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Titre : Construction de scindements de Grushko et JSJ : une approche combinatoire

Mots Clefs : Théorie géométrique des groupes, groupes hyperboliques, complexes
cubiques CAT(0), scindements de Grushko, scindements JSJ

Resume : La classe des graphes de groupes libres à groupes d’arêtes cycliques constitue
une source importante d’exemples en théorie géométrique des groupes, en particulier
dans le cadre des groupes hyperboliques. Un résultat récent de Wilton montre qu’un
tel groupe à un bout et hyperbolique contient un sous-groupe de surface, répondant à
une question attribuée à Gromov. Cette thèse est consacrée à l’étude de ces groupes
lorsqu’ils se présentent comme des groupes fondamentaux de certains complexes carrés à
courbure négative ou nulle. Les complexes carrés en question, appelés graphes tubulaires
de graphes, sont obtenus en attachant des tubes (un tube est un produit cartésien
d’un cercle avec l’intervalle unitaire) à une collection finie de graphes finis. Le but
principal de cette thèse est de construire deux décompositions de base pour les groupes
fondamentaux de graphes tubulaires de graphes: leur décomposition de Grushko et leur
décomposition JSJ.
Dans la première partie de la thèse, nous développons un algorithme en temps polynomial,
dont l’entrée est un graphe tubulaire de graphes, et qui produit le scindement de Grushko
de son groupe fondamental. Comme application, nous obtenons une version alternative
d’un algorithme de Stallings, qui prend un ensemble fini de mots W dans un groupe
libre F de rang fini, et décide s’il existe ou non un scindement libre de F relatif à W .
Dans la deuxième partie de la thèse, nous développons un algorithme en temps dou-
blement exponentiel, dont l’entrée est un graphe tubulaire de graphes avec un groupe
fondamental hyperbolique à un bout, et qui produit le scindement JSJ du groupe
fondamental. Nous remarquons qu’il s’agit du premier algorithme sur les scindements
JSJ de groupes avec une borne effective sur la complexité de temps. La principale raison
de l’efficacité de cet algorithme est que certaines propriétés asymptotiques du groupe,
qui déterminent si le groupe se scinde au-dessus un sous-groupe cyclique, admettent des
caractérisations locales en raison de la structure cubique CAT(0). Comme application
de ce résultat, nous obtenons un algorithme en temps doublement exponentiel, dont
l’entrée est un groupe libre F de rang fini muni d’un ensemble fini de sous-groupes
cycliques W tels que F est librement indécomposable relativement à W , et qui produit
le scindement JSJ de F relativement à W .
Une conséquence des résultats ci-dessus est que le problème d’isomorphisme pour les
groupes considérés se réduit à l’algorithme de Whitehead.



Title: Constructing Grushko and JSJ decompositions: a combinatorial approach

Keys words: Geometric group theory, hyperbolic groups, CAT(0) cube complexes,
Grushko decompositions, JSJ decompositions

Abstract: The class of graphs of free groups with cyclic edge groups constitutes an
important source of examples in geometric group theory, particularly of hyperbolic
groups. A recent result of Wilton shows that any such group which is one-ended and
hyperbolic contains a surface subgroup, answering a question attributed to Gromov.
This thesis is devoted to the study of these groups when they arise as fundamental
groups of certain nonpositively curved square complexes. The square complexes in
question, called tubular graphs of graphs, are obtained by attaching tubes (a tube is
a Cartesian product of a circle with the unit interval) to a finite collection of finite
graphs. The main goal of this thesis is to construct two fundamental decompositions,
the Grushko decomposition and the JSJ decomposition, of the fundamental groups of
tubular graphs of graphs.
In the first part of the thesis we develop an algorithm of polynomial time-complexity
that takes a tubular graph of graphs as input and returns the Grushko decomposition
of its fundamental group. As an application, we obtain an alternative version of an
algorithm of Stallings, which takes a finite set of words W in a finite rank free group F
as input, and decides whether or not there exists a free splitting of F relative to W .
In the second part of the thesis we develop an algorithm of double exponential time-
complexity that takes a tubular graph of graphs with one-ended hyperbolic fundamental
group as input and returns the JSJ decomposition of the fundamental group. We
remark that this is the first algorithm on JSJ decompositions of groups with an effective
bound on the time-complexity. The main reason for the efficiency of this algorithm is
that certain asymptotic properties of the group, which determine whether the group
splits over a cyclic subgroup, admit local characterisations due to the CAT(0) cubical
structure of these groups. As an application of this result, we obtain an algorithm of
double exponential time-complexity that takes a finite rank free group F and a finite
set of maximal cyclic subgroups W such that F is freely indecomposable relative to W
as input and returns the JSJ decomposition of F relative to W .
A consequence of the above results is that the isomorphism problem for the groups
under consideration is reduced to the Whitehead algorithm.
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Chapter 1

Introduction

Given a group, a standard question to ask is if the group can be better understood

by breaking it up into pieces of simpler groups in a meaningful way. This question

has elicited a lot of interest and has been a subject of mathematical research for

many decades. In geometric group theory, one often looks at free products with

amalgamation and HNN extensions for this purpose.

A group is freely indecomposable if it does not split as a free product of two

nontrivial groups. Analogous to the Kneser-Milnor prime decomposition for 3-

manifolds [Mil62], the Grushko decomposition theorem [Gru40] states that a finitely

generated group splits as a free product of a finite rank free group and finitely many

freely indecomposable (non-free) groups, and this splitting is essentially unique.

The next step is to split a freely indecomposable group over its infinite cyclic

subgroups. Zlil Sela [Sel97] showed that there exists a canonical decomposition of a

freely indecomposable torsion-free hyperbolic group over its cyclic subgroups. Since

this decomposition was motivated by the so-called JSJ decompositions of 3-manifolds

(due to Jaco-Shalen [JS78] and Johannsen [Joh79]), Sela called it the canonical JSJ

decomposition. We discuss JSJ decompositions in Section 1.3 below.

The aim of this thesis is to explain how to construct the Grushko decomposition

and the JSJ decomposition of a special class of groups, namely fundamental groups

of tubular graphs of graphs, discussed in Section 1.1. These groups have a CAT(0)

1



2 chapter 1: Introduction

cubical structure of dimension two, and a VH structure in the sense of Wise [Wis96].

Our approach to the above decomposition problems is geometric and strongly

depends on the CAT(0) combinatorial structure of our groups. The algorithm for

the construction of the Grushko decomposition runs in polynomial time while the

algorithm for the construction of the JSJ decomposition runs in double exponential

time.

As a result, one obtains a solution to the isomorphism problem for these groups

(Section 1.4).

Application. Let F be a finite rank free group and H a finite family of cyclic

subgroups of F . Stallings obtained an algorithm in [Sta99] that detects whether or

not the free group is freely indecomposable relative to H, that is, whether or not

there is a free splitting of F in which each element of H conjugates into a vertex

group. We give an alternate version of this algorithm in Section 3.5. Further, we

also give a way to construct the relative JSJ decomposition of F relative to H in

Chapter 6.

We will first introduce the central objects of our study.

1.1 Tubular graphs of graphs

Finite graphs of free groups with cyclic edge groups (in the sense of Bass-Serre graphs

of groups [Ser80]) are an important source of examples of hyperbolic groups. By

the Bestvina-Feighn combination theorem [BF92], such a group is word-hyperbolic

when it does not contain a non-trivial Baumslag-Solitar subgroup. Recently, Wilton

[Wil17] showed that a graph of free groups with cyclic edge groups which is one-ended

and hyperbolic contains a surface subgroup, answering a question attributed to

Gromov.

When the underlying graph is a tree, and in certain other special cases, a graph of

free groups with cyclic edge groups can be naturally associated to a compact square
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complex, which we call a tubular graph of graphs. Tubular graphs of graphs are in

fact VH-complexes in which vertical hyperplanes are homeomorphic to circles. A

VH-complex, introduced by Wise in his PhD thesis [Wis96], is a square complex in

which each square has edges which are alternately labelled as vertical and horizontal.

We give precise definitions in Chapter 2.

The universal covers of tubular graphs of graphs are CAT(0) square complexes and

our methods strongly depend on this fact. A CAT(0) square complex is a simply

connected square complex with the property that there is no triangle in any vertex

link.

Fundamental groups of tubular graphs of graphs encompass a fairly large class of

groups. For instance, all surface groups and doubles of free groups can be realised

as such groups. They also have various interesting properties. For example, they are

biautomatic [NR98a], a-T-menable [NR98b] and satisfy the Tits alternative [SW05].

A typical example of the groups that we deal with is a group of the form <

a1, · · · , an > <w>∗<w′> < b1, · · · , bm >, a free product with amalgamation over

cyclic groups of finitely generated free groups. The main issue we address is to

describe all free and cyclic splittings of such groups.

Our strategy follows 3-manifold theory, where one first cuts a 3-manifold along

incompressible spheres to obtain its prime decomposition and then along incom-

pressible tori to obtain its JSJ decomposition. Similarly, we first show how to

construct the Grushko decomposition and then the JSJ decomposition by cutting

along subspaces which induce free and cyclic splittings respectively.

1.2 Free splittings

The first part is devoted to questions of free splittings of fundamental groups of

tubular graphs of graphs. We first note that these groups are torsion-free.

By a celebrated theorem of Stallings, a torsion-free finitely generated group is

one-ended if and only if it is freely indecomposable [Sta68].
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We will use a key result by N. Brady and J. Meier which imposes local conditions

on a CAT(0) cube complex that imply that the complex is one-ended.

Theorem 1.2.1. [BM01] Let X be a finite connected locally-CAT(0) cube complex.

Suppose that

(BM1) for each vertex v ∈ X, the link of v is connected and

(BM2) for each vertex v ∈ X and each simplex σ ⊂ link(v), the complement of σ is

(non-empty and) connected.

Then X̃ is one-ended.

We say that a square complex is Brady-Meier if it satisfies the conditions (BM1)

and (BM2) above.

The main result of the first part of the thesis gives a geometric/combinatorial

procedure that modifies a given tubular graph of graphs to a homotopy equivalent

tubular graph of graphs which is not Brady-Meier if and only if the fundamental

group is not one-ended:

Theorem 1.2.2 (Theorem A). There is an algorithm of polynomial time-complexity

which takes a tubular graph of graphs as input and returns a homotopy equivalent

tubular graph of graphs which is either a Brady-Meier complex or contains a locally

disconnecting edge or vertex which splits the fundamental group as a free product.

The key step in the construction of our algorithm involves a simplification of the

input tubular graph of graphs by ‘opening-up’ at a vertex which does not satisfy

(BM2). This opening-up keeps the number of squares in the complex constant, while

simplifying its vertex links. We call such an opening procedure as an SL-move

(simplified link).

We immediately obtain a partial converse to Theorem 1.2.1:

Corollary 1.2.3. A tubular graph of graphs has a one-ended universal cover if and

only if it can be modified in finitely many SL-moves to a Brady-Meier tubular graph

of graphs with an isomorphic fundamental group.

As a consequence of Theorem A, we have:
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Corollary 1.2.4 (Corollary B). There is an algorithm of polynomial time-complexity

which takes as input a tubular graph of graphs and decides whether or not its

fundamental group is one-ended. In addition, it returns the Grushko decomposition

of the fundamental group.

We point out that our proof does not use Stallings’ theorem nor assume the existence

of a Grushko decomposition. In fact, our procedure yields a new proof of Stallings’

theorem for fundamental groups of tubular graphs of graphs as well as the existence

of a Grushko decomposition for these groups.

In fact, we obtain the following analogue of a result in 3-manifold theory due to

Jaco [Jac69] which states that if the fundamental group of a compact 3-manifold is

a free product, then each free factor is itself the fundamental group of a 3-manifold.

Corollary 1.2.5 (Corollary C). Let X be a tubular graph of graphs with fundamental

group G. If G = A ∗ B, then there exist tubular graphs of graphs X1 and X2 such

that A and B are fundamental groups of X1 and X2 respectively. Moreover, X1 and

X2 can be so chosen such that the total number of squares in X1 and X2 is bounded

by the number of squares in X.

The Grushko decomposition may be found algorithmically in other situations. Jaco,

Letscher and Rubinstein [JLR02] gave an algorithm of polynomial time-complexity

to compute the prime decomposition of a 3-manifold from a triangulation. Gerasimov

[Ger99] showed that the Grushko decomposition can be computed for hyperbolic

groups, but his algorithm is a Turing machine without a solution to the halting

problem. Dahmani and Groves [DG08] extended Gerasimov’s ideas to groups which

are hyperbolic relative to abelian subgroups. Diao and Feighn [DF05] gave an

algorithm for graphs of free groups using cocompact actions of the groups on

products of trees as studied by Fujiwara-Papasoglu [FP06].

We conclude the first part with another application of our algorithm. As defined by

Stallings in [Sta99], a finite set of words W of a finite rank free group F is separable

if there exists a nontrivial free splitting of F such that each word of W conjugates

into a free factor. In other words, W is separable if and only if F admits a free
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splitting relative to the cyclic subgroups generated by elements of W .

Stallings obtained an algorithm to detect separability in [Sta99]. He constructs

a Whitehead graph for the given set of words in a chosen basis. He then uses a

Whitehead automorphism to modify the basis whenever there is a cut vertex in the

Whitehead graph to reduce the total length of the given set of words. We give an

alternate version of this algorithm using Theorem A. In fact, our method is strongly

related to Stallings’ method.

Corollary 1.2.6 (Stallings, Corollary D). There exists an algorithm of polynomial

time-complexity that takes a finite set of words in a finite rank free group as input

and decides whether it is separable.

For our algorithm, we first construct the tubular graph of graphs associated to a

‘double’ of the free group with the given set of words. In Lemma 3.5.9, we show that

that the vertex link of a special vertex in the double that we construct is isomorphic

to a Whitehead graph associated to the free group and the given set of words. So

far, we are in a similar situation as Stallings. However, we apply the algorithm of

Theorem A at this stage, and hence we perform an SL-move if there is a vertex link

with a cut vertex, whereas Stallings chooses a Whitehead automorphism.

We then use Wilton’s characterization [Wil12] of free splittings of graphs of free

groups with cyclic edge groups to conclude that the set of words is separable if the

fundamental group of the double is not one-ended.

1.3 Cyclic splittings

The second part of the thesis is devoted to the explicit geometric/combinatorial

construction of JSJ decompositions of one-ended fundamental groups of tubular

graphs of graphs in the hyperbolic case. In order to define a JSJ decomposition, we

will need a few definitions.

We adopt Sela’s terminology [Sel97]. Let G be a torsion-free hyperbolic group. A

hanging surface subgroup G′ of G is a subgroup isomorphic to the fundamental group
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of a surface with boundary such that there exists a graph of groups decomposition

of G in which G′ is a vertex group whose incident edge groups are precisely the

peripheral subgroups of G′. A maximal hanging surface subgroup is a hanging

surface subgroup that is not properly contained in any hanging surface subgroup. A

non-cyclic vertex group G′ of G is rigid if it is elliptic in every cyclic splitting of G.

A subgroup is full (in the sense of Bowditch [Bow98]) if it is not properly contained

as a finite index subgroup in any subgroup of G.

We are now ready to define JSJ decompositions in the sense of Sela ([Sel97]), modified

by Bowditch [Bow98].

Definition 1.3.1 (JSJ decomposition). Let G be a torsion-free hyperbolic group. A

JSJ splitting of G is a finite graph of groups decomposition of G where each edge

group is cyclic and each vertex group is full and of one of the following three types:

1. a cyclic subgroup,

2. a maximal hanging surface subgroup, or

3. a rigid subgroup.

If a vertex v of type (1) has valence one, then the incident edge group does not surject

onto the vertex group Gv. Moreover, exactly one endpoint of any edge is of type (1)

and the edge groups that connect to any vertex group of type (2) are precisely the

peripheral subgroups of that group.

Theorem 1.3.2 ([Sel97]). Let G be a torsion-free one-ended hyperbolic group, which

is not the fundamental group of a closed surface. Then a JSJ decomposition of G

exists and is unique.

We are now ready to state our main result.

Theorem 1.3.3 (Theorem 5.6.2). There exists an algorithm of double exponential

time-complexity that takes a Brady-Meier tubular graph of graphs with hyperbolic

fundamental group G as input and returns a tubular graph of graphs whose graph of

groups structure is the JSJ decomposition of G.

Other authors have obtained algorithms to compute JSJ decompositions of groups



8 chapter 1: Introduction

under different conditions. In [DG11], Dahmani and Guirardel give an algorithm

to compute JSJ decompositions of one-ended hyperbolic groups over maximal

virtually cyclic subgroups with infinite centre. In [DT13], Dahmani and Touikan

give an algorithm to compute JSJ decompositions of torsion-free hyperbolic groups

over its cyclic subgroups. In [Bar16], Barrett gives an algorithm to compute JSJ

decompositions of one-ended hyperbolic groups over virtually cyclic subgroups. We

remark that the time-complexity of these algorithms is not known.

Our approach is combinatorial/geometric. We will now describe this approach

briefly.

1.3.1 Coarse behaviour and Brady-Meier complexes

Let X be a tubular graph of graphs (Section 1.1) endowed with its VH strucure.

Each vertical hyperplane of X is a circle (Proposition 2.3.2). If X̃ denotes the

CAT(0) universal cover of X, then the vertical hyperplanes of X̃ are lines. Let G

denote the one-ended fundamental group of X. By Corollary 1.2.3, we can assume

that X̃ is Brady-Meier. Adopting the terminology of Scott and Wall [SW79], X has

a structure of a graph of spaces (see Section 2.2 for details), where each vertex space

is itself a graph. Similarly, X̃ has a structure of a tree of spaces, where each vertex

space is a (vertical) tree.

Let L be a subset of X̃. We will denote by NR(L) the set of all points in X̃ at

distance at most R from a point of L. We say L separates X̃ if X̃ \L is not connected.

It coarsely separates X̃ [Pap12] if there exists R > 0 such that X̃ \NR(L) contains

at least two components which are not contained in NR′(L) for any R′ > 0.

An axis in X̃ of an element g ∈ G is a geodesic line in X̃ that is invariant under the

action of the cyclic subgroup < g >. Given g ∈ G, an axis L of g always exists in

X̃ [BH99]. If G splits over < g >, then L coarsely separates X̃ (as a consequence

of [Pap05, Lemma 1.8]). When L is contained in a vertical tree, the fact that X̃

is a Brady-Meier complex implies that L in fact separates X̃ (Lemma 4.2.15). In

the simply connected space X̃, L separates X̃ if and only if it separates N 1
4
(L)
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(Lemma 4.2.8).

The quotient of L by < g > is an immersed circle C, which we call a cycle, in X.

The regular neighbourhood of C is the quotient of N 1
4
(L) by the action of < g >.

The fact that L separates N 1
4
(L), along with a condition that is satisfied since G

splits over < g >, implies the following result:

Lemma 1.3.4 (Lemma 4.5.25). C separates its regular neighbourhood.

We need another property to construct the JSJ decomposition. A cyclic subgroup

over which G splits is said to be universally elliptic if it is elliptic in the Bass-Serre

tree of any cyclic splitting of G [GL16]. The edge groups of the JSJ decomposition

are universally elliptic.

Two coarsely separating lines L1 and L2 coarsely cross if there exists R > 0 such that

L1 meets different components of X̃ \NR(L2) and L2 meets different components of

X̃ \NR(L1) (Definition 4.3.9). Let L1 (respectively L2) be an axis of g1 (respectively

g2) such that G splits over < g1 > and < g2 >. Then < g1 > is elliptic in the

Bass-Serre tree of the splitting over < g2 > only if L1 and any translate of L2 don’t

coarsely cross (Lemma 4.6.1). This property has a local characterization in the

Brady-Meier complex X̃:

Proposition 1.3.5 (Proposition 4.3.2). Two separating lines L1 and L2 coarsely

cross if and only if

1. L1 ∩ L2 is non-empty and compact, and

2. L2 meets two components of N 1
4
(L1 ∩ L2) \ L1.

1.3.2 Repetitive cycles and JSJ splittings

In Section 4.7, we introduce an important notion, namely repetitivity, that bounds

the length of a cycle that induces a universally elliptic splitting. Let C̃ denote a lift

of a cycle C in X̃.

Definition 1.3.6 (Definition 4.7.2, Lemma 4.7.4). A cycle C is k-repetitive if C̃ is a

separating line and there exists an edge e in X̃ and distinct elements g1, · · · , gk ∈ G
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such that

1. each translate giC̃ contains e,

2. the distance between e and gie is strictly less than the length of C, and

3. any two squares s and s′ that contain e are either separated by all translates

giC̃ or by none of them.

There are two important reasons for defining repetitive cycles. The first reason is

that any cycle that is longer than a certain bound is k-repetitive (Proposition 4.7.9).

Here, the bound depends only on k and the number of squares of X.

The second reason is the following:

Proposition 1.3.7 (Proposition 4.8.1). Let C be a k-repetitive cycle with k ≥ 3.

Suppose that π1(C) is a maximal cyclic subgroup of G. Then there exists a periodic

separating line L in X̃ such that L and C̃ coarsely cross.

This implies that π1(C) conjugates into a hanging surface subgroup of the JSJ

splitting of G, by Proposition 5.30 of [Bow98]. Hence, π1(C) is not universally

elliptic.

Therefore, the length of a cycle which induces a universally elliptic cyclic subgroup

is bounded. This leads to the following result:

Theorem 1.3.8 (Theorem 4.9.1). There exists an algorithm of double exponential

time-complexity that takes a Brady-Meier tubular graph of graphs with hyperbolic

fundamental group G as input and returns a finite list of splitting cycles that contains

all universally elliptic subgroups of G upto commensurability.

1.3.3 Obtaining a JSJ complex

In Chapter 5, we modify the given tubular graph of graphs X to a tubular graph of

graphs Xjsj such that the graph of groups structure of Xjsj is the JSJ decomposition

of G.

The first step involves modifying the initial tubular graph of graphs X to a tubular
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graph of graphs X ′ by cutting along the finite list of cycles supplied by Theorem 1.3.8.

We do this cutting procedure using the machinery of spaces with walls [HP98].

The vertex set of X̃ is a space with walls, with walls defined by its vertical and

horizontal hyperplanes. We enrich the wall set by adding lifts of cycles supplied by

Theorem 1.3.8. The square complex dual to this new space with walls is X̃ ′ (see

Section 5.3).

In the second step, we perform a simplification on X ′ by removing tubes which are

attached to cyclic vertex graphs on both sides. Call the new tubular graph of graphs

as X ′′. In Proposition 5.4.3, we show that each edge group of the JSJ decomposition

of G is a conjugate of an edge group of the underlying graph of groups of X ′′.

Thus, an edge stabiliser of the underlying tree of X̃ ′′ is either an edge stabiliser of

the JSJ tree, or a cyclic subgroup that conjugates into a maximal hanging surface

subgroup of the JSJ splitting. So what remains is to identify the maximal surface

subgroups that appear as vertex groups in the JSJ decomposition.

1.3.4 Identifying surfaces

We give a criterion to identify surfaces in the Brady-Meier setup. A vertex graph

of a tubular graph of graphs is a surface graph if the fundamental group of the

graph is a surface group whose peripheral subgroups are precisely the incident edge

subgroups. Then

Lemma 1.3.9 (Lemma 5.5.2). A vertex graph of a Brady-Meier tubular graph of

graphs is a surface graph if and only if every edge of its double is contained in exactly

two squares.

Armed with this result, we remove tubes in X ′′ which are attached to surface

graphs on both sides. The resulting tubular graph of graphs will then have the

JSJ decomposition as its underlying graph of groups, proving the main result

(Theorem 1.3.3).
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1.3.5 Relative JSJ decompositions

Let H be a family of subgroups of a group G. A splitting of G relative to H is a

graph of groups decomposition of G in which each element of H is elliptic.

A relative JSJ splitting of a finite rank free group F relative to a family H of maximal

cyclic subgroups is a graph of groups splitting of F relative to H that satisfies the

conditions of a JSJ decomposition (Definition 1.3.1).

In [Cas16, Theorem 4.25], Cashen shows that a relative JSJ splitting exists and is

unique.

As an application of our algorithm to construct the JSJ decomposition (Theo-

rem 1.3.3), we obtain an algorithm to construct the relative JSJ decomposition:

Theorem 1.3.10 (Theorem 6.0.3). There exists an algorithm of double exponential

time-complexity that takes a finite rank free group F and a finite family of maximal

cyclic subgroups H such that F is freely indecomposable relative to H as input and

returns the relative JSJ decomposition of F relative to H.

Our approach is to construct a Brady-Meier tubular graph of graphs X such that

F is the fundamental group of a vertex graph of X and the incident edge groups

are precisely members of H (see Chapter 6 for details). The construction ensures

that π1(X) is hyperbolic. The algorithm of our main result (Theorem 1.3.3) then

constructs the JSJ decomposition of π1(X), and thus the relative JSJ of (F,H).

1.4 The isomorphism problem

The isomorphism problem is the algorithmic problem of deciding whether two finite

presentations of groups present isomorphic groups [Deh11].

An important consequence of the work done in this thesis is that the isomorphism

problem for hyperbolic fundamental groups of tubular graphs of graphs is reduced

to the Whitehead algorithm ([Whi36]):

Let G1 and G2 be hyperbolic fundamental groups of two tubular graphs of graphs.
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Using the algorithm of Corollary 1.2.4, we can construct tubular graphs of graphs

which give Grushko decompositions of G1 and G2. By the uniqueness of the Grushko

decomposition, G1 and G2 are isomorphic if and only if there is a one-to-one

correspondence between the vertex groups of their Grushko decompositions with

an isomorphism between the corresponding vertex groups. The free groups in the

Grushko decompositions have the same rank if and only if the tubular graphs of

graphs which represent these free groups can be modified to graphs with the same

number of edges outside a maximal tree. This is straightforward. It remains to

check if the one-ended factors of the Grushko decomposition are isomorphic.

So assume that G1 and G2 are one-ended. Using Theorem 1.3.3, we can construct

the JSJ decomposition of G1 and G2. Then G1 and G2 are isomorphic if and only

if there is a one-to-one correspondence between the vertex groups of their JSJ

decompositions such that the corresponding vertex groups are isomorphic with

the isomorphism respecting the incident edge groups. But all vertex groups are

free groups and their incident edge groups are cyclic subgroups. The Whitehead

algorithm [Whi36] precisely decides if there exists an isomorphism between free

groups that takes one finite set of cyclic subgroups to another.

1.5 Research directions

We list a few directions in which the current work can be taken forward.

1. One question is to construct a JSJ decomposition of the fundamental group

G of a tubular graph of graphs when G is not hyperbolic. In the hyperbolic

case, each edge group is maximal cyclic in at least one of the vertex groups

at the endpoints of the edge. This is not true when G is not hyperbolic.

Another difficulty is to decide when a cyclic subgroup conjugates into a surface

subgroup. We believe that the methods used in this thesis can be extended to

the non-hyperbolic case as well.

2. A second question is whether it is possible to give an algorithm of bounded time-
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complexity to construct the JSJ decomposition of the hyperbolic fundamental

group of a general finite graph of free groups with cyclic edge groups, in the

absence of a tubular graph of graphs structure.

3. Most of our results only use the fact that X̃ is a Brady-Meier CAT(0) cube

complex. It is interesting to ask which results hold for general Brady-Meier

CAT(0) cube complexes with or without a VH structure. In particular, it is

an open question as to which classes of one-ended groups arise as fundamental

groups of Brady-Meier cube complexes, as in Corollary 1.2.3. We used Brady-

Meier complexes to analyse free and cyclic splittings in this thesis. It would

be interesting to see if the Brady-Meier structure will be useful to study other

kinds of splittings.



Introduction (en français)

Étant donné un groupe, une question standard à poser est de savoir si le groupe

peut être mieux compris en le scindant en sous-groupes plus simples. Cette question

a suscité beaucoup d’intérêt et fait l’objet de recherches en mathématiques depuis

plusieurs décennies. Pour cela, en théorie geométrique des groupes, on se penche

souvent sur les produits libres amalgamés et sur les extensions HNN.

Un groupe est librement indécomposable s’il ne se scinde pas en un produit libre de

deux groupes non triviaux. Comme la décomposition primaire de Kneser-Milnor

pour les 3-variétés [Mil62], le théorème de décomposition de Grushko [Gru40] indique

qu’un groupe de type fini se scinde en un produit libre d’un groupe libre de rang fini

et d’un nombre fini de groupes librement indécomposables. De plus, ce scindement

est essentiellement unique.

L’étape suivante consiste en l’etude des scindements d’un groupe librement indécomp-

osable au-dessus de ses sous-groupes cycliques infinis. Sela [Sel97] a montré qu’il

existe un scindement canonique d’un groupe hyperbolique sans torsion librement

indécomposable au-dessus de ses sous-groupes cycliques. Puisque ce scindement

était motivé par les décompositions JSJ des 3-variétés (d’après Jaco-Shalen [JS78] et

Johannsen [Joh79]), Sela l’appelait le scindement JSJ canonique. Nous discuterons

les scindements JSJ en Section 1.8 ci-dessous.

