement (actually from 90 mm height). The simulation could 

not be finished to reach the 90 mm height, therefore qualitative comparison was 

possible only – and the results are promising, since the qualitative correlation is clear. 

The effect of primary and secondary flow is visible. 

  

Experiment Si concentration [wt.%] 

  

Effect of flow Axial velocity [m/s] 

Figure 4.41 Effect of the flow field on the Si concentration distribution 

and comparison with the measurement 
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The flow is driving the solute away from the solidification front to higher regions and is 

squeezing the solute away also from the other side of the melt – Figure 4.42. If the 

solidification is fast enough (like in the current case), the segregation can be frozen. 

 

Figure 4.42 .Pathlines of the flow colored by Si concentration [wt.%] 

 

The region of upward-, downward- and secondary flow is not completely clear yet (the 

primary flow is the one induced by the magnetic field directly and the secondary is the 

natural flows appearing in all other directions). Further work is needed on the system to 

investigate the details. 
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4.5.6. Solidification simulation – upward Lorenz force field 

4.5.6.1 Setup 

The setup of this model was identical to the bidirectional case except the Lorenz force 

field, which is directed upwards (40 mT, 50 Hz) in the whole media. Experimental results 

were not available so far, but the result will be presented in this chapter. 

4.5.6.2 Flow field 

The flow field can be inspected on Figure 4.43. The maximal value is only 0.003 m/s, 

which is one order of magnitude lower than the 20 mT bidirectional case. Here, in the 

upward case, the complete liquid media is pushed upwards against the gravity. The melt 

is primarily flowing upwards, but it must come back down, and the downward flow is 

slowed down by the upward Lorenz force. Bigger eddies can appear in such a system 

even in a slowly flowing media. The flow field becomes much more complex. 

  

  

Figure 4.43 Pathlines (up) and vectors (down) of the flow field 

colored by velocity magnitude [m/s] 
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4.5.6.3 Solute distribution 

The resulting solute distribution is presented on Figure 4.44. Since no measurement 

result is available, no comparison can be done. However, one can observe that 

surprisingly similar segregation profile appears as in the case of RMF mixing: fish scale / 

Christmas tree. 

  

  

Figure 4.44 Si (up) and Fe (down) concentration [wt.%] distribution 

in perpendicular sections 

4.5.7. Conclusion of TMF models 

Based on the current results, the TMF simulation can be performed with rather good 

accuracy if we consider the results presented in chapter 4.5.3 too. The solute 

distribution of the bidirectional case is promising. Further work including more 

measurements should be done. 
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5. Chapter: 
Conclusions and scientific results 
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5.1. Conclusions 

The current industrial needs for high quality aluminum require detailed knowledge of the 

phenomena arising during the processing of the materials. Without gathering information 

about the solidification conditions of a complex casting part, or a pre-product, like a billet 

for rolling, unexpected and unwanted failures can appear. To have a clearer picture on 

solidification processes, the work on the simulation of aluminum solidification under 

forced magnetic induction was presented in the thesis work. 

The experimental work of other scientific groups was mentioned including the 

possibilities for numerical investigations. The numerical models were presented in more 

details, since those were used as basis of this project including magnetohydrodynamic 

background. 

The results on RMF and TMF experiments performed on the special facilities of Miskolc 

were discussed. Those results were the validation keys of the project. 

In case of RMF field, enormous amount of experimental data is available including the 

thermal dataset of each experiment. The macrostructural images, concentration maps 

and temperature datasets were used as validation points or boundary conditions. The 

temperature field monitoring during the experiments provided a great advantage to 

simulate a thermal system accurately with the smallest effort possible so far. The 

qualitative accuracy of the models is surprisingly great. Moreover, in case of Lever rule 

approach, the quantitative conformity is really promising. 

More complex simulation system had to be built up for the TMF facility due to its 

innovative design. Since the Lorenz force field cannot be directly described with any 

parametric equation, electromagnetic simulations were performed using Comsol 

Multiphysics. The results of the simulations were directly validated using the 

measurement results of the magnetic induction vector components close to the inductor 

heads, but it is not directly connected to the induced Lorenz force field. 

To be able to validate the magnetohydrodynamic effects, the thermal gradient shift 

phenomen was used. The global thermal system of the complete facility was simulated 

for the heat fluxes on the crucible wall, which was interpolated in a thermal-flow model. 

The latter simulation was performed to quasi-validate the results of the MHD system. 

After several adjustments and introduction of the reduction factor for the Lorenz force 

field, the gradient shift effect could be simulated with great accuracy. 

