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Construction de scindements de Grushko et JSJ : une approche combinatoire Mots Clefs : Théorie géométrique des groupes, groupes hyperboliques, complexes cubiques CAT(0), scindements de Grushko, scindements JSJ Resume : La classe des graphes de groupes libres à groupes d'arêtes cycliques constitue une source importante d'exemples en théorie géométrique des groupes, en particulier dans le cadre des groupes hyperboliques. Un résultat récent de Wilton montre qu'un tel groupe à un bout et hyperbolique contient un sous-groupe de surface, répondant à une question attribuée à Gromov. Cette thèse est consacrée à l'étude de ces groupes lorsqu'ils se présentent comme des groupes fondamentaux de certains complexes carrés à courbure négative ou nulle. Les complexes carrés en question, appelés graphes tubulaires de graphes, sont obtenus en attachant des tubes (un tube est un produit cartésien d'un cercle avec l'intervalle unitaire) à une collection finie de graphes finis. Le but principal de cette thèse est de construire deux décompositions de base pour les groupes fondamentaux de graphes tubulaires de graphes: leur décomposition de Grushko et leur décomposition JSJ. Dans la première partie de la thèse, nous développons un algorithme en temps polynomial, dont l'entrée est un graphe tubulaire de graphes, et qui produit le scindement de Grushko de son groupe fondamental. Comme application, nous obtenons une version alternative d'un algorithme de Stallings, qui prend un ensemble fini de mots W dans un groupe libre F de rang fini, et décide s'il existe ou non un scindement libre de F relatif à W . Dans la deuxième partie de la thèse, nous développons un algorithme en temps doublement exponentiel, dont l'entrée est un graphe tubulaire de graphes avec un groupe fondamental hyperbolique à un bout, et qui produit le scindement JSJ du groupe fondamental. Nous remarquons qu'il s'agit du premier algorithme sur les scindements JSJ de groupes avec une borne effective sur la complexité de temps. La principale raison de l'efficacité de cet algorithme est que certaines propriétés asymptotiques du groupe, qui déterminent si le groupe se scinde au-dessus un sous-groupe cyclique, admettent des caractérisations locales en raison de la structure cubique CAT(0). Comme application de ce résultat, nous obtenons un algorithme en temps doublement exponentiel, dont l'entrée est un groupe libre F de rang fini muni d'un ensemble fini de sous-groupes cycliques W tels que F est librement indécomposable relativement à W , et qui produit le scindement JSJ de F relativement à W . Une conséquence des résultats ci-dessus est que le problème d'isomorphisme pour les groupes considérés se réduit à l'algorithme de Whitehead.

Chapter 1 Introduction

Given a group, a standard question to ask is if the group can be better understood by breaking it up into pieces of simpler groups in a meaningful way. This question has elicited a lot of interest and has been a subject of mathematical research for many decades. In geometric group theory, one often looks at free products with amalgamation and HNN extensions for this purpose.

A group is freely indecomposable if it does not split as a free product of two nontrivial groups. Analogous to the Kneser-Milnor prime decomposition for 3manifolds [START_REF] Milnor | A unique decomposition theorem for 3-manifolds[END_REF], the Grushko decomposition theorem [START_REF] Gruschko | über die Basen eines freien Produktes von Gruppen[END_REF] states that a finitely generated group splits as a free product of a finite rank free group and finitely many freely indecomposable (non-free) groups, and this splitting is essentially unique. The next step is to split a freely indecomposable group over its infinite cyclic subgroups. Zlil Sela [START_REF] Sela | Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups[END_REF] showed that there exists a canonical decomposition of a freely indecomposable torsion-free hyperbolic group over its cyclic subgroups. Since this decomposition was motivated by the so-called JSJ decompositions of 3-manifolds (due to Jaco-Shalen [START_REF] Jaco | A new decomposition theorem for irreducible sufficiently-large 3-manifolds[END_REF] and Johannsen [START_REF] Johannson | Homotopy equivalences of 3-manifolds with boundaries[END_REF]), Sela called it the canonical JSJ decomposition. We discuss JSJ decompositions in Section 1.3 below.

The aim of this thesis is to explain how to construct the Grushko decomposition and the JSJ decomposition of a special class of groups, namely fundamental groups of tubular graphs of graphs, discussed in Section 1.1. These groups have a CAT(0) chapter 1: Introduction cubical structure of dimension two, and a VH structure in the sense of Wise [START_REF] Daniel | Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups[END_REF].

Our approach to the above decomposition problems is geometric and strongly depends on the CAT(0) combinatorial structure of our groups. The algorithm for the construction of the Grushko decomposition runs in polynomial time while the algorithm for the construction of the JSJ decomposition runs in double exponential time.

As a result, one obtains a solution to the isomorphism problem for these groups (Section 1.4).

Application. Let F be a finite rank free group and H a finite family of cyclic subgroups of F . Stallings obtained an algorithm in [START_REF] Stallings | Whitehead graphs on handlebodies[END_REF] that detects whether or not the free group is freely indecomposable relative to H, that is, whether or not there is a free splitting of F in which each element of H conjugates into a vertex group. We give an alternate version of this algorithm in Section 3.5. Further, we also give a way to construct the relative JSJ decomposition of F relative to H in Chapter 6.

We will first introduce the central objects of our study.

Tubular graphs of graphs

Finite graphs of free groups with cyclic edge groups (in the sense of Bass-Serre graphs of groups [START_REF] Serre | Trees[END_REF]) are an important source of examples of hyperbolic groups. By the Bestvina-Feighn combination theorem [START_REF] Bestvina | A combination theorem for negatively curved groups[END_REF], such a group is word-hyperbolic when it does not contain a non-trivial Baumslag-Solitar subgroup. Recently, Wilton [START_REF] Wilton | Essential surfaces in graph pairs[END_REF] showed that a graph of free groups with cyclic edge groups which is one-ended and hyperbolic contains a surface subgroup, answering a question attributed to Gromov.

When the underlying graph is a tree, and in certain other special cases, a graph of free groups with cyclic edge groups can be naturally associated to a compact square complex, which we call a tubular graph of graphs. Tubular graphs of graphs are in fact VH-complexes in which vertical hyperplanes are homeomorphic to circles. A VH-complex, introduced by Wise in his PhD thesis [START_REF] Daniel | Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups[END_REF], is a square complex in which each square has edges which are alternately labelled as vertical and horizontal.

We give precise definitions in Chapter 2.

The universal covers of tubular graphs of graphs are CAT(0) square complexes and our methods strongly depend on this fact. A CAT(0) square complex is a simply connected square complex with the property that there is no triangle in any vertex link.

Fundamental groups of tubular graphs of graphs encompass a fairly large class of groups. For instance, all surface groups and doubles of free groups can be realised as such groups. They also have various interesting properties. For example, they are biautomatic [START_REF] Niblo | The geometry of cube complexes and the complexity of their fundamental groups[END_REF], a-T-menable [START_REF] Niblo | Groups acting on cubes and Kazhdan's property (T)[END_REF] and satisfy the Tits alternative [START_REF] Sageev | The Tits alternative for CAT(0) cubical complexes[END_REF].

A typical example of the groups that we deal with is a group of the form <

a 1 , • • • , a n > <w> * <w > < b 1 , • • • , b m >
, a free product with amalgamation over cyclic groups of finitely generated free groups. The main issue we address is to describe all free and cyclic splittings of such groups.

Our strategy follows 3-manifold theory, where one first cuts a 3-manifold along incompressible spheres to obtain its prime decomposition and then along incompressible tori to obtain its JSJ decomposition. Similarly, we first show how to construct the Grushko decomposition and then the JSJ decomposition by cutting along subspaces which induce free and cyclic splittings respectively.

Free splittings

The first part is devoted to questions of free splittings of fundamental groups of tubular graphs of graphs. We first note that these groups are torsion-free.

By a celebrated theorem of Stallings, a torsion-free finitely generated group is one-ended if and only if it is freely indecomposable [START_REF] Stallings | On torsion-free groups with infinitely many ends[END_REF].

We will use a key result by N. Brady and J. Meier which imposes local conditions on a CAT(0) cube complex that imply that the complex is one-ended.

Theorem 1.2.1. [START_REF] Brady | Connectivity at infinity for right angled Artin groups[END_REF] Let X be a finite connected locally-CAT(0) cube complex. Suppose that (BM1) for each vertex v ∈ X, the link of v is connected and (BM2) for each vertex v ∈ X and each simplex σ ⊂ link(v), the complement of σ is (non-empty and) connected.

Then X is one-ended.

We say that a square complex is Brady-Meier if it satisfies the conditions (BM1) and (BM2) above.

The main result of the first part of the thesis gives a geometric/combinatorial procedure that modifies a given tubular graph of graphs to a homotopy equivalent tubular graph of graphs which is not Brady-Meier if and only if the fundamental group is not one-ended: Theorem 1. [START_REF]) ∂N (σ 2 ), where the labelling is induced by the squares containing e[END_REF]

.2 (Theorem A).

There is an algorithm of polynomial time-complexity which takes a tubular graph of graphs as input and returns a homotopy equivalent tubular graph of graphs which is either a Brady-Meier complex or contains a locally disconnecting edge or vertex which splits the fundamental group as a free product.

The key step in the construction of our algorithm involves a simplification of the input tubular graph of graphs by 'opening-up' at a vertex which does not satisfy (BM2). This opening-up keeps the number of squares in the complex constant, while simplifying its vertex links. We call such an opening procedure as an SL-move (simplified link).

We immediately obtain a partial converse to Theorem 1.2.1: Corollary 1.2.3. A tubular graph of graphs has a one-ended universal cover if and only if it can be modified in finitely many SL-moves to a Brady-Meier tubular graph of graphs with an isomorphic fundamental group.

As a consequence of Theorem A, we have: Corollary 1. [START_REF]) ∂N (σ 2 ), where the labelling is induced by the squares containing e[END_REF]

.4 (Corollary B).

There is an algorithm of polynomial time-complexity which takes as input a tubular graph of graphs and decides whether or not its fundamental group is one-ended. In addition, it returns the Grushko decomposition of the fundamental group.

We point out that our proof does not use Stallings' theorem nor assume the existence of a Grushko decomposition. In fact, our procedure yields a new proof of Stallings' theorem for fundamental groups of tubular graphs of graphs as well as the existence of a Grushko decomposition for these groups.

In fact, we obtain the following analogue of a result in 3-manifold theory due to Jaco [START_REF] Jaco | Three-manifolds with fundamental group a free product[END_REF] which states that if the fundamental group of a compact 3-manifold is a free product, then each free factor is itself the fundamental group of a 3-manifold.

Corollary 1.2.5 (Corollary C). Let X be a tubular graph of graphs with fundamental group G. If G = A * B, then there exist tubular graphs of graphs X 1 and X 2 such that A and B are fundamental groups of X 1 and X 2 respectively. Moreover, X 1 and X 2 can be so chosen such that the total number of squares in X 1 and X 2 is bounded by the number of squares in X.

The Grushko decomposition may be found algorithmically in other situations. Jaco, Letscher and Rubinstein [START_REF] Jaco | Algorithms for essential surfaces in 3-manifolds[END_REF] gave an algorithm of polynomial time-complexity to compute the prime decomposition of a 3-manifold from a triangulation. Gerasimov [START_REF] Gerasimov | Detecting connectedness of the boundary of a hyperbolic group[END_REF] showed that the Grushko decomposition can be computed for hyperbolic groups, but his algorithm is a Turing machine without a solution to the halting problem. Dahmani and Groves [START_REF] Dahmani | Detecting free splittings in relatively hyperbolic groups[END_REF] extended Gerasimov's ideas to groups which are hyperbolic relative to abelian subgroups. Diao and Feighn [START_REF] Diao | The Grushko decomposition of a finite graph of finite rank free groups: an algorithm[END_REF] gave an algorithm for graphs of free groups using cocompact actions of the groups on products of trees as studied by Fujiwara-Papasoglu [START_REF] Fujiwara | JSJ-decompositions of finitely presented groups and complexes of groups[END_REF].

We conclude the first part with another application of our algorithm. As defined by Stallings in [START_REF] Stallings | Whitehead graphs on handlebodies[END_REF], a finite set of words W of a finite rank free group F is separable if there exists a nontrivial free splitting of F such that each word of W conjugates into a free factor. In other words, W is separable if and only if F admits a free chapter 1: Introduction splitting relative to the cyclic subgroups generated by elements of W .

Stallings obtained an algorithm to detect separability in [START_REF] Stallings | Whitehead graphs on handlebodies[END_REF]. He constructs a Whitehead graph for the given set of words in a chosen basis. He then uses a Whitehead automorphism to modify the basis whenever there is a cut vertex in the Whitehead graph to reduce the total length of the given set of words. We give an alternate version of this algorithm using Theorem A. In fact, our method is strongly related to Stallings' method.

Corollary 1.2.6 (Stallings, Corollary D). There exists an algorithm of polynomial time-complexity that takes a finite set of words in a finite rank free group as input and decides whether it is separable.

For our algorithm, we first construct the tubular graph of graphs associated to a 'double' of the free group with the given set of words. In Lemma 3.5.9, we show that that the vertex link of a special vertex in the double that we construct is isomorphic to a Whitehead graph associated to the free group and the given set of words. So far, we are in a similar situation as Stallings. However, we apply the algorithm of Theorem A at this stage, and hence we perform an SL-move if there is a vertex link with a cut vertex, whereas Stallings chooses a Whitehead automorphism.

We then use Wilton's characterization [START_REF] Wilton | One-ended subgroups of graphs of free groups with cyclic edge groups[END_REF] of free splittings of graphs of free groups with cyclic edge groups to conclude that the set of words is separable if the fundamental group of the double is not one-ended.

Cyclic splittings

The second part of the thesis is devoted to the explicit geometric/combinatorial construction of JSJ decompositions of one-ended fundamental groups of tubular graphs of graphs in the hyperbolic case. In order to define a JSJ decomposition, we will need a few definitions.

We adopt Sela's terminology [START_REF] Sela | Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups[END_REF]. Let G be a torsion-free hyperbolic group. A hanging surface subgroup G of G is a subgroup isomorphic to the fundamental group of a surface with boundary such that there exists a graph of groups decomposition of G in which G is a vertex group whose incident edge groups are precisely the peripheral subgroups of G . A maximal hanging surface subgroup is a hanging surface subgroup that is not properly contained in any hanging surface subgroup. A non-cyclic vertex group G of G is rigid if it is elliptic in every cyclic splitting of G.

A subgroup is full (in the sense of Bowditch [START_REF] Bowditch | Cut points and canonical splittings of hyperbolic groups[END_REF]) if it is not properly contained as a finite index subgroup in any subgroup of G.

We are now ready to define JSJ decompositions in the sense of Sela ([Sel97]), modified by Bowditch [START_REF] Bowditch | Cut points and canonical splittings of hyperbolic groups[END_REF].

Definition 1.3.1 (JSJ decomposition). Let G be a torsion-free hyperbolic group. A JSJ splitting of G is a finite graph of groups decomposition of G where each edge group is cyclic and each vertex group is full and of one of the following three types:

1. a cyclic subgroup, 2. a maximal hanging surface subgroup, or 3. a rigid subgroup.

If a vertex v of type (1) has valence one, then the incident edge group does not surject onto the vertex group G v . Moreover, exactly one endpoint of any edge is of type (1) and the edge groups that connect to any vertex group of type [START_REF]) ∂N (σ 2 ), where the labelling is induced by the squares containing e[END_REF] are precisely the peripheral subgroups of that group.

Theorem 1. 3.2 ([Sel97]). Let G be a torsion-free one-ended hyperbolic group, which is not the fundamental group of a closed surface. Then a JSJ decomposition of G exists and is unique.

We are now ready to state our main result.

Theorem 1.3.3 (Theorem 5.6.2). There exists an algorithm of double exponential time-complexity that takes a Brady-Meier tubular graph of graphs with hyperbolic fundamental group G as input and returns a tubular graph of graphs whose graph of groups structure is the JSJ decomposition of G.

Other authors have obtained algorithms to compute JSJ decompositions of groups under different conditions. In [START_REF] Dahmani | The isomorphism problem for all hyperbolic groups[END_REF], Dahmani and Guirardel give an algorithm to compute JSJ decompositions of one-ended hyperbolic groups over maximal virtually cyclic subgroups with infinite centre. In [START_REF] Dahmani | Deciding Isomorphy using Dehn fillings, the splitting case[END_REF], Dahmani and Touikan give an algorithm to compute JSJ decompositions of torsion-free hyperbolic groups over its cyclic subgroups. In [START_REF] Barrett | Computing JSJ decompositions of hyperbolic groups[END_REF], Barrett gives an algorithm to compute JSJ decompositions of one-ended hyperbolic groups over virtually cyclic subgroups. We remark that the time-complexity of these algorithms is not known.

Our approach is combinatorial/geometric. We will now describe this approach briefly.

Coarse behaviour and Brady-Meier complexes

Let X be a tubular graph of graphs (Section 1.1) endowed with its VH strucure.

Each vertical hyperplane of X is a circle (Proposition 2.3.2). If X denotes the CAT(0) universal cover of X, then the vertical hyperplanes of X are lines. Let G denote the one-ended fundamental group of X. By Corollary 1.2.3, we can assume that X is Brady-Meier. Adopting the terminology of Scott and Wall [START_REF] Scott | Topological methods in group theory[END_REF], X has a structure of a graph of spaces (see Section 2.2 for details), where each vertex space is itself a graph. Similarly, X has a structure of a tree of spaces, where each vertex space is a (vertical) tree.

Let L be a subset of X. We will denote by N R (L) the set of all points in X at distance at most R from a point of L. We say L separates X if X \L is not connected.

It coarsely separates X [START_REF] Papasoglu | Splittings and the asymptotic topology of the lamplighter group[END_REF] if there exists R > 0 such that X \ N R (L) contains at least two components which are not contained in N R (L) for any R > 0.

An axis in X of an element g ∈ G is a geodesic line in X that is invariant under the action of the cyclic subgroup < g >. Given g ∈ G, an axis L of g always exists in X [START_REF] Bridson | Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften[END_REF]. If G splits over < g >, then L coarsely separates X (as a consequence of [Pap05, Lemma 1.8]). When L is contained in a vertical tree, the fact that X is a Brady-Meier complex implies that L in fact separates X (Lemma 4.2.15). In the simply connected space X, L separates X if and only if it separates N 1 4 (L) (Lemma 4.2.8).

The quotient of L by < g > is an immersed circle C, which we call a cycle, in X.

The regular neighbourhood of C is the quotient of N 1 4 (L) by the action of < g >.

The fact that L separates N1 4 (L), along with a condition that is satisfied since G splits over < g >, implies the following result: Lemma 1.3.4 (Lemma 4.5.25). C separates its regular neighbourhood.

We need another property to construct the JSJ decomposition. A cyclic subgroup over which G splits is said to be universally elliptic if it is elliptic in the Bass-Serre tree of any cyclic splitting of G [START_REF] Guirardel | JSJ decompositions of groups[END_REF]. The edge groups of the JSJ decomposition are universally elliptic.

Two coarsely separating lines L 1 and L 2 coarsely cross if there exists R > 0 such that

L 1 meets different components of X \ N R (L 2 ) and L 2 meets different components of X \ N R (L 1 ) (Definition 4.3.9). Let L 1 (respectively L 2
) be an axis of g 1 (respectively g 2 ) such that G splits over < g 1 > and < g 2 >. Then < g 1 > is elliptic in the Bass-Serre tree of the splitting over < g 2 > only if L 1 and any translate of L 2 don't coarsely cross (Lemma 4.6.1). This property has a local characterization in the Brady-Meier complex X: Proposition 1.3.5 (Proposition 4.3.2). Two separating lines L 1 and L 2 coarsely cross if and only if 1. L 1 ∩ L 2 is non-empty and compact, and

2. L 2 meets two components of N1 4 (L 1 ∩ L 2 ) \ L 1 .

Repetitive cycles and JSJ splittings

In Section 4.7, we introduce an important notion, namely repetitivity, that bounds the length of a cycle that induces a universally elliptic splitting. Let C denote a lift of a cycle C in X.

Definition 1.3.6 (Definition 4.7.2, Lemma 4.7.4). A cycle C is k-repetitive if C is a separating line and there exists an edge e in X and distinct elements g

1 , • • • , g k ∈ G chapter 1: Introduction such that 1. each translate g i C contains e,
2. the distance between e and g i e is strictly less than the length of C, and 3. any two squares s and s that contain e are either separated by all translates g i C or by none of them.

There are two important reasons for defining repetitive cycles. The first reason is that any cycle that is longer than a certain bound is k-repetitive (Proposition 4.7.9).

Here, the bound depends only on k and the number of squares of X.

The second reason is the following: Proposition 1.3.7 (Proposition 4.8.1). Let C be a k-repetitive cycle with k ≥ 3.

Suppose that π 1 (C) is a maximal cyclic subgroup of G. Then there exists a periodic separating line L in X such that L and C coarsely cross.

This implies that π 1 (C) conjugates into a hanging surface subgroup of the JSJ splitting of G, by Proposition 5.30 of [START_REF] Bowditch | Cut points and canonical splittings of hyperbolic groups[END_REF]. Hence, π 1 (C) is not universally elliptic.

Therefore, the length of a cycle which induces a universally elliptic cyclic subgroup is bounded. This leads to the following result: Theorem 1.3.8 (Theorem 4.9.1). There exists an algorithm of double exponential time-complexity that takes a Brady-Meier tubular graph of graphs with hyperbolic fundamental group G as input and returns a finite list of splitting cycles that contains all universally elliptic subgroups of G upto commensurability.

Obtaining a JSJ complex

In Chapter 5, we modify the given tubular graph of graphs X to a tubular graph of graphs X jsj such that the graph of groups structure of X jsj is the JSJ decomposition of G.

The first step involves modifying the initial tubular graph of graphs X to a tubular graph of graphs X by cutting along the finite list of cycles supplied by Theorem 1.3.8.

We do this cutting procedure using the machinery of spaces with walls [START_REF] Haglund | Simplicité de groupes d'automorphismes d'espaces à courbure négative[END_REF].

The vertex set of X is a space with walls, with walls defined by its vertical and horizontal hyperplanes. We enrich the wall set by adding lifts of cycles supplied by Theorem 1.3.8. The square complex dual to this new space with walls is X (see Section 5.3).

In the second step, we perform a simplification on X by removing tubes which are attached to cyclic vertex graphs on both sides. Call the new tubular graph of graphs as X . In Proposition 5.4.3, we show that each edge group of the JSJ decomposition of G is a conjugate of an edge group of the underlying graph of groups of X .

Thus, an edge stabiliser of the underlying tree of X is either an edge stabiliser of the JSJ tree, or a cyclic subgroup that conjugates into a maximal hanging surface subgroup of the JSJ splitting. So what remains is to identify the maximal surface subgroups that appear as vertex groups in the JSJ decomposition.

Identifying surfaces

We give a criterion to identify surfaces in the Brady-Meier setup. A vertex graph of a tubular graph of graphs is a surface graph if the fundamental group of the graph is a surface group whose peripheral subgroups are precisely the incident edge subgroups. Then Lemma 1.3.9 (Lemma 5.5.2). A vertex graph of a Brady-Meier tubular graph of graphs is a surface graph if and only if every edge of its double is contained in exactly two squares.

Armed with this result, we remove tubes in X which are attached to surface graphs on both sides. The resulting tubular graph of graphs will then have the JSJ decomposition as its underlying graph of groups, proving the main result (Theorem 1.3.3).

Relative JSJ decompositions

Let H be a family of subgroups of a group G. A splitting of G relative to H is a graph of groups decomposition of G in which each element of H is elliptic.

