
HAL Id: tel-01925746
https://theses.hal.science/tel-01925746

Submitted on 17 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized Parton Distributions and their covariant
extension : towards nucleon tomography

Nabil Chouika

To cite this version:
Nabil Chouika. Generalized Parton Distributions and their covariant extension : towards nucleon
tomography. High Energy Physics - Phenomenology [hep-ph]. Université Paris-Saclay, 2018. English.
�NNT : 2018SACLS259�. �tel-01925746�

https://theses.hal.science/tel-01925746
https://hal.archives-ouvertes.fr


N
N
T

:2
01
8S

A
C
LS

25
9

Generalized Parton Distributions and
their covariant extension: towards

nucleon tomography

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’Université Paris-Sud

au sein de l’Irfu/DPhN du CEA Saclay

École doctorale n◦576 PHENIICS
Particules, Hadrons, Énergie, Noyau,

Instrumentation, Imagerie, Cosmos et Simulation

Spécialité de doctorat : Physique hadronique

Thèse présentée et soutenue à Saclay, le 17 septembre 2018, par

Nabil Chouika

Composition du Jury :

Jaume Carbonell Directeur de recherche (Président du jury)
IPN Orsay

Barbara Pasquini Associate Professor (Rapporteur)
Université de Pavie

Lech Szymanowski Professeur (Rapporteur)
NCBJ, Varsovie

Bernard Pire Directeur de recherche (Examinateur)
CPhT, École Polytechnique

José Rodriguez-Quintero Associate Professor (Examinateur)
Université de Huelva

Hervé Moutarde Ingénieur chercheur (Directeur de thèse)
CEA Saclay, Irfu/DPhN



À Anass,



Acknowledgements
The most difficult part to write is probably these first lines of the manuscript, and that is

why they are written last. Even with the best words I can come up with, I would probably not
do justice to the persons I will acknowledge here (nor obviously to the ones I will forget). I
must still try nonetheless.
First and foremost I would like to thank my supervisor Hervé Moutarde who showed from

the first time I met him a genuine enthusiasm to work with me and kept encouraging me
throughout the internship and then the thesis. Hervé was always available, even when he
had to juggle both research and his new bureaucratic duties. His natural curiosity makes him
knowledgeable on all things related to QCD in particular, but also Physics and Mathematics
in general. When encountering an issue, I always knew that I could turn successfully to Hervé,
because even when he didn’t know the answer, he would gladly sit through the afternoon with
me while we tried to find a solution together. Thank you for trusting me, Hervé.
I would like also to thank the two other members of what Hervé calls I think the “gang of

four”: Pepe Rodríguez-Quintero and Cédric Mezrag. Hervé initiated with them this “covariant
extension” project and I was lucky to come and reap the rewards of this work by implementing
it. Pepe was as encouraging and available as any supervisor could be, despite not being officially
one1

.

, and his cheerfulness had no limits. When it comes to Cédric, I must thank him also for
his thesis manuscript. He was Hervé’s previous PhD student, and I could not have survived in
the GPD field without having his thesis to turn to in moments of need. I hope I wrote in turn
a thesis pedagogical enough to be even if only half as useful for the next students as his was
for me. It was a pleasure to work with all of you.
To continue with the collaborators, I would like to thank all the PARTONS collaboration.

In particular Bryan Berthou and Pawel Sznajder. Bryan conceived with Hervé the PARTONS
software as it is today, and taught us all physicists numerous lessons of software development,
be it pragmatically for work, or for our personal benefit during lunch breaks. After Bryan
had to leave, Pawel took upon himself to carry the project and push for more and more
improvements and he continues to do so. His mastery of the software makes him the first
interlocutor when it comes to PARTONS, and he never fails to help. Thank you again.

To achieve a good thesis, there is not only need of good collaborators, but also a good place
to work at. Therefore, I would like to thank all the people at DPhN2

.

who make it such a
wonderful working environment. In particular I would like to thank the members (past and
present) of the CLAS group at Saclay: my office neighbour Maxime for being always available
to answer my questions on the experimental side of GPDs, Francesco who kindly suggested
to help me for my defense rehearsal when Hervé was absent, Guillaume and Noélie who both

1For the anecdote, he was supposed to be my co-supervisor before the CEA scholarship saved us all from
the bureaucratic nightmares of a co-tutelle. So I suppose I should not forget to thank the Haut Commissaire.

2Always SPhN in our hearts.

iii



Acknowledgements

separately shared my office for a time and had to cope with my probably infuriating habit
playing with the pencil, and many others. Of course I cannot forget the other students and
post-docs of the lab: Christopher who had to immigrate from so far away and make incredible
efforts of integration by learning French for instance (which as everyone knows is fundamentally
different from his native language, le marseillais) and whose constant cheerfulness during lunch
breaks I would never trade back, Mehdi3

.

with whom I followed the same road to DPhN from
our M2, his soulmate Pierre3

.

who is behind his rugbyman stature one of the nicest persons
I’ve met, Simon who helped me find a good teaching job, Arek and Saba, as both need to be
praised for their incredible spy abilities4

.

, the duo Benjamin and Raphaël whose Shakespearean
relationship is heartwarming, Aurélie, Antoine, Loïc and many more. But the student life
at DPhN would not have been as interesting as it is without the efforts of Jason and Nancy
who took to heart the difficult task of bringing us together. I would like also to thank the
administrative side of DPhN, with Danielle Coret and Isabelle Richard at the forefront making
our life easier by smoothing the horrible bureaucracy, and the heads of the lab, Franck Sabatié,
Jacques Ball and Christophe Theisen, for their constant efforts in the interest of all the research
held here.
Going back to the thesis process, I would like to thank Bernard Pire and Jaume Carbonell

who accepted to sit at my examination panel and also discussed our covariant extension
approach enthusiastically with Hervé and me at previous occasions. I was also very lucky
that Barbara Pasquini and Lech Szymanowski kindly accepted to review my manuscript with
inestimable comments and encouragements. Barbara in particular pointed out many corrections
that improved the manuscript significantly. Thank you both for your time. I wish I could
also mention Daniele Binosi as one of the jury members as he kindly accepted my offer, but
unfortunately had conflicting schedules which prevented him from participating. Nevertheless,
Daniele was very supportive all the way back to when we worked together on Dyson-Schwinger
solvers and afterwards helped me considerably for the post-doc applications, and I thank him
for all that. I am also grateful to Cédric Lorcé for fruitful exchanges and his valuable inputs
on the last months of this thesis.

In a perhaps not so common way, I would now like to thank some people that I have never
actually met (or only briefly) but whose work was immensely helpful for this thesis. The
first one is Markus Diehl, whose incredible output on GPDs in the previous decades is simply
impressive. When something was not clear or seemed new to me (or other collaborators), you
could bet that it was actually already dealt with in Markus’s review [1

.

]. After perhaps a few
days of tearing your hair out, going back to this bible closed the issue in 90% of cases as it
was at least discussed there if not solved. Sometimes, when it was only briefly mentioned, you
could be sure to find the detailed answer in the second testament: Belitsky and Radyushkin’s
review [2

.

]. I would like to thank in general all the physicists who took the time to review their
field for newcomers. But this thesis has also a strong numerical component, and for that I
would like to thank all the contributors to open-source softwares that I used throughout these
years, in particular the numerical tools in Python [3

.

, 4

.

].
Last but not least, I would like of course to thank my friends here in Paris who put up with

3Both tried to explain to me patiently and so many times what are ab initio methods in nuclear structure,
but still without success I am ashamed to say.

4I completely fell for their act!

iv



me during the previous years and my family in Morocco, in particular my mom, who I know
suffered a lot from the distance and from seeing me only for a brief month each year, and my
sister Dalal without whom nothing would have been possible.

v





Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

.

Résumé en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

.

1. Distributions de Partons Généralisées . . . . . . . . . . . . . . . . . . . . . . xi

.

2. Extension covariante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

.

3. La bibliothèque PARTONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

.

4. Phénoménologie de modèles de quarks . . . . . . . . . . . . . . . . . . . . . . xv

.

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

.

I. Nucleon tomography 5

.

1. Probing the nucleon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

.

1.1. From the hydrogen atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

.

1.1.1. Discovery of the proton . . . . . . . . . . . . . . . . . . . . . . . . . . 7

.

1.1.2. Elastic scattering and charge radius . . . . . . . . . . . . . . . . . . . 7

.

1.2. . . . to quarks and gluons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

.

1.2.1. Quark model and spectroscopy . . . . . . . . . . . . . . . . . . . . . . 9

.

1.2.2. Deep Inelastic Scattering and Parton model . . . . . . . . . . . . . . 11

.

1.2.3. QCD Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

.

2. Partonic structure of hadrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

.

2.1. Wigner distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

.

2.1.1. In Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 17

.

2.1.2. In Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 18

.

2.2. 3D tomography of hadrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

.

2.3. Breit frame vs transverse plane interpretations . . . . . . . . . . . . . . . . . 21

.

2.4. Spin decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

.

3. Exclusive processes and extraction of GPDs . . . . . . . . . . . . . . . . . . . . 25

.

3.1. Compton amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

.

3.2. Deeply Virtual Compton Scattering . . . . . . . . . . . . . . . . . . . . . . . 27

.

3.2.1. Cross-section and kinematics . . . . . . . . . . . . . . . . . . . . . . . 27

.

3.2.2. Compton Form Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 30

.

3.2.3. Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

.

3.3. Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

.

vii



Contents

3.4. Extraction of GPDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

.

3.4.1. Experimental status . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

.

3.4.2. Fits to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

.

3.4.3. PARTONS software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

.

II. Theory of Generalized Parton Distributions 39

.

4. Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

.

4.1. Pion case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

.

4.1.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

.

4.1.2. Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

.

4.1.3. Isospin symmetry and charge conjugation . . . . . . . . . . . . . . . . 44

.

4.1.4. Polynomiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

.

4.1.5. Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

.

4.2. Nucleon case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

.

4.2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

.

4.2.2. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

.

5. Polynomiality and Double Distributions . . . . . . . . . . . . . . . . . . . . . . . 51

.

5.1. Fulfilling Polynomiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

.

5.2. Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

.

5.2.1. Relation to GPDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

.

5.2.2. Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

.

5.2.3. Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

.

5.2.4. Extension to GDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

.

5.2.5. Quark and anti-quark distributions . . . . . . . . . . . . . . . . . . . 57

.

5.3. Different representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

.

5.3.1. Double Distributions ambiguity . . . . . . . . . . . . . . . . . . . . . 58

.

5.3.2. R representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

.

5.3.3. D-term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

.

5.3.4. BMKS representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

.

5.3.5. P representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

.

5.3.6. T representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

.

5.3.7. Note on the nucleon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

.

5.3.8. Note on gluons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

.

5.4. Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

.

5.4.1. Toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

.

5.4.2. Photon GPDs and DDs . . . . . . . . . . . . . . . . . . . . . . . . . . 64

.

6. Positivity and Light-front wave-functions . . . . . . . . . . . . . . . . . . . . . . 67

.

6.1. Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

.

6.1.1. Light-front quantization . . . . . . . . . . . . . . . . . . . . . . . . . 67

.

6.1.2. Frames and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

.

6.1.3. Overlap representation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

.

viii



Contents

6.1.4. Probability density in impact parameter space . . . . . . . . . . . . . 70

.

6.1.5. Positivity property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

.

6.1.6. Two-body case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

.

6.1.7. Distribution Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 72

.

6.1.8. Consistent truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

.

6.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

.

6.2.1. Gaussian toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

.

6.2.2. Roberts’ toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

.

6.2.3. Algebraic Nakanishi-based model . . . . . . . . . . . . . . . . . . . . 76

.

III. Covariant extension of Generalized Parton Distributions 81

.

7. Principle of the covariant extension . . . . . . . . . . . . . . . . . . . . . . . . . 83

.

7.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

.

7.2. Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

.

7.3. Uniqueness and ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

.

8. Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.

8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.

8.2. Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

.

8.2.1. Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

.

8.2.2. Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

.

8.2.3. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

.

8.3. Linear solver and regularization . . . . . . . . . . . . . . . . . . . . . . . . . 93

.

8.4. Test and validation of the numerics . . . . . . . . . . . . . . . . . . . . . . . 94

.

8.4.1. Smooth examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

.

8.4.2. Parametrization with Regge behabior . . . . . . . . . . . . . . . . . . 97

.

8.4.3. Photon GPDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

.

9. Examples of application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.

9.1. Algebraic Nakanishi-based model . . . . . . . . . . . . . . . . . . . . . . . . 105

.

9.1.1. Extension to ERBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.

9.1.2. Soft pion theorem and D-term contributions . . . . . . . . . . . . . . 107

.

9.2. Algebraic spectator diquark model . . . . . . . . . . . . . . . . . . . . . . . . 107

.

9.3. Pion wave-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

.

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

.

Appendices 113

.

A. Conventions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

.

A.1. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

.

ix



Contents

A.2. Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

.

B. Radon transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

.

B.1. Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

.

B.2. Relation to GPDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

.

Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

.

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

.

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

.

x



Résumé

1. Distributions de Partons Généralisées
Les Distributions de Partons Généralisées (GPDs) [5

.

–7

.

] encodent les corrélations entre
l’impulsion longitudinale et la position transverse des partons1

.

dans les hadrons et peuvent
donc fournir une représentation de la structure du nucléon en 2+1 dimensions Elles ont été
étudiées théoriquement et expérimentalement pendant près de deux décennies et une nouvelle
ère expérimentale visant à les extraire vient de débuter à Jefferson Lab (JLab) aux États-Unis
et au CERN avec l’expérience COMPASS, et à l’avenir à un collisionneur électron-ion (EIC).
Ces GPDs sont définies comme des transformées de Fourier sur le cône de lumière d’un

élément de matrice non-diagonal d’opérateur bi-local, ce qu’on peut par exemple écrire dans le
cas simple d’une GPD twist-2 de quark dans le pion à chiralité paire :

Hq (x, ξ, t) = 1
2

∫ dz−
2π ei x P

+z−
〈
π, P + ∆

2

∣∣∣∣∣ ψ̄q
(
−z2

)
γ+ψq

(
z

2

) ∣∣∣∣∣π, P − ∆
2

〉∣∣∣∣∣z+=0
z⊥=0

, (1)

où t = ∆2 est la variable de Mandelstam de transfert d’impulsion et ξ = − ∆+

2P+ est la variable
d’asymétrie (skewness). Dans le cas du nucléon, d’autres GPDs de chiralité paire interviennent :
E (qui intervertit l’hélicité du nucléon), H̃ et Ẽ (GPDs polarisées). Nous garderons surtout
l’exemple simple du pion dans ce qui suit.

L’une des principales motivations derrière l’étude des GPDs est l’interprétation probabiliste
de leur limite d’asymétrie nulle H(x, ξ = 0, t) [8

.

], qui est reliée par transformée de Fourier à
une densité numérique de partons

ρq (x, b⊥) =
∫ d2∆⊥

(2π)2 e
−i b⊥ ·∆⊥ Hq

(
x, 0,−∆2

⊥

)
(2)

d’impulsion longitudinale x et de position transverse b⊥ (aussi appelé paramètre d’impact).
Malheureusement, pour l’instant l’accès à ces objets est seulement possible de manière indirecte
à travers des convolutions de la forme [9

.

]

H
(
ξ, t, Q2

)
=
∫ 1

−1

dx
ξ

∑
a=g,u,d,...

Ca

(
x

ξ
,
Q2

µ2
F

, αS
(
µ2
F

))
Ha

(
x, ξ, t, µ2

F

)
. (3)

où H est un Facteur de Forme Compton (CFF) associé à la GPD H, C est un noyau de diffusion
dure calculé à un certain ordre en théorie des perturbations, µF est l’échelle de factorisation,
αS est la constante de couplage fort et Q2 est la virtualité du photon sondant le hadron par

1Nom désignant à la fois les quarks et les gluons, degrés de liberté fondamentaux de la chromodynamique
quantique (QCD).
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Résumé

exemple dans un processus tel que la Diffusion Compton Profondément Virtuelle (DVCS).
De plus, seules des valeurs non nulles de ξ ∈ [ξmin, ξmax] sont accessibles. Une extrapolation
à asymétrie nulle est donc nécessaire en plus de la tâche déjà difficile de déconvolution de la
dépendance en x.
Par conséquent, un des principaux défis dans ce domaine est de produire des modèles de

GPDs qui satisfont à la fois aux propriétés de polynomialité et de positivité2

.

. Ces contraintes
sont cruciales pour pouvoir extrapoler de manière correcte l’information extraite des données
expérimentales et peuvent être formulées comme suit :

Polynomialité Les moments de Mellin
∫ 1
−1 dx xmH (x, ξ, t) d’une GPD H sont des polynômes

en la variable d’asymétrie ξ, de degré au plus m + 1. Ceci découle de l’invariance de
Lorentz.

Positivité La GPD est bornée par des inégalités de la forme [1

.

, 10

.

]

|Hq(x, ξ, t)|x≥ξ ≤

√√√√q (x− ξ1− ξ

)
q

(
x+ ξ

1 + ξ

)
, (4)

où la borne de la GPD de quark Hq est donnée en fonction de sa limite vers l’avant,
c.-à-d. la PDF q. Ceci est dû à la positivité d’une norme dans un espace de Hilbert, où le
théorème de Cauchy-Schwarz peut être appliqué.

Il y a deux chemins généralement suivis dans une approche de théorie quantique du champ
menant à un calcul de GPDs.

Approche covariante Le premier est basé sur une analyse diagrammatique et covariante qui,
dans la plupart des cas, suppose une approximation d’impulsion, autrement appelé calcul
de diagramme triangle. Il a l’avantage de produire des GPDs sur tout leur domaine
cinématique respectant la polynomialité, mais présente plusieurs problèmes comme
l’absence de positivité ou des anomalies concernant les symétries discrètes quand les
vertex considérés dépendent de l’impulsion [11

.

–14

.

].

Approche sur le cône de lumière Le deuxième est de considérer le développement dans l’es-
pace de Fock en termes de Fonctions d’Onde sur le Front de Lumière (LFWFs). Ce
faisant, la positivité est naturellement satisfaite du fait que les GPDs sont représentées
comme un produit scalaire de LFWFs, p. ex. dans la région DGLAP (cf. le chapitre 6

.

pour les notations et plus de détails)

Hq (x, ξ, t) =
∑
N,β

(√
1− ξ2

)2−N∑
a

δfa,q

∫
[dx̄]N

[
d2k̄⊥

]
N
δ (x− x̄a) (5)

×Ψ∗N,β
(
xout′

1 ,kout′
⊥1 , . . . , x

out′
a ,kout′

⊥a , . . .
)

ΨN,β

(
xin

1 ,k
in
⊥1, . . . , x

in
a ,k

in
⊥a, . . .

)
,

où des LFWFs de même nombre de partons se recoupent. En revanche, il est difficile de
tronquer cette somme sur les états de Fock de manière cohérente à la fois dans les régions

2Dans ce résumé, nous ne considérerons pas les autres propriétés et contraintes. Pour plus de détails à ce
sujet, voir le chapitre 4

.

et les références à cet égard.

xii



2. Extension covariante

DGLAP (|x| ≥ ξ) et ERBL (|x| ≤ ξ). En effet, dans cette dernière, le recoupement des
LFWFs est asymétrique en le nombre N de partons. Ceci rend peu vraisemblable que la
polynomialité soit satisfaite ou que la GPD obtenue soit cohérente dans les deux régions
(continue à la frontière |x| = ξ en particulier, ce qui est crucial pour la factorisation
des processus exclusifs comme DVCS) à un quelconque ordre fini de troncature N . On
s’attend plutôt à ce que ce soit vérifié quand tous les états de Fock sont sommés.

2. Extension covariante
En pratique, on est souvent limités à une troncature aux ordres les plus bas, p. ex. une

LFWF à deux corps dans le cas du pion. La GPD dans la région DGLAP en est obtenue
directement. Mais le problème ensuite peut être énoncé comme suit : quelle est la contribution
ERBL correspondante ? Et comment la reconstruire ?
Pour cela, on peut utiliser la représentation naturelle de la propriété de polynomialité : les

Double Distributions (DDs). En considérant la GPD comme une transformée de Radon [15

.

,16

.

]
de la façon suivante [17

.

] :

H (x, ξ) = (1− x)
∫

Ω
dβdαh(β, α) δ(x− β − αξ) = (1− x)Rh (x, ξ) , (6)

on peut utiliser la région DGLAP pour inverser l’équation et en déduire la DD h, ce qui nous
permet ensuite d’étendre la GPD à la région ERBL [18

.

]. Les différents domaines d’intérêt sont
schématisés sur la figure 1

.

.

R
−→

Figure 1. Le domaine Ω = {(β, α) / |β|+ |α| ≤ 1} des Double Distributions (à gauche) et
les domaines DGLAP et ERBL des GPDs (à droite). La transformée de Radon Rf (x, ξ) =∫

dβdα f (β, α) δ (x− β − αξ), c.-à-d. une intégration de f sur des lignes paramétrées par (x, ξ),
est l’opération qui relie ces espaces. Les lignes rouges qui traversent l’axe des α en x/ξ > 1
correspondent aux cinématiques DGLAP, tandis que les lignes ERBL sont représentées en vert.
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Résumé

Figure 2. Comparaison entre les résultats analytiques et numériques pour la GPD de pion
modélisée dans les Refs. [13

.

,19

.

]. Les courbes en trait plein bleu présentent le résultat numérique,
tandis que celles en tirets rouges montrent le résultat analytique obtenu dans le cas présent. Le
panneau de gauche concerne le cas t = 0 pour trois valeurs de ξ = [0, 0.5, 1], tandis que celui
de droite présente l’évolution en t pour les trois valeurs [0,−0.25,−0.5] à ξ = 0.5. Pour plus
de détails, voir la légende de la même figure 9.1

.

et la section 9.1

.

correspondante.

Le principal avantage de cette méthode est qu’elle est générale, c’est-à-dire que l’inversion
peut être faite numériquement avec une procédure identique pour tout modèle de LFWFs
en entrée. Cependant, certains modèles permettent de trouver un résultat analytique simple
pour la DD et fournissent donc des benchmarks pour tester la procédure numérique. On peut
citer par exemple le modèle de diquark scalaire pour le nucléon étudié dans la Ref. [20

.

] et qui
est à l’origine de cette idée d’extension covariante. Ici, on présente sur la figure 2

.

un autre
benchmark avec une GPD de pion construite à partir d’un modèle algébrique simple basé sur
une représentation de Nakanishi [13

.

, 19

.

]. L’inversion numérique se base sur l’information de
la seule région DGLAP, avec pour objectif d’étendre à la région ERBL. Par conséquent, la
comparaison des résultats numériques et analytiques sur la région ERBL (c.-à-d. entre les
lignes en pointillés noirs) est le principal résultat de cette figure. Comme on peut le voir, cette
extrapolation numérique est très bonne.

Pour résoudre numériquement ce problème inverse, une discrétisation inspirée des méthodes
d’éléments finis a été utilisée, avec notamment des fonctions de base linéaires par morceaux
dans l’espace des DDs. Dans l’espace des GPDs, un échantillonnage aléatoire de la région
DGLAP peut être réalisé de telle sorte à inclure le plus d’informations possibles. Du fait du
caractère mal posé de l’inversion de la transformée de Radon, il est important cependant de
régulariser [21

.

] le problème discret pour obtenir une solution qui a du sens.

3. La bibliothèque PARTONS
Le logiciel PARTONS [22

.

] a été conçu comme une réponse aux défis théoriques rencontrés par
la modélisation des GPDs, avec comme objectif d’accompagner les programmes expérimentaux
actifs où on attend de nettes augmentations de précision et de couverture cinématique. Il
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4. Phénoménologie de modèles de quarks

fournit une bibliothèque C++ visant à la fois les expérimentateurs et les phénoménologues.
PARTONS traite la chaîne de calcul complète d’un observable dans un canal expérimental

donné lié aux GPDs. Ceci peut être décomposé en trois niveaux :

Grandes distances Ce niveau concerne le calcul des GPDs elles-mêmes, comme des fonctions
de x, ξ, t, etc, eu égard à différents paramètres de modèles. La dépendance en l’échelle
de factorisation est décrite par des équations d’évolution.

Petites distances Le deuxième niveau est celui des fonctions coefficients décrivant les phéno-
mènes de diffusion dure. En pratique, ceci implique de convoluer les GPDs et le résultat
obtenu consiste en des CFFs (cf. p. ex. Eq. (3

.

)).

Processus final Finalement, ce niveau concerne le calcul des sections efficaces et autres
observables pouvant être directement mesurés expérimentalement.

À chacun de ces niveaux, le framework est assez flexible pour permettre n’importe quel
choix d’hypothèses de modélisation, l’inclusion de corrections d’ordre supérieur, etc. En effet,
PARTONS a été conçu pour être modulaire et fonctionne sur la base de classes abstraites
uniquement, laissent la liberté à l’utilisateur de choisir la physique qu’il souhaite implémenter.

Figure 3. Logo PARTONS.

Pour l’instant, seul le canal DVCS est implémenté, mais
les autres processus exclusifs (TCS et DVMP notamment)
sont aussi prévus, et l’architecture a été pensée pour traiter
n’importe quel canal. Parmi les modules disponibles, on
peut citer le modèle de GPDs dit « GK » très utilisé dans
la communauté [23

.

], ou encore les dernières formules de
sections efficaces du formalisme Belitsky-Müller [24

.

]. La
version actuelle de PARTONS en somme dispose de tous les
outils nécessaires pour étudier le DVCS à NLO (deuxième
ordre de perturbation) et twist-2, mais d’autres modèles et
fonctionnalités peuvent être ajoutées (ou branchées par l’utilisateur) du fait de sa modularité.

4. Phénoménologie de modèles de quarks
En utilisant les développements de physique déjà implémentés dans PARTONS, on peut

maintenant tirer profit de la méthode d’extension covariante présentée dans la section 2

.

pour
produire des observables DVCS à partir de modèles du type quarks constituants, en vue d’une
phénoménologie systématique. On fait le choix ici du Chiral Quark Soliton Model (χQSM)
pour le nucléon, étudié dans la Ref. [25

.

] au travers d’une troncature au premier état de Fock
(c.-à-d. trois quarks de valence). Cette troncature signifie que seule la région DGLAP des
GPDs est accessible, ce qui limite la phénoménologie DVCS au premier ordre en perturbation
(LO), vu que seule la ligne de frontière x = ξ intervient dans ce cas avec l’addition d’au
moins une constante de soustraction dans le cadre de l’approche des relations de dispersion
(cf. p. ex. Ref. [26

.

] et les références à cet égard). On ne peut pas aller plus loin dans la théorie
des perturbations, et on ne peut pas non plus évoluer la GPD de l’échelle basse Q2

0 = 0.259 GeV2

du modèle vers celle de l’expérience.
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Résumé

Figure 4. Test du modèle χQSM de la Ref. [25

.

]. Gauche : Asymétrie de spin de faisceau pour
le processus DVCS avec comparaison aux données CLAS de Ref. [27

.

]. Droite : GPD Eu à
t = −0.34 GeV2 avec extension à la région ERBL.

En étendant de manière covariante ces GPDs à la région ERBL, ces études deviennent
maintenant possibles. La figure 4

.

(panneau de droite) illustre cette extension dans le cas de la
GPD Eu. On peut donc utiliser ces GPDs étendues H, E et H̃3

.

pour chaque saveur u et d
pour produire des observables DVCS et les comparer aux données expérimentales. Un exemple
d’un tel calcul est présenté sur la figure 4

.

(panneau de gauche) avec une asymétrie de spin de
faisceau définie en fonction de la section efficace du processus ep→ epγ comme :

A−LU (φ) = dσ
−→ (φ)− dσ

−← (φ)
dσ

−→ (φ) + dσ
−← (φ)

, (7)

où φ est l’angle entre le plan leptonique et le plan de production, les flèches désignant l’hélicité
et le signe « − » la charge du faisceau4

.

. La cinématique de JLab choisie pour illustrer cela fait
partie d’un jeu de données publié par la collaboration CLAS [27

.

].
Il ne s’agit pas ici de dire quoi que ce soit sur la justesse de ce modèle, le but présent étant

simplement d’illustrer la procédure. Celle-ci peut être appliquée systématiquement à n’importe
quel modèle de quarks de valence pour produire des GPDs qui satisfont toutes les contraintes
théoriques et prêtes à l’emploi pour de la phénoménologie de DVCS sous diverses hypothèses
perturbatives. Étant donné la publication prochaine de nouvelles données de JLab 12 GeV
dans la région de valence, ce type d’études serait le bienvenu. Cela permettrait en effet de
tester la pertinence à basse échelle d’une troncature de valence des LFWFs et d’ouvrir la voie
à une phénoménologie systématique des LFWFs à travers les processus exclusifs et les GPDs.
Cela pourrait mener in fine à une phénoménologie unifiée avec à la fois les GPDs et les TMDs.

3On néglige la GPD Ẽ.
4JLab ne dispose que de faisceaux d’électrons.
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Introduction
A few years ago, the particle that gives their mass to the other elementary particles of the

Standard Model (SM) was discovered at the Large Hadron Collider (LHC), several decades after
the theoretical discovery of the Brout-Englert-Higgs mechanism. This completed the SM and
led the Particle Physics community in two directions, both going to higher and higher energies:
the main one devoted to challenging the SM and finding new physics, the other consisting
in a finer metrology of the SM. But one should not forget that some parts of the Standard
Model are not even fully understood yet, in particular what is known as the non-perturbative
regime of Quantum Chromodynamics (QCD), which is the theory of the strong interaction
that binds nucleons together. At low energies, Nuclear Physics aims at describing the structure
of nuclei, while at medium energies enters Hadron Physics with among other things the goal
of understanding how hadrons (such as the nucleons or the pions) are made in terms of the
fundamental degrees of freedom of QCD; the quarks and gluons.
One of the difficulties of QCD is that quarks and gluons which carry a color quantum

number cannot be observed; they are confined inside hadrons which are colorless bound-states.
Explaining this confinement is a major challenge. A second issue is the dynamical mass
generation of hadrons. Indeed, the Higgs mechanism contributes to no more than a few
percents of the visible mass of the universe. The rest is due to the strong interaction; gluons
and quarks interact inside the proton for instance and this energy makes up for almost all
its mass. We could say that a world where the Higgs does not couple to quarks would not
be much different from ours, as the mass of the bare quarks is negligible compared to this
Dynamical Chiral Symmetry Breaking phenomenon. These are the mysteries Hadron Physics
aims at shedding light1

.

on.
To achieve this, one uses scattering experiments at moderate to high energies and can often

count on factorization to separate:

• the small distance phenomena of the hard probe interacting with almost free constituents
of the hadrons, calculable with perturbative QCD thanks to the asymptotic freedom
behavior;

• from the large distance phenomena (of the order of the proton size for instance) that are
linked to the structure of the probed hadron and are intrinsically non-perturbative.

In the processes that interest us in the present thesis, the hard probe is a photon, usually
virtual and produced by a lepton. This allows us to access distributions of quarks and gluons
inside the hadron.
These distributions are non-perturbative objects that cannot be computed in principle,

unless one applies a discretization to solve the field theory as in Lattice QCD — but the
1Often virtual.
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Introduction

ability to compute such complex objects in this framework is still very limited — or relies on
models reproducing some QCD features (constituent quark models, Dyson-Schwinger equations,
etc). For this thesis, we are mostly interested in Generalized Parton Distributions (GPDs),
introduced in the late 90s, which encompass both elastic Form Factors (FFs) and Parton
Distribution Functions2

.

(PDFs), which were studied starting from the 60s and 70s and are
already quite well known. The latter are distributions of longitudinal momentum of partons
inside the hadron, while the former are related to distributions of charge (in the transverse
plane). GPDs provide additional information on the correlation between the longitudinal
momentum and the transverse position of partons.
Experimentally, this tomography of hadrons led to a large experimental program in the

numerous facilities around the world dedicated to Hadron Physics. In particular, for GPDs,
DESY in Germany and Jefferson Lab (JLab) in Virginia, USA, have been at the forefront of
the effort towards their extraction, with first data published at the start of the 2000s. A new
GPD era is starting with both the 12 GeV upgrade at JLab, which promises a larger kinematic
coverage in the valence region and a higher accuracy in upcoming data, and the COMPASS
collaboration (at CERN) providing new data in the sea quark region. In fine, the Electron Ion
Collider (EIC) project is driven in part by the promise of hadron tomography, and in particular
the extraction of GPDs in a wide kinematic region including the gluon dominated one at a
very high luminosity. All this new input with high accuracy will without doubt challenge the
current models of GPDs.
Phenomenologically, the difficulty resides in the fact that GPDs are not directly accessible

in experiment. The observables are convolutions of GPDs with a hard scattering kernel and
therefore an inverse problem needs to be solved. This is usually done by using functional forms
with free parameters that are fitted to the experimental data. However, GPDs are constrained
by several important properties, which renders the task more difficult as one often has to choose
between flexible parametrizations reproducing the data well but with poor predictive power or
take into account all the constraints with a parametrization too strict for data compatibility.
All this was acceptable within the range of accuracy previously achieved with experimental
data, but will not be sustainable with the new high precision era.
Naturally, the way to go is through ab initio computations, i.e. to use the state-of-the-art

modelling techniques developed to fulfill most QCD features. But even then, the issue arises
when it comes to GPDs that not all constraints are met at once. One interesting method
consists in using the Light-Front Wave-functions (LFWFs) expansion, but in practice does
not allow to access all the kinematic domain of GPDs, which is necessary for phenomenology.
The novel method of this thesis consists in extending this limited-domain GPD by solving a
Radon transform inverse problem in a general way and deriving the corresponding Double
Distribution (DD), which in doing so allows to fulfill a missing constraint. This approach can
help model building achieve the long promised goal of hadron tomography.
In Part. I

.

, we introduce the fundamentals of the field of GPDs (and hadron tomography
in general), with Chap. 2

.

in particular laying down the physics case3

.

. Parts II

.

and III

.

are
2PDFs constitute the main uncertainty in experiments at the LHC and their knowledge at high accuracy is

therefore crucial also for Particle Physics applications.
3As a reading advice, a newcomer to the field may want to skip Chap. 2

.

in a first reading as it may be
difficult to digest at first, and then come back to it later with enough distance. On the contrary, someone
familiar with the field (such as a GPD experimentalist) may want to skip chapters 1

.

and 3

.

in which they would

2



the core of this thesis, with the former establishing the necessary theoretical ground4

.

and the
latter delving into the aforementioned covariant extension method. In Part. III

.

