
HAL Id: tel-01925313
https://theses.hal.science/tel-01925313

Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engineering framework for scalable recombinase logic
operating in living cells

Sarah Guiziou

To cite this version:
Sarah Guiziou. Engineering framework for scalable recombinase logic operating in living cells. Agri-
cultural sciences. Université Montpellier, 2018. English. �NNT : 2018MONTT026�. �tel-01925313�

https://theses.hal.science/tel-01925313
https://hal.archives-ouvertes.fr

THESE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITE DE MONTPELLIER

En Biochimie et biologie pour la santé

École doctorale Sciences Chimiques et Biologiques pour la Santé CBS2 N°168

Unité de recherche Centre de Biochimie Structurale de Montpellier
CNRS UMR5048 – UM – INSERM U1054

Présentée par Sarah GUIZIOU
Le 14 septembre 2018

Sous la direction de Jérôme BONNET

 Devant le jury composé de

Dr. Yolanda SCHAERLI, Assistant professor, University of Lausanne

Dr. Javier MACIA, Professor, Universitat Pompeu Fabra

Dr. Pascal HERSEN, Directeur de recherche, Université Paris Diderot

Dr. Patrick LEMAIRE, Directeur de recherche, Centre de Recherche de Biochimie Macromoléculaire

Rapporteur

Rapporteur

Examinateur

Président du jury

Engineer ing framework for scalable recombinase logic
operat ing in l iv ing cel ls .

Acknowledgments

I would like to thank Prof. Yolanda Schaerli and Prof. Javier Macia for having accepted to

evaluate my thesis, I thank you in advance for your feedback on this work. I would like to thank

also Dr. Pascal Hersen, Dr. Patrick Lemaire, and Prof. Ricard Solé to act as examiners during

my defense. I am looking forward to your striking remarks.

First of all, I would like to warmly thank my PhD supervisor Jerome Bonnet. Jerome gave

me a perfect environment to complete my PhD, in terms of science, working environment and

people. I am deeply grateful to have him as a supervisor, for his support, his patience, his

excitement for science and his sympathy. Jerome guided me during these four years on how to

become a good scientist and a good person. Jerome was the best supervisor I could have ever

expected, as he is an amazing scientist and more importantly a great person.

I am very grateful to my team colleagues, Hung-Ju Chang, Pauline Mayonove, Peter

Voyvodic, Ana Zuniga, Martin Cohen-Gonsaud and Angélique DeVish, which have filled the

lab with great energy and good science. It has been great for me to work in this warm and

intense scientific atmosphere. I am really thankful to Luca Ciandrini for his great scientific and

human support and his calmness at all events. I would like to thank Guillaume Cambray for

its helpful scientific critiques and advice. Thank you all for all the friendly times in the lab

or around a beer, you all have been of great support: gracias, merci, thanks, grazie, Xiexie.

I would like to thank my collaborators at INRA Jouy en Josas, Matthieu Jules and Vincent

Sauveplane on the B. subtilis project. It was a pleasure to work with them on this project, and

I am thankful for their patience, trust and support. Many thanks also to Nathalie Declerck and

Caroline Clerté for having shared their knowledge on the microscope and on B. subtilis with

me.

I would like to warmly thank my collaborators at the LIRMM, Michel Leclere, Guillaume

Kihli and Federico Ulliana. It was for me a really exciting collaboration, and I am thankful

for their excitement for the project, the intense scientific discussion and their patience on our

multiple changes of opinion. I am really grateful to Konstantin Todorov who initiated this

collaboration, and mainly for his friendship and for having added music to my thesis. I would like

to thank Jean-Luc Pons for his patience and help during my linux and programming learning,

and thanks also to Laurent Bonnet and Violaine Moreau for the great and warm website that

is CALIN.

I would like to thank the interns who worked with me: Léa Meneu, Chloé Tailhades, So-

phie Affalo, Stanley Mitchell, Morgane Terezol and Thomas Meiller-Legrand. They all have

contributed to this work, they have been great people to work with and they have taught me

patience.

A special thanks to the iGEM team 2013. I started to work on recombinase-based logic

gates during this summer. Thanks Elodie, Manon, Antoine, Antoine, Quentin, Stick, Yoann,

ii

Fanny, Isabelle, Hang for this intense project. I would like to warmly thank Gilles Truan who

supervised us during the summer, had faith in me during this project and has supported me

ever since. I would like to thank Claude Marange who took care of all of us during all our

degrees.

I am really grateful to have spent these four and a half years at the CBS. It was always a

pleasure to come to the lab, thanks to Pierre-Emmanuel Millet who makes this place work as

well as it does. Thanks to everyone at the CBS, which has been my second home and family

during these years. I am really grateful to have been surrounded by all these skilled, friendly

and cheerful colleagues and scientists. I want to especially thank Martin, Angélique, Pauline,

Hung-Ju, Peter, Ana, Léa, Aurélie, Michel for being enthusiastic lab neighbors, and for having

borne my grumbling. A special thanks to Lucile who guided me through latex and to Ashley

who was always open to help me code, write or to have beers. A huge thanks to my office-

mates Annika, Pauline, and Anna for the nice and welcoming working atmosphere, it has been

wonderful for me to be surrounded by you.

I am deeply thankful to have found awesome people at the CBS with whom I have spent

many hours outside of the lab deciphering science and the world. Thanks to Ashley, Mélanie,

Elise, Luca, Annika, Lucile, Peter, Pauline, ... all of the beer group.

A warm thanks to all the previous members of the CBS, and especially to my first compan-

ions of my thesis, Tom, Solène and Alice.

I would like to give a special thanks to Alexis Courbet, for his friendship, his strong support,

and the great philosophical and scientific discussions. Thanks for showing me the path through

the PhD.

I would like to warmly thank my two PhD student buddies: Pierre and Carola, with whom

I shared all my thesis grumbling and who have always been there in the hard times and have

pushed me through to the end. Good luck to Pierre for his last month(s) and to Carola for

her final years. I have been lucky during all the years of my thesis and all the years before to

have been surrounded by faithful friends. I am really grateful to have you guys, thanks Klervi,

Melissa, Helo, Elodie, Caro, Zoé, Xavier, Manon, Antoine, Arthur, Helene and to the little

Gauthier.

To finish, I would like to warmly thank my parents, Maurice and Dominique, and my

brothers, Léo, Maël, Erwan and Thomas for their unconditional support. A special thanks for

welcoming me during my writing retreat, and thanks to Thomas for the gaming breaks. Thanks

for your support from the beginning and for having always believed in me.

I want to give a special thanks to sci-hub which has been a precious and loyal help during

these four years. Thanks also to the birds and the four hens who have kept me company during

my writing. Many thanks to the kilograms of bacteria that I have killed during my thesis;

thanks for having given your body to science.

Contents

1 Introduction 1

1.1 Synthetic Biology . 2

1.1.1 A brief history of synthetic biology . 2

1.1.2 Principles of synthetic biology . 5

1.1.3 Technologies underpinning to the development and extension of synthetic

biology . 7

1.1.4 Engineering part libraries and complex devices 9

1.1.5 Applications of synthetic biology . 13

1.2 Logic circuits built using biological components. 19

1.2.1 Introduction to logic and circuit design strategies 20

1.2.2 In vitro biocomputing . 27

1.2.3 Implementing logic circuits in living organisms - in vivo bio-computation 30

1.2.4 A comparison of the different design strategies for in vivo implementation

of Boolean functions . 36

1.3 Recombinases: tools for DNA editing . 40

1.3.1 Serine and tyrosine recombinases and their mechanisms 40

1.3.2 Recombinases as a tool for DNA editing 47

1.3.3 Recombinases as a tool for logic implementation 49

1.4 Thesis objectives . 56

2 Boolean logic in multicellular consortia using recombinases 57

2.1 An automated design framework for multicellular recombinase logic 58

2.2 Implementation of multicellular Boolean logic using recombinase switches 66

2.2.1 Selection of a set of four orthogonal integrases 67

2.2.2 Design of a standard logic device architecture 70

2.2.3 Characterization of a set of logic elements 71

2.2.4 Construction and characterization of the 14 computational devices for

4-input multicellular Boolean logic . 75

iv Contents

2.2.5 Prototyping a multicellular system simulating the implementation of com-

plex Boolean logic functions . 82

2.2.6 Characterization of parts to optimize logic devices 86

2.2.7 Discussion . 89

2.2.8 Materiel and Methods . 92

3 Programming history-dependent logic in a multicellular system 109

3.1 Introduction . 111

3.2 Automated design of history-dependent programs 113

3.2.1 Distributing history-dependent gene-expression programs within a multi-

cellular system . 113

3.2.2 A modular scaffold design to implement history-dependent gene expres-

sion programs . 113

3.2.3 Automation of history-dependent gene-expression program designs 116

3.2.4 Minimization of history-dependent circuits using Boolean logic devices . . 116

3.3 Implementation of history-dependent gene-expression programs in multicellular

consortia . 121

3.3.1 OSiRIS: Optimization by SynthesIs of Recombination Intermediate States 121

3.3.2 Characterization of a history-dependent program by sequential induction 128

3.4 Discussion . 133

3.5 Materials and Methods . 135

3.5.1 Equations for the determination of number of functions/strains/devices

for history-dependent logic . 135

3.5.2 Automated generation of genetic designs to execute multicellular Boolean

logic and history-dependent gene expression programs 135

4 Design of scalable single-cell recombinase logic 141

4.1 RECOMBINATOR: a framework for combinatorial design of single-cell integrase

logic . 142

4.1.1 Introduction . 142

4.1.2 Definition of a formal language to permit the generation of a design database144

4.1.3 Ontology of synthetic gene circuits . 146

4.1.4 Generation of all possible sequences . 150

Contents v

4.1.5 A web-interface for exploring on the database 153

4.1.6 Discussion . 154

4.2 Using the Recombinator database for the systematic design and construction of

all single-cell 3-input logic gates . 155

4.2.1 P-class and its in vivo correspondence . 156

4.2.2 NP-class and its in vivo correspondence using DNA inversion 158

4.2.3 Using the Recombinator database to select inversion-based logic devices . 159

4.2.4 Discussion . 161

5 Discussion 163

5.1 Summary . 164

5.1.1 Distribution of computation in multicellular system 164

5.1.2 Minimization of Boolean logic circuit design. 165

5.1.3 Systematic engineering of synthetic biological circuits. 166

5.2 Control and engineering of serine integrase activity. 167

5.3 The use of integrase coupled with excisionase permits the implementation of

wider types of logic. 168

5.4 What are the future applications and future challenges of biocomputing? 170

Bibliography 173

Annex 201

A Systematic rules for designing minimized integrase logic circuits. 201

A.1 Definition of elements and composition rules for the design of single-cell logic

devices . 202

A.2 Implementation in Python of a set of factorisation rules using a brute force approach204

A.3 Discussion . 205

B Supplementary Information - Introduction 207

B.1 Implementation of computation by regulation of transcription using Zinc Fingers,

TAL effectors, and CRISPR. 207

B.2 In vivo implementation of sequential logic systems. 208

vi Contents

B.2.1 Circuits using rewritable memory devices. 208

B.2.2 Irreversible history-dependent circuits. 209

C A part toolbox to tune genetic expression in B. subtilis 211

D Supplementary Data: An automated design framework for multicellular re-

combinase logic. 251

E Supplementary Data of History-dependent programs: Cell History Tracker 257

F DNA sequences of parts, primers, fragments. 261

F.1 DNA sequences of parts . 261

F.2 Primers . 271

F.3 DNA sequences of fragments . 273

G Protocols 283

H BioArt 295

Chapter 1

Introduction

Contents

1.1 Synthetic Biology . 2

1.1.1 A brief history of synthetic biology . 2

1.1.2 Principles of synthetic biology . 5

1.1.3 Technologies underpinning to the development and extension of synthetic

biology . 7

1.1.4 Engineering part libraries and complex devices 9

1.1.5 Applications of synthetic biology . 13

1.2 Logic circuits built using biological components. 19

1.2.1 Introduction to logic and circuit design strategies 20

1.2.2 In vitro biocomputing . 27

1.2.3 Implementing logic circuits in living organisms - in vivo bio-computation . 30

1.2.4 A comparison of the different design strategies for in vivo implementation

of Boolean functions . 36

1.3 Recombinases: tools for DNA editing . 40

1.3.1 Serine and tyrosine recombinases and their mechanisms 40

1.3.2 Recombinases as a tool for DNA editing . 47

1.3.3 Recombinases as a tool for logic implementation 49

1.4 Thesis objectives . 56

2 Chapter 1. Introduction

1.1 Synthetic Biology

1.1.1 A brief history of synthetic biology

«Toutes les sciences naturelles suivent une évolution analogue, elles débutent par l′observation

et la classification des objets et des phénomènes, puis elles décomposent ceux-ci pour

déterminer le mécanisme physique de leur production, elles deviennent alors analytiques ;

lorsque le mécanisme d’un phénomène est connu, il devient possible, en dirigeant les forces

physiques, de reproduire ce phénomène ; la science est devenue synthétique. [...] La biologie

doit évoluer comme les autres sciences naturelles et être successivement descriptive, analytique

et synthétique. »

«All natural sciences follow an analog evolution, they start from the observation and

classification of objects and phenomena, they decompose these to determine the physical

mechanism of their production, then they become analytic ; when the mechanism of a

phenomenon is known, it becomes possible, by directing the physical forces, to reproduce this

phenomenon ; science is becoming synthetic [...] Biology has to evolve as other natural

sciences and to be successively descriptive, analytic, and synthetic. »

Stéphane Leduc 1910

«What I cannot create I do not understand. »

Richard Feynman 1988

Since the dawn of civilization, humans have studied and used living organisms that sur-

rounded them, but also shaped those life forms via selective breeding to obtain improved sources

of food and materials. We also developed workflows for large scale production of refined foods,

such as beer or bread with yeast. However, at this time, we did not understand how living

organism operate at the molecular level.

The term "synthetic biology" was used for the first time by Stéphane Leduc [Leduc 1910]

[Leduc 1912]. Stéphane Leduc was interested in the synthesis of life from inanimate materials.

At this time, he envisioned that biology would progress like the other sciences by successively

being descriptive, analytical, and finally synthetic. This idea was mainly inspired from Jacques

Loeb and his mechanistic concept of life.

In 1961, in their publication summarizing their study of the lac operon, Jacques Monod

and François Jacob envisioned the future ability to assemble new regulatory systems from

elementary molecular components [Monod 1961]. This publication is now considered as the

origin of synthetic biology [Cameron 2014]. It is also contemporary with the discovery of the

structure of DNA [Watson 1953], demonstrated a few years before to be the support of genetic

information by Avery and colleagues [Avery 1944] . By the late fifties, Francis Crick introduced

the first definition of the central dogma of molecular biology [Crick 1958].

1.1. Synthetic Biology 3

Between 1960s and 1980s, various molecular biology tools were developed, leading to the field

of genetic engineering. These breakthroughs included: (1) the discovery of restriction enzymes

in the 1960s (Nobel Prize 1978) [Arber 1962, Smith 1973]; (2) the application of the restriction

enzymes for DNA recombinant technology (Nobel Prize 1980) [Jackson 1972]; (3) the develop-

ment of oligonucleotides synthesis [Beaucage 1981, McBride 1983]; and (4) the development of

the Polymerase Chain Reaction (PCR) (Nobel Prize 1993) [Mullis 1986].

In 1978, to congratulate Daniel Nathans, Werner Arber, and Hamilton Smith for the No-

bel Prize on DNA restriction enzymes, Szybalaski and Skalka wrote, "The work on restriction

nucleases not only permits us easily to construct recombinant DNA molecules and to analyse

individual genes, but also has led us into the new era of" synthetic biology" where not only

existing genes are described and analyzed but also new gene arrangements can be constructed

and evaluated" [Szybalski 1978]. All these technological developments quickly enabled the pro-

duction of proteins of interest using microorganisms, such as recombinant somatostatin and

insulin [Itakura 1977] [Goeddel 1979]. However, genetic engineering was mostly restricted to

cloning and recombinant gene expression. Detailed knowledge of biological systems was still

limited in part due to the technological limitations of DNA sequencing at the time.

In the mid-1990s, the development of high-throughput techniques for DNA sequencing, quan-

tifying RNA, protein, lipids, and metabolites, and the increasing capacities of computational

tools led to the field of systems biology. Biologists and computer scientists worked in symbiosis

to reverse-engineer cellular networks. From this basic research effort emerged a view of cellular

networks organized as a hierarchy of discernible and functional modules [Hartwell 1999].

Stéphane Leduc said: "Biology must evolve like other natural sciences and to be succes-

sively descriptive, analytic and synthetic." (1910). As such, the development of systems biology

with the view of organisms as composed of modular, regulatory networks laid the foundation

for synthetic biology. The construction of new biological systems permits (1) the further un-

derstanding of biology and (2) the use of engineered biological systems with novel functions

for biotechnological applications, such as manufacturing high-value compounds or addressing

unmet healthcare needs.

However, the construction of useful synthetic biological system remained "an expensive,

unreliable and ad hoc research process" [Endy 2005]. Engineering biology is indeed a great

challenge due to the large complexity of biological systems. To facilitate the engineering of

biology, scientists from various backgrounds were inspired from other engineering fields. They

applied well-known engineering principles, such as standardization, decoupling, and abstrac-

tion, to simplify the construction of synthetic biological systems. The use of these engineering

concepts, together with the development and sharing of common tools and platforms is what

clearly differentiates genetic engineering from synthetic biology.

The first Synthetic Biology conference, hold at MIT (SB1.0) in 2004, was an important

catalyst for the nascent field and helped create its community and culture. Moreover, the

4 Chapter 1. Introduction

iGEM competition, a synthetic biology student competition each year gathering teams from

the entire world (4 teams in 2004 and 337 teams in 2017) has supported the quick, worldwide

expansion of synthetic biology, the training of young synthetic biology researchers, and helped

spread public awareness of the field.

In order to standardize synthetic biological systems, researchers decomposed them into

devices and biological parts. Parts, devices, and systems are supposed to be stored with

their precisely and documented characterization in an open-access database such as the Reg-

istry of Standard Biological Parts (http://parts.igem.org/Main_Page). Shared information

should support further construction of more complex systems using already optimized and well-

characterized parts. This open-access culture is a strong component of synthetic biology inspired

from computer science.

In the past 15 years, many parts and circuits of increasing size have been engineered, leading

to a large collection of biological parts and a large set of applications in biotechnology and health

(Figure 1.1). However, the complexity of synthetic biological systems did not increase much

as expected in the early 2000s. Parts composition is still unreliable and circuit design is still

mainly a trial-and-error process. Moreover, the specifications of standard biological parts are

still not common to all and little effort is made on the standardization and distribution of

well-functioning parts. Due to intellectual property and commercialization concerns, a part of

the community does not intend to distribute its work. Consequently, we are now at a critical

point where the community has to choose between the ad-hoc development of proof-of-concept

and prototype circuits and pushing the standardization and characterization of parts and part

composition. The challenge is to provide an open ecosystem that supports academic research,

companies development, and public access to the tools of synthetic biology. The following years

will be crucial.

In my opinion, synthetic biology could be separated in three paths with different, yet com-

plementary, often overlapping goals: (1) the development of foundational technology supporting

the engineering of biology: new design and engineering principles, standards, and workflows,

including the development of standard parts and devices; (2) the application of these tools to

answer fundamental questions in basic research; and (3) the application of these devices to solve

pressing challenges in biotechnology, health, and the environment. In my thesis, I developed

the first aspect.

In this introduction to synthetic biology, I will present: (1) the engineering principles that

founded the synthetic biology community; (2) the techniques enabling high-throughput con-

struction and characterization of biological circuits; (3) the fundamental biological parts and

devices which were engineered these past years; and (4) the various applications of synthetic

biological circuits.

1.1. Synthetic Biology 5

Figure 1.1: A brief history of synthetic biology. Timeline from [Cameron 2014]

1.1.2 Principles of synthetic biology

Synthetic biology is based on engineering principles applied to the construction of artificial

biological circuits, networks, and systems. Engineering is defined as a branch of science and

technology concerned with the design, building, and use of engines, machines, and structures.

It has been previously applied to physics (e.g. in aviation) and chemistry. The three founda-

tions for engineering biology defined in 2005 by Drew Endy are, similarly to other disciplines,

standardization, decoupling, and abstraction [Endy 2005]. Standardization corresponds to the

definition of standards for biological parts, functions, experimental measurements, system oper-

ation, and data-exchange protocols. Decoupling is the decomposition of a complicated problem

into many simpler problems that can be worked out independently, such as the decoupling of de-

sign and fabrication, and the decomposition of biological systems into simple devices and parts.

Abstraction involves the modelization of biological circuits and systems and the organization of

biological function information in different levels of complexity that can be manipulated without

6 Chapter 1. Introduction

detailed knowledge of the lower layers.

The main concept that combines these 3 principles is the parts, devices, and systems ap-

proach (Figure 1.2), which can be defined as follows [Baldwin 2015]: (i) Parts encode biological

functions (e.g. promoters, terminators, ribosome binding sites, genes). (ii) Devices are made

from a composition of parts and encode human defined functions (e.g. logic gates, AHL de-

tectors) (iii) Systems perform complex tasks decomposable in functions, such as counting or

intracellular control functions.

Figure 1.2: Part-device-system principle in synthetic biology.

Great efforts have been put in the definition, standardization, and characterization of bio-

logical parts. First, a common language was defined [Arkin 1999], followed by a standard for

part assembly [Knight 2003], a datasheet for part description [Canton 2008], and an in vivo ref-

erence for measuring part activity [Kelly 2009]. These standardizations were broadly deployed

to the world community via the iGEM competition, which pushed the young participants to

use these standards. Through iGEM, the community has been shaped from the beginning to

foster well-characterization and open-access distribution of standard parts [Smolke 2009]. All

iGEM teams, and some partner labs deposed their biological parts and devices in the iGEM

registry, quickly resulting into a large collection of parts. However, only a small number of these

parts are well-characterized and reliable. Consequently, a reduced set of parts are repetitively

used. Presently, the iGEM competition continues to emphasize for parts and measurement

standardization, for example via the "Measurement" track of the competition.

Most engineering processes are based on the design-build-test cycle (Figure 1.3). Modeling

and prediction of system behavior permit the reduction of cycles required to obtain the final

circuit. However, for biological circuits, due to the lack of models and the low composability of

parts, the design-build-test cycle is at the core of the engineering process and frequently several

rounds have to be performed. To speed-up the process, circuit variants are constructed and

characterized simultaneously.

We can define the design-build-test cycle following this series of steps:

(i) definition of circuit specifications.

(ii) decomposition of the circuits into simple devices and parts.

1.1. Synthetic Biology 7

DESIGN

BUILDTEST

Figure 1.3: Design, build and test cycle.

(iii) design, construction, and characterization of the non-existing parts according to existing

databases (design-build-test cycle).

(iv) composition of the parts/devices to build up the circuits.

(v) precise and well-documented measurement of circuit behavior in standard conditions.

(vi) comparison of circuit behavior with circuit specification; leading either to a new cycle

with optimization of circuit according to comparison analysis or distribution of the circuit.

The steps from (i) to (ii) corresponds to the DESIGN step. The step (iii) corresponds to

a separated design, build and test subcircuit. The BUILD corresponds to partially (iii) but

mainly (iv), and TEST to (v).

An important step is the decomposition of the circuit into parts and devices. Each part and

device should be characterizable and reusable independently of the full circuits. It permits to

simplified characterization processes and to shorten subsequent circuit design.

One important aspect for simplification of biological engineering is the decoupling between

design and fabrication. Most genetic engineers were/are limited by the synthesis and assembly

of DNA parts. With the rapid development of synthesis, sequencing, and assembly technology,

their robotizations, and corresponding price drop, more and more circuit construction will be

not be performed by the designer. We will have in the following years a complete decoupling

between design and fabrication of genetic circuits.

1.1.3 Technologies underpinning to the development and extension of syn-

thetic biology

Improvement in DNA sequencing, DNA synthesis, computational tools and automation support

the development of synthetic biology.

8 Chapter 1. Introduction

DNA sequencing

The human genome project was completed in 2001 after 13 years and 2.1 billion USD

[Shendure 2017]. 17 years later, the genomes of most known organisms have been sequenced

and full genomes are sequenced daily for research and health applications. The development

of new sequencing methods, along with the advances in computation, triggered a huge drop in

price and time required for genome sequencing. In 2008, the development of next-generation

sequencing (NGS) brought the price of full-genome sequencing, from around 10M USD to 10K

USD in 3 years. Now, full genomes are sequenced for $1,000 in 24 hours, with some technologies

even allowing sequencing in one hour.

In synthetic biology, Sanger sequencing is used routinely for verification of DNA cloning.

Commonly, samples are sent to service providers where single sequence reactions cost from 2.5

to 5 euros and require 12 hours to 3 days, depending on the type of service requested; however,

here to, next-generation sequencing is starting to replace Sanger sequencing.

DNA synthesis

Gene synthesis is based on the synthesis of an oligonucleotide pool that are then combined

into double-stranded DNA. The drop in the cost of oligonucleotide synthesis has been a crucial

step in the development of affordable DNA synthesis. As of today, an oligonucleotide of around

20 bp costs around 2.50 euros.

The cost of double-stranded DNA recently dropped with the development of silicon-powered

DNA synthesis, which miniaturized the synthesis process. For example, the synthesis of double-

stranded DNA costs $0.07 per bp within 7-10 working days, and $0.09 per bp if coupled with

cloning within vector (20 working days). Faster synthesis is also possible, such as synthesis and

shipping of short double-stranded DNA of less than 750 bp in 2 to 4 business days.

The low price and short time of synthesis has changed our way of doing synthetic biology,

as the limited step is mainly the design and characterization of new synthetic circuits and not

their construction. However, for large circuits or specific vectors, cloning is still required as

the length of synthesizable fragments is limited and some low-copy plasmids not supported by

cloning platforms.

DNA assembly

The assembly of DNA parts has always been a crucial step in synthetic biology workflows, as

circuits are assembled from various parts, either pre-existing or synthesized. To facilitate DNA

assembly, a standard assembly process based on restriction enzymes was developed to allow low-

cost and systematic assembly of synthetic devices. The Biobrick Standard Assembly developed

in 2003 by Tom Knight is based on 4 restriction enzymes: EcoRI, SpeI, NheI, PstI [Knight 2003].

All parts are surrounded by a prefix composed of EcoRI and SpeI and a suffix composed of

NheI and PstI. The assembly of two Biobrick parts leads to a Biobrick part still composed of

a prefix and a suffix, as the two previous parts are assembled via a 6 bp scar formed by SpeI

1.1. Synthetic Biology 9

and NheI. Assemblies based on restriction-ligation, such as Biobrick assembly, are not very

efficient and require standardization of parts by removing the restriction sites naturally existing

in the parts. Other assembly methods which are modular, single-step, and more efficient were

developed, such as Gibson Assembly [Gibson 2009] and Golden Gate Assembly [Engler 2008].

The Gibson Assembly method that I mainly used during the last 4 years uses a 40 bp sequence

overlap between assembled DNA fragments using a single isothermal step, where the sequence

homology between fragments can easily be added by PCR. This method permits assembly of

up to 5 fragments in a single experiment.

Due to the decrease of synthesis prices, DNA assembly, strain construction, and charac-

terization are increasingly performed at medium- or high-throughput rates (several tens to

hundreds per day). However, repetitive manual pipetting steps are required which take time

and lead to large error probabilities. Pipetting robots are now available at low cost and with

reduced programming requirements. One example is the Opentrons robot composed of one to

two pipetting arms and a simple and flexible programming interface via Python, available for

$4,000. More complex robots have been also available for decades but required experts for their

programming, which make them useful for companies to automatized processes but less useful

for academic labs. Moreover, several companies have now created robot facilities to perform

experiments such as high-throughput cultures, flow-cytometer and plate reader analysis. Sam-

ples, strains, and experiment specifications are sent to the facilities and all experiments are

performed by the outsourced company. While not yetwidely used, soon all experiments will be

performed by service providers using automated pipelines and researchers will be able to focus

only on experiment design and result analysis. Researchers will thus spend more time thinking

about their design than performing repetitive steps; although experiments requiring high-level

of precision or not amenable to automation will still be performed by the researcher.

This workflow corresponds to a totally decoupled design-build-test cycle with highly spe-

cialized engineers at each step.

1.1.4 Engineering part libraries and complex devices

Synthetic biology is based on the engineering of genetic circuits composed of standard biological

parts. Therefore, for the precise engineering of complex circuits, large libraries of biological parts

enabling fine tuning of gene expression are needed. In response to these needs, several libraries of

components were engineered to regulate gene expression at several levels (mainly transcription

and translation) for many organisms of interest including Escherichia coli [Mutalik 2013a],

Saccharomyces cerevisiae [Lee 2015], and mammalian cells [Ede 2016].

Many part libraries were developed for the Gram-negative bacteria model E. coli, as it has

historically been the most widely used organism in synthetic biology. Such libraries include

collections of promoters, terminators, ribosome binding sites, and repressors for the regulation

10 Chapter 1. Introduction

of gene expression named GOI (Gene Of Interest). The objective of these libraries is to have

sequence variants and fine-tuning of gene expression at various levels. Sequence variants are

essential for the engineering of large genetic circuits to avoid recombination between homolo-

gous parts [Nielsen 2016]. The BIOFAB (International Open Facility Advancing Biotechnology)

foundation aimed to the design and build of biological parts. The BIOFAB was indeed at the

origin of the construction and characterization of large libraries of promoters [Kosuri 2013]

[Mutalik 2013a], RBSs [Gardner 2000] [Egbert 2012] [Kosuri 2013] [Mutalik 2013a] and tran-

scription terminators [Chen 2013] [Cambray 2013].

At the beginning of my Ph. D., I performed similar work for the Gram-positive bacteria

model B. subtilis [Guiziou 2016]. The number and diversity of biological parts for B. subtilis was

limited at this time, despite its long history as a model organism and biotechnology workhorse.

Therefore, I engineered libraries of promoters, ribosome binding sites, and degradation tags.

For clarity and flow, I will not detail this work later on my manuscript; however summary of

this work is available in the following text box and a reprint of the publication can be found in

Annex C.

1.1. Synthetic Biology 11

A part toolbox to tune genetic expression in Bacillus subtilis.

Sarah Guiziou, Vincent Sauveplane, Hung-Ju Chang, Caroline Clerte, Nathalie Declerck,

Matthieu Jules and Jerome Bonnet. NAR 2016. [Guiziou 2016]

Libraries of well-characterised components regulating gene expression levels are essential to

many synthetic biology applications. While widely available for the Gram-negative model bac-

terium Escherichia coli, such libraries were lacking for the Gram-positive model Bacillus subtilis,

a key organism for basic research and biotechnological applications. Here, we engineered a ge-

netic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein

degradation tags to precisely tune gene expression in B. subtilis.

We first designed a modular Expression Operating Unit (EOU) facilitating part assemblies and

modifications, and providing a standard genetic context for gene circuit implementations. In the

Expression Operating Unit, 40 bp spacers are placed at strategic positions to simplify Gibson

Assembly.

We then selected native constitutive promoters of B. subtilis and efficient RBS sequences from

which we engineered three promoters and three RBS sequence libraries exhibiting ~14,000-

fold dynamic range in gene expression level. Libraries are generated by randomization of 3

nucleotides in the -10 box or between the -10 and -35 box for promoters and 6 nucleotides

in the Shine Dalgarno for RBS. After cloning and integration within the B. subtilis genome,

libraries were sorted into different bins to obtain different ranges of expression levels. After

characterization of a reduced number of variants per bin, we obtained a library spanning the

full range of gene expression.

We also designed a collection of SsrA proteolysis tags of variable strengths by randomization of

the three C-terminal aminoacids of the B. subtilis Ssra tag. Finally, by using fluorescence fluc-

tuation methods coupled with two-photon microscopy, we quantified the absolute concentration

of GFP in a subset of strains from the library. Using this subset of absolute quantification, we

estimated the absolute concentrations of GFP for our full library.

Our complete promoter and RBS sequence library comprising over 135 constructs enables tuning

the GFP concentration in over five orders of magnitude, from 0.05 to 700 µM. This toolbox of

regulatory components will support many research and engineering applications in B. subtilis.

All strains and plasmids are available at BGSC (Bacillus Genetic Stock Center: http://www.

bgsc.org) and have already been requested many times.

12 Chapter 1. Introduction

In addition to parts for constitutive expression of genes, inducible parts are needed to permit

construction of dynamic circuits and for detection of output molecules. The most used part

for inducible expression are inducible promoters based on repressor and activator proteins, such

as promoters inducible by isopropyl β-D-1-thiogalactopyranoside (IPTG), anhydrotetracycline

(aTc) and arabinose. More details on parts for inducible expression of gene are available in the

Section 2 describing the implementation of logic in living organisms.

The construction of these large part libraries have shown that gene expression is highly

dependent on genetic context. In other words, the behavior of a particular combination of

promoter, 5’UTR and gene cannot be inferred from the separated behavior of each part. Mu-

talik and colleagues quantified part reliability, and found that transcription and translation

efficiencies are not only dependent on promoter and ribosome binding site efficiencies but also

on interaction between parts such as promoter and GOI [Mutalik 2013a]. Consequently, meth-

ods and tools were developed to insulate parts from genetic context, such as the use of BCD

[Mutalik 2013b], ribozymes [Lou 2012], terminator upstream of gene expression cassettes, and

insulated promoters [Davis 2011]. Insulation of parts permits the reduction of the trial-and-error

process for engineering large gene regulatory networks [Nielsen 2016] [Zong 2017].

Based on these parts regulating gene expression, more complex circuits were built. 2 gene

regulatory circuits, the repressilator of Elowitz and Leibler [Elowitz 2000], and the toggle switch

of Gardner and Collins [Gardner 2000] are considered to be the starting point of modern syn-

thetic biology. Of note, a precursor circuit, similar to the Gardner et al. toggle switch, was

constructed in 1985 [Toman 1985] for the detection of alterations in Escherichia coli induced by

DNA-damaging agents. Both circuits from 2000 are based on repressors cross-repressing their

transcriptions. For the two papers, a simple mathematical model of circuit behavior was de-

fined and permitted the identification of the parameters and conditions to tune circuit behavior.

During the same period, cell-cell communication circuits were developed based on quorum sens-

ing using AHL, LuxI, and LuxR system [Weiss 2001]. These circuits have largely been reused,

optimized, and improved in the 15 following years. A diversity of gene regulatory circuits exists

nowadays. Some circuits are now part of synthetic biology textbooks such as pattern formation

[Basu 2005], edge-detector [Tabor 2009], predator-prey [Balagaddé 2008] and integrase-based

Boolean logic gate circuits [Bonnet 2013] [Siuti 2013].

All of these circuits were engineered for E. coli; indeed, most part libraries and devices

are designed and characterized for E. coli. However, tools for other organisms are now being

developed.

As we still have a very limited understanding of how biological systems work, rational design

of biological circuits and molecules, especially proteins, remains a tedious and inefficient task.

Nature evolved during billions of years to lead to today’s complex organisms. Evolution has been

mimicked in lab through randomization and selection, accelerating evolution time scale to a few

days or weeks. This process, called directed evolution, therefore permits the testing of potential

1.1. Synthetic Biology 13

nature diversity, and using a well-designed selection process to obtain the biological circuit of

interest for a desired behavior [Arnold 1998]. Directed evolution is performed at different levels,

such as the level of proteins, networks, or full organisms. The engineering of proteins through

directed evolution has been performed for decades to improve the catalytic activity of proteins

and to design de novo catalytic activities [Arnold 1999, Farinas 2001]. Additionally, directed

evolution was used to obtain new regulatory elements. By combining evolution of proteins

and regulatory elements, networks and metabolic pathways of increasing efficiency have been

engineered [Umeno 2004]. In a general manner, error-prone PCR or randomized oligonucleotides

are used to generate diversity. For evolution of full organisms, the multiplex automated genome

engineering (MAGE) method was developed [Wang 2009], permitting to development of ideal

host organisms [Cobb 2013].

1.1.5 Applications of synthetic biology

Synthetic systems are engineered for three different purposes: (1) the development of tools to

engineer biology, (2) the study of biology and (3) its application to actual challenges. I pre-

viously reviewed tools developed for the engineering of biology. A reduced number of systems

are directly applied to fundamental biology, and most of them are used in the construction of

synthetic organisms, mainly synthetic and minimal genomes. Regarding applications, synthetic

biology is broadly used for (a) the production of molecules of interest (metabolic engineer-

ing), (b) healthcare via the development of cell-based therapeutics and diagnostic systems, (c)

bioremediation and biomaterial production, and (d) art & design.

1.1.5.1 Synthetic biology to build synthetic organisms

The development of synthesis and assembly strategies allowed the synthesis of entire eukaryotic

genomes, like Mycoplasma capricolum or most of the S. cerevisiae chromosomes. In fact, most

assembly strategies, such as Gibson Assembly, were developed for the purpose of assembling

large genome fragments.

The first synthetic genome was that of the bacteriophage φX174 (5,386 bp) in 2003

[Smith 2003], followed by the "small" bacterial genome of Mycoplasma genitalium (582,970 bp)

[Gibson 2008]. The synthesis of an entire functional genome became more realistic with the

synthesis of the 1 Mbp Mycoplasma mycoides genome JCVI-syn1.0 and its transplantation in

Mycoplasma capricolum [Gibson 2010]. In addition to synthesizing natural genomes, the feasi-

bility of whole-genome scale recoding was shown by swapping all rare codons in 42 genes in E.

coli [Lajoie 2013a]. Also, a full genomically recoded organism (GRO) was generated by replac-

ing all known TAG stop codons of the E. coli MG1655 [Lajoie 2013b] and expanded to an E.

coli genome in which seven codons have been replaced [Ostrov 2016].

The Synthetic Yeast Genome Project (Sc2.0) started in 2006. The project aims to synthe-

14 Chapter 1. Introduction

size of the full S. cerevisiae genome, composed of 16 chromosomes and 12.5 Mbp. The first

chromosome was finished in 2014 [Annaluru 2014]. The design principles of this large scale

genome were: (1) to have a genome produce a phenotype similar to the wild type, (2) to

rearrange tRNA genes, introns, and transposons to improve the genome stability (all tRNA

genes are positioned on another chromosome) and (3) to have genetic flexibility to facilitate

future research. The third point was addressed by changing all TAG stop codons to TAA, by

adding short PCR-Tags to permit distinction between synthetic and natural genome, and by

adding loxPsym sites that permit synthetic chromosomal rearrangement and modification via

loxP-mediated evolution (SCRaMbLE) [Shen 2016]. In 2018, 7 chromosomes have been success-

fully synthesized [Richardson 2017] and 3 synthetic chromosomes have been placed in a single

yeast cell capable of conserving its wild type fitness. The SCRaMbLE technique has been used

to study chromosomal structure [Shen 2016] [Mercy 2017]. This synthetic approach could be

useful to study chromosomal behavior and to generate a minimal yeast genome for industrial

production.

After synthesizing the smallest known cultivable bacterial genome, Craig Venter’s group

pursued their efforts to obtain a minimal genome [Hutchison 2016]. A minimal genome was

designed using Tn5 transposon mutagenesis data [Glass 2006]. After four rounds of design-

build-test cycles, they divided the size of the Mycoplasma genitalium genome by two: from 1079

kb for the LCVI-1.0 genome template to 531 kb for the JCVI-syn3.0 genome encoding 473 genes.

Surprisingly, 30% of essential or quasi-essential genes have no known function. Therefore, this

minimal Mycoplasma genitalium genome is a great tool to understand the essential mechanisms

of life.

Despite our large scale synthesis capacity, much work remains before genomes can be de-

signed from scratch; the more we understand biological networks, the more we realize how little

we do know. These synthetic and simply-modifiable genomes will extend our understanding of

genome structures and functions.

Researchers are also interested in building synthetic cells from scratch [Gopfrich 2018]. Co-

operative projects are starting with the objective of building an autonomous, self-replicating cell

(http://www.basyc.nl/, Basyc (Building a Synthetic Cell); Max-Plank). Projects are divided

in modular building blocks, such as fueling, DNA processing, and cell division. In addition to

the potential applications from this large cooperative effort, it will allow researchers to better

understand the origins of and requirements for the emergence of self-replicating organisms.

1.1.5.2 Synthetic biology methods for bio-production and manufacturing

With increasing frequency, valuable molecules are being synthesized using living organisms. In-

deed, many molecules are naturally produced by living organisms, and these specific metabolic

pathways can be implemented in industrial organisms, such as S. cerevisiae, to obtain high-yield

1.1. Synthetic Biology 15

production via fermentation. These living organisms have been used for industrial production

centuries before synthetic biology, such as for the production of beer. For a few decades,

metabolic engineering has consisted mainly in the optimization of natural metabolic pathways

or the addition of a single enzyme to obtain a new biochemical compounds. Now, full metabolic

pathways are implemented in living organisms. The most famous example is the production of

the artemisinic acid in S. cerevisiae via the implementation of a synthetic metabolic pathways

composed of 4 new genes and 7 up- or down-regulated ones [Ro 2006] [Paddon 2013]. This

metabolic pathway, coupled with a chemical transformation, produces industrially relevant con-

centrations of artemisinin: a drug essential for malaria prevention, and the process has been

commercialized by Sanofi.

Additionally, complete biosynthesis pathways of opioids were engineered in yeast. Opioids

are high values compounds and the primary drugs for pain management and palliative care.

Galanie and colleagues focused on the production of thebaine and hydrocodone, which required

expression of respectively 21 and 23 enzymes originating from plants, mammalians, bacteria,

and yeast itself [Galanie 2015]). This synthetic metabolic pathway could be tailored to produce

other natural opioids, as well as intermediate compounds rarely accumulated in plants, but

which potentially have interesting pharmaceutical properties. This first proof-of-concept did

not show a high production yield, however, the pathways is currently being optimized to fit the

requirements for industrialisation. As opioids are high-value components, the yield required to

obtain a profitable process is low and therefore more easily attainable using living organisms

and current synthetic biology techniques.

In another field of application, Schwander and colleagues designed and constructed a syn-

thetic pathway for the conversion of CO2 into other organic molecules [Schwander 2016]. This

CETCH cycle (crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle) was

designed by metabolic retrosynthesis and is composed of 17 enzymes originating from nine dif-

ferent organisms plus three reactions created by rational active-site engineering. This large

pathway adds a synthetic alternative to the six CO2 fixation pathways identified in nature.

To extend the range of molecules synthesizable by living organisms, the production of five

different acyl-CoA esters was developed in S. cerevisiae by Krink-Koutsoubelis and colleagues.

The acylCoAs produced in this study are common building blocks for secondary metabolites

and will enable the engineering of the production of a variety of natural products in S. cerevisiae

[Krink-Koutsoubelis 2018].

A lot of works has been performed on the use of microorganisms to replace dependency

on petroleum, such as for fuels and plastics. However, the production of these materials of

commodity has to be competitive with the cost of drilling and refining petroleum. Ethanol,

butanol, pentanol, propanol and derivative productions have been optimized in microorganisms

[Lee 2008], but the yield still remains too low to compete with petroleum.

Large metabolic pathways for medium- or low-value components should be assembled soon

16 Chapter 1. Introduction

with the expansion of metabolic engineering building blocks and the development of de novo

enzyme engineering.

1.1.5.3 Synthetic biology for environmental and healthcare applications

Environmental biosensing and bioremediation

With the extension of the human population and industrialisation, we are polluting the

soil and water at large scale. It is thus essential to develop tools to monitor our environment.

Moreover, the study of how microorganisms composing our environment react to changes of

environmental conditions is a great challenge. To tackle this problem, both analytical chem-

istry and whole-cell biosensors have been developed; here, I will focus on whole-cell biosensors.

Fulfilling most of the technical requirements of analytical chemistry such as high specificity, sen-

sitivity, and reproducibility, whole-cell biosensors additionally provide rapid responses, simple

preparation methodologies and cheap detection systems [Renella 2016].

Natural biosensors, such as bacteria (e.g. Vibrio fischeri) or micro-eukaryotes are used to

analyse the global toxicity of environments. Similarly, synthetic biosensors producing luciferase

permit detection by luminescence to quantify the cell integrity and full metabolic activity as

luminescence is reduced upon cell damage or toxicity.

Additionally, synthetic biosensors responding to specific molecules were engineered by plac-

ing GFP or luciferase gene expression under control of natural promoters responding to chem-

ical components. To date, a variety of target analytes such as organic xenobiotics (naphtha-

lene, BTEX [benzene, toluene, ethylbenzene and xylene], alkyl-sulphonates, and polychlorinated

biphenyls), heavy metals and metalloids (As, Cd, Zn, Ni, Cu, Cr, Cu), nutrients, and physiolog-

ically active molecules can be detected by different kinds of whole-cell biosensors [Renella 2016].

Whole-cell biosensors permit the analysis of not only the concentration of pollutant in the

environment but also its bioavailability, bioaccumulation, and biomagnification as the selected

analyte needs to cross the cell membrane for detection. For now, the use of these detection

systems is mainly limited to research, but it should soon be used in the official methods for soil

and environmental analysis.

Microorganisms have also been used for their natural capacities to consume or breakdown

polluant [Vidali 2001]. By combining these natural bioremediation capacities with biosensing,

the bioremediation efficiency of microorganisms can be increased [de Lorenzo 2008].

Applying synthetic biology to healthcare.

Many efforts have been made to use synthetic biology in the clinics and for the development

of diagnostic and therapeutic systems [Courbet 2015a, Ruder 2011]. These efforts include the

development of synthetic biology therapies for the treatment of infectious diseases and can-

cer, as well as portable diagnostic devices, cell therapy, vaccine development, and microbiome

1.1. Synthetic Biology 17

engineering.

As numerous applications of synthetic biology to healthcare exist, I will focus here on a few

representative examples, such as (1) cell therapy with engineered CAR T-cell, (2) engineering

of bacteria for diagnostics, (3) engineering the microbiota to fight infectious disease and cancer.

For cancer therapy, the most advanced synthetic-biology based therapy is using CAR T-cells,

where recently being to be commercialized by Novartis. CAR T-cells are based on chimeric anti-

gen receptors (CARs) composed of antibody-binding domains fused to T-cell signaling domains

[Kalos 2013]. The therapeutic process consists of retrieve T-lymphocytes from patients, re-

engineering them ex vivo, and reinfusing a large quantity of the engineered T-lymphocytes into

the patient. This CAR T-cell strategy is applied to chemotherapy-resistant leukemias and in a

number of cases has led to complete and long-lasting clinical remission.

Microorganisms have also been used as biosensors for diagnostic, monitoring, and epidemi-

ology [Chang 2017]. Bacteria sensing quorum-sensing molecules were engineered for detection

of infection [Kumari 2008], speeding up the identification of infectious agents. Using yeast, an-

tibody display was used to perform electrochemical detection of Salmonella or the Hepatitis C

virus [Aronoff-Spencer 2016]. Going beyond living cells, cell-free systems have been developed

for detecting of nucleic acids from Ebola or Zika virus [Pardee 2014][Pardee 2016]. Diagnosis

using microorganisms can be performed ex vivo but also in vivo. Indeed, the human microbiome

outnumbers the human cells by a factor of 10 to 100 and play an essential role for our over-

all health. Consequently, microbiome engineering is a prime area for diagnosis and therapeutic

purposes. One example is the engineering of the gut bacteria E. coli to prevent cholera infection

by producing the quorum sensing molecules AI-2 and CAI-1 that repress V. cholera virulence

[Duan 2010]. Alternatively, bacteria could be engineered to deliver therapeutic molecules di-

rectly inside the body and specifically to the disease location. Bacteria have been engineered to

specifically migrate to and target solid tumors, reproducing toxins upon arrival to destroy the

tumor [Xiang 2006, Anderson 2006].

Numerous studies have been done on engineering living organisms for healthcare, but it is

still a challenge to engineer a system which is precise and specific enough to pass clinical trials.

The most short-term doable work is probably the development of portable diagnostic methods.

1.1.5.4 From designing biology to biology for design

Living organisms produce very strong materials which can be used and functionalized for human

purposes. One of the most studied biomaterial is spider silk, which is used for biotechnolog-

ical applications such as stem-cell tissue engineering [Wang 2006]. Recently, recombinant silk

production has been succesfuly implemented in E. coli [Bryksin 2014] [Jiang 2018]. The use of

biomaterials produced by microorganisms allows on-demand generation of precise and function-

alized nanostructure (Figure 1.4).

18 Chapter 1. Introduction

Figure 1.4: Manufacturing and assembly of 3D bionanoarchitectures via Protein

Bricks using IEBL. Figure from [Jiang 2018]: the fluorescent (left) and SEM (right) images of 3D

spider nanowebs via IEBL on fluorescein sodium (green)-doped and RB (red)-doped spider silk. Note

that, for the RB-doped spider web, two of the anchoring points were intentionally neglected such that

the unsupported part can fold during the water development, showing the 3D nature of the fabricated

structure.

Another example of biomaterial production using synthetic biology is a nacre-inspired com-

posite material, which is stronger than cement, obtained through the combination of ureolytic

bacteria and bacterially produced γ-polyglutamate (PGA) [Schmieden 2016]. These various

provided an example of the potential of biotechnological production of various materials of

interest with the applications ranging from biomedecine to architecture and construction.

Bacteria have also been used to produce bioink [Lehner 2017]. Many artists have

been using synthetic biology tools for art creation (http://www.syntheticaesthetics.org/,

[Boland 2013], AnnexH). These paths are of great interest to (1) expand the synthetic biology

community and our work and to (2) design the future synthetic biology application with expert

designers.

1.2. Logic circuits built using biological components. 19

1.2 Logic circuits built using biological components.

All living organisms, from humans to bacteria, sense their environment and their internal state,

process this information, and perform specific actions. The detection of changes in pressure,

temperature, pH, or concentration of chemicals is essential for living organisms to adapt to

environmental changes and to control their internal machinery. A cell can indeed be viewed as

a machine for protein production [Jacob 1961], which constantly adapts its behavior according

to its environment.

Cells use diverse sensing systems to detect a multitude of signals and respond appropriately.

Signal processing is performed through regulatory networks controlling phenotypic responses,

like change in metabolism, apoptosis, or cell growth.

In synthetic biology, we aim to implement new or rewire existing networks within living

organisms. For this purpose, the development of synthetic detection and computation systems

are two important challenges. Here, I will describe fundamental concepts in computation and

how they can be implemented within living organisms.

Computation is a general term for any type of information processing, from the human

thinking to electronic calculations. It follows a well-defined model which can be expressed in

an algorithm.

The interest in implementing computation in living systems focuses on the natural capacities

of living organisms to process signals. Living systems are highly complex, more than any system

constructed currently by humans. This incredible complexity of nature built over four billion

years of evolution gives us the possibility to build highly complex, sensitive, and adaptable

computing systems. However, computing with and within living systems does not specially

attempt to compete with electronic systems, which are much faster and more adapted for

certain kinds of tasks. Bringing human-controlled computational power to biology will serve

new purposes for which "smart" engineered biological systems are uniquely suited. As of today,

most of the prospects of biocomputing have not yet been even envisioned [Endy 2011].

Nevertheless, because of its success, electronics has provided a robust foundation to imple-

ment computing within living organisms. Most electronic devices, such as smartphones, operate

using Boolean logic gates. Researchers were inspired from these designs and started implement-

ing circuits made up of biological molecules to perform Boolean logic functions. Inputs for the

computing system are environmental stimuli, and outputs mainly consist of gene expression

controls leading to a specific cell response or to the expression of a visual reporter.

In this chapter I will present: (1) the foundations of logic and electronic logic designs, (2)

in vitro, and (3) in vivo implementation of logic through biological systems.

20 Chapter 1. Introduction

1.2.1 Introduction to logic and circuit design strategies

1.2.1.1 A brief history of logic and its application in electronics

Logic was one of the first major philosophical disciplines, the term having been first used by

Xenocrates, a disciple of Aristotle in the 4th century B.C.E.. Logic means at the same time

reason, language, and reasoning and corresponded at this time to the study of the formal rules

that have to follow well-formed arguments.

Aristotle and syllogism [Aristotle] were for two milenia the principal reference in logic. In

the XVII century, Godfried Von Leibniz was the first to develop a completely formal logic sys-

tem. He used logic to formulate ideas, stating that "ideas are compounded from a very small

number of simple ideas, and complex ideas proceed from uniform and symmetrical combina-

tion of these simple ideas, analogous to arithmetical multiplication" (from Leibniz unpublished

work) [Couturat 1901, Couturat 1911]. Leibniz formulated the central concepts of mathemat-

ical logic still in use today, such as conjunction (AND), disjunction (OR), negation, identity,

and implication.

Furthermore, Leibniz developed the modern binary number system, inspired from the Song

Dynasty scholar Shao Yong (1011-1077). The Shao Yong’s square, dating from the 11th century

in China, represents the numbers from 0 to 63 in 6 lines with either a broken line for the yin (0),

or a full line for the yang (1), which is highly similar to modern binary numbers [Arrault 2000]

(Figure 1.5).

In the 19th century, George Boole published two groundbreaking books: "Mathematical

Analysis of Logic" [Boole 1854, Boole 1847] and "The Law of Thought" [Boole 1854, Boole 1847].

In these works, he proposed a novel logic algebra, now called the Boolean algebra. His funda-

mental idea was that logical relations could be expressed in algebraic formulae.

He defined in his first proposition of the Law of Thought:

1st. Literal symbols, as x, y ... representing things as subjects of our conceptions.

2nd. Signs of operations, as +, -, x, standing for those operations of the mind

by which the conceptions of things are combined or resolved so as to form new

conceptions involving the same elements.

3rd. The sign of identity, =.

And these symbols of Logic are in their use subject to definite laws, partly agreeing

with and partly differing from the laws of the corresponding symbols in the science

of Algebra.

In 1937, Claude Shannon produced during his master’s thesis the conceptual breakthrough

that laid the foundation for the modern computing revolution. Shannon transposed Boolean

algebra to electronic circuits designs and developed symbolic relay analysis.

1.2. Logic circuits built using biological components. 21

Figure 1.5: The Shao Young square. These symbols date from the 11th century and have an

important symbolism in Chinese culture. A broken line corresponds to the yin (0) and a full

line to the yang (1). Each symbol composed of 6 lines has a specific meaning in Chinese culture.

Leibniz drew inspiration from these symbols to develop modern binary number systems.

In Shannon’s symbolic relay analysis, circuits have only two possible states, either 0 for

closed circuits or 1 for open circuits. Connection in series of the circuit X and Y corresponds

to the sum of X and Y (X+Y) and the connection in parallel to the product (X.Y).

Using this analogy to Boolean algebra, Claude Shannon developed a systematic framework

for circuit design. The main philosophy of his design strategy is best summarized in his own

words: "For the synthesis problem the desired characteristics are first written as a system of

equations, and the equations are then manipulated into the form representing the simplest

circuit. The circuit may then be immediately drawn from the equations." [Shannon 1936] The

design of modern electronic circuits is based on algebraic logic and switching theory developed

by Shannon.

Another breakthrough came with the development of the transistor (John Bardeen) in the

1950s. The transistor enabled the exponential development of electronics. A transistor is an

electronic component in which an input stimulus can either be closed or opened as a “valve”,

allowing or preventing the flow of electrical current. A simple transistor allows implementation

of an inverter circuit. The simple logic gates, e.g. NOR and NAND gates, were implemented

by placing two transistors either in series or in parallel. The first silicon transistor was commer-

cialized by Texas Instruments in 1954 and 250 billion billion transistors were made in the 2014

year. The number of transistors in an integrated circuit has followed Moore’s law, as it doubles

22 Chapter 1. Introduction

approximately every two years, due to manufacturing innovation and miniaturization. Modern

electronic devices are still mainly composed of transistors. The researchers that developed the

transistor were awarded the Nobel Prize in physics in 1956.

For this brief history of logic, and during the remainder of my thesis, I focus my work on

propositional logic. However, other classes of logic exist, such as predicate, modal, and fuzzy

logic. Propositional and predicate logics were developed simultaneously. Propositional logic

corresponds to the study of propositions formed by combination of statements with the use of

logic operators (OR, AND, NOT). Propositional logic is also called Boolean logic, as it uses

Boolean algebra. Predicate logic is commonly used to define mathematical theorems. It extends

propositional logic operators with quantifiers such as ∀ ("for all"), ∃ ("there exists"), and relations

such as implication and biconditional. Modal logic was developed on in the 1960s and extended

propositional and predicate logic with operators expressing modality, such as necessarily and

possibly. Apart from propositional, predicate, and modal logic, fuzzy logic has been studied

since the 1920s. In fuzzy logic, variables are not either True or False, but an infinite number of

degrees of truth from 0 to 1 are possible.

1.2.1.2 Introduction to combinational logic, Boolean algebra, circuit minimization

and design strategy in electronics

Among propositional logic classes, I focus here on combinational logic. This is the class of

logic implemented by Boolean circuits where the output is a function of the presence of inputs.

Combinational logic circuits can be defined by a truth table, which lists all the possible com-

binations of input values (True or False, 2number of inputs) and associates for each the desired

output value (True or False). A truth table can be converted into a truth function, which takes

a specific number of truth values as inputs and produces a truth value as output.

In a truth function, used in classical propositional logic, logical operator connecting state-

ments are either disjunction (OR), conjunction (AND), or negation (NOT). The following sym-

bols are used: ∨ (disjunction), ∧ (conjunction), ¬ (negation).

Boolean algebra was defined to permit simplification of logic equations using common alge-

bra. Consequently, direct conversion from truth function to Boolean function can be performed

following Table 1.1.

In electronics, Boolean algebra is more commonly used. However, depending on the field,

various terms and symbols are used to write down truth function. In the bio-computation

field, different symbols are used depending on the background of the authors and this can be

confusing. I will then introduce all possible terms and symbols that one might encounter.

Variables of a truth function are called variable, input, or signal. A literal defines a truth

variable or its negation. For the operators of a Boolean and truth function, many different

notations and terms are used:

1.2. Logic circuits built using biological components. 23

Truth function Boolean function

True 1

False 0

∨ +

∧ ·

¬ ˜

Table 1.1: Conversion from truth function to Boolean function.

- For the negation of terms: ¬ ,˜, ! , ′, and NOT symbols are used (Figure 1.6A)

- For the disjunction: ∨, +, //, and OR symbols are used. Disjunction is also called "sum

of terms", as it is series of literal related by OR (Figure1.6B).

- For the conjunction: ∧, · , . , &, and AND symbols are used. Conjunction is also called

"product of terms", as it is a series of literals related by AND (Figure 1.6C).

Venn diagrams are used to visualise logic operators and were first defined in set theory.

0

1

0

1

X f

Negation Disjunction Conjunction
Negation

of disjunction

Negation

of conjunction

X X Y X Y X Y X Y

f(X)=X f(X,Y)=X+Y f(X,Y)=X . Y f(X,Y)=X . Y f(X,Y)=X+Y

NOT(X) X OR Y X AND Y NOT(X OR Y) NOT(X AND Y)

¬ X X Y X Y ¬ (X Y) ¬ (X Y)

0

0

1

1

0

1

0

1

1

0

0

0

X Y f

0

0

1

1

0

1

0

1 1

0

0

0

X Y f
0

0

1

1

0

1

0

1

0

1

1

1

X Y f

0

1

1

0

X f 0

0

1

1

0

1

0

1

1

1

1

0

X Y f

 Y (X Y(X Y

B C D E F
Identity

X

f(X)=X

X

X

A

Figure 1.6: Representation of the basic logic operations: (A) identity, (B) negation, (C) dis-

junction, (D) conjunction, (E) negation of disjunction, and (F) negation of conjunction. For

each operation, the Venn Diagram, the truth function with mathematical symbols and with

common language terms, the Boolean function, and the Boolean truth table are represented.

In each Venn Diagrams, the domain(s) of the graph is(are) in red when the proposition is True.

The Boolean functions are written in the disjunctive normal form.

A functionally complete set is an operator set supporting the implementation of all logic

functions. Logic circuits are usually built on the composition of a set of basic logic gates

corresponding to a functionally complete set. The most used complete sets are:

- The two single operator sets: "NOR" (False if A or B are True, Figure 1.6D) and "NAND"

(False if A and B are True, Figure 1.6E).

24 Chapter 1. Introduction

- OR and NOT operator set.

- AND and NOT operator set.

- AND, OR, and NOT operator set called the universal operator set.

Often for logic circuit design, a functionally complete set is chosen and logic gates imple-

menting each operator are engineered. For implementing a Boolean function, the function will

be rewritten in a minimized form using only the chosen operators. The logic gates will then be

connected, usually across multiple layers (i.e. multilayering, where the outputs of some gates

serve as inputs for others), to implement the desired Boolean function. The key for this design

strategy lies in manipulating the Boolean function to obtain the simplest equation form that

will be translated into the simplest circuit.

The "optimal circuit" characteristics are differently defined depending on the type of imple-

mentation and the application.

Generally, two parameters are taken into account with the aim to keep them to a minimum:

(1) the number of parts.

The number of parts is generally correlated with the cost of the circuit (i.e. energy consumption).

Thus a reduced number of parts will decrease overall costs.

(2) the number of layers in the circuit.

The number of layers in the circuit influences the speed of the computation. Depending on

the technology and application it might or might not be a limitation. Furthermore, multi-layer

systems require logic gate connections, which can necessitate several rounds of optimization.

Trying to reduce the number of parts and layers, the simplest optimal circuit will be obtained

from the simplest Boolean function. However, as a myriad of forms of a single Boolean function

are possible, there is no completely general criterium.

Two types of circuit design can be distinguished: (1) two-layer circuits, also called second-

order circuits and (2) multilayer circuits, also called factored circuits. Two-layer circuits cor-

respond to circuits with the minimized number of layers but usually a higher number of parts

than multilayer circuits. Contrarily to multilayer circuits, a minimized design for two-layer cir-

cuits can be obtained in a straightforward manner. The procedure to minimize Boolean circuits

in two-layer circuits is detailed in Figure 1.7. Minimization can be performed to use either

the universal operator set, only NOR, or only NAND operator sets. Unlike minimized design,

multilayer circuit design is performed in a trial-and-error manner.

Simplification and minimization strategies of Boolean equations have been developed to

obtain, from a truth table, the simplest Boolean equation form corresponding to a two-layer

circuit. The systematic simplification is performed using NOT, AND, and OR. For circuit

based on NOR or NAND operator sets, a transformation of this minimized function is then

done. First, for minimization, the Boolean equation is either written as a sum of product of

1.2. Logic circuits built using biological components. 25

literals (S-O-P), also called disjunctive normal form, or as a product of sum of literals (P-O-S),

also called conjunctive normal form. The normal form corresponds to a product or sum of terms

(or clauses) in which no variable appears more than once. Indeed, multiple occurrences of a

variable in a sum or product term can always be simplified as it is either redundant or results

in a trivial function.

A second-order Boolean function will be considered minimal if: (1) the number of terms

(clauses) and (2) the number of literals in the function are minimal, with either term corre-

sponding to a product of literals or sum of literals and separated by sum or product operations

for the disjunctive normal form or conjunctive normal form, respectively.

For minimization, two different techniques are used: the Karnaugh-map (or K-map), and

the Quine McCluskey method. The K-map is simple to understand and to perform by hand as it

is highly visual (Figure 1.7) and the Quine McCluskey method is more fitted for automatisation

as a corresponding algorithm can easily be written down.

The Karnaugh-map minimization technique is detailed in the Figure 1.7. Following a similar

workflow, the disjunctive normal form and conjunctive normal form can be obtained. Therefore,

the minimized form based on NOR gates is directly obtained by double negation of the disjunc-

tive normal form. The form based on NAND gates is directly obtained by double negation of

the conjunctive normal form (Figure 1.7).

0

0

1

1

0

1

0

1

1

0

0

0

A C fB

0

0

0

0

0

0

1

1

0

1

0

1

1

1

0

1

1

1

1

1

1

0

0

1

0

1

1

A B
C

0 0

0 1

1 1

1 0

0 1

0

Boolean table

Karnaught map Disjunctive normal form

Conjunctive normal form

f(A,B,C)= B.C + A.C

f(A,B,C)= B.C + A.Cf(A,B,C)= B.C + A.Cf(A,B,C)= B.C + A.C

f(A,B,C)= (B.C + A.C)

Out

B

C

A

C

Out

B

C

A

C

AND

AND

OR

OR

OR

AND

Out

B

C

A
C

NAND

NAND

NAND

Out

B

C

A

C
NOR

NOR

NOR

NAND form

f(A,B,C)= B.C + A.C

f(A,B,C)= (B+C).(A+C)

f(A,B,C)= B.C . A.C

NOR form

f(A,B,C)= (B+C) . (A+C)

f(A,B,C)= (B+C) + (A+C)

Figure 1.7: Minimization of Boolean logic functions from the truth table to the gate

diagram using Karnaugh map. Classic Boolean truth tables are transformed in a Karnaugh map,

which can be associated to a 2D truth table. Instead of having the different states of inputs in lines,

states of inputs are in a table with two entries. For 3 inputs, C is 0 in the first column and 1 in the

second, with lines corresponding to the different states of A and B. Then, the upper left cell corresponds

to not(A).not(B).not(C) and the lower right cell to A.not(B).C. The principle is that each cell is different

by only one variable to all its neighboring cells. Then, to go from K-map to the disjunctive normal form,

we try to associate cells with 1 by clusters corresponding to neighbor cells. Then, each cluster can be

associated to a conjunction of literals. Additional minimization steps are usually used to reduce the

number of terms and the numbers of variables in each term. By double negation, the DNF (disjunctive

normal form) is transformed into NAND form. Similarly, from the K-map to the conjunctive normal

form, we associate cells with 0 by clusters, we obtain then the DNF of the negation of the function. Using

the De Morgan’s law, the conjunctive normal form of the function is obtained and, by double negation,

the NOR form.

26 Chapter 1. Introduction

Contrary to two-layer circuit design, multilayer circuit design is not systematic due to the

large number of possible rearrangement actions and solutions [Mano 2014]. Various sets of

transformations are applied to Boolean functions (e.g. factoring, decomposition, extraction,

substitution, and elimination) to find an optimal solution that fits with the intended specifica-

tions such as the cost, the type of parts used, and the number of layers.

In electronics, circuits are decomposed in modular parts, and this decomposition exists at

different levels. At the most basic level are transistors, which are composed to form logic gates.

Logic gates themselves can then be further composed in functional blocks such as multiplexers.

Standard functional blocks enable the implementation of complex logic circuits with low design

and optimization costs.

Here I have detailed only combinational logic circuits, but sequential circuits and analog

circuits are also of great interest. Sequential circuits are circuits in which the output is dependent

on the history of the system (i.e. the order of occurrence of the inputs) and not just on the

current presence of inputs. For analog circuits, the inputs and outputs are not binary (e.g. 0

or 1) but can have any non-integer values.

Sequential circuits are highly used in electronics as they allow, among other things the stor-

age of information. The two principal functional blocks in electronic circuits are flip-flops and

latches. Often, electronic circuits are composed of an arrangement of sequential and combi-

national circuits. Sequential circuits are defined using state table and state diagrams. Unlike

combinational circuits, no specific algebra has been defined to minimize sequential circuit design.

Most biological networks operate in an analog fashion; therefore, it could then be of interest

to implement analog genetic circuits instead of digital circuits. However, digital circuits are more

suited to perform computation. Indeed, in electronics, computation is performed using digital

circuits and converters are used whenever one uses an analog signal as input (A-D converter)

or desires an analog signal as output (D-A converter).

1.2.1.3 Biological systems as computational systems

Many scientists took inspiration from living systems to design complex artificial automata,

such as cellular automata. An automaton is a machine that operates on its own without

human control. For decades, scientists viewed cell as natural automata performing complex

computation. Their objectives were both to model cellular mechanisms by defining logic rules of

behavior and to construct artificial automata inspired from the complexity of natural automata.

In 1943, McCulloch and Pitts worked on the logical calculus inspired from human nervous

activity [McCulloch 1943]. Based on the properties of neurons that were known at this time,

they proposed a simple model called the “formal neuron operations”, in which the neuron

receives several inputs and sum them as an output. These formal neurons are nowadays the

elementary units of artificial neuron networks used for artificial intelligence. However, formal

1.2. Logic circuits built using biological components. 27

neuron behavior is too simple in comparison to the behavior of real neurons, and so cannot be

used for the deep understanding of nervous systems.

During the last years of his life, John Von Neumann worked on the Theory of Self-

Reproducing Automata [Von Neumann 1996]. He compared natural and artificial automata

and highlighted the computing efficiency of natural automata that was at the time thousands

of times higher than that of artificial automata. Among others, he highlighted the flexibility,

autonomy, and self-reorganisation of cellular systems that allow them to survive even in high

incidence of error.

In Von Neumann’s mind, the paramount biological phenomenon was the self-reproduction

of living organisms. The self-reproduction permits demultiplication of components, which by

interaction leads to complex systems (i.e. multicellular organisms). Von Neumann highlighted

the fact that in nature, self-reproduction leads to an increase of complexity of organisms. As

organisms are error-tolerant, non-lethal and non-deleterious mutations are inherited and can

lead to an increase in organism complexity. Based on these observations, Von Neumann formu-

lated a fundamental question: “What kind of logical organization is sufficient for an automaton

to be able to reproduce itself?”. As an answer, he imagined a self-replicating cellular automa-

ton [Mitchell 1998]. This idea of cellular automaton has been further developed and is now a

well-known model studied in a large number of fields such as computer science, mathematics,

and theoretical biology.

The view of living organisms as automata defined by a limited set of axioms was followed by

scientists who attempted to model cellular behavior, culminating in the field of systems biology.

By extension, natural protein networks and gene regulation pathways are seen as logic circuits

[Arkin 1994, Hjelmfelt 1991, Hjelmfelt 1993] [Bray 1995]. Based on this idea of natural systems

behaving as logic circuits, various synthetic logic circuits have been and are implemented using

biological components, in vitro or in vivo.

1.2.2 In vitro biocomputing

In 1994, the computer scientist Leonard Max Adleman used DNA as a computational system

[Adleman 1994] to solve the Hamiltonian path problem: an NP-complete problem (problem

requiring a time exponential to the size of the input data to be solved). Adleman’s DNA

computation was based on the Watson-Crick complementarity of DNA. He used 20 base pair

oligonucleotides for each vertex and edge of the path and ligation/PCR rounds to obtain the

result of computation. While the solution to this seven-node Hamiltonian path is trivial, it was

the first successful computation using DNA and Adleman suggested that the method could be

scaled-up to much larger graphs. This paper is widely regarded as the beginning of the field of

DNA computing.

The speed of any computation, biological computation or others, is determined by two

28 Chapter 1. Introduction

factors: "(i) how many parallel processes it has and (ii) how many steps each can perform per

unit time." [Lipton 1995]. Biological computation is slower than in electronics but it can be

highly parallelized. Indeed, as Lipton stated: "As little as 3 g of water contains approximately

1022 molecules" [Lipton 1995]. Lipton used the same principle as Adleman to solve the SAT

problem (or Boolean satisfiability problem).

For these two resolutions of computational problems, the inputs of the computation are

oligonucleotides, the output is a specific DNA sequence, and the computation is performed in

test tubes. Many studies were derived from these first two papers. The field of in vitro DNA

computation has since split in two realms: computation based on Watson-Crick complementarity

and computation based on enzymatic reactions driven by ribozymes and deoxyribozymes.

Ribozyme-computing

Ribozymes are RNA molecules that catalyse a specific enzymatic reaction. Their role is

essential in key biological processes such as translation, RNA splicing, or viral replication

[Guerrier-Takada 1983, Kruger 1982]. Deoxyribozymes, similar to ribozymes but based on

DNA, are not found in nature but have been engineered [Breaker 1994].

Ribozymes and deoxyribozymes have been used to implement Boolean logic gates. Sto-

janovic [Stojanovic 2002] engineered a set of deoxyribozyme-based 2-input Boolean logic gates

(NOT, AND, and XOR logic gates). As the inputs and outputs of these gates are oligonu-

cleotides, these logic gates can be connected to implement more complex functions. Conse-

quently, all Boolean functions are theoretically implementable by layering NOT, AND and

XOR gates, from this complete Boolean set. The layering of simple logic gates here permits the

implementation of much complex circuits than with previously described DNA-based systems.

This method was applied to build a Tic-Tac-Toe automaton [Stojanovic 2003]. To do so,

NOT, AND, AND/AND, and AND/AND/NOT deoxyribozyme logic gates were used. Various

deoxyribozymes were placed in different compartments and an OR function was performed

by using a deoxyribozyme cleaving the same substrate. The automaton never lost against a

human, as a prefect strategy was implemented. The automaton play was shown by fluorescence.

Using the same strategy, a full binary adder was engineered [Lederman 2006]. Limitations of

the deoxyribozyme-based logic circuit are: (1) it only takes single stranded DNA as an input,

which reduces the potential range of applications; and (2) logic gates with more than three

inputs have not yet been shown and might be challenging to engineer.

Computing using Watson-Crick pairing and DNA strand displacements

In addition to the first two fundamental papers, many of studies have used the Watson-

Crick complementarity property of DNA for computation [Padirac 2013], such as toehold-based

reaction circuits. The principle of a toehold-based circuit is to use a small single-stranded

recognition sequence (toehold) to control the displacement of an "output" strand by an invading

"input" strand [Yurke 2000]. This simple approach permitted the development of a full set of

1.2. Logic circuits built using biological components. 29

Boolean logic gates [Seelig 2006]. The simple logic gates were difficult to connect, limiting the

expansion of toehold-based computation circuits. Qian and Winfree then developed the seesaw

gate: a compact gate motif which allows gate layering. Qian and Winfree used this technology

to construct two large computation circuits, one which calculates the square root of a four-bit

binary number ([Qian 2011a] and one that mimics neural network computation [Qian 2011b].

Toehold-based reactions are irreversible. To obtain a reversible reaction, a continuous source

of energy is needed: this was achieved using enzymatic reactions. Two systems were developed

using a similar principle: Genetlet and DNA-toolbox.

(1) Genetlet is based on RNA transcripts that regulate their own transcription from DNA

gene analogs [Kim 2006]. RNA is both the input and output of a circuit with a DNA-encoded

software and an enzymatic hardware composed of RNA polymerase and RNase. Genetlet tech-

nology supported the implementation of a bistable switch [Subsoontorn 2012b] and of various

oscillators [Kim 2011].

(2) The DNA-toolbox [Montagne 2011] is based on two types of DNA signals: input DNA

activating DNA templates and inhibitors blocking DNA templates. In both cases, an exonu-

clease degrades the signal molecules and not the DNA templates. Using the DNA-toolbox,

various complex circuits were implemented such as an oscillator, a bistable system, a switchable

memory [Padirac 2012], and a reaction-diffusion French-Flag pattern [Zadorin 2017].

The recent development of in vitro DNA-based computation toolboxes used for diagnostic

application to detect specific RNA or DNA sequences is of interest [Pardee 2016]. DNA is highly

flexible, adaptable and, unlike enzymes, exhibits simple-to-predict behavior.

Computing with enzymatic reactions

Using only enzymes, complex computation systems can theoretically be implemented using

a network of enzymatic reactions. A theoretical design of a neural network and a Turing system

were described by Hjelmfelt and colleagues as early as 1991 [Hjelmfelt 1991, Hjelmfelt 1992].

Such in vitro enzyme-based circuits have not yet been implemented. Indeed, the complexity

of the implementation rests in the lack of enzymes performing the theoretical reactions with

full orthogonality. Additionally, the design of enzymes performing specific reactions is still a

challenging task.

Using a natural enzymatic system, several 2-input logic gates were implemented using mal-

tose, phosphate, and sucrose as inputs [Zhou 2009][Privman 2010]. In addition to logic gates,

the authors constructed an amplification system and conversion system transforming outputs

into inputs to permit connection of logic gates. Consequently, using compartmentalization in a

microfluidic channel, these tools could be used to implement a multi-layer logic circuit. However,

this system is not modular and cannot accept different inputs as it is based on specific enzymes

responding to specific inputs. New circuits based on the same principle could be engineered but

would need a full new round of optimization.

30 Chapter 1. Introduction

Following this idea of compartmentaling of enzymatic circuits, Courbet and colleagues

[Courbet 2015b, Courbet 2018] implemented standard logical operations by biochemical net-

works encapsulated and insulated within synthetic vesicles called protocells.

This last work shows the power of compartmentalization in biocomputing. In electronic

circuits, components are physically separated and connected specifically as desired using wires.

An identical component can be reused and wiring is performed to obtain the desired circuits.

In biological systems, all components are in the same compartment and can interfere with

each other. Consequently, various orthogonal components are needed when used in the same

compartment (e.g. test tube, single cell). However, if the system requires “chemical wires”,

i.e. molecular communications channels to establish connections between subcompartments,

the number of orthogonal channels is a limiting factor.

1.2.3 Implementing logic circuits in living organisms - in vivo bio-

computation

Using in vitro bio-computation, the exact composition of the system is known and controlled,

which simplifies predictions of system’s behavior. On the other hand, the implementation of

logic within living organisms allows us to build upon complex functions already performed by

living organisms. Many computing circuits operating within living organisms have been built

that hijack or rewire natural regulatory mechanisms.

Gene expression is a common and tractable output in natural biological systems, and genes

are generally expressed in response to specific signals or signal combinations. Moreover, many

mechanisms regulating gene expression are relatively well understood and amenable to being

more easily engineered. Consequently, in vivo bio-computations are based on the regulation of

gene expression.

The implementation of large logic circuits in vivo requires: (1) a library of orthogonal

parts performing a complete functional operator set and (2) the connection of these parts in

a straightforward manner to implement larger circuits. In vivo, most signals are analog and

digitization of the input signal is required to obtain digital logic. A compact design (i.e. a

reduced number of parts) is prefered to simplify the construction and optimization of the circuit

and, more importantly, to not overload cellular metabolism.

As the implementation of computation in living organism is the subject of interest of my

thesis, I will introduce existing circuits in more details in an overview of the different kind of

mechanisms that have been used to compute within cells.

1.2. Logic circuits built using biological components. 31

Input

Output

NOT gate

Input A

Output

NOR gate

Input B

Input

Output

NOT gate

Repressor

Input A

Output

AND gate

Input B Prot 1

Prot 2

Guide
region

dCas9
handle

dCas9

sgRNA
operator

TF

Output

dCas9

sgRNA
operators

Input A

Input B

NOR gate

A B C

D
Input

Output

Int

ID gate Input

Output

Int

NOT gate

Output
In

t1

In
t2

Comp
Unit

Input AInput B

AND

OR

XOR

F

output
gene RNA

Ribo
device

+ Input RNA

output
gene RNA

ID gate NOT gate

Input RNA
Anti-RNA

AND gate

OR gate

Input RNAs

G
2-input decoder

Gene1 Gene2 Gene3 Gene4

0 0 0 1 1 0 1 1
corresonding

stateB/A

TF

Figure 1.8: Tools for implementing of logic in living organisms. A - 2-input AND gate

based on two proteins required for activation of transcription. Each input induces the

expression of one protein, where in presence of the two proteins the output promoter is acti-

vated. This principle has been applied with the hrpS-hrpR regulator of polymerase [Wang 2011],

chaperone-transcription factor [Moon 2012], and split T7 RNA polymerase [Shis 2013]. B -

Repressor-based NOT and NOR gates. The input induces the expression of a repressor,

which represses the output gene, forming an NOT gate. By placing two operator sites specific

to two repressors in tandem, if one input is ON, a repressor is expressed, which inactivates the

promoter and the output. Nielsen et al., constructed repressor based gates based on a library

of Tet-family repressors [Stanton 2014, Nielsen 2016]. C - CRISPR-based NOT and NOR

gates. dCas9 has been engineered to repress transcription in response to sgRNAs that target

specific operators. Depending on the organism in which this technique is applied, the dCas9

is fused to a specific transcription regulator, either a repressor or an activator. Gander et al.,

used this technique in yeast, fusing dCas9 to a repressor [Gander 2017]. Then, inputs induce

expression of sgRNA that repress expression of the output gene via dCas9, generating a NOT

gate. For NOR gates, two sgRNA operators are placed in series in the promoter site, then in

presence of one input, the output promoter is repressed.

32 Chapter 1. Introduction

Figure 1.8: D - Gates based on recombinase terminator switches. Serine integrases

recognize specific integrase site pairs and invert or excise DNA between sites depending on site

orientation. Bonnet et al. designed simple transcriptional switches placing integrase sites around

asymmetric terminator [Bonnet 2013]. For the ID-gate, a terminator blocks transcription of the

output gene, and in presence of the input the terminator is inverted and transcription occurs.

For the NOT-gate, the terminator is in an inverse orientation than for the ID-gate, where the

output gene is transcribed only in absence of the input. Different computing units composed of

integrase sites and terminators have been engineered to implement all 2-input logic functions.

G - Excision-based logic gates. Still using integrase, Weinberg et al., built a logic scaffold

based on excision and integrase site variants permitting implementation of all logic circuits. For

implementation of specific logic functions, for the ON state in the truth table, the output gene

is placed at the corresponding location in the 2-input decoder. F - Riboregulator-based

logic gates. A RNA stem-loop placed upstream a gene sequence inhibits ribosome binding

and translation of an output gene. Unfolding of the stem-loop is mediated by an input RNA

which then activates translation of the output gene, leading to an IDENTITY gate [Isaacs 2004].

Green et al. extended this system [Green 2017] using an additional RNA inhibiting the input

RNA which permits implementation of the NOT function by inhibiting the unfolding of the

stem loop. Then, an AND gate is formed by cooperativity between input RNA and several

input RNA are required to form the stem-loop inactivating taRNA. Finally, riboregulators are

placed in series, where unfolding of one stem-loop leads to activation of the output gene, forming

an OR gate.

1.2.3.1 Computation based on transcription regulators

Many computation circuits have been implemented using transcription regulators. Jacob and

Monod [Jacob 1961] discovered the regulation mechanism of the Lac operon and its transcription

regulator, the Lac repressor LacI. A transcription regulator activates or represses transcription

by binding to specific DNA sequences positioned within or around the promoter region. The

activity of transcription regulators is usually controlled by specific molecules. For example, the

Tet repressor prevents transcription at the Ptet promoter. Binding of tetracycline or anhy-

drotetracycline to the repressor triggers a conformational change leading to its release from the

promoter and subsequent transcriptional activation. Natural transcription regulators such as

LacI, TetR, cI, cAMP, and AraC provided a toolbox for implementing computation based on

DNA transcription. In 1994, Joung and colleagues [Joung 1994] pioneered the engineering of

an artificial promoter bearing binding sites for two different regulators, cI and cAMP receptor

proteins. This artificial promoter behaves similarly to an AND gate, as the presence of both

proteins lead to an induction larger than the addition of each protein alone.

In 2000, two genetic circuits using the repressors LacI, TetR and cI arranged into mutual

feedback loops were engineered for the implementation of a toggle switch [Gardner 2000] and a

1.2. Logic circuits built using biological components. 33

repressilator [Elowitz 2000]. Moreover, a library of circuits, some of them having binary, logic

responses was generated by combining parts from the repressilator in a combinatorial manner

[Guet 2002]. Kramer and colleagues [Kramer 2004] constructed artificial promoters with up

to three operator sites specific for mammalian transcriptional regulators. Coupled with the

parallel and serial linking of two-gene regulation systems, they engineered “BioLogic”gates able

to respond to up to three inputs in mammalian cells. However, their design was not modular

enough to implement all 2-input logic circuits.

In addition, various types of transcription factor or polymerase activation methods have been

engineered. Several AND gate designs are based on the requirement of two or more proteins for

promoter activation, such as the amber suppressor tRNA supD and T7 RNA polymerase with

two amber strop codons [Anderson 2007], the hrpS-hrpR regulator of polymerase [Wang 2011],

three orthogonal chaperon-transcription factors [Moon 2012], and a split T7 RNA polymerase

[Shis 2013] (Figure1.8A). Additionally, a sigma/anti-sigma library was built to allow the con-

struction of several orthogonal IDENTITY and N-IMPLY gates [Rhodius 2013].

Later, Stanton and colleagues [Stanton 2014] developed a library of 16 orthogonal repres-

sors based on genome mining of TetR-family repressors. Using this repressor library, they

constructed various NOT and NOR gates. NOT gates (also called “inverters”) place a repressor

under the control of the signal and the output under the control of this repressor. The resulting

circuit is ON when the input is OFF and vice-versa. NOR gates are designed using tandem

promoters composed of two repressor-operator sites. When at least one input is present, the

transcription is repressed (Figure 1.8B). Simple gate multilayering was possible by expressing

repressors as inputs for the downstream gate. By wiring this large set of NOR gates, most of

the 3-input logic gates were implemented in single cell in E. coli [Nielsen 2016].

In parallel, researchers designed Distributed Multicellular Computation systems in which

logic circuits are divided into different strains within a multicellular system [Tamsir 2011]

[Regot 2010] [Macia 2014] [Urrios 2016] [Macia 2016]. Regot and colleagues constructed a li-

brary of 16 S. cerevisiae strains implementing NOT and IDENTITY gates that were used in a

multicellular system via cell-cell communication to compute up to 6-input logic functions. More

details on the designs, limitations and advantages of these two single-cell and multicell logic

implementations can be found in the following subsection 1.2.2.

Other systems regulating transcription were used to implement logic, including zinc fingers

[Lohmueller 2012], TALEs (transcription activator-like effectors) [Lienert 2013] [Gaber 2014]

and CRISPR-dCas9 [Nielsen 2014, Kiani 2014, Gander 2017]). These systems can operate in

eukaryotes and large libraries of orthogonal components can easily be engineered. More details

on these circuits can be found in Annex B.

Using large orthogonal libraries of repressors and CRISPR-dCas9-sgRNA, large logic circuits

are theoretically implementable by layering NOT and NOR gates. The main limitation of these

circuits is the requirement of multiple layering of these simple 2-input gates. For multicellular

34 Chapter 1. Introduction

systems, the limiting factor is the number of cell-cell communication channels. The computation

performed using these systems is real time in contrast to systems based on DNA recombination

that I will describe.

1.2.3.2 Computation based on regulation of translation

A large variety of engineered non-coding RNA toolboxes with distinct functions exists, for

more details see the review of Qi and Arkin [Qi 2014]. As an example, riboregulators permit

regulation of translation by triggering the unfolding of a stem loop structure in the mRNA,

exposing the RBS for ribosome access. MicroRNA (miRNAs) target mRNAs for degradation

and pT181-RNAI-type elements bind 5’UTR elements triggering the formation of premature

transcriptional terminators [Lucks 2011].

