
HAL Id: tel-01926749
https://theses.hal.science/tel-01926749

Submitted on 19 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LATE QUATERNARY SEDIMENTARY AND
PALEOCLIMATIC EVOLUTIONOF KORDOFAN,

SUDAN
Ahmed Dawelbeit Mohammedahmed Eltahir

To cite this version:
Ahmed Dawelbeit Mohammedahmed Eltahir. LATE QUATERNARY SEDIMENTARY AND PALE-
OCLIMATIC EVOLUTIONOF KORDOFAN, SUDAN. Earth Sciences. Université Grenoble Alpes,
2018. English. �NNT : 2018GREAU022�. �tel-01926749�

https://theses.hal.science/tel-01926749
https://hal.archives-ouvertes.fr


 

THÈSE 

Pour obtenir le grade de 

DOCTEUR DE LA COMMUNAUTE UNIVERSITE 
GRENOBLE ALPES 

Spécialité : Terre Solide 

Arrêté ministériel : 25 mai 2016 

 
Présentée par 

Ahmed DAWELBEIT 
 
 
Thèse dirigée par Etienne JAILLARD, DR IRD, ISTerre,  
et codirigée par Ali EISAWI, Prof., Université d’Al Neelain, Soudan  
 

                                          préparée au sein du Laboratoire Institut des Sciences de la 
Terre   
è l'École Doctorale Terre, Univers, Environnement  

 
EVOLUTION SEDIMENTAIRE ET 

CLIMATIQUE DU KORDOFAN 
(SOUDAN) AU QUATERNAIRE 

SUPERIEUR 
 
 
 

Thèse soutenue publiquement le 5 octobre 2018, 
devant le jury composé de :  

Dr. Marie REVEL 
Maître de conférences, Sophia-Antipolis, Rapporteur 
Dr. Florence SYLVESTRE 
Directeur de Recherche IRD, CEREGE, Rapporteur 
Dr. Fabienne GIRAUD 
Maître de conférences, Grenoble Alpes, Examinateur 
Dr. David WILLIAMSON  
Directeur de Recherche IRD, Examinateur 
Pr. Christophe BASILE 
Professeur, Grenoble Alpes, Président du jury 
Dr. Etienne JAILLARD 
Directeur de Recherche IRD, ISTerre, directeur de thèse 
Pr. Ali EISAWI 
Professeur, Al Neelain Khartoum, co-directeur, invité 
 
 
 
 



 

 



 

 

LATE QUATERNARY SEDIMENTARY AND 

PALEOCLIMATIC EVOLUTION  

OF KORDOFAN, SUDAN 
 

Dissertation for the doctorate degree of the  

Université Grenoble Alpes, France 
 

prepared at the Institut des Sciences de la Terre (ISTerre)  
 

Submitted by Ahmed DAWELBEIT 
on October the 5th, 2018 

 

 

Defense committee 

Dr. Marie REVEL 

Lecturer, University Sophia-Antipolis, Rapporteur 

Dr. Florence SYLVESTRE 

Director of Research IRD, CEREGE, Rapporteur 

Dr. Fabienne GIRAUD 

Lecturer, University Grenoble Alpes, Examiner 

Dr. David WILLIAMSON  

Director of Research IRD, LOCEAN, Examiner 

Pr. Christophe BASILE 

Professor, University Grenoble Alpes, Head of the jury  

Dr. Etienne JAILLARD 

Director of Research IRD, ISTerre, Grenoble, supervisor 

Pr. Ali EISAWI 

Professor, Al Neelain, Khartoum, co-supervisor, invited 

 

 

Grenoble, 2018 



 

 



I 
 

 

 

 

 

 

 

 

 

 

DEDICATION 

to 

My wife Makka , my daughters Mawahib and Masajid , and 

to my little baby Moyeiad  

 

  
 

 

 

 

 

 

 

 

 

 

 



II 
 

 

 

ACKNOWLEDGEMENTS 
 

I would like to take this space to express my thanks to all of the people who contributed to the 

successful completion of my PhD.  

First of all, I would like to thank my supervisor Prof. Etienne Jaillard for initiating this fantastic 

research project within the ISTerre and École doctorale : Terre, Univers, Environnement (TUE), 

of the Université Grenoble Alpes. His broad knowledge and special way to look at data from 

an interdisciplinary point of view was most inspiring. I really appreciate his efficient work 

during all stages of this project, significantly improving whatever I wrote and always within an 

incredible short time. This efficiency was extremely helpful during the last months while my 

thesis was developing.  

I would like to express my thanks to my co-supervisor Prof. Ali Eisawi from Al-Neelain 

University, Sudan, for his worthy support and guidance when writing the proposal of this 

project and encouraging to go forward in this field of research. His broad knowledge in 

palynology was very helpful for me to understand the basic principles of this field.  

I owe a lot of thanks to the members of my thesis committee : Prof. Christophe Basile and Dr. 

Julien Carcaillet for their annual evaluation and valuable advices and suggestions.  

Great thanks to those who provided limitless help in the practical work : Dr. Dirk Vandamme 

(Ghent University, Belgium) for identification of the gastropod shells, Mr. Shaaedeen Ahmed 

(PLRS, Khartoum, Sudan) for help in the palynomorphs identification, Dr. Howeida M. Adam 

(Khartoum University, Sudan) for her help in the identification of the archeological remnants, 

Dr. Nathaniel Findling and Dr. Bruno Lanson (ISTerre) for their help in the explanation of the 

basic principles of XRD for clay mineralogy (theoretically and practically), Valérie Magnin 

and Martine Lanson (ISTerre) for help in the practically in XRF explanation, Dr. Catherine 

Chauvel (ISTerre) for her help in the preparation of samples for isotope analysis, to Dr. 

Christophe Griggo (EDyTeM, Chambéry) for the determination of numerous vertebrate bones 

of the Sodari and El Ga’ah paleolakes, and to Mr. Badr-Eddeen En Nour (Univ. Kordofan) for 

help in granulometric analysis test. 

Really, I appreciated and thanks very much the institutions and people who welcomed us 

generously during our field works, to stay at their house guest or personal homes. Appreciation 

and thanks to : house guest of the University of Kordofan (El Obeid), house guest of the 

University of Dilling (Dilling), house guest of the University of west Kordofan (Abu Zabad and 

En Nahud), my brother Eltahir (El Fula), my father “Dawelbeit” (El Khowei), Mr. Adam Husain 

“leader of El Ga’ah area” (El Ga’ah village), and house guest of the Sodari locality (Sodari).  

I would like to express my special thanks to our excellent and patient driver Mr. Elghali Khaleel 

Ahmed Gorami, who joined us during our two seasons of field work.  

Unlimited thanks to my colleagues Dr. Hassan Abdelsalam and Ms. Einas Mohammed Salama 

for joining us during our second season of field work and many thanks to my colleague Badr-

Eddeen En Nour, who joined me in my final field trip to north Bara.  



III 
 

Thanks should be extended to all colleagues and staff in ISTerre, Université Grenoble Alpes, 

France, especially Hugo Sanchez, Eleanor Bakker, Melanie Balvay and Hafid Bouchafa.  

Without financial support everything is difficult to achieve. Thanks are due to the bilateral – 

Sudanese-French – agreements represented by the Sudanese Ministry of Higher Education and 

Scientific Research and the French Embassy in Khartoum, which gave the opportunity of a 

doctoral grant, and to the French Ministry of foreign affairs (PHC “Napata” project) for 

providing support for fruitful travels between our countries. Thanks also to the ISTerre 

laboratory and the Institut de Recherche pour le Développement (IRD) for offering the financial 

costs of the analysis.  

Finally and most importantly, thanks to all my family for their unconditional support and 

encouragement throughout all ! And kept praying for me to success in this research project, and 

very special thanks to my brother Eltyeib for his unlimited different kinds of support.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



IV 
 

ABSTRACT 

 

This study is conducted in the Kordofan region, central-southern Sudan. The study area is 

bounded by longitudes 28° 00' and 31° 00' E, and latitudes 11° 30' and 15°00' N and covers an 

area of about 125835 km2. The Kordofan region is located at the southern end of the present-

day Sahara. Late Pleistocene-Holocene deposits in Kordofan, recorded sedimentary 

discontinuities that probably reflect climatic fluctuations during the latest Quaternary. 14C 

dating and some archeological findings have been used to date the latest Pleistocene-Holocene 

succession. In the investigated sections, four stratigraphic units have been recognized, which 

exhibit eight sedimentological facies.  

The first unit is older that ≈ 10 ky BP and is formed of mottled sandstone or siltstone facies of 

aeolian origin. The second unit (≈ 10 to 6 ky BP) comprises palustrine and lacustrine facies in 

the central and northern parts, and fluviatile facies in the South. The third unit ranges from ≈ 6 

to 3 ky BP and is restricted to the southern part; it is made of aeolian deposits intercalated with 

fluviatile or flood plain facies. The fourth unit is younger than 1000 y BP, and is dominated by 

aeolian red sandstone in the North, and by flood plain facies to the South. Between ≈ 6 and 1 

ky BP in the North and between ≈ 3 and 1 ky BP in the South, no deposits are recorded. This 

hiatus is marked by deflation surfaces in the North, and is interpreted as a period of strong 

aeolian activity, which prevented deposition, or even eroded part of the sediments deposited 

between 6 and 3 ky BP.  

Several proxies (sedimentology, gastropod sub-fossil shells, pollens, stable isotopes, major 

element chemistry, clay mineralogy and paleohydrology) have been used to reconstruct the 

climatic evolution of the region for the past 13 ky, which can be correlated to the well-known 

evolution of Eastern Sahara during this time-span. Our results indicate that the region has been 

subjected to arid climate prior to 10 ky BP as evidenced by thick aeolian deposits. Between 10 

and 6 ky BP, the region experienced a wet climate as evidenced by the development of 

pedogenetic calcareous nodules, local deposition of palustrine and lacustrine limestone, 

abundance of aquatic and semi-aquatic gastropods, high lake levels, and depleted δ18O values 

from gastropod shells and calcareous nodules. After ≈ 6 ky BP, climate evolved to dry 

conditions in the northern part of the region as indicated by an strong aeolian activity recorded 

by erosion features, sedimentary hiatus and deflation surfaces, while its southern part remained 

more humid, as shown by channel and flood plain deposits, and tropical and aquatic pollen taxa. 

From 1000 yr BP to Present, and probably after 3 ka BP, the region became arid as evidenced 

by aeolian deposits, the predominance of arid indicator pollens and the enrichment in 18O of 

land snail shells. 
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RÉSUMÉ 

 

Cette étude concerne la région du Kordofan, dans le centre-Sud du Soudan. La région étudiée 

est comprise entre les méridiens 28°00' et 31°00' E, et les latitudes 11°30' et 15°00' N, et couvre 

une surface d’environ 125 835 km2. Le Kordofan est situé en bordure Sud du Sahara actuel. Les 

dépôts du Pléistocène supérieur-Holocène du Kordofan, ont enregistré des discontinuités 

sédimentaires qui reflètent des fluctuations climatiques au cours du Quaternaire terminal. Des 

datations au 14C et des collectes archéologiques ont permis de dater la série étudiée. Quatre 

unités stratigraphiques ont été identifiées, qui comprennent huit faciès sédimentaires.  

La première unité est antérieure à ≈ 10 ka BP et est formée de sables ou silts marmorisés 

d’origine éolienne. La deuxième unité (≈ 10 à 6 ka BP) comprend des faciès palustres et 

lacustres au Nord et au centre, et des faciès fluviatiles au Sud. La troisième unité, d’âge ≈ 6 à 3 

ka BP, n’est présente qu’au Sud; elle est faite de dépôts éoliens intercalés de faciès fluviatiles 

ou de plaine d’inondation. La quatrième unité est plus jeune que 1000 ans BP, et est dominée 

par des sables rouges éoliens au Nord, et par des dépôts de plaine d’inondation au Sud. Entre 

≈ 6 et 1 ka BP au Nord et entre ≈ 3 et 1 ka BP au Sud, un hiatus est marqué par une surface de 

déflation au Nord, et est interprété comme une période de forte activité éolienne, qui a empêché 

le dépôt et a même érodé une partie des sédiments déposés entre 6 et 3 ka BP.  

Plusieurs indicateurs (sédimentologie, gastéropodes, pollens, isotopes stables, géochimie des 

majeurs, minéralogie des argiles et paléo-hydrologie) ont servi à reconstituer l’évolution 

climatique de la région depuis 13000 ans, qui est cohérente avec l’évolution paléo-climatique 

de l’Afrique nord-orientale à la même époque. Nos résultats montrent que la région a connu un 

climat aride avant 10 ka BP, matérialisé par d’épais dépôts éoliens. Entre 10 et 6 ka BP, un 

climat humide est démontré par le développement de nodules calcaires pédogénétiques, le dépôt 

local de calcaires palustres et lacustres, l’abondance de gastéropodes aquatiques et semi-

aquatiques, le haut niveau de lacs, et les valeurs très négatives du δ18O des coquilles d’escargots 

et des nodules calcaires. Après ≈ 6 ka BP, le climat s’assèche dans le Nord de la région étudiée 

comme le suggèrent la forte activité éolienne enregistrée par un hiatus sédimentaire, des 

érosions et surfaces de déflation, alors que le Sud reste plus humide, comme le montrent des 

dépôts fluviatiles (chenaux et plaine d’inondation), et les pollens tropicaux et aquatiques. Après 

1000 ans BP, et plus probablement après 3 ka BP, la région devient aride comme en témoignent 

les dépôts éoliens, la prédominance de pollens de milieu aride et l’enrichissement en 18O des 

coquilles d’escargots terrestres. 
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I. INTRODUCTION 

 

1.1. Preface  

The Quaternary period covers the last two and an half million years of the Earth history and is 

well known as the period of ice ages. The Quaternary is characterized by repeated cycles of 

cold – warm climatic oscillations as the Earth’s climate was submitted to alternating glacial and 

interglacial modes. Associated with the climatic fluctuations and advancing and retreating 

continental ice sheets, there were dramatic responses of the biota, rivers, lakes, oceans and other 

natural systems. More than 30 glacial – interglacial cycles are recorded in deep-sea sediment 

records spanning the last 2.6 my. The Quaternary period is divided into two epochs, the 

Pleistocene (2600 ka BP) and the Holocene (11.7 ka BP to Present). The late Pleistocene-

Holocene epoch is marked by rapid short climatic fluctuations. As a result, the complex Late 

Quaternary environment (500 ka – Present) recorded rapid sedimentation changes. Therefore, 

the Quaternary sediments are considered a very important archive to determine environmental 

and climatic information.  

 

1.2. Location 

The study area is situated in central-southern Sudan, in the Kordofan Region, East of the White 

Nile valley and SW of Khartoum. It is bounded by longitudes 28°00' and 31°00'E, and latitudes 

11°30' and 15°00'N and covers an area of about 125,835 km2 (Fig. 1.1).  

 

1.3. Climate 

According to the classification of climates by Rodis (1968), Kordofan contains three climatic 

belts, which correspond to three major north-south zones in the sub-Saharan region of Africa, 

where the amount of rainfall and the duration of the rainy season increase toward the equator. 

The northern part of the region is a low-latitude desert, which merges southward into a belt of 

tropical steppe. Still farther south is a belt of tropical savanna. Figure 1.2 shows the regional 

climatic zones around Sudan.  

The present-day climate of Kordofan region is variable from North to South. It varies between 

sub-tropical in Southern Kordofan, and poor savanna to arid in Northern part. 

The rainy season in Southern Kordofan is longer than in Northern Kordofan. In Southern 

Kordofan, it begins in April and continues up to October with varying annual rainfall from 800 

mm in the South to 400 mm in the North, while in Northern Kordofan the rainy season usually 

starts at the end of June and continues till October (92% of the total year precipitation in June-

September in El Obeid), with approximate annual rainfall of 320 mm per year in El Obeid. The 

average annual rainfall increases southward, from approximately 200 mm per year in the 

northern part and approximately 600 mm per year in the southern part of the study area (Fig. 

1.3).  
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Fig. 1.1: Location map of the study area.  

 

The difference between North and South is also reflected in the wind directions, with northerly 

and southerly winds dominating for six months each in Southern Kordofan, while the northerly 

winds dominate increasingly northward. 

The mean annual air temperature of the province is 27°C (80°F), and temperature extremes of 

10°C (50°F) and 46°C (115°F) are common to most areas. The monthly average temperature 

fluctuates between 40°C in summer and 22°C in winter. The mean relative humidity averages 

about 21% in the dry season, and 75% during the rainy season. The prevailing winds in the 

winter are from the north, but during the rainy season they are from the southwest. Wind 

velocities are usually less than 8 kilometers per hour (5 miles per hr) and frequent calms are not 

uncommon. 
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Fig. 1.2: Regional climatic zones around Sudan, and location of the study area.  

 

Fig. 1.3: Mean annual rainfall across the Kordofan Region (Rodis et al., 1968). 



4 
 

1.4. Physiography 

The physiographic features are variable in the study area, regarding topography, relief, 

drainage, soils and vegetation. Figure 1.4 summarizes the geomorphologic features in the study 

area with some extension to the East to include the White Nile. The climate and geology are 

the most important factors controlling this physiographic variabilities.  

1.4.1. Topography 

Figure 1.5. is a general digital elevation model of the Kordofan region, while Fig.1.6 provides 

more details on the study area. The northern part of the study area is characterized by a low 

lying, gently undulating surface topography, with few scattered, little elevated but sharp 

inselbergs mostly made of Paleogene rocks. This terrain is covered by extensive qoz (stabilized 

sand dunes), sand sheets, and N-S orientated sand dunes and stabilized sand dunes. The sand 

dunes decrease in size and abundance toward the south (Fig. 1.4).  

The southern part is characterized by scattered steep massifs and inselbergs made of basement 

rocks, some of which are as high as 1300 m above sea level (J. Ed Dair). The plains are formed 

of dark-grey soils locally intercalated with some sands and sand dunes further north. 

1.4.2. Relief and drainage system 

The study area presents variable relief shapes. The northern part is dominated by topographic 

depressions of interdunes located between up to 15 m high sand dunes. The size of these 

interdunes differs according to differences in the dune amplitudes. In the Sodari and El Ga’ah 

areas, the sand dunes are large and this results in large interdunes, whereas around Bara, as well 

as north and east of El Obeid, the sand dunes are thinner and result in narrower interdunes, 

compared to those of Sodari-El Ga’ah area (Fig. 1.7). These dune and iterdune fields are 

surrounded by sand sheets.  

The central part of the study area is generally marked by its flatness. Reliefs are dominated by 

smooth V-shaped valleys in the El Khowei-En Nahud, while to the East as well as around Khour 

Abu Habil, the relief is marked by wide wadies. The southern part is marked by deep V-shaped 

valleys and by some saddles between the mountains.  

These variations in the relief result from variation in the drainage system. The Kordofan region 

lies within the drainage basin of the White Nile River. The northern part of the study area shows 

a poor drainage system due to the development of the north-south sand dunes forming barriers 

or dams crosscutting the ancient rivers (Figs. 1.4 and 1.7). Therefore, seasonal rivers (wadies) 

are quite rare and may form seasonal lakes behind the sand dunes, or vanish rapidly due to the 

infiltration of the running water in the sand dunes.  

The dominance of sand dunes and sheets in the central part of the study area (En Nahud-El 

Khowei), results in a coarse dendritic drainage system (Elmansour, 2017), with intensive 

infiltration. The surface water of this area is drained to the South through the El Fula area down 

to its delta around Muglad. 

In the eastern part of the study area, surface water is drained through Khor Abu Habil to the 

White Nile. The southern part is marked by a well-marked drainage pattern due to more 

abundant rainfalls and to the clayey soils. Small wadies of this southern part form the tributaries 

of Khor Abu Habil, or flow southward toward the Sudd area.  
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Fig. 1.4: Geomorphological map of the study area.  
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Fig. 1.5. Digital elevation model of the Kordofan Region.  

 

Fig. 1.6. Detailed digital elevation model of the study area.  
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Fig. 1.7. Relief of the study area.  

 

1.4.3. Vegetation cover  

In a general way, the vegetation type is determined by the climate, relief and type of soil. The 

variation in rainfall and soil nature from North to South resulted in varied types and density of 

the vegetation cover. The relief also leads to remarkable variations in the vegetation cover 

density, since vegetation is denser along the course of the wadies or the depression zones.  
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In the northern part of the study area, the vegetation cover ranges from sparse growth, drought-

resistant grasses and dwarf scrub. The central part is covered by acacia and baobab trees; 

grassland and bushland are scattered mainly around wadies and khors, and form the bushland-

woodland transition. The southern part is mostly covered by edaphic grassland mosaics with 

trees. 

 

1.5. Geology  

1.5.1. Background  

Rodis et al. (1968) provided a general summary of the geologic units in the Kordofan region. 

Among the rocks underlying Kordofan, these authors distinguished the basement complex of 

Precambrian age, the Nawa Series of Late Paleozoic age, the Nubian Series of Mesozoic age 

(recently renamed Cretaceous sediments), laterite of Early to Middle Paleogene/Neogene age, 

the Um Ruwaba Series of Pliocene to Pleistocene age, and surficial deposits of Quaternary age.  

The oldest rocks in the region that now constitute the basement complex were formed in 

Precambrian times. Following the emplacement of these rocks the region was subjected to a 

period of prolonged erosion that apparently lasted through most of Paleozoic times. Shallow 

seas invaded parts of the region in the Late Paleozoic and deposited the sediments of the Nawa 

Series. Before the close of Paleozoic times, however, the region was uplifted and most of the 

Nawa sediments were removed by erosion. Only a few isolated remnants of the Nawa Series 

are now left in Kordofan as evidences of this once-extensive geologic unit.  

Deposition of rock-forming materials in the area did not take place again until Mesozoic time 

when shallow continental seas covered much, if not all, the Province. During this time the 

clastic sediments of the Nubian Series were laid in continental or nearshore marine 

environments and over the eroded basement. Near the close of Mesozoic times, the sea receded 

as the region was again uplifted and then subjected to prolonged subaerial erosion that 

apparently lasted until Pliocene time. During this interval of erosion most of the Nubian rocks 

were stripped away and only those occupying the deeper basins in the basement rock surface 

were preserved. Extensive laterization of the Cretaceous sediments and possibly older rocks 

occurred during Peleogene time when climatic conditions favorable to laterite formation 

prevailed in much of the region. Tectonic movements in eastern Africa, probably during 

Neogene time, resulted in the formation of several structural basins in the Nubian and basement 

rocks of the Kordofan Province. During Pliocene and early Pleistocene times, these basins were 

filled with fluvial and lacustrine deposits that now make up the clastic Umm Ruwaba 

Formation. According to El Shafie et al. (2011), the Um Ruwaba Formation ranges from the 

Pliocene to Pleistocene.  

Following deposition of the Umm Ruwaba Formation, several types of surficial deposits were 

laid down that now form a virtually continuous mantle over the Umm Ruwaba Formation and 

older rocks of Kordofan. In late Pleistocene time, the southern part of the Province (now 

Southern Kordofan State), was subjected to widespread and recurrent flooding. The floods, 

probably emanating from the Nile headwaters to the south, brought clay and silt and deposited 

these over most of the southern part of the region. Concurrent with flooding in the south, strong 

northerly winds prevailed in the northern part of the region (Northern Kordofan State now), and 
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denuded the land surface of much of its residual soil cover. A considerable part of the eroded 

material was deposited as sand dunes over the central part of the region. The residual soils in 

the north, stabilized sand dunes (Qoz) in the central part of the Province, and clay-plains 

deposits in the South remain today as evidence of the climatic conditions since late Pleistocene 

time (Rodis et al., 1968).  

1.5.2. Geological units in the study area 

1.5.2.1. Basement Complex 

The name Basement Complex is used to include those igneous, metamorphic and sedimentary 

rocks that are overlain by horizontal and sub-horizontal, Paleozoic or Mesozoic sedimentary or 

igneous rocks (Rodis et al., 1968). It is considered the most extensive formation in Sudan, 

excluding the superficial deposits (Whiteman, 1971).  

Although the basement rocks cover a great part of the study area, they are poorly exposed in 

the northern parts, while they crop out more extensively in the southern part. The basement 

outcrops comprise a variety of rock types. Gneisses and migmatites, amphibolites, various types 

of schists, marbles and calc-silicate rocks, gabbros, syn- to late-tectonic granites, acid volcanic 

rocks and post-tectonic intrusions are distributed in scattered outcrops (Abdel Galil, 2008). 

Some isolated outcrops of gneiss and chlorite schist, granite, granodiorite, graphitic schist and 

syenite are observed in the western parts of the study area (Dawelbeit, 2011; Ginaya, 2011; 

Ginaya et al., 2013). Gneisses and migmatites, sericite-graphite schists, chlorite schists, slates 

and meta-quartzites, granite and granodiorite, schists, slates and quartzites crop out in some 

small isolated outcrops in the southwestern part of the area (Strojexport, 1976).  

1.5.2.2. Nawa Series (Upper Paleozoic)  

The Nawa Series is the least extensive of the sedimentary rock units and has been identified 

only in the east-central part of Kordofan, south of El Obeid and northeast of Dilling. The series 

includes well-consolidated micaceous and non-micaceous sandstone, arkose, shale, mudstone, 

and thin-bedded limestone (Rodis et al., 1968). In absence of fossil evidence the Nawa 

Formation is best classed as Palaeozoic–Mesozoic undifferentiated (Whiteman, 1971).  

1.5.2.3. Cretaceous sediments  

Cretaceous sediments at first were known as Nubian Sandstone or Nubian Formation. The latter 

term is applied to those bedded and usually flat-lying conglomerates, grits, sandstones, sandy 

mudstones and mudstones that rest unconformably on the Basement Complex and Paleozoic 

sandstone formation (Karakanis 1965). Rodis et al. (1968) and Whiteman (1971) assumed that 

the Nubian Formation is of continental and/or nearshore marine origin. 

In the study area the Nubian Formation is found in some isolated basins in the northeastern, 

northwestern and central-western parts (Fig. 1.8) with variable thicknesses. The thickness of 

the Nubian Formation depends on the paleo-relief of the Basement Complex, the thickest 

deposits being deposited in the depressions (Geotechnika, 1985). Borehole data and geophysics 

in En Nuhud outlier show a maximum thickness for the Nubian Formation of about 1000-

1200 m (Elmansour and Omer, 2017).  

Karakanis (1965) divided the Nubian Sandstone Group in Western Kordofan and Darfur into a 

basal, middle and upper series. The basal series consists of coarse silicified sandstone and 
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conglomerates. The middle series is composed of mudstone and sandstone (mudstones 

dominate over sandstones). The upper series is composed of poorly sorted sandstone.  

In the study area, the Nubian Formation has been subdivided into three lithological facies: (I) 

Psephitic facies: conglomerates, with predominant grain size > 4.0 mm, (II) Psammitic facies: 

sandstones and gravely sandstone (0.05 mm < grain size < 4.0 mm, and (III) Pelitic facies: 

claystone, mudstone and siltstone (grain size < 0.05 mm) (Ginaya, 2011).  

 

Fig. 1.8: Distribution of pre-Quaternary gelogical units in the Kordofan Region (from Rodis et al., 1968; 

Elhag et al., 2014).  

 

1.5.2.4. Laterite (Late Paleogene)  

Laterite or ironstone was apparently developed extensively on Nubian sandstones over much 

of the Kordofan Province during Early and Middle Tertiary time and corresponds to a prolonged 

period of deep in-place weathering of the host rock under tropical climatic conditions of 

alternating wet and dry seasons. Erosional remnants of this once extensive laterite deposit occur 

east and southeast of En Nahud and north of El Fula but are small outcrops. The laterite consists 

of a highly ferruginous layer of hematitic and limonitic ironstone that locally has an oolitic or 

vermicular texture. In places, the laterite is hardly distinguishable from the underlying 

ferruginous Nubian mudstone (Rodis et al., 1968).  
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1.5.2.5. Umm Ruwaba Formation (Paleogene-Neogene)  

The Umm Ruwaba Series consists of lacustrine and fluviatile deposits that, in east-central 

Kordofan, rest largely on the irregular surface of the basement rocks. In the southwestern part 

of the Province, however, the deposits are underlain largely by rocks of the Nubian Formation 

from which in places, they are hardly distinguishable. Outcrops of Umm Ruwaba strata are rare 

because they are covered in most places by a thin but almost continuous veneer of surficial 

deposits (Rodis et al., 1968). The Umm Ruwaba Formation is composed mostly of mudstone, 

sandstone and conglomerate. Facies and bedding changes within relatively short distances are 

very common, the conglomerates are often silty and the mudstones are sandy (Rodis et al., 

1968).  

1.5.2.6. Quaternary deposits (Pleistocene to Recent) 

The terms surficial or superficial deposit are the most used in the previous studies to describe 

the Quaternary deposits.  

Rodis et al. (1968) provided a powerful summary of the Quaternary sediments, indicating that 

the Kordofan Province is covered by a mantle of unconsolidated surficial deposits. In the 

northern two-fifths of the Province, this cover consists of coarse residual desert soils and active 

sand dunes. Adjoining these deposits to the South and extending over most of the central part 

of the Province is the Qoz sand (largely stabilized sand dunes), sometimes also called the 

Kordofan sands. Covering the southern part of Kordofan and in places interfingered with the 

Qoz sand, are the clay-plains deposits (Fig. 1.9). Alluvium in the channels of wadis and khors 

and slope-wash deposits around the footslopes of the jebels occur locally throughout the 

Province. Because of their limited areal extent, alluvium and slope-wash deposits are not 

indicated in Figure 1.9. 

Residual desert soils in the north derive from the weathering of the parent rock and are the most 

extensive of the surficial deposits in the northern part of Kordofan. These materials are 

unconsolidated, generally less than 7 m thick, and consist largely of unsorted angular and sub-

angular rock fragments ranging in size from sand to boulders. Most of the finer rock material 

in this area was apparently removed by strong northerly winds and deposited as sand in the 

central part of the Province (Rodis et al., 1968). 

The Qoz sand deposits, or Kordofan sand (Edmond, 1942), are characteristically red (Rodis et 

al., 1968), or varying from pale buff to deep red (Edmond, 1942), and marked by their gently 

undulating surface (Rodis et al., 1968), which may indicate typical wind deposited sand 

(Edmond, 1942). These Qoz sands are composed of fine to medium sand (Ginaya, 2011) made 

of well-rounded quartz grains (Edmond, 1942). The Kordofan sand is assumed to represent the 

southern limit of the windblown sands (Elmansour, 2017). The Kordofan sand covers large 

areas in central Sudan, west of the White Nile, especially in the province of Kordofan 

(Elmansour, 2017), but are less common east of the Nile. This would be related to the 

distribution of the Nubian Formation, which is much more limited on the right bank (Salama, 

1976).  
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The clay-plains deposits consist of laminated, loosely compacted clay, silt, sandy clay, and 

sandy silt formed during successive floods of extensive areas, chiefly in southern Kordofan 

(Rodis et al., 1968).  

Regarding the origin of superficial deposits, Grabham (in Whiteman, 1971) assumes that the 

sands were transported by wind from desert areas floored by granitic rocks, while Andrew (in 

Whiteman, 1971) accepts their local origin. Edmond (1942) proposed the Qoz sands are a 

product of weathering of the Nubian Formation. Rodis et al. (1968) believe that their reddish 

color and their gently undulating surface reflects their aeolian origin.  

 

Fig. 1.9: General distribution of surficial deposits in the Kordofan Region (after Rodis et al., 1968). 

 

1.6. Present-day climate of Africa 

Because Africa is such an enormous landmass, stretching from about 35°N to 35°S, the climate 

differs according to location within the continent (Collier et al., 2008). Therefore, Africa can 

broadly be divided into four climatic zones based on a combination of temperature, precipitation 

(ppt) and evapotranspiration (Ngaira, 2007) (Fig. 1.10). The zones are: 

i) Arid and semi-arid (Sahel region, Kalahari and Namib deserts). 

ii) Tropical Savanna grasslands (Sub-Saharan Africa and Central Southern Africa). 

iii) Equatorial (the Congo region and the East African highlands). 
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iv) Temperate (the South Eastern tip of South Africa) (Ngaira, 2007).  

The African climates depend on low altitude pressure and winds over the continent, which are 

the surface expression of the upper air circulation (Gasse, 2000). One of the most important 

zone of the air circulation is the Congo Basin in Central Africa, which represents the biggest 

water catchment in Africa. As a consequence, Central Africa is one of the most important 

climatic regions in the world. During the rainy seasons, the Congo is the wettest place on Earth, 

and adds 3.5 mm to global sea level each year (Beighley et al., 2011). Seasonal variations in 

the position of the Inter tropical Convergence Zone (ITCZ) exert a significant control on the 

seasonal pattern of precipitation maxima across much of Africa. Figure 1.9 shows the major 

climatic zones and atmospheric circulation regimes for average conditions in July/August and 

January that allows understanding climatic variability (Nicholson, 2000). Distinct atmospheric 

circulation systems affect North Africa, West and Central Africa, East Africa, and southern 

Africa; they are separated in large part by the ITCZ (Gasse, 2000). Moreover, the Atlantic and 

Indian oceans play an important role in shaping the regional climate. During the southern 

hemisphere summer, differences in surface air pressure between the two oceans drive an east-

west air circulation cell which makes the rainfall more variable over southern Central Africa. 

The transport of low-level water vapor from the Atlantic Ocean brings clouds and rain to central 

Africa throughout the year (Creese and Pokam, 2016).  

 

Fig. 1.10: Current climatic zones of Africa (after Ngaira, 2007). 

 

1.7. Late Quaternary hydrology of Eastern and Western Sahara  

Several important studies either focused on paleohydrology, or related to hydrology, provide 

good references. These are the study of the paleohydrology of tropical Africa (Gasse, 2000), 

the study of the White Nile valley (Williams et al., 2000), the White Nile and Lake Albert 
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(Williams, et at., 2006) and the Nile Basin (Williams, 2009), as well as some other studies 

carried out in paleolakes of Eastern Sahara (e.g., Pachur and Kröpelin, 1987; Pachur and 

Hoelzmann, 1991; Hoelzmann et al., 2001; 2010; Bouchette et al., 2010). 

 

Fig. 1.11: Sketches of the general patterns of winds and pressure over Africa. Dotted lines indicate the 

Intertropical Convergence Zone (ITCZ), dashed lines indicate the Congo Air Boundary (after 

Nicholson, 1996, in: Gasse, 2000).  
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At a regional scale, Gasse (2000) summarized the major hydrological features of Africa based 

on the general climate, topography and geological features. These features are: (i) large internal 

drainage basins (e.g., Lake Chad basin) and enormous groundwater reservoirs (e.g., geological 

formations of the Continental Intercalaire in the Sahara); (ii) large exoreic rivers (Congo, Nile 

and Niger rivers) and associated wetlands, which have their headwaters in the humid equatorial 

belt; (iii) great East African Rift lakes that play a significant role in regional climate through 

water recycling; (iv) other permanent waterbodies concentrated in, or depending on, the 

equatorial zone (e.g., Lake Chad through the Chari river), or on highlands (e.g., the Ethiopian 

lakes Ziway-Shala and Abhé) (Gasse, 2000). Depending on that, the study of paleohydrology 

and its implication in the paleoclimatic studies, requires great attention to the lake level 

fluctuations, record of the flood events in rivers and fluctuation of the groundwater levels. 

Holocene Mega-lake Chad (ca. 10°N to 18°N; 12°E to 20°E) was the largest late Quaternary 

water body in Africa with maximum surface area during the Holocene exceeding 350,000 km2. 

The development of this giant paleo-lake is related to a northward shift of the isohyets 

interpreted as evidence for an enhanced Monsoon during the African Humid Period (Bouchette 

et al., 2010). The water depth of this giant Mega-Lake was exceeding 150 m at its deepest part 

in the central northern sub-basin. The lowest elevation point at this lake is less than 200 m asl, 

while the maximum determined water lake level is 330 m asl (Bouchette et al., 2010).  

Although the River Nile and its two main branches (White and Blue Nile) represent the main 

and most important hydrological feature in Sudan, there are other more local features. These 

are represented by some paleolakes west of the White Nile, some active seasonal rivers and 

wadies, and other fossil rivers and wadies. The most important and already investigated 

paleolakes are: the West Nubian Lake in NW Sudan (Pachur and Hoelzmann, 1991; 

Hoelzmann, et al., 2001), Selima in north Sudan (Abell and Hoelzmann, 2000), and some small 

lakes along Wadi Howar in NW Sudan (Pachur and Kröpelin, 1987).  

The West Nubia Paleolake is considered the largest hydrographic evidence in Eastern Sahara 

of the early to mid-Holocene wet phase that affected northern Africa (Hoelzmann et al., 2001) 

and its basin represents an area of about 20,000 km2 (Pachur and Hoelzmann, 1991). The 

maximum water depth estimated in the the West Nubia Paleolake between 9400 and 7500 14C 

yr BP was 15 m (Hoelzmann et al., 2001).  

Moreover, beside these paleolakes, paleoclimatic and paleohydrological research undertaken in 

Eastern Sahara revealed the existence of two major late Pleistocene to mid-Holocene drainage 

networks that once interrupted the state of internal drainage of this vast region. One network is 

an about 800 km long watercourse in eastern Libya (Pachur, 1974), and the second network is 

the about 400 km long Wadi Howar in northwestern Sudan, which linked the mountains of 

Western Sudan to the Nile (Pachur and Kröpelin, 1987). Beside, some other wadies are known 

in southern Libya with present rainfall of 20 mm/year (Pachur, 1974). From about 9500 to 4500 

years ago, the lower Wadi Howar flowed through an environment characterized by numerous 

ground water outlets and freshwater lakes (Pachur and Kröpelin, 1987). Wadi Howar 

constituted the largest tributary to the Nile from the Sahara between the Mediterranean Sea and 

the Atbara River, and it drained a 400 km wide area linking the present extremely arid northern 

Sudan (present rainfall, 25 mm/year) to the Nile (Pachur and Kröpelin, 1987).  
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1.8. Latest Quaternary climate of Northeastern Africa 

The continental deposits often provide more detailed information about short-term (high 

frequency) change of climate than most marine records (Bradley, 1989). The Sahara sediments 

in particular, represent an important archive for the climate variabilities and consequently the 

development of the Sahara during the late Pleistocene-Holocene period. Since 1980, the Sahara 

was the site of important development in paleoclimatology researches throughout a variety of 

climate proxies that have been recorded in this continental sediments. Most of these researches 

have focused on the last glacial maximum (LGM)-Holocene period, and very special attention 

was paid for terminal Pleistocene-Holocene (the last 12 ka) (Nicholson and Flohn, 1980; Pachur 

and Kröpelin, 1987; Rodrigues et al., 2000; Gasse, 2000; DeMenocal et al., 2000; Williams et 

al., 2000; Abell and Hoelzmann, 2000; Hoelzmann et al., 2001; Kuper and Kröpelin, 2006; 

Woodward et al., 2007; Hamann et al., 2009; DeMenocal Williams, 2009; Hoelzmann et al., 

2010; Tierney et al., 2011b; Tierney, 2012; Williams, 2014).  

