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Abstract

We propose a qualitative entity resolution approach to repair links in a bibliographic
knowledge base. Our research question is: “How to detect and repair erroneous
links in a bibliographic knowledge base using qualitative methods?” The
proposed approach is decomposed into two major parts. The first contribution
consists in a partitioning semantics using symbolic criteria used in order to detect
erroneous links. The second one consists in a repair algorithm restoring link quality.
We implemented our approach and proposed qualitative and quantitative evaluation
for the partitioning semantics as well as proving certain properties for the repair
algorithms. Portions of this work have been published previously in:

e “Léa GuizoL”, “Madalina CROITORU”. Inwvestigating the quality of a bibli-
ographic knowledge base using partitioning semantics. In FUZZ-TEEE 2014:
The annual IEEE International Conference on Fuzzy Systems, pages 948-955.

e “Léa GuizoL”, “Olivier ROUSSEAUX”, “Madalina CROITORU”, “Yann NICOLAS”,
“Aline LE PROVOST”. An analysis of the Sudoc bibliographic knowledge base
from a lLink validity viewpoint. In IPMU2014: 15th International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems, pages 204-213. Springer

e ‘“Léa Guizor”. Agrégation pour la réparation de liens. In 1C2014: 25es
Journées francophones d’Ing. des Connaissances, Clermont-Ferrand, France, 2014.

e ‘Léa Guizor”, “Madalina CROITORU”, “Michel LECLERE”. Aggregation Se-
mantics for Link Validity. In SGAI2014: Research and Development in Intelli-
gent Systems XXX, pages 359-372. Springer International Publishing.

e “Madalina CrROITORU”, “Léa GuizOL”, “Michel LECLERE”. On Link Validity
in Bibliographic Knowledge Bases. In IPMU2012: 14th International Con-
ference on Information Processing and Management of Uncertainty in Knowledge-
Based Systems, volume Advances on Computational Intelligence, pages 380-389.
Springer.
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Chapter 1

Introduction

1.1 Problem

Since 2001, ABES (French Bibliographic Agency for Higher Education) has been
managing Sudoc! (University System of Documentation), a French collective cata-
log containing over 10 million document descriptions (bibliographic notices) and
around 2.4 million person descriptions (authority notices). Most of the time, bibli-
ographic notices describe books but they can also describe other kinds of documents,
like music or movies. Authority notices are used to describe persons and entities
that have contributed (as the author or the publisher) to a document described in
Sudoc. In this thesis, we focus on book descriptions and limit ourselves to person
descriptions.

Bibliographic notices have several attributes (like title, ppn or the unique iden-
tifier, publication language, publication date...). Persons who have contributed to a
bibliographic notice are represented by links that point at authority notices repre-
senting those persons. Authority notices have several attributes: ppn (their unique
identifier), lists of names and surnames, life dates and sources. The source attribute
refers to the bibliographic notice for which the authority notice was created.

Example 1 (Link). Sophocles is represented by the authority notice with ppn “027143619”.
He has contributed as an author to the play named “Antigone”. This play is rep-
resented by the bibliographic notice with ppn “166858013”, so, there is a link la-
belled “author” between the bibliographic notice “166858013” and the authority notice
“027143619".

When a librarian needs to register a new book in the Sudoc, (s)he creates a
bibliographic notice describing this book. For each person who has contributed
to the book (named contributor), (s)he has to find whether an authority notice
describing this person already exists in Sudoc. Several steps are performed:

TA public version of Sudoc is available on the website
http://en.abes.fr/Sudoc/The-Sudoc-catalog.

15



16 CHAPTER 1. INTRODUCTION

e (S)he enters the name and surname (the appellation) of the person. A function
selects all the authority notices that have an appellation that might refer to
the same person.

e For each selected authority notice, (s)he looks at the bibliographic notices
linked to it (the bibliography) in order to compare them to the new biblio-
graphic notice. Unfortunately, it is possible to have a lot of selected authority
notices, because of homonyms.

e (S)he selects the authority notice that represents the desired contributor and
links it to the new bibliographic notice. If no authority notice fits, (s)he creates
an authority notice in order to represent this contributor and links it to the
new bibliographic notice. In this particular case, the new bibliographic notice
becomes the source of the new authority notice.

The link decision of a librarian is based on the bibliography of the selected author-
ity notice. So, the decision to make a link is based on existing links. Unfortunately,
there are erroneous links in Sudoc, that entail new erroneous links. An erroneous
link is a link between a bibliographic notice and an authority notice that does not
represent the correct contributor, but just a person with a compatible appellation.

This implies the following Research Question:

Research Question. How to detect and repair erroneous links in a bibliographic
knowledge database using qualitative methods?

Let us present how we answer to this Research Question in the next Section 1.2.
We will sum up how results are evaluated in Section 1.3 before detailing the thesis
structure in Section 1.4.

1.2 Modelisation and positioning

Let us explain how we propose to detect and repair erroneous links. We will start
with the detection part (in Section 1.2.1) and end with the repair part of the problem
in Section 1.2.2.

1.2.1 Detecting erroneous links

Let us present here under which hypotheses and how we detect and repair erroneous
links in a bibliographic knowledge base.

In this thesis, we assume that an authority notice describing a person contains all
the appellations that refers to this person. This implies that only authority notices
that have a common or compatible appellation (name and surname) may represent
a same person (Work Hypothesis 1). Two appellations are compatible if they may
designate the same person (as “GUIizOL, L.”, “GuizoL, Lea” or “GUizo, Léa”).
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Work Hypothesis 1 (Compatible appellation of authority notices). Only authority
notices that share a compatible appellation (name and surname of the represented
person) can represent a same real-world person.

We also assume that documents co-authored by a same person share some char-
acteristics: very dissimilar documents do not share contributors (Work Hypothesis
3) but very similar documents (same titles for example) are likely to share some
contributor(s) (Work Hypothesis 2). Similarity of documents is evaluated by com-
paring their characteristics (like title, publication date, publication language and so
on). The more documents seem likely to be pieces of a same work, the more they
are considered as similar.

Work Hypothesis 2 (Similar documents and contributors). Persons who possess
very compatible appellations (name and surname) and contributed to very similar
documents are the same real-world persons.

Work Hypothesis 3 (Dissimilar documents and their contributors). Documents
that possess only incompatible characteristics (like publication dates several centuries
apart) do not look like each other and do not share common contributors.

Links between bibliographic notices and authority notices may be incorrect.
However, an authority notice is usually created to represent a contributor of a
specific bibliographic notice, when no existing authority notice already seems to
represent it. In this particular case, the bibliographic notice is said to be the source
of the authority notice, and we assume that the link is correct (Work Hypothesis 4).
This source notion is introduced in 1.1.

Work Hypothesis 4 (Reliability of links). Let us consider a link between an au-
thority notice denoted Na; and a bibliographic notice denoted Nb;.

We assume that this link may be wrong, unless Na; was specifically created in
order to represent the contributor of the Nb;. In this case, Nb; is said to be the
source of Na;.

In order to detect erroneous links, we have to evaluate links’ reliability. Even if
an existing link between an authority notice denoted Na; and a bibliographic notice
denoted Nb; is not correct, we assume that the Na; appellation is compatible to
the appellation of one of the Nb; contributors. Indeed, Na; has been linked to Nb;
in order to represent one of its contributors, and the link decision is at least based
on the appellation. Because of Work Hypotheses 2 and 3, to check if the links are
reliable comes down to check if:

e cach authority notice is not linked to dissimilar bibliographic notices,

e all similar bibliographic notices having contributors with compatible appella-
tions are linked to the same authority notice.
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In order to compare documents from the point of view of one of their contribu-
tors, we create one contextual entity per link. A contextual entity represents a
link. It also corresponds to a document from the point of view of one of its contribu-
tors or a person in the context of one of its documents. It contains all the attributes
of the bibliographic notice (title, publication date, ect.), the reliable attribute from
the authority notice (the appelation of the contributor), and other attributes re-
lated to the link, as the list of the “other contributors” of the bibliographic notice
(the contributors who are not represented by the contextual entity). Let us see an
Example of a contextual entity.

Example 2 (A person in the context of one of his documents (contextual entity)).
In Example 1, we saw that Sophocles was represented by the authority notice with ppn
“027143619” linked to the bibliographic notice with ppn “166858013” that represents
the play entitled “Antigone”.

Let us detail some of the attributes of the contextual entity that represent this
link or Sophocles in the context of “Antigone”:

e appellations:{ “SOPHOCLES”, “SOPHOKLES ”, “SOPHOCLE "}
e title: “Antigone”
e publication date: “2012”

e other contributors: {“BOUSQUET, Joseph”, “VACQUELIN, M.”, “KALNIN-MAGGIORI,
Hélene”} (Those other contributors are the translators, and the editor.)

The contextual entities possess the appellations of the authority notice pointed
at by the link they represent. The contextual entities also represent a person in
the context of a document. We recall that authority notices cannot represent the
same person unless they have compatible appellations (Work Hypothesis 1). This
is extended to contextual entities which cannot represent the same person in the
contexts of several documents if they do not have at least a compatible appellation
(Work Hypothesis 5).

Work Hypothesis 5 (Compatible appellation of contextual entities). Only con-
textual entities with compatible appellations can represent a same real-world person
in the context of distinct documents.

Because contextual entities represent a person in the context of a document,
contextual entities which correspond to links pointing to the same authority notice
are supposed to represent the same person and to be similar. In the same way,
contextual entities which correspond to links pointing at distinct authority notices
are supposed to represent distinct persons and being dissimilar. If it is not the case,
the Work Hypotheses 2 and 3 are false or there are erroneous links.

Consequently, contextual entities that are similar are supposed to represent links
pointing at the same authority notice, and contextual entities that are dissimilar are
supposed to represent links pointing at distinct authority notices.
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We are interested in sets of similar contextual entities in order to detect which
links seem erroneous. The problem of detecting similar objects is exactly the entity
resolution problem. However, we are also interested in detecting erroneous links
and repairing them. Those tasks are link mining tasks. Indeed, the link mining is
the “process of discovering useful patterns or knowledge from data” [55] in data that
contain links, like bibliographic knowledge bases. Entity resolution can also be a
link mining task when data contain links [31]. Link mining tasks according to |31]
will be discussed later (in Section 2.2.1).

In order to identify contextual entities that look like each other, we use a parti-
tioning method like [4]. A partition on an object set O is a set of classes (O subsets)
such that each object of @ is in one and only one class. The partitioning method
consists in constructing a partition such that objects that are similar are in the same
class and objects that are dissimilar are in distinct classes. Similarity is determined
by considering one or several criteria. Like |2|, we use symbolic criteria. Symbolic
criteria give symbolic comparison values as result for two-object comparisons.

Our interest in symbolic criteria over numerical criteria is because the criteria
used mirror how a human expert decides whether two contextual entities belong
to the same contributor. An expert can say that the date criterion indicates that
it is not likely, but the title criterion indicates it is likely (like “Antigone” from
“SOPHOCLES” published in “2012” and in “1568”). We do not necessarily wish to
aggregate these comparison values, especially when titles are close but not identical.

A partition is evaluated according to a partitioning semantics. [2| and [4]| par-
tition a graph such that vertexes represent the objects to be partitioned and edges
are labelled by a value that represents if the vertexes represent similar objects or
not. [2] uses a set of criteria in order to determine those values and each criterion
can consider the neutral value, meaning that the criterion consider the objects as
being neither similar nor dissimilar. However, the graph to partition cannot have
edges labelled neutral in [2] and [4]. In contrast, the two partitioning semantics pre-
sented in this thesis accept that comparison values between two objects can be just
neutral, even in the graph to partition. However, like in [2], some values (always
and never) are shared by all criteria and are more significant than other values. For
example, when titles are identical, the title criterion gives the always value, which
means that objects represent the same work.

In this work, we only consider the case with no more or less significant crite-
rion than another criterion. Criteria are said independent from each other (Work
Hypothesis 6).

Work Hypothesis 6 (Independancy between criteria). We consider in this thesis
that criteria are independent [14] from each other, which means that no criterion is
strictly more tmportant than another to decide which partition is best.

The thesis work is in entity resolution and in link mining domains, as it is
represented on Figure 1.1. It uses symbolic criteria and focuses on the particular
case of bibliographic domain.
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Entity resolution

T Numeric

l Symbolic

This thesis work

Figure 1.1: Thesis work domain

Evaluating partitions allows us to compare them in order to detect erroneous
links. Two partitions are considered in particular:

e the initial partition: the partition such that contextual entities are in the same
class if and only if they represent a link pointing to the same authority notice
in the Sudoc.

e the human partition: the partition such that contextual entities are in the
same class if and only if they represent documents from the point of view of
the same real-world person according to a human expert.

In order to detect erroneous links, we expect that the human partition must
be a best partition, and we assume that the initial partition is a best partition
if and only if it corresponds to the human partition (Work Hypothesis 7). This
Work Hypothesis has been evaluated and validated on a Sudoc sample according to
librarian experts.

Work Hypothesis 7 (About initial and human partitions). We suppose that the
human partition Ph is a best partition, and that the initial partition Pt is a best
partition if and only if Ph is Pi.

To find erroneous links comes down to find that the initial partition is not a best
one. Let us explain the repair of those erroneous links in the following Section.

1.2.2 Repair of erroneous links

The part “repairing erroneous links” takes the partition value v of a best partition
on an object set @. If this value is not the value of the initial partition Pi on O, it
proposes a repair-partition which has v as partition value, but is as close as possible
to Pi. The repair partition is a reorganization of Sudoc links, with the least changes
as possible.
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1.3 Evaluation

This work has been evaluated for both erroneous link detection and repair link parts.
For erroneous links detection:

e we studied how data characteristics (like the criteria’s properties or ambiguity
in data) influence partitioning algorithms results.

e we have shown that the chosen partitioning algorithms are efficient enough to
evaluate almost the entire Sudoc.

e we have shown that the method is relevant in order to detect erroneous links
according to ABES experts on a real Sudoc sample.

For link repair, we proved that the proposed algorithms give a repair-partition
which has the desired value.
To conclude this Chapter, let us detail the thesis structure in Section 1.4.

1.4 Thesis structure

This thesis contains 6 other Chapters before the conclusion in Chapter 8.

Chapter 2 presents the link mining domain, and focuses on entity resolution.
The thesis work is adapted to the particular case of bibliographic domain. This
Chapter also shows how a large dataset is divided in small parts to be manageable.

Chapter 3 details the proposed approach for link repair in large bibliographic
knowledge databases. This approach is composed of 2 steps: the erroneous link
detection step and the link repair step.

Chapter 4 details my point of view of Sudoc context and notions. It also presents
criteria that are used in order to compare bibliographic notices.

Chapter 5 presents two partitioning semantics based on symbolic criteria. Those
partitioning semantics are used to evaluate partitions in order to compare them and
detect erroneous links. This Chapter also discusses the qualitative interest of those
partitioning semantics and compare them.

Chapter 6 presents several algorithms that allow us to propose a repair-partition
(or reorganization of links) on an object set and according to a partition value. We
proved that the repair-partition has the desired partition value and is obtained by
a limited number of modifications on the initial partition.

Chapter 7 presents experimentations. Most of them are about the erroneous link
detection step, as detailed in Section 1.3. It also presents the future interface that
is discussed with ABES experts and will be used in order to show erroneous links
to human users, and, in time, to propose repairs to human users.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Related work

The entity resolution problem is the problem of finding objects that represent the
same real-world entity. The entity resolution problem is included in data mining,
which is the “process of discovering useful patterns or knowledge from data” accord-
ing to [55]. These data include web pages, databases, pictures... Link mining is a
part of data mining, but restraints the process of knowledge discovery into data that
contains links, like bibliographic knowledge bases or social networks.

To find objects that represent the same real-world entity when those objects
are related to each other by links (like in bibliographic knowledge bases or social
networks) is both a link mining problem and an entity resolution problem. In the
general case, entity resolution problems often use a distance function or several
aggregated criteria in order to compare objects. In this work, we focus on objects
which are compared using symbolic values and not numerical values. Indeed, we
wish to mirror how a human expert decides whether two books were written by
the same person or not. Human experts express themselves with words (like “not
so much”), not with numerical values. Finally we adapt these methods in order to
detect and repair erroneous links in a bibliographic knowledge base like the Sudoc (a
French collective catalog containing document descriptions and person descriptions).
This is represented on Figure 1.1 page 20.

The SudocAd project [21] has the aim to predict which person description in
Sudoc already represents the author of a new document description. This is used
to link a new document description to the person descriptions that represent the
authors of the document. As we will see in Section 2.1.2, the SudocAd answers to a
link prediction problem (to predict links that will or should exist but do not yet).

Unlike SudocAd, we do not assume that existing links are reliable. On the

links that do exist and are erroneous. Detecting erroneous links is out of the scope
of the link prediction task.

However, we can represent those links with objects (contextual entities) and
compare them in order to detect which links should point at the same person de-
scription or at distinct person descriptions but do not. This transforms the problem

23
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of detecting erroneous links into the problem of detecting contextual entities that
represent a document from the point of view of a same real-world contributor. This
is an entity resolution task.

In this Chapter, we will first start by presenting link mining tasks according to
[31] in Section 2.1. Then, we will focus on entity resolution in Section 2.2.

2.1 Link mining tasks related to objects or links

Link mining is a part of data mining, but restraints the process of knowledge dis-
covery into data that contain links, like in bibliographic knowledge bases. |[31]
distinguishes three families of link-mining tasks:

e object-related tasks. Object-related tasks have the aim to find the objects
that are similar or closest to a particular object, or the most relevant objects.
Object-related tasks include link-based object ranking, link-based object clas-
sification, group detection and entity resolution. They will be detailed in the
following.

e link-related task. Link-related tasks have the aim to predict links that
should or will exist between two objects but do not already, and links that
should not exist but do. Link-related tasks only include link prediction ac-
cording to [31]. It will be detailed in Section 2.1.2.

e graph-related tasks. Graph-related tasks concern tasks centered around
graphs or sub-graphs ! and not centered around objects, links or object pairs.
They namely include the tasks:

« finding interesting or common sub-graphs (subgraph discovery [51] [44]);

« classifying a graph as or not as a representation of a concept (graph
classification [30] [49]).

In the following Chapters, we will use graphs as the structure containing objects
linked together by labelled edges. However, graph-related tasks are not relevant for
this thesis because they focus on comparing and detecting entire (sub)graphs but
the thesis’ objectives focus on links and objects contained in graphs. Indeed, we
focus on two research questions:

e identifying links that are erroneous and proposing repairs (link-related task).
A link connects bibliographic notice (document description) to authority notice
(person description) and represents the fact that the person represented by the
authority notice is supposed to have contributed to the document represented
by the bibliographic notice.

LA sub-graph of a graph G = (O, E) is a graph G’ = (O’, E') such as its object set O’ is included
into O and its edges set E’ is included into E.
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e identifying objects that are similar (object-related tasks). In our case, to
identify objects that are similar means to identify contextual entities that
represent documents from the point of view of a same real-world person who
has contributed to the document.

This is why we will detail only object and link-related tasks in this Section,
before focusing on the most relevant for us, in Section 2.2.

Let us detail link mining tasks related to objects or links. We will start with the
entity resolution task (Section 2.1.1) and the link prediction task in Section 2.1.2.
Then, we will define and detail the link-based object ranking task (Section 2.1.3),
the link-based object classification task (Section 2.1.4), and the group detection task
(Section 2.1.5).

2.1.1 Entity resolution

The entity resolution task consists in finding which objects correspond to a same
entity without determining apriori the considered entities, number of entities or how
many objects can refer to the same entities.

This can be interpreted as to identify contextual entities that represent docu-
ments from the point of view of a same real-world person that has contributed to
the document, which is one of the thesis research questions. The entity resolution
task will be further detailed in Section 2.2.

Positioning. Links can be represented by contextual entities, which correspond
to the document descriptions from the point of view of one of their contributors.
This allows us to adapt the entity resolution task in the aim of detecting contextual
entities that represent a document from the point of view of a same real-world person.
This problem corresponds to identify links that should point at the same person
description but do not and links that should point at distinct person descriptions
but do not. Detecting such links comes down to detecting erroneous links, so we use
the entity resolution task in order to detect erroneous links.

2.1.2 Link prediction

According to [31], the link prediction problem is the problem of detecting a link that
does not exist between two objects. Detecting links is based on links that already
exist, and sometimes also on object attributes [64|. For example, 64| predicts the
future participation of persons to events, and [54| predicts which persons will soon
be co-authors in a new article.

The SudocAd [21] project is a link decision problem adapted to the Sudoc biblio-
graphic knowledge base. It has the aim to help humans to decide which links should
be created in order to link a new document description to the already existing person
descriptions that represent the authors of the document.
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As we said in the beginning of Section 2.2, we distinguish ourselves from SudocAd
by not making the hypothesis that existing links are correct. Furthermore, we have
the aim to detect erroneous links, which are out of the prediction link scope.

2.1.3 Link-based object ranking

The link-based object ranking task uses the structure of the edges of a graph in
the aim of ordering the objects of the graph. This task is adapted to the web and
includes namely approaches of HITS [48] and PageRank [66]. Let us detail them.

PageRank [66] orders pages according to the rank of pages that cites them: the
more cited a page is by high-ranked pages, the higher its rank. Google has been
created in order to show that PageRank is relevant for web pages search. [42] [46]
allow PageRank to moderate the importance of a page with respect to the research
topic.

HITS [48] classifies the web pages in two types: the authorities (which are often
cited) and the hubs (which cite a lot of other pages). It has the aim to find web
pages relevant for a given topic (the authorities are more relevant than the hubs).
[6] [17] improve HITS by using web pages’ content in order to decide how much they
are relevant on a given topic. [61] [62] check the stability of both PageRank and
HITS when links are modified a bit.

Those approaches are adapted to the web in order to detect most important pages,
according to [80]. Several measures exist like centrality degree [29] (the centrality
degree of a page is the number of pages linked to it) or as the power centrality [12],
which focuses on importance of neighbourhood.

Other approaches are interested in objects linked to the same objects, like |45]
or [65]. They evaluate the similarity between two objects based on their shared
neighbours. [65] is used to improve the results of entity resolution methods based
on record comparisons. For example, an author is seen as linked to his co-authors. If
two authors have a close but not identical name and a lot of co-authors in common,
they must be the same.

We use the relationships between objects in this thesis work by the intermediary
of a criterion (named otherContributors) that compares common co-contributors
relationships instead of attribute(s) comparison.

2.1.4 Link-based object classification

Like the classic object classification, the link-based object classification 52| |75]
[59] has the goal to assign each object to a class already defined. The link-based
object classification distinguishes itself from object classification by using classes
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of neighbour objects in order to assign a class to an object. The interest of this
approach has been remarked by [16] and [63].

Unfortunately, this approach is not adapted to our Sudoc issue because we do not
make the hypothesis that we already know all the persons who wrote a document
represented in Sudoc: a person can be represented several times or not at all.

2.1.5 Group detection

The group detection task separates a set of objects into object groups (— object
classes) such that the number of groups has already been decided and objects in
a same group are close to each other but as far as possible from objects in other
groups. Two main kinds of approaches are available:

e approaches with a single type of links (links are all similar, with a single type
and without attribute).

e approaches based on the stochastic blockmodeling (from the Social Network
Analysis domain).

Approaches based on graphs containing only one type of links without attributes
are generally based on algorithms aggregating the graph’s vertices, or dividing the
graph. For example, we predefine the desired number of groups in the Spectral graph
partitioning |60] |74] | 78] approach, which removes the least possible number of edges
to get the desired number of groups in the graph. Others |[77] use the notion of “edge
betweenness” derived from the centrality notion (in Section 2.1.3 [29]): links with a
strong “edge betweenness” are progressively removed in order to obtain groups.

Like link based classification (in Section 2.1.4), this task is not adapted to our
Sudoc issues because we do not make the hypothesis that we already know the
number of persons who wrote a document represented in Sudoc.

The most relevant link mining task for us is the entity resolution task. Indeed,
we use entity resolution in order to predict links like SudocAd [21] (which is a link
prediction task) and to detect erroneous links. Let us position ourselves in entity
resolution approaches in the following Section.

2.2 Entity resolution

As said in Section 2.1.1, the entity resolution task consists in identifying objects that
represent the same real-world concept or entity. Those objects can be a bit different
because of changed information (a book edited twice with a distinct publication
date), missing information, misspeling (as “GuizoT, Léa” for “GuizoL, Léa”) or
incomplete information (“GuiZoL, L.” as appellation or “19XX” as publication date).
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On the contrary, some objects can seem similar but do not represent the same real-
world concepts (persons being homonyms for example).

The entity resolution [7] task is known under many names (entity resolution
[7], duplicate detection [11], coreference resolution [67], reference reconciliation |70],
fuzzy match [18], object identification [76], deduplication [71]|, approximate match
[34], entity clustering [28], entity matching [13], identity uncertainty [57] [69], merge /purge
[43], hardening problem |22|, record matching |47|, name disambiguation |73|, data
interlinking [82]).

In the following, we will present different approaches for solving the entity resolu-
tion problem in Section 2.2.1. Some approaches focus on how to divide data in order
to apply the chosen approach on a data set of a manageable size without missing a
comparison between objects that represent the same entity. Those approaches are
detailed in Section 2.2.2.

2.2.1 Approaches for entity resolution

In this section, we will go over several types of approaches for the entity resolution
task. Approaches for the entity resolution task often use constraints. A constraint
is a logical formula that should imperatively be respected.

Here are some constraints. We consider oy, 0, 03, objects to be compared.

e transitivity : if 0; & 09 and 0, &~ 03 then 0; =~ 03. This is used for similarity
propagation and canonization.

e exclusivity : if 0; & 0y then 07 % 03 (an object can match with only one other
object at most). This is used for record linkage.

e functional dependency : if 0; &~ 0y then o3 ~ 04 (the matching of two objects
can imply the match of two others). This can be used, for example, when
co-authorships are used to decide which objects represent a same person. In
this case, finding that two objects represent the same person can help to find
that two of their co-authors, who have close characteristics such as their name,
are in fact also a same person.

Those rules can be negatively derived (e.g : if 0; & 05 and 0y % 03 then 01 % 03).

Record linkage [81| proposes to fuse databases together without conserving sev-
eral objects that represent the same real-world entity. Each database is supposed
to be clean, i.e. without duplicates (two objects describing the same entity) in
it. Consequently, the exclusivity constraint (if two objects o; and o; represent the
same entity e, then there is not another object oy that represents this entity e) is
important, but can be bypassed [41].

The record linkage approach does not fit our problem because we search for
duplicates (contextual entities, which represent documents from the point of view
of a single real-world person) into a single database.
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Similarity propagation [27] [8]. A graph represents objects, the similarity rela-
tions between them and possible object merges already done. Objects that are the
closest pairwise are recursively merged, as long as it does not break a constraint,
until a predefined threshold is hit. Each time two objects o; and o; are merged, the
similarity relations involving o; or o; are updated.

Canonization is merging objects partially representing the same entity. Canoni-
calization aims to represent in the most possibly complete way the entity’s charac-
teristics. For example, [5] proposes an approach that, considering black box merge
and comparison functions for pairs of objects, constructs the canonical forms of the
represented entities from a set of objects.

The canonization and the similarity propagation approaches do not fit to our
problem because we do not want to aggregate duplicates, which are contextual
entities that represent documents from the point of view of a single real-world person
in our case.

Non-directed probabilistic approach. The non-directed probabilistic approaches
are based on Markov’s logic [72] [15]. According to [72], Markov logic simply adds
weights to first order logic formulas. The logic formulas are used to decide if two
objects represent the same entity. Each formula is associated to a weight (a real
number between 1 and 0) which allows to use flexible constraints®. The interest
of flexible constraints to constraints is that flexible constraints may not be verified.
The more weighty the flexible constraint is, the more important it is to satisfy it, but
it is not mandatory. The goal is to minimize the sum of the unsatisfied constraints’
weights.

Non-directed probabilistic approaches do not fit to our problem because they
use numerical weighted constraints. The approach for comparing contextual entities
has to reflect how human experts decide whether two contextual entities belong to
the same contributor. Experts can give contradictory appropriations according to a
criterion or another, and we do not wish to aggregate these comparison values.

The partitioning methods based on entity resolution do not need to prede-
termine the number of expected entities. A partitioning method allows us to divide
an object set O into subsets so that each object of O is in one and only one subset.
Those subsets are called classes. The classes set is a partition. The objects that are
in a same class represent the same entity.

Partitioning methods can generate many singletons (classes that contain only a
single object) and classes containing only a few objects.

