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Abstract 

The steam generator is an essential component in PWR which allows the heat exchange between the 

primary and secondary circuits. After 15-20 years of functioning, an obstruction by deposits of flow 

holes between Tube Support Plate (TSP) and primary tubes is observed, called TSP clogging. This 

phenomenon may lead to dramatic consequences for nuclear power plant operation and may be 

responsible for safety issues. The aim of this thesis is to deepen, experimentally and numerically, the 

understanding of the mechanisms responsible for TSP clogging by identifying and prioritizing the 

preponderant processes.  

COLENTEC is an experimental facility designed to reproduce TSP clogging deposits under 

representative conditions of the upper part of steam generators. Microscopic characterizations (SEM 

and TEM) allowed revealing the deposit formation by precipitation and the initiation role of material 

passivation in deposit formation. Lipping and ripple forms, specifying TSP clogging, were not observed 

in COLENTEC tests. This is suggested to be caused by insufficient concentration of suitable particles 

at the test section. Particle deposition is supposed to be essential for the formation of lipping deposits 

at the inlet of TSP.  

Electrokinetic and flashing phenomena are supposed to contribute to TSP clogging formation, having 

cementing effects on the deposits initially formed by particle deposition. An experimental collaboration 

program with the University of Manchester was established to better understand the clogging formation 

by investigating the role of electrokinetic phenomenon. This study allowed reforming deposits with 

lipping and ripple forms as observed in EDF steam generators. Electrokinetic involvement, strongly 

affected by flow velocity, was considerably suggested in TSP clogging formation.  

Numerical quantification of deposit formation by particle deposition, flashing and electrokinetic 

phenomenon was performed and compared to EDF feedbacks on TSP clogging formation. 

Electrokinetic phenomenon was found to play a predominant role, whereas particle deposition was 

suggested to have a minor contribution to clogging formation.  

Key words: clogging, magnetite, precipitation, particle deposition, electrokinetic, mechanism 

prioritization, experimental deposit rebuild-up, calculation.  
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EDF: Electricité de France 

CEA: Commissariat à l’Energie Atomique et aux énergies alternatives 

EPRI: Electric Power Research Institute  

AECL: Atomic Energy Canada Limited 

PWR: Pressurized Water Reactor 

CVCS: Chemical and Volume Control System 

NPP: Nuclear Power Plant  

MWe: MegaWatt Electrical 

TSP: Tube Support Plate  
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Roman symbols 
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φs = mass flux per unit of surface of soluble specie precipitation (kg/s/m2) 
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Introduction 

Since the first commercial nuclear power station operation in the 1950s, over 440 commercial nuclear power 

reactors provide electricity in 31 countries nowadays, with over 390,000 MWe of total capacity. They provide 

over 11% of the world’s electricity as continuous, reliable base-load power, without carbon dioxide emissions 

(“World Energy Outlook 2016”, 2016). Pressurized Water Reactors (PWR) are majorly used in the Nuclear 

Power Plants (NPP) worldwide: 65% according to the number and 70% according to the output. The steam 

generator (SG) is a crucial component of PWR, where the heat exchange between the primary and secondary 

circuit occurs. The reactor production efficiency relies thus largely on the proper functioning of SG. SG is 

equally one of the PWR three safety barriers between the radioactive and non-radioactive sides of the NPP. In 

particular the SG tube’s rupture, inducing primary-to-secondary leaks, may lead to dramatic consequences on 

NPP functioning and workers’ safety.  

The corrosion of secondary upstream SG materials leads to the formation of soluble and particle species, which 

are then conveyed into SG, inducing the formation of deposits onto the inner surfaces of SG. These deposits are 

composed of metallic oxides, majorly of magnetite. Following the deposit nature and localization, various 

degradation phenomena caused by secondary-side corrosion products are observed since the beginning of PWR 

exploitations:  

• SG tube fouling, referring to the deposit formation alongside the extern surfaces of SG tubes, decreases 

the heat transfer efficiency between the primary and secondary circuit.  

• SG tube sludge, referring to the hard deposit formation at the bottom of SG between SG tubes and tube 

sheet, induces tube denting and decreases SG lifetime.  

• Tube Support Plate (TSP) clogging or blockage, referring to the partial or total secondary flow hole 

obstruction between SG tubes and TSP by deposits.  

The present work focuses on TSP clogging phenomenon, which is relatively new in France and has been 

identified as the major cause of the three primary-to-secondary leaks observed between 2004 and 2006 in the 

EDF Cruas NPP. This phenomenon decreases the secondary flow section, and then induces high velocity zones 

and transverse velocities in the secondary flow, which can imply flow induced vibrations, SG tube cracks and 

leaks in the worse cases. Chemical cleaning is currently the main effective cure against TSP clogging. 

Nevertheless, it remains extremely costly and difficult to perform. Therefore, it appears of great interest to 

investigate alternative solutions to avoid TSP clogging. For this aim, it is necessary to understand firstly the 

phenomena responsible for TSP clogging. In this context, an extensive research project “COLMAtage des 

générateurs de vapeur” was engaged in 2008 by EDF and CEA.  

The present work is a part of this research project with two main objectives: 

• Better understand TSP clogging formation by characterizing experimentally reformed deposits under 

close representative conditions; 

• Prioritize numerically and experimentally the supposed implicated mechanisms in TSP clogging 

formation.  

For this purpose, the mechanistic investigation of TSP clogging formation has been undertaken with two general 

approaches:  

• Experimentally 

- Representative investigation of TSP clogging formation under similar PWR SG secondary conditions with 

COLENTEC (COLmatage des ENTretoises – Etude Cinétique) two-phase flow test loop. This geometrically 

representative test loop has been co-financed by CEA and EDF, and designed and constructed to reproduce the 



7 

 

most encouraging conditions for representative deposit formation. This investigation has provided reformed 

deposits for characterization and quantitative data of global TSP clogging formation in laboratory scale.  

- Simulated investigation in monophasic static solutions by autoclaves. This study provided majorly 

complementary supports for the interpretation of COLENTEC test characterization results.  

- Specific investigation of electrokinetically induced deposits by microfluidic flow cell in recirculating 

autoclave system. This investigation was performed in collaboration with the University of Manchester (UK) 

under comparable COLENTEC-2015 conditions, in order to better understand the electrokinetic behaviours and 

suggest its contribution to the global deposit formation.  

• Numerically  

Calculation of the contribution percentage of each supposed formation mechanism with identified numerical 

models in the literature. This study allowed predicting the predominant role of electrokinetics in TSP clogging 

formation.  

These approaches are presented in the present work throughout four chapters: 

• Chapter 1 introduces the state of the art of TSP clogging phenomenon through NPP feedbacks and 

previous experimental or numerical investigations. Supposed implicated mechanisms will be studied, 

with associated phenomenological and numerical models reported in the literature.  

• Chapter 2 presents the representative deposit formation tests by means of the COLENTEC facility. Such 

studies provide the first experimental data of the deposit formation. Microscopic characterizations of 

the formed deposit by COLENTEC and complementary autoclave tests bring first elements of 

phenomenon understanding.  

• Chapter3 presents the specific experimental investigation of electrokinetics performed in the University 

of Manchester. This preparative study provides the first experimental data of electrokinetically induced 

deposit under comparable PWR secondary conditions. 

• Chapter 4 presents the performed numerical calculations, estimating the contribution percentage of each 

supposed implicated mechanism.  
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Chapter 1 State of the art  

1.1 Introduction 

PWRs were designed in the Westinghouse Bettis Atomic Power Laboratory and are enormously complicated 

thermodynamic heat engines. Nuclear fission of uranium-235 fuel produces fast neutrons, which are moderated 

into thermal neutrons by the coolant water. Thermal neutrons are responsible for maintaining the criticality of 

the nuclear reaction, and for heating coolant water, that is held under high pressure to maintain a liquid state. 

The heat in the primary coolant (330 °C and 155 bars) is transferred to a secondary coolant loop where steam is 

raised to drive a conventional steam turbine. Steam generators (SG) play a crucial role as a heat exchanger from 

the primary to the secondary flow and as one of the three safety barriers of NPP. The steam leaving the turbine 

is converted back into water in the condenser. For this cooling process in the condenser, cooling water from an 

external source is used (e.g., sea, river, lake) in a ternary circuit.  

Ageing effects, especially material degradation by corrosion, have been experienced worldwide since the start 

of exploitation of PWRs and may consist of the major challenge of PWRs’ safety and performance. TSP 

clogging, a relatively new PWR SG degradation phenomenon (Yang et al., 2017a), can induce severe operation 

consequences and its formation remains nowadays poorly understood.  

This chapter aims at identifying the state of the art of TSP clogging phenomenon from a phenomenological and 

numerical point of view. It describes the PWR secondary circuit, particularly the steam generators, and discusses 

the corrosion phenomena occurring in the PWR secondary circuit such as TSP clogging of SG. A particular 

attention will be paid to give a complete overview of TSP clogging formation mechanisms. This review will 

support the next chapters focusing on experimental and numerical investigations of TSP clogging phenomenon.  

1.2 PWR secondary circuit  

After describing PWR secondary circuit, PWR recirculating steam generators (SG) and the different materials 

used, this section will be devoted to introduce the water chemistry management in PWR in order to better 

understand the different parameters involved in corrosion and TSP clogging phenomena.  

1.2.1 General description  

The two major secondary systems of a pressurized water reactor (PWR) are the main steam system and the 

condensate/feedwater system. The steam goes from the outlet of the steam generator into the high pressure (HP) 

main turbine firstly in order to resist to the steam high pressure (Figure 1.1#1). After passing through the high-
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pressure turbine, the steam is piped to the moisture separator/reheaters (MSR) (Figure 1.1#2). In the MSRs, the 

steam is dried by means of moisture separators and reheated to avoid turbine blade corrosion. The stream moves 

then from the MSR to the low-pressure turbines (Figure 1.1#3) to generate electricity. After passing through the 

low-pressure turbines, the steam goes to the main condenser (Figure 1.1#4). The steam is condensed into water 

by the flow of circulating water through the condenser tubes. The condensate then passes through some low-

pressure feedwater heaters (Figure 1.1#5). The temperature of the condensate is then increased from 40 to 75 °C 

in the heaters. The condensate flow then enters the suction of the main feedwater pumps (Figure 1.1#6), which 

permits to increase the water pressure from 11 to 65 bars so that the condensate can be sent into the steam 

generator. The feedwater is then heated by means of a set of high-pressure heaters (Figure 1.1#7), which are 

heated by the extraction steam from the high-pressure turbine (heating the feedwater helps to increase the 

efficiency of the plant).  

 

Figure 1.1: Scheme of PWR secondary circuit (Pressurized Water Reactor Systems, n.d.). 

 

1.2.2 Recirculating steam generator 

A recirculating steam generator (SG) is about 20 meters high, its diameter ranges from 3 to 5 meters and it 

weights between 300 and 430 tonnes (Delaunay, 2010). In SG, the primary system coolant flows through several 
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thousands of U-tubes (Figure 1.2). Primary coolant enters the steam generator at 315-330 °C on the hot-leg side 

and leaves at about 288 °C on the cold-leg side. The secondary system flow (feedwater) is fed through a 

feedwater distribution ring into the downcomer, where it mixes with recirculating water draining from the 

moisture separators. This downcomer water, in contact with hot primary tubes, flows to the bottom of the steam 

generator, and is then transferred into steam up through the tube bundle. About 25% of the secondary coolant 

is converted into steam on each pass through the generator while the other 75% recirculates (Bonavigo and 

Salve, 2011).  

The different types of SG are mainly characterized by two parameters: the total outer exchange area represented 

by the tube bundle and the external diameter of SG tubes (Prusek, 2012). For example, a 51B type SG (Figure 

1.2, left) has a total outer exchange area of 4700 m2 and a tube external diameter of 22.22 mm (Girard, 2014). 

Complete characteristics of the tube bundle of 51B type steam generators are listed in Table 1.1. As the tubes 

are long and thin, 8 circular plates called Tube Support Plates (TSP) are used for their mechanical maintain 

(Figure 1.2, left) in 51B type SG. The tubes fit in the circular holes drilled in the TSP. These holes are surrounded 

by additional quatrefoil holes to let the secondary steam-liquid mixture flow through (Figure 1.2, bottom right). 

After several decades of operation, deposit formation is observed in the quatrefoil holes between SG tubes and 

TSP (See TSP clogging phenomenon in Figure 1.2, top right).  

 

 

Figure 1.2: Scheme of 51B-type PWR recirculating steam generator (Bodineau and Sollier, 2013; Girard et al., 2013). 

TSP clogging phenomenon is observed after several decades of operation and is represented at the top right.  
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Table 1.1: Main characteristics of tube bundles used in 51B-type steam generators (Girard, 2014).  

Characteristics Value 

Number of tubes 3330 

Number of Tube Support Plates (TSP) 8 

Tube external diameters (mm) 22.22 

Tube thickness (mm) 1.27 

Outer exchange area (m2) 4700 

Inter-tube distance (mm) 32.54 

Total mass of tube bundle (t) 51.5 

 

1.2.3 Thermohydraulics in PWR steam generator  

TSP clogging phenomena are highly dependent on the thermohydraulics. A general knowledge of PWR SG 

thermohydraulics is necessary for the further discussions in the present work. In this section, basic notions of 

two-phase flow parameters, as void fraction, are introduced and defined and different two-flow patterns are 

presented. Most TSP clogging phenomenon has been observed on the 8th TSP in the EDF NPPs. After describing 

fundamentals of two-phase flow typical values of major thermohydraulic parameter on the 8th TSP of 51B type 

SG will be identified in section 1.2.3.2 since thermohydraulics will govern TSP clogging phenomena.  

1.2.3.1 Two-phase flow fundamentals  

Basic theory and definitions are introduced in this section. Given that there are many two-phase flow models in 

the literature and the objectives of this section is not to give a thorough description of two-phase flow models, 

only few of them are presented hereafter and the reader can find more information about these models elsewhere 

in the literature (Cong et al., 2013, 2015; Rummens, 1999; Vergnault et al., 2008; Zohuri and Fathi, 2015). 

1.2.3.1.1 Two-phase flow system basic notions  

The primary parameters used in two-phase flow modelling are (Royer, 2015):  

• Thermal: thermal power, temperature, heat flux, etc. 

• Hydraulic: pressure, mass flow rate, fluid temperature, pressure drop, etc.  

• Geometric: flow and heated areas, hydraulic and heated equivalent diameters, etc.  

Along with these primary parameters, in two-phase flow analysis, the following calculated parameters are 

commonly used:  

• Mass flux  

• Dynamic mass quality  

• Void fraction 
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In addition, two-phase flow calculations require information about fluid properties such as density, viscosity, 

enthalpy, thermal conductivity, and heat capacity, which depends on the above-mentioned primary fluid 

parameters. Major basic two-phase flow notions will be briefly defined and presented as following:  

Void fraction α (dimensionless) is defined as the volumetric fraction of vapour phase or the cross-sectional area 

occupied by vapour phase (Av) to the total flow area of a pipe (A) in the limit case of a “thin” volume (Royer, 

2015), as expressed in Eq. 1-1. The opposite of void fraction is the liquid fraction.  

 
 α =  

Av

A
, (1 − α) =   

Al

A
 1-1 

where Al represents the cross-sectional area occupied by liquid phase.  

Dynamic mass quality x or steam quality (dimensionless) is defined as the ratio of vapour mass flow Wv (kg/s) 

to total mass flow W (Eq. 1-2). The opposite is the liquid quality.   

 
 x =  

Wv

W
, (1 − x) =   

Wl

W
 1-2 

where Wl represents the liquid mass flow (kg/s). 

Mass flux φ is the mass flow rate per unit flow area (Wv/l/A) (kg/s/m2). Vapour and liquid phase fluxes are 

defined using steam quality, as in Eq. 1-3.  

 φv =  φx, φl =  φ(1 − x) 1-3 

The vapour phase velocity vv and the liquid phase velocity vl (m/s) can be expressed in Eq. 1-4 and Eq. 1-5 , 

using the volumetric flow Q (m3/s).  

 
vv =  

Qv

Av
=  

Wv

ρvAv
  1-4 

 
vl =  

Ql

Al
=  

Wl

ρlAl
  1-5 

Where v and l denote the density of vapour and liquid, respectively. 

Using the previous relationships, the ratio between the vapour and liquid velocities in a two-phase flow system, 

called slip ratio Sv/l (dimensionless), can be expressed as:  

 
 𝑆𝑣/𝑙 = (

x

1 − x
)(

ρl

ρv
)(

1 − α

α
) 1-6 

The vapour in a moving two-phase flow system trends to move at a higher velocity than the liquid because of 

its buoyancy, density and different resistance characteristics. Experimental data or theoretical correlations for 

Sv/l covering all possible operating and design variables do not exist. Experimental values of Sv/l under conditions 

defined for a particular design are difficult to obtain experimentally. Such procedures are usually expensive and 

time-consuming. In calculations and modelling, the usual procedure is to neglect the difference between vapour 

phase and liquid phase velocities or to assume a constant value of Sv/l throughout the fuel channel.  

Other parameters, like static quality (vapour mass fraction Cg) or thermodynamic quality of the two phases are 

less used because they do not bring relevant information about the flows (velocities). The associated definitions 

can be found in (Royer, 2015).    
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1.2.3.1.2 Two-phase flow patterns  

Multiphase flow is classified according to the internal phase distributions or "flow patterns" or "regimes". For 

instance, in the case of a two-phase mixture of a gas or vapour and a liquid flowing together in a channel, 

different internal flow geometries or structures can occur depending on the size or orientation of the flow 

channel, the magnitudes of the gas and liquid flow parameters, the relative magnitudes of these flow parameters, 

and on the fluid properties of the two phases. In particular, two-phase flow patterns are strongly influenced by 

phase mass flow rates or velocities (K. Popov, 2015). The sequence of flow patterns generally encountered in 

vertical two-phase flow as a function of the steam quality x is shown in Figure 1.3.  

The bubbly pattern means that the vapour phase is distributed in discrete bubbles within a liquid continuum. 

When the concentration of bubbles becomes higher, bubble coalescence occurs and progressively, the bubble 

diameter approaches that of the tube. The slug flow (also named plug flow) regime is entered. As the vapour 

flow is increased with steam quality, the velocity of these bubbles increases and ultimately, a breakdown of 

these bubbles occurs leading to an unstable regime. In this regime, there is an oscillatory motion of the liquid 

upwards and downwards in the tube (churn flow). Annular flow represents the pattern where the liquid flows 

on the wall of the tube as a film and the gas phase flows in the centre. Finally, in the disperse droplet pattern, 

the liquid phase loses contact with the tube and forms concentrated individual liquid droplets more or less 

homogenously in the flow.  

 

Figure 1.3: Two-phase flow patterns’ sequence as a function of steam quality x (K. Popov, 2015). “G” and “L” represents 

the vapour phase and the liquid phase, respectively.  

Two-phase flow parameters change significantly from one flow pattern to another one. In particular, the 

interfacial area between the two phases has a significant impact on the exchange of mass, momentum, and heat 

between phases. Various two-phase flow parameters are affected differently by flow patterns, and hence various 

correlations and models are needed to capture phenomena for each flow pattern. This implies the need for well-

defined and predictable flow patterns in two-phase flow modelling. Many pattern maps are reported in the 

literature from experiments or calculations (Cheng et al., 2008). They give a good description of the two-phase 

flow pattern as a function of flow properties such as steam quality, mass flux, etc. However, most of these 

pattern maps are limited to relatively low temperature systems (from 20 to 80 °C) and they are not relevant for 

describing water/vapour flow systems like those reported in PWR SG. More experiments are then required 

under the same thermohydraulic conditions as those reported in SG. Nevertheless, plot of such map patterns is 
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particularly challenging because it needs to develop new sensors, which can operate at high temperature and 

pressure (Hogsett and Ishii, 1997). Efforts are currently made at CEA Cadarache (France) for the development 

of such two-phase flow measuring sensors (Dupré et al., 2016).  

1.2.3.2 Thermohydraulics of 51B type steam generators  

Numeric simulations based on porous media models and experimental single-phase and steam-water two-phase 

flow investigations were performed by several groups (Cong et al., 2013, 2015; Tian et al., 2016; Zhang et al., 

2017) to investigate the thermohydraulic characteristics of PWR steam generators. Heat transfer from primary 

to secondary side, pressure drop for a vertical two-phase flow across a horizontal rod bundle and the effects of 

power level on thermohydraulic characteristics were discussed. However, only few data are available in the 

literature about basic parameters in a specific localization in SG like at the 8th TSP of 51B type SG (void fraction, 

secondary temperature, etc.). 

An EDF modelling tool (THYC) was used for investigating thermohydraulic parameters at the 8th TSP of 51B 

type SG (Schindler, 2010, 2016). Schindler’s works summarized the main results of this study and showed the 

dynamic steam quality varies from about 0.22 to 0.38 on the hot leg side of the 8th TSP. The maximal steam 

quality is located at the centre of the tube bundle while a steam quality of 0.30 is observed in the intermediate 

region between the centre and the wall (see definition of the steam quality x in Eq. 1-2). The void fraction (, 

Eq. 1-1) reaches 0.85 on the hot leg of 8th TSP with a relatively homogeneous distribution. The pressure is equal 

to 61.5 bars in the whole 8th TSP section with a temperature of 277.2 °C in the secondary flow.  A mean vertical 

velocity of the two-phase flow of about 3 m/s has been calculated at the intermediate region of the hot leg of 

the 8th TSP. From these calculated thermohydraulic parameters, the two-phase flow located in the 8th TSP is 

often supposed to have a disperse droplet regime because of the high void fraction and dynamic steam quality. 

However, neither experimental nor theoretical works have been performed to confirm such an expectation 

because of the difficulties mentioned previously.  

 

 

 

 

 

 

 

 

1.2.4 Materials used in the secondary circuit  

In the secondary circuit, the fluid circulation piping is made of carbon steel. SG tube sheet, turbine rotors, high-

pressure heater, condensate and feedwater piping are usually made of carbon steel or low alloy steels (Feron, 

2012). The steam generator tubes are made of nickel-based alloys: alloys 600 MA (MillAnnealed: thermal 

treatment at 980 °C for 15 minutes), alloys 600 TT (Thermally Treated at 700 °C for 16 hours) or alloys 690 

TT for the most recent steam generators (Le Calvar and De Curières, 2012). The SG Tube Support Plates (TSP) 

are nowadays made of stainless steel with about 13%wt of chromium (Delaunay, 2010).  Condenser tubes are 

Most TSP clogging phenomenon is observed on the 8th TSP of PWR 51B type steam generator’s secondary 

side. A general description of PWR secondary circuit and steam generators has been done. Important 

thermohydraulic notions have been introduced and associated parameters have been identified specifically 

for the 8th TSP region in 51 B type SG in order to feed further discussion in the present work. Thereafter, 

the major source term of TSP clogging phenomenon will be identified, by firstly introducing the different 

materials used in the secondary circuit and the associated corrosion phenomena under the specific PWR 

secondary water chemistry. Magnetite is the stable form of iron species under PWR SG conditions and is 

the main composition of TSP clogging. Its structural and physio-chemical properties will be provided. 
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made of stainless steels, or copper alloys or titanium-based alloys. Chemical compositions (%wt) of alloys 

usually used in PWR secondary circuit are gathered in Table 1.2.  

Table 1.2: Chemical composition (in %wt) of alloys usually used in PWR secondary circuit. 

Type C Cr Fe Mn Ni Si other 

Stainless steel 13%wt Cr <0.12 12-14 balance <1  <1 P,S<0.025 and Co<0.2 

Carbon steel (A285 Gr C)  0.28  balance 0.9   P, S = 0.035 

Alloys 600 <0.05 14-17 6-10 <1 >72 <0.5 Co<0.1 

Alloys 690 <0.05 27-31 7-11 <0.5 >58 <0.5 Co<0.035 

Copper alloys  <0.06  0.4-0.7 0.5-1.5 29-32  Cu balance/Cu 70 – Zn 30 

Titanium alloys  <0.1  0.3 2   Ti balance – O<0.25 

 

1.2.5 PWR secondary flow chemistry  

Slightly alkaline solution in the secondary circuit is used to limit corrosion phenomena in the PWR secondary 

circuit (Nordmann and Fiquet, 1996). For this goal, most of the nuclear operators use volatile alkaline reagent 

(AVT, All Volatile Treatments). Two main reagents are used: morpholine (C4H9NO) and ammonia (NH4OH). 

Other reagents are less frequently used like ethanolamine (C2H7NO). Hydrazine (N2H4) is used for reducing 

dissolved oxygen concentration for Stress Corrosion Cracking (SCC) prevention.  

Ammonia was largely used thanks to its easy implementation, low cost and its relatively low decomposition. 

However, its use is limited in the presence of copper alloys in secondary circuit materials because ammonia 

corrosion leads to the formation copper ions that form stable copper-ammonia complexes (Cu(NO3)6
2+) when 

pH is higher than 9.4 at 25 °C (Yang et al., 2017a), which participate actively in the corrosion of copper material 

and increase the risk of copper reprecipitation elsewhere in the secondary circuit. Therefore, pH25 °C is fixed at 

between 9.1 and 9.3 in the presence of copper alloys in the secondary circuit. The use of hydrazine in the 

presence of copper alloys is also limited due to its decomposition inducing the formation of ammonia. Its 

concentration ranges generally from 5 to 10 µg/kg (ppb) (Delaunay, 2010; Nordmann and Fiquet, 1996; Suat 

and Francis, n.d.). In the absence of copper alloys, pH25 °C is fixed by ammonia or morpholine around 9.6 to 9.7 

to prevent corrosion.  

In certain cases, hydrazine concentration can be increased up to 50-100 µg/kg in the absence of copper, 

especially for enhancing SCC prevention. Morpholine allows providing a homogeneous protection all over the 

steam-water system since its distribution coefficient (concentration in vapour/concentration in liquid phase) is 

close to 1. However, more and more operators work on the substitution of morpholine by another reactive 

because the high concentration of morpholine in secondary circuit and its low thermal stability increase the risk 

of formation of organic compounds by chemical decomposition such as ethenol and ethenamine (Altarawneh 

and Dlugogorski, 2012). Ethanolamine (ETA) is a good candidate to replace morpholine. This reactive is for 

instance largely used in US because it can be used at lower molar concentration than morpholine and thermal 

decomposition is limited (Suat and Francis, n.d.).  

Most chemical elements remain in the liquid phase as their distribution coefficients are generally around 10-4. 

In order to limit the corrosion phenomena associated with the presence of these pollutants in the liquid phase, 

periodical purges of secondary water are performed. A purge rate of 1% of the feedwater flow is generally used 

in France (Suat and Francis, n.d.), which leads to an estimated super-concentration coefficient in SG water of 

100 compared to the feedwater.  
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In restricted zones of SG as in clogged TSP flow holes, primary tubes’ cooling is less efficient due to the reduced 

secondary water flow, which may induce local overheating, leading to an increase of pollutant concentrations. 

The super-concentration coefficient in these regions can reach as high as 106 compared to SG water (Nordmann 

and Fiquet, 1996). The current pollutant concentration is maintained below 0.01 µg/kg in the feedwater. 

Therefore, the concentration in the SG water can then be estimated to be around 1 µg/kg (1 ppb) with a super-

concentration coefficient of 100 and the pollutant concentration can reach between 1 mg/kg (1ppm) and 1 g/kg.  

The total iron concentration in the feedwater is measured to be around 30 ppb by EDF (De Bouvier, 2015a). No 

data is available in the literature for estimating iron concentration in SG water or SG restricted regions by taking 

into account the super-concentration phenomenon in PWR SG.  

The French EDF chemical specification of PWR secondary feedwater is summarized in Table 1.3.  

Table 1.3: Principal EDF Chemical specification of PWR secondary feedwater.  

Parameters Value 

pH25 °C 9.1 to 9.3 with copper alloys 9.6 to 9.7 without copper alloys 

Hydrazine concentration (ppb) 5 to 10 with copper alloys 50 to 100 without copper alloys 

Oxygen concentration (ppb) < 3 

Redox potential (V/SHE) -0.4 

Total iron concentration (ppb) 30 

Impurities (sodium, chlorine…) 

concentration(ppb) 
< 1 

1.2.6 Corrosion phenomena in PWR secondary circuit  

The PWR secondary water chemistry management, previously presented, aims at protecting the whole 

secondary circuit towards corrosion phenomena. Flow accelerated corrosion (FAC) of components in carbon 

steel is found to be the major term source of TSP clogging formation. Effects of different parameters, as material 

composition and flow thermohydraulics, will be discussed based on previous studies available in the literature. 

Stress corrosion cracking (SCC) majorly affects SG tubes in alloy 600 and will be briefly presented.  

SCC will be firstly introduced, affecting majorly SG tube materials. FAC is believed to be the major source of 

TSP clogging phenomenon. Effects of major parameters, as pH and oxygen concentration, will be carefully 

discussed in paragraph 1.2.6.2.  

1.2.6.1 Stress corrosion cracking (SCC) 

SCC is responsible for material cracking under both environment and mechanical stresses. The propagation rate 

of SCC ranges generally from 10-5 to 1 µm/s and increases with stress (Arioka et al., 2006).  

Steam generator tubes in the secondary circuit constituted of Alloy 600 MA suffered from SCC. Such SCC 

induced intergranular stress corrosion cracking (IGSCC) and intergranular attack (IGA). A generic designation 

for these secondary side degradations is IGA/IGSCC because they are often observed together.  

SCC of Alloy 600 MA has been carefully discussed from a mechanistic point of view by Delaunay (Delaunay, 

2010). A double-layer deposit composed of a compact inner layer enriched in chromium and a porous outer 

layer containing nickel oxides was observed onto Alloy 600 surface undergoing SCC.  
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IGA/IGSCC is mostly found in restricted regions as between the tubes and the TSP. In these locations, the flow 

of secondary fluid is restricted, which may be further impeded by the presence of corrosion product deposits, 

like TSP clogging, inducing even more restricted geometries. The restricted flow conditions enable a local 

super-concentration of any impurities, as previously mentioned in paragraph 1.2.5. Severe chemical conditions 

can thus be obtained, which are capable to induce IGA/IGSCC of Alloy 600 MA tubes. The main detrimental 

polluting elements are sodium, sulfur, copper and lead (De Bouvier, 2015b; Feron, 2015).  