, we start by
motivating the approach and explaining its principle (chapter 7

.

), then we detail the chosen
numerical procedure in Chap. 8

.

and finally we illustrate how this can be applied to extend
LFWF-based models of GPDs in Chap. 9

.

with a few relevant examples (mainly in the pion
case).

probably find nothing new, but still read Chap. 2

.

which reviews the interesting physics of hadron tomography
motivating the existing experimental programs.

4Reading it is necessary to fully understand the subsequent part, but it can also be of interest as a standalone
review of GPDs (chapter 4

.

), DDs (chapter 5

.

) and LFWFs (chapter 6

.

).
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Part I.

Nucleon tomography
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Chapter 1.

Probing the nucleon: a long story short
We start by introducing very succinctly the main milestones [28

.

–30

.

] in the field of hadron
structure and more generally QCD physics, its direct parent. We will cover in this chapter the
history of the field up to the 1970s, while the more recent formalism will be introduced in the
next chapters.

1.1. From the hydrogen atom. . .
1.1.1. Discovery of the proton
The proton was discovered in 1919 by Rutherford who noticed that a hydrogen nucleus is

liberated from a nitrogen atom once disintegrated [31

.

]. This hydrogen nucleus was thought of
as an elementary particle, the proton, and its spin was confirmed to be 1

2 in 1927 [32

.

]. The first
hints of an internal structure of the proton came only in 1933 when experiments [33

.

–36

.

] shed
light on its magnetic moment, much larger than what was expected for a point-like fermion
obeying Dirac’s equation. In other words, it was found to be:

µp = (1 + κ) e

2Mp

>
e

2Mp

, (1.1)

where we denoted by κ the anomalous magnetic moment, e the positron charge and Mp the
proton mass.

1.1.2. Elastic scattering and charge radius
Therefore, to confirm the spatial extension of the proton, several scattering experiments were

pursued. In the context of particle physics, an elastic scattering means that we have identical
particles in the final state. Here, we are considering a scattering of an electron off a proton
(and more generally a nucleon), as sketched in Fig. 1.1

.

(left panel). On top of the notations of
the diagram, we also define the momentum transfer1

.

, corresponding to the photon virtuality,
which is space-like:

∆ ≡ P2 − P1 = l − l′, t ≡ ∆2 < 0 . (1.2)

This virtuality is the only independent Lorentz scalar.
1We choose here a consistent notation with that of GPDs in Chap. 4

.

, despite this virtuality being usually
denoted −Q2.
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Chapter 1. Probing the nucleon

e− (l)

p (P1)

γ∗ (∆)

p (P2)

e− (l′)

Figure 1.1. Left: Elastic Scattering of a lepton (e.g. electron) off a nucleon (e.g. proton)
target, with a single photon exchange. Right: Proton electric Form Factor divided by the
dipole Form Factor GD (Q2) =

(
1 + Q2

0.71 GeV2

)−2
. Data taken from worldwide experiments. See

Ref. [37

.

], where the figure was taken, for details.

We can write the amplitude of the process, at the lowest order in QED, in the form:

Mep→ep = e2

∆2 ū (l′) γµu (l) 〈p, P2| Jem
µ (0) |p, P1〉 , (1.3)

where we omitted the spin dependence of spinors and states. Despite not being able to compute
directly the matrix element of the proton electromagnetic current, we can parametrize it with
only two real functions of the Lorentz scalar ∆2 in the space-like region:

〈p, P2| Jem
µ (0) |p, P1〉 = ū (P2)

(
F1
(
∆2
)
γµ + i F2

(
∆2
) σµν∆ν

2MN

)
u (P1) , (1.4)

where we denoted the nucleon mass MN and we refer to the appendix A.1

.

for a summary of
the notations for spinors and Dirac matrices. This reduction can be obtained by applying the
Dirac equation (for the spinors), current conservation and hermiticity [38

.

].
F1 and F2 are called Dirac and Pauli Form Factors (FFs) and they are normalized such that

their value at ∆2 = 0 gives respectively the charge of the nucleon (in units of the positron
charge) and its anomalous magnetic moment κ. A point-like particle would have a vanishing
Pauli Form Factor, and a constant Dirac Form Factor. Another parametrization, from Sachs,
is also possible in terms of electric and magnetic FFs:

GE

(
∆2
)

= F1
(
∆2
)

+ ∆2

4M2
N

F2
(
∆2
)
, (1.5)

GM

(
∆2
)

= F1
(
∆2
)

+ F2
(
∆2
)
. (1.6)
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1.2. . . . to quarks and gluons

These Form Factors can be interpreted as the three-dimensional Fourier transform of the charge
and magnetization densities, respectively, when one considers the Breit Frame (see Sec. 2.3

.

),
in the non-relativistic limit.
The root mean square (rms) charge radius can be inferred as:

〈r2〉 = −6 dGE

d (−t) (0) , (1.7)

but an extrapolation is necessary, as experimentally we can access only finite values of ∆2. To
this day, despite very precise measurements, the determination of the proton radius remains
an open subject, due to significant discrepancies between these elastic scattering and several
electronic hydrogen atomic measurements on one hand and muonic hydrogen Lamb shift
measurements on the other. See e.g. Ref. [39

.

] and references therein.
But coming back to our historical journey, elastic scattering experiments conducted between

1954 and 1957 at SLAC showed that indeed the proton has a spatial extension [40

.

, 41

.

], by
measuring the ∆2-dependence of these FFs, with the Rosenbluth [42

.

] formula for the cross-
section:

dσ
d2Ω = α2

em

4E2 sin4 θ
2

E ′

E

(
G2
E + τG2

M

1 + τ
cos2 θ

2 + 2τG2
M sin2 θ

2

)
, (1.8)

where αem = e2

4π is the QED coupling constant or fine structure constant, τ = −∆2

4M2
N

and the
cross-section is expressed in the lab frame, i.e. the nucleon target rest frame. Note that for a
given beam energy E (for the incoming electron), there is only one independent variable θ (the
angle between the incoming and outgoing electrons) or equivalently ∆2. The outgoing electron
energy E ′ is constrained by:

E ′ = E

1 + 2 E
MN

sin2 θ
2

⇐⇒ P1 ·∆ + 1
2∆2 = 0 . (1.9)

By varying the incident energy E and the angle θ, while keeping ∆2 = −4EE ′ sin2 θ
2 fixed for

instance, it is possible to separate the Form Factors. See Fig. 1.1

.

(right panel) for a recent
compilation of measurements of the electric Form Factor.

1.2. . . . to quarks and gluons
To understand this composite particle that is the proton, and the many other hadrons that

were experimentally discovered in the mean time, two approaches were historically followed.
One consisted in the spectroscopy of these hadrons, i.e. classifying them (in terms of mass, spin,
and other quantum numbers). The second one, closer to the subject of this thesis, consisted in
high energy experiments aiming at “breaking” these hadrons to reveal their inner constituents.

1.2.1. Quark model and spectroscopy
The spectroscopy experiments led to two important theoretical steps in the road to QCD: the

Eightfold Way [43

.

, 44

.

], and then the Quark Model [45

.

, 46

.

], both of which are due to Gell-Mann,
at the beginning of the 1960s. This allowed to classify hadrons in terms of octets, nonets and

9



Chapter 1. Probing the nucleon

Ξ−

Σ−

n p

Σ+

Ξ0

Λ

Σ0

K−

π−

K0 K+

π+

K̄0

η

π0

Figure 1.2. Baryon (left) and pseudo-scalar meson (right) octets, 1
2

+ and 0− respectively.
Horizontal lines associate particles of same strangeness, while diagonal lines are for the same
charge.

decuplets, in the sort of diagrams represented in Fig. 1.2

.

, with the same spin and parity JP ,
and correctly predicted new composite particles such as the Ω−.
The basic idea [47

.

] is that of the flavor symmetry group SU(3), expanding the previous
isospin group SU(2) of Heisenberg where the fundamental representation consisted of nucleons
(proton and neutron). In the case of SU(3), there is no observed fundamental representation
(3-dimensional), the hadrons being only in decuplets (10-dimensional representation), octets (8-
dimensional) and singlets, the latter two being usually assembled into a nonet for mesons. This
led to introduce the quarks u, d and s as only mathematical objects forming this fundamental
representation, their antiquarks being in the conjugate representation. The Quark Model
asserts that the baryons are composed of three quarks, while the mesons are composed of a pair
quark-antiquark. In mathematical language, the hadrons belong to irreducible representations
of direct products of the fundamental representation. For mesons, we have:

3⊗ 3̄ = 8⊕ 1 , (1.10)

while for baryons:
3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 . (1.11)

We recover the aforementioned decuplets, octets and singlets.
These quarks being spin-1/2 particles, they should obey Pauli’s exclusion principle, which

causes a problem for instance for the baryon ∆++, a uuu state. This prompted the introduction
of color [48

.

–51

.

] as an additional quantum number with the postulate that only color-singlet
states are observable (colorless hadrons). This comes with the introduction of an exact
symmetry with the group SU(3) of color. This was not necessary for mesons, since pairs of
quark-antiquark can never have a completely symmetric wave-function, but it is crucial for
baryons, since looking at Eq. (1.11

.

) but interpreting it now for SU(3)color instead of SU(3)flavor,
we can show that the singlet representation is completely antisymmetric, which means that the
rest of the wave-function needs to be completely symmetric (for orbital angular momentum,
spin and flavor). The issue is thus solved, and later, QCD will be born as a gauge theory for
this color group [52

.

–54

.

].
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1.2. . . . to quarks and gluons

e− (l = (E, l))

p (P = (MN ,0))

γ∗ (q)

X (P ′)

e− (l′ = (E ′, l′))

Figure 1.3. Deep-Inelastic Scattering of a lepton (e.g. electron) off a nucleon (e.g. proton)
target. The four-vectors are expressed in the target rest frame.

1.2.2. Deep Inelastic Scattering and Parton model
But in the road to QCD, a crucial role was played by the Deep Inelastic Scattering (DIS) off

a nucleon, an experimental program started at SLAC [55

.

, 56

.

] at the end of the 1960s. This
ep→ eX process (where X denotes the many particles that can be produced by breaking the
proton) is represented in Fig. 1.3

.

, and we define the following notations:

Q2 ≡ −q2 > 0 , xB ≡
Q2

2P · q , (1.12)

the former being the virtuality of the photon, and the latter is called Bjorken’s scaling variable.
We define also the deep inelastic regime as the limit where both Q2 and P · q are large but
their ratio xB stays finite. This is also called the Bjorken limit.

We could follow the same reasoning as in Sec. 1.1.2

.

and introduce a hadronic electromagnetic
current at the level of the amplitude, then integrate to take into account all the possible final
state particles (it is an inclusive reaction). Instead, we will consider directly the cross-section,
which can be written as:

dσ
d2ΩdE ′ = α2

em

Q2
E ′

E
LµνWµν , (1.13)

where the leptonic tensor describes the pure QED vertex:

Lµν = 1
2 Tr ( 6 k′γµ 6 kγν) = 2 (kµk′ν + kνk′µ − k · k′ηµν) , (1.14)

and the hadronic tensor can be again parametrized by only two structure functions, when using
hermiticity and current conservation:

W µν = −W1

(
ηµν + qµqν

Q2

)
+ W2

M2

(
P µ + P · q

Q2 q
µ

)(
P ν + P · q

Q2 q
ν

)
. (1.15)

We end up with the equivalent of the Rosenbluth formula for inclusive inelastic scattering:

dσ
d2ΩdE ′ = α2

em

4E2 sin4 θ
2

(
2W1 sin2 θ

2 +W2 cos2 θ

2

)
, (1.16)

Note that now, these structure functions depend on two Lorentz scalars Q2 and xB, just as
there are two independent variables E ′ and θ for experimentalists to play with, for a given

11



Chapter 1. Probing the nucleon

incident energy E. We can recover the elastic case when xB = 1, i.e. with the constraint of
Eq. (1.9

.

) which is relaxed here. In other words, setting

W1
(
xB, Q

2
)
−→ G2

M (q2)
2MN

δ (xB − 1) (1.17)

W2
(
xB, Q

2
)
−→ 1

2MN τ

G2
E (q2) + τG2

M (q2)
1 + τ

δ (xB − 1) , (1.18)

and integrating over E ′ gives back the elastic cross-section (1.8

.

). We denoted by δ ( · ) the
Dirac distribution.

At high enough energy, we can say that the photon interacts directly with the constituents
of the proton, and that they are seemingly free. Suppose these partons2

.

are spin-1/2 point-like
particles carrying a fraction xq of the proton momentum: pq = xqP . The partonic cross-section
for a constituent q can be inferred from Eq. (1.16

.

) but with the following trivial structure
functions:

W q
1 =

e2
q

2mq

δ (xqB − 1) =
e2
q

2MN

δ (xB − xq) , (1.19)

W q
2 =

2mq e
2
q

Q2 δ (xqB − 1) =
2MN x

2
q e

2
q

Q2 δ (xB − xq) . (1.20)

We simply used here Eqs. (1.17

.

)-(1.18

.

) for a point-like particle, i.e. GE = GM = charge, and
denoted by eq and mq = xqMN respectively the charge (in units of the positron charge) and
mass3

.

of the parton q, whereas the fractional Bjorken variable is defined naturally for partons
as:

xqB ≡
Q2

2 pq · q
= xB
xq

. (1.21)

The next step is to sum incoherently (i.e. adding the probabilities and not the amplitudes) the
partonic contributions to the cross-section:

W1 =
∑
q

∫ 1

0
dxq q (xq)W q

1 = 1
2MN

∑
q

e2
q q (xB) , (1.22)

W2 =
∑
q

∫ 1

0
dxq q (xq)W q

2 = 2MN x
2
B

Q2

∑
q

e2
q q (xB) , (1.23)

where q (x) is the probability density for the parton q to carry a momentum fraction x.
We retrieve two results:

Bjorken scaling law In the Bjorken limit of large Q2 and finite xB, the structure functions4

.

F1 ≡MNW1 and F2 ≡ Q2

2MN xB
W2 do not have a Q2 dependence [58

.

]. This is a consequence
of the point-like nature of these partons.

2Term coined by Feynman [57

.

] when quarks were not yet taken seriously, but now refers to the elementary
constituents of hadrons, i.e. both quarks and gluons.

3This variable mass of partons may be surprising, but this reasoning can be made more rigorous by working
in the infinite momentum frame where all masses are neglected.

4These notations, due to Bjorken, should not be confused with the Pauli and Dirac electromagnetic Form
Factors.
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1.2. . . . to quarks and gluons

Callan-Gross relation For spin-1/2 partons [59

.

], the structure functions obey the relation

2xB F1 (xB) = F2 (xB) . (1.24)

Both of these predictions were confirmed experimentally [55

.

, 56

.

]. This really puts a constraint
on the charged constituents of the proton, and hints that they are indeed the quarks of Gell-
Mann. Moreover, the fact that they come in three colors was also confirmed with the process
of hadron production with electron-positron scattering e+e− → hadrons. See e.g. Fig. 51.6 of
Ref. [60

.

] (Particle Data Group).
Let us now redefine q (x) to be the number density5

.

of quarks of flavor q carrying the
momentum fraction x. We call this object a Parton Distribution Function (PDF) and it
encodes the soft (or large distance) physics, that is due to QCD. If we consider the composition
of the proton to be strictly uud as in the Quark model, we would need∫ 1

0
dx xu (x) +

∫ 1

0
dx x d (x) = 1 , (1.25)

i.e. the proton momentum is carried entirely by the quarks u and d, but this is not verified
experimentally. Only about half of it is accounted for by the quarks. This provides indirect
evidence6

.

to the existence of gluons and their contribution to the proton momentum in average
consists of the missing half. In fact, these gluons are constantly interacting and producing
quark-antiquark pairs. But only the original uud quarks of Gell-Mann contribute to the
quantum numbers of the proton and we call them valence quarks. The extra quarks (resp.
antiquarks) are referred to as sea quarks (resp. antiquarks). The virtual photon can couple to
any charged particle, including the sea quarks and antiquarks. We should therefore consider
their contribution and we note, for q = u, d, s, etc:

q (x) = qval (x) + qsea (x) , with {qval ≡ q − q̄
qsea = q̄sea ≡ q̄

, (1.26)

where we used the fact that the quarks and antiquarks of the sea come always in pairs. Hence,
the structure function should be in total (if we restrict ourselves to the three light flavors):

F2 (x) = x

((2
3

)2
[u (x) + ū (x)] +

(
−1

3

)2 [
d (x) + d̄ (x) + s (x) + s̄ (x)

])
. (1.27)

Note that these distributions are constrained by the number of valence quarks:∫ 1

0
dx [u (x)− ū (x)] = 2 ,

∫ 1

0
dx

[
d (x)− d̄ (x)

]
= 1 , (1.28)

and similar relations in the case of other hadrons. Figure 1.4

.

(right panel) shows recent
extractions of these PDFs, where we notice that valence quark contributions are peaked around
one third of the proton momentum, but that at lower fractions, sea quarks and then mainly
gluons become dominant.

5Notice that now the quarks of the same flavour are indistinguishable in the definition, contrary to before
where we indexed all the constituents independently. The PDF u (x) would be the sum of the probability
densities for each quark u.

6The observation of a three-jet event in e+e− → hadrons is a more direct evidence for gluons.
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Chapter 1. Probing the nucleon

Figure 1.4. Left: Structure function F2 of the proton from worldwide measurements. Right:
Unpolarized PDFs of the proton at scale 10 GeV2 from the NNPDF collaboration [61

.

]. Figures
taken from Ref. [60

.

] (Particle Data Group).

1.2.3. QCD Factorization
The Parton model implies a factorization between the soft physics (i.e. large distance) and

the hard scattering with partons (i.e. small distance). We can recover this behavior in the
context of perturbative QCD with more rigorous techniques such as the Operator Product
Expansion (OPE), and actually the leading order (LO) in αS (the strong coupling constant)
corresponds to the result of the Parton model. But contrary to the simple assumptions we
made, the structure functions do have a scale dependence; the quarks are not free inside
the proton. This appears for instance with next-to-leading order (NLO) computations. The
experimental confirmation of Bjorken’s scaling law is due to the xB-region originally considered,
but subsequent data with better precision did show a logarithmic scale dependence, as shown
in Fig. 1.4

.

(left panel).
Thus, in general, the structure function F2 for instance can be written as a convolution of

parton distributions and a hard scattering kernel [62

.

]:

F2
(
xB, Q

2
)

=
∑

a=g,u,d,...

∫ 1

0
dxCa

2

(
xB
x
,
Q2

µ2
F

)
a
(
x, µ2

F

)
+O

(
M2

N

Q2

)
, (1.29)

where we neglected higher-twist contributions. C2 is a coefficient function, obtained via
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1.2. . . . to quarks and gluons

perturbation theory, which depends on the factorization scale µF . The structure function being
observable, it should not depend on that scale, and this means that the dependence is cancelled
with that of the PDF. The latter is governed by the so-called DGLAP7

.

equations [63

.

–65

.

],
which writes for instance for a valence distribution:

µ2
F

∂

∂µ2
F

qval
(
x, µ2

F

)
= αS (µ2

F )
2π

∫ 1

x

dy
y
Pqq

(
x

y

)
qval

(
y, µ2

F

)
, (1.30)

where the so-called splitting function Pqq can be found in textbooks (e.g. [66

.

]). The PDFs can
thus be parametrized at a given low scale, and then evolved to a higher scale for phenomenology
(as we usually take µF = Q for convenience).

Note that in this factorization, PDFs are universal and not restricted to DIS. They can be
extracted from one channel and used to interpret experimental data in another, such as the
Drell-Yan process.

7Dokshitzer–Gribov–Lipatov–Altarelli–Parisi.
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Chapter 2.

Partonic structure of hadrons
After introducing the notion of parton distributions in a phenomenogical way, we can now

turn to their more general framework with the full zoology of these distributions, which can in
principle allow us to understand the spin, spatial and momentum structure of hadrons. We
will start with the most fundamental object, that is the relativistic Wigner distribution.

2.1. Wigner distributions
2.1.1. In Quantum Mechanics
In classical mechanics, the phase-space distribution function f (p, q, t) obeying Liouville’s

theorem, where q and p are respectively the generalized position and momentum, provides a
probabilistic interpretation; f is a number density of particles around (p, q) in phase space at
a given time t.

To generalize this to Quantum Mechanics, Wigner introduced the quasiprobability distribu-
tion [67

.

]:
ρ (p, q, t) =

∫
d3r ψ∗

(
q − 1

2 r, t
)
ψ
(
q + 1

2 r, t
)
e−ip · r , (2.1)

where ψ is the wave-function of a pure state. This distribution is no longer necessarily positive,
as it encodes quantum interference. But integrating it yields the usual probability densities:

∫ d3p

(2π)3 ρ (p, q, t) = ψ∗ (q, t)ψ (q, t) , (2.2)∫
d3q ρ (p, q, t) = ψ̃∗ (p, t) ψ̃ (p, t) , (2.3)

where ψ̃ is the Fourier transform of ψ.
The Wigner distribution is closely related to the so-called density operator (or density matrix)

ρ̂, as they are linked through a Wigner-Weyl transform1

.

:

ρ (p, q, t) =
∫

d3r
〈
q + 1

2 r

∣∣∣∣ ρ̂ (t)
∣∣∣∣q − 1

2 r
〉
e−ip · r . (2.4)

This, in passing, generalizes the Wigner distribution to a mixed state ρ̂ = ∑
k pk |ψk〉 〈ψk|, with

probabilities pk for each state ψk. For a pure state ρ̂ = |ψ〉 〈ψ|, we recover Eq. (2.1

.

). The
1More precisely, this is the Wigner transform, and its inverse is the Weyl quantization [68

.

].
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Chapter 2. Partonic structure of hadrons

Wigner distribution allows to compute expectation values of an operator Â [69

.

]:

〈Â〉 (t) =
∫

d3q
d3p

(2π)3 ρ (p, q, t) a (p, q) . (2.5)

where a is the associated phase-space function of the operator; i.e. its Wigner transform, as in
Eq. (2.4

.

)).

2.1.2. In Quantum Field Theory
The generalization of this distribution to the relativistic framework of QCD was first

attempted by Ji [70

.

, 71

.

]. Unfortunately, it is difficult to relate it to observable quantities.
Indeed, in the case of a three-dimensional localization in space, relativistic corrections spoil the
interpretation as a Fourier transform of some parton distributions with respect to momentum
transfer, as we will illustrate in the simpler case of Form Factors in Sec. 2.3

.

.
To circumvent this issue, Lorcé and Pasquini [72

.

] defined a five-dimensional alternative;
two-dimensional in impact parameter space and three-dimensional in momentum space. It
writes for a quark of flavor q in two equivalent forms:

ρq[Γ] (b⊥,k⊥, x,S) =
∫

d2D⊥

〈
P+,−1

2 D⊥,S
∣∣∣∣ Ŵ q

[Γ] (b⊥,k⊥, x)
∣∣∣∣P+,

1
2 D⊥,S

〉
(2.6)

=
∫ d2∆⊥

(2π)2

〈
P+,

1
2 ∆⊥,S

∣∣∣∣ Ŵ q
[Γ] (b⊥,k⊥, x)

∣∣∣∣P+,−1
2 ∆⊥,S

〉
, (2.7)

where the Wigner operator

Ŵ q
[Γ] (b⊥,k⊥, x) = 1

2

∫ dz−d2z⊥

(2π)3 ei(xP+z−−k⊥ ·z⊥) ψ̄q
(
b− z

2

)
ΓWψq

(
b+ z

2

)∣∣∣∣ z+=0
b+=b−=0

(2.8)

is sandwiched between hadronic states of definite longitudinal momentum and either definite
transverse position in Eq. (2.6

.

) or transverse momentum in Eq. (2.7

.

), with a polarization S.
The hadron has vanishing average transverse position and momentum, hence b⊥ and k⊥ can
be interpreted as the relative average position and momentum of the quark in the transverse
plane. We note x = k+/P+ the longitudinal momentum fraction of the quark with respect to
the hadron (see App. A.1

.

on light-cone coordinates), Γ a given Dirac matrix andW is a Wilson
line joining the fields at different points to ensure gauge invariance. The spatially localized
state is simply related to the state of definite transverse momentum via Fourier transform:

∣∣∣P+,R⊥
〉

=
∫ d2P⊥

(2π)2 e
iP⊥ ·R⊥

∣∣∣P+,P⊥
〉
. (2.9)

This localization is possible when working in the Infinite Momentum Frame [8

.

, 73

.

] (IMF)
where P+ is large or in light-cone formulation (see Chap. 6

.

), due to the Galilean subgroup of
transverse boosts where plus-momentum plays the role of mass in non-relativistic mechanics,
and R⊥ corresponds to the center of plus-momentum of the hadron [74

.

, 75

.

]:

R⊥ =
∑
i

xi b⊥i , (2.10)
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2.2. 3D tomography of hadrons

b⊥

k⊥

xP+

TMSD
k⊥

TMFF
k⊥,∆⊥

GTMD
x, ξ,k⊥,∆⊥

Charge

PDF
x

FF
∆2
⊥

TMD
x,k⊥

GPD
x, ξ,∆⊥

∆ = 0∫
d2k⊥∫
dx

Figure 2.1. Left: Transverse plane representation of the Wigner distribution variables: impact
parameter b⊥, transverse momentum k⊥ and longitudinal momentum fraction x of partons.
Right: Full zoology of parton distributions. See Ref. [25

.

] for more details.

where b⊥i is the transverse position of each parton. This conserved quantity is the equivalent
of the center of mass in a non-relativistic framework.
These five-dimensional Wigner distributions are related by Fourier transform to the quark-

quark correlators defining the so-called Generalized Transverse Momentum Dependent parton
distributions (GTMDs) [76

.

, 77

.

]:

W q
[Γ] (∆⊥,k⊥, x,S) =

∫
d2b⊥ e

−i∆⊥ · b⊥ ρq[Γ] (b⊥,k⊥, x,S) (2.11)

=
〈
P+,

1
2 ∆⊥,S

∣∣∣∣ Ŵ q
[Γ] (0⊥,k⊥, x)

∣∣∣∣P+,−1
2 ∆⊥,S

〉
, (2.12)

taken at vanishing ∆+, where in the passage to the second line we used translation invariance
in the transverse plane [74

.

], i.e.〈
P+,−1

2 D⊥,S

∣∣∣∣ Ŵ q
[Γ] (b⊥,k⊥, x)

∣∣∣∣P+,
1
2 D⊥,S

〉
(2.13)

=
〈
P+,−1

2 D⊥ − b⊥,S
∣∣∣∣ Ŵ q

[Γ] (0⊥,k⊥, x)
∣∣∣∣P+,

1
2 D⊥ − b⊥,S

〉
.

2.2. 3D tomography of hadrons
GTMDs are mother distributions to both Generalized Parton Distributions (GPDs) and

Transverse Momentum Dependent parton distributions (TMDs). Indeed, integrating Eqs. (2.6

.

)-
(2.7

.

) over b⊥ or, equivalently, setting ∆⊥ = 0 in Eq. (2.12

.

) yields the correlators defining TMDs.
On the other hand, integrating Eq. (2.12

.

) over k⊥ yields the zero-skewness correlators defining
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Chapter 2. Partonic structure of hadrons

GPDs2

.

. Figure 2.1

.

summarizes this and sketches the full zoology of parton distributions with
their relations to each other.
It would be tempting to consider b⊥ and k⊥ as two conjugate Fourier variables, but this

is not true. TMDs and GPDs are independent objects that share only the forward limit, i.e.
PDFs, as limiting case. In fact, average positions (resp. momenta) are Fourier conjugates of
differences of momenta (resp. positions) [75

.

]:

average transverse momentum k⊥
F←→ z⊥ difference of transverse positions

average transverse position b⊥
F←→∆⊥ momentum transfer

Figure 2.2. GTMD diagram with only transverse variables. Thick lines represent hadrons,
whereas thin lines represent partons.

In Fig. 2.2

.

, we sketch the general diagram of GTMDs in terms of transverse variables. We
ignore longitudinal ones for simplicity. The corresponding matrix element would be roughly:

∫
d2z⊥ e

−ik⊥ ·z⊥
〈
−∆⊥

2

∣∣∣∣∣ ψ̄q
(
−z⊥

2

)
. . . ψq

(
z⊥
2

) ∣∣∣∣∣∆⊥2
〉

which, if integrated over k⊥ (i.e. assigning z⊥ = 0⊥) and once taking into account the
longitudinal variables, would give a GPD matrix element (but this is written rigorously in
Chap. 4

.

). Likewise, taking ∆⊥ = 0⊥ yields a TMD matrix element.
Therefore, both GPDs and TMDs give a 3D picture of hadrons. But in the case of GPDs, we

should first consider their inverse Fourier transform: Impact Parameter Distributions3

.

(IPDs).
As their name suggest, they depend on the impact parameter b⊥:

IPD
(
x, b2

⊥

)
=
∫ d2∆⊥

(2π)2 e
i b⊥ ·∆⊥ GPD

(
x, ξ = 0, t = −∆2

⊥

)
, (2.14)

but only via its square, due to rotation invariance. Notice that we take the skewness
ξ = −∆+/ (2P+) (see Chap. 4

.

) to be vanishing. This is crucial for the probabilistic in-
terpretation [8

.

] as a density of partons with longitudinal momentum fraction x and transverse
2See Chap. 4

.

for the full definition of such matrix elements, in the general case of non-vanishing skewness.
3Also called Impact Parameter Dependent PDFs.
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2.3. Breit frame vs transverse plane interpretations

distance b⊥ from the hadron’s center of plus-momentum (2.10

.

). For a nucleon of polarization
S and a parton of helicity λ, this density4

.

writes [78

.

–80

.

] in terms of the IPDs H, E and H̃5

.

:

ρ (x, b⊥, λ,S) = 1
2

[
H
(
x, b2

⊥

)
− Si⊥εijb

j
⊥

1
MN

∂

∂b2
⊥
E
(
x, b2

⊥

)
+ λΛH̃

(
x, b2

⊥

)]
, (2.15)

where we wrote S⊥ and Λ respectively the transverse and longitudinal components of the spin
vector at rest S, and εij is the Levi-Civita symbol. In the helicity basis considered in Sec. 4.2

.

,
states with a transverse polarization can be written as:

|S⊥,Λ〉 = cos θ/2 |+〉+ ei φ sin θ/2 |−〉 , (2.16)

where S = (S⊥,Λ) = (sin θ cosφ, sin θ sinφ, cos θ). Notice that we do recover |0⊥,±〉 = |±〉, as
the longitudinal polarization corresponds to the light-cone helicity. For the case of a transversely
polarized partons, we refer to the literature [79

.

, 80

.

].
The promise of nucleon tomography in three dimensions — one of longitudinal momentum

and two of either transverse position (in the case of GPDs) or momentum (for TMDs) — is
the main reason driving the various experimental programs in this field. In this thesis, we will
consider only the GPD side. In particular, the next

.

chapter will review the efforts to extract
these GPDs by performing exclusive processes.

2.3. Breit frame vs transverse plane interpretations
We have seen that the electromagnetic Form Factors are interpreted as Fourier transforms

of the charge and magnetization densities in the Breit frame. This frame is defined such that
P1 + P2 = 0, where P1 = (E1,P1) and P2 = (E2,P2) are the incoming and outgoing nucleon
momenta respectively (see Sec. 1.1.2

.

), and it allows one to write the matrix element of Eq. (1.4

.

)
as:

〈p, P2| Jem
0 (0) |p, P1〉 = 2MN GE

(
∆2
)
, (2.17)

after some manipulations with spinors, and similarly for the magnetic form factor. The question
now is can this be considered the three-dimensional Fourier transform of the charge distribution.
To verify this, we will consider the simple case of a spinless hadron, for which there is only one
electromagnetic Form Factor F defined as:

〈P2| Jem
µ (0) |P1〉 = (P1µ + P2µ) F

(
∆2
)
, (2.18)

and there is no need to choose the Breit frame anymore.
Following Ref. [8

.

], we will consider a wave packet

|ψ〉 =
∫ d3P

(2π)3√2E
ψ (P ) |P 〉 (2.19)

4If we do not take into account the parton helicity, summing over λ = ±1 would yield a density equal to
the IPD H (in an unpolarized or longitudinally polarized nucleon), as it is the case for a spinless hadron such
as the pion.

5These IPDs correspond to the inverse Fourier transform (2.14

.

) of the GPDs defined in Sec. 4.2

.

.
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Chapter 2. Partonic structure of hadrons

where the energy is constrained by the on-shell relation, i.e. E =
√
M2

N + P 2. This way, the
charge density can be well defined and we write its Fourier transform:

Fψ (∆′) =
∫

d3r e−i∆
′ · r 〈ψ| Jem

0 (r) |ψ〉 (2.20)

=
∫

d3r e−i∆
′ · r

∫ d3P1 d3P2

(2π)6√2E1 2E2
ψ∗ (P2)ψ (P1) 〈P2| Jem

0 (r) |P1〉 .

Then, using
〈P2| Jem

0 (r) |P1〉 = eir · (P2−P1) 〈P2| Jem
0 (0) |P1〉 , (2.21)

which introduces a delta function constraining ∆′ = P2 − P1 = ∆, we end up with

Fψ (∆) =
∫ d3P1

(2π)3√2E1 2E2
ψ∗ (P1 + ∆)ψ (P1) 〈P1 + ∆| Jem

0 (0) |P1〉

=
∫ d3P1

(2π)3
E1 + E2

2
√
E1E2

ψ∗ (P1 + ∆)ψ (P1)F
(
∆2
)
, (2.22)

where in the last line we used the definition (2.18

.

) of the form factor. Notice that the form
factor depends on ∆2 = (E2 − E1)2 −∆2 and therefore cannot be taken out of the integral,
unless one takes the non-relativistic limit. This would imply E1+E2

2
√
E1 E2

∼ 1 and ∆2 ∼ −∆2. If
we also choose a wave packet broad in momentum space, i.e. localized in position space, we
end up with the desired result:

Fψ (∆) = F
(
−∆2

) ∫ d3P1

(2π)3 ψ
∗ (P1)ψ (P1) (2.23)

= F
(
−∆2

)
.

Unfortunately, relativistic corrections would spoil this identification. They come with terms
of the form P1 ·∆

E2
1

and ∆2

E2
1
, and shift for instance the rms charge radius (1.7

.