We can distinguish three distinct approaches to partitioning based on entity
resolution: the hierarchical partitioning |9], the closest neighbour-based method
[19], and the correlation clustering |4] |1]. Let us talk about correlation clustering.

first-order logical formula + weight
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The correlation clustering [4| takes a graph with labelled edges. Some edges are
closeness edges (labelled +) and others are farness edges (labelled -). The result is
a partition of graph vertexes that minimizes the number of unsatisfied edges. An
edge is unsatisfied if it is a closeness edge between vertexes in distinct classes, or a
farness edge between vertexes inside a same class.

[2] improves on the approach of [4] by adding hard edges. Hard edges can be
closeness edges (labelled always) or farness edges (labelled never) and have to be
always satisfied in the final partition result. The number of unsatisfied smooth edges
(labelled - or +) is minimized like in [4]. [2| uses the transitivity constraint for hard
edges.

In this work, we will use partitioning semantics based on symbolic values that
improves on [4] by also accepting edges labelled neutral.

When a dataset is too large to fit in central memory, we call it a large dataset. If
that is the case, a lot of approaches presented here do not fit anymore because the
proposed algorithms process everything at the same time. In that case, data can
be split in reasonably-sized datasets in a way that does not influence the obtained
results. Let us see how to do it in the next Section.

2.2.2 Strategies for large datasets

When someone wants to apply an algorithm of entity resolution on a large dataset
O, this object set can be too large for the desired algorithm. In this case, we can use
blocking or canopy strategies in order to divide O into subsets which can be treated
one by one. Let us detail those strategies.

Blocks The blocking strategy consists in dividing the object set O into subsets
(called blocks) which will be treated separately. Each object of O is in one and only
one block. Once it is done, an algorithm that solves an entity resolution problem is
applied on each block. This implies that:

e the blocks can be treated in parallel, independently of each other [43];

e if two objects represent the same entity but are not in the same block, they
will not be detected. It is important to assume that each object is in the same
block as all objects that can refer to the same entity.

The blocking strategy is often based on a blocking function using a hash key
(for example, 3 first letters of the name of a person description). Objects are in the
same block if and only if they share the same key value.

Unfortunately, the method can be insufficient in order to obtain blocks of a man-
ageable size (the Sudoc contains 6423 document descriptions that have a contributor
named “Dupont”). It is possible to combine keys [58] [26] or to proceed by learning
a blocking function|[10].
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When the used algorithm for entity resolution is sensitive to the links between
objects, to decide that two objects represent the same entity in one block can affect
decisions in other blocks. The canopy strategy is a solution to this issue.

Canopy strategy A function is used to separate the object set O into subsets
called canopies. Contrary to blocks, canopies can share some objects.

[56] only compares objects that share a same canopy. [68] works under the
hypothesis that fusing two objects in a canopy can reveal the relevance of fusing
other object couples in the neighbour canopies. Two canopies are neighbours if
they share an object or more. In order to answer this problem, the solution is the
following;:

1. Enumerate all canopies on O@. Mark them as “to treat”.
2. Select a canopy ¢ which is “to treat”, mark it “treated” and treat it.

3. If there are some objects recognized as representing the same entity, fuse them
and mark the neighbour canopies as “to treat”.

4. Return to step 2 until there are no more canopies “to treat”.

Positioning In our approach, the Sudoc is divided into subsets which can overlap,
like canopies. To find an erroneous link in a canopy can be helpful to find other
erroneous links in neighbour canopies because documents that share a contributor
are likely to share another contributor, especially if they have the same name. This
will be represented by a criterion in Chapter 4. Adding the process of [68] to our er-
roneous link detection process will allow us to fully use co-contribution relationships
in a future development.

Let us detail the approach in the following Chapter.
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Chapter 3

Approach

The Sudoc! has been a French collective catalog managed by ABES (French Bib-
liographic Agency for Higher Education) since 2001. It contains around 10 mil-
lion document descriptions (called bibliographic notices) and person descriptions
(called authority notices). Bibliographic notices are linked to some authority no-
tices by links. Those links represent the fact that a person is supposed to have
contributed to a document, as an author or illustrator for example. Sudoc notions
will be detailed in Chapter 4.

In this Chapter, we will detail the real-world problem for librarians using Sudoc
in Section 3.1. Then we will propose our approach to solve this problem in Section
3.2.

3.1 Issue in Sudoc

Everything starts with a librarian who has a book on his table, and must reference it
in the Sudoc database. Indeed, one of the most important tasks for ABES experts
is to reference a new book in Sudoc. To this end, the expert has to register its
title, number of pages, type of publication domains, language, publication date, and
so on, in a new bibliographic notice. This new bibliographic notice represents the
physical book that the librarian is registering. (S)he also has to register the persons
who participated in the book’s creation (namely the contributors, which includes
authors, illustrators, translators, thesis advisor and so on).

In order to do that, for each contributor, (s)he selects every authority notice
(named candidates) that has a name and surname (called appellation) similar
to the book contributor. Unfortunately, there is not much information in authority
notices because the librarians’ policy is to give minimal information, solely in order
to distinguish two authority notices that have the same appellation, and nothing
more. So the librarian has to look at the bibliographic notices that are linked to

'A public audience version of Sudoc is  available on  the  website
http://en.abes.fr/Sudoc/The-Sudoc-catalog.
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the authority notice candidates (the bibliography of candidates) in order to decide
whether the book at hands seems to be part of the bibliography of a particular
candidate. If it is the case, (s)he links the new bibliographic notice to this candidate
and looks at the next unlinked contributor. If there is no good candidate, (s)he
creates a new authority notice to represent the contributor.

Let us illustrate this on Figure 3.1.

Input of the unlinked
contributor’s appellation Authority notices with
a close appellation and
their bibliographies

Bibliographic notice with
an unlinked contributor

Influence on Link decision based on
future link decisions existing links

A new link

Figure 3.1: Linkage of a new bibliographic notice

This task is fastidious because it is possible to have a lot of candidates for a
single contributor (as many as 27 for a contributor named “BERNARD, Alain”).
The SudocAd project [20] proposes a decision support system to assist librarians
to choose authority notices. However, the SudocAd project relies on the hypothesis
that the existing data in the Sudoc are clean, and namely:

1. there are no distinct authority notices describing one real-world person,

2. each contributor’s name in a bibliographic notice is linked to the “correct”
authority notice, and

3. for each bibliographic notice and authority notice, there are no mistakes bigger
than misspellings in its attributes’ values .

Unfortunately, some persons are represented by several authority notices and
there are already link issues in Sudoc. To create new links based on existing erro-
neous links creates errors, which in turn can create new errors since linking is an
incremental process. So we release hypotheses 1 and 2 and focus on erroneous link
detection. This will allow us to evaluate the quality of contributor links in Sudoc
and improve it. Let us explain our approach in the following Section.
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3.2 Approach: to detect and repair erroneous links
in Sudoc

In order to help experts to repair erroneous links, we propose a method for the de-
tection and the repair of links between authority notices and bibliographic notices.
The Figure 3.2 presents a schema of the method, and indicates which part is detailed
in which Chapter. This method is summed up in Figure 3.2 and presented in |24].
This method is a way to answer the Research Question presented page 16: “ How to
detect and repair erroneous links in a bibliographic knowledge database using quali-
tative methods?”. There are four steps represented on Figure 3.2. Let us detail them
step by step.

Sudoc subset Criteria set

= +
contextual entities set Partitioning semantics

1
Selects

Chapter

Basic notions

Sudoc + appelation
. ChﬂPtE:l:

Parritioning semanrics

Calculates
2

Best partitions values
Repaired partition

Chapter
Chapter Partitioning semantics 3 -
Repair algorithms ;{?"'T?Pﬂre-g _l’l'f'fﬁ?
4 If "Yes" imitial partition

repans Are there erroneous links?

Yes/Mo

Figure 3.2: General approach

3.2.1 Step 1: finding a Sudoc subset

Step 1 consists in encoding links between authority notices and bibliographic notices
as contextual entities, which correspond to a document from the point of view of
one of its contributors, as it is detailed in Chapter 4 and [24][37]|. The appellation of
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a contextual entity corresponds to the appellation of the “represented” contributor.
Step 1 also selects a Sudoc subset related to an appellation, i.e. a subset of contextual
entities that have a similar appellation, because we assume that only contextual
entities with a very similar appellation can represent documents from the point of
view of the same real-world person (Work Hypothesis 5 page 18). This implies that
there is no risk for a bibliographic notice to be linked to an authority notice that has
an appellation very dissimilar to the appellation of the true contributor. So there
is no need to look for contextual entities with dissimilar appellations that represent
the documents from the point of view of a same real-world person.

A Sudoc subset related to an appellation A is the set of contextual entities
representing a link between an authority notice that has an appellation close to A
and any bibliographic notice (please see Section 4.1.5 page 47 for details). This step
1 (in Figure 3.2) gives us a set of contextual entities that is denoted Q. Each Sudoc
subset is a canopy because Sudoc subsets can overlap each other (please see Section
2.2.2 page 30 for further details about canopies).

We assume that the persons who have very similar names and have contributed
to very similar documents must be the same real-world person (Work Hypothesis 2
page 17), and, that dissimilar documents must have dissimilar contributors (Work
Hypothesis 3 page 17).

Two contextual entities can be compared together with (symbolic) criteria in
order to decide whether they represent documents from the point of view of a same
real-world person. A symbolic criterion is a function that compares two objects and
returns a symbolic comparison value, as detailed in Section 4.2.1 page 48. Criteria
are used to decide if compared contextual entities represent a same real-world person.

Criteria and contextual entities are related to Sudoc data and are detailed in Chapter
4 and [40].

3.2.2 Step 2: finding the best partitions’ values

Contextual entities that are supposed to represent documents from the point of
view of a same real-world person are grouped together in order to detect which links
are supposed to point to the same authority notice: we create a partition on the
considered contextual entity set. A partition on an object set O is a set of subsets
(= classes) of O such that each object 0 € O is in one and only one class. Each class
has to contain at least one object.

According to a partition P, two contextual entities must represent two documents
with a common contributor (or two links pointing to the same contributor) if and
only if they are in the same class of P.

Unfortunately, criteria are not always sufficient to decide whether two objects are
similar, because one can answer “yes” and another “no”. Indeed, information given
by a specific criterion can be unsuitable for the specifically considered object set.
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id title date  domain appellation 8)8)
Ney “Letter to a Christian nation” religion “HARRIS, Sam” 1
Necy | “Surat terbuka untuk bangsa kristen” “2008”  religion “HARRIS, Sam” 1
Necg | “The philosophical basis of theism” — “1883”  religion “HARRIS, Sam” 1
Ncy “Building pathology” “2001”  building “HARRIS, Samuel” 2
Ncs “Building pathology” “1936” building “HARRIS, Samuel” 2
Necg “Aluminium alloys 2002” “2002”  physics “HARRIS, Samuel” 2

Table 3.1: Example of contextual entities

That is why we propose two partitioning semantics that give a partition value
to any partition on O according to the considered criterion set C. A partitioning
semantics evaluates the partitions and gives them a partition value. This allows
to compare partitions in order to decide which one is the best. Those semantics are
detailed in Chapter 5 and presented in [38|.

3.2.3 Step 3: detecting erroneous links by comparing parti-
tions

In order to detect erroneous links, we need to define two particular partitions: the
human partition and the initial partition on an object set.

The initial partition represents which contributors of which books correspond to
a same real-world person according to Sudoc data before erroneous links detection.
On the contrary, the human partition represents which contributors of which books
correspond to a same real-world person after erroneous links detection according to
a human expert.

Definition 1 (The initial partition, denoted Pi). is the only partition deduced from
Sudoc such that two contextual entities Nc; and Nc; are in a same class if and only
if Na(N¢;) = Na(Nc;): they were created to represent links pointing at the same
authority notice.

Example 3 (Initial partition). Let us represent an object set @ = {N¢y, Necg, Nes,
Ney, Nes, Negh in Table 1. Each object is a contextual entity, representing a Sudoc
link between a bibliographic notice and an authority notice. Id is the contextual entity
identity. For each Nc¢; of them, the appellation is the C(Nc¢;) appellation and the
ppn is a way to identify Na(Nc;).

C(Ncy) and C(Ncy) represent the same person, as C(Necyg) and C(Ncs) do.
The initial partition on Q is the partition that puts contextual entities together if
and only if their C contributor ppn is the same. It is: Pi = {{Ncy, Ncg, Nes},
{Necy,Nes, Neg}}

Definition 2 (The human partition, denoted Ph). is the perfect partition according
to a human expert: two contertual entities are in a same class if and only if the




38 CHAPTER 3. APPROACH

human expert believes that their C contributor corresponds to a unique real person
in the real world. If the human partition Ph is not the same partition as Pi, it
means that there is a link problem in Sudoc according to the expert who made Ph.

Example 4 (Human partition). Let us give the human partition, (determined by
an expert), on the object set Q presented in Example 8 and in Table 3.2.3. This
partition is: Ph = {{Nci,Nco}, {Necs}, {Ncy, Nes}, {Neg}} because C(Ney) and
C(Neg) represent a same real-world person, as C(Necy) and C(Ncs) do.

Partitioning semantics are used to find the best partition values (step 2 in Figure
3.2) and to compare partitions together in order to find the most suitable to real-
world (step 3 in Figure 3.2). The partitioning semantics are detailed in Chapter 5
and [38][39]. We make the Work Hypothesis that the human partition Ph is a best
partition, and that the initial partition Pi is a best partition if and only if Ph is P
(Work Hypothesis 7 page 20). This Work Hypothesis allows us to detect erroneous
links by comparing the initial partition value to the best partition values.

If the Work Hypothesis 7 is true, detecting link issues in a Sudoc subset comes
down to:

e construct contextual entities of the Sudoc subset,

e evaluate the initial partition on those contextual entities (please see the initial
partition of a Sudoc subset in Example 3),

e calculate the best partition values on those contextual entities.

The Sudoc subset has a link issue if and only if the initial partition value is not in
the best partition values.

In Chapter 7, we used this Work Hypothesis 7 on a real Sudoc sample [40]. We
also evaluated scalability of algorithms used to find all best partition values [38] [35].
Finally, we investigated on how criteria and Sudoc data can influence results [36].

3.2.4 Step 4: repairing erroneous links

However, detecting link issues in Sudoc is not enough to help experts to improve
the quality of links. That is why we propose in Chapter 6 algorithms that take the
initial partition and a best partition value and returns a partition close to the initial
one, but with a best value (step 4 in Figure 3.2). This partition is a proposition of
link repairs in Sudoc and is based on the hypothesis that the human partition has
a best value (Work Hypothesis 7 page 20).

We presented the global approach of detecting and repairing links in a bibli-
ographic knowledge base. This approach is adapted to the Sudoc bibliographic
knowledge base. We will now detail Sudoc notions in the following Chapter.



Chapter 4

Basic notions

The Sudoc is a bibliographic knowledge database. It is used to put together the
catalogues of French universities libraries.

The Sudoc contains around 10 million document descriptions (named biblio-
graphic notices) and 2 million person descriptions (named authority notices).
When a person has contributed to a document, there is a contributor link between
their descriptions. Contributor links are abusively named links in the reminder of
this document, unless specified otherwise.

For each contributor link, we create a contextual entity representing it. Those
contextual entities are compared to each other to detect erroneous links in order to
repair them, as it has been explained in Chapter 3. Criteria used to compare them
are defined and detailed in Section 4.2. Let us start by defining and formalising
Sudoc notions.

4.1 Formalization of Sudoc

In this Section, we present the formalization of Sudoc notions. Several formalizations
of Sudoc are curently available, as explained in Section 4.1.1. We present the way
we formalised authority notices (Section 4.1.2), bibliographic notices (Section 4.1.3)
and links between them (Section 4.1.4) before defining interesting Sudoc subsets
(Section 4.1.5).

4.1.1 Several Sudoc formalizations

In this Section, we will present 3 versions of Sudoc: the original MARC version, the
RDF(S) version used by the SudocAd project, and the n-triples version used in this
thesis.

MARC version. The Sudoc is initially coded in the MARC language (Sudoc
MARC version). Sudoc MARC version is available for non-specialists on the Inter-
net, as we will see in the following Section, but there is less data available when using

39
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the web interface. An example of a bibliographic notice in Sudoc MARC version is
shown on Figure 4.1.

001 0192122622@

010##5a0-19-212262-28dE12.95@

020##5aUSEb59-12784@

020##5aGBEbbS920618@
100#45a19590202d 19598 ||y Oengy0 1 03###ba@

101 1#$aengbcfre@

102##5aGBSben@

105## baac##H#000ay @

2001#8a{NSB) The {NSE}lost domain$falain-Fournier$gtranslated from the French by Frank
Dawisonfgafterword by John Fowles§gllustrated by lan Beck@

210## 5 aOxfordSe Oxford University Press§d1959@

215##baz, 258p,10 leaves of plates§cill, col port$d23cm@
311##8aTranslaton of Le Grand Meaulnes. Pans : Emile-Paul, 1913@
454#1$1001db1402035150010$a{NSE} Le {NSE)} Grand Meaulnes§1700#05aklain-Fournier$f1886- 1914$1210##8aP arisfcEmile-Paul§d191 i@
500108a(NSB) Le (NSE) Grand Meaulnes$mEnglish@
606##baFrench ficnon$2lc @

6768452843/ 9126v19@

680##5aPQ2611.085@

700#0$ahlam-Fournier $f1886-1914@

T02#18aDavison, SbFrank @

301#05aUK b WEMT0ASC 195902028 A ACR2@

987008allov. 1959/209@

Figure 4.1: Representation of the book “ Le Grand Meaulnes” by “FOURNIER, Alain”
in Sudoc MARC version [3]

RDF(S) version. In the context of the SudocAd project [21], the Sudoc data has
been translated into an RDF(S) version. RDF is a knowledge representation and
reasoning language that is based on triples. Each triple contains an object, a predi-
cate and a subject. The predicate is a property of the object that has the subject as
value. It can be represented as an oriented graph such that: the nodes correspond
to the objects and the subjects; and the edges are labelled by the predicates. In
order to distinguish the object from the subject, edges are oriented from the subject
to the object.

The Sudoc RDF(S) version is visible with the Cogui interface [3| as a graph. Let
us look at an example of a bibliographic notice visualized with Cogui in Example 5.

Example 5 (A bibliographic notice in RDF(S) version). Let us consider a bibli-
ographic notice visualized with Cogui on Figure 4.2. In the following paragraphs,
letters between parentheses like (A) refer to a node or an edge on Figure 4.2.

The object “"083396462” (A) has a property “has_proper_title” (B) that
has “Title : *” (C) as value. The object “Title: " (C) has the property
“value” (D) which has the value “Anglais LP” (E). We can deduce that the bib-
liographic notice of Id “083396462” represents a document that has the title “Anglais
LP” because the properties “has_proper_title” (B) and “value” (D) link the
bibliographic notice to the title of the described document.
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We can obtain the publication date of a bibliographic notice by following the
properties “was_produced_by (2) : *” (F), “has time-span” (H), “is
identified by (2)” (J) and “value” (L) in the same way as we did for the
title. This allows us to deduce that the bibliographic notice of Id “083396462” repre-
sents a document that was published in “1990”.

We can deduce that the bibliographic notice of Id “083396462” represents a docu-
ment that was published in 1990 and has “Anglais LP” as title, and we need 6 triples
(1 per predicate) to extract this piece of information.

Type

Jication nationale)
(A) ld=ppn

Manifestation_Product_Type : hktp:|wawisudoc. abes .Fl'fres’ourcasfppr@:;%‘tf?b

m
W

Carrier_Produgtion_Event ; *

@)

¥
has_note_200

26996/id

should: carry

htkg: w3 ol

(H)

Self-Contained: Expression : * !

Ny

Publication_Expression;Linguistic Object | *

o]
D
(K)
(M) publication date
——

/ Q Predicate

‘ http:waw.w3.org,f-ZU[JlﬁmLSchema#gTea(1990 D

LI LR o

Figure 4.2: RDF version of Sudoc visualized with Cogui

N-triples version. The formalization of Sudoc (in n-triples language, which is
also a RDF format) used in this thesis is based on the RDF version. It also uses
triples but the data are simplified, as we can see in the following Example 6.

Example 6 (A bibliographic notice in n-triples version). We saw in Ezample 5 that
6 triples were required to extract the following information: there is a bibliographic
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notice of Id “083396/62” that represents a document published in 1990 under the
title “Anglais LP”.

It requires only 3 triples in the n-triples version of Sudoc, as shown on Figure

4.3,

ld=ppn
<ncZ217Ty» «aPourPPHBE> MQE33S8646" .

<nc2l7?> <aPourTitre® ' . litle
<nc?2l7> <aPourDatePubli> g

publication date

Figure 4.3: n-triples version of Sudoc

Let us detail the formalization of Sudoc notions.

4.1.2 Person descriptions (authority notices)

The descriptions of persons are named authority notices, denoted Na, and the j
authority notice is denoted Na;. Authority notices have several attributes:

e the unique Id of the authority notice (the ppn).

e the list of appellations, i.e. names and surnames that can refer to the real-
world person.

e sometimes the dates of birth and death.

e the textual descriptions of one or several documents for which the authority
notice has been created. The bibliographic notices corresponding to those
documents are named the sources of the authority notice.

Example 7 (A authority notice). Let Na; be the Sudoc authority notice available
on the web in Figure 4.4. This Figure represents the MARC version of Nay such as
we can see it on the web, as explained in Section 4.1.1.

We see this Na, as the authority notice with the following attributes:

e ppn: “168603004”
e appellations: {“LEROUX, Alain”}

e birth date:
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T
: auteur d'une thése de pharmacie)

168603004
Lien permanent
Motice de type
Personne

Forme retenue

- B
(Leroux, Alain)(19..-.... ; auteur d'une thése de pharmacie)

—— first appelation
Information

Langue d'expression : Francais
Pays : France e
Date de naissance ¥ 79 _‘"j.
Sexe : mascuiin e

birth date (20th century)

Motices bibliographiques liées

N

(1) éléments
Tout voir
Répartition:
o 1 Auteur

o 053729927 TECHNIQUES DE PROMOTION ET DE DYNAMISATION DES VENTES Leroux, Alain (19..-.... ; auteur d'une thése de pharmacie) / [s.n]/ 2000

Source

'_‘f_e_:cﬁ;\ques de promotion et de dynamisation des;e_ﬁ_i_e:éJAIain Leroux; sous la direction de Alain Picard, 2000. - Thése d'exercice : Pharmacie : Amiens : 2000

» ~ source title

Utilisation dans Rameau
Lavedette peut étre employée dans une vedette RAMEAL
Lavedette ne peut s'employer qu'en téte de vedette
Lavedette n"admet pas de subdivision géographique

Informations sur la notice

Identifiant de la notice : (68603004 > PPN
Derniére modification : 08-04-2013 318 h 18

Figure 4.4: An authority notice according to Sudoc web-version

e death date: none

e source: “Techniques de promotion et de dynamisation des ventes / Alain Ler-
ouzx ; sous la direction de Alain Picard, 2000. - Thése d’exercice : Pharmacie
. Amiens : 20007

We can compare it with the web-version of this authority notice shown on Figure
4-4
4.1.3 Document descriptions (bibliographic notices)

The descriptions of documents are called bibliographic notices, and are denoted
Nb. We use the notation Nb; to refer to the ¢ bibliographic notice. A bibliographic
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notice contains several attributes: the unique identifier of the authority notice (ppn),
the title.the publication date, the list of the publication domain codes and the
publication language codes. Let us explain these codes before giving a bibliographic
notice Example.

The language codes are composed of three letters, this refers to a single lan-
guage, like “eng” for English language.

The domain codes correspond to the codes of Rameau key-words. Rameau is an
indexing language used to annotate the‘document descriptions of French libraries'.
Domain codes are simplified to keep only the domain (as “informatics” instead of
“knowledge representation” for example). This simplification can explain the differ-
ence between the information about the domains in the Sudoc MARC version and
in our Sudoc formalization. In our formalization and RDF(S) version of Sudoc, the
domain codes are a string of 3 digits. Let us see an example of two bibliographic
notices.

Example 8 (A bibliographic notice). Let us detail the attributes of two Sudoc bib-
lrvographic notices. Let Nbyy be the Sudoc bibliographic notice available on the web
on Figure 4.5. This Figure represents the MARC version of Nby; such as we can
see it on the web, as explained in Section 4.1.1.

We see this Nbyy as the bibliographic notice with the following attributes:

e ppn: 053729927

title: “Techniques de promotion et de dynamisation des ventes”

publication date: 2000

list of publication domain codes: {}

publication language: “fre” (which is the code for French language).

We notice that Nbyy misses its “list of publication domain codes” attribute. Miss-
ing or incomplete attributes are common. Let Nbiy be the bibliographic notice with
the following attributes:

o ppn: 041490975
o title: “Chan et poésie chez un auteur contemporain : Zhou Mengdie”
e publication date: 1993

e list of publication domain codes: {800} (800 is the domain code that means
“Ulitterature”)

!The National French Library (BNF) presents this language on the web site:
http://rameau.bnf.fr/ (in French language).
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Identifiant pérenne http://www.sudoc.frRf05372992 PPN

de la notice :

Titre = TECHNIQUES DE PROMOTION ET DE DYNAMISATION DES VENTE =
T DS VENIE
ALAIN LEROUX ; SOUS LA DIR. DE ALAIN PICARD title
Mémoire ou thése (version d'origine)

Alphabet du titre : latin role

Auteur(s) : Leroux, Alain (19..-.... ; auteur d'une thése de Dharmacie].@?

Langue(s) : ancais> publication language

Pays : France

Editeur(s) : [5.l.] : [s.m.], 2000

Num. national de thése : 2000AMIEPD22

Thése : Thése d'exercice : Pharmacie : Amiens : 2000

Sujets : PHARMACIE : DRO
MERCHANDISING
OFFICINE
MARKE TING
PUBLICITE

PRIX

Lien(s) externe(s)
Worldcat : 490650971

ECONOMIE. SOCIOLOGIE

domain key words

PICARD, ALAIN =% r de thése \

contributors

Figure 4.5: A bibliographic notice according to Sudoc web-version

e publication language: “fre” (which is the code for French language).

The Example 8 does not show the authors of the documents represented by the
bibliographic notices Nbyj; and Nbys. This piece of information is not available by
the attribute values of bibliographic notices but is represented by a link between a
bibliographic notice and the authority notice that represents the real-world person
supposed to have contributed to the creation of the document as an author. We

detail it in the next Section.

4.1.4 Links and contextual entities

A link represents the fact that the real-world person represented by the authority
notice is one of the contributors? of the document represented by the bibliographic

2A contributor of a bibliographic notice is a person who has participated to the creation of the

document described by this bibliographic notice.
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notice. The contributor links are labelled by the role of the contributor: author,
illustrator and so on. Let us see the example of a link.

Example 9 (A link). The person “LEROUX, Alain” represented by the authority
notice Nay of Example 7 wrote the thesis “Techniques de promotion et de dynami-
sation des ventes” represented by the bibliographic notice Nbyy of Fxample 8. This
information 1s represented in Sudoc by a link labelled “author” from Nby; to Nay.
In other words, there is an “author” link between Nbyy and Nay.

We choose to see Sudoc bibliographic notices from a contributor’s view point.
A contextual entity represents a bibliographic notice from the view point of one
of its contributors. Let us consider a particular contributor called the C' contrib-
utor. The contextual entity k£ is denoted N¢,. A contextual entity explicitates
a contributor link from Sudoc. A contextual entity possesses all the attributes of
its bibliographic notice (title, publication language, publication date, publication
domain), and five other attributes depending on the C' contributor:

e appellations: the appellation list of the authority notice that represents the C'
contributor.

e role: role of the C' contributor.

e other contributors: the list of the authority notices which represent all the
contributors of the bibliographic notice but not the C contributor.

e the source label is present if and only if the bibliographic notice is the source
of the C contributor. In this case, the contextual entity is a source. Otherwise,
the source label is absent.

e the date of birth of the C contributor is present if the contextual entity is a
source (i.e. if the source label is present).

We make the hypothesis that a contributor link represented by a contextual
entity may be wrong, unless the bibliographic notice is the source of the authority
notice (Work Hypothesis 4 page 17). This is why we choose to consider “date of
birth” as a contextual entity attribute only if this contextual entity is a source. We
denote sources(Na;) the list of the contextual entities N¢, that represent a link to
Na; such as N¢y, is a source.