Alloy 600 TT, Alloy 690 TT and stainless steel suffer much less from IGA/IGSCC than Alloy 600 MA. The 

older carbon steel TSPs with drilled holes have been more subject to IGA/IGSCC since they undergo more 

easily concentrated crevice environment than those with current stainless steel quatrefoil tube holes.  

1.2.6.2 General corrosion and Flow accelerated corrosion (FAC)  

According to the International Standard ISO 8044, general corrosion of metallic materials is defined as a 

“general proceeding at almost the same rate over the whole considered surface” (Féron and Richet, 2010). In an 

aqueous environment, such as water-cooled reactors like PWR, metallic materials corrosion is of 

electrochemical nature (Feron, 2015), with the metal oxidation as anodic reaction and the reduction of dissolved 

oxygen or water as cathodic reaction. General corrosion is characterized by these basic electrochemical reactions 

that take place uniformly over the whole considered surface. If the corrosion products are soluble, general 

corrosion is evidenced by a decrease in metal mass or thickness over time; if the corrosion products are not 

soluble, the corrosion is evidenced by the formation of a uniform layer of corrosion products which may be 

more or less protective against further corrosion. Iron contained in carbon steel is oxidized into magnetite form 

under typical PWR SG conditions, predicted by various authors using Pourbaix diagrams (Chexal et al., 1998; 

Chivot, 2004; Delaunay, 2010; Mansour, 2009; Pourbaix, 1963). Figure 1.4 shows that the Pourbaix diagram 

of iron predicts magnetite as the stable form of iron in deionized and degassed reducing water (Eh = -0.4 V vs. 

SHE) at 200 °C and pH200 °C > 6 (pH25 °C > 9). 

 

Figure 1.4: Pourbaix diagram of iron calculated with PHREEPLOT, using the Lawrence Livermore National Laboratory 

(llnl) database (“llnl.dat”, n.d.). Temperature = 200 °C corresponding to the temperature of the secondary circuit before 

entering into the SG; pH25 °C > 9 corresponds to pH200 °C > 6 (Yang et al., 2017a); Potential Eh in Volt given vs. the 

Standard Hydrogen Electrode (SHE). Red point indicates that the stable form of iron is magnetite under the above-

mentioned conditions.  
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The magnetite formation can be explained by Eq. 1-7 to 1-10. Iron in carbon steel forms soluble ions at the iron-

oxide interface through the following anodic reaction: 

 Fe →  Fe2+ + 2e− 1-7 

In the absence of oxygen in the PWR secondary circuit (see paragraph 1.2.5) or other oxidant species, the only 

possible reduction reaction is:  

 2H2O(l) +  2e− →  H2(g) + 2OH− 1-8 

Depending on the pH, iron (II) forms several ferrous hydroxide species as expressed in Eq. 1-9 (n = 0, 1, 2, 3):  

 Fe2+ + nOH− = Fe(OH)n
(2−n)+

 1-9 

The magnetite (Fe3O4) is then formed from ferrous hydroxide ions following the Sweeton and Baes equilibrium 

(Yang et al., 2017a):  

 3Fe(OH)n
(2−n)+

+ (4 − 3n)H2O(l) =  H2(g) + 3(2 − n)H+ + Fe3O4(s) 1-10 

The formed magnetite is constituted of two layers: an inner compact and adherent layer characterized by the 

presence of small grains (0.05 to 0.2 µm) and an outer porous layer characterized by larger tetrahedral or 

octahedral particles of 0.5 to 5 µm (Delaunay, 2010). This magnetite layer may play the role of passivation 

which may limit reactions at the liquid-material interface including electrochemical reactions.  

FAC can be considered as a particular case of general corrosion, which is accelerated by turbulent flow. FAC 

can occur if the flow rate is greater than 1.5 m.s-1 with Reynold number ranging from 105 to 108 (Chexal et al., 

1998). FAC is a physico-chemical process that contributes to the increase of general corrosion rate up to a few 

millimetres per year (Le Calvar and De Curières, 2012). Morrison (J. Morrison, 2014) wrote a review of the 

magnitude of current corrosion issues affecting NPP primary and secondary coolant systems and stated that 

FAC represents the largest proportion of various corrosion problems (39.3%). FAC may lead to dramatic 

consequences in nuclear power plants. For instance severe accidents resulting from FAC were reported in 

various papers (De Bouvier, 2015a; Le Calvar and De Curières, 2012). The FAC phenomenon is well understood 

and believed to be largely present in NPP due to the enormous number of geometric singularities, e.g., bends 

and contractions, inducing flow turbulences. De Bouvier (De Bouvier, 2015a) estimated the presence of more 

than 1200 geometric singularity elements in French 900 MWe NPPs.  

1.2.6.3 Parameters affecting flow accelerated corrosion – TSP clogging source 

FAC is the main source term of corrosion products in the secondary flow and then of TSP clogging phenomenon 

and other SG degradation phenomena, like the tube fouling. In this section, main parameters affecting FAC rate 

are identified and discussed. Current efforts for TSP clogging prevention are majorly based on minimization of 

the source term, without appropriate understanding of its formation mechanisms.  

1.2.6.3.1 Effects of pH and temperature – magnetite solubility  

The magnetite solubility is the key parameter regarding the quality of the passivation layer for limiting carbon 

steel corrosion. The FAC rate is controlled by reductive dissolution of the magnetite layer on carbon steels 

(reverse reaction in Eq. 1-10) and the transfer of dissolved iron from the surface to the bulk fluid. According to 
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Eq. 1-10, the proton concentration (and therefore the pH in diluted solution) plays a predominant role on 

magnetite solubilisation. An increase of proton concentration will promote the magnetite layer dissolution, and 

thus increase the FAC rate. Numerous studies showed that magnetite solubility decreases with an increase in 

pH up to 11 at 25 °C (Bignold et al., 1980; Fujiwara et al., 2011; Heitmann and Katsner, 1974; Machiels and 

Munson, 2005). Similar evolutions were found at higher temperatures up to 150 °C (Chivot, 2004). A recent 

EPRI report (unpublished results) stated that an increase of pH25 °C from 9.0 to 9.6 induces a decrease of 

magnetite solubility from about 15 to 5 µg/kg at 250 °C when the solution is conditioned by ammonia. This pH 

effect explains why the PWR secondary water is maintained to alkaline pH values. More TSP clogging was 

observed in NPPs functioning with lower pH values (1.4.2.3), as reported by EDF feedbacks.  

Temperature also influences the magnetite solubility. In previous studies, some authors investigated the 

variation of FAC for carbon steel under single-phase flow and found that the maximum FAC rate occurs at 

temperatures ranging from 130 °C and 150 °C in neutral and alkaline solutions (7 < pH25 °C < 9) (Bignold et al., 

1980; Heitmann and Schub, 1994; Rocchini, 1994), while the maximum FAC rate of carbon steel in two-phase 

flow was observed at about 180 °C (Keller, 1974). De Bouvier (De Bouvier, 2015a) recently reported that the 

maximum of FAC rate occurs between 150 °C and 180 °C. Therefore, the highest solubility of magnetite is 

expected to be between 150 °C and 180 °C as the greatest FAC rate temperature matches with the maximum of 

magnetite solubility (Corredera et al., 2008). It was observed in an unpublished EPRI study that the maximum 

of solubility is located at about 150 °C whatever the pH values ranging from 8.75 and 9.60 in the presence of 

ammonia at concentration between 0.1 and 2 ppm, respectively (Figure 1.5). Above 150 °C, magnetite solubility 

decreases with an increase of temperature (Figure 1.5).  

 

Figure 1.5: Magnetite solubility as a function of temperature and pH at 25 °C. pH was conditioned by adding ammonia at 

0.1 ppm to 2.0 ppm. A maximum of magnetite solubility is observed at about 150 °C whatever the pH values. Detailed 

data cannot be provided. (Unpublished EPRI results) 

1.2.6.3.2 Effect of oxygen concentration  

FAC is also affected by the dissolved oxygen concentration. FAC of the feedtrain is inhibited when oxygen 

concentration is greater than 5 ppb in the secondary circuit (Dinov et al., 1993; Fujiwara et al., 2008; Handbook 

of Water Chemistry of Nuclear Reactor System, 2000; Izumiya et al., 1976). Indeed, oxygen can change the 
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nature of the oxide layer from magnetite to more protective hematite (Fe2O3), which has a considerably lower 

solubility and reduces dramatically the FAC rate (Eq. 1-11). However, dissolved oxygen should be maintained 

below 3 ppb in SG water for SCC prevention as previously mentioned. Maintaining simultaneously dissolved 

oxygen concentration up to 5 ppb in the feedwater and below 3 ppb in SG water can prevent both SCC and FAC 

in PWR secondary circuit.  

 4Fe3O4(s) +  O2 =  6Fe2O3(s) 1-11 

1.2.6.3.3 Effect of material composition  

Tsuruta et al. (Tsuruta et al., 2006) showed that the chemical composition of carbon steel also affects FAC rate. 

Indeed, the addition of 1 wt% chromium in carbon steel decreases the FAC rate by one order of magnitude. The 

increase of chromium content decreases oxide layer porosity, making oxide layer less soluble than neat 

magnetite (Fujiwara et al., 2011). For this reason, stainless steel used in PWR secondary components (Cr% = 

12 to 14, Table 1.2) is supposed to be less affected by FAC compared to carbon steels. Nevertheless, the 

corrosion of stainless steels remains an important degradation phenomenon in PWRs. Many studies have been 

conducted to investigate the influences of various parameters, such as water chemistry, material composition 

and stress, on the initial and growth of corrosion and to elucidate stainless steel corrosion mechanisms (Arioka 

et al., 2006; Bischoff et al., 2012; Liu et al., 2015; Tan et al., 2007; Terachi et al., 2008). Main experimental 

conditions were conducted under PWR primary conditions and supercritical water conditions. Stainless steel 

corrosion has been poorly investigated under exact two-phase flow SG conditions, undoubtedly due to the huge 

difficulties of experiments implementation. Several results will be presented hereafter in this section, which 

consist of the base for the further characterization of COLENTEC samples.  

Corrosion of stainless steel  

Terachi et al. (Terachi et al., 2008) investigated the formation processes of surface oxide films on different %Cr 

stainless steels (chromium: 5-20%wt; nickel: 12-14%wt; molybdenum: 2%wt; manganese: 1%wt; silicon: 0.5%wt; 

sulfur/phosphate: trace; iron: Balance)  in simulated PWR primary water (500 ppm boron, 2 ppm lithium) at 

320 °C and with dissolved oxygen < 5 ppb. Figure 1.6 shows the surface appearance of specimens with different 

chromium contents observed by SEM. The specimen surface was covered with corrosion products. The particle 

size was larger for lower chromium content. The typical particle size was stated to be 4 µm in 5% chromium 

alloy and 1 µm in 20% chromium alloy. Each particle had a polyhedral morphology.  

 

Figure 1.6: SEM images of the oxide film after immersion in simulated PWR primary water at 320 °C for 380 h, 

observed by Terachi’s investigation (Terachi et al., 2008).  

Further TEM observation of the cross section of the oxide film in stainless steel showed the formation of double-

layer structure (Figure 1.7). The oxide film contains larger particles (up to several µm) of Fe3O4 and nickel 

substituted magnetite particles in the outer layer and fine particles of chromium substituted magnetite particles 

in the compact inner oxide layer (exact particle sizes were not given). Both layers were identified to have spinel 

structure. However, the inner layer contains higher chromium content than the outer layer, which contains 
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almost no chromium. Figure 1.8 shows electron diffraction patterns of the inner layer of different specimens. 

Ring patterns were observed in higher chromium alloy, whereas lower chromium alloys showed relatively clear 

spot patterns. The results indicate that the inner layer in lower chromium alloys contains larger particles than in 

higher chromium alloys. Nickel, initially presented at 10%wt in the material, was found to be majorly localized 

at the interface of inner layer and material, and was slightly detected in both inner and outer corrosion layers 

(Figure 1.7).  

 

Figure 1.7: Schematic image of cross-sectional oxide film on stainless steel, proposed by Terachi’s work 

(Terachi et al., 2008). 

Bischoff et al. and Tan et al. (Bischoff et al., 2012; Tan et al., 2007) studied the corrosion of stainless steel 

(HCM12A with Cr: 10.83%wt, C/N/Al/Si/P/S/V/Mn/Ni/Cu/Nb/Mo/W: trace; Fe: balance) in supercritical water 

conditions and steam conditions (T = 500 °C – 600 °C and dissolved oxygen content of about 10 ppb). They 

obtained consistent results of oxide film formation. The double-layer structure has equally been observed in this 

environment (Figure 1.8), with the outer layer containing majorly Fe3O4 particles and the inner layer comprising 

of a mixture of Fe3O4 and FeCr2O4. Chromium enrichment was observed in the inner corrosion layer by EDS 

profile analysis (Figure 1.9). Additionally, marker experiments using a novel photolithographic deposition 

process confirmed that the original water-metal interface corresponds with the outer-inner layer interface.  

 

Figure 1.8: Electron diffraction patterns of the inner layer in 5% Cr, 10% Cr and 16% Cr after immersion in simulated 

PWR primary water at 320 °C for 380 h, obtained by Terachi’s investigation (Terachi et al., 2008).  
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Figure 1.9: Observed double-layer structure for HCM12A sample exposed for eight weeks in supercritical water 

conditions. Iron and chromium evolutions are shown, which highlight chromium enrichment in the inner corrosion layer 

(Bischoff et al., 2012).  

All previous investigations on stainless steel corrosion under different conditions highlighted the formation of 

the double-layer structure: compact fine-particle chromium-rich inner corrosion layer and porous large-particle 

iron-rich outer corrosion layer. The original water-metal interface corresponds to the interface between outer 

and inner corrosion layers. In general, the thickness of the oxide layers is between 0.1 and a few µm. The 

corrosion behaviour is expected to be the same as under steam generator secondary conditions. Above literature 

observations will thus bring essential support for interpreting the COLENTEC stainless steel samples 

characterized in Chapter 2.  

1.2.6.3.4 Effect of thermohydraulics  

Finally, thermohydraulic effects cannot be neglected since FAC is increased by strong turbulences. Regions 

with geometrical singularities, e.g., bends and TSP, promote thus FAC. EDF progressively replaces carbon steel 

in these regions by stainless steel, which is less affected by FAC in nuclear power plants (Bischoff et al., 2012; 

Chen et al., 2006; Liu et al., 2015; Sinha et al., 2015; Tan et al., 2006, 2007). Surface roughness is considered 

to have similar effects because of the creation of local turbulences. Fluid velocity is also an encouraging factor, 

which accelerates formed ferrous iron transport into the fluid and shifts the equilibrium of Eq. 1-10 towards 

magnetite dissolution.  

FAC induces thus the formation of soluble iron species from the magnetite layer dissolution. Its concentration 

has never been reported in the public literature. It has been estimated to be closed to the magnetite solubility by 

means of FAC modelling of SG secondary components (Delaunay, 2010). The magnetite layer on the carbon 

steel can also be entrained by the high-velocity of the secondary flow, especially in the presence of geometric 

singularities (Silbert, 2002), which induce magnetite particle circulation in the secondary flow. The size of these 

magnetite particles ranges from 1 to 3 µm in ammonia conditioning, and from 0.1 to 0.5 µm in morpholine 

conditioning (Delaunay, 2010). The presence of particles up to 100 µm has been also observed. The magnetite 

particle concentration has been estimated in SG water to be around 20 ppb, supposing that the magnetite 

concentration in the purge water is similar to that observed in the SG water (Pujet, 2002). The value of 30 ppb 

is thus considered as the approximate iron total concentration in the secondary flow in SG, without taking into 

account the super concentration phenomenon in restricted regions.   
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1.3 Properties of magnetite particle 

Magnetite is a black magnetic mineral. The molecular formula, Fe3O4, can also be written as FeO·Fe2O3, which 

consists of wüstite (FeO) and hematite (Fe2O3). It has the strongest magnetism of all the natural minerals existing 

on the earth (Zaitsev et al., 1999). An example of magnetite mineral is shown in Figure 1.10.  

 

Figure 1.10: Photo of a magnetite mineral from Bolivia (Wikipedia source). Bipyramid crystals are observed.  

 

Flow accelerated corrosion (FAC) of carbon steel materials has been identified as the major source of 

steam generator degradation phenomena, like TSP clogging, which induces the formation of soluble iron 

species and magnetite particles in the PWR secondary fluid. Effects of different chemical and 

thermohydraulic parameters on FAC rate have been discussed. Minimizing magnetite solubility is essential 

for the source term reducing, mainly performed by high-pH secondary water management in nuclear power 

plants. Stainless steel is more resistant against FAC compared to carbon steel due to the higher content on 

chromium. Its corrosion behavior, double-layer structure, has been predicted by previous studies, which 

consists of the interpretation base of the further COLENTEC stainless steel samples’ characterization.  

TSP clogging is one of the major consequences of FAC, formed by FAC induced soluble iron species and 

magnetite particles. TSP clogging has been found to be mainly comprised of magnetite. In the next section, 

magnetite particle will be described, from a structural and physico-chemical point of view. Investigation of 

magnetite surface charge under secondary steam generator conditions will be specifically essential for the 

further mechanistic studying of TSP clogging.  
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Main physical properties of magnetite are listed in Table 1.4.  

Table 1.4: Main physical properties of magnetite (Blaney, 2007; Fu, 2012).  

Properties Magnetite (Fe3O4) 

Density (g/cm3) 5.18 

Melting point (°C) (bulk scale) 1583 to 1597 

Standard free energy of formation (kJ/mol) -1012.6 

Electric conductivity (Ω-1cm-1) 100 to 1000, almost metallic 

 

1.3.1 Structural property 

Magnetite’s crystal structure follows an inverse spinel pattern with alternating octahedral and tetrahedral-

octahedral layers (Hill et al., 1979). The iron and oxygen ions form a face-centered cubic crystal system, and 

the oxygen ions are in the cubic close-packed arrangement (Figure 1.11, red spheres). Ferric (Fe3+) ions occupy 

all the tetrahedral sites and both ferric and ferrous (Fe2+) ions share equally all the octahedral sites. This 

preponderance allows for application of the chemical formula Y[XY]O4, where brackets represent octahedral 

sites while the absence of brackets represents tetrahedral sites; consequently, X and Y symbolize ferrous and 

ferric ions, respectively. Magnetite unit cells adhere to the face-centered cubic pattern with crystal lattice 

parameter, a = 0.84 nm (Zaitsev et al., 1999).  

 

Figure 1.11: Structure of magnetite. Red spheres represent O2-; marron spheres represent the ferrous and ferric ions. FeA 

(ferric ions) occupy tetrahedral sites and FeB (ferric and ferrous ions) occupy octahedral sites. 
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1.3.2 Magnetite surface charge  

Magnetite particles and TSP surface are found to be negatively charged under SG secondary conditions, by 

numerous previous experimental investigations presented below. This result is essential for the further 

discussion on TSP clogging formation mechanisms, involving magnetite particle deposition phenomenon. An 

understanding of interfacial electrochemistry is required. The notions of Electrical Double Layer (EDL) and 

zeta potential appear particularly important, and will be briefly reminded in the following of the present work.   

1.3.2.1 Electrical double layer (EDL) 

The EDL is a region existing at the boundary of two phases. In the present case, the EDL is an interfacial region 

formed in a fluid that is in contact with a solid. The layer forms to reach charge neutrality between the material 

and the fluid, as the solid surface is normally charged. In order to balance the charge of the wall with an equal 

and opposite charge in the fluid, a layer of charged ions forms (Bock et al., 1969; Morrison et al., 2013; 

Prigogine and Rice, 2009). 

Several models for the structure of the double layer have been put forward, each building on the previous 

model’s shortcomings. A general presentation of these different models will be done in this manuscript but 

readers can find more details and associated mathematical models in referenced publications (Bockris and 

Reddy, 1973; Grahame, 1947; Helmholtz, 1879).  

The first model, suggested by Helmholtz in 1879 (Lyklema, 1995), simply consisted of a rigid double layer 

structure where the electrode’s charge is countered by equal and opposite charges adsorbed directly upon the 

electrode wall. Such a structure is clearly analogous to a parallel plate capacitor and this model is generally 

described by capacitance approach. Helmholtz model is an over simplification of reality which does not take 

into account any effects of bulk electrolyte concentration, nor any interactions that occur beyond the first layer 

of absorbed ions (J. Morrison, 2014).  

In order to overcome these deficiencies, a model was suggested independently by both Gouy and Chapman 

which took into account the ability of dissolved ions to move freely through solution, as well as the tendency to 

accumulate in close proximity to an opposite charge (Gerischer, 1973). This model consisted entirely of a diffuse 

layer, where the concentration of ions was highest close to the metal surface and gradually diminishing with 

distance from wall, until the concentration was equal to that of the bulk solution.  

A further model was suggested by Stern which combined both the Helmholtz and the Gouy-Chapman models 

into a single one. In the Helmholtz layer, a portion of the electrostatic potential drop is linear across the region 

of adsorbed ions; once past this layer, the potential falls as a smoother curve across the diffuse layer, eventually 

falling to the same value as the bulk solution potential.  

Grahame added the concept of specifically adsorbed ions to the double layer model and developed a model with 

three distinct regions: inner Helmholtz plane (IHP), which is the plane passing through the centre of the 

specifically adsorbed ions, placed with a distance of β from the wall. Specifically adsorbed ions can have the 

same or opposite charge as the electrode and are bonded strongly to the surface; outer Helmholtz plane (OHP), 

which passes through the centre of the solvated and non-specifically adsorbed ions, placed with a distance of d 

from the wall (Morrison et al., 2013). The distance between the wall and OHP is several nanometres (Delaunay, 

2010). Figure 1.12 shows the potential variation across the EDL, highlighting that the potential difference 

between the wall and the IHP, and the IHP and OHP vary in a linear way. The potential across the diffuse layer 

varies in an exponential manner and the potential drop across the diffuse layer is affected by ionic strength.  

The most recent version of the EDL is that put forward by Bockris, Dacanthan and Müller (Erdemoglu and 

Sarikaya, 2006). This model is qualitatively the same as the Grahame model, with an addition of the notion of 
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shear plane, at which particles cease to be rigidly held by adsorption to the electrode wall. The corresponding 

potential is named zeta potential (ϛ) and will be presented in the next section (1.3.2.2).  

 

 

Figure 1.12: Potential variation across the EDL. The potential between the surface and IHP, as well as the IHP and the 

OHP varies linearly and then exponentially in the diffuse layer. Ψ0, Ψi and Ψd represent the wall potential, IHP potential 

and OHP potential respectively.  A shear plane is placed with a distance of dek from the wall. ϛ represents the 

corresponding potential at this plane, named zeta potential.  

1.3.2.2 Zeta potential 

The zeta potential (ϛ) of a particle is defined as the difference in potential between the shear plane and the bulk 

solution. The shear plane is the plane at which particles near the wall of an electrode cease to be held immobile, 

as previously mentioned. Indeed, when a solid particle and the liquid are in relative movement, part of liquid 

surrounding the particle and containing the counter ions is entrained by the particle. The plane separating the 

entrained liquid and immobile liquid is the so-called shear plane. Zeta potential is generally the only parameter 

which can be measured to characterize the charge of EDL. Zeta potential must be calculated from various 

electrokinetic phenomena, including basically: electrophoresis, electro-osmosis, sedimentation potential and 

streaming current and potential (J. Morrison, 2014). Zeta potential of any given system is dependent upon the 

pH of the electrolyte in which the EDL exists. The point at which the double layer exhibits a zero-zeta potential 

has been named the point of zero charge (PZC), often called the isoelectric point (IEP), which is the point at 

which zeta potential is zero. However PZC differs from IEP in that it only describes systems where the surface 

potential-determining ions are H+ and OH- (Friedlander and Johnstone, 1951). Therefore, PZC is effectively IEP 

in the absence of any other specifically absorbed ions, and this distinction is often ignored. The surface is 

negative when the pH is greater than the PZC and positive when the pH is lower than the PZC (Surface 

Chemistry and Ion Exchange, n.d., sec. Utexas). 
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1.3.2.3  Surface characterizations of magnetite  

There are only very limited experimental data on the temperature dependence of the PZC of iron oxides, and 

almost all experimental data are restricted to temperatures below 95 °C. Tewari and Mclean (Tewari and Mclean, 

1972) firstly estimated by Zetametry that the PZC of magnetite is equal to 6.5 at 25 °C. Sankaya (Erdemoglu 

and Sarikaya, 2006) proposed a PZC value of magnetite equal to 5 at 25 °C. Schoonen (Schoonen, 1994) 

predicted that the PZCs for magnetite and hematite at 270 °C are equal to 4.6 and 6.7, respectively. In a recent 

study, Barale et al. (Barale et al., 2008) measured between 5 and 320 °C the PZCs of typical oxides (magnetite 

(Fe3O4), nickel ferrite (NiFe2O4) and cobalt ferrite (CoFe2O4) recovered from PWR primary circuits. They gave 

PZC values of magnetite of 5.2 and 5.9 at 250 °C and 285 °C, respectively. PWR secondary water is conditioned 

at pH25 °C > 9, which corresponds to a pH value from 6 to 7 between 200 and 285 °C (De Bouvier, 2015a; 

Delaunay, 2010). At these pH values,, magnetite particles are predicted to be negatively charged as well as the 

surface of Alloy 600 and stainless steel under SG conditions (Lu et al., 2015; Prusek, 2012; Turner et al., 2000).  

Exact PZC values of Alloy 600 and stainless steel under similar SG conditions are not provided in these works. 

Delaunay  (Delaunay, 2010) studied the effects of the presence of impurities on magnetite surface charge by 

sorption experiments. Suspension of magnetite particles containing impurities such as copper, zinc and 

aluminium were prepared in alkaline media for zeta potential measurements at 25 °C. Zetametry measurements 

showed that the addition of impurities induces changes in magnetite surface charge from negative to neutral 

values or even positive values. The presence of impurities may thus decrease repulsive effects between 

magnetite particles and TSP or SG tubes, and then encourage deposition phenomenon.  

 

 

 

 

 

 

 

 

1.4 Steam generator degradation phenomena  

FAC induces the formation of soluble iron in the secondary circuit by magnetite layer dissolution. Magnetite 

particles can also be formed by high-velocity flow entrainment. These soluble and particular corrosion products 

are then conveyed into PWR SG and contribute to further degradation phenomena (J. Morrison, 2014). SG tube 

fouling and TSP clogging are nowadays the two major SG degradation phenomena in the centre of nuclear 

industry concerns. The consequences of these phenomena on NPP are presented hereafter.  

Magnetite mineral is a black nature mineral, usually under bipyramid crystal form. Magnetite has an 

inverse spinel structure, forming face-centered cubic crystal system. Magnetite structure can be identified 

by XRD based on its crystallographic properties.  

Magnetite particles and stainless steel have been predicted to be negatively charged under similar PWR 

steam generator conditions. This result is essential for the further studies on TSP clogging formation 

mechanisms.  

FAC are considered to be the major source of SG degradation phenomena. SG tube fouling and TSP 

clogging phenomena will be presented in the next section.  
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1.4.1 Tube fouling  

Fouling is usually caused by iron oxides deposition upon the surface of the SG tubes. Figure 1.13 illustrates 

fouled SG tubes inserted into TSP. 

 

Figure 1.13: Photo of SG tube fouling (Prusek, 2012). 

Fouling increases the thermal resistance of the tubes and, consequently, degrades the steam generator energetic 

performance. Plant operators need to gradually open the steam line valve at the steam generators outlets to 

compensate the pressure drop in the dome. Fouling phenomena cannot be observed directly in NPP but 

measurements of SG pressure evolution and oxide mass balance calculations are good indicators of such 

phenomena.  

Pujet (Pujet, 2002) mentioned an accumulation of deposits of 200 kg per cycle per SG, which corresponds to a 

fouling rate of about 10 µm/year assuming that the deposit is uniformly distributed onto the SG tubes. This 

estimation is in agreement with the fouling rate found by other NPP operators (from 1 to 100 µm/year depending 

on the nuclear unit, the operating period and the location in the SG (Delaunay, 2010)). Pujet (Pujet, 2002) found 

that magnetite (Fe3O4) is the main chemical compound found in the fouling deposits of 12 NPPs operating in 

France between 1993 and 1997 as it was also reported by other operators in other countries (EPRI, 1984).  

Corredera et al. (Corredera et al., 2008) evidenced secondary water conditioning influences fouling. In particular, 

they showed that low pH encourages fouling formation. For instance, higher pressure drop was observed when 

NPPs operate at pH25 °C = 9.2 instead of pH25 °C = 9.6 in the presence of morpholine or at pH25 °C = 9.7 in the 

presence of ammonia. Likewise, among the 22 plants operating at low pH, ten of them exhibited a significant 

fouling in 2007 (all of them were running for 22 to 28 years with original SG). A relationship between fouling 

and the amount of corrosion products were also established since high quantities of corrosion products and high 

fouling level were observed in NPPs operating at low pH. Except the straightforward observations mentioned 

above, fouling phenomena must still be thoroughly investigated since different fouling levels are observed in 

NPPs operating under similar conditions. 
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1.4.2 Tube Support Plate clogging  

In the early 1990’s, SG water oscillations were observed at Surry Power Units 1 and 2 in Virginia, at Kori Units 

3 and 4 and Yongwang Units 1 and 2 in Korea (Rummens et al., 2004; Schindler et al., 2012). This phenomenon 

was caused by a severe deposit build-up in the TSP quatrefoil-shaped holes. EDF Nuclear Power Plants (NPPs) 

have been recently affected by the same phenomenon. Between 2004 and 2006, three primary-to-secondary 

leaks occurred in NPP located in Cruas (France). In-situ investigations showed that the flow holes of the 

uppermost TSP (8th TSP in SG 51B) were partially or completely clogged by corrosion products (Bodineau and 

Sollier, 2013; Corredera et al., 2008). This phenomenon, so-called TSP clogging or TSP blockage, was 

considered potentially generic for all EDF NPPs. Figure 1.14 shows a comparison between a “clean” quatrefoil 

flow hole and an almost fully clogged flow hole.  