A relative JSJ splitting of a finite rank free group F relative to a family H of maximal cyclic subgroups is a graph of groups splitting of F relative to H that satisfies the conditions of a JSJ decomposition (Definition 1.3.1).

In [START_REF] Christopher | Splitting line patterns in free groups[END_REF]Theorem 4.25], Cashen shows that a relative JSJ splitting exists and is unique.

As an application of our algorithm to construct the JSJ decomposition (Theorem 1.3.3), we obtain an algorithm to construct the relative JSJ decomposition: Theorem 1.3.10 (Theorem 6.0.3). There exists an algorithm of double exponential time-complexity that takes a finite rank free group F and a finite family of maximal cyclic subgroups H such that F is freely indecomposable relative to H as input and returns the relative JSJ decomposition of F relative to H.

Our approach is to construct a Brady-Meier tubular graph of graphs X such that F is the fundamental group of a vertex graph of X and the incident edge groups are precisely members of H (see Chapter 6 for details). The construction ensures that π 1 (X) is hyperbolic. The algorithm of our main result (Theorem 1.3.3) then constructs the JSJ decomposition of π 1 (X), and thus the relative JSJ of (F, H).

The isomorphism problem

The isomorphism problem is the algorithmic problem of deciding whether two finite presentations of groups present isomorphic groups [START_REF] Dehn | über unendliche diskontinuierliche Gruppen[END_REF].

An important consequence of the work done in this thesis is that the isomorphism problem for hyperbolic fundamental groups of tubular graphs of graphs is reduced to the Whitehead algorithm ( [START_REF] Whitehead | On equivalent sets of elements in a free group[END_REF]):

Let G 1 and G 2 be hyperbolic fundamental groups of two tubular graphs of graphs.

Using the algorithm of Corollary 1.2.4, we can construct tubular graphs of graphs which give Grushko decompositions of G 1 and G 2 . By the uniqueness of the Grushko decomposition, G 1 and G 2 are isomorphic if and only if there is a one-to-one correspondence between the vertex groups of their Grushko decompositions with an isomorphism between the corresponding vertex groups. The free groups in the Grushko decompositions have the same rank if and only if the tubular graphs of graphs which represent these free groups can be modified to graphs with the same number of edges outside a maximal tree. This is straightforward. It remains to check if the one-ended factors of the Grushko decomposition are isomorphic.

So assume that G 1 and G 2 are one-ended. Using Theorem 1.3.3, we can construct the JSJ decomposition of G 1 and G 2 . Then G 1 and G 2 are isomorphic if and only if there is a one-to-one correspondence between the vertex groups of their JSJ decompositions such that the corresponding vertex groups are isomorphic with the isomorphism respecting the incident edge groups. But all vertex groups are free groups and their incident edge groups are cyclic subgroups. The Whitehead algorithm [START_REF] Whitehead | On equivalent sets of elements in a free group[END_REF] precisely decides if there exists an isomorphism between free groups that takes one finite set of cyclic subgroups to another.

Research directions

We list a few directions in which the current work can be taken forward.

1. One question is to construct a JSJ decomposition of the fundamental group G of a tubular graph of graphs when G is not hyperbolic. In the hyperbolic case, each edge group is maximal cyclic in at least one of the vertex groups at the endpoints of the edge. This is not true when G is not hyperbolic.

Another difficulty is to decide when a cyclic subgroup conjugates into a surface subgroup. We believe that the methods used in this thesis can be extended to the non-hyperbolic case as well.

2. A second question is whether it is possible to give an algorithm of bounded time-

Introduction (en français)

Étant donné un groupe, une question standard à poser est de savoir si le groupe peut être mieux compris en le scindant en sous-groupes plus simples. Cette question a suscité beaucoup d'intérêt et fait l'objet de recherches en mathématiques depuis plusieurs décennies. Pour cela, en théorie geométrique des groupes, on se penche souvent sur les produits libres amalgamés et sur les extensions HNN.

Un groupe est librement indécomposable s'il ne se scinde pas en un produit libre de deux groupes non triviaux. Comme la décomposition primaire de Kneser-Milnor pour les 3-variétés [START_REF] Milnor | A unique decomposition theorem for 3-manifolds[END_REF], le théorème de décomposition de Grushko [START_REF] Gruschko | über die Basen eines freien Produktes von Gruppen[END_REF] indique qu'un groupe de type fini se scinde en un produit libre d'un groupe libre de rang fini et d'un nombre fini de groupes librement indécomposables. De plus, ce scindement est essentiellement unique. L'étape suivante consiste en l'etude des scindements d'un groupe librement indécomposable au-dessus de ses sous-groupes cycliques infinis. Sela [START_REF] Sela | Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups[END_REF] a montré qu'il existe un scindement canonique d'un groupe hyperbolique sans torsion librement indécomposable au-dessus de ses sous-groupes cycliques. Puisque ce scindement était motivé par les décompositions JSJ des 3-variétés (d'après Jaco-Shalen [START_REF] Jaco | A new decomposition theorem for irreducible sufficiently-large 3-manifolds[END_REF] et Johannsen [START_REF] Johannson | Homotopy equivalences of 3-manifolds with boundaries[END_REF]), Sela l'appelait le scindement JSJ canonique. Nous discuterons les scindements JSJ en Section 1.8 ci-dessous.

Le but de cette thèse est d'expliquer comment construire le scindement de Grushko et le scindement JSJ d'une classe particulier de groupes, à savoir des groupes fondamentaux de graphes tubulaires de graphes, discutés en Section 1.6. Ces groupes ont une structure CAT(0) cubique de dimension deux, et possèdent une structure VH chapter 1: Introduction au sens de Wise [START_REF] Daniel | Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups[END_REF]. Notre approche pour résoudre des problèmes de scindement ci-dessus est géométrique, et dépend fortement de la structure combinatoire CAT(0) de nos groupes. L'algorithme pour la construction du scindement de Grushko s'exécute en temps polynomial tandis que l'algorithme pour la construction du scindement JSJ s'exécute en temps doublement exponentiel.

Par conséquent, on obtient une solution au problème d'isomorphisme pour ces groupes (Section 1.9).

Application. Soient F un groupe libre de rang fini et H une famille finie de sous-groupes cycliques de F . Stallings a obtenu un algorithme [START_REF] Stallings | Whitehead graphs on handlebodies[END_REF] qui détecte si le groupe libre est librement indécomposable relativement à H, c'est-à-dire s'il y a ou non un scindement libre de F dans lequel chaque élément de H se conjugue dans un groupe de sommet. Nous donnons une version alternative de cet algorithme en Section 3.5. De plus, nous donnons un moyen de construire le scindement JSJ de F relatif à H en Chapitre 6.

Nous allons d'abord présenter les objets centraux de notre étude.

Graphes tubulaires de graphes

Les graphes finis de groupes libres à groupes d'arêtes cycliques (au sens de Bass-Serre [START_REF] Serre | Trees[END_REF]) sont une source importante d'exemples de groupes hyperboliques. Par le théorème de combinaison de Bestvina-Feighn [START_REF] Bestvina | A combination theorem for negatively curved groups[END_REF], un tel groupe est hyperbolique s'il ne contient pas un sous-groupe Baumslag-Solitar non-trivial. Récemment, Wilton [START_REF] Wilton | Essential surfaces in graph pairs[END_REF] a montré qu'un graphe de groupes libres aux groupes d'arêtes cycliques ayant un bout et hyperbolique, contient un sous-groupe de surface, répondant à une question attribuée à Gromov.

Lorsque le graphe sous-jacent est un arbre, et dans certains autres cas particuliers, un graphe de groupes libres aux groupes d'arêtes cycliques peut être naturellement associé à un complexe carré compact, que nous appelons un graphe tubulaire de graphes. Les graphes tubulaires des graphes sont en fait des complexes VH dans lesquels les hyperplans verticaux sont homéomorphes à des cercles. Un complexe VH, introduit par Wise dans sa thèse [START_REF] Daniel | Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups[END_REF], est un complexe carré dans lequel chaque carré a des arêtes qui sont alternativement étiquetées comme verticales et horizontales. Nous donnons des définitions précises en Chapitre 2.

Les rêvetements universels des graphes tubulaires de graphes sont des complexes carrés CAT(0) et nos méthodes dépendent fortement de ce fait. Un complexe carré CAT(0) est un complexe carré simplement connexe avec la propriété qu'il n'y a pas de triangles dans les links de sommets.

Les groupes fondamentaux de graphes tubulaires de graphes incluent une classe assez grande de groupes. Par exemple, tous les groupes de surface et les doubles de groupes libres (le long de sous-groupes cycliques) peuvent être réalisés en tant que tels groupes. Ils possèdent des propriétés intéressantes. Par exemple, ils sont bi-automatiques [START_REF] Niblo | The geometry of cube complexes and the complexity of their fundamental groups[END_REF] et satisfont l'alternative de Tits [START_REF] Sageev | The Tits alternative for CAT(0) cubical complexes[END_REF].

Un exemple typique de groupes que nous traitons dans cette thèse est un groupe

de la forme < a 1 , • • • , a n > * <w>=<w > < b 1 , • • • , b m >.
Le problème principal que nous abordons est de décrire tous les scindements libres et cycliques de ces groupes.

Notre stratégie suit la théorie des 3-variétés, où l'on coupe d'abord une 3-variété le long de sphères incompressibles pour obtenir sa décomposition primaire et ensuite le long de tores incompressibles pour obtenir sa décomposition JSJ. De la même façon, nous montrons d'abord comment construire le scindement de Grushko puis le scindement JSJ en coupant le long de sous-espaces qui induisent respectivement des scindements libres et cycliques.

Scindements libres

La première partie est consacrée à des questions de scindements libres de groupes fondamentaux de graphes tubulaires de graphes. Notons d'abord que ces groupes sont sans torsion. Corollaire 1.7.5 (Corollaire C). Soit X un graphe tubulaire de graphes, de groupe fondamental G. Si G = A * B, alors il existe des graphes tubulaires de graphes X 1 et X 2 tels que A et B sont des groupes fondamentaux de X 1 et X 2 respectivement. De plus, X 1 et X 2 peuvent être choisis de telle sorte que le nombre total de carrés dans X 1 et X 2 est borné par le nombre de carrés dans X.

La décomposition de Grushko peut être trouvée de manière algorithmique dans d'autres situations. Jaco, Letscher et Rubinstein [START_REF] Jaco | Algorithms for essential surfaces in 3-manifolds[END_REF] 

Chapter 2

The setup

We will briefly describe our objects of study in this chapter.

VH-complexes

The main objects of our study, tubular graphs of graphs, form a subclass of square complexes known as VH-complexes.

The notion of VH-complexes was first introduced in [START_REF] Daniel | Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups[END_REF]. Details can also be found in [START_REF] Daniel | Subgroup separability of the figure 8 knot group[END_REF].

Definition 2.1.1. A square complex is a two dimensional CW complex in which each 2-cell is attached to a combinatorial loop of length 4 and is isometric to the standard Euclidean unit square

I 2 = [0, 1] 2 .
All our square complexes will be locally finite.

Definition 2.1.2 (Vertex links). Let v ∈ X be a vertex of a square complex. The link of v is a graph whose vertex set is the set {e | e is a half-edge incident at v}.

The number of edges between two vertices e, f is the number of squares of X in which e, f are adjacent half-edges.

Definition 2.1.3 (CAT(0) square complexes). A square complex is nonpositively curved if the length of a closed path in the link of any of its vertices is at least 4. A chapter 2: The setup nonpositively curved square complex is said to be CAT(0) if it is simply connected.

Definition 2.1.4 ([Wis96]

). A VH-complex is a square complex in which every 1-cell is labelled as either vertical or horizontal in such a way that each 2-cell is attached to a loop which alternates between horizontal and vertical 1-cells.

The labelling of the edges of a VH-complex as horizontal and vertical induces a labelling of vertices in the link of any vertex as horizontal and vertical, thus making the link a bipartite graph.

Remark 2.1.5. Since the link of any vertex of a VH-complex is bipartite, the length of a closed path is even. Thus a VH-complex is nonpositively curved if there exists no bigon in any vertex link.

Graphs of spaces

Graphs of groups are the basic objects of study in Bass-Serre theory, first explained by Serre [START_REF] Serre | Trees[END_REF].

It was studied from a topological perspective in [START_REF] Scott | Topological methods in group theory[END_REF] by looking at graphs of spaces instead of graphs of groups. We will adopt this point of view.

Definition 2.2.1. By a graph of spaces, we mean the following data: Γ is a connected graph, called the underlying graph. For each vertex s (edge a) of Γ, X s (X a ) is a topological space. Further, whenever a is incident to s, ∂ a,s : X a → X s is a π 1 -injective continuous map. The geometric realisation of the above graph of spaces is the space X = ( s∈Γ (0) X s a∈Γ (1) X a × [0, 1])/ ∼, where (x, 0) and (x, 1) are identified respectively with ∂ a,s (x) and ∂ a,s (x). Here, s and s are the two endpoints of a.

Note that the universal cover of X has the structure of a tree of spaces, a graph of spaces whose underlying graph is a tree. Moreover, the underlying tree is the Bass-Serre tree of the associated graph of groups structure of X [SW79].

Tubular graphs of graphs

Definition 2.3.1. A tubular graph of graphs is a finite graph of spaces in which each vertex space is a finite connected simplicial graph and each edge space is a simplicial graph homeomorphic to a circle. Further, the attaching maps are simplicial immersions. We will always assume that the underlying graph is connected.

As a consequence of the definition, we have [START_REF] Daniel | Subgroup separability of the figure 8 knot group[END_REF]). The geometric realisation of a tubular graph of graphs is a compact, connected nonpositively curved VH-complex whose vertical hyperplanes are circles.

Proposition 2.3.2 ([
Proof. Indeed, the geometric realisation X is a square complex whose cell structure we describe below.

Every vertex graph X s inherits the cell structure induced by the graph: its vertices are X 0 s and its edges are X 1 s . All edges X 1 s are vertical.

Given an edge graph X a (homeomorphic to a circle), X a × [0, 1] has the product cell structure: its vertices are X 0 a × {0, 1}, its vertical edges are X 1 a × {0, 1} and its horizontal edges are X 0 a × [0, 1].

Since the underlying graph along with all vertex graphs are assumed to be connected, X is connected. X is compact as the underlying graph and all vertex and edge graphs are finite.

Thus X is a compact and connected VH-complex. A vertical hyperplane in X is a hyperplane which is dual to a horizontal edge of X. Since the edge spaces are circles, vertical hyperplanes of X are circles.

Finally, X is nonpositively curved. Indeed, since the attaching maps of edge graphs are immersions, two adjacent edges of an edge graph do not have the same image.

This removes the possibility of the existence of cycles of length 2 in vertex links.

A tube in a tubular graph of graphs X is the image of the Cartesian product of an edge graph and the unit interval in the geometric realisation of X. Convention. Throughout this text, we will use the same notation for a graph of graphs and the VH-complex which is its geometric realisation. X will denote a tubular graph of graphs with underlying graph Γ X . Let s ∈ Γ X be a vertex. Then X s will denote the vertex graph at s and if a is an edge of Γ X , we will denote the edge graph at a by X a .

Definition 2.3.3 (Thickness). For an edge e in X, the thickness of e is the number of squares of X which contain e.

We will define below notions of "hanging trees" and "rudimentary edges" in tubular graphs of graphs. One can always simplify a given tubular graph of graphs by removing hanging trees and rudimentary edges.

Definition 2.3.4. Let X s be a vertex graph of a tubular graph of graphs X. We say that X s (and hence X) has a hanging tree if X s is a wedge of two subgraphs A and B such that one of them, say A, is a tree. Here, A is called a hanging (sub)tree of X s (see Figure 2.1).

Remark 2.3.5. Since the attaching maps of edge graphs are immersions, we observe that no edge of a hanging tree is in the image of any attaching map. In other words, an edge in a hanging tree of X has thickness 0.

Observe that Lemma 2.3.6. A tubular graph of graphs is homotopy equivalent to a tubular graph of graphs with no hanging trees.

Definition 2.3.7. Let e be an edge in X s . We call e a rudimentary edge if X s is homeomorphic to S 1 and e has thickness 1.

Lemma 2.3.8. A tubular graph of graphs is homotopically equivalent to a tubular graph of graphs with no rudimentary edges.

Proof. Let X be a tubular graph of graphs. If X has no rudimentary edges, we have If an edge e in a vertex graph X s of X is a rudimentary edge, then all edges in X s are rudimentary edges: First note that X s is a circle, by definition. Further, the fact that the attaching maps of edge graphs to X s are graph immersions implies that the thickness of every edge of X s is one.

Thus there exists exactly one edge a incident to s in the underlying graph Γ X and the attaching map from X a to X s is a graph isomorphism (see Figure 2.2). Then X is homotopic to X obtained by removing the tube containing X a . Γ X is the graph obtained from Γ X by collapsing a = (s, s ) to s . Repeating this procedure at each rudimentary edge gives the result.

The following definition, introduced by Brady and Meier (see Theorem 1.2.1 above) is crucial throughout this work.

Definition 2.3.9 ([BM01]). A square complex is said to be Brady-Meier if 1. the link of each vertex is connected and 2. for each vertex, the complement of any simplex in the vertex link is connected.

Observe that the Brady-Meier property is local. Thus, Vertex links and ends

Ends

The theory of ends of a topological space was first studied by Hans Freudenthal in his thesis [START_REF] Freudenthal | Über die enden topologischer räume und gruppen[END_REF]. The notion we require for this work is that of "connectivity at infinity", or "one-endedness". We will use the following definition due to Specker (see [START_REF] Specker | Die erste Cohomologiegruppe von Überlagerungen und Homotopie-Eigenschaften dreidimensionaler Mannigfaltigkeiten[END_REF] or [START_REF] Raymond | The end point compactification of manifolds[END_REF]).

Definition 3.1.1. A locally finite CW complex X is one-ended if for every compact set K, X \ K has exactly one unbounded component.

It is a well-known fact that being one-ended is a quasi-isometry invariant (see Proposition I.8.29 of [START_REF] Bridson | Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften[END_REF], for instance). Then by an application of the Švarc-Milnor Lemma (see Proposition I.8.19 of [START_REF] Bridson | Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften[END_REF]), for instance), we have the following definition of one-endedness of a finitely presented group.

Proposition 3.1.2. Let G be a finitely presented group and X be a finite connected

CW complex such that G ∼ = π 1 (X)
. G is one-ended if and only if X is one-ended.

Not one-ended

In this section, we will collect a few results that lead to a group being not one-ended.

chapter 3: Vertex links and ends

We first recall a useful definition.

Definition 3.2.1. Let Z be a CW complex and v ∈ Z be a vertex. The set star(v) is defined as the set of all cells σ such that v ∈ σ.

Remark 3.2.2. We note that the open star of v, denoted by s tar(v), is a contractible open neighbourhood of v which is evenly covered in the universal cover of Z.

We first recall a classical result due to Hopf [START_REF] Hopf | Enden offener Räume und unendliche diskontinuierliche Gruppen[END_REF]:

Lemma 3.2.3.
Let G be a torsion-free finitely generated group and G = H * K be a nontrivial free splitting of G. Then G is not one-ended.

Corollary 3.2.4. Let G = A * 1 be an HNN extension of a finitely generated group A over its trivial subgroup. Then G is not one-ended.

Proof. By definition, an HNN extension of A over the trivial subgroup adds a free generator to A. This implies that G = A * Z. The result follows as Z is not one-ended.

As a consequence, we obtain the following two standard results (Lemma 3.2.5 and Lemma 3.2.6).

Lemma 3.2.5. Let Z be a connected CW complex. Let c ∈ Z be a vertex or the midpoint of an edge. Suppose that Z \ {c} is not connected, i.e., Z = Z 1 ∨ {c} Z 2 , and that neither Z 1 nor Z 2 is simply connected. Then Z is not one-ended.

Lemma 3.2.6. Let Z be a connected CW complex. Let c ∈ Z be a vertex or the midpoint of an edge. Let G = π 1 (Z, c). Suppose that star(c) \ {c} is not connected, but Z \ {c} is connected. Then Z is not one-ended.

Proposition 3.2.7. Let X be a tubular graph of graphs with no hanging trees.

Suppose there exists an edge of thickness 0. Then X is not one-ended.

Proof. Since all horizontal edges have thickness 2, an edge of thickness 0 has to be vertical. Let e in X s be such an edge. Let c be the midpoint of e.

If X \ {c} is connected, then by Lemma 3.2.6, X is not one-ended.

If X \{c} is not connected, then X is a wedge of two subcomplexes (after subdivision).

Let X = X 1 ∨ c X 2 and let X s = A ∨ c B be the induced decomposition of X s . Since e X s X a e X X s X a X f X s X a X Figure 3
.1: Removing squares containing thickness-one edges.

is not in a hanging tree, neither A nor B is a tree. Thus, X 1 and X 2 are not simply connected (because π 1 (A) → π 1 (X 1 ) and π 1 (B) → π 1 (X 2 ) in the graph of groups setup [START_REF] Serre | Trees[END_REF]). By Lemma 3.2.5, X is not one-ended.

Proposition 3.2.8. Let X be a tubular graph of graphs with no hanging trees and no rudimentary edges. Suppose there exists an edge of thickness 1. Then X is not one-ended.

Proof. By Proposition 3.2.7, we can first assume that there is no edge of thickness 0. Let e in X s be an edge of thickness 1. Since e is not a rudimentary edge, first observe that X s is not a circle. Since there are no edges of thickness 0, there are at least two tubes attached to X s .

Let Q be the lone square containing e. Then X is homotopic to X , the complex obtained by removing the open square Q and the open edge e. Let f be an edge adjacent to e in Q. In X , since the horizontal edge f (Figure 3.1) is of thickness 1, we can similarly remove the square containing f . We repeat this process consecutively for all squares intersecting vertices of X a until we are left with just one vertex, to obtain X . X has no hanging trees since X had neither hanging trees nor rudimentary edges, but now has an edge of thickness 0. Observe that X is of the same homotopy type as X . By Proposition 3.2.7, X is not one-ended.

We wish to prove now that if all edges of X have thickness at least two, then X is one-ended whenever every vertex of X has a connected vertex link ((BM1)). In order to do so, we will need the following result.

Lemma 3.2.9. Let Z be a compact, connected nonpositively curved square complex which has at least one edge. If each edge of Z is contained in at least two squares, then π 1 (Z) is infinite.

We will first recall the definition of hyperplanes. We adopt below the terminology of elementary parallel and parallelism from [START_REF] Haglund | Isometries of CAT(0) cube complexes are semi-simple[END_REF].

Definition 3.2.10 ([Sag95]
). Let X be a square complex. Say two edges e and f are elementary parallel if they are opposite edges of some square of X. We denote by parallelism the equivalence relation on the set of edges of X generated by elementary parallelism.

A mid-edge of a square s is an edge (after subdivision of s) running through the Proof of Lemma 3.2.9. Let e be an edge of Z . The hyperplane h e dual to e is a finite connected graph in which every vertex is of valence at least 2, by the hypothesis on Z . This implies that π 1 (h e ) is a free group of positive rank. To see this, first start from a vertex, say v 1 ∈ h e (after subdivision). Let e 1 = (v 1 , v 2 ) be an edge at v 1 .

Since v 2 is of valence at least 2, let e 2 = (v 2 , v 3 ) be another edge at v 2 . Continuing in this manner, since there are only finitely many vertices, by the pigeon-hole principle, there exists e n = (v n , v) where v = v i , for some i < n, giving a cycle in h e .

It is a standard result that any lift of h e embeds as a hyperplane in Z, since hyperplanes of CAT(0) square complexes are convex subcomplexes (see Appendix B of [START_REF] Haglund | Special cube complexes[END_REF], for example). This implies that π 1 (h e ) → π 1 (Z). Hence the result.