The period between 20 and 12 ka BP is well documented as a period of dune building in the 

central Sahara, the Nile basin and East Africa (Nicholson and Flohn, 1980; Woodward et al., 

2007; Tierney et al., 2011b; Williams et al., 2000; Williams, 2009; 2014). This hyper arid phase 

had great effects and influence on the geomorphology and landscape features of the Sahara 

region.  

The dune building period is followed by a humid phase that extended between ≈ 12 and 6 ky 

BP. This humid phase is well known as the African Humid Period (AHP) (DeMenocal et al., 

2000; Hamann et al., 2009; DeMenocal and Tierney, 2012) or lacustrine period (Williams, 

2014). The AHP is well-characterized by numerous large and small lakes (Bakker and Maley, 

1977; Flohn, 1980; Szabo et al., 1995; DdeMenocal et al., 2000; Cole et al., 2009) (Fig. 1.12). 

Some of the small lakes are the Dry Selima lake (northern Sudan), the West Nubian Palaeolake 

(NW Sudan; Pachur and Hoelzmann, 1991; Kröpelin and Soulié-Märsche, 1991; Abell and 

Hoelzmann, 2000; Hoelzmann et al., 2010), Lake Challa in Ethiopia (Tierney et al., 2011b), 

Lake Tilo in the Ethiopian highlands (Telford and Lamb, 1999) and Lake Yao in Chad (Lézine 

et al., 2011). Other palaeolakes formed along the Wadi Howar (Pachur and Kröpelin, 1987). 

Some lake basins in North Africa were exceptionally large; these so-called megalakes include 

the Megalake Fezzan (Libya), Megalake Chad, Chotts Megalakes (Algeria) and Megalakes 

Turkana and Kenya to the southeast (DeMenocal and Tierney, 2012).  

Moreover, the AHP is also well documented through the archeological evidences that linked 

the development of these lakes and the Nile valley. Eastern Sahara (which includes partially 

Libya, Chad, Egypt and Sudan) represents an important archive for the Holocene climate 

through the existence of this early to mid-Holocene lakes and development of the human 

occupation evolution. This human occupation history is well documented over Eastern Sahara 

in general (Kuper and Kröpelin, 2006), in the West Nubia Palaeolake (Hoelzmann et al., 2001), 

west of the Nile across the Sahara-Sahel Belt (Mohammed-Ali, 2003), in Egypt and northern 

Sudan (Nicoll, 2004), along Wadi Howar (Jesse, 2007), on the eastern margin of the Blue Nile 

(Lario et al., 1997), and in many other sites in northern and central Sudan. The timing and 

development of Holocene human occupation in the now hyperarid Sahara has major 
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implications for understanding links between climate change, demography and cultural 

adaptation (Manning and Timpson, 2014). In the Atlas, Eastern Sahara and Central Sahara 

regions, Manning and Timpson (2014) demonstrated synchronicity in the population increase 

and the start of the AHP. The compilation of radiocarbon dates from archeological sites showed 

that the older dates are in the North, while the bulk of younger dates is located in the South, 

clearly indicating a movement of prehistoric populations toward the present day Sahelian zone 

(Kuper and Kröpelin, 2006).  

 

Fig. 1.12: Distribution map of reconstructed lake levels across Africa, 9,000 years ago relative to today. 

Data from Oxford Lake Level Database (COHMAP members, 1988; Street-Perrott et al., 1989) updated 

with lake-level reconstructions generated in the last twenty years (deMenocal and Tierney, 2012). 

 

During the late Holocene period (≈ 6 ka BP to present), the Sahara recorded progressively drier 

condition, although the real start of this dry phase is different across the Sahara in particular, 

and the African continent in general. This aridification period is well documented in the Eastern 

Sahara (Tierney and deMenocal, 2013; Manning and Timpson, 2014) through a variety of 

evidences: northern Chad experienced a progressive drying in response to weakened insolation 

forcing of the African monsoon and abrupt hydrological change in the local aquatic ecosystem 

(Kröpelin et al., 2008); palynological evidences from Lake Yoa (Chad) indicate gradual shift 

from moist to arid conditions during the last 6000 yr (Lézine et al., 2011); and desertification 

and aeolian deflation are recorded during the Middle and Late Holocene in Egypt and northern 

Sudan (Nicoll, 2004). In some sites, this dry period has been detected earlier than 6 ka BP, 

where warm, dry phase between 7000 and 6800 BP has been recognized in the Blue Nile, from 

sedimentological, flooding and lake level data. This short dry phase in Blue Nile was interrupted 

by somehow wetter conditions than the present day ones, and continued about 4500 BP when 

the present arid to hyper-arid conditions commenced (Lario et al., 1997). In eastern Africa this 

dry phase has started later ≈ 4.5 ka BP (Telford and Lamb, 1999).  
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1.9. Statement of the problem and aim of this study 

The present study is dealing with the late Quaternary deposits in the Kordofan region from 

sedimentological and climatic points of view. Most of the previous studies carried out in this 

region focused on the hydrogeology (Karkanis, 1966; Rodis et al., 1968; Salama, 1976; 

Strojexport, 1976; Ginaya, 2011; Dawelbeit, 2011; El Hadi, 2012; Elhag et al., 2013; Elhag et 

al., 2014; Elmansour, 2017), geology (Whiteman, 1971; Strojexport, 1975; Abdel Galil, 2008; 

Elhag and Elzien, 2013; Elmansour and Omer, 2017), and many other mineralogical 

investigation in the Nuba mountains, and hydrocarbon investigation south of El Fula. Very few 

attention has been paid for the Quaternary by those previous studies, due to less economical 

value of these sediments, and consequently, all the geophysical exploration and drilling reports 

describe the Quaternary units as superficial deposits with only very little information about their 

textural description. Edmond (1942) was the first to study in detail these late Quaternary 

deposits of Kordofan and paid special attention to the distribution of what is called the 

“Kordofan sand”, the geomorphology of the dunes and the origin of the sand. Rodis et al. (1968) 

provided a map for the surficial deposits of the whole Kordofan region with valuable 

information about their physical and textural characteristics. However, the lithological 

variability of the late Quaternary units requires detailed studies, since the “Kordofan sand” is 

locally interbedded with important units of limestone that had never been mentioned by 

previous workers, and seems to have experienced intensive pedogenetic processes. 

Consequently, the sedimentological environment and paleogeographic distribution of these 

deposits need to be studied. Moreover, the real age of the Quaternary units is still unknown.  

On the other hand, although intensive climatic studies have been carried out in the Sahara and 

especially in Eastern Sahara, the southern limit of the Sahara in Sudan (Kordofan region) has 

never been studied in order to document the climate evolution during the terminal Pleistocene-

Holocene period. However, Late Pleistocene-Holocene deposits in the Kordofan region exhibit 

lithological discontinuities that probably reflect climatic fluctuations during the late 

Quaternary. In addition, there are clear lateral and/or vertical variations in the physical 

properties of the deposits (color, texture, grain size, fossil content …), which suggest large 

variability in sedimentary and climatic conditions during the late Quaternary.  

The present study is focused on the sedimentary record of the climatic evolution of Central 

Kordofan through several climatic proxies. Therefore, the main objectives of this study are (1) 

to determine the age, areal extent and thickness of the Quaternary units, (2) to understand the 

processes that controlled the deposition and distribution of the Quaternary deposits, and (3) to 

reconstruct the late Quaternary paleoclimatic evolution of Kordofan region. The results of this 

study will help us to assess the relationships between climate and sedimentation. In this view, 

I hoped to address the following questions:  

 What were the sedimentation processes of the Late-Quaternary deposits, are there any 

evidences of fluviatile, aeolian or lacustrine deposits ? If such different kinds of sediment 

exist; do they show any conformable and/or unconformable contacts ? And what is the age 

of these successive sedimentary units ?  

 Do the lithological discontinuities and lateral and/or vertical variations in the sedimentary 

facies reflect any climatic variations ? If so, what was the role of regional Quaternary 

climate changes and monsoonal fluctuations, and their relations with the regional context ?  
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II. METHODOLOGY 

 

2.1. Introduction 

In order to reconstruct the late-Quaternary sedimentary and climatic evolution of the Kordofan 

region, it is important to pay great attention in the field to sedimentological features and to 

know which climatic proxies should be used. Kordofan deposits incorporate and preserve multi-

proxy evidences in a variety of sedimentary successions. This chapter outlines the approach 

taken for field observation, selection of representative sites, sample collection, and the practical 

laboratory investigations of selected paleoclimatic and paleoenvironmental proxies, namely: 

sedimentological, paleontological (palynology and gastropod sub-fossil shells), geochemical 

(stable isotopes, major elements and clay mineralogy), hydrological, archeological and carbon 

dating analyses. 

 

2.2. Sites selection  

Sites selection is the most important step in conducting such geological research. To investigate 

the sedimentological and stratigraphic succession in the Kordofan region, sites were selected 

across the study area depending on a preliminary short field works and Google Earth map 

survey that show some variations in the geomorphologic features (Fig. 1.4). These 

geomorphological features provided preliminary indicators of some morphological or 

lithological variation across the targeted area. 

Sites selection was focused on the outcrops that likely contain: (1) well-preserved and well 

exposed sedimentary successions, (2) organic matter suitable for palynological analysis and 

carbon dating, although preserved organic matter is scarce in the greatest part of the area, (3) 

gastropod-rich successions for paleontological and paleobiological studies, (4) clastic 

sediments suitable for grain size analysis. The selected sites included: banks of wadies and 

khours (seasonal rivers) that expose sections up to 5 m thick, excavated sections along asphaltic 

roads up to 7 m deep, active or abandoned quarries and some other sites for surficial survey. In 

some cases, handmade wells have been caved to obtain adequate sections.  

 

2.3. Field work  

Two intensive field campaigns in November 2015 and November 2016, in addition to many 

other short complementary field works, have been carried out. The aims of the field work are 

to conduct sedimentological investigation (study, measurement and sampling of verical 

sedimentary profiles), in addition to some archeological and paleohydrological observations.  

2.3.1. Sedimentological investigations 

The purpose of the field work was to investigate in detail the sedimentary successions across 

the study area in order to document all the needed information. Tucker (2003) summarized the 

main aspects of sedimentary rocks to consider in the field, which should be recorded in as much 

detail as possible. These are:  

1. The lithology, that is the composition and/or mineralogy of the sediment; 
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2. The texture, referring to the features, shape and arrangements of the grains in the sediment, 

of which the most important aspect to examine in the field is the grain-size; 

3. The sedimentary structures, present on bedding surfaces and within beds, some of which 

record the palaeocurrents that deposited the sediments; 

4. The color of the sediments; 

5. The geometry and relationships of the beds or rock units, and their lateral and vertical 

changes; and 

6. The nature, distribution and preservation of fossils contained within the sedimentary rocks. 

The various attributes of a sedimentary rock are then combined to define a facies, which is the 

product of a particular depositional environment or of depositional process in that environment. 

Facies identification and analysis are the next steps after the field data have been collected 

(Tucker, 2003). In this study, facies identification provided preliminary indications on the 

climatic evolution, which required confirmations by other analytical climatic proxies.  

2.3.2. Sampling 

During field work, great attention was paid for samples collection. The collected samples 

included charcoal, bones and organic matter for carbon dating, organic-rich sediments for 

palynology, gastropod sub-fossil shells for paleontological investigation, in addition to in situ 

shells counting in some sections, clastic sediments collection for grain size analysis, clay 

mineralogy and major elements geochemistry, systematic gastropod sub-fossil shells and 

calcareous nodules sampling for oxygen and carbon stable isotopes analyses, and archeological 

remnants when present (Fig. 2.1).  

2.3.2.1. Carbon dating samping  

Twenty-six samples for carbon dating were collected across the study area. These samples 

include: (1) eight samples of bones collected mostly from surficial outcrops of lake shorelines 

and only one of them collected from a section of wady or khour bank, (2) five charcoal pieces 

collected from sections of wady or khou banks, and (3) thirteen samples of organic-rich soils 

and paleosols from sections of wady or khou banks.  

Many of these samples were collected randomly (not systematically) due to the lack of material 

suitable for dating in most parts of the sections.  

2.3.2.2. Palynology sampling  

The palynological data obtained in this study proceed from twenty-nine samples from six 

sections. All samples are from the shaly parts of each section, with focus on the dark fine 

sediments. The sections rich in clayey strata have been sampled systematically with constant 

intervals, while those with rare shale levels have been sampled according to the potential 

suitability of the sediments.  

2.3.2.3. Paleontology sampling  

Sampling for paleontology was focused on the collection of gastropod sub-fossil shells from 

different sites (surficial and in sections). The main purpose of the paleontological sampling was 

to identify the various observed sub-fossil shells, in order to determine their living environment, 

and thus, the depositional environment of the surrounding sediment.  
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Fig. 2.1. Sample location. 

  

2.3.2.4. Grain size and XRF samplings  

Fourty-eight samples from four sections were systematically collected for grain size analysis. 

Among them, twenty-two samples from two sections were used for XRF analysis of major 

elements. 

All sampled sections are composed of pedogenitized and non pedogenitized levels. From the 

pedogenitized parts, only the matrix have been collected after removing the pedogenitized 

features represented by calcareous nodules. Sediment samples range between 400 and 500 g.  

2.3.2.5. Clay mineralogy sampling 

Only eight samples were collected along one section, proceeding from different deposits. 300 g 

of sediments were originally sampled, reduced to a few grams after prepartion (see section 

2.4.3.4.). 

2.3.2.6. Stable isotopes sampling 

Forty-nine samples were systematically collected from five sections: three sections yielded 

twenty-four gastropod sub-fossil shells from various species, while other samples are 

calcareous nodules from two other sections.  
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2.4. Laboratory analyses  

2.4.1. Radiocarbon dating 

2.4.1.1. Overview  

Radiocarbon 14C is one of three isotopes of carbon, the others being 12C and 13C. By far the 

most abundant of these is 12C, which comprises around 98.9% of all naturally occurring carbon 

atoms. 13C forms around 1.1% and 14C one part in 1010%. In other words, only about one among 

one million atoms of carbon is 14C. Both 12C and 13C are stable isotopes, but 14C is not, and it 

‘decays’ to a stable form of nitrogen, 14N, through the emission of beta (ß) particles. One ß 

particle is released from the nucleus for every atom of 14C that decays (Walker, 2005).  

Radiocarbon dating is the most widely applied dating technique for the Holocene and late 

Pleistocene period, providing reliable and accurate temporal controls for palaeoenvironmental 

studies. It was therefore applied to obtain absolute independent chronology of the studied 

samples.  

Radiocarbon dating determines ages of carbonaceous materials using the radio-isotope 14C. 14C 

is produced in the upper atmosphere mainly as the result of the interaction of cosmic ray 

neutrons with Nitrogen-14 atoms (Muscheler et al., 2004; Fairbanks et al., 2005). 14C mixes 

rapidly throughout the atmosphere to form carbon dioxide and enters the global carbon cycle 

and is assimilated by plants through the photosynthesis process, and by animals through the 

ingestion of plant tissue (Walker, 2005). The majority of 14C (more than 95%) is absorbed into 

the oceans as dissolved carbonate, which means that organisms that live in sea water (corals, 

molluscs, etc.) will also take up 14C during the course of their life cycle. Although the 14C in 

the terrestrial biosphere and in the oceans is constantly decaying, it is continuously replenished 

from the atmosphere. Hence, the amount of 14C that is stored in plant and animal tissue and in 

the world’s oceans, the global carbon reservoir, remains approximately constant through time 

(Walker, 2005).  

 

Fig. 2.2. Decay curve of radiocarbon. This curve is exponential, not linear. A after each half-life the 

number of atoms remaining is halved. If there are A0 atoms of radiocarbon at the beginning of the decay 

process, then after one half-life there will be A0/2 atoms remaining; after two half-lives, there will be 

A0/4, after three, A0/8 and so on (after Bowman, 1990; in Walker, 2005).  
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Once an organism dies, however, it becomes isolated from the 14C sources, no further 

replenishment of 14C can take place, and the ‘radiocarbon clock’ runs down by radioactive 

decay, which occurs in constant rate. Hence by measuring the amount of 14C that remains in a 

sample of fossil materials (the residual 14C content) and comparing this to modern 14C in 

standard material, an age can be inferred since the death of the organism. However, the rate at 

which 14C decays is needed to know the rate at which 14C decays. Experimental results have 

shown that the decay rate of 14C is 1% every 83 years. However, as with all radioactive isotopes, 

the decay curve is not linear but exponential (Fig. 2.2). This means that materials significantly 

older than this can still be dated. The half-life of a 14C atom is 5730 years, and under normal 

circumstances, the limit of measurement of 14C activity (i.e. decay rate) is eight half-lives. This 

translates into an upper age limit of around 45 000 years. Therefore, samples older than this are 

usually described as being ‘infinite age’ and are expressed, for example, as > 45 000 years 

(Walker, 2005).  

14C dating of our samples have been carried out (1) at the Poznań Radiocarbon Laboratory, 

Poland, by Dr. Tomasz Goslar, and (2) at the Laboratoire des Sciences du Climat et de 

l’Environnement (LSCE), in Gif sur Yvette, France, by Dr. Jean Pascal Dumoulin, through the 

Institut de Recherche pour le Développement (IRD).  

2.4.1.2. Procedures of AMS 14C dating used in the Poznań Radiocarbon Laboratory 

Procedure of 14C dating with the AMS technique, consists of a few stages: chemical pre-

treatment, production of CO2 and graphitisation, AMS 14C measurement, calculation of 14C age 

and calibration of 14C age. 

2.4.1.2.1. Chemical pre-treatment  

Methods of chemical pre-treatment generally follow those used in the Oxford Radiocarbon 

Accelerator Unit, as described by Brock et al. (2010, Radiocarbon, 52, 102-112).  

- Samples of charcoal, wood or other plant remains (after mechanical removal of macroscopic 

contamination visible under binocular) are treated with 1M HCl (80°C, 20+ min), 0.025-0.2M 

NaOH (room temperature for fragile plant remains, 80°C for wood) and then 0.25M HCl (80°C, 

1 hour). After treatment with each reagent, the samples are rinsed with deionised water 

(Millipore) until pH = 7. For the first HCl treatment, longer time (20+) is applied, if emanation 

of gas bubbles from sample is still visible. The step of NaOH treatment is repeated a few times, 

generally until no more coloration of the NaOH solution appears (coloration of solution is 

caused by humic acids dissolved in NaOH), but the NaOH treatment is interrupted if there is a 

danger of complete dissolution of the sample.  

- Samples of sediments are usually treated with 1M HCl (room temperature overnight and then 

80°C, 1+ hour), 0.2M NaOH (80°C, 10 min) and then 0.25M HCl (80°C, 1 hour). After 

treatment with each reagent, the samples are rinsed with deionised water (Millipore) until 

pH = 7. For the first HCl treatment, longer time (1+) is applied, if emanation of gas bubbles 

from a sample is still visible. The step of NaOH treatment is repeated a few times, generally 

until no more coloration of the NaOH solution appears (coloration of solution is caused by 
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humic acids dissolved in NaOH). In case where total organic carbon (TOC) is to be analysed, 

the procedure is limited to the first HCl treatment only.  

- In case of bones, extraction of collagen is performed using the procedures originally described 

by Longin (1971, Nature, 230, 241-242), with further modifications (e.g. Piotrowska N., Goslar 

T., 2002, Isotopes in Environmental and Health Studies, 38, 1-9). Before extraction, degree of 

collagen degradation is checked by measuring content of nitrogen and carbon in bone, using 

analyser Flash EA 1112 Series (ThermoScientific). The samples are regarded suitable for 

collagen dating, if nitrogen content in bone is not lower than 0.6%, and ratio C/N is not higher 

than 5. Suitable bones are crushed mechanically to granulation <0.3 mm, the bone powder is 

then treated with 2M HCl (room temp., 20 min), and 0.1M NaOH (room temp., 1 h). After each 

step of treatment, the sample is centrifuged and the residuum is collected. Extraction of collagen 

is processed in HCl (pH = 3, 80°C, 10h), and after centrifugation, residuum is removed. The 

extracted collagen is then ultrafiltered on pre-cleaned Vivaspin 15 MWCO 30 kD filters (Bronk 

Ramsey et al. 2004, Radiocarbon, 46, 155-163). Quality of the collagen is ultimately assessed 

basing on C/N atomic ratio (interval of acceptance: 2.7-3.5) and collagen extraction yield 

(acceptance threshold: 0.5%). On demand, carbon and nitrogen stable isotopic composition of 

the collagen can be determined.  

In cremated bones, where collagen is too degraded and not suitable for 14C dating, and 

geological situation at the site of sample collection excludes precipitation of secondary 

carbonates, a fraction of structural carbonates is forwarded for dating, while organic fraction is 

removed by treating bones with 2% NaClO for 48 h and then in 8% CH3COOH for 48h 

(according to Lanting J.N., Van der Plicht J., 2001. Radiocarbon, 43, 249-254). Then the outer 

layer of carbonate grains is removed in 2% HCl (1 h) and additionally by quick rinsing with 

36% HCl. 

- Samples of shells (and other carbonate features) are checked and mechanically cleaned under 

binocular. The organic coating, if visible, is removed with H2O2 (15-30%) in an ultrasonic bath. 

Then the outer carbonate layer (ca. 30%) is removed in 0.5M HCl (if the sample is large 

enough), the remaining material is treated in 15% H2O2 again (for 10 min in an ultrasonic bath) 

and the remaining carbonate is leached with concentrated H3PO4 in a vacuum line. 

2.4.1.2.2. Production of CO2 and graphitisation  

In case of organic samples, CO2 is produced by combusting the sample. Combustion of organic 

samples is performed in closed (sealed under vacuum) quartz tubes, together with CuO and Ag 

wool, in 900°C over 10 hours. CO2 from carbonate samples is leached by treating with 

concentrated orto-phosphoric acid (H3PO4) in a vacuum line. 

The obtained gas (CO2 + water vapour) is then dried in a vacuum line, and reduced with 

hydrogen (H2), using 2 mg of Fe powder as a catalyst. The obtained mixture of carbon and iron 

is then pressed into special aluminium holder, according to the description provided by Czernik 

J., Goslar T., 2001, Radiocarbon, 43, 283-291. 

2.4.1.2.3. Accelerator mass spectrometry (AMS) 14C measurement  

Measurements described in this point, are performed in the AMS 14C Laboratory of the A. 

Mickiewicz University in Poznań. Cooperation between the Poznań Radiocarbon Laboratory 
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and the AMS 14C Laboratory is regulated by the Agreement between Foundation of the A. 

Mickiewicz University and the A. Mickiewicz University. 

Content of 14C in a sample of carbon is measured using the spectrometer "Compact Carbon 

AMS" (produced by: National Electrostatics Corporation, USA) described in the paper: Goslar 

T., Czernik J., Goslar E., 2004, Nuclear Instruments and Methods B, 223-224, 5-11). The 

measurement is performed by comparing intensities of ionic beams of 14C, 13C and 12C 

measured for each sample and for standard samples (modern standard: “Oxalic Acid II” and 

standard of 14C-free carbon: “background”). In each AMS run, 30-33 samples of unknown age 

are measured, alternated with measurements of 3-4 samples of modern standard and 1-2 

samples of background. In case, where organic samples are dated, the background is represented 

by coal, while in case of carbonate samples, the background is represented by the sample IAEA 

C1. 

2.4.1.2.4. Calculation of 14C age  

Conventional 14C age is calculated using correction for isotopic fractionation (according to 

Stuiver, Polach 1977, Radiocarbon 19, 355), basing on ratio 13C/12C measured in the AMS 

spectrometer simultaneously with the ratio 14C/12C (note: the measured values of 13C depend 

on isotopic fractionation during CO2 reduction and isotopic fractionation inside the AMS 

spectrometer, and as such, they cannot be compared with values of 13C determined with 

conventional mass spectrometers on gas samples). Uncertainty of calculated 14C age is 

determined using uncertainty implied from counting statistics, and also spread (standard 

deviation) of partial 14C/12C results, whichever is bigger. Uncertainties of 14C/12C ratios 

measured on standard samples are additionally taken into account. The 1-sigma uncertainty of 

conventional 14C age given in our reports, is the best estimate of the total uncertainty of 

measurement.  

2.4.1.3. Procedures of AMS 14C dating used in the Laboratoire des Sciences du Climat et 

de l’Environnement - Plateforme Nationale LMC14  

2.4.1.3.1. Chemistry of organic matter  

Samples marked A are treated in an excess of 0.5N hydrochloric acid for several hours at 80°C 

to remove carbonates and then rinsed with ultrapure water to neutral pH. 

Different amounts, depending on the TOC% of the samples, are taken in order to obtain, after 

combustion, a volume of CO2 containing approximately 1 mg of carbon. The sample is burned 

in the presence of about 500 mg of copper oxide and silver wire for 5 hours at 835°C. 

2.4.1.3.2. Graphite reduction protocol 

CO2 is reduced by hydrogen in the presence of iron powder at 600°C. The mass of iron is equal 

to 3 times the mass of carbon with a minimum value of 1.5 mg and a maximum value of 4 mg. 

Carbon is deposit on the iron powder and the whole is then pressed into a support for 

measurement by AMS. 

2.4.1.3.3. Measurement and analysis protocol 

The 14C activity of the sample is calculated by comparing the intensities measured sequentially 

beams of 14C, 13C and 12C from each sample with those of CO2 standards prepared from the 
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reference oxalic acid HOxII. It is expressed in pMC (percent Modern Carbon) normalized to a 

delta 13C of -25 per thousand. 

The radiocarbon ages are calculated according to Mook and Van der Plicht (Radiocarbon 14, 

1999, p. 227) in correcting the 13C fractionation calculated from the 13C/12C ratio measured on 

ARTEMIS. 

The 13C used includes fractionation occurring both during sample preparation only during 

SMA measurement. It is also dependent on the transmission of the installation, namely the 
13C/12C measured at the output of the ARTEMIS mass spectrometer compared to the value of 
13C/12C at source output. These values depend on the beam at injection, current and emission. 

The 13C measured by ARTEMIS can not be compared to the 13C measured on a spectrometer 

massive. Since 13C values are corrected to a standard, they do not affect the age measurement 

of 14C. 

2.4.1.4. Calibration of 14C age 

In addition to natural variation, the atmospheric 14C levels have been affected by human activity 

(Walker, 2005). Over the past 250 year, the burning of fossil fuels has liberated large quantities 

of 12C into the atmosphere (Houghton et al., 2001, in Walker, 2005). These quantities of 12C 

have diluted 14C levels and cause some variations in the atmospheric 14C concentration and 

consequently profound effects for radiocarbon dating (Walker, 2005). A comparison between 
14C and uranium-series dates on fossil coral, indicate that radiocarbon dates are around 3000 

years younger than ‘true’ ages at 15 000 14C year BP, and around 4000 year younger at 20 000 
14C year BP (Stuiver et al., 1998, in Walker, 2005). For this reason it is important to convert the 

radiocarbon date into calendar time or 14C year BP. 

 

 

Fig. 2.3. OxCal calibration curve showing one probability range - sample from East Abu Zabd. The 

sample code is Dab 1. 14C date is 10960 ± 100 yr BP. The curve indicates only one probability (95.4%) 

with calendar age ranging between 11093 and 10756 yr BC. The average of this range is 10925 yr BC 

(equivalent to 12942 yr BP).  
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Fig. 2.4. OxCal calibration curve showing two probability ranges - sample from Dilling. The sample 

code is Del 2-1. 14C date is 595 ± 30 yr BP. The curve shows two probabilities (69.7 % and 25.7 %) 

with calendar age ranges of 1298 – 1371 and 1379 – 1410 yr AD. The average of these two ranges is 

calculated from the small value of the first probability (1298) and the big value of the second 

probability (1410) it is 1354 yr AD (equivalent to 663 yr BP).  

 

Various methods and programs have been developed for the calibration of radiocarbon dates, 

of which the most important are: the Dendrochronological calibration method, INTCAL 

calibration program, and OxCal calibration program. 

The online OxCal calibration program has been used in this study. The program is always 

developing through time, the present version of this program is 4.3 and works with IntCal13. 

Both, version 4.3 and the old one 4.2 have been used during this study. A variety of different 

chronological models can be included in the analysis. The information for such analysis can be 

entered using the user interface or in the form of text command files. The calibration output is 

usually given in term of probability. The accuracy of this program have maximum probability 

of 95.4% which may be represented in one probability or more. Each probability expresses the 

calibrated 14C age in term of calendar age range either “anno Domini” AD or “before Christ” 

BC then the average of this range will consider the age of the sample. In turn, this average age 

can be converted into BP “before present” calendar age. Figures 2.3 and 2.4 show two 

calibrated ages for two samples among the analyzed samples for this study.  

 

2.4.2. Grain size analysis  

Grain size is the most fundamental property of sediment particles, affecting their environment, 

transport and deposition. Grain size analysis therefore provides important clues to the sediment 

provenance, transport history and depositional conditions (Folk and Ward, 1957).  

The original aims of this grain size investigation is to determine the origin of the Kordofan sand 

(aeolian or fluviatile origin), to understand the transport direction, and to have an idea about the 

transportation mode(s).  
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Samples for grain size analysis were prepared using standard techniques as described by Folk 

(1974) to determine grain size distribution. The samples were dry-sieved at a sieve sets ranges 

from 2.83 to 0.074 mm opening for five minuts, the retained in each sieve is weighted using 

electronic balance of 0.1g sensitivity. Material smaller than 0.074 mm were not analyzed, 

instead, a single weight percent is given and plotted as one size then the curves completed 

according to their directions to include the percentages of the silt and clay contents (material 

< 0.063 mm) to help in the approximate evaluation of the percentages for all materials.  

The cumulative curves of the samples were plotted manually using the free drawing computer 

program Surfer 11. Graphical statistical parameters (mean grain size MZ, sorting I, skewness 

SKI, and kurtosis KG) were calculated for each sample following Folk and Ward (1957) 

(equations 2.1 – 2.4). Mean grain size represents the average grain size; sorting (as a standard 

deviation) refers to the uniformity of the sediment; and skewness measures the asymmetry of 

the size distribution curve Folk (1974). 

M𝑍 +
∅16+∅50+ ∅84

3
 ………………………………. (2.1) 

𝜎𝐼 =  
∅84−∅16

4
+

∅95− ∅5

6.6
 ………………………….. (2.2) 

SK𝐼 =
∅16+ ∅84− ∅50

2 (∅84− ∅16)
+

∅5+ ∅95− ∅50 

2 (∅95− ∅5)
 ………………. (2.3) 

K𝐺 =
∅95− ∅5

2.44 (∅75− ∅25)
 ………………………………. (2.4) 

Where: MZ is the mean size; ϭI is the inclusive graphical standard deviation; SKI is the inclusive 

graphic skewness; KG is the graphic kurtosis; and Øn is the diameter where n% of the sample is 

greater than this diameter.  

Description of sorting, skewness, and kurtosis after Folk (1974) has been used for better 

understanding of these graphical parameters.  

The cumulative percentages of the grain size classification after Folk (1974), were calculated 

from each curve and plotted in vertical diagrams against their depths to understand their vertical 

distribution in each section and to have an idea about wind energy fluctuation through time. 

Horizontal diagrams were also plotted to understand the spatial variations in wind energy (from 

NE to SW). As a matter of fact, in areal studies of sand sheets it is useful to know which 

direction the sand is moving, and to this end an areal study of mean grain size would be of 

critical importance. One of the ways to proceed would be to lay a sampling grid over the dune 

field and see if there were any systematic regional changes in grain size (Folk 1974).  

Log-probability curves have been prepared according to Visher (1969), in order to understand 

the mode(s) of sediments transportation (suspension, saltation, traction) in each sample, and 

therefore, in each part of the studied sections. Moreover, geographical profiles of the modes of 

transport across section were used to confirm the variability of the transport energy. 

The grain size analysis hase been conducted at the Department of Geology, University of 

Kordofan, El Obeid, Sudan.  

 

2.4.3. Analysis of paleoclimate proxies  
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2.4.3.1. Palynological analysis  

Sporomorphs data are used for a variety of Quaternary applications including geochronology, 

biostratigraphy, palaeoecology, palaeoclimatology and archaeology (Traverse, 2008). Faegri 

and Iversen (1989) indicated that the reliability of palynology as a palaeoenvironmental tool is 

a function of : 

• the robust preservation of pollen grains and their resistance to decay, 

• the wide dispersal of pollen grains and their presence in a broad range of environments such 

as lakes, peat deposits, soils, colluvium, alluvium, estuarine deposits, ocean floor and faecal 

material, 

• the abundant production of pollen grains, 

• the relative ease of identification as a result of the distinctive structural pattern of the exine 

(the outer layer of the wall of a palynomorph), and 

• the direct link between the identification of pollen grains and the parent plant (Quick, 2013).  

It has been established that a combination of a few prominent “indicator” taxa can be 

characteristic of certain vegetation types and environmental conditions (Scott and Cooremans, 

1992). The so-called indicator approach therefore uses the presence (or absence) of indicator 

taxa, whose modern ecological tolerances are well understood as a basis for reconstructing 

palaeoenvironments (Quick, 2013). This approach assumes that the limiting conditions in the 

past were the same as they are today, an assumption thet most probably holds for the time period 

in question “i.e. the late Pleistocene and Holocene periods” (Quick, 2013). At the beginning of 

sample preparation, at least tow samples per section were prepared to confirm the existence of 

palynomorphs and to decide the continuation of the preparation.  

The samples have been analyzed using standard palynological preparation techniques 

established in the Petroleum Laboratories Research and Studies (PLRS), Khartoum, Sudan, by 

Mr. Abdelbasit Mustafa and Miss. Malaz Mohammed-Ali.  

Chemical processing of palynological samples and preparation of slides were carried out at the 

Petroleum Laboratories Research and Studies (PLRS), Khartoum. The procedure followed in 

the preparation of palynological slides was largely adapted from the scheme established at 

PLRS. The following paragraphs outline the steps of this scheme:  

Twenty grams of each sample were weighed and crushed to the size of about 2 mm. Samples 

were then placed in a plastic beaker and thoroughly washed under running water in order to get 

rid of mud additives and other surface contaminants. 

Concentrated hydrochloric acid (35%) was carefully used to remove the carbonates. As there 

was an abundance of silica in the analyzed samples, about 60 ml of cold concentrated 

hydrofluoric acid (40%) was carefully added to dissolve the silica and the silicate minerals. 

Sometimes a mixture of HF and HCl acids in the ratio of 1:3, respectively, wazs used to remove 

the fluorides that might have formed during the HF treatment. 

For quick removal of the acids, samples were placed in a centrifuge to achieve rapid settling of 

the organic residue. A further concentration of some residues was achieved by sieving using 

mesh widths between 10-15 μm. The residue was then placed in a clean 50 ml polythene 
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(polyethylene) centrifuge tube. Few drops of HCl were added followed by a solution of zinc 

chloride (Zn Cl2) of density 2.2 g/cm the tube was then centrifuged at 2200 rotations/second for 

15 minutes. The organic part of the residue appeared as a dark layer floating on the top, while 

the heavy minerals settled at the bottom of the tube. The floating layer was carefully pipetted 

and washed. 

Two or three drops of residue, mixed with few drops of Polyvinyl alcohol (PVA) were evenly 

spread over a cover slip and placed on a hot plate for 15 minutes to dry. A drop of petropoxy 

was gently placed in the central portion of each slide and left for ten seconds to get rid of any 

bubble, which may have formed in the resin. A cover slip was gently lowered allowing the resin 

to flow to all edges of the slide. The slide was then left for 15 minutes on the hot plate to dry. 

Two sdes per each sample were made and labeled. 

Two slides per samples have been scanned and the various palynomorph types are counted. The 

counted and identified palynomorphs were classified into major climatic groups and plotted in 

vertical evolution and geographic distribution, in order to understand the chronological and 

geographic climate evolution. 

2.4.3.2. Stable isotopes  

The stable isotopes of many elements are fractionated during changes in their states of 

aggregation and by chemical reactions between compounds which the elements occur. The 

extent of fractionation of two isotopes of the same element is controlled primarily by the 

difference in their masses and by the temperature of the environment (Faure and Mensing, 

2005). 

Forty-nine samples from five sections were analyzed for oxygen and carbon isotopes. Samples 

of three sections are gastropod shells, while samples from two sections are calcareous nodules.  

Preparation of gastropod shells. Initial cleaning of the outer shell surface with normal water 

removed any adhering sediment and any other contaminations. Shells were then coarsely 

crushed and the internal surfaces cleaned using normal water followed by ultrasonic cleaning 

in distilled water for10 min. The ultrasonic cleaning step is repeated three times. Samples are 

then dried at 60°C for 24 hours. An agate mortar and pestle was used to powder samples and 

only 1 to 2 mg/sample sent to the laboratory to determine the carbonate mineralogy by X-ray 

diffraction.  

Preparation of calcareous nodules. Initial cleaning of the outer nodule surface with normal 

water to remove any adhering sediment and any other contaminants. Further advanced 

preparation was performed at the Institute of Mineralogy and Geochemistry, University of 

Lausanne by M. Jorge Spangenberg. During this advanced preparation, the calcareous nodule 

samples were meticulously examined under a binocular microscope to eliminate the organic 

matter or soil matrix components contaminating the samples, then samples were powdered 

using an agate mortar samples.  

Isotopic analysis of carbon and oxygen was performed at Lausanne Laboratory (Switherlad) by 

M. Jorge Spangenberg. The stable carbon and oxygen isotope composition of the gastropod 

shells and calcareous nodules were determined using a Thermo Fisher GasBench II connected 

to a Delta Plus XL isotope ratiomass spectrometer (IRMS). The stable oxygen isotope ratios 
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are reported in the delta notation as the permil (‰) deviation relative to theVienna PeeDee 

Belemnite (VPDB) and Vienna Standard Mean Ocean Water standard (VSMOW), while the 

stable carbon isotope ratios are reported in the delta notation as the permil (‰) deviation relative 

to theVienna PeeDee Belemnite (VPDB).  

2.4.3.2.1. Oxygen isotopes  

Oxygen (O) is the most abundant chemical element in the crust of the earth. It has three stable 

isotopes 16O, 17O, and 18O with abundance of 99.726%, 0.038%, and 0.200%, respectively. 18O 

is 12.5% heavier than 16O (Faure and Mensing, 2005).  

The isotopic composition of O and of all other elements whose isotopes are fractionated is 

usually expressed as the ratio R of the isotopic abundance of the heavy isotope divided by the 

abundance of the light isotope. Therefore, R is defined in terms of the numbers of atoms rather 

than in terms of the masses of the isotope. In the case of O, R is defined by the abundance 

(Equation 2.5). 

