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Introduction

More than two millennia since the conceptualization of atoms by ancient Greek philosophers, and about a
century since the discovery of the proton, one would think that mankind has already unraveled everything
there is to know about the particles that ordinary matter is made of: the electrons, protons and neutrons.
However, no statement has ever been further from the truth.

The electron is an elementary particle whose interactions are successfully described by Quantum
Electrodynamics (QED). On the other hand, the proton and the neutron, more generally called nucle-
ons and which are the building blocks of the atomic nuclei, are composite particles. The nucleons are
made of elementary particles called quarks and gluons whose interactions are described by Quantum
Chromodynamics (QCD).

The strong coupling constant that rules QCD has a value which depends on the energy scale of
the interaction. At high energy, which is equivalent to short interaction distances, the strong coupling
constant becomes very small, and the strength of the interactions binding gluons and quarks becomes
weak. This phenomenon is known as asymptotic freedom. In this case, a perturbative treatment of QCD,
similar to QED, becomes possible, and an accurate description of quarks and gluons interactions can be
computed. However, at low energy, corresponding to interaction distances of the order of the nucleon
size, the strong coupling constant becomes large and perturbative QCD can no longer be applied.

Quarks and gluons have never been observed free and are always bound within a hadron: this phe-
nomenon is called confinement. In the case where enough energy is brought to a system to isolate a single
quark or gluon, this energy is immediately converted into the creation of additional quarks and gluons
to keep the particles bound inside a hadron: this phenomenon is called hadronization. Quantitatively
understanding confinement and hadronization in QCD is one of the most prominent questions raised by
modern physics.

In order to understand how QCD works at energy and distance scales which cannot be approached
by a perturbative treatment, one has to turn towards experiments. By scrutinizing the internal structure
of the nucleon, one can find clues about how hadrons are formed from the most fundamental bricks of
matter: the quarks and gluons. Using electrons, whose interactions are well described by QED, in order
to probe the internal structure of nucleons has already allowed to gather a large quantity of information,
like nucleon Form Factors and Parton Distribution Functions. However, the pieces collected so far are
not enough to complete the full QCD puzzle.

In the mid-90s, new theoretical tools called Generalized Parton Distributions (GPDs) have been
developed. The GPDs are a generalization of the Form Factors and Parton Distribution Functions and
provide a large quantity of additional information that was not accessible before. A deeper understanding
of the nucleon structure can thus be reached from the experimental study of GPDs. For this reason, a
worldwide experimental program dedicated to the study of GPDs has started. These new distributions are
experimentally accessible through deeply exclusive electro-production processes, and one of the simplest
channels available is Deeply Virtual Compton Scattering (DVCS).

DVCS is a very challenging process to study because of its small cross section and the difficulty to
identify events of interest from the background. The first experiment dedicated specifically to DVCS took
place in 2004 in the Hall A of Jefferson Lab. In its direct continuation, a new DVCS experiment, which
is the subject of this document, took place between 2014 and 2016 in the same place. The manuscript is
organized as follow:

• chapter 1 will briefly present the theoretical framework of GPDs and how they can be accessed
through the DVCS process. Then, details will be provided about our experiment, its goals, and
how it fits within the global experimental landscape;

• chapter 2 will describe Jefferson Lab and the Hall A instrumentation. The detectors setup and the
data acquisition system specific to this DVCS experiment will also be presented;

8



• chapter 3 will focus on beam line components and detector calibrations. Emphasis will be put on
the spectrometer optics and the calorimeter gain whose calibration turned out to be particularly
challenging;

• chapter 4 will present in great detail the data analysis allowing to reconstruct, identify and select
DVCS events from the raw data. Particular attention will be paid to the ARS waveform analysis
algorithm which is a key component. The data quality analysis and various corrections to the
number of DVCS events will also be described in this chapter;

• chapter 5 will describe the Monte Carlo simulation based on the Geant4 toolkit which allows to
compute the experimental acceptance. Details about the event generator will be provided, and the
implementation of radiative corrections will be explained as well. Then, the second part of Chapter
5 will focus on the algorithm used to extract cross sections, and the evaluation of the systematic
uncertainties. Finally, the experiment preliminary results will be presented and discussed.
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Chapter 1

Accessing the nucleon structure
through DVCS

Quantum chromodynamics successfully describes at high energy the dynamics of quarks and gluons, the
particles which compose hadrons. However, QCD computations stop working at low energy and we
are unable to derive quantitative observables from this theory. Phenomena such as confinement and
hadronisation, and more generally the structure of hadrons, still escape our grasp. As a consequence,
experiments are needed to fill these gaps in our knowledge and reach a better understanding of QCD.

The measurement of nucleons Form Factors (FFs) through elastic scattering experiments was a huge
step towards this goal. Historically, the study of elastic scattering of electrons on proton and deuteron
targets performed in the 1950’s by Hofstadter and his team at Stanford University was one of the very
first hints of the existence of nucleon internal structure [1]. Form Factors are related to the spatial
distribution of charges in the nucleon: their Fourier transform yields information about the transverse
spatial distribution of partons, the constituents of the nucleon. Despite having been studied for over half
a century, Form Factors are still an extremely hot topic among the hadronic physics community as they
are central, for instance, to the currently unanswered proton radius puzzle [2].

The measurement of Parton Distribution Functions (PDFs) through Deep Inelastic Scattering (DIS)
was another huge step towards the understanding of the nucleon structure. DIS experiments proved
the existence of quarks, and PDFs yield information about the longitudinal momentum distribution of
partons inside nucleons.

Despite these tremendous achievements, a complete understanding of the nucleon internal structure
was still out of reach. For instance, FFs and PDFs yield no information about the correlations between
spatial and momentum distributions of partons. However, introduced in the mid-90s, Generalized Parton
Distributions will be able to fill many of these gaps. GPDs are a generalization of FFs and PDFs in that
they encapsulate both of them and provide information about the correlations between transverse spatial
distributions and longitudinal momentum distributions of partons inside the nucleon [3], thus allowing
one to perform a 3-dimensional tomography of it. GPDs also give access to the quark total orbital angular
momentum contribution to the nucleon spin through Ji’s sum rule [4].

GPDs are experimentally accessible through deeply exclusive electro-production processes, and one
of the cleanest channels is Deeply Virtual Compton Scattering [4, 5]. GPDs obey to a set of properties
and sum rules from which one can build models which can then be tested against experimental DVCS
cross sections.

This chapter will be divided into six parts. The first two parts will present a brief overview of
FFs and PDFs measurements through elastic and inelastic scattering. The third part will deal with
GPDs and their accessibility through the DVCS process. The fourth part will give an overview of the
current experimental landscape regarding DVCS and GPDs measurements. Finally, the last two parts
will present the experiment of interest of this thesis, which new information is expected from it, and what
measurements are planned for the future.

1.1 Elastic Scattering and Form Factors
The elastic scattering of an electron off a nucleon means that the particles present in the initial and final
states are identical. As all the particles in the final state are identified, this process is called exclusive.
Fig. 1.1 represents the elastic scattering of an electron off a proton ep→ e′p′ in the one-photon exchange

10
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approximation. Since this is an electromagnetic interaction governed by the fine structure constant
α = e2

4π ∼
1

137 , the one-photon approximation should be accurate at the 1% level. This approximation
will be kept in the whole of this document.

Figure 1.1: Elastic scattering diagram.

As described in Fig. 1.1, let p and p’ be the initial and final nucleon four-momenta, while k = (
−→
k ,E)

and k′ = (
−→
k′ , E′) are respectively the incident and scattered electron four-momenta. The nucleon is at

rest in the laboratory frame and has the mass M , while the electron mass is neglected. Let us call θ the
electron scattering angle in the laboratory frame, and q = k− k′ = p′ − p is the four momentum transfer
to the nucleon. One can then define the virtuality Q2 = −q2 > 0, which can be interpreted as the scale
with which the internal structure of the nucleon is probed: higher values of Q2 will allow to scrutinize
shorter distances and smaller structures.

Elastic scattering is a constrained system: conservation of energy and momentum implies that the
scattered electron energy E′ is related to its initial energy E and the scattering angle θ by the relation:

E′ = E

1 + 2E
M sin2 ( θ

2
) , (1.1)

and the virtuality Q2 is given by:

Q2 = 4EE′ sin2
(
θ

2

)
. (1.2)

In the laboratory frame, the scattering of a spin 1
2 , relativistic electron off a point like and spin-less

nucleon is described by the Mott cross section [6]:(
dσ

dΩ

)
Mott

= α2

4E2 sin4 ( θ
2
) E′
E

cos2
(
θ

2

)
. (1.3)

Then, if the nucleon has a spin 1
2 , with an anomalous magnetic moment and an extended structure,

the Mott cross section (Eq. (1.3)) becomes the Rosenbluth cross section [7]:

(
dσ

dΩ

)
Rosenbluth

=
(
dσ

dΩ

)
Mott

{
F 2

1 (Q2) + Q2

4M2

[
F 2

2 (Q2) + 2
(
F1(Q2) + F2(Q2)

)2 tan2
(
θ

2

)]}
, (1.4)

with F1(Q2) and F2(Q2) the Dirac and Pauli Form Factors, respectively. Additional information about
elastic cross sections can be found in appendix A.

It is sometimes more convenient to express F1(Q2) and F2(Q2) in terms of the Sachs electric and
magnetic Form Factors (GE(Q2) and GM (Q2) respectively):

GE(Q2) = F1(Q2)− τF2(Q2), (1.5)

GM (Q2) = F1(Q2) + F2(Q2), (1.6)
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where τ is defined as:

τ = Q2

4M2 , (1.7)

and the Rosenbluth cross section in Eq. (1.4) can be rewritten as:(
dσ

dΩ

)
Rosenbluth

=
(
dσ

dΩ

)
Mott

{
G2
E(Q2) + τG2

M (Q2)
1 + τ

+ 2τG2
M (Q2) tan2

(
θ

2

)}
. (1.8)

In the Breit frame, where the nucleon has the same energy before and after interaction, and in the case
of elastic scattering, where the incoming electron has the momentum

−→
k = +

−→q
2 and the initial nucleon

has the opposite momentum −→p = −
−→q
2 , the Sachs Form Factors can be interpreted as Fourier transforms

of the transverse electric charge ρ(−→r ) and magnetic current distributions, as shown in Eq. (1.9):

ρ(−→r ) =
∫
GE(−→q 2)M

E
e−i
−→q .−→r d

3−→q
(2π)3 . (1.9)

From the Sachs Form Factors, one can also define the nucleon charge and magnetic radii (Eq. (1.10)
and Eq. (1.11) respectively):

〈r2
E〉 = −6dGE(Q2)

dQ2

∣∣∣∣
Q2=0

, (1.10)

〈r2
M 〉 = −6

GM (0)
dGM (Q2)
dQ2

∣∣∣∣
Q2=0

. (1.11)

Eq. (1.10) and the proton charge radius puzzle is one of the reasons why elastic scattering and Form
Factors measurements are still a subject of extremely high interest nowadays despite having been studied
for over half a century and being well known [8].

Indeed, the proton charge radius puzzle arises from a 7σ discrepancy between the radius measured
by elastic scattering experiments (0.879 ± 0.008 fm) [9] and from the Lamb shift of muonic hydrogen
(0.84184±0.00067 fm) [10]. Several hypothesis have been made to explain this discrepancy, ranging from
issues with the extrapolation of GE(Q2) at Q2 = 0 to potential physics beyond the Standard Model. As
a consequence, the high precision measurement of elastic Form Factors at extremely low Q2 is of great
interest to answer these questions [2].

1.2 Deep Inelastic Scattering and Parton Distribution Func-
tions

The inelastic scattering of an electron off a nucleon means that the particles present in the final state are
not identical to the ones in the initial state. When the particles in the final state are not all identified,
this process is called inclusive. Fig. 1.2 (left) represents the deep inelastic scattering of an electron of a
proton ep → e′X in the one-photon exchange approximation, with X symbolizing the various particles
present in the final state, except for the electron. One can define W , the invariant mass of the initial
hadronic state as W 2 = (p+ q)2. The deep inelastic regime is characterized by W �M and Q2 �M2.

One will also notice that, while Q2 and ν = E − E′ were connected through the relation ν = Q2

2M for
elastic scattering, they are now independent for Deep Inelastic Scattering (DIS).

The DIS cross section is parametrized by two structure functions W1 and W2 and can be written as:

d2σ

dΩdE′ =
α2 cos2 ( θ

2
)

4E2 sin4 ( θ
2
) (W2(ν,Q2) + 2W1(ν,Q2) tan2

(
θ

2

))
. (1.12)

It is worth mentioning that the DIS cross section (Eq. (1.12)) looks similar to the Rosenbluth cross
section (Eq. (1.8)), with the form factors being replaced by the structure functions W1 and W2. One will
also remark that the structure functions have an additional dependence in ν.

It is usually more convenient to work with the structure functions F1(xBj , Q2) and F2(xBj , Q2):

F1(xBj , Q2) = MW1(ν,Q2), (1.13)

F2(xBj , Q2) = νW2(ν,Q2), (1.14)
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Figure 1.2: Deep Inelastic Scattering diagram in the Bjorken limit.

with the Bjorken variable xBj defined as:

xBj = Q2

2Mν
. (1.15)

Eq. (1.12) can then be written as Eq. (1.16):

d2σ

dΩdE′ =
α2 cos2 ( θ

2
)

4E2 sin4 ( θ
2
) (F2(xBj , Q2)

ν
+ 2
M
F1(xBj , Q2) tan2

(
θ

2

))
. (1.16)

Experiments made at SLAC (Stanford) in the late 1960s showed that these structure functions F1
and F2 are independent of Q2 [11]. This phenomenon is called scaling. In the parton model developed
by Feynman [12], the scaling feature is the sign that electrons are incoherently scattering off point-like
particles (partons), since an object with a finite size should have a form factor describing its structure
which would then introduce a Q2 dependence. This is an evidence of the existence of “quarks”, introduced
earlier by Gell-Mann, inside the nucleon. The experimental verification of the Callan-Gross relation (Eq.
(1.17)) at a later date proved that these partons had a spin 1

2 , further evidence in favor of quarks:

F2(xBj) = 2xBjF1(xBj). (1.17)

As the structure functions are independent of the chosen frame, Feynman’s parton model can be
considered in an infinite momentum frame. For instance, one of such frames can be defined as the
frame in which the nucleon is moving with almost infinite momentum. In the infinite momentum frame,
time dilatation means that the particles inside the nucleon do not have the time to interact during the
absorption of the virtual photon emitted by the scattering electron. The nucleon can thus be viewed
as a collection of non-interacting point-like particles, one of which must carry a fraction x of the total
longitudinal momentum of the nucleon in order to absorb the virtual photon. As shown in Fig. 1.2
(right), in the Bjorken limit (Q2 → ∞ and ν → ∞ at fixed xBj), the electron is scattering off a single
quark of the nucleon, carrying longitudinal momentum fraction x. Furthermore, in the DIS case, it turns
out that x can be related to the Bjorken variable xBj . Indeed, after absorbing the virtual photon, as the
quark does not interact with other partons and its mass is negligible against Q2 and ν, one has:

(xp+ q)2 = x2M2 −Q2 + 2xpq = x2M2 −Q2 + 2xMν ≈ 0, (1.18)

and further neglecting x2M2 against Q2 and ν one gets:

−Q2 + 2xMν ≈ 0, (1.19)

x ≈ Q2

2Mν
= xBj . (1.20)
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As a consequence, the DIS cross section can be reduced to the sum of cross sections for scattering
off individual partons i, weighted by the density of partons i with longitudinal momentum fraction xBj .
The structure function F2 can thus be expressed as:

F2(xBj) = xBj
∑
i

e2
i qi(xBj), (1.21)

where ei is the charge of the parton i, in units of the proton charge, and qi(xBj) is the density of partons
i with longitudinal momentum fraction xBj . These functions qi are called Parton Distribution Functions
(PDFs).

However, when extracting the structure functions F1 and F2 over a large range of xBj , experiments
showed that the scaling feature did not hold true for very large or very small values of xBj (see Fig. 1.3):
this is the scaling violation. The scaling violation is explained by QCD radiative corrections: the struck
quark of the nucleon may radiate gluons, much like electrons may radiate photons in Quantum Electro-
dynamic. The QCD evolution (variation with Q2) of structure functions obey the DGLAP equations
(Dokshitzer, Gribov, Lipatov, Altarelli and Parisi), resulting in a logarithmic dependence of the PDFs in
Q2, as can be seen in Fig. 1.3.

Figure 1.3: Structure function F2 against Q2 for several values of xBj . (Figure extracted from [13]).

1.3 Deeply Virtual Compton Scattering and Generalized Parton
Distributions

While Form Factors and Parton Distribution Functions provide precious information about the nucleon
internal structure, they are far from being enough to fully describe and understand it. Introduced in the
mid-90s, Generalized Parton Distributions, also called “Off-Forward Distributions”, are experimentally
accessible through Deeply Virtual Compton Scattering and provide a higher level of information than
FFs and PDFs, as will be described in the following section. Additional information about GPDs can be
found in [14].
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1.3.1 Accessing GPDs through the DVCS process
Deeply Virtual Compton Scattering is an exclusive process in which an electron (or a muon) scatters off
a nucleon, with a photon emitted by the nucleon in the final state1. More precisely, in the Bjorken limit
(Q2 → ∞ and ν → ∞ at fixed xBj), the electron scatters off a single quark which then emits a real
photon before going back to the nucleon. Fig. 1.4 represents the DVCS process on a proton ep → e′p′γ
in the one-photon exchange approximation. The squared momentum transfer to the nucleon t is defined
as t = (p′ − p)2 = ∆2. In the infinite momentum frame, x+ ξ and x− ξ are respectively the fractions of
the nucleon longitudinal momentum carried by the struck quark before and after the interaction2 and ξ
is the skewness, which can be related to xBj by the relation:

ξ =
xBj(1 + t

2Q2 )
2− xBj + xBj( t

Q2 )

|t|
Q2�1
−−−−→ xBj

2− xBj
. (1.22)

Figure 1.4: The “handbag diagram” of the DVCS process.

The angle φ is the azimuthal angle between the leptonic plane, defined by the scattered electron and
the virtual photon, and the hadronic plane, formed by the recoil nucleon and the virtual photon (see Fig.
1.5). The azimuthal angle φ follows the Trento convention [15], defined by:

cosφ = q × k
|q × k|

· q × p
′

|q × p′|
, (1.23)

sinφ = (k × p′) · q
|q × k||q × p′|

. (1.24)

Figure 1.5: Three dimensional representation of the DVCS process.
1Technically, lepto-production and DVCS are two different processes since DVCS has a virtual photon in the initial state.

However, DVCS being used as the part of the lepto-production process where the final photon is emitted from the hadron
is a jargon widely accepted, and will be used in this manuscript.

2NB: unlike DIS, x is no longer equal to xBj for DVCS.
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Finally, as shown in Fig. 1.4, the nucleon structure is parametrized by the quark GPDs Hq, Eq,
∼
Hq,

and
∼
Eq, with q denoting the quark flavor. These structure functions correspond to the Fourier transform

of QCD non-local and non-diagonal (off-forward) operators. The operators are non-local because the
initial and final quarks have different space-time coordinates, and non-diagonal because the momenta of
the initial and final quarks are different [14].

1.3.1.1 Twist and factorization

In perturbative QCD, a single tree-level leading-order Feynman diagram is usually not enough to describe
a process with a satisfying precision. More complex diagrams must be taken into account, and higher
order corrections need to be added. These Feynman diagram amplitudes are expressed as series in powers
of αs, the QCD strong coupling constant, which depends on Q2: the higher Q2 is, the smaller αs becomes.
When αs � 1, the process is called “hard”, perturbative QCD computations can be applied, and higher
order corrections are suppressed by powers of αs with respect to the leading order. When αs > 1, the
process is called “soft” and perturbative QCD computations cannot be applied. One then has to introduce
structure functions such as FFs, PDFs or GPDs to parametrize the soft part.

The DVCS amplitude, which contains both hard and soft parts, can be expressed as an operator
product expansion. The twist is then defined as the dimension minus the spin of these operators and is
used to sort the terms of the series in growing power of 1

Q . For DVCS, the leading twist of the series is
twist-2, and higher twists corrections are suppressed in powers of 1

Q with respect to the leading twist (for
instance, twist-3 terms are suppressed by a factor 1

Q , twist-4 terms are suppressed by a factor 1
Q2 , etc...).

The so-called “handbag diagram” in Fig. 1.4 is the leading twist, leading order diagram of the DVCS
process. The factorization of the DVCS process has been proved at leading twist and all orders of
perturbative QCD [16, 17]. As such, the diagram in Fig. 1.4 can be factorized into two parts: a hard part
(upper half) which can be fully computed by perturbative QCD, and a soft part (lower half) parametrized
by the GPDs, and the DVCS cross section can be expressed as a convolution of both. A consequence of
the factorization is that GPDs are universal, as the differences between different processes are contained
in the hard part. However, this “handbag diagram” formalism requires the conditions Q2 �M2, |t|Q2 � 1
and W large for fixed values of xBj .

Thus, in the “handbag diagram” formalism, GPDs can be accessed at leading twist in the DVCS
process through the measurement of its cross section and asymmetries. Although other hard exclusive
lepto-production processes can allow access to GPDs in the same way, DVCS is the cleanest channel
because it is the simplest. For instance, Deeply Virtual Meson Production (DVMP) requires the intro-
duction of Distribution Amplitudes (DA). Nevertheless, higher twist and higher order QCD corrections
may need to be taken into account for specific experiments or kinematic settings, as recent results suggest
that their contributions might not be negligible [18].

1.3.1.2 Interference with the Bethe-Heitler process

Experimentally, it is not possible to distinguish DVCS from the Bethe-Heitler process. Indeed, both
have the same initial and final state, though in the Bethe-Heitler case, the photon is radiated by the
electron instead of the struck quark of the nucleon (see Fig. 1.6). As a consequence, contributions from
the Bethe-Heitler process and its interference with DVCS will need to be taken into account in exclusive
photon electro-production cross-section measurements.

Figure 1.6: The exclusive photon electro-production ep → e′p′γ has contributions from both the DVCS
process and the Bethe-Heitler process.
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1.3.2 The Generalized Parton Distributions
GPDs are an extremely rich and complex framework which can be very hard to disentangle. This section
will briefly present the GPDs and their main properties interesting either for their physics interpretation
or for constraining models.

1.3.2.1 GPDs nomenclature

At twist-2, the nucleon structure is parametrized by four quark GPDs Hq, Eq,
∼
Hq, and

∼
Eq. GPDs depend

on quarks flavor q. However, flavor separation requires DVCS data on both the proton and the neutron
at the same kinematic settings, which is not the subject of this thesis. There also exist higher twist quark
GPDs, whose contributions may need to be taken into account in order to properly extract the twist-2
ones [19].

Hq, Eq,
∼
Hq, and

∼
Eq are chiral-even quark GPDs: the helicity of the struck quark is always conserved.

There also exist four chiral-odd quark GPDs HqT , EqT ,
∼
HqT , and

∼
EqT , also called quark transversity

GPDs, which flip the quark helicity. DVCS is not sensitive to the chiral-odd quark GPDs, but they can
be measured in other exclusive processes such as pseudo-scalar mesons production, for instance [20].

There also exist gluon GPDs. However, our DVCS experiment was performed in the valence quarks
region, which is in principle insensitive to gluon GPDs. At leading twist, gluons contribute at next-
to-leading order in the strong coupling constant αs (double helicity-flip transversity gluons), which is
believed to be negligible. Nevertheless, recent estimates [21] and results [18] seem to challenge this view
and indicate that corrections for gluon contributions might be significant and should be taken into account
as well.

Unless stated otherwise, “GPDs” will now refer to the four twist-2 chiral-even quark GPDs Hq, Eq,
∼
Hq, and

∼
Eq.

The GPDs Eq and
∼
Eq are associated with the flip of the nucleon helicity, while Hq and

∼
Hq conserve

it. The GPDs Hq and Eq are related with averages over the quark helicity and are called “unpolarized”
while

∼
Hq, and

∼
Eq are tied with differences of quark helicity and are called “polarized”. The correlations

between GPDs and helicity are summarized in Fig. 1.7.

1.3.2.2 GPDs properties

GPDs depend on four variables: Q2, x, ξ and t. However, like for DIS, GPDs also show a scaling feature
and their Q2 dependence can be predicted by QCD evolution. Therefore, the Q2 dependence of GPDs is
not relevant to the non-perturbative structure of the nucleon and is usually dropped in the notation.

This large number of variables reflects the wealth of information contained in GPDs compared to PDFs
and FFs. On the other hand, GPDs suffer from “the curse of dimensionality”, as this larger number of
dependencies makes them much harder to extract.

The variables x and ξ vary between −1 and 1, but time reversal invariance states that:

Hq(x,−ξ, t) = Hq(x, ξ, t), (1.25)

where Hq can be replaced by Eq,
∼
Hq, or

∼
Eq. As a consequence, the range of ξ can be reduced to [0; 1].

In the DGLAP region characterized by |x| > ξ, GPDs represent the probability of finding a quark (or
antiquark if x < −ξ) in the nucleon with longitudinal momentum fraction x + ξ and putting it back
with longitudinal momentum fraction x− ξ and a transverse momentum kick t. In the ERBL (Efremov,
Radyushkin, Brodsky and Lepage) region characterized by −ξ < x < ξ, either x+ ξ or x− ξ is negative:
GPDs behave like a Distribution Amplitude and can be interpreted as the probability of finding a quark-
antiquark pair in the nucleon.

The GPDs are generalization of PDFs and FFs, and encapsulate both of them:

• in the forward limit (t = 0 and ξ = 0), GPDs allow to recover the PDFs:

Hq(x, 0, 0) =
{
qq(x), x > 0
−q̄q(−x), x < 0 (1.26)

∼
Hq(x, 0, 0) =

{
∆qq(x), x > 0
∆q̄q(−x), x < 0 (1.27)
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Figure 1.7: Representation of the four chiral-even GPDs Hq, Eq,
∼
Hq, and

∼
Eq corresponding to different

nucleon and quark helicity orientations. (Figure extracted from [14]).

where qq(x) (q̄q(x)) and ∆qq(x) (∆q̄q(x)) are respectively the quark (antiquark) unpolarized and
polarized PDFs for flavor q;

• at constant t, the first moment of GPDs allows to recover FFs:

∫ 1

−1
Hq(x, ξ, t)dx = F q1 (t) ∀ξ, (1.28)

∫ 1

−1
Eq(x, ξ, t)dx = F q2 (t) ∀ξ, (1.29)

∫ 1

−1

∼
Hq(x, ξ, t)dx = GqA(t) ∀ξ, (1.30)

∫ 1

−1

∼
Eq(x, ξ, t)dx = GqP (t) ∀ξ, (1.31)

with F q1 (t) and F q2 (t) the Dirac and Pauli Form Factors, and GqA(t) and GqP (t) the axial and
pseudo-scalar Form Factors, for quark flavor q, respectively;

• in the infinite momentum frame and at ξ = 0, the variable t is the Fourier conjugate to the transverse
spatial distribution of quarks as a function of x [22]. Let GPDq(x, ξ, t) be the general notation for
GPDs Hq(x, ξ, t), Eq(x, ξ, t),

∼
Hq(x, ξ, t),

∼
Eq(x, ξ, t). At ξ = 0, GPDq(x, 0, t) can then be interpreted

as the probability amplitude of finding a quark of flavor q with longitudinal momentum fraction x
at a given transverse distance from the center of momentum of the nucleon.
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GPDs also allow to unveil information about the nucleon spin structure. Indeed, it has been shown
in [4] that the nucleon spin can be decomposed into the quarks and gluons contributions Jq and Jg
respectively:

1
2 =

∑
q

Jq + Jg, (1.32)

and the quarks contributions Jq can be further decomposed into their total spin and total orbital angular
momentum contributions Sq and Lq respectively:

Jq = 1
2Sq + Lq. (1.33)

The second moment of GPDs then yields the famous Ji’s sum rule [4], which allows to access Jq, and
thus, the total orbital angular momentum of quarks Lq:

Jq = 1
2

∫ 1

−1
x [Hq(x, ξ, t = 0) + Eq(x, ξ, t = 0)] dx. (1.34)

A last important property of GPDs is the polynomiality, which is of great use to construct GPD
models. Polynomiality states that the xn moment of GPDs is a polynomial in ξ of order n if n is even,
and order n+ 1 if n is odd. For instance, with GPD Hq:∫ 1

−1
xnHq(x, ξ, t)dx = a0 + a2ξ

2 + a4ξ
4 + ...+ anξ

n, n even, (1.35)

∫ 1

−1
xnHq(x, ξ, t)dx = a0 + a2ξ

2 + a4ξ
4 + ...+ an+1ξ

n+1, n odd, (1.36)

and Eq. (1.25) imposes that there are only even powers of ξ.

1.3.3 Compton Form Factors
In DVCS, the variables ξ and t can be computed from the kinematic variables of the particles in the
initial and final states. However, x is not experimentally accessible. The DVCS amplitude is given by
integrals of the form: ∫ 1

−1

Hq(x, ξ, t)
x− ξ + iε

dx = P
∫ 1

−1

Hq(x, ξ, t)
x− ξ

dx− iπHq(ξ, ξ, t), (1.37)

where P is the principal value integral and Hq is interchangeable with Eq,
∼
Hq, or

∼
Eq. In Eq. (1.37), x is

either integrated over or evaluated at x = ξ. The former case is accessed by observables sensitive to the
real part of the DVCS amplitude, while the latter is accessed by observables sensitive to its imaginary
part.

Therefore, there are actually eight GPD-related quantities that can be extracted from DVCS:

ReHq(ξ, t) = P
∫ 1

0
[Hq(x, ξ, t)−Hq(−x, ξ, t)]C+(x, ξ)dx, (1.38)

ReEq(ξ, t) = P
∫ 1

0
[Eq(x, ξ, t)− Eq(−x, ξ, t)]C+(x, ξ)dx, (1.39)

Re
∼
Hq(ξ, t) = P

∫ 1

0

[
∼
Hq(x, ξ, t) +

∼
Hq(−x, ξ, t)

]
C−(x, ξ)dx, (1.40)

Re
∼
Eq(ξ, t) = P

∫ 1

0

[
∼
Eq(x, ξ, t) +

∼
Eq(−x, ξ, t)

]
C−(x, ξ)dx, (1.41)

ImHq(ξ, t) = −π (Hq(ξ, ξ, t)−Hq(−ξ, ξ, t)) , (1.42)

ImEq(ξ, t) = −π (Eq(ξ, ξ, t)− Eq(−ξ, ξ, t)) , (1.43)
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Im
∼
Hq(ξ, t) = −π

(
∼
Hq(ξ, ξ, t) +

∼
Hq(−ξ, ξ, t)

)
, (1.44)

Im
∼
Eq(ξ, t) = −π

(
∼
Eq(ξ, ξ, t) +

∼
Eq(−ξ, ξ, t)

)
, (1.45)

with C± defined as:

C±(x, ξ) = 1
x− ξ

± 1
x+ ξ

. (1.46)

The eight functions defined in Eq. (1.38) to (1.45), experimentally accessible, are called Compton
Form Factors (CFFs). One can further introduce the notation:

Hq(ξ, t) = ReHq(ξ, t) + iImHq(ξ, t), (1.47)

with Hq interchangeable with Eq,
∼
Hq or

∼
Eq.

1.3.4 DVCS cross section
As stated in section 1.3.1.2, DVCS cannot be experimentally distinguished from the Bethe-Heitler process,
and the measured cross sections have contributions from both, as well as an interference term. As a
consequence, the four-fold cross section can be expressed as [23]:

d4σ

dQ2dxBjdtdφ
= α3xBjy

2

8πQ4
√

1 + ε2
1
e6 |T |

2, (1.48)

where y = p·q
p·k = ν

E is the lepton relative energy loss (expressed in the target rest frame), ε = 2xBj MQ ,
and e is the elementary charge. The amplitude T can be further decomposed into the contributions from
the DVCS, BH, and Interference terms:

|T |2 = |TBH |2 + |TDV CS |2 + I, (1.49)

with the interference term I being:

I = TDV CST
∗
BH + T ∗DV CSTBH . (1.50)

Belitsky and Müller performed an harmonic expansion of the DVCS, BH and Interference terms as a
function of φ up to twist-3 and including gluon transversity. The development from [19] will be used for
the BH, while the parametrization from [24] will be applied for the DVCS and Interference terms3.

1.3.4.1 The Bethe-Heitler term

The Bethe-Heitler amplitude is computed using pure QED and can be expressed as a function of the
elastic Form Factors. By using the FFs parametrization proposed by Kelly in [8], the BH term can be
computed with a precision better than 1% in the kinematic settings of this experiment.
|TBH |2 is given by the expression:

|TBH |2 = e6

x2
Bjy

2(1 + ε2)2tP1(φ)P2(φ)

{
cBH0 +

2∑
n=1

cBHn cos(nφ) + sBH1 sin(φ)
}
, (1.51)

where P1(φ) and P2(φ) are the lepton propagators. The harmonic coefficients cBHi and sBHi , as well as
the expressions of P1(φ) and P2(φ), are given in [19]. In the case of an unpolarized target, sBH1 = 0.

3The definition of φ used by Belitsky and Müller is not the same as the one from the Trento convention. The transfor-
mation φBelitsky = π − φT rento must be applied.
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1.3.4.2 The DVCS term

The DVCS amplitude is parametrized by bi-linear combinations of CFFs. The term |TDV CS |2 is given
by the expression:

|TDV CS |2 = e6

y2Q2

{
cDV CS0 +

2∑
n=1

[
cDV CSn cos(nφ) + sDV CSn sin(nφ)

]}
, (1.52)

and the harmonic coefficients cDV CSn and sDV CSn are detailed in appendix B.
The first term of cDV CS0 contains twist-2 quark and gluon transversity CFFs while the second term

involves twist-3 quark CFFs (see Eq. (B.9)), cDV CS1 and sDV CS1 encompass twist-2 and twist-3 quark
CFFs, and cDV CS2 encloses twist-2 gluon transversity CFFs. Furthermore, the coefficient sDV CS1 depends
on the beam helicity, and sDV CS2 = 0 in the case of an unpolarized target.

1.3.4.3 The Interference term

The Interference amplitude is parametrized by linear combinations of CFFs. I is given by the expression:

I = ±e6

xBjy3tP1(φ)P2(φ)

{
cI0 +

3∑
n=1

[
cIn cos(nφ) + sIn sin(nφ)

]}
, (1.53)

where the + (−) case stands for a negatively (positively) charged lepton beam. The harmonic coefficients
cIn and sIn are detailed in appendix B.

Each harmonic coefficient is a mixture of twist-2 and twist-3 quarks CFFs and twist-2 gluon transver-
sity CFFs. Nevertheless, cI0, cI1 and sI1 have a twist-2 quark dominant term, while cI2 and sI2 have a
twist-3 quark dominant term, and cI3 has a twist-2 gluon transversity dominant term. Furthermore, the
coefficients sI1 and sI2 depend on the beam helicity, and sI3 = 0 in the case of an unpolarized target.

1.3.5 Side note on asymmetries
Beside absolute cross sections, another way to access CFFs is through the measurement of asymmetries.
For instance, the beam charge asymmetry is defined as:

AC = dσ+ − dσ−

dσ+ + dσ−
, (1.54)

where dσ+ and dσ− refer to cross sections with lepton beams of opposite charge. Another example is the
beam spin asymmetry, defined by:

ALU = d−→σ − d←−σ
d−→σ + d←−σ

, (1.55)

where d−→σ and d←−σ designate cross sections with opposite lepton beam helicity. The first subscript, L,
indicates a polarized lepton beam, while the second subscript, U , corresponds to an unpolarized target.
A detailed descriptions of experimental asymmetries is available in [25].

While no asymmetry has been measured in this experiment, they represent a large fraction of the
available world-wide data on GPDs. Indeed, they have the benefit that many experimental uncertainties
cancel out because of the numerator over denominator ratio. On the other hand, the presence of the
denominator can make the disentanglement of the different CFFs contributions and physical interpretation
more difficult compared with measuring absolute cross sections.

1.4 Experimental status
Although DVCS is one of the cleanest channels to access GPDs, their measurement through this process
is extremely challenging. A high luminosity is required to measure the small DVCS cross sections, and
experiments need detectors able to ensure the exclusivity of the final state. Moreover, a large combination
of experimental setups is needed in order to measure all the observables necessary to extract CFFs and
GPDs: DVCS on the proton or the neutron, unpolarized or polarized lepton beam of positive or negative
charge, unpolarized, longitudinally polarized or transversely polarized target, different beam energies and
different kinematic coverages (see Fig. 1.8).
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A world-wide, long-term, experiment program was started in order to extract CFFs and study GPDs.
This section will present a short overview of the current experimental landscape. More detailed informa-
tion can be found in [25].

Figure 1.8: Experimental landscape (Q2, xBj) for past and future experiments. (Figure extracted from
[26]).

1.4.1 H1 and ZEUS (HERA)
The H1 and ZEUS experiments took place at the DESY laboratory (Hamburg, Germany), and were not
dedicated to the sole measurement of DVCS cross sections. The HERA (Hadron-Elektron-Ring-Anlage)
accelerator allowed to study high energy collisions between electrons (positrons) accelerated at 27 GeV,
and protons accelerated at 920 GeV. Due to the very high energy, these experiments were able to measure
pure DVCS cross sections with no contribution from the Bethe-Heitler, in kinematic regions dominated
by sea quarks and gluons (10−4 < xBj < 10−2).

In particular, the H1 and ZEUS experiments measured total DVCS cross sections [27, 28], their
evolution as function of Q2, W and t [29, 30, 31], and beam charge asymmetries [32, 33].

1.4.2 HERMES (HERA)
The HERMES experiment also took place at the HERA facility, between 1995 and 2007. Like H1 and
ZEUS, this experiment was not dedicated to the sole study of DVCS. HERMES studied collisions between
electrons (positrons) and a fixed gaseous target (protons), and did not measure total DVCS cross sections:
only asymmetries, in the kinematic region defined by 1 GeV2 < Q2 < 6 GeV2 and 0.04 < xBj < 0.2.

What makes the HERMES experiment unique is that, even up to this date, it provided the most
complete set of DVCS observables due to its flexibility: beam spin asymmetries [34, 35], beam charge
asymmetries [36], beam charge-and-spin asymmetries [37, 38], target spin asymmetries and double spin
asymmetries with a longitudinally polarized target [39, 40] and target spin asymmetries with a trans-
versely polarized target [41]. It is worth noting that so far HERMES is the only experiment providing
data with a transversely polarized target, but with low luminosity and limited exclusivity.

1.4.3 CLAS (JLab)
The CLAS (CEBAF Large Acceptance Spectrometer) detector is located in the Hall B of Jefferson Lab
(Newport News, Virginia, USA). As its name indicates, the CLAS detector has the particularity of having
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a large acceptance, covering a large solid angle, but with decreased luminosity compared to Hall A. In
2001, CLAS published the results of a non-dedicated DVCS experiment which measured the azimuthal
angle dependence of beam spin asymmetries [42]. This was the starting point of an important campaign
of DVCS dedicated experiments at JLab.

In 2005, the E01-113 experiment at CLAS used a polarized electron beam on an unpolarized liq-
uid hydrogen target, and measured both unpolarized and beam helicity dependent DVCS cross sec-
tions, as well as beam spin asymmetries, in a kinematic range dominated by valence quarks, defined by
1 GeV2 < Q2 < 4.7 GeV2 and 0.1 < xBj < 0.6 [43, 44]. High statistics and finely binned fourfold cross
sections provided precious constraints for the GPD Hq.

In 2009, the E05-114 experiment used a 5.9 GeV polarized electron beam sent on a solid NH3 target
longitudinally polarized in order to measure beam spin asymmetries, target spin asymmetries and double
spin asymmetries [45, 46], but with limited statistical precision.

1.4.4 Hall A (JLab)
The Jefferson Lab Hall A experiments are characterized by a small acceptance, but a very high luminosity
for high precision results. In 2004, E00-110 was the very first experiment specifically dedicated to the
measurement of DVCS cross sections. By sending a polarized electron beam on a liquid hydrogen target,
the E00-110 experiment measured both unpolarized and beam helicity dependent DVCS cross sections
at xBj = 0.36 with Q2 ranging from 1.5 GeV2 to 2.3 GeV2, in the valence quark region. This experiment
performed a scaling test of DVCS and showed that the factorization and leading twist dominance were
valid even at relatively low Q2 (see Fig. 1.9 and 1.10). The results published in 2006 [47] have recently
been re-analyzed and the new results now supersede the previous ones [48].

Figure 1.9: Unpolarized (top) and helicity-dependent (bottom) cross section measured in the experiment
E00-110, with Q2 = 2.3 GeV2, xBj = 0.36 and −t = 0.32 GeV2. The error bars and error bands are
statistical uncertainties. The cross sections are dominated by the twist-2 contribution. (Figure extracted
from [48]).

In the same year as E00-110, the experiment E03-106 used a liquid deuterium target instead and was
the first experiment to study DVCS on the neutron, and provides the only currently available neutron
results [49]. Neutrons are sensitive to Eq, the least known GPD, which is required to access quark
orbital angular momentum through Ji’s sum rule [4]. Neutron data also allow quark-flavor separation,
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Figure 1.10: Combinations of effective CFFs extracted using the formalism developed in [23], integrated
over t and plotted as a function of Q2. The bands represent systematic uncertainties. The CFFs show
no Q2-dependence, which is a proof of scaling. (Figure extracted from [48]).

making neutron experiments invaluable. However, limited statistical precision was obtained because of
the inherent difficulty of experiments on the neutron.

In 2010, a second DVCS experiment on the neutron has been performed (E08-025). Results for π0

production have been published. The analysis for DVCS is almost complete and preliminary results are
available [50].

1.4.5 COMPASS (SPS, CERN)
The COMPASS (Common Muon and Proton Apparatus for Structure and Spectroscopy) collaboration
took DVCS data in 2016-2017 at CERN. Thanks to the SPS (Super Proton Synchrotron) accelerator, a
polarized muon beam (µ+ and µ−) was sent on a 2-meters long liquid hydrogen target. The COMPASS
program plans to measure charge and helicity-dependent cross sections in order to separate both the
DVCS and interference cross-section terms, and the real and imaginary parts of CFF sensitive to the
dominant GPD Hq. By measuring the xBj and t dependence of DVCS, COMPASS also plans to perform
the tomography of the nucleon in a kinematic domain yet unexplored (0.01 < xBj < 0.1), between
HERMES and JLab kinematic regions on the one hand, and H1 and ZEUS regions on the other hand
[51].

1.5 The E12-06-114 experiment
The DVCS experiment E12-06-114 which is the subject of this document was performed at Jefferson Lab
between 2014 and 2016. It is the very first experiment making use of the newly upgraded accelerator
facility for the “12 GeV era” and is the natural extension of previous Hall A experiments at higher
energies. Data were taken during the Fall 2014, Spring 2016, and Fall 2016. During this experiment, a
longitudinally polarized electron beam was sent on an unpolarized liquid hydrogen target, and absolute
polarized and unpolarized DVCS cross sections were measured for various (Q2, xBj , t) settings. The
kinematic regimes studied by this experiment are in the valence quarks region and are summarized in
Fig. 1.11 and Tab. 1.1. This experiment is the first to ever cover these kinematics and its results will
bring great value to the study of GPDs.

The experimental setup allowed for an extremely high luminosity, and as a consequence high DVCS
counting rates. The large amount of statistics collected, combined with a good understanding of the
detectors and the beam line components allow for high-precision results, which is the main asset of this
experiment.

This experiment has two main goals [52]:

• to perform a scaling test with a larger Q2 lever arm than previous Hall A experiments, taking
advantage of the upgraded accelerator energy, for several values of xBj (see Fig. 1.11). This
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Figure 1.11: The kinematic regions (Q2, xBj) explored by this DVCS experiment for different incoming
beam energies are represented in red, green and blue. The regions in black were studied during the
previous experiment in 2004, with Ebeam = 5.75 GeV. The diamond shapes approximate the experiment
acceptance. The limit of the unphysical region corresponds to the maximum possible Q2 with respect
to xBj for Ebeam = 11 GeV. The W 2 > 4 GeV2 limit is set to suppress contributions from resonances.
(Figure extracted from [52]).

Kinematic setting Ebeam (GeV) Q2 (GeV2) xBj tmin (GeV2) tmax (GeV2)
36_1 7.383 3.200 0.36 -0.163 -0.69
36_2 8.521 3.600 0.36 -0.165 -0.54
36_3 10.591 4.470 0.36 -0.167 -0.54
48_1 4.487 2.700 0.48 -0.321 -0.58
48_2 8.851 4.365 0.48 -0.344 -0.72
48_3 8.847 5.334 0.48 -0.351 -0.71
48_4 10.992 6.900 0.48 -0.359 -0.96
60_1 8.521 5.541 0.60 -0.661 -1.47
60_2 8.521 6.100 0.60 -0.671 -1.24
60_3 10.591 8.400 0.60 -0.700 -1.41
60_4 10.591 9.000 0.60 -0.706 -1.28

Table 1.1: Summary of the experiment kinematic settings. The beam energies actually available in the
accelerator at the time of the experiment differed slightly from the ones planed in Fig. 1.11. One will
notice that kin60_2 and kin60_4 were not run between 2014 and 2016: they are scheduled for a later
time.
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will allow in particular to test the dominance of the handbag diagram, extract CFFs over large
(Q2, xBj , t) ranges, and study the t-dependence of CFFs as a function of xBj ;

• to separate the real and imaginary parts of the CFFs contributions to the DVCS amplitude, as
can be seen in Eq. (1.56) and (1.57) in the leading twist approximation, where d4−→σ and d4←−σ
refer to cross sections with longitudinally polarized beams of opposite helicity, and ReCFF (I) and
ImCFF (I) refer to the contributions of the real and imaginary parts of the CFFs to the interference
term. Eq. (1.56) is the unpolarized cross section while Eq. (1.57) is the polarized one.

d4−→σ + d4←−σ
2 = |BH|2 + |DV CS|2 +ReCFF (I), (1.56)

d4−→σ − d4←−σ
2 = ImCFF (I). (1.57)

A third goal of this experiment, which is not described in this document, is the measurement of the
ep→ epπ0 cross sections in the same kinematic regions as DVCS.

1.6 Planned future experiments
Although a lot of progress has been made in the study of GPDs, the task at hand is far from being over.
This section will briefly present the planned future experiments for the study of GPDs.

1.6.1 CLAS12 (JLab)
Taking advantage of the JLab accelerator upgrade to 12 GeV, the new CLAS12 program is the natural
extension of the CLAS program at 6 GeV. The E12-06-119 experiment will extend previous Hall B
kinematic ranges (1.0 GeV2 < Q2 < 9 GeV2 and 0.1 < xBj < 0.7) and provide higher statistics for DVCS
on the proton [53]. The kinematic range is very similar to that of experiment E12-06-114 in Hall A, and
their results will be complementary, Hall B having a larger acceptance, while Hall A having a higher
precision.

The CLAS12 program plans to measure a very complete set of observables, like HERMES: Unpolarized
and beam helicity dependent cross sections, beam spin asymmetry, target spin and double spin asymmetry
on longitudinally and transversely polarized target. It is worth mentioning that the single spin asymmetry
for DVCS on the proton with a transversely polarized target is the most sensitive observable, not neutron
related, to the elusive GPD Eq. So far, the only available DVCS data on transversely polarized target
comes from HERMES. As such, the CLAS12 program on a transversely polarized target has been labeled
as a high impact experiment, although it is currently conditionally approved, pending research and
development on the target.

The E12-11-003 experiment plans to extend the currently very scarce data on the neutron by measuring
beam spin asymmetry on a liquid deuterium target, with high accuracy [54]. The covered kinematic region
will be defined by 1.5 GeV2 < Q2 < 6.5 GeV2, 0.1 < xBj < 0.6 and -1 GeV2 < t < −0.1 GeV2.

A proposal for experiment C12-15-004, pending approval, plans to measure target spin asymmetry
and double spin asymmetry on the neutron with a longitudinally polarized deuterium target [55], com-
plementing the data from experiment E05-114.

1.6.2 Hall C (JLab)
The Hall C experiment E12-13-010 [56] will measure unpolarized and beam helicity dependent DVCS
cross sections on the proton. It will complement the current Hall A experiment E12-06-114 in two ways,
thanks to the higher momentum reachable by the Hall C spectrometer: on one hand, it will measure
cross sections at the same kinematic regions as the Hall A experiment but with different beam energies in
order to separate the DVCS and Interference terms. On the other hand, it will also extend the kinematic
regions of Hall A.

The range in Q2 will be extended to higher values (up to 10 GeV2) to further test the experimental
validity of leading twist dominance at JLab energy, and improve the current understanding of higher
twists effects. In particular, at high values of Q2, the DVCS cross section is expected to largely deviate
from the Bethe-Heitler, making this kinematic range all the more interesting. While CLAS12 will cover
a similar range, Hall C allows for a higher luminosity, and thus higher precision results.
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The range in xBj will be extended to the lower value of 0.2 in order to overlap with data from CLAS,
CLAS12 and COMPASS, in kinematic regions where these experiments have similarly high statistics.
This will allow for cross checks between experiments with very different setups.

1.6.3 EIC
The desire to understand the internal structure of matter will culminate with the future Electron Ion
Collider (EIC). The EIC will collide electrons and protons/ions with center of mass energies varying
between 20 and 140 GeV. The lever arms in Q2 and xBj will be extremely large (see Fig. 1.8), allowing
to study the internal structure of nucleons in the regime dominated by sea quarks and gluons, or in the
transition between the valence and sea quarks regimes. The electron and nucleon beams will be polarized,
allowing to measure various observables of interest for the study of GPDs. In particular, a transversely
polarized proton beam will allow to access the elusive GPD E. A high luminosity (1034 cm−2·s−1) and
hermetic detectors will allow to perform high precision measurements of finely binned DVCS cross sections
and asymmetries. Furthermore, various DVMP measurements will allow a flavor separation of the GPDs.