We are now ready for the case when all edges of X have thickness at least 2.

Proposition 3.2.11. Let X be a tubular graph of graphs. Let each edge have thickness at least 2. If X is one-ended, then the link of every vertex of X is connected.

Recall that X satisfies the first Brady-Meier criterion (BM1) if every vertex link is connected.

Proof. Let u ∈ X s be a vertex whose link is not connected. This implies that star(u) \ {u} is not connected. If X \ {u} is connected, then by Lemma 3.2.6, X is not one-ended.

Suppose X\{u} is not connected. Then X = X 1 ∨ u X 2 . By Lemma 3.2.9, both X 1 and X 2 have nontrivial fundamental groups. The result follows from Lemma 3.2.5.

Lemma 3.2.12. If X is not equal to a vertex and satisfies the Brady-Meier criteria ((BM1) and (BM2)), then each edge of X has thickness at least two.

Proof. Indeed, there cannot be hanging trees as any vertex v of a hanging tree with valence at least two is such that link(v) is not connected. There cannot be a rudimentary edge because of the following: If e = (u, v) in X s is a rudimentary edge, then η e ∈ link(u), the vertex induced by e, has valence one and the complement in link(u) of η x is disconnected, where η x is the sole adjacent vertex of η e . Finally, there can be no other edge of valence zero by Proposition 3.2.7 and none of thickness one by Proposition 3.2.8.

The second Brady-Meier criterion

In this section, we assume that each edge of X has thickness at least two and every vertex link is connected, but X does not satisfy the second Brady-Meier criterion (BM2). We will explain how to simplify X in this case by defining an opening of the complex at a vertex whose link does not satisfy (BM2).

Let u ∈ X s ⊂ X be a vertex such that for a simplex (vertex or edge) σ ⊂ link(u),

link(u) \ σ is not connected. A vertex of link(u) is vertical (horizontal) if it is a vertical (horizontal) half-edge incident to u in X.
Observe that the horizontal vertices in the link of any vertex are of valence exactly two. Also, link(u) is not a segment of length two as each edge of X is contained in at least two squares. This leads us to a lemma: 

Lemma 3.
η f 1k 1 η f 21 η f 2k 2 η f n1 η f nkn C 1 C 2 C n Figure 3.2: link(u)
Proof. If a vertical vertex of link(u) disconnects link(u), then clearly, X does not satisfy (BM2).

For the converse, there are two cases:

Case 1. Suppose a vertex v of link(u) disconnects link(u). Then either this vertex is vertical or it is horizontal. If it is vertical, we have nothing to prove. If it is horizontal, let v 1 and v 2 be the two vertical vertices adjacent to v. Then any path between v 1 and v 2 meets v. Let C 1 , C 2 be the two components of link(u) \ {v} with

v i ∈ C i . Since link(u)
is not a segment of length 2, one of the components, say C 1 , is not a singleton. Let x = v 1 ∈ C 1 be a vertex. Then any path in link(u) from x to v 2 meets v, and hence meets v 1 . Thus v 1 disconnects link(u).

Case 2. Suppose an edge e of link(u) disconnects link(u). Let v be the unique horizontal vertex incident to e. Then v disconnects link(u). The proof then follows from the first case.

Let e be a vertical edge incident to u and let η e denote the half-edge of e in link(u).

Suppose that η e disconnects link(u). Let C 1 , • • • , C n denote maximal connected subgraphs of link(u) \ η e (Figure 3.2), where maximality is by inclusion.

Since X s is a simplicial graph, the star of u in X s is a tree (Figure 3.3).

We now explain how to open star(u):

Definition 3.3.2.
We define a tree T u (Figure 3.3) as follows: There is one 'primary' vertex v out of which emit n edges e 1 , • • • , e n (corresponding to the components

u v x 11 x 1k 1 x 21 x 2k 2 x n1 x nkn e f 11 f 1k 1 f 21 f 2k 2 f n1 f nkn (a) star(u) u 1 u 2 u n v x 11 x 1k 1 x 21 x 2k 2 x n1
x nkn e 2 e 1 e n f 11

f 1k 1 f 21 f 2k 2 f n1 f nkn (b) T u Figure 3.3: Opening star(u) to T u C 1 , • • • , C n ).
For each i, we label the other endpoint of e i as u i . From each u i , we

have k i branches to the vertices x i1 , • • • , x ik i ,
where k i is the number of vertices adjacent to η e in C i (compare with star(u)). We label these edges as

f i1 , • • • , f ik i .
We also define a new graph X s by replacing s tar(u) by T u , with the obvious identifications.

Definition 3.3.3. The graph X s is called an opened-up graph of X s .
Clearly, X s is connected, X s \ s tar(u) → X s and T u → X s . There is a natural surjective map from X s to X s which sends each e i in T u to e. Further, Lemma 3.3.4. The graphs X s and X s are homotopy equivalent.

Construction. We now construct a new tubular graph of graphs X with the same underlying graph Γ X as X and the only change is that X s replaces X s . An attaching map of an edge graph is unchanged if u is not in the image, as X s \ s tar(u) embeds in X s . If u is in the image, we do the obvious modification (see Figure 3.4 for an illustration).

Definition 3.3.5. The tubular graph of graphs X is called an SL-complex (simplified link) of X.

There exists a natural map from X to X. Further, Proposition 3.3.6. The tubular graphs of graphs X and X are homotopy equivalent.

Lemma 3.3.7. X is not isomorphic to X as square complexes.

Proof. Since the number of edges of X s is strictly greater than the number of edges Lemma 3.3.8. Every edge of X belongs to at least one square and the number of squares in X is the same as the number of squares in X.

Proof. Every horizontal edge of X belongs to two squares by definition. If a vertical edge belongs to X ϕ , with ϕ = s, then since the attaching maps are unchanged from X, and each edge of X belonged to at least two squares, this vertical edge also belongs to at least two squares. The same argument works for edges in X s not in T u . Since f ij belongs to at least two squares, so does f ij , by the way the attaching maps are defined. The edge e i belongs to a square if and only if a pair of adjacent edges y λ 1 , y λ 2 in some edge graph is mapped to the pair e, f ij for some j. But since there is an edge between η e and η f ij in link(u), such a pair exists.

The number of squares in X is equal to the total number of edges in the cyclic edge graphs, which is equal to the number of squares of X.

Remark 3.3.9. It is possible to have edges of thickness one in X even though there aren't any such edges in X. The only edges that can be of thickness one are the ones that are incident to some u i . However, these cannot be rudimentary edges as no edge of X s was of thickness one to begin with. 

The Algorithm

Theorem A (Main Theorem).

There is an algorithm of polynomial time-complexity that takes a tubular graph of graphs as input and returns a homotopy equivalent tubular graph of graphs which is either Brady-Meier, or is a point, or is wedge-like.

Proof. We will prove the theorem by constructing the algorithm. Start with a tubular graph of graphs X = X 0 . Let k ∈ N ∪ {0}.

Step 1 Check if X k has hanging subtrees. If yes, collapse each hanging subtree to a point and call the new complex as X k . Go to the next step.

Step 2 Check if X k has a rudimentary edge. If yes, remove tubes attached to rudimentary edges as in Lemma 2.3.8 and call the resulting complex also as X k .

Go to the next step.

Step 3 Check if X k has at least one square. If yes, go to the next step. Otherwise, X k is either a point or wedge-like. Stop.

Step 4 Check if X k has an edge of thickness zero. If yes, X k is wedge-like. Stop. If not, go to the next step.

Step 5 Check if X k has an edge of thickness one. If yes, stop. If not, go to the next step.

Step 6 Check if the link of a vertex of X k is not connected. If yes, stop. If not, go to the next step.

Step 7 Check if X k satisfies both (BM1) and (BM2). If yes, stop. If not, go to the next step.

Step 8 Replace X k by X k+1 = X k , an SL-complex of X k , and go to Step 5.

We observe that (i) X k and X k+1 are not isomorphic cube complexes (Lemma 3.3.7). Further, for k = k , X k X k , as each opening increases the number of edges.

(ii) X k and X k+1 have the same number of squares (Lemma 3.3.8).

(iii) There is no edge of thickness zero in any X k for k ≥ 1 (Lemma 3.3.8).

(i) implies that the algorithm does not return a tubular graph of graphs from an earlier step. Since there are only a finite number of connected square complexes with a fixed number of squares (ii) and no thickness zero edges (iii), the algorithm cannot proceed indefinitely.

Checking if a graph has hanging trees can be performed in linear time in the number of vertices and edges of X [START_REF] Hopcroft | Algorithm 447: Efficient algorithms for graph manipulation[END_REF]. Similarly, checking for edges of thickness zero or one or for rudimentary edges takes linear time in the number of edges and squares of X. Thus steps 1 through 4 run in linear time in the number of vertices, edges and squares of X.

From step 5 onwards, the number of vertices and edges of X k is bounded by the number of squares of X k , as each edge is contained in a square. Step 5 runs in linear time. Steps 6 and 7 run in polynomial time in the number of squares: indeed, the size of a vertex link in X k is bounded by the number of squares of X k and checking for connectedness and disconnecting vertices is linear (see [START_REF] Hopcroft | Algorithm 447: Efficient algorithms for graph manipulation[END_REF] for details) in the number of vertices and edges of the graph.

If n is the number of squares in X, we claim that the number of times the algorithm goes back to step 5 is at most n.

Indeed, the algorithm performs the k th opening-up only if every square of X k-1 is of thickness at least two. When each edge is of thickness at least two, the number of vertical edges (as well as horizontal edges) of a tubular graph of graphs can be at most equal to the number of squares.

Observe that the opening procedure in Step 8 increases the number of vertical edges of X k by at least one, while decreasing the thickness of certain vertical edges. Thus, the algorithm continues at most until each vertical edge is contained in exactly two squares. In other words, if N ≤ n is the number of vertical edges of X = X 0 , the algorithm stops at most when the number of vertical edges is equal to n. Hence the result.

As an immediate consequence, we have:

Corollary B.
There exists an algorithm of polynomial time-complexity that takes a tubular graph of graphs as input and decides whether its fundamental group is one-ended or not. In addition, the algorithm returns the Grushko decomposition of the fundamental group with each free factor itself being the fundamental group of a tubular graph of graphs.

Proof. Let X be the input tubular graph of graphs with fundamental group G. We hence assume that no edge of X N is of thickness one.

Apply the algorithm of Theorem

A to X. Let X N be the output. If X N is a point, then G is trivial. If X N is Brady-Meier, G is
Cut X N along an edge of thickness zero or a locally disconnecting vertex. Either we get a connected tubular graph of graphs X 1 or we get a disconnected space with components X 1 , • • • , X n , where each X i is a tubular graph of graphs. In the first

case, G = G 1 * Z. In the latter case, G = G 1 * • • • * G n .
Apply the algorithm again to each X i . If each G i is one-ended, we are done. Otherwise, cut again at an X i with a many-ended G i and repeat. This procedure terminates in polynomial time. Indeed, at each step we get tubular graphs of graphs whose total number of squares is bounded by the number of squares of X.

Remark 3.4.3. We point out that we do not use Stallings' theorem for our proof. In fact, our procedure yields an alternate proof of Stallings' theorem about ends for fundamental groups of tubular graphs of graphs. Similarly, we do not assume the existence of the Grushko decomposition either. Our algorithm proves its existence for the groups under consideration.

It is immediate from Corollary B that

Corollary C. Let X be a tubular graph of graphs with fundamental group G. Suppose that G admits a free splitting as G = A * B. Then there exist tubular graphs of graphs X 1 and X 2 such that A and B are fundamental groups of X 1 and X 2 respectively.

Moreover, X 1 and X 2 can be so chosen such that the total number of squares in X 1 and X 2 is bounded by the number of squares in X.

Whitehead graphs and separability

In this section we will relate our work to works of Whitehead and Stallings for free groups.

Let F n be a free group of rank n ≥ 2 and let W be a finite set of non-trivial elements of F n . Let B be a basis of F n

We will first define Whitehead graphs ( [START_REF] Whitehead | On equivalent sets of elements in a free group[END_REF]). Let H n denote the orientable 3 dimensional handlebody of genus n. Fix an identification of F n with the fundamental group of H n . The basis B corresponds to a system of embedded disks W is represented by a set of curves in H n . After cutting, the set of curves is now a set of arcs between these discs.

D = {d 1 , • • • , d n } such that
Definition 3.5.1 ( [START_REF] Whitehead | On equivalent sets of elements in a free group[END_REF]). The Whitehead graph Γ Fn,B (W ) is a graph with 2n

vertices labelled {b ± 1 , • • • , b ± n }.
There is an edge between two vertices b + i (respectively, b - i ) and b + j (b - i ) for every arc between the corresponding discs We recall another definition. There is a well-known result about the separability of W . More details can be found in [START_REF] Stallings | Whitehead graphs on handlebodies[END_REF]. The goal of this section is to construct an algorithm to detect separability (Corollary D). Stallings constructs one such algorithm by choosing a Whitehead automorphism whenever there is a cut vertex in a Whitehead graph. Our strategy is to use the machinery of Theorem A when a

d + i (d - i ) and d + j (d - j ) d 1 d 2 W = {w = b 1 b 2 b 1 } d + 1 d - 1 d + 2 d - 2 b + 1 b - 1 b + 2 b - 2 Γ F 2 ,{b 1 ,b 2 } (W )
Whitehead graph contains a cut vertex. We will do so using a construction called 'double' in the literature. We will first re-prove Theorem 3.5.5 above using this construction.

Construction of the double

Let R n denote an oriented rose with petals {a 1 , • • • , a n }. Fix an identification of F n with the fundamental group of R n such that each petal of R n in the positive direction represents a distinct element of the basis

B = {b 1 , • • • , b n }.
The double X F,W is a tubular graph of graphs constructed in the following way. The underlying graph Γ X of the double X F,W is a (multi-)graph with two vertices s 1 , s 2 and k edges between them, where k is the cardinality of

W = {w 1 , • • • , w k }.
The vertex graph X s i is a subdivided copy of R n , subdivided as many times as necessary to make all attaching maps simplicial, for i = 1, 2. The attaching map of the edge graph on both sides at the j th edge is a simplicial immersion which induces the word w j at the level of fundamental groups.

Definition 3.5.6. A vertex v i ∈ X s i ⊂ X F,W is said to be special if v i is the descendant of the unique vertex of R n .
Remark 3.5.7. We will henceforth drop the subscript i for vertex graphs (and special vertices) as our arguments hold true for both vertex graphs (and special vertices) by the symmetry in X F,W .

Lemma 3.5.8. Let u ∈ X s ⊂ X F,W be a vertex and let v ∈ X s be the special vertex.

Assume that link(v) is connected with no cut vertex. Then link(u) is also connected with no cut vertex.

Proof. If u = v, we have nothing to prove.

If u = v, then u is in the interior of a petal a i of R n . Hence, there are exactly two vertical vertices η e 1 , η e 2 in link(u). There is one horizontal vertex for each vertex of an incident edge graph whose image is u. Further, there is a path of length 2

between η e 1 , η e 2 for every horizontal vertex in link(u). Thus, the number of reduced paths between η e 1 , η e 2 is equal to the number of horizontal vertices in link(u).

Suppose that there is no horizontal vertex in link(u). This means that link(u) is disconnected. Then link(v) is also disconnected as the valence of the two vertices of link(v) corresponding to the petal a i is zero, which is a contradiction.

Assume now that there is at least one horizontal vertex in link(u). This implies that η e i is not a cut vertex. By Lemma 3.3.1, there is a cut vertex in link(u) only if there is just one horizontal vertex in link(u) and so η e i is of valence one. This means that in link(v), both the vertical vertices corresponding to a i are also of valence one. Any vertex adjacent to one of these vertices is then a cut vertex, a contradiction.

Lemma 3.5.9. The link of the special vertex v is isomorphic as graphs to the first subdivision of the Whitehead graph Γ Fn,B (W ).

Proof. There are two vertical vertices in link(v) for each petal a i of R n and hence there are 2n vertical vertices {a ± 1 , • • • , a ± n }, where the signs agree with the fixed orientation of the petal a i . There is a segment of length 2 between a + i (respectively, a - i ) and a + j (respectively, a - j ) in link(v) exactly when two consecutive edges of an incident edge graph X a are mapped to the edges induced by a + i (respectively, a - i ) and a + j (respectively, a - j ). This corresponds to an occurrence of a -1 i .a j or a -1 j .a i (similar strings respectively) in the cyclic word w i ∈ W . This gives an edge between b + i (respectively, b - i ) and b + j (respectively, b - j ) in Γ Fn,B (W ). The isomorphism is then clear.

Proof of Theorem 3.5.5. Let X F,W be the double of (F, W ), with fundamental group G. G is not one-ended as W is separable and hence a vertex group of X F,W splits freely relative to its incident edge groups, giving a free splitting of G. This implies that X F,W is not one-ended. Thus, the link of a vertex of X F,W and therefore of X F,W is either disconnected or has a cut vertex. By Lemma 3.5.8, this implies that link(v) has a cut vertex. Lemma 3.5.9 now gives the result.

Corollary D (Stallings).

There exists an algorithm of polynomial time-complexity that detects the separability of a finite set of words in a finite rank free goup.

We will need a result by Wilton [Wil12, Theorem 18]: Theorem 3.5.10. The fundamental group of a graph of free groups with cyclic edge groups is one-ended if and only if every vertex group is freely indecomposable relative to the incident edge groups. 

3.6: X s 1 (= X s 2 ) a +1 b -1 a -1 b +1 Figure 3.7: link(v)
Note that a vertex group is freely indecomposable relative to the incident edge groups if and only if the set of words induced by the generators of these edge groups is not separable.

Proof of Corollary D. Let W be the given set of words of the free group F . Let X F,W be the double and G its fundamental group. Apply the algorithm of Corollary B to detect whether G is one-ended. By Theorem 3.5.10 above, G is one-ended if and only if W is not separable.

A counter-example

We now construct a tubular graph of graphs X with no hanging trees or rudimentary edges and such that it satisfies only (BM1) and not (BM2). We will apply our algorithm to X and show that π 1 (X) is one-ended, resulting in a counter-example to the converse of Theorem 1.2.1.

Let F 2 = a, b and W = {aba 3 b}. Let X be the double of this data, as constructed in the previous section. We thus have X s 1 = X s 2 = R 2 , the second barycentric subdivision of the bouquet of two circles (Figure 3.6). Then the link of the special vertex v ∈ X s is given in Figure 3.7.

We will illustrate the steps of the algorithm of Theorem A by pictures. We obtain a Brady-Meier tubular graph of graphs in the fourth step (Figure 3.11). The main goal in this chapter is to construct the JSJ decomposition of a one-ended hyperbolic fundamental group of a tubular graph of graphs.

By Corollary 1.2.3, we that the tubular graph of graphs under consideration is Brady-Meier whenever its fundamental group is one-ended.

Convention. Henceforth, X will denote a Brady-Meier tubular graph of graphs, X its CAT(0) universal cover and G its fundamental group. X s will denote a vertex graph (a component of the vertical 1-skeleton) in X. Unless mentioned otherwise, we work with the CAT(0) metric in X.

Definition 4.0.1 (Paths, lines). Recall that a path in a space Z is a continuous map from a closed interval to Z.

A combinatorial path ([MW05]
) is a map of graphs ρ : P → Γ, where P is a subdivided compact interval and Γ is a graph. Further, all our combinatorial paths will be assumed to be immersions of graphs.

P is always assumed to be oriented. When there is no confusion about Γ, we will refer to ρ : P → Γ as the path P .

A combinatorial path is called a segment if it is an embedding. Note that any chapter 4: Cyclic splittings and Brady-Meier complexes compact graph homeomorphic to an interval is the image of a segment. We will often call such graphs as segments.

Unless mentioned to the contrary, a path between two vertices of X or X is a combinatorial path, though we will often not mention it explicitly.

A cycle is an immersion of graphs φ : C → Γ, where C is a subdivided circle. We will often denote the cycle by C.

A line is an isometric embedding R → X (with the CAT(0) metric), while a ray is an isometric embedding of [0, ∞).

A combinatorial line is an isometric embedding of graphs R → X 1 , where R is the real line subdivided at integer intervals. We will only consider combinatorial lines that are also lines. In other words, R → X 1 is also an isometric embedding in X with the CAT(0) metric.

Since horizontal edges of X are of valence two, vertical hyperplanes of X are lines.

Further, Fact 4.0.2. The first cubical neighbourhood of a vertical hyperplane h, or the set of all closed squares of X that meet h, is convex ( [START_REF] Sageev | Ends of group pairs and non-positively curved cube complexes[END_REF]) and hence isometric to a

Euclidean strip [0, 1] × R with h ∼ = { 1 2 } × R.
Thus maximal geodesics in such a strip are of the form either {t 0 } × R or segments from (0, x) to (1, y).

We next divide the set of lines into the following three types.

Definition 4.0.3. A vertical line is a combinatorial line contained in a vertical tree.

A tubular line is one that is parallel to a vertical hyperplane in the first cubical neighbourhood of the hyperplane. A transversal line is a line that hits at least two vertical trees.

Observe that certain lines can be both vertical and tubular.

We note that a tubular line that is not vertical is disjoint from the vertical 1-skeleton (including vertices) and hits horizontal edges at most at one point, while a transversal line hits at least one vertical hyperplane (in exactly one point). The n th cubical subdivision Z (n) of Z is the first cubical subdivision of Z (n-1) .

We will now define an abstract neighbourhood for a combinatorial path in a square complex. The path may not embed in the square complex, but it will embed in its abstract neighbourhood.

Fix a combinatorial path ρ from P to the 1-skeleton of a nonpositively curved square complex Z. Here the path may or may not be a cycle. We allow P to be a combinatorial ray or a combinatorial line. We remind the reader that ρ is an immersion of graphs.

We will consider ρ as a map from P to the 1-skeleton of Z (2) , the second cubical subdivision of Z. The regular neighbourhood N (P ) of P in a square complex Z is a square complex constructed as follows. Let c be a cell of Z (2) . We take one copy of c for each component of ρ -1 (c) (see Figure 4.2). The adjacency of cells is given by the adjacency of arcs of P , where each arc is a component of the pre-image of a cell of Z (2) .

Since ρ restricted to each arc of the pre-image of a cell of Z (2) is an (isometric) embedding, we observe: 

The regular sphere around an edge

The goal of this subsection is to show that the regular sphere around an edge of a square complex can be built from the regular spheres around its endpoints.

In order to state the result precisely, we will first define a notion of connected sum of graphs.

Definition 4.1.7. Let Γ 1 and Γ 2 be graphs. Let v 1 ∈ Γ 1 and v 2 ∈ Γ 2 be vertices of equal valence, say k. Let φ i : {1, • • • , k} → adj(v i ) be a labelling of the vertices

adjacent to v i , i = 1, 2. Then the connected sum Γ 1 (v 1 ,φ 1 ) (v 2 ,φ 2 ) Γ 2 is defined as a quotient of Γ 1 \ s tar(v 1 ) Γ 2 \ s tar(v 2 )
, where φ 1 (j) is glued to φ 2 (j), for 1 ≤ j ≤ k.

Recall that s tar(v 1 ) refers to the open star of

v 1 . If v 1 = v 2 are vertices in Γ 1
as above, then we define the self-connected sum

(v 1 ,φ 1 ) (v 2 ,φ 2 ) Γ 1 as a quotient of Γ 1 \ ( s tar(v 1 ) ∪ s tar(v 2 ))
, where φ 1 (j) is glued to φ 2 (j), for 1 ≤ j ≤ k.

We also recall the definition of a dipole graph. We can now state the main result of this subsection. 