Le but de cette thèse est d’expliquer comment construire le scindement de Grushko

et le scindement JSJ d’une classe particulier de groupes, à savoir des groupes

fondamentaux de graphes tubulaires de graphes, discutés en Section 1.6. Ces groupes

ont une structure CAT(0) cubique de dimension deux, et possèdent une structure VH

15
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au sens de Wise [Wis96]. Notre approche pour résoudre des problèmes de scindement

ci-dessus est géométrique, et dépend fortement de la structure combinatoire CAT(0)

de nos groupes. L’algorithme pour la construction du scindement de Grushko

s’exécute en temps polynomial tandis que l’algorithme pour la construction du

scindement JSJ s’exécute en temps doublement exponentiel.

Par conséquent, on obtient une solution au problème d’isomorphisme pour ces

groupes (Section 1.9).

Application. Soient F un groupe libre de rang fini et H une famille finie de

sous-groupes cycliques de F . Stallings a obtenu un algorithme [Sta99] qui détecte si

le groupe libre est librement indécomposable relativement à H, c’est-à-dire s’il y a

ou non un scindement libre de F dans lequel chaque élément de H se conjugue dans

un groupe de sommet. Nous donnons une version alternative de cet algorithme en

Section 3.5. De plus, nous donnons un moyen de construire le scindement JSJ de F

relatif à H en Chapitre 6.

Nous allons d’abord présenter les objets centraux de notre étude.

1.6 Graphes tubulaires de graphes

Les graphes finis de groupes libres à groupes d’arêtes cycliques (au sens de Bass-Serre

[Ser80]) sont une source importante d’exemples de groupes hyperboliques. Par le

théorème de combinaison de Bestvina-Feighn [BF92], un tel groupe est hyperbolique

s’il ne contient pas un sous-groupe Baumslag-Solitar non-trivial. Récemment, Wilton

[Wil17] a montré qu’un graphe de groupes libres aux groupes d’arêtes cycliques

ayant un bout et hyperbolique, contient un sous-groupe de surface, répondant à une

question attribuée à Gromov.

Lorsque le graphe sous-jacent est un arbre, et dans certains autres cas particuliers,

un graphe de groupes libres aux groupes d’arêtes cycliques peut être naturellement

associé à un complexe carré compact, que nous appelons un graphe tubulaire de
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graphes. Les graphes tubulaires des graphes sont en fait des complexes VH dans

lesquels les hyperplans verticaux sont homéomorphes à des cercles. Un complexe

VH, introduit par Wise dans sa thèse [Wis96], est un complexe carré dans lequel

chaque carré a des arêtes qui sont alternativement étiquetées comme verticales et

horizontales. Nous donnons des définitions précises en Chapitre 2.

Les rêvetements universels des graphes tubulaires de graphes sont des complexes

carrés CAT(0) et nos méthodes dépendent fortement de ce fait. Un complexe carré

CAT(0) est un complexe carré simplement connexe avec la propriété qu’il n’y a pas

de triangles dans les links de sommets.

Les groupes fondamentaux de graphes tubulaires de graphes incluent une classe

assez grande de groupes. Par exemple, tous les groupes de surface et les doubles

de groupes libres (le long de sous-groupes cycliques) peuvent être réalisés en tant

que tels groupes. Ils possèdent des propriétés intéressantes. Par exemple, ils sont

bi-automatiques [NR98a] et satisfont l’alternative de Tits [SW05].

Un exemple typique de groupes que nous traitons dans cette thèse est un groupe

de la forme < a1, · · · , an > ∗<w>=<w′> < b1, · · · , bm >. Le problème principal que

nous abordons est de décrire tous les scindements libres et cycliques de ces groupes.

Notre stratégie suit la théorie des 3-variétés, où l’on coupe d’abord une 3-variété le

long de sphères incompressibles pour obtenir sa décomposition primaire et ensuite

le long de tores incompressibles pour obtenir sa décomposition JSJ. De la même

façon, nous montrons d’abord comment construire le scindement de Grushko puis le

scindement JSJ en coupant le long de sous-espaces qui induisent respectivement des

scindements libres et cycliques.

1.7 Scindements libres

La première partie est consacrée à des questions de scindements libres de groupes

fondamentaux de graphes tubulaires de graphes. Notons d’abord que ces groupes

sont sans torsion.
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Par un théorème célèbre de Stallings, un groupe fini sans torsion a un bout si et

seulement s’il est librement indécomposable [Sta68].

Nous allons utiliser un résultat-clé de Brady et Meier. Ces auteurs donnent des

conditions locales sur un complexe cubique CAT(0) qui impliquent que le complexe

a un bout.

Théorème 1.7.1 ([BM01]). Soit X un complexe cubique CAT(0) localement fini,

tel que

(BM1) pour chaque sommet v ∈ X, le link de v (link(v)) est connexe, et

(BM2) pour chaque v ∈ X et chaque simplexe σ ⊂ link(v), le complément de σ est

(non-vide et) connexe.

Alors X̃ a un bout.

Nous dirons qu’un complexe carré est Brady-Meier s’il satisfait les conditions (BM1)

et (BM2) ci-dessus.

Le résultat principal de la première partie de thèse donne une procédure géométrique/

combinatoire pour modifier un graphe tubulaire de graphes en un graphe tubulaire

de graphes homotopiquement équivalent qui n’est pas Brady-Meier si, et seulement

si, le groupe fondamental a plus qu’un bout :

Théorème 1.7.2 (Théorème A). Il existe un algorithme en temps polynomial qui

prend en entrée un graphe tubulaire de graphes et qui renvoie un graphe tubulaire de

graphes homotopiquement équivalent à celui d’entrée, et de plus le complexe produit

ou bien est Brady-Meier, ou bien contient une arête ou un sommet localement

déconnectant qui scinde le groupe fondamental en un produit libre.

L’étape clé dans la construction de notre algorithme implique une simplification

du graphe tubulaire de graphes par �ouverture� en un sommet qui ne satisfait pas

(BM2). Cette ouverture ne change pas le nombre de carrés dans le complexe, tout

en simplifiant ses links de sommets. Nous appelons une telle procédure d’ouverture

un mouvement-SL (link simplifié).

Nous obtenons immédiatement une réciproque partielle du Théorème 1.7.1:
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Corollaire 1.7.3. Un graphe tubulaire de graphes a un revêtement universel à un

bout si et seulement s’il peut être modifié par un nombre fini de mouvements-SL en

un graphe tubulaire de graphes Brady-Meier avec le même groupe fondamental.

Comme conséquence du Théorème 1.7.2, nous obtenons :

Corollaire 1.7.4 (Corollaire B). Il existe un algorithme en temps polynomial qui

prend en entrée un graphe tubulaire de graphes et décide si son groupe fondamental

a un bout. De plus, il renvoie la décomposition de Grushko du groupe fondamental.

Nous rappelons que notre démonstration n’utilise pas le théorème de Stallings et ne

présuppose pas l’existence d’une décomposition de Grushko. En fait, notre procédure

fournit une nouvelle preuve du théorème de Stallings pour les groupes fondamentaux

de graphes tubulaires de graphes ainsi que l’existence d’une décomposition de

Grushko pour ces groupes.

En fait, nous obtenons l’analogue suivant d’un résultat dans la théorie des 3-variétés

d’après Jaco [Jac69] qui stipule que si le groupe fondamental d’une 3-variété compact

est un produit libre, alors chaque facteur libre est lui-même le groupe fondamental

d’une 3-variété.

Corollaire 1.7.5 (Corollaire C). Soit X un graphe tubulaire de graphes, de groupe

fondamental G. Si G = A ∗B, alors il existe des graphes tubulaires de graphes X1

et X2 tels que A et B sont des groupes fondamentaux de X1 et X2 respectivement.

De plus, X1 et X2 peuvent être choisis de telle sorte que le nombre total de carrés

dans X1 et X2 est borné par le nombre de carrés dans X.

La décomposition de Grushko peut être trouvée de manière algorithmique dans

d’autres situations. Jaco, Letscher et Rubinstein [JLR02] ont donné un algorithme

en temps polynomial pour calculer la décomposition primaire d’une 3-variété à

partir d’une triangulation. Gerasimov [Ger99] a montré que la décomposition de

Grushko peut être calculée pour des groupes hyperboliques, mais son algorithme

est une machine de Turing sans solution au problème d’arrêt. Dahmani et Groves

[DG08] ont étendu les idées de Gerasimov aux groupes hyperboliques relatifs aux

sous-groupes abéliens. Diao et Feighn [DF05] ont donné un algorithme pour les
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graphes de groupes libres en utilisant des actions co-compactes de ces groupes sur

les produits d’arbres étudiés par Fujiwara-Papasoglu [FP06].

Nous concluons la première partie avec une autre application de notre algorithme.

Suivant la terminologie de Stallings dans [Sta99], un ensemble fini W de mots d’un

groupe libre F de rang fini est séparable s’il existe un scindement libre non trivial de

F tel que chaque mot de W se conjugue dans un facteur libre. Autrement dit, W est

séparable si et seulement si F admet un scindement libre relatif aux sous-groupes

cycliques engendrés par les éléments de W .

Stallings a obtenu un algorithme pour détecter la séparabilité dans [Sta99]. Il

construit un graphe de Whitehead pour l’ensemble de mots donné dans une base

choisie. Il utilise ensuite un automorphisme de Whitehead pour modifier la base

chaque fois qu’il y a un sommet déconnectant dans le graphe de Whitehead pour

réduire la longueur totale de l’ensemble de mots donné. Nous donnons une version

alternative de cet algorithme en utilisant Théorème 1.7.2. En fait, notre méthode

est fortement liée à la méthode de Stallings.

Corollaire 1.7.6 (Stallings, Théorème D). Il existe un algorithme en temps poly-

nomial qui prend en entrée un ensemble fini de mots dans un groupe libre de rang

fini et décide s’il est séparable.

Pour notre algorithme, nous construisons d’abord le graphe tubulaire des graphes

associé à un �double� du groupe libre avec l’ensemble de mots donné. Dans le

Lemme 3.5.9, nous montrons que le link de sommet d’un sommet spécial dans le

double que nous construisons est isomorphe à un graphe de Whitehead associé au

groupe libre et à l’ensemble de mots donné. Jusqu’à présent, nous sommes dans

une situation similaire à celle de Stallings. Cependant, nous appliquons l’algorithme

donné par Théorème 1.7.2 à ce stade, et donc nous effectuons un mouvement-SL s’il

y a un link de sommet avec un sommet déconnectant, alors que Stallings choisit un

automorphisme de Whitehead.

Nous utilisons ensuite la caractérisation de Wilton [Wil12] des scindements libres de

graphes de groupes libres aux groupes d’arêtes cycliques pour conclure que l’ensemble
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des mots est séparable si le groupe fondamental du double n’a pas seulement un

bout.

1.8 Scindements cycliques

La deuxième partie de cette thèse est consacrée à la construction géométrique/

combinatoire explicite de décompositions JSJ de groupes fondamentaux à un bout

de graphes tubulaires de graphes dans le cas hyperbolique. Afin de définir une

décomposition JSJ, nous aurons besoin de quelques définitions.

Nous adoptons la terminologie de Sela [Sel97]. Soit G un groupe hyperbolique sans

torsion. Un sous-groupe de surface suspendu G′ de G est un sous-groupe isomorphe

au groupe fondamental d’une surface à bord tel qu’il existe une décomposition de

G en graphe de groupes dans lequel G′ est un groupe de sommet dont les groupes

d’arêtes incidents sont précisément les sous-groupes périphériques de G′. Un sous-

groupe de surface suspendu maximal est un sous-groupe de surface suspendu qui n’est

pas un sous-groupe propre d’un sous-groupe de surface suspendu. Un sous-groupe

non-cyclique G′ de G est rigide s’il est elliptique dans chaque scindement cyclique

de G.

Un sous-groupe est plein (au sens de Bowditch [Bow98]) s’il n’est pas un sous-groupe

propre d’indice fini dans un sous-groupe de G.

Nous sommes maintenant prêts à définir la décomposition JSJ au sens de Sela

([Sel97]), modifié par Bowditch [Bow98].

Définition 1.8.1 (Décomposition JSJ). Soit G un groupe hyperbolique sans torsion.

Un scindement JSJ de G est un scindement fini de G en graphe de groupes où chaque

groupe d’arête est cyclique et chaque groupe de sommet est plein et de l’un des trois

types suivants:

1. un sous-groupe cyclique,

2. un sous-groupe de surface suspendu maximal, ou
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3. un sous-groupe rigide.

Si un sommet v de type (1) a degré un, alors le groupe d’arête incident est un

sous-groupe propre du groupe de sommet Gv. De plus, exactement une extrémité de

chaque arête est de type (1) et les groupes d’arêtes qui se connectent à un groupe de

sommet de type (2) sont précisément les sous-groupes périphériques de ce groupe.

Théorème 1.8.2 ([Sel97]). Soit G un groupe hyperbolique à un bout sans torsion,

qui n’est pas de groupe fondamental d’une surface fermée. Alors une décomposition

JSJ de G existe et elle est unique.

Nous sommes maintenant prêts à énoncer notre résultat principal.

Théorème 1.8.3 (Théorème 5.6.2). Il existe un algorithme en temps doublement

exponentiel qui prend en entrée un graphe tubulaire de graphes Brady-Meier à groupe

fondamental hyperbolique G et qui renvoie un graphe tubulaire de graphes dont la

structure de graphe de groupes est celle de la décomposition JSJ de G.

D’autres auteurs ont obtenu des algorithmes pour calculer des décompositions JSJ de

groupes dans des conditions différentes. Dans [DG11], Dahmani et Guirardel donnent

un algorithme pour calculer les décompositions JSJ de groupes hyperboliques à

un bout au-dessus des sous-groupes maximaux virtuellement cycliques à centre

infini. Dans [DT13], Dahmani et Touikan donnent un algorithme pour calculer

les décompositions JSJ de groupes hyperboliques sans torsion au-dessus de ses

sous-groupes cycliques. Dans [Bar16], Barrett donne un algorithme pour calculer

les décompositions JSJ de groupes hyperboliques à un bout au-dessus des sous-

groupes virtuellement cycliques. Nous remarquons que la complexité en temps de

ces algorithmes n’est pas connue.

Notre approche est combinatoire/géométrique. Nous allons maintenant brièvement

décrire cette approche.
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1.8.1 Comportement asymptotique et complexes

Brady-Meier

Soit X un graphe tubulaire de graphes (Section 1.6) doté de sa structure VH.

Chaque hyperplan vertical de X est un cercle (Proposition 2.3.2). Si X̃ dénote le

revêtement universal CAT(0) de X, alors les hyperplans verticaux de X̃ sont des

droites. Soit G le groupe fondamental à un bout de X. Par Théorème 1.7.3, on

peut supposer que X̃ est Brady-Meier. En adoptant la terminologie de Scott et Wall

[SW79], X a une structure d’un graphe d’espaces (voir Section 2.2 pour les détails),

où chaque espace de sommet est lui-même un graphe. De même, X̃ a la structure

d’un arbre d’espaces, où chaque espace de sommet est un arbre (vertical).

Soit L un sous-ensemble de X̃. Notons NR(L) l’ensemble de tous les points de X̃ à

distance au plus R d’un point de L. On dit L sépare X̃ si X̃ \ L n’est pas connexe.

Il sépare X̃ grossièrement [Pap12] s’il existe R > 0 tel que X̃ \NR(L) contient au

moins deux composants connexes qui ne sont pas contenu dans NR′(L) pour tout

R′ > 0.

Un axe dans X̃ d’un élément g ∈ G est une droite géodésique dans X̃ qui est

invariante sous l’action du sous-groupe cyclique < g > . Étant donné g ∈ G, un axe

L de g existe toujours dans X̃ [BH99]. Si G se scinde au-dessus de < g >, alors

L sépare X̃ grossièrement (en conséquence de [Pap05, Lemme 1.8]). Quand L est

contenu dans un arbre vertical, le fait que X̃ soit un complexe Brady-Meier implique

que L en fait sépare X̃ (Lemme 4.2.15). Dans l’espace X̃ simplement connexe, L

sépare X̃ si et seulement s’il sépare N 1
4
(L) (Lemme 4.2.8).

Le quotient de L par < g > est un cercle C immergé dans X, que nous appelons un

cycle. Le voisinage régulier de C est le quotient de N 1
4
(L) par l’action de < g >. Le

fait que L sépare N 1
4
(L), avec une condition satisfaite puisque G se scinde au-dessus

de < g >, implique le résultat suivant:

Lemme 1.8.4 (Lemma 4.5.25). C sépare son voisinage régulier.

Nous avons besoin d’une autre propriété pour construire la décomposition JSJ. Un

sous-groupe cyclique au-dessus duquel G se scinde est universellement elliptique s’il
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est elliptique dans l’arbre de Bass-Serre de tout scindement cyclique de G [GL16].

Les groupes d’arêtes de la décomposition JSJ sont universellement elliptiques.

Deux droites L1 et L2 qui séparant X̃ se croisent grossièrement s’il existe R > 0 tel

que L1 rencontre différentes composantes connexes de X̃ \NR(L2) et L2 rencontre

différents composants de X̃ \ NR(L1) (Définition 4.3.9). Soit L1 (respectivement

L2) un axe de g1 (respectivement de g2) tel que G se scinde au-dessus de < g1 >

et < g2 >. Alors < g1 > est elliptique dans l’arbre de Bass-Serre du scindement

au-dessus de < g2 > seulement si L1 et toute translation de L2 ne se croisent pas

grossièrement (Lemme 4.6.1). Cette propriété a une caractérisation locale dans le

complexe Brady-Meier X̃:

Proposition 1.8.5 (Proposition 4.3.2). Deux droites séparantes L1 et L2 se croisent

grossièrement si et seulement si

1. L1 ∩ L2 est non-vide et compact, et

2. L2 rencontre deux composants connexes distinctes de N 1
4
(L1 ∩ L2) \ L1.

1.8.2 Cycles répétitifs et scindements JSJ

En Section 4.7, nous introduisons une notion importante, à savoir la répétitivité, qui

borne la longueur d’un cycle qui induit un scindement universellement elliptique.

Soit C̃ une élévation d’un cycle C dans X̃.

Définition 1.8.6 (Définition 4.7.2, Lemme 4.7.4). Un cycle C est k-répétitif si C̃

est une droite séparante et s’il existe un arête e dans X̃ et des éléments distincts

g1, · · · , gk ∈ G tels que

1. chaque translation giC̃ contient e,

2. la distance entre e et gie est strictement inférieure à la longueur de C, et

3. deux carrés quelconques s et s′ qui contiennent e sont séparés soit par tous les

translatés giC̃ soit par aucun.

Il y a deux raisons importantes de définir des cycles répétitifs. La première est que
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tout cycle plus long qu’une certaine borne est k-répétitif (Proposition 4.7.9). Ici, la

borne ne dépend que de k et du nombre de carrés de X.

La deuxième est donnée par la proposition suivante:

Proposition 1.8.7 (Proposition 4.8.1). Soit C un cycle k-répétitif avec k ≥ 3.

Supposons que π1(C) est un sous-groupe cyclique maximal de G. Alors il existe une

droite séparante périodique L dans X̃ telle que L et C̃ se croisent grossièrement.

Ceci implique que π1(C) se conjugue dans un sous-groupe de surface suspendu du

scindement JSJ de G, par la Proposition 5.30 de [Bow98]. Par conséquent, π1(C)

n’est pas universellement elliptique.

Donc la longueur d’un cycle qui induit un sous-groupe cyclique universellement

elliptique est bornée. Cela mène au résultat suivant:

Théorème 1.8.8 (Théorème 4.9.1). Il existe un algorithme en temps doublement

exponentiel qui prend en entrée un graphe tubulaire de graphes Brady-Meier dont

le groupe fondamental hyperbolique est G et qui renvoie une liste finie de cycles de

scindements qui contient tous les sous-groupes universellement elliptiques de G à

commensurabilité près.

1.8.3 L’obtention d’un complexe JSJ

En Section 5, nous modifions le graphe tubulaire de graphes X en un graphe

tubulaire de graphes Xjsj tel que la structure du graphe de groupes de Xjsj donne

le scindement JSJ de G.

La première étape consiste à modifier X en un graphe tubulaire de graphes X ′ en

coupant le long de la liste finie de cycles fournie par Théorème 1.8.8. Nous effectuons

ce découpage en utilisant la machinerie d’espaces à murs [HP98]. L’ensemble des

sommets de X̃ est un espace à murs, avec des murs définis par ses hyperplans

verticaux et horizontaux. Nous enrichissons l’ensemble de murs en ajoutant les

relevés des cycles fournies par Théorème 1.8.8 dans X̃. Le complexe carré dual à ce

nouvel espace à murs est X̃ ′ (voir Section 5.3).
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Dans la deuxième étape, nous effectuons une simplification sur X ′ en enlevant les

tubes qui sont attachés aux graphes de sommets cycliques des deux côtés. Appelons

le nouveau graphe tubulaire de graphes X ′′. En Proposition 5.4.3, nous montrons

que chaque groupe d’arête du scindement JSJ de G se conjugue dans un groupe

d’arête du graphe de groupes sous-jacent de X ′′.

Ainsi, un stabilisateur d’arête de l’arbre sous-jacent de X̃ ′′ est soit un stabilisateur

d’arête de l’arbre de JSJ, soit un sous-groupe cyclique qui se conjugue dans un

sous-groupe maximal du scindement JSJ. Il reste donc à identifier les sous-groupes

de surfaces suspendus maximaux qui apparaissent comme des groupes de sommets

dans le scindement JSJ.

1.8.4 Identifier les surfaces

Nous donnons un critère pour identifier les surfaces dans la configuration de Brady-

Meier. Un graphe de sommet d’un graphe tubulaire de graphes est un graphe

de surface si le groupe fondamental du graphe est un groupe de surface dont les

sous-groupes périphériques sont précisément les sous-groupes d’arêtes incidents.

Alors

Lemme 1.8.9 (Lemme 5.5.2). Un graphe de sommet d’un graphe tubulaire de

graphes Brady-Meier est un graphe de surface si et seulement si chaque arête de son

double est contenue dans exactement deux carrés.

Armé de ce résultat, nous enlevons les tubes en X ′′ qui sont attachés aux graphes

de surface des deux côtés. Le graphe tubulaire de graphes ainsi obtenu aura alors

la décomposition JSJ comme graphe sous-jacent des groupes, prouvant le résultat

principal (Théorème 1.8.3).

1.8.5 Scindements relatifs JSJ

Soit H une famille de sous-groupes d’un groupe G. Un scindement de G relatif à H

est une décomposition de G en graphe de groupes dans lequel chaque élément de H
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est elliptique.

Un scindement JSJ d’un groupe libre de rang fini F relativement à une famille H de

sous-groupes cycliques maximaux est une décomposition de F en graphe de groupes

relatif à H qui satisfait les conditions d’un scindement JSJ (Définition 1.8.1).

Dans [Cas16, Theorem 4.25], Cashen montre qu’un scindement JSJ de F relativement

à H existe et il est unique.

Comme application de notre algorithme pour construire le scindement JSJ (Théorème

1.8.3), nous obtenons un algorithme pour construire le scindement JSJ relatif:

Théorème 1.8.10 (Théorème 6.0.3). Il existe un algorithme en temps doublement

exponentiel qui prend en entrée un groupe libre de rang fini F et une famille finie

de sous-groupes cycliques maximaux H tels que F est librement indécomposable

relativement à H et qui renvoie le scindement JSJ de F relativement à H.

Notre approche consiste à construire un graphe tubulaire de graphes Brady-Meier

X tel que F est le groupe fondamental d’un graphe de sommet de X et les groupes

d’arêtes incidents sont précisément les membres de H (voir Chapitre 6 pour plus de

détails). La construction assure que π1(X) est hyperbolique. L’algorithme de notre

résultat principal (Théorème 1.8.3) construit alors le scindement JSJ de π1(X), et

donc le JSJ relatif de (F,H).

1.9 Le problème d’isomorphisme

Le problème d’isomorphisme est le problème algorithmique de décider si deux

présentations finies de groupes fournissent des groupes isomorphes [Deh11].

Une conséquence importante du travail effectué dans cette thèse est que le problème

d’isomorphisme pour les groupes fondamentaux hyperboliques de graphes tubulaires

de graphes est réduit à l’algorithme de Whitehead ([Whi36]):

Soit G1 et G2 des groupes fondamentaux hyperboliques de deux graphes tubulaires

de graphes. En utilisant l’algorithme de Corollaire 1.7.4, nous pouvons construire des
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graphes tubulaires de graphes qui donnent des scindements de Grushko de G1 et G2.

Par l’unicité du scindement de Grushko, G1 et G2 sont isomorphes si et seulement s’il

y a une correspondance bijective entre les groupes de sommets de leurs scindements

de Grushko avec un isomorphisme entre les groupes de sommets correspondants. Les

groupes libres dans les scindements de Grushko ont le même rang si et seulement si

les graphes tubulaires de graphes qui représentent ces groupes libres peuvent être

modifiés en des graphes ayant le même nombre d’arêtes à l’extérieur d’un arbre

maximal. Il reste à vérifier si les facteurs à un bout du scindement de Grushko sont

isomorphes.

Supposons donc que G1 et G2 sont à un bout. En utilisant Théorème 1.8.3, nous

pouvons construire les scindements JSJ de G1 et G2. Alors G1 et G2 sont isomorphes

si et seulement s’il y a une correspondance bijective entre les groupes de sommets de

leurs scindements JSJ de telle sorte que les groupes de sommets correspondants sont

isomorphes avec l’isomorphisme respectant les groupes d’arêtes incidents. Mais tous

les groupes de sommets sont des groupes libres et leurs groupes d’arêtes incidents

sont des sous-groupes cycliques. L’algorithme de Whitehead [Whi36] détermine

précisément s’il existe un isomorphisme entre deux groupes libres qui envoie un

ensemble fini de sous-groupes cycliques sur un autre.

1.10 Directions de recherche

Nous énumérons quelques directions dans lesquelles le présent travail peut être

poursuivi.

1. Une question est de construire un scindement JSJ du groupe fondamental

G d’un graphe tubulaire de graphes lorsque G n’est pas hyperbolique. Dans

le cas hyperbolique, chaque groupe d’arête est cyclique maximal dans au

moins un des groupes de sommets aux extrémités de l’arête. Ce n’est pas vrai

quand G n’est pas hyperbolique. Une autre difficulté consiste à décider quand

un sous-groupe cyclique se conjugue dans un sous-groupe de surface. Nous

pensons que les méthodes utilisées dans cette thèse peuvent être également
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étendues au cas non hyperbolique.

2. Une deuxième question est de savoir s’il est possible de developer un algorithme

en temps borné pour construire le scindement JSJ du groupe fondamental

hyperbolique d’un graphe fini de groupes libres à groupes d’arêtes cycliques,

en l’absence de la structure de graphe tubulaire de graphes.

3. La plupart de nos résultats utilisent uniquement le fait que X̃ est un complexe

cubique CAT(0) Brady-Meier. Il est intéressant de se demander quels résultats

subsistent pour les complexes cubiques CAT(0) Brady-Meier généraux avec ou

sans la structure VH. En particulier, la question de savoir quelles classes de

groupes à un bout apparaissent en tant que groupes fondamentaux de complexes

cubiques Brady-Meier, comme en Théorème 1.7.3, est une question ouverte.

Nous avons utilisé des complexes Brady-Meier pour analyser les scindements

libres et cycliques dans cette thèse. Il serait intéressant de voir si la structure

de Brady-Meier sera utile pour étudier d’autres types de scindements.
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Chapter 2

The setup

We will briefly describe our objects of study in this chapter.

2.1 VH-complexes

The main objects of our study, tubular graphs of graphs, form a subclass of square

complexes known as VH-complexes.

The notion of VH-complexes was first introduced in [Wis96]. Details can also be

found in [Wis06].

Definition 2.1.1. A square complex is a two dimensional CW complex in which

each 2-cell is attached to a combinatorial loop of length 4 and is isometric to the

standard Euclidean unit square I2 = [0, 1]2.

All our square complexes will be locally finite.

Definition 2.1.2 (Vertex links). Let v ∈ X be a vertex of a square complex. The

link of v is a graph whose vertex set is the set {e | e is a half-edge incident at v}.

The number of edges between two vertices e, f is the number of squares of X in

which e, f are adjacent half-edges.

Definition 2.1.3 (CAT(0) square complexes). A square complex is nonpositively

curved if the length of a closed path in the link of any of its vertices is at least 4. A

31
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nonpositively curved square complex is said to be CAT(0) if it is simply connected.

Definition 2.1.4 ([Wis96]). A VH-complex is a square complex in which every

1-cell is labelled as either vertical or horizontal in such a way that each 2-cell is

attached to a loop which alternates between horizontal and vertical 1-cells.

The labelling of the edges of a VH-complex as horizontal and vertical induces a

labelling of vertices in the link of any vertex as horizontal and vertical, thus making

the link a bipartite graph.

Remark 2.1.5. Since the link of any vertex of a VH-complex is bipartite, the length

of a closed path is even. Thus a VH-complex is nonpositively curved if there exists

no bigon in any vertex link.

2.2 Graphs of spaces

Graphs of groups are the basic objects of study in Bass-Serre theory, first explained

by Serre [Ser80].

It was studied from a topological perspective in [SW79] by looking at graphs of

spaces instead of graphs of groups. We will adopt this point of view.