 

Figure 1.14: Photo of TSP clogging: top view of a “clean” quatrefoil flow hole (a); almost fully clogged quatrefoil flow 

hole (b) (Prusek et al., 2013; adapted by Yang et al., 2017a). Lipping form and ripple form are observed for clogged flow 

hole.   

1.4.2.1 TSP clogging consequences  

TSP blockage or clogging is defined as deposits formed by corrosion products in the secondary side of SG 

between TSP and SG tubes. This phenomenon can decrease the secondary flow section, and then induce high 

velocity zones and transverse velocities in the secondary flow, which can imply flow induced vibrations, tube 

cracks and leaks in some cases as it was observed in the NPP located in Cruas (France) as described above. TSP 

clogging phenomenon can also decrease the recirculation ratio of the steam generator. In other words, the 

secondary side effective flow of water available for cooling is decreased. The decrease of the available coolant 

water may then induce local overheats in restricted regions, encouraging local super concentration phenomenon 

and SCC with concentrated impurities. Thus, TSP clogging phenomena in nuclear steam generators may lead 

to dramatic consequences for NPP operation and may be responsible for safety issues (Bodineau and Sollier, 

2013).  
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1.4.2.2 TSP clogging diagnosis 

Face to this novel degradation phenomenon, EDF launched firstly a research program to develop methods for 

diagnosing TSP clogging in steam generators. The main obstacle to perform accurate diagnosis of TSP clogging 

lies in the difficulty to observe inside the SG during operation and the absence of internal sensors (Girard, 2014; 

Paillard et al., 2010). Three different methods have been implemented to diagnosis TSP clogging by EDF 

(Corredera et al., 2008; Girard, 2014; Moreau et al., 2013; Skarlatos et al., 2010): 

1.4.2.2.1 Televisual inspections  

Televisual inspections are conducted by introducing monitoring devices holding video cameras into steam 

generators through their upper openings. Televisual inspections are time-consuming and the sampling analysis 

is limited since only one hole per tube can be inspected at a time whereas the EDF maintenance objective is to 

inspect 90 holes by SG (Girard, 2014). For a sake of illustration, a 51B type SG has 3330 U-tubes, each 

surrounded by 4 quatrefoil holes which sums to a total of 3330 x 2 x 4 = 26640 holes in the uppermost plate.  

1.4.2.2.2 Wide Range Level (WRL) monitoring in stationary regime  

This method is based on recording the pressure difference between the top and the bottom of SG, which is a 

global thermohydraulic parameter directly linked with the magnitude of TSP clogging. The main limitation of 

this method is that WRL can give neither a precise idea of TSP blockage distribution nor a quantitative 

assessment. Therefore, this method is only used by EDF as a supplementary assessment method to televisual 

inspections (Corredera et al., 2008).  

1.4.2.2.3 Eddy current inspection 

Eddy current inspection is a fast and effective non-destructive technique relying on the use of electromagnetic 

induction to detect and characterize the flows in the tube wall. It can give access to the vertical repartition of 

TSP clogging (Ida et al., 1985). However, this method is restricted to the observation of blockage levels greater 

than 50% (Corredera et al., 2008). 

Girard (Girard, 2012; Girard et al., 2013) developed a new diagnostic method in 2012 based on the analysis of 

the WRL dynamic response to power transients in dynamic regimes. This new method gives access to additional 

sensitivity information that can be used to avoid bias and uncertainties in the vertical distribution of the SG 

deposit. 

1.4.2.3 NPP feedbacks of TSP clogging  

In 2008, EDF published a report on TSP clogging assessment results for 900 MW NPPs equipped with 51B or 

51BI SG (Corredera et al., 2008). NPP located in Cruas (France) exhibited the greatest TSP clogging level likely 

due to the low pH value in the SG generator of Cruas NPP. Indeed, the pH25 °C was equal to 9.14 in Cruas NPP 

while operating pH25 °C was equal to 9.6 in other NPPs that were not affected by TSP clogging. From this 

feedback results, EDF concluded that low pH value of the fluid in SG may promote dramatically TSP blockage. 

The same effect of the low pH was highlighted for the tube fouling phenomenon (1.4.1). Oxidizing conditions 

were also considered as an aggravating factor. However, the impact of oxidizing conditions on TSP blockage 



31 

 

may be lower than the pH as oxidizing condition is responsible for the oxidation of magnetite into hematite 

which could be harder and less susceptible to be re-entrained (Corredera et al., 2008; Guillodo, 2004). Likewise, 

impurities such as silicon and calcium may have a negative impact since these elements can play a role in deposit 

consolidation (Turner, 1997).  

Furthermore, examination of the morphology of the deposit at the inlet of the flow holes showed more clogging 

at the uppermost TSP and even more at the periphery than at the centre of the TSP as well as at the hot leg of 

SG (Prusek, 2012). In 51B type PWR SG, most TSP clogging is observed on the 8th TSP (highest), 

corresponding to a temperature of 277.2 °C, a pressure of 61.5 bars, a pH25 °C of 9.2 and a void fraction of about 

85%. Lipping form at the inlet of TSP and ripple form along the TSP are observed, like illustrated in Figure 

1.14b and Figure 1.15. Lipping and ripple forms specify TSP clogging from the other deposits formed in SG, 

e.g., tube fouling, which exhibits a relatively homogeneous thickness along the tube.  

 

Figure 1.15: Schematic of TSP clogging lipping form and ripples (J. Morrison, 2014).  

Chemical analyses of deposits onto TSP and SG tubes have been performed by EDF from 1993 to 1997 in 

France (Delaunay, 2010). Analysis data showed that magnetite is the major compound of the deposits collected 

from TSP with a mass percentage of 70.8%wt in Dampierre NPP analysis in 1994. ZnO (6.4%wt), SiO2 (5.89%wt) 

and MnO (2.76%wt) were also present. All other analysis data in France showed a mean percentage of magnetite 

of about 60%, which was confirmed to be the major compound in either deposits collected from SG tubes or 

from TSP (EDF unpublished results). In the analyses in the USA, magnetite was equally found as the major 

compound with a mean mass percentage of 95% (Delaunay, 2010). Pujet and Corredera et al. stated more 

recently that the compounds found in materials responsible for TSP blockage were spinel ferrites AFe2O4 (A= 

Fe, Mn, Co, Ni, Cr…) with a majority of magnetite (Fe3O4) which has an inverse spinel structure as mentioned 

in paragraph 1.3.1 (Corredera et al., 2008; Pujet, 2002).  

Morphological information of deposits onto TSP cannot be found in the public literature. Delaunay stated from 

limited EPRI analyses that the deposit may comprise a relatively porous outer layer of magnetite principally 

and an inner layer less porous (Delaunay, 2010). A deposit growth rate was estimated between 1 to 100 µm/year 

for tube fouling phenomenon as previously mentioned. The deposit growth rate of TSP clogging appears to be 

higher in low pH conditioning than the fouling growth rate and can be estimated knowing the deposit thickness, 

which is up to 5.8 mm (distance between SG tube and TSP, corresponding to 2R in Figure 1.18) at the inlet of 

TSP after 15 to 20 years, as in Cruas NPP, e.g., up to 386 µm/year.  
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1.4.2.4 Current countermeasures 

Various countermeasures, especially chemical or mechanical cleaning and high pH water treatment of the 

secondary circuit, are currently being implemented by EDF to face up SG degradation phenomena. Such 

countermeasures were found effective by foreign reactor operators who also detected these types of deposits in 

the 1980s and 1990s (Balakrishnan et al., 1981; Takamatsu et al., 2000; Tsubakizaki et al., 2013). Two main 

curative chemical cleaning processes are used by EDF in order to remove as much as 2000 kg of deposits per 

SG: EPRI-SGOG (Electric Power Research Institute – Steam Generator Owners’ Group) and HTCC (High 

Temperature Chemical Cleaning), developed by Westinghouse and Areva, respectively (Bodineau and Sollier, 

2013). Three preventive chemical cleaning processes also exist. They allow removing between 200 to 1000 kg 

of deposits per SG: ASCA (Advanced Scale Conditioning Agents), DMT (Deposit Minimization Treatment) 

and PACCO (Preventive Acid Chemical Cleaning Operation) developed by Westinghouse, Areva and Comex-

Lainsa, respectively (Carrette, 2015). The reader could find detailed information about these processes in ref. 

(Balakrishnan et al., 1981; Carrette, 2015; Puzzuoli et al., 1997; Rufus et al., 2001).  

Chemical cleaning is currently the main effective method to remove most of the deposits in steam generators. 

Nevertheless, it remains costly, difficult to perform and may damage certain parts of the stream generators due 

to the corrosive properties of the chemical cleaning solution (Prusek, 2012).  

 

 

 

  

 

 

 

 

 

 

1.5 Phenomenology of TSP clogging formation 

FAC induces soluble iron (II) species and magnetite particles in solution. The formed soluble and particle 

species are carried into SG and are considered to be the source terms of SG deposit phenomena, including SG 

tube fouling and TSP clogging. The fundamental origins of these phenomena have been proposed by various 

authors in the literature (Delaunay, 2010; Mansour, 2009; Pujet, 2002; Rummens et al., 2004; Turner, 2013): 

particle deposition, precipitation of soluble species and erosion of formed deposit (Figure 1.16).  

TSP clogging damages NPP functioning. Four major results concerning TSP clogging formation have been 

obtained by NPP feedback analyses: 

• A low pH favors TSP clogging formation, which is also observed for tube fouling phenomenon.  

• TSP clogging is majorly composed of magnetite.  

• Lipping and ripple forms are observed for TSP clogging deposits.  

• The deposit growth rate of TSP clogging appears to be higher than fouling growth rate. 

• The kinetic of TSP clogging formation has been estimated to be up to 386 µm/year at the inlet of 

TSP.  

Investigating alternative solutions to avoid TSP clogging is essential. In the next section, the phenomenology 

of TSP clogging formation will be presented. Magnetite particle deposition and soluble species precipitation 

will be studied. A unique specific TSP clogging formation model including particle deposition, flashing, and 

electrokinetic mechanisms will be proposed.  
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Figure 1.16: Main phenomena involved in SG deposits. 

Particle deposition phenomenon comprises two steps (Figure 1.16): particle transport from the bulk circuit to the 

surface and particle attachment onto the surface. Particle deposition will be discussed in detail in paragraph 

1.5.1. Soluble iron precipitation phenomenon will be described in the section 1.5.2. In the last section (1.5.3), 

specific formation mechanisms allowing explaining lipping and ripple forms of TSP clogging will be described, 

by considering the specific TSP geometry and the associated thermohydraulic conditions in SG.  

1.5.1  Magnetite particle deposition  

Studies conducted by AECL under high-temperature-high-pressure conditions will be mainly presented in 

paragraph 1.5.1.1. Models will be given to basic phenomena governing transport and attachment steps in 1.5.1.2.  

1.5.1.1 Previous experimental studies  

Burrill (Burrill, 1977) studied the effect of temperature on magnetite particle deposition onto Zircaloy-4 tubes 

from 28 °C to 80 °C at pH = 10 at magnetite concentration of 350 ppm. He stated that an increase of fluid 

temperature is responsible for an increase of the deposition rate. However, the electrostatic repulsion should 

tend to be more important and decrease the deposition rate as the magnitude of the zeta potential of magnetite 

increases with the temperature (Tewari and Mclean, 1972). Burrill attributed this strengthening effect of the 

temperature to the increase of the number of particles smashing onto the surface at high speed.   

AECL  investigated the effect of amines on the tube fouling rate by magnetite particle deposition (Turner et al., 

1997, 2000) from 1994 to 2000. It was postulated that the amine, used for pH control, are absorbed onto the 

surface of magnetite and changes its surface potential. The presence of amine may increase the magnetite 

deposition rate onto Alloy 600 because protonated amine adsorbed onto magnetite particles diminishes the 

repulsion force between magnetite (negatively charged) and Alloy 600  (negatively charged) by increasing the 

surface charge of magnetite particles (Turner and Godin, 1994). The measurements were performed in a high-

temperature recirculating loop, which allowed to produce nominal experimental conditions (T = 270 °C, P = 5.6 

bars) and steam quality at test section varying from 25% to 51%. During each experiment, a suspension of 

radioactive magnetite particles was continuously injected into the loop, and the deposition of colloidal particles 

onto the test section was monitored by on-line γ-ray detector. The AECL experimental loop has been found to 
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be the most performant facility regarding the high-pressure and high-temperature capabilities by a review of 

existing experimental loops. Although the achieved conditions are still different from the characterized ones of 

most TSP blockage configuration (T = 277.2 °C, P = 61.5 bars, void fraction = 85%), the results obtained with 

this loop seem to be the best ones for an extrapolation to TSP blockage. The reader can get more details about 

this experimental loop in the report written by Turner et al. (Turner et al., 1997).  

Deposition rates of magnetite onto Alloy 600 surfaces were measured by means of this high-temperature loop. 

The effect on two parameters on the deposition rates was studied: 

• Tube surface morphology 

• Amines used for pH control (morpholine, ethanolamine, ammonia and dimethylamine) 

The main conclusions drawn from this work are (Turner et al., 1997):  

• The nature of the amine used for pH control affects the magnetite deposition rate;  

• The deposition rate of magnetite increases with increasing concentration of amine at constant pH; 

• The particle deposition rate can be affected by the tube surface morphology, e.g., the rate is significantly 

higher on surfaces covered with porous deposits; 

• The heat transfer mechanism and the steam quality strongly affect the deposition rate, e.g., the 

deposition rate increases sharply at high steam qualities.  

AECL undertook a follow-up program around 2000 to confirm that amine adsorption affects the particle 

deposition rate by altering the surface interaction potential between the particles and the surface of Alloy 600 

(Turner et al., 2000). This program included investigation of amine adsorption onto magnetite surface by Laser 

Raman spectroscopy and determination of the effect of amine adsorption on the surface potential by means of 

electrophoretic mobility measurement and Atomic Force Microscopy (AFM). This study was finally completed 

by performing high-temperature loop tests.  

The main conclusion is that amines exhibiting the highest base strength (to reduce the concentration of amine 

required to achieve the target pH) and the largest molecular size (to obtain a large footprint on the surface of 

magnetite and to reduce the amount of adsorption for a given amine concentration) lead to weak adsorption onto 

magnetite particles and low deposition rate. However, it seems difficult to identify an amine which fulfils all 

the criteria. For example, low amine adsorption is obtained with morpholine due to its large molecular size but 

this molecule is not perfect because of its relatively low base strength. Finally, loop tests highlighted in this 

study that morpholine is responsible for more deposition than ammonia at the same pH. The same study with 

ethanolamine was performed by the authors but data are not available in the literature.  

AECL provided a large amount of interesting results for understanding the amine effect on magnetite deposition 

onto alloys surface in order to describe fouling phenomenon (Corredera et al., 2008). More NPP field data 

should be collected to thoroughly compare the morpholine and ammonia chemistry as no obvious difference 

has been observed when morpholine or ammonia are used at the same pH in plants (Corredera et al., 2008).  

Parallel with the above experimental investigations, magnetite particle deposition has been studied from a 

modelling point of view and the developed models will be presented in the next section.  

1.5.1.2 Magnetite particle deposition models  

Large numbers of studies have been carried out from the 1980s on magnetite particle deposition following the 

detection of SG fouling and TSP clogging. It is fairly well established that deposition of colloidal particles onto 

a surface in forced convective regime is a two-step process occurring in series: the transport of particles from 

the bulk of the liquid to the vicinity of surface and their attachment (Beal and Chen, 1986; Burrill, 1977).  
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Burrill (Burrill et al., 1996) found that the deposition rate onto SG tubes increases linearly with magnetite 

concentration up to 300 ppm at 25 °C, pH = 7 and with Reynolds number of 1.2 x 105. A number of studies of 

magnetite concentration effect under boiling water reactor conditions showed similar trend (Charlesworth, 1970; 

D. and Grigull, 1974; Mankina, 1960; Parkins, 1961; Stinchcombe, 1966; Zarembo et al., 1988). Based on this 

linear dependency with the concentration in the bulk Cp, the particle deposition quantity is generally expressed 

by (Basset et al., 2000; Turner and Godin, 1994): 

 md(t) =  ρlCpKdt 1-12 

with,  

 1
Kd

⁄ =  1
Kt

⁄ +  1 Ka
⁄  1-13 

Turner and Godin (Turner and Godin, 1994) highlighted the potential influence of particle surface charge on 

deposition.  If the particle and surface have the same sign of surface charge, then the particle deposition rate can 

be limited by the rate of attachment (Kt >> Ka) (Eq. 1-13). Conversely, if the particle and surface have surface 

charges of opposite sign, then the rate of deposition can be limited by the particle transport rate to the surface 

(Kt << Ka) (Eq. 1-13). 

Turner et al. (Turner et al., 1994) extended the previous deposition rate expression in two-phase flow situation 

(2φ), by introducing a deposition contribution from boiling process Kb (later described, Eq. 1-25). 

 Kd(2ϕ) =  Kd(1ϕ) +  Kb 1-14 

where the deposition rate for one-phase flow Kd(1φ) (m/s) is given by Eq. 1-13 

They also developed the particle transport rate Kt accounting for diffusion (Kdiff), inertial coasting (Ki) and 

thermophoresis (Kth):  

 Kt =  Kdiff +  Ki +  Kth 1-15 

1.5.1.2.1 Transport step  

Basic phenomena affecting the transport step of particle deposition will be presented below. Electrokinetics is 

equally believed to enhance particle transport when electric fields are present (1.5.3.4). Nevertheless, no model 

exists describing this phenomenon.   

Inertial coasting 

Flow carrying magnetite particles in SG is highly turbulent (Burrill, 1977; Burrill et al., 1996), which can be 

separated into three layers: the centre region of flow, the buffer zone where the velocity fluctuations decrease 

as the distance to the wall decreases and the laminar boundary layer which is theoretically devoid of turbulence. 

The magnetite particles can reach the wall through the laminar layer providing that their initial momentum is 

high enough. Friedlander and Johnstone (Friedlander and Johnstone, 1951) were the first to introduce the notion 

of inertial coasting, considered as an important step in particle deposition. The inertial coasting, known also as 

particle impacting, is a hydrodynamical phenomenon induced by the fluid motions (McNab and Meisen, 1973).  

The thickness of each layer depends on the physical parameters of the system. Burrill (Burrill, 1977) firstly 

stated that more magnetite particles are deposited when the velocity of the flow increases due to the decrease of 

the boundary layer thickness.  
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Thomas et al. (D. and Grigull, 1974) published the first experimental work on magnetite deposition from a 

turbulent liquid in SG tubes in 1974. They found that the deposition rate increases linearly with Reynolds 

number from 1700 to 1.85 x 105, corresponding to a water velocity evolution from 0.03 to 3 m/s. Regarding 

deposit removal, they suggested that a particle, once deposited, would not be detached from the surface if the 

fluid Reynolds number remains unchanged (Weisbrod et al., 2002). 

Hirano et al. (Hirano et al., 2010) presented a Japanese study of the effect of flow rate on TSP blockage in 2010. 

The work was carried out at 270 °C using a high-velocity test loop with quatrefoil flow hole TSP. Test solution 

in the feedwater tank and the spare tank were adjusted to pH25 °C = 9.3 using ammonia. The concentration of 

hydrazine in the both tanks was maintained at 200 ppb, and dissolved oxygen concentration was maintained 

below 5 ppb by bubbling with high purity nitrogen gas. 500 ppb of magnetite particles of 0.4 µm were injected 

into the test section. The numerical analyses around the flow hole were conducted after 500 hours. The obtained 

results lead to the following conclusion: 

• The amount of scale deposition and the differential pressure caused by scale adhesion at the inlet of 

quatrefoil-type flow hole increases when the flow rate increases from 2.5 m/s to 5.9 m/s.  

• Localized pressure drop and localized increase of turbulent energy are suggested to contribute to 

deposition formation. 

The results are consistent with each other. The authors predicted that the mass transfer step dominates the 

attachment step at high Reynolds numbers (>105). The author acknowledges, however, that some studies have 

stated that an increase of fluid velocity does not affect magnetite deposition rate (Charlesworth, 1970; Mankina, 

1960).  

The following equation is used to calculate the inertial rate (𝐾𝑖) that represents the increase of inertial coasting 

rate due to SG deposit when the fluid velocity increases (Prusek, 2012): 

 Ki =  ai(tp
+)U 1-16 

where the empirical parameters ai vary as a function of the dimensionless relaxation time tp
+ given by: 

 
tp

+ =  
ρpρldp

2U2

18μl
2⁄  1-17 

 

 ai = min [A, 0.12] 1-18 

 

with A = max (0.00038
ρl

ρp
tp

+e0.48tp
+

, 0.0003(tp
+)

2
) 

This expression shows that the empirical parameter ai depends on both fluid properties, e.g., fluid density ρl 

(kg/m3) and fluid viscosity µl (kg/m/s), and particle properties, e.g., particle density ρp (kg/m3) and particle size 

dp (m).  

 

 

Diffusion 
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Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration 

(Brogioli and Vailati, 2000). By assuming a homogeneous distribution of magnetite particles concentration in 

PWR secondary flow, diffusion or self-diffusion describes the random motion of the molecules.  

Particle diffusion is generally given by the following expression:  

 
Kdiff =  adiffUSc

−
2
3 1-19 

with the empirical parameter adiff = 0.031 as suggested  by Turner (Turner et al., 1994).  

The Schmidt number (Sc) of particles depends on the kinematic viscosity of the fluid (νl in m2/s) and the diffusion 

coefficient of particles (Dp in m2/s):     

 Sc =  νl
Dp⁄  1-20 

The diffusion coefficient (Dp) is proportional to the liquid phase temperature (Tl) and inversely proportional to 

the particle diameter (dp) and the dynamic viscosity of the fluid (μl) as expressed in the following equation:  

 Dp =  
kbTl

3πμldp
⁄  1-21 

Basset et al. (Basset et al., 2000) gathered inertial coasting and diffusion, including inertial effects into diffusion 

phenomenon and proposing the same expression as Eq. 1-19 with adiff = 0.084. Inertial effects may be thus more 

important than particle diffusion (0.053 vs 0.031).  

Thermophoresis 

Thermophoresis described firstly the movement of small particles located in stagnant region of gas from hotter 

temperature towards colder temperatures. In the 1970s, equations were extended to describe thermophoresis 

effect in liquids (McNab and Meisen, 1973), which appears a predominant process in tube fouling formation in 

primary circuits of PWR (Yang et al., 2017a).   

Based on the work of Epstein (Chen and Ahmadi, 1997), EDF included in their modelling tool the following 

relationship to calculate the thermophoresis rate Kth (m/s) (Prusek, 2012): 

 Kth =  
−athermoνlϕw

(λp +  2λl)Tl
⁄  1-22 

where  athermo = 0.042. 

This equation indicates that the thermophoresis rate depends on (i) the temperature gradient, induced by the 

applied heat flux Φw (W/m2) (ii) the fluid viscosity and fluid density, represented by the kinematic viscosity of 

the fluid νl (m2/s) (iii) the thermal conductivity of the fluid λl and particle λp as well as (iv) the absolute fluid 

temperature Tl.   

Sedimentation 

At first sight, sedimentation does not seem to occur in TSP blockage formation because the deposit occurs at a 

vertical surface of the TSP. On the other hand, Rummens (Rummens, 1999) has predicted a flow stagnant region 

by flow velocity analysis at the outlet of TSP where sedimentation can be the predominant phenomenon for the 

particle transportation onto the TSP upper surface.  
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Sedimentation corresponds to the tendency of particles to settle onto a surface due to forces like gravity, 

centrifugal acceleration or electromagnetism. In the model presented by Prusek, the sole gravity force is taken 

into account (Prusek, 2012).  

Sedimentation phenomena depend on the angle between the surface direction and the vertical direction: if the 

surface direction is vertical, no particles can be deposited by gravity force; if the angle is 90°, sedimentation 

rate Ks (m/s) can be expressed as in Eq. 1-23 in the Stockes regime and as in Eq. 1-24 above this regime: 

 
Ks =

(ρp − ρl)dp
2g

18μ𝑙
⁄   1-23 

 

 
Ks = 0.153 (

(ρp − ρl)dp
1.6g

μl
0.6ρl

0.4⁄ )

0.714

 1-24 

 

Particular Reynolds number determines the regime and its expression can be found in the section A.1.3 of the 

Prusek thesis (Prusek, 2012).                

Boiling 

Thomas and Grigull (D. and Grigull, 1974) pointed out the importance of the "boiling factor". They performed 

a series of experiments on the deposition of magnetite in single- and two-phase flow (Basset et al., 2000). They 

suggested that, in the case of nucleate boiling, the rate of deposition increases linearly with the heat flux. The 

authors suggested a possible correlation between the increase of deposition rate and the number of bubbles 

formed per unit surface area and time. According to them, the formation of bubbles produces an increase in the 

turbulence in the boundary layer adjacent to the wall, combined with an increasing flow of water and magnetite 

in the direction of the wall to replace the space occupied by the leaving bubbles. Based on this suggestion, the 

following deposition rate Kb (m/s) describing the boiling process has been proposed by EDF: 

 Kb =   
ϕwab

ρmClHlg
⁄  1-25 

where the deposition rate is proportional to heat flux φw (W/m2), the empirical parameter ab is equal to 0.05 as 

suggested by Prusek (Prusek, 2012) and ρm is the average density of liquid/gas mixture (kg/m3).     

1.5.1.2.2 Attachment step  

Attachment was firstly accounted for by multiplying the mass transfer rate by a sticking probability, which is 

defined as the probability that a particle that reaches the wall will stick to it (Ruchenstein and Prieve, 1973). 

The sticking probability is usually given an Arrhenius dependence on the surface temperature. Attachment has 

since been put on a more fundamental basis by recognizing that when a particle arrives in the vicinity of the 

wall, its motion will be influenced by surface forces. The latter force is repulsive if the wall and the particle 

have the same sign of surface charge. When the repulsive force is sufficiently large, there will be an activation 

energy that the particle must overcome if it is to reach the wall. Hence, the rate of attachment is equal to the rate 

at which particles surmount this energy barrier (Ruchenstein and Prieve, 1973). 

The attachment rate Ka (m/s) has thus been found to follow this Arrhenius law (Turner and Godin, 1994): 
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 Ka =  K0 exp(−E
RTs⁄ )  1-26 

where E (J/mole) represents the activation energy for attachment which depends on the pH and the fluid 

temperature (Turner and Godin, 1994). Based on the AECL experimental results, the best fit of Eq. 1-26 to the 

experimental data gives the following expression for pH25 °C ranging from 8.8 to 9.2 and Ts ranging from 242 to 

298 °C:  

 Ka =  exp (1.74) exp(−9187
Ts⁄ ) 1-27 

1.5.2 Surface precipitation 

Iron ions produced by FAC mechanism can precipitate on SG surfaces, forming SG deposits. This phenomenon 

is also called “crystallization fouling” (Bansal et al., 2008; Bott, 1997; Lei et al., 2011). The precipitation 

reaction is actually the equilibrium of magnetite formation reported in Eq. 1-10.  

Crystallization fouling describes the deposits formed on the surface itself, tenacious and difficult to remove. On 

the other hand, the term “sludge” is often used to describe crystals of softer deposits formed in the bulk liquid, 

which arrive at the surface as particles and accumulate in a loose agglomeration rather than in a more oriented 

matrix.  

Crystallization fouling involves three basic steps: attainment of supersaturation, formation of nuclei and growth 

of crystals (Mwaba et al., 2006). The effects of temperature, pH, the presence of particles, surface conditions 

and electrokinetic mechanism are discussed in the following paragraphs.  

1.5.2.1 Attainment of solubility  

Supersaturation can be reached (Bansal et al., 2008) (i) by decreasing the fluid temperature in the presence of 

normal solubility salts, e.g., salts exhibiting an increase of their solubility when temperature increases, (ii) by 

increasing the fluid temperature in the presence of inverse solubility salts, e.g., salts exhibiting a decrease of 

their solubility when temperatures increases, (iii) by evaporating the fluid in order to reach the solubility limit, 

and (iv) by changing the pH.  

The tube fouling phenomenon in the secondary circuit is particularly affected by supersaturation resulting from 

the heating effect of the primary flow circulating inside the SG tubes.  

In SG, the temperature of secondary flow varies from 200 to 280 °C (Yang et al., 2017a). At these temperatures, 

boiling occurs in the secondary circuit besides the heating effect. Vapour formation will favour the attainment 

of supersaturation by concentrating the solution. Moreover, magnetite precipitation in Eq. 1-10 is increased by 

the boiling which encourages dihydrogen gassing. More TSP blockage is observed at the top of SG likely due 

to the boiling process in the uppermost regions and the “flashing” phenomenon (more details in 1.5.3.2).  

1.5.2.2 Formation of nuclei 

Formation of nuclei (also called nucleation) refers to the process by which the smallest stable aggregates of a 

crystalline phase are formed in a crystallization system. These aggregates act as building blocks for crystal 
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formation. Factors that can speed up nucleation include the presence of impurities and the surface conditions, 

such as roughness (Mwaba et al., 2006).  

The effect of the presence of particles on fouling due to calcium sulphate or sodium aluminium silicate 

crystallization onto a plate heat exchanger has been reviewed by Bansal et al. (Bansal et al., 2008). The solution 

containing soluble species was conditioned between 40 and 55 °C.  It appears that crystallization rate usually 

increases in the presence of particles likely because crystalline particles in solution play the role of nucleation 

sites (Vaessen et al., 2002). Depending on the turbulence phenomena, some of the particles are able to settle in 

the regions where the conditions are not conducive to crystallization such as high turbulent regions like in the 

inlet of TSP. Later in the present work, a specific TSP clogging model including particle effect will be presented 

and applied to the inlet of TSP.  

