

Contribution au développement d'outils analytiques et numériques pour quantifier et qualifier la robustesse des structures

El Hadji Boubacar Seck

► To cite this version:

El Hadji Boubacar Seck. Contribution au développement d'outils analytiques et numériques pour quantifier et qualifier la robustesse des structures. Génie civil. Université de Nanterre - Paris X, 2018. Français. NNT : 2018PA100060 . tel-01923391

HAL Id: tel-01923391 https://theses.hal.science/tel-01923391

Submitted on 15 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

200 av. de la République 92001 Nanterre Cedex www.parisnanterre.fr École doctorale 139 : Connaissance, langage, modélisation Laboratoire Energétique Mécanique Electromagnétisme

Membre de l'université Paris Lumières

El Hadji Boubacar SECK

Contribution au développement d'outils analytiques et numériques pour quantifier et qualifier la robustesse des structures

Thèse présentée et soutenue publiquement le 12/07/2018 en vue de l'obtention du doctorat de Mécanique, Génie Mécanique, Génie Civil de l'Université Paris Nanterre sous la direction de M. Luc DAVENNE (Université Paris Nanterre) et de Mme Sophie ORTOLA (co encadrante)

Rapporteur :	M. Julien BAROTH	Maître de Conférences HDR, Université Grenoble Alpes
Rapporteur :	M. Alaa CHATEAUNEUF	Directeur général de CIDECO, Université Blaise Pascal (Clermont-II) - Clermont-Ferrand
Membre du jury :	Denys BREYSSE	Professeur des Universités, Université Bordeaux 1
Membre du jury :	Laurent GALLIMARD	Professeur des Universités, Université Paris Nanterre
Membre du jury :	André ORCESI	Ingénieur de Recherche, IFSTTAR

Jury :

Remerciements

Ce travail n'aurait jamais vu le jour sans le soutien et les encouragements de mon directeur de thèse Monsieur Luc DAVENNE, Professeur à l'Université Paris Nanterre et directeur du Laboratoire Electromagnétisme Mécanique Energétique. Mes premiers remerciements lui sont adressés. J'ai, en effet, réellement apprécié ces années de collaboration. Sur le plan scientifique, je le remercie de m'avoir fait profiter de sa rigueur scientifique, de ses conseils avisés et de ses connaissances qui sont une source intarissable d'enrichissements. Je tiens à souligner surtout les aspects humains de cette collaboration, sa disponibilité et la confiance qu'il m'a accordée tout au long de la thèse. Grâce à cette expérience fructueuse, elle a su me faire partager sa passion pour la recherche.

Je remercie Madame Sophie ORTOLA, Maître de Conférences à l'Université Paris Nanterre, pour son implication, son soutien permanent, sa disponibilité et la confiance qu'elle m'a accordée depuis le début de mon stage de Master 2 jusqu'à ce jour. Je lui en suis profondément reconnaissant et lui témoigne ici toute ma gratitude. Je tiens à souligner ses qualités humaines exceptionnelles.

Je tiens à remercier Monsieur Alaa CHATEAUNEUF, Professeur à l'Université Blaise Pascal, et Monsieur Julien BAROTH, Maître de Conférences HDR à l'Université Grenoble Alpes, d'avoir accepté d'être rapporteurs de mon travail. Toute ma gratitude s'adresse aussi aux Professeurs Denis BREYSSE de l'Université Bordeaux 1 et Laurent GALLIMARD de l'Université Paris Nanterre et à l'Ingénieur de Recherche André ORCESI qui m'ont fait l'honneur de participer à la soutenance de cette thèse.

J'adresse mes remerciements à l'ensemble des doctorants et collaborateurs du LEME pour la bonne ambiance existante, leur aide, leur sympathie et les diverses discussions possibles sur leurs différentes thématiques de recherche. Je remercie particulièrement Patrick RIBEIRO, Khanh TRAN, Yvain CANIVET, Thi Huyen Cham LE, Romain PAWELKO, Mohand OUARABI, José Luis RA-MIREZ, Astrid RUBIANO, Jonas MARUANI, Laithe ABOUDOU et Marie DABOS pour tous nos échanges fructueux.

Une pensée à toutes les personnes qui se sont intéressées à ma thèse et parmi elles, celles qui sont venues à la soutenance, leur présence m'a fait énormément plaisir.

J'avoue que je n'aurai jamais pu arriver jusque là sans le soutien de mes parents, de mon grand frère Souleymane SECK et de ma grande sœur Maguette SECK, qu'ils trouvent en ces mots la profonde estime que j'ai pour eux. Je remercie toute ma famille et belle famille pour ses encouragements et son soutien moral. Pour finir, je réserve une mention très spéciale à ma chère épouse Khady NDIAYE, sans laquelle cette thèse n'aurait jamais été ce qu'elle est aujourd'hui.

Résumé

Les notions de robustesse structurale sont intégrées dans les codes de conception européens suite à l'effondrement partiel et progressif de la tour Ronan Point de Canning Town à Londres (Angleterre, 16.05.1968). Le cadre réglementaire des Eurocodes définit la robustesse comme l'aptitude d'une structure à résister à des événements accidentels dits identifiés (incendies, explosions, chocs) ou non identifiés (conséquences d'une erreur humaine, attentats) sans présenter de dégâts disproportionnés par rapport à la cause d'origine. Cette définition incite les ingénieurs à inclure dans les procédures de conception les notions de dommage initial (défaillance locale) et de dommage disproportionné (défaillance globale).

L'objectif de ces travaux de thèse est de développer un outil de simulation de la robustesse de structures lorsque des incertitudes de sollicitations (évènement accidentel) et / ou une faute de dimensionnement (conception ou de réalisation) interfèrent avec les dimensionnements réglementaires. La robustesse est évaluée à travers un indice compris entre 0 (structure peu robuste) et 1 (structure très robuste) et calculé à partir des probabilités de défaillance initiale et globale. Cette thèse propose une méthodologie reposant sur la recherche d'arbres complets d'évènements illustrant l'ensemble des cheminements potentiels d'une défaillance initiale localisée jusqu'à la ruine globale. L'approche développée s'applique aux structures hyperstatiques, dans lesquelles la rupture d'un ou plusieurs éléments n'entraine pas systématiquement la ruine de l'ensemble de la structure. En effet, les éléments non endommagés restants peuvent être en mesure de supporter les chargements externes par une redistribution des efforts internes.

La procédure est illustrée dans les cas de structures unidimensionnelles hyperstatiques de poutres bi-encastrées et d'un portique référencé dans les normes et classiquement étudié dans la littérature. Le mode local de défaillance de nos simulations est la formation d'une rotule (fragile ou plastique) lorsque le moment sollicitant appliqué atteint la valeur du moment résistant d'une section droite. Deux types de lois probabilistes, Gaussiennes et Log-normales, sont testées par l'approche développée et par des simulations Monte-Carlo. Les variables aléatoires choisies peuvent être indépendantes ou corrélées. Nous présentons les résultats sous forme d'arbres d'évènements comportant l'ensemble des branches exclusives, sans intersection entre branches issues d'un même nœud. Cette spécificité permet de calculer des indices caractérisant la robustesse de la structure selon chaque scénario.

L'analyse de l'arbre des évènements et des indices de robustesse permet de mettre en évidence les fragilités potentielles pouvant engendrer une défaillance généralisée d'une structure vis-à-vis d'accidents ou d'actes de malveillance. La méthode développée fournit un outil de simulation et de diagnostic efficace, tant en phase de conception qu'en phase de réhabilitation, permettant d'envisager le renforcement de bâtis existants ou futurs et d'assurer la sécurité des personnes et des ouvrages environnants.

Mots-Clés : robustesse des structures, arbre d'évènements, fiabilité des structures, défaillance locale, défaillance globale, effondrement progressif.

Abstract

Localized initial failures in constructions can sometimes be followed by disproportionate damage (collapse) spreading to the whole or the major part of a building. Since the partial and progressive collapse of the Ronnan Point tower (London, 1968) caused by a gas explosion, the concept of robustness has been introduced in standards. Structural robustness is defined as the ability of a structure to withstand unforeseen events causing local damage like fire, explosion or impact, without suffering disproportionate collapse. This definition encourages engineers to include the concepts of initial damage (local failure) and disproportionate damage (global failure) in design procedures.

The main objective of this PhD work is to develop a simulation tool in order to highlight the potential weakness in a structure when uncertain sollicitations (accidental events) and/or dimensional fault (design or realization) interfere with the standard predictions. The robustness is evaluated by an index varying from 0 (non-robust structure) to 1 (very robust structure) and is calculated from the initial and global failure probabilities. The proposed methodology is based on an event tree analysis summurizing all the distinct potential scenarios, from the initial damage to the collapse of the structure. The developed approach is applied to statically indeterminate unidimensional structures like beams and frame. The redundancy's consequence is that the break of one or several cross sections will not necessarily lead to the collapse of the whole system : the redistribution of the internal loads allows the remaining undamaged parts of the structure to support the external (applied) loading.

The methodology is illustrated by some examples of clamped-clamped beam and frame, loaded with punctual forces. The cross sections are supposed to have an elastic behaviour until the formation of plastic hinges (local failure). Two types of probabilistic laws, Gaussian and Log-normal, are tested by the developed approach and by Monte-Carlo simulations. The chosen random variables can be either independent or correlated. The resulting complete event tree contains all the exclusive paths from an localised damage to the global failure, without intersection between branches stemming from the same node. This specific property allows to evaluate the robustness indexes of the structure with the ratio between the local and global probabilities, according to each scenario.

The analysis of the event tree and of the robustness indexes allows to highlight the potential brittleness which could cause a generalized collapse of the structure with respect to accidents or malicious acts. The developed methodology provides an effective tool of simulation and diagnostic, both in the design phase and in the rehabilitation one, useful to the reinforcement of existing or future buildings and to ensure the safety of people and surrounding structures.

Keywords : structural robustness, event tree, structural reliability, local failure, global failure, progressive collapse.

Table des matières

Ι	Etat	Etat de l'art		
	1	La rol	oustesse structurale	7
		1.1	Cadres réglementaires de la robustesse structurale	8
			1.1.1 Code de conception anglais	9
			1.1.2 Code de conception canadien	9
			1.1.3 Code de conception américain	9
			1.1.4 Code de conception européen	10
		Les éléments relatifs à la robustesse	11	
		1.3	Quantification de la robustesse structurale	14
			1.3.1 Indices de robustesse	14
			1.3.2 Arbre d'évènements	19
			1.3.3 Domaines d'application et exigences	24
		1.4	Etude de robustesse structurale proposée dans la littérature	25
	2	Fiabili	ité : outils d'évaluation de la robustesse	26
		2.1	Évaluation de la probabilité de défaillance d'un élément	27
			2.1.1 Variables aléatoires	27
			2.1.2 Mode de défaillance	28
			2.1.3 Fonction d'état limite	28
			2.1.4 Transformations isoprobabilistes	29
			2.1.5 Probabilité de défaillance	30
			2.1.6 Méthode d'approximation : FORM	31
			2.1.7 Méthode de simulation : Monte-Carlo	32
	2.2 Probabilité de défaillance des systèmes			
	3	Choix	et hypothèses pour notre travail	34
п	Éval	luation	de la robustesse structurale en contexte probabiliste	37
	1	Appro	oche proposée	37
		1.1	Indice de robustesse	38
		1.2	Probabilité de défaillance	38
		1.3	Probabilité d'intersection	38
		1.4	Scénario exclusif	40
		1.5	Arbre d'évènements	41
		1.6	Synthèse	41
	2	Applic	cation à une structure unidimensionnelle	42
		2.1	Probabilités de défaillance locale	44

		2.2	Probabilités d'intersection	46	
		2.3	Probabilités conditionnelles	49	
		2.4	Arbre d'évènements	54	
		2.5	Validation de l'approche proposée par une simulation de Monte-Carlo	56	
	3	Prise	en compte de l'occurrence d'un accident dans une section autre que les		
		section	ns dimensionnantes	57	
III	De	la défail	lance localisée à la ruine globale des structures en contexte probabiliste	61	
	1	Appro	ximations linéaires	64	
		1.1	Probabilités de défaillance locale	64	
		1.2	Probabilités d'intersection	67	
		1.3	Probabilités conditionnelles	69	
		1.4	Arbre des évènements	72	
		1.5	Analyses de l'ensemble des scénarios exclusifs	73	
		1.6	Discussion sur le choix de l'indice de fiabilité retenu	74	
	2	Appro	ximations non linéaires	75	
		2.1	Probabilités de défaillance locale	76	
		2.2	Arbre des évènements	78	
	3	Variał	oles aléatoires corrélées	79	
		3.1	Probabilités de défaillance locale	81	
		3.2	Arbre des évènements	82	
TX 7	Car	nostánico	tion de la rehustage d'un partique de référence	07	
IV		Droho	tion de la robustesse d'un portique de reference	0/	
	1	Proba	bilités d'intersection	90	
	2	Propa Caland	bilités d'intersection	92	
	3	Calcu		94	
	4	Arbre		90	
AN	INE	XES		115	
A	Cal	lcul des r	probabilités d'intersections et exemples traités dans la littérature	115	
	1	Autres	s méthodes de calcul des probabilités d'intersections	115	
	-	1.1	Intersection de deux événements	115	
		1.2	Intersection de plus de deux événements	116	
	2	Exemi	oles traités dans la littérature	117	
	-	2		11,	
B	Co	des en Py	ython de l'approche développée	119	
С	Scé	énarios e	xclusifs dans le cas de la poutre bi-encastrée sollicitée par une force ave	c	
	l'hy	ypothèse	de l'occurrence d'un accident dans une section autre que les sections dimen	I-	
	sio	nnantes		131	
_	_	_			
D	D Codes en Python et en Matlab et scénarios exclusifs pour la poutre bi-encastrée sollicitée				
	par	r deux fo	rces	133	
E	Со	mmentai	res sur la rapide croissance des arbres d'évènements	149	
-					
F	Scénarios exclusifs dans le cas du portique de référence : Rupture initiée en A			151	

Introduction générale

Les codes de conception européens (Eurocodes) intègrent les notions de robustesse dans les procédures de dimensionnement des structures de génie civil. Il s'agit de concevoir des structures qui soient telles que la perte accidentelle de l'un de leurs éléments structuraux (par impact, explosion, incendie, attentats, ...) ne provoque qu'une défaillance localisée et n'engendre pas une ruine en chaine de la structure.

De nombreuses recherches sur la robustesse structurale ont été réalisées ces dernières décennies. Les premiers travaux dans ce domaine ont été développés à la suite de graves défaillances structurales comme par exemple l'effondrement partiel et progressif de la tour Ronan Point de Canning Town à Londres (Angleterre, 16.05.1968) (Figure 1). Cet évènement spectaculaire est un exemple typique de ruine en chaine car étant caractérisé par une défaillance localisée qui est suivie de dégradations disproportionnées. Les conséquences de cet accident ont été jugées inacceptables par rapport au dommage initial et ont suscité l'émergence de nouvelles mesures : révision des normes de conception afin de prendre en compte la robustesse et apparition de plusieurs méthodes de calcul permettant de quantifier et qualifier la robustesse structurale suite au travail de plusieurs chercheurs.

FIGURE 1 – Effondrement de la Tour Ronan Point

Plus récemment, il est apparu nécessaire de développer de nouvelles procédures permettant de concevoir des structures encore plus robustes. En effet, de nouveaux évènements aux conséquences dramatiques ont marqué la mémoire collective. Citons par exemple la destruction des tours jumelles

du world Trade Center de New York (États-Unis, 11.09.2001) (Figure 2a), l'effondrement d'une partie de voûte d'une passerelle du terminal 2E de l'aéroport Roissy Charles-de-Gaulle (France, 23.05.2004) (Figure 2b), la ruine du pont autoroutier de l'interstate-35 Ouest de Mississippi (États-Unis, 01.08.2007) (Figure 2c), ou encore les défaillances en chaine survenues lors de l'accident nucléaire de Fukushima (Japon, 11.03.2011). Ces différents exemples de défaillance structurale engendrent deux conséquences de nature différente : une perte matérielle relative à l'ouvrage et une perte immatérielle concernant les vies humaines. Ainsi, ces défaillances accidentelles aux conséquences disproportionnées vis-à-vis du dommage initial soulèvent les questions de gestion des risques. De ce fait, minimiser le risque par l'étude de la robustesse structurale est un enjeu majeur pour la société afin de mieux concevoir, d'améliorer les performances structurale, économique et sécuritaire, et d'op-timiser la maintenance ou la réhabilitation sur le long terme.

(a)

FIGURE 2 – Effondrement (a) des Tours jumelles du World Trade Center; (b) du Terminal 2E de l'aéroport Charles Dé Gaule; (c) du Pont Minneapolis

Pour atteindre ce nouvel objectif de conception robuste, les autorités administratives ont réévalué les normes de conception (ASCE-7-02 [2005], EN-1990 [2002], EN-1991-1-7 [2006], NBCC [1995], ODPM [2004]. Ces codes ont proposé des exigences, des stratégies et des méthodes afin de satisfaire le besoin de robustesse des structures. Ils ont prescrit des recommandations concernant la maîtrise des risques structuraux vis-à-vis d'actions accidentelles mal identifiées lors de la construction.

La littérature scientifique actuelle regroupe de nombreux travaux sur la robustesse structurale (Baker et al. [2008], Faber et al. [2006], Kagho-Gouadjio [2013], Starossek [2007a]. La plupart des auteurs ont étudié la robustesse structurale par des approches déterministes. Quelques effondrements progressifs ont été étudiés suite à un dommage initial causé par un événement extrême inattendu

comme par exemple le feu (Fang et al. [2012]) ou la perte d'une colonne (Alashker et al. [2010], Fascetti et al. [2015], Formisano et al. [2015], Fu [2009], Kwasniewski [2010], Starossek and Haberland [2010]). Certains auteurs ont développé des modèles de simulation (Tay et al. [2016]) ou ont proposé des méthodes analytiques (Huvelle et al. [2015]). Branco and Neves [2011] ont étudié les similitudes entre la robustesse et les codes sismiques. Afin d'étudier des structures complexes, De Biagi and Chiaia [2013] ont proposé une métrique basée sur la théorie des graphes et ont tenté d'établir un lien entre la robustesse structurale et la redistribution des efforts. Cizmar et al. [2011] ont proposé des analyses basées sur la fiabilité pour évaluer la robustesse des structures. Certains auteurs ont construit une partie d'un arbre d'évènements en contexte probabiliste (Kagho-Gouadjio [2013], Sorensen [2011]). Baker et al. [2008] ont proposé une méthode fondée sur la théorie de l'analyse de décision pour évaluer la robustesse structurale ; ils ont utilisé les arbres d'événements probabiliste pour calculer les risques directs et indirects de l'effondrement.

L'objectif de ces travaux de thèse est de développer un outil de simulation de la robustesse de structures lorsque des incertitudes de sollicitations (évènement accidentel) et / ou une faute de dimensionnement (conception ou de réalisation) interfèrent avec les dimensionnements réglementaires. Cette thèse présente des méthodologies analytique et numérique pour étudier la robustesse de structures hyperstatiques par la recherche d'arbres complets d'évènements comprenant tous les chemins potentiels distincts d'une défaillance initiale localisée jusqu'à la ruine globale. L'arbre est construit en considérant une défaillance progressive (un événement après l'autre) et des défaillances multiples survenant dans la structure. A chaque étape, aucun scénario n'est privilégié et l'outil de simulation permet de mettre en lumière les faiblesses potentielles de la structure en contexte incertain (événements accidentels). La robustesse est évaluée au travers d'un indice compris entre 0 (structure peu robuste) et 1 (structure très robuste). Cet indice est calculé à partir des probabilités de défaillance initiale et globale. Plus les structures deviennent complexes, plus le nombre de chemins de défaillance à explorer peut devenir très vite important.

La présentation de ces travaux de thèse est répartie en quatre chapitres :

- Le chapitre I est divisé en deux grandes parties : notion de robustesse structurale et outils de fiabilité. La première partie présente brièvement quelques normes qui régissent la robustesse structurale ainsi que les domaines d'exigences et de stratégies. Elle décrit également quelques indices permettant l'évaluation de la robustesse. Elle rappelle les différentes techniques et méthodes d'appréciation de la robustesse structurale et présente quelques démarches de construction incomplète d'arbre d'évènements. La deuxième partie de ce premier chapitre présente les différents outils et concepts de fiabilité que nous utiliserons pour quantifier les probabilités de défaillance locale et globale.
- Le chapitre *II* présente l'approche proposée dans cette thèse. Cette procédure repose sur une méthode de construction complète d'arbres d'évènements. L'approche de parcours d'arbres consiste à rechercher la propagation de la défaillance au sein-même de la structure : il s'agit donc d'analyser les processus qui font qu'une défaillance localisée puisse entraîner la ruine globale. La détermination de mécanismes de ruine d'évaluer la robustesse structurale au travers d'indices de robustesse. Cette approche est détaillée sur un cas académique de structure unidimensionnelle (poutre fléchie) dont le mode de défaillance est la formation de rotules fragiles. Des simulations de Monte-Carlo sont également effectuées pour valider la modélisation proposée et les résultats de ces deux méthodes sont comparés.

⁻ Le Chapitre III propose une étude plus approfondie de la robustesse en retenant comme

deuxième mode de défaillance locale la formation de rotules plastiques. L'effet de la combinaison des charges extérieures est étudié puisqu'il peut être bénéfique ou pénalisant suivant la section considérée. Deux types de lois probabilistes (Gaussienne ou Log-normale), conduisant à une procédure soit linéaire, soit non linéaire, sont testées. Enfin, les adaptations nécessaires à la prise en compte de variables aléatoires corrélées sont présentées.

— Dans le quatrième chapitre, l'approche développée est appliquée sur un portique référencé dans les normes et classiquement étudié dans la littérature. Cette étude vise à montrer que notre procédure peut s'appliquer à des assemblages de poutres et pour des efforts de supports non colinéaires. Elle permet également de comparer nos résultats avec ceux fournis dans la littérature.

Finalement, une conclusion générale permet de faire une synthèse des résultats obtenus afin d'évaluer l'approche proposée et soumettre des perspectives pour la suite des recherches de ces travaux de thèse.

Chapitre

Etat de l'art

La plupart des constructions sont dimensionnées selon des études de conception reposant sur des calculs déterministes, prenant en compte les sollicitations réglementaires et leurs combinaisons selon les normes en vigueur. La variabilité est introduite sous forme de coefficients partiels de sécurité dans un contexte semi probabiliste. Or l'actualité montre régulièrement que la survenue de sollicitations accidentelles, criminelles ou non (feux, explosions, chocs, attentats, séismes, ...) peut engendrer une destruction ou une fragilisation notoire de parties de bâtiments (logements, bureaux, industries, établissements recevant du public, ...) ou d'ouvrages (ponts, tunnels, échangeurs, réseaux, ...). Parfois, des ruines localisées (défaillance initiale) peuvent être suivies de dégradations disproportionnées (défaillance globale) se généralisant en chaîne à tout ou une partie du bâtiment ou de l'ouvrage, voire aux constructions voisines. Plusieurs exemples de ruine en chaine ont marqué la mémoire collective ; ils sont détaillés dans les paragraphes suivants.

Le 16 mai 1968 à Canning Town dans l'Est de Londres; une tour de 22 étages nommée Ronan Point s'effondre en partie à la suite d'une explosion de gaz dans un appartement du 18^{ième} étage. Cette explosion est à l'origine de l'écartement du mur extérieur de la cuisine et du mur porteur du salon, entrainant une déstabilisation des étages supérieurs qui s'effondrent, comme un jeu de dominos, sur les étages inférieurs. Cet accident est un exemple type d'effondrement progressif (Figure I.1).

FIGURE I.1 – Mode de ruine de la tour Ronan Point (Huvelle et al. [2015])

Les enquêtes ont montré que l'effondrement a été déclenché par l'explosion de gaz et ont également révélé qu'il a été causé par un défaut au niveau des joints de construction. En 1986, la démolition étage après étage dans une procédure inverse de celle de sa construction, a confirmé les preuves de défauts conceptuels du mode de construction. Les codes du bâtiment existants ont été jugés inadéquats pour assurer la sécurité et l'intégrité des immeubles d'habitation en béton préfabriqué de grande hauteur. Par la suite, les codes du bâtiment de nombreux pays ont adopté des dispositions de robustesse.

Il est important de noter que l'effondrement de Ronan Point n'était pas le premier cas d'effondrement progressif (selon une enquête menée en 1972, environ 15 à 20% du nombre total de défaillances étaient de ce type (Allen and Schriever [1972]). Cependant, en raison de la large médiatisation de cet accident, ce type d'effondrement a attiré l'attention des chercheurs et des autorités. Ainsi, dans les années 1970, un grand nombre de publications traitant l'effondrement progressif et ses causes est apparu (Breen [1975], Burnett [1975], Ellingwood and Leyendecker [1978], Leyendecker and Ellingwood [1977], Somes [1972], Taylor [1975], Taylor and Alexander [1974]). Les codes de conception du bâtiment, ont également évolué, introduisant des mesures préventives possibles et des dispositions visant à réduire le risque d'effondrement progressif (NRCC [1975]). Pendant cette période, les principales approches pour réduire le risque d'effondrement progressif ont été formulées.

Au cours des années 1980 et au début des années 1990, l'intérêt pour ce phénomène d'effondrement progressif a diminué. Cependant, l'attentat à la bombe contre l'immeuble fédéral Alfred P. Murrah à Oklahoma City en 1995 (Figure I.2) et celui contre les ambassades américaines à Nairobi et à Dar-Es-Salaam en 1998, ont attiré une attention renouvelée sur la robustesse structurale (MMC [2003]). Selon Breysse [2009c], la gravité de l'effondrement de l'immeuble fédéral Alfred P. Murrah avait été favorisé par les particularités de la structure. En effet, seul un poteau sur trois était fondé en façade et les autres étant repris au deuxième niveau par une poutre de transfert en bordure de plancher. Afin de réduire le risque d'effondrement progressif pour les structures nouvelles et existantes (DoD [2005], GSA [2003]), des approches développées dans les années 1970 sont adoptées. Ces efforts visent à développer des méthodes de conception explicites.

Le 11 septembre 2001, les tours jumelles de world Trade Centre de New York se sont effondrées suite aux impacts de deux boeings 747. Leurs destructions sont dues à une combinaison de dégâts structuraux au niveau de la zone d'impact et du déclenchement d'un feu à haute température. En conséquence, la structure a perdu sa capacité à supporter la combinaison de charges extrêmes. Ainsi, une progression de la défaillance partant de la partie supérieure de la zone d'impact vers le bas de la structure a entrainé la ruine complète de l'ouvrage. Ce mode de ruine peut être considéré comme un effondrement progressif disproportionné.

Plus récemment, le dimanche 23 mai 2004, onze mois après son inauguration, une partie de la voûte d'une passerelle du terminal 2E de l'aéroport Roissy Charles-de-Gaulle s'est effondrée. A la suite de cet accident, une information judiciaire et une enquête administrative sont ouvertes le 24 mai. Le 6 juillet, la commission d'enquête administrative en charge de déterminer la cause de l'effondrement brutal montre que l'accident résulte de deux événements quasi simultanés. D'une part, le pliage et la perforation de la coque en béton armé par les butons qui devaient assurer le rôle de soutien de la coque. D'autre part, la rupture et la chute de la poutre sablière qui supportait la coque. Par ailleurs, la perforation de la coque aurait été facilitée par une dégradation préalable et progressive du béton. Certains auteurs (Wassim et al. [2012, 2015]) ont examiné les raisons de cet incident et ils ont essayé de voir s'il était possible de prédire la défaillance de l'ouvrage en amont.

FIGURE I.2 – Effondrement progressif de l'immeuble fédéral Alfred P. Murrah à Oklahoma City (Hao et al. [2014])

Ces différentes ruines ont eu un impact considérable sur le plan économique car les coûts de ces ouvrages étaient élevés. Il faut aussi rappeler que certains de ces effondrements ont été dramatiques car étant à l'origine de plusieurs pertes humaines. Cependant, ces exemples d'effondrement d'ouvrages de génie civil ont été à l'origine de plusieurs mesures positives parmi lesquelles, une réévaluation des règles de construction en termes de sécurité et de chargement exceptionnel. Il est prescrit dans les codes de construction la prévention contre l'effondrement progressif. Ces dispositions préconisent que si l'un des éléments structuraux cesse d'assurer sa fonction, les autres restants non endommagés prennent la relève : notion de robustesse structurale.

La première partie de ce chapitre expose brièvement le cadre réglementaire régissant la robustesse structurale. Une description des principales approches utilisées pour évaluer la robustesse structurale est également présentée. Les exigences et les domaines d'application de la quantification de la robustesse structurale sont exposés. Une étude de robustesse d'une structure proposée dans la littérature est analysée. La seconde partie de ce chapitre présente les outils et concepts de fiabilité que nous utiliserons pour effectuer les calculs de probabilités.

1 La robustesse structurale

Les cadres réglementaires actuels du monde du génie civil intègrent les notions d'effondrement progressif et de robustesse dans les procédures de dimensionnement des structures. Aujourd'hui, il s'agit de concevoir des structures qui soient telles que la perte accidentelle ou non de l'un de leurs éléments structuraux (par impact, explosion, incendie,...) ne provoque qu'une ruine localisée et n'engendre pas de dégradations disproportionnées de la structure. De nombreuses recherches voient actuellement le jour dans ce domaine de caractérisation de la robustesse. Leur but est de fournir aux ingénieurs des stratégies, exigences et méthodes permettant de concevoir des structures robustes.

La robustesse est caractérisée par diverses définitions dans la littérature :

- EN-1991-1-7 [2006] : aptitude d'une structure à résister à des événements tels que les incendies, les explosions, les chocs ou les conséquences d'une erreur humaine, sans présenter de dégâts disproportionnés par rapport à la cause d'origine.
- Starossek and Haberland [2010] : insensibilité d'une structure aux dommages initiaux.
- GSA [2003] : capacité d'une structure ou de ses composants à résister aux sollicitations sévères à la suite d'événements tels que explosions, impacts, feu ou conséquences de l'erreur humaine sans présenter de défaillance prématurée et/ou rupture fragile.
- Faber [2008] : rapport entre les risques directs et les risques totaux d'un système, pour un intervalle de temps déterminé avec prise en compte de tous les événements d'exposition appropriés du système et de tous les états de dégâts appropriés aux constituants du système.
- Agarwal and England [2008] : capacité d'une structure à éviter des conséquences disproportionnées par rapport à une défaillance initiale.
- Biondini et al. [2008] : capacité du système à subir une perte sans présenter de dégâts disproportionnés par rapport aux causes d'origines.
- Bontempi et al. [2007] : capacité d'une structure de ne pas subir des dégâts disproportionnés à la suite d'une défaillance initiale limitée ; exigence intrinsèque, inhérente à l'organisation du système structural.
- Val and Val [2006] : capacité d'une structure à absorber l'effet d'un événement accidentel sans subir de dommage disproportionné par rapport à l'événement d'origine.
 Capacité de la structure à résister aux défaillances locales sans défaillance disproportionnée.
- Vrouwenvelder [2008] : une structure ne devrait pas être trop sensible aux défaillances locales, indépendamment de la cause d'origine.
- Knoll and Vogel [2009] : capacité d'un système à faire face à des évènements prévisibles ou imprévisibles en conservant la fonction pour laquelle il a été conçu de manière inchangée et pour un temps déterminé.
- Breysse [2009c] : propriété d'un système conçu de manière à ce qu'une défaillance locale n'induise pas de défaillance généralisée.

Ces définitions, relativement similaires, décrivent la robustesse comme la capacité d'un système structural à éviter des dégâts disproportionnés à la suite d'un dommage initialement localisé. Autrement dit, il s'agit pour l'ingénieur d'anticiper la propagation d'un dommage initial jusqu'à la défaillance globale d'un système structural suite aux sollicitations sévères.

1.1 Cadres réglementaires de la robustesse structurale

Les codes internationaux de conception des structures visant à prévenir l'effondrement progressif ont été révisés trois fois suite aux trois graves incidents d'effondrement progressif. Premièrement, l'effondrement de la tour Ronan Point à Canning Town, Londres en 1968 (Figure 1) a attiré l'attention des autorités britanniques et canadiennes sur la nécessité d'élaborer des normes prenant en compte la notion de robustesse structurale. Le deuxième événement est l'effondrement de l'édifice fédéral Alfred P. Murrah à Oklahoma City en 1995 (Figure I.2). Par la suite, les normes américaines ont renforcé les dispositions relatives à l'effondrement progressif déjà établies. Dernièrement, la destruction des tours jumelles du World Trade Centre de New York (États-Unis, 11.09.2001) (Figure 2b) a servi de catalyseur lors de la révision des dispositions d'effondrement progressif.

1.1.1 Code de conception anglais

Les premières règles de dimensionnement prenant en compte la notion de robustesse structurale et d'effondrement progressif ont été développées au Royaume-Uni suite à la catastrophe de la tour Ronan Point. Le paragraphe A3 de l'annexe 1 des règlements de construction (ODPM [2004], Vlassis [2007]) décrit les stratégies et dispositions de la robustesse structurale :

- les ouvrages suivants sont considérés robustes pour soutenir des défaillances de faible étendue : les bâtiments inférieurs à 15 étages ou 500 m^2 de plancher à chaque étage, les hôpitaux de moins de 3 étages, les parkings de moins de 6 niveaux. Ces ouvrages doivent être conçus avec des éléments liés entre eux.
- les éléments de structure dont leur perte entraîne des dommages excédant $70 m^2$ ou 15% de la surface du plancher sont conçus comme des éléments clés capables de résister à une pression statique de $34 \text{ kPa} (51 lb/in^2)$.
- en dehors de ces deux dispositions, l'étude de la robustesse structurale de tout ouvrage différent de ceux cités précédemment doit faire l'objet d'une vérification par une procédure d'évaluation systématique des risques en tenant compte de tous les aléas, prévisibles ou non.

1.1.2 Code de conception canadien

Sous le nom de "National Building Code of Canada" (NBCC), le code de conception canadien NBCC [1995] stipule que "les structures doivent être conçues de sorte à avoir une intégrité structurale suffisante pour résister à tout effet dont on peut raisonnablement s'attendre à ce qu'il se produise durant la durée de vie".

L'intégrité structurale quant à elle est définie comme étant la capacité à absorber une défaillance locale sans l'occurrence d'un effondrement généralisé.

La norme NBCC [1995] recommande des mesures contre les accidents graves ayant une probabilité d'occurrence annuelle supérieure à 10^{-4} mais ne présente pas de directives sur la manière d'effectuer le calcul des scénarios de conception.

1.1.3 Code de conception américain

La norme américaine ASCE-7-02 [2005] a été développée suite à l'attaque terroriste du 11 septembre 2001. L'un des objectifs de ce code est d'élaborer des approches de conception visant de se prémunir de l'effondrement progressif des structures. La norme ASCE-7-02 [2005] préconise deux méthodes : conceptions directe et indirecte.

La conception directe préconise explicitement la prise en compte de la résistance à l'effondrement progressif lors du dimensionnement. Deux types de méthode sont utilisées : chemins alternatifs et résistance locale spécifique. La première méthode a pour objet de fournir des chemins de chargements alternatifs de sorte que le dommage soit absorbé et les effondrements majeurs puissent être évités. La deuxième méthode permet d'obtenir une résistance suffisante aux défaillances à la suite d'accidents ou de mauvais usages.

La conception indirecte préconise implicitement la prise en compte de la résistance à l'effondrement progressif lors du dimensionnement. La méthode des "chemins alternatifs" peut être utilisée afin de renforcer l'intégrité structurale. Dans le cas particulier des bâtiments, la norme américaine ASCE-7-02 [2005] stipule que les structures doivent être conçus pour supporter un dommage local grâce à l'ensemble des éléments structuraux stables et non endommagés restants sans présenter de dégâts disproportionnés par rapport à l'origine du dommage local. Cette préconisation doit être réalisée par un arrangement des éléments structuraux qui fournit la stabilité au système entier en transférant les charges des zones localement endommagées aux zones adjacentes capables de résister à des sollicitations imprévisibles.

1.1.4 Code de conception européen

Actuellement, la robustesse structurale est abordée dans l'Eurocode 0, Bases de calcul des structures (EN-1990 [2002]) et l'Eurocode 1, Actions sur les structures (EN-1991-1-7 [2006]). L'Eurocode 0 énonce les principes majeurs de conception et de réalisation d'infrastructures robustes. L'Eurocode 1 définit la robustesse structurale : une structure doit être conçue et exécutée de telle sorte qu'elle ne soit pas endommagée par des évènements identifiés ou non de façon disproportionnée par rapport à la cause d'origine. Cette définition permet de mettre en exergue les notions de dommage initial (défaillance locale) et de dommage disproportionné (défaillance globale ou semi globale). Les préconisations de l'Eurocode 1 stipulent des recommandations sur les stratégies à considérer pour concevoir des ouvrages robustes. D'une part, il s'agit de distinguer les actions accidentelles identifiables (séisme, feu...) ou non identifiables (conséquences d'une erreur humaine, action malveillante...). D'autre part, l'Eurocode 1 fournit des stratégies afin d'obtenir des ouvrages robustes (Figure I.3).

FIGURE I.3 – Stratégies pour les situations de projet accidentelles (EN-1991-1-7 [2006])

Pour concevoir des ouvrages robustes, l'Eurocode 1 a élaboré des recommandations divisées en trois classes :

— classe de faibles conséquences de la défaillance (CC1): la condition principale de cette classe réside sur le respect des règles de stabilité et de robustesse fixées dans les Eurocodes EN-1990à EN-1999. Pour cette classe, il n'y a pas de considération spécifique d'actions accidentelles à prendre en compte.

- classe de conséquences moyennes de la défaillance (CC2) : l'enjeu est de mener des analyses simplifiées par des modèles de chargements statiques équivalents ou en appliquant des règles de calcul et des dispositions constructives.
- classe de conséquences élevées de la défaillance (CC3) : nécessité de mener une analyse approfondie des scénarios de défaillance avec le recours à des analyses dynamiques et des analyses non linéaires.

L'Eurocode 1 stipule qu'une défaillance locale causée par des actions accidentelles peut être tolérable tant qu'elle n'affecte pas la stabilité de la structure et aussi tant que la capacité portante globale de la structure est conservée afin de prendre les mesures d'urgence nécessaires. Dans le cas particulier des bâtiments, il préconise que les mesures d'urgence peuvent impliquer l'évacuation en toute sécurité des personnes présentes dans les locaux et des alentours.

1.2 Les éléments relatifs à la robustesse

Knoll and Vogel [2009] ont synthétisé les éléments de la robustesse dans la Figure I.4.

FIGURE I.4 – Éléments de la robustesse (Knoll and Vogel [2009])

Certains éléments de la Figure I.4 sont détaillés dans les paragraphes suivants.

Intégrité structurale et solidarisation

Le terme d'intégrité structurale donne lieu à diverses définitions :

- ASCE-7-02 [2005] : capacité à soutenir des dommages locaux du système structural considéré comme un ensemble stable dont sa ruine ne doit pas se produire de manière disproportionnée par rapport aux dégâts locaux initiaux. Ainsi définie, l'intégrité structurale est utilisée occasionnellement pour désigner la robustesse.
- Starossek [2007b] : capacité à la structure et ses composants à rester intacts pendant la durée de vie prévue. Cette définition implique que l'intégrité structurale est une propriété consistant à se référer à l'état d'une structure et non à son comportement.

Plus tard, Starossek and Haberland [2010] suggèrent de mettre fin à l'utilisation du terme intégrité structurale dans le premier sens mentionné et proposent d'utiliser la robustesse.

Résistance

La résistance est la capacité d'un élément ou d'un système structural à résister à des actions sans défaillance mécanique. A titre d'exemple, la résistance structurale peut être la résistance à la flexion, résistance à traction, etc. Dans le cas des matériaux, la résistance peut être considérée comme une propriété mécanique, traduisant sa capacité à résister à des actions, exprimée en unités de contrainte. Dans la conception structurale, fournir une résistance supplémentaire aux éléments critiques peut contribuer à améliorer la robustesse structurale.

Redondance

La redondance permet à une structure de redistribuer les efforts initialement portés par les éléments défaillants, sur l'ensemble des éléments constitutifs non endommagés. Ainsi, elle permet de supporter des charges additionnelles par les éléments restant non endommagés en cas de défaillance d'un ou plusieurs éléments. La redondance, généralement associée avec la présence de chemins alternatifs de chargement est bénéfique pour une structure car permettant de limiter les effets d'une défaillance locale.

Selon Cremona [2010], la redondance peut être passive ou active. La redondance active correspond au cas des composants qui fonctionnent simultanément sans que cela soit nécessaire pour le système. Par exemple, une section de précontrainte en excès dans un ouvrage peut être constituée de plusieurs torons non nécessaires mais actifs. La redondance passive est constituée de composants ou de soussystèmes en réserve qui ne sont pas destinés à fonctionner dans des circonstances normales de service. C'est le cas de certaines entretoises ou diaphragme pour les ponts par exemple.

Ductilité

La ductilité est la capacité d'un matériau ou d'un élément de structure à résister aux grandes déformations plastiques sans rupture. La ductilité peut avoir une grande influence sur les effondrements progressifs et peut être très bénéfique car pouvant contribuer à l'augmentation de la robustesse structurale. En effet, les éléments directement affectés par la défaillance peuvent limiter les dommages engendrés grâce à leur comportement ductile. Ceci peut être une source de prévention de la défaillance des éléments structuraux avec dissipation d'énergie pour les éléments moins ductiles. De plus, les propriétés de ductilité des éléments adjacents aux éléments défaillants permettent de développer des chemins alternatifs de chargement. Ces derniers peuvent faciliter le processus de redistribution des efforts dans la structure partiellement endommagée. Néanmoins, des mesures de la ductilité ne conviennent pas pour exprimer la robustesse d'une structure (Starossek [2007b]).

Résistance à l'effondrement progressif

Starossek [2007a] définit la résistance à l'effondrement progressif comme l'insensibilité d'une structure aux événements anormaux. Une structure est dite résistante à l'effondrement progressif si des évènements anormaux ne conduisent pas à des dégâts disproportionnés. Les circonstances anormales et leurs effets possibles sur la structure doivent être définis et quantifiés par rapport aux objectifs de conception.

Elément fusible

Un élément fusible est un élément structural qui maintient le transfert de charges à un certain niveau (habituellement par le biais de ductilité) afin de limiter les forces qui sont transmises par les chemins de chargement le contenant. Un élément fusible peut être très utile dans les situations de déformation contrôlées comme dans le cas des déplacements imposés. Cependant, la déformation de chaque élément fusible est limitée et la robustesse exige que cette limite ne soit pas excédée.

Un élément fusible dans l'application structurale diffère du fusible électrique qui interrompt la transmission complète du courant en cas de surcharge.

Scenario de knock-out

Il existe des situations où il est presque impossible d'avoir une ductilité ou une résistance à l'effondrement suffisante pour atteindre l'objectif de conception robuste. Le scénario de knock-out consiste à considérer la possibilité d'introduire un élément conçu pour être détruit lors de la réalisation d'un aléa sans pour autant entraîner de graves conséquences.

Prise en compte de la rigidité

Les déformations structurales sont inversement proportionnelles à la rigidité, exception faite dans les situations de déformations contrôlées, c'est à dire lorsque la réponse dynamique de la structure est principalement liée à l'amplitude du mouvement du sol (effets sismiques). Les déformations doivent être limitées afin d'éviter de mettre en péril la robustesse structurale et d'entraîner la défaillance par instabilité de second ordre.

Avantage de l'écrouissage

L'écrouissage traduit l'évolution du domaine élastique sous l'effet de l'apparition de déformations permanentes. Dans le cas des aciers de construction, l'écrouissage positif (hardenning) traduit l'augmentation de la résistance.

Seconde ligne de défense

La manière dont une structure endommagée continue de résister aux sollicitations externes s'appelle la deuxième ligne de défense. A titre d'exemple, Knoll and Vogel [2009] expliquent le fonctionnement des barrières de sécurité situées le long des routes. Si la limite de résistance en flexion d'un élément est atteinte suite aux sollicitations externes alors cet élément se déformera selon un mécanisme cinématique incluant un certain nombre de rotules plastiques. Ceci sera à l'origine de grandes déformations modifiant la géométrie de l'élément. Cet élément peut se comporter comme un hamac en tension qui offre une meilleure résistance en termes de maintien du véhicule sur la route. Ce processus permet de dire que l'élément a trouvé une seconde ligne de défense.

Résistance post-flambement

Selon Knoll and Vogel [2009], un flambement partiel peut être autorisé lorsque des éléments à parois minces sont exposés aux instabilités locales ou partielles. Ils ajoutent une condition sur la résistance résiduelle des éléments offrant une capacité suffisante de résister aux charges externes.

1.3 Quantification de la robustesse structurale

Pour améliorer la robustesse des structures, les codes et publications scientifiques ont fourni des recommandations essentiellement qualitatives et peu quantitatives. Par exemple, dans les pays où les structures sont conçues pour résister aux charges sismiques, les exigences pour l'obtention de structures parasismiques comprennent pratiquement les mêmes aspects que ceux utilisés pour la robustesse, à savoir, la redondance et la ductilité.

Une description quantitative est nécessaire pour caractériser la robustesse structurale. Il existe plusieurs termes qualitatifs et quantitatifs proposées dans la littérature pour caractériser la robustesse structurale : les plus couramment employés sont l'indicateur, la mesure et l'indice (Starossek [2007b]). L'indicateur permet de décrire de manière qualitative une propriété ; la mesure est une description quantitative d'une propriété et l'indice est exprimé sous forme de ratio permettant de décrire de manière quantitative une propriété sur une échelle fixe. Starossek and Haberland [2010] établissent des liens entre ces différents termes : chaque mesure peut être considérée comme un indicateur et un indice est une forme particulière d'une mesure. Diverses approches ont été proposées dans la littérature pour définir une mesure de la robustesse grâce à un indice de robustesse noté I_r (Baker et al. [2008], Kagho-Gouadjio [2013], Starossek [2007a]).

1.3.1 Indices de robustesse

Starossek [2007a,b] a divisé en deux grandes familles les indices de robustesse suivant le comportement et les caractéristiques de la structure (Figure I.5). Les paragraphes suivants présentent les expressions des indices de robustesse proposées dans la littérature actuelle.

FIGURE I.5 – Approches de quantification (Starossek [2007b])

a Indices de robustesse basés sur le comportement de la structure

La Figure I.5 montre que le comportement de la structure peut être étudié suivant deux approches déterministe et probabiliste.

a.1 Méthodes probabilistes

l'évaluation de l'indice de robustesse peut se réaliser grâce à la probabilité de défaillance ou à l'évaluation du risque.

a.1.1 Probabilité de défaillance

Fu and Frangopol [1990] ont proposé un indice de redondance permettant d'exprimer la réserve de résistance d'une structure ayant subi un dommage.

$$I_r = \frac{p_{f(dmg)} - p_{f(sys)}}{p_{f(sys)}} \tag{I.1}$$

où $p_{f(dmg)}$ est la probabilité d'occurrence d'un dommage local dans le système (c'est-à-dire la défaillance d'un composant) et $p_{f(sys)}$ est la probabilité de défaillance globale du système. La probabilité $p_{f(sys)}$ résulte de l'intersection de tous les évènements rencontrés le long d'un chemin de défaillance. Lorsque $p_{f(dmg)} = p_{f(sys)}$ alors la structure est considérée non redondante ($I_r = 0$). La relation $p_{f(dmg)} > p_{f(sys)}$ indique que le système possède une résistance résiduelle ($I_r > 0$).

Frangopol and Curley [1987] ont défini un indice de redondance de résistance :

$$I_r = \frac{L_{intact}}{L_{intact} - L_{endommag\acute{e}}}$$
(I.2)

où L_{intact} est un multiplicateur de charge lié à la performance de l'ouvrage intact et $L_{endommag\acute{e}}$ est un multiplicateur de charge lié à la performance de l'ouvrage endommagé. En considérant $L_{intact} = \lambda L$ et $L_{endommag\acute{e}} = \lambda^* L$ (où L est la charge règlementaire appliquée sur l'ouvrage et λ est le multiplicateur de charge), l'Equation (I.2) devient un indice de redondance de performance :

$$I_r = \frac{\lambda}{\lambda - \lambda^*} \tag{I.3}$$

L'indice de l'Equation (I.3) est une réserve de performance entre l'endommagement d'un élément et la performance du système (pont). Il exprime également l'importance des éléments individuels sur la réserve de performance dans les ouvrages endommagés. Cet indice est compris entre 1 (la structure endommagée manque de résistance résiduelle $\lambda^* = 0$) et $+\infty$ (le dommage n'a aucune influence sur la résistance résiduelle de la structure $\lambda = \lambda^*$).

Mohammadkhani-Shali [2007] considère que l'indice précédant est inapplicable aux ouvrages existants en raison de la non prise en compte des incertitudes dans l'évaluation des ponts endommagés et de l'influence des éléments individuels sur la réserve des ponts endommagés. Il propose deux indices de redondance : résiduel et performance. Le premier indice représente la performance de l'ouvrage lorsqu'un élément est défaillant. Il est donné par l'équation suivante :

$$I_r = \frac{\beta_{s,d}}{\beta_{s,i}} \tag{I.4}$$

où $\beta_{s,d}$ est l'indice de fiabilité du système (ouvrage) obtenu par des calculs non linéaires lorsqu'un élément est défaillant et $\beta_{s,i}$ est l'indice de fiabilité du système initial (ouvrage) obtenu par des calculs non linéaires. Notons que les calculs non linéaires sont effectués en raison du comportement de la structure. L'indice de l'Equation (I.4) est compris entre $-\infty$ (structure endommagée avec une probabilité de défaillance égale à 1) et 1 (structure intacte). Lorsque l'indice de l'Equation (I.4) vaut 0 alors l'ouvrage est endommagé avec une probabilité égale à 0.5. Il est important de noter que l'indice de redondance résiduel indique le pourcentage de la charge du trafic qui peut être supporté, vis-à-vis des critères de service, par le pont lorsque l'un de ses éléments est défaillant. Cet indice peut intervenir comme une alerte et peut être utilisé pour améliorer les stratégies de surveillance et de maintenance des ponts existants.