Definition 2.2.1. By a graph of spaces, we mean the following data: Γ is a connected

graph, called the underlying graph. For each vertex s (edge a) of Γ, Xs (Xa) is

a topological space. Further, whenever a is incident to s, ∂a,s : Xa → Xs is a

π1-injective continuous map. The geometric realisation of the above graph of spaces

is the space X = (
⊔
s∈Γ(0) Xs t

⊔
a∈Γ(1) Xa × [0, 1])/ ∼, where (x, 0) and (x, 1) are

identified respectively with ∂a,s(x) and ∂a,s′(x). Here, s and s′ are the two endpoints

of a.

Note that the universal cover of X has the structure of a tree of spaces, a graph

of spaces whose underlying graph is a tree. Moreover, the underlying tree is the

Bass-Serre tree of the associated graph of groups structure of X [SW79].
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2.3 Tubular graphs of graphs

Definition 2.3.1. A tubular graph of graphs is a finite graph of spaces in which

each vertex space is a finite connected simplicial graph and each edge space is a

simplicial graph homeomorphic to a circle. Further, the attaching maps are simplicial

immersions. We will always assume that the underlying graph is connected.

As a consequence of the definition, we have

Proposition 2.3.2 ([Wis06]). The geometric realisation of a tubular graph of graphs

is a compact, connected nonpositively curved VH-complex whose vertical hyperplanes

are circles.

Proof. Indeed, the geometric realisation X is a square complex whose cell structure

we describe below.

Every vertex graph Xs inherits the cell structure induced by the graph: its vertices

are X0
s and its edges are X1

s . All edges X1
s are vertical.

Given an edge graph Xa (homeomorphic to a circle), Xa × [0, 1] has the product

cell structure: its vertices are X0
a × {0, 1}, its vertical edges are X1

a × {0, 1} and its

horizontal edges are X0
a × [0, 1].

Since the underlying graph along with all vertex graphs are assumed to be connected,

X is connected. X is compact as the underlying graph and all vertex and edge

graphs are finite.

Thus X is a compact and connected VH-complex. A vertical hyperplane in X is

a hyperplane which is dual to a horizontal edge of X. Since the edge spaces are

circles, vertical hyperplanes of X are circles.

Finally, X is nonpositively curved. Indeed, since the attaching maps of edge graphs

are immersions, two adjacent edges of an edge graph do not have the same image.

This removes the possibility of the existence of cycles of length 2 in vertex links.

A tube in a tubular graph of graphs X is the image of the Cartesian product of an

edge graph and the unit interval in the geometric realisation of X.
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B A

A ∩B

Figure 2.1: An example of a hanging tree in Xs.

Convention. Throughout this text, we will use the same notation for a graph of

graphs and the VH-complex which is its geometric realisation. X will denote a

tubular graph of graphs with underlying graph ΓX . Let s ∈ ΓX be a vertex. Then

Xs will denote the vertex graph at s and if a is an edge of ΓX , we will denote the

edge graph at a by Xa.

Definition 2.3.3 (Thickness). For an edge e in X, the thickness of e is the number

of squares of X which contain e.

We will define below notions of “hanging trees” and “rudimentary edges” in tubular

graphs of graphs. One can always simplify a given tubular graph of graphs by

removing hanging trees and rudimentary edges.

Definition 2.3.4. Let Xs be a vertex graph of a tubular graph of graphs X. We

say that Xs (and hence X) has a hanging tree if Xs is a wedge of two subgraphs A

and B such that one of them, say A, is a tree. Here, A is called a hanging (sub)tree

of Xs (see Figure 2.1).

Remark 2.3.5. Since the attaching maps of edge graphs are immersions, we observe

that no edge of a hanging tree is in the image of any attaching map. In other words,

an edge in a hanging tree of X has thickness 0.

Observe that

Lemma 2.3.6. A tubular graph of graphs is homotopy equivalent to a tubular graph

of graphs with no hanging trees.

Definition 2.3.7. Let e be an edge in Xs. We call e a rudimentary edge if Xs is

homeomorphic to S1 and e has thickness 1.

Lemma 2.3.8. A tubular graph of graphs is homotopically equivalent to a tubular

graph of graphs with no rudimentary edges.

Proof. Let X be a tubular graph of graphs. If X has no rudimentary edges, we have
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Xs Xa

e

Figure 2.2: Removing rudimentary edges.

nothing to show.

If an edge e in a vertex graph Xs of X is a rudimentary edge, then all edges in Xs

are rudimentary edges: First note that Xs is a circle, by definition. Further, the fact

that the attaching maps of edge graphs to Xs are graph immersions implies that

the thickness of every edge of Xs is one.

Thus there exists exactly one edge a incident to s in the underlying graph ΓX and

the attaching map from Xa to Xs is a graph isomorphism (see Figure 2.2). Then X

is homotopic to X ′ obtained by removing the tube containing Xa. ΓX′ is the graph

obtained from ΓX by collapsing a = (s, s′) to s′. Repeating this procedure at each

rudimentary edge gives the result.

The following definition, introduced by Brady and Meier (see Theorem 1.2.1 above)

is crucial throughout this work.

Definition 2.3.9 ([BM01]). A square complex is said to be Brady-Meier if

1. the link of each vertex is connected and

2. for each vertex, the complement of any simplex in the vertex link is connected.

Observe that the Brady-Meier property is local. Thus,

Fact 2.3.10. Given any covering map X → Y of square complexes, X is Brady-Meier

if and only if Y is Brady-Meier.
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Chapter 3

Vertex links and ends

3.1 Ends

The theory of ends of a topological space was first studied by Hans Freudenthal in

his thesis [Fre31]. The notion we require for this work is that of “connectivity at

infinity”, or “one-endedness”. We will use the following definition due to Specker

(see [Spe49] or [Ray60]).

Definition 3.1.1. A locally finite CW complex X is one-ended if for every compact

set K, X \K has exactly one unbounded component.

It is a well-known fact that being one-ended is a quasi-isometry invariant (see

Proposition I.8.29 of [BH99], for instance). Then by an application of the Švarc-

Milnor Lemma (see Proposition I.8.19 of [BH99]), for instance), we have the following

definition of one-endedness of a finitely presented group.

Proposition 3.1.2. Let G be a finitely presented group and X be a finite connected

CW complex such that G ∼= π1(X). G is one-ended if and only if X̃ is one-ended.

3.2 Not one-ended

In this section, we will collect a few results that lead to a group being not one-ended.

39
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We first recall a useful definition.

Definition 3.2.1. Let Z be a CW complex and v ∈ Z be a vertex. The set star(v)

is defined as the set of all cells σ such that v ∈ σ.

Remark 3.2.2. We note that the open star of v, denoted by ˚star(v), is a contractible

open neighbourhood of v which is evenly covered in the universal cover of Z.

We first recall a classical result due to Hopf [Hop44]:

Lemma 3.2.3. Let G be a torsion-free finitely generated group and G = H ∗K be

a nontrivial free splitting of G. Then G is not one-ended.

Corollary 3.2.4. Let G = A∗1 be an HNN extension of a finitely generated group

A over its trivial subgroup. Then G is not one-ended.

Proof. By definition, an HNN extension of A over the trivial subgroup adds a free

generator to A. This implies that G = A ∗ Z. The result follows as Z is not

one-ended.

As a consequence, we obtain the following two standard results (Lemma 3.2.5 and

Lemma 3.2.6).

Lemma 3.2.5. Let Z be a connected CW complex. Let c ∈ Z be a vertex or the

midpoint of an edge. Suppose that Z \ {c} is not connected, i.e., Z = Z1 ∨{c} Z2,

and that neither Z1 nor Z2 is simply connected. Then Z̃ is not one-ended.

Lemma 3.2.6. Let Z be a connected CW complex. Let c ∈ Z be a vertex or the

midpoint of an edge. Let G = π1(Z, c). Suppose that star(c) \ {c} is not connected,

but Z \ {c} is connected. Then Z̃ is not one-ended.

Proposition 3.2.7. Let X be a tubular graph of graphs with no hanging trees.

Suppose there exists an edge of thickness 0. Then X̃ is not one-ended.

Proof. Since all horizontal edges have thickness 2, an edge of thickness 0 has to be

vertical. Let e in Xs be such an edge. Let c be the midpoint of e.

If X \ {c} is connected, then by Lemma 3.2.6, X̃ is not one-ended.

If X\{c} is not connected, then X is a wedge of two subcomplexes (after subdivision).

Let X = X1∨cX2 and let Xs = A∨cB be the induced decomposition of Xs. Since e



3.2 Not one-ended 41
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X ′′s X ′′a
X ′′

Figure 3.1: Removing squares containing thickness-one edges.

is not in a hanging tree, neither A nor B is a tree. Thus, X1 and X2 are not simply

connected (because π1(A) ↪→ π1(X1) and π1(B) ↪→ π1(X2) in the graph of groups

setup [Ser80]). By Lemma 3.2.5, X̃ is not one-ended.

Proposition 3.2.8. Let X be a tubular graph of graphs with no hanging trees and

no rudimentary edges. Suppose there exists an edge of thickness 1. Then X̃ is not

one-ended.

Proof. By Proposition 3.2.7, we can first assume that there is no edge of thickness

0. Let e in Xs be an edge of thickness 1. Since e is not a rudimentary edge, first

observe that Xs is not a circle. Since there are no edges of thickness 0, there are at

least two tubes attached to Xs.

Let Q be the lone square containing e. Then X is homotopic to X ′, the complex

obtained by removing the open square Q and the open edge e. Let f be an edge

adjacent to e in Q. In X ′, since the horizontal edge f (Figure 3.1) is of thickness 1, we

can similarly remove the square containing f . We repeat this process consecutively

for all squares intersecting vertices of X ′a until we are left with just one vertex,

to obtain X ′′. X ′′ has no hanging trees since X had neither hanging trees nor

rudimentary edges, but now has an edge of thickness 0. Observe that X is of the

same homotopy type as X ′′. By Proposition 3.2.7, X̃ is not one-ended.

We wish to prove now that if all edges of X have thickness at least two, then X̃

is one-ended whenever every vertex of X has a connected vertex link ((BM1)). In

order to do so, we will need the following result.

Lemma 3.2.9. Let Z be a compact, connected nonpositively curved square complex

which has at least one edge. If each edge of Z is contained in at least two squares,
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then π1(Z) is infinite.

We will first recall the definition of hyperplanes. We adopt below the terminology of

elementary parallel and parallelism from [Hag07].

Definition 3.2.10 ([Sag95]). Let X be a square complex. Say two edges e and f

are elementary parallel if they are opposite edges of some square of X. We denote by

parallelism the equivalence relation on the set of edges of X generated by elementary

parallelism.

A mid-edge of a square s is an edge (after subdivision of s) running through the

center of s and parallel to two of the edges of s. Given an equivalence class [e] of

parallel edges, the hyperplane dual to e, denoted by he is the collection of mid-edges

which intersect edges in [e].

Proof of Lemma 3.2.9. Let e be an edge of Z . The hyperplane he dual to e is a

finite connected graph in which every vertex is of valence at least 2, by the hypothesis

on Z . This implies that π1(he) is a free group of positive rank. To see this, first

start from a vertex, say v1 ∈ he (after subdivision). Let e1 = (v1, v2) be an edge at v1.

Since v2 is of valence at least 2, let e2 = (v2, v3) be another edge at v2. Continuing in

this manner, since there are only finitely many vertices, by the pigeon-hole principle,

there exists en = (vn, v) where v = vi, for some i < n, giving a cycle in he.

It is a standard result that any lift of he embeds as a hyperplane in Z̃, since

hyperplanes of CAT(0) square complexes are convex subcomplexes (see Appendix B

of [HW08], for example). This implies that π1(he) ↪→ π1(Z). Hence the result.

We are now ready for the case when all edges of X have thickness at least 2.

Proposition 3.2.11. Let X be a tubular graph of graphs. Let each edge have

thickness at least 2. If X̃ is one-ended, then the link of every vertex of X is

connected.

Recall that X satisfies the first Brady-Meier criterion (BM1) if every vertex link is

connected.

Proof. Let u ∈ Xs be a vertex whose link is not connected. This implies that
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star(u) \ {u} is not connected. If X \ {u} is connected, then by Lemma 3.2.6, X̃ is

not one-ended.

SupposeX\{u} is not connected. ThenX = X1∨uX2. By Lemma 3.2.9, bothX1 and

X2 have nontrivial fundamental groups. The result follows from Lemma 3.2.5.

Lemma 3.2.12. If X is not equal to a vertex and satisfies the Brady-Meier criteria

((BM1) and (BM2)), then each edge of X has thickness at least two.

Proof. Indeed, there cannot be hanging trees as any vertex v of a hanging tree

with valence at least two is such that link(v) is not connected. There cannot be a

rudimentary edge because of the following: If e = (u, v) in Xs is a rudimentary edge,

then ηe ∈ link(u), the vertex induced by e, has valence one and the complement

in link(u) of ηx is disconnected, where ηx is the sole adjacent vertex of ηe. Finally,

there can be no other edge of valence zero by Proposition 3.2.7 and none of thickness

one by Proposition 3.2.8.

3.3 The second Brady-Meier criterion

In this section, we assume that each edge of X has thickness at least two and every

vertex link is connected, but X does not satisfy the second Brady-Meier criterion

(BM2). We will explain how to simplify X in this case by defining an opening of

the complex at a vertex whose link does not satisfy (BM2).

Let u ∈ Xs ⊂ X be a vertex such that for a simplex (vertex or edge) σ ⊂ link(u),

link(u) \ σ is not connected.

A vertex of link(u) is vertical (horizontal) if it is a vertical (horizontal) half-edge

incident to u in X. Observe that the horizontal vertices in the link of any vertex

are of valence exactly two. Also, link(u) is not a segment of length two as each edge

of X is contained in at least two squares. This leads us to a lemma:

Lemma 3.3.1. X does not satisfy (BM2) at u if and only if a vertical vertex of

link(u) disconnects link(u).
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Figure 3.2: link(u)

Proof. If a vertical vertex of link(u) disconnects link(u), then clearly, X does not

satisfy (BM2).

For the converse, there are two cases:

Case 1. Suppose a vertex v of link(u) disconnects link(u). Then either this vertex

is vertical or it is horizontal. If it is vertical, we have nothing to prove. If it is

horizontal, let v1 and v2 be the two vertical vertices adjacent to v. Then any path

between v1 and v2 meets v. Let C1, C2 be the two components of link(u) \ {v} with

vi ∈ Ci. Since link(u) is not a segment of length 2, one of the components, say C1,

is not a singleton. Let x 6= v1 ∈ C1 be a vertex. Then any path in link(u) from x to

v2 meets v, and hence meets v1. Thus v1 disconnects link(u).

Case 2. Suppose an edge e of link(u) disconnects link(u). Let v be the unique

horizontal vertex incident to e. Then v disconnects link(u). The proof then follows

from the first case.

Let e be a vertical edge incident to u and let ηe denote the half-edge of e in link(u).

Suppose that ηe disconnects link(u). Let C1, · · · , Cn denote maximal connected

subgraphs of link(u) \ ηe (Figure 3.2), where maximality is by inclusion.

Since Xs is a simplicial graph, the star of u in Xs is a tree (Figure 3.3).

We now explain how to open star(u):

Definition 3.3.2. We define a tree Tu (Figure 3.3) as follows: There is one ‘primary’

vertex v′ out of which emit n edges e1, · · · , en (corresponding to the components
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Figure 3.3: Opening star(u) to Tu

C1, · · · , Cn). For each i, we label the other endpoint of ei as ui. From each ui, we

have ki branches to the vertices x′i1, · · · , x′iki , where ki is the number of vertices

adjacent to ηe in Ci (compare with star(u)). We label these edges as f ′i1, · · · , f ′iki .

We also define a new graph X ′s by replacing ˚star(u) by Tu, with the obvious identifi-

cations.

Definition 3.3.3. The graph X ′s is called an opened-up graph of Xs.

Clearly, X ′s is connected, Xs \ ˚star(u) ↪→ X ′s and Tu ↪→ X ′s. There is a natural

surjective map from X ′s to Xs which sends each ei in Tu to e. Further,

Lemma 3.3.4. The graphs X ′s and Xs are homotopy equivalent.

Construction. We now construct a new tubular graph of graphs X ′ with the same

underlying graph ΓX as X and the only change is that X ′s replaces Xs. An attaching

map of an edge graph is unchanged if u is not in the image, as Xs \ ˚star(u) embeds

in X ′s. If u is in the image, we do the obvious modification (see Figure 3.4 for an

illustration).

Definition 3.3.5. The tubular graph of graphs X ′ is called an SL-complex (simpli-

fied link) of X.

There exists a natural map from X ′ to X. Further,

Proposition 3.3.6. The tubular graphs of graphs X and X ′ are homotopy equivalent.

Lemma 3.3.7. X ′ is not isomorphic to X as square complexes.

Proof. Since the number of edges of X ′s is strictly greater than the number of edges
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Figure 3.4: A highlighted path of each colour indicates a part of the image of an
attaching map

of Xs, we have X ′ � X.

Lemma 3.3.8. Every edge of X ′ belongs to at least one square and the number of

squares in X ′ is the same as the number of squares in X.

Proof. Every horizontal edge of X ′ belongs to two squares by definition. If a vertical

edge belongs to Xϕ, with ϕ 6= s, then since the attaching maps are unchanged from

X, and each edge of X belonged to at least two squares, this vertical edge also

belongs to at least two squares. The same argument works for edges in X ′s not in

Tu. Since fij belongs to at least two squares, so does f ′ij, by the way the attaching

maps are defined. The edge ei belongs to a square if and only if a pair of adjacent

edges yλ1 , yλ2 in some edge graph is mapped to the pair e, fij for some j. But since

there is an edge between ηe and ηfij in link(u), such a pair exists.

The number of squares in X ′ is equal to the total number of edges in the cyclic edge

graphs, which is equal to the number of squares of X.

Remark 3.3.9. It is possible to have edges of thickness one in X ′ even though there

aren’t any such edges in X. The only edges that can be of thickness one are the

ones that are incident to some ui. However, these cannot be rudimentary edges as

no edge of Xs was of thickness one to begin with.

3.4 The Algorithm

Definition 3.4.1. A tubular graph of graphs is wedge-like if either
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1. it has no hanging trees or rudimentary edges, but has an edge of thickness

zero or one, or

2. every edge is of thickness two but there exists a vertex whose link is not

connected.

Remark 3.4.2. By Proposition 3.2.7, Proposition 3.2.8 and Proposition 3.2.11, the

fundamental group of a wedge-like tubular graph of graphs is not one-ended.

Theorem A (Main Theorem). There is an algorithm of polynomial time-complexity

that takes a tubular graph of graphs as input and returns a homotopy equivalent

tubular graph of graphs which is either Brady-Meier, or is a point, or is wedge-like.

Proof. We will prove the theorem by constructing the algorithm. Start with a

tubular graph of graphs X = X0. Let k ∈ N ∪ {0}.

Step 1 Check if Xk has hanging subtrees. If yes, collapse each hanging subtree to a

point and call the new complex as Xk. Go to the next step.

Step 2 Check if Xk has a rudimentary edge. If yes, remove tubes attached to rudi-

mentary edges as in Lemma 2.3.8 and call the resulting complex also as Xk.

Go to the next step.

Step 3 Check if Xk has at least one square. If yes, go to the next step. Otherwise,

Xk is either a point or wedge-like. Stop.

Step 4 Check if Xk has an edge of thickness zero. If yes, Xk is wedge-like. Stop. If

not, go to the next step.

Step 5 Check if Xk has an edge of thickness one. If yes, stop. If not, go to the next

step.

Step 6 Check if the link of a vertex of Xk is not connected. If yes, stop. If not, go to

the next step.

Step 7 Check if Xk satisfies both (BM1) and (BM2). If yes, stop. If not, go to the

next step.

Step 8 Replace Xk by Xk+1 = X ′k, an SL-complex of Xk, and go to Step 5.
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We observe that

(i) Xk and Xk+1 are not isomorphic cube complexes (Lemma 3.3.7). Further, for

k 6= k′, Xk � Xk′ , as each opening increases the number of edges.

(ii) Xk and Xk+1 have the same number of squares (Lemma 3.3.8).

(iii) There is no edge of thickness zero in any Xk for k ≥ 1 (Lemma 3.3.8).

(i) implies that the algorithm does not return a tubular graph of graphs from an

earlier step. Since there are only a finite number of connected square complexes

with a fixed number of squares (ii) and no thickness zero edges (iii), the algorithm

cannot proceed indefinitely.

Checking if a graph has hanging trees can be performed in linear time in the number

of vertices and edges of X [HT73]. Similarly, checking for edges of thickness zero or

one or for rudimentary edges takes linear time in the number of edges and squares

of X. Thus steps 1 through 4 run in linear time in the number of vertices, edges

and squares of X.

From step 5 onwards, the number of vertices and edges of Xk is bounded by the

number of squares of Xk, as each edge is contained in a square. Step 5 runs in linear

time. Steps 6 and 7 run in polynomial time in the number of squares: indeed, the

size of a vertex link in Xk is bounded by the number of squares of Xk and checking

for connectedness and disconnecting vertices is linear (see [HT73] for details) in the

number of vertices and edges of the graph.

If n is the number of squares in X, we claim that the number of times the algorithm

goes back to step 5 is at most n.

Indeed, the algorithm performs the kth opening-up only if every square of Xk−1 is of

thickness at least two. When each edge is of thickness at least two, the number of

vertical edges (as well as horizontal edges) of a tubular graph of graphs can be at

most equal to the number of squares.

Observe that the opening procedure in Step 8 increases the number of vertical edges

of Xk by at least one, while decreasing the thickness of certain vertical edges. Thus,
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the algorithm continues at most until each vertical edge is contained in exactly two

squares. In other words, if N ≤ n is the number of vertical edges of X = X0, the

algorithm stops at most when the number of vertical edges is equal to n. Hence the

result.

As an immediate consequence, we have:

Corollary B. There exists an algorithm of polynomial time-complexity that takes

a tubular graph of graphs as input and decides whether its fundamental group is

one-ended or not. In addition, the algorithm returns the Grushko decomposition of

the fundamental group with each free factor itself being the fundamental group of a

tubular graph of graphs.

Proof. Let X be the input tubular graph of graphs with fundamental group G.

Apply the algorithm of Theorem A to X. Let XN be the output. If XN is a point,

then G is trivial. If XN is Brady-Meier, G is one-ended and has trivial Grushko

decomposition.

If XN is wedge-like, G is not one-ended (Remark 3.4.2). In the first step, we remove

open edges of thickness one and the open squares that contain them (see Figure 3.1).

We hence assume that no edge of XN is of thickness one.

Cut XN along an edge of thickness zero or a locally disconnecting vertex. Either we

get a connected tubular graph of graphs X ′1 or we get a disconnected space with

components X ′1, · · · , X ′n, where each X ′i is a tubular graph of graphs. In the first

case, G = G1 ∗ Z. In the latter case, G = G1 ∗ · · · ∗Gn. Apply the algorithm again

to each X ′i. If each Gi is one-ended, we are done. Otherwise, cut again at an X ′i

with a many-ended Gi and repeat.

This procedure terminates in polynomial time. Indeed, at each step we get tubular

graphs of graphs whose total number of squares is bounded by the number of squares

of X.

Remark 3.4.3. We point out that we do not use Stallings’ theorem for our proof. In

fact, our procedure yields an alternate proof of Stallings’ theorem about ends for
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fundamental groups of tubular graphs of graphs. Similarly, we do not assume the

existence of the Grushko decomposition either. Our algorithm proves its existence

for the groups under consideration.

It is immediate from Corollary B that

Corollary C. Let X be a tubular graph of graphs with fundamental group G. Suppose

that G admits a free splitting as G = A∗B. Then there exist tubular graphs of graphs

X1 and X2 such that A and B are fundamental groups of X1 and X2 respectively.

Moreover, X1 and X2 can be so chosen such that the total number of squares in X1

and X2 is bounded by the number of squares in X.

3.5 Whitehead graphs and separability

In this section we will relate our work to works of Whitehead and Stallings for free

groups.

Let Fn be a free group of rank n ≥ 2 and let W be a finite set of non-trivial elements

of Fn. Let B be a basis of Fn

We will first define Whitehead graphs ([Whi36]). Let Hn denote the orientable

3 dimensional handlebody of genus n. Fix an identification of Fn with the fun-

damental group of Hn. The basis B corresponds to a system of embedded disks

D = {d1, · · · , dn} such that for an element bi ∈ B, bi is represented by a closed path

in Hn which starts from the chosen basepoint, intersects di transversely and returns

to the basepoint without touching any other dj. Cutting open Hn along these disks

results in a 3-ball with 2n disks d±i (such that the chosen representative bi enters

along d+
i and leaves along d−i ).

W is represented by a set of curves in Hn. After cutting, the set of curves is now a

set of arcs between these discs.

Definition 3.5.1 ([Whi36]). The Whitehead graph ΓFn,B(W ) is a graph with 2n

vertices labelled {b±1 , · · · , b±n }. There is an edge between two vertices b+
i (respectively,

b−i ) and b+
j (b−i ) for every arc between the corresponding discs d+

i (d−i ) and d+
j (d−j )
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Figure 3.5: A Whitehead graph

in the cut up handlebody.

Figure 3.5 illustrates an example when n = 2, B = {b1, b2} and W = {b1b2b1}.

Definition 3.5.2 (Stallings). W is separable if there exists a non-trivial free splitting

of Fn = H ∗K such that each element of W is either a conjugate of an element of

H or a conjugate of an element of K.

We recall another definition.

Definition 3.5.3. Let Y be a topological space. A cut point y ∈ Y is a point such

that Y \ {y} is not connected.

Remark 3.5.4. A disconnected graph with at least three vertices necessarily has a

cut vertex.

There is a well-known result about the separability of W .

Theorem 3.5.5 ([Whi36]). If W is separable, then ΓFn,B(W ) has a cut vertex for

any basis B.

More details can be found in [Sta99]. The goal of this section is to construct

an algorithm to detect separability (Corollary D). Stallings constructs one such

algorithm by choosing a Whitehead automorphism whenever there is a cut vertex in

a Whitehead graph. Our strategy is to use the machinery of Theorem A when a

Whitehead graph contains a cut vertex. We will do so using a construction called

‘double’ in the literature. We will first re-prove Theorem 3.5.5 above using this

construction.
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3.5.1 Construction of the double

Let Rn denote an oriented rose with petals {a1, · · · , an}. Fix an identification of

Fn with the fundamental group of Rn such that each petal of Rn in the positive

direction represents a distinct element of the basis B = {b1, · · · , bn}.

The double XF,W is a tubular graph of graphs constructed in the following way. The

underlying graph ΓX of the double XF,W is a (multi-)graph with two vertices s1, s2

and k edges between them, where k is the cardinality of W = {w1, · · · , wk}. The

vertex graph Xsi is a subdivided copy of Rn, subdivided as many times as necessary

to make all attaching maps simplicial, for i = 1, 2. The attaching map of the edge

graph on both sides at the jth edge is a simplicial immersion which induces the word

wj at the level of fundamental groups.

Definition 3.5.6. A vertex vi ∈ Xsi ⊂ XF,W is said to be special if vi is the

descendant of the unique vertex of Rn.

Remark 3.5.7. We will henceforth drop the subscript i for vertex graphs (and special

vertices) as our arguments hold true for both vertex graphs (and special vertices) by

the symmetry in XF,W .

Lemma 3.5.8. Let u ∈ Xs ⊂ XF,W be a vertex and let v ∈ Xs be the special vertex.

Assume that link(v) is connected with no cut vertex. Then link(u) is also connected

with no cut vertex.

Proof. If u = v, we have nothing to prove.

If u 6= v, then u is in the interior of a petal ai of Rn. Hence, there are exactly two

vertical vertices ηe1 , ηe2 in link(u). There is one horizontal vertex for each vertex

of an incident edge graph whose image is u. Further, there is a path of length 2

between ηe1 , ηe2 for every horizontal vertex in link(u). Thus, the number of reduced

paths between ηe1 , ηe2 is equal to the number of horizontal vertices in link(u).

Suppose that there is no horizontal vertex in link(u). This means that link(u) is

disconnected. Then link(v) is also disconnected as the valence of the two vertices of

link(v) corresponding to the petal ai is zero, which is a contradiction.
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Assume now that there is at least one horizontal vertex in link(u). This implies that

ηei is not a cut vertex. By Lemma 3.3.1, there is a cut vertex in link(u) only if there

is just one horizontal vertex in link(u) and so ηei is of valence one. This means that

in link(v), both the vertical vertices corresponding to ai are also of valence one. Any

vertex adjacent to one of these vertices is then a cut vertex, a contradiction.

Lemma 3.5.9. The link of the special vertex v is isomorphic as graphs to the first

subdivision of the Whitehead graph ΓFn,B(W ).

Proof. There are two vertical vertices in link(v) for each petal ai of Rn and hence

there are 2n vertical vertices {a±1 , · · · , a±n }, where the signs agree with the fixed

orientation of the petal ai. There is a segment of length 2 between a+
i (respectively,

a−i ) and a+
j (respectively, a−j ) in link(v) exactly when two consecutive edges of an

incident edge graph Xa are mapped to the edges induced by a+
i (respectively, a−i )

and a+
j (respectively, a−j ). This corresponds to an occurrence of a−1

i .aj or a−1
j .ai

(similar strings respectively) in the cyclic word wi ∈ W . This gives an edge between

b+
i (respectively, b−i ) and b+

j (respectively, b−j ) in ΓFn,B(W ). The isomorphism is

then clear.