The EIC is proposed to be constructed either at the Jefferson Laboratory or the Brookhaven National
Laboratory. “Embodying the vision for reaching the next QCD frontier”, the unique features of the EIC
will allow to address several topics at the limit of our current understanding of QCD [26]:

• the spatial and momentum distribution of sea quarks and gluons, and their spin, in the nucleon;

• the saturation density and regime of gluons;

• the nuclear environment effect on quark and gluon interactions in the nuclei (EMC effect).

1.6.4 DDVCS (JLab)
The DVCS process has the limitation of being unable to access the full phase space dependence of GPDs.
The real part of CFFs probes GPDs integrated over x, while the imaginary part accesses the GPDs
only in the phase space diagonal where the quark momentum fraction x and the skewness ξ obey the
constrain x = ±ξ. This is a large restriction in the study of GPDs. However, in the Double Deeply
Virtual Compton Scattering (DDVCS) process, the emitted photon is virtual as well. This, unlike DVCS,
allows to directly explore GPDs in the out-of-diagonal phase space x 6= ±ξ, which is extremely valuable
for constraining GPDs and nucleon imaging. The study of the feasibility of a DDVCS experiment at
JLab is currently ongoing [57].



Chapter 2

The experimental setup

The Thomas Jefferson National Accelerator Facility, commonly called Jefferson Lab, or JLab, is located
in Newport News (Virginia, USA). It was founded in 1984 with the mission of studying the internal
structure of nuclear matter. To carry out this mission, a Continuous Electron Beam Accelerator Facility
(CEBAF) was built and can provide a longitudinally polarized electron beam simultaneously to three
experimental Halls (A, B and C) with a luminosity above 1038 cm−2·s−1. In 2014, a fourth experimental
Hall (D) was added, and CEBAF’s maximum energy was ramped up from 6 GeV to 12 GeV [58]. The
DVCS experiment described here took place in the Hall A of Jefferson Lab.

First, a brief introduction of CEBAF will be given. Then, more details about the Hall A specific
instrumentation will be provided, followed by a presentation of the DVCS experimental setup.

2.1 A Continuous Electron Beam Accelerator Facility
The electrons accelerated by the facility are provided by a photo-cathode gun placed in an ultra-vacuum
chamber: the injector. The gun consists of a strained gallium arsenide cathode, illuminated by a 250 MHz
Ti-Sapphire laser operated at 850 nm. The electrons escaping from the cathode are then extracted by a
difference of potential, accelerated to 45 MeV by a first set of Radio-Frequency (RF) cavities, and sent
to the accelerator. The laser is circularly polarized by a Pockels cell in order to provide a polarized
electron beam. The beam helicity is flipped at a frequency of 30 Hz by varying the voltage applied to
the Pockels cell [59]. The polarization is measured at the injector by a Mott polarimeter [60], and the
polarization vector can be oriented by a Wien filter [61]. In order to provide the electron beam to the four
experimental halls simultaneously, the injector cathode is, in fact, illuminated by four different lasers:
one for each hall. Each laser has a phase offset with respect to the others to allow the electron beams
they generate to be disentangled by an RF separator. The beam current send to each experimental Hall
can also be controlled independently. At maximum energy, the combined maximum beam current sent
to the Halls is 90 µA.

The accelerator is made of two linacs, comprising 25 cryo-modules each, and two sets of 5 re-circulation
arcs which allow the electrons to be accelerated several times in each linac (see figure 2.1). Each cryo-
module is made of 8 RF cavities made of pure Niobium. The electromagnetic field in the cavities
is synchronized with the total frequency of the injector (all four lasers combined) which is equal to
4 × 250 = 1000 MHz. Each linac increases the electron beam energy up to ∼1.1 GeV, so that the
maximum beam energy for Hall A, B and C is reached after 5 passes through the accelerator (∼11 GeV),
and 5.5 passes for Hall D (12 GeV). In each linac, the electrons are all accelerated together in the same
beam pipe not withstanding their different energies which depend on the number of passes through
the accelerator. However, at the end of each linac, an electromagnetic separator sort the electrons by
energy to the 5 different re-circulation arcs. The electrons with less energy are bent towards the upper
re-circulation arcs, whereas the electrons with more energy have a far less bent trajectory and are sent
to the lower re-circulation arcs (see Fig. 2.1). At the end of the South linac, the RF separator and a
set of magnets allow to extract the electron beam to send it to the experimental Halls A, B and C. At
maximum energy, i.e. after 5 passes through the accelerator, all three experimental Halls can be provided
with an electron beam at the same time. However, if the electron beam is extracted at a lesser energy (1
to 4 passes trough the accelerator), then only one experimental hall at a time can be be provided with
said energy. But all three halls can still receive the beam simultaneously provided they use electrons of
different energies.

28
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Hall D works independently from the three other Halls since it is located at the end of the North
linac. After 5.5 passes through the accelerator, the electromagnetic separator at the end of the North
linac extracts the electron beam towards Hall D instead of the recirculation arcs (see Fig. 2.1) [58].

Figure 2.1: Jefferson Lab was upgraded in 2014. 5 cryo-modules have been added to each linac and a fifth
re-circulation arc was constructed between the South and North linac in order to ramp the accelerator
energy up to 12 GeV. A second cryogenic plant (CHL-2) was added to provide for the increased need of
cryogenic power. A new experimental Hall (D) was also built at the end of the North linac.

2.2 The Hall A instrumentation
For the experiments to be able to yield high precision results, a very good understanding of the electron
beam and the target is required. To provide such knowledge, the Hall A beam line is instrumented with
several detectors dedicated to monitoring the electron beam, and the target has been designed to allow
a careful control of its properties. Detailed information about the beam line and the detectors are given
in [62] and [63].

2.2.1 The beam line
The Hall A beam line instrumentation allows the measurements of the following properties of the electron
beam: current, position, polarization, and energy.

2.2.1.1 The Beam Current Monitors

The Beam Current Monitors (BCMs) are two RF cavities located at the entrance of the experimental
Hall (see Fig. 2.2). These cavities are stainless steel cylindrical waveguides, tuned to the frequency of
the electron beam, which output a voltage proportional to the beam current. In order to calibrate the
RF cavities, a device called Unser has been installed between them. The Unser is a Parametric Current
Transformer which also outputs a voltage proportional to the beam current. The Unser is calibrated by
passing a known current through a wire in the beam pipe, and it can then provide an absolute reference
for the calibration of the RF cavities against the beam current. The Unser itself cannot be used to
monitor the electron beam current since its output signal suffers from a significant drift over time, on a
time scale of a few minutes.
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Figure 2.2: Schematic representation of the Hall A beam line.

The two RF cavities and the Unser are located in a temperature-stabilized box providing magnetic
shielding in order to yield a stable beam current measurement with low noise. This measurement has
also the property of being non-invasive.

Because of the wide range of beam current which can be used in Hall A, the BCMs are connected to
various electronics with different amplification factors (1, 3 or 10), which are linear over different ranges
of beam current. The calibration of the BCMs showed that the electronics with amplification factors 3
or 10 could be used for this experiment [64].

2.2.1.2 The Beam Position Monitors

The Beam Position Monitors (BPMs) are two devices centered at 7.524 m and 1.286 m upstream of the
target (see Fig. 2.2). A BPM is made of two pairs of antennas, each antenna of the same pair being
located on diametrically opposite sides of the beam pipe. The electron beam induces a current in each
antenna, and by measuring the ratio of the difference of voltages over the sum of voltages induced in
diametrically opposed antennas, one can determine the transverse position of the beam centroid. The
relative position of the beam centroid can be measured with a precision of 100 µm for beam currents
above 1 µA. This measurement is non-invasive.

The BPMs are calibrated [65] against wire scanners, called Harps, located close to each BPM. Each
Harp is made of 3 wires, whose positions are known within 200 µm and which are moved transversely
across the beam pipe. They provide a signal when they cross the electron beam, thus providing absolute
references for the calibration of the BPMs.

2.2.1.3 The polarimeters

Two polarimetry devices allow the measurement of the longitudinal beam polarization in Hall A: the
Compton polarimeter and the Møller polarimeter.

The Compton polarimeter is located just before the entrance of the experimental Hall A (see Fig. 2.2).
It is installed in a chicane: if the polarimeter is not used, the chicane is by-passed entirely. If it is used,
the electron beam is deflected inside the chicane by a set of two dipoles (see Fig. 2.3). The electrons can
then interact with photons (Compton scattering) in a Fabry-Pérot cavity, where a circularly polarized
Nd:YaG laser operated at λ=1064 nm is amplified up to 2 kW. The scattered photons are then detected
in a PbWO4 calorimeter, while the scattered electrons are detected in a silicon strip detector. During
the summer 2016, additional shielding has been installed in front of the photon detector to reduce the
background from synchrotron radiation.
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The electron beam polarization is extracted by measuring the counting rate asymmetry for opposite
beam helicity as shown in Eq. (2.1) and (2.2):

Aexp = N+ −N−

N+ +N−
, (2.1)

Pe = Aexp
PγAth

. (2.2)

where N+ (N−) is the number of Compton scattering events detected with positive (negative) helicity,
Pγ is the photon beam polarization, and Ath is the analyzing power [66].

Only a small fraction of the electrons actually scatter off the photons. The electrons that did not
interact are re-injected in the beam line by another set of two dipoles located at the exit of the Compton
chicane and sent towards the Hall A target (see Fig. 2.3). For this reason, this polarization measurement
method is non-invasive and can be perform simultaneously to the DVCS experiment, thus providing a
continuous measurement of the beam longitudinal polarization.

Figure 2.3: Schematic representation of the Hall A Compton Polarimeter.

The Møller polarimeter is located upstream of the BPMs in the experimental Hall A (see Fig. 2.2).
There, the electrons of the beam scatter off atomic electrons (Møller scattering) of a ferromagnetic target
polarized in a 24 mT magnetic field. The scattered electrons are then detected in a spectrometer made of
three quadrupoles and a dipole, and PbO calorimeter crystals, divided into two arms in order to detect
the two scattered electrons in coincidence (see Fig. 2.4).

Figure 2.4: Schematic representation of the Hall A Møller Polarimeter. (a): side view. (b): top view.
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Similarly to the Compton polarimeter, the beam polarization can here also be extracted by measuring
counting rate asymmetry for opposite beam helicity. However, because the ferromagnetic target needs
to be inserted in the beam line, this polarization measurement is invasive and cannot be performed
simultaneously to the DVCS experiment. It needs dedicated beam time. The typical beam polarization
delivered to Hall A is about ∼ 80%.

Both methods are complementary as they are not sensitive to the same systematic uncertainties.
The dominant uncertainty of the Møller measurement comes from the target polarization, while for the
Compton, it is its low analyzing power. The Møller also has the disadvantage that the electron beam
current needs to be lowered down to 0.5 µA, which might change the beam polarization. On the other
hand, the Compton method is sensitive to helicity-correlated beam parameters, to which the Møller is
insensitive.

2.2.1.4 The beam energy measurement

An absolute measurement of the beam energy can be provided by what is called ’the Arc method’ [62]:
Hall A is connected to the accelerator by a 40 m arc section, and the beam energy can be determined by
measuring its deflection in this beam line section. More specifically, the beam momentum ρ (in GeV),
the field integral of the eight dipoles in the arc section

∫
~B · ~dl (in Tm) and the bend angle through the

arc section θ (in radians) are correlated through Eq. (2.3), with k = 0.299792 GeV·rad·T−1·m−1:

ρ = k

∫
~B · ~dl
θ

. (2.3)

A simultaneous measurement of the magnetic field integral and of the beam bend angle in the arc are
necessary. Wire scanners provide the measurement of the bending angle. However, the magnetic field
of the dipoles in the arc cannot be measured directly. Instead, a ninth dipole located in another room,
strictly identical to the eight others and powered in series, provides the required field measurement.

Because of the wire scanners and the fact that this measurement is performed with the beam tuned
in dispersive mode (the quadrupoles are turned off), this measurement method is invasive.

2.2.1.5 The raster

Because of its high intensity in Hall A and its small transverse section, the electron beam will locally heat
the target and possibly change its properties (cryogenic target boiling), or even damage it (solid target
melting). In order to prevent these issues, a device called raster has been installed upstream of the target
and the BPMs (see Fig. 2.2). The raster is made of two sets of two dipoles synchronized with each other,
which deflect the beam at 25 kHz to spread the heat on the target. During this DVCS experiment, the
typical spread was a 2 mm × 2 mm square at the target.

2.2.2 The target system
The target system is encompassed in a cylindrical scattering vacuum chamber, 1143 mm in diameter.
Inside this vacuum chamber, several targets are mounted on a ladder controlled remotely which allows
to quickly switch from one target to another during the experiment. The ladder is comprised of:

• three cryogenic targets: they are cylindrical aluminum cells, 63.5 mm in diameter and 4 cm or
15 cm long, designed to be filled with either Liquid Hydrogen (LH2), Liquid Deuterium (LD2) or
gaseous helium. During this DVCS experiment, out of the three cells, only the 15 cm LH2 was
used. The operating temperature and pressure of this cell are 19 K and 0.17 MPa, with a density
of about 0.0723 g·cm−3. The liquid hydrogen is cooled by circulating it through a heat exchanger
with liquid helium supplied at 15 K. The maximum cooling power available is 1 kW, which allows
the electron beam current to be used up to 130 µA. Indeed, at this current, the beam deposit 700 W
in the target, and upon adding the contributions from the fans and the heaters used to stabilize
the target temperature, the total heat load approaches 1 kW;

• two dummy targets, which are empty replicas of the cryogenic cells. They are used to study the
effects of the target walls;

• an optic target, which is made of five 1-mm thick carbon foils spaced by 3.75 cm from each other.
This target is mainly used to perform the optics calibration of the spectrometer. Between Spring
and Fall 2016, four additional foils were added to improve the optics calibration;
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• an empty target, which is used to reduce radiation in the Hall during invasive beam studies;

• a carbon hole target, which is made of a single carbon foil with a 2-mm diameter hole at its center.
This target is used to position the beam at the center of the target;

• a BeO target: this target glows when hit by the beam, which allows a direct visualization of the
beam position on the target thanks to a camera. This target is used during the beam centering
procedure;

• a carbon target, which is made of a single 1-mm thick carbon foil;

• a target which is made of an empty aluminum cylinder. This target is used to check that the beam
is not slanted.

2.3 The DVCS experiment apparatus
Hall A is permanently equipped with two High Resolution Spectrometers (HRS), one on either side of
the beam, whose polarizations can be switched to detect either negatively or positively charged particles.
For this DVCS experiment, the scattered electrons are detected in the Left HRS (LHRS), while the Right
HRS (RHRS) is not used.

In order to detect the photon emitted by the DVCS process, a custom electromagnetic calorimeter
has been built and installed between the beam pipe downstream of the target, and the RHRS (see Fig.
2.5).

Finally, the recoil proton is not detected. However, it is identified thanks to theM2
X = (e+p−e′−γ)2

missing mass technique which will be detailed in section 4.6.3.
The detectors and the data acquisition system of the experiment will now be presented in more detail.

Figure 2.5: Schematic representation of the DVCS experimental setup. The target system is represented
as the white sphere while the beam pipe downstream of the target is represented in orange. The scattered
electrons are detected in the Left High Resolution Spectrometer (light blue) and the emitted photons are
detected in a custom electromagnetic calorimeter (black). The recoil protons are not detected.

2.3.1 The High Resolution Spectrometer
The High Resolution Spectrometer is made of a set of superconducting magnets bending the charged
particles trajectory at 45◦ upward towards a detector package. The magnet set has a QQDnQ design: two
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quadrupoles followed by an indexed dipole, followed by a final quadrupole. The quadrupoles improve the
performances of the spectrometer, acceptance and resolution wise, and the dipole selects the momentum
of the particles sent towards the detector package. The value of this selected momentum is called “central
momentum” of the spectrometer. One will notice that compared to a uniform-field dipole, the indexed
one has an additional focusing effect which allowed to reduce the number of quadrupoles compared to
the initial QQQDQQ design.

The spectrometer has a momentum range between 0.3 and 4.0 GeV/c, and an acceptance of ±4.5%
relative to its central momentum. Its angular acceptance is ±30 mr horizontally and ±60 mr vertically.

In the detector package (see Fig. 2.6), the charged particles first travel through two sets of Vertical
Drift Chambers (VDCs). The VDCs are inclined at an angle of 45◦ with respect to the nominal particle
trajectory. Each of them is made of two wire planes oriented at 90◦ to one another, and are filled with
an argon (62%) - ethane (38%) gaz mixture. The VDCs provide tracking information about the charged
particles, which then allow to reconstruct the event vertex, the particle momentum, and the particle
scattering angles at the target through the use of an optics matrix. The spectrometer optics will be
explained in more detail in section 3.2.2.

The charged particles then travel through two sets of scintillators (S0 and S2) and a gas Cherenkov
detector, which are used for triggering. S0 is made of a single 10 mm thick plastic paddle, while S2 is
made of sixteen 5 mm thin ones. Each scintillator paddle is viewed by two photomultipliers (PMTs). The
time resolution per plane is approximately 0.30 ns.

The gas Cherenkov detector is located between S0 and S2. It is filled with CO2 at atmospheric
pressure, and it has 10 spherical mirrors each viewed by a PMT. Moreover, the detector has a threshold
for pions at 4.8 GeV/c while it is 17 MeV/c for electrons, so that it also allows to discriminate electrons
from pions.

The final detectors of the spectrometer are two layers of electromagnetic calorimeters called Pion
Rejectors (PR). Both layers are made of 34 lead glass blocks of dimensions 15 cm × 15 cm × 30 cm,
optically coupled to PMTs. As their names suggest, these detectors are used to discriminate electrons
from pions, as electrons and hadrons will not deposit the same amount of energy in them. Combining
the gas Cherenkov detector and the Pion Rejectors provides a pion suppression factor of 2 × 105 above
2 GeV/c.

Figure 2.6: Schematic representation of the spectrometer detector package.
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2.3.2 The DVCS electromagnetic calorimeter
The DVCS electromagnetic calorimeter is made of 208 PbF2 crystals laid out in a 13 × 16 rectangular
pattern (see Fig. 2.7). They are 3 cm × 3 cm × 18.6 cm large, which corresponds to 20 radiation
lengths, and they are wrapped in Tyvek c© (internal wrapping) and Tedlar c© (external wrapping) to avoid
light transmission from one block to another. Each crystal is optically coupled to a fast response PMT
(Hamamatsu R7700), capacitively coupled to a pre-amplifier. The choices for this design are motivated
by the following properties [52]:

• PbF2 is a radiation hard, Cherenkov medium. Thanks to the absence of scintillation light, the
calorimeter is insensitive to low energy particles. Moreover, since Cherenkov light pulses are short,
coupled with fast response PMTs and appropriate electronics, it allows to greatly minimize pile-up;

• the short radiation length minimizes fluctuations in light collection;

• the small Molière radius (2.2 cm) minimizes energy leakage at the edges of the calorimeter. A
shower will be contained within nine adjacent blocks, with 90% of the energy in the central block.
This also allows the separation of showers from the π0 decay into two photons without requiring the
calorimeter to be too far away from the target, as this distance is chosen so that the two showers
are separated by at least 9 cm (3 blocks);

• because of the large number of pile-ups from low energy γ-rays, the total energy deposited in the
calorimeter averaged over time can be rather consequent. However, since the averaged pile-ups
create a continuous signal, they are filtered by the capacitive coupling.

On the other hand, the energy resolution of the PbF2 blocks is rather low, with only 1-2 photo-electron
detected per MeV. The energy resolution of the calorimeter is the main limiting factor of this experiment.

Figure 2.7: Picture of the front face of the DVCS electromagnetic calorimeter.

Several layers of shielding have been added in order to prevent damage to the calorimeter and reduce
the background:

• the calorimeter is installed in a light-tight black box in order to protect the PMTs from being
damaged by direct exposure to the Hall lighting;

• beam line shielding has been added in order to protect the calorimeter from radiation produced by
multiple scattering from the target chamber or the beam pipes (see Fig. 2.8). The “nose shielding” is
composed of a triangular and a rectangular tungsten plate located close to the scattering chamber.
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The triangular plate protects the first column of the calorimeter closest to the beam line from
particles coming from the target, while the rectangular plate protects the side of the calorimeter from
radiation coming from the beam pipe. An additional lead half cylinder placed further downstream
completes the shielding provided by the rectangular tungsten plate;

• in order to limit the number of low energy γ-rays hitting the calorimeter, two rectangular plastic
plates are installed in front of the calorimeter, one of them being inside of the black box.

Figure 2.8: Sketch of the beam line shielding protecting the calorimeter. (Figure extracted from [67]).

2.3.3 The Data Acquisition (DAQ)
In addition to a custom detector, this DVCS experiment needs a specific data acquisition system in order
to deal with background noise and high counting rates. First, the standard Hall A data acquisition
system will be briefly presented, and then some additional details will be given about the DVCS custom
electronics and trigger.

2.3.3.1 The Hall A data acquisition system

The DAQ is controlled by a software called CODA (CEBAF Online Data Acquisition), which has been
developed at JLab. It is a toolkit of software components from which data acquisition systems can be
built and customized.

As a general rule, each detector is connected to Analog Digital Converters (ADCs), and in some cases
Time-to-Digital Converters (TDCs) and/or scalers, which are gathered into VME crates, one or more
crates per detector depending on the number of channels the detector has. Each VME crate is controlled
by a Read-Out Controller (ROC), which is connected to the Trigger Supervisor (TS) which controls
several triggers depending on the experiment settings. When a trigger is fired, the Trigger Supervisor
requires the recording of the data. The ROCs gather the data from the VME crates, buffer them in
memory, and then send these buffers to the Event Builder (EB). The EB builds the event from the pieces
sent by several ROCs, and then passes it to the Event Recorder (ER) which writes the data on a local
disk. These data are subsequently copied to the Mass Storage tape Silo (MSS) for long term storage, and
erased from the local disk.

The Trigger Supervisor will accept a new trigger only when all the ROCs are available. As long as
one or more ROCs are busy processing data, a VETO is sent to the Trigger Supervisor which will not
accept any new trigger, resulting in acquisition dead time.

2.3.3.2 The Analog Ring Samplers (ARS)

Because of the high luminosity of the experiment, and the proximity of the calorimeter to the beam pipe,
high event rates and pile-ups are expected. As a consequence, a specific DAQ device has been designed
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for the calorimeter, based on a chip developed at the CEA of Saclay (France): the Analog Ring Sampler
(ARS) [68].

Each of the 208 calorimeter channel is connected to an ARS, which samples the data at 1 GHz. An
ARS contains a circular array of 128 capacitors, and each 1 ns, the ARS stores the data in the next
capacitor of the array. Each capacitor is thus overwritten every 128 ns, and at any point in time, a 128 ns
data sample is stored in the ARS. This 1 GHz sampling allows to separate two pile-up photons as long
as they are separated by at least 4 ns (see Fig. 2.9).

When a trigger is fired and the Trigger Supervisor requires the recording of the data, the data
sampling by the ARS array is stopped, and the content of the capacitors is digitized, read-out and
recorded. However, the ARS array generate a large amount of data which makes the digitization process
quite lengthy and creates a large dead time of 128 µs.

Figure 2.9: Example of an ARS signal with two piled-up photons. The black histogram is the ARS signal.
The green and red histograms are the fitted signals from the two photons.

2.3.3.3 The trigger system

In order to minimize the acquisition dead time, a two-level trigger has been designed. The first level is
a coincidence between the Scintillator S2 and the Cherenkov detector of the spectrometer. The second
level is a coincidence between the spectrometer and the calorimeter.

The signal from each block of the calorimeter is continuously sampled by an ARS, but a copy of this
signal is also sent to a flash-ADC which integrates it over 128 ns. When the first level trigger is fired,
the Trigger Supervisor sends a STOP signal to the ARS array, stopping their sampling of the data, and
orders the read-out of the flash-ADCs. Then, the sum of the signals integrated by the flash-ADCs over
every 2x2 neighboring calorimeter blocks is computed. If at least one of the sums yields a result higher
than a set threshold, a VALID signal is sent to the Trigger Supervisor which then requires the read-out
of the event from the ARS array.

If the first trigger level, from the spectrometer, is not validated by the second level, from the calorime-
ter, a Fast Clear signal is issued to the ARS array, which are reset before resuming the data sampling. If
a Fast Clear is issued, the total acquisition dead time is then only 500 ns, which is negligible compared
to 128 µs.



Chapter 3

Calibration of detectors

Prior to the data analysis and the extraction of DVCS cross sections, the calibration of the detectors is a
critical step that requires utmost attention. The calibration is extremely important to control the results
and minimize as much as possible systematic uncertainties.

In the first part of this chapter, the calibration of a beam line component, the raster, will be presented.
Then, the second part will deal with the High Resolution Spectrometer, with particular emphasis on its
optics. Finally, a detailed description about the energy calibration of the calorimeter will be provided.

3.1 Beam line calibration
The calibration of most of the beam line components has been briefly described in the previous chapter.
This section will only focus on the raster calibration, which has been a part of my work.

3.1.1 Raster calibration
As described in section 2.2.1.5, the raster is made of two sets of two dipoles synchronized with each other
which deflect the beam at high frequency orthogonally to the target in a plane (x, y). However, the BPM
electronics are not fast enough to track the beam position when deflected by the raster and they can
only provide averaged values. Because of this, the BPMs reading cannot be relied on directly to measure
the beam position at the target. Instead, the current in the raster coils must be used. The goal of the
calibration is to compute coefficients allowing to reconstruct the orthogonal vertex position (vx, vy) from
the current in the raster coils [69].

The raster calibration is performed against the BPMs, and relies on the assumption that the two
sets of dipoles are synchronized with each other so that they may be assimilated to a single set. As the
calibration method is identical for both axis x and y, and for both BPMs, the description will be limited
to one BPM for the x axis.

If Ix and dIx are respectively the mean value and the standard deviation of the current in the raster
along x, and xbeam and dxbeam are respectively the mean value and the standard deviation of the beam
position in x measured by the BPM, then the raster calibration computes a slope a and an offset b as
shown in Eq. (3.1) and (3.2):

a = dxbeam
dIx

, (3.1)

b = xbeam − Ix
dxbeam
dIx

. (3.2)

In Eq. (3.1), using the standard deviations dIx and dxbeam allows to compute the dependence of
the beam position on the raster current despite the BPM electronics being too slow compared to the
raster. In Eq. (3.2), using the mean values Ix and xbeam also eliminates the effect of the BPM electronics
slowness, and the computed offset b allows to simultaneously take into account the beam position offset
and ADC pedestals.

These coefficients a and b then allow to correct the effects of the raster on the vertex position (Eq.
(3.3)), and the small dependence of the invariant mass W 2 on the raster current allows to check the
effectiveness of the correction as can be seen in Fig. 3.1.

vx = a ∗ Ix + b. (3.3)

38
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Figure 3.1: Dependence of the reconstructed invariant mass W 2 = (e+ p− e′)2 of the elastic scattering
process ep → e′p′ against the current in the raster coil deflecting the electron beam vertically (y axis),
before (blue) and after (red) the raster calibration. The reconstruction of the scattered electron direction
depends on the vertex. The invariant mass W 2 becomes independent from the raster current after
calibration.

During Spring 2016, a raster power supply failure caused the two sets of raster coils to be slightly out
of synchronization with respect to each other. With no synchronization monitoring system in place at
that time, this issue remained unnoticed during several days, and impacted over 50% of the statistics of
one kinematic setting (kin48_3), with no solution to correct for the introduced errors. However, a Geant4
simulation study showed that the effects of this issue on the experiment variables were smaller than the
experimental resolution. A monitoring system was later implemented to avoid another occurrence of the
incident.

3.2 The High Resolution Spectrometer calibration
The spectrometer calibration can be separated into two main parts: the individual detectors from the
detector package, and its optics. The first part of this section will give only a brief description of the
calibration of the detector package as this has not been part of my work. The second part of this section
will provide details about the optics calibration.

3.2.1 The detector package calibration
As described in section 2.3.1, the spectrometer detector package is made of two sets of VDCs, two sets
of scintillators, a gas Cherenkov detector, and two layers of electromagnetic calorimeters called Pion
Rejectors.

The VDCs rely on the relation between drift distance and drift time in order to provide tracking
information. By measuring the drift time, one can deduce the distance of a particle trajectory to a VDC
wire, assuming that a null drift time corresponds to a null drift distance. It is thus important that the
time offset of each wire with respect to another is as close to zero as possible. The wires of the VDCs are
grouped together in several TDC modules. The calibration of the time offset t0 of the VDCs is performed
by smoothing and differentiating each TDCs spectrum, and adjusting the maximum slope point of each
TDC to the same value close to zero [70].

The scintillator S2 provides timing information for the detected particle. However, the sixteen scin-
tillator paddles which compose S2 may have different time offsets with respect to each other. In order
to align the different time offsets, the mean values of the time distributions of each paddle are extracted
and used to shift the respective offsets to zero [71].

The gas Cherenkov and Pion Rejectors allow to discriminate electrons from pions as they do not
deposit the same amount of energy in these detectors. In order to allow this identification, the PMTs
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of each detector need to be calibrated so that their gains are equals. This calibration is performed by
aligning the electron energy deposits seen by each PMT of a given detector. Indeed, because of the
very small momentum acceptance of the spectrometer, every detected electron has roughly the same
energy and thus should deposit identical amounts in each PMT of the same detector. In the specific
case of the Cherenkov, the PMT resolution allows the one-photo-electron peak to be distinguished. As a
consequence, the gain alignment of the Cherenkov PMTs can be done with the one-photo-electron peak
instead, which is more precise.

While this calibration allowed to align the gains of each PMT within a given detector, a gain dis-
crepancy between the two layers of the Pion Rejectors still remained. In order to further improve the
calibration, two normalization factors W1 and W2 were computed for each kinematic setting so that the
Minimum Ionizing Peak of the two layers both lie at around 500 ADC channels, and their sum (see Eq.
(3.4)) is around 1000 [72]:

AelectronPRsum =
AelectronPR1

W1
+
AelectronPR2

W2
. (3.4)

3.2.2 The spectrometer optics
A thorough description of the spectrometer optics and its calibration procedure can be found in [73]. The
goal of this section is to give a simplified summary of the spectrometer optics calibration process before
presenting its results for this experiment.

3.2.2.1 The optics matrix

As described in section 2.3.1, the spectrometer is made of four magnets in a QQDQ design, which guide
charged particles towards a detector package. In particular, in the vicinity of the VDCs (see Fig. 2.6),
there is an area called “focal plane”. At the VDCs, the spectrometer measures the charged particles
positions and their propagation directions which can then be transported to the focal plan where they
are noted respectively (xfp, yfp) and (dxfpdzfp

,
dyfp
dzfp

) = (θfp, φfp). From these four variables, one is then able
to reconstruct, at the target, the event vertex ytg, the particles vertical and horizontal scattering angles
θtg and φtg, and their relative momentum δtg = P−P0

P0
, where P is the particle momentum and P0 is the

central momentum of the spectrometer:

ytg =
∑
j,k,l

5∑
i=1

C
Yjkl
i xifpθ

j
fpy

k
fpφ

l
fp. (3.5)

The reconstruction of these variables at the vertex from the ones at the focal plane is made by the
intermediate of an optics matrix, whose first order approximation can be written as:

δtg
θtg
ytg
φtg

 =


〈δtg|xfp〉 〈δtg|θfp〉 0 0
〈θtg|xfp〉 〈θtg|θfp〉 0 0

0 0 〈ytg|yfp〉 〈ytg|φfp〉
0 0 〈φtg|yfp〉 〈φtg|φfp〉



xfp
θfp
yfp
φfp

 . (3.6)

As one can see, the relative momentum δtg and the angle θtg mainly depend on xfp and dxfp
dzfp

because
of the spectrometer dipole momentum-dependent bending angle. On the other hand, ytg and φtg are
independent from xfp and dxfp

dzfp
.

Of course, a first order approximation would not yield results precise enough, and in practice, an
expansion up to fifth order is used. In Eq. (3.5), ytg (with similar equations for the other variables θtg,
φtg, δtg) is related to the four variables in the focal plane by the optic matrix elements CYjkli (CΘjkl

i ,
C

Φjkl
i , C∆jkl

i respectively), with i+j+k+l ≤ 5. Symmetries of the spectrometer further require (k+l) to
be odd for Yjkl and Φjkl, and even for Θjkl and ∆jkl.

3.2.2.2 The optics calibration process

The goal of the spectrometer optics calibration is to compute the matrix elements CYjkli , CΘjkl
i , CΦjkl

i ,
C

∆jkl

i . For this purpose, the following calibration process has been performed:
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Figure 3.2: Schematic representation of the optics target made of five thin carbon foils. This target was
used during the Spring 2016 optics calibration.

• step 1 is the vertex reconstruction. Data are taken on the optics target, made of 5 or 9 thin
carbon foils (see Section 2.2.2 and Fig. 3.2). Each foil provides an expected vertex value y0

tg while
being correlated to different areas of the focal plane. The optics matrix coefficients CYjkli are then
computed in order to minimize the difference between expected and reconstructed vertex values,
which is done by minimizing the aberration function in Eq. (3.7):

∆(y) =
∑
events

∑
j,k,l

5∑
i=1

C
Yjkl
i xifpθ

j
fpy

k
fpφ

l
fp − y0

tg

2

; (3.7)

• step 2 is the electron scattering angle reconstruction. Data are taken with a thick metal plate with
holes, called sieve, inserted in front of the spectrometer entrance1 (see Fig. 3.3). Each hole provides
expected values θ0

tg, φ0
tg for the electron scattering angles, while being correlated to different areas

of the focal plane. Similarly to step 1, the optics matrix coefficients CΘjkl
i and C

Φjkl
i are then

computed by minimizing the aberration functions ∆(θ) and ∆(φ) (similar to Eq. (3.7));

• step 3 is the electron momentum reconstruction. Elastic scattering data ep → e′p′ are taken
on the liquid hydrogen target with the spectrometer at a fixed angle, while varying the central
momentum of the spectrometer. Elastic scattering has the interesting property that scattering
angles and momenta are correlated. The angle of the spectrometer fixes the expected momentum
of the detected particle, and changing the central momentum allows to scan different values of
relative momentum δtg while illuminating different areas of the focal plane. As a consequence, each
central momentum value selected provides expected values δ0

tg correlated to different areas of the
focal plane. Similarly to steps 1 and 2, the optics matrix coefficients C∆jkl

i are then computed by
minimizing the aberration functions ∆(δ).

3.2.2.3 The Spring 2016 calibration

Prior to the start of the Spring 2016 run period, a critical issue was detected with the first quadrupole
(Q1), of the spectrometer. It was discovered that the aging superconducting magnet properties were
degraded to the point that its critical current threshold, above which Q1 would quench, was too low for
most of the required settings of the experiment. More precisely, out of all the kinematic settings of the
experiment, only kin48_1 had setting requirements that could be met by Q1. Every other kinematic
settings would need a current too high in the magnet, which would make it quench.

Without the ability to replace Q1 by a new magnet before the start of the Spring 2016 run period, it
was decided to run Q1 with its maximum current attainable without quenching. This effective detuning of
Q1 with respect to the other three magnets of the spectrometer, which were run at their proper settings,
resulted in a quite large modification of the detector optics properties and acceptance, which then needed
to be carefully studied and calibrated. Details about the acceptance will be given in section 4.5.2.3.

1In practice, the data acquisition for step 1 and 2 can be performed in one go, by using both the optics target and the
sieve plate at the same time.
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Figure 3.3: Picture of the sieve used during the Spring 2016 optics calibration.

Because the detuning of Q1 was different for each kinematic setting, a separate optics calibration had
to be performed for each of them. In total, during the spring 2016 run period, four kinematic settings
have been studied, with the settings of Q1 being, in percentage of current actually used over the nominal
current which should have been utilized: 100.0%, 85.6%, 74.4% and 62.5% (see Tab. 3.1).

Kinematic setting IusedQ1
Inominal
Q1

48_1 100.0%
48_2 62.5%
48_3 85.6%
48_4 74.4%

Table 3.1: Summary of the Q1 current tuning for each kinematic settings of Spring 2016.

In order to accelerate the optics calibration process and save beam time for the acquisition of actual
DVCS data, it was decided to set the spectrometer at a small angle (16.632◦) to increase counting rates.
However, this had the consequence of worsening the optics reconstruction on the edges of the target
for DVCS data which were taken with the spectrometer at a larger angle. Indeed, when set at a small
angle, the target seen by the spectrometer looks shorter and the focal plane area illuminated is smaller.
As a consequence, the focal plane areas illuminated by the edges of the target in DVCS data were not
illuminated during the optics calibration (see Fig. 3.4), and thus could not be properly calibrated.

In order to correct this effect, the solution which was devised consisted in lowering the expansion of
the optics matrix down to 2nd order. Indeed, a high order polynomial expansion would give very good
results inside illuminated areas of the focal plane, but would very quickly diverge outside. On the other
hand, while a lower order polynomial expansion yields a less precise calibration, the divergence outside
of the illuminated areas will be attenuated.

As can be seen in Fig. 3.5, the use of a 2nd order polynomial expansion allowed to greatly improve
the optics reconstruction at the target edges compared to the 5th order expansion.

However, as can be seen in Fig. 3.6 (left), the calibration of the optics matrix with a 2nd order
polynomial expansion alone is not completely satisfactory, as there is a remaining dependence between
the vertex2 vz and the angle φtg for the three kinematic settings for which Q1 had to be operated with a
suboptimal current. Furthermore, the reconstructed target length turned out to be slightly shorter than
the expected 15 cm.

2ytg is the vertex expressed in a plane orthogonal to the spectrometer direction whereas vz is expressed along the beam
direction.
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Figure 3.4: Distribution of events in the focal plane coordinates (φ, y) for DVCS data with the spectrom-
eter at 37.14◦ (left) and for optics calibration data with the spectrometer at 16.632◦ (right). The areas
circled in red are focal plane areas illuminated by DVCS data but missed by the optics calibration. The
small areas with a higher density of events on the figure on the right side correspond to the holes of the
sieve plate.

Figure 3.5: Reconstructed vertex vz along the beam direction against reconstructed angle φtg for data
taken on the optics target with Q1 current at 100% of its nominal value (kin48_1). Left (Right): the
optics matrix calibration has been performed with a polynomial expansion up to 5th (2nd) order. The
carbon foils at -7.5 cm and 7.5 cm are very distorted with a 5th order polynomial expansion. Their
reconstruction is improved with a 2nd order expansion.

Figure 3.6: Reconstructed vertex vz along the beam direction against the reconstructed angle φtg for
data taken on the optics target with Q1 current at 62.5% of its nominal value (kin48_2). Left: the optics
matrix calibration has been performed with a polynomial expansion up to 2nd order. Right: empirical
rotation and rescaling corrections have been added after the optics calibration.
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It was thus decided to perform an empirical correction to the vz–φtg dependence by applying a rotation
in this plane, and a correction to the target length by multiplying the reconstructed vertex by a scaling
factor. The corrected vertex and angle are given by the expressions:

vcorrz = µrescale {vz − φtg [(1− cos θcorr) tan θcorr + sin θcorr]} , (3.8)

φcorrtg = φtg cos θcorr(1 + tan2 θcorr), (3.9)
with the rotation angle θcorr and the rescaling factor µrescale for each kinematic summarized in Tab. 3.2.
The corrected vertex ycorrtg can then be recomputed through the expression:

ycorrtg =
[
vx cos (θHRS + arctanφcorrtg )

sin (θHRS + arctanφcorrtg ) − vcorrz

] sin (θHRS + arctanφcorrtg )
cos (arctanφcorrtg ) , (3.10)

with vx the vertex along the horizontal axis orthogonal to the beam direction, and θHRS the spectrometer
angle.

Kinematic setting θcorr (rad) µrescale
48_2 0.2290 1.056
48_3 0.2372 1.053
48_4 0.2051 1.042

Table 3.2: Summary of the values of the rotation angles θcorr and rescaling factors µrescale for each
kinematic setting.

Although not perfect, the calibration of the optics matrix with a 2nd order polynomial expansion
followed by the empirical correction (Eq. (3.8) and (3.9)) allowed to obtain satisfactory results, as shown
in Fig. 3.6 (right) and 3.7: the vz–φtg dependence is corrected and the carbon foils of the optics target
are reconstructed at their expected position (up to a small offset).

Figure 3.7: Reconstructed vertex vz along the beam direction for data taken on the optics target with Q1
current at 62.5% of its nominal value (kin48_2). Left: the optics matrix calibration has been performed
with a polynomial expansion up to 5th order. Right: the optics matrix calibration has been performed
with a polynomial expansion up to 2nd order, followed by the application of the empirical correction of
Eq. (3.8) and (3.9). The red lines represent the expected carbon foils positions if there is no offset. On
the left figure, the carbon foil on the far left is not reconstructed at a correct position.

3.2.2.4 The Fall 2016 calibration

Between the Spring and Fall 2016 run periods, the faulty superconducting Q1 magnet was replaced with
a classic water cooled one. Unfortunately, it was discovered after the end of the Fall 2016 run period that
this magnet was saturating at the high currents required by the experiment, resulting in a magnetic field
1.6% to 7.2% lower than expected [74], depending on the kinematic setting. As the optics calibration had
been performed at a lower momentum where Q1 did not saturate, this resulted in a significant degradation
of the optics reconstruction.
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In order to compensate for this effect, the optics matrix elements needed to be corrected. This can
be done with COSY [75]. Indeed, COSY is a tool able to model the magnetic fields of the spectrometer
magnets, which allows to simulate the transportation of charged particles from the target to the focal
plane. While the simulation does not allow to predict precisely the optimal optics matrix from scratch, it
accurately describes small variations in the optics due to magnetic fields changes [76]. Thus, the simulation
allowed to compute the corrections to the optics matrix elements necessary to take into account the effect
of the saturation (see Fig. 3.8 and 3.9).

Figure 3.8: Reconstructed vertex vz for data taken on the optics target with the Q1 magnet saturated at
7.2%, before correction of the optics for the saturation (blue) and after correction (red).

Figure 3.9: Reconstructed vertex vz against reconstructed vertical scattering angle φ for data taken on the
optics target with the Q1 magnet saturated at 7.2%, before correction of the optics for the saturation (left)
and after correction (right). The correlation between the vertex position and the angle φ is successfully
corrected.

3.3 The calorimeter energy calibration
As described in section 2.3.2, the DVCS calorimeter is made of 208 PbF2 crystals optically coupled to
PMTs and is used to measure the position and energy of photons emitted in the DVCS process. Because
its energy resolution is quite low, it will be the main limiting factor of the experiment, which makes its
calibration all the more important.
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The calibration of the calorimeter is performed in three steps: cosmic rays, elastic scattering, and
π0-based calibrations. As it will be described in the following sections, the nomenclature comes from the
processes involved in the different calibrations.

3.3.1 Cosmic rays calibration
First comes the cosmic rays calibration, though it is better described as being only a preliminary step.
This calibration is based on the measurement of cosmic rays which travel across the calorimeter vertically.

To trigger the data acquisition of the calorimeter during this calibration, two plastic scintillators are
used. One scintillator paddle is placed above the calorimeter, while the other is placed below. When a
cosmic ray travels across the calorimeter, it will be detected by both scintillators in coincidence. Selected
cosmic rays need to be vertical to ensure that they travel across the same distance in the calorimeter
blocs and thus deposit the same amount of energy in each of them. The selection of vertical cosmic rays
is preformed by requesting a sufficiently large amount of energy deposit in the top and bottom blocks of
a calorimeter column.

The detected cosmic rays are Minimum Ionizing Particles (MIP). The calibration process then consists
of adjusting the High Voltages (HV) of each individual PMT, using Eq. (3.12), so that the signal
amplitude measured by the ADCs in each calorimeter block are roughly equal. α and β are constants,
and β is correlated to the number of dynodes in the PMT: in this case, β ≈ 7.

GainPMT = α ∗HV βPMT , (3.11)

GainPMT

Gain′PMT

=
(
HVPMT

HV ′PMT

)β
. (3.12)

As the energy deposited by MIPs in each crystal is expected to be around 35 MeV, this also provides
a preliminary energy calibration for the calorimeter and allows to estimate the High Voltages that will
need to be used for GeV photons. This preliminary calibration is performed in order to provide a starting
point for the elastic calibration.

Another important goal of the detection of cosmic rays is to check that every calorimeter channel is
working and properly wired before the actual data taking of the experiment. A simple check-up is usually
performed every time an intervention is done on the calorimeter or the DAQ and is suspected to have
been able to disturb some components. This is most important when the calorimeter is being re-stacked
(re-installed) in the experimental Hall at the beginning of a run period, as there is always a risk for a
faulty channel (loose connector, damaged cable, miswired channels, etc...).

3.3.2 The elastic calibration
Second comes the elastic calibration. It is based on the detection of elastic scattering events ep → e′p′,
where the scattered proton is detected in the spectrometer (whose polarity is reversed), and the scattered
electron in the calorimeter. Since it is a kinematically constrained reaction, one can compute the expected
momentum of the scattered electron from the momentum of the scattered proton. Then, calibration
coefficients for the calorimeter can be computed in the following way.

If En is the electron energy for the nth event, An,i is the signal amplitude in the ith bloc of the
calorimeter for the nth event, and Ci is the calibration coefficient associated with the ith bloc, then one
gets:

En =
208∑
i=1

CiAn,i. (3.13)

In order to determine the calibration coefficients, one as to minimize the following χ2:

χ2 =
Nevents∑
n=1

(
En −

208∑
i=1

CiAn,i

)2

, (3.14)

where, by energy conservation, En = Eb +Mp−Epn, with Eb the beam energy, Mp the proton mass, and
Epn the recoil proton energy. This leads to:

∂χ2

∂Cj
= −2Cj

Nevents∑
n=1

(
En −

208∑
i=1

CiAn,i

)
An,j = 0, ∀j = 1, ..., 208, (3.15)
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208∑
i=1

Ci

(
Nevents∑
n=1

An,iAn,j

)
=
Nevents∑
n=1

EnAn,j , ∀j = 1, ..., 208. (3.16)

Equation (3.16) can be rewritten as the matrix equation AC = B, with Ai,j =
Nevents∑
n=1

An,iAn,j and

Bi =
Nevents∑
n=1

EnAn,i. The calibration coefficients Ci can then be computed as C = A−1B.

Because of the very small acceptance of the spectrometer and the kinematic constrains of the elastic
process, it is necessary to move the calorimeter back at a distance of 5.5 to 6 m in order to illuminate its
full height, and to move the calorimeter at 3 different angles in order to illuminate its full width.

An elastic calibration was performed at the beginning and a few weeks before the end of each run
period. An energy resolution of 3.6% at 4.2 GeV, and of 3% at 7.0 GeV was measured [71].

3.3.3 The π0 energy calibration
Finally comes the π0 energy calibration. While the elastic calibration provides reliable results, the process
has the downside of being quite lengthy (∼one day of dedicated beam time), so it could not be performed
very often. However, because of radiation damage, the calorimeter suffered from a continuous loss of
gain through the experiment, while simultaneously losing its radiation hardness. Near the end of the
experiment, the reconstructed π0 mass could decrease by ∼10 MeV within a few days (see Fig. 3.10). An
accurate energy calibration faster to perform than the elastic one was thus required.

Figure 3.10: Reconstructed π0 invariant mass against time for the Fall 2016 run period. (Courtesy of Dr.
C. Muñoz Camacho).

3.3.3.1 Calibration algorithm

The π0 calibration relies on the reconstruction of the π0 invariant mass in the process ep → e′p′π0. As
this electro-production of π0 can be measured in the same kinematic conditions as the DVCS process, no
dedicated beam time needs to be taken from the acquisition of DVCS data. Moreover, the π0 production
rates are such that an independent calibration can be performed approximately every day. Thus, the π0

calibration fulfills the experiment requirements.
The calibration method described in [77] was applied. The two photons produced by the decay of the

π0 in the process π0 → γ1γ2 are detected in the calorimeter. From their energies p1i and p2i and the
angle between them θi, where i refers to the event number, one can reconstruct the π0 invariant mass mi

as:

m2
i = 2p1ip2i(1− cos(θi)). (3.17)

If E(k)
ji is the measured energy deposited by the photon j in the calorimeter block k for event number

i, then the photon energy pji can be computed as the sum of the energies E(k)
ji :

pji =
∑

k∈cluster

E
(k)
ji , (3.18)
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with k running over the blocks (cluster) in which the photon deposited its energy. The angle θi is
measured from the photon positions in the calorimeter, which are reconstructed from the calorimeter
block positions and the energies E(k)

ji .
Furthermore, if εk is the correction coefficient computed by the calibration for the block k, then the

measured energy E(k)
ji is corrected as:

E
(k)
ji → (1 + εk)E(k)

ji . (3.19)

The goal of the π0 calibration then becomes the minimization with respect to εk of the quantity F
defined as:

F =
Nevents∑
i=1

(m2
i −m2

0)2 + 2λ
Nevents∑
i=1

(m2
i −m2

0), (3.20)

where m0 = 0.1349766 GeV [13] is the expected π0 mass, and λ is a Lagrange multiplier. The first term
of the right hand side of Eq. (3.20) represents the resolution on the reconstructed π0 invariant mass that
is being optimized, while the second term embodies the constraint 〈m2

i 〉 = m2
0.