Solidification simulations were also performed for the TMF field using a ternary 

approach. Two models were presented: using bidirectional and upward Lorenz force 

field. Qualitative comparison was possible only for the bidirectional case, since the 

preparation of the samples were not possible in time for the upward case. The solute 

distribution conforms well with the resulting macrostructure. 
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5.2. Scientific results of the project 

My results in the project, which are new for the state of the art are the following: 

Thesis 1: 

Coupled multiphysics CFD RANS k-ε and magnetic force 3D simulation of solidification 

under rotating magnetic field in a cylindrical medium has no advantage and additional 

information compared to 2D-axisymmetrical cases. The flow field is quas-iaxisymmetric, 

and the solute distribution has no major difference, but the computational time longer or 

requirements are much higher in 3D case. The computation time of 3D is approximately 

5-10x on a same hardware. For such simulations, 2D axisymmetric computations are 

recommended. 

Thesis 2: 

Coupled multiphysics CFD and magnetic force simulation of solidification under rotating 

magnetic field in a cylindrical medium, the Envelope method of solidification compared 

to Lever rule has weaknesses for higher volume of solidifying metal. The solute 

distribution shows qualitative correspondence with the measurements, but quantitatively 

there are either large differences. On the other hand this problem did not occur with 

Lever rule. The Lever rule is an explicit analytical computation which fulfill the necessary 

conservation rules itself. In contrary, the Envelope model is an iterative computation, 

which incorporate an accuracy to, or on other hand a deviation from the conservation 

phenomena. The comparison of measured and calculated concentration fields suggests 

the application of Lever rule. 

Thesis 3: 

The directly unmeasurable flow patterns appearing inside the TMF Solidification facility 

designed and constructed by MTA-ME Materials Science Research Group at Miskolc, 

Hungary can be simulated and validated with the same multiphysics simulation as 

presented at RMF case. A thermal gradient shift effect was measured by 13 

thermocouples of the facility. The geometry and the model were exceeded with the 

whole facility, and the measured temperature distribution was calculated too. Based on 

the comparison of the measured and calculated temperatures the validation of the flow 

is possible due to the strong connection between the different phenomena. The 

validation can be continued via the solute distribution resulting in the solidification 

modeling. Qualitatively the computed concentration field fits to the microstructure of the 

experimentally crystallized sample. This proves that this method of validation of such a 

complex multiphysics simulation gives the scientifically desired result. The same 

computation facility gives the same quality of computation either a TMF or RMF 

simulations. 
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7. Annex 
 

The articles published on the simulation of RMF stirred liquid metal flows can be found in 

this chapter. 
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Abstract. A measurement of the angular velocity/revolution number of magnetically 

stirred liquid gallium-indium alloy was realized with newly developed angular velocity 

measuring equipment. To get additional information about the flow of the melt, a 

numerical simulation model was performed with ANSYS FLUENT 13.0 with a single 

phase 2D k-ε turbulence solver. The aim was to reproduce the flow as accurate as 

possible, so the measured and computed angular velocity data was compared, to see if 

the system can be modeled fairly well. 

Introduction 

During the solidification of metals and alloys – under Earth circumstances – there are 

flows inside [1-3]. The trait and intensity of these flows are strongly affecting the 

structure of the solidified metals and alloys and by this, the properties too. This affect 

can be quite significant, so the investigation of the phenomena is really important. 

The inspection is in a way that externally induced flows – with different intensity and 

direction – are made in the metal- or alloy-melt (collectively designated as molten metal) 

for solidification. These streams induced from outside, have to be more intense than 

those inside, namely the effect of the outer stimulation should be dominant. We can 

draw conclusions on the flows without outer stimulation as well according to 

examinations achieved this way. 

This paper runs on flows induced by MHD rotating magnetic field (RMF). The used 

experimental MHD stirrer can produce significantly higher inductions (~90 mT) than 

other equipment in the literature. 

To get a clear view of the properties of the flow, the revolution number/angular velocity 

of 75,5%Ga-24,5%In alloy-melt was measured with newly developed “pressure 

compensating” equipment [4]. The data is useful, but additional flow parameters are 

needed, so a numerical model was prepared with ANSYS FLUENT 13.0. Simulations of 

magnetically stirred melts were also developed by Budenkova et al. [5,6]. Our model 

was produced as simple as possible – two dimensional axis symmetrical k-ε turbulent 

model with the inducing force filed. The measured and computed angular velocity data 

was compared to see the accuracy and possibilities of the model. 
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The MHD system 

The operation of the facility is based on the Maxwell equations. If the conducting fluid is 

put into the rotating magnetic field, an eddy current is induced in it. By the law of Lenz, 

the melt is trying to obstruct the inducing field, so it stars rotating. The force – which 

makes the stirring – is the Lorenz force – see Fig 1. and Eq. 1. 

 

Figure 1. The MHD system 

FLorenz = 0,5 σ B0
2 r [ω0-ω]         (1) 

 

Where: 

• σ is the electrical conductivity of the melt – 3,58*106 S/m, 

• B0 is the magnetic induction – strength of the magnetic field – T, 

• r is the distance from the axis - m, 

• ω0 is the synchronous angular velocity of the MHD stirrer – rad/s, 

• ω is the angular velocity of the fluid (molten metal/alloy) – rad/s. 