Proof of Theorem 3.5.5. Let XF,W be the double of (F,W ), with fundamental group

G. G is not one-ended as W is separable and hence a vertex group of XF,W splits

freely relative to its incident edge groups, giving a free splitting of G. This implies

that X̃F,W is not one-ended. Thus, the link of a vertex of X̃F,W and therefore of

XF,W is either disconnected or has a cut vertex. By Lemma 3.5.8, this implies that

link(v) has a cut vertex. Lemma 3.5.9 now gives the result.

Corollary D (Stallings). There exists an algorithm of polynomial time-complexity

that detects the separability of a finite set of words in a finite rank free goup.

We will need a result by Wilton [Wil12, Theorem 18]:

Theorem 3.5.10. The fundamental group of a graph of free groups with cyclic edge

groups is one-ended if and only if every vertex group is freely indecomposable relative

to the incident edge groups.
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Figure 3.6: Xs1(= Xs2)
a+1

b−1

a−1

b+1

Figure 3.7: link(v)

Note that a vertex group is freely indecomposable relative to the incident edge

groups if and only if the set of words induced by the generators of these edge groups

is not separable.

Proof of Corollary D. Let W be the given set of words of the free group F . Let XF,W

be the double and G its fundamental group. Apply the algorithm of Corollary B to

detect whether G is one-ended. By Theorem 3.5.10 above, G is one-ended if and

only if W is not separable.

3.6 A counter-example

We now construct a tubular graph of graphs X with no hanging trees or rudimentary

edges and such that it satisfies only (BM1) and not (BM2). We will apply our

algorithm to X and show that π1(X) is one-ended, resulting in a counter-example

to the converse of Theorem 1.2.1.

Let F2 = 〈a, b〉 and W = {aba3b}. Let X be the double of this data, as constructed

in the previous section. We thus have Xs1 = Xs2 = R′′2, the second barycentric

subdivision of the bouquet of two circles (Figure 3.6). Then the link of the special

vertex v ∈ Xs is given in Figure 3.7.

We will illustrate the steps of the algorithm of Theorem A by pictures. We obtain a

Brady-Meier tubular graph of graphs in the fourth step (Figure 3.11).
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Figure 3.8: Step 1 of the algorithm

Figure 3.9: Step 2 of the algorithm

Figure 3.10: Step 3 of the algorithm

Figure 3.11: Step 4 of the algorithm
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Part II

Constructing the JSJ

decomposition

57





Chapter 4

Cyclic splittings and Brady-Meier

complexes

The main goal in this chapter is to construct the JSJ decomposition of a one-ended

hyperbolic fundamental group of a tubular graph of graphs.

By Corollary 1.2.3, we that the tubular graph of graphs under consideration is

Brady-Meier whenever its fundamental group is one-ended.

Convention. Henceforth, X will denote a Brady-Meier tubular graph of graphs, X̃

its CAT(0) universal cover and G its fundamental group. Xs will denote a vertex

graph (a component of the vertical 1-skeleton) in X. Unless mentioned otherwise,

we work with the CAT(0) metric in X̃.

Definition 4.0.1 (Paths, lines). Recall that a path in a space Z is a continuous

map from a closed interval to Z.

A combinatorial path ([MW05]) is a map of graphs ρ : P → Γ, where P is a

subdivided compact interval and Γ is a graph. Further, all our combinatorial paths

will be assumed to be immersions of graphs.

P is always assumed to be oriented. When there is no confusion about Γ, we will

refer to ρ : P → Γ as the path P .

A combinatorial path is called a segment if it is an embedding. Note that any

59
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compact graph homeomorphic to an interval is the image of a segment. We will

often call such graphs as segments.

Unless mentioned to the contrary, a path between two vertices of X or X̃ is a

combinatorial path, though we will often not mention it explicitly.

A cycle is an immersion of graphs φ : C → Γ, where C is a subdivided circle. We

will often denote the cycle by C.

A line is an isometric embedding R ↪→ X̃ (with the CAT(0) metric), while a ray is

an isometric embedding of [0,∞).

A combinatorial line is an isometric embedding of graphs R→ X̃1, where R is the

real line subdivided at integer intervals. We will only consider combinatorial lines

that are also lines. In other words, R → X̃1 is also an isometric embedding in X̃

with the CAT(0) metric.

Since horizontal edges of X̃ are of valence two, vertical hyperplanes of X̃ are lines.

Further,

Fact 4.0.2. The first cubical neighbourhood of a vertical hyperplane h, or the set of

all closed squares of X̃ that meet h, is convex ([Sag95]) and hence isometric to a

Euclidean strip [0, 1]× R with h ∼= {1
2
} × R.

Thus maximal geodesics in such a strip are of the form either {t0} × R or segments

from (0, x) to (1, y).

We next divide the set of lines into the following three types.

Definition 4.0.3. A vertical line is a combinatorial line contained in a vertical tree.

A tubular line is one that is parallel to a vertical hyperplane in the first cubical

neighbourhood of the hyperplane. A transversal line is a line that hits at least two

vertical trees.

Observe that certain lines can be both vertical and tubular.

We note that a tubular line that is not vertical is disjoint from the vertical 1-skeleton

(including vertices) and hits horizontal edges at most at one point, while a transversal

line hits at least one vertical hyperplane (in exactly one point).
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Figure 4.1: Cubical subdivision of a square

4.1 Regular neighbourhoods and regular spheres

Recall that a cell of a square complex is either a vertex, an edge or a square.

Definition 4.1.1 (Cubical neighbourhoods). The first cubical neighbourhood Y +1

of a subspace Y of a square complex Z is a subcomplex of Z given by the union

of all cells of Z that meet the closure of Y . The first cubical neighbourhood of a

subcomplex Y is also known as the star of Y . We will often use the open star of Y ,

denoted by ˚star(Y ), to denote the interior of star(Y ).

The nth cubical neighbourhood Y +n is defined inductively as (Y +(n−1))+1.

Definition 4.1.2 (Cubical subdivisions). The first cubical subdivision Z(1) of a

square complex Z is a square complex obtained by subdividing Z in the following

way: Each edge of Z is subdivided into two edges with the midpoint of the initial

edge forming a new vertex. Each square of Z is subdivided into four squares of

equal area (see Figure 4.1) by taking the center of the square as a new vertex and

taking four new edges between the center of the square and the midpoints of the

edges of the square.

The nth cubical subdivision Z(n) of Z is the first cubical subdivision of Z(n−1).

We will now define an abstract neighbourhood for a combinatorial path in a square

complex. The path may not embed in the square complex, but it will embed in its

abstract neighbourhood.

Fix a combinatorial path ρ from P to the 1-skeleton of a nonpositively curved

square complex Z. Here the path may or may not be a cycle. We allow P to be

a combinatorial ray or a combinatorial line. We remind the reader that ρ is an

immersion of graphs.

We will consider ρ as a map from P to the 1-skeleton of Z(2), the second cubical

subdivision of Z.
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P

N(P ) Z

Figure 4.2: Two disjoint subpaths of P are mapped to the yellow square

Definition 4.1.3. The regular neighbourhood N(P ) of P in a square complex Z is

a square complex constructed as follows. Let c be a cell of Z(2). We take one copy

of c for each component of ρ−1(c) (see Figure 4.2). The adjacency of cells is given

by the adjacency of arcs of P , where each arc is a component of the pre-image of a

cell of Z(2).

Since ρ restricted to each arc of the pre-image of a cell of Z(2) is an (isometric)

embedding, we observe:

Fact 4.1.4. There is a natural embedding of P in N(P ) such that ρ factors through

this embedding.

P Z

N(P )

ρ

Thus, if ρ is an embedding, then N(P ) embeds in Z, since ρ−1(c) of any cell c

contains a single component.

The reason for choosing the second cubical subdivision instead of the first in the

definition of N(P ) is that we would like P and N(P ) to have the same topology, as

illustrated in Figure 4.3.

Definition 4.1.5. The regular sphere around P , denoted by ∂N(P ), is the union

of all cells of N(P ) that are disjoint from P .

Fact 4.1.6. The regular sphere around a vertex is homeomorphic to the link of the

vertex. The regular sphere is in fact isomorphic as graphs to the first barycentric
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(a) P is an embedded cycle
(in red) in Z (b) The first cubical neigh-

bourhood of P in Z(1)

(c) N(P )

Figure 4.3: P is a deformation retract of its regular neighbourhood

subdivision of the vertex link.

4.1.1 The regular sphere around an edge

The goal of this subsection is to show that the regular sphere around an edge of a

square complex can be built from the regular spheres around its endpoints.

In order to state the result precisely, we will first define a notion of connected sum

of graphs.

Definition 4.1.7. Let Γ1 and Γ2 be graphs. Let v1 ∈ Γ1 and v2 ∈ Γ2 be vertices

of equal valence, say k. Let φi : {1, · · · , k} → adj(vi) be a labelling of the vertices

adjacent to vi, i = 1, 2. Then the connected sum Γ1 (v1,φ1)

⊕
(v2,φ2) Γ2 is defined as a

quotient of Γ1 \ ˚star(v1) t Γ2 \ ˚star(v2), where φ1(j) is glued to φ2(j), for 1 ≤ j ≤ k.

Recall that ˚star(v1) refers to the open star of v1. If v1 6= v2 are vertices in Γ1

as above, then we define the self-connected sum (v1,φ1)

⊕
(v2,φ2) Γ1 as a quotient of

Γ1 \ ( ˚star(v1) ∪ ˚star(v2)), where φ1(j) is glued to φ2(j), for 1 ≤ j ≤ k.

We also recall the definition of a dipole graph.

Definition 4.1.8. The dipole graph of order d is a multigraph consisting of two

vertices and d edges joining them.

Let e = (u, v) be an (oriented) edge of a nonpositively curved square complex Z.
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e

v

u

∂N(v)

∂N(u)
˚star(ea)

Figure 4.4: Regular spheres around two adjacent vertices. The star of ea is highlighted
in green.

We can now state the main result of this subsection.

Lemma 4.1.9. The regular sphere around e is homeomorphic to a connected sum of

the regular spheres around u and v, with labelling induced by the squares containing

e.

Proof. Let m be the midpoint of e. Then m is a vertex after a subdivision of the

square complex. Observe that ∂N(m) is homeomorphic to a dipole graph of order d,

where d is the thickness of e. Let ea be the initial half-edge of e and eb its second-half.

Then ea and eb meet ∂N(m) at distinct vertices of valence d, which we will also call,

by abuse of notation, as ea and eb respectively. Thus ∂N(m) \ ˚star(ea) ∪ ˚star(eb) is

a disjoint union of d segments, one for each square that contains e.

Similarly, ea (eb) meets ∂N(u) (∂N(v)) at a vertex of valence d, see Figure 4.4. So

∂N(u) \ ˚star(ea) (∂N(v) \ ˚star(eb)) is a graph with d ‘hanging’ edges: edges with

one of their endpoints having valence 1.

We thus see that

∂N(e) ∼= ∂N(u) \ ˚star(ea) t ∂N(m) \ ( ˚star(ea) ∪ ˚star(eb)) t ∂N(v) \ ˚star(eb)/ ∼

where the gluing is defined on vertices of valence 1. A vertex of valence 1 in

∂N(u) \ ˚star(ea) is glued to a vertex of valence 1 in ∂N(m) \ ˚star(ea) if and only

if they are contained in a common square. Similarly, a vertex of valence 1 in

∂N(m) \ ˚star(eb) is glued to a vertex of valence 1 in ∂N(v) \ ˚star(eb) if and only if
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they are contained in a common square.

Observe that the squares containing e induce a labelling φu of the vertices adjacent

to ea in ∂N(u) and a labelling φv of vertices adjacent to eb in ∂N(v). Since

∂N(m \ ( ˚star(ea) ∪ ˚star(eb)) is a union of segments that join the regular sphere

around u and v, ∂N(e) is homeomorphic to ∂N(u) (ea,φu)

⊕
(eb,φv) ∂N(v).

4.1.2 The regular sphere around a combinatorial path

Henceforth, till the end of Section 4.1, Z is either X or X̃.

Assume that P is not a vertex. Suppose first that P is not a cycle. Let e be an edge

in P . Note that P is then a concatenation of paths P1, e and P2, where P1 and P2

are the components of the complement of the open edge e̊. Similarly, if P is a cycle,

we denote the connected complement of e̊ by just P1. Let m be the midpoint of e.

Then note that

Remark 4.1.10. N(P ) = N(P1) ∪N(m)(∪N(P2)).

Lemma 4.1.11. The regular sphere around P is homeomorphic to a

1. connected sum of the regular spheres around P1 and P2 (with labelling induced

by the squares containing e) if P is not a cycle, and

2. self-connected sum of the regular sphere around P1 (with labelling induced by

the squares containing e) if P is a cycle.

Proof. The proof is analogous to the proof of Lemma 4.1.9. We prove the lemma

for the non-cyclic case. The cyclic case is similar.

The initial half-edge ea of e hits ∂N(P1) at a vertex (of valence d) whose adjacent

vertices have a labelling φ1 induced on them by the squares containing e. Similarly,

eb hits ∂N(P2) at a vertex (of valence d) with a labelling φ2 induced on its adjacent

vertices by the squares containing e. Since ∂N(m) \ ( ˚star(ea)∪ ˚star(eb)) is a disjoint

union of d segments, ∂N(P ) ∼= ∂N(P1) (ea,φ1)

⊕
(eb,φ2) ∂N(P2).
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4.1.3 Connected regular spheres

For the rest of the section, P will always be a non-cyclic path. We recall that

Z is either X or X̃ and P is either a compact interval, a combinatorial ray or a

combinatorial line.

Fact 4.1.12. A graph has no cut points if and only if it has no cut vertices and no

open edge separates the graph. In particular, every vertex of a connected graph

with no cut points has valence at least two.

Lemma 4.1.13. The regular sphere around a vertex or midpoint of an edge of Z

has no cut points if and only if Z is Brady-Meier.

We now state the main result of the section.

Proposition 4.1.14. If P is compact, then the regular sphere around P has no cut

points.

The proof requires the following lemma.

Lemma 4.1.15. Let Γ1 and Γ2 be connected graphs with no cut points. Suppose

that Γ is the connected sum Γ1 (v1,φ1)

⊕
(v2,φ2) Γ2. Then Γ has no cut points.

Proof. First observe that Γi \ ˚star(vi) is connected by assumption. Recall that

˚star(vi) refers to the open star of vi. Let v ∈ Γ. We will show that v is not a cut

point. Suppose that v ∈ Γ1.

Let x and y be two points in Γ.

• If x, y ∈ Γ2, then there exists a path in Γ2 \ ˚star(v2) between them and hence

in Γ \ {v}.

• Suppose x ∈ Γ1 and y ∈ Γ2. There exists a path in Γ1 \ {v} from x to a vertex

u in Γ1 adjacent to v1. Now u is glued to a vertex in Γ2 and hence there exists

a path from u to y disjoint from v.

• Suppose both x and y belong to Γ1. There exists a path in Γ \ {v} between x

and y. If this path does not meet v1, we are done. Otherwise, there exist two

vertices u1 and u2 adjacent to v1 such that the paths from x to u1 and u2 to
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y are disjoint from both v and v1. Now u1 and u2 are glued to vertices in Γ2

and hence there exists a path between them disjoint from v.

Proof of Proposition 4.1.14. The proof is by induction on the length of P . If P is a

vertex, then the result is obviously true. Suppose that P is of length at least one. Let

e be an edge in P and P1 and P2 be subpaths such that P is the concatenation of P1,

e and P2, with the length of Pi being strictly less than the length of P . By induction,

the regular sphere around Pi has no cut points. Lemma 4.1.11 and Lemma 4.1.15

then give the result for P .

Lemma 4.1.16. If P is not a line, then the regular sphere around P is connected.

Proof. Let p0 denote the initial point of P . Then P meets the regular sphere around

p0 at a unique point, also denoted by P .

By Lemma 4.1.13, ∂N(p0) \ ˚star(P ) is connected. We will show that given any v of

∂N(P ), there exists a path in ∂N(P ) from v to ∂N(p0) \ ˚star(P ).

There exists p ∈ P such that v ∈ ∂N(p). P is thus a concatenation of two paths

P1 and P2, where P1 = [p0, p]. Note that v ∈ ∂N(P1) and further, if we denote

the point at which P2 meets ∂N(P1) by P2, then v 6= P2. By Proposition 4.1.14,

∂N(P1) \ ˚star(P2) is connected. This implies that there exists a path from v to

∂N(p0) \ ˚star(P ). But ∂N(P1) \ ˚star(P2) embeds in ∂N(P ). Hence the result.

As an immediate corollary, we have

Corollary 4.1.17 (Rays don’t separate). Let γ be a ray in X̃. Then X̃ \ γ is

connected.

The following powerful result for X̃ will be used repeatedly in later sections.

Lemma 4.1.18 (Path-abundance lemma). Let P be a combinatorial geodesic in

X̃ and x ∈ X̃ \ P . Then given p ∈ P , there exists a path α from x to p such that

α ∩ P = {p}.

Proof. First note that N(P ) embeds in X̃ by Fact 4.1.4.
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Let γ be a path from x to p. Let γ′ be the maximal initial subpath of γ such that

γ̊′ ∩ P is empty. If γ′ ends at p, then declare γ′ = α.

Suppose not. Let p′ be the endpoint of γ′. Then P is a concatenation P1·[p′, p]·P2. By

Proposition 4.1.14, the regular sphere around [p′, p] has no cut points. In particular,

∂N([p′, p]) \ P1 is connected. We recall that we denote the point at which Pi meets

∂N([p′, p]) also as Pi.

Denoting γ′ ∩ ∂N([p, p′]) by γ′, we note that there exists a path β between γ′ and

P2 in ∂N([p, p′]) \ P2. Let h be a vertex adjacent to P2 such that β meets h.

Note that h ∈ ∂N(p) \ P2. The required path α is a concatenation of γ′, β and the

path in N(p) from h to p.

4.2 Separating and coarsely separating lines

In this section, we will define the notion of separating lines and coarsely separating

lines in X̃, examine the relation between separating combinatorial lines and their

regular spheres and show that combinatorial lines separate if and only if they coarsely

separate.

Definition 4.2.1 (Separation). A subspace Y of a topological space Z is said to

separate two points z1 and z2 in Z if z1 and z2 lie in different components of Z \ Y .

Y is said to separate Y ′ ⊂ Z if Y separates two points of Y ′.

Recall that a line L is an isometric embedding of R in X̃.

Definition 4.2.2 (Separating lines). A separating line in X̃ is a line that separates

X̃.

Given a subspace Y of a metric space Z, recall that NR(Y ) denotes the set of all

points in Z at distance at most R from Y .

Definition 4.2.3 (Coarsely separating lines, [Pap12]). We say that L coarsely

separates X̃ if there exists R > 0 such that

1. NR(L) separates X̃, and
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2. there exist at least two components Y1 and Y2 of X̃ \ NR(L) such that Yi

contains points at arbitrarily large distances from L.

Since a line L is an isometric embedding, note that whenever L is combinatorial,

the regular sphere around L embeds in X̃, by Fact 4.1.4.

Let h be a vertical hyperplane. Note that h is a combinatorial line in the first cubical

subdivision of X̃.

Definition 4.2.4. The regular sphere around a non-vertical tubular line L at

distance at most 1
2

from a vertical hyperplane h in X̃ is defined to be the regular

sphere around h in the first cubical subdivision of X̃.

Henceforth, till the end of this section, a line L will be assumed to be either

combinatorial or tubular.

Lemma 4.2.5. Let L be a combinatorial separating line in X̃ and P ⊂ L be a

combinatorial subpath. Then L separates ∂N(P ).

Proof. Suppose the lemma is not true. Then note that N(P ) \ L is connected.

Let x, y ∈ X̃ \ L. Fix p ∈ P . First assume that both x and y lie outside N(P ).

By Lemma 4.1.18, there exist paths α from x to p and β from y to p such that

α∩L = β∩L = {p}. Since ∂N(P )\L is connected, there exists a path in ∂N(P )\L

between α ∩ ∂N(P ) and β ∩ ∂N(P ). Thus x and y are not separated by L for any

x, y ∈ X̃, a contradiction.

Definition 4.2.6 (Half-spaces of a line). Let L be a line in X̃. A half-space of L is

the closure in X̃ of a component of X̃ \ L.

We warn the reader that there can be more than two half-spaces of a separating line

in general.

One important application of the Brady-Meier property of X̃ is the following.

Lemma 4.2.7. Let Y be a half-space of a line L. Then L ⊂ Y .

Proof. Fix y ∈ Y \ L. Then given any l ∈ L, there exists a path αl from y to l such

that αl ∩ L = {l}, by Lemma 4.1.18. Hence l ∈ Y .
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In fact, we can read the number of half-spaces of L off its regular sphere:

Lemma 4.2.8. There exists a natural map from the set of half-spaces of a line L to

the set of components of the regular sphere around L. Further, this map is bijective.

Proof. The required map is the one that sends a half-space Y of L to Y ∩ ∂N(L).

Observe that each component of ∂N(L) lies in a half-space of L. Thus the number

of half-spaces of L is at most the number of components of ∂N(L).

Let Y be a half-space of L, and h1, h2 ∈ Y ∩ ∂N(L). Then there exists a path

between h1 and h2 in the component Y \ L. There also exists a path between h1

and h2 through L, since hi ∈ ∂N(L). These two paths between h1 and h2 bound a

disk D, as X̃ is simply connected, and D ∩ ∂N(L) gives a path between h1 and h2

in ∂N(L).

Corollary 4.2.9. Given an edge e in L, for each component K of ∂N(L), there

exists a square s containing e such that s ∩ ∂N(L) ⊂ K.

Proof. Let Y be the half-space of L corresponding to K, by Lemma 4.2.8.

By Lemma 4.2.7, Y meets e. Let m be the midpoint of e. By Lemma 4.1.18, there

exists a path between any point in the interior of Y to m that does not meet L\{m}.

Hence Y contains a square s that contains e and is as required.

Fact 4.2.10. It is easy to see that a tubular line L is a separating line. Clearly, if L

is not vertical, then it separates the strip that contains it. Otherwise, any strip that

contains L induces a component (line) of the regular sphere around L.

We also observe that

Lemma 4.2.11. A separating line L of X̃ coarsely separates X̃.

The proof is immediate from Lemma 4.2.12.

Lemma 4.2.12. Let Y be a half-space of a separating line L. Then Y contains

points at arbitrarily large distances from L.

Proof. A hyperplane of a CAT(0) cube complex is, after subdivision, a CAT(0)

subcomplex [Sag95]. Thus every hyperplane of X̃ is a tree. But since each edge of
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X̃ is of thickness at least 2 (Lemma 3.2.12), every hyperplane is an unbounded tree.

Observe that if L meets a hyperplane h at exactly one point, then h has points at

arbitrarily large distances from L. It is easy to see that Y contains the interior of at

least one square s. Choose s such that s meets L.

Case 1. L is vertical or tubular. A horizontal hyperplane through S meets L at a

single point.

Case 2. L is transversal. The vertical hyperplane through S meets L at a single

point.

4.2.1 Coarsely separating periodic lines

Definition 4.2.13. An axis in X̃ of an element g ∈ G is a line L in X̃ such that

gL ⊂ L and g moves an element of L by its translation length. A line L in X̃ is said

to be periodic if it is an axis of some element of G.

Note that given an element g ∈ G, there exists an axis in X̃ of g. We refer the

reader to Theorem II.6.8 of [BH99] for details. We first observe that

Lemma 4.2.14. Given a combinatorial periodic line L, either L is vertical, or each

vertical subpath of L is compact.

Proof. Let g ∈ G be such that gL ⊂ L.

Suppose that a vertical component of L is not compact, and hence contains a ray γ.

Let e be an edge of L adjacent to γ. Then either g or g−1 sends e into γ. Since G

sends vertical edges to vertical edges, e is vertical. Continuing this way, we conclude

that L is vertical.

The main result of this subsection is the following

Lemma 4.2.15. A periodic coarsely separating combinatorial line L of X̃ separates

X̃.
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Recall that h+1 is the first cubical neighbourhood of h. The main ingredient in the

proof is the following:

Lemma 4.2.16. Let Y be a half-space of a periodic combinatorial line L such that

for any vertical hyperplane h in Y , L is not contained in h+1. Then for each k ∈ N,

Y \ L+k is connected.

Proof of Lemma 4.2.15. First assume that L is not contained in h+1 for any vertical

hyperplane h. Suppose that L does not separate. Let Y = X̃ be the unique half-

space of L. By Lemma 4.2.16, Y \ L+k is connected for all k, implying that L does

not coarsely separate.

Now suppose that there exists a vertical hyperplane h such that L ⊂ h+1. By

Fact 4.0.2, L is tubular. By Fact 4.2.10, every tubular line is a separating line and

there is nothing to prove.

The proof of Lemma 4.2.16 requires some work. For the rest of the subsection, we fix

a periodic combinatorial line L and a half-space Y of L such that L is not contained

in h+1 for any vertical hyperplane in Y .

Definition 4.2.17. Let Z be a convex subcomplex of X̃. A hyperplane h is said to

be tangent to Z if Z is disjoint from h but meets h+1.

Remark 4.2.18. By Lemma 13.15 of [HW08], L+k is convex for any k.

Fact 4.2.19. As L+K is convex, any element of L+(k+1) is contained either in L+k or

in h+1 for some hyperplane h tangent to L+k.

Lemma 4.2.20. Given a vertical hyperplane h in Y and k ∈ N, h∩L+k is compact.

Proof. Let T be the underlying tree of the tree of spaces structure of X̃. By

Lemma 4.2.14, the image of L in T is either a point or a line.

Suppose that there exists a vertical hyperplane h such that h ∩ L+k is not compact.

As L+k and h are both convex, this means that a ray of h is in L+k and so a ray of

h is at finite Hausdorff distance from a ray of L. Since the image of h is a point in

T , a ray of h can be at bounded distance from a ray of L only if the image of L in

T is a point. Thus L is vertical. Let α be the path in T between the image of h and
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the image of L. Let h′ be the unique vertical hyperplane tangent to L such that its

image in T lies in α.

Then h′+1 ∩ L is not compact: This is because the geodesic from any point of h to

any point of L has to meet h′, since α meets the image in T of h′. Thus, if h′+1 ∩ L

is compact, then the Hausdorff distance between a ray of L and a ray of h cannot

be finite.

If a ray of L lies in h′+1, then L ⊂ h′+1: Let h be an element of the stabiliser of h′.

Then h preserves a ray of L. So if v is a vertex of L at distance 1
2

from h′ and g an

element of the stabiliser of L, there exist m and n such that gmv = hnv. Since G

acts freely on X̃, we conclude that gm = hn. Let v′ ∈ h′ be such that the distance

between v and v′ is 1
2
. Then for any integer k, (hn)kv′ ∈ h′ is at distance 1

2
from

(hn)kv, as G acts by isometries. But hn = gm and therefore (hn)kv ∈ L. Hence, h′

and L have Hausdorff distance 1
2
. But this is not possible, and hence h ∩ L+k is

compact.

We will denote by ∂L+k the set of all cells in L+k disjoint from L+(k−1).

Lemma 4.2.21. Let v be a vertex in ∂L+k. Then exactly one of the following holds.

1. One vertical and one horizontal edge incident to v lie in ∂L+k.

2. Two vertical edges (and no horizontal edge) incident to v lie in ∂L+k.

3. Finitely many horizontal edges (and no vertical edge) incident to v lie in ∂L+k.

Proof. Since v /∈ L+(k−1), observe that at most one edge incident to v meets L+(k−1).

If no such edge exists, then a unique square containing v lies in L+k and (1) holds

(Figure 4.5).

Otherwise let e be the unique edge incident to v that meets L+(k−1). Let s be a

square in L+k that contains v. Then s contains e as L+(k−1) is convex.

Suppose that e is horizontal. Then exactly two squares in L+k contain e (Figure 4.5)

and (2) holds.
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v

L+(k−1)

No edge at v meets L+(k−1)

v
e L+(k−1)

e is horizontal

v

e

L+(k−1)

e is vertical

Figure 4.5: The trichotomy when v ∈ L+k \ L+(k−1)

e1

e2 v

σ2

σ1

Figure 4.6: The edge ei passes through the vertical hyperplane hi

If e is vertical, then m squares in L+k contain e, where m is the thickness of e

(Figure 4.5). Thus (3) holds.

Before proving Lemma 4.2.16, we will have to prove

Lemma 4.2.22. Let h1 and h2 be hyperplanes in Y tangent to L+k. Suppose that

h+1
1 ∩L+k and h+1

2 ∩L+k intersect. Then h+1
1 ∩ ∂L+(k+1) and h+1

2 ∩ ∂L+(k+1) lie in a

component of ∂L+(k+1).

We will denote h+1
i ∩ L+k by σi. Note that σi is compact (Lemma 4.2.20) whenever

it is vertical (Figure 4.6).

Lemma 4.2.23. Suppose that σ1 and σ2 are horizontal. Then σ1 ∩σ2 is a singleton.