Le deuxième indice correspond à la performance de l'ouvrage. Il est défini par l'équation suivante :

$$I_r = \frac{\beta_{s,i}}{\beta_{s,i} - \beta_{s,d}} \tag{I.5}$$

où $\beta_{s,d}$ et $\beta_{s,i}$ sont définis par l'Equation (I.4). L'indice de l'Equation (I.5) est compris entre 0 (structure entièrement endommagée) et $+\infty$ (structure intacte). Lorsqu'il vaut 1 alors l'ouvrage est endommagé à 50%. Cet indice peut également être appliqué pour étudier la performance d'un réseau comprenant plusieurs ponts dans lequel la perte de performance d'un pont peut entraîner la perte de performance de l'ensemble du réseau. Notons que la performance de l'ouvrage est considérée comme la robustesse du pont lorsqu'un élément est défaillant.

Mohammadkhani-Shali [2007] a également proposé deux indices de réserve de redondance. L'indice de l'Equation (I.6) est le taux de réserve du système et représente la différence entre l'indice de fiabilité du système endommagé et l'indice de fiabilité de son élément le plus critique.

$$I_r = \beta_{s,d,nl} - \beta_{m,c,l} \tag{I.6}$$

où $\beta_{s,d,nl}$ représente l'indice de fiabilité du système lorsqu'un élément est défaillant, en faisant des calculs non linéaires (en raison du comportement de la structure) et $\beta_{m,c,l}$ correspond à l'indice de fiabilité de l'élément critique en faisant des calculs linéaires.

Le second correspond à la réserve locale dans les éléments principaux de la structure lorsqu'un élément est défaillant (Equation (I.7)).

$$I_r = \frac{\beta_{m,nl}}{\beta_{m,l}} < 1 \tag{I.7}$$

où $\beta_{m,l}$ est l'indice de l'élément le plus critique, en faisant des calculs linéaires et $\beta_{m,nl}$ représente l'indice de fiabilité de l'élément le plus critique, en faisant des calculs non linéaires (comportement de la structure). Notons que cet indice est inférieur ou égal à 1. Il indique le pourcentage de la charge du trafic qui peut être supporté par les différents éléments du pont lorsqu'il y a un dysfonctionnement.

a.1.2 Risque

Kagho-Gouadjio [2013] a proposé l'indice de robustesse permettant de comparer le risque à l'échelle locale et globale.

$$I_r = \frac{p_{locale}}{p_{locale} + a \, p_{globale}} \tag{I.8}$$

où $a = \frac{C_{globale}}{C_{locale}} > 1$ représente le rapport entre les conséquences globales et locales. Une valeur de l'indice de robustesse de l'Equation (I.8) proche de 1 indique une structure robuste et une valeur proche de $\frac{1}{1+a}$ désigne une structure non robuste. Il est noté que dans le cas où les conséquences globales deviennent infiniment grandes par rapport aux conséquences locales, l'indice tend vers 0.

Baker et al. [2008] ont proposé un indice de robustesse exprimant l'écart entre les risques direct (R_{direct}) et indirect $(R_{indirect})$.

$$I_r = \frac{R_{direct}}{R_{direct} + R_{indirect}}$$
(I.9)

Le risque est le produit de la probabilité de défaillance et des conséquences de l'occurence d'un aléa. Ces conséquences sont de deux types : directes et indirectes.

Les conséquences directes sont les conséquences dues à la défaillance locale d'un élément de structure (ces conséquences sont supposées proportionnelles à la cause initiatrice).

Les conséquences indirectes sont les conséquences associées à la défaillance de la structure. Elles se produisent après la défaillance locale (les conséquences indirectes sont supposées disproportionnées par rapport à la cause initiatrice).

a.2 Méthodes déterministes

L'évaluation de l'indice de robustesse repose sur la capacité du système à redistribuer les charges, la ruine progressive et l'énergie.

a.2.1 Capacité du système à redistribuer les charges

Biondini and Restelli [2008] a proposé un indice de robustesse qui compare la performance de l'ouvrage au temps initial (t_{ini}) , à la performance de l'ouvrage au temps t. Cet indice permet d'estimer

la performance structurale en fonction du temps et varie entre 0 (structure non robuste) et 1 (structure robuste).

$$I_r = \frac{\lambda_c(t)}{\lambda_c(t_{ini})} \tag{I.10}$$

où $\lambda_c(t)$ et $\lambda_c(t_{ini})$ sont les multiplicateurs de charge limite au temps initial et au temps t.

a.2.2 Ruine progressive

Haberland [2007] a proposé l'indice de robustesse ci dessous :

$$I_r = 1 - \frac{p}{p_{lim}} \tag{I.11}$$

où p et p_{lim} sont respectivement l'étendue maximale du dommage additionnel causé par le dommage initial et la progression du dommage acceptable.

a.2.3 Énergie

Smith [2007] a proposé l'indice de robustesse ci dessous :

$$I_r = 1 - \max_j \frac{E_{r,j}}{E_{s,k}}$$
(I.12)

où $E_{r,j}$ est l'énergie libérée par la défaillance initiale de l'élément structural j et disponible pour la défaillance de l'élément suivant k; $E_{s,k}$ est l'énergie requise pour la défaillance de l'élément suivant k.

b Indices de robustesse basés sur les caractéristiques de la structure

La quantification de l'indice de robustesse à partir des caractéristiques de la structure repose sur 2 principes : rigidité et examen topologique de la structure.

b.1 Rigidité de la structure

Haberland [2007] a proposé un indice de robustesse défini comme le rapport entre le plus petit déterminant de la matrice de rigidité du système actif de la structure ayant perdu un élément structural $|K_j|$ et le déterminant de la matrice de rigidité du système actif de la structure intacte $|K_{ini}|$

$$I_r = \min_j \frac{|K_j|}{|K_{ini}|} \tag{I.13}$$

Cet indice varie entre 0 (structure non robuste) et 1 (structure robuste).

Biondini and Restelli [2008] ont proposé plusieurs indices de robustesse pour des structures à comportement élastique linéaire. Ces indices sont différents et divisés en deux groupes : certains sont liés aux propriétés du système structural et d'autres sont fonction des conditions du chargement. Dans ce qui suit, les indices du premier groupe sont donnés.

Le premier est :

$$I_r = \frac{|K_d|}{|K_{ini}|} \tag{I.14}$$

où $|K_d|$ est le déterminant de la matrice de rigidité de la structure endommagée ; $|K_{ini}|$ est celui défini à l'Equation (I.13).

Le second indice est :

$$I_r = \frac{t_d}{t_{ini}} \tag{I.15}$$

où $t_p = \sum_i (\lambda_i(K_p))$ est la trace de K_p (avec p qui est égal à la notation indicielle *ini* ou d) et $\lambda_i(K_p)$ est la $i - \grave{e}me$ valeur propre de K_p .

Le troisième indice est :

$$I_r = \frac{c_{ini}}{c_d} \tag{I.16}$$

où $c_p = \frac{\max_i \lambda_i(K_p)}{\min_i \lambda_i(K_p)}$ est le nombre de conditionnement de K_p (avec p qui est égal à la notation indicielle *ini* ou d).

Le dernier proposé est :

$$I_r = \frac{T_{ini}}{T_d} \tag{I.17}$$

où $T_p = \sqrt{\max_i \lambda_i (K_p^{-1} M_p)}$ représente la première période de vibration associée à la matrice de masse M_p de la structure (avec p qui est égal à la notation indicielle *ini* ou d).

b.2 Topologie de la structure

Agarwal et al. [2003] ont proposé un indice de robustesse permettant d'analyser la qualité de la connectivité de la structure. Il s'agit de calculer le facteur de forme, de clustériser la structure et de déterminer les scénarios de défaillance. L'expression de cet indice est la suivante :

$$I_r = \frac{C(f)}{D_d} \tag{I.18}$$

où C(f) est la conséquence de la défaillance de l'ouvrage et D_d est la mesure de l'effort requis pour rendre défaillant tous les éléments de la structure.

L'ensemble de ces indices de robustesse proposés par la littérature permet de quantifier et de qualifier la robustesse structurale. La liste est loin d'être exhaustive.

1.3.2 Arbre d'évènements

L'arbre des évènements (*Event Tree*) permet de décrire les mécanismes de ruine d'un système : un mécanisme est représenté sous forme d'un scénario, constitué d'événements se déroulant chronologiquement et construit à partir d'un ou plusieurs événement initiateur jusqu'à la ruine. Il s'agit de rechercher les événements successifs susceptibles de provoquer la ruine du système. Les nœuds de l'arbre correspondent à l'occurrence de la défaillance d'un des éléments. Les objectifs attendus d'un arbre d'évènements consistent à rechercher tous les scénarios possibles de ruine par une démarche a priori de retour d'expérience ou par une quantification des probabilités de défaillance.

Une analyse par arbre des évènements a été développée au début des années 1970 pour l'évaluation du risque lié aux centrales nucléaires à eau légère. Particulièrement utilisée dans le domaine du nucléaire, son utilisation s'est étendue à d'autres secteurs d'activité. Dans le monde du génie civil ou la mécanique, l'arbre des évènements permet de décrire les scénarios de ruine issus d'événement initial localisé et d'établir la chronologie de la défaillance au sein de la structure.

Cette partie présente un ensemble de méthodologies permettant de qualifier les chemins de défaillance et de quantifier leur probabilité d'occurrence. Ces démarches permettent de caractériser les défaillances locales et globales d'une structure, mais également de quantifier l'impact des défaillances locales sur les défaillances globales au travers d'un indice de robustesse, et donc de proposer une quantification de la robustesse structurale. Plusieurs algorithmes sont proposés dans la littérature mais nous présentons que les deux méthodes suivantes : rechercher un arbre d'évènements et identifier les mécanismes de défaillance sans parcourir un arbre d'évènement.

Dans un premier temps, nous détaillons les méthodes de parcours d'arbres d'évènements consistant à rechercher le cheminement interne de la défaillance au sein-même de la structure.

— Branches et bornes

La méthode des branches et bornes est un algorithme permettant de trouver des solutions de divers problèmes d'optimisation (combinatoire ou discrète) en temps de calcul raisonnables. Concrètement, il s'agit d'une technique permettant de mettre en valeur les mécanismes de défaillance dominants. En effet, cette méthode se compose d'une énumération systématique de toutes les solutions intermédiaires ou complètes possibles, dont une grande partie sera éliminée car jugée peu intéressante (Murotsu et al. [1979]). Autrement dit, la méthode des branches et bornes est constituée de deux étapes de branchement et de bornage. Le branchement consiste à sélectionner une combinaison d'éléments défaillants constituant un mécanisme de défaillance avec la probabilité de défaillance la plus importante et le bornage écartant certains chemins non significatifs. Seuls, les chemins restants dits dominants sont représentés. Notons que cette procédure a été proposée pour la première fois par Land & Doig en 1960 en programmation discrète ; elle s'est étendue à d'autres disciplines.

La méthode des branches et bornes a été adaptée dans le domaine de la fiabilité structurale afin d'identifier les mécanismes de ruine significatifs d'un système structural. Ce sont les mécanismes dont l'occurrence affecte la fiabilité globale du système (Thoft-Christensen and Murotsu [1986]). Ces mécanismes de ruine, dits significatifs ou dominants, sont mis en série pour évaluer la probabilité de défaillance du système.

Kagho-Gouadjio [2013] a utilisé cette méthode dans le domaine de la robustesse structurale afin d'identifier le mécanisme de ruine dominant avec la plus grande probabilité d'occurrence. La Figure I.6 est un arbre d'évènements où les chemins considérés sont les propagations de défaillances localisées jusqu'aux défaillances globales. Seules 3 branches initiales sont représentées parmi 6 possibles. Les nœuds de l'arbre correspondent à l'occurrence de la défaillance d'un des éléments. Le nœud a_1 traduit la défaillance de l'élément 1. Le nœud a_{12} exprime la défaillance de l'élément 2 sachant la défaillance de l'élément 1. le parcours de cet arbre se fait de la gauche vers la droite et du haut vers le bas. Les chemins a_{12} , a_{13} , a_{4132} , et a_{6135} représentent des chemins de défaillance globale dominants (les traits en pointillés sont des chemins écartés). Comme indiqué ci-dessus, les différents chemins dominants peuvent ainsi être mis en série pour calculer la probabilité de défaillance du système. L'objectif peut également être différent. En effet, le but de Kagho-Gouadjio [2013] consiste à comparer l'écart entre un endommagement local et global pour le chemin de défaillance ayant la plus grande probabilité de se produire. Dans ce contexte, c'est plutôt l'identification du chemin avec la plus grande probabilité d'occurrence qui est recherchée (chemin a_{6135} identifié avec des traits gras dans la Figure I.6).

FIGURE I.6 – Illustration de la quantification de la robustesse par un arbre d'évènements : méthode des branches et bornes (Kagho-Gouadjio [2013])

— β -unzipping

Selon Thoft-Christensen and Murotsu [1986], la méthode β -unzipping est un algorithme permettant d'évaluer la fiabilité structurale à différents niveaux afin d'identifier les chemins de défaillance dominants. Les niveaux correspondent au nombre d'éléments défaillants supposés associer à la ruine de la structure. Le but consiste à identifier à chaque niveau les nœuds d'occurrence ayant une probabilité de réalisation suffisamment grande, ou encore ceux ayant un indice de fiabilité β suffisamment faible. Il est important de rappeler que l'indice de fiabilité considéré pendant le parcours de l'arbre d'évènement est toujours celui du dernier élément dans le chemin de défaillance et non un indice de fiabilité associé à l'intersection de tous les sous évènements de défaillance (pour la méthode des branches et bornes présentée au paragraphe précédent, c'est la probabilité du chemin qui est testée à chaque nœud et non la probabilité de réalisation du nœud associé).

Thoft-Christensen [1982] a été le premier à suggérér la procédure β -unzipping dans le domaine de la fiabilité structurale. Par la suite elle a été développée par Thoft-Christensen and Sorensen [1982] pour des matériaux à comportement ductile ou fragile. Comme pour la procédure des branches et bornes, β -unzipping est une méthode générale au sens où Thoft-Christensen and Murotsu [1986] l'ont utilisé pour des structures à treillis ou pour des structures à ossature, pour différents modes de défaillance.

Kagho-Gouadjio [2013] présente un arbre d'évènement obtenu par la méthode β -unzipping dans le domaine de la robustesse structurale (Figure I.7). L'indice de fiabilité critique ($\beta_{c,l}$) représente la borne supérieure de l'encadrement des indices de fiabilité des éléments à sélectionner au niveau *l* de l'analyse. Les différents indices critiques identifiés à chaque nœud d'évènement permettent de ne sélectionner que les branches qui ont une probabilité d'occurrence suffisamment grande. Une répétition de ce processus jusqu'à l'occurrence d'un mécanisme et une itération de la procédure permettent d'identifier tous les mécanismes de ruine dominants.

FIGURE I.7 – Illustration de la quantification de la robustesse par un arbre d'évènements : méthode de β -unzipping (Kagho-Gouadjio [2013])

— β -unzipping avec bornage

La méthode β -unzipping avec bornage consiste à mutualiser les avantages des méthodes β unzipping et branches et bornes. En effet, elle se base sur la technique de l'approche β -unzipping en intégrant certains des principes de la procédure branches et bornes. En particulier, la recherche de chemins les plus probables, absente dans l'algorithme β -unzipping est ajoutée dans la procédure β -unzipping avec bornage. Notons que cette démarche a été proposée par Kagho-Gouadjio [2013].

Analyse de décision

L'analyse de décision permet d'identifier les scénarios de défaillance et les conséquences possibles. Elle a été proposée par Baker et al. [2008] afin d'évaluer la robustesse structurale. Cette évaluation s'effectue grâce à la construction d'arbre d'événements permettant de lier les probabilités aux sollicitations (Figure I.8). Cela peut être simple pour des calculs de charges, mais plus difficile pour d'autres types de sollicitations tels que les erreurs humaines ou attentats.

FIGURE I.8 – Illustration de la quantification de la robustesse par un arbre d'évènements (Baker et al. [2008], Faber et al. [2011])

Les événements de la Figure I.8 qui risquent d'endommager un système sont représentés par les notions d'évènement redouté (EX_{BD}) , de dommage au niveau des composants (D) et de défaillance (F) du système. Les évènements complémentaires de D et F sont respectivement notés \overline{D} et \overline{F} . Ces derniers permettent d'envisager les différents cas possibles lors de la réalisation de l'évènement EX_{BD} et de construire une branche de l'arbre d'évènements. Les conséquences

directes (C_{dir}) sont les conséquences dues à la défaillance locale d'un élément de structure. Les conséquences indirectes (C_{indir}) sont les conséquences associées à la défaillance de la structure qui se produisent suite à la défaillance locale.

Baker et al. [2008] ont également proposé un arbre d'événements qui est utilisé pour guider la prise de décision (Figure I.9).

FIGURE I.9 – Illustration de la quantification de la robustesse par un arbre d'évènements prenant en compte le choix du système et des expositions post-endommagement (Baker et al. [2008])

Les nœuds a_d et a_r de la Figure I.9 représentent respectivement les actions de conception et de décision. Les actions de conception (a_d) comprennent la maintenance, l'inspection, la surveillance et la préparation aux catastrophes. Les actions de décision (a_r) sont l'évacuation des personnes, la réparation et la réhabilitation du système. Ces actions de décision (a_r) ne peuvent être prises qu'à la suite d'un dommage *I*. La notation EX_{AD} représente l'exposition postendommagement du système.

Différentes méthodes de parcours d'arbre d'évènements ont été présentées et consistent à rechercher des mécanismes de défaillance dominants. Il est important de rappeler qu'il existe d'autres méthodes plus anciennes, comme la méthode des configurations stables (Ditlevsen and Bjerager [1984], Quek and Ang [1986, 1990]) et celle des énumérations tronquées (Drebes [1969]). L'ensemble de ces approches suppose l'apparition de défaillances successives qui impactent progressivement le fonctionnement structural jusqu'à l'obtention d'une défaillance globale. Si ces méthodes présentent l'avantage de caractériser précisément le cheminement de la défaillance, elles ont néanmoins l'inconvénient d'être coûteuse en temps de calcul, surtout pour des structures complexes et fortement redondantes.

Eu égard à ce qui précède, ce paragraphe présente une approche différente qui consiste à rechercher les mécanismes de défaillance en ne recherchant pas d'ordre particulier pour l'occurrence des défaillances localisées mais en supposant plutôt ces défaillances de manière simultanée. Cette seconde approche permet d'obtenir une probabilité de défaillance globale qui est alors comparée aux probabilités de défaillance des différents éléments constitutifs. Cette procédure a été utilisée par Kagho-Gouadjio [2013] afin d'évaluer un écart entre la défaillance locale et la défaillance globale.

1.3.3 Domaines d'application et exigences

Starossek [2007a] a formulé plusieurs approches pour quantifier la robustesse structurale en suggérant les domaines d'application et les exigences d'un indice de robustesse structurale (Figure I.10).

FIGURE I.10 – Quantification de la robustesse : domaines d'application et exigences

La caractérisation de la robustesse structurale ouvre un certain nombre de domaines d'application différents :

- Évaluation : un indice de robustesse permet de contrôler l'importance des scénarios de défaillance et d'identifier les éléments critiques. L'évaluation de l'indice permet aussi de comparer et de trier différentes variantes de conception.
- **Optimisation** : si la robustesse d'une structure peut être quantifiée explicitement par un indice, alors la détermination de cette valeur permet de l'optimiser.
- **Règlement** : une quantification de la robustesse structurale en prenant en compte les incertitudes permet d'introduire la robustesse structurale dans les normes et règlements de génie civil.
- Aide à la Conception : la quantification de la robustesse devrait être une aide facilitant la prise de décision lors de la conception des structures.
- Coefficients partiels de sécurité : la quantification de la robustesse pourrait permettre d'améliorer à l'avenir les coefficients partiels de sécurité utilisés dans les approches dites déterministes et semi-probabilistes.

La validité et l'utilité de la quantification de la robustesse sont liés une série d'exigences générales :

- Expressivité : la quantification doit permettre d'exprimer exclusivement tous les aspects de la robustesse. Elle doit permettre une différenciation claire entre les structures robustes et non robustes. Pour une meilleure appréciation, la conformité de la quantification avec des objectifs de conception prédéfinis doit être vérifiée.
- Objectivité : la quantification doit être indépendante des décisions prises par les utilisateurs.
 Le résultat de la quantification doit être reproductible sous les mêmes conditions.

- **Simplicité** : la quantification doit être aussi simple que possible dans le but de promouvoir son acceptation mais aussi son objectivité et sa généralité.
- Calculabilité : il devrait être possible de calculer la mesure à partir des attributs ou le comportement de la structure. Tous les paramètres d'entrée doivent être quantifiables. Le calcul numérique de l'indice de robustesse ne devrait pas nécessiter un effort excessif et doit être suffisamment précis.
- Généralité : la quantification devrait être applicable à n'importe quelle structure.

Ces exigences peuvent être en conflit l'une avec l'autre. Il est parfois difficile de les accomplir toutes au même niveau et en même temps. Haberland [2007] a proposé une approche montrant l'expressivité qui est réalisée aux dépens de la calculabilité.

1.4 Etude de robustesse structurale proposée dans la littérature

Dans la littérature, plusieurs auteurs ont proposé l'étude de la robustesse sous des formes variées (Baker et al. [2008], Faber et al. [2006], Kagho-Gouadjio [2013]). En particulier, une étude de la robustesse structurale, en quantifiant le rapport entre une défaillance locale et une défaillance globale a été proposée par Kagho-Gouadjio [2013]. Elle introduit différents indices de robustesse selon que la structure soit intègre ou initialement endommagée. Pour ce faire, elle développe une démarche permettant de qualifier et de quantifier la robustesse des ouvrages neufs ou existants au travers de méthodes et d'indices pouvant s'appliquer à une large variété de problèmes. Il s'agit d'une part, des méthodes de recherche par "l'intérieur" c'est-à-dire que le cheminement interne de la défaillance au sein même de la structure est recherché afin de caractériser les chemins de défaillance dominants : ce sont des méthodes de parcours d'arbre d'évènements (branches et bornes, β -unzipping et β -unzipping avec bornage). D'autre part, elle a proposé une approche par "l'extérieur" visant à regarder la défaillance de manière globale sans chercher à déterminer la chronologie de la ruine. C'est une méthode consistant à identifier la défaillance globale sans parcourir un arbre d'évènement (*sans s'intéresser à l'ordre d'occurrences avec lequel la ruine survient*). Ces méthodes d'approches intérieure et extérieure sont développées dans une Toolbox Matlab nommée *ReliabTBX* (Kagho-Gouadjio [2013]).

Pour mettre en pratique ces méthodes de parcours d'arbre incomplet, Kagho-Gouadjio [2013] étudie un cas de référence (Thoft-Christensen and Murotsu [1986]) de portique plan. L'ensemble des caractéristiques du portique sont donnés au Chapitre IV. Afin de caractériser la robustesse, ces méthodes de parcours d'arbre incomplet ont permis d'identifier le chemin de défaillance le plus probable de la structure ($7 \rightarrow 8 \rightarrow 5$) avec des temps de calculs différents (Figure I.11).

Certains résultats de Kagho-Gouadjio [2013] obtenus à partir des méthodes "intérieur" sont regroupés dans le tableau ci dessous :

Méthode utilisée	N _{me}	Méc.	P_{locale}	$P_{globale}$	$I_{r,1}$	<i>I</i> _{<i>r</i>,2}	Temps de calcul (s)
Branches et bornes	2	7-8-5	1,39.10-2	6,16.10-4	0,96	0,96	51
β-unzipping	16	7-8-5	1,39.10-2	6,16.10 ⁻⁴	0,96	0,96	25
β-unzipping avec bornage	1	7-8-5	1,39.10-2	6,16.10 ⁻⁴	0,96	0,96	17

TABLE I.1 : Comparaison des méthodes

Kagho-Gouadjio [2013] remarque que la méthode de β -unzipping avec bornage est la plus efficace en termes de temps de calcul. Elle stipule que la méthode des branches et bornes est plus coûteuse en temps de calcul et la méthode du β -unzipping est celle qui identifie le plus grand nombre de chemins de défaillance dominants. Elle montre également que les différents indices de robustesse sont très proches, et ce quelle que soit la méthode utilisée.

2 Fiabilité : outils d'évaluation de la robustesse

La prise en compte de l'incertain dans les procédures de dimensionnement est devenue de plus en plus nécessaire pour une conception et une réalisation de structures robustes. De ce fait, l'utilisation des outils de fiabilité pour évaluer la robustesse structurale s'est développée ces dernières décennies. Des synthèses approfondies sur les méthodes de fiabilité ont été rédigées entre autres par Thoft-Christensen and Murotsu [1986], Lemaire [2005], Hähnel [2007] et Aoues [2008]. On se propose ici d'en rappeler brièvement les grands principes de modélisation et techniques de calcul afin de quantifier les probabilités de défaillance.

Par définition, la fiabilité d'une structure représente sa capacité à assurer une fonction définie sous des conditions données, pendant un temps fixé et en respectant le niveau de sécurité exigé (EN-1991-1 [1996]). Ainsi une étude de fiabilité permet principalement de calculer les probabilités d'un mode de défaillance et d'un mécanisme de ruine suite à l'occurrence d'un évènement imprévisible. Les outils de fiabilité utilisés pour étudier de la robustesse structurale sont énumérés ci-dessous :

- sélectionner les variables aléatoires qui intègrent les incertitudes par leur loi de distribution ;
- choisir un mode de défaillance;
- définir un scénario de ruine;
- calculer les probabilités.

Les techniques d'évaluation de la probabilité de défaillance d'un élément et d'un système sont présentées dans cette seconde partie du chapitre I.

2.1 Évaluation de la probabilité de défaillance d'un élément

L'introduction et la prise en compte des incertitudes liées aux paramètres physiques ou mécaniques apparaissent comme un critère permettant d'évaluer la fiabilité structurale. De ce fait, la procédure probabiliste constitue une alternative aux approches déterministes ou semi-probabilistes (utilisation de coefficients partiels de sécurité). Dans la méthode probabiliste, une probabilité de défaillance élevée ou un faible indice de fiabilité n'entraîne pas forcément une défaillance imminente vis-à-vis d'un mode de défaillance donné. Par contre, il indique que des actions de maintenance, de surveillance, de réparation, de réhabilitation ou de renforcement sont nécessaires au risque d'encourir à un dysfonctionnement global.

La plupart des études d'évaluation de la fiabilité structurale est basée sur la vérification des éléments de structure, sous condition de disposer d'une caractérisation probabiliste des paramètres et d'un état limite explicite. C'est ce qui se réalise au travers des approches de fiabilité comme les méthodes de niveau II auxquelles appartiennent les méthodes FORM et SORM. La fonction d'état limite peut être évaluée également par calculs numériques (méthodes aux différences finies, aux éléments finis...). La combinaison des méthodes de fiabilité et le calcul aux éléments finis est appelée méthode de fiabilité aux éléments finis. Gallimard [2011] a utilisé une méthode de fiabilité du premier ordre (FORM) en conjonction avec une analyse EF pour calculer la probabilité de défaillance d'une plaque fissurée en traction. L'analyse combinée EF et fiabilité présentée permet d'obtenir des encadrements de l'indice de fiabilité et de calculer la probabilité de défaillance. Humbert et al. [2010] ont combiné un modèle EF et une approche probabiliste. Le modèle EF est fondé sur des essais d'arrachement des barres d'acier encastrées dans des éprouvettes en béton avec différentes longueurs d'ancrage. Cette étude offre une analyse complémentaire à d'autres études déterministes de ce problème mécaniquement non linéaire. D'autres méthodes peuvent être utilisées pour évaluer la fiabilité structurale, comme la procédure par surfaces de réponse consistant à construire la fonction d'état limite en utilisant un polynôme ajusté aux résultats d'un nombre limité de calculs aux éléments finis. Le calcul en fiabilité des structures complexes peut recourir à des simulations numériques de type Monte-Carlo. Cette méthode implique des tirages en grand nombre avec des appels conséquents au code de calcul, entrainant un long temps de calcul. Ces procédures de type Monte-Carlo (même dans leurs versions optimisées, comme les techniques de tirage d'importance ou conditionné) deviennent vite prohibitives pour le calcul d'un ouvrage complexe. Cette approche se complique davantage dans les cas où plusieurs modes de défaillance doivent être considérés de manière simultanée. Cet effet système est cependant essentiel dans l'étude de la fiabilité d'ouvrages.

Cette partie présente les différentes techniques de calculs classiques en fiabilité : méthodes de niveau *II* (FORM, SORM) ou III (Monte-Carlo).

2.1.1 Variables aléatoires

Pour l'étude de la fiabilité des structures, les paramètres incertains sont considérés comme des variables aléatoires. Les incertitudes peuvent provenir des variabilités liées aux chargements appliqués ou au processus de réalisation du système considéré. La sélection des variables aléatoires est faite en fonction du matériau étudié (*comportement mécanique*) et du système considéré (*actions*). Notons que ces variables aléatoires sont en général regroupées dans un vecteur, appelé vecteur des variables de base et noté X. Ces variables aléatoires sont définies dans ce que l'on appelle espace physique. Les variables aléatoires peuvent avoir un impact significatif sur le mode de fonctionnement de la structure qui se traduit au niveau local par l'occurrence d'un mode de défaillance et de manière globale par un mécanisme de ruine.

2.1.2 Mode de défaillance

Lorsque qu'un élément de structure n'assure plus une de ses fonctions alors un mode de défaillance élémentaire se produit. Plusieurs phénomènes physiques tels que la plastification, la fissuration, la fatigue, le fluage et les grandes déformations peuvent être à l'origine d'une défaillance. Chacun des phénomènes cités précédemment ou leur combinaison peut représenter un mode de défaillance. Dans la plupart des publications les chercheurs se placent dans le cas des structures ayant un seul mode de défaillance (par exemple : rupture fragile ou rotule plastique).

2.1.3 Fonction d'état limite

La modélisation probabiliste d'un mode de défaillance se fait par la définition d'une fonction d'état limite G(X). Cette fonction d'état limite correspond à l'équilibre entre la ressource et le besoin. Elle permet la réalisation d'une partition de l'espace physique en deux domaines : la sûreté et la défaillance. Le vecteur X regroupe les paramètres incertains d'entrée modélisés par des variables aléatoires $X(w) = \{X_1, ..., X_n\}$, où w représente l'aléa, à valeur dans l'espace dit "physique", $X^n \subset \mathbb{R}^n$. Pour un aléa fixé, les réalisations de ce vecteur sont notées $x = \{x_1, ..., x_n\} \in X^n$. Ainsi on a :

- G(X) > 0 représente le domaine de sûreté de la structure ;
- G(X) < 0 définit le domaine de défaillance de la structure ;
- G(X) = 0 constitue la frontière appelée surface d'état limite.

La Figure I.12 montre que le système considéré possède deux états possibles : acceptables ou de fonctionnement et inacceptable ou de défaillance.

FIGURE I.12 – Domaine de sûreté et de défaillance dans le cas de deux variables aléatoires

Lorsque les composants du vecteur X de variables aléatoires est supérieur ou égal à 2 alors l'état limite est une hypersurface de l'espace physique ($x = \{x_1, ..., x_n\}$). Pour la clarté, de nombreuses hypothèses sont progressivement introduites et le nombre de variables aléatoires est finalement limité à 2 :

- une variable aléatoire **résistance** *R*, dont une réalisation est r ;
- une variable aléatoire **sollicitation** *S*, dont une réalisation est s.

L'écriture de la fonction d'état limite G(X) dans l'espace initial dit "des variables physiques" est :

$$G(R,S) = R - |S| \le 0.$$
(I.19)

La fonction d'état limite permet d'évaluer la probabilité de défaillance : $p_f = P(G(R, S) \leq 0)$.

2.1.4 Transformations isoprobabilistes

Selon Thoft-Christensen and Murotsu [1986], toute application permettant de substituer la métrique de l'espace physique par une métrique normée, tout en conservant la valeur de la probabilité en chacun des points de cet espace, est appelé transformation isoprobabiliste Figure I.13.

FIGURE I.13 – Transformation des variables de base (Mansouri [2013])

Les variables aléatoires X (corrélées ou non) de l'espace physique suivant une loi quelconque, sont transformées en des variables aléatoires centrées réduites et indépendantes U. Ces dernières définissent les vecteurs de base de l'espace normé. L'espace transformé est adapté pour effectuer les calculs de probabilité. En effet, les difficultés liées aux domaines de définition des densités des variables aléatoires de l'espace physiques sont évitées, par exemple dans le cas de la densité gaussienne où le support est infini.

Quelques transformations possibles de l'espace physique vers l'espace des variables normées en fonction de l'information disponible sur les lois des vecteurs aléatoires sont données dans le Tableau I.1.

TABLE I.1 – Bilan des différe	entes transformations Lemaire [2005]
-------------------------------	--------------------------------------

Information disponible	Transformation	Remarques
loi conjointe du vecteur X_i	Rosenblatt	transformation non unique
lois marginales de X_i		information suffisante pour
et corrélation $cor[X_i, X_j]$	loi normale	X_i normale et log-normale, corrélation prise en compte directement
lois marginales de X_i		information suffisante pour
et corrélation $cor[X_i, X_j]$	Nataf	X_i normale et log-normale, corrélation équivalente à calculer
moments marginaux de X_i		base de décomposition
et corrélation $cor[X_i, X_j]$	Hermite	commune à diverses variables

2.1.5 Probabilité de défaillance

Les variables aléatoires sont définies par leur fonction de densité de probabilité notée $f_X(d, X)$. Selon Aoues [2008], la probabilité de défaillance P_f , associée à la marge G, est le poids probabiliste de la partie de l'espace constitué par le domaine de défaillance ($G \le 0$). Autrement dit, cette probabilité est l'intégration de la densité conjointe de probabilité sur le domaine de défaillance :

$$p_f = Prob(G_i \le 0) = \int_{G(X) \le 0} f_X(x_1, ..., x_n) \, dx_1 dx_n \tag{I.20}$$

L'illustration de l'Equation (I.20) est donnée sur la Figure I.14 dans laquelle la densité conjointe de probabilité des variables aléatoires est Gaussienne. Le poids probabiliste P_f est le volume situé sous la partie grisée.

FIGURE I.14 – Distribution conjointe et probabilité de défaillance (Aoues [2008])

Dans l'Equation (I.20), l'expression $f_X(x_1, ..., x_n)$ représente la densité conjointe du vecteur des variables aléatoires. Dans le cas où elles sont indépendantes alors la densité de probabilité conjointe est égale au produit de toutes les densités de chaque variable.

$$f_X(x_1, ..., x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$
(I.21)

L'Equation (I.20) est l'expression générale de la probabilité de défaillance. Son estimation n'est pas une tâche facile car deux exigences sont rarement satisfaites, à savoir, la connaissance de la densité conjointe de probabilité du vecteur X et la possibilité de l'intégration directe (Dehmous [2007]). Pour pallier ces deux difficultés, il existe plusieurs méthodes de calcul afin de déterminer la probabilité de défaillance. Il s'agit des méthodes d'approximation, des méthodes de simulation, des méthodes de calcul des moments statistiques et des méta-modèles (Dehmous [2007], Lemaire [2005], Lind [1996], Mansouri [2013], Thoft-Christensen and Murotsu [1986]).

Parmi les techniques pouvant évaluer la probabilité de défaillance, nous présentons la méthode d'approximation First Order Reliability Method (FORM) et les simulations numériques de Monte-Carlo.

2.1.6 Méthode d'approximation : FORM

L'approximation du premier ordre FORM est une méthode de calcul de la probabilité de défaillance. Pour ce faire, l'indice de fiabilité β défini comme la distance de l'origine O au point P^* le plus proche de l'origine sur la surface d'état limite est recherché (Hasofer and Lind [1974]). P^* est le point de la frontière entre le domaine des états acceptables et celui des états inacceptables, le plus proche de l'origine dans l'espace dit "transformé" des variable centrées (Figure I.13). Ainsi, β est solution du problème de minimisation sous contrainte suivant :

$$\beta = \min\left(\sqrt{\sum_{i} u_i^2}\right) avec \ H(U) \le 0 \tag{I.22}$$

où H(U) est la surface d'état limite dans l'espace transformé (Figure I.15). U représente le vecteur des variables aléatoires réduites et indépendantes dans l'espace transformé.

FIGURE I.15 – Principe de la méthode FORM.

La surface d'état limite H(U) = 0 est approximée par un hyperplan tangent au point de conception (Figure I.15). L'expression de l'hyperplan est :

$$\sum_{i=1}^{n} \alpha_i u_i + \beta = 0 \tag{I.23}$$

où α représente le gradient normalisé de la fonction d'état limite, évalué au point de conception :

$$\alpha = \frac{\nabla H(u^*)}{\|\nabla H(u^*)\|} \tag{I.24}$$

La valeur de β est associée à la probabilité de défaillance :

$$p_f = \Phi(-\beta) = 0.5 \times (1 + erf(-\frac{\beta}{\sqrt{2}}))$$
 (I.25)

où Φ est la fonction de répartition de la loi normale centrée réduite et erf() représente la fonction erreur.

2.1.7 Méthode de simulation : Monte-Carlo

Les méthodes de simulation numérique ont pris un essor important avec l'avènement des ordinateurs et leur puissance de calcul toujours plus importante. En ingénierie, des simulations peuvent être effectuées afin d'étudier la performance d'un système. En particulier, la méthode de Monte-Carlo (MC) est la plus connue pour estimer la probabilité de défaillance (Figure I.16).

FIGURE I.16 – Tirages Monte-Carlo (Beaucaire [2012])

Le principe de la méthode de simulation de MC consiste à effectuer des tirages aléatoires dans l'espace des variables physiques. Pour chacun des tirages, la fonction d'état limite est évaluée afin de conclure si la configuration est dans le domaine de sûreté ou dans le domaine de défaillance. Par comptage des défaillances, on peut estimer la probabilité recherchée. Selon Lemaire [2005], l'intérêt majeur de cette démarche est que son résultat est souvent considéré comme le résultat de référence par rapport aux approximations analytiques car il s'agit d'une méthode universelle.

La simulation de Monte-Carlo présente avant tout l'avantage d'une simplicité de mise en œuvre et d'une absence d'exigences mathématiques spécifiques pour la fonction d'état limite. Elle présente également l'avantage d'une convergence sûre. Elle constitue un moyen coûteux en termes de temps de calcul car la convergence est lente. Ainsi, il existe plusieurs variantes de la simulation de Monte-Carlo, visant à optimiser les stratégies de tirs dans le but de réduire le coût de calcul. Il s'agit par exemple des méthodes de tirage d'importance et de tirage directionnel.

Le tirage d'importance consiste à réduire la variance en utilisant une densité de probabilité auxiliaire qui permet de concentrer les tirages dans les domaines les plus importants du point de vue de la défaillance. Le fondement du tirage directionnel réside dans la notion de probabilité conditionnelle (Figure I.17). La méthode de simulation par subsets (SS - Subsets Simulation) a été également développée. Il s'agit d'un algorithme de simulation stochastique pour calculer efficacement les probabilités relatives à de rares événements de défaillance (Dang et al. [2012]). Dang [2014] a vérifié l'applicabilité de la méthode de simulation par subset dans le contexte des études probabilistes du risque sismique.

FIGURE I.17 – Tirage : (a) d'importance ; (b) directionnel (Mohammadkhani-Shali [2007])

2.2 Probabilité de défaillance des systèmes

D'une manière générale, la défaillance d'un système mécanique ne dépend pas d'un seul évènement. En effet, elle résulte de plusieurs défaillances locales successives ou selon un scénario ou l'occurrence de manière simultanée de plusieurs modes de défaillance. Les principales combinaisons des modes de défaillance sont présentées dans la Figure I.18.

FIGURE I.18 - Combinaison des modes de défaillance

Soit un ensemble d'évènements e_i de défaillance, de probabilité $p(e_i)$:

- **combinaison série** : l'ensemble formé des évènements e_i est une combinaison en série si l'occurence d'un seul évènement entraîne la défaillance globale du système. La probabilité de défaillance du système p_f est alors la probabilité de l'union des évènements de défaillance : $p_f = p(\cup e_i)$
- combinaison parallèle : l'ensemble formé des évènements e_i est une combinaison parallèle si l'occurrence de la défaillance de tous les évènements est nécessaire à la défaillance du sys-

tème. La probabilité de défaillance du système p_f est alors la probabilité de l'intersection des évènements de défaillance : $p_f = p(\cap e_i)$

- combinaison série de combinaisons parallèles : la combinaison série est constituée d'évènements e_k eux mêmes constitués d'évènements parallèles e_i . En combinant les relations de systèmes série et parallèle, on montre que la probabilité de défaillance du système vérifie : $p_f = p(\bigcup_k (\bigcap_i e_i)_k)$
- combinaison parallèle de combinaisons séries : la combinaison parallèle est constituée d'évènements e_k eux mêmes constitués d'évènements série e_i . En combinant les relations de système série et parallèle, la probabilité de défaillance du système est : $p_f = p(\bigcap_k (\bigcup_i e_i)_k)$
- combinaisons parallèles conditionnelles : une première étape consiste à rechercher les probabilités $p(e_i)$. L'étape suivante consiste à rechercher les probabilités conditionnelles $p(e_j|e_i)$. Ce schéma est répété autant de fois que nécessaire et la probabilité de défaillance du système est obtenue en prenant l'union des probabilités de chaque intersection : $p_f = p(e_i) \cap p(e_j|e_i) \cap$ $p(e_k|e_i e_j) \cap, \dots$

3 Choix et hypothèses pour notre travail

Dans ce travail de thèse, nous nous intéressons principalement à la robustesse structurale. Il ne s'agit pas d'évaluer la fiabilité des structures, bien que nous utilisions des outils développés dans ce domaine de recherche.

La première partie de l'étude bibliographique montre une grande diversité de définitions et de façons d'aborder l'étude de la robustesse structurale. Nous avons choisi de baser notre démarche sur la définition proposée dans l'Eurocode 1, à savoir qu'une structure doit être capable de résister à des évènements tels que les incendies, les explosions, les chocs ou les conséquences d'une erreur humaine, sans présenter de dégâts disproportionnés par rapport à la cause d'origine. Cette définition énonce clairement les notions de dommage initial localisé et de dégradations disproportionnées étendues. Ainsi, nous utilisons les notions de défaillance locale et de défaillance globale, vocabulaire utilisé par plusieurs auteurs (Agarwal and England [2008], Breysse [2009c], Val and Val [2006], Vrouwenvelder [2008]). Les définitions des défaillances locale et globale sont spécifiques à une structure donnée. Dans le cas particulier des ouvrages du génie civil, la défaillance locale peut être liée à une fissuration localisée, la formation d'une rotule plastique au droit d'une section donnée, une diminution locale de la section de béton ou d'acier, une tension ou une compression excessive d'un élément de structure, etc ... La défaillance globale peut être associée à une fissuration étendue, la formation d'un mécanisme de ruine, une perte de rigidité globale dans la structure, etc ...

Par ailleurs, nous avons choisi d'aborder l'évaluation ou la caractérisation de la robustesse structurale en contexte incertain avec calculs de probabilités. Nous utilisons des outils de la fiabilité, présentés dans la seconde partie de cette étude bibliographique, pour calculer les probabilités de défaillances locales. La mesure de la défaillance locale est alors la probabilité associée à l'évènement élémentaire $\{R - S \leq 0\}$ (Hähnel [2007], Kagho-Gouadjio [2013], Lemaire [2005], Mohammadkhani-Shali [2007]) où les notations R et S désignent respectivement la résistance et la sollicitation. Il est à noter que, comme dans la plupart des études de fiabilité de la littérature, pour le calcul des probabilités à un stade donné, nous supposons que R et S sont réalisées pour chaque événement élémentaire potentiel envisagé, sans nous préoccuper de la chronologie. Ainsi, dans le cadre de cette hypothèse, il peut arriver que plusieurs défaillances locales soient vérifiées pour un chargement donné. Il s'agit de la probabilité de l'intersection d'événements élémentaires, que l'on suppose définie, sans vérifier a priori si chaque cas de défaillances locales multiples a déjà été observé, voire est physiquement possible.

La probabilité de défaillance globale est évaluée, pour un scénario donné, grâce à la branche correspondante dans un arbre d'événements dans lequel les événements successifs correspondent aux défaillances locales de différentes parties élémentaires de la structure. Le choix de construire un arbre d'événements a pour but de mettre en évidence, le cas échéant, les scénarios pour lesquels des réactions en chaine peuvent avoir lieu, les progressions des dégradations de la structure y étant décrites du dommage initial jusqu'à l'effondrement.

Afin d'avoir des scénarios exclusifs dans l'arbre des événements, l'ensemble des branches issues d'un nœud doit représenter des probabilités disjointes. Ainsi, lorsque les intersections d'événements élémentaires ne sont pas vides, il faut déduire celles-ci des événements élémentaires. Pour faciliter la lecture de ce document, un événement constitué par la différence ensembliste d'un événement élémentaire avec l'union de tous les autres événements élémentaires est appelé «événement seul» dans ce travail. Sa probabilité d'occurrence se calcule en déduisant les probabilités d'intersections de la probabilité de l'événement élémentaire.

Parmi tous les indices proposés dans la littérature pour caractériser la robustesse d'une structure, le plus naturel dans le cadre des choix précédents est celui qui fait intervenir la probabilité de défaillance locale et la probabilité de défaillance globale (voir l'Equation (II.1)).

Enfin, étant donné que nous nous intéressons à la détection du risque de réaction en chaine à la suite d'un événement initial localisé, il ne faut pas tronquer l'arbre en ne gardant que la suite des événements les plus probables par des techniques de type β -unzipping ou branches et bornes. En effet, certaines dégradations locales initiales peu probables peuvent parfois engendrer des redistributions d'efforts conduisant à de fortes probabilités de dégradations successives. Pour les exemples académiques présentés dans cette thèse, les arbres complets sont évalués car leur taille reste assez petite, mais pour des structures plus complexes, il faudra élaborer des critères pour limiter le nombre de branches à évaluer.

La mise en œuvre de notre approche fait intervenir les notions suivantes :

- Robustesse structurale : aptitude d'une structure à résister à des événements localisés (incendies, explosions ou conséquences d'une erreur humaine) sans présenter de dégâts disproportionnés.
- Défaillance locale : altération ou cessation d'un élément d'une structure à accomplir sa fonction requise.
- Défaillance globale : altération ou cessation d'une structure à accomplir sa fonction requise.
- Mode de défaillance : effet par lequel une défaillance locale ou globale se manifeste; dans le cas de la défaillance globale, le mode de défaillance s'appelle aussi mécanisme de ruine.

Dans le cadre du contexte incertain, nous étudions les probabilités d'apparition de ces défaillances, et nous utilisons le vocabulaire suivant :

— Évènement élémentaire : évènement associé à la défaillance locale $\{R - S \le 0\}$ où les notations R et S désignent respectivement la résistance et la sollicitation (Hähnel [2007], Kagho-Gouadjio [2013], Lemaire [2005], Mohammadkhani-Shali [2007]).

- Probabilité de défaillance locale : probabilité associée à l'évènement élémentaire correspondant : $P_f = Prob(\{R S \le 0\}).$
- Événement d'intersection : conjonction de plusieurs événements élémentaires.
- Événement seul : événement correspondant à la différence ensembliste d'un événement élémentaire avec l'union de tous les autres événements élémentaires.
- Arbre des évènements (*Event Tree*) : arbre constitué d'événements réalisés, les nœuds, reliés par des branches indiquant la chronologie et la probabilité des événements.
- Scénario : chemin suivant toutes les branches depuis l'événement initial (défaillance locale) jusqu'à la ruine de la structure.
- Scénario exclusif : si l'on s'assure que toutes les branches issues d'un nœud conduisent à des événements disjoints, les scénarios de l'arbre sont exclusifs.
- Probabilité de défaillance globale : valeur obtenue en multipliant toutes les probabilités rencontrées le long d'un scénario exclusif.

Conclusion

Dans la première partie de ce chapitre, plusieurs indices permettant d'évaluer la robustesse structurales ont été présentés. Ces indices de robustesse sont répartis suivant le comportement et les caractéristiques de la structure. Une sélection des différentes approches publiées pour quantifier la robustesse a été également présentée. Une procédure visant à rechercher le cheminement interne de la défaillance dans la structure a été détaillée. Des méthodes de parcours d'arbre d'évènements telles que la méthode des branches et bornes, du β -unzipping, ou encore du β -unzipping avec bornage sont présentées. Ces méthodes permettent d'identifier les chemins de défaillance dominants. Une approche consistant à identifier la défaillance globale sans parcourir un arbre d'évènements a également été évoquée. Cette méthode consiste à regarder la défaillance de manière globale sans chercher à déterminer la chronologie de la défaillance.

Dans la deuxième partie de ce chapitre, deux procédures permettant de calculer la probabilité de défaillance ont été exprimées. Il s'agit de l'approximation FORM et des simulations de Monte-Carlo. Pour la méthode FORM, connaitre la fonction d'état limite est essentielle. Pour les simulations de Monte-Carlo, l'expression explicite de l'état limite n'est plus essentielle dans l'estimation de la probabilité de défaillance. Notons que la démarche Monte-Carlo peut être très consommatrice en temps de calcul.