 

The measuring method [4] 

The metallostatic pressure belonging to the "h" height is in equilibrium with the "Δp" 

pressure difference developing between the pressure along the "R" radius and the 

pressure being on the axis. The pressure difference depends on the height of liquid 

column (h), the density of melt (ρmelt) as well as on the gravitation constant (g): 

Δp = h ρmelt g          (2) 

The height of the magnetically stirred liquid alloy, with stable tank: 
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h = ω2 R2 /2g           (3) 

From Eq. 2 and Eq. 3: 

Δp = ρmelt g [ ω2 R2 /2g ]         (4) 

The angular velocity can be determined on the basis of Eq. 4: 

ω = [1/ R] [ 2 Δp / ρmelt ] 0.5        (5) 

The average revolution number is: 

n = [60/2 π] ω          (6) 

 

Figure 2. The measuring equipment 

 

It is difficult to measure the pressure developing in the melt without disturbing the melt 

flow; therefore instead of measuring directly the developed metallostatic pressure, by 

which it could be compensated, was measured. The sketch of equipment – using a 

pressure compensation method for the average revolution number measurement – 

assembled with the MHD stirrer is shown in Fig. 2. The equipment consists of the 

following three main units: 

A. MHD unit, where the stable ceramic (non-conducting) measuring cell /1/ is 

placed in the MHD inductor /2/ 

B. Measuring unit, where the measuring tank /3/, the distance meter /4/ and the 

compensation chamber /5/ can be found 

C. "Overpressure" unit, where the compensation pressure develops and it is 

measured 

The measuring cell is a closed tank that is connected to the distance meter and to the 

compensation chamber through a small hole indicated by "a" and "b" in Fig. 2. The result 

of the measurement is a volume average of the revolution number/angular velocity. The 

measured data can be seen in Table 2. and Table 3. 
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The setup of the numerical model 

The aim of the work was to build a model as simple as possible and reproduce the main 

flow of the melt. By this, a two dimensional axis symmetrical single phase model was 

created. This choice makes the work faster and lowers the computational requirements. 

The geometry is a simple 60 mm high and 5 mm wide rectangle. This produces the 

10mm inner diameter and 60mm high crucible from the measurements [4]. This crucible 

was filled fully with the molten alloy. The mesh was a simple hexa mesh with size = 0,1 

μm. The turbulence solver was Realizable k-ε model with Enhanced Wall Treatment. 

The Lorenz force filed had to be modeled via a User Defined Function (UDF). The 

coordinate and velocity dependent force was programmed with a C source code. Every 

cell had a different amount of tangential momentum source at every time step – like it 

happens in reality. 

Two different model series were set to have clear view of the possibilities of simulating 

the flow with FLUENT. The first was with 50 Hz of inductor frequency; the second was 

with 150 Hz. The higher frequency makes stronger force, and by this, faster flows. 5 – 5 

different inductions were used in each simulation series – see Table 1. 

 

Table 1. The used inductions in the two simulation series – 50 Hz and 150 Hz inductor 

frequency 

50 Hz 150 Hz 

Induction [mT] 

22,6 16,8 

37,4 26,2 

51,5 37,2 

68,5 48,2 

89,1 65,0 

The simulated flow field 

It is good to see the properties of the flow pattern first. Fig. 3a-d show the contours of 

tangential velocity, Fig. 4a-d show the contours of axial velocity and Fig. 5a-d show the 

contours of radial velocity of models with two inductions and with two frequencies. 
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a)   b)    c)   d) 

Figure 3. Contours of the tangential velocity [m/s] inside the melt with a) 37 mT 

induction and 50 Hz inductor frequency, b) 37 mT induction and 150 Hz inductor 

frequency, c) 69 mT induction and 50 Hz inductor frequency and d) 65 mT induction 

and 150 Hz inductor frequency 

 

a)   b)    c)   d) 

Figure 4. Contours of the axial velocity [m/s] inside the melt with a) 37 mT induction and 

50 Hz inductor frequency, b) 37 mT induction and 150 Hz inductor frequency, c) 69 mT 

induction and 50 Hz inductor frequency and d) 65 mT induction and 150 Hz inductor 

frequency 
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a)   b)    c)   d) 

Figure 5. Contours of the radial velocity [m/s] inside the melt with a) 37 mT induction 

and 50 Hz inductor frequency, b) 37 mT induction and 150 Hz inductor frequency, c) 69 

mT induction and 50 Hz inductor frequency and d) 65 mT induction and 150 Hz inductor 

frequency 
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As visible, there is no major difference with different setups; just the velocity values are 

different. With same induction, but higher frequency, the velocities are also higher. It 

comes from the stronger magnetic field – see Eq. 1. The higher frequency provides 

higher ω0, and stronger Lorenz force. To prove the similarity, it is better to see Fig. 5a-d. 

The path lines run identical. 