The minimization of F can be difficult because of the non-linear dependence of m2
i on the block

energies E(k)
ji that appears in the reconstructed angle θi between the two photons (Eq. (3.17)). However,

if the correction coefficient εk is small, then changing the energy E(k)
ji by εk will have a negligible effect

on the angle θi, and will only rescale E(k)
ji . From this approximation, one gets:

∂m2
i

∂εk
≈ m2

i

E
(k)
ji∑

k

E
(k)
ji

. (3.21)

Then from Eq. (3.20) and (3.21), one can derive:

∂F

∂εk
= 2

Nevents∑
i=1

(m2
i −m2

0)∂m
2
i

∂εk
+ 2λ

Nevents∑
i=1

∂m2
i

∂εk
= 0, ∀k = 1, ..., 208, (3.22)

∂F

∂εk
= 2

Nevents∑
i=1

(
m2
i −m2

0 + λ+
∑
k

εk′
∂m2

i

∂εk′

)
∂m2

i

∂εk
= 0, ∀k = 1, ..., 208. (3.23)

The solution to Eq. (3.23) is then given by:

εk =
∑
k′

[C−1]kk′(D − λL)k′ , (3.24)

where:

Ckk′ =
Nevents∑
i=1

(
∂m2

i

∂εk

∂m2
i

∂εk′

)
, (3.25)

Dk = −
Nevents∑
i=1

(
(m2

i −m2
0)∂m

2
i

∂εk

)
, (3.26)

Lk =
Nevents∑
i=1

∂m2
i

∂εk
, (3.27)

λ = B + LTC−1D

LTC−1L
, (3.28)

B =
Nevents∑
i=1

(m2
i −m2

0). (3.29)

However, one will notice that the smallness of the correction coefficient εk required by the approxi-
mation in Eq. (3.21) is not directly compatible with the correction of the calorimeter gain, for which εk
may need to be rather larger. As a consequence, the π0 calibration is an iterative process. At the end of
the first iteration, a set of coefficients εk,1 have been computed to correct the calorimeter block energies
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as displayed in Eq. (3.19). The second iteration of the process will then compute a set of coefficients εk,2
so that Eq. (3.19) becomes:

E
(k)
ji → (1 + εk,1)(1 + εk,2)E(k)

ji . (3.30)
The iterative process is repeated Nit times until εk,n → 0,∀k = 1, ..., 208, and the final correction

coefficients Cπ0

k can then be expressed as:

Cπ
0

k =
Nit∏
l=1

(1 + εk,l), (3.31)

E
(k)
ji → Cπ

0

k E
(k)
ji . (3.32)

3.3.3.2 Calibration precision and results

According to [77], a good convergence εk,n → 0,∀k = 1, ..., 208 is obtained for a sample of 105 π0 events
after 8-10 iterations.

Tests with a Geant4 simulation showed that for this experiment, a day worth of data allows to
compute correction coefficients with a precision of 1-2% for blocks in the middle of the calorimeter, and
4-5% for the second blocks closest to the edges. Adding more statistics would only result in a very slight
improvement, while using less statistics would quickly decrease the precision. For instance, 1/4 of a day
of data would result in a precision of 4-5% in the middle of the calorimeter, and 10-15% for the second
blocks closest to the edges. A minimum of 3-4 iterations is required, while adding more iterations will
very slightly improve the results precision as well.

It was necessary to compromise between performing π0 calibrations as often as possible to correct
for the continuous loss of gain of the calorimeter, and maintaining a precision as high as possible. It
was thus decided to perform π0 calibrations with one day worth of data each. The number of iterations
of each calibration was set to 8, which is large enough to keep some margin with respect to simulation
uncertainties, while not making the calibration codes unnecessarily long to run.

The Geant4 simulation also showed that the π0 calibration does not work properly for the blocks on
the edges of the calorimeter, and especially its corners. The reasons are both a lack of statistics in these
specific regions, and energy losses because parts of the showers are leaking outside of the calorimeter.
This leads to instabilities in the algorithm which can then diverge. It was thus decided to not calculate
correction coefficients for these blocks. Instead, their coefficients were set to be equal to the mean value
of the coefficients of all the other blocks.

This calibration method allowed to successfully correct the loss of gain of the calorimeter for most
of the experiment running time, as can be seen in Fig. 3.11. But as shown in Fig. 3.12, the correction
coefficients could vary widely from one block to another. While most blocks did not need a correction
larger than 30%, a few of them very sensitive to radiation damage required corrections of the order of
∼ 200% to ∼ 300%.

Figure 3.11: Reconstructed π0 invariant mass before (blue) and after (red) the π0 calibration, for data
taken at the end of Fall 2016. The red curve on top of the red histogram is a Gaussian fit of the invariant
mass. The black line represents the expected π0 invariant mass. The π0 invariant mass mean value is
successfully corrected and its resolution is improved from 10.3 MeV (blue) to 10.0 MeV (red).
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Figure 3.12: Evolution of the π0 calibration coefficients against time (Fall 2016) for channels 147 (blue),
151 (red) and 157 (green). The black lines correspond to changes of the elastic calibration coefficients.
The large gap around November 14th corresponds to a beam down time during which the calorimeter
blocks recovered a little from radiation damage.

3.3.3.3 Fast darkening and correction

Unfortunately, during a few time periods, the loss of gain of the calorimeter was too fast for even the π0

calibration to correct, as can be seen in Fig. 3.13 (left): the reconstructed π0 invariant mass drifts by
∼6 MeV in the span of roughly 16 hours. This happened at the beginning of the Spring and Fall 2016
run periods, and more generally after long periods of a few weeks without beam. This is explained by
the fact that when the electron beam is off, the calorimeter naturally recovers from the radiation damage
by itself at a slow rate, as can be seen in Fig. 3.10. However, when the electron beam is turned on again,
the darkening effect comes back faster.

In order to tackle this issue, reducing the statistics used by the π0 calibration to run it more often
would be counter-productive, as this would result in a quite large loss of precision in the results. Instead,
it was decided to empirically correct run by run the π0 calibration coefficients by the ratio of the expected
π0 invariant mass over the reconstructed one (see Eq. (3.33)). This allowed to successfully correct the
remaining effect of the fast loss of gain of the calorimeter, as can be seen in Fig. 3.13 (right).

Cπ
0

k → Cπ
0

k

m0

mreconstruct
∀k = 1, ..., 208. (3.33)

Figure 3.13: Evolution of the reconstructed π0 invariant mass against run number before (left) and
after (right) empirical correction, for data taken at the beginning of Fall 2016. Each run represents
approximately one hour of beam time.



Chapter 4

The data analysis

In order to extract cross sections, unusable data because of running incidents must be identified and dis-
carded, proper DVCS events identification and selection need to be made while background contamination
has to be subtracted, and corrections are required to take into account experimental inefficiencies.

The first part of this chapter will present the data quality control. The second part will deal with
time and energy information extraction from the calorimeter raw ARS signals, while the third section will
briefly explain the spectrometer-calorimeter coincidence time correction. In the fourth part, the clustering
algorithm which allows to reconstruct the photons detected in the calorimeter will be described. Then,
the fifth section will present the DVCS event selection. Finally, the sixth part will give details about the
background subtraction, while the seventh will list the corrections that need to be applied because of
experimental limitations.

4.1 Data quality analysis
The first step of the data analysis is the control of the data quality. The goal is to identify and discard
data sets which are unreliable, for instance, because of incidents occurring during the experiment, poor
running conditions or abnormal detector readouts.

The first stage of the quality analysis consists on eliminating the runs with obvious incidents reported
during the experiment by shift workers. This includes, but is not limited to: trips or failures of the
power supplies of detectors and beam line components, cryogenic supply failures, unstable electron beam
position or high frequency of trips, missing detector channels and DAQ crashes. Runs with too few events
or a too short running time were all discarded as the vast majority of them have had an incident occurring
and were stopped prematurely because of it.

In the second stage of the quality analysis, a large collection of variables are scrutinized run by run,
and anomalies are singled out for further investigation. If the reason for the abnormal-looking behavior
is found to be inconsequential, the run is kept. Otherwise, or if no explanation is found, the conservative
decision is made to discard the suspicious run. The variables which are studied have been chosen so that
there are at least one per detector. The scrutinized variables are:

• the number of hits per paddle in the scintillator S2 TDCs, normalized by the total charge of the
run;

• the number of hits per PMT in the Cherenkov detector TDCs, normalized by the total charge of
the run;

• the average number of blocks hit per event per Pion Rejector layer;

• the average number of VDC wires hit per event and per VDC plane;

• the average number of VDC wire clusters per VDC plane;

• the number of events with a single track in the spectrometer, normalized by the total charge of the
run;

• the ratio of multi-tracks events over the total number of events with at least one track;

• the ratios of events with helicity -1, +1 or unknown over the total number of events;
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• several trigger scalers, normalized by the total charge of the run;

• the dead time of the run;

• the total charge of the run;

• the synchronization of the raster magnets (see Fig. 4.1);

• the raster calibration coefficients;

• the number of events in each calorimeter block with an integrated ARS signal higher than a chosen
threshold, normalized by the total charge of the run;

• the average arrival time of the ARS signal for each calorimeter block, defined here as the time when
the ARS signal has maximum amplitude.

Figure 4.1: Correlation between the currents in the two rasters along the y axis for run 13370. When
the two rasters are properly synchronized, their respective current along the same axis should be linearly
correlated and none of them should be constant. When not properly synchronized, the correlation shape
changes: in this case, the current in the first raster became constant in the middle of the run. A loss
of synchronization usually occurred when the raster power supplies accumulated too much radiation
damage.

Overall, the main reasons for discarding data have been runs being too short because of beam insta-
bilities or incidents, and raster issues. Depending on the kinematic setting, between 1% to 5% of the
total accumulated charge was deemed unreliable and discarded. At the end of this quality analysis, lists
of reliable runs were made.

4.1.1 The spectrometer-calorimeter loss of synchronization incident
During the Fall 2016 run period, a cable carrying a 100 kHz clock signal was found wrongfully plugged
into the live input of the Trigger Supervisor, resulting in random losses of synchronization between the
spectrometer and the calorimeter.

Indeed, the spectrometer and the calorimeter are synchronized so that, in a run, the nth event recorded
by the spectrometer corresponds to the nth event recorded by the calorimeter. As described in section
2.3.3, as long as a ROC is sending a VETO to the Trigger Supervisor because it is busy digitizing an
event, the TS will not accept any new trigger and the data acquisition is “frozen”. In fact, as the data from
the calorimeter takes the most time to record, the spectrometer is always “waiting for the calorimeter”.
However, because of the clock plugged into the live input, the TS will wrongfully believe the calorimeter
to be available when it is actually busy digitizing an event every time it receives a clock signal. If a new
trigger is fired when the spectrometer is available, the calorimeter is still busy and the TS is receiving a
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signal from the clock plugged in the live input, then the spectrometer will accept a new event while the
calorimeter will not be able to.

This has the consequence that the (n + k)th event recorded by the spectrometer then corresponds
to the nth event recorded by the calorimeter, with k an integer growing by one unit for each additional
event taken by the spectrometer. It is possible for the spectrometer to accept several events while the
calorimeter is busy recording one single event. This offset could occur at any time, for any run, and
happen any number of times in the same run. Unfortunately, this serious issue remained undetected for
almost four days, and approximately 30% of kin60_1 total statistics were compromised.

In order to recover the data and avoid this severe loss of statistics, the following procedure was created:

• first, the identification of event windows where an offset occurred is performed by using the Elec-
tronic Dead Time Monitor (EDTM). The EDTM is a 6 Hz clock signal sent to both the spectrometer
and the calorimeter to trigger an event1. These EDTM events are tagged with a specific identifier
to be easily distinguished from other events. Because the EDTM events in the calorimeter and the
spectrometer should be synchronized, a loss of synchronization of these events reveals the appear-
ance of an offset. The event where there start to be an offset is necessarily between the first EDTM
event where the loss of synchronization appears, and the previous EDTM event, where there was
no issue. As the EDTM is a 6 Hz clock, this corresponds to an uncertainty window of only a few
tens of events in which one cannot know where exactly the offset starts to exist and that needs to
be discarded;

• then, the determination of the value k of the offset is performed by looking at the number of events
waiting in a buffer to be recorded. Indeed, before being read-out and recorded, an event is first
stored in a buffer. When it is actually recorded, the event is then flushed from the buffer. When the
spectrometer takes additional events because of the clock plugged in the TS, they are stored in the
spectrometer buffer so that several events enter it, while the calorimeter buffer contains only one
event. Then, only one event is recorded and flushed from both the spectrometer and calorimeter
buffers. As a consequence, the number of events in the spectrometer buffer increases compared to
the calorimeter buffer. The number of additional events present in the spectrometer buffer when
an offset is detected yields the value k of the offset by which the events numeration needs to be
corrected.

This procedure allowed to recover all the runs affected by this issue with a negligible loss consisting
only of the few tens of events in the EDTM uncertainty windows which were discarded.

4.2 The reference shapes and the waveform analysis
The next step of the data analysis is one of its core components. The goal of the waveform analysis
is to extract from each raw calorimeter ARS signal the pulses arrival times and their amplitudes (see
Fig. 2.9). The amplitude, once multiplied by the calorimeter calibration coefficients, corresponds to the
energy deposited by photons in each PbF2 crystal.

In order to measure these values, the ARS pulses are fitted using reference shapes. The assumption is
made that the shape of a pulse is independent from its amplitude and remains unchanged. Thus, one can
fit the ARS pulses with reference shapes simply by adjusting their amplitude and arrival time to match
the raw data.

The reference shapes are determined individually for each of the 208 calorimeter blocks by using elastic
scattering data ep→ e′p′, where signals are the cleanest (low probability of pile-up). The reference shapes
are the average ARS pulses for each block, normalized so that their amplitude is equal to 1.

This section will now present in detail the fit algorithm, and explain the choices made for its param-
eters.

4.2.1 The baseline fit
The first step of the algorithm is to determine whether there is actually an ARS pulse to fit, or if the
signal is flat. For this purpose, a constant baseline b is fitted to the ARS data. This is done by the χ2

1the ratio of the number of EDTM events accepted by the TS over the total number of EDTM events gives an approxi-
mation of the live time (= 1 - dead time) which can be easily monitored during the experiment
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minimization:

χ2 =
imax∑
i=imin

(xi − b)2, (4.1)

which yields:

b = 1
imax − imin

imax∑
i=imin

xi, (4.2)

with {xi} the ARS signal, where i designates a 1 ns sample. The analysis window [imin, imax] is smaller
than the full 128 ns width of the ARS signals as they do not contain useful information close to 0 ns and
128 ns. Additional details will be provided in section 4.2.6.

Then, in order to determine if the baseline fit is good enough, one computes χ2
t :

χ2
t =

χ2
max∑

i=χ2
min

(xi − b)2, (4.3)

with [χ2
min, χ

2
max] the χ2 window. As the fit needs to be accurate only around the pulses (when they

exist), the χ2 window is smaller than the analysis one and centered around the time when the reference
shape reaches its maximum amplitude. Additional details will be provided in section 4.2.6.

The computed χ2
t is then compared to a threshold χ0. If χ2

t < χ0, the baseline fit is deemed to be
good enough, and there are no pulses in the ARS signal.

4.2.2 The one-pulse fit
In the case where χ2

t ≥ χ0, the baseline fit is not enough and a pulse must be fitted alongside the baseline.
This is done by minimizing the χ2:

χ2 =
imax∑
i=imin

(xi − a1hi − b)2, (4.4)

with {hi} the reference shape and a1 the amplitude parameter by which the reference shape must be
multiplied to match the data. However, Eq. (4.4) assumes that the ARS signal and reference shape have
exactly the same arrival time, which is not the case. To take into account the time offset t1 between the
ARS signal and the reference shape, hi must be shifted by t1 so that Eq. (4.4) becomes:

χ2(t1) =
imax∑
i=imin

(xi − a1(t1)hi−t1 − b(t1))2, (4.5)

whose minimization yields:
imax∑
i=imin

xihi−t1

imax∑
i=imin

xi

 =


imax∑
i=imin

h2
i−t1

imax∑
i=imin

hi−t1

imax∑
i=imin

hi−t1

imax∑
i=imin

1



a1(t1)

b(t1)

 , (4.6)

which allows to compute a1(t1) and b(t1) by matrix inversion.
In order to find t1, different values in a window [tmin1 , tmax1 ] are tested, by steps of 1 ns. For each

possible value of t1 in [tmin1 , tmax1 ], one computes:

χ2
t (t1) =

χ2
max∑

i=χ2
min

(xi − a1(t1)hi−t1 − b(t1))2, (4.7)

and the optimum value of t1 is the one which minimizes χ2
t (t1).

The minimum χ2
t (t1) computed is then compared to a threshold χ1. If min

{
χ2
t (t1)

}
< χ1, the 1-pulse

fit is deemed to be good enough (see Fig. 4.2).
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Figure 4.2: Waveform analysis of an ARS signal (blue) with a single pulse fitted (red).

4.2.3 The two-pulse fit
In the case where min

{
χ2
t (t1)

}
≥ χ1, the one-pulse fit is not enough and a second pulse must be fitted

alongside the first one. This is done by minimizing the χ2:

χ2(t1, t2) =
imax∑
i=imin

(xi − a1(t1, t2)hi−t1 − a2(t1, t2)hi−t2 − b(t1, t2))2, (4.8)

where t2 and a2 are respectively the time offset and the amplitude parameter by which the reference
shape needs to be shifted and multiplied in order to match the second pulse. The minimization of Eq.
(4.8) then yields:



imax∑
i=imin

xihi−t1

imax∑
i=imin

xihi−t2

imax∑
i=imin

xi


=



imax∑
i=imin

h2
i−t1

imax∑
i=imin

hi−t1hi−t2

imax∑
i=imin

hi−t1

imax∑
i=imin

hi−t1hi−t2

imax∑
i=imin

h2
i−t2

imax∑
i=imin

hi−t2

imax∑
i=imin

hi−t1

imax∑
i=imin

hi−t2

imax∑
i=imin

1




a1(t1, t2)

a2(t1, t2)

b(t1, t2)


, (4.9)

which allows to compute a1(t1, t2), a2(t1, t2) and b(t1, t2) by matrix inversion.
Similarly to the one-pulse fit, several values of t1 and t2 are tested in order to minimize the χ2

t :

χ2
t (t1, t2) =

χ2
max∑

i=χ2
min

(xi − a1(t1, t2)hi−t1 − a2(t1, t2)hi−t2 − b(t1, t2))2, (4.10)

and the couple (t1, t2) that minimize χ2
t (t1, t2) are the arrival times of the two pulses fitted with respect

to the reference shapes, and the corresponding a1(t1, t2) and a2(t1, t2) are their amplitudes (see Fig. 4.3).
However, while t1 is still sampled in the same time window [tmin1 , tmax1 ] as for the one-pulse fit, t2 on the
other hand is sampled in a different time window [tmin2 , tmax2 ], slightly larger than [tmin1 , tmax1 ] in order to
find pile-up events.

If the two pulses are too close to each other, it can be very difficult for the waveform analysis algorithm
to tell them apart. At the limit t1 = t2, an infinite number of solutions (a1, a2) can be found and the
algorithm fails. In order to avoid those scenarios, a threshold ∆τ is defined so that if |t1 − t2| < ∆τ ,
then the two-pulse fit is discarded, and the one-pulse fit is kept instead. The threshold ∆τ represents the
algorithm time resolution and has been chosen as ∆τ = 4 ns.
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Figure 4.3: Waveform analysis of an ARS signal (blue) with two pulses fitted (red).

In the case of pile-up events for which |t1 − t2| < ∆τ , the energy of the photon will not be properly
reconstructed, but the uncertainty created is negligible: as will be seen in section 4.2.5, the amount of
pile-up events turns out to be very low, and the ones where |t1 − t2| < ∆τ are even more rare.

For the same reason, the waveform analysis algorithm never looks for a third pulse: the computation
time to fit a third pulse would become extremely high, for a negligible impact on the results. The effect
of the two-pulse fit is already small because of the very small number of pile-up events, and a three-pulse
fit would have had even less of an impact.

4.2.4 Improving the time resolution on t1 and t2

The time resolution on t1 and t2 is experimentally limited by the 1 ns resolution of the ARSs. However,
it is still possible to improve it through the use of an interpolation. The process will be explained for the
1-pulse fit only, but the interpolation is identical for 2 pulses, applied separately to t1 and t2.

Let topt1 be the notation for the optimal value of t1 found by the previous method which minimizes
χ2
t (t1). Because of the 1 ns resolution of the ARSs, the true minimum of χ2

t (t1) is not actually reached for
t1 = topt1 , but rather for a value within the interval ]topt1 −1, topt1 +1[. In order to obtain an approximation
of this value more accurate than topt1 , χ2

t (t1) can be locally parametrized by a function whose minimum can
be found analytically. The accuracy of the minimum found then depends on how well the parametrization
actually describes χ2

t (t1).
In practice, χ2

t is locally parametrized by the second order polynomial expression:

χ2
t (t) = at2 + bt+ c, (4.11)

whose minimization yields:

tinterpol1 − topt1 = −b2a = χ2
t (t

opt
1 − 1)− χ2

t (t
opt
1 + 1)

2
(
χ2
t (t

opt
1 + 1) + χ2

t (t
opt
1 − 1)− 2χ2

t (t
opt
1 )
) . (4.12)

This interpolation allows to improve the time resolution on t1 to below 1 ns.

4.2.5 Optimizing the fits thresholds χ0 and χ1

First, the values of χ0 and χ1 are converted from ADC channels to MeV using the calorimeter energy
calibration coefficients. By expressing χ0 and χ1 in MeV instead of ADC channels, the thresholds remain
constant despite the calorimeter darkening due to radiation damage.

In order to determine the value of the threshold χ0, the evolution of several variables with respect to
χ0 has been studied:

• the calorimeter energy resolution, using elastic scattering data ep→ e′p′ (see Fig. 4.4);
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• the invariant massW 2 = (p+e−e′)2 mean value and resolution for elastic scattering data ep→ e′p′;

• the ep→ e′Xγ missing mass mean value and resolution;

• the ep→ e′Xπ0 missing mass mean value and resolution;

• the number of events with an invariant mass compatible with π0, normalized by the total number
of events;

• the π0 invariant mass mean value and resolution;

• the number of ARS signals with zero pulse fitted normalized by the total number of events and
number of calorimeter blocks;

• the number of ARS signals with one pulse fitted normalized by the total number of events and
number of calorimeter blocks;

• the computation time of the fitting process.

Figure 4.4: Evolution with respect to χ0 of the calorimeter relative energy resolution. For χ0 < 80 MeV,
the relative energy resolution at 4.5 GeV is stable at ∼ 4.13%. For χ0 > 80 MeV, the energy resolution
starts degrading.

Every studied variable show a plateau for χ0 ≤ 60 MeV, followed by a steep slope for χ0 ≥ 80 MeV
implying a degradation of the results (see Fig. 4.4). This means that for values of χ0 larger than 80 MeV,
some pulses start to be missed by the algorithm. On the other hand, choosing χ0 lower than 60 MeV
would not change anything in a significant way. As a consequence, the threshold χ0 = 60 MeV was picked
as a conservative value.

In order to determine the value of the threshold χ1, a study very similar to the one for χ0 has been
performed, with the following differences:

• the number of ARS signals with zero pulse and one pulse fitted was dropped;

• the number of events with two ARS pulses fitted normalized by the total number of events was
added.

The use of the baseline in the two-pulse fitting procedure was also discussed. Indeed, in previous
works [78], it was found out that if the baseline was fitted alongside two pulses, sometimes, a single
pulse could be fitted by a very large baseline and two pulses with negative amplitude on each side. In
order to determine whether the baseline can be used in the two-pulse fit procedure of this experiment,
the evolution with respect to χ1 of the number of events with two ARS pulses fitted with a negative
amplitude, normalized by the total number of events, was added. Furthermore, every previous variable
has been studied in a case with the baseline added and a case without the baseline.

However, no clear indication for an optimal value of χ1 was found. As long as χ1 is not too small, it
has an extremely low impact, as there are actually very few piled up events. Small values of χ1 only pick
up very low energy noise or fluctuations which are of no interest.
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In the end, the value χ1 = 300 MeV was chosen, as it seemed to provide a good calorimeter resolution
and keep the number of pulses with a negative amplitude to a negligible level while still fitting a few two-
pulse signals with a correct sign (see Fig. 4.5). The addition of the baseline to the two-pulse fit seemed
to provide slightly better results than without the baseline and was thus kept in the fitting process.

Figure 4.5: Left (Right): evolution with respect to the threshold χ1 of the ratio of the number of events
with two pulses fitted with correct (incorrect) sign, over the total number of events. The blue (red) points
correspond to a two-pulse fit procedure with (without) a baseline.

4.2.6 Time windows
The analysis window [imin, imax] could be the whole ARS sampling window [0,127], but a more optimized
choice can be made. First, an ARS pulse is approximately 30 ns wide: using the whole 128 ns window
would be a waste of computation time. Furthermore, reducing the window size avoids disturbances from
background pulses at the edges of the 128 ns window which are of no interest. On the other hand, one
wants to keep the analysis window large enough to be able to catch two pulses when required. For these
reasons the analysis window has been set to be 80 ns wide, and is defined as [20 + tARSoffset, 100 + tARSoffset],
with tARSoffset the time offset between the ARS signals and the reference shapes. The offset is due to the fact
that the reference shapes are computed using elastic scattering data which are taken with the calorimeter
6 m away from the target, while DVCS data are taken with the calorimeter 1.5 m to 3 m away from the
target, and a photon requires approximately 13 ns to travel 4 m. In the case that tARSoffset is overly large,
care must be taken that the edges of the analysis window do not overflow the [0,127] window. For this
reason, in reality, the analysis window [imin, imax] is defined by:

imin = max(5, 20 + tARSoffset), (4.13)

imax = min(123, 100 + tARSoffset). (4.14)

The χ2 window [χ2
min, χ

2
max] could be identical to [imin, imax]. However, when there is a pulse, the

fit only needs to be accurate around its maximum, while fitting the signal far from the pulse holds little
interest. In the specific case of two pile-up pulses, one is interested by the second pulse only if it is
close to the first one, not if it is far away. In order to avoid unimportant effects from signals far from
the expected pulse, the χ2 window size is reduced compared to the analysis window. It has been set
to be 40 ns wide, centered around the time tref_shape where the reference shapes reach their maximum
amplitude, and corrected for the ARS time offset:

χ2
min = max(5,−20 + tref_shape + tARSoffset), (4.15)

χ2
min = min(123, 20 + tref_shape + tARSoffset). (4.16)

The t1 window [tmin1 , tmax1 ] is set so that the pulse arrival time is searched between 25 ns below and
20 ns above the reference shape one, corrected for the ARS time offset:

tmin1 = −20 + tARSoffset, (4.17)
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tmax1 = 25 + tARSoffset, (4.18)

and any pulse outside of this time window is deemed too out of range to be in coincidence with the
electron detected in the spectrometer.

The t2 window [tmin2 , tmax2 ] is broadened compared to the t1 window in order to catch the pile-up
events. The t2 window is set so that the pulse arrival time is searched between 40 ns below and 40 ns
above the expected one:

tmin2 = −40 + tARSoffset, (4.19)

tmax2 = 40 + tARSoffset. (4.20)

4.3 The coincidence time corrections
The next step of the analysis is the coincidence time corrections. For a DVCS event, in principle, the
scattered electron and the emitted photon should be detected at exactly the same time. But in reality this
is not exactly the case as several effects need to be corrected for. A good resolution on the coincidence
time between the electron detected in the spectrometer and the photon detected in the calorimeter is
extremely important as this allows to eliminate a lot of background events.

The reference shape arrival time is usually between 40 ns and 80 ns in the 128 ns ARS window,
depending mainly on the calorimeter cabling. This, along with the ARS time offset described in section
4.2.6, is corrected in order to center the ARS times of arrival around 0.

The arrival times differ from one ARS channel to another, as well as from one event to another even
within the same ARS channel. The distribution of the arrival times of every pulse is a Gaussian centered
on 0 and with a resolution of a few nanoseconds, which is quite large compared to the 1 GHz sampling of
the the ARSs. In order to improve the time resolution, the following corrections are taken into account:

• a correction for the trigger jitter, which is the relative time between the spectrometer and calorimeter
triggers;

• a correction for the scintillator S2 paddles relative time due to differences in cabling;

• a correction for the photons travel time in S2 depending on the position where the electron hit the
scintillator;

• a correction for the electron travel time through the spectrometer, depending on its dispersive angle
and momentum.

Fig. 4.6 shows the impact of each additional correction on the coincidence time resolution. Applying
every correction listed previously allows to improve the resolution to below 1 ns.

One will notice that the time-walk effect has not been accounted for. Indeed, depending on the signal
rising time, which itself depends on its amplitude, the electron trigger timing may vary slightly from
one event to another. However this correction was found to have an extremely small effect, and after
application of every correction listed above, it was deemed to be unnecessary.

4.4 The calorimeter clustering algorithm
The next step is to reconstruct the photons hitting the calorimeter from the results of the waveform
analysis. Indeed, a photon deposits its energy in a cluster made of several blocks of the calorimeter: the
PbF2 crystals have been designed so that most of the energy is left in one block, but a non-negligible
fraction remains in the adjacent ones. Thus, the goal is now to gather the time, energy and position
information from each individual ARS channels and combine them together to reconstruct information
on the photon.

This section will present the clustering algorithm, applied event by event, which allows to reconstruct
the photons.
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Figure 4.6: Improvement of the spectrometer-calorimeter coincidence time resolution with the progressive
addition of every correction, for each of the 208 calorimeter ARS channels. Green triangles: added trigger
jitter correction. Blue circles: added offset corrections to center the ARS pulses times of arrival around
0. Magenta stars: added S2 relative time correction. Red diamonds: added correction for travel time in
S2. Blue diamonds: added correction for electron travel time depending on dispersive angle. Black stars:
added correction for electron travel time depending on momentum. (Courtesy of Dr. M. Dlamini)

4.4.1 Cluster building: the cellular automaton algorithm
The first step of the process is to decide, for each event, which calorimeter blocks should be considered to
build clusters, and which ones should be left out. A naïve choice could be to keep all the blocks. However,
while this could work in an ideal case, the noise present in each block would lead to the overestimation
of the photons energy. Another choice could be to apply an energy threshold to every block and keep
only those with a high energy deposited in them. However, because the photon deposits most (∼ 90%)
of its energy in one block, the neighboring blocks might be rejected despite being relevant, leading to the
underestimation of the photons energy.

A better choice is the application of an energy threshold to groups of blocks. For every possible
combination of 2x2 neighboring blocks in the calorimeter, the clustering algorithm computes the group
total energy as the sum of each individual block and compares it to the clustering energy threshold.
If the group energy is higher than the threshold, all four blocks of the group are kept by the clustering
algorithm. A block will usually belong to several groups of four (except for the corners of the calorimeter),
but it only needs to belong to one group with a high enough energy to be kept (see Fig. 4.7). If two
pulses are fitted in an ARS signal, the pulse with the largest amplitude is considered for this test. The
clustering thresholds chosen for each kinematic are summarized in Tab. 4.1.

Kinematic setting Clustering Threshold (GeV) Expected DVCS photon energy (GeV)
36_1 3.0 4.6
36_2 3.8 5.2
36_3 4.8 6.5
48_1 2.0 2.8
48_2 3.0 4.6
48_3 4.0 5.7
48_4 5.8 7.4
60_1 2.8 4.5
60_3 5.0 7.0

Table 4.1: Summary of the clustering threshold and expected DVCS photon energy for each kinematic
setting.
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Figure 4.7: Example of possible combinations of four adjacent blocks with a clustering threshold of 4.
The number written in each block represents the amount of energy deposited in them. A block only
needs to belong to one group of 2x2 with a total energy larger than 4 to be kept for the next step of the
clustering algorithm.

Then, the clustering algorithm looks at the corrected coincidence time of each block. If a block is out
of time, then it contains energy from a photon belonging to another event, and it is thus discarded. The
time resolution obtained previously allows to narrow the clustering time window to [−3 ns, 3 ns]. If two
pulses are fitted in the ARS signal, the pulse with the arrival time closest to 0 is kept as long as it is in
the [−3 ns, 3 ns] time window, and the other pulse is discarded since it is less likely to be in coincidence
with the spectrometer.

Finally, the clustering algorithm must associate the selected blocks to their respective clusters. In
the ideal case where only one photon hits the calorimeter, then trivially, there exists only one cluster
and every selected block belongs to it. However, several photons can hit the calorimeter simultaneously,
whether they belong to the same event (for instance, a π0 decaying into two photons) or different events
happening at the same time.

The method used to separate several clusters is based on a cellular automaton [79]. To describe it, an
analogy can be made with viruses propagation. Each block is associated with a value, initially equal to
its energy. The algorithm then looks for local maxima: these blocks are the viruses. Then, at each step,
each block takes the value of its highest-value neighbor, unless it has already been contaminated by a
virus. A block taking the value of a virus is contaminated and becomes immune to further contamination.
The algorithm stops when every block has been contaminated. The calorimeter blocks contaminated by
the same virus then belong to the same cluster (see Fig. 4.8).

Figure 4.8: Illustration of the cellular automaton algorithm in a case with two clusters. Top: the starting
value associated with each block is equal to their energy, the two local maxima (red and blue) are viruses.
Middle: at the next step, every block except the ones already contaminated by viruses takes the value
of their nearest highest neighbor. The blocks taking the values of the viruses become contaminated (red
and blue). Bottom: the cellular automaton algorithm stops when every block has been contaminated.
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4.4.2 Reconstructing cluster information
Once the relevant calorimeter blocks have been associated to their respective clusters, it is then possible
to reconstruct the photon energy, time and position in the calorimeter.

The photon total energy E is computed as the sum of the energies Ei deposited in each block of a
cluster:

E =
∑
i

Ei with Ei = CiAi, (4.21)

where Ci are the calorimeter calibration coefficients and Ai are the amplitudes of the ARS pulses extracted
during the waveform analysis.

The position x (y) of the photon in the calorimeter is computed as the sum of the cluster block
positions xi (yi), weighted logarithmically by the relative energy deposited in each of them:

x =

∑
i

wixi∑
i

wi
with wi = max

{
0,
[
W0 + ln Ei

E

]}
, (4.22)

y =

∑
i

wiyi∑
i

wi
with wi = max

{
0,
[
W0 + ln Ei

E

]}
. (4.23)

W0 has two roles. First, it allows to tune the weight associated with each block: when W0 →∞, the
weights become independent from the relative energy deposit and each block is treated with the same
importance. When W0 → 0, a larger weight is attributed to blocks with higher energy.

Second, W0 acts as a threshold for blocks to participate in the position reconstruction: blocks in
which the photon has deposited a relative energy smaller than e−W0 are attributed a weight equal to 0,
and are thus ignored in the computation.

The photon position x (y) in the calorimeter given by Eq. (4.22) ((4.23)) is not exact. First, it
assumes that the energy is deposited at the surface of the calorimeter, which is not the case. The photon
travels through a given distance inside the PbF2 crystal before it starts to develop an electromagnetic
shower. Let a be the shower depth, defined as the distance of the electromagnetic shower centroïd from
the calorimeter surface along the propagation direction of the photon. Furthermore, the calorimeter is
only a few meters away from the target and corrections must be applied to take into account the vertex
position. In order to account for these two effects, the position x (y) of the photon at the surface of the
calorimeter is corrected to become xcorr (ycorr):

xcorr = x

(
1− a√

L2
vc + x2

)
, (4.24)

ycorr = y

(
1− a√

L2
vc + y2

)
, (4.25)

with Lvc the distance of the calorimeter to the event vertex (see Fig. 4.9).
An optimization of the parameters a and W0 performed first with a Monte-Carlo simulation and then

with elastic scattering data yielded the results a = 7 cm and W0 = 4.3. With the calorimeter 1.1 m away
from the target, this allowed to achieve a spatial resolution of 3 mm at 3.0 GeV in the simulation, and
2 mm at 4.2 GeV with elastic scattering data [70]. However, the optimal values of the parameters a and
W0 depend on the photon energy. The study performed in [80] allowed to build parametrizations of a
and W0 with respect to the energy. The parametrization of a is given by:

a = 0.30E0.28 + 4.862, (4.26)

with E the photon energy expressed in MeV, and a in cm. On the other hand, W0 was found to depend
weakly on the energy and the value W0 = 4.3 was kept in this work. A spatial resolution of 3 mm was
obtained in a Monte Carlo simulation for photons energy varying between 0.1 GeV and 5.0 GeV with the
calorimeter 1.1 m away from the target [80].



CHAPTER 4. THE DATA ANALYSIS 63

Figure 4.9: Schematic representation of the vertex and shower depth correction to the photon position in
the calorimeter. For clarity, the vertex has been represented along the beam axis only (vz), but transverse
positions are taken into account as well. L is the distance of the calorimeter to the target center, while
Lvc is the distance from the vertex to the calorimeter. θ is the calorimeter angle, and a is the shower
depth, defined as the distance of the electromagnetic shower centroïd from the calorimeter surface, along
its propagation direction.

Finally, the photon arrival time tcluster is computed as the sum of the corrected ARS times, weighted
by the block relative energies:

tcluster =

∑
i

Ei(ti − tcorri )∑
i

Ei
, (4.27)

where ti are the ARS times and tcorri encompass all the corrections described in section 4.3.

4.5 Event selection and exclusivity
The next step of the data analysis is the event selection. There are two main goals:

• to select DVCS events, the exclusivity of the process must be ensured by identifying the scattered
electron, the emitted photon and the recoil proton;

• to ensure the accuracy of the electron and the photon variables, DVCS events with unreliable
reconstruction must be discarded. Corrections for the number of discarded events will be added
afterward.

This section will now present the cuts applied to select DVCS events. However, the recoil proton
identification will be explained in the next section, as the background subtraction is required beforehand.

4.5.1 Vertex cuts
As described previously, the target used for this DVCS experiment is a 15-cm-long cylindrical aluminum
cell containing liquid hydrogen. Obviously, events with a vertex reconstructed outside of the target must
be discarded. Furthermore, the electron beam might interact with the target aluminum walls instead of
the liquid hydrogen, and such events must be removed as well.

Depending on the kinematic setting, using data taken with the optics target, the vertex resolution
of the spectrometer has been measured between ∼ 2 mm and ∼ 5.5 mm. Taking into account these
resolution effects, the cut consists of discarding events with a vertex less than 1 cm away from the target
walls, as seen in Fig. 4.10. However, because of the Spring 2016 optics calibration difficulties (see section
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3.2.2.3), kin48_2 suffers from a slightly worse vertex resolution than other kinematic settings. It was
thus decided to use a larger cut of 1.3 cm instead of 1 cm for kin48_2.

Figure 4.10: Vertex distribution of kin48_1. The target is a 15 cm long aluminum cell filled with liquid
hydrogen. The distribution is not flat because of the spectrometer acceptance. The two peaks around
-7.5 cm and 7.5 cm are the target aluminum walls. The vertex cuts (red lines) remove events with a
vertex less than 1 cm away from the target edges to avoid contamination from the aluminum walls.

In an ideal case, the spectrometer should be pointing toward the center of the target. The origin for
the reconstructed vertex is the intersection point between the spectrometer axis and the target axis. This
way, the target center coïncides with 0 and its walls are located at -7.5 cm and 7.5 cm (see Fig. 4.10).
Then, a 1 cm vertex cut consists simply in keeping events with a vertex between -6.5 cm and 6.5 cm. In
reality, a small misalignment of the spectrometer direction with the target center can exist and will change
from one kinematic setting to another as the detector is moved to different angles. This misalignment,
combined with uncertainties on beam position and raster corrections, results in an apparent offset of the
target position along the beam axis, as the reconstructed vertex origin no longer coïncides with the real
target center. This apparent offset needs to be taken into account in the vertex cuts.

To measure the offset, data is taken on the optics target and the assumption is made that its central
carbon foil is perfectly aligned with the center of the liquid hydrogen cell. The position of the recon-
structed central foil then yields the offset (see Tab. 4.2). However, the alignment of the optics target and
cryogenic cells is made at room temperature, and the cooling of the hydrogen target can move the cell
because of material contraction. This factor leads to a small uncertainty on the targets positions.

Kinematic setting Vertex offset (mm)
36_1 -4.7
36_2 +2.5
36_3 +4.6
48_1 +0.3
48_2 +1.7
48_3 +3.4
48_4 +3.9
60_1 +4.0
60_3 +3.3

Table 4.2: Summary of the vertex apparent offset for each kinematic setting.

Despite taking into account the vertex offset, the 1 cm cuts applied to kin36_1 were not satisfactory,
as shown in Fig. 4.11: the offset seems to have been underestimated. Possible explanations are the
uncertainty on the targets alignment, or the lack of calibration for one BPM (see section 2.2.1.2). For
this kinematic setting, it was thus decided to increase the cut to 1.3 cm for the positive values of the
vertex, to ensure complete elimination of the aluminum wall contamination.
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Figure 4.11: Vertex distribution of kin36_1. The red lines represent the 1 cm vertex cuts taking into
account the reconstructed vertex offset. The cut on positive vertex values (right line) is too close to the
target aluminum wall.

4.5.2 Spectrometer cuts
Cuts applied to the spectrometer aim at identifying the electrons and ensure the quality of their recon-
structed variables. Cuts are also applied to ensure control over the spectrometer acceptance.

4.5.2.1 Electron identification

The identification of electrons from pions π− is allowed by the Cherenkov and Pion Rejectors detectors:
pions deposit almost no energy in them, contrary to the electrons. By discarding events with a low energy
deposited in the Cherenkov and both layers of Pion Rejectors, one is able to eliminate π− and keep only
electrons. The cutting thresholds have been set to be 150 ADC channel for the total energy deposited
in the Cherenkov, 200 ADC channels for the total normalized energy deposited in the first layer of Pion
Rejectors, and 600 ADC channels for the total energy deposited in both layers [81] (see Fig. 4.12).

Figure 4.12: Left: distribution of the Cherenkov total energy with (red) and without (black) application of
the 600 ADC cut on the Normalized Pion Rejectors total energy. Right: distribution of the Normalized
Pion Rejectors total energy with (red) and without (black) application of the 150 ADC cut on the
Cherenkov total energy. The blue lines represent the cuts. Both plots are from kin48_1 data. Electrons
deposit a lot of energy in both detectors, while π− do not.
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4.5.2.2 Single track cuts

The particles tracking is performed by the two Vertical Drift Chambers. Each VDC is made of two wire
planes, and at least one cluster in each wire plane is required to reconstruct a particle track. If several
particles are detected at the same time, several tracks are reconstructed, and the event is discarded since
it is difficult to know which track is associated to which particle, and thus which one should be considered
for the DVCS event.

Furthermore, it is also possible for a single particle to create several clusters in the same wire plane.
If this happens in more than one wire plane, then the current algorithm reconstructs several tracks or
track candidates and is unable to find the correct one reliably [82]. Such events must be eliminated as
well.

As a consequence, in order to ensure tracking quality, events where one wire plane at most has several
clusters are the only ones kept. If more than one wire plane has several clusters, the event is discarded.

4.5.2.3 Acceptance cuts: the Hall A R-function

In order to ensure that the detected electrons are well within the spectrometer acceptance, cuts need
to be applied. These cuts also ensure good control and computation of the non-trivial spectrometer
acceptance.

The challenge of these cuts is that the spectrometer acceptance is 5-dimensional (xtg, ytg, θtg, φtg, δtg,
see section 3.2.2), and the acceptance in the different variables are correlated. A naïve solution consisting
in applying 1-dimensional cuts on each of the five variables would be extremely inefficient as parts of the
spectrometer acceptance would be lost.

A better approach to the problem consists in applying a cut on the distance between the electron and
the edges of the spectrometer acceptance. The determination of this cut is performed in two steps [83]:

• first, the different variables entering the spectrometer acceptance are plotted against one another
to determine the limits of the spectrometer acceptance in different 2D planes (see Fig. 4.13). Then,
a function called “R-function”, developed in [84], computes for every electron their distance, in
radians, to the closest boundary of the spectrometer acceptance in (θtg, φtg) which depends on the
values of ytg and δtg. This distance is called “R-value”; it is negative if the electron is outside of
the defined spectrometer acceptance, positive if it is inside, and equal to 0 if it is exactly on the
boundary. One will notice that the component xtg is ignored in this cut: it is already constrained
in [−2 mm, 2 mm] by the beam position, which is smaller than the spectrometer acceptance;

• for each kinematic setting, the data R-value distribution is compared to a Geant4 simulation of
the experiment. As shown in Fig. 4.14, there is a positive threshold above which the data and
Geant4 R-value distributions are matching. This threshold is called the R-cut, and by requiring the
electrons R-values to be larger than the R-cut, this ensures that they are well inside the spectrometer
acceptance. It will also allow to compute accurately the experiment acceptance.

The use of the R-function has been shown to be twice as efficient as applying 1-dimensional cuts on
each variable [84]. The values of the R-cuts for each kinematic setting are shown in Tab. 4.3.

Kinematic setting R-cut (rad)
36_1 0.003
36_2 0.005
36_3 0.005
48_1 0.003
48_2 0.003
48_3 0.006
48_4 0.0025
60_1 0.005
60_3 0.005

Table 4.3: Summary of the R-cuts values for each kinematic setting [86].
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Figure 4.13: Top left: distribution of θtg against δtg. Top right: distribution of φtg against δtg. Bottom
left: distribution of φtg against ytg. Bottom right: distribution of θtg against φtg. All four plots are
from kin48_1. The red lines define the edges of the spectrometer acceptance in these planes. Some
planes boundaries are not present as they would be redundant with the limits set in other planes. (Figure
extracted from [83]).

Figure 4.14: Normalized distributions of the electrons R-values for kin48_1 from the data (red) and a
Geant4 simulation (blue). For R-values larger than 0.003, the distributions from the data and the Geant4
simulation are matching. (Figure extracted from [85]).
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4.5.3 The calorimeter cuts
In order to ensure the quality of the photon reconstruction, cuts need to be applied on the calorimeter.
First, as a single photon is expected in the final state, events with more than one reconstructed cluster
are discarded for the DVCS analysis.

As explained in section 4.4, the clustering threshold is not enough to fully avoid the reconstruction
of low energy photons. Applying a cut on the photon minimum energy is thus required. This cut is at
least equal to the clustering threshold. Care has also been taken so that the energy cut is higher than the
hardware threshold, which effectively changes with time as the PbF2 crystals are damaged by radiations.
Chosen cuts for every kinematic setting are displayed in Tab. 4.4.

Kinematic setting Minimum photon energy required (GeV)
36_1 3.0
36_2 4.27
36_3 4.8
48_1 2.0
48_2 3.0
48_3 4.0
48_4 5.8
60_1 2.8
60_3 5.0

Table 4.4: Summary of the photon energy cuts for each kinematic setting.

Furthermore, even though the Molière radius of the PbF2 crystals is small (2.2 cm), if a photon hits
a block on the edges of the calorimeter, a non negligible part of its energy can still leak outside of the
calorimeter through the sides of the crystal. In order to avoid an underestimation of the photon energy
because of those leaks, events for which a cluster position is reconstructed in an edge block, less than
3 cm away from the sides of the calorimeter, are discarded. An additional cut on the cluster position
superseding this one will be explained in section 4.6.2.

4.5.4 The beam helicity cut
In order to measure polarized DVCS cross sections, the beam helicity needs to be known. As described in
section 2.1, the beam helicity is flipped at a frequency of 30 Hz by a Pockels cell, and around the moment
when it is flipped, there is a 60 µs time window where the beam helicity is uncertain. As a consequence,
the events occurring during that time must be discarded. One will notice that this cut is specific to the
measurement of polarized cross sections, and is unnecessary for unpolarized ones.

4.6 Background subtraction
The next step of the analysis is the background subtraction. Indeed, the cuts described in the previ-
ous section are not enough to ensure that the selected events are all DVCS ones. Several sources of
contamination compatible with the previous cuts need to be accounted for:

• accidental coincidences: requiring the photon to be detected in coincidence with the electron usually
ensures that they are involved in the same event. However, it is also entirely possible for the photon
to be produced in an event different from the electron and occurring accidentally at the same time;

• π0 contamination: Deeply Virtual π0 Production is a process where a π0 is produced instead of
a photon: ep → e′p′π0. The π0 itself decays into two photons which are then detected in the
calorimeter. However, if one of the two photons is missed, the π0 event can be wrongly identified
as a DVCS one;

• Semi-Inclusive DIS (SIDIS) associated with DVCS: these events have a final state similar to DVCS
but with additional particles ep → e′p′γX. They can be wrongly identified as DVCS events if the
additional particles of the final state are not detected. In principle, this contamination can be easily
eliminated by cuts on the missing mass M2

X . Indeed, the SIDIS process with the lowest missing
mass is ep → e′p′γπ0, with M2

X ≈ 1.15 GeV2, which is larger than for DVCS. However, because
of resolution effects, some residual contamination can still affect DVCS and a careful study of its
systematic uncertainty is required. This study will be detailed in section 5.2.2.1.
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• Associated DVCS through a resonance: these events have a final state where the recoiling proton
is replaced by a resonance, like ep→ e′∆γ, for instance. Since the recoiling hadron is not detected,
these events can be wrongfully identified as DVCS ones. However, the resonance yielding the lowest
missing mass squared is the ∆(1232), which has a missing mass around 1.5 GeV2, and a width of
approximately 0.014 GeV2. Moreover, its cross section is expected to be small at this experiment
kinematic settings [87]. As a consequence, similarly to SIDIS, the contamination from resonances
is expected to be very small for missing masses smaller than 1.15 GeV2. Resonances will be treated
jointly with SIDIS and in the following of this document, for convenience, only SIDIS contamination
will be mentioned and the joint contribution of resonances will be implied.

This section will now provide details about the subtractions of the accidental events and π0 contam-
ination.

4.6.1 The accidental events subtraction
By selecting photons in the [−3 ns, 3 ns] time window when performing the clustering, two kind of
coincidences are selected: true coincidences where the photon and the electron come from the same
event, and accidental coincidences where they belong to different events which occurred close in time. In
the latter case where electron and photon do not come from the same event, these detected coincidences
are called accidental events.