La dernière partie de ce chapitre présente la position de notre étude par rapport à la littérature. Elle aborde l'idée générale de la thèse et expose la démarche proposée afin de déterminer une mesure de la robustesse structurale pour chaque scénario exclusif de réactions en chaine. La procédure développée se base sur les recommandations de l'Eurocode à savoir qu'une structure doit être conçue et exécutée pour ne pas être endommagée par des évènements accidentels de façon disproportionnée par rapport à la cause initiale. Dans ce travail de thèse, nous proposons des méthodologies analytiques et numériques pour étudier la robustesse de structures hyperstatiques par la recherche d'arbres complets d'évènements comprenant tous les chemins potentiels distincts d'une défaillance initiale localisée jusqu'à la ruine globale. L'objectif du chapitre suivant est de présenter l'approche développée dans cette thèse de doctorat. La procédure est illustrée dans les cas de structures unidimensionnelles hyperstatiques de poutres bi-encastrées.

Chapitre

Évaluation de la robustesse structurale en contexte probabiliste

Diverses définitions de la robustesse ont été proposées dans les publications scientifiques et dans les normes de conception rappelées au chapitre *I*. Nous retenons celle proposée par le code européen : « l'aptitude d'une structure à résister à des événements tels que les incendies, les explosions, les chocs ou les conséquences d'une erreur humaine, sans présenter de dégâts disproportionnés par rapport à la cause d'origine ». En effet, cette définition incite à se prémunir de la propagation d'un dommage initial (défaillance locale) jusqu'aux dommages disproportionnés (défaillance globale). La défaillance locale est introduite par un mode de défaillance caractérisant la façon dont un élément perd sa fonctionnalité et la défaillance globale correspond à l'occurrence d'un nombre critique de modes de défaillance entrainant la formation d'un mécanisme de ruine.

Ce deuxième chapitre de thèse présente l'approche proposée détaillée dans les prochains paragraphes. Cette procédure est ensuite illustrée sur un cas académique afin de construire l'arbre complet des événements comprenant tous les chemins distincts. L'arbre est construit grâce à l'ensemble des scénarios des événements initiaux localisés jusqu'à l'effondrement de la structure, en considérant soit une défaillance locale successive (un événement après l'autre) soit une ruine globale soudaine (plusieurs événements) survenant dans la structure. La construction complète de manière exhaustive de cet arbre d'évènements permet de mettre en évidence tous les potentiels cheminements internes de la défaillance dans la structure avec leur chronologie respective. Une comparaison des chemins de défaillance s'effectue grâce au calcul de l'indice de robustesse de chaque branche de l'arbre complet d'évènements.

1 Approche proposée

Dans cette thèse, l'approche proposée consiste à évaluer la robustesse structurale en se basant sur les recommandations de l'Eurocode 1, à savoir qu'une structure doit être conçue pour ne pas être endommagée par des évènements accidentels ou non de façon disproportionnée par rapport à la cause d'origine. Notre approche en contexte probabiliste repose sur les étapes fondamentales suivantes :

- identification du système structural;
- définition des modes de défaillance (défaillance locale) et des scénarios de ruine (défaillance globale);
- évaluation des scénarios exclusifs possibles et leur indice de robustesse respectif;

- construction complète de l'arbre d'évènements.

1.1 Indice de robustesse

Un indice de robustesse est évalué pour chaque scénario potentiel d'effondrement progressif. L'indice choisi est un rapport entre les probabilités de défaillance locale et globale, comme défini par l'Equation (II.1).

$$I_r = 1 - \frac{p_{globale}}{p_{initiale}} \tag{II.1}$$

où $p_{initiale}$ et $p_{globale}$ sont respectivement les probabilités de l'évènement initial localisé et de ruine globale de la structure pour un scénario considéré.

Cet indice permet de comparer les probabilités de défaillance locale et globale. Il est compris entre 0 (structure peu robuste) et 1 (structure très robuste).

1.2 Probabilité de défaillance

Le calcul des probabilités de défaillance peut s'effectuer grâce à l'utilisation des outils de fiabilité (Chapitre I).

La première spécificité de ce travail a été de mettre en évidence la nécessité de déterminer les probabilités d'intersection afin d'évaluer la probabilité disjointe d'un événement exclusif (Seck et al. [2017]). En effet, une probabilité de défaillance contient toutes les possibilités concernant l'événement exclusif et avec d'autres événements d'intersection (Figure II.1).

FIGURE II.1 - évènements seuls et évènements d'intersection seuls

Le défi consiste à évaluer les probabilités des évènements d'intersection afin de les déduire et d'obtenir la probabilité de l'événement seul.

1.3 Probabilité d'intersection

L'évaluation de la probabilité de défaillance d'évènements multiples potentiels implique souvent l'intégration de distributions normales multivariées. Selon Greign [1992], lorsque le nombre d'éléments d'intersection est élevé alors l'intégration numérique est impraticable en raison d'un temps de calcul coûteux et des erreurs numériques élevées. Par conséquent, plusieurs méthodes approximatives ont été développées (Hohenbichler and Rackwitz [1983]). Le challenge consiste à déterminer la probabilité de défaillance d'une combinaison parallèle d'ordre m qui s'exprime par l'équation suivante :

$$p(\bigcap_{k=1}^{m} e_k) = \begin{cases} \Phi_m(-\{\beta\}, [\rho]) \\ p[e_m \mid \bigcap_{k=1}^{m-1} e_k] \times p[e_{m-1} \mid \bigcap_{k=1}^{m-2} e_k] \dots \times p(e_2 \mid e_1) \times p(e_1) \end{cases}$$
(II.2)

où $\bigcap_{k=1}^{m} e_k$ est équivalent à $e_1 \cap e_2 \cap \dots e_m$, $p(e_i|e_j)$ est la probabilité de défaillance conditionnelle (défaillance de l'évènement e_i sachant la défaillance de l'évènement e_j), $\{\beta\}$ représente le vecteur des indices de fiabilité dont la dimension est m et $[\rho]$ désigne la matrice de corrélation obtenue par le produit des cosinus directeurs des hyperplans :

$$[\rho] = [\alpha]^T [\alpha] \tag{II.3}$$

Selon Terada and Takahashi [1988], la probabilité de défaillance d'une intersection m (intégrale multi-normale) peut être approchée par le produit des m intégrales normales unidimensionnelles.

$$p(\bigcap_{k=1}^{m} e_k) = \Phi_m(-\{\beta\}, [\rho]) \approx \prod_{k=1}^{m} \Phi(-\beta_{k|(k-1)})$$
(II.4)

Les indices de fiabilité $\beta_{m|k}$ et les coefficients de corrélation $\rho_{mk|(k-1)}$ sont des termes conditionnels calculés par une procédure récursive :

$$\beta_{m|k} = \frac{\beta_{m|(k-1)} + \rho_{mk|(k-1)} \times A_{k|(k-1)}}{\sqrt{(1 - \rho_{mk|(k-1)}^2 \times B_{k|(k-1)})}}$$
(II.5)

et

$$\rho_{mk|(l-1)} = \frac{\rho_{mk|(l-2)} - \rho_{k(k-1)|(l-2)} \times \rho_{m(k-1)|(l-2)} \times B_{(k-1)|(l-2)}}{\sqrt{\left(1 - \rho_{k(k-1)|(l-2)}^2 \times B_{(k-1)|(l-2)}\right)} \times \sqrt{\left(1 - \rho_{m(k-1)|(l-2)}^2 \times B_{(k-1)|(l-2)}\right)}}$$
(II.6)

où $l \in \{1, 2, ..., k\}$ avec les notations suivantes : $A_{i|q} = \frac{\phi(-\beta_{i|q})}{\Phi(-\beta_{i|q})}, B_{i|q} = A_{i|q} (A_{i|q} - \beta_{i|q})$ où $\Phi(-\beta_i)$ est donné par l'Equation (II.10) et $\phi(-\beta_i) = \frac{1}{\sqrt{(2 \times \pi)}} \exp(\frac{-\beta_i^2}{2}).$

Cette procédure récursive, implémentée sous Python, a été testée et validée grâce aux exemples traités dans Pandey [1998], Thoft-Christensen and Murotsu [1986] et Seck et al. [2016]. L'annexe A présente quelques systèmes étudiés de la littérature.

Le calcul de la probabilité d'intersection nous permet d'obtenir les probabilités d'évènements seuls. Par exemple, dans le cas d'une structure avec trois évènements locaux potentiels (e_i, e_j) et e_k voir Figure II.1), il faut d'abord calculer, la probabilité p_{ijk} de l'intersection des trois évènements. Ensuite, cette valeur permet de déterminer les probabilités disjointes p'_{ij} des évènements d'intersection seuls $(e_i \cap e_j)'$. Enfin, les probabilités disjointes p'_i des évènements seuls e'_i sont calculées.

$$\begin{cases} p'_{ij} = p(e'_{ij}) = p(e_i \cap e_j) - p(e_i \cap e_j \cap e_k) \\ p'_i = p(e'_i) = p(e_i) - \sum p(e_i \cap e_j) + p(e_i \cap e_j \cap e_k) \end{cases}$$
(II.7)

avec $i \neq j \neq k$.

La séparation des évènements seuls aux évènements d'intersection est une des conditions nécessaires pour assurer que la probabilité de rupture globale (p_{global}) puisse être calculée en multipliant toutes les probabilités rencontrées au cours d'un scénario exclusif (car chaque branche de l'arbre d'évènements est rendue exclusive).

1.4 Scénario exclusif

La deuxième spécificité du travail réside sur le parcours permettant de déterminer un scénario exclusif. La Figure II.2 résume les différentes étapes nécessaires pour déterminer un scénario exclusif de l'arbre des événements de la défaillance initiale jusqu'à l'effondrement (Seck et al. [2017]).

FIGURE II.2 – Méthode de caractérisation d'un chemin de défaillance exclusif

Le principe de la méthode est présenté pour des structures unidimensionnelles hyperstatiques, pour lesquelles la rupture d'une ou plusieurs sections n'entraîne pas toujours comme conséquence la ruine de l'ensemble du système. En effet, les éléments non endommagés restants peuvent être en mesure de supporter la charge externe par une redistribution des efforts internes, jusqu'à ce qu'il se forme un nombre suffisant de défaillances conduisant à la ruine de la structure. Plus la structure est hyperstatique, plus il faut des sections endommagées pour engendrer la ruine complète.

La première étape de la Figure II.2 consiste à étudier l'équilibre statique de la structure. Cela permet d'identifier les éléments critiques où des ruptures potentielles pourraient être initiées. La résistance et les charges sont considérées comme des variables aléatoires suivant les lois de probabilité (normales ou log-normales). La probabilité de défaillance d'un événement est calculée grâce à la fonction de distribution Φ de la loi normale centrée réduite et de l'estimation de l'indice de fiabilité β défini par Hasofer and Lind [1974] (Equation (I.25)).

La deuxième étape de la Figure II.2 consiste à évaluer les probabilités des événements d'intersection afin de les déduire et d'obtenir la probabilité de l'événement seul. Chaque probabilité disjointe d'un événement unique correspond à un nouveau nœud de l'arbre et conduit à un nouvel état de la structure. Les nouvelles branches sont alors obtenues grâce au calcul des probabilités conditionnelles. En résumé, un scénario correspond à un chemin suivant toutes les branches depuis un dommage initial jusqu'à l'effondrement de la structure. Pour chaque scénario, des probabilités conditionnelles doivent être calculée : chacune correspond à la probabilité d'un nouvel événement sachant l'occurrence de tous les précédents. Lorsque la ruine globale est atteinte, la probabilité globale du scénario est calculée afin de déterminer l'indice de robustesse I_r correspondant.

1.5 Arbre d'évènements

L'ensemble des scénarios peut être résumé dans un arbre complet d'événements où les nœuds correspondent à des événements uniques (dommages locaux) et où chaque branche relie un nouvel événement (nœud suivant) à un événement précédent.

La troisième spécificité de ce travail a été de proposer la construction complète de l'arbre des évènements incluant les branches des évènements d'intersection (Seck et al. [2017]). A titre d'exemple, la Figure II.3 illustre le parcours d'un arbre d'évènements d'une structure de 3 éléments susceptibles d'être défaillants. Les nœuds correspondent à l'occurrence de la défaillance d'un des éléments.

FIGURE II.3 – Illustration schématique d'un arbre d'évènements

La valeur p'_A est la probabilité de défaillance locale de l'élément A seul. La valeur $p'_{B|A}$ est une probabilité conditionnelle et représente la défaillance de l'élément B sachant la défaillance de l'élément A qui s'est déjà produite. L'arbre d'évènements met aussi en évidence l'occurrence des évènements d'intersection seuls. Par exemple, la valeur $p'_{A\cap B}$ correspond à la probabilité de défaillance d'intersection des éléments A et B uniquement (excluant tous les cas où d'autres évènements apparaissent en plus de A et B). La probabilité de défaillance globale ($p_{globale} = p'_A * p'_{B|A} * p'_{C|A\to B}$) résulte de la multiplication de toutes les probabilités rencontrées au cours d'un scénario exclusif. Enfin, la valeur $I_{A\to B\to C}$ désigne l'indice de robustesse du scénario exclusif A puis B puis C.

1.6 Synthèse

L'évaluation d'un scénario partant d'une défaillance locale jusqu'à la ruine globale repose sur les étapes suivantes :

- calculer les probabilités de défaillance locale par la méthode FORM ;
- déterminer les probabilités d'intersection afin d'évaluer la probabilité disjointe d'un événement seul;

- évaluer les probabilités conditionnelles de proche en proche ;
- calculer la probabilité de défaillance globale du scénario exclusif par l'intersection de tous les événements y conduisant.

L'approche développée est analytique et permet de calculer de faibles probabilités de défaillance en quelques secondes alors qu'une procédure par Monte-Carlo est coûteuse en temps de calcul. Dans l'arbre complet des évènements, chaque branche de scénario exclusif de défaillance conduit à un indice de robustesse I_r compris entre 0 et 1.

2 Application à une structure unidimensionnelle

Dans les paragraphes suivants, nous illustrons la méthode dans le cas d'une structure unidimensionnelle hyperstatique constituée d'une poutre fléchie. Nous détaillons la méthode sur un exemple académique mais suffisamment général pour permettre de présenter les concepts utilisés de notre méthode de construction d'un arbre d'évènements complet. Il s'agit d'une poutre bi-encastrée de longueur L soumise à une force ponctuelle (Figure II.4), hyperstatique de degré 2 (parce que les effets du second ordre sont négligés), de telle sorte que la défaillance globale de ce système résultera de la formation de trois rotules parfaites. La géométrie de la poutre, le module élastique du matériau et la position de la charge sont considérés déterministes, de sorte que la variabilité des moments sollicitants M_{si} ne dépend que de celle du chargement F. Les moments résistants et la charge F sont considérés comme des variables aléatoires Gaussiennes indépendantes. Ainsi, le vecteur des variables aléatoires X aura pour composantes $X = (M_{r_A}, M_{r_B}, M_{r_C}, F)$.

FIGURE II.4 – Poutre bi-encastrée étudiée

Nous noterons M_{ri} le moment résistant d'une section i et M_{si} l'intensité du moment fléchissant sollicitant cette même section i. Pour simplifier la présentation, nous considérons des sections élastiques parfaitement fragiles, avec formation d'une rotule (moment plastique nul) dès l'atteinte d'une valeur limite de la résistance, indépendamment du signe du moment sollicitant. Nous considérons donc que notre mode de défaillance est la formation d'une rotule-fragile. La première étape consiste à étudier l'équilibre statique initial nous permettant d'obtenir le diagramme du moment fléchissant (Figure II.5a). La Figure II.5a nous permet d'identifier les trois sections critiques où peuvent s'initier de potentielles ruptures (mode de défaillance, Figure II.5b).

FIGURE II.5 – (a) Diagramme du moment fléchissant; (b) Positions prévisibles des rotules fragiles

Les moments fléchissant M_{si} des sections potentiellement critiques A, B et C sont donnés à l'Equation (II.8).

$$\begin{pmatrix}
M_{s_A} = -\frac{Fab^2}{L^2} = k_{s_A}F \\
M_{s_B} = \frac{2Fa^2b^2}{L^3} = k_{s_B}F \\
M_{s_C} = -\frac{Fa^2b}{L^2} = k_{s_C}F
\end{cases}$$
(II.8)

où k_{s_i} représente le coefficient d'influence vis-à-vis de la variable aléatoire F sur la section i.

Le Tableau II.1 résume les moyennes et écart-types des variables aléatoires choisies pour les données numériques suivantes : L = 3m, $a = \frac{1}{3}L$ et $b = \frac{2}{3}L$.

Variables aléatoires	moyenne : μ_{X_i}	écart-type : σ_{X_i}
$M_{rA}\left[Nm\right]$	1600	500
$M_{rB}\left[Nm\right]$	1600	500
$M_{rC}[Nm]$	1600	500
F[N]	2800	1000

TABLE II.1 – Données des va	riables aléatoires
-----------------------------	--------------------

Le rapport entre l'écart type et la moyenne est le coefficient de variation (*COV*) défini par l'Equation (II.9).

$$COV = \frac{\sigma_{X_i}}{\mu_{X_i}} \tag{II.9}$$

Nous choisissons d'utiliser des coefficients de variation de 31% pour le moment résistant de chaque section *i* et de 32% pour la variable aléatoire de sollicitation afin de mettre en évidence des résultats non intuitifs. La Figure II.6 illustre les distributions gaussiennes des moments résistant et fléchissant de la section droite A.

FIGURE II.6 – Illustration des distributions gaussiennes des moments résistant et fléchissant de la section droite A

2.1 Probabilités de défaillance locale

Un critère de défaillance représente l'équilibre entre la résistance et la sollicitation par une fonction d'état limite G(X) = 0 qui sépare le domaine de sûreté du domaine de défaillance ; par convention $G(X) \le 0$ représente le domaine de défaillance et G(X) > 0 le domaine de sûreté. Par définition, la probabilité de défaillance vérifie :

$$p = P(G(X) \le 0) = \Phi(-\beta_i) = 0.5 \times (1 + erf(-\frac{\beta_i}{\sqrt{2}}))$$
(II.10)

où β_i est l'indice de fiabilité de la section i, Φ est la fonction de répartition de la loi normale centrée réduite et erf() représente la fonction erreur. X désigne le vecteur des variables aléatoires choisies pour décrire les incertitudes potentielles de la poutre étudiée.

Le calcul de β (Hasofer and Lind [1974]) peut se faire grâce à la méthode d'approximation FORM (First Order Reliability Method) qui se résume en deux étapes :

- effectuer un changement de variables de l'espace physique vers un espace normé par une transformation dite isoprobabiliste.
- rechercher dans l'espace normé l'indice de fiabilité β défini comme la plus petite distance à l'origine de l'hyperplan H.

Dans le cas de la structure unidimensionnelle (Figure II.4), pour chaque section droite i ($i \in \{A, B, C\}$), il y a deux variables aléatoires de résistance M_{r_i} et de sollicitation M_{s_i} . Pour chaque évènement e_i associé à la section i, la fonction d'état limite s'écrit :

$$e_i: G_i = M_{r_i} \pm M_{s_i} \tag{II.11}$$

Le vecteur des variables aléatoires suivant des lois Gaussiennes est $X = (M_{rA}, M_{rB}, M_{rC}, F)$. Définissons le moment résistant M_{r_i} par sa moyenne μ_{r_i} et son écart type σ_{r_i} et la force ponctuelle F par sa moyenne μ_s et son écart type σ_s . Introduisons k_{s_i} , les coefficients d'influence de la charge F sur le moment sollicitant M_{s_i} , la fonction d'état limite de Equation (II.11) devient :

$$e_i: G_i = M_{ri} - |k_{s_i}| F \le 0 \tag{II.12}$$

La structure étudiée étant soumise qu'à une seule force ponctuelle, alors il nous parait judicieux d'introduire la valeur absolue du coefficient d'influence afin de simplifier l'Equation (II.11). Notons que dans le cas de plusieurs charges, cette démarche doit être améliorée en raison de la combinaison des charges. En effet, cette combinaison peut être bénéfique ou pénalisante suivant les sections (voir chapitre *III*).

Le changement de variables de l'espace physique vers un espace normé par une transformation isoprobabiliste est linéaire et s'écrit :

$$x_i \to u_i = \frac{x_i - \mu_{X_i}}{\sigma_{X_i}} \tag{II.13}$$

où les variables u_i de l'espace normé suivent une loi Gaussienne de moyenne nulle et de variance unitaire N(0, 1). La fonction d'état limite G devient la surface d'état limite noté H dans l'espace transformé et s'écrit, pour chaque évènement e_i représentant une défaillance locale de la section i:

$$e_i: \ \sigma_{r_i} u_{r_i} - |k_{s_i}| \sigma_s u_s + \mu_{r_i} - |k_{s_i}| \mu_s = 0$$
(II.14)

où la variable u_{r_i} correspond au moment résistant M_{r_i} et la variable u_s correspond à la force ponctuelle *F*. Les coefficients k_{s_i} sont ceux écrits dans l'Equation (II.8). L'indice de fiabilité β_i associé est :

$$\beta_{i} = \frac{\mu_{r_{i}} - |k_{s_{i}}|\mu_{s}}{\sqrt{\sigma_{r_{i}}^{2} + (k_{s_{i}}\sigma_{s})^{2}}}$$
(II.15)

Au point de conception, l'Equation (II.14) est remplacé par l'hyperplan suivant :

$$e_i: \ \alpha_{r_i} u_{r_i} - \alpha_{s_i} u_s + \beta_i = 0 \tag{II.16}$$

où e_i est l'évènement de la défaillance de la section *i* et les cosinus directeurs α_{r_i} et α_{s_i} s'expriment par les relations suivantes :

$$\alpha_{r_{i}} = \frac{\sigma_{r_{i}}}{\sqrt{\sigma_{r_{i}}^{2} + (k_{s_{i}}\sigma_{s})^{2}}} \quad ; \quad \alpha_{s_{i}} = \frac{|k_{s_{i}}|\sigma_{s}}{\sqrt{\sigma_{r_{i}}^{2} + (k_{s_{i}}\sigma_{s})^{2}}} \tag{II.17}$$

Finalement, pour un ensemble de m évènements et une charge, l'Equation (II.16) peut être écrite sous forme matricielle :

$$[\alpha] \{u\} + \{\beta\} = \{0\}$$
(II.18)

où $\{\beta\}$ est un vecteur de dimension m (m est égal au nombre de sections droites considérées) contenant l'indice de fiabilité, $\{u\}$ est un vecteur de dimension (m + 1) contenant les variables u_{r_i} et u_{s_i} et [α] est une matrice de taille $m \times (m + 1)$ contenant les cosinus directeurs α_{r_i} et α_{s_i} de l'Equation (II.17).

Dans notre cas d'étude, le système résultant de l'ensemble des hyperplans de chaque section peut s'écrire sous la forme matricielle suivante :

$$\begin{pmatrix} \alpha_{r_A} & 0 & 0 & \alpha_{s_A} \\ 0 & \alpha_{r_B} & 0 & \alpha_{s_B} \\ 0 & 0 & \alpha_{r_C} & \alpha_{s_C} \end{pmatrix} \begin{pmatrix} u_{r_A} \\ u_{r_B} \\ u_{r_C} \\ u_s \end{pmatrix} + \begin{pmatrix} \beta_A \\ \beta_B \\ \beta_C \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
(II.19)

où les zéros dans la matrice des cosinus directeurs illustrent que les résistances entre sections sont non corrélées. Cependant, les hyperplans sont corrélés entre eux par la présence de la force dans les expressions du moment sollicitant de chaque section. Les valeurs numériques sont les suivantes :

$$\begin{pmatrix} 0.747 & 0 & 0 & -0.664 \\ 0 & 0.860 & 0 & -0.509 \\ 0 & 0 & 0.913 & -0.406 \end{pmatrix} \begin{pmatrix} u_{r_A} \\ u_{r_B} \\ u_{r_C} \\ u_s \end{pmatrix} + \begin{pmatrix} 0.531 \\ 1.325 \\ 1.787 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
(II.20)

et les probabilités de défaillance locale $\{\Phi(-\beta_i)\}$ correspondantes sont regroupées dans le Tableau II.2.

Sections	p_i
A	0.297
В	0.092
C	0.036

Les sections présentant les intensités de moment sollicitant les plus élevées ont les probabilités de défaillance les plus grandes ($p_A > p_B > p_C$). La section droite A, étant la plus sollicitée, présente une probabilité de défaillance 3 fois plus élevée que la section droite B et 8 fois plus élevée que la section droite C. De plus, ces probabilités de défaillance sont assez élevées par rapport à la littérature où les probabilités sont inférieures à 10^{-3} . Ceci s'explique par le COV très élevé des variables aléatoires de résistance et par l'importance de la moyenne de la force ponctuelle.

2.2 Probabilités d'intersection

La méthode présentée au paragraphe précédent permet de calculer la probabilité d'un événement individuel, sans tenir compte des intersections avec un événement voisin. En effet, la probabilité de l'événement e_i inclut le cas où une défaillance se produit uniquement en i, mais également les cas où des défaillances se forment en j et/ou k en même temps qu'en i. Ces cas de ruptures multiples ont des probabilités traduites par les intersections d'événements $e_i \cap e_j$ et $e_i \cap e_j \cap e_k$. Pour une élaboration correcte de l'arbre des évènements (en ne comptant pas deux fois les mêmes probabilités dans deux branches différentes), il est nécessaire de séparer les événements seuls des événements d'intersection.

Pour la poutre bi-encastrée, les résultats du Tableau II.2 incluent le cas où la rotule peut se former uniquement en une section critique, mais également les cas où des rotules peuvent se former quasisimultanément dans les autres sections critiques. Par exemple, la probabilité de l'événement e_A inclut le cas où la rotule se forme uniquement en A, mais également les cas où des rotules se forment en B et/ou C en même temps qu'en A. Ces cas de ruptures multiples ont des probabilités (p_{ij} et p_{ijk}) traduites par les intersections d'événements ($e_i \cap e_j$ et $e_i \cap e_j \cap e_k$) (Figure II.1). La procédure permettant de calculer la probabilité d'intersection est décrite au paragraphe 1.3 de ce chapitre. L'évaluation de la probabilité d'intersection des 3 sections A, B et C s'effectue grâce à l'Equation (II.2).

$$p(e_A \cap e_B \cap e_C) = \Phi_3(-\{\beta\}, [\rho]) = p(e_C | e_A \cap e_B) \times p(e_B | e_A) \times p(e_A)$$
(II.21)

Évaluons dans un premier temps l'expression $p(e_B|e_A)$ de l'Equation (II.21). Ce terme nécessite la détermination de la moyenne $\mu_{B|A}$ et de l'écart type $\sigma_{B|A}$

$$\mu_{B|A} = -\rho_{AB} A_A \; ; \; \sigma_{B|A} = \sqrt{1 - \rho_{AB}^2 B_A} \tag{II.22}$$

où ρ_{AB} est un composant de la matrice de corrélation de l'Equation (II.3); $A_A = \frac{\phi(-\beta_A)}{\Phi(-\beta_A)}$ et $B_A = A_A (A_A - \beta_A)$ avec $\Phi(-\beta_A)$ qui se calcule selon l'Equation (II.10) et $\phi(-\beta_A) = \frac{1}{\sqrt{(2 \times \pi)}} \exp(\frac{-\beta_A^2}{2})$.

Nous précisons que la notation A_A traduit le coefficient noté A et en indice nous avons la section droite A. De même que la notation B_A traduit le coefficient noté B et en indice nous avons la section droite A. Ces coefficients permettent de déterminer :

$$\beta_{B|A} = \frac{\beta_B - \mu_{B|A}}{\sigma_{B|A}} \tag{II.23}$$

et la probabilité de défaillance s'écrit : $p_{B|A} = \Phi(-\beta_{B|A})$ calculée selon l'Equation (II.10).

Évaluons à présent le terme $p(e_C | e_A \cap e_B)$ de l'Equation (II.21). L'indice de fiabilité $\beta_{C|B}$ peut être déterminée de manière similaire à $\beta_{B|A}$:

$$\beta_{C|B} = \frac{\beta_{C|A} - \rho_{BC|A} \times A_{B|A}}{\sqrt{1 - \rho_{BC|A}^2 B_{B|A}}}$$
(II.24)

où $A_{i|q} = \frac{\phi(-\beta_{i|q})}{\Phi(-\beta_{i|q})}$, $B_{i|q} = A_{i|q} \times (A_{i|q} - \beta_{i|q})$ et le coefficient de corrélation de l'Equation (II.24) peut être calculé de manière explicite par cette formule :

$$\rho_{BC|A} = \frac{\rho_{BC} - \rho_{AB} \times \rho_{AC} \times B_A}{\sqrt{(1 - \rho_{AB}^2 \times B_A)} \times \sqrt{(1 - \rho_{AC}^2 \times B_A)}}$$
(II.25)

Après avoir calculé $\beta_{C|B}$ et $\beta_{B|A}$ à partir des Equations (II.23, II.24), $\Phi_3(-\{\beta\}, [\rho])$ peut être obtenu selon Equation (II.4) et sa valeur vaut :

$$p_{ABC} = 0.0048$$
 (II.26)

Dans le cas d'intersection de deux évènements, la probabilité de défaillance de l'intersection est :

$$p(e_i \cap e_j) = \Phi_2(-\{\beta\}, [\rho]) = p(e_j | e_i) \times p(e_i)$$
(II.27)

avec $i, j \in \{A, B, C\}, i \neq j$.

Le terme $p(e_i) = \Phi(-\beta_i)$ peut être obtenu par l'Equation (II.10), et le terme $p(e_j|e_i)$ est approximé par :

$$p(e_j|e_i) = \Phi(\beta_{j|i}) = \Phi(\frac{-\beta_i + \rho_{ij} \times A_i}{\sqrt{(1 - \rho_{ij}^2 \times B_i)}})$$
(II.28)

où $A_i = \frac{\phi(-\beta_i)}{\Phi(-\beta_i)}$ et $B_i = A_i \times (A_i - \beta_i)$. Les valeurs des intersections de deux évènements de l'Equation (II.27) (Figure II.1) sont obtenues par l'Equation (II.10) et l'Equation (II.28). L'ensemble des probabilités p_{ij} de défaillance locale multiple de deux sections droites est résumé dans le Tableau II.3.

TABLE II.3 – Probabilités de défaillance de l'intersection de deux évènements

intersection de deux évènements	p_{ij}
$A \cap B$	0.048
$A \cap C$	0.019
$B \cap C$	0.0068

Le calcul des probabilités d'intersection de trois (Equation (II.26)) et deux sections droites (Tableau II.3) permettent de déterminer les probabilités seules p'_{ij} de deux évènements d'intersection seuls $(e_i \cap e_j)'$. Les résultats sont donnés dans le Tableau II.4.

TABLE II.4 – Probabilités de défaillance des évènements $A \cap B$, $A \cap C$ et $B \cap C$ seules

Sections	p'_{ij}
$A \cap B$	0.045
$A \cap C$	0.015
$B \cap C$	0.003

Les probabilités de chaque évènement e'_i seul sont enfin calculées grâce à l'Equation (II.7) et les résultats sont dans le Tableau II.5. Après séparation des évènements seul à ceux d'intersection, l'ordre des sections présentant les probabilités de défaillance les plus élevées est conservé $(p'_A > p'_B > p'_C)$. De plus, la section droite A présente une probabilité de défaillance 5 fois plus élevée que la section droite B et 15 fois plus élevée que la section droite C.

TABLE II.5 – Probabilités de défaillance des sections A, B et C seules

Sections	p'_i
A	0.233
В	0.041
C	0.015

Le Tableau II.6 compare les valeurs du Tableau II.2 et du Tableau II.5. Dans chacune des sections A, B et C, les probabilités p_i et p'_i sont différentes. Les écarts sont particulièrement importants pour

les sections B et C. Ces différences sont dues à la séparation des évènements seuls de ceux d'intersection. En effet, cette séparation permet de ne pas compter deux fois les mêmes probabilités dans deux branches différentes. De cette manière, la séparation des événements seuls des événements d'intersection permet d'élaborer correctement l'arbre avec des scénarios exclusifs.

Probabilité de défaillance en	A	В	C
p_i	0.297	0.092	0.036
p_i'	0.233	0.041	0.015
Ecart en %	21.2	55.2	57

TABLE II.6 – Con	paraison de p_i et	p'_i
------------------	----------------------	--------

L'ensemble de ces calculs de probabilités (locales, intersections, seules) permet de définir toutes les branches exclusives du premier niveau de l'arbre d'évènements (Figure II.7).

FIGURE II.7 – Branches exclusives du premier niveau de l'arbre des évènements

À l'exception de la branche particulière $A \cap B \cap C$, il n'y a pas de rupture complète de la structure. Il faut poursuivre la construction de l'arbre en étudiant un nouvel état de la structure nécessitant de calculer les probabilités conditionnelles, c'est-à-dire les probabilités de nouvelles défaillances sachant la formation de rotules fragiles ($M_p = 0$).

2.3 Probabilités conditionnelles

Pour cette nouvelle étape de notre procédure proposée, supposons une défaillance initiale correspondant à l'existence d'une rotule fragile dans la section critique A. Le nouvel état de la structure est donné par la Figure II.8a. Pour poursuivre l'étude des potentiels scénarios de défaillance en chaîne, nous devons déterminer le nouveau diagramme de moment fléchissant tenant compte de la redistribution des sollicitations (Figure II.8b). Dans la Figure II.8b, le moment plastique de la section A est nul car la rotule considérée est fragile.

FIGURE II.8 – (a) Nouvel état de la structure après rupture fragile en A; (b) Diagramme du moment fléchissant sachant l'existence d'une première rotule fragile en A ($M_p = 0$)

En particulier, les moments sollicitants des sections B et C ont pour nouvelles intensités :

$$\begin{cases} M_{s_{B|A}} = \frac{Fab^2(3L-b)}{2L^3} = k_{s_{B|A}}F\\ M_{s_{C|A}} = -\frac{Fab(2a+b)}{2L^2} = k_{s_{C|A}}F \end{cases}$$
(II.29)

où la notation i|j indique la défaillance de la section i sachant la défaillance de la section j.

En appliquant la démarche expliquée au paragraphe 2.1, les expressions des hyperplans sont écrites sous forme matricielle :

$$\begin{pmatrix} 0.693 & 0 & -0.720 \\ 0 & 0.747 & -0.663 \end{pmatrix} \begin{pmatrix} u_{r_B} \\ u_{r_C} \\ u_s \end{pmatrix} + \begin{pmatrix} 0.203 \\ 0.533 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
(II.30)

Pour cet nouvel état de la structure, la section droite A est considérée comme défaillante. Ainsi, sa ligne et sa colonne sont supprimées. Les probabilités de défaillance locale $\{\Phi(-\beta_i)\}$ correspondantes sont regroupées dans le Tableau II.7. Pour la Figure II.8, la section droite B, étant la plus sollicitée, présente une probabilité de défaillance plus élevée que la section droite C.

TABLE II.7 – Probabilités de défaillance des sections B et C sachant la défaillance de A

Sections	sachant la défaillance	$p_{i A}$
В	A	0.418
C	A	0.297

Le calcul des probabilités de défaillance de l'intersection des sections droites B et C sachant la défaillance de la section droite A s'effectue selon la procédure expliquée au paragraphe 2.2 et vaut $p'_{B\cap C|A} = 0.193$.

TABLE II.8 – Probabilités de défaillance des sectio	ns B seule et C seule sachant la défaillance de A
---	---

Sections	sachant la défaillance	$p'_{i A}$
В	A	0.224
C	A	0.104

Les probabilités de défaillance des sections B seule et C seule sachant la défaillance de A sont obtenues en retranchant la probabilité de défaillance de l'intersection $B \cap C$ sachant A. Ces probabilités se calculent suivant la démarche expliquée au paragraphe §2.2.

Après séparation des évènements seuls à ceux d'intersection, la section droite B présente une probabilité de défaillance 2 fois plus élevée que la section droite C. Le Tableau II.9 compare les valeurs du Tableau II.8 et du Tableau II.7. Dans chacune des sections B et C, les probabilités $p_{i|A}$ et $p'_{i|A}$ sont différentes. Ces différences sont dues à la séparation des évènements seuls de ceux d'intersection.

TABLE II.9 – Comparaison de $p_{i|A}$ et $p'_{i|A}$

Probabilité de défaillance en	В	C
$p_{i A}$	0.418	0.297
$p'_{i A}$	0.224	0.104
Ecart en %	46	65

Les nouvelles branches établies sont présentées dans la nouvelle configuration de l'arbre des évènements (Figure II.9).

FIGURE II.9 – Nouvelle configuration de l'arbre des évènements

Remarquons que la probabilité de défaillance de la section B sachant la ruine de A est la plus élevée, si nous supposons qu'une deuxième rotule plastique se forme en B, le nouvel état de la poutre à étudier pour construire une partie (à partir d'un nouveau nœud) du troisième niveau est la Figure II.10.

FIGURE II.10 – État du système avec deux rotules fragiles en A puis B ($M_p = 0$)

L'intensité du moment fléchissant de la section C sachant la défaillance de A puis B est donnée par l'équation suivante :

$$M_{s_{C|A\to B}} = -\frac{Fab(2a+b)}{2L^2} = k_{s_{C|A\to B}} F$$
(II.31)

où $k_{s_{C|A \to B}}$ représente le coefficient de proportionnalité vis-à-vis de la variable aléatoire F. L'hyperplan est :

$$e_{C|A \to B}: \ 0.242 \, u_{r_{C|A \to B}} - 0.970 \, u_s - 1.94 = 0 \tag{II.32}$$

et la probabilité de défaillance de la section droite C sachant les défaillances des sections droites A puis B est :

$$p'_{C|A \to B} = \Phi(-\beta_{C|A \to B}) = 0.974$$
 (II.33)

Cette probabilité proche de 1 est très élevée. En effet, la section C a repris l'ensemble des charges externes suite à la défaillance de A puis B. Une nouvelle branche est présentée dans la Figure II.11.

FIGURE II.11 – Un chemin de ruine complet de l'arbre des évènements

Le chemin de ruine $A \longrightarrow B \longrightarrow C$ (Figure II.11) est un chemin de défaillance complet. La probabilité de défaillance locale est égale à 0.233. La probabilité de défaillance globale ($p_{globale}$) est calculée en multipliant toutes les probabilités rencontrées au cours du scénario d'évènements seul (car chaque branche est exclusive) :

$$p_{A \to B \to C} = p_A * p_{B|A} * p_{C|A \to B} = 0.051$$

D'après l'Equation (II.1), l'indice de robustesse correspondant à ce scénario de ruine est :

$$I_r = 1 - \frac{0.051}{0.233} = 0.781$$

Ce chemin représente un mécanisme de ruine. L'objectif étant d'identifier les mécanismes de ruine, la construction de l'arbre d'évènements est poursuivi dans le but de rechercher les autres scénarios exclusifs possibles.

Si nous supposons qu'une deuxième rotule fragile se forme en C, le nouvel état de la poutre à étudier pour construire une partie (à partir d'un nouveau nœud) du troisième niveau est la Figure II.12. La probabilité de défaillance de la section droite B est calculée afin de déterminer la suite du scénario de ruine.

FIGURE II.12 – État du système avec deux rotules fragiles en A puis C ($M_p = 0$)

L'intensité du moment fléchissant de la section B sachant la défaillance de A puis C est donnée par l'équation suivante :

$$M_{s_{B|A\to C}} = -\frac{Fab(2b+a)}{L^2} = k_{s_{B|A\to C}} F$$
(II.34)

où $k_{s_{B|A\to C}}$ représente le coefficient de proportionnalité vis-à-vis de la variable aléatoire F. L'expression de l'hyperplan est :

$$e_{B|A\to C}: \ 0.599 \, u_{rC|AB} - 0.800 \, u_s - 0.32 = 0 \tag{II.35}$$

et la probabilité de défaillance de la section droite B sachant les défaillances successives des sections droites A puis C est :

$$p'_{B|A\to C} = \Phi(-\beta_{B|A\to C}) = 0.625$$
 (II.36)

La nouvelle branche issue de l'évènement A puis C est présentée dans la Figure II.13. Le chemin de ruine $A \longrightarrow C \longrightarrow B$ (Figure II.13) est aussi un chemin de défaillance complet dont la probabilité de défaillance locale est 0.233. La probabilité de défaillance globale ($p_{globale}$) est calculée en multipliant toutes les probabilités rencontrées au cours du scénario exclusif (car chaque branche est exclusive) :

$$p_{A \to C \to B} = p_A * p_{C|A} * p_{B|A \to C} = 0.015$$

D'après l'Equation (II.1), l'indice de robustesse correspondant à ce scénario de ruine est :

$$I_r = 1 - \frac{0.015}{0.233} = 0.935$$

FIGURE II.13 – Tous les scénarios exclusifs partant de la section droite A

L'indice de robustesse du scénario exclusif $A \longrightarrow C \longrightarrow B$ est plus élevé que celui du chemin $A \longrightarrow B \longrightarrow C$. La différence entre ces deux valeurs est de 16.5%. Le scénario de ruine $A \longrightarrow B \cap C$ (Figure II.13) est aussi un chemin de défaillance complet dont les probabilités de défaillance locale et globale sont : 0.233 et 0.045. L'indice de robustesse correspondant à ce scénario exclusif, $A \longrightarrow B \cap C$, est 0.806.

L'analyse de la robustesse de cette structure unidimensionnelle, lorsque la ruine locale s'initie dans la section droite potentielle A et leurs combinaisons, permet de construire une partie de l'arbre des événements. La Figure II.13 résume tous les scénarios exclusifs possibles partant de la section droite A. Elle présente également les probabilités de défaillance globale de ces chemins et leurs indices de robustesse respectifs.

L'objectif étant d'identifier les mécanismes de ruine, la construction de l'arbre complet des évènements est poursuivi dans le but de rechercher les autres scénarios exclusifs possibles. Ainsi, les autres chemins (rupture initiale en B ou en C ou en deux sections en même temps) sont déterminés de manière analogue. Afin de construire l'arbre complet des évènements, il faut étudier tous les autres scénarios possibles, que ce soit sur l'initiation des ruptures (B ou C) et leurs combinaisons (ordre, événement(s) seul ou lié(s)).

2.4 Arbre d'évènements

L'analyse de la robustesse de cette structure unidimensionnelle, lorsque la ruine locale s'initie dans chaque section droite potentielle A, B ou C, ou leurs combinaisons, permet de construire l'arbre des événements résumant tous les scénarios exclusifs possibles et leurs probabilités respectives (Figure II.14). La probabilité de rupture globale (3 rotules fragiles successives) selon un scénario est calculée en multipliant toutes les probabilités rencontrées le long du chemin conduisant à celui-ci, car chaque branche de l'arbre des évènements est exclusive.

La démarche explicite proposée consiste à caractériser l'ensemble des cheminements disjoints possibles depuis la défaillance localisée jusqu'à la ruine globale d'une structure hyperstatique. La

FIGURE II.14 – Arbre d'évènements

L'analyse de l'arbre montre que, le chemin le plus probable est celui correspondant au calcul déterministe $A \longrightarrow B \longrightarrow C$ avec la formation successive des rotules fragiles suivant l'ordre des moments sollicitants de plus forte intensité (car les résistances des sections ont la même distribution dans notre exemple). Toutefois, on remarque que ce n'est pas ce scénario qui produit l'indice de robustesse le plus grand. L'analyse des indices de robustesse permet d'ailleurs de montrer par exemple que :

- lorsque deux sections cassent simultanément initialement (probabilités faibles), l'indice de robustesse est très faible; ceci est logique pour cet exemple très académique puisque deux sections cassées représentent les deux tiers de la défaillance globale. On ne peut pas vraiment parler, dans ce cas particulier, de défaillance initiale « locale ».
- le chemin $B \longrightarrow A \longrightarrow C$ montre un indice de robustesse assez faible (0.25); une intention malveillante ou un accident au niveau de la section B peut donc avoir des conséquences importantes sur l'ensemble du système.

Selon un scénario donné, une structure est d'autant moins robuste que la probabilité de défaillance globale est grande par rapport à la probabilité de défaillance locale. Les scénarios catastrophes correspondent à faible probabilité locale suivie par une réaction en chaine donnant de fortes probabilités successives et conduisant à une forte probabilité globale.

L'approche développée permet de révéler des scénarios dangereux pour certaines structures, non identifiés par les méthodes classiques de dimensionnement déterministes. Ainsi, la construction complète de l'arbre des évènements permet d'analyser les priorités en termes de réhabilitation, de protection et de renforcement d'une structure afin d'assurer la sécurité des personnes.

2.5 Validation de l'approche proposée par une simulation de Monte-Carlo

La méthode de construction de l'arbre complet des évènements (Figure II.14) a été validée par une simulation de Monte-Carlo. Les différences entre les probabilités calculées selon ces deux techniques restent inférieures à 1% maximum. De plus, la méthode développée permet de calculer instantanément tous les scénarios exclusifs alors que la procédure par Monte-Carlo est plus coûteuse en temps de calcul (Tableau II.10).

Nous avons réalisé une étude de convergence numérique afin d'étudier la précision des probabilités estimées. En effet, l'estimation (à 10% près) d'une probabilité de l'ordre de 10^{-n} exige environ 10^{n+2} évaluations. Ainsi, la Figure II.15 montre l'étude de convergence numérique de deux probabilités de défaillance locale p'_A et $p'_{A\cap B\cap C}$. Le choix de présenter uniquement ces deux valeurs repose sur le fait que la première est élevée et la seconde est faible. La Figure II.15 illustre également la progression du temps de calcul en fonction du nombre de simulations. Enfin, le Tableau II.10 présente l'évolution du nombre de tirages.

FIGURE II.15 – Etudes de convergence numérique : a) p'_A en fonction du nombre de simulations ; b) $p'_{A\cap B\cap C}$ en fonction du nombre de simulations c) progression du temps de calcul en fonction du nombre de simulations

Le nombre de tirages permettant d'obtenir la convergence numérique des probabilités de défaillance locale p'_A et $p'_{A\cap B\cap C}$ est respectivement 10^3 et 10^6 (Figure II.15). La progression du temps de calcul est linéaire (Figure II.15 c). Cette progression est proportionnelle au nombre de simulations.

Le Tableau II.10 montre que l'arbre complet est obtenu au bout de 43 secondes de calcul pour cet exemple académique où les probabilités sont fortes. Pour les structures réelles où les probabilités sont beaucoup plus petites, la procédure par Monte-Carlo sera très coûteuse en temps de calcul.

Nombres de simulations	p'_A	$p'_{A\cap B\cap C}$	Temps (secondes)	
			1 lancer	Arbre complet
$1 e^2$	0.29	0	0.141	1
$1 e^3$	0.247	0.006	0.158	1
$1 e^4$	0.2337	0.0052	0.204	1
$1 e^5$	0.23339	0.00505	0.774	5
$1 e^6$	0.234752	0.004853	6.0888	43
$1 e^7$	0.2338544	0.0047917	58.934	413
$1 e^{8}$	0.23387364	0.004833384	616.495	4315
$1 e^9$	0.233848444	0.004819324	5970.833	41796

TABLE II.10 – Études de Convergence numérique : p'_A ; b) $p'_{A \cap B \cap C}$

3 Prise en compte de l'occurrence d'un accident dans une section autre que les sections dimensionnantes

Ce paragraphe propose une analyse de la robustesse de la même poutre bi-encastrée de longueur L, mais cette fois-ci nous supposons que l'occurrence d'un accident peut avoir lieu dans une section autre que les sections retenues comme dimensionnantes lors de la conception. Ainsi, la Figure II.16 montre quatre sections critiques (A, B, C et D) où peuvent s'initier une défaillance locale. En conséquence, le nombre de branches exclusives de l'arbre complet des évènements augmente.

FIGURE II.16 – Poutre bi-encastrée de la Figure II.4 avec l'hypothèse de l'occurrence d'un accident dans une section autre que les les sections dimensionnantes

Le vecteur des variables aléatoires est $X = (M_{r_A}, M_{r_B}, M_{r_C}, M_{r_D}, F)$ et ses composantes sont supposées Gaussiennes indépendantes. Le Tableau II.11 résume les moyennes et écart-types des variables aléatoires et ces valeurs sont choisies similaires de celles du Tableau II.1. De nouveau, le mode défaillance local de la structure étudiée est la formation d'une rotule-fragile. Il faut noter que la dimension de l'Equation (II.19) est modifiée. En effet, la section supplémentaire entraîne l'augmentation d'une ligne et d'une colonne de la matrice $[\alpha]$. Elle conduit également des calculs de quelques intersections supplémentaires dans la procédure.

Variables aléatoires	moyenne : μ_{X_i}	écart-type : σ_{X_i}
$M_{r_A} [Nm]$	1600	500
$M_{r_B}[Nm]$	1600	500
$M_{r_C} [Nm]$	1600	500
$M_{r_D} [Nm]$	1600	500
F[N]	2800	1000

TABLE II.11	– Données	des variables	aléatoires
-------------	-----------	---------------	------------

La construction de l'arbre des événements résumant tous les scénarios exclusifs possibles et leurs probabilités respectives est réalisée grâce à la méthode explicite détaillée dans les paragraphes de la deuxième partie de ce chapitre avec la prise en compte de quelques nouveautés apportées par la section supplémentaire.

FIGURE II.17 – Arbre des évènements : Influence d'une section supplémentaire

Pour comparer les arbres de la Figure II.14 (cas 1 : structure avec trois évènements potentiels) et de la Figure II.17 (cas 2 : même structure avec quatre évènements potentiels), il faut bien noter que la section C du premier cas équivaut à la section D du second, et la section C du second cas est la section où l'on considère l'événement potentiel supplémentaire.

En raison de la section supplémentaire, le nombre de chemins de défaillance à explorer est devenu plus grand. Pour limiter la taille de l'arbre représenté sur la Figure II.17, seules les branches correspondant aux évènements isolés sont représentées, les branches correspondant à des défaillances locales multiples ne sont pas représentées. Cela permet de diminuer significativement le nombre de chemins à représenter, qui passe ainsi de 75 à 24. Mais nous allons voir que ce manque d'information dans la présentation des résultats peut conduire à une difficulté d'interprétation. En effet, une comparaison brute de ces deux arbres montre que :

- sur la Figure II.17, les probabilités de défaillance de la section C (section supplémentaire) sont toujours très petites quel que soit le niveau dans l'arbre ;
- le chemin le plus probable (correspondant au chemin présentant la plus grande probabilité de défaillance globale) et le scénario le plus dangereux (correspondant au chemin présentant l'indice de robustesse le plus faible) sont les mêmes dans les deux cas.