       

a)   b)   c)   d) 

Figure 6. Path lines of the flow inside the melt with a) 37 mT induction and 50 Hz 

inductor frequency, b) 37 mT induction and 150 Hz inductor frequency, c) 69 mT 

induction and 50 Hz inductor frequency and d) 65 mT induction and 150 Hz inductor 

frequency 

 

The angular velocities – time dependence and radial distribution 

Theoretically the melt can’t reach the synchronous angular velocity of the inductor. It is 

because of the wall friction, the viscosity and the breaking effect of the melt – see (ω0-ω) 

part of Eq. 1. First the melt accelerates constantly and then it starts to reach the possibly 

maximum with the current conditions – synchronous angular velocity of the inductor, 

melt material properties, magnetic induction, crucible radius, etc. 

The curves of the simulated models can be seen in Fig. 7a for 50 Hz and in Fig. 7b for 

150 Hz. The shapes of the curves are similar. The settle of the flow is slower with lower 

induction and lower frequencies, because of the weaker Lorenz force fields.  
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a) 50 Hz      b) 150 Hz 

Figure 7. Angular velocity as a function of time 

 

These curves were used to check the model during the iterations. The data was 

gathered from the velocity field (as a volume weighted average) as in Eq. 7: 

 

ωvel.method = vt / r          

 (7) 

 

The distribution of the angular velocity (computed from tangential velocity – Eq. 7) can 

be seen in Fig. 9. As the flow is getting faster, the distribution of the angular velocity is 

getting more anisotropic – the middle of the melt is getting faster. Nearby the axis, the 

flow is less disturbed with turbulence. In this region there is a pump effect, a laminar 

uplift or downdraft depending on the vertical coordinate – see Fig. 4 and 6. The wall 

friction is making small eddies, which slow down the primary flow. 

The diagrams in Fig. 8. also can be used to see how the distribution is changing with 

time, because the flow is faster with bigger induction and slower with lower induction. 

The flow pattern is changing constantly – or morphing into each other. If we would ‘stop’ 

the flow at a time, it would be the same as a settled flow induced by a lower induction. 
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a) 50 Hz      b) 150 Hz 

Figure 8. Distribution of the angular velocity along the radius 

 

 

Comparison with the measured data and error analysis. 

The angular velocity was computed from the measured pressure difference, so we did 

the same in the case of the calculations. The pressure pattern inside the melt for two 

inductions with two frequencies can be seen in Fig. 9a-d. 
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a)   b)   c)   d) 

Figure 9. Contours of the static pressure [Pa] inside the melt with a) 37 mT induction 

and 50 Hz inductor frequency, b) 37 mT induction and 150 Hz inductor frequency, c) 69 

mT induction and 50 Hz inductor frequency and d) 65 mT induction and 150 Hz inductor 

frequency 

 

Using the metallostatic pressure difference, the angular velocity of the melt can be 

computed with the following equation: 

 

ωpress.  method = √
2∆p

ρ r2          (8) 

 

Where 

• Δp is the metallostatic pressure difference 

• ρ is the density of the melt – 6350 kg/m3 

• r is the radius of the crucible – 0,005 m. 

 

The computed and measured pressure differences and the compared angular velocities 

can be seen in Table 2. for 50 Hz and on Table 3. for 150 Hz. 

 

 

Table 2. The measured and computed pressure differences, the calculated angular 

velocities from the data and the relative error of the simulated angular velocities – 50 Hz 
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50 Hz 

B0 

(mT) 

Δpsim 

(mbar) 

Δpmeas 

(mbar) 

ωsim 

(rad/s) 

ωmeas 

(rad/s) 

Relative 

Error of ωsim 

(%) 

22.60 1.03 1.20 35.98 38.83 7.34 

37.40 3.28 3.60 64.25 67.30 4.53 

51.50 6.87 7.30 93.06 95.98 3.04 

68.50 12.62 11.50 126.10 120.37 -4.76 

89.10 20.37 19.80 160.19 156.69 -2.23 

Absolute average 4.38 

 

Table 3. The measured and computed pressure differences, the calculated angular 

velocities from the data and the relative error of the simulated angular velocities – 150 

Hz 

150 Hz 

B0 

(mT) 

Δpsim 

(mbar) 

Δpmeas 

(mbar) 

ωsim 

(rad/s) 

ωmeas 

(rad/s) 

Relative 

Error of ωsim 

(%) 

16.80 2.07 2.80 51.08 59.24 13.77 

26.20 6.66 8.80 91.59 104.98 12.75 

37.20 17.09 17.20 146.72 146.96 0.17 

46.20 29.46 31.80 192.65 199.82 3.59 

65.00 60.36 56.00 275.76 266.80 -3.36 

Absolute average 6.73 

 

Fig. 10. shows the relative error of the models graphically. 
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Figure 10. Relative error of the simulated angular velocities compared to the measured 

data 

 

The error is visibly higher with lower inductions. It can be from the measuring difficulties 

of the lower pressures. There are other causes of the deviance between the measured 

and simulated data. The alloy – which was used for the measurements – was mixed by 

the research group. If the composition of the alloy is not exactly 75,5%Ga-24,5%In, the 

material properties are different. The digression of the electrical conductivity can make 

serious differences in the Lorenz force and by this, the angular velocity. There is another 

point with σ. The data was gathered from literature. We can’t be sure if the data is 100% 

correct. On the other hand, the produced model is as simple as possible. The flow is 

simplified into an axis symmetrical system; however it is not completely axis symmetrical. 