In order to subtract this contamination, one relies on the fact that the probability for accidental events
to be detected is independent from the clustering time window, as long as its width is unchanged. For
instance, the number of accidental events in the window [−3 ns, 3 ns] is the same as in [−50 ns, −44 ns].
On the other hand, true coincidences will only be detected in the [−3 ns, 3 ns] time window.

In order to subtract the accidental events contamination, the clustering is also performed in a 6 ns
wide time window taking care not to overlap [−3 ns, 3 ns]. The events reconstructed in this second
time window and abiding by the selection cuts of section 4.5 are then subtracted from those identified in
[−3 ns, 3 ns].

Care must be taken when choosing the time window for accidental events subtraction because of the
beam structure. Indeed, as described in section 2.1, the beam has a frequency of 250 MHz and electron
packages are sent every 4 ns. This gives the beam a time structure that needs to be taken into account:
the window must be shifted by a multiple of 4 ns compared to [−3 ns, 3 ns]. For these reasons, the time
window for accidental events subtraction has been chosen to be [−11 ns, −5 ns] (see Fig. 4.15).

In order to reduce the effect of statistical fluctuations, the clustering is also performed in [5 ns, 11 ns],
and the number of events in both windows are averaged before being subtracted from the events in
[−3 ns, 3 ns].

Figure 4.15: Coincidence time spectrum for kin48_4. The main coincidence time window [−3 ns, 3 ns] is
delimited by the blue lines. The accidental events subtraction windows [−11 ns, −5 ns] and [5 ns, 11 ns]
are located between the red lines. They are shifted by 8 ns with respect to the main coincidence time
window to account for the 4 ns time structure of the beam.
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4.6.2 The π0 contamination subtraction
In ∼ 99% of cases, π0 decays into two photons which can then be detected in the calorimeter. In the π0

rest frame, this decay is symmetric and the photons are emitted back to back. However, to switch to the
laboratory frame, a Lorentz boost must be applied. If the decay is perpendicular to the π0 momentum,
then both photons have half of the π0 initial energy (see top half of Fig. 4.16). However, in an asymmetric
case, one of the two photons will get more energy than the other (see bottom half of Fig. 4.16). In extreme
scenarios, a photon can acquire almost all of the π0 energy while the other one has almost nothing. In
this configuration, the photon with low energy can be missed by the calorimeter, while the one with high
energy may yield a missing mass M2

X compatible with DVCS. This results in the wrongful identification
of some π0 events as DVCS ones.

Figure 4.16: Representation of possible configurations of π0 decays into two photons. Top: a symmetric
decay with respect to the π0 momentum results in the two emitted photons to have the same energy in
the laboratory frame. Bottom: an asymmetric decay with respect to the π0 propagation direction results
in one photon having more energy than the other in the laboratory frame. In extreme cases, one photon
can acquire almost all the energy of the initial π0.

The π0 contamination can be estimated from the data with the help of a Monte-Carlo simulation.
First, π0 are identified in the data by applying the following cuts:

• the photons from the decay must hit a calorimeter block that is not on the edge of the detector;

• the photon energies must be larger than the calorimeter trigger threshold;

• the invariant mass must be compatible with a π0.

For each π0 identified in the data, 5000 decays into two photons are simulated. The decays are
generated isotropically in the π0 rest frame and then a Lorentz boost corresponding to the π0 momentum
in the laboratory frame is applied. For each decay, either 0, 1 or 2 simulated photons will be considered
detected, depending on whether they abide by the two first cuts used for π0 identification, defined
previously.

For each π0, out of the 5000 simulated decays, one then counts the number n0 (respectively n1 and
n2) of cases where 0 (respectively 1 and 2) photons are detected. In the case where only one photon is
detected, the simulation also computes every DVCS related variable necessary for the data analysis as if
the photon was emitted by a DVCS event.

In order to eliminate the π0 contamination, the simulated events where only one photon is detected
are subtracted from the DVCS data with a weighting factor. The weighting factor is made of two parts.
A first normalization factor

1
5000 , (4.28)

takes into account the number of simulated decays.
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A second normalization factor

1
n2

5000
= 5000

n2
, (4.29)

takes into account the fact that the number of π0 detected in the data is actually smaller than the total
number of π0 produced since some photons have been missed.

Finally, the weighting factor applied to the simulated events is:

1
5000

5000
n2

= 1
n2
. (4.30)

This method presents the main advantage that it uses experimental π0 data in order to subtract the
π0 contamination. The Monte Carlo simulation only intervenes in the isotropic decay of the detected
π0 into two photons, and the cross section of the π0 production process is taken into account by using
experimental π0 data. An alternative method using a simulation to generate π0 events would require
a parametrization of the cross section of the π0 production, which would make the subtraction model-
dependent.

The efficiency of this subtraction technique was checked against a Geant4 simulation. In the simula-
tion, π0 events are generated and are then kept if 1 or 2 photons are detected in the calorimeter. From the
generated π0 data with two photons detected, the Monte Carlo method described previously is applied,
and its results are compared to the simulated data with only one photon detected. As can be seen in Fig.
4.17, the π0 contamination subtraction technique is efficient on all the surface of the calorimeter except
its edges and corners.

Figure 4.17: Efficiency map of the π0 contamination subtraction technique depending on the position
of the photon in the calorimeter for kin60_3. The efficiency is obtained by computing the ratio of the
number of one-photon events obtained from the Monte-Carlo technique over the number of similar events
generated by the Geant4 simulation. The Monte-Carlo technique works very well over all the surface of
the calorimeter except its edges and corners. The black lines represent the octagonal cut that needs to
be applied in order to ensure the efficiency of the π0 contamination subtraction.

These inefficiency areas are the result of an acceptance effect: the calorimeter is unable to efficiently
detect π0’s there because of the high probability for at least one photon to be outside of the detector
acceptance. As a consequence, an additional geometrical cut must be added to the one described in
section 4.5.3 to ensure the efficiency of the π0 contamination subtraction. This octagonal cut is shown
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in Fig. 4.17 and corresponds to the set of equations:

x ≤ 11 cm
x ≥ −20 cm
y ≤ 20 cm
y ≥ −20 cm
y ≤ x+ 33 cm
y ≤ −x+ 24 cm
y ≥ −x− 33 cm
y ≥ x− 24 cm

(4.31)

As it is actually more restricting, the octagonal cut hereby supersedes the previous rectangular one.
This cut is identical for every kinematic setting except kin48_4 for which the calorimeter is at an extremely
small angle with respect to the beam line. The beam line shielding that was supposed to protect only the
first column of blocks of the calorimeter turned out to mask a larger area of the detector than expected.
This results in an inefficient detection of particles by the shielded area of the calorimeter as can be seen
in Fig. 4.18 and a further restriction on the octagonal cut is required. For kin48_4, in Eq. (4.31),
x ≤ 11 cm is replaced by x ≤ 7.5 cm.

Figure 4.18: Efficiency map of the π0 contamination subtraction technique depending on the position
of the photons in the calorimeter for kin48_4. Because of the beam line shielding masking part of the
calorimeter, a further restriction on the octagonal cut is required.

4.6.3 Identification of the recoil proton through the missing mass technique
As described in section 2.3, the recoil proton is not detected but can be identified by a cut on the missing
mass. The squared DVCS missing mass is defined as M2

X = (e + p − e′ − γ)2, where e, p, e′ and γ are
notations for the four-vectors of the initial electron, initial proton, scattered electron and emitted photon,
respectively. By conservation of energy and momentum, for DVCS, M2

X should be equal to the squared
mass of the (recoil) proton, which is roughly equal to 0.88 GeV2. In practice, because of resolution
effects and energy calibration uncertainties, the squared missing mass resolution shows a peak close to
the expected value (Fig. 4.19).

Selecting events which have a squared missing mass in the 0.88 GeV2 peak allows to identify the recoil
proton and ensures the exclusivity of the DVCS process. However, the choices of the missing mass cuts
are one of the main source of systematic uncertainties of this experiment and will be discussed in section
5.2.2.1.

4.7 Corrections
Corrections are applied to take into account a number of events either discarded by the selection process,
or simply missed during the experiment. This section will now describe these various corrections, except
for the radiative ones which will be dealt with in section 5.1.2.
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Figure 4.19: Distribution of the DVCS missing mass M2
X = (e + p − e′ − γ)2 for kin48_1 data. Black:

DVCS missing mass before contamination subtraction. Red: DVCS missing mass after accidental and π0

contamination subtractions. Green: Accidental events. Blue: π0 contamination.

4.7.1 Trigger efficiency
The Cherenkov detector and scintillators S2 which form the spectrometer part of the DVCS trigger do
not have a 100% efficiency. This implies that some DVCS events can be missed because the electron was
not detected by the Cherenkov detector or S2. To avoid an underestimation of the number of DVCS
events, their efficiency must be taken into account.

Efficiency measurements can be performed in dedicated runs. The trigger is set to be the coincidence
of two detectors and the efficiency of a third detector can be computed as the ratio of the number of
events it detected over the number of triggers. The efficiency of all three detector can be measured by
cycling through which detectors are used as trigger. In this case, the scintillator S0 is used with S2 and
the Cherenkov detector to measure their respective efficiencies.

Several efficiency measurements have been performed through the experiment and their results can
be found in [88]. As the efficiencies did not change significantly from one measurement to another, it was
decided to use averaged values for each kinematic setting (see Tab. 4.5).

Kinematic setting S2 efficiency ηS2 Cherenkov efficiency ηCER
36_1 0.9974 0.9984
36_2 0.9969 0.9971
36_3 0.9961 0.9980
48_1 0.9964 0.9970
48_2 0.9964 0.9970
48_3 0.9964 0.9970
48_4 0.9964 0.9970
60_1 0.9968 0.9987
60_3 0.9960 0.9971

Table 4.5: Summary of the S2 scintillators and Cherenkov detector efficiencies for each kinematic setting.

The efficiency correction is applied by dividing the measured number of DVCS events by the values
in Tab. 4.5 for each corresponding kinematic setting:

N corrected
DV CS = NDV CS

1
ηS2ηCER

. (4.32)
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4.7.2 Dead time correction and integrated luminosity
Some events may also be missed because the DAQ was busy recording an event and could not take in
another one (see section 2.3.3). The effect of this dead time on the measured number of events must be
corrected.

The dead time is computed using two scalers. For each run, a first “live” scaler counts the number
of triggers with S2 and Cherenkov detectors in coincidence only when the DAQ is available, while a
second “raw” scaler counts the number of triggers not withstanding whether the DAQ is available or
busy recording an event2. The live time of each run is then computed as the ratio of the “live” scaler
over the “raw” scaler counts, and the dead time is equal to 1− live time.

The dead time correction is taken into account in the experiment luminosity. The integrated luminosity
L is computed as:

L = QcorrρlNA
eMH

, (4.33)

with Qcorr the accumulated beam charge corrected by the dead time, ρ the target density, l the target
length, NA the Avogadro number, e the positron charge and MH the hydrogen molar mass. One will
notice that the full target length is used to compute the luminosity despite the cuts applied to the vertex
in section 4.5.1. However, the loss of DVCS events due to the vertex cuts is compensated by applying
exactly the same cuts to the Geant4 simulation used to compute the experiment acceptance (see section
5.1), and further correction to the luminosity is not required.

The corrected charge Qcorr is computed by multiplying the accumulated beam charge Qi by the live
time T livei for every run i:

Qcorr =
∑
i

QiT
live
i . (4.34)

The average live time for each kinematic setting is summarized in Tab. 4.6.

Kinematic setting Live time
36_1 0.981
36_2 0.980
36_3 0.966
48_1 0.985
48_2 0.962
48_3 0.985
48_4 0.978
60_1 0.979
60_3 0.974

Table 4.6: Summary of the live time for each kinematic setting.

A combined dead time and integrated luminosity systematic uncertainty of 1.6% was found in [89].

4.7.3 Multi-track correction
In section 4.5.2.2, events where more than one VDC wire plane had several clusters have been discarded
because the electron track could not be reliably reconstructed. A correction must be applied to the
number of remaining events to take into account the discarded ones.

Let N1 be the number of events where multiple clusters were reconstructed in one wire plane at most
and let Nmc be the number of events where multiple clusters were reconstructed in more than one wire
plane. Furthermore, electrons were selected by applying cuts on the energy deposited in the Cherenkov
detector and the Pion Rejectors. The correction coefficient ηtracking is then computed as:

ηtracking = 1 + Nmc
N1

, (4.35)

and its values for each kinematic are summarized in Tab. 4.7:
2The scalers themselves have a negligible dead time.
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Kinematic setting ηtracking
36_1 1.060
36_2 1.064
36_3 1.070
48_1 1.043
48_2 1.063
48_3 1.057
48_4 1.060
60_1 1.066
60_3 1.064

Table 4.7: Summary of the tracking correction coefficients for each kinematic setting [88].

The tracking correction is then applied by multiplying the measured number of DVCS events by
ηtracking. Eq. (4.32) becomes:

N corrected
DV CS = NDV CSηtracking

1
ηS2ηCER

. (4.36)

4.7.4 Calorimeter multi-cluster correction
In section 4.5.3, events with more than one reconstructed cluster in the calorimeter have been rejected.
However, a small number of DVCS events were present among them: while a single photon is expected,
it is possible for accidental photons to be detected at the same time, leading to more than one cluster
being reconstructed. Thus, selecting only single cluster events would result in the loss of a small quantity
of DVCS events.

In order to recover them, events with two clusters in the calorimeter must be considered. Each of
the two photon candidates is treated as if it was the only one reconstructed and is compared to the
event selection cuts of section 4.5. If only one of the two photon candidates is compatible with a DVCS
event, it is kept and the other one is discarded. In the extremely rare scenario where both photon
candidates are compatible, the one which is kept is chosen randomly. If none of them is compatible with
the selection cuts, the whole event is discarded. Depending on the kinematic setting, the two-clusters
correction represents a contribution between ∼ 0.5% and ∼ 2% of the total number of DVCS event,
except for kin48_1 where the correction reaches around ∼ 5%.

Events with more than two clusters are not considered: the probability for two accidental photons
to be detected at the same time as the DVCS one is much lower than for a single accidental, and the
two-clusters correction is already smaller than 2%. It is safe to assume that n-cluster corrections, with
n ≥ 3, are negligible.

4.7.5 Polarization measurements
The beam polarization has been measured by both a Compton and a Møller polarimeter. However, only
the Møller results are available, while the analysis of the Compton data is being finalized. Nevertheless,
the preliminary Compton results are consistent with the Møller measurements [90].

The results of the Møller polarization measurements are summarized in Tab. 4.8. For kin48_4 and
kin60_3, two Møller measurements have been performed instead of one. As the measured polarizations
differed by only ∼1%, averages were used. Overall, the mean beam polarization was around ∼ 86%, with
a statistical uncertainty between 0.1% and 0.2%, and a systematic uncertainty of 1%.

The polarization correction to the helicity-dependent cross section is then applied by dividing the
measured number of DVCS events by ηpol. Eq. (4.36) then becomes:

N corrected
DV CS = NDV CSηtracking

1
ηS2ηCER

1
ηpol

. (4.37)

This correction does not need to be applied for the unpolarized cross section.

4.7.6 Beam helicity correction
The last correction that needs to be applied must account for the events with an electron of unknown
helicity which have been discarded in section 4.5.4. The proportion ηhel of electrons with unknown helicity
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Kinematic setting Beam polarization ηpol Statistical uncertainty Systematic uncertainty
36_1 0.846 ±0.3% ±2.2%
36_2 0.868 ±0.1% ±1.0%
36_3 0.854 ±0.1% ±1.0%
48_1 0.867 ±0.1% ±1.0%
48_2 0.870 ±0.2% ±1.0%
48_3 0.870 ±0.2% ±1.0%
48_4 0.875 ±0.1% ±1.0%
60_1 0.862 ±0.1% ±1.0%
60_3 0.848 ±0.1% ±1.0%

Table 4.8: Summary of the beam polarization for each kinematic setting [91].

can be computed from the time required to flip and stabilize the Pockels cell. In principle, the transition
time of the Pockels cell is 60 µs, but a conservative cut consisted in considering a 200 µs uncertainty
window at first in 2014, which was then increased to 500 µs. As a consequence, 0.6% of the total number
of electrons have an unknown helicity for kin36_1, and 1.5% for every other kinematic setting.

The beam helicity correction to the polarized cross section is then applied by multiplying the total
charge by 1− ηhel. Eq. (4.38) then becomes:

Qcorr =
∑
i

QiT
live
i (1− ηhel), (4.38)

with 1− ηhel = 0.994 for kin36_1, and 1− ηhel = 0.985 for every other kinematic setting.



Chapter 5

Geant4 simulation and cross sections
extraction

The analysis from the previous chapter allowed to extract accurately the number of DVCS events and
the integrated luminosity. However, in order to extract cross sections from the data, one also needs to
know the phase space covered by the detectors. Because of the complexity of the experimental setup,
correlations between the different variables, and radiative effects that modify the kinematic phase space,
trying to compute the experiment acceptance analytically is impossible. As a consequence, the acceptance
computation relies on a simulation. By implementing the experimental setup in a Geant4 simulation
taking into account radiative corrections, the acceptance can be reproduced accurately.

After the DVCS cross sections have been properly extracted, it is necessary to evaluate the experiment
systematic uncertainties. Several sources need to be accounted for. In particular, one of the main
contributions that must be studied with care is the choice of the missing mass cuts which allows to
identify the recoil proton.

This chapter will be divided into two parts. The first section will present the Geant4 simulation of the
experiment. Radiative corrections will also be described as they are taken into account in the simulation.
The second part of this chapter will deal with the cross section extraction method used for this experiment
and will provide details about the study of the systematic uncertainties. Finally, preliminary results will
be presented.

5.1 Geant4 simulation
5.1.1 Geometry
As Geant4 handles the interaction of particles with matter, a precise implementation of the experimental
setup between the vertex and the detectors is necessary (see Fig. 5.1). The liquid hydrogen target cell,
the scattering chamber and the beam pipe and shielding which have been implemented are exact copies of
the real setup in Hall A [92]. Additionally, in order to avoid multiple scattering and reduce the quantity
of matter that the scattered electron has to travel through, a section of the scattering chamber wall is
replaced by a thin kapton window. This window covers a solid angle where the scattered electron can be
detected by the spectrometer, taking into consideration the fact that the detector can be moved around
the target. Similarly, a section of the scattering chamber wall is replaced by a thin aluminum window in
front of the calorimeter. These thin kapton and aluminum windows have also been implemented in the
simulation.

On the spectrometer side, only the kapton entrance window of the detector has been implemented.
One of the main reasons why the spectrometer has not been fully implemented is because the simulation of
magnetic fields in the detector, which is required for tracking, is very challenging and not reliable enough.
Instead, a cut on the electron R-value allows to determine if it is within the spectrometer acceptance, in
which case it is considered to be detected and its variables are recorded. Because this way of simulating
the spectrometer without tracking does not allow to reproduce the fact that the detector is not perfectly
pointing toward the target center, the apparent target offset described in section 4.5.1 is implemented
instead.

On the calorimeter side, however, the detector and its shielding have been fully implemented. The
position of each crystal has been surveyed with high precision during the experiment and copied in the
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simulation. The electromagnetic showers developing in the PbF2 crystals are handled by Geant4, and
the energy deposited by the particles in each block are recorded as for real data. However, Cherenkov
photons are not simulated.

Figure 5.1: Geometry of the experimental setup implemented in the Geant4 simulation. The scattering
chamber and beam pipes are represented in yellow, the beam line shielding in green and grey, and the
kapton and aluminum windows in light blue. The kapton entrance window of the spectrometer is the
light green square at the right of the beam line. The calorimeter has been fully implemented: the outlines
of the box that encloses the detector and its shielding for low energy electromagnetic background are
represented by the white lines. The blocks, their wrapping and supports are implemented inside the box.

5.1.2 Radiative corrections
Although Geant4 handles the interactions of the final states particle with matter, it does not take into
account the ones of the electron in the initial state since it is not simulated, as will be seen later in the
description of the simulation process. Radiative corrections need to be added in the event generator in
order to take into account the energy loss of the initial electron due to Bremsstrahlung. These radiative
effects are called “external” as they take place before or after the event vertex, unlike the “internal” ones
which take place at the vertex.

It is convenient to add the real internal corrections in the event generator as well. Indeed, the radiation
of an additional real photon generates a radiative tail in the missing mass spectrum, which needs to be
taken into account in the acceptance computation. Therefore, it is beneficial to generate the radiative
tail in the simulation in order to combine it with the detectors acceptance and resolution effects.

Although they can be added at a later stage, virtual internal corrections will be detailed in this section
as well. Finally, the radiative corrections are considered for the leptonic part of the DVCS process only.
Indeed, the radiative corrections for the electron are dominant, whereas the one for the proton are
suppressed by its much larger mass.
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5.1.2.1 External radiative corrections

An electron passing through matter radiates real photons due to Bremsstrahlung. The energy loss of the
electron, ∆E, is equal to the sum of the energies of every radiated photon. To a good approximation,
this energy loss follows the distribution [93]:

I(E0,∆E, tmat) = btmat
∆E

[
∆E
E0

]btmat
, (5.1)

with E0 the electron energy before Bremsstrahlung, tmat the material thickness in units of radiation
length, and b ≈ 3

4 . This kind of radiation is called straggling effect.
The energy loss ∆E of the electron will follow the distribution I(E0,∆E, tmat) in a Monte Carlo

simulation if it is computed event by event with the expression:

∆E = E0r
1/btmat , (5.2)

with r generated uniformly in [0,1].
This energy loss is applied in the peaking approximation: the radiated photons are emitted in the

same direction as the electron, so that its propagation direction is unchanged.

5.1.2.2 Internal radiative corrections

Additional photons, real or virtual, can be emitted at the event vertex: these radiations are called
“internal”. Because of internal radiative effects, the Born cross section (lowest order diagram) cannot be
measured directly and corrections need to be taken into account. An extensive study of internal radiative
corrections has been performed by M. Vanderhaeghen et al. in [94], and further considerations for the
Hall A DVCS experiments are available in [95].

The internal radiative corrections presented here have been developed for elastic scattering [94]. How-
ever, they are identical for DVCS since they take place on the leptonic part of the diagrams, which are
the same for elastic scattering and DVCS. At first order in QED, three internal radiative processes can
be distinguished:

• the vertex correction (see Fig. 5.2 a): a virtual photon is emitted by the electron before scattering
and reabsorbed after scattering;

• the vacuum polarization (see Fig. 5.2 b): the virtual photon emitted by the scattering electron
fluctuates into an electron-positron pair;

• the internal Bremsstrahlung (see Fig. 5.2 c and d): a real photon is radiated by the electron before
or after scattering.

One will notice that self-energy diagrams (see Fig. 5.2 e) do not participate to internal radiative
corrections as their contribution was found to vanish for on-shell leptons [94].

Figure 5.2: Illustration of the internal radiative effects for DVCS.

Corrections for the first two processes are referred to as virtual, whereas corrections for the third one
are called real. Taking both virtual and real internal radiative corrections into account, the experimental
and Born cross sections are related by the expression [95]:(

dσ

dΩ

)
Exp

=
(
dσ

dΩ

)
Born

[
eδver+δbrem(∆E)

(1− δvac)2

]
, (5.3)
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where the subscript ver stands for the vertex correction, vac stands for the vacuum polarization, and
brem stands for the internal Bremsstrahlung contributions, with:

δver = α

π

[
3
2 ln

(
Q2

m2
e

)
− 2− 1

2 ln2
(
Q2

m2
e

)
+ π2

6

]
, (5.4)

δvac = α

3π

[
ln
(
Q2

m2
e

)
− 5

3

]
, (5.5)

δbrem(∆E) = α

π

{
2 ln

(
∆E√
EE′

)[
ln
(
Q2

m2
e

)
− 1
]
− 1

2 ln2
(
E

E′

)
+ 1

2 ln2
(
Q2

m2
e

)
− π2

3 + Sp
(

cos2 θe
2

)}
,

(5.6)
with α the fine structure constant, me the electron mass, E (E′) the electron energy before (after)
scattering, θe the electron scattering angle and Sp the Spence function defined by:

Sp(z) = −
∫ z

0

ln(1− t)
t

dt. (5.7)

Neglecting the ∆E dependence of E′ and Q2, the term δbrem can be split into a part δbrem,0 indepen-
dent from ∆E, and a part δbrem,1(∆E) which depends on ∆E:

δbrem,0 = α

π

[
1
2 ln2

(
Q2

m2
e

)
− 1

2 ln2
(
E

E′

)
− π2

3 + Sp

(
cos2 θe

2

)]
, (5.8)

δbrem,1(∆E) = 2α
π

ln
(

∆E√
EE′

)[
ln
(
Q2

m2
e

)
− 1
]
. (5.9)

The term δbrem,0 can be interpreted as the emission of soft Bremsstrahlung photons which have an
energy lower than the experiment resolution. Their contribution to the internal Bremsstrahlung radiative
tail is negligible and δbrem,0 can be grouped with the virtual terms δver and δvac. As a consequence, Eq.
(5.3) can be rewritten as:(

dσ

dΩ

)
Exp

=
(
dσ

dΩ

)
Born

[
eδver+δbrem,0

(1− δvac)2

](
∆E√
EE′

)δS
, (5.10)

with:

δS = 2α
π

[
ln
(
Q2

m2
e

)
− 1
]
. (5.11)

Then, the radiative tail due to internal Bremsstrahlung is obtained by differentiating Eq. (5.10) with
respect to ∆E: (

d2σ

d∆EdΩ

)
Exp

=
(
dσ

dΩ

)
Born

[
eδver+δbrem,0

(1− δvac)2

]
δS

∆E

(
∆E
E

)δS ( E
E′

)δS/2
. (5.12)

One will notice that the term δS
∆E
(∆E
E

)δS is similar to Eq. (5.1), with an equivalent radiator thickness
δS . Thus, the internal Bremsstrahlung will be treated in the same way as the external radiative correc-
tions. The correction will be applied twice: once for the incoming electron, and once for the outgoing
electron, each time with the equivalent radiator thickness δS

2 . However, the additional term
(
E
E′

)δS/2
needs to be taken into account. This term does not change the shape of the radiative tail and can be
applied to the measured cross sections afterwards: it does not need to be present in the simulation [95].

For this experiment kinematic settings, δS ≈ 0.07, and
(
E
E′

)δS/2 can be approximated by using
the beam energy and spectrometer momentum. The values of

(
E
E′

)δS/2 for every kinematic setting are
summarized in Tab. 5.1.

Unlike internal Bremsstrahlung, the virtual corrections do not modify the kinematics of the reaction.
Moreover, they are almost constant over the phase space of each kinematic settings. As a consequence,
the virtual corrections can be applied to the measured cross sections afterwards and do not need to be
implemented in the simulation.

However, the virtual correction
[
eδver+δbrem,0

(1−δvac)2

]
computed for DVCS cannot be applied to Bethe-Heitler

(BH). Indeed, because of the additional photon emitted by the leptonic part, virtual corrections to the



CHAPTER 5. GEANT4 SIMULATION AND CROSS SECTIONS EXTRACTION 81

Kinematic setting
(
E
E′

)δS/2
36_1 1.04
36_2 1.04
36_3 1.03
48_1 1.04
48_2 1.03
48_3 1.04
48_4 1.04
60_1 1.03
60_3 1.04

Table 5.1: Summary of the
(
E
E′

)δS/2 correction for each kinematic setting.

BH process are more complicated than for DVCS. In particular, self-energy diagrams now have to be
taken into account (see Fig. 5.3). In principle, different virtual corrections should be applied to the
DVCS, BH, and interference terms of the cross section, but applying a global correction can remain a
good approximation as long as the different contributions are correctly taken into account.

Figure 5.3: Illustration of vertex (a and b) and self-energy (c and d) virtual correction diagrams for
Bethe-Heitler.

An additional difficulty is that unlike internal Bremsstrahlung, the virtual corrections to DVCS dia-
grams have the same final state as the DVCS reaction and thus they interfere with the DVCS amplitude.
Virtual corrections must be summed coherently with DVCS, and as a consequence, a model of the DVCS
amplitude is required to compute these corrections.

Virtual radiative corrections had been computed for a previous Hall A experiment (E00-110) for
both unpolarized and polarized cross sections using a code developed by D. Lhuillier et al. relying on a
factorized GPD ansatz [96]. They have not been computed yet for the current kinematic settings, but
it is reasonable to assume that they will be similar to the previous ones. As a consequence, the virtual
radiative corrections currently applied are ηvirt = 0.94 for unpolarized cross sections and ηvirt = 0.97 for
polarized ones [97]. A systematic uncertainty of 2% had been reported for experiment E00-110.

5.1.3 The event generator and the simulation process
The DVCS reaction ep→ e′p′γ can be split into two parts: a leptonic part e→ e′γ∗, and a hadronic part
γ∗p→ p′γ. The event generator starts by generating the leptonic part.

The first variable generated is the event vertex vz along the beam axis. The vertex is generated
randomly following a uniform distribution within the boundaries of the hydrogen target. The vertex
allows to compute the distance traveled by the initial electron through the target. Using this distance,
the external radiative correction can be applied to the initial energy E according to the method described
in section 5.1.2.1. The corrected energy is noted Eextv .

At first, the event will be generated in the horizontal plane. Because of the very small acceptance
of the spectrometer, it is advantageous to not generate events in the complete DVCS phase space and
to restrain oneself to reasonable ranges encompassing the detector acceptance in order to accelerate the
simulation process. The ranges [φmine , φmaxe ] and [pmine , pmaxe ] of the scattered electron horizontal angle
φe and momentum pe are chosen wide enough to encompass the spectrometer acceptance even after
radiative corrections.
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Then, the event Q2 and xBj can be generated. Their generation follows a uniform distribution in the
intervals defined by:

Q2
min = 2pmine Eextv (1− cosφmine ) < Q2 < 2pmaxe Eextv (1− cosφmaxe ) = Q2

max, (5.13)

xminBj = max
(
pmine Eextv (1− cosφmine )

M(Eextv − pmine ) , 0.05
)
< xBj < min

(
pmaxe Eextv (1− cosφmaxe )

M(Eextv − pmaxe ) , 0.95
)

= xmaxBj ,

(5.14)
with M the proton mass. The phase space factor ∆Q2∆xBj = [Q2

max−Q2
min][xmaxBj −xminBj ] is associated

to the event to account for the phase space region where it was generated.
In parallel of the generation of Q2 and xBj , the energy Eextv is compared to the threshold pmine .

If Eextv < pmine , then the amount of energy lost by external Bremsstrahlung is too large to generate a
detectable event. In this case, the event is considered lost; however, it will still be accounted for in the
total number of generated events used for the simulation normalization.

Then, the first correction for internal Bremsstrahlung, before the vertex, is applied as described in
section 5.1.2.2, and the corrected energy is noted Ev. One will notice that this correction to the initial
electron energy should have been performed before the generation of Q2 and xBj . However, the knowledge
of Q2 is required to compute the correction.

Then, the scattered electron is generated. Its momentum and horizontal angle are computed as:

pe = Ev −
Q2

2MxBj
, (5.15)

cosφe = 1− Q2

2peEv
. (5.16)

Because the first internal Bremsstrahlung correction was applied after the generation of Q2 and xBj ,
if it is large, it is possible for the initial electron energy Ev to have become too low for the generation of
a physical event. In the case where pe < 0, the event is considered lost, but like previously it will still be
accounted for in the total number of generated events. Once the scattered electron has been generated,
the second part of the internal Bremsstrahlung correction can be applied as described in section 5.1.2.2.

Next, the event generator tackles the hadronic part γ∗p→ p′γ of the DVCS reaction in the center-of-
mass frame. The momentum of the virtual photon γ∗ is computed from the initial electron after internal
Bremsstrahlung, and the scattered electron before internal Bremsstrahlung. The squared momentum
transfer t is generated in the interval [tmin(Q2, xBj)− 2 GeV2, tmin(Q2, xBj)] (see appendix B) following
a uniform distribution. This interval is large enough to encompass the calorimeter acceptance: events
with a squared momentum transfer t larger than tmin would be unphysical, and the detector acceptance
in t varies between ∼ 0.4 GeV2 and ∼ 1.2 GeV2 depending on the kinematic setting. An additional
phase space factor ∆t = 2 GeV2 is associated to the event. Then, the photon and proton momentum are
computed and boosted to the laboratory frame.

Afterwards, the photon azimuthal angle φ is generated in the interval [0, 2π] following a uniform
distribution, an additional phase space factor ∆φ = 2π is associated to the event, and the photon and
proton momentum are rotated by φ around the virtual photon direction. Then, to take into account the
vertical acceptance of the spectrometer, an angle ϕ is generated uniformly in an interval large enough to
encompass the detector acceptance, and all three particle momenta are rotated by ϕ around the beam
axis. An additional phase space factor ∆ϕ is associated to the event.

From this point on, Geant4 handles the transport of the electron to the spectrometer entrance. Further
energy losses may happen due to interactions with the hydrogen target cell, the kapton window and the
air between the scattering chamber and the spectrometer entrance. After the computation of these
external radiative corrections by Geant4, the final electron energy is noted E′r. If the electron hits the
spectrometer entrance, a cut on its R-value identical to the data will determine whether it is detected or
not. Geant4 also handles the transport of the photon to the calorimeter, as well as the electromagnetic
shower developing in the PbF2 crystals and the energy deposited in them.

Finally, the vertex position vz is smeared by a Gaussian distribution to take into account the spec-
trometer resolution. The vertex resolution σvertex used for the smearing is given by the expression:

σvertex = σ90

sin θHRS
, (5.17)

with θHRS the spectrometer angle and σ90 its vertex resolution if the detector was at θHRS = 90◦. In
normal conditions, the nominal vertex resolution of the spectrometer at 90◦ is σ90 = 1.2 mm. However,
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because of the challenges raised by the optics calibration, the achieved vertex resolution was slightly
larger (see kinematic settings 48_2, 48_3 and 48_4 in Tab. 5.2). Nevertheless, as the experimental
resolution is dominated by the calorimeter, the achieved vertex resolution is satisfactory.

Kinematic setting σ90 (mm)
36_1 1.5
36_2 1.6
36_3 1.2
48_1 1.5
48_2 1.9
48_3 2.0
48_4 2.1
60_1 1.4
60_3 1.4

Table 5.2: Summary of the spectrometer vertex resolution at 90◦ for each kinematic setting.

The main steps of the event generation process are summarized in Fig. 5.4. The total phase space
factor associated to a generated event is ∆ΩMC = ∆Q2(Eextv )∆xBj(Eextv )∆t∆φ∆ϕ. In particular, one
will notice that ∆ΩMC is different from one event to another because of the external Bremsstrahlung.

Figure 5.4: Schematic representation of the event generation in the simulation. External (internal)
Bremsstrahlung is represented in blue (orange).

5.1.4 The simulation calibration and smearing
Because of resolution effects and the radiative tail due to Bremsstrahlung, the cuts applied on the DVCS
missing mass will inevitably eliminate a non-negligible amount of DVCS events. This loss of events can
be corrected by applying the same cuts to the Monte Carlo simulation as long as the simulation missing
mass distribution matches perfectly the one from the data, in both position and shape. However, this is
not the case at first:
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• the simulation energy resolution is better than the data, resulting in a much narrower missing
mass peak. This is because a bias is introduced by the fact that the simulation does not use
Cherenkov photons to compute the energy deposited in the PbF2 blocks, while a significant part of
the experimental energy resolution is explained by fluctuations in the number of Cherenkov photons
collected. Another small bias is due to the fact that the simulation does not reproduce the radiation
damage suffered by the PbF2 blocks;

• the position of the missing mass peak in the simulation is higher than the expected 0.88 GeV2,
implying that the photon energy is underestimated. This is because around ∼ 4% of the photon
energy leaks between and behind the calorimeter crystals. In the experimental data, these leaks are
compensated by the energy calibration of the calorimeter, but that is not the case in the simulation.

As a consequence, both a calibration and a smearing of the simulation are required. They are per-
formed simultaneously by multiplying event by event the photon momentum by a random variable follow-
ing a Gaussian distribution Gaus(µ, σ), with µ and σ the calibration and smearing coefficient respectively:

qx
qy
qz
E

→ Gauss(µ, σ)×


qx
qy
qz
E

 . (5.18)

The calorimeter gain and energy resolution evolve with time as the blocks darken because of radiation
damage. As a consequence, the parameters µ and σ are computed for each kinematic setting.

Furthermore, the blocks of the calorimeter darken at different rates: radiation damage is stronger when
close to the beam line, and the block quality and resistance to radiation may vary. For these reasons,
the calorimeter gain and energy resolution may differ from one area to another. As a consequence, the
parameters µ and σ must depend on the photon impact position in the calorimeter as well.

Reproducing the method applied in [98], the calorimeter surface is divided into 7×7 = 49 rectangular
regions partially overlapping (see Fig. 5.5). Calibration and smearing coefficients µj and σj are computed
independently for each region j. Then, parameters µ and σ are computed event by event depending on
the photon impact position in the calorimeter by interpolating the coefficients µj and σj found previously.
As can be seen in Fig. 5.5, the parameter µ varies by approximately 5% across the calorimeter surface,
while σ fluctuates between ∼ 0.2 GeV and ∼ 0.4 GeV for photon energies of approximately 4.7 GeV.
Small variations of µ and σ are naturally expected because of the precision of the calorimeter energy
calibration and differences between each block. However, the larger fluctuations are imputable to a few
calorimeter blocks with very low gain and whose energy calibration was challenging. For instance, the
small (large) values of µ (σ) at the bottom left of the calorimeter are due to two blocks very sensitive to
radiation damage that became very dark. The larger values of µ on the right side of the calorimeter are
also explained by the existence of a block with low gain and high radiation damage sensitivity. Additional
variations may also be explained by the influence of blocks on the calorimeter edges that could not be
included in the π0 energy calibration.

Figure 5.5: Left (Right): value of the interpolated parameter µ (σ) with respect to the impact position
of the photon in the calorimeter for kin48_2. The parameter σ is expressed in GeV. The magenta and
blue rectangles represent the boundaries of 2 out of the 49 rectangular regions where the coefficients µj
and σj are computed.
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The coefficients µj and σj are computed by fitting the simulation missing mass distribution to the data
in the exclusivity peak region after subtracting accidental and π0 events (see Fig. 5.6). The simulation
missing mass distribution is normalized by the DVCS cross section which was extracted after a first
iteration where it was not included in the normalization. The simulation missing mass distribution is
also rescaled by a factor computed as the ratio of the integrals of the experimental and simulation missing
mass between 0.5 GeV2 and 0.95 GeV2. The calibration and smearing coefficients found minimize the χ2:

χ2
j (µj , σj) = 1

Nbin − 2

imax∑
i=imin

(
Ndata
i,j −NMC

i,j

σdatai,j

)2

, (5.19)

where the variable i runs over Nbin = imax − imin + 1 missing mass bins, Ndata
i (NMC

i ) is the number of
real (simulated) events in the bin i for the region j, and σdatai,j is the associated statistical uncertainty. As
shown in Fig. 5.6, the boundaries imin and imax are adjusted depending on the kinematic setting so that
the exclusivity peak is included in the χ2 minimization while avoiding SIDIS contamination as much as
possible.

Figure 5.6: The missing mass distribution of kin48_2 for real data, after accidental and π0 subtraction,
is represented in red, while the one for the normalized, calibrated and smeared simulation is shown in
blue. The magenta lines represent the boundaries imin and imax of the χ2 minimization. The simulation
missing mass distribution before calibration and smearing is represented in black and has been scaled to
the same amplitude as the other histograms.

In Fig. 5.6 one will also notice that the tail at low missing mass is undershot by the simulation. Since
no other source of contamination is expected at low missing mass, it is reasonable to assume that those
are DVCS events and that a Gaussian smearing of the simulation is not able to completely describe the
low missing mass tail of the data. Depending on the kinematic setting, the ratio of the number of DVCS
events from the data not described by the simulation at low missing mass over the total number of events
in the simulation (after rescaling) can vary between 2.8% and 5.6% (see Tab. 5.3). This ratio increases
when the beam energy becomes larger. A non-Gaussian smearing of the simulation will be required in
order to minimize this source of systematic uncertainty.

5.2 The cross section extraction
The number of events Ni in an experimental bin i and the DVCS cross section dσ

dΩ are related by the
expression:

Ni = L
∫

Ωi

dσ

dΩdΩ = L
∫

Ωi
dσ
dΩdΩ∫

Ωi dΩ

∫
Ωi
dΩ = L

〈
dσ

dΩ

〉
i

∆Ωi, (5.20)
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Kinematic setting

∫
lowM2

X

(Ndata−NMC)∫
NMC

36_1 3.8%
36_2 4.4%
36_3 5.6%
48_1 2.8%
48_2 3.6%
48_3 4.2%
48_4 5.5%
60_1 4.5%
60_3 5.3%

Table 5.3: Summary of the ratio of the number of DVCS events from the data not described by the
simulation at low missing mass over the total number of events in the simulation (after rescaling) for each
kinematic setting.

where L is the integrated luminosity and ∆Ωi is the experimental acceptance for the bin i. The acceptance
∆Ωi can be computed using the Monte Carlo simulation described previously:

∆Ωi =
NiMC∑
j=0

∆ΩjMC

Ngene
MC

, (5.21)

where the sum runs over the N i
MC events reconstructed in the experimental bin i, ∆ΩjMC is the phase

space factor associated to the event j, and Ngene
MC is the number of events generated in the simulation.

Then, by dividing Ni by L and ∆Ωi, one can extract the average DVCS cross section over the bin i.
As described in section 1.3.4, the cross section is parametrized by linear and bi-linear combinations

of CFFs X(CFF ) multiplied by kinematic factors F (E,Q2, xBj , t, φ, λ) whose expressions are given in
appendix B. If one makes the approximation that the combinations of CFFs are constant inside each
experimental bin i, it is then possible to directly fit these combinations by integrating the kinematic
factors into the Monte Carlo computation of the acceptance:

Ni = L
∫

Ωi
F (E,Q2, xBj , t, φ, λ)X(CFF )dΩ ≈ L〈X(CFF )〉i

∫
Ωi
F (E,Q2, xBj , t, φ, λ)dΩ. (5.22)

The first part of this section will explain in further detail this fitting method which was successfully
used in previous Hall A experiments [70, 98]. This extraction procedure has the main advantage of taking
into account the variations of the kinematic factors F (E,Q2, xBj , t, φ, λ) within the experimental bins
(see Eq. (5.22)). Furthermore, as will be described below, the method corrects the bin migration due to
radiative effects and detectors resolution.

The second and third parts of this section will present the study of systematic uncertainties and
discuss preliminary results.

5.2.1 The fitting method
The kinematic variables of an event are reconstructed from the detector information. However, the
variables relevant to extract cross sections are the ones at the vertex. Let “reconstructed bins” be the
name of the R bins constructed from kinematic variables measured by the detectors, and let “vertex
bins” be the name of the V bins constructed from kinematic variables at the event vertex. Let Nr be
the number of events in the reconstructed bin r, and N ′v be the number of events in the vertex bin v.
Extracting cross sections requires the knowledge of N ′v:

N ′v = L
∫
v

dσ

dΩdΩ. (5.23)

As only Nr is experimentally accessible, in an ideal case, one would like the kinematic variables
measured by the detector to be identical to the ones at the vertex, so that Ni = N ′i for any bin i.
The cross section could then be indiscriminately extracted using the number of events in reconstructed
or vertex bins. In reality, because of radiation effects and detector resolution, the kinematic variables
measured by the detectors are different from the ones at the vertex. The immediate consequence is that
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an event that belongs to a vertex bin i can migrate to a different reconstructed bin: Ni 6= N ′i . This effect
is called bin migration.

Kinematic variables at the vertex are not accessible in real data, but they are in a simulation. From
the Monte Carlo simulation, it is thus possible to access the probability Krv for an event to migrate from
the vertex bin v to the reconstructed bin r. The number of events Nr and Nv are then related by the
equation:

Nr =
V∑
v=1

KrvN
′
v, (5.24)

and combining Eq. (5.23) and Eq. (5.24) one gets:

Nr = L
V∑
v=1

∫
v

Krv
dσ

dΩdΩ. (5.25)

Let Xn be the N combinations of CFFs parametrizing the cross section, and Fn(E,Q2, xBj , t, φ, λ)
the associated kinematic factors so that:

d5σ

dQ2dxBjdtdφdϕ
=
N∑
n=1

Fn(E,Q2, xBj , t, φ, λ)Xn. (5.26)

Combining Eq. (5.25) and Eq. (5.26) yields:

Nr = L
V∑
v=1

N∑
n=1
〈Xn〉v

∫
v

KrvFn(E,Q2, xBj , t, φ, λ)dΩ. (5.27)

Let Krvn be the notation for
∫
v
KrvFn(E,Q2, xBj , t, φ, λ)dΩ. Eq. (5.27) then becomes:

Nr = L
V∑
v=1

N∑
n=1

Krvn 〈Xn〉v , (5.28)

and Krvn can be computed with the Monte Carlo simulation as:

Krvn =
∑

i∈{v→r}

Fn(E,Q2, xBj , t, φ, λ)∆ΩiMC

Ngene
MC

, (5.29)

with i running over the events which migrated from the vertex bin v to the reconstructed bin r.
The quantity Krvn encompasses both kinematic dependencies and bin migration effects. It is then

possible to fit {〈Xn〉v} to the data by minimizing the χ2:

χ2({〈Xn〉v}) =
R∑
r=1

(
Ndata
r −Nr
σdatar

)2

, (5.30)

with Ndata
r the number of experimental events in the reconstructed bin r, σdatar the associated statistical

uncertainty, and Nr is given by Eq. (5.28).
The minimization of Eq. (5.30) with respect to {〈Xn〉v} leads to the resolution of the matrix equation

AX = B with A a (N × V)× (N × V) square matrix and B a N × V column vector, whose coefficients
are defined by:

Anv,n′v′ =
R∑
r=1
L2KrvnKrv′n′

[σdatar ]2
, (5.31)

Bnv =
R∑
r=1
LKrvnN

data
r

[σdatar ]2
, (5.32)

and the solution X is obtained by inverting A:

〈Xn〉v =
N∑
n′=1

V∑
v′=1

[
A−1]

nv,n′v′ Bn′v′ , (5.33)
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with A−1 the covariance matrix. The statistical uncertainty associated to 〈Xn〉v is given by
√

[A−1]nv,nv.
One will notice that for the χ2 minimization to work, there must be more data bins than unknown

variables. As there are N ×V unknown variables 〈Xn〉v, and R data bins (Eq. (5.30)), this implies that,
at the very least, there must be more reconstructed bins than vertex bins. This is made possible by the
variable φ. Indeed, as both Ndata

r and 〈Xn〉v depend on Q2, xBj and t, identical binning for these three
variables are used for both reconstructed and vertex bins. However, 〈Xn〉v is independent of φ, while
Ndata
r does depend on it. As a consequence, an additional binning in φ is used for reconstructed bins

only. It was chosen to use for each kinematic setting: only 1 bin in Q2 and 1 bin in xBj because of the
small acceptance of the spectrometer, 5 bins in t and 24 bins in φ, which results in 5 vertex bins, and
120 reconstructed bins.

It is usually advantageous to separate the values of t in t−tmin(Q2, xBj) bins instead of t bins. Indeed,
t− tmin(Q2, xBj) is related to the distance of the real DVCS photon to the projection of the virtual one
at the surface of the calorimeter. Furthermore, the virtual photon direction is heavily constrained toward
the center of the calorimeter because of the tight acceptance of the spectrometer. As a consequence, the
events distribution is flatter in t− tmin(Q2, xBj) and thus the t-binning is actually performed in bins of
t− tmin(Q2, xBj).

Then, from the fitted combinations of CFFs 〈Xn〉v averaged over the vertex bins, it is possible to
compute the fitted number of events Nr (Eq. (5.28)) and the fitted cross section averaged over each bin:

d5σfitv
dQ2dxBjdtdφdϕ

=
N∑
n=1

Fn(E,
〈
Q2〉 , 〈xBj〉 , 〈t〉 , φ, λ) 〈Xn〉v . (5.34)

Finally, the cross section corresponding to the measured data can be reconstructed as:

d5σdatar

dQ2dxBjdtdφdϕ
= Ndata

r

Nr

d5σfitr
dQ2dxBjdtdφdϕ

. (5.35)

As d5σ is independent of ϕ, integrating the cross section over ϕ yields a factor 2π, and the pre-
liminary results presented in the following sections will be the four-fold cross sections d4σ

dQ2dxBjdtdφ
=

1
2π
∫

d5σ
dQ2dxBjdtdφdϕ

dϕ.
The harmonic expansion of the real part of the DVCS amplitude possesses cos(0φ), cos(1φ) and cos(2φ)

dependencies, while the imaginary part presents sin(1φ) and sin(2φ) dependencies. Thus, it was chosen to
parametrize the unpolarized cross section with N = 3 combinations of CFFs, and the helicity-dependent
one with N = 2.

The chosen parametrization aims at keeping dominant contributions with different φ−dependencies
in order to minimize correlations. As a consequence, the unpolarized cross section has been parametrized
with CDV CS(F++,F∗++ | F−+,F∗−+), ReCI(F++) and ReCI(F0+), while the helicity-dependent cross
section has been parametrized with ImCI(F++) and ImCI(F0+) (see appendix B). The χ2 resulting
from the fits (see Eq. (5.30)) and normalized by the number of degrees of freedom dof = R − NV are
summarized in Tab. 5.4, and the fitted number of events for each reconstructed bin are displayed in
appendix C. The specific case of the unpolarized cross section for kin36_2 is shown in Fig. 5.7.

Kinematic setting χ2
unpol/dof χ2

pol/dof

36_1 1.33 0.89
36_2 1.61 0.94
36_3 1.47 1.07
48_1 1.51 1.00
48_2 1.92 1.01
48_3 1.19 1.15
48_4 1.20 1.10
60_1 1.72 0.69
60_3 1.34 1.04

Table 5.4: Summary of the normalized χ2 from the cross section fits (Eq. (5.30)) for each kinematic
setting. The subscript unpol stands for the unpolarized cross section, while pol designates the helicity-
dependent one. The number of degrees of freedom is dof = R−NV.