Ces deux constatations montrent que la section supplémentaire considérée dans le second cas n'a pas d'influence sur l'analyse globale de la structure. Cela conforte le fait de ne pas l'avoir considérée dans le cas 1.

De plus les probabilités des différents évènements dans l'arbre ne sont que très légèrement différentes, sauf pour une : $p(C|A \rightarrow B)$ dans le cas 1 vaut 0.973 alors que $p(D|A \rightarrow B)$ dans le cas 2 vaut 0.265. Cette grosse différence (72%) s'explique par une information manquante sur la Figure II.17. En effet, la probabilité $p(C \cap D|A \rightarrow B)$ n'est pas négligeable et vaut 0.708. Ainsi, $p(D|A \rightarrow B) + p(C \cap D|A \rightarrow B)$ du cas 2 correspond à $p(C|A \rightarrow B)$ du cas 1 (0.265 + 0.708 = 0.973). L'ensemble des scénarios exclusifs possibles et leur probabilité respective sont résumés dans le Tableau C.1 de l'annexe C.

De ces constations, on peut en tirer les enseignements suivants :

- si l'on omet de représenter des branches sur l'arbre, il faut s'assurer que les probabilités de celles-ci sont négligeables devant celles que l'on garde;
- la forte probabilité d'intersection des section C et D dans le cas 2 montre que lorsque A et B ont rompu, toute la zone de C à D sur la Figure II.14 rompt simultanément. On ne peut pas constater cela dans le cas 1, mais pour cette structure académique, lorsque A et B sont rompues, casser uniquement en D ou tout le long du dernier tiers de la poutre ne change pas grand-chose, la structure s'effondre.

Conclusion

Dans ce chapitre, nous avons proposé une méthode d'analyse reposant sur la construction d'un arbre complet des évènements (potentiels) permettant de déterminer les scénarios exclusifs possibles depuis une défaillance initiale jusqu'à la ruine globale d'une structure. Les résultats sont présentés sous forme d'un arbre d'évènements comportant toutes les branches exclusives, sans intersection entre branches issues d'un même nœud. Cela permet de calculer des indices I_r caractérisant la robustesse de la structure selon chaque scénario, et d'identifier les zones vulnérables de la structure pouvant engendrer une défaillance généralisée. Nous avons illustré notre démarche sur un exemple de poutre bi-encastrée fléchie avec sections fragiles. Cette structure académique a permis d'exposer les concepts que nous utilisons et de montrer que l'on peut mettre en évidence des résultats non intuitifs.

L'approche proposée, explicite et rapide, a été validée par des simulations de Monte-Carlo. De plus, la méthode développée permet de calculer de faibles probabilités de défaillance en quelques secondes alors qu'une procédure par Monte-Carlo est coûteuse en temps de calcul. La méthode permet de révéler des scénarios dangereux pour la structure étudiée, non identifiés par les méthodes classiques de dimensionnement déterministe. A ceci s'ajoute, la construction complète de l'arbre des évènements permettant d'analyser les priorités en termes de réhabilitation, de protection ou de renforcement des structures.

Cette procédure développée peut s'appliquer à une large variété de problèmes structuraux. Elle permet d'évaluer la robustesse au travers d'un indice compris entre 0 (structure peu robuste) et 1 (structure très robuste). L'indice de robustesse est calculé à partir des probabilités de défaillance initiale et globale. Cependant, des compléments sont à apporter pour rendre cette technique adaptée à l'étude de structures réelles et complexes : moment plastique non nul, prise en compte de la combinaison des charges dans le cas de plusieurs sollicitations, augmentation du nombre de section à étudier, cas de variables aléatoires corrélées. Le nombre de branches et nœuds dans l'arbre augmentent très rapidement en fonction du nombre de défaillances locales étudiées. De ce fait, le nombre de chemins de défaillance à explorer peut devenir très vite prohibitif dans le cas des structures complexes.

Chapitre

De la défaillance localisée à la ruine globale des structures en contexte probabiliste

L'approche proposée dans cette thèse, présentée en détail dans le chapitre précédent, est de quantifier la robustesse structurale par un indice de robustesse calculé sous forme de rapport entre les probabilités de défaillance locale et globale. Il est important de rappeler que la notion de défaillance est définie à l'échelle locale et à l'échelle globale. Le mode de défaillance caractérise la manière dont la perte d'un élément de structure se produit. La défaillance globale, caractérisée par l'avènement d'un nombre critique de modes de défaillance, se manifeste par la formation d'un mécanisme de ruine à l'échelle de la structure selon un scénario. Dans l'arbre des évènements, un scénario correspond à un chemin suivant toutes les branches depuis la défaillance initiale localisée jusqu'à l'effondrement de la structure.

L'objectif de ce chapitre est d'explorer la généralisation des concepts présentés dans le chapitre précédent, tout en restant sur un exemple académique. Les compléments dans ce chapitre sont les suivants :

- une augmentation du nombre de sections susceptibles de rompre entrainant une augmentation du nombre de branches de l'arbre complet des évènements;
- le nombre de charges sur la structure est doublé, introduisant une combinaison de charges. Ces forces ont été volontairement choisies en sens opposés pour étudier l'effet bénéfique ou pénalisant de la combinaison suivant les sections, avec des conséquences sur le calcul de la probabilité de défaillance locale;
- le mode de défaillance locale est maintenant caractérisé par la formation d'une rotule plastique parfaite avec moment plastique non nul. Il faut tenir compte de cette "charge résiduelle" avec son signe dans le calcul des probabilités conditionnelles;
- une analyse de l'effet du choix de la loi suivie par les variables aléatoires est également étudiée, conduisant à une procédure linéaire ou non linéaire suivant le cas (loi normale ou log-normale);
- des variables aléatoires corrélées sont considérées, entrainant une étape supplémentaire de décorrélation afin de calculer les probabilités de défaillance.

La structure unidimensionnelle étudiée est la même poutre bi-encastrée de longueur L, mais cette fois-ci soumise à deux forces ponctuelles verticales F_1 et F_2 (Figure III.1). Elle est hyperstatique de degré 2.

FIGURE III.1 – Poutre bi-encastrée étudiée

La poutre de la Figure III.1 est composée d'éléments à comportement élastoplastique parfait dont le mode de défaillance est la formation d'une rotule plastique au niveau d'une section droite de la poutre. La défaillance se produit lorsque le moment sollicitant appliqué atteint la valeur du moment résistant de la section (formation d'une rotule plastique). Les sections droites dans lesquelles peuvent se former les rotules plastiques suivent la théorie de la déformation plastique. Dans cette structure soumise à des actions concentrées, les rotules plastiques se forment dans les sections de moment maximal, sous une charge ou aux appuis (Figure III.2). Les sections droites dans lesquelles se sont formées des rotules plastiques (Figure III.3) disposent d'une capacité de rotation permettant la redistribution des efforts dans la structure. Chaque formation de rotule plastique entraîne la perte d'un degré d'hyperstaticité de la poutre, pour conduire finalement à la ruine de la structure par formation d'un mécanisme. Ce dernier, correspondant à la défaillance globale de la structure, résulte de la formation successive de trois rotules plastiques.

 $A \not = \begin{array}{c|c} \vec{F_1} & C \\ B & \vec{F_2} \end{array} D$

FIGURE III.2 – Diagramme du moment fléchissant

FIGURE III.3 – Positions prévisibles des rotules fragiles

Nous noterons M_{r_i} le moment résistant d'une section i et M_{s_i} l'intensité du moment fléchissant sollicitant dans cette même section i. La géométrie de la poutre, le module d'élasticité du matériau et les positions des charges sont encore considérés comme déterministes, de sorte que la variabilité des moments sollicitant M_{s_i} ne dépend que de celle des efforts F_1 et F_2 . Les moments résistants, les charges F_1 et F_2 sont considérés comme des variables aléatoires Gaussiennes indépendantes dans un premier temps, puis comme des variables suivant une loi Log-normale dans un second temps. Dans le premier cas notre fonction d'état limite est toujours linéaire donc la procédure du chapitre II est appliquée avec des compléments. Par contre dans le second cas, la fonction d'état limite est non linéaire et le calcul de β s'effectue par une minimisation sous contrainte développée sous Matlab. Dans les deux cas, nous considérons que les composantes du vecteur des variables aléatoires X sont $X = (M_{r_A}, M_{r_B}, M_{r_C}, M_{r_D}, F_1, F_2).$

La première étape consiste à analyser l'équilibre statique de la poutre (Figure III.2). Cette analyse montre que la structure comprend quatre sections critiques où peuvent s'initier une défaillance locale (Figure III.3). Le moment sollicitant M_{s_i} d'une section critique dépend maintenant de la combinaison des forces appliquées, faisant intervenir plusieurs coefficients d'influence :

$$M_{s_i} = \sum_{j=1}^n k_{s_i}^j F_j \tag{III.1}$$

où $k_{s_i}^j$ est le coefficient d'influence de la charge F_j au niveau de la section *i*, et *n* est le nombre de charges considérées.

Nous avons développé une procédure en Python qui, à partir des données décrites dans un fichier (géométrie, caractéristiques, conditions aux limites et chargements, positions des sections critiques, ...), génère automatiquement le fichier de commande pour le calcul des coefficients d'influence avec le logiciel de simulation Cast3M. Ces coefficients sont récupérés en Python pour poursuivre l'évaluation des probabilités de rupture, soit par la méthode analytique proposée dans ce travail, soit par une méthode de Monte-Carlo pour validation de nos résultats.

Pour l'exemple proposé dans cette partie (Figure III.1), avec les valeurs numériques suivantes : L = 3 m, a = 1 m, b = 0.75 m et c = 1.25 m, les coefficients d'influence sont donnés dans le Tableau III.1.

Table III.1 –	Coefficients d	l'influence de	la structure	(Figure III.1)
---------------	----------------	----------------	--------------	---------------	---

Sections	A	В	C	D
F_1	- 0.44444	+ 0.29630	+ 0.10185	- 0.22222
F_2	+ 0.30382	- 0.07233	- 0.35446	+ 0.42535

Le Tableau III.2 résume les moyennes et écart-types choisis pour des variables aléatoires suivant des lois Gaussienne et Log-normale.

Variables aléatoires	moyenne : μ_{X_i}	écart-type : σ_{X_i}	loi (cas 1)	loi (cas 2)
$M_{r_A}\left[Nm\right]$	1600	500	Gaussienne	Log-Normale
$M_{r_B}\left[Nm\right]$	1600	500	Gaussienne	Log-Normale
$M_{r_C} [Nm]$	1600	500	Gaussienne	Log-Normale
$M_{r_D}\left[Nm\right]$	1600	500	Gaussienne	Log-Normale
$F_1[N]$	2800	1000	Gaussienne	Log-Normale
$F_2\left[N ight]$	2500	900	Gaussienne	Log-Normale

Nous choisissons d'utiliser des coefficients de variation de 31% pour le moment résistant de chaque section *i* et de 32% pour les variables aléatoires de sollicitation afin de mettre en évidence des résultats non intuitifs.

Dans la suite, le processus de construction complète d'arbres d'évènements est explicité suivant deux cas d'approximation : linéaire ou non linéaire. Il s'agit d'utiliser des variables Gaussiennes dans la première approximation (procédure linéaire) et des variables Log-normales dans la seconde approximation (procédure non linéaire). L'appréciation de la robustesse structurale est introduite par l'utilisation de l'indice de robustesse présenté au chapitre *II*. Finalement, une étude de l'influence des sollicitations et du nombre de sections critiques sur le niveau de robustesse structurale est proposée.

1 Approximations linéaires

Les moments résistants, les charges F_1 et F_2 sont considérés comme des variables aléatoires Gaussiennes indépendantes (Tableau III.2). Ainsi les expressions des fonctions d'état limite de chaque section sont linéaires.

1.1 Probabilités de défaillance locale

Par définition, la probabilité de défaillance vérifie l'Equation (II.10). Dans le cas d'une structure unidimensionnelle, pour chaque section droite i ($i \in \{A, B, ...\}$), il y a les variables aléatoires de résistance M_{r_i} et de sollicitation M_{s_i} . Pour chaque évènement e_i associé à la section i, la fonction d'état limite est donnée par l'Equation (II.11).

Le vecteur des variables aléatoires suivant des lois Gaussiennes est $X = (M_{r_A}, M_{r_B}, M_{r_C}, M_{r_D}, F_1, F_2)$. Chaque section critique est caractérisée par son moment résistant M_{r_i} de moyenne μ_{r_i} et d'écart type σ_{r_i} . Chaque charge F_j a une valeur moyenne μ_s^j et un écart type σ_s^j . La surface d'état limite H dans l'espace normé s'écrit, pour chaque évènement e_i représentant une défaillance locale de la section i:

$$e_i: \sigma_{r_i} u_{r_i} + \mu_{r_i} \pm \sum_{j=1}^n \left(k_{s_i}^j \sigma_s^j u_s^j + k_{s_i}^j \mu_s^j \right) = 0$$
(III.2)

où la variable u_{r_i} correspond au moment résistant M_{r_i} et les variables u_s^j correspondent aux charges F_j . Contrairement au cas d'une seule charge du chapitre précédent, où le "±" pouvait être traité avec "|k|" et une seule équation, ici l'Equation (III.2) est approchée par deux hyperplans dont la forme s'écrit :

$$e_{i}: \begin{cases} \alpha_{r_{i}} u_{r_{i}} - \sum_{j=1}^{n} \alpha_{s_{i}}^{j} u_{s}^{j} + \beta_{i}^{+} = 0\\ \alpha_{r_{i}} u_{r_{i}} + \sum_{j=1}^{n} \alpha_{s_{i}}^{j} u_{s}^{j} + \beta_{i}^{-} = 0 \end{cases}$$
(III.3)

avec les notations suivantes :

$$\beta_i^+ = \frac{\mu_{r_i} - \sum_{j=1}^n k_{s_i}^j \mu_s^j}{\sqrt{\sigma_{r_i}^2 + \sum_{j=1}^n (k_{s_i}^j \sigma_s^j)^2}} \quad ; \quad \beta_i^- = \frac{\mu_{r_i} + \sum_{j=1}^n k_{s_i}^j \mu_s^j}{\sqrt{\sigma_{r_i}^2 + \sum_{j=1}^n (k_{s_i}^j \sigma_s^j)^2}} \tag{III.4}$$

$$\alpha_{r_i} = \frac{\sigma_{r_i}}{\sqrt{\sigma_{r_i}^2 + \sum_{j=1}^n (k_{s_i}^j \sigma_s^j)^2}} \quad ; \quad \alpha_{s_i}^j = \frac{k_{s_i}^j \sigma_s^j}{\sqrt{\sigma_{r_i}^2 + \sum_{j=1}^n (k_{s_i}^j \sigma_s^j)^2}} \tag{III.5}$$

El Hadji Boubacar SECK

Ainsi une section a deux indices de fiabilité β^+ et β^- correspondant aux plastifications avec un moment positif et un moment négatif. Dans le chapitre précédent, du fait de la symétrie des sections, ces deux indices étaient identiques. Ici, malgré la symétrie des sections, par le jeu des combinaisons de charge, les deux indices sont différents. Dans la pratique, l'un est souvent beaucoup plus petit que l'autre. Dans un soucis de conception sécuritaire, le plus petit indice de fiabilité est retenu pour le calcul de la probabilité de défaillance (Equation (II.10)). Des discussions sur ce choix sont évoquées dans le paragraphe 1.5 de ce chapitre.

$$\beta_i = \min\left(\beta_i^+, \beta_i^-\right) \tag{III.6}$$

D'une manière générale, pour un ensemble de m évènements et n charges, l'Equation (III.3) peut être écrite sous forme matricielle :

$$[\alpha] \{u\} + \{\beta\} = \{0\}$$
(III.7)

où $\{\beta\}$ est un vecteur de dimension m (m est égal au nombre d'évènements considérés) contenant l'indice de fiabilité minimal, $\{u\}$ est un vecteur de dimension (m+n) contenant les variables u_{r_i} et u_s^j (n est égal au nombre de charges considérées) et [α] est une matrice de taille $m \times (m+n)$ contenant les cosinus directeurs α_{r_i} et $\alpha_{s_i}^j$ de l'Equation (III.5). Ainsi l'Equation (II.18) est généralisé pour le cas de plusieurs charges.

Le système résultant de l'ensemble des hyperplans (Equation (III.7)) peut s'écrire sous la forme matricielle suivante :

$$\begin{pmatrix} \alpha_{rA} & 0 & 0 & \alpha_{sA}^{1} & \alpha_{sA}^{2} \\ 0 & \alpha_{rB} & 0 & 0 & \alpha_{sB}^{1} & \alpha_{sB}^{2} \\ 0 & 0 & \alpha_{rC} & 0 & \alpha_{sC}^{1} & \alpha_{sC}^{2} \\ 0 & 0 & 0 & \alpha_{rD} & \alpha_{sD}^{1} & \alpha_{sD}^{2} \end{pmatrix} \begin{pmatrix} u_{rA} \\ u_{rB} \\ u_{rC} \\ u_{rD} \\ u_{s}^{1} \\ u_{s}^{2} \end{pmatrix} + \begin{pmatrix} \beta_{A} \\ \beta_{B} \\ \beta_{C} \\ \beta_{D} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
(III.8)

où les zéros dans la matrice des cosinus directeurs illustrent le fait que les résistances entre sections sont non corrélées. Notons que les hyperplans sont corrélés entre eux grâce aux forces présentes dans les expressions du moment sollicitant de chaque section. La deuxième charge entraîne une colonne et une ligne supplémentaires, respectivement, dans la matrice $[\alpha]$ et dans le vecteur $\{u\}$ particulièrement dans ses composants u_{s^j} . De même, la section supplémentaire entraîne une augmentation des dimensions de la matrice $[\alpha]$, du vecteur $\{u\}$ particulièrement dans ses composants $\{u_{r_i}\}$ et du vecteur $\{\beta\}$. Pour l'exemple traité, les valeurs numériques de l'Equation (III.8) sont les suivantes :

$$\begin{pmatrix} 0.691 & 0 & 0 & -0.614 & 0.378 \\ 0 & 0.854 & 0 & 0 & -0.506 & 0.111 \\ 0 & 0 & 0.830 & 0 & 0.169 & -0.530 \\ 0 & 0 & 0 & 0.748 & 0.332 & -0.573 \end{pmatrix} \begin{pmatrix} u_{rA} \\ u_{rB} \\ u_{rC} \\ u_{rD} \\ u_{s^1} \\ u_{s^2} \end{pmatrix} + \begin{pmatrix} 1.542 \\ 1.626 \\ 1.66 \\ 1.735 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
(III.9)

et les probabilités de défaillance locale $\{\Phi(-\beta_i)\}$ correspondantes sont regroupées dans le Tableau III.3.

Sections	p_i
A	0.0614
В	0.0519
C	0.0484
D	0.0413

TABLE III.3 – Probabilités de défaillance des sections droites A, B, C et D

Nous observons que l'ordre des probabilités est : $p_A > p_B > p_C > p_D$. L'écart maximal entre ces probabilités de défaillance est de 32%. Notons que les intensités (en valeur absolue) de moment sollicitant les plus élevées sont ordonnées comme suit : $M_{s_B} > M_{s_C} > M_{s_A} > M_{s_D}$. Les intensités « déterministes » sont calculées ici avec les valeurs moyennes des forces. Le jeu combiné des coefficients d'influence et des variabilités conduisent à ce résultat non intuitif.

Pour illustrer cela, nous avons tracé sur la Figure III.4 différents diagrammes de moments fléchissant le long de la poutre, en prenant différentes valeurs pour les forces F_1 et F_2 : la valeur moyenne, la valeur moyenne plus la valeur d'un écart type, ou la valeur moyenne moins la valeur d'un écart type. Les valeurs moyennes de résistance avec plus ou moins un écart type sont indiquées par les barres noires.

FIGURE III.4 – Structure initiale, diagrammes des moments en considérant les valeurs moyennes des charges plus ou moins une valeur d'écart type

Nous constatons par exemple que le diagramme avec les valeurs moyennes (en vert), ou le diagramme avec les valeurs moyennes augmentées d'un écart type (en bleu) ne conduisent pas à une rupture locale dans les gammes de résistance considérées. En revanche le diagramme rouge (F_1 forte et F_2 faible) augmente le moment sollicitant en A et conduit à une rupture en A pour une faible résistance (intersection avec la barre noire). Ce n'est pas une démonstration, mais une illustration des tendances. Ainsi, pour ces variations de résistances et de forces, la rupture peut avoir lieu en A et pas dans les autres sections.

1.2 Probabilités d'intersection

Comme dans le chapitre précédent, pour une élaboration correcte de l'arbre de défaillance (en ne comptant pas deux fois les mêmes probabilités dans deux branches différentes), il est nécessaire de séparer les événements seuls des événements d'intersection. La Figure III.5 et l'Equation (III.10) présentent la méthode de calcul de la probabilité de la section A seule.

FIGURE III.5 – Méthode de caractérisation de la section A seule

$$\begin{cases} p'_{A\cap B\cap C} = p(e'_{ABC}) = p_{A\cap B\cap C} - p_{A\cap B\cap C\cap D} \\ p'_{A\cap B\cap D} = p(e'_{ABD}) = p_{A\cap B\cap D} - p_{A\cap B\cap C\cap D} \\ p'_{A\cap B} = p(e'_{AB}) = p_{A\cap B} - p'_{A\cap B\cap C} - p'_{A\cap B\cap D} \\ p'_{A} = p(e'_{A}) = p_{A} - p'_{A\cap B} - p'_{A\cap C} - p'_{A\cap D} \end{cases}$$
(III.10)

Tout d'abord, la probabilité d'intersection des sections A, B, C et D est déterminée grâce à la procédure récursive expliquée au chapitre II (Equation (II.2)).

 $p_{A \cap B \cap C \cap D} = \Phi_4(-\{\beta\}, [\rho]) = p(e_D | e_A \cap e_B \cap e_C) \times p(e_C | e_A \cap e_B) \times p(e_B | e_A) \times p(e_A) (\text{III.11})$

et la valeur correspondante est : $p_{ABCD} = 1.09 e^{-6}$. Ensuite, les cas de défaillances locales multiples de la poutre dont les probabilités $(p_{ij},...,p_{ijkl})$ sont obtenues par les intersections d'événements $(e_i \cap e_j,...,e_i \cap e_j \cap e_k \cap e_l)$. La mise en œuvre de la procédure de calcul de la probabilité d'intersection de deux et trois sections a été présentée au chapitre *II*. Les résultats obtenus sont consignés dans le Tableau III.4.

		intersection de deux evenements	p_{ij}
intersection de trois évènements	p_{ijk}	$A \cap B$	0.010018
$A \cap B \cap C$	0.000071	$A \cap C$	0.000565
$A \cap B \cap D$	0.000014	$A \cap D$	0.000162
$A \cap C \cap D$	0.000010	$B \cap C$	0.001255
$B \cap C \cap D$	0.000077	$B \cap D$	0.000611
		$C \cap D$	0.007136

TABLE III.4 – Probabilités d'intersection

Nous observons que les quatre probabilités p_{ijk} concernant les intersections de trois sections sont très faibles. La probabilité $p_{A\cap B}$ de l'évènement d'intersection $e_A \cap e_B$ est très grande par rapport aux autres intersections de deux sections. Nous remarquons également que la probabilité $p_{C\cap D}$ est assez grande. La probabilité d'intersection des quatre sections potentiellement critiques permet de déterminer les probabilités seules p'_{ijk} de trois évènements d'intersection seuls $(e_i \cap e_j \cap e_k)'$. Ces dernières permettent de déduire les probabilités seules p'_{ij} de deux évènements d'intersection seuls $(e_i \cap e_j \cap e_k)'$. (Tableau III.5).

TABLE III.5 – Probabilités d'intersection seules

		intersection de deux évènements	p'_{ij}
intersection de trois évènements	p'_{ijk}	$A \cap B$	0.009934
$A \cap B \cap C$	$7.07 e^{-5}$	$A \cap C$	0.000485
$A \cap B \cap D$	$1.29 e^{-5}$	$A \cap D$	0.000140
$A \cap C \cap D$	$8.93 e^{-6}$	$B \cap C$	0.001108
$B \cap C \cap D$	$7.61 e^{-5}$	$B \cap D$	0.000522
		$C \cap D$	0.007051

Les probabilités disjointes p'_i de chaque évènement seul e'_i sont enfin calculées et les résultats sont donnés dans le Tableau III.6. L'ordre des sections présentant les probabilités de défaillance les plus élevées est conservé ($p'_A > p'_B > p'_C > p'_D$). L'écart maximal entre les valeurs du Tableau III.6 est devenu 33%.

TABLE III.6 – Probabilités de défaillance des sections A, B, C et D seules

Sections	p'_i
A	0.050
В	0.040
C	0.039
D	0.033

Toutes les probabilités disjointes calculées précédemment définissent les branches du premier niveau de l'arbre des évènements. À l'exception des branches particulières où trois ou quatre sections sont rompues simultanément $(A \cap B \cap C \cap D$ ou $i \cap j \cap k$), il n'y a pas de rupture complète de la structure. Il faut poursuivre la construction de l'arbre en étudiant un nouvel état de la structure nécessitant de calculer les probabilités conditionnelles, c'est-à-dire les probabilités de nouvelles défaillances sachant la formation de rotules plastiques $(M_p \neq 0)$.

1.3 Probabilités conditionnelles

Une nouveauté supplémentaire de ce chapitre apparaît ici : la prise en compte du moment plastique non nul de la ou des sections défaillantes à l'étape précédente. Ces moments plastiques interviennent comme de nouvelles charges variables sur une nouvelle structure comportant des rotules parfaites à la place des sections défaillantes (voir par exemple Figure III.6 et Figure III.7).

FIGURE III.6 – Nouvel état de la structure après formation d'une première rotule plastique en B par exemple

Comme pour les charges initiales, le calcul est mené avec des coefficients d'influence. Le moment sollicitant de la section i sachant la défaillance des sections l à q vaut :

$$M_{s_i|l \to q} = \sum_{j=1}^{n} k_{s_i}^j F_j + \sum_{t=l}^{q} signe(M_t) k_{s_i}^t M_p^t$$
(III.12)

où p est le nombre de sections plastifiées et $k_{s_i}^t$ est le coefficient d'influence sur le moment sollicitant de la section i dû à un moment unitaire exercé de part et d'autre de la rotule t, positif à droite et négatif à gauche (voir Figure III.6). M_p^t est la valeur positive du moment plastique de la section l, qui suit la loi Gaussienne de la résistance de la section avec une moyenne μ_{r_t} et un écart type σ_{r_t} . Enfin $signe(M_t)$ est le signe du moment qui a créé la rotule plastique dans la section t qui est fonction du choix de β^+ ou β^- dans l'Equation (III.6). Dans la pratique, la procédure Python qui appelle Cast3M génère un fichier de données qui met une rotule à la place de chaque section défaillante et calcule successivement les coefficients d'influence à l'aide d'un chargement de moments unitaires.

Chaque fois qu'une section défaillante est prise en compte pour calculer les probabilités conditionnelles des branches suivantes partant de ce nœud de l'arbre des évènements, cela modifie les dimensions des matrices dans l'Equation (III.7) : la matrice $[\alpha]$ perd la ligne et la colonne de la section défaillante, et gagne une colonne correspondant à la charge de moment plastique de cette section défaillante. En effet, le moment plastique est considéré comme une variable aléatoire de sollicitation, dont la moyenne et l'écart-type sont ceux du moment résistant de la section défaillante considérée. Cette nouvelle charge modifie la combinaison de charges et, pour bien tenir compte de l'effet bénéfique ou pénalisant, il est important de prendre en compte avec attention le signe affecté à celle-ci (voir Equation (III.12)).

Pour l'exemple traité ici, supposons une défaillance initiale correspondant à l'existence d'une rotule plastique dans la section critique *A*, avec un moment de signe négatif pris en compte dans la procédure. Le nouvel état de la structure est donné par la Figure III.7.

FIGURE III.7 – Nouvel état de la structure après formation d'une première rotule plastique en A

L'analyse statique de la structure (Figure III.7) fournit les coefficients d'influence permettant d'établir les équations des hyperplans des trois sections critiques B, C et D.

TABLE III.7 -	- Coefficients a	l'influence	de la structure	(Figure III.7	')
---------------	------------------	-------------	-----------------	---------------	----

Section restante sachant la défaillance de A	В	C	D
F_1	+ 0.519	+ 0.157	- 0.444
F_2	- 0.224	- 0.392	+ 0.577
M_p^A	+ 0.5	+ 0.125	- 0.5

Les valeurs numériques du système résultant de l'ensemble des hyperplans (Equation (III.7)) pour la structure dans l'état de la Figure III.7 sont regroupées dans la forme matricielle suivante :

$$\begin{pmatrix} 0.633 & 0 & 0 & -0.657 & 0.255 & 0.316 \\ 0 & 0.787 & 0 & 0.247 & -0.555 & -0.098 \\ 0 & 0 & 0.566 & 0.502 & -0.588 & -0.283 \end{pmatrix} \begin{pmatrix} u_{r_B} \\ u_{r_C} \\ u_{r_D} \\ u_{s^1} \\ u_{s^2} \\ u_{s^3} \end{pmatrix} + \begin{pmatrix} 1.909 \\ 1.354 \\ 0.680 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
(III.13)

Dans la suite, la procédure est identique au III.1.2 pour déterminer les probabilités conditionnelles seules. Il s'agit de déterminer les probabilités de défaillance des sections *B* seule, *C* seule et *D* seule et des évènements d'intersection seuls sachant la défaillance de *A*. Dans un premier temps, la probabilité d'intersection des sections *B*, *C* et *D* est déterminée grâce à la procédure récursive expliquée au chapitre *II* (Equation (II.2)).

$$p_{B\cap C\cap D|A} = \Phi_3(-\{\beta\}, [\rho]) = p(e_D | e_B \cap e_C) \times p(e_C | e_B) \times p(e_B)$$
(III.14)

et la valeur correspondante est :

$$p_{BCD|A} = 2.56 \, e^{-5}$$

Ensuite, nous déterminons les probabilités (p'_{ij}) disjointes des cas de défaillances locales multiples $(e_i \cap e_j)'$ seules. Le Tableau III.8 présente les résultats obtenus pour la défaillance de chaque évènement d'intersection seul de deux sections.

TABLE III.8 – Probabilité de défaillance des intersections $B \cap C$ seule, $B \cap D$ seule et $C \cap D$ seule sachant la défaillance de A

Intersection de défaillance	sachant la défaillance	$p'_{ij A}$
$B \cap C$	A	0.000328
$B \cap D$	A	0.000233
$C \cap D$	A	0.051240

La probabilité $p'_{CD|A}$ est très grande par rapport aux deux autres intersections. En traçant des diagrammes du même type que ceux de la Figure III.4, nous constatons que la section B est moins sollicitée (donc les intersection $B \cap C$ et $B \cap D$ aussi). Lorsque l'intensité de F_1 est faible et que celles de F_2 et M_{r_A} sont grandes (courbe orange), les sections C et D ont de grandes chances de rompre en même temps, ce qui va dans le sens de $C \cap D$ grand.

FIGURE III.8 – Structure avec défaillance en A, diagrammes des moments en considérant les valeurs moyennes des charges et moment plastique, plus ou moins une valeur d'écart type

Les probabilités disjointes $p'_{i|A}$ de chaque évènement seul $e'_{i|A}$ sont enfin calculées. Le Tableau III.9 présente les résultats obtenus pour la défaillance locale de chaque nouvelle section seule. Ces résultats sont cohérents avec les tendances suggérées par la Figure III.8 : la plus grande probabilité de rupture est en D et il y a deux diagrammes qui interceptent la barre de résistance, l'un avec toutes les valeurs de sollicitation fortes, l'autre avec des valeurs faibles et fortes. La probabilité de rupture en C seule est beaucoup plus faible car la plupart du temps s'il y a rupture en C il y a aussi rupture en D, et

cela est déjà compté dans $p'_{C \cap D|A}$. Enfin, pour rompre en *B* sans rompre *C* ni *D*, il faut à la fois une combinaison particulière (diagramme rouge) et des intensités plus grande pour F_1 et plus faibles pour F_2 et M_{r_A} .

Sections	sachant la défaillance	$p'_{i A}$
В	A	0.027
C	A	0.036
D	A	0.196

TABLE III.9 – Probabilité de défaillance des évènements seuls sachant la ruine de la section A

Ces probabilités d'évènements seuls, ainsi que celles correspondants aux évènements d'intersection seuls, sachant la ruine de la section droite A, permettent de construire une partie du second niveau des branches de l'arbre des évènements. Pour construire les niveaux suivants, la procédure est réitérée autant de fois que nécessaire, en considérant tous les scénarios exclusifs possibles pour construire l'arbre des évènements complet depuis la défaillance initiale localisée jusqu'à toutes les combinaisons d'au moins trois sections défaillantes.

1.4 Arbre des évènements

L'analyse de la robustesse de cette structure unidimensionnelle, lorsque la ruine locale s'initie dans chaque section droite potentielle A, B, C ou D, ou leurs combinaisons, permet de construire l'arbre des événements résumant tous les scénarios exclusifs possibles et leur probabilité respective.

De nouveau, seuls les 24 scénarios correspondant aux évènements seuls sont représentés parmi les 75 scénarios distincts possibles. Nous avons vérifié que les probabilités des intersections sont négligeables dans ce cas. Pour chaque chemin de l'arbre (chaque scénario), l'indice de robustesse correspond au rapport de la probabilité initiale (probabilité de défaillance de la première section) et du produit de toutes les probabilités du chemin (défaillance globale) (Equation (II.1)). Par exemple, pour le chemin de ruine $A \longrightarrow D \longrightarrow C$:

$$I_r = 1 - \frac{1.1 \, e^{-3}}{0.050} = 0.978$$

Le scénario exclusif $B \longrightarrow A \longrightarrow D$ est le plus probable car il présente la probabilité de défaillance globale la plus grande. Il est également le plus dangereux car il présente l'indice de robustesse le plus faible (0.909). On constate qu'une défaillance initiale en B peut être suivie par une suite de défaillances à probabilités élevées, et croissantes au fur et à mesure des ruptures successives jusqu'à l'effondrement total. Cela est typique d'une défaillance en chaine. Ainsi, une intention malveillante ou un accident au niveau de la section B peut avoir des conséquences énormes sur l'intégrité du système.

En revanche, une rupture initiale en A ou en D, peut être suivie au niveau 2 par une forte probabilité (rupture en D ou en A respectivement), mais s'« arrête » au niveau 2 car les probabilités au niveau 3 sont relativement faibles. Il s'agirait là d'un effondrement partiel de la structure, mais tout de même significatif, conduisant à des indices de robustesse intermédiaires autour de 0.980.

FIGURE III.9 – Arbre d'évènements

La méthode de construction de cet arbre a été validée par une simulation de Monte-Carlo (100 millions de tirages). Les différences entre les probabilités calculées selon ces deux techniques restent inférieures à 1% maximum. De plus, la méthode développée permet de calculer tous les scénarios exclusifs en quelques secondes alors que la procédure par Monte-Carlo est coûteuse en temps de calcul (voir l'étude de convergence présentée à la partie §II.2.5).

1.5 Analyses de l'ensemble des scénarios exclusifs

L'ensemble des scénarios exclusifs possibles et leur probabilité respective sont résumés dans le Tableau D.1 de l'annexe D. La Figure III.10 montre que la poutre bi-encastrée est globalement robuste. En effet, 73% des scénarios exclusifs présentent un indice de robustesse compris entre 0.9 et 1. Parmi les chemins trouvés, 56% des scénarios conduisent à un indice supérieur à un seuil arbitraire de 0.99 (Figure III.10 b). Ceci indique que la réaction en chaîne supposée est très peu probable.

Par ailleurs, nous observons que 16 scénarios présentent un indice de robustesse inférieur à 0.9, certains conduisant à un faible indice I_r . Parmi ces derniers, les scénarios initiés par la défaillance locale multiple d'au moins deux sections droites n'illustrent pas la notion de ruine en chaîne depuis une défaillance initiale localisée. Toutefois, la démarche proposée permet de détecter les évènements déclencheurs de scénarios à éviter (défaillance initiale en B) car conduisant à des indices de robustesse faibles (Tableau D.1).

FIGURE III.10 – a) Indices de robustesse de l'ensemble des scénarios exclusifs b) Scénarios exclusifs présentant un I_r supérieur à 0.99

1.6 Discussion sur le choix de l'indice de fiabilité retenu

Dans les paragraphes précédents, le plus petit indice de fiabilité (Equation (III.6)) a été retenu pour le calcul de la probabilité de défaillance. Ce choix pour une section revient à ne conserver qu'un événement (une défaillance locale) sur les deux potentiellement possibles et faire un choix délibéré d'élimination de chemins dans l'arbre des évènements. Cependant, un indice de fiabilité β conservé pour une section droite peut être supérieur aux autres indices β conservés dans la suite du scénario de défaillance en chaîne (branches de niveau supérieur/ultérieures dans l'arbre). Cette approche adoptée par la plupart des auteurs (Thoft-Christensen and Murotsu [1986] par exemple) mérite une analyse particulière afin d'étudier son influence sur les probabilités d'occurence de chaque scénario et sur les indices de robustesse.

Dans cette partie, nous élaborons un arbre des évènements qui conserve le signe de β Equation (III.4) dans l'historique de chacune des branches. Cette adaptation nécessite de conserver des données antérieures dans la construction de l'arbre et l'objectif est d'analyser les différences obtenues sur la prévision des scénarios les plus dangereux et les valeurs des indices de robustesse I_r calculés.

L'exemple utilisé est celui de la poutre bi-encastrée (Figure III.1). La construction de l'arbre des événements résumant tous les scénarios exclusifs possibles et leurs probabilités respectives est réalisée grâce à la méthode explicite détaillée dans les paragraphes précédents, moyennant la conservation du signe de β sur chaque chemin. De nouveau, seuls les 24 scénarios correspondant aux évènements seuls sont représentés parmi les 75 scénarios distincts possibles (Figure III.11).

Naturellement, les probabilités des branches initiales de cet arbre sont identiques à celles de la Figure III.9 puisque l'historique du scénario n'intervient pas au premier niveau de branches. Aux niveaux supérieurs, les probabilités sont différentes compte-tenu de l'historique conservé.

La Figure III.11 montre le chemin $A \longrightarrow B \longrightarrow D$, $p_g = 1.2 e^{-3}$, comme le scénario le plus probable. Outre un mécanisme différent de celui de la Figure III.9 ($B \longrightarrow A \longrightarrow D$ avec $p_g = 3.6 e^{-3}$), les probabilités de défaillance globale de ces deux chemins diffèrent de 67%. Les scénarios les plus dangereux des Figure III.9 et Figure III.11 sont respectivement $B \longrightarrow A \longrightarrow D$ ($I_r = 0.909$) et $D \longrightarrow A \longrightarrow C$ ($I_r = 0.973$). La différence des indices de robustesse de ces deux chemins est de 7%. Une analyse de ces deux arbres montre le choix de retenir le plus petit indice de fiabilité (Equation (III.6)) pour le calcul de la probabilité de défaillance favorise une conception de sécurité. En effet, le plus petit indice de robustesse obtenu en tenant compte de l'historique conservé surestime la robustesse et son chemin le plus probable à 3 fois moins de chance de se produire en premier lieu comparé à celui de la Figure III.9.

FIGURE III.11 – Arbre des évènements

2 Approximations non linéaires

L'objectif de ce paragraphe est de montrer que notre approche de quantification de la robustesse structurale peut être utilisée pour diverses lois de probabilité. Le choix du type de loi probabiliste des variables aléatoires engendre des procédures linéaires ou non linéaires. L'approximation linéaire a été détaillée au chapitre *II* et complétée dans la première partie de ce chapitre. Dans ce qui suit, notre approche est développée suivant des variables Log-normales. En conséquence, nos fonctions d'état limite sont non linéaires. Pour résoudre cette difficulté supplémentaire, une minimisation sous contrainte est effectuée afin de déterminer les indices de fiabilité et les cosinus directeurs. Enfin, les probabilités de défaillance des évènements seuls et des évènements d'intersection seuls sont calculées.

Dans la structure unidimensionnelle de la Figure III.1, les moments résistants et les charges F_1 et F_2 sont considérés comme des variables aléatoires Log-normales indépendantes (Tableau III.2). Une distribution Log-normale permet d'éliminer les valeurs négatives des variables aléatoires. C'est plus physique, notamment pour les résistances.

2.1 Probabilités de défaillance locale

La probabilité de défaillance vérifie l'Equation (II.10). En complément de la procédure expliquée au chapitre II et dans la première partie de ce chapitre, la variable aléatoire X_i est supposée suivre une loi Log-normale, de réalisation x_i , de moyenne μ_{X_i} et d'écart type σ_{X_i} , alors $ln(X_i)$ suit une loi Gaussienne de moyenne λ_{X_i} et d'écart type ξ_{X_i} avec :

$$\lambda_{X_i} = ln(\frac{\mu_{X_i}}{\sqrt{1 + (\frac{\sigma_{X_i}}{\mu_{X_i}})^2}}) \quad et \quad \xi_{X_i} = \sqrt{ln(1 + (\frac{\sigma_{X_i}}{\mu_{X_i}})^2)}$$
(III.15)

et la transformation isoprobabiliste de l'espace physique vers l'espace normé est :

$$x_i \to u_i = \frac{\ln(x_i) - \lambda_{x_i}}{\xi_{x_i}} \tag{III.16}$$

où les variables u_i de l'espace normé suivent une loi Gaussienne de moyenne nulle et de variance unitaire N(0, 1).

Dans le cas d'une structure unidimensionnelle, pour chaque section droite i $(i \in \{A, B, ...\})$, il y a les variables aléatoires de résistance M_{r_i} et de sollicitation M_{s_i} . Chaque section critique est caractérisée par son moment résistant M_{r_i} de moyenne μ_{r_i} et d'écart type σ_{r_i} . Chaque charge F_j a une valeur moyenne μ_s^j et un écart type σ_s^j . Pour chaque évènement e_i associé à la section i, la fonction d'état limite de l'Equation (II.11) devient :

$$G_i = M_{r_i} \pm \sum_{j=1}^n k_{s_i}^j F_j$$
 (III.17)

où $k_{s_i}^j$ est le coefficient d'influence de la charge F_j au niveau de la section *i*, et *n* est le nombre de charges considérées.

De l'Equation (III.16), nous déduisons d'une part :

$$ln(M_{r_i}) = \xi_{M_{r_i}} u_i + \lambda_{M_{r_i}} \longrightarrow M_{r_i} = exp(\xi_{M_{r_i}} u_i + \lambda_{M_{r_i}})$$
(III.18)

et d'autre part

$$ln(F_j) = \xi_{F_j} u_{s^j} + \lambda_{F_j} \longrightarrow F_j = exp(\xi_{F_j} u_{s^j} + \lambda_{F_j})$$
(III.19)

En utilisant l'Equation (III.19), on a :

$$\sum_{j=1}^{n} k_{s_i}^j F_j = \begin{cases} \sum_{j=1}^{n} k_{s_i}^j \exp(\xi_{F_j} u_{s^j} + \lambda_{F_j}) \\ \sum_{j=1}^{n} signe(k_{s_i^j}) \exp(\ln(|k_{s_i^j}|)) \exp(\xi_{F_j} u_{s^j} + \lambda_{F_j}) \\ \sum_{j=1}^{n} signe(k_{s_i^j}) \exp(\xi_{F_j} u_{s^j} + \lambda_{F_j} + \ln(|k_{s_i^j}|)) \end{cases}$$

Finalement, la surface d'état limite H dans l'espace normé s'écrit, pour chaque évènement e_i représentant une défaillance locale de la section i:

$$exp(\xi_{r_i} u_{r_i} + \lambda_{r_i}) \pm \sum_{j=1}^{n} [signe(k_{s_i^j}) exp(\xi_{s_i^j} u_{s^j} + \lambda_{s_i^j} + ln(|k_{s_i^j}|))] = 0$$
(III.20)

où la variable u_{r_i} correspond au moment résistant M_{r_i} et les variables u_{s^j} correspondent aux charges F_j . L'Equation (III.20) est non linéaire. Contrairement à la première partie de ce chapitre, la détermination de l'indice de fiabilité et les cosinus directeurs de chaque section droite ne peut se faire directement. En conséquence, une minimisation sous contrainte sous Matlab de la surface d'état limite est effectuée afin de déterminer l'indice de fiabilité et les cosinus directeurs pour évaluer les probabilités de défaillance.

Minimisation sous contrainte

L'indice de fiabilité de la surface d'état limite (Equation (III.20)) est recherché grâce à l'Equation (I.22) où il s'agit de :

— trouver u_k^* (qui représente le point de conception défini à la partie §*II*.2.1.6)

— minimiser
$$\beta = \sqrt{\sum_i u_i^2}$$
 sous la contrainte de la surface d'état limite H.

Pour ce faire, la toolbox fmincon développée dans l'environnement Matlab est utilisée; elle permet de résoudre les problèmes non linéaires d'optimisation sous contraintes. Avec utilisation de fmincon, nous évaluons les indices de fiabilité et les cosinus directeurs afin d'approximer les probabilités de défaillance de chaque section étudiée. Les étapes de l'implémentation sont les suivantes :

- choisir un vecteur initial x_0 ;
- définir la fonction non linéaire objective $(\sqrt{\sum_i u_k^2})$ et les contraintes non linéaires (la surface d'état limite d'une section potentielle).

L'exemple de la poutre bi-encastrée (Figure III.1) est considéré où le vecteur des variables aléatoires suivant des lois Log-normales est $X = (M_{r_A}, M_{r_B}, M_{r_C}, M_{r_D}, F_1, F_2)$. Le moment résistant M_{r_i} est défini par sa moyenne λ_{r_i} et son écart type ξ_{r_i} et les charges F_j sont définies par leur moyenne $\lambda_{s_i^j}$ et leur écart type $\xi_{s_i^j}$. Les coefficients d'influence $k_{s_i^j}$ de chaque charge F_j ($j \in \{1, ..., n\}$) sur le moment sollicitant M_{s_i} sont donnés au Tableau III.1. Les équations des états limites non linéaires des sections droites A, B, C et D avec les valeurs numériques choisies sont obtenues grâce à l'Equation (III.20) :

$$\begin{split} & \left(exp(0.397\,u_{r_A} + 7.333) \pm \left[-exp(0.346\,u_{s^1} + 7.877 + ln(0.444)) + exp(0.349\,u_{s^2} + 7.763 + ln(0.303)) \right] = 0 \\ & exp(0.305\,u_{r_B} + 7.333) \pm \left[+exp(0.346\,u_{s^1} + 7.877 + ln(0.296)) - exp(0.349\,u_{s^2} + 7.763 + ln(0.723)) \right] = 0 \\ & exp(0.305\,u_{r_C} + 7.333) \pm \left[+exp(0.346\,u_{s^1} + 7.877 + ln(0.101)) - exp(0.349\,u_{s^2} + 7.763 + ln(0.354)) \right] = 0 \\ & exp(0.305\,u_{r_D} + 7.333) \pm \left[-exp(0.346\,u_{s^1} + 7.877 + ln(0.222)) + exp(0.349\,u_{s^2} + 7.763 + ln(0.425)) \right] = 0 \end{split}$$

En utilisant la fonction fmincon et en retenant pour chaque section droite le plus petit indice de fiabilité, l'ensemble des hyperplans est écrit sous la forme matricielle suivante :

$$\begin{pmatrix} 0.484 & 0 & 0 & 0 & -0.828 & 0.280 \\ 0 & 0.607 & 0 & 0 & -0.785 & 0.100 \\ 0 & 0 & 0.576 & 0 & 0.143 & -0.804 \\ 0 & 0 & 0 & 0.504 & 0.247 & -0.826 \end{pmatrix} \begin{pmatrix} u_{r_A} \\ u_{r_B} \\ u_{r_C} \\ u_{r_D} \\ u_{s^1} \\ u_{s^2} \end{pmatrix} + \begin{pmatrix} 1.549 \\ 1.757 \\ 1.759 \\ 1.767 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
(III.21)

et les probabilités de défaillance locale $\{\Phi(-\beta_i)\}$ correspondantes sont regroupées dans le Tableau III.10.

Dans la suite, la procédure est identique au III.1.2 pour déterminer les probabilités des évènements d'intersection et des probabilités seules. Il s'agit de déterminer les probabilités de défaillance locale des sections A seule, B seule, C seule et D seule et des évènements d'intersection seuls. Ces dernières correspondent au premier niveau de l'arbre issu de l'approximation non linéaire. Pour construire les niveaux suivants, les probabilités conditionnelles sont calculées.

Sections	p_i
A	0.0606
В	0.0394
C	0.0392
D	0.0385

TABLE III.10 – Probabilités de défaillance des sections droites A, B, C et D

2.2 Arbre des évènements

L'ensemble des scénarios exclusifs possibles et leur probabilité respective sont résumés dans le Tableau D.3 de l'annexe D. Nous observons que 82% des scénarios exclusifs présentent un indice de robustesse compris entre 0.9 et 1 (Figure D.6a). Parmi ces chemins, 52% de ces scénarios conduisent à un indice supérieur à 0.99 (Figure D.6b).

Comme dans le cas linéaire, nous avons choisi de ne représenter que les branches correspondantes à des évènements isolés. Ainsi, seuls 24 scénarios exclusifs sont représentés parmi les 75 scénarios distincts (Figure III.12).