These large toolboxes have been used to implement computation circuits [Benenson 2009].

For the detection of endogenous mRNA, logic circuits were built in human cells based on siRNA

repressing the expression of the output. By coupling siRNA-based circuits with transcription

activator and repressor, up to 5-input logic circuits were built [Rinaudo 2007] [Xie 2011].

In addition, riboregulator-based circuits were implemented in living organisms. The system-

atic engineering of riboregulators enables the specific translational control of gene expression

[Isaacs 2004]. This mechanism was used by Green and colleagues to implement up to 5-input

logic circuits [Green 2017] (Figure 1.8F). Various riboregulators sensing specific taRNA were

designed in silico. For the implementation of an IDENTITY gate, the input RNA unfolds

the stem-loop which activates translation. For NOT gates, the input RNA inhibits another

RNA inhibiting the activation of translation mediated by this secondary RNA. For AND oper-

ators, input RNAs cooperatively activate translation. Finally, an OR operator is performed by

placing riboregulators in series, which allows independent induction of the translation by each

riboregulator.

The previous systems are induced by RNA, but riboregulators controlled by ligands were

also engineered in mammalian cells [Bayer 2005]. Riboregulators controlled respectively by theo-

phylline and tetracycline were engineered for inhibition and activation of translation. While the

previous system is based on a stem-loop, a similar system was engineered based on ribozymes,

such as self-cleavage of RNA induced or repressed by theophylline and tetracycline [Win 2007].

By combination of an aptamer binding to theophylline and tetracycline in a different position

of the ribozyme, AND, OR, NAND, and NOR gates were engineered [Win 2008]. To scale up

these circuits, ribozymes with effector binding sites responding to other molecules are needed,

but their design is not an easy task [Townshend 2015].

Systems using RNA as input to control translation are relatively scalable. However, the

sensing of other types of inputs by RNA devices is still limited.

1.2. Logic circuits built using biological components. 35

1.2.3.3 Protein based computation

In vivo computation can also be performed using enzyme networks such as in vitro systems.

In vivo enzyme networks permit to use the natural cellular networks as template for engineer-

ing complex behavior. Dueber and colleagues [Dueber 2003] reprogrammed the control of an

allosteric signaling switch : the actin regulatory protein n-WASP (neuronal Wiskott-Aldrich

syndrome protein). The activity of the protein is naturally repressed by autoinhibitory interac-

tions involving two domains: the GTPase-binding domain (GBD) and a basic (B) motif. Two

inputs induce the activity of the protein: GTP-loaded Cdc42 for GBD and PIP2 for the B

motif inactivate the autoinhibitory interactions. By generating various combinations of protein

domains, different logic systems were generated such as: a single input response, an AND gate,

and an OR gate. A chemically induced dimerization (CID) system was used to engineer simple

logic gates in mammalian cells. Miyamoto and colleagues used two orthogonal dimerization

systems, GA3-AM and rapamycin to implement OR and AND gates. Using this system, the

output is obtained in a timescale of seconds, which is faster than other in vivo circuits, such as

the one of Duber and colleagues.

All actual enzymatic-based systems are highly specific and are consequently not adaptable

to various input molecules. However, fast logic circuits, as shown by Miyamoto and colleagues

[Miyamoto 2012], are only obtainable using logic circuits that do not required neither transcrip-

tion nor traduction to produce a response.

1.2.3.4 Computation based on DNA recombination

Computation based on DNA recombination uses recombinases as a tool to modify DNA in

a heritable manner. Recombinases are naturally used for DNA manipulation, for example

by phages to integrate their genomes into the bacterial genome. Recombinases families, their

mechanisms, and their applications to design logic circuits are detailed Section 3 of this chapter.

I will provide here a brief overview of the main recombinase logic circuits.

The largest logic circuits implemented with recombinases are based on the serine integrase

sub-family. Indeed, serine-integrases mediate a precise, efficient, and irreversible recombination

of DNA without requirement of co-factors. It is possible to produce integrase-mediated DNA

inversion or excision by orienting the integrase sites in either parallel or antiparallel orientations.

2-input asynchronous Boolean logic gates were implemented in a single layer using serine

integrases [Bonnet 2013, Siuti 2013] (Figure 1.8D). These logic circuits are implemented by plac-

ing promoters, terminators and genes between integrase sites. Using only serine integrases, the

DNA switch is irreversible, and thus the logic implemented is asynchronous. However, reversible

switches were implemented using RDF-integrase circuits [Bonnet 2012, Subsoontorn 2014] and

could be used for implementation of reversible integrase-based logic gates.

36 Chapter 1. Introduction

Based on a different design strategy, Weinberg and colleagues [Weinberg 2017] engineered

integrase-based asynchronous Boolean logic in mammalian cells. Their system is based on DNA

excision exclusively and uses not only serine integrases but also tyrosine integrases. Weinberg

and colleagues implemented circuits responding to 3 inputs.

In addition to Boolean logic, history-dependent logic is implementable using the irreversibil-

ity property of serine integrases. Hsiao and colleagues [Hsiao 2016] implemented a 2-input tem-

poral logic gate permitting the differentiation of the order of occurrence of 2 inputs. Repetition

of these modules was used to record all possible 3-input sequential states [Roquet 2016]. Based

on this recorder design, various 2- and 3-input history-dependent gene-expression programs were

implemented.

One advantage of integrase circuits is to support the implementation of complex functions

in a compacted circuit. As I worked during my thesis on the implementation of logic in living

organisms using integrases, I will detail the mechanism and the various usages of recombinases

in Section 1.3.

1.2.4 A comparison of the different design strategies for in vivo implemen-

tation of Boolean functions

I presented the different logic circuits built using biological components. Various Boolean logic

circuits have been implemented in living organisms using different biological components and

on various design strategies.

The choice of the design strategy can be separated in two steps: (1) the definition of build-

ing block, such as simple gates, and (2) the determination of the type of connection between

building blocks. The definition of the building blocks mainly depends on the type of biological

components used. As shown in Figure 1.8, some components permit the implementation of

NOT and NOR gates within a single layer (e.g. repressors), and others permit implementation

of a more various range of gates within a single layer (e.g. recombinases). One of the keys

permitting scalable circuits is automation of the design, especially for an increasing number of

inputs.

I will compare here two multilayer design strategies for which an automated design workflow

exist, one single-cell and one multicellular design.

Based on transcription factors, most designs are based on the layering of one or two input

logic gates to implement complex Boolean functions. Nielsen and colleagues and Macia and

colleagues succeeded to develop a workflow for the systematic implementation of large Boolean

functions based on this layering design, either in single cell [Nielsen 2016] or in multi-cell via

cell-cell communication [Macia 2016].

1.2. Logic circuits built using biological components. 37

1.2.4.1 Automated design of single-cell logic circuits: Cello

Here, I will focus on Nielsen and colleagues circuit design based on repressors. It is currently

the largest set of logic circuits implemented in living organisms [Nielsen 2016]. Their system is

based on the layering of 2-input NOR gates and single-input NOT gates. Boolean functions are

then implemented in multilayers, corresponding to a factored form of the Boolean function (Sec-

tion 1.2.1). Consequently, the simplification to the reduced circuit design is not straightforward.

Nielsen and colleagues developed a design environment called Cello, which automatically trans-

forms logic functions into DNA sequences. The Boolean function simplification is performed

via Cello. First, a synthesis tool, ABC ,generates from the truth table an AND-Inverter Graph

(composed of 2-input AND and NOR gates) and minimizes the number of gates and layers.

This graph is converted using DeMorgan’s rules in a NOR-inverter graph. The result of the

ABC algorithm is not necessarily the simplest solution. To obtain the simplest circuits, logic

motifs are switched to equivalent subcircuits via a brute force method generating all possible

circuits.

To generate the DNA sequence fitting to the input Boolean function, a User Constraint File

containing all NOT and NOR gate behavior is used to predict the propagation of the signal

in the circuits. It permits the creation of a model of the circuit behavior. As the number of

possible circuits is too large, a search algorithm was designed to perform this task.

Cello is essential to design repressors-based single-cell logic circuits, as Boolean function

minimization is not straightforward, and neither are gate connections. Circuits implemented

using new inputs and in a new organisms will required precise characterization of the new parts

to be adaptable to Cello. Despite the minimization process, repressor-based circuits require a

large set of parts and of layers increasing the metabolic load to cells and the computation times.

Due to the limitation of the characterized repressor parts used for model prediction, some logic

circuits were scored as impossible via Cello and have not been constructed. To scale-up the

circuit design, as some 3-input logic circuits are composed of up to 50 parts, it seems difficult

to envisage 5- or 6-input logic circuits using this technique. However, efforts are underway to

optimize this workflow and permit implementation of larger circuits.

Cello is the only design environment suited for logic gate design in living organisms. Its

capacity has been shown for repressor-based circuits, but could be adapted to others tools.

1.2.4.2 Distribution of computation in multicellular systems

Macia, Solé, Posas, and colleagues used in several papers the distribution of computation in mul-

ticellular consortia for the implementation of complex logic circuits in S. cerevisiae [Regot 2010]

[Macia 2014] [Urrios 2016] [Macia 2016].

Macia and colleagues based their design on the layering of NOT and IDENTITY gates

38 Chapter 1. Introduction

implemented in separated strains [Macia 2016]. They used one communication channel and

physical separation. First, a set of 16 S. cerevisiae strains computing either NOT or IDENTITY

gates were constructed and characterized. In this set of strains, input layer cells detect the

input signal and produce as output: the pheromone used for communication. Output layer

cells, composed of a NOT gates, detect the pheromone and produce as output: the final output

signal of the system.

A B

C D

Figure 1.9: Multicell and single cell implementation of Boolean logic functions. (A)

and (C) are the designs from [Nielsen 2016] and (B) and (D) are the designs from [Macia 2016].

(A)-(B) corresponds to the implementation of the logic function not(A).not(B).not(C)+A.B.C

and (C)-(D) corresponds to the implementation of the logic function no(A).B+A.not(B) (XOR

gate).

They defined a systematic method of design for implementation of all Boolean functions.

First, the Boolean function is written in the DNF (disjunctive normal form) and transformed

as a disjunction of negative disjunction of literals using the De Morgan’s law (corresponding

to OR of NOR of NOT and ID functions). Negation and identity of input signal is performed

using input layer cells. The negative disjunction is computed by the output layer cell, if one

of the input layer cells expresses the pheromone (is ON), the output layer cell will turn OFF.

Each clause of the disjunction is physically separated; then, if in one of physical compartment

the output cell is ON, the output of the computation is considered ON, computing then the full

function. Optionally, an additional layer is added to permit integration of the output signal,

1.2. Logic circuits built using biological components. 39

using a buffer cell and another compartment placed downstream.

This simple and straightforward design was used to implement a 6-input multiplexer (MUX

4-to-1). Implementation of large circuits only require the composition of the set of strains, which

consequently permit without effort implementation of large and various circuits. New input layer

cells will have to be engineered to compute new inputs; however, circuit implemented in each

cell is relatively simple and required a small number of parts. Furthemore, the characterization

of a reduced number of components permits implementation of a large set of circuits. The

limitation of this design is the requirement of spatial separation and consequently of human

intervention, which might limit the range of applications.

1.2.4.3 Comparison of single-cell vs multi-cell designs

These two works proposed advanced and complementary framework for the design and imple-

mentation of logic circuits in living organisms.

Using distribution of the computation in multicellular consortia, a reduced number of cells

can be constructed and characterized and allow by combination the implementation of a large

number of complex logic circuits. Comparing to single-cell implementation, a lower number

of orthogonal components is required. Additionally, a reduced number of components (strains)

have to be constructed and engineered for the implementation of a large set of Boolean functions.

However, this multicellular design requires the use of a physical separation or multiple cell-cell

communication channels. While the single-cell implementation requires the engineering of large

genetic circuits, it permits cellular computation without physical intervention of humans and

can be used for the detection of various cellular patterns in living organisms.

For the design framework, the single-cell implementation required the use of a complex

algorithm for the minimization of the number of layers and components required in the circuits

while the multicell design framework is straightforward as no minimization is performed.

To conclude, these two designs are complementary and both strategies have their advantages

and drawbacks. During my thesis, I implemented logic circuits in both multicellular and single

cell systems.

40 Chapter 1. Introduction

1.3 Recombinases: tools for DNA editing

1.3.1 Serine and tyrosine recombinases and their mechanisms

1.3.1.1 Global mechanism of site-specific recombinases

Site-specific recombinases are enzymes that trigger a recombination process involving reciprocal

exchange between specific DNA sites. Globally, site-specific recombinases recognize two specific

DNA sites, break and rejoin the DNA without use of important energy and with DNA conser-

vation. Recombinases are separated in two different families based on the amino acid involved

in the DNA breaking, such as serine or tyrosine.

Depending on the arrangement of the recombination sites, recombinases mediate integration,

excision, or inversion of DNA between the recombination sites (Figure 1.10). For integration, the

two sites are positioned on two different DNA molecules, one of which must be circular. When

recombination sites are located within the same DNA molecule, the mechanism is dependent

on the relative site orientations. Sites in the same orientation (head-to-tail sites) result in an

excision while inversion is performed with sites in opposite orientation (head-to-head sites).

Integration

Excision+

Inversion

A

B

Figure 1.10: Possible recombination outcomes. A - DNA integration and excision. For integra-

tion, two recombination sites have to be on two different DNA molecules, one of which must be

circular. Excision of the DNA between recombination sites occurs when the sites are in parallel

orientation. B - Inversion. The inversion of DNA between the recombination sites occurs when

the sites are in antiparallel orientation.

Consequently, this mechanism has a variety of biological functions in different organisms,

such as integration of the bacteriophage genome in the bacterial chromosome, inversion to switch

gene expression, and reduction of DNA dimers. The most studied recombinases are: the Lambda

Int families mediating the integration of the bacteriophage Lambda into the E. coli chromosome

[Nash 1981], the Tn3 resolvase mediating the resolution of cointegrates from transposition of

Tn3 transposons [Stark 1989], and the Hin recombinase mediating DNA inversions for flagellar

1.3. Recombinases: tools for DNA editing 41

phase variation in Salmonella [Feng 1994]. A more detailed list of recombinases and their

biological functions can be found in Figure 1.11 or [Grindley 2006]).

Figure 1.11: Site-specific recombination: a sampling of enzymes and functions [Grindley 2006]

.

The site-specific recombination process can be divided into several simple steps. First,

the recombinase binds as a dimer to the two recombination sites forming a synaptic complex

with the juxtaposed sites. Then, the recombinase mediates the cleavage, strand exchange, and

rejoining of the DNA. Finally, the recombined DNA is released via the breaking down of the

synaptic complex.

The simplest recombination sites are around 20-30 bp and are composed of a pair of recog-

nition sites binding to one dimer or two monomers of the recombinase. A DNA break occurs

between the two recognition sites in the crossover site. For many recombinases, sites are 100 bp

or more, as they are composed of additional sites for protein recognition. Indeed, recombination

may involves the binding of several recombinases and the recruitment of co-factors.

Recombination is performed via a tetrameric complex. In each recombination site, two

enzymes bind forming a dimer. The two sites are juxtaposed to form a synaptic complex.

The DNA is then broken at the crossover site via either a tyrosine or serine amino acid. The

amino acid acts as a nucleophilic attack on the phosphate of the DNA backbone permitting

the break of the DNA and the creation of either a 3’ phosphotyrosine or a 5’ phosphoserine

42 Chapter 1. Introduction

linkage between the DNA molecule and the recombinase. Rejoining of the DNA is performed

via the reverse reaction. Consequently, no ATP is needed to perform this reaction. Despite the

apparent similarity of the two recombination mechanisms, the serine and tyrosine recombinase

families evolved separately; their mechanisms are different. Tyrosine recombinases form Holliday

junctions and break one DNA strand at a time, while serine recombinases form simultaneous

double-stranded breaks (Figure 1.12).

Cleavage
Exchange

Ligation
Isomerization

A

B

Example of Tyrosine att site

5’-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3'

3'-TATTGAAGCATATCGTATGTAATATGCTTCAATA-5'

Cleavage

Exchange

D

Ligation

binding site

binding site

crossover
site

C Cartoon of Serine attB site

A A

T T
Binding site Binding site ‘

B - O - B’

Figure 1.12: Mechanism of tyrosine and serine recombinases. A - A part of the LoxP-Cre site

with the Cre binding site (in blue) and the crossover site (in black). The arrow corresponds to the

cutting sites. B - Cartoon of tyrosine recombination mechanism. The blue and red lines are two

DNA strands. The active recombinases of the 4 tetrameric complexes are represented in grey. In

the phase of isomerization, this activity switches. C - Cartoon of the serine recombination site

composed of two partially complementary binding sites and a two bp core site. D - Cartoon of

the serine recombinase mechanism. The blue and red colors are used to illustrate the exchange

reaction.

1.3.1.2 Tyrosine recombinases

For tyrosine recombinases, the minimal recombination sites are comprised of a pair of inverted

enzyme binding sites separated by 6 to 8-base pair spacers. Then, the cleavage of DNA is

performed at the 5’ end of the spacer. The synaptic complex is formed as a tetramer. At each

site, a dimer is formed and the 6 bp crossover site must bend to permit formation of the dimer.

According to the bend of the crossover site, only one DNA strand is available for cleavage

and the protomer in the 5’ end of this strand is active. Then, within the synaptic tetramer,

alternating protomers are active one at a time. In each duplex, one DNA strand is cleaved

1.3. Recombinases: tools for DNA editing 43

by the nucleophilic tyrosine creating a 3’ phosphotyrosine linkage between the DNA and the

protein and a free hydroxyl group at the 5’ end of the DNA. Then, the free 5’ end of the DNA

molecule attacks the 3’ phosphotyrosine of the other DNA molecule forming a Holliday junction.

For the second step, the inactive protomers become active, and the process is repeated with the

second DNA strand.

The crossover site can adopt two different bends to permit the contact between the two

protomers binding to the same site. This conformation determines which strand will be cleaved

first. The recombination is efficient only when both sites adopt the same bends leading to

antiparallel orientation of the crossover site in the synaptic complex. Indeed, with parallel

orientation, the ligation will not occur as a mismatch is formed, which can lead to the reverse

reaction. In the simplest cases, the two recombinase sites in the reaction are identical (such as for

Flp and Cre). Then, the reverse reaction is as favored as the forward reaction; consequently, the

reaction reaches equilibrium when there is 50% of substrate and product. To have unidirectional

reactions, accessory factors are used.

The simple Flp- and Cre-recombination reactions are not unidirectional. Moreover, Flp does

not have any preference for the location of the first DNA cleavage - either end of the spacer.

The antiparallel reaction is then not favored. Cre-recombination preferentially cleaves first at

the GpC end of the site spacer. This catalytic preference is due to one DNA bend which is

favored, likely because of constraints on the DNA sequence flexibilty or on the protein-DNA

interaction [Guo 1997].

The homology between the two recombinase sites is essential for ligation of the two DNA

strands after DNA break and strand exchange. For Cre recombinase, it has been shown that the

identity of the 6 central base pair is essential. Mutations of this crossover site were performed

[Lee 1998] and showed that mutated sites had a decreased recombination efficiency and were

approximately orthologues. The two sites, 2272 and 5171, are the most used mutated sites due

to their good orthogonality and efficiencies.

Using accessory factors, the recombination reaction can be unidirectional, such as for lambda

Int [Nash 1981]. Lambda Int catalyzes the integration of the lambda phage genome into the

E. coli genome. In this system, the Integration and excision of the phage genome must be

well regulated. To regulate the directionality of the recombination, lambda Int contains an

additional domain at its N terminus. The domain binds to additional DNA sites placed on both

sides of the crossover site of the attP site. The additional protein domain and additional DNA

binding sites (arm sites) specify the bend of the attP sites for integration. The attB site does

not possess any additional binding site, but specifically binds in one orientation due to its DNA

sequence. The integration leads to attL and attR sites composed of half attP and half attB sites,

such as B-0-P’ for attL and P-0-B’ for attR. Consequently, as no integrase sites are composed

of the two arm sites, no reverse reaction can occur. Excision of the DNA is mediated via Xis

enzyme, which changes the synaptic complex conformation and recognizes the attL-attR sites

44 Chapter 1. Introduction

instead of attB-attP sites. The N-terminus domain of lambda Int, the non-symmetricity of the

two integrase sites, and the use of an excision cofactor allow directionality of the recombination

mechanism in tyrosine recombinases.

1.3.1.3 Serine recombinases

Serine recombinases are mainly composed of two domains, a binding domain and a catalytic

domain, differing significantly between recombinases. For the γδ resolvase, the catalytic domain

positioned in the N-terminal is linked by an alpha-helix (E-helix) and an unstructured segment

to a helix-turn-helix DNA-binding domain at the C terminus [Yang 1995]. The H-T-H domain is

responsible for the site recognition. In the Tn3 recombinase, it has been replaced by a Zinc finger

recognition [Akopian 2003]. For the different serine recombinases, the H-T-H DNA binding

domain can be positioned either in the C-terminus or N-terminus of the catalytic domain. In all

recombinases, the catalytic domain with its nucleophile serine is conserved in addition to an E-

helix following the binding domain. According to the resolved structure [Li 2005], the catalytic

domain and E-helix are positioned in the synapse of the tetramer domain and the DNA-binding

domain with the DNA positioned outside of the synaptic domain. The synaptic complex is

formed with two recombinase subunits per site forming a tetramer. The four subunits are

activated at the same time and break the two strands of the two sites, performing two double-

strand breaks. Each recombinase subunit is then bound by a phosphoserine linkage to the 5’

end of the broken DNA strand where all 3’ hydroxyl ends are free ([Reed 1984]. The exchange

of strands is performed by a relative 180◦rotation of half of the complex. The rotation is usually

right handed to relax the negative superhelicity of the DNA; however, depending on the DNA

conformation, the rotation can occur in both orientations. Then, the 3’ hydroxyl group attacks

the 5’ phosphoserine to permit re-ligation of the DNA.

The two DNA strand breaks leave 2-bp 3’ single strands during the strand exchange

[Reed 1981]. These 2-bp have to be conserved between the two sites to allow re-ligation by

complementarity of the two strands. As for tyrosine recombinase with its 6-8 bp crossover site,

modification of the 2-bp serine-recombinase crossover site permits engineering of orthogonal re-

combination sites. However, a mismatch of the 2-bp is only recognized after cleavage and strand

exchange, when the rejoining is attempted. In the presence of a mismatch, the recombinase has

to perform a new round of strand exchange to return to the initial configuration.

Based on this simple mechanism, excision vs. inversion can only be identified from asymmet-

ric 2-bp central sequences and intramolecular vs. intermolecular exchange cannot be identified.

However, to perform the desired recombination reaction, some regulations appear at the forma-

tion of the synaptic complex to promote its formation in a specific conformation.

The resolvase family specifically performs excision using recombination sites composed of

multiple binding sites [Mouw 2008] [Yang 1995]. The γδ recombinase site is composed of three

1.3. Recombinases: tools for DNA editing 45

double-binding sites, head-to-head, separated by different size spacers. These multiple bind-

ing sites force one specific synaptic conformation, and therefore only the excision reaction is

mediated.

The Hin and Grin invertases mediate naturally the inversion of promoters or coding se-

quences to switch gene expression. The specification of their reaction is performed using an

additional protein: factor for inversion stimulation (Fis). A DNA sequence specific for Fis bind-

ing called an enhancer is needed for recombination. This enhancer is composed of two binding

sites for the Fis dimer separated by 48 bp. The complex called invertasome is composed of the

four recombinase subunits, the Fis dimer, the enhancer, and the two recombinase sites. The

substrate DNA must be supercoiled in order to permit Fis-Hin interaction [Heichman 1990].

The formation of the invertasome forces the inversion reaction to occur and moreover, Hin

recombination is inactive without the Fis dimer and the enhancer in cis configuration.

Finally, our subfamily of interest is the serine integrases. Serine integrases mediate, as

with lambda integrase, the integration and excision of a phage genome into a bacterial genome.

Therefore, it has to distinguish intermolecular recombination for integration from intramolecular

recombination for excision. Lambda integrase succeeds to differentiate and regulate these two

reactions using accessory sites in attP and cofactors. Serine integrase uses a totally different

mechanism to distinguish the two reactions. The best studied integrases are φC31 from the

Streptomyces phage and Bxb1 and φRv1 from mycobacteriophages. For serine integrases, attB

and attP sites are around 40 bp. In contrast to other recombinases, attB and attP sites have

highly variable sequences, except for the conserved 2-bp crossover site. Serine integrase alone

mediates the integration of the phage genome in bacterial genome via attP-attB recombination.

Indeed, integrase stably binds to attL and attR sites, but it seems that only attP and attB

sites permit the formation of an active complex. To perform excision of phage DNA from

the bacterial genome, an excision cofactor, called Xis or RDF (for recombination directionality

factor), is needed. The RDF with the integrase allows catalysis of the attL-attR complex

and inhibits the catalysis of the attB-attP complex. The RDF does not need any extra DNA

sequences and interacts with the integrase dimers to permit formation of an active synapse with

attL-attR. When the RDF is present, the stability of the synapse switches from the attB-attP

complex to the attL-attR complex.

1.3.1.4 Highlight on the serine integrase mechanisms and specificities

Serine integrases are a subfamily of serine recombinases, also called Large Serine Recombinases.

They have an N-terminal catalytic domain similar to other serine recombinases, but a much

larger C-terminal domain (of 300 amino acids for A118). This different C-terminal domain seems

to be responsible for the binding to the attachment sites and for the catalytic specificity of serine

integrases. Serine integrases unidirectionally catalyze attBXattP recombination without the

need of additional binding sites or co-factors. And in the presence of RDF, the catalytic activity

46 Chapter 1. Introduction

of the attLXattR site is actived while attBXattP is inactived. According to recent partial crystal

structures, it seems that this catalytic specificity is due to the structural conformation of the C-

terminal domain, which is highly dependent upon the binding to the different sites and influences

the formation of the synaptic domain [Van Duyne 2013].

Only partial crystal structures are available for serine integrases, such as the catalytic domain

of the bacteriophage TP901-1 integrase [Yuan 2008] and the C-terminal region of bacteriophage

A118-like integrase bound to an attP half-site [Rutherford 2013].

The most characterized serine integrases are Bxb1, Tp901-1, PhiC31, and A118. Using

bioinformatic tools, Yang and colleagues identified 4,000 putative serine integrases [Yang 2014].

Eleven orthogonal integrases were characterized with their attachment sites. However, a re-

duced number of RDF have actually been identified and no sequence conservation has been

found between identified RDFs (such as for Bxb1 [Ghosh 2006] and PhiC31 [Khaleel 2011])

(List of integrase and RDFs: Table 1.2). Stoichiometrically, one RDF is needed per inte-

grase as different stoichiometries lead to different switch probabilities [Bonnet 2012]. Fusions of

RDFs to integrases were engineered to obtain reliable unidirectional attLxattR recombination

[Olorunniji 2017]. As serine integrases do not require cofactors, they are more easily transferable

to other organisms, such as mammalian cells [Keravala 2006].

Integrase RDF Reference for RDF

Bxb1 gp47 [Ghosh 2006]

Tp901-1 Orf7 [Breüner 1999]

PhiC31 gp3 interchangeable with PhiBT1 [Khaleel 2011]

A118 Gp44 [Mandali 2017]

PhiRv1 xis [Bibb 2005]

PhiBT1 gp3 interchangeable with PhiC31 [Zhang 2013]

Int2-5, 7-13 No yet identified

Table 1.2: Serine-integrases and their identified RDFs with corresponding references.

Orthogonal sites for the same integrase can be engineered by changing the two central base

pairs where the double strand break occurs. Re-ligation of recombined sites is only possible

between two sites with identical central base pair couplets. With a divergent central nucleotide

sequence, the double-strand break can occur but the sites will re-ligate in their original confor-

mation [Ghosh 2008].

As the palindromic 2-bp central sequences lead to no specificity between excision and in-

version, potentially six orthogonal pairs of sites can be constructed for each integrase using

the following 2-bp sequences: TT/AA, CT/GA, GT/CA, TG/AC, CC/GG and TC/AG. Such

orthogonality was applied to attB/attP sites and also to attL/attR sites using PhiC31 integrase

[Colloms 2014]. The use of six integrase-site pair variants for DNA assembly leads to only 18%

1.3. Recombinases: tools for DNA editing 47

of correctly assembled pathways [Colloms 2014] under selective pressure. Consequently, the

integrase-site pair variants seem to not be fully orthogonal.

1.3.2 Recombinases as a tool for DNA editing

Using their natural function to integrate, excise, and invert DNA or even resolve DNA con-

catenation, recombinases have been used for 30 years as a tool for in vitro cloning, genome

modification, and cell-lineage construction [Sauer 1994]. At first, tyrosine integrase were prin-

cipally used, as more was known about them than on serine recombinases. Many systems were

based on Cre and FLP recombinases, which do not required cofactors and can functioned in

various organisms, such as mammalian cells. Then, as the mechanism of serine integrase became

better understood and a larger set was characterized, increasing number of systems were devel-

oped based on serine integrases. They have proved to be great tools as their recombination is

precise, specific, and unidirectional, and they work very efficiently in a wide range of organisms.

Recombinases can be used in vitro as a restriction/ligation mechanism, and they are more

efficient than usual restriction and ligation enzymes but nevertheless require larger recognition

sites. First, cloning vectors were designed using Cre recombinase [Sauer 1988]. Later, the

GATEWAY system was developed based on lambda integrase with its HIF cofactor (Figure

1.13A). Up to 6 orthogonal pairs of att sites were used to permit single-step gene assembly of

up to 5 fragments [Hartley 2000] [Cheo 2004]. In comparison to other strategies such as Gibson

assembly, the cloning leads to fewer mutations but requires large overlap sequences of around

200 bp (att sites) between fragments. Using serine integrases and integrase site variants, other in

vitro cloning systems similar to GATEWAY were developed, based either on PhiBT1 integrase,

site-specific recombination tandem assembly (SSTRA) [Zhang 2011], or on PhiC31 integrase,

serine integrase recombinational assembly (SIRA) using integrase-site variants [Colloms 2014].

A major benefit of serine integrases is the requirement of only small integrase sites (40bp),

which can simply be added by PCR. However, the use of serine integrase site variants with

modification of 2 bp crossover sequence have shown only an 18% correct sequence for 5 part

assembly, likely due to imprefect orthogonality of integrase site variants.

Additonally, recombinases have been used for genome engineering. First, recombinases were

used to remove selective markers after integration of DNA via homologous recombination. For

example, in mammalian cells selective markers were surrounded by FLP integrase sites which

mediated their excision by expression of FLP recombinase [Fiering 1993]. Landing pads for

site-specific integration were also developed (Figure1.13B). To do so, cell-lineages were first

engineered via homologous recombination to place an integrase site at a specific location. Then,

any cassette surrounded with the complementary integrase site can be integrated at this specific

locus. These landing pads were used in Drosophila to study positional effect on transgene

expression. A collection of strains with landing pads at different loci with integration mediated

through PhiC31 mRNA was developed by Bischof and colleagues [Bischof 2007]. Similarly, using

48 Chapter 1. Introduction

R4 integrase, Invitrogen developed a Jump-in Targeted Integration System with pre-integration

R4 attP sites at known genomic loci of mammalian cells [Scientific 2017]. Moreover, pseudo

PhiC31 att sites were found in the human genome [Chalberg 2006], and while recombination

is less efficient with these pseudo sites, it permits integration of transgenes without previous

cell modification. Using this approach, pseudo PhiC31 att sites were applied to gene therapy

techniques [Olivares 2002] [Ortiz-Urda 2002].

Similarly to landing pad, recombinase-mediated cassette exchange (RMCE) is also used to

target genome integration (Figure 1.13C). For RMCE, the cassette for integration is flanked

through two integrase sites and the complementary sites are positioned in the target genome

locus. This technique was first developed using FLP via two mutant sites [Schlake 1994]. Then,

it was adapted to serine integrases, which are better candidates than FLP as recombination

is highly directional and att sites are relatively small. A variation of RMCE, dual integrase

cassette exchange (DICE), uses a pair of orthogonal serine integrases [Zhu 2014].

Recombinases were also used to induce gene expression at specific time. A first synthetic

system for E. coli used lambda integrase to invert a promoter and induced gene expression

[Podhajska 1985] (Figure1.13D). By changing the site orientation, DNA inversion through

lambda integrase was engineered. In this plasmid, lambda integrase expression was medi-

ated through a heat pulse induction, which triggered promoter inversion and expression of the

output gene placed downstream. After the pulse of integrase expression, the output gene is

constitutively expressed. It therefore permits induction of gene expression without the con-

stant use of chemical inducer and constant expression of regulators. Similarly, Cre recombinase

was used in mice to permit activation of dormant transgene by excision of STOP sequences

using Cre recombination. This strategy is named recombination activation of gene expression

(RAGE) [Lakso 1992, Pichel 1993] (Figure 1.13E). Excision of STOP sequences was performed

via crossing the dormant transgenic mouse line with Cre-expressing transgenic lines, permitting

activation of a large-tumor antigen.

Similarly, FLP integrase expressed through a heat-pulse induction was used to randomly in-

duce the expression of a specific gene. By variation of the intensity and length of heat-pulse, a

proportion of cells express the specific gene, generating Drosophila mosaics [Struhl 1993]. Other

systems used recombination to generate random genetic events. Recently Cre recombination

was used in the design of a synthetic yeast genome to enable rapid evolution of genome in a

random manner by placing several Cre recombination sites, known as synthetic chromosome

rearrangement and modification by loxP-mediated evolution, or SRaMbLE [Shen 2016]. Addi-

tionally, Livet and colleagues developed a system to identify individual neurons using random

genetic events. In this system, various fluorescent proteins are placed between Cre and FLP

attachment sites. By expressing the recombinases, random recombination events occur, leading

to various patterns of fluorescent protein expressions creating a specturm of various colors. Up

to 10 colors were obtained using this BRAINBOW system [Livet 2007].

1.3. Recombinases: tools for DNA editing 49

Genome

GOI marker

GOImarker

GOI

Genome

Vector

marker

GOI

Integrase Integrase

Genome

Genome

Vector

B C

A
GOI 1

GOI 2

GOI 3

GOI 4

D E

Integrase

heat-pulse

STOP

Mice Genome 1 Mice Genome 2

Cre

Mice after matting

Figure 1.13: Application of recombinases for DNA editing. A - In vitro assembly of

multiple DNA fragments via recombinases: GATEWAY system. B - Landing pad for site-specific

integration. C - Recombination-mediated cassette exchange. D - Gene-expression induction

via promoter inversion mediated by integrase induced by an heat pulse. E - Recombination

Activation of Gene expression (RAGE) in mice.

1.3.3 Recombinases as a tool for logic implementation

As explained previously, recombinases permit implementation of genetic switches to turn on

gene expression or to generate random gene-expression patterns. Based on this simple system,

more complex circuits have been implemented. Recombinases were used to solve computation

problems such as the burnt pancake problem and Hamiltonian path problem, and to implement

logic circuits, such as sequential and combinational logic circuits. Here, we detailed how the

50 Chapter 1. Introduction

mechanism of recombinases can be hijacked to implement complex computation programs.

In most systems, the output of the circuit is the expression of an output gene. Therefore,

promoters, terminators, and genes are placed between integrase sites to control the output gene

expression by recombination events, wich can be either stochastic or deterministic.

Stochastic recombination events were used to generate all possible combination of various

genetic parts. To do so, several integrase site copies are placed in the same sequence, then various

recombination patterns can occur between the different integrase sites, leading to different DNA

sequences. This strategy was used to solve the burnt pancake problem (BPP) [Haynes 2008]

and a 3-node Hamiltonian path problem via the Hin tyrosine recombinase [Baumgardner 2009].

In these two papers, a low rate of inversion was mediated through the use of multiple hixC

sites, then each recombination occured at a certain probability, leading to the generation of a

set of various sequences. Promoters, genes or split-genes were positioned between hixC sites

such that recombination led to various gene expression profiles. A similar strategy was used

in BRAINBOW to generate stochastic patterns of fluorescent protein expression [Livet 2007]

using Cre recombinase (Figure 1.14). Different Brainbow designs were implemented, including

one design where orthogonal Cre sites in excision orientation overlap with second pair of sites

such that the recombination event occuring first excises a site of the second pair. Depending

on the stochasticity of recombination, various gene-expression patterns are generated. Another

design uses 4 loxP sites positioned to obtain four expression pattern possibilities depending on

inversion and excision recombination events.

By placing integrase sites around gene-expression regulatory elements, such as promoters,

output gene expression can be irreversibly switched ON through integrase expression. The

system from Podhajska et al. [Podhajska 1985] corresponds to the implementation of a one

input Boolean function, considering the input ON when the input has been present. By placing

these genetic switches in series, in parallel or in layers, more complex Boolean function can be

implemented.

Following this principle, 2-input Boolean logic functions were implemented in bacteria using

serine integrases. Bonnet and colleagues, and Siuti and colleagues, implemented all 2-input

logic functions in single cells using either Bxb1/Tp901-1 integrases or Bxb1/PhiC31 integrases

[Bonnet 2013, Siuti 2013]. They used serine integrases due to their high specificities, the unidi-

rectionality of the recombination events, the possibility to perform inversion or excision depend-

ing on site orientations, and the possibility to transfer system to various organisms. In these

system, the presence of an input induces the expression of one serine integrase and therefore the

recombination between one pair of integrase sites. Bonnet and colleagues circuits are based on

an asymmetric terminator surrounded by integrase sites. By nesting integrase sites, changing

orientation of sites, and placing up to two terminator switches in series, they implemented all

the 2-input logic gates in E. coli (Figure 1.15A). Siuti and colleagues placed between integrase

sites either promoters, terminators, or genes. Using only integrases, which mediate irreversible

1.3. Recombinases: tools for DNA editing 51

Hin
Cre

inversion excision

CA
HixC HixC HixC

D

Illustration burnt pancake problem.

B

Figure 1.14: Use of stochastic recombination events to generate various genetic cir-

cuits. (A) (B) Burnt-pancake problem using Hin recombinase. Based on the low inversion

efficiency of HixC site of Hin recombinase, all the possible combinations of the two parts are

obtained. The output gene is expressed only when the promoter and gene are in the correct

orientation, corresponding to the solution for the 2-part BPP. [Haynes 2008] (C) (D) Cre re-

combinase and multiple LoxP sites are used to generate stochastic pattern of fluorescent protein

expressions to label cells with various color. (D) corresponds to a figure from [Livet 2007].

genetic switches, these circuits implement asynchronous one-shot Boolean logic; the input is

considered ON if it have been present and system cannot be reset.

Int1

Int2

Input1

Input2

AND

OR XOR

A B

Int2 Int1

Int1 Int2

In
t1

In
t2

Input1 Input2

In
t3

Input3

000 100 010 110 001 011 101 111

3-input scaffold

Pair1Int1 Pair2 Pair3

Pair1 Pair2 Pair3Int2

Int3 Pair1 Pair2

Figure 1.15: Recombinase-based logic circuit designs. (A) Bonnet et al. design using

composition of terminator-based elements. (B) Weinberg et al. design using excision, integrase-

site variants and one locus for gene expression per input state.

52 Chapter 1. Introduction

Similarly, Weinberg and colleagues implemented asynchronous one-shot Boolean logic in

mammalian cells [Weinberg 2017]. The BLADE system (for Boolean Logic and Arithmetic

through DNA Excision) uses serine integrases to mediate inversion and tyrosine recombinases

to mediate excision. Bxb1 and PhiC31 integrases are used for inversion and Cre, Flp, and

VCre recombinases are used for excision. For tyrosine recombinases, three orthogonal mutant

siteswere characterized for each recombinase: lox sites (loxP, lox2272, loxN),FRT (FRT, F3,

F14) and Vlox (VloxP, Vlox2272). These sets of mutant sites permit various recombination

events responding to the same recombinase and therefore to the same input. Then, based on

this set of integrase site pairs, Weinberg and colleagues constructed a 3-input scaffold based on

the expression of a different GOI position at each Boolean state (Figure 1.15B). This 3-input

scaffold permits implementation of all 3-input Boolean functions by placing a gene at the GOI

locus corresponding to each ON state. It was at this time the only systematic framework for

design of integrase-based logic circuits in living organisms. The design workflow is simple but

leads to large constructions, and for each ON state a gene is required and for each OFF state

a terminator is needed. Scaling up this design to higher numbers of inputs seems challenging

as the size of the circuits increase exponentially with the number of inputs, as the number

of required orthogonal integrase sites per inputs. However, BLADE shows the capacity of

integrase-based logic circuits to permit implementation of logic within compact genetic circuits,

specifically within a single construction.

Another possibility for implementation of Boolean logic circuit is to layer serine integrases

[Yang 2014], similarly to repressor-based logic circuits. Layering serine integrase remains chal-

lenging as switches are highly sensitive to integrase gene-expression leakage. Moreover, by

layering recombinases, the design loses the ability to have a compact and single-layer imple-

mentation, which is one of the primary benefits of a recombinase based design. Additionally, in

Yang et al., the integrase switch was placed as the last layer of repressor-based logic circuits,

which permits implementation of memory in repressor-based logic circuits that lack it.

Most of sequential logic implemented in living organisms is based on recombinases as it

permits a direct and simple recording of input occurence due to the irreversibility of some

recombinase switches. Focusing here on recombinases, I review the in vivo implementation of

sequential logic systems in Annex B.

By overlapping integrase site pairs corresponding to different inputs, the order of occurrence

of events can be differentiated as recombination events are interdependent. The design principle

is similar to the BRAINBOW design where integrase site pairs are overlapping; however, for

sequential logic implementation, the system behavior is deterministic as integrase sites respond

to different inputs. First, Ham and colleagues constructed an history-dependent system using

FimB and Hin integrases by overlapping integrase sites [Ham 2008a]. Inputs correspond to

the expression of FimB and Hin integrases and both integrases mediate DNA inversion. As

the two sites are overlapping, different DNA sequences are obtained depending on the order

1.3. Recombinases: tools for DNA editing 53

of occurrence of inputs. However, as FimB inversion is not unidirectional, there is a 50/50

proportion of FimB switch. Despite its interesting design, the system is not fully functional,

probably due to the use of FimB.

Hsiao and colleagues constructed a similar target using serine integrases [Hsiao 2016] (Fig-

ure 1.16A). In this design, inputs control expression of Bxb1 and Tp901.1. In the target, a

Bxb1 integrase site pair is in excision orientation and a Tp901.1 integrase site pair in inversion

orientation. As pair of sites are overlapping, expression of Bxb1 integrase first leads to exci-

sion of one Tp901.1 site. Then, if Tp901.1 integrase is expressed after Bxb1, no switch occurs.

However, if Tp901.1 is express first, it causes inversion of one Bxb1 site, such that expression of

Bxb1 after Tp901.1 leads to inversion of DNA sequences. Using this temporal target, 4 different

history-dependent states can be differentiated on the DNA and 3 states via gene-expression by

placing one promoter and one terminator between the sites and one gene at each extremity of

the temporal target. If the two inputs occur within a short delay, a mixed population will be

obtained as not all recombinations will have the time to occur. Therefore, the quantification

of the proportion of each DNA state permits to determine the time between the occurrence of

each event.

A B

A B

B A

IntA IntB

Input1 Input2

GFPRFP

GFPRFP

GFPRFP

GFPRFP

GFPRFP

3-input RSM

GFP BFP RFP

BFP

GFP/BFP

RFP

GFP/RFP

BFP/RFP

e.g. 2-input GRSM

Figure 1.16: Serine-integrase history-dependent circuits. (A) 2-input temporal target

from Hsia et al. 2016. (B) 3-input recombinase-based state machines with DNA as output and

2-input with gene expression as output.

Scaling up this sequential circuit design, Roquet and colleagues implemented 2- and 3-input

history-dependent circuits, termed RSM for recombinase-based state machines (Figure 1.16B).

Their design is based on the same 2-input temporal target as Hsiao and colleagues. For 3-input,

three targets responding to each 2-input combination are placed in series (Figure 1.16B upper

panel). Bxb1, Tp901.1 and A118 serine integrases respond to each input and for each integrase,

two integrase site pair variants are used to have independent 2-input targets. This design

permits to record the history of occurrence of 3 events, as each 16 sequential input state leads

to a different DNA sequence. The state of the system can then be read via DNA sequencing.

By placing promoters, terminators, and genes between integrase sites, history-dependent gene-

expression programs can be implemented (Figure 1.16B, lower panel). Based on their 3-input

54 Chapter 1. Introduction

target composed of only integrase sites, Roquet and colleagues generated all possible 3-input

gene-expression RSMs by placing gene-expression parts between integrase sites. Via brute-force

generation, they created a database of gene-expression programs with the various GRSMs.

Based on their paper, it is not clear if all history-dependent gene-expression programs can be

implemented via this design strategy. And as this design strategy is based on brute-force, its

seems limited to generate all parts combination for a high number of inputs. It is unfortunate

that a web interface has not been created to permit to the many systematic designs of history-

dependent gene-expression circuits, as their design is not straightforward.

On the experimental side, they characterized a set of 2- and 3-input multi-output history-

dependent logic circuits. This design is theoretically scalable to 7 inputs as the maximum

number of orthogonal site variants is 6. However, it seems unlikely that this design is feasable

for a high number of inputs, as for 7 inputs it will lead to a DNA sequence with 7 times 6

repetitions of 40 base pairs. Additionnaly, as shown by Colloms and colleagues [Colloms 2014],

2bp integrase site variants are not fully orthogonal such that the use of so many variant sites

will probably lead to non-specific recombination events.

All serine integrase-based genetic circuits are one-shot as serine-integrase switch is uni-

directional. However, using recombinase directional factor (RDF), a rewritable switch was

implemented using Bxb1 and Bxb1-RDF, called the rewritable digital data storage (RAD)

[Bonnet 2012]. The RAD target is composed of a promoter surrounded by Bxb1 integrase sites

in inversion orientation between a GFP and a RFP gene. Bxb1 integrase expression permits

switching from RFP to GFP expression and Bxb1-RDF coupled with Bxb1-integrase permit

resetting to RFP expression. However, reset necessitates tight control of integrase and RDF

stoichiometry, as integrase alone mediates attB-attP recombination and when coupled with

RDF mediates attL-attR recombinase. Theoretically, the combination of RAD circuits with a

repressor and activator system permits implementation of an activation-repression toggle flip-

flop circuit, corresponding to the output turned ON in presence of one input activation and

OFF when input have been off and it is on again [Subsoontorn 2012a]. This toggle flip-flop

circuit can be used to implement a combinatorial asynchronous counter. In general, a flip-flop

circuit is the basic component needed for implementation of complex synchronous sequential

circuits.

Friedland and colleagues used the tyrosine recombinases Flp and Cre to implement

a synthetic circuit which “counts”, i.e. output is expressed after three induction pulses

[Friedland 2009]. The objective of this circuit is to count the number of pulses of a chemi-

cal molecule, arabinose. The first arabinose pulse induces the expression of Flp recombinase,

which mediate inversion of its gene coding sequence and an arabinose-inducible promoter that

promotes expression of Cre recombinase. This schematic is repeated for the second arabinose

pulse with the Cre recombinase. At the third arabinose pulse, the GFP output gene is expressed,

which permits to count until three. However, the system is unable to distinguish several pulses

1.3. Recombinases: tools for DNA editing 55

from a long induction. Therefore, continuous arabinose induction will turn ON GFP expression.

This system is consequently a counter of input-pulse and not strictly speaking a counter.

Author Logic Recombinasesinput - in-

tegrase

type of de-

sign

Max num-

ber of in-

puts

Bonnet Asynchronous

one-shot

Boolean

Bxb1-

Tp901.1

serine inte-

grases

One inte-

grase and

one pair

of site per

input

Single-cell 2 inputs

Siuti Asynchronous

one-shot

Boolean

Bxb1-

PhiC31

serine inte-

grases

One inte-

grase and

one pair

of site per

input

Single-cell 2 inputs

Weinberg Asynchronous

one-shot

Boolean

Bxb1-

PhiC31

serine in-

tegrases,

Cre, Flp,

Vcre tyrosine

recombinases

One inte-

grase and

up to 3 pair

of site per

input

Single-cell 3 inputs

Roquet Asynchronous

one-shot se-

quential

Bxb1,

Tp901.1,

A118 serine

integrases

One inte-

grase and

up to 6 pair

of site per

input

Single-cell 3 inputs

Table 1.3: List of recombinase-based logic circuits of interest, with the correspond-

ing papers, the type of logic implemented, the recombinases used, the number of integrase

or integrase-site variants per input, the type of implementation (single or multi-cell) and the

maximum number of inputs computed.

A large set of recombinase-based circuits have been developed in the last decade (Table 1.3).

Recombinases permit engineering of a large range of computation circuits. Most systematic work

has been performed on the implementation of asynchronous one-shot Boolean and sequential

logic, however, circuits are still limited to processing a maximum of 3 inputs [Roquet 2016]

[Weinberg 2017] and remain proof-of-concept.

56 Chapter 1. Introduction

1.4 Thesis objectives

The objective of my thesis is to increase the computation power of recombinase-based logic

circuits. I aimed at developing an automated design and systematic design framework enabling

researchers to simply implement logic circuit into a large range of organisms and of inputs.

Below are the circuit specification that I aimed at developing:

- Compact: reduce the number of parts needed.

- Automatic design: theoretical design performed via a web-interface.

- Transferable: implementable in various organisms.

- Scalable: for an increasing number of inputs.

- Complete: for all logic functions.

- Accessible: non-experts can use these tools and apply them to other applications.

- Reliable: behave as expected.

- Reusable: parts developed can be used for construction of other circuits.

During my thesis, I developed serine recombinase-based logic circuits for asynchronous

single-shot Boolean logic and history-dependent logic.

I implemented asynchronous Boolean logic operating in a multicellular system (Chapter

2). I developed an automated design framework for Boolean function in multicellular systems

and engineered a set of 14 logic devices that allow the implementation of all 4-input Boolean

functions.

Similarly, I developed multicellular history-dependent logic programs (Chapter 3). I auto-

mated the design of these circuits and engineered a proof-of-concept of the implementation of

up to 3-input history-dependent gene expression programs in E. coli.

Finally, I developed minimization schemes for single-cell recombinase logic circuits (Chapter

4). This design is complementary to the multicellular design of Boolean logic in Chapter 2, as

single cell designs emphasize compactness over reusability and easy implementation. We gener-

ated a database of all possible logic circuit designs in single-cell systems using a combinatorial

approach and developed a web-interface called Recombinator. Finally, I developed a strategy

to experimentally characterize a reduced set of construction to determine the feasibility and

completeness of the implementation in living organisms.

Chapter 2

Boolean logic in multicellular

consortia using recombinases

Contents

2.1 An automated design framework for multicellular recombinase logic . 58

2.2 Implementation of multicellular Boolean logic using recombinase

switches . 66

2.2.1 Selection of a set of four orthogonal integrases 67

2.2.2 Design of a standard logic device architecture 70

2.2.3 Characterization of a set of logic elements 71

2.2.4 Construction and characterization of the 14 computational devices for 4-

input multicellular Boolean logic . 75

2.2.5 Prototyping a multicellular system simulating the implementation of com-

plex Boolean logic functions . 82

2.2.6 Characterization of parts to optimize logic devices 86

2.2.7 Discussion . 89

2.2.8 Materiel and Methods . 92

In this chapter, I will present my work on the implementation of Boolean logic in multicellular

consortia using recombinases. This work is divide in two parts: (1) the development of an

automated design framework and (2) the experimental implementation of this design.

Many people contributed to this work. Jerome Bonnet and myself were at the origin of the

project. Michel Leclere and Federico Uliana participated in fruitful discussions on the circuit

designs. I came up with the design workflow and its automatization and created the Python

software. Violaine Moreau and Laurent Bonnet were involved in the creation of the CALIN

website, and, I designed the biological construction. The characterization of biological parts

and implementation of Boolean logic circuits were performed by Pauline Mayonove, myself, and

Chloé Thailhades.

58 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.1 An automated design framework for multicellular recombi-

nase logic

We published the automated design framework for multicellular recombinase logic in ACS Syn-

thetic Biology. Following the full paper and the supplementary data can be found in Annex

D.

Abstract: Tools to systematically reprogram cellular behavior are crucial to address press-

ing challenges in manufacturing, environment, or healthcare. Recombinases can very efficiently

encode Boolean and history-dependent logic in many species, yet current designs are performed

on a case-by-case basis, limiting their scalability and requiring time-consuming optimization.

Here we present an automated workflow for designing recombinase logic devices executing

Boolean functions. Our theoretical framework uses a reduced library of computational devices

distributed into different cellular subpopulations, which are then composed in various manners

to implement all desired logic functions at the multicellular level. Our design platform called

CALIN (Composable Asynchronous Logic using Integrase Networks) is broadly accessible via

a web server, taking truth tables as inputs and providing corresponding DNA designs and se-

quences as outputs (available at http://synbio.cbs.cnrs.fr/calin). We anticipate that this

automated design workflow will streamline the implementation of Boolean functions in many

organisms and for various applications.

An Automated Design Framework for Multicellular Recombinase
Logic

Sarah Guiziou,† Federico Ulliana,‡ Violaine Moreau,† Michel Leclere,‡ and Jerome Bonnet*,†

†Centre de Biochimie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
‡Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM), CNRS UMR 5506, University of
Montpellier, 34090 Montpellier, France

*S Supporting Information

ABSTRACT: Tools to systematically reprogram cellular
behavior are crucial to address pressing challenges in
manufacturing, environment, or healthcare. Recombinases
can very efficiently encode Boolean and history-dependent
logic in many species, yet current designs are performed on a
case-by-case basis, limiting their scalability and requiring time-
consuming optimization. Here we present an automated
workflow for designing recombinase logic devices executing
Boolean functions. Our theoretical framework uses a reduced
library of computational devices distributed into different cellular subpopulations, which are then composed in various manners
to implement all desired logic functions at the multicellular level. Our design platform called CALIN (Composable
Asynchronous Logic using Integrase Networks) is broadly accessible via a web server, taking truth tables as inputs and providing
corresponding DNA designs and sequences as outputs (available at http://synbio.cbs.cnrs.fr/calin). We anticipate that this
automated design workflow will streamline the implementation of Boolean functions in many organisms and for various
applications.

KEYWORDS: synthetic biology, biological computing, recombinases, logic gates, automated genetic design,
distributed multicellular computing

R eprogramming the response of living cells to chemical or
physical signals is a key goal of synthetic biology and

would support the development of complex manufacturing
processes, sophisticated diagnostics, or cellular therapies.1 In
order to control cellular behavior, researchers have engineered
many types of Boolean logic gates operating in single cells by
using transcriptional regulators,2−8 RNA molecules,9−11 or site-
specific recombinases.12−14 However, scaling-up single-cell
logic systems requires solving multiple engineering challenges.
First, when program complexity increases (number of inputs
≥3), the high number of parts needed can cause metabolic
burden and affect cellular viability. Second, current design
methods are mostly ad-hoc, and each Boolean function is
implemented using a different genetic architecture that needs to
be fully characterized and optimized. Despite recent progress
toward predictable gate design,7 some gates simply do not work
or are too complex to be implemented within a single cell.
Finally, in order to avoid cross-talk, single-cell logic systems
need to use different components for every novel signal to be
detected. While library of orthogonal regulatory components
have greatly expanded,3,6,15,16 their deployment can be
challenging and requires time-consuming optimization.
In nature, division of labor between cellular subpopulations is

a ubiquitous mechanism allowing cellular communities to
accomplish complex functions.17,18 Early efforts to engineer
synthetic multicellular systems led to the construction of

pattern-forming communities,19 predator−prey ecosystems,20

synchronized oscillators,21,22 or distributed metabolic path-
ways.23 Researchers also realized that problems faced by logic
circuits operating in single cells could be addressed by
distributing the logic program between different cells.24

Because of the spatial separation allowed by cellular compart-
ments, optimized regulatory components can be reused in
different subpopulations. As the circuit is divided into smaller
subcircuits, metabolic burden is reduced. Finally, simple cellular
computing modules can be composed in different manners and
wired via cell−cell communication channels to obtain different
logic functions. For example, Tamsir et al. used multilayered
circuit designs inspired from electronics to construct all 2-input
logic gates by combining spatially separated E. coli colonies
encoding NOR gates wired via quorum-sensing molecules.25

Specific features of biology can also be used to our advantage to
engineer logic systems in a more efficient manner than by
strictly transposing electronic designs.12,24,26 One particularly
promising approach is distributed multicellular computation
(DMC).24,27−29 DMC is based on the decomposition of a
Boolean function into various subfunctions, each performed by
a particular subpopulation of cells. Different subpopulations can
then be combined in different manners to realize any given

Received: January 10, 2018
Published: April 11, 2018

Research Article

pubs.acs.org/synthbioCite This: ACS Synth. Biol. 2018, 7, 1406−1412

© 2018 American Chemical Society 1406 DOI: 10.1021/acssynbio.8b00016
ACS Synth. Biol. 2018, 7, 1406−1412

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

D
o
w

n
lo

ad
ed

 v
ia

 1
7
6
.1

3
8
.1

1
6
.2

1
9
 o

n
 J

u
ly

 3
,
2
0
1
8
 a

t
0
5
:4

5
:4

9
 (

U
T

C
).

S

ee
 h

tt
p

s:
//

p
u
b

s.
ac

s.
o
rg

/s
h
ar

in
g
g
u
id

el
in

es
 f

o
r

o
p

ti
o
n
s

o
n
 h

o
w

 t
o
 l

eg
it

im
at

el
y
 s

h
ar

e
p

u
b

li
sh

ed
 a

rt
ic

le
s.

Boolean function of interest. Importantly, multiple cells are
capable of producing the output which is therefore distributed
among the cellular subpopulations. Recently, Macia and
colleagues implemented DMC within a multicellular con-
sortium by using cellular computing units performing
elementary IDENTITY or NOT operations.30 While highly
scalable, the need for spatial separation between each
subpopulation prevents these systems from operating autono-
mously.
Here we present a composable framework enabling the

systematic design of logic gates performing Boolean logic
within an autonomous multicellular consortium.
We designed our system to operate using site-specific

recombinases, more specifically serine integrases, which allow
robust and flexible engineering of complex logic gates.12,13

Serine integrases are members of the large serine recombinase
family31 and catalyze site-specific recombination between
attachment sites attB and attP. Recombination operates via
double-strand breaks located at the central dinucleotides
followed by the generation of hybrid sites attL and attR.
Depending on the relative orientation of attB and attP, the
recombination reaction leads to excision (parallel orientation)
or inversion (antiparallel orientation) of the DNA sequence
flanked by the attachment sites.32 Recombinase devices can
implement complex logic functions without the need of
cascading multiple logic gates like in electronics.12,13,26

Integrase recombination is irreversible in the absence of
cofactors, so that recombinase logic gates exhibit memory, are
single use (one-shot), and therefore belong to the family of
asynchronous logic devices (i.e., the system can respond to
multiple signals even if they are not present simultaneously).
Our design for Boolean logic is based on a reduced library of

cellular computing units responding to one or multiple inputs
that can be composed at will to implement all desired Boolean
functions (Figure 1). Our logic system is single layer, does not

require cell−cell communication nor spatial separation, greatly
facilitating its implementation. In order to make our design
framework broadly accessible, we provide a fully automated
web platform called CALIN (Composable Asynchronous Logic
using Integrase Networks) taking truth tables as inputs and
providing corresponding DNA designs and sequences as
outputs.

■ RESULTS

A Hierarchical Composition Framework for Multi-
cellular Boolean Logic Using Integrase Switches. In order
to implement a Boolean function within a multicellular
consortium, we decomposed the function into several
independent subfunctions, or clauses,30 executed by a different

cellular subpopulation, chosen from a library containing a
reduced number of cellular computing units (Figure 1). To
facilitate multicellular system composition, we designed our
system so that each cellular subpopulation computes
independently of the others, without cell−cell communication
needed. As a consequence, if one cellular subpopulation is ON
(expression of the output gene), the global output of the
system is considered to be ON. Because of their reduced
number and of the absence of cell−cell communication, cellular
computing units can be extensively characterized and optimized
to predictably implement all Boolean functions at the
multicellular level.
Boolean functions encode the output state of the logic gate.

The variables of the function are the inputs of the gate which
are equal to 1 if the signal has been present and otherwise to 0.
We express Boolean functions using the disjunctive normal
form.33

The Boolean function f is a disjunction: f = β1OR...OR βM,
where M is the number of clauses present in f, and each βi is a
conjunctive clause: βi = θi,1 AND...AND θi,ni, where each θi,j is a

literal of the variable xj (either the identity of the variable or its
negation), with j being an integer between 1 and ni. ni
corresponds to the number of variables in this conjunction
(an integer between 1 and N). N is the number of variables in
the function f.
Each cellular computing unit executes a particular “sub-

function” corresponding to a conjunctive clause. Then, the full
function is performed by combining multiple cellular
computing units (Figure 2A).
We designed a hierarchical composition framework in which

two elements encoding the NOT and IDENTITY functions
(called ID-element and NOT-element) are composed into
computational modules which are then combined to generate
computational devices executing a particular clause within a
cellular subpopulation.
For the sake of simplicity and robustness, we designed

switches controlled by integrase-mediated excision (Figure 2B).
Excision-based design reduces the distance between gate
promoter and the gene of interest. Moreover, as no asymmetric
terminator is needed, this design might be easier to deploy into
many organisms.14

The ID-element consists of a transcriptional terminator
flanked by recombination sites and placed between the
promoter and the output gene. In presence of the signal, the
terminator is excised and the output gene is expressed (Figure
2C, left panel). The NOT-element consists of a promoter
driving the output gene and flanked by recombination sites. In
presence of the signal, the promoter is excised and the gene is
not expressed anymore (Figure 2C, right panel). Computa-
tional modules performing conjunctions of NOT or con-
junctions of IDENTITY functions are respectively realized by
nesting NOT-elements or by placing ID-elements in series
(Figure 2D,E). Finally, NOT- and ID-modules are composed in
series to obtain the final computational devices: in this case the
NOT-module containing the promoter is positioned in 5′ of
the ID-module, with the output gene positioned downstream
(Figure 2F). Following this hierarchical composition frame-
work, all conjunctive clauses are implementable within a cellular
computing unit. The full Boolean function is then executed by a
multicellular consortium containing different cellular comput-
ing units.

Figure 1. Distribution of a Boolean function within a multicellular
consortium. The Boolean function of interest is decomposed as a
disjunction (i.e., sum) of subfunctions (or clauses). Here, as an
example, a given function, f, is decomposed into functions f1, f 2, and f 3.
The strains performing f1, f 2 and f 3 are selected from the strain library
to assemble a multicellular consortium computing the desired Boolean
function.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.8b00016
ACS Synth. Biol. 2018, 7, 1406−1412

1407

To reduce the number of computational devices, we
implemented only one computational device per set of
symmetric Boolean functions and interchanged connection
between integrases and control signals. For example, the
two Boolean functions: NOT(A) AND B; B AND NOT(A) are
executed using the same computational device (Figure S1).
Consequently, only 14 computational devices are needed to
realize all 4-input Boolean functions (65 536 functions) (Figure
3A). For every additional input (from N − 1 to N), only N + 1
novel computational devices are needed while the number of
Boolean functions increases drastically. For example, 7
additional devices are needed to transition from 5 to 6 inputs
(27 devices in total), enabling a 1010 fold increase in the
number of Boolean functions (for a total of ∼1019) (Figure
3B). Of note, the different cellular computing units do not
always include N integrases and computational devices

responding to N inputs. As an example, the 4-input Boolean
equation shown in Figure 3D can be executed using 3 strains
containing respectively 4, 3, and 2 integrases and with different
signal-integrase connectivities.
To implement a N-input Boolean function, a maximum of

2N−1 different cellular computing units have to be composed,
corresponding to a culture of 2N−1 different strains: 4 for 3
inputs and 8 for 4 inputs (Figure 3B). However, most logic
functions can be performed using less cellular computing units
(an average of 2.3 strains for 3-input and 3.6 strains for 4-input
Boolean functions, Figure 3C).
In summary, we provide a hierarchical composition frame-

work using a reduced library of computational devices to
systematically implement all N-input Boolean logic functions
within a multicellular consortium.

Figure 2. A hierarchical composition framework for asynchronous Boolean recombinase logic. (A) Distribution of a Boolean function within a
multicellular consortium by decomposition into conjunctions of literals (variables or their negations). Here an example is depicted in which a
Boolean function is decomposed into three subfunctions and implemented in three separate cellular computing units. (B) attB and attP disposed in
parallel orientation. (C) Elements implementing IDENTITY and NOT functions. To obtain an IDENTITY function, a transcriptional terminator is
flanked by parallel attachment sites, blocking transcription of the gene of interest. When the signal is present, the terminator is excised and the output
gene is expressed. To obtain a NOT function, a promoter is flanked by parallel attachment sites. When the signal is present, the promoter is excised,
and the gene is no longer expressed. (D) Functional composition of ID-elements into ID-modules, by placing elements in series to obtain the
conjunction of IDENTITY functions. For a 2-input ID-module, the output gene is expressed only when both inputs have been present, both
terminators excised (corresponding to an AND gate (A AND B)). (E) Functional composition of NOT-elements into NOT-modules, by nesting
elements to obtain conjunction of NOT functions. For a 2-input NOT-module, the output gene is expressed only when none of the inputs has been
present (corresponding to a NOR gate: NOT(A) AND NOT(B)). (F) Hierarchical composition framework for Boolean recombinase logic. ID- and
NOT-modules are composed in series, following a priority rule in which the NOT-module is placed upstream the ID-module. The device shown
here can be scaled to perform all functions based on conjunction of NOT and IDENTITY functions.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.8b00016
ACS Synth. Biol. 2018, 7, 1406−1412

1408

An Automated Design Platform for Recombinase
Logic. We then aimed at generating a software for automating
the design of cellular consortia performing asynchronous
Boolean logic. Softwares enabling such automated genetic
circuit design are necessary and extremely useful when the
design space becomes too large for humans to explore it
efficiently.7,34−36

We thus designed an algorithm called CALIN (Composable
Asynchronous Logic using Integrase Networks) based on two
main steps (Figure 4A). First, the Boolean function of interest
is decomposed into a disjunction of conjunctive clauses using

the Quine−McCluskey algorithm (see Methods). Then, each

clause is converted into a given computational device for which

particular connections between integrases and inputs are

generated.
The CALIN script written in Python is available on Github

and can be directly used for high-throughput generation of

biological designs. Furthermore, the CALIN python script can

design logic devices customized for specific organisms (E. coli,

B. subtilis and S. cerevisiae) and can be tailored by the user to

generate devices using fully customized DNA sequences.

Figure 3. Implementing all Boolean logic functions using a reduced number of computational devices. (A) Schematics of all devices needed to
implement up to 4-input functions. (B) Maximum number of strains and number of computational devices needed to compute all Boolean functions
for a given number of inputs. See Methods for details. (C) Proportion of Boolean functions implementable with a specific number of strains for 3
and 4 inputs (obtained by generating all the biological designs for 3 and 4-input Boolean functions, see Table S1 for numbers). (D) Example of a
biological implementation for a 4-input Boolean function. The function shown here is divided into a disjunction of conjunctive clauses (see Figure
2A). Each conjunctive clause is executed using a particular computational device (defined in panel A) each placed into a separate cellular computing
unit. By combining the different units, the full logic function is obtained. If at least one of the cellular units is ON, the output is considered to be ON.
Of note, inputs are not always connected to the same integrase (as for input D in Cell 1 and Cell 2), and all integrases and inputs are not present in
all cells.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.8b00016
ACS Synth. Biol. 2018, 7, 1406−1412

1409

In order to enable broader access to our design framework,
we also provide a Web site of CALIN accessible at http://
synbio.cbs.cnrs.fr/calin.
In the CALIN web-interface, the user fills the number of

inputs to process (up to 5) and the desired Boolean truth table
or corresponding binary number. The Web site provides as
outputs the DNA architectures of the computational devices,
the connection map between signals and integrases, and the
corresponding DNA sequences (Figure 4B).

■ DISCUSSION

In this work we present a scalable composition framework for
implementing asynchronous Boolean logic within a multi-
cellular consortium. We provide an online design tool for the
systematic design of recombinase logic circuits called CALIN
(Composable Asynchronous Logic using Integrase Networks).
While these designs are currently theoretical, the robustness of
integrase-mediated recombination against various site permu-
tations and orientations12,13,34,37 should support straightforward
experimental implementation.
By taking advantage of the single-layer architecture of

recombinase logic, we encapsulated complex Boolean functions
into various subcellular populations. Because of its compact
architecture, our design exhibit two significant improvements
over previous DMC systems: (i) no cell−cell communication
channels are needed, and (ii) cells do not need to be spatially
separated, thereby supporting the implementation of fully
autonomous multicellular consortia operating without an
external physical device.
Another difference between our system and other DMC is

the use of recombinase switches that provide memory.34,38,39

Recombinase mediated data-storage could be useful for
applications requiring endpoint measurements, or delayed
readout, like diagnostics. Also, because the state of the logic
system is written within DNA, it can be addressed via PCR or
DNA sequencing,13,38,40 even if the cells die, providing other
robust readout modalities.
As with others DMC systems, for a given number of inputs,

the number of elementary computational devices needed to
compose all logic functions compares very favorably with the
number of possible functions. For example, implementing all

65 536 4-input, or all ∼4.3 × 109 5-input Boolean functions
only requires respectively 14 and 20 computational modules.
As serine recombinases do not require host-specific cofactors

and can operate in several species, the designs presented here
could be implemented in many organisms. Logicfunctions
could also be distributed between different species operating in
concert. In such schemes, researchers could take advantage of
the particular capacities of different organisms to detect
different signals and/or perform specific tasks. Examples of
applications include environmental remediation41,42 or micro-
biome engineering for therapeutic applications.43

A possible challenge for our system is the high number of
strains that have to operate together when the number of inputs
increases (Figure 3B). Cultivating many strains together could
lead to counter selection of some subpopulations, but this
problem could be addressed by encapsulating the different
strains into hydrogel beads.40 Also, as the number of strains
increases, the output of one subpopulation representing a small
fraction of the whole consortia could become difficult to
measure. The output level in the ON state will also be different
if one or multiple cellular subpopulations are turned ON.
However, adding a single cell−cell communication channel
could address this problem by propagating the output to the
whole-population (Figure S2).
Finally, for some applications, “real-time” response could be

achieved via a similar composition framework using synchro-
nous recombinase logic gates based on reversible recombina-
tion reactions performed by integrases coupled with recombi-
nation directionality factors (RDFs) (Figure S3).12,26

■ METHODS

Equations for Determining of Numbers of Functions/
Strains/Devices. The number of Boolean functions corre-
sponds to 2 to the power of the number of possible states. As
each state can be equal to 1 or to 0, the number of possible
states is equal to 2 to the power of N where N is the number of
inputs. Consequently, the number of Boolean functions is equal
to eq 1.

=Number 2Boolean functions
2N

(1)

The maximum number of strains needed to implement any
Boolean logic function with N inputs is equal to eq 2, as all N-

Figure 4. Automated design of multicellular recombinase logic. (A) The CALIN algorithm enables the systematic design of Asynchronous Boolean
logic. (B) CALIN web-interface takes as an entry a Boolean truth table and generates as outputs: the connection map between inputs and integrases,
the DNA architectures of the computational devices and the corresponding DNA sequences.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.8b00016
ACS Synth. Biol. 2018, 7, 1406−1412

1410

input Boolean equations can be written in the disjunctive
normal form, then as a disjunction of a maximum of 2N−1

conjunctive clauses.33

≤ −Number 2Nstrains
1

(2)

The number of different conjunctive clauses (corresponding
to a conjunction of literals) is equal to eq 3.

∑=
=

⎛

⎝
⎜

⎞

⎠
⎟

N

k
Number 2

k

N

k

conjunctive clauses

1 (3)

If we implement all these functions within cells, the number
of standard devices needed is equal to the number of
conjunctive clauses (eq 4).

∑

=

=
=

⎛

⎝
⎜

⎞

⎠
⎟

N

k

Number

Number

2
k

N

k

devices without simplification

conjunctive clauses

1 (4)

This method leads to a high number of devices. Therefore,
we decided to construct only one device per set of symmetric
Boolean functions (e.g., A AND NOT(B) is the symmetric
function of NOT(A) AND B). This approach reduces the
number of standard devices. In consequence, for an N-input
Boolean function, devices computing from 1 to N inputs are
needed and k + 1 nonsymmetric Boolean functions computing
the conjunction of k literals exist:

∑= +
=

kNumber (1)
k

N

devices

1 (5)

Of note, the number of devices follows the arithmetic series:

+ −a N d(2 (1))
N

2 1 where a1 = 2, d = 1, and N is the number

of inputs.
In a first approximation, N sensor-modules in which a control

signal (i.e., a sensor device responding to an input of interest) is
connected to an integrase are needed for the construction of an
N-input system. However, as we reduced the number of devices
to a set composed of nonsymmetric Boolean functions, we
need to connect all control signals to all integrases to compute
all Boolean functions. Therefore, N2 sensor-modules are
needed.
Automated Generation of Genetic Designs. We

encoded an algorithm generating genetic designs executing
N-input Boolean functions using Python (Figure S4). The
algorithm takes as input a Boolean truth table or the binary
number corresponding to the function. The output corresponds
to the biological implementation of the Boolean function, such
as for each strain: a graphical representation of the genetic
circuit and its associated DNA sequences.
The truth table is transformed into a Boolean function in the

disjunctive normal form using the Quine−McCluskey algo-
rithm33 (Figure 4A). The Boolean function is decomposed into
conjunctive clauses (conjunction of literals). In this scheme,
each clause can be regarded as a “subfunction”. From each
conjunctive clause, we extract two types of information. First,
based on the number of IDENTITY and NOT functions, we
identify which logic device is needed. Second, based on the
association of inputs to either IDENTITY and NOT functions,
we identify which sensor-modules are needed among the

different connection possibilities between control signals and
integrases. Finally, we combine the designs executing the
different conjunctive clauses to obtain the global design for
implementing the desired truth table.
To simplify the construction process, the DNA sequence of

the computational devices is generated by our Python code. In
CALIN, sequences are adapted for E. coli, but sequence
generation can be adapted to other organisms (database
available for B. subtilis and Saccharomyces cerevisiae) or
customized using the source Python code available on github.

■ ASSOCIATED CONTENT

*S Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssynbio.8b00016.

Figures S1−S3; Table S1 (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: jerome.bonnet@inserm.fr.

ORCID

Jerome Bonnet: 0000-0002-8420-9359

Notes

The authors declare no competing financial interest.
The CALIN Web server can be found at http://synbio.cbs.cnrs.
fr/calin. CALIN source code is available at https://github.com/
sguiz/calin.

■ ACKNOWLEDGMENTS

We thank L. Ciandrini, G. Cambray, G. Labesse, members of
the synthetic biology group and of the CBS, P. Lemaire and P.
Hersen for fruitful discussions, J. L. Pons and L. Bonnet for
help with the CALIN website. Support was provided by an
ERC Starting Grant “COMPUCELL”, the CNRS/INSERM
Atip-Avenir program and the Bettencourt-Schueller Foundation
to J.B. S.G. was supported by Ph.D. fellowships from the
French Ministry of Research and from the FRM: Fondation
pour la Recherche Medicale (FDT20170437282). The CBS
acknowledges support from the French Infrastructure for
Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01.

■ REFERENCES

(1) Endy, D. (2005) Foundations for engineering biology. Nature
438, 449−453.
(2) Fischer, C., and Fussenegger, M. (2004) BioLogic gates enable
logical transcription control in mammalian cells. Biotechnol. Bioeng. 87,
478.
(3) Stanton, B. C., Nielsen, A. A. K., Tamsir, A., Clancy, K., Peterson,
T., and Voigt, C. A. (2014) Genomic mining of prokaryotic repressors
for orthogonal logic gates. Nat. Chem. Biol. 10, 99−105.
(4) Anderson, J. C., Voigt, C. A., and Arkin, A. P. (2007)
Environmental signal integration by a modular AND gate. Mol. Syst.
Biol., DOI: 10.1038/msb4100173.
(5) Wang, B., Kitney, R. I., Joly, N., and Buck, M. (2011) Engineering
modular and orthogonal genetic logic gates for robust digital-like
synthetic biology. Nat. Commun. 2, 508.
(6) Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C., and Voigt, C. A.
(2012) Genetic programs constructed from layered logic gates in
single cells. Nature 491, 249−253.
(7) Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov,
V., Strychalski, E. A., Ross, D., Densmore, D., and Voigt, C. A. (2016)
Genetic circuit design automation. Science 352, aac7341.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.8b00016
ACS Synth. Biol. 2018, 7, 1406−1412

1411

(8) Auslan̈der, S., Auslan̈der, D., Müller, M., Wieland, M., and
Fussenegger, M. (2012) Programmable single-cell mammalian
biocomputers. Nature 487, 123−127.
(9) Rinaudo, K., Bleris, L., Maddamsetti, R., Subramanian, S., Weiss,
R., and Benenson, Y. (2007) A universal RNAi-based logic evaluator
that operates in mammalian cells. Nat. Biotechnol. 25, 795−801.
(10) Win, M. N., and Smolke, C. D. (2008) Higher-Order Cellular
Information Processing with Synthetic RNA Devices. Science 322,
456−460.
(11) Lucks, J. B., Qi, L., Mutalik, V. K., Wang, D., and Arkin, A. P.
(2011) Versatile RNA-sensing transcriptional regulators for engineer-
ing genetic networks. Proc. Natl. Acad. Sci. U. S. A. 108, 8617−8622.
(12) Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P., and Endy, D.
(2013) Amplifying genetic logic gates. Science 340, 599−603.
(13) Siuti, P., Yazbek, J., and Lu, T. K. (2013) Synthetic circuits
integrating logic and memory in living cells. Nat. Biotechnol. 31, 448−
452.
(14) Weinberg, B. H., Pham, N. T. H., Caraballo, L. D., Lozanoski,
T., Engel, A., Bhatia, S., and Wong, W. W. (2017) Large-scale design of
robust genetic circuits with multiple inputs and outputs for
mammalian cells. Nat. Biotechnol. 35, 453−462.
(15) Rhodius, V. A., Segall-Shapiro, T. H., Sharon, B. D., Ghodasara,
A., Orlova, E., Tabakh, H., Burkhardt, D. H., Clancy, K., Peterson, T.
C., Gross, C. A., and Voigt, C. A. (2013) Design of orthogonal genetic
switches based on a crosstalk map of σs, anti-σs, and promoters. Mol.
Syst. Biol. 9, 702.
(16) Yang, L., Nielsen, A. A. K., Fernandez-Rodriguez, J., McClune,
C. J., Laub, M. T., Lu, T. K., and Voigt, C. A. (2014) Permanent
genetic memory with > 1-byte capacity. Nat. Methods 11, 1261−1266.
(17) Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N., and Silver,
P. A. (2015) Better together: engineering and application of microbial
symbioses. Curr. Opin. Biotechnol. 36, 40−49.
(18) Wintermute, E. H., and Silver, P. A. (2010) Dynamics in the
mixed microbial concourse. Genes Dev. 24, 2603−2614.
(19) Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., and Weiss,
R. (2005) A synthetic multicellular system for programmed pattern
formation. Nature 434, 1130−1134.
(20) Balagadde,́ F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M.,
Arnold, F. H., Quake, S. R., and You, L. (2008) A synthetic Escherichia
coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187.
(21) Danino, T., Mondragoń-Palomino, O., Tsimring, L., and Hasty,
J. (2010) A synchronized quorum of genetic clocks. Nature 463, 326−
330.
(22) Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L.
S., and Hasty, J. (2012) A sensing array of radically coupled genetic
’biopixels’. Nature 481, 39−44.
(23) Shong, J., Jimenez Diaz, M. R., and Collins, C. H. (2012)
Towards synthetic microbial consortia for bioprocessing. Curr. Opin.
Biotechnol. 23, 798−802.
(24) Macía, J., Posas, F., and Sole,́ R. V. (2012) Distributed
computation: the new wave of synthetic biology devices. Trends
Biotechnol. 30, 342−349.
(25) Tamsir, A., Tabor, J. J., and Voigt, C. a. (2011) Robust
multicellular computing using genetically encoded NOR gates and
chemical ’wires’. Nature 469, 212−215.
(26) Subsoontorn, P. (2014) Reliable Functional Composition of a
Recombinase Device Family, Ph.D. thesis, https://purl.stanford.edu/
sm186rb9123.
(27) Regot, S., Macía, J., Conde, N., Furukawa, K., Kjelleń, J., Peeters,
T., Hohmann, S., de Nadal, E., Posas, F., and Sole,́ R. (2011)
Distributed biological computation with multicellular engineered
networks. Nature 469, 207−211.
(28) Macia, J., and Sole, R. (2014) How to make a synthetic
multicellular computer. PLoS One 9, e81248.
(29) Goñi-Moreno, A., Amos, M., and de la Cruz, F. (2013)
Multicellular Computing Using Conjugation for Wiring. PLoS One 8,
e65986.
(30) Macia, J., Manzoni, R., Conde, N., Urrios, A., de Nadal, E., Sole,́
R., and Posas, F. (2016) Implementation of Complex Biological Logic

Circuits Using Spatially Distributed Multicellular Consortia. PLoS
Comput. Biol. 12, e1004685.
(31) Groth, A. C., and Calos, M. P. (2004) Phage integrases: biology
and applications. J. Mol. Biol. 335, 667−678.
(32) Grindley, N. D. F., Whiteson, K. L., and Rice, P. A. (2006)
Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75,
567−605.
(33) Enderton, H., and Enderton, H. B. (2001) A Mathematical
Introduction to Logic, Academic Press.
(34) Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S., and Lu,
T. K. (2016) Synthetic recombinase-based state machines in living
cells. Science 353, aad8559.
(35) Marchisio, M. A., and Stelling, J. (2011) Automatic design of
digital synthetic gene circuits. PLoS Comput. Biol. 7, e1001083.
(36) Otero-Muras, I., Henriques, D., and Banga, J. R. (2016)
SYNBADm: a tool for optimization-based automated design of
synthetic gene circuits. Bioinformatics 32, 3360−3362.
(37) Rubens, J. R., Selvaggio, G., and Lu, T. K. (2016) Synthetic
mixed-signal computation in living cells. Nat. Commun. 7, 11658.
(38) Ham, T. S., Lee, S. K., Keasling, J. D., and Arkin, A. P. (2008)
Design and Construction of a Double Inversion Recombination Switch
for Heritable Sequential Genetic Memory. PLoS One 3, e2815.
(39) Hsiao, V., Hori, Y., Rothemund, P. W., and Murray, R. M.
(2016) A population-based temporal logic gate for timing and
recording chemical events. Mol. Syst. Biol. 12, 869.
(40) Courbet, A., Endy, D., Renard, E., Molina, F., and Bonnet, J.
(2015) Detection of pathological biomarkers in human clinical
samples via amplifying genetic switches and logic gates. Sci. Transl.
Med. 7, 289ra83.
(41) Li, L., Yang, C., Lan, W., Xie, S., Qiao, C., and Liu, J. (2008)
Removal of methyl parathion from artificial off-gas using a bioreactor
containing a constructed microbial consortium. Environ. Sci. Technol.
42, 2136−2141.
(42) De Lorenzo, V. (2008) Systems biology approaches to
bioremediation. Curr. Opin. Biotechnol. 19, 579−589.
(43) Mimee, M., Citorik, R. J., and Lu, T. K. (2016) Microbiome
therapeutics - Advances and challenges. Adv. Drug Delivery Rev. 105,
44−54.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.8b00016
ACS Synth. Biol. 2018, 7, 1406−1412

1412

66 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2 Implementation of multicellular Boolean logic using recom-

binase switches

Introduction

Since its inception, the field of synthetic biology has been aiming to control (“program”)

cellular and organismal behavior. To do so, researchers were inspired from electronics and rebuilt

devices operating in a similar manner to electronic logic gates but using biological molecules.

These "bio"-logic gates operate within the framework of Boolean logic, respond to molecular or

physical signals, and most often control gene expression as output.

Implementing Boolean logic circuits within living organisms is of interest for various ap-

plications, such as environmental remediation, medical diagnostics, cellular therapeutics, but

also for more basic research applications. However, a reduced number of logic systems di-

rected toward an application has been engineered [Courbet 2015a] [Urrios 2018]. Indeed, the

implementation of large logic circuits is still limited to experts, due to the complexity of im-

plementation [Nielsen 2016] or to the lack of reusable and well-characterized logic components

[Weinberg 2017].

The theoretical framework for the design of Boolean logic circuits detailed previously is

based on the composition of logic devices in a multicellular system. By combining different

strains containing computational devices chosen from a reduced library, all Boolean functions

can be implemented. For example, only 14 logic devices are needed to implement all 65,536

4-input Boolean functions.

Here we aimed at providing a well-characterized, reusable and reliable toolbox of logic devices

enabling non-experts to construct, by simple composition of these devices, any Boolean logic

circuit. This approach, based on standard parts, can be envisioned for two reasons. First, the

extremely reduced number of devices is amenable to deep optimization. Second, logic devices

are entirely decoupled from signal detection, so that after optimized these devices are reusable

in other circuit designs.

Tailoring will be performed at the integrase layer, by engineering integrase switches respond-

ing to the signal of interest.

The logic devices result from the composition of NOT and IDENTITY elements, which are

themselves assembled from the following DNA parts: integrase recombination sites, promoters,

terminators, 5’UTRs, and gene coding sequences.

Our theoretical framework provides a global design for logic devices but there is still a large

degree of freedom to design the corresponding DNA sequence. For example, integrase target

sites can be arranged in four different orientations and relative positions. Moreover, various

integrases, terminators, promoters, and translational control elements can be used.

2.2. Implementation of multicellular Boolean logic using recombinase switches 67

To translate a given theoretical design into a DNA sequence encoding a logic device, all

these parameters need to be defined.

Our goal was to engineer well-characterized, reusable, and reliable logic devices with a

consistent and precise behaviors. The logic devices must fit as much as possible to the binary

states of the Boolean equation. Therefore, gene expression from the output gene should have

a low background level in the OFF state and a high fold change between ON and OFF states.

Additionally, constant OFF and ON states between the different input states and logic devices is

highly desirable. This level matching is required for composition of the devices in a multicellular

system.

In this work, we engineered a collection of logic devices to implement logic functions with

up to four inputs with the synthetic biology bacterial workhorse, Escherichia coli.