As shown in Tab. 5.4, the normalized χ2 are reasonably close to 1 for both unpolarized and polarized
cross sections for every kinematic setting, although it is slightly larger than 2 for the unpolarized cross
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Figure 5.7: Unpolarized number of DVCS events for kin36_2, with
〈
Q2〉 = 3.67 GeV2, 〈xBj〉 = 0.37 and

and χ2/dof = 1.61. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only.

section of kin36_1. One will also notice that the fits show better results for polarized cross sections than
unpolarized ones.

In Fig. 5.7, the experimental number of DVCS events are displayed in black with the statistical
uncertainties represented by the error bars, while the fitted number of events are shown in blue. The
number of events generated in the Monte Carlo simulation was chosen sufficiently large so that its statis-
tical uncertainties are negligible with respect to the experimental ones. As can be seen, the experimental
number of events in every bin is well fitted by the simulation, which is reflected by the normalized χ2

whose value (1.69) is close to 1. However, because of the calorimeter acceptance, there are relatively few
events with φ close to 0◦ or 360◦ for the two t-bins where t− tmin is the largest (bottom of Fig. 5.7). As
a consequence, large statistical uncertainties are expected for the cross sections associated to these few
bins.

5.2.2 Systematic uncertainties
Systematic uncertainties can be divided into two categories: uncorrelated uncertainties which are asso-
ciated to individual experimental bins, and correlated uncertainties which affect all bins equally. In this
work, the systematic uncertainty associated with the missing mass cuts falls into the first category, while
every other uncertainty are treated as the second one.

5.2.2.1 Missing mass cuts

One of the largest contributions to systematic uncertainties for this experiment comes from the choice of
the missing mass cuts. It can be split into two effects:

• as stated in section 4.6, in theory, the SIDIS missing mass should reach no lower than 1.15 GeV2,
and applying a cut at a lower value should remove all SIDIS contamination. In practice, this is not
exactly the case. Because of energy calibration uncertainties, the theoretical limit of 1.15 GeV2 can
actually be shifted to lower values. Moreover, because of detectors resolution, the SIDIS missing
mass will extend to values below this limit. On the other hand, one does not want to apply a cut
on the missing mass which is too severe otherwise statistical uncertainties would become large. As
a consequence, some SIDIS contamination may remain after the event selection;
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• the simulation calibration and smearing procedure do not allow to perfectly reproduce the calorime-
ter gain and resolution.

As shown by the magenta lines in Fig. 5.8 (left), two missing mass cuts are applied for each kinematic
setting, on each side of the exclusivity peak. The choice of the cut values is made by studying the ratio
of the integrals of the experimental and simulation missing mass spectra. The simulation missing mass
distribution has been preemptively rescaled by a factor computed as the ratio of the integrals of the
experimental and simulation missing mass between 0.6 GeV2 and 0.9 GeV2, so that the amplitude of
the exclusivity peaks are identical. As shown in Fig. 5.8 (right), on the right side of the exclusivity
peak, the ratio is constant around 1 until SIDIS contamination becomes significant, at which point the
ratio increases quickly as the experimental and simulation distributions are no longer matching. In order
to minimize the SIDIS contamination, the cutting value is chosen on the plateau far enough from the
point where the ratio starts to increase, while compromising with the amount of events that has to be
kept to limit statistical uncertainties. As a further constraint, the value of the cut on the right of the
exclusivity peak should not be larger than 1.1 GeV2 in order to minimize contamination from SIDIS
whose theoretical limit is approximately 1.15 GeV2.

The discrepancy between real data and simulation on the left side of the exclusivity peak (see Fig.
5.8 left) is not due to SIDIS, but to the fact that a Gaussian smearing of the simulation is not enough to
accurately describe the low missing mass tail of the data, as explained in section 5.1.4. As a consequence,
an additional uncertainty between 2.8% and 5.6% must be taken into account, depending on the kinematic
setting, until the simulation smearing is improved. Nevertheless, studying the ratio of the integrals of
the experimental and simulation missing mass spectra also allows to select a cut value above which both
spectra are matching. The missing mass cuts are summarized in Tab. 5.5 for every kinematic setting.

Figure 5.8: Left: the experimental (simulation) missing mass distribution of kin48_1 is represented in
red (blue). Right: evolution of the ratio of the integrals of the experimental and simulation missing mass
spectra with respect to the cut at the right of the exclusivity peak. The magenta lines represent the
chosen cuts on the missing mass.

Kinematic setting Left side M2
X cut (GeV2) Right side M2

X cut (GeV2)
36_1 0.35 1.10
36_2 0.35 1.10
36_3 0.30 1.10
48_1 0.40 1.05
48_2 0.35 1.10
48_3 0.30 1.10
48_4 0.30 1.10
60_1 0.50 1.00
60_3 0.30 1.10

Table 5.5: Summary of the missing mass cuts for each kinematic setting.

In order to evaluate the systematic uncertainties introduced by these choices, the variations of the
experimental cross section (see Eq. (5.35)) with respect to the values of the missing mass cuts are
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studied. It is possible to visually locate in Fig. 5.8 the missing mass values beyond which the simulation
and experimental spectra are mismatched with a precision of roughly 0.05 GeV2. As a consequence,
the missing mass cuts values are conservatively allowed to vary in a slightly larger ±0.06 GeV2 interval
around the nominal cuts reported in Tab. 5.5. The largest variations of the cross section around its
nominal value are then taken as systematic uncertainties (see Fig. 5.9). As the uncertainty introduced
by the cut on the left side of the exclusivity peak is independent from the one introduced by the cut on
the right, they are added quadratically. The total systematic uncertainty is evaluated individually for
each reconstructed bin.

On average, an uncertainty between 2% and 5% has been measured. Additional work on the Monte
Carlo smearing process may allow to further reduce this uncertainty by improving the matching of the
simulation and experimental missing mass spectra. Indeed, the calibration and smearing of the simulation
was challenging for a few regions of the calorimeter where the missing mass exclusivity peak is difficult
to distinguish from the background. This was usually the case in regions with few events and affected
by blocks with low gain, on the left side of the calorimeter. Adjusting for each region the boundaries
imin and imax of the simulation calibration-smearing process could improve slightly the matching of the
simulation and experimental missing mass spectra. Using a non-Gaussian smearing may also improve the
agreement between the data and the simulation.

Figure 5.9: Variation of the experimental unpolarized cross section of kin_601 with respect to the missing
mass cut at the right of the exclusivity peak, for −0.268 GeV2 < t−tmin < −0.134 GeV2, φ ≈ 97◦ (black)
and φ ≈ 172◦ (red). The plain magenta line represents the value of the nominal missing mass cut (see
Tab. 5.5). The dotted magenta lines represent the ±0.06 GeV2 interval where the largest variations of
the cross section around its nominal value are taken as systematic uncertainties.

5.2.2.2 Choice of CFFs combinations for the cross-section parametrization

Another contribution to systematic uncertainties comes from the choice of the CFFs combinations used to
parametrize and extract the cross section. Indeed, by choosing to rely on some specific CFFS combinations
instead of others, the dependencies of the cross section on some terms is hereby assumed.

Different parametrizations have been tested for the unpolarized cross section. Using ReCI,V (F++)
instead of CDV CS(F++,F∗++ | F−+,F∗−+) yields similarly good fit results, while the utilization of
ReCI(F−+) worsen the fit quality. Using the parametrization ReCI(F++), ReCI,V (F++), ReCI,A(F++)
does not yield good fit results either.

The systematic uncertainty is evaluated by comparing the cross sections obtained using parametriza-
tions that yielded similarly good fit results. Let the reference parametrization be the one chosen in
the previous section (CDV CS(F++,F∗++ | F−+,F∗−+), ReCI(F++) and ReCI(F0+)), and the alternative
parametrization the one where CDV CS(F++,F∗++ | F−+,F∗−+) is replaced by ReCI,V (F++).

As can be seen in Fig. 5.10, depending on the parametrization choice, the cross section can vary up
to ∼ 1.0%. The value of 1.0% is thus chosen as the systematic uncertainty associated to the choice of the
CFFs combinations used to parametrize the cross section. However, since this uncertainty has a shape



CHAPTER 5. GEANT4 SIMULATION AND CROSS SECTIONS EXTRACTION 92

because of the φ-modulation, an in-depth study of its effects on specific harmonic dependencies might be
necessary.

Figure 5.10: Relative difference between the unpolarized cross section parametrized with the CDV CS term
and the one parametrized with the ReCI,V term, for kin36_2, with

〈
Q2〉 = 3.6 GeV2, 〈xBj〉 = 0.36 and

−0.248 GeV2 < t− tmin < −0.186 GeV2. The φ-dependence of the relative difference is due to the cosφ
and cos 2φ dependence of ReCI,V whereas CDV CS does not depend on φ. Both parametrization yielded
a fit of similar quality: χ2

ref/dof = 1.61 and χ2
alt/dof = 1.56.

5.2.2.3 Correlated systematic uncertainties summary

The systematic uncertainties regarding the spectrometer cuts and virtual radiative corrections have not
been evaluated yet. However, it is reasonable to assume that they should be very close to those reported
for the E00-110 experiment. The correlated systematic uncertainties are summarized in Tab. 5.6. As a
reminder, one needs to quadratically add to the values reported in Tab. 5.6:

• The uncorrelated uncertainties from the missing mass cuts, evaluated between 2% and 5% depending
on the kinematic setting and the experimental bin.

• The correlated uncertainties, depending on the kinematic setting, arising from the fact that a
Gaussian smearing of the simulation does not allow to accurately describe the low missing mass tail
from the data (see Tab. 5.3). This uncertainty is quite large, between 2.8% and 5.6%, but can be
greatly reduced by a non-Gaussian smearing of the simulation.

5.2.3 Preliminary results
5.2.3.1 Unpolarized and polarized DVCS cross sections

The figures 5.11 and 5.12 display respectively the unpolarized and helicity-dependent cross section with
respect to φ for a t−bin of kin36_2. The experimental cross section and the associated statistical uncer-
tainty is represented by the black dots, while the fit is shown by the black curve. The contribution from the
pure Bethe-Heitler is the red curve, while the contributions of the combinations of CFFs 〈Xn〉v parametriz-
ing the cross section, multiplied by the corresponding kinematic factors Fn(E,

〈
Q2〉

v
, 〈xBj〉v , 〈t〉v , φr, λ)

(see appendix B) are represented in green, magenta and cyan. The statistical uncertainties associated to
the cross section fit and the combinations of CFFs are computed from the covariance matrix A−1 and are
represented by their respective colored areas. The blue error band at the bottom of the figures represents
the total systematic uncertainty introduced by the missing mass cuts.

The experiment preliminary results are summarized for every kinematic setting in Fig. 5.13 to 5.30.
The values of the experimental cross sections, the associated statistical uncertainties, and the systematic
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Correlated systematic uncertainty Value (%)
HRS electron identification * 0.5
HRS multi-track correction * 0.5
HRS acceptance (R-function) * 1.0

Luminosity and dead time 1.6
Virtual radiative corrections * 2.0

Beam polarization 1.0 (2.2)
CFFs parametrization 1.0
Total (unpolarized) 3.0

Total (helicity-dependent) 3.2 (3.7)

Table 5.6: Summary of the correlated systematic uncertainties. Uncertainties with a * have yet to be
evaluated and are assumed to be close to the ones reported in [98]. The values between parenthesis
correspond to kin36_1.

uncertainties due to the missing mass cuts are summarized for every experimental bin and for every
kinematic setting in tables available in appendix D.

Figure 5.11: Unpolarized cross section for kin36_2, with a beam energy Ebeam = 8.5 GeV,
〈
Q2〉 =

3.6 GeV2, 〈xBj〉 = 0.36 and −0.186 GeV2 < t − tmin < −0.124 GeV2. The black dots represent
the experimental cross section with statistical uncertainty bars while the black curve with statistical
uncertainty band is the cross section fit. The Bethe-Heitler is represented in red, while the models
KM10a and KM15 are respectively in brown and blue. The contributions of the combinations of CFFs
〈Xn〉v parametrizing the unpolarized cross section, multiplied by the corresponding kinematic factors
Fn(E,

〈
Q2〉

v
, 〈xBj〉v , 〈t〉v , φr, λ) are represented in green, magenta and cyan, with their respective sta-

tistical uncertainty bands. The blue uncertainty band at the bottom represents the total systematic
uncertainty introduced by the missing mass cuts.

In the unpolarized case (see Fig. 5.11), the cross section can be clearly distinguished from the pure
Bethe-Heitler contribution and sizeable DVCS and interference terms can be measured. In particular,
with the CFFs combinations chosen in section 5.2.1, for values of φ close to 180◦, the DVCS term is
dominant. On the other hand, for values of φ close to 0◦ and 360◦, the absolute value of the interference
becomes comparable or larger than the DVCS term.

The statistical and systematic uncertainties are of comparable size, although for the helicity-dependent
cross section, the statistical ones tends to be slightly larger than the systematic ones. Furthermore, in
the helicity-dependent case, because the quantity which is measured is a difference of cross sections, the
relative statistical and systematic uncertainties are larger than in the unpolarized case (see Fig. 5.12).
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Figure 5.12: Helicity-dependent cross section for kin36_2, with a beam energy Ebeam = 8.5 GeV,〈
Q2〉 = 3.6 GeV2, 〈xBj〉 = 0.36 and −0.186 GeV2 < t − tmin < −0.124 GeV2. The black dots represent
the experimental cross section with statistical uncertainty bars while the black curve with statistical un-
certainty band is the cross section fit. The models KM10a and KM15 are respectively in brown and blue.
The contributions of the combinations of CFFs 〈Xn〉v parametrizing the helicity-dependent cross section,
multiplied by the corresponding kinematic factors Fn(E,

〈
Q2〉

v
, 〈xBj〉v , 〈t〉v , φr, λ) are represented in

magenta, and cyan, with their respective statistical uncertainty bands. The blue uncertainty band at the
bottom represents the total systematic uncertainty introduced by the missing mass cuts.

As predicted, statistical uncertainties can become very large for values of φ close to 0◦ or 360◦ for the
two t-bins where t− tmin is the largest because of a lack of events due to the calorimeter acceptance (see
Fig. 5.13 and 5.14).

For both unpolarized and helicity-dependent cross sections, the twist-2 CFF contributions tend to be
dominant while the twist-3 ones are close to 0 (see Fig. 5.11 and 5.12). In a few cases, some twist-3
contributions seem to rise to non negligible values. However, the associated uncertainty bands are often
large and compatible with 0 when taking systematic uncertainties into account: it is unclear whether
this is a genuine effect, or simply a consequence of statistic and systematic uncertainties (see Fig. 5.13
to 5.30).

For every kinematic setting, the obtained cross sections have been compared to two global fits to
DVCS data: KM10a and KM15. The model KM10a did not use Hall A data, while the model KM15
includes Hall A and CLAS data up to their latest results of 2015. In particular the Hall A data of 2015
supersede the previous ones of 2006. Further details concerning these models can be found in [20] and
[99]. An executable developed by K. Kumerički and D. Müller in order to compute cross sections for each
model is available at http://calculon.phy.hr/gpd/.

In the case of the unpolarized cross sections (see Fig. 5.11), the model KM15 (blue curve) is in a
very good agreement with the data for every kinematic setting. On the other hand, the model KM10a
(brown) tends to undershoot the experimental cross sections. When xBj becomes larger, the discrepancy
between the experimental cross section and the models tends to increase (see Fig. 5.13 to 5.30), which is
expected since the models were designed for smaller values of xBj .

Regarding the helicity-dependent cross sections (see Fig. 5.12), the data tend to be fairly well described
by both fits KM10a and KM15 for every value of Q2 or xBj (see Fig. 5.13 to 5.30). The global fits seem
to show a better agreement with the unpolarized cross sections than the helicity-dependent ones, but one
also has to keep in mind that uncertainties are larger in the latter case.
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Figure 5.13: Unpolarized cross sections for kin36_1, with Ebeam = 7.38 GeV,
〈
Q2〉 = 3.17 GeV2, 〈xBj〉 =

0.36 and χ2/dof = 1.33. The uncertainty bars are statistical only. The blue error band at the bottom
represents the systematic uncertainty associated with the missing mass cuts.

Figure 5.14: Helicity-dependent cross sections for kin36_1, with Ebeam = 7.38 GeV,
〈
Q2〉 = 3.17 GeV2,

〈xBj〉 = 0.36 and χ2/dof = 0.89. The uncertainty bars are statistical only. The blue error band at the
bottom represents the systematic uncertainty associated with the missing mass cuts.
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Figure 5.15: Unpolarized cross sections for kin36_2, with Ebeam = 8.52 GeV,
〈
Q2〉 = 3.67 GeV2, 〈xBj〉 =

0.37 and and χ2/dof = 1.61. The uncertainty bars are statistical only. The blue error band at the bottom
represents the systematic uncertainty associated with the missing mass cuts.

Figure 5.16: Helicity-dependent cross sections for kin36_2, with Ebeam = 8.52 GeV,
〈
Q2〉 = 3.67 GeV2,

〈xBj〉 = 0.37 and χ2/dof = 0.94. The uncertainty bars are statistical only. The blue error band at the
bottom represents the systematic uncertainty associated with the missing mass cuts.
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Figure 5.17: Unpolarized cross sections for kin36_3, with Ebeam = 10.59 GeV,
〈
Q2〉 = 4.57 GeV2,

〈xBj〉 = 0.37 and χ2/dof = 1.47. The uncertainty bars are statistical only. The blue error band at the
bottom represents the systematic uncertainty associated with the missing mass cuts.

Figure 5.18: Helicity-dependent cross sections for kin36_3, with Ebeam = 10.59 GeV,
〈
Q2〉 = 4.57 GeV2,

〈xBj〉 = 0.37 and χ2/dof = 1.07. The uncertainty bars are statistical only. The blue error band at the
bottom represents the systematic uncertainty associated with the missing mass cuts.
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Figure 5.19: Unpolarized cross sections for kin48_1, with Ebeam = 4.49 GeV,
〈
Q2〉 = 2.71 GeV2, 〈xBj〉 =

0.48 and χ2/dof = 1.51. The uncertainty bars are statistical only. The blue error band at the bottom
represents the systematic uncertainty associated with the missing mass cuts.

Figure 5.20: Helicity-dependent cross sections for kin48_1, with Ebeam = 4.49 GeV,
〈
Q2〉 = 2.71 GeV2,

〈xBj〉 = 0.48 and χ2/dof = 1.00. The uncertainty bars are statistical only. The blue error band at the
bottom represents the systematic uncertainty associated with the missing mass cuts.
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Figure 5.21: Unpolarized cross sections for kin48_2, with Ebeam = 8.85 GeV,
〈
Q2〉 = 4.55 GeV2, 〈xBj〉 =

0.50 and χ2/dof = 1.92. The uncertainty bars are statistical only. The blue error band at the bottom
represents the systematic uncertainty associated with the missing mass cuts.

Figure 5.22: Helicity-dependent cross sections for kin48_2, with Ebeam = 8.85 GeV,
〈
Q2〉 = 4.55 GeV2,

〈xBj〉 = 0.50 and χ2/dof = 1.01. The uncertainty bars are statistical only. The blue error band at the
bottom represents the systematic uncertainty associated with the missing mass cuts.
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Figure 5.23: Unpolarized cross sections for kin48_3, with Ebeam = 8.85 GeV,
〈
Q2〉 = 5.35 GeV2, 〈xBj〉 =

0.48 and χ2/dof = 1.19. The uncertainty bars are statistical only. The blue error band at the bottom
represents the systematic uncertainty associated with the missing mass cuts.

Figure 5.24: Helicity-dependent cross sections for kin48_3, with Ebeam = 8.85 GeV,
〈
Q2〉 = 5.35 GeV2,

〈xBj〉 = 0.48 and χ2/dof = 1.15. The uncertainty bars are statistical only. The blue error band at the
bottom represents the systematic uncertainty associated with the missing mass cuts.
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Figure 5.25: Unpolarized cross sections for kin48_4, with Ebeam = 10.99 GeV,
〈
Q2〉 = 7.10 GeV2,

〈xBj〉 = 0.50 and χ2/dof = 1.20. The uncertainty bars are statistical only. The blue error band at the
bottom represents the systematic uncertainty associated with the missing mass cuts.

Figure 5.26: Helicity-dependent cross sections for kin48_4, with Ebeam = 10.99 GeV,
〈
Q2〉 = 7.10 GeV2,

〈xBj〉 = 0.50 and χ2/dof = 1.10. The uncertainty bars are statistical only. The blue error band at the
bottom represents the systematic uncertainty associated with the missing mass cuts.
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Figure 5.27: Unpolarized cross sections for kin60_1, with Ebeam = 8.52 GeV,
〈
Q2〉 = 5.63 GeV2, 〈xBj〉 =

0.61 and χ2/dof = 1.72. The uncertainty bars are statistical only. The blue error band at the bottom
represents the systematic uncertainty associated with the missing mass cuts. The executable available at
http://calculon.phy.hr/gpd/ does not allow to evaluate the models at large t for this kinematic setting.

Figure 5.28: Helicity-dependent cross sections for kin60_1, with Ebeam = 8.52 GeV,
〈
Q2〉 = 5.63 GeV2,

〈xBj〉 = 0.61 and χ2/dof = 0.69. The uncertainty bars are statistical only. The blue error band at
the bottom represents the systematic uncertainty associated with the missing mass cuts. The executable
available at http://calculon.phy.hr/gpd/ does not allow to evaluate the models at large t for this kinematic
setting.
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Figure 5.29: Unpolarized cross sections for kin60_3, with Ebeam = 10.59 GeV,
〈
Q2〉 = 8.48 GeV2,

〈xBj〉 = 0.61 and χ2/dof = 1.34. The uncertainty bars are statistical only. The blue error band at
the bottom represents the systematic uncertainty associated with the missing mass cuts. The executable
available at http://calculon.phy.hr/gpd/ does not allow to evaluate the models at large t for this kinematic
setting.

Figure 5.30: Helicity-dependent cross sections for kin60_3, with Ebeam = 10.59 GeV,
〈
Q2〉 = 8.48 GeV2,

〈xBj〉 = 0.61 and χ2/dof = 1.04. The uncertainty bars are statistical only. The blue error band at
the bottom represents the systematic uncertainty associated with the missing mass cuts. The executable
available at http://calculon.phy.hr/gpd/ does not allow to evaluate the models at large t for this kinematic
setting.
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5.2.3.2 Scaling test: Q2 dependence of the CFFs combinations

The Q2 dependence of the CFFs combinations used in the parametrization of the cross sections (scaling
test), for each value of xBj and integrated over t, has also been studied.

The DVCS cross section has mainly a sin(φ) dependence on the twist-2 term ImCI(F++). As one
can see in Fig. 5.31, this term was found to be independent from Q2, which is an indication towards
the twist-2 dominance. This result is consistent with the ones from the previous Hall A experiment [48],
although the values of ImCI(F++) which were found cannot be compared directly since the ranges in t
are different. One will also notice that the lever arms in Q2 and xBj are much larger than for the previous
Hall A experiment. For instance, for xBj = 0.48, there is a factor 3 in Q2.

Figure 5.31: Q2 dependence of the imaginary part of the twist-2 CFFs combination used in the cross
section parametrization (ImCI(F++)), integrated over t, for xBj = 0.36 and 〈t〉 = −0.35 GeV2 (red),
xBj = 0.48 and 〈t〉 = −0.47 GeV2 (blue) and xBj = 0.60 and 〈t〉 = −1.06 GeV2 (green), with statistical
uncertainties. The magenta stars correspond to the results of the previous Hall A experiment at xBj =
0.36 and 〈t〉 = −0.27 GeV2 [48].

The DVCS cross section has a dependence on the twist-2 term CDV CS(F++,F∗++ | F−+,F∗−+) which
is constant in φ, and a dependence on the twist-2 term ReCI(F++) which is mainly of the form constant+
cos(φ). As one can see in Fig. 5.32, surprisingly, these two terms have a dependence in Q2, which could
indicate the existence of higher twist effects. However, one has to keep in mind that the DVCS term also
includes contributions from gluons, and most importantly, the two terms are correlated. Indeed, in the
formalism of [24], the dependence of the DVCS cross section in the azimuthal angle φ is not sufficient to
separate completely the DVCS and interference terms. For these reasons, the interpretation of this result
might not be straightforward.

The future DVCS experiment scheduled in the Hall C of Jefferson Lab may help with the interpretation
of this result. Indeed, part of the program of this next experiment will be to take DVCS data at the same
kinematic settings as for this Hall A experiment, but with different beam energies [56]. Since the DVCS
and interference terms do not have the same dependence in the beam energy, it may help to separate
these two correlated terms.

Finally, the DVCS cross section has mainly a cos(2φ) and sin(2φ) dependence on the termsReCI(F0+)
and ImCI(F0+), respectively. As can be seen in Fig. 5.33, these twist-3 terms were found to be very
small, but not necessarily equal to 0 which may highlight the existence of twist-3 contributions.



CHAPTER 5. GEANT4 SIMULATION AND CROSS SECTIONS EXTRACTION 105

Figure 5.32: Q2 dependence of the real part of the twist-2 CFFs combinations used in the cross section
parametrization (CDV CS(F++,F∗++ | F−+,F∗−+) and ReCI(F++)), integrated over t, for xBj = 0.36 and
〈t〉 = −0.35 GeV2 (red), xBj = 0.48 and 〈t〉 = −0.47 GeV2 (blue) and xBj = 0.60 and 〈t〉 = −1.06 GeV2

(green), with statistical uncertainties.

Figure 5.33: Q2 dependence of the twist-3 CFFs combinations used in the cross section parametrization
(ReCI(F0+) and ImCI(F0+)), integrated over t, for xBj = 0.36 and 〈t〉 = −0.35 GeV2 (red), xBj = 0.48
and 〈t〉 = −0.47 GeV2 (blue) and xBj = 0.60 and 〈t〉 = −1.06 GeV2 (green), with statistical uncertainties.



Conclusion

Generalized Parton Distributions contain a wealth of information and have become an invaluable tool to
study hadron structure. A recent outstanding success was the ability to perform for the first time a three
dimensional tomography of the nucleon, and one of the most awaited results will be the measurement of
the total orbital angular momentum of quarks in the nucleon.

Deeply Virtual Compton Scattering is widely considered as the golden channel to access GPDs. Out
of all the deeply exclusive electro-production processes from which GPDs can be extracted, DVCS final
state is the simplest, and thus its cross section offers the least difficult interpretation in terms of GPDs.
Nevertheless, extracting DVCS cross sections is no easy task. The precise identification of all the final
state particles and their separation from background, combined with a very small cross section, makes
the measurement extremely challenging.

The development of high luminosity accelerator facilities allowed to overcome the difficulty raised by
the very low cross section of DVCS and made it possible to perform dedicated DVCS experiment with
high statistical precision. The experiment E00-110 that took place in the Hall A of Jefferson Lab in
2004 was the first of this kind. Then, in 2014, the CEBAF upgrade to 12 GeV opened the possibility to
explore yet uncharted kinematic regions of GPDs. The experiment E12-06-114, which is the subject of
this document, is the natural extension of the experiment E00-110 program in these new regions.

In order to ensure that the variables of the final state particles are accurately reconstructed, great care
has been taken with the beam line and detectors calibration. Regarding the spectrometer, a challenge
arose during Spring 2016 because of the aging and degradation of the supraconducting properties of one
of its magnets, thus requiring separate calibrations for each kinematic setting. In order to accelerate the
optics calibration process, the spectrometer was set at a small angle to increase counting rates, at the price
of worsening the optics reconstruction on the edges of the target for DVCS data which were taken with
the spectrometer at a larger angle. Then during Fall 2016, the replacement magnet unexpectedly suffered
from a saturation effect. These difficulties prevented the standard calibration algorithm to be applied
directly. Nevertheless, corrections either empirical or supported by a simulation and modifications to the
calibration procedure have been successfully devised in order to overcome these difficulties. Although the
achieved resolution was slightly degraded compared to the spectrometer nominal values, the experimental
resolution is dominated by the calorimeter and the optics calibration was thus deemed satisfactory.

Regarding the calorimeter energy calibration, a challenge arose because of the large radiation damage
due to a combination of high luminosity, increased energy compared to previous experiments, and the
aging of the blocks. In addition to the usual elastic calibration, which allowed to reach an energy
resolution of 3% at 7.0 GeV, a new calibration based on the reconstruction of the π0 invariant mass has
been used. Applied daily, this new method allowed to calibrate the calorimeter gain with a precision of
1% to 2% and correct the continuous loss of gain due to radiation damage. However, after long down-
time periods, radiation damage could have sizable effects on time scales as short as a few hours. An
additional empirical correction has then been successfully devised to compensate the fast darkening of
the calorimeter blocks. Radiation was also responsible for the damage of several raster power supplies,
but the system was successfully re-calibrated after every replacement.

A careful analysis of the data quality has been performed and allowed to filter out every run with
unreliable data. Additionally, a method has been developed to recover data which would have otherwise
been compromised because of a loss of synchronization between the calorimeter and the spectrometer.
The accidental loss of one third of the total statistics of one kinematic setting has thus been avoided.
Furthermore, scripts have been created to monitor the calorimeter and spectrometer synchronization as
well as the raster power supplies possible failures in order to prevent further losses of data.

Combined with a smart trigger system to limit the dead time, the ARS electronics have been essential
in order to achieve the aforementioned energy resolution, as well as a time resolution below the nanosec-
ond. In order to exploit the ARS electronics abilities to the fullest, the main parameters of the waveform
analysis have been optimized to ensure the proper extraction of the time and energy information con-
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tained in the ARS signals. The proper treatment of pile-up in the waveform analysis algorithm has also
been verified. Results show that the amount of pile-up events is actually very small and that arguably
they do not contribute significantly to the calorimeter energy resolution. One can discuss whether using
PbWO4 crystals, which have an energy resolution twice better than PbF2, might be a better choice for
future experiments [56].

The methods used with great effectiveness in previous Hall A experiments [98] to subtract accidental
and π0 contamination from DVCS data have been adapted and successfully applied to this experiment.
Regarding accidental events subtraction, care has been taken to select events in time windows of the
same width as the coincidence one and respecting the new 4 ns time structure of the beam. Concerning
the π0 contamination subtraction, the efficiency of the method used has been checked against a Geant4
simulation for every kinematic setting. The method has been validated for the whole calorimeter surface
except its corners and edges where π0 reconstruction is inefficient because of acceptance effects. For the
specific case of kin48_4, the efficiency check with Geant4 allowed to discover that the calorimeter region
protected by the beam line shielding was wider than expected and a larger inefficiency zone was taken
into account.

DVCS events were carefully selected by applying a collection of cuts enforcing good detection efficiency,
accurate variable reconstruction, and ensuring the process exclusivity through particle identification.
In particular, new cuts were defined in [83] for the spectrometer acceptance because of its new optics
calibration and tight fiducial cuts were enforced on the calorimeter acceptance to certify the good efficiency
of the π0 contamination subtraction. Moreover, strict cuts on the missing mass M2

X = (e+ p− e′ − γ)2

allowed to ensure the DVCS process exclusivity despite not detecting directly the recoil proton, while
simultaneously filtering out almost all SIDIS and resonances contamination. In addition, correction
coefficients have been applied in order to take into account trigger and tracking efficiencies, polarization
and dead time. Furthermore, a method used in [98] to correct for events with several clusters in the
calorimeter has been adapted for this experiment.

The use of a Monte Carlo simulation allows to extract with great accuracy the complicated experi-
mental acceptance. The geometry of the experimental setup implemented in Geant4 has been updated
to be an exact replica of the real apparatus installed in Hall A [92]. In addition, real radiative correc-
tions are implemented in the simulation in order to include in the acceptance computation the combined
effects of the subsequent radiative tail with the detector acceptance and resolutions. On the other hand,
virtual radiative corrections still need to be computed for every kinematic setting of this experiment:
the approximation currently used assumes that these corrections should be similar to the ones used for
experiment E00-110. Furthermore, because the simulation is not able to reproduce perfectly the energy
gain and resolution of the real calorimeter, the calibration and smearing method developed in [98] has
been adapted to this experiment and successfully used in order to match the simulation missing mass
spectra to the real data. Even though DVCS events are lost by the strict missing mass cuts applied to
the data, they can then be compensated by applying identical cuts to the simulation. However, the Gaus-
sian smearing of the simulation is not able to perfectly reproduce the low missing mass tail of the data.
Depending on the kinematic setting, an uncertainty between 2.8% and 5.6% was found. It is expected
that a non-Gaussian smearing could greatly minimize this uncertainty.

Preliminary cross sections have been extracted over a total of 9 kinematic settings divided into 120
experimental bins each. Helicity-dependent and independent cross sections allowed to separate the real
and imaginary parts of the DVCS amplitude. The extraction procedure was based on a parametrization
of the cross sections by linear and bi-linear combinations of CFFs. Different combinations were tested,
and two of them yielded good fitting results. In the unpolarized case, the cross sections could be clearly
distinguished from the pure Bethe-Heitler and sizeable DVCS and interference terms could be measured.
In particular, with the cross-section parametrization used, for values of φ close to 180◦, the DVCS term
was found to be dominant compared to the interference terms, while for values of φ close to 0◦ and
360◦, the absolute value of the interference became comparable or larger than the DVCS term. For
both helicity-dependent and independent cross sections, overall, twist-2 DVCS and interference terms
were found to be dominant, while twist-3 terms were found small. For a few kinematic settings, twist-
3 contributions were found to be non negligible, but it is unclear if it is genuine or a consequence of
uncertainties.

The preliminary cross sections have been compared to the models KM10a and KM15 resulting from
global fits to previous DVCS data. Regarding the unpolarized cross sections, the model KM15 was found
to be in a very good agreement with the data for every kinematic setting. On the other hand, the model
KM10a was found to undershoot the experimental cross sections. The agreement between the models
and the data was found to worsen for growing values of xBj , which was expected since both models were
designed for lower values of xBj . Concerning the helicity-dependent cross sections, both models KM10a
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and KM15 were found to describe the data fairly well. The agreement between the data and the model
KM15 is not as good as in the unpolarized case, but one has to keep in mind that uncertainties are larger
for polarized cross sections.

The Q2 dependence (scaling test) of the CFF combinations used in the parametrization of the cross
section has been studied for each value of xBj and integrated over t. The twist-2 term ImCI(F++)
was found to be independent from Q2, which is consistent with the results of the previous Hall A ex-
periment [48] and is an indication towards the twist-2 dominance. Quite surprisingly, the twist-2 terms
CDV CS(F++,F∗++ | F−+,F∗−+) and ReCI(F++) were found to depend on Q2. However, it is most prob-
able that both terms are correlated and that the φ-dependence of the cross section is not sufficient to
separate them completely. As a consequence, the interpretation of this result is not straightforward.
Finally, the twist-3 terms ReCI(F0+) and ImCI(F0+) were found to be very small, but not necessarily
equal to 0, which may highlight the existence of some twist-3 contributions.

The point-to-point systematic uncertainty associated with the missing mass cuts has been evaluated
to be between 2% and 5%. Additional work on the simulation smearing will be required if one wants to
reduce this uncertainty further: a non-Gaussian smearing and adjustments to the missing mass window
used to compute the smearing parameters could yield a non negligible improvement. The systematic
uncertainty associated with the choice of the CFFs parametrization has been evaluated at 1.0%, the one
related to the luminosity and the dead time was evaluated at 1.6%, and the one associated with the
polarization measurement was evaluated at 1.0% for every kinematic setting except kin36_1 [91]. The
remaining systematic uncertainties have yet to be assessed but are expected to be very close to those of
the E00-110 experiment.

These results are not completely finalized yet. The t-dependence of the CFF combinations used to
parametrize the cross sections has yet to be studied, and the non-Gaussian smearing of the simulation is
a main concern to minimize systematic uncertainties as much as possible.

Extracting information about the GPDs is an extremely challenging task. However, a lot of progress
has been made since the first results measured at HERA. Dedicated experiments have recently started
to yield high precision results that should allow to progressively pin down the elusive GPDs. With the
growing number of experiments planned for the near future, and the culminating point embodied by the
EIC project, this is indeed a very exciting era for the hadronic physics community and the quest for
GPDs.
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Appendix A

Addendum about elastic cross
sections

In the laboratory frame, if the nucleon is considered to be point like, spin-less and of infinite mass (it has
no recoil), and the electron is spin-less and not relativistic, one can derive the Rutherford cross section:(

dσ

dΩ

)
Rutherford

= α2

16E2 sin4 ( θ
2
) . (A.1)

If the no recoil approximation is removed (finite nucleon mass), Eq. (A.1) has an additional factor as
shown in Eq. (A.2): (

dσ

dΩ

)
= α2

16E2 sin4 ( θ
2
) E′
E
. (A.2)

Then, if one considers the electron to be a spin 1
2 , relativistic particle, the Mott cross section can be

derived [6]: (
dσ

dΩ

)
Mott

= α2

4E2 sin4 ( θ
2
) E′
E

cos2
(
θ

2

)
. (A.3)

If in addition, the nucleon has now spin 1
2 , with a normal (Dirac) magnetic moment, Eq. (A.3) gets

an additional term which conveys that the cross section increases at backward angles and becomes Eq.
(A.4): (

dσ

dΩ

)
=
(
dσ

dΩ

)
Mott

(
1 + Q2

4M2 2 tan2
(
θ

2

))
. (A.4)

On another hand, if the extended structure of the nucleon is considered instead, Eq. (A.3) gets an
additional factor and becomes Eq. (A.5):(

dσ

dΩ

)
=
(
dσ

dΩ

)
Mott

|F (∆)|2, (A.5)

with ∆ = p− p′. In the case of elastic scattering, one further has ∆ = −q. F (∆) is a Form Factor, and
is the Fourier transform of the transverse spatial distribution of charge ρ(r) as shown in Eq. (A.6):

F (∆) =
∫
ρ(r)ei∆rdr3. (A.6)

Finally, if one considers a spin 1
2 nucleon, with an anomalous magnetic moment and an extended

structure, the Mott cross section (Eq. (A.3)) becomes the Rosenbluth cross section [7]:

(
dσ

dΩ

)
Rosenbluth

=
(
dσ

dΩ

)
Mott

{
F 2

1 (Q2) + Q2

4M2

[
F 2

2 (Q2) + 2
(
F1(Q2) + F2(Q2)

)2 tan2
(
θ

2

)]}
. (A.7)

with F1(Q2) and F2(Q2) the Dirac and Pauli Form Factors, respectively.
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Appendix B

The cross-section DVCS and
Interference terms

The parametrization of the DVCS and interference terms of the cross section presented in this appendix
were developed by Belitsky, Müller and Ji in [24].

B.1 The cross-section DVCS term
The term |TDV CS |2 is given by the expression:

|TDV CS |2 = e6

y2Q2

{
cDV CS0 +

2∑
n=1

[
cDV CSn cos(nφ) + sDV CSn sin(nφ)

]}
. (B.1)

Let the quantities tmin, tmax and
∼
K be defined by:

tmin = −Q2 2(1− xBj)(1−
√

1 + ε2) + ε2

4xBj(1− xBj) + ε2
, (B.2)

tmax = −Q2 2(1− xBj)(1 +
√

1 + ε2) + ε2

4xBj(1− xBj) + ε2
, (B.3)

∼
K =

√
(1− xBj)xBj + ε2

4

√
(tmin − t)(t− tmax)

Q2 . (B.4)

Let F be a general notation for the twist-2 CFFs H, E ,
∼
H,
∼
E (the subscript q is dropped for notation

simplicity). The quantities Fab, where a and b label the helicity state of the initial and final photon
respectively, are defined as:

F++ = F +O( 1
Q2 ), (B.5)

F0+ =
√

2
∼
K

√
1 + ε2Q

(
2− xBj + xBjt

Q2

)Feff +O( 1
Q2 ) +O(αs), (B.6)

F−+ =
∼
K

2

2M2
(

2− xBj + xBjt
Q2

)2FT +O( 1
Q2 ), (B.7)

with FT the twist-2 gluon transversity CFFs and Feff the effective twist-3 CFFs defined as:

Feff = −2ξ
(

1
1 + ξ

F + F twist−3
+ −F twist−3

+

)
+O( 1

Q2 ) +O( αs
Q2 ), (B.8)

with F twist−3
+ and F twist−3

− twist-3 CFFs.
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Then, the harmonic coefficients cDV CSn and sDV CSn are defined by:

cDV CS0 = 2
2− 2y + y2 + ε2

2 y
2

1 + ε2
CDV CS(F++,F∗++ | F−+,F∗−+) + 8

1− y − ε2

4 y
2

1 + ε2
CDV CS(F0+,F∗0+), (B.9)

{
cDV CS1
sDV CS1

}
=

4
√

2
√

1− y − ε2

4 y
2

1 + ε2

{
2− y

−λy
√

1 + ε2

}{
Re
Im

}
CDV CS(F0+ | F∗++,F∗−+), (B.10)

cDV CS2 = 8
1− y − ε2

4 y
2

1 + ε2
ReCDV CS(F−+,F∗++), (B.11)

sDV CS2 = 0, (B.12)

where λ = ±1 corresponds to the beam helicity and CDV CS(F++,F∗++ | F−+,F∗−+) and CDV CS(F0+ |
F∗++,F∗−+) are notations for incoherent sums of transverse helicity-flip and non-flip CFFs:

CDV CS(F++,F∗++ | F−+,F∗−+) = CDV CS(F++,F∗++) + CDV CS(F−+,F∗−+), (B.13)

CDV CS(F0+ | F∗++,F∗−+) = CDV CS(F0+,F∗++) + CDV CS(F0+,F∗−+), (B.14)

and the bi-linear combination of CFFs CDV CS(F ,F) are defined by:

CDV CS(F ,F∗) =
4(1− xBj)(1 + xBjt

Q2 )(
2− xBj + xBjt

Q2

)2

[
HH∗ +

∼
H
∼
H∗
]

+

(
2 + t

Q2

)
ε2(

2− xBj + xBjt
Q2

)2

∼
H
∼
H∗ − t

4M2 EE
∗

−
x2
Bj(

2− xBj + xBjt
Q2

)2

{(
1 + t

Q2

)2
[HE∗ + EH∗ + EE∗] +

∼
H
∼
E∗ +

∼
E
∼
H∗ + t

4M2

∼
E
∼
E∗
}
.

(B.15)

B.2 The cross-section Interference term
The term I is given by the expression:

I = e6

xBjy3tP1(φ)P2(φ)

{
cI0 +

3∑
n=1

[
cIn cos(nφ) + sIn sin(nφ)

]}
. (B.16)

The harmonic coefficients are defined by:

cI0 = C++(0)ReCI++(0 | F++) + {++ → 0+}+ {++ → −+}, (B.17)

{
cI1
sI1

}
=
{
C++(1)
λS++(1)

}{
Re
Im

}{
CI++(1 | F++)
SI++(1 | F++)

}
+ {++ → 0+}+ {++ → −+}, (B.18)

{
cI2
sI2

}
=
{
C0+(2)
λS0+(2)

}{
Re
Im

}{
CI0+(2 | F0+)
SI0+(2 | F0+)

}
+ {0+ → ++}+ {0+ → −+}, (B.19)

cI3 = C−+(3)ReCI−+(3 | F−+) + {−+ → ++}+ {−+ → 0+}, (B.20)

sI3 = 0, (B.21)
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where the terms are ordered by decreasing importance and CIab(n | Fab) and SIab(n | Fab) are notations
for:

CIab(n | Fab) = CI(Fab) + CVab(n)
Cab(n)C

I,V (Fab) + CAab(n)
Cab(n)C

I,A(Fab), (B.22)

SIab(n | Fab) = CI(Fab) + SVab(n)
Sab(n)C

I,V (Fab) + SAab(n)
Sab(n)C

I,A(Fab). (B.23)

The coefficients Cab(n), CVab(n), CAab(n), Sab(n), SVab(n) and SAab(n) are kinematic factors which can
be computed and whose expressions are given in [24]. The coefficients with a V or A superscript are
suppressed by a factor t

Q2 with respect to the related coefficients without superscript. Finally, CI(F),
CI,V (F) and CI,A(F) are linear combinations of CFFs defined by:

CI(F) = F1H−
t

4M2F2E + xBj

2− xBj + xBjt
Q2

(F1 + F2)
∼
H, (B.24)

CI,V (F) = xBj

2− xBj + xBjt
Q2

(F1 + F2)(H+ E), (B.25)

CI,A(F) = xBj

2− xBj + xBjt
Q2

(F1 + F2)
∼
H. (B.26)

One will notice that the Dirac and Pauli Form Factors F1 and F2 are present in Eq. (B.24), (B.25)
and (B.26) because of the Bethe-Heitler contribution.
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Figure C.1: Unpolarized number of DVCS events for kin36_1, with
〈
Q2〉 = 3.17 GeV2, 〈xBj〉 = 0.36

and χ2/dof = 1.33. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty is
negligible with respect to the experimental one.

Figure C.2: Helicity-dependent number of DVCS events for kin36_1, with
〈
Q2〉 = 3.17 GeV2, 〈xBj〉 =

0.36 and χ2/dof = 0.89. The black squares (blue histograms) are the experimental (fitted) number of
DVCS events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty
is negligible with respect to the experimental one.
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Figure C.3: Unpolarized number of DVCS events for kin36_2, with
〈
Q2〉 = 3.67 GeV2, 〈xBj〉 = 0.37 and

and χ2/dof = 1.61. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty is
negligible with respect to the experimental one.

Figure C.4: Helicity-dependent number of DVCS events for kin36_2, with
〈
Q2〉 = 3.67 GeV2, 〈xBj〉 =

0.37 and χ2/dof = 0.94. The black squares (blue histograms) are the experimental (fitted) number of
DVCS events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty
is negligible with respect to the experimental one.
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Figure C.5: Unpolarized number of DVCS events for kin36_3, with
〈
Q2〉 = 4.57 GeV2, 〈xBj〉 = 0.37

and χ2/dof = 1.47. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty is
negligible with respect to the experimental one.

Figure C.6: Helicity-dependent number of DVCS events for kin36_3, with
〈
Q2〉 = 4.57 GeV2, 〈xBj〉 =

0.37 and χ2/dof = 1.07. The black squares (blue histograms) are the experimental (fitted) number of
DVCS events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty
is negligible with respect to the experimental one.
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Figure C.7: Unpolarized number of DVCS events for kin48_1, with
〈
Q2〉 = 2.71 GeV2, 〈xBj〉 = 0.48

and χ2/dof = 1.51. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty is
negligible with respect to the experimental one.

Figure C.8: Helicity-dependent number of DVCS events for kin48_1, with
〈
Q2〉 = 2.71 GeV2, 〈xBj〉 =

0.48 and χ2/dof = 1.00. The black squares (blue histograms) are the experimental (fitted) number of
DVCS events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty
is negligible with respect to the experimental one.
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Figure C.9: Unpolarized number of DVCS events for kin48_2, with
〈
Q2〉 = 4.55 GeV2, 〈xBj〉 = 0.50

and χ2/dof = 1.92. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty is
negligible with respect to the experimental one.

Figure C.10: Helicity-dependent number of DVCS events for kin48_2, with
〈
Q2〉 = 4.55 GeV2, 〈xBj〉 =

0.50 and χ2/dof = 1.01. The black squares (blue histograms) are the experimental (fitted) number of
DVCS events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty
is negligible with respect to the experimental one.
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Figure C.11: Unpolarized number of DVCS events for kin48_3, with
〈
Q2〉 = 5.35 GeV2, 〈xBj〉 = 0.48

and χ2/dof = 1.19. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty is
negligible with respect to the experimental one.

Figure C.12: Helicity-dependent number of DVCS events for kin48_3, with
〈
Q2〉 = 5.35 GeV2, 〈xBj〉 =

0.48 and χ2/dof = 1.15. The black squares (blue histograms) are the experimental (fitted) number of
DVCS events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty
is negligible with respect to the experimental one.
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Figure C.13: Unpolarized number of DVCS events for kin48_4, with
〈
Q2〉 = 7.10 GeV2, 〈xBj〉 = 0.50

and χ2/dof = 1.20. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty is
negligible with respect to the experimental one.

Figure C.14: Helicity-dependent number of DVCS events for kin48_4, with
〈
Q2〉 = 7.10 GeV2, 〈xBj〉 =

0.50 and χ2/dof = 1.10. The black squares (blue histograms) are the experimental (fitted) number of
DVCS events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty
is negligible with respect to the experimental one.
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Figure C.15: Unpolarized number of DVCS events for kin60_1, with
〈
Q2〉 = 5.63 GeV2, 〈xBj〉 = 0.61

and χ2/dof = 1.72. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty is
negligible with respect to the experimental one.

Figure C.16: Helicity-dependent number of DVCS events for kin60_1, with
〈
Q2〉 = 5.63 GeV2, 〈xBj〉 =

0.61 and χ2/dof = 0.69. The black squares (blue histograms) are the experimental (fitted) number of
DVCS events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty
is negligible with respect to the experimental one.
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Figure C.17: Unpolarized number of DVCS events for kin60_3, with
〈
Q2〉 = 8.48 GeV2, 〈xBj〉 = 0.61

and χ2/dof = 1.34. The black squares (blue histograms) are the experimental (fitted) number of DVCS
events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty is
negligible with respect to the experimental one.