FIGURE III.12 - Arbre des évènements : approximation non linéaire

Les distributions Log-normales des charges et résistances se limitant à des valeurs positives, les probabilités calculées sont, pour pratiquement toutes les branches, légèrement inférieures au cas où les variables suivent la loi normale. Naturellement, on observe ici les mêmes tendances que sur l'arbre

de la Figure III.9.

Concernant les indices de robustesse, nous remarquons que les valeurs issues des approximations non linéaires sont assez proches de celles obtenues avec les approximations linéaires. L'écart maximal entre ces deux approximations est de 10%. Dans ces deux procédures, une intention malveillante en B peut entraîner des conséquences considérables.

3 Variables aléatoires corrélées

L'objet de cette partie est d'étudier l'influence des variables aléatoires corrélées sur l'indice de robustesse. En effet, dans les applications structurelles, certains paramètres mécaniques ou géométriques sont souvent des grandeurs physiquement liées. Or, la méthodologie proposée repose sur l'hypothèse de variables aléatoires dé-corrélées afin de pouvoir utiliser directement les transformations iso-probabilistes permettant d'obtenir les approximations des fonctions d'état limite dans l'espace transformé.

Dans le cas de variables aléatoires $\{X\} = (X_1, ..., X_n)$ initialement corrélées, il est donc nécessaire de leur associer au préalable des variables dé-corrélées, notées dans la suite $\{Y\} = (Y_1, ..., Y_n)$, afin de pouvoir déterminer les équations des hyperplans et les indices de fiabilité associés. Notons $[\rho_X]$ la matrice de corrélation des variables $\{X\}$:

$$[\rho_X] = \begin{pmatrix} 1 & \rho_{X_1, X_2} & \dots & \rho_{X_1, X_n} \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ \rho_{X_n, X_1} & \rho_{X_n, X_2} & \dots & 1 \end{pmatrix}$$
(III.22)

et $[C_X]$ la matrice de covariance associée :

Cette matrice de covariance, réelle et symétrique, est diagonalisable selon des théorèmes usuels d'algèbre linéaire et ses vecteurs propres orthogonaux permettent de définir la matrice orthogonale [V] dont les colonnes correspondent aux vecteurs propres orthonormaux de $[C_X]$ (Equation (III.23)). Le vecteur des variables dé-corrélées $\{Y\}$ est calculé selon l'expression suivante :

$$\{Y\} = [V]^T \{X\}$$
(III.24)

On peut remarquer que la matrice de covariance $[C_Y]$ associée à ces nouvelles variables $\{Y\}$ est diagonale, ce qui montre bien que les variables du vecteur $\{Y\}$ sont dé-corrélées en raison de la nullité

des termes hors diagonaux :

$$[C_Y] = [V]^T [C_X] [V] = \begin{pmatrix} Var[Y_1] & \dots & 0 \\ \cdot & & \cdot \\ \cdot & & \cdot \\ \cdot & & \cdot \\ 0 & \dots & Var[Y_n] \end{pmatrix}$$
(III.25)

Après l'étape de dé-corrélation, la transformation iso-probabiliste des variables non corrélées $\{Y\} = (Y_1, ..., Y_n)$ est réalisée :

$$Y_i \to u_i = \frac{Y_i - \mu_{Y_i}}{\sigma_{Y_i}}, \qquad i = 1, ..., n$$
 (III.26)

et pour chaque évènement e_i représentant une défaillance locale de la section i, la surface d'état limite H dans l'espace normé s'écrit, :

$$e_i: \sum_i \gamma_{ij} \left(\sigma_{Y_{r_i}} u_{Y_{r_i}} + \mu_{Y_{r_i}} \right) \pm \sum_{j=1}^n \left(k_{s_i}^j \sigma_s^j u_s^j + k_{s_i}^j \mu_s^j \right) = 0$$
(III.27)

où γ_{ij} représentent la valeur de la $i^{\grave{e}me}$ ligne et de la $j^{\grave{e}me}$ colonne de la matrice [V], la variable $u_{Y_{r_i}}$ correspond aux nouvelles variables dé-corrélées Y_{r_i} et les variables u_s^j correspondent aux charges F_j . Notons que les transformations iso-probabilistes des nouvelles variables dé-corrélées sont obtenues grâce à l'Equation (III.26) et celles des charges sont fournies par l'Equation (III.13). Chaque surface d'état limite (Equation (III.27)) est approchée par deux hyperplans dont les équations sont écrites en fonction des variables dé-corrélées :

$$e_{i}: \begin{cases} \sum_{i} \alpha_{Y_{r_{i}}} u_{Y_{r_{i}}} - \sum_{j=1}^{n} \alpha_{s_{i}}^{j} u_{s}^{j} + \beta_{i}^{+} = 0\\ \\ \sum_{i} \alpha_{Y_{r_{i}}} u_{Y_{r_{i}}} + \sum_{j=1}^{n} \alpha_{s_{i}}^{j} u_{s}^{j} + \beta_{i}^{-} = 0 \end{cases}$$
(III.28)

avec les notations suivantes :

$$\beta_{i}^{+} = \frac{\sum_{i} \mu_{Y_{r_{i}}} - \sum_{j=1}^{n} k_{s_{i}}^{j} \mu_{s}^{j}}{\sqrt{\sum_{i} (\gamma_{ij} \sigma_{Y_{r_{i}}})^{2} + \sum_{j=1}^{n} (k_{s_{i}}^{j} \sigma_{s}^{j})^{2}}} \quad ; \quad \beta_{i}^{-} = \frac{\sum_{i} \mu_{Y_{r_{i}}} + \sum_{j=1}^{n} k_{s_{i}}^{j} \mu_{s}^{j}}{\sqrt{\sum_{i} (\gamma_{ij} \sigma_{Y_{r_{i}}})^{2} + \sum_{j=1}^{n} (k_{s_{i}}^{j} \sigma_{s}^{j})^{2}}} \quad (\text{III.29})$$

$$\alpha_{Y_{r_i}} = \frac{\gamma_{ij} \,\sigma_{Y_{r_i}}}{\sqrt{\sum_i \,(\gamma_{ij} \,\sigma_{Y_{r_i}})^2 \,+\,\sum_{j=1}^n (k_{s_i}^j \,\sigma_s^j)^2}} \quad ; \quad \alpha_{s_i}^j = \frac{k_{s_i}^j \,\sigma_s^j}{\sqrt{\sum_i \,(\gamma_{ij} \,\sigma_{Y_{r_i}})^2 \,+\,\sum_{j=1}^n (k_{s_i}^j \,\sigma_s^j)^2}} \quad (\text{III.30})$$

A partir de cette étape, la procédure linéaire de la première partie de ce chapitre est appliquée. Le plus petit indice de fiabilité est de nouveau retenu (Equation (III.6)) et l'ensemble des m évènements et n charges est écrit selon l'Equation (III.7). Le système résultant de l'ensemble des hyperplans (Equation (III.28)) peut s'écrire sous la forme matricielle suivante :

$$\begin{pmatrix} \alpha_{Y_{r_{A}}}^{A} & \alpha_{Y_{r_{B}}}^{A} & \alpha_{Y_{r_{C}}}^{A} & \alpha_{S_{A}}^{A} & \alpha_{s_{A}}^{1} & \alpha_{s_{A}}^{2} \\ \alpha_{Y_{r_{A}}}^{B} & \alpha_{Y_{r_{B}}}^{B} & \alpha_{Y_{r_{C}}}^{B} & \alpha_{s_{B}}^{B} & \alpha_{s_{B}}^{2} \\ \alpha_{Y_{r_{A}}}^{C} & \alpha_{Y_{r_{B}}}^{C} & \alpha_{Y_{r_{C}}}^{C} & \alpha_{Y_{r_{D}}}^{C} & \alpha_{s_{C}}^{1} & \alpha_{s_{C}}^{2} \\ \alpha_{Y_{r_{A}}}^{D} & \alpha_{Y_{r_{B}}}^{D} & \alpha_{Y_{r_{C}}}^{D} & \alpha_{s_{D}}^{D} & \alpha_{s_{D}}^{2} \\ \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{B}}}^{D} & \alpha_{Y_{r_{C}}}^{D} & \alpha_{S_{D}}^{D} & \alpha_{s_{D}}^{2} \\ \alpha_{Y_{r_{D}}}^{P} & \alpha_{Y_{r_{D}}}^{D} & \alpha_{S_{D}}^{D} & \alpha_{s_{D}}^{2} \\ \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{B}}}^{P} & \alpha_{Y_{r_{C}}}^{P} & \alpha_{Y_{r_{D}}}^{P} & \alpha_{s_{D}}^{2} \\ \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{B}}}^{P} & \alpha_{Y_{r_{C}}}^{P} & \alpha_{Y_{r_{D}}}^{P} & \alpha_{s_{D}}^{2} \\ \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{B}}}^{P} & \alpha_{Y_{r_{C}}}^{P} & \alpha_{Y_{r_{D}}}^{P} & \alpha_{s_{D}}^{2} \\ \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{B}}}^{P} & \alpha_{Y_{r_{C}}}^{P} & \alpha_{Y_{r_{D}}}^{P} & \alpha_{s_{D}}^{2} \\ \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{B}}}^{P} & \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{A}}}^{P} \\ \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{A}}}^{P} \\ \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{A}}}^{P} \\ \alpha_{Y_{r_{A}}}^{P} & \alpha_{Y_{r_{$$

 $\langle a, \rangle$

Cette relation matricielle montre que les hyperplans sont corrélés entre eux grâce aux forces présentes dans les expressions du moment sollicitant de chaque section et aux variables dé-corrélées.

3.1 Probabilités de défaillance locale

Considérons la poutre bi-encastrée de la Figure III.1 où les charges F_1 et F_2 sont définies comme des variables aléatoires indépendantes et les moments résistants sont considérés comme des variables aléatoires corrélées. Les composantes du vecteur des variables aléatoires $X = (M_{r_A}, M_{r_B}, M_{r_C}, M_{r_D}, F_1, F_2)$ suivent une loi Gaussienne, dont les moyennes et écart-types sont ceux du Tableau III.2.

La matrice de corrélation aux moments résistants associée est d'ordre quatre :

$$[\rho_{M_r}] = \begin{pmatrix} 1 & 0.7 & 0.7 & 0.7 \\ 0.7 & 1 & 0.7 & 0.7 \\ 0.7 & 0.7 & 1 & 0.7 \\ 0.7 & 0.7 & 0.7 & 1 \end{pmatrix}$$
(III.32)

et la matrice de covariance associée a pour composantes :

$$[C_X] = 10^5 \begin{pmatrix} 2.5 & 1.751 & 1.751 & 1.753 \\ 1.751 & 2.5 & 1.750 & 1.753 \\ 1.751 & 1.750 & 2.5 & 1.753 \\ 1.753 & 1.753 & 1.753 & 2.5 \end{pmatrix}$$
(III.33)

Les composantes de ces deux matrices ont été obtenues grâce à une procédure développée sous Python dans laquelle on se donne une matrice symétrique [S], constituée de coefficients de corrélation, et on cherche la racine [T] telle que $[S] = [T]^t [T]$. Cet algorithme nous permet de générer les matrices de corrélation $[\rho_{M_r}]$ et de covariance $[C_X]$ tout en assurant que les valeurs des moyennes des écarts types soient celles du Tableau III.2. La matrice orthogonale [V] regroupant les vecteurs propres de $[C_X]$ a pour composantes :

$$[V] = \begin{pmatrix} -0.499 & -0.500 & -0.500 & -0.499 \\ 0.846 & -0.451 & -0.167 & -0.226 \\ -0.163 & -0.566 & 0.804 & -0.074 \\ -0.084 & -0.473 & -0.273 & 0.832 \end{pmatrix}$$
(III.34)

Quatre nouvelles variables dé-corrélées Y_{r_A} , Y_{r_B} , Y_{r_C} et Y_D pour les résistances sont déterminées grâce à l'Equation (III.24) :

$$\begin{pmatrix} Y_{r_A} \\ Y_{r_B} \\ Y_{r_C} \\ Y_{r_D} \end{pmatrix} = \begin{pmatrix} -0.499 & 0.846 & -0.163 & -0.084 \\ -0.500 & -0.451 & -0.566 & -0.473 \\ -0.500 & -0.167 & 0.804 & -0.273 \\ -0.499 & -0.226 & -0.074 & 0.832 \end{pmatrix} \begin{pmatrix} M_{r_A} \\ M_{r_B} \\ M_{r_C} \\ M_{r_D} \end{pmatrix}$$
(III.35)

Les états limites (Equation (II.11)) de chaque section critique sont exprimés en fonction des nouvelles variables dé-corrélées :

$$\begin{cases} G_A = -0.499 Y_{r_A} - 0.500 Y_{r_B} - 0.500 Y_{r_C} - 0.499 Y_{r_D} \pm \sum_{j=1}^2 k_{s_i}^j F_j \\ G_B = +0.846 Y_{r_A} - 0.451 Y_{r_B} - 0.167 Y_{r_C} - 0.226 Y_{r_D} \pm \sum_{j=1}^2 k_{s_i}^j F_j \\ G_C = -0.163 Y_{r_A} - 0.566 Y_{r_B} + 0.804 Y_{r_C} - 0.074 Y_{r_D} \pm \sum_{j=1}^2 k_{s_i}^j F_j \\ G_D = -0.084 Y_{r_A} - 0.473 Y_{r_B} - 0.273 Y_{r_C} + 0.832 Y_{r_D} \pm \sum_{j=1}^2 k_{s_i}^j F_j \end{cases}$$
(III.36)

où les coefficients $k_{s_i}^j$ sont ceux du Tableau III.1 et les F_j , j = 1, 2 correspondent aux charges de la poutre bi-encastrée (Figure III.1). A partir de cette étape, les transformations iso-probabilistes sont

effectuées et les valeurs numériques de l'Equation (III.31) sont les suivantes :

$$\begin{pmatrix} -0.034 & 0.689 & 0.047 & -0.010 & -0.614 & 0.378 \\ 0.076 & 0.826 & 0.021 & -0.006 & -0.544 & 0.119 \\ -0.012 & 0.857 & -0.084 & -0.001 & 0.154 & -0.484 \\ -0.006 & 0.728 & 0.029 & 0.020 & 0.343 & -0.591 \end{pmatrix} \begin{pmatrix} u_{Y_{r_A}} \\ u_{Y_{r_B}} \\ u_{Y_{r_D}} \\ u_{s^1} \\ u_{s^2} \end{pmatrix} + \begin{pmatrix} 1.542 \\ 1.746 \\ 1.516 \\ 1.789 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
(III.37)

Finalement, les probabilités de défaillance locale $\{\Phi(-\beta_i)\}$ correspondantes sont regroupées dans le Tableau III.11.

TABLE III.11 – Probabilités de défaillance des sections droites A, B, C et D

Sections	p_i
A	0.0614
В	0.0403
C	0.0647
D	0.0367

Le Tableau III.12 compare les valeurs du Tableau III.3 et du Tableau III.11. Dans chacune des sections A, B, C et D, les probabilités p_i sont différentes. Les écarts sont particulièrement importants pour les sections C et D et peuvent atteindre 25%.

Probabilité de défaillance en	A	В	C	D
Variables indépendantes : p_i	0.0614	0.0519	0.0484	0.0413
Variables corrélées : p_i	0.0614	0.0403	0.0647	0.0367
Ecart en %	0	1.16	25.1	11.1

Les probabilités d'intersection sont ensuite calculées afin de déduire les probabilités seules (sections A seule, B seule, C seule, D seule et des défaillances locales multiples seules). Pour construire les branches suivantes de l'arbre des évènements (niveaux supérieurs), les probabilités conditionnelles sont calculées. Toutes ces démarches restent identiques à celle présentées initialement, la matrice [V]étant d'un ordre décroissant à chaque nouveau niveau de branches.

3.2 Arbre des évènements

L'ensemble des scénarios exclusifs possibles et leur probabilité respective sont résumés dans le Tableau D.2 de l'annexe D. Le nombre de scénarios exclusifs présentant un indice de robustesse compris entre 0.9 et 1 est l'ordre de 78% (Figure D.7a). Parmi ces chemins, nous avons trouvé que 54% des scénarios conduisent à un indice supérieur à 0.99 (Figure D.7b).

Nous avons à nouveau choisi de ne représenter que les branches correspondant à des évènements isolés. Ainsi, seuls 24 scénarios exclusifs sont représentés parmi les 75 scénarios distincts (Figure III.13).

FIGURE III.13 – Arbre des évènements : Variables aléatoires corrélées

Au premier niveau de la Figure III.13, les probabilités calculées sont inférieures au cas où les variables indépendantes suivent la loi Gaussienne. L'ordre des probabilités seules dans les arbres respectifs Figure III.9 et Figure III.13 est respectivement $p'_A > p'_B > p'_C > p'_D$ et $p'_C > p'_A > p'_B > p'_D$.

Dans le cas des variables corrélées suivant une loi gaussienne (Figure III.13), le scénario $B \rightarrow A \rightarrow D$ se distingue par son indice de robustesse faible 0.911 parmi tous les autres avec des indices supérieurs à 0.958. Dans le cas de variables gaussiennes indépendantes (Figure III.9), l'indice minimal de robustesse vaut 0.909 pour $B \rightarrow A \rightarrow D$. Il est plus petit (comparé à 0.911). La structure avec les variables corrélées semble globalement moins robuste comparée à celle avec des variables indépendantes, car elle a plus de scénarios potentiels de faiblesse. Nous remarquons toujours qu'une intention malveillante en B peut entraîner des conséquences considérables.

Conclusion

Ce chapitre a été une occasion d'apporter des compléments sur la méthodologie reposant sur la recherche d'arbres complets d'évènements illustrant l'ensemble des cheminements potentiels de la défaillance initiale localisée jusqu'à la ruine globale. En effet, les charges combinées pouvant soulager ou pénaliser d'avantage les sections critiques sont étudiées. Le mode local de défaillance choisi est la formation d'une rotule plastique lorsque le moment sollicitant appliqué atteint la valeur du moment résistant d'une section droite. Deux types de lois probabilistes, conduisant à une procédure linéaire ou non linéaire suivant le cas (loi Gaussienne ou Log-normale), sont testées. Enfin, les adaptations nécessaires à la prise en compte de variables aléatoires corrélées sont présentées.

Les arbres issus des procédures linéaires et non linéaires sont similaires, avec un écart maximal de 5% sur I_r et 0.21% pour le scénario le plus dangereux. En particulier, il est montré, dans les cas de variables corrélées et de procédure non linéaire, que le chemin avec l'indice de robustesse le plus critique ne correspond pas nécessairement au chemin avec la plus grande probabilité de défaillance globale.

Le nombre de branches et nœuds dans l'arbre augmentent très rapidement en fonction du nombre de défaillances locales étudiées. Pour éviter de déterminer l'ensemble des scénarios exclusifs, nous avons donc tracé les probabilités de défaillance locale et globale en fonction de l'indice de robustesse (Figure III.14). Ceci consiste à détecter un scénario dangereux à partir d'une probabilité de défaillance locale initiale suivie d'une réaction en chaine conduisant à un faible indice I_r .

FIGURE III.14 – Liens entre indice de robustesse et probabilités de défaillance locale et globale. Bleu : Variables Gaussiennes indépendantes ; Rouge : Variables Log-normales indépendantes ; Vert : Variables Gaussiennes corrélées

Quelle que soit la loi suivie, la Figure III.14 montre une importante dispersion des indices de robustesse. Nous n'avons pas observé de seuil permettant de déduire qu'une probabilité de défaillance locale initiale pourrait être suivie d'une réaction en chaîne conduisant à un faible indice de robustesse. Cela conforte notre choix de continuer à construire l'arbre complet des évènements afin de déterminer les scénarios dangereux non détectés par les procédures classiques de dimensionnement. Ainsi, un tri ne conservant que le scénario le plus probable ne permettrait pas de déceler les chemins dangereux détectés par notre approche de construction d'arbre complet des évènements. La structure avec les variables gaussiennes corrélées semble globalement moins robuste comparée à celle avec des variables indépendantes car elle présente plus de scénarios à faibles indices de robustesse I_r . Ainsi, la construction de l'arbre complet pourrait être nécessaire afin d'analyser les priorités en termes de réhabilitation, de protection et de renforcement d'une structure « sensible » vis-à-vis de la sécurité des personnes.

La construction de l'arbre d'évènements (approximation linéaire) a été validée par des simulations de Monte-Carlo (100 millions d'échantillons) : les différences entre les probabilités calculées avec ces deux techniques montrent une erreur inférieure à 1%. Le temps de calcul de l'approche proposée est de quelques secondes et celui de Monte-Carlo est coûteux.

Chapitre

Caractérisation de la robustesse d'un portique de référence

L'objectif de ce chapitre est d'appliquer l'ensemble des concepts présenté dans les parties précédentes à un cas d'étude de référence abordé dans les normes et dans la littérature (Kanchanalai [1977], Thoft-Christensen and Murotsu [1986], Nafday et al. [1987], Chen et al. [1995], Kemp [2002], Ziemian and McGuire [2002], Kagho-Gouadjio [2013]). Le but de cette étude est de valider notre méthode sur ce cas de référence et de comparer nos résultats avec ceux fournis par (Kagho-Gouadjio [2013]). La structure est un portique d'une portée de 10 m et une hauteur de 5 m (Figure IV.1a). Il est soumis à une force horizontale F_1 appliqué en haut du poteau gauche et d'une autre verticale F_2 agissant à mi-travée de la traverse BD. Ces actions simultanées entrainent une combinaison des efforts capable de soulager ou pénaliser suivant les sections.

FIGURE IV.1 – (a) Portique bi-encastrée ; (b) Positions prévisibles de rotule plastique

Le comportement mécanique des matériaux de ce portique est supposé élastoplastique parfait. Le mode de défaillance est défini par la formation d'une rotule plastique au niveau des sections droites les plus sollicitées (Figure IV.1b). Ce portique présente une multitude de chemins menant à la ruine. La Figure IV.2 illustre cette problématique en présentant 6 mécanismes de ruine possibles (indépendants ou combinés) pour le seul mode de défaillance : plastification.

FIGURE IV.2 – Exemples de mécanismes de ruine du portique de référence

Généralement, pour une structure possédant m éléments défaillants potentiels et en supposant que chaque mécanisme de ruine contient n éléments (avec l'hypothèse de n > 1), le nombre de mécanismes de ruine possible noté N_m en ne prenant en compte qu'un seul mode de ruine (plastification par exemple) s'exprime par l'Equation (IV.1) (Murotsu and Yoshisada [1983]).

$$N_m = A_m^n = \frac{m!}{(m-n)!} = \prod_{i=0}^{n-1} (m-i) = m * (m-1) * (m-2) * \dots * (m-n+1)$$
(IV.1)

En effet, si un ou plusieurs de ses éléments sont défaillants, les efforts sont redistribués dans les éléments non endommagés restants. Une analyse de l'équilibre statique montre que la structure de référence comprend 5 sections critiques à moment maximal où peuvent s'initier une défaillance locale. La défaillance globale ou mécanisme de ruine correspond à la formation d'au moins 4 rotules plastiques (voire 3 dans le cas de la poutre BCD). Afin d'évaluer le nombre de mécanismes de ruine possibles défini par l'Equation (IV.1), nous supposons que chaque mécanisme de ruine du portique contienne quatre (4) sections pour le seul mode de ruine par plastification. La valeur correspondante est :

$$N_m = A_5^4 = \frac{5!}{(5-4)!} = \prod_{i=0}^{4-1} (5-i) = 5 * (5-1) * (5-2) * (5-3) * (5-4) = 120$$

Il est important de rappeler que cette valeur ne prend pas en compte les mécanismes de ruine ne comportant que les trois sections de la traverse et les scénarios contenant les défaillances locales multiples. Avec notre méthode détaillée aux chapitres précédents, le nombre de mécanisme de ce portique est supérieur à 1000.

Le portique est constitué d'éléments en acier IPE 240 (Figure IV.3, Tableau IV.1) dont le module d'Young E et la limite élastique σ_e valent respectivement 210000 MPa et 276 MPa. Les éléments de ce portique ont des sections transversales de classe 1 suivant l'EN-1993-2 [1993], c'est-à-dire qu'ils peuvent atteindre leur résistance plastique, sans risque de voilement local, et possèdent une capacité de rotation importante pour former une rotule plastique. Le moment plastique est calculé en utilisant l'Equation (IV.2) et le module de flexion plastique est donné par le Tableau IV.1.

$$M_p = W_{pl} \,\sigma_e \tag{IV.2}$$

FIGURE IV.3 – Section poutrelle européenne en I

TABLE IV.1 – Caractéristiques de section IPE 240

1	Dimen	sions	(mm)		Section (cm ²)	Di de cons	ensions uction (mm) Propriétés de section		1		
h	Ь	t _w	t _f	r	A	h_i	d	Axe I_y (cm ⁴)	fort y-y $W_{pl,y}$ (cm ³)	Axe f I_z (cm ⁴)	faible z-z $W_{pl,z}$ (cm ³)
240	120	6,2	9,8	15	39,12	220,4	190,4	3892	366,6	283,6	73,92

Nous noterons M_{r_i} le moment résistant d'une section i et M_{s_i} l'intensité du moment fléchissant sollicitant dans cette même section i. La géométrie de la poutre, le module d'élastique du matériau et les positions des charges sont considérés déterministes, de sorte que la variabilité des moments sollicitant M_{s_i} ne dépend que de celle des efforts F_1 et F_2 . Les moments résistants des sections droites A, B, C, D et E, les charges F_1 et F_2 sont considérés comme des variables aléatoires Gaussiennes indépendantes. Le Tableau IV.2 résume les moyennes et coefficients de variation des variables aléatoires utilisées dans Kagho-Gouadjio [2013].

Variables aléatoires	moyenne : m_{X_i}	écart-type : σ_{X_i}
$M_{rA}\left[Nm\right]$	101292	5064.6
$M_{rB}\left[Nm\right]$	101292	5064.6
$M_{rC}[Nm]$	101292	5064.6
$M_{rD}\left[Nm\right]$	101292	5064.6
$M_{rE}\left[Nm\right]$	101292	5064.6
$F_1[N]$	20000	6000
$F_2[N]$	40000	12000

TABLE IV.2 -	Données d	des variables	aléatoires
--------------	-----------	---------------	------------

Les coefficients de variation (COV) du moment résistant de chaque section droite potentielle et pour chaque charge sont respectivement 5% et 30%. Le moment sollicitant M_{s_i} d'une section critique est de nouveau exprimé selon l'Equation (III.1). Il dépend de la combinaison des forces appliquées faisant intervenir plusieurs coefficients d'influence. De ce fait, nous avons développé une procédure en Python qui, à partir des données décrites dans un fichier (géométrie, caractéristiques, conditions aux limites et chargements, positions des sections critiques, ...), génère automatiquement le fichier de commande pour le calcul des coefficients d'influence avec le logiciel de simulation Cast3M.

TABLE IV.3 – Coefficients d'influence de la structure (Figure III.1)

Sections	A	В	C	D	E
F_1	- 1.5664	+ 0.93841	+ $1.19159 e^{-3}$	- 0.93603	+ 1.5592
F_2	+ 0.49786	- 0.99929	- 1.5007	- 0.99929	0.49786

La procédure développée en Python faisant apppel au logiciel de simulation Cast3M fournit des résultats satisfaisants. En effet, les valeurs présentées dans le Tableau IV.3 sont identiques à celles de Thoft-Christensen and Murotsu [1986].

1 Probabilités de défaillance locale

Dans la suite, nous utilisons la procédure d'approximation linéaire. Le système résultant de l'ensemble des hyperplans (Equation (II.18)) peuvent s'écrire sous la forme matricielle suivante :

/

$$\begin{pmatrix} \alpha_{rA} & 0 & 0 & 0 & \alpha_{s_{1A}} & \alpha_{s_{2A}} \\ 0 & \alpha_{rB} & 0 & 0 & 0 & \alpha_{s_{1B}} & \alpha_{s_{2B}} \\ 0 & 0 & \alpha_{rC} & 0 & 0 & \alpha_{s_{1C}} & \alpha_{s_{2C}} \\ 0 & 0 & 0 & \alpha_{rD} & 0 & \alpha_{s_{1D}} & \alpha_{s_{2D}} \\ 0 & 0 & 0 & 0 & \alpha_{rE} & \alpha_{s_{1E}} & \alpha_{s_{2E}} \end{pmatrix} \begin{pmatrix} u_{rA} \\ u_{rB} \\ u_{rC} \\ u_{rD} \\ u_{rE} \\ u_{s^1} \\ u_{s^2} \end{pmatrix} + \begin{pmatrix} \beta_A \\ \beta_B \\ \beta_C \\ \beta_D \\ \beta_E \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

où les zéros dans la matrice des cosinus directeurs illustrent le fait que les résistances entre sections sont non corrélées. Les forces sont présentes dans les expressions du moment sollicitant de chaque section. De ce fait, les hyperplans sont corrélés entre eux. Le vecteur des indices de fiabilité est obtenu grâce à l'Equation (III.6). Les valeurs numériques sont les suivantes :

							$\left(u_{r_A} \right)$	١			
(0.4139	0	0	0	0	-0.7682	0.4883	u_{r_B}		(7.3465)		$\langle 0 \rangle$
0	0.3571	0	0	0	0.3970	-0.8454	u_{r_C}		5.6473		0
0	0	0.2707	0	0	$-5.88 e^{-5}$	-0.9626	u_{r_D}	+	2.2045	=	0
0	0	0	0.357	0	-0.3961	-0.8458	u_{r_E}		3.0048		0
0	0	0	0	0.4150	-0.7667	-0.4896	u_{s^1}		(4.1139)		0/
`						,	$\left(u_{s^2} \right)$)	```		. /

et les probabilités de défaillance locale $\{\Phi(-\beta_i)\}$ correspondantes sont regroupées dans le Tableau IV.4.

TABLE IV.4 – Probabilités de défaillance des sections droites A, B, C, D et E

Probabilité de défaillance en	A	В	C	D	E
p_i	$1.01 e^{-13}$	$8.14 e^{-9}$	$1.37 e^{-2}$	$1.32 e^{-3}$	$1.94 e^{-5}$

Nous observons que les sections C, D présentent les probabilités les plus élevées. En effet, la combinaison des charges est pénalisante suivant ces sections droites. En revanche, les sections critiques A et B présentent les probabilités de défaillance les plus faibles en raison de la combinaison des charges soulageant ces sections droites. La probabilité de défaillance de la section E correspond à une valeur intermédiaire de ces deux précédentes remarques. Une comparaison entre les valeurs du Tableau IV.4 et celles de Kagho-Gouadjio [2013] est donnée dans le Tableau IV.5.

TABLE IV.5 – Comparaison des probabilités de défaillance locale

	Kagho-Gou	adjio [2013]	Notre méthode de calcul			
	β	Pf	β = mir	$\beta = \min(\beta^+, \beta^-)$		
			β⁺	β		
A (1)	7,34	1,08E-13	9,2124	7,3465	1,01E-13	
B (2)	5,64	8,50E-09	9 6375	5 6472	8 145-00	
B (5)	5,64	8,50E-09	8,0375	5,0475	0,140-09	
C (6)	2.2	1 395-02	2 2045	8 6247	1 375-02	
C (7)	2,2	1,391-02	2,2045	0,0247	1,371-02	
D (8)	3	1,36E-03	11 2847	3 0048	1 32E-03	
D (4)	3	1,36E-03	11,2047	5,0048	1,520-05	
E (3)	4,11	2,02E-05	4,1139	12,49	1,94E-05	

où P_f désigne la probabilité de défaillance locale selon Kagho-Gouadjio [2013]. Cette dernière numérote les sections critiques analysées (1 à 8). Dans le chapitre *III*, nous avons montré qu'une section critique présente deux indices de fiabilité β^+ et β^- correspondant aux plastifications avec un moment positif et un moment négatif (Equation (III.4)). Dans la pratique, l'un est souvent beaucoup plus petit que l'autre. Dans un soucis de conception sécuritaire, le plus petit indice de fiabilité, Equation (III.6), est retenu pour le calcul de la probabilité de défaillance locale (Equation (II.10)). Cette approche de choisir le plus petit indice de fiabilité est adoptée par la plupart des auteurs (Thoft-Christensen and Murotsu [1986] par exemple). Dans le Tableau IV.5, nous observons que les indices de fiabilité, coloriés en jaune, pour évaluer nos probabilités de défaillances sont similaires à ceux calculés par Kagho-Gouadjio [2013]. Les probabilités p_i obtenues grâce au calcul du plus petit indice de fiabilité diffèrent légèrement en raison des arrondis conservés dans chacune des approches. Dans notre étude, le choix d'éviter de tronquer et d'arrondir nos valeurs se justifie par le fait des faibles probabilités calculées et de nous prémunir contre toute surestimation des résultats obtenus.

La méthode de ce paragraphe permet de calculer la probabilité d'un événement individuel, sans tenir compte des intersections avec un événement voisin. Par exemple, la probabilité de l'événement e_i inclut le cas où une défaillance se produit uniquement en i, mais également les cas où des défaillances se forment en j, k, l et/ou m en même temps qu'en i. Ces cas de défaillances locales multiples ont des probabilités traduites par les intersections d'événements (voir II.1.3). Afin d'éviter de compter deux fois les mêmes probabilités dans deux branches différentes, nous séparons les événements seuls des événements d'intersection.

2 Probabilités d'intersection

L'objectif de cette partie est de déterminer les probabilités d'intersection (§*II*.1.3 et §*III*.1.2) afin de déduire les probabilités seules. En effet, dans le Tableau IV.4 sont inclues les probabilités d'une rotule en une section seule, mais également celles des formations de plusieurs rotules simultanément en différentes sections. Les Tableaux IV.6, IV.7 et IV.8 présentent les résultats obtenus.

TABLE IV.6 – Probabilités d'	intersection de c	juatre évènements
------------------------------	-------------------	-------------------

p_{ABCD}	p_{ABCE}	p_{ABDE}	p_{ACDE}	p_{BCDE}
0.0	0.0	0.0	0.0	$1.59 e^{-12}$

Les intersections de 4 évènements ont des probabilités de défaillance généralement nulles, exception faite de la valeur de p_{BCDE} . Le calcul de cette dernière par des simulations de Monte-Carlo est très difficile car il faut 10^{14} simulations ; ce qui engendre ainsi un temps de calcul très couteux.

p_{ABC}	p_{ABD}	p_{ABE}	p_{ACD}	p_{ACE}	p_{ADE}	p_{BCD}	p_{BCE}	p_{BDE}	p_{CDE}
0.0	0.0	0.0	0.0	$1.13 e^{-26}$	$2.42 e^{-18}$	$4.99 e^{-9}$	$1.91 e^{-12}$	$1.91 e^{-12}$	$7.36 e^{-6}$

Nous observons pour l'intersection de 3 évènements que les probabilités de défaillance sont très faibles. En revanche, l'intersection des sections C, D, E est assez importante et ceci peut provenir de leur probabilité individuelle élevée.

TABLE IV.8 – Probabilités de défaillance des évènements d'intersection de deux sections

p_{AB}	p_{AC}	p_{AD}	p_{AE}	p_{BC}	p_{BD}	p_{BE}	p_{CD}	p_{CE}	p_{DE}
0.0	$5.38 e^{-24}$	$6.25 e^{-18}$	$5.61 e^{-15}$	$8.14 e^{-9}$	$4.99 e^{-9}$	$1.91 e^{-12}$	$1.03 e^{-3}$	$8.32 e^{-6}$	$1.08 e^{-5}$

La probabilité de l'intersection des sections potentielles A et B est nulle et celle de C et D est la plus grande. Nous remarquons que les probabilités p_{BC} et p_{BD} présentent des ordres de grandeur identique. De même que les probabilités p_{CE} et p_{DE}

Selon la procédure récursive expliquée dans le paragraphe §II.1.3, la probabilité de défaillance p_{ABCDE} est égale à 0. A partir de ce calcul, les probabilités seules p'_{ijkl} , p'_{ijk} et p'_{ij} de quatre, trois et deux évènements d'intersection seuls sont déterminées successivement.

		$\begin{array}{c}p_{ABC}'\\0.0\end{array}$	$p p'_{AB} = 0.0$	$\begin{array}{c c} CE & p'_{ABI} \\ \hline 0 & 0.0 \end{array}$	$\begin{array}{c c} DE & p'_{ACD} \\ \hline 0 & 0.0 \end{array}$	$\begin{array}{c c} E & p'_E \\ \hline 1.5 \end{array}$	$\frac{BCDE}{8 e^{-12}}$				
$\begin{array}{ c c }\hline p'_{ABC}\\\hline 0.0 \end{array}$	$\begin{array}{c} p_{ABD}'\\ 0.0\end{array}$	$\begin{array}{c} p_{ABE}'\\ 0.0\end{array}$	$\begin{array}{c}p_{ACD}^{\prime}\\0.0\end{array}$	p'_{ACE} 1.13 e^{-2}	$\begin{array}{c c} p'_{ADH} \\ \hline p'_{ADH} \\ \hline 2.42 e^{-1} \end{array}$	$p_{-18} = p_{-18} = 4.9$	$\frac{BCD}{B} e^{-9}$	p'_{BCE} 3.16 e^{-13}	$p'_{BDE} = 3.16 e^{-1}$	p'_{CDH} $13 7.36 e^{-7}$	5 -6
$\begin{array}{ c c }\hline p'_{AB}\\\hline 0.0 \end{array}$	$p'_{AC} = 5.37 e^{-2}$	p'_{4} 3.83	$\frac{AD}{e^{-18}}$	p'_{AE} 5.61 e^{-15}	$p'_{BC} = 3.15 e^{-9}$	$\begin{array}{c c} p'_{BI} \\ \hline 1.28 \epsilon \end{array}$	$\frac{1}{2}^{-12}$ 1	p'_{BE} 1.28 e^{-12}	p'_{CD} 1.02 e^{-3}	p'_{CE} 9.53 e^{-7}	$p'_{DE} = 3.52 e^{-6}$

TABLE IV.9 – Probabilités de défaillance des évènements d'intersection seuls

Après la procédure de séparation, certaines probabilités du tableau précédent sont restées identiques à celles des Tableau IV.6, Tableau IV.7 et Tableau IV.8. En effet, ces derniers présentent certaines probabilités nulles. Parmi les 9 probabilités d'intersection de deux évènements, on peut remarquer que les 3 prépondérantes sont les dernières et seule p'_{CD} se distingue. Les probabilités seules p'_i de chaque évènement seul e'_i sont enfin calculées (Tableau IV.10). L'ensemble de ces calculs de probabilités (locales, intersections, seules) permet de définir toutes les branches du premier niveau de l'arbre d'évènements.

TABLE IV.10 – Probabilités d	le défaillance des	s sections droites A	A, B, C	C, D et	E
------------------------------	--------------------	----------------------	---------	---------	---

p'_A	p'_B	p'_C	p'_D	p'_E
$9.60 e^{-14}$	$4.98 e^{-9}$	$1.27 e^{-2}$	$2.99 e^{-4}$	$1.49 e^{-5}$

Une comparaison entre les valeurs de notre premier niveau d'arbre et celles de Kagho-Gouadjio [2013] est donnée dans le Tableau IV.11. Les valeurs de notre approche proposée et celles de Kagho-Gouadjio [2013] présentent des résultats divergents. De plus, des écarts très importants sont observés au niveau des sections B et D. Ces différences sont dues par la séparation des évènements seuls à ceux d'intersection. Ces différences observées ont forcément un impact dans les branches ultérieures, ainsi que sur les probabilités de défaillance globale et indices de robustesse.

TABLE IV.11 - Comparaison des probabilités des premières branches

Probabilité de défaillance en	A	В	C	D	E
Approche proposée	$9.60 e^{-14}$	$4.98 e^{-9}$	$1.27 e^{-2}$	$2.99 e^{-4}$	$1.49 e^{-5}$
Kagho-Gouadjio [2013]	$1.08 e^{-13}$	$8.5 e^{-9}$	$1.39 e^{-2}$	$1.36 e^{-3}$	$2.02 e^{-5}$
Ecart en %	11.1	41.4	8.63	78	26.2

A ce stade, il n'y a pas de rupture complète du portique. Il faut poursuivre la construction de l'arbre en étudiant un nouvel état de la structure nécessitant de calculer les probabilités conditionnelles, c'està-dire les probabilités de nouvelles défaillances sachant la formation de rotules plastiques.

3 Calcul des probabilités conditionnelles

Pour cette nouvelle étape de notre procédure proposée, supposons une défaillance initiale correspondant à l'existence d'une rotule plastique dans la section critique C. Le nouvel état de la structure est donné par la Figure IV.4.

FIGURE IV.4 – Nouvel état de la structure pour une première rotule plastique en C

A cette étape, la ligne et la colonne de la section C de l'Equation (III.7) sont supprimées. Le moment plastique en C (dont sa valeur est égale à celle du moment résistant) est considéré comme une variable aléatoire de sollicitation entrainant des difficultés supplémentaires exposées au chapitre précédent. L'analyse statique de la Figure IV.4 fournit les coefficients d'influence permettant d'établir les équations des hyperplans des quatre sections critiques A, B, D et E.

TABLE IV.12 –	Coefficients	d'influence de	e la Figure IV.4
---------------	--------------	----------------	------------------

Section restante sachant la défaillance de C	A	В	D	E
F_1	- 1.5658	+ 0.93722	- 0.93722	+ 1.5598
F_2	+ 1.2455	- 2.5	- 2.5	+ 1.2455
M_p^C	- 0.49821	+ 1	+ 1	- 0.49821

Les valeurs numériques du système résultant de l'ensemble des hyperplans (Equation (III.7)) pour la structure dans l'état de la Figure IV.4 sont regroupées dans la forme matricielle suivante :

$\left(\left(\right. \right) \right)$	(0.2731 0 0 0	$0 \\ 0.1615 \\ 0 \\ 0$	$0 \\ 0 \\ 0.1615 \\ 0$	$0 \\ 0 \\ 0 \\ 0.2734$	0 0 0 0	0.5067 0.1793 -0.1793 -0.5053	-0.8062 -0.9568 -0.9568 -0.8070	$\begin{array}{c} 0.1361 \\ 0.1615 \\ 0.1615 \\ 0.1362 \end{array}$	$\begin{pmatrix} u_{r_A} \\ u_{r_B} \\ u_{r_D} \\ u_{r_E} \\ u_{s^1} \\ u_{s^2} \end{pmatrix}$	+	$\begin{pmatrix} 3.7399 \\ 2.5917 \\ 2.6741 \\ 3.8197 \end{pmatrix}$	=	$\begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}$	
`		0	0	0.2734	0	-0.5053	-0.8070	0.1302/	$\left(\begin{array}{c} u_{s^2} \\ u_{s^3} \end{array}\right)$		(3.8197)		(0)	

et les probabilités de défaillance locale $\{\Phi(-\beta_i)\}$ correspondantes sont regroupées dans le Tableau IV.13. Ce dernier compare également nos valeurs et celles de la littérature. De nouveau, nous observons que les indices de fiabilité (coloriés en jaune) pour évaluer nos probabilités de défaillances sont similaires à ceux calculés par Kagho-Gouadjio [2013], les différences entre les probabilités de défaillance locale étant liées aux arrondis conservés. Une différence nette est observée au niveau de la section *B* en raison de notre choix de retenir le plus petit indice de fiabilité pour le calcul de la probabilité de défaillance locale. Au niveau de la section *A*, un β de 3.74 engendre une probabilité égale à 9.20 e^{-5} . TABLE IV.13 – Comparaison des probabilités de défaillance locale sachant la formation de rotule plastique en ${\cal C}$

	Kagho-Gou	adjio [2013]	Notre méthode de calcul			
	β	Pf	β = mir	p ₁		
			β⁺	β		
A (1)	3,74	2,71E-11	7,188	3,7399	9,20E-05	
B (2)	3,86	5,60E-05	2 5017	2 9600	4 775-02	
B (5)	3,77	8,30E-05	2,5917	3,8033	4,77E-03	
D (8)	2,6	4,63E-03	2 7975	2 6741	2 745-02	
D (4)	2,67	3,74E-03	3,7673	2,0741	5,74E-03	
E (3)	3,81	6,68E-05	3,8197	7,119	6,68E-05	

Le calcul des probabilités d'intersection sachant la ruine de la section droite C s'effectue selon la procédure détaillée aux chapitres II et III. Le Tableau IV.14 présente les résultats obtenus pour la défaillance de chaque nouvel évènement d'intersection seul. Après une rupture initiée en C, nous observons que les probabilités de certains évènements d'intersection seuls de trois ou deux sections deviennent importantes en raison de la redistribution des efforts augmentant considérablement la combinaison des charges. La probabilité $p'_{BD|C}$ se distingue parmi les 6 probabilités d'intersection seules de deux sections et elle est 10^4 fois plus grande que $p'_{AE|C}$.

TABLE IV.14 – Probabilités d'intersection seules sachant la défaillance de la section C

$p'_{ABD C}$	$p'_{ABE C}$	$p'_{ADE C}$	$p'_{BDE C}$		
$5.25 e^{-5}$	$1.06 e^{-7}$	$2.44 e^{-9}$	$2.48 e^{-3}$	5	
$p'_{AB C}$	$p'_{AD C}$	$p'_{AE C}$	$p'_{BD C}$	$p'_{BE C}$	$p'_{DE C}$
$3.62 e^{-5}$	$3.36 e^{-6}$	$9.4 e^{-7}$	$2.19 e^{-3}$	$1.42 e^{-5}$	$3.39 e^{-5}$

Le Tableau IV.15 présente les résultats obtenus pour la défaillance de chaque nouvelle section seule. On peut remarquer que la probabilité $p'_{D|C}$ est 27 fois plus grande que $p'_{A|C}$ et les valeurs des évènements seuls B et D sont du même ordre de grandeur. Ces probabilités, ainsi que celles correspondants aux évènements d'intersection seuls, sachant la défaillance de la section droite C, permettent de construire une partie du second niveau des branches de l'arbre des évènements.

TABLE IV.15 – Probabilité de défaillance d'un évènement seul sachant la ruine de la section C

$p'_{A C}$	$p'_{B C}$	$p'_{D C}$	$p'_{E C}$
$5.4 e^{-5}$	$2.53 e^{-3}$	$1.52 e^{-3}$	$2.70 e^{-5}$

Supposons qu'une deuxième rotule plastique se forme en D, le nouvel état du portique à étudier pour construire une partie (à partir d'un nouveau nœud) du troisième niveau est la Figure IV.5. Les probabilités de défaillance des sections droites non plastifiées A, B et E sont calculées afin de localiser la rotule plastique la plus probable selon le scénario de plastification de la section droite C puis D. Les probabilités de défaillance locale correspondantes sont reportées dans les Tableau IV.16 et Tableau IV.17. La probabilité $p'_{BE|C\to D}$ est très grande par rapport à $p'_{AB|C\to D}$ et $p'_{AE|C\to D}$. La probabilité $p'_{B|C\to D}$ est largement supérieure aux autres valeurs.

FIGURE IV.5 – Nouvel état de la structure pour une deuxième rotule plastique en D

TABLE IV.16 – Probabilités de défaillance de deux évènements d'intersection seuls sachant les défaillances des sections C puis D

$p'_{AB C \to D}$	$p'_{AE C \to D}$	$p'_{BE C \to D}$
$2.18 e^{-4}$	$7.79 e^{-5}$	0.1677

TABLE IV.17 – Après les défaillances des sections C puis D

$p'_{A C \to D}$	$p'_{B C \to D}$	$p'_{E C \to D}$
$4.8 e^{-6}$	0.356	$4.5 e^{-4}$

Une troisième rotule plastique en *B* correspond à un mécanisme particulier de ruine de la traverse (Figure IV.2a). Le chemin $C \rightarrow D \rightarrow B$ présente une probabilité globale égale à $6.9 e^{-6}$. D'après l'Equation (II.1), l'indice de robustesse correspondant à ce scénario de ruine est :

$$I_r = 1 - \frac{6.9 \, e^{-6}}{1.2 \, e^{-2}} = 0.99945 \tag{IV.3}$$

L'objectif étant d'identifier les mécanismes de ruine, la construction de l'arbre complet des évènements est poursuivi dans le but de rechercher les autres scénarios exclusifs possibles.

4 Arbres d'évènements

L'ensemble des scénarios exclusifs partant de la section droite A jusqu'à l'effondrement du portique est présenté dans le Tableau F.1 de l'annexe F (73 scénarios exclusifs). Ceci permet de compléter l'ensemble des branches exclusives manquantes de la Figure IV.8.

Seules les branches à partir d'un évènement isolé sont représentés sur plus de 1000 scénarios distincts (Figure IV.7, Figure IV.8, Figure IV.6, Figure IV.9 et Figure IV.10). Nous observons des indices de robustesse élevés. En effet, chaque scénario exclusif conduit à un indice de robustesse supérieur à 0.999. Ainsi, la structure étudiée est robuste.

La procédure proposée permet de calculer des indices caractérisant la robustesse structurale selon chaque scénario, et d'identifier les zones vulnérables de la structure pouvant engendrer une défaillance généralisée. Dans notre étude, nous avons considéré que les résistances des sections ont la même distribution. Ainsi, la formation successive des rotules plastiques suivant l'ordre des moments sollicitant de plus forte intensité est le scénario C puis D puis E puis B. Ce dernier représente donc le scénario déterministe. Le chemin particulier de la traverse $C \longrightarrow B \longrightarrow D$ est le scénario le plus probable $(p_{globale} = 1.74 e^{-5})$. Ainsi, une intention malveillante initiale ou un accident dans la section transversale C peut avoir des conséquences énormes sur la robustesse de l'ensemble du système. Ce résultat souligne l'importance de prendre en compte la redistribution des efforts de cohésion dans l'analyse de robustesse proposée dans ce travail (nouvel état interne à chaque nœud de l'arbre des évènements). L'indice de robustesse de ce chemin vaut 0.99862.

