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In this Ph.D. thesis we develop Hybrid High-Order methods for the numerical
approximation of interface problems. Specifically, two kinds of interfaces are
considered here: diffuse interfaces and interfaces that act as internal boundaries.
In this introductive chapter, we discuss the motivations and the context of the Ph.D.
thesis, illustrate the problems we focus on, and summarize the main results.

1 Motivations, context, and manuscript structure
The main goal of this Ph.D. thesis is to apply the recently introduced Hybrid High-
Order (HHO) technology to interface problems. In this section we provide a brief
state-of-the-art for HHO methods, then we discuss their advantageous features in
the context of the interface problems considered here. We close this section by
describing the structure of the manuscript.

1



2 Introduction

Hybrid High-Order methods: A state-of-the-art

Hybrid High-Order methods are a family of new generation numerical methods for
Partial Differential Equations (PDEs) originally introduced in [7777, 8383]. The term
Hybrid refers to the fact that two kinds of discrete unknowns are used, namely
broken polynomial on themesh and its skeleton. The termHigh-Order emphasizes
the possibility to arbitrarily increase the approximation order to accelerate conver-
gence in the presence of (locally) regular solution or when resorting to adaptive
techniques.

The cornerstones of HHOmethods are: (i) local reconstructions of the relevant
(differential) operators obtained by mimicking integration by parts formulas where
the hybrid discrete unknowns play the role of the function inside each element and
on its faces; (ii) stabilization terms obtained by penalizing high-order residuals
which vanish when applied to the interpolate of polynomial functions up to a
suitable degree. This subtle construction confers a number of attractive features
to the method: (i) it supports fairly general polytopal meshes, possibly containing
polygonal elements and nonmatching faces; (ii) it allows arbitrary approximation
orders; (iii) it delivers inf-sup stable discretizations of mixed problems; (iv) it is
locally conservative; (v) it can be efficiently implemented by statically condensing
element-based discrete unknowns; (vi) its construction is independent of the space
dimension.

Since their introduction, HHO methods have experienced a vigorous develop-
ment, and have been used to discretize several linear and nonlinear PDE problems
arising in various fields of computational physics. Besides the original works
on variable diffusion [7878, 8282, 8383] and quasi incompressible linear elasticity [7777,
8080], we can cite applications to locally degenerate diffusion-advection-reaction
[7575], poroelasticity [2929], creeping flows [55] possibly driven by volumetric forces
with large irrotational part [8484], electrostatics [8585, 8888], incompressible flows
governed by the Oseen [66] or Navier–Stokes equations [3737, 8686], nonlinear elasticity
and poroelasticity [3838, 3939], finite deformations of hyperelastic materials [22],
incremental associative plasticity with small deformations [11], adaptive yield
surface detection for Bingham pipe flows [5454], spectral approximation of elliptic
operators [5353], or elliptic interface [5050], elliptic obstacle problems [6464], Kirchhoff–
Love plate bending [3232], nonlinear Leray–Lions elliptic operators [7373, 7474], the
Brinkman problem [3636] and highly oscillatory elliptic problems [6565]. In [6363],
authors present a generic implementation of the HHO method on arbitrary-
dimensional polytopal meshes. Recent extensions of the original method include,
e.g., the adaptive [8888] and hp-versions [77] as well as the support of meshes with
curved faces [3535],

We conclude this introductory section by noticing that polytopal methods are
a very active research subject, and links exist between HHO and other recent
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technologies, including Hybridizable Discontinuous Galerkin methods [5555, 6969],
mixed [2121] and nonconforming [1818] Virtual Element methods, and Gradient
Discretizations [9191]. The lowest-order version can additionally be bridged to
Mixed [9090] and Hybrid [9696] Finite Volumes and Mimetic Finite Differences
methods [4747, 4848, 117117]. For the details, we refer the reader to [3131, 6868, 7676].

Applications to interface problems
Besides the general features discussed in the previous section, HHO methods
display specific advantages in the context of the interface problems considered in
this manuscript, which we briefly discuss here.

Diffuse interface models

Diffuse interface models describe the evolution of systems where two (or, possibly,
more) non-miscible phases are present. These models are based on a thermo-
dynamic description of fluids endowed with internal capillarity, i.e., such that
their energy depends not only on its density and temperature but also on its
density gradient; see [114114]. Several industrial processes involve multiphase flows
driven by capillary effects. The original motivation for the application considered
in Chapter 11 was a collaboration with Saint–Gobain Recherche, where diffuse
interface models are used to simulate phenomena such as (i) the fouling of tubes
of thermoplastic elastomers used in beverage distribution and (ii) the early stages
of glass production, which involve wetting liquid on grains more resistant to
melting. The optimization of these processes requires a better understanding of
local phenomena, which, considering the involved scales, are strongly influenced
by capillary forces.

The defining feature of diffuse interface models is that the interface is not
explicitly tracked, but rather described by means of a smooth function c, called
order-parameter, which takes a constant value (typically ±1) inside each phase
and varies continuously between these two values over a characteristic length γ;
see Figure 1a1a. As explained in [4242, 113113], the diffuse interface approach can
be regarded as a regularization of sharp-interface models, where each phase is
governed by a system of PDEs and links among the phases are established by
enforcing transmission conditions at the interface. In sharp interface models the
interface between the two phases is often numerically described as the zero level
set of a smooth function, and the calculations of the exact sharp-interface equations
generally require adaptive, interface fitting grids. In practice, the sharp-interface
approach presents serious challenges for flows which, like the ones considered
here, involve a large number of interfaces as well as splitting and coalescence
phenomena; see, e.g., Figure 1b1b, where we display the simulation of the early stage
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≈ γ

−1

1

c

(a) Variation of the order parameter between
two phases

(b) Numerical simulation of the early stage
of a spinodal decomposition

Figure 1: Description of phases using diffuse interfacemodels (left) and simulation
of a spinodal decomposition involving a large number of interfaces (right).

of a spinodal decomposition. These difficulties are even more pronounced in three
space dimensions. In diffuse interface models, on the other hand, concentrated
terms and discontinuities at the interface are smoothed out by distributing them
over thin but numerically resolvable layers, and calculations can be carried out on
fixed grids. This entails significant simplifications from a practical point of view.

In the context of diffusive interface modelling, the selected discretization
method has to match some requirements in order to obtain simulations that capture
the phase separation with sufficient accuracy. As a matter of fact, high gradient
areas are located near the interface and, when considering spinodal decomposition
(see Section 22 below), these areas are spread all over the computational domain,
making local adaptation ineffective; see, e.g., Figure 1b1b. Since HHO methods
are based on fully discontinuous polynomial spaces, they can accomodate by
construction these abrupt varations between the phases. Additionally, the pos-
sibility to increase the approximation order makes it possible to capture fine
details also on relatively coarse meshes. Finally, when considering problems with
localized interfaces, for which local mesh adaptation is an effective option, HHO
methods provide an unprecedented flexibility thanks to the seamless support of
nonconforming mesh refinement or derefinement by element agglomeration; see
[3535, 8888].

The main contribution of this Ph.D. thesis to the numerical approximation of
diffuse interface models is the design and analysis of a novel HHO method for the
Cahn–Hilliard equations, a diffuse interface model used to describe the process of
phase separation. Using a variant of the originalHHOmethod of [8383]with enriched
element spaces, we are able to prove the well posedness of the discrete formulation
and optimal convergence rates for the energy-norm of the discretization error. The
analysis hinges on new discrete functional analysis results on hybrid polynomial
spaces valid in two and three space dimensions, namely discrete Agmon and
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Gagliardo–Nirenberg–Poincaré inequalities. A comprehensive panel of numerical
experiments is proposed to confirm the theoretical results and showcase the ability
of the method to track interfaces, even in the presence of strong advective fields.
These works have given rise to one full-length paper appeared in SIAM Journal
on Numerical Analysis [5959], as well as to a conference proceeding [5858].

Internal boundaries

The second kind of interfaces considered here are internal boundaries. Specifically,
we focus on the numerical approximation of flow and passive transport in fractured
porous media. This is an extremely active research field in computational geo-
sciences due to the very large number of possible applications including, e.g.: oil
recovery, hydraulic fracturing, geological CO2 storage or toxic/radioactive waste
underground burying.

Fractures in the subsurface are ubiquitous, and can be caused by tectonic forces,
changes of temperature, drying processes, by leaching in the plane of stratification,
or by schistosity; see, e.g., [123123]. Generally grouped in the category of fractures
are: cracks, i.e., partial or incomplete fractures; fissures, which exhibit a distinct
separation of the surfaces; joints, i.e., surfaces of fracture without displacement;
gashes, that are small-scale tension fissures from several centimeters to a few
decimeters in length and from several millimeters to a few centimeters in width.

The relevant feature of fractures is that the characteristic dimension in one
direction is much smaller than the other two. Despite this difference of scales,
their presence in a porous medium can have a sizeable impact on the flow patterns.
As a matter of fact, fractures can have dramatically different permeability values
with respect to the surrounding porous medium, and can therefore act as natural
barriers for the flow, or, on the contrary, act as natural conduits and accelerate the
migration process of hazardous contaminants. In the context of oil recovery it has
been observed, e.g., that fractures near boreholes tend to increase the productivity
of wells; see, e.g., [127127] and references therein. In the context of the geological
isolation of radioactive waste, on the other hand, the presence of fractures in
the disposal areas (e.g., due to tunnel excavation) can drastically accelerate the
migration process of radionuclides.

Developing robust and accurate numerical schemes to capture such phenomena
is crucial to carry out reliable numerical simulations, a paramount tool to ensure
environmental and human protection. In this context, the robustness of HHO
methodswith respect to the anisotropy and heterogeneity of the physical coefficients
consistutes a real asset. Moreover, as pointed out in the previous section, the
broken polynomial spaces underlying HHO methods can accommodate abrupt
variations of the unknowns across the fracture. Also, the support of general
polyhedral meshes enables a seamless treatment of complex geometric features
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such as hanging nodes and nonmatching fracture interfaces. Finally, the local
conservation properties of HHO play a key role not only in reproducing key
physical principles at the discrete level, but also in the flow-transport coupling.

The main contributions of this Ph.D. thesis are (i) the design and analysis
of a HHO method for reduced models of Darcy flows in fracture porous media,
that is, models where fractures are treated as interfaces; (ii) the introduction,
stability analysis, and numerical validation of a new reduced model, based on
an energy argument, describing passive transport in fractured porous media. To
obtain the flow, we use a mixed [7878] combined with a primal [8282] HHO method
for variable diffusion, and prove the well posedness of the discrete formulation
and optimal convergence rates for the energy-norm of the discretization error. The
analysis hinges in the close link between error estimate of mixed and primal HHO
formulations. On the other hand, using the HHOmethod of [7575], we solve the new
reduced passive transport model driven by a velocity field solution of the decoupled
flow problem. Both works contain extensive numerical validation, displaying the
ability of themethod to capture the flowbehavior and the resulting passive transport
phenomena accounting for the presence, location, and permeability of fractures.
These works have given rise to one full-length paper appeared in SIAM Journal on
Scientific Computing [5656] and one full-length paper submitted to the International
Journal on Geomathematics [5757].

Structure of the manuscript
Themanuscript is organized as follows. InChapter 11, taken from [5959], we develop
a fully implicit HHO algorithm for the Cahn–Hilliard problem, a diffuse interface
model used to describe the process of phase separation. This work was originally
motivated by an industrial collaboration with Saint–Gobain Research. We define
the discrete local tools, set the global discrete problem and perform a detailed
stability and convergence study, proving optimal convergence rates in energy-like
norms. Numerical validation is also provided using some of the most common
tests in the literature.

In Chapter 22, taken from [5656], we develop a HHO method for the simulation
of Darcy flows in fractured porous media. We define the discrete local tools in the
porous medium and in the fracture, and set the global discrete problem. We then
prove the well-posedness of the discrete problem and optimal convergence of the
discretization error measured in an energy-like norm. In the error estimate, we
explicitly track the dependence of the constants on the problem data, showing that
the multiplicative constant have only a mild dependence on the variations of the
latter. The numerical validation on a comprehensive set of test cases confirms the
theoretical results.

InChapter 33, taken from [5757], we propose a new reducedmodel for the passive
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(a) Directly after hypertrempe (b) Hypertrempe after 30min at 235◦c

Figure 2: Spinodal decomposition: Zinc-Aluminium alloy

transport of a solute in a fractured porous medium. The transmission conditions
are derived using an energy argument and, unlike other works in the literature,
enable jumps of the solute concentration across the fracture. We define the discrete
local tools of the HHO method, then set the global discrete problem and study its
stability. We study numerically the convergence rate delivered by the method, and
display numerical experiments in which we treat fractures as barriers or conduits.

In Appendix AA, taken from [5858], we treat the convective Cahn–Hilliard
problem. We recall theHHOdiscrete settings fromChapter 11 and define, locally, a
convective derivative reconstruction operator by mimicking an integration by parts
formula using the hybrid discrete unknowns. We set the global discrete problem
and an extensive numerical validation is presented, which shows the robustness of
the method with respect to some user parameters.

2 The Cahn–Hilliard problem
In this section we introduce the Cahn–Hilliard equations and resume our main
contributions to their numerical approximation.

The Cahn–Hilliard equations model phase separation, that is, the process by
which a binary fluid separates into regions pure in each component. Such a process
can be observed, e.g., when the binary fluid is heated to a high temperature for
a certain time and then abruptly cooled: the fluid becomes inhomogeneous with
phases separated in well-defined high concentration areas, and we observe a partial
or total nucleation, called spinodal decomposition.

In what follows, we provide a few examples of physical processes where phase
separation occurs. In Figure 22, we display snapshots of a Zinc-Aluminium (ZA)
9.35%a.t. alloy observed by electron microscopy; see [124124]. The alloy has been
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(a) t = 0 (b) t = 5 (c) t = 10 (d) t = 20

Figure 3: Spinodal decomposition: unsaturated lipids (in black) and saturated
lipids with cholesterol (in blue)

prepared according to the following protocol, called hypertrempe: in a vacuum
chamber, a small quantity of alloy is brought to the liquid state, then projected and
crushed between two copper plates. It is then cut to have samples whose thickness
varies between 60 and 140 microns. In Figure 2a2a we depict the ZA alloy directly
after hypertrempe while, in Figure 2b2b we show the same alloy after 30 minutes in
the liquid state (235◦C), displaying a clear separation of the alloy components.

Another example is the spinodal decomposition of a lipid sample11; see Figure 33
(the size of the sphere is approximatively 20-30µm). We depict the evolution of
the interactions between the lipids with respect to the time t (in seconds), that
lead to the formation of groups of, respectively, saturated lipids and cholesterol (in
blue), and unsaturated lipids (in black). At t = 0, the mixture is homogeneous, at
t = 10 we start seeing the two different phases that emerge and, finally, at t = 20
we can clearly see the distinction between phases.

Other examples of phenomena which can be modelled by the Cahn–Hilliard
equations include tumor growth [99, 104104, 105105, 130130], image inpainting, to fill
parts of missing or damaged images using information from surrounding areas
of grayvalued [3434, 6161] or colored images [6060], and even the structure of Saturn’s
rings in astronomy [126126].

Formulation of the model
From the mathematical point of view, denoting by Ω the computational domain
and by (0, tF) the time interval, the isothermal Cahn–Hilliard model for diphasic
fluids is driven by the minimisation of an energy, called free-energy, that can be
written in its simplest form as

F (c) =
∫
Ω

Φ(c) +
γ2

2
|∇c |2, with Φ(c) = 1/4(1 − c2)2. (1)

1Credits: https://www.youtube.com/watch?v=kDsFP67_ZSEhttps://www.youtube.com/watch?v=kDsFP67_ZSE

https://www.youtube.com/watch?v=kDsFP67_ZSE
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interface

1−1

−1

1

Φ

c

Figure 4: Variations of the order-parameter c between the two phases (top) and
double-well structure of the potential Φ (bottom)

The free-energy (11) is composed of two terms: (i) the potential term Φ(c) models
the immiscilibity of the fluid components. It has a double-well structure with
minima at c = ±1 corresponding to the pure phases; see Figure 44. Its minimisation
tends to reduce the interfacial zone; (ii) the capillary term γ2

2 |∇c |2 which, on the
contrary, penalizes the strong variations of c. Its minimization therefore tends to
increase the interfacial zone.

To obtain the Cahn–Hilliard equations, we define the chemical potential w as
the rate of change of the free energy F with respect to c, that is, the functional
derivative of the free-energy by the order parameter c:∫

Ω

w =
∂F

∂c
=

∫
Ω

Φ
′(c) − γ2

∆c.

Using classical Fick laws and assuming unit mobility, the Cahn–Hilliard equations
read

dtc = ∆w in Ω × (0, tF), (2a)
w = Φ′(c) − γ2

∆c in Ω × (0, tF), (2b)
c(·, 0) = c0(·) in Ω, (2c)
−∇c · n = −∇w · n = 0 on ∂Ω × (0, tF). (2d)

From the formulation (22) stem two important properties. The first one is the
conservation of mass, that is to say the preservation of the amount of each phase
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in Ω
∂

∂t

∫
Ω

c =
∫
Ω

dtc =
∫
Ω

∆w =

∫
∂Ω
∇w · n = 0.

The second one is the dissipation of energy: the total free-energy of the system is
always nonincreasing in time :

∂

∂t
F (c) =

∫
Ω

(
Φ
′(c)dtc + γ2∇c · ∇dtc

)
=

∫
Ω

(
Φ
′(c) − γ2

∆c
)

dtc

=

∫
Ω

w(∆w) = −

∫
Ω

|∇w |2 ≤ 0.

The two properties are in accordance with the requirement that the evolution of a
non-equilibrium composition is to a composition of lower energywhilst conserving
the mass.

By further coupling (22) with the Navier–Stokes equations, we obtain a model
that can be used to describe, e.g., the spinodal decomposition of phase separating
systems in an external field, the spatiotemporal evolution of the morphology of
steps on crystal surfaces, or the growth of thermodynamically unstable crystal
surfaces with strongly anisotropic surface tension; see [107107] and references therein.
A first step towards coupling is to add a convective term in the conservation
equation (2a2a), a development considered in Appendix AA.

The numerical approximation of the Cahn–Hilliard equation (22) has been
considered in several works. Different aspects of standard finite element schemes
have been studied, e.g., in [7070, 9393, 9494]; cf. also the references therein. Mixed
finite elements are considered in [9999]. In [129129], the authors study a nonconforming
method based on C0 shape functions for the fourth-order primal problem obtained
by plugging (2b2b) into (2a2a). Discontinuous Galerkin (dG) methods have also
received extensive attention. We can cite here: [131131], where a local dG method
is proposed for a Cahn–Hilliard system modelling multi-component alloys, and a
stability analysis is carried out; [9898], where optimal error estimates are proved for
a dG discretization of the Cahn–Hilliard problem in primal form; [115115], which
contains optimal error estimates for a dG method based on the mixed formulation
of the problem including a convection term; [110110], where a multi-grid approach
is proposed for the solution of the systems of algebraic equations arising from a
dG discretization of the Cahn–Hilliard equation. In all of the above references,
standard meshes are considered. General polygonal meshes in dimension d = 2,
on the other hand, are supported by the recently proposed C1-conforming Virtual
Element (VE) method of [1414] for the problem in primal formulation. Therein,
the convergence analysis is carried out under the assumption that the discrete
order-parameter satisfies a C0(L∞)-like a priori bound.
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Main contributions and perspectives
InChapter 11, we propose a novelHHOscheme for theCahn–Hilliard equations (22).
For a fixed polynomial degree k ≥ 0, our method is based on discrete unknowns
that are polynomials of degree (k + 1) inside mesh elements, and polynomials of
degree k on mesh faces. With this choice, and using a backward Euler scheme
to march in time, we are able to prove stability of the discretization and optimal
convergence as (hk+1 + δt) in C0(H1)-like norm for the order-parameter and in
L2(H1)-like norm for the chemical potential (with h and δt denoting, respectively,
the spatial and temporal mesh sizes).

The stability of the discretization is obtained in terms of subtle uniform a priori
bounds on several norms of discrete solutions. Concerning the error analysis, we
estimate the difference between discrete solutions and projections of the exact
ones. A higher polynomial degree inside each mesh element is requiered to obtain
optimal approximation order on the energy-part of the discretization error while
dealing with the nonlinear term.

From this rigorous analysis, two new discrete functional analysis results of
general interest emerge: (i) the discrete Agmon’s inequality of Lemma 1.71.7, and
(ii) the discrete Gagliardo–Niremberg–Poincaré’s inequalities of Lemma 1.141.14.
Both are valid on general quasi-uniformmeshes in two and three space dimensions.
To prove these results, a first key point consists in defining the discrete conterpart
of the Laplace and Green’s operators by using an L2-like inner product on the
space of discrete unknowns. A second key point consists in replacing the standard
nodal interpolator used in the proofs of [115115, Lemmas 2.2 and 2.3] with the L2-
orthogonal projector which, unlike the former, is naturally defined for meshes
containing polyhedral elements; see [7373, 7474] for a comprehensive study. We
mention, in passing, that it is the first discrete analysis of the HHO method on a
system of nonlinear PDEs.

We implement the method in C++ using the hho software platform22, and
numerically study the convergence of the method by imposing analytical solutions
on the order-parameter and the chemical potential. As expected, theoretical
results are confirmed by the numerical simulations. The performance of the
method is demonstrated using a set of classical test cases from the literature:
the evolutions of an elliptic and of a cross-shaped interface and an example of
spinodal decomposition. The numerical results for the latter test case are depicted
in Figure 55.

In Appendix AA, we consider the convective Cahn–Hilliard equations and
treat the convective term in the spirit of [7575], where a HHO method fully robust
with respect to the Péclet number was presented for a locally degenerate diffusion-

2Agence pour la Protection des Programmes, deposit number
IDDN.FR.001.220005.000.S.P.2016.000.1080



12 Introduction

Figure 5: Numerical simulation of a spinodal decomposition

advection-reaction problem. A thoroughnumerical validation shows the robustness
of the HHO scheme with respect to the size of the interface and the value of the
Péclet number, as well as its ability to capture the interface dynamics subject to
strong velocity fields. The stability and a priori error analysis of the discretization
could be the subject of further work.

The results obtained in both Chapter 11 and Appendix AA demonstrate the
potential of the HHO method in tracking the interface dynamics. In view of its
design and the features it offers, the method is a well suited tool in the context of
diffuse interface simulation, and the extension towards coupling with the Navier–
Stokes equations seems promising.

3 Fractured porous media
We nowmove to the second kind of interface model considered in this manuscript,
namely interface as internal boundary. More specifically, we consider interface that
represent fractures in porous media. In this section, we justify the need of reduced
models in the context of fractured porousmedia flows and passive transport, present
the reduced models we focus on, and review the main contributions of this thesis.

Continuous model for flows
We start by describing the continuous model focusing, for the sake of simplicity, on
a domain crossed by a single fracture; see Figure 66. By continuous, we mean that
the fracture is not a hyperplane, but a subdomain with a real thickness within the
domain of interest Ω. We call this model continuous since in this case the natural
conditions at the interfaces between bulk and fracture are the continuity of pressure
and velocity (mass) fluxes. We can decompose Ω B Ω1 ∪ Ωfract ∪ Ω2 in three
disjoint subdomains, such that Ω1 ∩ Ω2 = ∅ and |Ω1 |d ≈ |Ω2 |d � |Ωfract |d > 0,
with | · |d denoting the d-dimensional Hausdorff measure. The latter assumption
is often verified in practice: in the context of petroleum bassin simulation, e.g.,
the typical thickness of a fracture is of the order of meters, while the typical length
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Figure 6: Illustration of the notations for the continuous model.

scale for a bassin is of the order of kilometers. For j ∈ {1, 2}, we denote by
γ j B ∂Ω j ∩∂Ωfract∩Ω the boundary intersection of the subdomainsΩ j andΩfract,
and by n j the unit normal vector to γ j pointing outward Ω j ; see Figure 66 for a
representation of the notations.

Then, the continuous model for flows in fractured porous media reads (see,
e.g., [101101]): For all i ∈ {1, 2, fract}, find the Darcy velocity ui : Ωi → R

d and the
pressure pi : Ωi → R such that

ui + K i∇pi = 0 in Ωi, (3a)
∇ · ui = fi in Ωi, (3b)

along with adequate boundary conditions. Here, fi : Ωi → R is a source term that
can be interpreted as modelling injection and production wells in the context of oil
recovery, and K i : Ωi → R

d×d is the permeability tensor. Transmission conditions
on γ j for j ∈ {1, 2} close the problem and read as follows

p j = pfract on γ j, (4a)
u j · n j = ufract · n j on γ j . (4b)

These conditions express the continuity of the pressure and conservation of mass
on γ j , j ∈ {1, 2}.

The discretization of problem (33)–(44) requires a fine mesh around the fracture
to capture its length scale. On one hand, this may unduly increase the number
of elements, making the simulation too expensive. On the other hand, it may
result in poor mesh quality, affecting the accuracy of the numerical results. These
difficulties can be overcome by resorting to a reduced (or hybrid-dimensional)
models for the fracture, where the latter is treated as a surface of co-dimension
one. Reduced models make the object of the following section.
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Figure 7: Representation of the averaging process along the thickness of the
fracture.

Reduced model for flows
We next outline the derivation of the reduced model introduced in [120120]; see also
[101101]. The derivation is done in two steps: first, we contract the domainΩfract into
a hyperplane, then, we derive transmission conditions between the two regions.

Averaged Darcy law and conservation equation. We start by making a few
assumptions on the geometry of the problem and on the data. We assume that
there exists a hyperplane Γ, a fracture thickness function `Γ : Γ → (0;+∞) and
a unit vector with a fixed orientation nΓ ≈ n1 ≈ −n2, normal to Γ, such that the
fracture subdomain can be written as follows

Ωfract =

{
x̃ ∈ Ω : ∃x ∈ Γ and r ∈

[
−
`Γ(x)

2
,
`Γ(x)

2

]
s.t. x̃ = x + rnΓ

}
,

see Figure 77 for a representation of the notations. We moreover assume that the
fracture permeability tensor K fract has a block-diagonal structure, that is to say

K fract =

[
κn
Γ

0
0 κτ

Γ

]
,

with κn
Γ

: Ωfract → R and κτ
Γ

: Ωfract → R(d−1)×(d−1), both constant on each
transverse section ofΩfract, denoting the normal and tangential fracture permeability,
respectively. The first step of the derivation is to contract the domain Ωfract on the
hyperplane Γ. To do so, we decompose the fracture Darcy law (3a3a) into tangential
and normal directions, and the divergence operator in the fracture conservation
equation (3b3b) as the sum of its tangential and normal contributions. Then, we
integrate the fracture tangential Darcy law and conservation equation along each
transverse section

I(x) B

[
x −

`Γ(x)

2
nΓ, x +

`Γ(x)

2
nΓ

]
for all x ∈ Γ,
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and, using the Green formula on the normal divergence and recalling the continuity
of the normal component of the flux (4b4b) on γ j for j ∈ {1, 2}, we obtain the
following fracture-averaged tangential Darcy law and conservation equation:

uΓ + κ
τ
Γ
`Γ∇τpΓ = 0 in Γ, (5a)
∇τ · uΓ = `Γ fΓ + [[u]]Γ · nΓ in Γ, (5b)

with [[u]]Γ B u |Ω1 − u |Ω2 denoting the jump across the surrounding flux across
the fracture. Plugging the averaged tangential Darcy law (5a5a) into the averaged
tangential conservation equation (5b5b), we obtain the primal form of the Darcy
equation in the fracture:

−∇τ · (κ
τ
Γ
`Γ∇τpΓ) = `Γ fΓ + [[u]]Γ · nΓ in Γ. (6)

The jump of the flux across the fracture in the right-hand side of (66) originates
from the normal divergence of the fracture flux, and hence acts as a source term.
On the left-hand side of (66), ∇τ and ∇τ · stand for the tangential gradient and
tangential divergence operators, respectively. The averaged fracture pressure pΓ,
flux uΓ, and source term fΓ are defined such that, for all x ∈ Γ,

pΓ(x) =
1
`Γ

∫
I(x)

pfract, uΓ(x) =

∫
I(x)

uτfract and fΓ(x) =
1
`Γ

∫
I(x)

ffract,

with pfract, uτfract and ffract denoting the continuous fracture pressure, flux tangential
component, and source term of the continuous model (1212) with i = fract, respec-
tively.

Transmission conditions. To close the problem, the second step is to derive
transmission conditions that relate the unknowns of the porous medium with the
ones in the reduced fracture Γ.

The first transmission equation is then given by the fracture normal Darcy law.
Averaging the latter in the normal direction along each transverse section I(x) for
all x ∈ Γ, using the trapezoidal rule and the continuity of the normal component
of the flux (4b4b) on γ j for j ∈ {1, 2} to treat the flux term, together with a Green
formula and the continuity of the pressure (4a4a) on γ j for j ∈ {1, 2}, we obtain
a relation between the average of the normal component of the surrounding flux
with the jump of the surrounding pressure, weighted by a coefficent depending on
the thickness of the fracture and on the normal fracture permeability:

`Γ
κn
Γ

{{u}}Γ · nΓ = [[p]]Γ on Γ. (7)
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Figure 8: Representation of the Taylor expansion.

The second transmission equation arises from more technical arguments. For
all x ∈ Γ, we use the following truncated Taylor expansion of the continuous
fracture pressure on Ωfract,1 and Ωfract,2

pfract(x) = pfract(x1) +
`Γ(x)

2
∇pfract(θ1) · nΓ,

pfract(x) = pfract(x2) −
`Γ(x)

2
∇pfract(θ2) · nΓ,

(8)

where x1 = x − `Γ
2 nΓ, x2 = x + `Γ

2 nΓ, θ1 = x − ξ1
`Γ
2 nΓ and θ2 = x + ξ2

`Γ
2 nΓ with

(ξ1, ξ2) ∈ [0, 1]2; see Figure 88 for a representation of the notations. We further
assume that the normal components of the fracture fluxes vary linearly on Ωfract,
i.e., {

ufract(θ1) · nΓ = ξ1u1(x1) · nΓ + (1 − ξ1)u2(x2) · nΓ,

ufract(θ2) · nΓ = ξ1u2(x2) · nΓ + (1 − ξ2)u1(x1) · nΓ.
(9)

Combining (88) with (99), recalling the continuity of the pressure (4a4a) and of the
normal component of the flux (4b4b) on γ j for j ∈ {1, 2} in addition to the first
transmission condition (77), we get

pfract(x) = {{p}}Γ −
`Γ(x)

κn
Γ

(
ξ1

2
−

1
4

)
[[u]]Γ · nΓ,

pfract(x) = {{p}}Γ −
`Γ(x)

κn
Γ

(
ξ2

2
−

1
4

)
[[u]]Γ · nΓ.

(10)

From (1010), further enforcing the single-valuedness of the fracture pressure, it
immediately follows that ξ1 = ξ2 = ξ. Then, by averaging along the transverse
section I(x), we obtain the last transmission condition that relates the jump and
average of the surrounding flux and pressure, respectively, with the averaged
fracture pressure:

`Γ
κn
Γ

(
ξ

2
−

1
4

)
[[u]]Γ · nΓ = {{p}}Γ − pΓ on Γ. (11)
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Figure 9: Illustration of notations for the reduced problem.

Reduced formulation. Now that the fracture has been reduced to a hyperplane,
we denote the porous medium domain byΩB B Ω \ Γ, also called bulk (hence, the
subscript “B” in ΩB); see Figure 99 for a representation of notations. In the bulk,
we keep the formulation of the continuous model and consider the Darcy law (3a3a)
and the conservation equation (3b3b). In the fracture, the averaged tangential primal
formulation (66) is preferred to the mixed one (55), since only the averaged fracture
pressure is involved in the transmission conditions 77 and 1111. In summary, the
reduced problem reads as follows: Find the Darcy velocity u : ΩB → R

d , the bulk
pressure p : ΩB → R and the averaged fracture pressure pΓ : Γ→ R such that

u + K∇p = 0 in ΩB, (12a)
∇ · u = f in ΩB, (12b)

−∇τ · (κ
τ
Γ
`Γ∇τpΓ) = `Γ fΓ + [[u]]Γ · nΓ in Γ, (12c)

`Γ
κn
Γ

{{u}}Γ · nΓ = [[p]]Γ on Γ, (12d)

`Γ
κn
Γ

(
ξ

2
−

1
4

)
[[u]]Γ · nΓ = {{p}}Γ − pΓ on Γ. (12e)

along with adequate boundary conditions.

State-of-the-art Several discretization methods for the reduced model (1212) have
been proposed in the literature. A brief (and by far non exhaustive) overview
of works related with the present manuscript is provided hereafter. In [4646], the
authors consider lowest-order vertex- and face-based Gradient Schemes, and prove
convergence in h for the energy-norm of the discretization error; see also [4343] and
the very recent work [9292] concerning two-phase flows. Extended Finite Element
methods (XFEM) are considered in [1717, 2828] in the context of fracture networks,
and their convergence properties are numerically studied. In [2424], the authors
compare XFEMwith the recently introduced Virtual Element Method (VEM), and
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numerically observe convergence in both cases in N
1/2
DOF for the energy-norm of the

discretization error, where NDOF stands for the number of degrees of freedom; see
also [2323, 2525]. Discontinuous Galerkin methods are also considered in [1616] for a
single-phase flow; see also [1515]. Therein, an hp-error analysis in the energy norm
is carried out on general polygonal/polyhedral meshes possibly including elements
with unbounded number of faces, and numerical experiments are presented. A
discretization method based on a mixed formulation in the mortar space has also
been very recently proposed in [3333], where an energy-error estimate in h is proved.

Reduced model for passive transport
We next discuss a reduced model that describes the passive transport of a solute
in a fractured porous medium.

Let us start by discussing the modeling of the passive transport process in the
different domains. The fluxes u and uΓ = −κτΓ`Γ∇τpΓ are obtained by solving (1212),
along with no-flux boundary conditions and zero mean value compatibility condi-
tions on source terms and the fracture pressure. This means that the flow through
the porous medium is entirely driven by source terms f and fΓ, which typically
model injection or production wells. In what follows, we decompose source terms
into their positive and negative parts: f = f + − f − and fΓ = f +

Γ
− f −

Γ
. Then,

denoting by c : ΩB → R the bulk solute concentration and by cΓ : Γ → R its
fracture counterpart, the transport inside the bulk and in the fracture are driven
by the following PDEs, to be completed by homogeneous Neumann boundary
conditions:

φdtc + ∇ · FB + f −c = f +ĉ in ΩB,

`ΓφΓdtcΓ + ∇τ · FΓ + `Γ f −Γ cΓ = `Γ f +Γ ĉΓ + [[FB]]Γ · nΓ in Γ,
(13)

where φ : ΩB → R and φΓ : Γ → R stand for the porosity of the bulk and of the
fracture, respectively, and the total fluxes FB : ΩB → R

d and FΓ : Γ → Rd are
defined as

FB = uc − D(u)∇c in ΩB, (14a)
FΓ = uΓcΓ − DΓ(uΓ)∇τcΓ in Γ. (14b)

The bulk molecular diffusivity tensor D(u), depending on the flux u, is such that

D(u) = φdmI2 + φ|u |(dlE(u) + dt(I2 − E(u))),

where |u | is the Euclidean norm of u, E(u) = |u |−2 (u ⊗ u), while dm, dl
and dt denote, respectively, the molecular diffusion, longitudinal, and transverse
dispersion coefficients. The fracture molecular diffusivity DΓ(uΓ) is defined is the
same way using the fracture flux uΓ.
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Figure 10: Treatment of nonconforming fracture discretizations.

What is left to define in order to close the problem (1313)–(1414) are transmission
conditions across the reduced fracture Γ. In the literature, we can find models that
assume continuity of the bulk concentration of the transported solute across the
fracture but, as for the flows, this assumption is not appropriate in the context of
impermeable fractures, where the bulk solute concentration may be discontinous
across the fracture.A possible alternative would be to consider transmission condi-
tions similar to (12d12d) and (12e12e), but using the total flux (14a14a) on the left-hand side
instead. This choice, however, does not seem to give rise to a well-posed problem.

Following this observation, we derive in Chapter 33 new transmission condi-
tions based on an energy argument, expressing the fact that the advective part of
the total bulk flux does not contribute to the energy-balance of the system. These
novel transmission conditions give raise to a well-posed problem, and allow the
bulk solute concentration to jump across the fracture.

Main contributions and perspectives
In Chapter 22, we develop a novel HHO discretisation of the reduced model for
flows in fractured porous media (1212) focusing, for the sake of simplicity, on the
two-dimensional case (the extension to the three-dimensional is is also briefly
addressed; see Remark 2.102.10). The fracture is discretized using mesh skeleton
elements, which means that the mesh is compliant with the fracture.

This choice, however, is not restrictive in the context of methods that can
handle meshes containing polytopal/polyhedral elements, even when the fracture
discretization is nonconforming in the classical sense. Consider, e.g., the situation
illustrated in Figure 1010, where the fracture lies at the intersection of two nonmatch-
ing Cartesian submeshes. In this case, no special treatment is required provided
the mesh elements in contact with the fracture are treated as pentagons with two
coplanar faces instead of rectangles.

For a polynomial degree k ≥ 0, the discrete formulation of the HHO method
is based on discrete unknowns that are, for the bulk flux, polynomials of degree
k on each mesh face, single-valued except on fracture faces, and permeability-
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weighted gradient of polynomials of degree k inside each mesh element. For the
bulk pressure, the discrete unknowns are polynomials of degree k on each mesh
element. On the other hand, the discrete unknowns for the fracture pressure are
polynomials of degree k on each fracture face and point values on each fracture
vertex. The discrete counterparts of jump and average terms of the bulk flux are
jump and average of the face-based unknowns of the discrete bulk flux, respectively.

We prove stability of the discretization in the form of an inf-sup condition, as
well as optimal error estimates in hk+1 for an energy-like norm of the error (with
h denoting the spatial meshsize). Specifically, the key ingredient for the stability
result of Theorem 2.112.11 is the commuting property of the discrete divergence
reconstruction. In the the error estimate of Theorem 2.122.12, the dependence of the
constant on the problem parameters is carefully tracked, showing full robustness
with respect to the heterogeneity of the permeability coefficients in both the bulk
and the fracture, and only a mild dependence on the square root of the local
anisotropy ratio in the bulk. To prove the error estimate, we proceed in three steps.
First, we estimate the error in terms of conformity error, using the coercivity
of the global bilinear form and the inf-sup condition on the discrete divergence
bilinear form. Then, we bound the conformity error by writing the discrete bulk
bilinear forms so as to reveal a bulk pressure gradient, with the help of a local
well-defined elliptic projector as in the error estimate procedure while considering
primal formulations. This second step is the mainstay of this error analysis, since it
links error estimate of mixed HHO formulations to error estimate of primal HHO
formulations. We end the proof by combining the previous results.