Conclusions 

The properties of the flow of magnetically stirred liquid Ga-In alloy have been 

investigated via measurements and numerical simulations. It is clear, that the flow can 

be modeled with ANSYS FLUENT on a fairly accurate level. However a three 

dimensional model should be made to have a complete view of the flow pattern. 

Acknowledgement 

This work has been carried out as part of the TÁMOP-4.2.1.B-10/2/KONV-2010-0001 

project within the framework of the New Hungarian Development Plan. The realization of 

this project is supported by the European Union, co-financed by the European Social 

Fund. 

References 

[1] K. Stransky, F. Kavicka, B. Sekanina, J. Stetina, V. Gontarev, J. Dobrovska: The 

effect of electromagnetic stirring on the crystallization of concast billets. Materials 

and technology 45, pp. 163–166. (2011) 



 

122 

 

[2] B. Yue-long, X. Jun, Z. Zhi-feng, S. Li-kai: Annulus electromagnetic stirring for 

preparing semisolid A357 aluminum alloy slurry. Trans. Nonferrous Met. Soc. 

China 19, pp. 1104−1109. (2009) 

[3] S. Steinbach, L. Ratke: The effect of rotating magnetic fields on the 

microstructure of directionally solidified Al–Si–Mg alloys, Materials Science and 

Engineering A 413–414 pp. 200–204. (2005) 

[4] A. Rónaföldi, J. Kovács, A. Roósz: Revolution number (RPM) measurement of 

molten alloy by pressure compensation method. Materials Science Forum 649 pp 

275-280. (2010) 

[5] O. Budenkova, A. Noppel, J Kovács, A. Rónaföldi, A. Roósz, A-M. Bianchi, F. 

Baltaretu, M. Medina, Y. Fautrelle: Comparison between simulation and 

experimental results of the effect of RMF on directional solidification of Al-7wt.%Si 

alloy. Materials Science Forum 649, pp 269-274. (2010) 

[6] O. Budenkova, F. Baltaretu, J. Kovács, A. Roósz, A. Rónaföldi, A-M. Bianchi and 

Y. Fautrelle: Simulation of a directional solidification of a binary Al-7wt%Si and a 

ternary alloy Al-7wt%Si-1wt%Fe under the action of a rotating magnetic field. 

Modeling of Casting, Welding and Advanced Solidification Processes, Rolduc, 

Netherlands (2012) 

 



 

123 

 

Numerical simulation of the RMF stirring of molten Ga-In alloy using 
RANS k-ε and LES turbulence models 

Csaba Nagy1,a, Yves Fautrelle2, Olga Budenkova2, Arnold Rónaföldi1, 
András Roósz1 

1MTA-ME Materials Science Research Group, Miskolc, Hungary 

2SIMAP/EPM Laboratory, Grenoble, France 

afemtsabi@uni-miskolc.hu 

Keywords: flow simulation, rans, les, mhd, magnetohydrodynamics, fluent, stirring, 
rmf 

Abstract. A comparison of the results of RANS k-ε and LES turbulence models was done via 

the simulation of the electromagnetic stirring of liquid 75,5%Ga-24,5%In alloy (in a 10 mm 

diameter & 30 mm high crucible) using Ansys Fluent. Each velocity component, the 

distribution of eddies inside the melt and other flow parameters were compared respectively. 

The accuracy was checked with measured angular velocity data of A. Rónaföldi. The 

turbulent energy spectra were also produced to see the validity of the LES models. 

Introduction 

Electromagnetically driven flow are usually turbulent. Due to its complexity, simplifications 

are needed to account for turbulence. Several different turbulent models were developed to 

solve flow problems regarding to the needs of the user like computing-time or 

validity/accuracy. The flow simulations of stirring by means of rotating magnetic fields 

(RMF) of liquid Ga-In alloy were already made [1,2] with RANS k-ε models. However a 

more accurate model was needed to gather as much information about the magneto-

hydrodynamic flow as possible, so the Large Eddy simulation was chosen to be compared 

with the results of the RANS k- ε model using commercial software, the Ansys Fluent™. The 

magnetically induced Lorenz force was simulated via a User Defined Function (UDF). Three 

different 3D LES models and a 2D axisymmetric (swirl) Realizable k-ε model with Enhanced 

Wall Treatment near wall function were compared. The three LES models were aimed at 

evaluating the differences coming from the mesh density and the value of the Smagorinsky 

constant (cut-off frequency). The accuracy of the models was compared with some 

measurement data performed by A. Rónaföldi [2,3]. 

Setup of the models 

General setup. The simulated geometry was a cylinder in 3D and a 2D axisymmetric domain. 