We took a bottom-up approach with the goal to probe, and possibly achieve the functional

composition of basic parts into computational elements and then into computational devices.

We first defined the identity of each part: integrase sites, promoter, terminators, 5’UTR, and

gene. We built and characterized all possible versions of computational elements (NOT and

ID-gates) for four integrases. We then selected elements that best fit the expected behavior

and assembled these elements into computational devices, which were subsequently composed

in multicellular logic systems. We obtained the 14 logic devices behaving as expected without

optimization. The common threshold between these devices will permit the implementation of

complex logic function in multi-cellular systems. In parallel, we characterized individual parts

and compared the predicted behavior of elements resulting from different part compositions

with experimental measurements. The part characterizations show high effects on transcription

efficiency of integrase sites.

2.2.1 Selection of a set of four orthogonal integrases

We selected four orthogonal integrases to construct up to 4-input logic devices. We se-

lected well-behaved Bxb1 and TP901 integrases previously used to engineer 2-input logic gates

[Bonnet 2013]. Yang and colleagues identified and characterized a set of 14 serine integrases

[Yang 2014]. From this set of integrases, we selected four orthogonal ones: Int3, Int4, Int5

and Int7 as the ones with the most efficient recombination rates according to the authors. We

then tested the orthogonality of Int3, Int4, Int5, Int7, Bxb1 and Tp901 integrases. To do so,

for each integrase, we built a BP target and its corresponding LR target [Bonnet 2012]. BP

targets are composed of a constitutive promoter surrounded by attB and attP integrase sites

in antiparallel orientation (inversion mode). A different gene expression cassette is positioned

on each side. Therefore, in absence of integrase, one output gene is expressed (either GFP

or RFP). In presence of integrase, the promoter is inverted, and the construct switches from

expressing one gene to the other. For Bxb1 and Tp901 integrases, BP target constructs are

68 Chapter 2. Boolean logic in multicellular consortia using recombinases

from [Bonnet 2012, Bonnet 2013] and switches from GFP to RFP expression upon integrase

recombination (Figure 2.1A). I built BP targets for Int3, Int4, Int5 and Int7, that switch from

RFP to GFP expression (Figure 2.1B). This might be an illustrative example of the contrarian

behavior most Ph.D. students have with their Ph.D. supervisor.

We tested the activity of the six integrases by co-transforming vectors containing the BP

targets with vectors expressing the corresponding integrase. For the expressions of Bxb1 and

Tp901 integrases, we used the dual controller from Bonnet et al. [Bonnet 2013], in which the

expression of Bxb1 integrase is induced by aTc and expression of Tp901 integrase by arabinose.

For Int3, Int4, Int5, and Int7, we cloned each integrase under a Plac promoter inducible by

IPTG (more details on the construction can be found in the Material and Methods section).

After co-transformations of the target with the integrase vectors and induction of integrase

expression, we measured GFP and RFP expression levels via flow cytometry and compared

them to strains containing the BP target alone. All integrases triggered a clear switch in gene

expression when expressed in the presence of their cognate target (Figure 2.1C). However, for

Tp901 and Int3, the differences of gene expression between the two states were not clear. For

Tp901 integrase, a low but significant level of GFP was still produced after switch and the same

behavior was observed for Int3 for RFP. From part characterization data, we hypothesized that

this residual gene expression is due to cryptic promoter activities of the integrase sites.

To test the orthogonality of this set of integrases, we co-transformed, pair by pair, all

BP target vectors with all integrase vectors. We quantified the percentage of switch for each

BP target/integrase combination via flow-cytometery. We plotted GFP fluorescence over RFP

fluorescence intensities and defined gates corresponding to the BP target alone or the LR target.

The percentages of bacteria in BP or LR state are displayed in the two heatmaps in Figure 2.1D.

For all BP targets with the corresponding integrases, we obtained almost 100% of the population

in LR state and almost 0% in BP state, as shown previously in Figure 2.1C. For BP targets

co-transformed with a non-cognate integrase, we obtained almost 100% of the population in BP

state and almost 0% in LR state, except for Tp901 integrase combined with the BP target of Int3.

For this particular combination, we obtained a mixed population which does not correspond

to GFP and RFP expression levels of the BP target neither the LR target. Therefore, except

Tp901 with BP target of Int3, integrases are specific to their BP targets and are orthogonal.

We finally selected Bxb1, Tp901, Int5, and Int7 to build our logic devices. As according to

our results Int3 is not compatible with Tp901, we chose to keep Tp901 instead of Int3 because

we already had several constructs using Tp901. Moreover, based on [Yang 2014], Int3 and Int4

integrases are toxic for the cells at high expression level (Figure 2d of [Yang 2014]).

2.2. Implementation of multicellular Boolean logic using recombinase switches 69

Bxb1 - BP target Bxb1 Tp901 - BP target Tp901 Int3 - BP target Int3

Int4 - BP target Int4 Int5 - BP target Int5 Int7 - BP target Int7

GFPRFP

GFPRFP

Integrase

Design for Bxb1 and Tp901

GFPRFP

GFPRFP

Integrase

Design for Int3, Int4, Int5 and Int7A B

C

BP target with integrase cassetteBP target

D Proportion of BP target Proportion of LR target

BP target

LR target

BP target

LR target

Figure 2.1: Orthogonality of a set of 6 serine integrases. (A) and (B): Design of BP targets

for the 6 integrases. (A) For Bxb1 and Tp901 integrase, in presence of the integrase, gene expression

switches from GFP to RFP via promoter inversion (B) for Int3, Int4, Int5 and Int7, gene expression

switches from RFP to GFP. (C) Characterization of each integrases via co-transformation with BP

targets. The graphs correspond to the density plots of flow-cytometer experiments with GFP over RFP

fluorescence intensity in arbitrary unit. The red dots are E. coli strains with BP targets and the blue

dots are E. coli co-transformed with BP targets and corresponding integrase cassettes. Cells are grown

overnight in LB, and with the corresponding inducers for the expression of integrases. (D) Heatmaps of

the proportion of BP target (left side) and LR target (right side) in the population of bacteria measured

by flow-cytometer. For both heatmaps, each square corresponds to a co-transformation of one integrase

cassette or none (labeled in y axis) with one BP target (labeled in x axis, with BP3 for BP target of

Int3, BP4 for Int4, BP5 for Int5, BP7 for Int7, BPB for Bxb1 integrase and BPT for Tp901 integrase).

70 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2.2 Design of a standard logic device architecture

We designed a shared standard logic device architecture for all constructs (Figure 2.2A). This

architecture generates standard genetic context for all constructs and facilitates rapid DNA

assembly. The cassette is composed of 40 bp spacers to allow assembly of parts via Gibson

assembly. The 5’UTR sequence is composed of a ribozyme (RiboJ) [Lou 2012] and a bicistronic

RBS (BCD2) [Mutalik 2013b]. The ribozyme catalyzes the cleavage of the mRNA at this

position, and therefore insulate the translation from potential secondary structure due to the

logic device. Consequently, the sequence of the messenger RNA encoding the output gene is

identical for all constructs. The bicistronic RBS is composed of two ribosome binding sites,

the first enabling unfolding of the RNA using the helicase activity of the ribosome, and the

second mediating the translation of the gene. We used as output gene a superfolder GFP. We

placed the logic device upstream of the 5’UTR of the gene. It is composed of integrase sites,

a promoter, or a terminator (Figure 2.2B). For our promoter, we used the strong P7 promoter

([Mutalik 2013b]. As terminators, we used terminators from a library (Table 1 in Material and

Methods) selected from Chen et al. [Chen 2013]. We chose the terminators with the strongest

average strength and highest sequence divergence to avoid unwanted recombination

Ideally, the logic device should be chromosomally integrated, to reduce the load to the cell

and for stability of the system. However, due to the large number of constructions that we had

to assemble and test, we used a low copy plasmid (pSB4K5) with pSC101 origin of replication

and kanamycin antibiotic resistance.

NOT element ID elementBA
Logic

device sp5 sp6 spNsp0 BCD2
RiboJ sfGFP

L3S3P00

P7
P7

Figure 2.2: Design of a standard logic device cassette. A - The standard logic device cassette

is composed of 40 bp spacers (sp0, sp5, sp6, and spN) to facilitate cloning by Gibson assembly, a ribozyme

(RiboJ), and a bicistron (BCD2) in the 5’ end of the output gene, superfolder GFP. Logic devices are

placed between the spacer 0 and the ribozyme. B - General design of NOT and ID elements, composed

of the P7 promoter surrounded by integrase site in excision orientation for the NOT element, and the

P7 promoter followed by a terminator surrounded by integrase sites in excision orientation for the ID

element.

2.2. Implementation of multicellular Boolean logic using recombinase switches 71

2.2.3 Characterization of a set of logic elements

Logic devices are generated by composing NOT and IDENTITY elements. Therefore, we

first constructed and characterized a collection of logic elements responding to the 4 inte-

grases selected. NOT-elements are composed of a promoter surrounded by integrase sites, and

IDENTITY-elements are composed of a terminator surrounded by integrase sites and a pro-

moter in 5’ (Figure 2.2). The two integrase sites are oriented in the same orientation to mediate

excision; therefore, sites can be positioned in four different configuratoins. (Figure 2.3A and

2.4A). Due to previous characterization of integrases and to data from Bonnet and colleagues

[Bonnet 2013], we supposed that integrase site positions and orientations have an effect on gate

behavior. We tested all combinations of integrase sites for each element and each integrase for a

total of 32 constructs (2 types elements X 4 possible combinations X 4 integrases). We built 32

constructs corresponding to the DNA sequence resulting from the excision reaction, such as the

attL or attR site alone for NOT-element, and the P7 promoter and attL or attR integrase site

for IDENTITY element. We aimed at avoiding sequence repetitions in our constructs, which

can lead to sequence instability [Nielsen 2016]. Thus, for ID-elements, we used different termi-

nators for each integrase. Consequently, the behaviors of these IDENTITY-elements are highly

dependent on the selected terminators (Table 1 - Material and Methods).

We then designed, synthesized and cloned these 64 constructs using a standard workflow

detailed in Materials and Methods.

We characterized all constructs using a flow cytometer. Cells were grown overnight in 96

well-plates in LB after which GFP fluorescent intensity was measured. Results are represented

in Figure 2.3B and 2.4B in fold change relative to the negative control, the standard logic

device cassette without any insert (i.e. no promoter). The positive control corresponds to

the P7 promoter driving expression of GFP. We observed important differences in fluorescence

intensity between the different orientations of integrase sites, in particular for the ID-elements.

For NOT elements, we expected the non-recombined constructs to express GFP at a similar

level to the positive control; for the sequences corresponding to elements after excision (i.e.

attL or attR sites), as no promoter is present, we expected fluorescence similar to the negative

control. For all NOT elements, we observed GFP expression levels lower than for the positive

control, from 1.2 to 5 times lower (Figure 2.3). This decrease of gene expression is probably

due to transcriptional attenuation mediated by the integrase sites positioned between the pro-

moter and the 5’UTR of the gene. At least two mechanisms can explain this transcriptional

attenuation. First, the additional DNA sequence increases the distance between the site of

transcription initiation and the gene coding sequence; previous work showed that such increase

tends to decrease transcription efficiency [Chizzolini 2014]. Secondly, the integrase sites may

form secondary structures which therefore decrease transcription efficiency. We hypothesized

that the second mechanism is more relevant, because the sites are short (~40-50 bp) and have

semi-palindromic sequences that are prone to secondary structure formation. Indeed, accord-

72 Chapter 2. Boolean logic in multicellular consortia using recombinases

ing to the following site characterization, Bxb1 attB and attP sites induce a decrease in gene

expression, corresponding to decrease of gene expression for the NOT BF-PF and NOT PF-BF

elements.

Bxb1 Tp901

Int5 Int7

NOT BF-PF NOT BR-PR NOT PF-BF NOT PR-BR

attB attP

LF

Int

LR

Int

RF

Int

RR

Int

A

B

NC PC NC PC

NC PC NC PC

Figure 2.3: Characterization of a library of NOT-elements. (A) The 4 possible designs

of NOT-elements, with a promoter flanked by integrase sites, and the corresponding constructs after

excision mediated by the integrase. Triangles correspond to the integrase sites, attB site in black, attP

site in white, and attL or attR in black and white. F denotes sites in forward orientation and R for reverse.

The gene coding sequence is a superfolder GFP and the promoter is the P7 promoter. (B) Bar graphs

correspond to the fold change in mean fluorescence intensity of constructs compared to the negative

control. Data were obtained by flow-cytometry measurement using 3 replicates per experiments, from 3

experiments performed on different days. The grey bars correspond to NOT-elements and the black bars

to the attL and attR sites resulting from integrase-mediated excision. The dash lines correspond to fold

change of the negative control (NC, equal to 1) and the fold change of the positive control (construct

with only promoter P7). Error bars represent the mean of the standard deviation between the three

replicates in each experiment.

For Bxb1 integrase, we observed a clear difference in gene expression between elements with

the sites in forward orientation (gene expression around 4 times lower than positive control) and

the ones in reverse orientation (gene expression around 1.2-1.8 times lower than positive control).

2.2. Implementation of multicellular Boolean logic using recombinase switches 73

For others integrases, expression levels are similar between the different NOT-elements.

For attL and attR integrase sites alone, corresponding to the element after excision, the GFP

fluorescence intensity is comparable to the negative control (i.e. background autofluorescence)

except for attL Tp901 integrase sites, attL Int7 site in reverse, and attR Int7 site in forward

orientations. AttL Tp901 integrase site in reverse and forward orientation behave as a low

efficiency promoter with a GFP expression of around 6 times above the negative control. For

Int7, attL reverse, and attR forward exhibit a 2- to 3-fold change of expression over the negative

control.

We selected NOT-elements with the most binary behavior, such as an expression level close

to the positive control for the element in absence of integrases and close to the negative control

after excision.

For ID-element, we expected constructs to show low GFP fluorescence intensity in the ab-

sence of integrase (ID-element construct) and to express GFP in the presence of integrase, after

excision of the terminator (attL and attR constructs). Results are presented in Figure 2.4B. Be-

cause we used a strong promoter, despite having chosen strong terminators most of ID-elements

expressed a significant level of GFP, even without integrase. Moreover, for all integrases, impor-

tant differences between integrase site orientations were observed, with up to 100-fold differences

between various arrangements of Int5 elements. Tp901 integrase ID-elements have the highest

gene expression leakages, which could be due to the low efficiency of the terminator used, the

interactions between the terminator and the integrase sites, or the cryptic promoter activities of

the integrase sites. A more precise individual characterization of integrase sites and terminators

was later performed later. The leakage seems due to the terminator according the characteri-

zation of an element with a different terminator, however no clear results were obtained as we

did not succeed to clone the T2 terminators in front of P7 promoter for characterization.

For most of the sequences corresponding to excised ID-elements, GFP expression levels were

similar to the expression level of the positive control, as expected. However, some constructs

exhibited expression levels lower than the positive control. Again, for a given integrase, we

observed important differences between integrase site orientations. For example, the construct

composed of the P7 promoter and attL Bxb1 site in forward orientation had an expression level

4 times lower than the similar construct with attR forward.

After characterization, we selected one ID-element per integrase (Figure2.4B). For Tp901,

we found that the terminator used initially was not efficient enough, leading to high leakage in

the OFF state. We thus switched the T2 terminator (ECK120029600) to B0015 and obtained

an ID element with low leakage and high dynamic range (Figure 2.4C).

In conclusion, we characterized all possible element architectures and identified elements

with a specific parts arrangement for each integrase that produced the desired behavior. We

then composed those into higher order computational devices. Importantly, we show that

74 Chapter 2. Boolean logic in multicellular consortia using recombinases

integrase sites can have important effect on transcription, at least in E. coli. We also found that

att sites can have directional terminator or promoter activities. These effects on transcriptional

output must be measured and taken into account when designing recombinase devices.

Bxb1 Tp901

Int5 Int7

ID BF-PF ID BR-PR ID PF-BF ID PR-BR

attB attP

P LF

Int

P LR

Int

P RF

Int

P RR

Int

A

B

NC PC NC PC

NC PC NC PC

C NC PC

Tp901

B0015

Figure 2.4: Characterization of a library of ID-elements. (A) The four possible designs

of ID-elements with a terminator flanked by an integrase site pair, and the corresponding constructs

after integrase-mediated excision. The gene coding sequence is a superfolder GFP and the promoter, the

P7 promoter. (B) and (C) Bar graphs correspond to the fold change of mean of fluorescence intensity

compared to the negative control. Data were obtained by flow-cytometry measurement with three repli-

cates per experiments, from three experiments performed on different days. The grey bars correspond to

ID-elements and the black bars for the attL and attR sites resulting from integrase-mediated excision.

The dash lines correspond to fold change of the negative control (NC, equal to 1) and the fold change

of the positive control (construct with only promoter P7). Error bars represent the mean of the stan-

dard deviation between the three replicates in each experiments. The bars surrounded by a colored box

correspond to elements that were selected for assembling computational devices.

2.2. Implementation of multicellular Boolean logic using recombinase switches 75

2.2.4 Construction and characterization of the 14 computational devices for

4-input multicellular Boolean logic

In order to design the 14 computational devices required for 4-input Boolean logic, we composed

the selected NOT- and ID- elements previously characterized (Figure 2.5). We added 20 bp

spacers between elements to limit interactions between them and facilitate further modifications.

We built all devices following the framework detailed in Material and Methods.

1 input (2 devices)
2 inputs (5 devices) 3 inputs (9 devices)

4 inputs (14 devices)

A A.B A.B.C A.B.C.D

NOT(A) NOT(A).B NOT(A).B.C NOT(A).B.C.D

NOT(A).NOT(B) NOT(A).NOT(B).C NOT(A).NOT(B).C.D

NOT(A).NOT(B).NOT(C) NOT(A).NOT(B).NOT(C).D

NOT(A).NOT(B).NOT(C).NOT(D)

T1 T1 T5

T5

T1 T5 T4

T4T5

T4

T1 T5 T4 T3

T5 T4 T3

T4 T3

T3

Figure 2.5: Design of the 14 computational devices based on refined NOT- and ID-

elements. The filled triangles correspond to attB sites, and the empty triangles to attP sites. Blue:

Bxb1, red: Tp901, green: Int5, purple: Int7. Arrows are for the promoter P7 and the short name of each

terminator is mentioned at the top of them. The output gene is superfolder green fluorescent protein.

The Boolean equation implemented by each device is written below the device design.

2.2.4.1 Design and characterization of a combinatorial collection of constitutive

integrase generators

We then aimed at characterizing the different states of the computational devices in response

to the expression of one or multiple integrases. To do so in a streamlined manner, we built a

collection of integrase generators constitutively expressing all possible combinations of the four

integrases chosen. We obtained 16 vectors corresponding to the 16 input states of a 4-input

truth table (four vectors expressing one integrase, six vectors expressing two integrases, four

vectors expressing three integrases, and one vector expressing the four integrases).

To construct these cassettes, we first constructed a template composed of 40 bp spacers for

Gibson assembly, constitutive promoters, ribosome binding sites and terminators. Then, we

76 Chapter 2. Boolean logic in multicellular consortia using recombinases

inserted integrases, each one at a specific locus. We chose promoters and ribosome binding

sites described to have intermediate activities so that integrase expression level should be suf-

ficient to have a complete switch while avoiding cellular toxicity described for some integrases

[Yang 2014]. Furthermore, we chose promoters with divergent DNA sequences to limit insta-

bility of the construction due to sequence repetitions (Figure 2.6A). For the Bxb1 integrase

cassette, we selected the strong P5 promoter [Mutalik 2013b] and RBS B0034 (parts.igem.org)

as no toxicity of Bxb1 have been observed previously. For Tp901 integrase cassette, we selected

the P2 promoter [Mutalik 2013b] and B0032 ribosome binding site (parts.igem.org) of medium

efficiency. For Int5, we chose the strong J23100 promoter (parts.igem.org) and the medium

RBS-Int5 [Yang 2014] previously optimized for this enzyme, because like Bxb1 integrase, Int5

does not seems to be toxic at high expression level [Yang 2014]. On the other hand, Int7

was described to be harmful for cell growth at high-expression levels. We therefore chose a

medium promoter and ribosome binding site for this enzyme (ProC [Davis 2011] and RBS-Int7

[Yang 2014]).

We first constructed each single-integrase cassette separately by using Gibson assembly for

insertion of integrase in the template (Figure 2.6B). Then, we tested each of the four single-

integrase cassettes by co-transformation with the corresponding BP target. We compared fluo-

rescence intensity profiles with the one of BP target alone. For all single-integrase constructs, a

clear switch of gene expression was observed (Figure 2.6C). We constructed and characterized

the 12 remaining constructs in a similar manner. The four-integrase construct shows a behavior

similar to the single-integrase constructs, demonstrating that all integrases can be expressed

constitutively in a single cell without affecting integrase switches efficiency (Figure 2.6D). We

performed a full characterization of the vectors and found that all vectors can switch all BP

targets corresponding to the integrases they express (Figure 2.6E).

2.2. Implementation of multicellular Boolean logic using recombinase switches 77

BP target with integrase cassetteBP target

Bxb1 - BP target Bxb1 Tp901 - BP target Tp901 Int5 - BP target Int5 Int7 - BP target Int7

A

B

C

D

E

10
0

10
1

10
2

10
3

10
4

10
5
10

6

GFP (AU)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5
10

6

GFP (AU)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5
10

6

GFP (AU)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5
10

6

GFP (AU)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5
10

6

GFP (AU)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5
10

6

GFP (AU)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5
10

6

GFP (AU)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5
10

6

GFP (AU)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

4_Int - BP target Bxb1 4_Int - BP target Tp901 4_Int - BP target Int5 4_Int - BP target Int7

sp18 sp19
Tp901Bxb1 Int5 Int7

P5 P2 J23100 ProC

B0034 B0032 RBS-Int5 RBS-Int7

L3S3P22L3S2P11 L3S1P13B00154 integrase

construction

sp18 sp19
Bxb1

sp18 sp19
Int5

sp18 sp19
Int7

sp18 sp19
Tp901

Single integrase constructions

Bxb1

Tp901

Bxb1

Int5

Bxb1

Int7

Tp901

Int5

Tp901

Int7

Int5

Int7

Bxb1

Tp901

Int5

Bxb1

Tp901

Int7

Bxb1

Int5

Int7

Tp901

Int5

Int7 No int
LR

target

Controls

BP - Bxb1

BP -Tp901

BP - Int5

BP - Int7

%
 o

f L
R

 ta
rg

e
t

No data

Figure 2.6: 16 constitutive integrase cassettes mediating all 4-input truth table

states. (A) The 4-integrase cassette is composed of the four integrase genes, a different ribosome

binding site and promoter for each integrase, terminators to insulate each gene expression cassette and

spacers to facilitate gibson assembly cloning. (B) The four single-integrase cassettes. (C) Characteriza-

tion of the four single-integrase cassettes and (D) of the four-integrase cassette. Each single-integrase

cassette was transformed with its BP target and the four-integrase cassette with each BP target. Aafter

overnight culture, GFP and RFP fluorescence intensities were measured via flow-cytometery. The graphs

correspond to density plots of the bacteria population where the x-axis represents GFP fluorescence in-

tensity in A.U. and the y-axis represents RFP fluorescence intensity in A.U. The dots in blue correspond

to the BP target with the corresponding integrase cassette and the dots in red correspond to the BP

target alone as negative control of the switch. (E) Characterization of the two- and three-integrase

cassettes. Each cassette was transformed with BP targets corresponding to the integrase under which it

mediates expression, and after overnight culture, GFP and RFP fluorescence intensities were measured

via flow-cytometery. For each target, on the GFP vs. RFP density plot, a gate was defined on the

switched population based on the LR target. The percentage of switched population is represented in

the heatmap, data represented correspond to the mean of 3 replicates in one experiment. Each square

corresponds to one BP target (labeled in the y-axis) and one integrase cassette (corresponding integrase

labeled in the x-axis). The grey squares correspond to no conditions were no experiment was performed

as the integrase corresponding to the BP target is not present in the integrase cassette.

78 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2.4.2 Characterization of computational devices behavior

Using this library of constitutive integrase cassettes, we transformed each logic device with the

set of integrase cassettes corresponding to its number of inputs (Figure 2.7). For instance, to

test 2-input logic devices, only four integrase cassettes are required corresponding to the four

truth table input states (no integrase, Bxb1, Tp901 and Bxb1+Tp901). Similarly, 3-input logic

devices are characterized using 8 integrase cassettes and 4-input logic devices using 16 integrase

cassettes.

Const int cassette

No int

Int5

Tp901

Tp901-Int5

Bxb1

Bxb1-Int5

Bxb1-Tp901

Bxb1-Tp901-Int5

0

0

1

1

0

1

0

1

1

0

0

0

A C fB

0

0

0

0

0

0

1

1

0

1

0

1

0

0

0

0

1

1

1

1

+

NC PC

not(A).not(B).not(C)

Co-transformation

Figure 2.7: Characterization of a logic device by co-transformation with a constitu-

tive integrase cassette for each input state.

We found that of all 14 logic devices behaved as expected (Figure 2.8 and 2.9), we measured

a good fold change from 30- to 300-fold between off and on states (Figure 2.10B). Despite the

variability in fold change observed across devices, they all produce very distinctive ON and OFF

states.

In some OFF states, we measured an expression level of GFP above the background, poten-

tially due to leakage of terminators or promoter activities of integrase sites. We quantified the

difference between supposedly OFF states and the negative control cells, and termed this dif-

ference “Error OFF”. We found that the average value of the Error OFF was of approximately

2-fold, with a maximum of 10-fold (Figure 2.10C).

Similarly, in most logic devices, we observed that supposedly ON states had a lower fluores-

cence intensity than the positive control. We defined this difference as “Error ON”. Error ON

was highly variable between logic devices, probably because the very different sequences placed

between the promoter and the GFP produce highly variable transcriptional attenuation effects

(Figure 2.10D). These transcriptional attenuation effects, already observed in isolated elements,

are likely to be cumulative when elements are concatenated.

For our logic devices, our results are better than previously published logic devices. Bonnet

et al. 2-input AND and NOR gates have a 44- and 33-fold change, and ours a 59- and 90-fold

change respectively. For the logic gates of Nielsen et al., it is difficult to estimate as no raw

data is available, but NAND fold change seems to be lower than 10.

2.2. Implementation of multicellular Boolean logic using recombinase switches 79

A.B not(A).B not(A).not(B)

A.B.C not(A).B.C

not(A).not(B).C not(A).not(B).not(C)

AB AB ABNC PC NC PC NC PC

ABC NC PC ABC NC PC

ABC NC PC ABC NC PC

A

B

Figure 2.8: 2- and 3-input logic devices characterized in the 4 and 8 truth table

states. Each graph corresponds to the characterization of one logic device in all input states conditions

by flow-cytometry experiments measuring GFP fluorescence intensity. Each input states correspond

in the experiment to the co-transformation of the logic device plasmid with the constitutive integrase

cassette corresponding to the input state. A is for Bxb1 integrase, B for Tp901 integrase and C for

Int5 integrase, 1 corresponds to the expression of the corresponding integrase and 0 to its absence. Fold

changes over NC correspond to the ratio of the mean fluorescence intensity of two experiments with three

replicates per experiment over the mean fluorescence intensity of the negative control which is a GFP

cassette without promoter. See Materials and Methods for calculation of the mean fluorescence intensity

and the error bars. NC and PC dash lines are negative and positive control fold changes.

80 Chapter 2. Boolean logic in multicellular consortia using recombinases

A.B.C.D not(A).B.C.D not(A).not(B).C.D

not(A).not(B).not(C).D not(A).not(B).not(C).not(D)

ABCD NC PC ABCD NC PC ABCD NC PC

ABCD NC PC ABCD NC PC

Figure 2.9: 4-input logic devices characterization in the 16 truth table states. (As for

Figure 2.8)

Moreover, as our logic devices are designed to be used in a multicellular consortia system,

it required a common OFF and ON threshold between devices. In all devices, the lowest

ON state and higher OFF state differ by 6 fold change (corresponding to the ON state of

not(A).not(B).not(C).D and OFF state of not(A).B.C.D). This common threshold is better

than previously characterized sets of logic devices, as for Nielsen et al. no common threshold

exists (for example, A NIMPLY B OFF state is higher than NAND ON state).

However, these logic devices could still be further optimized. In particular we observed a

high and variable background expression level in the OFF states. This background level could

be critical for operating a multicellular logic system based on our current theoretical framework

as we consider that the system output is ON when at least one of the strains is ON. One possible

failure mode resulting from leakage problems would be to have multiple strains in a leaky OFF

state producing the same global GFP fluorescence intensity as one strain in an ON state.

2.2. Implementation of multicellular Boolean logic using recombinase switches 81

ABC NC PC

Fold change

Error OFF Error ON

Fold change = ON state / Max OFF state

Error OFF = abs(OFF state - NC) / NC Error ON = abs(ON state - PC) / PC

A B

C D

Figure 2.10: Parameters characterizing our logic devices. (A) Graphical representation

of each parameter, such as the Error OFF between the highest OFF state and the negative control, the

Error ON between the ON state and the positive control, and the fold change (the lowest fold change)

between the highest OFF state and the ON state. We aim at increasing the fold change and reducing

the OFF and ON errors. (B) Fold change for each device represented in a bar graph. The fold change is

calculated by dividing the fold change over the negative control (represented in Figure 2.8 and 2.9) of the

ON state by the one of the highest OFF state. It corresponds to the minimum fold change between states

of each devices. (C) OFF Error for each device represented in a bar graph. The error is calculated as

the subtraction of the highest OFF state with the negative control and divided by the negative control.

For a perfect device, the error is 0. (D) ON error calculated similarly than for the OFF error, the perfect

device would have an ON error of 0.

To address this issue, we thus decided to prototype multicellular logic system operation,

asking two fundamental questions: 1) For every state of the truth table, can we discriminate at

the population level the expected ON and OFF states? and 2) Can an autonomous multicellular

system composed of different strains with varying ON and OFF states actually be sufficiently

stable and useable over time?

82 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2.5 Prototyping a multicellular system simulating the implementation of

complex Boolean logic functions

Our objective here was to simulate the implementation of complex Boolean logic functions which

necessitate a multicellular system. As a reminder, for the implementation in living organisms,

Boolean logic functions are decomposed into sub-functions. Each sub-function is implemented

by one logic device. Strains containing a computational device and the corresponding inte-

grase device are composed to form a multicellular system implementing the complete Boolean

function.

In a complete logic circuit, multiple cells should grow together, respond to input signal,

switch their computational devices accordingly and produce fluorescence according to the truth

table. We did not have all integrases responding to various inputs, we thus simulated the

behavior of the final multicellular system by using constitutive integrase cassettes.

To do so, as for the characterization of individual logic devices, each device was co-

transformed with constitutive integrase cassettes corresponding to each input state of the truth

table. Then, for each input state, strains corresponding to the implementation of each sub-

function were mixed in equal proportions. The multicellular cultures corresponding to each

input state were grown overnight and the population was characterized via plate reader, flow

cytometer and by direct observation on a UV table (Figure 2.11).

0

0

1

1

0

1

0

1

1

0

0

0

A C fB

0

0

0

0

0

0

1

1

0

1

0

1

0

0

0

1

1

1

1

1

Const int cassette

No int

Int5

Tp901

Tp901-Int5

Bxb1

Bxb1-Int5

Bxb1-Tp901

Bxb1-Tp901-Int5

0

0

1

1

0

1

0

1

1

0

0

0

A C fB

0

0

0

0

0

0

1

1

0

1

0

1

0

0

0

0

1

1

1

1

+

NC PC

Const int cassette

No int

Int5

Tp901

Tp901-Int5

Bxb1

Bxb1-Int5

Bxb1-Tp901

Bxb1-Tp901-Int5

0

0

1

1

0

1

0

1

0

0

0

0

A C fB

0

0

0

0

0

0

1

1

0

1

0

1

0

0

0

1

1

1

1

1

+

NC PC

not(A).not(B).not(C)

A.B.C

f1

f2

f1

f2

Mix of the two cells

in each state

Growth

0 2 4 6

UV table Plate reader

Input

Co-transformation

Co-transformation

Figure 2.11: Multicellular system prototyping. Input truth table is decomposed in sub-

truth table corresponding to sub-functions, each implemented in a different strain. Each sub-function is

implemented using a specific logic device. Logic devices are co-transformed with constitutive integrase

cassettes and the resulting fluorescence intensity of individual strains is measured in the different states.

Strains in identical states but containing different logic devices are mixed in equal proportions, and the

resulting co-cultures are grown overnight. Bulk fluorescence intensity of each co-culture is analyzed by

plate reader and UV table.

2.2. Implementation of multicellular Boolean logic using recombinase switches 83

2.2.5.1 Detection of GFP output from a multicellular system

We started by prototyping two multicellular systems encoding two different Boolean functions:

the 3-input "Consensus" function that necessitates the co-culture of two strains, and a 4-input

Boolean function that necessitates the co-culture of three strains, each containing a 3-input logic

device (f=A.B.D+not(A).not(B).C+not(A).not(C).not(D)). For the 4-input Boolean function,

integrases and inputs are theoretically connected in various manner in each strain therefore, each

logic device is co-transformed with the eight constitutive integrase cassettes and the resulting

strains are mixed to simulate the 16 4-input states corresponding to the specific connection of

inputs with integrases.

We started by observing the fluorescence intensity of co-culture after overnight growth and

concentration by centrifugation under a simple UV light table. We clearly observed green

fluorescence in the expected ON states and no fluorescence in the OFF state (Figure 2.12A).

These data therefore demonstrate the feasibility of our multicellular implementation and the

possibility to detect the system output using low-cost equipment.

We also measured the fluorescence intensity of the multicellular system using a plate reader

(Figure 2.12A). Here again, we were able to clearly distinguish ON and OFF states. However,

we observed a high variability between replicates and an important variability of fluorescence

intensity between ON states. As fluorescence intensity of the ON state of each device is different,

we expected to observe a difference in the various ON state of the multicellular system. The

ON state of A.B.C logic device is higher than the one of not(A).not(B).not(C) logic device;

however for the simulated Consensus function we observed the opposite results, as the input

state where not(A).not(B).not(C) is ON (000) is higher than the input state where A.B.C is

ON (111). These differences are due to difference in proportion of the strains as explained in

the next paragraph.

2.2.5.2 Growth competition between strains within a multicellular system

We used flow-cytometry to measure the relative proportions of each subpopulation. Obviously,

this quantification could only be performed in a few states, where the different strains had

different fluorescent intensity profiles that could be distinguished. We found that this difference

in intensity between the replicates was in fact caused by a difference in proportion of cells. As

we quantified the relative proportion of sub-populations before growth, we validated that the

desired proportions of 50% for the two-strain system and 30% for the three-strain system were

obtained using our protocol (see Material and Methods). However, after an overnight growth

at 37◦C, we observed that the proportion of cells expressing GFP for the 3-input AND gate

decreased and was highly variable between replicates (Figure 2.12B-C). In this corresponding

input state, the cell containing the A.B.C device express three integrases and GFP. The same

effect was observed in the two and three strain systems. These data suggest that constitutive

84 Chapter 2. Boolean logic in multicellular consortia using recombinases

f=A.B.C+not(A).not(B).not(C) f=A.B.D+not(A).not(B).C+not(A).not(C).not(D)

f=A.B.C f=not(A).not(B).C f=not(A.)not(B).not(C)

f=A.B.C+not(A).not(B).not(C) f=A.B.D+not(A).not(B).C+not(A).not(C).not(D)

Bacterial culture under UV light

A

B

C

Figure 2.12: Simulation of multicellular systems for 2 logic functions. (A) Fluorescence

intensity of each co-culture corresponding to the truth table input state of the Boolean function. Bar

graphs correspond to plate reader fluorescence intensity measurements of three replicates of co-culture

after overnight growth. Fold change over NC (negative control) is the ratio of the fluorescence normalized

by the absorbance of the co-culture versus the negative control (more details in Material and Methods).

Green bars are for the theoretical ON state of the Boolean function. Pictures corresponded to three

replicates of co-cultures of each state centrifuged together, and resuspended in 20 µL and observed under

a UV light. (B) and (C) Proportion of ON cells in the total co-culture for each cell. (B) Before (in

black) and after overnight growth (in grey), single-cell fluorescence measurements of the co-culture are

performed using a flow cytometer. Then, the proportion of cells expressing GFP is defined and plotted

in these two graphs. The x-axis corresponds to the input state simulated by the analysed co-culture. (C)

The proportion of ON population of the individual strains of each device with each constitutive integrase

cassette is represented in these three bar graphs. For (B) and (C), the proportions represented are the

mean of three replicates in one experiment and error bars are the error between these three replicates.

2.2. Implementation of multicellular Boolean logic using recombinase switches 85

expression of these four or five proteins induces a decrease in growth rate and therefore a

decrease of the proportion of this population. However, the load on the cellular mechanism

should be lower in the final system as the integrase expression would be induced by input signal

and not constitutive.

2.2.5.3 Determining a common detection threshold across the computational de-

vice family

We wanted to determine if the common fold change between our 14 logic devices was sufficient

for multicellular computation. We thus tested a multicellular logic system composed of the logic

devices with the highest Error OFF and the logic device with the lowest Error ON value (Figure

2.13). In this worse case scenario, we still clearly discriminated the ON state from the OFF

state after overnight growth with a 2.5-fold change. We measured a 10-fold difference between

the two ON states. Because the device having the highest ON value is also the one having

the highest leakage, we will change the promoter of this logic device to a weaker promoter. By

doing so, we should reduce the leakage and obtain a better dynamic range once the multicellular

system is assembled.

f = not(A).not(B).not(C).D + not(B).A.C.D

A B

Figure 2.13: Prototyping the worse case scenario of multicellular logic. (A) Decompo-

sition of the Boolean function in two strains composed of the logic devices, not(A).not(B).not(C).D and

not(A).B.C.D, and different input-integrase connections. (B) Fluorescence intensity of each co-culture

simulating this Boolean function in each input state. Data correspond to bulk plate reader measurements

of three replicates in one experiment and fold changes over the negative control are obtained as detailed

in Material and Methods. Error bars correspond to the error between the three replicates. The green

bars correspond to the theoretical ON state of the Boolean function.

Taken together, these data demonstrate the feasibility of composing strains containing re-

combinase devices to implement complex Boolean functions at the multicellular level. Despite

background levels and variability of ON states across our logic devices, we obtained clear and de-

tectable ON states at the multicellular level. Regarding strain competition, enzyme expression

could be reduced, and cells could also be compartmentalized in hydrogel beads.

86 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2.6 Characterization of parts to optimize logic devices

While characterizing ID- and NOT-elements, we observed important differences of output gene

expression for different integrase site orientations. Therefore, we individually characterized each

integrase site and a set of 10 terminators in a genetic context identical to our logic devices. We

were able to uncover and quantify unknown promoter or terminator activities which were very

specific of particular sites and enzymes. This data will be useful for further optimization of

logic devices and more generally to any application involving integrase sites.

For characterization of integrase sites, we characterized four sites in the forward and reverse

orientation in two different conditions. First, to test their potential effects on transcriptional

elongation, we placed integrase sites between the P7 promoter and the RBS gene of interest.

To assess the promoter activities of the sites, we placed integrase sites in front of GFP preceded

by an RBS. We then characterized these 64 constructs as we previously did for computational

elements (Figure 2.14).

For the integrase site-gene cassettes, we expected to have no GFP expression as we did not

have any promoter. This was indeed the case for Int5 and Bxb1 sites. However, as observed

previously in the characterization of elements, Tp901 and Int7 integrase sites mediate transcrip-

tion initiation (Figure 2.14A). For Tp901 integrase, the attB site in the forward orientation,

the attP site in the reverse orientation, and the attL site in both orientations exhibited a GFP

expression of 3- to 10-fold above the negative control. As the attL integrase site is composed of

the left arm of the attB site and the right arm of attP site, we can hypothesize that the left part

of attB site in forward orientation and the right part of attP site in reverse orientation have

promoter activity. According to the Tp901 phage genome, the attP site does not correspond to

a promoter region ([Brøndsted 2001]; however, the attB site in the Lactococcus lactis genome

could be used as a low efficiency promoter. Similarly, for Int7 integrase sites, the attP and

attR sites in forward orientation and to lesser extend the attL site in the reverse orientation

exhibited GFP expression 2- to 3-fold above the negative control. As both the attP and attR

sites in the forward orientation have a low promoter activity and not the attB and attL sites

in the forward orientation, we hypothesize that it is the left arm of the attP site of Int7 which

initiates low transcription level.

We then tested the termination efficiency of the att sites. Here, if an integrase site did not

have any terminator activity, we expected expression of GFP comparable to the positive control.

We obtained an important diversity between integrase sites and integrase site orientations for

each integrase, and therefore terminator activities for some integrase site orientations (Figure

2.14B). However, the terminator activities measured here are reduced in comparison to promoter

activities of some integrase sites. The maximum terminator activity observed was a 2.5-fold

reduction of GFP expression (0.4-fold change over PC, or 60% termination efficiency). The

terminator activity of integrase sites was clearly unidirectional for Bxb1 integrase. In fact, all

integrase sites in the forward orientation induced a 2.5-fold reduction of GFP expression in

2.2. Implementation of multicellular Boolean logic using recombinase switches 87

Bxb1 Tp901 Int5 Int7

Bxb1 Tp901 Int5 Int7

A

B

Figure 2.14: Characterization of integrase sites. (A) Characterization of promoter activities

of integrase sites, each integrase site is positioned in 5‚Äô of the gene expression cassette. To named

construct, 3 lettres codes are used, with the first letter corresponding to the integrase (B for Bxb1, T

for Tp901, 5 for Int5 and 7 for Int7), the second letter corresponding to the type of site (B for attB,

P for attP, L for attL and R for attR) and the last letter to the orientation of the site (F for forward

and R for reverse). (B) Characterization of the terminator activities of integrase sites, each integrase

site is positioned between P7 promoter and the gene expression cassettes. For (A) and (B), The bar

graphs correspond to the fold change of mean of fluorescence intensity of constructs over negative control

(construct without promoter) for (A) and over positive control (construct with promoter only) for (B).

Data were obtained from 3 experiments with 3 replicates per experiments of flow-cytometry measurement.

The dash lines correspond to fold change of the negative control (NC, equal to 1) for (A) and the fold

change of the positive control (construct with only promoter P7) for (B). Error bars are mean of the

standard deviation between the three replicates in each experiments.

comparison to the positive control and from 0- to 1.4-fold decrease for integrase sites in reverse

orientation. Nevertheless, for Int5, measured terminator activities are clearly site dependent

and not orientation dependent, as attB integrase sites and attR integrase sites induce a 2-fold

decrease in GFP expression.

With this characterization, we obtained precise measurements of promoter and terminator

activities of each integrase site. It is now clear that integrase sites can have a strong effect on

gene expression and it is critical to optimize the orientation of integrase sites in logic devices.

88 Chapter 2. Boolean logic in multicellular consortia using recombinases

Moreover, based on these data, we might be able to predict logic element behavior using a

phenomenological model.

Additionally, we characterized a set of 10 terminators (including the ones selected for the

logic elements plus others from [Chen 2013]). As for integrase sites, we characterized terminators

with two constructions. In the first construct, the terminator was placed in front of the gene

cassette without promoter, and in the second construct, the terminator was placed between the

promoter and the output gene (Figure 2.15A).

 %eff

T1 95.5%

T3 97.9%

T4 99.0%

T5 97.9%

T6 92.7%

T7 92.4%

T8 73.6%

T9 87.4%

T10 98.7%

A B C
NC PC

Figure 2.15: Characterization of terminators. (A) Characterization of promoter activities

of terminators, where each terminator is positioned in 5’ of the gene expression cassette. (B) Charac-

terization of the terminator activities of each terminator, where each terminator is positioned between

P7 promoter and the gene expression cassettes. For (A) and (B), bar graphs correspond to the fold

change in mean fluorescence intensity over negative control (construct without promoter). Data were

obtained from three experiments with three replicates per experiment of flow-cytometry measurement.

Error bars are the mean of the standard deviation between the three replicates in each experiment. For

(B), the dashed lines correspond to fold change over the negative control (NC, equal to 1) and the fold

change over the positive control (PC, construct with only promoter P7). (C) Terminator efficiency of

each terminator calculated from the previous characterization in (B). Terminator efficency is calculated

as one minus the difference between positive control GFP fluorescence and terminator GFP fluorescence

and divided by positive control. The formula is detailed in Materials and Methods.

For the first constructs, we did not detect GFP expression; therefore, terminators do not have

promoter activities, which is comforting. The second set of constructs permits us to quantify

the activity of each terminator in the conditions of our logic devices. Indeed, terminators have

previously been characterized by placing terminators between two output genes and measuring

the ratio of expression of the two genes. In our case, the terminator is expected to block

the RNA polymerase directly after initiation and therefore in a different genetic context. We

indeed obtained terminator efficiencies different from the ones previously characterized (Figure

2.2. Implementation of multicellular Boolean logic using recombinase switches 89

2.15B). We obtained transcription efficiency (corresponding to the difference in GFP expression

without terminator and with terminator divided by the GFP expression without terminator)

of between 73.6% to 99% (Figure 2.15C). We did not manage to clone the construct with

promoter-T2, probably due to the important secondary structure of the construct. Except for

T2, terminators selected for our logic devices show an efficiency of termination between 95%

to 99%. To optimize computational elements, we could switch the Bxb1 terminator to T10 to

increase termination efficiency from 95 to 98%. Otherwise, the selected terminators have the

best efficiency of transcription termination of the characterized set.

2.2.7 Discussion

In this work, we engineered logic devices by hierarchical composition of well-characterized and

optimised logic elements. We characterized NOT- and ID-elements for four different integrases

in various integrase site orientations. This characterization allowed us to select optimal logic

elements. We composed these selected elements to obtain the 14 logic devices required for

implementing all 4-input Boolean logic functions. Without further optimization, these 14 logic

devices behaved as expected, with ON and OFF states corresponding to the Boolean function

that they implement. This set of devices shows a better fold change than previously designed

biological logic gates and for the first time permits implementation of all 4-input logic functions.

Nevertheless, the logic devices designed by composition of selected elements are not perfect;

we obtained a high variability between ON states of logic devices and high background gene

expression in OFF states. Despite this, all simulated multicellular systems demonstrated the

feasibility of the composition of these logic devices to implement complex Boolean functions in

multicellular system. Moreover, in our simulated multicellular systems, the output detection

was possible using a simple and low cost UV light.

To calibrate all ON and OFF states of logic devices, we will change the promoter of devices

with high OFF background level and high ON level to a weaker promoter (e.g. the P6 promoter),

such as for the not(A).B.C.D and not(A).B.C devices. This should permit an increase in the

common fold change of devices, as the highest OFF level will be lower, and furthermore it will

create a uniform ON level. This thresholding of gates is essential for multicellular systems but

also for the design of multi-layered integrase-based circuits.

This strategy of design of a complex system by decomposition into parts at different levels,

such as decomposition into strains, into elements, and into parts simplifies the optimization and

debugging of large circuits.

By characterizating the set of NOT- and ID-elements, we realized the important effect of

integrase sites on gene expression. Therefore, we characterized the promoter and terminator

activities of all integrase sites in all orientations. We observed important promoter activities

of Tp901 sites and terminator activities of Bxb1 sites into forward orientation. Sites which are

identified to have a strong influence on gene expression could be re-engineered to decrease this

90 Chapter 2. Boolean logic in multicellular consortia using recombinases

effect. One possibility would be to mutate the right arm of the attP Tp901 integrase sites,

which have been identified as the most probable cause of promoter activity. More generally,

these data would be useful for the design of any integrase-based system, such as logic gates, but

also as landing pads for site-specific integration.

As we characterized individual parts, elements, and logic devices, we started to generate

a simple phenomenological model that permits from these data to predict element and logic

device behaviors. This model could allow us to further optimize logic device designs. Other

logic device designs based on the same elements are possible by alternating the position of ID-

elements and of integrase sites surrounding a promoter for NOT-elements. Moreover, in this

work, we tried to optimize logic device behavior, but this led to devices with variable output

ON levels. Using a predictive model, we could predict the behavior of all possible devices and

select a set with the best common threshold and fold change and not specially the best ones.

Our simulation of a multicellular system illustrates the feasibility of these designs. Various

proportions of ON cells were obtained after overnight growth likely due to the important load

to the cell. To address this concern, the experiment might require further optimization such

as growth at different temperatures. To avoid issues with differences in growth rates between

cells, one option would be to encapsulate cells in alginate beads. Beads would then be placed in

the same environment to detect the input signals. As no cell-to-cell communication is required

in our multicellular system, encapsulation would simplify the use of this system for various

applications. Moreover, the output state can also be detected by sequencing. Indeed, as using

integrase, the state of the system would be encoded in the DNA in an irreversible manner.

Therefore, by sequencing, the output state can be determined even if the cells are dead or if the

ON signal is not detectable due to a decrease of proportion of the ON population. Finally, to

obtain a constant output level, cell-to-cell communication via quorum sensing could be used to

integrate the output signal (see design in Annex D). However, implementation of this cell-to-cell

communication will require important design optimization.

To permit the implementation of a complete multicellular logic system, we need to connect

integrases to inducible promoters in a streamlined manner. Our logic devices are independent

of input signal, but they require connection of all inputs to all integrases. Therefore, if we

want to be able to implement all Boolean logic functions for all applications (all input signals),

we have to be able to engineer robust integrase switches responding to any input signal. This

is not straightforward as due to the irreversibility of the integrase switches and his high cat-

alytic activity, a small leakage in integrase gene expression induces irreversible switches of the

system. One strategy to connect inducible promoters to integrases is to tune the translation

and protein degradation efficiency. We tried to connect the inducible promoter PyeaR with

the Int5 integrase using various ribosome binding sites and degradation tags, but most of the

constructs were still leaky. More efforts are now underway for the development of a workflow to

systematically generate inducible switches. One option is to decrease the plasmid copy number

2.2. Implementation of multicellular Boolean logic using recombinase switches 91

of the integrase generator. This work will be a key step in permiting the use of our logic devices

for implementation of Boolean logic function in living organisms.

After final optimization, we will distribute our logic devices in open access platform, such

as Addgene, to permit implementation of all Boolean logic functions. Our devices are designed

and characterized in E. coli but a similar workflow is applicable to any living organisms as

integrases function in various organisms such as mouse, zebrafish, S. cerevisiae, and Drosophila.

We believe that this design workflow by decomposition into simple parts and the distribution

of our logic devices will help researchers and engineers to reprogram cellular behavior for various

applications in a streamlined manner.

92 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2.8 Materiel and Methods

2.2.8.1 Workflow: High-throughput design and cloning of DNA constructs

Due to the large set of constructs that we have to build, it was essential to define an standard

cloning workflow amenable to parallelization and eventually high-throughput.

Sequence

designdesign

AGCT

DNA synthesis
Gibson

Assembly

Verification
and storage

Transformation

Figure 2.16: Explanation bellow

1 - For sequence design, a large number of software prgorams exists such as Gene designer;

however, they are designed to handle a reduced number of sequences. Therefore, we wrote a

python script to automatically generate our library of DNA sequences. The use of a script

minimizes the number of errors. Moreover, because the final sequences result from permutations

of a reduced set of parts, Python is particularly well suited for the task. All sequences were

designed to support cloning by Gibson assembly at an identical location in our template vector,

such as between spacer 0 and the beginning of the GFP sequence. Consequently, all sequences

were composed of the 40 bp spacer 0 in the 5’ end, a variable sequence corresponding to the

logic element, and RiboJ, BCD2 and 40 bp of the beginning of the GFP sequence.

2 - All sequences were synthesized as linear fragment.

3 - Before receiving the linear fragments, the vector is prepared for Gibson assembly.

PCR is performed with a primer reverse of sp0 and a forward primer for the beginning of the

GFP to obtain linearized vector ready to be assembled with each linear insert fragment.

4 - When the linear fragments are received, they are resuspended and directly mixed with

the linearized vector and the Gibson assembly mix to perform a Gibson assembly reaction.

Afterward one hour of incubation, Gibson assembly reactions are transformed into chemically

competent E. coli DH5alphaZI.

5 - High-throughput chemical transformation. Upstream of the transformation, a

large batch of homemade chemical competent cells were prepared and aliquoted in PCR strip

tubes. Therefore, the chemical transformation is performed mainly using multichannel pipettes

and could therefore be easily adapt to a pipetting robot. After heat shock, cells are transferred

to 96 well plates previously filled with SOC. For plating cells, 6 well-plates are used, which

simplifies manipulations and reduces the quantity of media and material needed. The 6-well

plates are filled with LB agar, completed with the appropriate antibiotic, and well-dried before

use.

2.2. Implementation of multicellular Boolean logic using recombinase switches 93

The 96-well plate containing the transformed cells is spin at 4,000 rpm for 5 min to concen-

trate the cells in a smaller volume by removing the majority of the supernatant. The remaining

volume of each well is plated in one well of a 6-well agar plate. Spreading bacteria on the plate

is performed with glass beads.

6 - Colony PCR is performed to verify the insertion of a fragment of the correct size in

the vector. The protocol of colony PCR is detailed in Material and Methods. Two colonies are

tested per Gibson assembly; one of the two is selected for further plasmid extraction and DNA

sequencing.

7 - Plasmid extraction is performed on one colony per construct. Colonies are grown

overnight in 24 deep well plates with 5 mL of LB. Standard plasmid extraction protocol is used

afterward. Constructs are verified by DNA sequencing.

Therefore, from the design to the obtaining of the constructs a total of 14

working days are required, with 10 days for the synthesize and 4 for the cloning

and DNA sequencing. A second round of plasmid extraction and DNA sequencing

can be required if the first results are not conclusive. For the construction of

the logic elements, 80% of the constructs were successfully obtained after the first

round.

2.2.8.2 E. coli strains and media

The DH5alphaZ1 E. coli strain was used in this study (laciq, PN25-tetR, SpR, deoR, supE44,

Delta(lacZYA-argFV169), Phi80 lacZDeltaM15, hsdR17(rK- mK+), recA1, endA1, gyrA96, thi-

1, relA1). E. coli were grown on LB media with antibiotic corresponding to the transformed

plasmid(s). Antibiotics were purchased from Sigma and used at the following concentration:

chloramphenicol 20µg/mL, kanamycin 25µg/mL, carbenicillin 50µg/mL (for ampicillin resis-

tance). For co-transformation of two plasmids, the two corresponding antibiotics were used at

the previously defined concentration divided by two.

2.2.8.3 Molecular biology

We used pSB4K5 and J66100 (from parts.igem.org) as vectors. The pSB4K5 plasmid is com-

posed of a Kanamycin resistance cassette and pSC101 low copy origin of replication and was

used for the cloning of BP and LR targets, parts, elements, and devices. J66100 plasmid is

composed of ampicillin resistance cassette and ColE1 origin of replication, and was used for

the cloning of integrase cassettes. All plasmids used in this study were derived from these two

vectors and fragments were assembled using one-step isothermal assembly following standard

molecular biology procedures. Enzymes for the one-step isothermal assembly were purchased

from New England BioLabs (NEB, Ipswich, MA, USA). PCR were performed using Q5 PCR

master mix and One-Taq quick load master mix for colony PCR (NEB). Primers were purchased

94 Chapter 2. Boolean logic in multicellular consortia using recombinases

from IDT (Louvain, Belgium) and DNA fragments from Twist Bioscience (San Francisco, CA,

USA). Plasmid extraction and DNA purification were performed using kits from Biosentec

(Toulouse, France). Sequencing was cinducted by GATC Biotech (Cologne, Germany).

2.2.8.4 Construction of BP and LR targets

For Tp901 and Bxb1 targets, the BP and LR targets from Bonnet et al. were used. For Int3,

Int4, Int5, and Int7 targets, a template sequence composed of mKate in reverse orientation and

GFP in reverse was synthesized and assembled in pSB4K5 with sp0 and spN as homology region

and using P862 and P863 to linearized pSB4K5 vector. Then, target fragments containing the

sequence between the mKate and GFP coding sequences were synthesized and assembled using

P109 and P224 to linearized the previously constructed template sequence.

2.2.8.5 Construction of parts, elements, and devices

As a backbone sequence, the expression operating unit from Guiziou et al. (B. subtilis toolbox)

was used, which composed of the spacers for Gibson assembly, superfold GFP, and terminator.

The construct was inserted in pSB4K5 using P862 and P863. For the construction of NOT-

and IDENTITY-elements, and positive and negative constructs, the previous construct was

used as a template and amplified using P71 and P870 for one-step isothermal assembly with

linear fragments corresponding to each element. For the integrase sites, terminators, and logic

devices, the terminator in 3’ side of the construct was switched from B0015 to L3S3P00. As

B0015 was used in the logic devices, we wanted to avoid sequence homology in the construct.

The linear DNA fragment sp5_ L3S3P00_ spN was inserted between sp5 and spN spacers using

P40 and P34 for vector amplification to switch the terminator in the positive control construct.

Therefore, for integrase sites, terminators, and logic devices, the positive control construct with

L3S3P00 as terminator was used for insertion of DNA fragment with P71 and P870 for vector

amplification.

2
.2

.
Im

p
le

m
e
n

ta
tio

n
o

f
m

u
ltic

e
llu

la
r

B
o

o
le

a
n

lo
g

ic
u

sin
g

re
c
o

m
b

in
a
se

sw
itch

e
s

9
5

Short name Original name Used for DNA sequence

T1 ECK120033737 Bxb1 ID-element in excision ggaaacacagAAAAAAGCCCGCACCTGACAGTGCGGGCTTTTTTT

TTcgaccaaagg

T2 ECK120029600 Tp901 ID-element in excision TTCAGCCAAAAAACTTAAGACCGCCGGTCTTGTCCACTACCT

TGCAGTAATGCGGTGGACAGGATCGGCGGTTTTCTTTTCTC

TTCTCAA

T3 L3S2P21 Int7 ID-element in excision CTCGGTACCAAATTCCAGAAAAGAGGCCTCCCGAAAGGGGG

GCCTTTTTTCGTTTTGGTCC

T4 L3S3P21 Int5 ID-element in excision CCAATTATTGAAGGCCTCCCTAACGGGGGGCCTTTTTTTGTT

TCTGGTCTCCC

T5 B0015 Bxb1 ID-element in inversion ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcg

gtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata

T6 J61048 Tp901 ID-element in inversion ccggcttatcggtcagtttcacctgatttacgtaaaaacccgcttcggcgggtttttgcttttggaggg

gcagaaagatgaatgactgtccacgacgctatacccaaaagaaa

T7 ECK120015170 Int7 ID-element in inversion ACAATTTTCGAAAAAACCCGCTTCGGCGGGTTTTTTTATAGC

TAAAA

T8 ECK120010855 Int5 ID-element in inversion GTAACAACGGAAACCGGCCATTGCGCCGGTTTTTTTTGGCC

T

Table 2.2: List of terminator used in the different elements.

96 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2.8.6 Construction of integrase cassettes

First, Plac-Integrase cassettes were synthetized and cloned in the J66100 plasmid. The land-

ing pad construct with promoters, terminators, and spacers and without integrase genes was

synthesized and assembled in J66100 using P1122 and P1153 to linearized the vector. Each

integrase was amplified from the previous Plac construct and inserted separately in the landing

pad using the following primers:

Short name Integrase expressed Vector Primers Insert Primers

C-Int1 Bxb1 P1325-P1326 P1324-P1327

C-Int2 Tp901 P1329-P1330 P1328-P1331

C-Int3 Int5 P1333-P1334 P1332-P1335

C-Int4 Int7 P1337-P1338 P1336-P1339

Table 2.3: Construction of single-integrase constitutive cassettes.

For construction of all the integrase cassette variants, the integrase cassettes with a single

integrase were used in combinatorial manner. The following is a table with the corresponding

assembly process.

2.2. Implementation of multicellular Boolean logic using recombinase switches 97

Short name Integrases

present

Insert 1 Insert 2 Insert 3 Insert 4

C-Int5 Bxb1-Tp901 Bxb1-

sp23R/sp19F

Tp901-

sp23F/sp19R

C-Int6 Bxb1-Int5 Bxb1-

sp23R/sp19F

Int5-

sp23F+SP19R

C-Int7 Bxb1-Int7 Bxb1-

sp23R/sp19F

Int7-

sp23F/sp19R

C-Int8 Tp901-Int5 Tp901-

sp25R/sp19F

Int5-

sp25F/sp19R

C-Int9 Tp901-Int7 Tp901-

sp25R/sp19F

Int7-

sp25F/sp19R

C-Int10 Int5-Int7 Int5-

sp27R/sp19F

Int7-

sp27F/sp19R

C-Int11 Bxb1-Tp901-

Int5

Bxb1-

sp23R/sp19F

Tp901-

sp23F/sp25R

Int5-

sp25F/sp19R

C-Int12 Bxb1-Tp901-

Int7

Bxb1-

sp23R/sp19F

Tp901-

sp23F/sp25R

Int7-

sp25F/sp19R

C-Int13 Bxb1-Int5-

Int7

Bxb1-

sp23R/sp19F

Int5-

sp23F/sp27R

Int7-

sp27F/sp19R

C-Int14 Tp901-Int5-

Int7

Tp901-

sp25R/sp19F

Int5-

sp25F/sp27R

Int7-

sp27F/sp19R

C-Int15 Bxb1-Tp901-

Int5-Int7

Bxb1-

sp23R/sp19F

Tp901-

sp23F/sp25R

Int5-

sp25F/sp27R

Int7-

sp27F/sp19R

Table 2.4: Assembly of constitutive integrase cassettes

98 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2.8.7 Flow-cytometer measurements

Quantification of expression levels of all strains was performed using an Attune NxT flow cy-

tometer (ThermoFisher) equipped with an autosampler. Experiments were performed in 96

well plates with three replicates per plate. For flow cytometry measurements, 20, 000 bacterial

events were analysed. A gate was previously designed based on forward and side scatter graphs

to remove debris from the analysis. GFP fluorescence intensity was measured using excitation

by a 488 nm laser and a 510/10 nm filter (BL1). RFP excitation was performed by a 561 nm

laser and a 615/25 nm filter (YL2). Voltages used were FFS: 440, SSC: 340, BL1: 360, for all

experiments except with BP and LR targets, and BL1: 400 and YL2: 400, for experiments with

BP and LR targets. Data were analysed and presented using the Flow-Jo (Tristar) software.

2.2.8.8 Characterization of integrases: cell culture, measurement, and analysis

For integrase characterization, each Plac-integrase plasmid and dual controller for Tp901 inte-

grase was co-transformed with BP targets. For constitutive integrase cassette characterization,

each constitutive integrase cassette was co-transformed with the BP targets corresponding to

the integrase that it should express.

For both experiments, 96 deep-well plates filled with 500 µL of LB per wells were inoculated

with three clones per co-transformation and three clones per control corresponding to the BP

target and LR target strains. For integrase characterization with Plac-integrase plasmid and

dual controller plasmid, LB was supplemented with 100 µM of IPTG for co-transformation with

Plac-integrase and 1% arabinose for co-transformation with the dual controller for expression of

Tp901. Plates were grown for 16 hours at 37◦C. Cultures were diluted 40 times with Focusing

Fluid and directly measured on the flow cytometer according to previously described methods.

Data analysis was performed using Flow-Jo. Bacterial events were gated to remove debris

from the analysis by plotting FSC-H over SSC-H. Data were represented using a density plot of

BL1-H over YL2-H, corresponding to the GFP fluorescence intensity over the RFP fluorescence

intensity. For the Figure 2.1D and Figure 2.6E, the proportions of bacteria in BP or LR states

were obtained using a BL1-H over YL2-H plot by gating the population corresponding to the BP

or LR target strain. Data represented in the heatmap correspond to the mean of the proportion

obtained for the three replicates in one experiment.

2.2.8.9 Characterization of elements, integrase sites and terminators

Glycerol stocks from each construct were streaked on plates. 96 deep-well plates filled with 500

µL of LB and kanamycin antibiotic were inoculated with three clones from the freshly streaked

plates. For all experiments, three clones of the negative control strain corresponding to GFP

without promoter and the positive control strain corresponding to P7-GFP were inoculated.

2.2. Implementation of multicellular Boolean logic using recombinase switches 99

Plates were grown for 16 hours at 37◦C. Cultures were diluted 40 times with Focusing Fluid

and measured using a flow cytometer. Three experiments with three replicates per experiments

were performed for elements, integrase sites, and terminators characterizations. Data were

analyzed using Flow-Jo. Bacterial events were gated to remove debris from the analysis by

plotting FSC-H over SSC-H. For each independent experiment, the median GFP fluorescence

intensity of the bacterial population for each replicate was extracted, corresponding to the BL1-

H median. Then, the mean fluorescence intensity and the standard deviation between replicates

were calculated from the three replicates in a single experiment. The mean values from three

or two independent experiments were then calculated. The error was calculated as the mean of

the standard deviation for each experiment, corresponding therefore to the mean error between

replicates in one experiment. The fold change over the negative control represented in the bar

graph was obtained by dividing the mean fluorescence intensity value from several independent

experiments of the construct of interest by the mean fluorescence intensity value of the negative

control. The error on the fold change was calculated from the mean error between replicates of

the construct of interest and the negative control.

Error on fold change =
(

Errorconstruct

F luoconstruct
+

Errornegative control

F luonegative control

)

× F luoconstruct

F luonegative control

2.2.8.10 Characterization of devices

Each device was characterized with different integrase cassettes corresponding to the number

of inputs for the device. To do so in a streamlined way, chemical competent cells of E. coli

strains with each constitutive integrase cassette were prepared and aliquoted in PCR strips,

with an 8-tube PCR strip for 3-input constitutive integrase cassettes and an 8-tube PCR strip

for additional constitutive integrase cassettes required for 4-input characterization. Detailed

protocol for chemical competent cells and transformation can be found in Annex. Devices were

transformed in competent cells corresponding to the number of inputs. Transformations were

plated on 6-well plates filled with 3 mL of LB agar to reduced the quantity of plates required.

For 2-input devices, 4 transformations were performed, 8 for 3-input devices and 16 for 4-

input devices, leading to a total of 124 transformations. For each transformation, three clones

were picked and inoculated in 500 µL of LB in 96 deep-well plates. Additionally, the negative

control (GFP without promoter) strain and positive control (P7-GFP) strain were streaked from

glycerol stocks and three clones were picked and inoculated. Plates were grown for 16 hours at

37◦C. Cultures were diluted 40 times with Focusing Fluid and measured on a flow cytometer.

Two experiments with three replicates per experiments were performed. Data were analyzed

using Flow-Jo using the same procedure as the one detailed previously for element, integrase

site, and terminator characterizations.

100 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2.8.11 Simulation of multicellular logic system

To simulate multicellular logic systems, required devices were transformed in competent cells

with the corresponding constitutive integrase cassettes, as for device characterisation. Three

clones per transformation were inoculated in 500 µL of LB in 96 deep-well plates. Plates were

incubated for 16 hours at 37◦C to reach stationary phase. From the stationary phase culture,

cells were mixed in identical proportions: such as 100 µL for each culture in a 96 deep-well plate

to simulate the multicellular logic system (see following tables for more detail). To quantify the

proportion of ON cells in each state before growth, these mixes of cell cultures were diluted 200

times in Focusing Fluid and measured with a flow cytometer.

For growth, each mix of cultures- was diluted 1000 times in LB in two serial dilutions: 10 µL

in 190 µL of LB and 10 µL in 500 µL of LB in the final 96 deep-well plate. Plates were incubated

for 16 hours at 37◦C. Co-cultures were diluted four times in PBS and analyzed using a plate

reader for measurement of bulk fluorescence intensity. Additionally, co-cultures were diluted

200 times in Focusing Fluid and analyzed on a flow cytometer. Finally, the three replicates

were mixed, centrifuged, and cell pellets were resuspended in 20 µL in PCR tubes and imaged

under a UV table.

Plate reader measurements were performed using a BioTek Cytation 3. GFP fluorescence

intensity (Excitation: 485 nm, Emission: 528 nm, gain: 85) and absorbance at 600 nm were

measured. For each sample, GFP fluorescence intensity over absorbance at 600nm were calcu-

lated and the mean value was calculated between the three replicates. The fold change over

the negative control was determined from this mean value over the one of the negative control.

The error bars correspond to the error of the fold change: the sum of the coefficient of variation

between replicates of the construct and of the negative control multiplied by the calculated

fold change. Flow-cytometry experiments were performed as detailed in the corresponding sec-

tion. To determine the proportion of cells in the ON state (expressing GFP), a first gate was

performed to select bacterial events using the FSC-H over SSC-H density plot. A second gate

was performed from bacterial events to select single cells using SSC-A over SSC-H density plot.

Finally, from single cell events, a BL1-H histogram was plotted and cells with more than 4, 200

fluorescence intensity in arbitrary units were considered ON to determine the proportion of ON

cells using a final gate. This procedure was used to analyse flow-cytometry experiments before

and after co-culture growth.

2.2. Implementation of multicellular Boolean logic using recombinase switches101

Simulated input state BACD - 40 ABCD- 42

0000 C-Int0 C-Int0

1000 C-Int2 C-Int1

0100 C-Int1 C-Int2

0010 C-Int3 C-Int3

1100 C-Int5 C-Int5

1010 C-Int8 C-Int6

0110 C-Int6 C-Int8

1110 C-Int11 C-Int11

0001 C-Int4 C-Int4

1001 C-Int9 C-Int7

0101 C-Int7 C-Int9

0011 C-Int10 C-Int10

1101 C-Int12 C-Int12

1011 C-Int14 C-Int13

0111 C-Int13 C-Int14

1111 C-Int15 C-Int15

Table 2.5: Simulation of A.B.C+not(A).not(B).not(C) logic function implementation - Figure

2.12

102 Chapter 2. Boolean logic in multicellular consortia using recombinases

Simulated input state (ABD) 35 (ABC) 37 (ACD) 38

0000 C-Int0 C-Int0 C-Int0

0001 C-Int3 C-Int0 C-Int3

0010 C-Int0 C-Int3 C-Int2

0011 C-Int3 C-Int3 C-Int8

0100 C-Int2 C-Int2 C-Int0

0101 C-Int8 C-Int2 C-Int3

0110 C-Int2 C-Int8 C-Int2

0111 C-Int8 C-Int8 C-Int8

1000 C-Int1 C-Int1 C-Int1

1001 C-Int6 C-Int1 C-Int6

1010 C-Int1 C-Int6 C-Int5

1011 C-Int6 C-Int6 C-Int11

1100 C-Int5 C-Int5 C-Int1

1101 C-Int11 C-Int5 C-Int6

1110 C-Int5 C-Int11 C-Int5

1111 C-Int11 C-Int11 C-Int11

Table 2.6: Simulation of A.B.D+not(A).not(B).C+not(A).not(C).not(D) logic function imple-

mentation - Figure 2.12

2.2. Implementation of multicellular Boolean logic using recombinase switches103

Simulated input state BACD - 40 ABCD- 42

0000 C-Int0 C-Int0

1000 C-Int2 C-Int1

0100 C-Int1 C-Int2

0010 C-Int3 C-Int3

1100 C-Int4 C-Int4

1010 C-Int6 C-Int5

0110 C-Int5 C-Int6

1110 C-Int7 C-Int7

0001 C-Int8 C-Int8

1001 C-Int10 C-Int9

0101 C-Int9 C-Int10

0011 C-Int11 C-Int11

1101 C-Int12 C-Int12

1011 C-Int14 C-Int13

0111 C-Int13 C-Int14

1111 C-Int15 C-Int15

Table 2.7: Simulation of not(A).not(B).not(C).D+not(B).A.C.D logic function implementation

- Figure 2.13

104 Chapter 2. Boolean logic in multicellular consortia using recombinases

2.2.8.12 List of Constructs

Short Name Pasmid Description Used for

BP target Bxb1 pSB4K5 Prefix-RFP-attB-Pfwd-attP-GFP-Suffix integrase characterisation

LR target Bxb1 pSB4K5 Prefix-RFP-attL-Prev-attR-GFP-Suffix integrase characterisation

BP target Tp901 pSB4K5 Prefix-RFP-attB-Pfwd-attP-GFP-Suffix integrase characterisation

LR target Tp901 pSB4K5 Prefix-RFP-attL-Prev-attR-GFP-Suffix integrase characterisation

BP target Int3 pSB4K5 sp0-mKate-attB-Prev-attP-sfGFP-spN integrase characterisation

LR target Int3 pSB4K5 sp0-mKate-attL-Pfwd-attR-sfGFP-spN integrase characterisation

BP target Int4 pSB4K5 sp0-mKate-attB-Prev-attP-sfGFP-spN integrase characterisation

LR target Int4 pSB4K5 sp0-mKate-attL-Pfwd-attR-sfGFP-spN integrase characterisation

BP target Int5 pSB4K5 sp0-mKate-attB-Prev-attP-sfGFP-spN integrase characterisation

LR target Int5 pSB4K5 sp0-mKate-attL-Pfwd-attR-sfGFP-spN integrase characterisation

BP target Int7 pSB4K5 sp0-mKate-attB-Prev-attP-sfGFP-spN integrase characterisation

LR target Int7 pSB4K5 sp0-mKate-attL-Pfwd-attR-sfGFP-spN integrase characterisation

Plac.Bxb1 J66100 sp0-Plac-Bxb1-spN integrase characterisation

Plac.Int3 J66100 sp0-Plac-Int3-spN integrase characterisation

Plac.Int4 J66100 sp0-Plac-Int4-spN integrase characterisation

Plac.Int5 J66100 sp0-Plac-Int5-spN integrase characterisation

Plac.Int7 J66100 sp0-Plac-Int7-spN integrase characterisation

Dual controler J64100 integrase characterisation

C-Int0 J66100 Landing pad for constitutive integrase

sp18sp19

device characterisation

C-Int1 J66100 Landing pad with Bxb1 device characterisation

C-Int2 J66100 Landing pad with Tp901 device characterisation

C-Int3 J66100 Landing pad with Int5 device characterisation

C-Int4 J66100 Landing pad with Int7 device characterisation

C-Int5 J66100 Landing pad with Bxb1-TP901 device characterisation

C-Int6 J66100 Landing pad with Bxb1-Int5 device characterisation

C-Int7 J66100 Landing pad with Bxb1-Int7 device characterisation

C-Int8 J66100 Landing pad with Tp901-Int5 device characterisation

C-Int9 J66100 Landing pad with Tp901-Int7 device characterisation

C-Int10 J66100 Landing pad with Int5-Int7 device characterisation

C-Int11 J66100 Landing pad with Bxb1-Tp901-Int5 device characterisation

C-Int12 J66100 Landing pad with Bxb1-Tp901-Int7 device characterisation

C-Int13 J66100 Landing pad with Bxb1-Int5-Int7 device characterisation

C-Int14 J66100 Landing pad with Tp901-Int5-Int7 device characterisation

C-Int15 J66100 Landing pad with Bxb1-Tp901-Int5-Int7 device characterisation

CM-N pSB4K5 sp0-GFP-B0015-spN Negative control

CM-P pSB4K5 sp0-P7-GFP-B0015-spN Positive control

CM-P L3 pSB4K5 sp0-P7-GFP-L3S3P00-spN Positive control

Table 2.8: List of constructs

2.2. Implementation of multicellular Boolean logic using recombinase switches105

Short Name Pasmid Description Used for

B.1 pSB4K5 P-BF-PF-1 element

B.2 pSB4K5 P-BR-PR-1 element

B.3 pSB4K5 P-PF-BF-1 element

B.4 pSB4K5 P-PR-BR-1 element

B.5 pSB4K5 Pinv-BF-PR-1 element

B.6 pSB4K5 Pinv-BR-PF-1 element

B.7 pSB4K5 Pinv-PF-BR-1 element

B.8 pSB4K5 Pinv-PR-BF-1 element

B.9 pSB4K5 T-BF-PF-1 element

B.10 pSB4K5 T-BR-PR-1 element

B.11 pSB4K5 T-PF-BF-1 element

B.12 pSB4K5 T-PR-BR-1 element

B.13 pSB4K5 Tinv-BF-PR-1 element

B.14 pSB4K5 Tinv-BR-PF-1 element

B.15 pSB4K5 Tinv-PF-BR-1 element

B.16 pSB4K5 Tinv-PR-BF-1 element

T.1 pSB4K5 P-BF-PF-2 element

T.2 pSB4K5 P-BR-PR-2 element

T.3 pSB4K5 P-PF-BF-2 element

T.4 pSB4K5 P-PR-BR-2 element

T.5 pSB4K5 Pinv-BF-PR-2 element

T.6 pSB4K5 Pinv-BR-PF-2 element

T.7 pSB4K5 Pinv-PF-BR-2 element

T.8 pSB4K5 Pinv-PR-BF-2 element

T.9 pSB4K5 T-BF-PF-2 element

T.10 pSB4K5 T-BR-PR-2 element

T.11 pSB4K5 T-PF-BF-2 element

T.12 pSB4K5 T-PR-BR-2 element

T.13 pSB4K5 Tinv-BF-PR-2 element

T.14 pSB4K5 Tinv-BR-PF-2 element

T.15 pSB4K5 Tinv-PF-BR-2 element

T.16 pSB4K5 Tinv-PR-BF-2 element

5.1 pSB4K5 P-BF-PF-3 element

5.2 pSB4K5 P-BR-PR-3 element

5.3 pSB4K5 P-PF-BF-3 element

5.4 pSB4K5 P-PR-BR-3 element

5.5 pSB4K5 Pinv-BF-PR-3 element

5.6 pSB4K5 Pinv-BR-PF-3 element

5.7 pSB4K5 Pinv-PF-BR-3 element

Table 2.8: List of constructs

106 Chapter 2. Boolean logic in multicellular consortia using recombinases

Short Name Pasmid Description Used for

5.8 pSB4K5 Pinv-PR-BF-3 element

5.9 pSB4K5 T-BF-PF-3 element

5.10 pSB4K5 T-BR-PR-3 element

5.11 pSB4K5 T-PF-BF-3 element

5.12 pSB4K5 T-PR-BR-3 element

5.13 pSB4K5 Tinv-BF-PR-3 element

5.14 pSB4K5 Tinv-BR-PF-3 element

5.15 pSB4K5 Tinv-PF-BR-3 element

5.16 pSB4K5 Tinv-PR-BF-3 element

7.1 pSB4K5 P-BF-PF-4 element

7.2 pSB4K5 P-BR-PR-4 element

7.3 pSB4K5 P-PF-BF-4 element

7.4 pSB4K5 P-PR-BR-4 element

7.5 pSB4K5 Pinv-BF-PR-4 element

7.6 pSB4K5 Pinv-BR-PF-4 element

7.7 pSB4K5 Pinv-PF-BR-4 element

7.8 pSB4K5 Pinv-PR-BF-4 element

7.9 pSB4K5 T-BF-PF-4 element

7.10 pSB4K5 T-BR-PR-4 element

7.11 pSB4K5 T-PF-BF-4 element

7.12 pSB4K5 T-PR-BR-4 element

7.13 pSB4K5 Tinv-BF-PR-4 element

7.14 pSB4K5 Tinv-BR-PF-4 element

7.15 pSB4K5 Tinv-PF-BR-4 element

7.16 pSB4K5 Tinv-PR-BF-4 element

31 pSB4K5 Tp901 ID-element with B0015 element

32 pSB4K5 A.B devices

33 pSB4K5 not(A).B devices

34 pSB4K5 not(A).not(B) devices

35 pSB4K5 A.B.C devices

36 pSB4K5 not(A).B.C devices

37 pSB4K5 not(A).not(B).C devices

38 pSB4K5 not(A).not(B).not(C) devices

39 pSB4K5 A.B.C.D devices

40 pSB4K5 not(A).B.C.D devices

41 pSB4K5 not(A).not(B).C.D devices

42 pSB4K5 not(A).not(B).not(C).D devices

43 pSB4K5 not(A).not(B).not(C).not(D) devices

BBF pSB4K5 attB Foward Bxb1 - GFP integrase site characterisation

BBR pSB4K5 attB Reverse Bxb1 - GFP integrase site characterisation

BPF pSB4K5 attP Foward Bxb1 - GFP integrase site characterisation

BPR pSB4K5 attP Reverse Bxb1 - GFP integrase site characterisation

Table 2.8: List of constructs

2.2. Implementation of multicellular Boolean logic using recombinase switches107

Short Name Pasmid Description Used for

BLF pSB4K5 attL Foward Bxb1 - GFP integrase site characterisation

BLR pSB4K5 attL Reverse Bxb1 - GFP integrase site characterisation

BRF pSB4K5 attR Foward Bxb1 - GFP integrase site characterisation

BRR pSB4K5 attR Reverse Bxb1 - GFP integrase site characterisation

TBF pSB4K5 attB Foward Tp901 - GFP integrase site characterisation

TBR pSB4K5 attB Reverse Tp901 - GFP integrase site characterisation

TPF pSB4K5 attP Foward Tp901 - GFP integrase site characterisation

TPR pSB4K5 attP Reverse Tp901 - GFP integrase site characterisation

TLF pSB4K5 attL Foward Tp901 - GFP integrase site characterisation

TLR pSB4K5 attL Reverse Tp901 - GFP integrase site characterisation

TRF pSB4K5 attR Foward Tp901 - GFP integrase site characterisation

TRR pSB4K5 attR Reverse Tp901 - GFP integrase site characterisation

5BF pSB4K5 attB Foward Int5 - GFP integrase site characterisation

5BR pSB4K5 attB Reverse Int5 - GFP integrase site characterisation

5PF pSB4K5 attP Foward Int5 - GFP integrase site characterisation

5PR pSB4K5 attP Reverse Int5 - GFP integrase site characterisation

5LF pSB4K5 attL Foward Int5 - GFP integrase site characterisation

5LR pSB4K5 attL Reverse Int5 - GFP integrase site characterisation

5RF pSB4K5 attR Foward Int5 - GFP integrase site characterisation

5RR pSB4K5 attR Reverse Int5 - GFP integrase site characterisation

7BF pSB4K5 attB Foward Int7 - GFP integrase site characterisation

7BR pSB4K5 attB Reverse Int7 - GFP integrase site characterisation

7PF pSB4K5 attP Foward Int7 - GFP integrase site characterisation

7PR pSB4K5 attP Reverse Int7 - GFP integrase site characterisation

7LF pSB4K5 attL Foward Int7 - GFP integrase site characterisation

7LR pSB4K5 attL Reverse Int7 - GFP integrase site characterisation

7RF pSB4K5 attR Foward Int7 - GFP integrase site characterisation

7RR pSB4K5 attR Reverse Int7 - GFP integrase site characterisation

P-BBF pSB4K5 P7 - attB Foward Bxb1 - GFP integrase site characterisation

P-BBR pSB4K5 P7 - attB Reverse Bxb1 - GFP integrase site characterisation

P-BPF pSB4K5 P7 - attP Foward Bxb1 - GFP integrase site characterisation

P-BPR pSB4K5 P7 - attP Reverse Bxb1 - GFP integrase site characterisation

P-BLF pSB4K5 P7 - attL Foward Bxb1 - GFP integrase site characterisation

P-BLR pSB4K5 P7 - attL Reverse Bxb1 - GFP integrase site characterisation

P-BRF pSB4K5 P7 - attR Foward Bxb1 - GFP integrase site characterisation

P-BRR pSB4K5 P7 - attR Reverse Bxb1 - GFP integrase site characterisation

P-TBF pSB4K5 P7 - attB Foward Tp901 - GFP integrase site characterisation

P-TBR pSB4K5 P7 - attB Reverse Tp901 - GFP integrase site characterisation

P-TPF pSB4K5 P7 - attP Foward Tp901 - GFP integrase site characterisation

P-TPR pSB4K5 P7 - attP Reverse Tp901 - GFP integrase site characterisation

Table 2.8: List of constructs

108 Chapter 2. Boolean logic in multicellular consortia using recombinases

Short Name Pasmid Description Used for

P-TLF pSB4K5 P7 - attL Foward Tp901 - GFP integrase site characterisation

P-TLR pSB4K5 P7 - attL Reverse Tp901 - GFP integrase site characterisation

P-TRF pSB4K5 P7 - attR Foward Tp901 - GFP integrase site characterisation

P-TRR pSB4K5 P7 - attR Reverse Tp901 - GFP integrase site characterisation

P-5BF pSB4K5 P7 - attB Foward Int5 - GFP integrase site characterisation

P-5BR pSB4K5 P7 - attB Reverse Int5 - GFP integrase site characterisation

P-5PF pSB4K5 P7 - attP Foward Int5 - GFP integrase site characterisation

P-5PR pSB4K5 P7 - attP Reverse Int5 - GFP integrase site characterisation

P-5LF pSB4K5 P7 - attL Foward Int5 - GFP integrase site characterisation

P-5LR pSB4K5 P7 - attL Reverse Int5 - GFP integrase site characterisation

P-5RF pSB4K5 P7 - attR Foward Int5 - GFP integrase site characterisation

P-5RR pSB4K5 P7 - attR Reverse Int5 - GFP integrase site characterisation

P-7BF pSB4K5 P7 - attB Foward Int7 - GFP integrase site characterisation

P-7BR pSB4K5 P7 - attB Reverse Int7 - GFP integrase site characterisation

P-7PF pSB4K5 P7 - attP Foward Int7 - GFP integrase site characterisation

P-7PR pSB4K5 P7 - attP Reverse Int7 - GFP integrase site characterisation

P-7LF pSB4K5 P7 - attL Foward Int7 - GFP integrase site characterisation

P-7LR pSB4K5 P7 - attL Reverse Int7 - GFP integrase site characterisation

P-7RF pSB4K5 P7 - attR Foward Int7 - GFP integrase site characterisation

P-7RR pSB4K5 attR Reverse Int7 - GFP integrase site characterisation

T1 pSB4K5 ECK120033737 - GFP terminator characterisation

T2 pSB4K5 ECK120029600 - GFP terminator characterisation

T3 pSB4K5 L3S2P21 - GFP terminator characterisation

T4 pSB4K5 L3S3P21 - GFP terminator characterisation

T5 pSB4K5 B0015 - GFP terminator characterisation

T6 pSB4K5 J61048 - GFP terminator characterisation

T7 pSB4K5 ECK120015170 - GFP terminator characterisation

T8 pSB4K5 ECK120010855 - GFP terminator characterisation

T9 pSB4K5 L3S2P11 - GFP terminator characterisation

T10 pSB4K5 L3S3P22 - GFP terminator characterisation

P-T1 pSB4K5 P7 - ECK120033737 - GFP terminator characterisation

P-T2 pSB4K5 P7 - ECK120029600 - GFP terminator characterisation

P-T3 pSB4K5 P7 - L3S2P21 - GFP terminator characterisation

P-T4 pSB4K5 P7 - L3S3P21 - GFP terminator characterisation

P-T5 pSB4K5 P7 - B0015 - GFP terminator characterisation

P-T6 pSB4K5 P7 - J61048 - GFP terminator characterisation

P-T7 pSB4K5 P7 - ECK120015170 - GFP terminator characterisation

P-T8 pSB4K5 P7 - ECK120010855 - GFP terminator characterisation

P-T9 pSB4K5 P7 - L3S2P11 - GFP terminator characterisation

P-T10 pSB4K5 P7 - L3S3P22 - GFP terminator characterisation

Table 2.8: List of constructs

Chapter 3

Programming history-dependent

logic in a multicellular system

Contents

3.1 Introduction . 111

3.2 Automated design of history-dependent programs 113

3.2.1 Distributing history-dependent gene-expression programs within a multicel-

lular system . 113

3.2.2 A modular scaffold design to implement history-dependent gene expression

programs . 113

3.2.3 Automation of history-dependent gene-expression program designs 116

3.2.4 Minimization of history-dependent circuits using Boolean logic devices . . . 116

3.3 Implementation of history-dependent gene-expression programs in

multicellular consortia . 121

3.3.1 OSiRIS: Optimization by SynthesIs of Recombination Intermediate States . 121

3.3.2 Characterization of a history-dependent program by sequential induction . 128

3.4 Discussion . 133

3.5 Materials and Methods . 135

3.5.1 Equations for the determination of number of functions/strains/devices for

history-dependent logic . 135

3.5.2 Automated generation of genetic designs to execute multicellular Boolean

logic and history-dependent gene expression programs 135

In this chapter, I will present my work on the implementation of history-dependent logic

in a multicellular system. This work is presented as a paper composed of two parts: (1) the

development of an automated design framework and (2) the experimental implementation of

this design.