𝑅 = =
0.200

99.762
= 0.002004 …………………………….. (2.5)  

The isotope ratio of the oxygen is measured by mass spectrometry and is expressed relative to 

standard mean ocean water (SMOW) (Faure and Mensing, 2005). However, the standard used 

for the samples of this study is Vienna Pee Dee Belemnite (VPDB). The use of a standard 

reduces systematic errors in measurements made on different mass spectrometers and permits 

R value to be expressed in terms of parameter called delta (δ) as defined in equation (2.6). 

𝛿18𝑂 =  (
𝑅𝑠𝑝𝑙− 𝑅𝑠𝑡𝑑

𝑅𝑠𝑡𝑑
)  ×  103‰ ………………………… (2.6)  

Where: Rspl = 18O/16O ratio of the sample; and Rstd = 18O/16O ratio of the standard  

Δ18O is the difference between the R value of the sample and the standard expressed in terms 

of permille relative to the R value of the standard.  

The δ18O parameters may be positive, negative, or zero. A positive δ18O value indicates that the 

sample has a higher 18O/16O ratio than the standard, which is expressed by stating that sample 

is enriched in δ18O relative to the standard. A negative δ18O value indicates that the sample has 

a lower 18O/16O ratio than the standard and that sample is depleted in δ18O relative to the 

standard. In other words, the isotopic composition of the oxygen in the sample is always 

expressed in terms of enrichment or depletion of the heavy isotope (18O).  

Since the analyzed samples were collected systematically along sections, then the 

corresponding δ18O values were plotted to show the vertical evolution of the oxygen δ18O, 

which may be then interpreted in terms of climatic evolution through time.  

2.4.3.2.2. Carbon isotopes  

Carbon is the fourth in abundance among the elements of the solar system after H, He and O 

(Anders and Grevesse, 1989). Carbon has two stable isotopes: 12C and 13C with an abundance 

of 98.90% and 1.10%, respectively. Consequently, the 13C/12C ratio is 1.083612 and the atomic 

weight of C is 12.01103. The mass of 13C is 8.36% greater than that of 12C, which causes the C 

isotopes to be fractionated by chemical and biological processes in nature (Faure and Mensing, 

2005).  
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The isotopic composition of C is expressed by the δ13C parameter (Equation 2.7). 

δ13𝐶 = (
(

13𝐶
12𝐶

⁄ )
𝑠𝑝𝑙

− (
13𝐶

12𝐶
⁄ )

𝑠𝑡𝑑

(
13𝐶

12𝐶
⁄ )

𝑠𝑡𝑑

) × 103‰ ………………………… (2.7) 

where the standard is PDB.  

Therefore, positive δ13C values signify that sample is enriched in 13C relative to the standard, 

whereas negative δ13C values imply depletion in 13C. The fractionation factor for C isotopes 

expressed in equation (2.8) as follows:  

α𝑏
𝑎(13𝐶) =

Ra

Rb
 ………………………………….. (2.8) 

where a and b are C-bearing compounds or phase in isotopic equilibrium at a specified 

temperature and R is the isotopic 13C/12C ratio. However, the isotopic composition of C in 

biogenic carbonate and organic compounds is not a reliable recorder of the environmental 

temperature because these kinds of compounds do not achieve isotopic equilibrium with the 

major C reservoir on Earth. When green plants absorb CO2 molecules during photosynthesis, 

they prefer 12C over 13C, which explain why organic matter of photosynthesis plants and 

herbivorous and carnivorous animals has negative δ13C values. On the other hand, the δ13C 

values of marine calcite and aragonite are close to zero because the BDP standard is itself a 

marine carbonate (Faure and Mensing, 2005).  

The obtained δ13C values were plotted in vertical evolution along the targeted sections and then 

δ13C was translated into environmental evolution through time. 

2.4.3.3. Major elements geochemistry  

Geochemical analysis of major elements has been applied in this study as a proxy for climate 

evolution in the study area. The chemical index of alteration (CIA) is the main Climofunction 

applied in this study. Nesbitt and Young (1982) proposed the use of chemical index of alteration 

(CIA) as a scale of the degree of rock weathering. It is calculated by taking the molar ratio of 

Al2O3 to Al2O3 + CaO + Na2O + K2O (alumina, lime, soda and potash) multiplying it by 100 

(Equation 2.9). The CIA measures the degree of weathering in the source area of the analyzed 

sediment (Nesbitt and Young, 1982; Madhavaraju et al., 2016).  

𝐶𝐼𝐴 =
Al2O3 

 (Al2O3+ 𝐶𝑎𝑂∗+ Na2O + K2O)
 × 100 ……………………….. (2.9) 

 where CaO* is the amount of CaO incorporated in the silicate fraction of the rock (Nesbitt and 

Young, 1982; Madhavaraju et al., 2016).  

According to Madhavaraju et al. (2016), the CaO*content has been calculated using the 

following methods: a) if the content of CaO was less or equal to the Na2O content, CaO value 

will be compensated for further calculation, b) if the CaO content is higher, it will be substituted 

by Na2O value in the above equation. 

According to Sheldon et al. (2002) the dgree of chemical weathrering in soil due to hydrolysis 

increases with available precipitation and temperature, the calculated CIA values plotted against 

corressonding sections.  

Since the intensity of weathering depends, in part, on precipitation, Sheldon et al. (2002) 

developed an empirical relationship relating mean annual precipitation (MAP) to chemical 
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index of alteration without potassium (CIA-K) (Equation 2.10). Because diagenesis can yield 

elevated potassium (K) concentrations in paleosols, this chemical index omits K (Adams et al., 

2011).  

𝑃 = 221𝑒0.0197(𝐶𝐼𝐴−𝐾) ………………………………… (2.10) 

In order to have an idea about the temperature, the empirical relationship of Sheldon et al. 

(2002) between mean annual temperature (MAT) and molecular weathering ratio of K2O+Na2O 

to Al2O3, have been applied (Equation 2.11).  

𝑇 =  −18.516(𝑆) + 17.298 …………………………. (2.11) 

where S is the molecular weathering ratio (K2O+Na2O/Al2O3).  

X-ray fluorescence analysis carried out at the chemical laboratory of the Geological Research 

Authority of Sudan (GRAS), under supervision of the chief chemist Emtithal Ali.  

Samples preparation for X-ray fluorescence analysis  

The sediment samples are firstly air-dried, then each sample is sieved through a sieve of 63 µm 

size. The pressed powder method is applied for sample preparation. Pressed pellets are prepared 

by pressing loose powder of the sieved sample filled in a hard steel ring, very smooth inside, 

using a set of dies and pressing machine.  

Pellets are generally pressed at 15 to 20 tons per square inch, which produces a flat smooth, 

dense sample for testing. Once the pellet is held at this pressure for about 30 seconds the pellet 

is carefully removed. The average thickness of the pellets is about 3 mm. The ring and set of 

dies are washed thoroughly with first tap water then ethanol acid, and dried to prevent 

contamination.  

2.4.3.4. Clay mineralogy  

Millot (1965) distinguished three principal processes to account for the genesis of clay minerals, 

which may occur at different points in the geochemical cycle including weathering or soil 

formation at the earth's surface. These processes are: (a) detrital inheritance whereby, for soils, 

clay minerals are inherited from pre-existing parent rock or weathered materials; (b) 

transformation where the essential silicate structure of the clay mineral is maintained to a large 

extent, but with major change in the interlayer region of the structure; and (c) neoformation, 

where the clay mineral forms through crystallization of gels or solutions (Wilson, 1999).  

Inherited soil clays may be of an extremely diverse and complex nature, reflecting both the 

variety of the parent rock as well as the transformation and neoformation processes that may 

have occurred in previous weathering environments (Wilson, 1999). Therefore, the clay 

mineralogy has been used as climate proxy for the weathering experienced by the source area 

of the analyzed sediments. 

The clay mineral assemblages are controlled by a number of factors (climate, time, parent 

material, topography, soil-profile type, transport processes, burial diagenesis) (Singer, 1984; 

Hillier, 1995, in Kemp et al., 2016).  

The principle of using the clay mineralogy as a climate proxy is based on the fact that each clay 

mineral assemblage develops in a preferred environment (physico-chemical conditions), and 

that predominance of a specific assemblages reflects high degree of the required environmental 
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conditions, leading to climatic information and interpretation. For instance, kaolinite and 

smectite are considered indicators of humid conditions, possibly tropical climate (Kemp et al., 

2016; Madhavaraju et al., 2016), smectite and illite indicate warm climate with alternating wet 

and dry seasons (Madhavaraju et al., 2016), the interstratified smectite illite (I-S) suggests 

seasonal tropical climate with a prolonged dry season (Kemp et al., 2016), and illite and chlorite 

form under physical weathering conditions (Madhavaraju et al., 2016).  

In this study, the quantitative results of the clay mineralogy have been plotted in vertical 

evolution and translated into climatic information to describe the weathering conditions in the 

source area of the analyzed sediments.  

Clay mineralogy analysis and interpretation has been performed in the ISTerre laboratory in 

Grenoble, France, with the priceless help of Dr. Nathaniel Findling and Dr. Bruno Lanson.  

Samples preparation and purification of clay. The objective of the treatment of the samples is 

to obtain a suspension of the desired size fraction. To do that, firstly the grain size of the samples 

is reduced by seaving them through sieve of 63 μm size. A suspension of 25-30 g/L is prepared 

in centrifuge bottles, each bottle being filled with pure water and placed in an ultrasonic bath 

to enhance particle disaggregation.  

Size fractionation by centrifugation with a swinging-bucket rotor  

- Particules < 2 μm fraction. To do so the clay suspension (25-30 g/L) is placed in a 500 ml 

centrifuge pot and centrifuged for 8 minutes at 700 rpm. The top 7 cm of the suspension are 

collected using a Pasteur pipette whose tip is curved and a water pump (or vacuum pump). This 

supernatant is kept in a 5 liters beaker. The remaining suspension is diluted with pure water. 

Centrifuge pots are shaken to put the remaining solid phase back in suspension. Then centrifuge 

the clay suspension again.  

CaCl2 1M (10 ml per liter) is added to flocculate the particles. Decant left overnight. The next 

day the clear supernatant is removed by siphoning, and the remaining suspension is centrifuged 

at high speed (4300 rpm for 15 minutes). The clear supernatant is then removed and the < 2 μm 

clay fraction is resuspended in pure water and kept at 4°C.  

- Particules below 0.2 μm. The suspension of the < 2 μm clay fraction (5 g/Lmax) is used in 

500 ml centrifuge pots and placed on a shaking table for at least 2 days at 100 rpm. Then the 

suspension is centrifuged during 40 minutes at 4000 rpm. The top 7 cm of the suspension are 

collected using a Pasteur pipette and kept in a 5 liters beaker.  

The remaining suspension is diluted with pure water. Centrifuge pots are shaken to put the 

remaining solid phase back in suspension. Ultrasonic bath is used when necessary. Then the 

clay suspension is centrifuged again for 40 minutes at 4000 rpm to collect again the top 7 cm.  

CaCl2 1M (10ml per liter) is added to flocculate the particles. Decant left overnight. The next 

day the clear supernatant is removed by siphoning and the remaining suspension is centrifuged 

at high speed (4300 rpm for 15 minutes). The clear supernatant is then removed and the 

< 0.2 μm clay fraction is resuspended in pure water and kept at 4°C.  

Mineralogical purifications. This process includes carbonate removal and removal of organic 

matter. Sodium acetate buffer solution at pH = 5 is used to remove the carbonate, while 

Hydrogen peroxide (H2O2) is used to remove the organic matter. 
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Preparation of homoionic clay separates (Na+ or Ca2+). Saturation of a clay separate with 

Na/Ca (or other cations) is achieved by washing cycles with the desired solutions NaCl. 

Centrifugation and removal of the supernatant. The first three cycles are performed for 24 h 

(room temperature) with concentrated solutions (0.5-1.0 M), and a minimum of three additional 

cycles are performed with a solution of the desired molarity. Samples are kept on a shaking 

table during the 24 h contact time so as to optimize the solid-solution contact.  
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III. STRATIGRAPHY AND SEDIMENTOLOGY 

 

3.1. Stratigraphy  

A total of twenty-four sections of the Late Quaternary sediments, distributed over five sectors, 

has been studied in detail in order to build a general stratigraphic picture of the area. Surficial 

survey was carried out in some sites, where no suitable sections were available for study. The 

location of the studied sites and their geographic information are given in Figure 3.1 and Table 

3.1. The sections will be analyzed according to five areas, corresponding to the Dilling area to 

the Southeast, the El Fula-Abu Zabad area to the Southwest, the En Nahud-El Khowei area to 

the West, the El Obeid-South El Obeid in the East, and the North Bara-Sodari sector to the 

North (Fig. 3.1).  

 

Fig. 3.1. Location of the studied sections. 

Four stratigraphic units have been distinguished across the study area. The first unit is found in 

all areas, except in the Dilling sector. The second unit is found in the Dilling, El Khowei-En 

Nahud and North Bara-Sodari areas. The third unit crops out in the El Obeid-South El Obeid 

and Dilling sectors. The upper or fourth unit is detected in the whole area.  

3.1.1. Stratigraphy of the Dilling area  

Three sections have been studied in the Dilling area. These are the Dilling section in the main 

Khour Abu-Habil seasonal river bank, and two sections North of the Dilling town (North 

Dilling 1 and 2), along another branch of Khour Abu-Habil. 
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Table 3.1: Geographical information on the studied sections.  

Section  Longitude / 

deg.min.sec. 

Latitude / 

deg.min.sec. 

Elevation / m asl 

Dilling  29 39 22.5 12 02 23 680 

North Dilling1 29 39 26.2 12 05 0.9 670 

North Dilling2 29 39 46.5 12 05 3.96 669 

El Fula 28 22 55  11 43 58 529 

East El Fula 28 22 48.7 11 44 1.7 513 

West El Fula 28 17 52.3 11 41 06 500 

East Abu Zabad1 29 28 16 12 20 49 617 

East Abu Zabad2 29 24 16 12 21 11 614 

East Abu Zabad3 29 28 47 12 20 59 611 

East El Obeid1 30 17 43.4 13 12 55.8 559 

East El Obeid2 30 18 21.4 13 12 06.1 564 

West El Obeid 29 59 59.7 13 10 3.7 585 

South El Obeid1 30 08 31.2 12 56 44.4 536 

South El Obeid2 30 04 47.7 12 48 13.3 557 

South El Obeid3 29 45 45.4 12 19 24.4 595 

East El Khowei  29 42 10.7 13 06 35.8 624 

El Khowei 29 12 53.2 13 03 20.8 628 

West El Khowei 28 54 15.9 12 55 34 625 

East En Nahud  28 43 25.1 12 49 49 611 

North Bara1  30 25 55.3 13 51 58.5 484 

North Bara2 30 28 38.7 14 04 36.1 478 

North Bara3  30 45 13.1 14 30 48.3 455 

El Ga’ah well 29 59 12.6 14 14 34 468 

 

The succession in the Dilling area is composed of three main stratigraphic units (Fig. 3.2). 

Considering that the lower unit is missing in this sector, the second unit directly overlies the 

basement rocks, which crops out extensively in this area. The third unit overlies the second one 

with a conformable contact. The upper unit overlies the third one with an unconformable 

contact.  

Second unit. This unit overlies unconformably foliated granitic rocks. It is formed of breccia 

or conglomerate comprising reworked rock fragments, as well as some reworked calcareous 

nodules. Its maximum measured thickness is ≈ 80 cm. 

Third unit. The third unit is formed of dark grey, organic-rich, shaly, fine sand sediments, 

containing some gravels, and in situ developed calcareous nodules. The maximum measured 

thickness of this unit is ≈ 110 cm.  

Fourth unit. The Upper unit overlies unconformably the third unit. A basal conglomerate 

bearing reworked calcareous nodules is overlain by sandy shales alternating with sand 

sediments beds, and containing locally calcareous nodules. The contacts between these beds 

are conformable, either abrupt or progressive. This unit has a maximum measured thickness of 

≈ 375 cm.  

Age constraints 

The organic-rich shaly sand sediments bed of the third unit yielded 14C ages of 4870 ± 30 and 

4133 ± 30 cal. yr BP (Fig. 3.2). Charcoal fragment within the basal conglomerate/breccia of the 
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upper unit yielded a 14C age of 7682 ± 110 cal. yr BP. Charcoal and wood fragments from the 

upper part of the Upper unit provided 14C ages of 759 ± 30, 663 ± 30 and 246 ± 30 cal. yr. BP.  

  

Fig. 3.2: Stratigraphic units of the Dilling area.  

 

3.1.2. Stratigraphy of the Abu Zabad – El Fula sector  

Six sections have been studied in this sector, among which three are located East of the Abu 

Zabad town, and three others around the El Fula town. In this sector, Late Quaternary sediments 

are composed of three main stratigraphic units (lower, third, and upper) (Fig. 3.3).  

Lower unit. The Lower (first) unit overlies the Cretaceous Nubian Sandstone or the Basement 

rocks. The contact with the pre-Quaternary rocks is abrupt and unconformable, and is locally 

underlined by coarse grained conglomerate beds (East of El Fula, East of Abu Zabad). It 

exhibits mostly mottled silt or fine sand sediments, rich in calcareous nodules and locally in 

poorly sorted gravels. This unit locally includes conglomerates found either in thick beds (east 

of El Fula), or in thin lenses in mottled sand sediments (East of Abu Zabad). The maximum 

measured thickness of this unit is ≈ 450 cm. 

Third unit. The third unit overlies the first one with a conformable contact. It exhibits mostly 

mottled silt or fine sand sediments, the difference with the lower mottled sand is the absence of 

the calcareous nodules. The maximum measured thickness of this unit is ≈ 120 cm. 
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Upper unit. This unit overlies conformably the Third unit. It is mostly formed of red, fine sand 

locally interbedded with sand sediment beds. The latter comprise interbedded layers of coarse 

sand with lithoclasts, medium sand, fine sandand sandy shale sediments. The contacts between 

these beds are conformable, either abrupt or progressive. The maximum measured thickness of 

this unit is ≈ 290 cm.  

Age constraints 

Only one date have been obtained in this sector, from the lower part of the Lower Unit. The 

organic matter of this mottled silt sediments bed yielded a 14C age of 12942 ± 100 cal. yr BP. 

 

Fig. 3.3: Stratigraphic units of the Abu Zabad – El Fula area. Legend in figure 3.2.  

 

3.1.3. Stratigraphy of the El Obeid – South El Obeid sector 

This sector extends southward until Khour Es Sonjokaya (section South El Obeid3). Five 

sections have been studied. Three main stratigraphic units have been identified (lower, third, 

and upper unit) (Fig. 3.4). 

Lower unit. This unit exhibits mostly mottled silt or fine sand sediments rich in calcareous 

nodules. Structureless beds of the sand sediments have been locally observed. The maximum 

measured thickness of this unit is ≈ 410 cm. The contact with the pre-Quaternary rocks is abrupt 

and unconformable, and has been observed only in west El Obeid.  

Third unit. This unit also exhibits mostly mottled silt or fine sand and locally planar laminated 

sand sediments, but without calcareous nodules. Its contact on the Lower unit is conformable. 
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The maximum measured thickness of this unit is ≈ 390 cm, the thickness increases gradually 

southward.  

Upper unit. The Upper unit unconformably overlies the Third unit in the east and south El 

Obeid sections, but in west El Obeid the Upper Unit directly overlies the Lower Unit. It is 

formed mostly of red fine sand sediments locally interbedded with coarser sand sediment beds. 

The grain size of the latter varies from coarse sand with lithoclasts, to sandy shale. The contacts 

between beds are conformable, either abrupt or gradual. The maximum thickness measured for 

this unit is ≈ 280 cm.  

Age constraints 

Organic matter from the third unit yielded 14C ages of 3438 ± 30 and 3331± 35 cal. yr. BP, 

while charcoal fragments from the base and middle part of the Upper unit yielded 14C ages of 

1088 ± 30 and 905 ± 30 cal. yr. BP, respectively (Fig. 3.4).  

 

Fig. 3.4: Stratigraphic units of the El Obeid – South El Obeid area. For the legend refer to figure 3.2.  

 

3.1.4. Stratigraphy of the En Nahud – El Khowei Sector 

Four sections have been studied in this sector. There, the succession comprises three main 

stratigraphic units, separated by erosional contacts (Fig. 3.5).  

Lower unit. This unit exhibits mostly mottled silt or fine sand sediments rich in calcareous 

nodules. Structureless beds of sand sediments have been observed locally. Its maximum 

measured thickness is ≈ 270 cm. Its lower contact has not been observed.  

Socond unit. The second unit overlies conformably the Lower unit. It is a lime or sandy 

limestone bed, the thickness of which varies between ≈ 55 and ≈ 80 cm. The carbonate bed of 
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this unit is marked by the presence of gastropod shells. The lower contact of this unit is usually 

progressive, whereas the upper contact is abrupt.  

Upper unit. The Upper unit unconformably overlies the second unit through an erosional 

contact. It is formed entirely of red fine sand sediments containing gastropod shells. Its 

maximum measured thickness is ≈ 155 cm.  

Age constraints 

Organic matter from the Lower unit yielded a 14C age of 7968 ± 50 cal. yr BP (Fig. 3.5), while 

the gastropod-rich limestone bed from the second unit yielded 14C ages of 9788 ± 80 and 6419 

± 35 cal. yr. BP in the En Nahud area. Both were collected from quarries, the older sample was 

collected ≈ 20 km north of the En Nahud town, while the younger one is from the southern part 

of the En Nahud city. The exact stratigraphic location of these samples are unknown, they may 

either represent the base and top of the limestone unit, or come from two or more distinct 

limestone levels. These ages are discussed below.  

 

Fig. 3.5: Stratigraphic units of the En Nahud – El Khowei area. Legend in figure 3.2.  

 

3.1.5. Stratigraphy of the North Bara – Sodari sector 

In addition to the surficial survey in many sites in the El Ga’a and Sodari area, the stratigraphy 

of this sector has been defined according to four sections, three of them are located North of 

Bara, while the fourth one is a 4 meters deep well, caved in the El Ga’ah area. The Late 

Quaternary series of this sector comprises three stratigraphic units, separated locally by 

erosional contacts (Fig. 3.6).  

Lower unit. The Lower unit is formed of mottled sand sediments. The sand grains are coarse 

to fine. The maximum measured thickness of this unit is ≈ 445 cm. Its basal contact has not 

been observed. 
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Second unit. This unit overlies unconformably the Lower unit. It is formed of alternating beds 

of limestone and argillaceous sand sediments. The upper surface of the limestone beds is karsted 

and/or eroded. The argillaceous sand beds may contain limestone clasts. The contact between 

the middle and lower units is generally abrupt and conformable, but an erosional, 

unconformable contact is observed locally in section North Bara 2. The thickness of this unit 

varies from 0 to ≈ 360 cm, according to the places (Fig. 3.6).  

Upper unit. The Upper unit conformably overlies the second unit, or rests directly on the Lower 

unit through a conglomeratic bed made of iron concretions. It is entirely formed of coarse- to 

fine-grained red sand sediments. Its maximum measured thickness is ≈ 255 cm.  

 

Fig. 3.6: Stratigraphic units of the North Bara – Sodari area. Legend in figure 3.2.  

  

Age constraints  

Three samples of organic matters from organic-rich argillaceous sand sediment beds have been 

collected in the El Ga’ah well. They belong to the second unit and yielded 14C ages of 

10538 ± 45, 10243 ± 40 and 5941 ± 30 cal. yr BP, respectively. The oldest age has been 

obtained from the base of the second unit, while the youngest one is from the top of the same 

unit (Fig. 3.6). In addition, archeological potteries and bone samples have been collected from 

the paleo-shoreline of north El Ga’ah and north Sodari paleo-lakes, in order to obtain more 

dates. However, bone samples either were not suitable for dating (lack of collagen for five 

samples), or yielded very recent ages : 108.47 ± 0.36 yr BP North of El Ga’ah, and 107.86 ± 
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0.31 yr BP near Sodari. These two samples exhibit present modern carbon (PMC), which means 

that they are not even suitable for calibration. 

Archeological pottery samples have been investigated at the university of Khartoum-Sudan, 

Archeology department, with the help of the archeologist Dr. Huweida. The collected potteries 

included the dotted wavy lines decorative, banded decorative, polished and thin, and polished 

and thick. The dotted wavy line potteries have been classified as Neolithic potteries, whereas 

other three forms have been determined as historic potteries (Merowetic and Islamic eras).  

The dotted wavy line has a wide distribution west of the Nile across the Sahara-Sahel Belt 

(Mohammed-Ali, 2003) where it is observed in Wadi Howar (Jesse, 2000). Some sites of the 

Neolithic dotted wavy line ceramics have been dated as Middle Holocene. Radiocarbon dates 

obtained from Neolithic level in the Shaqadud Neolithic site provided ages of 6880 ± 180 BP 

(55–62 cm below datum) and 6430 ± 180 BP (85–90 cm below datum; Marks, 1991; 

Mohammed-Ali, 1991, in Mohammed-Ali, 2003). Radiocarbon dates, taken from bone or 

snails, place the Early Khartoum type ceramics in Wadi Howar in the 6th millennium BP (Jesse, 

2000). Reappraisal of radiocarbon dates from central Sudan suggests the following culture 

succession: Early Khartoum is 9000-7000 BP, Early Neolithic Group is 6900-6450 BP, Middle 

Neolithic Group is 6400-5800 BP, Late Neolithic Group ages are 5500 to 4700 BP (Hassan, 

1986). Therefore, the age indication of the potteries ornamented by dotted wavy lines (≈ 7000-

6000 yr BP) is consistent with our 14C ages from the Second unit. 

 

Fig. 3.7: Location of the potteries and bones collected from the El Ga’ah paleolake shoreline.  

 

3.2. Carbon dating  

3.2.1. Preview of Carbon dating 

The lack or limitation of organic material makes it difficult to date all the stratigraphic units, 

especially those of light or reddish color. Among the twenty-six samples tested for carbon 
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dating (organic soils and/or paleosols, charcoal, bones; Table 3.2), only seventeen 14C dates 

have been considered as dated points in the study area. The remaining nine samples either 

produced very recent ages, or were not suitable for dating. Among the rejected samples, eight 

are bones and only one is charcoal. The charcoal sample (Ka 1-1) produced a recent age due to 

its high percent modern carbon (pMC). The bone samples were rejected due to their high 

percentage of modern collagene and/or due their very low nitrogene content (< 0.1% N).  

The stratigraphic position of the dated samples is given in Figures 3.8 – 3.15. The oldest date 

is 12 942 ± 100 cal. yr BP from the mottled, pale grey Lower unit of the East Abu-Zabad 1 

section at depth 650 cm, and the youngest date is 246 ± 30 cal. yr BP from the Dilling section, 

at depth 40 cm.  

3.2.2. Discussion of the 14C dates 

As shown in table 3.2, the dated material includes organic soil, charcoal and limestone. This 

kind of material, however, has some problems when being dated (Walker, 2005). Although all 

soils contain carbon and can theoretically be dated by radiocarbon, the dynamic nature of the 

soil system implies that it receives organic matter over a protracted time period, and thus, any 

radiocarbon date on a soil will be largely a measure of the mean residence time of the various 

organic fractions within the soil. Therefore, because of the continuous input of organic material 

into soil, measured radiocarbon ages of soil organic matter or its fractions are generally younger 

that the true ages of soil (Wang et al., 1996, in Walker, 2005). Among the samples we dated for 

this study, a sample from East El Khowei belonging to the Lower unit provided a ≈ 8 kyr BP 

age (Fig. 3.11), although it is located below the Second unit (limestone and sandy limestone), 

which yielded ages of ≈10 and ≈ 6 k yr BP around En Nahud and El Ga’ah (Figs. 3.12 and 

3.15). This may be due to the contamination by younger material, such as deep roots, which 

may have introduced young organic matter into older horizons (Walker, 2005). Alternatively, 

deposition of the Second unit around the El Khowei town may have started later than in En 

Nahud, or the Second unit may correspond to some distinct, heterochronous carbonate beds, 

the age of which varies from ≈10 and ≈ 6 k cal. yr BP. 

Lake sediments are extremely susceptible to contamination by older carbon residue and this 

leads to a dilution of the 14C concentration, and hence, to dates that are older than the actual 

date of sediment deposition (Walker, 2005). The same problem is also found in the terrestrial 

organisms, which may ingest older carbonates (limestone or soil carbonate) during their life 

time and this older material can be integrated into their shell (Walker, 2005). On the other hand, 

bioturbation caused by organisms in pond or lake beds can lead to disturbance of the sediment 

sequence and the downward movement of younger sediments, and thus younger age can be 

recorded from older sediments (Walker, 2005).  

The two dated samples from the En Nahud area were collected from excavated quarries. 

Therefore, they may represent the base and top of limestone horizon, or they may represent two 

distinct limestone horizons. We did not observe superimposed carbonate levels in the En Nahud 

and El Khowei areas, but several limestone beds were observed in the El Ga’ah well. On the 

other hand, since the samples were collected very close to the surface, one of them may have 

been contaminated by modern organic matter which may reduce its real age.  
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Table 3.2: Carbon dating results  

Lab Cod 

Laboratory  

 
Sample 

name 

Section Depth 

cm 
analyzed 

material 

Age 14C 

BP 

Error 

±BP 

 

Age cal yr 
(AD or BC) 

Age cal 

yr BP 

Remark 

49432 
 

 

 

LSCE 

NDel 16-17  
North Dilling2 375 Organic 

paleosols  

4055  30 2853 BC 4870  

49433 NDel 16-18  
North Dilling2 337 Organic 

paleosols 

3720  30 2116 BC 4133  

49434 NDel 16-20  
North Dilling2 135 Organic 

paleosols 

740  30 1258 AD 759  

50046 NDel 16-2  North Dilling1 250 Charcoal 6750  110 5665 BC 7682  

Poz-79741 Poznan Del 1-2 Dilling 40 Charcoal 165  30 1771 AD 246  

Poz-79743 Del 2-1 Dilling 185 Charcoal 595  30 1354 AD 663  

50047 
 

 

LSCE 

Ga 6-1  
El-Ga’ah 360 Organic 

Paleosol 

9195  45 8521 BC 10538  

49435 Ga 6-3  
El-Ga’ah 290 Organic 

Paleosol 

9040  40 8226 BC 10243  

49436 Ga 6-7  
El-Ga’ah 85 Organic 

Paleosol 

5095  30 3924 BC 5941  

Poz-79737  

 

Poznan 

Kh 1-1 South El Obeid1 185 Charcoal 910  30 1112 AD 905  

Poz-79739 Kh 1-2 South El Obeid1 280 Charcoal 1120  30 929 AD 1088  

Poz-81611 En Nahud En Nahud  * Limestone 5565  35 4402 BC 6419  

Poz-81229 AWZ1-4 En Nahud  * Limestone 8680  80 7771 BC 9788  

49437 

 

LSCE Sonj 9  

Khour Es 

Sonjokaya  

340 
Organic 

paleosol 

3140  30 1421 BC 3438  

Poz-79736 
 

 

Poznan 

KT 1-1 
East Elobeid1 220 Organic 

paleosol 

3050  35 1314 BC 3331  

Poz-0 KT 4-2 East El Obeid 65 bone 
>0    not suitable (<0,1%N 

2.5%C) 

Poz-79740 Ka 1-1 South El Obeid3 30 Charcoal 132.87    Modern (0.35 pMC) 

50044 
 

LSCE 
Dod 1  

East El Khowei 440 Organic 

paleosol 

6960  50 5951 BC 7968  
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50045 Dab 1  
East Abu Zabad1 650 Organic 

paleosol 

10960  100 10925 BC 12942  

Poz-0  

 

 

 

 

 

Poznan  

Ga 4-3a El Ga’ah surficial bone 
>0 - - - not suitable (<0,1%N 

4%C)  

Poz-93016 Ga-5 
El Ga’ah surficial 

bone 

108.47    Modern (9%collagene, 
3,3%N 8,7%C)  
 

Poz-0 S-Sod 1-2 Sodari surficial bone 
>0    Not suitable (0,1%N 

2,6%C)  

Poz-0 Ga 4-3b El Ga’ah surficial bone 
>0    Not suitable (<0,1%N 

5.6%C)  

Poz-0 Ga 4-3c El Ga’ah surficial bone 
>0    Not suitable (<0,1%N 

3.7%C)  

Poz-93017 Sod 3-1  Sodari surficial bone 
107.86    Modern 12.5%coll 2.8%N 

8.7%C,  

Poz-0 S Sod 3 Sodari surficial bone 
>0    Not suitable (<0,1%N 

3.3%C)  
The * symbol in the En Nahud sample depths indicates that the samples were collected from surficial excavated material.  
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Fig. 3.8: Position of dated samples in the North Dilling 2 section. Mean sedimentation rate for the lower 

unit is ≈ 0.52 mm/yr.  

 

Fig. 3.9: Position of dated sample in the North Dilling 1 section.  

The reworking of sediments may have some effects on the dated samples of charcoal materials. 

As a matter of fact, all charcoal samples were collected in fluviatile sediments. Therefore, this 

material is likely reworked from older deposits, and old dates may be obtained from younger 

sediments. This process may have affected the date obtained from the North Dilling1 section 

(Fig. 3.9), where a sample collected from the base of the Upper unit, yielded an age of ≈ 7700 
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yr BP, which is older than dates from the underlying unit of North Dilling2, dated at ≈ 4900 

and ≈ 4100 yr BP (Fig. 3.8). Moreover, deposition may take place in channels caved in older 

sediment due to local erosion, and yielding young ages in depth. In the East El Obeid section, 

a sample collected at depth of ≈ 90 cm provided a 14C age of 40 ± 30 yr. This date has been 

excluded from the samples presented in table 3.2.  

 

Fig. 3.10: Position of dated samples in the East Abu Zabad section.  

 

Fig. 3.11: Position of dated samples in the East El Khowei section.  
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Fig. 3.12: Section near En Nahud. Two 14C ages for the Second unit were obtained from other two sites 

in En Nahud, and north En Nahud (Awlad Zibare village). They yielded ages of 6419 and 9788 cal yr 

BP, respectively.  

 

 

Fig. 3.13: Position of dated samples in the East El Obeid section.  
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Fig. 3.14: Position of dated samples in the south El Obeid1 section. The average accumulation rate of 

sediments for the Upper unit is 2.76 mm/yr (5.4 mm/yr between ≈ 1100 and 900 yr ago).  

 

 

Fig. 3.15: Position of dated samples in the El Ga’a well. The accumulation rate for lower part of the 

section is ≈ 2.4 mm/yr, and ≈ 0.47 mm/yr for the upper part. 

 

3.3. Stratigraphic correlations and synthesis 

Although the concept of correlation goes back to the early history of stratigraphy, disagreement 

has persisted over the exact meaning of the term. Historically, two points of view have 

prevailed. One view rigidly restricts the meaning of correlation to demonstration of time 

equivalency, that is, to the demonstration that two bodies of rock were deposited during the 

same period of time (Dunbar and Rodgers, 1957; Rodgers, 1959). From this point of view, 

establishing the equivalence of two lithostratigraphic units on the basis of lithologic similarities 
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does not constitute a correlation. A broader interpretation of correlation allows that equivalency 

may be expressed in lithologic, paleontologic or chronologic terms (Krumbein and Sloss, 1963). 

In other words, two bodies of rock can be correlated as belonging to the same lithostratigraphic 

or biostratigraphic unit even though these units may be of different ages. From a practical point 

of view, most geologists today accept the latter, broader view of correlation. Petroleum 

geologists, for example, routinely correlate subsurface units based on lithology, on specific 

"signatures" recorded by instrumental well logs, or on reflection characteristics on seismic 

records (Boggs, 2006). When dealing with long-lasting units, or regional map surveying, this 

may be acceptable. In the present work, since (1) the age difference of the Lower unit would 

represent 70 to 90% of the studied period, (2) the targeted period is very short (mostly 

Holocene), and (3) the aim of this study is to reconstruct the time evolution of climate, this 

becomes unacceptable ! Therefore, we preferred to follow time correlation in this study.  

According to the presented stratigraphic results in the different areas (Figs. 3.2 – 3.6), many 

areas comprise two stratigraphic units. However, a carbonate unit is present in the En Nahud-

El Khowei and Bara-Sodari areas, and deposits younger than the limestone beds are evidenced 

by 14C datings in the El Obeid area. Additionally, 14C dates disclosed a sedimentary hiatus 

between the second or third unit, and the Upper unit, i.e. between ≈ 6 or 3 kyr BP, and ≈ 1 kyr 

BP. As a consequence, we drew three time-correlation profiles: an E-W trending El Fula – 

Dilling (southern part) profile, an E-W oriented En Nahud – El Obeid profile (central part of 

the study area), and a N-S trending El Ga’a – Dilling profile. Because of the scarcity of dates, 

these correlations are partly based on the lithological similarities of the units.  

3.3.1. El Fula – Dilling transect  

The southern profile joins the sections of the El-Fula and Dilling areas, through the Abu-Zabad 

sections, along a total distance of 180 km. In this area, the four stratigraphic units are recognized 

partially, since the second unit is missing along Abu Zabad El Fula sector (present in channel 

deposition lenses ?), and the lower (first) unit is missing in the Dilling area. The base of the 

lower unit is dated at ≈ 13 000 yr BP in Abu Zabad. The Second unit has not been dated in this 

transect. The Third unit is dated at ≈ 4900 yr BP in the Dilling area. In the latter area, the 

charcoal from the basal conglomerate of the Upper unit dated at ≈ 7700 yr BP is interpreted as 

reworked. The Upper unit in the Dilling area has been dated between ≈ 750 and ≈ 250 yr BP in 

its upper half part, while its lower part remained undated. 

In the Abu Zabad and El Fula areas, the oldest and only available date is the ≈ 13 000 yr BP 

age obtained from the lower part of the Lower unit. The Third unit in the Abu Zabad and El 

Fula areas is tentatively correlated with the dated beds of the Dilling area. The Upper unit of 

the Abu Zabad – El Fula area is correlated with the Upper unit of the Dilling area. In this 

interpretation, this unit has a maximum age of ≈ 1000 yr BP (see below).  

The sedimentary gap between the Lower and Upper unit extends from ≈ 4 to 1 kyr BP in the 

Dilling area. This gap is marked by erosions and therefore, is shown as a non-deposition and 

erosional hiatus in the correlation profile (Fig. 3.16).  
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Fig. 3.16: Time-correlation transect between El Fula and Dilling.  

 

3.3.2. En Nahud – El Obeid transect 

 

Fig. 3.17: Time-correlation transect between En Nahud and El Obeid. 