The regular sphere around a combinatorial path

Henceforth, till the end of Section 4.1, Z is either X or X.

Assume that P is not a vertex. Suppose first that P is not a cycle. Let e be an edge in P . Note that P is then a concatenation of paths P 1 , e and P 2 , where P 1 and P 2 are the components of the complement of the open edge e. Similarly, if P is a cycle, we denote the connected complement of e by just P 1 . Let m be the midpoint of e.

Then note that

Remark 4.1.10. N (P ) = N (P 1 ) ∪ N (m)(∪N (P 2 )).

Lemma 4.1.11. The regular sphere around P is homeomorphic to a 1. connected sum of the regular spheres around P 1 and P 2 (with labelling induced by the squares containing e) if P is not a cycle, and 2. self-connected sum of the regular sphere around P 1 (with labelling induced by the squares containing e) if P is a cycle.

Proof. The proof is analogous to the proof of Lemma 4.1.9. We prove the lemma for the non-cyclic case. The cyclic case is similar. 

Connected regular spheres

For the rest of the section, P will always be a non-cyclic path. We recall that Z is either X or X and P is either a compact interval, a combinatorial ray or a combinatorial line. We now state the main result of the section.

Proposition 4.1.14. If P is compact, then the regular sphere around P has no cut points.

The proof requires the following lemma.

Lemma 4.1.15. Let Γ 1 and Γ 2 be connected graphs with no cut points. Suppose that Γ is the connected sum Γ 1 (v 1 ,φ 1 ) (v 2 ,φ 2 ) Γ 2 . Then Γ has no cut points.

Proof. First observe that Γ i \ s tar(v i ) is connected by assumption. Recall that s tar(v i ) refers to the open star of v i . Let v ∈ Γ. We will show that v is not a cut point. Suppose that v ∈ Γ 1 .

Let x and y be two points in Γ.

• If x, y ∈ Γ 2 , then there exists a path in Γ 2 \ s tar(v 2 ) between them and hence in Γ \ {v}.

• Suppose x ∈ Γ 1 and y ∈ Γ 2 . There exists a path in Γ 1 \ {v} from x to a vertex u in Γ 1 adjacent to v 1 . Now u is glued to a vertex in Γ 2 and hence there exists a path from u to y disjoint from v.

• Suppose both x and y belong to Γ 1 . There exists a path in Γ \ {v} between x and y. If this path does not meet v 1 , we are done. Otherwise, there exist two vertices u 1 and u 2 adjacent to v 1 such that the paths from x to u 1 and u 2 to y are disjoint from both v and v 1 . Now u 1 and u 2 are glued to vertices in Γ 2

and hence there exists a path between them disjoint from v.

Proof of Proposition 4.1.14. The proof is by induction on the length of P . If P is a vertex, then the result is obviously true. Suppose that P is of length at least one. Let e be an edge in P and P 1 and P 2 be subpaths such that P is the concatenation of P 1 , e and P 2 , with the length of P i being strictly less than the length of P . By induction, the regular sphere around P i has no cut points. Lemma 4.1.11 and Lemma 4.1.15 then give the result for P .

Lemma 4.1.16. If P is not a line, then the regular sphere around P is connected.

Proof. Let p 0 denote the initial point of P . Then P meets the regular sphere around p 0 at a unique point, also denoted by P .

By Lemma 4.1.13, ∂N (p 0 ) \ s tar(P ) is connected. We will show that given any v of ∂N (P ), there exists a path in ∂N (P ) from v to ∂N (p 0 ) \ s tar(P ).

There exists p ∈ P such that v ∈ ∂N (p). P is thus a concatenation of two paths P 1 and P 2 , where P 1 = [p 0 , p]. Note that v ∈ ∂N (P 1 ) and further, if we denote the point at which P 2 meets ∂N (P 1 ) by P 2 , then v = P 2 . By Proposition 4.1.14, ∂N (P 1 ) \ s tar(P 2 ) is connected. This implies that there exists a path from v to ∂N (p 0 ) \ s tar(P ). But ∂N (P 1 ) \ s tar(P 2 ) embeds in ∂N (P ). Hence the result.

As an immediate corollary, we have Corollary 4.1.17 (Rays don't separate). Let γ be a ray in X. Then X \ γ is connected.

The following powerful result for X will be used repeatedly in later sections.

Lemma 4.1.18 (Path-abundance lemma). Let P be a combinatorial geodesic in X and x ∈ X \ P . Then given p ∈ P , there exists a path α from x to p such that α ∩ P = {p}.

Proof. First note that N (P ) embeds in X by Fact 4.1.4.

Let γ be a path from x to p. Let γ be the maximal initial subpath of γ such that γ ∩ P is empty. If γ ends at p, then declare γ = α.

Suppose not. Let p be the endpoint of γ . Then P is a concatenation P 1 

Separating and coarsely separating lines

In this section, we will define the notion of separating lines and coarsely separating lines in X, examine the relation between separating combinatorial lines and their regular spheres and show that combinatorial lines separate if and only if they coarsely separate.

Definition 4.2.1 (Separation). A subspace Y of a topological space Z is said to

separate two points z 1 and z 2 in Z if z 1 and z 2 lie in different components of Z \ Y . Y is said to separate Y ⊂ Z if Y separates two points of Y .
Recall that a line L is an isometric embedding of R in X.

Definition 4.2.2 (Separating lines). A separating line in X is a line that separates

X.

Given a subspace Y of a metric space Z, recall that N R (Y ) denotes the set of all points in Z at distance at most R from Y .

Definition 4.2.3 (Coarsely separating lines, [START_REF] Papasoglu | Splittings and the asymptotic topology of the lamplighter group[END_REF]). We say that L coarsely separates X if there exists R > 0 such that 1. N R (L) separates X, and 2. there exist at least two components Y 1 and Y 2 of X \ N R (L) such that Y i contains points at arbitrarily large distances from L.

Since a line L is an isometric embedding, note that whenever L is combinatorial, the regular sphere around L embeds in X, by Fact 4.1.4.

Let h be a vertical hyperplane. Note that h is a combinatorial line in the first cubical subdivision of X.

Definition 4.2.4. The regular sphere around a non-vertical tubular line L at distance at most 1 2 from a vertical hyperplane h in X is defined to be the regular sphere around h in the first cubical subdivision of X.

Henceforth, till the end of this section, a line L will be assumed to be either combinatorial or tubular.

Lemma 4.2.5. Let L be a combinatorial separating line in X and P ⊂ L be a combinatorial subpath. Then L separates ∂N (P ).

Proof. Suppose the lemma is not true. Then note that N (P ) \ L is connected. Let x, y ∈ X \ L. Fix p ∈ P . First assume that both x and y lie outside N (P ). By Lemma 4.1.18, there exist paths α from x to p and β from y to p such that α ∩ L = β ∩ L = {p}. Since ∂N (P ) \ L is connected, there exists a path in ∂N (P ) \ L between α ∩ ∂N (P ) and β ∩ ∂N (P ). Thus x and y are not separated by L for any x, y ∈ X, a contradiction. Definition 4.2.6 (Half-spaces of a line). Let L be a line in X. A half-space of L is the closure in X of a component of X \ L.

We warn the reader that there can be more than two half-spaces of a separating line in general.

One important application of the Brady-Meier property of X is the following. In fact, we can read the number of half-spaces of L off its regular sphere: Lemma 4.2.8. There exists a natural map from the set of half-spaces of a line L to the set of components of the regular sphere around L. Further, this map is bijective.

Proof. The required map is the one that sends a half-space Y of L to Y ∩ ∂N (L).

Observe that each component of ∂N (L) lies in a half-space of L. Thus the number of half-spaces of L is at most the number of components of ∂N (L).

Let Y be a half-space of L, and h 1 , h 2 ∈ Y ∩ ∂N (L). Then there exists a path between h 1 and h 2 in the component Y \ L. There also exists a path between h 1 and h 2 through L, since h i ∈ ∂N (L). These two paths between h 1 and h 2 bound a disk D, as X is simply connected, and D ∩ ∂N (L) gives a path between h 1 and h 2 in ∂N (L).

Corollary 4.2.9. Given an edge e in L, for each component K of ∂N (L), there exists a square s containing e such that s ∩ ∂N (L) ⊂ K.

Proof. Let Y be the half-space of L corresponding to K, by Lemma 4.2.8. By Lemma 4.2.7, Y meets e. Let m be the midpoint of e. By Lemma 4.1.18, there exists a path between any point in the interior of Y to m that does not meet L \ {m}.

Hence Y contains a square s that contains e and is as required.

Fact 4.2.10. It is easy to see that a tubular line L is a separating line. Clearly, if L is not vertical, then it separates the strip that contains it. Otherwise, any strip that contains L induces a component (line) of the regular sphere around L.

We also observe that Lemma 4.2.11. A separating line L of X coarsely separates X.

The proof is immediate from Lemma 4.2.12. Lemma 4.2.12. Let Y be a half-space of a separating line L. Then Y contains points at arbitrarily large distances from L.

Proof. A hyperplane of a CAT(0) cube complex is, after subdivision, a CAT(0) subcomplex [START_REF] Sageev | Ends of group pairs and non-positively curved cube complexes[END_REF]. Thus every hyperplane of X is a tree. But since each edge of Recall that h +1 is the first cubical neighbourhood of h. The main ingredient in the proof is the following: Lemma 4.2.16. Let Y be a half-space of a periodic combinatorial line L such that for any vertical hyperplane h in Y , L is not contained in h +1 . Then for each k ∈ N, Y \ L +k is connected.

Proof of Lemma 4.2.15. First assume that L is not contained in h +1 for any vertical hyperplane h. Suppose that L does not separate. Let Y = X be the unique halfspace of L. By Lemma 4.2.16, Y \ L +k is connected for all k, implying that L does not coarsely separate. Now suppose that there exists a vertical hyperplane h such that L ⊂ h +1 . By Fact 4.0.2, L is tubular. By Fact 4.2.10, every tubular line is a separating line and there is nothing to prove.

The proof of Lemma 4.2.16 requires some work. For the rest of the subsection, we fix a periodic combinatorial line L and a half-space Y of L such that L is not contained in h +1 for any vertical hyperplane in Y . Definition 4.2.17. Let Z be a convex subcomplex of X. A hyperplane h is said to be tangent to Z if Z is disjoint from h but meets h +1 . Remark 4.2.18. By Lemma 13.15 of [START_REF] Haglund | Special cube complexes[END_REF], L +k is convex for any k. Fact 4.2.19. As L +K is convex, any element of L +(k+1) is contained either in L +k or in h +1 for some hyperplane h tangent to L +k . Lemma 4.2.20. Given a vertical hyperplane h in Y and k ∈ N, h ∩ L +k is compact.

Proof. Let T be the underlying tree of the tree of spaces structure of X. By Lemma 4.2.14, the image of L in T is either a point or a line.

Suppose that there exists a vertical hyperplane h such that h ∩ L +k is not compact.

As L +k and h are both convex, this means that a ray of h is in L +k and so a ray of h is at finite Hausdorff distance from a ray of L. Since the image of h is a point in T , a ray of h can be at bounded distance from a ray of L only if the image of L in T is a point. Thus L is vertical. Let α be the path in T between the image of h and the image of L. Let h be the unique vertical hyperplane tangent to L such that its image in T lies in α.

Then h +1 ∩ L is not compact: This is because the geodesic from any point of h to any point of L has to meet h , since α meets the image in T of h . Thus, if h +1 ∩ L is compact, then the Hausdorff distance between a ray of L and a ray of h cannot be finite.

If a ray of L lies in h +1 , then L ⊂ h +1 : Let h be an element of the stabiliser of h .

Then h preserves a ray of L. So if v is a vertex of L at distance 1 2 from h and g an element of the stabiliser of L, there exist m and n such that g m v = h n v. Since G acts freely on X, we conclude that g m = h n . Let v ∈ h be such that the distance between v and v is 1 2 . Then for any integer k,

(h n ) k v ∈ h is at distance 1 2 from (h n ) k v, as G acts by isometries. But h n = g m and therefore (h n ) k v ∈ L. Hence, h
and L have Hausdorff distance 1 2 . But this is not possible, and hence h ∩ L +k is compact.

We will denote by ∂L +k the set of all cells in L +k disjoint from L +(k-1) . Lemma 4.2.21. Let v be a vertex in ∂L +k . Then exactly one of the following holds.

1. One vertical and one horizontal edge incident to v lie in ∂L +k .

2. Two vertical edges (and no horizontal edge) incident to v lie in ∂L +k .

3. Finitely many horizontal edges (and no vertical edge) incident to v lie in ∂L +k .

Proof. Since v / ∈ L +(k-1) , observe that at most one edge incident to v meets L +(k-1) .

If no such edge exists, then a unique square containing v lies in L +k and (1) holds (Figure 4.5).

Otherwise let e be the unique edge incident to v that meets L +(k-1) . Let s be a square in L +k that contains v. Then s contains e as L +(k-1) is convex.

Suppose that e is horizontal. Then exactly two squares in L +k contain e (Figure 4.5) and ( 2) holds. Before proving Lemma 4.2.16, we will have to prove Lemma 4.2.22. Let h 1 and h 2 be hyperplanes in Y tangent to L +k . Suppose that

h +1 1 ∩ L +k and h +1 2 ∩ L +k intersect. Then h +1 1 ∩ ∂L +(k+1) and h +1 2 ∩ ∂L +(k+1) lie in a component of ∂L +(k+1) .

We will denote h +1

i ∩ L +k by σ i . Note that σ i is compact (Lemma 4.2.20) whenever it is vertical (Figure 4.6).

Lemma 4.2.23. Suppose that σ 1 and σ 2 are horizontal. Then σ 1 ∩ σ 2 is a singleton.

Proof. Let v be a vertex in σ 1 ∩ σ 2 . Then either (1) or ( 2) or (3) of Lemma 4.2.21 holds at {v}. If (1) or (2) holds, then we are done. If (3) holds, observe that any horizontal edge f in σ 1 is in the first cubical neighbourhood of exactly two horizontal hyperplanes, h 1 and h, where h meets L +k . Thus h = h 2 . Hence the result. Thus, σ 1 ∩ σ 2 is always compact. Lemma 4.2.24. Let v be a terminal vertex in σ 1 ∩ σ 2 . Then either σ 1 ∩ σ 2 = {v} or v is also a terminal vertex of σ 1 or σ 2 .

Proof. If σ 1 is vertical and σ 2 horizontal, then clearly, σ 1 ∩ σ 2 = {v}.

If σ 1 and σ 2 are horizontal, then by Lemma 4.2.23, σ 1 ∩ σ 2 = {v}. Now suppose that σ 1 and σ 2 are vertical. Suppose that their intersection contains an edge. Then either (1) or ( 2) of Lemma 4.2.21 holds. If (1) holds, then v is terminal in both σ 1 and σ 2 . If (2) holds (see Figure 4.6), then either no edge or one edge or both edges incident to v lie in σ 1 . If it is the first two, then v is terminal in σ 1 . If it is the last case, then note that both the edges cannot lie in σ 2 as well since v is terminal in σ 1 ∩ σ 2 . This implies that v is terminal in σ 2 .

Proof of Lemma 4.2.22. Let v be a terminal vertex of σ 1 ∩ σ 2 . Let e i be the edge incident to v such that the hyperplane h i passes through v.

We have three cases given by Lemma 4.2.21.

Case 1. Only one vertical edge f incident to v lies in L +k \ L +(k-1) . Since X is Brady-Meier, there exists a path β in link(v)\{f } between e 1 and e 2 . The projection of β to ∂{v} +1 hits the other endpoints of e 1 and e 2 , which lie in ∂L +(k+1) . Further, β and thus its projection are disjoint from L +k . Hence the result.

Case 2. Two vertical edges f 1 and f 2 incident to v lie in L +k \ L +(k-1) . Without loss of generality, we assume that either σ 1 is horizontal, or v is terminal in σ 1 , by Lemma 4.2.24. Thus one of the edges, say f 2 does not lie in σ 1 . Let β be a path in link(v) \ {f 1 } between e 1 and e 2 . Since f 2 does not lie in σ 1 , β and its projection to ∂{v} +1 is disjoint from σ 1 . If f 2 does not lie in σ 2 or β is disjoint from f 2 , then we are done as the projection of β gives the required path in ∂L +(k+1) . If not, then we repeat the procedure at v , the other endpoint of f 2 and so on, until the path no longer meets σ 2 . Since σ 2 is compact, the procedure stops in a finite number of steps. Hence the result.

Case 3. Only horizontal edges incident to v lie in L +k \ L +(k-1) . Let e be the vertical edge incident to v and contained in L +k . Let β be a path between e 1 and e 2 in link(v) \ {e}. Then β is disjoint from L +k and so is its projection to ∂{v} +1 .

We are now ready to prove Lemma 4.2.16.

Proof of Lemma 4.2.16. The proof is by induction. Note that

Y \ L +k is connected whenever Y ∩ ∂L +k is connected. Since Y is a half-space of L, Y ∩ ∂N (L) is connected, by Lemma 4.2.8. Thus Y ∩ ∂L +1 is connected.
Assume that Y ∩ ∂L +k is connected, for some k. We will now show that Y ∩ ∂L +(k+1) is connected. Indeed, L +(k+1) is contained in the union of L +k and the first cubical neighbourhoods of hyperplanes tangent to L +k , by Fact 4.2.19. Thus given two vertices u and u in Y ∩ ∂L +(k+1) , there exist hyperplanes h and h tangent to L +k such that u ∈ h +1 and u ∈ h +1 . Let σ = h +1 ∩ L +k and σ = h +1 ∩ L +k . By the induction assumption, there exists a path between σ and σ in ∂L +k . This implies that there exists a finite sequence of tangent hyperplanes

h = h 1 , • • • , h n = h such that if σ i = h +1
i ∩L +k , then σ i ∩ σ i+1 is nonempty. Lemma 4.2.22 then implies that u and u lie in a component of ∂L k+1 . Hence the result.

A crossing criterion for lines

Definition 4.3.1 (Crossing of lines). Let L and L be two separating lines of X.

We say that L crosses L if for every half-space Y of L , L Y . L and L don't cross if neither L crosses L nor L crosses L.

Note that two disjoint lines don't cross. Thus a vertical line and a tubular line that is not vertical never cross. We will see later that in fact no vertical line crosses a tubular line.

Two intersecting lines may or may not cross. The main goal of this section is to obtain a criterion for the crossing of two lines. The criterion will show that while it is necessary for two crossing lines to intersect, it is not sufficient. Proof. If P is empty or equal to L, then the result is obvious. So suppose that P is a ray. Then P is contained in all half-spaces of both L and L , by Lemma 4.2.7.

The complementary sub-ray of P in L is contained in a single half-space of L (as it is connected and disjoint from L \ P ) and vice-versa. Hence the result. Lemma 4.3.4 (Crossing is symmetric). L is contained in a half-space of L if and only if L is contained in a half-space of L.

Proof. If P is empty or non-compact, then by Lemma 4.3.3, the result is always true. This leaves us with the case when P is compact.

Assume that L is contained in a half-space Y of L (Figure 4.7) while L ⊂ Y 1 ∪ Y 2 ,
where Y 1 and Y 2 are half-spaces of L. Assume that Y 1 = Y 2 . We will then show that Y = X, a contradiction to the fact that L separates X.

Let Y be a half-space of L that is not equal to Y 1 or Y 2 . Then Y ⊂ Y . Indeed, Lemma 4.1.18 gives a path from any point in Y \ L to any point in L \ L that is disjoint from L as the path is contained in the interior of Y . Since L ⊂ Y , we have that Y ⊂ Y . We will now deal with Y 1 and Y 2 .

Let p 1 and p 2 be the endpoints of P = L ∩ L . Denote by γ i the closure of each component of L \ P so that the initial point of γ i is p i . chapter 4: Cyclic splittings and Brady-Meier complexes

L L P p 1 p 2 γ 2 γ 1 Y Y 1 Y 2 Figure 4.7: L and L meet at P Let x ∈ Y 1 \ L. Suppose x /
∈ Y . Then every path from x to L hits L . Let α 1 and α 2 be paths given by the path-abundance lemma (Lemma 4.1.18) from x to p 1 and

p 2 respectively such that α i ∩ L = {p i }. This implies that α i ∩ L = {p i }.
Observe that every path in ∂N (p i ) \ P between α i and γ i hits L . Indeed, if not, then there exists a path from x to L disjoint from L . Let Y = Y 0 be a half-space of L. Then Y is disjoint from L and hence contained in a half-space of L . Further, since

∂Y = L ⊂ Y 0 , Y ⊂ Y 0 .
Similarly, if Y = Y 0 is a half-space of L , then Y ⊂ Y 0 . Hence the result.

Before we go to the proof of Proposition 4.3.2, we will collect a couple of results about graphs without cut points as ∂N (P ) has no cut points whenever P is compact (Proposition 4.1.14).

Graphs with no cut points

We fix a connected graph Γ in this subsection such that Γ has no cut points. We further assume that Γ contains at least one edge. A cut pair is a pair of points that separates Γ.

We now draw the attention of the reader to certain similarities between cut pairs in Γ and separating lines in X. If {a, b} is a cut pair, then a half-space of {a, b} is the closure of a component of Γ \ {a, b}. The first result is analogous to Lemma 4.2.7. 

The crossing criterion

We are now ready for the proof of Proposition 4. 

Coarse crossings of lines

Definition 4.3.9 (Coarse crossing). Let Z be a CW complex and L, L two subspaces which coarsely separate Z. L and L coarsely cross if for every large enough number Note that H contains the stabiliser of each vertex and edge of T v , as otherwise an element of B = G not in H fixes v. But this implies that G leaves the proper subtree T w invariant, where T w is the component of T \ e containing w. This is a contradiction.

L L A 1 A 2 A 3 A 4 Figure 4.8: L 1 and L 2 coarsely cross R > 0, there exist connected subspaces A 1 , A 2 , A 3 , A 4 (Figure 4.8) such that 1. for any R > 0 and i ∈ {1, • • • , 4}, A i N R (L) and A i N R (L ), 2. N R (L) separates A 1 from A 2 but not A 1 from A 4 , 3. N R (L) separates A 3 from A 4 but not A 3 from A 2 , while 4. N R (L ) separates A 1 from A 4 but not A 1 from A 2 and
Y 1 ∩ Y i from Y 2 ∩ Y i while L separates Y i ∩ Y 1 from Y i ∩ Y 2 .

Trees dual to separating lines

Let L be a periodic separating line of X such that L does not cross any of its translates. The goal of this subsection is to show that there exists a G-tree in which the stabiliser of a certain vertex is equal to the stabiliser of L. This G-tree will be useful in determining splittings of G by subgroup(s) of the stabiliser of L.

Lemma 4.4.3. Let L be a periodic line that separates X and does not cross any of its translates. Then there exists an unbounded G-tree T L and a vertex in T L whose stabiliser is the stabiliser of L. Further, G acts minimally on T L .

The construction of such a dual tree when L has exactly 2 half-spaces and is disjoint from all its translates is standard. In that case, a bipartite graph is constructed as follows: each component of X \ g∈G gL defines a black vertex while each translate of L defines a white vertex. The adjacency is given by containment: a white vertex is adjacent to a black vertex if it is contained in the closure of the black vertex. One can then check that the bipartite graph is in fact a tree.

In our case, L may not be disjoint from its translates. We only ask that L does not cross any of its translates. In addition, L may have more than two half-spaces. This necessitates a more careful treatment, but the underlying idea is still the same.

Our construction in fact coincides with the above standard construction when L is disjoint from its translates and has only two half-spaces.