The diameter was 10 mm and the height was 30 mm. The first dimension was chosen because 

of the measurement data which were obtained with 10 mm diameter. The 30 mm height was 

chosen due to computing time needs. The 3D geometry was meshed with 0,5x106 and 2x106 

hexa cells; the 2D model was meshed with 3x104. hexa cells. The induced Lorenz force field 

was programmed as a tangential force in all cases – via a user defined function. The detailed 

setup of the force field and the material properties can be found in [1,2]. As in experiment, the 

numerical model used a 22,6 mT induction magnetic field and 50 Hz inductor frequency. The 

properties of the liquid phase were: 

• Density   6350 kg/m3 

• Viscosity   0,00217 Pa·s 

• Electrical conductivity 3,65×106 S/m 
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All models were transient in order to see the velocity fluctuations (if any) and to be able to 

investigate the differences between the turbulent kinetic energies and its dissipations. The 

transient velocity data were also needed for the determination of turbulent energy spectra of 

turbulence. The spectra were also provided in order to be assess more accurately differences 

in each LES models. 

Conception of LES models. Three different LES models were used to assess the effect of the 

Smagorinsky constant and accordingly, the cutoff frequency and the effect of mesh density. 

The three models were: 

• Cs05 half million cells and CS = 0,5 Smagorinsky constant 

• Cs02 half million cells and CS = 0,2 Smagorinsky constant 

• 2M 2 million cells and CS = 0,2 Smagorinsky constant 

The CS constant determines where the border of direct computing and modeling with Subgrid 

Scale model is. A higher constant provides a coarser model, because of less direct computing. 

If a mesh contains less number of cells (which are larger), bigger eddies can be obtained, so a 

more coarse flow will be simulated. Regarding these facts, the 2M model should be the most 

accurate. 

Results 

Primary and secondary flow patterns. The RANS model is very different from all of the 

LES calculations since it predicts a steady flow. No eddies appear all around the media, 

except near the wall. The Enhanced Wall Treatment is clearly visible. The inner part of the 

melt is just rotating without any disturbance. However the LES models show more eddies in 

the cross-section, also near the axis (see Fig. 1). The Cs05 model is in fact a transitional 

model between the RANS models and the more accurate LES models. 

From the observations of the contours from the RANS models to the 2M, a more and more 

complicated flow pattern is being obtained. The maximum velocities are getting higher too. 

General averaging methods in the RANS model filters out all eddies inside. The effect of the 

cut-off frequency (Cs constant) and the mesh density seem to be strong as well on the filtering 

process.  

 

Figure 1. Velocity module of the primary flow in each model 
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Fig. 2 proofs that there is no eddies except near the boundary inside the domain calculated 

with the RANS model. In Cs05, the flow nearby the axis hardly disturbed with eddies, but the 

Cs02 and 2M models put forth eddies everywhere across the melt.  

 

Figure 2. Vectors of the secondary flows for each models 

Turbulent kinetic energy. Considering the last results, the 

RANS model and the most accurate LES model – 2M – will be 

discussed. The turbulent kinetic energy had to be computed in 

post-processing for the LES model (because it just provides the 

velocity data) with the following equation: 

k = ½ (u’2 + v’2 + w’2) (1) 

where u’, v’, w’ are the fluctuations of the velocity x, y and z 

components. The RANS model calculates k and ε directly. 

Fig. 3 show the radial distribution of turbulent kinetic energy in 

RANS (bottom) and 2M (top). In the k-epsilon model, a peak can 

be seen at 4 mm (near wall region). In the LES model there are 2 

peaks – at the axis and at 3 mm, nearby the half of the radius. 

This proofs that the turbulence exist inside the melt and it is 

much stronger than turbulence predicted by the RANS model, 

especially near the wall. It should be stresses however that the 

symmetry condition at the axis of the domain used in RANS in 

fact imposes a regularity on the flow and therefore decreases 

fluctuations. 
Figure 3.Turbulent kinetic energy 

alond the radius – RANS & 2M 
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The average k is about 5 times higher in 2M – 3x10-4m2/s2 for RANS & 1,5x10-3 m2/s2 for 2M.  

 

Comparing the LES models with the Kolmogorov Theory. To examine the behavior of the 

LES models, the turbulent (frequency and wave number) energy spectra were provided [4,5]. 

The frequency spectra of the 3 LES models are shown on Fig. 4. The turbulent spectra show 

how the energy of turbulence is dissipated in the domain for each frequency. As the eddy is 

getting smaller, its frequency is getting higher, providing a faster fluctuation. The energy of 

turbulence is transported from large scales to small scales where it is damped by viscosity – 

that is why the spectra are decaying at the higher frequencies. 