Proof. Let v be a vertex in σ1 ∩ σ2. Then either (1) or (2) or (3) of Lemma 4.2.21

holds at {v}. If (1) or (2) holds, then we are done. If (3) holds, observe that any

horizontal edge f in σ1 is in the first cubical neighbourhood of exactly two horizontal

hyperplanes, h1 and h, where h meets L+k. Thus h 6= h2. Hence the result.

Thus, σ1 ∩ σ2 is always compact.



4.2 Separating and coarsely separating lines 75

Lemma 4.2.24. Let v be a terminal vertex in σ1 ∩ σ2. Then either σ1 ∩ σ2 = {v}

or v is also a terminal vertex of σ1 or σ2.

Proof. If σ1 is vertical and σ2 horizontal, then clearly, σ1 ∩ σ2 = {v}.

If σ1 and σ2 are horizontal, then by Lemma 4.2.23, σ1 ∩ σ2 = {v}.

Now suppose that σ1 and σ2 are vertical. Suppose that their intersection contains an

edge. Then either (1) or (2) of Lemma 4.2.21 holds. If (1) holds, then v is terminal

in both σ1 and σ2. If (2) holds (see Figure 4.6), then either no edge or one edge or

both edges incident to v lie in σ1. If it is the first two, then v is terminal in σ1. If

it is the last case, then note that both the edges cannot lie in σ2 as well since v is

terminal in σ1 ∩ σ2. This implies that v is terminal in σ2.

Proof of Lemma 4.2.22. Let v be a terminal vertex of σ1 ∩ σ2. Let ei be the edge

incident to v such that the hyperplane hi passes through v.

We have three cases given by Lemma 4.2.21.

Case 1. Only one vertical edge f incident to v lies in L+k \ L+(k−1). Since X̃ is

Brady-Meier, there exists a path β in link(v)\{f} between e1 and e2. The projection

of β to ∂{v}+1 hits the other endpoints of e1 and e2, which lie in ∂L+(k+1). Further,

β and thus its projection are disjoint from L+k. Hence the result.

Case 2. Two vertical edges f1 and f2 incident to v lie in L+k \ L+(k−1). Without

loss of generality, we assume that either σ1 is horizontal, or v is terminal in σ1, by

Lemma 4.2.24. Thus one of the edges, say f2 does not lie in σ1. Let β be a path in

link(v) \ {f1} between e1 and e2. Since f2 does not lie in σ1, β and its projection

to ∂{v}+1 is disjoint from σ1. If f2 does not lie in σ2 or β is disjoint from f2, then

we are done as the projection of β gives the required path in ∂L+(k+1). If not, then

we repeat the procedure at v′, the other endpoint of f2 and so on, until the path

no longer meets σ2. Since σ2 is compact, the procedure stops in a finite number of

steps. Hence the result.

Case 3. Only horizontal edges incident to v lie in L+k \L+(k−1). Let e be the vertical

edge incident to v and contained in L+k. Let β be a path between e1 and e2 in
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link(v) \ {e}. Then β is disjoint from L+k and so is its projection to ∂{v}+1.

We are now ready to prove Lemma 4.2.16.

Proof of Lemma 4.2.16. The proof is by induction. Note that Y \ L+k is connected

whenever Y ∩ ∂L+k is connected.

Since Y is a half-space of L, Y ∩ ∂N(L) is connected, by Lemma 4.2.8. Thus

Y ∩ ∂L+1 is connected.

Assume that Y ∩∂L+k is connected, for some k. We will now show that Y ∩∂L+(k+1)

is connected.

Indeed, L+(k+1) is contained in the union of L+k and the first cubical neighbourhoods

of hyperplanes tangent to L+k, by Fact 4.2.19. Thus given two vertices u and u′

in Y ∩ ∂L+(k+1), there exist hyperplanes h and h′ tangent to L+k such that u ∈ h+1

and u′ ∈ h′+1. Let σ = h+1 ∩L+k and σ′ = h′+1 ∩L+k. By the induction assumption,

there exists a path between σ and σ′ in ∂L+k. This implies that there exists a finite

sequence of tangent hyperplanes h = h1, · · · , hn = h′ such that if σi = h+1
i ∩L+k, then

σi ∩ σi+1 is nonempty. Lemma 4.2.22 then implies that u and u′ lie in a component

of ∂Lk+1. Hence the result.

4.3 A crossing criterion for lines

Definition 4.3.1 (Crossing of lines). Let L and L′ be two separating lines of X̃.

We say that L crosses L′ if for every half-space Y ′ of L′, L * Y ′. L and L′ don’t

cross if neither L crosses L′ nor L′ crosses L.

Note that two disjoint lines don’t cross. Thus a vertical line and a tubular line that

is not vertical never cross. We will see later that in fact no vertical line crosses a

tubular line.



4.3 A crossing criterion for lines 77

Two intersecting lines may or may not cross. The main goal of this section is to

obtain a criterion for the crossing of two lines. The criterion will show that while it

is necessary for two crossing lines to intersect, it is not sufficient.

Proposition 4.3.2 (Crossing criterion). Let L and L′ be two separating lines in X̃.

L crosses L′ if and only if

1. L ∩ L′ = P is non-empty and compact and

2. L′ ∩ ∂N(P ) separates L ∩ ∂N(P ).

Throughout this section, L and L′ are two separating lines and P denotes their

intersection.

Lemma 4.3.3. If P is either empty or non-compact, then L and L′ don’t cross.

Proof. If P is empty or equal to L, then the result is obvious. So suppose that P

is a ray. Then P is contained in all half-spaces of both L and L′, by Lemma 4.2.7.

The complementary sub-ray of P in L is contained in a single half-space of L′ (as it

is connected and disjoint from L′ \ P ) and vice-versa. Hence the result.

Lemma 4.3.4 (Crossing is symmetric). L is contained in a half-space of L′ if and

only if L′ is contained in a half-space of L.

Proof. If P is empty or non-compact, then by Lemma 4.3.3, the result is always

true. This leaves us with the case when P is compact.

Assume that L is contained in a half-space Y ′ of L′ (Figure 4.7) while L′ ⊂ Y1 ∪ Y2,

where Y1 and Y2 are half-spaces of L. Assume that Y1 6= Y2. We will then show that

Y ′ = X̃, a contradiction to the fact that L′ separates X̃.

Let Y be a half-space of L that is not equal to Y1 or Y2. Then Y ⊂ Y ′. Indeed,

Lemma 4.1.18 gives a path from any point in Y \ L to any point in L \ L′ that is

disjoint from L′ as the path is contained in the interior of Y . Since L ⊂ Y ′, we have

that Y ⊂ Y ′. We will now deal with Y1 and Y2.

Let p1 and p2 be the endpoints of P = L ∩ L′. Denote by γi the closure of each

component of L \ P so that the initial point of γi is pi.
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L′

L

P

p1

p2

γ2

γ1

Y ′

Y1

Y2

Figure 4.7: L and L′ meet at P

Let x ∈ Y1 \ L. Suppose x /∈ Y ′. Then every path from x to L hits L′. Let α1 and

α2 be paths given by the path-abundance lemma (Lemma 4.1.18) from x to p1 and

p2 respectively such that αi ∩ L′ = {pi}. This implies that αi ∩ L = {pi}.

Observe that every path in ∂N(pi) \ P between αi and γi hits L′. Indeed, if not,

then there exists a path from x to L disjoint from L′.

Now either L′ ∩ ∂N(p1) or L′ ∩ ∂N(p2) is in Y2 and hence x ∈ Y2. This means that

Y1 = Y2, which is not possible. Hence, x ∈ Y ′.

For the converse, argue as above after reversing the roles of L and L′.

Lemma 4.3.5. L and L′ don’t cross if and only if for each half-space Y of L, there

exists a half-space Y ′ of L′ such that either Y ⊂ Y ′ or Y ′ ⊂ Y and similarly for

each half-space Y ′ of L′, there exists a half-space Y of L such that either Y ⊂ Y ′ or

Y ′ ⊂ Y .

Proof. We start with the easy direction. Suppose there exist half-spaces Y and Y ′

such that Y ⊂ Y ′, say. Then L ⊂ Y ′ and thus by Lemma 4.3.4, L and L′ don’t

cross.

Conversely, suppose L and L′ don’t cross. Let Y0 and Y ′0 be such that L ⊂ Y ′0 and

L′ ⊂ Y0.

Let Y 6= Y0 be a half-space of L. Then Y̊ is disjoint from L′ and hence contained in
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a half-space of L′. Further, since ∂Y = L ⊂ Y ′0 , Y ⊂ Y ′0 .

Similarly, if Y ′ 6= Y ′0 is a half-space of L′, then Y ′ ⊂ Y0. Hence the result.

Before we go to the proof of Proposition 4.3.2, we will collect a couple of results

about graphs without cut points as ∂N(P ) has no cut points whenever P is compact

(Proposition 4.1.14).

4.3.1 Graphs with no cut points

We fix a connected graph Γ in this subsection such that Γ has no cut points. We

further assume that Γ contains at least one edge. A cut pair is a pair of points that

separates Γ.

We now draw the attention of the reader to certain similarities between cut pairs in

Γ and separating lines in X̃. If {a, b} is a cut pair, then a half-space of {a, b} is the

closure of a component of Γ \ {a, b}. The first result is analogous to Lemma 4.2.7.

Lemma 4.3.6. Let Y be a half-space of a cut pair {a, b}. Then {a, b} ⊂ Y .

Proof. Since Γ is connected, at least one of the two, say a, is contained in Y . If b is

not contained in Y , then a is a cut point as a separates Y from b.

The second result is analogous to Lemma 4.3.4.

Lemma 4.3.7. Let {a, b} and {a′, b′} be cut pairs in Γ. Then {a′, b′} separates

{a, b} if and only if {a, b} separates {a′, b′}.

Proof. If {a, b} and {a′, b′} are not disjoint, then neither pair separates the other pair.

So assume that they are disjoint. Suppose that {a, b} is contained in a half-space

Y ′ of {a′, b′} while a′ lies in a half-space Y1 of {a, b} and b′ lies in a half-space Y2. If

Y1 6= Y2, we will show that {a′, b′} is not a cut pair.

Let x ∈ Γ \ {a′, b′}. If x /∈ Y1, Y2, then there exists a path from x to a disjoint from

a′ and b′ and hence x ∈ Y ′. Let x ∈ Y1. Since Γ has no cut points, there exists a
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path from x to a in Γ \ {a′}. If this path hits b′, then it first hits b as x ∈ Y1 and

b′ ∈ Y2. Hence x ∈ Y ′.

Similarly, if x ∈ Y2, then there exists a path from x to a or b disjoint from a′ and b′

and hence x ∈ Y ′. This implies that Y ′ = Γ.

The converse follows by interchanging {a, b} and {a′, b′}.

Corollary 4.3.8. Let {a, b} and {a′, b′} be cut pairs in Γ. If there exist at least

three half-spaces of {a, b}, then {a′, b′} is not separated by {a, b}.

Proof. Let Y be a half-space of {a, b} that contains neither a′ nor b′. Then ({a, b} ⊂

)Y is contained in a half-space of {a′, b′}. The result then follows from Lemma 4.3.7.

4.3.2 The crossing criterion

We are now ready for the proof of Proposition 4.3.2.

Proof of Proposition 4.3.2. By Lemma 4.2.5, both L and L′ separate ∂N(P ).

We will start with the ‘if’ direction. Suppose that P is compact and L′ ∩ ∂N(P )

separates L ∩ ∂N(P ). Then by Corollary 4.3.8, L′ separates ∂N(P ) into exactly

two components. This implies that L′ has exactly two half-spaces as each half-space

of L′ meets P , by Lemma 4.2.7. This in turn implies that different components of

∂N(P ) \ L′ are contained in different half-spaces of L′. Hence L crosses L′.

For the converse, note that if P is not compact then L and L′ don’t cross, by

Lemma 4.3.3. Similarly, if L′ ∩ ∂N(P ) does not separate L ∩ ∂N(P ), then clearly,

L lies in a half-space of L′.

4.3.3 Coarse crossings of lines

Definition 4.3.9 (Coarse crossing). Let Z be a CW complex and L, L′ two subspaces

which coarsely separate Z. L and L′ coarsely cross if for every large enough number
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Figure 4.8: L1 and L2 coarsely cross

R > 0, there exist connected subspaces A1, A2, A3, A4 (Figure 4.8) such that

1. for any R′ > 0 and i ∈ {1, · · · , 4}, Ai * NR′(L) and Ai * NR′(L
′),

2. NR(L) separates A1 from A2 but not A1 from A4,

3. NR(L) separates A3 from A4 but not A3 from A2, while

4. NR(L′) separates A1 from A4 but not A1 from A2 and finally,

5. NR(L′) separates A2 from A3 but not A3 from A1.

Lemma 4.3.10. Two separating lines L and L′ of X̃ cross if and only if they

coarsely cross.

Proof. Suppose L and L′ cross. Let Y1 and Y2 be the two half-spaces of L which

contain L′ and Y ′1 and Y ′2 the half-spaces of L′ which contain L. Then L separates

Y1∩Y ′i from Y2∩Y ′i while L′ separates Yi∩Y ′1 from Yi∩Y ′2 . Each of the intersections

contains points at arbitrarily large distances from both L1 and L2 since there exist

hyperplanes which intersect L1 or L2 at a single point in these subspaces.

Conversely, suppose L and L′ cross coarsely. Let R be large enough so that there

exist A, B, C and D as in the definition. Since A and D are separated by L′ and not

L, A and D lie in a half-space of L, say Y1. Similarly, B and C lie in a half-space of

L, say Y2. Note that L′ ∩ Yi is non-compact for i = 1, 2. If not, then suppose L′ ∩ Y1

is compact. This implies that L′ ∩ Y1 is contained in L as L and L′ are geodesics.

Then L′ does not separate A from D as there exists a path between a point on A
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and a point on D disjoint from L.

Thus L′ hits Y1 and Y2 non-compactly. Further, Y1 6= Y2 as L separates A from B

and A ⊂ Y1, B ⊂ Y2. Thus L and L′ cross.

4.4 Cyclic splittings and separating lines

Definition 4.4.1. Let H be a subgroup of G. Recall that G splits over H if G

decomposes as a nontrivial free product with amalgamation over H or as an HNN

extension over H.

Recall that a group G acts minimally on a tree T if there exists no proper G-invariant

subtree of T .

Proposition 4.4.2. G splits over H if and only if G acts without edge inversions

on an unbounded tree T such that H is the stabiliser of some edge of T and G acts

minimally on T .

A decomposition of G either as a free product with amalgamation or as an HNN

extension is known as an elementary splitting of G.

Proof. One direction is clear. The Bass-Serre tree of the amalgamated product or

HNN extension over H satisfies the hypothesis.

For the converse, a quotient graph of groups of the G-tree T has an edge e whose

edge group is H. Collapse the (two) component(s) of the complement of the open

edge e in the underlying graph to the endpoint(s) of e. The resulting graph of groups

is either a free product with amalgamation or an HNN over H. If it is the latter, we

are done. If it is the former, say A ∗H B, then we claim that H � A and H � B.

Suppose not, say A = H. Note that G = B in this case. Then in the G-tree

T , let ẽ be a lift of e which is stabilised by H. If ẽ = (v, w), then one of them,

say v, is stabilised by only H. Let T ′v be the component of T \ ˚̃e containing v.

Note that H contains the stabiliser of each vertex and edge of T ′v, as otherwise

an element of B = G not in H fixes v. But this implies that G leaves the proper
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subtree T ′w invariant, where T ′w is the component of T \ ˚̃e containing w. This is a

contradiction.

4.4.1 Trees dual to separating lines

Let L be a periodic separating line of X̃ such that L does not cross any of its

translates. The goal of this subsection is to show that there exists a G-tree in which

the stabiliser of a certain vertex is equal to the stabiliser of L. This G-tree will be

useful in determining splittings of G by subgroup(s) of the stabiliser of L.

Lemma 4.4.3. Let L be a periodic line that separates X̃ and does not cross any of

its translates. Then there exists an unbounded G-tree TL and a vertex in TL whose

stabiliser is the stabiliser of L. Further, G acts minimally on TL.

The construction of such a dual tree when L has exactly 2 half-spaces and is disjoint

from all its translates is standard. In that case, a bipartite graph is constructed as

follows: each component of X̃ \ tg∈GgL defines a black vertex while each translate

of L defines a white vertex. The adjacency is given by containment: a white vertex

is adjacent to a black vertex if it is contained in the closure of the black vertex. One

can then check that the bipartite graph is in fact a tree.

In our case, L may not be disjoint from its translates. We only ask that L does

not cross any of its translates. In addition, L may have more than two half-spaces.

This necessitates a more careful treatment, but the underlying idea is still the same.

Our construction in fact coincides with the above standard construction when L is

disjoint from its translates and has only two half-spaces.

We start with an observation that will be used in the proof.

Lemma 4.4.4. Let L1 and L2 be separating lines that don’t cross. Given half-spaces

Y1 of L1 and Y2 of L2 such that (Y1 \L1)∩ (Y2 \L2) is non-empty, then either L1 is

contained in Y2 or L2 is contained in Y1.

Proof. Since L1 and L2 don’t cross, there exist half-spaces Y ′1 of L1 and Y ′2 of L2

such that L1 ⊂ Y ′2 and L2 ⊂ Y ′1 , see Figure 4.9. We claim that either Y ′1 = Y1 or
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Y ′2

L1

L2

Y ′1

Figure 4.9: L1 ⊂ Y ′2 , L2 ⊂ Y ′1

Y ′2 = Y2. Suppose not.

Since L1 ⊂ Y ′2 , L1 is disjoint from X̃ \ Y ′2 ⊃ Y2 \ L2. But if L1 is disjoint from the

connected subspace Y2 \ L2, then Y2 \ L2 is contained in a half-space Y ′′1 of L1. But

the fact that the boundary L2 of Y2 \ L2 is contained in Y ′1 implies that Y ′′1 = Y ′1

and hence Y2 \ L2 is disjoint from Y1 \ L1, a contradiction.

The required tree TL will be the CAT(0) cube complex dual to a space with walls

[HP98]. Recall that

Definition 4.4.5. A wall on a nonempty set Z is a partition of Z into two subsets.

Z is a space with walls if Z is endowed with a collection of walls such that any two

points of Z are separated by finitely many walls.

Remark 4.4.6. The two subsets that define a wall are known as half-spaces in the

literature. Note that we have already used this terminology for separating lines.

Separating lines in X̃ do define walls, as we will show below. To avoid confusion, we

will refer to a half-space associated to a wall as a half-space of the space with walls.

We quickly recall some terminology of spaces with walls before going to the proof of

Lemma 4.4.3. We refer the reader to [Nic04] for futher details.

Definition 4.4.7. Let Z be a space with walls. An ultrafilter on Z is a nonempty

collection ω of half-spaces of Z that satisfy the following conditions:

1. A ∈ ω and A ⊂ B imply that B ∈ ω and
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2. exactly one of A and Ac is contained in ω.

Observe that

Lemma 4.4.8. If ω is an ultrafilter of Z and A,B ∈ ω, then A and B are not

disjoint.

For a z ∈ Z, the principal ultrafilter σz is defined to be the set of half-spaces of Z

that contain z. An ultrafilter ω of Z is said to be almost principal if for some (and

therefore for any) z ∈ Z, the symmetric difference between ω and σz is finite.

Proof of Lemma 4.4.3. Let ZL = X̃ \∪g∈GgL. Then each half-space Y of gL defines

a wall {Y ∩ ZL, Y c ∩ ZL} of ZL. By abuse of notation, we will denote the wall

defined by Y as {Y, Y c}. It is easy to see that ZL is a space with walls. Note that

if L has n half-spaces, then there are n distinct walls defined by these half-spaces

when n > 2.

By theorem 4.1 of [Nic04], there exists a connected graph TL whose vertices are the

principal and almost principal ultrafilters of ZL. Two vertices are adjacent if the

cardinality of their symmetric difference is two. TL is then the 1-skeleton of a unique

CAT(0) cube complex (see section 3 of [Sag95], for instance).

Claim. TL is a tree.

Proof of claim. If TL is not a tree, then it is the 1-skeleton of a cube complex of

dimension at least 2. This implies that there exists a cycle (w1, w2, w3, w4) of length

4 in TL.

Since ω1 and ω2 are adjacent, there exists a half-space Y of ZL such that Y ∈ ω1

and Y c ∈ ω2. Similarly, there exists a half-space Y ′ of ZL such that Y ′ ∈ ω1 and

Y ′c ∈ ω4. Note that Y ′ ∈ ω2 and Y ∈ ω4 as otherwise they would not be adjacent

to ω1. Further, Y c, Y ′c ∈ ω3 as both ω2 and ω4 are adjacent to ω3. We will show

below that this is not possible.

Now either Y or Y c is a half-space of a translate of L. Assume without loss of

generality that Y and Y ′ are half-spaces of the lines gL and g′L.
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By Lemma 4.4.8, Y and Y ′ are not disjoint. This implies that either gL ⊂ Y ′ or

g′L ⊂ Y , by Lemma 4.4.4. Assume the former. Either Y ⊂ Y ′ or not. If Y ⊂ Y ′,

then no ultrafilter can contain both Y and Y ′c and hence ω4 cannot exist.

On the other hand, if Y * Y ′, then g′L meets Y in its interior and hence Y ′c ⊂ Y .

This then implies that no ultrafilter can contain both Y c and Y ′c and hence ω3

cannot exist. This proves the claim.

There exists a natural action of G on TL. An element g ∈ G sends an ultrafilter ω

to an ultrafilter gω where gω is the set of half-spaces gY of ZL, where Y ∈ ω.

We claim that there exists an ultrafilter whose stabiliser is the stabiliser of L. Indeed,

if Y1, · · · , Yn is the set of half-spaces of L, then let ωL be the set of half-spaces of ZL

consisting of Y c
1 , · · · , Y c

n and all half-spaces (of proper translates of L) which contain

L. Note that ωL is an ultrafilter. Indeed, if Y ∈ ωL and Y ⊂ Y ′, then Y ′ ∈ ωL as

clearly, L ⊂ Y ′. Further, if Y is not a half-space of L, then exactly one of Y and Y c

contains L.

We also claim that ωL is almost principal. Indeed, choose y1 ∈ Y1 ∩ ZL. Then

σy1 = {Y1, Y
c

2 , · · · , Y c
n} ∪ {Y |y1 ∈ Y }. There exist at most finitely many lines

g1L · · · gkL that separate y1 from L in X̃. Except for the half-spaces of these lines,

a half-space contains y1 if and only if it contains L. Hence σy14ωL is finite.

Note that any element in the stabiliser of L permutes {Y c
1 , · · · , Y c

n} and sends a

half-space containing L to a half-space containing L. Further, if g /∈ stab(L), then

gYi is a half-space of gL 6= L. At least one gYi contains L, implying that L is not

contained in gY c
i . This implies that gωL 6= ωL. Hence, stab(L) = stab(ωL).

Also, TL is unbounded. Indeed, if not, let ω be a vertex at maximal distance from the

vertex ωL. Then there exists a half-space Y of gL in ω such that Y does not contain

any translate of L in its interior. Since G acts geometrically on X̃, there exists

m > 0 such that the orbit of Nm(L) covers X̃. Hence Y ⊂ Nm(gL), a contradiction

to Lemma 4.2.12.

There is no proper G-invariant subtree of TL. Now TL is spanned as a tree by the
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principal ultrafilters of ZL, by Proposition 4.8 of [Nic04]. It thus suffices to prove

that no subtree spanned by a proper subset of the set of principal ultrafilters is

G-invariant.

As above, let Yi be a half-space of L. Choose yi ∈ Yi ∩ ZL such that there exists a

path α from yi to L with α̊ ⊂ ZL. Then any principal ultrafilter σy is a translate

of σyi , for some i. Indeed, take a path from y to a translate of L such that the

interior of the path lies in ZL. Then the path can be translated to end in L so that

σy is a translate of σyi . Thus, if a proper subtree is G-invariant, then it has to miss

at least one σyi , say σy1 . But this is not possible if even one translate gL of L is

contained in the interior of Y1 as that would mean that σgyi for each i is cut off from

the subtree. Now, if Y1 contains no translate of L, then Y1 is contained in a bounded

neighbourhood of L, since G acts geometrically on X̃. This is a contradiction to

Lemma 4.2.12.

Proposition 4.4.9. Let H be a cyclic subgroup of G and L an axis of H in X̃.

Suppose that

1. L separates X̃,

2. L does not cross any of its translates and

3. H is equal to the stabiliser of a proper subset of the set of half-spaces of L.

Then G splits over H.

Proof. Let L satisfy the hypothesis of the Proposition. Using Lemma 4.4.3, we

construct a dual tree TL that has vertices which are stabilised by the stabilisers of

translates of L. We will now do a G-equivariant gluing of edges to obtain a tree T

that satisfies the conditions of Proposition 4.4.2 for H. This will complete the proof.

Let Y1, · · · , Yn be the list of half-spaces of L. Let ωi be a vertex adjacent to ωL

such that ωi4ωL = {Yi, Y c
i }. T is a quotient simplicial graph of TL obtained by

first identifying for each h ∈ H and i ∈ {1, · · · , n}, vertices ωi and hωi, and then

extending equivariantly. In other words, for each g ∈ G, we identify gωi with ghωi.
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TL is connected and hence T is connected. T is a tree since any reduced cycle in T

has a reduced cycle as preimage in TL.

We will now show that T is unbounded. It is enough to show that each vertex of T

has valence at least two. Indeed, for a vertex ω such that ω is not a translate of ωL,

ω has valence at least 2 as no pair of vertices adjacent to ω in TL is identified in T .

If ω is a translate of ωL, then since H does not act transitively on the half-spaces of

L, all vertices adjacent to ω are not identified in T .

Assume without loss of generality that the proper subset of half-spaces of condition

(3) contains Y1. Consider the edge e = (ωL, ω1) of TL. Then the stabiliser of ē in T

is clearly equal to H.

There is no proper G-invariant subtree of T . Indeed, since there exists no proper

G-invariant subtree of TL, there exists no proper subtree of T that is G-invariant.

Let H be a cyclic subgroup of G over which G splits as in Definition 4.4.1. We call

H an algebraic splitting subgroup. If H is such that it satisfies the hypothesis of

Proposition 4.4.9, we say that H is a geometric splitting subgroup. We will now show

that every cyclic algebraic splitting subgroup of G is commensurable with a cyclic

geometric splitting subgroup.

Lemma 4.4.10. Let H be a cyclic subgroup over which G splits. Suppose that a

vertical line L is an axis of H. Then

1. L separates X̃,

2. L does not cross any of its translates.

Proof. The fact that L coarsely separates X̃ is a consequence of Lemma 1.8 of

[Pap05]. We give a proof here for the sake of completeness.

Either G splits as a free product with amalgamation A ∗H B or an HNN extension

A∗H . Then G is isomorphic to the fundamental group of a graph (edge) of spaces

Z where the vertex space(s) are presentation complex(es) for A (and B). The

unique edge space is a circle. Then the 1-skeleton of Z̃ is a Cayley graph of G. The

underlying tree T of Z̃ is the Bass-Serre tree of A ∗H (B). Denote by e the edge of
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T which is stabilised by H. Note that H coarsely separates Z̃1 as e separates T

(coarsely).

Let gH be a translate of H. Then H and gH don’t cross coarsely. If not, let R be

large enough such that there exist subspaces A, B, C and D in Z̃1 which satisfy the

conditions of Definition 4.3.9. Since each pair A,D and B,C lies in a component of

Z̃1 \ NR(H), the projection of each pair to T lies on one side of e. Similarly, the

projection of each pair A, B and C, D lies on one side of g · e. But also, A and B

lie on different sides of e. This is not possible.

Fix x0 ∈ L. Then the map from Z̃1 to X̃ which sends g to gx0 is a quasi-isometry, by

the Švarc-Milnor Lemma (Proposition I.8.19 of [BH99]). Note that H is then mapped

into L. Thus L coarsely separates X̃ (and hence separates X̃, by Lemma 4.2.15). To

see this, note that if g1x0 and g2x0 are two elements chosen in such a way that g1 and

g2 are in different components of a large neighbourhood of H, then a path α between

them in X̃ has a coarse pre-image in Γ and hence hits a bounded neighbourhood of H.

This implies that α itself lies in a bounded neighbourhood of L. Similarly, if L and

gL coarsely cross, then the pre-images of A, B, C, D have points at arbitrarily large

distances from H and gH and appropriate pairs lie in the same coarse components

of H and gH. Hence, L and gL don’t cross.

Proposition 4.4.11. Let H be a cyclic algebraic splitting subgroup of G with a

vertical axis in X̃. Then there exists a geometric splitting subgroup H ′ commensurable

with H.

Proof. Let L be an axis of H satisfying Lemma 4.4.10. Observe that H is contained

in the stabiliser of L which is a cyclic subgroup. Choose a half-space Y of L and

let H ′ be the largest subgroup of the stabiliser of L that preserves Y . Then by

Proposition 4.4.9, H ′ is as required.

4.5 Vertical cycles and cyclic splittings

In this section, we will examine splittings induced by vertical lines in X̃.
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Recall that a cycle (Definition 4.0.1) is an immersion of graphs φ : C → Γ, where

C is a subdivided circle. From now on, throughout the text, unless mentioned

otherwise Γ will be a vertex graph Xs of X and so C is a vertical cycle.