Example 10 (The attributes of a contextual entity). Let us take the link between
the authority notice Nay and the bibliographic notice Nbyy presented in Examples 7
and 8. There is an “author” link between them as shown in Example 9. We construct
the contextual entity Ncoy that represents this link. Ncoy'’s attributes are:

o title: “Techniques de promotion et de dynamisation des ventes”

e publication date: 2000
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list of publication domain codes: {}

publication language: “fre”

appellations: {“LEROUX, Alain”}

role: “author’.

other contributors: {(“PICARD, Alain”, as “thesis advisor”)}

source (because the source of Nay matches with Nbyy.)

date of birth: 1929

Later, we will denote: cc(N¢;), the C contributor of the contextual entity Nc¢;;
Nb(N¢;), the bibliographic notice from which N¢; was created; and Na(N¢;), the
authority notice from which N¢; was created and which corresponds to the authority
notice that represents cc(N¢;). The Example 11 illustrates these notations.

Example 11 (An contextual entity). Let us consider the contextual entity Ncgy de-
fined in Example 10. This contextual entity was created with the aim of representing
the link between the bibliographic notice Nbyy and the authority notice Na:

e Na(Ncy1) = Nay (Nay represents cc(Neay)),
L4 Nb(NCQl) = Nbll; and

e sources(Nay) = {Nca }.

4.1.5 Interesting Sudoc subsets

We explained in the previous Section how we viewed Sudoc data as contextual
entities. Let us now explain how we select the relevant Sudoc subsets.

First, we select some contextual entities based on the appellation of their authority
notice representing the C' contributor. To this aim, an appellation (appellation A)
is first chosen when working on contextual entities (“ CHRISTIE, A.” for example).

All authority notices that could represent a person named A are selected (for ex-
ample, the authority notices with “ CHRISTIE, A.”, “CHRISTIE, Agatha” or “CHRISTIE,
Adam” in their list of appellations attributes are selected for the appellation “ CHRISTIE,
A”). This is a service provided by the ABES. This service uses the same function
as the one that is used to select authority notices when a librarian wants to link
the contributor of a new bibliographic notice to an authority notice (described in
Section 3.1 page 33).

Each contributor link between a selected authority notice and any connected
bibliographic notice is retrieved. Contextual entities that represent such a link are
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selected and form the Sudoc subset related to the appellation A (for example,
the Sudoc subset related to “CHRISTIE, A.”).

Librarians use the appellation attribute of authority notices to select the au-
thority notices that might represent the contributor of a document. We use the
appellation attribute in order to select a Sudoc subset that contains bibliographic
notices that might share the same real-world person as their C' contributor. We make
the hypothesis that only the authority notices with a close appellation can represent
a same real-world person (Work Hypothesis 1 page 17). As a consequence, only
contextual entities with a close appellation can share the same real-world person as
their C' contributor (Work Hypothesis 5 page 18).

Once obtained, the Sudoc contextual entities are compared with respect to sym-
bolic criteria in order to know if their C' contributors might be the same real-world
person. The approach will be detailed and contextualised in Chapter 3. We will
now detail the criteria that are used in order to determine if two contextual entities
share the same real-world person as their C' contributor.

4.2 Criteria to detect link i1ssues in Sudoc

As explained in Section 3.2 page 35, contextual entities are compared together in
order to group contextual entities that represent a bibliographic notice from the point
of view of a same real-world person that contributed to the described documents.
Contextual entity groups are made according to a partitioning semantics (detailed in
Chapter 5). These partitioning semantics use symbolic criteria in order to compare
contextual entities.

Symbolic criteria are formally defined in Section 4.2.1 before presenting the ac-
tual criteria used to compare Sudoc contextual entities in Section 4.2.2.

4.2.1 Symbolic criteria

In order to detect erroneous links in Sudoc, we would like to partition a bibliographic
notice set with respect to several criteria. In the general case, we would like to
partition an object set @ with respect to a criterion set C = {C4, ..., C,, }.

In the general case, a criterion C; € C is a function that gives a comparison
value for any couple of objects in @ x Q.

The comparison value is discrete, in a partially ordered set V = {never} UV}%T U
{neutral} UV U {always}, where:

close

e never and always mean that the objects are strictly different (respectively
identical).

e neutral means that there is not enough information about the objects or the
information is meaningless.
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o Vfcgw and V¢ _ are two totally ordered value sets (<) of values giving a farness

degree (respectively closeness degree) between objects. We denote VfC(;T =
{—,——, ...} (respectively V.¢ = {+,++,...}) the sets of farness (respectively
closeness) values of the criterion C' such that neutral < — < —— < ... < never
(respectively neutral < + < ++ < ... < always). a < b means that b is
stronger or more intense than a: if a,b € V.5 . two objects are more similar
according to C' if their comparison value is b than if it is a. Respectively, if
a,b e Vf?”,, two objects are more dissimilar according to C'if their comparison

value is b than if it is a.

never, always and neutral values are common for all criteria, but V¢ _ and Vfgr
are specific to the criteria named C.
Let us formally define the used criteria.

Definition 3 (Symbolic criterion). Let @ be an object set. A criterion C is a couple
(ec, Vo) such as:

e Ve is a set of comparison values: Ve 2 {never} U V[, U {neutral} UV, U
{always} and Ve C VF, UVE...

e < is totally ordered relation on {never} UV, U {neutral} and {neutral} U
Ve . U{always} sets.

close

e cc is a binary operation, commutative on Q, which takes its results in Ve.

We represent by C the set of all possible criteria, and C C C the subset of the
criteria of interest.

A criterion can be a closeness-criterion (Definition 4), a farness-criterion
(Definition 5) or both closeness and farness-criterion depending on the comparison
values it can give. A closeness-criterion c¢ is a criterion that can give a closeness
or always comparison value to two objects. A farness-criterion is a criterion that
can give a farness or never comparison value to two objects. This notion will be
important later in Chapter 7.

Definition 4 (Closeness criterion). A closeness-criterion C is a criterion that can
give a closeness or an always comparison value to two objects: Vo N (VS . U

{always}) £ {).

Definition 5 (Farness criterion). A farness-criterion is a criterion that can give a
farness or a never comparison value to two objects: Vo N (Vf,, U {never}) # {}.

Let us detail the criteria developed and used to compare contextual entities in

Sudoc.
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4.2.2 Criteria used to compare contextual entities

We developed and implemented nine criteria in the aim of comparing contextual en-
tities together. We use symbolic criteria over numerical criteria in order to compare
contextual entities because:

e Criteria model how an expert compares contextual entities. Criteria are based
on one or several attributes of contextual entities.

e Experts can explain that, according to an attribute set, contextual entities
seem “more or less” to represent documents from the point of view of a same
real-world person, but

e We do not know how much the “more” according to an attribute set is more
important than the “less” according to another attribute set, except when they
are absolutely certain (which is represented by the comparison values always
and never).

e Consequently, we do not wish to aggregate comparison values as we can do
with numerical values, so used comparison values are symbolic.

Each of these nine criteria has been discussed with ABES experts. Four of
them are derived from the SudocAd project 21| (appellation, date, title, domain)
that aims to predict a link between a new bibliographic notice and the authority
notices already in Sudoc (that represent the new bibliographic notice contributors,
as explained page 34). Each criterion will be illustrated by an example comparing
the contextual entity Nco; defined in Example 10 and the contextual entity Nboy of
the Example 12.

Example 12 (A contextual entity to be compared). The bibliographic notice Nbio
described in FExample 8 is linked to the authority notice Nay which has 168603160
as ppn. Let us present all the attributes of the contextual entity Nboo that represents
this link:

o title: “Chan et poésie chez un auteur contemporain : Zhou Mengdie”
e publication date: 1993

e list of publication domain codes: {800} (800 is the domain code which means
“Ulitterature”)

e publication language: “fre” (which is the code for French language).
e appellations: {“LEROUX, Alain”}

e role: “author”.
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e other contributors: { (027073920, as “thesis advisor”), (“PIMPANEAU, Jacques”,
as “thesis advisor”)}

o source? “yes” (because the source of Nay matches with Nbys.)
e date of birth: 197%

Some of the proposed criteria are farness-criteria (thesis, thesisAdvisor, date,
appellation, language), closeness-criteria (title, otherContributors), and others are
both (role, domain). Criteria may use one or several attributes in order to compare
contextual entities. Each of those criteria gives the neutral comparison value when a
required attribute of a compared contextual entity is unknown. First we will present
farness-criteria, then closeness-criteria and finally criteria that are both farness and
closeness criteria. In the following criterion descriptions, only the cases with a not
neutral comparison values are specified. Let N¢;, N¢; be two contextual entities.

Farness-criteria

e The appellation criterion is a particular farness-criterion. Indeed, it compares
appellation lists to determine which contextual entities cannot have a same C' con-
tributor. When it is certain (as when appellations are “CONAN DOYLE, Arthur”
and “CHRISTIE, Agatha”), it gives a never comparison value, that forbids other
criteria to compare the concerned authority notices together. It is based on the
comparisons used in the SudocAd project |21]| in order to compare family names
and surnames. This criterion is distinct from the function that is used to select
Sudoc subsets related to an appellation defined in Section 4.1.5.

Example 13 (appellation criterion). Let us compare the contextual entities Nco
and N coo defined in Examples 10 and 12. The appellation attribute of Ncoy is exactly
the appellation attribute of Ncgg: {“LEROUX, Alain”}, so appellation(Ncey, Ncog) =
neutral.

e The date criterion is a farness-criterion. For 100 (respectively 60) years at least
between the publication dates, it gives —— (respectively —) comparison value.

Sometimes, the publication dates are not years but decades or centuries. This
is why the publication dates are compared not as numbers but as intervals. For the
date criterion, the minimal distance between the compared date-intervals is the one
that matters.

Example 14 (date criterion). Let us compare the contextual entities Ncoy and N cao
defined in Examples 10 and 12. appellation(Ncay, Negg) = neutral according to
Ezample 13 so we can compare date attributes. The publication date of Ncoy s
“2000” and the publication date of Ncog is “1993” so there are 7 years at most
between the publication dates and date(Ncoy, Neog) = neutral.
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e The language criterion is a farness-criterion. When publication languages are
distinct and none of them is English (“eng” code) or undefined (“und” code), language
returns — value, and in other cases, neutral value.

Example 15 (language criterion). Let us compare the contextual entities Ncoy and
Negy defined in Examples 10 and 12. appellation(Nca1, Ncog) = neutral according
to Example 13, so we can compare publication language attributes. The publication
language of both Ncoy and N cay is the same, “fre” or French so language(N coy, Ncgg) =
neutral.

e The thesisAdvisor criterion is a farness-criterion. thesisAdvisor(N¢;, Nc¢;) =
—— means that N¢; and N¢; have a same C contributor if their attributes allow
to detect that this contributor has supervised a thesis before submitting his/her
own thesis. thesisAdvisor(Nc¢;, N¢;) = — means that N¢; and N¢; have a same C
contributor if their attributes allow to detect that this contributor has supervised a
thesis submitted only 2 years after submitting his/her own thesis. This criterion uses
several attributes in order to calculate a comparison value: role, other contributor
and publication date attributes. A contextual entity represents a thesis from the
point of view of a thesis advisor if the role is “thesis advisor”. A contextual entity
represents a thesis from the point of view of its author if the role is “author” and
one of the other contributors has contributed as a “thesis advisor”.

Example 16 (thesisAdvisor criterion). Let us compare the contertual entities Nco
and Ncgg defined in Examples 10 and 12. appellation(Ncay, Ncog) = neutral ac-
cording to Example 13, both are theses according to Example 17, but neither of them
has thesis advisor as role, so thesisAdvisor(Ncgy, Ncag) = neutral.

e The thesis criterion is a farness-criterion. thesis(N¢;, N¢;) = — means that
Ne¢;, Ne; are contextual entities that represent distinct theses (not the same title,
recognized thanks to the title criterion, that will be presented further) from their
“author” point of view. thesis(N¢;, N¢j) = —— means that N¢;, N¢; have also been
submitted simultaneously (3 years at most between submissions).

Example 17 (thesis criterion). Let us compare the contextual entities Ncgy and
Neoy defined in Examples 10 and 12. Since appellation(Ncay, Ncgg) = neutral ac-
cording to Example 13, roles are “author” and both have a thesis advisor as other con-
tributor. Nca1 and Ncoo both represent a thesis from the point of view of their author.
Furthermore, the titles are distinct according to Example 18 (title(Ncgy, Ncgg) =
neutral). Publication dates are separated from 7 years, so publication dates are not
too close but thesis(Ncap, Negg) = —.
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Closeness-criteria

e The title criterion is a closeness-criterion. This criterion can give an always
value and 3 closeness comparison values. It is based on a Levenshtein comparison?
[53]. For each comparison of titles, the Levenshein comparison gives a number i
between 0 (totally different) and 1 (identical). We discrete this in the following
manner:

e if + > 0.95, the comparison value is always

e if 0.95 > ¢ > 0.8, the comparison value is + + +
e if 0.8 > ¢ > 0.6, the comparison value is ++

e if 0.6 > ¢ > 0.5, the comparison value is +

It is useful to determine which contextual entities represent the same work (even-
tually edited several times). It is also used by the thesis criterion.

Example 18 (title criterion). Let us compare the contextual entities Ncop and
Negs defined in Examples 10 and 12. appellation(Ncoy, Necog) = neutral accord-
ing to Example 13, so the appellation criterion does not exclude that Ncoy and Ncgg
could have a same C' contributor and we can compare title attributes. The title
of Ncoy is “Techniques de promotion et de dynamisation des ventes” and the title
of Ncoo 1s “Chan et poésie chez un auteur contemporain : Zhou Mengdie”, so the
title(Ncar, Negg) = neutral.

e The otherContributors criterion is a closeness-criterion. It counts the other
contributors in common by comparing their authority notices. One other common
contributor gives 4+ comparison value. Several other common contributors give ++
comparison value.

Example 19 (otherContributors criterion). Let us compare the contextual entities
Ncoy and Ncoy defined in Examples 10 and 12. Since appellation(Ncgy, Negg) =
neutral according to Example 13, we can compare other contributors attributes. The
title of Ncoy has 1 other contributor, that is not any of the two other contributors
of Neag, so otherContributors(Nce, Ncgg) = neutral.

Both farness and closeness-criteria

e The role criterion returns + when contributor C roles are the same (except for

some pairs of roles as “thesis advisor” and “author”), or — when distinct (except for

common roles as “author”, “publishing editor” or “collaborator”).

3The Levenstein distance measure corresponds to the minimal number of transformations be-
tween two strings. A minimal transformation can replace a character by another, remove or add a
character.
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Example 20 (role criterion). Let us compare the contextual entities Ncoy and N cao
defined in Examples 10 and 12. appellation(Ncay, Neog) = neutral according to
Example 13, so we can compare their role attribute. Role of both Ncop and Ncgy are
the same, “author”, that is a very common role so role(Ncay, Ncgg) = neutral.

e The domain criterion compares the lists of domain codes. Domain codes are

compared pair-wise. domain(Nc¢;, Nc;) compares the lists of domain codes, and

gives closeness (respectively farness) comparison values if every N¢; domain code is

close (respectively far) from a N¢; domain code and the other way around. neutral

value is given by default. The domain codes are compared pair-wise as “identical”,
PO bAoA 77

“very close”, “close”, “not so close”, “a bit far”, “far”, “very far”. domain(Nc¢;, N¢;)
compares list of domain codes:

o + -+ ++ 4+ if N¢; and Ne¢; domain code lists are included in each other;

o +++++ifevery N¢; domain code is at least “very close” from a Nc¢; domain
code and the other way around;

e + + ++ if every N¢; domain code is at least “close” from a N¢; domain code
and the other way around;

e + + +, ++ or + if there are some “identical”, “very close” or “close” relation
between the domain codes of N¢; and N¢;, but no “not so close”, “a bit far”,
“far”, or “very far” relation between the domain codes of N¢; and Nc;;

e necutral if there are some “identical”, “very close” or “close” and some “not so
close”, “a bit far”, “far”, or “very far” relation between the domain codes of N¢;
and Nc;;

e — if every N¢; domain code is “not so close”, “a bit far”, “far”, or “very far”
from each N¢; domain code and the other way around:;

e —— if every N¢; domain code is “a bit far”, “far”, or “very far” from each N¢;
domain code and the other way around;

e — — — if every N¢; domain code is “far”, or “very far” from each Nc¢; domain
code and the other way around;

e — — —— if every N¢; domain code is “very far” from each N¢; domain code
and the other way around.

Example 21 (domain criterion). Let us compare the contextual entities Ncoy and
Negs defined in Examples 10 and 12. appellation(Nca1, Ncgg) = neutral according
to Example 13, so we can compare their list of domains attributes. Ncoo list of
domains is {800} but Ncoy list of domains is missing so domain(Ncay, Ncag) =
neutral.
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We presented in this Chapter how we saw Sudoc data and how we compared
contextual entities. Let us present the partitioning semantics used in order to detect
erroneous links in Sudoc in the following Chapter.
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Chapter 5

Partitioning semantics

We present in this chapter two partitioning semantics using symbolic criteria. The
input of a partitioning semantics is a partition ! P on a set of objects and a set of
criteria such as each criterion gives a comparison value for each pair of objects. The
output is the partition value of P according to the criterion set. Partition values
allow us to compare partitions on the same object set, and to decide which one is
the best partition. The formal definition is given in Section 5.1.1.

Partitioning semantics are used in order to compare contextual entities of Sudoc
subsets. This allows us to detect if there are erroneous links in the Sudoc subsets
considered by determining if the initial partition is a best partition, as it has been
explained in Section 3.2.3 page 37.

Partitioning semantics evaluate partitions according to one or several criteria.
As previously explained in Section 4.2.1, a symbolic criterion C'is a function that
returns a symbolic value for two objects. This symbolic value is discrete and could
be neutral, always, never, in V. (farness value) or Vi, (closeness value). Each
criterion has its own sets of farness and closeness values, as explained in Section
4.2.1. Algorithms used to find best partitions focus on best partition values instead
of best partitions because there are Bell number (B,) possible partitions on an
object set. If this object set has a size n, the Bell number is, with By = B; = 1:

-1
anz:( . )Bk.

k=0

We will start with common notions for both semantics, as the general definition
of a partitioning semantics in Section 5.1. Then, we will present the global semantics
in Section 5.2 and the local semantics in Section 5.3, which permits to improve global
semantics. We will finish by giving some details about implementation in Section
5.4.

LA partition P of an object set X is a set of classes(X subsets) such as each object of X is
in one and only one P class.

57
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5.1 Basic notions for both semantics

In this Section, we present important common notions for both global and local
semantics. We start with a general definition of partitioning semantics Section
5.1.1. Then, we explain how the problem of partitioning an object set according to
a criterion set is viewed as a graph partitioning problem (Section 5.1.2). In Section
5.1.3, we will be able to present common notions about partition values for both
global and local semantics.

5.1.1 General partitioning semantic definition

Let us define what a partitioning semantics is in a general case. In the general case,
a partitioning semantics gives a value to any partition on an object set. These values
serve to compare partitions. Let us formally define what a partition is (Definition
6) before defining a partitioning semantics in Definition 7.

Definition 6 (Partition). A partition P of an object set O is a set of classes (O
subsets) such that there are no empty class and each object of Q is in one and only
one P class.

Let o be an object in O, and P a partition on Q. The class of P containing o is
denoted class(o, P) or abusively class(o) if P is obvious.

Example 22 (Partition). Let Q@ be an object set such that O = {a,b,c,d,e}. P =
{{a,c},{b,d},{e}} is a partition on Q. class(b, P) = {b,d}.

Definition 7 (Partitioning semantics). Let C be a set of criteria on the object set
O, P the set of possible partitions on O and VIP the set of possible partition values.
A semantics of best partitioning is composed of:

e a function that gives a value for a partition: v : P,C+— VP, and
e an order on VP.

Let P be a partition on an object set Q. We denote v(P,C) (respectively v(P,C)
the partition value of P with respect to the criterion C' (respectively the criterion
set C). If C (respectively C) is obvious, we denote abusively v(P) the value of P
with respect to C (respectively C).

Let P;, P; be two partitions on the same object set and vp;, vp; their respective
partition values according to a partitioning semantics and a criterion set. Comparing
P; and P;, comes down to comparing their values. We denote:

e “vp; equal vp;”: vp; = vp; (P; and P; are said equivalent, denoted vp; =~ vp;);
e “vp; 1s strictly preferred to vp;”: vp; = vp;;

o “vp; is preferred to vp;”: vp; = vp;;
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e “vp; is not comparable to vp;”: vp; o vp; (means that vp; = vp; and vp; < vp,
are both false).

P; = P; means that P; is strictly the same partition as P;. We abusively use the
same symbols (=, =, ©) and vocabulary to compare partitions and to compare their
values.

In order to compare two partitions F;, P; on the same object set O with respect to
a criterion set C, we compare P; and P; values returned by the semantics considered
with respect to C. Two partitions are equivalent (P, ~ P;) when they have the same
value (v(P;) = v(P;)). A partition is strictly preferred to another one (P, > P;) if
and only if its value is preferred (v(F;) > v(F;)). A partition is preferred to another
one (P; = P;) if and only if its value is preferred (v(FP;) > v(P;)). Partitions are
not comparable to each other (P, ¢ P;) when their values are also not comparable to
each other (v(F) o v(F))).

We presented the general definition of a partitioning semantics and the notations
for comparing partitions and partition values. Let us transform the problem of
partitioning an object set into a graph partitioning problem.

5.1.2 Graph representation of a partitionning problem

In this section, we represent the problem of partitioning an object set by a graph
partitioning problem.

For each criterion C' € C and a set of objects O, we define a criterion graph.
This graph represents the objects of O by vertexes and the C' comparison values by
labels of edges.

Definition 8 (Criterion graph). We represent a criterion C' on an object set O by
a criterion graph Go = (S, Ec) such that vertezes are the elements contained in O
and edges are labelled by the comparison values defined by Ec when this comparison
value is not neutral.

We call a “closeness edge” an edge that is labelled by a comparison value in
Ve . Ulalways}, and “farness edge” an edge that is labelled by a comparison value

closeC
in Vi, U{never},

Example 23 (Criterion graph). Let us consider the problem of partitioning the
object set O = {a,b,c,d,e} according to a criterion Cy. We represent this problem
by the criterion graph G¢,, represented on Figure 5.1.

The labels of G¢, edges correspond to the comparison values between objects of
O according to criterion C.

For example, the edge (a,c) labelled + according to Cy means that the comparison
value between a and ¢ according to Cy is + (denoted also C1(a,c) = + as we saw in
Section 4.2.1).
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e
.
%
L)
* vertex b %
n edge labelled never by C s
-- edge labelled — by C} /;’
= edge labelled ++ by 4 rs
— edge labelled + by 4 é' :

Figure 5.1: Criterion graph G,

We notice that there is no edge between b and e, which means that Cy(b,e) =
neutral.

This definition can be generalised to the representation of partitioning an object
set according to a criterion set. This problem is represented by a multi-graph with
labelled edges.

Definition 9 (Criteria (set) graph). Let C, be a criterion set on an object set O
such as every criterion C; in C is represented by a criterion graph Ge, = (S, E¢,).
The multigraph Ge = (S,|J Ec,VC; € C) is the criteria graph of C, denoted G¢ =
(Sa E(C)

e
L/
%
L)
- vertex b )
n edge labelled never by Cy e
- edge labelled — by O}
= edge labelled +4 by C} o
— edge labelled + by 2.1' :

— edge labelled + by Cy

Figure 5.2: Criterion graph Gyc, c,)

Example 24 (Criteria (set) graph). In Example 23, we represented the partitioning
problem of the object set O = {a,b,c,d, e} according to the criterion Cy by the
criterion graph Go, on Figure 5.1.

Let us represent the partitioning problem of the object set O = {a,b,c,d, e} ac-
cording to the criterion set C = {Cy, Cy} by the criterion graph Gyc, ¢,y on Figure
5.2.
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We can now represent our problem as a graph partitioning problem. Before defin-
ing the local and global partitioning semantics, we require to define some notions
about partition values that are more specific to both global and local semantics.

5.1.3 About partition values

Local and global semantics are based on symbolic criteria (detailed in Section 4.2.1)
and separate partitions into two groups: the valid partitions and the partitions
that are not valid.

Intuitively, a valid partition is a partition such that there are not two objects
with an always comparison value (respectively never) returned in distinct classes
(respectively in a same class) of the partition. Let us define them formally according
to one or several criteria. This valid partition notion is similar to [2].

Definition 10 (Valid partition according to a single criterion). Let P be a partition
on an object set Q. P is valid according to the criterion C if and only if there are
not two objects o;, oj in O such as:

e C(0;,0;) = never and class(c;, P) = class(c;, P), or
° C(Oi, Oj) = alu}ays and Cl(lSS(CZ‘, P) 7é ClaSS(Cj, P)

Definition 11 (Valid partition). Let P be a partition on an object set Q. P is valid
according to the criterion set C if and only if P is valid according to each criterion
C € C (please see Definition 10).

Example 25 (Valid partition). In Ezample 24, we presented the criteria graph
Gcy,coy on Figure 5.2.

The partition {{a, b, c,d},{e}} is a valid partition on O according to the criterion
set C = {Cy, Ca}.

The partition P = {{a,b,c},{d,e}} is not valid according to the criterion set
C = {C4,Cy} because Cy(d,e) = never and class(d, P) = class(e, P).

In the reminder of this we solely consider valid partitions.

Both global and local semantics first check if the partition is valid. If it is the
case, they are interested in incoherences. Of course, the ideal case consists in
never having objects in the same class with a farness value, respectively objects in
different classes with a closeness value. If such a partition does not exist, there are
incoherences with respect to the criteria set.

The incoherence (property of an object subset such that they must be in a same
class according to some criteria and must be in separated classes according to other
criteria) notion is central to the definitions of the two semantics detailed in Sections
5.2 and 5.3.
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Example 26 (Incoherence in a criteria graph). . The criteria graph represented
on Figure 5.1 present some incoherences. For example, a and d must be in distinct
classes of a partition because Ci(a,d) = — but they also must be in the same class
because both must be into the same class as c. In fact, we have Cy(a,c) = +, and
CQ(C, d) =+.

In case of incoherences, from the point of view of a single criterion at a time, we
prefer to group the objects linked by a stronger closeness comparison value than a
weaker one. Similarly, we prefer to separate objects with a stronger farness value
than objects with a weaker farness value. In the case of incoherences one has to
make choices in order to satisfy closeness or farness values that, by definition, could
lead to distinct partitions. Details will be exposed in Section 5.2.1. In other words,
we would like to minimize the maximal intensity of unsatisfied edges labels. As
it is defined in Definition 12, unsatisfied edges for a given partition are the farness
labelled edges between two vertexes of the same class or the closeness labelled edges
between two vertexes of distinct classes. This notion has been defined by [4].

Definition 12 (Satisfied edge). Let G¢ be a criterion graph on an object set O,
P a partition on O and o;, oj two objects in Q. (0;,0;) is a satisfied edge for Ge
according to the partition P on Q if and only if:

e class(o;, P) = class(oj, P) and c(0;,0;) € V.S .. U {always}, (called closeness
satisfied edges) or

e class(o;, P) # class(o;, P) and c(0;,05) € V. U{never} (called farness satis-
fied edges).

If (04, 05) is not a satisfied edge, (0;,0;) is said a (closeness or farness) unsatisfied
edge.

If an edge is unsatisfied for a partition P on a criterion graph Gg, it is also
unsatisfied for P on a criteria graph G¢ such as C € C.

Example 27 (Unsatisfied edge). Let us consider the partition Py = {{a, ¢, d}, {b,
et} of Example 28 on the graph G¢ represented on Figure 5.1.
Let us identify the unsatisfied edges on G¢ according to Py:

e unsatisfied closeness edges: (b,d), (a,b) (because b is not in the same class as
a and d and (b,d), (a,b) are closeness edges).

e unsatisfied farness edge: (a,d) (because a is in the same class than d and (a,d)
is a closeness edge).

The local semantics improves global semantics by the way it takes care of inco-
herences. This will be detailed in Section 5.3. Let us start by global semantics in
the following Section.
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5.2 Global semantics

In this section, we will see how to evaluate and compare partitions according to
global semantics (Sections 5.2.1 and 5.2.2) with respect to one or several criteria.
Once it is done, we will present algorithms to find best partition values according to
global semantics and with respect to one criterion (Section 5.2.3) or several criteria
(Section 5.2.4).

Let us evaluate and compare partitions on a same set of objects @ according to
global semantics in order to determine what is a best partition according to global
semantics.