 
Figure 4. Turbulent frequency spectra of each LES model at 7 s of flow time 

The spectrum of Cs05 decays more rapidly, that confirms the filtering phenomenon of the 

small scales in the liquid, whereas 2M decays last – as expected – which means, that there are 

more and smaller eddies in the flow. Using Taylor hypothesis, the turbulent wave number 

spectrum and the compensated spectrum were provided for the 2M model. To be able to make 

the compensated spectrum, the turbulent dissipation rate is needed – see the following 

equation: 

 

Ecomp = E(η) ε-2/3 η5/3 (2) 

 

Where E(η) is the original wave number spectrum, η is the (characteristic) wave number and ε 

is the turbulent dissipation rate. The wave number of turbulence is similar to the frequency, 

but it describes the number of waves (turns of eddies) per unit time. The latter can be 

computed in several ways and we used the following equation: 

 

ε = u’3/λ (3) 

 

where u’ is the (azimuthal) velocity fluctuation and λ is the turbulent wavelength – the size of 

the eddy. λ and η can be computed by means of Taylor hypothesis with the following 

equations: 

 

η = 2π/vav f (4) 

λ = 2π/ η (5) 
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where vav is the average local azimuthal velocity and f is the turbulent frequency. The 

turbulent wavenumber spectrum is produced with the replacement of the frequencies with the 

wavenumbers. To be able to estimate the characteristic wavenumber, the inertial range of the 

spectrum has to be found. For this, the Kolmogorov line can be used. 

The function of the Kolmogorov line (for wave number spectrum) is: 

 

EKolm = η-5/3 (6) 

 

The inertial range corresponds to the spectrum range where the Kolmogorov line runs 

identically. After determining the minimum and maximum η or f value in this region, the 

average of them is used as the characteristic wave number or frequency. The frequency 

spectrum with the Kolmogorov line for 2M at 7 seconds of flow time can be seen in fig. 5. 

 
Figure 5. The frequency spectrum of 2M with the Kolmogorov line – at 7 s of flow time 

The turbulent dissipation rate was computed only for the 2M model. The RANS has 50 times 

smaller dissipation than 2M – 0,002 m2/s3 & 0,101 m2/s3. 

The original and compensated wavenumber spectrum can be seen on Fig. 6 for the 2M model 

at 68,536 seconds of flow time. These spectra have to be provided from at least one minute of 

flow time for a well-developed turbulent flow – to have correct information about the length 

scales. If the compensated spectrum reaches the well-defined Kolmogorov constant, Ck = 1,5 

[4], the model provides a reliable physical information about the flow. If the compensated 

spectrum is well defined and the turbulence is well developed, it can also show the inertial 

range – where the compensated spectrum reaches the value of Ck. 
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Figure 6. Original and compensated wavenumber spectrum of turbulence – at 68,5 s of flow 

time, 2M 

Comparing the results with measured angular velocity. To be able to determine the 

accuracy of the simulated flow, a comparison has been achieved with measured angular 

velocity data. The measurements were made with pressure compensation method. Detailed 

information can be found in [3]. Other measured velocity components are not available for 

our system, so just volumetric average of the primary flow is compared. The results can be 

found in Table 1. 

Table 1. Measured and simulated volumetric average angular velocities 

 
ω 

(rad/sec) 

Rel. error 

(%) 

Measured 38,83 - 

RANS 31,79 -18,14 

Cs02 39,47 1,64 

Cs05 37,79 -2,68 

2M 37,82 -2,61 

In this case the relative error of the RANS is quite high, but generally 3-10 % error could be 

reached with other models with other magnetic induction [1,2]. The LES models seem to be 

much more accurate. 

Summary 

Several numerical simulations were done to provide a very accurate turbulent model of the 

electromagnetic stirring of liquid metals – here eutectic Ga-In. The results of RANS model 

suggests that too much averaging is used. The flow pattern seems to be too ordered to be 

realistic. However, the LES models provides statistically a more accurate primary flow and 

qualitatively more realistic secondary flow pattern. 
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Abstract 

To understand resulting effect of an electromagnetic stirring during solidification of alloy one should use either 

well-controlled experiments or numerical simulations. In the present work experiments on solidification of Al-

7wt%Si alloy with RMF stirring performed in University of Miskolc are presented. Temperature data obtained 

during the experiments are used for simulations which are performed with a purely columnar solidification 

model. The numerical code developed in the SIMAP laboratory based on the ensemble averaged multiphase 

model with the envelope approximation is used for the simulations. 

 

Keywords: electromagnetic stirring, solidification, alloy, simulation, envelope model, segregation 

Introduction 

Alternating electromagnetic fields are widely used in alloys solidification to control the structure of the material. 

Generally, convection leads to a smaller primary and secondary dendrite spacing due to more intense mass 

transport in the liquid phase. Eventual fragmentation of solidified dendrites also promotes finer solidified 

structure. On the other hand forced convection can have negative impact because of directed mass flow through 

the mushy zone which leads to the segregation. Furthermore, transport of dendrite fragments also can affect 

composition distribution [1]. To examine these phenomena, two laboratory setups for directional solidification 

equipped with electromagnetic stirrer were constructed and equipped with thermocouples allowing for the 

temperature measurement along the sample during the solidification [2].  Obtained data were used in simulations 

of solidification process. 