We implement the method in C++ using the hho software platform, and we
numerically study its convergence properties, as well as its behaviour with respect
to the local bulk anisotropy ratio. Both the theorical convergence rates and the
expected robustness are observed in practice. Moreover, optimal error estimate in
hk+2 for the L2-norm of the error is observed for both the bulk and fracture pressure.
A set of physical test cases is also proposed to assess the properties of the method
in more realistic configurations. Specifically, we consider the quarter five-spot
problem, a classical pattern in petroleum engineering used for oil recovery, and
study the impact of the permeability of the fracture on the surrounding flow. We
also measure the flow across the fracture for both the permeable and impermeable
fracture configuration, and observe, for each configuration, convergence to a
value using a h-refinement. Faster convergence is observed while increasing
the polynomial degree. In a second numerical test, we study of the impact of the
bulk permeability on the flow. The bulk permeability is fixed so as to obtain a
nonmatching superposition of layers of different permeability. As expected, high
permeability zones are prone to let the fluid flow towards the fracture, in contrast
to the low permeability zones in which the pressure variations are larger.

In Chapter 33, we introduce a new reduced model for the passive transport of a
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solute in a fractured medium, driven by a velocity field solution of the decoupled
reduced flow problem. New transmission conditions between the bulk and fracture
are presented using an energy-based argument, which postulates that the convective
terms do not contribute to the energy balance of the global system. Unlike others
proposed in the literature, these transmission conditions allow the bulk solute
concentration to jump across the fracture.

Concerning the discretization, we develop a HHO method in the two-dimen-
sional case and assumemesh compliance with the fracture, as for the reduced flows
model. For a polynomial degree k ≥ 0, the resolution is carried out in two steps.

In the first step, we compute the bulk and fracture flow by solving the discrete
reduced flows problem of Chapter 22 using polynomials of degree 2k. The use
of polynomials of degree 2k is required to obtain a well-posed discrete reduced
passive transport scheme, as first observed in [1111] where authors model miscible
displacements in a non-fractured porous media using the HHO method. Then,
we prove that the method is locally conservative and identify the conservative
numerical fluxes in both the bulk and fracture regions. These numerical fluxes are
used to formulate the convective terms for the discrete reduced passive transport
model, and their identifications is the mainstay of the stability of the reduced
passive transport discretization.

The second step is the resolution of the discrete HHO formulation of the
reduced passive transport problem. Also at the discrete level, the transmission
conditions are designed so as to reproduce the energy argument from which they
originate.

We implement the method in C++ using the hho software platform, and
numerically study the convergence of the method by imposing analytical solutions
on the bulk and fracture solute concentration. We observe convergence in hk+1

for an energy-like norm of the error on the bulk and fracture solute concentration.
Also in this reduced model, optimal error estimate in hk+2 for the L2-norm of the
error is numerically observed for both the bulk and fracture solute concentration.
We remark an atypical behavior of the error measured in the L2-norm for the
fracture solute concentration while using the lowest approximation order k = 0.
This behavior will be investigated in a further work, where a complete discrete
analysis of this reduced model will be carried out. We then run the method on
some test cases, where the fracture is considered as a barrier or as a conduit. In
both cases, the method captures the passive transport process according to the
permeability of the fracture and the location of injecting or producing wells. As
expected, abrupt variations of the bulk solute concentration at the vicinity of the
fracture are well captured by the method.

From what we present in Chapters 22 and 33, it seems that the HHO method
is very competitive and well suited also in the context of fractured porous media
flows and passive transport. Regarding the new reduced passive transport model,
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the transmission conditions are prone to let the solute concentration move towards
the fracture, or on the contrary, to force the solute concentration to move from
the injection well to the production one avoiding the fracture, depending on the
permeability of the fracture. This result, although expected, was not guaranteed
at first. With the help of numerical simulations provided in this manuscript, it is
reasonable to say that these equations govern the desired phenomenon.
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1.1 Introduction

Let Ω ⊂ Rd , d ∈ {2, 3}, denote a bounded connected convex polyhedral domain
with boundary ∂Ω and outward normal n, and let tF > 0. The Cahn–Hilliard
problem, originally introduced in [5151, 5252] to model phase separation in a binary
alloy, consists in finding the order-parameter c : Ω × (0, tF) → R and chemical
potential w : Ω × (0, tF) → R such that

dtc − ∆w = 0 in Ω × (0, tF), (1.1a)
w = Φ′(c) − γ2

∆c in Ω × (0, tF), (1.1b)
c(·, 0) = c0(·) in Ω, (1.1c)

−∇c · n = −∇w · n = 0 on ∂Ω × (0, tF), (1.1d)

where c0 ∈ H2(Ω)∩ L2
0(Ω) such that −∇c0 · n = 0 on ∂Ω denotes the initial datum,

γ > 0 the interface parameter (usually taking small values), and Φ the free-energy
such that

Φ(c) B
1
4
(1 − c2)2. (1.2)

Relevant extensions of problem (1.11.1) (not considered here) include the introduction
of a flow which requires, in particular, to add a convective term in (1.1a1.1a); cf.,
e.g., [1919, 4040, 4141, 113113, 115115, 116116].

The discretization of the Cahn–Hilliard equation (1.11.1) has been considered in
several works. Different aspects of standard finite element schemes have been
studied, e.g., in [7070, 9393, 9494]; cf. also the references therein. Mixed finite elements
are considered in [9999]. In [129129], the authors study a nonconforming method
based on C0 shape functions for the fourth-order primal problem obtained by
plugging (1.1b1.1b) into (1.1a1.1a). Discontinuous Galerkin (dG) methods have also
received extensive attention. We can cite here [131131], where a local dG method
is proposed for a Cahn–Hilliard system modelling multi-component alloys, and a
stability analysis is carried out; [9898], where optimal error estimates are proved for
a dG discretization of the Cahn–Hilliard problem in primal form; [115115], which
contains optimal error estimates for a dG method based on the mixed formulation
of the problem including a convection term; [110110], where a multi-grid approach
is proposed for the solution of the systems of algebraic equations arising from a
dG discretization of the Cahn–Hilliard equation. In all of the above references,
standard meshes are considered. General polygonal meshes in dimension d =
2, on the other hand, are supported by the recently proposed C1-conforming
Virtual Element (VE) method of [1414] for the problem in primal formulation; cf.
also [2222] for VE methods with arbitrary regularity. Therein, the convergence
analysis is carried out under the assumption that the discrete order-parameter
satisfies a C0(L∞)-like a priori bound.
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In this work, we develop and analyze a fully implicit Hybrid High-Order
(HHO) algorithm for problem (1.11.1) where the space discretization is based on
the HHO(k + 1) variation proposed in [6767] of the method of [8383]. The method
hinges on hybrid degrees of freedom (DOFs) located at mesh elements and faces
that are polynomials of degree (k + 1) and k, respectively. The nonlinear term
in (1.1b1.1b) is discretized by means of element unknowns only. For the second-order
diffusive operators in (1.1a1.1a) and (1.1b1.1b), on the other hand, we rely on two key
ingredients devised locally inside each element: (i) A potential reconstruction
obtained from the solution of (small) Neumann problems and (ii) a stabilization
term penalizing the lowest-order part of the difference between element- and
face-based unknowns. See also [6969, 119119, 128128] for related methods for second-
order linear diffusion operators, each displaying a set of distinctive features.
The global discrete problem is then obtained by a standard element-by-element
assembly procedure. When using a first-order (Newton-like) algorithm to solve
the resulting system of nonlinear algebraic equations, element-based unknowns
can be statically condensed. As a result, the only globally coupled unknowns in
the linear subproblems are discontinuous polynomials of degree k on the mesh
skeleton for both the order-parameter and the chemical potential. With a backward
Euler scheme to march in time, the C0(H1)-like error on the order-parameter and
the L2(H1)-like error on the chemical potential are proved to optimally converge
as (hk+1 + δt) (with h and δt denoting, respectively, the spatial and temporal mesh
sizes) provided the solution has sufficient regularity.

The proposed method has several advantageous features: (i) It supports general
meshes possibly including polyhedral elements and nonmatching interfaces (resul-
ting, e.g., from nonconforming mesh refinement); (ii) it allows one to increase the
spatial approximation order to accelerate convergence in the presence of (locally)
regular solutions; (iii) it is (relatively) inexpensive. When d = 2, e.g., the number
of globally coupled spatial unknowns for our method scales as 2 card(Fh)(k + 1)
(with card(Fh) denoting the number ofmesh faces) as opposed to card(Th)(k+3)(k+
2) (with card(Th) denoting the number of mesh elements) for a mixed dG method
delivering the same order of convergence (i.e., based on broken polynomials
of degree k + 1). Additionally, thanks to the underlying fully discontinuous
polynomial spaces, the proposed method can accomodate abrupt variations of the
unknowns in the vicinity of the interface between phases.

Our analysis adapts the techniques originally developed in [115115] in the context
of dG methods. Therein, the treatment of the nonlinear term in (1.1b1.1b) hinges on
C0-in-time a priori estimates for various norms and seminorms of the discrete
order-parameter. Instrumental in proving these estimates are discrete functional
analysis results, including discrete versions ofAgmon’s andGagliardo–Nirenberg–
Poincaré’s inequalities for broken polynomial functions on quasi-uniformmatching
simplicial meshes. Adapting these tools to hybrid polynomial spaces on general
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meshes entails several new ideas. A first key point consists in defining appropriate
discrete counterparts of the Laplace and Green’s operators. To this end, we rely on
a suitably tailored L2-like hybrid inner product which guarantees stability estimates
for the former and optimal approximation properties for the latter. Another key
point consists in replacing the standard nodal interpolator used in the proofs of
[115115, Lemmas 2.2 and 2.3] by the L2-orthogonal projector which, unlike the
former, is naturally defined for meshes containing polyhedral elements. We show
that this replacement is possible thanks to the W s,p-stability and approximation
properties of the L2-orthogonal projector on broken polynomial spaces recently
presented in a unified setting in [7474]; cf. also the references therein for previous
results on this subject.

The material is organized as follows: In Section 1.21.2 we introduce the notation
for space and timemeshes and recall some key results on broken polynomial spaces;
in Section 3.43.4 we introduce hybrid polynomial spaces and local reconstructions,
and state the discrete problem; in Section 1.41.4 we carry out the stability analysis of
the method, while the convergence analysis is detailed in Section 1.51.5; Section 2.52.5
contains an extensive numerical validation of the proposed algorithm; finally, in
Section 1.71.7 we give proofs of the discrete functional analysis results used to derive
stability bounds and error estimates.

1.2 Discrete setting
In this section we introduce the discrete setting and recall some basic results on
broken polynomial spaces.

1.2.1 Space and time meshes
We recall here the notion of admissible spatial mesh sequence from [8181, Chapter 1].
For the sake of simplicity, we will systematically use the term polyhedral also
when d = 2. Denote by H ⊂ R+∗ a countable set of spatial meshsizes having 0
as its unique accumulation point. We consider h-refined mesh sequences (Th)h∈H
where, for all h ∈ H , Th is a finite collection of nonempty disjoint open polyhedral
elements T of boundary ∂T such that Ω =

⋃
T∈Th T and h = maxT∈Th hT with hT

standing for the diameter of the element T .
A faceF is defined as a planar closed connected subset ofΩwith positive (d−1)-

dimensional Hausdorff measure and such that(i) either there exist T1,T2 ∈ Th such
that F ⊂ ∂T1 ∩ ∂T2 and F is called an interface or (ii) there exists T ∈ Th such
that F ⊂ ∂T ∩ ∂Ω and F is called a boundary face. Mesh faces are collected in
the set Fh, and the diameter of a face F ∈ Fh is denoted by hF . For all T ∈ Th,
FT B {F ∈ Fh : F ⊂ ∂T} denotes the set of faces lying on ∂T and, for all
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F ∈ FT , nTF is the unit normal to F pointing out of T . Symmetrically, for all
F ∈ Fh, we denote by TF the set of one (if F ∈ F b

h ) or two (if F ∈ F i
h) elements

sharing F.
Assumption 1.1 (Admissible spatial mesh sequence). We assume that, for all
h ∈ H , Th admits a matching simplicial submesh Th and there exists a real
number % > 0 independent of h such that, for all h ∈ H , the following properties
hold:(i) Shape regularity: For all simplex S ∈ Th of diameter hS and inradius rS,
%hS ≤ rS; (ii) contact-regularity: For all T ∈ Th, and all S ∈ Th such that S ⊂ T ,
%hT ≤ hS.

To discretize in time, we consider a uniform partition (tn)0≤n≤N of the time
interval [0, tF with t0 = 0, tN = tF and tn− tn−1 = δt for all 1 ≤ n ≤ N (the analysis
can be adapted to nonuniform partitions). For any sufficiently regular function of
time ϕ taking values in a vector space V , we denote by ϕn ∈ V its value at discrete
time tn, and we introduce the backward differencing operator δt such that, for all
1 ≤ n ≤ N ,

δtϕ
n B

ϕn − ϕn−1

δt
∈ V . (1.3)

In what follows, we often abbreviate by a . b the inequality a ≤ Cb with a
and b positive real numbers and C > 0 generic constant independent of both the
meshsize h and the time step δt (named constants are used in the statements for
the sake of easy consultation). Also, for a subset X ⊂ Ω, we denote by (·, ·)X and
‖·‖X the usual L2(X)-inner product and norm, with the convention that we omit
the index if X = Ω. The same notation is used for the vector-valued space L2(X)d .

1.2.2 Basic results on broken polynomial spaces
The proposed method is based on local polynomial spaces on mesh elements and
faces. Let an integer l ≥ 0 be fixed. Let U be a subset of Rd , HU the affine space
spanned by U, dU its dimension, and assume that U has a non-empty interior in
HU . We denote by Pl(U) the space spanned by dU-variate polynomials on HU
of total degree l, and by πl

U the L2-orthogonal projector onto this space. In the
following sections, the set U will represent a mesh element or face. The space of
broken polynomial functions on Th of degree l is denoted by Pl(Th), and πl

h is the
corresponding L2-orthogonal projector.

We next recall some functional analysis results on polynomial spaces. The
following discrete trace and inverse inequalities are proved in [8181, Chapter 1] (cf.
in particular Lemmas 1.44 and 1.46): There is C > 0 independent of h such that,
for all T ∈ Th, and all ∀v ∈ Pl(T),

‖v‖F ≤ Ch
− 1

2
F ‖v‖T ∀F ∈ FT, (1.4)
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and
‖∇v‖T ≤ Ch−1

T ‖v‖T . (1.5)

We will also need the following local direct and reverse Lebesgue embeddings
(cf. [7474, Lemma 5.1]): There is C > 0 independent of h such that, for all T ∈ Th,
all q, p ∈ [1,+∞],

∀v ∈ Pl(T), C−1‖v‖Lq(T) ≤ h
d
q−

d
p

T ‖v‖Lp(T) ≤ C‖v‖Lq(T). (1.6)

The proof of the following results for the local L2-orthogonal projector can be
found in [7474, Appendix A.2]. For an open set U of Rd , s ∈ N and p ∈ [1,+∞], we
define the seminorm |·|W s,p(U) as follows: For all v ∈ W s,p(U),

|v |W s,p(U) B
∑

α∈Nd, |α |
`1=s

‖∂αv‖Lp(U),

where |α |`1 B α1 + · · · + αd and ∂α = ∂α1
1 · · · ∂

αd
d . For s = 0, we recover the

usual Lebesgue spaces Lp(U). The L2-orthogonal projector is W s,p-stable and has
optimal W s,p-approximation properties: There is C > 0 independent of h such
that, for all T ∈ Th, all s ∈ {0, . . . , l + 1}, all p ∈ [1,+∞], and all v ∈ W s,p(T), it
holds,

|πl
Tv |W s,p(T) ≤ C |v |W s,p(T), (1.7)

and, for all m ∈ {0, . . . , s},

|v − πl
Tv |Wm,p(T) + h

1
p

T |v − π
l
Tv |Wm,p(FT ) ≤ Chs−m

T |v |W s,p(T), (1.8)

whereWm,p(FT ) denotes the set of functions that belong toWm,p(F) for all F ∈ FT .
Finally, there is C > 0 independent of h such that it holds, for all F ∈ Fh,

∀v ∈ H1(F), ‖v − πl
Fv‖F ≤ Ch|v |H1(F). (1.9)

In the proofs of Lemmas 1.71.7 and 1.141.14 below, we will make use of the following
global inverse inequalities, which require mesh quasi-uniformity.
Proposition 1.2 (Global inverse inequalities of broken polynomials). In addition
to Assumption 1.11.1, we assume that the mesh is quasi-uniform, i.e.,

∀T ∈ Th, %h ≤ hT . (1.10)

Then, for all polynomial degree l ≥ 0 and all 1 ≤ p ≤ q ≤ +∞, it holds

∀wh ∈ P
l(Th), ‖wh‖Lq(Ω) ≤ Ch

d
q−

d
p ‖wh‖Lp(Ω), (1.11)

with real number C > 0 independent of h.
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Proof. Let wh ∈ P
l(Th). We start by proving that, for all p ∈ [1,+∞],

∀wh ∈ P
l(Th), ‖wh‖L∞(Ω) . h−

d
p ‖wh‖Lp(Ω), (1.12)

which corresponds to (1.111.11) with q = +∞. By the local reverse Lebesgue
embeddings (1.61.6), there is C > 0 independent of h such that

∀T ∈ Th, ‖wh‖L∞(T) ≤ Ch
− d

p

T ‖wh‖Lp(T) ≤ Cρ−
d
p h−

d
p ‖wh‖Lp(Ω),

where we have used the mesh quasi-uniformity assumption (1.101.10) to conclude.
Inequality (1.121.12) follows observing that ‖wh‖L∞(Ω) = maxT∈Th ‖wh‖L∞(T). Let us
now turn to the case 1 ≤ q < +∞. We have

‖wh‖
q
Lq(Ω)

≤ ‖wh‖
q−p
L∞(Ω)‖wh‖

p
Lp(Ω)

.
(
h

d
q−

d
p ‖wh‖Lp(Ω)

)q
,

where the conclusion follows using (1.121.12). �

1.3 The Hybrid High-Order method
In this section we define hybrid spaces and state the discrete problem.

1.3.1 Hybrid spaces
The discretization of the diffusion operator hinges on the HHO method of [6767]
using polynomials of degree (k + 1) inside elements and k on mesh faces (cf.
Remark 1.161.16 for further insight on this choice). The global discrete space is
defined as

Pk+1,k
h B

(?
T∈Th

Pk+1(T)

)
×

©­«
?
F∈Fh

Pk(F)ª®¬ . (1.13)

The restriction of Pk+1,k
h to an element T ∈ Th is denoted by Pk+1,k

T . For a
generic collection of DOFs in Pk+1,k

h , we use the underlined notation vh =

((vT )T∈Th, (vF)F∈Fh ) and, for all T ∈ Th, we denote by vT = (vT, (vF)F∈FT ) its
restriction to Pk+1,k

T . Also, to keep the notation compact, we denote by vh (no
underline) the function in Pk+1(Th) such that

vh |T = vT ∀T ∈ Th.

In what follows, we will also need the zero-average subspace

Pk+1,k
h,0 B

{
vh ∈ Pk+1,k

h :
∫
Ω

vh = 0
}
.
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The interpolator I k
h : H1(Ω) → Pk+1,k

h is such that, for all v ∈ H1(Ω),

I k
hv B ((π

k+1
T v)T∈Th, (π

k
Fv)F∈Fh ). (1.14)

We define on Pk+1,k
h the seminorm ‖·‖1,h such that

‖vh‖
2
1,h B ‖∇hvh‖

2 + |vh |
2
1,h, |vh |

2
1,h B s1,h(vh, vh), (1.15)

where∇h denotes the usual broken gradient on H1(Th) and the stabilization bilinear
form s1,h on Pk+1,k

h × Pk+1,k
h is such that

s1,h(vh, zh) B
∑
T∈Th

∑
F∈FT

∫
F

h−1
F πk

F(vF − vT )π
k
F(zF − zT ). (1.16)

Using the stability and approximation properties of the L2-orthogonal projector
expressed by (1.71.7)–(1.81.8), one can prove that I k

h is H1-stable:

∀v ∈ H1(Ω), ‖I k
hv‖1,h . ‖v‖H1(Ω). (1.17)

The followingFriedrichs’ inequalities can be proved using the arguments of [7474,
Lemma 7.2], where element DOFs of degree k are considered (cf. also [4949, 7979]
for related results using dG norms): For all r ∈ [1,+∞) if d = 2, all r ∈ [1, 6] if
d = 3,

∀vh ∈ Pk+1,k
h,0 , ‖vh‖Lr (Ω) . ‖vh‖1,h. (1.18)

The case r = 2 corresponds to Poincaré’s inequality. Finally, to close this section,
we prove that ‖·‖1,h defines a norm on Pk+1,k

h,0 .
Proposition 1.3 (Norm ‖·‖1,h). The map ‖·‖1,h defines a norm on Pk+1,k

h,0 .

Proof. We only have to show that ‖vh‖1,h = 0 =⇒ vh = 0. By (1.181.18), ‖vh‖1,h =

0 =⇒ vh ≡ 0, i.e., vT ≡ 0 for all T ∈ Th. Plugging this result into the
definition (1.151.15) of ‖·‖1,h, we get

∑
T∈Th

∑
F∈FT h−1

F ‖vF ‖
2
F = 0, which implies in

turn vF ≡ 0 for all F ∈ Fh. �

1.3.2 Diffusive bilinear form and discrete problem

For all T ∈ Th, we define the potential reconstruction operator r k+1
T : Pk+1,k

T →

Pk+1(T) such that, for all vT ∈ Pk+1,k
T , r k+1

T vT is the unique solution of the following
Neumann problem:∫

T
∇r k+1

T vT · ∇z = −
∫

T
vT∆z +

∑
F∈FT

∫
F
vF∇z · nTF ∀z ∈ Pk+1(T), (1.19)
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with closure condition
∫

T r k+1
T vT =

∫
T vT . It can be proved that, for all v ∈ H1(T),

denoting by I k
T the restriction of the reductionmap I k

h defined by (1.141.14) to H1(T) →
Pk+1,k

T , ∫
T
∇(r k+1

T I k
Tv − v) · ∇z = 0 ∀z ∈ Pk+1(T), (1.20)

which expresses the fact that (r k+1
T ◦ I k

T ) is the elliptic projector onto P
k+1(T) (and,

as such, has optimal approximation properties in Pk+1(T)). The diffusive bilinear
form ah on Pk+1,k

h × Pk+1,k
h is obtained by element-wise assembly setting

ah(vh, zh) B
∑
T∈Th

(∫
T
∇r k+1

T vT · ∇r k+1
T zT + s1,h(vh, zh)

)
, (1.21)

with stabilization bilinear form s1,h defined by (1.161.16). Denoting by ‖·‖a,h the
seminorm defined by ah on Pk+1,k

h , a straightforward adaptation of the arguments
used in [8383, Lemma 4] shows that

∀vh ∈ Pk+1,k
h , ‖vh‖1,h . ‖vh‖a,h . ‖vh‖1,h, (1.22)

which expresses the coercivity and boundedness of ah. Additionally, following
the arguments in [8383, Theorem 8], one can easily prove that the bilinear form ah
enjoys the following consistency property: For all v ∈ Hmax(2,l)(Ω)∩ L2

0(Ω), l ≥ 1,
such that −∇v · n = 0 on ∂Ω,

sup
z
h
∈Pk+1,k

h,0 ,‖z
h
‖1,h=1

����ah(I k
hv, zh) +

∫
Ω

∆vzh

���� . hmin(k+1,l−1)‖v‖Hl(Ω). (1.23)

Remark 1.4 (Consistency of ah). For sufficiently regular solutions (i.e., when
l = k + 2), equation (1.231.23) shows that the consistency error scales as hk+1. This
is a consequence of the fact that both the potential reconstruction r k+1

T (cf. (1.191.19))
and the stabilization bilinear form s1,h (cf. (1.161.16)) are consistent for exact solutions
that are polynomials of degree (k + 1) inside each element. In particular, a key
point in s1,h is to penalize πk

F(vF − vT ) instead of (vF − vT ). A similar stabilization
bilinear form had been independently suggested in the context of Hybridizable
Discontinuous Galerkin methods in [118118, Remark 1.2.4].

The discrete problem reads: For all 1 ≤ n ≤ N , find (cn
h,w

n
h) ∈ Pk+1,k

h,0 × Pk+1,k
h

such that∫
Ω

δtcn
hϕh + ah(w

n
h, ϕh
) = 0 ∀ϕ

h
∈ Pk+1,k

h , (1.24a)∫
Ω

wn
hψh =

∫
Ω

Φ
′(cn

h)ψh + γ
2ah(cn

h, ψh
) ∀ψ

h
∈ Pk+1,k

h , (1.24b)
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and c0
h ∈ Pk+1,k

h,0 solves

ah(c0
h, ϕh
) = −

∫
Ω

∆c0ϕh ∀ϕ
h
∈ Pk+1,k

h . (1.25)

We note, in passing, that the face DOFs in c0
h are not needed to initialize the

algorithm.
Remark 1.5 (Static condensation). Problem (1.241.24) is a systemof nonlinear algebraic
equations, which can be solved using an iterative algorithm. When first order
(Newton-like) algorithms are used, element-based DOFs can be locally eliminated
at each iteration by a standard static condensation procedure.

1.4 Stability analysis
In this section we establish some uniform a priori bounds on the discrete solution.
To this end, we need a discrete counterpart of Agmon’s inequality; cf. [88,
Lemma 13.2] and also [33, Theorem 3]. We define on Pk+1,k

h the following L2-like
inner product:

(vh, zh)0,h B

∫
Ω

vhzh + s0,h(vh, zh),

s0,h(vh, zh) B
∑
T∈Th

∑
F∈FT

∫
F

hFπ
k
F(vF − vT )π

k
F(zF − zT ),

(1.26)

and denote by ‖·‖0,h and |·|0,h the norm and seminorm corresponding to the bilinear
forms (·, ·)0,h and s0,h, respectively. For further insight on the role of s0,h, cf.
Remark 1.191.19. We introduce the discrete Laplace operator Lk

h : Pk+1,k
h → Pk+1,k

h
such that, for all vh ∈ Pk+1,k

h ,

−(Lk
hvh, zh)0,h = ah(vh, zh) ∀zh ∈ Pk+1,k

h , (1.27)

and we denote by Lk
hvh (no underline) the broken polynomial function in Pk+1(Th)

obtained from element DOFs in Lk
hvh.

Remark 1.6 (Restriction of Lk
h to Pk+1,k

h,0 → Pk+1,k
h,0 ). Whenever vh ∈ Pk+1,k

h,0 , Lk
hvh ∈

Pk+1,k
h,0 . To prove it, it suffices to take zh = I k

h χΩ in (1.271.27) (with χΩ characteristic
function ofΩ), and observe that the left-hand side satisfies (Lk

hvh, zh)0,h =
∫
Ω

Lk
hvh

while, by definition (1.211.21) of the bilinear form ah, the right-hand side vanishes.
In what follows, we keep the same notation for the (bijective) restriction of Lk

h to
Pk+1,k

h,0 → Pk+1,k
h,0 .
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The following result, valid for d ∈ {2, 3}, will be proved in Section 1.71.7.
Lemma 1.7 (Discrete Agmon’s inequality). Assume mesh quasi-uniformity (1.101.10).
Then, it holds with real number C > 0 independent of h,

∀vh ∈ Pk+1,k
h,0 , ‖vh‖L∞(Ω) ≤ C‖vh‖

1/2
1,h‖L

k
hvh‖

1/2
0,h. (1.28)

We also recall the following discrete Gronwall’s inequality (cf. [112112, Lemma
5.1]).
Lemma 1.8 (Discrete Gronwall’s inequality). Let two reals µ,G > 0 be given,
and, for integers n ≥ 1, let an, bn, and χn denote nonnegative real numbers such
that

aN + µ

N∑
n=1

bn ≤ µ

N∑
n=1

χnan + G ∀N ∈ N∗.

Then, if χnµ < 1 for all n, letting ςn B (1 − χnµ)−1, it holds

aN + µ

N∑
n=1

bn ≤ exp

(
µ

N∑
n=1

ςnχn

)
× G ∀N ∈ N∗. (1.29)

We are now ready to prove the a priori bounds.
Lemma 1.9 (Uniform a priori bounds). Under the assumptions of Lemma 1.71.7, and
further assuming that δt ≤ L for a given real number L > 0 independent of h and
of δt (but depending on γ2) and sufficiently small, there is a real number C > 0
independent of h and τ such that

max
1≤n≤N

(
‖cn

h‖
2
a,h +

∫
Ω

Φ(cn
h) + ‖w

n
h‖

2 + ‖cn
h‖L∞(Ω) + ‖L

k
hcn

h‖
2
0,h

)
+

N∑
n=1

δt‖wn
h‖

2
a,h ≤ C.

Proof. The proof is split into several steps.
(i) We start by proving that

max
1≤n≤N

(
‖cn

h‖
2
a,h +

∫
Ω

Φ(cn
h)

)
+

N∑
n=1

δt‖wn
h‖

2
a,h . 1. (1.30)

Subtracting (1.24b1.24b) with ψ
h
= cn

h − cn−1
h from (1.24a1.24a) with ϕ

h
= δtwn

h, and using
the fact that, for all r, s ∈ R, Φ′(r)(r − s) ≥ Φ(r) − Φ(s) − 1

2 (r − s)2, it is inferred,
for all 1 ≤ n ≤ N , that

γ2ah(cn
h, c

n
h−cn−1

h )+δt‖wn
h‖

2
a,h+

∫
Ω

Φ(cn
h) ≤

1
2
‖cn

h−cn−1
h ‖

2+

∫
Ω

Φ(cn−1
h ). (1.31)
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Notice that
∫
Ω
Φ(cn

h) ≥ 0 for all 0 ≤ n ≤ N by definition (1.21.2) of Φ. Making ϕ
h
=

δt(cn
h − cn−1

h ) in (1.24a1.24a) and using the Cauchy–Schwarz and Young’s inequalities,
we infer that

‖cn
h − cn−1

h ‖
2 ≤

δt
2
‖wn

h‖
2
a,h +

δt
2
‖cn

h − cn−1
h ‖

2
a,h. (1.32)

Additionally, recalling the following formula for the backward Euler scheme:

2x(x − y) = x2 + (x − y)2 − y2, (1.33)

it holds

ah(cn
h, c

n
h − cn−1

h ) =
1
2

(
‖cn

h‖
2
a,h + ‖c

n
h − cn−1

h ‖
2
a,h − ‖c

n−1
h ‖

2
a,h

)
. (1.34)

Plugging (1.321.32) and (1.341.34) into (1.311.31), we obtain

γ2‖cn
h‖

2
a,h +

(
γ2 −

δt
2

)
‖cn

h − cn−1
h ‖

2
a,h +

3δt
2
‖wn

h‖
2
a,h + 2

∫
Ω

Φ(cn
h)

≤ γ2‖cn−1
h ‖

2
a,h + 2

∫
Ω

Φ(cn−1
h ).

Provided δt < 2γ2, the bound (1.301.30) follows summing the above inequality over
1 ≤ n ≤ N , and using the fact that γ2‖c0

h‖a,h + 2
∫
Ω
Φ(c0

h) . 1. To prove this
bound, observe that

γ2‖c0
h‖a,h + 2

∫
Ω

Φ(c0
h) . γ

2‖c0
h‖

2
1,h + 1 + ‖c0

h‖
4
L4(Ω)

+ ‖c0
h‖

2

. γ2‖c0
h‖

2
1,h + 1 + ‖c0

h‖
4
1,h + ‖c

0
h‖

2
1,h . 1,

where we have used the definition (1.21.2) of the free-energy Φ in the first line
followed by the discrete Friedrichs’ inequality with r = 4, 2 in the second line and
the first bound on the initial datum in (1.461.46) below to conclude.

(ii) We next prove that

N∑
n=1

δt‖cn
h‖

4
L∞(Ω) . 1. (1.35)

The discrete Agmon’s inequality (1.281.28) followed by the first inequality in (1.221.22)
yields

N∑
n=1

δt‖cn
h‖

4
L∞(Ω) .

N∑
n=1

δt‖cn
h‖

2
a,h‖L

k
hcn

h‖
2
0,h .

(
max

1≤n≤N
‖cn

h‖
2
a,h

)
×

N∑
n=1

δt‖Lk
hcn

h‖
2
0,h.
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The first factor is . 1 owing to (1.301.30). Thus, to prove (1.351.35), it suffices to show that
also the second factor is . 1. Using the definition (1.271.27) of Lk

h followed by (1.24b1.24b)
with ψ

h
= Lk

hcn
h, we infer that

γ2‖Lk
hcn

h‖
2
0,h = −γ

2ah(cn
h, Lk

hcn
h) =

∫
Ω

(Φ′(cn
h) − w

n
h)L

k
h cn

h. (1.36)

Using again (1.271.27) for the second term in the right-hand side of (1.361.36) followed by
the Cauchy–Schwarz and Young’s inequalities, we obtain

γ2‖Lk
hcn

h‖
2
0,h =

∫
Ω

Φ
′(cn

h)L
k
h cn

h + ah(cn
h,w

n
h) + s0,h(Lk

hcn
h,w

n
h)

≤
1

2γ2 ‖Φ
′(cn

h)‖
2+
γ2

2
‖Lk

hcn
h‖

2
0,h+

γ2

2
‖cn

h‖
2
a,h+

1
2γ2 ‖w

n
h‖

2
a,h+

1
2γ2 |w

n
h |

2
0,h.

Hence, since |wn
h |0,h ≤ h|wn

h |1,h . ‖w
n
h‖a,h,

γ2‖Lk
hcn

h‖
2
0,h . γ

−2‖Φ′(cn
h)‖

2 + γ2‖cn
h‖

2
a,h + γ

−2‖wn
h‖

2
a,h.

The fact that
∑N

n=1 δt‖Lk
hcn

h‖
2
0,h . 1 then follows multiplying the above inequality

by δt, summing over 1 ≤ n ≤ N , using (1.301.30) to bound the second and third term
in the right-hand side, and observing that

‖Φ′(cn
h)‖

2 ≤ ‖cn
h‖

6
L6(Ω)

+ 2‖cn
h‖

4
L4(Ω)

+ ‖cn
h‖

2

. ‖cn
h‖

6
1,h + ‖c

n
h‖

4
1,h + ‖c

n
h‖

2
1,h

. 1,

(1.37)

where we have used the definition (1.21.2) to obtain the first bound, Friedrichs’
inequality (1.181.18) with r = 6, 4, 2 to obtain the second bound, and (1.301.30) together
with the first inequality in (1.221.22) to conclude.

(iii) We proceed by proving that

max
1≤n≤N

‖wn
h‖

2 + γ2
N∑

n=1
δt‖δtcn

h‖
2 . 1. (1.38)

Let w0
h B πk+1

h (Φ
′(c0

h) − γ
2∆c0). Recalling (1.251.25), w0

h satisfies∫
Ω

w0
hψh =

∫
Ω

Φ
′(c0

h)ψh + γ
2ah(c0

h, ψh
) ∀ψ

h
∈ Pk+1,k

h . (1.39)

For any 1 ≤ n ≤ N , subtracting from (1.24b1.24b) at time step n (1.24b1.24b) at time step
(n − 1) if n > 1 or (1.391.39) if n = 1, and selecting ψ

h
= wn

h as a test function in the
resulting equation, it is inferred that∫

Ω

(wn
h − w

n−1
h )w

n
h = δtγ2ah(δmtcn

h,w
n
h) +

∫
Ω

(Φ′(cn
h) − Φ

′(cn−1
h ))w

n
h.
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Using (1.24a1.24a) with ϕ
h
= δtγ2δtcn

h to infer δtγ2ah(δtcn
h,w

n
h) = −δtγ2‖δtcn

h‖
2, we

get ∫
Ω

(wn
h − w

n−1
h )w

n
h + δtγ2‖δtcn

h‖
2 =

∫
Ω

(Φ′(cn
h) − Φ

′(cn−1
h ))w

n
h. (1.40)

From the fact that

Φ
′(r) − Φ′(s) = (r2 + rs + s2 − 1)(r − s), (1.41)

followed by the Cauchy–Schwarz and Young’s inequalities, we infer

|

∫
Ω

(Φ′(cn
h) − Φ

′(cn−1
h ))w

n
h | ≤

δtγ2

2
‖δtcn

h‖
2 +

δtCn

2
‖wn

h‖
2, (1.42)

with Cn B C(1 + ‖cn
h‖

4
L∞(Ω) + ‖c

n−1
h ‖

4
L∞(Ω)) for a real number C > 0 independent

of h and δt. Using (1.331.33) for the first term in the left-hand side of (1.401.40) together
with (1.421.42) for the right-hand side, we get

‖wn
h‖

2 + ‖wn
h − w

n−1
h ‖

2 + δtγ2‖δtcn
h‖

2 ≤ δtCn‖wn
h‖

2 + ‖wn−1
h ‖

2. (1.43)

Summing (1.431.43) over 1 ≤ n ≤ N , observing that, thanks to (1.351.35) and the second
bound in (1.461.46) below, we can have δtCn < 1 for all 1 ≤ n ≤ N provided that we
choose δt small enough, and using the discrete Gronwall’s inequality (1.291.29) (with
µ = δt, an = ‖wn

h‖
2, bn = γ2‖δtcn

h‖
2, χn = Cn andG = ‖w0

h‖
2), the estimate (1.381.38)

follows if we can bound ‖w0
h‖

2. To this end, recalling the definition of w0
h and

using the Cauchy–Schwarz inequality, one has

‖w0
h‖

2 =

∫
Ω

Φ
′(c0

h)w
0
h − γ

2
∫
Ω

∆c0w
0
h ≤

(
‖Φ′(c0

h)‖ + γ
2‖c0‖H2(Ω)

)
‖w0

h‖,

and the conclusion follows from the regularity of c0 noting the first bound in (1.461.46)
below and estimating the first term in parentheses as in (1.371.37).

(iv) We conclude by proving the bound

max
1≤n≤N

(
‖cn

h‖L∞(Ω) + ‖L
k
hcn

h‖
2
0,h

)
. 1. (1.44)

Using the Cauchy–Schwarz and Young’s inequalities to bound the right-hand side
of (1.361.36) followed by (1.181.18) with r = 6, 4, 2 and the first inequality in (1.221.22), we
obtain, for all 1 ≤ n ≤ N ,

γ2‖Lk
hcn

h‖
2
0,h . γ

−2
(
‖Φ′(cn

h)‖
2 + ‖wn

h‖
2
)

.
(
‖cn

h‖
6
L6(Ω)

+ ‖cn
h‖

4
L4(Ω)

+ ‖cn
h‖

2
)
+ ‖wn

h‖
2

.
(
‖cn

h‖
6
a,h + ‖c

n
h‖

4
a,h + ‖c

n
h‖

2
a,h

)
+ ‖wn

h‖
2 . 1,

(1.45)
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where we have concluded using (1.301.30) multiple times for the terms in parentheses
and (1.381.38) for ‖wn

h‖
2. Using the discrete Agmon’s inequality (1.281.28) followed by

Young’s inequality and the first inequality in (1.221.22), we infer

max
1≤n≤N

‖cn
h‖L∞(Ω) . max

1≤n≤N

(
‖cn

h‖a,h + ‖L
k
hcn

h‖0,h

)
. 1,

where the conclusion follows using (1.301.30) for the first addend in the argument of
the maximum and (1.451.45) for the second.