) obtained from
Fψ (∆) with respect to the one we would obtain from F (∆2). This suggests to work in
the Infinite Momentum Frame, as in that case E1 → ∞ whereas P1 ·∆ and ∆2 stay finite.
Contrary to before, we would consider a wave packet localized only in the transverse plane, as
it is the case in Eq. (2.9

.

), with a plane wave in the longitudinal direction with a very large
longitudinal momentum, and we would probe this system only with a transverse momentum
transfer ∆2

⊥. Doing so, the relativistic corrections would be negligible [8

.

] and we would recover:∫
d2b⊥ e

−i∆⊥ · b⊥ 〈ψ| Jem
0 (b⊥) |ψ〉 = F

(
−∆2

⊥

)
. (2.24)

Note that, due to the two-dimensional Fourier transform, the rms impact parameter would be:

〈b2
⊥〉 = −4 dF

d (∆2
⊥) (0) , (2.25)

instead of Eq. (1.7

.

) with the factor 6. For a spin-1/2 hadron, F should be replaced by the Dirac
form factor F1.
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2.4. Spin decomposition

The reasoning is the same for GPDs (resp. GTMDs). In order to relate them to IPDs
(resp. Wigner distributions), we can probe the hadron only with a transverse momentum
transfer. This means setting the skewness ξ = 0, i.e. ∆+ = 0. Hence why we introduced
only five-dimensional Wigner distributions and GTMDs. We will nevertheless consider the
skewed GPDs in Chap. 4

.

, as the skewness is crucial for phenomenology, experimental access
at vanishing skewness being out of reach. An interpretation in impact parameter space at
non-zero skewness was given in Ref. [74

.

], but the probabilistic interpretation is lost, as the
IPD would no longer be positive. Moreover, only in the case ξ = 0 does the Fourier conjugate
of ∆⊥ correspond to the impact parameter b⊥, interpreted as the distance of the active parton
from the center of plus-momentum of the hadron (2.10

.

). In general, it is not true. For instance,
for x = ξ, the Fourier conjugate of ∆⊥ is the distance, usually denoted r⊥, of the active parton
from the spectators center of plus-momentum [75

.

, 81

.

].
Note that using only the IMF for this probabilistic interpretation is not really a restriction,

as it is precisely in this frame that the physical picture of a hadron as a collection of partons
holds, all of them moving fast and the light-cone momentum P+ of the hadron becoming
proportional to the longitudinal momentum P 3 and to its energy.

2.4. Spin decomposition
Another historical incentive for studying GPDs was the spin budget “puzzle”. Indeed, Ji

suggested in Ref. [82

.

] a gauge invariant decomposition of the nucleon spin, in terms of quark
spin, quark orbital angular momentum and gluon total angular momentum, and related this to
sum rules of GPDs.
First, we need to start with the Belifante energy-momentum tensor T µν , which is the sum

over the quark and gluon contributions:

T µνq = ψqγ(µi
↔
Dν)ψq , T µνg = GµρGν

ρ + 1
4η

µνGρσGρσ , (2.26)

where (. . .) denotes a symmetrization of indices,
↔
D is the left-right covariant derivative (see

Sec. 4.1.4

.

), ψq are the quark fields, and Gµν the gluon field strength tensor. We can then define
the total angular momentum density as:

Mρµν (x) = T ρν (x)xµ − T ρµ (x)xν . (2.27)

The z-component of the spin for a nucleon at rest can be taken to be the light-cone helicity for
a nucleon moving along the z-direction:

J3 =
∫

dx−d2x⊥M
+12 (x) (2.28)

as the two operators give the same expectation values [83

.

] on the nucleon states respectively
described above. The separation into quark and gluon contributions

J3 =
∑
q

J3
q + J3

g , with6

.

〈
J3
〉

= 1
2 , (2.29)
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Chapter 2. Partonic structure of hadrons

gives the following result:
〈
J3
q

〉
= 1

2 (Aq (0) +Bq (0)) ,
〈
J3
g

〉
= 1

2 (Ag (0) +Bg (0)) , (2.30)

where A and B are Gravitational Form Factors defined, along with the form factors C7

.

and C̄,
as (for a = q, g):
〈
P + ∆

2

∣∣∣∣∣T µνa
∣∣∣∣∣P − ∆

2

〉
= ū

(
P + ∆

2

)(
Aa (t)P (µγν) +Ba (t)P (µiσν)ρ ∆ρ

2MN

+ Ca (t)
MN

(∆µ∆ν − ηµνt) + C̄a (t)MN η
µν

)
u

(
P − ∆

2

)
(2.31)

with again t = ∆2. Due to the polynomiality property (see Secs. 4.1.4

.

and 4.2.2

.

), we can relate
these form factors to the GPDs H and E through sum rules:∫ 1

−1
dx x [Hq (x, ξ, t) + Eq (x, ξ, t)] = Aq (t) +Bq (t) , (2.32)∫ 1

0
dx [Hg (x, ξ, t) + Eg (x, ξ, t)] = Ag (t) +Bg (t) , (2.33)

then, using Eq. (2.30

.

), we end up with what is called Ji’s sum rule:
〈
J3
q

〉
= 1

2

∫ 1

−1
dx x [Hq (x, 0, 0) + Eq (x, 0, 0)] , (2.34)

and similarly for gluons.
Ji’s decomposition8

.

of the quark total angular momentum
〈
J3
q

〉
=
〈
S3
q

〉
+
〈
L3
q

〉
is as

follows [87

.

]:

S3
q = 1

2

∫
d3xψq†σ12ψq , L3

q = −
∫

d3xψq†
(
x1iD2 − x2iD1

)
ψq , (2.35)

with the spin and orbital contributions respectively. The former is simply given in terms of the
polarized PDFs: 〈

S3
q

〉
= 1

2

∫ 1

0
dx [∆q (x) + ∆q̄ (x)] , (2.36)

and given that the part due to H in Eq. (2.34

.

) is a sum rule of unpolarized PDFs (see the
forward limit of GPDs in Sec. 4.2.2

.

), we can in fine access the contribution of the quark orbital
angular momentum to the nucleon spin, if we are able to extract the GPD E.

6The notation 〈. . .〉 here means 〈P |...|P 〉〈P |P 〉 .
7Just as A and B are related to the angular momentum of partons inside a nucleon at rest, C can be

related to shear forces experienced by partons inside the nucleon [84

.

]. On the other hand, C̄ cancels out when
summing contributions from all quark flavors and gluons, due to the conservation of the energy-momentum
tensor. See e.g. Ref. [85

.

] for a recent review on the subject.
8Other decompositions were suggested, and we refer to Ref. [86

.

] for a thorough study of the subject.
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Chapter 3.

Exclusive processes and extraction of
Generalized Parton Distributions
We have seen in the previous chapter the extent of the information encoded in GPDs

and hence why we are so interested in them. Now, we will see how we can access them
experimentally.

3.1. Compton amplitudes
As we have seen in Sec. 1.2.2

.

, DIS is an inclusive process, meaning that the final state is
not characterized (apart from the emitted electron). The processes where GPDs intervene
are fundamentally different, they are coined exclusive, as every particle in the final state is
detected. Nevertheless, as PDFs are a limiting case of GPDs, they can be linked to the same
kind of Compton amplitude. This Compton amplitude (with different kinematics) intervenes
in exclusive processes where GPDs play a role: Deeply Virtual Compton Scattering (DVCS),
Time-like Compton Scattering (TCS) [88

.

], or even Double Deeply Virtual Compton Scattering
(DDVCS) [89

.

, 90

.

]. It is sketched in Fig. 3.1

.

in three different cases. The first one concerns DIS,
the squared amplitude of which is related through the optical theorem to the imaginary part
of the forward Compton amplitude:

|MDIS|2
opt. th.∝ ImA (γ∗p→ γ∗p) . (3.1)

Another exclusive process of interest is the Deeply Virtual Meson Production (DVMP) [91

.

–93

.

],
where the final photon is replaced by a hard meson. For all these processes, the virtual photon
is produced with electrons e→ γ∗e, or produces an electron-positron pair if in the final state
γ∗ → e+e−. The relevant experimental process for DVCS for instance is therefore the photon
electroproduction ep→ epγ, whereas TCS is accessed through γp→ e+e−p.
The DVCS process in particular will be detailed in the next

.

section, but first let us see
quickly how these processes allow to access parton distributions. As mentioned in Sec. 1.2.3

.

,
this is possible of course due to a factorization between soft and hard phenomena. In broad
terms, it consists on organizing the Feynman diagrams into hard and collinear subgraphs
after considering the Bjorken limit of large Q2 (and finite xB and t). It is indeed proven that
these diagrams are dominated by distinct momentum regions [62

.

, 94

.

, 95

.

]. When separating the
subgraphs, we keep only the diagrams with the smallest possible number of lines between them,
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Chapter 3. Exclusive processes and extraction of GPDs

P P

γ∗ (q) γ∗ (q)

x x

P1 P2

γ∗ (q1) γ (q2)

x x− xB

P1 P2

γ (q1) γ∗ (q2)

x x− xB

Figure 3.1. Handbag diagrams for the forward Compton amplitude (left panel) whose imaginary
part gives the DIS cross-section, DVCS (middle panel) with q2

1 < 0 and TCS (right panel) with
q2

2 > 0. For DDVCS, both photons would be virtual. Collinear subgraph in orange and hard
part (here at leading order) in yellow.

as the more lines the more suppressed the diagram is in powers of 1/Q. This power suppression
corresponds to a “collinear” twist1

.

expansion:

• twist-2: leading term in the Bjorken limit,

• twist-3: suppressed by 1/Q,

• twist-4: suppressed by 1/Q2, etc.

This leads to convolutions of a hard scattering part where incoming and outgoing partons are
treated as exactly collinear and on-shell, with the contribution from the collinear subgraphs that
are expressed as matrix elements of quark (or gluon) fields (these are the parton distributions).
Historically, for the factorization of DVCS (and Compton scattering in general), three

different approaches were pursued: one using the α-Schwinger representation [6

.

, 97

.

], others
using a Feynman parametrization [98

.

, 99

.

] and a more formal one with Operator Production
Expansion [5

.

]. We will not detail any of these developments, but we can sketch the contribution
of the hard scattering part of the handbag diagrams (i.e. leading order diagrams in αS and
leading-twist) of Fig. 3.1

.

as [75

.

]:

1
x− xB + iε

+ {crossed graph} = p.v. 1
x− xB

− iπδ (x− xB) + {crossed graph} , (3.2)

where p.v. denotes Cauchy’s principal value distribution2

.

. Note that in this section (and only
in this section), in order to keep a consistent notation between DIS and Compton scattering,
we use the asymmetrical plus-momentum fractions of Radyushkin:

x = k+
1 /P

+
1 , x− xB = k+

2 /P
+
1 , (3.3)

1For the definition of twist, see Ref. [96

.

].
2See e.g. Ref. [100

.

], appendix A4, for the derivation of this relation.
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3.2. Deeply Virtual Compton Scattering

in the frame where P⊥1 = 0⊥, instead of the symmetrical ones of Ji:

x = k+
1 + k+

2
P+

1 + P+
2
, ξ = P+

1 − P+
2

P+
1 + P+

2
, (3.4)

in the symmetric frame P⊥1 + P⊥2 = 0⊥, that are used throughout this thesis. The next
section will treat the case of DVCS more rigorously and with the usual notations. We denoted
by k1 and k2 the momenta of the emitted and reabsorbed quarks in the handbag diagrams of
Fig. 3.1

.

.
The hard part (3.2

.

) is then convoluted with the parton distributions in an integral over x.
In the case of DIS, only the imaginary part of the Compton amplitude matters, so we find
something of the form:

ImA (γ∗p→ γ∗p) ∝
∑
q

e2
q [q (xB) + q̄ (xB)] + (. . .) , (3.5)

where the dots stand for the crossed graph and polarized PDFs, higher order in αS and
higher-twist contributions. For DVCS, both real and imaginary parts of Eq. (3.2

.

) need to be
taken into account and the amplitude looks like:

A (γ∗p→ γp) ∝
∑
q

e2
q

[
p.v.

∫
dx H

q (x, xB, t)
xB − x

+ iπHq (xB, xB, t)
]

+ (. . .) . (3.6)

This amplitude then needs to be squared, contrary to DIS where the factorization happens at
the level of the cross-section due to the optical theorem.

3.2. Deeply Virtual Compton Scattering

3.2.1. Cross-section and kinematics

DVCS

p (P1) p (P2)

γ∗ (q1)

γ (q2)
e− (l)

e− (l′)

FFs

p (P1) p (P2)

γ∗ (∆) γ (q2)

e− (l)

e− (l′)

FFs

p (P1) p (P2)

γ∗ (∆)

γ (q2)
e− (l)

e− (l′)

Figure 3.2. DVCS (left) and Bethe-Heitler (middle and right) contributions to the photon
electroproduction ep→ epγ.
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Chapter 3. Exclusive processes and extraction of GPDs

The DVCS process interferes coherently with the Bethe-Heitler (BH) process in the photon
electroproduction, and each separate contribution is represented in Fig. 3.2

.

. We use notations
similar to Chap. 1

.

:

q1 ≡ l − l′ , Q2 ≡ −q2
1 > 0 , xB ≡

Q2

2P1 · q1
,

P ≡ P1 + P2

2 , ∆ ≡ P2 − P1 , t ≡ ∆2 < 0 , (3.7)

but it should be pointed out that only in the case of DVCS does Q2 represent the photon
virtuality. We also add the following definitions:

y ≡ P1 · q1

P1 · l
, ε ≡ 2xB

MN

Q
, ξ ≡ (P1 − P2) · (q1 + q2)

(P1 + P2) · (q1 + q2) , (3.8)

with y = Q2

2xBMNE
in the target rest frame, where E is the incoming electron energy. The

skewness ξ can be written as:

ξ = xB

2− xB
(
1− t

Q2

) ' xB
2− xB

, (3.9)

and we recover approximately the GPD variable:

ξ ' P+
1 − P+

2
P+

1 + P+
2
. (3.10)

The total cross-section then writes:

d5σ

dxB dQ2 d |t| dφ dφS
= α3

emxB

16π2Q4
√

1 + ε2
|T |2 , (3.11)

as five-fold differential on the kinematic variables. The angles φ and φS are defined in Fig. 3.3

.

.
The amplitude T = TBH + TDVCS is the coherent sum of Bethe-Heitler and DVCS contributions
and we denote by I the interference term:

|T |2 = |TBH|2 + |TDVCS|2 + I . (3.12)

The angular dependence of these squared amplitudes is known and can be written as Fourier
harmonics [9

.

]:

|TBH|2 = 1
x2
Bt (1 + ε2)2P1 (φ)P2 (φ)

(
cBH

0 +
2∑

n=1
cBH
n cosnφ+ sBH

1 sinφ
)
, (3.13)

|TDVCS|2 = 1
Q2

(
cDVCS

0 +
2∑

n=1

[
cDVCS
n cosnφ+ sDVCS

n sinnφ
])

, (3.14)

I = −e`
xBtyP1 (φ)P2 (φ)

(
cI0 +

3∑
n=1

[
cIn cosnφ+ sIn sinnφ

])
, (3.15)
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3.2. DVCS

Figure 3.3. Definition of the angles φ = φh between the lepton plane and hadron plane
and φS between the lepton plane and the target transverse polarization. For the photon
electroproduction, the lepton plane is defined by the incoming and outgoing electrons, whereas
the hadron plane is defined by the outgoing proton and real photon. The longitudinal direction
is that of the virtual photon (or more generally q1, as it is not the virtual photon momentum
in the Bethe-Heitler process). Figure taken from Ref. [101

.

] defining the Trento convention.

where e` is the lepton charge (i.e. e` = −1 for an electron beam), and P1 (φ)P2 (φ) are
the lepton propagators of the Bethe-Heitler diagrams. It should be noted that the Fourier
coefficients cn and sn still keep an angular dependence on φ− φS, for this combination is taken
as an independent variable in Refs. [9

.

, 24

.

, 102

.

, 103

.

]. For instance, we can write [104

.

]:

cDVCS
1 = cDVCS

1,U + Λh` cDVCS
1,L + S⊥

[
sin (φ− φS) cDVCS

1,N + h` cos (φ− φS) cDVCS
1,S

]
, (3.16)

and similar relations for the other coefficients. We wrote S⊥ and Λ the transverse and
longitudinal polarization of the target (with respect to the virtual photon direction) and h`
the lepton polarization. The subscripts U, L, N and S indicate the target polarization and
respectively mean “unpolarized”, “longitudinal”, “normal” and “sideways”. The last two are
both for a transverse polarization; “N” means that it is normal to the hadron plane (φ−φS = π

2 ),
while “S” means that the transverse polarization belongs to the hadron plane (φ = φS). Note
that Ref. [24

.

] uses the alternative notation “TP−” and “TP+”.
The most up-to-date set of formulas3

.

for these Fourier coefficients are given in Ref. [24

.

].
The BH coefficients are simply expressed in terms of Dirac and Pauli FFs (with a quadratic
dependence) [9

.

], whereas the DVCS amplitude is expressed linearly either in terms of helicity
amplitudes for the Compton scattering γ∗p→ γp or equivalently in terms of Compton Form
Factors (CFFs). These CFFs thus enter the interference term linearly (multiplied by the elastic

3Note that an alternative but unpublished set of formulas [105

.

] is also widely used (e.g. in Refs. [23

.

, 106

.

]),
on top of the numerical code VGG [107

.

].
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Chapter 3. Exclusive processes and extraction of GPDs

FFs) and the squared DVCS amplitude quadratically. The Bethe-Heitler process is dominant
in the high-xB region, which means that the interference term is what practically allows to
access CFFs in that case. For small-xB, the DVCS becomes dominant.

3.2.2. Compton Form Factors
Compton Form Factors are the analog of DIS structure functions and are often the observables

experimentalists and phenomenologists seek to extract from data, but they are not the end of
the story. Due to the factorization theorems, leading-twist CFFs are convolutions of a hard
scattering kernel (the coefficient function) and the non-perturbative twist-2 matrix element,
i.e. the GPD. Following e.g. Refs. [108

.

–110

.

], we can write for instance for the CFF H and
associated GPD H:

H
(
ξ, t, Q2

)
=
∫ 1

−1

dx
ξ

∑
a=g,u,d,...

Ca

(
x

ξ
,
Q2

µ2
F

, αS
(
µ2
F

))
Ha

(
x, ξ, t, µ2

F

)
. (3.17)

Just like DIS structure functions, these CFFs are observable and therefore cannot depend on
the arbitrary factorization scale µF . This leads to a known factorization scale evolution for
GPDs (section 3.3

.

).
The coefficient function can be calculated perturbatively and writes at leading order for the

quark GPD:

Cq = e2
q

 1
1− x

ξ
− iε

− 1
1 + x

ξ
− iε

+O (αS) . (3.18)

Using the relation (3.2

.

), we obtain the real and imaginary parts of the CFF:

ReH
(
ξ, t, Q2

)
=
LO

p.v.
∫ 1

−1
dx

∑
q=u,d,...

e2
q

(
1

ξ − x
− 1
ξ + x

)
Hq

(
x, ξ, t, µ2

F

)
, (3.19)

ImH
(
ξ, t, Q2

)
=
LO
π

∑
q=u,d,...

e2
q

[
Hq

(
x = ξ, ξ, t, µ2

F

)
−Hq

(
x = −ξ, ξ, t, µ2

F

)]
, (3.20)

and we recover what we sketched in Eq. (3.6

.

). Note that for gluons, the first contribution is
at NLO. Note also that even though the GPD itself may depend on the factorization scale
µF , the r.h.s. of Eqs. (3.19

.

)-(3.20

.

) do not, as the dependence cancels order by order in αS [1

.

].
And since the LO kernel does not depend on Q2

µ2
F
, this means that the LO CFF does not have

a Q2-dependence, just like the structure functions of DIS in the Parton model. The scale
dependence appears at NLO.

Using dispersion relation techniques (see e.g. Ref. [26

.

] and references therein), one can relate
both real and imaginary parts of the CFF and write in fine the result in terms of the GPD at
the cross-over line x = ξ with the addition of (at least) a subtraction constant:

ReH
(
ξ, t, Q2

)
=
LO

p.v.
∫ 1

−1
dx

∑
q=u,d,...

e2
q

(
1

ξ − x
− 1
ξ + x

)
Hq

(
x, x, t, µ2

F

)
+CH

(
t, µ2

F

)
. (3.21)

The subtraction constant is linked to the so-called D-term (introduced in Sec. 4.2.2

.

and
Sec. 5.3.3

.

) via the integral:

CH =
∑

q=u,d,...
e2
q

∫ 1

−1
dα 2Dq (α)

1− α . (3.22)

30



3.2. DVCS

This means the information contained in the LO CFFs is limited to the cross-over line of the
GPD and (an integral of) the D-term. Note that this can be alternatively derived [111

.

–113

.

]
using Double Distributions (introduced in Chap. 5

.

).

3.2.3. Observables
To access these CFFs, experimental collaborations measure either total and differential

cross-sections or asymmetries. The latter are easier to measure due to the cancellation of
normalizations. For instance, the HERA experiments having access to both positron and
electron beams could measure the beam charge asymmetry:

AC (φ) =

(
dσ

+→ (φ) + dσ
+← (φ)

)
−
(

dσ
−→ (φ) + dσ

−← (φ)
)

(
dσ

+→ (φ) + dσ
+← (φ)

)
+
(

dσ
−→ (φ) + dσ

−← (φ)
) , (3.23)

which allows to access the real part of CFFs. We have denoted by a sign “±” the beam charge
el and by an arrow the beam helicity hl. The other possible combinations when controlling
both the beam charge and helicity are:

ALU,DVCS (φ) =

(
dσ

+→ (φ)− dσ
+← (φ)

)
+
(

dσ
−→ (φ)− dσ

−← (φ)
)

(
dσ

+→ (φ) + dσ
+← (φ)

)
+
(

dσ
−→ (φ) + dσ

−← (φ)
) , (3.24)

ALU,I (φ) =

(
dσ

+→ (φ)− dσ
+← (φ)

)
−
(

dσ
−→ (φ)− dσ

−← (φ)
)

(
dσ

+→ (φ) + dσ
+← (φ)

)
+
(

dσ
−→ (φ) + dσ

−← (φ)
) , (3.25)

where we denoted by the first letter “L” the beam polarization (longitudinal) and by the second
one the target polarization (unpolarized here). On the other hand, when only one lepton
charge is available, such as at Jefferson Lab, one can only measure the beam spin asymmetry:

Ae`
LU (φ) = dσ

e`→ (φ)− dσ
e`← (φ)

dσ
e`→ (φ) + dσ

e`← (φ)
. (3.26)

For longitudinally polarized targets, asymmetries AUL defined similarly to Eq. (3.26

.

) can also
be measured. We can note that the HERMES collaboration had also access to transversely
polarized targets, which allowed to access φS-unintegrated asymmetries. Finally, we can point
out that instead of the φ-dependence of asymmetries, the HERMES collaboration published
only Fourier harmonics of the form (e.g. for the beam charge asymmetry):

Acosnφ
C = 1

π

∫ 2π

0
dφ cosnφAC (φ) , (3.27)

which can be approximately related to combinations of CFFs. We can quote for instance:

Acosφ
C ∝ Re

(
F1H + ξ (F1 + F2) Ĥ − t

4M2
N

F2E
)
, (3.28)

A−,sinφLU ∝ Im
(
F1H + ξ (F1 + F2) Ĥ − t

4M2
N

F2E
)
, (3.29)
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Chapter 3. Exclusive processes and extraction of GPDs

and other similar combinations. For each such observable, there is usually a real or imaginary
part of some CFF that dominates kinematically. Having a complete set of asymmetries allows
to discriminate between the different contributions.

We refer e.g. to Refs. [23

.

, 110

.

] for a thorough review of the observables measured or planned
and the information they give on CFFs.

3.3. Evolution
As PDFs evolve according to the DGLAP equations, GPDs follow also their own evolution

equations. In principle, these are integro-differential equations that mix gluons and quark
flavors. They can be nevertheless almost diagonalized in flavor space by using “non-singlet”
(NS) combinations that can evolve independently of the gluon GPD. These NS combinations
correspond to an exchange of charge conjugation C = −1 (C-odd) and do not mix with gluons
(C-even). One example is the valence4

.

combination:

Hq(−) (x, ξ, t) = Hq (x, ξ, t) +Hq (−x, ξ, t) . (3.30)

They follow the autonomous evolution equation [1

.

]:

µ2
F

∂

∂µ2
F

HNS
(
x, ξ, t, µ2

F

)
=
∫ 1

−1

dy
|ξ|

VNS

(
x

ξ
,
y

ξ

)
HNS

(
y, ξ, t, µ2

F

)
(3.31)

where VNS is the non-singlet evolution kernel. On the other hand, the singlet combination∑
q

Hq(+) (x, ξ, t) =
∑
q

[Hq (x, ξ, t)−Hq (−x, ξ, t)] (3.32)

mixes with gluons as the combination Hq(+) is C-even, and we end up with a similar equation
but in matrix form; i.e. with the substitution VNS → VS and HNS →HS defined by

VS

(
x

ξ
,
y

ξ

)
=
 V qq

(
x
ξ
, y
ξ

)
1
ξ
V qq

(
x
ξ
, y
ξ

)
ξV gq

(
x
ξ
, y
ξ

)
V gg

(
x
ξ
, y
ξ

)  , (3.33)

HS
(
x, ξ, t, µ2

F

)
=
( 1

2Nf

∑
qH

q(+) (x, ξ, t, µ2
F )

Hg (x, ξ, t, µ2
F )

)
. (3.34)

Note that differences of Hq(+) for different quark flavors are also C-odd and therefore non-
singlet. In total, we need 2Nf + 1 independent combinations (in the non-diagonalized basis,
we have Hq(+) and Hq(−) for each quark flavor, plus the gluon GPD). The singlet and gluon
GPD in the coupled system count for two, and the valence combinations Hq(−) for Nf . The
differences Hu(+)−Hd(+), Hd(+)−Hs(+), etc, for instance, can make up for the missing Nf − 1
NS combinations. The system is maximally diagonalized this way.
The kernels are known at LO and NLO (in αS) and can be found e.g. in Refs. [2

.

, 114

.

–117

.

].
The limit ξ → 0 gives back the DGLAP equations, even for non-zero t, i.e. for t-dependent

4The denomination comes from its forward limit qval = q − q̄. See Sec. 4.2.2

.

.
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3.4. Extraction of GPDs

PDFs. On the other hand, at ξ → ±1, we recover the evolution kernels of another non-
perturbative object, the (Generalized) Distribution Amplitude (introduced in Sec. 5.2.4

.

). These
are the ERBL5

.

equations [118

.

, 119

.

].
To solve these evolution equations, one can use classical numerical methods such as Runge-

Kutta, as in Ref. [120

.

]. Another possibility is to rely on Mellin moments for PDFs (see e.g.
Ref. [62

.

]), or conformal moments for GPDs (see e.g. Refs. [1

.

, 2

.

]), to get rid of the integral and
end up only with a differential equation. This is referred to as a diagonalization, as we go from
coupled equations in x-space (i.e. the integral of Eq. (3.31

.

)) to decoupled ones in m-space (at
least at LO) with the Mellin moments

∫ 1
0 dx xmq (x) or similarly the conformal moments.

The evolution of parton distributions is crucial for phenomenology as it allows to relate
measurements at different energy scales. Without it, we would not be able to interpret
consistently data taken at colliders with large Q2, such as the H1 and ZEUS experiments at
DESY or the future electron-ion collider (EIC), and fixed-target data for which Q2 can be
much lower, such as the experiments at Jefferson Lab or HERMES at DESY. It also allows to
extract from high-energy experiments information on the low-energy hadronic phenomena.

3.4. Extraction of Generalized Parton Distributions

3.4.1. Experimental status
DVCS measurements started in the early 2000s at DESY in Hamburg, Germany, and at

Jefferson Laboratory in Newport News, Virginia, USA.
Two different kinds of DVCS experiments were pursued at DESY, all of them held at the

HERA accelerator: a fixed-target one by the HERMES collaboration [121

.

–127

.

], and collider
experiments by the H1 [128

.

–131

.

] and ZEUS [132

.

, 133

.

] collaborations. The last two allowed us
to access small-xB regions (∼ 10−4–10−2), where DVCS is dominant, and therefore managed to
measure directly the DVCS part of the cross-section, either the total one, or the t-differential
one, for values of Q2 up to 100 GeV2 but mainly around 10 GeV2. They also published
beam charge asymmetries, having access to both positron and electron beams. The HERMES
collaboration on the other hand used a fixed proton target that could be both longitudinally
and transversely polarized, and published a complete set of asymmetries in the moderate xB
region, for values of Q2 mainly around ∼ 2–3 GeV2, allowing a very convenient disentanglement
of the different CFFs. These HERA experiments ended in 2007, with the last HERMES results
published in 2012.
The CLAS [27

.

, 134

.

–138

.

] and Hall A [139

.

, 140

.

] collaborations at Jefferson Lab pursued a
similar program to HERMES (moderate values of Q2 ∼ 2 GeV2), but still active today. CLAS
measured observables over a wide kinematical range (xB ∼ 0.1–0.5), whereas Hall A focused
on a restricted set (xB ∼ 0.35–0.4) with a higher luminosity and therefore precision. CLAS
published both asymmetries and φ-dependent cross-sections, while Hall A published the latter.
All in all, this experimental effort confirmed the factorization of DVCS. It showed that

the leading-twist approximation holds even for moderate values of Q2, within the statistical
accuracy achieved. But a recent reanalysis of Hall A data [140

.

, 141

.

] hinted at the important

5Efremov–Radyushkin–Brodsky–Lepage.
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Chapter 3. Exclusive processes and extraction of GPDs

Figure 3.4. Summary of the available (in 2012) and planned DVCS measurements. Figure
taken from Ref. [142

.

]. Here, “x” should be understood as the Bjorken variable xB, which is
related to the skewness ξ, and not as the mute variable x of GPDs.

role played by gluons, either through higher-twist contributions or NLO effects, which was not
necessarily expected at high values of xB.

In the near future, the COMPASS collaboration at CERN will provide us with cross-sections
in an intermediate xB region, hoping to bridge the gap between the previous collider and
fixed-target experiments, while the different halls at Jefferson Lab should continue to contribute
to the effort in the 12 GeV era with increased kinematical coverage and precision of upcoming
data. On a longer time scale, the EIC project [142

.

] aims at covering a very large kinematical
region, including in fine the very small-xB region of the past collider experiments, with a high
luminosity, to really seek out the gluon realm. Figure 3.4

.

summarizes the currently available
measurements relatively to the planned kinematic coverage, although more recent asymmetries
and cross-sections have since been published by CLAS and Hall A (in 2015).

3.4.2. Fits to data
As illustrated in Fig. 1.4

.

(right panel), PDFs extraction is working very well, with different
fitting groups using different methods cross-checking their results that are in very good
agreement (see e.g. the review of the PDG [60

.

], section 19.3). One may hope that the situation
would be the same for GPDs, if not now at least in the future, as a priori one has to perform
the same sort of deconvolution; indeed the CFF convolution (3.17

.

) looks similar to that of the
DIS structure function (1.29

.

). But GPD extraction faces two important issues:
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3.4. Extraction of GPDs

• First, contrary to PDFs who do not depend on the external Bjorken variable xB in the
factorization (1.29

.

) but only on the mute variable x, GPDs do depend on the external
variable, i.e. the skewness ξ, in Eq. (3.17

.

), which renders this deconvolution a completely
different problem and makes it much more difficult. Indeed, we lose information when
going from GPDs to CFFs with the projection (3.17

.

) from four variables to only three,
which does not happen for PDFs.

• Second, the so-called curse of dimensionality is a serious obstacle as any increase in the
dimension of the domain space implies a more sparse available data. The theoretical
constraints detailed in Chap. 4

.

do not help much in this matter, as they imply only a
decrease in the domain volume, but not its dimension.

For now, the fitting efforts have been devoted to extract CFFs, not GPDs, as it is already
very challenging itself. Two main approaches have been followed:

Local fits [106

.

, 143

.

–148

.

] This method consists on fitting the CFFs themselves as free pa-
rameters, for a given kinematic bin. It has the advantage of being completely model-
independent (apart from the twist-2 approximation), but lacks the ability to do any
extrapolation.

Global fits [106

.

, 147

.

, 149

.

–151

.

] In this approach, CFFs are parametrized through a functional
form for the GPD. The term “global” refers to the fact that we consider all the kinematic
points at once, and fit the parameters of the chosen functional form. We should stress
that it is still a fit at the level of the CFFs, even though the GPD can be directly
parametrized, as it carries an inherent model-dependence. The advantage is that the
functional forms allow to reliably extrapolate CFFs to other kinematics. These fits are
very successful in reproducing the data (although the very accurate Hall A data can
present some difficulty), moreover they generally agree with the local fits presented above.

We refer to the recent review [110

.

] on DVCS fitting for more details on the subject. We can
point out in passing that fits to other processes such as DVMP [152

.

, 153

.

] were also performed.
The GK model in particular, although tuned for DVMP only, gives also accurate predictions
for DVCS [23

.

], which is a good test of the universality of GPDs. On another note, we can
mention the first efforts of CFF fitting using neural networks [154

.

], in good agreement with
previous approaches.

3.4.3. PARTONS software
As we have seen, GPDs belong to an active field of research where still theoretical questions

are to be solved and the lack of a general first principle parametrization justifies the need
for several models. In parallel, the active experimental program with a foreseen increased
accuracy requires a careful design of tools to exploit these experimental data. Those tools
should also be used for the physics case of future experiments (e.g. at the EIC). The PARTONS
framework [22

.

] was born with the aim of accomplishing this. It provides a C++ library aimed
both at experimentalists and phenomenologists.

PARTONS encompasses the whole chain of computation of an observable in a given channel
related to GPDs. This can be divided into three main levels:
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Chapter 3. Exclusive processes and extraction of GPDs

Large distance This level concerns the computation of GPDs themselves, with respect to
different model parameters, as functions of x, ξ, t, etc. The factorization scale dependence
is described by evolution equations.

Small distance The second level is that of the small distance coefficient functions. In practice,
it means convoluting the GPDs and the end results are the CFFs (see e.g. Eq. (3.17

.

)).