We start with an observation that will be used in the proof. Lemma 4.4.4. Let L 1 and L 2 be separating lines that don't cross. Given half-spaces

Y 1 of L 1 and Y 2 of L 2 such that (Y 1 \ L 1 ) ∩ (Y 2 \ L 2 ) is non-empty, then either L 1 is contained in Y 2 or L 2 is contained in Y 1 .
Proof. Since L 1 and L 2 don't cross, there exist half-spaces

Y 1 of L 1 and Y 2 of L 2 such that L 1 ⊂ Y 2 and L 2 ⊂ Y 1 , see Figure 4.9. We claim that either Y 1 = Y 1 or Y 2 L 1 L 2 Y 1 Figure 4.9: L 1 ⊂ Y 2 , L 2 ⊂ Y 1 Y 2 = Y 2 . Suppose not. Since L 1 ⊂ Y 2 , L 1 is disjoint from X \ Y 2 ⊃ Y 2 \ L 2 . But if L 1 is disjoint from the connected subspace Y 2 \ L 2 , then Y 2 \ L 2 is contained in a half-space Y 1 of L 1 . But the fact that the boundary L 2 of Y 2 \ L 2 is contained in Y 1 implies that Y 1 = Y 1 and hence Y 2 \ L 2 is disjoint from Y 1 \ L 1 , a contradiction.
The required tree T L will be the CAT(0) cube complex dual to a space with walls [START_REF] Haglund | Simplicité de groupes d'automorphismes d'espaces à courbure négative[END_REF]. Recall that Definition 4.4.5. A wall on a nonempty set Z is a partition of Z into two subsets.

Z is a space with walls if Z is endowed with a collection of walls such that any two points of Z are separated by finitely many walls.

Remark 4.4.6. The two subsets that define a wall are known as half-spaces in the literature. Note that we have already used this terminology for separating lines.

Separating lines in X do define walls, as we will show below. To avoid confusion, we will refer to a half-space associated to a wall as a half-space of the space with walls.

We quickly recall some terminology of spaces with walls before going to the proof of Lemma 4.4.3. We refer the reader to [START_REF] Nica | Cubulating spaces with walls[END_REF] for futher details. Definition 4.4.7. Let Z be a space with walls. An ultrafilter on Z is a nonempty collection ω of half-spaces of Z that satisfy the following conditions:

1. A ∈ ω and A ⊂ B imply that B ∈ ω and 2. exactly one of A and A c is contained in ω.

Observe that

Lemma 4.4.8. If ω is an ultrafilter of Z and A, B ∈ ω, then A and B are not disjoint.

For a z ∈ Z, the principal ultrafilter σ z is defined to be the set of half-spaces of Z that contain z. An ultrafilter ω of Z is said to be almost principal if for some (and therefore for any) z ∈ Z, the symmetric difference between ω and σ z is finite.

Proof of Lemma 4.4.3. Let Z L = X \ ∪ g∈G gL. Then each half-space Y of gL defines a wall {Y ∩ Z L , Y c ∩ Z L } of Z L .
By abuse of notation, we will denote the wall defined by Y as {Y, Y c }. It is easy to see that Z L is a space with walls. Note that if L has n half-spaces, then there are n distinct walls defined by these half-spaces when n > 2.

By theorem 4.1 of [START_REF] Nica | Cubulating spaces with walls[END_REF], there exists a connected graph T L whose vertices are the principal and almost principal ultrafilters of Z L . Two vertices are adjacent if the cardinality of their symmetric difference is two. T L is then the 1-skeleton of a unique CAT(0) cube complex (see section 3 of [START_REF] Sageev | Ends of group pairs and non-positively curved cube complexes[END_REF], for instance).

Claim. T L is a tree. Proof of claim. If T L is not a tree, then it is the 1-skeleton of a cube complex of dimension at least 2. This implies that there exists a cycle (w 1 , w 2 , w 3 , w 4 ) of length 4 in T L .

Since ω 1 and ω 2 are adjacent, there exists a half-space Y of Z L such that Y ∈ ω 1 and Y c ∈ ω 2 . Similarly, there exists a half-space Y of Z L such that Y ∈ ω 1 and Y c ∈ ω 4 . Note that Y ∈ ω 2 and Y ∈ ω 4 as otherwise they would not be adjacent to ω 1 . Further, Y c , Y c ∈ ω 3 as both ω 2 and ω 4 are adjacent to ω 3 . We will show below that this is not possible. Now either Y or Y c is a half-space of a translate of L. Assume without loss of generality that Y and Y are half-spaces of the lines gL and g L. This then implies that no ultrafilter can contain both Y c and Y c and hence ω 3 cannot exist. This proves the claim.

There exists a natural action of G on T L . An element g ∈ G sends an ultrafilter ω to an ultrafilter gω where gω is the set of half-spaces gY of Z L , where Y ∈ ω.

We claim that there exists an ultrafilter whose stabiliser is the stabiliser of L. Indeed,

if Y 1 , • • • , Y n is the set of half-spaces of L, then let ω L be the set of half-spaces of Z L consisting of Y c 1 , • • • , Y c n and all half-spaces (of proper translates of L) which contain L. Note that ω L is an ultrafilter. Indeed, if Y ∈ ω L and Y ⊂ Y , then Y ∈ ω L as clearly, L ⊂ Y . Further, if Y is not a half-space of L, then exactly one of Y and Y c contains L.
We also claim that ω L is almost principal. Indeed, choose y 1 ∈ Y 1 ∩ Z L . Then

σ y 1 = {Y 1 , Y c 2 , • • • , Y c n } ∪ {Y |y 1 ∈ Y }.
There exist at most finitely many lines g 1 L • • • g k L that separate y 1 from L in X. Except for the half-spaces of these lines, a half-space contains y 1 if and only if it contains L. Hence σ y 1 ω L is finite.

Note that any element in the stabiliser of L permutes {Y c 1 , • • • , Y c n } and sends a half-space containing L to a half-space containing L. Further, if g / ∈ stab(L), then

gY i is a half-space of gL = L. At least one gY i contains L, implying that L is not contained in gY c i . This implies that gω L = ω L . Hence, stab(L) = stab(ω L ).
Also, T L is unbounded. Indeed, if not, let ω be a vertex at maximal distance from the vertex ω L . Then there exists a half-space Y of gL in ω such that Y does not contain any translate of L in its interior. Since G acts geometrically on X, there exists m > 0 such that the orbit of N m (L) covers X. Hence Y ⊂ N m (gL), a contradiction to Lemma 4.2.12.

There is no proper G-invariant subtree of T L . Now T L is spanned as a tree by the principal ultrafilters of Z L , by Proposition 4.8 of [START_REF] Nica | Cubulating spaces with walls[END_REF]. It thus suffices to prove that no subtree spanned by a proper subset of the set of principal ultrafilters is

G-invariant.
As above, let Y i be a half-space of L. Choose y i ∈ Y i ∩ Z L such that there exists a path α from y i to L with α ⊂ Z L . Then any principal ultrafilter σ y is a translate of σ y i , for some i. Indeed, take a path from y to a translate of L such that the interior of the path lies in Z L . Then the path can be translated to end in L so that σ y is a translate of σ y i . Thus, if a proper subtree is G-invariant, then it has to miss at least one σ y i , say σ y 1 . But this is not possible if even one translate gL of L is contained in the interior of Y 1 as that would mean that σ gy i for each i is cut off from the subtree. Now, if Y 1 contains no translate of L, then Y 1 is contained in a bounded neighbourhood of L, since G acts geometrically on X. This is a contradiction to Lemma 4.2.12.

Proposition 4.4.9. Let H be a cyclic subgroup of G and L an axis of H in X.

Suppose that 1. L separates X, 2. L does not cross any of its translates and 3. H is equal to the stabiliser of a proper subset of the set of half-spaces of L.

Then G splits over H.

Proof. Let L satisfy the hypothesis of the Proposition. Using Lemma 4.4.3, we construct a dual tree T L that has vertices which are stabilised by the stabilisers of translates of L. We will now do a G-equivariant gluing of edges to obtain a tree T that satisfies the conditions of Proposition 4.4.2 for H. This will complete the proof.

Let Y 1 , • • • , Y n be the list of half-spaces of L. Let ω i be a vertex adjacent to ω L such that ω i ω L = {Y i , Y c i }.
T is a quotient simplicial graph of T L obtained by first identifying for each h ∈ H and i ∈ {1, • • • , n}, vertices ω i and hω i , and then extending equivariantly. In other words, for each g ∈ G, we identify gω i with ghω i .

T L is connected and hence T is connected. T is a tree since any reduced cycle in T has a reduced cycle as preimage in T L .

We will now show that T is unbounded. It is enough to show that each vertex of T has valence at least two. Indeed, for a vertex ω such that ω is not a translate of ω L , ω has valence at least 2 as no pair of vertices adjacent to ω in T L is identified in T .

If ω is a translate of ω L , then since H does not act transitively on the half-spaces of L, all vertices adjacent to ω are not identified in T .

Assume without loss of generality that the proper subset of half-spaces of condition (3) contains Y 1 . Consider the edge e = (ω L , ω 1 ) of T L . Then the stabiliser of ē in T is clearly equal to H.

There is no proper G-invariant subtree of T . Indeed, since there exists no proper G-invariant subtree of T L , there exists no proper subtree of T that is G-invariant.

Let H be a cyclic subgroup of G over which G splits as in Definition 4.4.1. We call H an algebraic splitting subgroup. If H is such that it satisfies the hypothesis of Proposition 4.4.9, we say that H is a geometric splitting subgroup. We will now show that every cyclic algebraic splitting subgroup of G is commensurable with a cyclic geometric splitting subgroup.

Lemma 4.4.10. Let H be a cyclic subgroup over which G splits. Suppose that a vertical line L is an axis of H. Then 1. L separates X, 2. L does not cross any of its translates.

Proof. The fact that L coarsely separates X is a consequence of Lemma 1.8 of [START_REF] Papasoglu | Quasi-isometry invariance of group splittings[END_REF]. We give a proof here for the sake of completeness.

Either G splits as a free product with amalgamation A * H B or an HNN extension A * H . Then G is isomorphic to the fundamental group of a graph (edge) of spaces Z where the vertex space(s) are presentation complex(es) for A (and B). The unique edge space is a circle. Then the 1-skeleton of Z is a Cayley graph of G. The underlying tree T of Z is the Bass-Serre tree of A * H (B). Denote by e the edge of T which is stabilised by H. Note that H coarsely separates Z 1 as e separates T (coarsely).

Let gH be a translate of H. Then H and gH don't cross coarsely. If not, let R be large enough such that there exist subspaces A, B, C and D in Z 1 which satisfy the conditions of Definition 4.3.9. Since each pair A,D and B,C lies in a component of Z 1 \ N R (H), the projection of each pair to T lies on one side of e. Similarly, the projection of each pair A, B and C, D lies on one side of g • e. But also, A and B lie on different sides of e. This is not possible. Fix x 0 ∈ L. Then the map from Z 1 to X which sends g to gx 0 is a quasi-isometry, by the Švarc-Milnor Lemma (Proposition I.8.19 of [START_REF] Bridson | Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften[END_REF]). Note that H is then mapped into L. Thus L coarsely separates X (and hence separates X, by Lemma 4.2.15). To see this, note that if g 1 x 0 and g 2 x 0 are two elements chosen in such a way that g 1 and g 2 are in different components of a large neighbourhood of H, then a path α between them in X has a coarse pre-image in Γ and hence hits a bounded neighbourhood of H. This implies that α itself lies in a bounded neighbourhood of L. Similarly, if L and gL coarsely cross, then the pre-images of A, B, C, D have points at arbitrarily large distances from H and gH and appropriate pairs lie in the same coarse components of H and gH. Hence, L and gL don't cross.

Proposition 4.4.11. Let H be a cyclic algebraic splitting subgroup of G with a vertical axis in X. Then there exists a geometric splitting subgroup H commensurable with H.

Proof. Let L be an axis of H satisfying Lemma 4.4.10. Observe that H is contained in the stabiliser of L which is a cyclic subgroup. Choose a half-space Y of L and let H be the largest subgroup of the stabiliser of L that preserves Y . Then by Proposition 4.4.9, H is as required.

Vertical cycles and cyclic splittings

In this section, we will examine splittings induced by vertical lines in X.

Recall that a cycle (Definition 4.0.1) is an immersion of graphs φ : C → Γ, where C is a subdivided circle. From now on, throughout the text, unless mentioned otherwise Γ will be a vertex graph X s of X and so C is a vertical cycle.

Remark 4.5.1. The map φ is π 1 -injective. Indeed, π 1 (C) injects into π 1 (X s ) [START_REF] Stallings | Topology of finite graphs[END_REF] and π 1 (X s ) injects into the fundamental group of X in the graph of groups setup [START_REF] Serre | Trees[END_REF].

Note that the quotient of a periodic vertical line in X by the action of a nontrivial subgroup of its stabiliser is a cycle in X. The converse is true as well: Fact 4.5.2. Let φ : C → X s be a cycle and C denote the universal cover of C. Then C embeds as a vertical line in X.

By abuse of notation, we will often call the lift φ : C → X as the line C. Let b u be the vertex of ∂N (u) that meets b and a v the vertex of ∂N (v) that meets a. The orthogonal sphere around P C is defined as

∂ orth N (P C ) := ∂N (P C ) \ ({b u } +2 ∪ {a v } +2 )
where

∂N (P C ) \ ({b u } +2 ∪ {a v } +2 ) denotes the closure of ∂N (P C )\({b u } +2 ∪{a v } +2 ).
Recall that {b u } +2 denotes the second cubical neighbourhood of {b u }.

Let C be a lift of C and P C ⊂ C of P C . Then note that Fact 4.5.8. The natural map from P C ∼ = P C → C induces an embedding of graphs

∂ orth N (P C ) → ∂N ( P C ) \ C ⊂ ∂N ( C). Further, ∂ orth N (P C ) is connected if and only if ∂N ( P C ) \ C is connected as ∂ orth N (P C ) embeds in ∂N ( P C ) \ C as a deformation retract.
Lemma 4.5.9. The regular sphere around a cycle C is isomorphic to the quotient of the orthogonal sphere around a fundamental domain P C of C with the natural gluing induced by π 1 (C). where ∀n ∈ Z, c n ũ ∼ c n-1 ṽ. Hence

∂N ( C) ∼ = n∈Z ∂N (c n P C ) \ {c n+1 ẽ} 2 ∪ {c n-1 f } 2 )/ ∼
with the following obvious gluing: A vertex (edge) of ∂N (c n ũ) \ {c n-1 f } 2 is glued to a vertex (edge) of ∂N (c n-1 ṽ) \ {c n ẽ} 2 if and only if they have they have the same image in X.

Since c n ũ is glued to c n-1 ṽ, c n+1 ẽ is identified to c n ẽv and c n-1 f is identified to c n fu .

Further, ∂N (c

n P C ) \ {c n ẽv } 2 ∪ {c n fu } 2 ) ∼ = ∂ orth N (P C ). Hence the result.
Let e in X be an edge in the image of ρ C : P C → X s . Let e be an edge in P C such that ρ C (e ) = e. By Corollary 4.2.9, we have the following result: Remark 4.5.20. By Proposition 4.4.9, G splits over π 1 (C) whenever C is a splitting cycle.

We will now examine when C can have self-crossings. We start with the following.

Lemma 4.5.21. Let L 1 and L 2 be vertical lines of X stabilised by the cyclic subgroups H 1 and H 2 respectively. Let n i be the translation length of a generator of H i . If P = L 1 ∩ L 2 is compact, then the length of P is strictly less than LCM(n 1 , n 2 ).

Proof. Suppose that P contains a segment of length LCM(n 1 , n 2 ) = k. Let v be a terminal point of P . Choose generators h 1 ∈ H 1 and h 2 ∈ H 2 such that h i (v) ∈ P .

Since the length of P is at least k, h

k/n i i (v) ∈ P and hence h k/n 1 1 (v) = h k/n 2 2 (v). Since G acts freely on X, h k/n 1 1 = h k/n 2 2
and hence L 1 = L 2 , a contradiction.

Corollary 4.5.22. If L 2 is a translate of a periodic vertical line L 1 , then either A splitting induced by a transversal line can never be universally elliptic:

L 2 = L 1 or P embeds in L 1 /H 1 ,
Lemma 4.6.4. Let H be a cyclic subgroup over which G splits. Suppose that an axis of H is transversal in X. Then H is not universally elliptic.

Proof. Let L be a transversal axis of H. By definition, there exists a vertical hyperplane h such that L ∩ h is a singleton. Since h separates X and is either equal to or disjoint from its translates, it induces a splitting of G. Let T be the Bass-Serre tree of the splitting. Let e be the edge stabilised by the stabiliser of h. Note that the image of e under H then spans a line of T . Hence, H is not elliptic in T .

Splittings induced by vertical lines need more careful treatment. They may or may not cross other vertical or transversal lines which induce splittings. We present below one sufficient condition for a splitting induced by a vertical line (cycle) to be universally elliptic.

Proposition 4.6.5. Let L be a line that separates X into at least three half-spaces.

Then a subgroup of the stabiliser of L is universally elliptic.

Proof. Let L be a separating line such that L and L meet at a compact segment Intuitively, if C is k-repetitive, then the squares at e do not 'mix' in the components of ∂ orth N (P C ). In other words, the notion of repetitiveness requires the cycle to not only 'repeat' itself along some edges (Condition 1), but also to ensure that the partitions induced by the cycle on the set of squares containing e i coincide.

Fact 4.7.3. A k-repetitive cycle is k -repetitive for 1 ≤ k ≤ k.

Note that the definition depends on a choice of fundamental domain. As the example in Figure 4.11 shows, a cycle C maybe repetitive with respect to one fundamental domain but may not be repetitive with respect to another.

The following property of lifts of repetitive cycles will be crucial for the rest of the text. In fact, this is the only property of repetitive cycles that we will use in the proof of Proposition 4.8.1.

Lemma 4.7.4. Let C be a k-repetitive cycle. Then there exists an edge ẽ in X and Lemma 4.7.5. Suppose that at least two translates g i C and g j C are distinct. Then C separates X into exactly two half-spaces.

distinct elements g 1 , • • • , g k ∈ G such that 1. for each i ∈ {1, • • • , k}, g i C contains ẽ,
We will need the following result on graphs with no cut points to prove the lemma. Proof of Lemma 4.7.5. After a re-ordering if necessary, we assume that C = g 1 C and g 2 C are distinct. We will show below that ∂N ( C) has exactly two components.

We then have by Lemma 4.2.8 that C separates X into exactly two half-spaces.

Since C = g 1 C = g 2 C, the segment S = C ∩ g 2 C is compact (Corollary 4.5.22).
Suppose that C has at least three half-spaces. Then both ∂N (S)\ C and ∂N (S)\g 2 C have at least three components, by Lemma 4.1.18. This means that there exist three squares s, s and s containing ẽ that meet different components of both ∂N (S) \ C and ∂N (S) \ g 2 C, by Corollary 4.2.9. Then Lemma 4.7.6 implies that ∂N (S) ∩ C = ∂N (S) ∩ g 2 C, which is a contradiction. Hence the result. Definition 4.7.7. A vertical cycle φ : C → X s is said to be primitive if it is not a non-trivial power of any cycle. In other words, if there exists a cycle φ : C → X s such that φ = φ • ψ, then ψ is a homeomorphism of graphs.

Corollary 4.7.8. A lift in X of a primitive k-repetitive cycle separates X into exactly two half-spaces whenever k ≥ 2.

Proof. When C is primitive, the element g 2 that moves ẽ2 to ẽ1 in P C does not preserve C. This is because the translation length of g 2 is strictly less than the translation length of the generator of π 1 (C). If 

Long cycles are repetitive

We will end the section with a crucial result that bounds the length of non-repetitive UC-separating cycles. Let E denote the number of vertical edges of X and F denote the number of squares of X.

Proposition 4.7.9 (Long cycles are repetitive). Let C be a vertical UC-separating cycle with length at least 2E(k -1)2 F (F +1)/2 + 1. Then C is k-repetitive.

Proof. The key ingredient in the proof is the pigeonhole principle. We apply it twice, once to show that the first condition of Definition 4.7.2 is satisfied and the second time to show that the second condition is satisfied. We give the details below. exist. Since n ≥ (k -1)2 F (F +1)/2 + 1 and λ ≤ F , it is enough to show that

A(λ, µ) ≤ 2 λ(λ+1)/2 .
Note that if µ = 1, then A(λ, µ) = 1 for any λ. Also, since no subset of the partition of the squares can be empty, any subset can contain at most λ -µ + 1 squares.

Hence we have

A(λ, µ) = λ-µ+1 r=1 λ r A(λ -r, µ -1)
We provide a proof of the fact that A(λ, µ) ≤ 2 λ(λ+1)/2 in Lemma 4.7.10 below.

Given natural numbers µ ≤ λ, let A(λ, µ) := λ-µ+1 r=1 λ r A(λ -r, µ -1), whenever µ > 1 and A(λ, 1) = 1. Then Lemma 4.7.10. A(λ, µ) ≤ 2 λ(λ+1)/2 . Proof. We first establish a claim. Let m 2 ≥ m 1 ≥ l be natural numbers. Then

Claim. A(m 2 , l) ≥ A(m 1 , l). Proof. If m 2 = m 1 , there is nothing to show. So assume m 2 > m 1 . Let z = m 2 -m 1 ≥ 1. By definition, A(m 2 , l) = m 2 -l+1 r=1 m 2 r A(m 2 -r, l -1) 
Splitting the sum, and using the fact that m 2 -z = m 1 , we have

A(m 2 , l) = z r=1 m 2 r A(m 2 -r, l -1) + m 1 -l+1 r=1 m 2 z + r A(m 1 -r, l -1) Since m 1 +z r+z ≥ m 1 r , we have A(m 2 , l) ≥ z r=1 m 2 r A(m 2 -r, l -1) + m 1 -l+1 r=1 m 1 r A(m 1 -r, l -1) ≥ z r=1 m 2 r A(m 2 -r, l -1) + A(m 1 , l)
Hence the claim.

Thus, A(λ -r, µ -1) ≤ A(λ -1, µ -1) for 1 ≤ r ≤ λ -µ + 1. Plugging this in the definition of A(λ, µ), we obtain chapter 4: Cyclic splittings and Brady-Meier complexes

A(λ, µ) ≤ λ-µ+1 r=1 λ r A(λ -1, µ -1) = A(λ -1, µ -1)( λ-µ+1 r=1 λ r ) ≤ A(λ -1, µ -1)( λ r=1 λ r ) = A(λ -1, µ -1)2 λ
Expanding A(λ -1, µ -1) and continuing until µ = 1, we obtain A(λ, µ) ≤ 2 λ(λ+1)/2 .

3-repetitive cycles and crossings

The main result of the section is the following.

Proposition 4.8.1. Let C be a primitive UC-separating vertical cycle that is 3repetitive. Then there exists a periodic separating line L in X such that L and C cross.

If C has self-crossings, then by definition, C and a translate cross, and there is nothing to show. The nontrivial part is to show that one such line exists even when C has no self-crossings. Henceforth, till the end of this section, C refers to a primitive 3-repetitive cycle C with no self-crossings.

The key idea behind the proof is the following. By Corollary 4.7.8, C separates X into exactly two half-spaces. Further, by Lemma 4.7.4, since C is 3-repetitive, there exists an edge in X along which three translates of C meet. We will show that one of these translates separates the other two. The periodic line L will then be constructed by ensuring that it meets both the separated translates outside the central translate. This implies that L crosses the central translate of C. We give the details below.

L 1 L 3 L 2 Figure 4.12: L crosses L 2 if it meets L 1 and L 3 outside L 2
After a re-ordering if necessary, assume that Y 1 ⊂ Y 2 ⊂ Y 3 . We then have:

Lemma 4.8.6. L 1 and L 3 lie in complementary half-spaces of L 2 .