�

Proposition 1.10 (Bounds for c0
h). Let c0

h ∈ Pk+1,k
h,0 be defined by (1.251.25) from an

initial datum c0 ∈ H2(Ω) ∩ L2
0(Ω) such that −∇c0 · n = 0 on ∂Ω. It holds, with

real number C > 0 independent of h,

‖c0
h‖1,h + ‖c

0
h‖L∞(Ω) ≤ C‖c0‖H2(Ω). (1.46)

Proof. To prove the first bound in (1.461.46), let ϕ
h
= c0

h in (1.251.25) and use the first
inequality in (1.221.22), the Cauchy–Schwarz inequality and the discrete Poincaré’s
inequality (1.181.18) with r = 2 to infer

‖c0
h‖

2
1,h . ah(c0

h, c
0
h) = −

∫
Ω

∆c0c0
h ≤ ‖∆c0‖‖c0

h‖ . ‖c0‖H2(Ω)‖c
0
h‖1,h.

To prove the second bound in (1.461.46), we start by noticing that, using the definition
(1.271.27) of Lk

h with zh = −Lk
hc0

h,

‖Lk
hc0

h‖
2
0,h = −ah(c0

h, Lk
hc0

h) =

∫
Ω

∆c0Lk
h c0

h ≤ ‖c0‖H2(Ω)‖L
k
h c0

h‖,

hence ‖Lk
hc0

h‖0,h ≤ ‖c0‖H2(Ω). Combining the discrete Agmon’s inequality (1.281.28)
with the latter inequality and the first bound in (1.461.46), one gets

‖c0
h‖L∞(Ω) ≤ ‖c

0
h‖

1/2
1,h‖L

k
hc0

h‖
1/2
0,h . ‖c0‖H2(Ω),

and the desired result follows. �

1.5 Error analysis

In this section we carry out the error analysis of the method (1.241.24).
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1.5.1 Error equations

Our goal is to estimate the difference between the discrete solution obtained
solving (1.241.24) and the projections of the exact solution such that, for all 1 ≤ n ≤ N ,
ŵn

h = I k
hw

n, while, for all 0 ≤ n ≤ N , ĉn
h ∈ Pk+1,k

h,0 solves

ah (̂c
n
h, ϕh
) = −

∫
Ω

∆cnϕh ∀ϕ
h
∈ Pk+1,k

h ,

and
∫
Ω

ĉn
h = 0. We define, for all 1 ≤ n ≤ N , the errors

en
c,h B cn

h − ĉn
h, en

w,h B wn
h − ŵ

n
h. (1.47)

By definition (1.251.25), ĉ0
h = c0

h, which prompts us to set e0
c,h B 0. Using Poincaré’s

inequality (1.181.18) with r = 2 and the consistency (1.231.23) of ah, the following
estimate is readily inferred: For all 0 ≤ n ≤ N , assuming the additional regularity
cn ∈ Hk+2(Ω),

‖ĉn
h − π

k+1
h cn‖ . ‖ĉn

h − I k
hcn‖1,h . hk+1‖cn‖Hk+2(Ω). (1.48)

Remark 1.11 (Improved L2-estimate). We notice, in passing, that, using elliptic
regularity (which holds since Ω is convex, cf., e.g., [108108]), one can improve this
result and show that ‖ĉn

h − π
k+1
h cn‖ . hk+2‖cn‖Hk+2(Ω).

Recalling (1.241.24), for all 1 ≤ n ≤ N , the error (en
c,h, e

n
w,h) ∈ Pk+1,k

h,0 × Pk+1,k
h

solves∫
Ω

δten
c,hϕh + ah(en

w,h, ϕh
) = E(ϕ

h
) ∀ϕ

h
∈ Pk+1,k

h , (1.49a)∫
Ω

en
w,hψh =

∫
Ω

(Φ′(cn
h) − Φ

′(cn))ψh + γ
2ah(en

c,h, ψh
) ∀ψ

h
∈ Pk+1,k

h , (1.49b)

where, in (1.49a1.49a), we have defined the consistency error

E(ϕ
h
) B −

∫
Ω

δtĉn
hϕh − ah(ŵ

n
h, ϕh
), (1.50)

while in (1.49b1.49b) we have combined the definitions of ŵn
h and ĉn

h with (1.1b1.1b) to infer∫
Ω

ŵn
hψh − γ

2ah (̂c
n
h, ψh
) =

∫
Ω

(wn + ∆cn)ψh =

∫
Ω

Φ
′(cn)ψh.
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1.5.2 Error estimate
Theorem 1.12 (Error estimate). Suppose that the assumptions of Lemma 1.91.9 hold
true. Let (c,w) denote the solution to (1.11.1), for which we assume the following
additional regularity:

c ∈ C2([0, tF]; L2(Ω))∩C1([0, tF]; Hk+2(Ω)), w ∈ C0([0, tF]; Hk+2(Ω)). (1.51)

Then, the following estimate holds for the errors defined by (1.471.47):(
max

1≤n≤N
‖en

c,h‖
2
a,h +

N∑
n=1

δt‖en
w,h‖

2
a,h

)1/2

≤ C(hk+1 + δt), (1.52)

with real number C > 0 independent of h and δt.

Proof. Let 1 ≤ n ≤ N . Subtracting (1.49b1.49b) with ψ
h
= δten

c,h from (1.49a1.49a) with
ϕ

h
= en

w,h, we obtain

‖en
w,h‖

2
a,h + γ

2ah(en
c,h, δten

c,h) = E(e
n
w,h) +

∫
Ω

(Φ′(cn) − Φ′(cn
h))δten

c,h

B T1 + T2.

(1.53)

We proceed to bound the terms in the right-hand side.
(i) Bound for T1. Let ϕh

∈ Pk+1,k
h . Adding to (1.501.50) the quantity∫

Ω

(dtcn − ∆wn)ϕh +

∫
Ω

(δtπ
k+1
h cn − δtcn)ϕh = 0,

(use (1.1a1.1a) to prove that the first addend is 0 and the definition of the L2-orthogonal
projector πk+1

h to prove that the second is also 0), we can decompose E(ϕ
h
) as

follows:

E(ϕ
h
) =

∫
Ω

(dtcn − δtcn)ϕh +

∫
Ω

δt(π
k+1
h cn − ĉn

h)ϕh −

(
ah(ŵ

n
h, ϕh
) +

∫
Ω

∆wnϕh

)
B T1,1 + T1,2 + T1,3.

For the first term, we have

|T1,1 | ≤ ‖dtcn − δtcn‖‖ϕh‖ . δt‖c‖C2([0,tF ];L2(Ω))‖ϕh
‖1,h . δt‖ϕ

h
‖1,h, (1.54)

where we have used the Cauchy–Schwarz inequality, a classical estimate based
on Taylor’s remainder, Poincaré’s inequality (1.181.18) with r = 2, and we have
concluded using the regularity (1.511.51) for c. For the second term, on the other
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hand, using the Cauchy–Schwarz inequality followed by (1.481.48) together with the
C1-stability of the backward differencing operator (1.31.3), Poincaré’s inequality, and
the regularity (1.511.51) for c, we readily obtain

|T1,2 | ≤ ‖δt(π
k+1
h cn − ĉn

h)‖‖ϕh‖ . hk+1‖cn‖C1([0,tF ];Hk+2(Ω))‖ϕh‖

. hk+1‖ϕ
h
‖1,h.

(1.55)

Finally, recalling the consistency properties (1.231.23) of ah, we get for the last term

|T1,3 | . hk+1‖wn‖Hk+2(Ω)‖ϕh
‖1,h ≤ hk+1‖w‖C0([0,tF ];Hk+2(Ω))‖ϕh

‖1,h

. hk+1‖ϕ
h
‖1,h.

(1.56)

Collecting the bounds (1.541.54)–(1.561.56), it is inferred that

$ B sup
ϕ
h
∈Pk+1,k

h
,‖ϕ

h
‖1,h=1

E(ϕ
h
) . hk+1 + δt, (1.57)

so that, for any real ε > 0, denoting by Cε > 0 a real depending on ε but not on h
or δt, and using the second inequality in (1.221.22) to bound ‖en

w,h‖1,h . ‖e
n
w,h‖a,h,

|T1 | ≤ $‖en
w,h‖1,h . (h

k+1 + δt)‖en
w,h‖1,h ≤ Cε (hk+1 + δt)2 + ε ‖en

w,h‖
2
a,h. (1.58)

(ii) Bound for T2. Set, for the sake of brevity, Qn B Φ′(cn
h) − Φ

′(cn), and
define the DOF vector zh ∈ Pk+1,k

h such that

zT = π
k+1
T Qn ∀T ∈ Th, zF =

{
πk

F{{Q
n}}F ∀F ∈ F i

h,

πk
F zTF ∀F ∈ F b

h ,
(1.59)

where {{·}}F denotes the usual average operator such that, for any function ϕ
admitting a possibly two-valued trace on F ∈ FT1 ∩ FT2 , {{ϕ}}F B

1
2 (ϕ|T1 + ϕ|T2),

while, for a boundary face F ∈ F b
h , TF denotes the unique element in Th such

that F ∈ FTF . We have, using the definition of πk+1
T followed by (1.49a1.49a) with

ϕ
h
= zh, (1.571.57), and the second inequality in (1.221.22),

T2 = (zh, δten
c,h) = E(zh) − ah(en

w,h, zh) .
(
$ + ‖en

w,h‖a,h

)
‖zh‖1,h. (1.60)

By Proposition 1.151.15 below,

‖zh‖1,h . ‖e
n
c,h‖a,h + hk+1, (1.61)

hence, for any real ε > 0, denoting by Cε > 0 a real number depending on ε but
not on h or δt, and recalling the bound (1.571.57) for $,

|T2 | ≤ Cε

(
‖en

c,h‖
2
a,h + (h

k+1 + δt)2
)
+ ε ‖en

w,h‖
2
a,h. (1.62)
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(iii) Conclusion. Using (1.581.58) and (1.621.62) with ε = 1
4 to bound the right-hand

side of (1.531.53), it is inferred

‖en
w,h‖

2
a,h + γ

2ah(en
c,h, δten

c,h) . (h
k+1 + δt)2 + ‖en

c,h‖
2
a,h.

Multiplying by δt, summing over 1 ≤ n ≤ N , using (1.331.33) for the second term in
the left-hand side, and recalling that, by definition, e0

c,h = 0, we get

γ2‖eN
c,h‖

2
a,h +

N∑
n=1

δt‖en
w,h‖

2
a,h ≤

N∑
n=1

Cδt‖en
c,h‖

2
a,h + C(hk+1 + δt)2,

with C > 0 independent of h and δt. The error estimate (1.521.52) then follows
from an application of the discrete Gronwall’s inequality (1.291.29) with µ = δt,
an = γ2‖en

c,h‖
2
a,h, bn = ‖en

w,h‖
2
a,h, χ

n = C, and G = C(hk+1 + δt)2 assuming δt
small enough.

�

Remark 1.13 (BDF2 time discretization). In Section 2.52.5, we have also used a BDF2
scheme to march in time, which corresponds to the backward differencing operator

δ
(2)
t ϕ B

3ϕn+2 − 4ϕn+1 + ϕn

2δt
,

used in place of (1.31.3). The analysis is essentially analogous to the backward Euler
scheme, the main difference being that formula (1.331.33) is replaced by

2x(3x − 4y + z) = x2 − y2 + (2x − y)2 − (2y − z)2 + (x − 2y + z)2.

As a result, the right-hand side of (1.521.52) scales as (hk+1+δt2) instead of (hk+1+δt).
To prove the bound (1.611.61), we need discrete counterparts of the following

Gagliardo–Nirenberg–Poincaré’s inequalities valid for p ∈ [2,+∞) if d = 2,
p ∈ [2, 6] if d = 3, and all v ∈ H2(Ω) ∩ L2

0(Ω):

|v |W1,p(Ω) . ‖v‖
1−α |v |αH2(Ω)

. |v |1−αH1(Ω)
|v |αH2(Ω)

, α B
1
2
+

d
2

(
1
2
−

1
p

)
, (1.63)

where the first bound follows from [33, Theorem 3] and the second from Poincaré’s
inequality. The proof of the following Lemma will be given in Section 1.71.7.
Lemma 1.14 (Discrete Gagliardo–Nirenberg–Poincaré’s inequalities). Under the
assumptions of Lemma 1.71.7, it holds for p ∈ [2,+∞) if d = 2, p ∈ [2, 6] if d = 3
with C > 0 independent of h and α defined as in (1.631.63),

∀vh ∈ Pk+1,k
h,0 , ‖∇hvh‖Lp(Ω)d ≤ C‖vh‖

1−α
1,h ‖L

k
hvh‖

α
0,h. (1.64)
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Proposition 1.15 (Bound on ‖zh‖1,h). With zh defined as in (1.591.59), the bound (1.611.61)
holds.

Proof. Recalling the definition (1.151.15) of the ‖·‖1,h-norm, one has

‖zh‖
2
1,h = ‖∇hπ

k+1
h Qn‖2 +

∑
T∈Th

∑
F∈FT∩F i

h

h−1
F ‖π

k
F({{Q

n}}F − π
k+1
T Qn)‖2F

B T
2
1 + T

2
2 .

(1.65)

(i) Bound for T1. Using the H1-stability (1.71.7) of πk+1
h , formula (1.411.41) to infer

Qn = qn(cn
h − cn) with qn B (cn

h)
2 + cn

hcn + (cn)2 − 1, the triangle and Hölder
inequalities, we get, for all T ∈ Th,

|T1 | . ‖∇hQn‖ ≤ ‖qn∇h(cn
h − cn)‖ + ‖(cn

h − cn)∇hqn‖

.
(
‖cn

h‖
2
L∞(Ω) + ‖c

n‖2L∞(Ω) + 1
)
‖∇h(cn

h − cn)‖

+ ‖cn
h − cn‖L6(Ω)

(
‖cn

h‖L∞(Ω) + ‖c
n‖L∞(Ω)

) (
‖∇hcn

h‖L3(Ω)d + ‖∇cn‖L3(Ω)d

)
.

Noting the a priori bound (1.441.44) and the regularity assumption (1.511.51), both
‖cn

h‖L∞(Ω) and ‖c
n‖L∞(Ω) are . 1. Additionally, by the continuous Gagliardo–

Nirenberg–Poincaré’s inequality (1.631.63) with p = 3 and the regularity assump-
tion (1.511.51), one has with α = 1/2 + d/12, ‖∇cn‖L3(Ω)d . |c

n |1−α
H1(Ω)
‖cn‖α

H2(Ω)
. 1.

Similarly, the discrete Gagliardo–Nirenberg–Poincaré’s inequality (1.641.64) with
p = 3 combined with the a priori bounds (1.301.30) and (1.441.44) yields

‖∇hcn
h‖L3(Ω)d . ‖c

n
h‖

1−α
1,h ‖L

k
hcn

h‖
α
0,h . 1.

Then, inserting ±(ĉn
h − π

k+1
h cn) and using the triangle inequality,

|T1 |.
(
‖∇hen

c,h‖+‖e
n
c,h‖L6(Ω)

)
+
(
‖∇h(ĉn

h − π
k+1
h cn)‖+‖ĉn

h − π
k+1
h cn‖L6(Ω)

)
+

(
‖∇h(π

k+1
h cn − cn)‖ + ‖πk+1

h cn − cn‖L6(Ω)

)
B T1,1 + T1,2 + T1,3.

(1.66)

Using the discrete Friedrichs’ inequality (1.181.18) with r = 6 together with the
definition (1.151.15) of the ‖·‖1,h-norm and the first inequality in (1.221.22), it is readily
inferred that T1,1 . ‖en

c,h‖a,h. Again the Friedrichs’ inequality (1.181.18) with r = 6
followed by the approximation properties (1.481.48) of ĉn

h and the regularity (1.511.51)
yields T2,2 . hk+1‖cn‖Hk+2(Ω) . hk+1. Finally, using the approximation properties
(1.81.8) of πk+1

h , we have T1,3 . hk+1(‖cn‖Hk+2(Ω) + ‖c
n‖Wk+1,6(Ω)) . hk+1, where

we have used the fact that Hk+2(Ω) ⊂ W k+1,6(Ω) for all k ≥ 0 and d ∈ {2, 3}
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on domains satisfying the cone condition (cf. [44, Theorem 4.12]). Gathering the
previous bounds, we conclude that

|T1 | . ‖en
c,h‖a,h + hk+1. (1.67)

(ii) Bound for T2. For all interface F ∈ FT1 ∩FT2 , we denote by [[·]]F the usual
jump operator such that, for every function ϕ with a possibly two-valued trace on
F, [[ϕ]]F B ϕ|T1 − ϕ|T2 (the orientation is irrelevant). Let an element T ∈ Th and
an interface face F ∈ FT ∩ FT+ be fixed. Using the L2-stability of πk

F , inserting
±Qn

T (with Qn
T B Qn

|T ), and using the triangle inequality it holds,

‖πk
F({{Q

n}}F − π
k+1
T Qn

T )‖F ≤ ‖{{Q
n}}F − π

k+1
T Qn

T ‖F

≤
1
2
‖[[Qn]]F ‖F + ‖Qn

T − π
k+1
T Qn

T ‖F

. ‖[[Qn]]F ‖F + h
1
2
T ‖∇Qn

T ‖T,

(1.68)

where we have used (1.81.8) for the last term. Let us bound the first term in the
right-hand side. Observing that [[Φ′(cn)]]F = 0 and recalling (1.411.41), it is inferred

|[[Qn]]F | = |[[Φ
′(cn

h)]]F | ≤ |[[c
n
h]]F |

(
|cT |

2 + |cT | |cT+ | + |cT+ |
2 + 1

)
.

Using this relation, and noticing the a priori bound (1.441.44), we get

‖[[Qn]]F ‖F .
(
‖cn

h‖
2
L∞(Ω) + 1

)
‖[[cn

h]]F ‖F . ‖[[c
n
h]]F ‖F = ‖[[c

n
h − cn]]F ‖F,

where the conclusion follows observing that cn has zero jumps across interfaces.
Inserting ±[[ĉn

h − π
k+1
h cn]]F inside the norm and using the triangle inequality, we

obtain

‖[[Qn]]F ‖F . ‖[[cn
h − ĉn

h]]F ‖F + ‖[[ĉ
n
h − π

k+1
h cn]]F ‖F + ‖[[π

k+1
h cn − cn]]F ‖F . (1.69)

Define on H1(Th) the jump seminorm |v |2J B
∑

F∈F i
h

h−1
F ‖[[v]]F ‖

2
F . Let us prove

that
∀vh ∈ Pk+1,k

h , |vh |J . ‖vh‖1,h . ‖vh‖a,h. (1.70)

Inserting ±(πk
F[[vh]]F − vF) and using the triangle inequality, it is inferred that

|vh |
2
J .

∑
F∈F i

h

∑
T∈TF

h−1
F

(
‖vT − π

k
FvT ‖

2
F + ‖π

k
F(vT − vF)‖

2
F

)
. ‖∇hvh‖

2 + |vh |
2
1,h,

where we have used (1.91.9) followed by the discrete trace inequality (1.41.4) and the fact
that card(FT ) . 1 by mesh regularity for the first term, and the definition (1.151.15) of
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the |·|1,h-seminorm for the second term. This proves the first bound in (1.701.70). The
second bound follows from (1.221.22).
Multiplying (1.681.68) by h

− 1
2

F , squaring, summing over F ∈ FT ∩ F
i

h then over
T ∈ Th, using mesh regularity to infer that card(FT ) is bounded uniformly in h,
and noticing (1.691.69) yields

T
2
2 . ‖∇hQn‖2 + |cn

h − ĉn
h |

2
J + |ĉ

n
h − π

k+1
h cn |2J + |π

k+1
h cn − cn |2J

. ‖∇hQn‖2 + ‖en
c,h‖

2
a,h + ‖ĉ

n
h − I k

hcn‖2a,h + |π
k+1
h cn − cn |2J

. ‖∇hQn‖2 + ‖en
c,h‖

2
a,h +

(
hk+1‖cn‖Hk+2(Ω)

)2
,

(1.71)

where we have used (1.701.70) to pass to the second line and the approximation
properties (1.481.48) of ĉn

h and (1.81.8) of π
k+1
h to conclude. Proceeding as in point (i) to

bound the first term in the right-hand side of (1.711.71), and recalling the regularity
assumptions (1.511.51) on c, we conclude

|T2 | ≤ ‖en
c,h‖a,h + hk+1. (1.72)

(iii) Conclusion. Using (1.671.67) and (1.721.72) in (1.651.65), the estimate (1.611.61) follows.
�

Remark 1.16 (Polynomial degree for element DOFs). The use of polynomials of
degree (k + 1) (instead of k) as elements DOFs in the discrete space (1.131.13) is
required to infer an estimate of order hk+1 in (1.661.66) and for the last term in (1.711.71).

1.6 Numerical results
In this section we provide numerical evidence to confirm the theoretical results.

1.6.1 Convergence
We start by a non-physical numerical test that demonstrates the orders of conver-
gence achieved by our method. We solve the Cahn-Hilliard problem (1.491.49) on the
unit square Ω = (0, 1)2 with tF = 1, order-parameter

c(x, t) = t cos(πx1) cos(πx2),

and chemical potential w inferred from c according to (1.1b1.1b). The right-hand side
of (1.1a1.1a) is also modified by introducing a nonzero source in accordance with the
expression of c. The interface parameter γ is taken equal to 1.

We consider the triangular, Cartesian, and (predominantly) hexagonal mesh
families of Figure 1.11.1. The two former mesh families were introduced in the
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Figure 1.1: Mesh families for the numerical tests

FVCA5 benchmark [111111], whereas the latter was introduced in [8787]. To march in
time, we use the implicit Euler scheme. Since the order-parameter is linear in time,
only the spatial component of the discretization error is nonzero and the choice of
the time step is irrelevant. The energy errors ‖cN

h − I k
hcN ‖a,h and ‖wN

h − I k
hw

N ‖a,h
at final time are depicted in Figure 1.21.2. For all mesh families, the convergence
rate is (k + 1), in accordance with Theorem 1.121.12. For the sake of completeness,
we also display in Figure 1.31.3 the L2-errors ‖cn

h − π
k+1
h cn‖ and ‖wn

h − π
k+1
h wn‖, for

which an optimal convergence rate of (k + 2) is observed.

1.6.2 Evolution of an elliptic and a cross-shaped interfaces
The numerical examples of this section consist in tracking the evolution of
initial data corresponding, respectively, to an elliptic and a cross-shaped interface
between phases. For the elliptic interface test case of Figure 1.41.4, the initial datum
is

c0(x) =

{
0.95 if 81 (x1 − 0.5)2 + 9 (x2 − 0.5)2 < 1,
−0.95 otherwhise.

For the cross-shaped interface test case of Figure 1.51.5, we take

c0(x) =


0.95

if 5
(
|(x2−0.5) − 2

5 (x1−0.5)| + | 25 (x1−0.5) + (x2−0.5)|
)
< 1

or 5
(
|(x1−0.5) − 2

5 (x2−0.5)| + | 25 (x2−0.5) + (x1−0.5)|
)
< 1,

−0.95 otherwhise.

In both cases, the space domain is the unit squareΩ = (0, 1)2, and the interface
parameter γ is taken to be 1 · 10−2. We use a 64 × 64 uniform Cartesian mesh and
k = 1 with time step δt = γ2/10.

In the test case of Figure 1.41.4, we observe evolution of the elliptic interface
towards a circular interface and, as expected, mass is well preserved (+0.5% with
respect to the initial ellipse). Similar considerations hold for the cross-shaped test
case of Figure 1.51.5, which has the additional difficulty of presenting sharp corners.
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Figure 1.2: Energy-errors at final time vs. h. From left to right: triangular,
Cartesian and (predominantly) hexagonal mesh families; cf. Figure 1.11.1.

1.6.3 Spinodal decomposition

Spinodal decomposition can be observed when a binary alloy is heated to a high
temperature for a certain time and then abruptly cooled. As a result, phases are
separated in well-defined high concentration areas. In Figure 1.61.6, we display the
numerical solutions obtained on a 128 × 128 uniform Cartesian mesh for k = 0
and on a uniform 64×64 Cartesian mesh for k = 1. In both cases, we use the same
initial conditions taking random values between −1 and 1 on a 32 × 32 uniform
Cartesian partition of the domain. The interface parameter is γ = 1/100, and we
take δt = γ2/10. For k = 0, the time discretisation is based on the Backward Euler
scheme while, for k = 1, we use the BDF2 formula to make sure that the spatial
and temporal error contributions are equilibrated; cf. Remark 1.131.13.

The separation of the two components into two distinct phases happens over
a very small time; see two leftmost panels of Figure 1.61.6 corresponding to times
0 and 5 · 10−5, respectively. Later, the phases gather increasingly slowly until the
interfaces develop a constant curvature; see the two rightmost panels of Figure 1.61.6,
corresponding to times 1.25 · 10−3 and 3.6 · 10−2, respectively. At the latest stages,
we can observe that the solution exhibits a (small) dependence on the mesh and/or
the polynomial degree, and the high-concentration regions in Figures 1.6a1.6a and 1.6b1.6b
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Figure 1.3: L2-errors at final time vs. h. From left to right: triangular, Cartesian
and (predominantly) hexagonal mesh families; cf. Figure 1.11.1.

Figure 1.4: Evolution of an elliptic interface (left to right, top to bottom). Displayed
times are 0 , 3 · 10−3 , 0.3, 1.
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Figure 1.5: Evolution of a cross-shaped interface (left to right, top to bottom).
Displayed times are 0, 5 · 10−5, 1 · 10−2, 8.17 · 10−2.

are highly superposable but not identical.

1.7 Proofs of discrete functional analysis results
This section contains the proofs of Lemmas 1.71.7 and 1.141.14 preceeded by the required
preliminary technical results.
Proposition 1.17 (Estimates for Lk

h). Assuming mesh quasi-uniformity (1.101.10), it
holds

∀vh ∈ Pk+1,k
h , ‖Lk

hvh‖0,h . h−1‖vh‖1,h, (1.73)

∀vh ∈ Pk+1,k
h,0 , ‖Lk

hvh‖H−1(Ω) . ‖vh‖1,h. (1.74)

Proof. (i) Proof of (1.731.73). Let vh ∈ Pk+1,k
h . Making zh = −Lk

hvh in the
definition (1.271.27) of Lk

h, we have

‖Lk
hvh‖

2
0,h = −ah(vh, Lk

hvh) . ‖vh‖1,h‖L
k
hvh‖1,h . ‖vh‖1,hh−1‖Lk

hvh‖0,h,

where we have used the continuity of ah expressed by the second inequality
in (1.221.22) followed by the fact that, for all zh ∈ Pk+1,k

h , ‖zh‖1,h . h−1‖zh‖0,h. This
inequality follows from the definition (1.151.15) of the ‖·‖1,h-norm using the inverse
inequality (1.51.5) to bound the first term and recalling mesh quasi-uniformity (1.101.10).
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(a) 128 × 128 uniform Cartesian mesh, k = 0, BE

(b) 64 × 64 uniform Cartesian mesh, k = 1, BDF2

Figure 1.6: Spinoidal decomposition (left to right, top to bottom). In both cases,
the same random initial condition is used. Displayed times are 0, 5·10−5, 1.25·10−3,
3.6 · 10−2.
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(ii) Proof of (1.741.74). Let vh ∈ Pk+1,k
h,0 . Observing that Lk

hvh has zero-average
on Ω (cf. Remark 1.61.6), we have

‖Lk
hvh‖H−1(Ω) = sup

ϕ∈H1(Ω)∩L2
0 (Ω),‖ϕ‖H1(Ω)=1

∫
Ω

Lk
hvhϕ. (1.75)

Let now ϕ
h
B I k

hϕ. Using the fact that Lk
hvh ∈ P

k+1(Th) followed by the
definitions (1.271.27) of Lk

h and (1.261.26) of (·, ·)0,h, one has∫
Ω

Lk
hvhϕ =

∫
Ω

Lk
hvhπ

k+1
h ϕ = −s0,h(Lk

hvh, ϕh
) − ah(vh, ϕh

).

Hence, using the Cauchy–Schwarz inequality we get

|

∫
Ω

Lk
hvhϕ| . |L

k
hvh |0,h |ϕh

|0,h + ‖vh‖1,h‖ϕh
‖1,h

. h−1‖vh‖1,hh|ϕ
h
|1,h + ‖vh‖1,h‖ϕh

‖1,h

. ‖vh‖1,h‖ϕh
‖1,h . ‖vh‖1,h‖ϕ‖H1(Ω),

where we have used the second inequality in (1.221.22) in the first line, (1.731.73) together
with the fact that |zh |0,h ≤ h|zh |1,h for all zh ∈ Pk+1,k

h to pass to the second line,
and the H1-stability (1.171.17) of I k

h to conclude. To obtain (1.741.74), plug the above
estimate into the right-hand side of (1.751.75).

�

We introduce the continuous Green’s function G : L2
0(Ω) → H1(Ω) ∩ L2

0(Ω)

such that, for all ϕ ∈ L2
0(Ω),∫
Ω

∇Gϕ · ∇v =

∫
Ω

ϕv ∀v ∈ H1(Ω).

Owing to elliptic regularity (which holds sinceΩ is convex), we haveGϕ ∈ H2(Ω).
Its discrete counterpart Gk

h
: Pk+1,k

h,0 → Pk+1,k
h,0 is defined such that, for all ϕ

h
∈

Pk+1,k
h,0 ,

ah(G
k
h
ϕ

h
, zh) = (ϕh

, zh)0,h ∀zh ∈ Pk+1,k
h,0 , (1.76)

with inner product (·, ·)0,h defined by (1.261.26). Wewill denote byGk
h vh (no underline)

the broken polynomial function in Pk+1(Th) obtained from element DOFs in Gk
h
vh.

We next show that −Gk
h
is the inverse of Lk

h restricted to Pk+1,k
h,0 → Pk+1,k

h,0 . Let
vh ∈ Pk+1,k

h,0 . Using (1.761.76) with ϕ
h
= Lk

hvh followed by (1.271.27), it is inferred, for all
zh ∈ Pk+1,k

h,0 ,

ah(G
k
h
Lk

hvh, zh) = (L
k
hvh, zh)0,h = −ah(vh, zh) =⇒ ah(vh + G

k
h
Lk

hvh, zh) = 0.
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Therefore, since (vh + G
k
h
Lk

hvh) ∈ Pk+1,k
h,0 and ah is coercive in Pk+1,k

h,0 (cf. (1.221.22)
and Proposition 1.31.3), we conclude

vh + G
k
h
Lk

hvh = 0 ∀vh ∈ Pk+1,k
h,0 . (1.77)

Proposition 1.18 (Estimates for Gk
h
). It holds, for all vh ∈ Pk+1,k

h,0 ,

‖Gk
h
vh − I k

hGvh‖1,h . h
(
|vh |0,h + ‖Gvh‖H2(Ω)

)
. h‖vh‖0,h. (1.78)

Moreover, using elliptic regularity, we have

‖Gk
h vh − π

k+1
h Gvh‖ . h2

(
|vh |0,h + ‖Gvh‖H2(Ω)

)
. h2‖vh‖0,h. (1.79)

Proof. Let vh ∈ Pk+1,k
h,0 .

(i) Proof of (1.781.78). For all zh ∈ Pk+1,k
h,0 we have, using the definition (1.761.76) of

Gk
h
vh and subtracting the quantity (vh + ∆Gvh, zh) = 0,

ah(G
k
h
vh − I k

hGvh, zh) = (vh, zh)0,h −

∫
Ω

vhzh︸                   ︷︷                   ︸
T1

−ah(I k
hGvh, zh) −

∫
Ω

∆Gvhzh︸                                ︷︷                                ︸
T2

.

(1.80)
Recalling the definition (1.261.26) of the inner product (·, ·)0,h, one has

|T1 | = |s0,h(vh, zh)| ≤ |vh |0,h |zh |0,h ≤ h|vh |0,h |zh |1,h. (1.81)

On the other hand, the consistency property (1.231.23) of the bilinear form ah readily
yields

|T2 | . h‖Gvh‖H2(Ω)‖zh‖1,h. (1.82)

Making zh = G
k
h
vh − I k

hGvh in (1.801.80), and using the coercivity of ah expressed by
the first inequality in (1.221.22) followed by the bounds (1.811.81)–(1.821.82), the first bound
in (1.781.78) follows. To prove the second bound in (1.781.78), use elliptic regularity to
estimate ‖Gvh‖H2(Ω) . ‖vh‖ and recall the definition of the ‖·‖0,h-norm.

(ii) Proof of (1.791.79). We follow the ideas of [8383, Theorem 10] and [7777,
Theorem 11], to which we refer for further details. Set, for the sake of brevity,
ϕ

h
B Gk

h
vh − I k

hGvh, and let z B Gϕh. By elliptic regularity, z ∈ H2(Ω) and
‖z‖H2(Ω) . ‖ϕh‖. Observing that −∆z = ϕh, letting ẑh B I k

hz, and using the
definition (1.761.76) of Gk

h
, we have

‖ϕh‖
2 = −

∫
Ω

∆zϕh − ah(ϕh
, ẑh)︸                        ︷︷                        ︸

T1

+

∫
Ω

vh ẑh − ah(I k
hGvh, ẑh)︸                         ︷︷                         ︸

T2

+ s0,h(vh, ẑh)︸      ︷︷      ︸
T3

.

(1.83)
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Using the consistency (1.231.23) of ah, it is readily inferred for the first term

|T1 | . h‖z‖H2(Ω)‖ϕh
‖1,h . h2

(
|vh |0,h + ‖Gvh‖H2(Ω)

)
‖ϕh‖, (1.84)

where we have used elliptic regularity to infer ‖z‖H2(Ω) . ‖ϕh‖ and (1.781.78) to
bound ‖ϕ

h
‖1,h. For the second term, upon observing that

∫
Ω
vh ẑh = −

∫
Ω
∆Gvhz =∫

Ω
∇Gvh∇z since, by definition of, −∆Gvh = vh ∈ P

k+1(Th) and ẑh = πk+1
h z,

recalling the definition (1.211.21) of the bilinear form ah and using the orthogonality
property (1.201.20) of (r k+1

T ◦ I k
T ), we have

T2 =
∑
T∈Th

∫
T
∇(r k+1

T I k
TGvh − Gvh) · ∇(r k+1

T ẑh − z) + s1,h(I k
hGvh, ẑh).

By the approximation properties of (r k+1
T ◦ I k

T ) and of π
k+1
h , and bounding ‖z‖H2(Ω)

and ‖ϕ
h
‖1,h as before, we have

|T2 | . h2
(
|vh |0,h + ‖Gvh‖H2(Ω)

)
‖ϕh‖. (1.85)

Finally, for the last term, we write

|T3 | ≤ |vh |0,h | ẑh |0,h . |vh |0,hh2‖z‖H2(Ω) . h2 |vh |0,h‖ϕh‖, (1.86)

where we have used the Cauchy–Schwarz inequality in the first bound, the appro-
ximation properties (1.81.8) of πk+1

h in the second bound, and elliptic regularity
to conclude. Using (1.841.84)–(1.861.86) to estimate the right-hand side of (1.831.83) the
first inequality in (1.791.79) follows. Using elliptic regularity to further bound
‖Gvh‖H2(Ω) . ‖vh‖ and recalling the definition of the ‖·‖0,h-norm yields the
second inequality in (1.791.79).

�

Remark 1.19 (Choice of s0,h). The choice (1.261.26) for the stabilisation bilinear form
s0,h is crucial to have the right-hand side of (1.861.86) scaling as h2. Penalizing the
full difference (vF − vT ) instead of the lowest-order part πk

F(vF − vT ) would have
lead to a right-hand side only scaling as h.

We are now ready to prove Lemma 1.71.7.

Proof of Lemma 1.71.7. Let vh ∈ Pk+1,k
h,0 and set ϕ

h
B Lk

hvh. Recalling that, owing
to (1.771.77), vh = −G

k
hϕh

, it is inferred using the triangle inequality,

‖vh‖L∞(Ω) ≤ ‖π
k+1
h Gϕh‖L∞(Ω) + ‖G

k
hϕh
− πk+1

h Gϕh‖L∞(Ω) B T1 + T2. (1.87)
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The L∞-stability of πk+1
h (cf. (1.71.7)) followed by the continuous Agmon’s inequality

readily yields for the first term

T1 . ‖Gϕh‖L∞(Ω) . ‖Gϕh‖
1
2
H1(Ω)
‖Gϕh‖

1
2
H2(Ω)

. (1.88)

Using a standard regularity shift (cf., e.g., [108108]), recalling that ϕh = Lk
hvh, and

using the H−1-bound (1.741.74) for Lk
hvh, we have

‖Gϕh‖H1(Ω) . ‖ϕh‖H−1(Ω) . ‖vh‖1,h, ‖Gϕh‖H2(Ω) . ‖ϕh‖ = ‖Lk
hvh‖,

(1.89)
which plugged into (1.881.88) yields

T1 . ‖vh‖
1
2
1,h‖L

k
hvh‖

1
2 . (1.90)

For the second term we have, on the other hand,

T2 . h−
d
2 ‖Gk

hϕh
− πk+1

h Gϕh‖

. h
3−d

2 (h‖Lk
hvh‖0,h)

1
2 ‖Lk

hvh‖
1
2
0,h

. h
3−d

2 ‖vh‖
1
2
1,h‖L

k
hvh‖

1
2
0,h . ‖vh‖

1
2
1,h‖L

k
hvh‖

1
2
0,h,

(1.91)

where we have used the global inverse inequality (1.121.12) with p = 2 to obtain the
first bound, the estimate (1.791.79) to obtain the second, (1.731.73) to obtain the third, and
the fact that d ≤ 3 together with h ≤ hΩ . 1 (with hΩ diameter of Ω) to conclude.
The conclusion follows plugging (1.901.90) and (1.911.91) into (1.871.87). �

Remark 1.20 (Discrete Agmon’s inequality in dimension d = 2). When d = 2, we
have the following sharper form for the discrete Agmon’s inequality:

∀vh ∈ Pk+1,k
h,0 , ‖vh‖L∞(Ω) . ‖vh‖

1
2
0,h‖L

k
hvh‖

1
2
0,h. (1.92)

To obtain (1.921.92), the following modifications are required in the above proof:
(i) The term T1 is bounded as T1 . ‖Gϕh‖

1
2 ‖Gϕh‖H2(Ω) . ‖vh‖

1
2 ‖Lk

hvh‖
1
2 ,

where we have used vh = −Gϕh (cf. (1.771.77)) for the first factor and (1.891.89) for
the second; (ii) The third line of (1.911.91) becomes T2 . (h‖vh‖1,h)

1
2 ‖Lk

hvh‖
1
2
0,h .