Figure C.18: Helicity-dependent number of DVCS events for kin60_3, with
〈
Q2〉 = 8.48 GeV2, 〈xBj〉 =

0.61 and χ2/dof = 1.04. The black squares (blue histograms) are the experimental (fitted) number of
DVCS events for each bin. The uncertainty bars are statistical only. The simulation statistical uncertainty
is negligible with respect to the experimental one.
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DVCS cross sections
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φ (deg)
〈xBj〉 = 0.363 〈xBj〉 = 0.363 〈xBj〉 = 0.365 〈xBj〉 = 0.365 〈xBj〉 = 0.364〈

Q2〉 = 3.167 GeV2 〈
Q2〉 = 3.169 GeV2 〈

Q2〉 = 3.180 GeV2 〈
Q2〉 = 3.184 GeV2 〈

Q2〉 = 3.180 GeV2

〈t′〉 = −0.044 GeV2 〈t′〉 = −0.130 GeV2 〈t′〉 = −0.216 GeV2 〈t′〉 = −0.302 GeV2 〈t′〉 = −0.418 GeV2

7.5 46.85 ± 1.52 +0.69 43.74 ± 1.73 +0.77 33.54 ± 2.60 +0.34 29.55 ± 6.95 +2.32 28.43 ± 33.69 +6.62
−0.56 −1.04 −0.79 −1.99 −2.78

22.5 43.00 ± 1.45 +0.54 38.45 ± 1.59 +1.06 30.77 ± 2.14 +1.19 20.71 ± 3.90 +1.06 19.70 ± 9.61 +2.66
−0.68 −0.41 −0.26 −1.02 −5.75

37.5 41.20 ± 1.41 +0.24 35.87 ± 1.47 +0.98 24.66 ± 1.51 +0.35 21.58 ± 1.99 +0.15 12.16 ± 2.46 +0.63
−0.79 −0.08 −0.43 −1.10 −0.08

52.5 36.92 ± 1.33 +1.08 31.62 ± 1.30 +0.86 20.45 ± 1.22 +0.18 17.44 ± 1.30 +0.13 9.41 ± 1.17 +0.57
−0.46 −0.55 −0.54 −0.39 −0.30

67.5 35.29 ± 1.25 +0.37 24.25 ± 1.10 +0.35 16.93 ± 1.00 +0.37 13.17 ± 1.01 +0.23 8.74 ± 0.87 +0.29
−0.43 −0.35 −0.25 −0.27 −0.25

82.5 29.95 ± 1.15 +0.85 20.62 ± 1.00 +0.10 14.14 ± 0.90 +0.54 12.15 ± 0.91 +0.50 7.30 ± 0.74 +0.43
−0.29 −0.50 −0.18 −0.54 −0.20

97.5 27.03 ± 1.07 +0.74 17.69 ± 0.90 +0.58 12.12 ± 0.78 +0.22 9.61 ± 0.80 +0.43 6.19 ± 0.64 +0.11
−0.37 −0.42 −0.33 −0.38 −0.30

112.5 23.04 ± 0.97 +0.28 15.11 ± 0.81 +0.34 10.77 ± 0.72 +0.28 8.00 ± 0.69 +0.14 5.09 ± 0.53 +0.14
−0.38 −0.23 −0.10 −0.33 −0.21

127.5 22.58 ± 0.96 +0.79 12.95 ± 0.76 +0.36 9.57 ± 0.68 +0.28 6.94 ± 0.63 +0.30 4.83 ± 0.46 +0.20
−0.49 −0.08 −0.35 −0.11 −0.10

142.5 21.19 ± 0.94 +0.43 13.45 ± 0.77 +0.27 8.59 ± 0.66 +0.23 6.32 ± 0.60 +0.13 5.33 ± 0.52 +0.10
−0.33 −0.18 −0.18 −0.20 −0.15

157.5 20.63 ± 0.92 +0.52 10.70 ± 0.69 +0.24 9.05 ± 0.67 +0.18 6.26 ± 0.63 +0.23 6.89 ± 0.76 +0.25
−0.04 −0.27 −0.31 −0.09 −0.41

172.5 19.66 ± 0.88 +0.45 11.24 ± 0.71 +0.43 9.28 ± 0.69 +0.36 6.96 ± 0.71 +0.45 6.12 ± 0.95 +0.85
−0.27 −0.07 −0.10 −0.11 −0.26

187.5 21.20 ± 0.93 +0.14 11.52 ± 0.72 +0.23 8.90 ± 0.66 +0.05 5.95 ± 0.67 +0.33 6.86 ± 1.05 +0.14
−0.50 −0.12 −0.31 −0.29 −0.74

202.5 21.04 ± 0.93 +0.23 13.20 ± 0.76 +0.39 10.15 ± 0.73 +0.26 7.89 ± 0.69 +0.26 7.75 ± 0.80 +0.22
−0.34 −0.17 −0.14 −0.06 −0.39

217.5 20.64 ± 0.93 +0.14 13.97 ± 0.79 +0.44 9.31 ± 0.69 +0.30 8.03 ± 0.68 +0.16 5.61 ± 0.57 +0.28
−0.79 −0.35 −0.06 −0.03 −0.00

232.5 20.57 ± 0.94 +0.28 14.39 ± 0.84 +0.23 9.57 ± 0.71 +0.34 6.96 ± 0.66 +0.44 6.62 ± 0.52 +0.14
−0.34 −0.39 −0.11 −0.15 −0.10

247.5 24.56 ± 1.04 +0.27 16.75 ± 0.89 +0.79 10.43 ± 0.77 +0.37 8.30 ± 0.71 +0.23 5.41 ± 0.52 +0.27
−0.48 −0.12 −0.11 −0.30 −0.27

262.5 27.19 ± 1.08 +0.66 18.42 ± 0.96 +0.19 14.00 ± 0.86 +0.48 8.90 ± 0.80 +0.15 7.06 ± 0.69 +0.24
−0.32 −0.63 −0.32 −0.29 −0.17

277.5 28.85 ± 1.14 +0.69 21.97 ± 1.07 +0.14 15.22 ± 0.95 +0.54 11.66 ± 0.95 +0.30 8.13 ± 0.81 +0.38
−0.07 −0.77 −0.18 −0.33 −0.42

292.5 35.94 ± 1.29 +0.67 25.67 ± 1.19 +0.96 19.55 ± 1.13 +0.34 14.47 ± 1.13 +0.17 10.23 ± 0.95 +0.26
−0.34 −0.00 −0.56 −0.32 −0.52

307.5 39.33 ± 1.32 +0.32 31.49 ± 1.31 +0.65 23.95 ± 1.28 +0.30 18.60 ± 1.39 +0.18 15.22 ± 1.40 +0.42
−0.57 −0.48 −0.38 −0.65 −0.22

322.5 42.77 ± 1.41 +0.57 39.10 ± 1.44 +0.54 29.02 ± 1.47 +0.46 20.48 ± 1.85 +0.60 18.18 ± 2.62 +1.01
−0.95 −0.85 −0.25 −0.82 −0.55

337.5 46.69 ± 1.50 +0.01 42.04 ± 1.55 +0.39 34.18 ± 2.00 +1.55 21.93 ± 3.47 +0.84 21.04 ± 9.25 +0.00
−0.83 −0.33 −0.57 −1.16 −3.85

352.5 50.42 ± 1.54 +0.43 46.14 ± 1.72 +0.88 36.16 ± 2.63 +0.81 17.50 ± 6.10 +1.65 1.39 ± 48.29 +22.50
−0.74 −0.45 −0.34 −3.01 −3.33

Table D.1: Unpolarized experimental cross section (pb) for kin361.



APPENDIX D. TABLES OF UNPOLARIZED AND POLARIZED DVCS CROSS SECTIONS 125

φ (deg)
〈xBj〉 = 0.363 〈xBj〉 = 0.363 〈xBj〉 = 0.365 〈xBj〉 = 0.365 〈xBj〉 = 0.364〈

Q2〉 = 3.167 GeV2 〈
Q2〉 = 3.169 GeV2 〈

Q2〉 = 3.180 GeV2 〈
Q2〉 = 3.184 GeV2 〈

Q2〉 = 3.180 GeV2

〈t′〉 = −0.044 GeV2 〈t′〉 = −0.130 GeV2 〈t′〉 = −0.216 GeV2 〈t′〉 = −0.302 GeV2 〈t′〉 = −0.418 GeV2

7.5 3.42 ± 1.97 +0.18 -0.32 ± 2.04 +0.63 0.95 ± 2.95 +0.21 6.22 ± 6.15 +1.79 -10.09 ± 26.50 +0.80
−0.99 −0.45 −1.26 −1.83 −3.09

22.5 0.99 ± 1.78 +0.61 0.01 ± 1.85 +0.71 2.35 ± 2.40 +0.43 4.90 ± 3.83 +1.77 4.38 ± 9.67 +3.44
−0.74 −0.72 −1.28 −0.49 −0.84

37.5 6.15 ± 1.73 +0.42 8.04 ± 1.70 +1.19 4.69 ± 1.75 +0.91 3.15 ± 2.13 +1.38 5.51 ± 2.49 +0.80
−0.46 −0.51 −0.15 −0.00 −1.71

52.5 3.60 ± 1.67 +0.83 7.22 ± 1.50 +0.93 5.86 ± 1.43 +0.27 6.03 ± 1.47 +0.02 2.22 ± 1.29 +0.38
−0.21 −0.20 −0.60 −0.93 −0.40

67.5 6.04 ± 1.57 +0.18 6.57 ± 1.27 +0.86 3.79 ± 1.16 +0.46 3.60 ± 1.15 +0.44 3.25 ± 0.97 +0.05
−0.57 −0.00 −0.41 −0.87 −0.46

82.5 4.23 ± 1.45 +0.60 6.44 ± 1.13 +0.47 3.52 ± 1.02 +0.57 3.16 ± 1.02 +0.40 1.58 ± 0.84 +0.39
−0.17 −0.52 −0.03 −0.17 −0.43

97.5 9.71 ± 1.35 +0.29 3.00 ± 1.03 +0.09 3.47 ± 0.89 +0.21 2.98 ± 0.90 +0.18 0.36 ± 0.71 +0.18
−0.73 −0.29 −0.25 −0.42 −0.18

112.5 4.90 ± 1.25 +0.12 4.32 ± 0.92 +0.35 4.27 ± 0.80 +0.09 2.39 ± 0.78 +0.22 0.88 ± 0.58 +0.21
−0.31 −0.24 −0.27 −0.15 −0.29

127.5 5.59 ± 1.23 +0.52 3.52 ± 0.85 +0.16 1.54 ± 0.76 +0.40 1.54 ± 0.71 +0.13 0.68 ± 0.49 +0.01
−0.11 −0.36 −0.18 −0.19 −0.30

142.5 3.24 ± 1.19 +0.52 1.55 ± 0.84 +0.50 1.47 ± 0.72 +0.20 1.27 ± 0.70 +0.36 1.16 ± 0.54 +0.09
−0.44 −0.10 −0.16 −0.36 −0.27

157.5 0.69 ± 1.19 +0.40 1.15 ± 0.76 +0.13 1.02 ± 0.72 +0.17 0.26 ± 0.72 +0.27 0.95 ± 0.73 +0.04
−0.46 −0.47 −0.15 −0.08 −0.33

172.5 2.36 ± 1.23 +0.51 0.00 ± 0.81 +0.05 -0.19 ± 0.75 +0.36 0.69 ± 0.83 +0.41 0.47 ± 0.87 +0.79
−0.33 −0.28 −0.16 −0.16 −0.34

187.5 0.11 ± 1.06 +0.16 0.08 ± 0.76 +0.12 0.21 ± 0.68 +0.28 -0.25 ± 0.77 +0.46 -0.23 ± 0.93 +0.18
−0.71 −0.49 −0.19 −0.06 −0.33

202.5 -1.08 ± 1.14 +0.85 -0.57 ± 0.80 +0.16 -0.38 ± 0.77 +0.21 -1.14 ± 0.80 +0.22 -1.47 ± 0.77 +0.53
−0.38 −0.37 −0.44 −0.55 −0.17

217.5 -3.05 ± 1.15 +0.37 -1.84 ± 0.88 +0.19 -0.56 ± 0.74 +0.16 -1.10 ± 0.77 +0.27 -1.11 ± 0.59 +0.23
−0.62 −0.28 −0.38 −0.29 −0.11

232.5 -4.23 ± 1.16 +0.27 -2.61 ± 0.92 +0.34 -1.59 ± 0.79 +0.15 -1.43 ± 0.74 +0.28 -0.32 ± 0.56 +0.21
−0.88 −0.24 −0.23 −0.14 −0.26

247.5 -5.02 ± 1.28 +0.84 -4.33 ± 1.00 +0.00 -3.10 ± 0.87 +0.10 -2.43 ± 0.80 +0.29 -1.75 ± 0.58 +0.47
−0.45 −0.33 −0.47 −0.11 −0.00

262.5 -7.07 ± 1.34 +0.88 -4.63 ± 1.08 +0.25 -2.97 ± 0.97 +0.36 -1.66 ± 0.90 +0.41 -3.30 ± 0.76 +0.40
−0.12 −0.54 −0.16 −0.36 −0.37

277.5 -6.10 ± 1.40 +0.47 -3.64 ± 1.21 +0.07 -4.70 ± 1.09 +0.52 -4.68 ± 1.09 +0.35 -2.59 ± 0.91 +0.40
−0.38 −0.69 −0.61 −0.28 −0.29

292.5 -8.39 ± 1.58 +0.92 -5.64 ± 1.35 +0.40 -9.12 ± 1.30 +0.21 -4.77 ± 1.27 +0.33 -3.04 ± 1.09 +0.26
−0.94 −0.53 −0.31 −0.55 −0.48

307.5 -7.90 ± 1.60 +0.67 -8.14 ± 1.50 +0.47 -7.93 ± 1.50 +0.71 -5.00 ± 1.57 +0.68 -4.00 ± 1.58 +0.40
−1.44 −0.81 −0.66 −0.66 −1.00

322.5 -6.59 ± 1.69 +1.32 -5.35 ± 1.65 +0.50 -6.38 ± 1.71 +0.75 -1.84 ± 2.00 +0.44 -4.00 ± 2.73 +0.87
−0.19 −0.08 −0.22 −0.97 −1.01

337.5 -6.56 ± 1.74 +1.13 -5.40 ± 1.76 +0.40 -5.79 ± 2.21 +0.50 -5.14 ± 3.36 +1.86 -9.00 ± 8.76 +2.31
−0.48 −0.41 −0.66 −1.25 −3.55

352.5 -0.25 ± 1.64 +0.86 0.31 ± 1.86 +0.33 -3.37 ± 2.73 +0.66 2.91 ± 5.60 +1.12 -1.09 ± 32.42 +0.08
−0.36 −1.02 −1.37 −3.57 −14.35

Table D.2: Helicity-dependent experimental cross section (pb) for kin361.
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φ (deg)
〈xBj〉 = 0.367 〈xBj〉 = 0.367 〈xBj〉 = 0.369 〈xBj〉 = 0.370 〈xBj〉 = 0.370〈

Q2〉 = 3.650 GeV2 〈
Q2〉 = 3.653 GeV2 〈

Q2〉 = 3.669 GeV2 〈
Q2〉 = 3.678 GeV2 〈

Q2〉 = 3.679 GeV2

〈t′〉 = −0.032 GeV2 〈t′〉 = −0.093 GeV2 〈t′〉 = −0.155 GeV2 〈t′〉 = −0.216 GeV2 〈t′〉 = −0.304 GeV2

7.5 27.45 ± 0.92 +0.69 23.51 ± 1.02 +0.69 21.52 ± 1.52 +0.94 22.49 ± 2.93 +3.07 22.55 ± 7.59 +1.20
−0.00 −0.37 −0.33 −1.59 −4.68

22.5 22.91 ± 0.84 +0.70 21.88 ± 0.96 +0.66 16.62 ± 1.19 +1.00 15.57 ± 1.91 +0.75 10.37 ± 2.98 +1.41
−0.13 −0.16 −0.14 −0.70 −0.89

37.5 22.77 ± 0.84 +0.38 19.89 ± 0.84 +0.89 16.76 ± 0.94 +0.51 11.78 ± 1.12 +1.00 9.18 ± 1.31 +0.47
−0.50 −0.02 −0.43 −0.35 −0.43

52.5 20.77 ± 0.81 +0.23 19.05 ± 0.78 +0.00 15.18 ± 0.77 +0.39 11.53 ± 0.79 +0.39 9.20 ± 0.72 +0.21
−0.45 −0.83 −0.16 −0.13 −0.23

67.5 21.82 ± 0.79 +0.16 17.92 ± 0.74 +0.26 12.40 ± 0.67 +0.27 10.58 ± 0.67 +0.33 7.97 ± 0.53 +0.22
−0.52 −0.23 −0.27 −0.09 −0.19

82.5 18.31 ± 0.74 +0.55 13.38 ± 0.65 +0.15 10.33 ± 0.59 +0.16 7.92 ± 0.55 +0.30 6.43 ± 0.44 +0.18
−0.01 −0.12 −0.24 −0.20 −0.14

97.5 17.53 ± 0.72 +0.16 11.81 ± 0.61 +0.19 8.83 ± 0.54 +0.13 7.19 ± 0.51 +0.27 5.35 ± 0.38 +0.18
−0.27 −0.23 −0.13 −0.24 −0.09

112.5 16.42 ± 0.68 +0.53 10.52 ± 0.55 +0.18 8.48 ± 0.52 +0.11 6.00 ± 0.45 +0.27 4.73 ± 0.33 +0.09
−0.33 −0.47 −0.39 −0.03 −0.07

127.5 15.65 ± 0.65 +0.35 10.87 ± 0.56 +0.29 7.74 ± 0.48 +0.15 5.68 ± 0.42 +0.11 4.04 ± 0.27 +0.09
−0.13 −0.31 −0.36 −0.16 −0.04

142.5 14.12 ± 0.62 +0.41 9.84 ± 0.52 +0.14 6.69 ± 0.45 +0.20 4.82 ± 0.39 +0.33 4.27 ± 0.28 +0.04
−0.20 −0.51 −0.04 −0.09 −0.17

157.5 12.91 ± 0.60 +0.43 8.12 ± 0.49 +0.07 7.06 ± 0.45 +0.17 5.22 ± 0.41 +0.18 3.97 ± 0.29 +0.14
−0.23 −0.31 −0.27 −0.12 −0.08

172.5 12.95 ± 0.60 +0.51 8.82 ± 0.50 +0.48 6.70 ± 0.45 +0.27 5.43 ± 0.43 +0.13 3.79 ± 0.28 +0.23
−0.22 −0.06 −0.07 −0.15 −0.02

187.5 12.21 ± 0.60 +0.37 8.74 ± 0.49 +0.16 6.88 ± 0.46 +0.21 5.22 ± 0.42 +0.23 4.32 ± 0.30 +0.13
−0.34 −0.57 −0.19 −0.15 −0.02

202.5 13.52 ± 0.63 +0.16 9.99 ± 0.54 +0.07 7.09 ± 0.47 +0.13 5.40 ± 0.42 +0.31 4.44 ± 0.29 +0.10
−0.31 −0.39 −0.26 −0.17 −0.12

217.5 13.28 ± 0.62 +0.28 10.52 ± 0.56 +0.16 7.11 ± 0.48 +0.14 6.24 ± 0.46 +0.04 4.37 ± 0.29 +0.02
−0.24 −0.34 −0.29 −0.20 −0.18

232.5 16.09 ± 0.68 +0.09 9.70 ± 0.56 +0.28 7.91 ± 0.50 +0.35 5.77 ± 0.44 +0.30 4.51 ± 0.29 +0.05
−0.31 −0.31 −0.18 −0.12 −0.15

247.5 15.18 ± 0.67 +0.21 11.04 ± 0.58 +0.18 9.43 ± 0.54 +0.33 6.06 ± 0.48 +0.17 5.15 ± 0.33 +0.10
−0.39 −0.49 −0.13 −0.10 −0.14

262.5 18.53 ± 0.73 +0.51 12.97 ± 0.62 +0.27 9.64 ± 0.57 +0.22 8.23 ± 0.53 +0.38 6.19 ± 0.38 +0.06
−0.20 −0.22 −0.33 −0.26 −0.23

277.5 20.88 ± 0.78 +0.41 14.26 ± 0.66 +0.52 12.01 ± 0.62 +0.00 7.93 ± 0.55 +0.44 6.23 ± 0.40 +0.18
−0.34 −0.14 −0.30 −0.18 −0.24

292.5 21.43 ± 0.79 +0.48 17.11 ± 0.72 +0.43 14.34 ± 0.69 +0.24 11.38 ± 0.67 +0.22 8.41 ± 0.51 +0.12
−0.21 −0.24 −0.22 −0.32 −0.31

307.5 22.50 ± 0.82 +0.48 19.66 ± 0.78 +0.00 16.70 ± 0.75 +0.18 12.69 ± 0.76 +0.52 9.46 ± 0.67 +0.32
−0.58 −0.77 −0.49 −0.66 −0.21

322.5 25.21 ± 0.87 +0.21 22.17 ± 0.85 +0.14 18.46 ± 0.91 +0.52 13.36 ± 1.10 +0.41 11.76 ± 1.24 +0.55
−0.81 −0.51 −0.39 −0.25 −0.35

337.5 23.70 ± 0.86 +0.97 25.31 ± 0.97 +0.41 20.24 ± 1.23 +0.31 21.03 ± 2.00 +0.48 10.31 ± 2.91 +0.35
−0.42 −0.80 −0.70 −0.77 −1.71

352.5 25.70 ± 0.90 +0.63 23.54 ± 1.00 +1.18 24.07 ± 1.56 +0.73 23.72 ± 3.05 +1.01 14.12 ± 7.54 +1.81
−0.59 −0.38 −0.81 −1.86 −2.94

Table D.3: Unpolarized experimental cross section (pb) for kin362.
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φ (deg)
〈xBj〉 = 0.367 〈xBj〉 = 0.367 〈xBj〉 = 0.369 〈xBj〉 = 0.370 〈xBj〉 = 0.370〈

Q2〉 = 3.650 GeV2 〈
Q2〉 = 3.653 GeV2 〈

Q2〉 = 3.669 GeV2 〈
Q2〉 = 3.678 GeV2 〈

Q2〉 = 3.679 GeV2

〈t′〉 = −0.032 GeV2 〈t′〉 = −0.093 GeV2 〈t′〉 = −0.155 GeV2 〈t′〉 = −0.216 GeV2 〈t′〉 = −0.304 GeV2

7.5 0.05 ± 0.80 +0.25 0.11 ± 1.00 +0.16 1.90 ± 1.40 +0.29 -2.23 ± 2.55 +1.25 0.68 ± 5.30 +0.81
−0.28 −0.29 −0.56 −0.84 −1.68

22.5 2.00 ± 0.90 +0.45 0.34 ± 1.05 +0.77 4.65 ± 1.25 +0.12 0.81 ± 1.86 +0.60 3.45 ± 2.61 +0.81
−0.20 −0.18 −0.51 −0.13 −0.44

37.5 1.21 ± 0.94 +0.35 4.07 ± 0.96 +0.47 4.62 ± 1.04 +0.51 3.88 ± 1.21 +1.21 4.22 ± 1.29 +0.67
−0.28 −0.21 −0.19 −0.33 −0.76

52.5 2.51 ± 0.93 +0.11 4.55 ± 0.90 +0.09 3.33 ± 0.89 +0.25 2.57 ± 0.92 +0.12 1.47 ± 0.78 +0.30
−0.37 −0.45 −0.25 −0.24 −0.32

67.5 5.24 ± 0.93 +0.49 5.22 ± 0.85 +0.23 4.31 ± 0.78 +0.29 3.87 ± 0.78 +0.22 2.39 ± 0.60 +0.20
−0.09 −0.20 −0.27 −0.43 −0.11

82.5 4.47 ± 0.88 +0.69 4.54 ± 0.75 +0.14 3.04 ± 0.68 +0.17 2.27 ± 0.65 +0.35 2.36 ± 0.49 +0.20
−0.50 −0.12 −0.32 −0.18 −0.29

97.5 5.04 ± 0.87 +0.34 4.18 ± 0.71 +0.47 3.65 ± 0.63 +0.21 2.12 ± 0.59 +0.23 1.79 ± 0.43 +0.07
−0.61 −0.12 −0.17 −0.20 −0.11

112.5 3.66 ± 0.83 +0.28 3.22 ± 0.63 +0.07 1.95 ± 0.58 +0.08 2.09 ± 0.51 +0.19 1.54 ± 0.36 +0.04
−0.21 −0.25 −0.18 −0.16 −0.15

127.5 2.55 ± 0.80 +0.24 1.83 ± 0.63 +0.32 1.45 ± 0.53 +0.19 1.56 ± 0.47 +0.09 0.73 ± 0.30 +0.14
−0.03 −0.08 −0.06 −0.20 −0.06

142.5 2.11 ± 0.74 +0.26 2.16 ± 0.57 +0.21 1.36 ± 0.48 +0.32 1.47 ± 0.43 +0.02 1.20 ± 0.31 +0.03
−0.45 −0.27 −0.11 −0.11 −0.15

157.5 1.80 ± 0.69 +0.42 0.84 ± 0.51 +0.11 1.29 ± 0.48 +0.00 -0.08 ± 0.44 +0.04 0.11 ± 0.32 +0.10
−0.10 −0.27 −0.19 −0.31 −0.05

172.5 0.32 ± 0.57 +0.32 0.14 ± 0.46 +0.19 -0.04 ± 0.42 +0.15 0.33 ± 0.42 +0.24 0.48 ± 0.29 +0.26
−0.25 −0.12 −0.05 −0.10 −0.04

187.5 -1.59 ± 1.08 +0.26 -0.40 ± 0.65 +0.19 -0.33 ± 0.57 +0.33 -0.12 ± 0.51 +0.19 -0.12 ± 0.37 +0.04
−0.36 −0.12 −0.14 −0.06 −0.13

202.5 -0.77 ± 0.88 +0.29 -0.87 ± 0.62 +0.25 0.06 ± 0.53 +0.14 -0.58 ± 0.48 +0.08 -0.78 ± 0.34 +0.13
−0.02 −0.05 −0.41 −0.17 −0.11

217.5 -0.98 ± 0.82 +0.23 -1.93 ± 0.63 +0.05 -1.30 ± 0.54 +0.19 -1.39 ± 0.52 +0.16 -1.02 ± 0.33 +0.16
−0.15 −0.30 −0.14 −0.14 −0.11

232.5 -5.46 ± 0.86 +0.25 -2.31 ± 0.64 +0.42 -1.88 ± 0.57 +0.01 -1.00 ± 0.49 +0.03 -0.89 ± 0.33 +0.13
−0.16 −0.07 −0.34 −0.23 −0.19

247.5 -2.48 ± 0.86 +0.31 -3.00 ± 0.68 +0.32 -2.73 ± 0.61 +0.14 -1.60 ± 0.55 +0.20 -1.78 ± 0.37 +0.04
−0.30 −0.14 −0.12 −0.18 −0.19

262.5 -4.17 ± 0.94 +0.28 -3.79 ± 0.72 +0.38 -2.31 ± 0.66 +0.23 -2.37 ± 0.62 +0.10 -1.60 ± 0.43 +0.11
−0.08 −0.03 −0.18 −0.16 −0.26

277.5 -3.37 ± 0.99 +0.18 -2.47 ± 0.78 +0.24 -3.52 ± 0.72 +0.36 -2.73 ± 0.65 +0.28 -2.22 ± 0.46 +0.34
−0.29 −0.36 −0.15 −0.26 −0.09

292.5 -4.76 ± 1.01 +0.36 -4.93 ± 0.88 +0.32 -4.69 ± 0.81 +0.31 -3.11 ± 0.78 +0.35 -2.53 ± 0.58 +0.05
−0.23 −0.52 −0.19 −0.23 −0.31

307.5 -3.03 ± 1.04 +0.29 -4.25 ± 0.94 +0.41 -3.11 ± 0.90 +0.41 -6.05 ± 0.90 +0.14 -2.54 ± 0.76 +0.19
−0.37 −0.42 −0.48 −0.26 −0.16

322.5 -3.33 ± 1.12 +0.31 -3.65 ± 1.03 +0.27 -4.03 ± 1.08 +0.35 -2.58 ± 1.22 +0.09 -2.61 ± 1.28 +0.26
−0.32 −0.44 −0.31 −0.47 −0.51

337.5 0.69 ± 1.12 +0.33 -2.25 ± 1.20 +0.35 -0.40 ± 1.40 +0.46 -3.17 ± 2.04 +1.26 -3.87 ± 2.65 +1.10
−0.59 −0.58 −0.41 −0.96 −0.46

352.5 4.06 ± 1.49 +0.67 -1.46 ± 1.37 +0.56 -0.67 ± 1.82 +0.27 -0.19 ± 3.21 +0.49 8.18 ± 6.58 +1.58
−0.48 −0.65 −0.75 −1.81 −1.27

Table D.4: Helicity-dependent experimental cross section (pb) for kin362.
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φ (deg)
〈xBj〉 = 0.369 〈xBj〉 = 0.370 〈xBj〉 = 0.372 〈xBj〉 = 0.373 〈xBj〉 = 0.371〈

Q2〉 = 4.532 GeV2 〈
Q2〉 = 4.550 GeV2 〈

Q2〉 = 4.574 GeV2 〈
Q2〉 = 4.585 GeV2 〈

Q2〉 = 4.568 GeV2

〈t′〉 = −0.031 GeV2 〈t′〉 = −0.093 GeV2 〈t′〉 = −0.154 GeV2 〈t′〉 = −0.216 GeV2 〈t′〉 = −0.303 GeV2

7.5 13.94 ± 0.58 +0.16 13.89 ± 0.73 +0.56 10.50 ± 1.03 +0.56 9.37 ± 1.59 +0.37 11.78 ± 3.54 +0.54
−0.43 −0.41 −0.40 −0.50 −1.05

22.5 12.92 ± 0.56 +0.29 11.77 ± 0.65 +0.33 9.51 ± 0.82 +0.12 8.44 ± 1.22 +0.30 5.90 ± 1.74 +0.53
−0.51 −0.23 −0.31 −0.53 −0.61

37.5 13.05 ± 0.56 +0.14 9.54 ± 0.54 +0.12 8.08 ± 0.62 +0.23 6.98 ± 0.79 +0.31 5.60 ± 0.91 +0.41
−0.45 −0.09 −0.08 −0.30 −0.23

52.5 12.16 ± 0.54 +0.25 8.79 ± 0.48 +0.26 7.48 ± 0.51 +0.31 7.01 ± 0.58 +0.39 4.85 ± 0.54 +0.19
−0.21 −0.18 −0.32 −0.11 −0.11

67.5 11.47 ± 0.52 +0.44 8.77 ± 0.47 +0.18 7.08 ± 0.45 +0.19 5.36 ± 0.47 +0.12 4.16 ± 0.39 +0.27
−0.19 −0.30 −0.10 −0.19 −0.09

82.5 11.28 ± 0.51 +0.31 7.84 ± 0.44 +0.08 6.18 ± 0.41 +0.11 5.55 ± 0.44 +0.10 3.39 ± 0.31 +0.01
−0.37 −0.22 −0.12 −0.09 −0.19

97.5 8.75 ± 0.46 +0.29 7.40 ± 0.43 +0.31 5.07 ± 0.37 +0.29 4.38 ± 0.37 +0.13 2.94 ± 0.28 +0.07
−0.13 −0.04 −0.09 −0.14 −0.08

112.5 9.14 ± 0.46 +0.11 6.55 ± 0.40 +0.27 4.50 ± 0.33 +0.10 3.90 ± 0.34 +0.16 2.87 ± 0.24 +0.07
−0.13 −0.16 −0.06 −0.11 −0.05

127.5 9.04 ± 0.45 +0.29 6.83 ± 0.40 +0.31 4.65 ± 0.32 +0.13 3.41 ± 0.30 +0.18 2.34 ± 0.20 +0.10
−0.16 −0.11 −0.19 −0.05 −0.00

142.5 8.38 ± 0.44 +0.17 6.09 ± 0.37 +0.07 4.49 ± 0.31 +0.12 3.40 ± 0.29 +0.08 2.67 ± 0.20 +0.04
−0.10 −0.14 −0.12 −0.10 −0.09

157.5 8.28 ± 0.44 +0.05 6.04 ± 0.37 +0.10 3.62 ± 0.29 +0.09 3.02 ± 0.27 +0.09 2.15 ± 0.19 +0.10
−0.26 −0.10 −0.17 −0.11 −0.12

172.5 7.98 ± 0.43 +0.00 5.30 ± 0.34 +0.10 3.86 ± 0.29 +0.05 2.96 ± 0.27 +0.20 2.49 ± 0.21 +0.08
−0.31 −0.20 −0.13 −0.02 −0.09

187.5 7.74 ± 0.43 +0.17 5.95 ± 0.37 +0.16 3.42 ± 0.27 +0.11 3.35 ± 0.29 +0.10 2.40 ± 0.20 +0.07
−0.13 −0.10 −0.14 −0.06 −0.06

202.5 8.41 ± 0.45 +0.16 5.08 ± 0.35 +0.15 3.92 ± 0.31 +0.03 2.85 ± 0.27 +0.13 2.11 ± 0.19 +0.07
−0.20 −0.14 −0.10 −0.05 −0.00

217.5 8.53 ± 0.45 +0.17 7.08 ± 0.41 +0.25 4.43 ± 0.33 +0.15 2.94 ± 0.29 +0.13 2.48 ± 0.20 +0.03
−0.03 −0.22 −0.18 −0.10 −0.07

232.5 9.91 ± 0.49 +0.43 6.15 ± 0.40 +0.29 4.98 ± 0.34 +0.21 3.60 ± 0.32 +0.16 2.60 ± 0.21 +0.13
−0.05 −0.21 −0.07 −0.11 −0.07

247.5 9.69 ± 0.49 +0.32 6.24 ± 0.40 +0.25 5.78 ± 0.38 +0.14 4.18 ± 0.35 +0.09 3.18 ± 0.25 +0.09
−0.22 −0.17 −0.08 −0.16 −0.07

262.5 10.21 ± 0.49 +0.32 7.09 ± 0.42 +0.24 5.75 ± 0.38 +0.35 4.72 ± 0.38 +0.16 3.48 ± 0.28 +0.10
−0.10 −0.13 −0.11 −0.20 −0.07

277.5 10.93 ± 0.51 +0.16 8.13 ± 0.45 +0.28 6.26 ± 0.40 +0.36 5.60 ± 0.43 +0.21 3.73 ± 0.32 +0.15
−0.37 −0.14 −0.06 −0.29 −0.06

292.5 12.23 ± 0.54 +0.30 10.28 ± 0.49 +0.20 7.65 ± 0.46 +0.32 6.75 ± 0.49 +0.14 4.83 ± 0.39 +0.11
−0.28 −0.26 −0.17 −0.15 −0.19

307.5 12.36 ± 0.54 +0.24 11.14 ± 0.52 +0.44 9.48 ± 0.52 +0.28 7.84 ± 0.58 +0.19 5.34 ± 0.51 +0.18
−0.21 −0.08 −0.36 −0.12 −0.18

322.5 13.82 ± 0.57 +0.15 12.81 ± 0.60 +0.35 9.47 ± 0.64 +0.41 8.97 ± 0.81 +0.43 7.01 ± 0.87 +0.41
−0.30 −0.34 −0.24 −0.23 −0.24

337.5 15.43 ± 0.61 +0.21 12.76 ± 0.64 +0.45 11.34 ± 0.84 +0.45 9.39 ± 1.21 +0.24 10.96 ± 1.91 +0.72
−0.37 −0.12 −0.32 −0.37 −0.71

352.5 13.76 ± 0.58 +0.39 12.99 ± 0.70 +0.49 11.09 ± 1.01 +0.41 11.18 ± 1.70 +0.57 12.76 ± 3.21 +1.39
−0.31 −0.17 −0.21 −0.51 −1.70

Table D.5: Unpolarized experimental cross section (pb) for kin363.
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φ (deg)
〈xBj〉 = 0.369 〈xBj〉 = 0.370 〈xBj〉 = 0.372 〈xBj〉 = 0.373 〈xBj〉 = 0.371〈

Q2〉 = 4.532 GeV2 〈
Q2〉 = 4.550 GeV2 〈

Q2〉 = 4.574 GeV2 〈
Q2〉 = 4.585 GeV2 〈

Q2〉 = 4.568 GeV2

〈t′〉 = −0.031 GeV2 〈t′〉 = −0.093 GeV2 〈t′〉 = −0.154 GeV2 〈t′〉 = −0.216 GeV2 〈t′〉 = −0.303 GeV2

7.5 1.17 ± 0.66 +0.14 0.73 ± 0.82 +0.05 0.12 ± 1.03 +0.60 0.53 ± 1.46 +0.72 -5.40 ± 2.97 +0.81
−0.08 −0.35 −0.46 −0.10 −1.23

22.5 1.21 ± 0.68 +0.07 2.19 ± 0.75 +0.24 1.11 ± 0.88 +0.25 1.95 ± 1.24 +0.59 0.61 ± 1.65 +0.74
−0.31 −0.26 −0.58 −0.64 −0.24

37.5 1.72 ± 0.67 +0.30 1.03 ± 0.63 +0.32 2.60 ± 0.72 +0.35 1.81 ± 0.85 +0.13 2.09 ± 0.92 +0.31
−0.40 −0.11 −0.20 −0.32 −0.08

52.5 2.15 ± 0.65 +0.32 1.90 ± 0.59 +0.06 2.94 ± 0.60 +0.35 1.71 ± 0.67 +0.35 0.76 ± 0.59 +0.31
−0.35 −0.18 −0.08 −0.27 −0.09

67.5 1.59 ± 0.64 +0.33 3.00 ± 0.57 +0.18 2.23 ± 0.53 +0.23 1.30 ± 0.55 +0.18 0.96 ± 0.44 +0.14
−0.00 −0.17 −0.13 −0.20 −0.09

82.5 1.87 ± 0.62 +0.11 3.64 ± 0.53 +0.13 1.95 ± 0.47 +0.14 1.97 ± 0.51 +0.24 1.09 ± 0.36 +0.13
−0.35 −0.18 −0.19 −0.07 −0.16

97.5 0.80 ± 0.55 +0.07 2.10 ± 0.51 +0.33 1.06 ± 0.42 +0.19 1.65 ± 0.43 +0.09 1.01 ± 0.31 +0.13
−0.41 −0.06 −0.05 −0.24 −0.03

112.5 2.05 ± 0.55 +0.21 1.02 ± 0.48 +0.20 1.10 ± 0.37 +0.03 1.56 ± 0.39 +0.04 0.85 ± 0.28 +0.09
−0.15 −0.01 −0.28 −0.17 −0.07

127.5 1.10 ± 0.55 +0.04 2.05 ± 0.47 +0.12 1.18 ± 0.35 +0.08 1.01 ± 0.34 +0.20 0.76 ± 0.24 +0.10
−0.17 −0.12 −0.21 −0.02 −0.01

142.5 1.76 ± 0.52 +0.09 1.13 ± 0.44 +0.21 0.53 ± 0.34 +0.07 0.55 ± 0.35 +0.12 0.60 ± 0.23 +0.11
−0.27 −0.12 −0.19 −0.20 −0.08

157.5 0.69 ± 0.53 +0.08 -0.27 ± 0.43 +0.16 0.23 ± 0.29 +0.04 1.12 ± 0.32 +0.11 0.27 ± 0.22 +0.07
−0.25 −0.11 −0.11 −0.11 −0.01

172.5 -0.27 ± 0.49 +0.14 0.41 ± 0.39 +0.08 0.34 ± 0.29 +0.06 0.34 ± 0.32 +0.19 0.17 ± 0.23 +0.01
−0.22 −0.20 −0.03 −0.14 −0.11

187.5 -0.80 ± 0.56 +0.32 0.79 ± 0.45 +0.15 -0.16 ± 0.29 +0.08 -0.24 ± 0.36 +0.14 -0.30 ± 0.23 +0.12
−0.18 −0.24 −0.21 −0.05 −0.02

202.5 0.08 ± 0.57 +0.08 -0.14 ± 0.42 +0.12 -0.37 ± 0.32 +0.09 -0.00 ± 0.33 +0.15 -0.05 ± 0.22 +0.05
−0.13 −0.25 −0.16 −0.02 −0.02

217.5 -0.29 ± 0.56 +0.13 -1.14 ± 0.48 +0.18 -0.71 ± 0.35 +0.16 -0.07 ± 0.35 +0.07 -0.35 ± 0.23 +0.07
−0.17 −0.05 −0.05 −0.19 −0.06

232.5 -1.99 ± 0.60 +0.37 -1.61 ± 0.48 +0.01 -0.65 ± 0.38 +0.15 -1.03 ± 0.37 +0.13 -0.37 ± 0.25 +0.04
−0.08 −0.34 −0.13 −0.01 −0.09

247.5 -1.33 ± 0.60 +0.36 -1.63 ± 0.49 +0.07 -1.19 ± 0.43 +0.10 -1.14 ± 0.42 +0.15 -1.21 ± 0.29 +0.11
−0.13 −0.18 −0.16 −0.07 −0.18

262.5 -1.54 ± 0.61 +0.14 -2.36 ± 0.51 +0.28 -1.15 ± 0.45 +0.14 -0.78 ± 0.45 +0.21 -1.39 ± 0.33 +0.06
−0.16 −0.12 −0.31 −0.05 −0.19

277.5 -3.14 ± 0.63 +0.07 -1.94 ± 0.55 +0.10 -1.21 ± 0.47 +0.16 -1.46 ± 0.50 +0.31 -1.20 ± 0.36 +0.13
−0.30 −0.38 −0.12 −0.06 −0.09

292.5 -0.43 ± 0.66 +0.29 -3.53 ± 0.61 +0.58 -1.58 ± 0.54 +0.28 -2.69 ± 0.57 +0.21 -2.58 ± 0.45 +0.19
−0.37 −0.11 −0.22 −0.15 −0.12

307.5 -2.19 ± 0.67 +0.31 -1.53 ± 0.63 +0.33 -2.56 ± 0.62 +0.11 -2.87 ± 0.67 +0.25 -1.31 ± 0.57 +0.18
−0.23 −0.00 −0.20 −0.31 −0.02

322.5 -1.85 ± 0.70 +0.27 -2.67 ± 0.73 +0.34 -1.29 ± 0.73 +0.32 -1.55 ± 0.88 +0.33 -1.87 ± 0.88 +0.57
−0.24 −0.08 −0.28 −0.06 −0.27

337.5 -0.54 ± 0.74 +0.15 -0.47 ± 0.76 +0.21 -0.90 ± 0.90 +0.56 -2.42 ± 1.20 +0.28 -4.63 ± 1.72 +1.38
−0.18 −0.31 −0.00 −0.22 −0.15

352.5 -0.71 ± 0.75 +0.25 -0.65 ± 0.84 +0.38 -0.41 ± 1.10 +0.63 1.72 ± 1.70 +0.50 1.39 ± 3.10 +0.61
−0.08 −0.42 −0.20 −0.93 −0.31

Table D.6: Helicity-dependent experimental cross section (pb) for kin363.
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φ (deg)
〈xBj〉 = 0.483 〈xBj〉 = 0.483 〈xBj〉 = 0.484 〈xBj〉 = 0.485 〈xBj〉 = 0.485〈

Q2〉 = 2.707 GeV2 〈
Q2〉 = 2.708 GeV2 〈

Q2〉 = 2.713 GeV2 〈
Q2〉 = 2.715 GeV2 〈

Q2〉 = 2.717 GeV2

〈t′〉 = −0.022 GeV2 〈t′〉 = −0.064 GeV2 〈t′〉 = −0.107 GeV2 〈t′〉 = −0.150 GeV2 〈t′〉 = −0.210 GeV2

7.5 27.39 ± 2.66 +1.00 25.49 ± 3.49 +1.64 30.79 ± 6.32 +3.67 7.58 ± 16.82 +11.25 203.10 ± 126.41 +1.17
−1.20 −1.85 −1.00 −4.90 −120.99

22.5 28.69 ± 2.62 +0.00 27.50 ± 3.21 +0.80 31.01 ± 4.71 +1.36 42.46 ± 9.70 +2.65 35.41 ± 30.14 +17.32
−1.37 −2.12 −0.91 −7.31 −12.14

37.5 23.29 ± 2.42 +0.70 25.70 ± 2.81 +0.91 23.60 ± 3.43 +2.21 12.71 ± 4.34 +3.05 21.75 ± 6.75 +1.25
−0.92 −0.24 −0.67 −1.38 −5.42

52.5 27.60 ± 2.43 +0.88 22.24 ± 2.46 +1.30 20.93 ± 2.63 +0.47 19.36 ± 2.91 +0.26 13.15 ± 2.74 +0.89
−0.76 −1.32 −1.34 −1.44 −0.86

67.5 24.00 ± 2.33 +2.82 20.92 ± 2.24 +0.52 21.38 ± 2.26 +0.61 15.45 ± 2.37 +1.00 12.07 ± 1.95 +0.76
−0.22 −0.64 −1.10 −0.81 −0.79

82.5 23.03 ± 2.21 +1.74 20.43 ± 2.10 +0.51 18.27 ± 2.14 +0.40 19.16 ± 2.19 +1.19 13.59 ± 1.70 +0.40
−0.15 −0.30 −1.26 −0.35 −1.07

97.5 18.40 ± 2.02 +0.41 15.53 ± 1.96 +1.22 12.20 ± 1.98 +0.41 15.01 ± 2.03 +0.69 14.08 ± 1.72 +0.67
−0.39 −1.35 −1.12 −1.48 −0.13

112.5 22.38 ± 2.06 +1.18 17.64 ± 1.97 +0.21 17.26 ± 1.93 +1.21 10.60 ± 1.75 +1.51 13.68 ± 1.44 +0.81
−0.57 −1.31 −1.23 −0.54 −0.13

127.5 23.93 ± 2.11 +0.26 16.29 ± 1.84 +0.74 13.21 ± 1.74 +0.17 10.12 ± 1.67 +0.61 7.57 ± 1.20 +0.54
−0.75 −0.56 −0.85 −0.36 −0.31

142.5 20.85 ± 2.06 +0.31 14.23 ± 1.67 +1.00 11.90 ± 1.69 +0.35 11.50 ± 1.73 +0.27 9.90 ± 1.39 +0.78
−1.32 −0.11 −0.70 −0.49 −0.81

157.5 20.82 ± 1.97 +0.67 14.30 ± 1.81 +1.21 15.58 ± 1.97 +1.26 13.94 ± 1.99 +0.46 12.79 ± 1.64 +1.02
−0.97 −0.50 −1.26 −0.77 −0.46

172.5 22.31 ± 2.07 +0.56 11.94 ± 1.72 +0.64 11.49 ± 1.89 +0.93 13.79 ± 2.18 +0.96 18.44 ± 2.18 +0.87
−1.21 −1.56 −0.54 −1.06 −1.17

187.5 23.13 ± 2.06 +0.06 16.39 ± 1.82 +0.50 14.07 ± 2.03 +0.11 16.21 ± 2.37 +0.23 20.63 ± 2.23 +1.06
−1.04 −1.80 −0.96 −1.07 −1.71

202.5 22.21 ± 2.05 +0.64 18.62 ± 1.90 +1.94 15.06 ± 2.03 +0.58 12.69 ± 2.09 +0.87 14.47 ± 1.82 +0.26
−1.80 −0.55 −0.41 −0.32 −1.07

217.5 18.68 ± 1.96 +1.63 18.04 ± 1.92 +0.32 14.09 ± 1.93 +0.39 11.30 ± 1.92 +1.74 10.27 ± 1.53 +0.68
−0.17 −0.86 −1.66 −0.76 −0.07

232.5 19.66 ± 2.04 +0.69 13.75 ± 1.90 +1.46 18.05 ± 2.01 +0.10 13.57 ± 1.90 +0.43 13.40 ± 1.57 +0.23
−0.80 −0.66 −0.84 −1.26 −1.04

247.5 20.16 ± 2.10 +0.73 15.40 ± 1.97 +0.28 15.67 ± 2.05 +0.18 15.55 ± 2.09 +0.17 12.27 ± 1.50 +0.42
−0.24 −0.40 −1.06 −0.62 −0.31

262.5 23.35 ± 2.19 +1.08 23.47 ± 2.25 +0.65 18.38 ± 2.17 +0.21 16.72 ± 2.13 +0.53 10.45 ± 1.44 +1.45
−0.49 −0.71 −0.92 −0.36 −0.17

277.5 22.11 ± 2.24 +0.07 24.09 ± 2.36 +1.69 17.34 ± 2.27 +0.67 18.27 ± 2.24 +0.91 17.24 ± 1.74 +0.62
−1.59 −1.54 −0.69 −1.06 −0.42

292.5 24.01 ± 2.35 +0.61 20.80 ± 2.42 +0.61 23.90 ± 2.65 +0.00 18.41 ± 2.58 +1.39 19.14 ± 2.10 +1.07
−0.15 −0.66 −1.53 −1.33 −0.09

307.5 28.35 ± 2.50 +0.94 27.11 ± 2.61 +1.85 19.72 ± 2.94 +0.33 18.35 ± 3.11 +0.67 16.61 ± 3.40 +1.85
−1.15 −1.91 −0.91 −1.55 −1.00

322.5 27.54 ± 2.57 +0.73 28.34 ± 2.94 +2.54 25.42 ± 3.64 +3.21 24.08 ± 4.88 +0.50 8.06 ± 7.15 +6.25
−0.91 −1.76 −0.00 −2.77 −3.04

337.5 28.54 ± 2.67 +0.95 24.80 ± 3.11 +1.54 23.01 ± 4.73 +0.73 20.57 ± 10.26 +2.65 -23.18 ± 38.43 +38.16
−0.62 −0.79 −1.95 −2.21 −2.89

352.5 26.29 ± 2.69 +1.29 28.69 ± 3.45 +1.42 31.08 ± 5.65 +0.07 50.82 ± 20.27 +6.06 -90.57 ± 90.60 +87.73
−0.83 −0.56 −3.50 −9.00 −69.39

Table D.7: Unpolarized experimental cross section (pb) for kin481.
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φ (deg)
〈xBj〉 = 0.483 〈xBj〉 = 0.483 〈xBj〉 = 0.484 〈xBj〉 = 0.485 〈xBj〉 = 0.485〈