I have done this work in collaboration with Jerome Bonnet, Ana Zuniga, and Pauline May-

onove. Jerome Bonnet and myself were at the origin of the project. The Python software and

web-interface was created simultaneously for Boolean logic and history-dependent logic imple-

mentation. As with chapter 2, I was at the origin of the design workflow and its automation via

110 Chapter 3. Programming history-dependent logic in a multicellular system

the creation of the Python software. Violaine Moreau and Laurent Bonnet were involved in the

creation of the CALIN website. The implementation and characterization of history-dependent

gene-expression programs were performed by Ana Zuniga, Pauline Mayonove, and myself. Ana

Zuniga performed the multi-cellular experiments and Pauline Mayonove the characterization of

the 3-input OSiRIS constructs.

3.1. Introduction 111

3.1 Introduction

Survival and reproduction of living organisms depends on their highly sophisticated abilities to

sense, process, and respond to multiple signals in parallel [Bray 1995]. While several biological

circuits operate in real-time, responding to particular signals according to past events is also cru-

cial. Such history-dependent biological responses are observed from animal behavior down to the

heart of fundamental processes like cellular differentiation and morphogenesis [Wolpert 2015].

Microorganisms may also be capable of some forms of history-dependent behavior that could

confer a fitness advantage during the evolutionary competition [Wolf 2008].

From a research and engineering perspective, the ability to generate synthetic history-

dependent genetic programs has many practical implications. First, such programs would allow

the study and understanding of complex biological phenomena in which time dependencies are

important (e.g. development). Second, history-dependent programs would enable the imple-

mentation of sophisticated behaviors not found in nature (e.g. biological counters), thereby

pushing the frontiers of biological systems engineering [Collins 2017].

Recently, researchers have started exploring the implementation of time-dependent biological

programs. In these history-dependent programs, gene expression outcome depends on the order

of occurrence of signals. In order to encode history-dependent behavior, molecular memory

devices capable of recording past events are needed, and different designs have been used to do

so.

The genetic toggle switch [Toman 1985, Gardner 2000] was used as the basis for building a

Push-on/Push-off switch [Lou 2010] or to engineer a circuit producing a response comparable to

Pavlovian behavior in E. coli [Zhang 2014]. In another example, a cascade "counter-like" device

uses RNA molecules to store the occurrence of inputs, producing an output after a certain

number of stimuli separated by user-defined lag times [Friedland 2009].

But among all systems, recombinase memory devices quickly emerged as the tool of choice

to implement history-dependent behavior. Recombinase memory devices are based on the inver-

sion or excision of DNA sequences via site-specific recombinases [Podhajska 1985, Ham 2006].

Recombinases, in particular serine integrases, have been used to encode complex Boolean logic

devices within living cells using reduced, single-layer architectures [Bonnet 2013, Siuti 2013,

Weinberg 2017]. Contrary to feedback-based systems, recombinase devices exhibit a dual na-

ture in which the state of the system can be encoded both into its gene expression state as well

as into the DNA sequence. Every state transition corresponds to a discrete physical change in

the DNA sequence.

Because recombinase switches exhibit memory, recombinase logic gates are asynchronous

devices that can respond to multiple signals even if they arrive independently. For example,

a 2-input recombinase AND gate will produce an output in response to one signal only if the

other signal has already been present in the past. However, because recombination reactions

112 Chapter 3. Programming history-dependent logic in a multicellular system

are independent in Boolean devices, the end-point state of the system is the same regardless of

the order of occurrence of the signals.

On the other hand, by interlacing target sites of different recombinases, recombination reac-

tions can be made dependent on one another. The system can transition through different DNA

states depending on which recombination reaction occurs first [Ham 2008b]. Using this concept,

researchers started to implement genetic devices tracking the order of signal occurrences, as well

as history-dependent gene expression programs [Ham 2008b, Hsiao 2016, Roquet 2016].

Previous works designed a scaffold for tracking all possible combinations of events using

interlaced pairs of mutant recombination sites [Roquet 2016]. This scaffold was shown to be

sufficient to produce a different DNA state for every possible state of a 3-input sequential tree

(16 states). In order to design history-dependent programs, the authors used this scaffold and

computationally generated a combinatorial library of all possible gene expression constructs.

Several 3-input programs were successfully implemented based on this library. However, it

is not clear if all programs are accessible. It might not be the case due to the architectural

constraints imposed by the initially chosen scaffold.

In addition, the scalability of such systems might be challenging for several reasons. First,

each program is executed using an ad-hoc design, requiring a case-by-case optimization. Second,

it is not clear how many pairs of mutant recombination sites can be used in parallel in a

single cell without any non-specific recombination reaction occurring [Colloms 2014]. Third,

repetitive DNA sequences often lead to genetic instability through homologous recombination

[Nielsen 2016, Sleight 2013] and are notoriously difficult to synthesize.

We thus aimed at designing a composition framework enabling all possible history-dependent

gene-expression programs for up to five inputs to be systematically implemented within a mul-

ticellular system. To this aim, we conceived of modular scaffolds specifically designed to control

gene expression. We took advantage of the division of labor within a multicellular system and

used distributed multicellular computation as a means to obtain a composable system (Figure

3.1).

Based on distributed multicellular computation, we developed a modular and scalable design

framework for history-dependent gene-expression programs. Our design framework does not

require brute-force computation, is scalable to five inputs and uses a reduced number of modular

scaffold.

We introduce a method to optimize history-dependent programs called OSiRIS (Optimiza-

tion by Synthesis of Intermediate Recombination States). Because every state of the system

corresponds to a particular physical state of the target DNA sequence, we were able to syn-

thesize and characterize each intermediate state separately. It is consequently an important

advantage for optimization to have the state of the system encoded within the DNA sequence,

a feature absent in feedback-based systems.

3.2. Automated design of history-dependent programs 113

In order to make our design framework broadly accessible to the scientific community, we

provide a web server for designing up to 5-input history-dependent gene-expression programs.

3.2 Automated design of history-dependent programs

3.2.1 Distributing history-dependent gene-expression programs within a

multicellular system

Each history-dependent gene-expression program can be represented as a lineage tree (Figure

3.1A for two inputs). In a lineage tree, each node corresponds to a state of the inputs. The

output of each state is represented in the corresponding node by a color or a number (e.g. black

for gene expression and white for no expression). Each lineage corresponds to a specific order-of-

occurrence of the inputs. The number of lineages is equal to N! where N is the number of inputs.

For instance, for 2 inputs, 2 lineages exist, while for 3 inputs, 6 lineages exist. In our design, we

decomposed the history-dependent gene-expression program into subprograms corresponding to

the different lineages. Each subprogram is then performed by a different strain subpopulation

(Figure 3.1B). Of note, we consider that the system operates in fundamental mode, i.e. inputs

do not occur simultaneously, but sequentially.

Input

program
f1

f2

Multicell

consortium

Decomposition
A

Input A Input B

T
im

e

T
im

e

Input B Input A

Lineage 1 Lineage 2

Inputs Inputs B

Figure 3.1: Decomposition of history-dependent gene-expression programs. (A)

Representation of history-dependent gene-expression program in a lineage tree. For a 2-input system (A

and B), these can occur in two orders, either A then B or B then A, where these orders correspond to

the two lineages of our lineage tree. Arrows represent the occurrence of inputs and nodes the state of the

system. The output genes expressed in a specific input states are represented by a specific color or/and

number in the node. (B) The program is decomposed into sub-programs, each program corresponding

to a different lineage. Each sub-program (f1, f2) is implemented in a different strain. The composition

of the strains in a multicellular system permits implementation of the full program.

3.2.2 A modular scaffold design to implement history-dependent gene ex-

pression programs

We then designed a modular scaffold capable of executing all possible 2-input history-dependent

gene expression programs that can occur within a single lineage. The scaffold contains three

114 Chapter 3. Programming history-dependent logic in a multicellular system

directional cloning positions, each supporting expression of a corresponding gene of interest

(GOI) in a particular state of the lineage tree (Figure 3.2A). Thus, any possible combination

of gene expression states within a particular lineage can be achieved by simply inserting the

desired gene at a given position (Figure 3.2B). Importantly, depending on the identity of the

different GOIs, the scaffold can be used to support single or multiple output programs.

IntA IntB

IntAIntB

0 12

012

012

2

2

Input A Input B strain1

0

2

1

strain2

0 12

0

1

2

Input B Input A

A B

Figure 3.2: Implementation of 2-input history-dependent gene-expression programs

(A) 2-input history-dependent scaffold. Integrase sites are positioned to permit expression of an output

gene in the corresponding lineage. Therefore, for each state of the lineage a different gene is expressed.

No gene is expressed for states which are not in the lineage. On the right panel, gene 0 is expressed only

when no input is present. If input A is present first, gene 1 is expressed, but if input B is present first, no

gene is expressed (nor will be expressed) as the promoter is excised. If input B follows input A, gene 2 is

expressed. (B) Example of the implementation of a 2-input history-dependent gene-expression program

in a multicellular system. As states are ON in the two different lineages, each lineage is implemented

in a different strain using a history-dependent logic device corresponding to the 2-input scaffold with

integrase sites at specific positions corresponding to the lineage and output genes at the corresponding

GOI positions.

Cellular subpopulations containing a scaffold incorporating different GOIs can be combined

to perform a multi-lineage history-dependent genetic output (Figure 3.2B). If control signals

are exchanged between the different integrases, the same scaffold can be reused in all lineages.

Scaling up the 2-input scaffold, we designed scaffolds for 3-, 4-, and 5-input history-

dependent gene-expression programs (Figure 3.3A-B). The 3- and 4-input scaffolds allow for

expression of a different GOI in each state of a given lineage (Figure 3.3A for 3-inputs), while

the 5-input scaffold allows expression of a different GOI in each state except in the state 0 (no

input). An additional strain is needed if gene expression is required in this input state.

The maximum number of cellular computation units needed to implement a history-

dependent gene expression program is equal to the number of lineages (N! for N inputs). A

maximum of 6 strains is needed for 3-input programs and 24 strains for 4-input programs (Fig-

ure 3.3C). However, most functions are implementable with fewer than the maximum number

of cells.

As an example if multiple-output programs, a 3-input/3-output history-dependent gene-

expression program represented in Figure 3.3D required two strains. Three different output

3.2. Automated design of history-dependent programs 115

03 1 2

03 1 2

IntB

03 12

IntC

03 12

4-input scaffoldB 5-input scaffold

GOI 5 GOI 1 GOI 4GOI 4GOI 2

A

03 3

3

IntBIntA IntC

No action of

IntA and IntC

No action of

IntA and IntB

IntC

No action

of IntB

0

1

2

3

1 2
6

24

120

max # strains

#
 P

ro
g

ra
m

s

Inputs

C D

3 1 2

Cell 1

In
t
1

In
t
2

Input A Input B

In
t
3

Input C

3

Cell 2

In
t
1

In
t
2

Input A Input B

In
t
3

Input C

GOI 5 GOI 1 GOI 4GOI 3GOI 2

Figure 3.3: Scaling-up implementation of history-dependent programs to 5 inputs.

(A) 3-input scaffold design for the A then B then C lineage. The scaffold is composed of 4 GOI positions,

in each state of the lineage a different output gene is expressed and no gene is expressed in the input

states of different lineages. (B) 4- and 5-input scaffold designs. Designs follow the same principles as in

A for 3 inputs. For the 5-input scaffold, no gene is expressed when no input is present. (C) Number of

1-output history-dependent programs and maximum number of strains needed for 1 to 5 inputs. The bar

graph represents the number of 1-output history-dependent programs from 1 to 5 inputs and the number

at the top of each bar corresponds to the maximum number of strains required for implementation

of N-input programs. See materials and methods for detailed equations. (D) Example of a 3-input

and 3-output history-dependent gene-expression program. The input lineage tree corresponding to the

history-dependent program is composed of 4 ON states with 3 different outputs in two lineages. This

program is implemented in 2 different strains, one for each lineage. The first cell computes the lineage A

then C then B (Green-Red-Blue) with each ON state corresponding to a different output. Consequently,

different types of output genes are inserted in the corresponding GOI positions. For the second strain,

the lineage implemented is C then A then B (Red-Green-Blue); integrase sites are positioned specifically

to implement this lineage and the output gene is positioned in the corresponding position.

genes are placed in the corresponding GOI positions and the three inputs are connected differ-

ently to integrases in the two different strains (Figure3.3D). For expression of multiple outputs in

a single history-dependent state, the output genes are positioned in a polycistronic architecture

at the same GOI position.

116 Chapter 3. Programming history-dependent logic in a multicellular system

In summary, our scaffold-based design supports the execution of up to 5-input/N-output

history-dependent gene-expression programs within a multicellular population.

Additionally, we found that a basic history-dependent motif could be repeatedly distributed

into different cells to straightforwardly implement all input event-order trackers using a mul-

ticellular system (Annex E). The state of the tracker could be addressed experimentally via

multiplexed next-generation sequencing.

3.2.3 Automation of history-dependent gene-expression program designs

We encoded an algorithm to automate the design of history-dependent program using Python

(Figure 3.4). The algorithm takes a lineage tree as input (equivalent to a sequential truth table).

The output corresponds to the biological implementation, such as a graphical representation of

the genetic circuit and its associated DNA sequences for each strain.

In our Python algorithm, the lineage tree is decomposed into sub-trees corresponding to

ON states in a single lineage (Figure 3.4A). This decomposition is performed by iteratively

subtracting the lineages containing ON states. Multiple decompositions are possible. To obtain

the fewest number of subprograms, our algorithm prioritizes lineages with ON output-states with

the highest number of inputs present (i.e. from the right to the left of the lineage tree). After

decomposition, two pieces of information for each selected lineage are extracted: the identity of

ON states and the corresponding lineage. Using this information, the history-dependent logic

device is constructed. The identity of the integrase sites are determined by the lineage and the

position and identity of GOI by the identity of ON states. By combining the logic device design

of the different lineages, we obtain the design to implement the input history-dependent gene

expression program.

To enable broad access to our design framework, we provide a website for systematic and

automated design of history-dependent logic called CALIN (Composable Asynchronous Logic

using Integrase Networks). This web-interface is accessible at: http://synbio.cbs.cnrs.fr/

calin/sequential_input.php. In the CALIN web-interface, the user fills in the number of

inputs to process and the desired sequential truth table. The interface provides as an output

the DNA architectures of the computational devices and the connection map between signals

and integrases along with the corresponding DNA sequences generated for E. coli.

In addition to this web interface, the algorithm written in Python is available on Github

and can be directly used for high-throughput generation of biological designs.

3.2.4 Minimization of history-dependent circuits using Boolean logic devices

The number of strains required for implementing history-dependent gene-expression programs

can be reduced using Boolean logic devices. Indeed, gene-expression programs independent of

3.2. Automated design of history-dependent programs 117

Program as

lineage tree

Decomposition in

lineage subprogram

Second

priority

order

First priority order

Lineage-based

subprogram

...

...

Lineage-based

subprogram

Lineage-based

subprogram

Conversion to

biological devices

ON states

Order of inputs

in the lineage

Biological device:

graphical design

DNA sequence

Multicellular
consortia

computing
a desired
program

B
Cell 1

Cell 2

f1

f2

2

Logic

Program

CALIN: Automated design

Design

generation

Design

generation

Division

in subprogram

A

Figure 3.4: Automated design of history-dependent programs using the CALIN web-

interface. (A) Design algorithm. The Python program takes as input a history-dependent program

written as a lineage tree. This program is decomposed into sub-programs, and the decomposition is

performed by preferentially extracting subprograms with ON state at the extremity of the tree (cor-

responding to state with the highest number of inputs present). For each subprogram, the algorithm

identifies the identity of ON states and the order of the inputs in the lineage. Based on this infor-

mation, the biological design is obtained with the graphical design of the integrase cassette and the

history-dependent device and the DNA sequence of the device. By composition of the designs of each

subprogram in different strains the full program design is obtained. (B) The CALIN web-interface, as

following the previously described algorithm, takes as input the logic program as a lineage tree and gives

as output the graphical design and DNA sequence of the device for each subprogram.

the history of occurrence of inputs are implementable using Boolean logic devices as detailed

in Chapter 2 (Figure 3.5A). Some history-dependent gene-expression programs are decompos-

able into Boolean logic function(s) and history-dependent subprogram(s). The combination

of history-dependent and Boolean logic devices allows a reduction in the number of strains

required for the implementation of some history-dependent gene-expression programs. For ex-

ample, the 3-input history-dependent program represented in Figure 3.5B is decomposable into a

3-input Boolean function and a history-dependent program, by combining Boolean and history-

dependent devices, only two strains versus the six strains needed using only history-dependent

devices. Additionally, even without reducing the number of strains, the use of Boolean logic

118 Chapter 3. Programming history-dependent logic in a multicellular system

devices instead of history-dependent devices can allow a reduction in the size of the circuit.

A
A then B A and B

B

= +

Strain library

History

dependent

logic

Boolean

logic

f 1

f 2

f1

f2

B then A

History-dependent logic devices Boolean logic devices

OR

Figure 3.5: Minimization by simplification of history-dependent programs into

Boolean-logic programs. (A) Functional equivalence between history-dependent logic devices

and Boolean logic devices. The 2-input program (left side) can be either implemented using two history-

dependent logic devices (A then B and B then A) or with one Boolean logic device (A and B). (B)

Example of a 3-input program (initially decomposed in six lineages) that can be simplified into two

subprograms using Boolean logic devices. The first subprogram corresponds to a lineage tree with three

ON states in a single lineage (one strain). The second subprogram corresponds to a lineage tree with

six ON states in different lineages simplifiable into a Boolean-logic function (A and B and C), which is

implementable in a single cell. Using this minimization scheme, we minimized the required number of

strains from six to two.

We created an algorithm in Python to automate this simplification. We generated all

Boolean functions and converted each truth table into a lineage tree. For the implementa-

tion of history-dependent programs, we tested if any Boolean functions can be extracted from

this program. If the use of Boolean devices leads to an implementation with an equal or reduced

number of strains, the design is saved. We then obtained as output a list of designs based on

Boolean and/or history-dependent devices implementing the input program with the minimal

number of strains possible. We applied this brute-force method to all 3-input/1-output pro-

grams, totaling 65,536 programs. This strategy allows for a reduction in the number of strains

for the implementation of 20% of these programs. It does not significantly reduce the median

number of strains required for the implementation of history-dependent programs, as shown in

Figure 3.5B. However, 48% of the 3-input/1-output programs are decomposable using Boolean

programs while minimizing the number of strains (Table 3.1, Figure 3.6).

As we only automated the design of single-output Boolean functions, Boolean logic devices

can only be used to implement 1-output sub-programs, which reduce their use for the implemen-

tation of multi-output history-dependent programs. Contrarily, multi-output Boolean functions

could be implemented with history-dependent devices.

Our Python algorithm is also applicable to 4- and 5-input history-dependent programs. Ac-

3.2. Automated design of history-dependent programs 119

strains Without minimization With minimization

Difference of strains

with and without

minimization for

each program

0 53080

1 79 99 10779

2 1122 1714 1050

3 7202 9922 461

4 20196 23334 157

5 25272 23298 8

6 11664 7168

31898 useful to use

Boolean logic

devices

Table 3.1: Number of programs requiring a specific number of strains for implementation with

and without minimization using Boolean devices.

Without

minimization

With

minimization

Figure 3.6: Distribution of the number of strains required for the implementation of

all history-dependent programs. Y-axis represents the number of programs requiring a specific

number of strains for implementation (x-axis), for all 3-input 1-output history-dependent programs.

Black bars correspond to the data without simplification with Boolean logic devices and the grey bars

with simplification. Data were obtained using a Python algorithm which generated the designs with the

various strategies for all programs.

120 Chapter 3. Programming history-dependent logic in a multicellular system

cording to the large number of 4- and 5-input history-dependent programs, we did not generate

all programs to quantify the minimization capacity of this strategy to 4 and 5 inputs. As using

brute-force strategy the computation time would increase exponentially.

The implementation of history-dependent programs could also be minimized by decom-

position of programs into sub-programs integrating fewer inputs (Figure 3.7). A systematic

minimization algorithm exists for Boolean functions, but there is not currently one for history-

dependent programs. Minimization would be possible using brute-force strategy like for the

decomposition of programs in Boolean and history-dependent programs. However, this strategy

would not be possible for an increasing number of inputs. A systematic method would have to

be defined for the minimization of history-dependent programs.

= +

f 1

f 2

=

A then B

f1

f2

Figure 3.7: Minimization of history-dependent programs by decomposition into pro-

grams of a reduced number of inputs. Example of a 3-input program (initially decomposed

in three lineages) which can be minimized in programs with a reduced number of inputs. The program

can be decomposed in two sub-programs. The first program corresponds to a lineage tree with three

ON states in different lineages (normally implemented in three different strains). This program is sim-

plifiable in a 2-input lineage (A then B) implementable in a single strain. Using this simplification,

the complete program initially implemented in three strains is implemented in two using a 2-input and

3-input history-dependent logic device.

3.3. Implementation of history-dependent gene-expression programs in
multicellular consortia 121

3.3 Implementation of history-dependent gene-expression pro-

grams in multicellular consortia

As a proof of concept of our history-dependent logic design, we implemented 2- and 3-input

gene-expression programs in the gram-negative model bacteria Escherichia coli.

3.3.1 OSiRIS: Optimization by SynthesIs of Recombination Intermediate

States

Using irreversible recombinase switches, the different states of our history-dependent system

are encoded in DNA. To simplify the optimization of the 2- and 3-input history-dependent

scaffolds (Figure 3.2A and 3.3A), we synthesised and characterized the different recombination

intermediate states. We then optimized the history-dependent devices independently to the

sequential integrase switches. We called this optimization workflow OSiRIS for Optimization

by Synthesis of Intermediate Recombination States.

In the OSiRIS workflow, we first designed the history-dependent device with expression of

a different fluorescent gene in each input state (Figure3.8A). Then, the DNA sequences of the

different recombination intermediate states were generated and synthesized. Each construct was

characterized by quantification of the fluorescence intensity in the different channels and was

compared to the expected phenotype. If the phenotype did not match, the multi-output scaffold

was redesigned and a new OSiRIS cycle was performed. This approach permits to accelerate

the optimization of history-dependent devices.

3.3.1.1 Validation of the 2-input scaffold design via OSiRIS

We first applied the OSiRIS workflow to a 2-input history-dependent lineage. For 2-input

history-dependent programs, four different recombination states correspond to the five input

states: the original state (in absence of input) and three intermediate states (Figure3.8B). Two

different input states (input B, input B then input A) result in the same DNA intermediate

state.

For the design of the 2-input multi-output scaffold, we implemented the A then B lineage

while associating Bxb1 integrase to the input A and Tp901 integrase to the input B (Figure

3.9A). We selected the fluorescent proteins sfGFP, mKate2, and BFP, as their excitation and

emission spectrums do not overlap. We used P6 as the promoter and B0034 as the ribosome

binding site. To insulate the translation from the genetic context, we placed a ribozyme in

5’ end of each output gene, catalyzing the cleavage of the mRNA at this position [Lou 2012].

We used different ribozymes for each output gene (RiboJ, BydvJ, and AraJ) to avoid multiple

repetitions of sequences in the construct. Finally, we added 40 bp spacers designed for Gibson

assembly: sp0, sp4, sp5, and spN.

122 Chapter 3. Programming history-dependent logic in a multicellular system

Multi-output

scaffold design

DNA

Synthesis

of all states

Characterization
Generation of the

DNA sequence

of the different states

Correspond
to expected
phenotype?

REDESIGN

No

Yes
Results analysis

A

Multi-output scaffold design

BFP RFPGFP BFPRFPGFP

GFP

BFPRFPGFP

Recombination intermediate states

BFP RFPGFP

In silico

design

B Expected

phenotype

0

1

2

3

3

State 0

State 1

State 2

State 3

Figure 3.8: Optimization by SynthesIs of Intermediate Recombination States. (A)

OSiRIS workflow. A history-dependent scaffold corresponding to a specific lineage and with expression

of a different gene in each input state is designed. The DNA sequences of the different input states

corresponding to the intermediate recombination states are generated. The initial and the intermediate

sequences are synthesized and characterized, and the phenotypes are compared to the expected pheno-

types. If they match, a celebration is performed; otherwise, the results are precisely analyzed to identify

the origin of the bug, the multi-output scaffold is redesigned, and a new OSiRIS cycle is performed. (B)

2-input OSiRIS workflow. For 2-input, a scaffold with consecutive expression of BFP, RFP, and GFP

in the three lineages strain is designed. From this design, the 3 intermediate recombination states are

generated and the expected phenotype for each of the four states is predicted.

Based on this designed 3-output/2-input history-dependent device, we generated, synthe-

sized and constructed the mother construct and the three intermediate recombination states.

We characterized the four constructs by flow cytometry and microscopy (Figure 3.9B). For each

DNA state, we obtained the expected phenotype: BFP in state 0, RFP in state 1, GFP in

state 2, and no expression in state 3. No further optimization was required for this 2-input

history-dependent scaffold.

3.3.1.2 Optimization of the 3-input scaffold via OSiRIS

Based on the previously characterized 2-input scaffold, we designed a 3-input scaffold by adding

a third integrase, Int5, and a new output gene, LacZ alpha (Figure 3.10A). Therefore, the 3-input

scaffold implements the lineage: input C with Int5 then input A with Bxb1 then input B with

Tp901. The use of Int5 as the first input permits us to keep the same backbone as that for the

2-input scaffold. Following the OSiRIS workflow, we generated, synthesized, and characterized

3.3. Implementation of history-dependent gene-expression programs in
multicellular consortia 123

B

BFPRFPGFP

DNA state 2

GFPBFPRFPGFP

DNA state 1 DNA state 3

BFP RFPGFP

DNA state 0

A

sp4

spN

sp0 B0034

BydvJ

attB

Tp901

P6 attB

Bxb1
attP

Tp901
attP

Bxb1

B0034

RiboJ

BFP

B0014

sp5
RFP

B0034

AraJ

sp20_4

GFP

Figure 3.9: Design and characterization of 2-input OSiRIS. (A) Detailed design of the

2-input scaffold for the lineage A then B with Bxb1 for input A and Tp901 for input B. As output genes,

we used BFP, RFP, and GFP. In the 5’UTR of each gene we placed a ribozyme and the RBS B0034

to isolate translation from genetic context. We used P6 as the promoter and B0014 as a bidirectional

terminator between BFP and RFP coding sequences. We added 40 bp spacers for Gibson assembly

(sp0, sp4, sp5, and spN) and a 20 bp spacer between to juxtaposed integrase sites (sp20_4). (B)

Characterization of the 2-input OSiRIS by flow cytometry and microscopy. We characterized each

initial and intermediate recombination state via flow cytometry by measurement of GFP, RFP, and BFP

fluorescence intensity. The bar graph corresponds to the fold change over the negative control (strain

without fluorescent protein) for each channel from two experiments with three replicates per experiments

(detailed in Materials and methods). The error bars correspond to the standard deviation between the

fold change obtained in the two separated experiments. The microscopy images correspond to merged

images of the GFP, RFP, and BFP channels.

the 3-input scaffold and the five recombination intermediate states. Unfortunately, we did not

obtain the expected phenotypes (Figure 3.10B). For the DNA state 0, 1, and 4, GFP was

expressed at about 25 times above the negative control when no GFP expression was expected.

Moreover, for the DNA state 3, RFP was expressed at eight times above the negative control,

while no RFP expression was expected. Otherwise, BFP, RFP, and GFP fluorescent proteins

were expressed at the expected DNA states. By comparison with DNA states from the 2-input

scaffold, we supposed that the unexpected expression of GFP or RFP was due to the gene

expression cassette of LacZ alpha. One possibility is that the terminator L3S2P21 is not strong

124 Chapter 3. Programming history-dependent logic in a multicellular system

enough to stop transcription or that the spacer 7 is promoting transcription as even without a

promoter the GFP gene was still expressed (DNA state 4).

LacZaGFP BFP RFP LacZaGFP BFP RFP LacZaGFP BFPRFP

LacZaGFP BFPRFP GFPLacZaGFP

A

C

0

1

2

3

4

4

4

4 4

4 4

4

4

5

5

5

DNA state 0 DNA state 1 DNA state 2

DNA state 3 DNA state 4 DNA state 5

sp4

spN

sp0 B0034

BydvJ

attB

Tp901

P6

attB

Bxb1
attP

Tp901
attP

Bxb1

B0034

RiboJ

BFP

B0014

sp5
RFP

B0034

AraJ
sp20_4

GFP
attP

Int5

attB

Int5

LacZ
B0034

ElvJ

sp7 sp6

L3S2P21

B
sp20_1

Figure 3.10: Design and characterization of the first version of 3-input OSiRIS. (A)

Detailed design for the first version of the 3-input scaffold for the lineage C then A then B with Bxb1

for input A, Tp901 for input B, and Int5 for input C. As output genes, we used LacZ alpha, BFP,

RFP, and GFP and in the 5’UTR of each gene we placed a ribozyme and the RBS B0034 to insluate

translation from genetic context. We used P6 as a promoter and L3S2P21 and B0014 as bidirectional

terminators. We added 40 bp spacers for Gibson assembly (sp0, sp4, sp5, sp6, sp7, and spN) and a 20

bp spacer between juxtaposed integrase sites (sp20_1, sp20_4). (B) 3-input lineage tree corresponding

to the designed 3-input scaffold. The color of each node corresponds to the expected phenotype and the

number in the node to the corresponding DNA state of each input state. (C) Characterization of the

3-input OSiRIS by flow cytometry. We characterized each initial and intermediate recombination states

via flow cytometry by measuring GFP, RFP, and BFP fluorescence intensity. The bar graph corresponds

to the fold change over the negative control (strain without fluorescent protein) for each channel from two

experiments with three replicates per experiments (detailed in Materials and Methods). The error bars

correspond to the standard deviation between the fold change obtained in the two separated experiments.

3.3. Implementation of history-dependent gene-expression programs in
multicellular consortia 125

Taking advantage of our OSiRIS workflow, we designed two new versions of the 3-input

scaffold (Figure 3.11A). For both versions, we replaced the L3S2P21 terminators by L3S3P21

and J61048 and removed the LacZ alpha operating unit for simplification purpose. We designed

one version with sp7 and sp6 spacers and one without a spacer. We then characterized two

representative states for each version: (1) the initial state and (2) the DNA state 4, as we

previously observed GFP expression while not having a promoter. The version 1 corresponds

to the version previously characterized. For version 2 (with sp7 and sp6 spacers), we obtained,

as with the original version, GFP expression in the two characterized states (Figure 3.11B).

For version 3, we obtained the expected phenotype, no significative expression of GFP, RFP, or

BFP fluorescent proteins in the initial state or in DNA state 4 (Figure 3.11B). Consequently, we

supposed that the GFP expression in versions 1 and 2 were due to promoter activity of spacer

7.

DNA state 0

DNA state 4

Version1

attB

Tp901

attB

Int5

LacZ
B0034

ElvJ

sp7 sp6

L3S2P21

attB

Tp901

attB

Int5
attB

Tp901

attB

Int5

sp7

sp6
L3S3P21

attB

Tp901 Int5

J61048 attB

Tp901

attB

Int5

L3S3P21

attB

Tp901

J61048
LacZaGFP BFP RFPLacZaLacZaLacZaLacZa

Version2 Version3

Version 1

State 0

Version 3

State 0

Version 2

State 0

Version 1

State 4

Version 3

State 4

Version 2

State 4

A

B

Figure 3.11: Optimization of 3-input OSiRIS. (A) Generation of two new 3-input OSiRIS design

by modification of the cassette between the attB Tp901 integrase site and the attB int5 site. Version

1 corresponds to the previously described design. For the second and third version, the LacZ gene and

5’UTR were removed and the L3S2P21 terminator was replaced by the two terminators L3S2P21 an

J61048. For version 3, we also removed the two spacers sp7 and sp6. (B) Characterization of the initial

state and DNA state 4 of the three versions of the 3-input OSiRIS by flow cytometry. We characterized

the two selected states via flow cytometry by measuring GFP, RFP, and BFP fluorescence intensity. The

bar graph corresponds to the fold change over the negative control (strain without fluorescent protein)

for each channel from two experiments with three replicates per experiment (detailed in Materials and

Methods). The error bars correspond to the standard deviation between the fold change obtained in the

two separate experiments. The red labeling corresponds to constructs which did not behave as predicted.

126 Chapter 3. Programming history-dependent logic in a multicellular system

3.3.1.3 Validation of the optimized 3-input scaffold via OSiRIS

We then selected as a final 3-input scaffold version 3 of the design. We constructed and char-

acterized each remaining recombination intermediate state, which expressed the expected phe-

notype for each DNA state (Figure 3.12).

Version 3 of the design did not express any output gene in the initial input state. Therefore,

we additionally designed a device with expression of LacZ alpha in the first input state to test

the feasibility of expressing an output gene in each lineage state. By adding X-gal to the media,

we obtained a clear blue coloration of bacteria with this construct and no coloration for bacteria

in intermediate states.

To summarize, we optimized the design of a 4-output/3-input history-dependent scaffold.

The OSiRIS workflow allowed us to efficiently optimize this large logic device.

3.3. Implementation of history-dependent gene-expression programs in
multicellular consortia 127

GFP BFP RFP GFP BFP RFP GFP BFPRFP

GFP BFPRFP GFPGFP

A

C

0

1

2

3

4

4

4

4 4

4 4

4

4

5

5

5

DNA state 0 DNA state 1 DNA state 2

DNA state 3 DNA state 4 DNA state 5

sp4

spN

sp0 B0034

BydvJ

attB

Tp901

P6

attB

Bxb1
attP

Tp901
attP

Bxb1

B0034

RiboJ

BFP

B0014

sp5
RFP

B0034

AraJ
sp20_4

GFP
attP

Int5

attB

Int5

L3S3P21

B
sp20_1

J61048

D Gene expression in State 0

LacZaGFP BFP RFP

DNA state 0

LacZaGFP DNA state 3 DNA state 4

DNA state 0

DNA state 4

GFP BFPRFPDNA state 3 LacZa

Int5-Bxb1-Tp901 Bxb1

Figure 3.12: Final design and characterization of the optimized 3-input OSiRIS. (A)

Detailed design for the final 3-input scaffold. In this design, no gene is expressed in the initial input

state. Otherwise the design corresponds to the previously described design. (B) 3-input lineage tree

corresponding to the final 3-input scaffold. The color of each node corresponds to the expected phenotype

and the number in the node to the corresponding DNA state in each input state. (C) Characterization of

the final 3-input OSiRIS by flow cytometry. We characterized each initial and intermediate recombination

states via flow cytometry by measurement of GFP, RFP, and BFP fluorescence intensity. The bar

graph corresponds to the fold change over the negative control (strain without fluorescent protein) for

each channel from three experiments with three replicates per experiment (detailed in Materials and

Methods). The error bars correspond to the standard deviation between the fold change obtained in the

three separate experiments.

128 Chapter 3. Programming history-dependent logic in a multicellular system

3.3.2 Characterization of a history-dependent program by sequential induc-

tion

3.3.2.1 Characterization of a single-cell 2-input program

For characterization of a full 2-input history-dependent system with inducible integrases, we

used the dual-controller plasmid from Bonnet et al. [Bonnet 2013] as a sensing device. The

dual controller permits induction of Bxb1 integrase by aTc (Anhydrotetracycline) and Tp901

by arabinose. Therefore, aTc corresponds to the input A and arabinose to the input B. We co-

transformed the dual controller plasmid with our 2-input scaffold. We worked in "fundamental

mode", considering that inputs do not occur simultaneously but sequentially. We then performed

sequential inductions: a first overnight induction for the first input followed by second overnight

induction for the second input. We characterized the phenotype in each induction condition

after three days by flow cytometry. In each input state, we obtained the expected phenotype:

expression of BFP in absence of induction, RFP with aTc only, GFP with aTc on the first day

and Arabinose on the second day, and no expression otherwise (Figure 3.13).

In conclusion, we were able to implement a 2-input 3-output history-dependent program in

Escherichia coli.

A

Day 0

Day 1

Day 2

aTc

aTc

Ara

Ara

Ptet Pbad
Bxb1 Tp901

Integrases

plasmid Ptet Pbad
Bxb1Bxb1 Tp901Tp901Tp901Tp901Tp901

Integrases

plasmid

Day 0

Day 1

Day 2

aTc

aTc

Ara

Ara

B

Figure 3.13: Characterization of a 2-input/3-output history-dependent program by

sequential induction. (A) Experimental setup of a 2-input history-dependent program. We

co-transformed the previously characterized 2-input scaffold with a plasmid for inducible expression of

Bxb1 and Tp901 integrase. Bxb1 expression is induced by aTc (input A) and Tp901 by arabinose (input

B). The lineage tree of this program and corresponding expected cell behaviors are represented. (B) For

characterizating the system, the co-transformed bacteria are induced twice for 16 hours each. Each graph

corresponds to a different induction condition corresponding to an input state of the lineage tree. The

bar graph corresponds to the fold change over the negative control (strain without fluorescent protein)

for each channel (GFP, RFP, BFP) from three experiments with three replicates per experiment. The

error bars correspond to the standard deviation between the fold change obtained in the three separate

experiments. (More details in Material and Methods.)

3.3. Implementation of history-dependent gene-expression programs in
multicellular consortia 129

3.3.2.2 Characterization of a multi-cell 2-input program

The implementation of 2-input history-dependent programs can require the combination of up

to two strains corresponding to the two lineage subprograms. To prove the feasibility of a

multicellular system, we designed a 2-strain 2-input program (Figure 3.14). We designed and

synthesized the two devices required for the implementation of the two sub-programs (Figure

3.14A). We based this design on the previously characterized 2-input scaffold. Because each

device implements a different lineage, the position of integrase sites are inverted.

strain1 strain2

Day 0

Day 1

Day 2

aTc

aTc

Ara

Ara

Ptet Pbad
Bxb1 Tp901

Integrases

plasmid Ptet Pbad
Bxb1Bxb1 Tp901Tp901Tp901Tp901Tp901

Integrases

plasmid

Figure 3.14: Design and expected phenotype of a 2-input history-dependent program

requiring composition of 2 strains. The program corresponds to the expression of BFP in absence

of input, expression of RFP in presence of input B only, and GFP in presence of input A then input B.

The program is decomposed in two sub-programs, each implemented with one logic device in a separated

cell. Strain 1 implements the lineage A then B with expression of BFP in absence of input and expression

of GFP in presence of A then B. Strain 2 expresses the lineage B then A with expression of RFP in

presence of B only. Between the logic devices, the position of integrase sites are switched to implement

the two different lineages. Each logic device is co-transformed with the dual-controller plasmid and

strains are grown together. We expected to have half of the bacterial population express any fluorescent

output (expected cell behavior in the right panel).

We then characterized this program in Escherichia coli. We characterized the two different

strains separately and as a multicellular system (Figure 3.15). For all experiments, we co-

transformed the two history-dependent devices with the dual controller. For the individual

characterization, the sequential induction was performed as previously. For characterizing the

multicellular system, the two strains were mixed in a co-culture after overnight growth in

stationary phase. We characterized the fluorescent profile of the individual strains and the

multicellular culture in bulk using a plate reader. For all characterization, we obtained the

130 Chapter 3. Programming history-dependent logic in a multicellular system

expected fluorescent profile. For strain 1, we obtained the highest background expression of

GFP in the input states with aTc only and Arabinose only when we did not expect expression.

As these data correspond to a single experiment, we cannot conclude anything for now. This

experiment is being replicated.

In the characterization of the multicellular system, we expected to obtain a 2 fold decrease

of the output fluorescent expression as half of the population is not expressing the output

fluorescent protein. For BFP expression we obtained a 7-fold decrease, for RFP expression a

1.6-fold decrease and for GFP expression a 1.5-fold decrease. The results for BFP expression are

surprising; consequently, the analysis of the percentage of each population will be performed via

flow-cytometry. These results are encouraging and need to be confirmed by future experimental

replicates.

3.3. Implementation of history-dependent gene-expression programs in
multicellular consortia 131

strain1

strain2

Ptet Pbad
Bxb1 Tp901

Integrases

plasmid Ptet Pbad
Bxb1Bxb1 Tp901Tp901Tp901Tp901Tp901Tp901

Integrases

plasmid

Day 0

Day 1

Day 2

aTc

aTc

Ara

Ara

strain1 strain2

Ptet Pbad
Bxb1 Tp901

Integrases

plasmid Ptet Pbad
Bxb1Bxb1 Tp901Tp901Tp901Tp901Tp901

Integrases

plasmid Ptet Pbad
Bxb1 Tp901

Integrases

plasmid Ptet Pbad
Bxb1Bxb1 Tp901Tp901Tp901Tp901Tp901

Integrases

plasmid

Day 0

Day 1

Day 2

aTc

aTc

Ara

Ara

Day 0

Day 1

Day 2

aTc

aTc

Ara

Ara

A B

C

Figure 3.15: Characterization of a multicellular 2-input history-dependent circuit.

(A) (B) For each strain, the lineage tree implemented by the strain is represented next to the design of

the corresponding device. We separately co-transformed the two history-dependent devices with the dual-

controller plasmid for inducible expression of Bxb1 and Tp901 integrase. The strains are then induced

twice 16 hours each (more details on the Materials and Methods). Each graph corresponds to a different

induction condition corresponding to an input state of the lineage tree. The bar graph corresponds to the

fold change over the negative control (strain without fluorescent protein) for each channel (GFP, RFP,

BFP) from one experiments with three replicates per experiment (detailed in Materials and methods).

The error bars correspond to the standard deviation between the fold change of the three replicates.

132 Chapter 3. Programming history-dependent logic in a multicellular system

3.3.2.3 Design for the characterization of a single-cell 3-input program

For the characterization of the 3-input/4-output history-dependent programs, we are currently

lacking an inducible integrase. Indeed, integrases have to be precisely tuned to avoid expression

leakage and unexpected switches. For this purpose, we are developing a method to automate the

connection between inducible promoters and integrases. We are currently connecting the PyeaR

promoter (responding to nitric oxide) with Int5 integrase. This additional inducible integrase

will permit us to characterize our optimized 3-input/4-output history-dependent device via

sequential induction over four consecutive days (Figure 3.16).

GFP BFP RFPLacZa

Ptet Pbad
Bxb1 Tp901

Integrases

plasmid PyeaR
Int5

Ptet Pbad
Bxb1Bxb1 Tp901Tp901Tp901Tp901Tp901Tp901

Integrases

plasmid PyeaR
Int5Int5

Day 0

aTc

Day 1

Day 2

Ara

AraNoX

aTc AraNoX aTcNoX

Day 3

Ara aTc aTcNoXAra NoX

Figure 3.16: Characterization workflow of the 3-input/4-output history-dependent

program.

3.4. Discussion 133

3.4 Discussion

Coupling distributed multicellular computation (DMC) with the memory of integrase switches,

we implemented history-dependent programs in living organisms.

We developed an automated framework for designing of up to 5-input and N-output history-

dependent gene-expression programs. In comparison to previous integrase-based history-

dependent designs, we used simple logic devices based on a single integrase and single pair

of sites per input. Nevertheless, DMC allows the design of complex circuits from simple, el-

ementary building blocks. The design of complex circuits is accessible using our framework.

Consequently, we provided a web-interface for the design of all 5-input history-dependent gene-

expression programs, which improves significantly upon previous systems that used brute-force

computation methods for the design of 3-input history-dependent programs.

The main limitation of our design is the high number of strains required for the implemen-

tation of some history-dependent programs. Increasing the number of strains in the system will

lead to difficulty in detection of the output expression from one strain and can lead to growth

competition between strains. One solution to reduce the competition between strains would be

to encapsulate strains in alginate beads. Moreover, as the output state is encoded within DNA,

high-throughput DNA-sequencing methods could be used to read the output of the system.

With this method, cells in small proportion would still be detectable.

To reduce the number of required strains, we proposed several simplification strategies.

First, we developed a brute-force minimization algorithm for combining history-dependent and

Boolean logic devices. Using brute-force computation method, this minimization strategy is

applicable for up to four inputs, the computation time is too lengthy for five inputs. Neverthe-

less, it allows for the reduction of the number of required strains by 20% for 3-input programs.

Additionally, a more important minimization would be accessible by developing an algorithm

for systematic minimization and decomposition of history-dependent programs similar to the

one for Boolean function. This would permit to decompose programs in sub-programs with a

reduced number of inputs.

In addition to this automated design workflow, we implemented history-dependent gene-

expression programs in Escherichia coli. The implementation is based on a scaffold corre-

sponding to the implementation of one lineage. All programs corresponding to one lineage are

accessible based on this scaffold by placing an output gene at the GOI position(s) with an ON

input state(s). All programs are implementable based on this scaffold design. As the state of

the system is encoded in DNA, we developed the OSiRIS workflow for scaffold optimization by

synthesis of each intermediate recombination states. The OSiRIS workflow permits a charac-

terization independent of the input and integrase switches. It allowed us to identify the cause

of gene-expression leakage for the first version of the 3-input scaffold and to efficiently optimize

this design. Without using OSiRIS, it would have been difficult to distinguish the cause of

134 Chapter 3. Programming history-dependent logic in a multicellular system

this expression between a possible leakage in the integrase expression, an incomplete integrase

switch, or a problem with gene expression in the device. Using the OSiRIS workflow, we will

construct, characterize, and optimize a 4-input scaffold. As five genes are needed for the 4-input

scaffold, we will design the scaffold by alternating expression of the three fluorescent protein

RFP, GFP, and BFP (e.g. RFP-GFP-BFP-RFP-GFP). The use of a different fluorescent pro-

tein for each output state is not possible as there are not currently five fluorescent proteins with

compatible excitation and emission spectrums.

Based on the optimized 2-input scaffold, we characterized a full history-dependent program

with the dual-controller plasmid for integrase inductions. The system worked as predicted with

complete switches in each state and clear output fluorescent intensity in each ON state. We

are currently characterizing a multicellular 2-input program following the same design strategy.

Moreover, we are working in collaboration with Pascal Hersen and Zacchary Ben Meriem (Lab-

oratoire Matiere et Systemes Complexes, Paris Diderot) to obtain video of time-lapse induction

of our 2-input/1-strain history-dependent system. To do so, we used a mother machine microflu-

idic system. The first results are promising and we are now optimizing the imaging condition.

Based on these preliminary results, three hours of induction appear to be sufficient to have a

complete switch. Further characterization of the system should be perform to determined the

minimal time required between two inputs to avoid a mixed output population.

For the full 3-input system implementation, we are now engineering a third integrase switch,

PyeaR with Int5 integrase. With this third switch, we will complete the implementation of the

3-input history-dependent program (Figure 3.16). Another switch responding to benzoic acid

is also promising.

Moreover, as detailed previously, minimized systems are accessible by a combination of

history-dependent and Boolean logic devices. As we previously characterized all 4-input logic

devices, we will implement history-dependent programs by combining existing 3-input Boolean

and history-dependent devices. This combination highlights the interest of distributing multi-

cellular computation as each strain can be designed using a completely different strategy.

3.5. Materials and Methods 135

3.5 Materials and Methods

3.5.1 Equations for the determination of number of func-

tions/strains/devices for history-dependent logic

History-dependent programs are represented as a lineage tree. Each node of this tree corresponds

to a specific state of the system in response to a different scenario: when no input occurred,

when one input occurred, and when multiple inputs occurred in a particular sequence. For an

N-input program, the number of states is equal to (eq.1).

Number states =
∑N

k=0
N !

k!
(eq.1)

Then, for N-input/1-output history-dependent logic programs, the number of possible pro-

grams is equal to 2 to the power of the number of states (eq.2), as all states can have either

a ON or OFF output. Similarly for N-input/M-output history-dependent logic programs, 2 to

the power of the number of states multiplied by M programs exist (eq.3).

Number 1−output programs = 2Numberstates = 2
∑N

k=0

N !

k! (eq.2)

Number M−outputs programs = 2M.Numberstates = 2M
∑N

k=0

N !

k! (eq.3)

The maximum number of strains needed to implement an N-input/M-output history-

dependent gene-expression program is equal to N factorial, which corresponds to the number of

possible lineages in an N-input lineage tree.

3.5.2 Automated generation of genetic designs to execute multicellular

Boolean logic and history-dependent gene expression programs

We encoded an algorithm capable of creating up to 5-input history-dependent program designs

using Python (Figure 3.4A). The algorithm takes as input a lineage tree (equivalent to a sequen-

tial truth table). The output corresponds to the biological implementation, such as a graphical

representation of the genetic circuit and its associated DNA sequences for each strain.

The lineage tree is decomposed into sub-trees consisting of a single lineage containing one

or multiple ON states. This decomposition is done by iteratively subtracting the lineages

containing ON states. To obtain the lowest number of sub-programs, we prioritize among the

lineages with ON states the ones for which the highest number of inputs occurred (from the

right to the left of the lineage tree). After decomposition, for each selected lineage, two pieces

of information are extracted. First, based on which states are ON, we directly design the

136 Chapter 3. Programming history-dependent logic in a multicellular system

corresponding scaffold by specifically inserting genes at the adequate GOI positions. Second,

the order-of-occurrence of inputs corresponding to the lineage is used to identify which sensor

modules are needed among the different connection possibilities between control signals and

integrases. Then, by combining the design of the different lineages, we obtain the global design

for biological implementation of the desired history-dependent gene-expression program.

To simplify the construction process of logic circuits, DNA sequence of computation devices

is generated by our Python code. In CALIN, sequences are adapted for E.coli. But sequence

generation can be adapted to other organisms (databases are available for B. subtilis and sac-

charomyces cerevisiae) or customly designed using the source Python code available on Github.

As these methods are straightforward, they support the generation, in a reduced time, of

biological designs performing complex programs in response to a large number of inputs.

3.5.2.1 Construction and characterization of 2-input and 3-input OSiRIS

For E. coli strains, media, and molecular biology procedures please refer to the Materials and

Methods of Chapter 2.

2- and 3-input OSiRIS constructions

As the constructs are large, most of them were divided in multiple DNA fragments and

ordered via Twist. Multiple fragment Gibson assemblies were then performed. As vectors,

either pSB4K5 with sp0 and spN or previously cloned constructs were used. For each construct,

we used different DNA fragment(s) and PCR amplified vectors; all the information is listed in

the following table.

3.5. Materials and Methods 137

Description Name Vector (P1-P2) DNA fragments

2-input scaffold F0 pSB4K5 (P71-P72) Gb52-Gb53-Gb54

2-input state 1 OSiRIS A2 pSB4K5 (P71-P72) Gb52-Gb73-Gb74

2-input state 2 OSiRIS A3 pSB4K5 (P71-P72) Gb75-Gb76-Gb74

2-input state 3 OSiRIS A4 pSB4K5 (P71-P72) Gb77

3-input scaffold v1 A5 F0 (P71-P870) Gb78-Gb79-Gb80

3-input state 1 OSiRIS v1 A6 F0 (P71-P870) Gb78-Gb81-Gb82

3-input state 2 OSiRIS v1 A7 pSB4K5 (P71-P72) Gb78-Gb81-Gb73

3-input state 3 OSiRIS v1 A8 pSB4K5 (P71-P72) Gb75-Gb81-Gb84-Gb83

3-input state 4 OSiRIS v1 A9 pSB4K5 (P71-P72) Gb78-Gb85

3-input state 5 OSiRIS v1 A10 pSB4K5 (P71-P72) Gb77

3-input scaffold v2 B7 A5 (P1366-P1319) Gb104

3-input state 4 OSiRIS v2 B8 A9 (P1366-P72) Gb105

3-input scaffold v3 B5 A5 (P1323-P1319) Gb102

3-input state 4 OSiRIS v3 B6 A9 (P1323-P72) Gb103

3-input state 1 OSiRIS v3 B21 A6 (P1323-P1318) Gb110

3-input state 2 OSiRIS V3 B22 A8 (P1322-P1829) Gb111

3-input state 3 OSiRIS v3 B23 A8 (P1323-P1829) Gb112

3-input LacZ scaffold v3 B24 A5 (P1323-P1832) Gb113

3-input LacZ state 4 OSiRIS v3 B28 A9 (P1323-P1832) Gb113

Table 3.2: Cloning information of OSiRIS constructs.

138 Chapter 3. Programming history-dependent logic in a multicellular system

OSiRIS characterization

For the characterization of the OSiRIS constructs, the same protocol as for part characteriza-

tion in Chapter 2 was used, with the only difference being the medium. For all history-dependent

device characterization, Hi-Def Azure medium (purchased from Technova) supplemented with

0.4% of glycerol was used.

For these characterizations, except for Figure 3.12, three fluorescent channels were analyzed

via flow cytometry. GFP fluorescence intensity was measured by excitation with a 488 nm laser

and a 510/10 nm filter (BL1). RFP excitation was performed by a 561 nm laser and filter 615/25

nm (YL2). BFP excitation was performed by a 405 nm laser and filter 440/50 nm (VL1). As

detailed in Chapter 2, the data was analysed using Flow-Jo.

For the characterization of the third version of 3-input OSiRIS, the measurement was per-

formed via plate reader using a BioTeck Cytation 3. Cultures were diluted four times in PBS

and measured with the following parameters (GFP: excitation 485 nm, emission 528 nm, gain

80, BFP: excitation 402 nm, emission 457 nm, gain 70, RFP: excitation 555 nm, emission 584

nm, gain 100, absorbance: 600 nm). For each sample, GFP, BFP, and RFP fluorescence in-

tensity normalized to absorbance at 600nm were calculated and the mean value was calculated

between the three replicates. The fold change over the negative control was determined from

this mean value over that of the negative control. The mean fold change was represented in the

figure corresponding to the mean of the fold change of the three experiments. The error bars

correspond to the standard deviation between the three experiments.

3.5.2.2 Construction and characterization of 2-input history-dependent programs

Construction for multi-cell 2-input history-dependent programs

Two additional history-dependent devices were constructed for the multi-cell characteriza-

tion. Following the amplified vectors and DNA fragments were used to perform the Gibson

assembly of these two constructs.

Description Name Vector (P1-P2) DNA fragments

2-input history-dependent device BFP-0-GFP B1 F0 (P38-P72) Gb98

2-input history-dependent device 0-RFP-0 B2 pSB4K5 (P71-P72) Gb99

Table 3.3: Cloning information of OSiRIS constructs.

2-input history-dependent program single-cell characterization

For the 2-input history-dependent program characterization in single-cell, the history-

dependent devices (such as F0, B1, and B2) were co-transformed with the dual controller in

J64100 [Bonnet 2013]. For transformation and further culture, Hi-Def media were supplemented

3.5. Materials and Methods 139

with 12.5 µg/mL of kanamycin and 25 µg/mL of carbenicillin.

As a control, the OSiRIS constructs (F0, A2, A3) and a strain without fluorescent protein

were used. For the first day of characterization, 96 deep-well plates filled with 500 µL per

well of Hi-Def Azure supplemented with glycerol were inoculated with three clones per co-

transformation and three clones per control. Plates were grown for 16 hours at 37◦C. Cultures

were diluted 40 times on Focusing Fluid and directly measured on a flow cytometer according

to previously described methods (as for OSiRIS characterization). For the first induction, each

culture from the co-transformation was diluted 1, 000 times in fresh HI-Def Azure-Glycerol,

with no inducer, 1% of arabinose, or 200 ng/mL of aTc. Plates were grown for 16 hours at

37◦C. Cultures were diluted 40 times with Focusing Fluid and directly measured on a flow

cytometer. For the second induction, each culture from the previous induction was diluted 1,

000 times in fresh HI-Def Azure-Glycerol, with no inducer, 1% of Arabinose, or 200 ng/mL of

aTc. Plates were grown for 16 hours at 37◦C. Cultures were diluted 40 times with Focusing

Fluid and directly measured on a flow cytometer.

2-input history-dependent multicellular program characterization

For the 2-input history-dependent program characterization in multi-cell, the history-

dependent devices (such as F0, B1, and B2) were co-transformed with the dual controller in

J64100 [Bonnet 2013]. For transformation and further culture, media were supplemented with

12.5 µg/mL of kanamycin and 25 µg/mL of carbenicillin.

As a control, the OSiRIS constructs (F0, A2, A3) and a strain without fluorescent protein

were used.

For the first day, 96 deep-well plates filled with 500 µL per well of Hi-Def Azure supplemented

with glycerol were inoculated with three clones per co-transformation and three clones per con-

trol. Plates were grown for 16 hours at 37◦C. Cultures were diluted 40 times on Focusing Fluid

and directly measured on a flow cytometer according to previously described methods (as for

OSiRIS characterization). From the stationary phase culture, cells (B1, B2 co-transformation)

were mixed in identical proposition: such as 100 µL for each culture in a 96 deep-well plates. For

growth, each mix of cultures was diluted 1, 000 times in Hi-Def Azure-glycerol in three different

induction conditions, no inducer, 1% of arabinose, or 200 ng/mL of aTc. Plates were grown

for 16 hours at 37◦C. Cultures were diluted 4 times in PBS and measured in the plate reader

using BioTeck Cytation 3 with the following parameters (GFP: excitation 485 nm, emission

528 nm, gain 80, BFP: excitation 402 nm, emission 457 nm, gain 70, RFP: excitation 555 nm,

emission 584 nm, gain 100, Absorbance: 600 nm). For the second induction, each culture from

the previous induction was diluted 1, 000 times in fresh HI-Def Azure-Glycerol, with no inducer,

1% of arabinose, or 200 ng/mL of aTc. Plates were grown for 16 hours at 37◦C. Cultures were

diluted 4 times in PBS and measured in the plate reader with the previous parameters.

For the multicellular experiment, only one experiment was performed. For each sample,

140 Chapter 3. Programming history-dependent logic in a multicellular system

GFP, BFP, and RFP fluorescence intensity over absorbance at 600 nm were calculated and the

mean value was calculated between the three replicates. The fold change over the negative

control was determined from this mean value over that of the negative control. The error bars

correspond to the standard deviation between the different replicates.

Chapter 4

Design of scalable single-cell

recombinase logic

Contents

4.1 RECOMBINATOR: a framework for combinatorial design of single-

cell integrase logic . 142

4.1.1 Introduction . 142

4.1.2 Definition of a formal language to permit the generation of a design database144

4.1.3 Ontology of synthetic gene circuits . 146

4.1.4 Generation of all possible sequences . 150

4.1.5 A web-interface for exploring on the database 153

4.1.6 Discussion . 154

4.2 Using the Recombinator database for the systematic design and con-

struction of all single-cell 3-input logic gates 155

4.2.1 P-class and its in vivo correspondence . 156

4.2.2 NP-class and its in vivo correspondence using DNA inversion 158

4.2.3 Using the Recombinator database to select inversion-based logic devices . . 159

4.2.4 Discussion . 161

In this chapter, I will present my work on the design of scalable single-cell recombinase

logic. The first part of this work is the development of a framework for combinatorial design

of single-cell integrase logic based on the generation of a complete set of circuit design. This

database is available on a web interface called Recombinator. The second part of this work

is the use of the Recombinator database for the design and characterization of all single-cell

3-input logic circuits.

This work was the fruit of a collaboration between Jerome Bonnet and myself and Michel

Leclère, Guillaume Kihli and Federico Ulliana from the LIRMM in Montpellier. I was at the

origin of the project and of the collaboration with the LIRMM. The Recombinator generation

and the web-interface were developped by Michel Leclère and Guillaume Kihli, and the idea and

algorithm was conceived through collaborative discussion with Michel Leclère, Federico Ulliana,

Jerome Bonnet, Guillaume Kihli, and myself. I was at the origin of the simplification based

on P- and NP-class after fruitful discussions with Guillaume Kihli, Michel Leclere, and Jerome

Bonnet.

142 Chapter 4. Design of scalable single-cell recombinase logic

4.1 RECOMBINATOR: a framework for combinatorial design

of single-cell integrase logic

4.1.1 Introduction

In the first part of my thesis, I presented design methods for implementing Boolean and sequen-

tial logic within multicellular systems. The use of distributed multicellular computation allows

the simple implementation of complex logic function through the combination of a reduced num-

ber of well-characterized components. However, some applications may require implementation

of complete logic function in a single cell. For example, when working in a multicellular organ-

ism, computing at the single cell level is crucial so that each cell can respond independently

to spatially distributed signal patterns. As another example, therapeutic bacteria operating in

vivo would freely navigate through the organism and therefore the full computational circuit

would have to be implemented in individual cells.

Another reason to pursue single-cell recombinase logic is to push the limitation of logic

circuit compaction. First of all, we wanted to know whether it was possible at all to implement

all 3 and 4-input logic functions in a single cell using the design strategies previously developed

for 2-input logic [Bonnet 2013, Siuti 2013].

In other words, how well do these designs scale? As we will see, we found that while this

scheme can implement all 3-input functions, they start to be limited for 4-input ones.

Single-cell logic circuits based on repressors were built in E. coli and are the largest (in bp)

synthetic circuits implemented to date. The use of repressors requires multilayer implementa-

tion, which results in large genetic circuits. This approach requires a large number of orthogonal

components that are challenging to obtain and time-consuming to optimize. Moreover, the high

number of parts can cause metabolic burden and affect cellular viability.

Integrase-based single-cell logic circuits are an alternative to repressor-based systems. These

circuits use the integrase’s enzymatic activity to excise or invert DNA sequences. The first

example of such designs came from the work of [Bonnet 2013], in which 2-input logic functions

were implemented using terminator-based switches (transcriptors), leading to a highly-compact

architecture. As an example, a 2-input XOR function is based on a terminator surrounded

by the two integrase site pairs. A systematic framework for implementing of up to 3-input

logic functions was developed by [Weinberg 2017] in mammalian cells. To do so, a scaffold for

implementing all circuits was build based on integrase site variants responding orthogonally

to the same integrase. Consequently, Weinberg and colleagues circuits are not as compact as

Bonnet and colleagues designs. Moreover, to scale-up this design, it is not clear how many pairs

of mutant recombination sites can be used in parallel in single-cell without any non-specific

recombination reaction occuring [Colloms 2014]. Finally, repetitive DNA sequences often lead

to genetic instability through homologous recombinations, and highly-repetitive DNA sequences

4.1. RECOMBINATOR: a framework for combinatorial design of single-cell
integrase logic 143

are notoriously difficult to synthesize.

Our objective was thus to design the most compact, robust, and reliable logic circuits.

Consequently, we made deliberate choices in the initial design steps: to not use integrase site

variants to limit the above mentioned problems and to not use multiple integrases per input to

keep circuits within a reduced size range.

Below is the table summarizing the specifications for our logic system and their motivations

(Table 4.1).

We were aware that these limitations may prevent the design of some circuits. Yet, by

setting these strong constraints, we aimed to push the limit of logic circuit compaction.

Design Specficitions Motivation

Single cell - Applications requiring long-term usage and targeted field release.

- Reduce growth competition problem.

- Fundamental question: is it even possible? How far can we go?

Use of serine integrases - Irreversible, memory, stored within DNA.

- Permit compact circuits.

- Work in large number of organisms.

One pair of

sites/integrase

- Reduce problems of non-specific recombination.

- Reduce genetic instability.

- Reduce difficulties to synthesize.

- Reduce the size of the circuit.

One integrase by input - Reduce the number of orthogonal integrase needed.

- Reduce metabolic load to the cell.

- Reduce the size of the circuit.

Regulation of transcrip-

tion using promoters

and terminators

- Simple set of tools.

- Two tools for opposite behaviors.

Table 4.1: Motivations for the specification of our logic design.

Exploiting the compactness of integrase-based circuits, we designed single-layer logic circuits.

Consequently, no design rules developed for electronic or multi-layer bio-logic circuit could be

applied to single-layer, single-cell integrase logic circuits.

Integrase logic circuits were originally designed by hand, in a trial-and-error manner. This

strategy worked well for 2-input devices, but was already cumbersome when applied for 3-input

devices, even when performed by experts (i.e. ourselves). For instance, we could not find any

design to implement some functions. Moreover, even when we found designs implementing a

144 Chapter 4. Design of scalable single-cell recombinase logic

particular function, we had limited possibilities to optimize the design.

In order to explore the full design space, we thus turned to a combinatorial approach in

which we generated millions of combinations and permutations of sites, genes, and regulatory

elements. Because the number of generated sequences would still have been enormous and highly

redundant, we defined a strategy to reduce the number of generated sequences while conserving

the completeness of the logic device set. Indeed, we developed a formal language allowing us to

represent logic circuits with the essential information. The integrase site array is represented

in a simplified manner as a logic structure. The logic designs incorporating regulatory elements

are represented as a logic architecture. In these architectures, the inputs are not attributed to

specific sites. Sites are associated to inputs in the web-interface, linking the resulting sequence

to a specific Boolean function.

Once generated, this device library could be filtered according to different parameters (e.g.

total size, number of genes, promoters, use of inversion or excision), providing us with a much

more efficient way to navigate through the recombinase logic design space.

4.1.2 Definition of a formal language to permit the generation of a design

database

We implement logic using integrases. An integrase targets specific integrase sites and medi-

ates DNA excision or inversion between its specific integrase sites according to their relative

orientations. To obtain a complete and reduced generation, we generated logic structures corre-

sponding to integrase site arrays but with the smallest possible amount of information (Figure

4.1).

Architecture

(PF) [GR]

(PF () [GR]
Input A

Input B

Association

site - input

Structure

() []

Add elementary

sequences

Figure 4.1: General workflow of the generation.

4.1. RECOMBINATOR: a framework for combinatorial design of single-cell
integrase logic 145

4.1.2.1 Logic structures

We use the term "logic structure" for a string representing a particular combination of two or

more pairs of recombination sites targeted by different enzymes. A logic structure contains the

following information: (i) the number of different pairs of sites, (ii) their relative positions, and

(iii) their mode of recombination: inversion or excision.

As in our Boolean logic implementation, integrase sites do not interdigit; they can be asso-

ciated to a nested sequence of brackets, corresponding to the Dyck language [Autebert 1987].

As integrase site pairs can react in two manners, a pair of sites is represented by parenthe-

ses () when being inverted or by brackets [] when being excised. For example, we can have

a logic structure responding to 2 inputs: () [], or 3 inputs: (() []). This notation can

unambiguously represent all instances of non-interlaced recombination sites through so-called

well-balanced parentheses.

We also wanted to represent sites once recombination has happened ("used sites"). Inverted

sites were represented by {}and excised sites by |. For example, the structure () [] can have

three states upon recombination: {}[] , () |, or {}|.

For the generation of logic structure, Dyck words with the corresponding number of inputs

are generated and then functionalized to either excision [] or inversion () to obtain all possible

combinations.

4.1.2.2 Logic architectures

We then generated logic architectures by inserting genes, promoters, and terminators at differ-

ent places within the logic structure. In order to do so, we had to define symbols representing

the different components. Each symbol was attributed a semantic describing its function. The

semantic contains two pieces of informations: (i) the function itself (transcription, termina-

tion, etc) and (ii) the direction on the linear DNA sequence in which the function is operational

(forward or reverse). We then defined rules to combine neighboring semantics. Using this frame-

work, we could infer the gene expression status of any concatenation of promoters, terminators,

and genes. These rules are defined in subsection 3.

To obtain the most compact designs, we defined a set of elementary sequences correspond-

ing to irreducible semantic compositions. Logic architectures are then generated by placing

elementary sequences between brackets within logic structures. From a logic architecture, de-

rived architectures are obtained by simulating all possible recombination events. Sequences

flanked by excision brackets [] are removed, while sequences flanked by inversion brackets ()

are flipped (Figure 4.2). The semantic of each derived architecture is then obtained based on

the rules defined in the following subsection. Inputs are then attributed to particular brackets

to identify the corresponding Boolean functions.

146 Chapter 4. Design of scalable single-cell recombinase logic

Excision

attB attP

attL

Integrase

Input

Inversion

attB attP

attL attR

ExcisionInversion

(PF)

{ PR }

[PF]

|

Input a

A B

Figure 4.2: A - Integrase action based on diagram, B - Correspondence to logic

structures.

4.1.3 Ontology of synthetic gene circuits

4.1.3.1 Transcriptional components and their semantics

Here I will set forth the rules used to determine the output state of any sequence.

We used three elementary types of parts involved in transcription: (1) promoters and (2)

terminators respectively initiate and terminate the flow of RNA polymerase; and (3) parts which

are transcribed (e.g. genes) (Table 4.2).

As the RNA polymerase flow is oriented, a promoter initiates transcription in only one

orientation and is inactive in the other. A terminator can block transcription in either a single

orientation or both orientations. For simplification, we considered here that the terminators

used are asymmetric and therefore terminate transcription in a single orientation.

In natural systems, the parts transcribed are usually sequences controlling translation (e.g.

RBS or Kozak) with the CDS (coding sequence) for expression of protein, or a non-coding

RNA only. In our system, we focused on protein expression as output and called "gene" the

concatenation of the 5’ UTR sequence controlling translation (e.g. RBS or Kozak) with the

CDS (coding sequence) and the 3’ UTR sequence to terminate transcription (terminator).

We positioned these parts in different orientations to control the transcription of the output

gene. Of note, we considered sequences containing several copies of the same gene (encoding

for the same protein), but not containing genes encoding for different proteins.

For each transcriptional part, we defined a semantic, corresponding to the part activity

related to transcription (the "meaning" or function of the biological part), and an associated

symbol for simplification of further explanations. The symbol corresponding to each part is listed

in Table 4.2. The semantics are: promotion of transcription (fP), termination of transcription

(fT), encoding of a gene (fG) and no activity (fN). Each part encodes two distinguishable

semantics, one in each orientation (forward or reverse).

In this algorithm, we simplified part activity related to gene expression; transcription mech-

anism is considered as a binary, digital process in which a gene is either ON or OFF. Obviously,

this is an oversimplification of biological systems eluding intermediary activity levels which

4.1. RECOMBINATOR: a framework for combinatorial design of single-cell
integrase logic 147

Transcriptional

part and its

orientation

Part symbol Part semantic

forward

Part semantic

reverse

Promoter in for-

ward

PF fPF fNF

Promoter in re-

verse

PR fNF fPR

Terminator in for-

ward

TF fTF fNR

Terminator in re-

verse

TR fNF fTR

Gene in forward GF fGF fNR

Gene in reverse GR fNF fGR

Neutral part N fNF fNR

Table 4.2: Definition of the forward and reverse semantic for each transcriptional part.

are relevant in natural biology and which can cause unwanted effects in engineered biological

systems. For example, promoters and terminators can have different levels of transcription ini-

tiation and termination. Nevertheless, this simplification is essential as our objective is to use

these natural mechanisms to implement logic circuits with only two possible states.

4.1.3.2 Ten rules for determining the semantic of transcriptional parts assemblies

Transcriptional parts are concatenated to form transcriptional sequences. We defined a set of

rules to determine the semantics of sequences. As any forward and reverse semantics can be

considered separately, the following properties are defined considering a single orientation of

the construct. For simplification, the properties are written in the forward orientation, from 5’

to 3’.

The semantic of a transcriptional sequence corresponds to the concatenation of the seman-

tics of each part of the sequence. Indeed, to determine the semantics of a concatenation of

transcriptional parts, we use a step-wise iterative process in which semantics are composed two

by two.

This concatenation can be simplified with the following rules in a reduced set of six elemen-

tary semantics. These six semantics correspond to the four semantics described previously (fP,

fT, fG, and fN) plus the semantics corresponding to the expression of a gene: fX and the com-

position of fG followed by fP: fGP. As the two-by-two concatenation of the four basic semantics

leads to one of these six semantics, this set of semantics is complete (detailed below).

148 Chapter 4. Design of scalable single-cell recombinase logic

Rules:

(1) Non-commutativity: Concatenation of semantics is not commutative as parts concate-

nated in a different order does not lead to the same semantic. As an example, PF-GF permits

expression of the gene, therefore encoding the semantic fX, which is not the case for GF-PF.

(2) Neutrality: A sequence without any activity in a particular orientation does not affect

other sequences placed in the same orientation (i.e. fN is neutral to other semantics similarly

oriented).

(3) Assimilation of fX: The semantic of gene expression, fX, assimilates all other semantics.

In others words, the composition of the fX semantic with another semantic is simplifiable to

fX. In this work, we aim at defining if a construct leads to expression of a gene or not and the

composition of fX with another semantic does not affect the fX semantic.

(4) Idempotent: all semantics are idempotent (an operation has the same effect even if

applied multiple times), as we consider that the concatenation of two similar parts is equivalent

to a single part.

Others rules are due to the mechanism of gene expression. A gene is expressed if it is

transcribed by RNA polymerase; consequently, a promoter needs to be positioned upstream

without a terminator positioned between the promoter and the gene. This mechanism can

be assimilated to a flow that is opened by the promoter, stopped by the terminator, and the

system is ON when the flow is at a specific location: the gene.

(5) Expression occurs only if a promoter is placed upstream of a gene without a terminator

in between. Such as, the concatenation of the semantic promotion with semantic gene is

simplifiable to fX. i.e. fP-fG=fX

(6) A gene followed by a promoter leads to the semantic fGP, as the promoter can be active for

a downstream gene and the gene can be expressed by an upstream promoter. Consequently,

fG-fP=fGP. In this case, we have associativity of the semantics fG and fP.

(7) If a promoter is followed by a terminator, the RNA polymerase flux is blocked by the

terminator, consequently, fP-fT=fT.

(8) If a terminator is followed by a promoter, the terminator will have no effect on the

semantic of the sequence as the terminated transcription will be re-initiated by the promoter,

consequently: fT-fP=fP.

(9) If a terminator is followed by a gene, the gene cannot be expressed as the RNA polymerase

flux is blocked by the terminator; consequently, fT-fG=fT.

(10) If a gene is followed by a terminator, the terminator will have no effect on the semantic

of the word; indeed, if the previous semantic is fP, it will result in the expression of the gene,

consequently: fG-fT=fG.

Mathematical definition of the rules for semantic composition. For two semantics fA

and fB, fA-fB is the concatenation of fA with fB, fA being in 5’ and fB in 3’.

(1) Not commutative: fA-fBÓ=fB-fA

4.1. RECOMBINATOR: a framework for combinatorial design of single-cell
integrase logic 149

(2) Neutrality of fN: fN-fA=fA and fA-fN=fA

(3) Assimilation by fX: fX-fA=fX and fA-fX=fX

(4) Isomorphisme: fA-fA=fA

(5) Condition of gene expression: fP-fA-fG=fX only if fAÓ=fT ou fA=fP

(6) Composition of Gene-Promoter: fG-fP=fGP

(7) A terminator cancels promotion: fP-fT=fT

(8) A promoter cancels termination: fT-fP=fP

(9) A terminator block transcription of a following gene: fT-fG=fT

(10) A terminator cannot block transcription of a previous gene: fG-fT=fG

We concatenated the six previously defined semantics two by two. Using the previously

defined rules, all concatenations of these six semantics are simplifiable to one of the six semantics

(Table 4.3). Therefore, the set of semantics is complete and our rules are scalable to the

concatenation of N transcriptional parts.

5’ to 3’ fN fP fT fG fGP fX

fN fN fP fT fG fGP fX

fP fP fP fT fX fX fX

fT fT fP fT fT fP fX

fG fG fGP fG fG fGP fX

fGP fGP fGP fG fX fX fX

fX fX fX fX fX fX fX

Table 4.3: Simplification of all possible concatenation of the six semantics two by two, as the

row corresponding to the semantic in 5’ and the column the semantic in 3’.

4.1.3.3 Selection of a set of 26 elementary sequences encoding the 26 possible

semantics in a minimized manner

As all sequences have a semantic in forward and in reverse orientations, considering both ori-

entations, 26 semantics exist, as 5 times 5 for the set (fN, fP, fT, fG, fGP) and the semantic

expression that assimilates in both orientations.

As our objective was to have the simplest constructions, we aimed at implementing each

semantic with the minimal number of parts. We then defined for each semantic one elementary

sequence implementing the semantic (Figure 4.3C, Table 4.4).

For sequences with the same number of parts, we selected sequences to optimize the biolog-

ical implementation according to two criteria derived from experimentally validated biological

constructs. First, we avoided promoters facing each others, as two RNA polymerase flows might

interact and create unexpected behavior (Figure 4.3A) [Boque-Sastre 2015] [Uesaka 2014]. Sec-

150 Chapter 4. Design of scalable single-cell recombinase logic

ond, we reduced the number of parts between a gene and the promoter initiating its transcription

(Figure4.3B). Indeed, RNA polymerase tends to unbind from DNA, and transcription efficiency

decreases with the increase of distance between the gene and the promoter [Chizzolini 2014].

For some semantics, several sequences are equivalent to each other,where upon one is chosen

arbitrarily, such as for TR-TF, the equivalent of TF-TR (for the semantic: fTR/fTF).

N PF TF GF GF-PF

fNF fPF fTF fGF fGPF

PR
PR-PF PR-TF GF-PR GF-PR-PF

TR
TR-PF TF-TR GF-TR GF-TR-PF

GR
PF-GR TF-GR GF-GR GF-PF-GR

PR-GR PR-PF-GR PR-TF-GR GF-PF-GR GF-PR-PF-GR

fNR

fPR

fTR

fGR

fGPR

C

A

PR-PFPF-PR

OK

TR-GF

OKB

GF-TR

fPF/fPR fGF/fTR

Figure 4.3: Selection of the 26 elementary sequences. A - Selection of an elementary sequence

by avoiding promoters facing each other. Both sequences implement the semantic: fPF/fPR. PR-PF is

preferred to PF-PR. B - Selection of an elementary sequence by limiting the space between a promoter

and its transcribed gene. For the semantic fGF/fTR, GF-TR is chosen instead of TR-GF, for if PF

is placed upstream, the space between PF and GF is larger for the TR-GF sequence. C - Elementary

sequences and diagrams for each combination of forward and reverse semantics.

The semantic fX is not represented in this table as fX assimilates other semantic. fX can

be implemented by either PF-GF or GR-PR. These 26 elementary sequences correspond to the

domain of sequences placed between sites during the generation (Figure 4.3C).

4.1.4 Generation of all possible sequences

Our objective was to generate all possible irreducible logic architectures based on integrase

Boolean logic from 1 to 4 inputs.

4.1. RECOMBINATOR: a framework for combinatorial design of single-cell
integrase logic 151

Semantics fNF fPF fTF fGF fGPF

fNR - PF TF GF GF-PF

fPR PR PR-PF PR-TF GF-PR GF-PR-PF

fTR TR TR-PF TR-TF GF-TR GF-TR-PF

fGR GR PF-GR TF-GR GF-GR GF-PF-GR

fGPR PR-GR PR-PF-GR PR-TF-GR GF-PR-GR GF-PR-PF-GR

Table 4.4: The set of elementary sequences for implementation of each semantic. The first

column corresponds to the semantic in reverse orientation and the first row semantic in forward

orientation. The elementary sequences selected to implement the corresponding forward and

reverse semantics are represented here.

An irreducible logic architecture is an architecture with the following characteristics: (1) the

sequences placed between the sites are elementary sequences, and (2) each elementary sequence

is functional in at least one derived sequence. In other words, the elementary sequences cannot

be replaced by any other elementary sequence without changing the semantic of the architecture

or of a derived architecture (hence without changing the corresponding logic function).

As explained before, to generate architectures we first generated logic structures (sequences

of parentheses) and then filled each space between parentheses with elementary sequences (from

the list of 26). To avoid generation of reducible architectures and generation of inverted archi-

tectures, several constraints were used to reduce the set of elementary sequences possible that

could be incorporated at a specific locus. The irreducibility of an architecture was then verified

by generating all derived architectures. Irreducible architectures are saved in the database and

associated to a class of Boolean functions, corresponding to a permutation-class (P-class). This

is because a given architecture can implement all members of a P-class by interchanging the

input/site attributions.

4.1.4.1 Generation of logic structures

For the generation of logic structures, all the Dyck words of size 2N (where N is the number

of inputs) are generated and then functionalized (composition of parentheses and/or brackets).

To do so, a construction by induction was used [Manber 1988].

A sequence is equivalent to its reverse complement; called here inverse. To reduce the

number of architectures, we avoided generation of an architecture and its inverse. To do so, we

acted on several steps of the generation process, such as the construction of the logic structures.

Indeed, some logic structures are inverses of one another, e.g.(()) () is the inverse of ()

(()). Two inverse structures will then lead to the generation of inverse architectures; thus,

only one structure was conserved for the next step of the generation. All inverse sequences are

not removed by removing inverse structures. Indeed, some structures are palindrome, e.g. (

152 Chapter 4. Design of scalable single-cell recombinase logic

()). Architectures based on palindromes will either be a palindrome or will have an inverse

generated from the same structures. Elimination of these inverses is explained later on.

4.1.4.2 Constraints on domain of sequences for each variable

Each space between integrase sites, such as parentheses or brackets, is considered as a variable.

During the generation process these spaces are filled with elementary sequences from a specific

domain. A domain is a set of elementary sequences that can be placed at a defined position

during the generation (e.g. the beginning of the sequence or between sites in excision). To

reduce the generation of reducible architectures, constraints are defined to minimize the domain

of elementary sequences at each position.

First, at the extremity of architectures, many elementary sequences are useless. For example,

PR at the beginning of an architecture is useless as it cannot lead to gene expression. We thus

defined a reduced domain of elementary sequences for the left (5’) side of the architectures (PF,

GF, PF-GR, N) and for right (3’) side(PR, GR, GF-PR, N).

Then, the semantic fX (expression) cannot exist outside of an excision module; otherwise,

architectures can be reduced as a True function composed only of fX. This semantic is then

only present in domains for variables which are inside an excision.

For atomic excision and inversion (excision and inversion without integrase sites in between),

some semantics are always useless as the action of the integrase will not change the semantic of

the sequence. For instance, for atomic inversion, all semantics which are invariant with inversion

are useless. As such the sequences N, PR-PF, TF-TR, GF-GR, and GF-PR-PF-GF are useless

in atomic inversion. After excision, as the sequence is deleted, the semantic between sites is fN,

so that only the fN semantic is useless in an atomic excision.

Finally, to avoid the generation of inverse sequences from palindromic Dyck words, we

authorized some semantics in a specific variable according to the semantic of the previous

variable. Before the generation, a program creates a list of authorized patterns restricting the

generation of sequences and their inverses.

4.1.4.3 Algorithm CSPs (Constraint Satisfaction Problems)

For the generation process, a constraint satisfaction problem algorithm is used [Kumar 1992].

The variables are the sequences between the sites and the domain of variables are the elementary

sequences that can be affected to these variables. The constraints are those detailed previously.

During the execution of the algorithm, one value of the domain is assigned to a variable and

the constraints are verified. If they are not respected, another value is assigned. Otherwise, a

value is assigned to the next variable. The assignment is performed from the right to the left of

the structure. When all variables are affected, a full architecture is obtained. Its irreducibility

4.1. RECOMBINATOR: a framework for combinatorial design of single-cell
integrase logic 153

and non-simplifiability to a Boolean function with a lower number of input is verified by gen-

eration of the derived architectures. Then, the generator passes to the following value in the

domain of the last affected variable. The algorithm stops when all the domains of each variable

have been browsed.

4.1.4.4 Generation of all architectures for up to four inputs

We generated all architectures for up to four inputs, for a total of 96,965 architectures for three

inputs and around 18,668,046 architectures for four inputs. In our generation, we obtained for

the implementation of each 3-input Boolean functions several architectures. Consequently, all

3-input Boolean functions are implementable in single cell using one integrase per input and

a single integrase site pair per integrase. For four inputs, we obtained architectures for the

implementation of 91% of the 4-input Boolean functions. Thus, all 4-input Boolean functions

are not implementable in single cell using one integrase per input and a single integrase site-

pair per integrase. We have not done the generation for an increasing number of inputs as it

required large storage capacity (1.2Gb for 4-inputs), but we can suppose that the percentage of

implementable functions will decrease with the increase of the number of inputs.

4.1.5 A web-interface for exploring on the database

Using this generation process, we obtained 96,965 architectures for three inputs and 18,668,046

for four inputs. Each 3-input Boolean function is implementable with several architectures. For

3-input Boolean function, from 20 to 5833 different architectures permit the implementation

of the same Boolean function (for a mean of 135 architectures/function). Therefore, to find

architectures corresponding to a specific Boolean function, we developed a web-interface called

Recombinator.

In the Recombinator web interface, the user provides as an entry her (his) Boolean function

of interest, and the web interface shows the architectures permitting the implementation of this

Boolean function. By selecting one architecture, the architecture is shown with the association

of the sites to the input of the corresponding Boolean function. Additionally, all logic functions

implementable with the same architecture (therefore P-equivalent functions) are accessible from

this page (Figure 4.4).