Kagho-Gouadjio [2013] détermine le chemin $C \rightarrow D \rightarrow B$ ($p_{globale} = 6.16 e^{-4}$) comme chemin le plus probable et correspondant à un mécanisme de ruine différent de celui trouvé avec notre approche. Les écarts observés sur les probabilités locales et globales sont liés aux différences de choix de déroulement de scénario : le cheminement le plus probable ou le scénario exclusif engendrant le plus faible indice de robustesse I_r (Tableau IV.18).

	p_{locale}	$p_{globale}$	I_r
Approche proposée $C \rightarrow B \rightarrow D$	$1.27 e^{-2}$	$1.74 e^{-5}$	0.998
Kagho-Gouadjio [2013] : $C \rightarrow D \rightarrow B$	$1.39 e^{-2}$	$6.16 e^{-4}$	0.96
Ecart en %	9	97	4

TABLE IV.18 - Scénarios exclusifs les plus probables

Dans ce chapitre, nous avons présenté une démarche explicite pour caractériser l'ensemble des cheminements disjoints possibles depuis la défaillance localisée jusqu'à la ruine globale d'une structure. Cette méthode est particulièrement adaptée dans le cas de structures hyperstatiques pour lesquelles la défaillance d'un élément de structure ne rend pas nécessairement l'ouvrage inapte à remplir les exigences pour lesquelles il a été conçu. De ce fait, lorsqu'il y a occurrence d'une défaillance localisée, la structure est modélisée pour prendre en compte la redistribution des efforts qui s'impose. L'ensemble des scénarios exclusifs est illustré sous forme d'arbres d'évènements comportant des branches exclusives, sans intersection entre branches issues d'un même nœud. La robustesse est évaluée grâce à un indice et celui ci est calculé en fonction des probabilités de défaillance locale et globale. En particulier, il est montré que le chemin avec l'indice de robustesse le plus critique ne correspond pas nécessairement au scénario détecté par les prédictions usuelles de conception plastique.

FIGURE IV.6 – Arbre des évènements : rupture initiée en C

FIGURE IV.7 – Arbre des évènements : rupture initiée en A

FIGURE IV.8 – Arbre des évènements : rupture initiée en B

FIGURE IV.9 – Arbre des évènements : rupture initiée en D

Probalités de défaillance global-Indices de robustesse

FIGURE IV.10 – Arbre des évènements : rupture initiée en E

Conclusion et perspectives générales

Les méthodes actuelles de dimensionnement des ouvrages se basent sur des procédures semiprobabilistes. La plupart prescrit ce qui doit être fait, quelles charges devraient être utilisées et quels coefficients de sécurité doivent être introduits. Cependant, les défaillances peuvent être la conséquence d'autres causes comme des erreurs humaines (de conception ou de construction) ou des actions accidentelles. Ainsi, la nécessité de prendre en compte le caractère aléatoire des chargements auxquels sont soumis les systèmes est devenu important pour réaliser une conception robuste. Cette thèse propose un outil de simulation de la robustesse de structures lorsque des incertitudes de sollicitations (évènement accidentel) et / ou une faute de dimensionnement (conception ou de réalisation) interfèrent avec les conceptions et dimensionnements réglementaires.

Une méthode explicite de parcours d'arbre d'évènements a été développée. L'arbre des évènements regroupe l'ensemble des scénarios exclusifs possibles. Les nœuds de l'arbre correspondent à des événements uniques (dommages locaux, seuls ou défaillances locales multiples) et chaque branche relie un nouvel événement (nœud suivant) à un évènement précédent. Un scénario correspond au chemin suivant toutes les branches depuis la structure saine jusqu'à un effondrement. Ainsi, pour chaque scénario, des probabilités conditionnelles doivent être calculées : chacune correspond à la probabilité d'un nouvel événement sachant l'occurrence de tous les précédents. L'approche proposée permet de déterminer avec précision le cheminement des défaillances successives depuis la défaillance localisée jusqu'à la ruine globale de la structure. Chaque probabilité de ruine globale est obtenue en multipliant toutes les probabilités rencontrées au cours du scénario exclusif (car chaque branche est exclusive).

Pour un scénario considéré, la robustesse est évaluée à travers un indice représentant le rapport entre les probabilités de l'évènement initial localisé et de ruine globale de la structure. L'indice de robustesse choisi est compris entre 0 et 1. Une valeur tendant vers 0 indique une structure peu robuste et une valeur proche de 1 désigne une structure robuste. L'évaluation de l'indice de robustesse permet de comparer les scénarios exclusifs et d'en déduire les plus dangereux. La procédure développée est adaptée aux structures hyperstatiques pour lesquelles la défaillance d'un élément de structure ne rend pas nécessairement l'ouvrage inapte à remplir les exigences pour lesquelles il a été conçu. En conséquence, lorsqu'il y'a occurrence d'une défaillance localisée, la modélisation de la structure est actualisée afin de prendre en compte la redistribution des efforts engendrée.

Un état de l'art de la robustesse et des travaux qui ont déjà été effectués dans ce domaine ont été présentés. Des définitions essentielles ont été notées. Une sélection des différentes approches publiées pour quantifier la robustesse a été présentée. L'évaluation, l'optimisation et la régulation de la robustesse structurale en tant qu'applications de mesures de robustesse ont été rappelées.

La méthode développée et proposée pour caractériser la robustesse structurale a permis de mettre en évidence la nécessité de déterminer les probabilités d'intersection afin d'évaluer la probabilité disjointe d'un événement seul (Seck et al. [2017]). C'est une des conditions essentielles et nécessaires pour assurer que la probabilité de rupture globale ($p_{globale}$) puisse être obtenue en multipliant toutes les probabilités rencontrées au cours d'un scénario exclusif (car chaque branche est alors exclusive). Un des avantages de la méthode proposée est d'être explicite et de permettre la construction complète de l'arbre des évènements grâce aux calculs des probabilités d'évènements d'intersection et seuls. La procédure a été illustrée dans le cas de structure unidimensionnelle hyperstatique constituées de poutres fléchies. Le premier mode de défaillance considéré est la formation d'une rotule fragile : les sections ont tout d'abord été supposées élastiques parfaitement fragiles, avec formation d'une rotule (moment plastique nul) dès l'atteinte d'une valeur limite de la résistance. Chaque formation de rotule entraîne la perte d'un degré d'hyperstaticité de la poutre, pour conduire finalement à la ruine de la structure par formation d'un mécanisme.

Une étude plus approfondie de la robustesse a été présentée en retenant comme deuxième mode de défaillance locale la formation de rotules plastiques. La combinaison des charges extérieures a été introduite, ses effets pouvant être bénéfiques ou pénalisants suivant la section considérée. Deux types de lois probabilistes (Gaussienne ou Log-normale), conduisant à une procédure linéaire ou non linéaire suivant le cas sont testées. Le cas des variables aléatoires corrélées a également été étudié et une procédure nécessaire à la méthode (développée) a été proposée. Le fait de ne retenir que le plus petit indice de fiabilité pour le calcul de la probabilité de défaillance a été discutée. Finalement, notre méthode a été validée sur un portique de référence et nos résultats sont comparés avec ceux fournis par la littérature. Une approche générale prenant en compte les incertitudes liées aux chargements et à la résistance, avec diverses lois de probabilités et variables corrélées ou indépendantes, a été développé pour la qualification et la quantification de la robustesse structurale. L'arbre des événements complet a permis de représenter tous les scénarios potentiels distincts, depuis les dommages initiaux jusqu'à l'effondrement global d'une structure. Ces travaux montrent plus particulièrement que le chemin avec le niveau de robustesse le plus critique ne correspond pas nécessairement au chemin avec la plus grande probabilité de réalisation. Ainsi, la construction de l'arbre complet est nécessaire afin d'analyser les priorités en termes de réhabilitation, protection et de renforcement d'une structure « sensible » vis-à-vis de la sécurité des personnes.

L'approche proposée a été implémentée sous l'environnement Python. Dans le cas de résolution non linéaire, des programmes de minimisation sous contrainte ont été développés sous Matlab. De plus, nous avons développé une procédure en Python qui, à partir des données décrites dans un fichier (par exemples caractéristiques géométriques, comportement du matériau, conditions aux limites, chargements, positions des sections critiques, ...), génère automatiquement un fichier de commande pour le calcul des coefficients d'influence avec le logiciel de simulation Cast3M. Ces coefficients sont récupérés en Python pour poursuivre l'évaluation des probabilités de rupture, soit par la méthode proposée dans ce travail, soit par une méthode de Monte-Carlo pour validation de nos résultats.

La méthode développée fournit un outil de simulation et de diagnostic efficace, tant en phase de conception qu'en phase de réhabilitation, permettant d'envisager le renforcement de bâtis existants ou futurs et d'assurer la sécurité des personnes et des ouvrages environnants. Les perspectives de ce travail sont d'appliquer la méthodologie développée à des structures plus complexes (ossatures de bâtiments à deux niveaux par exemple) et d'élargir les types de chargements appliqués aux efforts répartis. La difficulté sera alors de localiser la défaillance locale qui se produira dans des sections dif-

férentes suivant le niveau de branche considéré dans l'arbre des évènements. L'arbre des évènements s'agrandit très rapidement en fonction du nombre de défaillances locales étudiées, il faudrait élaborer des techniques de tri et élimination pour limiter le nombre de scénarios envisagés et calculés.

Bibliographie

- Agarwal, J., Blockley, D., and Woodman, N. (2003). Vulnerability of structural systems. *Structural Safety*, 25 :263–286.
- Agarwal, J. and England, J. (2008). Recent developments in robustness and relation with risk. *Proceedings of the Institution of Civil Engineers Structures and Buildings*, 161(4):183–188.
- Alashker, Y., El-Tawil, S., and Sadek, F. (2010). Progressive collapse resistance of steel-concrete composite floors. *struct. Eng.*, 136(10) :1187–1196.
- Allen, D. E. and Schriever, W. R. (1972). Progressive collapse, abnormal loads and building codes. Proceedings of the National Meeting on Structural Engineering, ASCE, Cleveland, OH, (10) :21– 47.
- Andre, L. (2011). Introduction à la fiabilité des structures. Techniques de l'ingénieur, ref : SE2070.
- Aoues, Y. (2008). *Optimisation fiabiliste de la conception et de la maintenance des structures*. PhD thesis, Université Blaise Pascal.
- ASCE-7-02 (2005). Minimum design loads for buildings and other structures. *American Society of Civil Engineers, 01 december 2002, 352 pages. Reston, VA, U.S.A.*
- Baker, J., Schubert, M., and Faber, M. (2008). On the assessment of robustness. *Structural Safety*, 30:253–267.
- Beaucaire, P. (2012). *Application des méthodes fiabilistes à l'analyse et à la synthèse des tolérances*. PhD thesis, Université Blaise Pascal et Institut Français de Mécanique Avancée.
- Biondini, F., Frangopol, D. M., and Restelli, S. (2008). On structural robustness, redundancy, and static indeterminacy. *Proc., ASCE/SEI Structures Congress, ASCE/SEI*.
- Biondini, F. and Restelli, S. (2008). Damage propagation and structural robustness. *Life-Cycle Civil Engineering. Taylor and Francis Group*.
- Birnbaum, Z. W. (1950). Effect of linear truncation on a multinormal population. *The annals of Mathematical statistics*, 21 :272–279.
- Bontempi, F., Giuliani, L., and Gkoumas, K. (2007). Handling the exceptions : Robustness assessment of a complex structural system. Proc., 3rd Int. Conf an Structural Engineering, Mechanics and Computation (SEMC 2007). Millpress, Rotterdam, The Netherlands, pages 183–188.

- Branco, J. M. and Neves, L. A. C. (2011). Robustness of timber structures in seismic areas. *Engineering Structures*, 33 :3099–3105.
- Breen, J. E. (1975). Research workshop on progressive collapse of building structures. *Summary Report. The University of Texas at Austin.*
- Breysse, D. (2009a). Maitrise des risques en génie civil 1. Lavoisier, Paris.
- Breysse, D. (2009b). Maitrise des risques en génie civil 2. Lavoisier, Paris.
- Breysse, D. (2009c). Maitrise des risques en génie civil 3. Lavoisier, Paris.
- Burnett, E. F. P. (1975). The avoidance of progressive collapse : Regulatory approaches to the problem. *National Bureau of Standards, Washington, D.C.*
- Chen, M., Mathur, A., and Rego, V. (1995). Effect of testing techniques on software reliability estimates obtained using a time-domain model. *IEEE Transactions on Reliability*, 44(1):97–103.
- Cizmar, D., Kirkegaard, P. H., Sorensen, J. D., and Rajcic, V. (2011). Reliability-based robustness analysis for a croatian sports hall. *Engineering Structures*, 33 :3118–3124.
- Cremona, C. (2010). Approche probabiliste de la performance des structures. Lavoisier, Paris.
- Dang, C., Le, T. P., and Ray, P. (2012). Évaluation de la fiabilité d'une structure mécanique en comportement dynamique aléatoire. Act du Colloque National AIP PRIMECA.
- Dang, C.-T. (2014). Méthodes de construction des courbes de fragilité sismique par simulations numériques. PhD thesis, Université Blaise Pascal Clermont II.
- De Biagi, V. and Chiaia, B. (2013). Complexity and robustness of frame structures. *International Journal of Solids and Structures*, 50:3723–3741.
- Dehmous, H. (2007). *Fiabilité et micromécanique des matériaux composites Application à la passerelle de Laroin*. PhD thesis, Institut National Polytechnique de Toulouse.
- Diamantidis, D. (2009). Robustness of buildings in structural codes. Act Conference, Ljubljana, Slovenia, September 21-22 2009.
- Ditlevsen, O. (1979). Narrow reliability bounds for structural systems. *Journal of Structural Division*, 7(4):453–472.
- Ditlevsen, O. and Bjerager, P. (1984). Reliability of highly redundant plastic structures. *Engineering Mechanics, ASCE*, 5(110):671–693.
- DoD (2005). Unified facilities criteria (ufc) : Design of buildings to resist progressive collapse. Department of Defence (DoD), Washington, D. C.
- Drebes, C. B. (1969). A truncated enumeration algorithm for the fixed charge problem. Washington University, Department of applied Mathematics and Computers Science.
- El Kamari, Y., Raphael, W., and Chateauneuf, A. (2015). Reliability study and simulation of the progressive collapse of Roissy Charles de Gaulle airport. *Engineering Failure Analysis*, (20):88–95.

- Ellingwood, B. (2011). Achieving robustness and mitigating risk of disproportionate collapse in building.
- Ellingwood, B. and Dusenberry, D. (2005). Building design for abnormal loads and progressive collapse. computer aided. *Civil and Infrastructure Engineering*, 3(20):194–205.
- Ellingwood, B. R. (2002). Load and resistance factor criteria for progressive collapse design. *National Workshop on Prevention of Progressive Collapse in Rosemont, Ill, Multihazard Mitigation Council of the National Institute of Building Sciences, Washington, D. C.*
- Ellingwood, B. R. (2006a). Mitigating risk from abnormal loads and progressive collapse. *Journal of Performance of Constructed Facilities*, 20(4) :315–323.
- Ellingwood, B. R. (2006b). Structural safety special issue : general-purpose software for structural reliability analysis. *Structural Safety*, 28 :1–2.
- Ellingwood, B. R. (2007). Strategies for mitigating risk to buildings from abnormal load events. *Int. J. of Risk Assessment and Mgt*, 7(6/7) :828–845.
- Ellingwood, B. R. and Leyendecker, E. V. (1978). Approaches for design against progressive collapse. *Journal of Structural Division*, 104(3) :413–423.
- EN-1990 (2002). Basis of structural design. Eurocode 0 : CEN 2002.
- EN-1991-1 (1996). Bases du calcul et actions sur les tructures et documents d'application nationale. *Technical Report XP ENV 1991-1, AFNOR.*
- EN-1991-1-7 (2006). Actions on structures : Part 1-7 : Accidental actions. Eurocode 1 : CEN 2006.
- EN-1993-2 (1993). Calcul des structures en acier et documents d'application nationale. *Technical Report XP ENV 1993-2 :2000, AFNOR.*
- Faber, M. H. (2001). Probabilistic model code. Joint Committee on Structural Safety.
- Faber, M. H. (2008). Risk assessment in engineering. Joint Committee on Structural Safety.
- Faber, M. H., Maes, M. A., Straub, D., and Baker, J. (2006). On the quantification of robustness of structures. *Offshore Mechanics and Arctic Engineering*.
- Faber, M. H., Vrouwenvelder, T., Sorensen, J., Chryssanthopoulos, M., and Narasimhan, H. (2011). Robustness of structures—a report on a joint european project.
- Fang, C., Izzuddin, B., Obiala, R., Elghazouli, A., and Nethercot, D. (2012). Robustness of multistorey car parks under vehicle fire. *Constr. Steel Res.*, 75 :72–84.
- Fascetti, A., Kunnath, S. K., and Nistico, N. (2015). Robustness evaluation of rc frame buildings to progressive collapse. *Engineering Structures*, 86 :242–249.
- Formisano, A., Landolfo, R., and Mazzolani, F. (2015). Robustness assessment approaches for steel framed structures under catastrophic events. *Computers and Structures*, 147 :216–228.
- Frangopol, D. and Curley, J. (1987). Effects of damage and redundancy on structural reliability. *ASCE Journal of Structural Engineering*, 7113(7):1533–1549.

- Fu, F. (2009). Progressive collapse analysis of high-rise building with 3-d finite element modeling method. *Constr. Steel Res.*, 65(6) :1269–1278.
- Fu, G. and Frangopol, D. M. (1990). Balancing weight, system reliability and redundancy in a multiobjective optimization framework. *Structural Safety*, 7(2-4) :165–175.
- Gallimard, L. (2011). Estimation de l'erreur due à la méthode des éléments finis dans une analyse de fiabilité de type form. *Acte du Colloque CSMA*.
- Gendreau, M. and Potvin, J.-Y. (2010). Handbook of Metaheuristics. Springer.
- Gollwitzer, S. and Rackwitz, R. (1990). On the reliability of Daniels systems. *Structural Safety*, 7 :229–243.
- Greign, G. L. (1992). An assessment of higher order bounds for structural reliability. *Structural Safety*, pages 213–225.
- GSA (2003). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. *Washington, DC*.
- Haberland, M. (2007). *Progressive collapse and robustness*. PhD thesis, Structural Analysis and Steel structures Institute.
- Hähnel, A. (2007). *Approche mécano-probabiliste système en conception pour la fiabilité*. PhD thesis, Université Blaise Pascal Clermont II.
- Hao, W., Anqi, Z., Yi, L., and Weiming, Y. (2014). A review on progressive collapse of building structures. *Civil Engineering Journal*, 8:183–192.
- Harte, R., Krätzig, W., and Petryna, Y. (2007). Robustheit von tragwerken ein vergessenes entwurfsziel? *Bautechnik*, 84(4) :225–234.
- Hasofer, A. M. and Lind, N. C. (1974). Exact and invariant secnd moment code format. *Eng. Méchanics Div.*, 100(1):111–121.
- Hohenbichler, M. and Rackwitz, R. (1983). First order concepts in system reliability. *structural safety*, 3(1):207–214.
- Huber, P. (1996). *Robust Statistical Procedures*. Society for Industrial and Applied Mathematics, Philadelphia.
- Humbert, J., Baroth, J., and Daudeville, L. (2010). Probabilistic analysis of a pull-out test. *Materials and structures*, 345-355 :88–95.
- Huvelle, C., Hoang, V., Jaspart, J., and Demonceau, J. (2015). Complete analytical procedure to assess the response of a frame submitted to a column loss. *Engineering Structures*, 86 :33–42.
- Kagho-Gouadjio, N. C. (2013). Étude de la vulnérabilité et de la robustesse des ouvrages. PhD thesis, Université Paris Est.
- Kagho-Gouadjio, N. C., Orcesi, A., and Cremona, C. (2012). A probabilistic approach for the quantification of structural robustness. *IABMAS2012, Stresa*.
- Kam, T. Y., Corotis, R. B., and Rossow, E. C. (1983). Reliability of nonlinear framed structures. J. *Struct. Eng.*, 109(7):1585–1601.

- Kanchanalai, T. (1977). the design and behavior of beam-columns in unbraced steel frames. American Iron and Steel Institute Project No. 189, Rep. No. 2, Civil Engineering/Structural Research Laboratory, Univ. of Texas, Austin, Tex.
- Kemp, A. (2002). A mixed flexibility approach for simplifying elastic and inelastic structural analysis of frames. *Constructional Steel Research, Elsevier*, 58(10):1297–1313.
- Knoll, F. and Vogel, T. (2009). Design for robustness. Structural Engineering Documents.
- Kwasniewski, L. (2010). Nonlinear dynamic simulations of progressive collapse for a multi- story building. *struct. Eng.*, 32(5):1223–1235.
- Lemaire, M. (2005). Fiabilité des structures. Lavoisier, Paris.
- Leyendecker, E. R. and Ellingwood, B. R. (1977). Design methods for reducing the risk of progressive collapse in buildings. building science series 98. *National Bureau of Standards, Washington, D.C.*
- Lin, T. and Corotis, R. B. (1983). Reliability of ductile systems with random strength. *J. Struct. Eng.*, 111(6):1306–1325.
- Lind, N. (1996). A measure of vulnerability and damage tolerance. *Reliability Engineering and System Safety*, 48(1):1–6.
- Madsen, H. O. (1985). First order vs. second order reliability analysis of series structures. *Structural safety*, 2(1):207–214.
- Maes, M., Fritzsons, K., and Glowienka, S. (2007). Structural robustness in the light of risk and consequence analysis. *IABSE, Structural Engineering International*, 16(2):101–107.
- Maes, M. A., Fritzons, K. E., and Glowienka, S. (2005). Risk-based indicators of structural system robustness. *JCSS and IABSE workshop on robustness of structures*.
- Mansouri, M. (2013). Etude mécano-fiabiliste et réduction du modèle des problèmes vibroacoustiques à paramètres aléatoires. PhD thesis, Institut des Sciences Appliquées de Rouen.
- Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall PTR.
- MMC (2003). Multihazard mitigation council of the national institute of building sciences. *Prevention* of Progressive Collapse : National Workshop and Recommendations for Future Efforts (MMC), Washington, D. C.
- Mohammadkhani-Shali, S. (2007). Contribution à l'étude de la redondance dans les ponts : analyses des mécanismes de défaillance par surfaces de réponse. PhD thesis, Ecole Nationale des Ponts et Chaussées.
- Moore, D. B. (2002). The UK and European regulations for accidental actions. *National Workshop* on Prevention of Progressive Collapse in Rosemont, Ill, Multihazard Mitigation Council of the National Institute of Building Sciences, Washington, D.C., 2002.
- Murotsu, Y., Okada, H., Niwa, K., and Miwa, S. (1979). A new method for evaluating lower and upper bounds of failure probability in redundant truss structures. *Bulletin of University of Osaka Prefecture. Series A, Engineering and natural sciences*, 1(28):79–91.

- Murotsu, Y. and Yoshisada (1983). Combinatorial properties of identifying dominant failure paths in structural systems. *Bulletin of University of Osaka Prefecture. Series A, Engineering and natural sciences*, 32(2):107–116.
- Nafday, A. M., Corotis, R., and Cohort, J. (1987). Failure mode identification for structural frames. *Structural Engineering*, *ASCE*, 113(7):1415–1432.
- NBCC (1995). National Building Code of Canada.
- NRCC (1975). National Research Council of Canada, National Building Code of Canada. *National Research Council of Canada (NRCC), Ottawa, Canada.*
- ODPM (2004). The building regulations 2000, Westminster, London. pages 1-85.
- Okada, H., Matsuzaki, Y., and Murotsu, Y. (1984). Safety margins for reliability analysis of frames structures. *Bulletin of University of Osaka Prefecture. Series A, Engineering and natural sciences*, 2(32):155–163.
- Pandey, M. D. (1998). An effective approximation to evaluate multinormal integrals. *Structural safety*, 20:51–67.
- Quek, S. T. and Ang, A. H. S. (1986). Structural system reliability by the method of stable configuration.
- Quek, S. T. and Ang, A. H. S. (1990). Reliability analysis of structural system by stable configuration. *Engineering Mechanics, ASCE*, 116(10) :2656–2670.
- Raphael, W., Faddoul, R., Feghaly, R., and Chateauneuf, A. (2012). Analysis of roissy airport terminal 2e collapse using deterministic and reliability assessments. *Engineering Failure Analysis*, (20) :1–8.
- Seck, E. H. B., Ortola, S., and Davenne, L. (2016). De la défaillance localisée à la ruine d'une structure en contexte probabiliste. *Act du Colloque AUGC*.
- Seck, E. H. B., Ortola, S., and Davenne, L. (2017). From initial localized failures to collapse of structures in a probabilistic context. *European Journal of Environmental and Civil Engineering*, pages 1–12.
- Smith, J. (2007). Structural robustness analysis and the fast fracture analogy. *IABSE, Structural Engineering International*, 16(2):118–123.
- Somes, N. F. (1972). Abnormal loading on buildings and progressive collapse. *Proceedings of the Workshop on Building Practice and Disaster, Mitigation, National Bureau of Standards, Washing- ton, D.C.*, pages 427–470.
- Sorensen, J. D. (2011). Framework for robustness assessment of timber structures. *Engineering Structures*, 33 :3087–3092.
- Starossek, U. (2007a). *Progressiver Kollaps von Bauwerken (Progressive collapse of structures)*. Berlin : Wiley-VCH, Germany.
- Starossek, U. (2007b). Typology of progressive collapse. *Engineering Structures*, 29(9):2302–2307.

- Starossek, U. and Haberland, M. (2010). Disproportionate collapse : Terminology and procedures. J. *Perform. Constr. Facil.* ASCE, 24(6) :519–528.
- Tay, C., Koh, C., and Liew, J. (2016). Efficient progressive collapse analysis for robustness evaluation of buildings experiencing column removal. *Constr. Steel Res.*, 122:395–408.
- Taylor, D. A. (1975). Progressive collapse. *Canadian Journal of Civil Engineering*, ASCE, 2(4):517–529.
- Taylor, N. and Alexander, S. J. (1974). Structural damage in buildings caused by gaseous explosions and other accidental loadings. *Building Research Establishment, Garston, Watford, UK*.
- Terada, S. and Takahashi, T. (1988). Failure-conditioned reliability index. *Journal of Structural Engineering*, pages 943–952.
- Thoft-Christensen, P. (1982). The β -unzipping method. *Institute of Building Technology and Structural Engineering*.
- Thoft-Christensen, P. and Murotsu, Y. (1986). *Application of structural systems reliability theory*. Verlag, Berlin Heidelberg New York.
- Thoft-Christensen, P. and Sorensen, J. D. (1982). Calculation of failure probabilities of ductile structures by the β -unzipping method. *Institute of Building Technology and Structural Engineering, Aalborg University Centre, Aalborg.*
- Val, D. and Val, E. G. (2006). Robustness of frame structures. 16:108–112.
- Vlassis, A. G. (2007). *Progressive Collapse Assessment of tall Buildings*. PhD thesis, University of London.
- Vrouwenvelder, T. (2008). Treatment of risk and reliability in the Eurocodes. *Proceedings of the Institution of Civil Engineers Structures and Buildings*, 161(4):209–214.
- Wassim, R., Rafic, F., Feghaly, R., and Chateauneuf, A. (2012). Analysis of roissy airport terminal 2e collapse using deterministic and reliability assessments. *Engineering Failure Analysis*, 20:1–8.
- Wassim, R., Rafic, F., Roy, F., and Chateauneuf, A. (2015). Reliability study and simulation of the progressive collapse of roissy charles de gaulle airport. *Case Studies in Engineering Failure Analysis*, 3 :88–95.
- Wisniewski, D., Casas, J., and Ghosn, M. (2007). Load capacity evaluation of existing railway bridges based on robustness quantification. *IABSE, Structural Engineering International*, 16(2):161–166.
- Ziemian, R. and McGuire, W. (2002). Modified tangent modulus approach, a contribution to plastic hinge analysis. *Journal of Structural Engineering, ASCE*, 128(10) :1301–1307.

Annexe A

Calcul des probabilités d'intersections et exemples traités dans la littérature

Au cours de la thèse de doctorat, nous avons utilisés plusieurs méthodes de calcul des probabilités d'intersections avant de retenir finalement la procédure récursive présentée au paragraphe §*II*.1.3. Cette procédure récursive, implémentée sous Python, a été testée et validée grâce aux exemples traités dans Pandey [1998], Thoft-Christensen and Murotsu [1986] et Seck et al. [2016]. Ces exemples servis de test sont présentés dans cette partie.

1 Autres méthodes de calcul des probabilités d'intersections

Dans les paragraphes suivants, les autres méthodes de calcul des probabilités d'intersections sont illustrées dans le cas de structures unidimensionnelles hyperstatiques constituées de poutres fléchies. Les procédures sont détaillées sur un exemple simple mais suffisament général pour permettre de présenter les concepts utilisés. Il s'agit d'une poutre bi-encastrée de longueur L soumise à une force ponctuelle ((Figure II.4), hyperstatique de degré 2 (parce que les effets du second ordre sont négligés), de telle sorte que la défaillance globale de ce système résultera de la formation de trois rotules parfaites. Les hypothèses de la structure étudiée sont celles de la partie §II.2 et le Tableau II.1 résume les moyennes et écart-types des variables aléatoires choisies. La procédure permettant d'obtenir les probabilités d'occurrence des évènements est détaillée dans le paragraphe §II.2.1 et les valeurs $\{\Phi(-\beta_i)\}$ correspondantes sont regroupées dans le Tableau II.2. Pour une élaboration correcte de l'arbre des évènements (en ne comptant pas deux fois les mêmes probabilités dans deux branches différentes), il est nécessaire de séparer les événements individuels des évènements d'intersections.

1.1 Intersection de deux événements

La probabilité d'intersection de deux événements se détermine par l'intégration suivante (Aoues [2008], Lemaire [2005], Thoft-Christensen and Murotsu [1986]) :

$$\Phi_2(-\beta_i, -\beta_j, \rho_{ij}) = \Phi(-\beta_i) \Phi(-\beta_j) + \int_0^{\rho_{ij}} \frac{1}{2\pi\sqrt{1-z^2}} exp(-\frac{\beta_i^2 + \beta_j^2 - 2\beta_i\beta_j}{2(1-z^2)}) dz$$
(A.1)

Où ρ_{ij} est le coefficient de corrélation obtenu par le produit scalaire des vecteurs des cosinus directeurs (Equation (II.3)).

Dans le cas de la poutre bi-encastrée, les probabilités d'intersections de deux évènements possibles ont été calculées par une intégration numérique de Simpson. Les valeurs trouvées sont identiques à celles du Tableau II.3 (voir Seck et al. [2016]).

1.2 Intersection de plus de deux événements

La probabilité d'une intersection de plus de deux événements est calculée grâce à l'approximation de Hohenbichler Hohenbichler and Rackwitz [1983], Lemaire [2005], Thoft-Christensen and Murotsu [1986] qui est une procédure itérative. A chaque itération, le nombre d'événements est diminué de un et la procédure se poursuit jusqu'au calcul de l'intersection de deux événements. Chaque étape repose sur le calcul d'un indice de fiabilité équivalent β^{eq} et des cosinus directeurs équivalents α^{eq} .

Pour la poutre bi-encastrée, il reste à déterminer $e_A \cap e_B \cap e_C$. Le calcul de la probabilité de l'intersection $e_A \cap e_B \cap e_C$ correspond au calcul de la probabilité des deux événements (Equation (A.1)) $e_{AB} = e_A \cap e_B$ et $e_{AC} = e_A \cap e_C$ si on choisit l'événement e_A comme initiation du processus itératif. Il faut déterminer par linéarisation les hyperplans équivalents aux intersections e_{AB} et e_{AC} , c'est à dire calculer les distances β_{AB}^{eq} et β_{AC}^{eq} ainsi que les cosinus directeurs équivalents α_{AB}^{eq} et α_{AC}^{eq} .

Le Tableau II.3 permet de calculer l'indice de fiabilité équivalent :

$$\beta_{AB}^{eq} = -\Phi^{-1}(p_{AB}) \tag{A.2}$$

où ϕ^{-1} est l'inverse la fonction de répartition de la loi normale centrée réduite (voir la formule analytique sur Lemaire [2005]). Le cosinus directeur équivalent pour chaque variable aléatoire u_{ri} et u_s est déterminé par l'approximation suivante :

$$\alpha_{AB}^{eq} = \frac{\tilde{\beta}_{AB}^{eq} - \beta_{AB}^{eq}}{\epsilon}$$
(A.3)

où ϵ représente une perturbation (nous avons choisi $\epsilon = 0.001$) de la variable aléatoire considérée et $\tilde{\beta}$ la conséquence sur les indices de fiabilités β initiaux.

Ainsi pour la première variable aléatoire u_{rA} et pour les événements e_A et e_B (Equation (II.20)), il vient :

$$\tilde{\beta}_A = \beta_A - \alpha_{rA} \,\epsilon \tilde{\beta}_B = \beta_B - 0 \tag{A.4}$$

car e_B ne dépend pas de α_{rA} . L'accroissement de $\tilde{\beta}_{AB}^{eq}$ (non linéaire) dû à l'accroissement de α_{rA} vaut :

$$\tilde{\beta}_{AB}^{eq} = -\phi^{-1}(-\tilde{\beta}_A, -\tilde{\beta}_B, \rho_{AB})$$
(A.5)

La même procédure est utilisée pour les variables aléatoires u_{rB} et u_s afin de déterminer l'équation approchée de l'hyperplan e_{AB} (voir l'Equation (A.6)). On procède de manière analogue pour les événements e_A et e_C afin d'obtenir l'équation de l'hyperplan e_{AC} :

 $e_{AB}: \ 0.297 \, u_{rA} + 0.681 \, u_{rB} - 0.668 \, u_s + 1.738 = 0 \\ e_{AC}: \ 0.251 \, u_{rA} + 0.781 \, u_{rC} - 0.570 \, u_s + 2.160 = 0 \\ \text{(A.6)}$

Finalement la probabilité de l'intersection des trois événements est :

$$p_{ABC} = \Phi(-\beta_A)\Phi_2(-\beta_{AB}, -\beta_{AC}, \rho_{[AB]\cap[AC]})$$
(A.7)

et sa valeur vaut 0.0047. Elle est légèrement différente de celle présentée à l'Equation (II.26).

L'ensemble de ces calculs permet de séparer les événements individuels des évènements d'intersections. Les probabilités d'occurrence d'évènements individuels définissent les branches exclusives du premier niveau de l'arbre des évènements. Il faut poursuivre la construction de l'arbre en étudiant un nouvel état de la structure nécessitant de calculer les probabilités conditionnelles, c'est-à-dire les probabilités d'occurrence d'évènements sachant la formation de rotules fragiles ($M_p = 0$).

La méthode de construction de l'arbre d'évènements présentée dans Seck et al. [2016] est très rapide et elle a été validée par une simulation de Monte-Carlo (1 million de tirages). Les différences entre les probabilités calculées selon ces deux techniques est de l'ordre de 1% maximum sauf pour deux valeurs (p'_{BC} et p'_{ABC}) où la différence atteint 20%. Ceci est probablement dû au fait que nous avons traité, dans notre méthode itérative, les événements à égalité (actifs ou non) lors des itérations de Hohenbichler. Nous avons travaillé sur l'amélioration de ce point. Ainsi, nous avons implémenté la procédure récursive (voir le paragraphe §II.1.3) qui donne des résultats satisfaisants pour toutes les valeurs calculées.

2 Exemples traités dans la littérature

Pour valider la procédure récursive implémentée dans Python, nous avons traité plusieurs exemples de la littérature :

 Pandey [1998] a traité un système avec trois éléments équicorrélés. L'exemple et ses résultats sont illustrés dans la Figure A.1.

Consider a parallel system with three equicorrelated and equireliable elements with $\beta_1 = \beta_2 = \beta_3 = 0.1$. Note that β is related with c as $\beta = -c$. In Table 1, numerical results are reported

Table 1

Probability of failure for parallel systems with three elements						
Method	System probability of failure					
	r = 0.25	r = 0.50	r = 0.75	r = 0.90		
Integration, Eq. (7)	0.1535	0.2150	0.2900	0.3536		
PCM Method, Eq. (19)	0.1536	0.2166	0.2947	0.3542		
G-FOMN method, Eq. (15)	0.1535	0.2154	0.2910	0.3552		

FIGURE A.1 – Système avec trois éléments équicorrélés et ses résultats

La procédure récursive, implémentée dans Python, a été validée par cet exemple de la littérature. La Figure A.2 présente l'extrait du programme.

```
from phi1 import *
from phi2 import *
from phi3 import *
from math import sqrt
beta1 = 0.1; c1 = -1*beta1
beta2 = 0.1; c2 = -1*beta2
beta3 = 0.1; c3 = -1*beta3
r1 = 0.25
r2 = 0.5
r3 = 0.75
r4 = 0.90
pf = Phi3(c1,c2,c3,r1,r1,r1)
print 'pf', pf
```

FIGURE A.2 – Extrait de programme pour l'étude du système avec trois éléments équicorrélés

où les programmes *phi*1, *phi*2 et *phi*3 sont ceux de la Figure B.3 et les probabilités de défaillance correspondantes de chaque coefficient de corrélation sont donnés dans le Tableau A.1. Dans tous les cas, la procédure récursive est validée par la méthode PCM.

Méthode	r = 0.25	r = 0.5	r = 0.75	r = 0.90
Procédure récursive	0.1536	0.2166	0.2947	0.3542

 Thoft-Christensen and Murotsu [1986] a étudié un système parallèle avec quatre éléments (Figure A.3).

Example 4.1. Consider a parallel system with the reliability indices

and the co	orrelatio	n matri	x	
$\overline{\rho} =$	1.00	0.62	0.91	0.62
	0.62	1.00	0.58	0.58
	0.91	0.58	1.00	0.55
	0.62	0.58	0.55	1.00

Further, assume that the safety margin for the 4 elements are linear and normally distributed. The probability of failure of the parallel system is then

 $P_{f_p} = \Phi_4(-3.57, -3.41, -4.24, -5.48; \overline{\rho})$

It can be shown that the Hohenbichler approximation (section 3.6, page 76) is

 $P_{f_p} \approx 1.36 \cdot 10^{-9}$

FIGURE A.3 – Système parallèle avec quatre éléments

Thoft-Christensen and Sorensen [1982] a résolu l'exemple grâce à la procédure de Hohenbichler. De notre coté, nous avons utilisé la procédure récursive implémentée dans Python. La probabilité de ce système vaut $1.36 e^{-9}$ et la Figure A.4 présente le programme. Il est important de noter que les indices de fiabilité doivent être classés par ordre décroissant. C'est une condition nécessaire pour mieux estimer les probabilités.

```
from phi1 import *
from phi2 import *
from phi3 import *
from math import sqrt
beta1 = 0.1; c1 = -1*beta1
beta2 = 0.1; c2 = -1*beta2
beta3 = 0.1; c3 = -1*beta3
r1 = 0.25
r2 = 0.5
r3 = 0.75
r4 = 0.90
pf = Phi3(c1,c2,c3,r1,r1,r1)
print 'pf', pf
```

FIGURE A.4 - Programme pour l'étude du système avec quatre éléments

où les programmes phi1, phi2 et phi3 sont ceux de la Figure B.3 et phi4 est le code de la Figure D.2

Annexe B

Codes en Python de l'approche développée

L'objectif de cette annexe est de présenter les différents codes développés dans la partie II.2 du chapitre II. L'analyse de la robustesse de la poutre bi-encastrée de longueur L soumise à une force ponctuelle (Figure II.4) se déroule en quatre grandes phases pour les variables Gaussiennes indépendantes :

- La première étape de l'approche développée consiste à étudier l'équilibre statique de la structure. Cela permet d'identifier les éléments critiques où des ruptures potentielles pourraient être initiées. Pour ce faire, nous avons développé une procédure en Python qui, à partir des données décrites dans un fichier (par exemples caractéristiques géométriques, comportement du matériau, conditions aux limites, chargements, positions des sections critiques, ...), génère automatiquement un fichier de commande pour le calcul des coefficients d'influence avec le logiciel de simulation Cast3M (Figure B.1).
- La deuxième étape a pour finalité de récupérer ces coefficients d'influence. Ce fichier renseigne également les moyennes et les écarts types des variables aléatoires modélisant la variabilité et les incertitudes relatives aux paramètres de la structure (Figure B.2).
- La troisième étape consiste à implémenter la procédure récursive permettant de calculer les probabilités d'intersection (Figure B.3).
- La dernière étape consiste à développer sous Python l'approche proposée dans cette thèse de doctorat (Figure B.4). Le fichier regroupe l'estimation des probabilités de défaillance locale par la méthode FORM, l'évaluation des probabilités d'intersection afin de déterminer la probabilité disjointe d'un événement seul; le calcul des probabilités conditionnelles de proche en proche et l'évaluation de la probabilité de défaillance globale de chaque scénario exclusif par l'intersection de tous les événements y conduisant. Enfin, chaque scénario exclusif de l'arbre des évènements conduit à un indice de robustesse I_r compris entre 0 et 1.

Les différents codes développés sont présentés ci-dessous et la Figure II.14 présente l'arbre complet des événements résumant tous les scénarios exclusifs possibles et leurs probabilités respectives.

```
# -*- coding: utf-8 -*-
# caractéristiques des sections
carac={}
carac['IPE240']={}
carac['IPE240']['moyenne+']=1600.
carac['IPE240']['ecartype+']=500
carac['IPE240']['symetrique']=True
carac['IPE240']['SECT']=39.12E-4
carac['IPE240']['INRZ']=3892.E-8
sigy=276.E6
wply=366.6E-6
carac['IPE240']['MPY']=wply*sigy
   # sections
   sections={}
   sections['A']={}
   sections['A']['carac']='IPE240'
   sections['A']['verif']='-'
   sections['A']['castem']='P1'
   sections['B']={}
   sections['B']['carac']='IPE240'
   sections['B']['verif']='+'
   sections['B']['castem']='P2'
   sections['C']={}
   sections['C']['carac']='IPE240'
   sections['C']['verif']='-'
   sections['C']['castem']='P3'
    # forces
    forces={}
    forces['F1']={}
    forces['F1']['moyenne']=2800.
    forces['F1']['ecartype']=1000
    forces['F1']['castem']='P2'
    forces['F1']['axe']='-FY'
```

```
# Pour CASTEM
cast={}
cast['titre']='Poutre 3'
cast['nom_fichier_gibi']='poutre3.dgibi'
cast['nom fichier resu']='poutre3.resu'
cast['tracer deformee']=True
1 = 3.0;
a = 1/3;
b = 2*1/3;
cast['points']={}
cast['points']['P1']=[0.,0.,0.]
cast['points']['P2']=[a,0.,0.]
cast['points']['P3']=[1,0.,0.]
cast['poutres']={}
cast['poutres']['1']=['P1','P2','P3']
cast['cond_lim']={}
cast['cond lim']['1']={}
cast['cond_lim']['1']['point']='P1'
cast['cond_lim']['1']['type'] ='encastrement'
cast['cond_lim']['2']={}
cast['cond lim']['2']['point']='P3'
cast['cond_lim']['2']['type'] ='encastrement'
cast['debp'] ='P1'
cast['finp'] ='P3'
#rotules=[]
```

FIGURE B.1 – Code en Python faisant appel le logiciel de simulation Cast3M

```
# -*- coding: utf-8 -*-
#les moments resistants
mrA = 1600; sigrA = 500
mrB = 1600; sigrB = 500
mrC = 1600; sigrC = 500
```

```
#Moyenne ecart-type des forces
mF1 = 2800.
sigF1 = 1000.
```

```
#les moments sollicitants avec la force F1
ms1A = -0.44444*mF1; sigs1A = -0.44444*sigF1
ms1B = 0.29630*mF1; sigs1B = 0.29630*sigF1
ms1C = -0.22222*mF1; sigs1C = -0.22222*sigF1
#formation de rotule fragile partant de A
ms1BsA = 0.51852*mF1; sigs1BsA = 0.51852*sigF1
ms1CsA = -0.44444*mF1; sigs1CsA = -0.44444*sigF1
ms1CsAB = -2*mF1; sigs1CsAB = -2*sigF1
ms1BsAC = 0.66667*mF1; sigs1BsAC = 0.66667*sigF1
#formation de rotule fragile partant de B
ms1AsB = -0.88889*mF1; sigs1AsB = -0.88889*sigF1
ms1CsB = -0.22222*mF1; sigs1CsB = -0.22222*sigF1
ms1CsBA = -2*mF1; sigs1CsBA = -2*sigF1
ms1AsBC = -1*mF1; sigs1AsBC = -1*sigF1
#formation de rotule fragile partant de B
ms1AsC = -0.55556*mF1; sigs1AsC =-0.55556*sigF1
ms1BsC = 0.29630*mF1; sigs1BsC = 0.29630*sigF1
ms1BsCA =0.66667*mF1; sigs1BsCA =0.66667*sigF1
ms1AsCB = -1*mF1; sigs1AsCB = -1*sigF1
```

FIGURE B.2 – Données des coefficients d'influence

```
def Phi1(c1):
    from math import sqrt, pi, exp
    return (1/(sqrt(2*pi)))*exp((-1*c1*c1)/2)
                       (a)
def gaussian(c1):
    from math import erf, sqrt
    return 0.5*(1+erf((c1)/sqrt(2)))
def coefA1(c1):
     import phi1
     return phi1.Phi1(c1)/gaussian(c1)
def coefB1(c1):
    return coefA1(c1)*(c1+coefA1(c1))
def mu21(c1,r12):
    return -r12*coefA1(c1)
def sigma21(c1,r12):
     from math import sqrt
     return sqrt(1-r12*r12*coefB1(c1))
def coefC21(c1,c2,r12):
    return (c2 - mu21(c1,r12))/sigma21(c1,r12)
def phiC21(c1,c2,r12):
    return gaussian(coefC21(c1,c2,r12))
def Phi2(c1,c2,r12):
     return phiC21(c1,c2,r12)*gaussian(c1)
```

```
(b)
```

```
def coefA21(c1,c2,r12):
       from phi1 import Phi1
       from phi2 import gaussian, coefC21
       return
  Phi1(coefC21(c1,c2,r12))/gaussian(coefC21(c1,c2,r12))
  def coefB21(c1,c2,r12):
       from phi2 import coefC21
       return
  coefA21(c1,c2,r12)*(coefC21(c1,c2,r12)+coefA21(c1,c2,r12))
def sigma31(c1,r13):
     from math import sqrt
     from phi2 import coefB1
     return sqrt(1-r13*r13*coefB1(c1))
def coefR321(r12,r13,r23,c1):
     from phi2 import coefB1, sigma21
     from math import sqrt
     return (r23-r12*r13
*coefB1(c1))/(sigma21(c1,r12)*sigma31(c1,r13))
def coefC31(c1,c3,r13):
     from phi2 import coefB1, coefA1
     from math import sqrt
     return (c3+r13*coefA1(c1))/sigma31(c1,r13)
def coefC32(c1,c2,c3,r12,r13,r23):
     from math import sqrt
     return
(coefC31(c1,c3,r13)+coefR321(r12,r13,r23,c1)*coefA21(c1,c2,r12
))/sqrt(1-
coefR321(r12,r13,r23,c1)*coefR321(r12,r13,r23,c1)*coefB21(c1,c
2,r12))
def phiC32(c1,c2,c3,r12,r13,r23):
     from phi2 import gaussian
     return gaussian(coefC32(c1,c2,c3,r12,r13,r23))
def Phi3(c1,c2,c3,r12,r13,r23):
     from phi2 import Phi2
     return Phi2(c1,c2,r12)*phiC32(c1,c2,c3,r12,r13,r23)
```

(c)