An inverse effect of the presence of particles as seeds on crystallization rate has also been mentioned (Gainey 

and Thorp, 1963; Rautenbach and Habbe, 1991). Indeed, the introduction of seeds is usual in many industrial 

applications to achieve crystallization on these seeds in the bulk, decreasing available soluble species and 

preventing fouling on the heat transfer surfaces (Bansal et al., 2008). For instance, it has been reported that 

calcium sulphate deposits have been prevented in sodium chloride salt plants by maintaining about 20 grams 

per liter of calcium sulphate solids in suspension (Bansal et al., 2008).  

These competing effects make it difficult to define the role of particles in soluble species precipitation 

mechanism. However, most of the recent studies showed a benefit effect of the presence of particles to fouling 

formation (Barnes et al., 1999; “Detachment of Spherical Microparticles Adhering on Flat Surfaces by 

Hydrodynamic Forces”, n.d.; Duffy et al., 2011; Hasson and Zahavi, 1970).  

Surface morphology effect on calcium carbonate crystallization fouling was experimentally studied by Lei et al. 

(Lei et al., 2011). They highlighted that the fouling weight became five times more when the average surface 

roughness varied from 0.1 to 0.3 µm. From this study, the authors demonstrated that a mirror polished sample 

leads to the best antifouling surface.  

1.5.2.3 Growth of crystals 

Nucleation is followed by crystal growth. Minute crystal particles that are formed during nucleation 

subsequently grow into crystals. In general, two main mechanisms are considered (Bansal et al., 2008; Mwaba 

et al., 2006): transport of ions from the bulk to the liquid-crystal interface and surface integration of ions into 

the crystal lattice.  

Electrokinetic mechanism affects the growth of crystals and is supposed to be a potential specific formation 

mechanism of TSP clogging (Paragraph 1.5.3.4). Mathematical models aiming to quantify the crystallization 

fouling are generally based on this crystal growth step. Accurate and detailed mathematical modelling of fouling 

processes is generally difficult, because of the difficulties involved in reproducible measurement of the fouling 

resistance and the complex nature of deposit formation (Mwaba et al., 2006). Classically, the deposition rate of 

fouling is taken as a function of concentration driving force and the impact of nucleation sites is ignored. In the 

classical approach, the precipitation rate can be transport controlled, surface reaction controlled, or a 

combination of both (Bansal et al., 2008).  

 

 

Transport of ions is estimated by (Mwaba et al., 2006): 

 dm′
dt⁄ =  β(Cb −  Ci) 1-28 
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Reaction-controlled rate is modelled by (Bansal et al., 2008; Mwaba et al., 2006): 

 dm′
dt⁄ =  Kr (Ci −  Cs)n  1-29 

where m’ is the mass deposited per unit area, Cb is the concentration of the ions in the bulk, Ci is the 

concentration of the ions at the solid-liquid interface, Cs is the saturation concentration, β is the mass transfer 

coefficient, Kr is the reaction rate constant and n is the order of reaction.  

The rate constant Kr depends on the surface temperature Ts and is given by the Arrhenius equation (Reitzer, 

1964): 

 Kr =  K0 exp (−E/RTs) 1-30 

where K0, E and R stand for the Arrhenius constant, activation energy and gas constant, respectively.  

The “classical” deposition rate law approach discussed above is driven by concentration differences and does 

not consider the effect of nucleation even though such an effect is known to have a major impact on 

crystallization. The presence of particles in the process solution and the increasing amount of crystalline deposits 

onto the surface have been identified as the sources of nucleation sites and modelled in a modified deposition 

rate law by Bansal et al. (Bansal et al., 2008) in the case of calcium sulphate precipitation. Considering the 

precipitation is reaction controlled, the modified deposition rate is expressed as: 

 
dm′

dt⁄ =  Kr (Ci − Cs)nN (
Mf

Mfg
⁄ )

n′

  1-31 

where N is a dimensionless function of the nucleation sites provided by particles present in the process solution, 

Mfg denotes the total deposited mass when the crystal growth starts and Mf represents the total deposit mass at 

time t.  

No clear explanation is given regarding the value of N in the work of Bansal et al. (Bansal et al., 2008). N = 1 

was chosen when the particles present in the process solution were filtered out by the 1 µm in-line filter. Thus, 

particle size seems to be related to this value. The value of n’ depends on the fouling conditions. For cases where 

new deposits keep on growing on the top of the existing ones, the increase in the deposit mass may have a little 

impact, e.g., low value of n’ are used in Eq. 1-31. In contrast, when the deposits spread along the surface, the 

increase in the deposit mass may have a stronger effect on the deposition rate and high values of n’ are used in 

Eq. 1-31. No value of n’ is proposed by Bansal et al. (Bansal et al., 2008) whereas Smith and Sweett (Smith and 

Sweett, 1971) proposed a value of 2/3 in a similar model for calcium sulphate precipitation.  

This modified model seems to be the most developed model for crystallization fouling in the literature as it 

includes the effect of the presence of particles and the effect of deposit build up. However, many other processes 

or parameters, like supersaturation attainment, boiling, electrokinetic mechanism, deposit dissolution and initial 

surface roughness, are not taken into account, which add further complications to the basic concepts already 

discussed (Bott, 1997). Moreover, no models are available in the literature describing specifically iron 

precipitation. Uncertainties thus exist if using these models for quantifying iron precipitation issues.   

1.5.3  Specific TSP clogging formation mechanisms at the inlet of TSP 

Based on the two basic mechanisms involved in TSP blockage, e.g., particle deposition and soluble iron 

precipitation, specific models have been recently proposed in France for SG deposits. Pujet (Pujet and Dijoux, 

n.d.) firstly described a specific model to predict fouling thickness and thermal performance degradation of SG 

in PWR. This model is based on the following assumptions of fouling formation mechanisms:  
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• Iron oxide particle deposition forms a porous layer onto the surface;  

• Soluble iron precipitation inside the porous layer generates a dense inner layer near the tube surface; 

• The dense inner layer is detrimental to heat transfer from primary to secondary water and plays a 

major role in the loss of thermal performance of SG.  

Governing equations for porous layer and dense layer build-up can be found in Pujet’s work (Pujet and Dijoux, 

n.d.). This model has been tested on laboratory experiments and applied to three PWR units, providing 

reasonably satisfactory results. The main conclusion of these calculations is that iron solubility in the SG should 

be kept as low as possible during normal plant operation to minimize SG fouling.  

In 2013, Prusek (Prusek et al., 2013) developed a deposit process for modelling the TSP blockage in order to 

include it in the EDF reference code for modelling two-phase thermal-hydraulic phenomena at the sub-channel 

scale. A consecutive two-step mechanism was proposed in this model for TSP blockage, similar to the fouling 

formation mechanisms discussed above: Particle deposition followed by a strengthening process called 

“flashing” occurring due to precipitation phenomena in the porosity of the particle deposit.  

According to Prusek, two special mechanisms, e.g., “vena contracta” and “flashing” are used to describe particle 

transport and soluble species precipitation for TSP blockage, respectively, at the inlet of TSP. Another 

phenomenon: “electrokinetics”, is supposed to enhance the soluble iron precipitation and particle deposition 

(De Bouvier, 2015b; Guillodo, 2004; Prusek et al., 2013; Yang et al., 2017a). However, it was not included in 

the Prusek’s model, which appears to be the only specific model aiming to describe TSP clogging in the public 

literature (Yang et al., 2017a). These three mechanisms will be described in this section with the associated 

models, if existing. The results obtained by Prusek’s modeling work, including vena contracta and flashing 

phenomena, will be presented.  

1.5.3.1 Vena contracta mechanism 

Rummens (Rummens, 1999) was the first to propose a particle deposition mechanism where a sudden 

contraction in the flow circulation occurs. A conceptual figure of the vena contracta is shown in Figure 1.17. It 

is important to notice that this figure does not represent exactly the real geometry of a TSP flow hole, which is 

vertical in the SG. It just allows describing the main hydraulic phenomena when a flow passes through the 

contraction.  

The “lipping” phenomenon observed in the field can be attributed to this “vena contracta” region. Indeed, at 

the inlet of this region, the mainstream flow separates from the wall following the sharp contraction. A low-

velocity recirculation zone is created. The particles with a given kinetic energy are deviated from their initial 

trajectory and start to follow the recirculation flow pattern. In this recirculation zone, the particles continue to 

lose kinetic energy, thus encouraging particle deposition; a tiny deposit can begin to grow. As the deposit grows, 

the flow contraction becomes more and more important, and consequently, the particle deposition is more and 

more favoured.  
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Figure 1.17: Pattern of vena contracta region (Prusek, 2012; Prusek et al., 2013). 

 

Considering that the particle deposition exclusively results from this “vena contracta” mechanism at the inlet 

of TSP, the deposition rate Kv,p (m/s) proposed in Prusek’s work (Prusek et al., 2013) takes into account the 

main parameters that  influence the TSP clogging and the self-sustained phenomenon represented by kv (m-1) 

(expressed in Eq. 1-33), which represents the TSP variable blockage rate: 

 
Kv,p(t) =  

avkv(ρp − ρl)Cgdp
2Uz

2

μl
⁄    1-32 

This equation shows that: 

• The deposition rate increases with the density of particles (ρp), the vapour mass fraction (Cg) and the 

particle size (dp); 

• The deposition rate increases with the fluid kinetic energy (Uz
2); 

• The deposition rate decreases with the value of fluid viscosity (µl).  

The empirical dimensionless parameter av should a priori be experimentally determined by representative TSP 

clogging formation experiments at the SG scale. This parameter is supposed to be constant all over the SG and 

it allows one to calibrate the deposition rate. However, its value was calculated by means of a mathematical 

method by Prusek in well-defined simulation conditions. An optimized value was proposed: 0.00087 (Prusek et 

al., 2013).  

kv (1/m) allows taking into account the specific TSP flow hole geometry, which indicates that this vena contracta 

mechanism is a self-sustained phenomenon. Indeed, the flow contraction becomes more and more important as 

the deposit grows and consequently, the particle deposition is more and more favoured. This parameter is 

modelled by the following expression: 

 
kv (t) =

L − [R(1 − τc)]

S
  1-33 

where L, R and S are characteristic values of the specific geometry of flow holes’ entrance. They respectively 

represent half the distance between two consecutive tubes (32.54 mm), the equivalent radius of a flow hole 

(2.895 mm) and its section (72.14 mm2), as shown in Figure 1.18. Parameter τc represents the TSP clogging rate 
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which is a ratio between the flow blockage section to the total hole section. It is a dimensionless number and its 

value ranges between 0 and 1.  

 

Figure 1.18: Top view of a pattern of a TSP (secondary flow hole in white colour). 

The deposit thickness ed (m) formed by vena contracta mechanism can then be expressed as following (Yang 

et al., 2017b):  

 
ed(t) =  

ρlCpKv,p

ρd
𝑡 1-34 

where ρd (kg/m3) represents the formed deposit density; Cp is the particle concentration (kg/kg).  

1.5.3.2 Flashing  

This phenomenon is attributed to a sudden decrease in pressure which is created at the inlet of flow holes due 

to the presence of the sharp contraction. This pressure reduction can be related to a liquid enthalpy reduction 

ΔHl (J/kg) which induces a local change from liquid to steam. Due to the vaporization, the concentration of 

soluble species in liquid trends to increase and reach the solubility. A local precipitation occurs. This so called 

“flashing” precipitation may act as a deposit cementing agent and strengthens a preliminary particle deposit.  

The mass flux of soluble species precipitation 𝜙 s per unit area (kg/s/m2) can be expressed using Eq. 1-35 

proposed by Prusek (Prusek, 2012) when all the soluble species are supposed to participate to precipitation: 

 
   ϕs =  

ϕlΔHl𝑆𝑠

Hlg
  1-35 

where 𝜙l represents the mass flux of liquid per unit area (kg/s/m2), which can be obtained by multiplying liquid 

density ρl (kg/m3) by liquid phase velocity Uz,l (m/s); Ss represents the solubility (kg/kg); and Hlg is the heat of 

vaporisation of liquid (J/kg).  

 

 

The liquid enthalpy reduction depends on the TSP clogging rate (𝜏𝑐) and the liquid phase velocity (m/s) at the 

inlet of TSP (Uz,l): 
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 ΔHl =  λ(τc)Uz,l
2  1-36 

where the dimensionless parameter λ is supposed to be 9.97 when τc = 0 (Prusek et al., 2013). Two other λ values 

of about 18 and 76 were proposed respectively with τc = 0.44 and 0.72 by Prusek et al. (Prusek et al., 2013). The 

flashing mechanism shows thus a strong dependence onto TSP clogging rate and especially the secondary fluid 

velocity, which determine the magnitude of the pressure drop, so the liquid enthalpy reduction.  

1.5.3.3 Results of modelling study comprising vena contracta and flashing  

The deposit simulations based on these two mechanisms have been performed over a period of 22 years, which 

corresponds to the working period of SG before televisual inspections. Two simulations have been performed: 

• Simulation 1: only the flux of particle deposition is taken into account, calculated by Eq. 1-32; 

• Simulation 2: the strengthening process “flashing” is taken into account. 

The main conclusions are (Prusek et al., 2013): 

• Flashing seems to be a governing factor for deposition; 

• The mean blockage rate is more important in hot leg than in cold leg; 

• The mean blockage rate is more important at the top than at the bottom of SG; 

• Simulation 2, taking into account “flashing” process allows to have a better representation of asymmetry 

between hot leg and cold leg; 

• TSP blockage has the distinctive feature to be more important at the periphery than at the centre; 

• A reduction of magnetite solubility before entering into SG seems to be an interesting remedy for 

reducing TSP blockage.  

These conclusions deduced from modelling are in accordance with the observations in the NPPs (1.4.2.3). The 

proposed two-step mechanism seems to predict that TSP blockage localization is controlled by particle 

deposition and deposit morphology (density, porosity etc.) is controlled by strengthening process, which has a 

cementation effect. Reducing magnetite solubility allows decreasing the term source production (1.2.6.3.1), 

which is consistent with results of the simulations. However, the main limitations in this model may be (Prusek 

et al., 2013): 

• Non-implementation of electrokinetics phenomenon 

• Neglected erosion mechanism 

In the next section, the neglected electrokinetic phenomenon in this model will be presented.  

1.5.3.4 Electrokinetics 

Electrokinetic phenomena occur in the presence of a charged fluid or a charged surface as well as when the fluid 

velocity changes. Strong interactions occurring between the ions in fluid and charged surface gives rise to the 

Electrical Double Layer (EDL) (El-Adawy et al., 2011), as previously mentioned in paragraph 1.3.2.1. In order 

for the interface to remain neutral the charge held onto the solid is balanced by the redistribution of ions of 

opposite charge in solution close to the solid. When a differential pressure applies to the ionic fluid, inducing a 

velocity in the fluid, a current named streaming current (is) is generated by the motion of the excess charge in 

the EDL. Any changes in streaming current in the direction of flow result in a current vector normal to the wall, 

named wall current (iw) to satisfy electroneutrality. In the case of TSP blockage,  both non clogged and magnetite 

clogged TSP are charged negatively under SG conditions (Barale et al., 2008). Anodic reactions driven by wall 
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currents, such as precipitation of magnetite, can then occur at the inlet of TSP, where the flow is accelerated. 

The streaming current is partially accommodated by back conduction of ions through the bulk solution, which 

generates a potential between the bulk and the metal surface. The generated electric field can drive the 

electrophoretic deposition of particles from the solution onto the metal surface (McGrady et al., 2017).  

Figure 1.19 illustrates the formation of magnetite deposits due to electrokinetic effects onto TSP. When a fluid 

is accelerated, e.g., SG secondary water at the inlet of TSP, initially neutral EDL is disturbed with the 

entrainment of positive charges into the fluid in the case of the TSP surface (negatively charged under SG 

conditions). Anodic activities, e.g., magnetite formation from soluble ferrous species (Eq. 1-10), are encouraged, 

inducing electron migration (wall current in the reverse direction) via metallic material to a cathodic zone at a 

different localization. The electron migration allows re-establishing the electroneutrality of the EDL. In the 

cathodic region, reduction reactions take place under SG reducing and degassed conditions (water reduction to 

H2) as expressed in Eq. 1-8. Ion back conduction can be equally supposed to occur through the bulk solution, 

accommodating the increasing streaming current (Figure 1.19, black dash arrow). A potential is thus created 

between the bulk and the metal surface, encouraging deposition of negatively charged particles, like magnetite 

(Figure 1.19, red dash arrow).  

 

Figure 1.19: Illustration of magnetite formation due to electrokinetic phenomena onto TSP. iw represents the wall current; 

is represents the streaming current.   

In 1986, Robertson stated possible mechanisms to describe this phenomena and developed theoretical approach 

(Morrison et al., 2012). Recently, Guillodo et al. (Guillodo et al., 2012) suggested deposition is initiated at the 

inlet of TSP by electrokinetic effects (Figure 1.20). In particular, they proposed that the formation of the initial 

deposit disturbs sufficiently the flow to form other flow singularities, resulting in a propagation of annular 

deposits along the length of the TSP.  
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Figure 1.20: The proposed electrokinetic mechanism of deposit propagation along the annulus of a flow-restriction 

(Guillodo et al., 2012).  

This mechanism allows explaining the lipping form at the inlet of TSP and the annular rippled deposits along 

the length of TSP observed in NPPs (Figure 1.14b and Figure 1.15).  

More recently, Scenini et al. (Scenini et al., 2014) investigated the role of electrokinetic effects in corrosion 

deposit formation in primary circuit. A miniature flow cell was designed to accelerate fluid flow and produce 

negatively charged regions onto electrodes leading to polarization. X-Ray Diffraction (XRD) and Glow 

Discharge Optical Emission GDOES analyses of the polarized electrodes showed that anodic processes resulting 

from electrokinetic phenomena can increase oxide deposition by a factor of 12.  

Electrokinetics allows thus explaining perfectly the localization and the form of TSP clogging. It seems that the 

electrokinetic phenomenon may be strongly involved in TSP clogging formation. However, this phenomenon 

remains poorly understood due to the lack of experimental or modelling investigations under typical SG 

conditions. Compared to vena contracta and flashing, no model describing electrokinetics under similar SG 

conditions has been reported in the literature. Therefore, its contribution in global TSP clogging formation 

cannot be directly estimated (Yang et al., 2017b). 

A collaboration program has been created during the present work with the team of Scenini et al. in the 

University of Manchester, for investigating experimentally under simulated PWR secondary water conditions 

the deposit build-up by electrokinetic phenomenon (Chapter 3). More details will be given in paragraph 3.2 

regarding the effects of water thermohydraulics and chemistry on deposit build-up by electrokinetics.  
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1.6 Conclusions of Chapter 1 

In this chapter, flow accelerated corrosion of carbon steel materials, inducing magnetite particles and soluble 

iron species, has been identified as the major source term of PWR steam generator degradation phenomena. 

Different thermohydraulic and chemical parameters affecting FAC rate have been discussed. Among these 

parameters, pH is found to have a primary role by affecting magnetite solubility.  

Magnetite particle deposition and soluble iron precipitation are the two main formation mechanisms of TSP 

clogging and SG tube fouling phenomena. Magnetite particle is predicted to be negatively charged under PWR 

SG conditions by previous experimental studies, as well as TSP composed of stainless steel. This prediction is 

essential for studying magnetite particle deposition phenomenon onto TSP surface.  The basic particle 

deposition process comprises the particle transfer from bulk solution to the wall and the particle attachment. 

The specific model, vena contracta, considering the specific TSP geometric and thermohydraulics configuration, 

has also been proposed. Flashing is supposed to enhance soluble iron precipitation. Electrokinetics, allowing to 

explain the TSP clogging form and localization, remains poorly studied and no numeric model has ever been 

proposed regarding this phenomenon.  

From this literature review on TSP clogging formation, a specific equation has been proposed at the inlet of 

TSP:  

 

This equation helps to understand the higher deposit growth rate of TSP clogging compared to tube fouling and 

is the starting point and a guideline for developing the experimental and numeric approaches for investigating 

TSP clogging phenomena in the next chapters of the present manuscript. The main objective of this work is to 

assay the magnitude of the different phenomena presented in the right side of this equation.  

The sole existing data about the global TSP clogging formation has been reported from the EDF NPP feedback: 

up to 386 µm/year of deposit is formed at the inlet of TSP. Laboratory-scale experimental deposit build-up tests 

under representative conditions appear of great interest to carry out parametric studies for improving the 

comprehension of TSP clogging phenomenon.  

In the following chapter of the present manuscript, global TSP clogging deposit build-up tests in COLENTEC 

facilities and complementary tests in autoclave will be presented.  
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Chapter 2 Experimental investigation of TSP clogging 

phenomenon  

2.1 Introduction 

Global deposit build-up tests will be performed at the laboratory scale in order to characterize deposits, improve 

the knowledge about the phenomena responsible for TSP clogging and identify the influence of various 

parameters including test duration, materials, surface roughness etc.  

The “COLMAtage des générateurs de vapeur” project co-funded by EDF and CEA started in 2008 in order to 

provide data on deposit formation at the 8th TSP of steam generators under specific thermohydraulic and 

chemical conditions. For this goal, experiments were carried out by means of the two-phase flow test loop 

COLENTEC located at CEA Cadarache (France).  

In 2015, two deposit build-up tests of 11 and 63 days were performed under experimental conditions close to 

nominal conditions. Stainless steel and titanium removable test coupons were majorly used onto a TSP made of 

titanium in order to characterize the deposits by means of visual observation, Scanning Electronic Microscopy 

(SEM) and Transmission Electronic Microscopy (TEM).  

Representative tests using COLENTEC facility are very costly and time consuming. Simulated monophasic and 

static tests using autoclaves have been developed in parallel during this work for performing complementary 

studies, particularly for material corrosion investigations. Autoclave tests allow equally investigating galvanic 

corrosion’s effects between stainless steel test coupons and contacted titanium TSP in COLENTEC tests, by 

using specifically designed titanium and stainless steel coupon combination.  

2.2 Representative experiments 

TSP clogging phenomena are predominant at the 8th TSP of 51B type steam generators where the temperature 

is equal to 277.2 °C, the pressure reaches 61.5 bars, pH25 °C and void fraction are equal to 9.2 and 85%, 

respectively (paragraph 1.4.2). In this section, a description of the representative test loop and experimental 

conditions applied during the tests will be presented.  
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2.2.1 Global deposit build-up tool under representative conditions: 

COLENTEC facility  

The COLENTEC facility is composed of three loops that generate the two-phase flow configuration at the 8th 

TSP under representative conditions in the secondary circuit of the steam generators (Figure 2.1). The primary 

loop (Figure 2.2a) includes a boiler which is designed to provide pressurized water at 350 °C and 155 bars. The 

primary fluid velocity inside the tubes can reach near 6.5 m/s like in EDF NPP (Schindler et al., 2012). In order 

to respect and maintain these thermohydraulic conditions, primary thermal power must reach around 500 kW. 

This loop is connected to the secondary loop by another boiler and a four-tube steam generator mock-up, which 

is the test section of the COLENTEC loop. The flow is then condensed through the condenser connected to an 

air cooler (Figure 2.2b), which has the same maximal power as in the primary loop (500 kW). The condensate 

container plays the role of buffer volume. Measurements of chemical parameters (pH, redox, conductivity, 

oxygen concentration) and injection of chemical additives are performed by the chemical and volume control 

system (CVCS) (Figure 2.2c).  

 

Figure 2.1: Flowsheet of the COLENTEC test loop. 
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Figure 2.2: Photo of COLENTEC primary loop (a), COLENTEC air cooler (b), and COLENTEC CVCS system (c). 

The test section of the COLENTEC secondary loop (Figure 2.3a) contains a mock-up which is geometrically 

representative of the TSP (Figure 2.3b). Primary tubes are made of Inconel 600 TT like in real NPP and they 

are supplied by the same manufacturer as the SG tubes used in EDF NPP. The COLENTEC TSP is made of 

titanium and has been designed with removable test coupons in the four quatrefoils to allow deposit 

characterization (Figure 2.3c). The TSP in COLENTEC has a representative thickness of 3 cm like in TSP used 

in EDF NPPs.  

 

Figure 2.3: Photo of COLENTEC secondary loop (a), COLENTEC test section (b) with four primary SG tubes 

maintained by a titanium TSP (the COLENTEC secondary fluid circulates in the quatrefoils between the tubes and TSP) 

and COLENTEC titanium TSP with removable test coupons inserted in the dedicated sites (c). 

Removable test coupons enable to perform various investigations such as the influence of the nature of the 

material and its roughness or the influence of surface pre-treatments on deposit formation.  

COLENTEC tests require precise monitoring and control of the thermohydraulic and chemical operating 

conditions. A dedicated team of seven on-call workers ensures a proper functioning of COLENTEC during tests.  
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2.2.2 COLENTEC – 2015 experimental conditions 

COLENTEC test loop has been designed to reproduce representative thermohydraulic and chemical conditions 

at the 8th TSP of 51B type PWR steam generators (T = 277.2 °C, P = 61.5 bars, pH25 °C =9.2 and void fraction = 

85%). In 2015, a first test was conducted for 11 days (COLENTECT-2015-1) and a second test was performed 

for 63 days (COLENTECT-2015-1) to investigate the deposit formation kinetics. Unfortunately, 

thermohydraulic conditions were not exactly representative of SG during these tests because the condenser was 

too powerful. However, such conditions allow reaching a void fraction of 90% very close to those encountered 

in SG. This part of the manuscript will be dedicated to present the test conditions before characterizing deposits 

onto coupon surface.  

COLENTEC-2015-1 was performed between the 13th of February and the 4th of March 2015. The test was 

resumed on the 24th of February after a shutdown during 20 days due to monitoring anomalies. Figure 2.4 shows 

the evolution of the temperature in the test section (red line), at the inlet and the outlet of the condenser (purple 

line and orange line, respectively) and at the inlet of the secondary boiler (blue line). Two-phase flow 

configuration in the test section (Figure 2.4, red line) was obtained during 6 days with a void fraction of about 

90%, a mass flow of about 0.9 kg/s and a maximal temperature of 256 °C. Before resuming the test, the similar 

two-flow configuration was achieved during 5 days (not represented in the Figure). Figure 2.4 shows the same 

profile of temperature was observed in each component of COLENTEC.  

 

Figure 2.4: Evolution of the temperature in the test section (1), at the inlet (2) and the outlet of the condenser (3) and at 

the inlet of the secondary boiler (4) in COLENTEC-2015-1 test from the 24th February to the 4th March 2015.  

During COLENTEC-2015-2, it was possible to achieve a two-phase flow configuration in the test section during 

63 days with a void fraction of about 90%, a secondary mass flow of about 0.9 kg/s and a maximal temperature 

of 243 °C (Figure 2.5, red line). Like in the COLENTEC-2015-1 test, the same profile of temperature was 

observed in each component of COLENTEC (Figure 2.5). 
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Figure 2.5: Evolution of the temperature during the COLENTEC-2015-2 test. (1): temperature in the test section; (2): 

temperature at the inlet; (3): temperature at the outlet of the condenser; (4): temperature at the inlet of the secondary 

boiler. 

Chemical conditions were achieved during both COLENTEC-2015-1 and COLENTEC-2015-2 tests as the 

targeted values of pH and oxygen concentration were reached. A pH25 °C of 9.2 was fixed during the tests to 

form the maximum of deposits during the tests (low pH values favour deposit formation). This pH was reached 

by using morpholine and ammonia. A flushing of pipes was performed by using a mixture of N2 and H2 

(97.5%vol/2.5%vol) before start-up in order to remove soluble oxygen from the secondary fluid (reductant 

environment). The soluble oxygen concentration was measured to be nil during both COLENTEC-2015-1 and 

COLENTEC-2015-2 tests.  

A total iron concentration of around 30 ppb was monitored and maintained for the two COLENTEC-2015 tests, 

by measuring CVCS samples by UV spectrophotometer and ICP-MS. The secondary boiler, made of carbon 

steel, is believed to be the major source term of iron. Magnetite in a degassed supersaturated solution was 

prepared and added to the secondary fluid when UV spectrophotometer measurements indicated a decrease of 

iron concentration in the fluid. One should remind that this total iron concentration of 30 ppb, measured via 

CVCS system, may not be the real concentration in the test section due to the changes in void fraction and 

temperature. Moreover, magnetite particle transport may be affected by the components between CVCS and 

test section as the secondary boiler and pipes.  

Main experimental thermohydraulic and chemical conditions of COLENTEC-2015 are summarised in Table 

2.1. Slight deviations in temperature between the two steps are not significant and the temperature in the test 

section is supposed to be 250 °C for both COLENTEC-2015 tests.  
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Table 2.1: COLENTEC-2015 operating conditions. 

Temperature (°C) 250 

Void fraction 90% 

Secondary fluid mass flow (kg/s) 0.9 

pH25 °C 9.2 

Soluble oxygen concentration (ppb) 0 

Targeted iron concentration in CVCS (ppb) 30 

2.2.3 Materials used for COLENTEC test 

For COLENTEC-2015 tests, titanium and stainless steel removable coupons were placed at the 8th TSP made 

of titanium in the secondary loop as previously illustrated in Figure 2.3c. The chemical composition of the used 

stainless steel samples is shown in Table 2.2. Such a composition is representative of real TSPs used in 51B 

type PWR steam generators. In addition of representative stainless steel coupons, titanium samples were used 

to facilitate the deposit detection and thickness measurement. Indeed, titanium has a similar zeta potential under 

SG conditions with that of stainless steel. Furthermore, iron detection onto titanium test coupons resulting from 

deposit formation would be indubitably related to a supply of iron species in the secondary fluid and not by the 

material corrosion. The chemical composition of used titanium test coupons is shown in Table 2.3.  

Table 2.2: Chemical composition of the stainless steel test coupons used in COLENTEC tests (wt%). 