Full process Finally, this level concerns the cross-sections and various other observables (see
Sec. 3.2.3

.

) that can be directly accessed in experiments.

Figure 3.5. PARTONS logo.

At any such level, the framework is flexible enough to
allow any choice of model assumption, the inclusion of higher
order corrections, etc. Indeed, PARTONS is modular by
design, and Fig. 3.6

.

sketches an example of the different
steps in a calculation with corresponding choices of modules.
This is possible in practice through class inheritance, as
for instance the module GPDGK11 is a child class of the
abstract class GPDModule and can be plugged by the user in
the computation chain independently of the choice of other
modules. PARTONS works only on the basis of the needed
abstract classes, unknowingly of what the user chooses for

the physics content. We showed an example going up to the observable level, but of course a
computation at any step in the chain can also be performed (if one wants e.g. only GPDs as
end result, or alternatively CFFs).

So far, only the DVCS channel is implemented in PARTONS, but the other exclusive processes
(TCS and DVMP) are also planned, and the architecture was thought of to accommodate any
such channel. The following modules are currently available:

GPD The popular GK model [152

.

, 155

.

, 156

.

] (both as it was originally conceived and with
numerical integration) and VGG model [92

.

, 107

.

, 157

.

], and various other GPD models
used in Refs. [109

.

, 120

.

, 158

.

].

Evolution Code by Vinnikov [120

.

].

CFF The up-to NLO evaluation of Refs. [108

.

, 109

.

], its extension to massive quarks [159

.

], and
the historical LO evaluation of the VGG code.

DVCS The unpublished set of formulas [105

.

], the latest one in the BM formalism [24

.

] (referred
to as BMJ), and the historical numerical code VGG.

The current version of PARTONS has all the necessary tools to study DVCS at NLO and
leading-twist, but this list is by no means limiting, as other models and features can easily be
added (or plugged) due to its modularity.

We should note also that on top of the default C++ interface, PARTONS also allows one to
use XML files6

.

as scenarios to compute automated tasks, for users who do not need to add their
own modules or simply do not want to delve into coding when the task is very straightforward.

6These are meant in fine to be the “configuration files” for the foreseen visualization interface.
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3.4. Extraction of GPDs

Figure 3.6. Example of computation of a beam spin asymmetry with the PARTONS library.
Figure taken from Ref. [22

.

].

Examples of such scenarios are given in Ref. [22

.

], and a complete documentation is available
on the web7

.

.

7http://partons.cea.fr/

.
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Chapter 4.

Definition and properties of Generalized
Parton Distributions
GPDs were independently introduced by Müller et al [5

.

], Radyushkin [6

.

] and Ji [7

.

] under
various names1

.

. They are defined as a Light-front projection of a non-diagonal hadronic matrix
element of a bi-local operator. This general statement applies to all kinds of GPDs, but without
delving into the full zoology, we will first consider the simple pion case, which can already
illustrate all the properties that interest us. We will then move to the nucleon case in a second
phase, with its (un)fortunate complications due to its spin and non-negligible mass.
We will use throughout the conventions of Refs. [1

.

, 160

.

] and mostly the notations therein
(see also App. A.1

.

).

4.1. Generalized Parton Distributions of the pion
4.1.1. Definition
The twist-2 chiral-even quark GPD of a spin-0 hadron writes:

Hq
π (x, ξ, t) = 1

2

∫ dz−
2π ei x P

+z−
〈
π, P + ∆

2

∣∣∣∣∣ ψ̄q
(
−z2

)
γ+ψq

(
z

2

) ∣∣∣∣∣π, P − ∆
2

〉∣∣∣∣∣z+=0
z⊥=0

, (4.1)

where, as sketched in Fig. 4.1

.

, we use the following notations:

• P = P1+P2
2 is the momentum average of the hadron incoming (1) and outgoing (2) states,

• ∆ = P2 − P1 is the momentum transfer,

• t = ∆2 is the Mandelstam variable of momentum transfer,

• x = k+

P+ is the longitudinal average momentum fraction of the quarks,

• ξ = − ∆+

2P+ is the longitudinal transfer momentum fraction, i.e. the skewness variable.

q classically stands for the quark flavor, hence here the operators ψq are quark fields. We
used here the light-cone gauge, hence no Wilson line joining the fields at different positions is
needed. In other gauges, it should be added.

1“Off-forward”, “non-diagonal”, “skewed”, . . . parton distributions, to quote some of them.
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This quark GPD of the pion will be used heavily as case study and benchmark in Part. III

.

.
Here it will allow us to present all the important properties of such objects. Note however that
there is also a chiral-odd GPD in the case of the pion, i.e. with a parton helicity flip, called
the transversity GPD HT,π, but we will not consider it here. Likewise, we do not discuss gluon
GPDs.

4.1.2. Basic Properties
Limiting case

This GPD encodes information on both the pion electromagnetic form factor and the pion
parton distribution function. Indeed, taking ∆ = 0 in Eq. (4.1

.

) leaves us with a diagonal matrix
element defining a quark PDF. In other words,

Hq
π (x, 0, 0) = qπ (x) θ (x)− q̄π (−x) θ (−x) , (4.2)

where we denote by θ ( · ) the Heaviside step function.
On the other hand, integrating Eq. (4.1

.

) over x yields the local operator defining the Elastic
Form Factors:∫ 1

−1
Hq
π (x, ξ, t) dx = 1

2

∫ dz−
2π

∫ 1

−1
dx ei x P+z−

〈
π, P2

∣∣∣∣ψ̄q (−z2
)
γ+ψq

(
z

2

) ∣∣∣∣π, P1

〉∣∣∣∣z+=0
z⊥=0

= 1
2P+

∫
dz− δ

(
z−
) 〈

π, P2

∣∣∣∣ψ̄q (−z2
)
γ+ψq

(
z

2

) ∣∣∣∣π, P1

〉∣∣∣∣z+=0
z⊥=0

= 1
2P+

〈
π, P2

∣∣∣∣ψ̄q (0) γ+ψq (0)
∣∣∣∣π, P1

〉
. (4.3)

We thus obtain that the zeroth Mellin moment of a quark GPD is the quark’s contribution to
the electromagnetic form factor2

.

:∫ 1

−1
Hq
π (x, ξ, t) dx = F q

π (t) . (4.4)

Notice that there is no ξ-dependence.

Domain

From the definition of ξ as:

ξ = P+
1 − P+

2
P+

1 + P+
2
, (4.5)

and given that the plus-momenta of physical states are positive (see App. A.1

.

), one can easily
see that the domain is limited to ξ ∈ [−1, 1]. In truth, ξ is also bounded by an additional
maximal value defined by t and the mass of the hadron MH , as will be detailed in the next

2This form factor was defined in Eq. (2.18

.

), and the electromagnetic current can be written in terms of
the quark fields as: Jem

µ (0) =
∑
q eq ψ̄

q (0) γµψq (0). Hence, the quark contributions are defined such that
F =

∑
q eq F

q.
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4.1. Pion GPDs

−1 ≤ x ≤ −ξ −ξ ≤ x ≤ ξ ξ ≤ x ≤ 1

Figure 4.1. GPD diagram with associated momenta of hadrons and partons, interpreted
differently in each region. Internal arrows indicate the flow of charge, while external arrows
indicate momentum flow.

section 4.2.2

.

. But for the pion, we will usually work in the chiral limit and neglect the pion
mass. We will therefore ignore this additional bound and consider the full domain t ≤ 0
(space-like values) and ξ ∈ [−1, 1] as physical.

In this ξ domain, the support is such that x ∈ [−1, 1]. This can be shown by considering the
analytic properties of the scattering amplitude of an off-shell quark off an on-shell hadron, of
which the GPD of Eq. (4.1

.

) is a projection [2

.

, 161

.

].
The region |x| > |ξ| is called DGLAP, while the other |x| < |ξ| is called ERBL, both names

referring to the kernels involved in each region for the QCD evolution in the factorization scale.
See section 3.3

.

.

ξ-parity

By considering the discrete symmetry of time reversal, represented by the anti-linear and
anti-unitary operator T [162

.

, 163

.

]:

T [u |Φ〉+ v |Ψ〉] = u∗T |Φ〉+ v∗T |Ψ〉 , (4.6)
〈T Φ|T Ψ〉 = 〈Φ|Ψ〉∗ = 〈Ψ|Φ〉 ,

we can show that the matrix element (4.1

.

) transforms as:〈
π (P2)

∣∣∣∣ψ̄q (−z2
)
γ+ψq

(
z

2

) ∣∣∣∣π (P1)
〉

=
〈
T π (P2)

∣∣∣∣T ψ̄q (−z2
)
γ+ψq

(
z

2

) ∣∣∣∣π (P1)
〉∗

=
〈
π (P1)

∣∣∣∣ψ̄q (−z2
)
γ+ψq

(
z

2

) ∣∣∣∣π (P2)
〉
, (4.7)

where the details of the derivation are given for instance in Refs. [2

.

, 12

.

] and the effect of time
reversal on quark fields is given in textbooks (e.g. Refs. [66

.

, 163

.

]). It follows that the GPD
(4.1

.

) is even in ξ:
Hq
π (x,−ξ, t) = Hq

π (x, ξ, t) . (4.8)

From now on, ξ will be considered ≥ 0, unless stated otherwise in some situations where the
full domain needs to be considered.
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Chapter 4. Definition and properties of GPDs

Real-valued function

Similarly, taking the hermitian conjugate of the matrix element in Eq. (4.1

.

) leaves us with:〈
π, P2

∣∣∣∣ψ̄q (−z2
)
γ+ψq

(
z

2

) ∣∣∣∣π, P1

〉∗
=
〈
π, P1

∣∣∣∣ψ̄q (z2
)
γ+ψq

(
−z2

) ∣∣∣∣π, P2

〉
. (4.9)

This implies (after a change of variable z− ↔ −z− in Eq. (4.1

.

)) the property:

(Hq
π (x, ξ, t))∗ = Hq

π (x,−ξ, t) . (4.10)

Combined with Eq. (4.8

.

), this shows that the GPD is real.

Partonic interpretation

The partonic exchange can be interpreted differently in each region:

• For −1 ≤ x ≤ −ξ (that we will denote by DGLAP<), the interpretation is that of an
emission of an antiquark of plus-momentum fraction ξ − x and its reabsorption with a
plus-momentum fraction − (x+ ξ). We have an antiquark distribution.

• The region −ξ ≤ x ≤ ξ (ERBL) corresponds to an emission of a pair quark-antiquark of
plus-momentum fractions x+ ξ and ξ − x respectively. This is reminiscent of a meson
Distribution Amplitude (DA). See sections 5.2.4

.

and 6.1.7

.

.

• In the region ξ ≤ x ≤ 1 (DGLAP>), there is emission of a quark of plus-momentum
fraction x+ ξ and its reabsorption with plus-momentum fraction x− ξ. This corresponds
to a quark distribution.

This is sketched in Fig. 4.1

.

.

4.1.3. Isospin symmetry and charge conjugation
From isospin symmetry, we can write the following relations (see for instance Refs. [1

.

, 2

.

, 164

.

,
165

.

]), defining at the same time the two isospin combinations of GPDs and stating that there
are at most two independent quark GPDs for the pions:

Hu
πc (x, ξ, t) +Hd

πc (x, ξ, t) = HI=0
π (x, ξ, t) , ∀c = 0,± , (4.11)

Hu
πc (x, ξ, t)−Hd

πc (x, ξ, t) = cHI=1
π (x, ξ, t) . (4.12)

Notice that each equation represents three equalities. From this, we deduce the relations:

Hu
πc (x, ξ, t) = Hd

π−c (x, ξ, t) , ∀c = ± , (4.13)

Hu
π0 (x, ξ, t) = Hd

π0 (x, ξ, t) = 1
2
(
Hu
πc (x, ξ, t) +Hd

πc (x, ξ, t)
)
. (4.14)

Using now charge conjugation yields:

Hq
πc (x, ξ, t) = −Hq

π−c (−x, ξ, t) , ∀c = 0,± and q = u, d , (4.15)
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4.1. Pion GPDs

and combining this with the previous relations allows us to write:

Hu
πc (x, ξ, t) = −Hd

πc (−x, ξ, t) , ∀c = 0,± . (4.16)

All in all, this shows that there is actually only one independent quark GPD, for instance
Hu
π+ , and that the isospin GPDs are the x-even and x-odd contributions to it:

HI
π (x, ξ, t) = Hu

π+ (x, ξ, t)− (−1)I Hu
π+ (−x, ξ, t) . (4.17)

These combinations are also called “singlet” for the isoscalar HI=0
π and “non-singlet” (or

“valence”) for the isovector HI=1
π .

In this thesis, when the subscripts and superscripts are not explicitly written, it is implied
that the GPD considered is Hu

π+ .

4.1.4. Polynomiality
Let us now derive the same kind of matrix element of a local operator as in Eq. (4.3

.

), but
for a general mth Mellin moment, that we will denote by Hm:

Hq,m
π (ξ, t) =

∫ 1

−1
xmHq

π (x, ξ, t) dx

= 1
2

∫ dz−
2 π

∫ 1

−1
dx xmei x P+z−

〈
π, P2

∣∣∣∣ψ̄q (−z2
)
γ+ψq

(
z

2

) ∣∣∣∣π, P1

〉∣∣∣∣z+=0
z⊥=0

= (−i)m

2 (P+)m+1

∫
dz−

(
∂

∂z−

)m [
δ
(
z−
)] 〈

π, P2

∣∣∣∣ψ̄q (−z2
)
γ+ψq

(
z

2

) ∣∣∣∣π, P1

〉∣∣∣∣z+=0
z⊥=0

= im

2 (P+)m+1

〈
π, P2

∣∣∣∣
(

∂

∂z−

)m (
ψ̄q
(
−z2

)
γ+ψq

(
z

2

)) ∣∣∣∣π, P1

〉∣∣∣∣∣
z=0

= 1
2 (P+)m+1

〈
π, P2

∣∣∣∣ψ̄q (0) γ+
(
i
↔
∂+
)m

ψq (0)
∣∣∣∣π, P1

〉
, (4.18)

where the last line is just a convenient rewriting of the previous line by using the notation
↔
∂ = 1

2

(→
∂ −

←
∂
)
for the left-right partial derivative, with ∂+ = ∂

∂z−
.

This operator ψ̄q (0) γ+
(
i
↔
∂+
)m

ψq (0) is a special case of twist-2 local operators of the form:

Oµ0µ1...µm
q = ψ̄qγ{µ0 i

↔
Dµ1 . . . i

↔
Dµm} ψq (4.19)

where D is the covariant derivative3

.

and {. . .} denotes a full symmetrization and trace
subtraction4

.

, and the fields are taken at the same position (e.g. z = 0). A matrix element of
this operator has the following structure in terms of the two four-vectors P µ and ∆µ and the
only scalar invariant t = ∆2 (given that P ·∆ = 0 and P 2 = M2

H − ∆2

4 ):

〈π, P2| Oµ0µ1...µm
q (0) |π, P1〉 = 2

m+1∑
k=0

Hq,m
π,k (t)

(
−∆{µ0

2

)
. . .

(
−∆µk−1

2

)
P µk . . . P µm} , (4.20)

3The covariant derivative appears when considering a general gauge with a Wilson line for the bi-local
operator. Here, we used the light-cone gauge and ended up with the usual derivative in Eq. (4.18

.

).
4Our operator in Eq. (4.18

.

) indeed fulfills that since we have only plus-indices.
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Chapter 4. Definition and properties of GPDs

where Hm
k are Generalized Form Factors (GFFs)..

We immediately deduce from this the structure of the Mellin moment of Eq. (4.18

.

):

Hq,m
π (ξ, t) = 1

(P+)m+1

m+1∑
k=0
k even

Hq,m
π,k (t)

(
−∆+

2

)k (
P+

)m+1−k

=
m+1∑
k=0
k even

Hq,m
π,k (t) ξk . (4.21)

This is the so-called Polynomiality property: the mth x-moments of the GPD are polynomials
of order m + 1 in the skewness ξ. We should remark that only the k-even form factors are
non-vanishing, due to the ξ-parity of the GPD.

4.1.5. Positivity
On top of polynomiality, the second main constraint on GPDs is called Positivity. For the

quark GPD in the scalar case of Eq. (4.1

.

), it takes the following form:

|Hq
π(x, ξ, t)| ≤

√√√√qπ
(
x+ ξ

1 + ξ

)
qπ

(
x− ξ
1− ξ

)
, (4.22)

in the region x ≥ ξ, with a similar relation involving the anti-quark PDF q̄π in the region x ≤ −ξ.
This gives a bound on the GPD in the DGLAP region, in terms of its forward limit (the PDF)
for the emitted and reabsorbed partons of momentum fractions k+

1 /P
+
1 = (x+ ξ) / (1 + ξ) and

k+
2 /P

+
2 = (x− ξ) / (1− ξ) with respect to the initial and final hadron momenta respectively.

A weaker bound (involving a prefactor 1/
√

1− ξ2) for the pion was first derived in Ref. [10

.

].
Here, we are considering a stronger bound as in Ref. [1

.

] for instance. The proof can be
straightforward when using the overlap representation of GPDs in terms of Light-front wave-
functions. We will therefore postpone it to Chap. 6

.

.

4.2. Generalized Parton Distributions of the nucleon
Let us now extend the scalar case to a spin-1/2 hadron, the nucleon. Contrary to the pion

case, we will not use any subscript nor specify the particle in the hadron states. In its absence,
the nucleon (and often especially the proton) is implied.

4.2.1. Definition
The same matrix element as in Eq. (4.1

.

) gives rise now to two independent GPDs H and E
due to the spin-1/2 structure of the hadron:

F q
Λ2,Λ1

= 1
2

∫ dz−
2π ei x P

+z− 〈P2,Λ2| ψ̄q
(
−z2

)
γ+ψq

(
z

2

)
|P1,Λ1〉

∣∣∣∣z+=0
z⊥=0

(4.23)

= 1
2P+

[
Hq(x, ξ, t) ū (P2,Λ2) γ+u (P1,Λ1) + Eq(x, ξ, t) ū (P2,Λ2) iσ

+µ∆µ

2MH

u (P1,Λ1)
]
,

46



4.2. Nucleon GPDs

where MH is the hadron mass and we refer to the appendix A.1

.

for the Dirac spinor and
matrices notations.
Additionally, we can now consider also the axial-vector sector, which defines two other

chiral-even GPDs H̃ (which was vanishing in the scalar case due to parity invariance) and Ẽ,
often called polarized GPDs:

F̃ q
Λ2,Λ1

= 1
2

∫ dz−
2 π ei x P

+z− 〈P2,Λ2| ψ̄q
(
−z2

)
γ+γ5ψ

q
(
z

2

)
|P1,Λ1〉

∣∣∣∣z+=0
z⊥=0

= 1
2P+

[
H̃q(x, ξ, t) ū (P2,Λ2) γ+γ5u (P1,Λ1) + Ẽq(x, ξ, t) ū (P2,Λ2) γ5∆+

2MH

u (P1,Λ1)
]
.

(4.24)

We will not consider chiral-odd quark GPDs as they do not intervene in DVCS phenomenology,
but we can introduce chiral-even gluon GPDs as they do enter the DVCS cross-section at NLO.
The gluon matrix elements defining Hg, Eg, H̃g and Ẽg are as follows:

F g
Λ2,Λ1

= 1
P+

∫ dz−
2 π ei x P

+z− 〈P2,Λ2|G+µ
(
−z2

)
Gµ

+
(
z

2

)
|P1,Λ1〉

∣∣∣∣z+=0
z⊥=0

= 1
2P+

[
Hg(x, ξ, t) ū (P2,Λ2) γ+u (P1,Λ1) + Eg(x, ξ, t) ū (P2,Λ2) iσ

+µ∆µ

2MH

u (P1,Λ1)
]
,

(4.25)

F̃ g
Λ2,Λ1

= 1
iP+

∫ dz−
2 π ei x P

+z− 〈P2,Λ2|G+µ
(
−z2

)
G̃µ

+
(
z

2

)
|P1,Λ1〉

∣∣∣∣z+=0
z⊥=0

= 1
2P+

[
H̃g(x, ξ, t) ū (P2,Λ2) γ+γ5u (P1,Λ1) + Ẽg(x, ξ, t) ū (P2,Λ2) γ5∆+

2MH

u (P1,Λ1)
]
,

(4.26)

where Gµν is the gluon field strength tensor.
To extract the GPDs Ha, Ea,. . . from the helicity-dependent matrix elements F a and F̃ a,

with a = q, g, we can use the following dictionary [1

.

, 25

.

, 166

.

]:

F a
++ = F a

−− =
√

1− ξ2

[
Ha − ξ2

1− ξ2E
a

]
, (4.27)

F a
−+ = −

(
F a

+−

)∗
= ∆1 + i∆2

2MH

√
1− ξ2 E

a, (4.28)

F̃ a
++ = −F̃ a

−− =
√

1− ξ2

[
H̃a − ξ2

1− ξ2 Ẽ
a

]
, (4.29)

F̃ a
−+ =

(
F̃ a

+−

)∗
= ∆1 + i∆2

2MH

ξ√
1− ξ2 Ẽ

a, (4.30)

where the subscripts + or − denote the hadron helicities as explicitly written in Eq. (4.23

.

),
and ∆j, j = 1, 2, are the components of ∆⊥. We can see now why E is considered the hadron
helicity flip GPD (and therefore is absent in the scalar case), while H conserves hadron helicity.
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Chapter 4. Definition and properties of GPDs

4.2.2. Properties
Similarly to the scalar case, we will list the important properties of the thus defined nucleon

GPDs, but without explaining the derivation this time.

Forward limit

The limit ∆ = 0 gives the following relations:

Hq (x, 0, 0) = q (x) θ (x)− q̄ (−x) θ (−x) , Hg (x, 0, 0) = |x| g (|x|) , (4.31)
H̃q (x, 0, 0) = ∆q (x) θ (x) + ∆q̄ (−x) θ (−x) , H̃g (x, 0, 0) = x∆g (|x|) , (4.32)

where a and ∆a are respectively the unpolarized and polarized PDFs, for a = q, g.
We can say nothing about the forward limit of E (or Ẽ), given the prefactor linear in ∆ (see

for instance Eq. (4.23

.

)). Its contribution to the matrix element vanishes when ∆ = 0, despite
the GPD itself not necessarily vanishing. In fact, this forward limit is crucial to understanding
the nucleon spin decomposition, as made explicit by Ji’s sum rule (2.34

.

), but it cannot be
linked to any PDF extracted from inclusive processes. Only the exclusive processes can allow
to access this information, with an extrapolation of the GPD for non-vanishing momentum
transfer ∆.

Domain

As was mentioned in Sec. 4.1

.

, the domain for (x, ξ) is [−1, 1]2.
In addition to this, the relation5

.

− t = 4 ξ2M2
H + ∆2

⊥
1− ξ2 , (4.33)

with ∆2
⊥ ≥ 0, implies that −t is bounded from below or, equivalently, that ξ has an upper

bound:

−t ≥ −tmin (ξ) = 4 ξ2M2
H

1− ξ2 , |ξ| ≤ ξmax (t) =
√

−t
−t+ 4M2

H

. (4.34)

This significantly limits the accessible region in ξ, which is a considerable issue for the covariant
extension of Part. III

.

. For example, with a value of −t = 0.2 GeV2, we have ξmax ∼ 0.23 for
the nucleon. In principle, we can extend the GPD by analytic continuation to imaginary values
of ∆⊥ (negative ∆2

⊥), and therefore consider the full domain in ξ (as it is possible for fully
algebraic models such as the one of Sec. 9.2

.

), but these are non-physical values of ξ.

Symmetries

As in the scalar case, we can show that all GPDs considered here are real-valued and even
in ξ:

(GPDa (x, ξ, t))∗ = GPDa (x,−ξ, t) = GPDa (x, ξ, t) , (4.35)
5It can be derived from the parametrization of Eqs. (6.8

.

)-(6.9

.

).
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4.2. Nucleon GPDs

with GPD = H,E, H̃, Ẽ and a = q, g.
In addition, gluons being their own anti-particles, we have the following parity relations in x:

Hg (−x, ξ, t) = Hg (x, ξ, t) , H̃g (−x, ξ, t) = −H̃g (x, ξ, t) , (4.36)
Eg (−x, ξ, t) = Eg (x, ξ, t) , Ẽg (−x, ξ, t) = −Ẽg (x, ξ, t) , (4.37)

i.e. x-even unpolarized and x-odd polarized gluon GPDs.

Polynomiality

The sum rules for each nucleon GPD are:

Hq,m (ξ, t) =
∫ 1

−1
xmHq (x, ξ, t) dx =

m∑
k=0
k even

Hq,m
k (t) ξk + mod (m, 2)Dq,m (t) ξm+1 , (4.38)

Eq,m (ξ, t) =
∫ 1

−1
xmEq (x, ξ, t) dx =

m∑
k=0
k even

Eq,m
k (t) ξk −mod (m, 2)Dq,m (t) ξm+1 , (4.39)

H̃q,m (ξ, t) =
∫ 1

−1
xmH̃q (x, ξ, t) dx =

m∑
k=0
k even

H̃q,m
k (t) ξk , (4.40)

Ẽq,m (ξ, t) =
∫ 1

−1
xmẼq (x, ξ, t) dx =

m∑
k=0
k even

Ẽq,m
k (t) ξk , (4.41)

Hg,m (ξ, t) =
∫ 1

−1
xmHg (x, ξ, t) dx = mod (m+ 1, 2)

 m+1∑
k=0
k even

Hg,m
k (t) ξk +Dg,m (t) ξm+2

 ,
(4.42)

Eg,m (ξ, t) =
∫ 1

−1
xmEg (x, ξ, t) dx = mod (m+ 1, 2)

 m+1∑
k=0
k even

Eg,m
k (t) ξk −Dg,m (t) ξm+2

 ,
(4.43)

H̃g,m (ξ, t) =
∫ 1

−1
xmH̃g (x, ξ, t) dx = mod (m, 2)

m+1∑
k=0
k even

H̃g,m
k (t) ξk , (4.44)

Ẽg,m (ξ, t) =
∫ 1

−1
xmẼg (x, ξ, t) dx = mod (m, 2)

m+1∑
k=0
k even

Ẽg,m
k (t) ξk . (4.45)

Several crucial points should be noticed:
• The GPDs being ξ-even, only the even powers in ξ have non-vanishing coefficients.

• Specializing for m = 0, we have again the sum rules linking GPDs to the Elastic Form
Factors: ∫ 1

−1
Hq (x, ξ, t) dx = F q

1 (t) ,
∫ 1

−1
H̃q (x, ξ, t) dx = Gq

A (t) , (4.46)∫ 1

−1
Eq (x, ξ, t) dx = F q

2 (t) ,
∫ 1

−1
Ẽq (x, ξ, t) dx = Gq

P (t) , (4.47)
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Chapter 4. Definition and properties of GPDs

where F1 and F2 are the Dirac and Pauli electromagnetic form factors, whereas GA and
GP are the axial-vector and pseudo-scalar form factors, respectively. See Sec. 1.1.2

.

.

• The Gravitational Form Factors A, B and C introduced in Eq. (2.31

.

) correspond for
quarks to Hq,1

0 , Eq,1
0 and 1

4D
q,1 respectively in Eqs. (4.38

.

)-(4.39

.

), and for gluons to 1
2H

g,0
0 ,

1
2E

g,0
0 and 1

8D
g,0 in Eqs. (4.42

.

)-(4.43

.

).

• Hq and Eq share the same (m+ 1)-degree coefficient (i.e. the dominant one when m is
odd):

Hq,m
m+1 = −Eq,m

m+1 = Dq,m . (4.48)

This means in particular that the sum rule of Hq + Eq is a polynomial of degree m, just
like the polarized GPDs. The same type of remark can be made for gluons, by adapting
the degrees (m+ 2 instead of m+ 1). Moreover, the coefficients Dm define what is called
the D-term: ∫ 1

−1
αmD (α, t) dα = Dm (t) , (4.49)

which is an odd function of α (consequence of the ξ-parity). The D-term will play an
important role when it comes to the Double Distributions representation (Chap. 5

.

) and
the covariant extension of GPDs (Part. III

.

).

• The gluon GPDs having a definite x-parity (4.36

.

)-(4.37

.

), only the m-even moments of
Hg and Eg and m-odd moments of H̃g and Ẽg are non-vanishing.

Positivity

We can write the following positivity bound for unpolarized quark GPDs [167

.

]:[
Hq (x, ξ, t)− ξ2

1− ξ2E
q (x, ξ, t)

]2

+
[

∆⊥Eq (x, ξ, t)
2MH (1− ξ2)

]2

≤ 1
1− ξ2 q

(
x+ ξ

1 + ξ

)
q

(
x− ξ
1− ξ

)
.

(4.50)
But more general and stronger bounds (involving all kinds of PDFs, not just the unpolarized
one) can also be found in Ref. [168

.

].
The simple bound for H as seen for the pion (4.22

.

) is not valid for the nucleon, but one can
derive from Eq. (4.50

.

) a weaker bound depending on t, as done in Ref. [167

.

].
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Chapter 5.

Polynomiality and the Double
Distributions representation

Throughout this chapter, the pion-quark case will be considered for simplicity. To lighten the
notation, the subscript π, the t-dependence and superscript q will be dropped, unless necessary.
This is because t is only a fixed parameter in the following, and the flavour plays no significant
role.

5.1. Fulfilling Polynomiality
We have seen in the previous chapter the polynomiality property of GPDs, that we can

rewrite here:
Hm (ξ) =

∫ 1

−1
xmH (x, ξ) dx =

m+1∑
k=0
k even

Hm
k ξ

k . (5.1)

This is known as a characterization of the image of the Radon transform [15

.

, 169

.

]. See App. B

.

for details on this particular mathematical operator, well known in tomography applications,
such as medical imaging.

Contrary to what is presented in App. B

.

, here the degree of the polynomial is m+ 1, which
does not allow to directly apply the theorem B.3

.

. To circumvent this issue, we can consider for
instance the difference quotient of H with respect to ξ, instead of H itself:

∫ 1

−1
xm

H (x, ξ)−H (x, 0)
ξ

dx =
m∑
k=0
k odd

Hm
k+1ξ

k . (5.2)

Assuming that this difference quotient is well-behaved (which means more or less that we
assume ξ 7→ H (x, ξ) to be differentiable on 0), we can now use the theorem B.3

.

and state the
existence of a function hT (β, α)1

.

,2

.

such that:

H (x, ξ) = H (x, 0) + ξ
∫∫

dβ dα δ (x− β − ξα)hT (β, α) , (5.3)

1The somewhat strange non-alphabetical choice of variables is due to Ref. [170

.

], and was kept also in the
main reviews [1

.

, 2

.

], so we use it here to avoid further confusion.
2The choice of notation with a subscript T will be made clear in Sec. 5.3.6

.

. It should not be confused with
the notation used for transversity distributions, as we do not consider them at all in this thesis.
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Chapter 5. Polynomiality and Double Distributions

where hT is called a Double Distribution (DD) and in this case is an odd function of α, given
that H is ξ-even.

We can now verify by integrating Eq. (5.3

.

) that the polynomiality property is indeed manifest:∫ 1

−1
xmH (x, ξ) dx =

∫ 1

−1
xmH (x, 0) dx+ ξ

∫∫
dβ dα (β + ξα)m hT (β, α) , (5.4)

and that the Generalized Form Factors are given in terms of the DD hT as:

Hm
0 =

∫ 1

−1
xmH (x, 0) dx ,

Hm
k =

(
m

k − 1

)
h
m−(k−1), k−1
T , 1 ≤ k ≤ m+ 1 , (5.5)

where we defined the moments of hT as

hj,kT =
∫∫

dβ dαβjαk hT (β, α) . (5.6)

In our context of GPDs, a DD representation is therefore the natural expression of polyno-
miality. In other words, a GPD can be represented as a Radon transform of a DD, and this is
not just for modelling purposes, but a fundamental property.

5.2. Definition and properties of Double Distributions
In general, we can define two DDs f and g from the matrix element of Eq. (4.1

.

), when using
a two-dimensional Fourier transform this time:〈

P + ∆
2

∣∣∣∣∣ ψ̄q
(
−z
−

2

)
γ+ψq

(
z−

2

) ∣∣∣∣∣P − ∆
2

〉
(5.7)

=
∫∫

Ω
dβ dα e−i β P+z−+i α 1

2 ∆+z−
(

2P+f (β, α)−∆+g (β, α)
)
.

The reason why there are two vector structures P µ and ∆µ (versus only one in the case of the
GPD) is due to the two-dimensional Fourier transform; we are considering that P+z− and
∆+z− are two independent variables, i.e. we do not fix the variable ξ.

The DD f has been independently introduced by Müller et al. [5

.

] (under the denomination
of “spectral function”) and Radyushkin [97

.

], while the need for an additional DD g was first
pointed out by Polyakov and Weiss [171

.

].

5.2.1. Relation to GPDs
By taking the Fourier transform (as in the definition of the GPD (4.1

.

)) of Eq. (5.7

.

),∫ dz−
2 π ei x P

+z−
〈
P + ∆

2

∣∣∣∣∣ ψ̄q
(
−z
−

2

)
γ+ψq

(
z−

2

) ∣∣∣∣∣P − ∆
2

〉
(5.8)

= 2P+
∫∫

Ω
dβ dα

∫ dz−
2π e

i P+z−(x−β−αξ)
(
f (β, α) + ξ g (β, α)

)
= 2P+

∫∫
Ω

dβ dα δ
(
P+ (x− β − ξα)

)(
f (β, α) + ξ g (β, α)

)
,
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5.2. Definition and properties of DDs

we end up with the following relation between the GPD H and the DDs f and g, generalizing
Eq. (5.3

.

),
H (x, ξ) =

∫∫
Ω

dβ dα δ (x− β − ξα)
(
f (β, α) + ξ g (β, α)

)
. (5.9)

The DDs are a natural solution of the polynomiality constraint, as shown in Sec. 5.1

.

and
can be rewritten here in a more general way:∫ 1

−1
xmH (x, ξ) dx =

∫∫
Ω

dβ dα (β + ξα)m
(
f (β, α) + ξ g (β, α)

)
, (5.10)

with the GFFs given by:

Hm
0 = fm, 0 ,

Hm
k =

(
m

k

)
fm−k, k +

(
m

k − 1

)
gm−(k−1), k−1 , 1 ≤ k ≤ m, (5.11)

Hm
m+1 = g0,m ,

with the moments of f and g defined as in Eq. (5.6

.