Remark 4.5.1. The map φ is π1-injective. Indeed, π1(C) injects into π1(Xs) [Sta83]

and π1(Xs) injects into the fundamental group of X in the graph of groups setup

[Ser80].

Note that the quotient of a periodic vertical line in X̃ by the action of a nontrivial

subgroup of its stabiliser is a cycle in X. The converse is true as well:

Fact 4.5.2. Let φ : C → Xs be a cycle and C̃ denote the universal cover of C. Then

C̃ embeds as a vertical line in X̃.

By abuse of notation, we will often call the lift φ̃ : C̃ → X̃ as the line C̃.

Lemma 4.5.3. ∂N(C) ∼= ∂N(C̃)/π1(C).

Proof. The projection onto C (C̃) of the regular neighbourhood of C (C̃) is a

deformation retraction. Hence the result.

Definition 4.5.4. A cyclic path is an immersed combinatorial path ρ : P → Xs

such that the initial and terminal vertices of P have the same image while the initial

and terminal edges of P have distinct images.

A cyclic path P induces a quotient cycle φP : CP → Xs, where CP is the quotient of

P obtained by gluing the initial and terminal vertices and defining φP ([x]) := ρ(x).

Definition 4.5.5 (Fundamental domain of a cycle). Let φ : C → Xs be a cycle.

A cyclic path ρC : PC → Xs with induced quotient cycle CPC
is said to be a

fundamental domain of C if the following diagram commutes.

CPC
C

Xs

∼=

φPC
φ

Remark 4.5.6. It is easy to see that for the action of π1(C) on C̃, a lift P̃C of PC is

a fundamental domain of C̃ in the usual sense.

Definition 4.5.7. Let PC be a fundamental domain of a cycle C. Let u and v be

the initial and terminal vertices of PC and a and b the initial and terminal edges.

Let bu be the vertex of ∂N(u) that meets b and av the vertex of ∂N(v) that meets
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a. The orthogonal sphere around PC is defined as

∂orthN(PC) := ∂N(PC) \ ({bu}+2 ∪ {av}+2)

where ∂N(PC) \ ({bu}+2 ∪ {av}+2) denotes the closure of ∂N(PC)\({bu}+2∪{av}+2).

Recall that {bu}+2 denotes the second cubical neighbourhood of {bu}.

Let C̃ be a lift of C and P̃C ⊂ C̃ of PC . Then note that

Fact 4.5.8. The natural map from PC ∼= P̃C ↪→ C̃ induces an embedding of graphs

∂orthN(PC) ↪→ ∂N(P̃C) \ C̃ ⊂ ∂N(C̃). Further, ∂orthN(PC) is connected if and only

if ∂N(P̃C) \ C̃ is connected as ∂orthN(PC) embeds in ∂N(P̃C) \ C̃ as a deformation

retract.

Lemma 4.5.9. The regular sphere around a cycle C is isomorphic to the quotient

of the orthogonal sphere around a fundamental domain PC of C with the natural

gluing induced by π1(C).

Proof. Recall that ∂N(C) ∼= ∂N(C̃)/π1(C) (Lemma 4.5.3). Fix an orientation on

PC . This induces an orientation on both C and C̃. Let c be a generator of π1(C)

that moves an element of C̃ in the positive direction. Then C̃ ∼= tn∈Z cnP̃C/ ∼,

where ∀n ∈ Z, cnũ ∼ cn−1ṽ. Hence

∂N(C̃) ∼=
⊔
n∈Z

∂N(cnP̃C) \ {cn+1ẽ}2 ∪ {cn−1f̃}2)/ ∼

with the following obvious gluing: A vertex (edge) of ∂N(cnũ) \ {cn−1f̃}2 is glued to

a vertex (edge) of ∂N(cn−1ṽ) \ {cnẽ}2 if and only if they have they have the same

image in X̃.

Since cnũ is glued to cn−1ṽ, cn+1ẽ is identified to cnẽv and cn−1f̃ is identified to cnf̃u.

Further, ∂N(cnP̃C) \ {cnẽv}2 ∪ {cnf̃u}2) ∼= ∂orthN(PC). Hence the result.

Let e in X be an edge in the image of ρC : PC → Xs. Let e′ be an edge in PC such

that ρC(e′) = e. By Corollary 4.2.9, we have the following result:
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Lemma 4.5.10. Let K be a component of ∂orthN(PC). Then there exists a square

s in N(PC) that meets e′ and s ∩ ∂orthN(PC) ⊂ K.

Definition 4.5.11. A cycle C is a UC-separating cycle if C̃ is a separating line.

By Lemma 4.2.5, we have

Lemma 4.5.12. If C is a UC-separating cycle, then ∂orthN(PC) is not connected.

Definition 4.5.13. A cycle C is strongly UC-separating if ∂N(C) is not connected.

Lemma 4.5.14. C is strongly UC-separating if and only if the following two condi-

tions are satisfied:

1. C is a UC-separating cycle and

2. π1(C) does not act transitively on the set of half-spaces of C̃.

Proof. Recall that ∂N(C) ∼= ∂N(C̃)/π1(C) (Lemma 4.5.3). A component of ∂N(C)

lifts to a component of ∂N(C̃). So if ∂N(C) is connected, then either ∂N(C̃) is

itself connected or every component of ∂N(C̃) projects onto ∂N(C). So π1(C) acts

transitively on the components of ∂N(C̃) and therefore on the components of X̃ \ C̃.

The converse is clear.

Definition 4.5.15. A cycle φ′ : C ′ → Xs is said to be an nth-power of the cycle

φ : C → Xs if there exists an n-fold covering map ψ : C ′ → C such that the following

diagram commutes.

C ′

Xs

C

ψ

φ′

φ

Lemma 4.5.16. Let N be the maximal thickness of an edge of X. Given a UC-

separating cycle C, there exists n ≤ N such that the regular sphere around an nth

power of C is not connected.

Proof. By Corollary 4.2.9, the number of half-spaces of C̃ is at most N . Thus there

exists a subgroup H of index at most N of π1(C) that does not act transitively on

the set of half-spaces of C̃. The required cycle C ′ is the quotient of C̃ by H.
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Definition 4.5.17. Let ρC : PC → Xs be a fundamental domain of a cycle C. A

subcycle of C is the quotient cycle of a cyclic path ρC |P : P → Xs with P ⊂ PC .

Observe that if C ′ is an nth-power of C, then C is a subcycle of C ′.

Definition 4.5.18. A UC-separating cycle C has a self-crossing if there exists

g ∈ G such that C̃ and g · C̃ cross.

Definition 4.5.19. We say that C is a splitting cycle if the following conditions

are satisfied:

1. C is a strongly UC-separating cycle,

2. π1(C) is equal to the stabiliser of a proper subset of the set of half-spaces of

C̃, and

3. C has no self-crossings.

Remark 4.5.20. By Proposition 4.4.9, G splits over π1(C) whenever C is a splitting

cycle.

We will now examine when C can have self-crossings. We start with the following.

Lemma 4.5.21. Let L1 and L2 be vertical lines of X̃ stabilised by the cyclic subgroups

H1 and H2 respectively. Let ni be the translation length of a generator of Hi. If

P = L1 ∩ L2 is compact, then the length of P is strictly less than LCM(n1, n2).

Proof. Suppose that P contains a segment of length LCM(n1, n2) = k. Let v be a

terminal point of P . Choose generators h1 ∈ H1 and h2 ∈ H2 such that hi(v) ∈ P .

Since the length of P is at least k, h
k/ni

i (v) ∈ P and hence h
k/n1

1 (v) = h
k/n2

2 (v). Since

G acts freely on X̃, h
k/n1

1 = h
k/n2

2 and hence L1 = L2, a contradiction.

Corollary 4.5.22. If L2 is a translate of a periodic vertical line L1, then either

L2 = L1 or P embeds in L1/H1, where H1 is the stabiliser of L1.

In particular, for a cycle C, if g · C̃ 6= C̃, then P = g · C̃ ∩ C̃ embeds in C.

Definition 4.5.23. A segment P ( C is said to be a component of self-intersection

of C if there exists a translate gC̃ 6= C̃ such that the projection to C of C̃ ∩ gC̃ is

equal to P . We say that there is a self-crossing of C at P if there exists a g ∈ G

such that C̃ ∩ gC̃ = P and C̃ and gC̃ cross.
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Fact 4.5.24. Let P ⊂ C be a segment so that the lift of P in C̃ is isomorphic

to P (and hence also denoted by P ). Then ∂N(P ) ∩ ∂N(C) ' ∂N(P ) \ C̃. In

other words, there is a self-crossing at P only if gC̃ meets different components of

∂N(P ) ∩ ∂N(C), by Proposition 4.3.2.

We thus have

Lemma 4.5.25. A splitting cycle is strongly UC-separating and has no self-crossing

at any component of self-intersection.

Also, splitting cycles capture all ‘vertical’ splittings upto commensurability:

Lemma 4.5.26. Let H be a cyclic subgroup over which G splits with a vertical

axis. Then there exists a splitting cycle C such that π1(C) is commensurable with a

conjugate of H.

Proof. By Proposition 4.4.11, H is commensurable with a geometric splitting sub-

group H ′. Let L be a vertical axis for H. The required splitting cycle is obtained

by taking the quotient of L by H ′.

As an immediate consequence, we have

Lemma 4.5.27. Given a UC-separating cycle C with no self-crossings, there exists

a splitting cycle C ′ such that π1(C) and π1(C ′) are commensurable.

4.6 Universally elliptic splittings

Recall that a subgroup H of G is said to be elliptic in a G-tree T if H fixes a point

in T .

Lemma 4.6.1 (Elliptic splittings). Let H1 and H2 be cyclic subgroups over which

G splits. Let Li be an axis of Hi in X̃. H1 is elliptic in the Bass-Serre tree of the

elementary splitting over H2 if and only if given any translate gL2 of L2, L1 and

gL2 don’t cross.

Proof. Note that if L1 and gL2 don’t cross for any g, then L1 is contained in a

half-space of gL2 for each g. Thus for x ∈ L1 \ L2, the stabiliser of σx in the dual
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tree TL2 (Lemma 4.4.3) of L2 contains H1 and hence H1 is elliptic in TL2 . The

Bass-Serre tree T2 of the elementary splitting over H2 is obtained from TL2 by a

sequence of G-equivariant gluings of edges of TL2 . Thus elliptic elements remain

elliptic, implying that H1 is elliptic in T2.

Conversely, if there exists g such that L1 and gL2 cross, then g−1H1g is hyperbolic

in the dual tree TL2 and hence in T .

Remark 4.6.2. Since G is one-ended, H1 is elliptic in the Bass-Serre tree of the

elementary splitting over H2 if and only if H2 is elliptic in the Bass-Serre tree of the

elementary splitting over H1, see Theorem 2.1 of [RS97].

Definition 4.6.3 ([GL16]). A cyclic splitting of G over the subgroup H is universally

elliptic if H is elliptic in the Bass-Serre tree of any cyclic splitting of G. We then

say that H is a universally elliptic subgroup. Analogously, a splitting cycle C is

universally elliptic if π1(C) is universally elliptic.

A splitting induced by a transversal line can never be universally elliptic:

Lemma 4.6.4. Let H be a cyclic subgroup over which G splits. Suppose that an

axis of H is transversal in X̃. Then H is not universally elliptic.

Proof. Let L be a transversal axis of H. By definition, there exists a vertical

hyperplane h such that L ∩ h is a singleton. Since h separates X̃ and is either equal

to or disjoint from its translates, it induces a splitting of G. Let T be the Bass-Serre

tree of the splitting. Let e be the edge stabilised by the stabiliser of h. Note that

the image of e under H then spans a line of T . Hence, H is not elliptic in T .

Splittings induced by vertical lines need more careful treatment. They may or may

not cross other vertical or transversal lines which induce splittings. We present

below one sufficient condition for a splitting induced by a vertical line (cycle) to be

universally elliptic.

Proposition 4.6.5. Let L be a line that separates X̃ into at least three half-spaces.

Then a subgroup of the stabiliser of L is universally elliptic.

Proof. Let L′ be a separating line such that L and L′ meet at a compact segment
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e′

ρP

e′

s′ ∩ ∂N(P )

e s

Figure 4.10: A pre-image of a square in the regular sphere

P . Since ∂N(P ) \ L has at least 3 components, by Corollary 4.3.8, L′ ∩ ∂N(P ) lies

in a component of ∂N(P ) \ L. Hence, L and L′ don’t cross. In particular, L does

not cross any of its translates. Let H be a maximal subgroup of the stabiliser of L

that preserves a half-space of L. Then by Proposition 4.4.9, G splits over H and H

is universally elliptic.

4.7 Repetitive cycles

Definition 4.7.1. Let ρ : P → X be a combinatorial path. Let e be an edge in X

and e′ an edge in ρ−1(e). Denote also by e′ the image of e′ in N(P ). Given a square

s in X containing e, denote by s′ (Figure 4.10) the union of all squares meeting e′

in N(P ) whose image in X is contained in s. Then the pre-image of s around e′ in

∂N(P ) is defined as the segment s′ ∩ ∂N(P ).

Recall that the orthogonal sphere of any fundamental domain PC of a UC-separating

cycle C contains at least two components (Lemma 4.5.12). By Lemma 4.5.10, for

each component K of ∂orthN(PC) and each edge e′ in PC with image e in X, there

exists a square s containing e such that the pre-image of s around e′ lies in K.

Definition 4.7.2 (Repetitive cycles). Let C be a UC-separating vertical cycle. C

is said to be a k-repetitive cycle if there exists an oriented vertical edge e in X and

an oriented fundamental domain PC of C such that

1. at least k distinct edges e1, · · · , ek of PC are mapped to e in an orientation

preserving way, and
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C e1 s′1s1

e2

s′2

s2

e3s′3 s3

(a) The red and blue curves
represent ∂N(C)

e
s′s

(b) ei 7→ e in X

X

e1

e2

e3

s1 s′1

s2 s′2

s3 s′3

(c) ∂orthN(PC)

e2

e3

e1

s2 s′2

s3 s′3

s′1 s1

(d) ∂orthN(P ′C)

Figure 4.11: C is 3-repetitive with the fundamental domain PC but not with the
fundamental domain P ′C

2. for each square s containing e, there exists a component K of ∂orthN(PC) such

that for each i ∈ {1, · · · , k}, the pre-image of s around ei in ∂N(PC) lies in K.

Intuitively, if C is k-repetitive, then the squares at e do not ‘mix’ in the components

of ∂orthN(PC). In other words, the notion of repetitiveness requires the cycle to

not only ‘repeat’ itself along some edges (Condition 1), but also to ensure that the

partitions induced by the cycle on the set of squares containing ei coincide.

Fact 4.7.3. A k-repetitive cycle is k′-repetitive for 1 ≤ k′ ≤ k.

Note that the definition depends on a choice of fundamental domain. As the example

in Figure 4.11 shows, a cycle C maybe repetitive with respect to one fundamental

domain but may not be repetitive with respect to another.

The following property of lifts of repetitive cycles will be crucial for the rest of the

text. In fact, this is the only property of repetitive cycles that we will use in the

proof of Proposition 4.8.1.

Lemma 4.7.4. Let C be a k-repetitive cycle. Then there exists an edge ẽ in X̃ and

distinct elements g1, · · · , gk ∈ G such that

1. for each i ∈ {1, · · · , k}, giC̃ contains ẽ,
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2. for each i ∈ {1, · · · , k}, the translation length of gi is strictly less than the

length of C, and

3. any two squares s̃ and s̃′ that contain ẽ are separated by one of the translates,

say g1C̃, if and only if they are separated by giC̃ for all i ∈ {1, · · · , k}.

Proof. Let C be k-repetitive with fundamental domain PC so that there exist edges

e1, · · · , ek in PC that satisfy the conditions of Definition 4.7.2. Let P̃C ⊂ C̃ denote

a lift of PC in X̃. Note that P̃C ∼= PC . Denote ẽ1 in P̃C by ẽ.

Since the edges ẽi in P̃C all have the same image e in X, there exist 1 = g1, · · · , gk
such that giẽi = ẽ. Then clearly, for each i ∈ {1, · · · , k}, the translation length of gi

is strictly less than the length of C and giC̃ contains ẽ.

Let s̃ and s̃′ be two squares that contain ẽ. Then the squares g−1
i (s̃) and g−1

i (s̃′) in

P̃C are lifts of squares si and s′i in PC . Let D and D′ be components of ∂orthN(PC)

such that the pre-image s1 of s around e1 meets D and the pre-image s′1 of s′ around

e1 meets D′. By definition, the corresponding pre-image si meets D and s′i meets

D′ for all i.

Now s̃ = s̃1 and s̃′ = s̃′1 lie in different half-spaces of g1C̃ = C̃ if and only if

D,D′ ⊂ ∂N(C̃) (since ∂orthN(PC) ↪→ ∂N(C̃), by Fact 4.5.8) meet different half-

spaces of C̃. Also, s̃ and s̃′ lie in different components of giC̃ if and only if s̃i = g−1
i s̃

and s̃′i = g−1
i s̃′ lie in different half-spaces of C̃ if and only if D and D′ induce different

half-spaces of C̃.

As a consequence, we have the following useful result when at least two of the

translates in the above lemma are not equal. Let k ≥ 2 and assume that C is a

k-repetitive cycle. Let g1, · · · , gk ∈ G be as in Lemma 4.7.4.

Lemma 4.7.5. Suppose that at least two translates giC̃ and gjC̃ are distinct. Then

C̃ separates X̃ into exactly two half-spaces.

We will need the following result on graphs with no cut points to prove the lemma.

Lemma 4.7.6. Let Γ be a graph with no cut points. Let {a, b} and {a′, b′} be cut

pairs. Suppose there exist points h1, h2, h3 ∈ Γ\{a, b, a′, b′} such that they are pairwise
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separated by {a, b} and also pairwise separated by {a′, b′}. Then {a, b} = {a′, b′}.

Compare with Lemma 3.8 of [Bow98].

Proof. Observe that both the pairs {a, b} and {a′, b′} separate Γ into at least 3

components. Thus by Corollary 4.3.8, {a, b} lies in a half-space Y ′ of {a′, b′}.

Lemma 4.3.7 then implies that {a′, b′} lies in a half-space Y of {a, b}.

Let Y ′, Y ′1 , · · · , Y ′n be the list of half-spaces of {a′, b′}. If {a, b} 6= {a′, b′}, then

Y ′1 ∪ · · · ∪ Y ′n lies in the half-space Y of {a, b} that contains {a′, b′}. By assumption,

at most one hi lies in Y ′. This implies that the other two lie in Y , a contradiction.

Proof of Lemma 4.7.5. After a re-ordering if necessary, we assume that C̃ = g1C̃

and g2C̃ are distinct. We will show below that ∂N(C̃) has exactly two components.

We then have by Lemma 4.2.8 that C̃ separates X̃ into exactly two half-spaces.

Since C̃ = g1C̃ 6= g2C̃, the segment S = C̃ ∩ g2C̃ is compact (Corollary 4.5.22).

Suppose that C̃ has at least three half-spaces. Then both ∂N(S)\C̃ and ∂N(S)\g2C̃

have at least three components, by Lemma 4.1.18. This means that there exist

three squares s̃, s̃′ and s̃′′ containing ẽ that meet different components of both

∂N(S) \ C̃ and ∂N(S) \ g2C̃, by Corollary 4.2.9. Then Lemma 4.7.6 implies that

∂N(S) ∩ C̃ = ∂N(S) ∩ g2C̃, which is a contradiction. Hence the result.

Definition 4.7.7. A vertical cycle φ : C → Xs is said to be primitive if it is not a

non-trivial power of any cycle. In other words, if there exists a cycle φ′ : C ′ → Xs

such that φ′ = φ ◦ ψ, then ψ is a homeomorphism of graphs.

Corollary 4.7.8. A lift in X̃ of a primitive k-repetitive cycle separates X̃ into

exactly two half-spaces whenever k ≥ 2.

Proof. When C is primitive, the element g2 that moves ẽ2 to ẽ1 in P̃C does not

preserve C̃. This is because the translation length of g2 is strictly less than the

translation length of the generator of π1(C). If g2 ∈ stab(C̃), then < g2 > and

π1(C) are contained in a common cyclic subgroup and hence π1(C) � stab(C̃),

contradicting the fact that C is primitive. Hence g2C̃ 6= C̃. Lemma 4.7.5 then gives

the result.
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4.7.1 Long cycles are repetitive

We will end the section with a crucial result that bounds the length of non-repetitive

UC-separating cycles. Let E denote the number of vertical edges of X and F denote

the number of squares of X.

Proposition 4.7.9 (Long cycles are repetitive). Let C be a vertical UC-separating

cycle with length at least 2E(k − 1)2F (F+1)/2 + 1. Then C is k-repetitive.

Proof. The key ingredient in the proof is the pigeonhole principle. We apply it twice,

once to show that the first condition of Definition 4.7.2 is satisfied and the second

time to show that the second condition is satisfied. We give the details below.

Let PC be a fundamental domain of C. Fix an orientation on C. Then each oriented

edge of C is mapped to an oriented vertical edge of X. Since there are E vertical

edges in X, there are 2E vertical oriented edges. Therefore, by the pigeonhole

principle, there exists an oriented edge e in X such that n oriented edges e1, . . . , en

of C are mapped to e in an orientation preserving way, with n ≥ (k−1)2F (F+1)/2 + 1.

Let λ ≤ F be the thickness of e. Note that the number of components µ of

∂orthN(PC) is at most λ, by Lemma 4.5.10. We would like to show that there exist

k edges out of e1, · · · , en for which the conditions of Definition 4.7.2 are satisfied.

Denote by A(λ, µ) the number of ways in which the squares s1, · · · , sλ containing

e can be partitioned into exactly µ nonempty subsets. If n > (k − 1)A(λ, µ), then

by the pigeonhole principle, k edges which satisfy the conditions of Definition 4.7.2

exist. Since n ≥ (k − 1)2F (F+1)/2 + 1 and λ ≤ F , it is enough to show that

A(λ, µ) ≤ 2λ(λ+1)/2.

Note that if µ = 1, then A(λ, µ) = 1 for any λ. Also, since no subset of the partition

of the squares can be empty, any subset can contain at most λ − µ + 1 squares.

Hence we have

A(λ, µ) =

λ−µ+1∑
r=1

(
λ

r

)
A(λ− r, µ− 1)
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We provide a proof of the fact that A(λ, µ) ≤ 2λ(λ+1)/2 in Lemma 4.7.10 below.

Given natural numbers µ ≤ λ, let A(λ, µ) :=
λ−µ+1∑
r=1

(
λ
r

)
A(λ − r, µ − 1), whenever

µ > 1 and A(λ, 1) = 1. Then

Lemma 4.7.10. A(λ, µ) ≤ 2λ(λ+1)/2.

Proof. We first establish a claim. Let m2 ≥ m1 ≥ l be natural numbers. Then

Claim. A(m2, l) ≥ A(m1, l).

Proof. If m2 = m1, there is nothing to show. So assume m2 > m1. Let z =

m2 −m1 ≥ 1.

By definition,

A(m2, l) =

m2−l+1∑
r=1

(
m2

r

)
A(m2 − r, l − 1)

Splitting the sum, and using the fact that m2 − z = m1, we have

A(m2, l) =
z∑
r=1

(
m2

r

)
A(m2 − r, l − 1) +

m1−l+1∑
r=1

(
m2

z + r

)
A(m1 − r, l − 1)

Since
(
m1+z
r+z

)
≥
(
m1

r

)
, we have

A(m2, l) ≥
z∑
r=1

(
m2

r

)
A(m2 − r, l − 1) +

m1−l+1∑
r=1

(
m1

r

)
A(m1 − r, l − 1)

≥
z∑
r=1

(
m2

r

)
A(m2 − r, l − 1) + A(m1, l)

Hence the claim.

Thus, A(λ− r, µ− 1) ≤ A(λ− 1, µ− 1) for 1 ≤ r ≤ λ− µ+ 1. Plugging this in the

definition of A(λ, µ), we obtain
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A(λ, µ) ≤
λ−µ+1∑
r=1

(
λ

r

)
A(λ− 1, µ− 1)

= A(λ− 1, µ− 1)(

λ−µ+1∑
r=1

(
λ

r

)
)

≤ A(λ− 1, µ− 1)(
λ∑
r=1

(
λ

r

)
)

= A(λ− 1, µ− 1)2λ

Expanding A(λ − 1, µ − 1) and continuing until µ = 1, we obtain A(λ, µ) ≤

2λ(λ+1)/2.

4.8 3-repetitive cycles and crossings

The main result of the section is the following.

Proposition 4.8.1. Let C be a primitive UC-separating vertical cycle that is 3-

repetitive. Then there exists a periodic separating line L′ in X̃ such that L′ and C̃

cross.

If C has self-crossings, then by definition, C̃ and a translate cross, and there is

nothing to show. The nontrivial part is to show that one such line exists even

when C has no self-crossings. Henceforth, till the end of this section, C refers to a

primitive 3-repetitive cycle C with no self-crossings.

The key idea behind the proof is the following. By Corollary 4.7.8, C̃ separates

X̃ into exactly two half-spaces. Further, by Lemma 4.7.4, since C is 3-repetitive,

there exists an edge in X̃ along which three translates of C̃ meet. We will show

that one of these translates separates the other two. The periodic line L′ will then

be constructed by ensuring that it meets both the separated translates outside the

central translate. This implies that L′ crosses the central translate of C̃. We give

the details below.
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4.8.1 Lifts of C

Fix a fundamental domain PC of C, an orientation on PC and edges e1, e2, e3 with

image e in Xs satisfying the conditions of Definition 4.7.2. Let d be the thickness of

e.

Denote also by e a lift of the edge e in a vertex graph X̃s of X̃ such that for 1 ≤ i ≤ 3,

there exist Li = giC̃ that satisfy the conclusions of Lemma 4.7.4. Recall that this

means that L1, L2 and L3 contain e and if S = {s1, · · · , sd} is the set of squares

containing e, then by conclusion (3) of Lemma 4.7.4,

Lemma 4.8.2. There exists a partition A t B of S such that two squares s and

s′ in S lie in A (or B) if and only if for each i ∈ {1, 2, 3}, they lie in a single

half-space of Li.

Equivalently, s and s′ lie in different half-spaces of one of L1, L2, L3 if and only if

they lie in different half-spaces of each Li, if and only if, upto re-ordering, s ∈ A

and s′ ∈ B.

By Corollary 4.7.8, we have

Lemma 4.8.3. Each Li separates X̃ into exactly two half-spaces.

Fix a square s ∈ A ⊂ S . For 1 ≤ i ≤ 3, let Yi be the half-space of Li that contains s.

Let Y i be its complementary half-space. A set-theoretic consequence of Lemma 4.8.2

is that half-spaces of L1, L2 and L3 are nested. Namely,

Lemma 4.8.4. For i, j ∈ {1, 2, 3}, either Yi ⊂ Yj or Yj ⊂ Yi.

Proof. We will prove that either Y1 ⊂ Y2 or Y2 ⊂ Y1. The other cases are similar.

Note that all the squares in A lie in Y1 and all the squares in B lie in Y ′1 . Similarly,

all the squares in A lie in Y2 and no square in B lies in Y2.

We first observe that neither Y 1 ⊂ Y2 nor Y2 ⊂ Y 1, as that would imply that a

square in B lies in Y2 or a square in A lies in Y 1. Thus, by Lemma 4.3.5, either

Y1 ⊂ Y2 or Y2 ⊂ Y1.

Corollary 4.8.5. The set {Y1, Y2, Y3} is totally ordered by inclusion.
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L1

L3

L2

Figure 4.12: L′ crosses L2 if it meets L1 and L3 outside L2

After a re-ordering if necessary, assume that Y1 ⊂ Y2 ⊂ Y3. We then have:

Lemma 4.8.6. L1 and L3 lie in complementary half-spaces of L2.

Proof. First, L1 ⊂ Y2 as Y1 ⊂ Y2. Similarly, Y 3 ⊂ Y 2 (as Y2 ⊂ Y3) implies

L3 ⊂ Y 2.

4.8.2 The main result

As L1 ∩L2 is bounded, we can choose an element h1 in the stabiliser of L1 such that

1. h1(Y1) = Y1 (and thus h1(Y ′1) = Y ′1), and

2. h1(e) lies in L1 \ L2 before e in the orientation of L1.

Recall that h1 acts by translation on L1. Similarly, choose an element h3 in the

stabiliser of L3 such that

1. given a half-space Y3 of L3, h3(Y3) = Y3, and

2. h3(e) lies in L3 \ L1 after e in the orientation of L3.
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Let L′ be the axis of h′ = h3 · h−1
1 in the vertical tree X̃s that contains e. L′ is

periodic by definition. Observe that

Lemma 4.8.7. L′ contains h1(e) and, therefore, h3(e) = h′(h1(e)).

Proof. Suppose that h1(e) does not belong to L′. Let h1(u) be the initial vertex

of h1(e) and h1(v) the final vertex. Let α be the geodesic from h1(u) to L′. Then

d(h1(u), h′ · h1(u)) = 2`(α)+ | h′ |, where `(α) is the length of α and | h′ | is

the translation length of h′ (see Proposition 24 in §I.6.4 of [Ser80]). We also have

d(h1(v), h′ · h1(v)) = d(h1(u), h′ · h1(u))− 2.