The web interface also allows the users to sort architectures according to various biological

criteria for implementation, such as the size of the architecture, the number of genes, the number

of parts, if the gene is at the end, and if promoters faces each others or not. We selected an

elementary sequence for each semantic according to previously described constraints, but as the

architecture is composed of various elementary sequences these constraints are not especially

respected in the generated architectures. This option to sort architectures will help choosing

which architecture to implement.

154 Chapter 4. Design of scalable single-cell recombinase logic

List of architectures http://recombinator.lirmm.fr

Figure 4.4: Example of a search on the Recombinator web-interface. With the XOR

logic function as input, 23 architectures are found, with the 20 first architectures shown here. This list

can be sorted according to various criteria.

The web interface is still under construction, and while most of the functions are already

accessible, the descriptions on how to use the interface are lacking. The current version can be

found at http://recombinator.lirmm.fr.

4.1.6 Discussion

Through an exhaustive generation of integrase-based architectures, we proved that all 3-input

and 91% of 4-input Boolean functions are implementable using integrase-based devices in single

cell with one integrase and one integrase site pair per input.

We did not generate all possible architectures; rather, we generated only irreducible archi-

tectures corresponding to architectures with a minimum number of parts and all parts used

(functional) in at least one derived sequence. We believe that the best designs are the simplest

one.

As we developed an algorithm that generates only non-equivalent, irreducible architectures,

we succeeded generating architectures for 4-input using reduced computational resources. We

avoided the generation of mirror architectures and of reducible architectures by defining a set

of rules. However, this brute-force generation is still limited to four inputs. Nevertheless, this

exhaustive database could be used to define rules for the systematic design of devices imple-

menting Boolean functions of increasing number of inputs. One option would be to compose

4.2. Using the Recombinator database for the systematic design and construction
of all single-cell 3-input logic gates 155

4-, 3-, and 2-input devices to obtain 5-input devices.

Each 3-input Boolean function is implementable with a large set of architectures, and each

architecture is implementable by many different DNA sequences. These architectures theoret-

ically permit the implementation of these Boolean functions, but it is clear that many archi-

tectures will not behave as predicted when implemented experimentally. We aimed at selecting

architectures that will most likely permit robust implementation in living organisms. To do so,

we provide the option to sort architectures according to several criteria, which could be used

to select the less expensive sequences (usually the shortest ones) and the sequences which have

the highest probability to be functional according to our knowledge on circuit implementation.

This database and web interface would be useful for all biological logic designers for the

design of minimized integrase-based single-cell logic circuits.

We also described rules for the definition of semantics and semantics combination that could

be applied to determine the gene expression status of any given construct incorporating those

elements. This framework could be extended to incorporate other regulatory elements not

described here.

4.2 Using the Recombinator database for the systematic design

and construction of all single-cell 3-input logic gates

By generating all possible combinations of integrase targets, we obtained biological designs for

implementing all 3-input logic functions and 91% of all possible 4-input logic functions. As the

design generation has been performed without biologically informed constraints, we expected

that some theoretical designs would not behave as predicted or would require numerous cycles

of optimization to do so. By generating this database, we proved that all 3-input logic functions

are theoretically implementable in single cell. The remaining challenge now is to show that they

are also experimentally implementable.

For each 3-input Boolean function, we obtained an important number of different designs,

ranging from 20 to 5,833, depending on the logic function. These designs are theoretical and

presented in an abstract form; they represent the general architecture in which a particular

combination of integrase sites and regulatory elements can execute a given function. Details

like site orientations, sites identities (attB or attP), and their relative positions are not specified,

neither is the identity of parts for gene expression.

From each theoretical design, an infinite number of DNA sequences is possible. Conse-

quently, the number of possible DNA sequences able to implement each Boolean function is

enormous. For instance, for the 218 Boolean functions strictly responding to 3 inputs, 96,965

logic architectures were generated. For each of these architectures, it seems impossible to test

all possible biological implementations. How do we thus validate our designs? Can we defines

156 Chapter 4. Design of scalable single-cell recombinase logic

rules that could help to filter the most "promising" sequences for further testing? Can we find

a method to reduce the number of devices to characterize?

Classes of Boolean functions have been defined, such as P-class for permutation and NP-class

for negation and permutation [Jaakko T. Astola 2006]. Based on this classification, we propose

to reduce the experimental optimization of logic devices to the implementation of a single

Boolean function per NP-class, such as 16 for 3 inputs. By decreasing the number of Boolean

functions to implement by 93%, this simplification would allow the precise characterization and

optimization of a reduced number of devices. These optimized biological designs could therefore

be used to implement all 3-input Boolean functions in single-cell. I did not have time during

my Ph.D. to perform these characterizations nor to finalize the selection of the 16 constructions

as the Recombinator web-interface has only recently been completed. However, I present below

the theoretical foundation for such work.

4.2.1 P-class and its in vivo correspondence

4.2.1.1 Definition of P-class

A P-class is composed of all Boolean functions that are P-equivalents [Jaakko T. Astola 2006].

Two functions are P-equivalent only if they can be reduced to one another by permutation of

input variables (P) xi ↔ xj .

In other words, functions belong to the same P-class if one function can be transformed into

another by permuting the inputs. For example, the functions f1=not(A).B and f2=A.not(B)

are P-equivalent, indeed, if we permute A and B in f1, fP1 =not(B).A=f2 ([Friedman 1986]).

For 2 inputs, P-classes contain 1 or 2 Boolean functions, as one permutation exits (permu-

tation of A to B). Indeed, for the AND gate, the permutation of A to B leads to the same

function, and for the example above, not(A).B leads by permutation to A.not(B), leading to a

2 function P-class.

For 3 inputs, P-classes contain 1, 3 or 6 Boolean functions. If all permutations lead to the

same function, the P-class is composed of one function, e.g. the function: A.B.C. Then, if only

permutation of all inputs leads to different functions, the P-class is composed of three functions,

e.g. the functions: A.B+C, A.C+B and B.C+A. Finally if any permutation leads to different

functions, the P-class is composed of 6 functions.

The number of permutations with N inputs is N!

4.2. Using the Recombinator database for the systematic design and construction
of all single-cell 3-input logic gates 157

4.2.1.2 Permuting logic device inputs by switching connection between integrase

and inducible promoters

P-equivalence corresponds to an equivalence of function by permutation between input variables.

In integrase-based systems, logic implementation is decoupled from the connection to input

signals. The logic function is implemented by computational devices composed of integrase

sites and parts for gene expression and input control via the expression of integrases.

Consequently in our biological circuits, we can easily permute inputs by changing the con-

nection between integrases and inducible promoters responding to the different inputs. Then,

all Boolean logic functions from one P-class are implementable using the same computation

device. Indeed, we used this property in Chapter 2, Section 1 to reduce the number of logic

devices to characterize for multicellular Boolean logic implementation. For example, for the im-

plementation of not(A).B and not(B).A, the same computational device is used and connections

between integrases and inducible promoters are inverted (Figure 4.5).

Therefore, the characterization and optimization of one logic device per P-class is sufficient

for implementing all logic functions of this P-class. Consequently, the number of logic devices

to characterize decreases by 68% (from 218 to 69) for 3 inputs (Table 4.5).

The generation of logic devices with Recombinator was programmed to generate architecture

without specification of integrase site identity, taking the decoupling of inputs / logic devices

into account and therefore reducing the size of the generation.

f = NOT(B).A

In
t
1

In
t
2

Input AInput B

In
t
1

In
t
2

Input BInput A

f = NOT(A).B

Figure 4.5: Implementation of P-equivalent Boolean function using the same logic

devices and different inducible promoter-integrase connections. Example of the imple-

mentation of the P-equivalent NOT(B).A and NOT(A).B logic functions using one logic device and by

switching the connection of inducible promoters and integrases.

158 Chapter 4. Design of scalable single-cell recombinase logic

4.2.2 NP-class and its in vivo correspondence using DNA inversion

4.2.2.1 NP-class definition

A NP-class is composed of all Boolean functions that are NP-equivalents. Two functions are

NP-equivalents only if they can be reduced to one another by negation of input variables (N) xi

↔ not(xi) and by permutation of input variables (P) xi ↔ xj. e.g. f1=not(A).B and f2=A.B,

f1 and f2 are NP-equivalent as by A ↔ not(A), f1=f2.

P-equivalent functions are NP-equivalents.

16 NP-classes exist for strictly 3-input Boolean functions and 380 for strictly 4-input Boolean

functions (Table 4.5).

1 input 2 inputs 3 inputs 4 inputs 5 inputs

functions with strictly N inputs 2 12 218 64,594 4.3 10 9

P-classes with strictly N inputs 2 8 68 3904 3.7 10 7

NP-classes 1 5 16 380 1,227,756

Table 4.5: Number of functions, P-classes, NP-classes for a given number of inputs.

4.2.2.2 Negation equivalence using inversion

Here, the objective is to find a correspondence between integrase-based logic implementation

and NP-equivalence of functions. As seen above, permutation of variables is performed by

changing integrase/input connection. Now, we have to find a correspondence between negation

of variables and integrase-based implementation.

Bonnet and colleagues implemented 2-input logic gates based on simple terminator switches.

In this paper, NOT and IDENTITY functions are performed using an asymmetric terminator

surrounded by integrase sites in opposite orientation for inversion (Figure 4.6A). For the NOT

function, the terminator is placed in the OFF orientation, then in absence of input, the output

gene is ON. In presence of the input, the terminator is inverted and transcription of the output

gene is blocked. For the IDENTITY function, the terminator is placed in ON orientation, then

the transcription is possible only in presence of the input, when the terminator is inverted.

In this example, the design of NOT and IDENTITY functions differ only by the orientation

of the part placed between inversion sites, here the terminator. By inversion of the element

between the integrase sites of the IDENTITY device, the negation of the input is performed as

we obtained the design of the NOT function except for the integrase sites.

As these designs are based on DNA inversion, the DNA state of the IDENTITY device in

the presence of the input corresponds to the negation function, i.e. to the NOT devices. This is

4.2. Using the Recombinator database for the systematic design and construction
of all single-cell 3-input logic gates 159

also true to switch from the NOT to the IDENTITY device. When using excision to implement

IDENTITY and NOT devices as in Chapter 2, the previous property is not true anymore as

excision is destructive.

The previous one-input example shows that the negation of inputs in a logic device based

on inversion can be performed by inversion of the element between the corresponding integrase

sites. This property is scalable.

As example for the 2-input AND logic device based on DNA inversion, the device is based

on a promoter in reverse orientation surrounded by integrase sites placed in series with an

asymmetric terminator surrounded by integrase sites (Figure 4.6B). The two inputs have to

be present to permit expression of the output gene, so the terminator will not block the RNA

polymerase and the promoter will be in the correct orientation for output gene expression.

By inverting the orientation of the promoter and terminator between integrase sites, different

logic functions are implemented. Indeed, the inversion of the promoter permits the negation

of one input, therefore implementing the NOT(A).B logic function. The inversions of both

the terminator and the promoter negate two inputs, and therefore permit implemention of the

NOT(A).NOT(B) logic function. These logic functions correspond to a 2-input NP-class, and

we pass from one function device to another by inversion of the element between the integrase

sites corresponding to the negation of the input(s). Moreover, as for the previous one input

function, each logic device design (detailed in Figure 4.6C) corresponds to the DNA states of

one logic device in a different input state, except for the integrase sites.

To summarize, the negation of inputs in a logic device is performed by inversion of the

element between the integrase sites responding to this input. This is true only for devices

using DNA inversion. The permutation of inputs in integrase-based circuits is performed by

permutation of the connection between integrases and inducible promoters.

Consequently, excepted for integrase sites, the different DNA states of one logic device

correspond to the devices for the implementation of a complete NP-class. Therefore, we ap-

proximated that the characterisation of one construct per NP-class based on DNA inversion is

sufficient to prove the feasibility of implementing all logic functions of this NP-class using this

logic device architecture. As 16 3-input NP-classes exist, we reduced the number of Boolean

functions to optimize from 218 to 16, a 93% decrease.

4.2.3 Using the Recombinator database to select inversion-based logic de-

vices

Using our Recombinator database, we found that all 3-input Boolean functions are imple-

mentable using exclusively inversion-based logic devices. Therefore, it is possible to select,

characterize, and optimize one inversion-based logic device per 3-input NP-class.

To do so, we can select any 3-input Boolean function from each NP-class and search for

160 Chapter 4. Design of scalable single-cell recombinase logic

f =NOT(A)

Int

f =Ax x

Int

A
f =A.B

0

0

1

1

0

1

0

1

0

0

0

1

A B f

AND gateB

C
f =A.B f =NOT(A).B f =A.NOT(B) f =NOT(A).NOT(B)

Figure 4.6: Implementation of NP-equivalent Boolean functions using inversion-

based logic devices. (A) IDENTITY- and NOT- logic devices based on the inversion of an

asymmetric terminator. (B) AND gate based on the combination of promoter and terminator modules

and its intermediate recombination states. (C) Implementation of all functions from the AND gate NP-

class. Designs are based on the AND gate design presented in B and corresponds to the intermediate

recombination states of the AND gate, except for the integrase site identity.

implementation in the database. From the set of inversion-based architectures implementing

the selected Boolean function, we have to select one or few architectures that will permit

implementation of the desired Boolean function with the reduced number of optimization cycles.

Criteria for the selection of architectures are not absolute and depend mainly on the chassis

organism, on the available genetic parts, and on the sensibility of the designers. For us, several

criteria are important:

1 - The space and complexity between the promoter and the transcribed output gene should

be minimized in each DNA state. Indeed, the transcription can be compromised if the space

between the promoter and the gene to be transcribed is thousands of base pairs and if the

promoter face another promoter in reverse orientation.

2 - The size of the construction to minimize the synthesis cost or cloning complexity. This

size corresponds mainly to the number of output genes in the construct.

Using the sorting function of the Recombinator web-interface, we selected 16 logic devices,

one per 3-input NP-class.

Using the previous web-interface lacking the sorting functions, we selected, without scanning

all possible architectures, a set of 16 architectures for the implementation of the 16 3-input

NP-classes (Figure 4.7). This subset of architectures provides an idea of the complexity of

the implementation of some NP-classes, but they probably do not correspond to the optimum

architectures as they have been chosen manually.

For 4 inputs, 91% of Boolean functions are implementable in single-cell, and probably a

similar proportion of NP-class. Therefore, the same strategy can be applied for the implemen-

4.2. Using the Recombinator database for the systematic design and construction
of all single-cell 3-input logic gates 161

f=A.B.C f=A.not(B).C+A.B.not(C)

f=B.C+B.A f=not(A).B.C+A.not(B).C+A.B.not(C)

f=A.not(B)+B.C+A.C f=not(A).B.C+A.not(B).not(C)

f=B.not(A).not(C)+A.C f=not(A).C+B.C

f=not(A).B.C+A.not(B)+A.not(C) f=B.C+A

f=not(A).B+A.not(B)+A.C f=XOR(A,B,C)

f=not(A).not(B).C+B.not(C)+

A.not(C)+A.B
f=XOR(B,C)+A

f=not(B).C+not(A).B+A.not(C) f=A+B+C

Figure 4.7: Example of possible designs-these are probably non-optimal

tation of most 4-input Boolean functions in single-cell. However, for now, we do not have the

proportion of Boolean functions (or NP-classes) which are implementable using inversion only.

Some bugs are still present in the web interface for representation of 4-input architectures. With

the final web interface, we will determine the number of NP-class implementable using inversion

only.

4.2.4 Discussion

We made a parallel between the mathematically defined P-equivalence and NP-equivalence of

Boolean functions and the permutation and negation of inputs in integrase-based logic systems.

Two P-equivalent Boolean functions are implementable using the same logic device and different

integrase-inducible promoter connections. For inversion-based devices, the negation of one

input in an integrase-based logic system is performed by inversion of the element between the

162 Chapter 4. Design of scalable single-cell recombinase logic

corresponding integrase site pair. Two integrase-based logic systems implementing two NP-

equivalent Boolean functions can be reduced to each other by switching integrase-inducible

promoter connections and by inversion of elements between integrase-site pairs.

Consequently, we propose to characterize and optimize a single inversion-based logic device

per NP-class. The DNA states of this logic device correspond to the logic devices for the

implementation of the other Boolean functions of the NP-class, except for the integrase sites

which pass from attL/attR to attB/attP. With the characterization of one logic device, we can

approximate that we simulate the characterization of all logic devices of the NP-class, only the

DNA states will not correspond to the same input states.

It is important to highlight that this simplification is working only if using exclusively

inversion-based logic devices. Using excision, the element between integrase sites in reverse

orientation will not have the inversion role in gene expression as it will be excised in presence

of the input.

Based on this simplification, we reduced the number of devices to implement to one per

NP-class, such as 16 for 3 inputs and 380 for 4 inputs. For 3 inputs, the construction and

optimization of 16 logic devices for single cell implementation is readily achievable. We pro-

posed the selection of a set of 16 architectures, but a more precise and objective criteria-based

selection will be possible based on the Recombinator web interface. Moreover, for logic func-

tions that seem complex to implement, several architectures could be selected in the first round

of characterization. From the selected architectures, the selection of integrases, integrase site

positions and orientations, and gene expression part identities will have to be performed. To

do so, the data from the characterization of integrase sites and terminators of Chapter 2 will

be useful. As in this design, inversion is used and thus it required asymmetric terminators, so

we are currently characterizing asymmetric terminators in both orientations.

As detailed previously, we can obtain the design of logic devices for the implementation of

all Boolean functions in one NP-class from the DNA states of a single logic device. However,

the identity of some integrase site pairs will diverge from the DNA states to the logic devices,

passing from attL/attR to attB/attP sites. As seen in the characterization of integrase sites in

Chapter 2, integrase sites can affect gene expression. Therefore, based on our characterization,

we will be able to reduce or at least to predict the change in behavior of the devices from the

characterized DNA states due to the change of integrase sites.

Consequently, the characterization and optimization of 16 logic devices will serve as a tem-

plate for implementing the 218 3-input Boolean functions. The same strategy could be used for

4-input NP-class implementable using only inversion.

Additionally, this characterization and optimization could permit the determination of rules

for the design of logic functions responding to an increasing number of inputs.

Chapter 5

Discussion

Contents

5.1 Summary . 164

5.1.1 Distribution of computation in multicellular system 164

5.1.2 Minimization of Boolean logic circuit design. 165

5.1.3 Systematic engineering of synthetic biological circuits. 166

5.2 Control and engineering of serine integrase activity. 167

5.3 The use of integrase coupled with excisionase permits the implemen-

tation of wider types of logic. 168

5.4 What are the future applications and future challenges of biocomputing?170

164 Chapter 5. Discussion

5.1 Summary

At the beginning of my thesis, I was interested in increasing the computational power of syn-

thetic biological logic systems. While diving in the literature and in the construction of logic

circuits, I realized that the construction of logic circuits having a high computational power

will only be useful if they were simple to design and to implement by others scientists. There-

fore, I became concerned in providing open-access and straightforward tools for the design and

implementation of such logic circuits.

While logic is implementable in living organisms via a large variety of tools, I focused on the

implementation of logic using serine integrases. The design of serine-integrase circuits does not

fellow any electronic design strategy but permits implementation of compact and single-layer

circuits. It was therefore for me an interesting challenge to define systematic and minimized

logic strategies for the design of integrase-based logic circuits.

During my thesis, I focused on the implementation of asynchronous Boolean logic circuits

and history-dependent logic circuits using two parallel designs. First, I implemented logic in

a multicellular system using a systematic design framework and simple and already optimized

logic devices. This design strategy makes the design of large logic programs accessible but does

not propose the most compact implementation. Therefore, I also worked on the implementation

of logic circuits in single-cell systems, pushing the limit of circuit minimization. I believe that

this work would permit to increase the computation power of biological logic systems.

5.1.1 Distribution of computation in multicellular system

For implementing multicellular logic systems, I developed a theoretical design framework

broadly accessible via a web server: CALIN. For both asynchronous Boolean logic and history-

dependent logic, the logic program of interest is decomposed in sub-programs which are imple-

mented in different cellular subpopulation; by composition of these strains the full program is

computed.

For Boolean logic, the design is based on a reduced library of logic devices. 14 devices are

required for the implementation of all 4-input logic functions. I then worked on the engineering

of these 14 devices, so they can be distributed and used by researchers to implement logic circuits

in a streamline manner. I engineered these logic devices by decomposition in logic elements.

I characterized NOT and IDENTITY elements and composed the well-behaving elements for

the design of the devices. Following this process, I obtained in a straightforward manner logic

devices with corresponding ON and OFF states and a clear common fold change. While still

having background expression level and variable ON states, these devices support composition

in a multicellular system. We then characterized the part of the circuits, such as integrase sites

and terminators to push forward the optimization by decomposition. We found that integrase

sites can have significant promoter and terminator activities. These part characterizations will

5.1. Summary 165

be useful for the design of any integrase based circuits and for further optimization of our

Boolean logic devices.

For history-dependent logic, the design is based on a scaffold permitting the implementation

of all subprograms with gene-expression in a specific lineage of inputs. A specific subprogram

is designed by placing genes at GOI positions corresponding to ON input states. We char-

acterized and optimized 2- and 3-input scaffolds by synthesizing recombination intermediate

states (OSIRiS method). As a proof-of-concept of the multicellular implementation of history-

dependent programs, we implemented a 2-input 2-cell program which behaved as expected.

When we have a third inducible integrase, we will characterize a single-cell and a multi-cell

3-input history-dependent program.

The main limitation of this multicellular design is the need to compose a large number of

different strains for executing some logic programs. While the different strains can be placed

in alginate beads to eliminate potential growth competition and cell-cell communication can

be used to integrate the output signal obtaining a constant output level, a high increase num-

ber of different strains will still increase the complexity of the implementation of the system.

For history-dependent logic, the number of strains is reducible by combining Boolean logic de-

vices with history-dependent devices and minimizing the decomposition of history-dependent

programs into programs with a reduced number of inputs. While I implemented a brute-

force method to permit combination of Boolean and history-dependent logic devices, systematic

history-dependent program minimization methods are required to further push the implemen-

tation of history-dependent logic.

5.1.2 Minimization of Boolean logic circuit design.

I also worked on single-cell design with the goal of minimizing the size of logic circuits. Conse-

quently, in this design, a single integrase and a single pair of sites were used per input, pushing

forward the circuit compactness. To explore the integrase-circuit design landscape, we generated

a complete set of logic devices by an algorithm combining integrase sites, promoters, termina-

tors, and genes. We then obtained numerous designs for each 3-input Boolean function and 91%

of 4-input functions. It then proved that all 3-input and most of 4-input Boolean functions are

theoretically implementable in single-cell with a single integrase and a single pair of sites per

input. The database is available through a web interface called Recombinator. Additionally, a

similar method could be used for history-dependent programs.

For Boolean functions, these designs are theoretical and in their generation we did not

add any biological constraints, thus we expect that some designs will not behave as predicted.

Moreover, as the design is no longer composable, each circuit will need to be optimized in an ad-

hoc manner. Due to the number of possible designs per functions, I reduced the characterization

to a single Boolean function per NP-class, as logic circuits implementing functions from the same

166 Chapter 5. Discussion

NP-class can be in a first approximation considered equivalent. This reduced the number of

3-input functions to implement and optimize to 16 functions. Consequently, following this

strategy, it is possible to prove the possibility of the experimental implementation of all 3-input

functions in single-cell.

As we used a brute-force generation method, this strategy is not scalable to a high number

of inputs. I aimed during my Ph.D. at formalizing rules for the systematic and scalable design

of single-cell logic circuits. As Claude Shannon did for electronic circuits, I wanted to be able to

obtain a minimized biological circuit directly from the Boolean function. As seen in Chapter 4.2,

the inversion performed by integrase can be associated to the negation of the inputs. Indeed, it

seems possible to associate integrase-based logic elements to specific logic operators. I worked

on the definition of few systematic design rules and on the development of a Python algorithm

that use these rules for the design of logic circuits (Annex A). This work is not complete, and

the systematic algorithm that I implemented is still not able to compete with my manual single-

cell design. While the previous work permits logic circuits without any biological criteria or

limitation, I aimed here at obtaining a design which have more chance to behave as predicted.

The implementation of a subset of circuits from the brute-force algorithm will probably permit

to new design rules definitions. I hope that the systematic workflow for the design of minimized

integrase-based circuits will be achieved one day.

5.1.3 Systematic engineering of synthetic biological circuits.

For integrase-based circuits, the various states of the system are accessible by DNA synthesis

as it is encoded in the DNA sequence, unlike repressor-based circuits. Integrase-based circuits

can then be optimized by synthesizing DNA intermediate states; this strategy facilitates the

debugging of circuit design as seen in Chapter 3.

In general, the construction of synthetic biological circuits by composition of existing bio-

logical parts is a fundamental principle of synthetic biology. However, it is still an engineering

problem to compose characterized genetic parts for the design of specific genetic circuits. Indeed,

the parts behavior are highly dependent on the genetic context and on experimental conditions.

For example, in our logic devices, while selecting well-behaving logic elements, we obtained

background expression levels and various ON states. Many works have been done to insulate

synthetic circuits from biological context [Mutalik 2013a, Mutalik 2013b, Zong 2017, Lou 2012],

but it still remains an issue.

Additionally, it seems that randomized DNA sequences can have an effect in gene expression,

at least in E. coli, such as for the spacer 7 (Chapter 3) and also various integrase sites (Chapter

2). The exact behavior of genetic circuits is still difficult to predict as little is known on the

dynamic molecular interaction of DNA and proteins in living organisms.

While the composition of biological parts is still hard to predict, I believe that their charac-

5.2. Control and engineering of serine integrase activity. 167

terizations, distributions to the community and the open and transparent publication of results

and failures are essential to permit efficient advancement of synthetic biology.

5.2 Control and engineering of serine integrase activity.

The main limitation of this work is the lack of inducible integrases for experimental implementa-

tions. Indeed, for multicellular Boolean logic, I characterized all logic devices with constitutive

integrase cassettes. Additionally, for history-dependent logic, the characterization of full logic

circuits was limited to two inputs.

The engineering of connections between inducible promoters and integrases is not straight-

forward as leakage in integrase expression leads to an irreversible recombination reaction

[Folliard 2015, Courbet 2015a]. Therefore, the integrase expression has to be extremely low

in the absence of an inducer while sufficiently high when the inducer is present so that complete

recombination is achieved. However, most natural promoters have a high background expression

level and/or a reduced fold change of activation. To connect integrases to any inducible pro-

moter, we are developing a systematic engineering workflow that should allow the automation of

inducible promoter to integrase connection. To do so, we are screening a set of ribosome binding

sites and degradation tags, tuning the translation and degradation levels of the integrase. The

variants are tested with the BP target and we select variants with less than 5% switching in

the absence of inducer and more than 90% switching in the presence of inducer.

According to our preliminary results, it seems that the switch efficiency is different between

inversion and excision of DNA. Excision seems less efficient, at least excision with a reduced

spacing (a few dozen base pairs) between pair of integrase sites. This decrease in efficiency

is probably due to the physical constraint for the formation of the DNA loop required for the

integrase to perform excision. Indeed, for inversion, a simple loop is required to position the sites

in the integrase synaptic complex, while two loops are required for excision. Consequently, if the

space between the two integrase sites is reduced it might cause a decrease of excision efficiency.

In our Boolean logic devices, the space between integrase sites can be as low as 20 base pairs;

however, using constitutive integrases we obtained 100% efficiency in the excision due probably

of a high quantity of integrases being present. More characterizations have to be performed

to confirm these hypotheses. We will characterize inversion and excision with different length

spacers between the two integrase sites using a cell-free transcription/translation system, as by

adding different quantities of plasmid of integrase we can easily perform a titration of the switch

efficiency with the quantity of integrase.

For Boolean logic devices, the reduced recombination efficiency could simplify the engi-

neering of inducible integrases, as more expression leakage would be tolerated by the system.

However, this difference of recombination efficiency is problematic for the engineering of inte-

grase cassettes used for inversion and excision, such as for history-dependent logic. The integrase

168 Chapter 5. Discussion

cassettes have therefore to be characterized in the two conditions. If these hypotheses are con-

firmed, future logic devices should be designed with a sufficient space between integrase sites in

the excision condition.

Nevertheless, we are close to obtain a third integrase switch, after which 3-input history-

dependent devices will be characterized. Additionally, we will be able to characterized full

3-input Boolean logic circuits.

We focused for now on induction of integrase via transcription. One limitation of transcrip-

tion induction is the time required between the detection of the input signal and the folding of

the protein, which does not allow for a fast response of the system. To obtain fastest response,

integrases could be activated at the post-translational level. One option is to use chemically

inducible dimerization. The integrase is split into two domains and each domain is fused to

another protein domain that, in presence of the input signal, will induce dimerization of the

two fused proteins and therefore activation of the integrase [Weinberg 2017]. Another approach

applicable to eukaryotes is to engineer an inducible nuclear localization. In the absence of

the input, the integrase is localized in the cytoplasm, and in the presence of input it migrates

through the nuclear membrane mediating recombination [Weinberg 2017]. Few systems have

been engineered, thus systematic engineering of post-translational activation of integrases needs

to be developed to allow for large logic circuits with fast time response.

Despite the use of serine integrases in various genetic circuits, no crystal structure of the

integrase in complex with a DNA integrase site exists. Therefore, the recombination mechanism

of serine integrases is still not know in detail. If the structure of this complex was known, such

as via crystallization or cryoelectron microscopy (CryoEM), it would permit engineering of

serine integrases, such as tuning of its catalytic activity, or engineering in a straightforward

manner of split-integrase or protein fusion. Additionally, one interesting experiment to study

the recombination reaction would be the use of high-speed atomic force microscopy (HS-AFM)

to record a "movie" of integrase switching DNA [Ando 2013]. Such work has been performed for

Cas9 [Shibata 2017]; the principle would be the same for serine integrases, and it should allow

the visualization of the DNA conformations during the excision and inversion recombination

reaction. Moreover, it could permit the study of the integrase-excisionase reverse recombination

reaction.

5.3 The use of integrase coupled with excisionase permits the

implementation of wider types of logic.

During my thesis, I used serine integrases to implement asynchronous, single-shot Boolean and

history-dependent logic. Serine integrases mediate irreversible recombination reactions; thus

based on integrase only, the logic implemented is asynchronous and single-shot. By combining

integrase with a Recombination Directionality Factor (RDF) (excisionase), the reverse recom-

5.3. The use of integrase coupled with excisionase permits the implementation of
wider types of logic. 169

Single-shot

Asynchronous

Boolean logic

Single-shot

Asynchronous

History-dependent

Resettable

Asynchronous

Boolean logic

Real-time

Boolean logic
Probabilistic logic

Int-RDFIntegrase

ResetInput

Input

IntegraseRDF
Pcons

No

input
Input

Input

B.NOT(A)

Reset

RDF

Input

Integrase

50% 50%

0.5 probability of expression

p=0.25

Input

p=0.5

0.5 x 0.5

Integrase

Input

Input

Integrase1

Input A

Integrase2

Input B

A then B

Figure 5.1: Various integrase-based circuits for the implementation of a large scale

of logic.

bination reaction is performed. Therefore, resettable asynchronous logic is implementable by

expressing the integrase with a redirectional factor to perform the reset [Bonnet 2012]. To have

a complete reset switch (resettable Boolean logic), the expression of integrases and RDFs have

to be stoichiometric [Bonnet 2012]. One simple option to implement stoichiometric expression

of integrases and RDFs is to fuse both proteins [Olorunniji 2017]. For now, fusion proteins do

not allow a prefect reverse reaction, thus further studies should be performed.

In this design, it is essential to have logic elements based on inversion, as with excision

the recombination is destructive and consequently no reset can be performed. For single-cell

implementation, logic circuits based exclusively on inversion can be selected through the recom-

binator web-interface (Chapter 4). For multi-cell implementation, a design is proposed in the

supplementary data of the Chapter 2.

In a similar manner, synchronous Boolean logic can be implemented using integrase and

RDF. To do so, the RDF is expressed under control of the input signal and the integrase is

constitutively expressed. The logic device based on inversion only is composed of attL and

attR sites; therefore, the reaction to attB/attP sites is performed in presence of the input with

expression of integrase and RDF. In the absence of input, the integrase mediated the reverse

reaction, going back to the initial state. The circuit is then synchronous with the presence

of inputs. Moreover, probabilistic logic is implementable using integrase and RDF, as has

been done based wth DNA computing [Wilhelm 2018]. By tuning the relative expression of

integrase and RDF, a switch with a probability of 50% can be engineered corresponding to the

implementation of a P-switch. By combining P-switches, various probabilites of expression can

be obtained. Guilherme Innocentini and Ovidiu Radulescu developed a stochastic model for the

dynamics of this binary biological switch [Innocentini 2016]. This work showed the possibility

of using integrase/RDF to implement a p-switch (50% switching probability).

Therefore, the next step for the development of integrase-based logic circuits is the engi-

neering of well-controlled RDF-integrase switches.

170 Chapter 5. Discussion

5.4 What are the future applications and future challenges of

biocomputing?

Serine-integrase based logic circuits have been engineered in E. coli [Bonnet 2012, Siuti 2013,

Roquet 2016] and in mammalian cells [Weinberg 2017]. Other serine integrase based systems

have been implemented in various organisms, such as in Drosophila [Bischof 2007], in plants

[Hou 2014], and mice [Lakso 1992, Pichel 1993]. Therefore, serine-integrase based logic circuits

could be implemented in various organisms, from bacteria to multicellular organisms. The

development of such BP targets, integrase cassettes, and logic devices in various model organisms

(Arabidopsis, Drosophila, Zebrafish, Nematode, Mouse) will extend the use of serine-integrase

based circuits and their applications.

Integrases coupled with detection sensors permit signal digitization and amplification, mul-

tiplexed signal processing, and data storage in living organisms. It is therefore a great tool for

the engineering of biosensor, such as for medical diagnostic [Courbet 2015a]. As it allows signal

amplification and digitalization, it is useful for the detection of low concentration of molecules.

Additionally, as the output of the system is readable in the DNA, the output can be read by

sequencing even if the cell is dead.

I believe that integrase-based logic circuits will serve as a platform for the engineering of

upcoming biological-based technology. Likely, the shortest term application of integrase-based

circuits will be in medical diagnostics. As research progresses, logic circuits implemented in

single-cell systems could be used for engineering therapeutics: e.g. bacteria detecting disease

in the human body and producing drugs directly on site.

Moreover, history-dependent logic circuits could be applied over the short term to study

time-dependent induction of endogenous signals during development. In general, with the de-

velopment of accessible tools and design frameworks, all integrase-based circuits could be used to

study endogenous signaling networks in living organisms, creating a great tool for fundamental

research.

The main interest of integrase-based circuits is their compactness and the irreversibility

of switches. Therefore, this technology is complementary to repressor-based circuits that al-

low implementation of real-time logic. However, efforts have to be made to share and allow

more collaborations between labs working on the implementation of logic in living organisms.

Moreover, the logic implemented in living organisms does not correspond to what exist in elec-

tronics. As the field is growing, it is essential to define common vocabulary for the various types

of logic implemented in cells. The use of the terms, sequential logic, asynchronous logic, and

history-dependent logic, is not straightforward and often wrongly used due to a lack of proper

terms.

To summarize, one challenge for biocomputing and synthetic biology in general is the use

5.4. What are the future applications and future challenges of biocomputing? 171

of engineered biological circuits to solve pressing global challenges. Biological logic circuits will

serve in the future as a platform to engineer new biologically based technologies.

The implementation of logic within living organism is asking fundamental questions in the

logic field. As the implementation of logic circuits in living organisms is scaling up, new logic

formalization and logic design minimization have to be developed.

We are now pioneering the development of logic circuits in living organisms building the base

of this technology. The coming decades will be exciting with the expansion of biological-based

technologies.

Bibliography

[Adleman 1994] L M Adleman. Molecular computation of solutions to combinatorial problems.

Science, vol. 266, no. 5187, pages 1021–1024, 1994. (Cited on page 27.)

[Akopian 2003] Aram Akopian, Jiuya He, Martin R Boocock and W Marshall Stark. Chimeric

recombinases with designed DNA sequence recognition. Proc. Natl. Acad. Sci. U. S. A.,

vol. 100, no. 15, pages 8688–8691, July 2003. (Cited on page 44.)

[Anderson 2006] J Christopher Anderson, Elizabeth J Clarke, Adam P Arkin and Christopher A

Voigt. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol.

Biol., vol. 355, no. 4, pages 619–627, January 2006. (Cited on page 17.)

[Anderson 2007] J Christopher Anderson, Christopher A Voigt and Adam P Arkin. Environ-

mental signal integration by a modular AND gate. Mol. Syst. Biol., vol. 3, August 2007.

(Cited on page 33.)

[Ando 2013] Toshio Ando, Takayuki Uchihashi and Noriyuki Kodera. High-speed AFM and

applications to biomolecular systems. Annu. Rev. Biophys., vol. 42, pages 393–414,

2013. (Cited on page 168.)

[Annaluru 2014] Narayana Annaluru, Heloise Muller, Leslie a Mitchell, Sivaprakash Rama-

lingam, Giovanni Stracquadanio, Sarah M Richardson, Jessica S Dymond, Zheng Kuang,

Lisa Z Scheifele, Eric M Cooper, Yizhi Cai, Karen Zeller, Neta Agmon, Jeffrey S Han,

Michalis Hadjithomas, Jennifer Tullman, Katrina Caravelli, Kimberly Cirelli, Zheyuan

Guo, Viktoriya London, Apurva Yeluru, Sindurathy Murugan, Karthikeyan Kandavelou,

Nicolas Agier, Gilles Fischer, Kun Yang, J Andrew Martin, Murat Bilgel, Pavlo Bohut-

skyi, Kristin M Boulier, Brian J Capaldo, Joy Chang, Kristie Charoen, Woo Jin Choi,

Peter Deng, James E DiCarlo, Judy Doong, Jessilyn Dunn, Jason I Feinberg, Christo-

pher Fernandez, Charlotte E Floria, David Gladowski, Pasha Hadidi, Isabel Ishizuka,

Javaneh Jabbari, Calvin Y L Lau, Pablo a Lee, Sean Li, Denise Lin, Matthias E Lin-

der, Jonathan Ling, Jaime Jonathan Jaime Jonathan Liu, Mariya London, Henry Ma,

Jessica Mao, Jessica E McDade, Alexandra McMillan, Aaron M Moore, Won Chan

Oh, Yu Ouyang, Ruchi Patel, Marina Paul, Laura C Paulsen, Judy Qiu, Alex Rhee,

Matthew G Rubashkin, Ina Y Soh, Nathaniel E Sotuyo, Venkatesh Srinivas, Allison

Suarez, Andy Wong, Remus Wong, Wei Rose Xie, Yijie Xu, Allen T Yu, Romain Koszul,

Joel S Bader, Jef D Boeke and Srinivasan Chandrasegaran. Total Synthesis of a Func-

tional Designer Eukaryotic Chromosome. Science, vol. 344, no. 6179, pages 55–58, 2014.

(Cited on page 14.)

174 Bibliography

[Arber 1962] W Arber and D Dussoix. Host specificity of DNA produced by Escherichia coli. I.

Host controlled modification of bacteriophage lambda. J. Mol. Biol., vol. 5, pages 18–36,

July 1962. (Cited on page 3.)

[Aristotle] Aristotle. Prior analytics. Aeterna Press. (Cited on page 20.)

[Arkin 1994] A Arkin and J Ross. Computational functions in biochemical reaction networks.

Biophys. J., vol. 67, no. 2, pages 560–578, August 1994. (Cited on page 27.)

[Arkin 1999] Adam P Arkin and Drew Endy. A Standard Parts List for Biological Circuitry.

DARPA White Paper, pages 1–7, 1999. (Cited on page 6.)

[Arnold 1998] Frances H Arnold. Design by Directed Evolution. Acc. Chem. Res., vol. 31, no. 3,

pages 125–131, March 1998. (Cited on page 13.)

[Arnold 1999] F H Arnold and A A Volkov. Directed evolution of biocatalysts. Curr. Opin.

Chem. Biol., vol. 3, no. 1, pages 54–59, February 1999. (Cited on page 13.)

[Aronoff-Spencer 2016] Eliah Aronoff-Spencer, A G Venkatesh, Alex Sun, Howard Brickner,

David Looney and Drew A Hall. Detection of Hepatitis C core antibody by dual-affinity

yeast chimera and smartphone-based electrochemical sensing. Biosens. Bioelectron.,

vol. 86, pages 690–696, December 2016. (Cited on page 17.)

[Arrault 2000] Alain Arrault. Les diagrammes de Shao Yong (1012-1077). Études chinoises,

vol. 19, no. 1-2, pages 67–114, 2000. (Cited on page 20.)

[Autebert 1987] Jean-Michel Autebert. Langages algébriques. Masson, 1987. (Cited on

page 145.)

[Avery 1944] O T Avery, C M Macleod and M McCarty. Studies on the chemical nature of the

substance inducing formation of pneumococcal types: induction of transformation by a

desoxyriboncleic acid fraction isolated from pneumococcus type III. J. Exp. Med., vol. 79,

no. 2, pages 137–158, February 1944. (Cited on page 2.)

[Balagaddé 2008] Frederick K Balagaddé, Hao Song, Jun Ozaki, Cynthia H Collins, Matthew

Barnet, Frances H Arnold, Stephen R Quake and Lingchong You. A synthetic Escherichia

coli predator-prey ecosystem. Mol. Syst. Biol., vol. 4, no. 187, page 187, January 2008.

(Cited on page 12.)

[Baldwin 2015] Geoff Baldwin, Travis Bayer, Robert Dickinson, Tom Ellis, Paul S Freemont,

Richard I Kitney, Karen Polizzi and Guy-Bart Stan. Synthetic biology — a primer.

IMPERIAL COLLEGE PRESS, October 2015. (Cited on page 6.)

[Basu 2004] Subhayu Basu, Rishabh Mehreja, Stephan Thiberge, Ming-Tang Chen and Ron

Weiss. Spatiotemporal control of gene expression with pulse-generating networks. Proc.

Bibliography 175

Natl. Acad. Sci. U. S. A., vol. 101, no. 17, pages 6355–6360, April 2004. (Cited on

page 208.)

[Basu 2005] Subhayu Basu, Yoram Gerchman, Cynthia H Collins, Frances H Arnold and Ron

Weiss. A synthetic multicellular system for programmed pattern formation. Nature,

vol. 434, no. 7037, pages 1130–1134, 2005. (Cited on page 12.)

[Baumgardner 2009] Jordan Baumgardner, Karen Acker, Oyinade Adefuye, Samuel Thomas

Crowley, Will Deloache, James O Dickson, Lane Heard, Andrew T Martens, Nickolaus

Morton, Michelle Ritter, Amber Shoecraft, Jessica Treece, Matthew Unzicker, Amanda

Valencia, Mike Waters, A Malcolm Campbell, Laurie J Heyer, Jeffrey L Poet and Todd T

Eckdahl. Solving a Hamiltonian Path Problem with a bacterial computer. J. Biol. Eng.,

vol. 3, page 11, July 2009. (Cited on page 50.)

[Bayer 2005] Travis S Bayer and Christina D Smolke. Programmable ligand-controlled riboreg-

ulators of eukaryotic gene expression. Nat. Biotechnol., vol. 23, no. 3, pages 337–343,

March 2005. (Cited on page 34.)

[Beaucage 1981] S L Beaucage and M H Caruthers. Deoxynucleoside phosphoramidites—A new

class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett., vol. 22,

no. 20, pages 1859–1862, January 1981. (Cited on page 3.)

[Benenson 2009] Yaakov Benenson. RNA-based computation in live cells. Curr. Opin. Biotech-

nol., vol. 20, no. 4, pages 471–478, August 2009. (Cited on page 34.)

[Bibb 2005] Lori A Bibb, Maria I Hancox and Graham F Hatfull. Integration and excision by

the large serine recombinase phiRv1 integrase. Mol. Microbiol., vol. 55, no. 6, pages

1896–1910, March 2005. (Cited on page 46.)

[Bischof 2007] Johannes Bischof, Robert K Maeda, Monika Hediger, François Karch and Konrad

Basler. An optimized transgenesis system for Drosophila using germ-line-specific ϕC31

integrases. Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 9, pages 3312–3317, February

2007. (Cited on pages 47 and 170.)

[Boch 2010] Jens Boch and Ulla Bonas. Xanthomonas AvrBs3 family-type III effectors: dis-

covery and function. Annu. Rev. Phytopathol., vol. 48, pages 419–436, 2010. (Cited on

page 207.)

[Boland 2013] Howard Boland. Art from synthetic biology. PhD thesis, 2013. (Cited on page 18.)

[Bonnet 2012] Jerome Bonnet, Pakpoom Subsoontorn and Drew Endy. Rewritable digital data

storage in live cells via engineered control of recombination directionality. Proc. Natl.

Acad. Sci. U. S. A., vol. 109, no. 23, pages 8884–8889, June 2012. (Cited on pages 35,

46, 54, 67, 68, 169, 170 and 209.)

176 Bibliography

[Bonnet 2013] Jerome Bonnet, Peter Yin, Monica E Ortiz, Pakpoom Subsoontorn and Drew

Endy. Amplifying genetic logic gates. Science, vol. 340, no. 6132, pages 599–603, 2013.

(Cited on pages 12, 32, 35, 50, 67, 68, 71, 111, 128, 138, 139 and 142.)

[Boole 1847] George Boole. The mathematical analysis of logic. Philosophical Library, 1847.

(Cited on page 20.)

[Boole 1854] George Boole. An investigation of the laws of thought: On which are founded the

mathematical theories of logic and probabilities. Dover Publications, 1854. (Cited on

page 20.)

[Boque-Sastre 2015] Raquel Boque-Sastre, Marta Soler, Cristina Oliveira-Mateos, Anna

Portela, Catia Moutinho, Sergi Sayols, Alberto Villanueva, Manel Esteller and Sonia

Guil. Head-to-head antisense transcription and R-loop formation promotes transcrip-

tional activation. Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 18, pages 5785–5790, May

2015. (Cited on page 149.)

[Bray 1995] D Bray. Protein molecules as computational elements in living cells, 1995. (Cited

on pages 27 and 111.)

[Breaker 1994] R R Breaker and G F Joyce. A DNA enzyme that cleaves RNA. Chem. Biol.,

vol. 1, no. 4, pages 223–229, December 1994. (Cited on page 28.)

[Breüner 1999] A Breüner, L Brøndsted and K Hammer. Novel organization of genes involved

in prophage excision identified in the temperate lactococcal bacteriophage TP901-1. J.

Bacteriol., vol. 181, no. 23, pages 7291–7297, December 1999. (Cited on page 46.)

[Brøndsted 2001] L Brøndsted, S Ostergaard, M Pedersen, K Hammer and F K Vogensen. Anal-

ysis of the complete DNA sequence of the temperate bacteriophage TP901-1: evolution,

structure, and genome organization of lactococcal bacteriophages. Virology, vol. 283,

no. 1, pages 93–109, April 2001. (Cited on page 86.)

[Bryksin 2014] Anton V Bryksin, Ashley C Brown, Michael M Baksh, M G Finn and Thomas H

Barker. Learning from nature - novel synthetic biology approaches for biomaterial design.

Acta Biomater., vol. 10, no. 4, pages 1761–1769, April 2014. (Cited on page 17.)

[Cambray 2013] Guillaume Cambray, Joao C Guimaraes, Vivek K Mutalik, Colin Lam, Quynh-

Anh Mai, Tim Thimmaiah, James M Carothers, Adam P Arkin and Drew Endy. Mea-

surement and modeling of intrinsic transcription terminators. Nucleic Acids Res., vol. 41,

no. 9, page 5139, March 2013. (Cited on page 10.)

[Cameron 2014] D Ewen Cameron, Caleb J Bashor and James J Collins. A brief history of

synthetic biology. Nat. Rev. Microbiol., vol. 12, no. 5, pages 381–390, 2014. (Cited on

pages 2 and 5.)

Bibliography 177

[Canton 2008] Barry Canton, Anna Labno and Drew Endy. Refinement and standardization of

synthetic biological parts and devices. Nat. Biotechnol., vol. 26, no. 7, pages 787–793,

July 2008. (Cited on page 6.)

[Chalberg 2006] Thomas W Chalberg, Joylette L Portlock, Eric C Olivares, Bhaskar Thya-

garajan, Patrick J Kirby, Robert T Hillman, Juergen Hoelters and Michele P Calos.

Integration specificity of phage phiC31 integrase in the human genome. J. Mol. Biol.,

vol. 357, no. 1, pages 28–48, March 2006. (Cited on page 48.)

[Chang 2017] Hung-Ju Chang, Peter L Voyvodic, Ana Zuniga and Jerome Bonnet. Microbially

derived biosensors for diagnosis, monitoring and epidemiology. Microbial biotechnology,

August 2017. (Cited on page 17.)

[Chen 2013] Ying-Ja Chen, Peng Liu, Alec A K Nielsen, Jennifer A N Brophy, Kevin Clancy,

Todd Peterson and Christopher A Voigt. Characterization of 582 natural and synthetic

terminators and quantification of their design constraints. Nat. Methods, vol. 10, no. 7,

pages 659–664, July 2013. (Cited on pages 10, 70 and 88.)

[Cheo 2004] David L Cheo, Steven A Titus, Devon R N Byrd, James L Hartley, Gary F Temple

and Michael A Brasch. Concerted assembly and cloning of multiple DNA segments

using in vitro site-specific recombination: functional analysis of multi-segment expression

clones. Genome Res., vol. 14, no. 10B, pages 2111–2120, October 2004. (Cited on

page 47.)

[Chizzolini 2014] Fabio Chizzolini, Michele Forlin, Dario Cecchi and Sheref S Mansy. Gene

position more strongly influences cell-free protein expression from operons than T7 tran-

scriptional promoter strength. ACS Synth. Biol., vol. 3, no. 6, pages 363–371, June 2014.

(Cited on pages 71 and 150.)

[Cobb 2013] Ryan E Cobb, Ning Sun and Huimin Zhao. Directed evolution as a powerful

synthetic biology tool. Methods, vol. 60, no. 1, pages 81–90, March 2013. (Cited on

page 13.)

[Collins 2017] James J Collins and Timothy Kuan-Ta Lu. Biological analog-to-digital and

digital-to-analog converters, July 2017. (Cited on page 111.)

[Colloms 2014] Sean D Colloms, Christine A Merrick, Femi J Olorunniji, W Marshall Stark,

Margaret C M Smith, Anne Osbourn, Jay D Keasling and Susan J Rosser. Rapid

metabolic pathway assembly and modification using serine integrase site-specific recom-

bination. Nucleic Acids Res., vol. 42, no. 4, page e23, February 2014. (Cited on pages 46,

47, 54, 112 and 142.)

[Courbet 2015a] Alexis Courbet, Drew Endy, Eric Renard, Franck Molina and Jérôme Bonnet.

Detection of pathological biomarkers in human clinical samples via amplifying genetic

178 Bibliography

switches and logic gates. Sci. Transl. Med., vol. 7, no. 289, 2015. (Cited on pages 16, 66,

167 and 170.)

[Courbet 2015b] Alexis Courbet, Franck Molina and Patrick Amar. Computing with synthetic

protocells. Acta Biotheor., vol. 63, no. 3, pages 309–323, September 2015. (Cited on

page 30.)

[Courbet 2018] Alexis Courbet, Patrick Amar, François Fages, Eric Renard and Franck Molina.

Computer‚Äêaided biochemical programming of synthetic microreactors as diagnostic de-

vices. Molecular Systems Biology, April 2018. (Cited on page 30.)

[Couturat 1901] L Couturat. La logique de leibniz, d’après des documents inédits. 1901. (Cited

on page 20.)

[Couturat 1911] Louis Couturat. The algebra of logic. Open court publishing Company, 1911.

(Cited on page 20.)

[Crick 1958] F H Crick. On protein synthesis. Symp. Soc. Exp. Biol., vol. 12, pages 138–163,

1958. (Cited on page 2.)

[Davis 2011] Joseph H Davis, Adam J Rubin and Robert T Sauer. Design, construction and

characterization of a set of insulated bacterial promoters. Nucleic Acids Res., vol. 39,

no. 3, pages 1131–1141, February 2011. (Cited on pages 12 and 76.)

[de Lorenzo 2008] Víctor de Lorenzo. Systems biology approaches to bioremediation. Curr.

Opin. Biotechnol., vol. 19, no. 6, pages 579–589, December 2008. (Cited on page 16.)

[Duan 2010] Faping Duan and John C March. Engineered bacterial communication prevents

Vibrio cholerae virulence in an infant mouse model. Proc. Natl. Acad. Sci. U. S. A.,

vol. 107, no. 25, pages 11260–11264, June 2010. (Cited on page 17.)

[Dueber 2003] John E Dueber, Brian J Yeh, Kayam Chak and Wendell A Lim. Reprogramming

control of an allosteric signaling switch through modular recombination. Science, vol. 301,

no. 5641, pages 1904–1908, September 2003. (Cited on page 35.)

[Ede 2016] Christopher Ede, Ximin Chen, Meng-Yin Lin and Yvonne Y Chen. Quantitative

Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression

in Mammalian Cells. ACS Synth. Biol., page acssynbio.5b00266, 2016. (Cited on page 9.)

[Egbert 2012] R G Egbert and E Klavins. Fine-tuning gene networks using simple sequence

repeats. Proceedings of the National Academy of Sciences, vol. 109, no. 42, pages 16817–

16822, 2012. (Cited on page 10.)

[Elowitz 2000] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of

transcriptional regulators. Nature, vol. 403, no. 6767, pages 335–338, 2000. (Cited on

pages 12 and 33.)

Bibliography 179

[Endy 2005] Drew Endy. Foundations for engineering biology. Nature, vol. 438, no. 7067, pages

449–453, 2005. (Cited on pages 3 and 5.)

[Endy 2011] Drew Endy. Drew Endy: Better Computing for the Things We Care About Most.

The New York Times, December 2011. (Cited on page 19.)

[Engler 2008] Carola Engler, Romy Kandzia and Sylvestre Marillonnet. A One Pot, One Step,

Precision Cloning Method with High Throughput Capability. PLoS One, vol. 3, no. 11,

page e3647, 2008. (Cited on page 9.)

[Farinas 2001] E T Farinas, T Bulter and F H Arnold. Directed enzyme evolution. Curr. Opin.

Biotechnol., vol. 12, no. 6, pages 545–551, December 2001. (Cited on page 13.)

[Feng 1994] J A Feng, R C Johnson and R E Dickerson. Hin recombinase bound to DNA: the

origin of specificity in major and minor groove interactions. Science, vol. 263, no. 5145,

pages 348–355, January 1994. (Cited on page 41.)

[Fiering 1993] S Fiering, C G Kim, E M Epner and M Groudine. An “in-out” strategy using gene

targeting and FLP recombinase for the functional dissection of complex DNA regulatory

elements: analysis of the beta-globin locus control region. Proc. Natl. Acad. Sci. U. S.

A., vol. 90, no. 18, pages 8469–8473, September 1993. (Cited on page 47.)

[Folliard 2015] Thomas Folliard, Jerome Bonnet, John Ward, Frank Baganz, Christopher Grant

and Drew Endy. Connecting boolean integrase logic gates to a novel alkane control signal

via engineered level matching. November 2015. (Cited on page 167.)

[Friedland 2009] A E Friedland, T K Lu, X Wang, D Shi, G Church and J J Collins. Synthetic

Gene Networks That Count. Science, vol. 324, no. 5931, pages 1199–1202, 2009. (Cited

on pages 54 and 111.)

[Friedman 1986] Arthur D Friedman. Fundamentals of logic design and switching theory. Com-

puter Science Press, 1986. (Cited on page 156.)

[Gaber 2014] Rok Gaber, Tina Lebar, Andreja Majerle, Branko Šter, Andrej Dobnikar, Mojca

Benčina and Roman Jerala. Designable DNA-binding domains enable construction of

logic circuits in mammalian cells. Nat. Chem. Biol., vol. 10, no. 3, pages 203–208,

March 2014. (Cited on pages 33 and 207.)

[Galanie 2015] S Galanie, K Thodey, I J Trenchard, M Filsinger Interrante and C D Smolke.

Complete biosynthesis of opioids in yeast. Science, vol. 349, no. 6252, pages 1095–1100,

2015. (Cited on page 15.)

[Gander 2017] Miles W Gander, Justin D Vrana, William E Voje, James M Carothers and Eric

Klavins. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat. Commun.,

vol. 8, page 15459, May 2017. (Cited on pages 31, 33 and 208.)

180 Bibliography

[Gardner 2000] T S Gardner, C R Cantor and J J Collins. Construction of a genetic toggle

switch in Escherichia coli. Nature, vol. 403, no. 6767, pages 339–342, January 2000.

(Cited on pages 10, 12, 32 and 111.)

[Ghosh 2006] Pallavi Ghosh, Laura R Wasil and Graham F Hatfull. Control of phage Bxb1

excision by a novel recombination directionality factor. PLoS Biol., vol. 4, no. 6, page

e186, June 2006. (Cited on page 46.)

[Ghosh 2008] Pallavi Ghosh, Lori A Bibb and Graham F Hatfull. Two-step site selection

for serine-integrase-mediated excision: DNA-directed integrase conformation and cen-

tral dinucleotide proofreading. Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 9, pages

3238–3243, March 2008. (Cited on page 46.)

[Gibson 2008] Daniel G Gibson, Gwynedd A Benders, Cynthia Andrews-Pfannkoch, Ev-

geniya A Denisova, Holly Baden-Tillson, Jayshree Zaveri, Timothy B Stockwell, Anushka

Brownley, David W Thomas, Mikkel A Algire, Chuck Merryman, Lei Young, Vladimir N

Noskov, John I Glass, J Craig Venter, Clyde A Hutchison 3rd and Hamilton O Smith.

Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome.

Science, vol. 319, no. 5867, pages 1215–1220, February 2008. (Cited on page 13.)

[Gibson 2009] Daniel G Gibson, Lei Young, Ray-Yuan Chuang, J Craig Venter, Clyde A Hutchi-

son and Hamilton O Smith. Enzymatic assembly of DNA molecules up to several hundred

kilobases. Nat. Methods, vol. 6, no. 5, pages 343–345, 2009. (Cited on page 9.)

[Gibson 2010] D G Gibson, J I Glass, C Lartigue, V N Noskov, R-Y Chuang, M A Algire, G A

Benders, M G Montague, L Ma, M M Moodie, C Merryman, S Vashee, R Krishnakumar,

N Assad-Garcia, C Andrews-Pfannkoch, E A Denisova, L Young, Z-Q Qi, T H Segall-

Shapiro, C H Calvey, P P Parmar, C A Hutchison, H O Smith and J C Venter. Creation

of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science, vol. 329,

no. 5987, pages 52–56, 2010. (Cited on page 13.)

[Glass 2006] John I Glass, Nacyra Assad-Garcia, Nina Alperovich, Shibu Yooseph, Matthew R

Lewis, Mahir Maruf, Clyde A Hutchison 3rd, Hamilton O Smith and J Craig Venter.

Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 2,

pages 425–430, January 2006. (Cited on page 14.)

[Goeddel 1979] D V Goeddel, D G Kleid, F Bolivar, H L Heyneker, D G Yansura, R Crea,

T Hirose, A Kraszewski, K Itakura and A D Riggs. Expression in Escherichia coli of

chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. U. S. A., vol. 76,

no. 1, pages 106–110, January 1979. (Cited on page 3.)

[Gopfrich 2018] Kerstin Gopfrich, Ilia Platzman and Joachim P Spatz. Mastering Complexity:

Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells. Trends

Biotechnol., vol. 0, no. 0, April 2018. (Cited on page 14.)

Bibliography 181

[Green 2017] Alexander A Green, Jongmin Kim, Duo Ma, Pamela A Silver, James J Collins

and Peng Yin. Complex cellular logic computation using ribocomputing devices. Nature,

vol. 548, no. 7665, pages 117–121, August 2017. (Cited on pages 32 and 34.)

[Grindley 2006] Nigel D F Grindley, Katrine L Whiteson and Phoebe A Rice. Mechanisms of

site-specific recombination. Annu. Rev. Biochem., vol. 75, pages 567–605, 2006. (Cited

on page 41.)

[Guerrier-Takada 1983] C Guerrier-Takada, K Gardiner, T Marsh, N Pace and S Altman. The

RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, vol. 35, no. 3

Pt 2, pages 849–857, December 1983. (Cited on page 28.)

[Guet 2002] Călin C Guet, Michael B Elowitz, Weihong Hsing and Stanislas Leibler. Combina-

torial synthesis of genetic networks. Science, vol. 296, no. 5572, pages 1466–1470, May

2002. (Cited on page 33.)

[Guiziou 2016] Sarah Guiziou, Vincent Sauveplane, Hung-Ju Chang, Caroline Clerté, Nathalie

Declerck, Matthieu Jules and Jerome Bonnet. A part toolbox to tune genetic expression

in Bacillus subtilis. Nucleic Acids Res., vol. 44, no. 15, pages 7495–7508, September

2016. (Cited on pages 10 and 11.)

[Guo 1997] F Guo, D N Gopaul and G D van Duyne. Structure of Cre recombinase complexed

with DNA in a site-specific recombination synapse. Nature, vol. 389, no. 6646, pages

40–46, September 1997. (Cited on page 43.)

[Ham 2006] Timothy S Ham, Sung Kuk Lee, Jay D Keasling and Adam P Arkin. A Tightly

Regulated Inducible Expression System Utilizing the fim Inversion Recombination Switch.

Biotechnology, vol. 10, pages 1–4, 2006. (Cited on page 111.)

[Ham 2008a] Timothy S Ham, Sung K Lee, Jay D Keasling and Adam P Arkin. Design and

Construction of a Double Inversion Recombination Switch for Heritable Sequential Ge-

netic Memory. PLoS One, vol. 3, no. 7, page e2815, July 2008. (Cited on page 52.)

[Ham 2008b] Timothy S Ham, Sung K Lee, Jay D Keasling and Adam P Arkin. Design and

Construction of a Double Inversion Recombination Switch for Heritable Sequential Ge-

netic Memory. PLoS One, vol. 3, no. 7, page e2815, July 2008. (Cited on page 112.)

[Hartley 2000] J L Hartley, G F Temple and M A Brasch. DNA cloning using in vitro site-

specific recombination. Genome Res., vol. 10, no. 11, pages 1788–1795, November 2000.

(Cited on page 47.)

[Hartwell 1999] L H Hartwell, J J Hopfield, S Leibler and A W Murray. From molecular to

modular cell biology. Nature, vol. 402, no. 6761 Suppl, pages C47–52, December 1999.

(Cited on page 3.)

182 Bibliography

[Haynes 2008] Karmella a Haynes, Marian L Broderick, Adam D Brown, Trevor L Butner,

James O Dickson, W Lance Harden, Lane H Heard, Eric L Jessen, Kelly J Malloy,

Brad J Ogden, Sabriya Rosemond, Samantha Simpson, Erin Zwack, a Malcolm Camp-

bell, Todd T Eckdahl, Laurie J Heyer and Jeffrey L Poet. Engineering bacteria to solve

the Burnt Pancake Problem. J. Biol. Eng., vol. 2, page 8, 2008. (Cited on pages 50

and 51.)

[Heichman 1990] K A Heichman and R C Johnson. The Hin invertasome: protein-mediated

joining of distant recombination sites at the enhancer. Science, vol. 249, no. 4968, pages

511–517, August 1990. (Cited on page 45.)

[Hjelmfelt 1991] A Hjelmfelt, E D Weinberger and J Ross. Chemical implementation of neural

networks and Turing machines. Proc. Natl. Acad. Sci. U. S. A., vol. 88, no. 24, pages

10983–10987, December 1991. (Cited on pages 27 and 29.)

[Hjelmfelt 1992] A Hjelmfelt, E D Weinberger and J Ross. Chemical implementation of finite-

state machines. Proc. Natl. Acad. Sci. U. S. A., vol. 89, no. 1, pages 383–387, January

1992. (Cited on page 29.)

[Hjelmfelt 1993] A Hjelmfelt, F W Schneider and J Ross. Pattern recognition in coupled chem-

ical kinetic systems. Science, vol. 260, no. 5106, pages 335–337, April 1993. (Cited on

page 27.)

[Hou 2014] Lili Hou, Yuan-Yeu Yau, Junjie Wei, Zhiguo Han, Zhicheng Dong and David W

Ow. An open-source system for in planta gene stacking by Bxb1 and Cre recombinases.

Mol. Plant, vol. 7, no. 12, pages 1756–1765, December 2014. (Cited on page 170.)

[Hsiao 2016] Victoria Hsiao, Yutaka Hori, Paul Wk Rothemund and Richard M Murray. A

population-based temporal logic gate for timing and recording chemical events. Mol.

Syst. Biol., vol. 12, no. 5, page 869, May 2016. (Cited on pages 36, 53, 112 and 209.)

[Hutchison 2016] C A Hutchison, R-Y Chuang, V N Noskov, N Assad-Garcia, T J Deerinck,

M H Ellisman, J Gill, K Kannan, B J Karas, L Ma, J F Pelletier, Z-Q Qi, R A Richter,

E A Strychalski, L Sun, Y Suzuki, B Tsvetanova, K S Wise, H O Smith, J I Glass,

C Merryman, D G Gibson and J C Venter. Design and synthesis of a minimal bacterial

genome. Science, vol. 351, no. 6280, pages aad6253–aad6253, 2016. (Cited on page 14.)

[Innocentini 2016] Guilherme C P Innocentini, Sarah Guiziou, Jerome Bonnet and Ovidiu Rad-

ulescu. Analytic framework for a stochastic binary biological switch. Phys Rev E, vol. 94,

no. 6-1, page 062413, December 2016. (Cited on page 169.)

[Isaacs 2004] Farren J Isaacs, Daniel J Dwyer, Chunming Ding, Dmitri D Pervouchine,

Charles R Cantor and James J Collins. Engineered riboregulators enable post-

transcriptional control of gene expression. Nat. Biotechnol., vol. 22, no. 7, pages 841–847,

July 2004. (Cited on pages 32 and 34.)

Bibliography 183

[Itakura 1977] K Itakura, T Hirose, R Crea, A D Riggs, H L Heyneker, F Bolivar and H W

Boyer. Expression in Escherichia coli of Chemically Synthesized. Science, vol. 198,

no. 4321, pages 1056–1063, December 1977. (Cited on page 3.)

[Jaakko T. Astola 2006] Radomir S Stankovi Jaakko T. Astola. Fundamentals of switching

theory and logic design. 2006. (Cited on page 156.)

[Jackson 1972] D A Jackson, R H Symons and Paul Berg. Biochemical method for inserting

new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules

containing lambda phage genes and the Proceedings of the, 1972. (Cited on page 3.)

[Jacob 1961] Francois Jacob and Jacques Monod. Genetic Regulatory Mechanisms in the Syn-

thesis of Proteins. pages 433–471, 1961. (Cited on pages 19 and 32.)

[Jiang 2018] Jianjuan Jiang, Shaoqing Zhang, Zhigang Qian, Nan Qin, Wenwen Song, Long

Sun, Zhitao Zhou, Zhifeng Shi, Liang Chen, Xinxin Li, Ying Mao, David L Kaplan,

Stephanie N Gilbert Corder, Xinzhong Chen, Mengkun Liu, Fiorenzo G Omenetto,

Xiaoxia Xia and Tiger H Tao. Protein Bricks: 2D and 3D Bio-Nanostructures with

Shape and Function on Demand. Adv. Mater., page e1705919, March 2018. (Cited on

pages 17 and 18.)

[Joung 1994] J K Joung, D M Koepp and A Hochschild. Synergistic activation of transcription

by bacteriophage lambda cI protein and E. coli cAMP receptor protein. Science, vol. 265,

no. 5180, pages 1863–1866, September 1994. (Cited on page 32.)

[Jusiak 2016] Barbara Jusiak, Sara Cleto, Pablo Perez-Piñera and Timothy K Lu. Engineering

Synthetic Gene Circuits in Living Cells with CRISPR Technology. Trends Biotechnol.,

vol. 34, no. 7, pages 535–547, July 2016. (Cited on page 208.)

[Kalos 2013] Michael Kalos and Carl H June. Adoptive T cell transfer for cancer immunotherapy

in the era of synthetic biology. Immunity, vol. 39, no. 1, pages 49–60, July 2013. (Cited

on page 17.)

[Kelly 2009] Jason R Kelly, Adam J Rubin, Joseph H Davis, Caroline M Ajo-Franklin, John

Cumbers, Michael J Czar, Kim de Mora, Aaron L Glieberman, Dileep D Monie and

Drew Endy. Measuring the activity of BioBrick promoters using an in vivo reference

standard. J. Biol. Eng., vol. 3, no. 1, page 4, 2009. (Cited on page 6.)

[Keravala 2006] Annahita Keravala, Amy C Groth, Sohail Jarrahian, Bhaskar Thyagarajan,

Jason J Hoyt, Patrick J Kirby and Michele P Calos. A diversity of serine phage integrases

mediate site-specific recombination in mammalian cells. Mol. Genet. Genomics, vol. 276,

no. 2, pages 135–146, August 2006. (Cited on page 46.)

184 Bibliography

[Khaleel 2011] Thanafez Khaleel, Ellen Younger, Andrew R McEwan, Anpu S Varghese and

Margaret C M Smith. A phage protein that binds ϕC31 integrase to switch its direction-

ality. Mol. Microbiol., vol. 80, no. 6, pages 1450–1463, June 2011. (Cited on page 46.)

[Kiani 2014] Samira Kiani, Jacob Beal, Mohammad R Ebrahimkhani, Jin Huh, Richard N Hall,

Zhen Xie, Yinqing Li and Ron Weiss. CRISPR transcriptional repression devices and

layered circuits in mammalian cells. Nat. Methods, vol. 11, no. 7, pages 723–726, July

2014. (Cited on pages 33 and 208.)

[Kim 2006] Jongmin Kim, Kristin S White and Erik Winfree. Construction of an in vitro

bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol., vol. 2, page 68,

December 2006. (Cited on page 29.)

[Kim 2011] Jongmin Kim and Erik Winfree. Synthetic in vitro transcriptional oscillators. Mol.

Syst. Biol., vol. 7, page 465, February 2011. (Cited on page 29.)

[Knight 2003] Tom Knight. Idempotent vector design for standard assembly of biobricks. Tech-

nical report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL IN-

TELLIGENCE LAB, 2003. (Cited on pages 6 and 8.)

[Kosuri 2013] Sriram Kosuri, Daniel B Goodman, Guillaume Cambray, Vivek K Mutalik, Yuan

Gao, Adam P Arkin, Drew Endy and George M Church. Composability of regulatory

sequences controlling transcription and translation in Escherichia coli. Proc. Natl. Acad.

Sci. U. S. A., vol. 110, no. 34, pages 14024–14029, 2013. (Cited on page 10.)

[Kramer 2004] Beat P Kramer, Cornelius Fischer and Martin Fussenegger. BioLogic gates

enable logical transcription control in mammalian cells. Biotechnol. Bioeng., vol. 87,

no. 4, pages 478–484, August 2004. (Cited on page 33.)

[Krink-Koutsoubelis 2018] Nicolas Krink-Koutsoubelis, Anne C Loechner, Anna Lechner,

Hannes Link, Charles M Denby, Bastian Vögeli, Tobias J Erb, Satoshi Yuzawa, Tadas

Jakociunas, Leonard Katz, Michael K Jensen, Victor Sourjik and Jay D Keasling. Engi-

neered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae.

ACS Synth. Biol., vol. 7, no. 4, pages 1105–1115, April 2018. (Cited on page 15.)

[Kruger 1982] K Kruger, P J Grabowski, A J Zaug, J Sands, D E Gottschling and T R Cech.

Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening

sequence of Tetrahymena. Cell, vol. 31, no. 1, pages 147–157, November 1982. (Cited on

page 28.)

[Kumar 1992] V Kumar. Algorithms for constraint-satisfaction problems: A survey. AI maga-

zine, 1992. (Cited on page 152.)

Bibliography 185

[Kumari 2008] Anjali Kumari, Patrizia Pasini and Sylvia Daunert. Detection of bacterial quo-

rum sensing N-acyl homoserine lactones in clinical samples. Anal. Bioanal. Chem.,

vol. 391, no. 5, pages 1619–1627, July 2008. (Cited on page 17.)

[Lajoie 2013a] M J Lajoie, S Kosuri, J A Mosberg, C J Gregg, D Zhang and G M Church.

Probing the limits of genetic recoding in essential genes. Science, vol. 342, no. 6156,

pages 361–363, October 2013. (Cited on page 13.)

[Lajoie 2013b] Marc J Lajoie, Alexis J Rovner, Daniel B Goodman, Hans-Rudolf Aerni,

Adrian D Haimovich, Gleb Kuznetsov, Jaron A Mercer, Harris H Wang, Peter A Carr,

Joshua A Mosberg, Nadin Rohland, Peter G Schultz, Joseph M Jacobson, Jesse Rine-

hart, George M Church and Farren J Isaacs. Genomically recoded organisms expand

biological functions. Science, vol. 342, no. 6156, pages 357–360, October 2013. (Cited on

page 13.)

[Lakso 1992] M Lakso, B Sauer, B Mosinger Jr, E J Lee, R W Manning, S H Yu, K L Mulder and

H Westphal. Targeted oncogene activation by site-specific recombination in transgenic

mice. Proc. Natl. Acad. Sci. U. S. A., vol. 89, no. 14, pages 6232–6236, July 1992. (Cited

on pages 48 and 170.)

[Lederman 2006] Harvey Lederman, Joanne Macdonald, Darko Stefanovic and Milan N Sto-

janovic. Deoxyribozyme-based three-input logic gates and construction of a molecular

full adder. Biochemistry, vol. 45, no. 4, pages 1194–1199, January 2006. (Cited on

page 28.)

[Leduc 1910] Stéphane Leduc. Théorie physico-chimique de la vie et générations spontanées,

volume 1. Poinat, 1910. (Cited on page 2.)

[Leduc 1912] Stéphane Leduc. La biologie synthétique, volume 2. A. Poinat, 1912. (Cited on

page 2.)

[Lee 1998] G Lee and I Saito. Role of nucleotide sequences of loxP spacer region in Cre-mediated

recombination. Gene, vol. 216, no. 1, pages 55–65, August 1998. (Cited on page 43.)

[Lee 2008] Sung Kuk Lee, Howard Chou, Timothy S Ham, Taek Soon Lee and Jay D Keasling.

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic

biology to fuels. Curr. Opin. Biotechnol., vol. 19, no. 6, pages 556–563, December 2008.

(Cited on page 15.)

[Lee 2015] Michael E Lee, William C DeLoache, Bernardo Cervantes and John E Dueber. A

Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS Synth. Biol.,

vol. 4, no. 9, pages 975–986, 2015. (Cited on page 9.)

186 Bibliography

[Lehner 2017] Benjamin A E Lehner, Dominik T Schmieden and Anne S Meyer. A Straight-

forward Approach for 3D Bacterial Printing. ACS Synth. Biol., vol. 6, no. 7, pages

1124–1130, July 2017. (Cited on page 18.)

[Li 2005] Weikai Li, Satwik Kamtekar, Yong Xiong, Gary J Sarkis, Nigel D F Grindley and

Thomas A Steitz. Structure of a synaptic gammadelta resolvase tetramer covalently

linked to two cleaved DNAs. Science, vol. 309, no. 5738, pages 1210–1215, August 2005.

(Cited on page 44.)

[Lienert 2013] Florian Lienert, Joseph P Torella, Jan-Hung Chen, Michael Norsworthy, Ryan R

Richardson and Pamela A Silver. Two- and three-input TALE-based AND logic compu-

tation in embryonic stem cells. Nucleic Acids Res., vol. 41, no. 21, pages 9967–9975,

November 2013. (Cited on pages 33 and 207.)

[Lipton 1995] R J Lipton. DNA solution of hard computational problems. Science, vol. 268,

no. 5210, pages 542–545, April 1995. (Cited on page 28.)

[Livet 2007] Jean Livet, Tamily A Weissman, Hyuno Kang, Ryan W Draft, Ju Lu, Robyn A

Bennis, Joshua R Sanes and Jeff W Lichtman. Transgenic strategies for combinatorial

expression of fluorescent proteins in the nervous system. Nature, vol. 450, no. 7166,

pages 56–62, November 2007. (Cited on pages 48, 50 and 51.)

[Lohmueller 2012] Jason J Lohmueller, Thomas Z Armel and Pamela A Silver. A tunable zinc

finger-based framework for Boolean logic computation in mammalian cells. Nucleic Acids

Res., vol. 40, no. 11, pages 5180–5187, June 2012. (Cited on pages 33 and 207.)

[Lou 2010] Chunbo Lou, Xili Liu, Ming Ni, Yiqi Huang, Qiushi Huang, Longwen Huang, Lingli

Jiang, Dan Lu, Mingcong Wang, Chang Liu, Daizhuo Chen, Chongyi Chen, Xiaoyue

Chen, Le Yang, Haisu Ma, Jianguo Chen and Qi Ouyang. Synthesizing a novel genetic

sequential logic circuit: a push-on push-off switch. Mol. Syst. Biol., vol. 6, pages 1–11,

March 2010. (Cited on page 111.)

[Lou 2012] Chunbo Lou, Brynne Stanton, Ying-Ja Chen, Brian Munsky and Christopher A

Voigt. Ribozyme-based insulator parts buffer synthetic circuits from genetic context.

Nat. Biotechnol., vol. 30, no. 11, pages 1137–1142, 2012. (Cited on pages 12, 70, 121

and 166.)

[Lucks 2011] Julius B Lucks, Lei Qi, Vivek K Mutalik, Denise Wang and Adam P Arkin. Versa-

tile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl.

Acad. Sci. U. S. A., vol. 108, no. 21, pages 8617–8622, May 2011. (Cited on page 34.)

[Macia 2014] Javier Macia and Ricard Sole. How to make a synthetic multicellular computer.

PLoS One, vol. 9, no. 2, page e81248, February 2014. (Cited on pages 33 and 37.)

Bibliography 187

[Macia 2016] Javier Macia, Romilde Manzoni, Núria Conde, Arturo Urrios, Eulàlia de Nadal,

Ricard Solé and Francesc Posas. Implementation of Complex Biological Logic Circuits

Using Spatially Distributed Multicellular Consortia. PLoS Comput. Biol., vol. 12, no. 2,

page e1004685, February 2016. (Cited on pages 33, 36, 37 and 38.)

[Maeder 2008] Morgan L Maeder, Stacey Thibodeau-Beganny, Anna Osiak, David A Wright,

Reshma M Anthony, Magdalena Eichtinger, Tao Jiang, Jonathan E Foley, Ronnie J

Winfrey, Jeffrey A Townsend, Erica Unger-Wallace, Jeffry D Sander, Felix Müller-Lerch,

Fengli Fu, Joseph Pearlberg, Carl Göbel, Justin P Dassie, Shondra M Pruett-Miller,

Matthew H Porteus, Dennis C Sgroi, A John Iafrate, Drena Dobbs, Paul B McCray,

Toni Cathomen, Daniel F Voytas and J Keith Joung. Rapid “Open-Source” Engineering

of Customized Zinc-Finger Nucleases for Highly Efficient Gene Modification. Mol. Cell,

vol. 31, no. 2, pages 294–301, July 2008. (Cited on page 207.)

[Manber 1988] Udi Manber. Using Induction to Design Algorithms. Commun. ACM, vol. 31,

no. 11, pages 1300–1313, November 1988. (Cited on page 151.)

[Mandali 2017] Sridhar Mandali, Kushol Gupta, Anthony R Dawson, Gregory D Van Duyne

and Reid C Johnson. Control of Recombination Directionality by the Listeria Phage

A118 Protein Gp44 and the Coiled-Coil Motif of Its Serine Integrase. J. Bacteriol.,

vol. 199, no. 11, June 2017. (Cited on page 46.)

[Mano 2014] Morris Mano and Charles Kime. Logic and computer design fundamentals. 2014.

(Cited on page 26.)

[McBride 1983] L J McBride and M H Caruthers. An investigation of several deoxynucleo-

side phosphoramidites useful for synthesizing deoxyoligonucleotides. Tetrahedron Lett.,

vol. 24, no. 3, pages 245–248, January 1983. (Cited on page 3.)

[McCulloch 1943] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-

nent in nervous activity. Bull. Math. Biophys., vol. 5, no. 4, pages 115–133, December

1943. (Cited on page 26.)

[Mercy 2017] Guillaume Mercy, Julien Mozziconacci, Vittore F Scolari, Kun Yang, Guanghou

Zhao, Agnès Thierry, Yisha Luo, Leslie A Mitchell, Michael Shen, Yue Shen, Roy Walker,

Weimin Zhang, Yi Wu, Ze-Xiong Xie, Zhouqing Luo, Yizhi Cai, Junbiao Dai, Huanming

Yang, Ying-Jin Yuan, Jef D Boeke, Joel S Bader, Héloïse Muller and Romain Koszul.

3D organization of synthetic and scrambled chromosomes. Science, vol. 355, no. 6329,

March 2017. (Cited on page 14.)

[Mitchell 1998] Melanie Mitchell. Computation in Cellular Automata: A Selected Review. Plan.

Perspect., vol. 95, page 140, 1998. (Cited on page 27.)

188 Bibliography

[Miyamoto 2012] Takafumi Miyamoto, Robert DeRose, Allison Suarez, Tasuku Ueno, Melinda

Chen, Tai-Ping Sun, Michael J Wolfgang, Chandrani Mukherjee, David J Meyers and

Takanari Inoue. Rapid and orthogonal logic gating with a gibberellin-induced dimerization

system. Nat. Chem. Biol., vol. 8, no. 5, pages 465–470, March 2012. (Cited on page 35.)

[Monod 1961] Jacques Monod and François Jacob. General conclusions: teleonomic mecha-

nisms in cellular metabolism, growth, and differentiation. Cold Spring Harbor Labora-

tory Press, vol. 26, no. Cold Spring Harbor Symposia on Quantitative Biology, pages

389–401, 1961. (Cited on page 2.)

[Montagne 2011] Kevin Montagne, Raphael Plasson, Yasuyuki Sakai, Teruo Fujii and Yannick

Rondelez. Programming an in vitro DNA oscillator using a molecular networking strat-

egy. Mol. Syst. Biol., vol. 7, page 466, February 2011. (Cited on page 29.)

[Moon 2012] Tae Seok Moon, Chunbo Lou, Alvin Tamsir, Brynne C Stanton and Christopher A

Voigt. Genetic programs constructed from layered logic gates in single cells. Nat. Com-

mun., vol. 491, no. 7423, pages 249–253, 2012. (Cited on pages 31 and 33.)

[Mouw 2008] Kent W Mouw, Sally-J Rowland, Mark M Gajjar, Martin R Boocock, W Marshall

Stark and Phoebe A Rice. Architecture of a serine recombinase-DNA regulatory complex.

Mol. Cell, vol. 30, no. 2, pages 145–155, April 2008. (Cited on page 44.)

[Mullis 1986] K Mullis, F Faloona, S Scharf, R Saiki, G Horn and H Erlich. Specific enzymatic

amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp.

Quant. Biol., vol. 51 Pt 1, pages 263–273, 1986. (Cited on page 3.)

[Mutalik 2013a] V K Mutalik, J C Guimaraes, G Cambray, Q A Mai, M J Christoffersen,

L Martin, A Yu, C Lam, C Rodriguez, G Bennett, J D Keasling, D Endy and A P

Arkin. Quantitative estimation of activity and quality for collections of functional genetic

elements. Nat.Methods, vol. 10, no. 1548-7105 (Electronic), pages 347–353, 2013. (Cited

on pages 9, 10, 12 and 166.)

[Mutalik 2013b] Vivek K Mutalik, Joao C Guimaraes, Guillaume Cambray, Colin Lam,

Marc Juul Christoffersen, Quynh-Anh Mai, Andrew B Tran, Morgan Paull, Jay D

Keasling, Adam P Arkin and Drew Endy. Precise and reliable gene expression via

standard transcription and translation initiation elements. Nat. Methods, vol. 10, no. 4,

pages 354–360, 2013. (Cited on pages 12, 70, 76 and 166.)

[Nash 1981] H A Nash. Integration and Excision of Bacteriophage λ: The Mechanism of Con-

servative Site Specific Recombination. Annu. Rev. Genet., vol. 15, no. 1, pages 143–167,

December 1981. (Cited on pages 40 and 43.)

[Nielsen 2014] Alec A K Nielsen and Christopher A Voigt. Multi-input CRISPR/Cas genetic

circuits that interface host regulatory networks. Mol. Syst. Biol., vol. 10, page 763,

November 2014. (Cited on pages 33 and 208.)

Bibliography 189

[Nielsen 2016] Alec A K Nielsen, Bryan S Der, Jonghyeon Shin, Prashant Vaidyanathan, Vanya

Paralanov, Elizabeth A Strychalski, David Ross, Douglas Densmore and Christopher A

Voigt. Genetic circuit design automation. Science, vol. 352, no. 6281, page aac7341,

April 2016. (Cited on pages 10, 12, 31, 33, 36, 37, 38, 66, 71 and 112.)

[Olivares 2002] Eric C Olivares, Roger P Hollis, Thomas W Chalberg, Leonard Meuse, Mark A

Kay and Michele P Calos. Site-specific genomic integration produces therapeutic Factor

IX levels in mice. Nat. Biotechnol., vol. 20, no. 11, pages 1124–1128, November 2002.

(Cited on page 48.)

[Olorunniji 2017] Femi J Olorunniji, Arlene L McPherson, Susan J Rosser, Margaret C M

Smith, Sean D Colloms and W Marshall Stark. Control of serine integrase recombination

directionality by fusion with the directionality factor. Nucleic Acids Res., June 2017.

(Cited on pages 46 and 169.)

[Ortiz-Urda 2002] Susana Ortiz-Urda, Bhaskar Thyagarajan, Douglas R Keene, Qun Lin, Min

Fang, Michele P Calos and Paul A Khavari. Stable nonviral genetic correction of inherited

human skin disease. Nat. Med., vol. 8, no. 10, pages 1166–1170, October 2002. (Cited

on page 48.)

[Ostrov 2016] Nili Ostrov, Matthieu Landon, Marc Guell, Gleb Kuznetsov, Jun Teramoto, Na-

talie Cervantes, Minerva Zhou, Kerry Singh, Michael G Napolitano, Mark Moosburner,

Ellen Shrock, Benjamin W Pruitt, Nicholas Conway, Daniel B Goodman, Cameron L

Gardner, Gary Tyree, Alexandra Gonzales, Barry L Wanner, Julie E Norville, Marc J

Lajoie and George M Church. Design, synthesis, and testing toward a 57-codon genome.