We remind ourselves that from the point of view of any criterion, we prefer to
group objects linked by a stronger closeness comparison value than a weaker one.
Similarly, we prefer to separate objects with a stronger farness value than objects
with a weaker farness value.

We will start by doing it with respect to a single criterion before doing it with
respect to several criteria.

5.2.1 Evaluating and comparing partitions according to global
partitioning semantics for a single criterion

Let us remind ourselves that we are interested only into partitions that never put
strictly different objects in the same class and always put identical objects in the
same class. Those partitions are called valid as seen in Definition 11. Not valid
partitions are simply assigned by the semantics a notV alid partition value.

Once a partition is valid, the value of a partition is composed of two values: the
inter (class) value (denoted v,, with p for “positive”) and the intra (class) value
(denoted v, with n for “negative”). The inter value v, is the weakest (please see
Definition 13) closeness or always value such that all object pairs with a stronger
or equivalent comparison value to v, are in the same class (denoted “satisfied” edge
in [4], please see Definition 12). The bipolar condition on the intra value v, also
applies: v, is the weakest farness or never value such that all object pairs with a
stronger or equivalent comparison value to v,, are in distinct classes.

In other words, the inter class value concerns proximity between classes (“split of
classes” criterion [33|[32]), and the intra class value concerns the farness into classes
(homogeneity criterion [33][32]).

The partition value of P according to C is denoted v(P,C) = (vp,v,). In order
to formally define it in Definition 14, we require to define the weakest value of a set
of comparable comparison values in Definition 13.

Definition 13 (Weakest value). Let V be a comparison value set such that all pairs
of values vy, vy in V are comparable together. The value v such that v € V and
v < v;Yu; €V s said the weakest value of V. The weakest value v of V is denoted
weakest(V).
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Definition 14 (Partition value with respect to a single criterion). Let Go = (S, E),
be the criterion graph of criterion C, and P a partition on Gg. In the case where
P is not valid (Definition 10), then P’s value is notValid. If P is valid, P’s value
is (vp, vy) with :

e v, — weakest((VS . U{always}) N{v|V edge (s;, s;) labelled v, classe(s;) =
classe(s;)})

o v, = weakest((VfiT U {never}) N {v|V edge (si,s;) labelled v, classe(s;) #
classe(s;)})

We denote v(P,C) the P partition value with respect to criterion C' (abusively
v(P) if C is obvious).

Example 28 (Partition value according to a single criterion). Let us consider the
criterion graph G, of Example 23 that is represented on Figure 5.1. For this cri-
terion, there are two closeness values (VS . = {+,++}) and a single farness value

(Vier = {=1}). Let us evaluate several partitions on @ = {a,b,c,d, e} according to
Cl:

o P = {{a,c},{b,d,e}}. v(P,Cy) = notValid. This partition is not valid
because d and e are in a same class and Cy(d, e) = never.

e P, = {{b,d,c},{a},{e}}. v(Po,C1) = (++,—). The inter value is only ++
because a and ¢ are in distinct classes but Cy(a,c) = +.

o Py = {{b,d}, {a,c},{e}}. v(Ps,C1) = (++,—). The inter value is only ++
because d and e are in distinct classes but Cy(d, c) = +.

o Py = {{a,d,c},{b,e}}. v(Py,Cy) = (always,never). b and d are in distinct
classes despite C1(b,d) = ++, so the intra value can only be always. However,
this partition is valid because d and e are also in distinct classes.

o P5 = {{a,b,c,d},{e}}. v(Ps5,C1) = (+,never). The inter value is never
because a and d are in the same class but Cy(a,d) = —.

Let us see how partition values are compared in order to compare partitions to
each other. A partition P, is better than another one P; according to a criterion C'
if they share the same object set and both intra and inter values of P; are weaker
than intra and inter values of P; according to C.

A weakest intra value intuitively means that more levels of closeness values of C
are satisfied, and each stronger levels of closeness values are satisfied. If P; and F;
have the same intra and inter values, their values are equal. If their values are not
equal but P; has a weaker intra value than P; and F; has a weaker inter value than

P;, their values are incomparable and so are F; and P;.
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Definition 15 (Partition order for a single criterion). Let P;, P; be two valid parti-
tions on a criterion graph G¢ such as their partition values are respectively (vy, vy,)
and (v, v;,).

(Vp, vp) 15 equal to (vy,v,) (denoted (vp,v,) = (vy,v,,)) if and only if v, = v,
and v, = v),.
e (vp,vy) 18 better than (v, v;,) (denoted (vy,v,) = (v, vy,)) if and only if v, < v,
and vy, > vl.

o (vp,vn) is strictly better than (v,,v,,) (denoted (vy,v,) = (v,,v},)) if and only

P n
if (Vp, ) = (v, vp,) and (v, vy) # (vp, vy,).

e in other cases, (v,,v,) and (v),v;) are not comparable (denoted (v,,v,) ©
(0, v7))-

The partition order follows their partition values order.

Example 29 (Partition values order for a single criterion). Let us consider the
criterion graph G, of Example 23 that is represented on Figure 5.1. Let us consider
the partitions evaluated in Example 28 according to the criterion C;:

e v(P,Cy) = notValid.

o V(P Ch) = (++,—).

e v(P5,Ch) = (++,—).

e v(Py, Ch) = (always, never).
e v(P5,Ch) = (+, never).

Py is not valid, so comparing Py with another partition has no meaning (Py is
worse).

Py and Ps have the same value: Py is equivalent to Py (denoted Py = Pj).

P3 has a weaker value than Ps (— < never) but a stronger inter value than Ps
(++ > +), so Py and Ps are not comparable (P3 < Ps).

Ps has a better value than Py because both intra and inter values of P3 are weaker

than intra and inter values of Py (+ < always and never < never, so v(Ps,Cy) =
v(Py, C1)), so Ps is preferred to Py (denoted Ps < Py).

In this Section, we saw how to evaluate and compare partitions according to
global semantics and a single criterion. Let us extend it to several criteria in the
following Section.
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5.2.2 Evaluating and comparing partitions according to global
partitioning semantics for several criteria

Let us present the evaluation of a partition according to global semantics and with
respect to several criteria in order to give an order on partitions according to global
semantics and with respect to several criteria.

Definition 16 (Partition value with respect to a criterion set). Let G¢ = (S, E),
be the criteria graph of the criterion set C, and P a partition on G¢. In the case
where P is not valid (Definition 11), then P’s value is notValid.

If P is valid, P’s value according to C is the set of P’s values according to each
criterion C € C.

We denote v(P,C) = v(P,C) = {Cep,c)|C € C} the P partition value with
respect to criterion set C (abusively v(P), if C is obvious).

Example 30 (Partition value according to a criterion set). Let us consider the cri-
terion graph Gyc, o,y of Example 24 that is represented on Figure 5.2. We evaluated
some partitions in Example 28 with respect to criterion Cy. Let us evaluate them
according to C = {Cy, Cy} with Cy such as V52 = {+} and V2 = {}:

close far

e P ={{a,c},{b,d,e}}. v(P,C)=notValid.

Py ={{b.d,c},{a},{e}}. v(P2,C) = {Ci(s+ ), Co4 neven) }-

Py ={{b,d},{a,c},{e}}. v(Ps,C) = {Ci(s+,-) Coratways never) }-
Py = {{a,c,d}, {b,e}}. v(Ps, C) = {Ci(atwaysnever)> Co(+never) } -
Ps = {{a,b,c,d},{e}}. v(P5,C) = {Ci(tnever), Co(+mever) }-

If there are several criteria, we consider according to Work Hypothesis 6 page 19
that criteria are independent [14] from each other, which means that no criterion is
strictly more important than another to decide which partition is best.

Let A, B, be two independent criteria (denoted A ¢ B) defined on the same
object set @. To compare two partitions with respect to {A, B}, the comparison
of their values with respect to A is as important as the comparison of their values
with respect to B. Let C be a criterion set so that criteria are all independent from
each other (namely an independent criterion set). Then for all distinct C;, C; € C
we have C; o C.

A partition P has a best partition value according to a criterion set C if P
is valid and it is impossible to improve an inter or intra value of one C criterion
without decreasing an inter or intra value of at least a C criterion. A best partition
value corresponds to a Pareto equilibrium [79] among criteria values. Indeed, a
Pareto equilibrium is obtained when it is impossible to improve the satisfaction of
something (a criterion here) without decreasing the satisfaction of something else.

Let us formally see how to compare two partitions with respect to an independent
criterion set, in Definition 17.
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Definition 17 (Partition values order with respect to an independent criterion set).
Let Py, Py be two partitions on Ge, a criteria graph such that C is an independent
criterion set.

The Py partition value is better than P, partition value (denoted v(P;,C) >
v(Py, C)) if and only if VC; € C,v(Py, C;) = v(Py, Cy).

The Py partition value is strictly better than Py partition value (denoted v(Py,C) =
v(Py, C)) if and only if:

L4 VCZ S C, U(Pl, Cl) t ”U(PQ,CZ‘) and
o HC GClU(Pl, )}U(PQ,C)
Values of partitions Py and Py are incomparable for Ge in other cases.

Example 31 (Partition values order with respect to an independent criterion set).
Let us consider the criteria graph Gic, c,y of Example 24 that is represented on
Figure 5.2. Let us consider the partitions evaluated in Example 30 according to the

criterion set C = {C4, Cy}.

e P ={{a,c},{bd e}}. v(P,C)=notValid.

= {{b,d, ¢}, {a}, {e}}. v(P2, C) = {Ci(t4.-), Caftmeven }-
Py = {{b,d}, {a,c}, {b}, {e}}. v(Fs, C) = {Cri+4,-), Cofatways never) } -
Py = {{a, e}, {b},{c,d}}. v(Ps, C) = {Ch(atways never), Ca(t mever) }-
B = {{a,b, ¢, d}, {e}}. v(P5, C) = {Ci(s never), Catmever) } -

Py is not valid, so comparing P, with another partition has no meaning.

Py and Ps have the same value according to Cy but Py has a better value than P
according to Cy so Py = P3 according to C.

Ps is not comparable to Ps with respect to Cy, so Py and Ps are also not compa-
rable (Py o Ps) with respect to C.

Ps has a better value than P, because it has a better value according to both C
and Cy criteria.

In this section, we saw how to evaluate and compare partitions according to
global semantics and with respect to one or several criteria. Let us see which algo-
rithms are used to find best partitions according to global semantics.

5.2.3 Finding best partitions for a single criterion

Let C be a criterion on an object set (. In order to find the best partition values on
O with respect to C', we have to find and to evaluate reference partitions on O with
respect to C for all closeness values v; € V§ U {always}. To define a reference
partition we need to use the notion of a refined partition as explained below.
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Definition 18 (Refined partition). Let P;, P; be two partitions on an object set O.
P, is more refined than P; if and only if V ¢; class € P, 3¢; class € Pj|c; C ¢j. The
partition P; is said to be less refined than P; partition.

Example 32 (Refined partition). Let O be an object set such as O = {a, b, c,d, e}.
The partition P, = {{a,b,c},{d,e}} is more refined than the partition P, =
{{a,b,c,d,e}} but both are less refined than P. = {{a,b},{c},{d,e}}.
However, P, is not more refined than Py = {{a,b},{c,d},{e}} because no class
of P, includes {c,d} and Py is also no more refined than P, because no class of P,
includes {d, e}.

Definition 19 (Reference partition for a criterion). Let C' be a criterion on an
object set @ and v; a comparison value such that v; € VS U {always}. The
reference partition Py for C with respect to v; is the most refined partition P such
as v(P,C) = (vp,vy,) and v, < v;.

Let G¢ be the criterion graph on Q with respect to C' criterion. We denote
ref(vi, Go) the reference partition for a criterion C with respect to the closeness

value v; (or abusively ref(v;) when G is obvious).

Example 33 (Reference partition for a criterion). Let us consider the criterion
graph Gg, in Example 23 that is represented on Figure 5.1. Let us consider the
closeness value set of the criterion Cf: Clc;lse = {+,++}. Let us present reference
partitions on O = {a,b,c,d, e} according to C.

e P, =ref(+)={{a,b,c,d},{e}}. a,b,c and d are in the same class because of
the comparisons values C(d,b) = ++ and C(a,b) = C(a,c) = C(c,d) = +.

o Py = ref(++) = {{a},{b.d},{c},{e}}. b and d are in the same class
because of the comparison value C(d,b) = ++.

o P, =ref(always) = {{a},{b},{d},{c},{e}}. No objects are in the same class
because there are not two vertexes such that their comparison value according
to C'is always or a stronger comparison value (no comparison stronger than
always exists).

Those reference partitions are represented on Figure 5.3. We remark that the
stronger the taken “as reference” value is, the more the partition is refined. This s
due to the fact that less closeness comparison values require to put some object pairs
in a same class.

Evaluating the reference partitions is enough to calculate and evaluate all the
best partition values. Since the reference partition with respect to a closeness or an
always value v; for criterion C'is the most refined partition with v, < v;, it is the
partition with the less possible unsatisfied farness edges (farness edges such as both
vertexes are inside the same class, as explained in Definition 12). This makes it a
partition with the best possible v, value with respect to the v, such that it is < v;.
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(O class of Py
O class of P,

class of P,

* vertex

i edge labelled never by C'
-- edge labelled — by C}
= edge labelled ++ by C
— edge labelled + by C4

Figure 5.3: Reference partitions for G,

Because a partition value has a v, in V.§ U {always}, calculating the values of

close
reference partitions for each v; in V.¢ U {always} is enough to determine all best
partition values.

To calculate a reference partition with respect to a closeness value v; for a crite-
rion C' comes to calculating connected components on G¢ considering only v} labelled
edges such as v] > v;. We can then simply use a Kruskal’s algorithm|50|. This al-
gorithm is used to find the shortest spanning tree of a graph based on connected
components. According to [23], the complexity of Kruskal’s algorithm is O(mlogn)
for n vertexes and m edges if the connected components are implemented as a
disjoint-set data structure. Algorithm 2 presents an adaptation of Kruskal’s algo-
rithm in order to find the connected components of a graph instead of the shortest
spanning tree. In our case, the set of connected components is implemented in a
table such as the indices correspond to the vertexes to partition and the values to
the classes affected to the objects. So, merging two connected components has a
complexity of O(n) for n vertexes (each vertex must be checked in order to deter-
mine if its connected component has changed) and find the class of a vertex has a
complexity of O(1). Since there are n connected components at the beginning, there
are n — 1 merges of connected components at most because each merge decreases
of 1 the number of connected components. So, the merge (complexity O(n) in our
implementation) line 6 is done n — 1 times at most. Each edge (m) is also checked
line 4. As a consequence, the complexity of calculating a reference partition is, in
our implementation, O(m + n?). However, the complexity is O(mlogn) with an
appropriate implementation, as mentioned above. So, we will consider O(mlogn)
as the complexity of calculating a reference partition in the remainder of this thesis.

Please note that the connected component idea has been already explored in [32]
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and [4]. However the authors do not consider incoherence problems or even more
levels of farness and closeness values.

If a tested reference partition P,..; has a value (v,,v,) such as v, is the weakest
value in Vf(j;r U {never}, then the reference partitions according to a value v, > v,
will have a partition value worse than P,.; and there is no need to evaluate and test
them. Algorithm 1 ends in this case because of the test line 8.

Algorithm 1 BestValuesForASingleCriterion
Require: C': criterion on an object set O; G¢: criterion graph of C' on O
Ensure: set of best partition values with respect to C' on O

1: best partition value set bestV = {};

2: for all values v; € V.S U {always} in < order do

close

3:  Partition P= ref(v;);

4:  Partition value v = v(P);

5. if P is valid and Av' € bestV|v' = v then

6: add v to bestV;

7. end if

8 if v(P) = (v),v],) such as v, = weakest(Vf,. U {never}) then
9 return bestV;

10:  end if

11: end for

12: return bestV;

Let us see an Example about the results of Algorithm 1.

Example 34 (Results of Algorithm 1). Let us consider the criterion graph G¢, on
the object set O = {a,b,c,d, e} defined Example 25. In Example 33 we gave all its
reference partitions, represented on Figure 5.3. Let us apply Algorithm 1 on G, .
We remind ourselves that V5., = {+,++} and V, = {-}.

e + is the weakest comparison value in VS U {always}, so the first refer-
ence partition calculated and evaluated is Py = ref(+) = {{a,b,c,d},{e}}.
v(Py) = (+,never) and is a best partition value because v(P,) is valid and

there are not best partition values to be compared with yet.

o ++ is the weakest comparison value in VS, \U{always}—{+}, so the first cal-
culated and evaluated reference partition is Py, = ref(++) = {{a},{b,d}, {c},{e}}.
v(Pyy) = (++,—). This value is not comparable to v(Py), so it is also a best
value. — 1is the weakest value in fow U {never}, so the algorithm ends (with-
out calculating and evaluating ref(always)) and returns the set of founded

best values: {(+,never), (++, —)}.

In Ezample 28, we evaluated five partitions on Ge,. Partitions Py and Ps are
best partitions because they both have a best value (++,—). Partition Ps is also a
best partition because it has a best value (4, never).
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Complexity. In the worst case (when there is no valid partition with a v, value
such that v, = maz(Vf,, U {never}) ) we have k +1 = [V,{,, U {always}| reference
partitions to find and evaluate. The complexity of the global semantics for one
criterion algorithm is O((k 4+ 1) * mlogn), and it is depicted below (Algorithm 1).

In this Section, we saw how to calculate every best partition value on an object

set @ and according to a criterion C. Let us extend this to several criteria.

5.2.4 Finding best partitions for several criteria

Let us now consider the global semantics when there are more than one criterion to
consider. We will first need three notions: closeness value set, ascendant close-
ness value set and reference partition. The reference partitions, as explained in
Section 5.2.3, are the actual tests to be performed by the algorithm. The cardinality
of the closeness value set represents the number of tests that the algorithm will need
to perform in the worst case. Finally, the ascendant closeness values notion will
allow us to skip some tests, and optimise the algorithm.

Definition 20 (Closeness value set). A closeness value set VC for a criterion set
C is a set of comparison values v; such as v; € Vdcoise U {always} and C; € C, with

one and only one comparison value v; for each criterion C; € C.

Example 35 (Closeness value set). In Example 2/, we defined the criteria graph
Gycy 00y with C1, Cy such as VO = {4+, 4} and V2 = {+}. Let us enumerate

close close
the closeness value set according to {Cy, Cy}:

e VCi = {Cyrs,Cos)

o VCy = {C1 1, Coatways}

o VC3 = {C1,44,Co 1}

o VCy = {C1 4+, Csatways }

e VCs5 = {C1 aiways, Co+ }

e VCs = {C1 atways: C2,atways }

Definition 21 (Ascendant closeness value set). Let VC; and VCy be two closeness
value sets for the same criterion set C. VCy is an ascendant of VCy if and only if
VC; has a weaker comparison value than VCsy for each criterion in C.

VG, is said a descendant of VC;.

Example 36 (Ascendant closeness value set). In Example 35, we enumerated all
closeness value sets for Cy, Cy such as V5. = {++,+} and V2 = {+}. Let us
determine their ascendant relations.
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e VCy = {C14,Cy4} has the weakest possible value for both Cy and Cs, so VCy
is an ascendant of all the other closeness value sets (VCy,VC3,VC4,VCs and
VCs).

o VCy = {C1 4, Copiways } is an ascendant of VC, VCq. In fact, VC3 and VCs
have a weaker value (+) than VCy for Cy (always).

o VCy = {C1 4+, Coutways} is a descendant of VCy and an ascendant of VCg.
o VCs = {C1 atwayss Co.aiways } s a descendant of all other closeness value sets.

Definition 22 (Reference partition with respect to a criterion set). Let C be a
criterion set on an object set @, and VC a closeness value set for C. The refer-
ence partition P,.; for C with respect to VC (denoted ref(VC)) is the most refined
(please see Definition 18) partition such as v(Prer) = {v(Pyes, C;)VC; € C} with VC;
criterion: v(Prer, C;) = (vp, vy)|v, < v; € VC.

Example 37 (Reference partition with respect to a criterion set). In Ezample 33,
we calculated reference partitions for the criterion graph Ge, defined Example 23
and represented on Figure 5.3. Let us enumerate the reference partitions for the
criteria graph Gyc, ¢,y with respect to the closenes value set enumerated in Ezample

35:
o Py =ref({Ci4,Co4}) = {{a,b,c,d}, {e}}

o Pro = ref({Ciy, Coutways ) = {{a,b,c;d},{e}} = Py Pry = Py, is
exactly the reference partition P, on the graph G¢ (Example 33) and is rep-
resented on Figure 5.3.

o Pry=ref({Cryy,Coy}) = {{a},{b,d,c},{e}}.

e P—i--ha - T@f({CL_H_, CQ,alwayS}) = {{a}a {b> d}> {C}, {6}} P++,a is emaCtly the
reference partition Py, on the graph G¢ (Example 33) and is represented on

Figure 5.5.

o Poy =ref({C1amays; G }) = {{a}, {0}, {d; ¢}, {e}}.

g pa,a - ref({cl,alwaysa CZ,always}) - {{a}> {b}a {d}a {C}7 {6}} Pa,a Z.S exactly
the reference partition P, on the graph G¢ (Ezample 33) and is represented
on Figure 5.35.

The global semantics algorithm for several criteria is the extension for the algo-
rithm for one criterion (Algorithm 1). The best partition values are also reference
partition values, so we calculate, evaluate and compare them.

First, we find all closeness value set (Definition 20) for C. We compute the
reference partition (Definition 22) for each closeness value set VC by searching for
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connected components with Kruskal’s algorithm (complexity O(mlogn) %) on G¢
considering only v, labelled edges such that v, > v;|v; € (V.U {always}) N VC
and C; € C. We then evaluate reference partition values and only keep best ones.

If a reference partition ref(VC) has v(P, C;) = (v, v,) for each criterion C; € C
such as v, = weakest(VfCai, U {never}), then the reference partitions ref(VC') with
VC' descendants (Definition 21) of VC have a worse or same value than ref(VC),
so we do not need to evaluate them.

Algorithm 2 ConnectedComponent
Require: G(V, E): graph with V| the vertex set and F, the edge set;
Ensure: the partition on V such that its classes corresponds to connected compo-
nents of G(V, E)
for all vertex v € V do
connectedComponentO f(v) = {v};
end for
for all edge (z,y) € E do
if connectedComponentO f(x) # setOf(y) then
merge connectedComponentO f(x) and connectedComponentO f(y);
end if
end for
return the set of the connectedComponentO f(v);

Algorithm 3 globalAlgorithm
Require: C, a criterion set on an object set Q; G¢ criteria graph of C
Ensure: set of best partition values with respect to C on Q.
1: best partition value set bestV = {};
2: set of closeness value set to test toTest = {VIP|[VP, closeness value set for C};
3: while toTest # {} do
pick up VP from toT'est such as VIP has no ascendant in toTest;
Partition P = ref(VP);
Partition value v = v(P, C);
if P is valid and Av' € bestV|v' > v then
add v to bestV;
end if
10:  if VC; € C,v(P, C;) = (vp, vy) |0, = weakest(Vfi; U {never}) then
11: remove all descendants of VIP from toTest;
12:  end if
13: end while
14: return bestV;

2with n vertexes and m edges
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Example 38 (Results of Algorithm 3). In Ezample 3/, we presented the results of
Algorithm 1 applied on the criterion graph Gg. Let us apply Algorithm 3 on the
criteria graph Gyc, c,y (defined in Example 24 and represented on Figure 5.2) in
order to find all best partition values on Gyc, c,y. First, we need the set of closeness
value sets for {Cy,Cy}. All those closeness value sets are enumerated in Ezam-
ple 37: toTest = {{C1+,C2+}, {C1 4, Coatways > {Cr445,C2 4} {01 44,02 atways |
{Chatways: Co+ }s {Ch atwayss Co,atways } -

e The only closeness value set of toTest that has no ascendant in toTest is
{C14,Ca
Tef({Cl,-l-aCZ,—i-}) - {{a7b7 ¢, d}a{e}}; which has {Cl(+,never)7CQ(-l—,neUer)} as

partition value. There is no best value yet, so this one is a best value.

{C1+,Cs 1} is removed from toTest.

o The closeness value set {C +, Cyaiways} of toTest that has no ascendant in
toTest.

Tef({cl,—l-? CZ,always}) — {{CL, b, c, d}7 {6}}, which has {Cl(—l—,never)a C2(+,never)}

as partition value. This partition value 1s already identified as a best one.

{C1 4, Cs atways } is removed from toTest.

e The closeness value set {Cy +4+,Cay} of toTest that has no ascendant in
toT'est.

ref({Chs.Cas}) = {{a}, {bc.d}. {e}}, which has {Cy(rs. -y, Catmever)} a3

partition value. This partition value is not worse than the actual best partition
value {C1(+ never), Co(4mever) }» 80 it is also a best partition value.

We notice that weakest(VE. U {never}) = — and weakest(VS2 U {never}) =
never, so the test line 10 of Algorithm 3 result is “true” and we remove from
totest {Cy4+1,Cs 1} and its descendants ({Ch ++,C2 aways b {Ch.atways> Co+ }
{Cl,alway57 C2,always}})-

toTest became empty and the algorithm returns the set of best partition values
on G{Cl,C’g}: {{Cl(—hnever)a CQ(—}—,never)}; {Cl(-l—-i-,—)? CQ(+,neve7")}}-

Complexity. For a criterion set C of ¢ criteria, we have to calculate and evaluate
VS U {always}| * ... x VS U {always}| reference partitions in the worst case,
namely (k 4 1)¢ reference partitions with k = maz(|]VS: | VO; € C). So, this
algorithm has O((k + 1) * mlogn) as complexity (please see Algorithm 3).

Let us show with the three following Examples that global semantics can give
good qualitative results and that global semantics results are very dependent from
the considered object set, which is fixed by local semantics.

Let us consider the Example in Table 5.2.4 that represents contextual entities

and namely the contextual entities contained in the two Sudoc subsets related to
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id title date  domain appellation
Ncy “Le banquet” “1868” “PLATON”
Ncy “Le banquet” “2007” “PLATON”
Nes “Letter to a Christian nation” religion “HARRIS, Sam”
Ney | “Surat terbuka untuk bangsa kristen” “2008”  religion “HARRIS, Sam”
Ncs | “The philosophical basis of theism” — “1883"  religion “HARRIS, Sam”
Necg “Building pathology” “2001”  building “HARRIS, Samuel”
Necr “Building pathology” “1936” building “HARRIS, Samuel”
Neg “Aluminium alloys 2002” “2002”  physics “HARRIS, Samuel”

Table 5.1: Example of contextual entities

the “HARRIS, Sam” appellation (denoted Qg = {N¢3, Neg, Nes, Neg, Neq, Neg}) and
“PLATON” appellation (0, = {N¢i, Neo}). This Table presents the id, the title, the
publication date (“date”), the publication domain (“domain”) as a keyword, and
the appellation of the contributor C (“appellation”) for each contextual entity. The
human partition or expert-validated partitions for the two Sudoc subsets are respec-
tively Phs = {{Ncs}, {Nes, Nea}t, {Ner}, {Necg}, {Ncs}t} and Ph, = {{Nc;, Neao}}-
We calculated if the human partitions are best partitions for the two separate Su-
doc subsets and the union of them according to the criterion set C = {appellation,
domain, date, title}. Those criteria have been detailed in Section 4.2.2 page 50.

Example 39 (Sudoc subset related to “HARRIS, Sam” and global semantics). Let
us apply global semantics on Qg = {Ncg, Ney, Nes, Ncg, Nez, Neg}. This object set
18 not coherent with respect to our criteria. The Phg value is such that:

e v(Phg,domain) = (always,—) (it ezxists an edge labelled + + + + ++ that is
not satisfied, between Ncs and Necy),

e v(Phg,date) = (always, ——) (it exists an edge labelled — that is not satisfied,
between Ncg and Ney).

Phs has a best partition value on Qg. However, partitions P, = {{Ncs, Ncs, Ny},
{Necz}, {Ncs}, {Nes}} with (+, —) value for domain criterion and (always, never)
value for date criterion is also a best partition. The plurality of best partition values

comes from incoherence between the date and domain criteria.

Example 40 (Sudoc subset related to “PLATON” and global semantics). Let us
now apply global semantics on O, = {Ncy, Nco}. The expert-validated partition is
Ph, = {{Neci,Nco}}. There is an incoherence between date and title criteria. Ph,,

value 18 such that:

e v(Ph,,date) = (always,never). (it exists an edge labelled —— that is not
satisfied, between Ney and Ney).