This transect represents the central part of the study area, joining the En Nahud sections to the 

West and the El-Obeid sections to the East, through the El Khowei area, with a total distance 
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of 210 km. This transect exhibits the four stratigraphic units, the Second unit being apparently 

absent in the El Obeid area, and the Third unit being missing in the En Nahud-El Khowei areas.  

The Lower unit is correlated with its equivalent of the southern transect, where a maximum age 

of ≈ 13 kyr BP has been measured. The youngest age of this unit is variable along the transect: 

it is older than ≈ 10 kyr BP in the En Nahud area, but it may extend up to ≈ 7.5 kyr BP in the 

El Khowei area. The Second unit encompasses the ≈ 10 to ≈ 6 kyr BP time-span, according to 

dates obtained in the En Nahud area. The top of the Third unit is dated at ≈ 3 kyr BP in the East 

El Obeid section. Based on the dates obtained in the South El Obeid and Dilling sections, the 

upper unit is assumed to be younger than ≈ 1 kyr BP. 

The time gap between the Middle and Upper units encompasses the ≈ 6 - 1 kyr BP time interval 

to the West (En Nahud, El Khowei), and the ≈ 3 - 1 kyr BP time span to the East. It is interpreted 

as a hiatus due to erosion occurring before 1 kyr BP, or to non-deposition, or to both processes 

(Fig. 3.17).  

 

3.3.3. El Ga’ah – Dilling transect  

This transect correlates the southern and northern parts of the study area. The total length of 

this profile is 390 km, with a 90 km long W-E segment between El Ga’ah and North Bara3, and 

a 300 km long segment from North Bara3 to Dilling. This transect comprises partially four 

stratigraphic units. The Lower unit is missing to the south, and the Third unit seems to be 

missing to the North (Fig. 3.18).  

 

Fig. 3.18: Time-correlation transect between El Ga’ah and Dilling.  
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No age constraints have been found for the Lower unit in the northern area. It is, however, older 

than the Second unit, i.e. older than 10.5 kyr BP, as indicated by dates from the El Ga’ah section. 

In the latter section, the age of the Second unit is consistent with the correlated unit in the En 

Nahud area, i.e. ≈ 10 to 6 kyr BP. The Third unit is dated between ≈ 3 and 4.9 kyr BP in south 

El Obeid and Dilling, respectively. The data from South El Obeid and Dilling suggest that the 

Upper unit is younger than 1000 yr BP.  

Therefore, as noted in the Central transect, a hiatus occurred between ≈ 3 and 1 kyr BP in the 

southeastern area (Dilling, El Obeid), and probably between ≈ 6 and 1 kyr BP in the 

northwestern areas (Bara, El Ga’ah, Sodari). 

3.3.4. Synthesis of the stratigraphy of the Late Quaternary deposits of Kordofan 

The stratigraphic succession of the study area exhibits four stratigraphic units, corresponding 

to four distinct depositional periods, to which one must add a fifth period interpreted as a hiatus. 

These units show some variation from north to south, since the Lower unit is missing in the 

South (Dilling area) and the Third unit seems absent in the North. The periods corresponding 

to these units are: older than 10 kyr BP for the Lower unit (locally older than 7.5 kyr BP), 

between ≈ 10 and 6 kyr BP for the Second unit, between ≈ 6 and 3 kyr BP for the Third unit, 

the hiatus period extends from ≈ 6 to 1 kyr BP and from ≈ 3 to 1 kyr BP in the northern and 

southern parts, respectively, and the fifth period is younger than 1000 year and corresponds to 

the Upper unit.  

 

3.4. Sedimentology  

All geologic studies aim at a better understanding of Earth's history. Sedimentary rocks yield 

many information recorded by various kinds of sedimentological features (Boggs, 2006). 

During field work, great attention has been paid to the sedimentary record.  

In addition to facies and lithological variations, the studied sections exhibit many sedimentary 

figures such as cyclic sedimentation, fining upward succession, unconformity surfaces, bedding 

pattern, as well as chemical (calcareous nodules) and biological features (bioturbation, root 

traces), which will be analyzed successively.  

 

3.4.1. Sedimentary Facies  

The present sedimentological study is based on the detailed measurement of twenty-four 

stratigraphic sections (Fig. 3.1 and table 3.1). Height sedimentary facies were recognized in a 

series of sections studied during field work. These facies are : (1) mottled sand or silty sand, 

(2) lens shaped conglomerate, (3) alternating sand and silt, (4) sandy carbonate, (5) carbonate, 

(6) argillaceous sand, (7) red sand and (8) clinoform bearing, coarse clastic facies. Table 3.3 

summarizes the main features of these facies.  

3.4.1.1. Mottled sand sediments facies  

Description: The mottled sand facies is characterized by mottling, root traces and a noticeable 

organic matter content. However, there are some differences according to the sites, or even 

along a same section. For instance, the mottled facies may vary in color from green, to various 



56 
 

shades of color, or to pale yellow. In addition, it exhibits intensive development of calcareous 

nodules in different contents and forms of occurrence (Fig. 3.19). Some differences in grain 

size have been also observed, varying according to the sites from silty sand to coarse sand, or 

locally poorly sorted sand. Fine grained mottled facies is restricted to the southern part of the 

area, whereas coarser grained facies dominates in the northern area.  

Distribution: The mottled sand facies is distributed throughout the study area, except around 

Dilling.  

Interpretation: Mottling or marmorization (Freytet and Verrecchia, 2002) in soil is primarily 

associated with soil wetness (Ciolkosz and Dobos, 1990), microorganism population, organic 

carbon energy source, lack of oxygen, time and temperature (Dobos, 1990, in Ciolkosz and 

Dobos, 1990). Generally, mottling feature occurs when the iron content of sediments is > 2% 

and if water table fluctuations occur, then ferrous iron moves easily and fixes as ferric iron. The 

result is a sediment with mottled pink, purple, red, and yellow patches in the accumulation area 

of ferric iron, and grey or white in the area depleted in iron. Manganese and calcium can also 

migrate with iron, resulting in a complex fabric of mottled patches and ferruginous nodules. As 

a consequence, the dominating mottling feature in this facies and its wide occurrence all over 

the area, indicate that the area experienced wet conditions under low oxidation rates (Freytet 

and Verrecchia, 2002).  

Table 3.3: Summary of the sedimentary facies.  

Facies Distribution Marked Features 

Mottled sand or 

conglomerate 

All area except Dilling  Mottling, mostly contain calcareous calcretes, root traces, 

rich in organic matter, pale grey, dark grey and green 

color. 

Lens shaped 

conglomerate  

Widespread in Dilling, El 

Fula, scattered in Abu 

Zabad, south El-Obeid, El 

Khowei 

Poorly sorted, quartzite and iron oxide clasts, current 

features: locally planar and trough cross bedding.  

Alternating sand 

and silt  

Widely in Dilling, locally 

south El Obeid, east Abu 

Zabad, El Fula.  

Mostly well sorted but locally poorly sorted; current 

features: planar cross bedding, trough cross bedding, 

planar laminae and current ripples, alternation of white 

sand and dark shale laminae (only in fine-grained beds), 

locally fining upward, and locally cyclic sedimentation.  

Sandy carbonate En Nahud - El Khowei 

area 

Partially massive limestone, partially sandy limestone, 

white to pale grey, karsted, root traces, gastropod shells  

Carbonate North Bara, El Ga’a and 

Sodari 

Grey, low density, deeply karsted, gastropod shells in 

most sites. Brecciated, exposed upper surface.  

Grey 

argillaceous sand 

North Bara, El Ga’a and 

Sodari 

Grades of grey and yellow, friable, usually fine-grained 

Red sand  All area except Dilling Mostly fine grained, mostly red, rarely reddish brown, no 

or rare structures, coarse grain size only in northernmost 

parts  

Clinoform 

bearing coarse 

clastic 

El Ga’ah  Mostly coarse sand and gravels, gastropod shells, root 

molds  



57 
 

 

The existence of organic matter in soils and sediments is a function of several factors, among 

which climate is the most important (e.g., Tóth et al., 2007; Forry et al., 2014; Priene and Lavee, 

2015). Moreover, organic matter decays more rapidly at higher temperatures, so soils in warm 

climates tend to contain less organic matter than those in cool climates (Fact sheet No 3, 2009). 

Fine-textured soils tend to have more organic matter than coarse soils; they hold nutrients and 

water better, thus providing good conditions for plant growth. Coarse soils are better aerated, 

and the presence of oxygen results in a more rapid decay of organic matter. The wetter a soil 

is, the less oxygen is available for organic matter to decay, so that it accumulates. Roots are a 

great contributor to soil organic matter. Grassland produces deep roots that decay deep in the 

soil. Forest soils in contrast rely primarily on the decay of surface litter for organic matter input. 

Therefore, the existence of organic matter in mottled facies with variable amount indicates that 

the environment was wet or saturated especially those marked by dark colors (green and dark 

grey), while the mottled facies marked by their lighter colors (pale grey, yellow and reddish 

yellow) experienced less wet condition and became more oxidized than the dark ones. 

Additionally, the preservation of root molds, which are tubular voids that outline positions of 

former, now decayed roots (Freytet and Verrecchia, 2002), provides good indicator that the area 

was invaded by a significant vegetation cover.  

The most important feature in this mottled facies is the development of calcretes or calcareous 

nodules. These calcretes present a variety of shape, size and form. Two forms of calcretes have 

been observed in the study area: nodular and tubular (Chen et al., 2002). The nodular form is 

the most abundant and widespread, whereas the tubular form is restricted to some sites.  

In the study area, the shape of the nodules is irregular, though leaning to be equal in the three 

dimensions. It does not contain any biogenic features, but instead it contains locally some iron 

concretions and quartz grains. The lack of biogenic features indicates their groundwater origin 

(Alonso-Zarza and Wright, 2010; Alonso-Zarza et al., 201I), related to shallow aquifer systems 

(Netterberg, 1969; Mann and Horwitz, 1979, in Alonso-Zarza, 2003). The precipitation of 

carbonate occurs within a previous host rock and around the groundwater table (Alonso-Zarza, 

2003). The degree of complexity of individual profiles is largely influenced by the 

geomorphological setting and hydrological history of the local groundwater systems (Arakel, 

1996). The amount of carbonate in a calcrete profile tends to exceed the original pore space of 

the host. This produces an increase in volume and physical displacement of the original host 

components. 

The development of calcretes occurs in different ways: direct calcium carbonate precipitation 

(Chen et al., 2002), replacement, and displacement (Chen et al., 2002; Alonso-Zarza, 2003). 

During replacement, some host components are dissolved and/or removed and are replaced by 

calcium carbonates, while displacement occurs when the amount of carbonate in a calcrete 

profile tends to exceed the original pore space of the host. This produces an increase in volume 

and physical displacement of the original host components (Chen et al., 2002).  

Tubular calcretes (Chen et al., 2002) or rhizoliths (Klappa, 1980), root calcretes (Alonso-Zarza 

and Jones, 2007) and rhizogenic or root formed calcrete (Freytet et al., 1997) have been found 



58 
 

locally, mostly around El Khowei (specifically east El Khowei) and rarely in north Bara. 

Generally, it is marked by an elongated shape more and is concentrated in specific zones.  

 

Fig. 3.19: Mottled facies examples. (A) Mottled horizon from east El Obeid section: the lower part is 

greenish to grey, rich in organic matter, while in the reddish brown upper part, organic matter is scarcer 

or oxydized. (B) South El Obeid3 section (Khour Es-Sonjokaya): the mottled facies crops out below the 

white line, the dark lower part is richer in preserved organic matter than the upper part. (C) El-Fula 

area: pale grey mottled facies rich in calcareous nodules. (D) East Abu Zabad section: thick unit of 

mottled sand sediments (below the solid line). The dashed line separates a lower part containing 

calcareous nodules, from an upper part devoid of calcareous nodules.  

 

The typical morphology of tubular calcrete indicates that they formed by replacement of the 

root organic matter by calcium carbonate, the role of roots being important (Alonzo-Zarza et 

al., 2010). Moreover, the existence of some biogenic features in the tubular calcrete indicates 

that it formed in the vadose zone (Arakel, 1996), where precipitation of carbonate takes place 

mostly above the water table and within the sediment (Alonso-Zarza, 2003).  
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As shown in figure 3.22a, the tubular calcretes are more or less vertical with different 

inclination, and they are larger in size in the upper part than in the lower part. This may be due 

to the variation in the roots density and to the fact that root size is usually greater in the upper 

part than in the lower part, nodules being larger in the upper part. Difference in nodule size 

could also be due to additional re-precipitated carbonate, since re-precipitated carbonate tends 

to concentrate near the surface and within the voids, due to preferential cohesive bonds between 

carbonate crystals (Chen et al., 2002).  

 

Fig. 3.20: Nodular calcrete or calcareous nodules. (A) Numerous nodules formed in flood plain facies 

-Dilling area; (B) Rare nodules formed in mottled, fine sand sediments facies – East Abu Zabad; (C) 

Numerous calcareous nodules formed in mottled fine sand sediments – El Fula; (D) Moderately 

abundant nodules in mottled, medium to coarse sand sediments – North Bara.  

 

Fig. 3.21: Nodular calcrete including iron concretions. A and B from east Abu Zabad. 



60 
 

 

Fig. 3.22: Tubular calcrete. A and B : East El Khowei; C : North Bara. 

 

3.4.1.2. Channel facies 

3.4.1.2.A. High regime channel facies (lens-shaped conglomerate beds)  

The channel facies includes the lens-shaped conglomerates and the sediments of poorly sorted 

sand beds. The former indicates high energy sedimentation, while the latter indicates lower 

energy regime.  

Description: In the Dilling area, the conglomerate is made of poorly sorted, dominantly quartz 

clasts, with other lithoclasts and some reworked calcareous nodules, while around Abu Zabad 

and El-Fula it comprises iron concretions and quartz clasts. In some horizons, the iron 
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concretions occur in lenses intercalated with other facies like the mottled facies. The thickest 

beds of conglomerates (325 cm) are found East of El-Fula. The base of the conglomerate beds 

is mostly an undulated surface, which separates the conglomerate from the underlying mottled 

facies or from the basement rocks.  

The conglomerate facies is also observed in the El Khowei area, where it contains angular iron 

concretions of different sizes, ranging between 0.5 and 3.5 cm in size, as well as smaller well 

rounded quartz grains (Fig. 3.23). Locally, this facies is characterized by well observable 

current features (e.g., trough and planar cross beddings in Dilling area).  

 

Fig. 3.23: Examples of conglomerates. (A) Conglomerate exclusively made of iron concretion, East of 

El Fula. (B) Conglomerate made of iron concretion with subordinate reworked calcareous nodules and 

poorly sorted lithoclasts, East of Abu-Zabad. (C) Conglomerate with abundant quartz and calcareous 

nodules, Dilling area. (D) Conglomerate with iron concretions and minor quartz clasts, El Khowei. 
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Distribution: This facies is restricted to the southern, and some central western parts of the 

studied area. It is observed around Dilling, El-Fula and very locally east of Abu Zabad and 

around El Khowei. 

Interpretation: The angular shape of lithoclasts in the conglomerate near Dilling suggests that 

the elements of the conglomerate were transported for a short distance. As a matter of fact, 

several basement rock outcrops are found around Dilling, which may represent the main source 

to the quartz clasts and other crystalline lithoclasts. The local occurrence of conglomerate beds 

or lenses in the Dilling area, otherwise dominated by fine material, indicates a strong, localized 

alluvial activity. The existence of cross bedding features indicating high energy deposits, 

supports the interpretation of a fluviatile environment. The calcareous nodules in conglomerates 

of the Dilling area are interpreted as reworked from previously deposited units containing these 

nodules. 

Channel conglomerates around El Fula, Abu Zabad and El Khowei are made almost exclusively 

of iron concretions. Rodis et al. (1968) classified this iron concretions as laterite deposits. These 

authors reported that the ironstone developed extensively in the Nubian Formation over much 

of the Kordofan province during early and middle Tertiary time, and corresponds to a prolonged 

period of deep, in-situ weathering of the host rock under tropical climatic conditions of 

alternating wet and dry seasons. Outcrops of Nubian sandstones bearing such iron concretions 

have been observed during field work between El Fula and En Nahud and southeast of En 

Nahud.  

 

Fig. 3.24: Topographic profile from southeast En Nahud to east El Fula. The topographic profile passes 

across an iron-rich outcrop of Nubian sandstone in the North to the iron-rich conglomerate of the El 

Fula section to the South.  
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Therefore, the iron concretions of the conglomerates of the Abu Zabad, El Fula and El Kohwei 

are interpreted as reworked from the Nubian sandstone located to the West and North. The 

topography supports this interpretation, since El Fula and Abu Zabad are located on the 

southern slope of the Nubian sandstone plateau, while En Nahud and El Khowei are located 

upon the latter (Fig. 3.24). 

3.4.1.2.B. Low regime channel facies (poorly sorted sand sediment beds) 

Description: This facies is formed of poorly sorted sand, which exhibits some small lithoclasts 

within the size-range of fine gravel. Its color varies from pale grey to reddish brown (Fig. 3.25). 

This facies is marked by current features, such as trough cross bedding and planar cross 

bedding. Local planar lamination and current ripples are observed in the medium to fine sand 

beds. Locally these poorly sorted sand beds are lens-shaped (Fig. 3.26). In this case, their basal 

contact is abrupt and conformable separating it from the underlying high regime channel facies 

(southern areas), while it is either an erosional unconformable contact when this facies overlies 

the mottled facies, or abrupt and conformable contact when overlying other alluvial sediments 

(northern areas).  

 

Fig. 3.25: Moderate regime channel facies. (A) Planar cross bedded, poorly sorted sand with some 

lithoclasts mostly concentrated in the lower part, Dilling area. (B) Coarse, planar cross-bedded sand 

in the upper part, laminated medium sand in the middle part, medium sand in the lower part, and few 

lithoclasts in the upper part, Dilling area. (C) Alternating coarse- and medium-grained, trough cross-

bedded sand beds, East Abu-Zabad. The coarse sand is poorly sorted and contains gravels (lithoclasts). 
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(D) Fine to medium rippled sand, planar laminae and planar cross bedding in the upper part; medium 

to coarse sand sediments with some planar cross bedding in the lower part, South El-Obeid2. 

 

Fig. 3.26: Lens-shaped bed, medium-grained sand sediments.  

 

Distribution: This facies is common in the southern part of the study area, around Dilling, east 

of Abu-Zabad and south of El-Obeid.  

Interpretation: The occurrence of planar and trough cross-bedding, planar lamination and 

current ripples in the sand sediment beds supports a moderate-energy fluviatile depositional 

environment (Boggs, 2006; Hewaidy et al., 2018). The high flow energy resulted in 

development of the trough and planar cross bedding, while the moderately to low energy 

resulted in the development of planar lamination and current ripples. The poor sorting of 

sediment may indicate energy variability, sudden lowering down in the energy, or high amount 

of transported sediment loads. It may also indicate sand bar deposition under braided system 

conditions (Smith, 1970). 

3.4.1.3. Alternating sand and silt sediments (flood plain facies) 

Description: Lithologically this facies is formed of fine- to medium-grained sand, alternating 

with sandy shale and fine-grained sand sediments beds. Medium- to coarse-grained sand beds 

are observed in some sites (e.g. Dilling, south El-Obeid2). The color of sand beds is red to 

reddish brown, while that of silt or shale beds varies from dark grey to green in the Dilling area, 

and from reddish-brown to dark grey in northern parts (south El Obeid) (Fig. 3.27).  

The alternating beds result in an apparently cyclic sedimentation (Fig. 3.28). Sand sediment 

beds are locally lens-shaped, as observed south of El Obeid (Fig. 3.26); they are marked by 

planar or trough cross-bedding, current ripples, planar lamination, and are locally poorly sorted 

or may present a fining-upward evolution (Fig. 3.29). The base of sand sediment beds in the 

Dilling area is an abrupt and conformable contact, while South of El Obeid, the sand sediments 

base is an erosional unconformable contact, eroding the underlying mottled facies. The contacts 

between the sand and silt sediments are all abrupt and conformable. The fine-grained beds are 

marked by current ripples and planar laminations. Laminae are mostly 2 to 5 mm thick, but may 

be 5 mm to 1 cm thick, and rarely reach 1 to 2 cm thick, as observed in the south El-Obeid1 

section.  

Distribution: This facies is common in the southern part of the study area, around Dilling, El-

Fula, east of Abu-Zabad, and south of El-Obeid.  
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Fig. 3.27: Flood plains Facies. (A) South El-Obeid3 (Es-Sonjokaya): alternating silt and rippled fine 

sand. (B) Dilling: sandy shale, rippled in the upper part and laminated in the lower part. (C) South El-

Obeid2: laminated fine sand and shale. (D) South El-Obeid1 (Khour Kazgail): well sorted, medium 

rippled sand, planar laminae and planar cross bedding in the upper part; well sorted coarse sand 

sediments with low degree of planar cross bedding in the lower part.  

 

 

Fig. 3.28: Cyclic sedimentation. (A) Section made of four cycles: the lower cycle is composed of 

conglomerate, medium sand, and sandy shale; the second cycle comprises fine sand and sandy shale 

sediments; the third cycle consists of medium sand and sandy shale; and the fourth one is also composed 

of medium sand and sandy shale sediments (B) Section composed of sand sediments beds of various 
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granulometry. The lower cycle is made of two beds: coarse sand and fine sand sediments; the second 

and third cycles consist of medium sand and fine sand sediments. 

 

Fig. 3.29: Fining upward successions. (A) The grain size evolves from coarse conglomeratic sand at 

the base to clayey sand to the top. (B) The mean grain size evolves upward from conglomerate to medium 

sand.  

 

Interpretation: The occurrence of planar and trough cross-bedding, planar lamination and 

current ripples in the sand sediment beds supports a high- to low-energy fluviatile depositional 

environment (Boggs, 2006; Hewaidy et al., 2018). As a matter of fact, fluviatile deposits 

commonly display abundant traction structures, such as planar and trough cross-bedding, upper-

flow-regime planar bedding and ripple-marked surfaces (Boggs, 2006). 

The alternating beds of sand and silt sediments are assumed to be formed in the flood plain of 

a river. When the river comes out of its channel, it first deposits the coarse-grained sediments 

in a high energy regime, and as the flood decreases in intensity, the fine particles are laid down 

(Boggs, 2006). The locally observed fining upward evolution that indicates a gradual decrease 

in current strength through time, supports the flood plain environment for this facies. This 

repeated mechanism leads to a cyclic sedimentation. The lens shape of the sand (e.g., south El 

Obeid1) may be formed due to subsequent erosion, to flood deposits, to the topography of the 

flood plain, or may represent crevasse splay deposits.  

3.4.1.4. Red sand facies  

Description: The granulometry of the sand is dominated by fine grains, but coarser sands are 

found in the northernmost part of the study area. Generally, this facies is very homogeneous 

and devoid of any current features. The sediment is usually harder than the flood plain deposits 

and looks compacted or cemented. The red color is common in all parts, but reddish brown 

colors are found locally (Fig. 3.30).  

Distribution: It is the most widespread facies; it is common in all sites but the Dilling area.  

Interpretation: The usual absence of sedimentary features and the prevailing fine grained sand, 

suggest that this facies has been deposited by aeolian processes. However, in the southern areas, 

some fine- to medium-grained intercalations of fluviatile sands suggest that the aeolian deposits 

were spradically reworked by alluvial processes. Note that these southern areas are presently 
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the wettest and steepest zones of the study area, which may explain stronger alluvial processes 

than in the northern regions. The hardness of the sediment and its reddish color is probably due 

to its cementation with iron oxide cement.  

Edmond (1942) reported that these deposits in Kordofan, are typical wind deposited sand with 

well-rounded quartz grains and a color varying from pale buff to deep red. He also noted that 

the red color is due to iron staining on the surface of the quartz grains. Investigations on mid-

Pleistocene red sediments in sub-tropical China, concluded that these deposits were subject to 

considerable mixing prior to deposition and strong subsequent chemical weathering (Hong et 

al., 2013).  

 

 

Fig. 3.30: Red clayey sand facies. (A) Red clayey fine sand facies (above the white line, South El-Obeid2 

(Kazgail)). (B) Red clayey fine sand sediments facies, the upper half part is laminated (El Khowei). (C) 

Red clayey fine sand sediments facies (above the white line), eroded by the overlying laminated fine 

sand (El-Fula). (D) Medium to fine, red clayey sand sediments (above the white line, North Bara).  
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Many soils within the tropical, subtropical, equatorial and Mediterranean climatic zones contain 

a significant amount of clay minerals - dominantly kaolinite - and are frequently characterized 

by a moderate to high amount of “free” iron oxides. These oxides, which include hydroxides 

and hydrous oxides, either occur in the form of amorphous gels, discrete particles as coatings 

on sand grains, or form part of the soil matrix as micro aggregates, cemented aggregates of a 

few centimeters in diameter, or cemented continuous soil layers. Many of these soils present 

red colors (Volkoff, 1998).  

3.4.1.5. Sandy carbonate facies 

Description: This facies is partially formed of massive, poorly lithified limestone beds and 

partially of sandy to silty limestone beds. Generally, it is deeply karsted and presents root traces 

(casts / molds) and minor desiccation cracks. Well preserved gastropod shells are common, and 

are usually highly concentrated at the top of the bed. Locally however, gastropod shells are 

concentrated within the facies itself (Fig. 3.31). This facies also occurs locally as clasts 

reworked in subsequent channel deposits (Fig. 3.32). 

Distribution: This facies is widespread in the western-central part of the study area, from the 

En-Nahud to the El-Khowei areas.  

Interpretation: The lithology and sedimentary features of this facies indicate a shallow, 

subaqueous deposition, frequently exposed to desiccation. They are consequently interpreted 

as palustrine deposits (Freytet and Verrecchia, 2002; Alonso-Zarza, 2003; Alonso-Zarza et al., 

2011). Pure or granular limestone is formed in the bottom of shallow water bodies (Alonso-

Zarza, 2003), while silty and/or sandy limestone is formed in less shallower water. However, 

soils accumulated in the lake shores are sometimes very rich in carbonates and are true 

palustrine limestones (Freytet and Verrecchia, 2002). In palustrine carbonates, precipitation of 

lime mud occurs in a lacustrine water body, the palustrine carbonates necessarily form on 

previous lacustrine mud (Alonso-Zarza, 2003).  

Roots induce movement of water and chemical elements (Clothier and Green, 1997, in Alonso-

Zarza, 2003) and act in two different ways: (i) by penetrating the lacustrine mud when the level 

of the lake drops, and/or (ii) inducing the biochemical precipitation of carbonate around the 

rhizosphere. In either case, the carbonates formed in these conditions present evidences of 

active pedogenic processes or long-lasting exposure periods (Alonso-Zarza, 2003). Limestones 

with root cavities indicate the presence of a well-established vegetation cover and suggest that 

the root system had to penetrate the recently deposited sediments to reach the water table 

(Alonso-Zarza, 2003).  

Desiccation cracks are common in the palustrine facies (Alonso-Zarza, 2003; Alonso-Zarza et 

al., 2011) and are usually due to subsequent sub-aerial exposure (Alonso-Zarza, 2003).  

The intensity and duration of the desiccation and root penetration, as well as any later rise in 

the water table during more humid periods, can cause the reworking, concentration, and coating 

of the mud fragments (Alonso-Zarza, 2003). Karstification, desiccation and root penetration 

make easy the fragmentation of this facies and its reworking into subsequent sedimentary 

deposits (Alonso-Zarza et al., 2011).  



69 
 

  

Fig. 3.31: Palustrine facies. (A) Lithified whitish-grey limestone, containing gastropod shells within the 

unit and on its upper surface (En Nahud). (B) White limestone, deeply karsted, with gastropod shells on 

its top (the black color is due to surficial iron coating) (El Khowei). (C) Grey friable sandy limestone 

(El Khowei). (D) Pale grey sandy limestone containing calcareous nodules and gastropod shells (West 

El Khowei).  

 

3.4.1.6. Carbonate facies  

Description: This facies consists of low density, 15 to 45 cm thick, marly or chalky limestone 

beds, deeply karsted, brecciated in its upper part, white to pale grey in color, and is marked by 

the occurrence of abundant gastropod shells and locally ostracods (Fig. 3.33). In the El-Ga’ah 

well, three horizons of this facies have been observed alternating with argillaceous sand 

sediments facies. 
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Fig. 3.32: Palustrine facies reworked in channel deposits. 

 

Distribution: This facies is restricted to the northern part of the study area, around El-Ga’a and 

Sodari and locally in north Bara. It has been observed in outcrops only in topographic 

depressions (Sodari).  

Interpretation: The formation of this facies requires the presence of water bodies, but probably 

different than those required to form the palustrine facies of the En Nahud – El Khowei area. 

The scarcity of sandy component and the low density ascribed to the presence of abundant 

diatoms shells suggest a deeper depositional depth. This facies is, therefore, interpreted as 

deposited in lacustrine environments. The deeply karsted and brecciated upper surfaces of the 

limestone beds indicate subaerial exposure and is common in lacustrine environment (Freytet 

and Verrecchia, 2002; Alonso-Zarza, 2003). An idealized sketch of the distribution of 

continental carbonate facies in Uruguay proposed by Alonso-Zarza et al. (2011) shows that the 

lacustrine facies are formed under a thicker water column than the palustrine facies.  

Lakes are dynamic systems sensitive to subtle changes in climate, such as fluctuations in 

precipitation and run-off. Lacustrine environments, therefore, are unstable, and as a result, 

lacustrine facies patterns are vertically and laterally complex (Tucker and Wright, 1990). This 

variability leads to alternating sedimentation features in these lacustrine facies.  

This alternating feature and the existence of karsted and brecciated features in the upper surface 

of each carbonate level, indicates that the lake has filled up and evaporated more than one time. 

After each filling up stage, argillaceous sand sediments are overlain by lacustrine deposits, and 

after each evaporative stage, desiccation and brecciated features took place on the upper surface 
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of the lacustrine limestone. Alonzo-Zarza et al. (2011) reported that lacustrine facies may 

alternate with palustrine facies. In continental series, lacustrine limestone is often associated 

with other deposits including shales or varved clays, sometimes rich in organic matter, and fine, 

medium or coarse sand (Freytet, 1973).  

 

Fig. 3.33: Carbonate facies. (A) Outcrop of diatomite limestone formed in a small lake (Sodari). (B) 

Detail of photograph A, showing deep karstifications infilled with argillaceous sand sediments.  

 

3.4.1.7. Argillaceous sandstone facies 

Description: It consists of fine sand grains in a friable argillaceous matrix, locally containing 

irregular lacustrine limestone clasts. Its color is mainly grey, especially around El-Ga’ah and 

Sodari, and is yellowish in north Bara (Fig. 3.34). In the El-Ga’ah section it is intercalated with 

the lacustrine limestone facies.  

  

Fig. 3.34: Argillaceous sand sediments facies. (A) Yellow argillaceous sand (below the dashed line) 

(North Bara). (B) Grey argillaceous sand (below the dashed line), marked by well-preserved gastropod 

shells in the upper part (Sodari). 
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Distribution: This facies is restricted to the northern parts of the area, around El-Ga’ah and 

Sodari, and locally in north Bara.  

Interpretation: The alternation of this facies with the lacustrine facies suggests alternating 

lacustrine and alluvial depositional environments, resulting in the deposition of alternating 

lacustrine limestone and argillaceous sand sediments, respectively.  

The existence of lacustrine limestone fragments in this argillaceous facies indicates that the 

underlying lacustrine limestones have been reworked and redeposited with the argillaceous 

sand sediments.  

 

3.4.1.8. Clinoform bearing, coarse clastic facies 

Description: This facies comprises coarse sand and gravel beds, the strata of which exhibit a 

marked inclination. The color varies between red and pale yellow; the red color dominates in 

the upper part, while the pale yellow is restricted to the lower beds. It overlies the lacustrine 

limestone facies of the El Ga’ah paleo-lake. The thickness of these sediments exceeds 5 meters 

in the excavated section and decreases toward the lake, as a result of the clinoform nature of 

the beds (Fig. 3.35). The beds are inclined toward the East or Southeast (toward the lake). 

Moreover, some fine-grained beds exhibit well preserved gastropod shells and thick root molds 

(Fig. 3.36).  

  

Fig. 3.35: View of the clinoform bearing coarse clastic facies in El Ga’ah. 

 

Distribution: It is a very local facies, observed only in the El Ga’ah area.  

Interpretation: The coarse material of this facies indicates the proximity of a stream that 

supplied the clastic material. The well-marked clinoforms and the fact that these coarse-grained 

clastic deposits overly lacustrine sediments led us to interpret them as delta sediments 

prograding into the El Ga’ah paleolake. This indicates that this area, and probably part of the 

northern study area, locally experienced a strong fluvial activity during the late phase of lake 
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forming. The presence of shells of gastropods mostly living at the shoreline, suggests an 

intermittent regime of the river feeding the delta. The thick root molds indicates vegetation 

growing close to the shoreline.  

 

Fig. 3.36: Details of the delta facies. (A) Gastropod shells. (B) Gastropod shells horizon between the 

two yellow lines, very coarse sand above the upper yellow line, and gravelly bed at the lower part of the 

image. (C) Root molds concentration zone.  

 

3.5. Grain size analysis 

 

3.5.1. Introduction 

The grain size of a total of 48 samples, collected from excavated sections in four sites, were 

analyzed. All sections are formed of two facies: the mottled facies in their lower part and the 

red sand facies in their upper part (Fig. 3.37). Field observation showed that these facies display 

variations in terms of grain size. Therefore, the grain size analysis have been carried out not 

only to understand how important these variations are, but also to specify the origin of the sands 

and the transport and deposition processes. The studied sections are North Bara3, North Bara1, 

West El-Obeid (Ayara) and East Abu-Zabad (Dabkar). They are aligned along a 280 km long, 

NNE-SSW trending transect (Fig. 3.38). The topographic profile shows a NNE-dipping slope 

with average gradient of 0.85 m/km, and a short, steep SSW-dipping slope to the South (Fig. 

3.39).  
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Fig. 3.37: Lithology of the studied sections and location of the samples analyzed for grain size 

analysis. 
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Fig. 3.38: Location map of the sections studied for grain size analysis.  

 

 

Fig. 3.39: NE-SW topographic profile showing the gradient in the study area (NW is on the left). 

 

3.5.2. Results 

3.5.2.1. Cumulative curves  

The 48 cumulative curves representing the 48 samples from four sections have been plotted in 

semi-log distribution graph, and compiled on one graph gathering data from each section (Fig. 
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3.40). The curves are distributed in size range between 2.6 and 0.012 mm. The maximum and 

minimum grain sizes are recorded in the North Bara3 and East Abu Zabad sections, 

respectively. On the other hand, the size range is different from one section to another. While 

in north Bara3, it ranges between 2.6 and 0.029 mm, it is comprised between 1.1 mm and 0.015 

mm in North Bara1, between 1.0 to 0.015 mm in west El Obeid, and between 0.8 and 0.012 

mm in East Abu Zabad.  

The measures in phi units for Φ 5, Φ 16, Φ 25, Φ 50, Φ 75, Φ 84, and Φ 95 have been obtained 

from each curve, in order to calculate the graphical statistics of the mean, standard deviation 

(sorting), skewness and kurtosis (Table 3.4). Frequency curves have been built from the 

cumulative curves following Folk (1974). However, the frequency curves are not applicable to 

calculate graphical statistics (Folk, 1974); therefore, some representative frequency curves 

presented in fig. 3.41 only show the normal grain size distribution.  

Abbreviations (table 3.5) have been used to characterize the graphical statistic descriptions 

presented in Table 3.6 and Figures 3.42 to 3.45.  

 

 

Fig. 3.40: Cumulative grain size distribution zones of all sample’s curves.  
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Table 3.4: Graphic measure of phi unit from curves of the analyzed samples. 

Sample Φ 5 Φ 16 Φ 25 Φ 50 Φ 75 Φ 84 Φ 95 

N.Bara 3-6 -0,58 0,03 0,42 1,43 2,47 2,74 3,32 

N.Bara 3-7 -0,38 0,12 0,42 1,45 2,47 2,74 3,25 

N.Bara 3-8 -0,38 0,07 0,36 1,00 1,79 2,00 2,93 

N.Bara 3-9 -0,49 -0,14 0,12 1,00 2,12 2,64 3,18 

N.Bara 3-10 -0,38 0,01 0,25 1,29 2,40 2,72 3,18 

N.Bara 3-11 -0,38 -0,14 0,23 1,56 2,51 2,74 3,32 

N.Bara 3-12 -0,32 0,06 0,47 1,84 2,74 3,00 3,18 

N.Bara 3-13 -0,32 0,06 0,45 1,67 2,51 2,84 3,64 

N.Bara 3-14 -0,26 0,34 0,89 2,00 2,74 2,95 3,64 

N.Bara 3-16 0,29 0,97 1,43 2,22 2,71 2,89 3,44 

N.Bara 3-17 0,25 0,84 1,36 2,18 2,64 2,90 3,40 

N.Bara 3-18 0,20 0,79 1,25 1,89 2,66 2,86 3,46 

N.Bara 3-19 0,15 0,59 0,97 1,84 2,64 2,84 3,56 

N.Bara 3-20 0,10 0,56 0,94 1,89 2,64 2,89 3,57 

N.Bara 3-21 0,07 0,49 0,89 1,72 2,69 2,94 3,61 

N.Bara 1-2 0,74 1,15 1,38 2,05 2,47 2,74 3,40 

N.Bara 1-3 0,68 1,15 1,45 2,01 2,32 2,65 3,32 

N.Bara 1-4 0,81 1,36 1,69 2,25 2,66 2,82 3,35 

N.Bara 1-5 0,94 1,60 1,84 2,36 2,72 2,88 3,56 

N.Bara 1-6 0,64 1,36 1,74 2,27 2,64 2,76 3,18 

N.Bara 1-7 0,64 1,36 1,74 2,28 2,60 2,74 3,18 

N.Bara 1-8 0,67 1,40 1,76 2,28 2,64 2,78 3,18 

N.Bara 1-9 0,62 1,34 1,69 2,25 2,64 2,93 3,40 

N.Bara 1-10 0,97 1,43 1,74 2,25 2,69 2,84 3,44 

N.Bara 1-11 0,89 1,40 1,64 2,32 2,70 2,94 3,80 

N.Bara 1-13 0,86 1,32 1,60 2,22 2,74 3,01 4,51 

N.Bara 1-14 0,84 1,43 1,69 2,25 2,78 2,89 3,99 

N.Bara 1-15 1,00 1,47 1,81 2,32 2,77 3,01 3,90 

N.Bara 1-16 0,97 1,47 1,84 2,25 2,80 3,02 3,94 

N.Bara 1-17 0,69 1,15 1,43 2,01 2,56 2,92 3,74 

Ay 1 1,27 1,74 2,00 2,47 2,84 3,06 4,32 

Ay 2 1,15 1,69 1,94 2,32 2,76 2,99 4,21 

Ay 3 1,15 1,64 1,84 2,22 2,58 2,77 3,06 

Ay 4 1,22 1,74 2,00 2,32 2,75 2,94 3,84 

Ay 5 1,40 1,89 2,06 2,40 2,78 2,98 3,84 

Ay 6 1,36 1,89 2,08 2,47 2,84 3,00 4,06 

Ay 7 1,29 1,74 2,00 2,32 2,73 2,87 3,64 

Ay 8 1,15 1,71 1,89 2,29 2,65 2,81 3,32 

Ay 9 1,22 1,74 2,02 2,40 2,75 2,92 3,59 

Dab 1 1,32 1,84 2,18 2,51 2,94 3,40 4,47 

Dab 2 1,36 1,84 2,12 2,60 2,88 3,37 4,41 

Dab 3 1,43 1,89 2,25 2,56 2,89 3,32 4,35 
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Dab 4 1,32 1,79 2,18 2,47 2,90 3,35 4,51 

Dab 5 1,40 1,84 2,12 2,56 2,87 3,37 4,44 

Dab 6 1,36 1,94 2,25 2,60 2,97 3,40 4,64 

Dab 7 1,42 1,89 2,18 2,56 2,94 3,35 4,54 

Dab 8 1,29 1,79 2,06 2,47 2,89 3,32 4,47 

Dab 9 1,32 1,84 2,16 2,56 2,95 3,35 4,44 

 

Table 3.5: Abbreviation of the graphical statistic descriptions. 