). It should be noted that only f contributes
to zeroth order coefficients (i.e. the non-skewed limit), while only g contributes to the
(m+ 1)-degree terms which correspond to what we called the D-term contributions. See
Sec. 5.3.3

.

.
Historically, DDs have been used to model GPDs based on extracted PDFs in the framework

of the Radyushkin Double Distribution Ansatz [172

.

]. We can cite for instance the popular
Goloskokov-Kroll model [152

.

, 155

.

, 156

.

] as an example of the family of models following this
approach. Due to the success of these phenomenological models, DDs have been considered by
most as a convenient way to implement polynomiality in GPD models. It may have become
a common misconception to believe that DDs appear only in this restricted subset of GPD
parametrizations. On the contrary, the reasoning in Sec. 5.1

.

and App. B

.

shows that DDs
are the essence of the polynomiality property. Obeying the polynomiality property is exactly
equivalent to being constructed from a DD, and this is a key argument of the approach of
Part. III

.

.

5.2.2. Support
The compact support of DDs is the square

Ω = {(β, α) / |β|+ |α| ≤ 1} (5.12)

and we refer to Refs. [97

.

, 173

.

] for the proof using the α-representation of Feynman diagrams.
It can be however easily confirmed from the support of the GPD, as we will further clarify.

For the purpose of this paragraph, we will ignore the DD g and consider only f . H is in this
case the Radon transform of f ; it is obtained by integrating f over lines parametrized by x
and ξ through the equation:

x− β − α ξ = 0 , (5.13)
and whose slope is −1

ξ
. We will denote these lines by L (x, ξ). This means we perform the line

integral:
H (x, ξ) =

∫
L(x,ξ)

f (β (s) , α (s)) ds . (5.14)
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Chapter 5. Polynomiality and Double Distributions

R
−→

Figure 5.1. The domains Ω< and Ω> of the DD (resp. DGLAP and ERBL of the GPD) on
the left (resp. right). The Radon transform Rf (x, ξ) =

∫
dβdα f (β, α) δ (x− β − αξ), which

is an integration of f on a line parameterized by the couple (x, ξ), is the operation that sends
one domain to the other. The red lines that cross the α axis on x/ξ > 1 correspond to DGLAP
kinematics. ERBL lines are represented in green. In this example, both x and ξ are positive.

Figure 5.1

.

illustrates the DD domain and the above line integration. As can be seen, the
considered lines cross the α-axis at α = x/ξ and the β-axis at β = x. When |ξ| < 1, a point
(β, α) in the square Ω will only contribute to lines where |x| < 1, since the slope is constrained
to be greater than 1 in absolute value. We recover the GPD support. On the other hand,
a point outside Ω may also contribute to lines with |ξ| < 1 and |x| > 1, for which the GPD
should be vanishing. Hence why the support of the DD is limited to Ω. This can also be proven
rigorously using Thm. B.4

.

.
An important but straightforward consequence of the ξ-parity of the GPD (and therefore of

time reversal) is the following definite parity of the DDs:

f (β,−α) = f (β, α) , g (β,−α) = −g (β, α) , (5.15)

i.e. f is α-even, whereas g is α-odd. This reduces the domain of interest to only half the
square.

5.2.3. Interpretation
A physical interpretation is significantly more difficult for DDs compared to GPDs, given the

fact that they are not defined for fixed P and ∆ (or equivalently for fixed P1 and P2) as it can
be the case for GPDs (where we fix the constraint ξ = − ∆+

2P+ ). We can nevertheless follow the
diagram of Fig. 5.2

.

(left panel) as a guideline to get an understanding of the variables β and α.
In the forward limit, ∆ = 0, the momentum flows in the s-channel only, with the parton

carrying a momentum fraction β of the hadron momentum P+. We can therefore identify β
with the usual PDF variable x. This is confirmed by the fact that the integration over α of the
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5.2. Definition and properties of DDs

Figure 5.2. Left: DD diagram with associated momenta of hadrons and partons. Momentum
flow in s-channel (in pink) and t-channel (in green). Right: GDA domain (in yellow) in GPD
variables: |ξ| ≥ |x| and |ξ| ≥ 1.

DD yields the PDF at x = β:

H (x, 0) =
∫ 1

−1
dα f (x, α) . (5.16)

On the other hand, when P = 0, the momentum flows in the t-channel with the partons
carrying momentum fractions (1+α)

2 and (1−α)
2 (if they are both taken as incoming) of ∆+. The

diagram looks like the one of a meson Distribution Amplitude, represented in Fig. 5.3

.

(right
panel). The variable α can therefore be thought of as a DA variable.
This merger of two distinct non-perturbative distributions explains the origin of the name

Double Distribution.

5.2.4. Extension to Generalized Distribution Amplitudes
All we know about the GPD support is that the DGLAP region |x| ≥ |ξ| for |x| ≥ 1 is

vanishing. On the other hand, the r.h.s. of Eq. (5.9

.

) does not necessarily vanish on the
extended ERBL region |ξ| ≥ |x| for |ξ| ≥ 1 (represented in Fig. 5.2

.

, right panel), despite not
being part of the GPD domain.
In fact, it corresponds to the kinematics of Generalized Distribution Amplitudes (GDAs)

[5

.

, 174

.

, 175

.

]. These objects describe the transition from a quark-antiquark pair into a hadron-
antihadron pair, instead of just one hadron as it is the case for Distributions Amplitudes. In a
sense, they generalize DAs for larger numbers of hadrons3

.

.
Diagrammatically, they are the crossed-channel equivalent of GPDs. Turned upside down

(i.e. rotated by π
2 ), the diagram of Fig. 4.1

.

would represent a GDA with incoming partons and
3Here, we are only considering two hadrons as we are interested in their link to GPDs.
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Chapter 5. Polynomiality and Double Distributions

GDA

P ′2

P ′1

γ∗

γ∗

1− z

z

DA π

γ∗

γ∗

1− z

z

Figure 5.3. Handbag diagrams for γ∗γ∗ → hh̄ (pair hadron-antihadron, left) and γ∗γ∗ → π
(right), where GDAs and DAs are respectively accessed.

outgoing hadrons. Following Ref. [1

.

], we can use the following conventions with respect to the
GPD momenta:

P ′1 = P2 , k′1 = k2 , (5.17)
P ′2 = −P1 , k′2 = −k1 ,

where the momenta for the GDA (denoted by a prime) are indexed by 1 for the hadron and
quark, and 2 for the antihadron and antiquark. The same letter convention as for GPDs is
used; k for partons and P for hadrons. Figure 5.3

.

represents the diagrams of GDAs and DAs
in the simplest processes where they intervene.
The GDAs depend on three invariant scalars defined by:

z = k′+1
P ′+1 + P ′+2

,

ζ = P ′+1
P ′+1 + P ′+2

,

s = (P ′1 + P ′2)2
. (5.18)

From Eq. (5.17

.

), we deduce that the Mandelstam variable s ≥ 0 corresponds to the momentum
transfer t ≤ 0 in the case of GPDs, but in the timelike region. GDAs (timelike objects) are
therefore analytic continuations of GPDs (spacelike objects). We also deduce the relations:

1− 2z = x

ξ
, 1− 2ζ = 1

ξ
. (5.19)

From the support 0 ≤ z ≤ 1 and 0 ≤ ζ ≤ 1 of GDAs, we can confirm that the extended ERBL
region of Fig. 5.2

.

(right panel) corresponds indeed to the GDA domain.
We can now write the GDA Φ, the analytic continuation of the GPD H, in terms of the
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5.2. Definition and properties of DDs

DDs (f, g):

−1
2Φ (z, ζ, s) =

∫∫
Ω

dβ dα δ (1− 2z − β (1− 2ζ)− α)
(

(1− 2ζ) f (β, α, s) + g (β, α, s)
)
,

(5.20)

where the factor −1
2 is due to different conventions in the matrix element definitions of GPDs

and GDAs. We used the same notation for the DDs and their analytic continuation to positive
values of t = s.

5.2.5. Quark and anti-quark distributions
The DD f (and similarly for g) can be decomposed as follows:

f = f> + f<, with f>(β, α) = f(β, α) θ(β) , (5.21)
f<(β, α) = f(β, α) θ(−β) ,

where f> and f< are called respectively “quark” (with support on Ω> = Ω ∩ {β > 0}), and
“anti-quark” (with support on Ω< = Ω ∩ {β < 0}) distributions [1

.

]. They yield the following
“quark” and “anti-quark” GPDs (corresponding to Radyushkin’s original GPDs [176

.

]):

H>(x, ξ) =
∫∫

Ω>
dβdα δ(x− β − αξ)

(
f> (β, α) + ξ g> (β, α)

)
, (5.22)

with support x ∈ [−ξ,+1], and

H<(x, ξ) =
∫∫

Ω<
dβdα δ(x− β − αξ)

(
f< (β, α) + ξ g< (β, α)

)
, (5.23)

with support on x ∈ [−1,+ξ], the total GPD being of course H = H> +H<.
In particular, in the forward limit, we obtain the quark and anti-quark PDFs respectively:

θ (x) q (x) = Hq> (x, 0) =
∫ 1

−1
dα f q> (x, α) , (5.24)

−θ (−x) q̄ (−x) = Hq< (x, 0) =
∫ 1

−1
dα f q< (x, α) , (5.25)

hence the chosen name of “quark” and “anti-quark” DDs or GPDs.
It should be noted that:

• In the DGLAP region, H> and H< are not correlated. They contribute independently
to the positive x and the negative x DGLAP subdomains (which we may refer to in the
following as DGLAP> and DGLAP<), respectively. In the ERBL region however, both
interfere and they cannot be separated. The domain of H> for instance is sketched in
Fig. 7.1

.

.

• In the case of gluons, which are their own anti-particles, DDs are β-even (which reflects
the x-parity of GPDs). H> and H< are not independent in that case, and one is recovered
from the other by parity.
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This nomenclature can be confusing since we are using the same name for both the full
quark GPD Hq (with both quark and anti-quark contributions) and the quark contribution
Hq> (separated from its anti-quark counterpart). But in the following, we will consider only
quark contributions to the GPD (i.e. the DD domain β > 0), unless explicitly stated otherwise.
It should be therefore understood that H stands for H>.

5.3. Different representations

5.3.1. Double Distributions ambiguity
As pointed out by Teryaev [16

.

], the parametrization in terms of the DDs f and g is not
unambiguous. If we consider for instance the Mellin moments (5.11

.

) of the GPD H, we can
see that they are invariant by the following transformation on the DDs moments:

f j, k 7−→ f j, k − k χj, k−1 , gj, k 7−→ gj, k + j χj−1, k , (5.26)

which means that the decomposition (f, g) is not unique. Only the moments f 0,m and gm,0
determine the corresponding GFFs uniquely.
In the case of DDs vanishing on the edges of the square Ω4

.

, we can actually write the
following transformation on (f, g) that leaves the GPD unchanged:

f (β, α) 7−→ f (β, α) + ∂χ

∂α
(β, α) , g (β, α) 7−→ g (β, α)− ∂χ

∂β
(β, α) , (5.27)

assuming that χ fulfills the good parity property: χ (β,−α) = −χ (β, α). This function is
related to the previously written moments χj, k with the same definition as in Eq. (5.6

.

). By
analogy to electromagnetism, this is often called a “gauge transformation” in the literature.
This analogy is not perfect and does not add much to the discussion, we therefore choose not
to use it here. Instead of “gauges”, we will just consider the ordinary terminology of (choice
of) “representation”.

The following subsections will delve deeper into these different choices, specifically the ones
where we reduce the couple of DDs (f, g) to only one function h that we will abusively call the
DD. Each representation will be referred to by the name of the physicist(s) who introduced it.

5.3.2. R representation
Historically, the DD g was overlooked. We will therefore denote by R (for “Radyushkin”)

the representation where only f is present:

fR (β, α) = hR (β, α) , gR (β, α) = 0 . (5.28)

This implies that the GPD fulfills a polynomiality property of degree m (in fact, it is the case
considered in App. B

.

), instead of m+ 1 as it should be for the GPD H (both for the pion and
the nucleon).

4See [177

.

] for the generalization to DDs that are non-vanishing on the boundaries.
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5.3. Different representations

As an aside, let us explicit here the famous Radyushkin Double Distribution Ansatz (RDDA),
mentioned in Sec. 5.2.1

.

, fundamental ingredient of the DD-based phenomenological models. It
was introduced in Ref. [172

.

] as a modeling suggestion for the DD f . It goes as follows for a
given flavor q:

f q (β, α, t) = πN (β, α) q (β, t) , (5.29)
where q (β, t) is of course the t-dependent PDF, and πN is the profile function:

πN (β, α) =
Γ
(
N + 3

2

)
√
π Γ (N + 1)

(
(1− β)2 − α2

)N
(1− β)2N+1 . (5.30)

The normalization of the profile function∫ 1−β

−1+β
dαπN (β, α) = 1 (5.31)

ensures the correct forward limit (5.16

.

). The modeling approach goes then through a PDF
parametrization and a choice of the parameter N (although it was taken to be 1 in most
cases [23

.

, 152

.

, 155

.

, 156

.

]).
The RDDA does not say anything about the DD g. More generally, let us stress again that

the R representation lacks the (m+ 1)-degree coefficient in the polynomiality property, which
has no reason to vanish in the case of unpolarized GPDs.

5.3.3. D-term
To palliate this problem in a minimal way, i.e. by reducing the information in g to the strict

minimum corresponding to the moments gm,0 that cannot be reabsorbed in f , the authors of
Ref. [171

.

] introduced the so-called D-term:

gPW (β, α) = δ (β)DPW (α) . (5.32)

This generates the GFFs Hm+1
m only, the other ones generated entirely by hR. The contribution

to the GPD is the following:

HPW (x, ξ) =
∫∫

Ω
dβ dα δ (x− β − ξα) ξ δ (β)DPW (α)

= sgn (ξ)DPW

(
x

ξ

)
. (5.33)

More generally, following Ref. [16

.

], we can write for the D-term the following definition that
is invariant by the transformations (5.27

.

):

D (α) =
∫ +1−|α|

−1+|α|
dβ g(β, α) . (5.34)

The support [−1, 1] of D follows from the one of the DD. We also have that D is α-odd. From
Eq. (5.33

.

), we also deduce that the D-term contributes only to the ERBL region of the GPD,
i.e. |x| ≤ |ξ|.

In every representation, we will denote by DPW the “additional” (or “extra”) D-term
contributions not yielded by the reduced DD h itself. In the case of the R representation, it
corresponds to the full D-term, since f = hR does not contribute at all to Eq. (5.34

.

).
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5.3.4. BMKS representation
The authors of Ref. [178

.

] suggested another way to generate all needed GFFs, while still
keeping only one DD. This goes through the realization that H (x, ξ) /x fulfills a polynomiality
property of degree m, as can easily be seen from Eq. (5.1

.

). Using the following representation:

HBMKS (x, ξ) = x
∫∫

Ω
dβ dα δ (x− β − ξα)hBMKS (β, α) , (5.35)

we end up therefore with the correct order m+ 1 of polynomials for H:∫ 1

−1
xmHBMKS (x, ξ) dx =

∫∫
Ω

dβ dα (β + ξα)m+1 hBMKS (β, α) . (5.36)

In terms of the DDs (f, g), we have the following relations:

fBMKS (β, α) = β hBMKS (β, α) , gBMKS (β, α) = αhBMKS (β, α) , (5.37)

with hBMKS being α-even. In this case, the DD hBMKS does generate an “intrinsic” D-term:

DBMKS (α) = α
∫ +1−|α|

−1+|α|
dβ hBMKS(β, α) . (5.38)

All this assumes of course the existence of hBMKS. To proof it is more difficult, if not
impossible. Indeed, to apply the theorem of App. B

.

, we need the polynomiality property to be
fulfilled for every Mellin moment. The zeroth moment of H/x corresponds to the x−1 moment
of H, and we have no a priori knowledge on it. To fulfill the conditions of the theorem, we
need it to be constant: ∫ 1

−1
dx H (x, ξ)

x
= constant . (5.39)

But we do not even know if it is defined, i.e. that H/x is integrable5

.

, let alone constant. This
issue renders the BMKS representation intractable in phenomenologically relevant cases. But
we should point out that a regularization procedure was suggested in Refs. [179

.

, 180

.

] and then
applied in Ref. [158

.

].

5.3.5. P representation
In Refs. [17

.

, 181

.

], Pobylitsa introduced another representation6

.

:

HP (x, ξ) = (1− x)
∫∫

Ω>
dβ dα δ (x− β − ξα)hP (β, α) , (5.40)

in his effort to provide frameworks where both positivity and polynomiality would be fulfilled.
The parametrization of the DDs (f, g) is the following6

.

:

fP (β, α) = (1− β) hP (β, α) , gP (β, α) = −αhP (β, α) , (5.41)
5In fact, from the knowledge of extracted PDFs, we know that it is most definitely not. The PDFs are

already singular (even though integrable for the valence combinations). Further dividing by x only makes it
worse.

6Here, we took for granted that only quark contributions are considered. Otherwise, a factor (1 + x)
would be used instead of (1− x) for Ω<, and Eq. (5.41

.

) would be changed accordingly with additional sgn (β)
occurrences.
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and this DD hP generates the following D-term:

DP (α) = −α
∫ +1−|α|

−1+|α|
dβ hP(β, α) . (5.42)

Here, we considered that H/ (1− x) (instead of H or H/x) is in the image of the Radon
transform. This representation is much more friendly when it comes to the behavior of the
DD. Indeed, we know from perturbative QCD [182

.

] that at large x, the pion GPD vanishes
quadratically:

Hπ (x, ξ) '
x→1

(1− x)2

1− ξ2 , (5.43)

while the nucleon GPD H vanishes with the third power:

H (x, ξ) '
x→1

(1− x)3

(1− ξ2)2 , (5.44)

with the GPD E having an even stronger fall-off.
This means that H/ (1− x) is integrable, but we still need its integral to be independent of

ξ to prove the existence of the DD as a well-behaved function:∫ 1

−1
dx H (x, ξ)

1− x = constant , (5.45)

a condition that does not follow from the polynomiality property. Nevertheless, it seems more
suitable than the previous BMKS representation.

5.3.6. T representation
In Ref. [177

.

], Tiburzi introduced what he called the “Drell-Yan gauge”. We called this DD
hT and it was the subject of Sec. 5.1

.

.
In this representation, the usual DDs (f, g) can be written as:

fT (β, α) = δ (α)H (β, 0) , gT (β, α) = hT (β, α) . (5.46)

Let us stress again that, contrary to all the previous DDs h, this one is α-odd. Notice also the
symmetry with respect to the R+PW representation where we would have:

fR (β, α) = hR (β, α) , gPW (β, α) = δ (β)DPW (α) . (5.47)

In the T representation, the information is maximized in the DD g, with a residual information
on the line α = 0 for the DD f , corresponding to the (t-dependent) PDF. The D-term plays
the same role of residual information in the R+PW representation for the DD g on the line
β = 0, with the information maximized in the DD f .
This T representation is interesting in the sense that it completely decouples the DD from

the non-skewed limit H (x, 0) of the GPD, i.e. the (t-dependent) PDF, as written in Eq. (5.3

.

).
This potentially allows us to separate what we do know — the PDF, already extracted from
inclusive experiments — or want to know — the t-dependent PDF, for hadron tomography —

61



Chapter 5. Polynomiality and Double Distributions

from the part that is inherent to exclusive processes and is needed only for phenomenology,
i.e. the non-vanishing skewness. This feature would help in fulfilling the various constraints in
model building.

Moreover, the reasoning of Sec. 5.1

.

is more convincing that its counterparts for the BMKS or
P representations. Indeed, the T representation does not require an additional polynomiality
condition such as Eq. (5.45

.

).

5.3.7. Note on the nucleon

As presented in Sec. 4.2

.

, there are four chiral-even quark GPDs in the case of the nucleon,
which calls for some remarks:

• The polarized ones, H̃ and Ẽ, fulfill a degree-m polynomiality property (see Eqs. (4.40

.

)-
(4.41

.

)), which means that they don’t present any D-term contribution. The R represen-
tation is sufficient in that case.

• The unpolarized GPDs, H and E, share the same D-term, with an opposite sign (see
Eqs. (4.38

.

)-(4.39

.

)). This means that the combination H + E is free from D-term
contributions and can be written in the R representation again. This leaves one GPD
(H or E, or any other independent combination) to be modeled in either the T, P or
BMKS representations, and/or with an additional PW term. For the reasons mentioned
above, we will not consider the BMKS representation in practical applications. The
choice between the remaining options would be a model assumption.

5.3.8. Note on gluons

The gluon unpolarized GPDs having a degree-(m+ 2) polynomiality property, the previous
representations would not fit. However, Pobylitsa suggested in Refs. [17

.

, 181

.

] a similar
representation to Eq. (5.40

.

) but with a factor (1− x)2 instead for gluons.
We will not go into further details and subtleties, since gluon DDs are beyond the scope of

this present thesis. We will mainly concern ourselves with quark models, which we can think
of as low-scale models that can be evolved to generate gluons perturbatively at larger scales.

5.4. Illustrations

5.4.1. Toy model

For the sake of clarity, let us consider a simple example of DD (as in Ref. [18

.

]) in the BMKS
representation:

hToy
BMKS (β, α) = 15

(
(1− β)2 − α2

)
1Ω> (β, α) , (5.48)
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where 1Ω> ( · ) denotes the indicator function. This gives us the following GPD (using
Eq. (5.35

.

)):

HToy
|DGLAP (x, ξ) = 20 (1− x)3 x

(1− ξ2)2 , (5.49)

HToy
|ERBL (x, ξ) = 5x(ξ + x)2(−ξ(ξ + 2) + 2ξx+ x)

ξ3(ξ + 1)2 , (5.50)

with support x ∈ [−ξ,+1].
To obtain polynomial Mellin moments, one needs to integrate over both regions. The separate

contributions are actually rational fractions in this case, as can be seen in the following:
∫ +1

+ξ
dx xmHToy (x, ξ) = PToy,DGLAP

m (ξ) + RToy
−1 (m)
1 + ξ

+ RToy
−2 (m)

(1 + ξ)2 , (5.51)
∫ +ξ

−ξ
dx xmHToy (x, ξ) = PToy,ERBL

m (ξ)− RToy
−1 (m)
1 + ξ

− RToy
−2 (m)

(1 + ξ)2 , (5.52)

where PToy,DGLAP and PToy,ERBL are polynomials of degree m+ 1 whose sum gives the total
Mellin moment:(

n+ 5
4

) [
PToy,DGLAP
m (ξ) + PToy,ERBL

m (ξ)
]

= 5
2

m+1∑
k=0
k even

(k + 2) ξk , (5.53)

and RToy
−1 and RToy

−2 are the residues of the double pole ξ = −1 of the rational fractions:

RToy
−1 (m) = 20(−1)m+1 7 + 2 (m+ (−1)m)

(5 + 2m+ (−1)m) (9 + 2m+ (−1)m) , (5.54)

RToy
−2 (m) = 20(−1)m2m2 + (12 + 2(−1)m)m+ 16 + 5(−1)m

(5 + 2m+ (−1)m) (9 + 2m+ (−1)m) . (5.55)

We see here polynomiality in action, relating both regions through a cancellation of the same
residual rational fractions.
Let us now turn to another representation, e.g.P. As our example was built in the BMKS

representation, it obviously fulfills the extra condition (5.39

.

), but does it fulfill also the one for
the P representation, i.e. Eq. (5.45

.

)? The answer is no:

∫ 1

−1
dx H

Toy (x, ξ)
1− x =

5
(
ξ (2− ξ2)− 2 (1− ξ2) tanh−1 (ξ)

)
ξ3 , (5.56)

the r.h.s. being ξ-dependent!
To understand this, we can derive the P-DD, using the P↔BMKS conversion relations given

in Ref. [183

.

] (and in App. B of Ref. [18

.

]):

hToy
P (β, α) = 5

(
3α2

(
1− 1

(1− β)4

)
+ (4− 3β) β + 1

(1− β)2 − 1
)

1Ω> (β, α) . (5.57)
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This P-DD gives of course the same GPD as Eqs. (5.49

.

)-(5.50

.

), but if we look closely into it, we
realize that is not actually integrable on Ω, despite the corresponding DDs

(
fToy

P , gToy
P

)
(given

by Eq. (5.41

.

)) being integrable. We cannot therefore swap the order of integration between∫∫
Ω dβdα and

∫ 1
−1 dx, hence why the extra condition (5.45

.

) is not verified, despite seemingly
having a DD in the P representation. The said condition is a necessary and sufficient property
for well-behaved DDs in the P representation, which is not the case here.
We can isolate the minimal singular part of the DD as:

hToy
P, Sing (β, α) = 5

(
1

(1− β)2 −
3α2

(1− β)4

)
1Ω> (β, α) , (5.58)

with the regularized DD

hToy
P, Reg (β, α) = hToy

P (β, α)− hToy
P, Sing (β, α) (5.59)

= 5
(
3α2 − 3β2 + 4β − 1

)
1Ω> (β, α)

yielding a GPD that is identical in DGLAP but differs in the ERBL region by a D-term:

HToy, Reg
|DGLAP (x, ξ) = HToy

|DGLAP (x, ξ) , (5.60)

HToy, Reg
|ERBL (x, ξ) = HToy

|ERBL (x, ξ)− 5 x
ξ

1−
(
x

ξ

)2
 . (5.61)

What have we learned? That a choice of representation where the DD is well-behaved comes
with a choice of D-term in the ERBL region. This remark will be important for the covariant
extension of Part. III

.

.

5.4.2. Photon GPDs and DDs
As a second illustration, let us consider the known photon GPDs of Ref. [184

.

]:

Hγ
1 (x, ξ) = x2 + (1− x)2 − ξ2

1− ξ2 1DGLAP> (x, ξ) + x

ξ

1− ξ
1 + ξ

1ERBL (x, ξ) (5.62)

− x2 + (1 + x)2 − ξ2

1− ξ2 1DGLAP< (x, ξ) ,

Hγ
3 (x, ξ) = x2 − (1− x)2 − ξ2

1− ξ2 1DGLAP> (x, ξ)− 1− ξ
1 + ξ

1ERBL (x, ξ) (5.63)

+ x2 − (1 + x)2 − ξ2

1− ξ2 1DGLAP< (x, ξ) .

The corresponding DDs have been derived in Ref. [185

.

] in the R+PW representation:

hγ1 R (β, α) = sgn (β) (2 (1− |β| − |α|) + δ (α)− 1) , hγ3 R (β, α) = δ (α)− 1 , (5.64)
Dγ

1 PW (α) = (|α| − 1) (2 |α|+ 1) sgn (α) , Dγ
3 PW (α) = 0 . (5.65)

Notice that H3 fulfills a degree-m polynomiality property, and therefore has no D-term.
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The presence of a term δ (α) suggests the use of the T representation (see Eq. (5.46

.

)). Using
the conversion relations given in Ref. [177

.

], we can derive the T-DD (and the associated PDF)
as:

Hγ
1 (x, 0) = sgn (x)− 2x (1− |x|) , (5.66)

hγ1 T (β, α) = sgn (α) (1− 2 |β|)− 2α + δ (β) sgn (α) (|α| − 1) , (5.67)

and

Hγ
3 (x, 0) = 2 |x| − 1 , (5.68)

hγ3 T (β, α) = − sgn (α) sgn (β) . (5.69)

The representation for Hγ
3 is now free of any singularity (i.e. the δ (α) term). For Hγ

1 however,
there is still an explicit D-term like contribution, i.e. the δ (β) part. We can again get rid of
this singular contribution and consider:

hγ,Reg
1 T (β, α) = sgn (α) (1− 2 |β|)− 2α , (5.70)

with the corresponding GPD

Hγ
1,Reg (x, ξ) = x2 + (1− x)2 − ξ2

1− ξ2 1DGLAP> (x, ξ) + sgn (x) 1− 2 |x|+ ξ

1 + ξ
1ERBL (x, ξ) (5.71)

− x2 + (1 + x)2 − ξ2

1− ξ2 1DGLAP< (x, ξ) .

which keeps the same DGLAP region, but is different in ERBL, as expected. This difference
corresponds to the extra D-term of Eq. (5.67

.

).
In these considered GPDs of the photon, there are both quark and antiquark contributions.

If we wish to separate them as explained in Sec. 5.2.5

.

, i.e. take:

H>(x, 0) = H(x, 0) θ(x) , (5.72)
h>T(β, α) = hT(β, α) θ(β) , (5.73)

for the quark contribution, and

H<(x, 0) = H(x, 0) θ(−x) , (5.74)
h<T(β, α) = hT(β, α) θ(−β) , (5.75)

for the antiquark, we would end up with:

Hγ >
1,Reg (x, ξ) = x2 + (1− x)2 − ξ2

1− ξ2 1DGLAP> (x, ξ)− x (ξ + x)
ξ (1 + ξ) 1ERBL (x, ξ) (5.76)

+ 1 1ERBL> (x, ξ) + 0 1DGLAP< (x, ξ) ,

Hγ >
3 (x, ξ) = x2 − (1− x)2 − ξ2

1− ξ2 1DGLAP> (x, ξ) + x+ ξ

1 + ξ
1ERBL (x, ξ) (5.77)

− 1 1ERBL> (x, ξ) + 0 1DGLAP< (x, ξ) ,
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and similarly for the antiquark contribution. We denoted by ERBL> the region 0 < x < ξ.
Notice that there is a discontinuity in the ERBL region at x = 0, but a “quark distribution” in
ERBL has no physical meaning given that there is an emission of a pair quark-antiquark. It
is only a mathematical definition, and the discontinuity disappears when considering the full
GPD.
The toy model of the previous

.

subsection and the present photon GPDs will be both used
as benchmark for the covariant extension of Part. III

.

.
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Chapter 6.

Positivity and Light-front wave-functions
In this chapter, we turn to another representation of GPDs, the so-called overlap of light-front

wave-functions [166

.

, 186

.

, 187

.

]. First, we will briefly review the formalism with the necessary
formulae, and then apply it to a few simple examples as an illustration.

6.1. Formalism

6.1.1. Light-front quantization
Light-front quantization allows the expansion of a hadron state |P,Λ〉 of momentum P and

polarization Λ on a Fock basis [188

.

, 189

.

]:

|H;P,Λ〉 =
∑
N,β

∫
[dx]N [d2k⊥]NΨΛ

N,β

(
x1, k̂⊥1, ..., xN , k̂⊥N

)
|N, β; k1, . . . , kN〉 , (6.1)

where the |N, β; k1, . . . , kN〉 denote the N -particles partonic states with each (massless) particle
carrying a momentum (in light-cone coordinates, see App. A.1

.

)

ki =
[
xi P

+,
k2
⊥i

2xi P+ ,k⊥i

]
, (6.2)

and the hat denotes a relative coordinate such that:

k⊥i = k̂⊥i + xiP⊥ . (6.3)

β stands for the parton composition of the state, and corresponding quantum numbers:

β = {f1, λ1, c1; . . . ; fN , λN , cN} , (6.4)

where f = g, u, d, . . . denotes the nature of the parton (gluon or the quark flavor), λ its helicity
and c its color.
These states are weighted by the so-called Light-front Wave-functions (LFWFs) ΨΛ

N,β,
containing the non-perturbative physics. They depend only on the relative coordinates and are
normalized as follows: ∑

N,β

∫
[dx]N

[
d2k⊥

]
N

∣∣∣ΨΛ
N,β

(
x1, k̂⊥1, ...

)∣∣∣2 = 1 . (6.5)
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The measure element in Eqs. (6.1

.

) and (6.5

.

) fulfills momentum conservation by construction:

[dx]N =
N∏
i=1

dxi δ
(

1−
N∑
i=1

xi

)
, (6.6)

[d2k⊥]N = 1
(16π3)N−1

(
N∏
i=1

d2k⊥i

)
δ2
(

N∑
i=1

k⊥i − P⊥

)
, (6.7)

where i labels the partons.

6.1.2. Frames and notations
We will consider only “hadron frames”, i.e. reference frames where a hadron has zero

transverse momentum. In particular, we define a symmetric frame (also called “average-frame”
in Ref. [166

.

]) in which P (the average of hadrons momenta, see Sec. 4.1

.

) has a vanishing
transverse component, i.e. P⊥ = 0⊥. In this frame, the hadron momenta can be parametrized
as follows:

P = 1
2 (P1 + P2) =

[
P+, P− = M2

H + ∆2
⊥/4

2 (1− ξ2)P+ ,0⊥

]
, (6.8)

∆ = P2 − P1 =
[
−2ξP+,

ξ (M2
H + ∆2

⊥/4)
(1− ξ2)P+ ,∆⊥

]
. (6.9)

We denote with a bar the average of incoming and outgoing (denoted by a prime) parton
momenta, with the average plus-momentum fraction being defined with respect to the average
hadron momentum:

k̄i = ki + k′i
2 , x̄i = k̄+

i

P+ , i = 1, . . . , N . (6.10)

The active (or “struck”) parton of Fig. 4.1

.

, denoted by the label a, has therefore the following
plus-momentum fractions (defined once again with respect to P+) and transverse momenta in
the symmetric frame:

incoming: xa = x̄a + ξ , k⊥a = k̄⊥a −
∆⊥
2 , (6.11)

outgoing: x′a = x̄a − ξ , k′⊥a = k̄⊥a + ∆⊥
2 , (6.12)

while both incoming and outgoing parton momenta are equal to the average one ki = k̄i = k
′
i,

for i 6= a, i.e. for spectator partons.
Moreover, we define a hadron-in and a hadron-out frames, corresponding to the incoming

and outgoing hadrons, i.e. where P⊥1 = 0⊥ and P⊥2 = 0⊥ respectively. We denote parton
momenta with superscripts “in” and “out” in these frames accordingly. In other words, the
superscript “in” concerns momenta of incoming partons in the hadron-in frame, and likewise
for the superscript “out” (with a prime appended, for pedantic consistency). These can be
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related to the average momenta in the symmetric frame through the following transverse boost:

xin
i = x̄i

1 + ξ
, kin

⊥i = k̄⊥i + x̄i
1 + ξ

∆⊥
2 , for i 6= a (6.13)

xin
a = x̄a + ξ

1 + ξ
, kin

⊥a = k̄⊥a −
1− x̄a
1 + ξ

∆⊥
2 , (6.14)

xout′
i = x̄i

1− ξ , kout′
⊥i = k̄⊥i −

x̄i
1− ξ

∆⊥
2 , for i 6= a (6.15)

xout′
a = x̄a − ξ

1− ξ , kout′
⊥a = k̄⊥a + 1− x̄a

1− ξ
∆⊥
2 , (6.16)

where the “in” plus-momentum fractions are defined with respect to P+
1 , and the “out” fractions

with respect to P+
2 .