Ph,, is the only possible best partition on O, because {{Nc1},{Nca}} is not valid
with respect to title criterion.
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Let us now illustrate how global semantics will affect the whole set of objects by
computing the best global partition on the union of contextual entities of the two
Sudoc subsets.

Example 41 (Union of Sudoc subsets related to “HARRIS, Sam” and “PLATON”
and global semantics). We now apply global semantics on all our selected contextual
authorities: O = O, U Qs. The expert-validated partition is Phys = {{Nc1, Neo},
{Necs,Nes}, {Nes}, {Ner}, {Nes}, {Nes}}. We also encounter incoherences and
this partition has the worst of Ph, and Phs values for each criterion, in particular:

e v(Phys,domains) = (always, —) (it exists an edge labelled + + + + ++ that
is not satisfied, between Ncg and Ncy, as in Example 39),

o v(Phys,date) = (always,never) (it exists an edge labelled —— that is not
satisfied, between Ncy and Nco, as in Example 40).

Phy,s has not the best partition value because we could improve partition value for
domain criterion. This does not affect the date criterion value because it is already
as bad as possible. For erample, partition P, = {{Neci, Nea}, {Nes, Ney, Nes},
{Ncg, Ner}, {Ncs}t} has a best value.

A way to fix this problem is to propose the local semantics detailed in the next
Section 5.3, which adds a notion of locality to global semantics.

5.3 Local semantics

In this Section, we will define how local semantics evaluates and compares partitions.
In order to do that, we need to explain notions about incoherences in detail. This will
be done in Section 5.3.1. Once it is done, we will present the algorithm that finds all
best partition values on a criteria graph according to local semantics in Section 5.3.2.
This algorithm extends Algorithm 3 (which finds best partition values according to
global semantics and several criteria) by adding a locality notion.

5.3.1 Incoherences in a criteria graph

Local semantics do not consider incoherence for the whole treated object set (denoted
O) but only for objects that cause incoherences. As explained page 61 and Example
26, a pair of objects that causes incoherence is a pair of objects that must be put in
the same class according to some criteria and kept separated according to others.
In order to understand how local semantics treat incoherences, we require to
define the notions of incoherent parts and incoherent subsets of a criteria graph.
Intuitively, an incoherent subset of an object set O according to a criterion set C
is a minimal subset of @ such that there is an incoherence in it and objects in
this incoherent subset are not linked to objects not in it by always or closeness
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comparisons values according to the criterion set C. Incoherent parts are a way to
divide a criteria graph into independent parts that could be evaluated separately
because they concern objects that have nothing to do with objects in a distinct
independent part according to the considered criterion set. In order to formally
define independent parts, let us define minimal independent subsets. Intuitively, a
minimal independent subset is a connected component of G¢ such that we consider
the edges labelled by a closeness or always comparison value and not the other edges
(labelled by a farness, never or neutral comparison value).

Definition 23 (Minimal independent subsets). Let Q@ be an object set and C, a
criterion set on Q. A minimal independent subset 1 of O according to C is a
subset of QO such that:

e there are no always or closeness comparison values between an object of O\ 1
and an object in 1 according to a criterion of C, and

e there is mo subset of I that is a minimal incoherent subset of Q.

Definition 24 (Minimal incoherent subsets). Let O be an object set and C, a cri-
terion set on Q. A minimal incoherent subset 1 of O according to C is an
independent subset (as defined in Definition 23) of O that contains a pair of objects
that causes incoherences.

Example 42 (Independent and incoherent subset). Let us consider the Gig, -,
criteria graph represented on Figure a) 5.4. There are three minimal incoherent
subsets in {O}, = {a,b,c,d,e, f,g} according to {C,Cy}: {a,b,c,d, e}, {f, g} and
{h,i}. Two of them are also incoherent subsets: {a,b,c,d,e} and {f,qg}.

Independent parts are deduced from a minimal independent subset I. An inde-
pendent part deduced from I contains all @ objects but does not considers compar-
ison values for every couple of objects that are not both occurring in I. If I is an
incoherent subset, the part deduced is also an incoherent part.

Definition 25 (Independent parts). Let G¢ be the criterion graph that represents
the partitioning problem of the object set QO according to the criterion set C.
The independent part IndP of G¢ according to a minimal independent subset 1
is a sub-graph of G¢ such that all edges that are not between two objects in 1 are
removed.
The independent part of G¢ according to the minimal subset 1 is denoted independent Part(Ge, 1),
and abusively independent Part(I) when G¢ is obvious.

Definition 26 (Incoherent parts). Let Ge be the criterion graph that represents the
partitioning problem of the object set Q according to the criterion set C.

An incoherent part 1P of Ge¢ is an independent part (please see Definition 25)
of G¢ according to a minimal incoherent subset 1.

The incoherent part of Ge according to the minimal subset 1 is denoted incoherent Part(Gg, ),
and abusively incoherent Part(I) when Ge is obvious.
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Example 43 (Independent and incoherent parts). In Ezample /2, we detailed the
minimal independent subsets of the G?Cl,cz} criteria graph represented on Figure a)
5.4.

The independent parts according to each of those subsets are represented on Fig-
ure 5.4: incoherentPart({a,b,c,d,e}) on Figure b) 5.4, incoherent Part({f,g}) on
Figure ¢) 5.4 and the independent Part({h,i}) on Figure d) 5.4.

Since two of the independent subsets were incoherent ({a,b,c,d} and {f,g}), the
deduced independent parts are also incoherent parts.
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Figure 5.4: Parts of criteria graph Gi¢, o,

The coherent part contains all @ objects but does not consider the comparison
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values for every pair of objects that are occurring in the same minimal incoherent
subset.

Definition 27 (Coherent part). Let G¢ be the criterion graph that represents the
partitioning problem of the object set Q according to the criterion set C. Let us
denote TP the set of all incoherent parts on Ge (please see Definition 26).

The coherent part of Ge according to C is a sub-graph of G¢ such that all edges
contained in a incoherent part in IP are removed. The coherent part of G¢ according
to C is denoted coherentPart(Gc).

Example 44 (Coherent part). In Example 43 we presented the incoherent parts of
the G?ChCQ} criteria graph represented on Figure 5.4. Let us represent the coherent
part of G{s, ¢,y coherentPart(Gf{‘ChCQ}) on Figure e) 5.4.

A partition on O is better than another partition if it has a best value for the
coherent part and for each incoherent part. The values of each (in)coherent part are
determined by global semantics.

Let us detail an Example in the aim of showing how local semantics is useful to
add the locality notion to global semantics.

Example 45 (Local semantics interest). In Ezamples 39, 40 and /1, we saw that
global semantics can consider two partitions (P and P, in this case) as best partitions
on their respective object sets (Os and Q) but the union of these best partitions is
not a best partition on the union of the object set. In this case, it is a problem because
objects of Qg have nothing to do with objects of O,, so analysing them together or
separately must not change the results.

The partition P, = {{Nc1,Nco}} on O, has the same value according to local
semantics as according to global semantics (in Example 40) because O, is composed
of a single incoherent part ({Necy, Nco}).

The partition Py = {{Ncs, Nca}, {Necs}, {, Ncg, Ner}, {Nest} has a best value
according to global semantics (in Example 39) and according to global semantics.
Indeed, the coherent part has a best value, as each incoherent part ({Ncg, Ncy, Ncs}
and {, Ncg, Neg}:

e The Py has a value for the incoherent Part({Ncs, Ncg, Nes}) such that v(Phy,
domain) = (always, —). This value is a best one for incoherentPart({Ncs,
Ney, Nes}) because of the incoherence between date and domain criteria for
objects Ncy and Ncs.

e The P, has a value for the incoherent Part({Nce, Ncz}) such that v(Ph,, date) =
(always, ——). This value is a best one for incoherentPart({Ncg, Nc7}) be-

cause of the incoherence between title and date criteria for objects Ncg and
NC7.

Contrary to global semantics, the partition Phy,s, = P, N Py = {{Nc1, Nea},
{Necs,Ney}, {Ncs}, {Ner} has a best value on the union on Qg N Q,. In this case,
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there are three incoherent parts: incoherent Part({Ncy, Nco}), incoherent Part({Nes,
Ney, Nes}) and incoherentPart({Ncg, Nc7}). Each of them has ezactly the same
value as previously when it was evaluated for the object sets Qg or O, since in this
semantics the incoherent subsets are considered independently from the others. The
Phys has also a best partition value for the coherent part, so Phyg has a best partition
value for O, N Q.

Dividing graph into independent parts (incoherent or coherent parts) allows the
“best partition” function to be distributive over the union of independent object
sets® according to a criterion set.

In other words, a partition P;; = P; U P; on the object set O, ; = O; UQ); is a
best partition on O; ; with respect to the criterion set C if and only if P; and F; are
respectively best partitions on OQ; and Q; with respect to C.

This is because the local semantics treats each independent parts and the coher-
ent part apart. In this case, the incoherent parts of Q; are distinct from independent
parts of @; because O; and Q; are disjoint. More of that, independent parts of O
are independent from independent parts of Q; because O@; and Qj, so the indepen-
dent parts of O; ; are exactly the union of independent part sets of O; and Q;. The
coherent part, by definition, does not contain incoherences. Consequently, there is a
single best value with respect to a criterion set, and best partitions with respect to
the same criterion set have necessarily the same coherent part value. This explains
why P; ; on the coherent part of Q;; has the same value as P; on the coherent part
of O; and as P; on the coherent part of Q.

In this Section, we detailed how to divide a criteria graph in independent parts
(coherent and incoherent parts), in the aim of evaluating them separately. We saw
how local semantics use them. Let us present the algorithm used to find all best
partition values according to local semantics in the following Section.

5.3.2 Finding best partitions for several criteria

To find all best partition values on a criteria graph according to local semantics,
we first need to identify incoherent (and coherent) parts with a “finding connected
components” algorithm (complexity O(mlogn) with n vertexes and m edges). Then,
for the coherent part and each of the at most n/2 incoherent parts *, we execute the
algorithm of global semantics (of complexity O((k + 1)¢*mlogn)). The algorithm
that finds best partition values according to local semantics and a criterion set is
Algorithm 4 and is named local Algorithm.

Complexity. The complexity in the worst case of local Algorithm is: O(n x (k +
1)¢x* mlogn) (please see Algorithm 4).

#Two object sets Q; and Q; are independent from each other according to a criterion set C if
and only if they are disjoint and there are no objects o; € O, 0; € ©@; and a criterion C' € C such
that C(o0;,0;) € V.S ... This is very similar to Definition 23.

since an incoherent part contains at least two edges between two vertexes
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Algorithm 4 localAlgorithm
Require: C, a criterion set on an object set Q; G¢ criteria graph of C
Ensure: set of best partition values with respect to C on Q.
best partition value set bestV = {};
Partition P, = ref(VP);
set of graphs: Gparts = {};
for each incoherent class I € P, do
add incoherent Part(Ge, 1) to Gparts;
end for
add coherentPart(Gc, Gparts) to Gparts;
apply Algorithm 3 on each graph in Gparts;
bestV = { best partition for G¢ : best partition for each graph in Gparts};
return bestV;

[y
e

Let us expose some details about the implementation of algorithms in the fol-
lowing Section before concluding this Chapter.

5.4 About the implementation of partitioning se-
mantics algorithms

Let us expose in this Section some precisions about implementation.

As explained in Section 4.1.1 page 39, the Sudoc is initially in a Marc version.
In the context of the SudocAd project [21], the Sudoc has been translated into an
RDF(S) version. The n-triples version is based on the RDF(S) version and is the
one used in this thesis. Contextual entities and authority notices related to a Sudoc
subset are exported into a file in the n-triples version. There is a file per Sudoc
subset.

The file containing the n-triples version of the Sudoc subset we are interested
into is read and queried by Alaska [25] in order to identify the contextual entities
and their attributes. Once it is done, the criteria graph is filled up.

The criteria graph is coded by a set of lists of edges: there is a list of edges
per comparison value of each criterion. Partitions are represented by a table such
that the indices correspond to the objects to partition and the values to the classes
affected to the objects. Algorithms are implemented in Java 1.6.

Conclusion.  The proposed partitioning semantics allows to find that objects are
close together with respect to a criterion set. This can be used on Sudoc subsets
in order to detect erroneous links by comparing the initial partition value to the
best partition values, as it has been explained in Section 3.2.3 page 37. However, to
detect erroneous links is not enough to repair them. This is why repair algorithms
are proposed in the following Chapter.
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Chapter 6

Repair algorithms

In Chapter 5, we presented two partitioning semantics that return a partition value
for any partition. This allows us to compare partitions amongst them and especially
with respect to special partitions: initial and human partitions (defined in Section
3.2.3 page 37). Unfortunately, these semantics do not allow us to improve the
value of a partition. This is the aim of repair algorithms that are presented in this
Chapter. We will start by explaining what we expect of a repair algorithm in Section
6.1 before detailing the proposed repair algorithms in Sections 6.2, 6.3, 6.4 and 6.5.
More precisely, Section 6.2 proposes a naive algorithm; Section 6.3 an algorithm
that refines the first naive algorithm in certain cases and Section 6.4, an algorithm
that takes care of the source notion (guaranteed good links) unlike to the previous
algorithm. Finally, in Section 6.5, we will add a last step to the previous algorithm
in the aim of improving its result.
Each of those four algorithms are theoretically evaluated in their own Section.

6.1 Introduction, data, why, definition, hypothesis

Let P be a partition on an object set O, C a criterion set that compares the objects
of O, and v, a best partition value on OQ with respect to C.

If the value of P on O with respect to C is worse than, or incomparable to v,
the repair aims to transform the P partition (by division or merge of classes, please
see Definition 28) into a P’ partition that has v as partition value, and doing so
while making the smallest possible number of atomic transformations (i.e. merges
and divisions) and taking into account sources. Sources are explained page 42.
Intuitively, the sources of an authority notice are the bibliographic notices linked
to it such that we assume that these links are good. In this Chapter, a source
is an object of O that has a particular meaning. It represents the importance of
the relation between an authority notice and the bibliographic notice for which it
was created (please see Section 6.1.1). Some algorithms will also use composed
transformations: replacement and newplacement of vertexes (please see Definition
29).

83
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When a partition P’ has no more unsatisfied edges' that forbid P’ to have v
as partition value, P’ has v as partition value. Those particular unsatisfied edges
are named unaccepted edges. The goal of repair algorithms is to transform a given
partition into a new partition that has a particular partition value. The repair
algorithms focus on those unaccepted edges.

First, we will explain the source notion (Section 6.1.1), then, the distinct types
of transformations (Section 6.1.2) and finally the notions around interesting edges
in the aim of fixing partitions (Section 6.1.3).

6.1.1 Sources

In Chapter 4, sources of an authority notice are the bibliographic notices linked to
it such that this link is assumed to be good. Intuitively, in this Chapter, sources
are contextual entities that represent such a link. Let us explain what is a source in
this Chapter.

Let Pi be the initial partition on an authority notice set Q. A contextual entity
of O is a source if and only if the represented contextual entity was created with
an authority notice Na; and its own source-bibliographical notice Nb;. This means
that Na; was created to represent a contributor of Nb; (please see page 42). As a
consequence, we make the hypothesis that there is at most a single source for each
class of the initial partition? Pi on G¢, and we denote source(z, Pi) the source in
the class class(x, Pi) for each vertex x of G¢ with Pi, the initial partition.

However, sometimes there are several sources (contextual entities) for the same
authority notice. Those contextual entities are assumed to represent good links
pointing to the same authority notice, so they have to be in the same class of any
partition that can be a best partition. We can guarantee that by adding the following
criterion to the criterion set used to partition a contextual entity set.

e The source criterion is a closeness-criterion®. Let N¢; and Nc; be two contextual
entities to compare. The source criterion returns an always value (source(N¢;, N¢;) =

"We remind ourselves that an unsatisfied edge of a partition P on a criteria graph G¢ is an
edge (0;,0;) such that o; and o;

e are in a same class of P and there is a criterion C' € C such that the comparison value
between o; and o; according to C' is a farness or never comparison value, or

e are in distinct classes of P and there is a criterion C' € C such that the comparison value
between o; and o; according to C'is a closeness or always comparison value.

Please see Definition 12 page 62 for further details.

2We remind ourselves that an initial partition is a partition such that contextual entities are
in a same class if and only if they represent links linked to a same authority notice. Please see
Definition 1 page 37 for details.

3A closeness criterion is a criterion that gives closeness or always comparison values, as ex-
plained in Definition 4 page 49.
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always) if and only if N¢; and Ne¢; are sources of the same authority notice. In the
other cases, the source criterion returns neutral value.

With this criterion, all sources of a same authority notice will be in the same
class of all valid* partitions because if not, the partition is not valid. Because each
partition that has a best value is valid, the repair algorithms that guarantee to give
as the result a partition with the desired (valid) partition value will only propose
partition repairs such that all sources of the same authority notice are in the same
class, even if we formally consider a single source by an authority notice.

6.1.2 Partition transformations

Let us present the transformations we use to make a partition P into a modified par-
tition. There are two types: atomic transformations (Definition 28) and composed
transformations (Definition 29).

Definition 28 (atomic transformation). Let P be a partition. An atomic transfor-
mation of P is:

e a merge of classes: two classes c;,c; of P are replaced by a single class c;; =
¢ Uc (a merge returns a new partition that is denoted merge(c;, cj, P)), or

e a diwvision of a class: a class c of P is replaced by two new classes ¢;, c; such
that c;Uc; = ¢, c;Ne; ={} and ¢;,¢; # {} (a division returns a new partition
that is denoted division(c;, P)).

Example 46 (Atomic transformation). Let P be the partition {{a,b,c,d},{e, f,g,
hyi,j}}.

4 merge({a, bv c, d}v {6, f>g>h7i7j}>P) = {{(l,b, c, da e>fvgv h,Z,]}}
e division({a,b}, P) = {{a,b},{c,d}, {e, f,g,h,i,5}}.

Definition 29 (composed transformation). Let P be a partition. A composed trans-
formation of P is:

e a replacement of vertexes between two classes: let ¢;,c; be two classes of P,
and ¢ C ¢;. ¢; and ¢; are replaced by ¢; — ¢ and ¢; U ¢ (a replacement returns
a new partition that is denoted replacement(c,c;, P));

e a newplacement of vertexes from two classes: let c;,c; be two classes of P,

/ / / . /
¢; C ¢ and ¢; C ¢;. ¢ and ¢ are replaced by ¢; — ¢, respectively ¢; — ¢

J

4The validity of a partition is defined Definition 11 page 61. A partition which is not valid
cannot be a best partition and is not even considered as a solution of the entity resolution problem.
Intuitively, it is a partition such that there are two objects in the same class that have to be never
together according a criterion, or on the contrary in distinct classes but they have to always be in
the same class according to a criterion.
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and ¢, = ¢; U c; (a newplacement returns a new partition that is denoted
newplacement(cy, P) ).

A replacement counts as two atomic transformations (a division and a merge)
and a newplacement counts as three atomic transformations (two divisions and
a merge).

Example 47 (Complex transformation). Let P be the partition {{a,b,c,d},{e, f,
g,h,i,7}} defined Example /6.

e replacement({c},{e, f,g,h,i,j5}, P) = {{a,b,d},{c,e, f,g,h,i,j}}.
e newplacement({c,e}, P) = {{a,b,d},{c,e},{f, g,h,i,7}}.

The transformations in a partition correspond to link modifications in Sudoc.
Intuitively, a merge corresponds to fuse two authority notices and to link their
bibliography to the new authority notice. A division corresponds to creating a new
authority notice and to linking it to a set of bibliographic notices originally linked to
a same authority notice. A replacement corresponds to redirecting links from some
bibliographic notices (originally linked to the same authority notice) to another
existing authority notice. A newplacement corresponds to redirecting links from
some bibliographic notices (originally linked to two distinct authority notices) to a
new authority notice. The transformations indicate which bibliographic notices have
to be linked to which authority notices, but do not indicate how to fuse two authority
notices and their attributes or with which attributes to create a new authority notice
when it is necessary.

In this Section we presented the transformations of partitions used by the proposed
repair algorithm. Each transformation aims to reduce the number of edges that are
unsatisfied, but not just any of them: the important ones for a partition having a
chosen v partition value, i.e. the unaccepted edges.

6.1.3 Crucial and unaccepted edges

Intuitively, an unaccepted edge (Definition 12) for a partition P and a partition
value v is an edge that is satisfied for any partition with v as partition value (called
crucial edge, defined in Definitions 30 and 31) but is not satisfied in P. Those
unaccepted edges are the edges that forbid P to have v as partition value.

Definition 30 (Crucial edge for a criterion). Let G¢ be a criterion graph, v(P,C') =
(Vp, ), the partition value® of a partition P on Ge, and x,y two vertezes of Ge.
An edge (x,y) is a crucial edge if C(x,y) = v such that:

®We recall ourselves that the value (v,,v,) of a partition P on a criterion graph G¢ (defined
in Definition 14 page 64) is such that:

e v, is the weakest closeness or always value such that there is no unsatisfied edge in G¢
according to P (an edge such that its vertexes are in distinct classes) labelled by a value
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e U{always}t and v > v, ((x,y) is said a closeness crucial edge denoted
CCE), or

e veE VS

e v e Vi, U{never} and v < v, ((z,y) is said a farness crucial edge denoted
FCE).

The set of all crucial edges of G for v(P,C) is denoted crucial Edges(v(P,C), G¢)
(and can be abusively denoted crucial Edges(v(P,C')) when G¢ is obvious).

The set of closeness crucial edges is denoted closeCrucial Edges(v(P,C),Gc¢)
(and can be abusively denoted closeCrucial Edges(v(P,C)) when G is obvious).

The set of farness crucial edges is denoted farCrucial Edges(v(P,C),G¢) (and
can be abusively denoted farCrucial Edges(v(P,C)) when G¢ is obvious).

s vertex [.)_.!'.........z'OT%
esource o 1
= edge labelled ++ e :
— edge labelled + . i
a e h

= edge labelled —
-- edge labelled -

Figure 6.1: Criterion graph G¢

Example 48 (Crucial edge for a criterion graph). Let G, be the criterion graph
represented on Figure 6.1, and v = (+4, —), a partition value.

e closeCrucial Edges(v) = {(b,d), (d,c), (c,e),(f,g)} because

€., and C(b,d) = C(d, ) = Cle,e) = C(f,g) = ++, 50 {(b,d),
(d,c), (c,e), (f,9)} C closeCrucial Edges(v);

~ Cle, f)y =+, + € VS . but + < ++ so C(b,d) & closeCrucial Edges(v).

- ++ eV,

e farCrucial Edges(v) = {(d, f), (g,h), (f,7), (i,d)} because

~ O, ), Clg, 1), C(f,), Clisd) € VE, and
- C(d7 f)v C(ga h)7 C(f?])? 0(27 d) < -

e crucial Edges(v) = farCrucial Edges(v) U closeCrucial Edges(v) = {(b,d),
(d;c), (c.e), (f.9), (d, [), (9,h), (f,5), (i,d)}.

Crucial edges of G¢ for the partition value (++, —) are represented on Figure 6.2.
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Figure 6.2: Crucial edges of G¢ for the partition value (++,—)

Definition 31 (Crucial edge in a general case). Let G¢ be a criteria graph , and
v(P,C), the partition value® of a partition P on G¢. Let x,y be two vertezes of Ge.
An edge (x,y) is:

e a crucial edge if and only if 3C € C|(x,y) € crucial Edges(v(P,C), G¢) (please
see Definition 30).

e a closeness crucial edge if and only if 3C' € C|(z,y) € closeCrucial Edges(v(P,C), Gc¢).
e a farness crucial edge if and only if 3C € Cl|(x,y) € farCrucial Edges(v(P,C),G¢).

The set of all crucial edges of Ge for v(P,C) is denoted crucial Edges(v(P, C), G¢)
(and can be abusively denoted crucial Edges(v(P,C)) when G¢ is obvious).

The set of closeness crucial edges is denoted closeCrucial Edges(v(P,C),Gc)
(and can be abusively denoted closeCrucial Edges(v(P,C)) when G¢ is obvious).

The set of farness crucial edges is denoted farCrucial Edges(v(P,C),G¢) (and
can be abusively denoted farCrucial Edges(v(P,C)) when Gg¢ is obvious).

Definition 32 (Unaccepted edge). Let P, be a partition on a criterion graph Gg,
and v, the partition value of a partition on Ge. An edge (x,y) is unaccepted for P
with respect to v if and only if:

e (x,y) is crucial for the partition value v (please see Definition 31), and
e (x,y) is unsatisfied by P (please see Definition 12 page 62).

We will denote unacceptedEdges(v, P) the set of unaccepted (crucial) edges
for P with respect to partition value v; closeUnacceptedEdges(v, P) the set of
unaccepted closeness (crucial) edges for P with respect to partition value v; and

stronger than v,,.

e v, is the weakest farness or never value such that there is no unsatisfied edge in G¢ according
to P (an edge such that both vertexes are in the same class) labelled by a value stronger
than v,,.

6We recall that in a general case, the partition value of a partition P on the criteria graph G¢
is the set of partition values of P on G¢ according to each criterion C' € C. Please see Definition
16 page 66 for further details.
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farUnacceptedEdges(v, P) the set of unaccepted farness (crucial) edges for P with
respect to partition value v.

Example 49 (Unaccepted edge). Let G¢, be the criterion graph and v = (++, —)
the partition value of Example 48. Let G¢ be the criteria graph such that C = {C'}
and G¢ vertexes are G¢o vertexes. So, crucial edges of Ge are exactly the crucial
edges of Go according to Definition 31, and are represented on Figure 6.2.

Let us define the initial partition P = {{a,b,c,d},{e, f,g,h,j,i}} on Gg¢, rep-
resented on Figure 6.3 with the crucial edges on Ge. The crucial edges for v
(crucial Edges(v) = {(b,d), (d,c), (c,e),(f.9). (d, f), (g,h), (f.]), (i,d)} according
to Example /8) which are unsatisfied by P are unaccepted by P with respect to v.
So, unacceptedEdges(v, P) = {(c,e),(g,h), (f,])}. (c,e) is a closeness unaccepted
edge and (g,h), (f,7) are farness unaccepted edges.

The following Property asserts that partitions with no unaccepted edges accord-
ing to a partition value v have a partition value better or equal to v. Intuitively, it
is because a partition value depends on the edges with the most intense label (com-
parison value) which are unsatisfied. Removing them all improves the partition
value.

Property 1 (Partitions with no unaccepted edge according to v). Let G¢ be a
criterion graph, P a partition on G¢ and v a partition value of Ge. P has no
unaccepted edge according to v, if and only if P has at least v as a partition value,
or a better partition value.

Proof 1 (Partitions with no unaccepted edge according to v). Let us consider a
partition P on a criteria graph Gc and a partition value v on Ge. Let us consider
the set of unaccepted edge of P according to v: unacceptedEdges(v, P).

If there are unaccepted edges for P according to v (unacceptedEdges(v, P) # {}),
then there is at least an unaccepted edge (x,y) according to P and v such that x and
y are G vertexes. An unaccepted edge can be a closeness or a farness unaccepted
edge.

e if (x,y) is a CUE, then:

— x and y are in distinct classes of P (class(x, P) # class(y, P)), and

— there is a criterion C' € C such that C(x,y) = v, with v, > vy, the inter
value of v according to C.

Unfortunately, this means that the partition value of P according to C' 1is
v(P,C) = (v,,v,) at the best (with vy, the intra value of v according to C),
so v(P,C) cannot be better than or equal to v if there are closeness unaccepted
edges for P according to v.

o if (x,y) is a FUE, then:
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— x and y are in the same class of P (class(z, P) = class(y, P)), and

— there is a criterion C € C such that C(x,y) = v), with v}, > v,, the intra
value of v according to C.

Unfortunately, this means that the partition value of P according to C is
v(P,C) = (vy,v),) at the best (with vy, the inter value of v according to C),
so v(P,C) cannot be better than or equal to v if there are farness unaccepted

edges for P according to v.

v(P,C) cannot be better than or equal to v if there are unaccepted edges for P
according to v. No unaccepted edges for P according to v implies that v(P,C) is
better than or equal to v because of the way unaccepted edges are defined.

A reference partition P,.; that has v as partition value is a partition, that, as
any partition with v as partition value, does not have unaccepted edges according
to v. Unaccepted edges are crucial unsatisfied edges; as a consequence, crucial edges
are satisfied. This implies the following Property.