Standard deviation Skewness Kurtosis 

Description Abbreviation Description Abbreviation Description Abbreviation 

Very well sorted VWs Very fine 

skewed 

Vfsk Very 

platykurtic 

Vpk 

Well sorted Ws Fine skewed Fsk Platykurtic Pk 

Moderately sorted  Ms Symmetrical Sy Mesokurtic Mk 

Poorly sorted Ps Coarse skewed Csk Leptokurtic Lk 

Very poorly 

sorted 

VPs Very coarse 

skewed 

Vcsk Very 

leptokurtic 

Vlk 

Extremely poorly 

sorted 

ExPs   Extremely 

leptokurtic 

Exlk 

 

Table 3.6: Calculated graphical statistics and their descriptions for all samples.  

Sample Mean Standard de deviation  Skewness Kurtosis 
Value / phi Description Value / phi Description Value / phi Description 

N.Bara 3-14 1,76 1,25 Ps -0,21 Csk 0,87 Pk 

N.Bara 3-13 1,52 1,30 Ps -0,08 Sy 0,79 Pk 

N.Bara 3-12 1,63 1,27 Ps -0,22 Csk 0,64 Vpk 

N.Bara 3-11 1,39 1,28 Ps -0,11 Csk 0,67 Pk 

N.Bara 3-10 1,34 1,22 Ps 0,06 Sy 0,68 Pk 

N.Bara 3-9 1,17 1,25 Ps  0,19 Fsk 0,75 Pk 

N.Bara 3-8 1,02 0,98 Ms 0,10 Sy 0,95 Pk 

N.Bara 3-7 1,44 1,20 Ps -0,01 Sy 0,72 Pk 

N.Bara 3-6 1,40 1,27 Ps -0,04 Sy 0,72 Pk 

N.Bara 3-21 1,72 1,15 Ps 0,04 Sy 0,80 Pk 

N.Bara 3-20 1,78 1,11 Ps -0,09 Sy 0,84 Pk 

N.Bara 3-19 1,75 1,08 Ps -0,05 Sy 0,83 Pk 

N.Bara 3-18 1,84 1,01 Ps -0,05 Sy 0,95 Mk 

N.Bara 3-17 1,97 0,99 Ms  -0,27 Csk 1,00 Mk 

N.Bara 3-16 2,03 0,96 Ms -0,26 Csk 1,02 Mk 

N.Bara 1-11 2,22 0,83 Ms -0,057 Sy 0,99 Lk 

N.Bara 1-10 2,17 0,72 Ms -0,071 Sy 1,24 Mk 

N.Bara 1-9 2,17 0,82 Ms -0,180 Csk 1,07 Lk 

N.Bara 1-8 2,15 0,73 Ms -0,135 Csk 1,22 Lk 

N.Bara 1-7 2,12 0,73 Ms -0,287 Vcsk 1,15 Lk 

N.Bara 1-6 2,13 0,73 Ms -0,312 Csk 1,21 Lk 

N.Bara 1-5 2,28 0,72 Ms -0,281 Csk 1,17 Lk 

N.Bara 1-4 2,14 0,75 Ms -0,160 Csk 1,19 Mk 
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N.Bara 1-3 1,94 0,78 Ms -0,101 Sy 1,06 Lk 

N.Bara 1-2 1,98 0,80 Ms -0,091 Sy 1,13 Mk 

N.Bara 1-13 2,18 0,97 Ms 0,098 Sy 1,31 Lk 

N.Bara 1-14 2,19 0,84 Ms -0,011 Sy 1,19 Lk 

N.Bara 1-15 2,27 0,82 Ms -0,007 Sy 1,24 Lk 

N.Bara 1-16 2,25 0,84 Ms 0,067 Sy 1,27 Mk 

N.Bara 1-17 2,03 0,90 Ms 0,086 Sy 1,11 Mk 

Ay 1 2,42 0,79 Ms 0,05 Sy 1,496 Lk 

Ay 2 2,33 0,79 Ms 0,13 Fsk 1,542 Vlk 

Ay 3 2,21 0,57 MWs -0,07 Sy 1,048 Mk 

Ay 4 2,33 0,70 MWs 0,09 Sy 1,438 Lk 

Ay 5 2,42 0,64 MWs 0,12 Fsk 1,395 Lk 

Ay 6 2,45 0,69 MWs 0,06 Sy 1,457 Lk 

Ay 7 2,31 0,64 MWs 0,04 Sy 1,328 Lk 

Ay 8 2,27 0,60 MWs -0,06 Sy 1,164 Lk 

Ay 9 2,35 0,66 MWs -0,05 Sy 1,345 Lk 

Dab 1 2,58 0,87 Ms 0,19 Fsk 1,70 Vlk 

Dab 2 2,60 0,84 Ms 0,09 Sy 1,65 Vlk 

Dab 3 2,59 0,80 Ms 0,15 Fsk 1,88 Vlk 

Dab 4 2,54 0,87 Ms 0,20 Fsk 1,82 Vlk 

Dab 5 2,59 0,84 Ms 0,15 Fsk 1,67 Vlk 

Dab 6 2,65 0,86 Ms 0,17 Fsk 1,89 Vlk 

Dab 7 2,60 0,84 Ms 0,18 Fsk 1,69 Vlk 

Dab 8 2,53 0,87 Ms 0,18 Fsk 1,57 Vlk 

Dab 9 2,58 0,85 Ms 0,13 Fsk 1,62 Vlk 

 

3.5.2.1.1. North Bara3 section 

Samples of section North Bara3 show mean grain size values range between 0.29 and 0.57 mm 

(2.03 – 1.02 Φ) (average value : 0.43 mm (1.58 Φ)). 33% of the analyzed grains fall within the 

coarse sand range, while 67% fall within the medium sand zone. The standard deviation values 

range from 0.96 to 1.3 Φ (average of 1.15 Φ). 20% of the samples are moderately sorted and 

80% are poorly sorted. The skewness values ranged between -0.27 and +0.19 Φ (average of -

0.07 Φ). 60% of the samples can be described as symmetrical, 33% coarse are skewed, and only 

7% (one sample) is fine skewed. The kurtosis values range between 0.64 and 1.02 Φ (average 

= 0.82 Φ). 73% of the kurtosis values fall within the platykurtic zone, 20% are mesokurtic and 

7% (one sample) is very platykurtic (Fig. 3.42). 

3.5.2.1.2. North Bara1 section  

For this section, the mean grain size of samples ranges between 0.22 and 0.29 mm (2.28 – 1.94 

Φ) (average = 0.25 mm (2.15 Φ)). 53% of the samples fall within the medium sand range, while 

47% are within the fine sand. The standard deviation values range between 0.72 and 0.97 Φ 

(average = 0.8 Φ). All standard deviation values described samples as moderately sorted. The 

skewness values range between -0.312 and +0.086 Φ (-0.098 Φ in average). 60% are considered 

symmetrical, 33% are coarse skewed and only 7% (one sample) is very coarse skewed. The 
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kurtosis values vary from 0.99 to 1.31 Φ (average = 1.17 Φ). 77% of the samples are leptokurtic 

and 33% are mesokurtic (Fig. 3.43). 

 

 

Fig. 3.41: Representative frequency curves of the studied sections. A, B: Symmetrical curves, curve B 

can be classified as near-symmetrical. C, D: Fine skewed curves. E, F: Coarse skewed curves.  
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Fig. 3.42: Graphical statistic plots against depths for the north Bara3 section.  

 

Fig. 3.43: Graphical statistic plots against depths for the north Bara1 section.  

 

3.5.2.1.3. West El Obeid section  

In this section, mean grain size values range between 0.19 and 0.23 mm (2.45 – 2.21 Φ) (average 

= 0.21 mm (2.35 Φ)). 89% of the samples are very fine sand, while only one sample (11%) fall 

within the fine sand zone. The standard deviation values range between 0.57 and 0.79 Φ 

(average = 0.68 Φ). 22% of the samples are moderately sorted and 78% are moderately well 

sorted. The skewness varies between -0.07 and +0.13 Φ (average = 0.04 Φ). Among these, 78% 

are symmetrical and 22% are fine skewed. The kurtosis values range from 1.05 to 1.54 Φ 

(average = 1.36 Φ). 78% of the kurtosis values fall within the leptokurtic zone, 6% (one sample) 

are very leptokurtic, and 6% (one sample) are mesokurtic (Fig. 3.44). 
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Fig. 3.44: Graphical statistic plots against depths for the west El Obeid section.  

 

3.5. 2.1.4. East Abu Zabad section 

Samples from this section show mean grain size values ranging from 0.17 to 0.19 mm (2.65 – 

2.54 Φ), with average value of 0.18 mm (2.58 Φ). All samples are characterized by very fine 

sand mean value. The standard deviation ranges between 0.80 and 0.87 Φ (average = 0.85 Φ), 

and all samples are moderately well sorted. The skewness values range from 0.09 and 0.2 Φ 

(average = 0.16 Φ) and all samples are classified as fine skewed. The kurtosis values range from 

1.57 to 1.89 Φ (average = 1.72 Φ) and all samples fall within the very leptokurtic zone (Fig. 

3.45). 

3.5.2.2. Log - Probability curves  

The log-probability curve is believed to be meaningful with regard to depositional processes 

and to the modes of transport, which include: surface creep or traction, saltation and suspension. 

Each transportation mode represents an individual sub-population separated by truncation 

points (Visher, 1969). Bagnold (1956, in Visher, 1969) found that these populations of sediment 

transport may be mixed in the same sample. However, the log-probability curve normally 

exhibits two or three straight line segments, and in some cases, four segments could be found 

(Visher, 1969).  

Forty-eight log-probability curves have been plotted in probability scale graphs. The plots were 

then categorized, on one hand to analyze the lower part of the mottled facies, the upper part of 

the same facies mottled and the red sand facies, and on the other hand, to show the horizontal 

variation and/or similarities (Fig. 3.46). In addition, log-probability curves of each section have 

been illustrated in one common graph to show the vertical variation and/or similarity of the 

curves with time (Fig. 3.47). Most of the curves show three straight line segments, considered 

as three populations of grains transported by distinct processes (traction, saltation, suspension). 

Only five curves from North Bara3 and two curves from East Abu Zabad show four straight 
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line segments; four populations are thus recognized, representing traction, suspension and two 

kinds of saltation transport processes (Fig. 3.47). The curves show remarkable variations when 

comparing the same facies or horizon from different sites. When comparing the curves of a 

same site, the North Bara3 section shows remarkable variations in the population, while the 

other sites show clear similarities in the shape of the curves and their positions in the plot. The 

most similar curves was that obtained from the West El Obeid section (Fig. 3.47). 

 

Fig. 3.45: Graphical statistic plots with depth for the east Abu Zabad section.  

The truncation points of all curves have been determined and summarized in table 3.7 to present 

only the maximum (max) and minimum (min) values for : the coarse traction (the coarsest end 

in the curve), traction-saltation, and saltation – suspension truncation points (TP). However, the 

north Bara3 section shows the greatest values for the coarse traction (max and min) and also 

for the maximum traction-saltation truncation points, while it shows lower values for the 

minimum traction-saltation and saltation-suspension (max and min) truncation points. For the 

other three sites, the truncation points for each population are close to each other with some 

variations. Generally, according to these illustrated curves, it appears that the dominant 

population in terms of percentage is the saltation population.  

Table 3.7: Brief summary of truncation points.  

 

Site 

Truncation points in mm 

Coarse traction TP Traction-saltation TP Saltation-suspension TP 

max min max min max min 

North Bara3 2.378 1.149 1.366 0.406 0.117 0.058 

North Bara1 1.516 0.707 0.574 0.42 0.131 0.095 

West El Obeid 0.93 0.841 0.536 0.354 0.125 0.108 

East Abu Zabad 1.072 0.707 0.582 0.435 0.121 0.096 
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Fig. 3.46: Representative Cumulative Probability Curves for the whole area. (A) Curves for the lower part of the mottled facies; (B) Curves for the upper 

part of the mottled facies; (C) Curves for the red sand sediments facies.  
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Fig. 3.47: Representative Cumulative probability curves for the different sites. 
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3.5.3. Interpretations  

3.5.3.1. Cumulative curves  

According to the cumulative curves of grain size distribution and the grain size ranges (Fig. 

3.40), the North Bara3 section is marked by the coarsest grain size, followed in decreasing grain 

size order, by the North Bara1, West El Obeid and East Abu Zabad section, thus expressing a 

southward fining trend. This strongly suggests a southward decreasing transportation energy. 

Figure 3.48 illustrates the grain size distribution for all sections. Moreover, the width of the 

grain size distribution areas of each section shows a remarkable variability. Curves from North 

Bara3 show a wide grain size distribution reflecting a strong variability in transport energy 

through time. In North Bara1, distribution curves are moderately wide, reflecting also energy 

variability along section. Curves from the other sites are narrow, indicating low variability of 

transport energy through time for West El Obeid, and energy stability for East Abu-Zabad.  

3.5.3.2. Grain size distribution 

Grain size cumulative plots have been constructed for each sections (Fig. 3.49) and were 

correlated between the studied sections (Fig. 3.38), in order to obtain a stratigraphic and 

geographical image of the transportation processes and energy. 

 

 

Fig. 3.48: Grain-size distribution diagram for all samples from all sections. 

 

 



87 
 

3.5.3.2.A. Vertical grain size distribution  

Table 3.8 summarizes the grain size percentages along each section. The distribution indicates 

domination of the coarser sizes in the northern sections (north Bara 3 and north Bara 1), while 

the southern sections are dominated by fine grain sizes. This distribution indicates a general 

southward fining trend, which in turn reflects the southward decreasing energy.  

 

Table 3.8. Summary of the grain-size percentage for all sections. 

Grain size Location or section 

North Bara3 North Bara1 West El Obeid East Abu Zabad 

Fine gravel% 1 – 2 - - - 

very coarse sand %  4 – 20 1 – 3 - - 

Coarse sand % 11 – 37 2.5 – 7 1.5 – 3 2 – 4 

Medium sand% 20 – 30 31 – 50 17 – 27 14 – 23 

Fine sand % 15 – 45 26 – 56 56 – 60 51 – 65 

Very fine sand % 3 – 17 8 – 17 12 – 16 17 – 20 

Silt % 0.5 – 4 1 – 6 1.5 – 5 5 – 7 

 

The distribution in the north Bara3 section shows mixed grain size percentages close to each 

other in the most of the size, except the fine gravel and the silt portions that show very low 

percentages, which indicate a poor sorting degree. The relatively high percentages of the very 

coarse and coarse sand indicate high energy along the north Bara3 section with some variation 

in this high energy (Fig. 3.49 A). Moreover, the uniform grain size distribution with time 

suggests uniform transportation energy and therefore, uniform of aeolian energy. 

In the north Bara1 section, sediment distribution shows the domination of medium and fine 

sand, a considerable amount of very fine sand, rare silt and very coarse sand, very rare or 

absence of very coarse sand, and the lack of fine gravel. Therefore, this indicates generally 

moderate energy through time, although with some variation (Fig. 3.49 B). Moreover, the 

uniform grain size distribution through time suggests uniform transportation energy and 

therefore, uniform aeolian processes. 

The sediment distribution in the west El Obeid section shows the predominance of fine sand, a 

considerable amount of medium and very fine sand, rare silt and very coarse sand, and the lack 

of very coarse sand and fine gravel. This distribution evidences a low energy through time, with 

very sporadic variations (Fig. 3.49 C). The uniform grain size distribution suggests uniform 

transportation energy and rather constant aeolian processes. 

In the east Abu Zabad section, grain size distribution shows the domination of fine sand, a 

considerable amount of medium and very fine sand, a remarkable amount of silt, rare coarse 

sand, and the lack of very coarse sand and fine gravel. The predominance of fine sand and 

abundance of very fine sand and silt indicates very low energy through time with no variation 

(Fig. 3.49 D). This uniform grain size distribution suggests constant transportation energy and 

uniform aeolian processes. 
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Fig. 3.49: Vertical evolution of grain size percentages and their interpretation. (A) North Bara3 section; 

(B) North Bara1 section; (C) West El Obeid section; (D) East Abu Zabad section.  

 

3.5.3.2.B. Geographical grain size distribution 

Based on the above mentioned data, I constructed horizontal profiles of grain size distribution 

for the three lithological units: upper red aeolian unit, upper part of the mottled unit, and lower 

part of the mottled unit (Fig. 3.50).  

The grain size percentages for the red sand sediments are presented in Table 3.9. These 

percentages show (1) the lack of fine gravel and of very coarse sand, except in North Bara3, (2) 

the southward decrease of medium to coarse sand and overall southward increase of fine grained 
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sand, and (3) a relative stability of very fine sand and silt all along the profile. This pattern 

indicates a decreasing transport energy from north to south (Fig. 3.50 A), and thus, strongly 

suggests that the wind was blowing from North or NNE to South or SSW, and that its intensity 

was decreasing southward.  

Table 3.9: Grain size percentage for the red sand sediments facies.  

 

 Grain size  

 

Location or section 

North Bara3 North Bara1 West El Obeid East Abu 

Zabad 

Fine gravel % - - - - 

very coarse sand %  14 - - - 

Coarse sand % 20 6 4 3 

Medium sand % 18 35 26 26 

Fine sand % 28 46 56 50 

Very fine sand % 17 11 12.5 15 

Silt % 3 6 1.5 6 

 

The grain size percentages for the upper part of the mottled facies are presented in table 3.10. 

The fine gravel and very coarse sand are only present in North Bara3. The amount of coarse 

and medium sand decreases southward (except in North Bara), while the percentage of fine 

sand, very fine sand and silt increases southward. This distribution indicates that high energy 

transport dominated in the northern parts, and was decreasing southward (Fig. 3.50 B). As for 

the sand sediments facies, we conclude that the wind was blowing from North to South, and its 

energy was decreasing in the same direction.  

Table 3.10: Horizontal grain size distributional percentage for the upper part of the mottled facies.  

 

 Grain size  

 

Location or section 

North Bara3 North Bara1 West El Obeid East Abu 

Zabad 

Fine gravel % 1.5 - - - 

very coarse sand %  9.5 - - - 

Coarse sand % 40 6 4 3 

Medium sand % 19 35 16 17 

Fine sand % 20 42 60 59 

Very fine sand % 9 14 16.5 16 

Silt % 1 3 3.5 5 

 

The grain size percentages for the lower part of mottled facies are presented in Table 3.11. 

There is a total absence of fine gravel along the profile. The amount of very coarse, coarse and 

medium sand decreases southward, while that of fine sand and silt increases in the same 

direction. The percentage of very fine sand remains constant all along the profile. This 

distribution indicates that during deposition of this part of the mottled unit, the wind was 

blowing from North to South and its transportation energy was decreasing southward (Fig. 

3.50C).  
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Table 3.11: Horizontal grain size distributional percentage for the lower part of the mottled facies.  

 

 Grain size  

 

Location or section 

North Bara3 North Bara1 West El Obeid East Abu 

Zabad 

Fine gravel% - - - - 

Very coarse sand %  7 3 1 - 

Coarse sand % 13 4 3 2 

Medium sand% 30 34 21 18 

Fine sand % 35 42 55 59 

Very fine sand % 13 12.5 14.5 14 

Silt % 2 4.5 5.5 7 

 

 

Fig. 3.50: NNE-SSW distribution of the grain size percentages and interpretations. (A) Red sand 

sediments facies; (B) upper part of the mottled facies; (C) lower part of the mottled facies.  
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3.5.3.3. Graphical statistic parameters 

It is difficult to recognize the lateral evolution of the graphical statistic parameters through their 

individual plots (see the result section, Figs. 3.42 to 3.45). Therefore, a single plot of graphical 

statistic parameters of all studied sections through time have been built (Fig. 3.51). Other 

diagrams have been drawn according to the graphical statistic relations. This graphical relations 

include mean grain size-sorting (Fig. 3.52), mean grain size-skewness (Fig. 3.53) and skewness-

sorting, relations (Fig. 3.54).  

3.5.3.3.A. Mean grain size  

The diagram showing the mean grain size for each site shows a very organized distribution (Fig. 

3.51) that strongly supports the gradual decrease in wind energy from North to South. The very 

similar mean size along the East Abu Zabad, similar mean size along the West El Obeid, and 

semi similar mean size along the North Bara1 section indicates very stable, stable, and semi 

stable energy in the East Abu Zabad, West El Obeid, and North Bara1 respectively. On the 

other hand, this vertical similarity in the mean size for each section indicates uniformity of the 

sediment origin, uniformity of sedimentation processes, and energy stability through time for 

both the red aeolian and mottled facies. Dispersion of mean grain size value in North Bara3 

indicates variable energy through time.  

3.5.3.3.B. Kurtosis 

As the sections have a North-South arrangement, the kurtosis shows a systematic lateral 

variations : the curves evolve from North to South, from platykurtic to leptokurtic and very 

leptokurtic. This indicates a wide range of grain size and energy variability in the North, and a 

narrow range of grain size and the stability of transportation energy in the South.  

3.5.3.3.C. Skewness 

The skewness shows strong variability in all sections, except in East Abu Zabad, which shows 

almost constant values. 

The skewness is only a function of the available size and it is difficult thus to use it as direct 

indicator for the energy strength, but it can be used as indicator for the energy fluctuation 

through time. According to the skewness values shown in fig. 3.51, these are variable in the 

northern sections (North Bara 3 and 1), semi-homogenous in the west El Obeid section, and 

very homogeneous for the East Abu Zabad section (southern end of the studied sections). This 

indicates a more variable energy in North Bara3, less variations in North Bara1, stable to semi-

stable energy in West El Obeid, and a very stable energy in the East Abu Zabad section. 

3.5.3.3.D. Standard deviation (sorting) 

The sorting plot shows very little vertical variation in each individual section, but geographical 

variations of the sorting degree are well visible.  

Except in East Abu Zabad, the sorting is poor in the North and better in the southern areas. The 

moderate sorting in East Abu Zabad is discussed below (cf. intercorrelations section).  
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Fig. 3.51: Curves of pre- and post-hiatus graphical statistic plots for all sections. The curves for both parts have been homogenized according to the thickest 

sections (North Bara 1 for the post-discontinuity, East Abu Zabad for the pre-discontinuity). For more details of each section refer to Figures 3.42 to 3.45.  

 

 



93 
 

3.5.3.4. Intercorrelations 

3.5.3.4.A. Mean grain size vs sorting  

The mean grain size – sorting plot (Fig. 3.52) shows very good linear relation between the 

different sites, and a clear trend from North to South. This relation indicates a gradual decreases 

in the energy from the North Bara3 to the West El Obeid section. The southern end of the 

studied profile (East Abu Zabad section) is marked by the finest mean grain size, but a less 

good sorting than the West El Obeid site (Fig. 3.52). This peculiarity can be ascribed to a sudden 

lowering down of the wind energy, due to the geographical location of East Abu Zbad on the 

lee side of a topographic crest, which shelters this place from high energy dominant winds (see 

topographic profile, Fig. 3.39). This lowering down of energy would lead to the rapid deposition 

of the transported load with less efficient sorting. This interpretation is supported by some 

morphological features: (1) what is called the Kordofan sand zone extends about 40 km south 

of East Abu Zabad, and (2) the higher vegetation cover in the more humid southern areas may 

contribute to the decrease of wind energy.  

 

Fig. 3.52: Plot of mean grain size vs sorting of the studied samples indicating the wind energy. 

 

3.5.3.4.B. Mean grain size vs skewness  

The mean grain size vs skewness relation does not show a linear relationship, but rather a “V” 

shape (Fig. 3.53). Energy is a positive function of the mean grain size (the greater the size, the 

greater the energy), while the same skewness value can be found in both high and low energy. 

The turning point of the “V” indicates in general the medium energy (whatever the strength is), 

while the arms of the “V” indicate high energy and low energy trends : the arm toward the 

coarser mean size indicates high energy, and the other arm indicates low energy. 
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Fig. 3.53: Plot of mean grain size vs skewness of the studied samples indicating the transportation 

energy. 

3.5.3.4.C. Sorting vs skewness  

The sorting (standard deviation) vs skewness relationship provides linear relation from North 

Bara3 to West El Obeid. However, the East Abu Zabad samples do not fall in a logical position 

according to the wind direction, since East Abu Zabad sands are less sorted than the West El 

Obeid samples and part of those of North Bara1. However, this diagram supports a decreasing 

transport energy from North to South (Fig. 3.54).  

 

Fig. 3.54: Plot of Skewness vs Sorting of the studied samples indicating the transportation energy. 
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3.5.3.5. Log-probability curves 

3.5.3.5.1. Vertical interpretation 

The log-probability curves have been interpreted as vertical population percentages and vertical 

populations, expressed in grain size variations for each individual section, in order to recognize 

the vertical variations of these populations. The variation in wind energy through time have 

been estimated too (Fig. 3.55 – 3.58). Moreover, three horizontal population percentages and 

horizontal populations expressed in size variation diagrams, were plotted along the profile of 

the studied sections. This helps in the understanding of the lateral variations of transportation 

processes and therefore, of wind energy along the wind blowing direction (Fig. 3.59 – 3.61). 

The saltation population shows variable percentages in the red sand sediments facies (Upper 

unit) with average value of ≈ 56 %, while it prevails in the mottled facies with an average of ≈ 

94%. In terms of grain size, the saltation population is coarser and less sorted in the mottled 

facies than in the sand sediments facies. The suspension population represents ≈ 9 % in the red 

sand sediments facies, while it represents an average percentage of ≈ 4 % in the mottled facies.  

The domination of the traction and saltation populations in the red sand sediments facies, highly 

contributes in the development of sand dunes in this area. The very high percentage of the 

saltation population in the mottled sand sediments facies, indicates the dominance of aeolian 

processes for this facies, and it may also have contributed in the dune forming in the northern 

part of the region. Moreover, the relatively coarse grain of the traction population indicates high 

energy of wind transport.  

3.5.3.5.1.A. North Bara3 section 

The traction population along the north Bara3 section shows strong variations, since it reaches 

up to 50 % in the red sand sediments facies (average value : 35 %), while in the mottled facies 

it only represents ≈ 2 % in average (Fig. 3.55A). When translated into grain size, this traction 

population of the mottled facies is coarser than that in the red sand sediments facies.  

3.5.3.5.1.B. North Bara1 section 

In North Bara1, the traction population shows a small percentage (average ≈ 3 %) (Fig. 3.56A). 

When expressed in grain size, it shows a slight fining upward trend. The saltation population is 

fairly dominant all along the section with an average percentage of ≈ 90 %. Its grain size is 

almost constant, although a slight fining upward trend can be seen (Fig. 3.56B). The suspension 

population represents an average ≈ 7 % of the grains, and its maximum grain size is about 0.125 

mm.  

In general terms, this indicates that (1) transport and depositional processes did not change 

significantly through time, (2) the predominant saltation population resulted in the formation 

of numerous sand dunes during deposition of both the mottled sand and red sand sediments 

facies (former sand dunes are expressed by presently undulated topographic surface around 

North Bara1 and further south, as discussed in the next section), and (3) the wind energy did 

not evolve significantly through time, during deposition of the studied units.  
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Fig. 3.55: Evolution of transport processes in the North Bara3 section. (A) expressed in percentages; 

(B) expressed in grain size.  

 

 

Fig. 3.56: Evolution of transport processes in the north Bara1 section. (A) expressed in percentages; 

(A) expressed in grain size. 
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3.5.3.5.1.C. West El Obeid section 

Grains transported by traction in West El Obeid represent a low percentage, with average value 

of ≈ 2 % in the mottled facies, and ≈ 4 % in the red sand sediments facies (Fig. 3.57A). The 

grain size range of this population is generally narrow and stable through time, ranging from ≈ 

1 to ≈ 0.5 mm in the mottled facies, and 1 to 0.35 mm in the red sand sediments facies. The 

saltation population is quite predominant all along the section with an average percentage of ≈ 

87 % in the mottled facies, and ≈ 92 % for the red sand sediments facies. When expressed in 

grain size, the saltation population is very constant through time with minimum size ≈ 0.109 

mm. The suspension population represents ≈ 11 % in the mottled facies and ≈ 4 % in the red 

sand sediments facies, and its grain size is generally less than 0.109 mm.  

This analysis shows that (1) the depositional processes did not change through time, (2) the 

high amount of saltation population in both facies suggests active dune formation, and (3) wind 

energy remained stable through time, at least during deposition of the studied units.  

 

Fig. 3.57: Evolution of transport processes of the West El Obeid section. Expressed (A) in percentages; 

(B) in terms of grain size.  

 

3.5.3.5.1.D. East Abu Zabad section 

In East Abu Zabad, the traction population shows very low percentage (average ≈ 2 %) (Fig. 

3.58 A). Its grain size range is narrow and constant, varying between ≈ 0.812 and ≈ 0.5 mm. 

The saltation population is highly dominant all along the section, with an average of ≈ 82 % in 

the mottled facies and ≈ 89 % in the red sand sediments facies. Expressed in grain size, the 

saltation population is finer and less well sorted in the red sand sediments facies than in the 

mottled facies. The minimum grain size of this population is ≈ 0.117 mm in the mottled facies 
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and ≈ 0.102 mm in the red aeolian deposits. The suspension population have an average value 

of ≈ 16 % in the mottled facies and ≈ 9 % in the red sand facies. Grain size of this population 

is usually less than 0.109 mm.  

These data indicate that (1) the aeolian depositional processes did not change between the 

mottled and red sand sediments facies, (2) sand dune likely formed as suggested by the high 

percentage of the saltation population in both facies, (3) wind energy remained stable through 

time, and (4) the relatively small maximum size of the traction population indicates the 

domination of a low aeolian energy regime.  

 

 

Fig. 3.58: Evolution of transport processes in the East Abu Zabad section. Expressed (A) in percentages; 

(B) in terms of grain size.  

 

3.5.3.5.2. Geographical interpretation 

Three horizontal plots of the mode of transport population illustrate its variation across the 

studied area. These populations are shown in percentage and grain size, for the lower part and 

upper part of the mottled facies, and for the red sand sediments facies (Figs. 3.59 and 3.60).  

3.5.3.5.2.A. Variation in the mottled facies 

Both parts of the mottled facies show an absolute domination of the saltation population through 

time, which favors sand dune building during deposition of this facies. The suspension 

population in the mottled facies remarkably increases southward, while the grain size of the 

traction population decreases southward in a comparable amount, thus indicating a southward 

decrease of the energy regime (Fig. 3.59). 
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3.5.3.5.2.B. Variation in the red sand sediments facies 

The saltation population highly dominates during deposition of the red sand sediments facies, 

except in North Bara3, where the traction population is significant. Therefore, sand dune 

building should be rare to the North, and increased to the south. The suspension population 

shows low and stable percentages in the area. Grain size of the traction population is relatively 

fine and slightly decreases southward. This suggests a relatively low and stable energy regime, 

both in time and space (Fig. 3.60).  

 

 

Fig. 3.59: North-South evolution of the transport processes for the mottled facies. Expressed (A) in 

percentages; (B) in terms of grain size.  
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Fig. 3.60: North-South evolution of the transport processes red sand sediments facies. Expressed (A) in 

percentages; (B) in terms of grain size.  

 

3.5.4. Conclusion on the grain size analysis 

 The result and interpretations show a southward fining trend through the domination of the very 

fine sand sediments in the southern sections. This suggests a southward decreasing energy (Fig. 

3.61). 

 The samples from the northern part show a wide grain size distribution that indicates variations 

of transportation energy through time. Conversely, the samples from the southern areas show a 

narrow grain size distribution, indicating constant or low variability of transportation energy 

during the deposition of both the red sand and mottled sand sediments facies.  

 The domination of the saltation transportation mode in all area indicates a common aeolian 

depositional mechanism during the deposition of both the red sand sediments and the mottled 

facies.  
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Fig. 3.61: Mean grain-size distance relation, illustrating the variation in transport energy.  

 

3.6. Sedimentary and paleogeographic evolution  

 

According to the local variations in sediments from one site to another, the study area has been 

divided into five areas : the Dilling, Abu Zabad-El Fula, El Obeid-South El Obeid, En Nahud-

El Khowei and North Bara-Sodari areas. The sedimentary evolution has been described for each 

area, and based on these areas, a summary of the paleogeograhic evolution for the study area is 

presented. To understand the paleogeographic and environmental evolution through time, six 

paleogeographic maps have been constructed for the following periods : 13000 – 10000, 10000 

– 8000, 8000 – 6000, 6000 – 3000, 3000 – 1000, and 1000 cal. yr. BP to present. 

 

3.6.1. Sedimentary evolution  

3.6.1.1. Sedimentary evolution of the Dilling area 

The Dilling area is dominated by fluviatile channel deposition at the base of the succession. 

These deposits are overlain by distal flood plain deposits, in which pedogenetic activity is 

evidenced by abundant root molds and development of calcareous nodules. This kind of 

pedogenesis indicates the development of a significant vegetation cover, the existence of a 

relatively shallow water table and therefore, a humid climate. Fluviatile channel deposits overly 

the flood plain deposits. These coarse fluviatile deposits are made of conglomerate containing 

numerous reworked calcareous nodules. As evidenced by the current features (trough and 

planar bedding), these conglomerates were deposited by powerful streams, which supports a 

humid climate.  

The upper and thickest deposits around Dilling are dominated by either proximal fluviatile, or 

distal flood plain sediments, as well as by local aeolian deposition. However, these local aeolian 
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deposits are highly pedogenetized as shown by the intensive development of calcareous nodules 

and root traces, indicating a highly vegetated landscape and a humid climate (Fig. 3.63). 

 

Fig. 3.63: Sedimentary evolution of the Dilling area.  

 

3.6.1.2. Sedimentary evolution of the Abu Zabad – El Fula area 

Aeolian deposition is the dominant depositional mechanism in this area in addition to local 

channel deposition (Fig. 3.64). According to the existence or absence of the pedogenetic 

processes, these aeolian deposits are thought to have been submitted to two different 

environments.  

The subsequently pedogenetized aeolian deposits, which dominate most of the succession (First 

and possibly Second stratigraphic unit), are assumed to have experienced wet vegetated 

environment. Moreover, this wet environment was coeval with strong fluviatile activity leading 

to the deposition of thick reworked conglomerate between Abu Zabad and El Fula, and of some 

lenses of conglomerate East of Abu Zabad. 

Non pedogenetized fine aeolian sand mark top of the sedimentological succession (Fourth unit). 

Because of the lack of subsequent pedogenesis, these upper aeolian deposits suggest deposition 

under arid climate.  

3.6.1.3. Sedimentary evolution of the El Obeid – South El Obeid area 

In the El Obeid-South El Obeid area, the lower part of the succession is dominated by mottled, 

fine sand of aeolian origin. These aeolian deposits recorded a rather dense vegetation, evidenced 

by abundant calcareous nodules and root molds and traces (Fig. 3.65).  
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Fig. 3.64: Sedimentary evolution of the Abu Zabad – El Fula area. Same caption as Fig. 3.63.  

The upper part of the succession (Fourth stratigraphic unit) is dominated, either by aeolian, non 

pedogenetized, red fine sand sediments, or by fluviatile alternation of fine to medium sand, as 

indicated by current ripples and cross beddings. This upper part of the succession is interpreted 

as deposited by aeolian activity suggesting a dry climate, and was locally reworked by rivers 

indicating the occurrence of significant, although possibly rare, rainfalls, and thus suggesting a 

semi-arid climate.  

 

Fig. 3.65: Sedimentary evolution of the El Obeid – South El Obeid area. Same caption as Fig. 3.63. 
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3.6.1.4. Sedimentary evolution of the En Nahud – El Khowei area 

The succession in this area is divided into three unis. The lower or First unit is dominated by 

fine sands deposited by aeolian processes. However, the present-day mottled facies indicates 

subsequent pedogenesis processes (calcareous nodules and root molds), indicative of a rather 

dense vegetated cover, as mentioned for the previous areas.  

The middle part of the succession (Second unit) is dominated by limestone and sandy limestone 

beds, marked by gastropod shells, root molds and karstification. These features indicate a 

palustrine environment (Fig. 3.66). 

The upper part of the succession (Fourth unit) is dominated by non pedogenetized, red fine 

sands, deposited through aeolian mechanism, and marked by the occurrence of well-preserved 

gastropod shells. The gastropod shells provide good arguments for a seasonally dry and wet or 

semi-wet climate, depending on the nature of the gastropods, which require some seasonal 

water to build their shells. The lack or scarcity of root marks suggests a semi-arid to arid 

environment.  

 

Fig. 3.66: Sedimentary evolution of the En Nahud – El Khowei area. Same caption as Fig. 3.63. 

 

3.6.1.5. Sedimentary evolution of the Sodari – North Bara area 

In this area, the succession comprises three parts. The lower part of the succession is formed by 

pedogenetized, medium to coarse sand ascribed to the First unit. As indicating by the grain size 

analysis, they were deposited by aeolian processes, while pedogenesis indicates a further 

evolution under humid climate, and a vegetated environment.  

The middle part of the succession is formed of an alternation of argillaceous sand and limestone 

beds, marked by karstification, gastropod shells, ostracods, root molds, wood and leave 

remnants (Second unit). The limestone and its mentioned features indicate a lacustrine 

environment, while the interbedded argillaceous sand sediments indicate periods of low lake 

levels, or the activity of stream flowing into the lake (Fig. 3.67).  
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The upper part of the succession (Fourth unit) is dominated by non pedogenetized, medium to 

coarse, red sand, deposited through aeolian processes, mostly during a dry climate period. 