In the ERBL region, the partonic interpretation is that of an emission of a quark-antiquark
pair, which means that the incoming hadron has N + 1 partons, while the outgoing has N − 1.
For this reason, we introduce the notation ka′ = −k′a for the momentum of the active antiquark,
which would have the following momentum in the hadron-in frame:

xin
a′ = − x̄a − ξ1 + ξ

, kin
⊥a′ = −k̄⊥a −

1 + x̄a
1 + ξ

∆⊥
2 . (6.17)

6.1.3. Overlap representation of Generalized Parton Distributions
Using the Fock-space expansion (6.1

.

), one can express GPDs in terms of LFWFs [166

.

].
However, the partonic picture and therefore the way the GPDs are related to LFWFs depend
on the considered kinematics. In the DGLAP region, the GPD is given by an overlap of LFWFs
having the same number of constituents. In the ERBL region on the other hand, there is an
overlap of LFWFs involving different numbers of constituents N + 1 and N − 1, due to the
emission of a pair quark-antiquark (see Fig. 4.1

.

).
Keeping our simple quark-pion case, we can write in the region x ≥ ξ:

Hq (x, ξ, t) =
∑
N,β

(√
1− ξ2

)2−N∑
a

δfa,q

∫
[dx̄]N

[
d2k̄⊥

]
N
δ (x− x̄a) (6.18)

×Ψ∗N,β
(
xout′

1 ,kout′
⊥1 , . . . , x

out′
a ,kout′

⊥a , . . .
)

ΨN,β

(
xin

1 ,k
in
⊥1, . . . , x

in
a ,k

in
⊥a, . . .

)
,

where all quarks of the same flavour as q are summed over as active/struck partons. Note that
the t-dependence is recovered via Eq. (4.33

.

). For the nucleon, the helicity-dependent matrix
element F q

Λ2,Λ1
would have an identical formula, but for an added nucleon helicity dependence

on the wave-functions Ψ∗Λ2
N,β and ΨΛ1

N,β.
In the “anti-quark” region x ≤ −ξ, the result is similar, but for a global minus sign and a

constraint x̄a = −x for the momentum fraction of the active antiquark. In any case, in this
thesis, we consider only quark contributions to the GPD.
The major difference arises in the ERBL region −ξ ≤ x ≤ ξ, as stated before, with the

69



Chapter 6. Positivity and Light-front wave-functions

following overlap:

Hq (x, ξ, t) =
√

1− ξ
1 + ξ

∑
N

(√
1− ξ2

)2−N ∑
β,β′

∑
a,a′

1
√
nana′

δfa,q δfa,f̄a′
δλa,−λa′

δca,c̄a′
(6.19)

× 1
(16π3)N−1

∫
dx̄a d2k̄⊥a δ (x− x̄a) δ

1− ξ −
N+1∑
i=1
i 6=a,a′

x̄i



× δ2

∆⊥
2 −

N+1∑
i=1
i 6=a,a′

k̄⊥i


 N+1∏

i=1
i 6=a,a′

dx̄i d2k̄⊥i δβi,β′i


×Ψ∗N−1,β′

({
xout′
i ,kout′

⊥i ,
i=1...N+1
i 6=a,a′

})
ΨN+1,β

({
xin
i ,k

in
⊥i, i=1...N+1

})
,

where na (resp. na′) denotes the number of partons in the incoming hadron with the same
quantum numbers as the active quark (resp. antiquark). We sum over all pairs of quark and
antiquark of appropriate flavor and opposite helicity and color, emitted from the initial hadron,
and then over all spectator partons with matching quantum numbers between the incoming
and outgoing hadron. We therefore labelled the indices from 1 to N + 1 for both hadrons, even
though the outgoing hadron lacks two partons (i.e. the active pair a and a′). Again, the case
of the nucleon would be identical with added helicity dependence of the wave-functions.
In the case of gluons, the two formulae are identical but with a prefactor of

√
|x2 − ξ2|.

For the details of the derivation, we refer to Ref. [166

.

] where additional results for polarized
GPDs are also given.

6.1.4. Probability density in impact parameter space
We have seen in Chap. 2

.

that GPDs, when taken at vanishing skewness ξ = 0 and Fourier
transformed to IPDs (2.14

.

), provide us with a probabilistic interpretation. This can now be
made explicit with the overlap representation (6.18

.

). At ξ = 0, there is still an interference
with a relative shift in transverse momenta k̄⊥i + x̄i

∆⊥
2 and k̄⊥i − x̄i∆⊥2 . But when Fourier

transformed, the arguments of the wave-functions for the overlap in impact parameter space
are identical and we end up with a density as integrand

∣∣∣ΨN,β

(
. . . , x̄i, b̄⊥i, . . .

)∣∣∣2, hence why
H (x, b2

⊥) can be interpreted as a number density of partons. We kept here the notation Ψ also
for the inverse Fourier transform of the wave-function:

ΨN,β (. . . , xi, b⊥i, . . .) =
∫ [

d2k⊥
]
N

exp
(
i
N∑
i=1

b⊥i ·k⊥i
)

ΨN,β (. . . , xi,k⊥i, . . .) , (6.20)

where b⊥i are the positions of partons with respect to the transverse center of plus-momentum (2.10

.

)
of the hadron, taken here at the origin, i.e. R⊥ = 0⊥. The details of the wave-function repre-
sentation in impact parameter space are given in Ref. [74

.

].
Notice that in the forward limit t = 0, ξ = 0, the overlap (6.18

.

) gives also an integral of
densities

∣∣∣Ψ (
. . . , x̄i, k̄⊥i, . . .

)∣∣∣2, as expected for PDFs, i.e. parton densities. This can also be
obtained by integrating the impact parameter overlap representation over b⊥. On the other
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hand, integrating over x would yield the overlap representation of impact parameter densities,
or, by Fourier transform, the overlap representation of Form Factors.

6.1.5. Positivity property
One can notice that the overlap representation (6.18

.

) in the DGLAP region has the structure
of a scalar product

Hq (x, ξ, t) = (φ−ξ,∆⊥|φξ,−∆⊥) (6.21)

between the two sequences of functions [1

.

]:

φξ,−∆⊥,N :
(
β, x̄1, k̄⊥1, ..., x̄N , k̄⊥N

)
7→
√

1 + ξ
2−N

ΨN,β

(
xin

1 ,k
in
⊥1, . . . , x

in
N ,k

in
⊥N

)
, (6.22)

φ−ξ,∆⊥,N :
(
β, x̄1, k̄⊥1, ..., x̄N , k̄⊥N

)
7→
√

1− ξ
2−N

ΨN,β

(
xout′

1 ,kout′
⊥1 , . . . , x

out′
N ,kout′

⊥N

)
.

We can therefore apply the Cauchy-Schwarz inequality

|(φ−ξ,∆⊥|φξ,−∆⊥)|2 ≤ (φ−ξ,∆⊥|φ−ξ,∆⊥) (φξ,−∆⊥|φξ,−∆⊥) , (6.23)

and using the change of variable

[dx̄]N
[
d2k̄⊥

]
N

= (1 + ξ)N−1
[
dxin

]
N

[
d2kin

⊥

]
N
, (6.24)

δ (x− x̄a) = 1
1 + ξ

δ

(
x+ ξ

1 + ξ
− xin

a

)
, (6.25)

we obtain the PDF with the incoming parton’s momentum fraction as argument:

(φξ,−∆⊥|φξ,−∆⊥) = H

(
x+ ξ

1 + ξ
, 0, 0

)
= q

(
x+ ξ

1 + ξ

)
, (6.26)

and similarly for the outgoing parton. We end up with the positivity property (4.22

.

) of the
pion:

|Hq(x, ξ, t)|2 ≤ q

(
x+ ξ

1 + ξ

)
q

(
x− ξ
1− ξ

)
, (6.27)

that is now proven.
The same approach, when generalized to consider a helicity structure, can lead to a proof of

the relation given for the nucleon (4.50

.

). See e.g. Ref. [1

.

].

6.1.6. Two-body case
If we limit ourselves to the valence contribution to the pion, i.e. the first Fock sector N = 2,

the relation (6.18

.

) can be further simplified. Let us consider the π+ case in which the first
Fock sector would be ud̄. We get the following GPD (for x ≥ ξ):

Hu
π+ (x, ξ, t) =

∫ d2k⊥
16 π3 Ψ∗ud̄

(
xout′,kout′

⊥

)
Ψud̄

(
xin,kin

⊥

)
, (6.28)
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where the LFWF depends only on one set of momenta by virtue of Eqs. (6.6

.

)-(6.7

.

), and
the boost relations used are those of either the active quark in Eqs. (6.14

.

) and (6.16

.

) or the
spectator in Eqs. (6.13

.

) and (6.15

.

) (by symmetry of the LFWF). Note that for x ≤ −ξ, the
considered GPD is vanishing, as there is no valence antiquark u in the π+. Moreover, as
explained in Sec. 4.1.3

.

, there is only one independent quark GPD, e.g. this one.
If we consider all helicity combinations for the two partons, we end up with the following

two contributions in the overlap:

Hu
π+ (x, ξ, t) =

∫ d2k⊥
16 π3

[
Ψ∗↑↓

(
xout′,kout′

⊥

)
Ψ↑↓

(
xin,kin

⊥

)
(6.29)

+ kout′
⊥ ·kin

⊥ Ψ∗↑↑
(
xout′,kout′

⊥

)
Ψ↑↑

(
xin,kin

⊥

) ]
,

where the arrows denote the helicities of the quark and antiquark. Ψ↑↓ is the scalar and Ψ↑↑
the vector LFWF (i.e. with a sum of parton helicities equal to 1), the latter representing a
state with non-vanishing orbital angular momentum (necessary to compensate the helicity).
For more details on the helicity structure of wave-functions, see Ref. [190

.

]. It should be noted
that here the wave-functions are effective combinations of the ones introduced in the previous
subsections, with color neutral parton states in particular. The two approaches are equivalent
in the DGLAP region (as explained in Ref. [166

.

]).
These two-body truncated formulae will be used in Sec. 6.2

.

.

6.1.7. Distribution Amplitude
As an aside, let us mention quickly Distribution Amplitudes. Figure 5.3

.

(right panel)
represents the diagram of a pion DA, in the simplest process where they can be accessed:
γ∗γ∗ → π.
The leading-twist pion DA is obtained from the two-body LFWF of Eq. (6.28

.

) with the
integration:

fπ Φπ (z) =
∫ d2k⊥

16π3 Ψ↑↓ (z,k⊥) , (6.30)

where
fπ =

∫
dz
∫ d2k⊥

16 π3 Ψ↑↓ (z,k⊥) (6.31)

is the pion decay constant. The pion DA can be related to the GPD on the ERBL line ξ = ±1,
via the soft pion theorem of Ref. [191

.

] that states:

HI=0
π (x, ξ = 1, t = 0) = 0 , (6.32)

HI=0
π (x, ξ = 1, t = 0) = Φπ

(1 + x

2

)
, (6.33)

with the isoscalar and isovector pion GPDs defined in Sec. 4.1.3

.

.

6.1.8. Consistent truncation: is it possible?
The different overlap structure in DGLAP and ERBL leads to a considerable issue: how to

truncate consistently in both regions?
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Let us fix for instance an order N at which we truncate in DGLAP, we are then left with
a dilemma when it comes to the ERBL part. Do we truncate at the overlap (N − 2)/N ,
or rather at N/(N + 2)? Is an average truncation (N − 1)/(N + 1) more sound? Which
truncation would give a consistent GPD? By that we mean a GPD that corresponds to the
same approximation in Fock space in both regions, and therefore a consistent function that is
for instance:

• continuous at the cross-over line |x| = |ξ| – this is crucial for the factorization of exclusive
processes and therefore the experimental access to GPDs, as a discontinuity on this line
would generate logarithmic divergences in observables as can be seen for instance in
Eq. (3.19

.

) (see also e.g. the discussion in section 3.13 of Ref. [1

.

]);

• fulfills the polynomiality property – there does not seem to be any reason why one of
the truncations would be favored by polynomiality over another, it rather ties together
contributions from all Fock states in order to provide the cancellations between ERBL and
DGLAP in Mellin moments of the GPD. For an illustration of the kind of cancellations
needed, see Sec. 5.4

.

.

To the best of our knowledge, there does not seem to be any good answer.
This question is nonetheless crucial to GPD modeling, and this thesis is mainly devoted to it.

We will further explain its importance and show how to circumvent the answer, by providing
an alternative method, in Chap. 7

.

.

6.2. Examples
In this section, we illustrate the previous formalism by calculating a GPD from an overlap

of LFWFs, for a few examples where the result can be obtained analytically. We consider the
simple case of a pion in the first Fock sector as in Sec. 6.1.6

.

. The subscript π+ and superscript
u will be however (mostly) dropped but implied.

6.2.1. Gaussian toy model
As a first illustration, we consider a LFWF with a Gaussian Ansatz (such Ansätze have been

used for instance in AdS/QCD computations, see e.g. Refs. [192

.

, 193

.

] and references therein).
We choose to work with the following very simple one, with a unique mass parameter M :

Ψ
(
x,k2

⊥

)
= 4
√

15π
M

√
x (1− x) exp

(
− k2

⊥
4M2(1− x)x

)
. (6.34)

where the x-dependent factor is used to obtain a correct PDF behavior, as will be shown later.
The wave-function is already normalized such that:∫

dx d2k⊥
16π3

∣∣∣Ψ (
x,k2

⊥

)∣∣∣2 = 1 . (6.35)

Here, applying Eq. (6.28

.

) does not lead to any difficulty, and the integration of this gaussian
function can be carried out analytically [194

.

] by considering for instance polar variables for the
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Chapter 6. Positivity and Light-front wave-functions

integration in the transverse plane and choosing the first axis along ∆⊥:

k⊥ =
(
k⊥ cos θ
k⊥ sin θ

)
, ∆⊥ =

(
∆⊥
0

)
, (6.36)

which would lead to:

H (x, ξ, t) =
∫ k⊥dk⊥dθ

16π3 Ψ∗
x− ξ

1− ξ , k
2
⊥ +

(
1− x
1− ξ

)2 ∆2
⊥

4 + 1− x
1− ξ k⊥∆⊥ cos θ

 (6.37)

×Ψ
x+ ξ

1 + ξ
, k2
⊥ +

(
1− x
1 + ξ

)2 ∆2
⊥

4 −
1− x
1 + ξ

k⊥∆⊥ cos θ
 ,

and finally to the following GPD in DGLAP:

H (x, ξ, t) =
30 (1− x)2 (x2 − ξ2)3/2 exp

( (1−ξ2)(1−x)
8((1+ξ2)x−2ξ2)

t
M2

)
(1− ξ2) ((1 + ξ2)x− 2ξ2) , (6.38)

once we use the relation1

.

−t = ∆2
⊥

1−ξ2 . This gives the reasonable PDF (see Sec. 6.2.3

.

):

uπ+ (x) = Hu
π+ (x, 0, 0) = 30 x2 (1− x)2 . (6.39)

To fix the mass parameter which governs the t-dependence, we can resort to the Form Factor
sum rule2

.

,3

.

:
Fπ+ (t) =

∫ 1

−1
dxHu

π+ (x, ξ, t) . (6.40)

The Form Factor is independent of ξ (polynomiality property), but as we do not have access
to the ERBL region, ξ = 0 is the only value for which we can compute the integral in practice.
The integral can therefore be taken between 0 and 1 as this GPD is vanishing on DGLAP<.
We end up with an expression that we do not bother to write, as only the first order expansion
is needed to define the pion’s charge radius:

Fπ+ (t) = 1− 3
16M2 (−t) +O

(
t2
)

(6.41)

= 1− r2
π

6 (−t) +O
(
t2
)
, (6.42)

which leads to a parameter value of M ∼ 0.315 GeV, needed to recover the experimental value
r2
π = 0.439± 0.008 fm2 of the NA7 collaboration [195

.

].
As an illustration of the 3D hadron tomography of Chap. 2

.

, we can also derive the IPD (see
Eq. (2.14

.

)) for this toy model:

H
(
x, b2

⊥

)
= 60

π
M2 (1− x)x3 e−2 b2

⊥M
2 x

1−x , (6.43)

and we plotted the results for various values of x on Fig. 6.1

.

.
1We neglected the pion mass in Eq. (4.33

.

), i.e. we used the chiral limit.
2In truth, the pion Form Factor is a flavor combination Fπ+ = euF

u
π+ + edF

d
π+ , with the electric charges

being eu = 2
3 and ed = − 1

3 . But using isospin symmetry and charge conjugation (as detailed in Sec. 4.1.3

.

), we
can show that Fπ+ = Fuπ+ , hence the written sum rule.

3The pion Form Factor Fπ+ is usually denoted simply Fπ in the literature. We also have Fπ− = −Fπ+ and
Fπ0 = 0 by charge conjugation (see Eq. (4.15

.

)).
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x = 0.05 x = 0.5 x = 0.95

Figure 6.1. Impact parameter distribution H (x, b2
⊥) at fixed values of x = [0.05, 0.5, 0.95] for

the Gaussian toy model of Sec. 6.2.1

.

. See Eq. (6.43

.

).

6.2.2. Roberts’ toy model
Let us now consider the following LFWF model:

Ψ
(
x,k2

⊥

)
=

2
√

30 π
√

(1− x)x

M
(

1 + k2
⊥

4M2(1−x)x

) , (6.44)

taken from Eq. (2.70) of Ref. [196

.

], but adapted again with the necessary x-dependent factor
to obtain the correct pion PDF (6.39

.

).
In this case of rational fraction, the derivation of the GPD is trickier, and we will go into its

details. Let us start by writing the integral:

H (x, ξ, t) = 480π2M
[
xin

(
1− xin

)
xout′

(
1− xout′

)] 3
2 (6.45)

×
∫ d2k⊥

16 π3
1(

4M2 xin (1− xin) + kin 2
⊥

)(
4M2 xout′ (1− xout′) + kout′ 2

⊥

) .
We will call the integrand here I.

To obtain an analytical result at the end, one must go through the following tricks:
• Apply Feynman parametrization:

1
AnBn

= Γ (2n)
Γ (n)2

∫ 1

0
du un−1 (1− u)n−1

(uA+ (1− u)B)2n , (6.46)

which yields in this case:

I (x, ξ,k⊥,∆⊥) =
∫ 1

0

du(
4M2 [. . .] + u

(
k⊥ − 1−x

1+ξ
∆⊥

2

)2
+ (1− u)

(
k⊥ + 1−x

1−ξ
∆⊥

2

)2
)2

=
∫ 1

0

du4M2 [. . .] + k2
⊥ + (1− x)

(
1−u
1−ξ −

u
1+ξ

)
k⊥ ·∆⊥

+ (1− x)2
(

1−u
(1−ξ)2 + u

(1+ξ)2

) ∆2
⊥

4

2 (6.47)

where the square brackets are [. . .] = uxin (1− xin) + (1− u)xout′ (1− xout′).
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• “Complete the square”:

I (x, ξ,k⊥,∆⊥) =
∫ 1

0

du4M2 [. . .] +
(
k⊥ + (1− x)

(
1−u
1−ξ −

u
1+ξ

)
∆⊥

2

)2

+ u (1− u)
(

1−x
1−ξ2

)2
∆2
⊥


2 (6.48)

and in doing so, apply a change of variable k⊥ + (1− x)
(

1−u
1−ξ −

u
1+ξ

)
∆⊥

2 7−→ k⊥ to get
rid of the angular dependence k⊥ ·∆⊥ in the integrand.

• Using ∫ ∞
0

k dk b k2 + c

(a+ k2)n = a b+ c (n− 2)
2 (n− 1) (n− 2) an−1 , (6.49)

with b = 0, one can now integrate over momentum:

∫ d2k⊥
16 π3 I (x, ξ,k⊥,∆⊥) =

∫ ∞
0

k⊥ dk⊥
8 π2 I (x, ξ,k⊥,∆⊥)

=
∫ 1

0

du

16π2
(

4M2 [. . .] + u (1− u)
(

1−x
1−ξ2

)2
∆2
⊥

) . (6.50)

The integration over the Feynman parameter would then yield the GPD:

H (x, ξ, t) = 240 (1− x)2 (x2 − ξ2)3/2

(1− ξ2) η (x, ξ, t) tanh−1
(

η (x, ξ, t)
8 (x− ξ2 (2− x)) + (1− ξ2) (1− x) −t

M2

)
,

(6.51)

where

η (x, ξ, t) =

√√√√√64 (ξ3 + ξ − 2ξx)2 + (1− ξ2)2 (1− x)2
(
−t
M2

)2

+ 16 (1− ξ2) (1− x) (x− ξ2 (2− x)) −t
M2

.

The PDF is identical to the previous case, and we can fix the mass parameterM ∼ 0.182 GeV
in the same way.

6.2.3. Algebraic Nakanishi-based model
We will consider now a much more physically sound model, but still algebraic which allows

for the same kind of handy analytical calculations. It was introduced in Refs. [12

.

, 13

.

] and was
one of the main motivations that led to this covariant extension effort that we will explain in
Part. III

.

. It concerns of course the pion as it is still our simple guiding case.
Our basic ingredient is again the two-body LFWF, but here it was obtained from the

appropriate projection and integration of the Bethe-Salpeter wave-function resulting from
the algebraic model described in [197

.

] and based on its Nakanishi representation [198

.

, 199

.

].
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As shown in Ref. [13

.

] (the details of the computation can be found therein), there are two
contributions4

.

to the LFWF, the helicity-0 (or scalar):

Ψ↑↓ (x,k⊥) = 8
√

15π M3

(k2
⊥ +M2)2 (1− x)x , (6.52)

and helicity-1 (or vector):

i kj⊥Ψ↑↑ (x,k⊥) = 8
√

15 π kj⊥M
2

(k2
⊥ +M2)2 (1− x)x , j = 1, 2 , (6.53)

where M is a model mass parameter introduced at the level of the quark propagator (a
constituent-quark-like mass). Eqs. (6.52

.

)-(6.53

.

) correspond to specializing Eqs. (154) and (155)
in Ref. [13

.

] for the asymptotic case ν = 1 therein5

.

.
Applying the overlap (6.29

.

), the derivation of the GPD goes through the same steps as in
Sec. 6.2.2

.

. Let us separate the contributions and deal first with the scalar one:

H↑↓ (x, ξ, t) = 240 π2M6xin
(
1− xin

)
xout′

(
1− xout′

) ∫ d2k⊥
16 π3

1(
kin 2
⊥ +M2

)2(
kout′ 2
⊥ +M2

)2 .

(6.54)

Here, applying Feynman parametrization (6.46

.

) on the integrand and “completing the square”
yields:

I↑↓ (x, ξ,k⊥,∆⊥) =
∫ 1

0

u (1− u) duM2 +
(
k⊥ + (1− x)

(
1−u
1−ξ −

u
1+ξ

)
∆⊥

2

)2

+ u (1− u)
(

1−x
1−ξ2

)2
∆2
⊥


4 . (6.55)

Then integrating over k⊥ using (6.49

.

) with the same change of variable, we end up with:

H↑↓ (x, ξ, t) =
∫ 1

0

5M6xin (1− xin)xout′ (1− xout′)u (1− u) du(
M2 + u (1− u)

(
1−x
1−ξ2

)2
∆2
⊥

)3 . (6.56)

For the vector contribution, the derivation is similar. The only difference is that there will
be an angular dependence k⊥ ·∆⊥ in the numerator, but we can discard it, since the k⊥-odd
contributions have a vanishing integral. We can therefore write:

H↑↑ (x, ξ, t) = 240 π2M4xin
(
1− xin

)
xout′

(
1− xout′

)
(6.57)

×
∫ d2k⊥

16π3

∫ 1

0

(
k2
⊥ − u (1− u)

(
1−x
1−ξ2

)2
∆2
⊥

)
u (1− u) du(

M2 + k2
⊥ + u (1− u)

(
1−x
1−ξ2

)2
∆2
⊥

)4 ,

4By helicity here, we mean the sum of parton helicities. It should not be confused with the helicity of the
pion, which is of course 0.

5There is a normalization mismatch between the two contributions in Ref. [13

.

], which has been corrected in
Refs. [18

.

, 19

.

].
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which, once we integrate over momentum using (6.49

.

) (this time with b = 1), leads to:

H↑↑ (x, ξ, t) =
∫ 1

0

5M4xin (1− xin)xout′ (1− xout′)
(
M2 − u (1− u)

(
1−x
1−ξ2

)2
∆2
⊥

)
u (1− u) du

2
(
M2 + u (1− u)

(
1−x
1−ξ2

)2
∆2
⊥

)3 .

(6.58)

In total, once we integrate over Feynman’s parameter, we end up with the following GPD:

H(x, ξ, t) = 15
2

(1− x)2 (x2 − ξ2)
(1− ξ2)2 (1 + ζ)2

3 + 1− 2ζ√
ζ (1 + ζ)

arctanh
(√

ζ

1 + ζ

) , (6.59)

in DGLAP>, where:

ζ = −t
4M2

(1− x)2

1− ξ2 (6.60)

encodes the correlated dependence on the kinematical variables x and t, as a natural translation
of the kinematical structure of Eqs. (6.52

.

)-(6.53

.

). It should be noticed that such a correlation
is fully consistent with the results of pQCD when x→ 1−, as any t-dependence in Eq. (6.59

.

)
appears suppressed by a factor (1− x)2 [182

.

]. Indeed, in this limit, Eq. (6.59

.

) yields:

H (x, ξ, t) = 30(1− x)2

1− ξ2

(
1− 2 1− x

1− ξ2 +O
(
(1− x)2

))
, (6.61)

where the leading term plainly agrees with the one obtained in Ref. [182

.

]6

.

as mentioned also in
Sec. 5.3.5

.

, while the first subleading correction is also shown not to depend on t. The forward
limit is given by Eq. (6.39

.

) and corresponds to the same result found in Ref. [11

.

] as an excellent
approximation for the pion’s valence dressed-quark PDF [200

.

].
Moreover, applying the sum rule for the pion electromagnetic Form Factor (6.40

.

) yields:

F (t) = 45
ζ2

0

(
1−

√
1 + ζ0

ζ0
arctanh

(√
ζ0

1 + ζ0

)
+ 1

3 arctanh2
(√

ζ0

1 + ζ0

))
(6.62)

= 1− 4
21

(
− t

M2

)
+O

(
t2
)
,

where we naturally used the notation ζ0 = −t/ (4M2). The model mass parameter can now be
identified as in Sec. 6.2.1

.

:

M =
√

24
21

1
rπ

= 318± 4MeV . (6.63)

This Form Factor compares fairly well with contemporary data [201

.

] as shown in Ref. [19

.

], up
to −t ' 2.5 GeV2. At large t, nonetheless, Eq. (6.62

.

) behaves as 1/t2, whereas the expected
behavior is 1/t [202

.

, 203

.

]. This wrong behaviour can be well understood, as explained in
Ref. [11

.

], because Eqs. (6.52

.

)-(6.53

.

) have been derived from a Bethe-Salpeter wave function
omitting contributions from the pseudovector components that are required for a complete
description of the pion [204

.

, 205

.

].
6The limit x → 1− given by Eq. (6.61

.

) is equivalent to u(x)/(1 − ξ2), as it is displayed by Eq. (4) of
Ref. [182

.

].
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x = 0.05 x = 0.5 x = 0.95

Figure 6.2. Impact parameter distribution H (x, b2
⊥) at fixed values of x = [0.05, 0.5, 0.95] for

the algebraic model of Sec. 6.2.3

.

.

We also plot on Fig. 6.2

.

the associated IPD H (x, b2
⊥) as before. This Fourier integration is

done numerically, but we can express the x-dependent rms impact parameter as:

〈b2
⊥〉 (x) = −4 ∂

∂ (∆2
⊥)H

(
x, 0,−∆2

⊥

)∣∣∣∣∣
∆2
⊥=0

= 80
M2 x

2(1− x)4 . (6.64)
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Chapter 7.

Principle of the covariant extension

7.1. Motivation
As was stated in sections 2.2

.

and 2.3

.

, we are mainly interested in accessing the GPD at
the non-skewed limit H (x, ξ = 0, t), where a probabilistic interpretation is possible [8

.

], which
would allow us to achieve the golden promise of hadron tomography.

However, we do not have a direct experimental access to GPDs. Indeed, they only enter the
various exclusive processes (such as DVCS) via convolutions with hard-scattering kernels. We
refer to Sec. 3.2.2

.

for the details on these Compton Form Factors. We see in Eq. (3.17

.

) that
the GPD is integrated over x, and in the case of a leading order analysis of DVCS, we can also
have access to the crossover line H (ξ, ξ, t) of the GPD (which still begs the question of how to
link it to vanishing skewness but non-zero x), via the imaginary part of the CFF. Otherwise, a
deconvolution in the variable x is necessary to access the GPD. Moreover, only finite values of
ξ (and t) are accessible with exclusive processes. Inclusive processes allow one to access the
forward limit (t = 0), which also implies ξ = 0, but we are interested in all values of t in the
case of 3D imaging of the nucleon.
The effort to extract useful information for tomography can be summarized as follows:

• Deconvolute the x-dependence;

• Extrapolate from the finite values of the skewness ξ to vanishing ξ;

• Extrapolate to all values of t;

• Apply the inverse Fourier transform of Eq. (2.14

.

).

The first three steps are not at all straightforward, and we cannot claim that phenomenological
parametrizations [150

.

, 155

.

, 157

.

, 206

.

, 207

.

] (with more or less arbitrary functional forms ranging
from the most flexible but with poor predictive power to the least flexible but with poor data
compatibility) are the final answer, despite great effort in that direction allowing to design
experiments and make sense of them. We rather seek to rely as much as possible on QCD
through nonperturbative frameworks with direct connection to it and models reproducing its
features accurately (see e.g. Refs. [13

.

, 14

.

, 208

.

–210

.

] and references therein). We also seek to
fulfill all (or as many as possible) known theoretical constraints on GPDs, the main ones being
polynomiality and positivity (see sections 4.1.4

.

and 4.1.5

.

). This is crucial to make sense of the
extrapolation.
In that direction, two main roads can be followed:
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Covariant approach: The first one is based on diagrammatic and covariant analyses which,
in most cases, assume the so-called impulse approximation. It has the advantage of
producing GPDs covering the entire kinematic domain and fulfilling polynomiality, but
is plagued with several issues, such as the lack of positivity or issues with discrete
symmetries when dealing with momentum dependent vertex models [11

.

–14

.

].

Light-front wave-functions approach: The second one is to use the expansion in Fock space
in terms of LFWFs, as presented in Chap. 6

.

. This way, positivity is naturally fulfilled
as shown in Sec. 6.1.5

.

. On the other hand, we encounter the truncation issue discussed
in Sec. 6.1.8

.

. This renders polynomiality unlikely to be fulfilled, nor the GPD to be
consistent in both DGLAP and ERBL regions (continuous at the border |x| = ξ in
particular, which is crucial for factorization of exclusive processes), at any finite order of
truncation N . It is rather expected to be achieved when all Fock states are summed over.

We suggest a solution to the last issue by considering the interplay between DGLAP and
ERBL, linked through polynomiality. To the best of our knowledge, the first discussion of this
link is the work of Müller and Schäfer [211

.

]. Under analyticity assumptions, they argued that
an extension of the GPD from the ERBL to the DGLAP region exists and is unique. But our
goal here is the opposite.
Knowing the DGLAP region through a symmetric overlap truncation, we can use the

polynomiality property to deduce the corresponding ERBL contribution. The latter will not
likely represent any finite order truncation of the asymmetric overlap but probably corresponds
to a projection on an arbitrary (infinite) number of Fock states. In other words, we probably
pick partial contributions from each overlap N − 2/N , N/N + 2 and N − 1/N + 1 (and
possibly others too), instead of the full contributions truncated at the first, second or third
one. Doing so, we enforce polynomiality in a positivity-granted framework and ensure both
constraints.

In practice, this goes through the use of Double Distributions, as the reader now understands
that they are the natural expression of polynomiality. This method was first introduced by
Hwang and Müller [20

.

], who managed to derive analytically a DD in a simple model of scalar
spectator diquark for the nucleon (mentioned in Sec. 9.2

.

), from the knowledge of the symmetric
overlap1

.

. The DD then allows to extend the GPD to the whole kinematic domain.
More recently, we presented in Ref. [18

.

] a general numerical method to achieve such goal.

7.2. Problem statement
We have so far discussed

• that the overlap representation makes sure the positivity of the GPD;

• that there is no simple way to exploit the overlap in the ERBL region and, for the same
price, respect the polynomiality condition at any finite truncation order in Fock-space;

• and, finally, that the DD representation ensures this polynomiality.
1Müller also expanded on this recently in Ref. [212

.

] for other LFWF models, given analyticity assumptions.
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Therefore, a natural approach to model a GPD, by fulfilling both positivity and polynomiality
conditions and exploiting the physical information encoded in the LFWFs would result from:

1. the computation of the overlap DGLAP GPD of Eq. (6.18

.

), symmetric in Fock-space
(overlap of LFWFs with the same number of constituents);

2. the derivation of a DD from this DGLAP GPD by an inverse problem;

3. the extension of the GPD to its full kinematic domain by means of the DD representation.

This is the program we will apply in the following.
In other words, given a GPD H (x, ξ) with support x ∈ [−1,+1] and with available non-trivial

information only in the DGLAP region 0 ≤ ξ ≤ |x| ≤ 1, our goal is to find a DD h such that:

Ĥ (x, ξ) = C> (x, ξ)
∫

Ω>
dβdαh (β, α) δ (x− β − αξ) (7.1)

+ C< (x, ξ)
∫

Ω<
dβdαh (β, α) δ (x− β − αξ) ,

where the definition of Ĥ, C> and C< depends on the chosen representation:

R representation: C> and C< are both equal to 1 and either Ĥ = H is the GPD itself when
it follows a degree-m polynomiality property or Ĥ (x, ξ) = H (x, ξ)−DPW

(
x
ξ

)
, i.e. the

GPD minus its D-term contribution in the R+PW representation.