Proof.

First, L 1 ⊂ Y 2 as Y 1 ⊂ Y 2 . Similarly, Y 3 ⊂ Y 2 (as Y 2 ⊂ Y 3 ) implies L 3 ⊂ Y 2 .

The main result

As L 1 ∩ L 2 is bounded, we can choose an element h 1 in the stabiliser of L 1 such that 1. h 1 (Y 1 ) = Y 1 (and thus h 1 (Y 1 ) = Y 1 ), and Thus ∂ orth N (σ) is not connected (Fact 4.5.8).

As h -1 1 preserves half-spaces of L 1 , h -1 1 sends a square containing h 1 (e) in A 1 (B 1 ) to a square containing e in A (B). Similarly, h 3 sends a square in A (B) to A 3 (B 3 ). In other words, there is no path between a point in A 1 and a point in B 3 in the quotient of ∂ orth N (σ) by the action of h . By Lemma 4.5.9, ∂N (C ) is not connected.

Proof of Proposition 4.8.1. By Lemma 4.8.8, the periodic line L is a separating line. L crosses L 2 (Definition 4.3.1) as L is not contained in a half-space of L 2 , by Lemma 4.8.7. Hence the result. edge subgroups of the JSJ decomposition upto commensurability, π 1 (C) is not universally elliptic.

Let Γ be a finite simplicial graph with vertex set V = {v 1 , • • • , v m }. The adjacency matrix of Γ is a symmetric square matrix of order |V | such that the (i, j) th entry is one if there is an edge between v i and v j , or zero otherwise. It is well known that (see [AYZ97] for instance):

Fact 4.9.3. The number of immersed cycles of length k in Γ is bounded by the trace of the matrix A k .

Proof of Theorem 4.9.1. Let G and X be given as in the statement. First note that by Lemma 4.6.4, a cyclic subgroup that has a transversal axis in X is not universally elliptic. Thus every universally elliptic subgroup H has a vertical axis in X. This implies that there exists a splitting cycle C in X such that π 1 (C) and H are commensurable (Lemma 4.5.26).

Let F be the number of squares of X and E the number of edges. By Proposition 4.7.9, any UC-separating cycle of length greater than M = 4E(2 F (F +1)/2 ) is 3-repetitive. Since every edge is contained in a square, E ≤ 4F and thus M is at most 16F (2 F (F +1)/2 ). By Proposition 4.9.2, any primitive 3-repetitive cycle is not universally elliptic. Thus a cycle C can be universally elliptic only if 1. its length is at most M , or 2. it is not primitive.

In other words, whenever the length of a universally elliptic cycle C is at least M , then it is a power of a primitive subcycle C such that C is not 3-repetitive and is UC-separating. Further, C has no self-crossings as C has no self-crossings. But C may or may not be strongly UC-separating (Lemma 4.5.14). By Lemma 4.5.16, an n th power of C is strongly UC-separating, where n is bounded by the maximal thickness of an edge of C . This implies that n ≤ F and thus a power of C whose length is at most F.M is universally elliptic. Note that π 1 (C) is commensurable with π 1 (C ) and thus with every infinite cyclic subgroup of π 1 (C ). Hence any universally elliptic subgroup is commensurable with the cyclic subgroup generated by a universally elliptic cycle of length at most F.M .

There exist finitely many cycles of length at most F.M in X. Thus our algorithm takes each cycle from this finite list as input and returns whether this cycle is strongly UC-separating with no self-crossings or not. By Lemma 4.5.27, we thus have a list of all universally elliptic cycles upto commensurability.

The time taken by this algorithm is calculated as follows:

1. The number of cycles of length at most F.M is bounded by a number which is exponential in F.M , by Fact 4.9.3. This is of the order of a double exponential in F as M is itself exponential in F .

2. The regular sphere around a cycle C of length k is a connected sum of the regular spheres around its k vertices (Lemma 4.1.11). and the number of vertices and edges in this regular sphere is bounded by a constant times the number F of squares of X. Finding whether this sphere is connected is linear in F , by [START_REF] Hopcroft | Algorithm 447: Efficient algorithms for graph manipulation[END_REF].

3.

A cycle C has a self-crossing if there exists self-crossing at a component of selfintersection P ⊂ C (Definition 4.5.23). The information about the components of self-intersection of C is readily available with C and does not cost any additional time. There is a self-crossing at P only if a subpath of C meets ∂N (P ) ∩ ∂N (C) in different components (Fact 4.5.24). This information is also available when the regular sphere around C is computed and does not cost any additional time.

The algorithm thus takes double exponential time in the number of squares of X.

Chapter 5

Constructing a JSJ complex

The goal of this chapter is to construct from X a tubular graph of graphs X jsj whose graph of groups structure gives the JSJ decomposition of G.

Splitting cycles as hyperplanes

Let φ : C → X s ⊂ X be a splitting vertical cycle. We will show how to modify X to a tubular graph of graphs X C such that π 1 (X) ∼ = π 1 (X C ) and π 1 (C) is commensurable with the cyclic group generated by a vertical hyperplane of X C . We first perform this construction at the level of universal covers using the machinery of spaces with walls [HP98] (utilised earlier in Section 4.4.1). We refer the reader to [START_REF] Nica | Cubulating spaces with walls[END_REF] and [START_REF] Chatterji | From wall spaces to CAT(0) cube complexes[END_REF] for details on constructing CAT(0) cube complexes from spaces with walls.

First note that the 0-skeleton X 0 is a space with walls, where the walls are defined by the complementary half-spaces of vertical and horizontal hyperplanes. It is well known that the dual CAT(0) cube complex of X 0 with this wall structure is X (see Theorem 10.3 of [START_REF] Roller | Poc Sets, Median Algebras and Group Actions[END_REF], for instance). For our purposes, we slightly modify the space with walls as follows.

First we attach a strip S L = R × [0, 1] isomorphically along R × {0} to each translate 3. A horizontal edge is mapped to a vertex if and only if the vertical hyperplane through this edge is induced by a wall of type (iii).

Lemma 5.1.5. For any z ∈ Z, η-1 C (σ z ) is a finite horizontal tree. Further, the edges in the pre-image of σ z are dual to vertical hyperplanes induced by translates of C that meet σ z in X.

Proof. Let σ 1 and σ 2 be two vertices of η-1 C (σ z ). Let {Y, Y c } be a wall such that Y ∈ σ 1 and Y c ∈ σ 2 . Then clearly, {Y, Y c } is a wall of type (iii ). Let L be the line that defines {Y, Y c }. We claim that L passes through the vertex σ z in X. If not, then let h be a hyperplane of X that separates L from σ z . Let Y h be a half-space of h that contains the vertex σ z . Then Y h ∈ σ z , the ultrafilter. Clearly, this implies

that Y h ∈ σ 1 and Y h ∈ σ 2 . Since L and h are disjoint, either Y h ⊂ Y or Y h ⊂ Y c .
Thus either Y ∈ σ 1 and Y ∈ σ 2 or Y c ∈ σ 1 and Y c ∈ σ 2 , a contradiction. So L has to pass through σ z . There are only finitely many translates of C that meet at any given point of X. This proves the result.

Since ηC is a finite-to-one G-equivariant map, we conclude that Lemma 5.1.6. G acts geometrically on X C . Lemma 5.1.7. Every vertical hyperplane of X C is a line.

Proof. The stabiliser of a vertical hyperplane is the stabiliser of a wall of either type (ii ) or type (iii ), and hence is a cyclic subgroup. Thus every vertical hyperplane is a line.

The complex X C consists of two types of subcomplexes: Proof. By Lemma 5.1.5, η-1 C (σ z ) is a finite tree for every vertex of X, and thus after subdivision, for the midpoint of every edge of X. Hence Z C is a tree of finite trees if ηC ( Z C ) is a tree. Now ηC sends vertical edges to vertical edges and horizontal edges dual to hyperplanes of type (iii) to vertices (Lemma 5.1.4). The horizontal edges of Z C are of exactly this type by definition. Thus ηC ( Z C ) is a tree.

We now claim that ηC ( Z C ) is a copy of the universal cover of φ(C). Note that φ(C) is a connected union of lines which are translates of C. Since ηC ( Z C ) is also a union We will denote the labellings on the adjacent vertices by φ a i , φ b i . Let Γ Proof of Lemma 5.2.3. Let e be an edge in the image of C. Subdivide X so that the midpoint m of e is a vertex. Let e 1 and e 2 denote the new edges obtained from e. Let P be a fundamental domain of C. We will assume that P ⊂ C and that the initial vertex of P is (a lift of) m. Let P 1 be the concatenation P.cP , where c is a generator of π 1 (C). We will assume that the regular spheres of P and P 1 are embedded in X as subsets. Note that ∂N (P 1 ) ∼ = ∂N (P ) (e 1 ,φ 1 ) (ce 2 ,φ 2 ) ∂N (cP ), by Since C has no self-crossing, no two walls of W u (W e ) cross (Lemma 5.1.3). Thus the dual cube complex of (Z, W u ) (respectively (Z, W e )) is a tree, denoted by T (u) (T (e)).

of translates of C with image φ(C) in X, ηC ( Z C ) ⊂ φ(C). Conversely, if a vertex v of a translate L of C is contained in ηC ( Z C ), then η-1 C (v)
i := Γ 1 (b 1 ,φ b 1 ) (a 2 ,φa 2 ) Γ 2 (b 2 ,φ b 2 ) • • • (a i ,φa i ) Γ i .
Lemma 5.2.7. Let v ∈ φ(C) be a vertex and ṽ1 , ṽ2 be lifts of v in X. Then 1. {ṽ 1 } +D and {ṽ 2 } +D are isomorphic as square complexes. Further, 2. if u ∈ φ(C) is a vertex or a midpoint of an edge and ũ1 and ũ2 are lifts of u in {ṽ 1 } +D , then there exists a natural bijection between the translates of C that meet ũ1 and the translates of C that meet ũ2 .

Thus the definition of W u (and W e ) is independent of the choice of ṽ or of the choice of ũ (ẽ) in B.

Suppose that an edge e is incident to a vertex u in φ(C). Let ẽ with incident vertex ũ be a lift of e incident to u. Since every translate of C that passes through ẽ also passes through ũ, there exists a natural inclusion W e ⊂ W u . Further, given translates L 1 , L 2 that contain ẽ with half-spaces Y 1 , Y 2 such that Y 1 ⊂ Y 2 , suppose there exists a translate L that meets ũ with half-space

Y such that Y 1 ⊂ Y ⊂ Y 2 .
Then it is easy to see that L contains ẽ. Thus we have Lemma 5.2.8. Given an edge e in φ(C) incident to a vertex u, there exists a natural inclusion T (e) → T (u).

The space X C is constructed from two spaces Z C and Y C , defined below.

• Z C is the geometric realisation of the graph of trees (φ(C), {T (u)}, {T (e)}).

• Y C is the square complex obtained from X \ φ(C) by "completing the missing cells" as follows: for each vertex or edge x of φ(C), take as many copies of x as the number of squares of X that contain 

Structure of X C

Lemma 5.2.12. The tree T (u) (or T (e)) is a bipartite tree with black vertices having valence exactly K.

Proof. We will first show that there exist vertices of valence K in T (u) (T (e)) and then show that the tree is bipartite. Let L be a translate of is incident to σ L , σ L lies in any path between σ and σ L . We will show that σ L and σ L are not adjacent. This will prove that σ is not at distance two from σ L whenever Y 1 ∈ σ . Indeed, there exists a half-space Y 2 , say, of L that contains L and hence Y 2 ∈ σ L . Thus there exists an edge which flips Y 2 and Y c 2 in any path between σ L and σ L . But such an edge is not adjacent to σ L as it does not flip Y i and Y c i .

This proves that a vertex in T (u) (T (e)) is of the form σ L if and only if it is at even distance from σ L . Thus the tree is bipartite.

Let u (e) be in φ(C). Let v 1 and v 2 be black vertices in T (u) (T (e)).

Lemma 5.2.13. Given an edge e 1 incident to v 1 in T (u) (T (e)), there exists an edge e 2 incident to v 2 in T (u) (T (e)) such that the hyperplane in Z C dual to e 1 is equal to the hyperplane dual to e 2 .

Proof. Let v i be the ultrafilter σ L i , where L 1 and L 2 are translates of C passing through ũ (ẽ) in B. Let e 1 correspond to the wall {Y 1 , Y c 1 }, where Y 1 is a half-space of L 1 . Since L 2 is a translate of L 1 , there exists a fundamental domain P of C in L 1 containing ũ (ẽ) such that there exists g ∈ G and ũ (ẽ in P ) such that gũ = ũ (gẽ = ẽ) and gP ⊂ L 2 . The segment from ũ to ũ (ẽ to ẽ ) projects to φ(C) as a subgraph. Since L 1 passes through every vertex and edge in this segment, there is an edge corresponding to {Y 1 , Y c 1 } in the dual tree of the image in φ(C) of each vertex and edge of this segment. By the way Z C was defined, this defines a unique hyperplane in Z C . Since gũ = ũ (gẽ = ẽ) and gL 1 = L 2 , the required edge incident to σ L 2 is {gY 1 , gY c 1 }.

Let φ : C → X s be a primitive cycle such that C is a power of C . Procedure 5.3.2 (Construction of X ). The tubular graph of graphs X is constructed from X using the cycles in C as follows:

• Start with X = X 0 .

• For 1 ≤ i ≤ n, check if φ i : C i → X factors through a vertical cycle ψ i :

C i → X i-1 .
If it doesn't, then declare X i = X i-1 . Else, define X i to be the opened-up space of X i-1 along the cycle ψ i : C i → X i-1 .

• Declare X = X n .

Lemma 5.3.3. The cycle C i in C factors through a vertical cycle in X i-1 if and only if for 1 ≤ j ≤ i, lifts of C j and C i don't cross in X.

By Theorem A, we will assume that X is a Brady-Meier tubular graph of graphs with fundamental group G. Proof. The algorithm of Theorem 4.9.1 takes X as input and returns a set of cycles C that contains all universally elliptic cycles upto commensurability. Given C, X is constructed using Procedure 5.3.2. This procedure consists of applying the algorithm of Theorem 5.2.1 repeatedly. 

L

Structure of X

Note that the maps ηi : X i → X i-1 induce maps η : X → X and η : X → X.

Denote by Γ the underlying graph of the graph of spaces X and by T the underlying tree of the tree of spaces X . Note that T is the Bass-Serre tree of the cyclic splitting of G induced by X . Let L be a lift of an element C i of C such that C i factors through a vertical cycle in X i-1 .

Lemma 5.3.5. There exists a vertical tree in X whose stabiliser is equal to the stabiliser of L.

Proof. By Lemma 5.2.14, a primitive cycle C i such that C i is a power of C i embeds in X i as a vertical graph. Since the process of producing X from X i does not crush any horizontal edges, a lift L of C in X is a vertical tree (Figure 5.1).

Let h be a vertical hyperplane in X . Let L 1 and L 2 be the two boundary lines of h, that is, the two vertical lines on either side of h at distance 1 2 from h, and parallel to h. Lemma 5.3.6. The stabiliser of h is equal to either stab(L 1 ) or stab(L 2 ).

Proof. Denote by H, H 1 and H 2 the stabilisers of h, L 1 and L 2 respectively. Suppose that H is not equal to either H 1 or H 2 . Fix h 1 ∈ H 1 \ H and h 2 ∈ H 2 \ H. We will then show that there is a flat plane contained in X as a subcomplex.

Consider the hyperplane h 1 h. Its boundary lines are h 1 L 1 = L 1 and h 1 L 2 = L 2 .

Thus the strips S and h 1 S share exactly one boundary line, L 1 . Next, consider the hyperplane h 1 h 2 h. Its boundary lines are h 1 h 2 L 1 = L 1 and h 1 h 2 L 2 = h 1 L 2 . Thus the strip h 1 h 2 S shares exactly one boundary line, h 1 L 2 with h 1 S. Note that h 1 h 2 S = S as h 1 h 2 / ∈ H. Similarly, the strip h 1 h 2 h 1 S shares exactly one boundary line h 1 h 2 L 1 with h 1 h 2 S and so on. In this way, we get a closed half-plane (homeomorphic to h × [0, ∞)) on one side of h. Similarly, we can construct another closed half-plane on the other side of h starting with the strip h 2 S. The union of these two half-planes is a plane containing h. By the Flat Plane Theorem (see Theorem Γ.3.1 of [START_REF] Bridson | Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften[END_REF]), G is not hyperbolic, which is a contradiction.

Recall that X C was defined as the cube complex dual to W C , the set of walls induced by hyperplanes of X and walls induced by translates of C. Analogously, X is the cube complex dual to a space with walls, where walls are defined on the set Z of open horizontal half-edges of X along with open horizontal half-edges of strips attached to translates of C i whenever C i factors through a vertical cycle in X i-1 .

The set of walls W in Z are thus of three types:

• Walls of type (i) are induced by horizontal hyperplanes of X.

• Walls of type (ii) are induced by vertical hyperplanes of X.

• Walls of type (iii) are induced by translates of C i , where C i ∈ C factors through a vertical cycle in X i-1 .

A vertical half-space of X (or X ) is a half-space of a wall of type (ii) or (iii).

that the vertical half-spaces of type (ii ) in σ L consists of the half-spaces of vertical hyperplanes in X that contain L.

If σ L = σ L , we have nothing to prove as the vertical tree that contains L is equal to L . Let σ i be the set of vertical half-spaces such that σ i σ L = {Y i , Y c i }, where Y i is a half-space of L. Since {Y i , Y c i } defines a vertical hyperplane h i in X , σ i is the set of all vertical half-spaces of some vertex of X that is separated from L by exactly h i . So either σ L = σ i for some i or σ L = σ i for any i.

First assume the latter. Then there exists a half-space Y 0 of a line L 0 such that

{Y 0 , Y c 0 , Y i , Y c i } ⊂ σ L σ L , with Y i ⊂ σ L .
Let σ be a vertex in L \ L 0 . Then there exists σ ∈ L such that η(σ ) = σ. This implies that the vertex σ contains Y i , which is not possible.

Assume now that σ L = σ i , for some i. Let L i = L be a boundary line of the strip that separates L from L . The proof follows from the following observation. Let γ denote a geodesic between L and L i . Since γ consists of vertical edges, η(γ) has the same length as γ (by Lemma 5.1.4) and is a geodesic between η(L ) and η(L i ).

Let L 1 , • • • , L K be the boundary lines of strips attached to L such that L i = L . Then Lemma 5.3.11. ∂N (L i ) has exactly two components. Proof. Note that L i is a separating line since it is a tubular line (Fact 4.2.10).

Let Y i be a half-space of L i that does not contain L . Then η( Y i ) does not contain L (Lemma 5.3.10) and is connected. Thus η(Y i ) lies in the half-space Y i of L. Further, if there exist two half-spaces of L i that do not contain L , then η-1 (Y i \ L) contains these half-spaces. By Lemma 5.1.5, one of these half-spaces is at finite distance from the other, and hence from L i . This is a contradiction to Lemma 4.2.12.

Proof of Lemma 5.3.9. If ∂N (L ) contains three or more components, then a subgroup H of stab(L ) is universally elliptic, by Proposition 4.6.5.

Let L = η(L ). Then H stabilises L as η is G-equivariant. Since the limit set of H v as each edge incident to v induces a unique component of ∂G \ Λstab(u). Proof. Indeed, every edge stabiliser of T jsj is an edge stabiliser of T , by Proposition 5.4.3. Further, any edge stabiliser of T that is not an edge stabiliser of T jsj has to belong to a maximal hanging surface vertex group in T jsj (Definition 1.3.1) and hence gives a relative splitting of the maximal hanging surface subgroup that it belongs to. Hence the result.

Recall that a surface subgroup G of G is a hanging surface group ([Sel97]) if there exists a graph of groups decomposition of G such that G is a vertex group and the peripheral subgroups of G are precisely the incident edge subgroups.

Lemma 5.4.6. The stabiliser H a edge e of T is not an edge stabiliser of T jsj if and only if the cyclic vertex u incident to e in T is of valence two and both the non-cyclic vertices adjacent to u are stabilised by hanging surface groups.

Proof. One direction is clear, since no edge of T jsj is such that the cyclic vertex incident to this edge is adjacent to two hanging surface group vertices.

Conversely, if H is not an edge stabiliser of T jsj , it is contained in a maximal hanging surface group of T jsj . Thus u is of valence two, by Lemma 5.4.2. Further, the stabilisers of both the vertices adjacent to the u are hanging surface groups as their image in T jsj is contained in the maximal hanging surface group that contains H.

So we can modify X to X jsj by removing tubes which connect hanging surface groups. This requires an identification of such groups, which we do in the next subsection.

Surface graphs

Definition 5.5.1. A vertex graph of a tubular graph of graphs is said to be a surface graph if the graph is not a circle and the fundamental group of the graph is a surface group whose peripheral subgroups are precisely the subgroups induced by the incident edge graphs.

In other words, a vertex graph with its incident edge graphs is a surface graph if its fundamental group is a hanging surface group.

Lemma 5.5.2. A vertex graph of a Brady-Meier tubular graph of graphs is a surface graph if and only if every edge of its double is of thickness two.

Recall that the double of a graph Γ with a finite family of immersed cycles {C 1 , • • • , C n } is a tubular graph of graphs whose underlying graph consists of two vertices with n edges between them, each vertex space is a copy of Γ and the i th tube attaches as C i on both sides.

Proof. Let D s be the double of the vertex graph X s . It is a standard fact that D s is homeomorphic to a surface if and only if X s is a surface graph. Note that D s is Brady-Meier as every vertex of X s satisfies the Brady-Meier conditions. Thus every edge of D s is of thickness at least two. If each edge is of thickness two, then the fact that every vertex link is connected implies that every vertex link is a circle. This implies that D s is homeomorphic to a closed surface and we are done.

Conversely, suppose that there exists an edge e of thickness at least three in D s . Let ẽ be a lift of e in D S and h the horizontal hyperplane through ẽ. Note that h is a tree. Let L be a line in h passing through the midpoint m of ẽ. Note that L does not separate ∂N (m) as ẽ is of thickness at least three. By Lemma 4.2.5, L does not separate D s . But this implies that D s is not homeomorphic to a closed surface.

  chapter 1: Introduction Par un théorème célèbre de Stallings, un groupe fini sans torsion a un bout si et seulement s'il est librement indécomposable [Sta68]. Nous allons utiliser un résultat-clé de Brady et Meier. Ces auteurs donnent des conditions locales sur un complexe cubique CAT(0) qui impliquent que le complexe a un bout. Théorème 1.7.1 ([BM01]). Soit X un complexe cubique CAT(0) localement fini, tel que (BM1) pour chaque sommet v ∈ X, le link de v (link(v)) est connexe, et (BM2) pour chaque v ∈ X et chaque simplexe σ ⊂ link(v), le complément de σ est (non-vide et) connexe. Alors X a un bout. Nous dirons qu'un complexe carré est Brady-Meier s'il satisfait les conditions (BM1) et (BM2) ci-dessus. Le résultat principal de la première partie de thèse donne une procédure géométrique/ combinatoire pour modifier un graphe tubulaire de graphes en un graphe tubulaire de graphes homotopiquement équivalent qui n'est pas Brady-Meier si, et seulement si, le groupe fondamental a plus qu'un bout : Théorème 1.7.2 (Théorème A). Il existe un algorithme en temps polynomial qui prend en entrée un graphe tubulaire de graphes et qui renvoie un graphe tubulaire de graphes homotopiquement équivalent à celui d'entrée, et de plus le complexe produit ou bien est Brady-Meier, ou bien contient une arête ou un sommet localement déconnectant qui scinde le groupe fondamental en un produit libre. L'étape clé dans la construction de notre algorithme implique une simplification du graphe tubulaire de graphes par ouverture en un sommet qui ne satisfait pas (BM2). Cette ouverture ne change pas le nombre de carrés dans le complexe, tout en simplifiant ses links de sommets. Nous appelons une telle procédure d'ouverture un mouvement-SL (link simplifié). Nous obtenons immédiatement une réciproque partielle du Théorème 1.7.1: Corollaire 1.7.3. Un graphe tubulaire de graphes a un revêtement universel à un bout si et seulement s'il peut être modifié par un nombre fini de mouvements-SL en un graphe tubulaire de graphes Brady-Meier avec le même groupe fondamental. Comme conséquence du Théorème 1.7.2, nous obtenons : Corollaire 1.7.4 (Corollaire B). Il existe un algorithme en temps polynomial qui prend en entrée un graphe tubulaire de graphes et décide si son groupe fondamental a un bout. De plus, il renvoie la décomposition de Grushko du groupe fondamental. Nous rappelons que notre démonstration n'utilise pas le théorème de Stallings et ne présuppose pas l'existence d'une décomposition de Grushko. En fait, notre procédure fournit une nouvelle preuve du théorème de Stallings pour les groupes fondamentaux de graphes tubulaires de graphes ainsi que l'existence d'une décomposition de Grushko pour ces groupes. En fait, nous obtenons l'analogue suivant d'un résultat dans la théorie des 3-variétés d'après Jaco [Jac69] qui stipule que si le groupe fondamental d'une 3-variété compact est un produit libre, alors chaque facteur libre est lui-même le groupe fondamental d'une 3-variété.
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 21 Figure 2.1: An example of a hanging tree in X s .