Science, vol. 353, no. 6301, pages 819–822, August 2016. (Cited on page 13.)

[Paddon 2013] C J Paddon, P J Westfall, D J Pitera, K Benjamin, K Fisher, D McPhee, M D

Leavell, A Tai, A Main, D Eng, D R Polichuk, K H Teoh, D W Reed, T Treynor,

J Lenihan, M Fleck, S Bajad, G Dang, D Dengrove, D Diola, G Dorin, K W Ellens,

S Fickes, J Galazzo, S P Gaucher, T Geistlinger, R Henry, M Hepp, T Horning, T Iqbal,

H Jiang, L Kizer, B Lieu, D Melis, N Moss, R Regentin, S Secrest, H Tsuruta, R Vazquez,

L F Westblade, L Xu, M Yu, Y Zhang, L Zhao, J Lievense, P S Covello, J D Keasling,

K K Reiling, N S Renninger and J D Newman. High-level semi-synthetic production of

the potent antimalarial artemisinin. Nature, vol. 496, no. 7446, pages 528–532, April

2013. (Cited on page 15.)

[Padirac 2012] Adrien Padirac, Teruo Fujii and Yannick Rondelez. Bottom-up construction of

in vitro switchable memories. Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 47, pages

E3212–20, November 2012. (Cited on page 29.)

[Padirac 2013] Adrien Padirac, Teruo Fujii and Yannick Rondelez. Nucleic acids for the rational

design of reaction circuits. Curr. Opin. Biotechnol., vol. 24, no. 4, pages 575–580, August

2013. (Cited on page 28.)

190 Bibliography

[Pardee 2014] Keith Pardee, Alexander A Green, Tom Ferrante, D Ewen Cameron, Ajay Da-

leyKeyser, Peng Yin and James J Collins. Paper-Based Synthetic Gene Networks. Cell,

vol. 159, no. 4, pages 940–954, 2014. (Cited on page 17.)

[Pardee 2016] Keith Pardee, Alexander A Green, Melissa K Takahashi, Dana Braff, Guil-

laume Lambert, Jeong Wook Lee, Tom Ferrante, Duo Ma, Nina Donghia, Melina Fan,

Nichole M Daringer, Irene Bosch, Dawn M Dudley, David H O’Connor, Lee Gehrke

and James J Collins. Rapid, Low-Cost Detection of Zika Virus Using Programmable

Biomolecular Components. Cell, vol. 165, no. 5, pages 1255–1266, May 2016. (Cited on

pages 17 and 29.)

[Pichel 1993] J G Pichel, M Lakso and H Westphal. Timing of SV40 oncogene activation by

site-specific recombination determines subsequent tumor progression during murine lens

development. Oncogene, vol. 8, no. 12, pages 3333–3342, December 1993. (Cited on

pages 48 and 170.)

[Podhajska 1985] A J Podhajska, N Hasan and W Szybalski. Control of cloned gene expression

by promoter inversion in vivo: construction of the heat-pulse-activated att-nutL-p-att-N

module. Gene, vol. 40, no. 1, pages 163–168, 1985. (Cited on pages 48, 50 and 111.)

[Privman 2010] Vladimir Privman, Jian Zhou, Jan Halámek and Evgeny Katz. Realization and

properties of biochemical-computing biocatalytic XOR gate based on signal change. J.

Phys. Chem. B, vol. 114, no. 42, pages 13601–13608, October 2010. (Cited on page 29.)

[Qi 2014] Lei S Qi and Adam P Arkin. A versatile framework for microbial engineering using

synthetic non-coding RNAs. Nat. Rev. Microbiol., vol. 12, no. 5, pages 341–354, 2014.

(Cited on page 34.)

[Qian 2011a] L Qian and E Winfree. Scaling Up Digital Circuit Computation with DNA Strand

Displacement Cascades. Science, vol. 332, no. 6034, pages 1196–1201, 2011. (Cited on

page 29.)

[Qian 2011b] Lulu Qian, Erik Winfree and Jehoshua Bruck. Neural network computation with

DNA strand displacement cascades. Nature, vol. 475, no. 7356, pages 368–372, July

2011. (Cited on page 29.)

[Reed 1981] R R Reed and N D Grindley. Transposon-mediated site-specific recombination in

vitro: DNA cleavage and protein-DNA linkage at the recombination site. Cell, vol. 25,

no. 3, pages 721–728, September 1981. (Cited on page 44.)

[Reed 1984] R R Reed and C D Moser. Resolvase-mediated recombination intermediates contain

a serine residue covalently linked to DNA. Cold Spring Harb. Symp. Quant. Biol., vol. 49,

pages 245–249, 1984. (Cited on page 44.)

Bibliography 191

[Regot 2010] Sergi Regot, Javier Macía, Núria Conde, Kentaro Furukawa, Jimmy Kjellén, Tom

Peeters, Stefan Hohmann, Eulàlia de Nadal, Francesc Posas and Ricard Solé. Distributed

biological computation with multicellular engineered networks. Nature, vol. 469, no. 7329,

pages 207–211, December 2010. (Cited on pages 33 and 37.)

[Renella 2016] Giancarlo Renella and Laura Giagnoni. Light dazzles from the black box: whole-

cell biosensors are ready to inform on fundamental soil biological processes. Chemical

and Biological Technologies in Agriculture, vol. 3, no. 1, page 8, March 2016. (Cited on

page 16.)

[Rhodius 2013] Virgil A Rhodius, Thomas H Segall-Shapiro, Brian D Sharon, Amar Ghodasara,

Ekaterina Orlova, Hannah Tabakh, David H Burkhardt, Kevin Clancy, Todd C Peterson,

Carol A Gross and Christopher A Voigt. Design of orthogonal genetic switches based

on a crosstalk map of σs, anti-σs, and promoters. Mol. Syst. Biol., vol. 9, page 702,

October 2013. (Cited on page 33.)

[Richardson 2017] Sarah M Richardson, Leslie A Mitchell, Giovanni Stracquadanio, Kun Yang,

Jessica S Dymond, James E DiCarlo, Dongwon Lee, Cheng Lai Victor Huang, Srinivasan

Chandrasegaran, Yizhi Cai, Jef D Boeke and Joel S Bader. Design of a synthetic yeast

genome. Science, vol. 355, no. 6329, pages 1040–1044, March 2017. (Cited on page 14.)

[Rinaudo 2007] Keller Rinaudo, Leonidas Bleris, Rohan Maddamsetti, Sairam Subramanian,

Ron Weiss and Yaakov Benenson. A universal RNAi-based logic evaluator that operates

in mammalian cells. Nat. Biotechnol., vol. 25, no. 7, pages 795–801, July 2007. (Cited

on page 34.)

[Ro 2006] Dae-Kyun Ro, Eric M Paradise, Mario Ouellet, Karl J Fisher, Karyn L Newman,

John M Ndungu, Kimberly A Ho, Rachel A Eachus, Timothy S Ham, James Kirby,

Michelle C Y Chang, Sydnor T Withers, Yoichiro Shiba, Richmond Sarpong and Jay D

Keasling. Production of the antimalarial drug precursor artemisinic acid in engineered

yeast. vol. 440, no. April, pages 3–6, 2006. (Cited on page 15.)

[Roquet 2016] Nathaniel Roquet, Ava P Soleimany, Alyssa C Ferris, Scott Aaronson and Tim-

othy K Lu. Synthetic recombinase-based state machines in living cells. Science, vol. 353,

no. 6297, page aad8559, July 2016. (Cited on pages 36, 55, 112, 170 and 209.)

[Ruder 2011] Warren C Ruder, Ting Lu and James J Collins. Synthetic biology moving into the

clinic. Science, vol. 333, no. 6047, pages 1248–1252, 2011. (Cited on page 16.)

[Rutherford 2013] Karen Rutherford, Peng Yuan, Kay Perry, Robert Sharp and Gregory D

Van Duyne. Attachment site recognition and regulation of directionality by the serine

integrases. Nucleic Acids Res., vol. 41, no. 17, pages 8341–8356, September 2013. (Cited

on page 46.)

192 Bibliography

[Sauer 1988] B Sauer and N Henderson. The cyclization of linear DNA in Escherichia coli by

site-specific recombination. Gene, vol. 70, no. 2, pages 331–341, October 1988. (Cited

on page 47.)

[Sauer 1994] B Sauer. Site-specific recombination: developments and applications. Curr. Opin.

Biotechnol., vol. 5, no. 5, pages 521–527, October 1994. (Cited on page 47.)

[Schlake 1994] T Schlake and J Bode. Use of mutated FLP recognition target (FRT) sites for

the exchange of expression cassettes at defined chromosomal loci. Biochemistry, vol. 33,

no. 43, pages 12746–12751, November 1994. (Cited on page 48.)

[Schmieden 2016] Dominik T Schmieden, Anne S Meyer and Marie-Eve Aubin-Tam. Using

bacteria to make improved, nacre-inspired materials. MRS Advances, vol. 1, no. 8, pages

559–564, 2016. (Cited on page 18.)

[Schwander 2016] Thomas Schwander, Lennart Schada von Borzyskowski, Simon Burgener,

Niña Socorro Cortina and Tobias J Erb. A synthetic pathway for the fixation of carbon

dioxide in vitro. Science, vol. 354, no. 6314, pages 900–904, November 2016. (Cited on

page 15.)

[Scientific 2017] Invitrogen by Thermofisher Scientific. User guide - Jump-In CHO-K1 Retar-

geting Kit, 2017. (Cited on page 48.)

[Seelig 2006] Georg Seelig, David Soloveichik, David Yu Zhang and Erik Winfree. Enzyme-free

nucleic acid logic circuits. Science, vol. 314, no. 5805, pages 1585–1588, December 2006.

(Cited on page 29.)

[Shannon 1936] Claude Elwood Shannon. A symbolic analysis of relay and switching circuits.

PhD thesis, Massachusetts Institute of Technology, 1936. (Cited on page 21.)

[Shen 2016] Yue Shen, Giovanni Stracquadanio, Yun Wang, Kun Yang, Leslie A Mitchell, Yaxin

Xue, Yizhi Cai, Tai Chen, Jessica S Dymond, Kang Kang, Jianhui Gong, Xiaofan Zeng,

Yongfen Zhang, Yingrui Li, Qiang Feng, Xun Xu, Jun Wang, Jian Wang, Huanming

Yang, Jef D Boeke and Joel S Bader. SCRaMbLE generates designed combinatorial

stochastic diversity in synthetic chromosomes. Genome Res., vol. 26, no. 1, pages 36–49,

January 2016. (Cited on pages 14 and 48.)

[Shendure 2017] Jay Shendure, Shankar Balasubramanian, George M Church, Walter Gilbert,

Jane Rogers, Jeffery A Schloss and Robert H Waterston. DNA sequencing at 40: past,

present and future. Nature, vol. 550, no. 7676, pages 345–353, October 2017. (Cited on

page 8.)

[Shibata 2017] Mikihiro Shibata, Hiroshi Nishimasu, Noriyuki Kodera, Seiichi Hirano, Toshio

Ando, Takayuki Uchihashi and Osamu Nureki. Real-space and real-time dynamics of

Bibliography 193

CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nat. Commun., vol. 8,

no. 1, page 1430, November 2017. (Cited on page 168.)

[Shipman 2016] S L Shipman, Seth L Shipman, Jeff Nivala, Jeffrey D Macklis and George M

Church. Molecular recordings by directed CRISPR spacer acquisition. Science, vol. 1175,

pages 1–16, 2016. (Cited on page 209.)

[Shis 2013] David L Shis and Matthew R Bennett. Library of synthetic transcriptional AND

gates built with split T7 RNA polymerase mutants. Proc. Natl. Acad. Sci. U. S. A.,

vol. 110, no. 13, pages 5028–5033, March 2013. (Cited on pages 31 and 33.)

[Siuti 2013] Piro Siuti, John Yazbek and Timothy K Lu. Synthetic circuits integrating logic

and memory in living cells. Nat. Biotechnol., vol. 31, no. 5, pages 448–452, May 2013.

(Cited on pages 12, 35, 50, 111, 142 and 170.)

[Sleight 2013] Sean C Sleight and Herbert M Sauro. Visualization of evolutionary stability dy-

namics and competitive fitness of Escherichia coli engineered with randomized multigene

circuits. ACS Synth. Biol., vol. 2, no. 9, pages 519–528, September 2013. (Cited on

page 112.)

[Smith 1973] H O Smith and D Nathans. Letter: A suggested nomenclature for bacterial host

modification and restriction systems and their enzymes. J. Mol. Biol., vol. 81, no. 3,

pages 419–423, December 1973. (Cited on page 3.)

[Smith 2003] Hamilton O Smith, Clyde A Hutchison, Cynthia Pfannkoch and J Craig Venter.

Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from

synthetic oligonucleotides. Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 26, pages 15440–

15445, December 2003. (Cited on page 13.)

[Smolke 2009] Christina D Smolke. Building outside of the box: iGEM and the BioBricks Foun-

dation. Nat. Biotechnol., vol. 27, no. 12, pages 1099–1102, December 2009. (Cited on

page 6.)

[Stanton 2014] Brynne C Stanton, Alec A K Nielsen, Alvin Tamsir, Kevin Clancy, Todd Peter-

son and Christopher A Voigt. Genomic mining of prokaryotic repressors for orthogonal

logic gates. Nat. Chem. Biol., vol. 10, no. 2, pages 99–105, February 2014. (Cited on

pages 31 and 33.)

[Stark 1989] W M Stark, D J Sherratt and M R Boocock. Site-specific recombination by Tn3

resolvase: topological changes in the forward and reverse reactions. Cell, vol. 58, no. 4,

pages 779–790, August 1989. (Cited on page 40.)

[Stojanovic 2002] Milan N Stojanovic, Tiffany Elizabeth Mitchell and Darko Stefanovic.

Deoxyribozyme-based logic gates. J. Am. Chem. Soc., vol. 124, no. 14, pages 3555–3561,

April 2002. (Cited on page 28.)

194 Bibliography

[Stojanovic 2003] Milan N Stojanovic and Darko Stefanovic. A deoxyribozyme-based molecular

automaton. Nat. Biotechnol., vol. 21, no. 9, pages 1069–1074, September 2003. (Cited

on page 28.)

[Struhl 1993] G Struhl and K Basler. Organizing activity of wingless protein in Drosophila.

Cell, vol. 72, no. 4, pages 527–540, February 1993. (Cited on page 48.)

[Subsoontorn 2012a] Pakpoom Subsoontorn and Drew Endy. Design and Analysis of Genet-

ically Encoded Counters. Procedia Comput. Sci., vol. 11, pages 43–54, January 2012.

(Cited on pages 54 and 209.)

[Subsoontorn 2012b] Pakpoom Subsoontorn, Jongmin Kim and Erik Winfree. Ensemble

Bayesian analysis of bistability in a synthetic transcriptional switch. ACS Synth. Biol.,

vol. 1, no. 8, pages 299–316, August 2012. (Cited on page 29.)

[Subsoontorn 2014] Pakpoom Subsoontorn. Reliable Functional Composition of a Recombinase

Device Family. no. August, 2014. (Cited on pages 35 and 209.)

[Szybalski 1978] W Szybalski and A Skalka. Nobel prizes and restriction enzymes. Gene, vol. 4,

no. 3, pages 181–182, November 1978. (Cited on page 3.)

[Tabor 2009] Jeffrey J Tabor, Howard M Salis, Zachary Booth Simpson, Aaron A Chevalier,

Anselm Levskaya, Edward M Marcotte, Christopher A Voigt and Andrew D Ellington.

A synthetic genetic edge detection program. Cell, vol. 137, no. 7, pages 1272–1281, June

2009. (Cited on page 12.)

[Tamsir 2011] Alvin Tamsir, Jeffrey J Tabor and Christopher A Voigt. Robust multicellular

computing using genetically encoded NOR gates and chemical ‘wires’. Nature, vol. 469,

no. 7329, pages 212–215, 2011. (Cited on page 33.)

[Tang 2018] Weixin Tang and David R Liu. Rewritable multi-event analog recording in bacterial

and mammalian cells. Science, February 2018. (Cited on page 209.)

[Toman 1985] Z Toman, C Dambly-Chaudière, L Tenenbaum and M Radman. A system for

detection of genetic and epigenetic alterations in Escherichia coli induced by DNA-

damaging agents. J. Mol. Biol., vol. 186, no. 1, pages 97–105, November 1985. (Cited

on pages 12 and 111.)

[Townshend 2015] Brent Townshend, Andrew B Kennedy, Joy S Xiang and Christina D Smolke.

High-throughput cellular RNA device engineering. Nat. Methods, vol. 12, no. 10, pages

989–994, October 2015. (Cited on page 34.)

[Uesaka 2014] Masahiro Uesaka, Osamu Nishimura, Yasuhiro Go, Kinichi Nakashima, Kiyokazu

Agata and Takuya Imamura. Bidirectional promoters are the major source of gene

activation-associated non-coding RNAs in mammals. BMC Genomics, vol. 15, page 35,

January 2014. (Cited on page 149.)

Bibliography 195

[Umeno 2004] Daisuke Umeno and Frances H Arnold. Evolution of a pathway to novel long-

chain carotenoids. J. Bacteriol., vol. 186, no. 5, pages 1531–1536, March 2004. (Cited

on page 13.)

[Urrios 2016] Arturo Urrios, Javier Macia, Romilde Manzoni, Núria Conde, Adriano Bonforti,

Eulàlia de Nadal, Francesc Posas and Ricard Solé. A Synthetic Multicellular Memory

Device. ACS Synth. Biol., vol. 5, no. 8, pages 862–873, August 2016. (Cited on pages 33,

37 and 209.)

[Urrios 2018] Arturo Urrios, Eva Gonzalez-Flo, David Canadell, Eulàlia de Nadal, Javier Macia

and Francesc Posas. Plug-and-Play Multicellular Circuits with Time-Dependent Dynamic

Responses. ACS Synth. Biol., April 2018. (Cited on pages 66 and 209.)

[Van Duyne 2013] Gregory D Van Duyne and Karen Rutherford. Large serine recombinase

domain structure and attachment site binding. Crit. Rev. Biochem. Mol. Biol., vol. 48,

no. 5, pages 476–491, September 2013. (Cited on page 46.)

[Vidali 2001] Vidali. Bioremediation. An overview. Pure Appl. Chem., vol. 73, no. 7, pages

1163–1172, 2001. (Cited on page 16.)

[Von Neumann 1996] John Von Neumann and Arthur Walter Burks. Theory of self-reproducing

automata. University of Illinois Press Urbana, 1996. (Cited on page 27.)

[Wang 2006] Yongzhong Wang, Hyeon-Joo Kim, Gordana Vunjak-Novakovic and David L Ka-

plan. Stem cell-based tissue engineering with silk biomaterials. Biomaterials, vol. 27,

no. 36, pages 6064–6082, December 2006. (Cited on page 17.)

[Wang 2009] Harris H Wang, Farren J Isaacs, Peter A Carr, Zachary Z Sun, George Xu, Craig R

Forest and George M Church. Programming cells by multiplex genome engineering and

accelerated evolution. Nature, vol. 460, no. 7257, pages 894–898, August 2009. (Cited

on page 13.)

[Wang 2011] Baojun Wang, Richard I Kitney, Nicolas Joly and Martin Buck. Engineering

modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat.

Commun., vol. 2, page 508, October 2011. (Cited on pages 31 and 33.)

[Watson 1953] James D Watson, Francis H C Crick and Others. Molecular structure of nucleic

acids. Nature, vol. 171, no. 4356, pages 737–738, 1953. (Cited on page 2.)

[Weinberg 2017] Benjamin H Weinberg, N T Hang Pham, Leidy D Caraballo, Thomas

Lozanoski, Adrien Engel, Swapnil Bhatia and Wilson W Wong. Large-scale design

of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat.

Biotechnol., vol. 35, no. 5, pages 453–462, May 2017. (Cited on pages 36, 52, 55, 66,

111, 142, 168 and 170.)

196 Bibliography

[Weiss 2001] Ron Weiss, T Knight and Gerald Sussman. Cellular computation and communi-

cation using engineered genetic regulatory networks. Cellular computing, pages 120–121,

2001. (Cited on page 12.)

[Wilhelm 2018] Daniel Wilhelm, Jehoshua Bruck and Lulu Qian. Probabilistic switching circuits

in DNA. Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 5, pages 903–908, January 2018.

(Cited on page 169.)

[Win 2007] Maung Nyan Win and Christina D Smolke. A modular and extensible RNA-based

gene-regulatory platform for engineering cellular function. Proc. Natl. Acad. Sci. U. S.

A., vol. 104, no. 36, pages 14283–14288, September 2007. (Cited on page 34.)

[Win 2008] M N Win and C D Smolke. Higher-Order Cellular Information Processing with

Synthetic RNA Devices. Science, vol. 322, no. 5900, pages 456–460, October 2008.

(Cited on page 34.)

[Wolf 2008] Denise M Wolf, Lisa Fontaine-Bodin, Ilka Bischofs, Gavin Price, Jay Keasling and

Adam P Arkin. Memory in Microbes: Quantifying History-Dependent Behavior in a

Bacterium. PLoS One, vol. 3, no. 2, page e1700, February 2008. (Cited on page 111.)

[Wolpert 2015] Lewis Wolpert, Cheryll Tickle and Alfonso Martinez Arias. Principles of devel-

opment. Oxford University Press, 2015. (Cited on page 111.)

[Xiang 2006] Shuanglin Xiang, Johannes Fruehauf and Chiang J Li. Short hairpin RNA–

expressing bacteria elicit RNA interference in mammals. Nat. Biotechnol., vol. 24, page

697, May 2006. (Cited on page 17.)

[Xie 2011] Zhen Xie, Liliana Wroblewska, Laura Prochazka, Ron Weiss and Yaakov Benen-

son. Multi-Input RNAi-Based Logic Circuit For Indentification of Specifc Cancer Cells.

Science, vol. 333, no. 2011, pages 1307–1312, 2011. (Cited on page 34.)

[Yang 1995] W Yang and T A Steitz. Crystal structure of the site-specific recombinase gamma

delta resolvase complexed with a 34 bp cleavage site. Cell, vol. 82, no. 2, pages 193–207,

July 1995. (Cited on page 44.)

[Yang 2014] Lei Yang, Alec A K Nielsen, Jesus Fernandez-Rodriguez, Conor J McClune,

Michael T Laub, Timothy K Lu and Christopher A Voigt. Permanent genetic mem-

ory with >1-byte capacity. Nat. Methods, vol. 11, no. 12, pages 1261–1266, 2014. (Cited

on pages 46, 52, 67, 68 and 76.)

[Yuan 2008] Peng Yuan, Kushol Gupta and Gregory D Van Duyne. Tetrameric structure of

a serine integrase catalytic domain. Structure, vol. 16, no. 8, pages 1275–1286, August

2008. (Cited on page 46.)

Bibliography 197

[Yurke 2000] B Yurke, A J Turberfield, A P Mills Jr, F C Simmel and J L Neumann. A DNA-

fuelled molecular machine made of DNA. Nature, vol. 406, no. 6796, pages 605–608,

August 2000. (Cited on page 28.)

[Zadorin 2017] Anton S Zadorin, Yannick Rondelez, Guillaume Gines, Vadim Dilhas, Georg

Urtel, Adrian Zambrano, Jean-Christophe Galas and André Estevez-Torres. Synthesis

and materialization of a reaction-diffusion French flag pattern. Nat. Chem., vol. 9, no. 10,

pages 990–996, October 2017. (Cited on page 29.)

[Zalatan 2015] Jesse G Zalatan, Michael E Lee, Ricardo Almeida, Luke A Gilbert, Evan H

Whitehead, Marie La Russa, Jordan C Tsai, Jonathan S Weissman, John E Dueber,

Lei S Qi and Wendell A Lim. Engineering complex synthetic transcriptional programs

with CRISPR RNA scaffolds. Cell, vol. 160, no. 1-2, pages 339–350, January 2015. (Cited

on page 208.)

[Zhang 2011] Lin Zhang, Guoping Zhao and Xiaoming Ding. Tandem assembly of the epothilone

biosynthetic gene cluster by in vitro site-specific recombination. Sci. Rep., vol. 1, page

141, November 2011. (Cited on page 47.)

[Zhang 2013] Lin Zhang, Binyan Zhu, Ruixue Dai, Guoping Zhao and Xiaoming Ding. Control

of directionality in Streptomyces phage ϕBT1 integrase-mediated site-specific recombina-

tion. PLoS One, vol. 8, no. 11, page e80434, November 2013. (Cited on page 46.)

[Zhang 2014] Haoqian Zhang, Min Lin, Handuo Shi, Weiyue Ji, Longwen Huang, Xiaomeng

Zhang, Shan Shen, Rencheng Gao, Shuke Wu, Chengzhe Tian, Zhenglin Yang, Guosheng

Zhang, Siheng He, Hao Wang, Tiffany Saw, Yiwei Chen and Qi Ouyang. Programming

a Pavlovian-like conditioning circuit in Escherichia coli. Nat. Commun., vol. 5, page

3102, 2014. (Cited on page 111.)

[Zhou 2009] Jian Zhou, Mary A Arugula, Jan Halámek, Marcos Pita and Evgeny Katz. Enzyme-

based NAND and NOR logic gates with modular design. J. Phys. Chem. B, vol. 113,

no. 49, pages 16065–16070, December 2009. (Cited on page 29.)

[Zhu 2014] Fangfang Zhu, Matthew Gamboa, Alfonso P Farruggio, Simon Hippenmeyer,

Bosiljka Tasic, Birgitt Schüle, Yanru Chen-Tsai and Michele P Calos. DICE, an ef-

ficient system for iterative genomic editing in human pluripotent stem cells. Nucleic

Acids Res., vol. 42, no. 5, page e34, March 2014. (Cited on page 48.)

[Zong 2017] Yeqing Zong, Haoqian M Zhang, Cheng Lyu, Xiangyu Ji, Junran Hou, Xian Guo,

Qi Ouyang and Chunbo Lou. Insulated transcriptional elements enable precise design of

genetic circuits. Nat. Commun., vol. 8, no. 1, page 52, July 2017. (Cited on pages 12

and 166.)

Appendix

Annex A

Systematic rules for designing

minimized integrase logic circuits.

In Chapter 4, I used a brute force approach to obtain all possible gate designs and then de-

termined the logic function implemented by each design. We have found that all functions

belonging to similar P- and NP-classes could be attained by sampling the recombinatorial space

of a given device in single cells. However, we are still left with many design possibilities for

implementing a particular NP-class, none of them being very strictly constrained by biologically

informed design rules. While the brute force approach works well for 2- and 3-input devices, it

starts to reach its limits for 4 inputs and beyond, for two reasons. First, after generating all

possible devices for 4-input devices, we were able to realize 91% of the total number of func-

tions in single-cell. Second, and more importantly, the brute force approach requires a lot of

computational resources, and lot of storage capacity due to the number of generated sequences,

and these computational needs increase exponentially with the number of inputs. Consequently,

this approach will not be possible for an increasing number of inputs.

In Chapter 2, I automatized the design of logic functions in multicellular systems by decom-

position into subprograms. To do so, I established systematic rules for function decomposition

and direct design of logic devices from sub-functions.

The main limitation of the design presented in Chapter 2 is the number of required strains.

Here, I aim at defining systematic design rules that permit the implementation of logic in a

minimized number of cells.

As Claude Shannon did for electronic circuits, I want to be able to obtain minimized biolog-

ical circuits directly from Boolean functions. As seen in Chapter 4.2, the inversion performed

by an integrase can be associated to the negation of the inputs. Indeed, it seems possible to

associate integrase-based logic elements to specific logic operators. I worked on the definition

of few systematic design rules and on the development of a Python algorithm that uses these

rules for the design of logic circuits.

The Python algorithm developed here allows for the reduction of the number of strains

required for the systematic implementation of Boolean functions, going to a maximum of two

strains for three inputs.

202 Annex A. Systematic rules for designing minimized integrase logic circuits.

This work is not finished, and the systematic algorithm that I implemented is still not able

to compete with my manual single-cell design skills. However, I hope that this work could be

pushed forward, and by analyzing designs generated in Chapter 4.1, new design rules could be

determined.

A.1 Definition of elements and composition rules for the design

of single-cell logic devices

In Chapter 2, logic devices are based on the composition of elements exclusively using excision.

Here, I extended the set of logic elements to the use of excision and inversion, therefore to four

additional elements (Figure A.1). NOT and IDENTITY functions are therefore implementable

in three different manners. Here, I consider that the output gene is placed in the 3’ of the

construct and a promoter is added in the 5’ of the construct if no promoter is present in the

construction.

A

B

Excision
AND OR

Terminator based modules Promoter based modules

In series Nested In series Nested

Inversion

Form1 modules New modules with excision New modules with inversionLegend:

()()
i i

AND
()() i

Identity elements Not elements

() i

NOR

()() i

XOR
()()

i i

NXOR
()()

i i

NOR
()()

i iNAND
()() i

NXOR
()()

i i
NAND

()() i

XOR
()()

i i

NOR

()() i

Generic

design

2-inputs

example

Generic

design

2-inputs

example

Generic

design

2-inputs

example

Generic

design

2-inputs

example

Figure A.1: Definition of elements and modules corresponding to the implementation

of a large set of logic functions. (A) Definition of a set of IDENTITY and NOT elements based

on promoters, terminators, excisions, and inversions. (B) Composition of elements in series or nested.

For each module, the generic design is represented on the left and a 2-input example with the logic

function implemented on the right. The Form 1 modules correspond to the modules used in Chapter 2

for the multicellular implementation.

Two identical elements responding to different inputs are composable either in series or in

parallel (corresponding to the nested sites). These two biological compositions correspond to

different logic operations depending on if the element is based on promoters or terminators.

(1) The composition of terminator-based modules in series corresponds to the conjunction

of the elementary functions (X ∧ Y).

A.1. Definition of elements and composition rules for the design of single-cell
logic devices 203

(2) The composition of promoter-based modules in series corresponds to the disjunction of

the elementary functions (X ∨ Y).

(3) The composition of terminator-based modules in parallel (nested) corresponds to the

disjunction of the elementary functions if based on excision (X ∨ Y) and to the exclusive

disjunction of the elementary functions if based on inversion (X ⊻ Y).

(4) The composition of promoter-based modules in parallel (nested) corresponds to the

conjunction of the elementary functions if based on excision (X ∧ Y) and to the exclusive

conjunction of the elementary functions if based on inversion (X ⊼ Y).

The composition of identical elements responding to different inputs corresponds to a mod-

ule. I obtained twelve different modules from these six elements. These modules permit the

implementation of AND, NOR, OR, NAND, XOR, and NXOR 2-input gates and these designs

are scalable to N-inputs following the generic design detailed in Figure A.1B.

Then, I defined a reduced set of module compositions (Figure A.2A). Terminator-based

modules are composable in series and correspond to the conjunction of the functions. Promoter-

based modules are composable in series and correspond to the disjunction of the functions. A

terminator-based module is composable in the 3’ end of a promoter-based module and corre-

sponds to the conjunction of the two functions.

B

f=X.g+NOT(X).g

g

f=X.g+NOT(X).w

g w

g

No commun

input between g and w

g w/ terminator

modules

g w/ promoter

modules

Terminator modules

Inversion

modules
^

f=A.D+NOT(A).XOR(B,C)

f=A.NOT(B).NOT(C)+NOT(A).B.C

A
f = (A+B).C.D f = (NOT(A)+NOT(B)).C.NOT(D)

OR AND NAND NOT Imply

f=A.(NOT(B)+NOT(C))+NOT(A).(B+C)

Rules Generic design Example

Vice versa

Factorization

Atomic negation

Figure A.2: Rules of composition of modules and factorization rules. (A) Examples of

composition of modules. (B) Vice versa and atomic negation factorization rules.

Then, I defined two "factorization" rules; the vice versa function and the atomic negation

function (Figure A.2B). The vice versa design is based on a promoter inversion element that

switches from the computation of one function to another in response to an input. The atomic

negation corresponds to the negation of each term of a function; this function is implementable

204 Annex A. Systematic rules for designing minimized integrase logic circuits.

based on either promoter or terminator inversion-based elements by switching the orientation

of the full cassette.

A.2 Implementation in Python of a set of factorisation rules

using a brute force approach

I tried to implement these design rules in a Python script, starting from the design described

in Chapter 2 based on the conjunction of AND and NOR functions.

The main difficulty of this work was to write the logic function in a minimized form to

obtain the minimized design. As I did not know how to handle this logic problem, I developed a

brute-force algorithm searching for specific patterns in the input logic truth table corresponding

to identified biological modules, such as OR, NAND, XOR, and NXOR modules. I researched

these patterns in various orders, and by composition with other patterns, tried to obtain the

minimized logic form corresponding to the minimized circuit. I also included, after the search

for a pattern, a search for vice-versa or atomic negation factorization. For each input truth

table, I obtained a design for each order of the research of logic patterns. Therefore, I selected

designs that permit the implementation of the logic truth table in a reduced number of strains.

Figure A.3: Algorithm of design.

Using this algorithm, I generated the biological design of each 3-input Boolean function and

for 10,000 4-input Boolean functions chosen randomly (Figure A.4). The time for computation

of this algorithm is significant, as it is trying all possible minimization forms to obtain the

simplest one. Thus instead of testing all functions, I chose to generate a subset of 4-input

Boolean functions randomly obtained, which should represent the implementation of all 4-input

Boolean functions.

A.3. Discussion 205

A B3-input Median = 2.3 strains

4-input Median = 4.1 strains

3-input Median = 1.4 strains

4-input Median = 2.7 strains

Figure A.4: Number of strains required for the implementation of 3- and 4-input

Boolean function using the design framework of Chapter 2 and the one detail here.

(A) Histogram for the design framework of Chapter 2. (B) Historgram for the design detail

here. For 4-input only a sample of all 4-input Boolean designs have been generated to obtain

this distribution.

Based on this algorithm, all 3-input Boolean functions are implementable within two strains,

while four strains were required with the design from Chapter 2. For four inputs, the maximum

number of strains required is five for these reduced set of functions, as compared to eight for

the design of Chapter 2 (Figure A.4).

A.3 Discussion

Here I defined a reduced number of elements, modules, and composition rules. These rules

permit the minimization of the implementation of recombinase logic in living organisms. I

developed an algorithm for the systematic design of logic circuits based on these rules. However,

the algorithm does not perform well, and the use of an efficient algorithm for simplification of

logic functions in a factorized manner will be required. Nevertheless, based on this algorithm, I

showed that this reduced set of rules permits the implementation of all 3-input logic functions

within two strains.

In comparison to the generation process from Chapter 4, this systematic design strategy

permits the design of logic devices following some biological constraints. Moreover, this principle

is scalable to more inputs, as the rules are scalable to N-inputs and the design is straigthfoward.

This work has to be pushed further by (i) the development of an efficient simplification

algorithm and (ii) the definition of additional design rules. Indeed, from the database generated

in Chapter 4, it is probably possible to determine new design rules. For example, elements

based on gene could be used. In addition, to be a fundamental logic problem, the development

206 Annex A. Systematic rules for designing minimized integrase logic circuits.

of systematized design rules will permit the design of logic circuits integrating a high number

of inputs.

Annex B

Supplementary Information -

Introduction

B.1 Implementation of computation by regulation of transcrip-

tion using Zinc Fingers, TAL effectors, and CRISPR.

In the main text, I mainly described the implementation of computation via regulation of

transcription based on repressors. Zinc fingers, TAL effectors, and CRISPR can be also used

for the implementation of these systems following the same principle than for repressors. I detail

here the different tools and the logic circuits implemented using these tools.

Zinc Fingers (Cys2 - His2 ZFs) are small protein domains capable of binding to specific

DNA sequences with high affinities. Their name comes from a finger-like structure motif which

is stabilized via a common zinc ion. Zinc-finger DNA binding domains were engineered to

recognize new nucleotide DNA sequences [Maeder 2008]. By fusing Zinc-finger domains to

transcriptional activation or repression domains, VP64 and KRAB, Lohmuller and colleagues

engineered 15 transcriptional activators and 15 transcriptional repressors in mammalian cells

[Lohmueller 2012]. Employing hybrid promoters (for OR and NOR) and split intein mediated

protein splicing (for AND and NAND), they constructed OR, NOR, AND, and NAND logic

gates in mammalian cells.

TAL (transcriptional activator-like) effectors orgiginated from Xanthomonas oryzae bacteria

and secreted when the bacteria infects a plant. TAL effectors can also bind specific promoter

sequences and activate transcription [Boch 2010]. Their binding specificity is characterized by

a simple correspondence between the amino acids in the TAL effector and the DNA bases of

the target site. Artificial TAL effectors can then be easily designed to recognize specific DNA

sequences. Two- and three-input TALE-based AND logic gates were engineered in embryonic

stem cells using a split-intein protein-splicing strategy [Lienert 2013]. Therefore, the presence

of two or three inputs were required to have an active TALE protein activating the output

gene expression, which permits implementation of two- and three-input logic gates. Using

TAL effectors, Gaber and colleagues built NOT and NOR gates [Gaber 2014] similar to TetR-

family repressor gates. By positioning the DNA binding sites of the TAL effectors upstream

208 Annex B. Supplementary Information - Introduction

of the constitutive mammalian promoter (CMV), the expression of a TAL effector induces the

repression of the output gene. This design permits implementation of NOT gates using one

binding site and NOR gates using several binding sites upstream of CMV. As TAL effectors

can serve as both the input and output of the gates, multiple TALE-based logic gates were

connected to implement all 16 2-input logic functions in mammalian cells.

Finally, CRISPR-dCas9 was recently used to implement logic circuits in various organ-

isms, using the binding specificity of dCas9 to sgRNA [Jusiak 2016]. Following a NOR-

based design, various logic gates were built using sgRNA coupled with constitutive expres-

sion of dCas9 in E. coli [Nielsen 2014, Kiani 2014, Gander 2017]. sgRNA induces expression

of a promoter composed of an operon that is complement to the sgRNA and tandem pro-

moters for NOR gates are constructed based on multiple sgRNA:DNA interactions. Similar

strategy was used in mammalian cells ([Nielsen 2014, Kiani 2014, Gander 2017]) and in yeast

([Nielsen 2014, Kiani 2014, Gander 2017]). In yeast, the Mxi1 domain was fused to dCas9,

and it repressed gene expression in eukaryotic cells. Gander and colleagues used up to 7 or-

thogonal sgRNA:DNA pairs and 5 NOR gates in one circuit, implementing the majority of

2-input logic gates. The use of sgRNA:DNA pairs coupled with dCas9 permits the creation

of up to 107 orthogonal NOT gates. Furthermore, CRISPR-dCas9-sgRNA toolbox was extend

via the engineering of extending guide RNAs which included effector protein recruitment sites

[Zalatan 2015].

B.2 In vivo implementation of sequential logic systems.

Most electronic circuits are based on a combination of sequential and combinational circuits.

Sequential logic circuit behavior depends not only on the present value of the signal but also on

the sequence of past inputs. In others words, sequential logic circuits produce history-dependent

responses. We considered two different types of sequential logic circuits: dynamic sequential

circuits and history-dependent circuits.

B.2.1 Circuits using rewritable memory devices.

Examples of dynamic sequential circuits include push on/push off circuits and flip-flop circuits.

These circuits are sequential, as the current state of the circuits is dependent on both its previous

state and on the state of the inputs, and dynamic as it can switch back to previous states.

Various dynamic sequential circuits have been implemented in living organisms, all circuits

are based on feedback loops. First, the genetic toggle switch of Gardner and colleagues based

on repressors is a dynamic sequential bistable circuit. It is based on the mutual inhibitory

of two repressors responding to the two inputs. Various circuits have been designed based on

similar designs. Basu and colleagues implemented a spatio-temporal dynamic circuit [Basu 2004]

B.2. In vivo implementation of sequential logic systems. 209

based on repressors and cell-cell communication. Ajo-Franklin and colleagues implemented

an autoregulatory transcriptional positive feedback in mammalian cells based on the LexA

activator. Lou and colleagues implemented a push-on and push-off circuit based on repressors

and feedback loops. Similarly to combinational logic, Urrios and colleagues implemented a

memory device based on multicellular distributed computation [Urrios 2016]. This circuit is

based on a double-negative feedback motif between two cells. Moreover, Urrios and colleagues

built a feed-forward loop based on the same design strategy to implement a single pulse behavior

[Urrios 2018].

A resettable recombinase-based circuit was engineered in E. coli [Bonnet 2012].

Recombinase-based logic circuits are by definition memory devices as with the single used prop-

erty of integrase the system is irreversible. By using, Recombination Directionality Factor

(RDF) to reset the circuit state, a recombinase-based toggle switch was implemented. More

complex designs based on the association of recombinase and RDF were proposed by Subsoon-

torn [Subsoontorn 2012a, Subsoontorn 2014].

B.2.2 Irreversible history-dependent circuits.

History-dependent circuits that are not dynamic have been also implemented, such as systems

to track cell lineage by random genome editing or to track the order of occurrence of inputs,

such as history-dependent gene-expression programs.

Shipman and colleagues used CRISPR to randomly edit DNA [Shipman 2016]. By sequenc-

ing the genome, the cell lineage is re-traceable, making it a powerful tool to study development.

Similarly based on CRISPR and random DNA editing, Tang and Liu implemented a rewritable

multi-event analog recording circuit in bacteria and mammalian cells [Tang 2018]. Their circuit

permits one to re-trace the occurrence of two inputs by genome sequencing and analysis.

Recombinase permits a more compact implementation of sequential circuits, as by default

memory devices are implemented. The output is dependent on the presence of the input at any

given time in the history of the system. Therefore, these circuits can be considered sequential.

As the output is not dependent on the order of occurrence of the inputs, we called them

asynchronous combinational logic circuits.

Based on recombinases, large history-dependent circuits have been implemented. Roquet

and colleagues engineered a register of the order-of-occurrence of events by interdigitation of

integrase sites. The state of the system, such as the order-of-occurrence of inputs, is read-

able by sequencing. Adding promoter(s), terminator(s), and output gene(s) between sites,

history-dependent gene-expression programs from up to 3-input were implemented in E. coli

[Hsiao 2016] [Roquet 2016]. These circuits as recombinase-based Boolean logic circuits are not

resettable.

Annex C

A part toolbox to tune genetic

expression in B. subtilis

During my master internship and the beginning of my thesis, I worked on the engineering

of a part toolbox to tune genetic expression in B. subtilis. This work was in collaboration

with Matthieu Jules and Vincent Suaveplane from INRA Jouy en Jousas. Caroline Clerté and

Nathalie Declerk guided me for the experiments with the 2-photon microscopy and analysis.

Hung-Ju Chang worked on the enginnering of the SsrA-tag toolbox. Jerome Bonnet and I

designed the project and wrote the paper.

The following is the full paper and the supplementary data.

Published online 8 July 2016 Nucleic Acids Research, 2016, Vol. 44, No. 15 7495–7508

doi: 10.1093/nar/gkw624

A part toolbox to tune genetic expression in Bacillus
subtilis
Sarah Guiziou1, Vincent Sauveplane2, Hung-Ju Chang1, Caroline Clerté1,

Nathalie Declerck1, Matthieu Jules2 and Jerome Bonnet1,*

1Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, France and 2Micalis

Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France

Received May 25, 2016; Revised July 01, 2016; Accepted July 04, 2016

ABSTRACT

Libraries of well-characterised components regulat-
ing gene expression levels are essential to many syn-
thetic biology applications. While widely available
for the Gram-negative model bacterium Escherichia
coli, such libraries are lacking for the Gram-positive
model Bacillus subtilis, a key organism for basic re-
search and biotechnological applications. Here, we
engineered a genetic toolbox comprising libraries of
promoters, Ribosome Binding Sites (RBS), and pro-
tein degradation tags to precisely tune gene expres-
sion in B. subtilis. We first designed a modular Ex-
pression Operating Unit (EOU) facilitating parts as-
sembly and modifications and providing a standard
genetic context for gene circuits implementation. We
then selected native, constitutive promoters of B.
subtilis and efficient RBS sequences from which we
engineered three promoters and three RBS sequence
libraries exhibiting ∼14 000-fold dynamic range in
gene expression levels. We also designed a collec-
tion of SsrA proteolysis tags of variable strength.
Finally, by using fluorescence fluctuation methods
coupled with two-photon microscopy, we quantified
the absolute concentration of GFP in a subset of
strains from the library. Our complete promoters and
RBS sequences library comprising over 135 con-
structs enables tuning of GFP concentration over
five orders of magnitude, from 0.05 to 700 mM. This
toolbox of regulatory components will support many
research and engineering applications in B. subtilis.

INTRODUCTION

Synthetic biology aims at the rational engineering of novel
biological functions and systems (1). By facilitating the en-
gineering of living organisms, synthetic biology promise
to enable the development of many new applications for
health, manufacturing, or the environment. For example,

in the past decade researchers have achieved complete syn-
thesis of many compounds of interest in microorganisms,
including several pharmaceuticals (2–4). Synthetic gene cir-
cuits enabling cells to perform tuneable oscillations (5), data
storage (6–9), Boolean logic (10,11) and pattern formation
(12) have also been engineered. Many genetic circuits have
been developed in mammalian cells for diagnosis, disease
classi cation and treatment (13–15). More recently, bacte-
ria have been re-programmed to record inputs within the
mammalian gut (16), detect metastases in vivo (17), or diag-
nose diabetes in human clinical samples (18).
These achievements rely on gene circuits of increasing

size and complexity, and biological engineers had to nely
adjust the expression level of many different genes at a
time. For example, yeast-based synthesis of tebaine and
hydrocone required the concerted production of up to 23
different enzymes (4). Refactoring heterologous nitrogen-
 xation cluster or injectisome into Escherichia coli necessi-
tated the coordinated expression of respectively 20 and 27
genes within a single bacterial strain (19,20). In this con-
text, the availability of multiple regulatory components en-
abling ne-tuning of gene expression has become of utmost
importance. In response to these needs, several libraries of
components have been produced to regulate gene expres-
sion at several levels (mainly transcription and translation)
for many organisms of interest including E. coli, Saccha-
romyces cerevisiae, and mammalian cells (21–24).
Many synthetic biology research and applications have

been developed in bacteria using the Gram-negative model,
E. coli, because of its ease of use and great numbers of reg-
ulatory components available. On the opposite, and despite
overwhelming potential interests, the use of the bacterial
Gram-positive model, Bacillus subtilis, has so far been lim-
ited.
Bacillus subtilis is a soil bacterium from the Firmicute

phylum, which has been a long-time model organism (25).
Complete genome sequence, along with transcriptome and
proteome wide responses to various environmental condi-
tions have been determined (26,27). Because it presents sim-
ple differentiation pathways, B. subtilis has been a model

*To whom correspondence should be addressed. Tel: +33 467417713; Fax: +33 467417913; Email: jerome.bonnet@inserm.fr

C© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which

permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

212 Annex C. A part toolbox to tune genetic expression in B. subtilis

7496 Nucleic Acids Research, 2016, Vol. 44, No. 15

system for studying cell-fate decisions during development
(28,29). For example, the role of stochastic "uctuation in
gene expression during differentiation was recently probed
in B. subtilis (30). Much of our understanding of bacte-
rial chromosomal replication also comes from studies per-
formed in this organism (31).
In addition to its role in basic research, B. subtilis is a

biotechnology workhorse, being routinely used for the pro-
duction of enzymes, antibiotics, but also for bioremedia-
tion (32–33). Indeed, from an engineering perspective, B.
subtilis presents many advantages like natural competency,
easy chromosomal integration, and an endogenous secre-
tion pathway widely used in industrial protein production.
The sporulation capacity of this bacterium facilitates stor-
age conditions and spores can also be used as a convenient
format for the surface display of many biomolecules (34).
Finally, B. subtilis is non-pathogenic, has been classi ed by
the U.S. Food andDrug Administration as a ‘Generally Re-
garded As Safe’ and was granted Quali ed Presumption of
Safety status by the European Food Safety Authority.
One reason for themodest usage ofB. subtilis in synthetic

biology is the lack of well-characterised, publicly available
collections of regulatory elements to precisely tune gene ex-
pression levels in this organism. Recently, a collection of
standardised components containing three constitutive pro-
moters, two inducible promoters, ve integration vectors,
and few epitope tags has been produced (35). However, and
despite its usefulness, the tunability range and the part di-
versity of this toolbox are still limited as compared with
tools currently available for E. coli.
Here we engineered a toolbox of promoters, RBSs, and

proteolysis tags to control expression of a gene of interest
at the levels of transcription, translation and protein degra-
dation in B. subtilis over many orders of magnitude (Figure
1A). We also standardised our measurement processes and
characterised their robustness between two different labora-
tories using a newly de ned reference construct. Finally, by
using "uorescence "uctuation methods coupled with two-
photon microscopy, we measured in living cells the absolute
concentration of GFP produced by different members of
our library. From this work we deliver a full part library en-
abling the tuning of GFP concentration from nanomolar to
millimolar concentrations (15 to 270 000 GFP molecules/
cell, respectively). This extensive parts library enabling pre-
cise tuning of gene expression will be useful for the broad
research and engineering community working with B. sub-
tilis.

MATERIALS AND METHODS

B. subtilis transformation and chromosomal integration

Bacillus subtilis strains derived from BSB168, a trp+ deriva-
tive of B. subtilis 168 (26,27). B. subtilis strains were grown
on either LB media, M9 minimal media supplemented with
glucose and malate (0.5% glucose and 0.3% malate) (M9-
MG) or CHG medium supplemented with glucose (0.5%)
(www.basysbio.eu) (CHG). Complete protocols and media
composition for competent cells preparation and chromo-
somal integration (adapted from (36)) can be found in sup-
plementary materials.

Figure 1. Design of a toolbox to tune genetic expression in Bacillus sub-
tilis. (A) We engineered libraries of regulatory components with different
strengths and sequences to tune genetic expression of a gene of interest
(GOI): constitutive promoters to tune transcriptional ef ciency, RBSs to
tune translational ef ciency and degradation tags to tune proteolysis rate
of the protein of interest. (B) Architecture of our standardised and mod-
ular Expression Operating Unit (EOU). The EOU is composed of the
standard regulatory elements (promoter, RBS, GOI, degradation tag), a
standardised sequence of 8 nucleotides at the TSS position, a bidirectional
terminator and a double terminator to insulate the cassette from genetic
context. Spacers (SpX) of 40 bp designed to facilitate one-step isother-
mal assembly as well as several restriction sites enable simple construction
and switching of parts. The EOU is integrated in the B. subtilis genome
by double-crossover at the amyE locus (alpha-amylase gene). The EOU
is coupled with a cassette coding for the spectinomycin adenyltransferase
(spc) to allow antibiotic selection of the integrants.

Brie"y, synthetic constructs were integrated using
pDG1730 integration vector into the amyE locus of B.
subtilis genome by double-crossover integration. Positive
selection of integration was performed with spectinomycin
at 100 mg ml−1 and negative selection of single crossover
integration events with erythromycin at 0.5 mg ml−1.
Colony PCR for verifying part integrations were realised
using Kapa 2G Robust PCR kit (Clinisciences, buffer B).
The PCR products were then sequenced.

Molecular biology

We used pDG1730 (Genbank U46199,(37)) that we ob-
tained from the BacillusGenetic Stock Center (http://www.
bgsc.org) as our backbone plasmid forB. subtilis integration
into the amyE locus. All plasmids used in this study were de-
rived from this vector and fragments assembled using one-
step isothermal assembly (38) or restriction enzymes follow-
ing standard molecular biology procedures. Restriction en-
zymes were purchased from New England BioLabs (NEB,
Ipswich, MA, USA). PCR were performed using Q5 PCR
master mix (NEB), primers and Gblocks were purchased
from IDT (Louvain, Belgium; Carlsbad, USA). Plasmid ex-
traction and DNA puri cation were performed using kits
from Biosentec (Toulouse, France). Sequencing was real-
ized by GATC Biotech (Cologne, Germany). All primers

213

Nucleic Acids Research, 2016, Vol. 44, No. 15 7497

sequences and details on molecular biology protocols are
available in supplementary materials.

Construction of randomised libraries and integration in B.
subtilis

The various promoters, RBS sequences, or degradation tags
libraries were generated by amplifying the GFP gene us-
ing primers containing the regulatory region of interest de-
generated at strategic positions. This PCR products library
was then digested by speci c restriction enzymes and cloned
into our standard EOU accordingly digested.

PCRampli cation and cloning. For the initial Pveg libraries
(Supplementary Figure S2A, no standard TSS element),
Pveg was randomised following three different strategies:
randomisation of −10 and −35 boxes, randomisation of
−35 box, or randomisation of the −10 box. For the Pveg li-
braries (with standard TSS element), only the −10 box was
randomized at three positions. Vectors and ampli ed frag-
ments were digested byAgeI and SphI and ligated. PserA and
PymdA were randomized following two strategies (randomi-
sation of−10 box or randomisation of the region "anked by
the −35 and −10 boxes). Vectors and ampli ed fragments
were digested by BamHI and SphI and ligated. RBS and
degradation tag libraries were generated following a similar
procedure. Vectors and ampli ed fragments were digested
by NheI and SphI.

Ligation and transformation into E. coli. Vectors and frag-
ments were ligated using T4 ligase (NEB) at 16◦Covernight.
DNA was transformed in E. coli using electro-competent
cells and plated in large selective agar plates (∼ 4 000
colonies per library). After overnight growth, all clones
were scrapped from agar plates and grown at 30◦C on 5 ml
of LB during 2 h. 1 ml of culture was used for DNA extrac-
tion. Target sequence randomisation was veri ed by Sanger
sequencing.

Batch integration into B. subtilis. For batch integration
of libraries in B. subtilis, the integration protocol was per-
formed using 10 mg of variant DNA in 10 mL of B. sub-
tilis competent cells. At the end of integration protocol, two
aliquots of 500 ml of cell cultures were plated on spectino-
mycin or erythromycin agar plates for quanti cation of in-
tegration ef ciency (∼100 double-crossover events for 500
ml of competent cells, hence 2 000 clones per libraries using
batch integration). The remaining cells were centrifuged at
1 600 g for 10 min, the supernatant was removed, cells were
re-suspended in 10 ml of spectinomycin LB and grown 16
h at 30◦C to avoid elimination of slowly-growing cells (39),
before being either sorted by FACS or conserved in glycerol
stocks.

Fluorescence activated cell sorting of libraries

For each library, glycerol stocks of B. subtilis variants were
inoculated in 5ml LB and grown 16 h at 30◦C. The next day,
cells were diluted and grown on M9-MG. Then, cells from
the libraries were sorted using a S3Cell Sorter (Biorad). The
expression level rangewas divided in seven different regions,

or bins, in which cells were sorted according to their GFP
expression level. 10 000 bacteria were sorted into each bin
and were plated on selective agar plates. For each promoter
library, four variants per bin were selected for further char-
acterisation, for a total of 28 variants per library. For each
RBS library, 20 variants per bin were selected for a total
of 140 variants characterised. All variants were entirely se-
quence veri ed. We excluded clones containing unexpected
mutations (e.g. within the GFP sequence or the RBS for
promoter libraries) and chose the variants presenting the
lowest dispersion around the median value of the "uores-
cence intensities, and the lowest variability in gene expres-
sion between experiments performed on different days.

B. subtilis cell culture for parts characterisation

For measurements performed on exponential phase, 96
deep well plates lled with 1 ml of LB per well were inoc-
ulated with clones from fresh streaked plates. Plates were
grown 16 h at 37◦C. Cultures were diluted 40 times on 200
ml of LB in 96-well plates and grown 2 h. Then, cultures
were diluted 40 times on 200 ml of M9-MG and grown at
37◦C until OD reached ∼0.3–0.4 (∼3 h). Cultures were di-
luted 40 times on 200 ml of M9-MG and cells were imme-
diately analysed on the "ow-cytometer. For measurements
performed on stationary phase, 96 deep wells plate lled
with 1 ml of LB per wells were inoculated with clones from
fresh streaked plates. Plates were grown 16 h at 37◦C. Cul-
tures were diluted 40 times on M9-MG and measure on
"ow-cytometer within the hour.

Flow-cytometer measurements and analysis

Quanti cation of expression levels of all strains were per-
formed using Attune NxT "ow-cytometer (Thermo sher)
equipped with an autosampler. Experiments were per-
formed on 96 wells plates with three replicates per plates.
In each plate, the reference constructs and the negative con-
trol strain (integration of pDG1730 without EOU) were
present. For a given part, each measurement procedure was
performed in triplicates on three different days.
For "ow cytometry measurements, 10 000 bacteria events

were analysed. A gate was previously designed based on
forward and side scatter graphs to remove debris or spores
from the analysis. GFP "uorescence intensity wasmeasured
using excitation by a 488 nm laser and a 510/10 nm lter
(BL1). mKate2 excitation was performed by a 561 nm laser
and lter 615/25 nm (YL2). Voltages used were FFS: 440,
SSC: 340, BL1: 490, YL2: 620.
Data were analysed using the Attune NxT software.

Flow-Jo (Tristar) was used for data representation. Statis-
tical values for each channels of the sample were calculated
and exported. For each independent experiment, the me-
dian "uorescence intensity of the bacterial population for
each replicate was extracted. Then, the mean "uorescence
intensity was calculated from the three replicates. The mean
values and standard deviation from three independent ex-
periments were then calculated. Relative expression units
were calculated for each independent experiment by divid-
ing the mean "uorescence intensities values measured from
the synthetic constructs by the mean "uorescence intensity

214 Annex C. A part toolbox to tune genetic expression in B. subtilis

7498 Nucleic Acids Research, 2016, Vol. 44, No. 15

measured from the reference construct. All raw data les are
available in supplementary materials.

Plate reader experiments and analysis

Quanti cation of expression levels of promoters was per-
formed using a BioTek Cytation 3 in Montpellier (France)
and a BioTek Synergy II in Jouy-en-Josas (France). Experi-
ments were performed using 96-well plates with three repli-
cates per plate, and in each plate was always cultured the ref-
erence construct and the negative control strain. Three in-
dependent experiments were performed. To begin, 96 deep-
well plate lled with 1 ml of LB per wells were inoculated
with clones from fresh streaked plates. Cells were grown
for 16 h at 37◦C. Cultures were then diluted 400 times on
200 ml of LB in 96-well plates and grown until OD reached
∼0.3–0.4. At this point, cultures were diluted 400 times on
200 ml of CHG and grown at 37◦C until OD reached 0.3–
0.4. Cultures were diluted 400 times on 200 ml of CHG and
grown for 16 h on plate reader with measure of green "uo-
rescence intensity (ex. 485/20 nm, em. 528/20 nm) and ab-
sorbance (at 600 nm) every 10 min. Absorbance at 900 nm
and 977 nm (Abs900, Abs977) were read once at the begin-
ning of each experiment in order to correct the OD600 to
an optical path length of 1 cm using the following equa-
tion: (Abs977 – Abs900)/0.18 (40). Fluorescein was present
on themicrotiterplate at two different concentrations (1 and
10 nM) in duplicates. Each culture was performed in tripli-
cates. Polynomial and exponential functions were used to t
the experimental datasets of GFP and biomass, respectively
(26), and to deduce the rates of biomass and GFP produc-
tions along the growth. GFP concentration was estimated
as GFP per OD600, (

GFP
OD

), at each time point. In steady-

state growth (µ = constant), GFP
OD

is constant. GFP concen-
tration (also referred to as activity) was expressed in Rela-
tive Expression Units (REU) using our reference construct.
Data were analysed using custom Matlab scripts.

2-photon uorescence microscopy experiments and number
and brightness (N&B) analysis

Cells were cultivated in 24-well microplates in 1.5 ml M9-
MG and maintained in exponential phase by dilution for at
least 16 h to avoid the presence of spore. Aliquots of cell cul-
tures were removed to perform simultaneously microscopy
and "ow-cytometry measurements. For microscopy exper-
iments, 1 ml of culture at OD600 ∼0.2–0.5 was centrifuged
at 1 600 g for 2 min, the supernatant was removed, and the
cell pellet was re-suspended in M9-MG medium to a nal
OD600 of∼25. A 2.5ml aliquot was placed on a 2% agarose–
M9 pad and cells were imaged using an Axiovert 200M in-
verted microscope (Zeiss, Germany) equipped with an ISS
laser scanning module and an ISS Alba (ISS, Champaign,
IL, USA) with two-channel APD detection (see (41) for de-
tails). Each experimental day, the laser was re-aligned and
the 2-photon excitation volume was calibrated using a stan-
dard "uorescein solution. We used a laser power of 6 mW
for all experiments, and an excitation wavelength of 930 nm
forGFP.Wemeasured our excitation volume to be of 0.07 ",
about a seventh of the bacterial cell volume. For each strain,
four different elds of view (FOV) were imaged (256 × 256

pixels, 30 mm × 30 mm), each containing about 200–300 in-
dividual cells. For each FOV, a series of 50 raster-scanned
images were recorded using a 40 ms laser dwell time per
pixel. The negative control (NC) strain (expressing noGFP)
was cultivated and imaged under identical conditions to de-
termine the auto"uorescence background level for each ex-
perimental day.
A summary of the procedure used for number and bright-

ness (N&B) analysis derived from (42) is given below and
detailed explanation of the method adapted for bacterial
cells can be found in (41). Individual cells in each FOVwere
contoured automatically with manual correction using the
Patrack software (43). For each FOV, "uorescence "uctua-
tions (δF) from the average intensity over 50 scans (<F>)
were rst calculated at each pixel, providing pixel-based
maps of the true (shot noise corrected) molecular bright-
ness of the diffusing "uorescent particles, e:

ε (x, y) =
δF2 (x, y) − 〈F〉 (x, y)

〈F〉 (x, y)

For each FOV, the averagemolecular brightness eFOV was
determined using only the M pixels encompassed within all
the cells of the FOV, and the number of "uorescent parti-
cles detected in the excitation volume within each cell was
calculated:

ncell =
1

M

M∑

j = 1

〈F〉2 (j)

δF2 (j)

εFOV + 1

εFOV

The molecular brightness of GFP (ǫGFP) was estimated
for each experimental day by averaging eFOV measured
for strains expressing moderate amount of GFP (i.e. 40<
<ncell> <400). For each strain including the background
strain, the average number of GFP equivalent molecules de-
tected in the intracellular excitation volume was calculated
using the daily eGFP value:

〈N〉 =
〈ncell〉 〈εFOV〉

εGFP

The average intracellular concentration of GFP
molecules <NGFP> corrected for the auto-"uorescence
background was obtained by subtracting to <N> the
average number of GFP equivalent molecules calculated
for the NC strain (<Nnc>) and dividing by the excitation
volume inside cell (volex = 0.07 fL, (41)) and the Avogadro
number (NA) :

〈NGFP〉 =
〈N〉 − 〈Nnc〉

volex NA

The average number of GFPmolecules per cell can be es-
timated by multiplying<NGFP> byNA and the average cell
volume. Under our experimental conditions, we estimated
the average cell volume to be a 0.5 " ± 0.2, which was cal-
culated from several images obtained for different strains
and experimental days.
For the seven constructs measured using 2p sN&B meth-

ods, we obtained a linear correlation between concentration
of GFP and "uorescence intensity measured using "ow-
cytometer in arbitrary unit.We assumed that the correlation

215

Nucleic Acids Research, 2016, Vol. 44, No. 15 7499

is linear in the full expression range. As one REU corre-
sponded approximately to 7.21 × 104 AU ("uorescence Ar-
bitrary Unit) and intracellular GFP concentration is equal
to 0 for the background construct, we obtained a correla-
tion between intracellular GFP concentration and relative
promoter unit corrected by the background of 1 (REU –
REUNC) = 144 ± 24% [GFP] (mM). To determine the cor-
relation error, a correlation was determined individually for
each seven values, and the 24% error corresponded to the
highest error between the various correlations.

RESULTS

Design of a standard andmodular ExpressionOperatingUnit
(EOU) for Bacillus subtilis

Our rst goal was to design a genetic architecture support-
ing rapid, simple, and reliable parts assembly or exchange.
An additional speci cation was to provide a standard ge-
netic context for gene circuits characterisation. We thus de-
signed a standardised and modular Expression Operating
Unit (EOU, (22)) for controlling gene expression (Figure
1B). Since chromosomal integration is the general gene ex-
pression strategy used inB. subtilis, we placed our EOU into
the pDG1730 vector (37), which is used for targeted chro-
mosomal integration at the amyE locus. The basic EOU
contains a gene of interest (GOI), which can be "anked
by various regulatory components: a promoter, a ribosome
binding site, and possibly a degradation tag. We also de-
signed an Expression Operating Unit architecture for ex-
pression of two genes and for inducible gene expression
(Supplementary Figure S1). We placed transcriptional ter-
minators at both extremities of the EOU to stop transcrip-
tion and to insulate the constructions from transcription in-
coming from neighbouring regions.
We also tried to avoid context effects due to the Transcrip-

tion Start Site (TSS) region. In fact, at some promoters, the
RNA polymerase can initiates transcription at two or three
alternative neighbouring bases, +1, +2 or +3 (as illustrated
in E. coli (44) and in B. subtilis by (45)). The probability
to start transcription at +1, +2 or +3 most likely depends
on the nature of the nucleotides present at these positions
and on the intracellular level of the cognate NTPs (45,46).
Unexpected context effect affecting transcription ef ciency
could therefore arise if we used various RBSs with differ-
ent nucleotides compositions. Different 5′-untranslated re-
gions could also affect gene expression levels by chang-
ing mRNA decay kinetics. We thus decided to standard-
ise the (TSS) region of our constructs. We de ned a stan-
dard TSS element (GGAGAAAA) corresponding to the
 rst 8 nucleotides of the TSS of the PfbaA gene (encoding
the fructose-bisphosphate aldolase), and placed it between
the promoter and the RBS.
We incorporated 40 bp spacers at several positions to fa-

cilitate assembly and switch of parts using one-step isother-
mal Gibson assembly (38). In addition, we placed various
cutting sites for different restriction enzymes so that parts
can also be exchanged by restriction/ligation reactions. To
quantify gene expression, we used aGreen Fluorescent Pro-
tein (GFP) as a reporter. Based on previous work in B. sub-
tilis (47), we selected the superfolder GFP (sfGFP(sp), sim-

ply named GFP from here and below), which is very ef -
ciently expressed in B. subtilis.

De"nition of a reference construct

The use of reference objects facilitates measurements repro-
ducibility and design, and has a long-standing history of
success in various engineering elds. In synthetic biology,
a reference construct (using promoter BBa J23101 coupled
with GFP) has been used in E. coli as an in vivo standard
facilitating comparison of in vivo promoter activity mea-
surements (48). Expression of parts activity in Relative Ex-
pression Units (REU) using this reference construct allows
reduction of data variation due to difference in day-to-day
and lab-to-lab test conditions and set-ups. Previously, a ref-
erence construct had been proposed as well for B. subtilis
(35). However, we found that the activity of this construct
was too low to serve as a reliable reference for characteriz-
ing expression levels over a wide dynamic range (i.e. a small
experimental variation from the reference construct greatly
affects the calculated REU of all characterised constructs).
We therefore designed a new reference construct for B. sub-
tilis.
To this aim,we prepared a rst library of randomised pro-

moters based on the promoter Pveg, well-known to be consti-
tutive (35,49, Supplementary Figure S2). From this library
spanning 3 orders of magnitude in GFP expression levels,
we selected a reference promoter (PREF) exhibiting an in-
termediate expression level. The full reference construct is
composed of the PREF promoter sequence, a strong RBS se-
quence (named RBS R0) typically used with the B. subtilis
IPTG inducible promoter Phyperspank and theGFP coding se-
quence. This reference construct was used in all subsequent
experiments to express gene expression as Relative Expres-
sionUnits (REU) instead of arbitrary "uorescence intensity
units.

Choice and characterisation of tenB. subtilis constitutive pro-
moters

We aimed at designing synthetic libraries of constitutive
promoters spanning a wide dynamic range of transcrip-
tional ef ciencies in B. subtilis. Such constitutive promoter
libraries are essential tools for precise engineering of genetic
circuits. For example, in metabolic engineering, the expres-
sion level of the different enzymes of the pathway has to be
precisely tuned (50). In order to identify a rst set of natu-
ral constitutive promoters from the B. subtilis genome, we
used data recently produced by the BaSysBio consortium
(27). This consortium mapped the transcriptional architec-
ture, metabolic and networks behaviour of B. subtilis at a
large scale and over 100 different conditions.
We searched the mRNA expression database (http://

genome.jouy.inra.fr/cgi-bin/seb/index.py) for genes which
transcript levels were relatively constant over the full range
of experimental conditions. We chose ten genes with pro-
moter regions known or predicted to be dependent on the
housekeeping sigma factor s

A (Figure 2A). Two of these
promoter regions, Pveg and PlepA, had already been isolated
and characterised in B. subtilis (35,49). All the other pro-
moter sequences were arbitrarily de ned as the 50 rst nu-

216 Annex C. A part toolbox to tune genetic expression in B. subtilis

7500 Nucleic Acids Research, 2016, Vol. 44, No. 15

Figure 2. Engineering constitutive promoter libraries to tune transcription level in B. subtilis. (A) B. subtilis constitutive promoters were selected from the
BaSysBio database based on a regular transcription pro le under 104 different conditions. Two sketches of potential transcriptional pro les are depicted,
in which the y-axis correspond to the mRNA levels and the x-axis correspond to different conditions. Upper panel: a constitutive gene active in most of the
conditions, and thus displaying a desirable pro le for constitutive promoter library design. Lower panel: a gene showing signi cant variation in expression
over the different conditions and therefore not a suitable candidate. Based on this framework, 10 constitutive promoters were selected and characterised
using our standardised cassette, using R0 as RBS and a superfolder GFP as a GOI. The cassette was integrated into the amyE locus of the B. subtilis
genome. Expression levels were measured by "ow-cytometry in exponential phase (see methods). Expression levels are expressed in Relative Expression
Unit (REU) and error-bars represent the standard deviation over 3 independent experiments. Promoter sequences are represented with their TSS sequences
highlighted in blue and their−10 or−35 box aligned and highlighted in red for experimentally validated sequences and in green for putative sequences. Full
library measurements data are available in supplementary data les 1 and 2. (B) Work"ow to engineer promoter libraries. (i) Randomisation of promoters
by PCR using randomised oligonucleotides: two different designs are depicted; design 1: randomisation of three nucleotides in the −10 region; design 2:
randomisation of six nucleotides between -35 and -10 regions. (ii) Cloning of the randomised fragments in a shuttle vector. (iii) After transformation in
E. coli, extraction of plasmid DNA from the pool of transformed E. coli. (iv) Batch integration in B. subtilis of the extracted plasmid DNA by double-
crossover at the amyE locus. (v) Sorting of the library based on "uorescence intensity into seven different bins to obtain various pools of variants within the
same range of expression level. (vi) Plating of sorted cells onto selective agar to isolate individual variants. (vii) Characterisation of four variants per gates:
"ow cytometer measurements and sequencing of colony PCR products from the integrated constructs. (C) Three curated promoter libraries from three
different parent sequences were obtained by following the process describe above. Expression levels are in relative expression units (REUs) and obtained
by "ow-cytometry measurements performed in exponential phase. Error bars: ±SD over three independent experiments. See methods and supplementary
material for more details. Full library measurements are presented in Supplementary Figure S3 and supplementary data les 1 and 3.

217

Nucleic Acids Research, 2016, Vol. 44, No. 15 7501

cleotides upstream of the putative transcriptional start ac-
cording to the alignment with the consensus sequence of s

A

recognition elements. Of note, when we added our standard
TSS element to Pveg and to the reference promoter we ob-
served a marked reduction in GFP expression (Supplemen-
tary Figure S3), con rming the in"uence of this region on
transcriptional ef ciency (44–46).
We introduced synthetic DNA fragments comprising the

selected promoter regions in our standard EOU upstream
of the standard TSS element, a strong RBS (R0), and the
GFP coding sequence. The constructs were then integrated
at the amyE chromosomal locus and GFP expression lev-
els weremeasured by "ow-cytometry in exponentially grow-
ing cells (Figure 2A). We observed high-level GFP produc-
tion from the 10 selected promoters, demonstrating that the
standard EOU we designed is a suitable reporter system
for evaluating the relative transcriptional ef ciency of pro-
moter sequences integrated in the B. subtilis chromosome.
The promoters activity went from 10- to 600-fold over the
auto-"uorescence background level measured in the nega-
tive control (NC) strain. In all, the ten promoters spanned
a 60-fold range in expression levels.

Construction and characterisation of promoter libraries

Recently constructed libraries of parts for E. coli or S. cere-
visiae allow tuning of gene expression over a 10 000-fold
range (21–23). In addition, if many parts are to be used
in combination to engineer more complex gene circuits or
pathways, different part sequences are required to avoid re-
combination due to high sequence similarity (51).
In order to increase the sequence diversity and expression

dynamic range of our promoter parts, we randomized three
different ‘parent’ promoter sequences. From our set of 10
constitutive promoters, we chose the three strongest: Pveg,
PserA and PymdA. All three promoters have a strong consen-

sus signature for the B. subtilis household sigma factor s
A

(TTGACA(-35)-N14-tgnTATAAT(−10)) and we expected
that randomisation would more likely result in a loss rather
than in a gain of function.
We rst randomized the Pveg promoter, targeting simul-

taneously or independently nucleotides within the −35 and
−10 boxes (Supplementary Figure S2A). Randomization of
3 nucleotides in the −10 box gave satisfactory results and
was thus applied to the PserA and PymdA promoters. For these
two promoters, we also tested a second randomization strat-
egy, targeting six nucleotides (−21 to −16) in the spacer re-
gion between the −35 and −10 boxes (Figure 2B, Supple-
mentary Figure S2B).
We cloned the randomized promoter sequences libraries

into our standard gene EOU, using RBSR0 andGFP as re-
porter, ampli ed them in E. coli and integrated them within
the B. subtilis genome. We then used Fluorescent Activated
Cell Sorting (FACS) to isolate subpopulation of cells ex-
hibiting speci c transcriptional activity by sorting variants
into seven different bins of varying GFP "uorescence inten-
sity (Figure 2B). Then, for each bin, we characterised four
variants using "ow-cytometry (see materials and method
for details). After screening, characterisation, and curation,
we ended up with a set of 10–13 promoter variants for each
library (excluding the wild-type sequence), chosen to span

the highest magnitude in expression level (Figure 2C and
Supplementary Figure S4).
For the rst promoter library based on Pveg, randomiza-

tion of the −10 box was suf cient to obtain a library cov-
ering a wide range of transcriptional activities (∼100 fold
range, Figure 2C, left panel). However, for PymdA and PserA
libraries, randomization of the −10 box produced mostly
promoter variants displaying no or very weak activity, and
only a very few ef cient promoters were identi ed (Sup-
plementary Figure S2). In contrast, randomization of the
spacer region between the −35 and −10 boxes generated
mostly strong to medium promoters. Interestingly, some
members of both the PserA and PymdA libraries were more ef-
 cient than their parental promoter. By combining variants
produced using both randomization strategies (see Supple-
mentary Figure S4 for details), we obtained promoter li-
braries spanning a 900-fold range in REU (Figure 2C, mid-
dle and right panels).

Construction and characterisation of RBS libraries

Tuning gene expression at the level of translation can be
essential depending on the gene circuits. For example, if
a well-characterised inducible promoter is used, the sim-
plest strategy to tune its expression dynamic range is to use
a different ribosome-binding site (18,52). To tune transla-
tion ef ciency, we rst selected a set of 8 ribosome-binding
sites derived from RBSs found in highly and constitutively
expressed genes. The chosen RBS sequences comprise 20–
24 bp and all of them but one (R4) contain the consensus
(GGAGG) Shine-Dalgarno (SD) sequence for most bacte-
rial species, including B. subtilis (53) albeit "anked by se-
quences of various compositions and lengths (Figure 3A).
RBS sequence R0, which we used for screening our pro-
moter libraries, is an optimized sequence typically usedwith
the B. subtilis IPTG inducible promoter Phyperspank. RBS se-
quences R3 and R5 to R7 are synthetic sequences derived
from the RBS sequence of the strongly expressed glycolytic
fbaA gene (52). R1 and R4 are the natural sequence of the
putative RBS sequence from the B. subtilis tufA (R1) and
gltX (R4) genes, encoding respectively the elongation factor
TU and the glutamyl-tRNA synthetase. R2 is a synthetic
RBS sequence designed to maximize binding of the ribo-
some by pairing with up to 15 nucleotides at the 3′ end of
the B. subtilis 16S rRNA sequence (54). We characterised
the activity of these 8 RBS sequences in the context of our
standard EOU integrated at the amyE locus, using Pveg as
promoter and GFP as reporter (Figure 3B).
We measured GFP production in B. subtilis cells in expo-

nential phase and we observed high expression levels with
all 8 RBS, from about 50-fold up to 600-fold above the
background level (Figure 3C). Interestingly, the synthetic
RBS R2 supposed to maximize ribosome binding is not the
most ef cient sequence, in agreement with a previous report
(55). In order to tune translation ef ciency over a large dy-
namic range, we engineered three libraries of RBS parts,
starting with the three strongest ribosome binding sites,
R0, R1 and R2 as parent sequences. We then performed
PCR using degenerated oligonucleotides to randomize six
nucleotides upstream the start codon and comprising the
Shine-Dalgarno sequence (XGGAGG or GGAGGX), a

218 Annex C. A part toolbox to tune genetic expression in B. subtilis

7502 Nucleic Acids Research, 2016, Vol. 44, No. 15

Figure 3. RBS libraries to tune translation level in B. subtilis. (A) A set of nine RBSs was selected. Their sequences are represented with their Shine
Dalgarno sequences in blue and the start codon of the GOI in green. (B) RBSs were characterised using the standardised cassette, using Pveg as a promoter
and the superfolder GFP as a GOI. The cassette was integrated into the amyE locus of the B. subtilis genome. To engineer RBS libraries, we randomised
six nucleotides inside and around the Shine-Dalgarno of the RBS parent sequences. (C) Expression levels from strains containing the eight RBSs driving
GFP expression in exponential phase measured by "ow-cytometry. Error bars: ±SD over 3 independent experiments. (D–F) Three RBS sequence libraries
from 3 different parent sequences: R0, R1 and R2 (variants are engineered using the work"ow described in Figure 2B). Flow-cytometry data are from
3 independent experiments performed in triplicates. Error bars: ±SD over three independent experiments. Full library measurements are presented in
Supplementary Figure S4 and supplementary data les 1 and 4.

well-known method to tune translation ef ciency (11) (Fig-
ure 3B). When screening each of our three RBS mutant li-
braries, we found that most of the B. subtilis transformants
displayed "uorescence intensity close to background level,
indicating that most of the mutations led to not or poorly
active RBS sequences (Supplementary Figure S5A). Never-
theless, by re-applying the same sorting strategy as for pro-
moters while characterising more variants per bin (28 for
RBSs versus 4 for promoter libraries), we obtained three
libraries with different sequences each composed of 10–11
RBSs with translational activities spanning∼800 fold range
(in REU) (Figure 3D–F, Supplementary Figure S5B).
Because gene expression ef ciencies are known to be af-

fected by interactions between the 5′UTR and the gene of
interest (GOI), we measured the activity of our initial set
of eight RBSs coupled to the coding sequences of two dif-
ferent "uorescent proteins (Figure S6A): GFP and the red
"uorescent protein mKate2 ((56), named RFP from here
on). Both proteins present 45.9% identity within their rst
100 nucleotides. By plotting REU values for RBS coupled
to GFP or RFP we obtained a linear correlation t with a
coef cient of determination of ∼0.87 (Supplementary Fig-
ure S6B). However, two RBS sequences (R4 and R7) stood
apart from the linear correlation curve: R7 appeared more

ef cient for RFP than for GFP expression whereas R4 was
functional with GFP but not with RFP.
We tried to alleviate this putative context effect by us-

ing a bicistronic design (BCD), a system described in E.
coli containing two concatenated SD sequences that reduces
the in"uence of the GOI sequences on translation initiation
ef ciency (57). We designed BCDs containing R4 and R7
and coupled them with GFP or RFP expression units. We
then measured GFP and RFP expression from these BCDs
and their monocistronic counterparts (Supplementary Fig-
ure S6C and S6D). ForR7-BCD, we observed an increase in
GFP expression level compared to monocistronic R7, while
RFP expression levels remained similar. For R4-BCD,GFP
expression levels were reduced compared to monocistronic
R4, whereas RFP expression was greatly improved by using
the BCD. These results suggest that BCDs can also be used
inB. subtilis to mitigate context effects arising from 5′UTR-
GOI interactions. However, it is hard from this small num-
ber of data points to conclude on a general applicability of
BCDs in B. subtilis, and deeper investigations are needed.

219

Nucleic Acids Research, 2016, Vol. 44, No. 15 7503

Engineering libraries of SsrA proteolysis tags for B. subtilis

While some genetic circuits only require controlling gene
expression levels at the transcriptional or translational lev-
els, others need an additional layer of control at the post-
translational level. In particular, tuning of protein degrada-
tion rate is essential to the dynamic behaviour of some syn-
thetic gene circuits like oscillators or rewritable data storage
circuits using recombinases (5,9,58). In E. coli, active prote-
olysis can be triggered by using the SsrA system, in which a
small 14 amino-acids peptide added to the C-terminus of a
protein acts as amolecular barcode throughwhich polypep-
tides are targeted for proteolysis by cellular proteases from
the AAA+ family like ClpXP (Figure 4A). Modi cations
of the three last residues of the SsrA peptide were shown
to alter the af nity of the peptide for the protease, enabling
researchers to tune protein degradation rates in E. coli (59)
and in B. subtilis (60,61).
In order to engineer an SsrA-tag library forB. subtilis, we

fused various SsrA-derived peptides to the C-terminus of
GFP placed under the control of the Pveg promoter and R0
RBS. We rst used known functional variants of the SsrA
tags LAA (wt), ASV, AAV as a C-terminal wild-type tripep-
tide and the non-functional SsrA-LDD tag as a negative
controls (62). In addition, we engineered a SsrA-tag library
by randomizing the three last amino-acids of the tag using a
reduced 12 amino-acids alphabet (NDT codons: Phe, Leu,
Ile, Val, Tyr, His, Asn, Asp, Cys, Arg, Ser, Gly), therefore re-
ducing the library size with no stop codonswhile conserving
an equal representation of each type of amino-acids (9,63).
We then integrated the different SsrA-tagged GFP variants
into the B. subtilis chromosome and measured their expres-
sion level by "ow cytometry. Since all the SsrA-tagged GFP
variants are expressed from the same promoter andRBS, we
assumed that the observed differences in "uorescence inten-
sity would be mainly due to differences in protein degrada-
tion rates.
It was previously shown in E. coli that the degradation

rate of SsrA-tagged proteins is higher in stationary than
in exponential phase, probably due to an increase in pro-
tease concentration (64). We supposed that a similar phe-
nomenon could occur in B. subtilis. We thus characterised
cell cultures of our SsrA-tag library in exponential and
stationary phases. As expected, the strain expressing GFP
fused to the non-functional LDD tag (GFP-LDD) had a
"uorescence intensity similar to that of strain expressing un-
tagged GFP. Of note, for both untagged GFP and GFP-
LDD, the expression level increased about 2-fold in station-
ary phase, probably because of protein accumulation in the
absence of dilution of the cellular content in non-growing
cells. In contrast, for most of SsrA-tag variants, an impor-
tant decrease in GFP abundance was observed, particularly
in stationary phase (Figure 4). In comparison to untagged
GFP, strains containing LAA, AAV and LVA tags showed
about a 2-fold decrease in "uorescence intensity in exponen-
tial phase (Figure 4B), and about a 50- to 200-fold decrease
in stationary phase (Figure 4C), with cells exhibiting low
"uorescence intensity.
Therefore, a higher rate of proteolysis of SsrA-tagged

proteins in stationary phase also occurs in B. subtilis. As-
suming that protease concentration is the same in all the

B. subtilis strains of our SsrA-tag library, our results show
that it is possible to tune the protein degradation rate over
at least 2 orders of magnitude depending on the C-terminal
SsrA-tag tripeptide sequence.
Given the difference in activity between exponential and

stationary phases observed using the degradation tags, we
wondered if such variation in expression levels came from
an unknown regulation of our promoters. We thus mea-
sured expression ef ciency for all engineered and charac-
terised constructs (promoter and RBS sets and libraries) in
stationary phase. Rank orders of RBSs and promoters in
relative expression units were conserved between exponen-
tial and stationary phase (Supplementary Figure S7). For
promoters as well as for RBS sequences, we observed an av-
erage increase in REU between exponential and stationary
phase of ∼1.5-fold with a standard deviation of 0.7. Some
constructions show a stronger increase in GFP levels (e.g.
promoter PY12, PS19, PfolEA, RBSsR3, R6, R7). This small
global increase could here again be due to the diminution of
cell-division related dilution of the cellular content in sta-
tionary phase. In conclusion, promoter and RBS libraries
can be used to tune gene expression in B. subtilis in both
exponential and stationary phase, with comparable REU
values, and importantly with a conserved rank order.

Assessment of measurements robustness via data comparison
between two laboratories

To test the reliability and reproducibility of our measure-
ments processes, we decided to characterise a promoter
set in two different laboratories. This comparison method
has already proved to be useful in past characterisation
work (48). For this reliability experiments, we worked
with Casein–Hydrolase media supplemented with glucose
(CHG) for two reasons. First, as CHG is richer than M9
minimal media, we supposed it would facilitate lab-to-lab
calibration as cells would grow better and faster. Second,
we wanted to measure our parts activity in another media.
For this test, we focused on the basic 10 original promot-

ers (Figure 2A, and Supplementary Figure S8). After vali-
dating a common experimental protocol, we performed ex-
periments separately using the same strains. We performed
data analysis using the same methodology (see materials
and methods) and obtained similar results in both labora-
tories, with comparable REU values and a conserved rank
order between promoters. While using a limited number
of constructs, these data demonstrate that our library be-
haviour is relatively reliable when measured by different
users in different laboratories.
Interestingly, we compared these results performed in

CHG media with our previous data performed in M9 min-
imal media (Supplementary Figure S9), and found a slight
variation at the level of REU perhaps re"ecting a different
metabolic state of the cells (52,65). This difference could
also be due to the fact that measurements were performed
using different detection methods (bulk measurement on
plate-reader for CHG experiments versus single-cell mea-
surement on a "ow-cytometer for M9 experiments). Never-
theless, the rank order of the promoters was well conserved,
suggesting that the library can be expected to perform sim-
ilarly in different growth conditions.