Cr Mn Si C Ni P S Fe 

12.600 0.580 0.530 0.102 0.110 0.015 <0.003 Balance 

 

Table 2.3: Chemical composition of the titanium test coupons used in COLENTEC tests (wt%). 

O Fe N C H Ti 

0.150 – 0.170 0.040 0.012-0.016 0.010 0.001 Balance 

 

Removable test coupons have a length of 30 mm, a maximal width of 7.19 mm and curved surface (Figure 2.6c), 

which allows satisfying the real geometric TSP flow hole configuration when inserted. A specific ergot is 

designed onto each coupon, for facilitating the fixation with TSP (Figure 2.6b). Figure 2.6d shows the initial 

TSP top view photo for COLENTEC-2015-1 test, with 16 test coupons fixed by means of the ergots. TSP flow 

hole surface is perfectly continuous and smooth (Figure 2.6d).  

Surface pre-treatments, such as mirror-polishing, were performed for several coupons to investigate the effect 

of the surface roughness on deposit formation. Figure 2.6a shows an initial removable test coupons of titanium 

(Ti), stainless steel (SS) and mirror-polished titanium (M-Ti). 
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Figure 2.6: Photo of COLENTEC test coupons made of titanium (Ti), stainless steel (SS) and mirror-polished titanium 

(M-Ti) (a); Scheme of COLENTEC test coupons (b). A specific ergot is implemented for the TSP fixation and the 

coupon surface is curved to satisfy the real geometric configuration of TSP flow hole; Scheme of COLENTEC test 

coupons (c). Both titanium and stainless steel test coupons have a length of 30 mm, a maximal width of 7.19 mm and an 

equally-curved surface; Photo of the titanium TSP with 16 test coupons inserted for COLENTEC-2015-1 (d). 

COLENTEC-2015-1 and COLENTEC-2015-2 were designed to study the kinetic of deposit formation. For this 

purpose, few test coupons were removed after 11 days for characterization, and afterward replaced by novel 

coupons. Test coupons were initially weighted, visualized and surface-characterized by roughness 

measurements.  

All the pipes and components of the secondary loop are made of stainless steel (Type 316), except the boiler in 

the secondary loop, which is in carbon steel (Table 2.4) for ensuring the source term of deposit formation. 

Table 2.4: Chemical composition of the carbon steel boiler used in COLENTEC tests (wt%). 

Si Mn P C S Fe 

0.40 0.85 0.045 0.20 0.045 Balance 

2.2.4 Characterization results of COLENTEC-2015 samples 

Complete optical and SEM observations of coupons from COLENTEC-2015 test was performed (Pointeau, 

2015). The main results and conclusions of these observations are summarized in this section. Such observations 
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demonstrate that SEM technique does not bring enough information about stainless steel samples because the 

corrosion layer and the outer layer of the deposits exhibit the same chemistry and crystallography. Therefore, 

additional characterizations by TEM have been performed within the framework of this PhD thesis on titanium 

and stainless steel thin section after 63 days under COLENTEC-2015 conditions to have more information about 

the nature of the deposits. This part of the manuscript is therefore mainly focused on the analyses of TEM 

characterization (Paragraph 2.2.4.2).  

The functioning principle of SEM and TEM is described in Appendix A and B, respectively.  

2.2.4.1 Optical and SEM observations  

This deposit covers homogeneously the titanium surface. No lipping form and no ripple was observed onto the 

sample surface while EDF reported the presence of lipping form at the inlet and annular ripples along the TSP. 

A depleted-deposit region was observed on most of the titanium test coupons, which corresponds to the inlet of 

TSP (Figure 2.7).  

 

Figure 2.7: Surface morphology observed by secondary electron mode SEM of titanium test coupon after 11 days under 

experimental conditions of COLENTEC-2015-1. A depleted-deposit region is observed at the inlet of TSP.  

Figure 2.8 shows a visual comparison of a titanium coupon and a mirror-polished titanium coupon after 11 days 

under the experimental conditions of the COLENTEC-2015-1 test. A comparison of the appearance of the 

sample surface after 11 days with the pristine surface shows the presence of a homogenous black deposit layer 

onto the sample surface, which is mainly composed of iron and oxygen. Conversely, no significant deposit can 

be observed on the mirror-polished titanium coupon after test under the same conditions. Therefore, there is 

obviously an effect of surface roughness on deposit formation. This effect was confirmed by correlating the 

estimated amount of deposit onto titanium coupons and its initial surface roughness. Indeed, it has been found 

that the deposit thickness increases with the initial surface roughness (Pointeau, 2015).  
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Figure 2.8: Comparison between a titanium (Ti) test coupon and a mirror-polished titanium (M-Ti) coupon after 11 days 

under experimental conditions of COLENTEC-2015-1. Ti sample after 11 days appears to be covered by a homogenous 

black layer, which contains majorly iron and oxygen (measured by EDS); M-Ti coupon appears unchanged. 

SEM analyses of the coupons morphology showed in-situ precipitation (Pointeau, 2015). Figure 2.9a and b 

show the surface morphology of titanium test coupon after 11 days under COLENTEC-2015-1 conditions and 

63 days under COLENTEC-2015-2 conditions, respectively. Cristal twinning is observed (surrounded by dash 

white line in Figure 2.9) in both surfaces, which results of intergrowth of two separate crystals following specific 

orientations. This result appears to highlight the deposit formation by in-situ crystal growth and not by simple 

particle deposition. Magnetite crystal twinning has been previously stated in the literature (Devouard et al., 

1998). Moreover, larger particles of about 5 µm are observed after 63 days compared to particles of about 1 µm 

after 11 days, and the proportion of small particles appears to decrease with longer test duration. These results 

bring complementary supports for a deposit formation by in-situ precipitation and not by particle deposition. 

Particles with suitable size for deposition phenomenon may be insufficient in the test section.  

Thicknesses of around 5 µm and 30 µm are generally measured on COLENTEC titanium test coupons after 11 

days and 63 days, respectively. Deposit growth appears thus to follow a linear increase with time within 63 days.  

 

Figure 2.9: Surface morphology observed by secondary electron mode SEM of titanium test coupon after 11 days under 

experimental conditions of COLENTEC-2015-1 (a) and after 63 days under experimental conditions of COLENTEC-
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2015-2 (b). Iron oxide crystal twinning is observed in both cases. Crystal size is estimated to be around 1 µm after 11 

days (a), and 5 µm after 63 days (b).  

Figure 2.10a shows SEM observation of a stainless steel cut coupon after the COLENTEC-2015-2 test. A 

compact alteration layer containing majorly iron and oxygen is observed. The initial metal-water interface seems 

to be observed (dash white line in Figure 2.10a). Therefore, the observed alteration layer contains likely the outer 

and inner corrosion layers of stainless steel, as previously stated in the literature (paragraph 1.2.6.3.3). Deposit 

layer formed on titanium test coupon also contains iron and oxygen but the morphology is different (Figure 

2.10b), which appears more porous and discontinuous from the initial titanium-water interface (white line in 

Figure 2.10b). Therefore, the nature of the materials on which the deposit occurs influences deposit formation. 

The contribution of external iron brought by fluid is difficult to observe by SEM because the material corrosion 

layer exhibits the same composition and the same crystallography.  

 

Figure 2.10: SEM picture in Back-scattered electron mode of stainless steel cut coupon obtained during the COLENTEC-

2015-2 test (a) and titanium cut coupon obtained during the COLENTEC-2015-2 test (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, optical and SEM observations of coupons obtained during the COLENTEC-2015 test 

evidences that the nature of material and the initial surface roughness influence the amount of deposit. A 

rough surface favours deposit formation. The role of particle deposition cannot be clearly highlighted under 

COLENTEC conditions. Average thickness of the deposit after 11 and 63 days reaches 5 µm and 30 µm. 

No ripple and no lipping form has been observed at the inlet of TSP in COLENTEC 2015 tests unlike in 

EDF report.   

In the next section, TEM investigations will be performed in order to have additional and complementary 

information about deposit formation. A particular attention will be paid on the role of material corrosion 

on deposit formation.  
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2.2.4.2 TEM investigations 

TEM observations were performed on a titanium and stainless steel test coupon obtained during COLENTEC-

2015-2 test. Thin sections were prepared for each coupon for fine investigations by Focused Ion Beam (FIB).  

2.2.4.2.1 Characterization of titanium thin section  

Titanium alloys have excellent corrosion resistance, which results from the formation of very stable, continuous, 

highly adherent, and protective oxide films on metal surfaces. Because titanium metal is highly reactive and has 

an extremely high affinity for oxygen, these beneficial surface oxide films form spontaneously and instantly 

when fresh metal surfaces are exposed to air and/or moisture. The nature, composition, and thickness of the 

protective surface oxides that form on titanium alloys depend on environmental conditions. In most aqueous 

environments, the oxide is typically TiO2.   

Three different areas of the COLENTEC-2015-2 titanium thin section are observed in Figure 2.11a: a close 

titanium substrate area (1), a porous layer (2) and an external compact layer (3). More attentions were paid to 

the close titanium layer, where different types of investigations have been performed in order to understand 

corrosion and deposition phenomena in this interface zone.  

Close titanium layer (Figure 2.11a (1)) 

This thin area close to titanium is about 100 nm (Figure 2.11b, delimited by white lines), onto which particles 

of few hundreds of nanometres are deposited. This thin layer corresponds to the TiO2 corrosion layer (Figure 

2.11b) and the deposited particles are provided by secondary fluid, containing iron and oxygen, confined by 

EDS analyses (Table 2.5). 

  

Figure 2.11: Thin section of titanium sample (a). Three principal areas are observed: (1): area close to titanium substrate; 

(2): porous layer; (3): compact layer; Zoom close to titanium substrate (b). White lines delimit a porous layer of around 

100 nm, which is supposed to be the corrosion layer mainly composed of titanium and oxygen.  
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Figure 2.12: Seven different EDS analyses of titanium sample obtained during COLENTEC 2015 test in the area close to 

Ti substrate (a); High resolution (HR) TEM image (b) of a particle from #2 region in Figure 2.12a (white dash line 

represents the border of a particle present in this layer). 

Table 2.5: Chemical composition (in at%) obtained by comparative EDS analyses at the different regions localized in 

Figure 2.12a. Percentages of each element are normalized to have a total of 100%. Relative uncertainties are estimated to 

be 1% for major elements (at% > 10%), and 5% for other elements. The numbers correspond to the numerated regions in 

the figure on the right. 

 O(K) Ti(K) Al(K) S(K) P(K) Mn(K) Fe(K) Zn(K) 

 

1 13.12 84.33 0.04  0.02 0.02 0.11 2.37 

2 62.75 34.05 0.23  0.23 0.58 2.15  

3 67.30 16.96    6.70 9.04  

4 63.47 19.03    8.04 9.46  

5 74.99 0.73 0.40 0.10 0.16 0.12 23.50  

6 71.25 0.54 0.49 0.16 0.13 0.09 27.34  

7 71.10 0.58 0.52 0.06 0.17 0.06 27.52  

 

The presence of zinc in the titanium sample may be attributed to its fabrication. The nanometric porous layer 

corresponding to EDS analysis #2 in Figure 2.12a is supposed to be the TiO2 corrosion layer. Indeed, the atomic 

percentage of oxygen and titanium, measured by EDS, matches TiO2 stoichiometry. Iron, which can only be 

provided by COLENTEC secondary fluid, is slightly presented in this corrosion layer (2.15%). HRTEM (Figure 

2.12b) shows the presence of a crystallized particle in the TiO2 layer with an interatomic distance of 3.0 Å, 

which corresponds to the 220 plane of the synthesised magnetite particles. This observation highlights the 

inclusion of external iron species into titanium corrosion layer forming magnetite particles.   

An intermediary compact layer with manganese enrichment, corresponding to EDS analyses #3 and #4 in Figure 

2.12a, is observed next to the TiO2 corrosion layer. Impurities like aluminium, sulfur and phosphate are not 

detected in this layer. This compact layer may be composed of a solid solution comprising manganese, iron, 
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titanium and oxygen, with an approximated atomic proportion of 1, 1, 2 and 6, respectively. Similar 

stoichiometric hexagonal solid solutions (Mn1-xFex)TiO3 (x = 0.5 and x = 0.6) have been reported in the literature 

(Wu et al., 2010). However, they were synthesised by mixing MnCO3, Fe2O3 and TiO2 particles under 1200 °C 

and CO-CO2 gas mixtures, which are highly different from COLENTEC conditions. Diffraction patterns of this 

layer should be acquired to verify the formation of the corresponding solid solutions.   

Particles corresponding to EDS analyses #5, 6 and 7 in Figure 2.12a contain mainly iron and oxygen. The 

presence of aluminium, sulfur and phosphate is also detected. The size of these particles is of about several 

hundreds of nm.  

EDS profile analyses (Figure 2.13) confirm that the porous thin layer close to titanium substrate comprises 

majorly titanium and oxygen. A slight increase of iron and manganese is observed in this corrosion layer, 

consistent with previous EDS analyses (Table 2.5, EDS analysis #2). Two intermediate layers are then observed 

with the presence of titanium, oxygen, iron and manganese, with a relatively stable atomic proportion 

respectively. Iron particle layer is detected next to the intermediate layer, comprising majorly iron and oxygen. 

The formation of this layer is indubitably linked with external secondary fluid.  

 

Figure 2.13: EDS analyses showing atomic percent of element was performed along the white line, crossing titanium 

sample, TiO2 corrosion layer, two potential (Mn1-xFex)TiO3 solid solution layers separated by the yellow dash line and 

iron particles. Only the evolution of each element is intended to be shown along the white line, comparisons between 

different elements are not significant. 

EDS mapping in Figure 2.14 and Figure 2.15 confirm the above observations throughout the titanium thin 

section and in a selected zoomed area, respectively. The mapping indicates generally minor iron inclusion into 

titanium corrosion layer, enrichment of manganese in the intermediate layer and formation of particles 

comprising iron and oxygen on the external side of mapping zone. The same multi-layer structure is observed 

in the EDS zoomed mapping presented in Figure 2.15, as previously indicated in Figure 2.13.  
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Figure 2.14: EDS mapping of the closed titanium area, containing titanium substrate, TiO2 corrosion layer, potential solid 

solution layer and deposited iron particles, showing the TEM image and mapping zone (a); and element distribution of 

iron (b), titanium (c), oxygen (d) and manganese (e).   

 

 

Figure 2.15: EDS mapping of a zoomed close titanium area, containing TiO2 corrosion layer, the two potential solid 

solution layers and deposited iron particles, showing the TEM image and mapping zone and element distribution of iron, 

titanium, oxygen and manganese. 

Porous and compact layers (Figure 2.11a (2), (3)) 

EDS measurements and the electron diffraction patterns were then performed for particles located in the porous 

and external compact layers of titanium thin section in order to determine their chemical composition resulting 

from the fluid without titanium substrate effects.  
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(a) (b) 

  
 

Figure 2.16: Surface TEM and EDS analysis of porous and external compact layer in the titanium sample obtained during 

the COLENTEC 2015 test (a). The EDS analyses were performed under the same conditions in the four red areas shown 

in the TEM image; Diffraction patterns (b) of a area in Figure 2.16a. 

Table 2.6: Chemical composition (in at%) deduced from EDS analyses of points a, b, c and d in Figure 2.16a. 

Percentages of each element are normalized to have a total of 100%. Relative uncertainties are estimated to be 0.5% for 

iron and oxygen, and 5% for other elements.  

 O(K) Ti(K) Al(K) Cr(K) P(K) Mn(K) Fe(K) Ni(K) 

a 62.71 0.11    0.84 36.33  

b 61.11 0.07 0.40 0.04 0.28 0.43 37.24 0.43 

c 54.65  0.44  0.57 0.51 43.61 0.22 

d 42.85  0.35  0.60 0.61 55.36 0.24 

 

Oxygen and iron are the two major elements for both EDS analyses a, b, c and d in Figure 2.16a. Iron/oxygen 

ratio increases when analyses are performed from the porous layer to the external compact layer. Diffraction 

patterns confirm the presence of the magnetite structure composite by identifying <131>, <133> and <404> 

planes of magnetite. Chromium is not detected in the micrometric well crystallized particles (EDS analysis a) 

and compact layer (EDS analyses c and d) whereas its presence is observed in the zone exhibiting smaller 

particles (several hundreds of nm) (region b in Figure 2.16a). Impurities like aluminium, phosphate and silicon 

are detected in the compact external layer and their presence is confirmed by EDS mapping (Figure 2.17). An 

enrichment of chromium and manganese is detected in a local zone of the selected area, corresponding to an 

impoverishment of iron (Figure 2.17). This result indicates the possible iron substitution by chromium or 

manganese in the magnetite structure composites when chromium and manganese are present.  
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Figure 2.17: EDS mapping of a selected area of the compact layer of the titanium thin section. 

2.2.4.2.2 Characterization of stainless steel thin section  

Three different layers for the thin section of stainless steel sample obtained during the COLENTEC 2015 test 

were identified by TEM (Figure 2.18a). This Figure shows an inner corrosion layer of about 1 µm (1), an outer 

corrosion layer of about 5 µm (2) and a local particle aggregation (3) deposited onto the outer corrosion layer.  
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Figure 2.18: Pictures by TEM in the bright field (BF) mode of the thin section of stainless steel sample obtained during 

the COLENTEC 2015 test (a). Three different layers are observed: (1) Compact inner corrosion layer delimited by an 

outer-inner layer interface (white dash line), (2) Compact outer corrosion layer and (3) Particle aggregation; Specific 

TEM BF observation of particle aggregation (b) (Particles size is of about several hundreds of nm). 

The evidence of inner and outer corrosion layers seems consistent with the literature, as presented in paragraph 

1.2.6.3.3. Indeed, a well-defined regular line (Figure 2.18a, white dash line) delimits the inner and outer layers, 

which appears to be the original metal-water interface. The inner layer appears compact (Figure 2.18a, (1)). The 

outer layer (Figure 2.18a, (2)) also appears compact, which is different from the observations during stainless 

steel corrosion investigations in the absence of iron in the feed water at the inlet of the SG (1.2.6.3.3). The dense 

layer may result from the presence of iron in the secondary fluid as particles and/or solubilized species. The 

iron incorporation into stainless steel corrosion layer may be indirectly confirmed by previous observation on 

titanium sample. Indeed, iron exists in titanium corrosion layer (2.2.4.2.1) whereas iron has different ionic radius 

from titanium. It can be expected that the external iron is more largely present in stainless steel corrosion layer, 

together with iron provided by material, forming corrosion layer majorly on iron and oxygen. It seems that 

stainless steel corrosion is not responsible for the formation of the particle aggregation onto the outer corrosion 

layer because the aggregation appears to have a different morphology from the corrosion layers. Moreover, the 

interface between the aggregation and the outer layer is discontinuous (Figure 2.18b). Therefore, the observed 

particles are more likely provided by iron species in the secondary fluid rather than stainless steel corrosion. 

The particle size in the aggregation can be estimated to be several hundreds of nm (Figure 2.18b). EDS 

characterizations reported in Figure 2.19 and Table 2.7 were performed in order to (i) analyse the chemical 

composition of different layers and (ii) find indications to confirm the formation of particle aggregation layer 

provided by secondary fluid.  
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Figure 2.19: Surface TEM and EDS analysis of stainless steel sample obtained during the COLENTEC-2015 test. (a) 

stainless steel material; (b) inner corrosion layer; (c) and (d) outer corrosion layer; (e) particle aggregation. The EDS 

analysis was performed under same conditions in the five red areas (see composition in Table 2.7). 

Table 2.7: Chemical composition (in at%) obtained by comparative EDS of the different regions defined in Figure 2.19. 

Percentages of each element are normalized to have a total of 100%.  Relative uncertainties are estimated to be 0.5% for 

iron and oxygen, and 5% for other elements. 

           O(K) Al(K) S(K) P(K) Ca(K) Cr(K) Mn(K) Fe(K) Ni(K) 

Stainless steel a 7.26     12.43 0.60 79.58 0.13 

Inner corrosion layer b 64.24   0.18  10.82 0.27 24.36 0.13 

Outer corrosion layer 
c 68.38 0.24  0.27  0.04 0.18 30.49 0.40 

d 65.99   0.02    33.69 0.30 

Particle aggregation e 65.79 0.18 0.05 0.11 0.07 0.11 0.35 33.08 0.26 

 

Iron and oxygen are the two major elements in both inner (b) and outer (c and d) corrosion layers, and particle 

aggregation (e) layer. Chromium is largely present in the inner (b) corrosion layer (10.82%), whereas its 

percentage in outer corrosion layer becomes negligible (c and d). This observation is in accordance with the 

literature statements: Chromium enrichment occurs in the inner corrosion layer of stainless steel and the outer 

corrosion layer contains only magnetite (see paragraph 1.2.6.3.3). Phosphate is not detected by EDS in the initial 

material (a), whereas it should be present as indicated in Table 2.2. This may be attributed to its small percentage, 

which may not be high enough to be detected. The detection of phosphate for all other 4 points highlights 

potentially another phosphate source than initial material, which can be supposed to be COLENTEC fluid. The 

presence of calcium, sulfur, aluminium and phosphate is believed to be under inclusion form, surrounded by 

iron particles, as their atomic radius is largely different from iron. However, no evidence was found 

experimentally. The proportion of nickel seems higher in the outer layer and particle aggregation layer than in 

the inner layer. No obvious difference of oxygen and iron percentages can be observed between the outer 

corrosion layer and the particle aggregation.  

Impurity elements like calcium, sulfur and aluminium, which are not present in the original stainless steel 

material, may be provided by secondary fluid. The presence of all of these impurities is observed in the particle 

aggregation, indicating that this aggregation may arise more likely from fluid than material corrosion even 
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though the impurities’ quantity remains small. The chemical composition of the particle aggregation of the 

stainless steel sample obtained during the COLENTEC tests (Table 2.7) is similar to EDS analysis of iron 

particles contained in the titanium porous layer (EDS point b in Figure 2.16a (Table 2.6)), with detection of 

aluminium, sulfur and phosphate impurities and chromium. Moreover, aggregation particles onto stainless steel 

coupons seem to have the same particle size (several hundreds of nm) as small particles observed in the titanium 

porous layer (Figure 2.16a). These results may highlight that the particle aggregation on the stainless steel 

sample is formed by fluid contribution, given that iron deposit onto titanium sample can only be provided by 

particular or soluble iron species in secondary fluid and iron deposit exhibits the same morphology and 

composition as those observed onto the stainless steel sample.  

The electron diffraction patterns acquired for b, c and d areas and HRTEM image of a particle located in (e) 

area (Figure 2.20a) are shown in Figure 2.20b-e.  

(a) (b) 

  

(c) (e) 

 

 

(d) 

 

Figure 2.20: Indicator of different regions where analyses are performed (a); Diffraction patterns of b area (b); 

Diffraction patterns of c area (c); Diffraction patterns of d area (d); High resolution (HR) TEM image of a particle from e 

area (white dash line represents the border of a particle present in this layer) (e). 



68 

 

The observation of ring electron diffraction (Figure 2.20b) highlights that the inner corrosion layer is composed 

of a mixture of small particles, like previously reported by the literature. The interatomic distances calculated 

in this diffraction pattern are 2.1, 2.5 and 3.0 Å, corresponding to the <400>, <113> and <220> planes of 

synthesised magnetite particles, respectively (JEMS source). The electron diffraction patterns in Figure 2.20c 

and d show the presence of large well crystallized particles in the outer corrosion layer, consistent with the 

literature observation. The <220> and <400> planes of magnetite particles have been identified for the c area 

(Figure 2.20c), and the <020>, <311> and <331> planes of magnetite are identified for the d area (Figure 2.20d). 

Magnetite structure can thus be considered as the major compound of both inner and outer corrosion layer. 

Detected chromium, manganese and nickel may substitute iron in the magnetite structure and affect poorly the 

electron diffraction results, as they have similar atomic radius. For example, chromium substituted spinel ferrites, 

e.g., Fe2CrO4, have very close cubic lattice parameters (a) to magnetite particles. (a(Fe2CrO4) vs. a(Fe3O4) = 8.38 Å 

vs. 8.40 Å). Composition of the inner corrosion layer varies following chromium variation. Iron and oxygen are 

the two main composing elements of particles present in (e) area of Figure 2.20a (Table 2.7). The high-resolution 

transmission electron image (Figure 2.20d) shows an interatomic distance of 2.1 Å, which corresponds to the 

<400> plane of the synthesised magnetite particles.  

   

Figure 2.21: EDS analyses performed along the white line in images (a), (b) and (c). Only the evolution of each element 

is intended to be shown along the white line. Comparisons between different elements are not significant. 

Figure 2.21a and b show two EDS linear measurements (white line) across the particle aggregation area and the 

outer corrosion layer. The presence of the chromium peak at the interface demonstrates that the stainless steel 

sample may be passivated. EDS mapping of the interface zone between the particle aggregation and outer 

corrosion layer shows the formation of a continuous Chromium enriched layer at the outermost corrosion layer 

of about 100 nm thickness (Figure 2.22). Indeed, the passivation of stainless steel occurs when a thin layer 

enriched by chromium forms at the outermost corrosion layer. This chromium layer will inhibit the oxygen 

diffusion from the external into the solid material. Further corrosion can thus be prevented. Therefore, the 

presence of the iron particle layer is more likely induced by another phenomenon than material corrosion, e.g., 

deposition or precipitation phenomenon by iron species in secondary fluid. Another EDS measurement, which 

is not performed in the particle aggregation area, shows the absence of the chromium peak at the outermost 

corrosion layer (Figure 2.21c). The above observations seem to reveal an important impact of stainless steel 

passivation for the start of a proper formation of a deposition layer: when the stainless steel material is passivated, 

external iron species can form a deposition layer onto the material corrosion layer. Otherwise, the deposition 

layer cannot be formed and external iron species may be incorporated into material corrosion layer until 

passivation. 
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Figure 2.22: EDS mapping of the interface area between particle aggregation layer and outer corrosion layer, showing the 

TEM image and mapping zone (a); and element distribution of iron (b), chromium (c) and oxygen (d). A thin chromium 

(around 100 nm) enriched layer is observed at the outermost corrosion layer and delimited by white line in (c). 
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2.3 Simulated experiments 

Simulated tests using autoclaves were performed in monophasic and static solutions. The same experimental 

conditions regarding the chemistry and temperature as during COLENTEC-2015 test were chosen. Iron 

precipitation into stainless steel corrosion layer will be investigated by varying iron concentration in the 

solutions containing stainless steel samples. Ti/SS galvanic corrosion effects will majorly be studied by 

specifically designed Ti-SS-Ti samples.  

2.3.1 Description of autoclave tests 

Material corrosion was investigated in parallel with COLENTEC tests by autoclaves. Test conditions are 

representative of COLENTEC conditions in terms of temperature and water chemistry. However, the autoclave 

samples can only be immersed in a monophasic and static environment, compared to the representative dynamic 

two-phase flow tests.  

Four individual stainless steel autoclaves were used in the present work (4776 General Purpose Pressure Vessel, 

100 ml, Parr Instrument). Temperature and pressure were daily controlled during the test. The maximum of 

temperature and pressure in these autoclaves was of 300 °C and 100 bars, respectively.  Figure 2.23 shows a 

photo of the autoclaves used in this work.  

The above chemical and morphological analyses highlight an influence of the nature of the material on 

deposit formation: iron oxide deposition is formed more rapidly with a thicker and more compact deposition 

layer for the titanium sample than for stainless steel sample. The kinetic of deposition formation seems to 

be conditioned by material corrosion. In the case of stainless steel, corrosion layer containing Fe and O 

favours likely the incorporation of external iron species provided by secondary fluid. Material is then more 

difficult to be passivated and the deposition formation is kinetically delayed.  In the case of titanium sample, 

TiO2 corrosion layer may be formed rapidly and may initiate the iron deposition formation. 

Injection of tracer species in secondary fluid may be useful to confirm the external contribution by fluid to 

stainless steel corrosion.  

In the next section, results from autoclave tests will be presented in order to bring complementary 

information about the possible iron incorporation into stainless steel corrosion layer from an external 

source.  Potential galvanic corrosion effect between Ti and SS will be studied as well.  
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Figure 2.23: Photo of autoclave system. 

The same stainless steel (SS) and titanium (Ti) test coupons used in COLENTEC tests were used in the 

autoclaves. A titanium-stainless steel-titanium (Ti-SS-Ti) coupon was specifically designed by assembling a 10 

mm x 7.2 mm x 1.5 mm stainless steel coupon over a pre-machined titanium coupon, as illustrated in Figure 

2.24. The sample was designed to simulate the configuration of a stainless steel test coupon inserted into a 

titanium TSP like in COLENTEC 2015 tests. Such a configuration is particularly interesting for investigating 

the galvanic corrosion between titanium surface and stainless steel materials. 

 

Figure 2.24: Scheme of the test coupon designed especially for autoclave to investigate galvanic corrosion. Green coupon 

is made of stainless steel inserted into the pre-machined titanium coupon coloured in grey. 

Four tests were performed: autoclave-A, autoclave-B, autoclave-C and autoclave-D. In each test, 30 ml of 

solution containing morpholine (supplied by VWR International SAS) and ammonia (supplied by VWR 

International SAS) was added into each autoclave to obtain a pH25 °C of 9.2 as during the COLENTEC-2015 

tests. The reduced gas atmosphere in autoclaves was achieved by bubbling N2/H2 gaz. The test coupons were 

immersed in solution at 250 °C and 30 bars. Magnetite particles (supplied by Goodfellow, LS402492/4) were 

dissolved during some specific test. Total iron concentration was measured by UV spectrophotometry. After 

immersion, the samples were taken out of the autoclaves and characterized by SEM. Experimental conditions 

for these tests are gathered in Table 2.8:  
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Table 2.8: Experimental conditions for tests in autoclaves.  