 

The solidification facility and experimental results 

The sketch of the solidification facility is shown in Fig. 1. The Ø8x100 mm sample is placed into a holder 

cartridge whose lateral wall allows for the placement of 13 thermocouples lengthwise for the temperature data 

collection. The cartridge is connected to a copper cooling core and is placed into a quartz tube – making the 

sample holder assembly. The copper core is constantly in the water to provide a heat flux for the solidification.  

The whole sample is kept in a rotating magnetic field during the solidification experiment. 

 

 
Fig. 1: The solidification facility equipped with RMF stirrer 

The experiments are performed as follows: 

 

mailto:ntsart@gmail.com


 

131 

 

1. The sample is heated up over a liquidus temperature, 

2. An initial temperature gradient is set up in the sample using the cooling rod and the lowest zone of the 

furnace, 

3. The lowering of the sample holder assembly is started – optionally with RMF stirring – to induce 

solidification. 

 

The temperature field is recorded with National Instruments® data collector tool using a LabView® program. 

There are 3 zones in the furnace and the lowest zone is set to a higher temperature. In the beginning of the 

experiment the lower half of the sample is in the lowest hot zone, while the upper part of the sample is in a 

middle furnace zone which is colder. During the sample drawing its upper part first pass a warmer zone. Due to 

this, the thermocouples at higher positions first record an augmentation of the temperature, and then the cooling 

occurs as seen in Fig. 2. 

 

 
Fig. 2: Cooling curves obtained from the thermocouples during the solidification experiment with B=6 mT  

 

The structures of two directionally solidified samples with and without electromagnetic stirring are shown in Fig. 

3. As a result of the secondary flows, a strong central segregation appears.  

 

 
Fig 3: Microstructure of directionally solidified Al-7Si samples with (right) and without (left) RMF stirring. 

Light grey color corresponds to a higher concentration of the Si (eutectic structure).  

 

Two-dimensional and three-dimensional modeling  

We perform 2D and 3D modelling for the experiments in order to capture three-dimensional effects of the flow 

and their effect on the segregation. Two-dimensional modelling is made with an axisymmetric swirl for a 

rectangular calculation domain 4x100 mm meshed with 40000 uniform tetragonal cells. In three dimensions the 

calculations are made for a cylinder of 100 mm high and 8 mm diameter using 510600 hexahedrons with the 

biggest skewness 0.54. The modeling is performed with a commercial code Ansys Fluent® with UDF functions. .  

Both models have the same user defined functions written for the phase transition during the solidification and 

for the specie transport with segregation at the solid-liquid interface [3-4].Two hydrodynamic phases are 

considered, solid and liquid and Euler model is used. Three thermodynamic phases, namely, solid, interdendritic- 

and extradendritic liquid are considered according to the envelope model [5-6]. The induced Lorenz force field is 

set as momentum source using analytical approximation since the length of the inductor is larger than that of the 

sample [7]. Darcy law is used to model the flow through the mushy zone. 
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Previous two-dimensional modeling was made for such experiments but with adiabatic conditions at the lateral 

wall, a given cooling rate at the bottom and a fixed thermal gradient at the top. In the present case the 

temperature dataset of experiments is used as a boundary condition along the lateral wall of the calculation 

domain. A linear interpolation in space for calculation points is made because there are 10 data points for 100 

mm height, which are two orders of magnitude less than the number of cells along the height Fig. 5. 

Interpolation in time is also needed since the data collection interval is much higher than the used time steps in 

the model and also. 

 

  
Fig 5: Temperature distribution along the sample from measurements and interpolation 

 

Results of two-dimensional simulations 

In Fig.6 results for the flow in the crucible and initial stage of the solidification are presented. In this case the 

flow consists of small vortices moving downward and upward near the lateral wall. An averaged axial flow may 

be identified in the center of the sample which is directed upward in the lower part of the sample and is 

descending for its upper half. The solidification started with a strong central segregation, but due to the 

temperature field, the whole cross section has been closed by the mushy zone. The blocked melt with higher 

concentration solidifies later than the melt near the wall (Fig 6.). 

 

 
Fig. 6: Intermediate results of the 2D model at 95.26 seconds flow time 

 

Results for three-dimensional simulation 

The 3D model’s computational time per time step is about 50-60 times higher than the 2D, so the following 

intermediate results can be presented. Similar to the 2D case, the induced secondary flow provides a central 

segregation and slows down the solidification process in the center as shown in Fig. 7. 
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Fig. 7: Intermediate results of the 3D model at 24.7 seconds flow time 

 

The need of the 3D domain is proven on Fig 8. The flow is shifting between axis-symmetric and asymmetric 

from one time step to another. 

 

 
Fig. 8: Shifting between axis-symmetric and asymmetric flow pattern presented by vectors of velocity magnitude 

 

Summary 

A facility for examining the solidified structure of different alloys under natural or forced convection has been 

developed; and used for Al-7Si binary alloy. The solidified structures and a concentration map are presented. 

With the aid of the collected temperature data, 2D axisymmetric and 3D solidification models are provided using 

ensemble averaged envelope model.  
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