 

Fig. 3.67: Sedimentary evolution of the Sodari – North Bara area. Same caption as Fig. 3.63. 

 

3.6.2. Sedimentation and paleogeography for the ≈ 13 000 – 10 000 yr BP period 

This period is marked by mottled facies in most of the study area and by erosion around, and 

south of, the Dilling area, since no sedimentation is recorded for this period in the latter areas 

(Fig. 3.68). According to the grain size analysis (section 3.2.2), the mottled facies is an aeolian 

deposit brought by Southward blowing winds, since the grain size of these sediments decreases 

southward. Once deposited, pedogenesis occurred (calcareous nodules and root molds), 

indicating that the area was covered by vegetation and experienced a relatively humid climate, 

probably after deposition. 

Around Dilling, the humid climate combined with a rough topography favored erosion and 

sediment transport by rivers, thus explaining the observed sedimentary hiatus. This contrast 

between the northern and southern part of the studied area illustrates a marked climatic gradient 

between the northern areas submitted to deposition of aeolian sands proceeding from the Sahara 

located farther North, rapidly colonized by vegetation responsible for mottling, and the southern 

area submitted to heavier rainfalls responsible for erosion and removing of sediments by rivers. 

 

3.6.3. Sedimentation and paleogeography for the ≈ 10 000 - 6000 yr BP period 

During the first 2000 yr of this period, the Dilling area may have experienced erosion or non-

deposition, hence maximum recorded age for sediments overlying the Basement rocks is about 
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7600 yr BP in fluviatile conglomerates of reworking basement rocks and calcareous nodules. 

This channel facies is also locally present in East Abu Zabad, between Abu Zabad and El Fula.  

 

Fig. 3.68: Paleogeographic map for the period 13000 – 10000 yr BP. 

 

Fig. 3.69: Paleogeographic map for the 10000 – 6000 yr BP period 
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In the northern parts of the region, beside the local deposition of lacustrine, palustrine and 

argillaceous sand sediments facies, the mottled facies experienced pedogenetic processes 

represented by mottling and the development of calcareous nodules (Fig. 3.69).  

The topography and geology of the northern areas played an important role in the distribution 

of facies. Limestone and sandy limestone deposited in the En Nahud-El Khowei area, are known 

only on Nubian sandstone outcrops, which form a slightly undulating plateau, 600 to 700 m 

above sea level (asl) (Fig. 1.6). Interbedded limestone and argillaceous sand sediments are only 

known in the North, where they are restricted to small depressions located along dry rivers 

dammed downstream by large rectilinear dunes (El Ga’ah, Sodari). They are located at 450 to 

550 m asl. 

The depositional environment during this period was generally wet and vegetated as indicated 

by the deposition of limestone and sandy limestone in the En Nahud-El Khowei area that 

indicate palustrine environment in this area. Development of calcareous nodules and root molds 

in the mottled facies is assumed to occur during this humid period. In the northern part, the 

limestone level is thicker suggesting deposition under thicker water column, and suggests a 

lacustrine environment with local strong fluvial activities in the northern parts as evidenced by 

the progradation of the El Ga’a delta sediments, which indicates strong freshwater runoff and 

sediment influx (Fig. 3.70). This lacustrine environment was interrupted by periods of low lake 

level or of fluviatile activity, resulting in the deposition of interbedded argillaceous sand 

sediments.  

 

Fig. 3.70: Progradation of deltaic sediments in the El Ga’a lake. (A and B) Location of the lakes and 

delta sediments. (C) Distal photograph showing the clinoforms of the delta sediments toward the lake. 

(D) Detail of the delta progradation (yellow lines). This delta overlies lake sediments (white color).  
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3.6.4. Sedimentation and paleogeography for the ≈ 6000 - 3000 BP period 

At this time the northern parts of the study area and the northern part of the Kordofan region in 

general did not record deposits, while in the central and southern parts (El Obeid, Abu Zabad, 

El Fula areas), aeolian deposition took place, with local flood plain deposition in the southern 

parts around the Dilling area and further south (Fig. 3.71). These flood plain deposits are 

marked by root molds and the development of calcareous nodules in the Dilling area, and by 

mottling of previously deposited aeolian sands in the south El Obeid area. These mottled 

deposits are rich in organic matter.  

Although the En Nahud-El Khowei area (which extends to the south close to Abu Zabad) is 

located at the central part of the study area, it did not receive any sediments during the period 

6 – 3 ky BP. This may be due to its high topographic elevation which may have provoked a 

stronger exposition to wind activity. As matter of fact, aeolian erosion is evidenced by deflation 

surfaces in the northern part of the studied region, locally marked by iron gravel horizon 

observed north of Bara and representing deflation lags (Glennie, 1987) (Fig. 3.72). Such 

deflation surfaces indicate that the northern part of the studied area experienced aeolian erosion 

probably after 6 kyr BP. In addition, deep erosion is clearly evidenced in the En Nahud-El 

Khowei area by the undulated erosional surface on top of the palustrine carbonates (Fig. 3.73). 

Therefore, the apparent 6 – 1 ky BP hiatus observed there, may be due to the aeolian erosion of 

sediments deposited after 6 ky BP.  

 

 

Fig. 3.71: Paleogeographic map for the 6000 – 3000 yr. BP period 
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Fig. 3.72: Deflation surface – north Bara.  

 

Fig. 3.73: Erosional surface separating the palustrine facies (Second unit) from the upper aeolian facies 

(Fourth unit) in En-Nahud (A) and El Khowei (B).  
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3.6.5. Sedimentation and paleogeography for the ≈ 3000 - 1000 yr BP period 

This period is marked by an erosional hiatus evidenced by the eroded surface capping the 

mottled facies in southeast El Obeid, and the flood plain facies in the Dilling area (Fig. 3.74). 

This period was thus marked by aeolian erosion and/or non-deposition in most of the study area, 

although fluviatile activity cannot be ruled out in the southern part of the Kordofan region, 

where dates are scarce.  

 

Fig. 3.74: Erosional surfaces. (A) Dilling area. (B) South El Obeid area (Khour Es Sonjokaya). 

 

3.6.6. Sedimentation and paleogeography between ≈ 1000 yr BP and Present 

After a prolonged period of erosion which continued from ≈ 3 to ≈ 1 kyr BP in the Kordofan 

region, deposition resumed ≈ 1000 year ago in the whole region with aeolian deposits (Fig. 

3.76). The southward decreasing grain size of the iron-rich aeolian sand sediments indicate that 

the sand proceed from the northern Saharan areas. The absence of the pedogenetic processes of 

the aeolian deposits in the northern part of the Kordofan region, indicates that depositional 

environment was mainly dry and windy. The aeolian deposits are locally interbedded with flood 

plain deposits south of El Obeid and in the Abu Zabad-El Fula area. Around Dilling, deposition 

resumed with channel deposits, and went on with flood plains deposits. Therefore, the southern 

part of the region recorded a more humid climate than the northern part during this last 1000 
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year, as evidenced by the current features, the root molds, some plant remnants (leave and wood 

fragments), and the local development of calcareous nodules, observed in the upper deposits.  

 

Fig. 3.76: Paleogeographic map for the period 1000 yr BP to Present 

 

Fig. 3.77: Present-day fluvial system in the southern part of the study area (Google earth image).  
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IV. PALEOCLIMATIC EVOLUTION 

 

4.1. Introduction 

Several proxies have been used in this investigation in order to reconstruct the climate evolution 

of the Kordofan region during the latest Pleistocene-Holocene period. Beside the initially 

presented sedimentological proxy in the previous chapter, this chapter includes the results and 

interpretation of a variety of studies : paleontology and paleobiology of the gastropod sub-fossil 

shells in five sections, palynology in three sites, oxygen and carbon stable isotopes of gastropod 

shells and calcareous nodules in five sections, major elements geochemistry in two sections, 

clay mineralogy in one section, and paleohydrology of the area.  

  

4.2. Paleontology and paleobiology 

Paleontological investigation includes the study of the gastropod sub-fossil shells and of the 

palynological assemblages.  

4.2.1. Gastropod paleontology and paleobiology 

Gastropods shells are observed in abundance in the central and northern parts of the study area 

(Fig. 4.1). Twelve species of gastropod shells have been identified with the help of Dr Dirk 

Vandamme (Ghent University, Belgium). The identified species include: Biomphalaria 

sudanica, Biomphalaria pfeifferi, Gabbiella senaariensis, Bulinus truncatus, Melanoides 

tuberculata, Radix natalensis, Pila wernei, Lanistes carinatus, Caracolus sp., Limicolaria 

flammea, Limicolaria caillaudi and Zootecus insularis (plate 4.1).  

4.2.1.1. Geographic range and habitat of the identified gastropods 

Nowadays, it is rare to find living snails in the study area. To use these shells as clues to 

understand the ecological and climatic conditions during their life, it is important to obtain 

information about the habitat of these species from literature. The identified species included 

aquatic, semi-aquatic and land snail species. Seven of them are aquatic freshwater snails : 

Biomphalaria sudanica, Biomphalaria pfeifferi, Gabbiella senaariensis, Bulinus truncatus, 

Melanoides tuberculata and Radix natalensis. The semi-aquatic species are : Pila wernei and 

Lanistes carinatus. The land snail species are : Limicolaria flammea, Limicolaria caillaudi and 

Caracolus sp. 

Table 4.1 shows the relative abundances of these gastropod shells in studied sites. Among the 

twelve species, only five were found in En Nahud, the most abundant being Pila wernei. Eight 

species were found in the East En Nahud section, among which Radix natalensis was the most 

abundant, and Limicolaria caillaudi the less abundant. In the east El Khowei site, eleven species 

were recognized (the only missing species is Zootecus insularis), Radix natalensis was the most 

abundant, and Caracolus sp. was the less abundant species and has been only observed in this 

site. Eight species were found in the El Ga’ah area, Melanoides tuberculata is the most 

abundant, and Limicolaria flammea is the less abundant. In the Sodari area, seven species were 

recognized, Melanoides tuberculata was the most abundant, Gabbiella senaariensis was the 

less abundant, and Zootecus insularis has been only observed in the Sodari area. Six species 
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were identified in the north Bara site, among which Biomphalaria sudanica and B. pfeifferi 

dominate, while Limicolaria caillaudi is the scarcest. 

 

Fig. 4.1: Geographic distribution of the studied gastropod shells  

 

The distribution and abundance of gastropods differ considerably according to the species 

(Table 4.1). Four species are consistently abundant and widespread : Biomphalaria sudanica, 

B. pfeifferi, Melanoides tuberculata and Radix natalensis; four species are common (Pila 

wernei, Lanistes carinatus, Limicolaria flammea, Gabbiella senaariensis), and three species 

are uncommon (Limicolaria caillaudi, Bulinus truncatus, Zootecus insularis). The only rare 

genus was Caracolus sp., since only two shells were observed in the East El Khowei section.  

4.2.1.1.A. Aquatic snails 

Biomphalaria pfeifferi (Krauss 1948)  

Geographic range: most of Africa from the Sudan southwards; isolated populations living in 

the Sahara are recorded (Brown, et al 1984). In Sudan it is distributed in a variety of areas of 

the Darfur province and southwards from the Nile/Atbara confluence, with scattered localities 

in the Sudd (Southern Sudan); it is common in the eastern Gezira region (Williams and Hunter, 

1968, in Brown et al., 1984).  
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Plate. 4.1: Identified gastropod shells. 1, 2: Limicolaria flammea (Müller, 1774). 3, 4: Limicolaria 

caillaudi (Pfeiffer, 1852). 5, 6: Pila wernei (Philippi, 1851). 7, 8: Lanistes carinatus (Olivier, 1804). 9, 

10: Caracolus sp. 11: Melanoides tuberculate (Müller, 1774). 12: Gabbiella senaariensis (Kuster, 

1852). 13, 14: Biomphalaria pfeifferi (Krauss 1948). 15, 16: Biomphalaria sudanica (Martens, 1870). 

17, 18: Radix natalensis (Krauss, 1848). 19, 20: Bulinus truncates (Audouin, 1827). 21, 22: Zootecus 

insularis (Ehrenberg 1831).  

  

Habitat: Biomphalaria pfeifferi occurs in habitats of widely varying stability; in the stable 

African Great Lakes (Dupouy et al., 1993) and in streams (Magendants, 1972), yet isolated 

populations living in the Sahara are also recorded (Brown et al., 1984). However, B. pfeifferi 

prefers permanent water bodies and seems to prefer minimal (0-25 %) shade in their habitats 
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(marginal, floating and emergent vegetation; Ndifon and Ukoli, 1989). It has been recorded in 

comparatively permanent sites in rivers, khors and lagoons, where some plant species as 

Echinochloa, Eichhornia, Vossia and Typha are present in some localities. Williams and Hunter 

(1968) noted that B. pfeifferi was more common where the vegetation was dominated by grass 

(Brown et al., 1984). In Congo, B. pfeifferi has been collected from irrigation channels with 

mainly clayey substratum (Schultheiß et al., 2011).  

 

Table 4.1: Relative abundances of gastropod sub-fossil shells in the study area.  

 

 

Recent studies on alive B. pfeifferi distribution and habitat carried out in South Africa, shows 

that this species was present in a wide variety of water bodies: dams, rivers and streams, 

although it prefers the perennial, standing, clear and fresh water bodies. The majority of samples 

came from sites where mean annual temperature ranges from 15 to 25°C. B. pfeifferi is sensitive 

to low temperatures. In addition, the highest percentages of samples were recovered from sites 

that fell within the two intervals of mean annual rainfall ranging from 300 to 600 mm and 600 

to 900 mm (Kock et al., 2003).  

Biomphalaria sudanica (Martens, 1870) 

Geographic range: The distribution of Biomphalaria sudanica is Sudan, Southern Ethiopia to 

Lake Chad to the West; and southwards through Uganda and the basins of the lakes Victoria 

and Tanganyika. Brown et al. (1984) reported that it was common in the White Nile and in 

various parts of the Sudd region.  

Habitat: B. sudanica is found in a variety of habitats such as flooded area near the main Nile 

river, rainwater lakes and swamps, in the White Nile where papyrus islands were grounded 
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(Malek, 1958, in Brown et al., 1984) and in numerous habitats above the lake level, near the 

shores of the Lake Victoria, particularly in grassy seepages and irrigation furrows (Magendants, 

1972). The latter author reported that Webbe (1962) found specimens of B. sudanica (infected 

by S. mansoni) in backwaters behind the lakeshore, and regarded them as an important source 

of S. mansoni transmission.  

According to Brown et al. (1984), Williams and Hunter (1968) noted that this snail was 

commonest where Eichhornia (water hyacinth) is dominant. Biomphalaria found in Sudan 

prefers rather stable conditions with fairly dense vegetation (Brown et al., 1984). This is 

supported by our field observations that Biomphalaria is often associated with abundant root 

traces.  

Melanoides tuberculata (Müller, 1774) 

Geographic range: The genus Melanoides is restricted to the Old World tropics (Pilsbry and 

Bequaert, 1927, in Kock and Wolmarans, 2009). About 30 species of Melanoides occur in 

Africa, of which only M. tuberculata is widespread. It is also indigenous to India and the 

Southeast Asian mainland to northern Australia, and was widespread in the present-day Sahara 

during the late Pleistocene-Holocene (Kock and Wolmarans, 2009).  

Habitat: The preferred habitat of M. tuberculata is permanent water bodies (standing or 

running) including rivers, shallow seepages, man-made habitats (Kock and Wolmarans 2009), 

lakes, lagoons, canal, khors (Brown et al., 1984), streams and pools (Ndifon and Ukoli, 1989). 

According to Brown (1994) M. tuberculata is not found in temporary waters. Generally, it 

prefers moderately shaded habitats (marginal, floating and emergent vegetation) but is also 

often found in low (25-50%) shade (Ndifon and Ukoli, 1989). In Jonglei (Southern Sudan), its 

habitat was characterized in some sites by the presence of Eichhornia and Vossia (Brown et al., 

1984). In our study area, the association of M. tuberculata with numerous root traces supports 

the above points.  

Concerning its preferred temperature, a study from South Africa reported that the majority of 

samples were recovered from loci that fell within the mean annual temperature interval from 

21˚C to 25°C (Kock and Wolmarans, 2009). 

In the course of worldwide monitoring, M. tuberculata has been reported to invade brackish 

and even marine water bodies of up to 33 ‰ salinity, and under experimental condition, survive 

extreme high condition of salinity up to 45 ‰ (Bolaji et al., 2011).  

Gabbiella senaariensis (Kuster, 1852) 

Geographic range: Few studies related to Gabbiella senaariensis are available. Generally, its 

distribution comprises Egypt, Sudan, Uganda, Central African Republic and northern Nigeria 

(Brown et al., 1984). 

Habitat: G. senaariensis is widespread in a variety of relatively permanent waters. In Sudan 

and South Sudan, it has been found in lakes, in the Nile and Atem Rivers, irrigation canals, 

ditches and pools. Eichhornia, Vossia and water lilies were present in some sites (Brown et al., 

1984). In Egypt it has been found in the Nile Valley, Nile delta, Lake Nasser and Fayoum (Lotfy 

and Lotfy, 2015).  

 



118 
 

Bulinus truncatus (Audouin, 1827)  

Geographic range: This species is widely distributed in Africa, but the main areas of 

distribution are Lower Egypt, Sudan and westwards into Mauritania. It has been found in all 

oases in northern Africa and is widespread in western and eastern Africa (IUCN, 2012). 

However, its general distribution is Southwest Asia, Arabia, Mediterranean regions and 

Portugal, Northwest Africa and from the Nile delta southwards to Angola and Malawi (Brown 

and Rollinson, 1982; Brown et al., 1984).  

Habitat: It can be found in various water bodies, flowing and standing, some of which 

becoming seasonally dry. It is often found in standing waters, irrigation channels and other 

man-made structures (IUCN, 2012). In Sudan it has been found in clear or muddy waters, 

including the Nile and Atem rivers, lakes, lagoons, pools and canals. A preferred niche was 

amongst the deeply floating roots of Eichhornia (Brown et al., 1984).  

Radix natalensis (Krauss, 1848) or Lymnaea natalensis (Krauss, 1848) 

Geographic range: Radix natalensis is widespread in tropical Africa, but it is rare in the 

northeastern coastal area. It is known throughout the Congo in Central Africa, widespread in 

West, East and Southern Africa (except for the ephemeral aquatic systems in Namibia and 

Botswana), and from the Western Cape Province (South Africa). In North Africa, it is very 

common in the Nile River and Nile Delta but has only been reported in northwestern Africa 

from three localities in Algeria, although it was previously known from many prehistoric 

localities (8-10,000 years ago; IUCN, 2017) as subfossil shells found in the Sahara (Brown et 

al., 1984). Outside the mainland of Africa, this species is possibly present in Yemen (Al-Safadi, 

1990), Oman (Smythe and Gallagher, 1977; Brown and Wright, 1980; Brown and Gallagher, 

1985) and Saudi Arabia (Neubert, 1998), but molecular research needs to confirm the 

taxonomic status of these subpopulations (IUCN, 2017). In Sudan, it is found in Darfur, White 

Nile, Gezira area and southern Bahr el Jebel. It was first found in the southern region of Sudan 

(Southern Sudan country) by Longstaff (1914) who obtained no more than 5 specimens; the 

sites now reported show L. natalensis to be widespread in the Sudd region (Brown et al., 1984).  

Habitat: It is found in permanent standing and running waters of different sizes (IUCN, 2017) 

including lakes, rivers, khors, flooded areas and irrigation canals; a wide variety of macrophytes 

grew at these sites (Brown et al., 1984).  

4.2.1.1.B. Semi-aquatic snails 

Pila wernei (Philippi, 1851)  

P. wernei belongs to the wide family of Ampullariidae (IUCN, 2010; Köhler and Glaubrecht, 

2006). It is also known under the name of Ampullaria wernei (IUCN, 2010; Pallary, 1902; 

Longstaff, 1914 in Brown et al., 1984; Philippi, 1851 in Köhler and Glaubrecht, 2006)  

Geographic range: Pila wernei is generally known from scattered localities over a wide area in 

Africa, from Mali to Somalia, but it represents a native species in Cameroon, Central African 

Republic, Chad, Egypt, Ethiopia, Mali, Nigeria, Somalia, South Sudan and Sudan (IUCN, 

2010). In Sudan it is found in the White Nile, Bahr el Ghazal (Southern Sudan), Darfur and 

Bahr el Jebel (Brown et al., 1984).  



119 
 

Habitat: P. wernei prefers highly shaded habitat (Ndifon and Ukoli, 1989) in various standing 

waterbodies, both permanent and seasonal freshwater systems (IUCN, 2010) like seasonal pools 

(Brown et al., 1984), lakes such as Lake Chad, and rivers, especially the White Nile (Gardner, 

1932; Van Damme, 1984; Pachur and Kröpelin, 1987; Peters, 1991; Brown, 1994 in Fuller and 

Smith, 1998). However, it requires at least semi-permanent water (Fuller and Smith, 1998). In 

Jonglei (Southern Sudan), its habitat is characterized by the full presence of some plant like 

Echinochloa, Ipomoea and water lilies (Brown et al., 1984).  

Lanistes carinatus (Olivier, 1804) 

Geographic range: The Nile and canals of Egypt; Sudan, southeast Ethiopia, Somalia, Kenya 

and Uganda. Its distribution in Sudan was formerly widespread, according to the occurrence of 

subfossil shells (Brown et al., 1984).  

Habitat: Ditches and pools flooded by rain and the Nile, where Echinochloa and Eichhornia 

were present (Brown, et al 1984).  

4.2.1.1.C. Land snails 

Limicolaria flammea (Müller, 1774) 

Geographic range: Limicolaria flammea has been known in western Africa for a long time, but 

it has been found recently in tropical Asia, in particular Singapore (Tan and Clements, 2011).  

Habitat: Few information is gathered about the habitat of these species. It is very common 

during the wet season (Amusan et al., 2002; Idohou et al., 2013). However, Limicolaria species 

are known to occur in abundance in forest edges and modified habitats such as plantations and 

farms (Raut and Barker, 2002, in Tan and Low, 2011). It has been observed more active in long 

grass at forest edges (Tan and Clements, 2011).  

Limicolaria caillaudi (Pfeiffer, 1852) 

Geographic range: Its present-day distribution extends from eastern Sudan to Ethiopia, and 

southward to Tanzaniya (Crowley and Pain, 1970, in Peters, 1991).  

Habitat: The exact requirements of this species are not well known but it seems that L. caillaudi 

has a considerable tolerance with respect to mean annual precipitation (Peters, 1991). Williams 

and Adamson (1980) describe it as typical of the acacia tall grass plains, bounded by the 500-

800 mm isohyets. According to Tothill (1948b), L. fiammata (= L. caillaudi, cf. Crowley and 

Pain, 1970) occurs in well-drained areas with tall grass, and in clay-pans, characterized by a 

mean annual precipitation between 400 and 800 mm (Peters, 1991).  

Zootecus insularis (Ehrenberg 1831)  

Geographic range: The Zootecus genus in general is widely spread all over the world including 

Pakistan, India, Afghanistan, Africa and Arabian countries (Qamar et al., 2017). Zootecus 

insularis nowadays occurs in the semi-arid regions of India, Arabia, Eritrea, Egypt, Sudan, 

Senegal and the Cape Verde Islands. In Africa, the distribution in prehistoric times of this 

species includes, for the moment, Nubia (Martin 1968), the Western Desert (Gautier 1980), the 

Acacus Massif (Gautier and Van Neer 1982) and central Sudan (Peters, 1991).  

Habitat: Living species of Zootecus insularis in Pakistan indicate that it occurs in the grass land 

habitat.  
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Caracolus sp.  

The genus Caracolus in general is a land snail (Bishop, 1979). Van der Schalie (1948) found 

Caracolus most commonly on trees of wet tropical forest at El Yunque, while along the dry, 

haystack knolls of the northern coast, it was usually buried or moving (in wet weather) among 

the decayed leaves and stones on the slopes. Also in Puerto Rico, Baker (1961) noted that the 

species is a very good climber on tree trunks, often seen 5-7 m above ground (Bishop, 1979).  

4.2.1.2. Quantitative analysis of the stratigraphic distribution of gastropods 

The analysis of the stratigraphic distribution of gastropod shells was carried out in the sections 

of En Nahud and East El Khowei. In both sections, the gastropod shells are concentrated in the 

sandy carbonate facies and the upper red sand facies (Second and Fourth units). Only the in 

situ, well-preserved gastropod shells were counted. 175 shells of four different species were 

counted in the En-Nahud section (Fig. 4.2), and 739 shells of eleven species were counted in 

the east El Khowei section (Fig. 4.3).  

 

Fig. 4.2: Quantitative analysis of the gastropod shells in the En Nahud section. 

 

In En Nahud, the fauna of the sandy limestone is dominated by the aquatic species Radix 

natalensis and the semi-aquatic species Pila wernei. The contact between the sandy limestone 

and the overlying red sand sediments is dominated by the semi-aquatic species Pila wernei, 

while the land snail species Limicolaria flammea dominates in the upper part of red sand 

sediments faciest.  

In the east El Khowei section, the sandy carbonate is dominated by the aquatic species 

Gabbiella sennariensis, Biomphalaria sp., Melanoides turberculata, Bulinus truncatus and 

Radix natalensis; the contact between the sandy carbonate and the upper red sands are 

dominated by the aquatic species Gabbiella sennariensis and in a lesser extent, by the semi-

aquatic species Lanistes carinatus, while the land snail species Limicolaria flammea dominates 

in the red sand facies.  
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4.2.1.3. Interpretation  

As mentioned previously, the identified gastropod species belong to aquatic, semi-aquatic and 

terrestrial environments. Their stratigraphic distribution in the En Nahud and East El Khowei 

sections, have been plotted in term of cumulative percentages for each group (Figs. 4.4 and 

4.5). These diagrams clearly indicate an absolute domination of the aquatic and semi-aquatic 

species in the sandy carbonate facies, reflecting humid climatic conditions between ≈ 10 and 

≈ 6 ky BP. 

 

Fig. 4.3: Quantitative analysis of the gastropod shells in the East El Khowei section 

The lower part of the red sand facies is mostly dominated by the land snails, and “locally” by 

semi-aquatic and aquatic groups. This distribution in the lower part of the red sand unit indicates 

wet to dry conditions environment (i.e. the area had experienced sub-humid to semi-arid 

climate) between ≈ 1000 and ≈ 700 yr BP. However, aeolian erosion took place between ≈ 6 

and 1 ky BP, or at least ≈ 3 and 1 ky BP, and the local abundance of the semi-aquatic and 

aquatic groups at the base of the red sand may indicate that, either these shells were reworked 

from the lower palustrine limestone, or the early 300 years from this 1000 years period were 

wetter than the rest of the time-span, or climate was seasonally wet.  

In both sections, the upper part of the red sand unit is totally dominated by land snail species, 

which indicates that the area experienced arid climatic conditions during the last ≈ 1000 yr.  
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Fig. 4.4: Evolution of the gastropod assemblages in the En Nahud section. 

 

Fig. 4.5: Evolution of the gastropod assemblages in the East El Khowei section. 

 

This vertical evolution, changing from typical aquatic to terrestrial land snail species, occurred 

as a normal adaptation of the gastropod communities to the gradual climatic change from mostly 

humid to mostly arid conditions, of course passing through sub-humid and semi-arid conditions. 

On the other hand, the presence of the aquatic species Gabbiella senaariensis, Bulinus 

truncatus, Melanoides tuberculata and the semi-aquatic species Lanistes carinatus around El-

Khowei and their absence around En-Nahud, reflect paleoenvironmental differentiation 
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between the two sites. This suggests that the El-Khowei area was more vegetated between ≈ 10 

and 6 ky BP than the En-Nahud area, the former being characterized by swampy environments, 

while the latter was marked by isolated ponds or pools, in spite of being submitted to the same 

climate.  

4.2.2. Palynology  

Twenty-nine samples from six sites were analyzed for palynological studies. The investigated 

sites are: North Dilling, South El Obeid 3 (Khour Es Sonjokaya), South El Obeid 1 (Khour Es 

Sikairan), East El Obeid (Khour Taggat), West El Obeid (Ayara), En Nahud, and El Ga’ah (Fig. 

4.6). The last three sites were barren of pollens, and have been excluded from the results.  

 

Fig. 4.6: Location map of the sites investigated for palynology.  

The twenty-two analyzed samples from the first three sites yielded a total of 1408 pollen and 

spores. The South El Obeid 3 site yielded 831 palynomorphs, 399 were counted in samples 

from North Dilling, and only 178 palynomorphs were counted in samples from South El Obeid 

1.  
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All palynomorphs have been identified, they produced 90 different types table 4.2. 1213 

palynomorphs out of the total counted specimens have been classified into four main groups in 

order to help in the paleoclimate interpretation. The identified groups are : aquatic, tropical, 

savanna, and arid indicators. This classification is based on the understanding of the related 

habitat and ecological information, which have been gathered from various studies. 

The aquatic group includes freshwater algae and other aquatic flora. This group includes 

Chomotriletes (Latrubesse et al., 2010; Akyuz et al., 2016), Ovoidites (Scafati et al., 2009; 

Worobiec and Gedl, 2010), Schizosporis (Scafati et al., 2009; Latrubesse et al., 2010; Akyuz et 

al., 2016), Lecaniella forma (Worobiec, 2014), Spirogyra (zygospore) (Chambers et al., 2014), 

Chlorosarcina superba (Lukavský, 2009), Sigmopollis laevigatoides (Worobiec and Gedl, 

2010), Alternanthera nodiflora (El Ghazali, 1993), Alternanthera sessilis (El-Amier, 2015), 

Lemna gibba (El-Amier, 2015; Perveen, 1999), Inaperturopolenites, Potamogeton pectinatus 

(El-Amier, 2015), Limnophyton obtusifolium (El Ghazali, 1993) and Echinochloa crusgalli (El-

Amier, 2015). Plates 4.2 and 4.3 show some representative pollens of this group.  

The tropical climate indicators group includes Proxapertites (Monga et al., 2015), 

Retipollenites, Longapertites, Laevigatosporites (Paul et al., 2015), Araucariaceae (Lu et al., 

2012; Stukins et al., 2013), Aneilema johnstonii (Gosling et al., 2013), Tiliacora funifera 

(Gosling et al., 2013), Palmidites plicatus (Monga et al., 2015), Lygodiumsporites (Monga et 

al., 2015), Borassus aethiopum (Gosling et al., 2013) and Plantago major (Clapham et al., 

1989). Plate 4.4 shows some of the representative pollens of this group.  

The savanna group indicators include Baissea multiflora, Graminidites (Worobiec and Gedl, 

2010), Silene burchellii (El Ghazali, 1993), Cymbopogon schoenanthus (El Ghazali, 1993) and 

Monolites alveolatus. Plate 4.5 shows some representative specimens of this group.  

The arid indicator group includes Hyphaene thebaica (El Ghazali, 1993), Hyparrhenia hirta 

(El Ghazali, 1993), Classopollis spp. (Volkheimer et al., 2008; Riding et al., 2013; Stukins et 

al., 2013), Evolvulus alsinoides (El Ghazali, 1993), Desmodium dichotonum (El Ghazali, 1993), 

Bracharia ramosa (El Ghazali, 1993), Gynandropsis gynandra (El Ghazali, 1993), Farsetia 

stenoptera (El Ghazali, 1993), Farsetia hamihonni (El Ghazali, 1993). Gelasinospora cf. 

(Chambers et al., 2014), Leoisphaeridia sp. (Onoduku and Okosun, 2014), Leiotriletes 

adriennis (Uzodimma, 2013), and Erica arbora (Lézine et al., 2011). Plate 4.6 illsutrates some 

representative pollens of this group.  
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Plate 4.2: Representative pollens of freshwater algae, Aquatic Group indicator. Scale bar = 20 µm. 

1: Chomotriletes rubinus, 2: Chomotriletes circulus, 3: Chomotriletes minor, 4: Chlorosarcina superba, 

5, 6 and 7: Ovoidites sp., 8: Ovoidites vangeelii, 9: Schizosporis reticulatus, 10: Lecaniella forma, 11: 

Spirogyra (zygospore), 12: Sigmopollis laevigatoides.  
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Table 4.2: Counting of the identified palynomorphs.  

 North Dilling South El-Obeid Sonjokaya (El-Obeid Dilling road) 

  

D 

11 

D 

9 

D 

8 

D 

7 

D 

5 

D 

3 

D 

2 

D 

1 

Kh 

1 Kh 2 

Kh 

4 

Kh 

5 

Kh 

6 

Sonj 

14 

Sonj 

12 

Sonj 

10 Sonj 8 

Sonj 

6 

Sonj 

5 

Sonj 

4 

Sonj 

2 

Sonj 

1 

Aquatic                       
 

Chomotriletes minor 4 6   1     2   4 8 2 3 1 15 2       4 4   1 

Chomotriletes circulus 7 10 1 2 1   2 1 7 7 1 4   19 4   1  7 5    

Chomotriletes rubinus 3 4 1   1       5 3 1 2   10 1       2 3    

Ovoidites sp.  5   4 3         3 2 4 2   12 5 2 2   7     6 

Ovoidites vangeelii                                    1        

Schizosporis reticulatus                           9 1 1 2 3        

Lecaniella forma                           40 9 6 4   4   5 3 

Spirogyra (zygospore)     2           3                   10   5 1 

Sigmopollis laevigatoides   5 1 5 3 1                                

Chlorosarcina superba         2              

Alternanthera nodiflora                 3 2 1 1             2      

Alternanthera sessilis                 3                   2      

Lemna gibba                    3                        

Inaperturopolenites sp.         5   12                              

Inaperturopolenites dubius                 7                     31    

Potamogeton pectinatus                           4   1     1      

Inaperturopollenites hiatus   5                       3     1          

Limnophyton obtusifolium             6                 

Echinochloa crus-galli                           7           

Tropical climate indicators                       

Proxapertites assamicus   5                                        

Proxapertites cursus   3               1                        

Proxapertites operculatus   4   3       1   2                        

Retipollenites enigmata                       1                    

Longapertites marginatus                 1                          

Laevigatosporites haardtii                 3                          
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Continue (Table 4.2): 

 North Dilling South El-Obeid Sonjokaya (El-Obeid Dilling road) 

  

D 

11 

D 

9 

D 

8 

D 

7 

D 

5 

D 

3 

D 

2 

D 

1 

Kh 

1 Kh 2 

Kh 

4 

Kh 

5 

Kh 

6 

Sonj 

14 

Sonj 

12 

Sonj 

10 Sonj 8 

Sonj 

6 

Sonj 

5 

Sonj 

4 

Sonj 

2 

Sonj 

1 

Laevigatosporites ovatus                 1                          

Araucariacites sp.   2 2 20 2   2   5 2         3     2   22    

Araucariacites australis                                         11  

Aneilema johnstonii                           8 2 16            

Tiliacora funifera                                         14 3 

Borassus aethiopum   6                                        

Palmidites plicatus         6                     

Lygodiumsporites                                        4 11 1 

Plantago major 6     5 4                 5 3              

Savanna group                       

Baissea multiflora 6 7                       19 6 13 1 6   10    

Graminidites boivinii                   1                        

Graminidites sp.                                            7 

Silene burchellii             16             16 5 3 5 3     8 3 

Cymbopogon schoenanthus          9             19 3                  

Monolites alveolatus                 1     1   2 1         6 12 4 

Arid group                       

Hyphaene thebaica                3       2                 7 3 

Hyparrhenia hirta       4 9 2 7         14 1               28 8 

Classopollis sp.            2 6        1               26 3    

Classopollis meyerianus                                     13      

Evolvulus alsinoides               17                            

Desmodium dichotonum               10                            

Bracharia ramosa               5                         15 13 

Gynandropsis gynandra             8 22                       1    

Farsetia stenoptera                                         7 35 
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Continue (Table 4.2): 

  North Dilling South El-Obeid Sonjokaya (El-Obeid Dilling road) 

  

D 

11 

D 

9 

D 

8 

D 

7 

D 

5 

D 

3 

D 

2 

D 

1 

Kh 

1 Kh 2 

Kh 

4 

Kh 

5 

Kh 

6 

Sonj 

14 

Sonj 

12 

Sonj 

10 Sonj 8 

Sonj 

6 

Sonj 

5 

Sonj 

4 

Sonj 

2 

Sonj 

1 

Farsetia hamihonni              5                           5 
37 

Gelasinospora cf.              2 3       11                    

Leoisphaeridia sp.                                         9  

Leiotriletes adriennis                                      9    

Erica arbora                 1 2                   2    

Not classified                        

Cola hispida       3                 2                  

Lasiosphon kraussianus         6                     

Pycnanthus dinklagei             4                   

Pinuspollenites             4 1                 

Polygalaceae cf              6                   

Maerua oblongifolia               3                
 

Polygala abyssinica                                     1      

Leoisphaeridia sp.                                         9  

Kapurdipollenites gemmatus                                      2      

Limnobiophyllum sp.                                         3 12 

Pycnanthus dinklagei                                     2      

Piptostigma mayumbense                                       5    

Rhynchelytrum repens                                       11    

Iodes ovalis   3         2                           

Aeschynomene indica       7                               1    

Dandotiaspora plicata      3                                      

Baculatisporites sp.                      1                      

Nevesisporites vallatus               4                       2 7 2 

Chlorosarcina superba               1                 

Hibiscus sp.                    2                        
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Continue (Table 4.2): 

  North Dilling South El-Obeid Sonjokaya (El-Obeid Dilling road) 

  

D 

11 

D 

9 

D 

8 

D 

7 

D 

5 

D 

3 

D 

2 

D 

1 

Kh 

1 Kh 2 

Kh 

4 

Kh 

5 

Kh 

6 

Sonj 

14 

Sonj 

12 

Sonj 

10 Sonj 8 

Sonj 

6 

Sonj 

5 

Sonj 

4 

Sonj 

2 

Sonj 

1 

Mimosa oudica                   1                        

Xylia avansii                   3                        

Spinomonosulcites achinatus                       3                    

Cephalomappa                       1                    

Acacia sp.                          3                  

Cicatricosisporites dorogensis                           5                

Abutilon ramosum               3                 

Pinuspollenites                       1                 5  

Mauritidites crassibaculatus                            3                

Commelina africana                           5 1              

Chlorophytum floribundum                                   1        

Typha domingensis                                    1        

Suaeda sp   4 2                                 

Borreria densiflora 3                              

Chenopodiaceae 3 5 2                    
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Plate 4.3: Representative pollens of the aquatic flora - Aquatic Group indicator. Scale bar = 20 µm. 

1&2: Alternanthera nodiflora 3: Alternanthera sessilis 4: Potamogeton pectinatus 5: Lemna gibba 6: 

Inaperturopolenites dubius 7: Inaperturopollenites hiatus 8: Limnophyton obtusifolium 9: Echinochloa 

crus-galli.  