X s X a e Figure 2 . 2 :

 e22 Figure 2.2: Removing rudimentary edges.

Fact 2 . 3 .

 23 10. Given any covering map X → Y of square complexes, X is Brady-Meier if and only if Y is Brady-Meier.

  center of s and parallel to two of the edges of s. Given an equivalence class [e] of parallel edges, the hyperplane dual to e, denoted by h e is the collection of mid-edges which intersect edges in [e].

Figure 3

 3 Figure 3.4: A highlighted path of each colour indicates a part of the image of an attaching map

  one-ended and has trivial Grushko decomposition. If X N is wedge-like, G is not one-ended (Remark 3.4.2). In the first step, we remove open edges of thickness one and the open squares that contain them (see Figure 3.1).

  for an element b i ∈ B, b i is represented by a closed path in H n which starts from the chosen basepoint, intersects d i transversely and returns to the basepoint without touching any other d j . Cutting open H n along these disks results in a 3-ball with 2n disks d ± i (such that the chosen representative b i enters along d + i and leaves along d - i ).

Figure 3 .

 3 Figure 3.5: A Whitehead graph

Figure 3 .

 3 Figure 3.5 illustrates an example when n = 2, B = {b 1 , b 2 } and W = {b 1 b 2 b 1 }.Definition 3.5.2(Stallings). W is separable if there exists a non-trivial free splitting of F n = H * K such that each element of W is either a conjugate of an element of H or a conjugate of an element of K.

Definition 3 .5. 3 .

 33 Let Y be a topological space. A cut point y ∈ Y is a point such that Y \ {y} is not connected. Remark 3.5.4. A disconnected graph with at least three vertices necessarily has a cut vertex.

Theorem 3 .

 3 5.5 ([Whi36]). If W is separable, then Γ Fn,B (W ) has a cut vertex for any basis B.
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  Figure 3.6: X s 1 (= X s 2 ) a +1
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 38 Figure 3.8: Step 1 of the algorithm
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 41 Figure 4.1: Cubical subdivision of a square

Figure 4 . 2 :

 42 Figure 4.2: Two disjoint subpaths of P are mapped to the yellow square

Fact 4 ρ 3 .

 43 Figure 4.3: P is a deformation retract of its regular neighbourhood

Definition 4.1. 8 .Figure 4 . 4 :

 844 Figure 4.4: Regular spheres around two adjacent vertices. The star of e a is highlighted in green.

  Lemma 4.1.9. The regular sphere around e is homeomorphic to a connected sum of the regular spheres around u and v, with labelling induced by the squares containing e. Proof. Let m be the midpoint of e. Then m is a vertex after a subdivision of the square complex. Observe that ∂N (m) is homeomorphic to a dipole graph of order d, where d is the thickness of e. Let e a be the initial half-edge of e and e b its second-half. Then e a and e b meet ∂N (m) at distinct vertices of valence d, which we will also call, by abuse of notation, as e a and e b respectively. Thus ∂N (m) \ s tar(e a ) ∪ s tar(e b ) is a disjoint union of d segments, one for each square that contains e. Similarly, e a (e b ) meets ∂N (u) (∂N (v)) at a vertex of valence d, see Figure 4.4. So ∂N (u) \ s tar(e a ) (∂N (v) \ s tar(e b )) is a graph with d 'hanging' edges: edges with one of their endpoints having valence 1. We thus see that ∂N (e) ∼ = ∂N (u) \ s tar(e a ) ∂N (m) \ ( s tar(e a ) ∪ s tar(e b )) ∂N (v) \ s tar(e b )/ ∼ where the gluing is defined on vertices of valence 1. A vertex of valence 1 in ∂N (u) \ s tar(e a ) is glued to a vertex of valence 1 in ∂N (m) \ s tar(e a ) if and only if they are contained in a common square. Similarly, a vertex of valence 1 in ∂N (m) \ s tar(e b ) is glued to a vertex of valence 1 in ∂N (v) \ s tar(e b ) if and only if they are contained in a common square. Observe that the squares containing e induce a labelling φ u of the vertices adjacent to e a in ∂N (u) and a labelling φ v of vertices adjacent to e b in ∂N (v). Since ∂N (m \ ( s tar(e a ) ∪ s tar(e b )) is a union of segments that join the regular sphere around u and v, ∂N (e) is homeomorphic to ∂N (u) (ea,φu) (e b ,φv) ∂N (v).

  The initial half-edge e a of e hits ∂N (P 1 ) at a vertex (of valence d) whose adjacent vertices have a labelling φ 1 induced on them by the squares containing e. Similarly, e b hits ∂N (P 2 ) at a vertex (of valence d) with a labelling φ 2 induced on its adjacent vertices by the squares containing e. Since ∂N (m) \ ( s tar(e a ) ∪ s tar(e b )) is a disjoint union of d segments, ∂N (P ) ∼ = ∂N (P 1 ) (ea,φ 1 ) (e b ,φ 2 ) ∂N (P 2 ).

Fact

  

  Lemma 4.2.7. Let Y be a half-space of a line L. Then L ⊂ Y . Proof. Fix y ∈ Y \ L. Then given any l ∈ L, there exists a path α l from y to l such that α l ∩ L = {l}, by Lemma 4.1.18. Hence l ∈ Y .
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chapter 4 :Figure 4 . 5 :Figure 4 . 6 :

 44546 Figure 4.5: The trichotomy when v ∈ L +k \ L +(k-1)
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 32 Crossing criterion). Let L and L be two separating lines in X.L crosses L if and only if 1. L ∩ L = P is non-empty and compact and 2. L ∩ ∂N (P ) separates L ∩ ∂N (P ).Throughout this section, L and L are two separating lines and P denotes their intersection.Lemma 4.3.3. If P is either empty or non-compact, then L and L don't cross.

  Now either L ∩ ∂N (p 1 ) or L ∩ ∂N (p 2 ) is in Y 2 and hence x ∈ Y 2 . This means thatY 1 = Y 2 , which is not possible. Hence, x ∈ Y .For the converse, argue as above after reversing the roles of L and L . Lemma 4.3.5. L and L don't cross if and only if for each half-space Y of L, there exists a half-space Y of L such that either Y ⊂ Y or Y ⊂ Y and similarly for each half-space Y of L , there exists a half-space Y of L such that either Y ⊂ Y or Y ⊂ Y . Proof. We start with the easy direction. Suppose there exist half-spaces Y and Y such that Y ⊂ Y , say. Then L ⊂ Y and thus by Lemma 4.3.4, L and L don't cross. Conversely, suppose L and L don't cross. Let Y 0 and Y 0 be such that L ⊂ Y 0 and L ⊂ Y 0 .

Lemma 4. 3 . 6 .

 36 Let Y be a half-space of a cut pair {a, b}. Then {a, b} ⊂ Y .Proof. Since Γ is connected, at least one of the two, say a, is contained inY . If b is not contained in Y , then a is a cut point as a separates Y from b.The second result is analogous to Lemma 4.3.4. Lemma 4.3.7. Let {a, b} and {a , b } be cut pairs in Γ. Then {a , b } separates {a, b} if and only if {a, b} separates {a , b }. Proof. If {a, b} and {a , b } are not disjoint, then neither pair separates the other pair. So assume that they are disjoint. Suppose that {a, b} is contained in a half-space Y of {a , b } while a lies in a half-space Y 1 of {a, b} and b lies in a half-space Y 2 . If Y 1 = Y 2 , we will show that {a , b } is not a cut pair. Let x ∈ Γ \ {a , b }. If x / ∈ Y 1 , Y 2 , then there exists a path from x to a disjoint from a and b and hence x ∈ Y . Let x ∈ Y 1 . Since Γ has no cut points, there exists a path from x to a in Γ \ {a }. If this path hits b , then it first hits b as x ∈ Y 1 and b ∈ Y 2 . Hence x ∈ Y . Similarly, if x ∈ Y 2 , then there exists a path from x to a or b disjoint from a and b and hence x ∈ Y . This implies that Y = Γ. The converse follows by interchanging {a, b} and {a , b }. Corollary 4.3.8. Let {a, b} and {a , b } be cut pairs in Γ. If there exist at least three half-spaces of {a, b}, then {a , b } is not separated by {a, b}. Proof. Let Y be a half-space of {a, b} that contains neither a nor b . Then ({a, b} ⊂ )Y is contained in a half-space of {a , b }. The result then follows from Lemma 4.3.7.

  finally, 5. N R (L ) separates A 2 from A 3 but not A 3 from A 1 . Lemma 4.3.10. Two separating lines L and L of X cross if and only if they coarsely cross. Proof. Suppose L and L cross. Let Y 1 and Y 2 be the two half-spaces of L which contain L and Y 1 and Y 2 the half-spaces of L which contain L. Then L separates

  Each of the intersections contains points at arbitrarily large distances from both L 1 and L 2 since there exist hyperplanes which intersect L 1 or L 2 at a single point in these subspaces. Conversely, suppose L and L cross coarsely. Let R be large enough so that there exist A, B, C and D as in the definition. Since A and D are separated by L and not L, A and D lie in a half-space of L, say Y 1 . Similarly, B and C lie in a half-space of L, say Y 2 . Note that L ∩ Y i is non-compact for i = 1, 2. If not, then suppose L ∩ Y 1 is compact. This implies that L ∩ Y 1 is contained in L as L and L are geodesics. Then L does not separate A from D as there exists a path between a point on A chapter 4: Cyclic splittings and Brady-Meier complexes and a point on D disjoint from L. Thus L hits Y 1 and Y 2 non-compactly. Further, Y 1 = Y 2 as L separates A from B and A ⊂ Y 1 , B ⊂ Y 2 . Thus L and L cross.

4. 4

 4 Cyclic splittings and separating lines Definition 4.4.1. Let H be a subgroup of G. Recall that G splits over H if G decomposes as a nontrivial free product with amalgamation over H or as an HNN extension over H.Recall that a group G acts minimally on a tree T if there exists no proper G-invariant subtree of T .Proposition 4.4.2. G splits over H if and only if G acts without edge inversions on an unbounded tree T such that H is the stabiliser of some edge of T and G acts minimally on T .A decomposition of G either as a free product with amalgamation or as an HNN extension is known as an elementary splitting of G.Proof. One direction is clear. The Bass-Serre tree of the amalgamated product or HNN extension over H satisfies the hypothesis. For the converse, a quotient graph of groups of the G-tree T has an edge e whose edge group is H. Collapse the (two) component(s) of the complement of the open edge e in the underlying graph to the endpoint(s) of e. The resulting graph of groups is either a free product with amalgamation or an HNN over H. If it is the latter, we are done. If it is the former, say A * H B, then we claim that H A and H B. Suppose not, say A = H. Note that G = B in this case. Then in the G-tree T , let ẽ be a lift of e which is stabilised by H. If ẽ = (v, w), then one of them, say v, is stabilised by only H. Let T v be the component of T \ e containing v.

By

  Lemma 4.4.8, Y and Y are not disjoint. This implies that either gL ⊂ Y or g L ⊂ Y , by Lemma 4.4.4. Assume the former. Either Y ⊂ Y or not. If Y ⊂ Y , then no ultrafilter can contain both Y and Y c and hence ω 4 cannot exist. On the other hand, if Y Y , then g L meets Y in its interior and hence Y c ⊂ Y .

  Lemma 4.5.3. ∂N (C) ∼ = ∂N ( C)/π 1 (C). Proof. The projection onto C ( C) of the regular neighbourhood of C ( C) is a deformation retraction. Hence the result. Definition 4.5.4. A cyclic path is an immersed combinatorial path ρ : P → X s such that the initial and terminal vertices of P have the same image while the initial and terminal edges of P have distinct images. A cyclic path P induces a quotient cycle φ P : C P → X s , where C P is the quotient of P obtained by gluing the initial and terminal vertices and defining φ P ([x]) := ρ(x). Definition 4.5.5 (Fundamental domain of a cycle). Let φ : C → X s be a cycle. A cyclic path ρ C : P C → X s with induced quotient cycle C P C is said to be a fundamental domain of C if the following diagram commutes. Remark 4.5.6. It is easy to see that for the action of π 1 (C) on C, a lift P C of P C is a fundamental domain of C in the usual sense. Definition 4.5.7. Let P C be a fundamental domain of a cycle C. Let u and v be the initial and terminal vertices of P C and a and b the initial and terminal edges.

Proof.

  Recall that ∂N (C) ∼ = ∂N ( C)/π 1 (C) (Lemma 4.5.3). Fix an orientation on P C . This induces an orientation on both C and C. Let c be a generator of π 1 (C) that moves an element of C in the positive direction. Then C ∼ = n∈Z c n P C / ∼,
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 4 Cyclic splittings and Brady-Meier complexes Lemma 4.5.10. Let K be a component of ∂ orth N (P C ). Then there exists a square s in N (P C ) that meets e and s ∩ ∂ orth N (P C ) ⊂ K. Definition 4.5.11. A cycle C is a UC-separating cycle if C is a separating line. By Lemma 4.2.5, we have Lemma 4.5.12. If C is a UC-separating cycle, then ∂ orth N (P C ) is not connected. Definition 4.5.13. A cycle C is strongly UC-separating if ∂N (C) is not connected. Lemma 4.5.14. C is strongly UC-separating if and only if the following two conditions are satisfied: 1. C is a UC-separating cycle and 2. π 1 (C) does not act transitively on the set of half-spaces of C.Proof. Recall that ∂N (C) ∼ = ∂N ( C)/π 1 (C) (Lemma 4.5.3). A component of ∂N (C) lifts to a component of ∂N ( C). So if ∂N (C) is connected, then either ∂N ( C) is itself connected or every component of ∂N ( C) projects onto ∂N (C). So π 1 (C) actstransitively on the components of ∂N ( C) and therefore on the components of X \ C. The converse is clear. Definition 4.5.15. A cycle φ : C → X s is said to be an n th -power of the cycle φ : C → X s if there exists an n-fold covering map ψ : C → C such that the following diagram commutes. 5.16. Let N be the maximal thickness of an edge of X. Given a UCseparating cycle C, there exists n ≤ N such that the regular sphere around an n th power of C is not connected. Proof. By Corollary 4.2.9, the number of half-spaces of C is at most N . Thus there exists a subgroup H of index at most N of π 1 (C) that does not act transitively on the set of half-spaces of C. The required cycle C is the quotient of C by H. Definition 4.5.17. Let ρ C : P C → X s be a fundamental domain of a cycle C. A subcycle of C is the quotient cycle of a cyclic path ρ C | P : P → X s with P ⊂ P C . Observe that if C is an n th -power of C, then C is a subcycle of C . Definition 4.5.18. A UC-separating cycle C has a self-crossing if there exists g ∈ G such that C and g • C cross. Definition 4.5.19. We say that C is a splitting cycle if the following conditions are satisfied: 1. C is a strongly UC-separating cycle, 2. π 1 (C) is equal to the stabiliser of a proper subset of the set of half-spaces of C, and 3. C has no self-crossings.

Figure 4

 4 Figure 4.10: A pre-image of a square in the regular sphere

2 .

 2 for each i ∈ {1, • • • , k}, the translation length of g i is strictly less than the length of C, and 3. any two squares s and s that contain ẽ are separated by one of the translates, say g 1 C, if and only if they are separated by g i C for all i ∈ {1, • • • , k}.Proof. Let C be k-repetitive with fundamental domain P C so that there exist edges e 1 , • • • , e k in P C that satisfy the conditions of Definition 4.7.2. Let P C ⊂ C denote a lift of P C in X. Note that P C ∼ = P C . Denote ẽ1 in P C by ẽ. Since the edges ẽi in P C all have the same image e in X, there exist 1 = g 1 , • • • , g k such that g i ẽi = ẽ. Then clearly, for each i ∈ {1, • • • , k}, the translation length of g i is strictly less than the length of C and g i C contains ẽ. Let s and s be two squares that contain ẽ. Then the squares g -1 i (s) and g -1 i (s ) in P C are lifts of squares s i and s i in P C . Let D and D be components of ∂ orth N (P C ) such that the pre-image s 1 of s around e 1 meets D and the pre-image s 1 of s around e 1 meets D . By definition, the corresponding pre-image s i meets D and s i meets D for all i. Now s = s1 and s = s 1 lie in different half-spaces of g 1 C = C if and only if D, D ⊂ ∂N ( C) (since ∂ orth N (P C ) → ∂N ( C), by Fact 4.5.8) meet different halfspaces of C. Also, s and s lie in different components of g i C if and only if si = g -1 i s and s i = g -1 i s lie in different half-spaces of C if and only if D and D induce different half-spaces of C. As a consequence, we have the following useful result when at least two of the translates in the above lemma are not equal. Let k ≥ 2 and assume that C is a k-repetitive cycle. Let g 1 , • • • , g k ∈ G be as in Lemma 4.7.4.

  Lemma 4.7.6. Let Γ be a graph with no cut points. Let {a, b} and {a , b } be cut pairs. Suppose there exist points h 1 , h 2 , h 3 ∈ Γ\{a, b, a , b } such that they are pairwise separated by {a, b} and also pairwise separated by {a , b }. Then {a, b} = {a , b }. Compare with Lemma 3.8 of [Bow98]. Proof. Observe that both the pairs {a, b} and {a , b } separate Γ into at least 3 components. Thus by Corollary 4.3.8, {a, b} lies in a half-space Y of {a , b }. Lemma 4.3.7 then implies that {a , b } lies in a half-space Y of {a, b}. Let Y , Y 1 , • • • , Y n be the list of half-spaces of {a , b }. If {a, b} = {a , b }, then Y 1 ∪ • • • ∪ Y n lies in the half-space Y of {a, b} that contains {a , b }. By assumption, at most one h i lies in Y . This implies that the other two lie in Y , a contradiction.

g 2 ∈

 2 stab( C), then < g 2 > and π 1 (C) are contained in a common cyclic subgroup and hence π 1 (C) stab( C), contradicting the fact that C is primitive. Hence g 2 C = C. Lemma 4.7.5 then gives the result.

  Let P C be a fundamental domain of C. Fix an orientation on C. Then each oriented edge of C is mapped to an oriented vertical edge of X. Since there are E vertical edges in X, there are 2E vertical oriented edges. Therefore, by the pigeonhole principle, there exists an oriented edge e in X such that n oriented edges e 1 , . . . , e n of C are mapped to e in an orientation preserving way, with n ≥ (k -1)2 F (F +1)/2 + 1.Let λ ≤ F be the thickness of e. Note that the number of components µ of ∂ orth N (P C ) is at most λ, by Lemma 4.5.10. We would like to show that there exist k edges out of e 1 , • • • , e n for which the conditions of Definition 4.7.2 are satisfied.Denote by A(λ, µ) the number of ways in which the squares s 1 , • • • , s λ containing e can be partitioned into exactly µ nonempty subsets. If n > (k -1)A(λ, µ), then by the pigeonhole principle, k edges which satisfy the conditions of Definition 4.7.2
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 14 Figure 4.13: The segments σ 1 and σ 3

•

  Denote by Z C a connected component of the subcomplex of X C consisting of the union of the first cubical neighbourhood of all hyperplanes corresponding to walls of type (iii). In other words, Z C is a connected component of the closed strips in X C induced by half-spaces of translates of C. • The second type of subcomplex, denoted by Y C is the closure of the complement in X C of the G-translates of Z C . Lemma 5.1.8. The subcomplex Z C is a tree of finite trees whose underlying tree ηC ( Z C ) is a copy of φ(C).

  meets the strips induced half-spaces of L and thus these strips are contained in Z C . The image of any such strip under ηC is L and thus L ⊂ ηC ( Z C ). Define X C := X C /G. By Lemma 5.1.7, X C is a tubular graph of graphs. The space X C is called the opened-up space of X along C. The G-equivariant map ηC : X C → X induces a map η C : X C → X. Let Y C and Z C denote the respective images of Y C and Z C in X C . We have proved that Lemma 5.1.9. Z C is a graph of finite trees with underlying graph φ(C) and with the following property: If u ∈ φ(C) is a vertex (or a midpoint of an edge), then the vertex (edge) tree T (u) is the tree dual to Z with the walls induced by translates of C passing through a lift ũ of u in X. We conclude with the following observation: Lemma 5.1.10. The opened-up space X C is a union of the subcomplexes Y C and Z C with Y C ∩ Z C consisting of those cells of Y C that are mapped by η C to φ(C).

Lemma 5. 2 . 4 .

 24 Suppose that the number of components of Γ \ {a, b} is equal to the number of components of Γ 2 \ {a 1 , b 2 }. Then for each i, the number of componentsof Γ i \ {a 1 , b i } is equal to the number of components of Γ 2 \ {a 1 , b 2 }.Proof. Let k be the number of components of Γ \ {a, b}. Γ 2 \ {a 1 , b 2 } has the same number of components as Γ \ {a, b} if and only if there is a partition into k subsets of {1, • • • , n} such that the partition induced by φ a : {1, • • • , n} → adj(a) and φ b : {1, • • • , n} → adj(b) on the vertices adjacent to a and b coincides with the partition induced by the k components of Γ \ {a, b}. Similarly, Γ 3 \ {a 1 , b 3 } has k components if and only if there is a partition into k subsets of {1, • • • , n} such that the partition induced by φ a 3 : {1, • • • , n} → adj(a 3 ) and φ b 2 : {1, • • • , n} → adj(b 2 ) coincide with the partitions induced by the k components of Γ 2 \ {a 1 , b 2 } and Γ 3 \ {a 3 , b 3 }. Since Γ 2 \ {a 2 , b 2 } ∼ = Γ \ {a, b}, the partition induced on adj(b 2 ) by the k components of Γ 2 \ {a 1 , b 2 } coincides with the partition induced by the k components of Γ 2 \ {a 2 , b 2 }. Hence Γ 3 \ {a 1 , b 3 } has k components. Continuing iteratively, we obtain the result.