Q2〉 = 2.707 GeV2 〈
Q2〉 = 2.708 GeV2 〈

Q2〉 = 2.713 GeV2 〈
Q2〉 = 2.715 GeV2 〈

Q2〉 = 2.717 GeV2

〈t′〉 = −0.022 GeV2 〈t′〉 = −0.064 GeV2 〈t′〉 = −0.107 GeV2 〈t′〉 = −0.150 GeV2 〈t′〉 = −0.210 GeV2

7.5 -0.59 ± 1.94 +0.36 -0.39 ± 3.70 +1.56 6.68 ± 6.33 +4.15 -0.34 ± 1.91 +9.56 -107.46 ± 143.08 +77.98
−0.67 −0.97 −4.54 −1.40 −36.25

22.5 1.55 ± 2.07 +1.67 -3.69 ± 3.66 +1.35 -2.41 ± 5.30 +0.71 1.38 ± 4.03 +0.28 21.54 ± 28.58 +22.46
−0.60 −0.67 −2.67 −2.76 −3.72

37.5 -0.12 ± 2.05 +0.70 4.04 ± 3.20 +1.02 2.74 ± 3.97 +1.58 3.21 ± 2.96 +0.80 4.83 ± 7.39 +3.60
−0.54 −1.05 −0.68 −2.36 −3.61

52.5 1.40 ± 2.01 +1.17 3.83 ± 2.83 +0.48 3.71 ± 3.03 +0.73 -1.58 ± 2.64 +0.56 3.03 ± 3.09 +0.86
−0.34 −0.42 −0.87 −0.35 −1.33

67.5 -1.35 ± 2.04 +0.34 10.15 ± 2.61 +0.73 3.13 ± 2.49 +0.81 2.61 ± 2.42 +0.66 3.43 ± 2.18 +1.26
−0.61 −2.59 −0.61 −0.97 −0.93

82.5 2.25 ± 1.94 +0.73 4.78 ± 2.43 +0.72 6.58 ± 2.31 +0.94 3.97 ± 2.37 +0.48 0.18 ± 1.90 +0.47
−0.99 −0.95 −0.96 −0.37 −0.51

97.5 -0.06 ± 1.85 +0.54 6.06 ± 2.29 +1.22 -0.31 ± 2.05 +0.70 2.62 ± 2.31 +0.91 3.26 ± 1.87 +0.26
−0.57 −0.68 −0.56 −1.71 −1.24

112.5 1.40 ± 1.91 +1.28 2.48 ± 2.29 +0.94 3.63 ± 1.94 +0.66 4.35 ± 2.03 +1.17 2.78 ± 1.54 +0.58
−0.58 −0.71 −0.18 −0.69 −0.53

127.5 0.97 ± 1.93 +1.13 2.93 ± 2.11 +0.26 0.68 ± 1.70 +0.72 1.19 ± 2.01 +0.85 0.78 ± 1.26 +0.60
−0.57 −1.32 −1.67 −0.24 −0.32

142.5 -0.54 ± 1.83 +1.24 2.71 ± 1.97 +1.56 2.58 ± 1.58 +0.74 0.12 ± 2.07 +0.61 2.33 ± 1.42 +0.20
−0.78 −0.38 −0.92 −0.40 −0.56

157.5 -0.87 ± 1.80 +0.94 -1.05 ± 2.05 +1.47 0.85 ± 1.78 +0.93 2.31 ± 2.33 +0.64 -0.39 ± 1.57 +0.54
−0.90 −0.00 −0.53 −0.26 −0.44

172.5 2.92 ± 1.68 +0.52 0.19 ± 1.96 +0.48 0.02 ± 1.67 +0.66 2.54 ± 2.51 +0.94 5.87 ± 1.96 +0.65
−1.12 −0.26 −0.93 −1.17 −1.37

187.5 0.16 ± 2.45 +0.43 6.91 ± 2.49 +0.27 2.05 ± 2.02 +0.08 4.81 ± 2.99 +1.13 -0.92 ± 2.16 +0.64
−0.95 −0.75 −1.51 −1.48 −0.63

202.5 -0.06 ± 2.10 +0.95 -0.29 ± 2.41 +0.63 -0.30 ± 1.93 +1.73 -8.90 ± 2.62 +0.24 0.88 ± 1.73 +0.92
−0.79 −0.78 −0.26 −2.65 −0.21

217.5 -0.82 ± 2.00 +0.56 -2.24 ± 2.36 +1.23 1.65 ± 1.81 +0.56 -3.44 ± 2.39 +1.15 -0.51 ± 1.52 +0.17
−0.67 −0.11 −0.21 −1.00 −0.50

232.5 -3.25 ± 2.08 +0.24 -8.01 ± 2.27 +0.62 -3.82 ± 1.97 +2.33 0.13 ± 2.30 +1.61 -0.53 ± 1.61 +0.48
−1.45 −0.83 −0.39 −0.97 −0.41

247.5 -0.42 ± 2.09 +1.10 0.08 ± 2.38 +0.60 -2.39 ± 2.03 +0.65 -3.31 ± 2.40 +0.30 -0.97 ± 1.60 +0.88
−0.35 −1.54 −0.64 −0.82 −0.37

262.5 2.00 ± 2.23 +0.71 -6.16 ± 2.64 +1.43 -1.58 ± 2.28 +0.69 -4.92 ± 2.55 +0.58 -6.10 ± 1.60 +0.35
−0.95 −0.84 −1.41 −1.10 −0.81

277.5 -2.74 ± 2.19 +0.60 -1.98 ± 2.77 +0.90 -3.99 ± 2.51 +0.54 -6.52 ± 2.58 +1.41 -3.67 ± 1.95 +0.44
−0.69 −0.89 −1.08 −0.20 −0.28

292.5 -1.35 ± 2.21 +0.48 -2.18 ± 2.86 +0.90 -0.57 ± 2.97 +1.18 -5.43 ± 2.79 +0.81 -7.73 ± 2.42 +1.63
−0.48 −1.10 −1.61 −0.89 −0.55

307.5 -5.54 ± 2.30 +0.97 -0.30 ± 3.18 +1.71 -1.80 ± 3.42 +0.38 -1.26 ± 3.02 +1.27 -4.17 ± 3.91 +1.73
−0.85 −1.76 −1.45 −0.74 −1.71

322.5 3.48 ± 2.41 +1.33 -5.40 ± 3.54 +0.27 -5.35 ± 4.19 +2.33 1.28 ± 3.63 +0.88 -14.40 ± 7.87 +4.60
−0.92 −0.88 −0.05 −3.37 −7.37

337.5 -1.55 ± 2.48 +1.45 -5.40 ± 3.72 +2.16 -5.88 ± 5.44 +1.53 -0.07 ± 4.40 +0.93 -23.18 ± 37.66 +15.79
−1.35 −0.99 −1.96 −1.18 −27.43

352.5 -0.09 ± 2.88 +0.78 -3.83 ± 4.56 +0.46 -2.20 ± 7.04 +4.15 -0.05 ± 3.05 +4.02 -6.48 ± 117.70 +52.85
−1.29 −3.01 −0.81 −12.31 −234.01

Table D.8: Helicity-dependent experimental cross section (pb) for kin481.
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φ (deg)
〈xBj〉 = 0.497 〈xBj〉 = 0.501 〈xBj〉 = 0.504 〈xBj〉 = 0.506 〈xBj〉 = 0.508〈

Q2〉 = 4.497 GeV2 〈
Q2〉 = 4.528 GeV2 〈

Q2〉 = 4.558 GeV2 〈
Q2〉 = 4.573 GeV2 〈

Q2〉 = 4.593 GeV2

〈t′〉 = −0.031 GeV2 〈t′〉 = −0.093 GeV2 〈t′〉 = −0.154 GeV2 〈t′〉 = −0.216 GeV2 〈t′〉 = −0.305 GeV2

7.5 3.39 ± 0.22 +0.05 2.37 ± 0.29 +0.08 2.24 ± 0.43 +0.18 1.79 ± 0.59 +0.19 1.92 ± 0.84 +0.07
−0.10 −0.13 −0.08 −0.15 −0.25

22.5 3.57 ± 0.23 +0.13 2.61 ± 0.27 +0.11 2.87 ± 0.40 +0.05 2.56 ± 0.53 +0.22 1.89 ± 0.63 +0.34
−0.11 −0.08 −0.24 −0.18 −0.11

37.5 3.28 ± 0.21 +0.08 3.07 ± 0.25 +0.05 1.88 ± 0.28 +0.12 2.21 ± 0.35 +0.07 0.75 ± 0.35 +0.10
−0.07 −0.07 −0.03 −0.19 −0.11

52.5 3.43 ± 0.21 +0.17 2.71 ± 0.21 +0.08 1.78 ± 0.21 +0.06 2.15 ± 0.27 +0.12 1.06 ± 0.21 +0.15
−0.06 −0.14 −0.14 −0.14 −0.03

67.5 3.26 ± 0.20 +0.12 2.39 ± 0.18 +0.10 1.84 ± 0.18 +0.05 1.52 ± 0.19 +0.05 1.02 ± 0.16 +0.02
−0.06 −0.04 −0.06 −0.09 −0.09

82.5 3.46 ± 0.20 +0.08 2.30 ± 0.17 +0.08 2.00 ± 0.17 +0.04 1.40 ± 0.17 +0.02 1.26 ± 0.14 +0.07
−0.14 −0.08 −0.05 −0.05 −0.04

97.5 3.02 ± 0.20 +0.14 2.24 ± 0.17 +0.12 1.66 ± 0.16 +0.10 1.27 ± 0.16 +0.06 1.25 ± 0.13 +0.07
−0.11 −0.07 −0.04 −0.01 −0.04

112.5 3.02 ± 0.19 +0.14 2.30 ± 0.17 +0.03 1.87 ± 0.16 +0.00 1.65 ± 0.16 +0.01 1.36 ± 0.11 +0.05
−0.09 −0.06 −0.11 −0.04 −0.06

127.5 3.07 ± 0.19 +0.00 1.94 ± 0.16 +0.02 1.77 ± 0.16 +0.08 1.29 ± 0.15 +0.11 1.27 ± 0.11 +0.03
−0.14 −0.06 −0.02 −0.02 −0.01

142.5 2.90 ± 0.19 +0.03 2.15 ± 0.16 +0.04 1.59 ± 0.15 +0.05 1.86 ± 0.17 +0.04 1.34 ± 0.11 +0.04
−0.06 −0.06 −0.04 −0.10 −0.03

157.5 2.79 ± 0.19 +0.11 1.94 ± 0.16 +0.01 1.87 ± 0.16 +0.04 1.61 ± 0.16 +0.04 1.67 ± 0.13 +0.02
−0.09 −0.09 −0.05 −0.03 −0.04

172.5 2.62 ± 0.18 +0.07 1.90 ± 0.16 +0.07 1.85 ± 0.17 +0.11 1.81 ± 0.17 +0.02 1.54 ± 0.13 +0.06
−0.04 −0.08 −0.14 −0.07 −0.03

187.5 2.92 ± 0.19 +0.14 2.08 ± 0.18 +0.14 2.14 ± 0.18 +0.06 2.23 ± 0.19 +0.08 1.46 ± 0.13 +0.02
−0.11 −0.00 −0.01 −0.11 −0.12

202.5 3.15 ± 0.20 +0.09 2.50 ± 0.19 +0.20 1.98 ± 0.19 +0.08 2.12 ± 0.19 +0.14 1.94 ± 0.14 +0.03
−0.11 −0.08 −0.08 −0.04 −0.05

217.5 2.59 ± 0.19 +0.09 2.29 ± 0.19 +0.02 1.96 ± 0.19 +0.04 2.06 ± 0.20 +0.11 1.86 ± 0.14 +0.03
−0.06 −0.14 −0.09 −0.10 −0.11

232.5 2.53 ± 0.18 +0.05 2.48 ± 0.18 +0.09 1.97 ± 0.18 +0.12 2.08 ± 0.19 +0.07 1.71 ± 0.13 +0.10
−0.11 −0.10 −0.02 −0.07 −0.06

247.5 3.00 ± 0.20 +0.12 2.33 ± 0.18 +0.01 2.05 ± 0.18 +0.09 2.23 ± 0.19 +0.08 1.61 ± 0.13 +0.02
−0.08 −0.09 −0.04 −0.07 −0.05

262.5 3.41 ± 0.21 +0.13 2.84 ± 0.19 +0.05 2.13 ± 0.18 +0.13 2.18 ± 0.19 +0.06 1.48 ± 0.13 +0.04
−0.12 −0.16 −0.08 −0.10 −0.10

277.5 3.27 ± 0.20 +0.06 2.92 ± 0.19 +0.03 2.28 ± 0.18 +0.08 1.89 ± 0.18 +0.09 1.78 ± 0.15 +0.01
−0.09 −0.16 −0.06 −0.03 −0.07

292.5 3.70 ± 0.21 +0.11 3.03 ± 0.20 +0.07 2.42 ± 0.19 +0.08 1.91 ± 0.20 +0.05 1.46 ± 0.17 +0.06
−0.08 −0.13 −0.07 −0.04 −0.08

307.5 2.96 ± 0.19 +0.05 2.50 ± 0.20 +0.07 2.44 ± 0.22 +0.02 2.00 ± 0.25 +0.06 1.79 ± 0.24 +0.05
−0.10 −0.12 −0.18 −0.12 −0.09

322.5 3.29 ± 0.20 +0.13 2.96 ± 0.24 +0.10 2.32 ± 0.29 +0.04 1.74 ± 0.34 +0.15 2.28 ± 0.36 +0.15
−0.05 −0.06 −0.07 −0.10 −0.18

337.5 3.35 ± 0.22 +0.13 2.92 ± 0.28 +0.11 2.19 ± 0.37 +0.21 1.83 ± 0.47 +0.26 2.09 ± 0.59 +0.06
−0.08 −0.10 −0.19 −0.05 −0.25

352.5 3.54 ± 0.22 +0.15 2.74 ± 0.30 +0.15 2.34 ± 0.44 +0.10 1.31 ± 0.59 +0.03 1.67 ± 0.69 +0.27
−0.01 −0.02 −0.16 −0.10 −0.08

Table D.9: Unpolarized experimental cross section (pb) for kin482.
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φ (deg)
〈xBj〉 = 0.497 〈xBj〉 = 0.501 〈xBj〉 = 0.504 〈xBj〉 = 0.506 〈xBj〉 = 0.508〈

Q2〉 = 4.497 GeV2 〈
Q2〉 = 4.528 GeV2 〈

Q2〉 = 4.558 GeV2 〈
Q2〉 = 4.573 GeV2 〈

Q2〉 = 4.593 GeV2

〈t′〉 = −0.031 GeV2 〈t′〉 = −0.093 GeV2 〈t′〉 = −0.154 GeV2 〈t′〉 = −0.216 GeV2 〈t′〉 = −0.305 GeV2

7.5 0.02 ± 0.32 +0.04 0.35 ± 0.32 +0.02 0.41 ± 0.50 +0.36 0.44 ± 0.60 +0.05 -0.35 ± 0.81 +0.27
−0.24 −0.06 −0.11 −0.13 −0.13

22.5 0.54 ± 0.31 +0.12 0.23 ± 0.28 +0.05 0.25 ± 0.45 +0.07 -0.24 ± 0.55 +0.10 1.06 ± 0.65 +0.18
−0.03 −0.18 −0.11 −0.15 −0.04

37.5 0.15 ± 0.27 +0.14 0.21 ± 0.28 +0.04 0.80 ± 0.33 +0.15 0.48 ± 0.37 +0.07 0.92 ± 0.36 +0.10
−0.17 −0.17 −0.11 −0.12 −0.21

52.5 -0.02 ± 0.26 +0.15 0.56 ± 0.24 +0.05 0.59 ± 0.26 +0.07 0.51 ± 0.29 +0.09 0.46 ± 0.23 +0.09
−0.04 −0.18 −0.06 −0.10 −0.03

67.5 0.24 ± 0.24 +0.08 0.78 ± 0.22 +0.01 0.42 ± 0.22 +0.09 0.44 ± 0.22 +0.07 0.71 ± 0.19 +0.05
−0.11 −0.07 −0.03 −0.14 −0.12

82.5 0.51 ± 0.25 +0.07 0.47 ± 0.21 +0.10 0.64 ± 0.21 +0.08 0.28 ± 0.20 +0.07 0.39 ± 0.16 +0.04
−0.09 −0.12 −0.04 −0.09 −0.06

97.5 0.49 ± 0.24 +0.10 0.78 ± 0.19 +0.06 0.30 ± 0.18 +0.10 0.15 ± 0.18 +0.09 0.26 ± 0.15 +0.01
−0.03 −0.04 −0.04 −0.02 −0.09

112.5 0.34 ± 0.22 +0.08 0.55 ± 0.20 +0.12 0.64 ± 0.18 +0.01 0.38 ± 0.17 +0.05 0.26 ± 0.13 +0.02
−0.06 −0.05 −0.07 −0.04 −0.07

127.5 0.27 ± 0.23 +0.22 0.47 ± 0.19 +0.02 0.56 ± 0.17 +0.02 0.33 ± 0.16 +0.09 0.24 ± 0.12 +0.01
−0.06 −0.08 −0.07 −0.10 −0.06

142.5 0.17 ± 0.22 +0.05 0.54 ± 0.19 +0.03 0.23 ± 0.16 +0.04 0.27 ± 0.18 +0.01 0.28 ± 0.12 +0.01
−0.13 −0.07 −0.01 −0.12 −0.03

157.5 -0.17 ± 0.22 +0.05 0.67 ± 0.19 +0.04 0.60 ± 0.17 +0.11 0.06 ± 0.17 +0.14 0.22 ± 0.14 +0.08
−0.05 −0.10 −0.03 −0.06 −0.12

172.5 -0.30 ± 0.23 +0.12 0.12 ± 0.20 +0.11 0.23 ± 0.17 +0.10 -0.28 ± 0.19 +0.06 0.11 ± 0.15 +0.01
−0.04 −0.03 −0.15 −0.02 −0.09

187.5 -0.08 ± 0.20 +0.10 0.39 ± 0.18 +0.06 0.27 ± 0.18 +0.06 0.12 ± 0.20 +0.03 -0.17 ± 0.14 +0.04
−0.07 −0.05 −0.02 −0.10 −0.05

202.5 -0.18 ± 0.22 +0.08 -0.30 ± 0.21 +0.07 -0.07 ± 0.19 +0.08 -0.03 ± 0.20 +0.00 -0.25 ± 0.15 +0.09
−0.08 −0.03 −0.10 −0.15 −0.04

217.5 0.00 ± 0.21 +0.05 -0.57 ± 0.21 +0.07 -0.08 ± 0.20 +0.06 0.02 ± 0.21 +0.04 -0.31 ± 0.16 +0.07
−0.09 −0.03 −0.08 −0.07 −0.16

232.5 -0.39 ± 0.21 +0.07 -0.22 ± 0.20 +0.14 -0.39 ± 0.20 +0.07 -0.69 ± 0.21 +0.03 -0.48 ± 0.15 +0.07
−0.03 −0.07 −0.04 −0.11 −0.01

247.5 -0.47 ± 0.23 +0.07 -0.07 ± 0.21 +0.04 -0.18 ± 0.20 +0.05 -0.64 ± 0.20 +0.06 -0.49 ± 0.14 +0.04
−0.08 −0.08 −0.08 −0.00 −0.02

262.5 -0.74 ± 0.24 +0.04 -0.26 ± 0.22 +0.06 -0.39 ± 0.21 +0.07 -0.52 ± 0.21 +0.04 -0.39 ± 0.15 +0.01
−0.09 −0.11 −0.07 −0.07 −0.03

277.5 -0.60 ± 0.24 +0.05 -0.51 ± 0.22 +0.01 -0.65 ± 0.22 +0.03 -0.60 ± 0.21 +0.04 -0.48 ± 0.17 +0.09
−0.13 −0.09 −0.05 −0.07 −0.01

292.5 -0.55 ± 0.25 +0.08 -0.60 ± 0.23 +0.12 -0.98 ± 0.23 +0.09 -0.24 ± 0.23 +0.00 -0.12 ± 0.20 +0.05
−0.08 −0.02 −0.05 −0.09 −0.07

307.5 -0.42 ± 0.24 +0.11 -0.46 ± 0.23 +0.03 -0.70 ± 0.27 +0.10 -0.98 ± 0.28 +0.10 -0.52 ± 0.27 +0.09
−0.06 −0.14 −0.12 −0.01 −0.08

322.5 -0.63 ± 0.25 +0.11 -0.37 ± 0.26 +0.06 -1.08 ± 0.34 +0.07 -0.73 ± 0.36 +0.10 0.05 ± 0.37 +0.06
−0.03 −0.05 −0.13 −0.11 −0.19

337.5 0.08 ± 0.26 +0.03 -0.45 ± 0.28 +0.14 -0.59 ± 0.41 +0.04 0.10 ± 0.48 +0.12 0.01 ± 0.55 +0.21
−0.06 −0.08 −0.38 −0.14 −0.21

352.5 -0.07 ± 0.26 +0.02 -0.07 ± 0.29 +0.03 -0.91 ± 0.46 +0.18 0.06 ± 0.60 +0.20 0.49 ± 0.67 +0.17
−0.09 −0.12 −0.27 −0.14 −0.01

Table D.10: Helicity-dependent experimental cross section (pb) for kin482.
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φ (deg)
〈xBj〉 = 0.482 〈xBj〉 = 0.483 〈xBj〉 = 0.485 〈xBj〉 = 0.486 〈xBj〉 = 0.486〈

Q2〉 = 5.331 GeV2 〈
Q2〉 = 5.339 GeV2 〈

Q2〉 = 5.360 GeV2 〈
Q2〉 = 5.371 GeV2 〈

Q2〉 = 5.379 GeV2

〈t′〉 = −0.030 GeV2 〈t′〉 = −0.088 GeV2 〈t′〉 = −0.147 GeV2 〈t′〉 = −0.206 GeV2 〈t′〉 = −0.291 GeV2

7.5 4.23 ± 0.29 +0.29 4.47 ± 0.37 +0.11 3.76 ± 0.57 +0.24 3.35 ± 1.11 +0.41 3.65 ± 3.04 +0.49
−0.07 −0.25 −0.28 −0.20 −0.29

22.5 3.98 ± 0.29 +0.10 3.94 ± 0.33 +0.19 2.90 ± 0.44 +0.15 2.05 ± 0.62 +0.06 1.37 ± 1.10 +0.51
−0.04 −0.06 −0.02 −0.26 −0.15

37.5 3.66 ± 0.26 +0.09 3.54 ± 0.29 +0.08 3.03 ± 0.32 +0.15 2.70 ± 0.43 +0.08 1.20 ± 0.43 +0.12
−0.11 −0.02 −0.15 −0.13 −0.38

52.5 4.10 ± 0.28 +0.07 3.00 ± 0.24 +0.13 2.64 ± 0.25 +0.16 2.47 ± 0.29 +0.00 1.56 ± 0.26 +0.10
−0.17 −0.13 −0.05 −0.17 −0.03

67.5 3.09 ± 0.25 +0.24 2.76 ± 0.23 +0.09 2.43 ± 0.23 +0.09 2.03 ± 0.23 +0.02 1.48 ± 0.19 +0.09
−0.13 −0.09 −0.06 −0.10 −0.04

82.5 3.35 ± 0.25 +0.11 2.48 ± 0.23 +0.14 1.86 ± 0.20 +0.07 1.82 ± 0.20 +0.10 1.62 ± 0.17 +0.03
−0.07 −0.05 −0.07 −0.06 −0.11

97.5 2.88 ± 0.24 +0.17 2.36 ± 0.21 +0.05 2.15 ± 0.21 +0.05 1.62 ± 0.19 +0.12 1.17 ± 0.15 +0.07
−0.09 −0.07 −0.05 −0.08 −0.02

112.5 3.13 ± 0.24 +0.03 1.96 ± 0.19 +0.08 1.89 ± 0.19 +0.02 1.39 ± 0.18 +0.14 1.13 ± 0.13 +0.03
−0.14 −0.06 −0.07 −0.04 −0.02

127.5 2.93 ± 0.22 +0.06 1.86 ± 0.18 +0.12 1.42 ± 0.17 +0.06 1.98 ± 0.19 +0.07 1.08 ± 0.11 +0.02
−0.04 −0.03 −0.10 −0.09 −0.04

142.5 2.71 ± 0.22 +0.03 1.97 ± 0.19 +0.13 1.54 ± 0.17 +0.06 1.44 ± 0.17 +0.03 0.91 ± 0.10 +0.04
−0.12 −0.02 −0.03 −0.01 −0.00

157.5 2.68 ± 0.22 +0.12 1.81 ± 0.18 +0.11 1.78 ± 0.18 +0.13 1.47 ± 0.17 +0.04 1.14 ± 0.12 +0.00
−0.12 −0.00 −0.08 −0.02 −0.07

172.5 2.44 ± 0.22 +0.07 2.18 ± 0.20 +0.05 1.64 ± 0.18 +0.08 1.61 ± 0.19 +0.09 1.08 ± 0.13 +0.06
−0.08 −0.12 −0.05 −0.05 −0.05

187.5 2.59 ± 0.22 +0.13 2.05 ± 0.19 +0.05 1.75 ± 0.19 +0.04 1.33 ± 0.18 +0.22 1.06 ± 0.12 +0.03
−0.02 −0.08 −0.09 −0.04 −0.04

202.5 2.73 ± 0.22 +0.14 2.21 ± 0.20 +0.21 1.80 ± 0.19 +0.04 1.27 ± 0.18 +0.18 1.25 ± 0.12 +0.01
−0.08 −0.08 −0.08 −0.07 −0.05

217.5 2.63 ± 0.21 +0.10 1.86 ± 0.19 +0.09 1.51 ± 0.19 +0.06 1.51 ± 0.18 +0.09 0.86 ± 0.11 +0.04
−0.04 −0.04 −0.03 −0.07 −0.04

232.5 2.92 ± 0.23 +0.12 2.31 ± 0.22 +0.03 1.87 ± 0.21 +0.07 1.61 ± 0.19 +0.10 1.16 ± 0.12 +0.02
−0.07 −0.14 −0.15 −0.02 −0.09

247.5 2.92 ± 0.23 +0.14 2.61 ± 0.22 +0.06 1.80 ± 0.20 +0.03 1.49 ± 0.19 +0.05 1.46 ± 0.14 +0.04
−0.05 −0.05 −0.06 −0.05 −0.05

262.5 3.77 ± 0.26 +0.03 2.57 ± 0.22 +0.07 2.37 ± 0.22 +0.05 1.79 ± 0.20 +0.05 1.50 ± 0.15 +0.06
−0.14 −0.09 −0.07 −0.09 −0.06

277.5 3.62 ± 0.27 +0.06 2.63 ± 0.24 +0.16 2.51 ± 0.24 +0.22 1.74 ± 0.21 +0.04 1.84 ± 0.17 +0.00
−0.13 −0.02 −0.09 −0.07 −0.09

292.5 3.67 ± 0.26 +0.10 3.29 ± 0.25 +0.22 2.92 ± 0.25 +0.05 2.47 ± 0.25 +0.02 2.31 ± 0.21 +0.05
−0.06 −0.11 −0.12 −0.10 −0.12

307.5 3.65 ± 0.26 +0.12 3.42 ± 0.27 +0.15 2.96 ± 0.27 +0.11 2.57 ± 0.30 +0.13 2.10 ± 0.27 +0.05
−0.13 −0.14 −0.03 −0.14 −0.09

322.5 4.27 ± 0.29 +0.11 3.75 ± 0.29 +0.11 3.31 ± 0.36 +0.11 2.84 ± 0.46 +0.19 3.71 ± 0.58 +0.16
−0.17 −0.06 −0.14 −0.11 −0.20

337.5 4.19 ± 0.28 +0.04 4.00 ± 0.33 +0.08 3.28 ± 0.44 +0.30 3.96 ± 0.81 +0.31 2.05 ± 1.33 +0.00
−0.08 −0.14 −0.08 −0.30 −0.50

352.5 4.24 ± 0.29 +0.12 4.13 ± 0.36 +0.25 3.76 ± 0.58 +0.19 2.91 ± 1.16 +0.26 0.90 ± 1.72 +0.95
−0.08 −0.05 −0.21 −0.27 −0.16

Table D.11: Unpolarized experimental cross section (pb) for kin483.
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φ (deg)
〈xBj〉 = 0.482 〈xBj〉 = 0.483 〈xBj〉 = 0.485 〈xBj〉 = 0.486 〈xBj〉 = 0.486〈

Q2〉 = 5.331 GeV2 〈
Q2〉 = 5.339 GeV2 〈

Q2〉 = 5.360 GeV2 〈
Q2〉 = 5.371 GeV2 〈

Q2〉 = 5.379 GeV2

〈t′〉 = −0.030 GeV2 〈t′〉 = −0.088 GeV2 〈t′〉 = −0.147 GeV2 〈t′〉 = −0.206 GeV2 〈t′〉 = −0.291 GeV2

7.5 -0.40 ± 0.38 +0.14 0.18 ± 0.22 +0.18 -0.06 ± 0.62 +0.33 0.13 ± 0.89 +0.17 1.63 ± 2.22 +0.26
−0.07 −0.01 −0.21 −0.24 −0.89

22.5 0.39 ± 0.36 +0.14 0.27 ± 0.23 +0.24 0.60 ± 0.49 +0.06 -0.16 ± 0.57 +0.14 0.12 ± 0.88 +0.21
−0.02 −0.07 −0.16 −0.24 −0.64

37.5 0.94 ± 0.33 +0.16 0.92 ± 0.24 +0.14 0.39 ± 0.39 +0.17 0.91 ± 0.42 +0.07 0.94 ± 0.42 +0.02
−0.16 −0.07 −0.13 −0.30 −0.17

52.5 0.33 ± 0.35 +0.04 -0.06 ± 0.23 +0.05 1.29 ± 0.31 +0.04 0.81 ± 0.32 +0.00 0.13 ± 0.29 +0.10
−0.13 −0.08 −0.09 −0.18 −0.07

67.5 0.38 ± 0.30 +0.28 0.37 ± 0.25 +0.05 1.25 ± 0.27 +0.08 1.15 ± 0.26 +0.04 0.82 ± 0.21 +0.08
−0.07 −0.06 −0.05 −0.09 −0.11

82.5 0.45 ± 0.30 +0.10 0.51 ± 0.26 +0.04 0.08 ± 0.24 +0.09 0.24 ± 0.24 +0.10 0.22 ± 0.18 +0.10
−0.03 −0.16 −0.07 −0.07 −0.05

97.5 0.47 ± 0.28 +0.11 0.35 ± 0.25 +0.05 0.37 ± 0.24 +0.14 0.21 ± 0.22 +0.10 0.36 ± 0.16 +0.12
−0.08 −0.13 −0.06 −0.03 −0.00

112.5 0.20 ± 0.29 +0.13 0.98 ± 0.23 +0.13 0.45 ± 0.22 +0.06 0.35 ± 0.21 +0.04 0.02 ± 0.14 +0.08
−0.03 −0.14 −0.05 −0.06 −0.08

127.5 0.57 ± 0.27 +0.06 0.31 ± 0.23 +0.09 -0.04 ± 0.18 +0.08 0.51 ± 0.22 +0.05 0.12 ± 0.12 +0.05
−0.06 −0.06 −0.05 −0.07 −0.05

142.5 0.39 ± 0.26 +0.06 0.29 ± 0.23 +0.08 0.19 ± 0.17 +0.17 0.26 ± 0.20 +0.02 0.16 ± 0.10 +0.01
−0.11 −0.07 −0.03 −0.03 −0.04

157.5 0.12 ± 0.27 +0.05 0.38 ± 0.22 +0.11 0.04 ± 0.17 +0.07 -0.09 ± 0.20 +0.05 -0.07 ± 0.11 +0.06
−0.20 −0.04 −0.01 −0.07 −0.04

172.5 -0.14 ± 0.27 +0.06 0.08 ± 0.25 +0.06 0.21 ± 0.16 +0.06 0.14 ± 0.22 +0.02 -0.02 ± 0.12 +0.08
−0.08 −0.06 −0.02 −0.12 −0.01

187.5 0.40 ± 0.25 +0.04 -0.14 ± 0.24 +0.10 -0.34 ± 0.17 +0.02 0.23 ± 0.22 +0.07 -0.16 ± 0.11 +0.09
−0.16 −0.07 −0.08 −0.03 −0.02

202.5 -0.22 ± 0.26 +0.07 -0.22 ± 0.25 +0.11 -0.09 ± 0.17 +0.04 -0.51 ± 0.20 +0.14 -0.02 ± 0.12 +0.03
−0.04 −0.09 −0.05 −0.05 −0.06

217.5 -0.11 ± 0.25 +0.08 -0.53 ± 0.22 +0.11 -0.13 ± 0.18 +0.07 -0.56 ± 0.21 +0.07 0.01 ± 0.10 +0.03
−0.06 −0.04 −0.03 −0.12 −0.10

232.5 -0.12 ± 0.27 +0.05 -0.01 ± 0.26 +0.04 -0.60 ± 0.21 +0.03 -0.31 ± 0.23 +0.04 0.03 ± 0.13 +0.05
−0.10 −0.07 −0.12 −0.17 −0.06

247.5 -0.54 ± 0.28 +0.05 -0.82 ± 0.27 +0.08 -0.36 ± 0.22 +0.07 -0.27 ± 0.22 +0.01 -0.38 ± 0.15 +0.04
−0.05 −0.10 −0.05 −0.14 −0.04

262.5 -0.29 ± 0.31 +0.08 -0.35 ± 0.26 +0.06 -0.48 ± 0.26 +0.13 -0.60 ± 0.24 +0.09 -0.37 ± 0.17 +0.02
−0.01 −0.11 −0.11 −0.05 −0.04

277.5 -0.24 ± 0.32 +0.11 -0.25 ± 0.27 +0.06 -0.72 ± 0.29 +0.09 -0.02 ± 0.25 +0.01 -0.65 ± 0.19 +0.05
−0.08 −0.12 −0.27 −0.15 −0.05

292.5 -0.84 ± 0.32 +0.09 -0.33 ± 0.27 +0.07 -0.94 ± 0.30 +0.09 -0.38 ± 0.29 +0.09 -0.42 ± 0.24 +0.03
−0.11 −0.11 −0.07 −0.07 −0.09

307.5 -0.08 ± 0.34 +0.07 0.23 ± 0.26 +0.08 -1.44 ± 0.34 +0.06 -0.75 ± 0.32 +0.16 -0.64 ± 0.31 +0.12
−0.13 −0.26 −0.09 −0.06 −0.04

322.5 0.08 ± 0.35 +0.10 -0.33 ± 0.24 +0.03 -0.73 ± 0.43 +0.08 -0.65 ± 0.44 +0.19 0.49 ± 0.55 +0.17
−0.08 −0.19 −0.10 −0.23 −0.08

337.5 -0.27 ± 0.35 +0.13 -0.28 ± 0.22 +0.07 0.33 ± 0.51 +0.16 0.54 ± 0.74 +0.38 0.30 ± 1.05 +0.60
−0.09 −0.11 −0.14 −0.30 −0.01

352.5 -0.11 ± 0.34 +0.22 0.13 ± 0.21 +0.09 -0.08 ± 0.60 +0.06 -0.71 ± 0.88 +0.56 0.86 ± 1.32 +0.12
−0.12 −0.23 −0.09 −0.12 −0.82

Table D.12: Helicity-dependent experimental cross section (pb) for kin483.



APPENDIX D. TABLES OF UNPOLARIZED AND POLARIZED DVCS CROSS SECTIONS 136

φ (deg)
〈xBj〉 = 0.494 〈xBj〉 = 0.498 〈xBj〉 = 0.499 〈xBj〉 = 0.499 〈xBj〉 = 0.498〈

Q2〉 = 7.044 GeV2 〈
Q2〉 = 7.093 GeV2 〈

Q2〉 = 7.115 GeV2 〈
Q2〉 = 7.106 GeV2 〈

Q2〉 = 7.102 GeV2

〈t′〉 = −0.043 GeV2 〈t′〉 = −0.127 GeV2 〈t′〉 = −0.212 GeV2 〈t′〉 = −0.297 GeV2 〈t′〉 = −0.457 GeV2

7.5 1.76 ± 0.10 +0.08 1.87 ± 0.19 +0.19 1.94 ± 0.39 +0.09 2.40 ± 1.00 +0.20 5.39 ± 5.49 +1.51
−0.00 −0.00 −0.19 −0.32 −1.63

22.5 1.95 ± 0.11 +0.05 1.52 ± 0.15 +0.04 1.34 ± 0.27 +0.09 1.47 ± 0.55 +0.11 1.03 ± 1.39 +0.44
−0.12 −0.05 −0.11 −0.13 −0.11

37.5 1.71 ± 0.10 +0.03 1.47 ± 0.12 +0.03 0.92 ± 0.16 +0.07 0.93 ± 0.27 +0.07 0.69 ± 0.29 +0.02
−0.07 −0.04 −0.03 −0.18 −0.19

52.5 1.59 ± 0.09 +0.06 1.45 ± 0.10 +0.00 1.15 ± 0.11 +0.02 0.74 ± 0.12 +0.04 0.52 ± 0.10 +0.05
−0.02 −0.07 −0.05 −0.07 −0.04

67.5 1.42 ± 0.08 +0.06 1.20 ± 0.08 +0.05 0.91 ± 0.07 +0.03 0.74 ± 0.07 +0.04 0.57 ± 0.05 +0.01
−0.03 −0.04 −0.04 −0.01 −0.02

82.5 1.40 ± 0.08 +0.05 1.16 ± 0.07 +0.04 0.86 ± 0.07 +0.03 0.70 ± 0.07 +0.01 0.53 ± 0.04 +0.00
−0.02 −0.03 −0.03 −0.03 −0.01

97.5 1.34 ± 0.08 +0.05 0.98 ± 0.07 +0.02 0.73 ± 0.06 +0.03 0.71 ± 0.06 +0.01 0.42 ± 0.03 +0.02
−0.07 −0.03 −0.01 −0.05 −0.02

112.5 1.22 ± 0.07 +0.03 1.02 ± 0.07 +0.04 0.63 ± 0.06 +0.02 0.57 ± 0.06 +0.01 0.32 ± 0.03 +0.01
−0.05 −0.01 −0.03 −0.03 −0.02

127.5 1.29 ± 0.08 +0.09 0.91 ± 0.07 +0.04 0.58 ± 0.05 +0.01 0.53 ± 0.05 +0.00 0.29 ± 0.02 +0.01
−0.03 −0.00 −0.03 −0.03 −0.01

142.5 1.38 ± 0.08 +0.02 0.89 ± 0.07 +0.03 0.63 ± 0.06 +0.02 0.43 ± 0.05 +0.01 0.32 ± 0.03 +0.01
−0.05 −0.07 −0.04 −0.05 −0.01

157.5 1.14 ± 0.07 +0.05 0.80 ± 0.06 +0.02 0.60 ± 0.06 +0.03 0.46 ± 0.05 +0.02 0.32 ± 0.03 +0.01
−0.00 −0.02 −0.02 −0.01 −0.01

172.5 1.21 ± 0.08 +0.03 0.83 ± 0.06 +0.05 0.61 ± 0.05 +0.02 0.46 ± 0.05 +0.01 0.35 ± 0.03 +0.01
−0.02 −0.02 −0.03 −0.02 −0.01

187.5 1.21 ± 0.08 +0.04 0.80 ± 0.06 +0.02 0.60 ± 0.06 +0.01 0.46 ± 0.05 +0.03 0.36 ± 0.03 +0.00
−0.02 −0.02 −0.02 −0.01 −0.02

202.5 1.32 ± 0.08 +0.05 0.86 ± 0.07 +0.02 0.71 ± 0.06 +0.01 0.46 ± 0.06 +0.01 0.38 ± 0.03 +0.01
−0.05 −0.04 −0.00 −0.02 −0.01

217.5 1.25 ± 0.08 +0.05 0.94 ± 0.07 +0.04 0.60 ± 0.06 +0.03 0.53 ± 0.06 +0.01 0.35 ± 0.03 +0.01
−0.00 −0.00 −0.04 −0.04 −0.01

232.5 1.36 ± 0.08 +0.05 0.88 ± 0.07 +0.02 0.73 ± 0.06 +0.01 0.64 ± 0.06 +0.03 0.41 ± 0.03 +0.01
−0.05 −0.02 −0.03 −0.03 −0.01

247.5 1.30 ± 0.08 +0.01 1.07 ± 0.07 +0.03 0.72 ± 0.06 +0.05 0.60 ± 0.06 +0.01 0.45 ± 0.03 +0.01
−0.05 −0.02 −0.02 −0.02 −0.01

262.5 1.38 ± 0.08 +0.05 1.03 ± 0.07 +0.02 0.82 ± 0.07 +0.04 0.75 ± 0.07 +0.03 0.53 ± 0.04 +0.01
−0.04 −0.02 −0.02 −0.03 −0.03

277.5 1.62 ± 0.09 +0.07 1.17 ± 0.08 +0.05 0.90 ± 0.07 +0.02 0.68 ± 0.07 +0.01 0.50 ± 0.04 +0.02
−0.03 −0.04 −0.04 −0.03 −0.01

292.5 1.62 ± 0.09 +0.05 1.20 ± 0.08 +0.03 0.88 ± 0.08 +0.01 0.85 ± 0.08 +0.04 0.55 ± 0.05 +0.03
−0.07 −0.03 −0.04 −0.03 −0.03

307.5 1.73 ± 0.09 +0.09 1.53 ± 0.10 +0.03 1.32 ± 0.11 +0.08 1.06 ± 0.13 +0.07 0.62 ± 0.10 +0.02
−0.05 −0.06 −0.03 −0.02 −0.02

322.5 1.89 ± 0.10 +0.07 1.59 ± 0.12 +0.05 1.19 ± 0.16 +0.08 1.25 ± 0.24 +0.11 0.52 ± 0.25 +0.07
−0.07 −0.08 −0.03 −0.11 −0.07

337.5 1.92 ± 0.10 +0.01 2.04 ± 0.16 +0.14 1.13 ± 0.24 +0.09 0.77 ± 0.40 +0.12 1.05 ± 1.32 +0.24
−0.10 −0.03 −0.00 −0.08 −0.18

352.5 2.12 ± 0.11 +0.08 1.89 ± 0.19 +0.08 1.80 ± 0.39 +0.13 0.87 ± 0.64 +0.16 -0.11 ± 0.67 +0.02
−0.03 −0.02 −0.15 −0.16 −0.03

Table D.13: Unpolarized experimental cross section (pb) for kin484.
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φ (deg)
〈xBj〉 = 0.494 〈xBj〉 = 0.498 〈xBj〉 = 0.499 〈xBj〉 = 0.499 〈xBj〉 = 0.498〈

Q2〉 = 7.044 GeV2 〈
Q2〉 = 7.093 GeV2 〈

Q2〉 = 7.115 GeV2 〈
Q2〉 = 7.106 GeV2 〈

Q2〉 = 7.102 GeV2

〈t′〉 = −0.043 GeV2 〈t′〉 = −0.127 GeV2 〈t′〉 = −0.212 GeV2 〈t′〉 = −0.297 GeV2 〈t′〉 = −0.457 GeV2

7.5 0.31 ± 0.14 +0.07 0.19 ± 0.20 +0.14 -0.06 ± 0.33 +0.04 -0.06 ± 0.65 +0.12 2.02 ± 1.89 +0.97
−0.02 −0.05 −0.08 −0.27 −0.49

22.5 0.37 ± 0.14 +0.11 0.41 ± 0.16 +0.03 0.53 ± 0.24 +0.09 0.12 ± 0.41 +0.12 0.33 ± 0.80 +0.03
−0.06 −0.09 −0.09 −0.10 −0.24

37.5 0.28 ± 0.13 +0.03 0.10 ± 0.14 +0.03 -0.01 ± 0.16 +0.03 0.20 ± 0.24 +0.05 -0.15 ± 0.23 +0.08
−0.05 −0.01 −0.03 −0.02 −0.07

52.5 0.03 ± 0.12 +0.03 0.26 ± 0.12 +0.06 0.59 ± 0.12 +0.06 0.17 ± 0.12 +0.04 0.28 ± 0.10 +0.03
−0.03 −0.05 −0.07 −0.04 −0.02

67.5 0.29 ± 0.11 +0.02 0.18 ± 0.10 +0.06 0.34 ± 0.09 +0.03 0.26 ± 0.09 +0.02 0.15 ± 0.06 +0.03
−0.03 −0.03 −0.02 −0.01 −0.00

82.5 0.28 ± 0.11 +0.05 0.28 ± 0.09 +0.07 0.25 ± 0.08 +0.04 0.27 ± 0.08 +0.02 0.29 ± 0.05 +0.00
−0.03 −0.03 −0.02 −0.04 −0.04

97.5 0.25 ± 0.10 +0.02 0.29 ± 0.08 +0.03 0.28 ± 0.08 +0.01 0.16 ± 0.08 +0.02 0.13 ± 0.04 +0.02
−0.02 −0.02 −0.02 −0.02 −0.02

112.5 0.18 ± 0.10 +0.03 0.28 ± 0.08 +0.03 0.05 ± 0.07 +0.02 0.18 ± 0.07 +0.02 0.07 ± 0.03 +0.01
−0.03 −0.01 −0.01 −0.03 −0.01

127.5 0.18 ± 0.10 +0.04 0.05 ± 0.08 +0.03 0.10 ± 0.07 +0.04 0.18 ± 0.06 +0.02 0.08 ± 0.03 +0.00
−0.03 −0.05 −0.01 −0.01 −0.01

142.5 0.16 ± 0.10 +0.02 0.17 ± 0.08 +0.02 0.24 ± 0.07 +0.04 -0.02 ± 0.06 +0.01 0.06 ± 0.03 +0.01
−0.03 −0.02 −0.03 −0.01 −0.00

157.5 0.24 ± 0.10 +0.02 0.16 ± 0.08 +0.03 0.20 ± 0.07 +0.02 0.11 ± 0.06 +0.02 -0.01 ± 0.03 +0.01
−0.03 −0.01 −0.02 −0.03 −0.02

172.5 -0.09 ± 0.10 +0.02 0.12 ± 0.08 +0.03 0.02 ± 0.07 +0.01 -0.01 ± 0.06 +0.02 0.04 ± 0.03 +0.01
−0.07 −0.02 −0.02 −0.00 −0.01

187.5 0.10 ± 0.09 +0.02 -0.02 ± 0.07 +0.05 -0.03 ± 0.07 +0.03 0.05 ± 0.06 +0.01 -0.05 ± 0.04 +0.00
−0.04 −0.01 −0.02 −0.01 −0.01

202.5 -0.04 ± 0.10 +0.02 -0.17 ± 0.08 +0.06 -0.00 ± 0.08 +0.01 0.03 ± 0.06 +0.01 -0.01 ± 0.04 +0.02
−0.02 −0.02 −0.03 −0.02 −0.02

217.5 -0.09 ± 0.10 +0.03 -0.11 ± 0.09 +0.02 -0.13 ± 0.07 +0.02 0.01 ± 0.06 +0.02 -0.06 ± 0.03 +0.01
−0.02 −0.04 −0.03 −0.03 −0.01

232.5 -0.18 ± 0.10 +0.01 -0.21 ± 0.08 +0.04 -0.23 ± 0.08 +0.03 -0.18 ± 0.07 +0.02 -0.08 ± 0.04 +0.01
−0.03 −0.02 −0.04 −0.03 −0.00

247.5 -0.10 ± 0.11 +0.03 -0.23 ± 0.09 +0.03 -0.18 ± 0.08 +0.04 -0.26 ± 0.07 +0.03 -0.16 ± 0.04 +0.01
−0.04 −0.03 −0.02 −0.02 −0.01

262.5 -0.34 ± 0.11 +0.02 -0.20 ± 0.09 +0.02 -0.34 ± 0.09 +0.01 -0.15 ± 0.09 +0.06 -0.10 ± 0.05 +0.00
−0.09 −0.02 −0.01 −0.02 −0.02

277.5 -0.21 ± 0.11 +0.02 -0.30 ± 0.10 +0.03 -0.22 ± 0.09 +0.01 -0.15 ± 0.08 +0.02 -0.12 ± 0.05 +0.02
−0.05 −0.03 −0.02 −0.03 −0.02

292.5 -0.09 ± 0.12 +0.03 -0.37 ± 0.10 +0.04 -0.19 ± 0.10 +0.03 -0.22 ± 0.09 +0.03 -0.23 ± 0.06 +0.02
−0.02 −0.03 −0.02 −0.03 −0.02

307.5 -0.17 ± 0.12 +0.05 -0.37 ± 0.12 +0.04 -0.16 ± 0.13 +0.04 -0.24 ± 0.13 +0.05 -0.11 ± 0.10 +0.04
−0.03 −0.03 −0.03 −0.05 −0.05

322.5 -0.36 ± 0.13 +0.04 -0.12 ± 0.13 +0.02 -0.03 ± 0.16 +0.01 -0.33 ± 0.21 +0.06 -0.26 ± 0.20 +0.06
−0.01 −0.09 −0.04 −0.02 −0.04

337.5 0.05 ± 0.13 +0.03 -0.34 ± 0.17 +0.11 -0.10 ± 0.22 +0.10 0.52 ± 0.28 +0.09 0.16 ± 0.68 +0.04
−0.02 −0.05 −0.03 −0.07 −0.02

352.5 0.13 ± 0.14 +0.05 -0.05 ± 0.19 +0.06 0.31 ± 0.30 +0.11 -0.56 ± 0.35 +0.05 0.05 ± 0.27 +0.02
−0.01 −0.06 −0.05 −0.13 −0.01

Table D.14: Helicity-dependent experimental cross section (pb) for kin484.
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φ (deg)
〈xBj〉 = 0.610 〈xBj〉 = 0.612 〈xBj〉 = 0.615 〈xBj〉 = 0.617 〈xBj〉 = 0.616〈