 

4.2.2.1. North Dilling site 

Eight samples were analyzed from this site, with a total thickness of 380 cm. Among the aquatic 

flora, the Chomotriletes freshwater algae are the most abundant, with secondary abundance of 

Sigmopollis laevigatoides and Inaperturopolenites. The Araucariaceae sp. recorded the highest 

occurrence among the tropical group, followed by Proxapertites. The savanna group is 

dominated by Silene burchellii, Graminidites bombusoidis and Baissea multiflora. The arid 
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group is dominated by Gynandropsis gynandra, Hyparrhenia hirta and Evolvulus alsinoides, 

with secondary abundance of Desmodium dichotonum and Classopollis spp. (table 4.2).  

 

Plate 4.4: Representative pollens of the Tropical Group indicator. Scale bar = 20 µm. 

1: Proxapertites cursus, 2: Proxapertites operculatus, 3: Laevigatosporites haardtii, 4: 

Laevigatosporites ovatus, 5: Lygodiumsporites, 6: Longapertites marginatus, 7: Araucariacites 

australis, 8 and 9: Araucariacites sp., 10: Aneilema johnstonii, 11: Plantago major, 12: Tiliacora 

funifera. 
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Plate 4.5: representative pollens of the Savana Group indicator. Scale bar = 20 µm. 

1: Graminidites annulatus, 2: Graminidites boivinii, 3 and 4: Graminidites bambusoides, 5: 

Cymbopogon schoenanthus, 6: Monolites alveolatus, 7 and 8: Silene burchellii, 9: Baissea multiflora.  

 

The vertical distribution chart of these groups (Fig. 4.7) shows that the lower part of the section 

is dominated by the aquatic group with percentages up to 65%, followed by the tropical 

indicators (20%), and the savanna group (15%), species form the arid group being absent. The 

upper part of the section is dominated by the arid indicator group with an average percentage 

of about 75 % that increases upward, the aquatic group representing about 20%, whereas the 

tropical and savanna groups are very rare. The middle part contains balanced percentages of 

these groups, although one sample presents a high percentage of pollens of the savanna group. 



133 
 

 

Plate 4.6: representative pollens for the Arid Group indicator. Scale bar = 20 µm. 

1: Hyparrhenia hirta, 2: Hyphaene thebaica, 3: Bracharia ramose, 4: Gynandropsis gynandra, 5: 

Classopollis meyerianus, 6: Classopollis sp., 7: Evolvulus alsinoides, 8: Desmodium dichotonum, 9: 

Farsetia hamihonni, 10: Farsetia hamihonni, 11: Gelasinospora cf., 12: Erica arbora.  
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Fig. 4.7: Proportions of the pollen groups in the North Dilling section. 

 

4.2.2.2. South El Obeid 3 site 

Nine samples were analyzed samples from this site along a 440 cm thick section. The freshwater 

algae Chomotriletes and Lecaniella forma dominate the aquatic flora, with secondary 

abundance of the freshwater algae Schizosporis. The tropical group is dominated by 

Araucariaceae sp., Aneilema johnstonii and Tiliacora funifera. The savanna group is dominated 

by Baissea multiflora, Silene burchelli and Graminidites, while Farsetia stenoptera, Farsetia 

hamihonni, Classopollis spp., Hyparrhenia hirta and Bracharia ramosa dominate the arid 

group (table 4.2). 

In the lower part of the section (Fig. 4.8), the aquatic and savanna groups are dominant with 

percentages up to 47 % each, the tropical indicator group is very rare (≈ 6%) and species of the 

arid group are recorded. The upper part of the section is dominated by arid indicators with an 

average percentage of about 70 % (increasing upward), while the tropical group records ≈ 17 % 

and the aquatic group ≈ 11 % in average; specimens of the savanna group are very rare in this 

part of the section (≈ 2 %). The middle part is more balanced, with ≈ 45 % of aquatic, ≈ 15 % 

of tropical, ≈ 20 % of savanna and ≈ 20 % of arid indicator group. 

4.2.2.3. South El Obeid 1 site 

We analyzed five samples from this 380 cm thick section. The freshwater algae Chomotriletes 

and Ovoidites dominate the aquatic flora. The tropical group is generally rare and its most 

abundant representant is Araucariaceae sp. (7 pollens). The savanna group is also rare, except 
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Cymbopogon schoenanthus with 22 counted pollens, while 9 pollens are classified in four 

different savanna species. The arid group is dominated by Hyparrhenia hirta and 

Gelasinospora cf. (table 4.2). 

 

Fig. 4.8: Proportion of pollen groups in the South El Obeid 3 section. 

 

 Fig. 4.9: Proportion of pollen groups in the South El Obeid 1 section. 
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According to the stratigraphic distribution (Fig. 4.9), no pollens of the arid group have been 

found in the lower part of the section, which is dominated by the aquatic group (up to 82 %), 

followed by tropical indicators (≈ 14 %), the savanna group being very rare (≈ 3 % in average). 

The middle part (depth 125 – 240 cm) contains ≈ 76 % of aquatic pollens, ≈ 8 % in average of 

tropical, ≈ 12 % of savanna, and ≈ 4 % of arid, indicators. The upper part of the section is 

dominated by the arid indicator group (average of 55 %), with subordinate species of the 

savanna (≈ 30 %) and aquatic (≈ 15 %) groups, and is devoid of palynomorphs of the tropical 

group. 

The interpretation includes both the stratigraphic and geographical distribution. The 

stratigraphic interpretations are presented in figs 4.10 to 4.12. The geographical interpretation 

have been carried out through the correlations between the three studied sites and includes 

correlation for three different periods: ≈ 3500, ≈ 1000, and ≈ 500 y BP (Figs. 4.13 to 15).  

4.2.2.4. Interpretation of the palynological results 

4.2.2.4.1. Stratigraphic interpretation  

In the lower parts for the North Dilling and South El Obeid 1 sections (≈ 4.8 to ≈ 3 ka BP), the 

domination of the aquatic and tropical groups, indicates that the region experienced a wet 

climate, probably sub-humid to semi-arid. Moreover, the marked predominance of freshwater 

algae in the aquatic group indicates that many swamps were present in the area. This climate, 

however, experienced some local fluctuations as shown in the South El Obeid 3 site, the lower 

part of which is dominated by the aquatic and savanna groups. These conditions suggest that 

the region was probably located within the tropical rainy belt of the African continent.  

 

Fig. 4.10: Interpretation of the pollen groups for the North Dilling site. 
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The appearance of the arid group in the middle parts of the three sites (≈ 1000 to ≈ 800 yr BP) 

indicates environmental and climatic shifts toward less swampy environment and less wet 

climate than in the lower part.  

The arid group increases then rapidly upward (younger than 1000 yr BP) and the upper parts of 

the sections show relatively few percentages of the other groups. This rapid increase in the arid 

group percentages reflects an abrupt environmental and climatic change to dry environment and 

arid climate. Therefore, this indicate that the studied region was probably located north of the 

rainy tropical belt of the African continent. 

 

Fig. 4.11: Interpretation of the pollen groups for South El Obeid 3 site. 
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Fig. 4.12: Interpretation of the pollen groups for the South El Obeid 1 site. 

4.2.2.4.2. Geographical interpretation 

Around 3500 yr BP the southern part of the studied area was dominated by the aquatic group, 

although in south El Obeid 3, both the savanna and aquatic groups prevailed (Fig. 4.13). This 

indicates that this region experienced wet conditions, which reflect sub-humid climate and 

swampy environment. Thus, between ≈ 5 and 3 ka BP, this area was located within the rainy 

belt of the tropical Africa.  

Around 1000 yr BP, the Kordofan region recorded the appearance of an arid vegetation cover, 

although the aquatic flora and freshwater algae were still the prevailing groups (Fig. 4.14). The 

tropical climate indicators are still abundant and the savanna group is locally abundant. These 

data indicate that, by ≈ 1000 yr BP, the environment and climate was drier than at 3 ka BP. This 

climatic shift may have already started during the hiatus, ≈ 3000 yr ago. Around 1000 yr BP, 

the climate between El Obeid and Dilling was semi-arid, the environment was swampy along 

the rivers and dry elsewhere, and the investigated sites were probably located at the northern 

end of the tropical rainy belt.  

From ≈ 500 yr BP up to the present, the investigated sites are dominated by the arid group, with 

locally high percentages of the savanna group, while the aquatic and tropical groups do not 

exceed together 30 % (Fig. 4.15). The domination of the arid group indicates that the studied 

area experiences mostly dry conditions, with only seasonal swamps. This arid climate suggests 

that the region was located north of the African tropical rainy belt.  
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Fig. 4.13: Percentages of the pollen groups at ≈ 3500 y BP.  

 

Fig. 4.14: Percentages of the pollen groups at ≈ 1000 y BP.  
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Fig. 4.15: Percentages of the pollen groups at ≈ 500 y BP.  

 

4.3. Oxygen and carbone isotopes 

4.3.1. En-Nahud 1 and En Nahud 2 section 

4.3.1.1. Results 

All analyzed samples of the En-Nahud 1 and En-Nahud 2 sites were gastropod shells from the 

red sand sediments (Upper unit), which included the semi-aquatic species Pila wernei and 

terrestrial land-snails Limicolaria flammea. The results show δ18O values from – 11.5 ‰ to – 

0.012 ‰ and δ13C from – 8.62 ‰ to – 1.33 ‰ (Figs. 4.16 and 4.17).  

The evolution of the C and O isotopes in both En-Nahud sections (Figs. 4.16 and 4.17) shows 

that the samples of the lowermost part of red sand facies are depleted in the heavier 18O (-12 < 

δ18O < -11) compared to samples from the upper part of the same unit (-2.5 < δ18O < 0), which 

shows gastropod shells enriched in 18O and depleted in 16O. The evolution of the C isotopes is 

less clear, but shows a decrease of the 13C through time.  
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Fig. 4.16: Evolution of the oxygen and carbon isotopes in the En Nahud 1 section. 

 

4.3.1.2. Interpretation 

The wide range of δ18O values reflects climatic variation through time. The highly negative 

values of δ18O in the lower part of the red sand sediments facies can be interpreted as due either 

to a high flux of regional water vapors enriched in 16O and depleted in 18O, or to little 

evaporation, and therefore moderate temperature. This suggests that the area has experienced a 

wet climate at that time (Figs. 4.18 and 4.19). The depleted δ18O values in gastropds in the Nile 

Valley is considered an evidence of high rainfall episodes (Abell and Williams, 1989) derived 

from a distant oceanic source (Ayliffe et al., 1996). The latitude effect may have played an 

important role, since the more distant from the coast, the lower the δ18O values (Rozanski et al., 

1993). The study area is relatively far from the Atlantic Ocean (more than 3000 km) therefore, 

the isotopic composition of the rainwater in this area may be normally depleted. However, since 

the variation is recorded at the same site, it means climatic change through time, rather than a 

latitudinal effect.  
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Fig. 4.17: Evolution of the oxygen and carbon isotopes in the En Nahud 2 section. 

 

 

Fig. 4.18: Interpretation of the oxygen and carbon isotopes - section En Nahud1. 

The sedimentological analysis of the red sand Unit showed that the latter is of aeolian origin, 

which is inconsistent with the interpretation of the isotopic data. However, gastropods from the 

lower part of the red sand facies are Pila wernei, a semi-aquatic species, and their shell was 

filled and covered with the carbonate mud of the underlying palustrine limestone. This strongly 
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suggests that these snails were actually leaving during deposition of the palustrine carbonate, 

and were reworked during the aeolian erosional period (≈ 3 to 1 kyr BP). Thus, the negative 

δ18O values may correspond to the time the underlying limestone were deposited (≈ 10 to 6 ky 

BP), which corresponds to the African Humid Period (AHP), as supported by the aquatic and 

semi-aquatic way of life of the gastropods.  

 

Fig. 4.19: Interpretation of the oxygen and carbon isotopes in the En Nahud 2 section. 

 

In contrast, in the upper part of the En-Nahud 1 and 2 sections, the shells of terrestrial land 

snails are enriched in 18O and depleted in 16O. Since evaporation has a major influence on the 

isotope composition of standing water bodies (Leng and Marshall, 2004) and 16O is easier to 

evaporate than 18O, the isotopic enrichment in 18O is interpreted as indicating an arid climate 

(Abell and Williams, 1989). Moreover, the water body may have played an important role in 

the variation of δ18O between the lower aquatic shells and the upper land snail shells. As a 

matter of fact, if the water body remains for a long time, more evaporation is expected to occur, 

and the light oxygen (16O) must be reduced through this evaporation, which makes the water 

body less depleted in 18O than the isotopic composition of the initial rainfall. Goodfriend et al. 

(1989) reported that the isotopic composition of snail in a water body is related to atmospheric 

water vapor and the isotopic composition of the water body, while the land snail shell carbonate 
18O should provide a reliable indication of rainfall 18O. This assumption or interpretation 

indicates that the oxygen incorporated in the aquatic shells is isotopically less depleted than the 

real depletion of meteoric water at time of precipitation. Hence the enriched composition of the 

land snails of the upper part reflects a real 18O enrichment of the meteoric water.  

4.3.2. East El-Khowei site 

4.3.2.1. Results 
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All analyzed samples of the East El-Khowei site were gastropod shells. The lower three 

samples, from the palustrine sandy limestone unit, are the semi-aquatic Pila wernei, and the 

aquatic Biomphalaria pfeifferi and Melanoides tuberculate gastropods. The upper five samples 

are the terrestrial land snails Limicolaria flammea.  

Their δ18O values varies from – 9.6 ‰ to 0.1 ‰, while the δ13C values range between – 10.0 ‰ 

and - 3.7 ‰. The samples from the sandy limestone (Second unit) and from the base of the red 

sand sediments facies (Upper unit), show highly negative δ18O values. Samples from the red 

sand sediments have less negative δ18O values, except for one of them. The δ13C values are 

generally negative (depleted in 13C). Samples from the red sand show more negative δ13C values 

than those from the sandy limestone unit (Fig. 4.20). 

 

 

Fig. 4.20: Evolution of the oxygen and carbon isotopes in the East El Khowei section. 

 

4.3.2.2. Interpretation 

The highly negative values of δ18O for samples from the sandy limestone unit (≈ 10 to 6 ky BP) 

are consistent with low evaporation rates and therefore, humid condition for the palustrine 

sandy limestone (Fig. 4.21). 

The upper part of the east El Khowei section shows shells of terrestrial snail enriched in 18O 

and depleted in 16O. This change in the isotopic compositions between the lower and upper 

parts indicates that the climate shifted to dry conditions between deposition of the palustrine 

carbonates and deposition of the red sand sediments, i.e. between ≈ 6 and 1 ky BP. Among the 
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samples from the Upper red sand Unit, one shows oxygen isotope values highly depleted in 18O 

(δ18O = - 8.0). An acceptable explanation is that the shell may has been reworked from the 

palustrine limestone, eroded in the surrounding area.  

 

 

 Fig. 4.21: Evolution of the oxygen and carbon isotopes in the East El Khowei section. 

  

4.3.3. West El-Obeid site  

4.3.3.1. Results 

All analyzed samples of the West El-Obeid site are calcareous nodules formed within a horizon 

of mottled fine sand sediments facies (Lower Unit). The isotopic results for these nodules show 

variations of the δ18O and δ13C values from – 9.6 ‰ to – 4.6 ‰, and from – 7.8 ‰ to 0.6 ‰, 

respectively (Fig. 4.22).  

The vertical distribution of δ18O values shows two distinct parts in the Lower Unit. These two 

parts correspond to the grey mottled, and pale-yellow mottled horizons, respectively. The grey 

mottled horizon (520 – 230 cm) shows δ18O values mostly ranging between -7 and -6.3 ‰ 

(except one sample > -6.3 ‰), while the pale-yellow mottled horizon (230 – 120 cm) shows 

δ18O values comprised between -8.3 and -9.8 ‰. On the other hand, the δ13C values decrease 

upward in the mottled facies; the lower part of the succession shows little negative δ13C values, 

compared to the upper part that is depleted in 13C.  
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Fig. 4.23: Evolution of the oxygen and carbon isotopes in the West El Obeid section. 

 

4.3.3.2. Interpretation 

The West El-Obeid site shows generally negative δ18O values, with narrow range indicating 

that wet conditions prevailed during the formation of the calcareous nodules. As a matter of 

fact, the development of calcareous nodules, occurred after deposition of the enclosing matrix. 

Moreover, the upper part of the curve (above depth 240 cm) shows more negative δ18O values, 

than those of the lower part (below depth 240 cm). This may indicate that the calcareous nodules 

of the upper part developed under wetter conditions that those developed in the lower part (Fig. 

4.23). The variation in δ18O below and above depth 220 cm, maybe due to groundwater effects, 

which may reduce the lighter oxygen (16O) through the previous continued evapotranspiration 

from the lower part, while calcareous nodules above the depth 220 cm, represent more recent 

water of the AHP and therefore, more depleted than the lower part.  

Regarding the interpretation of carbon isotopes, the variation from less negative δ13C values in 

the lower part, to more negative δ13C values in the upper part, may reflect a difference in 

vegetation type and/or density, differentiation in the biological activities, or variation in the 
13C/12C ratio in the dissolved CO2. 
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Fig. 4.23: Interpretation of the oxygen and carbon isotopes - West El Obeid section. 

 

4.3.4. North Dilling site  

4.3.4.1. Results 

All analyzed samples from North Dilling site are calcareous nodules formed within silty sand 

or reworked in conglomerate beds. For these nodules, δ18O varies from – 8.2 ‰ to – 5.9 ‰ 

(with narrow range of only up to 2.3 ‰ difference) and δ13C from – 4.7 ‰ to 0.4 ‰ (with 

relatively narrow range of up to 5.1 ‰ difference). Generally, samples from the lower part of 

the section show less negative δ18O values than samples from the upper part (Fig. 4.24).  

4.3.4.2. Interpretation 

The negative values of δ18O and their narrow range indicate that the nodules developed under 

relatively wet conditions, with little or no climatic variation, although a mild shift toward less 

depleted values upward is visible. The relatively more positive δ13C values with their relatively 

narrow range indicate little environmental variability with some stability in vegetation type 

and/or density, little variation in the biological activity, and low variability of 13C ratios in the 

dissolved CO2 (Fig. 4.25). 
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Fig. 4.24: Evolution of the oxygen and carbon isotopes in the North Dilling section. 

 

Fig. 4.25: Interpretation of the oxygen and carbon isotopes – North Dilling section. 

 

4.4. Geochemistry of major elements  

XRF analyses of major elements were carried out for twenty-two samples collected from two 

sites : North Bara 3 (Jabrat Esh Sheikh) and West El-Obeid (Ayara). The results are presented 

in table 4.3 and figures 4.17 and 4.18. 

4.4.1. Results  

SiO2 is the most dominant element in both sites, with concentrations between 74.42 and 

54.31 % in North Bara 3 and between 57.03 and 58.4 % in west El Obeid. Al2O3 is the second 



149 
 

most abundant element with values of 15.39 to 12.75 % in North Bara 3, and 15.22 to 13.93 % 

in west El Obeid. The third element in abundance is Fe2O3 with values of 7.95 to 5.32 % in 

North Bara 3, and 7.52 to 5.1 % in west El Obeid. CaO follows with concentration of 0.95 to 

4.75 % in North Bara and 0.54 to 10.67 % in west El Obeid. TiO2 records the fifth range with 

values of 2.91 to 4.79 % in North Bara 3, and 1.84 to 2.16 % in west El Obeid.  

The calculated values for the chemical index of alteration (CIA) show high values ranging from 

82.9 to 91.4 (average 89.4) in the North Bara 3 section, and from 87.5 to 90.3 (average 88.8) in 

the West El Obeid section. The CIA values are very homogeneous in both sections with very 

little variations (Figs. 4.26 and 4.27). In the North Bara 3 section, the mottled unit is marked by 

slightly higher values than the Upper unit of red sand sediments (Fig. 4.27), while the relation 

is reversed in the West El Obeid section. 

The ratio of SiO2 to Al2O3 is moderately high in both sections with little variability (Table. 4.3). 

It ranges between 6.4 and 5.0 in the West El Obeid section with a slight increasing upward trend 

toward the red sand of the Upper unit (Fig. 4.27). In the North Bara3 section the silica-

aluminium ratio ranges between 6.0 and 3.8 with some variability along the section, in both the 

mottled sand facies of the Lower unit, and the red sand facies of the Upper unit (Fig. 4.27).  

The ratio of CaO to SiO2 is generally low in both sections (Table. 4.3). It ranges between 0.01 

and 0.25 in the West El Obeid section with a remarkable upward decrease, so that the calcium-

silica ratio of the mottled sands (Lower unit) is higher than the red sands of the Upper unit (Fig. 

4.26). In the North Bara3 section, the CaO to SiO2 ratio ranges between 0.01 and 0.36 with 

remarkably low ratios in the Upper unit and the upper part of the Lower unit (Fig. 4.27).  

4.4.2. Interpretation of XRF analyses 

The high content in SiO2 is due to the sandy nature of the analyzed samples. Al2O3 generally 

accumulates in form of clay minerals (Sheldon and Tabor, 2009). The relatively high 

concentration in Al2O3 indicates significant amounts of clay minerals formed in the source area 

as a product of chemical weathering. The moderate concentration in iron oxide Fe2O3 may 

indicate an oxidation that mostly occurred in the source area, below the same conditions that 

led to the formation of the clay minerals. These concentrations in aluminum and iron oxide 

indicate that the source area probably experienced alternating seasonal wet and dry conditions, 

as aluminum tends to develop mostly in wet condition. If the climate is wet all over the year, 

the chance of oxidation will be reduced, and therefore, the iron oxides indicate an alternation 

of wet and dry environment.  

CIA is a measurement of the hydration and weathering of feldspar minerals to form clay 

minerals. As clay content increases, Al should also increase, whereas Ca, K and Na contents 

should decrease, leading to higher CIA values (Sheldon and Tabor, 2009). High CIA values (76 

to 100) in the sedimentary rocks suggest intense chemical weathering in the source region 

(Fadipe et al., 2011; Srivastava et al., 2013; Madhavaraju et al., 2016). 
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Table 4.3: XRF analysis results.  

Sample 

No 

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl K2O CaO TiO2 Cr2O3 MnO Fe2O3 

CIA 

SiO2/Al2O3 CaO/ SiO2 

N.B3-14 0.27 0.93 14.44 70.54 0.26 0.07 0.05 1.39 0.95 3.69 0.05 0.10 6.20 85.7 4.9 0.01 

N.B3-13 0.16 0.77 14.95 69.92 0.23 0.08 0.05 1.26 0.68 4.27 0.06 0.07 6.31 88.8 4.7 0.01 

N.B3-12 0.10 0.69 14.30 70.67 0.21 0.06 0.04 1.18 0.49 4.79 0.05 0.06 5.85 89.8 4.9 0.01 

N.B3-11 0.31 1.08 12.34 74.42 0.26 0.11 0.06 1.41 1.33 2.70 0.03 0.09 5.32 82.9 6.0 0.02 

N.B3-10 0.09 0.67 14.14 71.47 0.17 0.06 0.05 1.18 0.42 4.34 0.05 0.07 6.00 90.0 5.1 0.01 

N.B3-9 0.10 0.76 14.57 70.82 0.14 0.07 0.06 1.20 0.41 4.34 0.05 0.08 6.02 90.0 4.9 0.01 

N.B3-8 0.11 1.07 15.39 68.74 0.11 0.06 0.09 1.15 1.06 3.59 0.05 0.10 7.61 90.6 4.5 0.02 

N.B3-7 0.14 1.20 14.69 69.74 0.09 0.04 0.05 1.12 1.16 4.08 0.04 0.10 6.52 89.9 4.7 0.02 

N.B3-6 0.15 1.50 15.24 68.43 0.10 0.11 0.10 1.05 1.42 3.59 0.05 0.13 7.22 90.4 4.5 0.02 

N.B3-20 0.11 1.55 12.74 54.31 0.08 0.09 0.04 0.73 1.54 3.54 0.04 0.11 6.21 91.8 4.3 0.36 

N.B3-19 0.14 1.85 14.94 56.89 0.07 0.11 0.05 0.93 11.19 3.10 0.04 0.06 7.95 91.0 3.8 0.20 

N.B3-18 0.13 1.86 15.28 58.95 0.07 0.11 0.02 0.93 11.02 2.91 0.04 0.07 7.93 91.4 3.9 0.19 

N.B3-16 0.11 1.54 13.27 67.22 0.09 0.33 0.04 0.98 4.75 3.60 0.04 0.08 7.09 90.4 5.1 0.07 

Ay9 0.15 0.89 14.06 75.03 0.15 0.42 0.05 1.08 0.54 2.08 0.04 0.07 5.50 89.5 6.4 0.01 

Ay8 0.14 0.95 14.19 74.73 0.12 0.56 0.04 1.09 0.59 2.04 0.03 0.04 5.63 89.6 6.3 0.01 

Ay7 0.15 1.23 15.22 72.53 0.07 0.11 0.05 1.07 0.92 2.16 0.02 0.09 6.05 90.3 5.7 0.01 

Ay6 0.17 1.70 14.81 70.66 0.07 0.04 0.03 1.09 2.03 2.14 0.03 0.13 6.70 89.5 5.7 0.03 

Ay5 0.25 1.65 13.89 72.51 0.08 0.05 0.05 1.21 2.41 2.31 0.03 0.09 5.10 86.6 6.2 0.03 

Ay4 0.25 2.18 14.72 63.42 0.09 0.09 0.03 1.01 8.68 2.03 0.02 0.09 7.02 88.5 5.1 0.14 

Ay3 0.32 2.40 14.89 63.82 0.09 0.10 0.07 1.00 7.25 2.08 0.03 0.08 7.52 87.5 5.1 0.11 

Ay2 0.21 2.12 13.93 58.40 0.10 0.10 0.04 0.88 14.46 1.84 0.02 0.10 7.44 89.4 5.0 0.25 

Ay1 0.29 2.28 14.35 61.35 0.12 0.17 0.07 0.90 10.67 2.06 0.02 0.07 6.85 88.2 5.1 0.17 
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Fig. 4.26: Plot of the climofunctions in the West El Obeid section.  

 

Fig. 4.27: Plot of the climofunctions in the North Bara3 section.  

CIA values ranging from 95 to 100 indicate intensive chemical weathering, whereas CIA values 

lower than 50 indicate the near absence of chemical weathering and suggest cool and arid 

conditions (Fedo et al., 1995). Depending on the parent material chemistry, CIA changes during 

weathering may be quite large or relatively small. Parent materials that have already been 

cycled as sediments, or which are clay-rich in the first place, may start out with CIA values of 

60–70, with weathering leading to even higher values (Sheldon and Tabor, 2009). Therefore, 
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our very high CIA values, almost constant through time in both sections, indicate that the source 

area experienced wet condition resulting in high chemical weathering (Figs. 4.29 4.30). 

 

 

Fig. 4.29: Interpretation of the climofunctions in the West El Obeid section. 

 

Fig. 4.30: Interpretation of the climofunctions in the North Bara3 section. 

The SiO2 content and SiO2/Al2O3 ratio are the most commonly used geochemical criteria to 

determine the abundance of quartz, feldspar and clay, and for differentiating mature and 

immature sediments (Potter, 1978; in Madukwe and Obasi, 2016). High ratios indicate 

mineralogically mature (quartzose, rounded) sediments, while low values of SiO2/Al2O3 ratio 
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indicate high degree of clayness (Madukwe and Obasi, 2016). In our case study, the relatively 

high SiO2/Al2O3 ratio indicates predominating silicate minerals and low degree of clayness. 

Since the formation of most of the clay minerals requires humid condition, the low degree of 

clayness in the studied sections may indicate that the Lower and Upper unit were deposited 

under dry environmental conditions (Figs. 4.29 and 4.30).  

Low CaO oxide suggests a chemical destruction under oxidizing conditions during weathering 

(Oni and Olatuji, 2017). Therefore, the very low CaO/SiO2 ratio for the Upper unit of the red 

sand deposits in both sections may indicate that oxidation rate was greater than the pedogenetic 

processes, resulting in the predominance of the silicate minerals (mainly SiO2) which may 

deposited under dry conditions (Figs. 4.29 and 4.30). On the other hand the CaO/SiO2 ratio in 

both sections increases in the mottled sand of the Lower unit, which may indicate that the Lower 

unit experienced remarkable pedogenetic processes. Moreover, since these pedogenetic 

processes decrease upward in the Lower unit and the CaO/SiO2 ratio may provide an indicator 

of pedogenesis degree. If so, the fact that the upper part of the Lower unit shows CaO/SiO2 

ratios geater in the northern West El Obeid section than in the southern North Bara3 section, 

suggests that pedogenesis processes were more intense in the South than in the North, and 

therefore, that the southern part of the study area was wetter than the northern part dat that time.  

 

4.5. Clay mineralogy  

 

Clay mineralogy analyses has been carried out in eight samples from the Lower, Third, and 

Fourth Units of the East El Obeid section.  

4.5.1. Results 

The major clay mineral assemblages in the analyzed samples include smectite, kaolinite, illite 

in addition to interstratified layers illite-smectite, chlorite-smectite and kaolinite-smectite 

(Table 4.4). The smectite and illite represent the greater percentages among the interstratified 

minerals, and consequently these stratified layers are considered either smectite or illite 

according to the dominant species. The vertical distribution shows a remarkable predominance 

of smectite and kaolinite along the section, while illite is less present. The relation between 

kaolinite and smectite is reversed along the section, since smectite decreases upward, while 

kaolinite increases upward and becomes dominant in the upper unit (Fig. 4.31). 

Table 4.4. Results of clay mineralogy analysis.  

Sample Clay minerals 

Smectite % Illite % Kaolinite % 

Tag 3 40.2 21.8 38 

Tag 7 35.7 25.1 39.2 

Tag 10 32.1 28.2 39.7 

Tag 12 42.4 20.5 37.1 

Tag 15 50 19.4 30.4 

Tag 17 47.3 23.8 29 

Tag 20 39.7 31.1 29.3 

Tag 25 61.1 12.3 26.6 
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4.5.2. Interpretation 

Kaolinite and smectite form during chemical weathering in warm and wet climate, while illite 

and chlorite form during physical weathering (Madhavaraju et al., 2002). Smectite with mixed 

layered clays is indicative of seasonally warm climatic conditions (Madhavaraju et al., 2002). 

Prevailing smectite and kaolinite in the section indicate that the source area of the investigated 

units experienced chemical weathering rather than physical weathering before transport of the 

sediment. Moreover, the slight upward increase of kaolinite suggests a slight increase of 

chemical weathering in the source area of the Upper unit.  

 

 

Fig. 4.31: Clay mineralogy in the East El Obeid section: results and interpretation.  

 

4.6. Paleohydrogy 

 

Past hydrological records are important to understand the variability of paleoclimate, since they 

provide information about the geometry of the water table.  

4.6.1. Results 

Paleohydrological information is given by some paleolakes and ponds or pools, which had 

never been mentioned before. These paleolakes are scattered in the northern part of the study 

area around El Ga’ah and Sodari, and in the central part, around El Khowei and En Nahud. In 

the northern part, the most important paleolakes are the El Ga’a Lake and the El Firja depression 

lake, north of Sodari (Fig. 4.32), beside many other small paleolakes or pools. In the northern 

part, the distribution of the paleolakes is controlled by former sand dunes, which form North-

South trending dams or barriers across valleys or depressions.  
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Fig. 4.32: Location of the paleolakes in the northern area (white in this Google image). Note the N-S 

trending dunes, which dam the course of rivers or delineate small depressions.  

 

The El Ga’ah paleoake covers an approximately 490 km2 wide area, is orientated north-south, 

with a maximum length of 38 km and a maximum width of 22 km, and the elevation of its 

deepest part is ≈ 450 m asl. The elevation of four shoreline points was measured: three at the 

eastern side of the lake and another point on its western side, which was identified by the 

concentration of gastropod shells, archeological and bone remnants. A topographic profile has 

been drawn from a digital elevation model (DEM) joining the western shoreline point to one of 

the eastern points (Fig. 4.33). This profile shows that the maximum lake level was ≈ 472 m asl 

(maximum depth of 22 m) and the average thickness of the water column was about 17 m. 

Therefore, the water volume of the El Ga’a Lake was ≈ 8.33 km3 (8,330,000 m3). According to 

similar potteries from dated sites in northern and central Sudan, the fragments of dotted wavy 

line potteries collected on the western shoreline of the paleolake indicate that the maximum 

lake level was achieved between ≈ 7000 and 6000 yr BP and gave way to human settlements. 

The El Firja depression Lake (north of Sodari) covers an area of about 290 km2 and ranges 

between 500 and 540 m asl. It has a very irregular shape due to sand dune tongues, and is 

orientated north-south with a maximum length of 32 km, and a maximum width of 17 km. Its 

shoreline is marked by concentrations gastropod shells and by archeological and bone remnants.  

In the central part of the study area, the El Khowei and En Nahud swamps/pools are important 

hydrological features (Fig. 4.34). The El Khowei swamp seems to have been formed along what 

is today a semi-fossil river. These swamps are located between 590 and 620 m asl and are very 

irregular in shape, probably controlled by the drainage system. A topographic profile (Fig. 4.35) 

shows that the swamp level was around ≈ 605 m asl (i.e. maximum depth of 15 m).  
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Fig. 4.33: Profile showing the maximum level of the El Ga’ah paleolake.  

 

4.6.2. Interpretation 

The sand dunes that controlled the development of the northern lakes indicate that these lakes 

were closed lakes. Thus, the maximum lake levels were relatively stable for a long time 

(possibly thousands of years). The 22 m maximum depth of the El Ga’ah paleolake indicates 

that precipitations were abundant enough to allow the presence of a permanent lake, even during 

the dry season, and that the mean annual evaporation was lower than the mean annual rainfall. 

The geomorphology of the central area indicates that the El Khowei swamp developed along 

the wadies. These wadies were truly runny, slowly running or standing. The deposition of 

palustrine limestone and the preservation gastropod shells in the palustrine limestone provide 

evidence that water of these wadies were semi-permanent standing water.  
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Fig. 4.34: Location of swamps in the central area. 

 

Fig. 4.35: Topographic profile showing the maximum level of the El Khowei paleoswamp. Note the 

difference between the present day groundwater table and the one during the African Humid Period. 
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On the other hand, deposition of sandy limestone away from the main channel of the wadi, may 

indicate that the water level of the swamp or wadi was not stable, and fluctuated between two 

levels; a temporary high level depositing sandy limestone, and a permanent low level where 

limestone were laid down.  

During high water level, the sandy limestone was deposited as a result of the reworking of the 

pre-existing sediments, or of mixed, aeolian and palustrine deposits. This temporary water level 

may have lowered down rapidly due to the southward surficial runoff, and to direct infiltration 

to recharge the groundwater aquifer in the underlying Cretaceous-Paleogene “Nubian 

sandstone”. Since the El Khowei-En Nahud area is a high plateau without feeding river, the 

groundwater table that controlled the development of swamps was close to the land surface. 

The present day groundwater level in the En Nahud-El Khowei aquifer ranges between 550 m 

asl to the North and 470 m asl to the South (Elmansour, 2017), which indicate a southward 

general flow direction, similar to the surficial flow.  
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V. DISCUSSION 

 

5.1. Stratigraphy, sedimentology and paleoclimate 

 

The sedimentological and stratigraphic study in the Kordofan region enabled us to reconstruct 

the following sedimentological and climatic evolution during the terminal Pleistocene-

Holocene period, which correlates with the other regional sedimentological and climatic records 

for the same interval.  

 5.1.1. Period prior to ≈ 10 ka BP  

Aeolian deposition took place prior to ≈ 10 ka BP and covered most of the studied area except 

the southern part. This deposits represent the lower stratigraphic unit in the studied succession. 

During deposition of this unit, climate was probably dry with intensive aeolian deposition in 

the central and northern parts of the study area. Due to non-deposition in the southern part, it 

can be assumed that either the depositional environment was dry associated with aeolian 

erosion, or it was wet compared to the northern part, the aeolian sediments being removed out 

by rivers. We correlate this dry, windy period with the 20-12 ka BP time-span, which is known 

as a period of dune building in the central Sahara, Eastern Sahara, the Nile basin and East Africa 

(Nicholson and Flohn, 1980; Woodward et al., 2007; Tierney et al., 2011b; Williams et al., 

2000; Williams, 2014). Globally, this arid period coincides with the Last Glacial Maximum 

(LGM) (Woodward et al., 2007). Some hydrological proxies suggest that during most of the 

LGM, moisture transport from the Indian Ocean was enhanced to easternmost Africa and that 

wet conditions prevailed in the Challa region (Tierney et al., 2011b). But elsewhere on the 

African continent, the LGM was typically dry (Gasse, 2000; Gasse et al., 2008). The maximum 

aridity was probably achieved between 18,000 and 14,000 B.P. when the Sahara invaded the 

Sahel and moved 400-800 km southward (Bakker and Maley, 1977; Pachur and Kröpelin, 1987; 

Gasse, 2000). This aeolian activity formed various dune types in Eastern Sahara. Accordingly, 

barchans and linear dunes are recognized in the Western Desert of Egypt (Hamdan et al., 2014), 

and longitudinal ridges and transverse dunes are known in the Kordofan region and the Libyan 

Desert (Edmond, 1942). These longitudinal or linear dunes reflect strong wind energy resulting 

in widespread dune fields in northern Sudan, extending from latitude 10° N to the South to the 

Egyptian border the North (Abdu, 1976). During this dry period, the Sahara extended southward 

over time before most of these dunes were stabilized by vegetation (Warren, 1970).  

5.1.2. Period between ≈ 10 and ≈ 6 ka BP  

Lacustrine, palustrine and fluviatile deposits were recognized in most parts of the study area, 

dated between ≈ 10 and ≈ 6 ka BP in the northern and central part, and from ≈ 8 to ≈ 3 ka BP 

in the southern part. During this period, the environment was wet, vegetated across the study 

area, and locally swampy. This kind of depositional environment have already been reported in 

several sites across the African continent during the well-known “African Humid Period” 

(AHP) (DeMenocal and Tierney, 2012) or “lacustrine period” (Williams, 2014). Although 

much of the references indicate that the AHP lasted from ≈ 12 to 6 ka BP, Shanahan et al. (2015) 

reported that the real start of this wet conditions began almost everywhere at about 14-15 ka 
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BP, although maximum humidity was not achieved until the early Holocene because of a return 

to more arid conditions during the so-called “Younger Dryas” event, which is well recorded in 

Eastern Africa between 12.8 - 11.6 ka cal BP (Tierney et al., 2011b; Shanahan et al., 2015).  