BMKS representation: C> and C< are both equal to x, and Ĥ = H.

P representation: C> (x, ξ) = 1− x and C> (x, ξ) = 1 + x, while Ĥ = H.

T representation: C> and C< are both equal to ξ, and Ĥ (x, ξ) = H (x, ξ)−H (x, 0).

In the next section, we discuss the existence and uniqueness of a solution to such an inverse
problem. And in the next chapter, we provide a numerical procedure to solve it.
But before, we make the following remarks:

• In principle we can add a PW term in all representations, not just the first one. But it
is vanishing in the DGLAP region. Thus, in practice, Ĥ is always considered to be the
GPD H itself, save in the T representation where we subtract the zero-skewness limit.

• As mentioned in Sec. 5.2.5

.

, the quark and anti-quark GPDs are not correlated in the
DGLAP region. In positive DGLAP (0 ≤ ξ ≤ x), only H> is present, while in negative
DGLAP (x ≤ −ξ ≤ 0), only H< is. The two parts interfere in the ERBL region
(−ξ < x < ξ) where H = H> +H<. Therefore, the task to accomplish is an independent
inversion of

Ĥ> (x, ξ) = C> (x, ξ)
∫

Ω>
dβdαh> (β, α) δ (x− β − αξ) , (7.2)

and

Ĥ> (x, ξ) = C< (x, ξ)
∫

Ω<
dβdαh< (β, α) δ (x− β − αξ) . (7.3)
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Chapter 7. Principle of the covariant extension

R
−→

Figure 7.1. DD and GPD supports when only Ω> is considered. Only the salmon red domain
is used. The blue one is deduced by parity. And the white one, i.e. Ω<, is not correlated in
DGLAP, and therefore can be dealt with separately.

• As mentioned in Sec. 5.2.2

.

, h has a definite α-parity as the consequence of time reversal
invariance: hT is α-odd, while the others are α-even.

These last two properties together reduce the size of a numerical problem by 4 by comparison
of a direct numerical inversion of Eq. (7.1

.

). Indeed, we can separate a general GPD into two
distinct problems H> and H<, by virtue of linearity of Eq. (7.1

.

) and the non-correlation in
the DGLAP region. This limits us to half the DD domain (either Ω> or Ω<) without loss
of generality. And by parity, we reduce again the problem by half. Figure 7.1

.

summarizes
this. This significantly decreases the computing cost of the numerical inversion2

.

and further
constrains the target solution.

As stated in Sec. 5.2.5

.

, we will discuss only the case of quark DDs and GPDs. The treatment
of anti-quark DDs and GPDs is essentially the same.

7.3. Existence and uniqueness or ambiguity of the extension
Asking whether a DGLAP GPD can be covariantly extended means the following con-

sideration. Given a GPD H whose Mellin moments in the DGLAP sector can be written
as ∫ 1

ξ
dxxmH (x, ξ) = NPm (ξ) + PDGLAP

m (ξ) , (7.4)

where we separated a non-polynomial contribution NP from a potential even polynomial
PDGLAP
m of degree m+ 1, we may ask: can we compensate NP with an ERBL contribution?

2Given an algorithm with polynomial complexity O (Np) where N is the size of the problem, solving two
equal-size independent problems would have a O (2Np) complexity, which is much better than a joint problem
of complexity O ((2N)p).
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In other words, can we find HERBL such that
∫ ξ

−ξ
dxxmHERBL (x, ξ) = −NPm (ξ) + PERBL

m (ξ) , (7.5)

where PERBL
m is an arbitrary even polynomial of degree m + 1, whose sum with PDGLAP

m

would yield the final polynomial Mellin moment of the full GPD. Reformulating this to
introduce Double Distributions, the question becomes about the existence of a DD (in a given
representation) that would yield the known DGLAP GPD, and then allow to extend to ERBL.
The existing criteria for the DD existence, i.e. the polynomiality property (complemented if
necessary by the extra condition (5.39

.

) or (5.45

.

)), deal with the GPD known over its whole
physical domain, not its restriction to the DGLAP region; in other words, it does not help us.
Nevertheless, we will admit that given models of LFWFs built from sufficiently covariant

frameworks, the behavior (7.5

.

) is granted. Anyway, given that we will turn to a least-squares
formulation in Chap. 8

.

, the existence of a solution is not an issue, the closest approximation
being always favored.

On the other hand, it is crucial to know whether a solution is unique. We know that a D-term
δ (β)D (α) is visible only in the ERBL region and cannot be grasped from the knowledge of
the DGLAP region only. This means the extension will only recover the ERBL contribution
that is not due to a D-term. The choice of D-term would be left as model assumption. There
is therefore a clear minimal ambiguity in the extension from DGLAP to ERBL. Is it the only
one?

In other words, given two GPDs that are equal over the DGLAP region, are they necessarily
equal over ERBL too? By linearity of the Radon transform (7.2

.

), we can consider a GPD
H that is vanishing on DGLAP and ask whether it is also zero in ERBL (modulo an extra
D-term). By assuming the existence of the extension, we basically assumed the existence of a
DD hT (granted by polynomiality, see Sec. 5.1

.

and App. B

.

). And we want to prove that it is
vanishing.

Intuitively, as can be seen on Fig. 7.1

.

, the DGLAP lines x
ξ
≥ 1 never cross the β = 0 axis,

as the D-term lives there, but all points of Ω>\ {β = 0} are spanned by these lines. As the
GPD is vanishing on DGLAP, the DD hT must therefore be vanishing on Ω>\ {β = 0}. We
can prove this.

Proof. Our starting point is that RhT (x, ξ) = 0 for all x ≥ ξ > 03

.

. Let us choose x′0 > ξ0 > 0.
Let x0 be such that x′0 > x0 > ξ0, meaning that ξ0√

1+ξ2
0
< x0√

1+ξ2
0
. By continuity of ξ 7→ ξ√

1+ξ2
,

there exists ε > 0 such that 0 < ξ√
1+ξ2

< x0√
1+ξ2

0
for |ξ − ξ0| < ε. Then, for all x, ξ such that

x√
1+ξ2

> x0√
1+ξ2

0
and |ξ − ξ0| < ε, we have x > ξ > 0 and therefore RhT (x, ξ) = 0. We can

apply the theorem B.4

.

and state that hT (β, α) = 0 for all (β, α) on the half-plane β+αξ0 > x0.
In particular, for β + αξ0 = x′0.
We showed that hT is vanishing on all points spanned by DGLAP lines, i.e. vanishing on

Ω>\ {β = 0}.

3The GPD (minus the zero-skewness part) in the T representation is ξRhT (x, ξ), hence the hypothesis of
ξ 6= 0.
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Chapter 7. Principle of the covariant extension

In conclusion, a solution h of the inverse problem Eq. (7.2

.

) is unique on Ω>\ {β = 0}.
We should remark that the T representation already provides its own D-term contribution (see

Sec. 5.3.6

.

), but we can use additional ones in a T+PW representation as model assumption. We
proved rigorously the uniqueness of the inversion up to a D-term only for the T representation,
but as we illustrated in Sec. 5.4

.

, choosing a different representation with a well-behaved DD (as
a numerical procedure would naturally pick) means choosing a different “intrinsic” D-term (in
the sense discussed in Sec. 5.3

.

, see e.g. Eqs. (5.38

.

) and (5.42

.

)), which is not an issue given what
we already know of the ambiguity. The choice goes therefore through practical arguments, such
as the numerical behavior. As was stated in Sec. 5.3

.

, the P representation is quite convenient
if the GPD vanishes sufficiently fast at x→ 1, which is a behavior we expect from the models
of LFWFs considered. It will be therefore privileged in the following.
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Chapter 8.

Numerical implementation of the
covariant extension

8.1. Introduction
This chapter presents the considered numerical implementation of the covariant extension of

a GPD from the DGLAP to the ERBL region with its challenges and results. In Chap. 7

.

, we
explained that we can solve our physics problem by inverting the Radon transform. This may
seem straightforward since the Radon transform is linear, but this task is in fact quite difficult.
Indeed, as mentioned in App. B

.

, the inverse Radon transform may not be continuous and, in a
loose sense, two “close” GPDs may be obtained as Radon transforms of very “different” DDs.
This is an ill-posed problem in the sense of Hadamard. Since we are facing an incomplete data
problem (we know the GPD only in the DGLAP region), the sensitivity to noise is expected to
be even stronger than in the complete data problem, where we search a DD from the complete
knowledge of a GPD and a GDA over their whole kinematic domains. In this respect, we note
that reconstruction artifacts have already been reported [12

.

, 16

.

] for the latter situation.
One key remark is in order here. We do not know any closed-form formula for the inverse of

the Radon transform restricted to the DGLAP region. In the recent Ref. [212

.

], a possible step
towards that direction was suggested using inverse Laplace transforms under some analyticity
hypotheses of the LFWFs, but it is not clear how one could use this in practical applications
in a general way. However we do not need a closed-form formula, and it would be of limited
practical interest: the potential amplification of noise is related to the discontinuous nature
of the inverse Radon transform. It is not the manifestation of a poor numerical scheme or of
a badly-designed computing code. It is the inescapable consequence of a precise and general
mathematical statement. Even if we had at our disposal a closed-form expression of the inverse
Radon transform, we should expect this phenomenon of noise amplification except in the
lucky but rare situations where all computations can be performed analytically. As soon as
approximations enter the game, the discontinuous nature of the inverse Radon transform may
generate some artifacts in the sought-after DD.

The way to go is well-known in the mathematical literature (see e.g. Ref. [213

.

]). Assuming
that the underlying DD is smooth enough, it is possible to numerically invert the Radon
transform while keeping noise under control. This is called regularization.
This chapter falls into three sections. We first discretize our problem to reduce it to the

computation of the pseudo-inverse of a rectangular matrix. Then we select adequate linear
solver and regularization procedure. At last we validate our computing chain with simple but
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relevant test case scenarios.

8.2. Discretization
The goal now is to obtain a discrete problem from the integral equation (7.2

.

), and we will
use the usual notation:

AX = B , (8.1)

where A is a m× n matrix, X a vector of dimension n, and B a vector of dimension m.

8.2.1. Mesh
To obtain this finite-dimensional linear problem, the DD space should first be discretized.

In an abstract way, we use a set of basis functions {vj} for the decomposition:

h (β, α) =
∑
j

hj vj (β, α) , (8.2)

where the index j labels the set of basis functions, and therefore the degrees of freedom.
Adopting a formalism close to the one of Finite Element Methods (FEM) [214

.

,215

.

], these basis
functions are in one-to-one correspondence to given nodes in the DD domain. Indexing these
nodes means indexing the basis functions. Applying this to a given mesh which is a set of
vertices (or corners) and edges defining its elements, we can be more explicit. A basis function
is non-zero only on elements adjacent to its corresponding node, and the restriction of a basis
function to one such element is the Lagrange interpolation with respect to this node, i.e. the
polynomial that is equal to 1 on the said node, and 0 on all others. See Fig. 8.1

.

for an example
of such a basis function.
Following the conventions of FEM [216

.

], we will consider the following classification:

Pn-Lagrange Used for triangular meshes, where the restriction of a basis function to a triangular
element is an interpolating polynomial of total degree at most n. For example, for P1, it
would be a polynomial of the form a+ b β + c α.

Qn-Lagrange Used for quadrilateral meshes, where the restriction of the basis function to a
mesh element is an interpolating polynomial of partial degree at most n. For example,
for Q1, it would be a polynomial of the form a+ b β + c α + d β α.

In the case of linear piece-wise functions (P1 or Q1), the considered nodes of the basis
functions are the vertices of the mesh. For higher orders, the nodes also include other points
(such as the middle of the edges for P2 and Q2). We will also consider constant piece-wise
functions and we will call those elements P0 (which corresponds to dP0 in FEM notations). In
this case, each basis function corresponds to one element (or any node in the interior of the
element, e.g. the center of gravity, to keep the same correspondence between nodes and basis
functions). Tab. 8.1

.

summarizes this.
Our unknowns {hj} of Eq. (8.2

.

) correspond to the values of the DD h on the nodes j, and
will be recast into the vector X of the discrete problem (8.1

.

).
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Order n Basis function Node
0 Piece-wise constant Center of gravity of an element
1 Piece-wise linear Vertex of the mesh
2 Piece-wise quadratic Vertex or middle of an edge

Table 8.1. Summary of the different Pn elements. Each basis function has support on the
elements surrounding the corresponding node. The restriction to an element is a Lagrange
interpolation: it takes a value of 1 on the said node, and 0 on all the other nodes.

For the work presented here, we will consider only a triangular mesh, since the domain is a
triangle anyway (see Fig. 7.1

.

), with P1 or P0 elements.
We will always use the index j in the following to label the basis functions, i.e. the nodes,

and the index k for labelling the triangular elements. Of course, in the case of P0, the indices
will be interchangeable, since a basis function is defined by an element.

8.2.2. Basis functions

Figure 8.1. Example of a P1 basis function.
The corresponding node (i.e. a vertex in this
case) is represented in blue. The value of the
basis function on this node is 1, and 0 on the
others. The support is limited to the adjacent
triangles (in salmon red color).

In the case of a triangular mesh, it is nat-
ural to use barycentric coordinates to de-
fine the basis functions (instead of the Carte-
sian coordinates). For a given triangle k, we
will denote by {λ1

k (β, α) , λ2
k (β, α) , λ3

k (β, α)}
the barycentric coordinates with respect to
the three vertices. Note that the num-
ber of degrees of freedom is still 2, since
λ1
k + λ2

k + λ3
k = 1. A given point (β, α) be-

longs to the triangle k if all three barycentric
coordinates are positive. Moreover, for P1 el-
ements, they provide natural restrictions for
the basis functions, since they are exactly the
linear Lagrange interpolations at the vertices.
If we denote by (βi, αi), i = 1 . . . 3, the three
vertices of a triangle, then the barycentric
coefficient with respect to the first vertex can
be written as:

λ1 (β, α) = β3 α2 − β2 α3 + (α3 − α2) β + (β2 − β3)α
β3 α2 − β2 α3 + (α3 − α2) β1 + (β2 − β3)α1

, (8.3)

and the others similarly by cycling indices.
The matrix of the linear problem is determined by the linear operator that transforms a DD

into a GPD in Eq. (7.2

.

). To build this matrix, we only need to know the Radon transform of a
basis function:

Rvj (x, ξ) =
∫
vj (β, α) δ (x− β − αξ) dβ dα . (8.4)
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Let us first express this basis function in the P0 and P1 cases (superscripts 0 and 1 respectively):

v0
j (β, α) = θ

(
λ1
j (β, α)

)
θ
(
λ2
j (β, α)

)
θ
(
λ3
j (β, α)

)
, (8.5)

v1
j (β, α) =

∑
k∈ elements

adjacent to vertex j

θ
(
λ1
k (β, α)

)
θ
(
λ2
k (β, α)

)
θ
(
λ3
k (β, α)

)
λj̄k (β, α) , (8.6)

where j̄ is the vertex j recast to the limited set {1, 2, 3} of vertices of the element k. The P1
basis function is also represented in Fig. 8.1

.

. Applying the Radon transform on these basis
functions yields:

Rv0
j (x, ξ) = θ

(
αjmax − α

j
min

) (
αjmax − α

j
min

)
, (8.7)

Rv1
j (x, ξ) =

∑
k∈ elements

adjacent to vertex j

θ
(
αkmax − αkmin

) ∫ αk
max

αk
min

dαλj̄k (x− αξ, α) , (8.8)

where the bounds of the integration
{
αkmin, α

k
max

}
are determined with the three inequalities

given by the Heaviside functions (positive barycentric coordinates). For higher order elements,
the idea is the same, only the integrated function will change.

8.2.3. Sampling
The next step is then to discretize the GPD variables (x, ξ), i.e. to sample the set of straight

lines intersecting the domain Ω. Given that we have only access to DGLAP kinematics, we
will use the couples (x, y) ∈ [−1,+1]2 with y = ξ/x. The choice of (x, y) will determine a line
of the matrix. More precisely, the matrix A will have the coefficients:

Aij = C> (xi, ξi) Rvj (xi, ξi) , (8.9)
where 1 ≤ i ≤ m indexes the lines of the matrix, and 1 ≤ j ≤ n indexes the columns, i.e. the
nodes in DD space. The C> factor was introduced in Eq. (7.2

.

).
The size of the matrix is chosen such that we maximize the information, i.e. we need

to integrate over lines that cross all the elements of the DD mesh. A value of m ∼ 4n is
empirically satisfying. The matrix can be therefore built by picking random couples (x, y)
until we attain the desired size. The results will of course depend on the matrix used and
it is interesting to consider this as a source of “statistical error”, whereas the regularization
procedure (see the following section) would be the source of “systematic error”. The statistical
error can be managed quite easily and reduced considerably by picking as many samples as we
want, whereas the systematic error remains a challenge to estimate.

Once the matrix is built, we use the set of chosen couples (x, y) to build the vector B r.h.s.
of Eq. (8.1

.

) with simply:
Bi = H> (xi, ξi) . (8.10)

In summary, A is a matrix m×n where n is the number of mesh elements for P0 (or number
of vertices for P1) and m the number of straight lines intersecting Ω. Each line will typically
cross O(

√
n) mesh elements, which means that only O(

√
n) coefficients on a matrix line are

non-zero and A is a sparse matrix. We need more constraints than parameters (m > n) and
we usually use m = 4n, making the rank of A . n (i.e. close to full-rank). B is a vector of
dimension m, and X of dimension n.
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8.3. Linear solver and regularization
An additional complexity arises in the selection of the matrix inversion routine.
In Sec. 7.3

.

, we assumed the existence of a covariant extension of a DGLAP-restricted GPD
H|DGLAP and showed its uniqueness up to the manifestations of ambiguities on the line β = 0.
The question now is to know whether such an extension even exists? We will circumvent this
issue by the following consideration.

A numerical solver may have to handle a linear system as in Eq. (8.1

.

) but without one and
only one solution. This is common in computerized tomography, not because the solution
does not exist (there was one object inserted inside the scanning device), but because the
experimental signal comes with noise which may apparently modify the original situation to an
inconsistent data problem. In the framework of the Radon transform, causes may be multiple:
the integration lines may not cross the same domain (no solutions), or they may be parallel
and close to one another and bring redundant information (infinitely many solutions). One
efficient way to ensure that the solution always exists and is unique is to turn to a least-squares
formulation:

Search X ∈ Rn such that ‖AX −B‖2 is minimum, (8.11)

where ‖ · ‖ generically denotes a norm in a finite-dimensional vector space.
In the present work, we use a recent iterative conjugate-gradient type algorithm for sparse

least-squares problems: LSMR [217

.

]. For inconsistent problems (where the least-squares
formulation is favored), it is equivalent to a Minimum Residual algorithm for the problem:

tAAX = tAB , (8.12)

but it can also solve directly the problem (8.1

.

) when it is consistent, i.e. when the numerical
approximation of the target solution is equal to the exact function. In the P0 case, it means
functions that are already piece-wise constant, whereas a P1 approximation can reproduce
exactly a (piece-wise) linear polynomial.
This type of algorithms applies naturally its own regularization process, with the number

of iterations being the regularization parameter. To illustrate this, we can use the so-called
L-curve [21

.

], which is a curve following a regularization parameter (which is in our case the
number of iterations) and shows the compromise between the norm of the solution ‖X‖ (the
larger the norm, the larger the impact of noise) and the residual norm ‖r‖, where r = AX −B
(which we desire to be small enough to converge to the real solution). This procedure gives the
optimal regularization factor to choose for each problem, as the point of maximum curvature
of the “L”, as shown in Fig. 8.2

.

.
In practice, as illustrated on Fig. 8.2

.

, it is very difficult to determine this optimal regularization
parameter for the considered problems. A better way to stop the iterations is to consider the
stopping criteria used by these algorithms such as LSMR:

• For a consistent problem: ‖r‖ ≤ atol ‖A‖ ‖X‖+ btol ‖B‖ ;

• For a least-squares problem: ‖Ar‖ ≤ atol ‖A‖ ‖r‖,

where atol and btol are the input tolerances.
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Figure 8.2. L-curve obtained with the number of itera-
tions as regularization parameter for the case of Sec. 9.1

.

.

An empirical value of 10−5 for the
least-square tolerances gives a good
compromise between noise and con-
vergence, and this has the benefit of
being valid for all considered cases.
A 10−5 value for atol (resp. btol)
means that the matrix A (resp. the
right hand side B) is known exactly
up to the fifth decimal, while the
rest is numerical noise. Of course,
in practice, we can compute analyti-
cally A (if the chosen basis functions
and mesh allow us to compute the
Radon transform without numeri-
cal integration, as it is the case for
the method presented here) and B
(if the GPD is known analytically),

and they are therefore known exactly, up to machine precision. But in the inconsistent (i.e.
least-squares) case, the considered vector B is different from the one due to a GPD calculated
from the discrete numerical DD. This difference is the finite limit of the residual, in contrast
with the consistent case where the residual has a zero limit. Even though small, when allied
with the ill-posed character of the inversion, it can have a large impact on the solution. This
is why we consider in practice that B (or equivalently A) is not known exactly and neglect
higher decimals; we apply a regularization procedure by doing so.

8.4. Test and validation of the numerics
8.4.1. Smooth examples

The first immediate check we can perform to validate the numerical implementation described
above, consists in the following. We first take a simple Ansatz for the DD, irrespective of
the considered value of t (e.g. t = 0). We then compute the associated analytical GPD by
applying the Radon transform, and use only its DGLAP part to apply our numerical inversion
and obtain a numerical estimate of the DD. Finally, we compare this result with the original
Ansatz. We will apply this testing procedure to the following three quark GPDs, each one of
them deriving from a DD in the P representation:

(i) A constant DD hcst
p (β, α) on the half-domain Ω>:

hcst
P (β, α) = 3

2 1Ω> (β, α) ⇒


Hcst
|DGLAP> (x, ξ) = 3 (1− x)2

1− ξ2 ,

Hcst
|ERBL (x, ξ) = (1− x) (x+ ξ)

ξ (1 + ξ) .

(8.13)

(ii) the example defined by Eq. (5.59

.

) and already introduced in Sec. 5.4.1

.

,
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(iii) and a simplified case of the RDDA (5.29

.

):

hRDDA
P (β, α) = πN (β, α) q(β)

1− β 1Ω> (β, α) , (8.14)

where the quotient (1− β) compensates for the P representation (see the relations (5.41

.

)).
In particular, we specialize for the case N = 1 and take1

.

q(β) = 30 β2(1− β)2. We thus
obtain a closed algebraic formula for the GPD:

HRDDA
|DGLAP> (x, ξ) = 30 (1− x)2

ξ3 (1− ξ2)2

(
−3ξ (2− x) + ξ3 (10− (5− x)x)− 3ξ5

+ 3
(
1− ξ2

)2
(2− x) tanh−1(ξ)

)
,

(8.15)

HRDDA
|ERBL (x, ξ) = 15 (1− x)

2ξ3 (1 + ξ)2

(x+ ξ)
(
− (2 + ξ) (6 + (6− ξ) ξ)− (1 + 2ξ)x2

+ (3 + ξ) (4 + 5ξ)x
)
− 6 (2− x) (1− x) (1 + ξ)2 log

(
1− x
ξ + 1

) ,
(8.16)

which, in turn, can be numerically inverted with the procedure described above.

In all cases, we adopted the P representation as it appears to be convenient for GPD models
derived through a covariant extension of an overlap of LFWFs, as discussed in Sec. 5.3.5

.

and
Sec. 7.3

.

. In the leftmost plots of Fig. 8.3

.

, we display the comparison of the exact algebraic and
numerically approximated hcst

P (β, α) for the case (i), while the rightmost ones stand for the
comparison of the GPDs directly obtained from both DDs. The upper and lower plots have
been obtained, respectively, with piecewise constant (i.e. P0 elements) and piecewise linear (i.e.
P1) basis functions when discretizing the DD space for the reduction to a finite-dimensional
problem, as explained in Sec. 8.2

.

. Analogous plots, and similarly arranged, are displayed in
Fig. 8.4

.

for case (ii) and Fig. 8.5

.

for case (iii).
The mesh was generated using the Triangle software [218

.

] with a requirement of maximal
area for the triangular elements equal to 0.001, which produced a mesh of 427 vertices and
780 elements. The linear solver used is described in Sec. 8.3

.

. As justified before, we used a
tolerance of 10−5 as a regularization procedure.

All in all, as an overall conclusion we can assert that the numerical inversion approximates
very well the three known GPDs as they appear not to differ significantly in all the cases.
Several important points should be however stressed out:

• The numerical inversion relies only on the knowledge of the GPD within the DGLAP
region and its extension to the ERBL is our main goal, therefore the examination of
algebraic and numeric GPDs over the ERBL region is the main outcome of Figs. 8.3

.

-8.5

.

.

• The numerical reconstruction of the DDs may seem quite noisy or far off in some cases,
but these discrepancies do not hinder the reconstruction of the GPD, for which the

1See Sec. 6.2.3

.

.
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Chapter 8. Numerical implementation

Figure 8.3. Comparison between algebraic, given by Eq. (8.13

.

), and numerical results for
the DD hcst

P (β, α) at fixed values of α = [0, 0.25, 0.5, 0.75] (left panel) and the corresponding
GPD Hcst (x, ξ) at fixed values of ξ = [0, 0.5, 1] (right panel) for the case (i). The blue solid
curves display the numerical results while the red dashed ones show the algebraic results. The
black dotted curves indicate either the line β + α = 1 (left panel) or x± ξ = 0 (right panel).
The upper panel stands for a discretization obtained with P0 elements, while the lower panel
displays the results with P1 elements.

convolution helps smooth these defects2

.

. The physical object of interest is the GPD, not
the DD, therefore these discrepancies are not an issue. For this reason, in Chap. 9

.

, we
will display only the GPD plots when illustrating the procedure with real applications to
LFWFs occurring in descriptions of hadron structure.

• It should be noted however that the constant DD can be reconstructed numerically exactly
(up to machine precision). Indeed, the regularization in that case is not needed, since
there is no distinction between the analytical DD and its discretized version. We could

2This should not come as a surprise. The Radon transform is a smoothing operator, since it integrates
a DD over lines. Conversely, the inverse Radon operator has to undo this smoothing to reconstruct the DD,
hence provoking noise amplification.
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8.4. Test and validation of the numerics

Figure 8.4. Comparison between algebraic, given by Eqs. (5.59

.

)-(5.61

.

), and numerical results
for the DD hToy

P, Reg (β, α) (left panel) and the corresponding GPD HToy, Reg (x, ξ) (right panel)
for the case (ii). Same conventions as in Fig. 8.3

.

.

therefore directly invert the discrete problem and recover the exact DD (which would be
equivalent to using a tolerance of 0 instead of 10−5), but for the sake of homogeneity, we
decided to employ the same method for all shown examples.

• It may seem from the plots that the P1 discretization does not improve on the P0 result,
but this is not true. We chose here to use the same mesh for both P0 and P1 elements.
This particular mesh has 427 vertices and 780 triangular elements. Hence, the number
of degrees of freedom for P1 (i.e. the number of vertices) is half the one for P0 (i.e.
number of elements). In other words, we attain with P1 a similar result to the P0 one but
with half the degrees of freedom, i.e. at a much lower cost. It is therefore a significant
improvement. Consequently, in Chap. 9

.

, we will keep only the P1 method.

8.4.2. Parametrization with Regge behabior
All the previous examples dealt with GPDs smoothly behaving at x = 0. However, phe-

nomenological models for valence quark GPDs often exhibit an integrable singularity, typically
a 1/
√
x behavior. If such a GPD is related to a DD hP in the P representation, then it can
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Chapter 8. Numerical implementation

Figure 8.5. Comparison between algebraic, given by Eqs. (8.14

.

)-(8.16

.

), and numerical results
for the DD hRDDA

P (β, α) (left panel) and the corresponding GPD HRDDA (x, ξ) (right panel)
for the case (iii). Same conventions as in Fig. 8.3

.

.

be shown that H(x, 0) ∼
∫+1
−1 dαhP(x, α) at small x. Therefore hP itself may also exhibit

an integrable singularity 1/
√
β. The numerical method presented up to now approximates

the target DD by piecewise constant or piecewise linear functions on Ω. In particular all
approximations are bounded, even if in principle they can be more and more peaked when the
mesh gets thinner. As discussed in Sec. 8.2

.

and Sec. 8.3

.

, careful choices of the size of the mesh
and of the number of iterations are essential for the resolution of the inverse problem with
adequate control of the numerical noise. With a naive discretization, it is difficult when dealing
with singularities to make sense of a solution; it would probably require a number of iterations
that is not attainable due to the necessary truncation of the regularization. We thus adopt a
more educated discretization; knowing that we are dealing with Regge-type singularities, we
can adapt our method accordingly, by discretizing:

h′P (β, α) =
√
β hP (β, α) (8.17)
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8.4. Test and validation of the numerics

which will be less singular that hP, possibly even free of singularities. This change of target
function only modifies the kernel of Eq. (7.2

.

) (it is not a Radon transform anymore), otherwise
everything readily follows the same procedure.

Figure 8.6. Comparison between algebraic, given by Eqs. (8.19

.

)-(8.21

.

), and numerical results
for the DD hRegge

P (β, α) (left panel) and the corresponding GPD HRegge (x, ξ) (right panel).
Same conventions as in Fig. 8.3

.

.

Let us exemplify this technique on a simple parametrization of nucleon DD for which, once
again, the expression is already known. We use the RDDA as presented in Sec. 5.3.2

.

and
Eq. (8.14

.

) for N = 1, but this time with a singular PDF3

.

:

qRegge (x) = 35 (1− x)3

32
√
x

, (8.18)

which would give the following DD (with a 1/
√
β singularity) on Ω>:

hRegge
P (β, α) =

105
(
(1− β)2 − α2

)
128 (1− β)

√
β

. (8.19)

3This simple model is similar in spirit to the parametrizations of the nucleon GPDs H, E, H̃ and Ẽ used
in popular phenomenological models, see e.g. the review Ref. [26

.

] and refs therein.
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The corresponding GPD is4

.

HRegge
|DGLAP> (x, ξ) = HRegge

|ERBL (x, ξ) +HRegge
|ERBL (x,−ξ) , (8.20)

HRegge
|ERBL (x, ξ) = 35

64
1− x
ξ3

[√
x+ ξ

1 + ξ

(
3 + ξ (1 + 2ξ)− x (5 + ξ)

)
(8.21)

− 3 (1− x)2 tanh−1
(√

x+ ξ

1 + ξ

)]
.

The comparison between the algebraic GPD and the result obtained through the numerical
reconstruction of the DD with DGLAP information is shown on Fig. 8.6

.

.

8.4.3. Photon GPDs

Let us now turn to the photon GPDs described in Sec. 5.4.2

.

. We apply again the same
procedure described in this chapter, but this time in the T representation instead of P, with
only P1 elements for the discretization. The results for both GPDs Hγ >

1,Reg (5.76

.

) and Hγ >
3 (5.77

.

)
are displayed in figures 8.7

.

and 8.8

.

respectively5

.

. For the iterative algorithm, we first used the
same tolerance 10−5 as previously, which would allow us to regularize the ill-posed problem.
But here, the examples considered are piece-wise constant and piece-wise linear DDs (see
Eqs. (5.69

.

)-(5.70

.

)), which can be reproduced exactly by the P1 discretization, so, as explained
in sections 8.3

.

and 8.4.1

.

, there is no need for regularization in this simple case. We can therefore
lower the tolerance of the iterative method (e.g. to 10−10) or use a direct pseudo-inverse routine,
to achieve a much better precision. This means we do not need to trade-off between convergence
and noise; we can attain an arbitrarily good result, as can be seen in the lower panels of
figures 8.7

.

and 8.8

.

.
The discrepancies that appear on these lower plots concern the lines of discontinuity for the

DD, e.g. α = 0. Indeed, both DDs hγ,Reg
1 T (5.70

.

) and hγ3 T (5.69

.

) are defined in terms of the sign
function and the value of sgn (0) is a matter of convention. Here, for the analytical result, we
use sgn (0) = 0. On the other hand, numerically, we invert the Radon transform by considering
only the domain α ≥ 0 and complete by parity (see Sec. 7.2

.

for more details), i.e. in the case
of the T representation hT (β, α) = −hT (β,−α) for α < 0. This means that the value of the
DD at α = 0 is obtained by a continuous extension of the values at α > 0, the algorithm not
being aware at all of the sheer existence of the domain α < 0. Hence the discrepancies that we
see on the plots. However, the value of the DD (when it is a function and not a distribution)
on a single line does not matter for the integration and therefore for the GPD. Therefore, this
is a non-issue. We could have also artificially glossed over it if we had used sgn (0) = 1 for the
analytical curve.

4We abused notation in Eq. (8.20

.

), by considering H|ERBL (x, ξ) outside its domain. Note that this relation
between H|DGLAP> and H|ERBL is always valid when considering Double Distributions, but it implies some
analytic continuation [211

.

]. Here, there is no issue since we have a closed form fomula that can be evaluated
outside the physical domain.

5The conventions for these figures are the same as previously, save for the meaning of upper and lower
panels. See the corresponding captions.
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Figure 8.7. Results of the covariant extension from DGLAP to ERBL, for the GPD Hγ >
1,Reg.

Comparison between the numerical result (solid blue) and the known analytical target result
(dashed red) of Eq. (5.76

.

). Left panels: Plots of the DD hγ,Reg>
1 T at fixed values of α ∈

{0, 0.25, 0.5, 0.75}. Right panels: Plots of the difference Hγ >
1,Reg (x, ξ)−Hγ >

1,Reg (x, 0) at fixed
values of ξ ∈ {0, 0.5, 1}. Upper panels: Tolerance for the least-squares algorithm of 10−5.
Lower panels: Tolerance of 10−10.

We can also notice a discrepancy at x = ξ = 1. This is due to the fact that both GPDs Hγ
1

and Hγ
3 are not well-defined on that point. Indeed, we have for instance in the case of H1:

Hγ
1 (x = 1, ξ) = 1− ξ2

1− ξ2 = 1 −→
ξ→1

1 , (8.22)

while
Hγ

1 (x = ξ, ξ) = (1− ξ)2

1− ξ2 = 1− ξ
1 + ξ

−→
ξ→1

0 . (8.23)

We get a different value whether we take the limit (x, ξ) −→ (1, 1) on the direction x = ξ or on
the direction x = 1. Therefore, the GPDs are not continuous at this particular point, despite
being continuous at the cross-over x = ξ. Hence, the apparent discrepancy should not come as
a surprise.
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Chapter 8. Numerical implementation

Figure 8.8. Results of the covariant extension from DGLAP to ERBL, for the GPD Hγ >
3 .