‖vh‖
1
2
0,h‖L

k
hvh‖

1
2
0,h, where we have used the inverse inequality (1.51.5) and mesh quasi-

uniformity to bound the first factor.

We next prove the discrete Gagliardo–Nirenberg–Poincaré’s inequality of
Lemma 1.141.14.
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Proof of Lemma 1.141.14. Using the same notation as in the proof of Lemma 1.71.7, we
have

‖∇hvh‖Lp(Ω)d ≤ ‖∇hπ
k+1
h Gϕh‖Lp(Ω)d + ‖∇h(G

k
hϕh
− πk+1

h Gϕh)‖Lp(Ω)d B T1 +T2.

For the first term, we use the W1,p-stability of πk+1
h (cf. (1.71.7)) followed by the

continuous Gagliardo–Nirenberg–Poincaré’s inequality (1.631.63), and (1.891.89) to infer

T1 . |Gϕh |W1,p(Ω) . |Gϕh |
1−α
H1(Ω)
‖Gϕh‖

α
H2(Ω)

. ‖vh‖
1−α
1,h ‖L

k
hvh‖

α.

For the second term, on the other hand, we have

T2 . hd
(

1
p−

1
2

)
‖∇h(G

k
hϕh
− πk+1

h Gϕh)‖

. hd
(

1
p−

1
2

)
‖Gk

h
ϕ

h
− I k

hGϕh‖
1−α
1,h ‖G

k
h
ϕ

h
− I k

hGϕh‖
α
1,h

. hα+d
(

1
p−

1
2

)
(h‖Lk

hvh‖0,h)
1−α‖Lk

hvh‖
α
0,h

. hα+d
(

1
p−

1
2

)
‖vh‖

1−α
1,h ‖L

k
hvh‖

α
0,h . ‖vh‖

1−α
1,h ‖L

k
hvh‖

α
0,h,

where we have used the global reverse Lebesgue inequality (1.111.11) in the first line,
the definition (1.151.15) of the ‖·‖1,h-norm to pass to the second line, the estimate
(1.781.78) to pass to the third line, and (1.731.73) to pass to the fourth line. To obtain the
second inequality in the fourth line, we observe that, recalling the definition (1.631.63)
of α and the assumptions on p, it holds for the exponent of h,

α + d
(

1
p
−

1
2

)
=

1
2
−

d
2

(
1
2
−

1
p

)
≥ 0,

and, since h ≤ hΩ . 1, the conclusion follows. �

Remark 1.21 (Validity of the discreteAgmon’s andGagliardo–Niremberg–Poincaré’s
inequalities). At the discrete level, the fact that the discrete Agmon’s inequality
(1.281.28) is valid only up to d = 3 and that the Gagliardo–Nirenberg–Poincaré’s
inequalities (1.641.64) are valid only for p ∈ [2,+∞) if d = 2, p ∈ [2, 6] if d = 3 is
reflected by the need to have nonnegative powers of h in the estimates of the terms
T2 to conclude in the corresponding proofs.



Chapter 2

Flows in fractured porous media

This chapter has been published in the following peer-reviewed journal (see [5656]):

SIAM Journal on Scientific Computing, 2018.
Volume 40, Issue 2, Pages A1063–A1094.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 5656
2.2 Continuous setting . . . . . . . . . . . . . . . . . . . . . . . 5959

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . 5959

2.2.2 Continuous problem . . . . . . . . . . . . . . . . . . 6060

2.2.2.1 Bulk region . . . . . . . . . . . . . . . . . 6060

2.2.2.2 Fracture . . . . . . . . . . . . . . . . . . . 6161

2.2.2.3 Coupling conditions . . . . . . . . . . . . . 6161

2.2.3 Weak formulation . . . . . . . . . . . . . . . . . . . . 6262

2.3 Discrete setting . . . . . . . . . . . . . . . . . . . . . . . . . 6363
2.3.1 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 6363

2.3.2 Local polynomial spaces and projectors . . . . . . . . 6565

2.4 The Hybrid High-Order method . . . . . . . . . . . . . . . 6666
2.4.1 Local construction in the bulk . . . . . . . . . . . . . 6666

2.4.1.1 Local bulk unknowns . . . . . . . . . . . . 6666

2.4.1.2 Local divergence reconstruction operator . . 6767

2.4.1.3 Local flux reconstruction operator . . . . . . 6868

2.4.2 Local construction in the fracture . . . . . . . . . . . 6969

2.4.2.1 Local fracture unknowns . . . . . . . . . . 6969

2.4.2.2 Local pressure reconstruction operator . . . 6969

55



56 Chapter 2. Flows in fractured porous media

2.4.3 The discrete problem . . . . . . . . . . . . . . . . . . 7070

2.4.3.1 Global discrete spaces . . . . . . . . . . . . 7070

2.4.3.2 Discrete norms and interpolators . . . . . . 7171

2.4.3.3 Discrete problem . . . . . . . . . . . . . . 7272

2.4.4 Main results . . . . . . . . . . . . . . . . . . . . . . . 7474

2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 7676
2.5.1 Convergence . . . . . . . . . . . . . . . . . . . . . . 7676

2.5.2 Quarter five-spot problem . . . . . . . . . . . . . . . 7777

2.5.3 Porous medium with random permeability . . . . . . . 8181

2.6 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 8484
2.7 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . 8888

2.1 Introduction
In this work we develop a novel Hybrid High-Order (HHO) method for the numer-
ical simulation of steady flows in fractured porous media.

The modelling of flow and transport in fractured porous media, and the correct
identification of the fractures as hydraulic barriers or conductors are of utmost
importance in several applications. In the context of nuclear waste management,
the correct reproduction of flow patterns plays a key role in identifying safe un-
derground storage sites. In petroleum reservoir modelling, accounting for the
presence and hydraulic behaviour of the fractures can have a sizeable impact on
the identification of drilling sites, as well as on the estimated production rates. In
practice, there are several possible ways to incorporate the presence of fractures
in porous media models. Our focus is here on the approach developed in [120120],
where an averaging process is applied, and the fracture is treated as an interface
that crosses the bulk region. The fracture is additionally assumed to be filled of
debris, so that the flow therein can still be modelled by the Darcy law. To close
the problem, interface conditions are enforced that relate the average and jump of
the bulk pressure to the normal flux and the fracture pressure. Other works where
fractures are treated as interfaces include, e.g., [1313, 2020, 9797].

Several discretization methods for flows in fractured porous media have been
proposed in the literature. In [4646], the authors consider lowest-order vertex- and
face-based Gradient Schemes, and prove convergence in h for the energy-norm of
the discretization error; see also [4343] and the very recent work [9292] on two-phase
flows. Extended Finite Element methods (XFEM) are considered in [1717, 2828] in
the context of fracture networks, and their convergence properties are numerically
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studied. In [2424], the authors compare XFEM with the recently introduced Virtual
Element Method (VEM), and numerically observe in both cases convergence in
N

1/2
DOF for the energy-norm of the discretization error, where NDOF stands for the

number of degrees of freedom; see also [2323, 2525]. Discontinuous Galerkin methods
are also considered in [1616] for a single-phase flow; see also [1515]. Therein, an hp-
error analysis in the energy norm is carried out on general polygonal/polyhedral
meshes possibly including elements with unbounded number of faces, and nu-
merical experiments are presented. A discretization method based on a mixed
formulation in the mortar space has also been very recently proposed in [3333],
where an energy-error estimate in h is proved.

Our focus is here on the Hybrid High-Order (HHO) methods originally intro-
duced in [7777] in the context of linear elasticity, and later applied in [55, 7878, 8282,
8383] to anisotropic heterogeneous diffusion problems. HHO methods are based
on degrees of freedom (DOFs) that are broken polynomials on the mesh and
on its skeleton, and rely on two key ingredients: (i) physics-dependent local
reconstructions obtained by solving small, embarassingly parallel problems and
(ii) high-order stabilization terms penalizing face residuals. These ingredients are
combined to formulate local contributions, which are then assembled as in standard
FEmethods. In the context of fractured porousmedia flows, HHOmethods display
several key advantages, including: (i) the support of general meshes enabling a
seamless treatment of nonconforming geometric discretizations of the fractures
(see Remark 3.63.6 below); (ii) the robustness with respect to the heterogeneity and
anisotropy of the permeability coefficients (see Remark 2.132.13 below); (iii) the pos-
sibility to increase the approximation order, which can be useful when complex
phenomena such as viscous fingering or instabilities linked to thermal convection
are present; (iv) the availability of mixed and primal formulations, whose intimate
connection is now well-understood [3131]; (v) the possibility to obtain efficient
implementations thanks to static condensation (see Remark 2.92.9 below).

The HHO method proposed here hinges on a mixed formulation in the bulk
coupled with a primal formulation inside the fracture. To keep the exposition as
simple as possible while retaining all the key difficulties, we focus on the two-
dimensional case, and we assume that the fracture is a line segment that cuts the
bulk region in two. For a given polynomial degree k ≥ 0, two sets ofDOFs are used
for the flux in the bulk region: (i) polynomials of total degree up to k on each face
(representing the polynomial moments of its normal component) and (ii) fluxes
of polynomials of degree up to k inside each mesh element. Combining these
DOFs, we locally reconstruct (i) a discrete counterpart of the divergence operator
and (ii) an approximation of the flux one degree higher than element-based DOFs.
These local reconstructions are used to formulate discrete counterparts of the
permeability-weighted product of fluxes and of the bluk flux-pressure coupling
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terms. The primal formulation inside the fracture, on the other hand, hinges on
fracture pressure DOFs corresponding to (i) polynomial moments of degree up to
k inside the fracture edges and (ii) point values at face vertices. From these DOFs,
we reconstruct inside each fracture face an approximation of the fracture pressure
of degree (k + 1), which is then used to formulate a tangential diffusive bilinear
form in the spirit of [8383]. Finally, the terms stemming from interface conditions
on the fractures are treated using bulk flux DOFs and fracture pressure DOFs on
the fracture edges.

A complete theoretical analysis of the method is carried out. In Theorem 2.112.11
below we prove stability in the form of an inf-sup condition on the global bilinear
form collecting the bulk, fracture, and interface contributions. An important
intermediate result is the stability of the bulk flux-pressure coupling, whose
proof follows the classical Fortin argument based on a commuting property of
the divergence reconstruction. In Theorem 2.122.12 below we prove an optimal error
estimate in hk+1 for an energy-like norm of the error. The provided error estimate
additionally shows that the error on the bulk flux and on the fracture pressure
are (i) fully robust with respect to the heterogeneity of the bulk and fracture
permeabilities, and (ii) partially robust with respect to the anisotropy of the bulk
permeability (with a dependence on the square root of the local anisotropy ratio).
These estimates are numerically validated, and the performance of the method
is showcased on a comprehensive set of problems. The numerical computations
additionally show that the L2-norm of the errors on the bulk and fracture pressure
converge as hk+2.

The rest of the paper is organized as follows. In Section 3.23.2 we introduce
the continuous setting and state the problem along with its weak formulation.
In Section 3.33.3 we define the mesh and the corresponding notation, and recall
known results concerning local polynomial spaces and projectors thereon. In
Section 3.43.4 we formulate the HHO approximation: in a first step, we describe
the local constructions in the bulk and in the fracture; in a second step, we
combine these ingredients to formulate the discrete problem; finally, we state
the main theoretical results corresponding to Theorems 2.112.11 (stability) and 2.122.12
(error estimate). Section 2.52.5 contains an extensive numerical validation of the
method. Finally, Sections 2.62.6 and 2.72.7 contain the proofs of Theorems 2.112.11 and 2.122.12,
respectively. Readers mainly interested in the numerical recipe and results can skip
these sections at first reading.
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2.2 Continuous setting

2.2.1 Notation

We consider a porous medium saturated by an incompressible fluid that occupies
the space region Ω ⊂ R2 and is crossed by a fracture Γ. We next give precise
definitions of these objects. The corresponding notation is illustrated in Figure 3.13.1.
The extension of the following discussion to the three-dimensional case is possible
but is not considered here in order to alleviate the exposition; see Remark 2.102.10 for
further details.

From the mathematical point of view, Ω is an open, bounded, connected,
polygonal set with Lipschitz boundary ∂Ω, while Γ is an open line segment of
nonzero length. We additionally assume that Ω lies on one side of its boundary.
The setΩB B Ω \Γ represents the bulk region. We assume that the fracture Γ cuts
the domain Ω into two disjoint connected polygonal subdomains with Lipschitz
boundary, so that the bulk region can be decomposed as ΩB B ΩB,1 ∪ΩB,2.

We denote by ∂ΩB B
⋃2

i=1 ∂ΩB,i \ Γ the external boundary of the bulk
region, which is decomposed into two subsets with disjoint interiors: the Dirichlet
boundary ∂ΩD

B , for which we assume strictly positive 1-dimensional Haussdorf
measure, and the (possibly empty) Neumann boundary ∂ΩN

B . We denote by n∂Ω
the unit normal vector pointing outward ΩB. For i ∈ {1, 2}, the restriction of
the boundary ∂ΩD

B (respectively, ∂ΩN
B) to the ith subdomain is denoted by ∂ΩD

B,i
(respectively, ∂ΩN

B,i).
We denote by ∂Γ the boundary of the fracture Γwith the corresponding outward

unit tangential vector τ∂Γ. ∂Γ is also decomposed into two disjoint subsets: the
nonempty Dirichlet fracture boundary ∂ΓD and the (possibly empty) Neumann
fracture boundary ∂ΓN. Notice that this decomposition is completely independent
from that of ∂ΩB. Finally, nΓ and τΓ denote, respectively, the unit normal vector
to Γ with a fixed orientation and the unit tangential vector on Γ such that (τΓ, nΓ)
is positively oriented. Without loss of generality, we assume in what follows that
the subdomains are numbered so that nΓ points out of ΩB,1.

For any function ϕ sufficiently regular to admit a (possibly two-valued) trace
on Γ, we define the jump and average operators such that

[[ϕ]]Γ B ϕ|ΩB,1 − ϕ|ΩB,2, {{ϕ}}Γ B
ϕ|ΩB,1 + ϕ|ΩB,2

2
.

When applied to vector functions, these operators act component-wise.



60 Chapter 2. Flows in fractured porous media

ΩB,1 ΩB,2

Γ

∂ΩB

ΩB B ΩB,1 ∪ΩB,2

∂Γ

nΓ

Figure 2.1: Illustration of the notation introduced in Section 3.2.13.2.1.

2.2.2 Continuous problem

We discuss in this section the strong formulation of the problem: the governing
equations for the bulk region and the fracture, and the interface conditions that
relate these subproblems.

2.2.2.1 Bulk region

In the bulk regionΩB, we model the motion of the incompressible fluid by Darcy’s
law in mixed form, so that the pressure p : ΩB → R and the flux u : ΩB → R

2

satisfy

K∇p + u = 0 in ΩB, (2.1a)
∇ · u = f in ΩB, (2.1b)

p = gB on ∂ΩD
B, (2.1c)

u · n∂Ω = 0 on ∂ΩN
B, (2.1d)

where f ∈ L2(ΩB) denotes a volumetric source term, gB ∈ H1/2(∂ΩD
B) the boundary

pressure, and K : ΩB → R
2×2 the bulk permeability tensor, which is assumed to

be symmetric, piecewise constant on a fixed polygonal partition PB = {ωB} of
ΩB, and uniformly elliptic so that there exist two strictly positive real numbers KB
and KB satisfying, for a.e. x ∈ ΩB and all z ∈ R2 such that |z | = 1,

0 < KB ≤ K (x)z · z ≤ KB.

For further use, we define the global anisotropy ratio

%B B
KB

KB
. (2.2)
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2.2.2.2 Fracture

Inside the fracture, we consider the motion of the fluid as governed by Darcy’s law
in primal form, so that the fracture pressure pΓ : Γ→ R satisfies

−∇τ · (KΓ∇τpΓ) = `Γ fΓ + [[u]]Γ · nΓ in Γ, (2.3a)
pΓ = gΓ on ∂ΓD, (2.3b)

−KΓ∇τpΓ · τ∂Γ = 0 on ∂ΓN, (2.3c)

where fΓ ∈ L2(Γ) and KΓ B κτ
Γ
`Γ with κτΓ : Γ → R and `Γ : Γ → R denoting the

tangential permeability and thickness of the fracture, respectively. The quantities
κτ
Γ
and `Γ are assumed piecewise constant on a fixed partition PΓ = {ωΓ} of Γ, and

such that there exist strictly positive real numbers K
Γ
,KΓ such that, for a.e. x ∈ Γ,

0 < K
Γ
≤ KΓ(x) ≤ KΓ.

In (2.32.3), ∇τ and ∇τ · denote the tangential gradient and divergence operators along
Γ, respectively.
Remark 2.1 (Immersed fractures). The Neumann boundary condition (2.3c2.3c) has
been used for immersed fracture tips. The casewhere the fracture is fully immersed
in the domain Ω can be also considered, and it leads to a homogeneous Neumann
boundary condition (2.3c2.3c) on the whole fracture boundary; for further details, we
refer to [1212, Section 2.2.3], [4646] or more recently [122122].

2.2.2.3 Coupling conditions

The subproblems (2.12.1) and (2.32.3) are coupled by the following interface conditions:

λΓ{{u}}Γ · nΓ = [[p]]Γ on Γ,

λ
ξ
Γ
[[u]]Γ · nΓ = {{p}}Γ − pΓ on Γ,

(2.4)

where ξ ∈ (12, 1] is a model parameter chosen by the user and we have set

λΓ B
`Γ
κn
Γ

, λ
ξ
Γ
B λΓ

(
ξ

2
−

1
4

)
. (2.5)

As above, `Γ is the fracture thickness, while κn
Γ

: Γ → R represents the normal
permeability of the fracture, which is assumed piecewise constant on the partition
PΓ of Γ introduced in Section 2.2.2.22.2.2.2, and such that, for a.e. x ∈ Γ,

0 < λ
Γ
≤ λΓ(x) ≤ λΓ, (2.6)

for two given strictly positive real numbers λΓ and λΓ.



62 Chapter 2. Flows in fractured porous media

Remark 2.2 (Coupling condition and choice of the formulation). The coupling
conditions (2.42.4) arise from the averaging process along the normal direction to the
fracture, and are necessary to close the problem. They relate the jump and average
of the bulk flux to the jump and average of the bulk pressure and the fracture
pressure. Using as a starting point the mixed formulation (2.12.1) in the bulk enables
a natural discretization of the coupling conditions, as both the normal flux and the
bulk pressure are present as unknowns. On the other hand, the use of the primal
formulation (2.32.3) seems natural in the fracture, since only the fracture pressure
appears in (2.42.4). HHO discretizations using a primal formulation in the bulk as a
starting point will make the object of a future work.

Remark 2.3 (Extension to discrete fracture networks). Themodel could be extended
to fracture networks. In this case, additional coupling conditions enforcing the
mass conservation and pressure continuity at fracture intersections should be
included; see e.g., [4444, 4646].

2.2.3 Weak formulation

Theweak formulation of problem (2.12.1)–(2.32.3)–(2.42.4) hinges on the following function
spaces:

U B

{
u ∈ H(div;ΩB) : u · n∂Ω = 0 on ∂ΩN

B
(u |ΩB,1 · nΓ, u |ΩB,2 · nΓ) ∈ L2(Γ)2

}
,

PB B L2(ΩB), PΓ B
{
pΓ ∈ H1(Γ) : pΓ = 0 on ∂ΓD

}
,

where H(div;ΩB) is spanned by vector-valued functions on ΩB whose restriction
to every bulk subregion ΩB,i, i ∈ {1, 2}, is in H(div;ΩB,i).

For any X ⊂ Ω, we denote by (·, ·)X and ‖·‖X the usual inner product and
norm of L2(X) or L2(X)2, according to the context. We define the bilinear forms
aξ : U × U → R, b : U × PB → R, c : U × PΓ → R, and aΓ : PΓ × PΓ → R as
follows:

aξ(u, v) B
∫
ΩB

K−1u ·v +

∫
Γ

(
λ
ξ
Γ
[[u]]Γ·nΓ[[v]]Γ·nΓ +λΓ{{u}}Γ·nΓ{{v}}Γ·nΓ

)
,

b(u, q) B
∫
ΩB

∇ · uq,

c(u, qΓ) B
∫
ΩB

[[u]]Γ · nΓqΓ,

aΓ(pΓ, qΓ) B
∫
Γ

KΓ∇τpΓ · ∇τqΓ.

(2.7)
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With these spaces and bilinear forms, the weak formulation of problem (2.12.1)–
(2.32.3)–(2.42.4) reads: Find (u, p, pΓ,0) ∈ U × PB × PΓ such that

aξ(u, v)−b(v, p) + c(v, pΓ,0) = −

∫
∂ΩD

B

gBv · n∂Ω ∀v ∈ U,

b(u, q) =

∫
ΩB

f q ∀q ∈ PB,

−c(u, qΓ) + aΓ(pΓ,0, qΓ) =
∫
Γ

`Γ fΓqΓ − d(pΓ,D, qΓ) ∀qΓ ∈ PΓ,

(2.8)

where pΓ,D ∈ H1(Γ) is a lifting of the fracture Dirichlet boundary datum such that
(pΓ,D)|∂ΓD = gΓ. The fracture pressure is then computed as pΓ = pΓ,0 + pΓ,D. This
problem is well-posed; we refer the reader to [1717, Proposition 2.4] for a proof.

2.3 Discrete setting

2.3.1 Mesh
The HHO method is built upon a polygonal mesh of the domain Ω defined
prescribing a set of mesh elements Th and a set of mesh faces Fh.

The set of mesh elements Th is a finite collection of open disjoint polygons
with nonzero area such that Ω =

⋃
T∈Th T and h = maxT∈Th hT , with hT denoting

the diameter of T . We also denote by ∂T the boundary of a mesh element T ∈ Th.
The set of mesh faces Fh is a finite collection of open disjoint line segments in
Ω with nonzero length such that, for all F ∈ Fh, (i) either there exist two distinct
mesh elements T1,T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2 (and F is called an interface)
or (ii) there exist a (unique) mesh element T ∈ Th such that F ⊂ ∂T ∩ ∂Ω (and F
is called a boundary face). We assume that Fh is a partition of the mesh skeleton
in the sense that

⋃
T∈Th ∂T =

⋃
F∈Fh F.

Remark 2.4 (Mesh faces). Despite working in two space dimensions, we have
preferred the terminology “face” over “edge” in order to (i) be consistent with the
standard HHO nomenclature and (ii) stress the fact that faces need not coincide
with polygonal edges (but can be subsets thereof); see also Remark 3.63.6 on this
point.

We denote by F i
h the set of all interfaces and by F b

h the set of all boundary
faces, so that Fh = F

i
h ∪ F

b
h . The length of a face F ∈ Fh is denoted by hF . For

any mesh element T ∈ Th, FT is the set of faces that lie on ∂T and, for any F ∈ FT ,
nTF is the unit normal to F pointing out of T . Symmetrically, for any F ∈ Fh, TF
is the set containing the mesh elements sharing the face F (two if F is an interface,
one if F is a boundary face).

To account for the presence of the fracture, we make the following
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Pentagons

Squares

Figure 2.2: Treatment of nonconforming fracture discretizations.

Assumption 2.5 (Geometric compliance with the fracture). Themesh is compliant
with the fracture, i.e., there exists a subset F Γh ⊂ F

i
h such that Γ =

⋃
F∈F Γ

h
F . As a

result, F Γh is a (1-dimensional) mesh of the fracture.
Remark 2.6 (Polygonal meshes and geometric compliance with the fracture).
Fulfilling Assumption 3.53.5 does not pose particular problems in the context of
polygonal methods, even when the fracture discretization is nonconforming in the
classical sense. Consider, e.g., the situation illustrated in Figure 3.23.2, where the
fracture lies at the intersection of two nonmatching Cartesian submeshes. In this
case, no special treatment is required provided the mesh elements in contact with
the fracture are treated as pentagons with two coplanar faces instead of rectangles.
This is possible since, as already pointed out, the set of mesh faces Fh need not
coincide with the set of polygonal edges of Th.

The set of vertices of the fracture is denoted by Vh and, for all F ∈ F Γh , we
denote byVF the vertices of F. For all F ∈ F Γh and all V ∈ VF , τFV denotes the
unit vector tangent to the fracture and oriented so that it points out of F. Finally,
VD

h is the set containing the points in ∂ΓD.
To avoid dealing with jumps of the problem data inside mesh elements, as well

as on boundary and fracture faces, we additionally make the following
Assumption 2.7 (Compliance with the problem data). The mesh is compliant with
the data, i.e., the following conditions hold:

(i) Compliance with the bulk permeability. For each mesh element T ∈ Th,
there exists a unique sudomain ωB ∈ PB (with PB partition introduced in
Section 2.2.2.12.2.2.1) such that T ⊂ ωB;

(ii) Compliancewith the fracture thickness, normal, and tangential permeabilities.
For each fracture face F ∈ F Γh , there is a unique subdomain ωΓ ∈ PΓ (with
PΓ partition introduced in Section 2.2.2.22.2.2.2) such that F ⊂ ωΓ;

(iii) Compliance with the boundary conditions. There exist subsets F D
h and F N

h

of F b
h such that ∂ΩN

B =
⋃

F∈F N
h

F and ∂ΩD
B =

⋃
F∈F D

h
F.
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For the h-convergence analysis, one needs to make assumptions on how the
mesh is refined. The notion of geometric regularity for polygonal meshes is,
however, more subtle than for standard meshes. To formulate it, we assume the
existence of a matching simplicial submesh, meaning that there is a conforming
triangulation Th of the domain such that each mesh element T ∈ Th is decomposed
into a finite number of triangles fromTh, and eachmesh face F ∈ Fh is decomposed
into a finite number of edges from the skeleton of Th. We denote by % ∈ (0, 1)
the regularity parameter such that (i) for any triangle S ∈ Th of diameter hS and
inradius rS, %hS ≤ rS and (ii) for any mesh element T ∈ Th and any triangle S ∈ Th
such that S ⊂ T , %hT ≤ hS. When considering h-refinedmesh sequences, % should
remain uniformly bounded away from zero. We stress that the matching triangular
submesh is merely a theoretical tool, and need not be constructed in practice.

2.3.2 Local polynomial spaces and projectors

Let an integer l ≥ 0 be fixed, and let X be a mesh element or face. We denote by
Pl(X) the space spanned by the restriction to X of two-variate polynomials of total
degree up to l, and define the L2-orthogonal projector πl

X : L1(X) → Pl(X) such
that, for all v ∈ L1(X), πl

Xv solves∫
X
(πl

Xv − v)w = 0 ∀w ∈ Pl(X). (2.9)

By the Riesz representation theorem in Pl(X) for the L2-inner product, this defines
πl

Xv uniquely.
It has been proved in [8181, Lemmas 1.58 and 1.59] that the L2-orthogonal

projector on mesh elements has optimal approximation properties: For all s ∈
{0, . . . , l + 1}, all T ∈ Th, and all v ∈ Hs(T),

|v − πl
Tv |Hm(T) ≤ Chs−m

T |v |Hs(T) ∀m ∈ {0, . . . , s}, (2.10a)

and, if s ≥ 1,

|v − πl
Tv |Hm(FT ) ≤ Chs−m−1/2

T |v |Hs(T) ∀m ∈ {0, . . . , s − 1}, (2.10b)

with real number C > 0 only depending on %, l, s, and m, and Hm(FT ) spanned
by the functions on ∂T that are in Hm(F) for all F ∈ FT . More general W s,p-
approximation results for the L2-orthogonal projector can be found in [7474]; see
also [7373] concerning projectors on local polynomial spaces.
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Figure 2.3: Local DOF space U k
T for a hexagonal mesh element and k ∈ {0, 1, 2}.

2.4 The Hybrid High-Order method
In this section we illustrate the local constructions in the bulk and in the fracture
on which the HHO method hinges, formulate the discrete problem, and state the
main results.

2.4.1 Local construction in the bulk
We present here the key ingredients to discretize the bulk-based terms in problem
(2.82.8). First, we introduce the local DOF spaces for the bulk-based flux and pressure
unknowns. Then, we define local divergence and flux reconstruction operators
obtained from local DOFs.

In this section, we work on a fixed mesh element T ∈ Th, and denote by
KT B K |T ∈ P

0(T)2×2 the (constant) restriction of the bulk permeability tensor to
the element T . We also introduce the local anisotropy ratio

%B,T B
KB,T

KB,T
, (2.11)

where KB,T and KB,T denote, respectively, the largest and smallest eigenvalue of
KT . In the error estimate of Theorem 2.122.12, we will explicitly track the dependence
of the constants on ρB,T in order to assess the robustness of our method with respect
to the anisotropy of the diffusion coefficient.

2.4.1.1 Local bulk unknowns

For any integer l ≥ 0, set U l
T B KT∇P

l(T). The local DOF spaces for the bulk
flux and pressure are given by (see Figure 2.32.3)

U k
T B U k

T ×

(?
F∈FT

Pk(F)

)
, Pk

B,T B P
k(T). (2.12)
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Notice that, for k = 0, we have U0
T = KT∇P

0(T) = {0}, expressing the fact
that element-based flux DOFs are not needed. A generic element vT ∈ U k

T is
decomposed as vT = (vT, (vTF)F∈FT ). We define on U k

T and on Pk
B,T , respectively,

the norms ‖·‖U,T and ‖·‖B,T such that, for all vT ∈ U
k
T and all qT ∈ Pk

B,T ,

‖vT ‖
2
U,T B (KB,T )

−1

(
‖vT ‖

2
T +

∑
F∈FT

hF ‖vTF ‖
2
F

)
, ‖qT ‖B,T B ‖qT ‖T, (2.13)

where we remind the reader that KB,T denotes the largest eigenvalue of the two-
by-two matrix KT , see Section 2.4.12.4.1. We define the local interpolation operator
I k

T : H1(T)2 → U k
T such that, for all v ∈ H1(T)2,

I k
T v B (KT∇yT, (π

k
F(v · nTF))F∈FT ), (2.14)

where yT ∈ P
k(T) is the solution (defined up to an additive constant) of the

following Neumann problem:∫
T
KT∇yT · ∇qT =

∫
T
v · ∇qT ∀qT ∈ P

k(T). (2.15)

Remark 2.8 (Domain of the interpolator). The regularity inH1(T)2 beyondH(div; T)
is classically needed for the face interpolators to be well-defined; see, e.g., [3030,
Section 2.5.1] for further insight into this point.

2.4.1.2 Local divergence reconstruction operator

We define the local divergence reconstruction operator Dk
T : U k

T → Pk
B,T such that,

for all vT = (vT, (vTF)F∈FT ) ∈ U
k
T , Dk

T vT solves∫
T

Dk
T vT qT = −

∫
T
vT · ∇qT +

∑
F∈FT

∫
F
vTFqT ∀qT ∈ Pk

B,T . (2.16)

By the Riesz representation theorem in Pk
B,T for the L2-inner product, this defines

the divergence reconstruction uniquely. The right-hand side of (2.162.16) is designed to
resemble an integration by parts formula where the role of the function represented
by vT is played by element-based DOFs in volumetric terms and face-based DOFs
in boundary terms. With this choice, the following commuting property holds (see
[7878, Lemma 2]): For all v ∈ H1(T)2,

Dk
T I

k
T v = π

k
T (∇ · v). (2.17)
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We also note the following inverse inequality, obtained from (2.162.16) setting qT =

Dk
T vT and using Cauchy–Schwarz and discrete inverse and trace inequalities (see

[7878, Lemma 8] for further details): There is a real number C > 0 independent of
h and of T , but depending on % and k, such that, for all vT ∈ U

k
T ,

hT ‖Dk
T vT ‖T ≤ CK

1/2

B,T ‖vT ‖U,T . (2.18)

2.4.1.3 Local flux reconstruction operator and permeability-weighted local
product

We next define the local discrete flux operator F k+1
T : U k

T → U k+1
T such that, for

all vT = (vT, (vTF)F∈FT ) ∈ U
k
T , F

k+1
T vT solves∫

T
F k+1

T vT · ∇wT = −

∫
T

Dk
T vTwT +

∑
F∈FT

∫
F
vTFwT ∀wT ∈ P

k+1(T). (2.19)

By the Riesz representation theorem in U k+1
T for the (K−1

T ·, ·)T -inner product, this
defines the flux reconstruction uniquely. Also in this case, the right-hand side is
designed so as to resemble an integration by parts formula where the role of the
divergence of the function represented by vT is played by Dk

T vT , while its normal
traces are replaced by boundary DOFs.

We now have all the ingredients required to define the permeability-weighted
local product mT : U k

T × U
k
T → R such that

mT (uT, vT ) B

∫
T
K−1

T F k+1
T uT · F

k+1
T vT + JT (uT, vT ), (2.20)

where the first term is the usual Galerkin contribution responsible for consistency,
while JT : U k

T × U
k
T → R is a stabilization bilinear form such that, letting µTF B

KTnTF · nTF for all F ∈ FT ,

JT (uT, vT ) B
∑

F∈FT

hF

µTF

∫
F
(F k+1

T uT · nTF − uTF)(F
k+1
T vT · nTF − vTF).

The role of JT is to ensure the existence of a real number ηm > 0 independent of
h, T , and KT , but possibly depending on % and k, such that, for all vT ∈ U

k
T ,

η−1
m ‖vT ‖

2
U,T ≤ ‖vT ‖

2
m,T B mT (vT, vT ) ≤ ηmρB,T ‖vT ‖

2
U,T, (2.21)

with norm ‖·‖U,T defined by (2.132.13); see [7878, Lemma 4] for a proof. Additionally,
we note the following consistency property for JT proved in [7878, Lemma 9]: There
is a real number C > 0 independent of h, T , and KT , but possibly depending on %
and k, such that, for all v = KT∇q with q ∈ Hk+2(T),

JT (I
k
T v, I

k
T v)

1/2 ≤ C%
1/2
B,T K

s1/2

B hk+1
T |q |Hk+2(T). (2.22)
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2.4.2 Local construction in the fracture
We now focus on the discretization of the fracture-based terms in problem (2.82.8).
First, we define the local space of fracture pressure DOFs, then a local pressure
reconstruction operator inspired by a local integration by parts formula. Based
on this operator, we formulate a local discrete tangential diffusive bilinear form.
Throughout this section, we work on a fixed fracture face F ∈ F Γh and we let, for
the sake of brevity, KF B (KΓ)|F ∈ P

0(F) with KΓ defined in Section 2.2.2.22.2.2.2.

2.4.2.1 Local fracture unknowns

Set P(V) B span{1} for all V ∈ VF . The local space of DOFs for the fracture
pressure is

Pk
Γ,F B P(F)

k ×

( ?
V∈VF

P(V)

)
.

Inwhat follows, a generic element qΓ
F
∈ Pk

Γ,F is decomposed as qΓ
F
= (qΓF, (q

Γ
V )V∈VF ).

We define on Pk
Γ,F the seminorm ‖·‖Γ,F such that, for all qΓ

F
∈ Pk

Γ,F ,

‖qΓ
F
‖2Γ,F B ‖K

1/2
F ∇τqΓF ‖

2
F +

∑
V∈VF

KF

hF
(qF − qV )

2(V).

We also introduce the local interpolation operator I k
F : H1(F) → Pk

Γ,F such that,
for all q ∈ H1(F),

I k
Fq B (πk

Fq, (q(V))V∈VF ).

2.4.2.2 Local pressure reconstruction operator and local tangential diffusive
bilinear form

We define the local pressure reconstruction operator r k+1
F : Pk

Γ,F → P
k+1(F) such

that, for all qΓ
F
= (qΓF, (q

Γ
V )V∈VF ) ∈ Pk

Γ,F , r k+1
F qΓ

F
solves∫

F
KF∇τr k+1

F qΓ
F
· ∇τw

Γ
F = −

∫
F

qΓF∇τ · (KF∇τw
Γ
F) +

∑
V∈VF

qΓV (KF∇τw
Γ
F · τFV )(V),

for all wΓF ∈ P
k+1(F). By the Riesz representation theorem in ∇Pk+1(F) for the

(KF ·, ·)F-inner product, this relation defines a unique element ∇τr k+1
F qΓ

F
, hence a
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polynomial r k+1
F qΓ

F
∈ Pk+1(F) up to an additive constant. This constant is fixed by

additionally imposing that ∫
F
(r k+1

F qΓ
F
− qΓF) = 0.

Wecan nowdefine the local tangential diffusive bilinear form dF : Pk
Γ,F×Pk

Γ,F → R
such that

dF(pΓF, q
Γ

F
) B

∫
F

KF∇τr k+1
F pΓ

F
· ∇τr k+1

F qΓ
F
+ jF(pΓF, q

Γ

F
),

where the first term is the standardGalerkin contribution responsible for consistency,
while jF : Pk

Γ,F × Pk
Γ,F → R is the stabilization bilinear form such that

jF(pΓF, q
Γ

F
) B

∑
V∈VF

KF

hF
(Rk+1

F pΓ
F
(V) − pΓV )(R

k+1
F qΓ

F
(V) − qΓV ),

with Rk+1
F : Pk

Γ,F → P
k+1(F) such that, for all qΓ

F
∈ Pk

Γ,F , Rk+1
F qΓ

F
B qΓF+(r

k+1
F qΓ

F
−

πk
Fr k+1

F qΓ
F
). The role of jT is to ensure stability and boundedness, expressed by the

existence of a real number ηd > 0 independent of h, F, and of KF , but possibly
depending on k and %, such that, for all qΓ

F
∈ Pk

Γ,F , the following holds (see [8383,
Lemma 4]):

η−1
d ‖q

Γ

F
‖2Γ,F ≤ dF(qΓF, q

Γ

F
) ≤ ηd ‖qΓF ‖

2
Γ,F . (2.23)

2.4.3 The discrete problem
We define the global discrete spaces together with the corresponding interpolators
and norms, formulate the discrete problem, and state the main results.

2.4.3.1 Global discrete spaces

We define the following global spaces of fully discontinuous bulk flux and pressure
DOFs:

Û
k
h B

?
T∈Th

U k
T, Pk

B,h B
?
T∈Th

Pk
B,T,

with local spaces U k
T and Pk

B,T defined by (2.122.12). We will also need the following

subspace of Û
k
h that incorporates (i) the continuity of flux unknowns at each

interface F ∈ F i
h \ F

Γ
h not included in the fracture and (ii) the strongly enforced

homogeneous Neumann boundary condition on ∂ΩN
B:

U k
h,0 B {vh ∈ Û

k
h | [[vh]]F = 0 ∀F ∈ F i

h \ F
Γ

h and vF = 0 ∀F ∈ F N
h }, (2.24)
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where, for all F ∈ F b
h , we have set vF B vTF with T denoting the unique mesh

element such that F ∈ FT , while, for all F ∈ F i
h with F ⊂ ∂T1 ∩ ∂T2 for distinct

mesh elements T1,T2 ∈ Th, the jump operator is such that

[[vh]]F B vT1F + vT2F .