But since h′ · h1(u) = h3(u) and h′ · h1(v) = h1(v) are adjacent, d(h1(v), h3(v)) =

d(h1(u), h3(u)), which is a contradiction. Hence h1(e) lies in L′.

Lemma 4.8.8. L′ is a separating line.

Proof. Let C ′ be the cycle obtained by taking the quotient of L′ by the action of

< h′ >. We will show that C ′ is strongly UC-separating. This will prove that L′ is

separating (see Lemma 4.5.14).

Let m be the midpoint of e. Subdivide X̃ so that m, h1(m) and h3(m) are vertices

of L′. Let σ be the geodesic segment from h1(m) to h3(m). Since h′ ·h1(m) = h3(m)

and h′ sends every element in the interior of σ outside σ, σ is a fundamental domain

for h′ acting on L′ and hence a fundamental domain of C ′.

We will first show that L′ separates ∂N(σ). Note that

1. σ = σ1 · e · σ3, where σ1 is the segment (see Figure 4.13) in L1 from h1(m) to

the initial vertex of e and σ3 is the segment in L3 from the final vertex of e to

h3(m).

2. By Lemma 4.1.11, ∂N(σ) ∼= ∂N(σ1)
⊕

∂N(σ2), where the labelling is induced

by the squares containing e.

3. ∂N(σi) \ Li = ∂N(σi) \ L′ as both Li and L′ meet ∂N(σi) at e and hi(e).

Recall that ∂N(σi) \Li is not connected (Lemma 4.2.5) and Li has exactly two half-

spaces (Lemma 4.8.3). Thus Li induces a partition Ai tBi on the set of components
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L2

em

σ1

σ3

h1(m)

h3(m)

Figure 4.13: The segments σ1 and σ3

of ∂N(σi) \ Li such that the components in Ai meet one half-space of Li and the

components in Bi meet the other half-space of Li.

Further, by Lemma 4.8.2, for each square s ∈ S , s∩ ∂N(σ1) meets A1 if and only if

s ∩ ∂N(σ3) meets A3. Therefore, there exists no path between a point in A1 and

a point in B3 in the connected sum ∂N(σ) \ L′. Hence ∂N(σ) is separated by L′.

Thus ∂orthN(σ) is not connected (Fact 4.5.8).

As h−1
1 preserves half-spaces of L1, h−1

1 sends a square containing h1(e) in A1 (B1)

to a square containing e in A (B). Similarly, h3 sends a square in A (B) to A3

(B3). In other words, there is no path between a point in A1 and a point in B3

in the quotient of ∂orthN(σ) by the action of h′. By Lemma 4.5.9, ∂N(C ′) is not

connected.

Proof of Proposition 4.8.1. By Lemma 4.8.8, the periodic line L′ is a separating

line. L′ crosses L2 (Definition 4.3.1) as L′ is not contained in a half-space of L2, by

Lemma 4.8.7. Hence the result.
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4.9 An algorithm of double exponential time

For the rest of the text, we will also assume that G is δ-hyperbolic. The main result

of this section is the following theorem.

Theorem 4.9.1. There exists an algorithm of double exponential time-complexity

that takes a Brady-Meier tubular graph of graphs X with hyperbolic fundamental group

G as input and returns a finite list of splitting cycles that contains all universally

elliptic cycles upto commensurability.

Denote by ∂X̃ the Gromov boundary of X̃. Recall that the Gromov boundary of X̃

is defined to be the set of equivalence classes of geodesic rays in X̃, where two rays

are said to be equivalent if they are asymptotic. We refer the reader to [BH99] for

more details.

By Theorem III.H.3.9 of [BH99], ∂X̃ is invariant under quasi-isometries and hence

∂G is well-defined and isomorphic to ∂X̃. Let H be a quasiconvex subgroup of

G. By Proposition III.Γ.3.7 of [BH99], H is a hyperbolic group. Further, H is

quasi-isometrically embedded in G (Corollary III.Γ.3.6 of [BH99]). Thus, ∂H ↪→ ∂G.

Note that a cyclic subgroup of G is always quasiconvex (Corollary III.Γ.3.10 of

[BH99]). Let H < G be quasiconvex. Then ∂H separates ∂G if and only if H

coarsely separates G.

Proposition 4.9.2. Let C be a primitive 3-repetitive UC-separating cycle in X.

Then π1(C) is not universally elliptic.

Proof. By (Corollary 4.7.8), C̃ separates X̃ into two half-spaces. Lemma 4.2.11

implies that π1(C) separates ∂G into at least two components. Proposition 5.30 of

[Bow98] then implies that π1(C) conjugates into either a cyclic vertex group of the

JSJ decomposition of G or a hanging surface vertex group.

By Proposition 4.8.1, there exists a periodic line L′ such that L′ and C̃ cross.

This implies that π1(C) conjugates into a hanging surface vertex group in the JSJ

decomposition of G and further it is not peripheral in this vertex group (see Lemma

5.21 of [Bow98]). Since universally elliptic splittings are conjugates of exactly the
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edge subgroups of the JSJ decomposition upto commensurability, π1(C) is not

universally elliptic.

Let Γ be a finite simplicial graph with vertex set V = {v1, · · · , vm}. The adjacency

matrix of Γ is a symmetric square matrix of order |V | such that the (i, j)th entry is

one if there is an edge between vi and vj, or zero otherwise. It is well known that

(see [AYZ97] for instance):

Fact 4.9.3. The number of immersed cycles of length k in Γ is bounded by the trace

of the matrix Ak.

Proof of Theorem 4.9.1. Let G and X be given as in the statement. First note

that by Lemma 4.6.4, a cyclic subgroup that has a transversal axis in X̃ is not

universally elliptic. Thus every universally elliptic subgroup H has a vertical axis in

X̃. This implies that there exists a splitting cycle C in X such that π1(C) and H

are commensurable (Lemma 4.5.26).

Let F be the number of squares of X and E the number of edges. By Proposi-

tion 4.7.9, any UC-separating cycle of length greater than M = 4E(2F (F+1)/2) is

3-repetitive. Since every edge is contained in a square, E ≤ 4F and thus M is at

most 16F (2F (F+1)/2). By Proposition 4.9.2, any primitive 3-repetitive cycle is not

universally elliptic. Thus a cycle C can be universally elliptic only if

1. its length is at most M , or

2. it is not primitive.

In other words, whenever the length of a universally elliptic cycle C is at least M ,

then it is a power of a primitive subcycle C ′ such that C ′ is not 3-repetitive and

is UC-separating. Further, C ′ has no self-crossings as C has no self-crossings. But

C ′ may or may not be strongly UC-separating (Lemma 4.5.14). By Lemma 4.5.16,

an nth power of C ′ is strongly UC-separating, where n is bounded by the maximal

thickness of an edge of C ′. This implies that n ≤ F and thus a power of C ′ whose

length is at most F.M is universally elliptic. Note that π1(C) is commensurable

with π1(C
′) and thus with every infinite cyclic subgroup of π1(C

′). Hence any
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universally elliptic subgroup is commensurable with the cyclic subgroup generated

by a universally elliptic cycle of length at most F.M .

There exist finitely many cycles of length at most F.M in X. Thus our algorithm

takes each cycle from this finite list as input and returns whether this cycle is

strongly UC-separating with no self-crossings or not. By Lemma 4.5.27, we thus

have a list of all universally elliptic cycles upto commensurability.

The time taken by this algorithm is calculated as follows:

1. The number of cycles of length at most F.M is bounded by a number which is

exponential in F.M , by Fact 4.9.3. This is of the order of a double exponential

in F as M is itself exponential in F .

2. The regular sphere around a cycle C of length k is a connected sum of the

regular spheres around its k vertices (Lemma 4.1.11). and the number of

vertices and edges in this regular sphere is bounded by a constant times the

number F of squares of X. Finding whether this sphere is connected is linear

in F , by [HT73].

3. A cycle C has a self-crossing if there exists self-crossing at a component of self-

intersection P ⊂ C (Definition 4.5.23). The information about the components

of self-intersection of C is readily available with C and does not cost any

additional time. There is a self-crossing at P only if a subpath of C meets

∂N(P ) ∩ ∂N(C) in different components (Fact 4.5.24). This information is

also available when the regular sphere around C is computed and does not

cost any additional time.

The algorithm thus takes double exponential time in the number of squares of X.
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Chapter 5

Constructing a JSJ complex

The goal of this chapter is to construct from X a tubular graph of graphs Xjsj whose

graph of groups structure gives the JSJ decomposition of G.

5.1 Splitting cycles as hyperplanes

Let φ : C → Xs ⊂ X be a splitting vertical cycle. We will show how to modify X to a

tubular graph of graphs XC such that π1(X) ∼= π1(XC) and π1(C) is commensurable

with the cyclic group generated by a vertical hyperplane of XC .

We first perform this construction at the level of universal covers using the machinery

of spaces with walls [HP98] (utilised earlier in Section 4.4.1). We refer the reader to

[Nic04] and [CN05] for details on constructing CAT(0) cube complexes from spaces

with walls.

First note that the 0-skeleton X̃0 is a space with walls, where the walls are defined

by the complementary half-spaces of vertical and horizontal hyperplanes. It is well

known that the dual CAT(0) cube complex of X̃0 with this wall structure is X̃ (see

Theorem 10.3 of [Rol16], for instance). For our purposes, we slightly modify the

space with walls as follows.

First we attach a strip SL = R× [0, 1] isomorphically along R×{0} to each translate

111
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L of C̃. Note that there is a natural square structure on SL so that every horizontal

hyperplane of X̃ that meets L naturally extends to SL. Let Z be the set of open

horizontal half-edges of the union of X̃ and the attached strips. Then the vertical

and horizontal hyperplanes of X̃ induce a space with walls (Z,W ).

Note that we do not add the vertical hyperplanes through the strips SL to the

collection of hyperplanes that define walls in W . Thus the dual cube complex of

(Z,W ) is nothing but X̃ (Theorem 10.3 of [Rol16]). We now enrich W to WC . The

walls in WC are determined by the following:

(i) the horizontal hyperplanes of X̃,

(ii) the vertical hyperplanes of X̃, and

(iii) the G-translates of C̃.

Note that the elements of type (i) and (ii) induce W , where each half-space Y in X̃

of an element of type (i) or (ii) defines a wall {Y ∩Z, Y c ∩Z}. Given a translate L

of C̃ in X̃, each half-space Y in X̃ of L defines a wall {Y ∩ Z, Y c ∩ Z} of type (iii).

Thus L induces exactly K walls in Z if it has K half-spaces in X̃.

Given z1 6= z2 ∈ Z, observe that there are only finitely many walls in WC between

z1 and z2. Thus

Lemma 5.1.1. (Z,WC) is a space with walls.

In fact, two elements z1 and z2 are not separated by a wall if and only if either

z1 = z2 or the closures of z1 and z2 in X̃ share a vertex and are not separated by

any line of type (iii).

Denote by X̃C the CAT(0) cube complex dual to Z.

Lemma 5.1.2. X̃C is a VH-complex.

The proof uses the following observation.

Lemma 5.1.3. Let L and L′ be two non-crossing lines of X̃. Then given half-spaces

Y of L and Y ′ of L′, at least one of the following four intersections is empty: Y̊ ∩ Y̊ ′,

Y c ∩ Y̊ ′, Y̊ ∩ Y ′c and Y c ∩ Y ′c.
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Proof. Since L and L′ don’t cross, by Lemma 4.3.5, there exists a half-space Y ′0 of

L′ such that either Y ⊂ Y ′0 or Y ′0 ⊂ Y . Hence the result.

Two walls {Y, Y c} and {Y ′, Y ′c} in a space with walls cross ([CN05]) if all four

intersections Y ∩ Y ′, Y c ∩ Y ′, Y ∩ Y ′c and Y c ∩ Y ′c are non-empty.

Proof of Lemma 5.1.2. Two walls of type (i) don’t cross as two horizontal hyper-

planes of X̃ are either equal or disjoint. Similarly, two walls of type (ii) don’t cross.

By Lemma 5.1.3, two walls of type (iii) don’t cross either. Further, a wall of type (ii)

and a wall of type (iii) don’t cross since a vertical line is disjoint from any vertical

hyperplane. By Proposition 4.6 of [Nic04], there exists a bijective correspondence

between the hyperplanes of X̃C and the walls of (Z,WC). Further, two hyperplanes

in X̃C intersect if and only if the corresponding walls cross. Declare an edge e of

X̃C to be vertical if and only if the hyperplane through e corresponds to a wall

of type (i). Otherwise, declare the edge to be horizontal. No square contains two

adjacent edges of the same type as otherwise two hyperplanes of the same type or

two hyperplanes of type (ii) and (iii) intersect.

Observe that there exists a natural G-equivariant map η̂C : X̃C → X̃ such that the

following diagram commutes:

(Z,WC) (Z,W )

X̃C X̃

id

η̂C

Since W ⊂ WC , η̂C takes any vertex (ultrafilter) σ′ of X̃C to a vertex σ′ ∩W of X̃.

But every vertex of X̃ is a principal ultrafilter, and hence η̂C(σ′) = σz for some z.

By the way the set of walls WC was defined on Z, we also have that

Lemma 5.1.4. The map η̂C has the following properties:

1. Let c be a cell of X̃ that does not meet any translate of C̃. Then η̂C restricted

to η̂−1
C (c) is injective.

2. It sends vertical edges to vertical edges and horizontal edges to either horizontal

edges or vertices.
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3. A horizontal edge is mapped to a vertex if and only if the vertical hyperplane

through this edge is induced by a wall of type (iii).

Lemma 5.1.5. For any z ∈ Z, η̂−1
C (σz) is a finite horizontal tree. Further, the

edges in the pre-image of σz are dual to vertical hyperplanes induced by translates of

C̃ that meet σz in X̃.

Proof. Let σ′1 and σ′2 be two vertices of η̂−1
C (σz). Let {Y, Y c} be a wall such that

Y ∈ σ′1 and Y c ∈ σ′2. Then clearly, {Y, Y c} is a wall of type (iii). Let L be the line

that defines {Y, Y c}. We claim that L passes through the vertex σz in X̃. If not,

then let h be a hyperplane of X̃ that separates L from σz. Let Yh be a half-space of

h that contains the vertex σz. Then Yh ∈ σz, the ultrafilter. Clearly, this implies

that Yh ∈ σ′1 and Yh ∈ σ′2. Since L and h are disjoint, either Yh ⊂ Y or Yh ⊂ Y c.

Thus either Y ∈ σ′1 and Y ∈ σ′2 or Y c ∈ σ′1 and Y c ∈ σ′2, a contradiction. So L has

to pass through σz. There are only finitely many translates of C̃ that meet at any

given point of X̃. This proves the result.

Since η̂C is a finite-to-one G-equivariant map, we conclude that

Lemma 5.1.6. G acts geometrically on X̃C.

Lemma 5.1.7. Every vertical hyperplane of X̃C is a line.

Proof. The stabiliser of a vertical hyperplane is the stabiliser of a wall of either type

(ii) or type (iii), and hence is a cyclic subgroup. Thus every vertical hyperplane is

a line.

The complex X̃C consists of two types of subcomplexes:

• Denote by Z̃C a connected component of the subcomplex of X̃C consisting of

the union of the first cubical neighbourhood of all hyperplanes corresponding

to walls of type (iii). In other words, Z̃C is a connected component of the

closed strips in X̃C induced by half-spaces of translates of C̃.

• The second type of subcomplex, denoted by ỸC is the closure of the complement

in X̃C of the G-translates of Z̃C .
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Lemma 5.1.8. The subcomplex Z̃C is a tree of finite trees whose underlying tree

η̂C(Z̃C) is a copy of φ̃(C).

Proof. By Lemma 5.1.5, η̂−1
C (σz) is a finite tree for every vertex of X̃, and thus after

subdivision, for the midpoint of every edge of X̃. Hence Z̃C is a tree of finite trees if

η̂C(Z̃C) is a tree. Now η̂C sends vertical edges to vertical edges and horizontal edges

dual to hyperplanes of type (iii) to vertices (Lemma 5.1.4). The horizontal edges of

Z̃C are of exactly this type by definition. Thus η̂C(Z̃C) is a tree.

We now claim that η̂C(Z̃C) is a copy of the universal cover of φ(C). Note that φ̃(C)

is a connected union of lines which are translates of C̃. Since η̂C(Z̃C) is also a union

of translates of C̃ with image φ(C) in X, η̂C(Z̃C) ⊂ φ̃(C). Conversely, if a vertex v

of a translate L of C̃ is contained in η̂C(Z̃C), then η̂−1
C (v) meets the strips induced

half-spaces of L and thus these strips are contained in Z̃C . The image of any such

strip under η̂C is L and thus L ⊂ η̂C(Z̃C).

Define XC := X̃C/G. By Lemma 5.1.7, XC is a tubular graph of graphs. The

space XC is called the opened-up space of X along C. The G-equivariant map

η̂C : X̃C → X̃ induces a map ηC : XC → X.

Let YC and ZC denote the respective images of ỸC and Z̃C in XC . We have proved

that

Lemma 5.1.9. ZC is a graph of finite trees with underlying graph φ(C) and with

the following property: If u ∈ φ(C) is a vertex (or a midpoint of an edge), then the

vertex (edge) tree T (u) is the tree dual to Z with the walls induced by translates of

C̃ passing through a lift ũ of u in X̃.

We conclude with the following observation:

Lemma 5.1.10. The opened-up space XC is a union of the subcomplexes YC and

ZC with YC ∩ ZC consisting of those cells of YC that are mapped by ηC to φ(C).
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5.2 Algorithmic construction of XC

The main result of this section is the following.

Theorem 5.2.1. There exists an algorithm of exponential time-complexity that takes

a Brady-Meier tubular graph of graphs X and a splitting cycle φ : C → X as input

and returns the opened-up space XC along C as output.

Our method is to first combinatorially construct two square complexes Y ′C and Z ′C

from X and glue them to form X ′C . We will show that Y ′C
∼= YC and Z ′C

∼= ZC and

thus X ′C
∼= XC can be constructed combinatorially.

The first result we will need is the following. Fix a lift C̃ of the splitting cycle

φ : C → Xs ⊂ X. Let K be the number of half-spaces of C̃ in X̃.

Lemma 5.2.2. There exists D′ ∈ N such that for any vertex or (midpoint of an

edge) v ∈ C̃ and ∀D ≥ D′, the Dth cubical neighbourhood {v}+D of v has the

following properties:

1. For each translate gC̃ such that v ∈ gC̃, gC̃ separates {v}+D into exactly K

components.

2. For every g, g′ ∈ G such that gC̃ 6= g′C̃ and v ∈ gC̃ ∩ g′C̃, gC̃ ∩ {v}+D 6=

g′C̃ ∩ {v}+D.

The main ingredient for proving Lemma 5.2.2 is the following result. Let N be such

that the thickness of any edge of X is at most N .

Lemma 5.2.3. Let CN be a 2N
th

power of C and PN a fundamental domain of CN .

Then there exists a natural bijection between the set of half-spaces of C̃ and the set

of components of ∂orthN(PN).

We first prove a preliminary result on the number of connected components of

graphs. Let Γ be a graph with no cut points and {a, b} a cut pair. Assume that

the valence n of a is equal to the valence of b. We will construct a connected sum

(Definition 4.1.7) of finitely many copies of Γ. Let φa : {1, · · · , n} → adj(a) and

φb : {1, · · · , n} → adj(b) denote labellings of vertices adjacent to a and b.

For each i ∈ N, let Γi be a copy of Γ with the corresponding cut pair {ai, bi}.
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We will denote the labellings on the adjacent vertices by φai , φbi . Let Γ′i :=

Γ1 (b1,φb1 )

⊕
(a2,φa2 ) Γ2 (b2,φb2 )

⊕
· · ·
⊕

(ai,φai )
Γi.

Lemma 5.2.4. Suppose that the number of components of Γ \ {a, b} is equal to the

number of components of Γ′2 \ {a1, b2}. Then for each i, the number of components

of Γ′i \ {a1, bi} is equal to the number of components of Γ′2 \ {a1, b2}.

Proof. Let k be the number of components of Γ \ {a, b}. Γ′2 \ {a1, b2} has the same

number of components as Γ \ {a, b} if and only if there is a partition into k subsets

of {1, · · · , n} such that the partition induced by φa : {1, · · · , n} → adj(a) and

φb : {1, · · · , n} → adj(b) on the vertices adjacent to a and b coincides with the

partition induced by the k components of Γ \ {a, b}.

Similarly, Γ′3 \ {a1, b3} has k components if and only if there is a partition into k

subsets of {1, · · · , n} such that the partition induced by φa3 : {1, · · · , n} → adj(a3)

and φb2 : {1, · · · , n} → adj(b2) coincide with the partitions induced by the k

components of Γ′2 \ {a1, b2} and Γ3 \ {a3, b3}. Since Γ2 \ {a2, b2} ∼= Γ \ {a, b}, the

partition induced on adj(b2) by the k components of Γ′2 \ {a1, b2} coincides with the

partition induced by the k components of Γ2 \ {a2, b2}. Hence Γ′3 \ {a1, b3} has k

components. Continuing iteratively, we obtain the result.

Proof of Lemma 5.2.3. Let e be an edge in the image of C. Subdivide X so that

the midpoint m of e is a vertex. Let e1 and e2 denote the new edges obtained from

e. Let P be a fundamental domain of C. We will assume that P ⊂ C̃ and that

the initial vertex of P is (a lift of) m. Let P1 be the concatenation P.cP , where c

is a generator of π1(C). We will assume that the regular spheres of P and P1 are

embedded in X̃ as subsets. Note that ∂N(P1) ∼= ∂N(P ) (e1,φ1)

⊕
(ce2,φ2) ∂N(cP ), by

Lemma 4.1.11. Suppose that the number of components of ∂N(P ) \ C̃ is equal to

the number of components of ∂N(P1)\ C̃. By Lemma 5.2.4 we have that the number

of half-spaces of C̃ is equal to the number of components of ∂N(P ) \ C̃. Suppose

now that the number of components of ∂N(P ) \ C̃ is strictly greater than the

number of components of ∂N(P1)\ C̃. By Lemma 4.5.10, the number of components

of ∂N(P ) \ C̃ has at most N components. Thus the number of components of
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∂N(P1) \ C̃ is at most N − 1. Let P2 = P1.c
2P1. Proceeding as before, either the

number of half-spaces of C̃ is equal to the number of components of ∂N(P1) \ C̃

or the number of components of ∂N(P1) \ C̃ is strictly greater than the number of

components of ∂N(P2) \ C̃ which is at most N − 2. Continuing this way, we get

that the number of components of ∂N(PN ) \ C̃ is either equal to 1 or is equal to the

number of half-spaces of C̃. Hence the result.

Let L be a line in X̃ and v ∈ L a vertex. Let D ∈ N. Note that {v}+D is a CAT(0)

cube (sub)complex [HW08]. We will assume that ∂N(L) ⊂ X̃. By Lemma 4.2.8, we

have

Lemma 5.2.5. There exists a bijection between the half-spaces of L ∩ {v}+D in

{v}+D and the components of ∂N(L) ∩ {v}+D.

Proof of Lemma 5.2.2. Let D = 2N . Then {v}+D contains a lift of PN , a fundamen-

tal domain of a 2N
th

power of C. By Lemma 5.2.3, C̃ separates ∂N(PN) ⊂ {v}+D

into exactly K components. This implies that ∂N(C̃) ∩ {v}+D has exactly K com-

ponents. Lemma 5.2.5 then implies conclusion 1. Conclusion 2 is obvious as either

gC̃ = g′C̃ or gC̃ ∩ g′C̃ has length at most the length of C, by Lemma 4.5.21.

5.2.1 Construction of X ′C

Let D = `(C) + 2N , where `(C) denotes the length of C. Choose a basepoint

v ∈ φ(C) with lift ṽ in C̃. Let B := {ṽ}+D in X̃. Note that

Lemma 5.2.6. There exists an algorithm that takes X and v as input and returns

B in exponential time.

For each translate L meeting B, we attach a finite strip SL ∼= L ∩ B × [0, 1]. Let

Z = ZB be the set of open horizontal half-edges in the union of B and the collection

of finite strips. For each vertex u (edge e) in φ(C), we define a set of walls Wu (We)

on Z as follows. Choose a lift of u (e) in B such that {ũ}+2N (ẽ+2N ) is contained in

B.

Let C̃ = L1, · · ·Ln be the translates of C̃ that pass through ũ (ẽ). By Lemma 5.2.2,
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each line Li separates B into exactly K components. Thus each line Li induces

K walls of Wu (We) on Z, where each half-space Y in X̃ of Li defines a wall

{Y ∩ Z, Y c ∩ Z}.

Since C has no self-crossing, no two walls of Wu (We) cross (Lemma 5.1.3). Thus

the dual cube complex of (Z,Wu) (respectively (Z,We)) is a tree, denoted by T (u)

(T (e)).

Lemma 5.2.7. Let v ∈ φ(C) be a vertex and ṽ1, ṽ2 be lifts of v in X̃. Then

1. {ṽ1}+D and {ṽ2}+D are isomorphic as square complexes. Further,

2. if u ∈ φ(C) is a vertex or a midpoint of an edge and ũ1 and ũ2 are lifts of u in

{ṽ1}+D, then there exists a natural bijection between the translates of C̃ that

meet ũ1 and the translates of C̃ that meet ũ2.

Thus the definition of Wu (and We) is independent of the choice of ṽ or of the choice

of ũ (ẽ) in B.

Suppose that an edge e is incident to a vertex u in φ(C). Let ẽ with incident vertex

ũ be a lift of e incident to u. Since every translate of C̃ that passes through ẽ

also passes through ũ, there exists a natural inclusion We ⊂ Wu. Further, given

translates L1, L2 that contain ẽ with half-spaces Y1, Y2 such that Y1 ⊂ Y2, suppose

there exists a translate L′ that meets ũ with half-space Y ′ such that Y1 ⊂ Y ′ ⊂ Y2.

Then it is easy to see that L′ contains ẽ. Thus we have

Lemma 5.2.8. Given an edge e in φ(C) incident to a vertex u, there exists a natural

inclusion T (e) ↪→ T (u).

The space X ′C is constructed from two spaces Z ′C and Y ′C , defined below.

• Z ′C is the geometric realisation of the graph of trees (φ(C), {T (u)}, {T (e)}).

• Y ′C is the square complex obtained from X \ φ(C) by “completing the missing

cells” as follows: for each vertex or edge x of φ(C), take as many copies of x

as the number of squares of X that contain x and add them to the semi-open

squares of X \ φ(C) to obtain closed squares. Call the resulting space as Y ′C .

The vertices and edges of Y ′C corresponding to φ(C) are the boundary cells of
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Y ′C .

Lemma 5.2.9. There exists a natural map from the boundary cells of Y ′C to Z ′C

which defines a gluing of Z ′C to Y ′C.

Proof. Consider a boundary cell u′ (e′) of Y ′C , which is a copy of the vertex u (edge

e) of φ(C). Choose a horizontal open half-edge z′ in Y ′C incident to u′ (e′) with

corresponding edge z in X. Let ũ (ẽ) be a lift of u (e) in B and z̃ be the half-edge

incident to ũ (ẽ) that projects to z in X. Then the required map is the one that

sends z′ to σz in T (u) ⊂ Z ′C (σz(⊂ T (e))× e ⊂ Z ′C).

Definition 5.2.10. The square complex X ′C is defined to be the complex Z ′CtY ′C/ ∼,

where ∼ is induced by the natural gluing.

Proposition 5.2.11. There exists a natural isomorphism between the square com-

plexes XC and X ′C.

Proof. By Lemma 5.1.10, XC is a union of YC and ZC , while X ′C is a union of Y ′C

and Z ′C by definition. YC is clearly isomorphic to Y ′C .

By Lemma 5.1.9, ZC is a graph of finite trees with underlying graph φ(C). So is

Z ′C . Further, the wall structures that define vertex and edge trees of ZC and Z ′C are

isomorphic: Indeed, the walls that define T (u) for u ∈ φ(C) in ZC are induced by

half-spaces in X̃ of translates of C̃ that pass through a lift ũ of u. In Z ′C , the tree is

defined by walls induced by half-spaces of translates of C̃ in a finite ball B of X̃

containing ũ. Since there exists a bijection between the half-spaces of C̃ in B and

the half-spaces of C̃ in X̃ (Lemma 5.2.5), ZC is isomorphic to Z ′C .

Thus XC is isomorphic to X ′C if the isomorphism from YC to Y ′C restricted to YC∩ZC
is an isomorphism to Y ′C ∩ Z ′C . The cells of YC ∩ ZC are precisely the cells of YC

that are mapped to φ(C). These cells are mapped to the boundary cells of Y ′C by

definition. Further,this mapping is bijective. Hence the result.

Proof of Theorem 5.2.1. The compact space B can be constructed in exponential

time from X (Lemma 5.2.6). It costs exponential time to calculate the number of

half-spaces of any translate of C̃ (Lemma 5.2.3).
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Since the number of translates of C̃ meeting at any point of X̃ is bounded by

the length of C (by Lemma 4.5.21), the dual trees T (u) (T (e)) of all vertices u

(edges e) in φ(C) can be constructed in polynomial time. Thus Z ′C is constructed in

exponential time. Y ′C is constructed in linear time in X and X ′C
∼= XC is obtained

in linear time from Y ′C and Z ′C . Hence the result.