FIGURE B.3 - Procédure récursive implémentée sous Python : a) phi1 ; b) phi2 ; c) phi3

```
from phi1 import *
   from phi2 import *
   from phi3 import *
   from math import sqrt
   from donnee k Fq import *
   # Calcul des cosinus directeur alpha
   #csinus directeur des resitances
   def alphar(sigr, sigi):
       return sigr/sqrt(sigr**2+sigi**2)
   #cosinus directeur des solicitations
   def alphas(sigsi,sigrj):
     if sigsi> 0:
       return (-1*sigsi)/sqrt(sigsi**2+sigrj**2)
     else:
       return sigsi/sqrt(sigsi**2+sigrj**2)
   #Calcul des indices de fiabilite
   def indfiab(mi,msj,sigi,sigsj):
         if msj>0:
            return (mi-(msj))/sqrt(sigi**2+sigsj**2)
         else:
            return (mi+(msj))/sqrt(sigi**2+sigsj**2)
#Calcul des cosinus directeurs
alpharA = alphar(sigrA,sigs1A)
alphas1A = alphas(sigs1A, sigrA)
alpharB = alphar(sigrB, sigs1B)
alphas1B = alphas(sigs1B, sigrB)
alpharC = alphar(sigrC,sigs1C)
alphas1C = alphas(sigs1C,sigrC)
# Calcul des indices de fiabilite
betaA = indfiab(mrA,ms1A, sigrA, sigs1A)
betaB = indfiab(mrB,ms1B,sigrB,sigs1B)
betaC = indfiab(mrC,ms1C,sigrC,sigs1C)
#Calcul des coefficients de correlations entre hyperplans
r12 = alphas1A*alphas1B
r13 = alphas1A*alphas1C
r23 = alphas1B*alphas1C
```

```
# Calcul des probabilites brutes
   c1 = -1*betaA
   c2 = -1*betaB
   c3 = -1*betaC
   pA = gaussian(c1)
   pB = qaussian(c2)
   pC = gaussian(c3)
   pAB = Phi2(c1, c2, r12)
   pAC = Phi2(c1, c3, r13)
   pBC = Phi2(c2, c3, r23)
   pABC = Phi3(c1,c2,c3,r12,r13,r23)
   #les probabilites de defaillance seules
   pfA = pA-(pAB+pAC)+pABC
   pfB = pB-(pAB+pBC)+pABC
   pfC = pC-(pAC+pBC)+pABC
   pfAB = pAB-pABC
   pfAC = pAC-pABC
   pfBC = pBC-pABC
   print 'pfA = ',pfA
   print 'pfB = ',pfB
   print 'pfC = ',pfC
   print 'pfAB = ',pfAB
   print 'pfAC = ',pfAC
   print 'pfBC = ',pfBC
#Formations de rotules fragiles partant de A
alpharBsA = alphar(sigrB, sigs1BsA)
alphas1BsA = alphas(sigs1BsA, sigrB)
alpharCsA = alphar(sigrC, sigs1CsA)
alphas1CsA = alphas(sigs1CsA, sigrC)
r12 = alphas1BsA*alphas1CsA
betaBsA = indfiab(mrB,ms1BsA, sigrB, sigs1BsA)
betaCsA = indfiab(mrC,ms1CsA,sigrC,sigs1CsA)
c1= -1*betaBsA
c2= -1*betaCsA
pBsA = gaussian(c1)
pCsA = gaussian(c2)
pBCsA = Phi2(c1, c2, r12)
pfBsA = pBsA-pBCsA
pfCsA = pCsA-pBCsA
print 'pfBsA = ',pfBsA
print 'pfCsA = ',pfCsA
print 'pBCsA = ',pBCsA
```

```
#deuxieme rotule en B : defaillance successive de A puis B
alpharCsAB = alphar(sigrC, sigs1CsAB)
alphas1CsAB = alphas(sigs1CsAB, sigrC)
betaCsAB = indfiab(mrC,ms1CsAB,sigrC,sigs1CsAB)
c1= -1*betaCsAB
pfCsAB = gaussian(c1)
print 'pfCsAB = ',pfCsAB
#deuxieme rotule en C : defaillance successive de A puis C
alpharBsAC = alphar(sigrB, sigs1BsAC)
alphas1BsAC = alphas(sigs1BsAC, sigrB)
betaBsAC = indfiab(mrB,ms1BsAC,sigrB,sigs1BsAC)
c1= -1*betaBsAC
pfBsAC = gaussian(c1)
print 'pfBsAC = ',pfBsAC
        #Formations de rotules fragiles partant de B
       alpharAsB = alphar(sigrA, sigs1AsB)
       alphas1AsB = alphas(sigs1AsB, sigrA)
       alpharCsB = alphar(sigrC, sigs1CsB)
       alphas1CsB = alphas(sigs1CsB, sigrC)
       r12 = alphas1AsB*alphas1CsB
       betaAsB = indfiab(mrA,ms1AsB, sigrA, sigs1AsB)
       betaCsB = indfiab(mrC,ms1CsB,sigrC,sigs1CsB)
       c1= -1*betaAsB
       c2= -1*betaCsB
       pAsB = gaussian(c1)
       pCsB = gaussian(c2)
       pACsB = Phi2(c1, c2, r12)
       pfAsB = pAsB-pACsB
       pfCsB = pCsB-pACsB
       print 'pfAsB = ',pfAsB
       print 'pfCsB = ',pfCsB
       print 'pACsB = ',pACsB
```

```
#deuxieme rotule en A : defaillance successive de B puis A
alpharCsBA = alphar(sigrC,sigs1CsBA)
alphas1CsBA = alphas(sigs1CsBA, sigrC)
alphampCsBA = alphas(sigs1CsBA, sigrC)
betaCsBA= indfiab(mrC,ms1CsBA, sigrC, sigs1CsBA)
c1= -1*betaCsBA
pfCsBA = gaussian(c1)
print 'pfCsBA = ',pfCsBA
#deuxieme rotule en C : defaillance successive de B puis C
alpharAsBC = alphar(sigrA, sigs1AsBC)
alphas1AsBC = alphas(sigs1AsBC, sigrA)
betaAsBC = indfiab(mrA,ms1AsBC,sigrA,sigs1AsBC)
c1= -1*betaAsBC
pfAsBC = gaussian(c1)
print 'pfAsBC = ',pfAsBC
    #Formations de rotules fragiles partant de C
   alpharAsC = alphar(sigrA, sigs1AsC)
   alphas1AsC = alphas(sigs1AsC, sigrA)
   alpharBsC = alphar(sigrB, sigs1BsC)
   alphas1BsC = alphas(sigs1BsC, sigrB)
   r12 = alphas1AsC*alphas1BsC
   betaAsC = indfiab(mrA,ms1AsC, sigrA, sigs1AsC)
   betaBsC = indfiab(mrB,ms1BsC,sigrB,sigs1BsC)
   c1= -1*betaAsC
   c2= -1*betaBsC
   pAsC = gaussian(c1)
   pBsC = gaussian(c2)
   pABsC = Phi2(c1, c2, r12)
   pfAsC = pAsC-pABsC
   pfBsC = pBsC-pABsC
   print 'pfAsC = ',pfAsC
   print 'pfBsC = ',pfBsC
   print 'pABsC = ',pABsC
```

```
#deuxieme rotule en A : defaillance successive de C puis A
alpharBsCA = alphar(sigrB, sigs1BsCA)
alphas1BsCA = alphas(sigs1BsCA, sigrB)
betaBsCA = indfiab(mrB,ms1BsCA, sigrB, sigs1BsCA)
c1= -1*betaBsCA
pfBsCA = qaussian(c1)
print 'pfBsCA = ',pfBsCA
#deuxieme rotule en B : defaillance successive de C puis B
alpharAsCB = alphar(sigrA, sigs1AsCB)
alphas1AsCB = alphas(sigs1AsCB, sigrA)
betaAsCB = indfiab(mrA,ms1AsCB, sigrA, sigs1AsCB)
c1= -1*betaAsCB
pfAsCB = gaussian(c1)
print 'pfAsCB = ',pfAsCB
#calcul des probabilites de defaillance globale
PgABC = pfA*pfBsA*pfCsAB; PgCAB = pfC*pfAsC*pfBsCA
PgACB = pfA*pfCsA*pfBsAC; PgCBA = pfC*pfBsC*pfAsCB
PgBAC = pfB*pfAsB*pfCsBA; PgBCA = pfB*pfCsB*pfAsBC
PgAinterBC =pfAB*pfCsAB; PgAinterCB = pfAC*pfBsAC
PgBinterCA =pfBC*pfAsBC
PgABinterC =pfA*pBCsA ; PgBAinterC = pfB*pACsB
PgCAinterB =pfC*pABsC
print 'PgABC PgACB ', PgABC, PgACB
print 'PgBAC PgBCA ', PgBAC, PgBCA
print 'PgCAB PgCBA ', PgCAB, PgCBA
print 'PqAinterBC PqAinterCB
PgBinterCA', PgAinterBC, PgAinterCB, PgBinterCA
print 'PgABinterC PgBAinterC
PgCAinterB', PgABinterC, PgBAinterC, PgCAinterB
#indice de robustesse
def Ir(pf, Pg):
     return 1-Pg/pf
print 'IrABC IrACB ', Ir (pfA, PgABC), Ir (pfA, PgACB)
print 'IrBAC IrBCA', Ir(pfB, PgBAC), Ir(pfB, PgBCA)
print 'IrCAB IrCBA ', Ir(pfC, PgCAB), Ir(pfC, PgCBA)
print 'IrAinterBC IrAinterCB
IrBinterCA', Ir (pfAB, PgAinterBC), Ir (pfAC, PgAinterCB), Ir (pfBC, Pg
BinterCA)
print 'IrABinterC IrBAinterC
IrCAinterB', Ir (pfA, PgABinterC), Ir (pfB, PgBAinterC), Ir (pfC, PgCAi
nterB)
```

```
FIGURE B.4 – Approche développée
```

Annexe

Scénarios exclusifs dans le cas de la poutre bi-encastrée sollicitée par une force avec l'hypothèse de l'occurrence d'un accident dans une section autre que les sections dimensionnantes

L'analyse de la robustesse de la poutre bi-encastrée de longueur L soumise à une force ponctuelle (Figure II.16) se déroule en quatre grandes phases citées dans l'annexe A. La structure étudiée est constituée de 4 sections critiques (A, B, C et D) où peuvent s'initier une défaillance locale. Ainsi, les codes présentés dans l'annexe B sont complétés. Ces compléments sont présentés à l'annexe D où il faut considérer la force F_2 et la charge résiduelle (M_p) comme égales à zéro (Figure D.3).

L'ensemble des scénarios exclusifs de la structure étudiée est présenté dans le Tableau C.1 et les indices de robustesse obtenus sont classés dans un ordre croissant. Nous observons des indices de robustesse élevés (Figure C.1). En effet, 73% des scénarios exclusifs présentent un indice de robustesse compris entre 0.9 et 1. Parmi ces chemins, 53% de ces scénarios conduisent à un indice supérieur à un seuil arbitraire de 0.99. Ceci indique que la réaction en chaîne supposée est très peu probable.

FIGURE C.1 – a) Indices de robustesse de l'ensemble des scénarios exclusifs b) Scénarios exclusifs présentant un I_r supérieur à 0.99

	11		.1 . 50		o exeru	5115	
1°' niv	eau	2 ^{ème}	niveau	3 ^{eme}	niveau	Petobala	I,
	4.35.04					4.35.04	
ANBAC	4,2E-04					4,2E-04	U
An Bn D	0,004					0,004	0
AncnD	1.3E-04					1.3E-04	0
ROCOD	1.65-05					1.65.05	0
BITCHD	1,02-05					1,00-05	•
AnbnCnD	6,0E-05					6,0E-05	0
BOC	3,1E-04	A	0,857			2,7E-04	0,143
BOD	0.002	Δ	0.857			0.002	0.143
0.00	0,002		0,057			0,002	0,143
COD	1,5E-04	A	0,857			1,3E-04	0,143
A ∩ B	0,044	COD	0,708			0,031	0,292
B	0.045	Α	0.77	COD	0.708	0.025	0.454
1	0,004		0,177	6115	0,700	4.35.04	0,759
Anc	0,001	D	0,432			4,3E-04	0,568
A n D	0,014	В	0,406			0,006	0,594
A o B	0.044	D	0.265			0.01166	0.735
100	0,001	D o D	0,243			2 45 04	0,753
Anc	0,001	BOD	0,243			Z,4E-04	0,757
A n D	0,014	BOC	0,219			0,003	0,781
B	0.045	А	0.77	D	0.265	9.3E-03	0.795
	0.007	D o D	0.100	-		0.045	0,010
A	0,237	BUD	0,188			0,045	0,812
D	0,02	A	0,396	B	0,406	0,003	0,838
Α	0.237	В	0.222	COD	0.708	0.037	0.842
<u> </u>	0.003	<u>ک</u>	0.353	0.10	0,433	2.15.04	0.90
L.	0,002	A	0,253	U	0,432	3,1E-04	0,89
С	0,002	AnD	0,098			2,0E-04	0,902
D	0,02	A	0,396	BOC	0,219	1,7E-03	0,913
D	0.02	AcP	0.065			0.001	0.935
U	0,02	AUB	0,065			0,001	0,335
С	0,002	A	0,253	B∩D	0,243	1,2E-04	0,938
Α	0,237	В	0,222	D	0,265	0,014	0,94
C	0.002	D	0.062	Δ	0.857	155-04	0.946
	0,002		0,002	<u></u>	0,007	1,00-04	0,540
A	0,237	D	0,102	В	0,406	0,009	0,958
B	0,045	AOD	0,034			0,002	0,966
AOD	0.014	C	0.033			4.62E-04	0.967
4.00	0,014	-	0,000			1,020-04	0,007
Anc	0,001	в	0,028			2,8E-05	0,972
A	0,237	D	0,102	BOC	0,219	0,005	0,977
D	0.02	R	0.022	Δ	0.857	3.9E-04	0.98
	0,02		0,022	~	0,007	3,50-04	0,005
A	0,237	C	0,003	D	0,432	3,5E-04	0,985
D	0,02	A	0,396	C	0,033	2,6E-04	0,986
C	0.002	AOB	0.012			2.4E-05	0.988
	0,002	100	0,011			2,40.03	0,000
D	0,02	Anc	0,011			Z, ZE-04	0,989
С	0,002	В	0,01	Α	0,857	2,6E-05	0,99
С	0.002	Α	0.253	B	0.028	2.1E-05	0.992
	0,002		0,200		0,020	2,22 05	0,002
C	0,002	AURUD	0,008			1,6E-05	0,992
A	0,237	BOCOD	0,005			0,001	0,995
D	0.02	С	0.005	Α	0.857	9.4E-05	0.995
	0,02		0,103	6	0,037	9,42,03	0,000
A	0,237	U	0,102	C	0,033	8,1E-04	0,996
A	0,237	B∩C	0,003			7,1E-04	0,997
D	0.02	AnBnC	3.0E-03			6.0E-05	0.997
D	0.045	٨	0.77	6	0.001	E 7E 0E	0.009
D	0,045	A	0,77	L.	0,001	5,76-05	0,336
B	0,045	D	0,001	A	0,857	7,1E-05	0,998
B	0,045	Anc	0,002				
6						9.0E-05	0.998
	0.002	P o D	0.002			9,0E-05	0,998
Δ.	0,002	BOD	0,002			9,0E-05 4,0E-06	0,998 0,998
8	0,002	B ∩ D C	0,002 0,003	В	0,028	9,0E-05 4,0E-06 2,3E-05	0,998 0,998 0,999
~	0,002 0,237	B ∩ D C	0,002 0,003	В	0,028	9,0E-05 4,0E-06 2,3E-05	0,998 0,998 0,999
A	0,002 0,237 0,237	B ∩ D C B	0,002 0,003 0,222	B	0,028	9,0E-05 4,0E-06 2,3E-05 8,6E-05	0,998 0,998 0,999 0,999
A	0,002 0,237 0,237 0,237	B ∩ D C B C	0,002 0,003 0,222 0.003	B C B O D	0,028 0,001 0.243	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1.7E-04	0,998 0,998 0,999 0,999 0,999
A	0,002 0,237 0,237 0,237 0,237	B ∩ D C B C	0,002 0,003 0,222 0,003	B C B ∩ D	0,028 0,001 0,243	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04	0,998 0,998 0,999 0,999 0,999
A A A	0,002 0,237 0,237 0,237 0,237	B ∩ D C B C C ∩ D	0,002 0,003 0,222 0,003 0,001	B C B ∩ D	0,028	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04	0,998 0,998 0,999 0,999 0,999 0,999
A A A B	0,002 0,237 0,237 0,237 0,237 0,237 0,045	B ∩ D C B C C ∩ D C	0,002 0,003 0,222 0,003 0,001 3,2E-04	B C B ∩ D A	0,028 0,001 0,243 0,857	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05	0,998 0,998 0,999 0,999 0,999 0,999 0,999
A A A B B	0,002 0,237 0,237 0,237 0,237 0,045 0,045	B ∩ D C B C C ∩ D C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04	B C B∩D A D	0,028 0,001 0,243 0,857 9,7E-05	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09	0,998 0,998 0,999 0,999 0,999 0,999 0,999 0,999
A A A B B B R	0,002 0,237 0,237 0,237 0,237 0,045 0,045	B ∩ D C B C ∩ D C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04	B C B ∩ D A D	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045	B ∩ D C C C ∩ D C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04	B C B ∩ D A D A ∩ D	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045	B ∩ D C B C ∩ D C C C C C D	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001	B C B ∩ D A D A ∩ D C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B B B	0,002 0,237 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045	B ∩ D C B C ∩ D C C C C D D	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001	B C B ∩ D A D A ∩ D C A ∩ C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09 2,6E-08	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B B B B B B B B B	0,002 0,237 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045		0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05	B C B ∩ D A D A ∩ D C A ∩ C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B B B B B B B B B B B B B B	0,002 0,237 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045		0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05	B C B ∩ D A D A ∩ D C A ∩ C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,4E-07	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B B B B B B B B B B B B B B	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045	B ∩ D C B C ∩ D C ∩ D C ∩ D D D C ∩ D A ∩ C ∩ D	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04	B B O D A D A O D C A O C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B B B C	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045	B ∩ D C C C ∩ D C C C C D D C ∩ D A ∩ C ∩ D B	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,8E-04 0,01	B ∩ D B ∩ D A ∩ D C A ∩ C A ∩ C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B C C	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045	B ∩ D C C C ∩ D C C ∩ D C C D D C ∩ D A ∩ C ∩ D B B	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04 0,01 0,01	B B A D A ∩ D C A ∩ C D D A ∩ D	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,4E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B B C C C	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045		0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04 0,01 0,01 0,01	B C B ∩ D A ∩ D C C A ∩ C D D D D D D	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,2E-08	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B B C C C	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045	B ∩ D C C C ∩ D C C C D D C ∩ D A ∩ C ∩ D B B D	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,2E-05 1,2E-04 0,01 0,01 0,01 0,062	B B D A D A D C A D C A D C A D B B	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B C C C C	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002		0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04 0,01 0,01 0,062 0,062	B B A D A A D C A A C A A C B A A B A B	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 7,2E-08	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B B C C C C C C C D	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002	B ∩ D C C C ∩ D C C C D D C ∩ D A ∩ C ∩ D B B D D B B	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,8E-04 0,01 0,001 0,001 0,001 0,062 0,062 0,062	B C B ∩ D A ∩ D C A ∩ C D A ∩ D B B A ∩ B C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 1,7E-08 1,7E-08 4,4E-08	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B C C C C C C C C C C C C C	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002	B ∩ D C C C ∩ D C C C D D C ∩ D A ∩ C ∩ D B B D D D B B B B B B B B B B B B B B	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,2E-05 1,2E-05 1,2E-04 0,01 0,01 0,062 0,062 0,062 0,022 0,022	B B D A D A D C A C A C A C A C B A C B A C B C A C C C B C D C C B C D C C B C D C C C C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,1E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B C C C C C C C	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002		0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04 0,01 0,01 0,062 0,062 0,062 0,022 0,022	B B A D A A D C A A C A C A C A C A C A C C A C C A C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B C C C C C C C D D	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002	B ∩ D C C C ∩ D C C C D D C ∩ D A ∩ C ∩ D B B B D D B B C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,8E-04 0,01 0,001 0,062 0,062 0,022 0,022 0,005	B B 0 A 0 C A 0 C A 0 C A 0 D A 0 D B B C A 0 C B B C B C B C C C C C C C C C C C C C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 1,7E-08 1,7E-08 2,6E-07 1,0E-08	0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
A A B B B B B B C C C C C C C C D D D D D	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002 0,02 0,02	B ∩ D C C C ∩ D C C C C D D C ∩ D A ∩ C ∩ D B B B D D B B C C C C C C C C C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,2E-05 1,2E-05 1,2E-04 0,01 0,001 0,001 0,001 0,002 0,002 0,0022 0,005 0,005	B B D A D A D C A D C A D D A D B A B A B A B A B A B A B	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,1E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07 1,0E-08 5,8E-08	0,998 0,999
A A B B B B B C C C C C C D D D D D D	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002 0,02 0,02 0,02	B ∩ D C C C ∩ D C ∩ D C ∩ D C ∩ D A ∩ C ∩ D B B B D D D B B C C C C C C C C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04 0,01 0,001 0,062 0,062 0,062 0,062 0,005 5,6E-04	B C B ∩ D A ∩ D C A ∩ C A ∩ C D A ∩ D B A ∩ B C A ∩ C B B A ∩ B	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 1,2E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07 1,0E-08 5,8E-08 1,1E-05	0,998 0,999
A A B B B B B B B C C C C C C C C C D D D D	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002 0,002 0,02 0,0	B ∩ D C C C ∩ D C C C D D D C ∩ D B B B B D D B B C C C C C C C C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04 0,01 0,001 0,062 0,062 0,062 0,062 0,005 0,005 5,6E-04	B B D A D C A D C A D C A D B B A D B B A D B B A D B B A D C B A D C B B A D B B A D B B C C B C B C B C B D C B D C C B D D C D C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07 1,0E-08 5,8E-08 1,1E-05	0,998 0,999
A A B B B B B B C C C C C C C C D D D D D D	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,02 0,02 0,02 0,02	B ∩ D C C C ∩ D C C C C D D C ∩ D A ∩ C ∩ D B B B B C C C C C C C C C C C C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,2E-05 1,2E-05 1,2E-05 0,001 0,01 0,01 0,062 0,022 0,005 0,005 0,005 5,6E-04 0,001	B B D A D A D C A D C A D C A D B A D B A D B A D B A D B A D B A D B A D B C C C C C C C C C C C C C C C C C C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07 1,0E-08 5,8E-08 1,1E-05 4,4E-05	0,998 0,999
A A B B B B B B C C C C C C C D D D D D D D	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,02 0,02 0,02 0,02 0,02	B ∩ D C C C ∩ D C C C D D D C ∩ D B B B D D D B B C C C C D C C D C C D C C D C C D C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04 0,01 0,01 0,062 0,062 0,022 0,005 0,005 5,6E-04 0,001 9,7E-05	B C B ∩ D A ∩ D C C A ∩ C B A ∩ D B A ∩ D B C A ∩ C B A ∩ B C A ∩ C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 1,2E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07 1,0E-08 5,8E-08 1,1E-05 4,4E-05 3,0E-08	0,998 0,999
A A B B B B B B C C C C C C C D D D D D D D	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002	B ∩ D C C C ∩ D C C C C D D C ∩ D B B B B D D B B B C C C C C C C D C C D C C D C C D C C D C C D C C C C C D C C C C D C C C D C C C C D C C C D C C C D C C C C D C C C C D C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,8E-04 0,001 0,001 0,062 0,002 0,002 0,005 5,6E-04 0,001 9,7E-05 5,8E-04	B B D A D C A D C A D C A D B B A D B B A D B B A D B B A D C C B A D C C C A D C C C C C C C C C C C C C C C C C C C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 1,7E-08 7,2E-08 4,4E-05 5,8E-08 1,1E-05 3,0E-08 1,8E-07	0,998 0,999
A A B B B B B B B C C C C C C C C C C D D D D	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002	B ∩ D C C C ∩ D C ∩ D C ∩ D C ∩ D D C ∩ D B B D D D B B C C C D C C D C C D C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04 0,01 0,062 0,062 0,062 0,062 0,062 0,062 0,062 0,062 0,005 5,6E-04 0,001 9,7E-05 5,8E-04	B C B ∩ D A ∩ D C A ∩ D C A ∩ C D A ∩ D B A ∩ B C A ∩ B C A ∩ B C A ∩ B C A ∩ B C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,4E-09 8,4E-09 8,4E-09 8,4E-09 2,6E-08 5,4E-07 1,2E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07 1,0E-08 5,8E-08 1,1E-05 4,4E-05 3,0E-08 1,8E-07 1,4E-07	0,998 0,999
A A B B B B B C C C C C C C D D D D D D D D	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002	B ∩ D C C C ∩ D C ∩ D C ∩ D D D D D C ∩ D B B B D D D B B C C C C C D C C D C C D C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,8E-04 0,01 0,01 0,062 0,062 0,062 0,005 0,005 5,6E-04 0,001 9,7E-05 5,8E-04 9,7E-05	B C B ∩ D A ∩ D C A ∩ C D A ∩ C B A ∩ B C A ∩ C B A ∩ B	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 8,6E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 1,2E-08 1,7E-08 7,2E-08 4,4E-05 2,9E-07 1,0E-08 5,8E-08 1,1E-05 3,0E-08 1,8E-07 1,9E-07	0,998 0,999
A A B B B B B B C C C C C C C D D D D D D D	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002	B ∩ D C C C ∩ D C C C C D D D C ∩ D B B B B D D B B C C C C C C C C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,8E-04 0,001 0,001 0,062 0,002 0,002 0,005 0,005 5,6E-04 0,001 9,7E-05 5,8E-04	B B D A D C A D C A D D A D B B A D B C C A C C B A C B C A C B C A C C C C	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07 1,0E-08 5,8E-08 1,1E-05 4,4E-05 3,0E-08 1,8E-07 1,9E-07 1,2E-06	0,998 0,999
A A B B B B B B C C C C C C C C C C C C	0,002 0,237 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002 0,00000000	B ∩ D C C C ∩ D C ∩ D C ∩ D C ∩ D D C ∩ D B B B D D D D B B C C C B ∩ C C C D C C D C C D C C D C C D C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 0,001 0,001 1,2E-05 1,8E-04 0,01 0,062 0,062 0,062 0,062 0,062 0,062 0,005 5,6E-04 0,001 9,7E-05 5,8E-04 9,7E-05	B C B ∩ D A ∩ D C A ∩ D C A ∩ C B B A ∩ B C A ∩ B A O B A ∩ B A ∩ B A O B A	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 7,2E-08 4,4E-05 3,0E-08 1,8E-07 1,9E-07 1,9E-07 1,2E-06 1,2E-06 1,2E-06	0,998 0,999
A A B B B B B B C C C C C C C C D D D D D D	0,002 0,237 0,237 0,237 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,002	B ∩ D C C C ∩ D C ∩ D C ∩ D C ∩ D B B B D D D B B C C C D D C ∩ D C C D C C D C C D C C D C C C C C C C	0,002 0,003 0,222 0,003 0,001 3,2E-04 3,2E-04 3,2E-04 3,2E-04 0,001 1,2E-05 1,8E-04 0,01 0,001 0,001 0,062 0,062 0,002 0,005 5,6E-04 0,001 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05	B C B ∩ D A ∩ D C A ∩ C D A ∩ C B A ∩ B C A ∩ C B A ∩ B	0,028 0,001 0,243 0,857 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04 9,7E-05 5,8E-04	9,0E-05 4,0E-06 2,3E-05 1,7E-04 2,4E-04 1,2E-05 1,4E-09 8,4E-09 8,1E-09 8,4E-09 8,1E-09 2,6E-08 5,4E-07 8,1E-06 2,9E-09 1,2E-08 1,7E-08 7,2E-08 4,4E-08 2,6E-07 1,0E-08 5,8E-08 1,1E-05 3,0E-05 4,4E-05 3,0E-07 1,9E-07 1,9E-07 1,9E-07 1,9E-07 1,9E-07 1,9E-07 1,9E-07 1,9E-07	0,998 0,999

TABLE C.1 : Scénarios exclusifs

Annexe

Codes en Python et en Matlab et scénarios exclusifs pour la poutre bi-encastrée sollicitée par deux forces

L'objectif de cette partie est de présenter les différents codes développés dans le chapitre *III*. Cette partie présente également l'ensemble des scénarios exclusifs obtenus grâce à des approximations linéaires (variables Gaussiennes indépendantes ou corrélées) ou non linéaires (variables Lognomales indépendantes) de la structure étudiée (Figure III.1).

L'analyse de la robustesse de la poutre bi-encastrée de longueur L soumise à deux forces ponctuelles (Figure III.1) se déroule en quatre grandes phases (Variables Gaussiennes indépendantes). Ces étapes sont décrites dans l'annexe B. Dans le cas de variables aléatoires corrélées, une procédure supplémentaire de décorrélation est nécessaire. Une procédure supplémentaire de minimisation sous contrainte permettant de déterminer les indices de fiabilité et les cosinus directeurs est effectuée dans le cas de variables aléatoires suivant une loi Log-normale indépendante. l'ensemble des scénarios exclusifs de ces trois cas de variables sont présentés dans les Tableaux D.1, D.2 et D.3.
```
# -*- coding: utf-8 -*-
# caractéristiques des sections
carac={}
carac['IPE240']={}
carac['IPE240']['moyenne+']=1600.
carac['IPE240']['ecartype+']=500.
carac['IPE240']['symetrique']=True
carac['IPE240']['SECT']=39.12E-4
carac['IPE240']['INRZ']=3892.E-8
sigy=276.E6
wply=366.6E-6
carac['IPE240']['MPY']=wply*sigy
# sections
sections={}
sections['A']={}
sections['A']['carac']='IPE240'
sections['A']['verif']='-'
sections['A']['castem']='P1'
sections['B']={}
sections['B']['carac']='IPE240'
sections['B']['verif']='+'
sections['B']['castem']='P2'
sections['C']={}
sections['C']['carac']='IPE240'
sections['C']['verif']='-'
sections['C']['castem']='P3'
sections['D']={}
sections['D']['carac']='IPE240'
sections['D']['verif']='+'
sections['D']['castem']='P4'
```

```
# forces
forces={}
forces['F1']={}
forces['F1']['moyenne']=2800.
forces['F1']['ecartype']=1000.
forces['F1']['castem']='P2'
forces['F1']['axe']='-FY'
forces['F2']={}
forces['F2']['moyenne']=2500.
forces['F2']['ecartype']=900.
forces['F2']['castem']='P3'
forces['F2']['axe']='+FY'
# Pour CASTEM
cast={}
cast['titre']='Poutre 4'
cast['nom_fichier_gibi']='poutre4.dgibi'
cast['nom_fichier_resu']='poutre4.resu'
cast['tracer deformee']=True
1 = 3.0;
a = 1.0;
b = 1.75;
cast['points']={}
cast['points']['P1']=[0.,0.,0.]
cast['points']['P2']=[a,0.,0.]
cast['points']['P3']=[b,0.,0.]
cast['points']['P4']=[1,0.,0.]
cast['poutres']={}
cast['poutres']['1']=['P1','P2','P3','P4']
cast['cond lim']={}
cast['cond lim']['1']={}
cast['cond lim']['1']['point']='P1'
cast['cond_lim']['1']['type'] ='encastrement'
cast['cond lim']['2']={}
cast['cond lim']['2']['point']='P4'
cast['cond lim']['2']['type'] ='encastrement'
cast['debp'] ='P1'
cast['finp'] ='P4'
rotules=[]
```

FIGURE D.1 – Code en Python faisant appel le logiciel de simulation Cast3M

```
def sigma41(c1,r14):
     from math import sqrt
     from phi2 import coefB1
     return sqrt(1-r14*r14*coefB1(c1))
def coefC41(c1,c4,r14):
     from phi2 import coefB1, coefA1
     from math import sqrt
     return (c4+r14*coefA1(c1))/sigma41(c1,r14)
def coefR421(r12,r14,r24,c1):
     from phi2 import coefB1, sigma21
     from math import sqrt
     return (r24-r12*r14
*coefB1(c1))/(sigma21(c1,r12)*sigma41(c1,r14))
def coefC42(c1,c2,c4,r12,r14,r24):
     from phi3 import coefB21, coefA21
     from math import sqrt
     return
(coefC41(c1,c4,r14)+coefR421(r12,r14,r24,c1)*coefA21(c1,c2,r12
))/sqrt(1-
coefR421(r12,r14,r24,c1)*coefR421(r12,r14,r24,c1)*coefB21(c1,c
2,r12))
def coefA32(c1,c2,c3,r12,r13,r23):
     from phi1 import Phi1
     from phi2 import gaussian
     from phi3 import coefC32
     return
Phi1(coefC32(c1,c2,c3,r12,r13,r23))/gaussian(coefC32(c1,c2,c3,
r12,r13,r23))
def coefB32(c1,c2,c3,r12,r13,r23):
     from phi3 import coefC32
     return
coefA32(c1,c2,c3,r12,r13,r23)*(coefC32(c1,c2,c3,r12,r13,r23)+c
oefA32(c1,c2,c3,r12,r13,r23))
def coefA31(c1,c2,c3,r12,r13,r23):
     from phi1 import Phi1
     from phi2 import gaussian
     from phi3 import coefC31
     return
Phi1(coefC31(c1,c3,r13))/gaussian(coefC31(c1,c3,r13))
```

```
def coefB31(c1,c2,c3,r12,r13,r23):
     from phi3 import coefC31
     return
coefA31(c1,c2,c3,r12,r13,r23)*(coefC31(c1,c3,r13)+coefA31(c1,c
2,c3,r12,r13,r23))
def coefA2(c2):
     import phi1
     from phi2 import gaussian
     return phi1.Phi1(c2)/gaussian(c2)
def coefB2(c2):
    return coefA2(c2)*(c2+coefA2(c2))
def coefR431(r13,r14,r23,r24,r34,c1,c2):
     from math import sqrt
     return (r34-r23*r24*coefB2(c2))/(sqrt(1-r23*r23
*coefB2(c2))*sqrt(1-r24*r24*coefB2(c2)))
def coefR432(r12,r13,r14,r23,r24,r34,c1,c2,c3,c4):
     from phi3 import coefB21, coefR321
     from math import sqrt
     return (coefR431(r13,r14,r23,r24,r34,c1,c2)-
coefR321(r12,r13,r23,c1)*coefR421(r12,r14,r24,c1)*coefB21(c1,c
2,r12))/(sqrt(1-
coefR321(r12,r13,r23,c1)*coefR321(r12,r13,r23,c1)*coefB21(c1,c
2,r12))*sgrt(1-
coefR421(r12,r14,r24,c1)*coefR421(r12,r14,r24,c1)*coefB21(c1,c
2,r12)))
def coefC43(c1,c2,c3,c4,r12,r13,r14,r23,r24,r34):
     from phi3 import coefB21, coefA21
     from math import sqrt
     return
(coefC42(c1,c2,c4,r12,r14,r24)+coefR432(r12,r13,r14,r23,r24,r3
4, c1, c2, c3, c4) * coefA32(c1, c2, c3, r12, r13, r23)) / sqrt(1-
coefR432(r12,r13,r14,r23,r24,r34,c1,c2,c3,c4)*coefR432(r12,r13
,r14,r23,r24,r34,c1,c2,c3,c4)*coefB32(c1,c2,c3,r12,r13,r23))
def phiC43(c1,c2,c3,c4,r12,r13,r14,r23,r24,r34):
     from phi2 import gaussian
     return
gaussian(coefC43(c1,c2,c3,c4,r12,r13,r14,r23,r24,r34))
def Phi4(c1,c2,c3,c4,r12,r13,r14,r23,r24,r34):
     from phi3 import Phi3
     return
Phi3(c1,c2,c3,r12,r13,r23)*phiC43(c1,c2,c3,c4,r12,r13,r14,r23,
r24,r34)
```

FIGURE D.2 - Procédure récursive implémentée sous Python : intersection de quatre évènements

```
#from phi1 import *
from phi2 import *
from phi3 import *
from phi4 import *
from donnee k 2Fq Mp import *
from math import *
# Calcul des cosinus directeur alpha
#csinus directeur des resitances
def alphar(sigr, sigi, sigj, sigk, sigl):
    return sigr/sqrt(sigr**2+sigi**2+sigj**2+sigk**2+sigl**2)
#cosinus directeur des solicitations
def alphas(sigsi,sigsj,sigsk,sigsl,sigr):
  if sigsi+sigsj+sigsk+sigsl > 0:
    return (-1*sigsi)/sqrt(sigsi**2+sigsj**2+sigsk**2+sigsl**2
+sigr**2)
  else:
    return sigsi/sqrt(sigsi**2+sigsj**2+sigsk**2+sigsl**2
+sigr**2)
#les indices de fiabilite
def
indfiab(mi,msj,msk,mpl,mpm,sigi,sigsj,sigsk,sigmpl,sigmpm):
     if msj+msk+mpl+mpm>0:
        return (mi-(msj+msk+mpl+mpm))/sqrt(sigi**2+sigsj**2
+sigsk**2+sigmpl**2+sigmpm**2)
     else:
        return (mi+(msj+msk+mpl+mpm))/sqrt(sigi**2+sigsj**2
+sigsk**2+sigmpl**2+sigmpm**2)
```

```
###calcul des cosinus directeurs
alpharA = alphar(sigrA, sigs1A, sigs2A, 0, 0)
alphas1A = alphas(sigs1A, sigs2A, 0, 0, sigrA)
alphas2A = alphas(sigs2A, sigs1A, 0, 0, sigrA)
alpharB = alphar(sigrB, sigs1B, sigs2B, 0, 0)
alphas1B = alphas(sigs1B, sigs2B, 0, 0, sigrB)
alphas2B = alphas(sigs2B, sigs1B, 0, 0, sigrB)
alpharC = alphar(sigrC, sigs1C, sigs2C, 0, 0)
alphas1C = alphas(sigs1C, sigs2C, 0, 0, sigrC)
alphas2C = alphas(sigs2C,sigs1C,0,0,sigrC)
alpharD = alphar(sigrD, sigs1D, sigs2D, 0, 0)
alphas1D = alphas(sigs1D, sigs2D, 0, 0, sigrD)
alphas2D = alphas(sigs2D,sigs1D,0,0,sigrD)
betaA = indfiab(mrA,ms1A,ms2A,0,0,sigrA,sigs1A,sigs2A,0,0)
betaB = indfiab(mrB,ms1B,ms2B,0,0,sigrB,sigs1B,sigs2B,0,0)
betaC = indfiab(mrC,ms1C,ms2C,0,0,sigrC,sigs1C,sigs2C,0,0)
betaD = indfiab(mrD,ms1D,ms2D,0,0,sigrD,sigs1D,sigs2D,0,0)
r12 = alphas1A*alphas1B + alphas2A*alphas2B
r13 = alphas1A*alphas1C + alphas2A*alphas2C
r14 = alphas1A*alphas1D + alphas2A*alphas2D
r23 = alphas1B*alphas1C + alphas2B*alphas2C
r24 = alphas1B*alphas1D + alphas2B*alphas2D
r34 = alphas1C*alphas1D + alphas2C*alphas2D
```

```
c1 = -1*betaA
   c2 = -1*betaB
   c3 = -1*betaC
   c4 = -1*betaD
   pA = gaussian(c1)
   pB = gaussian(c2)
   pC = gaussian(c3)
   pD = gaussian(c4)
   pAB = Phi2(c1, c2, r12)
   pAC = Phi2(c1, c3, r13)
   pAD = Phi2(c1, c4, r14)
   pBC = Phi2(c2, c3, r23)
   pBD = Phi2(c2, c4, r24)
   pCD = Phi2(c3, c4, r34)
   pABC = Phi3(c1,c2,c3,r12,r13,r23)
   pABD = Phi3(c1,c2,c4,r12,r14,r24)
   pACD = Phi3(c1,c3,c4,r13,r14,r34)
   pBCD = Phi3(c2,c3,c4,r23,r24,r34)
   pABCD = Phi4(c1,c2,c3,c4,r12,r13,r14,r23,r24,r34)
   #les probabilites de defaillance seules
   pfABC = pABC-pABCD
   pfABD = pABD-pABCD
   pfACD = pACD - pABCD
   pfBCD = pBCD-pABCD
pfAB = pAB-(pfABC+pfABD)
pfAC = pAC-(pfABC+pfACD)
pfAD = pAD - (pfABD + pfACD)
pfBC = pBC-(pfABC+pfBCD)
pfBD = pBD-(pfABD+pfBCD)
pfCD = pCD-(pfACD+pfBCD)
pfA = pA-(pfAB+pfAC+pfAD)
pfB = pB-(pfAB+pfBC+pfBD)
pfC = pC-(pfAC+pfBC+pfCD)
pfD = pD-(pfAD+pfBD+pfCD)
print '[pfA pfB pfC pfD]', [pfA,pfB,pfC,pfD]
print '[pfAB pfAC pfAD pfBC pfBD pfCD]',
[pfAB,pfAC,pfAD,pfBC,pfBD,pfCD]
print '[pfABC pfABD pfACD pfBCD]', [pfABC, pfABD, pfACD, pfBCD]
print 'pABCD', pABCD
```

```
#Premiere rotule plastique formee en A
alpharBsA = alphar(sigrB,sigs1BsA,sigs2BsA,sigmpBsA,0)
alphas1BsA = alphas(sigs1BsA,sigs2BsA,sigmpBsA,0,sigrB)
alphas2BsA = alphas(sigs2BsA,sigs1BsA,sigmpBsA,0,sigrB)
alphampBsA = alphas(sigmpBsA,sigs2BsA,sigs1BsA,0,sigrB)
alpharCsA = alphar(sigrC, sigs1CsA, sigs2CsA, sigmpCsA, 0)
alphas1CsA = alphas(sigs1CsA, sigs2CsA, sigmpCsA, 0, sigrC)
alphas2CsA = alphas(sigs2CsA,sigs1CsA,sigmpCsA,0,sigrC)
alphampCsA = alphas(sigmpCsA, sigs2CsA, sigs1CsA, 0, sigrC)
alpharDsA = alphar(sigrD, sigs1DsA, sigs2DsA, sigmpDsA, 0)
alphas1DsA = alphas(sigs1DsA,sigs2DsA,sigmpDsA,0,sigrD)
alphas2DsA = alphas(sigs2DsA,sigs1DsA,sigmpDsA,0,sigrD)
alphampDsA = alphas(sigmpDsA, sigs2DsA, sigs1DsA, 0, sigrD)
r12 = alphas1BsA*alphas1CsA + alphas2BsA*alphas2CsA +
alphampBsA*alphampCsA
r13 = alphas1BsA*alphas1DsA + alphas2BsA*alphas2DsA +
alphampBsA*alphampDsA
r23 = alphas1CsA*alphas1DsA + alphas2CsA*alphas2DsA +
alphampCsA*alphampDsA
betaBsA =
indfiab(mrB,ms1BsA,ms2BsA,mpBsA,0,sigrB,sigs1BsA,sigs2BsA,sigm
pBsA,0)
betaCsA =
indfiab(mrC,ms1CsA,ms2CsA,mpCsA,0,sigrC,sigs1CsA,sigs2CsA,sigm
pCsA,0)
betaDsA =
indfiab(mrD,ms1DsA,ms2DsA,mpDsA,0,sigrD,sigs1DsA,sigs2DsA,sigm
pDsA,0)
c1= -1*betaBsA
c2= -1*betaCsA
c3= -1*betaDsA
pBsA = gaussian(c1)
pCsA = gaussian(c2)
pDsA = gaussian(c3)
pBCsA = Phi2(c2, c1, r12)
pBDsA = Phi2(c3, c1, r13)
pCDsA = Phi2(c3, c2, r23)
pBCDsA = Phi3(c3,c2,c1,r23,r13,r12)
pfBsA = pBsA-(pBCsA+pBDsA)+pBCDsA
pfCsA = pCsA-(pBCsA+pCDsA)+pBCDsA
pfDsA = pDsA-(pBDsA+pCDsA)+pBCDsA
```

```
pfBsA = pBsA-(pBCsA+pBDsA) +pBCDsA
pfCsA = pCsA-(pBCsA+pCDsA) +pBCDsA
pfDsA = pDsA-(pBDsA+pCDsA) +pBCDsA
pfBCsA = pBCsA-pBCDsA
pfBDsA = pBDsA-pBCDsA
pfCDsA = pCDsA-pBCDsA
print 'pfBsA pfCsA pfDsA ',pfBsA,pfCsA,pfDsA
print 'pfBCsA pfBDsA pfCDsA',pfBCsA,pfBDsA,pfCDsA
print 'pBCDsA',pBCDsA
```

FIGURE D.3 - Une partie des compléments de l'approche développée

```
# -*- coding: utf-8 -*-
from numpy.random import normal
import numpy as np
from numpy.linalg import eig
from numpy.linalg import inv
# fonction pour calculer la racine de la matrice
def racine mat(ma):
 L, P=np.linalg.eig(ma)
  racL=np.sqrt(L)
  racma=np.dot(np.dot(P,np.diag(racL)),np.transpose(P))
  return racma
# fonction pour gÃ@nÃ@rer des variables alÃ@atoires connaissant
U, moy, sigma et nb tirages
def genere_varcorr(matU,moy,sig,n) :
    x = normal(moy, sig, n)
    y = normal(moy, sig, n)
    z = normal(moy, sig, n)
    w = normal(moy, sig, n)
    matal=np.dot(matU,[x, y, z, w])
    return matal
# on se donne la matrice de corrélation C
# on est obligé de mettre une légère différence sur l'un des
rho
# sinon il perd les pÃ@dales avec des vecteurs propres triples
C=np.matrix([[1., 0.7, 0.7, 0.7],
             [0.7, 1., 0.7, 0.7],
             [0.7, 0.7, 1., 0.69999],
             [0.7, 0.7, 0.69999, 1.]])
#1 on calcule la racine
U=racine mat(C)
UtU=np.dot(np.transpose(U),U)
```

impressions pour vérifier print 'C : ' print C print 'UtU : ' print UtU # on divise U par la somme d'une ligne pour retrouver la moyenne initiale dans les variables corrélées div=np.sum(U[0]) # on qÃ@nère un vecteur de variables aléatoires corrélées (n tirages) n=1000000 moyc=1600./div sigc=500. mama=genere varcorr(U,moyc,sigc,n) # VÃ@rifications print print 'matrice de correlation des variables genberees' corr=np.corrcoef(mama) print corr print 'matrice de covariance des variables genberees' cova=np.cov(mama) print cova print print 'moyennes des variables genberees' print np.average(mama[0]), np.average(mama[1]), np.average(mama[2]) print print 'ecart-types des variables genberees' print np.std(mama[0]), np.std(mama[1]), np.std(mama[2]) #Calculer les vecteurs propres de la matrice de covariance associes aux valeurs propres qui apparaissent dans D D, V = eig(cova)print ' les valeurs propres de la matrice de covariance des variables genberees' print 'D', D print 'les colonnes representent les vecteurs propres de la matrice de covariance des variables genberees quil faut ecrire en colonne et pour le calcul le laisser en ligne pour les calculs' print 'V', V

FIGURE D.4 – Code en Python permettant de générer des variables corrélées et processus de décorrelation

```
function [c,ceq] = confuneq(x)
% Nonlinear equality constraints
ceq = exp(0.305249446935*x(1)+7.3311702958)-exp(0.346479497643
*x(2)+7.87735067502+log(0.44444))+exp(0.349089655757*x(3)+
7.76311421698+log(0.30382));
c=[];
end
```

(a)

```
function f = objfun(x)
f =x(1)^2 + x(2)^2 + x(3)^2;
end
```

(b)

```
x0 = [1,1,1]; % Make a starting guess at the solution
options = optimoptions(@fmincon, 'Algorithm', 'sqp');
[x,fval] = fmincon(@objfun,x0,[],[],[],[],[],[],
@confuneq, options);
betaA = sqrt(fval)
******
syms ul
          %%%%definition de la variable
syms u2
syms u3
ggg=exp(0.305249446935*u1+7.3311702958)-exp(0.346479497643*u2+
7.87735067502+log(0.44444))+exp(0.349089655757*u3+
7.76311421698+log(0.30382));%fonction d'etat limite
dggg=gradient(ggg,[u1,u2,u3]); %gradient de la fonction d'etat
limite
u1 = x(1);
u2 = x(2);
u3 = x(3);
gg = norm(dggg); %norme de la fonction d'etat limite
alpha1 = (dggg(1))/gg; % cosinus direcrteur
alpha2 = (dggg(2))/gg;
alpha3 = (dggg(3))/gg;
eval(alpha1)
eval(alpha2)
eval(alpha3)
```

(c)

FIGURE D.5 – Procédure de minimisation sous contrainte : a) fonction contrainte b) fonction objective c) programme permettant de calculer l'indice de fiabilité et les cosinus directeurs

1" niveau		2 ^{eme} niveau		3 ^{eme} n	iveau	Pelobale	l,
AOBOC	7,0E-05					7,0E-05	0
A∩B∩D	1,2E-05					1,2E-05	0
AnCnD	8,9E-06					8,9E-06	0
BnCnD	7,6E-05					7,6E-05	0
AnBnCnD	1,0E-06	1	0.724			1,0E-06	0
BOC	0,001	And	0,731			7,3E-04	0,269
COD	0,009	AnB	0,585			3.6F-03	0,415
COD	0.007	A	0.379			2.7E-03	0.621
A o B	0,009	D	0,321			2,9E-03	0,679
Anc	4,8E-04	D	0,243			1,2E-04	0,757
B ∩ D	5,2E-04	Α	0,183			9,5E-05	0,817
B	0,04	Α	0,281	C ∩ D	0,585	6,6E-03	0,835
С	0,039	AnD	0,145			5,7E-03	0,855
BOC	0,001	D	0,133			1,3E-04	0,867
AOD	1,4E-04	B	0.092			1,3E-05	0,908
В	0,04	A	0,281	D	0,321	3,6E-03	0,909
BOD	5,2E-04	C	0,084	_		4,4E-05	0,916
С	0,039	D	0,151	A ∩ B	0,509	0,003	0,923
BOC	0,001	Α	0,067			6,7E-05	0,933
С	0,039	D	0,151	Α	0,379	0,002	0,942
A	0,05	COD	0,051			2,6E-03	0,949
Anc	4,8E-04	B A o P	0,044			2,1E-05	0,956
D	0,033	A 11 B	0.236	C	0.11	1,4E-U3 8,7E-04	0,957
B	0.04	And	0.025	C.	0,11	1,0E-03	0,975
A	0,05	D	0,196	С	0,11	0,001	0,978
D	0,033	Α	0,236	В	0,092	7,3E-04	0,978
A	0,05	D	0,196	В	0,092	9,2E-04	0,981
С	0,039	Α	0,072	D	0,243	7,0E-04	0,982
BOD	5,2E-04	Anc	0,017			8,8E-06	0,983
A	0,05	B	0,027	COD	0,585	7,9E-04	0,984
0	0,033	C B	0,023	AOD	0,509	3,9E-04	0,988
AOC	4.8E-04	BOD	0.01	And	0,731	4.8E-06	0,99
A	0,05	B	0,027	D	0,321	4,4E-04	0,991
Α	0,05	С	0,036	D	0,243	4,4E-04	0,991
D	0,033	С	0,023	Α	0,379	2,9E-04	0,991
D	0,033	В	0,042	Α	0,183	2,6E-04	0,992
B	0,04	C	0,006	A ∩ D	0,731	1,8E-04	0,995
COD	0,007	B	0,005		0.014	3,5E-05	0,995
C	0,039	A	0,072	в	0,044	1,2E-04	0,996
AOB	0.009	C	0.004	L	0,084	1,2E-04 3.6E-05	0,996
В	0.04	D	0,014	A	0,183	1.0E-04	0,997
Α	0,05	С	0,036	В	0,044	8,1E-05	0,998
В	0,04	Α	0,281	С	0,004	5,5E-05	0,998
B	0,04	D	0,014	С	0,084	4,9E-05	0,998
С	0,039	В	0,013	D	0,133	7,1E-05	0,998
A	0,05	B	0,027	C	0,004	6,8E-06	0,999
A .	0.05	D	0.196	BOC	1.25-04	1,02-05	0,999
A	0,05	BOC	3,3E-04	2110	4,22.04	1,7E-05	0,999
A	0,05	BOD	2,6E-04			1,3E-05	0,999
Α	0,05	B∩C∩D	2,4E-04			1,2E-05	0,999
В	0,04	С	0,006	Α	0,067	1,6E-05	0,999
B	0,04	C	0,006	D	0,133	3,3E-05	0,999
B	0,04	D	0,014	Anc	0,017	9,5E-06	0,999
R	0.04	COD	5,9E-04			2,5E-05	0.999
B	0,04	Ancop	2,7E-04			1,1E-05	0,999
С	0,039	A	0,072	B ∩ D	0,01	2,8E-05	0,999
С	0,039	В	0,013	Α	0,067	3,5E-05	0,999
С	0,039	D	0,151	В	0,005	3,0E-05	0,999
С	0,039	A ∩ B	0,001			3,9E-05	0,999
C	0,039	BOD	2,76-04			1,1E-05	0,999
C D	0,039	ANBOD	0.236	BOC	1.25-04	2,2E-05 9.3E-07	0,999
D	0,033	В	0,042	Anc	0.017	2.4E-05	0,999
D	0,033	C	0,023	B	0,005	3,9E-06	0,999
D	0,033	Anc	3,5E-04			1,2E-05	0,999
D	0,033	B∩C	0,001			3,3E-05	0,999
D	0,033	AnBnC	6,1E-05			2,0E-06	0,999
A ∩ D	1,4E-04	BOC	1,2E-04			1,7E-08	0,999