Notice that this quantity is the discrete counterpart of the jump of the normal flux
component since, for i ∈ {1, 2}, vTiF can be interpreted as the normal flux exiting
Ti.

We also define the global space of fracture-based pressure unknowns and its
subspace with strongly enforced homogeneous Dirichlet boundary condition on
∂ΓD as follows:

Pk
Γ,h B

( ?
F∈F Γ

h

Pk(F)

)
×

( ?
V∈Vh

P(V)

)
, Pk

Γ,h,0 B
{
qΓ

h
∈ Pk

Γ,h | q
Γ
V = 0 ∀V ∈ VD

h

}
.

A generic element qΓ
h
of Pk

Γ,h is decomposed as qΓ
h
= ((qF)F∈F Γ

h
, (qV )V∈Vh

) and,
for all F ∈ F Γh , we denote by qΓ

F
= (qΓF, (q

Γ
V )v∈VF ) its restriction to Pk

Γ,F .

2.4.3.2 Discrete norms and interpolators

We equip the DOF spaces Û
k
h, Pk

B,h, and Pk
Γ,h respectively, with the norms ‖·‖U,ξ,h

and ‖·‖B,h, and the seminorm ‖·‖Γ,h such that for all vh ∈ U k
h, all qh ∈ Pk

B,h, and
all qΓ

h
∈ Pk

Γ,h,

‖vh‖
2
U,ξ,h B

∑
T∈Th

‖vT ‖
2
U,T + |vh |

2
ξ,h, |vh |

2
ξ,h B

∑
F∈F Γ

h

(
λ
ξ
F ‖[[vh]]F ‖

2
F + λF ‖{{vh}}F ‖

2
F

)
,

‖qh‖
2
B,h B

∑
T∈Th

‖qT ‖
2
B,T, ‖qΓ

h
‖2
Γ,h B

∑
F∈F Γ

h

‖qΓ
F
‖2Γ,F,

where, for the sake of brevity, we have set λF B (λΓ)|F and λξF B (λ
ξ
Γ
)|F (see (2.52.5)

for the definition of λΓ and λξ
Γ
), and we have defined the average operator such

that, for all F ∈ F Γh and all vh ∈ Û
k
h,

{{vh}}F B
1
2

∑
T∈TF

vTF(nTF · nΓ).

Using the arguments of [7777, Proposition 5], it can be proved that ‖·‖Γ,h is a norm
on Pk

Γ,h,0.
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Let now H1(Th)
2 denote the space spanned by vector-valued functions whose

restriction to each mesh element T ∈ Th lies in H1(T)2. We define the global
interpolators I k

h : H1(Th)
2 → Û

k
h and I k

h : H1(Γ) → Pk
Γ,h such that, for all

v ∈ H1(Th)
2 and all q ∈ H1(Γ),

I k
hv B

(
I k

T v |T
)
T∈Th

, I k
hq B

(
(πk

Fq)F∈F Γ
h
, (q(V))V∈Vh

)
, (2.25)

where, for all T ∈ Th, the local interpolator I k
T is defined by (2.142.14). We also denote

by πk
h the global L2-orthogonal projector on Pk

B,h such that, for all q ∈ L1(ΩB),

(πk
hq)|T B πk

T q|T ∀T ∈ Th.

2.4.3.3 Discrete problem

At the discrete level, the counterparts of the continuous bilinear forms defined in
Section 2.2.32.2.3 are the bilinear forms aξh : Û

k
h × Û

k
h → R, bh : Û

k
h × Pk

B,h → R,

ch : Û
k
h × Pk

Γ,h → R, and dh : Pk
Γ,h × Pk

Γ,h → R such that

aξh(uh, vh) B
∑
T∈Th

mT (uT, vT ) (2.26)

+
∑

F∈F Γ
h

∫
F

(
λ
ξ
F[[uh]]F[[vh]]F + λF{{uh}}F{{vh}}F

)
,

bh(uh, ph) B
∑
T∈Th

∫
T

Dk
TuT pT, (2.27)

ch(uh, pΓ
h
) B

∑
F∈F Γ

h

∫
F
[[uh]]F pΓF, (2.28)

dh(pΓh, q
Γ

h
) B

∑
F∈F Γ

h

dF(pΓF, q
Γ

F
). (2.29)

The HHO discretization of problem (2.82.8) reads : Find (uh, ph, pΓ
h,0
) ∈ U k

h,0×Pk
B,h×

Pk
Γ,h,0 such that, for all (vh, qh, qΓh) ∈ U

k
h,0 × Pk

B,h × Pk
Γ,h,0,

aξh(uh, vh)−bh(vh, ph) + ch(vh, pΓ
h,0
) = −

∑
F∈F D

h

∫
F
gBvF, (2.30a)

bh(uh, qh) =
∑
T∈Th

∫
T

f qT, (2.30b)

−ch(uh, q
Γ

h
) + dh(pΓh,0, q

Γ

h
) =

∑
F∈F Γ

h

∫
F
`F fΓqΓF − dh(pΓD,h, q

Γ

h
), (2.30c)
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where, for all F ∈ F D
h , we have set vF B vTF with T ∈ Th unique element such

that F ⊂ ∂T ∩∂Ω in (2.30a2.30a), while pΓ
D,h
=

(
(pΓD,F)F∈F Γh , (p

Γ
D,V )V∈Vh

)
∈ Pk

Γ,h is such
that

pΓD,F ≡ 0 ∀F ∈ F Γh , pΓD,V = gΓ(V) ∀V ∈ VD
h , pΓD,V = 0 ∀V ∈ Vh \ V

D
h .

The discrete fracture pressure pΓ
h
∈ Pk

Γ,h is finally computed as pΓ
h
= pΓ

h,0
+ pΓ

D,h
.

Remark 2.9 (Implementation). In the practical implementation, all bulk flux DOFs
and all bulk pressure DOFs up to one constant value per element can be statically
condensed by solving small saddle point problems inside each element. This
corresponds to the first static condensation procedure discussed in [7878, Section 3.4],
to which we refer the reader for further details.

We next write a more compact equivalent reformulation of problem (2.302.30).
Define the Cartesian product space X k

h B U k
h,0 × Pk

B,h × Pk
Γ,h,0 as well as the

bilinear form Aξ
h : X k

h × X k
h → R such that

A
ξ
h((uh, ph, pΓ

h
), (vh, qh, qΓh)) B aξh(uh, vh) + bh(uh, qh) − bh(vh, ph)

+ ch(vh, pΓ
h
) − ch(uh, q

Γ

h
) + dh(pΓh, q

Γ

h
).

(2.31)

Then, problem (2.302.30) is equivalent to: Find (uh, ph, pΓ
h,0
) ∈ X k

h such that, for all
(vh, qh, qΓh) ∈ X k

h,

A
ξ
h((uh, ph, pΓ

h,0
), (vh, qh, qΓh)) =

∑
T∈Th

∫
F

f qT +
∑

F∈F Γ
h

∫
F
`F fΓqΓF

−
∑

F∈F D
h

∫
F
gBvF − dh(pΓD,h, q

Γ

h
).

(2.32)

Remark 2.10 (Extension to three space dimensions). The proposed method can be
extended to the case of a three-dimensional domain with fracture corresponding to
the intersection of the domain with a plane. The main differences are linked to the
fracture terms, and can be summarized as follows: (i) the tangential permeability
of the fracture is a uniformly elliptic, 2 × 2 matrix-valued field instead of a scalar;
(ii) the fracture is discretized bymeans of a two-dimensionalmeshF Γh composed of
element faces, and vertex-based DOFs are replaced by discontinuous polynomials
of degree up to k on the skeleton (i.e., the union of the edges) of F Γh ; (iii) all the
terms involving pointwise evaluations at vertices are replaced by integrals on the
edges of F Γh . Similar stability and error estimates as in the two-dimensional case
can be proved in three space dimensions. A difference is that the right-hand side
of the error estimate will additionally depend on the local anisotropy ratio of the
tangential permeability of the fracture, arguably with a power of 1/2.
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2.4.4 Main results
In this section we report the main results of the analysis of our method, postponing
the details of the proofs to Section 2.62.6. For the sake of simplicity, we will assume
that

∂ΩN
B = ∅, gB ≡ 0, ∂ΓN = ∅, gΓ ≡ 0 (2.33)

which means that homogeneous Dirichlet boundary conditions on the pressure are
enforced on both the external boundary of the bulk region and on the boundary
of the fracture. This corresponds to the situation when the motion of the fluid is
driven by the volumetric source terms f in the bulk region and fΓ in the fracture.
The results illustrated below and in Section 2.62.6 can be adapted to more general
boundary conditions at the price of heavier notations and technicalities that we
want to avoid here.

In the error estimate of Theorem 2.122.12 below, we track explicitly the dependence
of the multiplicative constants on the following quantites and bounds thereof: the
bulk permeability K , the tangential fracture permeability κτ

Γ
, the normal fracture

permeability κn
Γ
, and the fracture thickness `Γ, which we collectively refer to in the

following as the problem data.
We equip the space X k

h with the norm ‖·‖X,h such that, for all (vh, qh, qΓh) ∈ X k
h,

‖(vh, qh, qΓh)‖
2
X,h B ‖vh‖

2
U,ξ,h + ‖qh‖

2
B,h + ‖q

Γ

h
‖2
Γ,h. (2.34)

Theorem 2.11 (Stability). Assume (2.332.33). Then, there exists a real number γ > 0
independent of h, but possibly depending on the problem geometry, on %, k, and
on the problem data, such that, for all zh ∈ X k

h,

‖ zh‖X,h ≤ γ sup
y
h
∈Xk

h
,‖y

h
‖X,h=1

A
ξ
h(zh, yh

). (2.35)

Consequently, problem (2.322.32) admits a unique solution.

Proof. See Section 2.62.6. �

We next provide an a priori estimate of the discretization error. Let (u, p, pΓ) ∈
U × PB × PΓ and (uh, ph, pΓ

h
) ∈ X h denote, respectively, the unique solutions to

problems (2.82.8) and (2.302.30) (recall that, owing to (2.332.33), pΓ = pΓ,0 and pΓ
h
= pΓ

h,0
).

We further assume that u ∈ H1(Th)
2, and we estimate the error defined as the

difference between the discrete solution (uh, ph, pΓ
h
) and the following projection

of the exact solution:

(ûh, p̂h, p̂Γ
h
) B (I k

hu, π
k
h p, I k

hpΓ) ∈ X h. (2.36)
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Theorem 2.12 (Error estimate). Let (2.332.33) hold true, and denote by (u, p, pΓ) ∈
U×PB×PΓ and (uh, ph, pΓ

h
) ∈ X k

h the unique solutions to problems (2.82.8) and (2.302.30),
respectively. Assume the additional regularity p|T ∈ Hk+2(T) for all T ∈ Th and
(pΓ)|F ∈ Hk+2(F) for all F ∈ F Γh . Then, there exist a real number C > 0
independent of h and of the problem data, but possibly depending on % and k, such
that

‖uh − ûh‖U,ξ,h + ‖p
Γ

h
− p̂Γ

h
‖Γ,h + χ‖ph − p̂h‖B,h

≤ C
©­­«
∑
T∈Th

%B,T KB,T h2(k+1)
T ‖p‖2Hk+2(T) +

∑
F∈F Γ

h

KF h2(k+1)
F ‖pΓ‖2Hk+2(F)

ª®®¬
1/2

,
(2.37)

with χ > 0 independent of h but possibly depending on %, k, and on the problem
geometry and data.

Proof. See Section 2.62.6. �

Remark 2.13 (Error norm and robustness). The error norm in the left-hand side
of (2.372.37) is selected so as to prevent the right-hand side from depending on the
global bulk anisotropy ratio %B (see (2.22.2)). As a result, for both the error on
the bulk flux measured by ‖uh − ûh‖U,ξ,h and the error on the fracture pressure
measured by ‖pΓ

h
− p̂Γ

h
‖Γ,h, we have: (i) as in more standard discretizations, full

robustness with respect to the heterogeneity of K and KΓ, meaning that the right-
hand side does not depend on the jumps of these quantities; (ii) partial robustness
with respect to the anisotropy of the bulk permeability, with a mild dependence
on the square root of %B,T (see (2.112.11)). As expected, robustness is not obtained for
the L2-error on the pressure in the bulk, which is multiplied by a data-dependent
real number χ.

In the context of primal HHO methods, more general, possibly nonlinear
diffusion terms including, as a special case, variable diffusion tensors inside the
mesh elements have been recently considered in [7373, 7474]. In this case, one can
expect the error estimate to depend on the square root of the ratio of the Lipschitz
module and the coercivity constant of the diffusion field; see [7373, Eq. (3.1)]. The
extension to the mixed HHO formulation considered here for the bulk region can
be reasonably expected to behave in a similar way. The details are postponed to a
future work.

Remark 2.14 (L2-supercloseness of bulk and fracture pressures). Using arguments
based on theAubin–Nitsche trick, one could prove under further regularity assump-
tions on the problem geometry that the L2-errors ‖ph − p̂h‖B,h and ‖pΓh − p̂Γh ‖Γ,h
converge as hk+2, where we have denoted by pΓh and p̂Γh the broken polynomial
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(a) Triangular (b) Cartesian (c) Nonconforming

Figure 2.4: Mesh families for the numerical tests

functions on Γ such that (pΓh)|F B pΓF and (p̂Γh) B p̂ΓF for all F ∈ F Γh . This
supercloseness behaviour is typical of HHO methods (cf., e.g., [7878, Theorem 7]
and [8383, Theorem10]), and is confirmed by the numerical example of Section 2.5.12.5.1;
see, in particular, Figures 2.52.5 and 2.62.6.

2.5 Numerical results
We provide an extensive numerical validation of the method on a set of model
problems.

2.5.1 Convergence
We start by a non physical numerical test that demonstrates the convergence
properties of the method. We approximate problem (2.302.30) on the square domain
Ω = (0, 1)2 crossed by the fracture Γ = {x ∈ Ω | x1 = 0.5} with ∂ΩN

B = ∂Γ
N = ∅.

We consider the exact solution corresponding to the bulk and fracture pressures

p(x) =

{
sin(4x1) cos(πx2) if x1 < 0.5
cos(4x1) cos(πx2) if x1 > 0.5

, pΓ(x) = ξ(cos(2) + sin(2)) cos(πx2),

and let u |ΩB,i = −K∇p|ΩB,i for i ∈ {1, 2}. We take here ξ = 3/4, κτ
Γ
= 1, `Γ = 0.01

and

K B

[
κn
Γ
/(2`Γ) 0

0 1

]
, (2.38)

where κn
Γ
> 0 is the normal permeability of the fracture. The expression of the

source terms f , fΓ, and of the Dirichlet data gB and gΓ are inferred from (2.302.30).
It can be checked that, with this choice, the quantities [[p]]Γ, [[u]]Γ, and {{u}}Γ are
not identically zero on the fracture. We consider the triangular, Cartesian, and
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nonconforming mesh families of Figure 3.33.3 and monitor the following errors:

eh B uh − ûh, εh B ph − p̂h, εΓh B pΓ
h
− p̂Γ

h
, εΓh B pΓh − p̂Γh, (2.39)

where ûh, p̂h, and p̂Γ
h
are the broken fracture pressures defined by (2.362.36), while

pΓh and p̂Γh are defined as in Remark 2.142.14. Notice that, while the triangular and
Cartesian mesh families can be handled by standard finite element discretizations,
this is not the case for the nonconforming mesh. This kind of nonconforming
meshes appear, e.g., when the fracture occurs between two plates, and the mesh
of each bulk subdomain is designed to be compliant with the permeability values
therein.

We display in Figure 2.52.5 and 2.62.6 various error norms as a function of the
meshsize, obtained with different values of the normal fracture permeability κn

Γ
∈

{2`Γ, 1} in order to show (i) the convergence rates, and (ii) the influence of the
global anisotropy ratio %B on the value of the error, both predicted by Theorem
2.122.12. By choosing κn

Γ
= 2`Γ, we obtain an homogeneous bulk permeability tensor

K = I2 so the value of the error is not impacted by the global anisotropy ratio
%B (since it is equal to 1 in that case); see Figure 2.52.5. On the other hand, letting
κn
Γ
= 1, we obtain a global anisotropy ratio %B = 50 and we can clearly see the

impact on the value of the error ‖eh‖U,ξ,h in Figure 2.62.6. For both configurations,
the orders of convergence predicted by Theorem 2.122.12 are confirmed numerically
for ‖eh‖U,ξ,h and ‖ε

Γ
h ‖Γ,h (and even a slightly better convergence rate on Cartesian

and nonconforming meshes). Moreover, convergence in hk+2 is observed for the
L2-norms of the bulk and fracture pressures, corresponding to ‖εh‖B,h and ‖εΓh ‖Γ,
respectively; see Remark 2.142.14 on this point.

2.5.2 Quarter five-spot problem

The five-spot pattern is a standard configuration in petroleum engineering used to
displace and extract the oil in the basement by injecting water, steam, or gas; see,
e.g., [6666, 125125]. The injection well sits in the center of a square, and four production
wells are located at the corners. Due to the symmetry of the problem, we consider
here only a quarter five-spot pattern on Ω = (0, 1)2 with injection and production
wells located in (0, 0) and (1, 1), respectively, and modelled by the source term
f : ΩB → R such that

f (x) = 200
(

tanh
(
200(0.025 − (x2

1 + x2
2)

1/2)
)

− tanh
(
200(0.025 − ((x1 − 1)2 + (x2 − 1)2)1/2)

) )
.
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Figure 2.5: Errors vs. h for the test case of Section 2.5.12.5.1 on the mesh families
introduced in Figure 3.33.3 with κn

Γ
= 2`Γ
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Figure 2.6: Errors vs. h for the test case of Section 2.5.12.5.1 on the mesh families
introduced in Figure 3.33.3 with κn

Γ
= 1
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Test 1: No fracture In Figure 2.7a2.7a, we display the pressure distribution when the
domain Ω contains no fracture, i.e. ΩB = Ω; see Figure 2.8a2.8a. The bulk tensor is
given by K = I2, and we enforce homogeneous Neumann and Dirichlet boundary
conditions, respectively, on (see Figure 2.8a2.8a)

∂ΩN
B = {x ∈ ∂ΩB | x1 = 0 or x2 = 0 or (x1 > 3/4 and x2 > 3/4)},

∂ΩD
B = {x ∈ ∂ΩB | (x1 = 1 and x2 ≤ 3/4) or (x2 = 1 and x1 ≤ 3/4)}.

Since the bulk permeability is the identity matrix and there is no fracture inside
the domain, the pressure decreases continuously moving from the injection well
towards the production well.

Test 2: Permeable fracture We now let the domainΩ be crossed by the fracture
Γ = {x ∈ Ω | x2 = 1 − x1} of constant thickness `Γ = 10−2, and we let fΓ ≡ 0.
In addition to the bulk boundary conditions described in Test 1, we enforce
homogeneous Dirichlet boundary conditions on ∂ΓD = ∂Γ; see Figure 2.8a2.8a. The
bulk and fracture permeability parameters are such that

K = I2 κn
Γ = 1, κτ

Γ
= 100,

and are chosen in such a way that the fracture is permeable, which means that
the fluid should be attracted by it. The bulk pressure corresponding to this
configuration is depicted in Figure 2.7b2.7b. As shown in Figure 2.8b2.8b, we remark
that (i) in ΩB,1, we have a lower pressure, and that the pressure decreases more
slowly than in Test 1 going from the injection well towards the fracture and (ii)
in ΩB,2, the flow caused by the production well attracts, less significantly than in
Test 1, the flow outside the fracture.

Test 3: Impermeable fracture We next consider the case of an impermeable
fracture: we keep the same domain configuration as before, but we let

κn
Γ = 10−2, κτ

Γ
= 1.

Unlike before, we observe in this case a significant jump of the bulk pressure across
the fracture Γ, see Figure 2.7c2.7c. This can be better appreciated in Figure 2.8b2.8b,
which contains the plots of the bulk pressure over the line x1 = x2 for the various
configurations considered.

Flow across the fracture Since an exact solution is not available for the previous
test cases, we provide a quantitative assessment of the convergence by monitoring
the quantity

M k,h
p/i
B

∑
F∈F Γ

h

∫
F
[[uh]]F,
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−4.70 · 10−1 6.17 · 10−1

(a) No fracture
−4.73 · 10−1 5.96 · 10−1

(b) Permeable fracture
−4.71 · 10−1 7.54 · 10−1

(c) Impermeable fracture

Figure 2.7: Bulk pressure for the test cases of Section 2.5.22.5.2 on a triangular mesh
(h = 7.68 · 10−3) with k = 2

which corresponds to the global flux entering the fracture for the permeable
(subscript p) and impermeable (subscript i) fractured test cases. The index k
refers to the polynomial degree k ∈ {0, 1, 2}, and the index h to the meshsize. Five
refinement levels of the triangular mesh depicted in Figure 3.3a3.3a are considered.
We plot in Figure 2.8c2.8c and 2.8d2.8d the errors εp/i B |Mr

p/i
−Mk,h

p/i
| for the permeable

or impermeable case (p/i), where Mr
p/i

denotes the reference value obtained with
k = 2 on the fifth mesh refinement corresponding to h = 9.60 · 10−4. In both cases
we have convergence, with respect to the polynomial degree and the meshsize,
to the reference values Mr

p = 9.96242 · 10−2 and Mr
i = 3.19922 · 10−2. For the

permeable test case depicted in Figure 2.8c2.8c, after the second refinement, increasing
the polynomial degree only modestly affect the error decay, which suggests that
convergence may be limited by the local regularity of the exact solution. For
the impermeable test case depicted in Figure 2.8d2.8d, on the other hand, the local
regularity of the exact solution seems sufficient to benefit from the increase of the
approximation order.

2.5.3 Porous medium with random permeability

To show the influence of the bulk permeability tensor on the solution, we consider
two piecewise constants functions µ1, µ2 : ΩB → (0, 2) and the heterogeneous and
possibly anisotropic bulk tensor K given by

K B

[
µ1 0
0 µ2

]
.



82 Chapter 2. Flows in fractured porous media

⊕

	

Ω

u
·
n
∂
Ω
=

0

u · n∂Ω = 0

|

|

u
· n
∂
Ω
= 0

p = 0

p
=

0

⊕

	

ΩB,1

Γ

ΩB,2

u
·
n
∂
Ω
=

0

u · n∂Ω = 0

|

|

u
· n
∂
Ω
= 0

pΓ = 0

pΓ = 0

p = 0

p
=

0

(a) Domain configurations without (left) and with (right) fracture (b) Bulk pressure over x1 = x2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·10−2

0

2

4

6
·10−2

k = 0
k = 1
k = 2

(c) εp vs. h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·10−2

0

0.5

1

1.5

2

2.5

·10−2

k = 0
k = 1
k = 2

(d) εi vs. h

Figure 2.8: Domain configurations, pressure along the line x1 = x2, and errors on
the flow across the fracture vs. h for the test cases of Section 2.5.22.5.2.
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Figure 2.9: Bulk pressure for the first test case of Section 2.5.32.5.3 (homogeneous
permeability).

For the following tests, we use a 64× 64 uniform Cartesian mesh (h = 3.91 · 10−3)
and k = 2. The domain Ω B (0, 1)2 is crossed by a fracture Γ B {0.5} × (0, 1)
of constant thickness `Γ B 10−2. We set the fracture permeability parameters
κn
Γ
B 1 and κτ

Γ
B 100, corresponding to a permeable fracture. The source terms

are constant and such that f ≡ 4 and fΓ ≡ 4. We enforce homogeneous Neumann
boundary conditions on ∂ΩN

B B {x ∈ ∂ΩB | x1 ∈ {0, 1}} and Dirichlet boundary
conditions on ∂ΩD

B B {x ∈ ∂ΩB | x2 ∈ {0, 1}} and ∂ΓD B ∂Γ with

gB(x) B x2 ∀x ∈ ∂ΩD
B, gΓ(x) B x2 ∀x ∈ ∂ΓD.

Test 1: Homogeneous permeability In Figure 2.92.9, we depict the bulk pressure
distribution corresponding to µ1 = µ2 B 1. As expected, the flow is moving
towards the fracture but less and less significantly as we approach the bottom of
the domain since the pressure decreases with respect to the boundary conditions.

Test 2: Random permeability We next define inside the bulk region ΩB
horizontal layers of random permeabilities which are separated by the fracture,
and let the functions µ1 and µ2 take, inside each element, a random value between
0 and 1 on one side of each layer, and between 1 and 2 on the other side; see
Figure 2.10a2.10a. High permeability zones are prone to let the fluid flow towards the
fracture, in contrast to the low permeability zones in which the pressure variations
are larger; see Figure 2.10b2.10b, where dashed lines represent the different layers
described above. This qualitative behaviour is well captured by the numerical
solution.
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2

10−2

(a) Values of µ1 (left) and µ2 (right)

1.14

−2.76 · 10−3

(b) Bulk pressure p

Figure 2.10: Permeability components distribution and bulk pressure for the
second test case of Section 2.5.32.5.3 (random permeability).

2.6 Stability analysis
This section contains the proof of Theorem 2.112.11 preceeded by the required
preliminary results. We recall that, for the sake of simplicity, we work here under
the assumption that homogeneous Dirichlet boundary conditions are enforced on
both the bulk and the fracture pressures; see (2.332.33). This simplifies the arguments
of Lemma 2.152.15 below.

Recalling the definition (2.262.26) of aξh, and using (2.212.21) together with Cauchy–
Schwarz inequalities, we infer the existence of a real number ηa > 0 independent
of h and of the problem data such that, for all vh ∈ Û

k
h,

η−1
a ‖vh‖

2
U,ξ,h ≤ ‖vh‖

2
a,ξ,h B aξh(vh, vh) ≤ ηa%B‖vh‖

2
U,ξ,h, (2.40)

with global bulk anisotropy ratio %B defined by (2.22.2). Similarly, summing (2.232.23)
over F ∈ F Γh , it is readily inferred that it holds, for all qΓ

h
∈ Pk

Γ,h,

η−1
d ‖q

Γ

h
‖2
Γ,h ≤ dh(qΓh, q

Γ

h
) ≤ ηd ‖qΓh ‖

2
Γ,h. (2.41)

The following lemma contains a stability result for the bilinear form bh.
Lemma 2.15 (Inf-sup stability of bh). There is a real number β > 0 independent
of h, but possibly depending on %, k, and on the problem geometry and data, such
that, for all qh ∈ Pk

B,h,

‖qh‖B,h ≤ β sup
wh∈U

k
h,0,‖wh ‖U,ξ,h=1

bh(wh, qh). (2.42)
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Proof. We use the standard Fortin argument relying on the continuous inf-sup
condition. In what follows, a . b stands for the inequality a ≤ Cb with real
number C > 0 having the same dependencies as β in (2.422.42). Let qh ∈ Pk

B,h.
For each i ∈ {1, 2}, the surjectivity of the continuous divergence operator from
H(div;ΩB,i) onto L2(ΩB,i) (see, e.g., [106106, Section 2.4.1]) yields the existence of
vi ∈ H(div;ΩB,i) such that

∇ · vi = qh in ΩB,i and ‖vi‖H(div;ΩB,i) . ‖qh‖ΩB,i , (2.43)

with hidden multiplicative constant depending on ΩB,i. Let v : ΩB → R
2 be such

that v |ΩB,i = vi for i ∈ {1, 2}. This function cannot be interpolated through I k
h,

as it does not belong to the space H1(Th)
2 introduced in Section 2.4.3.22.4.3.2; see also

Remark 2.82.8 on this point. However, since we have assumed Dirichlet boundary
conditions (cf. (2.332.33)), following the procedure described in [106106, Section 4.1] one
can construct smoothings ṽi ∈ H1(ΩB,i)

2, i ∈ {1, 2}, such that

∇ · ṽi = ∇ · vi in ΩB,i and ‖ ṽi‖H1(ΩB,i)2 . ‖vi‖H(div;ΩB,i). (2.44)

Let now ṽ : ΩB → R
2 be such that ṽ |ΩB,i = ṽi for i ∈ {1, 2}. The function ṽ

belongs to U ∩ H1(Th)
2, and it can be easily checked that I k

h ṽ ∈ U
k
h,0. Recalling

the definition (2.132.13) of the ‖·‖U,T -norm and using the boundedness of the L2-
orthogonal projector in the corresponding L2-norm together with local continuous
trace inequalities (see, e.g., [8181, Lemma 1.49]), one has that∑

T∈Th

‖I k
T ṽ‖

2
U,T .

2∑
i=1
‖ ṽi‖

2
H1(ΩB,i)2

.
2∑

i=1
‖vi‖

2
H(div;ΩB,i)

. ‖qh‖
2
B,h, (2.45)

where we have used (2.442.44) in the second inequality and (2.432.43) in the third. The
hidden constant depends here on K−1

B . Moreover, using a triangle inequality, the
fact that λξF ≤ λF = (λΓ)|F ≤ λΓ (see (2.62.6)) for all F ∈ F Γh , the boundedness of
the L2-orthogonal projector, and a global continuous trace inequality in each bulk
subdomain ΩB,i, i ∈ {1, 2}, we get

|I k
h ṽ |

2
ξ,h .

2∑
i=1
‖(ṽi)|Γ · nΓ‖

2
Γ .

2∑
i=1
‖ ṽi‖

2
H1(ΩB,i)2

. ‖qh‖
2
B,h, (2.46)

where we have used (2.442.44) and (2.432.43) in the third inequality. The hidden constant
depends here on λΓ and on the inverse of the diameters of the bulk subdomains.
Combining (2.452.45) and (2.462.46), and naming β the hidden constant, we conclude that

‖I k
h ṽ‖U,ξ,h ≤ β‖qh‖B,h. (2.47)
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Finally, (2.442.44) together with the commuting property (2.172.17) of the local divergence
reconstruction operator gives

πk
T (∇ · v) = π

k
T (∇ · ṽ) = Dk

T I
k
T ṽ |T ∀T ∈ Th. (2.48)

Gathering all of the above properties, we infer that

‖qh‖
2
B,h = b(v, qh) = b(ṽ, qh) = bh(I

k
h ṽ, qh),

where we have used (2.432.43) together with the definition (2.72.7) of b in the first
equality, (2.442.44) in the second, and (2.482.48) along with the definition (2.30b2.30b) of bh
to conclude. Finally, factoring ‖I k

h ṽ‖U,ξ,h, using the linearity of bh in its first
argument, and denoting by $ the supremum in (2.422.42), we get

‖qh‖
2
B,h ≤ $‖I k

h ṽ‖U,ξ,h ≤ β$‖qh‖B,h,

where the conclusion follows from (2.472.47). This proves (2.422.42). �

We next recall the following Poincaré inequality, which is a special case of the
discrete Sobolev embeddings proved in [7474, Proposition 5.4]: There exist a real
number CP > 0 independent of h and of the problem data (but possibly depending
on Γ and k) such that, for all qΓ

h
= ((qΓF)F∈F Γh , (q

Γ
V )V∈Vh

) ∈ Pk
Γ,h,0,

‖qΓh ‖Γ ≤ CPK−
1/2
Γ
‖qΓ

h
‖Γ,h, (2.49)

where qΓh is the piecewise polynomial function on Γ such that (qΓh )|F = qΓF for all
F ∈ F Γh .

Using the Cauchy–Schwarz inequality together with the fact that λξF = (λ
ξ
Γ
)|F ≥

λ
Γ

(
ξ
2 −

1
4

)
for allF ∈ F Γh (see (2.52.5) and and (2.62.6)) and the Poincaré inequality (2.492.49),

we can prove the following boundedness property for the bilinear form ch defined
by (2.282.28): For all vh ∈ U

k
h,0 and all qΓ

h
∈ Pk

Γ,h,0, it holds that

|ch(vh, q
Γ

h
)| ≤ ηcλ

−1/2
Γ
|vh |ξ,h‖q

Γ

h
‖Γ,h, ηc B CP

(
ξ

2
−

1
4

)−1/2

. (2.50)

We are now ready to prove Theorem 2.112.11.

Proof of Theorem 2.112.11. Let zh B (wh, rh, rΓh) ∈ X k
h. In the spirit of [9595, Lemma

4.38], the proof proceeds in three steps.

Step 1: Control of the flux in the bulk and of the pressure in the fracture
Using the coercivity (2.402.40) of the bilinear form aξh and (2.412.41) of the bilinear form
dh, it is inferred that

A
ξ
h(zh, zh) ≥ η

−1
a ‖wh‖

2
U,ξ,h + η

−1
d ‖r

Γ
h ‖

2
Γ,h. (2.51)
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Step 2: Control of the pressure in the bulk The inf-sup condition (2.422.42) on
the bilinear form bh gives the existence of vh ∈ U

k
h,0 such that

‖rh‖
2
B,h = −bh(vh, rh) and ‖vh‖U,ξ,h ≤ β‖rh‖B,h. (2.52)

Using the definition (2.312.31) of Aξ
h, it is readily inferred that

A
ξ
h(zh, (vh, 0, 0)) = ‖rh‖

2
B,h + aξh(wh, vh) + ch(vh, r

Γ
h)

≥ ‖rh‖
2
B,h − |a

ξ
h(wh, vh)| − |ch(vh, r

Γ
h)|.

(2.53)

Using the continuity of aξh expressed by the second inequality in (2.402.40) followed
by Young’s inequality, we infer that it holds, for all ε > 0,

|aξh(wh, vh)| ≤ ηa%B‖wh‖U,ξ,h‖vh‖U,ξ,h

≤
ε

4
‖vh‖

2
U,ξ,h +

(ηa%B)
2

ε
‖wh‖

2
U,ξ,h.

(2.54)

Similarly, the boundedness (2.502.50) of ch followed by Young’s inequality gives

|ch(vh, r
Γ
h)| ≤ ηcλ

−1/2
Γ
‖vh‖U,ξ,h‖r

Γ
h ‖Γ,h ≤

ε

4
‖vh‖

2
U,ξ,h +

η2
c

ελ
Γ

‖rΓh ‖
2
Γ,h. (2.55)

Plugging (2.542.54) and (2.552.55) into (2.532.53), selecting ε = β−2, and using the bound
in (2.522.52), we arrive at

A
ξ
h(zh, (vh, 0, 0)) ≥

1
2
‖rh‖

2
B,h − C1‖wh‖

2
U,ξ,h − C2‖rΓh ‖

2
Γ,h, (2.56)

with C1 B (ηaβ%B)
2 and C2 B (ηcβ)

2/λ
Γ
.

Step 3: Conclusion Setting α B (1 + C1ηa + C2ηd)
−1/2 and combining (2.512.51)

with (2.562.56), we infer that

A
ξ
h(zh, (1 − α)zh + α(vh, 0, 0)) ≥

α

2
‖rh‖

2
B,h + η

−1
a (1 − α(1 + C1ηa)) ‖wh‖

2
U,ξ,h

+ η−1
d (1 − α(1 + C2ηd)) ‖rΓh ‖

2
Γ,h.

Denoting by $ the supremum in the right-hand side of (2.352.35), we infer from the
previous inequality that

C3‖ zh‖
2
X,h ≤ A

ξ
h(zh, (1−α)zh+α(vh, 0, 0)) ≤ $‖(1−α)zh+α(vh, 0, 0)‖X,h, (2.57)

with C3 B min
(
α/2, η−1

a (1 − α(1 + C1ηa)), η
−1
d (1 − α(1 + C2ηd))

)
> 0. Finally,

observing that, by the definition (2.342.34) of the ‖·‖X,h-norm together with (2.522.52),
it holds that ‖(vh, 0, 0)‖X,h ≤ β‖rh‖B,h ≤ β‖ zh‖X,h, (2.572.57) gives (2.352.35) with
γ = C−1

3 (1 + β). �
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2.7 Error analysis
This section contains the proof of Theorem 2.122.12 preceeded by the required
preliminary results. As in the previous section, we work under the assumption that
homogeneous Dirichlet boundary conditions are enforced on both the bulk and the
fracture pressures; see (2.332.33). In what follows, a . b means a ≤ Cb with real
number C > 0 independent of h and of the problem data, but possibly depending
on %, k, and on the problem geometry.

For all T ∈ Th, we define the local elliptic projection p̂T ∈ P
k+1(T) of the bulk

pressure p such that∫
T
KT∇(p̂T − p) · ∇w = 0 for all w ∈ Pk+1(T) and

∫
T
(p̂T − p) = 0. (2.58)

Adapting the results of [8383, Lemma 3], it can be proved that the following approx-
imation properties hold for all T ∈ Th provided that p|T ∈ Hk+2(T):

‖K
1/2
T ∇(p − p̂T )‖T + h

1/2
T ‖K

1/2
T ∇(p|T − p̂T )‖∂T

+ K
1/2
B,T h−1

T ‖p − p̂T ‖T + K
1/2
B,T h−

1/2
T ‖p|T − p̂T ‖∂T . K

1/2

B,T hk+1
T ‖p‖Hk+2(T).

(2.59)

Note that we need to specify that the trace of p and of the corresponding flux are
taken from the side of T in boundary norms, since these quantities are possibly
two-valued on fracture faces. We also introduce the broken polynomial function
p̂h such that

(p̂h)|T = p̂T ∀T ∈ Th.

The following boundedness result for the bilinear form bh defined by (2.272.27)
can be proved using (2.182.18): For all vh ∈ Û

k
h and all qh ∈ Pk

B,h,

|bh(vh, qh)| .

(∑
T∈Th

‖vT ‖
2
U,T

)1/2

×

(∑
T∈Th

KB,T h−2
T ‖qT ‖

2
T

)1/2

. ‖vh‖m,h

(∑
T∈Th

KB,T h−2
T ‖qT ‖

2
T

)1/2

,

(2.60)

where, to obtain the second inequality, we have used the first bound in (2.212.21) and
summed over T ∈ Th to infer∑

T∈Th

‖vT ‖
2
U,T . ‖vh‖

2
m,h B

∑
T∈Th

‖vT ‖
2
m,T .
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Finally, we note the following consistency property for the bilinear form dh
defined by (2.292.29), which can be inferred from [8383, Theorem 8]: For all q ∈ H1

0 (Γ)

such that q ∈ Hk+2(F) for all F ∈ F Γh ,

sup
rΓ
h
∈Pk

Γ,h,0,‖r
Γ
h
‖Γ,h=1

( ∑
F∈F Γ

h

∫
F
∇τ ·(KF∇τq)rΓF + dh(I k

hq, rΓh)

)

.
©­­«
∑

F∈F Γ
h

KF h2(k+1)
F ‖q‖2Hk+2(F)

ª®®¬
1/2

.