Comparison between the numerical result (solid blue) and the known analytical target result
(dashed red) of Eq. (5.77

.

). Left panels: Plots of the DD hγ >3 T at fixed values of α ∈
{0, 0.25, 0.5, 0.75}. Right panels: Plots of the difference Hγ >

3 (x, ξ) − Hγ >
3 (x, 0) at fixed

values of ξ ∈ {0, 0.5, 1}. Upper panels: Tolerance for the least-squares algorithm of 10−5.
Lower panels: Tolerance of 10−10.

Let us emphasize again that the GPD we obtain from a covariant extension of the DGLAP
region is unique, up to a D-term like contribution. Since Hγ

3 fulfills a degree-m polynomiality
condition, there is no associated D-term, and therefore no ambiguity when extending the
DGLAP region. We recover exactly the original GPD. For Hγ

1 however, there is no hope to
recover it numerically, at least in the present T representation, due to the explicit D-term
like part in hγ1 T. We can only recover Hγ

1,Reg, which is consistent with what is known and
stated before in this thesis about the D-term ambiguity; Hγ

1 is indeed part of the infinite set of
solutions defined by Hγ

1,Reg. This shows that our method is indeed general and can be applied
to any model of GPD.
We see also that the T representation is particularly well-suited for such endeavor, and

does not have the limitation of the P representation when it comes to the behavior of the
GPD at x → 1. Here, the GPDs do not vanish on this limit, which renders the use of the
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8.4. Test and validation of the numerics

P representation impossible. The presence of δ (α) terms also makes the R representation
intractable, but is not an issue for the T representation, as shown in Sec. 5.4.2

.

.
In practice, for the next

.

chapter, we will go back to the P representation as the examples
considered have the good pQCD behavior at x→ 1.
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Chapter 9.

Examples of application of the covariant
extension

The approach described in Chap. 7

.

can be either applied to numerous existing LFWF-based
GPD models to covariantly extend them from the DGLAP region to the ERBL one, or used to
build a covariant GPD model, reliable on both DGLAP and ERBL regions, from the knowledge
of the LFWF. Although in some particular cases, an analytical derivation of the DD is possible
and a full GPD in both DGLAP and ERBL regions can be obtained, one can only proceed
systematically by applying a numerical technique such as the one introduced in section Chap. 8

.

.
In this chapter, aiming to illustrate the procedure without the intention of being exhaustive,
we provide four examples of GPD models, two of which can be extended to the ERBL region
both analytically and numerically, allowing us to benchmark our algorithm. Three of these
examples concern the pion and were introduced in Sec. 6.2

.

.

9.1. Algebraic Nakanishi-based model

9.1.1. Extension to ERBL
We first consider the pion model of Sec. 6.2.3

.

based on a Nakanishi parametrization with
the GPD given in Eq. (6.59

.

). In this case, we managed to derive the DD analytically, through
a sensible choice of trial functions, in the P representation:

hP(β, α, t) = 15
2

1− 3α2 − 2β + 3β2 + −t
4M2 (1− α4 + 2α2β2 − β4 + 4β2 − 4β)(

1 + −t
4M2

(
(1− β)2 − α2

))3 1Ω> (β, α) .

(9.1)
This result can then be plugged into Eq. (5.40

.

), to provide us with a covariant extension of the
model given in Sec. 6.2.3

.

to the ERBL kinematic domain. The ERBL GPD reads:

H(x, ξ, t) = − 15 (ξ2 − x2)
4 (1 + ζ)5/2 (1− ξ2)3/2 (1− x)2

√
ζ (1− ξ2)

(
ξ2 + ζ(1−ξ2)(ξ2−x2)

(1−x)2

)2 (9.2)

×


√
ζ(ζ + 1)

(
−ζξ

(
1− ξ2

)
(1− x)
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Figure 9.1. Comparison between algebraic and numerical results for the pion GPD H in the
Nakanishi-based model of Sec. 6.2.3

.

. As it was the case in Fig. 8.3

.

, the blue solid curves display
the numerical results while the red dashed ones show the results algebraically derived and
given by Eqs. (6.59

.

) and (9.2

.

). The left panel stands for the case t = 0 for fixed values of
ξ = [0, 0.5, 1] and the right one shows the t-behavior for fixed values [0,−0.25,−0.5] at ξ = 0.5.
We retain only P1 elements. For more details, see Sec. 8.4

.

.

×
(
ξ4 + 6ξ (1− x)x2 − 6ξ3 (1− x) + ξ2 (4− 3 (3− x)x) + x (4− x (8− 5x))

)
+
(
ζ
(
1− ξ2

))2
(
ξ3(3ξ − 2) + 3x4 − 4ξx3 − 6(ξ − 1)ξx2 + 2ξ

(
ξ2 − 1

)
x
)

+ (x− 1)3
(
ξ5 + 3ξ4(x− 1) + ξ3(2− 5x) + 2ξx

))

+ (1− 2ζ)
(
ζ
(
1− ξ2

) (
ξ2 − x2

)
+ ξ2(x− 1)2

)2

×
(

tanh−1
(√

ζ

1 + ζ

)
− tanh−1

(√
ζ

1 + ζ

ξ2 − x
ξ (1− x)

)) ,

where we used again the notation ζ of Eq. (6.60

.

). In the limit t→ 0, we can write:

H(x, ξ, 0) = 15
2

(1− x) (ξ2 − x2)
ξ3 (1 + ξ)2

(
x+ 2xξ + ξ2

)
. (9.3)

These analytical expressions allow us to benchmark our numerical procedure, in the same
principle as Sec. 8.4

.

, but this time with a real application to a LFWF model. Thus, we compare
the results given by Eq. (6.59

.

) and Eq. (9.2

.

), respectively derived for the DGLAP and ERBL
kinematics, with those obtained by the numerical inversion of the linear problem described in
Chap. 8

.

, and display the outcome in Fig. 9.1

.

. As can be seen, both numerical and algebraic
results compare strikingly well, not only at a qualitative but also a quantitative level. The left
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9.2. Algebraic spectator diquark model

panel corresponds to the limit t = 0, while the right one displays the evolution at other values
of t and a constant value of ξ = 0.5.

9.1.2. Soft pion theorem and D-term contributions
As we have stressed in Sec. 7.3

.

, this extension is unique up to a D-term, or more generally
up to terms defined on the line β = 0. These terms are necessarily distributions, as mere
functions do not contribute to the integration on a single line (a line is negligible on the
plane for Lebesgue integration). One example of such distributions is the said extra D-term
gPW (β, α) = δ (β)DPW (α), but we could also have derivatives of the Dirac distribution1

.

, e.g.
a term of the form gδ′ (β, α) = δ′ (β)D1 (α). Such a term in the DD g contributes to the GPD
as:

Hδ′ (x, ξ) = 1
|ξ|
D′1

(
x

ξ

)
. (9.4)

Notice the derivative of D1. It is equivalent to a contribution of the Dirac distribution in the
DD f , i.e. fδ (β, α) = δ (β)D′1 (α), and D′1 was called D+ in Refs. [18

.

, 19

.

].
What matters is that we can now fulfill the soft pion theorem of Eqs. (6.32

.

)-(6.33

.

), which
allows us to constrain the extra D-terms at t = 0. Indeed, DPW, being α-odd, contributes only
to Eq. (6.32

.

), while D′1, being α-even, contributes only to Eq. (6.33

.

). Knowing the DA in the
present model from the definition (6.30

.

) (see also the wave-function (6.52

.

)):

Φ (z) = 6 z (1− z) , (9.5)

which corresponds to the so-called asymptotic DA, we can deduce the necessary DPW and D′1
terms:

DPW (α, t = 0) = −15
4 α

(
1− α2

)
, (9.6)

D′1 (α, t = 0) = −9
8
(
1− α2

) (
1− 5α2

)
. (9.7)

We thus removed the ambiguity, but only at t = 0 and in the simple case of the pion. This
procedure is detailed in Ref. [19

.

].
How to constrain the D-term at any value of t (and for the nucleon) remains an open subject,

but several directions can be followed, such as the Mellin moments Lattice calculations, or a
phenomenological parametrization of the D-term with free parameter(s) in fits to experimental
data, to quote a few of them.

9.2. Algebraic spectator diquark model
If LFWFs have been widely used in attempts to model the pion, the case of the nucleon has also

been treated previously, in particular in the pioneering paper of Hwang and Müller [20

.

]. They

1Note that in this case, the dispersion relations of Sec. 3.2.2

.

would need more than one subtraction constant.
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Figure 9.2. Comparison for the GPD E, in the spectator diquark model, between our numerical
algorithm and the algebraic result of Ref. [20

.

]. Same conventions as in Fig. 9.1

.

.

have developed an algebraic parametrization for two-body LFWFs of the nucleon (described
by a constituent quark and a spectator scalar diquark):

Ψ↑+1/2 (x,k⊥) = Ψ↓−1/2 (x,k⊥) =
(
M + m

x

)
ϕ(x,k⊥), (9.8)

Ψ↑−1/2 (x,k⊥) = −k
1 + ik2

x
ϕ(x,k⊥), Ψ↓+1/2 (x,k⊥) = k1 − ik2

x
ϕ(x,k⊥), (9.9)

ϕ(x,k⊥) =
√

2N 2π Γ (p+ 1)√
Γ (2p+ 1) (1− x)

M2px−p
(
M2 − k2

⊥ +m2

x
− k2

⊥ + λ2

1− x

)−p−1

, (9.10)

where M , m and λ are respectively the nucleon, quark and spectator masses, p is an additional
free parameter and N is a normalization constant. The authors have shown that with such
a model, after calculating the overlap of wave functions (see Sec. 6.1.3

.

or Eqs. (13-14) of
Ref. [20

.

]), one can write the GPD E in the P representation:

E (x, ξ, t) = (1− x)
∫ 1

0
dβ
∫ 1−β

−1+β
dα e (β, α, t) δ (x− β − ξα) , (9.11)

and they have been able to extract analytically:

e (β, α, t) =
N
(
β + m

M

)
((1− β)2 − α2)p(

2
(

(1−β)m2

M2 + βλ2

M2 − (1− β)β − t((1−β)2−α2)
4M2

))2p+1 , (9.12)

where N is the same constant2

.

as in Eq. (9.10

.

) and can be determined from the usual PDF
normalization (obtained with the GPD H, and not E). Therefore, the authors managed to
extend their specific model in the ERBL region. Consequently, we use this model as an
additional benchmark for our numerical technique.

2The definition of N here differs from that of Ref. [20

.

] by a factor 22p+1.
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The comparison between our numerical reconstruction and the algebraic result is shown on
Fig. 9.2

.

3

.

. We use the same values of parameters as in Ref. [20

.

], i.e. M = 1 GeV, m = 0.45 GeV,
λ = 0.75 GeV and p = 1. In this case, the normalization constant for the DD is N ∼ 0.176.
We stress that in Fig. 9.2

.

, the qualifying terms “analytical” and ”numerical” refer to the DDs.
In other words, “analytical result” means that the GPD is calculated through a numerical
integration of the “analytical” DD (9.12

.

) in the ERBL region (or through the numerical
integration of Eq. (15) in Ref. [20

.

] in the DGLAP region), whereas “numerical result” means
that the GPD is calculated from the ”numerically” reconstructed DD (from DGLAP information
only), via analytical integrations of the basis functions (see e.g. Eqs. (8.2

.

), (8.8

.

) and (9.11

.

)).

9.3. Pion wave-functions

Figure 9.3. Results obtained for the GPD H (6.38

.

) in the case of a Gaussian LFWF (6.34

.

).
Same conventions as in Fig. 9.1

.

, but without analytical benchmark.

Now, let us consider the other examples of pion LFWFs of Sec. 6.2

.

, the first one being the
Gaussian parametrization (6.38

.

). We do not know any algebraic expression for the associated
DD (if it exists). We anyhow examine this case for illustrative purposes and display in Fig. 9.3

.

the results for the GPD in both DGLAP and ERBL derived from the DDs obtained with our
numerical inversion. Indeed, some qualitative similarities in the shape can be noticed when
compared to the results previously obtained with the Nakanishi-based LFWF and depicted in
Fig. 9.1

.

.
We did the same for the rational fraction LFWF of Sec. 6.2.2

.

, and displayed the results in
Fig. 9.4

.

. Note that even though these plots are quite similar, these pion models give each rise
to a very different picture in impact parameter space (see Sec. 6.2

.

), which highlights the notion
that the t-extrapolation is a delicate matter.

3The reader may have noticed that we consider unphysical values of t even though we are dealing with a
nucleon and the constraint Eq. (4.34

.

) cannot be neglected. This model being completely algebraic, evaluating
in unphysical regions is not an issue.
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Figure 9.4. Results obtained for the GPD H (6.51

.

) in the case of the LFWF (6.44

.

). Same
conventions as in Fig. 9.1

.

, but without analytical benchmark.
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Conclusion
The promise of hadron tomography has driven a very large experimental effort, be it to

extract GPDs, or their cousins, TMDs. For the former, the leading-twist framework was
validated within the experimental accuracy already achieved, but the upcoming data with a
wide kinematic coverage and a high accuracy will need robust models to make sense of them.
In order to learn new insights on QCD dynamics inside hadrons, these models need to be based
on ab initio computations.
The usual method of triangle diagram calculations does not allow to fulfill all theoretical

constraints on GPDs, namely the positivity property is not guaranteed. On the other hand, the
overlap representation in terms of LFWFs naturally fulfills positivity but lacks the important
polynomiality feature of GPDs, as it is very unlikely to appear at any finite order of truncation,
due to the interplay between different Fock states in the DGLAP and ERBL regions, and only
in the case where all Fock states are summed over can we be sure of fulfilling it. Nevertheless, by
limiting ourselves to a truncation in the DGLAP region only, we can use the natural expression
of polynomiality, in other words the DD representation, to extend the GPD to the ERBL region
and in doing so fulfill both constraints. With such a method, we can directly relate the ξ = 0
line of GPDs, needed for hadron tomography, to the regions of non-vanishing skewness that are
accessible in experiments and therefore give potential solutions to the necessary extrapolation.
The procedure described in this thesis applies this principle, which consists in solving an

ill-posed inverse problem. Indeed, GPD and DD are related through the well-known Radon
transform, fundamental tool of computerized tomography, whose inverse is a discontinuous
operator. This means that the inverse Radon transform cannot be computed in a straightforward
manner, as a regularization procedure is needed. Nevertheless, as long as the original LFWF
model is built in a covariant framework, the corresponding DGLAP GPD can be extended
numerically to the ERBL region as intended. This was tested on several simple pion GPD
models, as well as the nucleon scalar diquark model for which an analytical extension was
already known and was at the origin of this promising method. This allowed to benchmark the
procedure itself that can be then applied to any phenomenologically sound model.
However, the so-called D-term remains elusive, as it is a pure ERBL contribution. In fact,

contributions of the DD on the β = 0 line cannot be grasped from DGLAP information only.
Other means of constraining the D-term are therefore necessary. Nevertheless, most GPDs do
not feature any D-term. For instance, among all twist-2 quark GPDs of the nucleon, only one
independent GPD (for a given flavor) out of eight (if we count chiral-odd GPDs) is in need of
a D-term. For all the other GPDs, the procedure is sufficient in itself.
The next step is to apply this method to a LFWF-based nucleon model (in the vein of

constituent quark models for instance) that was not previously known in the ERBL region.
This would allow a first phenomenological study of that model by computing e.g. DVCS
observables and comparing to experimental data, with the help of the PARTONS framework
where the computing chain from GPDs to cross-sections is already implemented together with
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the evolution in the factorization scale. As we expect in the near future the publication of the
new JLab 12 GeV data for the valence region, this study would be most welcome. Doing so,
we could test the relevance at low scale of a valence truncation of LFWFs and pave the way
for a systematic phenomenology of LFWFs through exclusive processes and GPDs. This could
potentially lead in fine to a unified phenomenology of both GPDs and TMDs.
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Appendix A.

Conventions and Notations

A.1. Conventions
We follow basically the conventions of QFT and Particle Physics textbooks (e.g. Ref. [66

.

]).

Units

We work in the natural units of Particle Physics:

~ = c = 1 , (A.1)

in the Lorentz-Heaviside convention for electromagnetism:

ε0 = µ0 = 1 , (A.2)

and every dimensionful quantity is given in powers of GeV.

Minkowski vectors and coordinates

We denote by characters with roman font the four-vectors in Minkowski space, e.g. p =
(p0, p1, p2, p3), with bold font 3D vectors, e.g. p = (p1, p2, p3), and we add a ⊥ symbol for 2D
vectors (in the transverse plane, usually orthogonal to the z-direction), e.g. p⊥ = (p1, p2). We
use Greek indices µ, ν, . . . ∈ J0, 3K for the coordinates of a four-vector, e.g. pµ, and Roman
indices i, j, . . . ∈ J1, 2 or 3K for 2D or 3D vectors, e.g. pi⊥.
The metric, denoted ηµν , has a signature (+−−−), such that

u · v = uµv
µ = ηµνu

νvµ = u0v0 − u ·v = u0v0 − u1v1 − u2v2 − u3v3 , (A.3)

and
p2 = pµp

µ = E2
p − p2 = m2 , (A.4)

for an on-shell particle of four-momentum p, energy Ep = p0 and mass m. Following Einstein’s
convention, contracted indices are summed over.
The light-cone coordinates for a four-vector u are defined as:

u+ = 1√
2
(
u0 + u3

)
, u− = 1√

2
(
u0 − u3

)
, u⊥ =

(
u1, u2

)
, (A.5)
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and the scalar product writes:

u · v = u+v− + u−v+ − u⊥ ·v⊥ . (A.6)

For a momentum p, the light-cone coordinate p+ is either called in this thesis “plus-momentum”
or “longitudinal momentum”, as in the limit p3 →∞ (Infinite Momentum Frame), p+ becomes
proportional to p3 (and Ep). Note that for an on-shell particle (A.4

.

), Ep ≥
√
p2 ≥ |p3| and

therefore p+ and p− are always positive.

Dirac matrices and spinors

The Dirac matrices are defined as:

{γµ, γν} = 2ηµν , γ5 = iγ0γ1γ2γ3 , σµν = i

2 [γµ, γν ] , (A.7)

where { · , · } and [ · , · ] represent the anti-commutator and commutator respectively. For a
four-vector p, the usual notation 6 p stands for pµγµ. These matrices can be expressed in the
Weyl representation as:

γ0 =
(

0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, (A.8)

where σi, i ∈ J1, 3K , are the Pauli matrices.
In this representation, the plane-wave spinors for spin-1/2 particles are given by:

u↑ (p) =

√
p0 − |p| −

√
p0 + |p|

2 |p|


p3

p1 + ip2

−p3

− (p1 + ip2)

+

√
p0 − |p|+

√
p0 + |p|

2


1
0
1
0

 , (A.9)

u↓ (p) =

√
p0 − |p| −

√
p0 + |p|

2 |p|


p1 − ip2

−p3

− (p1 − ip2)
p3

+

√
p0 − |p|+

√
p0 + |p|

2


0
1
0
1

 , (A.10)

v↑ (p) =

√
p0 − |p| −

√
p0 + |p|

2 |p|


p3

p1 + ip2

p3

p1 + ip2

+

√
p0 − |p|+

√
p0 + |p|

2


1
0
−1
0

 , (A.11)

v↓ (p) =

√
p0 − |p| −

√
p0 + |p|

2 |p|


p1 − ip2

−p3

p1 − ip2

−p3

+

√
p0 − |p|+

√
p0 + |p|

2


0
1
0
−1

 , (A.12)

with the normalization

ūλ (p)uλ′ (p) = −v̄λ (p) vλ′ (p) = 2mδλλ
′
. (A.13)

We denoted by λ the longitudinal polarization (i.e. along the z-direction), and by m the mass
of the particle.
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Fourier transform

We use the asymmetric convention for Fourier transforms. For integrals over momentum, the
measure will always have a (2π)n denominator (where n is the dimension considered), while in
position space there is no such denominator1

.

. The Fourier transform and its inverse writes in
Minkowski space:

F f (p) =
∫

d4r f (r) ei p · r , (A.14)

f (r) =
∫ d4p

(2π)4 F f (p) e−i r · p . (A.15)

Note however that for spatial Fourier transforms in 2D or 3D, due to the metric (A.3

.

), there
would be a minus sign for the exponential of Eq. (A.14

.

) and no sign for Eq. (A.15

.

).

A.2. Nomenclature
Acronyms

BH Bethe-Heitler.

CFF Compton Form Factor.

DA Distribution Amplitude.

DD Double Distribution.

DDVCS Double Deeply Virtual Compton Scattering.

DIS Deep Inelastic Scattering.

DVCS Deeply Virtual Compton Scattering.

DVMP Deeply Virtual Meson Production.

EIC Electron Ion Collider.

FF Form Factor.

GDA Generalized Distribution Amplitude.

GFF Generalized Form Factor.

GPD Generalized Parton Distribution.

GTMD Generalized Transverse Momentum Dependent PDF.

IMF Infinite Momentum Frame.
1Except in the definition of parton distributions, e.g. Eq. (4.1

.

), due to their normalization.
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IPD Impact Parameter Distribution.

l.h.s., r.h.s. Left hand side, right hand side.

LFWF Light-Front Wave-function.

LO Leading Order.

NLO Next-to-Leading Order.

OPE Operator Product Expansion.

PDF Parton Distribution Function.

QCD Quantum Chromodynamics.

QED Quantum Electrodynamics.

RDDA Radyushkin Double Distribution Ansatz.

TCS Time-like Compton Scattering.

TMD Transverse Momentum Dependent PDF.

Symbols

1A ( · ) Indicator function for set A.

A,B,C, . . . Gravitational Form Factors.

αem = e2

4π Fine structure constant.

αS = g2

4π Strong coupling constant.

b⊥ Impact parameter (transverse position from R⊥).

δ ( · ) Dirac distribution.

e Positron or proton charge.

e`, eq, . . . Charge of particles in unit of e.

εij, εijk, εµνρσ Levi-Civita symbols.

ηµν Metric tensor.

F, F1, F2, GE, GM , GA, GP , . . . Elastic Form Factors.

f, g, h, e . . . Double Distributions.

F , R Fourier transform, Radon transform.

g, u, d, . . . Partons (quark flavors and gluons) or associated PDFs.
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H, E , H̃, . . . Compton Form Factors.

H,E, H̃, Ẽ, . . . GPDs or IPDs.

k⊥ Transverse momentum of partons.

k, k1, k2, . . . Parton momenta.

l, l′, . . . Lepton momenta.

MH ,MN ,Mp, . . . Mass of hadron, nucleon, proton. . .

µF Factorization scale.

P, P1, P2, . . . Hadron momenta.

Ψ Light-front Wave-function.

ψq, Aµ, Gµν Quark field, gluon field and gluon field strength tensor.

Q2 Momentum transfer on leptons (usually photon virtuality).

q, q1, q2, . . . Photon momenta.

R⊥ Center of plus-momentum of hadron.

r⊥ Transverse position from the spectators’ center.

S, S⊥, Λ Spin. Transverse and longitudinal components.

t = ∆2 Momentum transfer on the target.

θ ( · ) Heaviside step function.

W1,W2, F1, F2, . . . Structure functions.

x Longitudinal momentum fraction of partons.

xB, ξ Bjorken variable, skewness.
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Radon transform

B.1. Definition and properties
Given that we concern ourselves with GPDs and DDs only, the latter having a compact

support Ω (see Sec. 5.2.2

.

), we will limit ourselves in this appendix to distributions and smooth
functions with compact support, usually denoted by E ′ and D respectively in the literature
(see e.g. the appendices of Refs. [100

.

, 169

.

]).
The two-dimensional Radon transform [15

.

] is a linear operator defined as follows for a given
function f 1

.

:
R̃h (ρ, φ) =

∫∫
R2

dβdαh (β, α) δ (ρ− β cosφ− α sinφ) . (B.1)

For ρ ≥ 0, this transform benefits from the geometric interpretation of Fig. B.1

.

(left panel).
We integrate over lines parametrized by ρ and φ. For ρ < 0, we can recover the same
interpretation by noticing the redundancy:

R̃h (−ρ, φ) =
∫∫

R2
dβdαh (β, α) δ (−ρ− β cosφ− α sinφ)

=
∫∫

R2
dβdαh (β, α) δ (ρ− β cos (φ± π)− α sin (φ± π))

= R̃h (ρ, φ± π) . (B.2)

We can summarize this by reducing the target set of the transform to D (P2) instead of
D (R × [0, 2π]), where P2 is the set of lines of R2. Does it correspond to the image? Not really,
as it is further constrained by the following property:∫

R
ρm R̃h (ρ, φ) dρ =

∫∫
R2

dβdα
∫

R
ρm dρ h (β, α) δ (ρ− β cosφ− α sinφ)

=
∫∫

R2
dβdαh (β, α) (β cosφ+ α sinφ)m , (B.3)

i.e. that the Mellin moments of a Radon transform are homogeneous polynomials of degree ≤ m
on (cosφ, sinφ). We will denote by DH (P2) the functions of D (P2) fulfilling this condition2

.

.

1On the other hand, the Radon transform of distributions is defined through the adjoint Radon transform
of test functions, but we will not go into these details.

2This corresponds to the polynomiality property of GPDs.
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We can now say that DH (P2) is indeed the image of the Radon transform, as the following
theorem3

.

,4

.

states [219

.

]:

Theorem B.1 (Helgason, 1980). The Radon transform is a bijection of D (Rn) onto DH (Pn).

For compactly-supported distributions E ′, there is also a similar theorem from Hertle [220

.

]
concerning the existence of the inverse image.

Finally, as we need it for the covariant extension of Chap. 7

.

, let us mention (in a simplified
form) the following support theorem by Boman and Quinto [221

.

]:

Theorem B.2 (Boman and Quinto, 1987). For h ∈ E ′ (R2) and φ0 ∈ [0, 2π] , ρ0 > 0, if there
exists ε > 0 such that R̃h (ρ, φ) = 0 for all (ρ, φ) such that ρ > ρ0 and |φ− φ0| < ε, then
h (β, α) = 0 for all (β, α) on the half-plane β cosφ0 + α sinφ0 > ρ0.

An important mathematical literature has been dedicated to the Radon transform, notably
because of its central role in the field of computerized tomography. Inverting the Radon
transform indeed allows to unravel the internal structure of an object exposed to some kind of
radiation propagating along straight lines (in two dimensions).

The aforementioned theorem of Boman and Quinto gives some examples of situations where
a function is uniquely determined by its Radon transform. This allows to define the inverse
Radon transform. However, it has early been shown on simple but general examples that the
inverse Radon transform may not be continuous. In that case, nothing prevents the artificial
amplification of noise (numerical or experimental when dealing with actual measurements)
when inverting the Radon transform. It is an example of ill-posed problem in the sense of
Hadamard.
For more details on the Radon transform, we refer to the literature (e.g. Refs. [169

.

, 213

.

]).

B.2. Relation to GPDs
A possible correspondence between the canonical variables (ρ, φ) of the Radon transform

and the GPD variables (x, ξ) is given by: x = ρ

cosφ
ξ = tanφ

⇐⇒

 ρ = x√
1 + ξ2

φ = arctan ξ
. (B.4)

The domain considered for φ is
]
−π

2 ,
π
2

[
since cosφ = 1√

1+ξ2
is always positive, but that is not

an issue due to the redundancy (B.2

.

); we can still consider all the lines of the plane since ρ
can take negative values.

We should note that the GPD is indeed compactly-supported when it comes to the variables
(ρ, φ), even counting the GDA domain. Indeed, for ρ > 1, we would have x2 > 1 + ξ2, i.e. both

3We write the theorem in the general way it was stated even though we are only interested in the
two-dimensional case.

4Helgason also showed a similar version for S (the space of rapidly-decreasing smooth functions) instead of
D.
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Figure B.1. Left: Geometric interpretation of the Radon transform. Integration over a line
(in dashed blue) parametrized by (ρ, φ). Right: Support of GPD in polar variables (ρ, φ). In
pink, DGLAP region. In green, ERBL region for GPD. In yellow, GDA domain.

|x| > |ξ| (which corresponds to DGLAP) and |x| > 1, a region for which we know the GPD is
vanishing. We can summarize the different domains as follows:

DGLAP: |ξ| ≤ |x| ≤ 1 ⇐⇒ |sinφ| ≤ |ρ| ≤ |cosφ| ,
ERBL (GPD): |x| ≤ |ξ| ≤ 1 ⇐⇒ |ρ| ≤ |sinφ| ≤ |cosφ| , (B.5)

ERBL (GDA):
{
|x| ≤ |ξ|
|ξ| ≥ 1

⇐⇒
{

|ρ| ≤ |sinφ|
|cosφ| ≤ |sinφ|

.

This is also sketched in Fig. B.1

.

(right panel).
We remind the relation between GPD and DD5

.

:

H (x, ξ) =
∫∫

dβ dα δ (x− β − ξα)h (β, α)

= 1√
1 + ξ2

∫∫
dβ dα δ

(
x√

1 + ξ2 −
β√

1 + ξ2 − α
ξ√

1 + ξ2

)
h (β, α)

= 1√
1 + ξ2 R̃h

(
x√

1 + ξ2 , arctan ξ
)

≡ Rh (x, ξ) , (B.6)

where we defined the operator R with a ξ-dependent factor compared to the usual Radon
transform of the literature, for convenience.
Going back to Thm. B.1

.

, we can now state its formal equivalent for GPDs:
5In the simple case of the R representation.
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Corollary B.3. A GPD H fulfills the polynomiality property:
∫ 1

−1
xmH (x, ξ) dx =

m∑
k=0

Hk
m ξ

k , (B.7)

if and only if it is a Radon transform of a DD h:

H (x, ξ) = Rh (x, ξ) , (B.8)

and this DD is unique.

Proof. In canonical variables, we have
∫ 1

−1
ρmH

(
ρ

cosφ, tanφ
)

dρ =
∫ 1

−1
xmH (x, tanφ) cosm+1 φ dx

= cosm+1 φ
m∑
k=0

Hk
m tank φ (B.9)

= cosφ
m∑
k=0

Hk
m sink φ cosm−k φ .

From Thm. B.1

.

, we conclude that

√
1 + ξ2H (x, ξ) =

H
(

ρ
cosφ , tanφ

)
cosφ = R̃h (ρ, φ) , (B.10)

hence the result, the converse being trivial (see Chap. 5

.

).

Let us now consider the translation of Thm. B.2

.

into GPD language, which would be:

Corollary B.4. For h ∈ E ′ (R2) and x0 > 0, ξ0 ∈ R, if there exists ε > 0 such that
Rh (x, ξ) = 0 for all (x, ξ) such that x√

1+ξ2
> x0√

1+ξ2
0
and |ξ − ξ0| < ε, then h (β, α) = 0

for all (β, α) on the half-plane β + αξ0 > x0.

Proof. This follows immediately from the theorem, given the dictionary (B.4

.

) and that tan is a
continuous function: we can find ε′ > 0 such that |φ− φ0| = |arctan ξ − arctan ξ0| < ε′ implies
|ξ − ξ0| < ε and we would therefore have Rh (x, ξ) = 0 in that restricted set. The theorem can
then be applied.

For a thorough study of the Radon transform in the context of GPDs we refer to the
habilitation thesis [160

.

].
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Résumé : Les Distributions de Partons Généralisées
(GPDs) encodent les corrélations entre impulsion
longitudinale et position transverse des partons dans
les hadrons et permettent d’imager la structure du
nucléon en 2+1 dimensions. Elles ont été étudiées
théoriquement et expérimentalement pendant deux
décennies et une nouvelle ère expérimentale débute
actuellement (à Jefferson Lab et COMPASS, mais
aussi à l’avenir à un collisionneur électron-ion) pour
les extraire avec grande précision.
La difficulté est que seul un accès expérimental indi-
rect est possible, à travers divers canaux de diffusion
exclusive et les observables associés. Cela implique
de prendre nécessairement en compte les nombreuses
contraintes théoriques si l’on veut concevoir des mo-
dèles fiables pour la phénoménologie. En particulier,
deux contraintes cruciales sont les propriétés de "po-

lynomialité" et de "positivité". L’approche de cette
thèse consiste à tirer partie des deux propriétés en
modélisant d’abord les fonctions d’onde sur le cône
de lumière des premiers états de Fock du nucléon,
permettant d’obtenir une GPD dans la région appe-
lée DGLAP via overlap où le nombre de partons est
conservé, puis l’étendre de manière covariante à la
région ERBL, avec une inversion de transformée de
Radon.
In fine, le but est d’appliquer cette procédure à un
modèle de quark-constituant pour GPDs de valence,
ce qui permettrait de produire de manière inédite
pour ce genre de modèle des résultats à comparer
à l’expérience (sur le processus de diffusion Comp-
ton profondément virtuelle en l’occurrence). Pour
atteindre cette objectif, on utilise la librairie PAR-
TONS sous différentes hypothèses perturbatives.
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Abstract: Generalized Parton Distributions (GPDs)
encode the correlations between longitudinal mo-
mentum and transverse position of partons inside
hadrons and can give access to a picture of the nu-
cleon structure in 2+1 dimensions. They have been
studied theoretically and experimentally for almost
two decades and a new experimental era is starting
(at JLab and COMPASS currently, and in the future
at an EIC) to extract them.
The difficulty is that only an indirect experimental
access is so far possible, through different exclusive
channels and various observables. Therefore, one has
to take into account the many theoretical constraints
to be able to produce accurate models and rely on
their phenomenology. Two important constraints are

called the polynomiality and positivity properties.
The approach of this thesis is to make use of both
of them by first modeling low Fock states light-front
wave-functions, which gives a GPD in the DGLAP
region by a parton number conserved overlap, and
then covariantly extending this GPD to the ERBL
region, through an inverse radon transform.
In fine, the goal is to apply this on a constituent
quark-like model for valence GPDs, which would
allow to produce a phenomenological output (on
DVCS data for instance) from this kind of models,
which was impossible before. We make use of the
versatile PARTONS framework to achieve this under
various perturbative QCD assumptions.
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