TABLE D.1 : Scénarios exclusifs : Variables Gaussiennes indépendantes

1 ^{er} niv	eau	2 ^{eme} ni	iveau	3°me n	iveau	Pglobale	١,
AcRec	0.000					C 05 03	0
ANBIL	0,006					6,0E-03	U
	7,7E-05					7,7E-05	0
AOCOD	2.8E-04					2.8E-04	0
Anchib	2,01-04					2,01-04	
BOCOD	0,003					3,0E-03	0
AnBnCnD	0.003					3.0E-03	0
D o C	0.004	A o D	0.729			2,05,02	0.262
BILL	0,004	AILD	0,750			3,05-03	0,202
A n B	0,03	C ∩ D	0,585			1,8E-02	0,415
COD	0.03	AOB	0.513			1.5E-02	0.487
CHD	0,05	Alle	0,313			1,50-02	0,407
CnD	0,03	A	0,375			1,1E-02	0,625
A o B	0.03	D	0.322			9.7E-03	0.678
1 - 5	0,00		0,522			7.45.04	0,070
Anc	0,003	D	0,238			7,1E-04	0,762
С	0,026	A ∩ D	0,184			4,8E-03	0,816
D o D	0.002		0.167			3.35.04	0.033
BUD	0,002	A	0,167			3,3E-04	0,833
B	0,003	A	0,276	COD	0,585	4,8E-04	0,838
Roc	0.004	D	0 1 2 7			E 1E-04	0.973
BITC	0,004	U	0,127			5,10-04	0,075
AOD	0,002	C	0,117			2,3E-04	0,883
B	0.003	Α	0.276	D	0.322	3.0F-04	0.911
	0,000		0,270	-	0,522	1,75,04	0,011
AND	0,002	в	0,085			1,7E-04	0,915
BOD	0.002	C	0.081			1.6E-04	0.919
D o C	0.004		0.00			2.45.04	0.04
BILC	0,004	A	0,06			z,4E-04	0,94
D	0,001	A ∩ B	0,059			5,9E-05	0,941
۸	0.025	Cop	0.055			1.46.00	0.944
A	0,025	CHD	0,056			1,46-03	0,344
C	0,026	D	0,109	A ∩ B	0,513	1,5E-03	0,944
C	0.026	D	0.109	А	0.375	1.0F-03	0.958
	0,020	-	0,103	~	0,010	2,02-03	0,000
Anc	0,003	В	0,033			9,9E-05	0,967
BOD	0,002	Anc	0.033			6.6F-05	0.967
	0.000	1.00	0,000			0.45.05	0.072
в	0,003	And	0,027			8,1E-05	0,973
D	0,001	A	0,213	C	0,117	4,4E-05	0,974
۸	0.025	D	0.195	<u> </u>	0.117	5 45 04	0.979
~	0,025	U	0,100	L.	0,117	5,46-04	0,376
D	0,001	A	0,213	B	0,085	3,2E-05	0,981
Δ	0.025	D	0.186	R	0.085	4.0E-04	0.984
-	0,025	U	0,100		0,005	4,01-04	0,004
A	0,025	В	0,021	COD	0,585	3,1E-04	0,987
AOC	0.003	BOD	0.013			3.9E-05	0.987
	0,000	0.10	0,010	-		5,52 05	0,007
A	0,025	C	0,049	D	0,238	2,9E-04	0,988
D	0.001	С	0.021	A ∩ B	0.513	1.1E-05	0.989
	-,	-	-,		-,	1,15,05	-,
D	0,001	C	0,021	A	0,375	1,4E-05	0,991
С	0,026	A	0,029	D	0,238	1.8E-04	0,992
	0.025		0.021		0.333	4.75.04	0.003
A	0,025	В	0,021	D	0,322	1,7E-04	0,993
D	0,001	AnBnC	0,006			6,0E-06	0,994
C	0.026	D	0.000	AcD	0 729	1.25.04	0.005
U U	0,026	В	0,006	ADD	0,738	1,ZE-04	0,995
B	0,003	Ancnd	0,004			1,2E-05	0,996
D	0.001	B o C	0.004			4.05.05	0.000
U	0,001	BIIC	0,004			4,02-00	0,330
B	0,003	C	0,004	AnD	0,738	8,9E-06	0,997
С	0.026	A o B	0.003			7.8E-05	0.997
	0,020		0,000			7,02.05	0,007
AOB	0,03	C	0,003			9,0E-05	0,997
Α	0.025	С	0.049	В	0.033	4.0E-05	0.998
	0.002	CoD	0,000	-	-,	C 05 05	0,000
в	0,003	ChD	0,002			6,0E-06	0,998
С	0.026	AOBOD	0,002			5,2E-05	0,998
COD	0.02	р	0.002			6 OF OF	0.000
COD	0,05	٥	0,002			0,02-05	0,338
Δ	0.025	R	0.021	C	0.003	1.65-05	0.999
<u>^</u>	0,020	D	0,021	<u> </u>	0,005	1,00-00	0,000
A	0,025	C	0,049	BOD	0,013	1,6E-05	0,999
Α	0,025	D	0,186	BOC	0,001	4,7E-06	0,999
A	0.025	P.o.C	3 75 04			C 95 05	0.000
A	0,025	BILC	2,7E-04			0,85-06	0,999
A	0,025	B ∩ D	0,001			2,5E-05	0,999
Δ	0.025	BOCOD	1.2E-04			3.0E-06	0.999
-	0,023	Birch D	1,22-04	-	0.000	3,02-00	0,000
B	0,003	A	0,276	C	0,003	2,9E-06	0,999
B	0.003	C	0.004	Α	0.06	9,6E-07	0.999
-	0.007	-	0.001		0.427	3.05.05	0.000
В	0,003	C	0,004	D	0,127	Z,0E-06	0,999
B	0,003	D	0,001	Α	0,167	6,9E-07	0,999
	0.000	P	0.001	6	0.001	2 45 07	0.000
в	0,003	U	0,001	L	0,081	5,4E-07	0,333
B	0,003	D	0,001	Anc	0,033	9,9E-08	0,999
B	0.002	A.0.C	2.35.06			6.95.09	0.999
0	0,005	Anc	2,32-00	-		0,02-03	0,000
C	0,026	A	0,029	В	0,033	2,6E-05	0,999
6	0.026	Δ	0.029	BOD	0.013	9.8E-06	0.999
~	0.020		0,000		0.05	0.45.05	0,000
C	0,026	В	0,006	A	0,06	9,4E-06	0,999
С	0,026	В	0,006	D	0,127	2,0E-05	0,999
6	0.020	D	0.100	D	0.002	6.35.05	0.000
C C	0,026	U	0,109	в	0,002	0,2E-06	0,333
С	0,026	BOD	1,0E-05			2,6E-07	0,999
D	0.001	Δ	0.212	BOC	0.001	2.1E-07	0.999
	0,001	<u> </u>	3,213	and	0,001	2,12-07	0,000
D	0,001	В	0,01	A	0,167	5,9E-07	0,999
D	0.001	B	0.01	C	0.081	2.8F-07	0.999
-	0,001	-	0,01	~	0,001	2,02.07	
D	0,001	В	0,01	Anc	0,033	3,3E-07	0,999
D	0,001	С	0,021	В	0,002	8,4E-08	0,999
	0.001	A o C	4.05.04	-		4.05.07	0.000
U	0,001	Anc	4,0E-04			4,0E-07	0,999
	0.002	BOC	0.001			2.0E-06	0.999

 TABLE D.2 : Scénarios exclusifs : Variables Gaussiennes corrélées

1 ^{er} nive	au	2° ^{eme} ni	iveau	3 ^{eme}	niveau	Pglobale	l,
AnBnC	8,3E-05					8,3E-05	0
AnBnD	2,1E-05					2,1E-05	0
AOCOD	2.1E-05					2.1E-05	0
BOCOD	8.5E-05					8.5E-05	0
AGROCOD	1 05 05					1.05.05	0
CoD	1,02-05	D	0.37			1,02-05	0.63
ChD	0,014	в	0,37			0,005	0,63
A ∩ B	0,018	C	0,305			0,005	0,695
Anc	1,9E-04	D	0,237			4,5E-05	0,763
B ∩ D	1,7E-04	A	0,176			3,0E-05	0,824
BOC	3,5E-04	Α	0,139			4,9E-05	0,861
C	0.024	AOD	0.135			3.2F-03	0.865
AOD	7.7E-05	6	0.111			8 5E-06	0,889
6.00	7,72-03		0,111			0,52-00	0,885
COD	0,014	AOB	0,108			0,002	0,892
AnD	7,7E-05	B	0,096			7,4E-06	0,904
A ∩ B	0,018	C ∩ D	0,092			0,002	0,908
В	0,02	A	0,281	C ∩ D	0,092	0,001	0,914
BOC	3.5E-04	D	0.074			2.6E-05	0.926
BOD	1.7E-04	C	0.072			1.2E-05	0.928
	1,71-04	C 0 D	0,072			2,45,02	0,528
A	0,04Z	COD	0,056			2,4E-03	0,944
В	0,02	D	0,012	A	0,176	4,5E-05	0,945
В	0,02	Α	0,281	С	0,305	0,001	0,95
BOC	3,5E-04	A ∩ D	0,048			1,7E-05	0,952
D	0.023	AOB	0.046			0.001	0.954
C C	0.024	D	0.146	R	0.37	0.001	0.958
4.0.0	1.05.04		0,140	0	0,37	0,001	0,000
And	1,9E-04	В	0,029			5,5E-06	0,971
D	0,023	A	0,225	C	0,111	6,0E-04	0,973
В	0,02	C ∩ D	0,001			2,0E-05	0,974
В	0,02	A ∩ D	0,023			4,6E-04	0,977
D	0.023	Α	0.225	В	0.096	5,2E-04	0.977
<u> </u>	0.024	Δ	0.07	R	0.029	5.05.05	0.979
	0,024	0	0,07	6	0,025	3,02-03	0,578
A	0,04Z	D	0,182	C	0,111	8,6E-04	0,979
A	0,042	D	0,182	В	0,096	7,4E-04	0,982
С	0,024	A	0,07	D	0,237	4,0E-04	0,983
BOD	1,7E-04	Anc	0,017			2,9E-06	0,983
С	0.024	D	0.146	AOB	0.108	3,8E-04	0.984
~	0.043	p	0,022		0.205	4 35 04	0.000
A	0,042	В	0,033	L R	0,305	4,3E-04	0,989
D	0,023	C	0,028	В	0,37	2,4E-04	0,989
Anc	1,9E-04	B ∩ D	0,01			1,9E-06	0,99
С	0,024	B∩D	0,008			1,9E-04	0,992
C A	0,024	B∩D C	0,008	D	0.237	1,9E-04 2.0E-04	0,992
C A C	0,024 0,042		0,008	D	0,237	1,9E-04 2,0E-04	0,992 0,995
C A C	0,024 0,042 0,024	B ∩ D C A ∩ B ∩ D	0,008 0,02 0,005	D	0,237	1,9E-04 2,0E-04 1,2E-04	0,992 0,995 0,995
C A C A	0,024 0,042 0,024 0,042	B ∩ D C A ∩ B ∩ D B	0,008 0,02 0,005 0,033	D	0,237	1,9E-04 2,0E-04 1,2E-04 1,3E-04	0,992 0,995 0,995 0,996
C A C A D	0,024 0,042 0,024 0,042 0,023	B ∩ D C A ∩ B ∩ D B B	0,008 0,02 0,005 0,033 0,021	D C n D A	0,237 0,092 0,176	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05	0,992 0,995 0,995 0,996 0,996
C A C A D D	0,024 0,042 0,024 0,042 0,023 0,023	B ∩ D C A ∩ B ∩ D B B C	0,008 0,02 0,005 0,033 0,021 0,028	D C ∩ D A A ∩ B	0,237 0,092 0,176 0,108	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05	0,992 0,995 0,995 0,996 0,996 0,996
C A C D D C n D	0,024 0,042 0,024 0,042 0,023 0,023 0,023	B ∩ D C A ∩ B ∩ D B B C A	0,008 0,02 0,005 0,033 0,021 0,028 0,004	D C ∩ D A A ∩ B	0,237 0,092 0,176 0,108	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05 5,6E-05	0,992 0,995 0,995 0,996 0,996 0,996 0,996
C A C A D D C ∩ D A ∩ B	0,024 0,042 0,024 0,023 0,023 0,023 0,014 0,018	B ∩ D C A ∩ B ∩ D B B C C A D	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003	D C ∩ D A A ∩ B	0,237 0,092 0,176 0,108	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05 5,6E-05 5,4E-05	0,992 0,995 0,995 0,996 0,996 0,996 0,996 0,997
C A C A D D C ∩ D A ∩ B B	0,024 0,042 0,024 0,023 0,023 0,023 0,014 0,018 0,02	B ∩ D C A ∩ B ∩ D B B C C A D A	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281		0,237 0,092 0,176 0,108	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05 5,6E-05 5,4E-05 2,3E-05	0,992 0,995 0,995 0,996 0,996 0,996 0,996 0,997 0,998
C A C D D C O D A O B B	0,024 0,042 0,024 0,023 0,023 0,023 0,014 0,018 0,02	B ∩ D C A ∩ B ∩ D B C A D A A	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281		0,237 0,092 0,176 0,108 0,003	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05	0,992 0,995 0,996 0,996 0,996 0,996 0,996 0,997 0,998
C A C D D C O D A O B B D	0,024 0,042 0,024 0,023 0,023 0,014 0,018 0,02 0,023	B ∩ D C A ∩ B ∩ D B C A D A B C A D C A D C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021		0,237 0,092 0,176 0,108 0,003 0,072	1,9E-04 2,0E-04 1,2E-04 9,0E-05 7,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05	0,992 0,995 0,995 0,996 0,996 0,996 0,996 0,997 0,998 0,998
C A C A D C O D C O D A O B D A	0,024 0,042 0,024 0,023 0,023 0,014 0,018 0,02 0,023 0,042	B ∩ D C A ∩ B ∩ D B C A D A B B B	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,033	D C ∩ D A A ∩ B D C D	0,237 0,092 0,176 0,108 0,003 0,003 0,072 0,003	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06	0,992 0,995 0,995 0,996 0,996 0,996 0,996 0,997 0,998 0,998 0,999
	0,024 0,042 0,024 0,023 0,023 0,014 0,018 0,02 0,023 0,042	B ∩ D C A ∩ B ∩ D B C A A D A B B C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,033	D C ∩ D A A ∩ B D C D	0,237 0,092 0,176 0,108 0,003 0,072 0,003	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05 5,6E-05 5,6E-05 5,4E-05 3,6E-05 5,7E-06	0,992 0,995 0,995 0,996 0,996 0,996 0,996 0,997 0,998 0,999
C A C D D C C D D C C D D A B B D A A	0,024 0,042 0,024 0,023 0,023 0,014 0,018 0,02 0,023 0,042 0,042	B ∩ D C A ∩ B ∩ D B C A D A B B B C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,033 0,02	D C ∩ D A A ∩ B D C D B	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 5,4E-05 3,6E-05 5,7E-06 2,4E-05 2,4E-05	0,992 0,995 0,996 0,996 0,996 0,996 0,996 0,997 0,998 0,998 0,999
C A C D D C ∩ D A ∩ B B D A A	0,024 0,042 0,024 0,023 0,023 0,014 0,018 0,02 0,023 0,042 0,042	B ∩ D C A ∩ B ∩ D B C C A D A B B C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,033 0,021 0,02	D C ∩ D A A ∩ B D C D B B ∩ D	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,029 0,01	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06	0,992 0,995 0,995 0,996 0,996 0,996 0,996 0,997 0,998 0,998 0,999 0,999
C A C A D C O D C O D A O B B D A A A A	0,024 0,042 0,024 0,023 0,023 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042	B ∩ D C A ∩ B ∩ D B C C D A B B C C C C D	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,033 0,021 0,033	D C ∩ D A A ∩ B D C D B B ∩ D B ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06	0,992 0,995 0,995 0,996 0,996 0,996 0,999 0,999 0,998 0,999 0,999 0,999
C A C A D D C O D A O B B D A A A A A A	0,024 0,042 0,024 0,023 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042	B ∩ D C A ∩ B ∩ D B C A A B B C C C C D B ∩ C	0,008 0,02 0,005 0,033 0,021 0,028 0,003 0,281 0,021 0,033 0,021 0,033 0,02 0,02 0,182 3,0E-04	D C ∩ D A A ∩ B D C D B B ∩ D B ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05 5,6E-05 5,6E-05 5,6E-05 3,6E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05	0,992 0,995 0,995 0,996 0,996 0,996 0,997 0,998 0,999 0,999 0,999 0,999
C A C D D C C D C C D A B B D A A A A A A	0,024 0,042 0,024 0,023 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042	B ∩ D C A ∩ B ∩ D B C A D A B B C C C C D B ∩ C B ∩ D	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,021 0,021 0,021 0,02 0,033 0,02 0,02 0,02 0,02 0,02 0,0	D A A ∩ B D C D B B ∩ D B ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 5,4E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05	0,992 0,995 0,996 0,996 0,996 0,996 0,997 0,998 0,999 0,999 0,999 0,999 0,999
C A C D D C ∩ D A ∩ B B D A A A A A A A	0,024 0,042 0,024 0,023 0,023 0,014 0,028 0,020 0,023 0,042 0,042 0,042 0,042 0,042 0,042	B ∩ D C A ∩ B ∩ D B C A D A B B C C D B ∩ C B ∩ C B ∩ C	0,008 0,02 0,005 0,033 0,021 0,021 0,004 0,003 0,281 0,021 0,021 0,02 0,02 0,02 0,182 3,0E-04 2,7E-04 5,6E-05		0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06	0,992 0,995 0,995 0,996 0,996 0,996 0,997 0,998 0,998 0,998 0,999 0,999 0,999 0,999 0,999
C A C A D C O D C O D A O B B D A A A A A A A A A A A A A A A A A	0,024 0,042 0,024 0,023 0,023 0,023 0,018 0,02 0,042 0,042 0,042 0,042 0,042 0,042 0,042	B ∩ D C A ∩ B ∩ D B C C D B ∩ C B ∩ C B ∩ C C ∩ D	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,033 0,021 0,033 0,02 0,02 0,182 3,0E-04 2,7E-04 6,6E-05 0,000	D C ∩ D A A ∩ B D C D D B ∩ D B ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06	0,992 0,995 0,995 0,996 0,996 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C A D D C O D A O B B D A A A A A A A A A A A B B	0,024 0,042 0,024 0,023 0,023 0,014 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042	B ∩ D C A ∩ B ∩ D B C A D A B C C C D B ∩ C B ∩ C B ∩ C C C C C C C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,023 0,021 0,021 0,021 0,02 0,02 0,02 0,182 0,02 0,182 0,02 0,182 0,02 0,182 0,02 0,02 0,02 0,033	D C ∩ D A A ∩ B D C D D B ∩ D B ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 7,0E-05 5,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,7E-06 3,0E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06 4,8E-06	0,992 0,995 0,996 0,996 0,996 0,996 0,997 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C D D C ∩ D A ∩ B B D A A A A A A A B B B	0,024 0,042 0,024 0,023 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02	B ∩ D C A ∩ B ∩ D B C A D A B C C C D C C D B ∩ C D B ∩ C C C C C C C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,021 0,033 0,02 0,033 0,02 0,02 0,182 3,0E-04 2,7E-04 2,7E-04 0,001	D C ∩ D A A ∩ B D C D B B ∩ D B ∩ C C A D C C D	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04 0,139 0,074	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06 4,8E-06 2,6E-06	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C D C C D C C D A B B A A A A A A B B B B B B	0,024 0,042 0,024 0,023 0,023 0,014 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042	B ∩ D C A ∩ B ∩ D B C A D C A B C C D B ∩ C C B ∩ C C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,024 0,004 0,003 0,281 0,021 0,02 0,02 0,02 0,182 3,0E-04 2,7E-04 6,6E-05 0,001 0,001		0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04 0,139 0,074 0,048	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06 4,8E-06 2,6E-06 9,6E-07	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,998 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C A D C O D C O D A O B B A A A A A A B B B B B B B B	0,024 0,042 0,024 0,023 0,023 0,023 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C C D B ∩ C B ∩ C B ∩ C C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,024 0,004 0,003 0,281 0,021 0,033 0,021 0,033 0,02 0,182 3,0E-04 2,7E-04 6,6E-05 0,001 0,001 0,001 0,012	D C ∩ D A ∩ B D C D D B ∩ D B ∩ C B ∩ C C D C C D C C D C C D C C D C C C D C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04 0,139 0,074 0,048 0,072	1,9E-04 2,0E-04 1,2E-04 1,2E-04 9,0E-05 5,6E-05 5,6E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06 4,8E-06 2,6E-07 1,8E-05	0,992 0,995 0,995 0,996 0,996 0,997 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C D D C ∩ D A ∩ B B D A A A A A A A A B B B B B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C A A D A B C C C D B ∩ C C B ∩ C C C C C C C C C C C C C C C C C C D	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,023 0,021 0,021 0,02 0,02 0,02 0,02 0,02 0,	D C ∩ D A A ∩ B D C D D C D B C D B C C D C C C C C C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04 0,139 0,074 0,074 0,072	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,7E-06 3,0E-06 3,0E-06 3,0E-06 1,3E-05 2,8E-06 4,8E-06 9,6E-07 1,8E-05	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C D D C ∩ D A ∩ B B D A A A A A A B B B B B B B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C A A B B C C C D B ∩ C B ∩ C C C C C C C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,021 0,02 0,02 0,02 0,02 0,02 0	D C ∩ D A ∩ B D C D B B ∩ D B ∩ C B B ∩ C C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,01 3,9E-04 0,139 0,074 0,048 0,072 0,017	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 2,4E-05 1,1E-05 2,4E-06 9,6E-07 1,8E-05 4,1E-06 3,8E-06	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C D C C D C C D A B B B A A A A A A B B B B B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C C A A B B C C C D B ∩ C C C C C C C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,02 0,02		0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04 0,139 0,074 0,048 0,072 0,017	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06 9,6E-07 1,8E-05 4,1E-06 3,8E-06 3,8E-06	0,992 0,995 0,995 0,996 0,996 0,997 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C A D C C D C C D A B B A A A A A A B B B B B B B B B B	0,024 0,042 0,023 0,023 0,014 0,023 0,014 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C A D A B C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,023 0,021 0,021 0,02 0,02 0,02 0,02 0,02 0,	D C ∩ D A A ∩ B D C D D B ∩ D B ∩ C B ∩ C A ∩ C C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04 0,139 0,074 0,074 0,077	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,0E-06 3,0E-06 1,3E-05 2,8E-06 4,8E-06 2,6E-07 1,6E-05 4,8E-05 3,8E-06 1,7E-05 3,8E-06 1,7E-05	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C D D C ∩ D A ∩ B B B A A A A A A A B B B B B B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	$B \cap D$ C $A \cap B \cap D$ B C A D A B C C C D $B \cap C$ $B \cap D$ $B \cap C \cap D$ C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,021 0,021 0,021 0,02 0,02 0,02 0,02 0	D C ∩ D A A ∩ B D C D B B ∩ D B ∩ C B ∩ C A ∩ C A ∩ C A ∩ C B ∩ D	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04 0,139 0,074 0,048 0,072 0,017	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,7E-06 2,4E-05 8,4E-06 1,3E-05 1,1E-05 2,8E-06 9,6E-07 1,8E-05 4,1E-06 3,8E-06 1,7E-05 1,7E-05	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C A D D C C D C C D A B B B B B B B B B B B B B B C C C	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C A A B B C C C D B ∩ C C B ∩ C C C C C C C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,02 0,02 0,02 0,02 0,02 0,182 3,0E-04 2,7E-04 6,6E-05 0,001 0,001 0,001 0,001 0,012 0,012 1,9E-04 8,4E-04 0,07 0,002	D C ∩ D A ∩ B D C D B ∩ D B ∩ D B ∩ C A ∩ C A ∩ C A ∩ C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,01 3,9E-04 0,139 0,074 0,048 0,072 0,017 0,011 0,139	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05 2,4E-06 4,8E-06 9,6E-07 1,8E-05 4,1E-06 3,8E-06 1,7E-05 1,7E-05 1,7E-05	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999
C A C A D C C D C C D A B B B A A A A A A A A B B B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	$B \cap D$ C $A \cap B \cap D$ B C C D $B \cap C$ $B \cap C$ $B \cap C \cap D$ $B \cap C \cap D$ C C C C C C C $B \cap C \cap D$ C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,024 0,004 0,003 0,281 0,021 0,021 0,02 0,02 0,182 3,0E-04 2,7E-04 6,6E-05 0,001 0,001 0,001 0,012 0,012 0,012 0,012 1,9E-04 8,4E-04 0,002 0,002		0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,01 3,9E-04 0,139 0,074 0,048 0,072 0,017 0,017	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06 9,6E-07 1,8E-05 4,1E-06 3,8E-06 1,7E-05 1,7E-05 7,8E-06 4,1E-06	0,992 0,995 0,995 0,996 0,996 0,997 0,998 0,998 0,999
C A C D D C C D C C D A B B A A A A A A A A A B B B B B B B	0,024 0,042 0,023 0,023 0,014 0,023 0,014 0,02 0,02 0,02 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	$B \cap D$ C $A \cap B \cap D$ B C A D A B C C C C $B \cap C$ $B \cap C$ $B \cap C$ C C C C C C C	0,008 0,02 0,005 0,033 0,028 0,004 0,028 0,021 0,021 0,021 0,021 0,02 0,02 0,02	D C ∩ D A A ∩ B D C D D B ∩ D B ∩ C B ∩ D A ∩ D C C A ∩ C C B ∩ D A ∩ D C C D D D D D D D D D C D D D C D D D C D D D C D D D C D D D C D D D D C D D D C D D D D C D	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04 0,139 0,074 0,017 0,017 0,017 0,011 0,139 0,074	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,0E-06 3,0E-06 3,0E-06 2,8E-06 9,6E-07 1,8E-05 4,1E-06 3,8E-06 1,7E-05 1,7E-05 7,8E-06	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,999
C A C D D C ∩ D A ∩ B B B A A A A A A A A B B B B B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,023 0,024 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	$B \cap D$ C $A \cap B \cap D$ B C A A B C C C C $B \cap C$ $B \cap C$ $B \cap C$ C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,021 0,021 0,021 0,021 0,02 0,02 0,02	D C ∩ D A A ∩ B D C D B B ∩ D B ∩ C B ∩ D C C C C C C C C D B ∩ D C C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C D C D C D C C D C D C C D C C D C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C C D C C C D C C C C D C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,003 0,072 0,013 0,074 0,048 0,072 0,017 0,017 0,019 0,074 0,039 0,074	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 1,3E-05 1,3E-05 4,8E-06 2,6E-06 9,6E-07 1,8E-05 1,7E-05 7,8E-06 4,1E-06 2,3E-06	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,999
C A C A D D C C D C C D A B B B B B B B B B B B B B B B C C C C	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C A D A B C C D B ∩ C ∩ D C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,021 0,02 0,02 0,033 0,02 0,02 0,02 0,182 3,0E-04 2,7E-04 6,6E-05 0,001 0,001 0,001 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,002 0,002 0,002 0,002 0,002	D C ∩ D A ∩ B D C D D B ∩ D B ∩ C B ∩ C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,01 3,9E-04 0,139 0,074 0,048 0,072 0,017 0,017 0,0139 0,074 0,048 0,074	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 2,4E-05 8,4E-06 3,0E-06 1,3E-05 1,1E-05 2,6E-06 9,6E-07 1,8E-06 3,8E-06 1,7E-05 7,8E-06 4,1E-06 2,3E-06 1,7E-05 7,8E-06 4,1E-06 2,3E-06 1,5E-05	0,992 0,995 0,995 0,996 0,996 0,996 0,997 0,998 0,999
C A C A D C C D C C D A B B B A A A A A A A A A B B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	$B \cap D$ C $A \cap B \cap D$ B C A D A B C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,023 0,021 0,021 0,022 0,02 0,02 0,02 0,02 0	D C ∩ D A A ∩ B D C D D B ∩ D B ∩ C B ∩ D C A ∩ C A ∩ C A ∩ C A ∩ C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,01 3,9E-04 0,139 0,074 0,048 0,072 0,017 0,017 0,017 0,0139 0,074 0,048 0,004	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,0E-06 1,3E-05 1,1E-05 2,8E-06 4,8E-06 3,8E-06 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,5E-05 2,0E-06 1,5E-05 2,0E-06	0,992 0,995 0,995 0,996 0,996 0,996 0,997 0,998 0,999
C A C D D C C D C C D A B B A A A A A A A A A B B B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	$B \cap D$ C $A \cap B \cap D$ B C A D A B C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,021 0,021 0,021 0,02 0,02 0,02 0,02 0	D C ∩ D A A ∩ B C D C D B C D B C C D C C C C C C C C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,029 0,01 3,9E-04 0,139 0,074 0,048 0,072 0,017 0,139 0,074 0,048 0,004 3,9E-04	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 2,4E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06 4,8E-06 3,8E-06 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 2,8E-06 4,1E-06 2,3E-06 4,1E-06 2,0E-06 2,0E-06	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,999
C A C A D D C C D A B B A A A A A A A A A B B B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C A A B C C C D C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,02 0,02 0,02 0,02 0,02 0,182 3,0E-04 2,7E-04 6,6E-05 6,6E-05 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,003	D C ∩ D A A ∩ B D C D B B ∩ D B ∩ C A ∩ C A ∩ C A ∩ C A ∩ C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,013 0,019 0,074 0,048 0,072 0,017 0,017 0,039 0,074 0,048 0,072 0,017 0,018 0,074 0,018 0,072 0,018 0,018 0,003 0,072 0,003 0,074 0,074 0,072 0,001 0,074 0,	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 3,6E-05 5,7E-06 1,3E-05 1,1E-05 2,8E-06 4,8E-06 9,6E-07 1,8E-05 4,1E-06 3,8E-06 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 2,3E-06 4,1E-06 2,3E-06 1,5E-05 2,0E-06 2,0E-06 8,2E-06 8,2E-06	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,999
C A C A D C C D C C D A B B B A A A A A A A A A A B B B B B	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C A D A B C C D B ∩ C ∩ D B ∩ C ∩ D C C C C C C C C C C D B ∩ C ∩ D C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,024 0,004 0,003 0,281 0,021 0,02 0,02 0,02 0,02 0,182 3,0E-04 2,7E-04 6,6E-05 0,001 0,001 0,001 0,012 0,001 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,003 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,004 0,003 0,002 0,002 0,002 0,001 0,001 0,001 0,002 0,002 0,001 0,001 0,001 0,002 0,001 0,001 0,002 0,002 0,001 0,001 0,002 0,002 0,002 0,001 0,001 0,002 0,002 0,002 0,001 0,002 0,002 0,001 0,001 0,001 0,001 0,002 0,002 0,002 0,002 0,002 0,001 0,001 0,001 0,002 0,000	D C ∩ D A A ∩ B D C D D C D B ∩ D B ∩ C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,013 0,019 0,074 0,048 0,072 0,017 0,014 0,048 0,074 0,048 0,074 0,048 0,074 0,004	1,9E-04 2,0E-04 1,2E-04 9,0E-05 5,6E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 3,0E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06 4,8E-06 2,6E-06 9,6E-07 1,8E-05 4,1E-06 3,8E-06 1,7E-05 7,8E-06 4,1E-06 2,3E-06 2,3E-06 2,0E-06 2,0E-06 2,9E-06	0,992 0,995 0,995 0,996 0,996 0,997 0,998 0,999
C A C A D D C C D D C C D A B B B A A A A A A A A A A A B B B B	0,024 0,042 0,023 0,023 0,014 0,023 0,023 0,023 0,024 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	$B \cap D$ C $A \cap B \cap D$ B C A D A B C C C C $B \cap C$ $B \cap C$ $B \cap C$ C C C C C C C	0,008 0,02 0,033 0,021 0,028 0,004 0,023 0,021 0,021 0,02 0,02 0,02 0,02 0,02 0,	D $C \cap D$ A $A \cap B$ $B \cap D$ $B \cap C$ $B \cap C$ $A \cap $	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,013 9,074 0,017 0,017 0,017 0,048 0,017 0,017 0,048	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-06 3,0E-06 1,3E-05 2,8E-06 4,8E-06 9,6E-07 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 2,0E-06 2,0E-06 2,9E-06 2,9E-06 2,9E-06	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,999
C A C A D D C C D D C C D A B B B B B B B B B B B B B B B B C C C C C C C C C C C C D D D D	0,024 0,042 0,024 0,023 0,014 0,018 0,02 0,023 0,023 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C A D A B C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,021 0,021 0,021 0,02 0,02 0,02 0,02 0	D C ∩ D A A ∩ B D C D B B ∩ D B ∩ C B ∩ D B ∩ C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,013 3,9E-04 0,139 0,074 0,048 0,072 0,017 0,019 0,074 0,048 0,074 0,039 0,074 0,048	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 1,3E-05 1,3E-05 2,8E-06 4,8E-06 2,6E-06 9,6E-07 1,8E-05 1,7E-05 1,7E-05 1,7E-05 2,8E-06 4,1E-06 2,3E-06 2,0E-06 8,2E-06 2,9E-06 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,1E-05 7,2E-0	0,992 0,995 0,996 0,996 0,996 0,997 0,998 0,999
C A C A D D C C D A B B B A A A A A A A A A B B B B B B	0,024 0,042 0,023 0,014 0,018 0,02 0,023 0,024 0,023 0,024 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	$B \cap D$ C $A \cap B \cap D$ B C A D A B C C D $B \cap C$ D $B \cap C \cap D$ C C C C C D $B \cap C \cap D$ C C C C D $B \cap C \cap D$ C C C C D $B \cap C \cap D$ A C C C C D C C C C D $B \cap C \cap D$ C C C D C C C D C C C D C C D C C D C C D C C D C C D C C D C C D D C C D D C C D D C C D D C C D C C D D C D C D D C D C D C D C D D C D $A \cap C \cap D$ A C D $A \cap C$ A C D C D C C D C D C D C C D C D C D C D $A \cap C \cap D$ A C D $A \cap C$ A C D C C D C D C D C D C D C D C A C C D C A C C $A \cap C$ C C $A \cap C$ C $A \cap C$ C $A \cap C$ C $A \cap C$ C $A \cap C$ C C $A \cap C$ C $A \cap C$ C $A \cap C$ C $A \cap C$ C C $A \cap C$ C C $A \cap C$ C C C C C C C	0,008 0,02 0,005 0,033 0,021 0,028 0,004 0,003 0,281 0,021 0,02 0,02 0,02 0,02 0,02 0,02 0,	D C ∩ D A ∩ B D C D C D B B ∩ D B ∩ C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,003 0,072 0,01 0,139 0,074 0,048 0,072 0,017 0,017 0,004 3,9E-04 0,017 0,004	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,6E-05 5,4E-05 2,3E-05 3,6E-05 5,7E-06 3,6E-05 5,7E-06 3,6E-05 3,6E-05 3,6E-05 1,3E-05 1,3E-05 1,2E-06 4,8E-06 3,8E-06 1,7E-05 2,0E-06 8,2E-06 8,2E-06 2,9E-06 7,1E-06 2,0E-05	0,992 0,995 0,995 0,996 0,996 0,996 0,997 0,998 0,999
C A C A D D C C D A A B B B A A A A A A A A A B B B B B	0,024 0,042 0,023 0,023 0,014 0,023 0,023 0,023 0,024 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,02 0,0	B ∩ D C A ∩ B ∩ D B C A A B C C C C C C C C C C C C C	0,008 0,02 0,005 0,033 0,028 0,004 0,003 0,281 0,021 0,021 0,02 0,02 0,02 0,02 0,02 0	D C ∩ D A A ∩ B D C D D B ∩ D B ∩ C A ∩ C A ∩ C A ∩ C A ∩ C A ∩ C A ∩ C	0,237 0,092 0,176 0,108 0,003 0,072 0,003 0,072 0,013 0,029 0,01 3,9E-04 0,139 0,074 0,074 0,077 0,017 0,017 0,017 0,004 0,004 0,004	1,9E-04 2,0E-04 1,2E-04 1,3E-04 9,0E-05 5,6E-05 5,4E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,6E-05 3,0E-06 3,0E-06 1,3E-05 1,1E-05 2,8E-06 4,8E-06 2,6E-06 3,8E-06 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 1,7E-05 2,0E-06 2,0E-06 8,2E-06 2,9E-06 7,1E-06 2,9E-06 7,1E-06 2,9E-06 7,1E-06	0,992 0,995 0,995 0,996 0,996 0,997 0,998 0,999

TABLE D.3 : Scénarios exclusifs : Variables Log-normales indépendantes

FIGURE D.6 – a) Indices de robustesse de l'ensemble des scénarios exclusifs du Tableau D.3 b) Scénarios exclusifs présentant un I_r supérieur à 0.99

FIGURE D.7 – a) Indices de robustesse de l'ensemble des scénarios exclusifs du Tableau D.2 b) Scénarios exclusifs présentant un I_r supérieur à 0.99

Annexe

Commentaires sur la rapide croissance des arbres d'évènements

Le nombre de branches et de nœuds dans l'arbre des évènements augmentent très rapidement en fonction du nombre de défaillances locales étudiées. De ce fait, le nombre de chemins de défaillance à explorer peut devenir très vite prohibitif. Ainsi, par exemple, l'Equation (E.1) ci-dessous évalue le nombre de chemins possibles $N_{chemins}$ lorsque l'arbre des évènements ne comporte que des évènements isolés (nœuds) et les intersections de deux évènements seulement, lorsqu'un seul mode de défaillance est pris en compte (plastification par exemple) :

$$N_{chemins} = 1 + n! + \sum_{z=1}^{m-2} C_n^{2+z-1} (n-z)!$$
(E.1)

où m est le nombre de sections potentiellement critiques; C_c^p est une combinaison; n est le nombre d'éléments de chaque mécanisme de ruine (avec l'hypothèse de n > 1). La Figure E.1 montre la variation de ce nombre de chemins $N_{chemins}$ en fonction du nombre de sections potentiellement critiques.

FIGURE E.1 – Évaluation de la quantité de chemins

Une structure avec quatre sections potentiellement critiques conduit à 75 scénarios exclusifs. Pour éviter de calculer l'ensemble de ces chemins, nous avons recherché un seuil en traçant l'indice de robustesse en fonction des probabilités de défaillance locale et globale (Figure E.2). Autrement dit,

l'idée principale de ces analyses consiste à pouvoir détecter un scénario dangereux à partir d'une probabilité de défaillance initiale localisée suivie d'une réaction en chaine conduisant à un faible indice I_r . Ceci pourrait permettre d'obtenir rapidement les scénarios dangereux sans parcourir complètement l'arbre d'évènement.

FIGURE E.2 – Liens entre indice de robustesse et probabilités de défaillance locale et globale

Pour la poutre bi-encastrée (Figure III.1) avec des variables gaussiennes indépendantes, la Figure E.2 montre une importante dispersion des indices de robustesse calculés pour chacun des scénarios exclusifs. Elle n'indique pas de seuil nous permettant de déduire qu'une valeur de probabilité de défaillance initiale localisée pourrait être suivie d'une réaction en chaine conduisant à un faible indice de robustesse. Cela conforte notre choix de continuer à construire l'arbre complet des évènements afin de déterminer les scénarios dangereux non détectés par les procédures classiques de dimensionnement.

Annexe F

Scénarios exclusifs dans le cas du portique de référence : Rupture initiée en A

L'ensemble des scénarios exclusifs partant de la section droite A est présenté dans cette annexe. Ceci permet de montrer l'ensemble des branches exclusives manquantes de la Figure IV.8. nous observons que les indices de robustesse sont élevés. En effet, chaque scénario exclusif conduit à un indice de robustesse supérieur à 0.999. Ainsi, la structure étudiée est globalement robuste.

1	" niveau	2 ^{eme} niveau		3 ^{eme} niveau		4 ^{eme} niveau		Pglobale	l,
Α	9,6E-14	В	3,7E-10	С	4,8E-02	D	5,7E-04	9,9E-27	0,99999
Α	9,6E-14	В	3,7E-10	С	4,8E-02	E	4,1E-01	7,2E-24	0,99994
Α	9,6E-14	В	3,7E-10	С	4,8E-02	DOE	5,1E-01	8,7E-25	1
Α	9,6E-14	В	3,7E-10	D	9,6E-07	С	5,4E-04	1,9E-32	0,99999
Α	9.6E-14	В	3.7E-10	D	9.6E-07	E	7.9E-04	2.7E-32	0.99999
A	9.6E-14	B	3.7E-10	D	9.6E-07	COE	3.7E-07	1.3E-35	1
Δ	9.6E-14	B	3.7E-10	F	4.0E-02	C	6.8E-02	9.9E-26	0.99999
A	9.6E-14	B	3.7E-10	F	4,0E-02	D	7.9E-04	1.1E-27	0.99999
	9 65 14	0	2 75 10	с с	4,00.02	COD	2 75 07	2.95.21	1
~	9,0E-14	D	3,75-10	COD	2 65 06	CIID	2,72-07	0.05-30	1
~	3,02-14	D	3,75-10	Cor	2,02-00			3,25-23	
A	9,6E-14	В	3,7E-10	CILE	4,0E-03			1,4E-25	1
A	9,6E-14	В	3,7E-10	DUE	4,/E-0/			1,/E-29	1
A	9,6E-14	В	3,7E-10	CODOE	1,4E-06			5,0E-29	1
Α	9,6E-14	C	4,7E-07	В	2,7E-03	D	5,7E-04	7,2E-21	0,99999
Α	9,6E-14	C	4,7E-07	В	2,7E-03	E	4,1E-01	5,3E-18	0,99999
Α	9,6E-14	C	4,7E-07	В	2,7E-03	D∩E	5,1E-01	6,2E-23	1
Α	9,6E-14	C	4,7E-07	D	9,1E-05	В	4,8E-04	2,0E-22	0,99999
Α	9,6E-14	C	4,7E-07	D	9,1E-05	E	4,2E-01	1,7E-19	0,99999
Α	9,6E-14	С	4,7E-07	D	9,1E-05	BNE	5,1E-01	2,1E-24	1
Α	9,6E-14	С	4,7E-07	E	4,8E-08	В	4,3E-02	9,8E-24	0,99999
Α	9,6E-14	C	4,7E-07	E	4,8E-08	D	5,4E-02	1,2E-23	0,99999
Α	9,6E-14	C	4,7E-07	E	4,8E-08	BOD	2,4E-02	5,2E-29	1
Α	9,6E-14	C	4,7E-07	BOD	2,6E-04			1.2E-23	1
A	9.6E-14	C	4.7E-07	BOE	2.3E-09			1.1E-28	1
4	9.6E-14	C C	4.7E-07	DOF	2.8E-08			1.3E-27	1
<u>^</u>	9.65-14	C C	A 7E 07	BODOS	8 9E-11			4.0E.20	1
A	9,65-14		4,75-07	BILDITE	0,35-11	6	E AE OA	4,0E-30	4
A	9,66-14	0	3,96-07	5	2,16-04	C	5,46-04	4,02-29	1
A	9,6E-14	0	3,9E-07	В	2,1E-04	E	7,9E-04	6,6E-29	1
A	9,6E-14	D	3,9E-07	В	2,1E-04	COE	3,/E-07	Z,9E-30	1
Α	9,6E-14	D	3,9E-07	C	8,8E-04	В	4,8E-04	1,6E-26	0,99999
Α	9,6E-14	D	3,9E-07	C	8,8E-04	E	4,2E-01	1,4E-23	1
Α	9,6E-14	D	3,9E-07	C	8,8E-04	BOE	5,1E-01	1,7E-23	1
Α	9,6E-14	D	3,9E-07	E	8,1E-02	В	9,2E-01	2,8E-21	0,99999
Α	9,6E-14	D	3,9E-07	E	8,1E-02	С	5,4E-05	1,7E-25	0,99999
٨	9 65 14	D	3 95.07	E	9 15 02	ROC	7.95.02	2 45-22	1
~	3,02-14	0	3,35-07		0,10-02	BIIC	7,00-02	2,46-22	1
A	9,6E-14	0	3,9E-07	BAC	3,6E-06			1,3E-25	1
A	9,6E-14	D	3,9E-07	BUE	3,4E-08			1,3E-27	1
Α	9,6E-14	D	3,9E-07	CNE	1,7E-03			6,4E-23	1
Α	9,6E-14	D	3,9E-07	BOCOE	1,0E-07			3,9E-27	1
Α	9,6E-14	E	1,8E-09	В	2,4E-01	C	6,8E-02	3,0E-24	0,99999
Α	9,6E-14	E	1,8E-09	В	2,4E-01	D	7,9E-04	3,5E-26	1
Α	9,6E-14	E	1,8E-09	В	2,4E-01	COD	2,7E-07	1,1E-29	1
Α	9,6E-14	E	1,8E-09	C	5,2E-03	В	4,3E-02	4,1E-26	1
Α	9,6E-14	E	1,8E-09	С	5,2E-03	D	5,4E-02	5,1E-26	0,99999
Α	9,6E-14	E	1,8E-09	С	5,2E-03	B∩D	2,4E-02	2,2E-26	1
Α	9,6E-14	E	1,8E-09	D	1,6E-06	В	4,3E-02	2,7E-28	1
Α	9,6E-14	E	1,8E-09	D	1,6E-06	С	5,4E-02	1,6E-32	1
A	9.6E-14	E	1.8E-09	D	1.6E-06	BOC	7.8E-02	2.2E-29	1
A	9,6E-14	E	1,8E-09	BOC	1,8E-02			3,1E-24	1
<u> </u>	-,	-							-
Α	9,6E-14	E	1,8E-09	B∩D	9,8E-08			1,7E-29	1
Α	9,6E-14	E	1,8E-09	C ∩ D	3,0E-06			5,1E-28	1
Α	9,6E-14	E	1,8E-09	BnCnD	6,9E-09			1,2E-30	1
Α	9,6E-14	B∩C	7,5E-07	D	5,7E-04			4,1E-23	1
Α	9,6E-14	B∩C	7,5E-07	E	4,1E-01			3,0E-20	1
Α	9,6E-14	BnC	7,5E-07	DnE	5,1E-01			3,7E-20	1
Α	9,6E-14	B ∩ D	1,83E-13	С	5,4E-04			9,5E-30	1
Α	9,6E-14	B ∩ D	1,83E-13	E	7,9E-04			1,4E-29	1
Α	9,6E-14	B ∩ D	1,83E-13	COE	3,7E-07			6,5E-33	1
A	9,6E-14	BOE	4,2E-23	C	6,8E-02			2,7E-37	1
A	9.6E-14	BOF	4.2E-23	D	7.9E-04			3.2F-39	1
Δ	9.6E-14	BOE	4.2E-23	COD	2.7E-07			1.15-42	1
<u>^</u>	9.65-14	COD	2 8/5 07	P	4.8E.04			1.35.32	1
A	9,00-14	Con	2,04E-07	D E	4,00-04			1,35-23	1
A	9,65-14	ChD	2,84E-07	E D C T	4,22-01			1,16-20	1
A	9,6E-14	CND	2,84E-07	BUE	5,1E-01			1,4E-20	1
A	9,6E-14	CILE	1,2E-10	В	4,3E-02			5,0E-25	1
Α	9,6E-14	COE	1,2E-10	D	5,4E-02			6,2E-25	1
Α	9,6E-14	CnE	1,2E-10	B∩D	2,4E-02			2,8E-25	1
Α	9,6E-14	DOE	1,3E-10	В	9,2E-01			1,1E-23	1
Α	9,6E-14	DnE	1,3E-10	С	5,4E-05			6,7E-28	1
Α	9,6E-14	DOE	1,3E-10	B∩C	7,8E-02			9,7E-25	1
Α	9,6E-14	BnCnD	3,6E-10					3,5E-23	1
Α	9,6E-14	BnCnE	8,9E-21					8,5E-34	1
Α	9,6E-14	B ∩ D ∩ E	0					0,0E+00	1
Α	9.6E-14	CODOE	1.3E-10					1.2E-23	1

TABLE F.1 : Scénarios exclusifs : Rupture initiée en A