220 Annex C. A part toolbox to tune genetic expression in B. subtilis

7504 Nucleic Acids Research, 2016, Vol. 44, No. 15

Figure 4. Tuning proteolysis using SsrA degradation tags. (A) Principle of SsrA degradation tag: a peptide tag of 14 amino-acids fused the C-terminus
of the protein of interest triggers active degradation of the protein by the ClpX protease. Degradation ef ciency can be regulated by varying the three
C-terminal amino-acids. LAA is the wt sequence and induces strong proteolysis. (B and C) Library of degradation tags were engineered based on our
standardized cassette composed of Pveg as promoter, R0 as ribosome binding site and GFP as GOI and following the work"ow detailed previously (Figure
2B). The three C-terminal amino-acids of the SsrA tag were randomised (XXX, where X is any of the 12 possible amino-acids of the library). Expression
levels of the variants corresponding to three "ow-cytometer experiments performed in triplicates in exponential phase (B) or on stationary phase (C) Error
bars: ±SD over three independent experiments. Full library measurements data are available in supplementary data les 1 and 5.

Live-cell measurement of the absolute GFP concentration
produced by standard parts

Characterisation of our constructs by "uorescence inten-
sitymeasurements using a "ow-cytometer and our reference
construct provides convenient calibration and quanti ca-
tion REU. However, for synthetic system design or model
prediction, absolute quanti cation of the number and/or
concentration of proteins produced can be desirable (42).
For this purpose, we turned to a two-photon (2p) "uo-
rescence "uctuation microscopy method, namely 2p scan-
ning number and brightness (2psN&B) analysis (42). This
method was recently adapted for the direct and absolute
measurement of "uorescent proteins concentration in in-
dividual, live bacterial cells (41). Compared to other mi-
croscopy or "ow-cytometry methods, the combination of
two-photonmicroscopy and fast raster scan imaging greatly
reduces photo-bleaching and background "uorescence, al-
lowing for the precise determination of intracellular con-
centration of GFP even at very low expression levels (66)
(Figure 5A).
For absolute quanti cation purposes by 2psN&B, the use

of monomeric "uorescent proteins is mandatory. If, as of-
ten observed, the "uorescent protein reporter tends to ag-
gregate at increasing concentration, its molecular bright-
ness will increase and the molecule numbers will be inac-
curately calculated. We thus con rmed that the sfGFP(sp)
reporter we used, already described as a monomer (67), re-
mains monomeric in the concentration range of applica-
bility of the 2psN&B method. To do so, we used a tran-
scriptional fusion with the LacI-derived promoter Phyperspank
and induced increasing expression of sfGFP(sp) with 0, 5,
10, 20 mM IPTG (Supplementary Figures S1 and S10).
We then imaged exponentially growing cells as series of
50 raster-scans and performed N&B analysis (41,42). Al-
though the background-corrected "uorescence intensity
values increased over 7 fold, the molecular brightness of
the "uorescent particles conserved similar values, averag-
ing at about 0.065 ± 0.04 (counts per molecule per 40 ms

dwell time) for induction between 0 to 10mMof IPTG. This
result indicates that the sfGFP(sp) does not self-associates
upon increasing intracellular concentration and is there-
fore a suitable probe for performing 2psN&B experiments.
A slightly lower brightness value (0.055) was calculated
at 20 mM IPTG, obviously not because of protein aggre-
gation (that would result in an increase of the molecular
brightness) but rather because of the high expression level
that generates reduced "uctuations of the "uorescent signal,
and therefore less accurate determination of the molecular
brightness value.
Fluorescence measurement by 2psN&B is a very much

time-consuming method and its range of applicability is re-
stricted to low expressed proteins. The 2psN&Bmethodwas
thus not well suited for the characterisation of our full li-
brary of constructs, and we used it with the aim of cali-
brating expression levels measured by "ow cytometry for
part expressing low levels of "uorescent proteins. We rst
selected a set of seven constructs (three from our promoter
libraries and four from our RBS libraries) with "uorescence
intensities falling into the detection range of 2psN&B. We
then measured the "uorescence intensity of single cells con-
taining these different constructs by both 2p "uorescence
"uctuations scanning microscopy (Figure 5B) and "ow cy-
tometry (Figure 5C). In case of the R1–18 and R2–15 con-
structs, GFP "uorescence intensity was close to the de-
tection limit of the "ow cytometer instrument whereas by
2psN&B it was clearly detected above the auto-"uorescence
background level measured in the negative control (NC)
strain. Regardless, for all constructs the mean "uorescence
intensities measured by the two methods are in very good
agreement, providing a linear correlation function relating
"ow-cytometer "uorescence intensities to the absolute con-
centration of GFP determined by 2psN&B analysis (Figure
5D). Assuming that this linear relationship remains valid at
higher "uorescence intensities, we converted "ow cytome-
try data expressed in relative expression units (REU) in in-
tracellular protein concentration, with one REU (corrected

221

Nucleic Acids Research, 2016, Vol. 44, No. 15 7505

Figure 5. Measurement of part activities at the single molecule level. (A) Principle of 2-photon scanning number and brightness (2psN&B) analysis.
2psN&B allows the direct counting of "uorescent molecules diffusing in and out the very small excitation volume generated by 2-photon "uorescence
microscopy (see materials and method for details). Bacterial cells expressing GFP and immobilised on an agarose pad are imaged by recording multiple
scans (50 scans, 40 ms/pixel). From the mean and variance of the "uorescence signal, the average number of GFPmolecules per bacteria and the brightness
of the "uorescent protein are calculated. <FGFP>: background-corrected mean "uorescence intensity inside cells (A.U.); <NGFP>: mean number of GFP
molecules; eGFP: average molecular brightness of GFP. (B) Number of GFP equivalent molecules per excitation volume (volex) produced by different
standard parts from the toolbox. Seven constructions spanning the operational range of "uorescence "uctuation measurements were chosen from RBS
and promoter libraries. Following the analysis procedure described in materials and methods, the average number of GFP equivalent molecules (<N>)
detected per volex inside the bacterial cells (0.07 ", about 15% of the cell volume), was calculated for each strain, not corrected for the auto-"uorescence
background level measured in the negative control (NC) strain. Data and error bars correspond to the mean and SD of <N> values obtained from three
independent experiments. For the R1–18 construct, GFP expression is clearly detected above background, with an average number of GFP molecules
(<NGFP> = <N> – <NNC>) of 2.4 per volex., corresponding to a total of about 16 GFP molecules per cell. (C) Fluorescence intensity measurements
from the same strains as in (B) were performed simultaneously on a "ow-cytometer. Note that for the R1–18 construct, GFP expression cannot be detected
above background by "ow cytometry. (D) Linear correlation between the GFP concentration values in mM calculated from 2p sN&B experiments (see
materials and methods) and the "uorescence intensity values in arbitrary unit obtained from simultaneous "ow-cytometer experiments. Error bars: ±SD
over three independent experiments. (E) Estimated GFP concentration in mM for all RBS and promoter variants calculated from the following correlation
formula obtained from (D): 1 (REU – REUNC) = 144 [GFP] (mM). The error on the estimated GFP concentration was estimated to be ∼24%.

222 Annex C. A part toolbox to tune genetic expression in B. subtilis

7506 Nucleic Acids Research, 2016, Vol. 44, No. 15

for background auto-"uorescence) corresponding approxi-
mately to 144 mMof GFP (±24%). As shown in Figure 5E,
our complete promoter and RBS library comprising over
135 constructs enable the expression of GFP to be tuned
over ve orders of magnitude, between concentration rang-
ing from 0.05 to 900mM, corresponding to an average num-
ber of GFP molecules per cell varying from 15 to 270 000.

DISCUSSION

In this work, we provide a well-characterised toolbox to
tune gene expression in B. subtilis at the level of transcrip-
tion, translation or proteolysis. We designed a modular and
standardised EOU architecture "anked by strong transcrip-
tional terminators to insulate the EOU from the genetic
context. Our EOU provides a standard environment for the
precise characterisation and comparison of novel biologi-
cal parts in B. subtilis. Using our design, parts can be eas-
ily added, deleted, or swapped using restriction enzymes or
isothermal Gibson assembly (38), facilitating future reuses
and improvements of our libraries. In a future upgrade,
our EOU architecture could also be redesigned to support
multi-part assembly using Type II restriction enzymes (e.g.
Golden gate assembly, (68)).
In order to accelerate the screen for variants exhibit-

ing different properties, we applied a FACS based high-
throughput methodology already used in E. coli (39). This
approach greatly accelerated the design/build/test cycle,
and allowed us to rapidly generate three sequence-divergent
families of promoters and RBSs. Nucleotide sequence di-
versity can also possibly be obtained for degradation tags
by changing the codon usage of the SsrA peptide. Such
sequence variety within our libraries will enable the si-
multaneous use of multiple components while avoiding re-
combination problems due to sequence similarities (51,69).
The method we describe here can be readily re-applied, if
needed, to generate other families of parts with divergent se-
quences. Parts with similar activities but different sequences
could also be used in combination for the expression ofmul-
tiple genes.
From our various randomization design strategies, we

observed that B. subtilis is much more stringent than E. coli
in terms of promoters sequences. While the −35 and −10
boxes of E. coli promoters can be directly randomized to
obtain a library spanningmany orders ofmagnitude,B. sub-
tilis promoters are much subject to have their activity com-
pletely abolished by randommutations within these regions.
This could be explained by the fact that B. subtilis possesses
muchmore different sigma factors, each speci c to a growth
condition or differentiation stage whileE. coli has a reduced
set of sigma factors (70). On the opposite, mutation within
the region between the -35 and -10 boxes are much more
tolerated.
Within our promoter libraries, we were able to identify

sequences with an improved transcriptional activity and
traced back this effect to the reconstitution of a consensus
binding sequence for sigma factor SigA (see supplementary
data le 1). Of note, we did not observe any effect of our
parts on cell growth, even for parts presenting a strong pro-
tein expression (Supplementary Figure S11). Interestingly,
we also identi ed variants with an improved activity by gen-

erating library of variants in which we randomised the re-
gion between the −35 and the −10 boxes. However, the ra-
tionale for this increase in transcriptional activities is ob-
scure, but could involve higher-level regulatory effects like
DNA looping (71). It would therefore be compelling to ex-
pand our approach by combining high-throughput DNA
synthesis, FACS and next-generation sequencing (72) to
systematically determine the promoter sequence features in-
"uencing transcriptional activity in B. subtilis.
Regarding context effects, we tested on a small number of

sequences the sensitivity of our RBSs activities to two dif-
ferent genes with different sequences, sfGFP and mKate2,
and found that two RBSs (4 and 7) had dramatically differ-
ent activities when used with a different reporter. By incor-
porating a bicistronic design (57), we were able to partially
restore these RBSs function. Our results suggest that con-
text effect can be managed in B. subtilis in a similar manner
than in E. coli. These effects, as well as strategies to miti-
gate them, need now to be extensively studied. Meanwhile,
we provide large enough libraries of parts to quickly circum-
vent this dif culty.
Interestingly, we observed that the TSS element could

also strongly in"uence the transcriptional activity of the
Pveg promoter (Supplementary Figure S3). More character-
isation is now required to understand the effects of TSS se-
quences on gene expression, but libraries of TSS sequences
could potentially be engineered to provide an additional
layer of control of gene expression. From our data, we an-
ticipate that using different TSS sequences could increase
themaximal gene expression levels obtained in our libraries.
Future work should also be directed to the engineering of
well-characterised inducible promoters with various activ-
ities and responding to different signals. Finally, the engi-
neering of different integration vectors allowing for simul-
taneous insertion of multiple gene circuits within theB. sub-
tilis chromosome is of utmost utility and should be quickly
addressed by the Bacillus community.
A signi cant contribution of our work to the eld

of biological metrology is the use of "uorescence "uc-
tuation methods to precisely characterise parts activities
at the single-molecule level. We were able to identify
promoter/RBS combinations producing a concentration as
low as 50nM of GFP (∼15 GFP molecules/cell) in expo-
nential phase. By extrapolating our single molecule data
over the whole range of our libraries, we estimate that we
can tune GFP concentration from nanomolar to millimo-
lar range. Single-molecule measurements are the next fron-
tier in standard parts characterisation, and have recently
been explored at the mRNA level for a reference promoter
in E. coli (69). The systematic development of such ap-
proaches promises to improve signi cantly the precision at
which synthetic gene circuits can be tuned, while providing
new synthetic tools for researchers investigating the mech-
anisms regulating gene expression. Engineers will still have
to address the challenge of managing noise and stochastic
effects in gene expression arising from very low number of
molecules.
In conclusion, the libraries of regulatory components

presented here are a rst step toward a more precise and
predictable control of gene expression and dynamics in B.
subtilis. This toolbox will support many research and engi-

223

Nucleic Acids Research, 2016, Vol. 44, No. 15 7507

neering applications in theGram-positivemodel bacterium,
for example for tuning the relative expression levels of vari-
ous enzymatic members within a synthetic metabolic path-
way. All parts and uses demonstrated or disclosed herein
have been contributed to the public domain via theBioBrick
public agreement (https://biobricks.org/bpa).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Emmanuel Margeat, Luca Ciandrini, Joachim
Rambeau, Guillaume Cambray, and members of the Bon-
net and Jules lab for fruitful discussions. We acknowledge
France-BioImaging infrastructure supported by the French
National Research Agency (ANR-10-INSB-04-01, ≪ In-
vestments for the future ≫) and the GIS ≪ IBiSA : In-
frastructures en Biologie Sante et Agronomie ≫. All se-
quences and raw data are available in supplementary ma-
terials and supplementary data les. All libraries have been
deposited and are available at the Bacillus Genetic Stock
Center (http://www.bgsc.org/)

FUNDING

French Institut National de la Santé et de la Recherche
Médicale (INSERM); Centre National pour la Recherche
Scienti que (CNRS); Institut National de la Recherche
Agronomique (INRA). S.G. is a recipient of a PhD Fel-
lowship from the French Ministry of Research. INSERM
Avenir program, Bettencourt-Schueller Foundation; ERC
starting Grant (to J.B.). Funding for open access charge:
INSERM (Atip-Avenir program) (to J.B.).
Con"ict of interest statement.None declared.

REFERENCES

1. Endy,D. (2005) Foundations for engineering biology. Nature, 438,
449–453.

2. Ro,D., Paradise,E.M., Ouellet,M., Fisher,K.J., Newman,K.L.,
Ndungu,J.M., Ho,K.A., Eachus,R.A., Ham,T.S., Kirby,J. et al.
(2006) Production of the antimalarial drug precursor artemisinic acid
in engineered yeast. Nature, 440, 940–943.

3. Ajikumar,P.K., Xiao,W.-H., Tyo,K.E.J., Wang,Y., Simeon,F.,
Leonard,E., Mucha,O., Phon,T.H., Pfeifer,B. and Stephanopoulos,G.
(2010) Isoprenoid pathway optimization for Taxol precursor
overproduction in Escherichia coli. Science, 330, 70–74.

4. Galanie,S., Thodey,K., Trenchard,I.J., Filsinger Interrante,M. and
Smolke,C.D. (2015) Complete biosynthesis of opioids in yeast.
Science, 349, 1095–1100.

5. Stricker,J., Cookson,S., Bennett,M.R., Mather,W.H., Tsimring,L.S.
and Hasty,J. (2008) A fast, robust and tunable synthetic gene
oscillator. Nature, 456, 516–519.

6. Toman,Z., Dambly-Chaudiere,C., Tenenbaum,L. and Radman,M.
(1985) A system for detection of genetic and epigenetic alterations in
Escherichia coli induced by DNA-damaging agents. J. Mol. Biol.,
186, 97–105.

7. Gardner,T.S., Cantor,C.R. and Collins,J.J. (2000) Construction of a
genetic toggle switch in Escherichia coli. Nature, 403, 339–342.

8. Ajo-franklin,C.M., Drubin,D.A., Eskin,J.A., Gee,E.P.S.,
Landgraf,D., Phillips,I. and Silver,P.A. (2007) Rational design of
memory in eukaryotic cells service Rational design of memory in
eukaryotic cells. Genes Dev., 21, 2271–2276.

9. Bonnet,J., Subsoontorn,P. and Endy,D. (2012) Rewritable digital data
storage in live cells via engineered control of recombination
directionality. Proc. Natl. Acad. Sci. U.S.A., 109, 8884–8889.

10. Bonnet,J., Yin,P., Ortiz,M.E., Subsoontorn,P. and Endy,D. (2013)
Amplifying genetic logic gates. Science, 340, 599–603.

11. Brophy,J.A.N. and Voigt,C.A. (2014) Principles of genetic circuit
design. Nat. Methods, 11, 508–520.

12. Basu,S., Gerchman,Y., Collins,C.H., Arnold,F.H. and Weiss,R.
(2005) A synthetic multicellular system for programmed pattern
formation. Nature, 434, 1130–1134.

13. Weber,W. and Fussenegger,M. (2012) Emerging biomedical
applications of synthetic biology. Nat. Rev. Genet., 13, 21–35.

14. Xie,Z., Wroblewska,L., Prochazka,L., Weiss,R. and Benenson,Y.
(2011) Multi-input RNAi-based logic circuit for identi cation of
specifc cancer cells. Science, 333, 1307–1312.

15. Roybal,K.T., Rupp,L.J., Morsut,L., Walker,W.J., McNally,K.A.,
Park,J.S. and Lim,W.A. (2016) Precision tumor recognition by T cells
with combinatorial antigen-sensing circuits. Cell, 164, 770–779.

16. Kotula,J.W., Kerns,S.J., Shaket,L.A., Siraj,L., Collins,J.J., Way,J.C.
and Silver,P.A. (2014) Programmable bacteria detect and record an
environmental signal in the mammalian gut. Proc. Natl. Acad. Sci.
U.S.A., 111, 4838–4843.

17. Danino,T., Prindle,A., Kwong,G.A., Skalak,M., Li,H., Allen,K.,
Hasty,J. and Bhatia,S.N. (2015) Programmable probiotics for
detection of cancer in urine. Sci. Transl. Med., 7, 289ra84.

18. Courbet,A., Endy,D., Renard,E., Molina,F. and Bonnet,J. (2015)
Detection of pathological biomarkers in human clinical samples via
amplifying genetic switches and logic gates. Sci. Transl. Med., 7,
289ra83.

19. Temme,K., Zhao,D. and Voigt,C.A. (2012) Refactoring the nitrogen
 xation gene cluster from Klebsiella oxytoca. Proc. Natl. Acad. Sci.
U.S.A., 109, 7085–7090.

20. Ruano-Gallego,D., Alvarez,B. and Fernandez,L.A. (2015)
Engineering the Controlled Assembly of Filamentous Injectisomes in
E. coli K-12 for Protein Translocation into Mammalian Cells. ACS
Synth. Biol., 4, 1030–1041.

21. Nielsen,A.A., Segall-Shapiro,T.H. and Voigt,C.A. (2013) Advances in
genetic circuit design: novel biochemistries, deep part mining, and
precision gene expression. Curr. Opin. Chem. Biol., 17, 878–892.

22. Mutalik,V.K., Guimaraes,J.C., Cambray,G., Mai,Q.A.,
Christoffersen,M.J., Martin,L., Yu,A., Lam,C., Rodriguez,C.,
Bennett,G. et al. (2013) Quantitative estimation of activity and
quality for collections of functional genetic elements. Nat.Methods,
10, 347–353.

23. Lee,M.E., DeLoache,W.C., Cervantes,B. and Dueber,J.E. (2015) A
Highly Characterized Yeast Toolkit for Modular, Multipart
Assembly. ACS Synth. Biol., 4, 975–986.

24. Ede,C., Chen,X., Lin,M.Y. and Chen,Y.Y. (2016) Quantitative
Analyses of Core Promoters Enable Precise Engineering of Regulated
Gene Expression in Mammalian Cells. ACS Synth Biol.,
doi:10.1021/acssynbio.5b00266.

25. Earl,A.M., Losick,R. and Kolter,R. (2008) Ecology and genomics of
Bacillus subtilis. Trends Microbiol., 16, 269–275.

26. Buescher,J.M., Liebermeister,W., Jules,M., Uhr,M., Muntel,J.,
Botella,E., Hessling,B., Kleijn,R.J., Le Chat,L., Lecointe,F. et al.
(2012) Global network reorganization during dynamic adaptations of
Bacillus subtilis metabolism. Science, 335, 1099–1103.

27. Nicolas,P., Mader,U., Dervyn,E., Rochat,T., Leduc,A.,
Pigeonneau,N., Bidnenko,E., Marchadier,E., Hoebeke,M.,
Aymerich,S. et al. (2012) Condition-dependent transcriptome reveals
high-level regulatory architecture in Bacillus subtilis. Science, 335,
1103–1106.

28. Losick,R. and Desplan,C. (2008) Stochasticity and cell fate. Science,
320, 65–68.

29. Schultz,D., Wolynes,P.G. and Ben,E. (2009) Deciding fate in adverse
times: sporulation and competence in Bacillus subtilis. Proc. Natl.
Acad. Sci. U.S.A., 106, 21027–21034.

30. Süel,G.M., Kulkarni,R.P., Dworkin,J., Garcia-Ojalvo,J. and
Elowitz,M.B. (2007) Tunability and noise dependence in
differentiation dynamics. Science, 315, 1716–1719.

31. Marbouty,M., Le Gall,A., Cattoni,D.I., Cournac,A., Koh,A.,
Fiche,J.-B., Mozziconacci,J., Murray,H., Koszul,R. and
Nollmann,M. (2015) Condensin- and Replication-Mediated Bacterial

224 Annex C. A part toolbox to tune genetic expression in B. subtilis

7508 Nucleic Acids Research, 2016, Vol. 44, No. 15

Chromosome Folding and Origin Condensation Revealed by Hi-C
and Super-resolution Imaging.Mol. Cell, 59, 588–602.

32. Van Dijl,J.M. and Hecker,M. (2013) Bacillus subtilis: from soil
bacterium to super-secreting cell factory.Microb. Cell Fact., 12, 3.

33. Das,K. and Mukherjee,A.K. (2007) Crude petroleum-oil
biodegradation ef ciency of Bacillus subtilis and Pseudomonas
aeruginosa strains isolated from a petroleum-oil contaminated soil
from North-East India. Bioresour. Technol., 98, 1339–1345.

34. Iwanicki,A., Piątek,I., Stasi-lojć,M., Grela,A., Lęga,T.,
Obuchowski,M. and Hinc,K. (2014) A system of vectors for Bacillus
subtilis spore surface display.Microb. Cell Fact., 13, 30.

35. Radeck,J., Kraft,K., Bartels,J., Cikovic,T., Dürr,F., Emenegger,J.,
Kelterborn,S., Sauer,C., Fritz,G., Gebhard,S. et al. (2013) The
Bacillus BioBrick Box: generation and evaluation of essential genetic
building blocks for standardized work with Bacillus subtilis. J. Biol.
Eng., 7, 29.

36. Vojcic,L., Despotovic,D., Martinez,R., Maurer,K.H. and
Schwaneberg,U. (2012) An ef cient transformation method for
bacillus subtilis DB104. Appl. Microbiol. Biotechnol., 94, 487–493.

37. Guérout-Fleury,A.-M., Frandsen,N. and Stragier,P. (1996) Plasmids
for ectopic integration in Bacillus subtilis. Gene, 180, 57–61.

38. Gibson,D.G., Young,L., Chuang,R.-Y., Venter,J.C., Hutchison,C.A.
and Smith,H.O. (2009) Enzymatic assembly of DNA molecules up to
several hundred kilobases. Nat. Methods, 6, 343–345.

39. Kosuri,S., Goodman,D.B., Cambray,G., Mutalik,V.K., Gao,Y.,
Arkin,A.P., Endy,D. and Church,G.M. (2013) Composability of
regulatory sequences controlling transcription and translation in
Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 110, 14024–14029.

40. Botella,E., Fogg,M., Jules,M., Piersma,S., Doherty,G., Hansen,A.,
Denham,E.L., Le Chat,L., Veiga,P., Bailey,K. et al. (2010)
pBaSysBioII: an integrative plasmid generating gfp transcriptional
fusions for high-throughput analysis of gene expression in Bacillus
subtilis.Microbiology, 156, 1600–1608.

41. Ferguson,M.L., Le Coq,D., Jules,M., Aymerich,S., Declerck,N. and
Royer,C.A. (2011) Absolute quanti cation of gene expression in
individual bacterial cells using two-photon "uctuation microscopy.
Anal. Biochem., 419, 250–259.

42. Digman,M.A., Caiolfa,V.R., Zamai,M. and Gratton,E. (2008) The
phasor approach to "uorescence lifetime imaging analysis. Biophys.
J., 94, L14–L16.

43. Dosset,P., Rassam,P., Fernandez,L., Espenel,C., Rubinstein,E.,
Margeat,E. and Milhiet,P.E. (2016) Automatic detection of diffusion
modes within biological membranes using back-propagation neural
network. BMC Bioinformatics, 17, 197.

44. Cho,B.-K., Zengler,K., Qiu,Y., Park,Y.S., Knight,E.M., Barrett,C.L.,
Gao,Y. and Palsson,B.Ø. (2009) Elucidation of the transcription unit
architecture of the Escherichia coli K-12 MG1655 genome. Nat.
Biotechnol., 27, 1043–1049.

45. Krasny,L., Tiserova,H., Jonak,J., Rejman,D. and Sanderova,H.
(2008) The identity of the transcription +1 position is crucial for
changes in gene expression in response to amino acid starvation in
Bacillus subtilis.Mol. Microbiol., 69, 42–54.

46. Sojka,L., Kouba,T., Barvik,I., Sanderova,H., Maderova,Z., Jonak,J.
and Krasny,L. (2011) Rapid changes in gene expression: DNA
determinants of promoter regulation by the concentration of the
transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res.,
39, 4598–4611.

47. Overkamp,W., Beilharz,K., Detert Oude Weme,R., Solopova,A.,
Karsens,H., Kovacs,A.T., Kok,J., Kuipers,O.P. and Veening,J.-W.
(2013) Benchmarking various green "uorescent protein variants in
Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis
for live cell imaging. Appl. Environ. Microbiol., 79, 6481–6490.

48. Kelly,J.R., Rubin,A.J., Davis,J.H., Ajo-Franklin,C.M., Cumbers,J.,
Czar,M.J., de Mora,K., Glieberman,A.L., Monie,D.D. and Endy,D.
(2009) Measuring the activity of BioBrick promoters using an in vivo
reference standard. J. Biol. Eng., 3, 4.

49. Lam,K.H.E., Chow,K.C. and Wong,W.K.R. (1998) Construction of
an ef cient Bacillus subtilis system for extracellular production of
heterologous proteins. J. Biotechnol., 63, 167–177.

50. Keasling,J.D. (2012) Synthetic biology and the development of tools
for metabolic engineering.Metab. Eng., 14, 189–195.

51. Canton,B., Labno,A. and Endy,D. (2008) Re nement and
standardization of synthetic biological parts and devices. 26, 787–793.

52. Borkowski,O., Goelzer,A., Schaffer,M., Calabre,M., Mäder,U.,
Aymerich,S., Jules,M. and Fromion,V. (2016) Translation elicits a
growth rate-dependent, genome-wide, differential protein production
in Bacillus subtilis.Mol. Syst. Biol., 12, 870.

53. Nakagawa,S., Niimura,Y., Miura,K. and Gojobori,T. (2010)
Dynamic evolution of translation initiation mechanisms in
prokaryotes. Proc. Natl. Acad. Sci. U.S.A., 107, 6382–6387.

54. Doi,R.H. (1984) Genetic Engineering in Bacillus subtilis. Biotechnol.
Genet. Eng. Rev., 2, 121–155.

55. Vellanoweth,R.L. and Rabinowitz,J.C. (1992) The in"uence of
ribosome-binding-site elements on translational ef ciency in Baciiius
subtiiis and Escherichia coii in vivo.Mol. Microbiol., 6, 1105–1114.

56. Shcherbo,D., Murphy,C.S., Ermakova,G. V, Solovieva,E. a,
Chepurnykh,T. V, Shcheglov,A.S., Verkhusha,V. V, Pletnev,V.Z.,
Hazelwood,K.L., Roche,P.M. et al. (2009) Far-red "uorescent tags for
protein imaging in living tissues. Biochem. J., 418, 567–574.

57. Mutalik,V.K., Guimaraes,J.C., Cambray,G., Lam,C.,
Christoffersen,M.J., Mai,Q.-A., Tran,A.B., Paull,M., Keasling,J.D.,
Arkin,A.P. et al. (2013) Precise and reliable gene expression via
standard transcription and translation initiation elements. Nat.
Methods, 10, 354–360.

58. Elowitz,M.B. and Leibler,S. (2000) A synthetic oscillatory network of
transcriptional regulators. Nature, 403, 335–338.

59. Andersen,J.B., Sternberg,C., Poulsen,L.K., Bjørn,S.P., Givskov,M.
and Molin,S. (1998) New unstable variants of green "uorescent
protein for studies of transient gene expression in bacteria. Appl.
Environ. Microbiol., 64, 2240–2246.

60. Wiegert,T. and Schumann,W. (2001) SsrA-mediated tagging in
Bacillus subtilis SsrA-mediated tagging in Bacillus subtilis. J.
Bacteriol., 183, 3885–3889.

61. Grif th,K.L. and Grossman,A.D. (2008) Inducible protein
degradation in Bacillus subtilis using heterologous peptide tags and
adaptor proteins to target substrates to the protease ClpXP.Mol.
Microbiol., 70, 1012–1025.

62. McGinness,K.E., Baker,T.A. and Sauer,R.T. (2006) Engineering
controllable protein degradation.Mol. Cell, 22, 701–707.

63. Reetz,M.T. and Wu,S. (2008) Greatly reduced amino acid alphabets
in directed evolution: making the right choice for saturation
mutagenesis at homologous enzyme positions. Chem. Commun.
(Camb)., doi:10.1039/b813388c.

64. Farrell,C.M., Grossman,A.D. and Sauer,R.T. (2005) Cytoplasmic
degradation of ssrA-tagged proteins.Mol. Microbiol., 57, 1750–1761.

65. Klumpp,S. and Hwa,T. (2008) Growth-rate-dependent partitioning of
RNA polymerases in bacteria. Proc. Natl. Acad. Sci. U.S.A., 105,
20245–20250.

66. Ferguson,M.L., Le Coq,D., Jules,M., Aymerich,S., Radulescu,O.,
Declerck,N. and Royer,C.A. (2012) Reconciling molecular regulatory
mechanisms with noise patterns of bacterial metabolic promoters in
induced and repressed states. Proc. Natl. Acad. Sci. U.S.A., 109,
155–160.

67. Pédelacq,J.-D., Cabantous,S., Tran,T., Terwilliger,T.C. and
Waldo,G.S. (2006) Engineering and characterization of a superfolder
green "uorescent protein. Nat. Biotechnol., 24, 79–88.

68. Engler,C., Kandzia,R. and Marillonnet,S. (2008) A one pot, one step,
precision cloning method with high throughput capability. PLoS
One, 3, e3647.

69. Nielsen,A.A.K., Der,B.S., Shin,J., Vaidyanathan,P., Paralanov,V.,
Strychalski,E.A., Ross,D., Densmore,D. and Voigt,C.A. (2016)
Genetic circuit design automation. Science, 352, aac7341.

70. Artsimovitch,I., Svetlov,V., Anthony,L. and Burgess,R.R. (2000)
RNA polymerases from Bacillus subtilis and Escherichia coli differ in
recognition of regulatory signals in vitro. 182, 6027–6035.

71. Cournac,A. and Plumbridge,J. (2013) DNA looping in prokaryotes:
experimental and theoretical approaches. J. Bacteriol., 195,
1109–1119.

72. Sharon,E., Kalma,Y., Sharp,A., Raveh-Sadka,T., Levo,M., Zeevi,D.,
Keren,L., Yakhini,Z., Weinberger,A. and Segal,E. (2012) Inferring
gene regulatory logic from high-throughput measurements of
thousands of systematically designed promoters. Nat. Biotechnol., 30,
521–530.

225

Supplementary materials for:
!

A part toolbox to tune genetic expression in Bacillus subtilis.

Authors: Sarah Guiziou1, Vincent Sauveplane2, Hung-Ju Chang1, Caroline Clerté1,

Nathalie Declerck1, Matthieu Jules2, and Jerome Bonnet1*

Affiliations:
1Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of

Montpellier, France.
2 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas,

France

*To whom correspondence should be addressed.

Email: jerome.bonnet@inserm.fr

These supplementary materials contain:

-Supplementary methods.

-Supplementary Figures S1 to S11.

-DNA sequences of the EOU, the mkate2 protein, the BCDs, the spacers, the primers and

G-Blocks used in this study.

These supplementary materials are accompanied by supplementary data files containing parts

sequences and raw measurements data:

-Supplementary data file 1 contains sequences for all promoters, RBSs, and Ssra tags, as

well as mean values and standard deviation of their relative activities, expressed in arbitrary

units and in REUs and estimated GFP concentrations.

- Supplementary data file 2 contains raw data values from all cytometry experiments for

parents promoters and RBSs, in exponential and stationary phase, expressed in arbitrary

units and in REUs.

- Supplementary data file 3 contains raw data values from all cytometry experiments for

promoter libraries, in exponential and stationary phase, expressed in arbitrary units and in

REUs.

- Supplementary data file 4 contains raw data values from all cytometry experiments for

RBS libraries, in exponential and stationary phase, expressed in arbitrary units and in REUs.

- Supplementary data file 5 contains raw data values from all cytometry experiments for

SsrA tags libraries, in exponential and stationary phase, expressed in arbitrary units and in

REUs.

226 Annex C. A part toolbox to tune genetic expression in B. subtilis

- Supplementary data file 6 contains raw data values for cytometry experiments comparing

context effect using GFP or mkate2 as a reporter, with and without BCD. Data are

expressed in arbitrary units and in REUs.

- Supplementary data file 7 contains raw data values for plate-reader experiments

comparing promoter activities between Montpellier and Jouy-en–Josas.

227

!

Supplementary methods

Bacillus subtilis integration protocol

Bacillus strain 168 was streaked on an LB agar plate. 5 mL of Medium A (0.2% ammonium

sulfate, 1.4% dipotassium hydrogen phosphate, 0.6% potassium dihydrogen phosphate,

0.07% sodium citrate, 0.5% glucose, 0.02% magnesium sulfate heptahydrate, 0.2% yeast

extract, and 0.025% casamino acids) was inoculated at 0.2-0.25 OD600nm from fresh

streaked plate and incubated at 37°C. After cessation of log growth (according to semi-log

plot of OD600nm over time) and 90 supplementary minutes, 0.5 mL of the culture was

transferred into 4.5 mL of pre-warmed Medium B (0.2% ammonium sulfate, 1.4%

dipotassium hydrogen phosphate, 0.6% potassium dihydrogen phosphate, 0.07% sodium

citrate, 0.5% glucose, 0.08% magnesium sulfate heptahydrate, 0.1% yeast extract, 0.01%

casamino acids, and 0.05% calcium chloride). After 90 min at 37°C, the culture should be

highly competent. Competent cells were stored at -80°C with 1/10 v/v of glycerol, aliquoted

at 0.5 mL in sterile tube and frozen with liquid nitrogen. For integration, tubes of 0.5 mL of

competent cells were thaw at 37°C, 500 ng of DNA was added to the competent cells and

incubated at 37°C for 30 minutes. 200 µL of LB was added to cells and cultures were

incubated at 37°C for at least 30 minutes. Cells were plated on selective agar plated after

spinning at 4 000 rpm during 2 minutes and removed of 600 µL of supernatant.

Plasmid constructions

For plasmid construction and amplification, E. coli NEB10β strain (NEB) was used.

Transformation of plasmids was accomplished by electroporation. E. coli were made

electrocompetent following the instruction manual of Bio-rad MicroPulser. Electroportations

were realized adding 1 μL of DNA to 40 μL of competent cells and using Bio-Rad

GenePulser and Ec1 program with 0.1 cm cuvette. SOC media was added after electric

shock and cells were grown one hour at 37°C before plated on selective media. Antibiotics

used were Ampicillin (100 μg/mL), Spectinomycin (100 μg/mL) and Erythromycin (0.5

μg/mL) (Sigma).

Design and construction of EOU (expression operating unit)

Two basic synthetic EOUs for gene expression were designed, one with sfGFP(sp) as

reporter (47) and the other one with mKate2 (56) optimized for B. subtilis (with DNA2.0

algorithm). Both EOUs were composed of identical 40 base pair spacers design for Gibson

Assembly (designed using the R2odna software, http://www.r2odna.com) to allow simple

construction and switch of parts, of restriction enzyme sites for library constructions, of

bidirectional and double terminators to insulate from genetic context (Bba_B0014 and

Bba_B0015) and of parts for gene expression in B. subtilis, Pveg promoter mutated to add

228 Annex C. A part toolbox to tune genetic expression in B. subtilis

AgeI restriction site, R0 RBS and mKate2(Bs) (simply named RFP from here) or sfGFP(sp)

(simply named GFP from here). Cassettes named Pveg.RFP and Pveg.GFP were

synthetised by DNA2.0 (Menlo Park, CA, USA).

Pveg.RFP and Pveg.GFP were cloned inside pDG1730 vector between position 636 to 676

using Gibson Assembly. pDG1730 and DNA2.0 fragments were PCR amplified with

respectively P31/P32 and P33/P34 and ligations were performed using iso-thermal Gibson

Assembly. After transformation using electroporation (Ampicillin selection), colony PCR

verification (One Taq master mix and P16/P34 primers) and plasmid extraction, constructs

were sequence for validation and named SG11 (RFP) and SG13 (GFP).

To construct SG29: Pveg.GFP with TSS and SG30: PREF.GFP with TSS, part TSS was

added to respectively SG13 and SG22 by Gibson Assembly with PCR amplification of

vector by P162/P39 and of insert by P137/P34. SG22 was previously obtained by

randomization of SG13 using P64 primer (see promoter libraries section).

Set of 10 promoters

For construction of the set of 10 promoters, 10 Gblocks were designed to replace Pveg

promoters by the one of interest based on SG29. SG29 was PCR amplified with P109/P36

and ligations with Gblocks were performed using iso-thermal Gibson Assembly.

Set of 8 RBSs, with GFP and RFP as reporter

For construction of the set of 8 RBSs with GFP, primers composed of new RBSs and

around 20bp homology sequence with GFP were designed. SG29 was PCR amplified as

vector with P146/P39 and SG29 was PCR amplified with primers specific for each RBS

(R1 to R7: P139 to P145 and R8: P225), ligations were performed using iso-thermal

Gibson Assembly.

For construction of the set of 8 RBSs with RFP, SG29 was PCR amplified as vector with

P146/P72 and SG11 was PCR amplified as insert with P34 and primers specific for each

RBS (R0: P238, R1 to R7: P206 to P212). Ligations were performed using iso-thermal

Gibson Assembly and constructions were sequenced using P33/P34 primers.

Set of 4sSsrA tags

For construction of a set of 4 classic SsrA tags, 4 Gblocks were designed to add SsrA

degradation tags to SG13. SG13 was PCR amplified by P124/P39 and ligations with

Gblocks were performed using iso-thermal Gibson Assembly.

Promoter, RBS and SsrA tag library construction

The various promoters, RBS and degradation tags libraries were generated by performing

a PCR on the GFP gene using primers contain the regulatory region of interest

229

degenerated at strategic positions.

Promoter libraries

For the initial Pveg libraries (Figure S2A), SG13 was randomized by PCR amplification

using P34 and the degenerated primers: P62 (full randomization), P63 (randomization of -

35 box) or P64 (randomization of -10 box). For final Pveg libraries, SG29 was randomized

by PCR amplification using P34 and the degenerated primers P213. Vectors and amplified

fragments were digested by AgeI and SphI. For PserA and PymdA libraries, SG36 (cassette

with PserA as promoter) and SG37 (PymdA as promoter) were randomized by PCR

amplification using P34 and respectively P214 and P215 for design 1 (randomisation of -

10 box), P341 and P342 for design 2 (randomisation of 6 nucleotides before -10 box).

Vectors and amplified fragments were digested by BamHI and SphI.

RBS libraries

For RBS libraries, SG29 (cassette with R0 as RBS), SG45 (R1 as RBS) and SG47 (R2 as

RBS) were randomized by PCR amplification using P34 and the degenerated primers

respectively: P220, P221 and P222. Vectors and amplified fragments were restricted by

NheI and SphI.

SsrA tag libraries

For SsrA tag libraries, SG13 was randomized by PCR amplification using P33 and P51

degenerated primer. Vectors and amplified fragments were restricted by NheI and SphI.

!

230 Annex C. A part toolbox to tune genetic expression in B. subtilis

Supplementary figures

Figure S1: Expression operating unit design for expression of two genes and for

inducible expression of gene.

(A) Architecture of our standardized and modular double expression operating unit (dEOU)

based on the same design than EOU. The dEOU is composed of two sets of standard

regulatory elements (promoter, RBS, GOI) positioned in opposite direction two maximize

insulation between the two cassettes. Spacers (SpX) of 40 bp designed to facilitate for

one-step isothermal assembly enable simple construction and switching of parts.

(B) Architecture of expression operating unit for inducible expression with example of

Phyperspank promoter expressed under regulation of LacI repressor with induction by IPTG.

Repressor operon is placed in 3’ of the EOU, between spacer Sp6 and Sp7.

231

Figure S2: Engineering promoter libraries: different parent sequences and

randomisation designs result in libraries with various distribution of expression

level.

(A) Based on Pveg sequences (without TSS), we tested 3 promoter libraries designs (left

panel); randomisation of -35 box and -10 box, randomisation of 3 nucleotides within the -

10 box and randomisation of 3 nucleotides within the -35 box. Distribution of expression

levels for each library (right panel) corresponds to the measurement of fluorescence

232 Annex C. A part toolbox to tune genetic expression in B. subtilis

intensity over OD on a plate reader (see methods for details). The selected reference

promoter obtained from the -10 box randomisation library is highlighted in pale blue.

(B) Two other parent promoters: PserA and PymdA were used for engineering promoter

libraries. We tested 2 designs (left panel): randomisation of 3 nucleotides within the -10

box and randomisation of 6 nucleotides between the -35 and -10 box. Right panel,

distribution of expression level for the 4 libraries (2 promoters parent sequences and 2

randomisation designs for each of them). Histograms are obtained by measurement of the

fluorescence intensity (in arbitrary units) of the pool of variants by flow-cytometry after

integration in B. subtilis. For details, see method.

!

233

Figure S3: Effect of TSS part on promoter efficiency.

(A) A standard TSS sequence was placed between promoters and ribosome binding sites.

We chose the 8 nucleotides after the promoter of fbaA gene of B. subtilis.

(B) Expression level of 2 promoters with and without the standard TSS part; SG13

(corresponding to the Pveg promoter without the TSS part), Pveg (TSS), the reference

promoter PREF (a variant of Pveg), and PREF (TSS). Constructs were cloned on our modular

cassette (R0 was used as a RBS). Expression levels are in arbitrary unit (A.U.) and

correspond to the fluorescence intensity measured flow-cytometer obtained over 3

independent experiments performed on exponential phase (3 replicates per experiments).

Error-bars correspond to standard deviation between the 3 experiments.

!

234 Annex C. A part toolbox to tune genetic expression in B. subtilis

Figure S4: Fully characterised PserA and PymdA variants and comparison of the two

different randomisation designs.

(A) Two different randomisation designs, design 1: randomisation of 3 nucleotides within

the -10 box (grey) and design 2: 6 nucleotides between the -35 box and the -10 box (black).

(B) (C) Characterisation of over 10 variants per design for PserA libraries (B) and PymdA

libraries (C). Expression levels were measured by flow-cytometry and expressed in REU.

Data correspond to the mean of 3 independent experiments performed in triplicates and

error-bars correspond to standard deviation over these 3 experiments. Grey bars design

variants engineered following the design 1 and black bars design variants engineered

following the design 2.

!

235

Figure S5: Distribution of expression levels and full set of characterised variants for

the 3 RBS libraries.

(A) Distribution of expression level for the 3 RBS libraries (R0, R1, R2) and the negative

control stain (without GFP) as a background fluorescence control. Histograms are obtained

by flow-cytometer measurement of fluorescence intensity (in arbitrary unit) of the pool of

variants after integration in B. subtilis. Blue histogram corresponds to the wild-type RBS

sequence and the black histogram to the full library.

!

(B) Full set of characterised variants for each library. Expression levels were measured by

flow-cytometry and expressed in REU. Data correspond to the mean of 3 independent

experiments performed in triplicates and error-bars correspond to standard deviation over

these 3 experiments.

!

236 Annex C. A part toolbox to tune genetic expression in B. subtilis

!

Figure S6: Effect of reporter sequences on translation efficiency and insulation of

this effect using bicistrons.

(A) Characterisation of 8 RBSs with two different reporters: sfGFP(sp) (named GFP) and

mKate2(Bs) (named RFP). Expression levels were measured by flow-cytometry and

expressed in REU. Data correspond to the mean of 3 independent experiments performed

in triplicates and error-bars correspond to standard deviation over these 3 experiments.

The reference constructs used were PREF with corresponding reporter.

!

(B) Expression level of RBSs with RFP over expression level of RBSs with GFP in relative

expression unit. A linear correlation was found with a coefficient of determination of 0.898.

The two ribosome binding sites with the worse correlation are R4 and R7 (green dots).

(C) For R4 and R7, a bicistronic design was used to decouple translation initiation from

putative context effects arising from interactios between the RBS and the reporter coding

sequence. Expression levels were measured by flow-cytometry and expressed in REU.

Data correspond to the mean of 3 independent experiments performed in triplicates and

error-bars correspond to standard deviation over these 3 experiments.

!

(D) Expression level of RBSs coupled with RFP over expression level of RBSs coupled

with GFP in REU with R4-BCD and R7-BCD (red dots) instead of mono-cistron constructs.

A linear correlation was found with a coefficient of determination of 0.920. Full

measurements data are available in supplementary data file 6.

237

Figure S7: Comparison of promoter and RBS strengths between stationary and

exponential phase.

238 Annex C. A part toolbox to tune genetic expression in B. subtilis

Characterisation of promoter and RBS libraries was performed on exponential and

stationary phases. Expression levels were measured by flow-cytometry and expressed in

REU. Data correspond to the mean of 3 independent experiments performed in triplicates

and error-bars correspond to standard deviation over these 3 experiments. Grey bars

correspond to exponential phase and black bars to stationary phase. (A) Expression level

of the reference construct in absolute unit in exponential and stationary phase. (B) (C) (D):

Expression levels of basic promoters and RBSs! in exponential and stationary phase

expressed in REU (B), RBS libraries (C) and promoter libraries (D).

(E) (F) (G): Expression level in exponential phase over expression level in stationary

phase in relative expression units for promoters and RBSs sets (E), RBS libraries (F) and

promoter libraries (G). Linear correlation were performed for each construction sets and a

coefficient of determination between 0.83 and 0.999 were found.

!

239

Figure S8: Measurement of parts activities in 2 different laboratories.

(A) Expression levels in relative expression unit correspond to GFP/OD for 3 kinetic

experiments on a plate reader (3 replicates per experiment) in CHG medium (more details

in methods). Experiments were performed in parallel in 2 different laboratories with 2

different experimenters. Error-bars correspond to standard deviation over the three

experiments. SG13 correspond to the Pveg promoter without the +1/+8 part (B) Correlation

of expression level between both laboratories in REU with coefficient of determination of

0.9995. Full library measurements data are available in supplementary 7.

!

240 Annex C. A part toolbox to tune genetic expression in B. subtilis

Figure S9: Correlation of gene expression levels between two medium conditions:

M9 and CHG.

 (A) Expression level in REU of the basic promoter set measured by flow-cytometer in

exponential phase in M9 (black bars – Figure 2) and measured on a plate-reader in CHG

media (grey bars – Figure S8). SG13 correspond to the Pveg promoter without the +1/+8

part (B) Correlation between experiments on M9 using flow-cytometer and on CHG using

plate-reader. Linear correlation with coefficient of determination of 0.963 and director

coefficient of 1.6.

!

241

Figure S10: Characterisation of sfGFP(sp) using 2-photon microscope and number

and brightness method.

(A) (B) Characterisation of the molecular brightness of the sfGFP(sp) at different

concentrations of IPTG using 2p sN&B method. sfGFP(sp) expression was induced at

different levels using pHyperspank promoter and IPTG concentration from 0 to 20 μM.

Fluorescence intensity (A), number of GFP per excitation volume and molecular brightness

(B) were determined at each IPTG concentration. Error bars correspond to cell-to-cell

variation (experiments were performed once).

!
"#
$
%&
'(
&
)
(&
*+
)
,&
)
'+
,-
**
./
01
02!

30345
30346 30347

30366

242 Annex C. A part toolbox to tune genetic expression in B. subtilis

Figure S11: Growth rate for B. subtilis strains with various GFP expression level.

Relative growth rate correspond to growth rate of strains with a specific expression level in

REU over growth rate of the negative control. Data represented correspond to the

characterisation of 10 strains with different promoters in 2 different laboratories: CBS and

Micalis (see Fig S8). Error-bars correspond to standard deviation over the three

experiments.

243

DNA sequences

Expression Operating Unit (example with Pveg.R0.sfGFP(sp))

Sp0-Sp3-B0014-Sp4-PVEG-TSS-NheI-R0-sfGFP(sp)-Sp5-SphI-Sp5’-B0015-Sp6-SpN

CTCGGATACCCTTACTCTGTTGAAAACGAATAGATAGGTTAAGGAACGGTTATTTCTGCGTAGATCTATCTTACACAGCA

TCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATACTAGAGAGAGAATATAAAAAGCCAGATTATTAATCCG

GCTTTTTTATTATTTAGGCAACTGAAACGATTCGGATCCTGTATTACTATTCTTAAATTTTGTCAAAATAATTTTATTGA

CAACGTCTTATTAACGTTGATACCGGTTAAATTTTATTTGACAAAAATGGGCTCGTGTTGTACAATAAATGTGGAGAAAA

GCTAGCGATTAACTAATAAGGAGGACAAACATGTCAAAAGGAGAAGAACTTTTTACAGGTGTAGTACCTATCTTGGTTGA

ATTGGATGGTGATGTTAACGGTCACAAATTTTCTGTACGTGGTGAAGGTGAAGGTGATGCAACTAACGGTAAATTGACAC

TTAAATTCATTTGTACAACTGGAAAACTTCCTGTTCCTTGGCCTACTCTTGTTACAACATTGACATATGGAGTACAATGT

TTTTCACGTTATCCTGATCATATGAAACGTCACGATTTTTTTAAATCTGCTATGCCAGAAGGTTATGTACAAGAACGTAC

AATTTCATTTAAAGATGACGGAACATATAAAACACGTGCTGAAGTAAAATTCGAAGGTGACACTCTTGTTAATCGTATCG

AATTGAAAGGAATCGATTTCAAAGAAGATGGTAACATTTTGGGACACAAACTTGAATACAACTTCAACTCTCATAATGTT

TATATCACAGCTGACAAACAAAAAAACGGTATTAAAGCTAATTTTAAAATTCGTCACAATGTTGAAGATGGATCTGTTCA

ATTGGCTGATCATTATCAACAAAATACACCAATCGGAGACGGACCAGTATTGCTTCCAGATAACCACTACCTTTCTACTC

AATCAGTTCTTTCAAAAGATCCTAACGAAAAACGTGACCATATGGTACTTCTTGAATTTGTTACAGCAGCAGGTATCACT

CACGGTATGGACGAACTTTATAAATAAACTTTATCTGAGAATAGTCAATCTTCGGAAATCCCAGGTGGCATGCTAAAAGT

CTCGTAAAGCGTTCTATCAATAACCCGTTGGTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTT

CGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTA

TACCGTCTCAGAATCGGCCGTGAACAATAAAATAGTTTCGGTATTATTGACCACTTCCGAGTAGAATCGTGCTTCAGTAA

GA

Phyp.R0.sfGFP(sp).LacI_operon

Sp0-Sp3-B0014-Sp4-PHYP-NheI-R0-sfGFP(sp)-Sp5-SphI-Sp5’-B0015-Sp6-LacIoperon-Sp7-

SpN

CTCGGATACCCTTACTCTGTTGAAAACGAATAGATAGGTTAAGGAACGGTTATTTCTGCGTAGATCTATCTTACACAGCA

TCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATACTAGAGAGAGAATATAAAAAGCCAGATTATTAATCCG

GCTTTTTTATTATTTAGGCAACTGAAACGATTCGGATCCTGTATTACTATTCTTACTCGAGGGTAAATGTGAGCACTCAC

AATTCATTTTGCAAAAGTTGTTGACTTTATCTACAAGGTGTGGCATAATGTGTGTAATTGTGAGCGGATAACAATTGCTA

GCGATTAACTAATAAGGAGGACAAACATGTCAGAACTAATCAAAGAGAATATGCACATGAAGCTGTACATGGAAGGAACG

GTAAACAATCATCATTTCAAATGTACAAGCGAGGGTGAGGGGAAGCCTTATGAAGGGACACAAACCATGCGGATTAAAGC

AGTCGAGGGCGGACCCCTTCCGTTTGCCTTCGATATCTTGGCTACGAGCTTTATGTATGGGTCGAAAACATTTATCAATC

ACACGCAGGGGATTCCAGACTTTTTCAAACAAAGTTTTCCGGAAGGCTTTACGTGGGAACGTGTGACCACGTATGAAGAT

GGCGGCGTCTTAACAGCTACACAAGATACATCTTTACAAGACGGATGCTTGATATACAACGTTAAGATTCGCGGTGTTAA

CTTTCCGTCAAACGGACCTGTTATGCAGAAGAAAACCCTGGGCTGGGAAGCGTCAACAGAAACACTCTATCCAGCCGACG

GTGGACTTGAGGGCCGTGCCGATATGGCTCTTAAACTCGTGGGCGGTGGCCATCTGATTTGCAATCTTAAAACTACTTAT

CGGTCCAAAAAGCCGGCGAAGAATTTGAAAATGCCTGGAGTATACTACGTTGATAGACGATTAGAAAGGATTAAAGAAGC

AGACAAAGAAACTTATGTAGAGCAGCATGAAGTCGCAGTGGCGAGATATTGTGATTTACCGTCTAAACTGGGACATCGCT

AAACTTTATCTGAGAATAGTCAATCTTCGGAAATCCCAGGTGGCATGCTAAAAGTCTCGTAAAGCGTTCTATCAATAACC

CGTTGGTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGA

ACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATACCGTCTCAGAATCGGCCGTGAAC

AATAAAATAGTTTCGGTTTGCATTTAAATCTTACATATGTAATACTTTCAAAGACTACATTTGTAAGATTTGATGTTTGA

GTCGGCTGAAAGATCGTACGTACCAATTATTGTTTCGTGATTGTTCAAGCCATAACACTGTAGGGATAGTGGAAAGAGTG

CTTCATCTGGTTACGATCAATCAAATATTCAAACGGAGGGAGACGATTTTGATGAAACCAGTAACGTTATACGATGTCGC

244 Annex C. A part toolbox to tune genetic expression in B. subtilis

AGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAA

AAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTG

ATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACT

GGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAACGGCGGTGCACAATCTTCTCGCGC

AACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTT

CCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGG

CGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGC

GTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATG

TCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGC

GCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGATACCG

AAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGC

TTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCT

GGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGG

AAAGCGGGCAGTGATAATAAAAGGTCCCGTCTGAACTTACTGTGAATTCGACTAATTATTGACCACTTCCGAGTAGAATC

GTGCTTCAGTAAGA

mKate2(Bs)
ATGTCAGAACTAATCAAAGAGAATATGCACATGAAGCTGTACATGGAAGGAACGGTAAACAATCATCATTTCAAATGT

ACAAGCGAGGGTGAGGGGAAGCCTTATGAAGGGACACAAACCATGCGGATTAAAGCAGTCGAGGGCGGACCCCTT

CCGTTTGCCTTCGATATCTTGGCTACGAGCTTTATGTATGGGTCGAAAACATTTATCAATCACACGCAGGGGATTCCA

GACTTTTTCAAACAAAGTTTTCCGGAAGGCTTTACGTGGGAACGTGTGACCACGTATGAAGATGGCGGCGTCTTAAC

AGCTACACAAGATACATCTTTACAAGACGGATGCTTGATATACAACGTTAAGATTCGCGGTGTTAACTTTCCGTCAAA

CGGACCTGTTATGCAGAAGAAAACCCTGGGCTGGGAAGCGTCAACAGAAACACTCTATCCAGCCGACGGTGGACTT

GAGGGCCGTGCCGATATGGCTCTTAAACTCGTGGGCGGTGGCCATCTGATTTGCAATCTTAAAACTACTTATCGGTC

CAAAAAGCCGGCGAAGAATTTGAAAATGCCTGGAGTATACTACGTTGATAGACGATTAGAAAGGATTAAAGAAGCAG

ACAAAGAAACTTATGTAGAGCAGCATGAAGTCGCAGTGGCGAGATATTGTGATTTACCGTCTAAACTGGGACATCGC

TAA

BCDs

BCD-4

RBS0-first start codon-RBS4-second start codon

GGGCCCAAGTTCACTTAAGATTAACTAATAAGGAGGACAACAACAATGAAAGCAATTTTCGTACTGAAtgacatgaaagg

aagtatttgatAATG

BCD-7

RBS0-first start codon-RBS7-second start codon

GGGCCCAAGTTCACTTAAGATTAACTAATAAGGAGGACAACAACAATGAAAGCAATTTTCGTACTGAAggtgggaaggag

gaactactAATG

245

Spacer sequences

Spacer names Spacer sequences

sp0 CTCGGATACCCTTACTCTGTTGAAAACGAATAGATAGGTT

sp1 TGCTCGTAGTTTACCACGGATACAGACAGTGATAATCTTA

sp2 AGATTACTACTGATAACCACTGTTGATTGGGATACCCGTA

sp3 AAGGAACGGTTATTTCTGCGTAGATCTATCTTACACAGCA

sp4 AGGCAACTGAAACGATTCGGATCCTGTATTACTATTCTTA

sp5 ACTTTATCTGAGAATAGTCAATCTTCGGAAATCCCAGGTG

sp5’ TAAAAGTCTCGTAAAGCGTTCTATCAATAACCCGTTGGTG

sp6 CCGTCTCAGAATCGGCCGTGAACAATAAAATAGTTTCGGT

sp7 TAATAAAAGGTCCCGTCTGAACTTACTGTGAATTCGACTA

spN ATTATTGACCACTTCCGAGTAGAATCGTGCTTCAGTAAGA

Primer sequences

Primer

numbers

Primer sequences

16 gccgcgatttccaatgaggtta

31 caacagagtaagggtatccgagcgatcagaccagtttttaatttgtgtg

32 gagtagaatcgtgcttcagtaagaggcgattttcgttcgtgaatac

33 CTCGGATACCCTTACTCTGTTGAAAAC

34 TCTTACTGAAGCACGATTCTACTCGG

36 TGCTGTGTAAGATAGATCTACGCAG

39 ACTTTATCTGAGAATAGTCAATCTTCGGAAATC

40 CACCTGGGATTTCCGAAGATTGAC

51 GGATCGGAgcatgcTTAAHNAHNAHNAGCAACATTTTGATTAAATGAATTTGTTTTGCCTGCtttataaag

ttcgtccataccgtgagtg

62 ACGTTGATACCGGTTAAATTTTATNNNNNNAAAATGGGCTCGTGTTGNNNNNNaaatgtgctagcgattaa

ctaataaggagg

63 ACGTTGATACCGGTTAAATTTTATNNNACAAAAATGGGCTCGTGTTGTATAATaaatgtgctagcgattaa

ctaataaggagg

64 ACGTTGATACCGGTTAAATTTTATTTGACAAAAATGGGCTCGTGTTGNNNAATaaatgtgctagcgattaa

ctaataaggagg

71 cgttttcaacagagtaagggtatccgag

72 attattgaccacttccgagtagaatcgtg

109 gattaactaataaggaggacaaacatgtc

124 TTTATAAAGTTCGTCCATACCGTGAGTGATACC

137 ggttaaattttatttgacaaaaatgggctcgtgttgtacaataaatgtggagaaaagctagcgattaacta

ataaggaggacaaac

139 ggttaaattttatttgacaaaaatgggctcgtgttgtacaataaatgtggagaaaagctagcgattaacta

ataaggaggacaaac

140 ggctcgtgttgtacaataaatgtggagaaaagctagcggtgggaaggagggggttcgacatgtcaaaagga

gaagaactttttacagg

141 ggctcgtgttgtacaataaatgtggagaaaagctagcggtgggaaggaggaactactatgtcaaaaggaga

agaactttttacagg

142 ggctcgtgttgtacaataaatgtggagaaaagctagcggtgggaaggaggacattcgacatgtcaaaagga

gaagaactttttacagg

143 ggctcgtgttgtacaataaatgtggagaaaagctagcaaaggaggtgatgacatgtcaaaaggagaagaac

246 Annex C. A part toolbox to tune genetic expression in B. subtilis

tttttacagg

144 ggctcgtgttgtacaataaatgtggagaaaagctagcgctcttaaggaggattttagaatgtcaaaaggag

aagaactttttacagg

145 ggctcgtgttgtacaataaatgtggagaaaagctagctgacatgaaaggaagtatttgaaaatgtcaaaag

gagaagaactttttacagg

146 gctagcttttctccacatttattgtac

160 gattaactaataaggaggacaaacatgtcagaactaatc

161 gattagttctgacatgtttgtcctccttattagttaatc

162 catttattgtacaacacgagc

206 ggctcgtgttgtacaataaatgtggagaaaagctagcggtgggaaggaggtgatccaatgtcagaactaat

caaagagaatatgcac

207 ggctcgtgttgtacaataaatgtggagaaaagctagcggtgggaaggagggggttcgacatgtcagaacta

atcaaagagaatatgcac

208 ggctcgtgttgtacaataaatgtggagaaaagctagcggtgggaaggaggaactactatgtcagaactaat

caaagagaatatgcac

209 ggctcgtgttgtacaataaatgtggagaaaagctagcggtgggaaggaggacattcgacatgtcagaacta

atcaaagagaatatgcac

210 ggctcgtgttgtacaataaatgtggagaaaagctagcaaaggaggtgatgacatgtcagaactaatcaaag

agaatatgcac

211 ggctcgtgttgtacaataaatgtggagaaaagctagcgctcttaaggaggattttagaatgtcagaactaa

tcaaagagaatatgcac

212 ggctcgtgttgtacaataaatgtggagaaaagctagctgacatgaaaggaagtatttgaaaatgtcagaac

taatcaaagagaatatgc

213 ACGTTGATaccggttaaattttatttgacaaaaatgggctcgtgttgNNNaataaatgtggagaaaagcta

gcgattaac

214 CGTTGATggatcctgtattactattcttaactgcgtcaatacacgttgacactcttttgagaatatgtNNN

attatcagggagaaaagctagcgattaac

215 CGTTGATggatcctgtattactattcttagttaagatggcaagcttgacaagtatttccgacacattNNNa

atgaagttggagaaaagctagcgattaac

220 GTGATCCAgctagcgattaactaataaNNNNNNcaaacatgtcaaaaggagaagaactttttacagg

221 GTGATCCAgctagcGGTGGAANNNNNNTGATGACatgtcaaaaggagaagaactttttacagg

222 GTGATCCAgctagcgctcttaNNNNNNattttagaatgtcaaaaggagaagaactttttacagg

225 ggctcgtgttgtacaataaatgtggagaaaagctagcGGTGGAAAGGAGGTGATGACatgtcaaaaggaga

agaactttttacagg

238 ggctcgtgttgtacaataaatgtggagaaaagctagcgattaactaataaggaggacaaacatgtcagaac

taatcaaagagaatatgc

341 CGTTGATggatcctgtattactattcttaactgcgtcaatacacgttgacactcttttgNNNNNNtgttaa

attatcagggagaaaagct

342 CGTTGATggatcctgtattactattcttagttaagatggcaagcttgacaagtatttcNNNNNNatttaca

atgaagttggagaaaagct

343 aggcaactgaaacgattcggatcctgtattactattcttaggagaaaagctagcgattaactaataaggag

gac

423 ctgtaaaaagttcttctccttttgacatgctagcacatttattgtacaacacg

424 cgtgttgtacaataaatgtgctagcatgtcaaaaggagaagaactttttacag

247

Gblock sequences

Gblock names Gblock sequences

ssrA_LAA CAGCAGCAGGTATCACTCACGGTATGGACGAACTTTATAAAGCAGGTAAGACTAATTCATTTAATC

AAAATGTTGCTCTTGCAGCATAAACTTTATCTGAGAATAGTCAATCTTCGGAAATCCCAGGTG

ssrA_LDD CAGCAGCAGGTATCACTCACGGTATGGACGAACTTTATAAAGCAGGTAAGACTAATTCATTTAATC

AAAATGTTGCTCTTGATGATTAAACTTTATCTGAGAATAGTCAATCTTCGGAAATCCCAGGTG

ssrA_AAV CAGCAGCAGGTATCACTCACGGTATGGACGAACTTTATAAAGCAGGTAAGACTAATTCATTTAATC

AAAATGTTGCTGCTGCTGTTTAAACTTTATCTGAGAATAGTCAATCTTCGGAAATCCCAGGTG

ssrA_ASV CAGCAGCAGGTATCACTCACGGTATGGACGAACTTTATAAAGCAGGTAAGACTAATTCATTTAATC

AAAATGTTGCTGCTAGTGTTTAAACTTTATCTGAGAATAGTCAATCTTCGGAAATCCCAGGTG

ssrA_LVA CAGCAGCAGGTATCACTCACGGTATGGACGAACTTTATAAAGCAGGTAAGACTAATTCATTTAATC

AAAATGTTGCTTTAGTTGCTTAAACTTTATCTGAGAATAGTCAATCTTCGGAAATCCCAGGTG

Gblock_fbaA ctcggatacccttactctgttgaaaacgaatagataggttaaggaacggttatttctgcgtagatc

tatcttacacagcatcacactggctcaccttcgggtgggcctttctgcgtttatatactagagaga

gaatataaaaagccagattattaatccggcttttttattatttaggcaactgaaacgattcggatc

ctgtattactattcttaaatcatgtcattatgttgccgatttgtcgaaaagttggtatcctagtta

tggagaaaagctagcgattaactaataaggaggacaaacatgtcaaaaggagaagaactttttaca

ggtgtagtacctatcttggttg

Gblock_zwf ctcggatacccttactctgttgaaaacgaatagataggttaaggaacggttatttctgcgtagatc

tatcttacacagcatcacactggctcaccttcgggtgggcctttctgcgtttatatactagagaga

gaatataaaaagccagattattaatccggcttttttattatttaggcaactgaaacgattcggatc

ctgtattactattcttaaaaagggcttaaatgtttgctttcgttgaattttagatttaaaatgaag

gggagaaaagctagcgattaactaataaggaggacaaacatgtcaaaaggagaagaactttttaca

ggtgtagtacctatcttggttg

Gblock_ymda ctcggatacccttactctgttgaaaacgaatagataggttaaggaacggttatttctgcgtagatc

tatcttacacagcatcacactggctcaccttcgggtgggcctttctgcgtttatatactagagaga

gaatataaaaagccagattattaatccggcttttttattatttaggcaactgaaacgattcggatc

ctgtattactattcttagttaagatggcaagcttgacaagtatttccgacacatttacaatgaagt

tggagaaaagctagcgattaactaataaggaggacaaacatgtcaaaaggagaagaactttttaca

ggtgtagtacctatcttggttg

Gblock_serA ctcggatacccttactctgttgaaaacgaatagataggttaaggaacggttatttctgcgtagatc

tatcttacacagcatcacactggctcaccttcgggtgggcctttctgcgtttatatactagagaga

gaatataaaaagccagattattaatccggcttttttattatttaggcaactgaaacgattcggatc

ctgtattactattcttaactgcgtcaatacacgttgacactcttttgagaatatgttaaattatca

gggagaaaagctagcgattaactaataaggaggacaaacatgtcaaaaggagaagaactttttaca

ggtgtagtacctatcttggttg

Gblock_pgi ctcggatacccttactctgttgaaaacgaatagataggttaaggaacggttatttctgcgtagatc

tatcttacacagcatcacactggctcaccttcgggtgggcctttctgcgtttatatactagagaga

gaatataaaaagccagattattaatccggcttttttattatttaggcaactgaaacgattcggatc

ctgtattactattcttacctttcttcttgacttgatttcacagataagttcatataaagtgaaaga

tggagaaaagctagcgattaactaataaggaggacaaacatgtcaaaaggagaagaactttttaca

ggtgtagtacctatcttggttg

Gblock_relA ctcggatacccttactctgttgaaaacgaatagataggttaaggaacggttatttctgcgtagatc

tatcttacacagcatcacactggctcaccttcgggtgggcctttctgcgtttatatactagagaga

gaatataaaaagccagattattaatccggcttttttattatttaggcaactgaaacgattcggatc

ctgtattactattcttaacttctgctctttacatctttcgtttttttcttgataataaactacaat

aggagaaaagctagcgattaactaataaggaggacaaacatgtcaaaaggagaagaactttttaca

ggtgtagtacctatcttggttg

Gblock_folEA ctcggatacccttactctgttgaaaacgaatagataggttaaggaacggttatttctgcgtagatc

tatcttacacagcatcacactggctcaccttcgggtgggcctttctgcgtttatatactagagaga

gaatataaaaagccagattattaatccggcttttttattatttaggcaactgaaacgattcggatc

ctgtattactattcttagggcattcactttgcttttagcggggcatatgtgctagaatcgaaatta

248 Annex C. A part toolbox to tune genetic expression in B. subtilis

aggagaaaagctagcgattaactaataaggaggacaaacatgtcaaaaggagaagaactttttaca

ggtgtagtacctatcttggttg

Gblock_lepA ctcggatacccttactctgttgaaaacgaatagataggttaaggaacggttatttctgcgtagatc

tatcttacacagcatcacactggctcaccttcgggtgggcctttctgcgtttatatactagagaga

gaatataaaaagccagattattaatccggcttttttattatttaggcaactgaaacgattcggatc

ctgtattactattcttaagtcaatgtatgaatggatacgggatatgaatcaataagtacgtgaaag

agaaaagcaacccagatatgatagggaacttttctctttcttgttttacattgaatctttacaatc

ctattgatataatctaagctagtgtattttgcgtttaatagtggagaaaagctagcgattaactaa

taaggaggacaaacatgtcaaaaggagaagaactttttacaggtgtagtacctatcttggttg

249

Annex D

Supplementary Data: An automated

design framework for multicellular

recombinase logic.

Supplementary Information: An automated design framework for

multicellular recombinase logic.

Sarah Guiziou1, Federico Ulliana2, Violaine Moreau1, Michel Leclere2, and Jerome Bonnet*1

1Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier,
France.

2Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM). CNRS
UMR 5506, University of Montpellier, France.

*To whom correspondence should be addressed: jerome.bonnet@inserm.fr

These supplementary materials contain:
-Supplementary Figures S1 to S3.
-Supplementary Tables S1.

1

252
Annex D. Supplementary Data: An automated design framework for

multicellular recombinase logic.

f = (NOT(B) AND A) OR (NOT(C) AND B)

Cell 2Cell 1

In
t
1

In
t
2

Input AInput B

In
t
1

In
t
2

Input BInput C

A

C

B

devices

3

#
 s

e
n

s
o

r
m

o
d

u
le

s

All inputs/all integrases

One input by integrase
All inputs/all integrases

One input by integrase

#
 c

o
m

p
u
ta

ti
o

n
a
l
d

e
v
ic

e
s

Figure S1: Reduction of the number of Boolean logic devices by connecting all inputs
to all integrases. (A) Reduction of the number of computational devices needed by connection
of all inputs to all integrases. The bar graph represents the number of standard computational
devices needed to implement a function responding to a specific number of inputs, with the
black bars for connection of all inputs to all integrases and the grey bars for connection of one
input to one integrase (see methods for equation). (B) Number of sensor modules needed using
all-input/all-integrase design or one input by integrase design. If only one device per symmetric
function is implemented, all combinations of inputs with integrases have to be built to implement
all logic sub-functions. The number of sensor modules with this design strategy is higher than
in the one input by integrase design. The bar graph represents the number of sensor modules
needed in function of the input number, for all-input/all-integrase design (black bars) and one
input by integrase design (grey bars). By comparing A and B, it is clear that the total number
of component needed is greatly in favor of the all-input/all-integrase design. C - Example of
Boolean logic implementation based on two cells using the same computational devices and
different input-integrase connections.

2

253

Input NInput 1

LuxI

Without

signal integration

Output =1

State 1 State 3

With

signal integration

Output =1

State 2
A B

C

Computational

Device

Input 2

GFP

...

...

LuxR

Initial state

1 2

3
4

Cell 1

In
t1

In
t2

Input AInput B

GFP

LuxR

LuxI

 A=1

1 2

3
4

In
t1

In
t2

Input AInput B

GFP

LuxR

LuxI

Cell 1

 A=1

Input BInput C

GFP

LuxR

LuxI

Cell 2

1 2

3
4

Comp.

Device

A=1 At steady state

AHL

AHL

AHLAHL

Figure S2: Use of cell-cell communication to obtain a constant output signal between
states. A - The integration of the output signal is required to obtain a uniform output in all ON
states. In our multicellular design, the output is considered equal to one if at least one cellular
computing unit is ON. Therefore, the expression level of the output gene will be different if one
or several units are ON. For applications that require a constant output level, integration of the
output signal might be performed using cell-cell communication. If one of the strains is ON, it
produces an AHL molecule that is detected by the other strains, which subsequently turn ON
such that in all ON states of the program the output level is constant. B - Implementation of
cell-cell communication to integrate output signals. The output gene of the computational device
is a gene producing an AHL molecule (for example LuxI), and the output gene (here GFP) is
connected to a promoter inducible by AHL. C - Example of the behavior of a cellular computing
unit with a signal integration system. In the initial state for this specific strain, the output gene
of the computing device (LuxI) is OFF as for all other strains. Then, with the presence of the
input A, the terminator is excised, LuxI is expressed, and AHL is produced. GFP will be expressed
in this strain, and by diffusion of AHL all strains will produce GFP.

3

254
Annex D. Supplementary Data: An automated design framework for

multicellular recombinase logic.

()

()

NOT(X) Y

()j

j

Elements

Modules

Devices

()()i

()i

A

Integrase

attB attP

attL attR

RDF

Int + RDF Int

B

C

Pcons

No

input
Input

Input
NOT(X) AND (...) AND NOT(X) Y AND (...) AND Yi1 j1

f = NOT(X) AND (...) AND NOT(X) AND Y AND (...) AND Yi j11x

Figure S3: Hierarchical composition framework for synchronous Boolean logic using
integrases and recombination directionality factors (RDFs). A - Reversible inversion
of DNA using integrase coupled with RDF. Integrase alone specifically targets attB and attP

sites and does not operate on attL and attR sites. When sites are oriented in the opposite
direction, DNA between sites is inverted and attL and attR sites are formed. With the additional
use of a RDF, the integrase targets specifically attL and attR sites and inverts DNA between
these sites, reverting to attB and attP. Therefore, using a RDF enables the implementation of
reversible integrase-based DNA switches14. B - To obtain a synchronous IDENTITY function, the
integrase sites attL and attR are placed in inverted orientation around an asymmetric terminator.
The terminator blocks the flow of RNA polymerase, and the output gene is not expressed. The
integrase is constitutively expressed in all states. When the input is present, RDF is expressed and
the terminator inverted. As the terminator is asymmetric, the output gene is expressed10,30. C
- Hierarchical composition of synchronous elements. NOT- and ID-elements are composed with
attL and attR sites in inversion mode flanking an asymmetric transcriptional terminator. For the
NOT-element, the terminator is in the OFF position and for the ID-element in the ON position.
ID- and NOT-modules are both composed in series between the promoter and the output gene
and compute, respectively, the conjunction of IDENTITY functions and NOT functions. The
device is then expandable by addition of elements in series to all logic functions based on the
conjunction of NOT and IDENTITY functions.

4

255

Strains # 3-input functions # 4-input functions

1 26 80

2 130 1804

3 88 13472

4 10 28904

5 − 17032

6 − 3704

7 − 512

8 − 26

Table 1: Proportion of Boolean functions implementable with a specific number of
strains for 3 and 4 inputs. This table was obtained by systematic generation of the biological
design of all 3 and 4-input Boolean functions using our python software.

5

256
Annex D. Supplementary Data: An automated design framework for

multicellular recombinase logic.

Annex E

Supplementary Data of

History-dependent programs: Cell

History Tracker

By interlacing target sites for different recombinases, recombination reactions can be made de-

pendent on one other. Using this concept, researchers started to implement genetic devices

tracking the order of occurrence of signals, as well as history-dependent gene expression pro-

grams. We found that a basic history-dependent motif could be repeatedly distributed into

different cells to straightforwardly implement all input event-order trackers using a multicellu-

lar consortia (Figure S1, Table S1). The state of the tracker could be addressed experimentally

via multiplexed next-generation sequencing.

258
Annex E. Supplementary Data of History-dependent programs: Cell History

Tracker

In
t
1

In
t
2

Input BInput A

Cell 1

In
t
1

In
t
2

Input CInput B

Cell 2

In
t
1

In
t
2

Input CInput A

Cell 3

A

In
t
1

Input A Input C

In
t
3

Input D
In
t
4

In
t
2

Input B

Cell 1 Cell 2 Cell 3

B

Order between A and B

Presence of A

Order between B and C

Presence of B

Order between A and C

Presence of C

Order between A and C

Presence of C

Order between B and D

Presence of B

Order between A and D

Presence of D

Order between B and C

Presence of C

Order between A and B

Presence of B

Order between C and D

Presence of D

Integrases Integrases Integrases

Figure E.1: Examples of designs for 3- and 4-input event-order trackers using mul-

ticellular consortia. A - 3-input event-order tracker design. The design is based on the

repetition of a DNA tracker module composed of two interlaced pairs of integrase sites that

allow the determination of the order of occurrence of 2-inputs and the presence of one of them.

For 3-inputs, three DNA tracker modules are needed. To limit the number of integrases and

strains needed, the system is implemented in three cells with one tracker module and two inte-

grases per cell. The same two integrases can be used in all cells to reduce the number of different

integrases required. Consequently, control signals and integrases are connected differently. B

- 4-input event-order tracker design. For 4-inputs, six DNA tracker modules are needed. The

system is implemented in three cells with two tracker modules and four integrases per cell. The

same input-integrase connections are used in all cells.

259

Inputs # Cell types # Integrases per Cell type

1 1 1

2 2 2

3 3 2

4 3 4

5 5 4

6 5 6

7 7 6

8 7 8

9 9 8

10 9 10

Table E.1: Metrics from 1- to 10-input event-order trackers using a multicellular

consortia. This table lists the number of cells and integrases per cell needed for implementation

of event-order trackers with from 1 to 10 inputs.

Annex F

DNA sequences of parts, primers,

fragments.

F.1 DNA sequences of parts

262 Annex F. DNA sequences of parts, primers, fragments.

Integrase Site DNA sequence

Bxb1 attB TCGGCCGGCTTGTCGACGACGGCGGTCTCCGTCGTCAGGATCATC

CGGGC

Bxb1 attP TCGTGGTTTGTCTGGTCAACCACCGCGGTCTCAGTGGTGTACGGT

ACAAACCC

Bxb1 attL TCGGCCGGCTTGTCGACGACGGCGGTCTCAGTGGTGTACGGTACA

AACCC

Bxb1 attR TCGTGGTTTGTCTGGTCAACCACCGCGGTCTCCGTCGTCAGGATC

ATCCGGGC

Tp901 attB ATGCCAACACAATTAACATCTCAATCAAGGTAAATGCTTTTTGCT

TTTTTTGC

Tp901 attP GCGAGTTTTTATTTCGTTTATTTCAATTAAGGTAACTAAAAAACT

CCTTT

Tp901 attL ATGCCAACACAATTAACATCTCAATTAAGGTAACTAAAAAACTCC

TTT

Tp901 attR GCGAGTTTTTATTTCGTTTATTTCAATCAAGGTAAATGCTTTTTG

CTTTTTTTGC

Int5 attB gagcgccggatcagggagtggacggcctgggagcgctacacgctgtggctgcggtcggtgc

Int5 attP ccctaatacgcaagtcgataactctcctgggagcgttgacaacttgcgcaccctgatctg

Int5 attL gagcgccggatcagggagtggacggcctgggagcgttgacaacttgcgcaccctgatctg

Int5 attR ccctaatacgcaagtcgataactctcctgggagcgctacacgctgtggctgcggtcggtgc

Int7 attB agacgagaaacgttccgtccgtctgggtcagttgggcaaagttgatgaccgggtcgtccgtt

Int7 attP gtgttataaacctgtgtgagagttaagtttacatgcctaaccttaacttttacgcaggttcagct t

Int7 attL agacgagaaacgttccgtccgtctgggtcagttgcctaaccttaacttttacgcaggttcagct t

Int7 attR gtgttataaacctgtgtgagagttaagtttacatgggcaaagttgatgaccgggtcgtccgtt

Int3 attB gtttgtaaaggagactgataatggcatgtacaactatactcgtcggtaaaaaggcatcttat

Int3 attP atggataaaaaaatacagcgtttttcatgtacaactatactagttgtagtgcctaaataatgctt

Int4 attB ttccaaagagcgcccaacgcgacctgaaatttgaataagactgctgcttgtgtaaaggcgatgatt

Int4 attP caaaaattacaaagttttcaacccttgatttgaattagcggtcaaataatttgtaattcgttt

Table F.1: Integrase site sequences.

F.1. DNA sequences of parts 263

Integrase DNA sequence

Bxb1 gtgagagccctggtagtcatccgcctgtcccgcgtcaccgatgctacgacttcaccggagcgtcagctggagtcttgcca

gcagctctgcgcccagcgcggctgggacgtcgtcggggtagcggaggatctggacgtctccggggcggtcgatccgttc

gaccggaagcgcagaccgaacctggcccggtggcttgcgttcgaggagcaaccgtttgacgtgatcgtggcgtaccggg

tagatcggttgacccgatcgatccggcatcttcagcagctggtccactgggccgaggaccacaagaagctggtcgtctcc

gcgaccgaagcgcacttcgatacgacgacgccgtttgcggcggtcgtcatcgcgcttatgggaacggtggcgcagatgg

aattagaagcgatcaaagagcggaaccgttcggctgcgcatttcaatatccgcgccgggaaataccgagggtccctgcc

gccgtggggatacctgcctacgcgcgtggacggggagtggcgactggtgccggaccctgtgcagcgagagcgcatcctc

gaggtgtatcaccgcgtcgtcgacaaccacgagccgctgcatctggtggcccacgacctgaaccggcgtggtgtcctgtc

gccgaaggactacttcgcgcagctgcaaggccgcgagccgcagggccgggagtggtcggctaccgcgctgaagcgatc

gatgatctccgaggcgatgctcgggtacgcgactctgaacggtaagaccgtccgagacgacgacggagccccgctggtg

cgggctgagccgatcctgacccgtgagcagctggaggcgctgcgcgccgagctcgtgaagacctcccgggcgaagcccg

cggtgtctaccccgtcgctgctgctgcgggtgttgttctgcgcggtgtgcggggagcccgcgtacaagttcgccggggga

ggacgtaagcacccgcgctaccgctgccgctcgatggggttcccgaagcactgcgggaacggcacggtggcgatggccg

agtgggacgcgttctgcgaggagcaggtactggatctgctcggggacgcggagcgtctggagaaagtctgggtagcgg

gctcggactccgcggtcgaactcgcggaggtgaacgcggagctggtggacctgacgtcgctgatcggctccccggccta

ccgggcgggctctccgcagcgagaagcactggatgcccgtattgcggcgctggccgcgcggcaagaggagctggaggg

cctggaggctcgcccgtctggctgggagtggcgcgagaccgggcagcggttcggggactggtggcgggagcaggacac

cgcggcaaagaacacctggcttcggtcgatgaacgttcggctgacgttcgacgtccgcggcgggctgactcgcacgatc

gacttcggggatcttcaggagtacgagcagcatctcaggctcggcagcgtggtcgaacggctacacaccgggatgtcgt

aa

Tp901 atgactaagaaagtagcaatctatacacgagtatccactactaaccaagcagaggaaggcttctcaattgatgagcaaa

ttgaccgtttaacaaaatatgctgaagcaatggggtggcaagtatctgatacttatactgatgctggtttttcaggggcc

aaacttgaacgcccagcaatgcaaagattaatcaacgatatcgagaataaagcttttgatacagttcttgtatataagct

agaccgcctttcacgtagtgtaagagatactctttatcttgttaaggatgtgttcacaaaaaataaaatagactttatctc

gcttaatgaaagtattgatacttcttctgctatgggtagcttgtttctcactattctttctgcaattaatgagtttgaaaga

gagaatataaaagaacgcatgactatgggtaaactagggcgagcgaaatctggtaagtctatgatgtggactaagaca

gcttttgggtattaccacaacagaaagacaggtatattagaaattgttcctttacaagctacaatagttgaacaaatatt

cactgattatttatcaggaatatcacttacaaaattaagagataaactcaatgaatctggacacatcggtaaagatatac

cgtggtcttatcgtaccctaagacaaacacttgataatccagtttactgtggttatatcaaatttaaggacagcctatttg

aaggtatgcacaaaccaattatcccttatgagacttatttaaaagttcaaaaagagctagaagaaagacaacagcagac

ttatgaaagaaataacaaccctagacctttccaagctaaatatatgctgtcagggatggcaaggtgcggttactgtgga

gcacctttaaaaattgttcttggccacaaaagaaaagatggaagccgcactatgaaatatcactgtgcaaatagatttcc

tcgaaaaacaaaaggaattacagtatataatgacaataaaaagtgtgattcaggaacttatgatttaagtaatttagaa

aatactgttattgacaacctgattggatttcaagaaaataatgactccttattgaaaattatcaatggcaacaaccaacc

tattcttgatacttcgtcatttaaaaagcaaatttcacagatcgataaaaaaatacaaaagaactctgatttgtacctaa

atgattttatcactatggatgagttgaaagatcgtactgattcccttcaggctgagaaaaagctgcttaaagctaagatt

agcgaaaataaatttaatgactctactgatgtttttgagttagttaaaactcagttgggctcaattccgattaatgaacta

tcatatgataataaaaagaaaatcgtcaacaaccttgtatcaaaggttgatgttactgctgataatgtagatatcatattt

aaattccaactcgctaccggttaa

Table F.2: Integrase site sequences.