 Autoclave-A Autoclave-B Autoclave-C Autoclave-D 

Test samples/associated iron concentration 

in autoclave solution(ppb) 

Ti-SS-Ti/0 

Ti/0 

SS/0 

Ti-SS-Ti/5 

Ti/5 

SS/5 

SS/60 

Ti-SS-Ti/0 

Ti/0 

SS/0 

SS/60 

Ti-SS-Ti/5 

Ti/5 

Ti/5 

SS/5 

Duration 60 days 10 days 

Temperature (°C) 250 

Pressure (bars) 30 

pH25 °C 9.2 

 

2.3.2 Iron incorporation into stainless steel corrosion layer  

Autoclave-A and Autoclave-B allow performing comparisons between stainless steel materials (SS samples and 

SS coupon inside the Ti-SS-Ti samples) in the presence of 0, 5 and 60 ppb of iron in solution after 60 days. The 

same comparison can be done after 10 days by analysing the samples in Autoclave-C and Autoclave-D (Table 

2.8).  

Figure 2.25 shows a comparison between the corrosion layer formed onto the surface of the SS coupon from 

Autoclave-A (Ti-SS-Ti sample) and the Autoclave-B (Ti-SS-Ti sample). Both samples were immersed in 

solution during one month at 250 °C and 30 bars, in the presence of 0 ppb and 5 ppb of iron respectively. A 

corrosion layer of about 2 µm containing iron, oxygen, silicon, aluminium and chromium is observed for the 

sample in the autoclave containing iron. The addition of 5 ppb of iron in autoclave is responsible for the 

formation of a corrosion layer of 6 µm, which exhibits the same chemical composition as the corrosion layer 

formed in absence of iron in the autoclave. This result suggests the presence of iron is responsible for an increase 

of corrosion layer thickness, likely because of the incorporation of iron species into the corrosion layer, as 

previously mentioned in paragraph 2.2.4.2.2.  
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Figure 2.25: SEM observation of the SS coupon in the Autoclave-A (Ti-SS-Ti sample) after an immersion during one 

month at 250 °C and 30 bars without iron in the autoclave (a). A corrosion layer of 2 µm containing iron, oxygen, silicon, 

aluminium and chromium is observed; SEM observation of the SS coupon in the Autoclave-B (Ti-SS-Ti sample) after an 

immersion during one month in an autoclave containing 5 ppb of iron (b). A corrosion layer of 6 µm containing iron, 

oxygen, silicon, aluminium and chromium is observed.  

Another comparison is made between the corrosion layer formed onto the surface of the SS coupon in the 

Autoclave-C and the Autoclave-D (Ti-SS-Ti samples), as shown in Figure 2.26. The same tendency is observed 

after ten days of immersion.  

  

Figure 2.26: SEM observation of the surface of SS coupon in the Autoclave-C (Ti-SS-Ti sample) after ten days of 

immersion at 250 °C and 30 bars in autoclave without iron (a). No corrosion layer is observed; SEM observation of the 

surface of SS coupon in the Autoclave-D (Ti-SS-Ti sample) after ten days of immersion in the presence of 5 ppb of iron 

in the autoclave (b). A corrosion layer of 5 µm containing iron, oxygen, silicon, aluminium and chromium is observed. 

The same chemical composition of the corrosion layer of is also observed for the SS samples (presence of iron, 

oxygen, silicon, aluminium and chromium). Table 2.9 gives the thickness of the corrosion layers formed on Ti-

SS-Ti sample deduced from SEM analyses (not shown here). 
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Table 2.9: Average thicknesses of the corrosion layer on SS samples and SS coupons from the Ti-SS-Ti samples.  

Samples 

Iron concentration 

contained in solution 

(ppb) 

SS 

0 

SS 

5 

SS 

60 

Ti-SS-Ti 

0 

Ti-SS-Ti 

5 

SS 

0 

SS 

5 

SS 

60 

Ti-SS-Ti 

0 

Ti-SS-Ti 

5 

Test duration 60 days 10 days 

Average corrosion layer 

thickness (µm) 
1 10 1 2 6 0 0 4 0 5 

 

Increasing iron concentration in solution induces the formation of thicker corrosion layer on SS samples. A 

surprisingly important corrosion layer thickness (10 µm) is observed after one month of immersion of stainless 

steel sample in the Autoclave-B in the presence of 5 ppb of iron. More data should be acquired to confirm the 

general tendency.  Corrosion layer formation was observed after ten days, neither on SS sample without iron 

nor on the SS sample in the presence of 5 ppb of iron in solution. This result may suggest that ten days are not 

sufficient for observing a detectable corrosion layer on SS samples under the present experimental conditions 

(T = 250 °C, pH25 °C = 9.2). In this case, the presence of iron in solution appears to have no observable effects. 

The presence of iron particles can be supposed in solution when iron concentration reaches 60 ppb. The 

observation of SS sample with 60 ppb of iron after 10 days highlights a favourable effect of the presence of 

particle on corrosion formation.   

The presence of iron species seems to increase the thickness of stainless steel corrosion layer. This result brings 

complementary supports to the previous prediction by TEM characterization of COLENTEC samples. More 

experimental tests should be conducted to confirm the effects of the presence of soluble species and particular 

species as discrepancies are observed in SS samples’ autoclave results. Nevertheless, a general trend supports 

the hypothesis of iron incorporation into stainless steel corrosion formation.  

2.3.3 Ti/SS galvanic corrosion effects  

Galvanic corrosion is an electrochemical process in which one metal corrodes preferentially another one when 

both metals are in electrical contact in the presence of an electrolyte (one metal acts as an anode and the other 

one plays the role of cathode). The difference of electric potential between the metals is the driving force of 

anodic dissolution (Serhan et al., 2004). Voltage differences of 0.2 V or more can suggest a galvanic corrosion 

risk (Finšgar, 2013).  

For the specific stainless steel/titanium couple, the potential difference ranges from 0.2 to 0.4 V (titanium is the 

cathode and stainless steel is the anode). Such a potential difference is theoretically sufficient to lead to galvanic 

corrosion. Investigations conducted by various groups (El-Dahshan et al., 2002; Reza Moshrefi et al., 2011; 

Serhan et al., 2004) have confirmed that galvanic corrosion can occur between stainless steel L316 and titanium 

in low-temperature seawater environment. Conversely, no data is available for describing the stainless 

steel/titanium galvanic corrosion at high-temperature and high-pressure in two-phase flow conditions as in SG. 

Moshrefi et al. stated the elevation of galvanic corrosion intensity with decrease of anode/cathode area ratio 

(Reza Moshrefi et al., 2011). In COLENTEC tests, removable stainless steel test coupons were inserted into a 

titanium TSP. The galvanic corrosion can thus be supposed to occur during COLENTEC tests.  

In autoclave tests, this effect can be studied by comparing the thickness of formed corrosion layer on SS samples 

and SS coupons inside Ti-SS-Ti samples with the same iron concentration in solution. As predicted above, the 

corrosion layer formed on the SS coupons inside Ti-SS-Ti samples should be thicker than that formed on SS 
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samples. Table 2.9 indicates the thickness of corrosion layer of 2 µm on the SS part of the Ti-SS-Ti sample after 

one month without Fe presence in solution and a corrosion layer of 1 µm on the SS sample under the same 

conditions. This result is consistent with the theoretical prediction. The same tendency is found by comparing 

the SS (0 µm) and Ti-SS-Ti (5 µm) samples after ten days with 5 ppb of iron in solution. Ten days seem 

insufficient for corrosion detection without iron presence in solution even enhanced by galvanic effects.   

Galvanic corrosion effects seem to be confirmed, increasing stainless steel corrosion layer formation when 

stainless steel is in contact with titanium. Corrosion of titanium should be prevented by this effect. However, 

the corrosion layer of titanium is too small to be detected by SEM. Galvanic effects can be supposed to 

contribute to the stainless steel corrosion in COLENTEC test (Figure 2.19), enhancing corrosion phenomenon 

and retarding potentially the material passivation, and thus the initiation of deposit formation. The further 

COLENTEC tests are planned to conduct with a stainless steel tube support plate to make a comparison.  

2.4 Conclusions of Chapter 2 

Material corrosion was supposed to impact the initiation of deposition. Material passivation has been found 

essential and necessary to initiate deposit formation. Incorporation of external iron species into material 

corrosion layer has been supposed, encouraging corrosion formation and delaying passivation. This was 

supported by complementary autoclave investigations under similar chemical and temperature conditions. 

Galvanic corrosion, if existing, also affects corrosion process and deposit initiation. Injection of tracer species 

seems pertinent to directly investigate the external contribution to material corrosion layer.  

Deposits by iron particle deposition were not observed in COLENTEC tests, which may be due to the 

insufficient concentration of suitable particles in test section. The role of particles remains thus unknown. 

Dedicated experiments should be conducted to highlight the particle contribution to the deposit by varying the 

particle size and concentration.  

No lipping and ripple form was observed at the inlet of TSP in COLENTEC-2015 investigations as it was 

observed in the EDF NPP.  

In the next chapter, further experimental studies will be introduced to investigate electrokinetic phenomenon. 

This result will be compared to previous COLENTEC results and NPP feedbacks to estimate the contribution 

of electrokinetics to the global TSP clogging formation and discuss the effects of different chemical and 

thermohydraulic parameters on deposit build-up.  
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Chapter 3  Specific experimental investigation of 

deposit build-up by electrokinetic phenomenon  

3.1 Introduction and basic notions of electrokinetically induced 

deposit 

General introduction 

As mentioned previously in paragraph 1.5.3.4, iron oxide deposits can be induced by electrokinetic phenomena 

in flow acceleration regions. Electrokinetics allows perfectly explaining the formation of clogging deposits 

under lipping form at the inlet of TSP and periodic annular ripples along the TSP, observed by EDF (Figure 

1.14 and Figure 1.15). It has been supposed to contribute considerably to TSP clogging formation.   

In the course of the present work, a collaboration with the team of Scenini et al. in the University of Manchester 

has been established in order to estimate the electrokinetic contribution during the deposit build-up in location 

where the geometry favours fluid acceleration, e.g., flow holes of TSP. The experimental deposit build-up by 

this phenomenon has never been reported in the literature under simulated PWR secondary water conditions. 

Therefore, the contribution of electrokinetics in TSP clogging formation remains unknown. From a 

phenomenological point of view, there are limited experimental data nowadays allowing to indicate the effects 

of different PWR water thermohydraulic and chemical parameters on electrokinetics. Numerical investigations 

on this phenomenon are also in the very initial phase.  

In this section, preparative investigations of deposit build-up by electrokinetics will be performed, which 

provide experimental feedbacks for conducting further investigations under simulated COLENTEC and 

nominal EDF conditions. First elements of deposit formation by electrokinetics are obtained. Effects of different 

water parameters, particularly the flow velocity, will be discussed on deposit formation. A first suggestion of 

electrokinetic contribution to TSP clogging will be made, by combining electrokinetic results with experimental 

results obtained during tests (Chapter 2) and EDF NPP feedbacks (Chapter 1).  

Basic notions of electrokinetically induced deposit  

In the following of this introduction, basic notions of deposits formed by electrokinetics will be given. Discs 

with drilled micro-orifice through the centre are usually used to create accelerated areas to study the 

electrokinetic phenomenon. The deposit build-up onto a contraction is quantified by three Build-Up Rates (BUR) 

(Figure 3.1): radial BUR (BR), surface BUR (BS) and inner orifice BUR (BT).  

The radial BUR quantifies the deposit growth perpendicular to flow direction at the inlet of a contraction and is 

expressed as the ratio between the perpendicular thickness and time. BR appears to be the critic deposit build-up 

rate, which allows evaluating the time to completely obstruct a given orifice. The EDF feedback regarding TSP 

clogging formation at the inlet of TSP shows that deposition rate can reach 386 µm/year as previously mentioned 

in paragraph 1.4.2.3, which corresponds to a radial BUR.  
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Deposits formed on the micro-orifice of disc samples are often asymmetric. The free orifice area after deposit 

formation is calculated and then converted to an equivalent diameter and a radial BUR (BR) using the following 

equations:  

 

 Equivalent diameter =  √
4 𝑋 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎

𝜋
 3-1 

 

 
 B𝑅 =  

𝑆𝑡𝑎𝑟𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

2 𝑋 𝑡𝑖𝑚𝑒
 3-2 

The surface BUR (BS) quantifies the volume of deposits formed onto the front face of the contraction per unit 

of time. Laser confocal microscopy is generally used to measure the formed deposit volume. The surface BUR 

is expressed as below: 

 
 B𝑆 =  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑠 𝑜𝑛 𝑑𝑖𝑠𝑐 𝑠𝑢𝑟𝑓𝑎𝑐𝑒  

𝑡𝑖𝑚𝑒
 3-3 

The inner orifice BUR (BT) quantifies the deposits formed along the inside disc. It can be expressed as the ratio 

between the average deposit thickness perpendicular to the flow direction and the time (µm/h for example).  

 

 

Figure 3.1: Scheme showing the deposits on the disc (gray colot) that are quantified and converted to Build-Up Rates 

(BR: radial BUR; BS: surface BUR; BT: inner orifice BUR) (McGrady et al., 2017).  

In the next section, a very recent experimental investigation under simulated PWR coolant water conditions 

using similar test facility and disc samples will be presented, completing the previous literature study of 

electrokinetic phenomenon (see paragraph 1.5.3.4). Effects of different parameters, like the flow velocity, were 

discussed in this work, which may bring supports for further discussion.  
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3.2 Literature review relative to the effects of water chemistry and 

thermohydraulics on electrokinetic deposit build-up  

McGrady et al. (McGrady et al., 2017) investigated deposit formation in accelerated flow conditions, using the 

similar experimental system to our study (paragraph 3.3) and stainless steel disc samples. Tests were conducted 

at 230 °C with a measured oxygen concentration lower than 2 ppb. The effect of iron concentration on deposit 

formation was studied by adding iron into water for several disc samples. However, the exact values of iron 

concentration in each test are not provided. Iron exists under both soluble and solid (colloidal particles and 

precipitate). Flow velocities ranged from 11.9 to 47.5 m/s inside the disc. pH was not conditioned nor measured 

in this work. Soluble dihydrogen concentration was maintained between 200 to 2500 ppb for the different tests.  

The effect of dihydrogen concentration was not discussed in this work. The only significant comparison between 

two tests under similar flow velocity and iron concentration with respectively 200 and 250 ppb of dissolved 

dihydrogen shows that the increase of dihydrogen concentration promotes deposit formation on the surface (BS) 

and affects slightly the radial BUR (BR). Dihydrogen decreases the electrochemical potential, encouraging 

magnetite formation from hematite in iron-water system (Figure 1.4). Magnetite has a considerably higher 

solubility than hematite, as previously mentioned in paragraph 1.2.6. Eq. 1-10 shows that an increase of 

dihydrogen concentration promotes the dissolution of the magnetite corrosion layer formed onto stainless steel 

materials. Iron (II) ions arising from magnetite dissolution are oxidized into iron (III) ions due to electrokinetic 

phenomenon, which precipitates and forms magnetite deposits again. However, this phenomenon is reversible, 

as magnetite formed due to electrokinetic phenomenon may be dissolved again due to the presence of 

dihydrogen.   

The effects of flow velocity on deposit build-up appear competing and difficult to conclude. The increasing 

flow velocity may: 

• Increase the mechanical force, promoting removal and reducing BUR; 

• Increase the magnitude of streaming current by shearing ions from the diffuse layer of EDL, promoting 

the oxidation of ferrous ions by providing a driving force for anodic reactions;  

• Increase the potential between the bulk and the material surface, increasing particle deposition by 

electrophoresis;  

• Increase the mass transport to the surface, increasing BUR;  

• Inhibit potential interaction of iron ions in solution or solid iron with the surface, decreasing BUR.  

The effects of flow velocity may thus vary following different water conditions and different regions on the 

disc.  

The increase of iron concentration in solution has been found to decrease the volume of deposits on the front 

surface (BS) and increase the volume of deposits within the orifice (BT), whilst having no effect on the radial 

BUR (BR) and deposit morphology. According to the postulated electrokinetic mechanism, it can be expected 

that an increase of iron concentration in solution may increase the deposit build-up phenomenon since more 

iron (II) ions are available to be oxidized by the increasing streaming current at the surface. It appears that the 

deposit is more important within the orifice than onto the disc surface because the mass transport effects in the 

accelerated region may reduce significantly any potential interaction of iron species with the surface.  

Robertson (Robertson, 1986) predicted the decrease of streaming current with the increase of temperature by 

modelling electrokinetic currents.  

Eq. 1-10 shows that an increase of the pH inhibits magnetite corrosion layer dissolution, decreasing iron (II) 

ions available for electrokinetic oxidation. Furthermore, magnetite particles are less easily deposited onto TSP 



79 

 

surface when pH increases because the charge of the magnetite particles is more negative at high pH (paragraph 

1.3.2). High pH can be supposed to inhibit deposit formation.  

The contribution of the electrokinetic effect in build-up appears to be highly complex because it is controlled 

by thermohydraulic, chemical and electrochemical phenomena. More experimental parametric investigations 

are essential to highlight the effects of the different parameters and to better understand electrokinetic 

mechanisms. In the following part of the present manuscript, the contribution of the electrokinetic phenomenon 

in the deposit build-up will be investigated under comparable COLENTEC-2015 secondary water conditions. 

These tests would provide first information for the electrokinetics and global TSP formation understanding.  

3.3 Experimental system 

Figure 3.2 shows the scheme of the autoclave loop used in the present study. It is composed of recirculating 13 

liters vessel displayed in Figure 3.3a, which can operate up to 360 °C and 200 bars with a flow rate of 35 l/h 

maximum. The material of the pipework and both 250 liters feed tanks in the autoclave loop are made of 316L 

stainless steel (Figure 3.3b). Water chemistry was assayed by using an oxygen sensor (Orbisphere 

410/A/P1C00000) and a conductivity electrode (ABB AX410/50001). Dissolved oxygen concentration 

measurements were made at the outlet of the reaction vessel prior to water purification by means of ion exchange 

resins.   

Feed water was stored in feed tanks (13) displayed in Figure 3.2 where the water chemistry can be controlled. 

The water was pumped by a volumetric pump (15) into the autoclave vessel (1) after being pre-heated to the 

appropriate temperature. Afterwards, the water flowed through the main return valve (4) and was cooled (5) and 

depressurised (8) before being flowed through mixed bed ion exchange resins (12) after which it was re-injected 

into the feed tank. The flow cell (2) placed within the vessel could be activated by closing the main return valve 

(4) and opening the flow cell valve (3). Pressure transducers were placed upstream and downstream of the 

reaction vessel to log the pressure drop across the orifice ((6), (7)). As the pressure drop and velocity of the flow 

were directly related, it was necessary to maintain a constant pressure drop across the orifice to accurately 

monitor the velocity changes due to deposit build-up. This was done by using a by-pass back-pressure regulator 

which was set at just above the level of the primary back pressure regulator. This means that any increase in 

pressure drop due to deposit formation in the micro-orifice would result in part of the water flow being redirected 

through the by-pass loop, maintaining constant pressure across the flow cell.  

Deposit build-up under accelerated flow conditions was investigated by flowing comparable PWR secondary 

water through a titanium disc with a central micro-orifice (Figure 3.4). The chemical composition of the used 

titanium discs was the same as the titanium test coupons used in COLENTEC-2015 tests (Table 2.3).  

The morphology of the deposit build-up and the diameter of free section, e.g., the radial BUR (BR), were 

analysed by SEM and laser confocal microscopy. The latter was used to measure the volume of deposits onto 

the disc surface. This technique takes multiple optical images of the samples in the z-axis direction to build a 

3D picture. The image treatments including surface and volume calculation were performed by using the 

MultiFileAnalyzer VK-H1XME software.  
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Figure 3.2: Scheme of the recirculating stainless steel autoclave at the University of Manchester fitted with a flow cell (2) 

which could be activated by opening the flow cell valve (3) (McGrady et al., 2017). 
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(a) 

 

(b) 

 

(c) 

Figure 3.3: Photos of the recirculating autoclave containing the flow cell (a) and feed tanks (b); Geometry of the flow cell 

inside the autoclave vessel (c). 

 

 

Figure 3.4: Scheme of titanium discs used for studying the deposit build-up during test at the University of Manchester.   

3.4 Experimental conditions  

Test coolant was remained in the liquid phase at 250 °C and 100 bars during all the tests to avoid flashing 

phenomenon. The tank was filled with N2 prior to tests in order remove soluble oxygen from the secondary fluid 

(reductant environment). The soluble oxygen concentration was measured to be less than 5 ppb during the tests. 

About 5 ppm of morpholine and 0.3 ppm of ammonia were added into the feed tanks before flow circulating 

and heating. Online pH measurements were not performed in the present experimental system. pH values were 

therefore estimated by using pH values previously determined under the same conditions at room temperature 

and by sampling the recirculating flow after cooling. The estimated pH at 25 °C was lower than that of 

COLENTEC-2015 (pH = 9.2) and was estimated between 8.5 and 8.8. The presence of iron in the experimental 
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system came from FAC of stainless steel pipes (no more iron was added during the tests). Regular water 

sampling was conducted and the total iron concentration was measured by ICP-MS after acidification by nitric 

acid. The total iron concentration was found to be lower than 5 ppb during all the tests (with an average 

concentration of 3 ppb). Circulating iron species can thus be considered to exist majorly under soluble form, as 

the magnetite solubility is above 8 ppb at 250 °C when pH25 °C ranges from 8.75 to 9.2 (Figure 1.5). However, 

particle deposition phenomena cannot be excluded under such conditions as FAC induced particles may deposit 

onto discs.  

Table 3.1 summarizes the general test conditions for all the performed investigations. Five individual tests were 

conducted under such general conditions using five titanium discs, as previously described. Discs 1 to 3 were 

investigated with three different flow velocities (4, 8 and 18 m/s, respectively) without dihydrogen injection 

(Table 3.2). Dihydrogen injection was performed after 40 hours for the disc 5 and after 143 hours for disc 4 

(Table 3.2). Three different flow velocities were also tested by using disc 4. Discs 4 and 5 were removed and 

characterized after the total duration, because characterization was not possible after each test step. The flow 

velocities inside the disc were not directly measured but it was calculated by using the volumetric flow rate.  

Table 3.1: General test conditions during electrokinetic tests. *: Conditioned by ammonia and morpholine. 

Total iron concentration (ppb) <5 

Dissolved oxygen (ppb) <5 

Temperature (°C) 250 

Pressure (bars) 100 

pH25 °C 8.5 to 8.8* 

 

Table 3.2: Flow velocity inside the hole of the disc, soluble dihydrogen concentration and duration of each test. Discs 4 

and 5 underwent 4 and 3 steps, respectively, with dihydrogen injection or flow velocity change. Characterization was not 

performed after each step.  

Disc 
Test 

sequences 

Flow velocity inside the 

disc (m/s) 

Dihydrogen 

concentration (ppm) 
Duration (h) 

1 / 4 0 46 

2 / 8 0 16 

3 / 18 0 90 

4 

(4 steps) 

Step 1 5 0 120 

Step 2 34 0 23 

Step 3 34 2.5 33 

Step 4 43 2.5 41 

5 

(3 steps) 

Step 1 12 0 40 

Step 2 12 0.13 49 

Step 3 12 2.5 23 

 

As mentioned previously that this study consists of a preparative test for further investigations under simulated 

COLENTEC or EDF conditions. Parameters as flow velocity, test duration and dihydrogen concentration were 

sometimes simultaneously adjusted for the operation test. Complete parametric studies should be carried out to 

investigate the effect of each parameter on deposit formation. Online pH measurement system appears also 
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essential to ensure a representative value. Despite these test limitations, first elements for phenomenon 

understanding are obtained and are analysed in the next paragraphs.  

3.5 Results  

The previously mentioned EDF feedback regarding TSP clogging formation after 15 to 20 years corresponds to 

the deposit quantification by the radial BUR (BR). No quantitative information concerning the deposits formed 

onto the front face of TSP inlet (BS) and the inner surface along TSP (BT) has been reported in the literature. 

Visual observation (Figure 1.14) performed by EDF shows obviously that after 15 to 20 years, deposits formed 

at the inlet of TSP perpendicular to flow are more important than that formed along the inside TSP. The 

following qualitative relationship can then be obtained between the radial BUR (BR) and the inner orifice BUR 

(BT).  

  B𝑅 >  B𝑇 and BR < 386 µm/year 3-4 

The previous global deposit build-up tests performed with the COLENTEC facility showed a relatively 

homogeneous deposit formation onto titanium test coupons after 11 (5 µm) and 63 days (30 µm), under 

COLENTEC-2015 conditions (See paragraph 2.2.4.1). No lipping form was obtained and a depleted-deposit 

region was observed on most of the titanium test coupons as shown in Figure 2.7. The following relationship 

between the radial BUR (BR) and the inner orifice BUR (BT) can be estimated, which is different from the EDF 

observation.  

  B𝑅 = 0;  B𝑇 = 0.5 μ𝑚/day (183 µm/year) 3-5 

This difference will be discussed based on the electrokinetic results obtained at the University of Manchester. 

Effects of different thermohydraulic and chemical parameters will then be highlighted.  

Preferential deposits in regions of accelerated flow under comparable COLENTEC-2015 conditions were 

recreated on discs 1-5 with a central micro-orifice (start diameter = 300 µm). The front surface and the inner 

orifice surface of the discs were examined to reveal the effect of different parameters on deposit morphology. 

The radial and surface Build-Up Rates (BUR) were then estimated. Determination of the inner orifice BUR and 

its fine characterization were not performed in the present work because of the need further precise FIB (Focused 

Ion Beam) cross sectioning of the discs.  

3.5.1 Morphology and characterization of the deposits 

Discs 1 to 3 

Figure 3.5 shows the front surface of discs 1-3 performed by SEM and the corresponding 3D images deduced 

from laser confocal microscopy measurements. Discs 1-3 underwent tests without dihydrogen addition. Three 

different flow velocities inside the disc were tested: 4 m/s, 8 m/s and 18 m/s for discs 1, 2 and 3, respectively. 

The morphology of the deposits formed onto the front face of the discs is characterized by concentric circles 

that radiate outwards from the orifice. Deposits contain exclusively iron and oxygen (EDS analyses). Disc 1 

(Figure 3.5a) shows that the deposit is formed very close to the micro-orifice edge when the flow velocity into 
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the micro-orifice is equal to 4 m/s while an increase of flow velocity increases the distance between the edge of 

the micro-orifice and the deposit location. For instance, this distance is equal to 20 µm when the flow velocity 

is increased to 8 m/s (disc 2, Figure 3.5b) and 40 µm when the flow velocity is equal to 18 m/s (disc 3, Figure 

3.5c). This result is in agreement with previous observation obtained by McGrady et al. (McGrady et al., 2017).  

In the close-orifice region, the surface deposits onto discs 1 (4 m/s) and 2 (8 m/s) appear to follow the flow 

direction as we can observe converging ridges surrounding the micro-orifice (Figure 3.6). Therefore, the 

morphology of the deposits may be hydrodynamically controlled. Figure 3.7 shows the surface deposits formed 

onto the surface of the disc 3 at a flow velocity of 18 m/s. The previously mentioned ridges-like morphology is 

not observed and the deposit is less porous and no preferred direction is observed for the deposit formation. An 

increase of velocity from 4 m/s to 18 m/s may activate the electrokinetic streaming current, which may be 

responsible for ridges-like deposits perpendicular to the flow direction. Both electrokinetic and hydrodynamic 

phenomena might be responsible for the formation of compact deposits without preferred direction. Flow 

velocities into the micro-orifice of 4 m/s and 8 m/s seem to be too low for activating electrokinetic phenomenon.   

The presence of small oxide germs observed onto discs 1-3 (in Figure 3.6 and Figure 3.7) seems to indicate that 

precipitation may contribute to the deposit formation on the initial titanium disc surface while no particle 

deposition is observed.  

On the edge of the orifice, there are negligible iron deposits onto discs 1 and 2, as shown in Figure 3.8a and b, 

respectively. EDS analyses confirm this observation indicating that the disc edge is exclusively composed of 

titanium. When the velocity is increased to 18 m/s, iron deposits are observed on the disc edge (Figure 3.8c). 

EDS profile analysis throughout the disc orifice shows two iron peaks on the edge (Figure 3.8d, iron peaks are 

surrounded by red circles). Deposits on the orifice edge of the disc 3 can also be visualised in Figure 3.10a, 

showing a bright circle containing iron and oxygen along the entire orifice circumference.  
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Figure 3.5: Secondary electron mode SEM pictures (left column) and 3D visualisations obtained by laser confocal 

microscopy measurements (right column) of front face of disc 1 (4 m/s (a)), disc 2 (8 m/s (b)) and disc 3 (18 m/s (c)) 

after electrokinetic tests. Yellow dash circles show the location where deposit formation starts onto the surface of discs 2 

and 3. 
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Figure 3.6: Magnified secondary electron mode SEM images of the surface deposits on (left) disc 1 (4 m/s) and (right) 

disc 2 (8 m/s). Deposits containing iron and oxygen follow the flow direction.  

 

Figure 3.7: Magnified secondary electron mode SEM images of the surface deposits of disc 3 (18 m/s). Deposits 

containing iron and oxygen seem to be less porous than that formed on discs 1 and 2. No preferred direction is observed 

for the deposit formation.  

Deposits within the office throat are then investigated. Figure 3.9a and b show negligible deposits on the orifice 

inner surface of disc 1 (4 m/s) and 2 (8 m/s) at the entrance. Likely hydrodynamically controlled deposits appear 

to be formed downstream the depleted region onto the inner surface of disc 1 (Figure 3.9a). Deposits with 

different morphology are observed onto the inner surface of disc 2 (Figure 3.9b), localised irregularly on the 

surface from a certain distance to the orifice edge (about 100 µm). Ridges-like deposits or ripples, containing 

iron and oxygen, are observed on the orifice inner surface of disc 3 (18 m/s), as shown in Figure 3.10. The 

formation of perpendicular-to-flow ripples agrees with the deposits induced by electrokinetic phenomenon. 