5.2.2 Structure of XC

Lemma 5.2.12. The tree T (u) (or T (e)) is a bipartite tree with black vertices having

valence exactly K.

Proof. We will first show that there exist vertices of valence K in T (u) (T (e)) and

then show that the tree is bipartite. Let L be a translate of C̃ passing through ũ (ẽ)

in B. Let Y1, · · · , YK be the half-spaces of L. Let z be an open horizontal half-edge

in the strip SL. Denote by σL the ultrafilter σz in T (u) (T (e)). Thus σL contains

{Y c
1 , · · · , Y c

K} and exactly those half-spaces of translates of C̃ passing through ũ

that contain L.

We now claim that the valence of σL is exactly K. Indeed, it is at least K: switching

each half-space Yi of L gives an edge incident to σL. We now claim that there exists

no ultrafilter σ′ such that σ′4σL = {Y ′, Y ′c}, with Y ′ 6= Yi. Assume without loss of

generality that Y ′ ∈ σL (that is, L ⊂ Y ′). Since Y
′c is disjoint from L, there exists

Yi of L such that Y
′c ⊂ Yi. This implies that σ′ contains Yi. Thus σL4σ′ contains

{Yi, Y c
i , Y

′, Y
′c}.

Let σ′ be a vertex at distance two from σL. Let σ′4σL = {Y1, Y
c

1 , Y
′

1 , Y
′c

1 }, where

Y ′1 is a half-space of a translate L′ of C̃. We will show that σ′ = σL′ .

Assume first that Y ′1 ∈ σL. This implies that for each half-space Y ′i of L′ with i 6= 1,

Y
′c
i ∈ σL and hence in σ′. Further, Y

′c
1 ∈ σ′ by assumption. If σ′ 6= σL′ , then any

path from σ′ to σL′ involves a change of half-spaces of the type {Y ′i , Y
′c
i }. Hence we

conclude that σ′ = σL′ .

Assume now that Y ′1 ∈ σ′. Thus Y
′c

1 ∈ σL. Since the edge which flips Y ′1 and Y
′c

1
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is incident to σL′ , σL′ lies in any path between σ′ and σL. We will show that σL

and σL′ are not adjacent. This will prove that σ′ is not at distance two from σL

whenever Y ′1 ∈ σ′. Indeed, there exists a half-space Y ′2 , say, of L′ that contains L

and hence Y ′2 ∈ σL. Thus there exists an edge which flips Y ′2 and Y
′c

2 in any path

between σL and σL′ . But such an edge is not adjacent to σL as it does not flip Yi

and Y c
i .

This proves that a vertex in T (u) (T (e)) is of the form σL′ if and only if it is at even

distance from σL. Thus the tree is bipartite.

Let u (e) be in φ(C). Let v1 and v2 be black vertices in T (u) (T (e)).

Lemma 5.2.13. Given an edge e1 incident to v1 in T (u) (T (e)), there exists an

edge e2 incident to v2 in T (u) (T (e)) such that the hyperplane in Z ′C dual to e1 is

equal to the hyperplane dual to e2.

Proof. Let vi be the ultrafilter σLi
, where L1 and L2 are translates of C̃ passing

through ũ (ẽ) in B. Let e1 correspond to the wall {Y1, Y
c

1 }, where Y1 is a half-space

of L1. Since L2 is a translate of L1, there exists a fundamental domain P ′ of C ′ in

L1 containing ũ (ẽ) such that there exists g ∈ G and ũ′ (ẽ′ in P ′) such that gũ′ = ũ

(gẽ′ = ẽ) and gP ′ ⊂ L2. The segment from ũ to ũ′ (ẽ to ẽ′) projects to φ(C) as a

subgraph. Since L1 passes through every vertex and edge in this segment, there

is an edge corresponding to {Y1, Y
c

1 } in the dual tree of the image in φ(C) of each

vertex and edge of this segment. By the way Z ′C was defined, this defines a unique

hyperplane in Z ′C . Since gũ′ = ũ (gẽ′ = ẽ) and gL1 = L2, the required edge incident

to σL2 is {gY1, gY
c

1 }.

Let φ′ : C ′ → Xs be a primitive cycle such that C is a power of C ′.

Lemma 5.2.14. There exists a natural embedding of C ′ in XC such that the vertical

graph that contains C ′ is isomorphic to C ′. Further, for a vertex u (edge e) in φ(C),

the embedded copy of C ′ meets every black vertex of T (u) (T (e)) exactly once.

Proof. Choose a fundamental domain P ′ of C ′ in C̃ in B. For each vertex ũ and

edge ẽ in P ′ with images u and e respectively in φ(C), choose σC̃ in T (u) and T (e).
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This induces an embedding of C ′ in Z ′C with the required properties.

5.3 The tubular graph of graphs X ′

Let C = {C1, · · · , Cn} be the set of splitting cycles of X furnished by Theorem 4.9.1.

Remark 5.3.1. It is easy to see that a vertical cycle induced by the attaching map of

a tube is a splitting cycle that is not 3-repetitive. Hence each such cycle is included

in C .

Procedure 5.3.2 (Construction of X ′). The tubular graph of graphs X ′ is constructed

from X using the cycles in C as follows:

• Start with X = X0.

• For 1 ≤ i ≤ n, check if φi : Ci → X factors through a vertical cycle ψi :

Ci → Xi−1. If it doesn’t, then declare Xi = Xi−1. Else, define Xi to be the

opened-up space of Xi−1 along the cycle ψi : Ci → Xi−1.

• Declare X ′ = Xn.

Lemma 5.3.3. The cycle Ci in C factors through a vertical cycle in Xi−1 if and

only if for 1 ≤ j ≤ i, lifts of Cj and Ci don’t cross in X̃.

By Theorem A, we will assume that X ′ is a Brady-Meier tubular graph of graphs

with fundamental group G.

Theorem 5.3.4. There exists an algorithm of double exponential time-complexity

that takes a Brady-Meier tubular graph of graphs X with hyperbolic fundamental

group G as input and returns a homotopy equivalent Brady-Meier tubular graph of

graphs whose vertical hyperplanes generate all universally elliptic subgroups of G

upto commensurability.

Proof. The algorithm of Theorem 4.9.1 takes X as input and returns a set of cycles

C that contains all universally elliptic cycles upto commensurability. Given C, X ′ is

constructed using Procedure 5.3.2. This procedure consists of applying the algorithm

of Theorem 5.2.1 repeatedly.
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L′

Figure 5.1: L′ in X̃ ′ when L has three half-spaces

The algorithm of Theorem 4.9.1 takes double exponential time to return a finite

set of cycles. The number of cycles in this set is bounded by a number of double

exponential magnitude. Given this data, the algorithm of Theorem 5.2.1 operates

by taking exponential time for each cycle, and hence obtaining X ′ costs double

exponential time in the input data.

5.3.1 Structure of X ′

Note that the maps η̂i : X̃i → X̃i−1 induce maps η̂ : X̃ ′ → X̃ and η : X ′ → X.

Denote by Γ′ the underlying graph of the graph of spaces X ′ and by T ′ the underlying

tree of the tree of spaces X̃ ′. Note that T ′ is the Bass-Serre tree of the cyclic splitting

of G induced by X ′. Let L be a lift of an element Ci of C such that Ci factors

through a vertical cycle in Xi−1.

Lemma 5.3.5. There exists a vertical tree in X̃ ′ whose stabiliser is equal to the

stabiliser of L.

Proof. By Lemma 5.2.14, a primitive cycle C ′i such that Ci is a power of C ′i embeds

in Xi as a vertical graph. Since the process of producing X ′ from Xi does not crush

any horizontal edges, a lift L′ of C ′ in X̃ ′ is a vertical tree (Figure 5.1).
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Let h be a vertical hyperplane in X̃ ′. Let L1 and L2 be the two boundary lines of h,

that is, the two vertical lines on either side of h at distance 1
2

from h, and parallel to

h.

Lemma 5.3.6. The stabiliser of h is equal to either stab(L1) or stab(L2).

Proof. Denote by H, H1 and H2 the stabilisers of h, L1 and L2 respectively. Suppose

that H is not equal to either H1 or H2. Fix h1 ∈ H1 \H and h2 ∈ H2 \H. We will

then show that there is a flat plane contained in X̃ ′ as a subcomplex.

Consider the hyperplane h1h. Its boundary lines are h1L1 = L1 and h1L2 6= L2.

Thus the strips S and h1S share exactly one boundary line, L1. Next, consider the

hyperplane h1h2h. Its boundary lines are h1h2L1 6= L1 and h1h2L2 = h1L2. Thus the

strip h1h2S shares exactly one boundary line, h1L2 with h1S. Note that h1h2S 6= S

as h1h2 /∈ H. Similarly, the strip h1h2h1S shares exactly one boundary line h1h2L1

with h1h2S and so on. In this way, we get a closed half-plane (homeomorphic to

h× [0,∞)) on one side of h. Similarly, we can construct another closed half-plane on

the other side of h starting with the strip h2S. The union of these two half-planes is

a plane containing h. By the Flat Plane Theorem (see Theorem Γ.3.1 of [BH99]), G

is not hyperbolic, which is a contradiction.

Recall that X̃C was defined as the cube complex dual to WC , the set of walls induced

by hyperplanes of X̃ and walls induced by translates of C̃. Analogously, X̃ ′ is the

cube complex dual to a space with walls, where walls are defined on the set Z

of open horizontal half-edges of X̃ along with open horizontal half-edges of strips

attached to translates of C̃i whenever Ci factors through a vertical cycle in Xi−1.

The set of walls W ′ in Z are thus of three types:

• Walls of type (i) are induced by horizontal hyperplanes of X̃.

• Walls of type (ii) are induced by vertical hyperplanes of X̃.

• Walls of type (iii) are induced by translates of C̃i, where Ci ∈ C factors

through a vertical cycle in Xi−1.

A vertical half-space of X̃ (or X̃ ′) is a half-space of a wall of type (ii) or (iii).
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Let h be a vertical hyperplane in X̃ ′ and L1, L2 its boundary lines. Then

Lemma 5.3.7. Either the vertical tree containing L1 or the vertical tree containing

L2 is a line.

Proof. Let {Y, Y c} be the wall of type (ii) or type (iii) in Z corresponding to h.

If {Y, Y c} is of type (iii), let L be the line in X̃ that defines the wall. If not, then

let L be a boundary line in X̃ of the vertical hyperplane that defines {Y, Y c}, so

that L defines a wall of type (iii) (Remark 5.3.1).

By Lemma 5.3.5, there exists a linear vertical tree L′ in X̃ ′ such that stab(L) =

stab(L′). Note that any vertical half-space of X̃ contained in an ultrafilter of L′

contains either Y or Y c, by Lemma 4.4.4. Thus any vertical half-space of X̃ ′ (except

perhaps a half-space of L′) that contains L′ contains h. So no vertical tree separates

L′ and h. Hence the result.

Definition 5.3.8. A vertex of a G-tree is a cyclic vertex if its stabiliser is a cyclic

subgroup of G.

Thus in the underlying tree T ′ of X̃ ′, at least one of the two vertices of any edge is

a cyclic vertex.

Lemma 5.3.9. Let L′ be a line in X̃ ′. Suppose that ∂N(L′) contains at least three

components. Then the vertical tree containing L′ is equal to L′.

We need two observations to prove the lemma. Let L be a line in X̃ that defines a

wall of type (iii). Suppose that the number of half-spaces of L is K. Let L′ be a

vertical tree in X̃ ′ such that η̂(L′) = L (Lemma 5.3.5).

Lemma 5.3.10. Exactly K vertical strips are attached to L′ in X̃ ′. Further, if

η̂(L′′) = L for any vertical line L′′, then L′′ is contained in one of these K strips.

Proof. The fact that exactly K strips are attached to L′ follows from Lemma 5.2.14.

Further, each of the K strips above are contained in η̂−1(L), by Lemma 5.1.5.

Let L′′ be a vertical line such that η̂(L′′) = L. Denote by σ′L′′ the set of vertical

half-spaces contained in any vertex (ultrafilter) of L′′. Note that η̂(L′′) = L implies
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that the vertical half-spaces of type (ii) in σ′L′′ consists of the half-spaces of vertical

hyperplanes in X̃ that contain L.

If σ′L′′ = σ′L′ , we have nothing to prove as the vertical tree that contains L′ is equal

to L′. Let σ′i be the set of vertical half-spaces such that σ′i4σ′L′ = {Yi, Y c
i }, where

Yi is a half-space of L. Since {Yi, Y c
i } defines a vertical hyperplane hi in X̃ ′, σ′i is

the set of all vertical half-spaces of some vertex of X̃ ′ that is separated from L′ by

exactly hi. So either σ′L′′ = σ′i for some i or σ′L′′ 6= σ′i for any i.

First assume the latter. Then there exists a half-space Y0 of a line L0 such that

{Y0, Y
c

0 , Yi, Y
c
i } ⊂ σ′L′′4σ′L′ , with Yi ⊂ σ′L′′ . Let σ be a vertex in L \ L0. Then there

exists σ′′ ∈ L′′ such that η̂(σ′′) = σ. This implies that the vertex σ contains Yi,

which is not possible.

Assume now that σ′L′′ = σ′i, for some i. Let L′i 6= L′ be a boundary line of the strip

that separates L′′ from L′. The proof follows from the following observation. Let γ

denote a geodesic between L′′ and L′i. Since γ consists of vertical edges, η̂(γ) has the

same length as γ (by Lemma 5.1.4) and is a geodesic between η̂(L′′) and η̂(L′i).

Let L′1, · · · , L′K be the boundary lines of strips attached to L′ such that L′i 6= L′.

Then

Lemma 5.3.11. ∂N(L′i) has exactly two components.

Proof. Note that L′i is a separating line since it is a tubular line (Fact 4.2.10).

Let Y ′i be a half-space of L′i that does not contain L′. Then η̂(Y̊ ′i ) does not contain L

(Lemma 5.3.10) and is connected. Thus η̂(Y ′i ) lies in the half-space Yi of L. Further,

if there exist two half-spaces of L′i that do not contain L′, then η̂−1(Yi \ L) contains

these half-spaces. By Lemma 5.1.5, one of these half-spaces is at finite distance from

the other, and hence from L′i. This is a contradiction to Lemma 4.2.12.

Proof of Lemma 5.3.9. If ∂N(L′) contains three or more components, then a sub-

group H of stab(L′) is universally elliptic, by Proposition 4.6.5.

Let L = η̂(L′). Then H stabilises L as η̂ is G-equivariant. Since the limit set of H
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separates ∂G, L coarsely separates X̃ and hence separates X̃. This implies that L

defines a wall of type (iii). Lemma 5.3.10 and Lemma 5.3.11 then give the result.

5.4 Modification of X ′

The next step in the modification of X to Xjsj is the construction of an intermediate

tubular graph of graphs X ′′ from X ′ by removing certain tubes of X ′.

Construction of X ′′. Remove an (open) tube of X ′ if both the vertex graphs

bounding the tube are circles, and then identify the vertex graphs. This is possible

as, by Lemma 5.3.6, one of the attaching maps of such a tube is an isomorphism at

the level of groups. Thus the attaching map is an isomorphism of graphs between

the edge graph and the corresponding vertex graph. Successively remove all such

tubes of X ′. Call the new tubular graph of graphs as X ′′.

5.4.1 Structure of X ′′

Let T ′′ be the underlying tree of X̃ ′′ and let Tjsj denote the Bass-Serre tree of the

canonical JSJ decomposition of G.. We will show that every edge stabiliser of T ′′ is

either an edge stabiliser of Tjsj or conjugates into a hanging surface subgroup of the

JSJ decomposition. Thus T ′′ can be modified to Tjsj by removing the latter type of

edges.

Lemma 5.4.1. For each cyclic vertex u of Tjsj there exists a cyclic vertex v of T ′′

such that stab(u) = stab(v).

Proof. Fix an axis L in X̃ of stab(u). Note that stab(u) = stab(L) as stab(u) is

a maximal cyclic subgroup of G. Let H be the edge stabiliser in Tjsj of an edge

incident to u. Then H is a universally elliptic subgroup. We can thus assume that

the line L is vertical (Lemma 4.6.4).



5.4 Modification of X ′ 129

By Lemma 4.5.26, there exists a splitting cycle C in X such that π1(C) is commen-

surable with a conjugate of H. Hence C is universally elliptic and C ∈ C . Thus

there exists a vertical tree in X̃ ′ whose stabiliser is stab(C̃). Since C̃ is a translate

of L, there exists a vertical tree in X̃ ′ whose stabiliser is stab(L) = stab(u). Observe

that the process of modifying X ′ to obtain X ′′ does not glue any linear tree of X̃ ′ to

a non-linear tree as tubes are removed only when both the bounding vertex graphs

are circles. Hence the result.

Let v be a cyclic vertex of T ′′ and L′′ the corresponding vertical tree (line) in X̃ ′′.

Denote by ΛH the limit set in ∂G of a subgroup H of G.

Lemma 5.4.2. The number of components of ∂G \ Λstab(v) is equal to the number

of edges incident to v in T ′′.

Proof. The number of edges incident to v is equal to the number of strips attached

to L′′, which is equal to the number of components of ∂N(L′′). The number of

components of ∂G\Λstab(v) is equal to the supremum of the number of components

of X̃ ′′ \ L′′+k, where k ∈ N. Let K be the number of strips attached to L′′. Let L′′i

be the boundary line of the ith strip such that L′′ 6= L′′i . Note that the vertical tree

containing L′′i is not equal to L′′i as otherwise the corresponding strip would have been

removed to obtain X̃ ′′. By construction, L′′i has exactly two half-spaces. Let Y ′′i be

the half-space of L′′i that does not contain L′′. Note that no strip of Y ′′i contains L′′i

as otherwise L′′i would have more than two half-spaces. By Lemma 4.2.16, Y ′′i \L′′+ki

and hence Y ′′i \ L′′+(k+1) is connected, for every k ∈ N. Hence the result.

Proposition 5.4.3. For each edge of Tjsj with stabiliser H, there exists an edge of

T ′′ whose stabiliser is H.

Proof. Since each edge of Tjsj is incident to a cyclic vertex, let stab(u) be the cyclic

vertex group of Tjsj that contains H. Then H is the stabiliser of a component of

∂G \ Λstab(u). Let v be a vertex of T ′′ such that stab(v) = stab(u) (Lemma 5.4.1).

Then the number of edges incident to v is equal to the number of components of

∂G \ Λstab(u), by Lemma 5.4.2. Further, H is the stabiliser of an edge incident to
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v as each edge incident to v induces a unique component of ∂G \ Λstab(u).

Definition 5.4.4 ([GL16]). A G-tree T̂ is said to be a refinement of a G-tree T if

there exists a G-equivariant map p : T̂ → T such that p sends any segment [x, y]

in T̂ onto the segment [p(x), p(y)]. In other words, T̂ is obtained by blowing up

vertices of T .

Corollary 5.4.5. T ′′ is a refinement of Tjsj.

Proof. Indeed, every edge stabiliser of Tjsj is an edge stabiliser of T ′′, by Proposi-

tion 5.4.3. Further, any edge stabiliser of T ′′ that is not an edge stabiliser of Tjsj

has to belong to a maximal hanging surface vertex group in Tjsj (Definition 1.3.1)

and hence gives a relative splitting of the maximal hanging surface subgroup that it

belongs to. Hence the result.

Recall that a surface subgroup G′ of G is a hanging surface group ([Sel97]) if there

exists a graph of groups decomposition of G such that G′ is a vertex group and the

peripheral subgroups of G′ are precisely the incident edge subgroups.

Lemma 5.4.6. The stabiliser H a edge e of T ′′ is not an edge stabiliser of Tjsj if

and only if the cyclic vertex u incident to e in T ′′ is of valence two and both the

non-cyclic vertices adjacent to u are stabilised by hanging surface groups.

Proof. One direction is clear, since no edge of Tjsj is such that the cyclic vertex

incident to this edge is adjacent to two hanging surface group vertices.

Conversely, if H is not an edge stabiliser of Tjsj, it is contained in a maximal hanging

surface group of Tjsj. Thus u is of valence two, by Lemma 5.4.2. Further, the

stabilisers of both the vertices adjacent to the u are hanging surface groups as

their image in Tjsj is contained in the maximal hanging surface group that contains

H.

So we can modify X ′′ to Xjsj by removing tubes which connect hanging surface

groups. This requires an identification of such groups, which we do in the next

subsection.
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5.5 Surface graphs

Definition 5.5.1. A vertex graph of a tubular graph of graphs is said to be a

surface graph if the graph is not a circle and the fundamental group of the graph is

a surface group whose peripheral subgroups are precisely the subgroups induced by

the incident edge graphs.

In other words, a vertex graph with its incident edge graphs is a surface graph if its

fundamental group is a hanging surface group.

Lemma 5.5.2. A vertex graph of a Brady-Meier tubular graph of graphs is a surface

graph if and only if every edge of its double is of thickness two.

Recall that the double of a graph Γ with a finite family of immersed cycles

{C1, · · · , Cn} is a tubular graph of graphs whose underlying graph consists of

two vertices with n edges between them, each vertex space is a copy of Γ and the

ith tube attaches as Ci on both sides.

Proof. Let Ds be the double of the vertex graph Xs. It is a standard fact that Ds is

homeomorphic to a surface if and only if Xs is a surface graph.

Note that Ds is Brady-Meier as every vertex of Xs satisfies the Brady-Meier condi-

tions. Thus every edge of Ds is of thickness at least two. If each edge is of thickness

two, then the fact that every vertex link is connected implies that every vertex link

is a circle. This implies that Ds is homeomorphic to a closed surface and we are

done.

Conversely, suppose that there exists an edge e of thickness at least three in Ds. Let

ẽ be a lift of e in D̃S and h the horizontal hyperplane through ẽ. Note that h is a

tree. Let L be a line in h passing through the midpoint m of ẽ. Note that L does

not separate ∂N(m) as ẽ is of thickness at least three. By Lemma 4.2.5, L does not

separate D̃s. But this implies that Ds is not homeomorphic to a closed surface.
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5.6 Construction of Xjsj

We are now ready to construct Xjsj. Let X ′′′ be the tubular graph of graphs obtained

from X ′′ by removing pairs of tubes of X ′′ whenever they are incident to the same

cyclic vertex graph on one side and to surface graphs on the other. Surface graphs

can be identified by Lemma 5.5.2. Denote by T ′′′ the underlying tree of X̃ ′′′. By

Lemma 5.4.6, we have

Proposition 5.6.1. T ′′′ is isomorphic to Tjsj as G-trees.

The proposition proves that X ′′′ is the required Xjsj.

We now have the main result of the article:

Theorem 5.6.2. There exists an algorithm of double exponential time-complexity

that takes a Brady-Meier tubular graph of graphs with hyperbolic fundamental group

G as input and returns a Brady-Meier tubular graph of graphs whose underlying

graph of groups structure is the JSJ decomposition of G.

Proof. Let X be the input tubular graph of graphs and G its fundamental group.

Using Theorem 5.3.4, we obtain the tubular graph of graphs X ′ in double exponential

time. Constructing X ′′ from X ′ involves identifying which tubes are attached to

only cyclic vertex graphs and takes at most polynomial time. The construction of

Xjsj from X ′′ involves removing pairs of tubes adjacent to surface graphs. Detecting

surface graphs involves constructing doubles of vertex graphs (Lemma 5.5.2) and

also takes at most polynomial time.
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Relative JSJ decompositions

Let F be a finite rank free group and H be a finite family of maximal cyclic subgroups

in F . Recall that F splits relative to H if there exists a nontrivial splitting of F in

which each element of H is elliptic. Similarly F is freely indecomposable relative to

H if F does not split freely relative to H.

Definition 6.0.1. A relative JSJ decomposition of (F,H) is a graph of groups

splitting of F which satisfies the conditions of a JSJ decomposition (Definition 1.3.1)

with the additional property that each element of H is elliptic.

Theorem 6.0.2 (Theorem 4.25,[Cas16]). Given a finite rank free group F and a

finite family H of maximal cyclic subgroups of F such that F is freely indecomposable

relative to H, a relative JSJ decomposition of (F,H) exists and is unique.

The main result of this section is the following.

Theorem 6.0.3. There exists an algorithm of double exponential time-complexity

that takes a finite rank free group F and a finite family of maximal cyclic subgroups

H such that F is freely indecomposable relative to H as input and returns the relative

JSJ decomposition of F relative to H.

6.1 A tubular model for (F,H)

We will construct a suitable tubular graph of graphs XF,H to prove Theorem 6.0.3.

133
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There exists a central vertex graph Xsc in XF,H such that π1(Xsc) = F . If H =

{H1, · · · , Hn}, then for each Hi there exists an immersed cycle φi : Ci → Xsc such

that Ci induces a conjugate of the group Hi in π1(Xsc) = F . Note that the word

generated by Ci is cyclically reduced in F as φi is an immersion of graphs.

There exist exactly n tubes in XF,H that are attached to Xsc in the following way.

The edge graph of the ith tube is isomorphic to Ci and the attaching map is given

by φi. We subdivide Xsc and the n edge graphs sufficiently to make all graphs

simplicial.

The other end of the ith tube is attached by an isomorphism to a circular vertex

graph Xi. There are exactly two other tubes attached to Xi, with both attaching

maps being isomorphisms. Each of these two tubes connects Xi to a copy of a

surface graph whose fundamental group is the fundamental group of the oriented

surface of genus two with exactly one boundary component.

Thus, the underlying graph of XF,H is a tree with one ‘central’ vertex sc of valence

n, n cyclic vertices adjacent to sc and each of valence three, and 2n surface vertices

of valence one each.

Let G be the fundamental group of XF,H. Since each vertex group is freely inde-

composable relative to its incident edge groups, G is one-ended, by Theorem 18 of

[Wil12]. Hence, we can assume that XF,H is Brady-Meier, by Theorem A.

Lemma 6.1.1. G is δ-hyperbolic.

Proof. Consider the graph of groups structure of the tubular graph of graphs XF,H.

Each vertex group is either a free group of rank 1 or more and is hence hyperbolic.

By construction, we have that each edge group is maximal cyclic in both its incident

vertex groups. The result is then a consequence of the Bestvina-Feighn Combination

Theorem (Corollary (torsion-free products over Z), page 100 of [BF92]).

Let Gs be a vertex group of the graph of groups structure of G induced by XF,H.

Suppose that Gs 6= Gsc . Then
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Lemma 6.1.2. Gs is a conjugate of either a cyclic vertex group of the JSJ decom-

position of G or a maximal hanging surface group.

Proof. Let Gs be a cyclic vertex group adjacent to Gsc . Let Xs be the corresponding

vertex graph in XF,H. Note that X̃s is a line for any lift of Xs. Further, ∂N(X̃s)

contains three components as there are three tubes attached to Xs by graph isomor-

phisms. By Proposition 4.6.5, a subgroup of Gs is universally elliptic. This implies

that Gs is commensurable with a cyclic vertex group of the JSJ splitting of G. The

result then follows from the fact that Gs is maximal cyclic.

Now suppose that Gs is a hanging surface group induced by a surface graph Xs.

Suppose that Gs is not maximal. Then there exists g ∈ G \Gs such that G splits

over < g > and < g > is not elliptic in the Bass-Serre tree of a cyclic splitting

induced by some element of Gs. Let L be an axis of g in X̃F,H. Then the above

implies that L and a line L′ ⊂ X̃s cross (by Lemma 4.6.1). If L is transversal and

meets X̃s, then L has to meet a vertex graph adjacent to X̃s. But any vertex graph

adjacent to X̃s is a line whose stabiliser is a cyclic vertex group of the JSJ as seen

above. Hence L cannot cross such a vertex graph. This implies that L is contained

in X̃s, contradicting the fact that g /∈ Gs.

Corollary 6.1.3. If Tjsj is the JSJ tree of G and T the underlying tree of X̃F,H,

then Tjsj is a refinement of T obtained by blowing up lifts of the central vertex sc.

We are now ready to prove the main result of this section.

Proof of Theorem 6.0.3. Given (F,H), the space XF,H can be constructed algorith-

mically. Constructing Xsc and the tubes attached to Xsc takes at most polynomial

time in H. Constructing the tubular graph of graphs XF,H then takes at most

polynomial time.

Let Xjsj be the tubular graph of graphs obtained from XF,H in double exponential

time by Theorem 5.6.2. Let Γjsj and Γ be the underlying graphs of Xjsj and XF,H

respectively.

Note that since vertex graphs other than Xsc induce vertex groups of the JSJ, Γjsj
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is obtained from Γ by a ‘blow-up’ of the vertex sc. In other words, there exists a

map of graphs f : Γjsj → Γ such that for each vertex s 6= sc, f
−1(s) consists of a

single vertex.

Let Y be the subgraph of groups of the JSJ decomposition of G induced by f−1(sc).

Then it is easy to see that Y is the relative JSJ of (F,H). Indeed, since each element

of H corresponds to an edge graph of XF,H, every element of H is elliptic in Y . Y

is bipartite since Γjsj is bipartite. The incident edge groups of a non-cyclic vertex

group Gv of Y map onto maximal cyclic subgroups of Gv since Y ⊂ Γjsj is the

JSJ decomposition. In a similar fashion, all other conditions of the relative JSJ

decomposition can be verified since Y ⊂ Γjsj.
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