  Lemma 4.1.11. Suppose that the number of components of ∂N (P ) \ C is equal to the number of components of ∂N (P 1 ) \ C. By Lemma 5.2.4 we have that the number of half-spaces of C is equal to the number of components of ∂N (P ) \ C. Suppose now that the number of components of ∂N (P ) \ C is strictly greater than the number of components of ∂N (P 1 ) \ C. By Lemma 4.5.10, the number of components of ∂N (P ) \ C has at most N components. Thus the number of components of each line L i separates B into exactly K components. Thus each line L i induces K walls of W u (W e ) on Z, where each half-space Y in X of L i defines a wall {Y ∩ Z, Y c ∩ Z}.

  x and add them to the semi-open squares of X \ φ(C) to obtain closed squares. Call the resulting space as Y C . The vertices and edges of Y C corresponding to φ(C) are the boundary cells of chapter 5: Constructing a JSJ complex Y C . Lemma 5.2.9. There exists a natural map from the boundary cells of Y C to Z C which defines a gluing of Z C to Y C . Proof. Consider a boundary cell u (e ) of Y C , which is a copy of the vertex u (edge e) of φ(C). Choose a horizontal open half-edge z in Y C incident to u (e ) withcorresponding edge z in X. Let ũ (ẽ) be a lift of u (e) in B and z be the half-edge incident to ũ (ẽ) that projects to z in X. Then the required map is the one thatsends z to σ z in T (u) ⊂ Z C (σ z (⊂ T (e)) × e ⊂ Z C ).Definition 5.2.10. The square complex X C is defined to be the complexZ C Y C / ∼,where ∼ is induced by the natural gluing.Proposition 5.2.11. There exists a natural isomorphism between the square complexes X C and X C .Proof. By Lemma 5.1.10, X C is a union of Y C and Z C , while X C is a union of Y C and Z C by definition. Y C is clearly isomorphic to Y C .By Lemma 5.1.9, Z C is a graph of finite trees with underlying graph φ(C). So is Z C . Further, the wall structures that define vertex and edge trees of Z C and Z C are isomorphic: Indeed, the walls that define T (u) for u ∈ φ(C) in Z C are induced by half-spaces in X of translates of C that pass through a lift ũ of u. In Z C , the tree is defined by walls induced by half-spaces of translates of C in a finite ball B of X containing ũ. Since there exists a bijection between the half-spaces of C in B and the half-spaces of C in X (Lemma 5.2.5),Z C is isomorphic to Z C . Thus X C is isomorphic to X C if the isomorphism from Y C to Y C restricted to Y C ∩ Z C is an isomorphism to Y C ∩ Z C . The cells of Y C ∩ Z C areprecisely the cells of Y C that are mapped to φ(C). These cells are mapped to the boundary cells of Y C by definition. Further,this mapping is bijective. Hence the result. Proof of Theorem 5.2.1. The compact space B can be constructed in exponential time from X (Lemma 5.2.6). It costs exponential time to calculate the number of half-spaces of any translate of C (Lemma 5.2.3). Since the number of translates of C meeting at any point of X is bounded by the length of C (by Lemma 4.5.21), the dual trees T (u) (T (e)) of all vertices u (edges e) in φ(C) can be constructed in polynomial time. Thus Z C is constructed in exponential time. Y C is constructed in linear time in X and X C ∼ = X C is obtained in linear time from Y C and Z C . Hence the result.

  C passing through ũ (ẽ) in B. Let Y 1 , • • • , Y K be the half-spaces of L. Let z be an open horizontal half-edge in the strip S L . Denote by σ L the ultrafilter σ z in T (u) (T (e)). Thus σ L contains {Y c 1 , • • • , Y c K } and exactly those half-spaces of translates of C passing through ũ that contain L.We now claim that the valence of σ L is exactly K. Indeed, it is at least K: switching each half-space Y i of L gives an edge incident to σ L . We now claim that there existsno ultrafilter σ such that σ σ L = {Y , Y c }, with Y = Y i . Assume without loss of generality that Y ∈ σ L (that is, L ⊂ Y ). Since Y c is disjoint from L, there exists Y i of L such that Y c ⊂ Y i . This implies that σ contains Y i . Thus σ L σ contains {Y i , Y c i , Y , Y c }.Let σ be a vertex at distance two from σ L . Letσ σ L = {Y 1 , Y c 1 , Y 1 , Y c 1 }, where Y 1 is a half-space of a translate L of C. We will show that σ = σ L .Assume first that Y 1 ∈ σ L . This implies that for each half-space Y i of L with i = 1,Y c i ∈ σ Land hence in σ . Further, Y c 1 ∈ σ by assumption. If σ = σ L , then any path from σ to σ L involves a change of half-spaces of the type {Y i , Y c i }. Hence we conclude that σ = σ L . Assume now that Y 1 ∈ σ . Thus Y c 1 ∈ σ L . Since the edge which flips Y 1 and Y c 1

Lemma 5. 2 . 14 .

 214 There exists a natural embedding of C in X C such that the vertical graph that contains C is isomorphic to C . Further, for a vertex u (edge e) in φ(C), the embedded copy of C meets every black vertex of T (u) (T (e)) exactly once. Proof. Choose a fundamental domain P of C in C in B. For each vertex ũ and edge ẽ in P with images u and e respectively in φ(C), choose σ C in T (u) and T (e).

5. 3

 3 The tubular graph of graphs X 123 This induces an embedding of C in Z C with the required properties.5.3 The tubular graph of graphsX Let C = {C 1 , • • • , C n }be the set of splitting cycles of X furnished by Theorem 4.9.1.Remark 5.3.1. It is easy to see that a vertical cycle induced by the attaching map of a tube is a splitting cycle that is not 3-repetitive. Hence each such cycle is included in C .

Theorem 5. 3 . 4 .

 34 There exists an algorithm of double exponential time-complexity that takes a Brady-Meier tubular graph of graphs X with hyperbolic fundamental group G as input and returns a homotopy equivalent Brady-Meier tubular graph of graphs whose vertical hyperplanes generate all universally elliptic subgroups of G upto commensurability.

Figure 5

 5 Figure 5.1: L in X when L has three half-spaces

  Definition 5.4.4 ([GL16]). A G-tree T is said to be a refinement of a G-tree T if there exists a G-equivariant map p : T → T such that p sends any segment [x, y] in T onto the segment [p(x), p(y)]. In other words, T is obtained by blowing up vertices of T . Corollary 5.4.5. T is a refinement of T jsj .

  4.1.12. A graph has no cut points if and only if it has no cut vertices and no open edge separates the graph. In particular, every vertex of a connected graph with no cut points has valence at least two. Lemma 4.1.13. The regular sphere around a vertex or midpoint of an edge of Z has no cut points if and only if Z is Brady-Meier.

  •[p , p]•P 2 . By Proposition 4.1.14, the regular sphere around [p , p] has no cut points. In particular, ∂N ([p , p]) \ P 1 is connected. We recall that we denote the point at which P i meets ∂N ([p , p]) also as P i .Denoting γ ∩ ∂N ([p, p ]) by γ , we note that there exists a path β between γ and P 2 in ∂N ([p, p ]) \ P 2 . Let h be a vertex adjacent to P 2 such that β meets h.

Note that h ∈ ∂N (p) \ P 2 . The required path α is a concatenation of γ , β and the path in N (p) from h to p.

  where H 1 is the stabiliser of L 1 .In particular, for a cycle C, if g • C = C, then P = g • C ∩ C embeds in C. Definition 4.5.23. A segment P C is said to be a component of self-intersection of C if there exists a translate g C = C such that the projection to C of C ∩ g C is equal to P . We say that there is a self-crossing of C at P if there exists a g ∈ G such that C ∩ g C = P and C and g C cross.tree T L 2 (Lemma 4.4.3) of L 2 contains H 1 and hence H 1 is elliptic in T L 2 . The Bass-Serre tree T 2 of the elementary splitting over H 2 is obtained from T L 2 by a sequence of G-equivariant gluings of edges of T L 2 . Thus elliptic elements remain elliptic, implying that H 1 is elliptic in T 2 .Conversely, if there exists g such that L 1 and gL 2 cross, then g -1 H 1 g is hyperbolic in the dual tree T L 2 and hence in T .Remark 4.6.2. Since G is one-ended, H 1 is elliptic in the Bass-Serre tree of the elementary splitting over H 2 if and only if H 2 is elliptic in the Bass-Serre tree of the elementary splitting over H 1 , see Theorem 2.1 of[START_REF] Rips | Cyclic splittings of finitely presented groups and the canonical JSJ decomposition[END_REF].Definition 4.6.3 ([GL16]). A cyclic splitting of G over the subgroup H is universally elliptic if H is elliptic in the Bass-Serre tree of any cyclic splitting of G. We then say that H is a universally elliptic subgroup. Analogously, a splitting cycle C is universally elliptic if π 1 (C) is universally elliptic.
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X is of thickness at least 2 (Lemma 3.2.12), every hyperplane is an unbounded tree.

Observe that if L meets a hyperplane h at exactly one point, then h has points at arbitrarily large distances from L. It is easy to see that Y contains the interior of at least one square s. Choose s such that s meets L.

Case 1. L is vertical or tubular. A horizontal hyperplane through S meets L at a single point.

Case 2. L is transversal. The vertical hyperplane through S meets L at a single point.

Coarsely separating periodic lines

Definition 4.2.13. An axis in X of an element g ∈ G is a line L in X such that gL ⊂ L and g moves an element of L by its translation length. A line L in X is said to be periodic if it is an axis of some element of G.

Note that given an element g ∈ G, there exists an axis in X of g. We refer the reader to Theorem II.6.8 of [START_REF] Bridson | Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften[END_REF] for details. We first observe that Lemma 4.2.14. Given a combinatorial periodic line L, either L is vertical, or each vertical subpath of L is compact.

Proof. Let g ∈ G be such that gL ⊂ L.

Suppose that a vertical component of L is not compact, and hence contains a ray γ.

Let e be an edge of L adjacent to γ. Then either g or g -1 sends e into γ. Since G sends vertical edges to vertical edges, e is vertical. Continuing this way, we conclude that L is vertical.

The main result of this subsection is the following Lemma 4.2.15. A periodic coarsely separating combinatorial line L of X separates X.

chapter 4: Cyclic splittings and Brady-Meier complexes Fact 4.5.24. Let P ⊂ C be a segment so that the lift of P in C is isomorphic to P (and hence also denoted by P ). Then ∂N 

An algorithm of double exponential time

For the rest of the text, we will also assume that G is δ-hyperbolic. The main result of this section is the following theorem.

Theorem 4.9.1. This implies that π 1 (C) conjugates into a hanging surface vertex group in the JSJ decomposition of G and further it is not peripheral in this vertex group (see Lemma 5.21 of [START_REF] Bowditch | Cut points and canonical splittings of hyperbolic groups[END_REF]). Since universally elliptic splittings are conjugates of exactly the chapter 5: Constructing a JSJ complex L of C. Note that there is a natural square structure on S L so that every horizontal hyperplane of X that meets L naturally extends to S L . Let Z be the set of open horizontal half-edges of the union of X and the attached strips. Then the vertical and horizontal hyperplanes of X induce a space with walls (Z, W ).

Note that we do not add the vertical hyperplanes through the strips S L to the collection of hyperplanes that define walls in W . Thus the dual cube complex of (Z, W ) is nothing but X (Theorem 10.3 of [START_REF] Roller | Poc Sets, Median Algebras and Group Actions[END_REF]). We now enrich W to W C . The walls in W C are determined by the following:

(i ) the horizontal hyperplanes of X, (ii ) the vertical hyperplanes of X, and

Note that the elements of type (i ) and (ii ) induce W , where each half-space Y in X of an element of type (i ) or (ii ) defines a wall

Thus L induces exactly K walls in Z if it has K half-spaces in X.

Given z 1 = z 2 ∈ Z, observe that there are only finitely many walls in W C between z 1 and z 2 . Thus Lemma 5.1.1. (Z, W C ) is a space with walls.

In fact, two elements z 1 and z 2 are not separated by a wall if and only if either z 1 = z 2 or the closures of z 1 and z 2 in X share a vertex and are not separated by any line of type (iii ).

Denote by X C the CAT(0) cube complex dual to Z.

Lemma 5.1.2. X C is a VH-complex.

The proof uses the following observation. Proof of Lemma 5.1. Observe that there exists a natural G-equivariant map ηC : X C → X such that the following diagram commutes:

But every vertex of X is a principal ultrafilter, and hence ηC (σ ) = σ z for some z.

By the way the set of walls W C was defined on Z, we also have that Lemma 5.1.4. The map ηC has the following properties:

1. Let c be a cell of X that does not meet any translate of C. Then ηC restricted to η-1 C (c) is injective.

2. It sends vertical edges to vertical edges and horizontal edges to either horizontal edges or vertices.

Algorithmic construction of X C

The main result of this section is the following.

Theorem 5.2.1. There exists an algorithm of exponential time-complexity that takes a Brady-Meier tubular graph of graphs X and a splitting cycle φ : C → X as input and returns the opened-up space X C along C as output.

Our method is to first combinatorially construct two square complexes Y C and Z C from X and glue them to form X C . We will show that

The first result we will need is the following. Fix a lift C of the splitting cycle

Lemma 5.2.2. There exists D ∈ N such that for any vertex or (midpoint of an edge) v ∈ C and ∀D ≥ D , the D th cubical neighbourhood {v} +D of v has the following properties:

1. For each translate g C such that v ∈ g C, g C separates {v} +D into exactly K components.

2. For every g, g ∈ G such that g C = g C and v ∈ g C ∩ g C, g C ∩ {v} +D = g C ∩ {v} +D .

The main ingredient for proving Lemma 5.2.2 is the following result. Let N be such that the thickness of any edge of X is at most N .

Lemma 5.2.3. Let C N be a 2 N th power of C and P N a fundamental domain of C N .

Then there exists a natural bijection between the set of half-spaces of C and the set of components of ∂ orth N (P N ).

We first prove a preliminary result on the number of connected components of graphs. Let Γ be a graph with no cut points and {a, b} a cut pair. Assume that the valence n of a is equal to the valence of b. We will construct a connected sum For each i ∈ N, let Γ i be a copy of Γ with the corresponding cut pair {a i , b i }. Thus in the underlying tree T of X , at least one of the two vertices of any edge is a cyclic vertex.

Lemma 5.3.9. Let L be a line in X . Suppose that ∂N (L ) contains at least three components. Then the vertical tree containing L is equal to L .

We need two observations to prove the lemma. Let L be a line in X that defines a wall of type (iii ). Suppose that the number of half-spaces of L is K. Let L be a vertical tree in X such that η(L ) = L (Lemma 5.3.5).

Lemma 5.3.10. Exactly K vertical strips are attached to L in X . Further, if η(L ) = L for any vertical line L , then L is contained in one of these K strips.

Proof. The fact that exactly K strips are attached to L follows from Lemma 5.2.14.

Further, each of the K strips above are contained in η-1 (L), by Lemma 5.1.5.

Let L be a vertical line such that η(L ) = L. Denote by σ L the set of vertical half-spaces contained in any vertex (ultrafilter) of L . Note that η(L ) = L implies chapter 5: Constructing a JSJ complex separates ∂G, L coarsely separates X and hence separates X. This implies that L defines a wall of type (iii ). Lemma 5.3.10 and Lemma 5.3.11 then give the result.

Modification of X

The next step in the modification of X to X jsj is the construction of an intermediate tubular graph of graphs X from X by removing certain tubes of X .

Construction of X .

Remove an (open) tube of X if both the vertex graphs bounding the tube are circles, and then identify the vertex graphs. This is possible as, by Lemma 5.3.6, one of the attaching maps of such a tube is an isomorphism at the level of groups. Thus the attaching map is an isomorphism of graphs between the edge graph and the corresponding vertex graph. Successively remove all such tubes of X . Call the new tubular graph of graphs as X .

Structure of X

Let T be the underlying tree of X and let T jsj denote the Bass-Serre tree of the canonical JSJ decomposition of G.. We will show that every edge stabiliser of T is either an edge stabiliser of T jsj or conjugates into a hanging surface subgroup of the JSJ decomposition. Thus T can be modified to T jsj by removing the latter type of edges.

Lemma 5.4.1. For each cyclic vertex u of T jsj there exists a cyclic vertex v of T such that stab(u) = stab(v).

Proof. Fix an axis L in X of stab(u). Note that stab(u) = stab(L) as stab(u) is a maximal cyclic subgroup of G. Let H be the edge stabiliser in T jsj of an edge incident to u. Then H is a universally elliptic subgroup. We can thus assume that the line L is vertical (Lemma 4.6.4).

By Lemma 4.5.26, there exists a splitting cycle C in X such that π 1 (C) is commensurable with a conjugate of H. Hence C is universally elliptic and C ∈ C . Thus there exists a vertical tree in X whose stabiliser is stab( C). Since C is a translate of L, there exists a vertical tree in X whose stabiliser is stab(L) = stab(u). Observe that the process of modifying X to obtain X does not glue any linear tree of X to a non-linear tree as tubes are removed only when both the bounding vertex graphs are circles. Hence the result.

Let v be a cyclic vertex of T and L the corresponding vertical tree (line) in X .

Denote by ΛH the limit set in ∂G of a subgroup H of G.

Lemma 5.4.2. The number of components of ∂G \ Λstab(v) is equal to the number of edges incident to v in T .

Proof. The number of edges incident to v is equal to the number of strips attached to L , which is equal to the number of components of ∂N (L ). The number of components of ∂G \ Λstab(v) is equal to the supremum of the number of components of X \ L +k , where k ∈ N. Let K be the number of strips attached to L . Let L i be the boundary line of the i th strip such that L = L i . Note that the vertical tree containing L i is not equal to L i as otherwise the corresponding strip would have been removed to obtain X . By construction, L i has exactly two half-spaces. Let Y i be the half-space of L i that does not contain L . Note that no strip of Y i contains L i as otherwise L i would have more than two half-spaces. By Lemma 4.2.16, Y i \ L +k i and hence Y i \ L +(k+1) is connected, for every k ∈ N. Hence the result.

Proposition 5.4.3. For each edge of T jsj with stabiliser H, there exists an edge of T whose stabiliser is H.

Proof. Since each edge of T jsj is incident to a cyclic vertex, let stab(u) be the cyclic vertex group of T jsj that contains H. Then H is the stabiliser of a component of ∂G \ Λstab(u). Let v be a vertex of T such that stab(v) = stab(u) (Lemma 5.4.1).

Then the number of edges incident to v is equal to the number of components of ∂G \ Λstab(u), by Lemma 5.4.2. Further, H is the stabiliser of an edge incident to chapter 5: Constructing a JSJ complex

Construction of X jsj

We are now ready to construct X jsj . Let X be the tubular graph of graphs obtained from X by removing pairs of tubes of X whenever they are incident to the same cyclic vertex graph on one side and to surface graphs on the other. Surface graphs can be identified by Lemma 5.5.2. Denote by T the underlying tree of X . By Lemma 5.4.6, we have Proposition 5.6.1. T is isomorphic to T jsj as G-trees.

The proposition proves that X is the required X jsj .

We now have the main result of the article:

Theorem 5.6.2. There exists an algorithm of double exponential time-complexity that takes a Brady-Meier tubular graph of graphs with hyperbolic fundamental group G as input and returns a Brady-Meier tubular graph of graphs whose underlying graph of groups structure is the JSJ decomposition of G.

Proof. Let X be the input tubular graph of graphs and G its fundamental group.

Using Theorem 5. with the additional property that each element of H is elliptic.

Theorem 6.0.2 (Theorem 4.25, [START_REF] Christopher | Splitting line patterns in free groups[END_REF]). Given a finite rank free group F and a finite family H of maximal cyclic subgroups of F such that F is freely indecomposable relative to H, a relative JSJ decomposition of (F, H) exists and is unique.

The main result of this section is the following.

Theorem 6.0.3. There exists an algorithm of double exponential time-complexity that takes a finite rank free group F and a finite family of maximal cyclic subgroups H such that F is freely indecomposable relative to H as input and returns the relative JSJ decomposition of F relative to H.

A tubular model for (F, H)

We will construct a suitable tubular graph of graphs X F,H to prove Theorem 6.0.3.

chapter 6: Relative JSJ decompositions

There exists a central vertex graph X sc in X F,H such that π 1 (X sc ) = F . If H = {H 1 , • • • , H n }, then for each H i there exists an immersed cycle φ i : C i → X sc such that C i induces a conjugate of the group H i in π 1 (X sc ) = F . Note that the word generated by C i is cyclically reduced in F as φ i is an immersion of graphs.

There exist exactly n tubes in X F,H that are attached to X sc in the following way.

The edge graph of the i th tube is isomorphic to C i and the attaching map is given by φ i . We subdivide X sc and the n edge graphs sufficiently to make all graphs simplicial.

The other end of the i th tube is attached by an isomorphism to a circular vertex graph X i . There are exactly two other tubes attached to X i , with both attaching maps being isomorphisms. Each of these two tubes connects X i to a copy of a surface graph whose fundamental group is the fundamental group of the oriented surface of genus two with exactly one boundary component.

Thus, the underlying graph of X F,H is a tree with one 'central' vertex s c of valence n, n cyclic vertices adjacent to s c and each of valence three, and 2n surface vertices of valence one each.

Let G be the fundamental group of X F,H . Since each vertex group is freely indecomposable relative to its incident edge groups, G is one-ended, by Theorem 18 of [START_REF] Wilton | One-ended subgroups of graphs of free groups with cyclic edge groups[END_REF]. Hence, we can assume that X F,H is Brady-Meier, by Theorem A.

Lemma 6.1.1. G is δ-hyperbolic.

Proof. Consider the graph of groups structure of the tubular graph of graphs X F,H .

Each vertex group is either a free group of rank 1 or more and is hence hyperbolic.

By construction, we have that each edge group is maximal cyclic in both its incident vertex groups. The result is then a consequence of the Bestvina-Feighn Combination Theorem (Corollary (torsion-free products over Z), page 100 of [START_REF] Bestvina | A combination theorem for negatively curved groups[END_REF]).

Let G s be a vertex group of the graph of groups structure of G induced by X F,H . Suppose that G s = G sc . Then Suppose that G s is not maximal. Then there exists g ∈ G \ G s such that G splits over < g > and < g > is not elliptic in the Bass-Serre tree of a cyclic splitting induced by some element of G s . Let L be an axis of g in X F,H . Then the above implies that L and a line L ⊂ X s cross (by Lemma 4.6.1). If L is transversal and meets X s , then L has to meet a vertex graph adjacent to X s . But any vertex graph adjacent to X s is a line whose stabiliser is a cyclic vertex group of the JSJ as seen above. Hence L cannot cross such a vertex graph. This implies that L is contained in X s , contradicting the fact that g / ∈ G s .

Corollary 6.1.3. If T jsj is the JSJ tree of G and T the underlying tree of X F,H , then T jsj is a refinement of T obtained by blowing up lifts of the central vertex s c .

We are now ready to prove the main result of this section.

Proof of Theorem 6.0.3. Given (F, H), the space X F,H can be constructed algorithmically. Constructing X sc and the tubes attached to X sc takes at most polynomial time in H. Constructing the tubular graph of graphs X F,H then takes at most polynomial time.

Let X jsj be the tubular graph of graphs obtained from X F,H in double exponential time by Theorem 5.6.2. Let Γ jsj and Γ be the underlying graphs of X jsj and X F,H respectively.

Note that since vertex graphs other than X sc induce vertex groups of the JSJ, Γ jsj chapter 6: Relative JSJ decompositions is obtained from Γ by a 'blow-up' of the vertex s c . In other words, there exists a map of graphs f : Γ jsj → Γ such that for each vertex s = s c , f -1 (s) consists of a single vertex.

Let Y be the subgraph of groups of the JSJ decomposition of G induced by f -1 (s c ).

Then it is easy to see that Y is the relative JSJ of (F, H). Indeed, since each element of H corresponds to an edge graph of X