Indeed, build-up of the “first deposit” causes the formation of a second current loop downstream due to 

disruption of the solution flow caused by the newly formed deposit. Another anode forms thus downstream 

where oxide build-up can newly occur, and the process continues forming discrete ridges of oxide on the surface. 

These electrokinetically induced ripples’ formation is observed both on the front surface (pre-restriction) and 

on the inner surface (post-restriction) of disc 3 in this study, suggesting the electrokinetic mechanism is active 

on both pre- and post-restriction with an orifice inner velocity of 18 m/s.  

 



87 

 

  

  

Figure 3.8: Magnified secondary electron mode SEM images of the inlet of disc 1 (4 m/s (a)), disc 2 (8 m/s (b)) and disc 

3 (18 m/s (c)); EDS profile analysis of a line crossing the orifice of disc 3, indicating the formation of iron oxide on the 

edge of the orifice (d).  

 

  

Figure 3.9: SEM images of the inner surface of disc 1 (4 m/s (a)) and disc 2 (8 m/s (b)). Negligible deposits are present 

onto the inner surface at the entrance region. For disc 1, hydrodynamically controlled deposits appear to be formed on the 

inner surface at about 150 µm from the orifice edge.  
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Figure 3.10: Secondary electron mode SEM image of disc 3 (a) showing the formation of deposits on the edge of orifice 

(radial BUR) and a general view of the inner surface near the orifice inlet; magnified visualisation of the inner surface of 

disc 3 (b), indicating the formation of ripples containing iron oxide. 

Discs 4 and 5 

For the disc 4 (Figure 3.11a), dihydrogen was added after 143 h. Dihydrogen concentration was maintained at 

2.5 ppm during 74 h afterwards. A flow velocity in the micro-orifice of 5 m/s was tested during the first 120 hr. 

The velocity was then increased up to 34 and 43 m/s in the last steps of the test. The previously observed 

concentric deposits from the orifice are equally obtained on the present disc. However, the deposits overlap the 

orifice reducing largely the orifice free section (Figure 3.11a). The initial orifice edge (Figure 3.11a, red dash 

circle) cannot be seen. The corresponding 3D observation of the deposits appears to highlight that large amount 

of deposits are formed near the edge regions of the orifice. SEM image (Figure 3.11a) shows the formation of 

three different regions with different morphologies:  

i. an outer layer similar to the deposits observed onto the front surface of discs 1 and 2; 

ii. an intermediate layer similar to the deposits observed onto the front surface of disc 3; 

iii. an inner deposit layer that overlaps the edge and clogs the orifice.  

Figure 3.12a and b show the outer and the intermediate layers formed onto disc 4, respectively. In the outer 

layer (Figure 3.12a), deposits follow the flow direction, like previously mentioned for discs 1 and 2. In this 

region, the formation of deposits is thus considered to be controlled by hydrodynamics while electrokinetic 

phenomenon does not occur. In the intermediate layer (Figure 3.12b), the deposits seem to be less porous where 

electrokinetically induced ripples are observed. The deposits like that formed in the outer layer may have been 

built-up during the first step of the test (120 h) during which a flow velocity of 5 m/s was applied almost like 

during test performed with discs 1 and 2 (4 and 8 m/s, respectively). It is expected that electrokinetic 

phenomenon may occur at flow velocity of 34 and 43 m/s given that a flow velocity into the micro-orifice of 18 

m/s has been previously found to be sufficient for activating electrokinetics.  

Figure 3.13 shows two important circular ripples close to the initial edge of the orifice of disc 4. These ripples 

correspond to thick deposits in the edge region visualised in Figure 3.11a by the laser confocal 3D technique. 

Depleted-deposit zones (observed onto discs 2 and 3, but not onto disc 1) are not observed between the 

intermediate deposit layer and the important ripples formed on the edge. Deposits are directly formed from the 

edge during the first step of the test (5 m/s, 120 hr), which was conducted at almost the same flow velocity as 

for disc 1 (4 m/s). The initiating deposits formed during step 1 may then change the initial surface state and 

promote deposit formation by creating more sites for precipitation and inducing supplementary current loops 

when electrokinetic phenomenon is activated by velocity increase.  
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Figure 3.11: Secondary electron mode SEM pictures (left column) and 3D visualisations obtained by laser confocal 

microscopy measurements (right column) of front face of disc 4 (a) and disc 5 (b) after electrokinetic tests. Red dash 

circle represents the initial orifice edge, overlapped by deposits for disc 4.  

 

  

Figure 3.12: SEM image (secondary electron mode) of the outer deposit layer onto disc 4 in which deposits appear to 

follow the flow (a); SEM image of the intermediate deposit layer which is less porous than the outer layer (flow-

perpendicular ripples containing iron and oxygen are observed) (b). 
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Figure 3.13: Observation of two important circular ripples containing iron and oxygen on the initial edge of the orifice of 

disc 4.   

Figure 3.14a shows the inner deposit layer formed onto disc 4, clogging largely the free section of the orifice. 

Micrometric faceted particles are largely present within the orifice throat. These particles contain all 10%at of 

chromium in average and their sizes reach up to 15 µm (Figure 3.14b). However, chromium is not detected in 

the deposits formed by precipitation. The presence of these particles is thought to be caused by FAC of the 

stainless steel materials. The disc 4 test was conducted at higher velocities (34 and 43 m/s), which may increase 

FAC rate and promote particle entrainment from the corrosion layer containing chromium.  

EDS mapping (Figure 3.15) of the surface of disc 4 shows that chromium is preferentially located within the 

orifice at the entrance, indicating preferential particle deposition at the inlet of the orifice. This result is 

consistent with the particle deposition by vena contracta mechanism, as previously discussed in paragraph 

1.5.3.1. The particle deposition seems to highly promote the orifice clogging, inducing considerably deposit 

formation on the inlet surface and in the radial direction at the entrance. According to Prusek (Prusek et al., 

2013), particle deposition may initiate TSP clogging formation, which creates nucleation sites for precipitation 

phenomena by flashing or electrokinetics, encouraging deposit formation.  

  

Figure 3.14:  SEM image (secondary electron mode) of the inner deposit layer observed within the orifice of the disc 4 

where faceted particles can be observed (a); SEM image of particles present in this layer (b), which contain iron, 

chromium and oxygen (size of these particles can reach 15 µm).   
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Figure 3.15: EDS mapping of a part of the disc 4 showing chromium and iron distribution throughout the orifice as well 

as the inner and intermediate deposit layers. Particles containing chromium are preferentially present within the orifice at 

the inlet.    

The flow velocity was maintained constant at 12 m/s during all test steps for disc 5 (Figure 3.11b). Dihydrogen 

was injected after 40 h, and afterwards maintained at 0.13 ppm and 2.5 ppm during 49 and 23 h, respectively. 

At several points on the disc edge, deposits are thicker than away from the orifice. This tendency is much less 

obvious than that previously observed for disc 4. A concentric region of about 80 µm between the edge and the 

beginning of the outwards deposits is observed. Global deposit quantity formed on disc 5 seems much smaller 

than that formed on the previous samples.  Figure 3.16a shows that iron is locally present along the 

circumference. The presence of iron appears less important and less continuous in the orifice edge of the disc 5 

than in the orifice edge of disc 3 (Figure 3.10a). 

Figure 3.16b shows that there is no significant deposit onto the inner surface of disc 5 at the entrance region. 

Deposits without ripples are located at about 100 µm from to the orifice edge as it was observed previously onto 

the inner surface of disc 2 for which the flow velocity was equal to 8 m/s (see Figure 3.9b).  

SEM observations of disc 5 indicate electrokinetic phenomenon is not activated at an inner orifice velocity of 

12 m/s and, therefore, no deposit is induced by electrokinetic onto the disc surface (pre-restriction) and onto the 

inner surface (post-restriction). The reason of the absence of the hydrodynamically controlled deposits on the 

front face of disc 5 remains unclear. The soluble iron concentration in the solution for the investigation of disc 

5 may be lower than for the other tests.  
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Figure 3.16:  SEM image (secondary electron mode) of the front surface of disc 5 showing the presence of iron oxide on 

the edge (a); SEM image of disc 5 (b), showing a depleted-deposit region within the orifice throat at the entrance. 

Deposits can be observed on the inner surface at about 100 µm from the orifice. 

 

3.5.2 Deposit build-up rates  

The orifice surface after deposit formation and the volume of the deposits can be assayed by numerical treatment 

of SEM pictures gathered in Figure 3.5 and Figure 3.11. The radial BUR (BR) and surface BUR (BS) can be 

calculated using Eq. 3-1, 3-2 and 3-3 (Table 3.3). The inner orifice BUR (BT) cannot be estimated because such 

a calculation requires the measurement of the average deposit thickness along the disc after FIB cross sectioning. 

The volume of the deposit was calculated by performing the same image processing for each disc.  

Table 3.3: Calculated radial BUR deduced from Eq. 3-1 and 3-2) and surface BUR deduced from Eq. 3-3 of deposits 

formed onto discs 1-5.  

Disc 

Equivalent 

diameter 

post-test 

(µm) 

Volume of 

deposits 

on disc 

surface 

(µm3) 

Duration 

(h) 

Flow velocity 

(m/s) 

Dihydrogen 

concentration 

(ppm) 

Detection 

of 

particles 

Radial 

BUR 

(BR) 

(µm/h) 

Surface 

BUR (BS) 

(µm3/h) 

1 / 395594 46 4 0 No / 8600 

2 / 153532 16 8 0 No / 9596 

3 284 1011240 90 18 0 No 0.09 11236 

4 81 12315540 217 

Step 1: 5 

Steps 2 and 3: 

34 

Step 4: 43 

Steps 1 and 2: 

0 

Step 3 and 4: 

2.5 

Yes 0.50 56753 

5 291 148413 112 12 

Step 1:0 

Step: 2: 0.13 

Step 3: 2.5 

No 0.04 1325 

 

The surface reduction of discs 1 and 2 is not calculated and supposed to be nil as previous SEM observations 

showed the absence of iron oxides on the edge of the orifice (Figure 3.8). Increasing flow velocity promotes the 
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surface BUR (except for disc 5) and also the radial BUR whether the influence of dihydrogen is not taken into 

account. The high radial BUR value calculated for disc 4 (0.5 µm/h) may be attributed to the high velocities (34 

and 43 m/s) in the last steps.  

A thorough discussion will be given in the next paragraph based on the above results in order to highlight the 

potential effects of the flow velocity on the deposit formation. Comparisons of the results from EDF observation, 

COLENTEC tests and electrokinetic tests will bring essential information on the potential involvement of 

electrokinetic phenomenon to TSP clogging formation. 

3.6 Discussions  

Dihydrogen was added during the investigations of discs 4 and 5. The presence of dihydrogen has been supposed 

previously to affect the soluble iron concentration and deposit composition (See paragraph 3.2). Nevertheless, 

it is difficult to conclude its effects from the present work as no significant comparison exists under different 

dihydrogen concentrations and same flow velocity. Performed qualitative EDS analyses show no difference on 

Fe/O atomic report between the deposits formed in the presence of dihydrogen (discs 4 and 5) and without 

dihydrogen (discs 1-3). Therefore, in the following discussions, the effect of dihydrogen concentration will not 

be considered.  

Electrokinetics seems to be considerably velocity-dependent. The effects of flow velocity on deposit formation 

will be carefully discussed in paragraph 3.6.1. Deposits built-up under nominal EDF conditions and certain 

electrokinetics investigations’ conditions (discs 3 and 4) exhibit lipping and ripple forms. However, these forms 

were not observed on COLENTEC-2015 samples. Explanations will be suggested in paragraph 3.6.2 based on 

the differences of the major operation parameters. This comparison, combined with the suggested velocity 

effects, will allow proposing how electrokinetics is involved in TSP clogging formation.   

3.6.1 Effect of flow velocity  

From the above results in paragraph 3.5 about the electrokinetic phenomenon, it can be assumed that an increase 

of the flow velocity is responsible for:  

i. more deposit formation onto the orifice edge (see values of the radial BUR in Table 3.3). 

ii. an increase of the volume of deposits onto the front surface of the disc (see values of the surface BUR 

in Table 3.3). 

iii. an increase of the distance from the orifice edge and the location of the deposit onto the front surface 

of the disc. 

iv. the formation of micrometric particles containing Fe, Cr and O, which deposit preferentially at the inlet 

of the restriction. The presence of particles in this region appears to highly enhance the formation of 

deposits and clogging considerably the restriction (disc 4).  

Effect (i) may be the result of high flow velocity in the close restriction region of the disc. Such a high flow 

velocity can indeed be responsible for a mechanical detachment of the deposit located close to the orifice edge. 

Figure 3.17 and Figure 3.18 show a modelling by COMSOL 5.2 CFD software of the flow streamlines of the 

fluid through the orifice of discs 1-3. The investigation domain is set at 20 mm upstream the disc and 30 mm 

downstream. Upstream flow velocities are considered to be well established with a distance of 20 mm before 
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the restriction and estimated by constant volumetric flux inside and outside the restriction. They are estimated 

to be 0.008, 0.016 and 0.036 m/s for disc 1 (4 m/s), disc 2 (8 m/s) and disc 3 (18 m/s), respectively, as the 

modelling initial conditions. The outlet is a constant pressure boundary condition. The number of mesh elements 

was equal to 31221 for all the three velocities.  

Figure 3.17 and Figure 3.18 show that dramatic increase of velocity occurs at the inlet of the restriction. A 

recirculation flow takes place downstream the disc. In the cases of disc 2 (8 m/s) and disc 3 (18 m/s), a second 

recirculation flow occurs in the right corner. It can be figured out higher is the velocity in the recirculation, 

bigger is this second circulation flow. The flow is found to converge towards the disc orifice by a top view of 

modelling streamlines as shown in Figure 3.19, which agrees with the previous observed deposits onto the discs 

1-2 (Figure 3.6). This modelling result confirms the formation of deposits by hydrodynamic effects.  

Dramatic flow acceleration occurs at the inlet region of restriction, up to 6 (disc 1), 12 (disc 2) and 25 m/s (disc 

3) at the edge of the orifice. Zooms of the restriction inlet region are displayed in Figure 3.20 for each disc. A 

flow velocity of 6 m/s is observed at the edge of disc 1 where deposits begin to form (Figure 3.6). A flow 

velocity of 6 m/s is found onto the disk surface at about 20 and 40 µm from the orifice edge for discs 2 and 3, 

respectively (Figure 3.20). These distances match perfectly with the dimension of depleted deposit regions, 

previously measured by SEM for discs 2 and 3 (See Figure 3.5). This result could confirm that a local flow 

velocity of 6 m/s may inhibit the presence of deposit. The increase of the flow velocity leads to an increase of 

the distance between the beginning of the deposits and the orifice edge. The distribution of the flow velocity 

vector is the same for all these three discs but the magnitude of these vectors is different depending on the disc.  
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Figure 3.17: 2D CFD modelling streamlines of pure water flow crossing through the orifice of disc 1 (flow velocity of 4 

m/s at the inner orifice). Modelling was performed by taking half of the flow cell (shown in Figure 3.3c) with a 

restriction radius of 0.15 mm and a pre-restriction radius of 3.35 mm. 

  

Figure 3.18: 2D CFD modelling streamlines of pure water flow crossing through the orifice of disc 2 (left) and disc 3 

(right).  



96 

 

 

Figure 3.19: Top view of CFD modelling streamlines of disc 1-3, showing that the flow converges towards the disc 

orifice on the front surface.   
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Figure 3.20: Magnitude of flow velocity at the inlet region of the disc 1 (4 m/s, top), disc 2 (8 m/s, middle) and disc 3 (18 

m/s, bottom). 6 m/s corresponds to the magnitude of flow velocity at a certain distance from the orifice edge, respectively 

0, 20 and 40 µm for the disc1, disc 2 and disc 3.   
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Radial BUR for discs 1 and 2 are close to zero as previously observed in Figure 3.8. The maximum value of the 

flow acceleration at the edge of the restriction may be responsible for two opposite phenomena: (i) more deposit 

detachment due to an increase of drag forces onto the surface or (ii) more deposit formation due to an increase 

of the magnitude of the streaming current resulting from shearing ions from the diffuse layer of the EDL. In the 

case of the discs 1 (4 m/s) and 2 (8/s), there is no electrokinetic phenomenon because the flow velocities are too 

low at the inlet of restriction. On the opposite, disk 3 undergoes electrokinetic phenomena since flow viscosity 

is higher at the inlet of restriction, which leads to deposit formation onto the front surface at the restriction edge 

and onto the orifice inner surface (Figure 3.10a). Finally, magnitude of electrokinetic phenomenon responsible 

for deposit formation seems to be more important than deposit detachment due to mechanical forces. Therefore, 

a threshold value of the flow velocity is essential for achieving electrokinetic phenomenon. Under the present 

investigation conditions, this threshold value can be estimated to be between 8 and 18 m/s.  

An increase of the flow velocity may promote mass transport of soluble iron species onto disc surface, which 

may induce higher surface BUR. When electrokinetic phenomenon occurs in the pre-restriction zone, like it is 

the case for disc 3, velocity may promote deposit formation onto the surface.  

An increase of the flow velocity promotes FAC of materials, as previously mentioned in paragraph 1.2.6.2, 

inducing more particles and soluble iron species in solution. Vena contracta mechanism can then be 

dramatically accelerated by increasing flow velocity (paragraph 1.5.3.1). Important particle deposition can thus 

be present preferentially at the inlet of restriction. The particle deposition at the inlet induces the contraction 

more restricted, enhancing flow acceleration and electrokinetic phenomenon. Particle deposition may also 

provide nucleation sites for precipitation phenomena, encouraging global deposit formation (paragraph 1.5.2). 

Therefore, increasing flow velocity may also indirectly promote electrokinetic phenomenon by increasing 

particle concentration in solution and deposition.  

In the next paragraph, electrokinetically induced deposits will be compared to the deposits observed by EDF 

and the deposits obtained during COLENTEC test campaigns in 2015. The effect of various parameters 

including the presence of particles and flow velocity will be discussed. Involvement of electrokinetic 

phenomenon will be suggested.  

3.6.2 Comparisons with COLENTEC results and EDF observations 

Typical electrokinetically induced deposits were obtained onto disc 3 surface. This deposit exhibits lipping 

forms at the inlet of orifice and ridges within the orifice as previously shown in Figure 3.10. This disc sample 

has been chosen for a sake of comparison with EDF observation and COLENTEC-2015 results to reveal the 

potential involvement of electrokinetic phenomena in TSP clogging formation. A comparison of major 

parameters is shown in Table 3.4 between different conditions.  
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Table 3.4: Comparison of operating conditions used during COLENTEC-2015 campaign test, electrokinetic investigation 

for disc 3 and EDF feedback under nominal conditions. *: The flow velocity within TSP flow holes under EDF or 

COLENTEC two-phase flow conditions is estimated by mass flow rate, supposing that liquid phase velocity is equal to 

that of the vapour phase. 

 EDF nominal operation 
COLENTEC-2015 

operation 

Electrokinetics 

investigation of disc 3 

pH at 25 °C, conditioned 

by morpholine and 

ammonia 

9.2 9.2 8.5 to 8.8 

Flow 
Two-phase  

(void fraction = 85%) 

Two-phase  

(void fraction = 90%) 
Liquid 

Temperature (°C) 277.2 250 250 

Dissolved dihydrogen 

concentration 

0.2 to 2 ppb without 

considering the formation 

by corrosion and by 

hydrazine decomposition 

0.38 ppm 0 

Flow velocity within TSP 

flow holes (m/s) 
7* 7* 18 

Presence of particles 20 ppb No No 

 

Deposits observed by EDF suggest important implication of electrokinetics to TSP clogging formation (Figure 

1.14b and Figure 1.15). Electrokinetic phenomenon is not expected to occur under COLENTEC-2015 operating 

conditions as neither lipping form at the inlet of restriction nor ripples along the titanium test coupons has been 

observed (Figure 2.7). Figure 3.21 shows iron deposits onto titanium coupons of COLENTEC-2015 tests 

governed by the hydrodynamics. Deposits follow the flow and are similar to that formed onto the front surface 

of discs 1 and 2 (Figure 3.6). Electrokinetic phenomenon may be inhibited by higher pH in COLENTEC tests 

as high pH reduces iron concentration in solution. However, electrokinetic phenomenon seems to occur in EDF 

reactors while the latter operate at the same pH of COLENTEC tests. The difference on dihydrogen 

concentration and temperature between COLENTEC and EDF nominal operation does not explain the absence 

of electrokinetic phenomenon under COLENTEC conditions as increasing dihydrogen concentration and 

decreasing temperature are both supposed to favour electrokinetic phenomenon (paragraph 3.2). The presence 

of particles and high flow velocity can thus be found to have a potentially important effect on electrokinetics 

activation. Indeed, around 20 ppb of iron particles are supposed to be present in secondary fluid under normal 

EDF operation conditions (paragraph 1.2.6.3.4) and particles were not observed on almost all COLENTEC-

2015 samples (paragraph 2.2.4). This result is consistent with the previous observation on the disc 4, which 

indicates a potential initiating effect of particle deposition, inducing higher flow velocity and more nucleation 

sites (paragraph 3.5.1). The flow velocity in COLENTEC tests is estimated to be around 7 m/s, which is close 

to the inner flow velocity of disc 2 (8 m/s). A flow velocity of 8 m/s has been found insufficient to activate 

electrokinetic phenomenon. This result agrees with the observed deposit by COLENTEC test. Therefore, the 

insufficient presence of suitable particles or the insufficient flow velocity may explain the absence of lipping 

and ripple forms under COLENTEC conditions.  

The presence of particles can favour electrokinetic activation without being indispensable given that 

electrokinetics was activated on disc 3 in the absence of particles and high inner orifice velocity, e.g., 18 m/s. 

Therefore, electrokinetics may be important when particles are present or flow velocity is sufficiently high. 

High velocity situation can be achieved, for example, when TSP is already clogged. Electrokinetics may be 

important after certain time of NPP functioning or after cleaning of steam generator, which may be more or less 

efficient, exhibiting already formed deposits.  

Based on the above discussions, it can be suggested the following involvement of electrokinetic phenomenon 

on TSP clogging: at the beginning step of NPP functioning (when flow holes are “clean” on a novel TSP), the 

flow velocity inside the clean flow holes is relatively low (about 7 m/s). Electrokinetics is more likely activated 

by particle deposition following vena contracta mechanism. It becomes then more and more important as the 
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flow hole is more and more restricted. Electrokinetics may predominate other phenomena implicated in TSP 

clogging formation from a certain flow velocity, imposing its typical ripples continuously propagating along 

the TSP.  

 

Figure 3.21: An example of the iron oxide deposits formed onto titanium test coupons after COLENTEC-2015 test, 

showing that the deposits are hydrodynamically affected by flow. 

3.7 Conclusions of Chapter 3  

Electrokinetic experiments under comparable secondary water conditions were performed in order to study the 

impact on representative deposits. These deposits exhibit typical lipping and ripple forms. Electrokinetics has 

been supposed to be favoured by high-velocity and/or the presence of particles. In the context of TSP clogging, 

electrokinetic phenomenon may be prevailed and activated at initial state by particle deposition. When flow 

becomes sufficiently fast, electrokinetics may become predominant and drives the global form of TSP clogging 

deposits observed by EDF.  

Experiments carried out at the University of Manchester are a first step for thorough electrokinetic investigation 

under secondary conditions and have shown encouraging results. Both comparative studies with COLENTEC 

tests and parametric investigations of different operating parameters are valuable for phenomenological 

understanding. Collaboration should be continued to deeply understand the effect of different parameters, e.g., 

flow velocity, pH, the presence of particles, etc., by varying one sole parameter each time and to estimate the 

contribution of electrokinetics to global TSP clogging.  
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In the next chapter, all expected phenomena involved in TSP clogging formation will be investigated by means 

of a numerical approach, which will allow quantifying the contribution of each mechanism.  
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Chapter 4 Numerical investigation of TSP clogging 

phenomenon  

4.1 Introduction  

Lipping form is observed by EDF for the clogging deposits at the inlet of TSP. The deposit formation rate can 

reach 386 µm/year in this region in EDF NPPs, as previously mentioned in paragraph 1.4.2.3. Three specific 

mechanisms have been supposed to contribute to the deposit formation at the inlet of TSP: particle deposition 

by vena contracta, flashing and electrokinetics (paragraph 1.5.3). Prusek (Prusek et al., 2013) attributed an 

initiation role to particle deposition phenomenon, which was suggested essential for flashing and electrokinetics 

at the inlet of TSP. The experimental results of global deposit build-up investigations using COLENTEC facility 

were in agreement with this proposal as no lipping form was observed on COLENTEC test samples and no 

particle was present in the test section (Chapter 2). Specific electrokinetics investigations at the University of 

Manchester also suggested an initiation role of particle deposition, which may facilitate the activation of 

electrokinetic phenomenon (Chapter 3).  

Therefore, particle deposition may initiate TSP clogging formation process. Afterward, cementation of the 

deposits formed by particle deposition may occur because of flashing and electrokinetic phenomena. From a 

quantitative point of view, the contribution percentage of these three mechanisms remains poorly studied and 

unknown. Electrokinetics may have a major contribution as it can explain the ripple form along the TSP 

afterwards the inlet.  

The present chapter aims at prioritizing these three mechanisms by performing a numerical estimation of the 

contribution percentage of each phenomenon towards global TSP clogging.  

Particle deposition phenomenon is described by vena contracta mechanism and is described using Eq. 1-32, 

1-33 and 1-34 (See paragraph 1.5.3.1 for details):  

 
Kv,p(t) =  

avkv(ρp − ρl)Cgdp
2Uz

2

μl
⁄   1-32 

 
kv (t) =

L − [R(1 −τc)]

S
  1-33 

 
ed(t) =  

ρlCpKv,p

ρd
t 1-34 

 

Flashing (See paragraph 1.5.3.2 for details) will be quantified by Eq. 1-35 and 1-36, which allow calculating 

the mass flux of soluble species precipitation φs per unit area (kg/s/m2): 
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   ϕs =  

ϕlΔHl𝑆𝑠

Hlg
  1-35 

 ΔHl =  λ(τc)Uz,l
2  1-36 

with φl (kg/s/m2) = ρlUz,l 

Nowadays, there is no numerical model capable to describe deposit formation by electrokinetic phenomenon. 

Its contribution cannot be directly calculated and will be estimated by means of the hypotheses reported below 

in paragraph 4.2.1.   

Particle size (dp) and particle concentration (Cp) are particularly important among the parameters useful for 

quantifying the different phenomena involved in TSP clogging. Particle size equal to 1 µm is considered to be 

in agreement with the size distribution observed in SG. However, particles sizing from 100 nm to 100 µm have 

been reported by previous feedbacks (See paragraph 1.2.6.3.4). Total iron concentration is maintained at 30 ppb 

in EDF SG feedwater and COLENTEC test solution. The real local iron concentration in restricted regions, e.g., 

TSP flow holes, remains undetermined and is susceptible to be dramatically higher than in feedwater (See 

paragraph 1.2.5). Calculations will be performed by varying values of particle size and particle concentration in 

order to reveal the phenomenon prioritization in different situations.  

Calculations will be performed under nominal EDF operation conditions in order to estimate the relative 

contribution of each phenomenon by using the observed global TSP clogging formation data (up to 386 µm/year 

at the inlet of TSP). No deposit was observed during COLENTEC-2015 tests at the inlet of TSP. Therefore, the 

global deposit formation data in this region is unknown, which is probably due to the unintended upstream 

particle trapping by components before test section. The phenomenon prioritization is thus impossible under 

COLENTEC-2015 conditions. Nevertheless, the same calculations will be performed under COLENTEC 

conditions for particle deposition and flashing, which will bring valuable information to explain the effects of 

the differences between EDF and COLENTEC operation conditions on each phenomenon.  

4.2 Hypotheses and input data  

Hypotheses will be made for different parameters to facilitate the quantification (paragraph 4.2.1). All input 

data used for calculation are listed in paragraph 4.2.2, under nominal EDF and COLENTEC-2015 conditions.  

4.2.1 Hypotheses  

In the present work, clogging at the inlet of TSP is supposed to be exclusively formed by particle deposition by 

vena contracta, flashing and electrokinetics. Erosion of formed deposits is not taken into account. 

Electrokinetics is estimated by simply subtracting particle deposition and flashing from global TSP clogging 

formation. The author would like to emphasize that the calculated contribution percentage of electrokinetic 

phenomenon may vary following different parameters as the particle size and total iron concentration due to the 

changes on particle deposition or flashing terms. Nevertheless, this variation may not reproduce the real 

contribution from these parameters to electrokinetic phenomenon from a phenomenological point of view.  
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Magnetite (Fe3O4) has been identified as the major component in TSP clogging from EDF and COLENTEC 

feedbacks. In the following calculations, TSP clogging deposits and deposited particles will be supposed to be 

pure magnetite with a density of 5180 kg/m3 (Table 1.4), which is considered to be independent of temperature. 

To facilitate the deposit thickness (ed) calculations, the deposit porosity will not be taken into account. Therefore, 

the particle and deposit densities (ρd and ρp, respectively) are supposed to be the same and equal to 5180 kg/m3.  

Particle deposition will be modelled with three different magnetite particle sizes (dp) (100 nm, 1 µm and 10 µm), 

which are believed to fairly represent real particle size dispersion in PWR steam generators as previously 

mentioned (paragraph 1.2.6.3.4).  

Different total iron concentrations (soluble iron concentration (Ss) and particle concentration (Cp)) will be used 

(magnetite solubility, 30 ppb, 100 ppb, 1 ppm and 3 ppm) for calculations in order to reveal the effect of the 

previously mentioned super-concentration phenomenon in SG (paragraph 1.2.5) on mechanism prioritization.  

Regarding the vertical secondary fluid velocity at the inlet of TSP, the mixture velocity Uz (m/s) is supposed to 

be equal to liquid phase velocity Uz, l (m/s).  

Addition of chemical agents, e.g., morpholine and ammonia, is considered to have no effects on water density 

(ρl), dynamic viscosity (μl) and heat of vaporisation (Hlg), for which characteristics of pure water will be used 

at a given temperature.  