According to previous works, the age of the wet phase varies from one site to another. It has 

been dated between 11 and 5 ka in North and East Africa (Tierney et al., 2011a), between 9.5 

and 4.5 ka BP in NW Sudan (Pachur and Kropelin, 1987; Abell and Hoelzmann, 2000; Pachur 

and Hoelzmann, 1991), between 9 and 6 ka BP across North Africa (DeMenocal and Tierney, 

2012), and between 6.5 and 4.5 ka BP as a second lacustrine phase in the Nile Valley and part 

of Eastern Sahara (Nicholson and Flohan, 1980). During this period, the present-day hyperarid 

Saharan desert was vegetated and covered with numerous scattered lakes (Cole et al., 2009) and 

many development stages of these lakes are generally of the same age (Bakker and Maley, 

1977). Most of the lacustrine lakes in northern and northwestern Sudan were dated as early as 

mid-Holocene: Dry Selima Lake deposits range from 8 820 ± 80 to 5 570 ± 60 yr BP (Abell 

and Hoelzmann, 2000), West Nubian Palaeolake sediments range from 9 400 to at least 3 800 

yr BP (Hoelzmann et al., 2001), and paleolakes formed along the Wadi Howar are dated 

between 9 500 and 4 500 yr BP (Kröpelin, 1993, in Abell and Hoelzmann, 2000).  

According to our data, this wet phase lasted in Kordofan at least from ≈ 10 to 6 ka BP in the 

North and up to 3 ka BP in the South of the studied region. However, the dated samples may 

not represent the base and top of the palustrine/lacustrine carbonate. In El Ga’ah, the well caved 

near the village may not have reached the base of the lacustrine deposits, and in the En Nahud 

area, the erosional surface that caps the palustrine carbonate suggests that the upper part of this 

limestone has been eroded. Therefore, the ≈ 10 ka BP and ≈ 6 ka BP dates obtained in palustrine 

limestones near En Nahud do not accurately represent the base and top of the palustrine 

limestone and therefore, the wet period may have started earlier than ≈ 10 ka BP and may have 

come to an end after 6 ka BP. Moreover, the lacustrine deposits dated north of the study area at 

Dry Selima, West Nubian Palaeolake, and Wadi Howar lake, not only support continuity of the 

wet phase in the central and northern parts of the study area after 6 ka BP, but also according 

to the starting dates, they provide other evidence that this wet period had started earlier in the 

Kordofan region than in north-central, northwestern, and northern Sudan. According to the 

indicated ages, the wet period started in the Kordofan region ≈ 500 year earlier than in Wadi 

Howar (north-central Sudan), ≈ 600 year earlier than in the West Nubia Palaeolake (NW 

Sudan), and ≈ 1200 year earlier than in the Dry Selima Paleolake. This information suggests 

that the AHP did not occur abruptly, neither across the continent nor across the Eastern Sahara, 

but it occurred gradually through a gradual northward shift of the Inter Tropical Convergence 

Zone (ITCZ).  

Taking in consideration that the lakes of northern Kordofan and those previously studied (Wadi 

Howar, West Nubia, Selima) are latitudinally arranged. The northern end of the Kordofan lakes 

is observed up to latitude 14°30ʹN, Wadi Howar flows from the west to the east between 

latitudes 16°30ʹN and 18°30ʹN, but its greatest part “which contains the lakes” fall at latitude 

17°30ʹN. The center of the West Nubian Paleolake is located approximately at 18°30ʹN. The 

dry Selima paleolake is located at 21°23ʹN. The latitudinal position of these lakes and the 

known starting time of the wet phase in these lakes will help in the determination of four 

approximate positions of the northern limit of the northern end of the ITCZ (Fig. 5.1).  
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The first position of the ITCZ was located between the northern end of the Kordofan lakes and 

Wadi Howar lakes. The wet phase started in Kordofan at ≈ 10 000 yr BP, and started ≈ 500 yr 

later in Wadi Howar. That means that at about 9 750 yr BP, the ITCZ was fluctuating around 

latitude 16°N.  

The second position of the ITCZ was between Wadi Howar and the West Nubian Paleolake, 

since the wet phase occurred at ≈ 9 500 and ≈ 9 400 year BP, respectively, at these two sites. 

This suggests that at about 9450 yr BP the ITCZ was fluctuating around latitude 17°N.  

The third position of the ITCZ was between the West Nubia and the Selima paleolake. The wet 

phase began at ≈ 9 400 and ≈ 8 800 year BP, respectively, at these two sites. This suggests that 

at about 9 100 yr BP, the ITCZ was fluctuating around latitude 20°N (Fig. 5.1).  

 

Fig. 5.1: The northern limit of the rainy belt for different intervals during the African humid period. 

The positions of the northern limit of the rainy bilt are based on ages of lacustrine lake sediments of El 

Ga’ah, Wadi Howar, West Nubia, and Selima Lake. Remark the gradual northward enlargement of the 

rainy belt. The lower and upper numbers in each lake represent the beginning and the end of AHP, 

respectively. The estimated mean annual precipitation (MAP) and mean annual temperature (MAT) for 

the AHP are based on Climofunctions of major elements geochemistry.  

 

Fluviatile sediments recorded in abundance in the southern part of the study area, and locally 

as either conglomeratic lenses or as very local delta sediments (El Ga’ah) in other areas, can be 

correlated with similar deposits or flood events reported throughout the central Sahara during 

the early Holocene until 6 500 yr BP (Bakker and Maley, 1977). Fluviatile sediments in the 
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Western Nubian Paleolake are formed of coarse sand to fine-grained gravels mostly of aeolian 

origin and redeposited by local fluvial transport ≈ 9 000 year BP ago (Hoelzmann et al., 2001). 

Fluvial sediment input in the northern Red Sea suggests substantially higher rainfall and 

freshwater runoff in this area between 9.25 and 7.25 ka BP (Arz et al., 2003).  

They can be correlated with a series of flood events well documented in the White and Blue 

Nile Rivers, either as flood, or high water levels during the early to mid-Holocene, which 

recorded high White Nile levels around 14.7–13.1 ka, 9.7–9.0 ka, 7.9–7.6 ka, 6.3 ka and 3.2–

2.8 ka (Williams, 2009). Additionally, peak floods are evident toward 9 500 yr BP and again at 

8 500–7 000 yr BP, with less extensive flooding at about 7 000, 5 500, 3 000, 2 700, and 2000–

1500 yr BP (Williams and Adamson, 1980).  

Since the White Nile is a river originating from lakes Lakes Victoria and Albert, the flood 

events or high level along the White Nile reflect intensive rainfall around the equator, which 

leads to an overflow at Lakes Victoria and Albert. Such overflows of Lakes Victoria and Albert 

are recorded soon after 12 500 BP and brought dramatic and enduring changes to the lower 

White Nile valley. By 11 500–11 000 BP, the White Nile was up to 5 m higher and 20–40 km 

wider than today (Williams and Adamson, 1974; 1980). During the flood events in the White 

Nile, the previously mobile desert dunes became vegetated, and many dunes became wholly or 

partly buried beneath the fluvio-lacustrine clays (Williams et al., 2000). In the Blue Nile, high 

flood levels are recorded around 13.9–13.2 ka, 8.6 ka, 7.7 ka and 6.3 ka (Williams, 2009). As 

a result of overflow between 12 000 and 8 000 yr BP, the White Nile remained high and formed 

an extensive lake up to 30 km wide or more in addition to other small lakes west of the White 

Nile (20 km northwest of Jebel Aulia, south of Khartoum) (Williams and Adamson, 1974). This 

lake dammed by a former sand dune developed during the LGM between 20 and 18 ka ago 

(Williams et al., 2000). However, such lakes formed close to the White Nile as a result of 

flooding will not provide the real climate of their sites in Sudan, but instead, they can provide 

climatic proxies for the equatorial Africa in particular Lakes Victoria and Albert. In contrast 

the lakes of Northern Kordofan and flood events in Southern Kordofan provide the climatic 

proxies for Kordofan region itself, due to the local origin of these and of the flooding wadies or 

seasonal rivers.  

North of the Kordofan region, fluviatile and/or alluvial sediments distributed along the lower 

part of Wadi Howar exhibit gravelly sand, silty fine sand and alluvial sand in addition to local 

lacustrine marl and chalk (Kröpelin and Soulié-Märsche, 1991). These deposits were laid down 

between about 9 500 and 4 500 years ago, when the lower Wadi Howar flowed through an 

environment characterized by numerous ground water outlets and freshwater lakes (Pachur and 

Kröpelin, 1987). Wadi Howar constituted the largest tributary to the Nile from the Sahara 

between the Mediterranean Sea and the Atbara River, and it drained a 400 km wide area with 

present rainfall of 25 mm/year (Pachur and Kröpelin, 1987). Nowadays, Wadi Howar is defunct 

and its course is only marked by linear tree vegetation, sustained by a ground water table some 

6 to 10 m below the surface (Pachur and Kröpelin, 1987).  

In some sites in lower Wadi Howar (jebel Rahib), the former river bed is blocked by a 15 m 

high and 5 km wide dune barrier. Pachur and Kröpelin (1987) reported some flooding events 

between ≈ 5600 and 7000 yr BP in the eastern part of lower Wadi Howar. Such wadi floods or 
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overflows also have been reported in some wadies in West Nubia: Wadi Fesh-Fesh in Western 

Nubia was surrounded by numerous scattered swamps (Pachur and Hoelzmann, 1991). 

In the Kordofan region the paleowadi activity, represented by either fluviatile, or palustrine 

depositional environments, has been recorded in several sites mostly coeval to Wadi Howar and 

Wadi Fesh-Fesh. This similarity of depositional environment between Kordofan, northern 

Sudan and Eastern Sahara in general, suggests that the same wet climatic condition was 

prevailing at the same time, although according to the carbon dating, this wet phase started 

earlier in the South (older than 10 ka BP.), while in Eastern Sahara this wet phase started around 

9.5 ka BP (Pachur and Kröpelin, 1987).  

5.1.3. Period after ≈ 6 ka BP  

Although incomplete, the sedimentary record in the study area, allows to distinguish three main 

peridos between 6 ky BP and Present times (see Figs. 3.18 and 6.1): a transitional, aridification 

period (6-3 ky BP), a hiatus corresponding to non deposition or erosion due to strong aeolian 

activity (3-1 ky BP), and a dry period dominated by aeolian deposits (1-0 ky BP). As a whole, 

the prolonged hiatus (≈ 6 to ≈ 1 ka BP in the North, ≈ 3 to ≈ 1 ka BP in the South) and the 

generally dry, windy environment recorded after 1000 yr BP result from the aridification of the 

climate in the northern part of the study area, the southern parts remaining wetter.  

The erosional surface at the top of the palustrine limestone in the En Nahud-El Khowei area 

suggests that sedimentation did not come to an end at ≈ 6 ka BP. Instead, the apparently 5000 yr 

lasting hiatus has been probably amplified by significant wind erosion that removed part, or all, 

sediments deposited between 6 and 3 ka BP in this area. As a matter of fact, considering the 

relatively narrow latitudinal extension of the study area (about 3.5 latitudinal degrees), it is 

difficult to consider that in the northern/central part of the study area, the wet phase ended 3000 

year age earlier than in the southern parts. Therefore, we shall consider that the trasitional, 

aridification period occurred between 6 and 3 ky BP in the study area.  

This aridification period is correlated with the well-documented aridity that already 

considerably advanced farther North, in Eastern Sahara by 6 ka BP (Manning and Timpson, 

2014; Tierney and deMenocal, 2013). Such aridification is evidenced by (1) the desertification 

and aeolian deflation during the Middle and Late Holocene (≈ 5.4 ka BP) recorded in Egypt 

and northern Sudan (Nicoll, 2004); (2) deflation and erosional surfaces recorded in the Western 

Nubia Paleolake at ≈ 4 ka BP (Pachur and Hoelzmann, 1991); (3) aridification that began in NE 

Africa at ≈ 6 kyr BP (Jung et al., 2004), and (4) a shift from an earlier predominantly monsoonal 

climate regime, to one dominated by northern Mediterranean fluxes recorded after 4000 cal yr 

BP at Lake Yao in Chad (Lézine et al., 2011). Nevertheless, the timing and amplitude of the 

transition between the “green Sahara” and the present day hyper-arid desert at the end of the 

AHP is still a matter of debate (Lézine et al., 2011). The drying events stated elsewhere in the 

Sahara may be explained by fading rainfall at a specific latitudinal position at a certain moment, 

or by local dropping of groundwater (Kuper and Kropelin, 2006). According to Lézine et al. 

(2011), the shift from the wet monsoonal climate to the dry one occurred gradually through 

transitional climatic conditions that lasted from ≈ 5.5 to 2.7 ka BP.  

Therefore, the aridification period appears to have occurred earlier at northern latitudes than in 

southern ones, since it is recorded at ≈ 5.4 ka BP in southern Egypt and northern Sudan, ≈ 4 ka 
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BP at the West Nubia Paleolake, and ≈ 3 k BP in central-southern Kordofan. Taking in 

consideration that aeolian erosion removed part of the sediments deposited during the wet or 

transition periods in Kordofan and West Nubia, this indicates that aridity in these areas was 

achieved later than these dates. However, this remarkable southward shift of aridity suggests a 

southward migration of ITCZ, that was moving northward during the AHP. This southward 

shift of the ITCZ resulted in the narrowing of the tropical rainy belt. The available dates of the 

aridification period can help in the determination of an approximate positon of the ITCZ (or 

northern end of the equatorial rainy belt) during the transitional period. The ITCZ was 

approximately fluctuating around latitude 21°N at ≈ 5.4 ka BP, around latitudes 18 - 19°N (west 

Nubia) at ≈ 4 ka BP, and around latitudes 13 – 13.5°N at ≈ 3 ka BP. 

A period of strong aeolian activity is well recorded in NE Africa between ≈ 5.4 and 2.7 ky BP 

(see above). In the study area, the beginning of aeolian related hiatus likely did not occur exactly 

at ≈ 3 ka BP, since part of the former deposits may have been removed. Therefore, the wind 

erosion may have begun after 3 ka BP. In any case, the wind erosion was stronger in the North 

than in the South of the study area (Figs. 3.18 and 6.1). Several causes may be invoked to 

explain this feature : (1) the northern areas are closer to the Saharan wind storms, and thus more 

exposed to aeolian erosion; (2) assuming that winds were blowing from the North, as indicating 

by the grain size analysis (section 3.5), the southern areas (South of El Obeid-En Nahud) are 

located leeward, while the northern areas are located windward (see Fig. 3.39) and are, 

therefore, more exposed to the wind action; and (3) the southern areas being wetter than the 

northern ones, the vegetal cover may have limited the erosion.  

After the recorded wind-related hiatus (≈ 3-1 ka BP), the climate seems to have been 

comparable to that of today.  

  

5.2. Discussion of the isotopic results 

The isotopic composition of the analyzed samples can be correlated with some previous isotopic 

investigations carried out in Sudan and surrounding areas.  

Oxygen isotope values for gastropod shells from the Esh Shawal area (Central Sudan between 

latitudes 13.5 and 14°N, western bank of the White Nile) range from -0.927‰ to +6.537‰ 

(PDB) (Williams et al., 2000). These shells were collected at 100-110 cm below the surface and 

accumulated during the peak of the White Nile palaeolake transgression, at 11 500–11 000 BP 

(Williams et al., 2000). The isotope results of Esh Shawal gastropods generally tend toward 

positive values when compared to our isotopic values. The positive isotopic values from the 

Esh Shawal site suggest that the AHP did not occur in central Sudan before 11 ka BP and 

consequently, that the arid period known as the period of dune building, was still dominating 

the climate of Central Sudan west of the White Nile around latitude 13.5°N. This provides more 

evidences that the wet lacustrine period have started in northern Kordofan between the proposed 

10 ka BP (age of our palustrine and lacustrine carbonates) and 11 ka BP (according to oxygen 

isotope of the Esh Shawal gastropods). However, the entire White Nile flood plain may reflect 

the climatic conditions of the source area rather than the local climate, therefore, the enriched 

δ18O of Esh Shawal area reflect drier condition at the source area (Lake Victoria and Albert) 
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taking in consideration the evaporation effect along the course of the White Nile, which reduces 

the lighter oxygen (16O).  

On the other hand, oxygen stable isotope analysis of 8500 to 7000 yr old gastropods from 

shallow claypans near Wadi Mansurab in north-central Sudan reveals that the shell carbonate 

is highly depleted in δ18O (-5.3‰ to -12.7‰ PDB), with extreme variability up to 6-7‰ PDB 

(Ayliffe et al., 1996). These variability is interpreted as due to seasonal rainfall regime, 

characterized by a high degree of inter-annual variability.  

Isotope values from shells of the bivalve Etheria elliptica (dated 6653 ± 110 yr BP) from Wadi 

Howar yielded highly depleted δ18O values (-10‰ to -12‰ PDB) with some variations 

(Rodrigues et al., 2000). This high depletion and variations in δ18O are interpreted as due to 

high seasonality of monsoonal rains (Rodrigues et al., 2000). Such depleted gastropod shells 

oxygen isotope were also reported by Abell and Hoelzmann (2000) in Selima, North Sudan, 

and in some paleolakes along Wadi Howar. Moreover, these depleted δ18O values suggest that 

north-central and northwestern Sudan (Wadi Mansurab and Wadi Howar) were located within 

the tropical rain belt, but the variability in these depleted δ18O values evidences that the seasonal 

fluctuation of the ITCZ was more erratic, as this period corresponds the late phase of the AHP. 

In our study, coeval gastropod shells from En Nahud and El Khowei recorded depleted but less 

variable δ18O values, compared to those recorded from Wadi Mansurab and from Wadi Howar 

bivalve shells. This may indicate that the Kordofan region was affected by the ITCZ seasonal 

fluctuations later than the Wadi Mansurab and Wadi Howar areas, located farther north.  

In the Afar region in Ethiopia, freshwater gastropods of early to mid-Holocene age 

(11 070 ± 160 to 6 670 ± 110 yr BP) recorded δ18O between -4 to -6 ‰, while modern shells of 

the same area yielded δ18O values between -1.5 and + 6 ‰ along the spiral growth (from the 

aperture to the apex), with most values around -1.5‰ (Abell and Williams, 1989). The depleted 

δ18O values of the early to mid-Holocene are interpreted as due to episodes of high rainfall in 

the Ethiopian highlands, while arid spells produced enriched δ18O values in the modern shells 

(Abell and Williams, 1989). Compared to isotopic values of the Ethiopian shells of early to 

mid-Holocene age, our results suggest that the meteoric water of the Kordofan region was more 

depleted in δ18O than that of the Afar region in East Africa. This variation suggests that during 

the early to mid-Holocene period, either the Kordofan region was wetter than eastern Africa, 

or, more probably, the latter region received rainfall from a different source. As a matter of fact, 

the East African rainfalls are mostly influenced by Indian Ocean sea surface temperature 

variations, while those of West and Central Africa (Shanahan et al., 2015) are mostly of Atlantic 

origin with probably some influences of the Congo Air Basin. These complex rainfall sources 

may explain isotopic variations at the same time in different regions, even though the regional 

climate is comparable.  

Studying the isotopic composition of modern African freshwater gastropods, Abell (1985) 

evidenced variable oxygen isotopic ratios across the continent. Among these samples, those 

from the surrounding regions of Sudan and the Sahara can help in this discussion. According 

to Abell (1985), the Congo samples recorded δ18O values between +2.77 and +2.62‰, Uganda 

from +4.0 to +1.73‰, and Kenya +3.67 and -3.57‰. To the East, in samples from Ethiopia, 

δ18O ranges between -3.58 and -4.4 ‰. One sample from Sudan recorded δ18O of -3.54 ‰. In 
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North Africa samples from northeast Egypt range between -6.39 and +2.15‰, around -9.87‰ 

in Libya, and about -8.38‰ in Algeria. To the west, samples of Nigeria recorded δ18O between 

-4.00 and +4.07 ‰. Although samples of Ethiopia, Sudan and Nigeria are approximately from 

the same latitudinal zone, those from Sudan and Ethiopia are more negative than those of 

Nigeria. This variation may be due to the variation of the water vapor source, since the Indian 

Ocean represent the main source of the rainfall in the Ethiopian highland, while in Sudan and 

Nigeria the rainfall source is from the Atlantic Ocean. However, assuming that the Sudanese 

and Nigerian rainfall come from the same source, why δ18O values are negative in Sudan and 

positive in Nigeria and in other Sahelian countries of West Africa ? These variations may be 

due the continental or latitude effect, which decreases δ18O values with increasing distance from 

the source. Northern Nigeria is about 1500 km from the Atlantic Ocean, while Sudan is more 

than 3500 km apart from the same ocean. Therefore, the water vapor form the Atlantic Ocean 

will travel along large distances to reach Sudan, will be precipitated and evaporated repeatedly 

crossing the Congo Basin, thus depleting the rainfall in the heavier 18O isotope. For instance, 

the meteoric water in Uganda and Southern Sudan has a present-day δ18O value of about -2‰, 

while the corresponding value for present-day gastropods in Lake Victoria is +1.5‰ (Williams 

et al., 2000). On the other hand, the highly depleted North African shells are due to different 

climate and water rain source, as North Africa is dominated by the Mediterranean Sea climate.  

In our case, the variation in δ18O between the highly depleted values in the shells from the 

carbonate horizon (Second unit), and the less depleted values of the shells from the upper unit 

of red sand sediments, may be due the combination of evaporative and temperature effects. 

Since the gastropod shells analyzed in this study are from the same latitudinal zone, the vertical 

variation in δ18O for the same site is only due to climatic changes (evaporation and temperature) 

through time.  

Abell (1985) summarized some problems in the use of stable isotope ratios of gastropod shells 

as environmental indicators: (1) the shells of most freshwater molluscs are generally aragonite. 

The aragonite crystal structure is thermodynamically unstable compared to calcite under most 

ambient conditions (Folk, 1965). Therefore, recrystallization may occur with concomitant 

isotopic reequilibration with the new environment. (2) Modern gastropods can usually be 

collected alive, so there is no question of their age, but ancient gastropod shells are often quite 

robust and can be preserved for millions of years. Reworking of the sediments in which the 

shells were embedded can produce a mixture of shells of different ages and environments. It is 

essential to use gastropod shells that give every evidence of being in situ (Abell, 1985). (3) The 

isotopic content of a body of water do not reflect necessarily accurately the local environment 

as a whole. For example, some species of gastropods can aestivate successfully, and their 

isotope ratios can reflect highly evaporative conditions such as in temporary irrigation ditches 

or ephemeral lakes and streams. Such gastropods will have isotope ratios significantly different 

from gastropods growing in the same locality but in permanent rivers and lakes. In the present 

study, some anomalies in gastropod shells oxygen isotope may be due to some of these 

problems. Very negative δ18O values have been recorded in the East El Khowei section, among 

less depleted values from the upper unit (aeolian red sand sediments). An acceptable 

explanation is that the analyzed shell may have been reworked from underlying palustrine unit, 

which is marked by such depleted value.  
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Concerning the isotopic composition of the calcareous nodules, our interpretation proposed that 

the calcareous nodules of the lower unit of the mottled sand sediments and those formed within 

the second unit in the southern part, were mostly developed during the AHP. Although these 

nodules formed during this wet phase, their δ18O values are less depleted than gastropod shells 

of the same period. Ground water composition has probably a major influence in the 

development of these calcareous nodules. If so, the isotopic composition of the nodules results 

from a combination of different isotopic sources that include the initial groundwater, the 

recharged water during the wet phase, and the evaporative condition during formation of the 

nodules, which may modify the isotopic composition of the newly recharged water. According 

to this, the subsurface isotopic composition will differ from the surficial one, in spite of similar 

climatic condition.  

  

5.3. Paleohydrology 

The most important and already investigated hydrological features are paleolakes of the Mega 

Chad Lake (Bouchette et al., 2010), Western Nubia in NW Sudan (Pachur and Hoelzmann, 

1991; Hoelzmann et al., 2001), Selima in north Sudan (Abell and Hoelzmann, 2000), some 

small lakes along Wadi Howar in NW Sudan (Pachur and Kröpelin, 1987) and the 400 km long 

Wadi Howar paleohydrological network in northwestern Sudan, which linked the mountains of 

Western Sudan to the Nile (Pachur and Kröpelin, 1987). 

Gasse (2000) concluded that the hydrological history of Africa appears to have been a complex 

alternation of wet and dry episodes with abrupt transitions and sometimes these fluctuations 

recorded short fluctuation events rapidly followed by a return to initial conditions (Gasse, 

2000). Such fluctuations of the water level have been evidenced through structural 

characteristics of the sediment in the West Nubian Paleolake; temporarily the lake dried up and 

desiccation cracks formed in the calcareous muds are filled with fragments of lake chalk and 

carbonate mud (Pachur and Hoelzmann, 1991). In the El Ga’ah Lake (this study), water level 

fluctuations have been evidenced through two observations: (1) the alternating lacustrine 

limestone and argillaceous sand sediments beds, which indicate environmental changes (Fig. 

3.6); (2) the desiccation features on top of each lacustrine limestone horizon, which indicate 

drying up of the lake and subaerial exposure of the deposited carbonate mud. Because of dating 

scarcity, it is difficult to determine correctly the periods of El Ga’ah Lake low level, but two 

drying up event prior the last drying phase have been observed through the alternation of these 

sediments.  

Although the paleolakes of the Northern Kordofan and the Central Kordofan swamps, and those 

previously investigated (West Nubian paleolake, Wadi Howar lakes, Maegalake Chad), are all 

approximately of early-Holocene age, they are marked by some hydrologic variations. The most 

important variation represent the type or the mechanisms of the precipitation and the kind of 

the infilling water of these lakes. The West Nubian, Wadi Howar and Megalake Chad are filled 

up by meteoric water precipitated over mountainous areas of Jebl Marra, Ennedi Mountains and 

Tibesti Mountain, and their catchment areas are marked by extensive drainage areas, gathering 

many tributaries. In contrast, the source water of the Kordofan lakes or swamps is only from 

local precipitation over the surrounding catchment areas of normal reliefs (no mountainous 
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areas). Mountains usually attract clouds and rains (topographic effect), which is only very 

partially the case of the North Kordofan lakes. Due to this topographic effect, the high level 

periods of the West Nubian, Wadi Howar and Chad lakes may have started before, and ended 

after, the Kordofan lakes. For instance, in spite of subsequent aeolian erosion in Kordofan and 

West Nubia, the youngest recorded ages of the lakes are ≈ 6 ka BP in Kordofan (14°30’N) and 

≈ 3800 yr BP in West Nubia (18-19°N).  

Much of the groundwater of the West Nubian paleolake is fossil water and was accumulated 

during different geological times much wetter than the present-day hyper-arid climate of 

Eastern Sahara. This basin has an area of ≈ 13 160 km2 and a 1.6 km thick Paleozoic and 

Mesozoic sedimentary section capable of holding ≈ 1 120 km3 of groundwater if the sediments 

are completely saturated (Elsheikh et al., 2011). Nowadays, the water table in West Nubia is 

estimated to be ≈ 50 m deep (Gossel et al., 2004), while in Wadi Howar the groundwater table 

lays 6 to 10 m below the surface (Pachur and Kröpelin, 1987). Gossel et al. (2004) proposed 

that groundwater of the Eastern Sahara aquifers was infiltrated during the wet periods 20 000 

and 5 000 yr BP ago.  

The existence of megalakes in Chad, West Nubia and Selima, of small lakes in Wadi Howar 

and of the recently discovered lakes in the Kordofan region, all of early to mid-Holocene age, 

reflect that the hydrological situation was comparable across this region in spite of the 

previously mentioned topographic effect. The lacustrine-palustrine carbonates deposited in 

these lakes provide evidences for mostly permanent surficial water bodies and provide an 

indicator that groundwater table was very shallow (few meters below the surface) in areas 

surrounding the lakes, and was in direct contact with the water bodies. Since some evidences 

indicate that the lake levels was fluctuating, the groundwater table was fluctuating too. These 

fluctuations probably constitute a normal response to the ITCZ fluctuations. Such fluctuations 

have already been documented in the West Nubian paleolake between 9400 and 3800 14C yr 

BP (Hoelzmann et al., 2001). Later on, Hoelzmann et al. (2010) recognized that between 10.9 

and 8.9 ka BP, the lake was shallow with fluctuating salinity. After about 8.7 ka BP, the lake 

level rose, water became fresh to oligo-saline, and the lake had a minimum depth of at least 

8 m. This record shows that lakes in Eastern Sahara registered short-term climatic events, as 

long as they were isolated from large-scale artesian groundwater systems (Hoelzmann et al., 

2010). 

The deepest depression of megalake Chad is less than 200 m in elevation (Bouchette et al., 

2010). Four distinct paleo-lake levels have been identified in megalake Chad at 290 m, 300 m, 

320 m and 330 m. The water depth, derived from present-day topography of Lake Chad, 

exceeded 150 m at its deepest part in the central northern sub-basin (Bouchette et al., 2010). 

The maximum water depth estimated in the West Nubian paleolake between 9400 and 7500 14C 

yr BP is 15 m (Hoelzmann et al., 2001), while the present groundwater in West Nubia is ≈ 50 

m deep (Gossel and Wycisk, 2004; Elsheikh et al., 2011) and its central part is relatively flat 

with a mean elevation of ≈ 550 m (Elsheikh et al., 2011). In the western part of the lower Wadi 

Howar, Pachur and Kröpelin (1987) mention a paleolake (“2” in their Fig. 1a, 17°N) about 

40 km to the south of the channel of Wadi Howar and of its tributaries, indicating that the water 

table was there at the surface (545 m asl).  
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Fig. 5.2: Profile of Eastern Sahara, showing the reconstructed hydrological situation during the AHP 

and the present water table.  

 

The elevation of the deepest part in El Ga’ah Lake is ≈ 450 m asl. Since the only measured 

maximum shoreline is ≈ 472 m asl, the maximum water depth estimated is about 22 m, and 

according to a hand-dug well drilled by the local citizens in El Ga’ah, the groundwater table in 

weathered basement aquifer is about 80 m deep (i.e. 400 m asl). In the El Khowei-En Nahud 

swamps, the deepest depression is ≈ 590 m asl and the shoreline is estimated at ≈ 610 m asl. 

According to Elmansour (2017), the present elevation of the groundwater table in En Nahud-

El Khowei basin ranges between 550 and 500 m asl. For the latter area, it is noteworthy that 

they are located on a plateau that dominates surrounding areas and do not receive any significant 

river. Therefore, the presence, there, of swamps indicates that, at least during the wet season, 

rainfall were sufficient to allow semi-permanent water bodies to occur.  
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Hydrological information about these lakes would be very powerful for a paleohydrological 

reconstruction of Eastern Sahara taking into account megalake Chad, West Nubia, El Ga’ah-

Sodari lakes and the El Khowei-En Nahud swamps. A topographic profile has been drawn from 

Digital Elevation Model along a total distance of ≈ 2200 km, showing the maximum lake levels, 

the groundwater table during the AHP, and the present groundwater table (Fig. 5.2.). The very 

high lake level at Megalake Chad, the relatively high lake level in the West Nubia and El Ga’ah 

lakes, and the remarkable groundwater table raise during the AHP provide clear evidence that 

Eastern Sahara experienced abundant rainfall during the AHP, and that the region may have 

remained during about 4000 year (10-6 ka BP) within the tropical rainy belt.  

  

5.4. Archeology  

The lake stages and environmental condition in the Western Nubian Paleolake correlate well 

with the distribution of early human settlements, characterized by dotted wavy-lines pottery 

dated between 6300 and 3500 14C yr BP (Hoelzmann et al., 2001). Such dotted wavy line 

potteries have a wide distribution west of the Nile across the Sahara-Sahel Belt (Mohammed-

Ali, 2003) and have been observed in several sites along Wadi Howar (Jesse, 2007). In the 

present study, the existence of some archeological remnants (potteries, grinding stones, cutting 

tools, etc) on the northwestern shoreline of El Ga’ah Lake and El Firja depression lake (North 

of Sodari), provides good evidences that these lakes developed at the same time as the West 

Nubian and Wadi Howar paleolakes, and that they experienced similar human settlements. The 

latter are controlled by several factors, but hydrology and climate are the most important 

controlling factors on the distribution these archeological sites, since the density of human 

population in Africa is primarily regulated by the availability of water (Gasse, 2000). Moreover, 

we found historic potteries (Merowetic and Islamic eras) associated with the Neolithic dotted 

wavy-lines potteries around the El Ga’ah and El Firja lakes. The fact that such historic potteries 

are not reported from the Western Nubia and Wadi Howar lakes, suggests that these lakes dried 

up before the beginning of these historic era. On the other hand, this may provide evidence of 

the southward human migration as a dynamic response to the southward shift of the rainy belt 

after the late AHP, as documented by Kuper and Kröpelin (2006).  

 

5.4. Grain size and Major elements geochemistry 

As presented in the results of major elements geochemistry (4.4.1), the ratio of SiO2 to Al2O3 is 

modrately high in both sections of North Bara3 and West El Obeid, with little variability along 

both the Lower unit (mottled sand facies) and the Upper unit (red sand facies). This moderately 

high ratio is interpreted as due to the domination of silicate minerals. Figs. 5.3 and 5.4 represent 

a comparison between the mean grain size and the SiO2 /Al2O3 ratio for the two sections. It 

appears that the mean grain size is within the range of sand : medium sand and fine sand at 

North Bara3 and West El Obeid, respectively. The sandy nature of the Lower and Upper units 

is in good agreement with the SiO2/Al2O3 ratio, which evidences a high SiO2 content. These 

data strongly suggest aeolian deposition in an arid environment for both units.   
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Fig. 5.3: Mean grain size and SiO2/Al2O3 plots for the North Bara3 section.  

 

 

Fig. 5.4: Mean grain size and SiO2/Al2O3 plots for the West El Obeid section.  
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VI. CONCLUSION 

 

6.1. Summary  

Primary observations on temporal and spatial variations of the sedimentological records in the 

study area suggest that the Kordofan region has been submitted to significant climatic and 

environmental fluctuations. 

The sedimentological and stratigraphic investigations allowed to distinguish eight different 

sedimentological facies belonging to four stratigraphic units. The identified facies are: mottled 

sand or silty sand, lens shaped conglomerate, alternating sand and silts, sandy carbonate, 

carbonate, argillaceous sand, red sand facies, and clinoform bearing, coarse clastic facies.  

Carbon dating permitted to date the stratigraphic units and therefore, to correlate them and to 

establish the succession of sedimentological and climatic events that occurred in the terminal 

Pleistocene to Holocene period.  

Sedimentological variations, sub-fossil contents, sedimentary and pedogenetic features were 

used to reconstruct the depositional environments, sedimentary evolution and the evolving 

paleogeography in the study area. 

The sedimentology, palynology, gastropod sub-fossil shells paleontology, stable isotopes, 

major elements geochemistry, and clay mineralogy were used as proxies to reconstruct the 

paleoclimatic evolution of the study area throughout the latest Pleistocene-Holocene period.  

These studies made it possible to place the resulting paleoclimatic reconstruction in the context 

of the climatic evolution of the East Saharan Region. 

 

6.2. Main results  

The sedimentological and paleoclimate results are summarized in figure (6.1). The main 

findings of this study are:  

 Prior to ≈ 10 ka BP, the depositional environment was dominated by aeolian activities, and 

the climate seems to have been arid to hyper-arid.  

 Between ≈ 10 and ≈ 6 ka BP, the northern part of the study area was marked by 

lacustrine/palustrine depositional environment and the climate was humid. In the southern 

part of the area, this humid period may have extended until ≈ 3 ka BP and the sedimentation 

was dominated by fluviatile deposits. 

 Between ≈ 6 and ≈ 1 ka BP, the northern part of the area was marked by a non-deposition 

period, interpreted as a hiatus due to strong aeolian activity preventing deposition and 

causing erosion, associated with an arid climate. Meanwhile, the southern area was wetter 

than the northern one, and the hiatus lasted from ≈ 3 ka BP to ≈ 1 ka BP.  

 After ≈ 1 ka BP, the depositional environment was dominated by aeolian activity in the 

North, while the southern part was dominated by both aeolian and fluviatile processes. 

Consequently, the climate was generally dry but wetter to the South.  
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 The correlation of this results with some similar climatic studies in the Eastern Sahara 

indicates that these climatic changes resulted in gradual northward movement of the northern 

limit of the tropical rainy belt during the AHP. 

 During the aridification period that followed the AHP, the climatic change resulted in the 

gradual southward shift of the rainy belt and of the ITCZ. 

 

 

Figure 6.1: Synthesis of the sedimentary and climatic evolution of the study area since 14 ky BP. 

 

6.3. Perspectives  

The reconstruction of the sedimentary and paleoclimatic evolution of the Kordofan region in 

late Pleistocene-Holocene times is the first attempt in this area. Despite the fact that the final 

output of this study provided very valuable information about the sedimentary and climatic 

evolution in this region in particular and Eastern Sahara in general, there is great potential for 

further work to be conducted in this region and its surroundings for a better understanding of 

this evolution. The future work that may be done include the following points: 

 The actual dates and duration of the African Humid period should be specified, in order to 

reconstruct the movements of the ITCZ. This requires more dating of the base and top of the 

lacustrine/palustrine facies, and more survey of the overlying deposits, in order to specify the 

age of the wind-related hiatus that followed the AHP.  

 In spite of the lack of organic matter in the red sand facies, dating the base of this facies 

would help specifying the age of the end of the preceding hiatus. An alternating dating method, 

such as Luminescence dating will provide some clues to fix the dating problems of such kind 

of oxidized sediments. 

 Since this study mainly dealt with pollens of the southern areas, additional palynological 

investigation might be carried out in other parts of the Kordofan region to build a wider 

palynological record and, combined with chronological dates, to refine the paleoenvironmental 

and paleoclimatic reconstructions.  
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 Paleobiology of gastropods combined with the Chemical Index of Alteration (CIA), seems 

to be a promising and effective tool to assess the mean annual rainfalls experienced by a region, 

and thus to constrain the paleohydrological regime of the area.  

 Systematic analysis of oxygen isotope should be done on individual gastropod shells along 

the spiral growth line (from the apex to aperture) to determine whether the wet and dry episodes, 

are due to mere seasonality or to ITCZ fluctuations.  

 Intensive archeological investigations are very important to be achieved across the region, 

particularly around the shorelines of the northern lakes of El Ga’ah and Sodari and around the 

En Nahud – El Khowei swamps. Such investigations will improve the understanding of the 

climate-human settlement relations. 

 More regionally, climatic studies in the eastern Sudan will help to determine whether the 

Eastern monsoon of the Indian Ocean hade any influences on the precipitation pattern in this 

part of Sudan, or if the Ethiopian highlands prevent moisture to cross further West, the 

Kordofan region remaining dominated by the southwesterly moisture from the Atlantic Ocean 

and the Congo Basin.  
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