(2.61)

We are now ready to prove the error estimate.

Proof of Theorem 2.122.12. The proof proceeds in five steps: in Step 1 we derive an
estimate for the discretization error measured by the left-hand side of (2.372.37) in
terms of a conformity error; in Step 2 we bound the different components of the
conformity error; in Step 3we combine the previous results to obtain (2.372.37). Steps
4-5 contain the proofs of technical results used in Step 2.

Remark 2.16 (Role of Step 1). The discretization error in the left-hand side
of (2.372.37) can be clearly estimated in terms of a conformity error using the inf-sup
condition onAξ

h proved in Theorem 2.112.11. Proceeding this way, however, we would
end up with constants depending on the problem data (and, in particular, on the
global bulk anisotropy ratio %B defined by (2.22.2)) in the right-hand side of (2.372.37).
This is to be avoided if one wants to have a sharp indication of the behaviour of
the method for strongly anisotropic bulk permeability tensors.

In what follows, we use the shortcut notation for the error components intro-
duced in (2.392.39).

Step 1: Basic error estimate Recalling the definitions (2.312.31) of Aξ
h and (2.402.40)

of the norm ‖·‖a,ξ,h, and using the coercivity of dh expressed by the first inequality
in (2.412.41), we have that

‖eh‖
2
a,ξ,h + ‖ε

Γ
h ‖

2
Γ,h . A

ξ
h((eh, εh, ε

Γ
h), (eh, εh, ε

Γ
h))

= Eh,1(eh) + Eh,2(εh) + Eh,3(ε
Γ
h),

(2.62)
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where the linear forms Eh,1 : U k
h,0 → R, Eh,2 : Pk

B,h → R, and Eh,3 : Pk
Γ,h,0 → R

correspond to the components of the conformity error and are defined such that

Eh,1(vh) B −aξh(ûh, vh) + bh(vh, p̂h) − ch(vh, p̂Γ
h
), (2.63a)

Eh,2(qh) B
∑
T∈Th

∫
T

f qT − bh(ûh, qh), (2.63b)

Eh,3(qΓh) B
∑

F∈F Γ
h

∫
F
`F fΓqΓF + ch(ûh, q

Γ

h
) − dh (̂p

Γ

h
, qΓ

h
). (2.63c)

We next estimate the error εh on the bulk pressure. The inf-sup condition (2.422.42)
yields the existence of vh ∈ U

k
h,0 such that

‖εh‖
2
B,h = −bh(vh, εh) and ‖vh‖U,ξ,h ≤ β‖εh‖B,h. (2.64)

Hence,

‖εh‖
2
B,h = bh(vh, ph) − bh(vh, p̂h)

= aξh(uh, vh) + ch(vh, pΓ
h
) − bh(vh, p̂h)

= aξh(eh, vh) + ch(vh, ε
Γ
h) − Eh,1(vh),

wherewe have used the linearity of bh in its second argument in the first line, (2.30a2.30a)
in the second line (recall that gB ≡ 0 owing to (2.332.33)), and we have inserted
±
(
aξh(ûh, vh) + ch(vh, p̂Γ

h
)
)
to conclude. Using the Cauchy–Schwarz inequality

together with (2.402.40) for the first term, the boundedness (2.502.50) of the second, and
the linearity of Eh,1 together with the second bound in (2.402.40) for the third, we get

‖εh‖
2
B,h .

(
%

1/2
B ‖eh‖a,ξ,h + λ

−1/2
Γ
‖εΓh ‖Γ,h + %

1/2
B Eh,1(vh/‖vh‖a,ξ,h)

)
‖vh‖U,ξ,h.

Using the inequality in (2.642.64) to bound the second factor, and naming χ the hidden
constant, we arrive at

χ‖εh‖B,h ≤ ‖eh‖a,ξ,h + ‖ε
Γ
h ‖Γ,h + Eh,1(vh/‖vh‖U,ξ,h). (2.65)

Step 2: Bound of the conformity error components We proceed to bound the
conformity error components for a generic (vh, qh, qΓh) ∈ X h.

To bound Eh,1, we use the following reformulations of the first and second
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contribution, whose proofs are given in Steps 4-5 below:

aξh(ûh, vh) =
∑

F∈F Γ
h

∫
F

(
λ
ξ
F[[u]]Γ · nΓ[[vh]]F + λF{{u}}Γ · nΓ{{vh}}F

)
+

∑
T∈Th

∑
F∈FT

∫
F
KT∇(p̂T − p|T ) · nTF(π

k
FwT − π

k
TwT )

−
∑
T∈Th

∫
T
∇p · F k+1

T vT −
∑
T∈Th

JT (ûT, vT ),

(2.66)

where, for all T ∈ Th, wT ∈ P
k+1(T) is such that F k+1

T vT = KT∇wT and

bh(vh, p̂h) = bh(vh, π
k
h(p − p̂h)) +

∑
T∈Th

∑
F∈FT

∫
F
(p̂T − p|T )vTF + ch(vh, p̂Γ

h
)

+
∑

F∈F Γ
h

∫
F

(
λ
ξ
F[[u]]Γ · nΓ[[vh]]F + λF{{u}}Γ · nΓ{{vh}}F

)
−

∑
T∈Th

∫
T
∇p · F k+1

T vT .

(2.67)

Using (2.662.66) and (2.672.67) in (2.63a2.63a), we infer that

Eh,1(vh) = bh(vh, π
k
h(p − p̂h)) +

∑
T∈Th

∑
F∈FT

∫
F
(p̂T − p|T )vTF

−
∑
T∈Th

∑
F∈FT

∫
F
KT∇(p̂T − p|T ) · nTF(π

k
FwT − π

k
TwT ) +

∑
T∈Th

JT (ûT, vT ).

Using the boundedness (2.602.60) of bh together with the third bound in (2.592.59) to
estimate the first term, Cauchy–Schwarz inequalities togetherwith the fourth bound
in (2.592.59) and the first bound in (2.212.21) to estimate the second term, Cauchy–Schwarz
inequalities togetherwith the fact that h−

1/2
T ‖πk

FwT − π
k
TwT ‖F . h−1

T ‖wT − π
k
TwT ‖T .

K−
1/2

B,T ‖F
k+1
T vT ‖T (a consequence of the L2(F)-boundedness of πk

F and (2.10b2.10b) with
l = k + 1, m = 0, and s = 1) to estimate the third term, and (2.222.22) to estimate the
fourth term, we infer that

|Eh,1(vh)| .

(∑
T∈Th

%B,T KB,T h2(k+1)
T ‖p‖2Hk+2(T)

)1/2

‖vh‖m,h. (2.68)

For the second error component, using (2.1b2.1b), the definition (2.272.27) of the
bilinear form bh, and the commuting property (2.172.17) of the local divergence
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reconstruction, we get

Eh,2(vh) =
∑
T∈Th

∫
T
(∇ · u − πk

T (∇ · u))qT = 0, (2.69)

where we have used the fact that qT ∈ P
k(T) and the definition (2.92.9) of πk

T to
conclude.

We next observe that, for all F ∈ F ΓT such that F ⊂ ∂T1∩ ∂T2 for distinct mesh
elements T1,T2 ∈ Th,

[[ûh]]F = π
k
F

(
u |T1 · nT1F + u |T2 · nT2F

)
= πk

F ([[u]] · nΓ) , (2.70a)

{{ûh}}F =
1
2
πk

F
(
u |T1 · nΓ + u |T2 · nΓ

)
= πk

F ({{u}} · nΓ) . (2.70b)

For the third error component, we can then write

Eh,3(qh) =
∑

F∈F Γ
h

∫
F
(`F fΓ + [[ûh]]F)q

Γ
F − dh (̂p

Γ

h
, qΓ

h
)

=
∑

F∈F Γ
h

∫
F
(`F fΓ + [[u]]Γ · nΓ)qΓF − dh (̂p

Γ

h
, qΓ

h
)

= −
∑

F∈F Γ
h

∫
F
∇τ · (KF∇τpΓ)qΓF − dh (̂p

Γ

h
, qΓ

h
),

where we have expanded the bilinear form ch according to its definition (2.282.28) in
the first line, we have used (2.70a2.70a) followed by (2.92.9) and the fact that qΓF ∈ P

k(F)
to remove πk

F in the second line, and we have concluded invoking (2.3a2.3a). The
consistency property (2.612.61) then gives

|Eh,3(qh)| .
©­­«
∑

F∈F Γ
h

KF h2(k+1)
F ‖pΓ‖2Hk+2(F)

ª®®¬ ‖qΓh ‖Γ,h. (2.71)

Step3: Conclusion Using (2.682.68), (2.692.69), and (2.712.71)with (vh, qh, qΓh) = (eh, εh, ε
Γ
h)

to estimate the right-hand side of (2.622.62), and recalling that ‖eh‖m,h ≤ ‖eh‖a,ξ,h,
we infer that

‖eh‖a,ξ,h + ‖ε
Γ
h ‖Γ,h .

( ∑
T∈Th

%B,T KB,T h2(k+1)
T ‖p‖2Hk+2(T)

+
∑

F∈F Γ
h

KF h2(k+1)
F ‖pΓ‖2Hk+2(F)

)1/2

,

(2.72)
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which, in view of the first inequality in (2.402.40), gives the bounds on the first and
second term in the left-hand side of (2.372.37). Plugging (2.722.72) and (2.682.68) into (2.652.65),
and recalling that ‖vh‖m,h ≤ ‖vh‖a,ξ,h gives the estimate for the third term in the
left-hand side of (2.372.37).

Step 4: Proof of (2.662.66) For every mesh element T ∈ Th, we have that∫
T
K−1

T F k+1
T ûT ·F

k+1
T vT =

∫
T
F k+1

T ûT · ∇wT

= −

∫
T

Dk
T ûTwT +

∑
f ∈FT

∫
F

ûTFwT

= −

∫
T
πk

T (∇ · u)wT +
∑
f ∈FT

∫
F
πk

F(u · nTF)wT

= −

∫
T
∇ · uπk

TwT +
∑
f ∈FT

∫
F
u · nTFπ

k
FwT

=

∫
T
u · ∇πk

TwT +
∑
f ∈FT

∫
F
u · nTF(π

k
FwT − π

k
TwT ),

(2.73)

where we have used the fact that F k+1
T vT = KT∇wT in the first line, the definition

(2.192.19) of F k+1
T ûT in the second line, the commuting property (2.172.17) together

with the definition (2.252.25) of I k
h in the third line, the definition (2.92.9) of the L2-

orthogonal projectors πk
T and πk

F to pass to the fourth line, and an integration by
parts to conclude.

On the other hand, recalling again that F k+1
T vT = KT∇wT and using the

definition (2.582.58) of the local elliptic projection, we have that∫
T
∇p · F k+1

T vT =

∫
T
KT∇p · ∇wT =

∫
T
KT∇p̂T · ∇wT

= −

∫
T
∇ · (KT∇p̂T )wT +

∑
F∈FT

∫
F
KT∇p̂T · nTFwT

= −

∫
T
∇ · (KT∇p̂T )π

k
TwT +

∑
F∈FT

∫
F
KT∇p̂T · nTFπ

k
FwT

=

∫
T
KT∇p · ∇πk

TwT +
∑

F∈FT

∫
F
KT∇p̂T · nTF(π

k
FwT − π

k
TwT ),

(2.74)

where we have used an integration by parts to pass to the second line, the
definition (2.92.9) of the L2-orthogonal projectors πk

T and πk
F togetherwith the fact that

∇·(KT∇p̂T ) ∈ P
k−1(T) ⊂ Pk(T) and (KT∇p̂T )|F ·nTF ∈ P

k(F) for all F ∈ FT (since
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wT ∈ P
k+1(T) and KT ∈ P

0(T)2×2) in the second line, and again an integration by
parts together with the definition (2.582.58) to replace p̂T by p in the first term and
conclude.

Summing (2.732.73) and (2.742.74), using (2.1a2.1a) to replace u by−K∇p, and rearranging
the terms, we finally obtain∫

T
K−1

T F k+1
T ûT · F

k+1
T vT = −

∫
T
∇p · F k+1

T vT (2.75)

+
∑

F∈FT

∫
F
KT∇(p̂T − p) · nTF(π

k
FwT − π

k
TwT ).

Using (2.752.75) for the consistency term in mT (ûT, vT ) (see (2.202.20)), plugging
the resulting relation into the expression of aξh(ûh, vh) (see (2.262.26)), and accounting
for (2.702.70) in the fracture terms of aξh(ûh, vh) (where π

k
F can be cancelled using (2.92.9)

after observing that λξF[[vh]]F ∈ P
k(F) and λF[[vh]]F ∈ P

k(F) for all F ∈ F Γh )
gives (2.662.66).

Step 5: Proof of (2.672.67) We have that

bh(vh, p̂h) = bh(vh, π
k
h(p − p̂h)) + bh(vh, π

k
h p̂h)

= bh(vh, π
k
h(p − p̂h)) +

∑
T∈Th

∫
T

p̂T Dk
T vT

= bh(vh, π
k
h(p − p̂h)) +

∑
T∈Th

( ∑
F∈FT

∫
F

p̂TvTF −

∫
T
∇p̂T · F

k+1
T vT

)
= bh(vh, π

k
h(p − p̂h)) +

∑
T∈Th

∑
F∈FT

∫
F
(p̂T − p|T )vTF −

∑
T∈Th

∫
T
∇p · F k+1

T vT

+
∑
T∈Th

∑
F∈FT

∫
F

p|TvTF,

(2.76)

where we have inserted±πk
h p̂h into the second argument of bh and used its linearity

in the first line, expanded the second term according to its definition (2.272.27) and
cancelled the projector since Dk

T vT ∈ P
k(T) for all T ∈ Th in the second line, used

the definition (2.192.19) of F k+1
T vT (with wT = p̂T ) in the third line, and we have

inserted ±
∑

T∈Th
∑

F∈FT

∫
F p|TvTF to pass to the fourth line, where (2.582.58) was also

used to write p instead of p̂T in the third term.
Let us consider the last term in (2.762.76). Rearranging the sums and using the



2.7. Error analysis 95

fact that p = 0 on every boundary face F ∈ F b
h owing to (2.332.33), it is inferred that∑

T∈Th

∑
F∈FT

∫
F

p|TvTF =
∑

F∈Fh

∑
T∈TF

∫
F

p|TvTF =
∑

F∈F i
h

F⊂∂T1∩∂T2

∫
F

(
p|T1vT1F + p|T2vT2F

)
.

IfF ∈ F i
h\F

Γ
h , the integrand vanishes since vT1F+vT2F = 0 (see the definition (2.242.24)

of U k
h,0) and p|T1 − p|T2 = 0 since the jumps of the bulk pressure vanish across

interfaces in the bulk region. If, on the other hand, F ∈ F Γh , assuming without loss
of generality thatTi ⊂ ΩB,i for i ∈ {1, 2}, it can be checked that p|T1vT1F+p|T2vT2F =

[[p]]Γ{{vh}}F + {{p}}Γ[[vh]]F . In conclusion, we have that∫
F

(
p|T1vT1F + p|T2vT2F

)
=

{
0 if F ∈ F i

h \ F
Γ

h ,∫
F

(
[[p]]Γ{{vh}}F + {{p}}Γ[[vh]]F

)
if F ∈ F Γh .

(2.77)
Plugging (2.772.77) into (2.762.76), and using (2.42.4) to replace [[p]]Γ and {{p}}Γ, (2.672.67)
follows. �
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Chapter 3

Passive transport in fractured porous media

This chapter has been submitted in the following peer-reviewed journal (see [5757]):

International Journal on Geomathematics, 2018.
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3.1 Introduction
Over the last decades, the research on fluid flows in fractured porous media has
received a great amount of attention because of its relevance in many areas of the
geosciences, ranging from ground-water hydrology to hydrocarbon exploitation.
Fractures in the subsurface are indeed ubiquitous, and can be caused by tectonic
forces, changes of temperature, drying processes, by leaching in the plane of
stratification, or by schistosity. Depending on the material that has accumulated
within the fractures, they may act as conduits or barriers, and thus affect the flow
patterns in a substantial way. For instance, it has been observed that fractures near
boreholes tend to increase the productivity of wells during oil recovery. In the
context of geological isolation of radioactive waste, the presence of fractures in
the disposal areas due to, for example, tunnel excavation, can drastically accelerate
the migration process of radionuclides.

A common feature of fractures in porous media is the variety of length
scales. While the presence of smaller fractures may be accounted for by using
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homogenization or other upscaling techniques, fractures with larger extension have
to be modelled explicitly, and there are several possible ways to incorporate their
presence. Our focus is here on the approach developed in [120120], where a reduced
model for the flow in the fracture is obtained by an averaging process, and the
fracture is treated as an interface inside the bulk region. The fracture is assumed
to be filled of debris, so that the flow therein can still be modelled by Darcy’s law.
The problem is closed by interface conditions that relate the average and jump
of the bulk pressure to the normal flux and pressure in the fracture. In [5656] we
have designed and analysed a Hybrid High-Order (HHO) method to discretize this
model, and proved stability and order O(hk+1) convergence of the discretization
error measured in an energy-like norm, with h denoting the meshsize and k ≥ 0 the
polynomial degree. Several other discretization schemes have been proposed for
this type of models; see, e.g., [1212, 1616, 2424, 2626, 3333, 4545, 7171, 102102, 122122] and references
therein. Other works where fractures are treated as interfaces include [1313, 2020, 9797].

The literature on passive transport in fractured porous media and related
problems is, however, more scarce. In [109109], the authors study a system of
advection-diffusion equations where the jump of the diffusive bulk flux acts as a
source term inside the fracture. In the coupling conditions, only the diffusive part
of the total bulk flux is considered. The discretization is based on the Unfitted
Finite Element method, for which well-posedness and O(hk) convergence in the
energy-norm are proved. In [6262], a Finite Volume method is combined to a Trace
Finite Element method to solve a transport problem in the bulk region and inside
the fracture, with the jump of the total bulk flux acting as a source term in the
surface problem and under the assumption that the concentration is continuous at
the interface. Convergence inO(h) is numerically observed for the energy-norm of
the discretization error. A similar problem is studied in [1010]. In [103103], the authors
use an averaging technique similar to [120120] in order to derive coupling conditions
for a transport problem which allow the concentration to jump across the fracture.
This enables them tomodel high concentration gradients near the fracture resulting
from highly heterogeneous diffusivity. The problem is discretized by eXtended
Finite Elements (XFEM), and numerical evidence is provided. Another approach
can be to consider Discrete Fracture Networks (DFNs) models, where the bulk
surrounding fractures is considered as impervious so that the flow can only occur
through the fracture planes and across their intersections; see, e.g., [2727], where
authors propose a system of unsteady advection-diffusion in DFNs.

In this work, we consider the passive transport of a solute driven by a velocity
field solution of a (decoupled) Darcy problem. We present two novel contributions:

(i) first, we propose new coupling conditions between the bulk region and
fracture inspired by energy-based arguments, following the general ideas
developed by [100100] in a different context. Crucially, these transmission
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conditions allow the solute concentration to jump across the fracture;

(ii) second, we propose a novel HHO discretization of this new model where the
Darcy velocity field results from an HHO approximation of the flow problem
in the spirit of [5656]. The discretization is designed to incorporate the new
transmission conditions and to reproduce at the discrete level the energy
argument from which they originate.

The main source of inspiration for the discretization of the advection terms in the
bulk region and inside the fracture is [7575], where the authors develop an HHO
method that is robust across the entire range of Péclet numbers and supports
locally degenerate diffusion. Concerning the coupling of the flow and transport
problems, we take inspiration from [1111], where an HHO discretization of miscible
displacements in non-fractured porous media described by the Peaceman model
is considered. Therein, in order to obtain a well-posed discrete problem, the
flow problem has to be solved using polynomials of degree twice as high as the
transport problem. In our work, we find that a similar condition is required to
prove the coercivity of the transport bilinear form; see Remark 3.103.10 for further
details. A thorough numerical investigation is carried out to demonstrate the order
of convergence of the method and showcase its performance on physical test cases.

The material is organized as follows. In Section 3.23.2 we describe the equations
that govern the model along with their weak formulation. In Section 3.33.3 we discuss
the discrete setting and, in Section 3.43.4, we formulate the HHO approximation.
Section 3.53.5 is devoted to the numerical tests, including a numerical study of the
convergence properties of the method.

3.2 The differential model
In this section we introduce the strong and weak formulations of the flow and
passive transport problems. For the sake of simplicity, the presentation focuses
on the two-dimensional case with a single fracture. The extension to the three-
dimensional case and to fracture networks is possible (and, actually, quite straight-
forward), but requires heavier notations which we want to avoid here.

3.2.1 Notation
We consider a porous medium saturated by an incompressible fluid that occupies
a space region Ω ⊂ R2 traversed by a fracture Γ. We assume that Ω is an open,
bounded, connected, polygonal set with Lipschitz boundary ∂Ω. The fracture Γ
is represented by an open line segment of nonzero length which cuts Ω into two
disjoint connected polygonal subdomains ΩB,1 and ΩB,2 with Lipschitz boundary.
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ΩB,1 ΩB,2

Γ

∂ΩB

ΩB B ΩB,1 ∪ΩB,2

∂Γ

nΓ

Figure 3.1: Illustration of the notation introduced in Section 3.2.13.2.1.

The set ΩB B Ω \ Γ = ΩB,1 ∪ ΩB,2 corresponds to the bulk region. We denote
by ∂ΩB B

⋃2
i=1(∂ΩB,i \ Γ) the external boundary of the bulk region and by

n∂Ω the unit normal vector on ∂ΩB pointing out of ΩB. For i ∈ {1, 2}, we let
∂ΩB,i B ∂ΩB ∩ ΩB,i denote the external boundary of the subdomain ΩB,i. The
boundary of the fracture Γ is denoted by ∂Γ, and the corresponding outward unit
tangential vector is τ∂Γ. Finally, nΓ denotes the unit normal vector to Γ pointing
out of ΩB,1. This notation is illustrated in Figure 3.13.1.

For any function ϕ sufficiently regular to admit a (possibly two-valued) trace
on Γ, we define the jump and average operators such that

[[ϕ]]Γ B ϕ1 − ϕ2, {{ϕ}}Γ B
ϕ1 + ϕ2

2
,

where ϕi B ϕ|ΩB,i denotes the restriction of ϕ to the subdomain ΩB,i ⊂ ΩB. When
applied to vector-valued functions, these operators act component-wise.

Finally, for any X ⊂ Ω, we denote by (·, ·)X and ‖·‖X the usual inner product
and norm of L2(X) or L2(X)2, according to the context.

3.2.2 Darcy flow

We now formulate the equations that govern the flow in the saturated, fractured
porous medium and discuss a weak formulation inspired by [1717, 7272].

3.2.2.1 Governing equations

In the bulk regionΩB and in the fracture Γ, wemodel the fluid flowbyDarcy’s law in
mixed and primal form, respectively, so that the bulk Darcy velocity u : ΩB → R

2,
the bulk pressure pressure p : ΩB → R, and the fracture pressure pΓ : Γ → R
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satisfy

u + K∇p = 0 in ΩB, (3.1a)
∇ · u = f in ΩB, (3.1b)

−∇τ · (KΓ∇τpΓ) = `Γ fΓ + [[u]]Γ · nΓ in Γ, (3.1c)
u · n∂Ω = 0 on ∂ΩB, (3.1d)

−KΓ∇τpΓ · τ∂Γ = 0 on ∂Γ, (3.1e)∫
Γ

pΓ = 0, (3.1f)

where f ∈ L2(ΩB) and fΓ ∈ L2(Γ) denote source or sink terms, K : ΩB → R
2×2

the bulk permeability tensor, and we have set KΓ B κτ
Γ
`Γ, with κτ

Γ
: Γ → R

denoting the tangential permeability inside the fracture and `Γ : Γ → R the
fracture thickness. In (3.1c3.1c) and (3.1e3.1e), ∇τ and ∇τ · denote the tangential gradient
and divergence operators along Γ, respectively. We assume that K is symmetric,
piecewise constant on a finite polygonal partition

PB = {ωB,i : i ∈ IB} (3.2)

of ΩB, and uniformly elliptic so that there exist two strictly positive real numbers
KB and KB such that, for almost every x ∈ ΩB and all z ∈ R2 with |z | = 1,

0 < KB ≤ K (x)z · z ≤ KB.

The quantities κτ
Γ
and `Γ are also assumed piecewise constant on a finite partition

PΓ = {ωΓ,i : i ∈ IΓ} (3.3)

of Γ, and such that there exist strictly positive real numbers `
Γ
,`Γ K

Γ
,KΓ such that,

for almost every x ∈ Γ,

0 < `
Γ
≤ `Γ(x) ≤ `Γ, 0 < K

Γ
≤ KΓ(x) ≤ KΓ.

To close the problem, we add the following transmission conditions across the
fracture:

λΓ{{u}}Γ · nΓ = [[p]]Γ on Γ,

λ
ξ
Γ
[[u]]Γ · nΓ = {{p}}Γ − pΓ on Γ,

(3.4)

where, denoting by ξ ∈ (12, 1] a user-dependent model parameter, we have set

λΓ B
`Γ
κn
Γ

, λ
ξ
Γ
B λΓ

(
ξ

2
−

1
4

)
.
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Here, κn
Γ

: Γ → R represents the normal permeability inside the fracture, which
is assumed piecewise constant on the partition PΓ of Γ and such that, for almost
every x ∈ Γ,

0 < λ
Γ
≤ λΓ(x) ≤ λΓ,

for two given strictly positive real numbers λ
Γ
and λΓ.

Remark 3.1 (Compatibility condition). Since homogeneous Neumann boundary
conditions are considered on both the bulk and fracture boundaries (cf. (3.1d3.1d) and
(3.1e3.1e)), the flow through the porous medium is entirely driven by the source terms
f and fΓ, which typically model injection or production wells according to their
sign. Decomposing f and fΓ into their positive and negative parts, i.e., writing
f = f + − f − and fΓ = f +

Γ
− f −

Γ
with f ± B | f |± f

2 and f ±
Γ
B
| fΓ |± fΓ

2 , we need
to further assume the following compatibility condition in order to ensure that a
global mass balance is satisfied:∫

ΩB

f + +
∫
Γ

`Γ f +Γ =
∫
ΩB

f − +
∫
Γ

`Γ f −Γ , (3.5)

which translates the fact that all the fluid that enters the domain through injection
wells must exit the domain through production wells. In this configuration, the
fracture pressure pΓ is defined up to a constant that is fixed by the zero-average
constraint (3.1f3.1f). The bulk pressure, on the other hand, is uniquely defined without
additional conditions owing to the coupling conditions (3.43.4).

3.2.2.2 Weak formulation

We define the space H(div;ΩB), spanned by vector-valued functions onΩB whose
restriction to every bulk subregion ΩB,i, i ∈ {1, 2}, is in H(div;ΩB,i). The Darcy
velocity space is

U B
{
u ∈ H(div;ΩB) : u · n∂Ω = 0 on ∂ΩB and (u1 · nΓ, u2 · nΓ) ∈ L2(Γ)2

}
.

The fracture pressure space is PΓ B H1(Γ) ∩ L2
0(Γ), with L2

0(Γ) spanned by
square-integrable functions with zero mean value on Γ. We define the bilinear
forms aξK : U × U → R, aΓK : H1(Γ) × H1(Γ) → R, b : U × L2(ΩB) → R and
d : U × L2(Γ) → R such that

aξK(u, q) B
∫
ΩB

K−1u · q +

∫
Γ

(
λ
ξ
Γ
[[u]]Γ·nΓ[[q]]Γ·nΓ + λΓ{{u}}Γ·nΓ{{q}}Γ·nΓ

)
,

aΓK(pΓ, zΓ) B
∫
Γ

KΓ∇τpΓ · ∇τzΓ, b(u, z) B
∫
ΩB

∇ · uz, d(u, zΓ) B
∫
Γ

[[u]]Γ · nΓzΓ,
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as well as the global bilinear formAflow
ξ : (U × L2(ΩB) ×H1(Γ)) × (U × L2(ΩB) ×

H1(Γ)) → R such that

Aflow
ξ ((u, p, pΓ), (q, z, zΓ)) B aξK(u, q) + b(u, z) − b(q, p)

+ d(q, pΓ) − d(u, zΓ) + aΓK(pΓ, zΓ).

With these spaces and bilinear forms, the weak formulation of problem (3.13.1)–
(3.43.4) reads: Find (u, p, pΓ) ∈ U × L2(ΩB) × PΓ such that, for all (q, z, zΓ) ∈
U × L2(ΩB) × H1(Γ),

Aflow
ξ ((u, p, pΓ), (q, z, zΓ)) =

∫
ΩB

f z +
∫
Γ

`Γ fΓzΓ. (3.6)

The well-posedness of problem (3.63.6) with mixed boundary conditions is studied
in [1717]; cf. also [7272, 122122] and references therein.

3.2.3 Passive transport
We next formulate the equations that govern the passive transport of a solute by the
Darcy flow solution of problem (3.13.1)–(3.43.4). For the sake of simplicity, we focus
on the case where the transport problem is fully decoupled. This section contains
the first main contribution of this paper, namely novel transmission conditions that
enable the treatment of discontinuous solute concentrations across the fracture.

3.2.3.1 Bulk region

Denoting by c : ΩB → R the concentration of the solute in the bulk and by
D : ΩB → R

2×2 the symmetric, uniformly elliptic bulk diffusion-dispersion tensor,
the passive transport of the solute in the bulk region is governed by the following
equations:

∇ · (uc − D∇c) + f −c = f +ĉ in ΩB, (3.7a)
−D∇c · n∂Ω = 0 on ∂ΩB, (3.7b)

where the term f −c acts as a sink, while the term f +ĉ, with ĉ : ΩB → R denoting
the concentration of solute as it is injected, acts as a source. We assume that both
D and ĉ are piecewise constant on the polygonal partition PB of ΩB (see (3.23.2)),
and that there exist two strictly positive real numbers DB and DB such that, for
almost every x ∈ ΩB and all z ∈ R2 such that |z | = 1,

0 ≤ ĉ(x) ≤ 1, 0 < DB ≤ D(x)z · z ≤ DB.

More generally D can depend on u. While the theoretical focus on the case of
D independent from u, this dependence has been considered in some numerical
experiments presented in section 3.53.5.
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3.2.3.2 Fracture

We define the Darcy velocity uΓ : Γ → R2 inside the fracture such that uΓ B
−KΓ∇τpΓ where pΓ : Γ → R is the fracture pressure solution of problem (3.13.1)–
(3.43.4). Denoting by cΓ : Γ → R the concentration of the solute inside the
fracture, and letting DΓ B D

τ
Γ
`Γ with Dτ

Γ
: Γ → R denoting the (strictly positive

almost everywhere) tangential diffusion-dispersion coefficient of the fracture, the
governing equations for the transport problem inside the fracture are:

∇τ · (uΓcΓ − DΓ∇τcΓ) + `Γ f −Γ cΓ = `Γ f +Γ ĉΓ + [[uc − D∇c]]Γ · nΓ in Γ, (3.8a)
−DΓ∇τcΓ · τ∂Γ = 0 on ∂Γ, (3.8b)

where again f −
Γ

c acts as a sink term while f +
Γ

ĉΓ acts as a source, with ĉΓ : Γ→ R
denoting the concentration of solute as it is injected in the fracture. For the sake of
simplicity, we assume in what follows that both ĉΓ and DΓ are piecewise constant
on the partition PΓ of Γ (see (3.33.3)), and such that there exist two strictly positive
real numbers D

Γ
and DΓ such that, for almost every x ∈ Γ,

0 ≤ ĉΓ(x) ≤ 1, 0 < D
Γ
≤ DΓ(x) ≤ DΓ.

3.2.3.3 Transmission conditions

When considering a transport problem, the advective term does not create or
dissipate energy: the only related contribution possibly stems from the boundary,
and is equal to zero in the case of no flow (homogeneous Neumann) boundary
conditions. We aim at reproducing this property in our model. Specifically, we
consider the following transmission conditions, which ensure that the advective
terms do not contribute to the energy balance (see Theorem 3.23.2):

{{uc − D∇c}}Γ ·nΓ= βΓ[[c]]Γ+({{u}}Γ ·nΓ){{c}}Γ+
1
8
([[u]]Γ ·nΓ)[[c]]Γ on Γ,

[[uc − D∇c]]Γ · nΓ = β
ξ
Γ
({{c}}Γ − cΓ) +

1
2
[[u]]Γ · nΓ({{c}}Γ + cΓ) on Γ,

(3.9)

where ξ is the user-dependent model parameter introduced in Section 3.2.2.13.2.2.1, and
we have set

βΓ B
Dn
Γ

`Γ
, β

ξ
Γ
B βΓ

(
ξ

2
−

1
4

)−1
.

The term Dn
Γ

: Γ → R represents the normal diffusion-dispersion coefficient of
the fracture, which is assumed piecewise constant on the partition PΓ of Γ (see
(3.33.3)), strictly positive almost everywhere on Γ, and such that, for almost every
x ∈ Γ,

0 < β
Γ
≤ βΓ(x) ≤ βΓ,

for two given strictly positive real numbers β
Γ
and βΓ.
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3.2.3.4 Weak formulation

Let H1(ΩB) denote the broken Sobolev space spanned by scalar-valued functions
on ΩB whose restriction to every bulk subregion ΩB,i, i ∈ {1, 2}, is in H1(ΩB,i).
We define the molecular diffusion bilinear form aD : H1(ΩB) × H1(ΩB) → R, the
advection-reaction bilinear form au, f : H1(ΩB) ×H1(ΩB) → R, and the diffusion-
advection-reaction bilinear form a : H1(ΩB) × H1(ΩB) such that

aD(c, z) B
∫
ΩB

D∇c · ∇z,

au, f (c, z) B
∫
ΩB

(
− c(u · ∇z) + f −cz

)
,

a(c, z) B aD(c, z) + au, f (c, z).

(3.10)

We also define their fracture-based counterparts aΓD : H1(Γ) × H1(Γ) → R, aΓu, f :
H1(Γ) × H1(Γ) → R and aΓ : H1(Γ) × H1(Γ) → R such that

aΓD(cΓ, zΓ) B
∫
Γ

DΓ∇τcΓ · ∇τzΓ,

aΓu, f (cΓ, zΓ) B
∫
Γ

(
− cΓ(uΓ · ∇τzΓ) + `Γ f −Γ cΓzΓ

)
,

aΓ(cΓ, zΓ) B aΓD(cΓ, zΓ) + aΓu, f (cΓ, zΓ).

(3.11)

The global bilinear form Atransp
ξ :

(
H1(ΩB) × H1(Γ)

)
×

(
H1(ΩB) × H1(Γ)

)
→ R,

that additionally takes into account terms that stem from the coupling equations,
is defined as follows:

A
transp
ξ ((c, cΓ), (z, zΓ)) B a(c, z) + aΓ(cΓ, zΓ) +

∫
Γ

({{u}}Γ · nΓ){{c}}Γ[[z]]Γ

+

∫
Γ

(
βΓ[[c]]Γ[[z]]Γ +

1
8
([[u]]Γ · nΓ)[[c]]Γ[[z]]Γ

)
+

∫
Γ

1
2
([[u]]Γ · nΓ)({{c}}Γ + cΓ)({{z}}Γ − zΓ)

+

∫
Γ

β
ξ
Γ
({{c}}Γ − cΓ)({{z}}Γ − zΓ).

(3.12)

With these spaces and bilinear forms, the weak formulation of problem (3.73.7)–
(3.83.8)–(3.93.9) reads: Find (c, cΓ) ∈ H1(ΩB) × H1(Γ) such that, for all (z, zΓ) ∈
H1(ΩB) × H1(Γ)

A
transp
ξ ((c, cΓ), (z, zΓ)) =

∫
ΩB

f +ĉz +
∫
Γ

`Γ f +Γ ĉΓzΓ. (3.13)
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3.2.3.5 Coercivity

In the following theorem, we prove the coercivity of the global transport bilinear
form defined by (3.123.12) and show that, thanks to the new transmission conditions
(3.83.8), the advective terms do not dissipate energy. This result is the key ingredient
to derive a stability result for problem (3.133.13).
Theorem 3.2 (Coercivity). Let ξ > 1/2. Then, for all (z, zΓ) ∈ H1(ΩB) × H1(Γ), it
holds
A

transp
ξ ((z, zΓ), (z, zΓ)) = ‖D

1/2∇z‖2
ΩB
+‖D

1/2
Γ
∇τzΓ‖2Γ +‖ χ

1/2
B z‖2

ΩB
+‖ χ

1/2
Γ

zΓ‖2Γ

+ ‖(β
ξ
Γ
)

1/2({{z}}Γ − zΓ)‖2Γ + ‖(βΓ)
1/2[[z]]Γ‖2Γ,

(3.14)

with χB B
| f |
2

and χΓ B
`Γ | fΓ |

2
.

Remark 3.3 (Energy balance). Equation (3.143.14) can be interpreted as a global energy
balance. The transmission conditions (3.93.9) are designed so that the advective terms
do not contribute to this balance. Additionally, if z is continuous across Γ, also
all terms related to the diffusion-dispersion across the fracture, collected in the
second line of (3.143.14), disappear.

Proof. Let (z, zΓ) ∈ H1(ΩB) × H1(Γ). By definition of the global bilinear form
A

transp
ξ (3.123.12), it holds

A
transp
ξ ((z, zΓ), (z, zΓ)) = a(z, z) + aΓ(zΓ, zΓ)

+ ‖(β
ξ
Γ
)

1/2({{z}}Γ − zΓ)‖2Γ + ‖(βΓ)
1/2[[z]]Γ‖2Γ

+

∫
Γ

1
2
([[u]]Γ ·nΓ)({{z}}Γ + zΓ)({{z}}Γ − zΓ)

+

∫
Γ

(
({{u}}Γ ·nΓ){{z}}Γ[[z]]Γ+

1
8
([[u]]Γ ·nΓ)[[z]]2Γ

)
,

(3.15)

Using the definitions (3.103.10) and (3.113.11) of the bilinear forms a and aΓ, we obtain

a(z, z) = ‖D1/2∇z‖2
ΩB
+ au, f (z, z), aΓ(zΓ, zΓ) = ‖D

1/2
Γ
∇τzΓ‖2Γ + aΓu, f (zΓ, zΓ).