Property 2 (CCEs, FCEs and P,.f). Let v be a best partition value on a graph
Ge, Prey = Pref(v,Ge) the unique reference partition on Ge that has v as partition
value, and (x,y) a crucial edge of Ge with respect to the v value.

o If (z,y) is a closeness crucial edge, then vertezes x and y are in the same class
of the reference partition P,.s: class(x, Prey) = class(y, Pref)-

o If (z,y) is a farness crucial edge, then vertezes x and y are in distinct classes
of the reference partition P.s: class(x, Pes) # class(y, Pres).

Proof 2 (CCEs, FCEs and P,.f). Let P..; be the reference partition on a criteria
graph G¢ such that v(P,.s,C) = v. Since P,.f has v as partition value, there are
no crucial unaccepted edges in G¢ according to P and v (please see Property 1),

which means that all crucial edges according to v are satisfied by P (according to in
Definition 32). A crucial edge (x,y) can be a CCE or a FCE:

e if (x,y) is a closeness edge, then class(x, P) = class(y, P) (according to sat-
isfied edge, defined inDefinition 12 page 62);

e if (x,y) is a farness edge, then class(x, P) # class(y, P) (according to satisfied
edge, defined in Definition 12 page 62).

The Property 2 is verified.

Let G¢ be a criteria graph and v, the value of a partition on G¢. Please note
that if v is a best possible partition value on Gg, it means that there is at least a
partition on G¢ with no unaccepted edges with respect to v. Those partitions have
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Figure 6.3: Unaccepted edges for the partition P on G¢ with respect to (++, —)

v as partition value. In particular, the reference partition” which has v as partition
value has no unaccepted edges with respect to v.

In this Section, we detailed central concerns for a good repair algorithm: it
should return a partition with the desired partition value (i.e. without unaccepted
edges according to this desired partition value), go from the original partition to
the resulting partition with the least possible number of atomic transformations
between them, and take care of not separating vertexes from their sources when it
is avoidable.

First, we will propose a naive algorithm for repairs based only on atomic repairs
in Section 6.2. Then, we will propose an improved algorithm on Section 6.3 that
uses composed transformations in the aim of refining the first naive algorithm in
some cases but this increases the complexity (O(m xn) to O(m * (m + n)) with n
vertexes and m edges). In Section 6.4, the source repair algorithm will finally take
care of the source notion, unlike the previous algorithm. Finally, in Section 6.5, we
will add a last step in the algorithm in the aim of correcting the divisions of classes
that could have been wiser.

6.2 Naive repair algorithm

Let P be a partition on a criterion graph G¢, and v a best possible partition value
on Ge. In the reminder of this Chapter, we will only be interested in crucial edges.

We will denote Pref(v,Gc) the (unique) reference partition on Gg¢ that has v
as partition value.

The naive algorithm (Algorithm 5) is intuitive. It has two steps: first, we would
like to divide classes ¢ of P in several classes such that there would be no more
farness unaccepted edges, and no new closeness unaccepted edges. Second, once it
is done, we merge classes in the aim of having no more closeness unaccepted edges,
like in Algorithm 5. The resulting partition is P’. At the beginning, P’ is a copy of

"We recall that a reference partition that has v as partition value is the most refined partition
(Definition 18 page 68) with v as partition value. Please see Definition 22 page 72 for further
details.
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P. We note that there is at least a partition that has the desired partition value:
Py

Division step: (lines 2 to 4 from Algorithm 5). This step aims to have no more
farness unaccepted edge, and no new closeness unaccepted edge with respect to
the value v in the partition P’. We consider farness unaccepted edges (FUE) of
P’ one by one. For each FUE (z,y), the vertex x is put in a new partition class
class(x, P')® distinct of class(y, P'). By doing this, the FUE (z,y) is no longer
unaccepted because x and y are in distinct classes of P’. However, just separating x
from class(y, P') — {x} could create new closeness unaccepted edges (CUE) if there
is a closeness crucial edge (CCE) (z,y’) such that y' € class(y, P"). In fact, (z,/)
wasn’t unaccepted when = was also in class(y, P’). In the aim of preventing new
CUE in P', each vertex y' such that there is a CCE (2/,y') with 2’ € class(z, P')
and y' € class(y, P') is put in class class(x, P') instead of class(y, P') until there
are no more vertexes 3y € class(y, P') with this property. Those ' vertexes are all
in the class class(z, P..s) because (z,y’) is a CCE and vertexes of a CCE according
to partition value v are in the same class of P..; (Property 2). This implies that
class(x, P') is a subset of class(x, P,.¢), which does not contain farness crucial edges
(FCE) with respect to v (Property 2), so class(x, P') does not contain farness crucial
edges. This allows the “division step” of the algorithm to end when all FUEs of P
are treated.

We denote around(x, P', P,.r) the union of = to the y’ vertexes which was in
the same class of x in P’ and are in the same class of x in any partition with v as
partition value. They are defined in Definition 33.

Once it is done, there are no more FUEs in P’, and no new CUEs in P’. We
take care of CUEs in P’ in the merge step of the naive repair algorithm (Algorithm
5).

The two following Properties 3 and 4 are used in the division step of Algorithm
5.

The Property 3 asserts that vertexes that are into the same class of the reference
partition with v as partition value are into the same class of any partition that has
also v as partition value. Intuitively, it is because the reference partition that has v
as partition value is the most refined partition of the partitions that share the same
partition value v. This implies that classes of the reference partition are always
included in the classes of partitions with the same partition value v.

Property 3 (About vertexes of a same partition reference class). Let v be a best
partition value on a graph Ge, P..y = Pref(v,Gc), the unique reference partition
on G¢ that has v as partition value, and x, y, two vertexes such that they are in the

8We remind ourselves that the partition P class that contains x is denoted class(x, P), as
defined in Definition 6 page 58.
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same class of Py (class(x, Prey) = class(y, Pres)). Then in any partition on G¢
that has v as partition value, x and y are in the same class.

Proof 3 (About vertexes of a same partition reference class). Let G¢ be a criteria
graph, v, a partition value on G¢ and Py, the reference partition on Ge such that
U(Pref,G(c) = .

By definition, a reference partition is the most refined partition with its partition
value as partition value (please see Definition 22 page 72), so Py is the most refined
partition on G that has v as partition value.

Let P be a partition on G¢ such that v(P,C) = v and x, y two vertezes of G¢
such that they are in the same class of P but not in the same class of Pey.

This implies that P,.y is not more refined than P, so P,y is not the most refined
partition on Ge with v as partition value: P,y is not a reference partition, or P has
not v as partition value.

As a consequence, the Property 3 is verified.

The Property 4 allows us to divide the classes of a partition P without creating
new unaccepted edges with respect to a partition value v in the resulted partition.
It is intuitively based on the idea that dividing a class of P without separating the
vertexes of a same class in the reference partition P,.; which has v as partition value
cannot add unaccepted edges in the resulted partition P’ because:

e Separate vertexes cannot create FUEs, because a FUE is a FCE such that its
vertexes are both inside the same class.

e For each CCE, its vertexes are in the same class of the reference partition, so

dividing a class of P without separating the vertexes of a class of P,..f cannot
add CUEs.

The Property 4 uses the following Definition which defines which vertexes have
to stay together during the division of a partition class.

Definition 33 (The smallest subset around a vertex). Let P be a partition on graph
G, z a verter of Ge and Prey a best reference partition value such that v(Per, Ge) =
v. The smallest subset around x in P according to v is class(z, P) N class(z, Prey)
and is denoted around(z, P, Py.y).

Property 4 (Division with a smallest subset around x). Let P be a partition on
graph Gc, © a vertex of Gec and P,.y a best reference partition value such that
V(Pres, Ge) = v. Every unaccepted edge (y,w) in division(around(x, P, P..f), P)
with respect to v is also unaccepted in P with respect to v partition value.

Proof 4 (Division with a smallest subset around x). Let P be a partition on graph
Gc, x averter of Ge and Prcy a best reference partition value such that v(P.r, Ge) =

v, ¢ the class of P containing x (¢, = class(x, P)) and ¢, the smallest subset around
x of P denoted ¢, = around(z, P, P,.y) (Definition 33).
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Let P’ be the partition such that P' = division(around(z, P, P,ey), P). The class
¢ of P has been replaced in P’ by classes ¢, and ¢, —cl, such that ¢, = ¢, U (¢, — ).
So, if a crucial edge according to v denoted (y, z) is unaccepted in P’ but not in P,
this edge must be:

1. a closeness crucial edge and not a farness crucial edge (there are no two ver-
texes i,j such that class(i, P)! = class(j, P) but not class(i, P') = class(j, P');

/ / / /. :
2. such that y € ¢, and z € ¢, — ¢, (or z € ¢, and y € ¢, — c,: we will focus on
the first case only, because the second one is symmetric).

If (2,y) is a closeness crucial edge according to v partition value, then class(z, Pres) =
class(y, Pref) (Property 2). If y € ¢, and z € ¢, — ¢, then z,y € ¢, because
g =, U(cy — ). y € c, implies y € class(x, Pey) because y € c, and ¢, =
around(z, P, Pr.y) = class(x, P) N class(x, Pey).

However, z € c,—c, implies z & class(x, Pyey) because c,—c, = c,—(class(x, P)N
class(x, Prey)), 50 ¢ — ¢, = ¢u — (¢ N class(x, Prey)) and z € c,.

By definition, there are no verteres in two distinct classes of a same parti-
tion. However, y € class(x,Pef) and z & class(x, Prey) but class(z, Pref) =
class(y, Prey), which is impossible according to classes’ definition. Considering that
Property 4 is not true implies a non-sense, so, Property 4 is true and every unac-
cepted edge (y,w) in division(around(x, P, P,es), P) is also unaccepted in P accord-
ing to the v partition value.

Merge step: The naive way to take care of CUEs in P’ is to take each CUE
(x,y) one by one, and, for each of them, merge class(x, P") and class(y, P’) into
one unique class. As we will see in Example 50, that could be useful for giving a
partition that has v as partition value but that can also add farness unaccepted
edges into the resulting partition, as shown in Example 51.

Example 50 (Naive algorithm). Let us take the crucial edges of the graph Ge with
respect to partition value v = (++,—) described in Example /8. Let us define the
partition P, on Gc¢ such that P, = {{a,c,e,h}, {b,d}, {i,7, f,g}} and represented
on Figure a) 6.4 with its unaccepted edges with respect to v.

Let the partition P! be an exact copy of P,, and P,.;y = {{a}, {b,c,d, e}, {f, g},
{h}, {i}, {j}} be the only reference partition such that v(P.r, Gec) = v. The first
step of Algorithm 5 is to identify FUE (here, (j, f)). The algorithm takes care of
(7, f) and puts j in a new class with all the other vertexes belonging to the same
class of P,es and to class(f,P.): the new class of j is {j}, and the new partition
P! after division({j}, P.) is P. = {{a,c,e, h}, {b,d}, {i,j,9}, {j}}, represented on
Figure b) 6.4.

There are no more FUE in P'.

The second step is to merge classes of vertexes of a same closeness unaccepted
edge. There is a single CUE: (¢,d). class(c, P)) = {a,c,e,h} and class(d, P!) =
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Algorithm 5 naiveRepairAlgorithm

Require: G¢ = (V, E), a criteria graph;
v, a possible partition value on Gg;
P. a partition on Gg;
P,.s, the reference partition on G¢ such that v(P.f, Ge¢) = v;

Ensure: a partition P’ that has v as partition value (or a better one)

1: Partition P" = copy(P);

2: while 3(xz,y), a farness unaccepted edge of P’ for v do
3: P’ = division(around(z, P', Pef), P');

4: end while

5. while J(x,y), a closeness unaccepted edge of P’ for v do
6: P'=merge(class(x, P'),class(y, P"), P');

7: end while

8: return F’;

{b,d}, so the new and final P! partition, represented on Figure c) 6.4 is {{a, c,e, h,b,d},
{i, f,q9}, {j}}. This partition has no more unaccepted edges and has v = (++, —)
as partition value.

Example 51 (Counter example for naive algorithm). Let us take the unaccepted
edges of the graph Gg¢ with respect to partition value v for the partition P described
in Example 49 and represented on Figure 6.5.

Let the partition P’ be an exact copy of P, and P..; = {{a},{b,c.d,e},{f, g}, {h},
{i},{j}} be the only reference partition such that v(P.r, Ge) = v. The first step of
Algorithm 5 is to identify FUE (here, (j,f) and (g,h)). The algorithm takes care
of (j, f) at first and puts j in a new class with all the other vertexes belonging to
the same class of Py and to class(f,P’): the new class of j is {j}, and the new
partition P" after division({j}, P') is represented on Figure a) 6.5. (g,h) is still a
FUFE so the algorithm puts g into a new class with all the other vertexes belonging
to the same class of Prey and to class(h,P'): f. The new class of g is {g, f}, and
the new partition P' = {{a,b,c,d},{e, h,i},{f,q},{j}} after division({qg, f}, P’) is
represented on Figure b) 6.5.

There are no more FUEs in P’.

The second step is to merge classes of vertexes of a same closeness unaccepted
edge. There is a single CUE: (c,e). class(c, P') = {a,b,c,d} and class(e, P') =
{e, h,i}, so the new and final P’ partition, represented on Figure ¢) 6.5 is {{a, b, ¢, d,
e, h,it, {f,9},{j}}. Unfortunately, there is a farness unaccepted edge, (d,i), that
18 not accepted and shows that the naive algorithm does not provide each time a
modified partition with the desired value, or without unaccepted edges.

Complexity and transformation number. Let us denote f the number of
FUEs in the partition P on G¢ according to the partition value v. The division step
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Figure 6.4: Modifications of P, on G¢ with respect to (++,—): example for the
naive algorithm (5)

of Algorithm 5 does one division per FUE in the worst case, so it does f divisions
(or atomic transformations) in the worst case. The complexity of the naive repair
algorithm division step is O(m*n), with m edges (FUESs) to check in the worst case
and n vertexes.

The complexity of the naive repair algorithm merge step is also O(m x n), with
m edges (CUEs) to check in the worst case and n vertexes. Indeed, it does a fusion
of classes per CUE in the worst case. So, the complexity of Algorithm 5 is O(m*n).

We saw in Example 51 that the naive repair algorithm (Algorithm 5) did not
always give a partition free of unaccepted edges as the result. Let us correct this
point with the intuitive repair algorithm.

6.3 Intuitive repair algorithm

The intuitive repair algorithm (Algorithm 6) proposes a smarter way to take care
of CUEs after the division step of naive algorithm (Section 6.2) in the aim of not
having new FUE after merges. Let us detail this merge step.
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Figure 6.5: Modifications of P’ on G¢ with respect to (++, —): counter example for
the naive algorithm (Algorithm 5)

Merge step: (lines 5 to 26 from Algorithm 6). The intuitive repair algorithm,
after the division step of the naive repair algorithm (Algorithm 5), takes CUEs of
P’ one by one. For each CUE (z,y), it checks if the merge of their respective classes
(class(z, P') and class(y, P’)) adds some FUE in the resulted partition.

e If not, the algorithm merges those classes like the naive repair algorithm (Al-
gorithm 5) does.

e Ifit is the case, like in a division, the algorithm tries to put z (and the smallest
subset around z defined in Definition 33, in the aim of not adding a new CUE
as for divisions of naive algorithm) into class class(y, P'), or in the same way,
y into class(x, P"). For each, it checks if this does not create a new FUE in
the resulting partition. If none of these possibilities is accepted, it creates a
new class and puts into it x, y and vertexes around x and y, like in the naive
algorithm’s division step (in the aim of not creating a FUE in the resulting
partition).

At the end of the process, there are no more FUEs in the partition because of the
division step, and no more CUEs because of the merge step, so we obtain a partition
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with the desired partition value v. Let us show how the algorithm handles CUEs

with Example 52.

Algorithm 6 intuitiveRepairAlgorithm

Require: G¢ = (V, E), a criteria graph;

v, a possible partition value for Gg;
P. a partition on Gg;

P,.¢, the reference partition on G¢ such that v(P.r, Ge) = v.
Ensure: a partition P’ that has v as partition value (or a better one)

1: Partition P’ = copy(P);

2: while 3(z,y) € farUnacceptedEdge(v, P') do
3. P’ = division(around(z, P', Pcf), P');

4: end while

. while 3(z,y) € closeUnacceptedEdge(v, P') do

5

6: Class ¢, = class(z, P');
7. Class ¢, = class(y, P');
8

9

Partition Pj.q = merge(cy, ¢y, P');
farUnaccepted Edge(v, Prest)| (2, w) 4

if / A(z,w) €
farUnacceptedEdge(v, P') then
10: P = Ptest;
11:  else
12: Class ¢, = around(x, P', P,s);
/

13: Class ¢, = around(y, P', Prey);

14: Piest = replacement(c,, ¢, P');

15: it/ 3(zw) € farUnacceptedEdge(v, Prest)| (2, w) 4
farUnacceptedEdge(v, P') then

16: P = Ptest;

17: else

18: Piest = replacement(c),, ¢,, P');

19: if  /  3(zw) € farUnaccepted Edge(v, Prest)| (2, w) 4

farUnaccepted Edge(v, P') then

20: P' = Pieg;

21: else

22: P’ = newplacement(c, U ¢, P');

23: end if

24: end if

25:  end if

26: end while
27: return P’;

Example 52 (Intuitive algorithm). Let us take the unaccepted edges of the graph
G with respect to partition value v for the partition P described in Example 49 and

represented on Figure 6.3.
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The division step of the intuitive repair algorithm (Algorithm 6) is exactly
the same as the division step of the naive repair algorithm (Algorithm 5). So, af-
ter this step, the modified partition is P' = {{a,b,c,d},{e, h,i},{f, g},{j}} and is
represented on Figure b) 6.5. There is no FUE in P for the partition value v.

The merge step takes care of closeness unaccepted edges. In this case, there is
a single CUE: (c,e). class(c, P') ={a,b,c,d} and class(c, P") = {e, h,i}.

Merging those classes like in the naive algorithm is not an option because the
resulting partition {{a,b,c,d,e, h,i},{f, g},{j}} contains a FUE, (c,1).

So, the algorithm tries to put c in the class containing e, class(e, P') = {e, h,i}.
Adding c to {e, h,i} implies to also add d and b into it because of CCE (c,d) and
(d,b) (d and b are in the smallest subset around e according to the (++, —) partition
value). Unfortunately, the resulting partition {{a},{b,c,d e, h,i},{f,qg},{j}} also
contains a FUE, (c,1).

The algorithm tries to put e in the class containing c, class(c, P') = {a,b,c,d}.
The resulting partition {{a,b,c,d,e},{h,i},{f, g9}, {j}} does not contain FUEs nor
CUFEs. This partition is the result of the intuitive algorithm and is represented on
Figure 6.6.

However, we notice that vertex i is not with its source f, and there is no obligation
to separate it from its source (the source notion is explained in Section 6.1.1).

(O a partition class

* vertex 5
farness crucial edge

closeness crucial edge
== farness unaccepted edge
a

= closeness unaccepted edge

Figure 6.6: The partition P’, modification of partition P on G¢ with respect to
(++, —) after the merge step of the intuitive repair algorithm (Algorithm 6)

Complexity and transformation number. Let G¢ be a graph, v, a best par-
tition value on Gg¢, m, be the number of crucial edges, fue, the number of farness
unaccepted edges according to v, cue, the number of closeness unaccepted edges
according to v, and n the vertexes number.

The division step of the intuitive repair algorithm is exactly the same as the
division step of the naive repair algorithm (Algorithm 5), so it does fue atomic
transformations (divisions here) with O(m xn) complexity in the worst case with m
edges and n vertexes, according to Section 6.2.
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The merge step of the intuitive repair algorithm does one transformation per
CUE in the worst case. These transformations could be a merge, a replacement or
a newplacement. A replacement is worth 2 atomic transformations and a newplace-
ment 3 atomic transformations, so the algorithm does 3 atomic transformations per
CUE in the worst case: 3 * cue atomic transformations.

The complexity in the worst case is O(m* (m+mn)) with m edges and n vertexes.
In fact, each CUE is checked (m checks in the worst case), and for each check, one
to three “is there a new FUE 77 tests are done (lines 9, 15 and 19). These tests have
O(m) complexity in the worst case because they require to check edges (m), and
for each of them, to check the classes of their vertexes (4). Other operations are
done, like transformations or identifications of a class. These operations require to
check vertexes (n), so, for each tested CUE, there is a complexity of O(m + n) in
the worst case.

The intuitive repair algorithm finally has 3xm atomic transformations (because
an unaccepted edge is a farness or a closeness unaccepted edge, but not both) and
a complexity of O(m * (m +n)) in the worst case with m edges and n vertexes.

The intuitive repair algorithm repairs the partition, but does not take care of
sources (notion explained in Section 6.1.1) and does not try to let vertexes in the
same class as their sources as much as possible. The source repair algorithm adds
some modifications to the intuitive repair algorithm in the aim of also taking into
account sources.

6.4 Source repair algorithm

The source repair algorithm (Algorithm 10) functions as the intuitive repair algo-
rithm (Algorithm 6 Section 6.3) but takes care of sources’ positions. As explained
in Section 6.1.1, sources are particular vertexes. They are considered as the most
significant vertexes of the initial partition Pi. We choose to take care of sources by,
for their class, not removing a vertex initially in it, if it can be avoided.

The algorithm stands on the Property 3.

The source repair algorithm (Algorithm 6) uses the source positions when a
class has to be divided or merged. The source positions affect transformations of
classes. There are three affected operations: division of a class, replacement and
newplacement. Let us explain how those operations are affected.

Let Pi, be the initial partition on the criteria graph Gg,v, a best value on Gg,
P,y = Pref(v,Gc), and P, a partition on G¢ and the copy P’ of P.

Division step: (lines 2 to 4 from Algorithm 10). The division step of the sources
repair algorithm (Algorithm 10) changes the class division of Algorithm 6 a bit with
the notion of source position.
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Let (x,y) be a farness crucial edge of P’ according to v value such that z, y are
in the same class ¢ of P’. In the aim of dividing ¢ without separating a vertex k € ¢
of its source denoted s = source(k, Pi) (please see Section 6.1.1 for details about
sources), we have to check if x or y have to be in the same class as s according to
classes of P, (which is equivalent to s being in the smallest subset around x nor y).
If none of them requires to be with s, the division will be the same as in previous
algorithms 5 and 6. In the other case, the vertex that does not require to be with
its own source will be removed from the class (instead of the other requiring to be
in the same class as s), as in previous algorithms. The details of a division relative
to the source position are in Algorithm 7.

Algorithm 7 sourceDivision

Require: (z,y), an unaccepted farness edge for the partition Pi on the criteria
graph G¢ = (V, E) with respect to the partition value v = v(P.ef);
Pi, the initial partition on Gg;
P’, a partition on Gg;
v, a possible partition value on Gg;
P,¢, the reference partition on G¢ such that v(P,.f) = v.
Ensure: a partition resulting from the division of the class containing = and v,
relative to source position.
Class result = around(x, P, Pyy);
if source(x, Pi) € result then
result = around(y, P', Pry):
end if
return division(result, P');

Example 53 (Source division). Let us take the unaccepted edges of the graph G¢
with respect to partition value v for the initial partition P = {{a, b, ¢, d}, {e, f, g,
h, i, j}} described in Example 49 and represented on Figure 6.3.

The division step of the sources repair algorithm (Algorithm 10) changes the
class division of Algorithm 6 a bit with the notion of source position. The modified
partition before the division step is P' = P. There are two FUEs: (4, f) and (g, h).
Let us divide the class containing j and f, ¢ ={e, f, g, h, i, j} because of (j, f).
The first vertez is 7, and is not linked to any other vertex, so j is put in a new class
as for the naive algorithm and P" becomes {{a, b, ¢, d}, {j}, {e, g, h, i, f}} (as in
the naive repair algorithm). P’ is represented on Figure a) 6.5.

Let us divide the class containing g and h, ¢ = {e, g, h, i, f} because of (g, h).
Contrary to the naive repair algorithm, we will not put g and f (linked by the CCE
(f,9)) in a distinct class because f is the source. So, h is put in a new class and
the resulting new P’ partition is: {{a, b, ¢, d}, {7}, {h}, {e, g, i, f}}, represented
on Figure 6.7.

There are no more FUFEs in P at the end of the division step.
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Figure 6.7: The partition P’, modification of partition P on G¢ with respect to
(++, —) after the division step of the source repair algorithm (Algorithm 10)

Merge step: (lines 5 to 28 of Algorithm 10) Two transformations are modified
with respect to the intuitive repair algorithm (Algorithm 6): replacement and new-
placement. Merge is unchanged.

e Replacement (lines 14 to 20) is changed because the smallest subset around a
vertex x of a class is changed: if x has to be in the same class as its source

source(x, Pi) for any partition with v as partition value (s is in around(z, P', P.ef)),

then this smallest subset is the entire class of x (class(x, P')), else, this is the
smallest common subset to class(x, Pi) and class(x, Pr.y). We abusively de-
note this notion classSource(x, P',v) because P,..; and Pi are fixed (please
see Algorithm 8).

e Newplacement (lines 21 to 25) is changed if one of the concerned vertexes z,
y has to be with its respective source (if only one, because of the classSource
notion, like in replacement). If both of them have to be with their respective
source, they first are put in a new class as in the intuitive repair algorithm (with
class(z, P') Nclass(x, Prey) and class(y, P') Nclass(y, Prey)), and each subset
class(z, P') N class(z, P,ey) such that z was in class(x, P') or class(y, P') is
added to the new class if this does not add any FUE in the resulting partition.
Algorithm 9 details this modification.

Example 54 (Algorithm classSource). Let P be the initial partition such that P =
{{a, b, ¢, d}, {e, f, g, h, i, j}} the initial partition on Ge of the previous Examples.
Its unaccepted edges according to the partition value v = (++, —) are represented on
Figure 6.3. The class source of g according to v in P is classSource(g, P) = {e, f,
g, h, i, 7}} because g has to be in the same class as f with respect to v and f is a
source, but classSource(e, P) = {e}}.

Example 55 (The merge step of source repair algorithm). Let us take the unaccepted
edges of the graph Gg¢ with respect to partition value v for the initial partition P =
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Algorithm 8 classSource
Require: z, a vertex of the criteria graph G¢ = (V, E);

Pi, the initial partition on Gg;

P’ a partition on G,

P,.s, the reference partition on G¢ such that v(P.f, Ge) = v;
Ensure: a subclass of class(z, P') relative to source(z, Pi) position.
1: Class result = around(x, P', P,.s);

2: if source(x, Pi) € result then

3:  result = class(z, P');
4
)

: end if
: return result;

Algorithm 9 newPlacementSource
Require: z, y two vertexes of the criteria graph Gg;
Pi, the initial partition on Gg;
P’, a partition on Gg;
P,¢, the reference partition on G¢ such that v(P.ef, Ge) = v;
Ensure: a partition with a newplacement of classes class(z, P') and class(y, P’)
relative to source(x, Pi) and source(y, P) positions, such that there is no new
FUE in it.
Partition Pcgu = newplacement(around(x, P, P..y) U around(y, P, Prcs), P');
for all z € class(x, P') U class(y, P')|z & class(x, Presut) do
Class ¢, = around(z, Presuit, Pref);
Partition P,y = replacement(c,, class(x, Presut), Presult);
if / (g, w) € farUnaccepted Edge(v, Piest)|(q, w) ¢
farUnacceptedEdge(v, Presy:) then
Presult - Ptest;
end if
end for
return Presult;

{{a, b, ¢, d}, {e, f, g, h, i, j}} described in Example 49 and represented on Figure
6.3. We took the P' partition that is the modified partition after the division step of
the source repair algorithm (Example 53): P' = {{a, b, ¢, d}, {j}, {h}, {e, g, i,
f1}

The single CUE is (e,c). As with the intuitive repair algorithm (Example 52),
merging classes of e (class(e, P') ={e, g, 1, f}) and ¢ (class(¢, P') = {a, b, ¢, d}) is
not an option because the FCE (i,d) would be unaccepted in the resulting partition.
However, e can be replaced in c¢’s class. The resulting partition is P' = {{a, b, ¢, d,
et, {7}, {h}, {9, i, f}} and is represented on Figure 6.8.

In this Example, the merge step of the source repair algorithm gives a distinct
result from the merge step of the intuitive repair algorithm only because the partitions
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after the division steps of the algorithms are distinct from each other.

However, 7, h and e are in distinct classes in the resulting partition, despite
the fact that they are in the same class of the initial partition P and there is no
information that forbids them to be in a same class.

Complexity and transformation number. For any partition transformation,
the source repair algorithm takes a special care of sources. However, it divides
classes a bit too much, as shown in Examples 53 and 55. We propose a way to fix
this point in the next advanced repair algorithm.