264 Annex F. DNA sequences of parts, primers, fragments.

Integrase DNA sequence

Int5 atgcctggtatgaccaccgaaaccggtccggatcctgcaggtctgattgacctgttttgtcgtaaaagcaaagcagttaa

aagccgtgcaaatggtgcaggtcagcgtcgtaaacaagaaattagcattgcagcacaagaaaccctgggtcgtaaagt

tgcagcactgctgggtatgcaggttcgtcatgtttggaaagaagttggtagcgcaagccgttttcgtaaaggtaaagcac

gtgatgatcagagcaaagcactgaaagccctggaaagcggtgaagttggtgcactgtggtgttatcgtctggatcgttg

ggatcgtggtggtgccggtgcaattctgaaaattatcgaaccggaagatggtatgcctcgtcgtctgctgtttggttggg

atgaagataccggtcgtccggttctggatagcaccaataaacgtgatcgcggtgaactgattcgtcgtgcagaagaagc

acgcgaagaagcagaaaaactgagcgaacgtgttcgtgataccaaagcacatcagcgtgaaaatggtgaatgggttaa

tgcccgtgcaccgtatggtctgcgtgttgttctggttaccgttagtgatgaagagggtgatgaatatgatgaacgtaaac

tggcagcagatgatgaagatgcgggtggtcctgatggtctgaccaaagcagaagcagcccgtctggtttttaccctgccg

gttaccgatcgtctgagctatgcaggcaccgcacatgcaatgaatacccgtgaaattccgagcccgaccggtggtccgtg

gattgcagttaccgtgcgtgatatgattcagaatccggcatatgcgggttggcagaccacaggtcgtcaggatggtaaa

cagcgtcgtctgaccttttataacggtgaaggtaaacgtgttagcgttatgcatggtcctccgctggtgaccgatgaaga

acaagaagccgcaaaagcagccgttaaaggtgaagatggtgttggtgttccgctggatggtagcgatcatgatacccgt

cgcaaacatctgctgagcggtcgtatgcgttgtccgggttgtggtggtagctgtagctatagcggtaatggttatcgttgt

tggcgtagcagtgtgaaaggtggttgtccggcaccgacctatgttgcacgtaaaagcgttgaagaatatgttgcatttcg

ttgggcagcaaaattagcagcaagcgaaccggatgatccgtttgttattgcagttgcagatcgctgggcagcactgaccc

atccgcaggcaagcgaagatgaaaagtatgcaaaagccgcagttcgtgaagccgaaaaaaatctgggtcgcctgctgc

gtgatcgtcagaatggtgtttatgatggtccggcagaacagttttttgcccctgcatatcaagaagcactgagcaccctg

caggcagccaaagatgcagttagcgaaagcagcgcaagcgcagcagttgatgttagctggattgttgatagcagcgatt

atgaagaactgtggctgcgtgcaaccccgaccatgcgtaatgcaattattgatacctgcatcgatgaaatttgggttgca

aaaggccagcgtggtcgtccgtttgatggtgatgaacgcgttaaaatcaaatgggcagcccgtacctaa

Int7 atgaaagtggccatttatgttcgtgttagcaccgatgaacaggccaaagaaggttttagcattccggcacagcgtgaac

gtctgcgtgcattttgtgcaagccagggttgggaaattgtgcaagaatatattgaagaaggttggagcgcaaaagatct

ggatcgtccgcagatgcagcgtctgctgaaagatatcaaaaaaggcaacattgatattgtgctggtgtatcgtctggatc

gcctgacccgtagcgttctggatctgtatctgctgctgcagacctttgaaaaatacaatgtggcatttcgtagcgccaccg

aagtttatgataccagcaccgcaatgggtcgtctgtttattaccctggttgcagcactggcacagtgggaacgtgaaaat

ctggcagaacgtgttaaatttggtatcgagcagatgatcgatgaaggtaaaaaaccgggtggtcatagcccgtatggtt

acaaatttgataaagacttcaattgcaccattattgaggaagaagcagacgttgttcgtatgatctatcgcatgtattgtg

atggttatggctatcgtagcattgcagatcgtctgaatgaactgatggttaaaccgcgtattgccaaagaatggaatcat

aatagcgtgcgtgatatcctgaccaacgatatctatattggcacctatcgttggggtgataaagttgttccgaataatcat

ccgcctattattagcgaaaccctgttcaaaaaagcccagaaagaaaaagaaaaacgtggcgttgatcgtaaacgcgttg

gtaaatttctgtttaccggtctgctgcagtgtggtaattgtggtggccataaaatgcagggccattttgataaacgtgagc

agaaaacctattaccgttgtaccaaatgtcaccgcattaccaacgaaaaaaacattctggaaccgctgctggatgaaatt

cagctgctgattaccagcaaagaatactttatgagcaaattcagcgaccgctatgatcagcaagaggttgttgatgttag

cgcactgacaaaagaactggaaaaaatcaaacgccagaaagagaaatggtacgatctgtatatggatgatcgtaaccc

gattccgaaagaagaactgtttgccaaaattaacgaactgaacaaaaaagaagaagaaatctatagcaagctgagcga

agtggaagaagataaagaaccggttgaagagaaatataaccgcctgagcaaaatgatcgattttaaacagcagtttga

gcaggccaacgactttaccaaaaaagagctgctgttcagcatcttcgaaaagattgtgatttatcgcgagaaaggcaag

ctgaaaaaaatcaccctggattacaccctgaaataa

Table F.2: Integrase site sequences.

F.1. DNA sequences of parts 265

Integrase DNA sequence

Int3 atgcgtaaagtggcaatttatagccgtgtgagcaccattaatcaggcagaagaaggttatagcattcagggtcagattg

aagcactgaccaaatattgtgaagccatggaatggaagatctataagaactatagtgatgccggttttagcggtggtaa

actggaacgtccggcaattaccgaactgattgaagatggcaaaaacaacaaattcgataccatcctggtgtataaactg

gatcgcctgagccgtaatgttaaagataccctgtatctggtgaaagatgtttttaccgccaacaacattcattttgtgagc

ctgaaagaaaacatcgataccagcagcgcaatgggtaacctgtttctgacactgctgagcgcaattgcagaatttgaac

gtgagcagattaaagaacgtatgcagtttggtgttatgaaccgtgcaaaaagcggtaaaaccaccgcatggaaaaccc

ctccgtatggttatcgttataacaaagatgaaaaaaccctgagcgtgaatgaactggaagcagcaaatgttcgtcagat

gtttgatatgattattagcggctgtagcatcatgagcattaccaattatgcacgcgataactttgttggtaatacctggac

ccatgtgaaagtgaaacgtattctggaaaacgaaacctataaaggcctggtgaaatatcgtgaacagacctttagtggt

gatcatcaggcaattattgacgaaaagacctacaacaaagcacagattgcactggcacatcgtaccgataccaaaacca

atacccgtccgtttcagggcaaatatatgctgagccatattgccaaatgtggttattgtggtgcaccgctgaaagtttgta

ccggtcgtgccaaaaatgatggcacccgtcgtcagacctatgtttgtgtgaataaaaccgaaagcctggcacgtcgtag

cgtgaataattacaacaatcagaaaatctgcaacaccggtcgctatgagaaaaaacacatcgagaaatatgtgattgat

gtgctgtacaaactgcagcacgataaagagtacctgaaaaaaatcaaaaaagatgataacattattgatattactccgc

tgaaaaaagaaattgaaatcattgataaaaagattaatcgcctgaatgatctgtatattaacgacctgatcgatctgccg

aaactgaaaaaggatatcgaagaactgaaccacctgaaagatgactacaacaaggccatcaaactgaactatctggac

aaaaaaaacgaagatagcctgggtatgctgatggataatctggatattcgtaaaagcagctatgatgtgcagagccgta

ttgtgaaacagctgattgatcgtgttgaagtgaccatggataatattgatatcatttttaagttctaa

Int4 atgattaccacccgtaaagtggcaatttatgtgcgtgttagcaccaccaatcaggcagaagaaggttatagcattcagg

gtcagattgatagcctgatcaaatattgtgaagcaatgggctggatcatctatgaagaatataccgatgcaggttttagc

ggtggtaaaattgatcgtccggcaatgagcaaactgattaccgatgccaaacataaacgctttgataccatcctggtgta

taaactggatcgtctgagccgtagcgttcgtgataccctgtatctggttaaagatgtgttcaaccagaacaacatccattt

tgttagcctgcaagaaaacattgataccagcagcgcaatgggtaacctgtttctgacactgctgagcgcaattgcagaat

ttgaacgtgagcagattaccgaacgtatgaccatgggcaaaattggtcgtgcaaaaagcggtaaaaccatggcatgga

cctataccccgtttggttatgattacaacaaagaaaaaggcgaactgattctggacccggcaaaagcaccgattgtgaa

aatgatctataccgattatctgaaaggcatgagcatccagaaaatcgtggataaactgaataaaatggattataatggc

aaagattgcacctggtttccgcatggtgttaaacatctgctggataatccggtgtattatggtatgacccgctataacaat

aaactgtttccgggtaatcatcagccgatcattaccaaagaactgttcgataaaacccagcgtgaacgtcagcgtcgtcg

tctgggtattgaagaaaatcattatacgattccgtttcaggccaaatacatgctgagcaaatttctgcgttgtcgtcagtg

tggtagccgtatgggtctggaactgggtcgtccgcgtaaaaaagaaggtaaacgtagcaaaaaatactattgcctgaat

agccgtccgaaacgtaccgcaagctgtgatacaccgctgtatgatgcagaaaccctggaagattatgtgctgcatgaaa

ttgccaaaatccagaaagatccgagcattgcaagtcgccagaaacatattgaagatcacgagctgaaatacaaacgcg

aacgtattgaagccaacatcaataaaaccgttaatcagctgtccaagctgaataatctgtatctgaatgatctgattacg

ctggaagatctgaaaacccagaccaataccctgattgcaaaaaaacgcctgctggaaaatgaactggataaaacctgtg

ataacgatgatgagctggatcgccaagaaaccattgcagactttctggcactgccggatgtttggaccatggattatgaa

ggtcagaaatatgcagttgaactgctggttcagcgtgttaaagttgatcgcgataacatcgatatccactggacctttta

a

Table F.2: Integrase site sequences.

266 Annex F. DNA sequences of parts, primers, fragments.

Reporter DNA sequence

BFP ATGAGCGAGCTGATTAAGGAGAACATGCACATGAAGCTGTACATGGAGG

GCACCGTGGACAACCATCACTTCAAGTGCACATCCGAGGGCGAAGGCAA

GCCCTACGAGGGCACCCAGACCATGAGAATCAAGGTGGTCGAGGGCGGC

CCTCTCCCCTTCGCCTTCGACATCCTGGCTACTAGCTTCCTCTACGGCAG

CAAGACCTTCATCAACCACACCCAGGGCATCCCCGACTTCTTCAAGCAGT

CCTTCCCTGAGGGCTTCACATGGGAGAGAGTCACCACATACGAAGACGG

GGGCGTGCTGACCGCTACCCAGGACACCAGCCTCCAGGACGGCTGCCTC

ATCTACAACGTCAAGATCAGAGGGGTGAACTTCACATCCAACGGCCCTG

TGATGCAGAAGAAAACACTCGGCTGGGAGGCCTTCACCGAGACGCTGTA

CCCCGCTGACGGCGGCCTGGAAGGCAGAAACGACATGGCCCTGAAGCTC

GTGGGCGGGAGCCATCTGATCGCAAACATCAAGACCACATATAGATCCA

AGAAACCCGCTAAGAACCTCAAGATGCCTGGCGTCTACTATGTGGACTA

CAGACTGGAAAGAATCAAGGAGGCCAACAACGAGACCTACGTCGAGCAG

CACGAGGTGGCAGTGGCCAGATACTGCGACCTCCCTAGCAAACTGGGGC

ACTAA

mKate ATGTCAGAATTAATTAAAGAAAATATGCACATGAAATTATATATGGAAG

GTACTGTCAACAATCATCATTTCAAATGCACATCCGAAGGTGAAGGTAA

ACCATATGAAGGCACACAAACAATGCGCATCAAAGCAGTTGAAGGTGGA

CCCCTGCCCTTTGCGTTTGACATTCTCGCAACGAGCTTTATGTACGGGT

CTAAAACTTTTATCAATCACACCCAAGGCATTCCTGACTTTTTTAAACAG

TCCTTTCCTGAAGGCTTTACCTGGGAACGTGTAACAACTTATGAAGATG

GCGGTGTACTTACAGCAACTCAAGATACGAGTTTACAAGATGGCTGTCT

GATTTACAATGTTAAAATCCGTGGCGTAAATTTCCCGAGTAACGGACCC

GTAATGCAAAAAAAAACTCTTGGTTGGGAAGCATCAACAGAAACCTTAT

ATCCTGCGGACGGTGGCTTAGAAGGACGCGCAGACATGGCACTGAAATT

AGTTGGAGGCGGTCATTTAATCTGCAACCTGAAAACAACCTATCGTTCC

AAAAAACCCGCTAAAAACCTTAAAATGCCTGGAGTATACTATGTTGATC

GTCGCTTAGAACGTATTAAAGAAGCTGATAAAGAAACCTACGTTGAACA

ACATGAAGTAGCCGTAGCCCGTTATTGTGACCTTCCGTCGAAATTAGGA

CATCGTTGATAA

sfGFPregistry atgcgtaaaggcgaagagctgttcactggtgtcgtccctattctggtggaactggatggtgatgtcaacggtcataagtt

ttccgtgcgtggcgagggtgaaggtgacgcaactaatggtaaactgacgctgaagttcatctgtactactggtaaactgc

cggtaccttggccgactctggtaacgacgctgacttatggtgttcagtgctttgctcgttatccggaccatatgaagcagc

atgacttcttcaagtccgccatgccggaaggctatgtgcaggaacgcacgatttcctttaaggatgacggcacgtacaaa

acgcgtgcggaagtgaaatttgaaggcgataccctggtaaaccgcattgagctgaaaggcattgactttaaagaagacg

gcaatatcctgggccataagctggaatacaattttaacagccacaatgtttacatcaccgccgataaacaaaaaaatgg

cattaaagcgaattttaaaattcgccacaacgtggaggatggcagcgtgcagctggctgatcactaccagcaaaacact

ccaatcggtgatggtcctgttctgctgccagacaatcactatctgagcacgcaaagcgttctgtctaaagatccgaacga

gaaacgcgatcatatggttctgctggagttcgtaaccgcagcgggcatcacgcatggtatggatgaactgtacaaatga

taa

Table F.3: Reporter sequences.

F.1. DNA sequences of parts 267

Short name Original name DNA sequence

T1 ECK120033737 ggaaacacagAAAAAAGCCCGCACCTGACAGTGCGGGC

TTTTTTTTTcgaccaaagg

T2 ECK120029600 TTCAGCCAAAAAACTTAAGACCGCCGGTCTTGTCC

ACTACCTTGCAGTAATGCGGTGGACAGGATCGGC

GGTTTTCTTTTCTCTTCTCAA

T3 L3S2P21 CTCGGTACCAAATTCCAGAAAAGAGGCCTCCCGA

AAGGGGGGCCTTTTTTCGTTTTGGTCC

T4 L3S3P21 CCAATTATTGAAGGCCTCCCTAACGGGGGGCCTT

TTTTTGTTTCTGGTCTCCC

T5 B0015 ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatc

tgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtggg

cctttctgcgtttata

T6 J61048 ccggcttatcggtcagtttcacctgatttacgtaaaaacccgcttcggcgggttttt

gcttttggaggggcagaaagatgaatgactgtccacgacgctatacccaaaagaa

a

T7 ECK120015170 ACAATTTTCGAAAAAACCCGCTTCGGCGGGTTTTT

TTATAGCTAAAA

T8 ECK120010855 GTAACAACGGAAACCGGCCATTGCGCCGGTTTTT

TTTGGCCT

T9 L3S2P11 CTCGGTACCAAATTCCAGAAAAGAGACGCTTTCG

AGCGTCTTTTTTCGTTTTGGTCC

T10 L3S3P22 CCAATTATTGAAGGCCGCTAACGCGGCCTTTTTTT

GTTTCTGGTCTCCC

L3S1P13 gacgaacaataaggcctccctaacggggggccttttttattgataacaaaa

Table F.5: List of terminator.

Name DNA sequence

P7 AAAAAATTTATTTGCTTTCGCATCTTTTTGTACCTATAATGTGTGGA

P6 TTGACAATTAATCATCCGGCTCGTAATGTTTGTGGA

P5 ttgacaattaatcatccggctcgtaatttatgtgga

P2 aaaaagagtattgacttcgcatctttttgtacctataatgtgtgga

J23100 ttgacggctagctcagtcctaggtacagtgctagc

ProC cacagctaacaccacgtcgtccctatctgctgccctaggtctatgagtggttgctggataactttacgggcatgcataaggctcg

tatgatatattcagggagaccacaacggtttccctctacaaataattttgtttaacttt

Table F.6: List of promoters.

268 Annex F. DNA sequences of parts, primers, fragments.

Name DNA sequence

B0034 aaagaggagaaa

B0032 tcacacaggaaag

RBS-INT5 cagaggaaggaggctcg

RBS-INT7 agtaatttcaacaaaataactaggattcga

BCD2 GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCAATTTTCGTACT

GAAACATCTTAATCATGCTAAGGAGGTTTTCTA

Table F.7: List of RBSs.

Name DNA sequence

RiboJ AGCTGTCACCGGATGTGCTTTCCGGTCTGATGAGTCCGTGAGGACGAAACAG

CCTCTACAAATAATTTTGTTTAA

BydvJ AGGGTGTCTCAAGGTGCGTACCTTGACTGATGAGTCCGAAAGGACGAAACAC

CCCTCTACAAATAATTTTGTTTAA

ElvJ AGCCCCATAGGGTGGTGTGTACCACCCCTGATGAGTCCAAAAGGACGAAATG

GGGCCTCTACAAATAATTTTGTTTAA

AraJ AGTGGTCGTGATCTGAAACTCGATCACCTGATGAGCTCAAGGCAGAGCGAAA

CCACCTCTACAAATAATTTTGTTTAA

Table F.8: List of ribozymes.

F.1. DNA sequences of parts 269

Name DNA sequence

sp20-1 TAGTTGCGTCTCAGGGACCC

sp20-2 TAAGTGGCAATCCCGCCTGA

sp20-3 AAACCCGTCGCAGTATCCCT

sp20-4 ACTCAGGTCTGCCGTAAGGG

sp20-5 TGGAGGGCGAGGTTCCTTAC

sp20-6 AACCAGTGCTCTCGGTAGGG

sp20-7 CTCTGGCAGCCTGGTAGGTT

sp20-8 ATTGGGCTACAGTGTCCGCT

sp20-9 GAAGGACGGTGCGTTGTTCA

sp20-10 TTCCGTGTGCCAGAAAGTGC

sp20-11 AACAGTTCGTTGACCCGACG

sp20-12 AGATTGGTCCGAAGCAGGCT

sp20-13 AGGGATTTCGCCGTGACTCT

sp20-14 GAGTCTGACGAACGAGTGCG

sp20-15 AGACGGTCCCGCACCTTATT

sp20-16 CTTTCCGAGTGGAGGAGCCT

sp20-17 ATACGGACCCTCGTTGGCTT

sp20-18 AAGATTGAGCGTCCCGAGGT

sp20-19 CTGGGCAGAGCAGTTACCCT

Table F.9: List of 20bp spacers.

270 Annex F. DNA sequences of parts, primers, fragments.

Name DNA sequence

Spacer0 CTCGGATACCCTTACTCTGTTGAAAACGAATAGATAGGTT

Spacer1 TGCTCGTAGTTTACCACGGATACAGACAGTGATAATCTTA

Spacer2 AGATTACTACTGATAACCACTGTTGATTGGGATACCCGTA

Spacer3 AAGGAACGGTTATTTCTGCGTAGATCTATCTTACACAGCA

Spacer4 AGGCAACTGAAACGATTCGGATCCTGTATTACTATTCTTA

Spacer5 ACTTTATCTGAGAATAGTCAATCTTCGGAAATCCCAGGTG

Spacer5′ TAAAAGTCTCGTAAAGCGTTCTATCAATAACCCGTTGGTG

Spacer6 CCGTCTCAGAATCGGCCGTGAACAATAAAATAGTTTCGGT

Spacer7 TAATAAAAGGTCCCGTCTGAACTTACTGTGAATTCGACTA

Spacer8 GAATAATAGGAAGTTCGCCTGATTGTAAACACTCTCGTCT

Spacer9 CTGCTTTCCTTCTGATTGAGACGAGTAAAACACTGAATAG

Spacer10 TTGTAGCACTGTAAGATTTATCCACGAAGGTCAGCAACTT

Spacer11 AAAGTGCGGGTATTACAGTCTTATTTATCAGAACACCTGC

Spacer12 AAGGAACGGTTATTTCTGCGTAGACTTATCTTACACAGCA

Spacer13 AGGCAACTGAAACGATTCGGACGCTGTATTACTATTCTTA

Spacer14 TTTACCCGAATCTATTGAAACAGAGACGGAGTCGCTTTTA

Spacer15 CCGTCTCAGAATCTCGTGTGAACAATAAAATAGTTTCGGT

Spacer16 TAATAAAAGGTCCCGTCTGAACTTACTGTGATTGCGACTA

Spacer17 TGAAATACGAATCCGTTGAGTTCCCAGTGAAGTAATCTCT

Spacer18 GATACTGTTACTTACCGATTATTGTGAAGAACCAGACCGT

Spacer19 TCACTTTTATCGGTTTCCAGAACAGGTAAGAGCCAATAGT

Spacer20 CAGAAAGGTATTGTTTACAGGTGCGACGACTTCAACTATT

Spacer21 TTGTTGTAGCACACTCGGCGAAAATCTGAATAGTAACTTC

Spacer22 ATAAAGTTGTGCCGTATCCAGCGGTTACCAATAATAGTCT

Spacer23 TAGTAAAGTTCCAATAAGACTCCAGGTATCTGTCCGTGTA

Spacer24 ATTGAACCTCTACTACGAGTGAGTTGAGATTACAGCCTTA

Spacer25 CTTACGCTATTATTGAAGCCAGTCTGTTACCGAAGTGAAA

Spacer26 AACGATTACGGATTGCTCTACTGTGACTGAAGTTTACAAC

Spacer27 TGAGGCACAGAGATTTACTTTATTCACGACTTCAGATACG

Spacer28 AATACGGTCTACTACAGAAGGGTGGTTTATCTTACTCAAC

Spacer29 AGATTTCCCTCGTCACGCAGTAAGTATTTATCGTAGAAGA

Spacer30 GTTTCAACCAGAGGGATTACAACTCGTTTTACTCCGAATA

Spacer31 GCTTATTTCGTATTACAACGGTAGAATCAACTTCCAGAGG

Spacer32 TGAAAGGAATCTGGTCTTACTGTCTGAGTCACAATACGAT

Spacer33 GCGGTTCCTATCGTATTCGTCAGTTATCACAGAAGTAAAA

SpacerN ATTATTGACCACTTCCGAGTAGAATCGTGCTTCAGTAAGA

Table F.10: List of 40bp spacers.

F.2. Primers 271

F.2 Primers

Number DNA sequence

38 TAAGAATAGTAATACAGGATCCGAATCGTTTC

71 cgttttcaacagagtaagggtatccgag

72 attattgaccacttccgagtagaatcgtg

109 gattaactaataaggaggacaaacatgtc

224 atgtcagaactaatcaaagagaatatgcac

862 AACCTATCTATTCGTTTTCAACAGAGTAAGGGTATCCGAGtagcaatcaactcactggctc

863 attattgaccacttccgagtagaatcgtgcttcagtaagagtcactaagggttagttagttagattagc

870 caggtgtagtacctatcttggttg

871 GTTAACATCACCATCCAATTCAACC

1112 ggacgggagcaagacgtttc

1153 acggtctggttcttcacaataatcggtaagtaacagtatccagaaatcatccttagcgaaagctaag

1287 gatgtgcatttgaaatgatgattgttg

1288 ccagttccaccagaataggg

1289 atgcgtaaaggcgaagag

1290 gtcagaattaattaaagaaaatatgcacatg

1318 TTGACAATTAATCATCCGGCTCG

1319 TCCACAAACATTACGAGCCG

1322 ccagttccaccagaataggg

1323 gtaaaggcgaagagctgttcac

1324 ggctcgtaatttatgtggaaaagaggagaaatactaggTGAGAGCCCTGGTAGTCATCCG

1325 cggtgacgcgggacaggcggatgactaccagggctctcacctagtatttctcctcttttccacataaattac

1326 gcagcgtggtcgaacggctacacaccgggatgtcgtaaATaaagttgtgccgtatccagc

1327 gactattattggtaaccgctggatacggcacaactttatTTAcgacatcccggtgtgtag

1328 gtacctataatgtgtggatcacacaggaaagtactagATGactaagaaagtagcaatctatacac

Table F.11: List of Primers.

272 Annex F. DNA sequences of parts, primers, fragments.

Number DNA sequence

1329 ggatactcgtgtatagattgctactttcttagtcatCTagtactttcctgtgtgatccac

1330 gtagatatcatatttaaattccaactcgctaccggttaaATtgaacctctactacgagtgagttg

1331 taaggctgtaatctcaactcactcgtagtagaggttcaatttaACcggtagcgagttggaatttaaatatg

1332 ctcagtcctaggtacagtgctagccagaggaaggaggctcgATgcctggtatgaccaccg

1333 cctgcaggatccggaccggtttcggtggtcataccaggcatCGagcctccttcctctgg

1334 tgaacgcgttaaaatcaaatgggcagcccgtacctaaAACgattacggattgctctactg

1335 gttgtaaacttcagtcacagtagagcaatccgtaatcgttTTAggtacgggctgccca

1336 taactttagtaatttcaacaaaataactaggattcgaATGaaagtggccatttatgttcg

1337 gttcatcggtgctaacacgaacataaatggccactttcatTCgaatcctagttattttgttgaaattac

1338 ctgaaaaaaatcaccctggattacaccctgaaaTAAaatacggtctactacagaagggtg

1339 gagtaagataaaccacccttctgtagtagaccgtattTTAtttcagggtgtaatccaggg

1366 TAATAAAAGGTCCCGTCTGAACTTAC

1829 ggaaggtactgtcaacaatcatc

1832 cactccagccagctttcc

sp18F gatactgttacttaccgattattgtg

sp18R acggtctggttcttcacaataatc

sp19F tcacttttatcggtttccagaacagg

sp19R actattggctcttacctgttctggaaacc

sp23F tagtaaagttccaataagactccagg

SP23R tacacggacagatacctggag

sp25F CTTACGCTATTATTGAAGCCAGTC

sp25R TTTCACTTCGGTAACAGACTGG

sp27F TGAGGCACAGAGATTTACTTTATTC

sp27R cgtatctgaagtcgtgaataaagtaaatc

Table F.11: List of Primers.

F.3. DNA sequences of fragments 273

F.3 DNA sequences of fragments

Name DNA sequence

CM-N GGTCAATCTGCCGCAATCCAGTCTGTATACCCTTACTCTGTTGAAAACGAAT

AGATAGGTTGCTAGCGGATCCAGCTGTCACCGGATGTGCTTTCCGGTCTGAT

GAGTCCGTGAGGACGAAACAGCCTCTACAAATAATTTTGTTTAAGGGCCCAA

GTTCACTTAAAAAGGAGATCAACAATGAAAGCAATTTTCGTACTGAAACATC

TTAATCATGCTAAGGAGGTTTTCTAatgtcaaaaggagaagaactttttacaggtgtagtacctatctt

ggttgaattggatggtgatgttaacggtcacaaattttctgtaTACACTGGTTATCTCGGCACAGACGG

CM-P GGTCAATCTGCCGCAATCCAGTCTGTATACCCTTACTCTGTTGAAAACGAAT

AGATAGGTTGCTAGCAAAAAATTTATTTGCTTTCGCATCTTTTTGTACCTAT

AATGTGTGGAGGATCCAGCTGTCACCGGATGTGCTTTCCGGTCTGATGAGTC

CGTGAGGACGAAACAGCCTCTACAAATAATTTTGTTTAAGGGCCCAAGTTCA

CTTAAAAAGGAGATCAACAATGAAAGCAATTTTCGTACTGAAACATCTTAAT

CATGCTAAGGAGGTTTTCTAatgtcaaaaggagaagaactttttacaggtgtagtacctatcttggttgaat

tggatggtgatgttaacggtcacaaattttctgtaTACACTGGTTATCTCGGCACAGACGG

L3S3P00 actttatctgagaatagtcaatcttcggaaatcccaggtggcatgctaaaagtctcgtaaagcgttctatcaataacccgttgg

tgCCAATTATTGAAGGGGAGCGGGAAACCGCTCCCCTTTTTTTGTTTCTGGTC

TCCCccgtctcagaatcggccgtgaacaataaaatagtttcggtattattgaccacttccgagtagaatcgtgcttcagtaa

ga

SGb48 gtttgtgtcccttcataaggcttcccctcaccctcgcttgtacatttgaaatgatgattgtttaccgttccttccatgtacagcttc

atgtgcatattctctttgattagttctgacattctaaaatcctccttaagagcTGATCAgagcgccggatcagggagtgga

cggcctgggagcgttgacaacttgcgcaccctgatctgCGTGCGTCAATTTTGTCAAAATAATTTTA

TTGACAACGTCTTATTAACGTTGATATAATTTAAATTTTATTTGACAAAAAT

GGGCTCGTGTTGTACAATAAATGTCTCTAGTGgcaccgaccgcagccacagcgtgtagcgctcc

caggagagttatcgacttgcgtattaggggctagcgattaactaataaggaggacaaacatgtcaaaaggagaagaacttttt

acaggtgtagtacctatcttggttg

SGb49 attgtttaccgttccttccatgtacagcttcatgtgcatattctctttgattagttctgacattctaaaatcctccttaagagcTG

ATCAagacgagaaacgttccgtccgtctgggtcagttgcctaaccttaacttttacgcaggttcagcttCGTGCGTC

AATTTTGTCAAAATAATTTTATTGACAACGTCTTATTAACGTTGATATAATT

TAAATTTTATTTGACAAAAATGGGCTCGTGTTGTACAATAAATGTCTCTAGT

Gaacggacgacccggtcatcaactttgcccatgtaaacttaactctcacacaggtttataacacgctagcgattaactaataag

gaggacaaacatgtcaaaaggagaagaactttttacaggtgtagtacctatcttggttg

Table F.12: List of fragments.

274 Annex F. DNA sequences of parts, primers, fragments.

Name DNA sequence

SGb68 gatactgttacttaccgattattgtgaagaaccagaccgtttgttgtagcacactcggcgaaaatctgaatagtaacttcttgac

aattaatcatccggctcgtaatttatgtggaaaagaggagaaatactagataaagttgtgccgtatccagcggttaccaataat

agtctccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc

tactagagtcacactggctcaccttcgggtgggcctttctgcgtttatatagtaaagttccaataagactccaggtatctgtccgt

gtaaaaaagagtattgacttcgcatctttttgtacctataatgtgtggatcacacaggaaagtactagattgaacctctactacg

agtgagttgagattacagccttactcggtaccaaattccagaaaagagacgctttcgagcgtcttttttcgttttggtcccttacg

ctattattgaagccagtctgttaccgaagtgaaattgacggctagctcagtcctaggtacagtgctagccagaggaaggaggct

cgaacgattacggattgctctactgtgactgaagtttacaacccaattattgaaggccgctaacgcggcctttttttgtttctggt

ctccctgaggcacagagatttactttattcacgacttcagatacgcacagctaacaccacgtcgtccctatctgctgccctaggtc

tatgagtggttgctggataactttacgggcatgcataaggctcgtatgatatattcagggagaccacaacggtttccctctacaa

ataattttgtttaactttagtaatttcaacaaaataactaggattcgaaatacggtctactacagaagggtggtttatcttactca

acgacgaacaataaggcctccctaacggggggccttttttattgataacaaaaagatttccctcgtcacgcagtaagtatttatc

gtagaagatcacttttatcggtttccagaacaggtaagagccaatagt

SGb98 aggcaactgaaacgattcggatcctgtattactattcttatcacactggctcaccttcgggtgggcctttctgcgtttatatacta

gagagagaatataaaaagccagattattaatccggcttttttattatttactttatctgagaatagtcaatcttcggaaatccca

ggtggcgagtttttatttcgtttatttcaattaaggtaactaaaaaactcctttactcaggtctgccgtaaggggggtttgtaccg

tacaccactgagaccgcggtggttgaccagacaaaccacgaattattgaccacttccgagtagaatcgtgcttcagtaaga

SGb99 ctcggatacccttactctgttgaaaacgaatagataggtttcggccggcttgtcgacgacggcggtctccgtcgtcaggatcatc

cgggcttgacaattaatcatccggctcgtaatgtttgtggaatgccaacacaattaacatctcaatcaaggtaaatgctttttgc

tttttttgcaggcaactgaaacgattcggatcctgtattactattcttatcacactggctcaccttcgggtgggcctttctgcgttt

atatactagagagagaatataaaaagccagattattaatccggcttttttattatttactttatctgagaatagtcaatcttcgga

aatcccaggtgttatcaacgatgtcctaatttcgacggaaggtcacaataacgggctacggctacttcatgttgttcaacgtagg

tttctttatcagcttctttaatacgttctaagcgacgatcaacatagtatactccaggcattttaaggtttttagcgggttttttgg

aacgataggttgttttcaggttgcagattaaatgaccgcctccaactaatttcagtgccatgtctgcgcgtccttctaagccaccg

tccgcaggatataaggtttctgttgatgcttcccaaccaagagtttttttttgcattacgggtccgttactcgggaaatttacgcc

acggattttaacattgtaaatcagacagccatcttgtaaactcgtatcttgagttgctgtaagtacaccgccatcttcataagttg

ttacacgttcccaggtaaagccttcaggaaaggactgtttaaaaaagtcaggaatgccttgggtgtgattgataaaagttttag

acccgtacataaagctcgttgcgagaatgtcaaacgcaaagggcaggggtccaccttcaactgctttgatgcgcattgtttgtgt

gccttcatatggtttaccttcaccttcggatgtgcatttgaaatgatgattgttgacagtaccttccatatataatttcatgtgcat

attttctttaattaattctgacatctagtatttctcctctttttaaacaaaattatttgtagaggtggtttcgctctgccttgagctc

atcaggtgatcgagtttcagatcacgaccacttcgtggtttgtctggtcaaccaccgcggtctcagtggtgtacggtacaaaccc

actcaggtctgccgtaagggaaaggagttttttagttaccttaattgaaataaacgaaataaaaactcgcattattgaccacttc

cgagtagaatcgtgcttcagtaaga

Table F.12: List of fragments.

F.3. DNA sequences of fragments 275

Name DNA sequence

SGb103 gacatcaccatccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatttctcctcttttt

aaacaaaattatttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccctatgccaacaca

attaacatctcaatcaaggtaaatgctttttgctttttttgcgggagaccagaaacaaaaaaaggccccccgttagggaggcctt

caataattggtttcttttgggtatagcgtcgtggacagtcattcatctttctgcccctccaaaagcaaaaacccgccgaagcggg

tttttacgtaaatcaggtgaaactgaccgataagccgggagcgccggatcagggagtggacggcctgggagcgctacacgctg

tggctgcggtcggtgctagttgcgtctcagggacccgcccggatgatcctgacgacggagaccgcggtggttgaccagacaaa

ccacgaattattgaccacttccgagtagaatcgtgcttcagtaaga

SGb104 tagtcgaattcacagtaagttcagacgggaccttttattagggagaccagaaacaaaaaaaggccccccgttagggaggcctt

caataattggtttcttttgggtatagcgtcgtggacagtcattcatctttctgcccctccaaaagcaaaaacccgccgaagcggg

tttttacgtaaatcaggtgaaactgaccgataagccggaccgaaactattttattgttcacggccgattctgagacgggagcgc

cggatcagggagtggacggcctgggagcgctacacgctgtggctgcggtcggtgctagttgcgtctcagggacccgcccggat

gatcctgacgacggagaccgccgtcgtcgacaagccggccgatccacaaacattacgagccggatgattaattgtcaa

SGb105 tagtcgaattcacagtaagttcagacgggaccttttattagggagaccagaaacaaaaaaaggccccccgttagggaggcctt

caataattggtttcttttgggtatagcgtcgtggacagtcattcatctttctgcccctccaaaagcaaaaacccgccgaagcggg

tttttacgtaaatcaggtgaaactgaccgataagccggaccgaaactattttattgttcacggccgattctgagacgggagcgc

cggatcagggagtggacggcctgggagcgctacacgctgtggctgcggtcggtgctagttgcgtctcagggacccgcccggat

gatcctgacgacggagaccgcggtggttgaccagacaaaccacgaattattgaccacttccgagtagaatcgtgcttcagtaag

a

SGb102 gacatcaccatccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatttctcctcttttt

aaacaaaattatttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccctatgccaacaca

attaacatctcaatcaaggtaaatgctttttgctttttttgcgggagaccagaaacaaaaaaaggccccccgttagggaggcctt

caataattggtttcttttgggtatagcgtcgtggacagtcattcatctttctgcccctccaaaagcaaaaacccgccgaagcggg

tttttacgtaaatcaggtgaaactgaccgataagccgggagcgccggatcagggagtggacggcctgggagcgctacacgctg

tggctgcggtcggtgctagttgcgtctcagggacccgcccggatgatcctgacgacggagaccgccgtcgtcgacaagccggcc

gatccacaaacattacgagccggatgattaattgtcaa

SGb110 ccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatttctcctctttttaaacaaaatta

tttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccctatgccaacacaattaacatctc

aatcaaggtaaatgctttttgctttttttgcgggagaccagaaacaaaaaaaggccccccgttagggaggccttcaataattgg

tttcttttgggtatagcgtcgtggacagtcattcatctttctgcccctccaaaagcaaaaacccgccgaagcgggtttttacgtaa

atcaggtgaaactgaccgataagccgggagcgccggatcagggagtggacggcctgggagcgttgacaacttgcgcaccctg

atctgttgacaattaatcatccggctcgtaatgtttgtgga

Table F.12: List of fragments.

276 Annex F. DNA sequences of parts, primers, fragments.

Name DNA sequence

SGb111 ccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatttctcctctttttaaacaaaatta

tttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccctatgccaacacaattaacatctc

aatcaaggtaaatgctttttgctttttttgcgggagaccagaaacaaaaaaaggccccccgttagggaggccttcaataattgg

tttcttttgggtatagcgtcgtggacagtcattcatctttctgcccctccaaaagcaaaaacccgccgaagcgggtttttacgtaa

atcaggtgaaactgaccgataagccgggagcgccggatcagggagtggacggcctgggagcgttgacaacttgcgcaccctg

atctgttgacaattaatcatccggctcgtaatgtttgtggatcggccggcttgtcgacgacggcggtctcagtggtgtacggtac

aaaccccccttacggcagacctgagtaaaggagttttttagttaccttaattgaaataaacgaaataaaaactcgcagtggtcg

tgatctgaaactcgatcacctgatgagctcaaggcagagcgaaaccacctctacaaataattttgtttaaaaagaggagaaat

actagatgtcagaattaattaaagaaaatatgcacatgaaattatatatggaaggtactgtcaacaatcatcatttcaaatgca

catccgaaggtgaagg

SGb112 ccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatttctcctctttttaaacaaaatta

tttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccctatgccaacacaattaacatctc

aattaaggtaactaaaaaactcctttactcaggtctgccgtaaggggggtttgtaccgtacaccactgagaccgccgtcgtcga

caagccggccgatccacaaacattacgagccggatgattaattgtcaacagatcagggtgcgcaagttgtcaacgctcccagg

ccgtccactccctgatccggcgctcccggcttatcggtcagtttcacctgatttacgtaaaaacccgcttcggcgggtttttgcttt

tggaggggcagaaagatgaatgactgtccacgacgctatacccaaaagaaaccaattattgaaggcctccctaacggggggcc

tttttttgtttctggtctcccgcaaaaaaagcaaaaagcatttaccttgattgaaataaacgaaataaaaactcgcagtggtcgt

gatctgaaactcgatcacctgatgagctcaaggcagagcgaaaccacctctacaaataattttgtttaaaaagaggagaaata

ctagatgtcagaattaattaaagaaaatatgcacatgaaattatatatggaaggtactgtcaacaatcatcatttcaaatgcac

atccgaaggtgaagg

SGb113 ccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatttctcctctttttaaacaaaatta

tttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccctatgccaacacaattaacatctc

aatcaaggtaaatgctttttgctttttttgcgggagaccagaaacaaaaaaaggccccccgttagggaggccttcaataattgg

tttcttttgggtatagcgtcgtggacagtcattcatctttctgcccctccaaaagcaaaaacccgccgaagcgggtttttacgtaa

atcaggtgaaactgaccgataagccggtcactccagccagctttccggcaccgcttctggtgccggaaaccaggcaaagcgcc

SGb73 ttgacaattaatcatccggctcgtaatgtttgtggatcggccggcttgtcgacgacggcggtctcagtggtgtacggtacaaacc

ccccttacggcagacctgagtaaaggagttttttagttaccttaattgaaataaacgaaataaaaactcgcagtggtcgtgatct

gaaactcgatcacctgatgagctcaaggcagagcgaaaccacctctacaaataattttgtttaaaaagaggagaaatactaga

tgtcagaattaattaaagaaaatatgcacatgaaattatatatggaaggtactgtcaacaatcatcatttcaaatgcacatccg

aaggtgaaggtaaaccatatgaaggcacacaaacaatgcgcatcaaagcagttgaaggtggacccctgccctttgcgtttgac

attctcgcaacgagctttatgtacgggtctaaaacttttatcaatcacacccaaggcattcctgacttttttaaacagtcctttcct

gaaggctttacctgggaacgtgtaacaacttatgaagatggcggtgtacttacagcaactcaagatacgagtttacaagatggc

tgtctgatttacaatgttaaaatccgtggcgtaaatttcccgagtaacggacccgtaatgcaaaaaaaaactcttggttgggaa

gcatcaacagaaaccttatatcctgcggacggtggcttagaaggacgcgcagacatggcactgaaattagttggaggcggtca

tttaatctgcaacctgaaaacaacctatcgttccaaaaaacccgctaaaaaccttaaaatgcctggagtatactatgttgatcgt

cgcttagaacgtattaaagaagctgataaagaaacctacgttgaacaacatgaagtagccgtagcccgttattgtgaccttccg

tcgaaattaggacatcgttgataacacctgggatttccgaagattgactattctcagataaagtaaataataaaaaagccggat

taataatctggctttttatattctctctctagtatataaacgcagaaaggcccacccgaaggtgagccagtgtgataagaatagt

aatacaggatccgaatcgtttcagttgcct

Table F.12: List of fragments.

F.3. DNA sequences of fragments 277

Name DNA sequence

SGb74 taagaatagtaatacaggatccgaatcgtttcagttgcctttagtgccccagtttgctagggaggtcgcagtatctggccactgc

cacctcgtgctgctcgacgtaggtctcgttgttggcctccttgattctttccagtctgtagtccacatagtagacgccaggcatctt

gaggttcttagcgggtttcttggatctatatgtggtcttgatgtttgcgatcagatggctcccgcccacgagcttcagggccatgt

cgtttctgccttccaggccgccgtcagcggggtacagcgtctcggtgaaggcctcccagccgagtgttttcttctgcatcacagg

gccgttggatgtgaagttcacccctctgatcttgacgttgtagatgaggcagccgtcctggaggctggtgtcctgggtagcggtc

agcacgcccccgtcttcgtatgtggtgactctctcccatgtgaagccctcagggaaggactgcttgaagaagtcggggatgccc

tgggtgtggttgatgaaggtcttgctgccgtagaggaagctagtagccaggatgtcgaaggcgaaggggagagggccgccctc

gaccaccttgattctcatggtctgggtgccctcgtagggcttgccttcgccctcggatgtgcacttgaagtgatggttgtccacgg

tgccctccatgtacagcttcatgtgcatgttctccttaatcagctcgctcatctagtatttctcctctttttaaacaaaattatttgt

agaggctgtttcgtcctcacggactcatcagaccggaaagcacatccggtgacagctgcccggatgatcctgacgacggagac

cgcggtggttgaccagacaaaccacgaattattgaccacttccgagtagaatcgtgcttcagtaaga

SGb75 ctcggatacccttactctgttgaaaacgaatagataggttttatcatttgtacagttcatccataccatgcgtgatgcccgctgcg

gttacgaactccagcagaaccatatgatcgcgtttctcgttcggatctttagacagaacgctttgcgtgctcagatagtgattgt

ctggcagcagaacaggaccatcaccgattggagtgttttgctggtagtgatcagccagctgcacgctgccatcctccacgttgtg

gcgaattttaaaattcgctttaatgccatttttttgtttatcggcggtgatgtaaacattgtggctgttaaaattgtattccagctt

atggcccaggatattgccgtcttctttaaagtcaatgcctttcagctcaatgcggtttaccagggtatcgccttcaaatttcactt

ccgcacgcgttttgtacgtgccgtcatccttaaaggaaatcgtgcgttcctgcacatagccttccggcatggcggacttgaagaa

gtcatgctgcttcatatggtccggataacgagcaaagcactgaacaccataagtcagcgtcgttaccagagtcggccaaggtac

cggcagtttaccagtagtacagatgaacttcagcgtcagtttaccattagttgcgtcaccttcaccctcgccacgcacggaaaac

ttatgaccgttgacatcaccatccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatt

tctcctctttttaaacaaaattatttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccct

atgccaacacaattaacatctcaattaaggtaactaaaaaactcctttactcaggtctgccgtaaggggggtttgtaccgtacac

cactgagaccgccgtcgtcgacaagccggccgatccacaaacattacgagccggatgattaattgtcaa

SGb76 tccacaaacattacgagccggatgattaattgtcaagcaaaaaaagcaaaaagcatttaccttgattgaaataaacgaaataa

aaactcgcagtggtcgtgatctgaaactcgatcacctgatgagctcaaggcagagcgaaaccacctctacaaataattttgttt

aaaaagaggagaaatactagatgtcagaattaattaaagaaaatatgcacatgaaattatatatggaaggtactgtcaacaat

catcatttcaaatgcacatccgaaggtgaaggtaaaccatatgaaggcacacaaacaatgcgcatcaaagcagttgaaggtgg

acccctgccctttgcgtttgacattctcgcaacgagctttatgtacgggtctaaaacttttatcaatcacacccaaggcattcctg

acttttttaaacagtcctttcctgaaggctttacctgggaacgtgtaacaacttatgaagatggcggtgtacttacagcaactca

agatacgagtttacaagatggctgtctgatttacaatgttaaaatccgtggcgtaaatttcccgagtaacggacccgtaatgca

aaaaaaaactcttggttgggaagcatcaacagaaaccttatatcctgcggacggtggcttagaaggacgcgcagacatggcac

tgaaattagttggaggcggtcatttaatctgcaacctgaaaacaacctatcgttccaaaaaacccgctaaaaaccttaaaatgc

ctggagtatactatgttgatcgtcgcttagaacgtattaaagaagctgataaagaaacctacgttgaacaacatgaagtagccg

tagcccgttattgtgaccttccgtcgaaattaggacatcgttgataacacctgggatttccgaagattgactattctcagataaa

gtaaataataaaaaagccggattaataatctggctttttatattctctctctagtatataaacgcagaaaggcccacccgaaggt

gagccagtgtgataagaatagtaatacaggatccgaatcgtttcagttgcct

Table F.12: List of fragments.

278 Annex F. DNA sequences of parts, primers, fragments.

Name DNA sequence

SGb77 ctcggatacccttactctgttgaaaacgaatagataggttttatcatttgtacagttcatccataccatgcgtgatgcccgctgcg

gttacgaactccagcagaaccatatgatcgcgtttctcgttcggatctttagacagaacgctttgcgtgctcagatagtgattgt

ctggcagcagaacaggaccatcaccgattggagtgttttgctggtagtgatcagccagctgcacgctgccatcctccacgttgtg

gcgaattttaaaattcgctttaatgccatttttttgtttatcggcggtgatgtaaacattgtggctgttaaaattgtattccagctt

atggcccaggatattgccgtcttctttaaagtcaatgcctttcagctcaatgcggtttaccagggtatcgccttcaaatttcactt

ccgcacgcgttttgtacgtgccgtcatccttaaaggaaatcgtgcgttcctgcacatagccttccggcatggcggacttgaagaa

gtcatgctgcttcatatggtccggataacgagcaaagcactgaacaccataagtcagcgtcgttaccagagtcggccaaggtac

cggcagtttaccagtagtacagatgaacttcagcgtcagtttaccattagttgcgtcaccttcaccctcgccacgcacggaaaac

ttatgaccgttgacatcaccatccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatt

tctcctctttttaaacaaaattatttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccct

atgccaacacaattaacatctcaattaaggtaactaaaaaactcctttactcaggtctgccgtaaggggggtttgtaccgtacac

cactgagaccgcggtggttgaccagacaaaccacgaattattgaccacttccgagtagaatcgtgcttcagtaaga

SGb78 ctcggatacccttactctgttgaaaacgaatagataggttttatcatttgtacagttcatccataccatgcgtgatgcccgctgcg

gttacgaactccagcagaaccatatgatcgcgtttctcgttcggatctttagacagaacgctttgcgtgctcagatagtgattgt

ctggcagcagaacaggaccatcaccgattggagtgttttgctggtagtgatcagccagctgcacgctgccatcctccacgttgtg

gcgaattttaaaattcgctttaatgccatttttttgtttatcggcggtgatgtaaacattgtggctgttaaaattgtattccagctt

atggcccaggatattgccgtcttctttaaagtcaatgcctttcagctcaatgcggtttaccagggtatcgccttcaaatttcactt

ccgcacgcgttttgtacgtgccgtcatccttaaaggaaatcgtgcgttcctgcacatagccttccggcatggcggacttgaagaa

gtcatgctgcttcatatggtccggataacgagcaaagcactgaacaccataagtcagcgtcgttaccagagtcggccaaggtac

cggcagtttaccagtagtacagatgaacttcagcgtcagtttaccattagttgcgtcaccttcaccctcgccacgcacggaaaac

ttatgaccgttgacatcaccatccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatt

tctcctctttttaaacaaaattatttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccct

atgccaacacaattaacatctcaatcaaggtaaatgctttttgctttttttgctagtcgaattcacagtaagttcagacgggacct

tttattaggaccaaaacgaaaaaaggcccccctttcgggaggcctcttttctggaatttggtaccgagaccgaaactattttatt

gttcacggccgattctgagacgg

SGb79 accgaaactattttattgttcacggccgattctgagacggtcactccagccagctttccggcaccgcttctggtgccggaaacca

ggcaaagcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggc

gaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtg

aatccgtaatcatggtcatctagtatttctcctctttttaaacaaaattatttgtagaggccccatttcgtccttttggactcatca

ggggtggtacacaccaccctatggggctgagcgccggatcagggagtggacggcctgggagcgctacacgctgtggctgcggt

cggtgctagttgcgtctcagggacccgcccggatgatcctgacgacggagaccgccgtcgtcgacaagccggccgatccacaa

acattacgagccggatgattaattgtcaa

Table F.12: List of fragments.

F.3. DNA sequences of fragments 279

Name DNA sequence

SGb80 tccacaaacattacgagccggatgattaattgtcaacagatcagggtgcgcaagttgtcaacgctcccaggagagttatcgact

tgcgtattagggagctgtcaccggatgtgctttccggtctgatgagtccgtgaggacgaaacagcctctacaaataattttgttt

aaaaagaggagaaatactagatgagcgagctgattaaggagaacatgcacatgaagctgtacatggagggcaccgtggaca

accatcacttcaagtgcacatccgagggcgaaggcaagccctacgagggcacccagaccatgagaatcaaggtggtcgaggg

cggccctctccccttcgccttcgacatcctggctactagcttcctctacggcagcaagaccttcatcaaccacacccagggcatcc

ccgacttcttcaagcagtccttccctgagggcttcacatgggagagagtcaccacatacgaagacgggggcgtgctgaccgcta

cccaggacaccagcctccaggacggctgcctcatctacaacgtcaagatcagaggggtgaacttcacatccaacggccctgtga

tgcagaagaaaacactcggctgggaggccttcaccgagacgctgtaccccgctgacggcggcctggaaggcagaaacgacat

ggccctgaagctcgtgggcgggagccatctgatcgcaaacatcaagaccacatatagatccaagaaacccgctaagaacctca

agatgcctggcgtctactatgtggactacagactggaaagaatcaaggaggccaacaacgagacctacgtcgagcagcacga

ggtggcagtggccagatactgcgacctccctagcaaactggggcactaaaggcaactgaaacgattcggatcctgtattactat

tctta

SGb81 accgaaactattttattgttcacggccgattctgagacggtcactccagccagctttccggcaccgcttctggtgccggaaacca

ggcaaagcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggc

gaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtg

aatccgtaatcatggtcatctagtatttctcctctttttaaacaaaattatttgtagaggccccatttcgtccttttggactcatca

ggggtggtacacaccaccctatggggctgagcgccggatcagggagtggacggcctgggagcgttgacaacttgcgcaccctg

atctgttgacaattaatcatccggctcgtaatgtttgtgga

SGb82 ttgacaattaatcatccggctcgtaatgtttgtggatcggccggcttgtcgacgacggcggtctccgtcgtcaggatcatccggg

cgggtccctgagacgcaactagcaccgaccgcagccacagcgtgtagcgctcccaggagagttatcgacttgcgtattaggga

gctgtcaccggatgtgctttccggtctgatgagtccgtgaggacgaaacagcctctacaaataattttgtttaaaaagaggaga

aatactagatgagcgagctgattaaggagaacatgcacatgaagctgtacatggagggcaccgtggacaaccatcacttcaag

tgcacatccgagggcgaaggcaagccctacgagggcacccagaccatgagaatcaaggtggtcgagggcggccctctcccctt

cgccttcgacatcctggctactagcttcctctacggcagcaagaccttcatcaaccacacccagggcatccccgacttcttcaag

cagtccttccctgagggcttcacatgggagagagtcaccacatacgaagacgggggcgtgctgaccgctacccaggacaccag

cctccaggacggctgcctcatctacaacgtcaagatcagaggggtgaacttcacatccaacggccctgtgatgcagaagaaaa

cactcggctgggaggccttcaccgagacgctgtaccccgctgacggcggcctggaaggcagaaacgacatggccctgaagctc

gtgggcgggagccatctgatcgcaaacatcaagaccacatatagatccaagaaacccgctaagaacctcaagatgcctggcgt

ctactatgtggactacagactggaaagaatcaaggaggccaacaacgagacctacgtcgagcagcacgaggtggcagtggcc

agatactgcgacctccctagcaaactggggcactaaaggcaactgaaacgattcggatcctgtattactattctta

Table F.12: List of fragments.

280 Annex F. DNA sequences of parts, primers, fragments.

Name DNA sequence

SGb83 taagaatagtaatacaggatccgaatcgtttcagttgcctttagtgccccagtttgctagggaggtcgcagtatctggccactgc

cacctcgtgctgctcgacgtaggtctcgttgttggcctccttgattctttccagtctgtagtccacatagtagacgccaggcatctt

gaggttcttagcgggtttcttggatctatatgtggtcttgatgtttgcgatcagatggctcccgcccacgagcttcagggccatgt

cgtttctgccttccaggccgccgtcagcggggtacagcgtctcggtgaaggcctcccagccgagtgttttcttctgcatcacagg

gccgttggatgtgaagttcacccctctgatcttgacgttgtagatgaggcagccgtcctggaggctggtgtcctgggtagcggtc

agcacgcccccgtcttcgtatgtggtgactctctcccatgtgaagccctcagggaaggactgcttgaagaagtcggggatgccc

tgggtgtggttgatgaaggtcttgctgccgtagaggaagctagtagccaggatgtcgaaggcgaaggggagagggccgccctc

gaccaccttgattctcatggtctgggtgccctcgtagggcttgccttcgccctcggatgtgcacttgaagtgatggttgtccacgg

tgccctccatgtacagcttcatgtgcatgttctccttaatcagctcgctcatctagtatttctcctctttttaaacaaaattatttgt

agaggctgtttcgtcctcacggactcatcagaccggaaagcacatccggtgacagctccctaatacgcaagtcgataactctcc

tgggagcgctacacgctgtggctgcggtcggtgctagttgcgtctcagggacccgcccggatgatcctgacgacggagaccgcg

gtggttgaccagacaaaccacgaattattgaccacttccgagtagaatcgtgcttcagtaaga

SGb84 ccgtctcagaatcggccgtgaacaataaaatagtttcggtctcggtaccaaattccagaaaagaggcctcccgaaaggggggc

cttttttcgttttggtcctaataaaaggtcccgtctgaacttactgtgaattcgactagcaaaaaaagcaaaaagcatttaccttg

attgaaataaacgaaataaaaactcgcagtggtcgtgatctgaaactcgatcacctgatgagctcaaggcagagcgaaaccac

ctctacaaataattttgtttaaaaagaggagaaatactagatgtcagaattaattaaagaaaatatgcacatgaaattatatat

ggaaggtactgtcaacaatcatcatttcaaatgcacatccgaaggtgaaggtaaaccatatgaaggcacacaaacaatgcgca

tcaaagcagttgaaggtggacccctgccctttgcgtttgacattctcgcaacgagctttatgtacgggtctaaaacttttatcaat

cacacccaaggcattcctgacttttttaaacagtcctttcctgaaggctttacctgggaacgtgtaacaacttatgaagatggcg

gtgtacttacagcaactcaagatacgagtttacaagatggctgtctgatttacaatgttaaaatccgtggcgtaaatttcccgag

taacggacccgtaatgcaaaaaaaaactcttggttgggaagcatcaacagaaaccttatatcctgcggacggtggcttagaag

gacgcgcagacatggcactgaaattagttggaggcggtcatttaatctgcaacctgaaaacaacctatcgttccaaaaaacccg

ctaaaaaccttaaaatgcctggagtatactatgttgatcgtcgcttagaacgtattaaagaagctgataaagaaacctacgttg

aacaacatgaagtagccgtagcccgttattgtgaccttccgtcgaaattaggacatcgttgataacacctgggatttccgaaga

ttgactattctcagataaagtaaataataaaaaagccggattaataatctggctttttatattctctctctagtatataaacgcag

aaaggcccacccgaaggtgagccagtgtgataagaatagtaatacaggatccgaatcgtttcagttgcct

SGb85 accgaaactattttattgttcacggccgattctgagacggtcactccagccagctttccggcaccgcttctggtgccggaaacca

ggcaaagcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggc

gaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtg

aatccgtaatcatggtcatctagtatttctcctctttttaaacaaaattatttgtagaggccccatttcgtccttttggactcatca

ggggtggtacacaccaccctatggggctgagcgccggatcagggagtggacggcctgggagcgctacacgctgtggctgcggt

cggtgctagttgcgtctcagggacccgcccggatgatcctgacgacggagaccgcggtggttgaccagacaaaccacgaatta

ttgaccacttccgagtagaatcgtgcttcagtaaga

Table F.12: List of fragments.

F.3. DNA sequences of fragments 281

Name DNA sequence

SGb52 ctcggatacccttactctgttgaaaacgaatagataggttttatcatttgtacagttcatccataccatgcgtgatgcccgctgcg

gttacgaactccagcagaaccatatgatcgcgtttctcgttcggatctttagacagaacgctttgcgtgctcagatagtgattgt

ctggcagcagaacaggaccatcaccgattggagtgttttgctggtagtgatcagccagctgcacgctgccatcctccacgttgtg

gcgaattttaaaattcgctttaatgccatttttttgtttatcggcggtgatgtaaacattgtggctgttaaaattgtattccagctt

atggcccaggatattgccgtcttctttaaagtcaatgcctttcagctcaatgcggtttaccagggtatcgccttcaaatttcactt

ccgcacgcgttttgtacgtgccgtcatccttaaaggaaatcgtgcgttcctgcacatagccttccggcatggcggacttgaagaa

gtcatgctgcttcatatggtccggataacgagcaaagcactgaacaccataagtcagcgtcgttaccagagtcggccaaggtac

cggcagtttaccagtagtacagatgaacttcagcgtcagtttaccattagttgcgtcaccttcaccctcgccacgcacggaaaac

ttatgaccgttgacatcaccatccagttccaccagaatagggacgacaccagtgaacagctcttcgcctttacgcatctagtatt

tctcctctttttaaacaaaattatttgtagaggggtgtttcgtcctttcggactcatcagtcaaggtacgcaccttgagacaccct

atgccaacacaattaacatctcaatcaaggtaaatgctttttgctttttttgcttgacaattaatcatccggctcgtaatgtttgtg

ga

SGb53 ttgacaattaatcatccggctcgtaatgtttgtggatcggccggcttgtcgacgacggcggtctccgtcgtcaggatcatccggg

cagctgtcaccggatgtgctttccggtctgatgagtccgtgaggacgaaacagcctctacaaataattttgtttaaaaagagga

gaaatactagatgagcgagctgattaaggagaacatgcacatgaagctgtacatggagggcaccgtggacaaccatcacttca

agtgcacatccgagggcgaaggcaagccctacgagggcacccagaccatgagaatcaaggtggtcgagggcggccctctccc

cttcgccttcgacatcctggctactagcttcctctacggcagcaagaccttcatcaaccacacccagggcatccccgacttcttca

agcagtccttccctgagggcttcacatgggagagagtcaccacatacgaagacgggggcgtgctgaccgctacccaggacacc

agcctccaggacggctgcctcatctacaacgtcaagatcagaggggtgaacttcacatccaacggccctgtgatgcagaagaa

aacactcggctgggaggccttcaccgagacgctgtaccccgctgacggcggcctggaaggcagaaacgacatggccctgaagc

tcgtgggcgggagccatctgatcgcaaacatcaagaccacatatagatccaagaaacccgctaagaacctcaagatgcctggc

gtctactatgtggactacagactggaaagaatcaaggaggccaacaacgagacctacgtcgagcagcacgaggtggcagtgg

ccagatactgcgacctccctagcaaactggggcactaaaggcaactgaaacgattcggatcctgtattactattctta

SGb54 aggcaactgaaacgattcggatcctgtattactattcttatcacactggctcaccttcgggtgggcctttctgcgtttatatacta

gagagagaatataaaaagccagattattaatccggcttttttattatttactttatctgagaatagtcaatcttcggaaatccca

ggtgttatcaacgatgtcctaatttcgacggaaggtcacaataacgggctacggctacttcatgttgttcaacgtaggtttcttta

tcagcttctttaatacgttctaagcgacgatcaacatagtatactccaggcattttaaggtttttagcgggttttttggaacgata

ggttgttttcaggttgcagattaaatgaccgcctccaactaatttcagtgccatgtctgcgcgtccttctaagccaccgtccgcag

gatataaggtttctgttgatgcttcccaaccaagagtttttttttgcattacgggtccgttactcgggaaatttacgccacggatt

ttaacattgtaaatcagacagccatcttgtaaactcgtatcttgagttgctgtaagtacaccgccatcttcataagttgttacacg

ttcccaggtaaagccttcaggaaaggactgtttaaaaaagtcaggaatgccttgggtgtgattgataaaagttttagacccgta

cataaagctcgttgcgagaatgtcaaacgcaaagggcaggggtccaccttcaactgctttgatgcgcattgtttgtgtgccttca

tatggtttaccttcaccttcggatgtgcatttgaaatgatgattgttgacagtaccttccatatataatttcatgtgcatattttctt

taattaattctgacatctagtatttctcctctttttaaacaaaattatttgtagaggtggtttcgctctgccttgagctcatcaggt

gatcgagtttcagatcacgaccactgcgagtttttatttcgtttatttcaattaaggtaactaaaaaactcctttactcaggtctg

ccgtaaggggggtttgtaccgtacaccactgagaccgcggtggttgaccagacaaaccacgaattattgaccacttccgagtag

aatcgtgcttcagtaaga

Table F.12: List of fragments.

Annex G

Protocols

!!!!!!!"#$%&'!(%%)*$+,!-#.!/0)/1012#&'! ! !!!314)!!!%50!!!

!

Name: Pauline Mayonove Team Synthetic Biology protocols
Date: 02/08/2017
Last validation/update: 26/06/2018 Sarah Guiziou

Materials
- 1,5mL Microtubes

- PCR tubes

To prepare the 5X Isothermal solution (ISO 5X):
- Tris-HCl pH 7.5 solution 1M (on bench)

- PEG-8000 (Common powders in the JB’s lab)

- MgCl2 solution 1M (on bench)
- DTT 1M (common -20°C in GA Mix preparation Box)

- dNTP Mix 10mM (common -20°C in GA Mix preparation Box)

- NAD 100mM (aliquots in common -20°C in GA Mix preparation Box or powder of B-Nicotinamide
adenine dinucleotide sodium sulfate with common powders in the JB’s lab)

- dd H2O

To prepare the Gibson Assembly Mix 2X solution:

- ISO 5x (common -20°C in GA Mix preparation Box)

- T5 exonucelase (10 U/µL) (common -20°C in GA Mix preparation Box)

- Taq DNA ligase (40 U/µL) (common -20°C in GA Mix preparation Box)

- Phusion DNA polymerase (2U/µL) (common -20°C in GA Mix preparation Box)

- dd H2O

Protocol
5X isothermal reaction buffer.

Preparation for 10mL final solution

 10mL final Final Conc

Tris-HCl pH 7.5 5mL 500mM

PEG-8000 2,5g 50%

Vortex

MgCl2 500µL 50mM

DTT 500µL 50mM

dNTP Mix 1mL 1mM

NAD 500µL 5mM

ddH2O Qsp 10mL

The 5X isothermal reaction buffer has to be aliquot in 1mL, in 1,5mL tubes.

2X Gibson Assembly mix.

 x2 x2

Final volume (µL) 1000 1500

ISO 5x (µL) 300.8 451.2

T5 exonucelase (10 U/µL) 0,6 0,9 Or do a dilution 1/10 of the
solution 10U/µL and add 9µL

for 1500µL final

 Taq DNA ligase (40 U/µL) 150,4 225,6

Phusion DNA polymerase (2U/µL) 18,8 28,2

dd H2O 529.4 794.1

The Gibson Assembly 2X mix has to be aliquot in 10µl in PCR tubes on a rack.

Put the rack at -20°C. When it’s freeze put all tubes in a “tips” box.

Gibson Assembly Mix preparation

!

284 Annex G. Protocols

!!!!!!!"#$%&%'!()!*&(+$%!,++-.(#)!! ! !!!/0'-!!!+12!"!

!

Name: Pauline Mayonove Team Synthetic Biology protocols
Date: 21/08/2017
Last validation/update: 26/06/2018 Sarah Guiziou

Steps

1. Design
2. PCR Q5
3. DpnI Digestion
4. PCR Clean up
5. Gibson Assembly
6. Transformation
7. Verifications
8. Storage

Principle

Gibson Assembly is allows for successful assembly of multiple DNA fragments, regardless of
fragment length or end compatibility. It is ease-of-use, flexible and suitable for large
DNA constructs.

Following the steps for cloning:
1 - Design

2 – PCR Q5 amplification with primers containing the restriction sites, Agar Gel verification

3 – DpnI Digestion of the PCR to digest the template PCR DNA, as DpnI digest
phosphorylated DNA.

4 – DNA used for Gibson Assembly has to be clean of enzymes and salts. Clean up PCR has
to be performed.

5 – Gibson Assembly efficiently joins multiple overlapping DNA fragments in a single-tube

isothermal reaction. The Gibson Assembly Master Mix includes three different enzymatic

activities that perform in a single buffer:

• The exonuclease creates single-stranded 3´ overhangs that facilitate the annealing of
fragments that share complementarity at one end (overlap region).

• The proprietary DNA polymerase fills in gaps within each annealed fragment.
• The DNA ligase seals nicks in the assembled DNA.

The end result is a double-stranded fully sealed DNA molecule.

6 – Bacterial transformation is perform to put the cloned DNA inside bacterial cells that will

amplify it. You can transform using Electro or chemical-competent cells depend on the number

of colonies required.

You should use chemical competent cells and if you don’t have a good efficiency, you can try

with electro-competent cells.

7 – Verifications by Colony PCR to find cells containing your cloned DNA and by plasmid

extraction, sequencing.

Cloning by Gibson Assembly

!

285

!!!!!!!"#$%&%'!()!*&(+$%!,++-.(#)!! ! !!!/0'-!#!+12!"!

!

Materials and Protocols
2 - PCR Q5

Materials

! Q5® Hot Start High-Fidelity DNA polymerase (NEB)
! Primers 20µM
! Template adjust to 1ng/µL
! Ultrapure Water
! PCR tubes
! PCR machine
! Agar gel material

Protocol

Depending on the final quantity of fragment needed and PCR yield, you can perform either a

PCR with 20µL, 40µL or several times 40µL.

Mix 8µL Water + 10µL Q5 + 1µL Template + 0.5µL each Primer.

STEP TEMP TIME

Initial Denaturation 98°C 30 seconds

30 Cycles

98°C 10 seconds

*50–72°C 20 seconds Temperature depend of primers

72°C 30 seconds/kb Time according to the fragment size

Final Extension 72°C 2 minutes

Hold 12°C

*Use of the NEB Tm Calculator is highly recommended.

. Prepare a 0.8% agars gel for sample larger than 1kb and 1.5% for sample smaller than 1kb.

. Load 2.5µL of the PCR reaction with 0.5µL of Loading dye in the gel and a 1kb ladder or

100bp ladder according to the size of your expected fragment.
. Image the gel.

3 - DpnI Digestion

Materials: DpnI (NEB)

Protocol

. Add 1µL DpnI in 17.5µL Tube from Q5.

. Mix well by pipetting up and down so that you solution is homogenous and glycerol is not in

the bottom of the tube.

. 1h at 37°C

. 10min at 80°C and Hold at 12°C

4 - PCR Clean-up

Materials

! Biosentec PCR Clean-up Kit

286 Annex G. Protocols

!!!!!!!"#$%&%'!()!*&(+$%!,++-.(#)!! ! !!!/0'-!$!+12!"!

!

Protocol

. Read the kit protocol (Keep resuspension buffer at 4°C, elute in 25µL EB at 37°C, place EB in

the center of column and wait 5min before elution).

. Measure the DNA concentration with Nanodrop.

5 – Gibson Assembly

Materials

! 2X Gibson Assembly Mix (see Gibson Assembly Mix protocol)

! Insert fragment(s) from PCR or ordered.

! Vector fragment (after PCR, DpnI and clean-up).

! Ultrapure water

! Thermo-cycler at 50°C

Protocol

. Calculate the volume of insert and vector to mix in the Gibson Assembly reaction. For 2

fragment assembly (one insert and one vector), the optimum is to mix 100ng of vector with 3

times more insert in mole, and for more than 2 fragment assembly, 100ng of vector with same

quantity of each insert in mole. The total volume of insert(s) and vector have to be 10µL or less,

if the calculated total volume is higher, the quantity of vector can be reduced up to 50ng and the

volume of insert calculated accordingly.

. Mix the vector and insert(s) fragments according to previously calculated proportions with 10µL

of the Gibson Assembly Mix and adjust the total volume of the reaction to 20µL with water. As

negative control of assembly, mix the vector alone in the same proportion than previously with

10µL of Gibson Assembly Mix and adjust the total volume of the reaction to 20µL with water.

. Place the reactions at 50°C during one hour.

6 – Transformation

Materials

! Chemical competent cells

! Water bath at 42°C

! Ice

! SOC

! Petri dish with LB agar medium and the appropriate antibiotic

! centrifuge

Protocol

1. Thaw gently competent cells on ice (aliquot of 100µL), one tube per Gibson assembly reaction

(do not forget negative controls).

2. Add 10µL of the Gibson Assembly reaction (keep cells on ice)

3. Incubate 30min on ice

4. Heat-shock cells at 42°C during 45s (in water bath)

5. Put back on ice after heat-shock (2 to 5min)

6. Add 900 µL pre-warmed SOC (37!)(rich medium)

7. Incubate cells at 37°C with agitation during at least 30min

8. Centrifuge cells at 4000rpm during 1min, remove 800µL of supernatant and plate the rest.
9. Incubate at 37°C overnight

Note

For multiple transformation (more than 10), competent cells aliquoted in PCR strip can be used.

A similar protocol is used. To adapt to large volumes, cells are incubated in SOC in 96 well

287

!!!!!!!"#$%&%'!()!*&(+$%!,++-.(#)!! ! !!!/0'-!%!+12!"!

!

plates and centrifugation is therefore performed in a centrifuge adapted for plates. Cells are

plated in 6 well plates filled with 3mL of LB agar supplemented with appropriate antibiotics.

WARMING:

After transformation, count the number of colonies for the negative control plate (negative

control of the Gibson assembly) and for the cloning. The ratio of the number of colonies for the

cloning over the negative control should be higher than 10.

! If no colonies are obtained for both, the transformation can be re-performed using

electro-competent cells, to increase the transformation efficiency.

! If the ratio between colonies in the negative control and for the cloning is lower than 5,

the protocol should be stop here and previous steps should be debug.

! If the ratio is between 5 and 10, more colonies should be picked for colony PCR.

7 – Colony PCR

Materials

! 2X One-taq quick load master mix (NEB)

! Primers at 20µM

! Colonies

! PCR tubes
! PCR machine
! Agar gel material

Protocol

. For each cloning, perform two colony PCR from two different colonies.
. For each colony PCR, pick one colony and re-suspend it in 10µL of sterile water (in PCR tube).

. Pre-mix the One-Taq master mix, primers and water for the corresponding number of reaction,
such as for one reaction: 5uL of master mix, 0.25µL of each primer, 3.5µL of water.

. Keep the colony re-suspended in water at 4°C, to use afterward to inoculate the culture for
plasmid extraction.
. Mix 9uL of the pre-mix with 1L of the re-suspended colony.
. Place the tube in the PCR machine with the following PCR cycle:

! 95°C 5min
! 95°C 20 sec
! Temperature dependent on primers – 30sec
! 68°C – 1min/kb
Cycle 30 Times the 3 last steps.
! 68°C 5min
! Hold at 12°C

. Prepare a 0.8% agars gel for sample larger than 1kb and 1.5% for sample smaller than 1kb.
. Load directly 5µL of the PCR reaction in the gel and a 1kb ladder or 100bp ladder according to

the size of your expected fragment.
. Image the gel.

8 – Plasmid extraction
Materials

! LB with appropriate antibiotic
! Falcon tubes
! Incubator
! Plasmid extraction kit from Qiagen

288 Annex G. Protocols

!!!!!!!"#$%&%'!()!*&(+$%!,++-.(#)!! ! !!!/0'-!"!+12!"!

!

Protocol
. For the colony PCR with the corresponding fragment size, mix 5µL of the re-suspended colony

in water in 5mL of LB for high copy plasmid or 10mL for low copy plasmid in a 50mL falcon.
. Place the culture at 37°C with agitation overnight.
. From the overnight culture, perform a strick of each culture in a petri dish with the appropriate
antibiotic for further glycerol stock (Plate at 37°C overnight, and stored at 4°C)
. Centrifuge the culture (5min at 5000rpm) and perform plasmid extraction according to protocol
from Qiagen kit.

Note
For low copy plasmid, double re-suspension, lysis and neutralization volume and elute in 30µL.

9 – Sequencing and glycerol stock
Materials

! GATC barcodes
! Tubes
! 50% glycerol

Protocol
. Send the extracted plasmid DNA to sequencing with the appropriate primers to verify the full
cloned sequence, follow GATC procedure.
. For correct sequence, inoculate 2mL of LB with appropriate antibiotic with a colony from the
corresponding strick.
. Place the culture at 37°C with agitation during 6 hours, until the culture is trouble.
. Mix 1.2mL of culture with 400µL of 50% glycerol (15% glycerol).

. Annotate the tube.

. Place the glycerol stock at -80°C, and register the corresponding information in the excel file of
the glycerol stock box.

289

!!!!!!!"#$%&'()!'*%+$,$-,!'$)).!+/$+(/(,&*-!(-0!,/(-.1*/%(,&*-!2&,#!&,!! !!!3(4$!!!.5/!"!

!

Name: Pauline Mayonove Team Synthetic Biology protocols
Date: 08/01/2018
Last validation/update: 23/05/2018 Sarah Guiziou

Materials
! LB medium

! TSS medium: To make 50 mL: 5g PEG 8000, 1.5 mL 1M MgCl2 (or 0.30g MgCl2*6H20), 2.5 mL

DMSO and LB to 50 mL. Filter sterilized (0.22 µm filter).

! LB plates

! 1.5mL tubes

! 50mL falcons

! Ice

! 500mL flask for culture

! Liquid nitrogen

Protocol
Day -1

! Steak an LB plate (with ATB if needed) with the E. coli strain

Day 0

! Inoculate 5mL of LB (with ATB if needed) with the strain from the fresh steak plate

! Incubated overnight at 37°C

Day 1

! Dilute the overnight culture into 50mL of LB without antibiotic at 1/500 (200µL in 100mL)

! Incubated at 37°C until OD650nm reach 0.2-0.3 (3-4h)

! Place 1.5mL tubes, racks, 10mL Pipettes at -20°C

! DO EVERYTHING ON ICE

! Incubate the culture on ice for 10min in 50mL falcon tubes

! Cold down the centrifuge to 4°C

! Centrifuge the culture at 3000rpm 4°C for 10min

! Remove the supernatant

! Resuspend cells in 10% volume of TSS buffer

! Aliquot cells in 100uL in 1.5mL tubes or in PCR tubes with multi-distribution pipette

! Freeze them with liquid nitrogen

! Store at -80°C

To test them: use pUC19 as positive control and do not forget negative control.

! Thaw gently 3 tubes of cells on ice

! Add 1µL PUC19 in 1 tube, add nothing in the others (negative control) (keep cells on ice)

! Incubate 30min on ice

! Heat-shock cells at 42°C during 45S (in water bath)

! Put back on ice after heat-shock

! Add 900 µL pre-warmed SOC (37!)(rich medium)

! Incubate cells at 37°C with agitation during at least 30min

! Centrifuge cells at 4000rpm during 2min, remove 800µL of supernatant

! Plate the rest from PUC 19 positive control on LB Carb plate

Chemical competent cells preparation and
Transformation with chemical competent cells E.coli

!

290 Annex G. Protocols

!!!!!!!"#$%&'()!'*%+$,$-,!'$)).!+/$+(/(,&*-!(-0!,/(-.1*/%(,&*-!2&,#!&,!! !!!3(4$!"!.5/!"!

!

! Plate 100µL from negative control respectively on LB Chloramphenicol, LB Kanamycin, LB
Carbenicillin and LB Spectinomycin plates

! Incubate at 37°C overnight

Efficiency should be around 107colonies/µg pUC19

!

!

!

Materials
! Chemical competent cells

! Ice

! Clean DNA to transform

! SOC

! Selective agar plates

Protocol
! Thaw gently cells on ice

! Add DNA (keep cells on ice)

! Incubate 30min on ice

! Heat-shock cells at 42°C during 45S (in water bath)

! Put back on ice after heat-shock

! Add 900 µL pre-warmed SOC (37!)(rich medium)

! Incubate cells at 37°C with agitation during at least 30min

! Plate 100 µL of transformation in selective agar plate or centrifuge cells at 4000rpm during 1min,
remove 800µL of supernatant and plate the rest.

! Incubate at 37°C overnight
!

6*,$!

For multiple transformation (more than 10), competent cells aliquoted in PCR strip can be used.

A similar protocol is used. To adapt to large volumes, cells are incubated in SOC in 96 well

plates and centrifugation is therefore performed in a centrifuge adapted for plates. Cells are

plated in 6 well plates filled with 3mL of LB agar supplemented with appropriate antibiotics.

!

Transformation with chemical competent cells E.coli

291

!!!!!!!"##!$%&&'(!)(')*(*+,-.!! ! !!!/*0'!!!1%(!!!

!

Name: Pauline Mayonove Team Synthetic Biology protocols
Date: 09/08/2017
Last validation/update: 09/08/2017 PV

Materials

- PEG 8000 (Common powders in the JB lab)
- MgCl2*6H20 (common CBS’s powders)
- DMSO (under chemical hood)
- LB medium
- Syringes
- 0.2µm filters
- 15mL sterile tube

Protocol

To make 250 mL TSS Buffer:

. Mix: 25g PEG 8000

 + 1.5g MgCl2*6H20

 in 12.5mL DMSO

. Add LB to 250 mL

. Filter sterilize (0.22 µm filter) under the hood PSM

. Aliquot in 15mL sterile tubes

TSS Buffer Preparation

!

292 Annex G. Protocols

!!!!!!!"#$!%&'()%!*+&*,+,-(./!! ! !!!0,1&!!!2)+!!!

!

Name: Pauline Mayonove Team Synthetic Biology protocols
Date: 09/08/2017
Last validation/update: 09/08/2017 PV

Materials

- SOB medium powder (with common powders in the JB’s lab)
- ddH2O
- 50mL graduated cylinder
- Ten 100mL glass bottles
- Glucose powder (with CBS common powders)
- Syringes
- 0.2µm filters
- 50mL sterile tube
- 5mL sterile pipettes
- 1.5mL sterile centrifuge tubes

Protocol

Prepare the SOB medium:
. Dissolve 14g SOB medium into 500mL (final volume) ddH2O (28g/L final concentration).
. Aliquot the solution with the graduated cylinder: 50mL in each 100mL glass bottle.
. Autoclave them the same day and cool down.

- If laundry room staff is unable to autoclave the same day, the small autoclave fits six
bottles at a time.

Prepare 2M glucose solution:
. Dissolve 18 g glucose into 50 ml (final volume) ddH2O and filter-sterilize into a sterile 50 mL

tube under the hood PSM.

. Aliquot 0.5mL per microcentrifuge tube under the hood PSM

. Store aliquots at -20°C

Prepare SOC medium:
. Add 0.5mL glucose solution into 50mL SOB medium before use.
. Divide into 10mL aliquots with SOC medium to avoid contamination.

SOC Medium Preparation

!

293

Annex H

BioArt

During my thesis, I implemented logic circuits in living organsisms, but I also used the biological

circuits that I engineered to make art. Among the constructs that I engineered for the B.

subtilis part toolbox, I engineered two cassettes expressing high quantities of GFP and mKate

fluorescent proteins. These constructs mediated a strong expression in B. subtilis but also in E.

coli, indeed, E. coli seems less stringent than B. subtilis for gene expression.

I used these two constructs to paint on Petri dishes. With the team, we also organized

workshop of bacteria painting with high school students.

The following are some of my bacterial painting creations.

296 Annex H. BioArt

Figure H.1: The CBS logo

297

Figure H.2: The logo of the synthetic biology team

298 Annex H. BioArt

Figure H.3: Dark Vador

299

Abstract:

A major goal of synthetic biology is to reprogram living organisms to solve pressing challenges in
manufacturing, environmental remediation, or healthcare. While many types of genetic logic gates have
been engineered, their scalability remains limited. Indeed, gate design remains largely a tedious process
and relies either on human intuition or on brute-force computational methods. Additionally, designed
circuits are usually large and therefore not straightforward to implement in living organisms.

Here, I aimed at increasing the computation power of integrase-based logic circuits while permitting
researchers to simply implement these circuits to a large range of organisms and of inputs.

First, I developed a scalable composition framework for the systematic design of multicellular systems
performing integrase-based Boolean and history-dependent logic and integrating an arbitrary number of
inputs. I designed multicell Boolean logic circuits in Escherichia coli to up to 4 inputs and History-
dependent circuits to 3 inputs. Due to its scalability and composability, this design framework permits
a simple and straightforward implementation of logic circuits in multicellular systems.

I also pushed forward the compaction of biological logic circuits. I generated a complete database
of single-cell integrase-based logic circuits to obtain all possible designs for the implementation of up to
4-input Boolean functions. Characterization of a reduced set of circuits will have to be performed to
prove the feasibility of the implementation of these circuits.

All these design strategies can be implemented via easily accessible web interfaces, and open col-
lections of biological components that are made available to the scientific community. These tools will
enable researchers and engineers to reprogram cellular behavior for various applications in a streamlined
manner.

Résumé :

L’un des objectifs principal de la biologie synthétique est de reprogrammer les organismes vivants
pour résoudre des challenges mondiaux actuelles dans le domaine industriel, environnemental et de la
santé. Tandis que de nombreux types de portes logiques génétiques ont été conçus, leur extensibilité reste
limitée. Effectivement, la conception de portes logiques reste en grande partie un processus fastidieux
et repose soit sur l’intuition humaine, soit sur des méthodes computationnelles de force brute. De plus,
les circuits conçus sont généralement de grande taille et ne sont donc pas faciles à implémenter dans les
organismes vivants.

Durant ma thèse, mon objectif a été d’augmenter la puissance de calcul des circuits logiques utilisant
des intégrases tout en permettant aux chercheurs d’implémenter simplement ces circuits à un large
éventail d’organismes et d’entrées.

Tout d’abord, j’ai développé un cadre extensible et composable pour le design systématique de
systèmes multicellulaires implémentant de la logique Booléenne et histoire dépendent. Ce design est
basé sur l’utilisation de sérine intégrases et peut intégrer un nombre arbitraire d’entrée. J’ai implémenté
dans Escherichia coli des circuits logiques Booléens multicellulaires jusqu’à quatre entrées et des circuits
histoire-dépendent jusqu′à 3 entrées. En raison de son extensibilité et de sa composabilité, ce design
permet une implémentation simple et directe de circuits logiques dans des systèmes multicellulaires.

J’ai également poussé le compactage des circuits logiques biologiques. Pour cela, j’ai généré une
base de données complète de tous les circuits logiques unicellulaires possibles pour l’implémentation de
fonctions booléennes à deux, trois et quatres entrées. La caractérisation d’un ensemble réduit des circuits
de cette base de données devra être effectuée pour prouver la faisabilité de leur implémentation.

Je pense que ces différentes stratégies de conception et les différents outils distribués (pièces bi-
ologiques et interface web) aideront les chercheurs et les ingénieurs à reprogrammer le comportement
cellulaire de manière simple pour diverses applications.