(3.16)
Expanding the bilinear form au, f according to its definition (3.103.10), we get

au, f (z, z) =
∫
ΩB

(
− z(u · ∇z) + f −z2

)
=

∫
ΩB

(
− u · ∇(

z2

2
) + f −z2

)
=

∫
ΩB

(1
2
(∇ · u)z2 + f −z2

)
−

1
2

∫
Γ

[[uz2]]Γ · nΓ

= ‖ χ
1/2
B z‖2

ΩB
−

1
2

∫
Γ

(
[[u]]Γ · nΓ{{z2}}Γ + {{u}}Γ · nΓ[[z2]]Γ

)
,

(3.17)
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where we have used an integration by parts together with the boundary condi-
tion (3.1d3.1d) to pass to the third line while, to pass to the fourth line, we have used
(3.1b3.1b) to write 1

2 (∇ · u) + f − = f
2 + f − = | f |2 followed by the relation

[[ab]]Γ = [[a]]Γ{{b}}Γ + {{a}}Γ[[b]]Γ. (3.18)

Similarly, expanding aΓu, f according to its definition (3.113.11), we find

aΓu, f (zΓ, zΓ) =
∫
Γ

(
− zΓ(uΓ · ∇τzΓ) + `Γ f −Γ z2

Γ

)
=

∫
Γ

(
− uΓ · ∇(

z2
Γ

2
) + `Γ f −Γ z2

Γ

)
=

∫
Γ

(1
2
(∇τ · uΓ)z2

Γ + `Γ f −Γ z2
Γ

)
=

∫
Γ

(1
2
(`Γ fΓ + [[u]]Γ · nΓ)z2

Γ + `Γ f −Γ z2
Γ

)
= ‖ χ

1/2
Γ

zΓ‖2Γ +
1
2

∫
Γ

([[u]]Γ · nΓ)z2
Γ,

(3.19)

where we have, at first, integrated by parts and used (3.1e3.1e) to pass to the third
line, then we have used (3.1c3.1c) after recalling that uΓ B −KΓ∇τpΓ to pass to the
fourth line, and invoked the definition of χΓ to conclude. Plugging (3.163.16), (3.173.17)
and (3.193.19) into (3.153.15), we obtain

A
transp
ξ ((z, zΓ), (z, zΓ)) = ‖D

1/2∇z‖2
ΩB
+ ‖D

1/2
Γ
∇τ zΓ‖2Γ + ‖ χ

1/2
B z‖2

ΩB
+ ‖ χ

1/2
Γ

zΓ‖2Γ

+ ‖(β
ξ
Γ
)

1/2({{z}}Γ − zΓ)‖2Γ + ‖(βΓ)
1/2[[z]]Γ‖2Γ

+

∫
Γ

(
({{u}}Γ · nΓ)

(
����������

{{z}}Γ[[z]]Γ −
1
2
[[z2]]Γ

)
−

1
2
([[u]]Γ · nΓ){{z2}}Γ

)
+

∫
Γ

1
2

(
([[u]]Γ · nΓ)z2

Γ + ([[u]]Γ · nΓ)({{z}}Γ + zΓ)({{z}}Γ − zΓ)
)

+

∫
Γ

1
8
([[u]]Γ · nΓ)[[z]]2Γ,

where, to cancel the last term in the third line, we have used formula (3.183.18) with
a = b = z to infer 1

2 [[z
2]]Γ = {{z}}Γ[[z]]Γ. Rearranging the terms on Γ, we arrive at

A
transp
ξ ((z, zΓ), (z, zΓ)) = ‖D

1/2∇z‖2
ΩB
+ ‖D

1/2
Γ
∇τzΓ‖2Γ + ‖ χ

1/2
B z‖2

ΩB
+ ‖ χ

1/2
Γ

zΓ‖2Γ

+ ‖(β
ξ
Γ
)

1/2({{z}}Γ − zΓ)‖2Γ + ‖(βΓ)
1/2[[z]]Γ‖2Γ (3.20)

+

∫
Γ

1
2
([[u]]Γ · nΓ)

(
�
�z2
Γ − {{z

2}}Γ + {{z}}2Γ −�
�z2
Γ +

1
4
[[z]]2Γ

)
.
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Using the formula

{{ab}}Γ = {{a}}Γ{{b}}Γ +
1
4
[[a]]Γ[[b]]Γ

with a = b = z to write {{z2}}Γ = {{z}}2Γ +
1
4 [[z]]

2
Γ
in the last line of (3.203.20), (3.143.14)

follows. �

3.3 Discrete setting
The HHO method is built upon a polygonal mesh of the domain Ω defined
prescribing a set of mesh elements Th and a set of mesh faces Fh.

The set of mesh elements Th is a finite collection of open disjoint polygons
with nonzero area such that Ω =

⋃
T∈Th T and h = maxT∈Th hT , with hT denoting

the diameter of T . We also denote by ∂T the boundary of a mesh element T ∈ Th.
The set of mesh faces Fh is a finite collection of open disjoint line segments in
Ω with nonzero length such that, for all F ∈ Fh, (i) either there exist two distinct
mesh elements T1,T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2 (and F is called an interface)
or (ii) there exist a (unique) mesh element T ∈ Th such that F ⊂ ∂T ∩ ∂Ω (and F
is called a boundary face). We assume that Fh is a partition of the mesh skeleton
in the sense that

⋃
T∈Th ∂T =

⋃
F∈Fh F.

Remark 3.4 (Mesh faces). Despite working in two space dimensions, we use the
terminology “face” over “edge” in order to (i) be consistent with the standard HHO
nomenclature and (ii) stress the fact that faces need not coincide with polygonal
edges (but can be subsets thereof); see also Remark 3.63.6.

We denote by F i
h the set of all interfaces and by F b

h the set of all boundary
faces, so that Fh = F

i
h ∪ F

b
h . The length of a face F ∈ Fh is denoted by hF . For

any mesh element T ∈ Th, FT is the set of faces that lie on ∂T and, for any F ∈ FT ,
nTF is the unit normal to F pointing out of T . Symmetrically, for any F ∈ Fh, TF
is the set containing the mesh elements sharing the face F (two if F is an interface,
one if F is a boundary face).

To account for the presence of the fracture, we make the following
Assumption 3.5 (Geometric compliance with the fracture). Themesh is compliant
with the fracture, i.e., there exists a subset F Γh ⊂ F

i
h such that Γ =

⋃
F∈F Γ

h
F . As a

result, F Γh is a (1-dimensional) mesh of the fracture.
Remark 3.6 (Polygonal meshes and geometric compliance with the fracture).
Fulfilling Assumption 3.53.5 does not pose particular problems in the context of
polygonal methods, even when the fracture discretization is nonconforming in the
classical sense. Consider, e.g., the situation illustrated in Figure 3.23.2, where the
fracture lies at the intersection of two nonmatching Cartesian submeshes. In this
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Pentagons

Squares

Figure 3.2: Treatment of nonconforming fracture discretizations.

case, no special treatment is required provided the mesh elements in contact with
the fracture are treated as pentagons with two coplanar faces instead of rectangles.
This is possible since, as already pointed out, the set of mesh faces Fh does not
need to coincide with the set of polygonal edges of Th.

The set of vertices of the fracture is denoted by Vh and, for all F ∈ F Γh , we
denote by VF the vertices of F. Symmetrically, for any V ∈ Vh, FV is the set
containing the fracture faces sharing the vertex V (two if V is an internal vertex,
one if V is on the boundary on the fracture). For all F ∈ F Γh and all V ∈ VF , τFV
denotes the unit vector tangent to the fracture and oriented so that it points out of
F from V . Finally,V i

h is the set containing the internal vertices andVb
h is the set

containing the points in ∂Γ, so thatVh = V
i
h ∪V

b
h .

To avoid dealing with jumps of the problem data inside mesh elements, as well
as on boundary and fracture faces, we additionally make the following
Assumption 3.7 (Compliance with the problem data). The mesh is compliant with
the data, i.e.: (i) for each mesh element T ∈ Th, there exists a unique sudomain
ωB ∈ PB (see (3.23.2)) such that T ⊂ ωB; (ii) for each fracture face F ∈ F Γh , there is
a unique subdomain ωΓ ∈ PΓ (see (3.33.3)) such that F ⊂ ωΓ.

3.4 The Hybrid High-Order method

In this section, we formulate the HHO discretization of problems (3.63.6) (Darcy
flow) and (3.133.13) (passive transport).

3.4.1 Darcy flow

We start with the discretization of problem (3.63.6), which is closely inspired by [5656].
Through this section, we denote by l ≥ 0 a fixed integer polynomial degree.
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3.4.1.1 Discrete bulk Darcy velocity unkonwns, bulk Darcy velocity recon-
struction, and permeability-weighted product of Darcy velocities

Let an element T ∈ Th be fixed, and denote by KT the (constant) restriction to T
of the bulk permeability. For any integer m ≥ 0, set

Um
T B KT∇P

m(T), (3.21)

with Pm(T) denoting the space spanned by the restriction to T of two-valuate
polynomials of total degree up to m. We define the following space of fully
discontinuous bulk Darcy velocity unknowns:

NU l
h B

{
q

h
B (qT, (qTF)F∈FT )T∈Th : for all T ∈ Th, qT ∈ U

l
T and

qTF ∈ P
l(F) for all F ∈ FT

}
.

For anyT ∈ Th, the element-based unknown qT represents theDarcy velocity inside
the element, while the face-based unknown qTF , F ∈ FT , represents the normal
Darcy velocity exiting T through F. Futhermore, we denote by U l

T the restriction
of NU l

h to T and, for any q
h
∈ NU l

h, we let q
T
B (qT, (qTF)F∈FT ) ∈ U l

T . The

following subspace ofNU l
h strongly incorporates the continuity of Darcy velocity

unknowns at each interface F ∈ F i
h \ F

Γ
h contained in the bulk region, as well as

the homogeneous Neumann boundary condition on ∂ΩB:

U l
h B

{
q

h
∈NU l

h :
[[q

h
]]F = 0 for all F ∈ F i

h \ F
Γ

h ,
qF = 0 for all F ∈ F b

h

}
, (3.22)

where, for all F ∈ F b
h , we have set qF B qTF with T denoting the unique mesh

element such that F ∈ FT and, for all F ∈ F i
h , we have defined the jump operator

such that, for any q
h
∈NU l

h,

[[q
h
]]F B

∑
T∈TF

qTF .

For all T ∈ Th, we define the local discrete Darcy velocity reconstruction
operator F l+1

T : U l
T → U l+1

T (see (3.213.21)) such that, for all q
T
= (qT, (qTF)F∈FT ) ∈

U l
T , F

l+1
T q

T
solves∫

T
F l+1

T q
T
· ∇wT =

∫
T
qT∇π

l
TwT +

∑
F∈FT

∫
F

qTF(wT − π
l
TwT ), (3.23)

for allwT ∈ P
l+1(T)with πl

T : L1(T) → Pl(T) denoting the L2-orthogonal projector
on Pl(T). Notice that the F l+1

T q
T
provides a representation of the Darcy velocity
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inside T one degree higher than the element-based unknown qT . It can be checked
that condition (3.233.23) defines a unique element of U l+1

T , and that it is equivalent
to [5656, Eq. (19)] with discrete divergence operator expanded according to its
definition.

Based on this Darcy velocity reconstruction operator, we define the global
permeability-weighted product of Darcy velocities al

K,h : U l
h ×U

l
h → R such that,

for all (uh, qh
) ∈ U l

h × U
l
h,

al
K,h(uh, qh

) B
∑
T∈Th

(∫
T
K−1

T F l+1
T uT · F

l+1
T q

T
+ sl

K,T (uT, qT
)

)
. (3.24)

Here, the first term is the Galerkin contribution responsible for consistency while,
for all T ∈ Th, sl

K,T : U l
T ×U

l
T → R is the stabilization bilinear form such that, for

all (uT, qT
) ∈ U l

T × U
l
T ,

sl
K,T (uT, qT

) B
∑

F∈FT

∫
F

hF

KTF
(F l+1

T uT · nTF − uTF)(F
l+1
T q

T
· nTF − qTF),

where, for all F ∈ FT , we have set KTF B KTnTF · nTF .

3.4.1.2 Discrete fracture pressure unknowns, fracture pressure reconstruc-
tion, and tangential diffusion bilinear form

The space of discrete fracture pressure unknowns is given by

Pl
Γ,h B

{
zΓh B ((z

Γ
F)F∈F Γh

, (zΓV )V∈Vh
) : zΓF ∈ P

l(F) for all F ∈ F Γh ,
zΓV ∈ R for all V ∈ Vh

}
. (3.25)

For all F ∈ F Γh , we denote by Pl
Γ,F the restriction of Pl

Γ,h to F, and set zΓF B
(zΓF, (z

Γ
V )V∈VF ) ∈ Pl

Γ,F . We also introduce the following subspace which embeds
the zero-mean value constraint:

Pl
Γ,h,0 B

{
zΓh ∈ Pl

Γ,h :
∫
Γ

zΓh = 0
}
, (3.26)

where zΓh ∈ P
l(F Γh ) is the broken polynomial function on F Γh such that (zΓh )|F B zΓF

for all F ∈ F Γh .
Let F ∈ F Γh and denote by KF the (constant) restriction to F of the fracture

permeability. We define the local fracture pressure reconstruction operator r l+1
K,F :

Pl
Γ,F → P

l+1(F) such that, for all zΓF = (z
Γ
F, (z

Γ
V )VF ) ∈ Pl

Γ,F , r l+1
K,F zΓF is such that, for

all wΓF ∈ P
l+1(F),∫

F

KF∇τr l+1
K,F zΓ

F
·∇τw

Γ
F = −

∫
F

(
zΓF∇τ · (KF∇τw

Γ
F )

)
+
∑

V ∈VF

zΓV (KF∇τw
Γ
F )(V) ·τFV . (3.27)



3.4. The Hybrid High-Order method 113

This relation defines a unique element ∇τr l+1
K,F zΓF , hence a polynomial r l+1

K,F zΓF ∈
Pl+1(F) up to an additive constant, which we fix by additionally imposing that∫

F

(
r l+1

K,F zΓF − zΓF
)
= 0.

The reconstruction r l+1
K,F zΓF provides inside F a representation of the fracture

pressure one degree higher than the element-based fracture unknown zΓF .

We can now define the tangential diffusion bilinear form aΓ,lK,h : Pl
Γ,h×Pl

Γ,h → R
such that

aΓ,lK,h(z
Γ

h, q
Γ

h
) B

∑
F∈F Γ

h

(∫
F

KF∇τr l+1
K,F zΓF · ∇τr

l+1
K,FqΓ

F
+ sΓ,lK,F(z

Γ

F, q
Γ

F
)

)
, (3.28)

where the first term is the Galerkin contribution responsible for consistency, while
sΓ,lK,F : Pl

Γ,F×Pl
Γ,F → R is the stabilization bilinear form such that, for all (zΓF, q

Γ

F
) ∈

Pl
Γ,F × Pk

Γ,F ,

sΓ,lK,F(z
Γ

F, q
Γ

F
) B

∑
V∈VF

KF

hF
(Rl+1

K,F zΓF(V) − zΓV )(R
l+1
K,FqΓ

F
(V) − qΓV ), (3.29)

with Rl+1
K,F : Pl

Γ,F → P
l+1(F) such that, for all zΓF ∈ Pk

Γ,F , Rl+1
K,F zΓF B zΓF + (r

l+1
K,F zΓF −

πk
Fr l+1

K,F zΓF).

3.4.1.3 Discrete flow problem

Let an integer k ≥ 0 be fixed. Following [1111], in order to have a sufficiently
accurate representation of theDarcy velocitywhenwriting theHHOapproximation
of degree k of the transport problem (3.133.13), we solve the flow problem (3.63.6) with
an HHO approximation of degree 2k. Thus, the bulk velocity, bulk pressure, and
fracture pressure will be sought, respectively, in U2k

h (see (3.223.22)), P2k
B,h B P

2k(Th)

(the space of broken polynomials of total degree ≤ 2k over Th), and P2k
Γ,h (see

(3.263.26)). The discrete counterparts of the continuous bilinear forms defined in
Section 3.2.23.2.2 are the bilinear forms aξ,2k

K,h : U2k
h ×U

2k
h → R, b2k

h : U2k
h ×P2k

B,h → R,
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d2k
h : U2k

h × P2k
Γ,h → R such that

aξ,2k
K,h (uh, qh

) B a2k
K,h(uh, qh

) +
∑

F∈F Γ
h

∫
F

(
λ
ξ
F[[uh]]F[[qh

]]F + λF{{uh}}F{{qh
}}F

)
,

b2k
h (uh, ph) B

∑
T∈Th

(
−

∫
T
uT · ∇pT +

∑
F∈FT

∫
F

uTF pT

)
,

d2k
h (uh, pΓ

h
) B

∑
F∈F Γ

h

∫
F
[[uh]]F pΓF,

where the bilinear forms a2k
K,h and aΓ,2k

K,h are defined by (3.243.24) and (3.283.28), respec-
tively, and, for all ph ∈ P2k

B,h and all T ∈ Th, we have set pT B ph|T .

LettingAflow
ξ,h,2k :

(
U2k

h × P2k
B,h × P2k

Γ,h

)
×

(
U2k

h × P2k
B,h × P2k

Γ,h

)
→ R be the global

bilinear form such that

Aflow
ξ,h,2k((uh, ph, pΓ

h
), (q

h
, zh, zΓh)) B aξ,2k

K,h (uh, qh
) + b2k

h (uh, zh) − b2k
h (qh

, ph)

+ d2k
h (qh

, pΓ
h
) − d2k

h (uh, z
Γ

h) + aΓ,2k
K,h (p

Γ

h
, zΓh),

the HHO discretization of problem (3.63.6) reads: Find (uh, ph, pΓ
h
) ∈ U2k

h × P2k
B,h ×

P2k
Γ,h,0 such that, for all (qh

, zh, zΓh) ∈ U
2k
h × P2k

B,h × P2k
Γ,h,

Aflow
ξ,h,2k((uh, ph, pΓ

h
), (q

h
, zh, zΓh)) =

∫
ΩB

f zh +

∫
Γ

`Γ fΓzΓh . (3.30)

3.4.2 Passive transport
We now formulate the HHO discretization of the passive transport problem (3.133.13).
In what follows, the polynomial degree k is the same as in Section 3.4.1.33.4.1.3.

3.4.2.1 Discrete bulk concentration unknowns, bulk concentration recon-
struction, and diffusion-dispersion diffusion bilinear form

Wedefine the fully discontinuous space of bulk concentration unknowns as follows:

NPk
B,h B

{
zh = (zT, (zTF)F∈FT )T∈Th : for all T ∈ Th, zT ∈ P

k(T) and
zTF ∈ P

k(F) for all F ∈ FT

}
.

For all T ∈ Th, we denote by Pk
B,T the restriction ofNPk

B,h to T , and we set zT =

(zT, (zTF)F∈FT ) ∈ Pk
B,T . For any interface F ∈ F i

h shared by distinct elements
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T1,T2 ∈ TF , we introduce the jump and average operators such that, for any
zh ∈

NPk
B,h,

[[zh]]F = zT1F − zT2F, {{zh}}F =
zT1F + zT2F

2
.

The following subspace ofNPk
B,h strongly incorporates the continuity of concentra-

tion unknowns across interfaces contained in the bulk region:

Pk
B,h B

{
zh ∈

NPk
B,h : [[zh]]F = 0 for all F ∈ F i

h \ F
Γ

h

}
. (3.31)

Let now an elementT ∈ Th be fixed, and denote byDT the restriction toT of the
bulk diffusion-dispersion tensor. We define the bulk concentration reconstruction
operator r k+1

D,T : Pk
B,T → P

k+1(T) such that, for all zT = (zT, (zTF)F∈Ft ) ∈ Pk
B,T ,

r k+1
D,T zT solves∫

T
DT∇r k+1

D,T zT · ∇wT = −

∫
T

(
zT∇ · (DT∇wT )

)
+

∑
F∈FT

∫
F

zTF(DT∇wT · nTF),

for all wT ∈ P
k+1(T). This condition defines r k+1

D,T zT up to a constant, which we fix
by additionally imposing that∫

T

(
r k+1

D,T zT − zT

)
= 0.

The polynomial r k+1
D,T zT provides a representation of the concentration inside T one

degree higher than the element-based unknown zT .
We are now ready to define a global molecular diffusion bilinear form closely

inspired by [8383]. More precisely, we let ak
D,h : Pk

B,h × Pk
B,h → R be such that, for

all (ch, zh) ∈ Pk
B,h × Pk

B,h,

ak
D,h(ch, zh) B

∑
T∈Th

( ∫
T
DT∇r k+1

D,T cT · ∇r k+1
D,T zT + sk

D,T (cT, zT )

)
,

where the first term is the Galerkin contribution responsible for consistency, while
sk

D,T : Pk
B,T ×Pk

B,T → R is the stabilization bilinear form such that, for all (cT, zT ) ∈

Pk
B,T × Pk

B,T ,

sk
D,T (cT, zT ) B

∑
F∈FT

∫
F

DTF

hF
(Rk+1

D,T cT − cTF)(Rk+1
D,T zT − zTF),

with DTF B DTnTF · nTF for all F ∈ FT and Rk+1
D,T : Pk

B,T → P
k+1(T) such that,

for all zT ∈ Pk
B,T , Rk+1

D,T zT B zT + (r k+1
D,T zT − π

k
Tr k+1

D,T zT ).
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3.4.2.2 Fracture concentration unknowns, fracture concentration recon-
struction, and diffusion-dispersion bilinear form

The fracture concentration is sought in the space Pk
Γ,h defined by (3.253.25) with l = k.

For all F ∈ F Γh , we define the fracture concentration reconstruction operator
r k+1

D,F : Pk
Γ,F → P

k+1(F) as in (3.273.27) setting l = k and replacing KF by DF B DΓ |F .
Similary, we denote by aΓ,kD,h : Pk

Γ,h × Pk
Γ,h → R the tangential molecular diffusion

bilinear form defined as (3.283.28)–(3.293.29) with l = k and KF replaced by DF .

3.4.2.3 Darcy velocities and advection-reaction bilinear forms in the bulk
region and in the fracture

In order to discretize the advection-reaction terms that appear in the passive
transport problem, we need suitable representations of the Darcy velocity both
in the bulk region and inside the fracture.

Denote by (uh, ph, pΓ
h
) ∈ U2k

h × P2k
B,h × P2k

Γ,h,0 the solution of the discrete flow
problem (3.303.30). For any T ∈ Th, taking in (3.303.30) q

h
= 0, zh such that zT ′ = 0 for

all T ′ ∈ Th \ {T} while zT spans P2k(T), and zΓh = 0, we infer the following local
balance for the discrete bulk Darcy velocity:∫

T
−uT∇zT +

∑
F∈FT

∫
F

uTF zT =

∫
T

f zT ∀zT ∈ P
2k(T). (3.32)

Additionally, by definition (3.223.22) of U2k
h , the Darcy velocity thus defined has

continuous normal components across interfaces contained in the bulk in the sense
that [[uh]]F = 0 for all F ∈ F i

h \ F
Γ

h . Thus, uh is the natural candidate to play the
role of the Darcy velocity in the bulk region.

Let now a fracture face F ∈ F Γh be fixed, and define the fracture Darcy velocity
uΓF = (u

Γ
F, (u

Γ
FV )V∈VF ) such that

uΓF B −KF∇τr2k+1
K,F pΓ

F
,

and, for all V ∈ VF ,

uΓFV B

{
uΓF(V) · τFV + γ

num
FV (p

Γ

F
) if V ∈ V i

h

0 if V ∈ Vb
h

,

where, for all V ∈ VF , γnum
FV : P2k

Γ,F → R is the boundary residual operator defined
as in [8989, Lemma 3]. With this choice for the fracture Darcy velocity, the following
local balance holds for all F ∈ F Γh :

−

∫
F
uΓF · ∇τzΓF +

∑
V∈VF

uΓFV (z
Γ
F(V) − zΓV ) =

∫
F

(
`Γ fΓ + [[uh]]F

)
zΓF, (3.33)



3.4. The Hybrid High-Order method 117

for all zΓF ∈ P2k
Γ,F . Moreover, the discrete fracture Darcy velocity is continuous

across internal vertices, that is to say,∑
F∈FV

uΓFV = 0 for all V ∈ V i
h. (3.34)

uΓF is therefore the natural candidate to play the role of the Darcy velocity inside
the fracture.

We now have all the ingredients to define discrete counterparts of the advective
terms in the bulk region and inside the fracture. More precisely, closely following
[7575], we define the advection-reaction bilinear forms ak

u, f ,h : Pk
B,h × Pk

B,h → R and
aΓ,k
u, f ,h : Pk

Γ,h × Pk
Γ,h such that

ak
u, f ,h(ch, zh) B

∑
T∈Th

( ∫
T

cT (−uT · ∇zT + f −zT )

+
∑

F∈FT

∫
F

uTFcT (zT − zTF) + sk
u,T (cT, zT )

)
,

aΓ,k
u, f ,h(c

Γ
h, z

Γ

h) B
∑

F∈F Γ
h

( ∫
F

cΓF(−u
Γ
F · ∇τzΓF + `Γ f −Γ zΓF)

+
∑

V∈VF

uΓFV cΓF(V)(z
Γ
F(V) − zΓV ) + sΓ,ku,F(c

Γ
F, z

Γ

F)

)
,

(3.35)

where, for all T ∈ Th and all F ∈ F Γh , sk
u,T : Pk

B,T × Pk
B,T → R and sΓ,ku,F :

Pk
Γ,F × Pk

Γ,F → R are the upwind stabilization bilinear forms respectively in the
bulk and inside the fracture such that

sk
u,T (cT, zT ) B

∑
F∈FT

∫
F

|uTF | − uTF

2
(cT − cTF)(zT − zTF),

sΓ,ku,F(c
Γ
F, z

Γ

F) B
∑

V∈VF

|uΓFV | − uΓFV

2
(cΓF(V) − cΓV )(z

Γ
F(V) − zΓV ).

(3.36)

3.4.2.4 Passive transport problem

We are now ready to state the HHO discretization of the transport problem (3.133.13).
At the discrete level, the counterpart of the continuous bilinear form defined
in (3.123.12) is the bilinear form Atransp

ξ,h,k :
(
Pk

B,h × Pk
Γ,h

)
×

(
Pk

B,h × Pk
Γ,h

)
→ R such
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that

A
transp
ξ,h,k
((ch, c

Γ
h), (zh, z

Γ

F
)) B ak

D,h(ch, zh) + ak
u, f ,h(ch, zh) + aΓ,k

D,h
(cΓh, z

Γ

h
) + aΓ,k

u, f ,h
(cΓh, z

Γ

h
)

+
∑
F ∈FΓ

h

∫
F

(
β
ξ
F ({{ch}}F − cΓF )({{zh}}F − zΓF ) + βF [[ch]]F [[zh]]F

)
+

∑
F ∈FΓ

h

∫
F

(
{{uh}}F {{ch}}F [[zh]]F +

1
8
[[uh]]F [[ch]]F [[zh]]F

)
+

∑
F ∈FΓ

h

∫
F

1
2
[[uh]]F ({{ch}}F + cΓF )({{zh}}F − zΓF ),

(3.37)
where the role of the terms in the last three lines is to enforce the transmission
conditions (3.93.9) on Γ. The HHO discretization of problem (3.133.13) then reads: Find
(ch, c

Γ
h) ∈ Pk

B,h × Pk
Γ,h such that

A
transp
ξ,h,k ((ch, c

Γ
h), (zh, z

Γ

F)) =

∫
ΩB

f +ĉzh +

∫
Γ

`Γ f +Γ ĉΓzΓh, (3.38)

for all (zh, z
Γ

h) ∈ Pk
B,h × Pk

Γ,h. We now prove the discrete counterpart of the
Theorem 3.23.2.
Theorem 3.8 (Discrete coercivity). Let ξ > 1/2. Then, for all (zh, z

Γ

h) ∈ Pk
B,h×Pk

Γ,h,
it holds

A
transp
ξ,h,k ((zh, z

Γ

h), (zh, z
Γ

F)) = ak
D,h(zh, zh) + aΓ,kD,h(z

Γ

h, z
Γ

h)

+
∑
T∈Th

(
‖ χ

1/2
B,T zT ‖

2
T +

∑
F∈FT

1
2
‖|uTF |

1/2(zT − zTF)‖
2
F

)
+

∑
F∈F Γ

h

(
‖ χ

1/2
Γ,F zΓF ‖

2
F +

∑
V∈VF

1
2
|uΓFV |(z

Γ
F(V) − zΓV )

2

)
+

∑
F∈F Γ

h

(
β
ξ
F ‖{{zh}}F − zΓF ‖

2
F + βF ‖[[ch]]F ‖

2
F

)
,

(3.39)

where, for all T ∈ Th and all F ∈ F Γh , χB,T B (χB)|T and χΓ,F B (χΓ)|F ,
respectively.

Remark 3.9 (Upwind contributions). Unlike the continuous case (seeTheorem3.23.2),
we have in the second and third lines of the energy balance (3.393.39) upwind-related
contributions of bulk and fracture region, respectively. These could be removed at
the price of having coercivity in a weaker norm.

Proof. The proof is similar to the one of the Theorem 3.23.2. Let (zh, z
Γ

h) ∈ Pk
B,h×Pk

Γ,h
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be fixed and set (zh, z
Γ
h) ∈ P2k

B,h × P2k
Γ,h such that,

∀T ∈ Th, (zh)|T = zT = (zT, (zTF)F∈FT ) B (
z2
T

2
, (

z2
TF

2
)F∈FT ),

∀F ∈ F Γh , (zΓh)|F = z
Γ
F = (z

Γ
F, (z

Γ
V )V∈VF ) B (

(zΓF)
2

2
, (
(zΓV )

2

2
)V∈VF ).

(3.40)

Using the definition of the global bilinear form Atransp
ξ,h,k (3.373.37) with (ch, c

Γ
h) =

(zh, z
Γ

h), we immediately obtain the terms in the first and last line of (3.393.39). Let
now I1 B ak

u, f ,h(zh, zh), I2 B aΓ,k
u, f ,h(z

Γ

h, z
Γ

h), and let I3 gather the remaining
coupling terms, that is to say, the two last lines on the right-hand side of (3.373.37)
with ch = zh and cΓF = zΓF for all F ∈ F Γh . Expanding I1 and I2 according to
their respective definitions (3.353.35), and recalling the definitions of the stabilization
bilinear forms sk

u,T and sk
u,F (3.363.36), it is inferred that

I1 =
∑
T ∈Th

( ∫
T

(
− uT · ∇zT + f −z2

T

)
+

∑
F ∈FT

∫
F

(
uTF (zT − zTF ) +

1
2
|uTF |(zT − zTF )

2
))
,

(3.41a)

I2 =
∑
F ∈FΓ

h

( ∫
F

(
− uΓF · ∇τz

Γ
F + `Γ f −Γ zΓF

2
)
+
∑

V ∈VF

(
uΓFV (z

Γ
F (V) − z

Γ
V ) +

1
2
|uΓFV |(z

Γ
F (V) − zΓV )

2
))
.

(3.41b)

Using the local balances (3.323.32) in the bulk and (3.333.33) inside the fracture (that hold
since zT ∈ P

2k(T) for all T ∈ Th and z
Γ
F ∈ P2k

Γ,F for all F ∈ F Γh ) together with the
fact that ∑

T∈Th

∑
F∈FT

uTFzTF =
∑

F∈F Γ
h

[[uhzh]]F,

which follows from (uh, zh) ∈ U
2k
h × P2k

B,h, we finally get from (3.41a3.41a) and (3.41b3.41b)

I1 =
∑
T∈Th

(
‖ χ

1/2
B,T zT ‖

2
T +

∑
F∈FT

1
2
‖|uTF |

1/2(zT − zTF)‖
2
F

)
−

∑
F∈F Γ

h

∫
F
[[uhzh]]F, (3.42a)

I2=
∑

F∈F Γ
h

(
‖ χ

1/2
Γ,F zΓF ‖

2
F +

∑
V∈VF

1
2
|uΓFV |(z

Γ
F(V) − zΓV )

2

)
+

∑
F∈F Γ

h

∫
F
[[uh]]Fz

Γ
F . (3.42b)

To conclude, it suffices to prove that the sum of the last term in the right-hand side
of (3.42a3.42a) and the last term in the right-hand side of (3.42b3.42b) and I3 is equal to
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zero. Using (3.183.18) to infer first that [[uhzh]]F = [[uh]]F{{zh}}F + {{uh}}F[[zh]]F and
then that [[zh]]F = [[zh]]F{{zh}}F , we get∑
F∈F Γ

h

∫
F

(
[[uh]]Fz

Γ
F−[[uhzh]]F

)
+I3 =

∑
F∈F Γ

h

∫
F

(
[[uh]]F(

1/2{{zh}}
2
F+

1/8[[zh]]
2
F−{{zh}}F)

)
,

that concludes the proof since {{zh}}F =
1
2 ({{zh}}

2
F +

1
4 [[zh]]

2
F). �

Remark 3.10 (Polynomial degree and local conservation). The use of polynomials
of degree 2k to solve the discrete flow problem (3.383.38) is required in the proof of
Theorem 3.83.8. Indeed, to pass from (3.413.41) to (3.423.42), the argument is that both the
local balances (3.323.32) and (3.333.33) are valid when we use as test functions zh ∈ P2k

B,h
and z

Γ
h ∈ P2k

Γ,h defined by (3.403.40).

3.4.3 Extension to the unsteady case
In the numerical tests of Sections 3.5.23.5.2–3.5.33.5.3 below, we consider the physically
relevant situation of unsteady passive transport with a steady Darcy velocity field.
The extension of the HHO scheme (3.383.38) to this situation is briefly discussed in
what follows.

The transport problem can be extended to the unsteady case by assuming that
the unknowns depend on the time and adding the unsteady contributions φdtc and
`ΓφΓdtcΓ in, respectively, (3.7a3.7a) and (3.8a3.8a), where φ : ΩB → R and φΓ : Γ → R
stand, respectively, for the porosity in the bulk region and in the fracture such that
0 < φ < 1 and 0 < φΓ < 1. In the numerical tests, we assume that these are
piecewise constant on the partitions PB and PΓ (see (3.23.2) and (3.33.3)), respectively.
More generally, the porosities could also depend on time. Initial conditions for the
bulk and the fracture concentration c(t = 0, ·) = c0(·) and cΓ(t = 0, ·) = c0

Γ
(·) close

the problem. The functions ĉ and ĉΓ that represent the concentration of solute
as it is injected in, respectively, the bulk and the fracture, will also be allowed to
depend on time.

To discretize in time, we consider for sake of simplicity a uniform partition
(tn)0≤n≤N of the time interval [0, tF] with t0 = 0, tN = tF the final time of
computation, and tn − tn−1 = δt the constant time step for all 1 ≤ n ≤ N . For any
sufficiently regular function of time ϕ taking values in a vector space V , we denote
by ϕn ∈ V its value at discrete time tn and we introduce the backward differencing
operator δt such that, for all 1 ≤ n ≤ N ,

δtϕ
n B

ϕn − ϕn−1

δt
∈ V .
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With this notation, the discrete problem reads: For all 1 ≤ n ≤ N , find (cn
h, c

Γ,n
h ) ∈

Pk
B,h × Pk

Γ,h such that, for all (zh, z
Γ

h) ∈ Pk
B,h × Pk

Γ,h,∫
ΩB

φδtcn
hzh +

∫
Γ

`ΓφΓδtc
Γ,n
h zΓh +A

transp
ξ,h,k ((c

n
h, c

Γ,n
h ), (zh, z

Γ

F))

=

∫
ΩB

f +ĉnzh +

∫
Γ

`Γ f +Γ ĉn
ΓzΓh .

(3.43)

The initial condition is discretized taking c0
h and cΓ,0h equal to the L2-orthogonal

projections on Pk(Th) and Pl(F Γh ) of c0 and c0
Γ
, respectively. Notice that it is not

necessary to prescribe face values for the concentration in the bulk region, nor
vertex values for the concentration in the fracture, as these discrete unknowns do
not appear in the discretization of the time derivative.

3.5 Numerical results
This section contains an extensive numerical validation of the HHO method. We
first study numerically the convergence rates achieved by the method, and then
propose two more physical test cases in which fractures act as barriers or conduits,
depending on the value of the permeability parameters.

3.5.1 Convergence for a steady problem
We start by a numerical study of the convergence rates obtained by the method for
both the flow problem (3.303.30) and the steady passive transport problem (3.383.38).

3.5.1.1 Analytical solution

We approximate problems (3.303.30) and (3.383.38) on the square domain Ω = (0, 1)2
crossed by the fracture Γ = {x ∈ Ω : x1 = 0.5}, and set `Γ = 0.01 and ξ = 3/4.
For the flow problem, we consider the exact solutions corresponding to the bulk
and fracture pressures

p(x) B

{
cos(2x1) cos(πx2) if x1 < 0.5
cos(πx1) cos(πx2) if x1 > 0.5

, pΓ(x) B {{c}}Γ − λΓ[[u]]Γ · nΓ,

and let u |ΩB,i = −K∇p|ΩB,i for i ∈ {1, 2} and uΓ = −KΓ∇τpΓ, with κτ
Γ
= 1,

κn
Γ
= 0.01 and

K B
cos(1)

sin(1) + π/2

[
κn
Γ
/(2`Γ) 0

0 1

]
, KΓ B κτ

Γ
`Γ.
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For the passive transport problem, the exact solutions corresponding to the bulk
and fracture concentrations are given by

c(x)B


exp
(

2/π cos(πx1)
(
βΓ −

1
8 cos(πx2)

κn
Γ

`Γ

cos(1)(sin(1)−π/2)
sin(1)+π/2

))
if x1 < 1/2

exp
(

2/π(cos(πx1) − π)
(
βΓ −

1
8 cos(πx2)

κn
Γ

`Γ

cos(1)(sin(1)−π/2)
sin(1)+π/2

))
if x1 > 1/2

,

cΓ(x)B
[[uc − D∇c]]Γ · nΓ − {{c}}Γ

(
1/2[[u]]Γ · nΓ + β

ξ
Γ

)
1/2[[u]]Γ · nΓ − β

ξ
Γ

,

(3.44)

with D = I2, the identity matrix of R2×2, Dτ
Γ
= 1 and Dn

Γ
= 0.01. The source

terms f , fΓ are inferred from (3.1b3.1b) and (3.1c3.1c), respectively. The right-hand sides
of (3.7a3.7a) and (3.8a3.8a) are also modified by introducing nonzero terms in accordance
with the expressions of c and cΓ; see (3.443.44). It can be checked that, with this choice
of analytical solutions, the jump and average of p, u, c,D∇c are not identically zero
on the fracture, which enables us to test the weak enforcement of the transmission
conditions (3.43.4) for the flow problem and (3.93.9) for the passive transport problem.

3.5.1.2 Error measures

On the spaces of discrete bulk unknowns U2k
h and Pk

h, we define the norms ‖·‖U,h
and ‖·‖D,h such that, for all q

h
∈ U2k

h and all zh ∈ Pk
h,

‖q
h
‖2U,h B

∑
T∈Th

(KB,T )
−1

(
‖qT ‖

2
T +

∑
F∈FT

hF ‖qTF ‖
2
F

)
,

‖zh‖
2
D,h B

∑
T∈Th

%−1
D,T

(
‖D

1/2
T ∇zT ‖

2
T +

∑
F∈FT

DTF

hF
‖zT − zTF ‖

2
F

)
,

where, for any T ∈ Th, KB,T is the largest eigenvalue of the (constant) permeability
tensor KT , while %D,T B DB,T/DB,T is the bulk anisotropy ratio with DB,T,DB,T > 0
denoting, respectively, the largest and smallest eigenvalue of the (constant) local
bulk diffusion-dispersion tensor DT .