A maximal global TSP clogging formation rate will be considered at the inlet of TSP: 386 µm/year, which 

corresponds to a totally clogged TSP (ed = 5.8 mm) after 15 years.  

The dimensionless TSP clogging rate (τc), representing the ratio between the flow blockage section to the total 

hole section, is considered to be 0 and 1 at t =0 and t = 15 years, respectively. In the following calculations, the 

deposit is supposed to be formed onto a totally-clogged TSP with a constant rate during 15 years, e.g., τc = 1, in 

order to maximize the particle deposition phenomenon (Eq. 1-33). Indeed, the flow contraction becomes more 

and more important as the deposit grows, e.g., τc increases, and consequently, the particle deposition is more 

and more favoured.  

The modelling dimensionless parameter λ in Eq. 1-36 for flashing quantification depends on TSP clogging rate 

(τc). Three values were proposed in the literature (Prusek et al., 2013): 7.97, 18 and 76 corresponding to TSP 

clogging rates equal to 0, 0.44 and 0.72, respectively. λ equal to 76 will be used in the present work to simulate 

deposit formation onto a well-clogged TSP induced by flashing for maximization.  

Based on the above hypotheses, all used input data will be listed in the next paragraph, under both nominal EDF 

operating and COLENTEC conditions.  

4.2.2 Input data 

The secondary water properties, e.g., dynamic viscosity (µl), water density (ρl) and heat of vaporisation (Hlg) 

were calculated by using the SteamTab software (SteamTab, 2010). Magnetite solubility at different 

temperatures of EDF and COLENTEC operating was obtained by using Figure 1.5. The vertical mixture 

velocity at the inlet of TSP (Uz) under nominal conditions equal to 2.7 m/s was proposed previously by EDF 

and used in the EDF modelling tool (Prusek, 2012). This velocity was calculated under COLENTEC-2015 

conditions from the mass flow rate and was found to be 3.2 m/s. Particle concentration (Cp) was calculated by 

subtracting the magnetite solubility (Ss) from the total iron concentration. Mass fraction of vapour phase (Cg) 

was calculated using the void fraction and density values. Values of the half distance between two consecutive 

tubes (L), the equivalent radius of a TSP flow hole (R) and its section (S) were provided by the TSP design in 

COLENTEC facility, which is representative of the real TSP geometry in EDF NPPs. Values of the above 

parameters are listed in Table 4.1 under both nominal and COLENTEC-2015 conditions.  
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Table 4.1: Values of input parameters for quantification of particle deposition and flashing, under nominal EDF operating 

and COLENETC-2015 conditions. 

 Nominal EDF operating conditions 

(277.2 °C, void fraction = 85%, 

pH25 °C = 9.2) 

COLENTEC-2015 operating 

conditions 

(250 °C, void fraction = 90%, 

pH25 °C = 9.2) 

Ss (kg/kg) 6x10-9 8x10-9 

µl (kg/m/s) 9.5x10-5 1.1x10-4 

ρl (kg/m3) 755.2 799.9 

Cg (kg/kg) 0.19 0.20 

Hlg (J/kg) 1.6x106 1.7x106 

Cp (kg/kg) Total iron concentration-6x10-9 Total iron concentration-8x10-9 

Uz/z,l (m/s) 2.7 3.2 

dp (m) 1x10-7 - 1x10-6 – 1x10-5 

L (m) 3.254x10-2 

R (m) 2.895x10-3 

S (m2) 7.214x10-5 

ρp/d (kg/m3) 5180 

τc 1 

av 0.00087 

λ 76 

4.3 Results  

Two types of phenomenon prioritization are performed, by varying (i) magnetite particle size (paragraph 4.3.1) 

and (ii) total iron concentration (paragraph 4.3.2). A total iron concentration equal to 30 ppb is used for 

calculation (i), and the particle size is fixed to 1 µm when iron concentration is varied (ii).  

4.3.1 Phenomenon prioritization with different particle sizes 

The calculations of deposit thickness formed after 15 years due to different phenomena are presented in Table 

4.2 following different particle sizes. These calculated thicknesses allow then estimating the contribution 

percentage of each phenomenon to global deposit formation, as shown in Figure 4.1, under nominal EDF 

operating conditions. Deposit thickness induced by flashing is found to be independent of magnetite particle 

size (534.3 µm after 15 years), representing 9.21% of the global deposit. In the contrast, particle size appears to 

dramatically affect the particle deposition phenomenon. When particle size is lower than 1 µm, the contribution 

of particle deposition is minor (< 1%) and electrokinetics predominates in the global deposit formation with a 

contribution percentage of about 90% (Figure 4.1a and b). When particle size reaches 10 µm, this trend changes 
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as shown in Figure 4.1c. Deposition of large particles (72.24%) prevails electrokinetics (18.53%) and flashing 

(9.21%) 

The same calculations were also performed under COLENTEC-2015 conditions to quantify deposit formation 

induced by particle deposition and flashing (Table 4.2). Electrokinetics cannot be estimated as no global deposit 

was formed at the inlet of TSP under COLENTEC conditions. COLENTEC conditions seem to promote particle 

deposition and flashing compared to nominal conditions, which may arise from the difference in secondary fluid 

velocity at the inlet of TSP (3.2 m/s under COLENTEC conditions vs. 2.7 m/s under nominal conditions), as 

both flashing and vena contracta mechanisms are highly dependent on fluid velocity (Eq. 1-32, 1-35 and 1-36).  

Table 4.2: Quantification of particle deposition, flashing and electrokinetics phenomena under nominal EDF operating 

conditions and COLENTEC-2015 operating conditions after 15 years (Particle size is equal to 0.1, 1 and 10 µm; total 

iron concentration is equal to 30 ppb).  

 

Nominal EDF operating conditions 

(277.2 °C, void fraction = 85%, 

pH25 °C = 9.2) 

COLENTEC-2015 operation 

conditions 

(250 °C, void fraction = 90%, 

pH25 °C = 9.2) 

Global deposit thickness at the 

inlet of TSP after 15 years (µm) 
5800 / 

Particle size (µm) 0.1 1 10 0.1 1 10 

Deposit thickness due to vena 

contracta after 15 years (µm) 
0.419 41.9 4190 0.514 51.4 5140 

Deposit thickness due to flashing 

after 15 years (µm) 
534.3 534.3 534.3 1182 1182 1182 

Deposit thickness due to 

electrokinetics after 15 years (µm) 
5265 5224 1075 / 

 

 

   

(a) (b) (c) 

Figure 4.1: Schematic representation of the calculated contribution percentage of particle deposition by vena contracta 

(blue), flashing (red) and electrokinetics (green) to global deposit formation under nominal EDF conditions, with particle 

size equal to 100 nm (a), 1 µm (b) and 10 µm (c). 
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4.3.2 Phenomenon prioritization with different total iron concentrations  

The calculations of deposit thickness formed after 15 years due to different phenomena are presented in Table 

4.3 following different total iron concentrations. These calculated thicknesses allow then estimating the 

contribution percentage of each phenomenon to global deposit formation, as shown in Figure 4.2, under nominal 

EDF operating conditions. Deposit thickness induced by flashing is found to be independent of total iron 

concentration. Nevertheless, particle deposition phenomenon is affected by the change of iron concentration. 

When the total iron concentration is inferior to 1 ppm, the contribution of particle deposition is secondary and 

electrokinetic phenomenon predominates the global deposit formation (Figure 4.2a-d). This trend changes as 

shown in Figure 4.2e, when iron species is concentrated to 3 ppm in solution. Deposition of particles (90.12%) 

prevails electrokinetics (0.67%) and flashing (9.21%).  

The same promoting effect on particle deposition and flashing by COLENTEC conditions is obtained as 

previously mentioned in paragraph 4.3.1.  

Table 4.3: Quantification of particle deposition, flashing and electrokinetics phenomena under nominal EDF operating 

conditions and COLENTEC-2015 operating conditions after 15 years (Particle size is equal to 1 µm; total iron 

concentration is equal to magnetite solubility, 30 ppb, 100 ppb, 1 ppm and 3 ppm). 

 
Nominal EDF operating conditions 

(277.2 °C, void fraction = 85%, pH25 °C = 9.2) 

COLENTEC-2015 operation conditions 

(250 °C, void fraction = 90%, pH25 °C = 

9.2) 

Global deposit 

thickness at the inlet 

of TSP after 15 years 

(µm) 

5800 / 

Total iron 

concentration (ppb) 
6 30 100 1000 3000 8 30 100 1000 3000 

Deposit thickness due 

to vena contracta 

after 15 years (µm) 

0 41.9 164.1 1736 5227 0 51.4 215.1 2319 6994 

Deposit thickness due 

to flashing after 15 

years (µm) 

534.3 534.3 534.3 534.3 534.3 1182 1182 1182 1182 1182 

Deposit thickness due 

to electrokinetics 

after 15 years (µm) 

5266 5224 5102 3530 38.25 / 
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(a) (b) 

   

(c) (d) (e) 

Figure 4.2: Schematic representation of the calculated contribution percentage of particle deposition by vena contracta 

(blue), flashing (red) and electrokinetics (green) to global deposit formation under nominal EDF conditions, with total 

iron concentration of 6 ppb (a), 30 ppb (b), 100 ppb (c), 1 ppm (d) and 3 ppm (e). 

4.4 Discussions  

The presence of lipping and ripple forms in the deposits observed during previous EDF NPP feedbacks 

suggested the importance of the electrokinetic phenomenon in global TSP clogging formation.  In a previous 

modelling study, Prusek (Prusek et al., 2013) proposed a sequence of TSP clogging formation: deposit is 

initiated by particle deposition throughout a vena contracta mechanism, then flashing and electrokinetics occur 

to cement the formed deposits. Global deposit build-up investigations using COLENTEC facility showed the 

absence of clogging at the inlet of TSP under similar nominal EDF conditions, without occurring of particle 

deposition. Specific electrokinetic investigations suggested consistently the initiation role of particle deposition 

for electrokinetic activation.  

The present numerical phenomenon prioritization highlights, from a quantitative point of view, the 

predominance of electrokinetic phenomenon in TSP clogging formation compared to particle deposition and 

flashing, when the total iron concentration and magnetite particle size are below to 3 ppm and 10 µm, 
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respectively. Specific electrokinetic investigation suggested a radial deposit build-up rate of 0.09 µm/h when 

electrokinetics was activated by an inner orifice flow velocity equal to 18 m/s (Table 3.3). This rate corresponds 

to a deposit thickness, exclusively due to electrokinetics, of 11.8 mm after 15 years, which is about two times 

of the maximal clogging thickness at the inlet of TSP (5.8 mm). It is premature to extrapolate this radial BUR 

in quantification of the electrokinetic contribution to TSP clogging, as the contraction geometry, flow chemistry 

and thermohydraulics are not representative in the specific experimental electrokinetics studies at the University 

of Manchester. However, this experimental result seems to indicate that electrokinetically induced deposits 

grow and clog the TSP flow holes with a considerably high rate, in agreement with the predominant role of 

electrokinetics highlighted by calculations.  

Contribution of particle deposition by vena contracta appears negligible when particle size is lower than 1 µm 

and the total iron concentration is below 1 ppm (Figure 4.1 and Figure 4.2). The absence or insufficient 

concentration of particles onto COLENTEC test coupons may be due to the upstream trapping of large particles 

(> 1 µm) before entering test section. Indeed, many geometric singularities are present inside the secondary 

boiler upstream the test section (Figure 2.1), favouring unintended particle trapping. The low concentration of 

total iron of about 30 ppb in COLENTEC solution may also explain the absence of particle deposition 

phenomenon in COLENTEC tests as shown by calculation. When particle size reaches 10 µm, the contribution 

of particle deposition becomes important. This result agrees with the deposits formed onto the disc 4 during 

electrokinetic investigation in which large particles (> 10 µm) were observed in deposits (Figure 3.14). It can 

be figured out that particle deposition phenomenon is more important under COLENTEC-2015 conditions than 

under nominal EDF operation conditions. The slightly higher flow velocity in COLENTEC tests may explain 

this trend.  

Flashing is found to be independent of the total iron concentration and the particle size. It contributes about 10% 

of global deposits. Flow velocity at the inlet of TSP has a major effect on this phenomenon, as shown in Eq. 

1-36. Water temperature and pH, inducing changes in magnetite solubility (Ss), also affect flashing. Therefore, 

the higher deposit thickness calculated under COLENTEC-2015 conditions can be explained by the higher flow 

velocity and the higher magnetite solubility.  

4.5 Conclusions of Chapter 4 

Numerical calculations under EDF nominal operating conditions have been performed to describe particle 

deposition and flashing phenomena. Electrokinetic contribution was estimated by subtracting particle deposition 

and flashing from the global deposit formation. Electrokinetics has been found to play a predominant role in 

TSP clogging formation whereas no significant contribution of magnetite particle deposition occurs, if the size 

of particles is below to 1 µm and the total iron concentration is less than 1 ppm.  

Calculations performed under COLENTEC-2015 conditions allowed attributing an enhancing effect of flow 

velocity to particle deposition and flashing phenomena. Flashing would also be strengthened by the lower 

temperature under COLENTEC conditions (250 °C vs. 277.2 °C), which increases the magnetite solubility.  

Previous COLENTEC-2015 tests and specific electrokinetic investigations suggested an essential role of 

particle deposition, which initiates flashing and electrokinetics occurring. Experimental validation by 

COLENTEC facility should be conducted, avoiding the upstream particle trapping. Direct particle injection into 

the test section appears pertinent. The above quantification results of particle deposition phenomenon, following 

different total iron concentration and particle sizes, are useful for the further test design of particle injection.  
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Chapter 5 Overall conclusions and perspectives 

Optimal functioning of steam generators is essential for PWR production and safety. Corrosion phenomena, 

particularly flow accelerated corrosion, induce the formation of soluble and particle iron species in PWR 

secondary fluid. These particles are then conveyed into SG and are responsible for various degradation deposit 

phenomena, e.g., tube fouling and tube support plate clogging. TSP clogging phenomenon refers to the deposits, 

majorly composed of magnetite (Fe3O4), obstructing the secondary flow holes between SG tubes and TSP. This 

phenomenon decreases the secondary flow section and induces high velocity zones and transverse velocities, 

which can imply SG tube cracks and leaks in the worse cases. Currently used diagnosis methods and 

countermeasures face to TSP clogging have been identified. Chemical cleaning can be efficient but remains 

extremely costly and difficult to perform. Therefore, finding alternative solutions to avoid TSP clogging is 

necessary. Current main remedies, without understanding the phenomenology of deposit formation, are applied 

for decreasing the soluble and particle iron species concentration, e.g., the source of TSP clogging, in PWR 

secondary solution by minimizing magnetite solubility. High pH has been found to have a primary role to reduce 

magnetite solubility. The present work aimed at thoroughly understanding the phenomena responsible for TSP 

clogging by a mechanistic approach in order to identify the preponderant formation processes and reveal their 

contributions to global deposit formation.  

Magnetite particle deposition and soluble iron precipitation are the two main formation processes of SG 

degradation phenomena. Previous experimental and numerical studies have been thoroughly reviewed, bringing 

essential information to generally understand these two mechanisms. A schematic illustration of TSP clogging 

formation is shown in Figure 5.1, governing particle deposition and soluble iron precipitation phenomena.  
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Figure 5.1: Schematic illustration of TSP clogging formation by particle deposition and precipitation phenomena.  

TSP clogging deposits in nuclear power plant feedbacks are characterized by lipping and ripple forms. Maximal 

TSP clogging formation rate was estimated to be 386 µm/year at the inlet of TSP. TSP clogging may occur onto 

two steps: (i) initiation by particle deposition and (ii) propagation by flashing and electrokinetic phenomena. 

Laboratory-scale deposit build-up tests were performed by means of the two-phase flow COLENTEC facility 

under close representative conditions of the 8th TSP in SG. COLENTEC is a unique tool of great interest to 

carry out parametric studies for improving the comprehension of TSP clogging phenomenon. The performed 

tests clearly indicated the effect of surface roughness and the deposit formation by soluble iron precipitation. 

Fine TEM characterizations were performed onto titanium and stainless steel test coupons from COLENTEC 

tests. They confirmed the effect of the nature of the material on deposit formation. Incorporation of external 

iron species into material corrosion layer has been supposed, following the different chemical and 

crystallographic affinities between material and external iron. The incorporation may encourage corrosion and 

delay material passivation, which has been proposed to be essential for initiating deposit formation. Monophasic 

autoclave tests under COLENTEC temperature and chemistry were developed in parallel. These tests provided 

results in accordance with the previously suggested material effects. Particle deposition was not highlighted in 

the deposits reformed by COLENTEC facility, which is due to the non-favouring experimental conditions. 

Specific TSP clogging lipping and ripple forms were not observed on COLENTEC samples, which was 

considered to be related to the insufficient concentration of particles in the test section or the insufficient flow 

velocity in quatrefoils.  
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Electrokinetic phenomenon, induced by charge rearrangement in flow acceleration regions, allows forming 

deposits and perfectly explaining the formation of clogging deposits under lipping form at the inlet of TSP and 

periodic ripples along the TSP. This mechanism may contribute considerably to clogging formation. The 

specific experimental investigations allowed reforming deposits under representative lipping and ripple forms 

with a high inner orifice velocity of 18 m/s, using a world unique dedicated recirculating autoclave system at 

the University of Manchester. Electrokinetic indications were not shown with two lower velocities (4 and 8 m/s), 

suggesting that electrokinetic phenomenon depends largely on flow velocity and may only be activated from a 

certain velocity. Electrokinetic activation by particle deposition was equally suggested by thorough comparisons 

based on the differences between nominal EDF operation, COLENTEC and specific electrokinetic investigation 

conditions. Strong involvement of electrokinetics in TSP clogging formation was suggested, needing likely 

initiation by particle deposition.  

Mechanistic prioritization between particle deposition, flashing and electrokinetics was performed by numerical 

calculations under EDF nominal operating conditions. Electrokinetic contribution was estimated by subtracting 

particle deposition and flashing from the global deposit formation, and has been found to play a predominant 

role in TSP clogging formation. Nevertheless, contribution of magnetite particle deposition has been estimated 

to be minor and flashing contributes in about 10% of clogging deposits if the particle size remains below to 1 

µm and the total iron concentration is less than 1 ppm.  

The present work has allowed a thorough comprehension of TSP clogging formation processes (Figure 5.2). In 

a novel steam generator, the flow velocity in the quatrefoils is about 7 m/s, which is insufficient to activate the 

electrokinetics. Particle deposition may initiate deposits once material passivated with an average particle size 

of 1 µm and a total iron concentration likely much higher than 30 ppb in SG. Flashing and electrokinetics occur 

afterward, with more nucleation sites and higher flow velocity induced by particle deposition, to enhance the 

previously formed deposits. Electrokinetic phenomenon has been estimated to have a predominant contribution 

in TSP clogging formation.  

 

 

Figure 5.2: Suggested formation processes of TSP clogging phenomenon.  
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From the above results, TSP material passivation is found be essential for deposit occurring onto the material 

surface. Microscopic characterizations of COLENTEC and autoclave tests suggested incorporation of external 

iron into material corrosion layer. Supplementary autoclave tests are necessary in order to better establish the 

trend of formed corrosion layer thickness following different iron concentrations. Adding isotopic species as 

tracer, e.g., 57Fe and 18O, into COLENTEC and autoclave solution may be pertinent to directly reveal the 

contribution of external iron in material corrosion. Secondary ion mass spectrometry (SIMS) appears 

particularly useful to evidence the presence of isotopic elements in corrosion layer as post-characterization tool.  

Particle deposition may initiate TSP clogging formation, encouraging afterward flashing and electrokinetic 

occurring. Deepening the understanding of this phenomenon is necessary. COLENTEC-2015 tests provided 

deposits without particle contribution, an interesting comparison with these deposits can be expected by 

conducting future COLENTEC tests with the presence of particles in order to reveal experimentally their role 

in deposit formation. For this purpose, following recommendations are proposed: 

• Particles should be directly injected in the COLENTEC test section, without passing through the 

secondary boiler in order to avoid trapping. The implementation of injection system and necessary 

modifications to COLENTEC facility are ongoing. The injected quantity has been determined using 

vena contracta model, by supposing a formed deposit thickness characterisable by SEM. If specific 

lipping and ripple forms of TSP clogging are observed by particle injection, the initiating role of particle 

deposition would be confirmed.  

• Adding of particles containing isotopic tracers in the secondary circuit of COLENTEC test loop are 

useful, which may aid to identify the preferred localisations of particle deposition and facilitate the 

distinction between the deposits formed by particle deposition and by precipitation. Effects of particle 

concentration and particle size may also be experimentally studied, which were found to influence the 

mechanistic prioritization. Effects of external contribution to material corrosion may equally be 

confirmed by injection of tracer species. Nevertheless, particles with isotopic tracers are extremely 

costly. Using core-shell particles as tracer may be an alternative solution, with the shell composed of 

magnetite to ensure the representability and the core composed of tracer element. The main challenge 

in the synthesis of core-shell particles consists of the simultaneousness between the formation of the 

core-shell configuration and the synthesis of the core and shell components. A dedicated research 

program should be established for synthesising size-controlled core-shell particles, if this approach is 

chosen. A tentative investigation of the synthesis of CeO2-Fe3O4 core-shell particles has been conducted 

in the course of the present work and is briefly presented in Appendix C.  

• Injection of radioactive magnetite particles, e.g., 59Fe, may bring data on particle deposition kinetics by 

monitoring formed deposits by on line γ-ray detector. The first campaign with radioactive injection is 

planned in 2018 using modified COLENTEC facility.  

Inhibiting particle deposition phenomenon may be an interesting solution to avoid TSP clogging. 

Implementation of particle trapping components can be suggested upstream SG, as the role played by the 

secondary boiler in COLENTEC-2015 tests. For this purpose, a configuration of inside trapping system with 

large numbers of geometric singularities may be useful, encouraging particle trapping by coasting and 

sedimentation phenomena. Particle trapping by magnetic effect may also be efficient as magnetite has the 

strongest magnetism of all the natural minerals.  

Electrokinetic phenomenon has been predicted to be predominant by the present work. A guideline for the future 

research works on TSP clogging phenomenon can thus be strongly proposed, which consists of the thorough 

understanding of this relatively poorly-known mechanism. Performed preparative experimental investigations 

in the University of Manchester provided first and unique results of electrokinetically induced deposit formation 

under simulated PWR secondary solution. Supplementary parametric studies should be carried out in order to 

reveal the effects of different secondary thermohydraulic and chemical parameters on electrokinetic 

phenomenon. Comparative investigations with COLENTEC tests appear useful for the experimental validation 

of the numerically suggested predominance electrokinetics. Several recommendations are listed below, based 

on the previously conducted investigations presented in Chapter 3: 
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• On-line pH measurement sensor should be implemented in the test loop in order to control precisely the 

pH, which may strongly affect the deposit formation.  

• Specific investigation on the inner flow velocity appears of great interest as electrokinetics may be high-

velocity activated. Supplementary velocities should be tested under the same conditions with that of the 

investigations of discs 1-3 (See paragraph 3.4). Velocities ranging from 8 to 18 m/s should be finely 

studied, in order to determine the threshold velocity for electrokinetic activation.  

• Injection of iron particles is useful to highlight the role of particle deposition, which was supposed to 

initiate electrokinetics. Particle injection to the tests with velocities lower than threshold velocity of 

electrokinetic activation appears particularly pertinent.  

• One-step tests should be preferentially performed, with only one studied parameter for each disc, for 

facilitating interpretations.   

• Other parameters, e.g., fluid temperature, pH, conductivity, dissolved oxygen and dihydrogen 

concentration, disc material, etc., should be all investigated, in order to thoroughly understand 

electrokinetics.  

• The presence of particles may not be indispensable for electrokinetic activation, suggested by the results 

obtained on disc 3 (v = 18 m/s). Deposit formation with high inner TSP velocities, e.g.,18 m/s, should 

be conducted using current COLENTEC test loop (without particles in the test section) and compared 

to deposits formed in COLENTEC-2015 tests and disc 3 investigations. The activation mode of 

electrokinetics would be better understood.  

• Comparative studies should be performed between the future COLENTEC and specific electrokinetic 

investigations, if lipping and ripple forms are both observed, allowing experimentally to estimate the 

electrokinetic contribution to global deposit formation.  

A model can finally be proposed based on the above complete experimental investigations, which describes the 

electrokinetically induced deposits under PWR secondary conditions. This model would practically be the 

model of TSP clogging phenomenon if the predominance of electrokinetics is confirmed. Novel geometric 

design of TSP allowing to decrease velocity change at the inlet, e.g., larger secondary flow hole section between 

TSP and SG tubes and more smoothing TSP inlet, may then be proposed as alternative solution for delaying 

TSP clogging.  
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Appendix A Scanning Electronic Microscope 

In scanning electronic microscope (SEM), the sample surface is raster-scanned in high vacuum with a focused 

beam of electrons. Secondary or backscattered electrons are detected to provide an image of the sample surface 

with up to nanometre-scale resolution. In addition to structural imaging, the elemental composition of the 

surface can be assessed from characteristic X-rays that are emitted (Figure A.1). 

 

Figure A.1: Rudimentary processes that occur upon impingement of an electron beam onto a sample surface in SEM.  

In general, sample surfaces for SEM analysis require pre-treatment to render them clean and conductive to 

prevent the accumulation of charges in the specimens. This pre-treatment may consist of a thin coating of metals, 

such as gold or platinum, or of graphite.  

Due to its surface sensitivity, the secondary electron imaging mode is widely used. In this mode, low-energy 

secondary electrons (< 50 eV) are detected that were ejected from specimen atoms by inelastic scattering 

interactions with primary electrons. The low energy leads to a limited escape depth of only a few nanometres.  

Backscattered electrons possess much higher energy compared to secondary electrons and allow one to image 

with atomic number contrast. High atomic number elements backscatter the primary electrons more effectively 

compared to lighter elements.  

Characteristic X-rays are emitted from atoms at depths of up to a micrometre upon interaction with the incident 

electrons. The ejection of photoelectrons is followed by subsequent rearrangements of the electronic shells of 

the energetically excited atoms. One pathway for deactivation of the excited state is the emission of a 

characteristic X-ray photon. To analyze the X-rays the SEM must be equipped with an energy dispersive X-ray 

detector (EDX). Since the escaping photon is not charged, like for instance the mentioned secondary electrons, 

the escape depth is considerable. 

A ZEISS EVO HD15MA SEM (LaB6 source) and a HIROX SH 4000M mini-SEM equipped with an OXFORD 

SDD X-Max 50 EDS detector for chemical analysis was used for SEM observations in the present work.  

 



131 

 

Appendix B Transmission Electronic Microscope 

Transmission electronic microscope is a microscopy technique where a beam of electrons is transmitted through 

an ultra-thin specimen and a unique tool in characterization of materials’ crystal structure simultaneously by 

diffraction and imaging techniques. TEM has three essential systems (Figure B.1):  

i. An electron gun, which produces the electron beam, and the condenser system, which focuses the beam 

onto the object. The source of electrons is heated V-shaped tungsten filament or, in high performance 

instruments, a sharply pointed rod of a material such as lanthanum hexaboride.  

ii. The image producing system, consisting of the objective lens, movable specimen stage, and 

intermediate and projector lenses which focus the electrons passing through the specimen to form a real 

and highly magnified image. The quality of the final image in the electron microscope depends highly 

on the accuracy of the various mechanical and electrical adjustments with which the various lenses are 

aligned to one another and to the illuminating system.  

iii. The image recording system, which concerts the electron image into some form perceptible to the 

human eye. The image recording system usually consists of a fluorescent screen for viewing focusing 

the image and a digital camera for permanent records.  

 

 

Figure B.1: Schematic diagram of TEM  

 

Three major imaging modes are generally used: High Angle Annular Dark Field (HAADF), Annular Dark Field 

(ADF) and Bright Field (BF), as schematized in Figure B.2.  
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Figure B.2: Schematic representation of TEM imaging modes  

Crystallographic information, e.g., crystal orientation and lattice parameters, can be obtained by electron 

diffraction patterns (Figure B.3).  

 

Figure B.3: Schematic comparison between TEM imaging mode and diffraction mode. SAED represents Selected Area 

Electron Diffraction.  

TEM observations in the present work were performed on a FEI Tecnaï G2 transmission electron microscope 

equipped with a LaB6 source, operating at 200 kV. Samples for TEM observations were cut with the FEI FIB-

Helios 600 Nanolab Dual Beam. 
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Appendix C Synthesis of CeO2-Fe3O4 core-shell particles 

• Synthesis of CeO2 
 

- Reagents:  

✓ 50 ml of Ce(NO3)3 6H2O solution (CAS: 10294-41-4)  

✓ Adding of 25 ml of ammonia (CAS: 1336-21-6)  

- Synthesis conditions: 

Temperature Atmosphere Stirring rate  Duration  

50 °C Air 500 rpm 2 hours 

- Results: 

 
 

Figure C.1: Synthesized CeO2 particles in suspension (left); XRD diagram of synthesized particles showing the chemical 

composition of CeO2 (right). 

 

 

• Synthesis of core-shell CeO2-Fe3O4 particles 

 
- Reagents:  

✓ 24 g of urea (CAS: 57-13-6) in 500 ml of H2O in Teflon container.  

✓ Adding of 13.5 g of FeCl3. 6H2O (CAS: 10025-77-1) and 5.3 g of FeCl2. 4H2O (CAS: 13478-10-

9).  

✓ Adding of 0.7 g of synthesized CeO2 particles.  

- Synthesis conditions: 
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Temperature Atmosphere Stirring rate  Duration  

85 °C Air 0 48 hours 

- Results: formation of mixture of Fe3O4 and CeO2, without achieving the core-shell configuration.  

 

• Perspectives:  

 

- Implementation of automatic CeO2 particles adding system, allowing progressive and slow addition and 

implementation of stirring system without using magnetic effects.  
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