Q2〉 = 5.604 GeV2 〈
Q2〉 = 5.617 GeV2 〈

Q2〉 = 5.638 GeV2 〈
Q2〉 = 5.653 GeV2 〈

Q2〉 = 5.659 GeV2

〈t′〉 = −0.068 GeV2 〈t′〉 = −0.200 GeV2 〈t′〉 = −0.333 GeV2 〈t′〉 = −0.467 GeV2 〈t′〉 = −0.654 GeV2

7.5 0.715 ± 0.039 +0.021 0.514 ± 0.042 +0.025 0.483 ± 0.070 +0.016 0.268 ± 0.132 +0.054 0.840 ± 0.361 +0.000
−0.010 −0.012 −0.046 −0.043 −0.248

22.5 0.712 ± 0.038 +0.008 0.497 ± 0.039 +0.025 0.371 ± 0.052 +0.031 0.315 ± 0.088 +0.031 0.489 ± 0.159 +0.065
−0.016 −0.011 −0.033 −0.025 −0.061

37.5 0.642 ± 0.037 +0.017 0.495 ± 0.036 +0.001 0.387 ± 0.042 +0.025 0.392 ± 0.056 +0.015 0.231 ± 0.064 +0.020
−0.009 −0.030 −0.005 −0.017 −0.037

52.5 0.638 ± 0.037 +0.017 0.527 ± 0.035 +0.009 0.377 ± 0.035 +0.036 0.367 ± 0.040 +0.051 0.195 ± 0.038 +0.017
−0.001 −0.017 −0.007 −0.005 −0.000

67.5 0.676 ± 0.037 +0.008 0.490 ± 0.034 +0.008 0.455 ± 0.035 +0.008 0.248 ± 0.033 +0.028 0.286 ± 0.032 +0.018
−0.020 −0.014 −0.026 −0.000 −0.003

82.5 0.632 ± 0.036 +0.020 0.532 ± 0.035 +0.002 0.393 ± 0.034 +0.004 0.275 ± 0.033 +0.040 0.289 ± 0.029 +0.026
−0.015 −0.024 −0.011 −0.011 −0.001

97.5 0.587 ± 0.035 +0.013 0.436 ± 0.033 +0.004 0.411 ± 0.034 +0.021 0.302 ± 0.032 +0.015 0.256 ± 0.027 +0.010
−0.013 −0.008 −0.008 −0.011 −0.012

112.5 0.559 ± 0.035 +0.011 0.413 ± 0.032 +0.021 0.377 ± 0.033 +0.005 0.283 ± 0.031 +0.015 0.229 ± 0.024 +0.007
−0.009 −0.001 −0.009 −0.003 −0.011

127.5 0.574 ± 0.035 +0.009 0.394 ± 0.032 +0.007 0.354 ± 0.032 +0.020 0.275 ± 0.030 +0.000 0.225 ± 0.024 +0.015
−0.008 −0.010 −0.003 −0.016 −0.003

142.5 0.547 ± 0.035 +0.007 0.393 ± 0.032 +0.009 0.355 ± 0.032 +0.016 0.330 ± 0.033 +0.000 0.312 ± 0.027 +0.006
−0.027 −0.009 −0.012 −0.017 −0.024

157.5 0.553 ± 0.035 +0.000 0.431 ± 0.033 +0.021 0.358 ± 0.032 +0.003 0.331 ± 0.034 +0.001 0.332 ± 0.029 +0.000
−0.029 −0.014 −0.017 −0.012 −0.027

172.5 0.556 ± 0.035 +0.022 0.350 ± 0.032 +0.026 0.349 ± 0.034 +0.006 0.381 ± 0.036 +0.020 0.347 ± 0.030 +0.010
−0.013 −0.000 −0.004 −0.008 −0.011

187.5 0.581 ± 0.036 +0.020 0.399 ± 0.034 +0.055 0.404 ± 0.036 +0.008 0.342 ± 0.036 +0.012 0.295 ± 0.028 +0.031
−0.011 −0.007 −0.014 −0.010 −0.000

202.5 0.570 ± 0.036 +0.024 0.437 ± 0.035 +0.002 0.395 ± 0.036 +0.000 0.320 ± 0.036 +0.017 0.298 ± 0.028 +0.011
−0.009 −0.018 −0.017 −0.011 −0.020

217.5 0.564 ± 0.037 +0.021 0.446 ± 0.036 +0.021 0.439 ± 0.038 +0.011 0.424 ± 0.039 +0.008 0.354 ± 0.028 +0.010
−0.021 −0.013 −0.007 −0.034 −0.012

232.5 0.577 ± 0.038 +0.006 0.498 ± 0.039 +0.024 0.487 ± 0.040 +0.010 0.381 ± 0.038 +0.022 0.306 ± 0.028 +0.018
−0.016 −0.017 −0.008 −0.016 −0.010

247.5 0.608 ± 0.038 +0.004 0.549 ± 0.041 +0.011 0.474 ± 0.042 +0.001 0.374 ± 0.041 +0.018 0.379 ± 0.032 +0.011
−0.012 −0.001 −0.031 −0.010 −0.011

262.5 0.708 ± 0.040 +0.013 0.559 ± 0.041 +0.005 0.469 ± 0.042 +0.024 0.440 ± 0.043 +0.018 0.357 ± 0.035 +0.009
−0.004 −0.020 −0.009 −0.005 −0.006

277.5 0.652 ± 0.038 +0.002 0.540 ± 0.038 +0.003 0.503 ± 0.041 +0.011 0.422 ± 0.040 +0.040 0.352 ± 0.034 +0.011
−0.046 −0.010 −0.020 −0.005 −0.022

292.5 0.681 ± 0.038 +0.015 0.591 ± 0.039 +0.011 0.421 ± 0.037 +0.029 0.407 ± 0.039 +0.016 0.320 ± 0.033 +0.004
−0.008 −0.018 −0.008 −0.012 −0.009

307.5 0.752 ± 0.039 +0.018 0.576 ± 0.037 +0.011 0.444 ± 0.037 +0.012 0.384 ± 0.042 +0.045 0.319 ± 0.042 +0.007
−0.009 −0.014 −0.008 −0.000 −0.036

322.5 0.727 ± 0.038 +0.010 0.593 ± 0.037 +0.008 0.399 ± 0.043 +0.032 0.382 ± 0.053 +0.000 0.244 ± 0.070 +0.024
−0.022 −0.013 −0.008 −0.023 −0.008

337.5 0.761 ± 0.039 +0.005 0.609 ± 0.041 +0.005 0.470 ± 0.055 +0.026 0.335 ± 0.089 +0.055 0.376 ± 0.160 +0.040
−0.034 −0.009 −0.011 −0.005 −0.041

352.5 0.743 ± 0.040 +0.020 0.549 ± 0.043 +0.007 0.511 ± 0.070 +0.057 0.535 ± 0.139 +0.095 0.375 ± 0.379 +0.075
−0.035 −0.027 −0.010 −0.021 −0.074

Table D.15: Unpolarized experimental cross section (pb) for kin601.
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φ (deg)
〈xBj〉 = 0.610 〈xBj〉 = 0.612 〈xBj〉 = 0.615 〈xBj〉 = 0.617 〈xBj〉 = 0.616〈

Q2〉 = 5.604 GeV2 〈
Q2〉 = 5.617 GeV2 〈

Q2〉 = 5.638 GeV2 〈
Q2〉 = 5.653 GeV2 〈

Q2〉 = 5.659 GeV2

〈t′〉 = −0.068 GeV2 〈t′〉 = −0.200 GeV2 〈t′〉 = −0.333 GeV2 〈t′〉 = −0.467 GeV2 〈t′〉 = −0.654 GeV2

7.5 0.017 ± 0.033 +0.021 -0.034 ± 0.042 +0.009 -0.000 ± 0.064 +0.015 -0.021 ± 0.114 +0.092 0.117 ± 0.338 +0.030
−0.011 −0.027 −0.057 −0.010 −0.245

22.5 0.150 ± 0.041 +0.000 0.048 ± 0.045 +0.010 0.141 ± 0.056 +0.000 0.106 ± 0.089 +0.035 0.393 ± 0.171 +0.023
−0.024 −0.014 −0.051 −0.029 −0.082

37.5 0.020 ± 0.042 +0.018 0.156 ± 0.043 +0.007 0.083 ± 0.047 +0.022 0.118 ± 0.060 +0.018 0.113 ± 0.072 +0.028
−0.009 −0.034 −0.009 −0.012 −0.018

52.5 0.095 ± 0.042 +0.010 0.192 ± 0.042 +0.003 0.112 ± 0.040 +0.008 0.113 ± 0.046 +0.029 0.088 ± 0.043 +0.011
−0.006 −0.021 −0.040 −0.014 −0.004

67.5 0.123 ± 0.043 +0.014 0.151 ± 0.040 +0.008 0.039 ± 0.039 +0.005 0.080 ± 0.038 +0.013 0.052 ± 0.037 +0.002
−0.008 −0.038 −0.015 −0.008 −0.025

82.5 0.085 ± 0.043 +0.016 0.124 ± 0.040 +0.004 0.104 ± 0.038 +0.000 0.043 ± 0.037 +0.018 0.066 ± 0.032 +0.002
−0.007 −0.023 −0.019 −0.012 −0.022

97.5 0.064 ± 0.042 +0.023 0.109 ± 0.038 +0.018 0.082 ± 0.037 +0.018 0.054 ± 0.035 +0.012 0.053 ± 0.029 +0.004
−0.010 −0.004 −0.024 −0.010 −0.009

112.5 0.057 ± 0.041 +0.006 0.074 ± 0.037 +0.025 0.044 ± 0.036 +0.006 0.095 ± 0.034 +0.013 0.038 ± 0.026 +0.008
−0.011 −0.008 −0.007 −0.012 −0.016

127.5 0.057 ± 0.041 +0.032 0.092 ± 0.035 +0.003 0.073 ± 0.034 +0.005 0.010 ± 0.033 +0.023 0.053 ± 0.025 +0.004
−0.009 −0.014 −0.031 −0.005 −0.019

142.5 0.045 ± 0.040 +0.006 0.023 ± 0.035 +0.018 0.032 ± 0.034 +0.021 0.115 ± 0.035 +0.009 0.015 ± 0.028 +0.001
−0.015 −0.007 −0.006 −0.040 −0.021

157.5 0.061 ± 0.038 +0.023 0.009 ± 0.035 +0.017 0.019 ± 0.033 +0.010 -0.017 ± 0.035 +0.019 -0.020 ± 0.029 +0.022
−0.003 −0.009 −0.018 −0.009 −0.002

172.5 0.037 ± 0.031 +0.015 -0.012 ± 0.030 +0.024 -0.018 ± 0.030 +0.013 -0.028 ± 0.035 +0.018 0.017 ± 0.027 +0.003
−0.000 −0.014 −0.010 −0.009 −0.019

187.5 -0.030 ± 0.074 +0.048 -0.024 ± 0.048 +0.020 -0.070 ± 0.044 +0.025 0.015 ± 0.045 +0.013 -0.001 ± 0.032 +0.010
−0.007 −0.000 −0.005 −0.008 −0.008

202.5 -0.001 ± 0.052 +0.018 -0.038 ± 0.042 +0.018 0.025 ± 0.040 +0.019 0.001 ± 0.040 +0.006 0.009 ± 0.029 +0.000
−0.020 −0.020 −0.005 −0.020 −0.023

217.5 0.021 ± 0.050 +0.013 -0.084 ± 0.042 +0.011 -0.066 ± 0.040 +0.021 -0.045 ± 0.042 +0.038 -0.019 ± 0.030 +0.010
−0.027 −0.017 −0.028 −0.021 −0.014

232.5 -0.127 ± 0.050 +0.022 -0.101 ± 0.044 +0.021 -0.009 ± 0.042 +0.005 -0.075 ± 0.043 +0.001 -0.056 ± 0.030 +0.013
−0.010 −0.010 −0.004 −0.016 −0.006

247.5 -0.165 ± 0.051 +0.034 -0.091 ± 0.047 +0.037 -0.077 ± 0.046 +0.022 -0.072 ± 0.045 +0.040 -0.069 ± 0.035 +0.004
−0.000 −0.010 −0.006 −0.004 −0.007

262.5 -0.145 ± 0.052 +0.027 -0.097 ± 0.047 +0.006 -0.125 ± 0.046 +0.029 -0.142 ± 0.049 +0.008 -0.047 ± 0.039 +0.006
−0.000 −0.025 −0.005 −0.022 −0.013

277.5 -0.130 ± 0.049 +0.005 -0.123 ± 0.045 +0.002 -0.170 ± 0.046 +0.013 -0.099 ± 0.046 +0.017 -0.083 ± 0.037 +0.015
−0.028 −0.018 −0.010 −0.013 −0.011

292.5 -0.144 ± 0.050 +0.024 -0.159 ± 0.046 +0.025 -0.140 ± 0.042 +0.002 -0.062 ± 0.045 +0.027 -0.095 ± 0.037 +0.010
−0.002 −0.007 −0.029 −0.000 −0.008

307.5 -0.076 ± 0.051 +0.007 -0.110 ± 0.044 +0.013 -0.113 ± 0.043 +0.015 -0.149 ± 0.049 +0.016 -0.154 ± 0.048 +0.058
−0.020 −0.011 −0.017 −0.010 −0.007

322.5 -0.062 ± 0.051 +0.009 -0.109 ± 0.047 +0.032 -0.089 ± 0.050 +0.046 -0.154 ± 0.059 +0.026 -0.073 ± 0.080 +0.065
−0.040 −0.000 −0.011 −0.008 −0.007

337.5 -0.017 ± 0.055 +0.000 -0.043 ± 0.053 +0.015 -0.041 ± 0.064 +0.008 -0.008 ± 0.093 +0.026 0.129 ± 0.184 +0.001
−0.036 −0.025 −0.025 −0.038 −0.067

352.5 -0.113 ± 0.080 +0.022 -0.009 ± 0.064 +0.033 -0.014 ± 0.088 +0.075 -0.096 ± 0.157 +0.058 -0.356 ± 0.468 +0.000
−0.032 −0.014 −0.001 −0.002 −0.175

Table D.16: Helicity-dependent experimental cross section (pb) for kin601.
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φ (deg)
〈xBj〉 = 0.608 〈xBj〉 = 0.609 〈xBj〉 = 0.611 〈xBj〉 = 0.613 〈xBj〉 = 0.613〈

Q2〉 = 8.440 GeV2 〈
Q2〉 = 8.453 GeV2 〈

Q2〉 = 8.481 GeV2 〈
Q2〉 = 8.501 GeV2 〈

Q2〉 = 8.513 GeV2

〈t′〉 = −0.060 GeV2 〈t′〉 = −0.177 GeV2 〈t′〉 = −0.294 GeV2 〈t′〉 = −0.412 GeV2 〈t′〉 = −0.577 GeV2

7.5 0.382 ± 0.020 +0.008 0.342 ± 0.023 +0.006 0.306 ± 0.036 +0.017 0.314 ± 0.070 +0.014 0.280 ± 0.136 +0.055
−0.004 −0.008 −0.008 −0.027 −0.008

22.5 0.385 ± 0.020 +0.009 0.305 ± 0.021 +0.013 0.253 ± 0.028 +0.006 0.207 ± 0.046 +0.006 0.139 ± 0.072 +0.045
−0.005 −0.009 −0.012 −0.014 −0.009

37.5 0.333 ± 0.018 +0.005 0.284 ± 0.019 +0.007 0.231 ± 0.022 +0.016 0.185 ± 0.028 +0.004 0.136 ± 0.029 +0.006
−0.005 −0.003 −0.007 −0.011 −0.010

52.5 0.371 ± 0.019 +0.010 0.283 ± 0.018 +0.006 0.193 ± 0.017 +0.003 0.131 ± 0.017 +0.005 0.133 ± 0.017 +0.003
−0.013 −0.003 −0.007 −0.004 −0.006

67.5 0.357 ± 0.018 +0.010 0.267 ± 0.017 +0.009 0.206 ± 0.016 +0.010 0.151 ± 0.015 +0.004 0.127 ± 0.014 +0.005
−0.006 −0.003 −0.002 −0.005 −0.003

82.5 0.335 ± 0.018 +0.006 0.259 ± 0.016 +0.010 0.165 ± 0.014 +0.010 0.160 ± 0.015 +0.005 0.120 ± 0.012 +0.005
−0.009 −0.002 −0.005 −0.005 −0.004

97.5 0.323 ± 0.017 +0.002 0.226 ± 0.015 +0.003 0.185 ± 0.014 +0.003 0.139 ± 0.013 +0.006 0.116 ± 0.011 +0.005
−0.013 −0.005 −0.007 −0.003 −0.003

112.5 0.310 ± 0.017 +0.002 0.189 ± 0.014 +0.008 0.150 ± 0.013 +0.006 0.140 ± 0.013 +0.007 0.107 ± 0.010 +0.003
−0.001 −0.002 −0.002 −0.002 −0.003

127.5 0.274 ± 0.016 +0.012 0.205 ± 0.014 +0.008 0.137 ± 0.012 +0.005 0.123 ± 0.012 +0.005 0.082 ± 0.008 +0.002
−0.006 −0.005 −0.002 −0.004 −0.001

142.5 0.280 ± 0.017 +0.009 0.196 ± 0.014 +0.006 0.157 ± 0.013 +0.003 0.120 ± 0.012 +0.001 0.086 ± 0.008 +0.002
−0.007 −0.006 −0.004 −0.006 −0.005

157.5 0.284 ± 0.016 +0.005 0.210 ± 0.014 +0.003 0.134 ± 0.012 +0.005 0.122 ± 0.012 +0.004 0.098 ± 0.009 +0.005
−0.009 −0.008 −0.002 −0.004 −0.004

172.5 0.280 ± 0.016 +0.005 0.175 ± 0.014 +0.006 0.142 ± 0.013 +0.005 0.117 ± 0.012 +0.003 0.110 ± 0.010 +0.003
−0.003 −0.001 −0.004 −0.002 −0.011

187.5 0.266 ± 0.016 +0.012 0.189 ± 0.014 +0.003 0.149 ± 0.013 +0.002 0.106 ± 0.012 +0.002 0.092 ± 0.010 +0.002
−0.002 −0.008 −0.006 −0.004 −0.008

202.5 0.290 ± 0.016 +0.005 0.208 ± 0.015 +0.001 0.140 ± 0.013 +0.005 0.125 ± 0.013 +0.008 0.094 ± 0.009 +0.006
−0.005 −0.004 −0.008 −0.003 −0.001

217.5 0.313 ± 0.017 +0.001 0.187 ± 0.014 +0.007 0.172 ± 0.014 +0.007 0.143 ± 0.014 +0.000 0.107 ± 0.009 +0.001
−0.006 −0.002 −0.002 −0.012 −0.005

232.5 0.320 ± 0.017 +0.020 0.218 ± 0.016 +0.005 0.186 ± 0.015 +0.006 0.165 ± 0.015 +0.003 0.110 ± 0.009 +0.000
−0.007 −0.005 −0.009 −0.004 −0.004

247.5 0.329 ± 0.018 +0.013 0.266 ± 0.017 +0.003 0.211 ± 0.015 +0.005 0.147 ± 0.014 +0.009 0.135 ± 0.011 +0.004
−0.005 −0.009 −0.008 −0.004 −0.002

262.5 0.321 ± 0.018 +0.004 0.285 ± 0.017 +0.003 0.208 ± 0.016 +0.006 0.132 ± 0.014 +0.006 0.122 ± 0.011 +0.002
−0.012 −0.008 −0.005 −0.003 −0.003

277.5 0.328 ± 0.018 +0.012 0.257 ± 0.016 +0.007 0.199 ± 0.015 +0.005 0.162 ± 0.015 +0.007 0.142 ± 0.012 +0.004
−0.007 −0.003 −0.003 −0.003 −0.001

292.5 0.381 ± 0.019 +0.007 0.287 ± 0.018 +0.004 0.232 ± 0.016 +0.008 0.180 ± 0.016 +0.003 0.134 ± 0.014 +0.008
−0.013 −0.008 −0.001 −0.004 −0.006

307.5 0.381 ± 0.019 +0.008 0.309 ± 0.018 +0.004 0.250 ± 0.017 +0.010 0.193 ± 0.018 +0.003 0.129 ± 0.018 +0.006
−0.003 −0.007 −0.007 −0.003 −0.004

322.5 0.414 ± 0.020 +0.016 0.320 ± 0.019 +0.005 0.219 ± 0.019 +0.010 0.150 ± 0.024 +0.013 0.161 ± 0.031 +0.001
−0.005 −0.010 −0.003 −0.010 −0.014

337.5 0.377 ± 0.020 +0.013 0.362 ± 0.021 +0.009 0.231 ± 0.026 +0.016 0.210 ± 0.046 +0.025 0.128 ± 0.063 +0.013
−0.005 −0.015 −0.003 −0.006 −0.007

352.5 0.393 ± 0.020 +0.010 0.340 ± 0.023 +0.005 0.227 ± 0.032 +0.023 0.151 ± 0.065 +0.007 0.189 ± 0.171 +0.014
−0.006 −0.008 −0.005 −0.020 −0.034

Table D.17: Unpolarized experimental cross section (pb) for kin603.
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φ (deg)
〈xBj〉 = 0.608 〈xBj〉 = 0.609 〈xBj〉 = 0.611 〈xBj〉 = 0.613 〈xBj〉 = 0.613〈

Q2〉 = 8.440 GeV2 〈
Q2〉 = 8.453 GeV2 〈

Q2〉 = 8.481 GeV2 〈
Q2〉 = 8.501 GeV2 〈

Q2〉 = 8.513 GeV2

〈t′〉 = −0.060 GeV2 〈t′〉 = −0.177 GeV2 〈t′〉 = −0.294 GeV2 〈t′〉 = −0.412 GeV2 〈t′〉 = −0.577 GeV2

7.5 -0.015 ± 0.020 +0.005 0.049 ± 0.026 +0.005 0.003 ± 0.030 +0.005 -0.033 ± 0.059 +0.026 0.292 ± 0.098 +0.026
−0.004 −0.008 −0.009 −0.031 −0.012

22.5 -0.027 ± 0.022 +0.007 -0.009 ± 0.025 +0.012 0.016 ± 0.025 +0.008 0.076 ± 0.045 +0.014 -0.002 ± 0.061 +0.015
−0.004 −0.004 −0.016 −0.018 −0.026

37.5 0.029 ± 0.021 +0.002 0.052 ± 0.023 +0.007 0.019 ± 0.022 +0.007 0.096 ± 0.032 +0.013 0.054 ± 0.029 +0.004
−0.011 −0.023 −0.016 −0.006 −0.015

52.5 0.055 ± 0.023 +0.005 0.030 ± 0.022 +0.013 0.044 ± 0.019 +0.010 0.045 ± 0.022 +0.004 0.056 ± 0.019 +0.008
−0.003 −0.005 −0.012 −0.005 −0.005

67.5 0.056 ± 0.023 +0.003 0.036 ± 0.020 +0.006 0.043 ± 0.018 +0.007 0.077 ± 0.019 +0.004 0.042 ± 0.015 +0.003
−0.006 −0.011 −0.004 −0.009 −0.006

82.5 0.047 ± 0.023 +0.010 0.062 ± 0.019 +0.005 0.046 ± 0.017 +0.007 0.025 ± 0.017 +0.002 0.018 ± 0.014 +0.004
−0.004 −0.007 −0.003 −0.003 −0.009

97.5 0.023 ± 0.022 +0.006 0.045 ± 0.018 +0.004 0.032 ± 0.017 +0.008 0.060 ± 0.016 +0.001 0.024 ± 0.013 +0.006
−0.006 −0.003 −0.010 −0.008 −0.004

112.5 0.074 ± 0.022 +0.020 0.045 ± 0.017 +0.005 0.006 ± 0.015 +0.006 0.025 ± 0.014 +0.005 0.023 ± 0.011 +0.006
−0.000 −0.004 −0.003 −0.000 −0.001

127.5 0.040 ± 0.021 +0.005 0.017 ± 0.017 +0.008 0.034 ± 0.015 +0.004 0.034 ± 0.013 +0.005 0.018 ± 0.009 +0.001
−0.004 −0.001 −0.006 −0.007 −0.003

142.5 0.015 ± 0.021 +0.010 0.023 ± 0.016 +0.008 0.047 ± 0.015 +0.000 0.016 ± 0.012 +0.003 0.003 ± 0.009 +0.006
−0.009 −0.005 −0.007 −0.003 −0.001

157.5 0.006 ± 0.021 +0.009 0.028 ± 0.016 +0.006 0.012 ± 0.014 +0.001 -0.006 ± 0.012 +0.003 -0.001 ± 0.010 +0.003
−0.003 −0.007 −0.008 −0.003 −0.001

172.5 0.018 ± 0.019 +0.004 -0.004 ± 0.015 +0.004 0.005 ± 0.015 +0.004 -0.004 ± 0.011 +0.002 0.014 ± 0.011 +0.001
−0.007 −0.003 −0.002 −0.005 −0.002

187.5 0.014 ± 0.023 +0.011 -0.025 ± 0.016 +0.009 0.012 ± 0.016 +0.004 -0.020 ± 0.012 +0.002 0.011 ± 0.011 +0.002
−0.007 −0.000 −0.007 −0.004 −0.002

202.5 -0.057 ± 0.022 +0.004 -0.008 ± 0.017 +0.000 -0.042 ± 0.016 +0.006 0.006 ± 0.013 +0.007 -0.003 ± 0.011 +0.000
−0.004 −0.008 −0.001 −0.005 −0.009

217.5 0.013 ± 0.023 +0.002 -0.000 ± 0.017 +0.003 -0.043 ± 0.018 +0.002 -0.006 ± 0.014 +0.004 -0.014 ± 0.011 +0.001
−0.008 −0.002 −0.004 −0.003 −0.003

232.5 -0.049 ± 0.023 +0.015 -0.049 ± 0.018 +0.002 -0.045 ± 0.018 +0.009 -0.008 ± 0.015 +0.002 -0.035 ± 0.011 +0.002
−0.004 −0.005 −0.006 −0.006 −0.006

247.5 -0.070 ± 0.023 +0.003 -0.071 ± 0.020 +0.010 -0.030 ± 0.019 +0.005 -0.040 ± 0.015 +0.007 -0.027 ± 0.012 +0.003
−0.006 −0.002 −0.003 −0.004 −0.004

262.5 -0.033 ± 0.023 +0.011 -0.040 ± 0.020 +0.005 -0.042 ± 0.018 +0.006 -0.032 ± 0.016 +0.006 -0.045 ± 0.013 +0.005
−0.004 −0.007 −0.003 −0.008 −0.002

277.5 -0.013 ± 0.023 +0.005 -0.065 ± 0.020 +0.006 -0.054 ± 0.018 +0.006 -0.031 ± 0.018 +0.005 -0.038 ± 0.014 +0.004
−0.009 −0.005 −0.004 −0.001 −0.001

292.5 -0.041 ± 0.024 +0.009 -0.043 ± 0.021 +0.014 -0.079 ± 0.019 +0.002 -0.052 ± 0.020 +0.007 -0.054 ± 0.015 +0.007
−0.008 −0.013 −0.012 −0.009 −0.004

307.5 -0.042 ± 0.024 +0.010 -0.024 ± 0.022 +0.007 -0.053 ± 0.019 +0.002 -0.073 ± 0.022 +0.010 -0.020 ± 0.019 +0.004
−0.001 −0.002 −0.012 −0.005 −0.007

322.5 -0.005 ± 0.024 +0.008 -0.063 ± 0.023 +0.005 -0.016 ± 0.020 +0.008 -0.075 ± 0.029 +0.012 0.003 ± 0.030 +0.014
−0.008 −0.007 −0.006 −0.004 −0.003

337.5 -0.027 ± 0.023 +0.008 -0.074 ± 0.026 +0.006 0.007 ± 0.024 +0.012 -0.069 ± 0.047 +0.012 0.082 ± 0.051 +0.011
−0.001 −0.007 −0.013 −0.018 −0.020

352.5 0.009 ± 0.025 +0.002 -0.010 ± 0.028 +0.009 -0.052 ± 0.028 +0.011 -0.034 ± 0.061 +0.012 -0.193 ± 0.114 +0.037
−0.015 −0.005 −0.010 −0.024 −0.008

Table D.18: Helicity-dependent experimental cross section (pb) for kin603.
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Résumé en Français

Introduites au milieu des années 90, les Distributions Généralisées de Partons (GPD) sont aujourd’hui
un élément clé dans l’étude de la structure interne du nucléon. Les GPD sont la généralisation des
Facteurs de Forme et des Fonctions de Distribution de Partons. Elles englobent la distribution spatiale
et la distribution en impulsion des partons à l’intérieur du nucléon, ce qui permet d’en effectuer une
tomographie en trois dimensions. De plus, elles permettent d’obtenir le moment orbital angulaire total
des quarks grâce à la règle de somme de Ji, ce qui est un élément crucial dans l’élucidation de l’énigme
de la structure en spin du nucléon. En décrivant de manière plus complète la structure des hadrons en
termes de quarks et gluons, il est possible d’approfondir notre compréhension de la Chromodynamique
Quantique.

Les GPD sont accessibles expérimentalement à travers les processus d’électro-production exclusifs
profonds, et l’un des canaux les plus simples est la Diffusion Compton Profondément Virtuelle (DVCS)
ep → e′p′γ. Un programme expérimental mondial a été lancé au début des années 2000 afin d’extraire
ces GPD. L’expérience DVCS E12-06-114 qui est le sujet de cette thèse a été effectuée dans le Hall A du
Jefferson Laboratory (Virginie, États-Unis) entre 2014 et 2016 et est incluse dans ce programme.

Le but de cette expérience est de mesurer avec grande précision la section efficace DVCS dépendante
de l’hélicité en fonction du transfert d’impulsion Q2, pour des valeurs fixes de la variable de Bjorken xBj ,
sur une cible de proton. La récente amélioration à 12 GeV de l’accélérateur d’électron du Jefferson Lab
permet d’obtenir un bras de levier en Q2 plus important que lors des expériences précédentes et de sonder
des régions cinématiques encore inexplorées, tandis que le faisceau polarisé d’électrons permet de séparer
les contributions des parties réelles et imaginaires de l’amplitude DVCS à la section efficace totale.

Au cours de l’expérience, un faisceau d’électrons polarisé est envoyé sur une cible d’hydrogène liq-
uide. Dans la limite de Bjorken, l’électron interagit avec un unique quark d’un proton de la cible par
l’intermédiaire d’un photon virtuel. Le quark émet alors un photon réel avant de retourner dans le proton
(voir Fig. E.1). L’électron diffusé est détecté par un spectromètre de haute résolution tandis que le pho-
ton émis est détecté dans un calorimètre électromagnétique composé de 208 cristaux de PbF2 (voir Fig.
E.2). Le proton de recul quant à lui n’est pas détecté, mais il est identifié grâce à la masse manquante
M2
X = (e + p − e′ − γ)2 qui dans ce cas doit être égale au carré de la masse du proton. L’identification

des trois particules de l’état final permet alors d’assurer l’exclusivité de la réaction DVCS.

Figure E.1: Diagramme du “sac à main” du processus DVCS.

L’élément déclencheur de la sauvegarde des données est la détection en coïncidence d’un électron dans
le spectromètre et d’un photon dans le calorimètre. Par ailleurs, chaque voie du calorimètre est connectée
à une électronique d’acquisition (Analog Ring Samplers: ARS) échantillonnant le signal de sorti à une
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Figure E.2: Représentation schématique du dispositif expérimental DVCS. La cible est représentée par la
sphère blanche. Les électrons diffusés sont détectés dans le spectromètre de haute résolution (bleu clair)
et les photons émis sont détectés dans un calorimètre électromagnétique (noir). Les protons de recul ne
sont pas détectés.

fréquence de 1 GHz. Cet échantillonnage à haute fréquence des données permet de séparer et identifier
des évènements très rapprochés en temps.

Afin d’assurer la reconstruction précise des variables associées aux particules de l’état final, une
grande attention a été portée sur l’étalonnage des détecteurs. En ce qui concerne le spectromètre, des
difficultés sont apparues pendant le Printemps 2016 en raison du vieillissement et de la dégradation des
propriétés supraconductrices de l’un de ses aimants. Afin d’accélérer l’étalonnage de l’optique du dé-
tecteur, le spectromètre a été positionné à petit angle afin d’augmenter le taux de comptage. Cependant,
en contrepartie, l’optique du spectromètre s’en est retrouvée dégradée pour les évènements provenant
des bords de la cible lorsque les données DVCS étaient prises avec le détecteur positionné à grand an-
gle. Puis, durant l’Automne 2016, il fut découvert que l’aimant installé en remplacement souffrait d’un
problème de saturation. Ces différents contre-temps ont eu pour conséquence que la procédure standard
d’étalonnage de l’optique du spectromètre ne permettait pas d’obtenir des résultats suffisants. Cepen-
dant, la conception et l’application de corrections empiriques ou calculées à partir de simulations, ainsi
que des modifications à la procédure d’étalonnage de l’optique du détecteur ont permis d’outrepasser ces
difficultés et d’obtenir une résolution satisfaisante.

En ce qui concerne l’étalonnage du gain en énergie du calorimètre, des difficultés sont apparues en
raison d’importants dégâts d’irradiation dus à une forte luminosité, l’importante énergie du faisceau, et
le vieillissement des blocs du détecteur. Outre la méthode standard d’étalonnage utilisant la diffusion
élastique ep → e′p′ qui a permis d’obtenir une résolution en énergie de 3% à 7.0 GeV, une nouvelle
procédure basée sur la reconstruction de la masse invariante des π0 a également été mise en œuvre.
Appliquée quotidiennement, cette nouvelle méthode a permis d’étalonner le gain du calorimètre avec une
précision de 1% à 2% et de corriger la perte de gain continue provoquée par les dégâts d’irradiation.
Bien qu’après de longues périodes sans faisceau, les dégâts d’irradiation pouvaient avoir des effets non
négligeables sur des échelles de temps aussi courtes que quelques heures, une correction empirique utilisée
en complément a été employée avec succès afin de compenser l’assombrissement rapide des blocs du
calorimètre.

Le contrôle détaillé de la qualité des données a permis de rejeter celles qui pourraient conduire à des
résultats peu fiables. Par ailleurs, une quantité importante de données d’une configuration cinématique
à été compromise par la désynchronisation du spectromètre et du calorimètre. Cependant, une méthode
a été développée avec succès afin de corriger la synchronisation des détecteurs et a permis la restauration
des données endommagées.

Les ARS ont été essentiels à l’obtention de la résolution en énergie citée précédemment, ainsi qu’une
résolution en temps inférieure à la nanoseconde. Afin d’exploiter pleinement leurs propriétés, les princi-
paux paramètres de l’analyse en forme du signal des ARS ont été optimisés afin d’assurer une extraction
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précise des informations en temps et énergie contenues dans les données. Le traitement des évènements
fortement rapprochés en temps a également été contrôlé. Les résultats montrent que de tels évène-
ments sont relativement rares et qu’ils ne contribuent que très faiblement à la résolution en énergie du
calorimètre.

La détection en coïncidence d’un électron dans le spectromètre et d’un photon dans le calorimètre
n’est pas suffisante pour assurer qu’il s’agit bien d’un évènement DVCS. L’électron et le photon peuvent
provenir de deux évènements distincts ayant eu lieu simultanément de manière fortuite. On parle alors
d’évènements fortuits. Le photon peut également provenir de la désintégration d’un π0 produit au cours
du processus ep → e′p′π0. Dans 99% des cas, le π0 se désintègre en deux photons, et si l’un des deux
photons n’est pas détecté par le calorimètre, l’évènement peut-être mépris pour un évènement DVCS. On
parle alors de contamination π0. Enfin, des Diffusions Profondément Inélastiques Semi-Inclusives (SIDIS)
ep → e′p′γX peuvent être méprises pour des évènements DVCS si les particules supplémentaires X de
l’état final ne sont pas détectés.

Les méthodes employées au cours d’expériences précédentes du Hall A afin de soustraire la contamina-
tion π0 et les évènements fortuits ont été adaptées et utilisées pour cette expérience. En ce qui concerne
la soustraction des évènements fortuits, les évènements ont été sélectionnés dans des fenêtres en temps
hors coïncidences de même largeur que pour la sélection des vraies coïncidences tout en respectant la
structure temporelle de 4 ns du faisceau. La soustraction de la contamination π0 quant à elle est basée
sur une simulation de Monte Carlo des évènements π0 mépris pour des évènements DVCS. L’efficacité
de la méthode a été contrôlée à l’aide d’une simulation Géant4. La méthode a été validée pour toute la
surface du calorimètre à l’exception des bords et des coins où la détection des π0 est inefficace en raison
d’effets d’acceptance.

Les évènements DVCS ont été sélectionnés en appliquant une série de coupures visant à assurer
l’efficacité de détection, la reconstruction précise des variables, et l’exclusivité de la réaction grâce à
l’identification des particules. En particulier, de nouvelles coupures ont été définies pour l’acceptance
du spectromètre suite aux calibrations de son optique [83], et pour l’acceptance du calorimètre afin de
certifier l’efficacité de la soustraction de la contamination π0. De plus, des coupures strictes sur la masse
manquante M2

X = (e+ p− e′− γ)2 permettent simultanément d’assurer l’exclusivité du processus DVCS
et de rejeter presque toute la contamination des résonances et SIDIS (voir Fig. E.3). Par ailleurs,
des corrections ont été appliquées afin de tenir compte de l’efficacité des détecteurs, des mesures de
polarisation du faisceau, et du temps mort expérimental. Une méthode développée dans [98] pour tenir
compte des évènements à plusieurs clusters dans le calorimètre a également été adaptée et appliquée à
cette expérience.

Figure E.3: Distribution de la masse manquante DVCS M2
X = (e + p − e′ − γ)2 pour les données de la

configuration cinématique kin48_1. Noir : masse manquante DVCS avant soustraction des contamina-
tions fortuites et π0. Rouge : masse manquante DVCS après soustraction des contaminations fortuites
et π0. Vert : évènements fortuits. Bleu : contamination π0.
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L’utilisation d’une simulation de Monte Carlo permet d’extraire avec une grande précision l’acceptance
des détecteurs. À cette fin, la géométrie du dispositif expérimentale implémenté dans Géant4 a été mise
à jour de façon à être une réplique exacte de l’équipement installé dans le Hall A [92]. Par ailleurs, les
corrections radiatives réelles sont également implémentées dans la simulation afin d’inclure dans le calcul
de l’acceptance les effets combinés de la queue radiative et de la résolution des détecteurs. En revanche,
les corrections radiatives virtuelles n’ont pas encore été calculées pour cette expérience. Cependant, il
est raisonnable de supposer que ces corrections devraient être extrêmement similaires à celles calculées
pour l’expérience E00-110.

En raison du fait que la simulation ne peut pas reproduire parfaitement le gain et la résolution en
énergie du calorimètre, une procédure de calibration et d’élargissement de la distribution en énergie de la
simulation développée dans [98] a été adaptée et mise en œuvre pour cette expérience de façon à ce que le
spectre en masse manquante de la simulation reproduise du mieux possible les données expérimentales.
De cette façon, la perte d’évènements DVCS due aux coupures appliquées à la masse manquante sont
compensées en appliquant des coupures identiques à la simulation. Cependant, l’élargissement Gaussien
de la simulation ne permet pas de reproduire parfaitement la queue de la distribution de la masse man-
quante observée dans les données. En fonction de la configuration cinématique, une incertitude comprise
entre 2.8% et 5.6% en résulte. Un élargissement non-Gaussien de la simulation devrait permettre de
grandement minimiser cette incertitude.

Des sections efficaces préliminaires ont été extraites sur un ensemble de 9 configurations cinématiques,
chacune divisée en 120 bins expérimentaux (voir Fig. E.4 et E.5). Les sections efficaces polarisées et
non polarisées ont permis de séparer les parties réelles et imaginaires de l’amplitude DVCS. La méthode
d’extraction est basée sur une paramétrisation des sections efficaces par des combinaisons linéaires et
bilinéaires de Facteurs de Forme Compton (CFF). Plusieurs combinaisons ont été testées, et deux d’entre
elles ont pu être ajustées aux données de manière satisfaisante. Dans le cas non polarisé, il a été possible
de clairement distinguer les sections efficaces DVCS du pure Bethe-Heitler, et les amplitudes des termes
DVCS et d’interférence ont pu être mesurées. En particulier, avec la paramétrisation employée, pour des
valeurs de φ proches de 180◦, le terme DVCS a été trouvé dominant par rapport aux termes d’interférence,
tandis que pour des valeurs de φ proches de 0◦ ou 360◦, la valeur absolue du terme d’interférence devenait
d’une taille comparable, voire supérieure, au terme DVCS. Que la section efficace soit polarisée ou non, en
moyenne, les termes d’interférence et DVCS de twist 2 ont été trouvés dominants, tandis que les termes de
twist-3 étaient proches de zéro. Pour certaines configurations cinématiques, des termes de twist 3 ont été
extraits avec des contributions non négligeables, mais cela est peut-être une conséquence des incertitudes
statistiques et systématiques.

Les sections efficaces préliminaires ont été comparées aux modèles KM10a et KM15 qui résultent
d’ajustements aux données DVCS mondiales. En ce qui concerne les sections efficaces non polarisées
(voir Fig. E.4), un très bon accord entre le modèle KM15 et les données a été observé pour toutes les
configurations cinématiques. En revanche, il a été observé que le modèle KM10a sous-estime les sections
efficaces expérimentales. Il a également été constaté que l’accord entre les modèles et les données se
dégradait pour des valeurs croissantes de xBj , ce qui n’est pas surprenant car les modèles ont été conçus
pour des valeurs plus faibles de xBj . En ce qui concerne les sections efficaces polarisées (voir Fig. E.5),
les deux modèles décrivent relativement bien les données. L’accord entre le modèle KM15 et les résultats
expérimentaux n’est pas aussi bon que dans le cas non-polarisé, mais l’incertitude expérimentale est plus
grande dans le cas polarisé.

La dépendance en Q2 des combinaisons de CFF utilisées pour paramétrer la section efficace a été
étudiée pour chaque valeur de xBj , intégrée sur t. Le terme de twist-2 ImCI(F++) a été trouvé in-
dépendant de Q2 (voir Fig. E.6), ce qui est cohérent avec les résultats de la précédente expérience du
Hall A et qui est une indication en faveur de la dominance du twist-2. De manière surprenante, en re-
vanche, une dépendance en Q2 a été observée pour les termes de twist-2 CDV CS(F++,F∗++ | F−+,F∗−+)
et ReCI(F++) (voir Fig. E.7). Cependant, il est probable que les deux termes soient corrélés et que la
dépendance en φ de la section efficace ne soit pas suffisante pour les séparer complètement. Par con-
séquent, l’interprétation de ce résultat est non triviale. Enfin, il a été observé que les termes de twist-3
ReCI(F0+) et ImCI(F0+) semblent petits, mais ne sont pas nécessairement compatibles avec 0 (voir Fig.
E.8), ce qui pourrait soutenir l’existence d’une contribution de twist-3.

Les incertitudes systématiques associées aux coupures sur la masse manquante ont été évaluées entre
2% et 5%. Afin de réduire d’avantage cette incertitude, l’amélioration de la procédure de calibration
et d’élargissement de la distribution en énergie de la simulation est nécessaire: un élargissement non-
Gaussien et l’ajustement de la fenêtre en masse manquante employée pour calculer les paramètres de
l’élargissement pourraient réduire l’incertitude de manière non négligeable. Par ailleurs, l’incertitude
systématique associée au choix de la paramétrisation de la section efficace DVCS par les CFF a été
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Figure E.4: Section efficace non polarisée pour la configuration cinématique kin36_2, avec une énergie de
faisceau Ebeam = 8.5 GeV,

〈
Q2〉 = 3.6 GeV2, 〈xBj〉 = 0.36 et −0.186 GeV2 < t − tmin < −0.124 GeV2.

Les points noirs représentent la section efficace expérimentale tandis que la courbe noire correspond à la
section efficace ajustée, avec incertitudes statistiques. La contribution Bethe-Heitler est représentée en
rouge tandis que les modèles KM10a et KM15 sont respectivement en marron et en bleu. Les contribu-
tions des combinaisons de CFF 〈Xn〉v paramétrisant la section efficace non polarisée, multipliées par les
facteurs cinématiques Fn(E,

〈
Q2〉

v
, 〈xBj〉v , 〈t〉v , φr, λ) sont représentées en vert, magenta et cyan, avec

leurs bandes d’incertitude statistique respectives. La bande d’incertitude en bas de la figure représente
l’incertitude systématique totale introduite par les coupures sur la masse manquante.

Figure E.5: Section efficace dépendante de l’hélicité du faisceau pour la configuration cinématique
kin36_2, avec une énergie de faisceau Ebeam = 8.5 GeV,

〈
Q2〉 = 3.6 GeV2, 〈xBj〉 = 0.36 et

−0.186 GeV2 < t − tmin < −0.124 GeV2. Les points noirs représentent la section efficace expérimen-
tale tandis que la courbe noire correspond à la section efficace ajustée, avec incertitudes statistiques.
Les modèles KM10a et KM15 sont respectivement en marron et en bleu. Les contributions des combi-
naisons de CFF 〈Xn〉v paramétrisant la section efficace polarisée, multipliées par les facteurs cinématiques
Fn(E,

〈
Q2〉

v
, 〈xBj〉v , 〈t〉v , φr, λ) sont représentées en magenta et en cyan, avec leurs bandes d’incertitude

statistique respectives. La bande d’incertitude en bas de la figure représente l’incertitude systématique
totale introduite par les coupures sur la masse manquante.
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Figure E.6: Dépendance en Q2 du terme de twist-2 ImCI(F++) employé dans la paramétrisation de la
section efficace, intégré sur t, pour xBj = 0.36 et 〈t〉 = −0.35 GeV2 (rouge), xBj = 0.48 et 〈t〉 = −0.47
GeV2 (bleu) et xBj = 0.60 et 〈t〉 = −1.06 GeV2 (vert), avec incertitudes statistiques. Les étoiles magenta
correspondent aux résultats précédents du Hall A à xBj = 0.36 et 〈t〉 = −0.27 GeV2 [48].

Figure E.7: Dépendance en Q2 des termes de twist-2 CDV CS(F++,F∗++ | F−+,F∗−+) et ReCI(F++)
employés dans la paramétrisation de la section efficace, intégré sur t, pour xBj = 0.36 et 〈t〉 = −0.35
GeV2 (rouge), xBj = 0.48 et 〈t〉 = −0.47 GeV2 (bleu) et xBj = 0.60 et 〈t〉 = −1.06 GeV2 (vert), avec
incertitudes statistiques.

152



Figure E.8: Dépendance en Q2 des termes de twist-3 ReCI(F0+) et ImCI(F0+) employés dans la
paramétrisation de la section efficace, intégré sur t, pour xBj = 0.36 et 〈t〉 = −0.35 GeV2 (rouge),
xBj = 0.48 et 〈t〉 = −0.47 GeV2 (bleu) et xBj = 0.60 et 〈t〉 = −1.06 GeV2 (vert), avec incertitudes
statistiques.

évaluée à 1.0%, celle reliée à la luminosité et au temps mort a été évaluée à 1.6%, et l’incertitude
associée aux mesures de polarisation est de 1.0%, à l’exception de la configuration cinématique kin36_1
où l’incertitude a été estimée à 2.2%. Enfin, les incertitudes systématiques associées aux corrections
radiatives virtuelles et aux coupures sur le spectromètre n’ont pas encore été évaluées précisément, mais
il est estimé qu’elles seront fortement similaires à celles de l’expérience E00-110.
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(DVCS). Un programme expérimental mondial a été lancé au début des années 2000 afin d’extraire
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(Virginie, États-Unis) entre 2014 et 2016 est incluse dans ce programme. Le but de cette expérience
est de mesurer avec grande précision la section efficace DVCS dépendante de l’hélicité en fonction du
transfert d’impulsion Q2, pour des valeurs fixes de la variable de Bjorken xBj , sur une cible de proton. La
récente amélioration à 12 GeV de l’accélérateur permet d’obtenir un bras de levier en Q2 plus important
que lors des expériences précédentes et de sonder des régions cinématiques encore inexplorées, tandis
que le faisceau polarisé d’électrons permet de séparer les contributions des parties réelles et imaginaires
de l’amplitude DVCS à la section efficace totale. Dans ce document, un bref résumé du programme
expérimental mondial sur l’étude des GPD va être fourni, suivi par la description de l’appareillage et
l’analyse des données de l’expérience E12-06-114. Enfin, les résultats des mesures de sections efficaces
polarisées et non-polarisées sont présentés et comparés à une sélection de modèles.

Title: Deeply Virtual Compton Scattering at Jefferson Lab

Keywords: Deeply Virtual Compton Scattering (DVCS) ; Generalized Parton Distributions (GPDs) ;
Jefferson Lab (CEBAF) ; Hadronic physics ; Nucleon structure ; Simulation
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Distribution Functions. They encapsulate both spatial and momentum distributions of partons inside
a nucleon, allowing to perform its three-dimensional tomography. Furthermore, they allow to derive
the total orbital angular momentum of quarks through the Ji sum rule, which is a crucial point to
unravel the nucleon spin structure. By providing a more complete description of hadrons in terms of
quarks and gluons, a deeper understanding of Quantum Chromodynamics can be reached. GPDs are
experimentally accessible through deeply exclusive electro-production processes, and one of the simplest
channels available is Deeply Virtual Compton Scattering (DVCS). A worldwide experimental program
was started in the early 2000’s to extract these GPDs. The DVCS experiment E12-06-114 performed at
Jefferson Laboratory Hall A (Virginia, USA) between 2014 and 2016, is encompassed in this program.
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target. The recent upgrade of the accelerator facility to 12 GeV allows to cover a larger Q2 range than in
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