The source repair algorithm has the same complexity in the worst case as the
intuitive repair algorithm (O(m * (n +m)), with m edges and n vertexes).

() a partition class

» vertex
esource
farness crucial edge
closeness crucial edge
== farness unaccepted edge
= closeness unaccepted edge

Figure 6.8: The partition P’, modification of partition P on G¢ with respect to
(++, —) after the merge step of the source repair algorithm (Algorithm 10)

6.5 Advanced repair algorithm

The advanced repair algorithm compensates the fact that the source repair algo-
rithm divides classes a bit too much (by division, replacement or newplacement
transformations), or not always at the most appropriate cut. It is for this reason
that the advanced repair algorithm adds an undo-division step to the division and
the merge steps of the source repair algorithm (Section 6.4).

In the reminder of this thesis, we will use the notation classes(c, P) to refer to
the set of the classes of the partition P that contains at least a vertex included in
the vertex set (or class) c.

Undo-divisions step: (lines 2 to 4 of Algorithm 11). Let Pi be the initial par-
tition on the criteria graph G¢, and v, a partition value on G¢. P’ is the modified
partition, resulting from Algorithm 10: P’ has no unaccepted edges according to v,
but it is possible that some classes have been divided too much. The undo-divisions
step checks for each pair of classes ¢, ¢ of P’ if they have vertexes from a same class
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Algorithm 10 sourceRepairAlgorithm
Require: G¢ = (V, E), a criteria graph;
v, a possible partition value for Gg;
Pi, the initial partition on Gg;
P,.¢, the reference partition on G¢ such that v(P,.f, Ge¢) = v;
Ensure: a partition P’ that has v as partition value (or a better one)
1: Partition P' = copy(Pi);
2: while 3(x,y) € farUnacceptedEdge(v, P') do
3: P’ = sourceDivision((x,y), Pi, P', Pry);

4: end while

5. while 3(x,y) € closeUnacceptedEdge(v, P') do

6: Class ¢, = class(x, P');

7. Class ¢, = class(y, P');

8:  Partition Py = merge(c,, cy, P');

9. if / (z,w) € farUnaccepted Edge(v, Prest)| (2, w) &
farUnacceptedEdge(v, P') then

10: P = Ptest;

11:  else

12: Class ¢, = classSource(x, Pi, P', P..s);

13: Class ¢, = classSource(y, Pi, P', Prcy);

14: Piest = replacement(c, ¢, P');
15: it/  3(zw) € farUnacceptedEdge(v, Prest)| (2, w) 4
farUnacceptedEdge(v, P') then

16: P' = Py

17: else

18: Piest = replacement(c),, ¢,, P');

19: if / 3(zw) € farUnacceptedEdge(v, Prest)| (2, w) ¢
farUnacceptedEdge(v, P') then

20: P = Piest;

21: else if source(z, Pi) € ¢, and source(y, Pi) € ¢, then

22: P’ = newplacementSource(z,y, Pi, P', P,.s)

23: else

24: P’ = newplacement(c, U ¢, P');

25: end if

26: end if

27:  end if

28: end while
29: return P’

of the initial partition (ligne 2) and no FUE between them (undo-divisions does not
add FUE(s) to the resulting partition). If it is the case, P’ becomes merge(c,c, P’)
and so on until such classes do not exist any more.
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This step enables us to compensate cases where the algorithm over divides by
merging over-divided classes, as we will see in the next Example.

Algorithm 11 advancedRepairAlgorithm
Require: G¢ = (V, F), a criteria graph;
v, a possible partition value for Gg;
Pi, the initial partition on G¢;~
Py, the reference partition on G¢ such that v(P,..r, Gc) = v.
Ensure: a partition P’ that has v as partition value (or a better one)
1. Partition P" = sourceRepair Algorithm(Gc, v, P);
2: while Je¢, ¢ distinct classes of P'|classes(c, Pi) N classes(c/, Pi) # {} and
farUnaccepted Edge(v, merge(c, ', P')) = {} do
3: P’ =merge(c,d, P,
4: end while
5: return P’;

Example 56 (Advanced repair algorithm). Let us take the unaccepted edges of the
graph G¢ with respect to partition value v for the initial partition P = {{a, b, ¢, d},
{e, f, g, h, i, j}} described in Example 49 and represented on Figure 6.3. If the
resulting partition P’ at the end of the division step of the source repair algorithm
was the resulting partition P' = {{a, b, ¢, d}, {e, j, h}, {g, i, f}}, P" would become
P ={{a, b, ¢, d, e, j, h}, {g, i, f}} at the end of the merge step of the source
repair algorithm because of CUE (d,i). However, P is the partition {{a, b, ¢, d, e},
{73}, {h}, {9, i, f}} represented on Figure 6.8, as explained in Example 55 because
J, h and e were extracted from their original class {e, f, g, h, i, j} separately.
The undo-division step undoes that by merging:

e {j} and {h} (there is no FUE between them and class(j, Pi) = class(h, Pi) =
{e, f, g, h, 1, j}. P’ becomes P' =merge({j},{h}, P") and is represented on

Figure 6.9. P' ={{a, b, ¢, d, e}, {j, h}, {9, i, f}}

e {a, b, ¢, d, e} and {j,h} (there is no FUE between them and class(e, Pi) =
class(j, Pi) = {e, f, g, h, i, j}. P’ becomes P' = merge({a, b, ¢, d, e}, {7,
h}, P") and is represented on Figure 6.10. P' = {{a, b, ¢, d, e, j, h}, {g, 1,
[

There are no more P’ classes to merge because there are farness crucial edges
between the last two classes, like (i,d). The two merges committed by the undo-
division step enable us to compensate two of the three divisions committed by the
division and merge steps. In fact, the merge step uses transformations like replace-
ment and newplacement which imply one or two divisions.
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() a partition class
e vertex
esource
farness crucial edge
closeness crucial edge
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Figure 6.9: The partition P’, modification of partition P on G¢ with respect to
(++, —) after the first merge in the undo division step of the advanced repair algo-
rithm (Algorithm 10)
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Figure 6.10: The partition P’, modification of partition P on G¢ with respect to
(++, —) after the undo-division step of the advanced repair algorithm (Algorithm
10)

Complexity and transformation number. The advanced repair algorithm adds
1 atomic transformation per unaccepted edge in the worst case (to the 3 atomic
transformations per unaccepted edge of the source repair algorithm), that avoids
an atomic transformation (division) previously done by the source repair algorithm.
So, the resulting partition has been less divided than the resulting partition of the
source repair algorithm, as shown in Example 56.

Let n be the number of vertexes and m be the number of edges. The undo-
division step checks each pair of vertexes (n x (n — 1)/2 checks in the worst case).
For each pair of vertexes, if they are in distinct classes, it checks if there is a farness
edge between these classes (m edges to check in the worst case) and may merge
these classes (n operations in the worst case). As a consequence, the complexity of
the undo-division step is O(n*(m + n)) in the worst case. The advanced algorithm
also uses the source repair algorithm (O(m* (n+m)) complexity in the worst case),



108 CHAPTER 6. REPAIR ALGORITHMS

so its total complexity in the worst case is O((n? +m) * (m +n)).

We presented in this Chapter four algorithms for modifying a partition in order
to improve its partition value. They can be used to repair erroneous links in a
bibliographic knowledge base such as Sudoc. Each of them has been theoretically
evaluated in its own Section. Let us evaluate in the next Chapter the partitioning
semantics used for detecting erroneous links and proposed in Chapter 5.



Chapter 7

Experiments

In this Chapter we will evaluate the results of global and local partitioning semantics.
The repair algorithms have been theoretically evaluated in Chapter 6. Section 7.3
will show that the proposed algorithms are efficient to find the best partition values
on real Sudoc subsets!. Then, we will study how data characteristics influence the
results of these algorithms in Section 7.2 before checking that partitioning semantics
are able to detect erroneous links by comparing initial and human partition? values
on a real Sudoc sample in Section 7.3. We will finish by presenting a future interface
that will be used by experts in order to see erroneous links in Section 7.4.

7.1 Quantitative experiments

In this Section, we present experiments that show that algorithms used to find the
best partition values according to global and local semantics (please see Chapter 5
for details about these semantics) are efficient on real Sudoc subsets.

We have experimented the algorithms used to find all the best partition values
according to global and local semantics (described in Chapter 5) on 1796 Sudoc
subset related to 1796 random appellations. Those appellations have been randomly
chosen?. For each appellation, we select the Sudoc subset related to it.

We recall that the complexity in the worst case for finding the best partition
values according to global semantics (Algorithm 3 page 73) is O((k + 1)°*xmlogn)

'We recall that a Sudoc subset related to an appellation A is the set of contextual entities
that represents a link to an authority notice with an appellation close to A. This notion has been
detailed in Section 4.1.5 page 47.

2We recall that the initial partition is the partition that reflects links in Sudoc before repairing
links and that the human partition reflects good links according to a human expert. Those notions
have been defined in Section 3.2.3 page 37.

3Each Sudoc authority notice is stored in its own file. Those files have been classified by using
a key that depends on each character in the file, with a lot of variability. 1796 keys have been
selected. We took the first appellation of each authority notice contained by a file such that its
key was selected. Those appellations are the 1795 randomly chosen appellations.

109
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with n vertexes, m edges, ¢ criteria, and k the maximal number of closeness values
of a criterion in the considered criterion set and that the complexity in the worst
case for finding the best partition values according to local semantics (Algorithm 4
page 81) is O(n * (k + 1)° * mlogn). For both algorithms, (k 4 1)¢ corresponds to
the number of reference partitions to evaluate in the worst case.

Each selected Sudoc subset contains 1 to 1238 contextual entities. We did not
represent on Figures the 7 Sudoc subsets that contained more than 653 authority
notices because they are too few to be significant. We evaluated the execution time
for a criterion set C of six criteria (C = {appellation, language, date, domain, title,
otherContributors}) described in Section 4.2.2 page 50. Each of these criteria has 0
to 6 closeness values (there are 84 possible closeness value sets for C, so 84 reference
partitions to evaluate in the worst case to ensure to have every best partition value
with respect to global semantics).

We used a Intel(R) Core(TM) i7-2600 CPU 3.40 GHz PC with 4GB of RAM
running Windows 7 64 Bit with a Java 1.6 implementation. The execution times
are shown on Figures 7.2 and 7.4.

Before executing the algorithms used to find all the best partition values accord-
ing to global semantics (Algorithm 3 page 73) and local semantics (Algorithm 4
page 81), let us observe the distribution of links in Sudoc.

Distribution of contributor links in Sudoc. In order to look at the link dis-
tribution in Sudoc, Alain Gutierrez enumerated the number of bibliographic notices
linked per authority notice per role (as “author”). The number of links per authority
notices is represented on Figure 7.1. The scale is not linear because links are dis-
tributed in a very unequal fashion. As shown on Figure, the role “author” is widely
predominant over other roles. For “author” links, we observe that:

e 1520285 authority notices are linked at least once;
e 972 authority notices are linked at least 250 times;
e 113 authority notices are linked at least 1001 times.

Links are distributed in a very unequal fashion among authority notices. Few
authority notices are very linked (113), and the large majority are linked to few bib-
liographic notices (1425473 authority notices are linked to 10 bibliographic notices
at most by an “author” link). So, it is reasonable to consider that only a little part of
Sudoc subsets related to an appellation contains more than 350 contextual entities.

Global semantics (Algorithm 3 page 73). As shown on Figure 7.2, execution
times for Algorithm 3 (which finds the best partition values according to global
semantics and several criteria) are fast:

e less than 6 seconds for up to 653 authority notices;
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Figure 7.1: Links distribution between Sudoc authority notices

e less than 2 seconds for up to 444 authority notices;

e less than 1 second for up to 231 authority notices.
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Figure 7.2: Execution time for global semantics algorithm

Those results are good: it is reasonable to consider that there are only a few
Sudoc subsets contain more than 350 contextual entities. Indeed, we saw on Fig-
ure 7.1 that there are only 972 authority notices that are linked to 250 or more
bibliographic notices as an “author” in the entire Sudoc.



112 CHAPTER 7. EXPERIMENTS

The repartition of Sudoc subsets of the studied sample according to their size
(number of contextual entities) is shown on Figure 7.3. This Figure confirms that
Sudoc subsets have often a small size: 1,194 in 1796 Sudoc subsets contain 10
contextual entities at the most, and only 26 in 1796 Sudoc subsets contain over 350
contextual entities.

Number of Sudoc subsets
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Figure 7.3: Sudoc subsets size

Figure 7.2 shows spikes. This is due to the fact that Algorithm 3 has to calculate
and evaluate a number of reference partitions which goes from 1 to 84 for the used
criterion set. This depends on incoherences? in the Sudoc subset evaluated, as we
will see in Section 7.2.2.

Local semantics (Algorithm 4 page 81). The execution time to find all
the best partitions according to local semantics algorithm is shown on Figure 7.4
and looks depicted. The local semantics improves global semantics by adding the
notion of locality, but the execution time to find all the best partition values is
longer than the one for the global semantics algorithm. Indeed, the complexity is
also greater for the algorithm used to find best partition values according to local

4We recall that an incoherence in an object set according to a criterion set C is when two objects
must be in distinct classes according to one criterion of C and in the same class according to some
criteria of C. Incoherences are explained in Section 5.3.1 page 76.



7.2. QUANTITATIVE EXPERIMENTS: DATA INFLUENCE 113

Execution time in seconds
140

130
120
110
100
90
80
70
60
20
40
30
20
10

e |

00 50 100 150 200 250 300 350 400 450 500 550 600 650
Number of contextual entities

Figure 7.4: Execution time for local semantics algorithm

semantics (O(n * (k + 1)° * mlogn) with n vertexes, m edges, ¢ criteria, and k the
maximal number of closeness values of a criterion in the considered criterion set) than
according to global semantics ( O((k+1)°«mlogn)). The results are acceptable (less
than 6 seconds) for Sudoc subsets that contain less than 232 contextual entities but
are not acceptable for larger Sudoc subsets. Indeed, the algorithm needs 22 seconds
at worst for Sudoc subsets containing up to 349 contextual entities or 97 seconds for
Sudoc subsets containing up to 349 contextual entities.

In this Section we saw that algorithms used to find the best partition values
according to global or local semantics are efficient enough for being used on most of
real Sudoc subsets. Let us see how the choice of criteria can improve their efficiency.

7.2 Quantitative experiments: data influence

In this Section, we study how input characteristics (data ambiguity, accuracy of

the criteria, number of incoherences) influence the partitioning semantics’ output

(human partition value, number of incoherences and algorithm execution time).
Considered input characteristics are:
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e data ambiguity: We say that data is ambiguous if there are distinct real-
world entities that have the same name and contributed to some very similar
real-world documents.

e the accuracy of the criteria: The criteria can lack precision, and consider as
similar distinct contextual entities (or consider as far close contextual entities).

e the number of incoherences: please see Section 5.3.1 page 76 for details
about incoherences. As we will see, the number of incoherences is a conse-
quence of data ambiguity and the accuracy of the criteria. It influences result
characteristics.

Considered output characteristics are:

e the value of the human partition: We recall that the human partition
is the partition of contextual entities such that the links are validated by a
human expert. This notion is explained in Definition 2 page 37).

e the number of incoherences (please see Section 5.3.1 page 76 for details
about incoherences).

e the execution time of algorithms global Algorithm (Algorithm 3 page 73)
and local Algorithm (Algorithm 4 page 81).

In the reminder of this Section, we define each data characteristics and explore
their consequences on the characteristics of the results. We consider a contextual
entity set @ and a criterion set C. Used criteria are detailed in Section 4.2.2 page

50.

7.2.1 Data ambiguity and the accuracy of the criteria

Let us define data ambiguity and the accuracy of the criteria in order to explain
how they influence number of incoherences.

Definition 34 (Data ambiguity). The data ambiguity is a measure of how many
pairs of Q@ objects are in an object set O such that they seem very close (respectively
far) but are not in real life.

Using the above introduced notation, for a set of contextual entities O, data
ambiguity corresponds to how many contextual entities N¢;, N¢; of O exist such
that C(N¢;) and C(N¢;) seem to represent the same (respectively distinct) real-
world person but do not.

The more ambiguous data is, the closer (or farther) pairs of objects seem to each
other but are not. Increasing data ambiguity could increase the number of
incoherences.
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Definition 35 (Accuracy of a criterion). The accuracy of a criterion c is the
ratio of the pairs of objects well compared with respect to real-world (the criterion
gives an appropriate closeness, farness, never or always comparison value) to the
pairs of objects compared with a different than neutral comparison value. For a
giwen criterion set C, the accuracy of the criteria is the average accuracy of C
criteria.

Let us see how the accuracy of the criteria influences results.

The less accurate criteria are, the more it happens that pairs of objects compared,
according to a criterion, with a closeness or always comparison value (respectively
farness or never comparison value) are actually far (respectively close) from each
other. This could increase the number of incoherences.

The less accurate criteria are, the more ambiguous data seems, and, the more
ambiguous data is, the more difficult it is to make accurate criteria in order to
compare the objects.

We saw that decreasing the accuracy of criteria or increasing data am-
biguity increases the number of incoherences. Let us see what is influenced
by the number of incoherences in the following Section.

7.2.2 Number of incoherences

In an object set O according to a criterion set C, it is hard to directly measure the
number of incoherences®. Indeed, to measure the number of incoherences implies to
calculate every path between every pair of objects linked by a farness edge.

We will consider in this Section that decreasing the accuracy of the criteria
increases the number of incoherences (explained in Section 7.2.1), and will use it to
observe the effects of increasing the number of incoherences on several characteristics
of the results (i.e. human partition value, execution time of local Algorithm and
global Algorithm, and number of incoherent parts).

Human partition having a best partition value

In order to detect erroneous links, the initial partition® is supposed to be a best
partition if and only if it corresponds to the human partition. That implies that the
human partition must have a best partition value, according to Work Hypothesis 7
(page 20).

The human partition is supposed to have a best partition value. If the initial
partition corresponds to the human partition and does not have a best value, that
could be because of the number of incoherences as shown in the next Example.

>The Incoherence notion is detailed in Section 5.3.1 page 76.

6As explained in Definition 1 page 37, the initial partition is the partition such that the contex-
tual entities are in the same class if and only if they represent a link pointing at the same authority
notice. This partition represents the state of the Sudoc before repairing links.
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Example 57 (Human partition value and number of incoherences). Let Q,,, be the
contextual entities Sudoc subset related to “NICOLAS, Maurice”. Let C be the cri-
terion set C such that C = {date, title, appellation, otherContributors, language,
domain}. According to global semantics, there are 2 best partition values (the first is
good according to all criteria but language, the second is good for all criteria, except
title and otherContributors) and the human partition has a best partition value.
Let us add incoherences by decreasing the accuracy of criteria. Let 20%randomDate

be a new criterion such that, for two contextual entities with a date attribute in both
of them, there is a 20% chance to give a random comparison value (neutral, a
closeness or a farness value). In other cases, it is the same comparison value as the
original date criterion (neutral or a farness value). We calculated all best partition
values and evaluated the human partition on Q,,, for C' = (CU{20%randomDate}—
{date}) and found 4 best partition values. The human partition did not have a best
value according to C'.

We can thus see that increasing the number of incoherences could make the
human partition not have a best partition value, but it could also increase the
number of best partitions, as we will see in the next Section.

The number of best partition values

Let us consider an object set O with no data ambiguity, and a perfectly accurate
criterion set C such that C criteria do not consider as close (respectively far) some
objects that should not be in the same class (respectively in distinct classes). There
is a single best partition value that is the best one according to all criteria. If we
add an incoherence, by making a criterion ¢ € C consider this pair of objects as
far (respectively close) despite other criteria’s advice, there are two best partition
values:

e the one that is good according all criteria but not ¢ and
e the one that is good according to ¢ but not to other criteria.

Adding more incoherences potentially adds more best partition values, but de-
creases these values.

On the contrary, when there are a lot of incoherences, (especially those involving
always or never values), that reduces the valid (and possible) partition values be-
cause some of the most intense values of some criteria are incoherent with some of
the most intense (or always and never) values of other criteria. In extreme cases,
the best partition values cannot better satisfy a criterion over others but can only
satisfy closeness values (corresponds to the partition with a single class) or farness
values (corresponds to the partition with a class per object), if there are no always
or never values involved. If there are always and never values involved in the same
incoherence, we have no more best partition values because there are no more valid
partitions.
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A lot of incoherences can decrease the number of best partition values. Let us
show that in the following Example.

Example 58 (Number of best values and the accuracy of the criteria). We reuse
the “NICOLAS, Maurice” object set Oy, C and C' (respectively C") criterion sets
of Example 57. The human partition of O, (denoted Phy,,) has 4 best partition
values with respect to the criterion set C and global semantics. date has been re-
placed by 20%randomDate (respectively 100%randomDate, which has a random
comparison value in all cases) and measured 25 times (because 20%randomDate
and 100%randomDate are random criteria) the number of the best partition values
with respect to the criterion set C' (respectively C") and global semantics. Results
are:

e with 20%randomDate criterion: 1 to 4 best partition values, 3.0 on average;
e with 100%randomDate criterion: 1 to 2 best partition values, 1.04 on average.

So, artificially increasing the number of incoherences (by decreasing criterion
accuracy) a little has increased the number of best partition values for O, object
set, but increasing it by a lot reduces that number to nearly 1, which is the smallest
possible number of the best partition values with our criterion set (because a partition
is always valid according to this criterion set).

Consequently, the number of incoherences influences the number of the best
partition values. Let us now see how the number of incoherences influences execution
time for algorithms that find all the best partition values for both local and global
semantics. We start by looking at the execution time for global Algorithm.

The execution time of global Algorithm (Algorithm 3 page 73)

The execution time for an algorithm is the time, in milliseconds, taken by the
algorithm at hand to return a result.

Increasing the number of incoherences increases the execution time of global Algo-
rithm by requiring more reference partitions” to calculate and evaluate in order
to find out all the best partition values (because less reference partitions have an
optimal value due to incoherences, and this implies that their descendants have to
be calculated and evaluated).

Example 59 (Number of incoherences and execution time for the global Algorithm
algorithm). In this Ezample, we took the object set related to appellation “LER-
oUX, Alain” and measure the execution time® according to 8 criteria: appellation,

"We recall that reference partitions are the partition required to be evaluated in order to find
best values. However, it is not necessary to evaluate all of them in all cases, as explained in Chapter
5. Please see Definition 22 page 72 for details.

8We used a Intel(R) Core(TM) i7-2600 CPU 3.40 GHz PC with 4GB of RAM running Windows
7 64 Bit with a Java 1.6 implementation.
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title, language, otherContributors, role, thesis, thesisAdvisor and randomDate’.
The randomDate’ is a criterion as 20%randomDate criterion detailed in Example
57 but the percentage of random comparison values varies according to “percent of
randomDate'” of Figure 7.5. For each tested percentage (from 0 to 100% by steps
of 5) of random comparison:

e we generated 25 times the randomDate’ criterion and measured every time the
execution time (represented by a gray dot);

e we calculated the average mark of those 25 execution time measures and rep-
resented it by a black dot on Figure.

We can see on Figure 7.5 that the execution time increases with the per-
centage of random comparisons of randomDate’ criterion from 1 milliseconds
on average for 0% of random comparisons (when randomDate’ corresponds to date
criterion) to 9 milliseconds on average for 100% of random comparisons. Also, for a
given percentage of random comparisons, the execution time only slightly fluctuates.
There is a single tiny spike at 5% of random comparisons, which could be explained
by the fact that execution times fluctuate more for 5% of random comparisons than
for 10% to 20% of random comparisons.

]f)2xecution time in milliseconds

10

For a single graph
e Average Ignari i

0 10 20 30 40 50 60 70 80 90 100
Percent of randomDate’

S N = O 0o

Figure 7.5: Execution time to find all best partition values according to global
semantics and 8 criteria including randomDate’

Therefore, we can conclude that increasing the number of incoherences
increases execution time for globalAlgorithm in a nearly monotonous manner.
Before seeing how the number of incoherences influences local Algorithm’s execution
time, we first need to see how the number of incoherences influences the
number of incoherent parts.
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The number of incoherent parts

Incoherent parts, as explained in Section 5.3.1 page 76, are independent parts that
contain at least an incoherence. Therefore, adding incoherences can, at the same
time:

e increase the number of incoherent parts (by adding a farness or never
value to an independent part not incoherent yet, it will add an incoherence in
it and make it a new incoherent part);

e reduce the number of incoherent parts (by adding a closeness or always
comparison value between two objects from two incoherent parts, which will
merge them and decrease the total number of incoherent parts by 1).

Example 60 (Incoherences and number of incoherent parts). In this Example, we
consider the object set corresponding to appellation “LLEROUX, Alain” and the crite-
rion set of Example 59. For each tested percentage randomDate’:

e we took the 25 randomDate’ criteria generated in Example 59 and measured
the number of incoherent parts, which is represented on Figure 7.6 by a grey
dot;

e we calculated the average mark of those 25 incoherent parts measures and
represented it by a black dot on Figure.

For small percentages of random comparison (5% to 15%), the number of in-
coherent parts fluctuates a lot, in particular for 5% and when the average number
of incoherent parts is more than 1. For no random comparisons or 20% and more
random comparisons, there is a single incoherent part all the time.

That Example shows that decreasing slightly the number of incoherences
increases the number of incoherent parts by adding incoherences in indepen-
dent parts, but increasing a lot the number of incoherences does not in-
crease the number of incoherent parts because most of the independent parts
are merged in a single big incoherent part.

The execution time of [ocal Algorithm

For the same reason that the number of incoherences increases the execution time
of global Algorithm, the number of incoherences also increases the execution
time of local Algorithm.

However, the execution time of local Algorithm also depends on incoher-
ent parts because it executes global Algorithm for each incoherent part, as shown
in Section 5.3 page 76. So, the execution time of local Algorithm also increases with
the number of incoherent parts, which depends on the number of incoherences, as
shown in Section 7.2.2.
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l%umber of incoherent parts

For a single graph
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Figure 7.6: The number of incoherent parts according to 8 criteria including
randomDate’

Example 61 (About the execution time of local Algorithm). In this Example, we
took the object set corresponding to appellation “LEROUX, Alain” and the criterion
set of Example 59. For each tested percentage randomDate’:

e we took the 25 randomDate’ criteria generated in Example 59 and each time
measured the execution time of local Algorithm, which is represented by a grey
dot on Figure 7.7;

o we calculated the average mark of those 25 execution time measures and rep-
resented it by a black dot on Figure 7.7.

The execution times monotonously increase except for & to 15% of random com-
parison values, from 2 milliseconds on average for 0% to 14 milliseconds on average
for 100%.

The spike on 5% to 15% exactly corresponds to the increased number of incoherent
parts shown on Figure 59. We also notice that execution time fluctuates a lot on
these percentages, but fluctuates slightly for other percentages.

For a given number of incoherent parts, increasing the number of incoherences
increases the execution time for local Algorithm.

Conclusion. As a conclusion to this Section, the number of incoherences increases
with data ambiguity and decreases with the accuracy of the criteria. The number
of incoherences greatly influences executions time of the algorithms, the number of
best partitions and if the human partition has a best partition value.

Let us qualitatively evaluate the global and local partitioning semantics.

7.3 Qualitative experiments

In this Section, we will be interested in the qualitative results of the local and global
partitioning semantics presented in Chapter 5.
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Figure 7.7: Execution time to find all best partition values according to local se-
mantics and 8 criteria including randomDate’

ABES experts selected 537 bibliographic notices linked to 82 authority notices
which correspond to 7 appellations. This sample was given in two versions:

e the initial version (the links between bibliographic notices and authority no-
tices are as they were when the sample was selected);

e the human version (the links between bibliographic notices and authority no-
tices were manually repaired by the experts).

The sample is divided into 7 Sudoc subsets related to an appellation (1 per
appellation). Each Sudoc subset contains the contextual entities representing a link
between an authority that could represent a person named by the appellation and
a bibliographic notice linked to such an authority notice. The human partition on a
Sudoc subset is deduced from the human version, and the initial partition is deduced
from the initial version of the Sudoc sample chosen by the experts.

Let us define and evaluate the precision (Definition 36), the recall (Definition
37) and the F-measure (Definition 38) of both semantics in order to detect erroneous
links in this sample. Intuitively, the precision is useful to determine if a test finds as
positive only objects that should be. The recall is useful to determine if a test finds
as positive all the objects that should be. The F-measure is an equilibrium between
precision and recall.
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Definition 36 (Precision). Let @ be an object set such that objects can be positive
for a concept C. The set of positive objects is denoted @, and the set of objects
found by a test T as positive for the concept C is denoted Qy. The precision of the

test T on O is: precision(T,0) = |®|p(r)?ﬁf|'

Definition 37 (Recall). Let O be an object set such that objects can be positive for
a concept C. The set of positive objects is denoted O, and the set of objects found
by a test T as positive for the concept C is denoted Qf. The recall of the test T on

O is: : recall(T,0) = %.