On the spaces of discrete fracture unknowns P2k
Γ,h and Pk

Γ,h we define the norms
‖·‖Γ,K,h and ‖·‖Γ,D,h such that, for all vΓh ∈ P2k

Γ,h and all zΓh ∈ Pk
Γ,h,

‖vΓh ‖
2
Γ,K,h B

∑
F∈F Γ

h

(
‖K

1/2
F ∇τv

Γ
F ‖

2
F +

∑
V∈VF

KF

hF
(vΓF(V) − v

Γ
V )

2

)
,

‖zΓh ‖
2
Γ,D,h B

∑
F∈F Γ

h

(
‖D

1/2
F ∇τzΓF ‖

2
F +

∑
V∈VF

DF

hF
(zΓF(V) − zΓV )

2

)
.
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For the flow problem, we monitor the following errors defined as the difference
between the numerical solution and suitable projections of the exact solution:

‖uh− I
2k
h u‖U,h, ‖pΓh − I2k

h pΓ‖Γ,K,h, ‖ph−π
2k
h p‖L2(ΩB), ‖p

Γ
h −π

2k
Γ,hpΓ‖L2(Γ), (3.45)

where I l
hu B (KT∇yT, (π

l
F(u · nTF)F∈FT )T∈Th with yT ∈ P

l(T) is such that∫
T (KT∇yT − u)·∇vT = 0 for all vT ∈ P

l(T), I2k
Γ,hpΓ B ((π2k

F pΓ |F)F∈F Γ
h
, (pΓ(V))V∈Vh

)

with π2k
F denoting the L2-orthogonal projector on P2k(F), and π2k

h p and π2k
Γ,hpΓ

denote, respectively, the L2-orthogonal projections of p and pΓ on P2k
B,h and P2k

Γ,h,
Similarly, for the passive transport problem we consider the following error

measures:

‖ch − I k
hc‖D,h, ‖cΓh − I k

Γ,hcΓ‖Γ,D,h, ‖ch − π
k
hc‖L2(ΩB), ‖c

Γ
h − π

k
Γ,hcΓ‖L2(Γ), (3.46)

where I k
hc B ((πk

T c|T )T∈Th, (π
k
F(c|F))F∈Fh ) with π

k
T and πk

F denoting, respectively,
the L2-orthogonal projectors onPk(T) andPk(F), I k

Γ,hcΓ B ((πk
FcΓ |F)F∈F Γ

h
, (cΓ(V))V∈Vh

),
and πk

hc and πk
Γ,hcΓ denote, respectively, the L2-orthogonal projections of c and cΓ

on Pk
B,h and Pk

Γ,h.

3.5.1.3 Results

We consider the triangular, Cartesian and nonconforming mesh families of Figure
3.33.3.

In Figure 3.43.4, we display the errors (3.453.45) for the flow problem as functions
of the meshsize. The flow problem (3.303.30) is solved using polynomials two times
higher than for the passive transport problem, so higher convergence rates than
for the passive transport problem are to be expected. More specifically, on
the triangular mesh we observe convergence in h2k+1 of the discretization error
measured in the energy-like norms ‖uh − I2k

h u‖U,h and ‖pΓ
h
− I2k

h pΓ‖Γ,K,h, and
convergence in h2k+2 for the error measured in the L2-norms ‖ph − π

2k
h p‖L2(ΩB)

and ‖pΓh−π
2k
Γ,hpΓ‖L2(Γ). Slightly better convergence rates are observed on Cartesian

and nonconforming meshes, as already noticed in [5656].
For the passive transport problem (3.383.38), we plot in Figure 3.53.5 the errors

(3.463.46) as functions of the meshsize. For both the energy-like norms of the error
‖ch − I k

hc‖D,h and ‖cΓh − I k
Γ,hcΓ‖Γ,D,h, we obain convergence in hk+1. For the L2-

norms of the error ‖ch − π
k
hc‖L2(ΩB) and ‖c

Γ
h − π

k
Γ,hc‖L2(Γ), on the other hand, we

obtain convergence in hk+2 using piecewise linear or quadratic polynomials, and
between h and h2 using piecewise constant polynomials.
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(a) Triangular (b) Cartesian (c) Nonconforming

Figure 3.3: Mesh families for the numerical tests

3.5.2 Unsteady transport with impermeable fractures
We next consider a physical test case modelling the unsteady passive displacement
of a solute in a porous medium in which the fractures act as barriers.

The configuration is depicted in Figure 3.6a3.6a. More specifically, the computa-
tional domain is the unit square Ω = (0, 1)2, with fractures of constant thickness
`Γ = 10−2 corresponding to

Γ =

{
x = (x1, x2) ∈ Ω : x1 < 0.75 and x2 ∈ {0.25, 0.75}), or

(x1 > 0.25 and x2 = 0.5)

}
.

The injection well is located in (0.5, 0), the production one in (0.5, 1), and both are
modeled by the source term f defined such that

f (x) =
1
2

(
tanh

(
200(0.025 −

√
(x2

1 − 0.5) + x2
2)

)
− tanh

(
200(0.025 −

√
(x2

1 − 0.5) + (x2 − 1)2)
))
.

The fracture source term fΓ is set to 0. It can be checked that the average of f
in ΩB is zero, so the compatibility condition (3.53.5) is verified. We set the user
parameter ξ = 0.75.

Concerning the flow problem, we select the values of the permeability in the
bulk and in the fracture so as to obtain impermeable fractures. More specifically,
in the bulk we set K = 10−3I , while in the fractures the tangential and normal
permeability are, respectively, κτ

Γ
= 10−3 and κn

Γ
= 10−6. In Figure 3.6a3.6a, we display

the bulk pressure p obtained with such parameters and the plot over x1 = 0.5. We
can clearly see that the pressure jumps across the fractures and decreases from the
injection to the production well.

We consider the unsteady passive transport problem (3.433.43), set the final time
tF = 100 and the time step δt = 1. At t = 0, there is not solute in the bulk nor
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in the fractures. The concentration of injected solute in the bulk is given, for all
x ∈ ΩB, by ĉ(t, x) = 1 if t < 30 and ĉ(t, x) = 0 otherwise. Since we do not have
wells in the fracture, we set ĉΓ ≡ 0. The porosity in the bulk and in the fracture is
set to φ = φΓ = 10−1. Following [1111, 121121], the diffusion-dispersion tensor in the
bulk is defined locally for all T ∈ Th such that

DT = φdmI2 + φ|F
2k+1
T ]uT |(dlEu,T + dt(I2 − Eu,T )),

where Eu,T B |F
2k+1
T uT |

−2
(
F2k+1

T uT ⊗ F2k+1
T uT

)
and |F2k+1

T uT | is the Euclidean
norm of F2k+1

T uT , while dm = 10−5, dl = 1 and dt = 10−2 denote, respectively, the
molecular diffusion, longitudinal, and transverse dispersion coefficients. Notice
that the high-order reconstruction of the Darcy velocity is needed to define DT
since, if using constant elements k = 0, we do not have cell-based DOFs for the
flux. The fracture counterpart of the diffusion-dispersion coefficient is defined, for
all F ∈ F Γh , as follows

DF = `ΓφΓdΓmI2 + φΓ |u
Γ
F |(d

Γ
l Eu,F + dΓt (I2 − Eu,F)),

with Eu,F B |u
Γ
F |
−2 (

uΓF ⊗ uΓF
)
and where dΓm = 10−5, dΓl = 1 and dΓt = 10−2

denote, respectively, the fracture molecular diffusion, longitudinal, and transverse
dispersion coefficients. We set the normal diffusion-dispersion coefficient of the
fracture Dn

Γ
equal to 1. A more in-depth investigation of the meaning of this term

is postponed to a future work.
We run the test case on the Cartesian mesh depicted in Figure 3.3b3.3b of meshsize

h = 7.81 · 10−3 with k = 2. In Figure 3.6b3.6b, we display the bulk concentration
at different time t. As expected, the solute follows the corridors designed by the
fractures that act as barriers and goes from the injection to the production well.

3.5.3 Unsteady transport with permeable fractures
We next focus on the case where the fractures act as conduits. The domain is
still the square unit Ω = (0, 1)2, the fractures of constant thickness `Γ = 10−2 are
located in

Γ = {x ∈ Ω : x1 ∈ {2/32, 8/32, 13/32, 19/32, 24/32, 30/32} and 0.25 < x2 < 0.75} .

The configuration is depicted in Figure 3.7a3.7a. The only parameters that differ from
the previous test case of Section 3.5.23.5.2 are the fracture permeabilities: to obtain
permeable fractures, we set the normal permeability κn

Γ
= 10−3 and the tangential

one κτ
Γ
= 10−1. With this choice, it is expected that the flow is attracted by the

fractures.
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In Figure 3.7a3.7a, we display the bulk pressure p and Darcy velocity u where, for
the latter, the color scale correspond to the value of the magnitude. As expected,
the flow is from the injection well towards the fractures near the bottom of the
domain, and from the fractures to the production well near the top of the domain.

In Figure 3.7b3.7b, we display the bulk concentration c at different times. We can
distincly see that the solute channeled by the fractures flows towards the production
well faster than the solute in the surrounding bulk medium.
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Figure 3.4: Convergence results for the test case of Section 3.5.13.5.1. Errors (3.453.45)
for the flow problem v. h on the triangular, Cartesian and nonconforming mesh
families of Figure 3.33.3.
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Figure 3.5: Convergence results for the test case of Section 3.5.13.5.1. Errors (3.463.46) for
the passive transport problem v. h on the triangular, Cartesian and nonconforming
mesh families of Figure 3.33.3.
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(a) Domain configuration (left), bulk pressure p (middle) and bulk pressure profile over
x1 = 0.5 (right).

0 1

(b) Snapshots of the bulk concentration c at times (from left to right, top to bottom):
t = 5, 10, 20, 30, 40, 50, 60, 80, 100.

Figure 3.6: Configuration and numerical results for the test of Section 3.5.23.5.2
(unsteady transport with impermeable fractures).
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(a) Domain configuration (left), bulk pressure p (middle), and Darcy velocity u (right).
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(b) Snapshots of the bulk concentration c at times (from left to right, top to bottom):
t = 5, 10, 15, 20, 30, 40, 60, 80, 100.

Figure 3.7: Configuration and numerical results for the test of Section 3.5.33.5.3
(unsteady transport with permeable fractures).



Appendix A

The convective Cahn–Hilliard problem

This appendix has been published in the following conference proceedings (see [5858]):

Finite Volumes for Complex Applications VIII,
Hyperbolic, Elliptic and Parabolic Problems, 2017, Pages 517–526.
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A.1 The convective Cahn–Hilliard equation

Let Ω ⊂ Rd , d ∈ {2, 3}, denote a bounded connected convex polyhedral domain
with Lipschitz boundary ∂Ω and outward normal n, and let tF > 0. The convective
Cahn–Hilliard problem consists in finding the order-parameter c : Ω×(0, tF) → R
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and the chemical potential w : Ω × (0, tF) → R such that

dtc −
1
Pe
∆w + ∇ · (uc) = 0 in Ω × (0, tF) (A.1a)

w = Φ′(c) − γ2
∆c in Ω × (0, tF) (A.1b)

c(·, 0) = c0(·) in Ω (A.1c)
−∇c · n = −∇w · n = 0 on ∂Ω × (0, tF) (A.1d)

where γ > 0 is the interface parameter (usually taking small values), Pe > 0 is the
Péclet number, u the velocity field such that ∇ · u = 0 in Ω and Φ the free-energy
such thatΦ(c) := 1

4 (1−c2)2. This formulation is an extension of the Cahn–Hilliard
model originally introduced in [5151, 5252] and a first step towards coupling with the
Navier–Stokes equations.

In this work we extend the HHO method of [5959] to incorporate the convective
term in (A.1aA.1a). Therein, a full stability and convergence analysis was carried
out for the non-convective case, leading to optimal estimates in (hk+1 + δt) (with
h denoting the meshsize and δt the time step) for the the C0(H1)-error on the
order-parameter and L2(H1)-error on the chemical potential. The convective term
is treated in the spirit of [7575], where a HHOmethod fully robust with respect to the
Péclet number was presented for a locally degenerate diffusion-advection-reaction
problem.

The proposed method offers various assets: (i) fairly general meshes are
supported including polyhedral elements and nonmatching interfaces; (ii) arbitrary
polynomial orders, including the case k = 0, can be considered; (iii) when using
a first-order (Newton-like) algorithm to solve the resulting system of nonlinear
algebraic equations, element-based unknowns can be statically condensed at each
iteration.

The rest of this Chapter is organized as follows: in Section A.2A.2, we recall
discrete setting including notations and assumptions on meshes, define localy
discrete operators and state the discrete formulation of (A.1A.1). In Section A.3A.3, we
provide an extensive numerical validation.

A.2 The Hybrid High-Order method
In this section we recall some assumptions on the mesh, introduce the notation,
and state the HHO discretization.

A.2.1 Discrete setting
We consider sequences of refined meshes that are regular in the sense of [8181,
Chapter 1]. Each mesh Th in the sequence is a finite collection {T} of nonempty,
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Figure A.1: Local DOF space Pk+1,k
T for k = 0, 1, 2. Internal DOFs (in gray) can

be statically condensed at each Newton iteration.

disjoint, polyhedral elements such that Ω =
⋃

T∈Th T and h = maxT∈Th hT (with hT
the diameter of T). For all T ∈ Th, the boundary of T is decomposed into planar
faces collected in the set FT . For admissible mesh sequences, card(FT ) is bounded
uniformly in h. Interfaces are collected in the set F i

h , boundary faces in F b
h and

we define Fh := F i
h ∪ F

b
h . For all T ∈ Th and all F ∈ FT , the diameter of F is

denoted by hF and the unit normal to F pointing out of T is denoted by ®nTF .
To discretize in time, we consider for sake of simplicity a uniform partition

(tn)0≤n≤N of the time interval [0, tF] with t0 = 0, tN = tF and tn − tn−1 = δt for
all 1 ≤ n ≤ N . For any sufficiently regular function of time ϕ taking values in a
vector space V , we denote by ϕn ∈ V its value at discrete time tn, and we introduce
the backward differencing operator δt such that, for all 1 ≤ n ≤ N ,

δtϕ
n :=

ϕn − ϕn−1

δt
∈ V .

A.2.2 Local space of degrees of freedom

For any integer l ≥ 0 and X a mesh element or face, we denote by Pl(X) the space
spanned by the restrictions to X of d-variate polynomials of order l. Let

Pk+1,k
h B

( ?
T∈Th

Pk+1(T)

)
×

( ?
F∈Fh

Pk(F)

)
be the global degrees of freedoms (DOFs) space with single-valued interface
unknowns. We denote by vh = ((vT )T∈Th, (vF)F∈Fh ) a generic element of Pk+1,k

h
and by vh the piecewise polynomial function such that vh |T = vT for all T ∈ Th.
For any T ∈ Th, we denote by Pk+1,k

T and vT = (vT, (vF)F∈FT ) the restrictions to T
of Pk+1,k

h and vh, respectively.

A.2.3 Local diffusive contribution
Consider a mesh element T ∈ Th. We define the local potential reconstruction
r k+1
T : Pk+1,k

T → Pk+1(T) such that, for all vT := (vT, (vF)F∈FT ) ∈ Pk
T and all
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z ∈ Pk+1
T , ∫

T
∇r k+1

T vT · ∇z = −
∫

T
vT∆z +

∑
F∈FT

∫
F
vF∇z · nTF,

with closure condition
∫

T (r
k+1
T vT − vT ) = 0. We introduce the local diffusive

bilinear form aT on Pk+1,k
T × Pk+1,k

T such that, for all (uT, vT ) ∈ Pk+1,k
T × Pk+1,k

T

aT (uT, vT ) :=
∫

T
∇r k+1

T uT · ∇r k+1
T vT + sT (uT, vT ),

with stabilization bilinear form sT : Pk+1,k
T × Pk+1,k

T → R such that

sT (uT, vT ) :=
∑

F∈FT

h−1
F

∫
F
πk

F(uF − uT )π
k
F(vF − vT ),

where, for all F ∈ Fh, πk
F : L1(F) → Pk(F) denotes the L2-orthogonal projector

onto Pk(F).

A.2.4 Local convective contribution
For any mesh element T ∈ Th, we define the local convective derivative recon-
struction Gk+1

u,T : Pk
T → P

k+1(T) such that, for all vT := (vT, (vF)F∈FT ) ∈ Pk
T and all

w ∈ Pk+1(T),∫
T

Gk+1
u,T vTw = −

∫
T
vTu · ∇w +

∑
F∈FT

∫
F
vF(u · nTF)w.

The local convective contribution bu,T on Pk
T × Pk

T is such that, for all (uT, vT ) ∈

Pk
T × Pk

T

bu,T (uT, vT ) := −
∫

T
uT Gk+1

u,T vT + su,T (uT, vT ).

with local upwind stabilization bilinear form su,T : Pk
T × Pk

T → R such that

su,T (uT, vT ) :=
∑

F∈FT

∫
F

|u · nTF | − u · nTF

2
(uF − uT )(vF − vT ).

Notice that the actual computation of Gk+1
u,T is not required, as one can simply use

its definition to expand the cell-based term in the bilinear form bu,T .
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A.2.5 Discrete problem

Denote by Pk
h,0 :=

{
vh = ((vT )T∈Th, (vF)F∈Fh ) ∈ Pk

h |
∫
Ω
vh = 0

}
the zero-average

DOFs subspace of Pk
h. We define the global bilinear forms ah and bu,h on Pk

h × Pk
h

such that, for all (uh, vh) ∈ Pk
h × Pk

h

ah(uh, vh) :=
∑
T∈Th

aT (uT, vT ), bu,h(uh, vh) :=
∑
T∈Th

bu,T (uT, vT ).

The discrete problem reads: For all 1 ≤ n ≤ N , find (cn
h,w

n
h) ∈ Pk

h,0 × Pk
h such that∫

Ω

δtcn
hϕh +

1
Pe

ah(w
n
h, ϕh
) + bu,h(cn

h, ϕh
) = 0 ∀ϕ

h
∈ Uk

h∫
Ω

wn
hψh =

∫
Ω

Φ
′(cn

h)ψh + γ
2ah(cn

h, ψh
) ∀ψ

h
∈ Uk

h

where c0
h ∈ Pk

h,0 solves ah(c0
h, ϕh
) = −

∫
Ω
∆c0ϕh for all ϕ

h
∈ Pk

h.

A.3 Numerical test cases
In this section, we numerically validate the HHO method.

A.3.1 Disturbance of the steady solution
For the first test case, we use a piecewise constant approximation (k = 0), discretize
the domain Ω = (0, 1)2 by a triangular mesh (h = 1.92 · 10−3) with γ = 5 · 10−2,
δt = γ2 and Pe = 1. The initial condition for the order-parameter and the velocity
field are given by

c0(x) := tanh(
2x1 − 1
2
√

2γ2
), u(x) := 20 ·

(
x1(x1 − 1)(2x2 − 1)
−x2(x2 − 1)(2x1 − 1)

)
, ∀®x ∈ Ω.

The result is depicted in Figure A.2A.2 and shows that the method is well-suited to
capture the interface dynamics subject to a strong velocity fields.

A.3.2 Thin interface between phases
For the second example, we also use a piecewise constant approximation (k = 0)
with a Cartesian discretization of the domain Ω = (0, 1)2, where h = 1.95 · 10−3.
The interface parameter is taken to be very small γ = 5 · 10−3, the time step is
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Figure A.2: Steady solution perturbed by a circular velocity field (left to right, top
to bottom).

δt = 1 · 10−5 and Pe = 50. The initial condition for the order-parameter is taken
to be a random value between −1 and 1 inside a circular partition of the Cartesian
mesh and −1 outside. The velocity field is given by

u(x) :=
1
2
(1 + tanh(80 − 200‖x − (0.5, 0.5)‖2)) ·

(
2x2 − 1
1 − 2x1

)
, ∀x ∈ Ω.

See Figure A.3A.3 for the numerical result. The method is robust with respect to γ and
is also well-suited to approach the thin high-gradient area of the order-parameter.

A.3.3 Effect of the Péclet number

The Péclet number is the ratio of the contributions to mass transport by convection
to those by diffusion: when Pe is greater than one, the effects of convection exceed
those of diffusion in determining the overall mass flux. In the last test case,
we compare several time evolutions obtained with different values of the Péclet
number (Pe ∈ {1, 50, 200}), starting from the same initial condition. We use a
Voronoi discretization of the domain Ω = (0, 1)2, where h = 9.09 · 10−3, and use
piecewise linear approximation (k = 1). We choose γ = 1 · 10−2, δt = 1 · 10−4 and
tF = 1. The initial condition is given by a random value between −1 and 1 inside
a circular domain of the Voronoi mesh and −1 outside. The convective term is
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Figure A.3: Evolution of spinodal decomposition with thin interface (left to right,
top to bottom).

given by

u(x) :=
(

sin(πx1) cos(πx2)

− cos(πx1) sin(πx2)

)
, ∀x ∈ Ω.

Snapshots of the order parameter at several times are shown on Figure A.4A.4 for each
value of the Péclet number. For each case, the method takes into account the value
of Pe and appropriately models the evolution of the order parameter by prevailing
advection to diffusion when Pe � 1.
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Figure A.4: Comparison at the same time between evolution of solutions with
different Péclet number (top to bottom). Left: Pe = 1, middle: Pe = 50, right:
Pe = 200. Displayed times are t = 0, 1 · 10−2, 6 · 10−2, 2 · 10−1, 5 · 10−1, 1.
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Résumé de la thèse en Français
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Dans ce manuscrit de thèse, nous développons des méthodes de nouvelle géné-
ration, appelées Hybrides d’Ordre Élevé (HHO: Hybrid High–Order, en anglais),
pour la résolution numérique de problèmes d’interfaces. Plus précisément, deux
sortes d’interfaces sont considérées ici : les interfaces diffuses, et celles agissant
comme frontières internes au domaine computationnel. Dans ce chapitre d’intro-
duction, nous commençons par faire un bref état de l’art des méthodes HHO et
présentons ses avantages dans le contexte des problèmes d’interfaces. Ensuite,
nous discutons des problèmes aux interfaces sur lesquels nous nous focalisons, et
décrivons le contenu et les contributions principales de chacun des chapitres de ce
manuscrit.

B.1 Méthodes Hybrides d’Ordre Élevé : état de l’art
Les méthodes HHO sont une famille de méthodes numériques de nouvelle généra-
tion pour la discrétisation d’Équations aux Dérivées Partielles (EDPs), introduite
en premier lieu dans [7777, 8383]. Le terme Hybride fait référence au fait que deux
sortes d’inconnus discrets soient utilisés, qui sont des polynômes brisés basés
respectivement sur le maillage et son squelette. Le terme Ordre Élevé souligne
la possibilité d’augmenter l’ordre d’approximation dans l’optique d’accélérer la
convergence en présence de solution (localement) régulière, ou lorsque l’on fait
appel à des techniques d’adaptation.

139
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Les ingrédients des méthodes HHO sont : (i) des reconstructions locales
d’opérateurs différentiels obtenues en reproduisant une intégration par parties où
les inconnus discrets hybrides jouent le rôle de fonction à l’intérieur de chaque
élément et sur ses faces ; (ii) des termes de stabilisation obtenus par pénalisation des
résidus d’ordre élevé, qui disparaissent lorsqu’ils sont appliqués à l’interpolation
de fonctions polynômiales jusqu’à un certain ordre. Cette construction subtile
confère un certain nombre de caractéristiques intéressantes propres à la méthode
: (i) elle supporte des maillages polytopiques généraux, pouvant contenir des
éléments polygonaux ou dont les faces ne concordent pas d’un élément à l’autre
; (ii) elle autorise l’utilisation d’ordre d’approximation arbitraire; (iii) elle délivre
des résultats de stabilité de la forme inf–sup pour les problèmes mixtes ; (iv) elle
est localement conservative ; (v) la possibilité d’éliminer les inconnus présents à
l’intérieur de chaque élément rend l’implémentation efficace ; (vi) la construction
de la méthode est indépendante du choix de la dimension. Depuis leur introduc-
tion, les méthodes HHO ont connu un développement vigoureux et ont été utilisées
dans la discrétisation de nombreuses EDPs, linéaires ou non, provenant de divers
domaines de la physique numérique. Outre les travaux pionniers portant sur les
problèmes de diffusion variable [7878, 8282, 8383] et d’élasticité linéaire quasi incompres-
sible [7777, 8080], nous pouvons citer ici les applications portant sur les équations de
diffusion-convection-réaction où la diffusion est localement dégénérée [7575], les
problèmes de poroélasticité linéaire [2929] ou non-linéaire [3939], d’écoulements
de Stokes [55] pouvant être entraînés par des forces massiques dont la partie
irrotationelle est grande [8484], d’électrostatique [8585, 8888], d’écoulements incompres-
sibles gouvernés par les équations d’Oseen [66] ou de Navier–Stokes [3737, 8686],
d’élasticité non-linéaire [3838], de déformations finies de matériaux hyperélastiques
[22], de plasticité associative incrémentale avec petites déformations [11], de détection
adaptative des surfaces de débit pour les écoulements de Bingham [5454] d’approx-
imation spectrale d’opérateurs elliptiques [5353], des problèmes elliptiques aux
interfaces [5050] ou d’obstacle [6464], le modèle de plaque de type Kirchhoff–Love
[3232], la discrétisation des opérateurs elliptiques non-liéaires Leray–Lions [7373, 7474],
ou encore du problème de Brinkman [3636] et des problèmes elliptiques hautement
oscillant [6565]. Dans [6363], les auteurs présentent une implémentation générique
de la méthode HHO sur des maillages polytopiques de dimension arbitraire. Des
extensions plus récentes de la méthode comprennent la version adaptative [8888] et
hp [77], ainsi que le support de mailles courbées [3535].

Il est bon de conclure cet état de l’art en soulignant le fait que des liens entre
les méthodes HHO et d’autres technologies récentes existent, notamment avec les
méthodes de Galerkin Discontinues Hybrides [5555, 6969], les méthodes Éléments
Virtuels mixtes [2121] ou non-conformes [1818] et les méthodes de Discrétisation du
Gradient [9191]. La version HHO de plus bas ordre peut être comparée aux Volumes
Finies mixtes [9090] ou hybrides [9696] et également aux méthodes de Différences



B.2. Application aux problèmes d’interfaces 141

Finies Mimétiques [4747, 4848, 117117].

B.2 Application aux problèmes d’interfaces
Hormis les avantages généraux qui ont été discutés à la section précédente, les
méthodes HHO possèdent des avantages spécifiques aux problèmes d’interfaces
que l’on considère dans ce manuscrit, dont on présente les grandes lignes dans
cette section.

Les modèles à interface diffuse
Lesmodèles à interface diffuse décrivent l’évolution d’un système dans lequel deux
(ou possiblement plus) phases non-miscibles sont présentes. Ces modèles sont
basés sur une description thermodynamique telle que l’énergie du fluide dépend
non seulement de ses variables locales mais également de leur gradient local : un
tel fluide est dit doué de capillarité interne ; cf. [114114]. Beaucoup de procédés
industriels impliquent des écoulements de fluides multiphasiques pilotés par les
effets capillaires. Les travaux du Chapitre 11 ont été effectués dans le cadre d’une
collaboration avec Saint–Gobain Recherche, où les modèles à interface diffuse sont
utilisés lors de la simulation de phénomènes physiques comme (i) l’encrassement
des tubes d’élastomères thermoplastiques utilisés dans la distribution des boissons,
ou (ii) au cours de l’élaboration des verres qui, lors des premières étapes de
fusion, met en jeu des liquides mouillants sur des grains plus réfractaires à la
fusion. L’optimisation de ces procédés passe par une meilleure compréhension
des phénomènes locaux qui, compte-tenu des échelles, sont fortement influencés
par des forces capillaires.

L’un des avantages des modèles à interface diffuse réside dans le fait que
l’interface n’est pas explicitement suivie, mais plutôt décrite au travers d’une
fonction de phase régularisée, appelée paramètre d’ordre, prenant des valeurs
constantes dans chacune des phases (typiquement ±1) mais qui varie continûment
au travers de l’interface sur une longueur caractéristique γ ; cf. Figure B.1aB.1a.
Comme expliqué dans [4242, 113113], les modèles à interface diffuse peuvent être vus
comme une régularisation des modèles dits sharp, où chaque phase est décrite
par un système d’EDPs et où les phases communiquent entre elles à l’aide de
conditions de transmissions, basées au niveau de l’interface. Dans les modèles
sharp, l’interface entre les phases est souvent décrite numériquement comme
l’ensemble de niveau zéro d’une fonction lisse et le calcul numérique des équations
de l’interface nécessite des mailles adaptatives qui s’ajustent à l’interface. En
pratique, ces contraintes posent de sérieux défis lors de la simulation d’écoulements
qui, commeceux considérés ici, impliquent un très grand nombre d’interfaces, ainsi
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≈ γ

−1

1

c

(a) Variation du paramètre d’ordre entre les
phases

(b) Premiers instants de simulation d’une
décomposition spinodale

Figure B.1: Variation du paramètre d’ordre entre deux phases (gauche)
et simulation d’une décomposition spinodale impliquant un grand nombre
d’interfaces (droite).

que des phénomènes de séparation et de coalescence ; cf. FigureB.1bB.1b, où est affiché
une capture des premiers instants de simulation d’une décomposition spinodale.
Ces difficultés sont encore plus prononcées lors de simulation en dimension trois.
Dans les modèles à interface diffuse en revanche, les discontinuités au niveau
de l’interface sont lissées le long de couches d’épaisseur fine et la résolution
numérique peut être faite sur des maillages fixes, ce qui, d’un point de vue pratique,
implique d’importantes simplifications.

Concernant l’aspect modélisation des interfaces diffuses, la méthode de dis-
crétisation choisie devra remplir certains critères pour pouvoir capturer avec
suffisement de précision la séparation de phase. En effet, des zones à fort
gradient sont présentes près de l’interface, et si l’on considère le phénomène
de décomposition spinodale, ces zones se propagent sur l’ensemble du domaine
computationnel, rendant l’adaptation locale inefficace ; cf. Figure B.1bB.1b. Comme
les méthodes HHO sont fondées sur des espaces polynômiaux discontinus, elles
peuvent s’adapter par construction à ces brusques variations entre les phases. De
plus, la possibilité d’augmenter l’ordre d’approximation permet de capturer de
petits détails également sur des maillages relativement grossiers. Enfin, si l’on
considère des problèmes où l’interface est localisée, dans lesquels l’adaptation de
maillage est une stratégie efficace, les méthodes HHO restent très flexibles grâce
au support de potentiels raffinements non-conformes ou même de déraffinements
par aglomération des mailles ; cf. [3535, 8888].

La contribution principale de cette thèse dans l’approximation numérique
des modèles à interface diffuse est le développement et l’analyse d’une nouvelle
méthode HHO pour les équations de Cahn–Hilliard, un modèle à interface diffuse
décrivant le processus de séparation de phase. En enrichissant les espaces
d’inconnus discrets de la méthode HHO originelle de [8383], il vient une variante
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des méthodes HHO avec laquelle nous pouvons prouver la bonne position de la for-
mulation discrète et des taux de convergences optimaux pour la norme d’énergie
de l’erreur de discrétisation. L’analyse s’articule autour de nouveaux résultats
d’analyse fonctionnelle discrète adaptés aux espaces hybrides des méthodes HHO,
valides en dimension deux et trois, qui sont les inégalités discrètes d’Agmon et
Gagliardo–Nirenberg–Poincaré. Un panel complet de cas tests numériques est
proposé pour confirmer les résultats théoriques et pour mettre en valeur la capacité
de la méthode dans le suivi des interfaces, même en présence de forts champs de
convection. Ces travaux ont donné lieu à un article complet paru dans le Journal
d’Analyse Numérique SIAM [5959], ainsi qu’à un article de conférence [5858].

Frontières internes
Le deuxième type d’interfaces que l’on considère dans ce manuscrit sont les
interfaces agissant comme frontières internes au domaine. Plus spécifiquement,
nous nous focalisons sur l’approximation numérique de l’écoulement et du transport
passif en milieu poreux fracturé. Ce thème de recherche est une branche très
active des géosciences computationnelles. L’une des raisons principales de cette
activité est sans aucun doute le large spectre d’applications qui en découle, comme
l’extraction du pétrole, la fracturation hydrolique, le stockage géologique de CO2
ou encore l’enfouissement souterrain de déchets toxiques/radioactifs.

Les fractures sont omniprésentes en sous-sol et peuvent être causées par des
forces tectoniques, changements de température ou par schistosité ; cf. [123123]. On
retrouve généralement regroupés dans la catégorie des fractures les craquements,
qui sont des fractures partielles ou incomplètes ; les fissures, séparant distinctement
différentes surfaces ; les diaclases, qui sont des surfaces de fracture sans déplace-
ment ; les entailles, qui sont des fissures liées à des tensions de petites échelles,
allant de plusieurs centimètres à quelques décimètres de longueur et de quelques
millimètres à quelques centimètres de largeur.

Un trait spécifique des fractures est qu’une dimension caractéristique est bien
plus petite que les deux autres. Malgré cette différence d’échelle, la présence de
fractures dans un milieu poreux peut avoir un impact significatif sur les écoule-
ments. En réalité, les fractures peuvent avoir une perméabilité considérablement
différente de celle du milieu poreux dans lequel elles se trouvent, et peuvent
de ce fait agir comme des barrières naturelles à l’écoulement, ou au contraire,
agir comme des conduits naturels et accélérer le processus de migration des
contaminants dangereux. Dans le contexte d’extraction du pétrole par exemple,
il a été observé que les fractures près des forages ont pour effet d’augmenter
la productivité des puits ; cf. [127127] et les références qui en découlent. Un
autre exemple, plus d’actualité, est celui de l’isolement géologique des déchets
radioactifs. La présence de fractures dans les zones de dépôt, due notamment au
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creusement des galeries, peut accéléler considérablement le processus demigration
des radionucléides.

Le développement de schémas numériques robustes et fiables pour modéliser
de tels phénomènes est d’une importance cruciale afin obtenir des simulations
numériques fiables, qui sont un outil primordial pour assurer la protection de
l’environnement et celui de l’homme. C’est dans ce contexte délicat que la
robustesse des méthodes HHO par rapport à l’anisotropie et l’hétérogénéité des
coefficients physiques est un véritable atout. De plus, comme déjà indiqué
dans la section précédente, les espaces polynômiaux discontinus sous-jacents aux
méthodesHHOpeuvent s’adapter aux brusques variations éventuelles des inconnus
à travers la fracture. Le support de maillages polytopiques des méthodes HHO
est également un atout, puisqu’il permet un traitement limpide des géométries
complexes telles que la présence de nœuds pendants ou bien la non-conformité
des éléments décrivant la fracture. Enfin, les propriétés de conservation locale
des méthodes HHO jouent également un rôle majeur, non seulement dans la
reproduction au niveau discret de principes physiques clés, mais aussi lors du
couplage de l’écoulement avec le transport.

Les contributions principales de cette thèse sont : (i) le développement et
l’analyse d’une méthode HHO pour les modèles réduits d’écoulements de Darcy
en milieu poreux fracturé, c’est-à-dire où les fractures sont traitées comme des
interfaces ; (ii) l’introduction, l’analyse de stabilité et la validation numérique
d’un nouveau modèle réduit basé sur un argument d’énergie, décrivant le transport
passif en milieu poreux fracturé. Pour obtenir l’écoulement, nous utilisons une
combinaison des formulations mixtes [7878] et primales [8282] des méthodes HHO
pour les problèmes de diffusion variable et prouvons la bonne position de la
formulation du problème discret avec des taux de convergences optimaux pour la
norme d’énergie de l’erreur de discrétisation. L’analyse repose sur le lien étroit
entre l’estimation d’erreur des formulations mixtes et primales. D’autre part, en
utilisant la méthode HHO de [7575], nous résolvons le nouveau modèle réduit pour le
transport passif piloté par un champ de vitesse, solution du problème d’écoulement
découplé. Pour appuyer ces travaux, un ensemble de cas tests numériques est
proposé, mettant en avant la capacité de la méthode à capturer le comportement
de l’écoulement et du phénomène de transport passif qui en découle, en prenant
en compte la présence et la perméabilité des fractures. Ces travaux ont donné lieu
à un article complet paru dans le Journal sur le Calcul Scientifique SIAM [5656] et
à un article complet soumis au Journal International de Géomathématiques [5757].
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Résumé

Le but de cette thèse est de développer et d’analyser lesméthodesHybrides d’Ordre
Élevé (HHO: Hybrid High-Order, en anglais) pour des problèmes d’interfaces.
Nous nous intéressons à deux types d’interfaces (i) les interfaces diffuses, et (ii)
les interfaces traitées comme frontières internes du domaine computationnel. La
première moitié de ce manuscrit est consacrée aux interfaces diffuses et plus
précisément aux célèbres équations de Cahn–Hilliard qui modélisent le processus
de séparation de phase par lequel les deux composants d’un fluide binaire se
séparent pour former des domaines purs en chaque composant. Dans la deuxième
moitié, nous considérons des modèles à dimension hybride pour la simulation
d’écoulements de Darcy et de transports passifs en milieu poreux fracturé, dans
lequel la fracture est considérée comme un hyperplan (d’où le terme hybride) qui
traverse le domaine computationnel.

Mots clés: méthodes Hybrides d’Ordre Élevé, maillages polytopiques, ordre
d’approximation arbitraire, équations de Cahn–Hilliard, séparation de phase, écou-
lement en milieu poreux fracturé, écoulement de Darcy, déplacement miscible,
transport passif, formulation mixte, formulation primale, analyse fonctionnelle
discrète.

Abstract

The purpose of this Ph.D. thesis is to design and analyseHybridHigh-Order (HHO)
methods on some interface problems. By interface, we mean (i) diffuse interface,
and (ii) interface as an immersed boundary. The first half of this manuscrit is
dedicated to diffuse interfaces, more precisely we consider the so called Cahn–
Hilliard problem that models the process of phase separation, by which the two
components of a binary fluid spontaneously separate and form domains pure in
each component. In the second half, we deal with the interface as an immersed
boundary and consider a hybrid dimensional model for the simulation of Darcy
flows and passive transport in fractured porous media, in which the fracture is
considered as an hyperplane that crosses our domain of interest.

Keywords: Hybrid High–Order methods, polyhedral meshes, arbitrary order,
Cahn–Hilliard equation, phase separation, fractured porous media flow, Darcy
flow, miscible displacement, passive transport, mixed formulation, primal formu-
lation, discrete functional analysis.
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