Definition 38 (F-measure). Let O© be an object set such that objects can be positive
for a concept C, T, a test for the concept C, precision, the precision of T on O and
recall, the recall of T on Q.

The F-measure of the test T on Q is: F—measure(T,Q) = ?;fg;?:;g?}%?ﬁgi%éggg

7.3.1 Evaluation of the initial partitions according to both
semantics

Let us check if the global and local semantics allow us to detect erroneous links in
the initial partition.

Table 7.1 shows for each Sudoc subset related to the chosen appellation (in
“appellation”):

1. “Size” shows the number of contextual entities that represent a link between
a bibliographic notice and an authority notice that has a close appellation to
the chosen appellation,

2. “Is Pi best?” shows whether the initial partition Pi issued from the initial ver-
sion is valid or has a best value according to global semantics and with respect
to the criterion set Co = {title, otherContributors, thesis, thesisAdvisor,
date, appellation, language, role, domain}. Those criteria are detailed in
Section 4.2.2 page 50.

3. “Is Ph better than Pi? 7 is true if and only if the human partition Ph has
a better value than P according to global semantics and with respect to the
criterion set C.

Table 7.2 shows the same info as Table 7.1 but according to local semantics
instead of global semantics.

Local semantics has the same results as global semantics on this sample.

We first evaluated the partition values ( Pi and Ph for each Sudoc subset for both
semantics according to the criterion set Cy = {title, otherContributors, thesis,
thesisAdvisor, date, appellation, language, role, domain}. The initial partition
(Pi) has a partition value that is worse than the human partition (Ph) for each
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Table 7.1: Evaluation of Pz according to global semantics

Appellation Size | Is Pt best? | Is Ph better than Pi:?
“BERNARD, Alain” | 165 | not valid yes
“DuBois, Olivier” 27 no yes
“LEROUX, Alain” 59 not valid yes

“Roy, Michel” 52 not valid yes
“Ni1corLAs, Maurice” | 20 no yes
“SiMON, Alain” 63 no yes
“SIMON, Daniel” 151 | not valid yes

Table 7.2: Evaluation of Pi according to local semantics

Appellation Size | Is Pi best? | Is Ph better than Pi?
“BERNARD, Alain” | 165 | not valid yes
“Dusoris, Olivier” 27 no yes
“LEROUX, Alain” 29 not valid yes

“Roy, Michel” 02 not valid yes
“Ni1corAs, Maurice” | 20 no yes
“SIMON, Alain” 63 no yes
“S1iMON, Daniel” 151 | not valid yes

123
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Sudoc subset tested, and is not even valid® 4 times out of 7 for both semantics. The
human partition (Ph) is always valid. When a partition is not valid, it is because
two contextual entities have the same title (and so, correspond to a same work '?)
but are in distinct classes (details about the title criterion are available in Section
4.2.2 page 50).

Example 62 (Partition not valid). Let us consider the Sudoc subset related to “ROv,
Michel”. This Sudoc subset contains at least two authority notices that are in distinct
classes of the initial partition Pi and forbid Pi to be valid:

e the contextual entity representing the link between the bibliographic notice hav-
ing the ppn “005643309” and the title “Les techniques psycho-corporelles : de la
relazation au stretching” and the authority notice having the ppn “134443985”
representing the contributor “Roy, Michel”;

e the contextual entity representing the link between the bibliographic notice hav-
ing the ppn “004065468” and the title “Les techniques psycho-corporelles : de la
relazation au stretching” and the authority notice having the ppn “030093422”
representing the contributor “Rovy, Michel”.

For global semantics or local semantics, the initial partition Pi (deduced from
the initial version of Sudoc that has wrong links) is never a best partition, so the
precision and the recall are 100% for detecting erroneous links in initial partitions
for both semantics.

Let us evaluate the human partitions on the Sudoc subsets issued from the human
version for each semantics.

7.3.2 Evaluation of the human partitions according to the
global semantics

We evaluated the human partitions on each Sudoc subset (deduced from the human
version of the Sudoc sample) according to the global semantics and the criterion set
Cy = {title, otherContributors, thesis, thesisAdvisor, date, appellation, language,
role, domain}. Those human partitions have also been evaluated with respect to
the criterion set Cr, which corresponds to Cgy without domain and language criteria.
Results are summarized in Table 7.3:

1. “Size” is the number of contextual entities that represent a link between a
bibliographic notice and an authority notice that has a close appellation to
the chosen appellation,

9The validity of a partition is defined Definition 11 page 61. A partition that is not valid cannot
be a best partition and is not even considered as a solution for the entity resolution problem.

10As explained in Section 4.1.3 page 43, Sudoc bibliographic notices represents manifestations,
an edition of a document. Manifestations could correspond to a same work, which implies that
their contributors with a close appellation are the same real-world person.
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Table 7.3: Global semantics: human partition evaluation with respect to Cq

Appellation Size | Number of Na | Ph best?
“BERNARD, Alain” | 165 27 no
“DuBois, Olivier” 27 8 no
“LEROUX, Alain” 59 6 no

“Roy, Michel” 52 9 no
“Ni1corLAs, Maurice” | 20 3 yes
“SIMON, Alain” 63 13 no
“S1MON, Daniel” 151 16 no

Table 7.4: Global semantics: human partition evaluation with respect to C;

Appellation Number of N¢ | Number of Na | Ph partition value
“BERNARD, Alain” 165 27 yes
“DuBois, Olivier” 27 8 no
“LEROUX, Alain” 59 6 yes

“Roy, Michel” 52 9 no
“N1coLAs, Maurice” 20 3 yes
“SIMON, Alain” 63 13 no
“SIMON, Daniel” 151 16 yes

2. “Number of Na” is the number of authority notices according to human par-
titions (corresponding to the number of classes in the human partitions)

’

3. “Ph best?” shows whether the human partition Ph issued from the human
version has a best value according to global semantics with respect to the
criterion set Cyg = {title, otherContributors, thesis, thesisAdvisor, date,
appellation, language, role, domain}.

Table 7.4 shows the same info as Table 7.3 but according to the criterion set
C; = Cy — {language, domain}).

We can see in Table 7.3 that there is only 1/7 of the Sudoc subset on which
the human partition Ph (deduced from the human version) has a best partition
value according to global semantics and the criterion set Cy. Removing domain and
language from the criterion set improves such Sudoc subsets to 4/7 as we can see in
Table 7.4. So, we have a recall of 4/7 or 57% and a precision of 100% for detecting
the partition value as a best partition. Let us detail the exceptions.

The human partition Ph on Sudoc subset related to “Roy, Michel” does
not have a best value with respect to C; because two contextual entities have a com-
mon contributor who is not “R0OY, Michel”, but are not in the same class. This other
contributor is represented by the authority notice having the ppn “031684769”. This
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is wrong according to the criterion otherContributor!!.

represent the following links:

Those contextual entities

e the link between the bibliographic notice having the ppn “165760214” and the
title “ La médaille : technique de fabrication” and the authority notice having
the ppn “168583275" representing “ROY, Michel”;

e the link between the bibliographic notice having the ppn “129161942” and the
title “Mazslle, medaglia, médaille” and the authority notice having the ppn
“168580969” representing “ROY, Michel”.

The ABES expert has confirmed that there is an erroneous link.

The human partition Ph on Sudoc subset related to “SiMON, Alain” does
not have a best value with respect to C; because the “SIMON, Alain” represented
by the authority notice having the ppn “030480388” is supposed to have supervised
a thesis 12 in “1988”, one year before submitting his own thesis'® in “1989”. This is
wrong according to criterion thesisAdvisor.

According to the ABES expert, those contextual entities may represent distinct
persons. In this case, they recommend to link the corresponding bibliographic no-
tices to distinct authority notices.

The human partition Ph on Sudoc subset related to “DuBois, Olivier”
does not have a best value with respect to C; because the “DuBoi1s, Olivier” rep-
resented by the authority notice having the ppn “09293580X” is supposed to have
supervised two theses 4 in “1989”, three years before submitting his own thesis '* in
“1992”. This is wrong according to criterion thesisAdvisor.

According to the ABES expert, those contextual entities must represent distinct

persons, and there is an erroneous link.

HCriteria are detailed in Section 4.2.2 page 50.

2represented by the bibliographic notice having the ppn “043118186” and the title “ PLACE DES
VASODILATATEURS DANS LA PHARMACOLOGIE ANTIHYPERTENSIVE”

B3represented by the bibliographic notice having the ppn “04322928X” and the title “ LES ABCES
DU FOIE A PYOGENES : A PROPOS D’UNE SERIE DE DIX PATIENTS”

H4represented by the bibliographic notice having the ppn “043179924” with “ CESARIENNE
AVANT TRAVAIL ET HYPERTENSION ARTERIELLE DE LA GROSSESSE : RETENTISSE-
MENT NEONATAL A PROPOS DE 47/ CAS D HTA ASSOCIEE A LA GROSSESSE, ETUDE
PARTICULIERE DES CAS AYANT JUSTIFIE UNE CESARIENNE” as title, and the bibli-
ographic notice having the ppn “043254381” with “LE TABAGISME CHEZ LA FEMME EN-
CEINTE DANS LA REGION NORD/PAS-DE-CALAIS : FREQUENCE, CONSEQUENCES
FOETALES ET NEONATALES” as title

15represented by the bibliographic notice having the ppn “040921018” with “ L’AFFIRMATION
DE SOI EN SERVICE D HOSPITALISATION PSYCHIATRIQUE : MISE EN PLACE D UN
GROUPE THERAPEUTIQUE ET REFLEXION CRITIQUE AU TERME D UN AN DE PRA-
TIQUE" as title
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According to the ABES experts, all human partitions on Sudoc subset that were
not evaluated as best partitions by global semantics contain erroneous links. They
are not considered human partitions any more. According to the ABES expert,
those contextual entities must represent distinct persons, and there is an erroneous
link, so the recall is 4/4 (100%) and not 4/7 (57%) to identify the human partition
as a best partition according to global semantics and the criterion set Cs.

Let us evaluate the recall and precision of the local semantics for identifying the
human partition as a best partition.

7.3.3 Evaluation of the human partitions according to the
local semantics

In the same way we evaluated the human partition according to global semantics on
the Sudoc sample in the previous Section, we have evaluated the human partitions on
each Sudoc subset (deduced from the human version of the Sudoc sample) according
to the local semantics and the criterion set Cy = {title, otherContributors, thesis,
thesisAdvisor, date, appellation, language, role, domain}. Those human partitions
have also been evaluated with respect to the criterion set C;, which corresponds to
Cy without domain and language criteria. Results are summarized in Table 7.5:

1. “Size” is the number of contextual entities that represent a link between a
bibliographic notice and an authority notice that has a close appellation to
the chosen appellation,

2. “Number of |Na|” is the number of authority notices according to human
partitions (corresponding to the number of classes of the human partitions),

3. “Ph evaluation” shows the number of parts of the considered Sudoc subset
for which the human partition has a best value according to local semantics '®
on the total number of parts (with respect to the criterion set Cy = {title,
otherContributors, thesis, thesisAdvisor, date, appellation, language, role,
domain}).

Table 7.6 shows the same info as Table 7.5 but according to the criterion set
C; = Cy — {language, domain}).

We can see that there are often several parts for a Sudoc subset according to the
criterion set Cqy in Table 7.5, so there are often incoherent parts according to Cy. We
can see in Table 7.6 that there is always a single part for a Sudoc subset according
to C; there is always a single part. Each of these single parts is the coherent part
on all the Sudoc subsets of the sample. So, in this case the results are exactly the
same as for global semantics.

16We recall that the local semantics divides the criteria graph into coherent parts and incoherent
parts. There is always a single coherent part and the criterion graph may have several incoherent
parts, or none. Details about local semantics are available in Chapter 5.
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Table 7.5: Local semantics: human partition evaluation with respect to Cg

Appellation Size | Number of Na | Ph evaluation
“BERNARD, Alain” | 165 27 0/2
“Dusors, Olivier” | 27 8 0/1
“LEROUX, Alain” 59 6 1/2

“Roy, Michel” 52 9 0/3
“Nicoras, Maurice” | 20 3 1/1
“SIMON, Alain” 63 13 0/2
“SIMON, Daniel” 151 16 0/4

Table 7.6: Local semantics: human partition evaluation with respect to C;

Appellation Size | Number of Na | Ph evaluation
“BERNARD, Alain” | 165 27 1/1
“DuBois, Olivier” 27 8 0/1
“LEROUX, Alain” 59 6 1/1

“Roy, Michel” 52 9 0/1
“N1coras, Maurice” | 20 3 1/1
“SIMON, Alain” 63 13 0/1
“SmmMoON, Daniel” 151 16 1/1
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Table 7.7: Precision, recall and F-measure with respect to Cy

Test Precision | Recall | F-measure
Detecting erroneous links in Pi 100% 100% 100%
Recognizing the Ph as erroneous links free |  100% | 25% 40%

Table 7.8: Precision, recall and F-measure with respect to C;

Test

Precision

Recall

F-measure

100%

100%

Detecting erroneous links into Pi 100%
Recognizing the Ph as erroneous links free |  100% 100% 100%

Furthermore, we can deduce that criteria in C; have a good accuracy exept for
the domain and language criteria, which are in Cy and not in C;. Indeed, we saw
in Section 7.2.2 that a bad accuracy of the criteria may increase the number of
incoherent parts.

Results are similar to results according to global semantics with respect to both
criterion sets Cg and C; for the considered Sudoc subset. The single exception is
for the Sudoc subset related to “LEROUX, Alain” with respect to Cy:

e Ph does not have a best partition value according to global semantics, as seen
in Table 7.3.

e Ph has half a best partition value (for one of its two parts) according to local
semantics, as seen in Table 7.5, but the Ph partition value remains not a best
one.

7.3.4 Conclusion

The precision of both semantics with respect to the criterion sets C; and Cq is very
good (100%) to detect erroneous links in initial partitions or to identify the human
partition as a best one. The recall is similar on the studied sample and depends on
the criteria used (between 25% with respect to Cy and 100% without domain and
language in the criterion set). Let us summarize the resulting precision, recall and
F-measure with respect to Cq in Table 7.7 and with respect to C; in Table 7.8 for
the following issues

e detecting erroneous links before human repair (“Detecting erroneous links into
P7”) and

e recognizing the human partitions as the best partitions or without erroneous
links (“Recognizing the Ph as without erroneous links”).
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The evaluation did not permit to conclude that one semantics gives better qual-
itative results than the other. According to Section 7.1, the Algorithm for global
semantics shows a shorter execution time than the Algorithm for local semantics
in finding all best partition values. However, we have shown in Section 5.3.2 page
80 that local semantics allows us to evaluate partitions over several Sudoc subsets
together or separately without changing the results, contrary to global semantics for
which results depend on how Sudoc subsets have been selected.

Those semantics allow us to determine if the links in a Sudoc subset have to be
revised. It also allows us to easily evaluate the accuracy of criteria by giving the
number of incoherent parts or the pairs of objects that should be in the same class
(respectively in distinct classes) but that are not according to some specific criteria.
So, the expert can look at these objects and decide whether it is the partition that
is wrong or the criterion that is not accurate enough. This property helped us to
detect remaining erroneous links in a sample corrected by experts.

7.4 User interface proposal

In order to help librarians to see Sudoc erroneous links detected by the algorithms,
we proposed and discussed an interface. This interface is in French. Let us present
it in this Section.

Figure 7.8 shows the interface statement after the librarian has selected the appel-
lation “HERMES, Pierre”. This interface allows the librarian to select an appellation
(first name and name) and to validate it with the “Ok” button.

A Sudoc subset is shown.  Then, the interface shows contextual entities and
authority notices corresponding to the Sudoc subset related to the selected appella-
tion and comparison values according to criteria. A note says if there are erroneous
links or not. In the case of Figure 7.8, there are erroneous links and the note is red
and reads “Liens erronés !”. The contextual entities that represent a link to
the same authority notice are represented together inside a box that represent the
authority notice they are linked to. Appellations of authority notices and titles of
contextual entities are always shown, but other attributes are available by moving
the cursor on the object.

Between two contextual entities, there are at most two lines to represent edges:
a dotted line for farness and never labelled edges and a full line for closeness and
always labelled edges. The color of the line is:

e green if all edges inside are satisfied,

e orange if they are not satisfied but no edge labelled never or always is repre-
sented,

e red if they are not satisfied and at least an edge labelled never or always is
represented.
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= Visualisation des erreurs de lioge
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Figure 7.8: Interface for detecting erroneous links with an appellation selected

Moving the cursor on the line shows the labels of each represented edge (value and
criterion). The colour of an authority notice box depends on the edges inside it. It
is green if all edges inside are satisfied, orange if at least a (farness) edge inside is
unsatisfied or red if at least a never labelled edge inside is unsatisfied.

At this stage, all edges are represented. Hopefully, two menus allow the librarian
to choose which labelled edges (s)he does not want to see.

The “Best compromises” menu (or “Meilleur compromis” in French)
proposes to show all edges or all crucial edges with respect to a best partition value.
All the best partition values are enumerated in common language. Figure 7.9 shows
this menu after the librarian has selected to show all crucial edges according to
the partition value which does not satisfy the date criterion. We observe that the
farness unsatisfied edge between contextual entities titled “ A ["ombre des bosquets”
and “Poésie de Jardin” is no more visible on Figure 7.9 but was on Figure 7.8.

The “Modifying the comparisons showing” menu (or “Modifier 1’
affichage des comparaisons” in French) proposes, for each criterion, to
check which types of edges have to be shown. The type of an edge corresponds
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- Visualisation des erreurs de liage
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Figure 7.9: Menu “Best compromises”

to the intensity of the label. It is expressed in common language. For example,
the comparison value always of title criterion becomes “same work” (“méme
oeuvre” in French).

Figure 7.9 shows this menu after the librarian has deselected edges labelled —
for otherContributors criterion. It corresponds to the interface “1 or several
other contributors in common” (“1 ou plusieurs co-auteurs en
commun” in French) unchecked and “several other contributors in common”
(“plusieurs co-auteurs en commun” in French) checked.

We observe that the two closeness satisfied edges between contextual entities
titled “A lombre des bosquets” and “L’arbre Perché” and between “L’arbre Perché”
and “ Poésie de Jardin” are no more visible on Figure 7.8 but were on Figure 7.9.

Conclusion We showed in this Chapter that algorithms for finding the best par-
titions according to global and local semantics are efficient on real Sudoc subsets.
We show that their results and execution time depend on the number and accuracy
of criteria. We also showed that they are relevant for detecting erroneous links in
real Sudoc subsets on condition that the considered criteria are relevant. Hopefully
these partitioning semantics are also useful to detect criteria with a low accuracy.
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Figure 7.10: Menu “Modifying the comparisons showing”

We finally presented a future interface which will be used by librarians to easily
access to erroneous links. In time, this interface will be extended to help librarians
to repair those erroneous links.
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Chapter 8

Conclusion

In this thesis we presented our contribution to the detection and repair of erroneous
links. This problem is a link mining problem but, as explained in Chapter 3, our
approach uses an entity resolution method in order to solve it. As a consequence,
the link mining and entity resolution domains are both presented in Chapter 2. The
approach is adapted to bibliographic knowledge bases and applied to Sudoc. Sudoc
and its modelization are presented in Chapter 4. The approach is decomposed in
two major steps. The detection of erroneous links uses a partitioning semantics
based on symbolic criteria. Such partitioning semantics are proposed in Chapter 5.
Algorithms for repairing erroneous links are proposed and theoretically validated in
Chapter 6. Finally, Chapter 7 presents the qualitative and quantitative experiments
on real Sudoc data for the validation of partitioning semantics. It also proposes an
interface for human users. This interface is in discussion with experts.

This Chapter concludes the thesis by summarising the achievements of my work
in Section 8.1 and presenting future research directions in Section 8.2.

8.1 Research achievements

We presented the research question of this work in Chapter 1: “How to detect and
repair erroneous links in a bibliographic knowledge database using qualitative meth-
0ds?”

In order to answer this question, we focused on contextual entities instead of
links, authority notices or bibliographic notices (which are already in the biblio-
graphic knowledge base unlike contextual entities). Indeed, contextual entities are
objects that represent links (between an authority notice and a bibliographic notice)
or a person in the context of a document. This allowed us to detect which links
have to point to the same authority notice (or to distinct authority notices) using a
partitioning semantics, as explained in Chapter 3.

In order to do that, we proposed two partitioning semantics (local and global
semantics) using symbolic criteria. They improve in particular [2| by considering
edges labelled neutral in the graph to partition. The local semantics adds a notion
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of independence between object sets to the global semantics. That allowed us not to
change the result when partitioning independent subsets together, like Sudoc subsets
related to distinct appellations in our applied case. We have shown in Chapter 7
that those partitioning semantics have good qualitative results to solve the problem
of detecting erroneous links, and are useful to detect criteria with a poor accuracy.

However, detecting erroneous links is not enough to improve the link quality
in a bibliographic knowledge base. It is for this reason that we proposed several
repair algorithms in Chapter 6. We theoretically proved that they correctly repair
erroneous links in the same Chapter.

We finally presented an interface that is in discussion with experts and will be
used in order to show the erroneous links to librarian users.

8.2 Future work

Let us present several research questions that may improve this work.

Chapter 2 highlights the problem of how adding the notion of canopies to the
erroneous link detection method. Indeed, our approach exploits co-contributions
links in order to detect erroneous links. So, repairing erroneous links may allow us
to detect other erroneous links, and this aspect may be fully exploited by adding a
canopy strategy 68| that works under the hypothesis that repairing some links in a
canopy (a Sudoc subset related to an appellation in our case) may change the results
in neighbour canopies (Sudoc subsets related to the appellation of a co-contributor).

Chapter 5 allows us to detect erroneous links with considering a criterion set
of independent criteria. Removing the Work Hypothesis of independence among
criteria (Work Hypothesis 6 page 19) allows to us add notions of preferences among
criteria.

The interface presented in Chapter 7 may be improved by enable visualization
of large Sudoc subsets and repair of erroneous links using the interface.

Let us develop two of these points. The first one is to remove the Work Hy-
pothesis of independence among criteria in Section 8.2.1, and the second is about
improving the interface in order to enable visualization of large Sudoc subsets, and
will be developed in Section 8.2.2.

8.2.1 Removing the hypothesis of independency among cri-
teria

The partitioning semantics presented in Chapter 5 used a set of symbolic criteria,
and those criteria were independent (according to Work Hypothesis 6 page 19). To
introduce preferences among criteria in the partitioning semantics may make the
results easier to use by letting the semantics choose automatically some criteria over
others without requiring the advice of an expert.

In order to do that, we can propose two kinds of preferences:
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e to formalize the dependency among comparison values when comparing two
objects. Indeed, in our criterion set, the comparison value given by the thesis
criterion in order to compare two objects depends on the comparison value
given by the title criterion. Similarly, the comparison value given by any
criterion in order to compare two objects depends on the comparison value
given by the appellation criterion.

e to propose to add the priority relation among criteria as in [14] for comparing
two partition values. Let us detail this point.

In order to consider the priority relation among the criteria of a criterion set C,
the criteria of C are separated into n ordered criterion sets such that any criterion
of the criterion set C, is preferred to any criterion in the criterion set C; (denoted
C; > C;) if and only if i < j, and each criterion is in a single criterion set C; with
1 < k < n. Two valid partitions® on the same object set are first compared according
to the criterion set C;. If the values are strictly identical, the value according to C,
are also considered, and so on until C,,.

In order to find best partitions according to a criterion set and global semantics
while considering the priority relation among criteria, two methods can be proposed.
The first is to calculate all best partition values like for a set of independent criteria,
then to sort partition values while considering the priority relation. The second
method is the following one.

Let C = |JC; be a criterion set such that criterion subsets C; are independent
criterion sets, pairwise disjoint and such that C; > C; if and only if ¢« < j. We
first find best reference partition? values with respect to C; € C. Then, for each
best partition value, we find the corresponding reference partition F,. Then, we
find best partition values with respect to Cy that have the same value as a best
reference partition with respect to C; (using the Definition of enemy classes defined
in Definition 39), and so forth until the last subset C, € C (Algorithm 12).

We always take care of never and always values of all criteria of C, so the
calculated best partition values are valid.

Definition 39 (Enemy classes). Let P be a partition and C a criterion set on an
object set Q. Two P classes are enemies for C if to merge them make the resulting
partition to be worse with respect to at least a criterion of C.

'We recall that a valid partition is a partition without unsatisfied edges labelled never or
always, and is formally defined in Definition 11 page 61.

2We recall ourselves that best partition values are reference partition values, as explained in
Section 5.2.3 page 67, and that the notion of reference partition is defined in Definition 22 page
72.
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Algorithm 12 globalAlgorithmWithPriority
Require: an object set OQ; a criterion set C = |JC; such as the d criterion subsets
C, possess independent criteria among them, are pairwise disjoint, C;, > C; if
and only if k£ < 7, and with C € C,, a criterion that contains all always or
never labelled edges.
Ensure: the set of best partition values on O according to C and global semantics
with priority.
1: set of best reference partitions for priority criteria best PA = {P|P, best refer-
ence partition for Cg};
2: set of best reference partitions for criteria that are currently explored bestPB =

{}

3: for ¢ from 1 to d do

4:  for all Partition P € bestPA do

5: G} = copy(G;){we will modify some edges’ labels}

6: for all (s;,s;) € S?%|s;, s; are vertexes in the same P class do

7 for all G, € G| do

8: ve = label of edge (s, s;);

9: edge (s;,s;) becomes labelled by always;

10: if vc € V{ then

11: erase all edges of G, labelled with a comparison value > vc;

12: end if

13: end for

14: end for

15: for all s;, s; vertexes such that they are in enemy classes of P for | JG,|j < ¢
do

16: for all G, € G| do

17: ve = label of edge (s;, s;);

18: edge (s;,s;) becomes labelled by jamais;

19: if ve € Vﬁochs then

20: erase all edges of G, labelled with a comparison value < vc;

21: end if

22: end for

23: end for

24: add best reference partitions for G}} to bestPB;

25:  end for

26:  bestPA = bestPB;

27:  bestPB = {};

28: end for

29: return set of partition values of partitions in bestPA;

8.2.2 Improving the interface for librarian users

Finally, there are questions about how to develop and adapt the interface to enable
visualization of large Sudoc subsets. We propose two points:
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The first point is based on the fact that a contextual entity represents an edi-
tion of a work and that librarians are more interested in works (for example,
“Antigone” from “SOPHOCLES”) than editions of work (two of the “ Antigone”
editions published in “2012” and in “1568”). So, the authority notices rep-
resenting the editions of the same work from the point of view of the same
contributor could be represented together with a special icon representing the
work instead of its editions. The details about the work’ editions are available
when pointing the mouse cursor on the icon representing the work.

The second point is to focus on the bibliographies of one or several authority
notices in a window distinct from the main window with all the data of the
considered Sudoc subset. Once it is done, the librarian can come back to the
main window.
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Résumé

Nous proposons une approche qualitative pour la résolution d’entités et la répa-
ration de liens dans une base de connaissances bibliographiques. Notre question de
recherche est: “Comment détecter et réparer les liens erronés dans une base
de connaissances bibliographiques en utilisant des méthodes qualitatives
?”. L’approche proposée se décompose en deux grandes parties. La premiére con-
tribution est une sémantique de partitionnement utilisant des critéres symboliques
et servant a détecter les liens erronés. La seconde contribution est un algorithme
réparant les liens erronés. Nous avons implémenté notre approche et proposé une
évaluation qualitative et quantitative pour la sémantique de partitionnement ainsi
que prouvé les propriétés des algorithmes utilisés pour la réparation de liens.

Abstract

We propose a qualitative entity resolution approach to repair links in a biblio-
graphic knowledge base. Our research question is: “How to detect and repair
erroneous links in a bibliographic knowledge base using qualitative meth-
ods?” The proposed approach is decomposed into two major parts. The first con-
tribution consists in a partitioning semantics using symbolic criteria used in order to
detect erroneous links. The second one consists in a repair algorithm restoring link
quality. We implemented our approach and proposed qualitative and quantitative
evaluation for the partitioning semantics as well as proving certain properties for
the repair algorithms.
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